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On-chip generation of high-dimensional entangled
states of light
Nonclassical states of light are key resources for quantum information technolo-
gies thanks to their easy transmission, robustness to decoherence and variety of
degrees of freedom to encode information. In this context, this PhD thesis is ded-
icated to the development of novel semiconductor photon pair sources. Exploiting
the high flexibility offered by spontaneous parametric down conversion (SPDC) in
AlGaAs waveguides, we demonstrate the generation and the engineering of high-
dimensional nonclassical states of light encoded in frequency.

First, we employ a source based on a counter-propagating phase-matching
scheme and demonstrate that tailoring the spatial profile (intensity and phase)
of the pump beam enables the control of the photon pair spectral correlations
and wavefunction symmetry directly at the generation stage, without any post-
selection. In particular, tuning the pump beam waist allows to produce correlated,
anti-correlated and separable frequency states, while modifying the spatial phase
profile allows to switch between symmetric and antisymmetric spectral wavefunc-
tions and to modify the exchange statistics of the photons, as evidenced measured
via Hong-Ou-Mandel interferometry. We also investigate more complex quan-
tum states: we demonstrate that this source, thanks to its geometry and to an
anti-reflection coating, can also emit photon pairs entangled in a hybrid polariza-
tion/frequency degree of freedom.

We then start the development of a novel device formed by a lattice of parallel
co-propagating nonlinear waveguides, design to emit spatially entangled photon
pairs via cascaded quantum walks. We report the optimization of its clean room
fabrication processes and first optical characterizations of this novel device.

Keywords: quantum optics, photonics, AlGaAs, spontaneous parametric down
conversion, photon pair source, entanglement, Hong-Ou-Mandel, frequency corre-
lations engineering.
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Génération sur puce d’ états photoniques intriqués
à haute dimension
Les états non classiques de lumière sont des ressources clés pour les technologies de
l’information quantique, grâce à leur facilité de transmission, leur robustesse à la
décohérence et leur variété de degrés de liberté utilisables pour coder l’information.
Dans ce contexte, cette thèse de doctorat est consacrée au développement de nou-
velles sources semi-conductrices de paires de photons. En exploitant la grande flex-
ibilité offerte par la conversion paramétrique spontanée (SPDC en anglais) dans
les guides d’ondes AlGaAs, nous démontrons la génération et l’ingénierie d’états
non classiques de lumière à haute dimension codés en fréquence.

Tout d’abord, nous utilisons une source basée sur un accord de phase contra-
propageant et démontrons que l’ingénierie du profil spatial (en intensité et phase)
du faisceau de pompe permet de contrôler les corrélations spectrales et la symétrie
de la fonction d’onde des paires de photons directement à la génération, sans aucune
post-sélection. En particulier, la variation de la taille du faisceau de pompe permet
de produire des états en fréquence corrélés, anti-corrélés et séparables en fréquence
; tandis que l’ingénierie du profil de phase spatial permet de passer d’une fonction
d’onde spectrale symétrique à antisymétrique et ainsi de modifier la statistique
d’échange des photons, comme démontré par interférométrie de Hong-Ou-Mandel.
Nous avons aussi exploré des états quantiques encore plus complexes: en effet, nous
démontrons que cette source, grâce à sa géométrie et à un traitement antireflet,
peut émettre des paires de photons intriqués dans un degré de liberté hybride
polarisation/fréquence.

Nous développons ensuite un nouveau dispositif formé par un réseau de guides
d’ondes non linéaires dessiné pour d’émettre des paires de photons intriqués dans
des modes spatiaux grâce à l’effet des marches quantiques en cascade. Nous présen-
tons l’optimisation des procédés de fabrication en salle blanche et des première
caractérisation optiques de ce nouveau dispositif.

Mots clés : optique quantique, photonique, conversion paramétrique, AlGaAs,
intrication, source de paires de photons, corrélations en fréquence.
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Introduction

Since its introduction in the beginning of 20th century, the theory of quantum
mechanics has led to a completely unexpected description of nature at the fun-
damental level. It depicts a world that is fundamentally probabilistic, where for
example a single object can exist, at the same time, in a superposition of states
that collapses when observed, or, two objects in remote locations can be instan-
taneously connected. The latter effect, called entanglement, is one of the most
fascinating properties of quantum mechanics: if two objects are entangled they
cannot be described as independent but only as a unique system. Even though
individual measurements on one object are random, they determine the result of
the same kind of measurements carried out on the second object, revealing the
presence of non-local correlations [1, 2].

Today, the possibility of explicitly addressing, controlling and detecting individ-
ual quantum systems has led to what is called the "second quantum revolution" [3],
in which quantum mechanics is employed not only to describe the world but also
to harness "quantum" phenomena to develop radically new quantum technologies.

In this perspective, quantum technologies are receiving a growing attention:
several governments have launched large research programs, such as the Chinese
program that has demonstrated satellite-based quantum key distribution QKD dis-
tribution protocols [4, 5] or the European Quantum Technologies flagship initiative.
At the same time, national and multinational companies and start-ups have begun
to take part in the development of quantum technologies, especially for applica-
tions in quantum communication (e.g. Toshiba, IDQuantique) and computing (e.g.
Google, IBM, Microsoft, IonQ, D-Wave, Intel).

The European Quantum Technologies Flagship [6] has identified four main de-
velopment directions: quantum communication, in which individual or entangled
photons are used to transmit data in a secure way; quantum simulations, in which
well-controlled systems are used to reproduce the behavior of less accessible sys-
tems; quantum computation, which employs quantum effects to greatly speed up
certain calculations; and quantum sensing and metrology in which quantum sys-
tems are exploited to enhance the performance of measurements.

Yet, the development of quantum technologies for real-world applications is
challenging due to the necessity of controlling single quantum systems while pro-
tecting them from a noisy environment and decoherence. To address this problem,
many physical systems, each one with its strengths and limitations, are under in-
vestigation. For instance, for quantum computational tasks, trapped ions [7] and
superconductive circuits [8, 9] are very promising candidates. Indeed, the latter
platform has been employed in 2019 to experimentally demonstrate the advantage
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Introduction

of a quantum computer over a classical one [9]. On the other hand, ultra-cold atoms
and ions in optical lattices [10], photonic systems [11, 12] and superconducting cir-
cuits [13] are good candidates for quantum simulation. In quantum metrology and
sensing, neutral atoms, trapped ions and solid state spins are the most investigated
platforms [14]. Concerning quantum communication, photons are naturally best
suited. Indeed, since they travel at the speed of light and interact weakly with
the environment, they can convey information over long distances, in particular at
wavelengths compatible with telecommunication networks.

Integrated quantum photonics

Regarding the quantum technology field, light has a notable property: it exhibits
quantum features at room temperature. Quantum optics indeed has been the
testing ground for the ideas of quantum information science. For example, photons
have been employed to experimentally demonstrate for the first time entanglement
and non-locality [15].

In the last two decades, the technological advances in integrated photonics to-
gether with new theoretical proposals of quantum computational schemes, circuit-
based [16] or measurement-based [17], have led to demonstrations of chip-based
quantum protocols, in quantum simulation [18, 19], quantum information process-
ing [20, 21] and quantum key distribution (QKD) [22, 23].

The integration of several quantum "building" blocks in the same photonic
chip is a key step towards the deployment of real-world applications of quantum
technologies. A fully integrated quantum photonic device should indeed gather in
the same chip three main stages: the generation of quantum states of light, their
propagation and manipulation through optical circuits and their detection.

The advantages of integrated quantum photonics are several. First of all, the
capability of miniaturizing optical components enables scaling up the device com-
plexity, while still having a limited footprint. Second, since all the components are
integrated in the same device, they do not suffer from mechanical instability, as
it is the case for bulk systems, resulting in an intrinsic phase stability. Moreover,
despite being a more recent quantum technology compared to other platforms,
such as trapped ions or superconducting circuits, integrated quantum photonics
can leverage the solid know-how and manufacturing processes from the comple-
mentary metal–oxide–semiconductor (CMOS) and III-V industry.

The first integrated quantum photonic chip has been demonstrated in 2008 by
Politi et al. [24] and from then impressive developments have been made in a va-
riety of material platforms. In particular, single-photon sources and single-photon
detectors (either superconductive nanowire single-photon detectors or transition
edge sensors) have been successfully integrated in waveguides or more complex
circuits [25–28]. However, even if high-quality single elements have been already
demonstrated, the complete integration of generation, manipulation and detection
stages in a single chip is still a challenging task.
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Integrated photon pair sources
The on-chip generation of quantum light is one of the fundamental brick to develop
integrated quantum photonic devices. In particular, two regimes are normally em-
ployed: the non-classicality can be produced either by engineering the quadratures
of a multiphoton field (e.g. squeezing) [29] or directly by the generation of single
photons or photon pairs [30]. Since integrated photon pair sources are the main
topic of this thesis, we now provide a brief overview of the state of the art.

Photon pair sources can be divided in two main categories: deterministic
sources and probabilistic sources.

Deterministic sources are ideally able to emit photon pairs on demand and are
mainly obtained by employing quantum dots.

Quantum dots are nanostructures that provide three dimensional confinement
for charged carriers with a size comparable to the de Broglie wavelength of the
electron. Thanks to confinement, their energy levels are discrete, combining thus
the advantages of atom-like emitters and solid-state systems.

The ground state of a quantum dot can be excited into a biexciton state, formed
by two electron-hole pairs. When the quantum dot decays, it produces two pho-
tons in cascade: after the first photon is emitted, the quantum dot is left in a
single-exciton state that rapidly decays by emitting a second photon [31–33]. By
exploiting this process, quantum dots are able to emit polarization entangled pho-
ton pairs with high fidelity (up to 98%) [33–35].

The main issues for quantum dot integration are the control over the quantum
dot shape, which can influence the photon distinguishability, and over its position.
Moreover, since quantum dots naturally emit in all directions, the photon collection
has to be engineered by embedding quantum dots in photonic nanostructures, such
as pillars, waveguides or Bragg gratings [36, 37].

Up to now, the principal drawback of quantum dots as photon pair emitters is
their cryogenic operation temperature, which needs to be smaller than the quantum
dot binding energy.

Probabilistic sources of photon pairs rely on the interaction of a bright pump
laser with a nonlinear medium. In this case the devices work at room temperature
but the generation is probabilistic, which means the photons cannot be produced
on-demand. Depending on the crystalline symmetry of the employed nonlinear
material two processes can take place.

Non centrosymmetric materials, such as gallium arsenide (GaAs) or lithium
niobate (LN), have non-zero second-order nonlinear coefficients that enable Spon-
taneous Parametric Down Conversion (SPDC), in which a pump photon decays in
two lower energy photons, called signal and idler.

On the other hand, centrosymmetric materials, such as silicon (Si), enable
only third-order nonlinear processes, in particular Spontaneous Four-Wave Mixing
(SFWM), in which two pump photons annihilate to produce a photon pair.

Both processes require energy conservation and are efficient only if the total
momentum of the interacting photons is conserved. The fulfillment of this condi-
tion, called "phase-matching", and that of energy conservation strongly constrains
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the properties of the generated photons, which thus exhibit quantum correlations
in one or even more degrees of freedom. This peculiarity of nonlinear sources is
largely exploited to generate entangled photon pairs [38].

The ability to achieve these processes on a photonic chip is a key issue to
develop real-world applications of quantum technologies. Nonlinear processes in
waveguides or optical cavities, thanks to the higher confinement of the electric fields
and the corresponding increase of the interaction length, feature an enhanced light-
matter interaction, considerably improving the conversion efficiency compared to
bulk materials. In particular, efficient integrated sources of entangled photons have
been demonstrated both in χ(2) materials, such as gallium aresenide (GaAs) [25,
39], lithium niobate (LN) [40, 41] and potassium titanyl phosphate (KTP) [42],
and in χ(3) materials, such as silicon (Si) [39, 43], silicon nitride (Si3N4) [44, 45]
and silica (SiO2) [46].

Integrated quantum photonic platforms

Differently from electronics where silicon is the dominant material, in integrated
photonics a variety of material platforms have been studied to implement elemen-
tary building blocks [47].

Silicon-based platforms include silica-on-silicon (SoS), silicon-on-insulator (SoI)
and silicon nitride-on-silica. These platforms are CMOS-compatible and thus in-
herit well-developed industrial fabrication processes.

Silica-on-silicon has allowed to realize the first integrated quantum photonic
circuit [24] in 2008 and a universal linear optical network able to process up to 6
parallel inputs [48] in 2015. This platform allows to fabricate low-loss waveguides
(≈ 0.05 dB/cm [49]), but it is characterized by a low refractive index contrast that
limits the integration density (the typical bend radius is in the mm range).

Silicon-on-insulator waveguides feature high refractive index contrast, leading
to bend radii of the order of 1 µm allowing for a higher integration density, up
to hundreds of optical components per square centimeter [43, 50]. In addition,
the strong χ(3) nonlinearity enables photon pair generation via spontaneous four
wave mixing, while the compatibility with the hybrid integration of superconduc-
tive nanowire single-photon detectors (SNSPDs) allows to detect photons with high
quantum efficiency and a low dark count rate. Recently, this platform has been em-
ployed to demonstrate the implementation of a two-qubit programmable quantum
processor [51] and of chip-to-chip quantum teleportation [50]. The main drawbacks
of silicon-on-insulator devices are two-photon absorption at telecom wavelength,
which limits the maximum pump power that can circulate in a waveguide, and the
propagation losses that are usually in the range 2-3 dB/cm.

Silicon nitride potentially combines high refractive index contrast and ultra-low
propagation losses [52]. Being exempt from two-photon absorption, silicon nitride
enables to employ higher pump power to compensate its lower nonlinear χ(3) coef-
ficient with respect to silicon. This platform has been recently employed to realize
a 8 x 8 multimode interferometer that allows any arbitrary unitary transformation
[53].

4



III-V semiconductor based platforms, such as gallium arsenide (GaAs) and in-
dium phosphide (InP), offer new capabilities compared to silicon-based platforms.
Thanks to the direct band-gap of their electronic structure, they enable on-chip
integration of electrically driven tunable light sources. Many III-V materials do
not have inversion symmetry and thus enable second-order nonlinear processes,
in particular SPDC, while presenting an electro-optic effect, allowing fast on-chip
switching [54]. Finally, the use of III-V ternary (e.g. AlGaAs, InGaAs) or quater-
nary (e.g. AlInGaP) permits to realize integrated heterostructures and to control
the material properties (i.e. refractive index and nonlinear coefficient). The prop-
agation losses are comparable to those of the SoI-based devices (≈ 2 dB/cm). The
III-V platform has allowed to demonstrate both optically and electrically injected
single-photon sources based on GaAs/InGa quantum dots [36, 55, 56] and para-
metric entangled photon pair sources based on AlGaAs [57–60]. The integration
with superconductive nanowire single-photon detectors (SNSPDs) has also been
demonstrated [61], leading to the realization of the first completely on-chip quan-
tum optics experiment [62].

Lithium niobate is a versatile dielectric optical material and has been used to
realized the first integrated sources of photon pairs [63]. Its high chemical sta-
bility and transparency combined with a strong χ(2) nonlinearity have allowed an
extensive development of passive devices. In addition, periodically poling per-
mits to satisfy and engineer quasi-phase-matching in the centimeter scale, while
the guided regime assures a tight confinement of light, enhancing the SPDC effi-
ciency [64] and controlling the properties of the generated photon pairs [65]. Re-
cently, periodically poled lithium niobate (PPLN) waveguides have been employed
to demonstrate squeezing on an integrated device [66] and reconfigurable quantum
state generation in two-waveguide coupled systems [67, 68]. The main drawbacks
of this platform are the difficulty of integrating active optical components (e.g. a
pump laser) and the low refractive index that limits the integration density. The
latter problem has been recently tackled by the development of lithium niobate-
on-insulator [69] which features a higher refractive-index-contrast and has led to
realization of compact components, such as micro-disks [70], micro-rings [71] and
photonic crystal resonators [72].

Diamond-on-insulator inherits from bulk diamond its exceptional mechanical
and thermal stability, a wide band-gap and low concentration of free-electrons. In
addition, the presence of hundreds of mid-gap defects (color centers), many of which
are outstanding quantum systems, has made this platform a promising candidate
to develop single-photon sources at room temperature [73], quantum memories [74]
and precision sensing [75]. Recent advances in fabrication techniques have enabled
the field of diamond nanophotonics, leading to the realization of diamond photonic
crystal cavities [76], while the demonstration of femtosecond laser direct writing
on bulk diamond [77] has opened the way to high-density integration.

Femtosecond laser micromachining is a maskless fabrication technique that
allows to realize three-dimensional guiding structures following an arbitrary geom-
etry with a high writing speed (of the order of cm/s). It is employed in several

5



Introduction

material platforms, for example silicate glass [78], bulk diamond [77] and PPLN
crystal [79, 80]. In particular femtosecond laser written circuits on silicate glass
share almost all the strong and weak points of silica-on-silicon: low propagation
losses but large bend radii. In addition, its very low birefringence makes this plat-
form a very good candidate for the propagation and manipulation of polarization-
encoded qubits [78]. Among other achievement, femtosecond laser written optical
networks have been employed to generate hyper-entangled states [81] and to study
transport phenomena of quantum walkers [82].

We note that, even if high-quality single elements have been already demon-
strated in several platforms, their full integration on a single material is a challeng-
ing task and the range of available "building" blocks may be inadequate. A possible
solution could be an approach based on hybrid integration [83], in which compo-
nents realized with different platforms are combined on the same chip, leveraging
the strengths of different materials.

Encoding information into photons
In quantum photonic devices, information is encoded and manipulated exploiting
one or more degrees of freedom of the quantized electromagnetic field. Two main
strategies are currently developed. On one hand information can be encoded in the
quadrature amplitudes of a multi-photon electromagnetic field (continuous variable
approach), employing squeezed light and homodyne detection [84]. On the other
hand, information can be encoded in the degrees of freedom of single- or few-photon
fields (discrete variable approach) [30].

Since the work presented in this thesis deals with photon pair sources, we now
give a brief overview of the main encoding strategies in the few-photons regime,
presenting their advantages and drawbacks.

Polarization is probably the most investigated degree of freedom and, thanks to
its ease of generation and manipulation, it represents a common and practical way
to encode quantum information. However, the ease of polarization encoding comes
at the price of a two-dimensional Hilbert space, which thus limits the quantity of
information encoded on each photon. Polarization encoding has been employed in
the first tests of quantum optics (e.g. Bell’s inequality violation [85]) and from
then in several quantum information studies, ranging from quantum simulation
[86] to computing [87] and communication [88].

Orbital angular momentum (OAM) is related to the photon transverse-mode
spatial structure. Information is encoded in the number of phase twistings per
wavelength along the propagation direction [89]. Contrary to polarization, OAM
is potentially an unbounded degree of freedom, with an infinite Hilbert space, even
if this poses some challenges in its characterization. This degree of freedom is par-
ticularly suited for free-space propagation [90] and has been employed to demon-
strate QKD protocols with high key generation rates per photon [91]. Recently,
air-core fibers supporting OAM modes have been demonstrated and exploited to
perform QKD over a distance of 1.2 km [92]. Moreover, OAM-encoded photons
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have also been used to perform fundamental tests of quantum mechanics, notably
the violation of high-dimensional Bell’s inequalities [93].

Spatial or path encoding is the representation of qubits in terms of occupied
spatial modes and can also provide a Hilbert space of higher dimension compared to
polarization. In integrated optics, waveguide circuits are a perfect implementation
of path encoding, in which both separation and coupling between different modes is
obtained with directional couplers [67]. Recent demonstrations have been reported
for tunable path-entanglement generation and manipulation [43, 94], simulation of
the quantum dynamics of a four-atom molecule [95] and of Anderson localization
of quantum walkers [82]. Note that the spatial degree of freedom is a natural can-
didate to study the nature of topological states of light and it has been employed to
demonstrate topological protection [96] and topological interference [97] of photon
pairs.

Time-bin encoding is implemented by using an unbalanced Mach-Zender inter-
ferometer in which the path difference between the arms is greater than the photon
coherence time. Information is then encoded in the photon arrival time at the de-
tectors. Thanks to its resilience to polarization noise and chromatic dispersion,
time-bin encoding is a good candidate for applications in state teleportation [98,
99] and quantum key distribution [100, 101], both free-space and fibered. More-
over, the on-chip manipulation and the analysis of time-bin qubit has been recently
demonstrated [102].

Time-frequency encoding employs the photon spectrum as degree of freedom,
which, in the near infrared, can be manipulated with standard telecom components,
such as phase shaper and elecro-optic modulators [103, 104]. This degree of freedom
is particularly appealing for quantum communications, thanks to its robustness
to propagation in optical fibers and its capability to convey large-scale quantum
information in a single spatial mode. Frequency has a potentially infinite Hilbert
space which can be exploited to enhance quantum information protocols (e.g. the
QKD key rate [105]).

High-dimensional quantum states
In recent years, photonic high-dimensional quantum states have been studied as a
means to provide novel capabilities for quantum information. The dimensionality
of a quantum state can be increased in two ways: either by extending the number
of involved particles (N) or by increasing their respective local dimensionality (d),
obtaining a total Hilbert space scaling as dN.

In case of single photons (N=1), it has been demonstrated that increasing their
dimensionality not only leads to higher information capacities, but also enables to
enhance the security to eavesdropping [106] and the robustness to noise [107] in
QKD schemes.

When considering more locally separated photons, entanglement in high-di-
mensional degrees of freedom can be exploited to enhance flexibility in quantum
computing [108], to perform fundamental tests of quantum mechanics [109, 110]
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and to enable a rich variety of quantum simulations [18, 110].
A particular remark has to be done for continuous degrees of freedom of sin-

gle photons (e.g. energy-time or position-momentum degrees of freeedom). Indeed,
they display a perfect analogy with the continuous variables of a multiphoton mode
of the electromagnetic field (i.e. its quadratures), thanks to a direct analogy be-
tween the operators which act in the single-mode multiphoton Hilbert space of the
electromagnetic field and those that act in the single-photon multimode Hilbert
space of the electromagnetic field [111]. This would thus enable to perform CV
quantum information processing in the few-photon regime [112, 113], provided that
non-Gaussian entangled states or non-Gaussian operations are implemented [114].
Moreover, photonic quantum states entangled in continuous degrees of freedom
have been demonstrated as a key resource for a large variety of applications, such
as clock synchronization [115], quantum optical coherent tomography [116], disper-
sion cancellation in long-distance fiber-based communication [117] and quantum
imaging [118, 119].

The most investigated photonic degrees of freedom to implement high-dimen-
sional protocols are orbital angular momentum [93], transverse-spatial [120] and
path modes [43, 121], frequency [41, 104, 122], and time-bin [123]. Among them,
frequency and path modes are the most suitable for on-chip integration, since they
can be conveyed in waveguides and allow a scaling-up of the device.

Entangled high-dimensional path states can be created on-chip by using multi-
ple indistinguishable photon-pair sources [124] and manipulated with beamsplitters
and phase-shifters [110]. This technique has recently enabled the on-chip genera-
tion and analysis of a 14-dimensional path entangled state [43], employing a total
of 16 identical SFWM sources.

On the other hand, integrated nonlinear cavities, such as micro-rings [104, 125]
and waveguides [126], allow for a versatile generation of entangled high-dimensional
frequency states, in the form of discrete frequency bins, which can be accessed and
manipulated with off-the-shelf telecom components.

In all cases, in order to implement quantum information protocols that take
advantage of high dimensionality, it is of paramount importance to gain control
over the generated quantum states in a scalable and efficient way, being able to
measure and manipulate them at will.

Outline of the thesis

This thesis deals with the generation and the engineering of high-dimensional quan-
tum states of light in semiconductor nonlinear devices made of AlGaAs, focusing
on two particular degrees of freedom of photons: frequency and spatial modes.

During this work two different devices have been developed and employed. The
first is a photon pair source exploiting a transverse pump geometry to achieve a
counter-propagating phase-matching scheme. As we will see, this pump configura-
tion makes the device particularly versatile for frequency entanglement engineering.

The second device, still at the development stage, is an array of nonlinear waveg-
uides emitting photon pairs via a modal phase-matching scheme. The waveguides
in the array are evanescently coupled and the generated photons can tunnel in the
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neighboring ones, leading to cascaded quantum walks. As a result, the generated
photons are entangled in the spatial degree of freedom.

The manuscript is divided into three sections.
In the first part we give a complete description of the processes underpinning

the working principle of the sources. In chapter 1 we start by describing the
nonlinear processes occurring in χ(2) materials, focusing in particular on AlGaAs
waveguides and on spontaneous parametric down conversion (SPDC). In chapter
2 we give a theoretical analysis of the quantum state produced in the counter-
propagating source: the Joint Spectral Amplitude (JSA), a function describing the
frequency-time properties of the photon pairs, is derived and deeply analyzed.

The second part of the thesis deals with the measurement and the control of fre-
quency entangled states emitted by the counter-propagating source, obtained via
pump beam shaping. In chapter 3 we present the setup used to tailor the pump
beam, which is based on a spatial light modulator and a wavefront analyzer. Then,
in chapter 4, we detail two experimental techniques that we use to characterize the
time-frequency properties of the photon pairs: a single-photon fiber spectrograph
and stimulated emission tomography (SET). Chapter 5 and chapter 6 present the
experimental results of the frequency engineering: tuning the pump beam waist
allows to produce correlated, anti-correlated and separable frequency states, while
modifying the spatial phase profile allows to switch between symmetric and an-
tisymmetric spectral wavefunctions and to modify the exchange statistics of the
photons, which is measured via Hong-Ou-Mandel interferometry. Finally, in chap-
ter 7 we move a step further towards more complex quantum states by describing
the generation of a photon pair state entangled in a hybrid polarization/frequency
degree of freedom and its analysis via a Hong-Ou-Mandel interferometer. Since
the quality of this quantum state is strongly influenced by the waveguide facet
reflectivity, in chapter 8 we report the development of an anti-reflection coating for
the counter-propagating source.

In the third part of this thesis we present the waveguide array device for the
generation of spatially entangled states, detailing its design and working principle,
focusing in particular on the engineering of spatial correlations. Afterwards, the
fabrication process is reported, followed by the optical characterization of the first
generation of samples.

We conclude this manuscript by summarizing the main results of this work and
its main future applications and developments.
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In this first chapter of the manuscript we introduce the necessary concepts
and tools to understand the topics covered in this thesis. We first give a classical
description of nonlinear optics, focusing on the second order processes, in partic-
ular on Spontaneous Parametric Down-Conversion (SPDC) which is exploited in
our source to produce entangled biphoton states. The analysis follows the book
Nonlinear Optics written by R.Boyd [127].

Then we analyze the nonlinear processes in the guided regime, giving an in-
troduction to the optical properties of GaAs and AlGaAs, materials employed to
fabricate the nonlinear waveguide sources used in this thesis.

Finally we present the two types of sources, developed by our team, that we
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Chapter 1. Second-order Nonlinear Optics in AlGaAs waveguides

have employed in this PhD work.
The first is a ridge waveguide based on a counter-propagating phase-matching

scheme under transverse pumping. It is employed in Part II of this thesis to
demonstrate the engineering of frequency biphoton states and of their exchange
statistics and to generate entanglement in a hybrid polarization/frequency degree
of freedom.

The second source is a Bragg reflection waveguide, based on modal phase match-
ing, that emits co-propagating twin photons. It is employed in Part III of this
thesis to develop a device capable of generating and controlling spatially entangled
biphoton states.

1.1 Introduction to nonlinear optics
Nonlinear optics is the study of optical effects that occur in matter when intense
optical fields are involved. The beginning of this branch of optics is closely related
to the invention of the laser in 1960 by Maiman [128], having provided sufficiently
intense beams to observe these effects. In 1961 Franken et al. observed, for the first
time, second harmonic generation of a ruby laser light in a quartz crystal [129].
Since then, systematic studies of optical nonlinearities have been performed and
a full range of new effects and phenomena have been discovered, including sum
frequency generation, stimulated Raman scattering, self focusing, Kerr effect and
many others.

Nonlinear processes are linked to the nonlinear behavior of the polarization
induced by an intense field inside an optical medium. This nonlinearity allows a
coupling among electromagnetic fields at different frequencies, thus generating new
fields.

1.1.1 Nonlinear polarization
To introduce nonlinear optical effects let us consider an electric field E(t) pass-
ing through a nonlinear medium. The latter responds by generating an induced
polarization that can be written, considering scalar fields and an isotropic homoge-
neous medium without losses and dispersion and with an instantaneous response,
as follows:

P (t) = ε0
[
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + · · ·

]
=

= P (1)(t)︸ ︷︷ ︸
PL(t)

+P (2)(t) + P (3)(t) + · · ·︸ ︷︷ ︸
PNL(t)

(1.1)

where ε0 is the permittivity of free space, χ(1) is the linear susceptibility of the
medium, χ(2) and χ(3) are the second-order and third-order nonlinear optical sus-
ceptibility. In the second row of the equation we have separated linear and non-
linear polarization: the first is proportional to χ(1), which in condensed matter is
of the order of unity, while the second depends on the higher orders of the op-
tical susceptibility, whose values decrease rapidly with the order. Consequently,
for a field, which is weak compared to the nonlinear orders of the susceptibility

14



1.1. Introduction to nonlinear optics

(i.e. χ(1)E � χ(2)E2 + χ(3)E3 + ...), the response is well described by PL, while
otherwise PNL becomes substantial.

When the nonlinear polarization is significant, the medium can generate fields
at new frequencies. To better explain this behavior, we now consider a medium
presenting only a second-order susceptibility and an optical field impinging on it,
composed of two distinct frequencies:

E(t) = E1e
−iω1t + E2e

−iω2t + c.c. (1.2)

By substituting this expression into Equation 1.1 we find that the nonlinear polar-
ization is:

P (2)(t) = ε0χ
(2)
[
E2

1e
−2iω1t + E2

2e
−2iω2t + 2E1E2e

−i(ω1+ω2)t+

2E1E
∗
2e
−i(ω1−ω2)t + c.c.

]
+
[
E1E

∗
1 + E2E

∗
2

] (1.3)

This expression consists of terms oscillating at different frequencies with respect to
the input field. The first two terms have double frequency (2ω1 and 2ω2), then the
third and the fourth oscillate at the sum frequency (ω1 + ω2) and at the difference
frequency (ω1 − ω2), respectively. The last two are non-oscillating contributions.

In this example we have considered an isotropic medium and thus the suscep-
tibility was a scalar; in the general case the m-th order susceptibility, χ(m), is a
tensor of m+1 rank, therefore the nonlinear polarization is no more parallel to
the incident optical field. In section 1.3 we will review the optical properties of
AlGaAs, focusing in particular on its nonlinear susceptibility tensor.

1.1.2 Propagation in a nonlinear medium
Above we have seen how an intense field can induce a nonlinear polarization in
the medium oscillating at frequencies not present in the incident field; this acts
as a source of new frequency components of the electromagnetic field. We now
use the Maxwell’s laws to give an analytic description of the generation and the
propagation of the electric field components.

For a non-magnetic and dielectric optical medium with no free charges (ρ = 0)
or currents (J = 0), Maxwell’s laws are:

∇× E = −∂B
∂t

(1.4)

∇×H = ∂D
∂t

(1.5)

∇ ·B = 0 (1.6)
∇ ·D = 0 (1.7)

where B = µ0H and D = ε0E + P. Combing them together, we obtain a wave
equation describing the coupling between the optical field and the nonlinear polar-
ization:

∇2E− 1
c2
∂2E
∂t2

= 1
ε0c2

∂2P
∂t2

(1.8)
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It is now convenient to split P into its linear and nonlinear part as:

P = PL + PNL (1.9)

Similarly for the displacement field D:

D = ε0E + PL + PNL = DL + PNL (1.10)

where the linear part of D is given by DL = ε0E+PL. Using these quantities the
wave equation Equation 1.8 becomes:

∇2E− 1
ε0c2

∂2DL

∂t2
= 1
ε0c2

∂2PNL

∂t2
(1.11)

We now consider a lossless and dispersionless medium, the relation between DL

and the electric field E is:
DL = ε0 ε(1) · E (1.12)

where ε(1) is a real, frequency-independent, relative dielectric tensor. For the case
of an isotropic material, this relation reduces to:

DL = ε0 ε
(1)E (1.13)

with ε(1) scalar. The wave equation (Equation 1.11) consequently becomes:

∇2E− n2

c2
∂2E
∂t2

= 1
ε0c2

∂2PNL

∂t2
(1.14)

where n, with n2 = ε(1), is the refractive index of the medium. This is a driven wave
equation: the nonlinear response of the medium acts as a source for the left-side
terms. If the source term is absent, the equation describes free waves propagating
with velocity c/n.

At this point, in order to continue our calculation, we need to identify the
explicit form of the nonlinear polarization of Equation 1.14. This will allow us to
directly relate the nonlinear properties of the medium to the generated fields.

1.1.3 Three-Wave mixing
We now focus on second-order processes, usually referred to as "Three-Wave Mix-
ing" because they involve interactions among three waves.

We thus consider three fields at frequency ω1, ω2, ω3. If these frequencies are far
from the medium resonances, there is no energy transfer between the fields and the
medium, but only among the three fields. Therefore, energy conservation defines
the possible process:

~ω3 = ~ω1 + ~ω2 (1.15)
where ~ is the reduced Planck constant. Figure 1.1 illustrates the possible three-
wave processes:

• Sum Frequency Generation (SFG): two pump fields interact with the
medium to generate a third field at frequency ω3 = ω1 + ω2;
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Figure 1.1: Energy schemes of Three-Wave Mixing processes. The solid lines
represent real energy levels while the dashed ones represent virtual levels.

• Second Harmonic Generation (SHG): it is a particular case of SFG, the
two pump beams have degenerate frequencies ω = ω1 = ω2 and they generate
a field at frequency 2ω;

• Difference Frequency Generation (DFG): two pump fields interact with
the medium to produce a third field at frequency ω3 = ω1 − ω2. Looking at
the energy conservation diagram we can see that for every photon created
at the difference frequency (ω3), a photon of the higher input frequency (ω1)
must be destroyed and one of the lower input frequency (ω2) is created. This
leads to an amplification of the latter field, and thus the process is called
"Optical Parametric Amplification" (OPA);

• Spontaneous Parametric Down Conversion (SPDC): the previous pro-
cess can take place even if only one pump field is present (ω1). In this case
the generated fields at frequency ω2 and ω3 arise from its interaction with
vacuum fluctuations; they are weaker and the sum of their frequencies is fixed
at ω2 + ω3 = ω1 by the energy conservation.

In the following chapter we will extensively study the quantum theory of Spon-
taneous Parametric Down Conversion (SPDC). Here, we continue our classical anal-
ysis focusing on Sum Frequency Generation (SFG), but the procedure is roughly
the same for the analysis of SHG and DFG.

We start by choosing the z axis as the direction of propagation of the three
involved fields, which can be written as:

E1(r, t) = e1A1(r)ei(k1z−ω1t) + c.c.
E2(r, t) = e2A2(r)ei(k2z−ω2t) + c.c.
E3(r, t) = e3A3(r)ei(k3z−ω3t) + c.c.

(1.16)

where the vector ej indicates the polarization direction, Aj(r) is the electric field
complex amplitude and kj is the wavevector modulus.

On the other hand, the nonlinear source term appearing in the wave equation,
Equation 1.14, for SFG can be written as [127]:

PNL
3 (z, t) = 4ε0deffE1E2e

−iω3t + c.c. (1.17)
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where deff is the nonlinear effective coefficient for a given set of polarizations and
field directions. It is linked to the nonlinear susceptibility tensor χ(2) through geo-
metrical and symmetry considerations that we will detail for GaAs in section 1.3.

We now plug the interacting fields (Equation 1.16) and the nonlinear polar-
ization (Equation 1.17) into the wave equation (Equation 1.14). Here we make
two assumptions. First we consider a nonlinear process having a low conversion
efficiency, so we suppose the pump fields E1 and E2 to be not depleted during the
propagation in the medium:

A1(x, y, z) = A1(x, y, 0)
A2(x, y, z) = A2(x, y, 0)

(1.18)

Secondly, we apply the Slowly Varying Amplitude Approximation, which assumes
that the fields amplitude varies slowly on the scale of an optical wavelength:∣∣∣∣∣∂2A

∂z2

∣∣∣∣∣�
∣∣∣∣∣k∂A∂z

∣∣∣∣∣ (1.19)

Doing so the wave equation transforms in one equation, describing the propagation
of the sum-frequency field A3:

dA3

dz = 2i ω3

n3c
deffA1(x, y, 0)A2(x, y, 0)ei∆kz (1.20)

where we have employed the relation for the wavevector k2
3 = n2

3ω
2
3

c2 and n3 is the
medium refractive index at frequency ω3. In addition, we have introduced the
quantity:

∆k = k3 − k1 − k2 (1.21)

called wavevector mismatch. This last parameter is a key factor for all nonlinear
processes, as we will show in the following paragraph. Equation 1.20 is called
coupled-amplitude equation, because it describes the evolution of the amplitude
A3 as a consequence of its coupling to A1 and A2. Here we have supposed that
the input fields at ω1 and ω2 are not depleted, but, in a more general case, also
the variation of A1 and A2 along z has to be taken into account, leading to three
coupled equations of the form of Equation 1.20, one for each interacting field [127].

1.1.4 Phase-matching
Looking at Equation 1.20 we note that, for the case ∆k = 0, the amplitude A3
of the generated field increases linearly with z, and consequently the intensity
increases quadratically with z. This conditions is called "perfect phase-matching"
and when it is satisfied the energy transfer from E1 and E2 to E3 is efficient along
the whole medium. This is due to a fixed phase relation between the generated wave
and the nonlinear polarization that allows a constructive interference and thus an
efficient frequency conversion. On the other hand, if ∆k 6= 0, the amplitude of the
generated field along the propagation direction oscillates because of the presence
of an imaginary term, and does not build up.
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Let us now derive some more analytic results. The amplitude of the sum-
frequency field at the output of the nonlinear medium is obtained by integrating
Equation 1.20 from z = 0 to z = L. The intensity of the field is then calculated
from the magnitude of the time-averaged Poynting vector:

I3 = 2n3ε0c|A3|2 (1.22)

We thus obtain:
I3(L) = I

(0)
3 sinc2

(
∆kL

2

)
(1.23)

where I(0)
3 represents the maximum intensity available and reads:

I
(0)
3 = 2 d2

eff ω
2
3I1I2L

2

n1n2n3ε0c3 (1.24)

In Figure 1.2a we plot I3(z) as a function of z/L for two different conditions:
a perfect phase-matching ∆k = 0 (in red) and a phase-mismatch of ∆k = 3/L
(in blue). In the first case the intensity grows quadratically during propagation,
while in the second it oscillates due to the consecutive constructive and destructive
interference between the interacting fields. In addition, Figure 1.2b reports I3
as a function of the wavector mismatch (∆kL/2), normalized to the maximum
intensity available I(0)

3 . As we have already commented, the efficiency of the sum-
frequency process drastically decreases as the phase mismatch increases. Therefore,
the condition of perfect phase-matching ∆k = 0 is of fundamental importance for
the efficiency of the nonlinear conversion.

In case of a highly efficient nonlinear process, the intensity of the sum-frequency
field is no more given by Equation 1.23, which has been derived for non-depleted
input beams. However, even in this case, an efficient generation of the output field
requires a perfect phase-matching ∆k = 0.

We can interpret the phase-matching condition from a particle point of view as
the conservation of momentum of the photons. Indeed, two photons of momentum
respectively ~k1 and ~k2 can generate only a photon of momentum ~k3 = ~k1+~k2.
The momentum conservation, unlike energy conservation, is not verified automat-
ically and moreover it is not trivial to obtain. For this reason, different techniques
have been developed to satisfy phase-matching condition which will be illustrated
in the next sections.

Conversion efficiency

As a last point of this paragraph, we define the nonlinear conversion efficiency of
the nonlinear process, which is independent from the input field intensities and
therefore can be employed to compare different sources or situations. To this end,
we introduce the optical power of an electromagnetic field:

P =
∫
S
IdS (1.25)

where the integration is performed over the area S of the beam. Therefore the out-
put power P3(L) generated by the nonlinear process is derived from Equation 1.23
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Chapter 1. Second-order Nonlinear Optics in AlGaAs waveguides

Figure 1.2: (a) Sum-frequency optical intensity at a distance z/L for a perfect
phase-matched conversion (red) and with a mismatch ∆k = 3/L (blue). (b) Effect
of the wavevector mismatch on the sum-frequency intensity, normalized to the
maximum intensity available I(0)

3 .

and reads:
P3(L) = 2 d2

eff ω
2
3L

2

n1n2n3ε0c3S
P1P2 sinc2

(
∆kL

2

)
(1.26)

where P1 and P2 are the power of the input fields.
The nonlinear conversion efficiency η is then defined as follows:

η = P3(L)
P1P2

= 2 d2
eff ω

2
3L

2

n1n2n3ε0c3S
sinc2

(∆kL
2

)
(1.27)

From this relation we see that, in order to increase the efficiency η, we should:

• employ a medium with a high value of the ratio d2
eff

n1n2n3
;

• satisfy the phase-matching condition (i.e. ∆k = 0);

• increase the medium length L 1 and decrease the effective area S of the fields.

1.2 The guided regime
Until now, we have considered only bulk nonlinear media and non-confined elec-
tromagnetic fields. Yet, as a result of diffraction, a light beam with a finite cross
section spreads as it propagates. This divergence, which may be different for each
interacting field, can decrease the overall efficiency of the nonlinear process. In
order to deal with this issue, it is possible to confine the three interacting fields
within a waveguide, obtaining to a smaller field section S and conservating a good
nonlinear overlap as the fields propagate.

1Also the propagation losses must be considered and this leads to an optimal length after
which the conversion efficiency does not increase further [130].
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1.2. The guided regime

A dielectric waveguide is a structure, made of dielectric materials, where the
electromagnetic radiation is confined along one or two dimensions while it prop-
agates. Thanks to a core with a higher refractive index compared to that of the
surrounding material (cladding), the waveguide "traps" the light by total internal
reflection. In a dielectric waveguide the typical dimensions of the core are of the
order of the wavelength of the propagating field.

We now analyze more in detail a specific case to highlight the fundamental
characteristics of the guided regime. We consider a waveguide that confines light
in the x and y directions while it lets it propagate along the z direction. Since the
structure is homogeneous along the z axis, the electromagnetic field for a given
frequency ω can be written as:

E = A(x, y) exp(iωt− ikz) ê (1.28)

where k is the z component of the wavevectors and is called propagation constant,
ê is the electric field polarization direction. A(x, y) is the transverse spatial dis-
tribution of the electric field and is determined by the following wave equation,
derived from Maxwell’s laws [131]:∇2 − d2

dx2 +
(
ω2

c2 n
2(x, y)− k2

)A(x, y) = 0 (1.29)

where n(x, y) is the refractive index profile, determined by the waveguide structure
and material composition. Note that the previous equation is not valid at the
dielectric interfaces, where the boundary conditions of the electromagnetic field
apply instead [131]. Each solution of Equation 1.29 represents a guided mode of
the waveguide and is characterized by its own propagation constant.

For a guided mode two conditions must apply. First, the field amplitude must
fall off exponentially outside the guide structure. Secondly, the field must reach a
maximum value, typically inside the core. These two conditions are satisfied only
for a discrete set of propagation constants k:

ω2

c2 n
2(∞) < k2 <

ω2

c2 n
2
core(x, y) (1.30)

where n(∞) is the refractive index of the material surrounding the waveguide.
Each guided mode propagates along the waveguide independently and is char-

acterized by several quantities:

• a polarization direction (transverse electric TE or transverse magnetic TM),
defined with respect to the waveguided structure;

• an effective refractive index neff (ω), associated to the propagation constant:

k(ω) = ω

c
neff (ω) (1.31)

• a phase velocity vp(ω) which indicates the velocity of the mode as it propa-
gates in the waveguide:

vp(ω) = c

neff (ω) (1.32)
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• a group velocity vg(ω), indicating the velocity of the energy flow:
1

vg(ω) = ∂k

∂ω
= 1
vp

+ ω

c

∂neff
∂ω

(1.33)

from which we can define the group refractive index:

ng(ω) = c

vg(ω) (1.34)

• a group velocity dispersion GVD, which gives the dependency of the group
velocity on frequency:

GVD = ∂

∂ω

1
vg

= ∂2k

∂ω2 (1.35)

Alternatively, it can also be defined with respect to wavelength and called
dispersion parameter:

Dλ = ∂

∂λ

1
vg

(1.36)

Where the second definition is more used for optical fibers.
The mode spatial distribution A(x, y) and propagation constant k can be found
analytically in the case of a homogeneous one dimensional waveguide or numerically
by solving Equation 1.29 for more complex 2D and 3D structures [132].

1.2.1 Nonlinear optics in waveguides
Compared to bulk media, waveguides allow to confine the interacting fields of
a nonlinear process in a smaller area and to propagate them for longer distances
without diffractive effects. Moreover, by engineering the guided modes it is possible
to control the spatial modes of the generated field, thus eliminating walk off and
facilitating injection into fibers. Finally, waveguide-based nonlinear sources open
to the miniaturization of circuits and devices into integrated chips.

In order to calculate the conversion efficiency for a nonlinear process occurring
in a waveguide we introduce the nonlinear overlap integral:

Γ =
∫∫

S
deff(x, y)A1(x, y)A2(x, y)A3(x, y) dx dy (1.37)

where Ai(x, y) is the transverse spatial distribution of the mode i and deff(x, y) the
nonlinear effective coefficient distribution in the x, y plane. We can now rewrite
the generated output power P3(L) (Equation 1.26) as follows:

P3(L) = 2ω2
3L

2

n1n2n3ε0c3 |Γ|
2P1P2 sinc2

(
∆kL

2

)
(1.38)

Consequently the conversion efficiency η (Equation 1.27) becomes:

η = ηSFG0 sinc2
(∆kL

2
)

(1.39)

where
ηSFG0 = 2ω2

3L
2

n1n2n3ε0c3 |Γ|
2 (1.40)

In conclusion, in order to increase the conversion efficiency, the nonlinear overlap
integral between the interaction fields must be maximized.
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1.3. Optical properties of GaAs and AlGaAs

1.2.2 Spontaneous Parametric Down-Conversion in waveg-
uides

So far we have we have given a classical description of sum-frequency generation
(SFG). Conversely, Spontaneous Parametric Down-Conversion (SPDC), which is
the process that we employ in this work to produce photon pairs, is more difficult to
model and a quantum mechanical description is necessary. However, it is possible
to derive the SPDC conversion efficiency by starting from the SFG process.

In a semiclassical description, SPDC can be viewed as two DFG processes
between an intense pump field at frequency ωp and vacuum fluctuations, generating
two photons called signal ad idler, respectively at frequency ωs and ωi, constrained
by the energy conservation condition ωp = ωs + ωi. The process can be modeled
by considering that one input idler photon generates the signal output [133, 134]:

Ps(L) = 2ω2
sPi(0)Pp(0)|Γ|2
ε0c3nsninp

sinc2
(

∆kL
2

)
(1.41)

where Pi(0) = ~ωi∆ω/2π is the idler input power, calculated considering one
photon in each idler mode, with the number of modes determined by ∆ω, the
linewidth of the idler spectrum. The generated idler power Pi(L) can be defined
analogously.

The number of generated photon pairs per time unit can be then determined
as follows:

Npairs = Ps(L)
~ωs

= Pi(L)
~ωi

= 2 ~ωs ωi ωp
ε0c3ns ni np

|Γ|2Np
∆ω
2π L

2 (1.42)

where we have considered a perfect phase-matching (∆k = 0) and Np = Pp(0)/~ωp
is the number of pump photons.

The SPDC conversion efficiency ηSPDC, defined as the ratio between number of
generated pairs Npairs and the number of pump photons Np, is then given by:

ηSPDC = Npairs

Np

= 2~ ωs ωi ωp L2

ε0 c3 ns ni np

∆ω
2π |Γ|

2

= ηSFG0
~ωsωi
ωp

∆ω
2π

(1.43)

In conclusion, the SPDC conversion efficiency can be evaluated from the SFG
conversion efficiency and the photon pair bandwidth.

1.3 Optical properties of GaAs and AlGaAs
Gallium arsenide (GaAs) is a III-V semiconductor compound formed by Gallium
(Ga) and Arsenic (As). GaAs is a material widely employed for microwave elec-
tronics, infrared light-emitting diodes, laser diodes and solar cells. For this reason
its clean room processing techniques are well established. This material, thanks to
its physical properties, enables:

• second-order and third-order nonlinear processes;
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Chapter 1. Second-order Nonlinear Optics in AlGaAs waveguides

• electro-optical modulation;

• laser emission (direct band gap Eg = 1.441 eV, λg = 872 nm).

GaAs has a non-centrosymmetric zincblende structure which imposes a 4̄3m sym-
metry. If we deal with fields far away from the resonance, the nonlinear susceptibil-
ity, χ(2)

ijk, can be considered frequency-independent. In this situation the Kleinman’s
symmetry condition is valid and all the permutations (i, j, k) are equivalent [127].

In order to simplify the notation, we introduce the tensor dijk:

dijk = 1
2χ

(2)
ijk (1.44)

By taking advantage of the permutation symmetry we can define a contracted
matrix dil according to:

jk 11 22 33 23/32 31/13 12/21
l 1 2 3 4 5 6

Thus, the second-order susceptibility tensor reduces to a 3x6 matrix:

dil =

d11 d12 d13 d14 d15 d16
d16 d22 d23 d24 d14 d12
d15 d24 d33 d23 d13 d14

 (1.45)

with only ten independent elements. Finally, the 4̄3m symmetry leads to a unique
non zero element d14:

d =

0 0 0 d14 0 0
0 0 0 0 d14 0
0 0 0 0 0 d14

 (1.46)

This matrix constrains the allowed polarizations of the interacting fields, in par-
ticular d14 corresponds, in the crystal principal axis reference systems (X,Y,Z), to
dXYZ and all the permutation of these indices; it thus always involves three different
polarization directions of the fields.

The AlGaAs samples that we employ in this thesis are grown via Molecular
Beam Epitaxy along the (001) direction. The waveguides propagation direction is
oriented along the (11̄0) direction and we call Transverse electric (TE) the mode in
which the electric field oscillates along the (1̄1̄0) direction and Transverse Magnetic
(TM) mode the one for which the electric field oscillates along along (001). Fig-
ure 1.3 summarizes this geometry, reporting the AlGaAs crystallographic axes in
black (X, Y, Z) and in blue the corresponding waveguide reference system (x, y, z),
employed in this thesis. This geometry enables the nonlinear frequency conver-
sion between TE and TM polarized fields by means of the d14 coefficient. In the
following we will analyze the allowed nonlinear processes of the studied devices.

Figure 1.4 reports the GaAs refractive index in the range 700-1700 nm, cal-
culated using the Afromowitz model [135]. In the whole wavelength range, the
refractive index is real and the chromatic dispersion is normal, with the exception
of the surroundings of the resonance at 872 nm.
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1.3. Optical properties of GaAs and AlGaAs

Figure 1.3: Waveguide reference system (x, y, z) (in blue) and AlGaAs crystallo-
graphic axes (X, Y, Z) (in black). The waveguide propagation direction is oriented
along the z axis, (11̄0) direction.

Figure 1.4: GaAs chromatic dispersion at 20 °C, calculated using the Afromowitz
model [135]. The peak at 872 nm is due to the material resonance.
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Chapter 1. Second-order Nonlinear Optics in AlGaAs waveguides

Figure 1.5: AlxGa1-xAs optical properties vs Al concentration: (a) refractive
index n, calculated using the Gehrsitz model [136]. (b) Second-order nonlinear
effective coefficient d14, calculated using the Ohashi model [137].

The strong lattice similarities between GaAs and AlAs allow to realize het-
erostructures by replacing part of Gallium atoms of GaAs with Aluminum atoms.
The resulting alloy is AlxGa1-xAs where the ratio of Aluminum atoms to Gallium
atoms can be varied to achieve specific optical characteristics.

Figure 1.5a shows the AlGaAs refractive index as a function of Al concentration,
calculated using the Gehrsitz model [136]. For a given wavelength, increasing
the Al content decreases the refractive index. Therefore, during the fabrication
process, it is possible to tune the refractive index layer by layer, by changing
the Al concentration. The refractive index values span from 2.9 to 3.4 for an Al
concentration from x = 0.9 to x = 0.2.

Figure 1.5b reports the AlGaAs second-order nonlinear effective coefficient d14
as a function of Al concentration, calculated using the Ohashi model [137] and the
experimentally measured value d14 = 119 pm/V at λs = λi = 1533 nm, obtained
by Shoji et al. [138]. We observe that d14 decreases as the Al content x is increased
in a range [119 pm/V, 27 pm/V]. This variation of the nonlinear coefficient can
be employed to engineer and optimize the nonlinear process, as we shall see in the
case of the counter-propagating source.

1.3.1 Fulfilling the phase-matching condition in AlGaAs
devices

As we have already seen, phase-matching, contrary to energy conservation, is not
automatically verified and it is not trivial to obtain. The two conditions read:ω3 = ω1 + ω2

k3 = k1 + k2
(1.47)

In a dispersive material:
ki = n(ωi)

ωi
c

(1.48)
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1.3. Optical properties of GaAs and AlGaAs

Figure 1.6: Phase-matching strategies in AlGaAs waveguides: (a) form bire-
fringence, (b) modal phase-matching, (c) quasi-phase-matching obtained by com-
pletely inverting the sign of the nonlinear coefficient and (d) quasi-phase-matching
obtained alternating a high and a low nonlinear coefficient.

where for a normal dispersion n(ω) is a monotonic increasing function of ω, as we
have seen for AlGaAs in Figure 1.5. In this case it is clear that the phase-matching
condition cannot be satisfied.

In principle it would be possible to achieve phase-matching by employing anoma-
lous dispersion (i.e. n decreases when the frequency increases), however the most
common method to satisfy the condition is to exploit the birefringence (i.e. de-
pendence of the refractive index from the field polarization) displayed by many
crystals. The highest frequency field has to be polarized along the direction that
gives the lower of the two possible refractive indices [139]. Yet, since AlGaAs is
not a birefringent material, other strategies have been developed.

An artificial birefringence can be induced by inserting small Aluminum oxide
(AlOx) layers into the AlGaAs waveguide. The refractive index difference between
the two material breaks the original symmetry, resulting in an artificial birefringent
material [140, 141], as shown in Figure 1.6.

On the other hand, by periodically modulating the effective nonlinear coefficient
of the medium it is possible to achieve quasi-phase-matching (QPM) (Figure 1.6c),
which is less efficient than perfect phase-matching. The modulation compensates
for the wave-vector mismatch accumulated in adjacent sections of the material,
leading to a constructive interaction between the interacting fields. QPM, pro-
posed for the first time by Armstrong et al. [142], has been employed in crystals
and waveguides, by inverting the sign of the nonlinear coefficient through periodi-
cally poling techniques in ferroelectric nonlinear crystal materials, such as lithium
niobate [143], lithium tantalate [144] and potassium titanyl phosphate [145].

In AlGaAs inverting the nonlinear effective coefficient is technologically chal-
lenging; it can be obtained by wafer bonding, which however induces significant
optical losses [146]. An easier, but less efficient, approach to obtain QPM is to
alternate sections with low and high nonlinear coefficient (Figure 1.6d), leading to
an imperfect phase-matching [147]. Figure 1.7 illustrates the difference between
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Figure 1.7: Illustration of the phase-matching process: addition of amplitude
contributions from different parts of the nonlinear crystal; (a) each arrow repre-
sents the amplitude phasor while the angle it forms with the previous phasor is
the phase-mismatch ∆k. (b) Perfect phase-matching: the conversion efficiency is
maximized. (c) Without phase-matching: there is no constructive interference and
the energy transfer changes periodically. (d) Quasi-phase-matching obtained by
inverting deff when the wave has traveled for half a wavelength. (e) Quasi-phase-
matching obtained by alternating materials with low and high nonlinear coefficient
(deff,1 > deff,2): deff,2 generates smaller phasor amplitudes and thus the destructive
interference is only partial and the converted field builds up; the overall conversion
efficiency is lower than (d).
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1.4. SPDC source based on a counter-propagating phase-matching
scheme

these QPM techniques by reporting the phasor of each amplitude contribution
from different parts of the crystal: when the nonlinear coefficient is inverted after
half wavelength the constructive interference continues (Figure 1.7d). Conversely
by employing a material with a lower nonlinear coefficient the destructive interfer-
ence is minimized (Figure 1.7e), even if the overall conversion efficiency is lower
compared to the previous case (periodically poling).

Finally, it is possible to engineer the chromatic dispersion of the involved guided
modes in a multimode waveguide to fulfill the phase-matching condition (modal
phase-matching, see Figure 1.6b) [59].

In the following two sections we describe the two AlGaAs nonlinear waveguides
employed in this thesis, which generate photon pairs in the telecom range (1550
nm) by means of SPDC. The first source is based on a counter-propagating phase-
matching scheme under transverse pumping in a ridge waveguide, while the second
is based on modal phase-matching in a Bragg reflection waveguide.

1.4 SPDC source based on a counter-propagating
phase-matching scheme

Counter-propagating phase-matching for Spontaneous Parametric Down Conver-
sion (SPDC) has been proposed by De Rossi and Berger [148] and by Ding et al.
[149], and it has been experimentally demonstrated by our team in 2006 [150].

The general scheme for the production of photon pairs with a counter-propa-
gating geometry is the following: a pump beam impinges on the top of a nonlinear
waveguide and generates by SPDC two photons propagating in opposite directions
into the waveguide, as sketched in Figure 1.8.

The guided regime is a strong advantage compared to non-collinear SPDC in
bulk crystals, since the photon emission direction is degenerate for all frequencies,
simplifying their collection. Moreover, by engineering the spatial profile of the
guided modes it is possible to maximize their coupling into monomode telecom
optical fibers [151].

In this section we first describe the design of the AlGaAs nonlinear waveguide
based on counter-propagating phase-matching, developed by our team. Then, we
study in detail the characteristics of this particular phase-matching scheme.

1.4.1 Source structure
The device is a ridge waveguide made of horizontal AlGaAs layers, with alternat-
ing Al content. It consists of a high refractive index core surrounded by a lower
refractive index cladding; its nominal epitaxial structure is reported in Table 1.1.

The core consists of AlGaAs layers with alternate concentration of Al (25%
and 80%) which leads to alternate values of nonlinear susceptibility along the x
direction. This structure implements the Quasi Phase-Matching condition in the
vertical direction. Indeed, the device is optimized to have the positive half periods
of the electric field amplitude in the layers with a high χ(2) (25% of Al) and the
negative half periods in the layers with a lower χ(2) (80% of Al). Therefore, the
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Figure 1.8: Sketch of the source based on the counter-propagating phase-
matching scheme under transverse pumping and its working principle.

nonlinear interaction is constructive along the vertical direction, as illustrated in
Figure 1.7e.

On the other hand, the cladding consists of Bragg mirrors made of AlGaAs
layers with 35% and 90% Aluminum contents. These mirrors play several roles.
First, they confine the modes of the generated photon pairs at 1550 nm by total
intern reflection. Second, they create around the core a vertical microcavity whose
resonance matches the pump field wavelength (775 nm). Third, since the bottom
mirror is more reflective than the top one (Rtop = 0.9435 and Rbottom = 0.9974
from our numerical simulations [134]), it avoids penetration of the pump field into
the substrate and the consequent absorption and incoherent photon re-emission.
Figure 1.9 reports the transverse amplitude distribution of the three interacting
fields within the heterostructure.

The pump microcavity is designed to deal with the main drawback of counter-
propagating phase-matching scheme, which is the limited interaction volume. In-
deed, the interaction length of the nonlinear process is defined by the pump beam
size on the ridge. The cavity enhances the pump field, thus leading to a higher
nonlinear overlap integral Γ. In particular, the sources we employ in this work
have a conversion efficiency [134]:

η ≈ 10−11 photon pairs/pump photon (1.49)

which has to be compared to η ≈ 10−13 photon pairs per pump photon for a source
without microcavity [152]. On the other hand, the microcavity has a theoretical
bandwidth of 280 pm, which imposes a lower bound of a few picoseconds to the
time duration of pump pulses.

Figure 1.10 reports the reflectivity spectrum of the device measured with Fourier-
transform infrared spectroscopy (FTIR); in the center of the stop-band we notice
the microcavity resonance. From its value of reflectivity we evaluate that approxi-
mately 50% of the intensity of an incident pump beam is coupled inside the cavity.

Finally, we can tune the microcavity resonance wavelength by changing its
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Number of periods Role Al content (%) Thickness h (nm)
1 Substrate 0

36 Bottom 90 70.8
Bragg 35 50.1

1 Buffer 90 125.1

4 Core 25 129.1
Core 80 104.3

1 Core 25 129.1
1 Buffer 90 125.1

14 Top 35 50.1
Bragg 90 70.8

1 Cap 0 46.2

Table 1.1: Nominal epitaxial structure for the wafer F3W083 (April 2015), from
which the counter-propagating geometry sources employed in this thesis have been
processed.

temperature. Indeed in this way, the size of the layers is altered through thermal
expansion and, more importantly, the refractive indices are modified [136]. G.
Boucher in its PhD thesis [153] reports numerical simulations showing that the
tuning is of two nanometers for a temperature variation of 40◦C.

Infrared guided modes

Figure 1.11 reports the intensity profile of both TE- and TM-polarized fundamental
guided modes at 1550 nm.

It is worth noting that, due to the source structure, the two guided modes have
different intensity profiles. Indeed, the TM guided mode, having its electric field
polarized along the x axis, is not continuous at the dielectric interfaces. On the
other hand, the TE guided mode electric field is polarized along the y direction and
therefore has a continuous profile. This effect can also be noticed in Figure 1.9.

The following table summarizes the major characteristics of the TE and TM
fundamental guided modes, for a 5 µm-wide waveguide, calculated performing a
3D numerical simulation with the software Lumerical FDTD:

neff vg (m/s) GVD (fs2/s) Dλ (ps/nm/km) R

TE 3.0980 9.53 · 107 57.4 · 103 −45 28.5%
TM 3.0855 9.57 · 107 62.5 · 103 −49 24.7%

where neff is the effective refractive index, vg the group velocity, the group velocity
dispersion given by GVD and Dλ, and the modal reflectivity R.

We note that the modal refractive indices for the two guided modes are not equal
and thus they induce a slight modal birefringence in the device (∆n ≈ 0.0125).
This effect is due to the source aspect ratio (the core is ≈ 1 µm thick and 5 µm
wide) and its structure (the stack of layers with different Al content).
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Figure 1.9: Refractive index profile at 1550 nm and amplitude transverse profile
for the three interacting fields.

Figure 1.10: Reflectivity spectrum measured with the FTIR on the wafer
F3W083. In the center we notice the dip due to the presence of the vertical
microcavity.
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Figure 1.11: Numerical simulation of the intensity profile of the TE- and TM-
polarized fundamental guided modes at 1550 nm.

The modal reflectivity R gives the amount of power that is reflected inside the
waveguide when the field arrives at the waveguide facet. The reflection is caused by
a refractive index mismatch between the waveguide (neff ≈ 3) and the air (n = 1),
as expected from Fresnel’s law. We will deal deeply with this subject in chapter 8,
proposing some techniques to eliminate the modal reflectivity.

1.4.2 Characteristics of counter-propagating phase-matching
scheme

Let us now study more in detail the fundamental characteristics of counter-propagating
phase-matching in a ridge waveguide, referring to Figure 1.8 that reports the source
scheme.

A pump beam at 775 nm, polarized along the y direction, impinges on the top
of the waveguide with an angle θ and generates by SPDC photon pairs at 1550 nm.
We call signal the photon propagating to the right (propagating forward along the
z axis) and we call idler the one propagating to the left (propagating backward
along the z axis), as depicted in Figure 1.8.

In this geometry, due to the AlGaAs nonlinear coefficients, only a type II non-
linear process can take place, in which a pump photon is down-converted into
orthogonally polarized photons (TE and TM polarization)2. Therefore, two con-
current photon pair generation processes occur simultaneously inside the source:
we call interaction HV the process where the signal photon is Transverse Electric
(TE), i.e. the electric field is polarized along y axis (H direction), while the idler
photon is Transverse Magnetic (TM), i.e. the electric field is polarized along the

2Another SPDC process, generating photons with the same polarization, could be obtained
by means of the x component of the pump field when the pump beam incidence angle θ is large.
However, in our source the quasi-phase-matching is achieved only for small values of θ (of the
order of a few degrees) and thus in the following we will neglect this additional process.
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Figure 1.12: Sketch of the phase-matching scheme for counter-propagating pho-
tons.

x axis (V direction). On the other hand, we call interaction V H the opposite
situation: the signal photon is TM while the idler photon is TE.

We recall the energy conservation and phase-matching conditions:ωp = ωs + ωi

kp = ks + ki
(1.50)

where ωp, ωs and ωi are, respectively, the angular frequency of the pump, signal
and idler fields while kp, ks and ki are their wavevectors. In the case of counter-
propagating phase-matching, as sketched in Figure 1.12, we can decompose the
momentum conservation along the horizontal direction (z-axis) and along the ver-
tical direction (x-axis). In this case the previous equations become:

ωp = ωs + ωi
ωp
c

sin θ = ks − ki
np(ωp, x)ωp

c
cos θ = kQPM

(1.51)

where ks and ki are the modulus of the wavevectors of the signal and idler photons
within the sample, θ is the incidence angle of the pump beam and np(ωp, x) is the
value of the refractive index at frequency ωp and depth x in the layered structure.

From the third equation we can see that the vertical component of the pump
beam wavevector is not compensated and this would lead to a weak efficiency.
In order to counterbalance it, a Quasi-Phase Matching (QPM) is implemented
in the core of the waveguide, by alternating layers with high and low refractive
index, which is described by kQPM = 2π

Λ where Λ = λp/2n is the layers thickness3.
Figure 1.7e illustrates the phase-matching process.

It is worth noting that, if the waveguide thickness is smaller than half a
pump wavelength (approximately 125 nm in our case), counter-propagating phase-
matching does not requires phase-matching in the vertical direction [148]. However,

3The equation is valid only for a perpendicular pump beam. When the beam is tilted (i.e.
θ 6= 0) it becomes Λ = λp/2n cos θ, thus requiring a different QPM period. In practice, however,
we always employ small incidence angles (θ < 1°) and the phase-matching is satisfied.

34



1.4. SPDC source based on a counter-propagating phase-matching
scheme

Figure 1.13: Energy conservation (dashed line) and momentum conservation
(solid line) condition in a SPDC process based on a counter-propagating phase-
matching scheme. The intersection point represents the pair of wavelengths at
which the process can take place. In this simulation the pump field has a wave-
length λp = 773 nm and impinges onto the device at the degeneracy angle,
θdeg = 0.384° for the considered structure, and thus the emitted photons have
the same wavelength.

in order to increase the conversion efficiency, it is convenient to employ a thicker
waveguide, as in our case, and thus QPM has to be implemented in order to keep
the generation of the photons in each layer phased with the other.

Source Tunability

Having fulfilled the phase-matching condition in the x direction, we focus on the
the propagation direction (z-axis). From Equation 1.51 the involved expressions
are: ωp = ωs + ωi

ωp sin θ = ωsns(ωs)− ωini(ωi)
(1.52)

where ns/i are the effective indices of the guided signal and idler modes. We can
rewrite the previous equations expressing the idler frequency ωi as a function of
the signal frequency ωs: 

ωi = ωp − ωs
ωi = ns

ni
ωs −

ωp
ni

sin θ (1.53)

Figure 1.13 reports the plot (in the wavelength space) of these two functions for
a given pump incidence angle. We can see that the first (energy conservation) is
oriented along the negative diagonal while the second (phase-matching) is orthog-
onal to it (positive diagonal). The intersection point between the two lines gives
the wavelengths of the emitted photons.

Equation 1.53 shows also that, by tilting the incidence angle θ, it is possible to
tune the frequency of the generated photons. The equation solutions are plotted
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Figure 1.14: Angular dependence of the signal (red) and idler (blue) wavelengths
for interaction HV (solid lines) and interaction VH (dashed lines) for a pump
wavelength of λp = 773 nm. Where the lines intersect, the signal and idler photons
have the same wavelength; the corresponding value of θ is called degeneracy angle.
The two degeneracy angles, one for each interaction, are symmetric with respect
to the θ = 0° position and thus the degeneracy wavelength is the same for both
interactions (2λp).

in Figure 1.14. This graph, called accordability curves, represents the generated
signal and idler wavelengths as a function of the pump beam incidence angle θ, for
both interactions (HV and VH ). We see that, for a given interaction, there is a
degeneracy angle at which the produced photons have the same wavelength, given
by:

± θdeg = ± arcsin ns − ni2 (1.54)

where θdeg is for the HV interaction and −θdeg for the V H interaction.
The degeneracy angle slightly differs from zero due to the birefringence of the

source: as we have seen, bulk AlGaAs is not a birefringent medium, but the de-
vice structure induces a small modal refractive index difference between the two
polarizations.

Since the graph in Figure 1.14 is symmetric with respect to the θ = 0° position,
the degeneracy frequency is the same for both interactions. This enables the source
to generate polarization entangled photons by simply pumping simultaneously at
both the degeneracy angles, as has been proved by our group in Ref. [57], or to
directly emit hybrid polarization-frequency entangled state as we will report in
chapter 7.
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1.5. SPDC source based on a co-propagating phase-matching scheme

1.5 SPDC source based on a co-propagating phase-
matching scheme

In this section we detail another type of source developed by our team, which we
employ to generate spatially entangled photon pairs, as we will see in Part III of
this thesis.

The source is based on modal phase-matching: the pump guided mode at 775
nm is engineered and guided in a Bragg mode, by means of Bragg reflectors, in
order to have the same effective refractive index than the fundamental guided
modes at 1550 nm.

Bragg reflection waveguides have been proposed by Yeh and Yariv [154] in
1976 and started to be experimentally investigated only in 2006 [155, 156]. In
these last years, this phase-matching scheme has led to many important results for
the development of photon pair sources working at room temperature and in the
telecom range. In particular, our group has demonstrated the electrical injection of
the photon pair generation [60], as well as the generation of highly indistinguishable
and energy-time entangled photon pairs in a passive device [59] and the generation
of biphoton frequency combs [126].

Figure 1.15 is a sketch of the device developed by our group: it consists of a core
surrounded by two Bragg mirrors, playing the role of cladding layers and made of
six stacks of alternating high and low refractive index bilayers, correspondig to a
low (25%) and a high (80%) Al concentration, respectively. By properly choosing
the composition and the thickness of these layers (i.e. each layer is a quarter of
the pump wavelength in the medium), a constructive interference can take place
and a Bragg mode is supported in the waveguide, in addition to the fundamental
Gaussian modes.

The vertical profile has been designed to support two Bragg modes around 775
nm (TE and TM polarized) and two fundamental Gaussian modes (TE and TM
polarized) centered at 1550 nm, whose modal refractive indices satisfy the phase-
matching condition and lead to a high nonlinear overlap integral4. Table 1.2 reports
the epitaxial structure of the source, which has been designed and optimized by
A. Orieux [133], a previous PhD student in our group.

Figure 1.16 shows the numerically simulated electric field intensity of the guided
modes, for a 2 µm-wide ridge waveguide with perpendicular sidewalls and the
core partially etched. The Bragg modes feature the typical alternating out-of-
phase lobes. As for the counter-propagating geometry source, the fundamental TE
mode electric field is continuous at the interfaces between high and low refractive
index materials, contrary to the TM mode which is not continuous. This and the
source aspect ratio lead to a slight difference between the two effective refractive
indices: nTE = 3.098 and nTM = 3.081, thus inducing a small form birefringence
∆n = 0.017.

Similarly to the counter-propagating source, also in this case the facets of the
waveguide have a non-zero modal reflecitivity, which differs notably between the
fundamental Gaussian modes at 1550 nm and the Bragg modes at 775 nm, as

4The utilization of Bragg mirrors allows also to reduce the Al content, avoiding the device
oxidation and aging.
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Figure 1.15: Sketch of the Bragg reflection waveguide, indicating the different
regions.

Number of periods Role Al content (%) Thickness h (nm)
1 Substrate 0

6 Bottom 80 276
Bragg 25 114

1 Core 45 355.5

6 Top 25 114
Bragg 80 276

1 Cap 0 250

Table 1.2: Nominal epitaxial structure for the wafers EBW002, from which the
co-propagating sources have been processed.

reported in the following table:

RTE RTM

Bragg mode at 775 nm 88.8% 70.5%
Fundamental mode at 1550 nm 28.2% 27.8%

numerically calculated for a 2 µm-wide waveguide with the core partially etched.

1.5.1 Modal phase-matching
The source achieves phase-matching by engineering the modal chromatic dispersion
of the guided modes. In order to show that, we recall the energy conservation and
phase-matching conditions: ωp = ωs + ωi

kp = ks + ki
(1.55)

and we project the phase-matching along the propagation direction (z axis):

ωpnp(ωp) = ωsns(ωs) + ωini(ωi) (1.56)

38
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Figure 1.16: Numerical simulations of the intensity profile of the TE- and TM-
polarized guided modes supported by a 2 µm-wide waveguide: Bragg modes at 775
nm and fundamental guided modes at 1550 nm.
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Figure 1.17: Numerically calculated dispersion of the modal effective refractive
index of TE and TM Bragg modes (top horizontal axis) and TE and TM funda-
mental Gaussian modes (bottom horizontal axis). The simulations have been done
for a 2 µm-wide ridge waveguide, with the core partially etched.

where nj(ωj) is the modal refractive index of the mode j. From that it is clear
that, in order to fulfill the phase-matching condition, the pump guided mode must
have the same value of modal refractive index than the signal and idler modes, at
their respective frequencies.

Figure 1.17 is a plot of the numerically simulated modal dispersion of the Bragg
and fundamental modes of Figure 1.16. Depending on the field polarizations and
given the nonlinear susceptibility tensor, three different types of phase-matching
can be achieved.

In a type 0 process a TM pump photon is down-converted in two TM polarized
photons, the phase-matching condition is:

Type 0 ωpnBragg, TM(ωp) = ωsnTM(ωs) + ωinTM(ωi) (1.57)

where nBragg, TM is the effective index of the TM Bragg mode. This nonlinear
process is enabled by the guided regime. Indeed, both TM fundamental and TM
Bragg modes have a component of their electric field directed along the propagation
direction (z axis), situation that cannot occur in the free space. These longitudinal
components of the fields can interact, enabling a type 0 process [157].

In a type I process a TM pump photon is down-converted to two TE polarized
photons. The phase-matching condition is:

Type I ωpnBragg, TM(ωp) = ωsnTE(ωs) + ωinTE(ωi) (1.58)

This process is directly enabled by the dXYZ nonlinear coefficient, which couples the
TE and the TM modes. In order to explain this, we can examine the corresponding
SHG process in which two TE pump photons are converted in one TM photon with
double frequency (TE + TE → TM). The nonlinear polarization, in the crystal
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reference system (X, Y, Z), is:

PNL,TM
Z ∝ dZXYE

TE
X ETE

Y (1.59)

which couples the X and Y component of the TE fields to generate a SHG field
directed along the Z direction (i.e. TM polarized).

In a type II process a TE pump photon is down-converted to a TE and a TM
photons. In this case two interactions can occur: a TE signal photon and a TM idler
photon are generated, or vice-versa. Contrary to the counter-propagating source,
here the two photons of the pair cannot be distinguished by their propagation
direction, which is the same. Therefore, we employ their frequency: we call signal
the photon at higher frequency and idler the one at lower frequency.

The phase-matching relation becomes:

Type II ωpnBragg, TE(ωp) = ωsnσ(ωs) + ωinσ⊥(ωi) (1.60)

where σ and σ⊥ denote a given polarization and the orthogonal one, respectively.
This process is enabled by the nonlinear coefficients dXYZ and dYXZ. For the corre-
sponding SHG process (TE+TM→ TE), the nonlinear polarization in the crystal
reference system (X, Y, Z) reads:

PNL,TE
X ∝ dXYZE

TE
Y ETM

Z

PNL,TE
Y ∝ dYXZE

TE
X ETM

Z
(1.61)

The first equation couples the Y component of the TE mode and the Z component
of the TM one, generating the X component of the SHG field. Meanwhile the Y
component of the SHG field is generated by the coupling of the X component of
the TE mode and the Z component of the TM mode, as described in the second
equation.

From the nonlinear overlap integral Γ we can calculate the device conversion
efficiency η for a type II process. For a L = 2 mm device we expect [158]:

η = 1.37 · 10−8 photon pairs/pump photons (1.62)

which is considerably higher than the counter-propagating scheme source, for which
the conversion efficiency is η ≈ 10−11, mainly due to the higher nonlinear overlap
integral.

In Part III of this manuscript we will employ the co-propagating source to
develop a novel device that generates spatially entangled biphoton states.

1.6 Sample fabrication and optical characteriza-
tion

In this section we give a brief overview on the clean room fabrication processes of
the sources and on the employed method to evaluate their propagation losses.
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Figure 1.18: Steps for the chemical etching of the waveguides. Adapted from
[159].

1.6.1 Fabrication processes

The counter-propagating source that has been employed in this work has been fab-
ricated in the clean room of the MPQ Laboratory employing the epitaxial growth
made by A. Lemaitre at C2N by Molecular Beam Epitaxy (wafer F3W083). The
fabrication is principally divided in two steps: optical lithography with UV light
and wet etching using a chemical solution. Figure 1.18 summarizes the procedure.
This process has already been optimized by previous PhD students of the team
and thus refer to their PhD theses for more information [134, 159].

The processed waveguide is 1.9 mm long and 5 µm wide; the side-walls have a
curved profile, typical of the wet etching technique (see Figure 1.19a). Vertically
the top Bragg mirror and the core are etched while the bottom mirror is not.

The fabrication process described above is a fast technique, which gives sat-
isfactory results when processing single waveguides. However, it presents many
drawbacks when more complex designs are envisaged, e.g. the device to generate
spatially entangled photon pairs that we will present in Part III. For this reasons,
we have developed a new fabrication process based on electron beam lithography
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Figure 1.19: Comparison between the facets of a wet etched sample with curved
sidewalls (a) and a dry etched one with vertical sidewalls (b).

and inductively coupled plasma etching, which result is more vertical sidewalls (see
Figure 1.19b). A detailed description of this fabrication process and its optimiza-
tion steps will be given in section 9.4.

1.6.2 Propagation loss evaluation
The propagation of a light beam inside a waveguide strongly depends on its fab-
rication quality. Indeed, if the waveguide suffers from fabrication problems (e.g.
defects, free charges or roughness) the beam is attenuated while it propagates.

Let us consider a waveguide of length L and an electromagnetic wave propagat-
ing along the z direction. If I0 is the intensity injected in the device, the intensity
at the position z is:

I(z) = I0e
−αz (1.63)

where α is the propagation loss coefficient we want to determine.
As we have seen above, the waveguide facets have a non-zero reflectivity (R),

due to the refractive index mismatch between the waveguide and the air. Thus, the
waveguide behaves like a Fabry-Pérot cavity, modulating the output power. For a
monomode waveguide, the transmitted power is described by the Airy function:

TFP = T 2e−αL(
1− R̃

)2
+ 4R̃ sin2

(
φ

2

)η (1.64)

where T is the end-facet transmission, η the coupling efficiency into the waveguide,
L is its length and R̃ = Re−αL is the combined loss-reflection coefficient. The phase
term φ = 2k0neffL+φ0 is the phase accumulated over a round trip: it involves the
reflection dephasing φ0, the wave-vector in free space k0, and the effective refractive
index neff of the guided mode. We can tune the phase term φ by changing the
temperature, applying an electric field (electro-optic effect) or simply continuously
varying the input wavelength. Measuring the contrast C of the Fabry-Pérot fringes
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allows to extract the value of R̃. Indeed,

C = Tmax − Tmin

Tmax + Tmin
(1.65)

and thus
R̃ = 1

C

(
1−
√

1− C2
)

(1.66)

Knowing the reflectivity of the facets and the waveguide length we can extract the
loss coefficient:

α =
ln
(
R/R̃

)
L

(1.67)

where R is the waveguide modal reflectivity, which can be evaluated through nu-
merical simulations.

This method has been proposed for the first time by Park et al. [160] in 1995
for a monomode waveguide. In case of multimode waveguides, if the higher-order
guided modes have higher (or equal) propagation losses compared to the funda-
mental one, the relation above gives an upper bound for the propagation losses,
as demonstrated in [161]. Indeed, in this case, the different modes propagating
in the waveguide beat and, when they are in phase, the contrast is maximal and
closest to the real propagation losses. In addition, if all the involved modes have
the same modal reflectivity and propagation losses, the method still provides their
exact value.

In the following paragraph we apply this technique to evaluate the propagation
losses of the counter-propagating source that will employed in Part II of this thesis.
On the contrary, the analysis of the co-propagating source optical losses will be
presented after its fabrication process, in section 9.5.

Counter-propagating source propagation losses

To implement the method described above, we inject a CW infrared laser inside the
waveguide and we measure the output power. By scanning the laser wavelength
we reconstruct the Fabry-Pérot oscillations and calculate the propagation losses.
Figure 1.20 reports experimentally measured Fabry-Pérot fringes for both TE and
TM polarization. The fringe free spectral range (FSR) is related to the sample
length L by the following formula:

∆λFSR = λ2

2L ng
(1.68)

where ng is the group refractive index of the involved guided mode. The exper-
imentally measured value (∆λFSR = 190 pm) confirms the source length value
(L = 1.9 cm).

Finally, from the fringes contrast we derive the propagation losses: α = 0.48
cm-1 (−2 dB/cm) for the TE polarization and α = 0.65 cm-1 (−2.8 dB/cm) for
the TM polarization. These loss values are higher than the best one obtained with
such structure (α = 0.2 cm-1) [134] with the same nominal epitaxial growth, but
fabricated from a different wafer (88P14). We suppose that the higher losses may
be due to a difference in the epitaxial growth.
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Figure 1.20: Normalized power for TE (a) and TM polarized (b) waves through
the waveguide. From the contrast of the Fabry-Pérot oscillations we derive the
optical losses.
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In this chapter we present a quantum theory of light describing the generation of
photon pairs in a counter-propagating phase-matching source, focusing on photon
frequency-time properties.

Different approaches can be employed depending on the situation [162, 163].
Here, since we are interested in low power pumping regime, in which the prob-
ability of generating multiple pairs per pump photon is negligible, we follow the
analysis, based on perturbation theory, proposed by Guillaume Boucher in his PhD
manuscript [153].

The goal is to derive the Joint Spectral Amplitude JSA φ(ωs, ωi), a function
giving the joint probability that the signal and idler photons are emitted at fre-
quencies ωs and ωi, respectively. In particular, we will connect the JSA to the
pump beam spatial and temporal properties, showing how those can be engineered
in order to control the frequency correlations between the photons of the pair, as
it has been pointed out for the first time by Walton et al. [164].

In the second part of the chapter we will analyze the frequency-time properties
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Figure 2.1: Sketch of the source based on the counter-propagating phase-
matching scheme under transverse pumping and its working principle.

of the quantum state emitted by the source by introducing concepts such as the
Schmidt decomposition and the Chronocyclic Wigner Function.

The results are derived for a counter-propagating phase-matching scheme but
they can be easily generalized to a co-propagating scheme. For a detailed calcula-
tion of this particular case we refer to G. Maltese PhD thesis [158].

2.1 Joint Spectral Amplitude derivation
In this section we derive the JSA of the generated state by employing the following
procedure. We rely on the Heisenberg picture (i.e. the state wavefunction is con-
stant in time, while the operators acting on it evolve) and we start by identifying
the fields involved in the process, expressed in their quantized forms. Then we de-
fine the perturbation term to the linear Hamiltonian, given by the SPDC nonlinear
Hamiltonian. As a last step, we derive the biphoton state generated by the source
by solving the Schrödinger equation including the perturbation term.

In the calculation we employ the same reference system introduced in the pre-
vious chapter (here reported in Figure 2.1), namely the x axis corresponds to the
growth direction, the z axis is the propagation direction and the y axis is orthogonal
to the first two. The produced photons can be distinguished by their propagation
direction: we call signal the photon propagating to the right (positive z) and idler
the photon propagating to the left (negative z). Moreover, we focus only on the
fundamental guided modes and on the HV interaction: the one emitting a horizon-
tally polarized signal photon (TE polarized, i.e. its electric field is directed along
the y axis) and a vertically polarized idler photon (TM polarized, i.e. its electric
field is directed along the x axis). The result can be easily generalized to the other
interaction (V H) or to higher order guided modes. From now on we will use only
H and V to indicate the polarization directions.
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2.1.1 Interacting fields
Pump field

SPDC-based sources generally have a low conversion efficiency (≈ 10−11 generated
pairs per pump photon, in our case) and the pump beam is very bright. Therefore,
the latter can be assumed as undepleted and described classically:

Êp(r, t) ∼ Ep(r, t) = (2π)−3/2
∫ +∞

0
dk ûyEp(k, t) ei(k·r−ωkt) + c.c. (2.1)

where we have assumed a H polarization, so as to fulfill the conditions for a type
II phase-matching (as detailed in section 1.4). The pump beam electric field is
thus directed along the y direction, indicated by the unit vector ûy, and Ep(k, t)
represents the electric field amplitude at a given wavevector k, as it will be detailed
later.

Idler and Signal Fields

The waveguide confines the produced photons along the vertical and horizontal
directions by total internal reflection and thus the number of allowed modes is
discretized (see section 1.2). As stated above, in this analysis we consider, for the
signal and idler fields, only the fundamental guided modes, but it can be easily
generalized to higher-order modes.

The produced photon pairs propagate along the z axis, where the waveguide
length L is much larger than the wavelength in the range we work in, therefore we
have a continuum of k-vectors. We can thus write the electric field operator inside
the waveguide using the usual quantization procedure [165]:

Ê(r, t) =

Ê(+)
s (r,t)︷ ︸︸ ︷√

L

2π
∑
σ

∫ +∞

0
dkEσ(x, y)ei(kσz−ωkt)âσ,k +

Ê(−)
s (r,t)︷︸︸︷
h.c.

+
√
L

2π
∑
σ

∫ 0

−∞
dkEσ(x, y)ei(kσz−ωkt)âσ,k︸ ︷︷ ︸

Ê(+)
i (r,t)

+ h.c.︸︷︷︸
Ê(−)
i (r,t)

(2.2)

where the label σ indicates the polarization of the field (H or V), âσ,k is the annihi-
lation operator of a photon with polarization σ and wavevector k, and Eσ(x, y) is
its transverse profile. We have split the integral in two terms: the first Ê(+)

s (r, t),
with positive k, represents the signal modes (propagating forward) while the sec-
ond Ê(+)

i (r, t), with negative k, represents the idler modes (propagating backward).
The creation and annihilation operators, â† and â, satisfy the usual commutation
relations.

The guided regime also implies a direct relation between the wavevector k and
the frequency ω:

|kσ| =
nσω

c
(2.3)
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where nσ is the effective index of the mode, for a given polarization. This relation
allows us to change the integration variable from k-vector to frequency [165], which
is more intuitive to describe the frequency correlations between the generated pho-
tons. We employ the following transformations:

dk → dω
vg(ω) âk →

√
vg(ω) â(ω) (2.4)

where vg(ω) is the group velocity of the involved guided mode at frequency ω. The
fields can now be written as follows:

Ê
(+)
s/i (r, t) =

√
L

2π
∑
σ

∫ +∞

0
dω Eσ(x, y;ω)√

vσg (ω)
ei(±|kσ(ω)|z−ωkt)âs/i,σ(ω) + h.c. (2.5)

The exponential has a + for the signal field (propagating forward) and a - for the
idler field (propagating backwards).

2.1.2 Nonlinear Hamiltonian
The nonlinear interaction between the three interacting fields is expressed by the
following nonlinear Hamiltonian:

ĤNL(t) = ε0

∫
drχ(2)(r)Êp(r, t)Ês(r, t)Êi(r, t) (2.6)

with χ(2)(r) the nonlinear susceptibility tensor of the medium.
As we have seen in section 1.4 the device achieves only type II phase-matching,

in which a H pump photon is downconverted in two orthogonally polarized photons
(H and V). With this condition the nonlinear Hamiltonian becomes:

ĤNL(t) = ε0

∫
drχ(2)(r)Êp(r, t)Ês,H(r, t)Êi,V (r, t)

+ ε0

∫
drχ(2)(r)Êp(r, t)Ês,V (r, t)Êi,H(r, t)

(2.7)

The involved fields are all composed of a frequency positive term E+ and a
conjugate negative frequency term E− (c.f. Equation 2.2). The first contains
the annihilation operator and the latter the creation operator. By multiplying
the three operators (Êp Ês Êi), we thus obtain eight possible combinations. The
energy conservation condition constrains the possible combinations and therefore
we keep only the ones where a pump photon is annihilated and a signal and a idler
photon are created, and their Hermitian conjugates. With these considerations the
nonlinear Hamiltonian simplifies to:

ĤNL(t) = ε0

∫
drχ(2)(r)Ê(+)

p (r, t)Ê(−)
s,H(r, t)Ê(−)

i,V (r, t) + h.c.

+ ε0

∫
drχ(2)(r)Ê(+)

p (r, t)Ê(−)
s,V (r, t)Ê(−)

i,H (r, t) + h.c.
(2.8)
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2.1.3 The biphoton state
So far we have identified the interacting fields and the nonlinear Hamiltonian, now
we derive the output state of the source (a long time after the pump pulse has left
the medium) by solving the Schrödinger equation for the nonlinear term ĤNL(t):

i~
d
dt
∣∣Ψ(t)

〉
= ĤNL(t)

∣∣Ψ(t)
〉

(2.9)

In a low pump regime, with low generation probability per pulse, the output state
can be approximated as:∣∣Ψ(t)

〉
= |0〉 − i

~

∫ t

−∞
ĤNL(t) dt |0〉 (2.10)

where the initial state is the vacuum (
∣∣Ψ(t→ 0)

〉
= |0〉). Here we have applied

a first order expansion, neglecting the eventual multiple photon pair events. The
output is thus the superposition of the vacuum and a biphoton state, which can
be rewritten as: ∣∣Ψ(t)

〉
= |0〉+ β |ψ〉 (2.11)

with β the probability amplitude of generating a biphoton state |ψ〉.
Since we are interested in the output state after the disappearance of the pump

pulse we can extend the time integral of Equation 2.10 to infinity. By plugging in
the nonlinear Hamiltonian, Equation 2.8, and restriciting only to one interaction
(signal H and idler V) the state becomes:

|ψ〉 = ε0
iβ~

∫
dt
∫

drχ(2)(r)Ê(+)
p (r, t)Ê(−)

s,H(r, t)Ê(−)
i,V (r, t) |0〉 (2.12)

Inserting the definition of the involved states derived above, we find:

|ψ〉 = 1
β

ε0L

i2π~

∫
dt
∫∫∫

dωp dωs dωi
∫

dr 1√
vHg (ωs)vVg (ωi)

χ(2)(r)

× Ep(r, ωp)EH(x, y;ωs)EV (x, y;ωi) e−i∆kzei∆ωtâ†H(ωs)â†V (ωi) |0〉
(2.13)

where ∆ω = (ωs+ωi)−ωp represents the energy difference between the three fields
and ∆k = kH(ωs)− kV (ωi) the wavevector mismatch between the signal and idler
fields. Integrating over time yields the energy conservation condition:∫

dt ei∆ωt = 2πδ(∆ω) (2.14)

which justifies a posteriori the removal of terms from the Hamiltonian that we
made. We can now integrate over the pump frequency ωp, yielding:

|ψ〉 =
∫∫

dωs dωi φ(ωs, ωi) â†H(ωs)â†V (ωi) |0〉 (2.15)

with φ(ωs, ωi) the Joint Spectral Amplitude (JSA) or biphoton wavefunction:

φ(ωs, ωi) = ε0L

iβ~
√
vHg (ωs)vVg (ωi)

×
∫

drχ(2)Ep(r, ωs + ωi)EH(x, y, ωs)EV (x, y, ωi)e−i∆kz
(2.16)
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As a final remark we want to relate the JSA with the frequency correlations
that we experimentally measure. In the calculation we have already extracted the
probability β of generation of a pair and thus the normalization of the JSA is
simply:

〈ψ|ψ〉 =
∫∫

dωs dωi
∣∣φ(ωs, ωi)

∣∣2 = 1 (2.17)

Therefore, the squared modulus of the JSA, called Joint Spectral Intensity (JSI),
can be viewed as the probability of finding a pair of photons in a given couple of
frequencies and for this reason the JSA is usually called biphoton spectral wave-
function.

Treating the photons individually, we can obtain the spectral marginal ampli-
tude for the signal by integrating the JSA φ(ωs, ωi) over the idler frequencies:

φs(ωs) = 1√
2π

∫
dωi φ(ωs, ωi) (2.18)

It can be interpreted as the probability amplitude of detecting a signal photon of
frequency ωs. For the idler photon, φi(ωi) is defined analogously.

2.2 Joint Spectral Amplitude characteristics
We now continue our study by making some assumptions and establishing a link
between the JSA and the pump beam characteristics.

2.2.1 Phase mismatch
First of all, we analyze the wavevector mismatch term (∆k) of Equation 2.16 and
simplify it by making some approximations. We can Taylor expand the refractive
indices of the signal and the idler around the degeneracy frequency ωdeg = ωp/2
to the second order in δω = ωs − ωi

2 ≡ ω−
2 . Doing so the wavevector mismatch

becomes:
∆k = kdeg(ωp) + ω−

v̄g
+
(
ω−
2

)2
δGVD (2.19)

The first term corresponds to the projection along the z-axis of the wavevector
that the pump should have to produce frequency-degenerate photons. It can be
written as:

kdeg(ωp) = ωp
c

ns − ni
2 = ωp

c
sin θdeg (2.20)

This term is linked to the birefringence of the device: in order to produce frequency
degenerate photons the pump beam must impinge on the waveguide with an angle
θdeg different from zero, as we have already commented in Figure 1.14 (see also
Equation 1.54). From this formula we see that the opposite interaction (signal V
and idler H) will have the opposite degeneracy angle (−θdeg).

The second term in Equation 2.19 depends on the mean group velocity of the
two involved guided modes, defined as:

v̄−1
g =

vHg + vVg
2

−1

= 1
c

[
nH + nV

2 + ωdeg

2
d(nH + nV )

dω

]
(2.21)
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This term is an important feature of the counter-propagating phase-matching
scheme; as we will see in the next section, it connects the pump beam spatial
properties to the biphoton spectral correlations.

The last term is controlled by δGVD which is the difference between the Group-
Velocity Dispersions (GVD) of the two guided modes:

δGVD = 1
2

(
d2kH
dω2 −

d2kV
dω2

)

= 1
2c

[
2d(nH + nV )

dω + ωdeg
d2(nH + nV )

dω2

] (2.22)

For our device the GVDs for H (TE) and V (TM) modes are almost equal, see
section 1.4, and therefore their difference can be neglected. Neglecting this term
the wavevector mismatch becomes:

∆k = ωp
c

sin θdeg + ω−
v̄g

(2.23)

2.2.2 Connection between JSA and pump beam properties
In order to further study the Joint Spectral Amplitude we need to make some
assumptions on the pump field Ep(r, ωp). We assume that:

• the pump field propagates only in the (x, z) plane, thus having ky component
equal to zero;

• its transverse spatial profile is separable along the z and y directions,

φp(x, y;ω+) = φp(y)× φp(z, ω+) (2.24)

where ω+ = ωp = ωs + ωi and with a possible dependence on the pump
frequency ω+ of the z spatial profile.

• the effect of the vertical microcavity on its shape along the x axis and on its
spectrum can be decoupled in two terms: fµcav(x)×fµcav(ω+). They represent
respectively the effect of the refractive index variation along the x direction
and the microcavity filtering effect on the pump beam spectrum.

Therefore, we can write the pump field amplitude as:

Ep(r, ω+) = ε(0)
p fµcav(x)fµcav(ω+)fspectrum(ω+)φp(y)φp(z, ω+) (2.25)

where fspectrum(ω+) describes the spectral amplitude of the field and ε(0)
p is a nor-

malization constant.
We now introduce an explicit expression of the second order susceptibility co-

efficient, by taking advantage of the device geometry:

χ(2)(r) = χ(2)(x)× ΠW (y)× ΠL(z) (2.26)
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where χ(2)(x) is the susceptibility value at a given x position, and the last two
terms are rectangular gate functions defined as:

ΠL(z) =

1 if |z| ≤ L

2
0 elsewhere

(2.27)

ΠW (y) =

1 if |y| ≤ W

2
0 elsewhere

(2.28)

where L and W are respectevely the length and the width of the waveguide.
With all these considerations, the general expression of the JSA (Equation 2.16)

becomes:

φ(ωs, ωi) = ε0L

iβ~
√
vHg (ωs)vVg (ωi)

ε(0)
p fspectrum(ω+)fµcav(ω+)

×
∫

dxχ(2)(x)fµcav(x)EH(x, ωs)EV (x, ωi)

×
∫

dyΠW (y)φp(y)EH(y, ωs)EV (y, ωi)

×
∫

dzΠL(z)φp(z, ω+)e−i∆kz

(2.29)

The first two integrals represent the spatial overlap between the three fields in the
waveguide cross-section. The third integral, performed along z, takes into account
the phase mismatch ∆k between the three fields.

This expression of the JSA (Equation 2.29) can be divided into three different
factors :

φ(ωs, ωi) = χΓ(ωs, ωi) · PM(ωs, ωi) · φspectral(ωs, ωi) (2.30)

The first term, χΓ, is the overlap integral between the interacting fields and the
non linear medium, including all the multiplicative constants:

χΓ(ωs, ωi) =
ε0Lε

(0)
p

iβ~
√
vHg (ωs)vVg (ωi)

×
∫∫

dx dy χ(2)(x)ΠW (y)fµcav(x)φp(y)EH(x, y, ωs)EV (x, y, ωi)
(2.31)

This term is proportional to the nonlinear overlap integral defined in the previous
chapter, Equation 1.37. During the design of the device, this quantity has been
optimized in order to maximize the conversion efficiency [134, 152].

The quantum states generated by our device have a Joint Spectral Amplitude
which does not exceed a few nanometers in width, remaining in the telecom c-band.
For this reason, due to the small GVD of the involved guided modes, we can neglect
the frequency dependence of the effective group velocities. Moreover, the profiles
of the guided modes can be considered as a constant, for such frequency ranges.
Thus, for the analytic discussion, we can consider χΓ as frequency-independent
and hence the y and x profiles of the pump beam do not affect the JSA. However,
it is important to note that, even if χΓ does not have a role on the frequency
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2.2. Joint Spectral Amplitude characteristics

engineering, it is of paramount importance for the device because it determines its
conversion efficiency.

The second term of Equation 2.29, containing the integral along the z direction,
describes the phase-matching:

PM(ωs, ωi) =
∫

dzΠL(z)φp(z, ω+)e−ikdeg(ω+)z−iω−
v̄g
z (2.32)

where we have used Equation 2.23 to express the wavevector mismatch ∆k. Differ-
ently from the previous term, here the pump beam profile, φp(z, ω+), influences the
frequency dependency of the JSA. In particular, the phase-matching term contains
the projection of the pump field wavevector k along the z axis, thus linking the
incidence angle θ to the JSA. This point highlights a very important feature of
the counter-propagating phase-matching scheme: tailoring the pump beam profile
along z, φp(z, ω+), gives a direct and flexible control over the JSA shape, as we
will see in details in the second part of this thesis (chapter 5).

Finally, the third term of Equation 2.30 is related to the energy conservation and
depends on the frequency spectrum of the pump beam multiplied by the filtering
effect of the microcavity:

φspectral(ω+) = fspectrum(ω+)fµcav(ω+) (2.33)

The microcavity has a bandwidth of 280 pm and thus it imposes a lower bound
of 3 ps to the duration of the pump pulses. Since in this thesis we will always
consider longer pulses, we can neglect the microcavity filtering effect on the pump
beam spectrum. For a more detailed analysis on this topic refer to [153].

JSA dependency on ω+ and ω−

In the previous analysis we have divided the JSA in the product of three terms: χΓ,
which does not depend on the frequency, and two frequency dependent terms (PM
and φspectral). We now move a step further and investigate the JSA dependency
from the ω+ = ωs + ωi and ω− = ωs − ωi variables.

First of all, we note that the spectral term φspectral depends only on the pump
laser frequency ωp = ω+ = ωs + ωi and therefore it is directed along the JSA
anti-diagonal (ω− axis). This direction is constrained by the energy conservation
condition and cannot be changed in any way.

On the other hand, the phase-matching term PM is generally a function of both
ωs and ωi; however, depending on the pump beam properties, specific directions
can be chosen. Indeed, in the usual case where there is no frequency dispersion in
the angular spectrum (θ is independent from ωp), the phase-matching term depends
only from ω− = ωs−ωi and therefore it is directed along the JSA principal diagonal
(ω+ axis)1, as we have seen in chapter 1(Figure 1.13). In this case the JSA can be
factorized along the ω+ and ω− axes:

φ(ωs, ωi) = χΓ PM(ω−) φspectral(ω+) (2.34)
1This is strictly true only if we consider a monochromatic pump beam. However, as we will see

in section 5.2, in our case experimental case (picosecond pulsed pump beam) this approximation
is valid up to a precision <1%.
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Figure 2.2: Example of JSA separable along the ω− and ω+ axes. From
left to right: norm of the phase-matching |PM(ωs, ωi)|, of the spectral function
|φspectral(ωs, ωi)| and of the resulting JSA |φ(ωs, ωi)|. Simulation parameters: L = 1.9
mm, wz = 0.3 mm, τp = 4.5 ps and RH = RV = 0.

Figure 2.2 is an example of this situation. It reports numerical simulations of the
norm of the phase-matching, spectral function and resulting JSA2.

Conversely, if a dispersive element (e.g. a prism) is introduced in the pump
beam, the incidence angle is frequency-dependent (in general kp · ûz = f(ωp)ωp/c)
and thus the phase-matching term rotates in the (ωs, ωi) plane [164]. In this
manuscript we will analyze only biphoton states that are separable along the ω+
and ω− axes and thus we do not detail further this case.

In the remaining part of this chapter we continue our study of the JSA by
analyzing its general properties, i.e. without giving an explicit expression of the
pump beam.

2.2.3 Frequency correlations and Schmidt decomposition
A biphoton state can be classified by its frequency-time properties, more in particu-
lar by its frequency correlations. We will here analyze the JSA in a qualitative way,
identifying different types of correlations, and then we will introduce the Schmidt
decomposition to quantify the amount of spectral correlations.

First of all we define the notion of spectral correlation. A photon pair is spec-
trally correlated when its JSA cannot be written as the product of the single-photon
spectra, i.e. φ(ωs, ωi) 6= φs(ωs)φi(ωi). Depending on the shape of the JSA we can
then identify:

• frequency anti-correlated states: in this case the two photons of the pair have
negatively correlated frequencies and the JSA is directed along the anti-
diagonal, i.e. the ω− direction, as in Figure 2.3a;

• frequency correlated states: in this case the two photons of the pair have
positively correlated frequencies and the JSA is oriented along the principal

2In all the JSA/JSI plots of this thesis we employ the normalization max(|φ(ωs, ωi)|)=1 instead
of
∫∫

dωs dωi

∣∣φ(ωs, ωi)
∣∣2 = 1, for a better visualization.
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diagonal, i.e. the ω+ direction, as in Figure 2.3b;

• frequency-separable states: in this case the signal and idler photons are not
spectrally correlated and their JSA is simply given by the product of their
spectra, as in Figure 2.3c;

In order to give a more quantitative analysis of the frequency correlations of a
biphoton state, we now introduce the Schmidt decomposition of the JSA [166],
which consist in finding two complete sets of orthonormal functions {um(ω)},
{vm(ω)} such that the JSA φ(ωs, ωi) may be written:

φ(ωs, ωi) =
∑
m

√
λmum(ωs)vm(ωi) (2.35)

where λm, um(ω) and vm(ω) satisfy the integral eigenvalue equations:∫∫
dω′dω2 φ(ω, ω2) φ∗(ω′, ω2) um(ω′) = λmum(ω)∫∫
dω′dω1 φ(ω1, ω) φ∗(ω1, ω

′) vm(ω′) = λmvm(ω)
(2.36)

The expansion parameters λm are real and positive and obey the normalization
condition ∑

m λm = 1. The existence of the Schmidt decomposition has been
demonstrated for a large class of systems under very general assumptions [167].

The Schmidt functions um(ω) and vm(ω) can be thought of as building blocks
of entanglement. Indeed, if the signal photon is projected into the function un, the
idler photon is known with certainty to be described by the corresponding function
vn. The probability of finding the photon pair in this specific pair of modes is given
by λn.

The level of spectral entanglement can be quantified by the cooperativity pa-
rameter, or Schmidt number K, defined as:

K = 1∑
m λ2

m

(2.37)

The value of K gives the effective numbers of separable modes needed to perform
the decomposition. A biphoton state withK = 1 represents a state with only a pair
of Schmidt modes and therefore it is separable, exhibiting no spectral entanglement.

In Figure 2.3 we reports the numerically calculated Schmidt number K for each
case described above (frequency correlated, anti-correlated and separable JSA). It
is worth noting that the Schmidt number quantifies the level of frequency en-
tanglement, but it cannot identify the type of frequency correlation (positive or
negative).

2.2.4 Joint Temporal Amplitude
In order to further study the properties of the biphoton state, we now introduce
the Joint Temporal Amplitude (JTA) φ̃(ts, ti), which gives the joint probability
amplitude of detecting the photons of the pair at times ts and ti. Since the JSA
has a narrow bandwidth, we can safely define the JTA as its Fourier Transform:

φ̃(ts, ti) = 1
2π

∫∫
dωsdωi φ(ωs, ωi)e−iωstse−iωiti (2.38)
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Figure 2.3: Norm of the JSA |φ(ωs, ωi)| of an anti-correlated (a), a correlated
(b) and a separable (c) frequency state, with the corresponding Schmidt number
K, which quantifies the amount of frequency entanglement. Simulation parameters:
L = 1.9 mm, RH = RV = 0. (a) wz = 0.1 mm and τp = 4.5 ps; (b) wz = 1 mm and τp = 1 ps;
(c) wz = 0.6 mm and τp = 4.5 ps.
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Figure 2.4: (a) Norm of the JTA and (b) norm of the JSA of a frequency corre-
lated state. The JTA shows temporal anti-correlation. Simulation parameters: L = 4
mm, RH = RV = 0, wz = 1 mm and τp = 2 ps.

where we have applied the definition of the Fourier-transformed operator â†(t)
[165]:

â†(ω) = 1√
2π

∫
dt â†(t)e−iωt (2.39)

The squared modulus of the JTA, called Joint Temporal Intensity JTI, gives the
joint probability of detecting the photons at times ts and ti.

Similarly to the JSA, it is possible to define the temporal amplitude of the
photons taken individually by integrating the JTA over the time variable of the
other photon:

φ̃s(ts) = 1√
2π

∫
dti φ̃(ts, ti) (2.40)

φ̃s(ts) gives the probability amplitude of measuring a signal photon at the time ts,
and analogously for the idler photon.

Figure 2.4 reports the norm of the JSA and of the JTA for a frequency correlated
state. The JTA shows temporal anti-correlation, due to the Fourier Transform.
Conversely, a frequency anti-correlated state would display temporal correlation.

From the knowledge of both the JTI and the JSI, it is possible to determine
whether or not the biphoton state is entangled in energy-time by measuring their
standard deviations along the diagonal ωs + ωi and ts − ti directions. Indeed, two
classical pulses or two separable photons must satisfy the following relation:

∆(ωs + ωi) ∆(ts − ti) ≥ 1 (2.41)

while, for energy-time entangled photons, this inequality can be violated and can
reach 0 [168].

2.2.5 Fabry-Pérot cavity effect on the JSA
As we have seen in the previous chapter, in particular in section 1.4, the refractive
index contrast between the waveguide (n ≈ 3) and the air (n = 1) induces a modal
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Figure 2.5: Symbolic sketch of the source (χ(2) medium) placed in a cavity. Both
SPDC interactions are represented, we call signal s and idler i the photons inside
the cavity and right R and left L the photons outside the cavity.

reflectivity of the waveguide facets. The 3D numerical simulations that we have
performed for a 5µm-wide ridge waveguide yield a modal reflectivity of RH = 28.5%
for the horizontally polarized fundamental mode (TE) and RV = 24.7% for the
vertically polarized fundamental mode (TM), at 1550 nm. As a result, the two
facets create a Fabry-Pérot cavity for the signal and idler fields, which has a non
negligible influence on the JSA of the generated biphoton state, as we shall see.

Jeronimo-Moreno et al. [169] studied the SPDC pair generation process in a
nonlinear Fabry-Pérot cavity. The authors demonstrated that, if the source remains
in the spontaneous regime, i.e. the generated photons do not stimulate the emission
of new photons, the effect of the cavity reduces to the multiplication of the original
JSA by the Fabry-Pérot transfer functions. G. Boucher applied this approach to
the counter-propagating source and here we report only the final results; for the
complete calculation refer to his PhD thesis [153].

Let us consider a photon pair generated in the center (along the z axis) of the
source; the transmission (ft,σ(ω)) and reflection (fr,σ(ω)) cavity functions can be
written:

ft,σ(ω) =

√
1−Rσ exp

(
i
ωnL

2c

)

1−Rσ exp
(
i
2ωnL
c

)

fr,σ(ω) =

√
Rσ(1−Rσ) exp

(
i
3ωnL

2c

)

1−Rσ exp
(
i
2ωnL
c

)
(2.42)

for a modal reflectivity Rσ and a mode polarization σ (H or V ). These are the
usual Fabry-Pérot functions, up to a half-length propagation phase factor (given
by the photon propagation from the center to the facets, which corresponds to a
distance L/2).

Each waveguide facet can be modeled as a frequency-dependent beamsplitter,
where photons can either be reflected or transmitted [170]. Referring to Figure 2.5
we call signal s and idler i the photons inside the cavity, while we call right R and
left L the photons exiting the cavity respectively from the right and left side. It is
important to note that, due to the cavity, a signal photon may now exit from the
left side and vice-versa. Using this notation the transformations for the â and â†
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Figure 2.6: Interaction selection with polarizers. Here the polarizers (Pol.) are set
to select the HV interaction (signal H-polarized and idler v-polarized). However,
they do not suppress the reflections: a H-polarized idler photon that is reflected by
the cavity is then transmitted by the polarizer, and vice versa for the V -polarized
signal photon. Therefore to completely suppress one interaction both frequency
filters and polarizers are required.

operators become:

â†s,σ(ω)→ ft,σ(ω)â†R,σ(ω) + fr,σ(ω)â†L,σ(ω)
â†i,σ(ω)→ ft,σ(ω)â†L,σ(ω) + fr,σ(ω)â†R,σ(ω)

(2.43)

We will employ the above transformations in chapter 7 in order to demonstrate
the generation of hybrid polarization/frequency entanglement. For the moment we
consider a simpler case, to understand how the cavity effect modifies the JSA. By
using both polarizers and frequency filters on each side of the cavity we select only
the HV interaction. Note that polarizers are not sufficient to select one interaction
and completely suppress the other one. Indeed, for example, an idler H photon,
emitted by the unwanted V H interaction, can be reflected from the left side and
then transmitted from the right one and therefore it contribute to the events of the
HV interaction, unless a frequency filter is used in conjunction with the polarizers,
as illustrated in Figure 2.6.

Using such conjunction of filters and polarizers, the photons are forced to exit
only from one side, eventually after multiple round-trips, therefore we can continue
to call signal the photon propagating to the right and idler the one propagating to
the left. As a consequence Equation 2.43 reduces to:

â†s,H(ω)→ ft,H(ω)â†s,H(ω)
â†i,V (ω)→ ft,V (ω)â†i,V (ω)

(2.44)

Consequently, the JSA of the biphoton state emitted by the source, considering
the reflecting facets and selecting only the HV interaction, becomes:

φFP (ωs, ωi) = ft,H(ωs)ft,V (ωi)φ(ωs, ωi) (2.45)

which corresponds to the original JSA multiplied by the Fabry-Pérot function of
the infrared modes. The JSA of the V H interaction has an analogous expression.

Figure 2.7 reports numerical simulations of the JSA norm for a source without
cavity effect (Figure 2.7a) and for a source having RH = 28.5% and RV = 24.7%
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Figure 2.7: Numerically simulated norm of the JSA: (a) for a 1.9 mm-long sample
without cavity effect and (b) for facets reflectivity RH = 28.5% and RV = 24.7%.
(c) Norm of the JTA corresponding to the state reported in (b). Simulation parame-
ters: wz = 0.3 mm and τp = 4.5 ps, L = 1.9 mm.

(Figure 2.7b). The cavity effect introduces a chessboard modulation of the JSA,
with a spacing between the Fabry-Pérot peaks of approximately 180 pm, for our
1.9 mm-long waveguide.

In Figure 2.7c we show the norm of the JTA for the state reported in Figure 2.7b.
The cavity introduces several additional peaks along the signal and idler temporal
axes. The most intense peak (in the bottom left) corresponds to the case in which
both photons are directly transmitted, while the secondary peaks correspond to a
given number of complete round-trips of the photons, where the round-trip period
is τFP = 2L/vg ≈ 41 ps for the considered sample.

2.3 Chronocyclic Wigner Function
So far we have analyzed the biphoton state by means of its JSA and JTA, which are
both complex functions and therefore of difficult visualization. Indeed, their phase
distribution can be very rich and contain critical features for the characterization
of frequency entanglement. This information is lost if we only examine the JSI
or the JTI. An easier and more direct method is to employ the Wigner function,
which is real valued and, thanks to its nature, is naturally suited to describe pulsed
SPDC processes.
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The concept of quasi-probability Wigner function has been borrowed by the
ultrafast optics community to describe the characteristics of ultrashort pulses with
a real function, in the time-frequency phase space [171]. In this context, the
function is called Chronocyclic Wigner Function (CWF) and the usual X̂ and
P̂ operators are replaced by the time t and the frequency ω, its conjugate variable.

The CWF has then been applied to fully describe the frequency-time properties
of a biphoton state by Grice and Walmsley [172]. Even if the CWF was originally
meant for single photons, the authors extended the definition to describe both
signal and idler photons. The Joint Chronocyclic Wigner Function, which from
now on for simplicity we will call CWF, is thus a four-dimensional real function
that depends on the frequencies ωs, ωi and on the detection times ts, ti of the signal
and idler photons. The CWF can be retrieved from the state density operator ρ̂
[173]:

W (ωs, ts, ωi, ti) = 1
2π

∫∫
dω′sdω′i e−i(ω

′
sts+ω′iti)

×
〈
ωs + ω′s

2 , ωi + ω′i
2

∣∣∣∣∣ ρ̂
∣∣∣∣∣ωs − ω′s

2 , ωi −
ω′i
2

〉
(2.46)

In the case of a pure state ρ = |ψ〉〈ψ|, the CWF can be expressed as a function of
the JSA φ(ωs, ωi):

W (ωs, ts, ωi, ti) = 1
2π

∫∫
dω′sdω′i e−i(ω

′
sts+ω′iti)

× φ
(
ωs + ω′s

2 , ωi + ω′i
2

)
φ∗
(
ωs −

ω′s
2 , ωi −

ω′i
2

) (2.47)

Despite the complexity of four dimensions that makes this function less intuitive
than the JSA or the JTA, the CWF has a number of useful properties. First of all,
the JSI and the JTI are obtained by integrating W (ωs, ts, ωi, ti) over the conjugate
variables; e.g. for the signal photon, this reads respectively:

|φ(ωs, ωi)|2 = 1
2π

∫∫
dtsdtiW (ωs, ts, ωi, ti)

|φ̃(ts, ti)|2 = 1
2π

∫∫
dωsdωiW (ωs, ts, ωi, ti)

(2.48)

Moreover, the Chronocyclic Wigner Function for the individual photons are given
by the marginal of the Joint Chronocyclic Wigner Function, obtained by integrating
over the conjugate time and frequency variables, e.g. for the signal photon this
reads:

Ws(ωs, ts) = 1
2π

∫
dωi

∫
dtiW (ωs, ts, ωi, ti) (2.49)

Finally, the single-photon spectra or temporal profiles are retrieved by integrating
the single-photon CWF Ws over the conjugate variables:

Is(ωs) = 1√
2π

∫
dtsWs(ωs, ts)

Is(ts) = 1√
2π

∫
dωsWs(ωs, ts)

(2.50)
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and analogously for the idler photon.
In conclusion, the four-dimensional Chronocyclic Wigner function is a real-

valued function that fully describes the frequency-time properties of a biphoton
state, from which it is possible to retrieve all the properties of the individual
photons and their joint functions (JSI and JTI).

2.3.1 Separable Chronocyclic Wigner Function
We now consider a JSA separable in ω+ and ω−, as naturally obtained when pump-
ing the source with a beam having no frequency dependency of the angular spec-
trum (i.e. θ is independent from ω+, we refer to subsection 2.2.2). In this way the
CWF can be further simplified and split into two terms: one depending on ω+ and
one on ω−.

Indeed, a JSA separable in ω+ and ω− can be written as follows (see Equa-
tion 2.34):

φ(ωs, ωi) = χΓ PM(ω−) φspectral(ω+) (2.51)

From this the CWF can be factorized as:

W (ωs, ts, ωi, ti) = |χΓ|2 W+(ω+, t+)W−(ω−, t−) (2.52)

with ω± = ωs ± ωi and t± = ts ± ti
2 . The two-dimensional CWFs read:

W+(ω+, t+) = 1√
2π

∫
dω′+ φspectral(ω+ + ω′+

2 ) φ∗spectral(ω+ −
ω′+
2 ) e−iω′+t+

W−(ω−, t−) = 1√
2π

∫
dω′− PM(ω− + ω′−

2 ) PM∗(ω− −
ω′−
2 ) e−iω′−t−

(2.53)

where the first one W+(ω+, t+) is governed by the pump spectrum (energy con-
servation), while the second one W−(ω−, t−) is governed by the phase-matching
function.

Figure 2.8 reports numerically simulated W+ and W− functions for the fre-
quency anti-correlated (first row) and separable state (second row), corresponding
to the ones whose JSA have been plotted in Figure 2.3a and Figure 2.3c. The two
different states have been obtained by modifying only the phase-matching function
and leaving unchanged the spectral function. Consistently, we observe that W+ is
the same for both cases states while W− changes.

Thanks to the separability of the JSA in ω+ and ω−, which is a very common
situation, we have simplified the CWF into the product of two bi-dimensional
real-valued functions, which are considerably easier to visualize compared to the
complex-valued JSA or JTA. This justifies the use of the CWF to analyze the
frequency-time properties of biphoton states.

In this thesis we will focus mainly on W−(ω−, t−), which is governed only by
the phase-matching function, the main tool we will use to engineer the frequency
correlations of the biphoton state.

During this analysis, since we have considered Gaussian states, the Chrono-
clycic Wigner function always assumed positive values. However, in a more broad
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Figure 2.8: Numerically simulatedW+ (left side) andW− (right side) chronocyclic
Wigner functions for a frequency anti-correlated state (first row, corresponding to
Figure 2.3a) and a frequency uncorrelated state (second row, corresponding to
Figure 2.3c). To pass from the first case to the second we have changed only the
phase-matching and not the spectral function, thus W+ is the same for both cases.
Simulation parameters: L = 1.9 mm, RH = RV = 0. First row: wz = 0.1 mm and τp = 4.5 ps;
second row wz = 0.6 mm and τp = 4.5 ps. The Wigner functions are plotted normalized to 1.

65



Chapter 2. Quantum Theory of SPDC in a Counter-propagating
Phase-Matching Scheme

perspective, the generation of non-Gaussian states, featuring negative Wigner func-
tions, is a subject of growing interest. Indeed, quantum states with non-Gaussian
statics are fundamental bricks for the realization of quantum information protocols
in the continuous variable regime (e.g. in the quadrature phase space [174] or in
the position-momentum phase space [175]). In analogy, in this work we will study
the generation of non-Gaussian states in the frequency-time phase space, featuring
a negative Chronocyclic Wigner Function.

2.4 Conclusions
In this chapter we have given a theoretical description of the biphoton state emitted
by a SPDC source in a counter-propagating scheme. The state is fully characterized
by its Joint Spectral Amplitude (JSA), a complex-valued function giving the joint
probability amplitude of detecting the photons with frequency ωs and ωi.

We have shown that the JSA can be factorized into two frequency dependent
terms: the energy conservation and the phase-matching terms. In particular, since
the latter directly depends on the pump beam spatial profile along the z axis,
it allows a direct and flexible control over the JSA shape. In the next part of
this thesis we will exploit this property to engineer the frequency correlations by
tailoring the pump beam profile (chapter 3) and measuring the resulting squared
modulus of the JSA (chapter 4 and chapter 5).

We have then analyzed the general characteristics of the JSA by detailing the
different types of frequency states (frequency correlated, anti-correlated and sepa-
rable), and we have quantified the level of frequency entanglement via the Schmidt
decomposition.

Finally we have introduced alternative descriptions of the biphoton state. The
Joint Temporal Amplitude (JTA), derived by performing a Fourier Transform of
the JSA, allows to visualize the state in the temporal domain. On the other hand,
the Chronocyclic Wigner Function (CWF) of a biphoton state is a four-dimensional
real valued function showing both the temporal and spectral characteristics of the
state. Interestingly, when the JSA is separable in the ω+ and ω− axes, the CWF can
be simplified into the product of two real-valued bi-dimensional functions, which
can be easier to visualize than the JSA or JTA.
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In the first part of this manuscript we have studied the process of photon
pair generation through SPCD in nonlinear ridge waveguides. In particular, for a
nonlinear source based on the counter-propagating phase-matching scheme under
transverse pumping, we have detailed the peculiar connection between the pump
beam spatial profile and the frequency correlations of the photon pairs, represented
by the joint spectral amplitude (JSA). This property permits to flexibly control
the biphoton spectrum by shaping the pump beam spatial profile.

Tailoring a laser beam transverse profile, in both intensity and phase, is a chal-
lenging task and can require an accurate level of control at the micrometer scale.
Nevertheless, different systems have been developed to achieve this goal, in partic-
ular digital micromirror devices (DMDs) [176] and spatial light modulators (SLMs)
[177]. Both devices feature a fundamental characteristic: they are re-configurable,
allowing a dynamic and versatile shaping of a light beam. Their usages are various:
atom trapping [178], wavefront correction [179], super-resolution microscopy [180],
holography [181] and many others.

The firsts, DMDs, are an evolution of deformable mirrors and, thanks to millions
of tiny switchable mirrors, enable to locally shape an incident beam by choosing
which mirrors to tilt and which not. Even if the device acts only on the beam
intensity, algorithms have been proposed to effectively gain full control over the
amplitude and the phase of the beam. For instance, Goorden et al. [182] proposed
a superpixels approach in which adjacent pixels are merged to obtain only one
"superpixel", which can modulate independently phase and amplitude. DMDs
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have two important advantages compared to SLMs: they can display static images
and they are spectrally broadband.

On the other hand, SLMs consist of an array of pixels, each of which can lo-
cally modify the amplitude or the phase of a light beam. Therefore, by employing
diffraction effects, it is possible to shape the beam wavefront. SLMs can be divided
into amplitude-only and phase-only modulators, the first acting only on the ampli-
tude and the second only on the phase. In the recent years, the latter have become
the principal solution to generate complex phase patterns: for example tailoring
Laguerre-Gaussian beams [183] or frequency pulse shaping (after a frequency to
space mapping using a dispersive element)[184]. Compared to DMDs, SLMs have
a far bigger dynamic range, indeed each pixel can be addressed with a grey scale
modulation and not only with a binary modulation; but they suffer from flicker-
ing at a frequency of hundreds of Hertz caused by their digital addressing, which
makes them unable to display a true static image [185]. In our case, since we are
interested in time-integrated measurements of tens of seconds, this problem is not
relevant.

In this chapter we present the experimental setup for beam shaping that will
be used in chapter 5 and chapter 6 to control the joint spectrum and wavefunc-
tion symmetry of photon pairs. Its core blocks are a phase-only modulator and a
wavefront analyzer. The first section is dedicated to the setup and its characteriza-
tion. Then we present the employed modulation technique, which allows to shape
the intensity or the phase of a beam, but not both simultaneously. At the end
of the chapter we introduce a more complex technique to achieve a simultaneous
modulation and we comment on its implementation in our experimental situation.

3.1 Experimental setup
Our experimental setup for beam shaping is illustrated in Figure 3.1; it is composed
of a phase-only SLM in a 4f configuration and a wavefront analyzer. The source
laser beam is produced by a Ti:sapphire laser (Coherent Mira) pulsed at 76 MHz
repetition rate with 6 ps pulse duration, with a central wavelength of 775 nm. In
this section we describe in detail the SLM and the wavefront analyzer, while in the
next section we focus on the employed shaping technique.

3.1.1 The spatial light modulator
The spatial light modulator we use is a Leto from the company HoloEye (Fig-
ure 3.2a), a reflective phase-only modulator. We have chosen this SLM for its
excellent resolution of 1920x1080 pixels of size 6.4 µm x 6.4 µm and a modulation
depth of 256 grey levels (8 bit addressing); it provides a minimum phase shift of
2π in the range 400-850 nm. The device is fabricated with the LCOS technology
(Liquid-Crystals-on-Silicon): each pixel is a liquid crystal whose orientation can
be modified by applying a voltage. Rotating the liquid crystal locally modifies the
birefringence of the pixel medium and thus the phase shift locally experienced by
the reflected beam. The SLM is connected to a computer from which we control
the phase pattern encoded on it: these "phase masks" are encoded in 256 grey
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Figure 3.1: Experimental setup for shaping the pump beam transverse profile.
A first telescope enlarges the beam to match the SLM screen dimension, while a
second one shrinks the reflected beam to match the sample width. A wavefront
analyzer (WFA), placed after a 99:1 beamsplitter (BS), constantly monitors the
beam. Focal lengths are given in millimeters

(a) (b)

Figure 3.2: (a) Holoeye Leto spatial light modulator and (b) Phasics SID4 wave-
front analyzer

.

71



Chapter 3. Pump Beam Shaping Techniques

(a) (b)

Figure 3.3: (a) 16 level blazed grating phase mask and (b) close-up of the corre-
sponding modulation along the x axis.

levels and generated using a Matlab script.
Before characterizing the device, let us first describe the behavior of a beam

when it reflects on a largely used type of phase masks: the blazed grating, as
illustrated in Figure 3.3. This phase mask is composed of stripes, and in each
stripe pixels linearly increase from 0 to 256 grey level. As a result the beam
acquires the same phase modulation, and when it passes through a converging
lens, which performs the Fourier Transform (FT) of its spatial profile in its focal
plane, a diffraction peak is formed. The lateral position of this peak, with respect
to non-diffracted one (zero order), depends on the spatial periodicity of the phase
imposed by the SLM. We can think of this peak as the (in theory unique) spatial
frequency component of the reflected beam. For example, if we add two blazed
grating modulations with different periods, having therefore two different spatial
frequencies, the diffracted beam would display two distinct peaks, one for each
frequency. This diffraction effect is a core component of the SLM working principle
and we will employ it different times: first in the device characterization and then
in the beam shaping technique.

Prior to the device calibration we characterize its properties: the reflectivity
and the total diffraction efficiency at two different wavelengths (663 nm, where
device specifications are given and 775 nm, our working wavelength). Table 3.1
reports the experimental results. The first parameter, the reflectivity, is simply
given by the ratio between the incident power of a beam and the reflected one; it
mainly depends on the reflectivity of the aluminum mirror placed behind the pixel
grid, inside the device. From the experimental values we note that the reflectivity
falls by 15% from a wavelength of 663 nm to 775 nm. This issue is mainly due to
a drop of the aluminum reflectivity and it cannot be circumvented.

The total diffraction efficiency is given by the composed effect of the reflectivity
and the diffraction efficiency. It is experimentally evaluated by applying a 16-level
blazed grating phase mask to the SLM and using a converging lens to focus the
diffracted beam. From the ratio between the incident power and the diffracted one
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Wavelength Reflectivity Diffraction Efficiency Total Efficiency
Specifications 633 nm 75% 85% 64%

Experimental Results 633 nm 73% 79% 57%
775 nm 58% 79% 46%

Table 3.1: SLM characteristics, measured at 633 nm and 775 nm.

we obtain the total diffraction efficiency, which is 57% at 663 nm (a bit lower than
the specification) and 46% at our working wavelength of 775 nm. By dividing the
total efficiency by the reflectivity we can also access the diffraction efficiency itself.
The values, reported in Table 3.1, show that the diffraction efficiency is the same
for both wavelengths, while, the reflectivity being lower at 775 nm, we obtain a
decrease of the total efficiency.

Calibration

The device works properly when the maximum grey level (255) induces a 2π phase
shift, compared to the 0 grey level. The phase shift induced by the birefringent
pixels depends on the wavelength of the incident beam and therefore the SLM must
use a different calibration for each wavelength. We have thus calibrated the device
for our working wavelength (775 nm), as follows.

First of all, we measure the induced phase shift as a function of the applied
grey level. Then, we determine the voltage needed to induce a 2π phase shift and
finally, if the phase shift is not linear as a function of the grey level, we modify the
LookUpTable (LUT): this is the numerical table containing the one to one relation
between each grey level and the voltage applied to the liquid crystals.

In order to evaluate the relative phase shift between two different grey levels,
we build a Mach-Zender interforemeter (see Figure 3.4): the input beam is divided
in two parts and each of them is sent to a half of the SLM panel. Then, the
two beams are recombined in a microscope objective and interference fringes are
observed with a camera. By modifying the phase of one beam (by changing the
pixel value) while keeping the other fixed, the shift of the spatial fringes allows to
retrieve the relative phase shift between the two addressed grey levels.

Figure 3.5 illustrates this calibration procedure and reports the results: each
row of the figure is a step. First of all, we apply a linear LUT and measure the
induced phase shift for each grey level from the interference fringes (left to right in
the figure). The maximum phase shift we obtain is only 1.5π and thus we modify
the applied voltages to the liquid crystals. The second row shows the phase shift
measurement after this voltage correction: now the phase shift reaches 2π, but it
shows a nonlinear dependency from the grey level. Therefore, as illustrated in the
third row, by modifying the LUT we obtain a linear phase shift. This correct LUT
is retrieved by inverting the measured phase as a function of the grey level of the
previous step.

With this procedure we have calibrated the spatial light modulator, in order
to induce a complete 2π phase shift at our working wavelength of 775 nm. This
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Figure 3.4: Experimental setup to calibrate the SLM. It is based on a Mach-
Zender interferometer: the two beams impinge on the two halves of the SLM
where two different grey level are addressed. By varying one of the two grey levels,
the spatial interference fringes measured by the camera move and from their shift
we evaluate the relative phase shift between the two addressed grey levels.
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Figure 3.5: SLM calibration steps (working wavelength 775 nm). In the first column we report the used LUT file which generates
the interference fringes shown in the second column. From the latter we evaluate the induced phase shift for each grey level (third
column). The red line in the pictures highlight the range of the phase shift: a 2π phase shift is obtained when the interference fringes
shift of one period. The three rows illustrate the steps of the calibration procedure, see text for the description.

75



Chapter 3. Pump Beam Shaping Techniques

characteristic is of fundamental importance in order to employ beam shaping al-
gorithms.

3.1.2 The wavefront analyzer
So far we have described the spatial light modulator, but in order to ensure that the
device works properly and that the chosen shaping technique performs correctly,
we need to employ a wavefront analyzer.

A wavefront analyzer is a device capable of measuring, at the same time, the
spatial profile of both the intensity and phase of a beam. In principle, this measure-
ment could be done using a reference field and detecting the interference fringes
with a camera. However, the necessity of having a phase stabilization between the
signal and the reference makes this technique challenging and time consuming. For
this reason, reference-free methods have been developed, in particular the Shack-
Hartmann wave-front sensor, which employs arrays of micro-lenses to image the
wavefront deformation [186].

For our scope, we have chosen the SID4 wavefront analyzer of the company Pha-
sics (Figure 3.2b) for its excellent spatial resolution of 30 µm and high sampling 160
x 120 pixels map. The instrument relies on a development of the Shack-Hartmann
wavefront analyzer with an improved spatial resolution. It employs spatial inter-
ferometry to measure the phase: an hexagonal diffraction grating is placed before
a CCD sensor and each hole produces four replicas of the impinging beam that
interfere with the neighboring ones; the resulting interferogram is detected by the
camera and analyzed by a software, retrieving both intensity and phase profiles.
In particular the phase is derived from the interference fringes deformation; this
technique is called "Multiple- wave shearing interferometry" [187].

The main limitation of this device is the impossibility to measure the relative
phase between two non-adjacent regions. In other words, if the beam is composed of
two distinct halves, separated by a zero-intensity area, their relative phase cannot
be measured. Indeed, the instrument measures the phase gradients among adjacent
pixels and from them it reconstructs the phase profile. In a zero-intensity area, the
phase is not defined and it is not possible to apply the reconstruction algorithm.
Therefore, the phase of the two regions is properly measured, but their relative
phase is not. In subsection 3.2.2 we will see how this issue influences our phase
shaping technique and how it can be circumvented.

3.2 Intensity or phase shaping technique
We now describe the experimental procedure that we have employed in this work
to shape either the amplitude or phase of the pump beam, in order to control the
biphoton spectrum.

The technique relies on the optical setup sketched in Figure 3.1: the laser
beam is enlarged by a first telescope (f:-100 mm and f:+200 mm) and impinges
on the SLM. After the reflection, a second telescope (f:+1000 mm and f:+400
mm) reduces the beam dimension to match the waveguide width (≈ 2 mm). This
second telescope, placed in a 4f configuration, images the SLM on the sample and
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Figure 3.6: Sketch of the setup used to perform intensity or phase shaping.
The second lens of the 4f system is aligned only with the zero-order peak. The
diffraction angles have been emphasized.

realizes, in the focal plane of the first lens, the Fourier Transform (FT) of the beam
reflected by the SLM. This point is of fundamental importance because, when a
blazed grating is applied, the FT creates diffraction peaks, spatially separated. The
second lens of the telescope is aligned only with the zero-order peak, discarding all
the others, as depicted in Figure 3.6.

3.2.1 Intensity shaping
The setup presented in Figure 3.6 can be used to shape a beam in intensity. Indeed,
since the first-order diffraction peak is not aligned with the second lens of the
telescope, it is sufficient to apply a blazed grating to the region of the beam that
we want to remove.

We now describe the steps to generate a phase mask to obtain a Gaussian beam
with waist dimension w:

• a 16-level blazed grating is generated for the whole phase mask;

• the target waist dimension w is divided by the magnification of the 4f sys-
tem to calculate the waist dimension at the SLM position. In our case the
magnification is 0.4, thus the waist on the SLM has to be 2.5 times bigger.

• the physical dimension of the waist is converted in pixels of the SLM (1920 x
1080 pixels for a screen of 12.5 mm x 7.1 mm) and a Gaussian beam profile
is calculated.

• the Gaussian profile is subtracted from the blazed grating and the final phase
mask is converted to a bmp image in grey levels from 0 to 255.

This simple procedure allows to obtain a shaped beam fairly in agreement with
the target one. The intensity, indeed, is correctly modulated but the phase suffers
from the optical aberrations of the setup.

The first column of Figure 3.7 reports the shaping process to generate a Gaus-
sian beam with 1 mm waist: a phase mask (a), calculated with the previously
described procedure, is applied to the SLM and the intensity (b) and phase (c) of
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the shaped beam are measured on the 4f system image plane with the wavefront
analyzer. The resulting intensity profile is almost a Gaussian distribution, with
the target waist of 1 mm (as shown in Figure 3.8a). On the other hand, the phase
is not flat as it should be but features optical aberrations, in particular vertical
astigmatism. Phase aberrations are generally due to misalignment of the optical
system or to low quality optical components. However, the SLM is perfectly suited
to solve this problem: by subtracting from the phase mask the opposite of the
measured phase, the aberrations are compensated and a flat phase is obtained.
The second column of Figure 3.7 details the results after this phase aberration
correction: when the corrected phase mask (d) is applied, the intensity (e) is not
modified while the phase (f) becomes flat.

In order to experimentally validate this technique we generate Gaussian beams
with different waist dimensions. Figure 3.8 shows the results (intensity in blue,
phase in red), for the following values: 1 mm (a), 0.8 mm (b), 0.5 mm (c), 0.3 mm
(d). In all cases the intensity is almost Gaussian with the target waist and the
phase is flat, with fluctuations of the order of 0.1π only.

As a last remark, let us mention some limitations of the technique. The most
evident one is the not perfect diffraction efficiency of the SLM, which prevents part
of the reflected light to be modulated. This means that a portion of the reflected
light, which should be shifted in the first order and eliminated from the beam, stays
in the zero order and pollutes the intensity profile. In addition, it is possible to
calculate that, if a Gaussian profile is subtracted from the phase mask, the shaped
beam in the zero order is not perfectly Gaussian [188], as we shall see in the next
section. Nevertheless, the results presented in this paragraph entirely satisfy our
experimental needs and thus we have employed this technique to shape the pump
beam.

3.2.2 Phase shaping
The setup presented in Figure 3.6 can also be employed to shape the beam in
phase, without modifying the optical components. Indeed, by applying a phase
mask that does not contain periodic modulation (no blazed grating), the phase
pattern is directly encoded in the beam, which remains in the zero diffraction
order.

Let us start by generating a Gaussian beam with a phase profile featuring a
single or double phase step. The most natural phase masks that can be employed
are composed of two or three regions of a constant value of grey level; the phase
step is then induced by the grey level difference between adjacent regions. However
this approach has an important drawback. Indeed, an abrupt phase step causes
a phase discontinuity point with zero intensity, thus splitting the intensity in two
regions and preventing the wavefront analyzer to measure the relative phase step
(as we have commented in the description of the device).

For this reason, we decide to employ a linear phase step instead of an abrupt
one. In other words, rather than applying an abrupt step between two different
grey levels, we design a phase mask in which the step is completed in 30 pixels,
with a linear slope. Figure 3.9a and Figure 3.9c display the two phase masks, one
for a single π phase step and the second a double π phase step; the inset in the
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Figure 3.7: Intensity shaping procedure: a 1 mm-waist beam is obtained using
a blazed grating and optical aberration correction. Initially a blazed grating is
addressed to the SML (a) and the resulting intensity (b) and phase (c) profiles of
the reflected beam are measured. Note that, while the intensity is almost Gaussian
the phase shows a 0.5 π astigmatism. Then, the phase mask is modified (d) in order
to obtain the same intensity profile (e) but with a flat phase (f).

79



Chapter 3. Pump Beam Shaping Techniques

Figure 3.8: Examples of experimental shaping of the beam intensity: from (a) to
(d) horizontal central sections of four Gaussian beams (intensity in blue, phase in
red) with different waists (respectively 1 mm, 0.8 mm, 0.5 mm and 0.3 mm).
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Figure 3.9: Phase masks used to generate a Gaussian beam featuring a single (a)
and a double phase (c) step profile; (b) and (d) corresponding simulated intensity
and phase at the sample position.

first figure shows the linear variation of the phase step.
Before experimentally generating the beam, we numerically check the behavior

of these phase masks. The simulations are performed by taking a Gaussian beam
as input and adding the phase mask. Then we calculate the effect of the 4f system
by applying two successive Fourier Transform, one for each lens, obtaining the
field on its image plane (where the sample will be placed later, see to Figure 3.6).
Figure 3.9b and Figure 3.9d report the resulting simulated intensity and phase
for both a single and a double phase step profile. We note that the phase is well
encoded; the intensities undergo very slight fluctuations, in the positions where
the phase shift have been added, but the profiles are Gaussian up to an excellent
approximation.

We now proceed to the experimental shaping of the laser beam with the single
and the double phase step. Figure 3.10 reports the measurements performed with
the wavefront analyzer: on the left column the case of a single phase step and
on the right column the case of a double phase step. For each case two phase
shift values are reported: π (first row) and π/2 (second row). In both cases the
beam intensity is still Gaussian and the phase has acquired the desired phase step.
However, when a single phase step is applied (Figure 3.10a and Figure 3.10b) the
phase displays a linear gradient superimposed to the phase step. Fortunately, this
is not a problem for the engineering of the biphoton spectrum. Indeed, in the
counter-propagating phase-matching scheme, a linear phase gradient of the pump
beam corresponds to a tilt of the pump beam incidence angle and therefore it can
be simply corrected by implementing the opposite tilt.

So far, we have generated and measured a circular Gaussian beam with 1 mm
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Figure 3.10: Experimentally measured phase and intensity profiles for a 1.1 mm-
waist Gaussian beam modulated with a single phase step (first column) and a
double phase step (second column): in (a) and (c) a phase shift of π is applied,
while in (c) and (d) a phase shift of π/2 is applied.
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waist in both transverse directions, but, to actually use the beam to pump the
nonlinear waveguide source, it has to be focused in the vertical direction to match
the ridge width (5 µm). This can be done by employing a cylindrical lens and we
have verified that the focusing does not alter the phase profile along the horizontal
direction.

In conclusion, we have demonstrated that this shaping technique allows to
generate Gaussian beams with arbitrary waist or to encode phase steps, but not
to do both simultaneously. However, it satisfies entirely our experimental needs
and it has thus been be employed to control the joint spectrum and wavefunction
symmetry of photon pairs, as we will detail in chapter 5 and chapter 6.

3.3 Simultaneous shaping of intensity and phase
Until now we have dealt with the task of shaping either the intensity or the phase
of a laser beam. Now we move a step further and introduce a technique allowing
to shape both intensity and phase simultaneously that could be implemented in
our optical setup in the future if more complex beam profiles are required.

Generating an arbitrary beam requires an accurate engineering over both am-
plitude and phase, but no existing device enables a direct simultaneous control
of both. Combining a phase-only SLM and an amplitude-only SLM is a possible
solution [189, 190], but alternative and more complex techniques exist allowing to
modulate both properties with a single pass phase-only SLM [188, 191–193].

Clark et al. [177] compared and tested several of these methods, both numeri-
cally and experimentally, by generating different types of beams likely to be used in
applications: fundamental Gaussian, Laguerre-Gaussian modes, ring lattices and
photographic images. However, only the intensity of the resulting fields have been
measured and not the phase, thus this study does not exactly compare with our
experimental needs.

3.3.1 Analytic formula
Here we follow the proposal of Bolduc et al. [188] which provides the analytic
exact solution to the problem. The method connects the target beam (intensity
and phase) to the phase mask addressed on the SLM.

We start by writing the SLM phase-only transmission function as:

T (m,n) = eiφ(m,n) (3.1)

where φ(m,n) is the phase mask distribution as a function of SLM pixel position
(m,n). For simplicity, we consider the incident beam on the SLM as a plane wave
(flat intensity and flat phase). After the reflection, a converging lens focuses the
diffracted field, which can be calculated, in the lens focal plane, by taking the
Fourier Transform (FT) of the SLM phase mask, since the input beam is a plane
wave.

To understand the shaping procedure we first consider the simple case of a
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blazed grating of period Λ along the m coordinate:

T (m) = exp
(
i Mod(2πmM

Λ , 2π)
)

(3.2)

where Mod(x, 2π) stands for modulo 2π of x.
The parameter M (with 0 ≤ M ≤ 1) defines the extent of the phase shift over

each grating period. For M = 1 we have a normal blazed grating, otherwise the
phase maximum value is less than 2π. This periodic function can be expanded in
a Fourier series as:

T (m) =
∞∑

k=−∞
Tk exp

(
ik

2πm
Λ

)
(3.3)

where the coefficients Tk are given by

Tk = exp
[
iπ(M − k)

]sin [π(M − k)]
π(M − k) (3.4)

The diffracted field can be calculated by taking the FT of Equation 3.3:

t(x) =
∞∑

k=−∞
Tk δ(x−

k

Λ) (3.5)

where x = m

Λf and f is the focal length of the lens. Thus, the diffraction pattern
consists of a series of delta functions whose amplitudes are given by Equation 3.4.
For M = 1 we recover the blazed grating diffraction pattern.

After this preliminary example, let us now consider a more general phase func-
tion:

T (m,n) = exp
(
iM(m,n)Mod

[
φ(m,n) + 2πm

Λ , 2π
])

(3.6)

Here M(m,n) is a normalized amplitude function (0 ≤ M ≤ 1), while the sec-
ond part has two terms: a generic one φ(m,n) and a blazed grating 2πm

Λ . This
expression can be expanded in a mixed Fourier-Taylor series, as reported in Ref.
[192]:

T (m,n) =
∞∑

k=−∞
Tk(m,n) exp

(
ikφ(m,n) + ik

2πm
Λ

)
(3.7)

The coefficients Tk(m,n) are given by:

Tk = exp
{
iπ[M(m,n)− k]

}sin {π[M(m,n)− k]}
π[M(m,n)− k] (3.8)

To calculate the Fraunhofer diffraction pattern we take the FT of Equation 3.7:

t(x, y) =
∞∑

k=−∞
FT (Tk) ∗ FT (eikφ(m,n)) · δ(x− k

Λ) (3.9)

where (x, y) are the spatial frequencies of the Fourier Transform depending on
(m,n) and the lens focal length f : x = m

Λf and y = n

Λf .

84



3.3. Simultaneous shaping of intensity and phase

Figure 3.11: Sketch of the setup to shape simultaneously intensity and phase of
a laser beam. The second lens of the 4f system is aligned only with the first-order
diffraction peak. The diffraction angles have been emphasized.

Now we insert a spatial filter that selects only the first diffraction order (k = 1)
and a second lens in order to form a 4f system. Therefore, in the second lens focal
plane we obtain the FT of only the first order. Considering the two lenses to be
identical, we obtain:

T ′1(m,n) = exp
[
iπ(M(m,n)− 1) + iφ(m,n)

]
sinc[πM(m,n)− π] (3.10)

Equation 3.10 describes the complex field in the image plane of the second lens.
It is a function of M(m,n), the extent of the phase modulation, and of φ(m,n),
the phase modulation itself. If E(m,n) = A(m,n) exp

[
iψ(m,n)

]
is the target field

to be encoded, we find:

M(m,n) = 1 + 1
π
sinc−1[A(m,n)]

φ(m,n) = ψ(m,n)− πM(m,n)
(3.11)

where sinc[A(m,n)] is the sinc function in the domain [−π, 0] (we have taken this
form in order to directly account for the minus sign in Equation 3.10).

In conclusion, we have established an analytic connection between the target
complex field at the image plane of the 4f system (keeping only the first-order peak
and discarding the other) and the phase mask addressed to the SLM (Equation 3.6).
Figure 3.11 illustrates the situation.

Let us analyze the method in order to highlight its characteristics. First of all,
the modulated beam is not in the zero diffraction order but in the first one, and
therefore the non-unitary diffraction efficiency of the SLM does not spoil the beam
profile (the unreflected energy is in the zero order). Moreover, the method takes
into account all the optical modifications caused by the 4f system, which were not
considered in section 3.2. For example, if a Gaussian profile is addressed into the
SLM the resulting beam is not Gaussian, but has an added sinc modulation than
slightly deforms its profile. Equation 3.11 considers this issue and allows to apply
the necessary correction to the phase mask.

On the other hand, the main limitation of this approach is the assumption of
a plane wave input beam, in particular for the intensity (because the phase, if
the setup is properly aligned, should be flat). However, this issue can be easily
overcome by applying a correction to the phase mask taking into account the input
beam intensity profile.
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3.3.2 Numerical simulations
In order to validate this shaping method we now perform a numerical analysis:
we consider a Gaussian input field, we add the phase modulation induced by the
SLM, and then we propagate the field into the 4f system, by employing twice the
Fast Fourier Transform (FTT) and spatially filtering out all the diffraction peaks
but the first order.

Let us consider a 5 mm-waist Gaussian input beam and examine two cases:
first, we generate a 1 mm-waist beam with an abrupt π phase step and then a 1
mm waist beam with a gradual π phase step. Figure 3.12a and Figure 3.12d display
the corresponding phase masks, calculated employing Equation 3.11. Both feature
a central Gaussian peak (actually not perfectly Gaussian, as they are corrected
to take into account the sinc modulation) modulated by a 16-level blazed grating,
plus the phase step.

The second row of the figure contains the simulated intensities and the third
one the simulated phases. In both cases the intensity has the target waist, even if
it is split in two halves by the phase step; for the abrupt step this effect is sharper
while for the gradual step slightly less, even if it is still present. On the other hand,
the phases (Figure 3.12c and Figure 3.12f) are properly modulated.

To conclude this section, the numerical simulations point out that obtaining a
Gaussian beam with an arbitrary waist is doable, but adding a phase shift splits the
intensity in two halves. As we have already explained in the previous sections, the
wavefront analyzer cannot resolve the relative phase between two distinct regions
and thus with the current setup it is not possible to control the result. However,
if in future experiments simultaneous shaping of intensity and phase would be
required, this technique may be employed, adapting the measurement stage (for
example interfering the shaped beam with a reference one). Moreover, since more
complex phase masks are used, a meticulous characterization of the SLM would
be needed: the flatness of its screen, the crosstalk between adjacent pixels and, of
course, all the optical aberrations of the setup have to be measured.

3.4 Conclusions
In this chapter we have dealt with the task of shaping the pump beam intensity
and phase, employing a spatial light modulator and a wavefront analyzer. We have
started with the SLM characterization and calibration at our working wavelength.
By setting up a Mach-Zender interfrometer we have evaluated the induced phase
shift as a function of the the addressed grey level and consequently modified the
LookUpTable to obtain a linear 2π phase shift at 775 nm.

Afterwards, we have presented the shaping technique that we have employed in
this work to shape the pump beam and engineer the biphoton spectrum. It enables
to shape the intensity or the phase of a laser beam (but not both simultaneously).
The beam, which lies in the zero diffraction order, has been modulated first in
intensity, by generating Gaussian beams with an arbitrary waist, and then in phase
by encoding phase steps in its center with a π and a π/2 phase shifts. In particular,
we have shown that an abrupt phase step splits the intensity in two halves, while a

86



3.4. Conclusions

Figure 3.12: Numerical simulations of the method detailed in subsection 3.3.1:
we consider a 5 mm-waist Gaussian beam as input and generate, in the image plane,
a 1 mm-waist Gaussian beam with: an abrupt π phase step (first column) and a π
gradual phase step (second column). Corresponding phase mask (a, d), intensity
profiles (b, e) and phase profiles (c, f). In this figure, in order to highlight the phase
steps we have employed a cyclic color scale for the phase. In the zero-intensity area
the phase is not defined leading to numerical artifacts.
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gradual phase step does not and thus it can be checked by the wavefront analyzer.
Finally following Bolduc et al. [188], we have introduced another technique

which enables to simultaneously shape the beam intensity and phase and that could
be employed in future experiments if more complex beam profiles are needed. The
method relies on an analytic formula that relates the target field in the image plane
of the 4f system with the phase mask addressed on the SLM. In order to validate
the formula, we have performed numerical simulations.
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Reconstructing the full wavefunction of a photon pair is a challenging task, in
particular concerning the spectral and temporal properties, i.e the Joint Spectral
Amplitude (JSA) and the Joint Temporal Amplitude (JTA), since they are complex
valued.

Most reconstruction techniques are limited to the squared modulus of the JSA
and the JTA, i.e. the Joint Spectral Intensity (JSI) and the Joint Temporal In-
tensity (JTI). Concerning the spectral characteristics, the most obvious technique
would register the signal and idler frequencies over many events to estimate the
biphoton JSI. This can be done, pixel by pixel, by using scanning monochroma-
tors [194, 195], in a simple and accurate approach, that however requires long
integration times, depending on the considered sampling of the JSI.

Another possibility is to use two-dimensional Fourier spectroscopy, measuring
frequency information in the time domain [196]. This technique is not ideal because
it requires two scanning interferometers and its measurement time scales as the
square of the sampling resolution.

Dispersive fiber spectrography resolves both these problems by mapping fre-
quency information into photon arrival times by using highly dispersive fibers be-
fore the single-photon detectors [197]. The resolution of this technique is then
set by the combination of the fiber dispersion and the accuracy with which the
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single-photon arrival times can be measured.
Another interesting approach, called stimulated emission tomography, uses the

classical counterpart of the spontaneous photon-pair generation process to charac-
terize the source, relying on the relationship between the spontaneous and stim-
ulated process [198, 199]. This technique is one of the most efficient and high-
resolution methods, since it does not requires single-photon detectors but only
standard spectrometers (such as an optical spectrum analyzer).

Concerning now the JTI, since for many nonlinear sources, including ours, the
time scale is orders of magnitude smaller than the typical single-photon detector
temporal resolution (which is of the order of 100 ps), a direct measurement of
photon arrival times is not envisageable, for now. Therefore other techniques have
been developed. Maclean et al. [168] employed an optical gating technique at the
single-photon level to reconstruct the JTI, using a non-collinear sum-frequency
generation process between the single photons and a classical gating pulse. The
two upconverted photons (one for the signal and on for the idler) are then detected
in coincidence, reconstructing the JTI.

Mittal et al. [200] proposed a different approach, using a "time-lens" to mag-
nify the relative time delay between the photons up to the detector time resolution.
They employed a dispersive material and an electro-optic phase modulator to intro-
duce a quadratic time-varying phase to both signal and idler photons: the photon
relative time delay is then converted to a linear frequency shift, measurable with
a dispersive fiber spectrograph, for instance.

In this chapter we focus on the two techniques employed in this thesis to mea-
sure the JSI of biphoton states: a dispersive fiber spectrograph and the Stimulated
Emission Tomography (SET). Finally, in the last section we quickly describe two
methods, reported in the literature, to completely reconstruct the JSA (both am-
plitude and phase information) and we analyze the possibility of adapting them to
our experimental setup.

4.1 JSI reconstruction with a fiber spectrograph
When an optical pulse travels through a medium it is subject to the chromatic dis-
persion of the material: different frequency components of the pulse have different
phase and group velocities and therefore propagate with different speeds. This can
lead to a change of the pulse shape and to a spreading of the pulse.

Considering a pulse with the central frequency ω0, far away from eventual
medium resonances, we can Taylor expand the chromatic dispersion as follows:

k(ω) = k0 + ∂k

∂ω
(ω − ω0) + 1

2
∂2k

∂ω2 (ω − ω0)2 + ... (4.1)

where k0 corresponds to a constant phase. The second term is proportional to
the inverse of the group velocity ( ∂k

∂ω
= v−1

g ) and it results in a time delay due to
the propagation inside the medium. The third term accounts for the fact that the
group velocity may not be the same for each frequency component of the pulse.
This phenomenon, called Group Velocity Dispersion (GVD), leads to a spreading
of the optical pulse: the frequency components propagate at different speeds and
reach the detector at different times.
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Coming back to the biphoton wavefunction, media with high GVD can be
employed to stretch its spectrum and convert the frequency information in arrival
time information [201]. The dispersive medium is thus used to Fourier Transform
the JTI into the JSI, if the propagation is long enough to separate the frequency
components, in a sort of "far field condition" [202].

In the following we employ Dispersion Compensating Fibers (DCFs) to measure
the JSI of the biphoton state, realizing a single-photon fiber spectrograph. This
kind of fibers, generally used in telecommunications, have a high GVD of opposite
sign compared to standard fibers and thus are usually employed to compensate the
frequency spreading due to propagation; here instead we use them to maximize the
pulse spreading phenomenon.

4.1.1 Experimental setup
The setup we have used in our laboratory to measure the biphoton JSI is illustrated
in Figure 4.1. The Ti:sapphire laser is set at the nonlinear source resonance (λp =
773.15 nm for the considered sample) and with a beam average power of 150 mW.
The laser is pulsed at 76 MHz with a 6 ps pulse duration. The laser beam is
shaped with the setup described in chapter 3, by a SLM and a 4f system. Please
refer to that chapter for a complete description. The properly shaped pump beam
is then focused on the source through a cylindrical lens (+20 mm), which shrinks
the beam in one direction in order to match the waveguide width (5 µm). We
estimate that about 30% of the incident power on the sample is coupled inside the
vertical microcavity1, thus only 50 mW are employed in the nonlinear process.

The emitted SPDC photons are collected by two microscope objectives (x40,
NA=0.65) and coupled into single mode telecom fibers. Two polarizers (P) are
placed before the fiber couplers to select only one interaction (signal TE and idler
TM, or the opposite). Subsequently, each photon of the pair travels inside a DCF
spool where its frequency components are spread. The DCF spool lengths have
been chosen to obtain a sufficient frequency spreading with an acceptable level of
optical losses (7.3 dB). Figure 4.2 reports the calibration curves of the two DCF
spools used. The group velocity dispersion is defined as:

D = −2πc
λ2

∂2k

∂ω2 · L (4.2)

and it has been measured as a function of the wavelength (L is the fiber length).
The linear fits give an average value of dispersion D = −1650 ps/nm for the two
spools at the degeneracy wavlength of SPDC photons (2λp =1546.3 nm).

Two free-running InGaAs Single-Photon Avalanche Photodiodes (SPADs), Id220
from IdQuantique™, detect the photons with a quantum efficiency of 25% and a
dead time of 10 µs. Their arrival times ts and ti are recorded by a time-to-digital

1The pump beam is focused by the cylindrical lens on the sample obtaining a lateral waist of
5µm. The resulting overlap between the the sample (5 µm wide) and the beam is about 60%,
while from the FTIR measurement reported in Figure 1.10 we evaluate a cavity transmission of
about 50%. In conclusion approximately 30% of the incident pump power is coupled inside the
cavity.
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Figure 4.1: Experimental setup for the reconstruction of the JSI of a biphoton
state via a fiber spectrograph. Focal lengths are given in millimeters. Abbrevia-
tions: SLM, spatial light modulator; BS, beamsplitter; WFA, wavefront analyzer;
P, polarizer; DCF, dispersive compensating fiber; SPAD, single-photon avalanche
photodiode.

Figure 4.2: DCF calibration curves: the fiber group velocity dispersion D has
been measured varying the wavelength. For each fiber spool we report the calibra-
tion curve obtained with a linear fit.
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converter (TDC), QuTau from QuTools™, and compared with laser trigger tt, re-
trieving the relative arrival times τs/i = ts/i − tt. Once the systems is calibrated,
τs/i can be converted the photon wavelength λs/i, allowing to measure the marginal
spectra. Finally, by detecting coincidence photon events after a laser trigger, we
perform the JSI reconstruction.

As a side note, let us analyze the coincidence detection. The laser is pulsed at
76 MHz, but the triggers are generated only at a twenty times smaller repetition
rate (3.8 MHz) so as not to saturate the TDC, which cannot record more than
ten millions events per second. This is not a problem because the laser is an
almost perfect oscillator and therefore correlating a coincidence detection to an
other trigger does not modify the timing information (we checked that the laser
jitter is approximately 1 ps). In addition, this technique is widely employed in
most TDC modules.

The spectral resolution of the reconstruction depends on the dispersion intro-
duced by the DCF and on the detector electronic jitter, δs/i = 250 ps. In addition,
also the TDC temporal bin size has to be accounted for; in our case the minimum
bin size is δTDC = 81 ps. Considering all these factors, the spectral resolution we
can achieve is:

δλ =

√
δ2
s/i + δ2

TDC

|D|
≈ 160 pm (4.3)

Obviously, ∆λ can be increased by employing longer DCFs, but at the cost of
greater optical losses and thus a longer integration time. Moreover, it is important
to notice that the pump power cannot be arbitrary intensified, in order to limit
the generation of double pairs.

Note that an alternative to DCFs to increase the system dispersion D are
chirped fiber Bragg gratings. Davis et al. [203] reconstructed a single-photon
marginal spectrum of 10 nm spectral width, with a resolution of 55 pm. How-
ever, this technique is limited by the bandwidth of such device, less than 10 nm,
and its cost.

4.1.2 Calibration of the spectrograph
To convert the photon arrival times into their corresponding wavelength values,
the spectrograph must be calibrated. In order to do so, we take advantage from
the source characteristics themselves. As we have already described, the waveguide
facets have a non-zero reflectivity, which creates a Fabry-Pérot cavity. Thus the
photons can be reflected from a facet and transmitted from the opposite one,
after a half round trip. If the pump beam is not at normal incidence, the two
interactions generate photons at four different wavelengths (see the accordability
graph, Figure 1.14) and therefore in the marginal spectrum we identify four peaks:
two major peaks associated to the directly transmitted photons and two minor
peaks associated to the photons that have traveled a half round trip. Note that
in order to measure both interactions it is necessary to remove the polarizers from
the setup shown in Figure 4.1.

Figure 4.3a reports the signal marginal spectrum between two laser triggers at
3.8 MHz, while the laser pulses are emitted at 76 MHz. The graph contains thus
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(a) (b)

Figure 4.3: Signal side marginal spectra: (a) between two consequent trigger
events, containing twenty laser pulses, and (b) close-up on the first spectrum.
In (b) each peak has been identified (s=signal, i=idler, for both polarizations
TE and TM) and the central bin τ0, corresponding to the degeneracy wavelength
2λp, is highlighted. The time delay between two consequent laser pulses is 13 ns,
corresponding to 160 time bins, while the spectral distance between two major or
minor peaks is approximately 4.9 nm (fixed by the birefringence) and it corresponds
to approximately 97 time bins, with the employed DCFs.

twenty marginal spectra of the signal side. Figure 4.3b is a close-up showing only
the detection peaks generated by the first pulse after the trigger: the four peaks
detailed above are identified.

From the accordability graph it is possible to notice that, for all pump angles
and each interaction, the two emitted wavelengths are always symmetric with re-
spect to 2λp, because of the energy conservation condition. Therefore, once the
peaks have been identified, the central bin τ0 (highlighted in Figure 4.3b by a
dashed line) can be associated to the degeneracy wavelength 2λp. Consequently,
knowing the DCF dispersion, we obtain the calibration relation:

λs/i = τs/i − τ0

D
+ 2λp (4.4)

Once the axes have been calibrated and the central bin has been found for
each spectrum between two consequent triggers, we need to merge the twenty 2D
histograms contained in the graph. This is done by selecting an enough wide area
around each central bin and summing up all of them. We finally obtain a single
2D histogram, with calibrated axes.

Time bin correction

The employed TDC features even and odd time bins with different sizes and thus
a numerical analysis is needed. Once the 2D coincidence histogram has been ob-
tained, we create artificial time bins in the shared corners of four neighboring raw
bins, with the same temporal dimension (81 ps). For each new bin the number
of coincidences is calculated as the average of the counts of the four raw bins,
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Figure 4.4: Sketch of the correction procedure of the TDC bin size. Since even
and odd time bins have different sizes, we create artificial bins in their shared
corners (in yellow).

following the formula:

|φ|2
(λ(m)

s + λ(m+1)
s

2 ,
λ

(n)
i + λ

(n+1)
i

2
)
=
|φ|2m,n + |φ|2m+1,n + |φ|2m,n+1 + |φ|2m+1,n+1

4
(4.5)

where the new artificial bin is created between the wavelength bin m and m + 1
on the signal side, and between the bin n and n+ 1 on the idler side. |φ|2i,j are the
recorded coincidence counts in the signal bin i and in the idler bin j. Figure 4.4
illustrates this procedure.

4.1.3 Experimental JSI reconstruction
We now present a typical reconstructed JSI obtained via the fiber spectrograph,
comparing it with a numerical simulation. Figure 4.5a shows the experimental
reconstruction of a biphoton JSI for a 773.15 nm pump beam, incident at the
degeneracy angle, with a 1 mm-waist Gaussian profile. By using the polarizers we
select only the interaction emitting TM-polarized signal photons and TE-polarized
idler photons. The measurement has been carried out integrating for 24 minutes.

Figure 4.5b reports the corresponding numerical simulation for which all the
parameters have been independently determined, apart from the incidence angle
and the Fabry-Pérot phases. The pump central wavelength and its spectral width
have been determined experimentally with an optical spectrum analyzer, while its
spatial properties have been measured with the wavefront analyzer, as detailed in
chapter 3. The effective indices nTE and nTM have been numerically simulated on
the nominal structure with the transfer matrix method [132].

We notice that the experimental measurement succeeds in resolving the bipho-
ton spectrum. On the other hand, even though some structuring is present, the
spectral resolution of the fiber spectrograph is not sufficient to resolve the Fabry-
Pérot fringes due to the waveguide facet reflectivity. Indeed, the free spectral range
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of the modulation (FSR) is ∆λFSR = 190 pm (for a 1.9 mm-long waveguide) which
is of the same order than the spectrograph resolution δλ = 160 pm.

The resolution in the experiment could be improved by using Superconductive
Nanowire Single-Photon Detectors (SNSPDs), which have a higher quantum effi-
ciency, allowing to afford greater collection losses and hence to employ longer DCF
spools. Instead of using longer DCFs, a different approach could be envisaged:
both photons can be sent in a single fiber, obtained by stacking the two spools
together. However, in this case the separation of the photons at the output of the
fiber has to be performed probabilistically with a 50:50 beamsplitter, losing half
of the coincidences [204]. In our case we prefer to avoid this problem by using two
distinct DCF spools.

(a) Experimental JSI (b) Simulated JSI

Figure 4.5: (a) Experimental reconstructed JSI via the fiber spectrograph, for a
773.15 nm pump beam with a 1 mm waist, incident at the degeneracy angle on a
1.9 mm-long waveguide. (b) Corresponding numerical simulation.

4.2 JSI reconstruction by Stimulated Emission
Tomography (SET)

In the previous section we have analyzed the fiber spectrograph technique as a
means to reconstruct the biphoton JSI. In practice, this technique is mainly limited
by the low biphoton generation probability, demanding long integration time, and
by the spectral resolution, as we have just seen. These limitations can be overcome
by a different approach, called Stimulated Emission Tomography (SET).

Let us start by recalling that SPDC can be seen as the quantum counterpart of
Difference Frequency Generation (DFG). Indeed, in the latter process, the conver-
sion of pump photons to signal and idler photons is stimulated by a seed beam; thus
SPDC can be interpreted as a DFG process stimulated by vacuum fluctuations, as
sketched in Figure 4.6.

Liscidini and Sipe [198] pointed out that, since DFG and SPDC are governed by
the same phase-matching and energy conservation equations, in a DFG process the
biphoton wavefunction plays the role of response function for the generation of the
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Figure 4.6: Comparison between SPDC (left) and DFG (right) processes. SPDC
can be considered as the quantum limit of DFG: the seed beam is replaced by
vacuum fluctuations. Adapted from [153].

idler field. From this approach, they proposed the SET technique, which enables to
reconstruct the JSI of a biphoton pair by performing classical measurements on the
DFG photons. As one passes from single photons to a classical field, the intensity
increases by several orders of magnitude, allowing to speed up the measurement and
to directly characterize the spectrum using a classical detector such as an optical
spectrum analyzer, which can have a better resolution than the fiber spectrograph
detailed before.

The technique has been experimentally demonstrated for the first time by Eck-
stein et al. [199], showing a significant improvement both in integration time and
spectral resolution.

4.2.1 Experimental setup
In this section we detail the experimental setup employed to reconstruct the JSI
via the SET technique, as depicted in Figure 4.7. The pump scheme and its
shaping stage is similar to the one used for the fiber spectrograph in section 4.1.
In addition, a tunable infrared CW laser (Tunics-Plus™) provides the seed beam
with a linewidth δωs = 100 kHz; it is filtered by a fibered filter (FF) with 1.2
nm bandwidth (OzOptics™), in order to remove eventual sidebands of the laser.
Indeed, the DFG power that will be measured is of the order of tens of picoWatts
(for 10 mW of seed power) and therefore even a very weak sidebands could spoil
the measurement.

In order to couple the seed telecom beam inside the waveguide and to be able,
at the same time, to collect the DFG photons, we use a fibered polarization beam
splitter (PBS) as a polarizator circulator. The telecom laser is set TM polarized
with a fibered polarization controller (FPC), sent through the PBS and coupled
inside the source. On the other hand, the generated DFG signal, which is TE po-
larized, is sent by the PBS to the optical spectrum analyzer (OSA), Yokogawa™
6730C. This instrument has a spectral resolution of 20 pm and a sufficient sensi-
tivity to detect the DFG signal. Note that, differently from the fiber spectrograph
technique, here we do not employ polarizers to select the nonlinear interaction: it

97



Chapter 4. Joint Spectral Intensity Reconstruction

Figure 4.7: Experimental setup for the reconstruction of the JSI of a biphoton
state employing the SET technique. Focal lengths are given in millimeters. See
text for description. Abbreviations: SLM, spatial light modulator; WFA, wave-
front analyzer; OSA, optical spectrum analyzer; PBS, polarizing beamsplitter; FF,
fibered filter; FPC, fibered polarization controller.
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Figure 4.8: JSI reconstruction scheme by SET. Scanning the laser wavelength,
each JSI "slice" is acquired by the OSA. Adapted from [153].

is directly chosen by the seed beam polarization.
Figure 4.8 illustrates the measurement scheme. Once the seed wavelength λ(0)

s

is chosen, the DFG, measured by the optical spectrum analyzer, corresponds to a
slice of the JSI: |φ(λ(0)

s , λi)|. By scanning the seed laser, the whole JSI can thus be
reconstructed. As a last step, each slice has to be corrected for the transmission of
the fibered filter used to purify the seed laser, which has a Gaussian profile rather
that a flat one.

4.2.2 Experimental JSI reconstruction
Figure 4.9a reports the experimental reconstruction of the JSI with the SET tech-
nique, for a 1 mm-waist pump beam at 773.15 nm wavelength. The experimental
conditions are identical to the ones of the measurement reported in Figure 4.5,
reconstructed via fiber spectrograph, except for the incidence angle and the Fabry-
Pérot peak position.

The OSA is set at its best spectral resolution, namely 20 pm, and at a sensitivity
of tens of pW. Compared to the measurement reported in [153] here we use the
pump laser at its full repetition rate (76 MHz), resulting in a more intense DFG
signal, which enables to speed up the measurement.

The reconstructed JSI reported in Figure 4.9 has been acquired in 5 minutes
and proves a remarkable improvement of the spectral resolution, compared with
the fiber spectrograph (see Figure 4.5a). Along the idler wavelength, measured
by the OSA, the spectral resolution is 20 pm, while for the signal wavelength the
resolution is given by the tunics laser sampling (10 pm), an order of magnitude
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(a) Experimental JSI (b) Simulated JSI

Figure 4.9: (a) Experimental reconstructed JSI via Stimulated Emission Tomog-
raphy, for a 773.15 nm pump beam with a 1 mm beams waist incident on a 1.9
mm waveguide. (b) Corresponding numerical simulation.

better than the 160 pm resolution of the fiber spectrograph.
Figure 4.9b shows the numerically simulated JSI, corresponding to the exper-

imental situation of Figure 4.9a. Comparing the two, we note that the better
spectral resolution has here allowed to resolve the Fabry-Pérot modulation. Note
that the only free parameter of the simulations are the Fabry-Pérot peak positions,
which have been adjusted to match the experimental data2.

4.2.3 SET limitations
Stimulated Emission Tomography enables to speed up the JSI reconstruction and to
obtain a better spectral resolution, compared to the fiber spectrograph. However,
in our experimental implementation, it presents a main limitation: the PBS used
to route the seed beam to the source and the DFG signal to the OSA has not
a perfect extinction ratio (20 dB), thus impeding to reconstruct degenerate JSIs.
Indeed, at degeneracy, a non-negligible part of the seed beam would pollute the
DFG signal and a frequency filtering cannot be performed. A solution to this issue
would be a PBS with a better extinction ratio (e.g. a free-space PBS cube whose
extinction rate can reach 40 dB).

4.3 A phase sensitive JSA reconstruction
So far we have dealt with techniques capable of measuring the squared modulus
of the JSA, but not its phase. The full reconstruction of a JSA is an extremely
hard task, which has been carried out only in particular situations, and it lacks a

2Since we are considering high resonance orders, it is not possible to determine the exact
Fabry-Pérot peak positions from an experimental measurement of the waveguide length L. For
this reason they have been adjusted by introducing artificial Fabry-Pérot phases in the numerical
simulation. On the other hand, the cavity free spectral range can be easily determined from L.
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general technique. In the following we analyze some possible solutions that have
been reported in the literature.

Two-photon interference on a beamsplitter, i.e. the Hong-Ou-Mandel (HOM)
effect [205], is sensitive to the symmetry of the biphoton wavefunction with re-
spect to the degenerate frequency. Therefore, it could be employed to measure the
relative phase of symmetric points of the JSA, but not to obtain the full recon-
struction. As we will see in chapter 6, a generalization of the HOM experiment has
been proposed [206] to enable the full reconstruction of the Chronocliclyc Wigner
function, from which the JSA can be retrieved.

Another viable technique to obtain a full reconstruction is to extend Stimulated
Emission Tomography to measure also the phase. Indeed, the DFG spectrum
contains both intensity and phase information. Jizan et al. [207] experimentally
demonstrated an implementation of this technique employing Four Wave Mixing
(FWM) in a Silicon Nanowire. In FWM the emitted photon pairs are the same
wavelength than the pump and therefore it is possible to interfere the pump beam
with the stimulated photons (in this case it is not DFG but stimulated FWM).
A broadband pulsed beam (30 nm) is spectrally shaped and the pump beam, the
seed beam and a reference beam are carved out from it. When these beams travel
inside the nonlinear medium the stimulated photons are generated exactly at the
frequency of the reference beam and interfere with it. By varying their relative
phase and measuring the interference pattern with an OSA, the full JSA of the
biphoton state can be reconstructed, with a demonstrated spectral resolution of 30
pm [207].

This technique can be employed also in our experimental case but with addi-
tional modifications. Indeed, the SPDC generated photons are not at the same
frequency than the pump beam, requiring therefore a second laser as reference
beam in the telecom range. This laser has to be spectrally broad enough to cover
the whole JSA and to be phase-locked with the pump beam. Maintaining the
same experimental setup presented in subsection 4.2.1, the reference beam should
be coupled inside the waveguide from the signal side and crossed polarized with re-
spect to the seed beam. In this way the OSA would directly record the interference
pattern.

Maclean et al. [208] proposed a different technique, based on the experimental
reconstruction of both JSI and JTI of the biphoton state. The first is reconstructed
with dual single-photon monochromators, while the second via optical gating with
a noncollinear sum-frequency generation process between the signal/idler photon
and a strong gate pulse [168]. Since the JSA is the Fourier Transfor of the JTA, they
employed a modified version of the Gerchberg-Saxton algorithm [209] to retrieve the
JSA phase, from the knowledge of their squared moduli (JSI and JTI). Compared
to the previous one, for our experimental situation, this technique is more costly
in term of both resources and integration time, since it is based on single-photon
coincidence detection rather than classical measurements.
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4.4 Conclusions
This chapter has begun with an overview of the experimental techniques to recon-
struct the JSI and the JTI of a biphoton state. Then, we have focused our attention
on the two techniques we will employ in the next chapters: the fiber spectrograph
technique, which uses fibers with high group velocity dispersion (GVD) to convert
the frequency information in arrival time information, and the Stimulated Emission
Tomography (SET) technique, which takes advantage of the relationship between
SPDC and DFG to "classically" retrieve the JSI. For both techniques we have de-
tailed the experimental implementation and compared the reconstructed JSI with
the corresponding numerical simulations.

We have proven that SET enables to reconstruct the JSI with a better spec-
tral resolution, 20 pm compared to 200 pm for the fiber spectrograph, and in a
shorter integration time. We have mentioned however that, with our experimental
implementation, SET does not permit the reconstruction of degenerate JSIs. De-
pending on the experimental situation both techniques will thus be useful for our
experiments.

Finally, in the last section of the chapter, we have analyzed two proposals that
allow to completely reconstruct the JSA, both amplitude and phase information,
focusing on the possibility to adapt them to our experimental situation in the
future. We have identified an interferometric version of SET, as a promising method
that would allow to fully reconstruct the JSA with only an additional laser beam.
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So far we have described the quantum state of the photon pairs emitted by our
nonlinear source and illustrated two experimental techniques to measure its Joint
Spectral Intensity (JSI). In order to exploit such biphoton state in various quan-
tum information protocols, a deep control over frequency correlations is preferable,
which means manipulating the joint spectrum in both amplitude and phase.

In this chapter we start by giving an overview of the techniques that have been
proposed so far in the literature to tailor the biphoton spectrum, dividing them in
two categories: post-manipulation and direct shaping. The first category modifies
the JSA once the state is emitted, while the latter directly shapes the JSA at the
generation stage.

We then describe how the counter-propagating phase-matching scheme under
transverse pumping enables to directly shape the JSA of the emitted photon pairs.
This is achieved by controlling the pump beam spatial profile, which is directly
connected with the JSA. We provide numerical simulations and experimental mea-
surements of the JSI, in various situations: first we show how to manipulate the
frequency correlations by modifying the pump beam waist; then we show how to
control the state’s symmetry by shaping the pump beam phase.
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5.1 Joint spectrum engineering: an overview
Frequency entangled photon pairs have a large variety of applications, but for
each of them a precise control of the type of correlation is preferable, or even
required. For example, non-correlated states are required for heralded single photon
sources [194], while correlated states are key resources for clock synchronization
[115] or dispersion cancellation in long distance quantum communications [117].
However, under CW pumping, energy conservation naturally leads to frequency
anti-correlated states, which limits the possible applications of the source. By
contrast, a tunable source of frequency entangled photon pairs, capable of emitting
quantum states with arbitrary JSA, would allow to target several applications.

Post-manipulation techniques

We start by reviewing post-manipulation techniques, in which the quantum states
are shaped after the generation stage, inevitably reducing the integrability of the
source into chip-based photonic circuits. The simplest method is spectral filtering,
which is widely used to obtain non-correlated photon pairs for heralded single-
photon sources [210]. It allows to obtain very high single-photon purity at the
cost of a great brightness reduction. Nevertheless, programmable spectral filters
and phase modulators have been demonstrated as a viable method to implement
quantum gates for manipulating high-dimensional frequency combs [104].

The phase of the JSA can be post-manipulated by performing spectral-phase
shaping, a basic technique used in the pulsed laser community: the photon pair
spectral components are spatially separated with dispersion prisms and their phase
is then controlled with a spatial light modulator. This method allows to gain
control over the spectro-temporal properties of the photon pairs, as demontrated
in [211] and [212].

Another technique that has been adapted from classical optics is time-lensing: a
quadratic time-varying phase is imposed to the photon pair through an electro-optic
phase modulator and a dispersive material. This enables to convert the time delay
to a linear frequency shift and to measure the JTI (as pointed out in chapter 4),
but also to shape the joint spectrum. Donohue et al. [213] demonstrated that a
time-lens can convert strongly frequency anti-correlated photon pairs to frequency
correlated ones.

Direct generation techniques

Direct shaping at the generation stage is preferable, with respect to to post-manip-
ulation, because it allows to fully exploit the brightness of the source while keeping
the door open to its integration on chip-based photonic circuits. Several techniques
have been proposed in the literature, acting either on the source or on the pump
beam parameters.

We start with the techniques achieving spectral shaping by modifying the phase-
matching conditions of the source. As we have already said, energy conserva-
tion naturally leads to strongly frequency anti-correlated states, particularly in a
collinear geometry (Figure 5.1a), and this situation is not a desirable condition
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Figure omitted due to missing permission

Figure 5.1: Three group-velocity matching conditions: the JSA of each case is
plotted on the left with the respective group velocities vg on the right. (a) Without
dispersion engineering, the phase-matching function is oriented with a negative
angle and the JSA is anti-correlated. (b) The signal photon propagates at the
same velocity of the pump, leading to a phase-matching function aligned with the
signal axis. (c) The pump group velocity lies in between the group velocities of the
signal and idler, yielding a phase-matching function directed along the principal
diagonal. Adapted from [216].

for some applications, for example for heralded single photon sources. Single-
mode emission (i.e. non-correlated frequency states) has been reached by properly
matching the group velocity of the signal, idler and pump field (group-velocity
matching GVM)[214–216]. In particular, if the pump propagates at the same ve-
locity than the signal (idler) photons, the phase-matching function is aligned along
the signal (idler) frequency axis, as shown in Figure 5.1b. In this condition, if
the spectral bandwidth is broader than the phase-matching bandwidth, a nearly
separable JSA is generated. On the other hand, if the pump group velocity lies
in between the ones of signal and idler photons, the phase-matching function is
oriented along the principal diagonal, as in the case of the counter-propagating
phase-matching scheme. If the spectral bandwidth matches the phase-matching
bandwidth, a separable JSA is obtained (Figure 5.1c) [216].

A step further has been done by tailoring the nonlinearities of the source with
domain engineering, by employing group velocity matching in periodically poled

105



Chapter 5. Joint Spectral Amplitude Engineering

crystal [217]. It has been demonstrated that the phase-matching function can
be transformed from a sinc2 function to purely Gaussian, eliminating the side
lobes and thus resulting in a very high spectral purity [218–220]. In addition,
this technique enables to design sources with arbitrary phase-matching functions.
Graffitti et al. engineered the nonlinear domains of periodically poled potassium
titanyl phosphate (PPKTP) waveguides to shape the phase-matching as a first
order Hermite-Gaussian function, demonstrating the generation of non-Gaussian
frequency entanglement [65].

Engineering the phase-matching conditions through GVM results in a high-
quality shaping of the joint spectrum, but it has a non negligible drawback: the
emitted biphoton state is fixed and cannot be tuned.

On the contrary, tuning the pump beam properties (spatial and spectral profile)
enables, under certain phase-matching geometries, to tailor the joint spectrum and
control the frequency correlations. Valencia et al. [221] shaped the joint spectrum
of a non-collinear Type I SPDC nonlinear crystal, by tuning the spatial width of
the pump beam. Conversely, in a collinear geometry, only the spectral profile of
the pump beam and not the spatial one has an effect on the joint spectrum. Ansari
et al., employing a periodically poled lithium niobate (PPLN) waveguide, demon-
strated the JSA shaping by modifying the pump beam spectrum and generated
correlated, non-correlated, anti-correlated frequency states [41].

Finally, several methods have been proposed to tune the frequency correlations
by reversibly changing the source properties (e.g. with a temperature variation),
even if this enables only a partial control of the JSA [222–224]. For example, Kumar
et al. [222] employed a silicon chip composed of a periodic sequence of coupled
microring resonators, generating photon pairs in the supermodes of the combined
structures, through spontaneous four-wave mixing. The result is a chessboard-
like patterning of the phase-matching function, on the top of which the energy
conservation condition selects only one diagonal stripe at the time, when the laser is
pulsed with a smaller spectral width than the resonance distance. Tuning the pump
central wavelength or the source temperature enables to select different resonances
and thus to change the frequency correlations of the photon pairs, as shown in
Figure 5.2. Even if the device allows a certain tunability, the joint spectrum is
always anti-correlated and the source cannot generate correlated or non-correlated
frequency states.

During the last years many efforts have been devoted to implement joint spec-
trum engineering in integrated devices, for the realization of fully on-chip quantum
information applications. The most exploited platforms are PPKTP [65] and PPLN
[41] waveguides and silicon microring resonators [222].

In this chapter we show how our counter-propagating source allows to shape
directly on-chip the biphoton joint spectrum, in a tunable manner.

5.2 Joint spectrum engineering in the counter-
propagating phase-matching scheme

After the overview on the methods proposed in the literature to shape the joint
spectrum of a photon pair, we now focus our attention on the tunability of the
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Figure omitted due to missing permission

Figure 5.2: Numerical simulations of the JSI produced by the device proposed
by Kumar et al. [222]. The pump wavelength determines which diagonal oriented
slice is selected, allowing to control the level of spectral correlation as shown in
(b), (c) and (d) by the Schmidt number K. Adapted from [222].

quantum states produced by our counter-propagating source.
The counter-propating phase-matching scheme under transverse pumping has

already been proposed as an interesting situation for engineering of the joint spec-
trum [225]. Indeed, a source exploiting this geometry features many physical prop-
erties that can be independently tuned in order to arbitrary shape the JSA of the
emitted state, in particular the pump beam spatial and spectral profile.

In chapter 2 we derived that, under some approximations, the quantum state
emitted by the source can be written as:

|ψ〉 =
∫∫

dωs dωi φ(ωs, ωi) â†H(ωs)â†V (ωi) |0〉 (5.1)

where φ(ωs, ωi) is the Joint Spectral Amplitude (JSA), which can be factorized in
four terms (considering also the Fabry-Pérot cavity created by the facet reflectiv-
ity):

φ(ωs, ωi) = χΓ · PM(ωs, ωi) · φspectral(ωs, ωi) · φFP(ωs, ωi) (5.2)
Let us recall the analytic expression of each term. The first one is the overlap

integral between the interacting fields and the nonlinear medium, including also
all the multiplicative constants:

χΓ(ωs, ωi) =
ε0Lε

(0)
p

iβ~
√
vHg (ωs)vVg (ωi)

×
∫∫

dx dy χ(2)(x)ΠW (y)φp(y)EH(x, y, ωs)EV (x, y, ωi)
(5.3)

This term, under the approximations we have considered in chapter 2 (small GVDs
and no frequency dependency of the guided mode spatial profile), can be consid-
ered frequency independent and therefore it has no influence on the frequency
correlations.

107



Chapter 5. Joint Spectral Amplitude Engineering

The second term, containing the integral along the z-direction, describes the
phase-matching condition:

PM(ωs, ωi) =
∫

dzΠL(z)φp(z, ω+)e−ikdeg(ω+)z−iω−
v̄g
z (5.4)

where φp(z, ω+) is the pump spatial profile along z and ω± = ωs±ωi. Here we can
already see a peculiarity of this geometry: the phase-matching integral is along
z, the same direction than the pump spatial profile. Conversely, in a waveguided
collinear source, since the pump beam propagates in the same direction than the
generated photons, its spatial profile is constant along the integration direction
and therefore it has no influence on the joint spectrum.

The third term corresponds the energy conservation relation:

φspectral(ω+) = fspectrum(ω+) (5.5)

where fspectrum(ω+) is the pump beam spectral profile. In our work, since we do
not employ pump pulses shorter than 4 ps, we have neglected the filtering effect of
the vertical microcavity on the pump beam spectrum (see section 1.4).

Finally, the last term describes the chess-board pattern induced by the longitu-
dinal Fabry-Pérot cavity and it depends only on the source structure, as described
in subsection 2.2.5:

φFP(ωs, ωi) = fH(ωs)fV(ωi) (5.6)
where we have chosen to describe the interaction HV , with TE-polarized signal
photon and TM-polarized idler photon.

5.2.1 Gaussian pump beam
In order to analyse the relationship between the JSA and the pump beam spatial
and spectral profile, we start by considering the simple case of a Gaussian pulsed
pump.

Figure 5.3 reports a sketch of the situation. The pump beam has a Gaussian
spatial profile, with wz and wy the projections of its waist along the z and y
directions. It impinges on the source with an incidence angle θ, very small and
with no frequency dependency (k · ûz = ωp

c
sin(θ)). The beam is pulsed and

has a hyperbolic secant spectral profile (typical of a Ti:Sa laser) centered at ω(0)
p ,

matching the microcavity resonant frequency, and pulse duration ∆τp = 1.978
ωp

, for
a Fourier-Transform-limited pulses.

Taking into account all this, the electric field of the pump beam reads then:

Ep(r, ω+) = ε(0)
p

φp(z)︷ ︸︸ ︷
exp

(
− z

2

w2
z

)
exp

(
i
ω+ sin θ

c
z

)

× exp
− y2

w2
y


︸ ︷︷ ︸

φp(y)

sech
ω+ − ω(0)

p

∆ωp


︸ ︷︷ ︸

fspectrum(ω+)

(5.7)
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Figure 5.3: Sketch of a Gaussian pump beam impinging on the device, only the
spatial section of the beam along z and its spectral profile are shown.

Using this analytic expression of the pump beam, we can derive the phase-matching
and the spectral functions. The first is given by:

PM(ωs, ωi) =
∫

dzΠL(z) exp
(
− z

2

w2
z

)

× exp
[
−iω+

c

(
sin θ − sin θdeg

)
z
]

exp
(
−izω−

v̄g

) (5.8)

If now we make the approximation of a monochromatic pump beam, the phase-
matching function depends only on ω−. Indeed, the pump frequency (ω+ = ω(0)

p )
acts just as a parameter, setting the position of the phase-matching function in
the (ωs, ωi) space, without having any role in the shaping process. By performing
complete numerical simulations we have verified that this approximation is valid
for our experimental situation up to a precision <1%, even if we will employ a
picosecond pulsed laser and not a monochromatic one1.

Depending on the relative value of the pump beam waist along z (wz) with
respect to the source length (L), we find different situations for the phase-matching
function PM(ω−):

• wz � L
If the waist is smaller that the waveguide length, the gate function ΠL(z) can

1More precisely the phase-matching function depends exactly only on ω− if the following
conditions are satisfied:

• the pump beam has no angular dispersion (k · ûz = ωp

c
sin(θ)),

• it has a monochromatic spectrum (ω+ = ω
(0)
p ),

• the signal and idler guided modes have the same group velocity dispersion GVD (δGVD = 0,
c.f. section 2.2).
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be neglected and the phase-matching function is simply the Fourier Trans-
form of the beam spatial profile:

PM(ω−) =
√
πwz exp

−
ω− − ω(0)

−

∆ω−

2
 (5.9)

This is a Gaussian function of width ∆ω− = 2v̄g/wz, shifted from the de-
generacy frequency by an amount ω(0)

− = ω(0)
p (sin θ − sin θdeg)v̄g/c. This last

equation reproduces, for small angles, the linear dependency of the frequen-
cies of the photons with the incidence angle θ that we have seen in Figure 1.14:
ω

(0)
− ≈ ω(0)

p (θ − θdeg)v̄g/c.

• wz � L
In the opposite case, when the waist is larger than the waveguide length, the
Gaussian shape can be approximated with the gate function itself. Therefore
the phase-matching function is just the Fourier transform of the gate function
ΠL(z):

PM(ω−) = L sinc
ω− − ω(0)

−

∆ω−

 (5.10)

• wz ≈ L
In the intermediate situation, the phase-matching function is given by the
convolution of the cardinal sine function and the Fourier Transform of the
pump spatial profile.

These results have been derived for a Gaussian pump beam, but from them we can
infer the general behavior of the phase-matching function. In particular, in the
case where the pump beam typical dimension is much smaller than the waveguide
length, the phase-matching function corresponds to the Fourier Transform of the
projection along z of the pump spatial profile multiplied by a phase term given by
the waveguide birefringence, ϕ(z, ω+) = φp(z, ω+)e−ikdegz:

PM(ωs, ωi) =
∫ +L/2

−L/2
dz ϕ(z, ω+)e−i(ωs−ωi)z/v̄g ≈

√
2π ϕ̃(ω−

v̄g
, ω+) (5.11)

In conclusion, the phase-matching function depends only on ω− and it is therefore
directed along the ω+ direction.

On the other hand, for the spectral function, if the pulse spectrum matches the
microcavity, we simply have the pump spectrum itself:

φspectral(ω+) = sech
ω+ − ω(0)

p

∆ωp

 (5.12)

This term depends only on ω+ and thus it is directed along the ω− axis. Moreover,
its width is directly related to the pump beam pulse temporal duration ∆ωp =
1.978/τp, for Fourier-Transform-limited pulses.

Figure 5.4 reports an example of a numerically simulated JSA for a Gaussian
pump beam: from left to right we report the norm of the phase-matching function,
of the spectral function and the norm of the JSA. The figure illustrates also the
characteristics of each term.
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Figure 5.4: Numerically simulated norm of the phase-matching function, spectral
function and norm of the resulting JSA, for a 0.3 mm-waist Gaussian pump beam
with pulse duration τp = 4.5 ps.

5.2.2 Shaping the JSA along the ω+ and ω− axes

We have seen that, in our approximations, the spectral function is directed along
the ω− axis, while the phase-matching function is directed along the ω+ axis;
these direction are orthogonal. Therefore, it is possible to tune the JSA along
these two axes, encoding arbitrary shapes. This point illustrates the richness of
the counter-propagating phase-matching under transverse pumping. Indeed, in a
collinear geometry the phase-matching and the spectral function are both directed
essentially along the ω− axis (with the exception of the group velocity matching
techniques described in section 5.1).

We now analyze a possible method to shape the JSA along the ω+ and ω−
axes. To modify the JSA dimension along the ω+ direction, it is sufficient to
change the pump beam spectrum. Arbitrary spectral functions can be obtained by
employing a pulse shaper, a device composed by dispersive elements and a spatial
light modulator (SLM).

On the other hand, the phase-matching function is governed by the projection
along z of the pump beam spatial profile, through a Fourier Transform. Therefore,
a SLM can be employed to shape the beam spatial profile, thus tuning the JSA
along the ω− direction.

Both the phase matching and the spectral function are complex and take real
values only if the pump spectrum and spatial profiles are real. Therefore, it is
possible to control also the JSA phase by adding imaginary terms to the pump
spatial and spectral profile (i.e. non-constant spatial and spectral phases).

In the following section, we apply this technique to shape the phase-matching
function by acting on the pump beam spatial profile. We first modify the pump
beam intensity profile to control the frequency correlations of the biphoton state.
Then, by adding one or two phase steps to the spatial profile we control also the
JSA phase.
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5.3 JSA engineering via the pump beam inten-
sity

In this section we experimentally demonstrate the JSA shaping via the pump beam
intensity. The pump beam is tailored in intensity by using the method described in
chapter 3, obtaining a Gaussian beam with arbitrary waist and a flat phase profile;
the spatial phase profile along the z axis can be written as follows:

φp(z, ω+) = exp
(
− z

2

w2
z

+ i
ω+ sin θ z

c

)
(5.13)

where the linear phase term is given by the pump incidence angle θ and has the
only effect of translating the JSA along the ω− axis from the degeneracy frequency.

Since the tailored pump beam has a waist projection along z (wz ≤ 1 mm) small
compared to the waveguided length (L = 1.9 mm), the phase-matching function is
approximately the Fourier Transform of the pump profile. It corresponds, in the
biphoton frequency plane (ωs, ωi), to a stripe aligned along the diagonal, with a
width (∆ω−) inversely proportional to the pump waist (wz), as already illustrated
in Figure 5.4. On the other hand, the pump beam is pulsed at 76 MHz with 6 ps
pulses and, since the pulses are unchirped (Fourier-Transform limited), the spectral
function is real valued. The resulting JSA is given by product of these two terms.

The first column of Figure 5.5 shows the experimentally measured JSIs, for four
different values of pump beam waist wz (from wz = 0.25 mm to wz = 1 mm), via
the SET technique for a pump incidence angle θ slightly offset from the degenerate
position θdeg, as required by this reconstruction technique (see subsection 4.2.1
for a detailed description of the SET technique). The corresponding numerical
simulations, reported in the second column of the figure, are in excellent agreement
with the experimental data. Note that the only free parameters in the simulations
are the positions of the Fabry-Pérot resonances, which have been adjusted on the
experimental data.

Figure 5.5a reports the experimental JSI for a waist wz = 1 mm. The joint
spectrum is aligned along the principal diagonal (ω+ axis), corresponding to a
frequency correlated state. The rows below report the JSIs obtained for decreasing
waist dimensions. We observe that the joint spectrum progressively stretches along
the ω− axis, reaching a frequency anti-correlated state in Figure 5.5g. For the
intermediate value of waist wz = 0.6 mm (Figure 5.5c), the width of the phase-
matching and spectral functions are nearly equal, resulting in a frequency separable
state.

In each panel of Figure 5.5 we show the calculated Schmidt number K, which
quantifies the effective number of orthogonal frequency modes spanned by the
biphoton wavefunction (see subsection 2.2.3 for a detailed description). For the
simulations, the Schmidt number is directly calculated from the JSA, from its
amplitude and phase. For the experimental JSIs we have deduced K assuming a
flat phase (a reasonable approximation, since we are using unchirped pulses with
flat spatial phase profile) so that the JSA can be retrieved as the squared root of
the JSI. K initially decreases, reaches K ≈ 1 for a frequency separable state, and
increases again for a frequency anti-correlated state.
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5.3. JSA engineering via the pump beam intensity

Figure 5.5: Experimentally measured JSIs, via the SET technique (first column)
and corresponding numerical simulations (second column), for four different values
of the pump beam waist. The pump is centered at 773.15 nm with 6 ps pulse
duration and 150 mW average pump power incident on the sample.
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Overall, the presented results demonstrate a flexible technique to frequency
engineer the biphoton quantum state, generating correlated, non-correlated and
anti-correlated frequency states. This flexibility allows to adapt the source to
several quantum information applications [115, 117, 194], requiring a given type of
frequency correlations.

5.3.1 Producing frequency state with a high dimensionality

For the biphoton states reported in Figure 5.5, the Schmidt number K does not
exceed K = 1.35, meaning that the states contain only one dominant frequency
mode. In the introduction of this thesis we have highlighted the interest of produc-
ing high-dimensional states of light; we now show that our technique can be used
to combine flexibility and high dimensionality. To achieve this, two main paths
can be followed: reducing the spectral function width while increasing the phase-
matching function width, in order to generate frequency anti-correlated states, or
the opposite way to generate frequency correlated states.

Let us start by considering the case of frequency anti-correlated states. A larger
phase-matching function width can be obtained by pumping the sample with a
smaller pump waist (e.g. 0.1 mm is easily achievable), while a smaller width of
the spectral function can be achieved with longer pump pulses, corresponding to a
narrower pump spectrum. Achievable values are 10 ps, using the same Ti:Sa laser,
or 1 ns with a nanosecond pulsed laser. In these two cases the estimated Schmidt
numbers are:

Waist 0.1 mm Pulse Duration 10 ps K = 4.5
Waist 0.1 mm Pulse Duration 1 ns K = 440

On the other hand, a frequency correlated state with high Schmidt number
can be generated by pumping with a bigger waist and by using shorter pulses.
Nonetheless, in both cases there are fundamental limitations. The waist is limited
by the waveguide length (≈ 2 mm), while the finesse of the vertical microcavity
currently limits the pulse duration to a minimum of about 2 ps. However, fabricat-
ing a sample with a lower finesse is possible, even though it would slightly reduce
the conversion efficiency of the source. Let us consider an easily achievable value
of 0.5 ps. In these two cases the estimated Schmidt numbers are:

Waist 2 mm Pulse Duration 2 ps K = 3.0
Waist 2 mm Pulse Duration 0.5 ps K = 11

Another possibility is to focus the beam, making its spatial phase profile parabolic.
For instance, starting from the non-correlated situation of Figure 5.5c (a 0.6 mm
waist pump beam with 6 ps pulse duration) using a pump beam spot with a cur-
vature radius of 10 cm would yield K ≈ 7.
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Figure 5.6: Pump beam spatial profile along z, φp(z): (a) for a single phase step
and (b) for a double phase step.

5.4 JSA engineering via the pump beam spatial
phase profile

So far, we have shaped the JSA by modifying the pump beam waist. However also
the phase spatial profile influences the phase-matching function.

In this section we study the behavior of frequency correlations when phase steps
are added to the beam spatial profile: first we consider the case of one single phase
step and then of two equal and symmetric phase steps (double phase step).

5.4.1 Single phase step

Let us start by the case of a single phase step ∆ϕ between the two halves of the
pump beam, as sketched in Figure 5.6a. Placing the pump spot at the center of
the waveguide, the pump amplitude profile reads:

φp(z) =



exp
(
− z

2

w2
z

+ i
ω+ sin θ z

c

)
z < 0

exp
(
− z

2

w2
z

+ i
ω+ sin θ z

c
+ i∆ϕ

)
z > 0

(5.14)

We fix the waist value to wz = 1 mm and generate this spatial amplitude profile,
by using the technique analyzed in subsection 3.2.2, for five different values of ∆ϕ
(0, 1

4π,
1
2π,

3
4π, π).

The first column of Figure 5.7 reports the experimentally measured JSIs for
these values of ∆ϕ, via the SET technique for a pump incidence angle θ slightly
offset from the degenerate position θdeg. The pump beam is centered at 773.15 nm
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with 4 ps pulse duration2 and has an average pump power of 150 mW incident on
the sample. Starting from a frequency correlated state (Figure 5.7a), for ∆ϕ = 0,
as ∆ϕ increases we observe the progressive appearance of a second lobe in the
joint spectrum. When ∆ϕ = π the JSI is split into two lobes of equal intensity
and vanishes along the diagonal axis between them.

These results are in good agreement with the numerical simulations, reported
in the second column of Figure 5.7, for which we show also the calculated Schmidt
number K. The Schmidt number increases when ∆ϕ increases and reaches K =
2.24 for ∆ϕ = π, meaning that the states contains more than two dominant fre-
quency modes. Here it is not possible to determine K from the experimental
measurement of JSI, since the JSA has a non-flat phase structure, which cannot
be measured by the SET technique.

The third column of Figure 5.7 shows the numerically simulated Chronocyclic
Wigner Function W− (CWF, introduced in section 2.3), corresponding to each
phase step value. Starting from an almost Gaussian Wigner function when ∆ϕ = 0,
we observe the gradual appearance of a negative dip as ∆ϕ increases. Negative
values of CWF are a signature of entanglement with non-Gaussian statistics [175,
206] as we will see more in detail in the next chapter. The residual small negativity
(≈ −0.05) observed when ∆ϕ = 0, Figure 5.7c, is due to the finite waveguide length
which acts as a filter on the pump spatial profile and modifies the phase-matching
function. In the case of a purely Gaussian phase-matching function the CWF is
always positive.

5.4.2 Double phase step
We now shape the pump spatial profile with two equal and symmetric phase steps,
as sketched in Figure 5.6b. The amplitude spatial profile can be written as:

φp(z) =



exp
(
− z

2

w2
z

+ i
ω+ sin θ z

c

)
z < −L4

exp
(
− z

2

w2
z

+ i
ω+ sin θ z

c
+ i∆ϕ

)
−L4 < z < +L4

exp
(
− z

2

w2
z

+ i
ω+ sin θ z

c

)
z > +L4

(5.15)

We keep the same waist as in the case of a single phase step (wz = 1 mm) and we
generate the pump beam for five values of ∆ϕ (0, 1

4π,
1
2π,

3
4π, π).

The first column of Figure 5.8 reports the experimentally measured JSI via
the SET technique with the same experimental conditions as for the single phase
step. The pump beam impinges on the sample slightly offset from the degenerate
position, is centered at 773.15 nm with 6 ps pulse duration and has an average

2The pulse duration of the pump laser depends slightly on the mode-locking conditions and
thus it may vary from one experiment to the other (in the range 4-6 ps). However this effect does
not influence the overall results.
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Figure 5.7: Gaussian pump beam with single phase step: experimentally mea-
sured JSIs via the SET technique (first column) and corresponding numerical sim-
ulations of the JSI (second column) and CWF W− (third column). Each row
corresponds to a phase step value ∆ϕ. 117
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pump power of 150 mW incident on the sample. Starting from an almost separable
state (Figure 5.8a), the JSI gradually acquires two lateral peaks while the central
one disappears. When ∆ϕ = π the JSI is split into two lobes of equal intensity
and vanishes along the diagonal axis between them, as in the case of a single phase
step (Figure 5.7m). The two JSIs look similar but the corresponding JSAs are very
different, mostly due to their phase structure. In the following section and in the
next chapter we will deeply analyze this feature, dealing with the biphoton state
symmetry with respect to particle exchange.

The second column of Figure 5.8 displays the corresponding numerically simu-
lated JSI for each value of ∆ϕ, which are in good agreement with the experimental
results. We report also the calculated Schmidt number K, deduced from the simu-
lations. Looking at the obtained K values, we note that adding a single phase step
or a double phase step produces essentially the same number of effective frequency
modes.

Concerning the CWF W−, whose simulations are reported in the third column
of Figure 5.8, we note that, starting from an almost Gaussian function, two lateral
negative dips gradually appear. As for the single phase step, the negativity of the
CWF is a signature of non-Gaussian entanglement.

5.5 Effects of the JSA phase
As we have seen in the previous chapter, in our experimental situation, it is not
possible to fully reconstruct the JSA, in both amplitude and phase. Indeed, so
far we have experimentally measured only the JSA squared modulus, the JSI, but
evidently also the phase is a parameter of paramount importance for frequency
correlations.

Let us investigate three cases, reported in Figure 5.9, in which we employ the
same experimental conditions (1 mm-waist Gaussian pump beam with 4 ps pulse
duration and same incidence angle) except for the pump spatial phase profile. The
first row displays the experimental JSI, measured via the SET technique, and the
expected phase distribution of the JSA for a pump beam with a flat phase pro-
file; the second row corresponds to the case with a single π phase step, while the
third one to the case with a double π phase step. The simulated phases are cal-
culated neglecting the Fabry-Pérot modulation which complicates the distribution
but does not influence the frequency correlations because it affects the signal and
idler photons independently3.

We observe that the JSA phase distributions for these three cases directly reflect
the pump spatial phase profile: in the first case the phase of the JSA is flat, in
the second case it features a π step along the principal diagonal between the upper
and lower part, while in the third case it presents a double π step on the sides of
the principal diagonal, dividing the JSA phase in three regions. In particular, the

3In addition, if the pump beam has a large waist, compared to the waveguide dimension, also
the sinc modulation of the phase-matching function modifies the JSA phase structure, because
of the relative π phase shift between its peaks. However, since the lateral peaks have very small
amplitudes with respect the principal one, they have a negligible influence on the frequency
correlations.
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5.5. Effects of the JSA phase

Figure 5.8: Gaussian pump beam with double phase step: experimentally mea-
sured JSIs via the SET technique (first column) and corresponding numerical sim-
ulations of the JSI (second column) and CWF W− (third column). Each row
corresponds to a phase step value ∆ϕ. 119
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second and third cases have fairly similar JSIs, but the phase distributions are very
different. Indeed, in Figure 5.9e the two lobes have opposite phase values (0 and
π), while in Figure 5.9h the two lobes have the same phase value.

In the previous chapter we have presented some techniques that should enable to
reconstruct these phase distributions, even if until now they have been employed
to measure only parabolic phase profiles and not phase steps. However, since
they require complex optical setups, for the moment we choose to adopt another
strategy: it is possible to retrieve the relative phase between the JSI lobes by taking
advantage of the state symmetry with respect to particle exchange. In the next
chapter we will deal extensively with this notion and we will detail how it can be
measured; here we give only a quick introduction.

Let us consider the case in which we pump the sample at the frequency de-
generacy angle θdeg, in this case the flat phase and the double phase step cases
would have symmetric JSAs with respect to the ω+ diagonal, while the single
phase step case would have an anti-symmetric JSA, with the two lobes having a
relative phase of π. The symmetry or anti-symmetry of the JSA with respect to the
diagonal characterize the behavior of the quantum state when the two photons are
exchanged; therefore we speak of symmetry or anti-symmetry of the wavefunction
under particle exchange.

In the next chapter we will show how the symmetry or the anti-symmetry of the
wavefunction under particle exchange determines the output of a Hong-Ou-Mandel
interferometer [205], which can be therefore used to retrieve partial information on
the JSA phase.

5.6 Conclusions
In the first part of this chapter we have given an overview of the techniques, pro-
posed in the literature, to control the frequency correlations of a biphoton state. We
have stressed the differences between post-manipulation techniques, which modify
the quantum state after the generation, and direct generation techniques, which
modify the source or the pump beam characteristics to directly obtain the tar-
get state. A particular attention has been given to the techniques that can be
integrated into chip-based devices.

Afterwards, we have analyzed the counter-propagating phase-matching geome-
try under transverse pumping, highlighting the relation between the pump spectral
and spatial properties and the generated biphoton state, which allows to directly
shape the JSA along the ω− and ω+ axes. An experimental demonstration of this
shaping technique has then been performed by shaping the pump spatial profile
and reconstructing the JSI via the SET technique.

As a first step, we have tailored the pump beam waist and demonstrated the
generation of frequency correlated, separable and anti-correlated biphoton states.
The second degree of freedom we have employed to shape the JSA is the pump
beam spatial phase profile: by applying one or two variable phase steps to it, the
JSA acquires the same phase step and splits into two lobes, as demonstrated by the
experimental measurements. However, the JSA phase cannot be directly retrieved
with our implementation of the SET technique, therefore in the next chapter we
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Figure 5.9: Pump beam spatial profile φp(z) (first column), experimental JSI
(second column) measured by the SET technique and simulated JSA phase (third
column) for three different phase profiles: a flat phase profile in the first row, a
single π phase step in the second row and a double π phase step in the third one.
The pump beam has a waist of 1 mm, is centered at 773.15 nm and its pulse
duration is 4 ps.
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will employ a Hong-Ou-Mandel interformeter to further characterize the generated
biphoton states and validate the engineering of the JSA phase.

As conclusive remarks, we want to note that here we have tuned the JSA,
both in phase and amplitude, but only along the ω− axis, by modifying the phase-
matching function. A simultaneous control along both axes can be obtained by
tailoring both the spectral and the spatial profile of the pump beam. This can be
easily realized with a pulse shaper, composed by a SLM and a diffractive grating,
and the setup described in chapter 3 to shape the pump spatial profile. Once the
spectral and phase-matching functions of the target JSA have been decided, it
is easy to retrieve the corresponding pump spatial and spectral profile to gener-
ate such JSA. Doing so, it would be possible to obtain an almost arbitrary JSA
distribution.

In conclusion, in this chapter we have demonstrated that the counter-propagating
phase-matching scheme under transverse pumping enables the shaping of the wave-
function of the generated biphoton state, in a flexible, re-programmable and tun-
able way. The experimental demonstration, carried out in a semiconductor inte-
grated device at room temperature, opens the way to the source integration and
employment in more complex photonic chips.
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In the previous chapter we have demonstrated the shaping of the joint spec-
trum of the biphoton state emitted by our counter-propagating source, by tuning
the pump beam spatial profile. In particular, we have shown with numerical simula-
tions that, by adding a phase step to the pump beam spatial profile, the symmetry
of the JSA of the corresponding biphoton state can be controlled, passing from
symmetric to anti-symmetric.

Anti-symmetric high-dimensional biphoton states have several applications in
quantum information, for example to study the effect of exchange statistics in quan-
tum simulation problems [86, 110, 226] and in communication and computation
protocols [227, 228].

The symmetry control of high-dimensional entangled states has been demon-
strated previously in the spatial degree of freedom [120, 229], but using bulk sources
only. In the frequency domain, a recent work demonstrated the on-chip genera-
tion of anti-symmetric biphoton frequency states, by tailoring the nonlinearity of a
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PPKTP crystal with domain engineering [65]. This approach leads to sources pro-
ducing very high-quality quantum states, but without the possibility of tuning it.
Another work developed a method to control two-color entanglement and generate
frequency anti-symmtric states [224], but this approach requires two passages in
a bulk source and post-manipulation with a dispersive element, and it is limited
to the production of two-color entangled states. On the other hand, Ansari et al.
demonstrated the integrated and post-manipulation-free control of the spectrum
of biphotons by engineering the spectrum of the pump field [41]. However, this
approach tailors the spectral part of the joint spectrum, which is directed along
the ω− direction, and therefore always produces spectral wavefunctions that are
symmetric under particle exchange.

In this chapter we will employ two-photon interference on a beamsplitter (Hong-
Ou-Mandel effect) as a means to experimentally characterize the symmetry of the
biphoton state generated by our counter-propagating source and demonstrate the
direct generation of anti-symmetric biphoton frequency states.

We first study theoretically the behavior of a biphoton state in a Hong-Ou-
Mandel (HOM) interferometer, detailing the relation between the resulting inter-
ferogram and the symmetry of the wavefunction, which is related to its JSA in
case of biphoton frequency states. Then, we show that the HOM interferogram is
proportional to the cut at ω− = ωs − ωi = 0 of the Chronocyclic Wigner Function
W−, and that it is possible to generalize the HOM experiment to retrieve the entire
W− function.

Finally, we report experimental HOM measurements and the corresponding
numerical simulations relative to the two cases studied in the previous chapter:
the biphoton state generated by a Gaussian pump beam with a flat phase and that
generated by a Gaussian beam with a phase step.

6.1 Hong-Ou-Mandel experiment
The Hong-Ou-Mandel experiment [205] is the most popular arrangement of two-
photon interference: two photons enter in a 50:50 beamsplitter and interfere. De-
pending on their global wavefunction they may exit from the same output port
(bunching) or from different output ports (anti-bunching).

Let us start with a simple situation to demonstrate the physical principle of
the effect. Figure 6.1 shows a sketch of the HOM interferometer. We consider
two independent single photons, entering the beamsplitter from port 1 and port 2,
indistinguishable in all their degrees of freedom. We will thus employ the creation
and annihilation operators â†1, â1 for the first photon and â†2, â2 for the second
photon. The input wavefunction reads:

|Ψ〉 = â†1â
†
2 |0〉 (6.1)

We now focus on the beamsplitter, which is the core of the HOM interferometer:
it mixes the two photons according to its transformation matrix M. Considering a
lossless symmetric 50:50 beamsplitter, the matrix M can be written as [230]:

M = 1√
2

(
1 i
i 1

)
(6.2)
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6.1. Hong-Ou-Mandel experiment

Figure 6.1: Sketch of the HOM interferometer. The photons impinge on a 50:50
beamsplitter, from the ports 1 and 2. The interference is observed by recording
the coincidences between the counts at the output ports 3 and 4 as a function of
the relative delay τ .

Applying this matrix to the â operators of the input ports 1 and 2 we find:(
â3
â4

)
= 1√

2

(
1 i
i 1

) (
â1
â2

)
(6.3)

which gives the output operators 3 and 4, as a function of the input operators.
From this relation we retrieve the relation between the â† operators:â†1

â†2

 = 1√
2

(
1 i
i 1

) â†3
â†4

 (6.4)

Transforming the input wavefunction (Equation 6.1) with the beamsplitter
transformation (Equation 6.4) we retrieve:

|Ψ〉 = 1
2(iâ†3â†3 + iâ†4â

†
4︸ ︷︷ ︸

I

+ â†3â
†
4 − â

†
4â
†
3︸ ︷︷ ︸

II

) |0〉 = 1
2i(â

†
3â
†
3 + â†4â

†
4) |0〉 (6.5)

where the probability amplitudes related to case II cancel out, since the photons are
indistinguishable in all degrees of freedom and thus â3 and â4 commute, [â3, â4] = 0.
This is the bunching effect: the two photons always exit from the same port.

It is interesting to note that in a HOM interferometer the interference does not
arise between the two photons, but between the probability amplitudes associated
to the four possible paths (both photons are reflected, both are transmitted, or
one is reflected while the other is transmitted). This point highlights an important
feature of the HOM interference: since it is a second-order interference effect, it is
phase-independent. Indeed, an eventual phase shift in one of the two paths would
affect the probability amplitudes of the four situations described above, without
any effect on the interference.

So far we have considered the two photons as indistinguishable in all their
degrees of freedom. Nonetheless, it is possible to tune their distinguishability level
by adding a time delay τ in one of the two arms, thus modifying their relative arrival
times. As the time delay τ increases, the interference effect gradually disappears

125



Chapter 6. Control of the Spectral Wavefunction Symmetry and
Exchange Statistics

and the coincidence rate exhibits a characteristic dip, whose width is related to
the photon coherence time.

All the previous considerations are valid for two independent single photons.
In case of an entangled biphoton state, the HOM interference is not simply the
interference of two single photons. It is the interference of the whole quantum
state itself: it is not possible to describe the effect in the "two photons picture"
and it is necessary to shift the description in a "biphoton picture". The entangled
photon pair has to be taken as whole. One striking example of this property is
the work of Pittman et al. [231], in which the authors observed an interference
effect even when the time delay between the photons is compensated after the
beamsplitter. This result cannot be explained simply as the interference between
two photons, as they do not "arrive" at the same time on the beamsplitter.

The HOM effect has been employed in the last decades in a wide range of
applications, such as single-photon emitter characterizations [232], implementation
of photonic Bell state measurement for entanglement swapping or teleportation
[233], tailoring high-dimensional photonic entangled states [229] and time delay
measurements [234, 235].

6.2 Biphoton frequency state in a HOM interfer-
ometer

In the previous section we have taken in consideration the single-mode version of
the HOM, with independent photons. Here, we consider an arbitrary frequency
entangled biphoton state emitted by our source and we calculate the HOM coinci-
dence probability, highlighting some generic features.

The state emitted by the source can be written as:

|Ψ〉 =
∫∫

dωsdωiφ(ωs, ωi)â†s,V (ωs)â†i,H(ωi) |0〉 (6.6)

where we consider the V H interaction, with TM-polarized signal photon and TE-
polarized idler photon, and φ(ωs, ωi) is a generic JSA, whose normalization condi-
tion reads: ∫∫

dωsdωi|φ(ωs, ωi)|2 = 1 (6.7)

In order to obtain interference, the signal and idler paths must be indistinguishable
and thus we rotate the polarization of the idler photon to align it with that of the
idler photon. From now on, to keep a lighter notation, we neglect the polarization
subscript for the â† and â operators.

The delay line, placed in the idler path, induces a time delay τ . At the beam-
splitter the wavefunction reads:

|Ψ〉 =
∫∫

dωsdωiφ(ωs, ωi)â†1(ωs)â†2(ωi)e−iωiτ |0〉 (6.8)

where we have identified the signal (idler) photon with the input port 1 (port 2)
of the beamsplitter. By applying Equation 6.4, we express the wavefunction as a
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function of the beamsplitter output operators:

|Ψ〉 = 1
2

∫∫
dωsdωi φ(ωs, ωi)

(
â†3(ωs)â†4(ωi) + iâ†3(ωs)â†3(ωi)

+ iâ†4(ωs)â†4(ωi)− â†3(ωi)â†4(ωs)e−iωiτ
)
|0〉

(6.9)

At this point, to calculate the coincidence probability at the detectors we need
to introduce the projection operator which models each detector, assuming a flat
frequency response. Following [236] we define the projector operator P̂3 for the
output port 3:

P̂3 =
∫

dω3 â
†
3(ω3) |0〉 〈0| â3(ω3) (6.10)

and P̂4 for the output mode 4:

P̂4 =
∫

dω4 â
†
4(ω4) |0〉 〈0| â4(ω4) (6.11)

The coincidence probability of detecting one photon in each mode is:

Pc = Tr
[
|Ψ〉 〈Ψ| P̂3 ⊗ P̂4

]
= 〈Ψ|P̂3 ⊗ P̂4|Ψ〉 (6.12)

Therefore, we can define the coincidence operator M̂ :

M̂ = P̂3 ⊗ P̂4 =
∫

dω3 â
†
3(ω3) |0〉 〈0| â3(ω3)

∫
dω4 â

†
4(ω4) |0〉 〈0| â4(ω4) (6.13)

The coincidence probability becomes:

Pc(τ) = 〈Ψ|M̂ |Ψ〉 =

〈0| 12

∫∫
dω′sdω′i φ∗(ω′s, ω′i)

(
â3(ω′s)â4(ω′i)− â3(ω′i)â4(ω′s)e+iω′iτ

)
×
∫

dω3 â
†
3(ω3) |0〉 〈0| â3(ω3)

∫
dω4 â

†
4(ω4) |0〉 〈0| â4(ω4)

× 1
2

∫∫
dωsdωi φ(ωs, ωi)

(
â†3(ωs)â†4(ωi)− â†3(ωi)â†4(ωs)e−iωiτ

)
|0〉

(6.14)

where for each wavefunction we have kept only the cross terms (â†3â†4), which give
rise to a coincidence count. By applying the â and â† operators to the vacuum
state we obtain:

Pc(τ) =1
4

∫
dω′s

∫
dω′i

∫
dωs

∫
dωi

∫
dω3

∫
dω4

φ∗(ω′s, ω′i)e+iω′iτ
[
δ(ω′s − ω3)(ω′i − ω4)− δ(ω′i − ω3)(ω′s − ω4)

]
φ(ωs, ωi)e−iωiτ

[
δ(ωs − ω3)(ωi − ω4)− δ(ωi − ω3)(ωs − ω4)

] (6.15)

Integrating over ω′s, ω′i, ωs, ωi and applying the Dirac deltas yields:

Pc(τ) =1
4

∫∫
dω3dω4

[
|φ(ω3, ω4)|2 + |φ(ω4, ω3)|2

− φ∗(ω3, ω4)φ(ω4, ω3)ei(ω4−ω3)τ − φ∗(ω4, ω3)φ(ω3, ω4)ei(ω3−ω4)τ
] (6.16)
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and by employing the normalization of the JSA (Equation 6.7) we obtain:

Pc(τ) =1
2 −

1
4

∫∫
dω3dω4

(
φ∗(ω3, ω4)φ(ω4, ω3)ei(ω4−ω3)τ + c.c.

)
=1

2 −
1
2 Re

[∫∫
dω3dω4φ

∗(ω4, ω3)φ(ω3, ω4)ei(ω4−ω3)τ
] (6.17)

This expression gives the probability of a coincidence count at the detectors, when
the input state is a biphoton with the JSA φ(ω3, ω4). Since the calculation has
been performed in the frequency framework and we have considered detectors with
flat frequency response, the result includes coincidence counts with arbitrary time
difference. A more detailed calculation should take into account also the detector
time resolution, which impacts the detector frequency response. However, since we
are interested in time-integrated HOM measurements and not time-resolved ones,
the result we have obtained is sufficient for our experimental needs.

Equation 6.17 shows that the coincidence probability Pc(τ) is the difference
between the constant term 1/2 and an interference term, governed by the relative
delay τ between the two paths. This term can increase the coincidence probability,
leading to a bunching effect (Pc(τ) < 1/2), or decrease it, leading to an anti-
bunching effect (Pc(τ) > 1/2), depending on the JSA.

6.2.1 Interference conditions
We start with a general analysis, following [237], on the interference behavior for
τ = 0, by looking at the joint spectrum of the biphoton state. From Equation 6.17
we note that the necessary and sufficient condition for the absence of interference
is: ∫∫

dω3dω4
(
φ∗(ω3, ω4)φ(ω4, ω3) + c.c.

)
= 0 (6.18)

This conditions corresponds to an equal probability of the two photons exiting
from the same output and the two photons exiting from different outputs (i.e.
Pc(τ = 0) = 1/2). From the previous equation we can derive a sufficient but not
necessary condition for the absence of interference:

|φ(ω3, ω4)φ(ω4, ω3)| = 0 (6.19)

which means that, if the joint spectrum of the biphoton state has no overlap with
its symmetric with respect to the principal diagonal (ω+ axis), the interference
cannot occur.

On the other hand, a sufficient and necessary condition for perfect bunching
(i.e. Pc(τ = 0) = 0) is that the joint spectrum of the biphoton state is mirror
symmetric over the entire frequency range:

φ(ω3, ω4) = φ(ω4, ω3) (6.20)

This condition can be satisfied by either a frequency entangled state or a separable
state. Let us consider two examples to better clarify:

• a frequency separable state centered along the degeneracy would lead to a
perfect bunching;
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• an anti-correlated state, stretched along the ω− axis, with a mirror symmetric
spectrum, would also lead to a perfect bunching.

In conclusion a perfect bunching proves that the biphoton state has a perfectly
symmetric joint spectrum, but it does not give information about the frequency
entanglement.

In the case of a mirror symmetric JSA, the HOM coincidence probability (Equa-
tion 6.17) becomes the Fourier Transform of the JSI along ω− = ω3 − ω4:

Pc(τ) = 1
2 −

1
2

∫∫
dω3dω4|φ(ω3, ω4)|2ei(ω4−ω3)τ (6.21)

Therefore, the shape of the interferogram is governed by the shape of the JSI: a
Gaussian JSI gives rise to a Gaussian dip, while a sinc2 shaped JSI gives rise to a
triangular dip. In the next paragraph we will analyze extensively the link between
the JSA and the HOM interferogram, in the case of a Gaussian pump beam.

Coming back to the general analysis of Equation 6.17, we note that the neces-
sary and sufficient condition for perfect anti-bunching (i.e. Pc(τ = 0) = 1) is that
the biphoton spectrum is anti-symmetric over the whole frequency range:

φ(ω3, ω4) = −φ(ω4, ω3) (6.22)

Contrary to the case of perfect bunching, a frequency separable state (e.g. two non-
entangled single photons) cannot give anti-bunching in any way. This property can
be easily demonstrated analytically by considering two independent single photons
and showing that Pc(τ = 0) ≤ 1/2 [237]. Therefore, anti-bunching Pc > 1/2 at
τ = 0 is a signature of entanglement of the biphoton state [238].

6.2.2 Gaussian phase-matching function
So far we have analyzed the coincidence probability, Equation 6.17, from a general
point of view. Here we introduce the specific biphoton state emitted by our source.
As we have seen in section 2.2, under our experimental conditions, the JSA is
separable along the ω+ and ω− directions:

φ(ω3, ω4) = χΓ PM(ω−) φspectral(ω+) (6.23)

where, for the moment, we neglect the Fabry-Pérot modulation induced by the
waveguide facet reflectivity. Substituting the above expression in the HOM coin-
cidence probability (Equation 6.17) and changing the integration variables form
ω3, ω4 to ω+, ω− yields:

Pc(τ) =1
2 −

1
2 |χΓ|2

∫
dω+|φspectral(ω+)|2

× Re
[∫

dω−PM∗(−ω−)PM(ω−) e−iω−τ
] (6.24)

By plugging in the normalization condition we obtain:

Pc(τ) =1
2 −

1
2

Re
[∫

dω− PM∗(−ω−)PM(ω−) e−iω−τ
]

∫
dω− |PM(ω−)|2

(6.25)
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where we note that the two-photon interference is governed only by the phase-
matching function, which is directed along ω−.

In order to illustrate this result, we now consider a Gaussian pump beam of
waist wz impinging on the waveguide with an angle θ; we refer to Figure 2.1. The
resulting phase-matching function, if the waist wz is smaller than the waveguide
length L, is given by Equation 5.9:

PM(ω−) =
√
πwz exp

−
ω− − ω(0)

−

∆ω−

2
 (6.26)

where ∆ω− = 2v̄g/wz is the phase-matching width and ω(0)
− = ωp(sin θ−sin θdeg)v̄g/c

is its central position on the ω− axis. By inserting this phase-matching function
into Equation 6.25 the coincidence probability becomes:

Pc(τ) = 1
2 −

1
2 exp

[
−
(
τ

∆τ

)2
]

exp

−2
 ω

(0)
−

∆ω−

2
 (6.27)

with ∆τ = 2
√

2
∆ω−

=
√

2wz
v̄g

. When the two photons are degenerate in frequency

(ω(0)
− = 0) the JSA is perfectly mirror symmetric: the HOM interferogram then

features a dip, which reaches zero for τ = 0 and it is described by the first ex-
ponential. In this particular case, the dip has a Gaussian shape of width ∆τ ,
controlled by the pump beam waist wz. Conversely, when the two photons have
different central frequencies (i.e. the JSA is offset from the degeneracy, ω(0)

− 6= 0)
the shape of the dip is preserved but with a reduced visibility, given by the value
of the second exponential in Equation 6.27.

The solid blue curve in Figure 6.2 reports the simulation of the HOM interfer-
ogram for the biphoton state generated by a Gaussian pump beam with a 1 mm
waist, impinging at the degeneracy angle on our source.

Fabry-Pérot cavity effect

In the previous analysis of the HOM interferogram the Fabry-Pérot cavity has
not been considered. The cavity effect modulates the JSA by creating resonance
peaks, which corresponds, in the time domain, to the possibility for the photons
to exit from the cavity after a half-integer or an integer number of round trips.
Here we do not consider the case in which a signal photon exits from the idler side
and viceversa (i.e. after half-integer number of round trips), because we employ
polarizers together with frequency passband filters to select only one interaction,
thus discarding this type of events.

In this configuration, the dashed curve in Figure 6.2 reports the numerically
simulated HOM interferogram for the biphoton state generated by a Gaussian
pump beam with a 1 mm waist, impinging at the degeneracy angle on a 1.9 mm-
long waveguide, considering the Fabry-Pérot effect. The satellite dips at ±40 ps
are due to the interference between a doubly reflected photon (i.e. a photon having
done a complete round trip) and a directly transmitted one. More satellite dips
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Figure 6.2: Numerically simulated HOM interferogram for a biphoton state gen-
erated by a Gaussian pump beam of 1 mm waist, impinging at the degeneracy angle
on a 1.9 mm-long waveguide. Solid blue line: without the Fabry-Pérot cavity effect.
Dashed blue line: with the Fabry-Pérot cavity effect.

are present at integer multiples of the round trip period (outside the plotting
region of Figure 6.2), but, since the probability of higher-order reflections is low,
their amplitude is very weak. Note that these satellite dips are present because
the HOM interference is not resolved in time. If the detectors could distinguish
the directly transmitted photon from the reflected one (i.e. having sufficient time
resolution), the satellite dips would disappear.

We mention that the interpretation given above does not fully take into account
the nature of the HOM interference. Indeed, the interference does not take place
between photons, but between the probability amplitudes related to each possible
path, given that they are indistinguishable. Performing a complete quantum cal-
culation it is possible to show that, depending on the JSA, additional side dips or
peaks may appear at half round trip periods. However, it is possible to show that
in our case, due to the JSA shape of the biphoton state we consider, there are no
satellite dips/peaks at half round trip periods, but only dips at integer round trips
(see Giorgio Maltese’s PhD Thesis [158]).

In the following, the HOM interferograms are calculated by inserting the nu-
merically simulated JSA, which already includes the Fabry-Pérot modulation, into
the HOM coincidence probability (Equation 6.17).

6.2.3 HOM interferogram as a probe of the wavefunction
symmetry

As a conclusion of this section on the study of the behavior of a biphoton frequency
state in a HOM interferometer, we want to recall the coincidence probability cal-
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culated in Equation 6.17:

Pc(τ) = 1
2 −

1
2 Re

[∫∫
dωidωjφ∗(ωj, ωi)φ(ωi, ωj)ei(ωj−ωi)τ

]
(6.28)

This equation establishes a direct link between the HOM interferogram and the
biphoton JSA, allowing to employ the HOM interferometer to directly probe the
biphoton state. In particular, as we have seen, perfect bunching and perfect anti-
bunching effects are related to a mirror symmetric and mirror anti-symmetric JSA,
respectively, properties which depend on both the JSA amplitude and phase. This
enables to go beyond the JSI reconstruction described in chapter 4 and acquire
partial information on the JSA phase.

In this section we have analyzed the HOM interferometer from the point of
view of a frequency entangled biphoton state, however it is possible to infer a more
general behavior. Before the beamsplitter the two photons are distinguishable by
their paths (i.e. the wavefunction spatial part), but when they are mixed by the
beamsplitter they become indistinguishable. Since photons are bosonic particles,
their total wavefunction must be symmetric under particle exchange. Therefore,
if the JSA is anti-symmetric, the spatial part of the wavefunction becomes anti-
symmetric too (anti-bunching behavior), in order to preserve the total symmetry
of the wavefunction. Conversely, if the JSA is mirror symmetric, the spatial part
of the wavefunction becomes symmetric too (bunching behavior).

The explanation above applies also when the symmetry or the anti-symmetry
is associated to degrees of freedom other than frequency: some examples are the
anti-symmetric polarization Bell state

∣∣∣Ψ−〉 = 1√
2

(|HV 〉 − |V H〉) [239] and the
spatial-momentum entangled biphoton states studied in [120], which generate anti-
bunching.

6.3 Connection between the HOM experiment
and the Chronocyclic Wigner function W−

Before moving on to the experimental part we want to recall the Chronocyclic
Wigner function (CWF), introduced in subsection 2.3.1, and show its relation with
the Hong-Ou-Mandel interferometer. This link has been demonstrated by Douce
et al. [206], leading to a generalized version of the HOM experiment, that we will
quickly introduce.

We have seen that, considering a state with a JSA separable in ω+ and ω−:

φ(ωs, ωi) = χΓ PM(ω−) φspectral(ω+) (6.29)

the CWF can be factorized into:

W (ωs, ts, ωi, ti) = |χΓ|2 W+(ω+, t+)W−(ω−, t−) (6.30)
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Figure 6.3: Generalized HOM interferometer. The addition of a frequency shift
Ω allows to probe the Chronocyclic Wigner function.

with ω± = ωs ± ωi and t± = ts ± ti
2 and the two-dimensional CWFs:

W+(ω+, t+) = 1√
2π

∫
dω′+ φspectral(ω+ + ω′+

2 ) φ∗spectral(ω+ −
ω′+
2 ) e−iω′+t+

W−(ω−, t−) = 1√
2π

∫
dω′− PM(ω− + ω′−

2 ) PM∗(ω− −
ω′−
2 ) e−iω′−t−

(6.31)

whereW+(ω+, t+) is governed by the pump spectrum andW−(ω−, t−) by the phase-
matching function.

It is already possible to notice a similarity between W−(ω−, t−) and the HOM
coincidence probability Pc(τ) (Equation 6.17), both being functions of the phase-
matching function. To clarify this link, we now consider the generalized version of
the HOM interferometer proposed in [206]: a device (e.g. an electro-optic modu-
lator) introducing a frequency shift Ω is inserted in the signal arm, in addition to
the standard time delay line in the idler arm, as illustrated in Figure 6.3. With
this arrangement, the coincidence probability becomes:

Pc(Ω, τ) = 1
2 −

1
2

∫
dω− PM(Ω + ω−

2 ) PM∗(Ω− ω−
2 ) e−iω−τ∫

dω− |PM(ω−2 )|2
(6.32)

We notice that Equation 6.31 and Equation 6.32 share the same integral. By
employing the normalization

∫
dω−|PM(ω−/2)|2 = 1 and recalling that τ = ts− ti

and t− = ts − ti
2 we obtain:

W−(Ω, τ) = 1− 2Pc(Ω, 2τ)√
2π

(6.33)

This equation relates the cut of the CWF at ω− = Ω with the HOM interferogram
measured when a frequency shift Ω is inserted between the photons of the pair1.

1In this thesis we plot the Wigner function normalized to 1 and thus the relation with the
HOM coincidence probability becomes: W−(Ω, τ) = 1− 2Pc(Ω, 2τ) .
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Thus, sweeping the frequency shift allows to reconstruct the Wigner Function in
the (Ω, τ) phase space. This generalized version of the HOM experiment provides
an alternative and promising route to probe frequency biphoton states, which does
not require a direct measurement of the JSA phase.

Interestingly, in our particular case, the counter-propagating phase-matching
scheme under transverse pumping enables a simplification of this measurement
procedure. Indeed, as we have already discussed, tilting the pump incidence angle
corresponds to a frequency shift of the JSA along the ω− direction, as the frequency
shifting device does in Equation 6.32. Therefore, by measuring the HOM interfer-
ogram as a function of the pump incidence angle, it is possible to fully reconstruct
the Wigner Function W−(Ω, τ) [240].

To conclude this section it is worth remarking that the usual HOM experiment,
without any frequency shift, gives access to the cut of the CWF at zero frequency
offset:

W−(0, τ) = 1− 2Pc(0, 2τ)√
2π

(6.34)

In the next part of the chapter we focus on this "standard" HOM experiment,
employing frequency symmetric and anti-symmetric states and measuring the cut
of their CWF at zero frequency difference (ω− = 0).

6.4 Experimental HOM interference
As we have seen, the HOM experiment is a powerful tool to probe the biphoton
wavefunction, in particular its symmetry or anti-symmetry with respect to par-
ticle exchange. A first HOM measurement on the symmetric state generated by
our source based on the counter-propagating phase-matching scheme has been per-
formed by a former PhD student Xavier Caillet [134, 241], obtaining a net visibility
V = 85%.

In this section we move a step further by engineering and analyzing two partic-
ular biphoton states: one with a symmetric JSA and one with an anti-symmetric
JSA. By performing a HOM experiment, we experimentally verify the exchange
symmetry of these two states and demonstrate the generation of non-Gaussian
entanglement in the time-frequency phase space.

6.4.1 Experimental JSI
Figure 6.4 reports the experimental reconstruction of the two JSIs cited above: the
first is obtained with a Gaussian pump beam with a flat phase profile while the
second is obtained with a Gaussian beam with a π phase step. The experimental
conditions are the following: the pump beam has a waist wz = 1 mm, it is centered
at λp = 773.15 nm, with 4 ps pulse duration and it impinges on the waveguide
at the degeneracy angle. The states are reconstructed via the fiber spectrograph,
because the SET technique cannot be applied at degeneracy (we refer to chapter 4
for a detailed explanation).

We now focus more in detail on the symmetry of the state with respect to
particle exchange, which is governed by the symmetry of the JSA with respect
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Figure 6.4: Experimental JSIs, reconstructed via a single-photon fiber spectro-
graph, generated by: (a) a Gaussian pump beam with flat phase and (b) a Gaussian
pump beam with π phase step. The pump beam is centered at λp = 773.15 nm,
with 4 ps pulse duration and it impinges at the degeneracy angle. The third column
reports the corresponding simulated phase of the JSA.
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to the diagonal (ω+ direction). Both the JSIs reported in the second column of
Figure 6.4 are symmetric with respect to the diagonal. However, considering also
their phase (whose numerical simulations are reported in the third column), we
notice that the JSA of the state generated by a pump beam with a flat phase
profile (first row) is symmetric and the JSA generated by a pump beam with a π
phase step (second row) is anti-symmetric.

In addition, the spectral function depends only on ω+ = ωs + ωi and thus it is
always symmetric with respect to ω−. Therefore, the parity of the phase-matching
function directly translates to the JSA (see Equation 6.29).

Let us analyze the two situations considered in Figure 6.4 from an analytic
point of view. For both cases the pump beam spatial profile can be written as in
Equation 5.14, considering an incidence angle θ and a phase step ∆ϕ:

φp(z) =



exp
(
− z

2

w2
z

+ i
ω+ sin θ z

c

)
z < 0

exp
(
− z

2

w2
z

+ i
ω+ sin θ z

c
+ i∆ϕ

)
z > 0

(6.35)

From that the phase-matching integral (Equation 5.9) can be split into two terms,
under the assumption L > wz:

PM(ωs, ωi) =
∫ 0

−L/2
dz exp

(
− z

2

w2
z

)
exp

[
−iω+

c

(
sin θ − sin θdeg

)
z − izω−

v̄g

]

+ ei∆ϕ
∫ L/2

0
dz exp

(
− z

2

w2
z

)
exp

[
−iω+

c

(
sin θ − sin θdeg

)
z − izω−

v̄g

]
(6.36)

When pumping at degeneracy and with a change of variable in the first integral
(z → −z) the equation becomes:

PM(ωs, ωi) = f(ωs, ωi) + ei∆ϕf(ωi, ωs) (6.37)

with
f(ωs, ωi) =

∫ L/2

0
dz exp

(
− z

2

w2
z

− izωs − ωi
v̄g

)
(6.38)

From Equation 6.37 we see that for ∆ϕ = 0 the phase-matching function is sym-
metric, and thus the JSA itself is symmetric with respect to particle exchange:

φ(ωs, ωi) = φ(ωi, ωs) (6.39)

On the other hand, for ∆ϕ = π the phase-matching function is anti-symmetric
(PM(ωs, ωi) = −PM(ωi, ωs)), translating in an anti-symmetric JSA under particle
exchange:

φ(ωs, ωi) = −φ(ωi, ωs) (6.40)
In conclusion, we expect the frequency state reported in Figure 6.4a to be

symmetric and thus resulting in a HOM dip at τ = 0 and the one reported in
Figure 6.4b to be anti-symmetric and therefore resulting in a HOM peak at τ = 0.
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Figure 6.5: Experimental setup of our HOM interferometer; focal lengths are
given in millimeters. See text for description.

6.4.2 Experimental setup and results

Figure 6.5 reports a sketch of the experimental setup used to perform the HOM
experiment. The first part is the pump beam shaping stage, which has been already
detailed in chapter 3. After the photon pair generation, the signal and idler photons
are filtered with polarizers (P), in order to select only the V H interaction (signal
TM and idler TE). Then they are collected into optical fibers (in yellow in the
sketch) and sent into a 50:50 fiber beamsplitter. On the signal side, a fibered
motorized delay line adds a tunable time delay τ . By using a half-wave plate
(HWP) on the free-space signal arm and a fibered polarization controller (FPC)
on the idler arm, the polarizations of the two photons are rotated in order to be
parallel.

Prior to detection, two fibered wavelength filters (FF) of 1 nm passband cen-
tered at 1546.3 nm are employed to eliminate eventual luminescence noise. Co-
incidence counts are detected by two SPAD detectors (Id220 by IdQuantique™),
with 25% detection efficiency and 10 µs dead time, and a Time-to-Digital con-
verter (TDC, QuTau from QuTools™). The HOM interferogram is acquired by
monitoring the coincidence detection rate as a function of the time delay τ .

The results of the HOM experiment (raw coincidence counts) are reported in
the first column of Figure 6.6 for both cases ∆ϕ = 0 (situation of first line of
Figure 6.4) and ∆ϕ = π (second line of Figure 6.4). The corresponding numerical
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simulations are presented in the second column of the figure.
We first comment on the situation of a Gaussian pump beam with flat profile.

The experimental HOM interferogram and the corresponding numerical simulation,
reported in the first row of the figure, show a coincidence dip (i.e. two-photon
bunching), confirming the symmetric nature of the biphoton frequency state. The
experimental dip visibility is calculated as:

Vdip = N∞ −N0

N∞
(6.41)

with N∞(N0) the mean coincidence count at long (zero) time delay, obtained by
fitting the HOM interferogram with a modified version2 of Equation 6.27. For this
case we obtain Vdip = 87.5%, using uncorrected coincidence counts. From the same
fit we obtain also the value of dip width ∆τexp = 10.8 ps. This parameter has been
introduced in Equation 6.27 and in case of a Gaussian phase-matching function

can be calculated as ∆τ =
√

2v̄g
∆ω−

= 14.7 ps for a 1 mm-waist pump beam. The
difference between the experimental value and the theoretical one is due to the
fact that the waveguide, which is 1.9 mm long, acts as a spatial filter on the 1
mm-waist pump beam and the phase-matching function is not purely Gaussian,
but it is given by the convolution of a Gaussian and a sinc functions.

We now comment on the case of the pump beam with a phase step ∆ϕ = π. The
HOM interferogram and the corresponding numerical simulation, reported in the
second row of Figure 6.6, feature a coincidence peak (two-photon anti-bunching)
demonstrating the anti-symmetric nature of the biphoton frequency state. The
raw visibility is V = 77%, calculated as:

Vpeak = N0 −N∞
N∞

(6.42)

where N∞(N0) have the same meaning as before. The two side dips at ±12 ps are
due to the specific shape of the joint spectrum, in particular to the zero probability
region between the two lobes of the JSA, see Figure 6.4.

As a side note, we remark that the coincidence probability for long time delay
(τ > 20 ps) slightly decrease from 0.5. This effect is due to the Fabry-Pérot side
dips situated at ±40 ps, as already illustrated in Figure 6.2.

Comments on the HOM experiment visibility

The reported visibilities, of Vdip = 87.5% for the dip and Vpeak = 77% for the peak,
are lower than the theoretical value 100%. In this paragraph we detail the possible
limiting factors, backing up our analysis by means of some numerical simulations.

A first factor is the pump incidence angle θ, which determines the wavelength of
the signal and idler photons. A small offset from the degeneracy angle θdeg induces a
frequency shift, making the two photons slightly distinguishable. In the experiment
the spectral degeneracy is checked by using dispersive fibers and we estimate a
typical precision of 50 pm (wavelength difference between signal and idler photons),

2The fit function takes into account a non-unitary visibility and a possible linear offset.
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Figure 6.6: (a) Experimental HOM interferogram and (b) corresponding numer-
ical simulation for the state generated by a Gaussian pump beam with ∆ϕ = 0
(first row) and ∆ϕ = π (second row). The experimental data are raw coincidence
counts and the errorbars are calculated assuming a Poissonian statistics.
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Figure 6.7: Experimentally measured phase (in red) and intensity (in blue) spatial
profiles of the pump beam for the case (a) ∆ϕ = 0 and (b) ∆ϕ = π. The linear
phase gradient superimposed to the π phase step in (b) is due to the shaping
technique and cannot be eliminated. However, since it only causes a frequency
shift along the ω− direction, which can be corrected by tilting the pump beam, it
does not affect the HOM interferogram.

corresponding to ≈ 10% of the bandwidth of the SPDC photons. Taking into
account this factor into our numerical simulations, we estimate a corresponding
visibility decrease of 7% for both cases (∆ϕ = 0 and ∆ϕ = π).

In addition to our imperfect setting of the pump angle, also the source modal
birefringence plays a role in the spectral distinguishability. Indeed, even when
signal and idler central frequencies are equal, their spectral overlap is not perfect
due to a slight displacement (15 pm in wavelength) between their Fabry-Pérot
resonances. This leads to an additional visibility decrease of 1.5%.

A second series of factors is related to the spatial properties of the pump beam.
In order to evaluate these effects we perform a numerical simulation of the HOM
interferogram by taking into account the pump intensity and phase spatial profile
experimentally measured by the wavefront analyzer, reported in Figure 6.7. The
experimental imperfections lead to a visibility drop of 0.5% for the flat phase and
of 8% for the π phase step. Finally, the imprecision in the longitudinal centering
of pump beam on the waveguide, which is about 200 µm in our setup, leads to an
additional 2% visibility drop for both cases.

By taking into account all these factors simultaneously (see Table 6.1), we
obtain an expected dip visibility Vdip = 90% and an expected peak visibility
Vpeak = 81.5%, which have to be compared to the corresponding experimental
values of 88% and 77%. The experimental and expected values are close enough
and the remaining 2-5% visibility drop could be due to a slight polarization distin-
guishability between the two photons, which has not been taken into account into
the simulations.

This analysis shows that, in order to increase the HOM visibility for future
experiments, we should increase the spectral resolution to adjust the degeneracy
condition, gaining up to 7%. This could be done by improving the sensibility of our
fiber spectrograph, by using longer DCF spools or superconductive detectors that
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Visibility drop
Factor Flat phase profile π phase step

Incidence angle offset 7% 7%
Modal birefringence 1.5% 1.5%

Pump spatial profile imperfections 0.5% 8%
Pump beam longitudinal position 2% 2%

Total expected visibility 90% 81.5%
Experimental visibility 88% 77%

Table 6.1: Visibility limiting factors, estimated through numerical simulations.

have a shorter jitter, as already commented in section 4.1. On the other hand, im-
plementing a feedback loop on the SLM to correct the pump spatial imperfections
could allow an additional 8% gain in the π phase step case.

Source Brightness

We now evaluate the brightness of our source in order to compare it with other
similar devices. The measured coincidence rate in the HOM experiment at long
time delay is about 50 Hz and, since the coincidences are detected after the HOM
beamsplitter only half of them are measured3. Therefore the coincidence rate is
C = 100 Hz. On the other hand, the single-count rate is S = 35 kHz. From these
values we can deduce the internal pair production rate (PPR) of the source [63]:

PPR = S2

C
≈ 12 MHz (6.43)

and the total collection efficiency [63]:

ηtot = C

S
= 0.3% (6.44)

The infrared guided modes have transmission losses α ≈ 0.5 cm-1, so the sample
transmission is 90%. Therefore, the pair production rate at the chip output is
approximately 11 MHz.

The time-averaged pump power incident on the sample is 150 mW and only one
third of it is coupled inside the vertical microcavity4, resulting in 50 mW employed
in the down-conversion. Therefore, the source brightness is approximately 220
kHz/mW, which is, for comparison with a concurrent work, two orders of magnitude
higher than the brightness of the PPKTP waveguide source developed by Graffitti
et al.[65] to generate anti-symmetric biphoton frequency states.

3In absence of the HOM effect (i.e. τ � ∆τ) the photons have 50% probability of exiting
from the same port and thus only one half of the coincidences are measured.

4The microcavity transmission is 50% and the overlap between the sample and the pump
beam spatial profile is 60%, as we have seen in subsection 4.1.1
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Figure 6.8: Numerical simulated Chronoclyic Wigner Function W− of the bipho-
ton state generated by (a) a Gaussian pump beam with flat phase (∆ϕ = 0) and
(b) by a Gaussian pump beam with a phase step (∆ϕ = π). The dashed lines
indicates the cuts at ω− = 0, measured by HOM interference.

6.4.3 Particle exchange symmetry and non-Gaussian en-
tanglement

The measured HOM bunching and anti-bunching reported in Figure 6.6, experi-
mentally demonstrate the symmetry and the anti-symmetry with respect to particle
exchange of the respective biphoton states. In addition, anti-bunching for τ = 0
is a direct signature of entanglement [238]; indeed a separable state always has
Pc(τ = 0) ≤ 0.5 (see subsection 6.2.1) [237]. However, we anti-bunching is only
a sufficient but not necessary condition for frequency entanglement. Indeed, both
quantum states of Figure 6.4 are not separable and therefore frequency entangled,
but only the anti-symmetric JSA is certified by the HOM experiment as a frequency
entangled state.

In section 6.3 we have shown that the HOM interferogram is directly linked
to the cut of the chronocyclic Wigner function W− at ω− = 0, as expressed by
Equation 6.34. Figure 6.8 reports the numerically simulated CWF W−, for the
case of a Gaussian pump beam with flat phase (∆ϕ = 0, Figure 6.8a) and the case
of a Gaussian pump beam with π phase step (∆ϕ = π, Figure 6.8b). The black
dashed lines highlight the cut at ω− = 0 that is related to the HOM interferogram.
The coincidence peak in the HOM interferogram corresponds to a negative value
of the Wigner function W−, which identifies the corresponding state as entangled
with non-Gaussian statistics in the time-frequency phase space [206, 242].

Let us now analyze the quantum states focusing on particle exchange. It is
interesting to note that the two cases (∆ϕ = 0 and ∆ϕ = π) correspond respec-
tively to the behavior of independent bosons (bunching) and independent fermions
(anti-bunching). In addition, it is possible to pass from a situation to the other
just by modifying the phase mask addressed on the SLM, without acting on the
source itself. This flexible control could be harnessed to study the effect of ex-
change statistics in various quantum simulation problems [86, 110, 226] with a
chip integrated platform.
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6.5 Conclusions
In this chapter we have moved a step further in the engineering and the character-
ization of the states generated by our counter-propagating source, by employing a
Hong-Ou-Mandel interferometer.

First of all, we have analytically studied the behavior of a biphoton frequency
state in the interferometer, showing when bunching and anti-bunching occur. We
have then identified the relation between the HOM interferogram and the Chro-
cyclic Wigner Function W−, illustrating how a coincidence peak (two-photon anti-
bunching) is associated with a negative value of W−.

Then, by sending in a HOM interferometer either a symmetric frequency state,
generated by pumping the source with a Gaussian beam with flat phase, or an anti-
symmetric frequency state, generated by a Gaussian pump beam with a π phase
step, we have demonstrated a flexible control over their exchange statistics. Indeed,
in the first case the photons bunch together, similarly as independent bosons, while
in the second they anti-bunch, similarly as independent fermions. Moreover, the
established linked between the HOM interferogram and the Wigner function has
allowed to identify the anti-symmetric frequency state as a non-Gaussian entangled
state in the time-frequency phase space.

Together with the results described in the previous chapter, these results demon-
strate a flexible control over the frequency entanglement and particle statistics of
photon pairs, with a chip-integrated source, directly at the generation stage, at
room temperature and telecom wavelength. These features are important in view
of practical and scalable applications for quantum information technologies. In par-
ticular, these results could be harnessed to study the effect of exchange statistics
in various quantum simulation problems [86, 110, 226] with a monolithic plat-
form, and to improve communication and computation protocols making use of
anti-symmetric high-dimensional quantum states [227, 228].

Moreover, more complex high-dimensional entangled states could also be real-
ized in the employed device by a further engineering of the pump beam [240]. In
particular, in the next chapter we will show how the source characteristics can be
exploited to generate a biphoton state entangled in the polarization/frequency hy-
brid degree of freedom. Furthermore, we are currently investigating the possibility
of generating biphoton states with anyonic statics, which represents a generaliza-
tion of fermionic and bosonic statics [86, 243].

The work presented in this chapter and in chapter 5 has been published in [244].
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So far we have studied the generation of frequency entangled photon pairs
and we have presented some techniques to engineer their frequency correlations
and symmetry properties. In this chapter we move a step further and employ
the counter-propagating source to generate hybrid polarization/frequency (HPF)
entangled states. This particular state is obtained by pumping the source at θ = 0°
(normal incidence) and by keeping both nonlinear interactions.

First we will show that, when a HPF entangled state is analyzed in only one
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degree of freedom (DOF), frequency or polarization, it collapses into a mixed state,
exhibiting no entanglement. However, we will also show that the two DOFs can
be decoupled, obtaining either a polarization Bell state or a two-color entangled
state.

In the second part of the chapter, we will employ a HOM interferometer to
directly quantify the entanglement in the frequency/polarization hybrid DOF. In
particular, we will extensively analyze the effect that the Fabry-Pérot cavity, cre-
ated by the source facet reflectivity, has on the HPF entangled states.

7.1 Introduction
As we will show in the following section, a HPF entangled state exhibit simulta-
neous but not independent entanglement in the polarization and frequency DOFs.
However, it is possible to project it onto a polarization Bell state or a two-color
entangled state, providing our sources with a high level of versatility. For this
reason, in this section we introduce briefly these two types of entangled states and
the main techniques to generate them, with a particular attention to integrated
sources.

7.1.1 Polarization Bell states
Thanks to its easy generation and manipulation, polarization has been one of the
first DOFs to be exploited in quantum optics experiments. For example, it has
been employed in the first experimental violation of the Bell-CHSH inequality [1,
245], performed by Aspect et al. [85] in 1982.

For two polarization qubits a maximal violation of the Bell-CHSH inequality is
provided by the so-called Bell states:

∣∣∣Ψ±〉 = |H〉A |V 〉B ± |V 〉A |H〉B√
2∣∣∣Φ±〉 = |H〉A |H〉B ± |V 〉A |V 〉B√
2

(7.1)

where H and V stand for horizontal and vertical polarization respectively, while A
and B label the photons (e.g. using their spatial mode). Such states constitute a
fundamental building block for quantum information [246] and quantum commu-
nication (e.g. quantum teleportation [247] or quantum key distribution protocols
[248]).

Polarization Bell state generation

The early quantum optics experiments exploited atomic cascades in calcium to
generate polarization entangled photon pairs [85]. In the 1980s and 1990s new
sources with higher flux of photon pairs were developed employing parametric pro-
cesses (i.e. SPDC) in bulk crystals [249–251], which however required external
components (e.g. birefringence compensator or Sagnac interferometer) to obtain
maximally entangled states. This issue has been overcome via the engineering of
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integrated nonlinear sources, both SPDC- and SFWM-based, which can directly
generate maximally entangled polarization Bell states, without requiring any com-
pensation stage [57, 58, 252, 253]. On the other hand, quantum dot-based systems
can directly generate triggered polarization entangled Bell pairs by exploiting the
biexciton cascade process. These systems, working at cryogenic temperatures,
require a high level of control and engineering to achieve a high degree of entan-
glement due to phenomena, such as the fine structure splitting [31–33].

The counter-propagating source studied in this thesis enables the direct gen-
eration of polarization Bell states, by exploiting both nonlinear interactions in a
double pump beam configuration, as demonstrated in [57].

7.1.2 Two-color entangled states
Frequency is a continuous degree of freedom of photons which can be employed to
generate quantum states in a high-dimensional Hilbert space. Nevertheless, it is
also possible to discretize this degree of freedom, when the frequency modes have
a characteristic width that is small compared to their relative separation. In this
way, we can define a set of orthogonal modes, which can be employed to describe
a frequency-bin state.

The advantage of discrete frequency states is twofold. On one hand, the dis-
cretization allows to generate quantum states with d levels (qudits) and, even if the
state does not exhibit entanglement, many quantum information tasks can benefit
from this: e.g. clock syncronization [254] and quantum key distribution [107].

On the other hand, when the quantum state is composed of more than one
photon, entanglement among their discrete frequency modes becomes an additional
valuable resource that can be exploited to increase the data capacity and the
robustness of quantum protocols [122, 242, 255].

One of the simplest discrete frequency entangled states is the frequency Bell
state |Ψ〉, which has dimension d=2:

|Ψ〉 = 1√
2
(
|ω1〉A |ω2〉B + eiϕ |ω2〉A |ω1〉B

)
(7.2)

where |ω1〉 and |ω2〉 are well separated single-photon frequency bins. The two
photons of this state are in a coherent superposition of two frequencies, as in a
polarization Bell state where they are in a superposition of two orthogonal polar-
izations. For this reason, the state is also called two-color entangled state.

Two-color entanglement generation

Several experimental schemes have been implemented to generate two-color entan-
gled states. The first proposals employed SPDC in bulk crystals to generate photon
pairs having a continuous frequency spectrum; a filtering stage was placed before
the detection in order to obtain well defined frequency bins [256, 257]. More re-
cently, brighter sources have been demonstrated by using periodically poled crystals
in crossed configurations [235, 258], Sagnac loops [259], double passage configura-
tions [224] or by transferring entanglement from the polarization domain to the
frequency one [260].
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The first integrated photonic device emitting two-color entangled states has
been developed by Silverstone et al. [94]. The device exploits the silicon-on-
insulator technology and combines two four-wave mixing sources in an interferom-
eter with a reconfigurable phase shifter, allowing to generate two-color entangled
states. The great achievement of this work is the ability to obtain quantum inter-
ference between photons generated in different sources; however the device suffers
from a low efficiency. On the other hand, integrated sources exploiting the process
of parametric down conversion in a counter-propagating phase matching scheme
have been pointed out as interesting candidates to efficiently generate two-color
entangled states [147, 261] at higher rate, but no experimental demonstration has
been achieved so far.

7.2 Hybrid polarization/frequency (HPF) entan-
glement generation

We now illustrate how our counter-propagating source can emit entangled states
in the polarization/frequency hybrid degree of freedom, focusing the attention on
the fundamental role played in this process by the device form birefringence.

As we have already seen before, the source, thanks to its counter-propagating
geometry, has two possible solutions to the phase-matching equation, which differ
by the photon polarization. We have called interaction HV the one with a hori-
zontally polarized signal photon and a vertically polarized idler photon, while we
have called interaction V H the opposite case (signal V and idler H), where signal
and idler stand for the propagation direction (see chapter 1).

The photon central frequency for both interactions can be calculated from the
phase-matching and energy conservation equations. Figure 7.1 reports the solutions
as a function of the the pump incidence angle, showing the frequency accordability
of the source. From this figure we see that the two interactions, reported with
solid lines (HV ) and dashed lines (V H), have a relative frequency shift and do
not overlap. This is due to the form birefringence of the waveguide, caused by its
layered structure and by the core aspect ratio, as we have commented in section 1.4.
By contrast, in a non-birefringent structure the two interactions would be frequency
degenerate, but they would always emit perpendicularly polarized photons. From
our numerical simulations we expect a form birefringence of ∆n = nH−nV = 0.0125
for the fundamental twin-photon modes. Even if this value is small (∆n/n = 0.4%)
it has a considerable effect on the source.

The wavelength shift between the two interactions can be calculated from the
phase-matching and energy conservation equations (section 1.4) and it does not
depend on the pump incidence angle but only on the modal birefringence:

∆λ = λ2 − λ1 = 4λp
nH − nV
nH + nV

≈ 2
3λp(nH − nV) (7.3)

where λp is the pump central wavelength and we have approximated nH +nV ≈ 6,
which is reasonable given the modal refractive index values (reported in section 1.4).

Inserting the value of the birefringence, derived from our numerical simulation,
and considering a pump at λp = 773.15 nm (the resonant wavelength of the em-
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Figure 7.1: (a) Sketch of the counter-propagating source, highlighting the two
nonlinear interactions. (b) Numerical simulation of the angular dependency of the
signal (red) and idler (blue) wavelength for the interaction HV (solid lines) and
the interaction V H (dashed lines), for a pump wavelength λp = 773 nm. The
black dashed lines at 0° indicates the position for which the two interactions are
symmetric, generating photons of wavelengths λ1 and λ2.

ployed sample) we obtain a wavelength shift of about 6.4 nm. This shift is one
order of magnitude bigger than the width of the typical JSA of each independent
interaction (around 0.5 nm) and thus the two interactions do not overlap.

7.2.1 The emitted quantum state
In the previous chapters we have always considered the quantum state emitted
through only one interaction, filtering out the other one (using both frequency
filters and polarizers). Here we analyze the situation when both interactions are
kept. The wavefunction can be written as follows:

|Ψ〉 =
∫∫

dω1dω2
[
φV H(ω1, ω2)â†s,V (ω1)â†i,H(ω2) + φHV (ω1, ω2)â†s,H(ω1)â†i,V (ω2)

]
|0〉

(7.4)
where φHV (ω1, ω2) (φV H(ω1, ω2)) is the JSA for the interaction HV (VH ). Here
the subscripts "signal" (s) and "idler" (i) still indicate the direction of the photons,
while ω1 and ω2 do not because we have to take into account both interactions and
therefore there are two possible frequencies for each direction.

Equation 7.4 represents the wavefunction of a photon pair that can be created
in one interaction or in the other, but not in both simultaneously. Indeed, since we
are in a low pump regime, we neglect multiple photon pair generation (e.g. a double
pair in one interaction or one pair in each interaction). Therefore, the quantum

149



Chapter 7. Direct generation of entanglement in a hybrid degree of
freedom

state represents a photon pair which is created in the coherent superposition of
two possible processes (interaction HV and interaction V H).

From the previous considerations and taking into account that the â and â†

operators act on orthogonal polarization modes (H and V ), the normalization
condition becomes:∫∫

dω1dω2
[
|φHV (ω1, ω2)|2 + |φV H(ω1, ω2)|2

]
= 1 (7.5)

Note that now it is the sum of the squared modulus of the JSA of the two interac-
tions that is normalized to one and not the single JSA.

If now we consider a pump beam perpendicular to the source (θ = 0°), the two
interactions will be symmetric with respect to the degeneracy wavelength, as shown
in Figure 7.1 by the black dashed lines. Indeed in this situation, the interaction
HV has its maximum at (λ1, λ2) while the interaction VH has its maximum at the
symmetric position (λ2, λ1). In addition, assuming that φHV and φV H have the
same dependency on (ωs, ωi), we have φV H(ω1, ω2) = φHV (ω2, ω1) so we can use
the same function φ(ω1, ω2) for both interactions:

|Ψ〉 =
∫∫

dω1dω2
[
φ(ω1, ω2)â†s,V (ω1)â†i,H(ω2) + φ(ω2, ω1)â†s,H(ω2)â†i,V (ω1)

]
|0〉
(7.6)

Figure 7.2 reports the simulated JSI of the generated state considering both
interactions and a pump beam perpendicular to the device. We see that the two
interactions produce separated peaks which are symmetric with respect to wave-
length degeneracy. The modulation of the peaks visible in the figure is due to the
Fabry-Pérot effect arising from the facet reflectivity (c.f. subsection 2.2.5).

If we limit our description to the spectral part of the wavefunction, we can
deduce that the state is frequency entangled; indeed the JSA has a Schmidt num-
ber K = 2, meaning that two orthogonal frequency modes are involved, as in a
two-color entangled state. However in our case, described by Equation 7.6, since
the interactions can be distinguished by the photon polarization, the state does
not exhibit two-color entanglement, but a more complex form of hybrid entangle-
ment between the frequency and polarization DOFs, as we shall see in the next
paragraph.

7.2.2 Analysis of the HPF entangled state
In order to obtain physical insight into the generated HPF entangled state (Equa-
tion 7.6), we now approximate the JSAs with Dirac deltas, φ(ω1, ω2) = δ(ω1 −
ω0

1, ω2 − ω0
2), which is a reasonable assumption since the two frequency modes are

well separated. The wavefunction thus becomes:

|Ψ〉 ∼
∣∣∣V, ω0

1

〉
s

∣∣∣H,ω0
2

〉
i
+
∣∣∣H,ω0

2

〉
s

∣∣∣V, ω0
1

〉
i

(7.7)

where the first ket represents the signal photon and the second the idler photon.
This state is maximally entangled in the hybrid polarization/frequency degree of
freedom, i.e. in the base {V, ω0

1}, {H,ω0
2}.
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Figure 7.2: Numerical simulation of the expected JSI for the quantum state
described by Equation 7.6, taking into account the Fabry-Pérot effect. The pump
wavelength is λp = 773.15 nm and the pump beam waist is wz = 0.5 mm with a
flat phase profile.

On the other hand, when only the frequency or the polarization is measured
the state collapses into a mixed state, which does not exhibit entanglement. Let
us show this behavior using the density matrix formalism.

The density operator corresponding to the quantum state reported in Equa-
tion 7.7 is:
ρ̂ = |Ψ〉〈Ψ| ∼

∣∣∣V, ω0
1

〉
s

∣∣∣H,ω0
2

〉
i

〈
V, ω0

1

∣∣∣
s

〈
H,ω0

2

∣∣∣+ ∣∣∣V, ω0
1

〉
s

∣∣∣H,ω0
2

〉
i

〈
H,ω0

2

∣∣∣
s

〈
V, ω0

1

∣∣∣
+
∣∣∣H,ω0

2

〉
s

∣∣∣V, ω0
1

〉
i

〈
V, ω0

1

∣∣∣
s

〈
H,ω0

2

∣∣∣+ ∣∣∣H,ω0
2

〉
s

∣∣∣V, ω0
1

〉
i

〈
H,ω0

2

∣∣∣
s

〈
V, ω0

1

∣∣∣
(7.8)

If the frequency is measured but the polarization is not, we have to trace over the
latter. This leads to:

ρ̂ ∼
∣∣∣ω0

1

〉
s

∣∣∣ω0
2

〉
i

〈
ω0

2

∣∣∣
s

〈
ω0

1

∣∣∣+ ∣∣∣ω0
2

〉
s

∣∣∣ω0
1

〉
i

〈
ω0

1

∣∣∣
s

〈
ω0

2

∣∣∣ (7.9)

which is a mixed state.
The same thing occurs if we measure polarization instead of frequency. In

conclusion, the quantum state described by Equation 7.7 is entangled in the hy-
brid polarization/frequency degree of freedom, but when only one of the DOFs is
observed the state collapses in a mixed state. Thus, the state exhibits simulta-
neous but not independent entanglement. Such type of entangled state has been
previously reported in the literature [262] and called hypoentangled state.

It is useful to compare our state to hyperentangled states [263], which display
simultaneous and independent entanglement, measurable in each degree of freedom.
For polarization and frequency, the strongest hyperentangled state consists of a
Bell-type entangled state in each DOF combined in a tensor product, e.g.:∣∣∣ψhyper

〉
∼
(
|H〉 |V 〉+ |V 〉 |H〉

)
⊗
(∣∣∣ω0

1

〉 ∣∣∣ω0
2

〉
+
∣∣∣ω0

2

〉 ∣∣∣ω0
1

〉)
(7.10)

When one of the two DOFs is ignored (i.e. tracing over it) the other is left in a max-
imally entangled state: the entanglement in the different DOFs is independently
measurable.
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7.2.3 Recovering frequency entanglement
We now show that starting from a HPF entangled state it is possible to recover
the frequency entanglement by erasing the polarization information. This can be
easily done by probabilistically projecting the polarization of both photons onto
diagonal directions using polarizers at 45°.

Starting from the wavefunction, Equation 7.6, the polarizers transform the
creation and annihilation operators in the following way:

â†s/i,H/V (ω)→ 1√
2
â†s/i,D(ω) (7.11)

where D indicates the diagonal polarization direction. Thus the wavefunction
becomes:

|Ψ〉 = 1
2

∫∫
dω1dω2

[
φ(ω1, ω2)â†s(ω1)â†i (ω2) + φ(ω2, ω1)â†s(ω2)â†i (ω1)

]
|0〉 ⊗ |D〉 |D〉

(7.12)
which is now a frequency entangled state in which both photons are diagonally
polarized; of course this operation leads to the loss of 75% of the produced photon
pairs.

By approximating the JSAs with Dirac deltas the state can be written as fol-
lows:

|Ψ〉 ∼
∣∣∣ω0

1

〉
s

∣∣∣ω0
2

〉
i
+
∣∣∣ω0

2

〉
s

∣∣∣ω0
1

〉
i

(7.13)
which is a two-color entangled state.

7.2.4 Recovering polarization entanglement
On the other hand, it is also possible to recover the polarization entanglement by
separating the frequency and polarization DOFs.

The scheme that we present has been proposed in 2003 by Kim et al. [264].
As illustrated in Figure 7.3, once the photons of the pair are created, they are
sent with equal-length paths to a polarizing beamsplitter (PBS). A half wave plate
(λ/2) is placed in the idler arm to rotate the polarization by 90° and ensure that the
photons have the same polarization when they pass through the PBS. Horizontally
polarized photons are transmitted while vertically polarized ones are reflected (as
shown in the insets of the figure). Applying this transformation to the emitted
state, Equation 7.6, yields:

|Ψ〉 =
∫∫

dω1dω2
[
φ(ω1, ω2)â†4,V (ω1)â†3,V (ω2) + φ(ω2, ω1)â†3,H(ω2)â†4,H(ω1)

]
|0〉
(7.14)

where 3 and 4 are the PBS outputs, as illustrated in Figure 7.3. By changing the
integration variables in the second term we can factorize the JSA:

|Ψ〉 =
∫∫

dω1dω2 φ(ω1, ω2)
[
â†4,V (ω1)â†3,V (ω2) + â†4,H(ω1)â†3,H(ω2)

]
|0〉 (7.15)

and thus the frequency and polarization DOFs have been decoupled. If we approx-
imate the JSA with a Dirac delta, the state becomes a polarization entangled Bell
state with non-degenerate frequencies:

|Ψ〉 ∼
(
|H〉3 |H〉4 + |V 〉3 |V 〉4

)
⊗
∣∣∣ω0

2

〉
3

∣∣∣ω0
1

〉
4

(7.16)
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Figure 7.3: Scheme to recover polarization entanglement from the HPF entangled
state reported in Equation 7.6. The insets illustrate the behavior of vertically and
horizontally polarized photons in the polarizing beamsplitter.

which is a
∣∣∣Φ+

〉
Bell state where the photon in output 3 has frequency ω0

2 and the
one in output 4 has frequency ω0

1. Contrary to the previous case, this technique
has no intrinsic losses.

Utilization of a non-birefringent waveguide

We mention here an alternative solution to generate a polarization Bell state,
which is to design a waveguide without modal birefringence. In this case the two
interactions would be frequency degenerate for any pump incidence angle and thus
the source would directly emit polarization Bell states. In particular, if the pump
is at normal incidence the two photons would have the same frequency, while
otherwise the frequencies are different.

Figure 7.4 reports the expected modal birefringence of the device as a function
of the ridge width, calculated through numerical simulations. We observe that
for ridge widths above 3 µm the birefringence is almost constant, while when
the ridge width is reduced the birefringence decreases and eventually becomes
negative (∆n = nH − nV changes sign). For a 1.18 µm-wide ridge we obtain a
non-birefringent waveguide.

7.3 Theory of a HPF entangled state in a HOM
interferometer

In the previous section we have shown that the HPF entangled state produced
by our source collapses into a mixed state when only one of the two DOFs is
observed. Nonetheless, the entanglement of this particular state can be efficiently
characterized by means of a Hong-Ou-Mandel interferometer, as we shall show in
this section.
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Figure 7.4: Numerical simulations of the source modal birefringence ∆n = nH −
nV as a function of the ridge width.

Before starting the analysis we have to differentiate two cases, depending on
the source facet reflectivity. Indeed, as we already pointed out, the source facets
have a non-zero modal reflectivity that creates a longitudinal Fabry-Pérot cavity.
As we will see, this cavity has a non negligible effect on the emitted quantum state
and on the resulting HOM interference.

Thus, in the following we will study first a counter-propagating source with-
out the Fabry-Pérot cavity effect (situation that could be obtained with an anti-
reflection coating applied to the facets) and then one with the Fabry-Pérot cavity
effect (as in the case of a non-coated device).

7.3.1 HPF entangled state without Fabry-Pérot effect
In this section we consider the state emitted by a counter-propagating source and
we calculate the HOM coincidence probability, without taking into account the
Fabry-Pérot cavity effect. This situation can be easily obtained by depositing an
anti-reflection coating on the waveguide facets, as we shall see at the end of this
chapter.

Figure 7.5 is a sketch of the setup that we consider: the biphoton state is
emitted by the source through both interactions, hence we have both polarizations
in either the signal or the idler side. Then the idler photon is delayed with respect
to the signal one and eventually the two are mixed in a 50:50 beamsplitter (BS).
The figure reports the notation we use in the following calculations.

We start from the emitted state, described by Equation 7.4, where we do not
make any assumption on the JSA of each interaction, written as φV H(ω1, ω2) and
φHV (ω1, ω2). Considering the delay line, placed in the idler arm, the wavefunction
becomes:

|Ψ〉 =
∫∫

dω1dω2
[
φV H(ω1, ω2)â†s,V (ω1)â†i,H(ω2)e−iω2τ+

φHV (ω1, ω2)â†s,H(ω1)â†i,V (ω2)e−iω2τ
]
|0〉

(7.17)

154



7.3. Theory of a HPF entangled state in a HOM interferometer

Figure 7.5: Sketch of a Hong-Ou-Mandel interferometer for a counter-propagating
source emitting photons through both interactions. The cavity effect is not con-
sidered. The labels refer to the subscripts employed in the calculation.

where τ is the delay generated by the delay line.
We now apply the beam-splitter transformation to the creation and annihilation

operators, as detailed in section 6.1:

â†1(ω)→ 1√
2
(
â†3(ω) + iâ†4(ω)

)
â†2(ω)→ 1√

2
(
â†4(ω) + iâ†3(ω)

) (7.18)

where we call 1 the BS input for the signal photon and 2 the input for the idler
photon. 3 and 4 are the two BS outputs. The wavefunction becomes:

|Ψ〉 =1
2

∫∫
dω1dω2[

φV H(ω1, ω2)
(
â†3,V (ω1) + iâ†4,V (ω1)

)(
â†4,H(ω2) + iâ†3,H(ω2)

)
e−iω2τ

+ φHV (ω1, ω2)
(
â†3,H(ω1) + iâ†4,H(ω1)

)(
â†4,V (ω2) + iâ†3,V (ω2)

)
e−iω2τ

]
|0〉
(7.19)

At this point, in order to calculate the coincidence probability at the detectors,
we use the coincidence operator M̂ (introduced in section 6.2). Note that in this
case we also have to consider the polarization degree of freedom: indeed, the â
and â† operators in Equation 7.19 have a polarization dependency. In general, the
coincidence probability will consist of four terms, PHH , PV V , PV H and PHV , but,
in our case, the photons are generated through a type II SPDC process; hence they
have always crossed polarizations. Thus, only the last two terms are non-zero and
the probability of coincidence detection can be written as Pc = PV H + PHV . We
first consider the latter term PHV , which can be derived by employing the operator
M̂HV , namely:

M̂HV =
∫

dω3â
†
3,H(ω3) |0〉 〈0| â3,H(ω3)

∫
dω4â

†
4,V (ω4) |0〉 〈0| â4,V (ω4) (7.20)

155



Chapter 7. Direct generation of entanglement in a hybrid degree of
freedom

By evaluating the expectation value of this operator on the state |Ψ〉 we calculate
the probability of detecting a horizontally polarized photon in detector 3 and a
vertically polarized one in detector 4. The calculation reads:
PHV (τ) = 〈Ψ| M̂HV |Ψ〉 =

〈0| 12

∫∫
dω′1dω′2

[
φ∗V H(ω′1, ω′2)eiω′2τ

(
â3,V (ω′1)â4,H(ω′2)− â3,H(ω′2)â4,V (ω′1)

)
+ φ∗HV (ω′1, ω′2)eiω′2τ

(
â3,H(ω′1)â4,V (ω′2)− â3,V (ω′2)â4,H(ω′1)

)]
∫

dω3â
†
3,H(ω3) |0〉 〈0| â3,H(ω3)

∫
dω4â

†
4,V (ω4) |0〉 〈0| â4,V (ω4)

1
2

∫∫
dω1dω2

[
φV H(ω1, ω2)e−iω′2τ

(
â†3,V (ω1)â†4,H(ω2)− â†3,H(ω2)â†4,V (ω1)

)
+ φHV (ω1, ω2)e−iω2τ

(
â†3,H(ω1)â†4,V (ω2)− â†3,V (ω2)â†4,H(ω1)

)]
|0〉

(7.21)

where we have kept only the terms that give rise to a coincidence count (â†3â†4 or
â†4â

†
3). By applying those operators on the vacuum state we obtain:

PHV (τ) =1
4

∫
dω1

∫
dω2

∫
dω′1

∫
dω′2

∫
dω3

∫
dω4[

φ∗V H(ω′1, ω′2)eiω′2τ
(
−δ(ω′2 − ω3)δ(ω′1 − ω4)

)
φ∗HV (ω′1, ω′2)eiω′2τ

(
δ(ω′1 − ω3)δ(ω′2 − ω4)

)]
·
[
φV H(ω1, ω2)e−iω2τ

(
−δ(ω2 − ω3)δ(ω1 − ω4)

)
φHV (ω1, ω2)e−iω2τ

(
δ(ω1 − ω3)δ(ω2 − ω4)

)]
(7.22)

Integrating over ω1, ω2, ω′1, ω′2 yields:

PHV (τ) =1
4

∫
dω3

∫
dω4

[
|φV H(ω4, ω3)|2 + |φHV (ω3, ω4)|2

− φ∗V H(ω4, ω3)φHV (ω3, ω4)ei(ω3−ω4)τ

− φV H(ω4, ω3)φ∗HV (ω3, ω4)ei(ω4−ω3)τ
] (7.23)

A similar calculation for PV H leads to:

PV H(τ) =1
4

∫
dω3

∫
dω4

[
|φV H(ω3, ω4)|2 + |φHV (ω4, ω3)|2

− φ∗V H(ω3, ω4)φHV (ω4, ω3)ei(ω4−ω3)τ

− φV H(ω3, ω4)φ∗HV (ω4, ω3)ei(ω3−ω4)τ
] (7.24)

By adding these two terms we obtain the probability of a coincidence count when
a HPF entangled state enters the HOM interferometer:
Pc(τ) = PHV (τ) + PV H(τ)

= 1
4

{
2− 2

∫∫
dω3dω4

[
φ∗V H(ω4, ω3)φHV (ω3, ω4)e−i(ω3−ω4)τ + c.c.

]}
= 1

2 − Re
[∫∫

dω3dω4φ
∗
V H(ω4, ω3)φHV (ω3, ω4)e−i(ω3−ω4)τ

] (7.25)
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where we have used the normalization condition given by Equation 7.5. This
expression shows that, if the total JSA has a non-zero overlap with its mirror
symmetric, we have interference.

Figure 7.6 reports the expected coincidence probability for the state whose JSI
is reported in Figure 7.2, derived using Equation 7.25. The curve is composed
of an envelope, whose shape depends on the phase-matching function, and of a
sinusoidal modulation, produced by the interference between the photons emitted
by the two interactions.

Notice that in this scheme no half wave plate to rotate the polarization of one
arm is present, in contrast with the case where a HOM experiment is done using
a single interaction (chapter 6). Indeed, after the beamsplitter, the two interac-
tions are indistinguishable and therefore the photons interfere. On the contrary,
if we rotate the polarization in one arm, one interaction will have both photons
horizontally polarized and the other interaction will have both photons vertically
polarized. It is clear that in this situation the two interactions are distinguishable
and the photons cannot interfere.

This remark explains why the HOM interferometer is an efficient tool to quan-
tify the entanglement of a HPF entangled state. Indeed, after the mixing beam-
splitter the two interactions are indistinguishable in both frequency and polariza-
tion DOFs and the photons can thus interfere. The visibility of the HOM interfer-
ogram can be employed to estimate the entanglement level of the experimentally
generated state, both in frequency and polarization.

In order to understand the origin of the sinusoidal modulation, let us recall a
fundamental concept of the HOM interferometer. As described in chapter 6, when
we considered biphoton states with a frequency degenerate JSA, the HOM dip/peak
is a phase-independent effect because it is caused by the interference between the
situation in which both photons are reflected at the beamsplitter and the one in
which both photons are transmitted. Therefore, an eventual phase variation affects
both situations and does not influence the interference. Differently, in this case, the
sinusoidal modulation arises from the additional phase term due to the frequency
difference between the two frequency modes and the temporal delay added by the
delay line. This phase term oscillates between 0 and 2π, leading to a modulation.
Note that this spatial beating is stationary and not time-dependent. Indeed, it is
not an interference between two photons at different frequencies, but between two
biphoton wave-packets, one at frequencies (ω1, ω2) and the other at (ω2, ω1) [170].

We can also analyze the coincidence probability from another point of view.
As we have seen in section 6.2, if the JSA of the input state is mirror symmetric
with respect to the ω+ direction, the HOM interferogram is effectively the Fourier
Transform of the JSI. Therefore, if the state has only one frequency mode at
degeneracy (as in chapter 6) the Fourier Transform has only the zero-frequency
component, represented by the dip centered at τ = 0. On the other hand, here
the JSI has two non-degenerate frequency modes and thus the FT results in an
envelope and a sinusoidal modulation.

To conclude, it is worth noting that a two-color entangled state, with no polar-
ization entanglement, would produce the same sinusoidal oscillation, but, in that
case, it would be generated by the interference between the two frequency modes.
On the contrary, in our case, the oscillation is generated by the interference between
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Figure 7.6: Simulated HOM interferogram derived using Equation 7.25 and the
state whose JSI is reported in Figure 7.2

the two interactions, in polarization and frequency.

Gaussian phase-matching

In order to gain a physical insight into the parameters influencing the HOM co-
incidence probability, we now consider a particular case of JSA. We first consider
two JSAs separable along ω+ = ω3 +ω4 and ω− = ω3−ω4, as commonly produced
by our source (see Equation 2.34):

φV H(ω3, ω4) = χΓ PMV H(ω−) φspectral(ω+)
φHV (ω3, ω4) = χΓ PMHV (ω−) φspectral(ω+)

(7.26)

In our approximations, the two interactions differ only by the modal refractive
indices and therefore they have the same spectral function but different phase-
matching functions. Moreover, as we have already seen in Equation 6.27 for the
degenerate case, the HOM coincidence probability depends only on the phase-
matching function and not on the spectral function. For these reasons we can
consider an arbitrary spectral function φspectral(ω+) and define only the two phase-
matching functions.

Inserting Equation 7.26 into Equation 7.25 and changing the integration vari-
ables from ω3, ω4 to ω+, ω− we obtain:

Pc(τ) =1
2 − |χΓ|2

∫
dω+|φspectral(ω+)|2

· Re
[∫

dω−PM∗V H(−ω−)PMHV (ω−) e−iω−τ
] (7.27)

where we see that the two-photon interference is governed only the by the phase-
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matching function. Using the normalization condition (Equation 7.5) we obtain:

Pc(τ) =1
2 −

Re
[∫

dω− PM∗V H(−ω−)PMHV (ω−) e−iω−τ
]

∫
dω−

[
|PMV H(−ω−)|2 + |PMHV (ω−)|2

] (7.28)

In order to illustrate this result, we now consider a Gaussian pump beam with
a waist wz, smaller than the waveguide length, impinging perpendicularly to the
waveguide. The JSAs of the two interactions are then symmetric with respect to
the ω+ direction and we can write the phase-matching terms as follows:

PMV H(ω−) =
√
π wz exp

−
ω− − ωdeg

−

∆ω−

2


PMHV (ω−) =
√
π wz exp

−
ω− + ωdeg

−

∆ω−

2


(7.29)

where ωdeg
− = v̄g

c
ωp sin θdeg is the distance of each frequency mode from the de-

generacy ω− = 0. Inserting Equation 7.29 into the expression of the coincidence
probability (Equation 7.28) we obtain:

Pc(τ) = 1
2 −

1
2 exp

[
− τ 2

∆τ 2

]
cos
(
ωdeg
− τ

)
(7.30)

Thus, in agreement with the numerical simulation of Figure 7.6, the resulting
interferogram is a sinusoidal oscillation with period τp = 2π

ωdeg
−

, modulated by a

Gaussian envelope, which has the same temporal width ∆τ = 2
√

2
∆ω−

than in the
case of a single interaction (see Equation 6.27). The oscillation period depends on
the distance between the two frequency modes, which in our case is proportional
to the waveguide modal birefringence.

7.3.2 HPF entangled state with Fabry-Pérot effect
In the previous section we have considered the HOM experiment without taking
into account the cavity effect produced by the facet reflectivity. Since our source
facets have non-negligible reflectivity (RTE = 28.5% and RTM = 24.7%), we need
to consider this effect: due to the counter-propagating geometry of the device,
when a signal photon bounces at the facet it can exit the waveguide from the
idler side and vice-versa, eventually even after multiple round-trips. For the HOM
experiment performed in chapter 6 this effect was not a problem. Indeed, in that
case we selected only one interaction with a polarizer and a wavelength bandpass
filter in each output arm so that the cavity effect reduced only to a modulation
of the JSA, without modifying the photons effective propagation direction (see
subsection 2.2.5).
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Figure 7.7: Hong-Ou-Mandel scheme for a counter-propagating source emitting
photons through both interactions and considering the cavity effect. The letters
refer to the subscripts used in the calculations (see text for details).

In the present situation however, since the photons are not polarization selected,
there is a non-zero probability to have both signal and idler photons in the right
or left side. Even if this is a simplistic corpuscular view, it shows that the study
presented in the previous section of this chapter is not complete.

To refine this analysis, we start from the wavefunction of the emitted state
(Equation 7.4) and we now consider the cavity, followed by the same steps than
in the previous calculation (delay line, 50:50 beamsplitter and detection). For the
sake of clarity we refer to Figure 7.7 for the used subscripts: s (signal) and i (idler)
label the propagation directions of the generated photons inside the source before
the mixing by the cavity,R (right) and L (left) are the directions outside the cavity,
while 1 and 2 are the two inputs of the beamsplitter, 3 and 4 are the outputs.

As we have already done in subsection 2.2.5, we model the cavity functions as
follows:

ft(ω) =

√
1−R exp

(
i
ωnL

2c

)

1−R exp
(
i
2ωnL
c

)

fr(ω) =

√
R(1−R) exp

(
i
3ωnL

2c

)

1−R exp
(
i
2ωnL
c

)
(7.31)

where ft(ω) (fr(ω)) is the transmission (reflection) function. Moreover, in order
to simplify the calculation, we assume that the cavity has the same reflectivity for
both polarization directions (for which we will employ the average value of RTE
and RTM, R ≈ 27%).

Each waveguide facet can be modeled as a frequency-dependent beamsplitter,
where photons can either be reflected or transmitted [170]. The transformations
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for the â and â† operators are thus:

â†s,σ(ω)→ ft(ω)â†R,σ(ω) + fr(ω)â†L,σ(ω)
â†i,σ(ω)→ ft(ω)â†L,σ(ω) + fr(ω)â†R,σ(ω)

(7.32)

where σ stands for the H or V polarization. The wavefunction becomes:

|Ψ〉 =
∫∫

dω1dω2

[
φV H(ω1, ω2)

(
ft(ω1)â†R,V (ω1)e−iω1τ + fr(ω1)â†L,V (ω1)

)
(
ft(ω2)â†L,H(ωL) + fr(ω2)â†R,H(ω2)e−iω2τ

)
+φHV (ω1, ω2)

(
ft(ω1)â†R,H(ω1)e−iω1τ + fr(ω1)â†L,H(ω1)

)
(
ft(ω2)â†L,H(ωL) + fr(ω2)â†R,H(ω2)e−iω2τ

)]
|0〉

(7.33)

where we have also considered the effect of the delay line placed on the right (R)
side.

We then apply the beamsplitter transformations, reported in Equation 7.18,
and since we are interested only in coincidence events, we keep only the crossed
terms (of the kind â†3â†4 and â†4â†3). The resulting wavefunction |Ψc〉 reads:

|Ψc〉 = 1
2

∫∫
dω1dω2

[
A(ω1, ω2)â†3,H(ω1)â†4,V (ω2) +B(ω1, ω2)â†3,H(ω2)â†4,V (ω1)

+C(ω1, ω2)â†3,V (ω1)â†4,H(ω2) +D(ω1, ω2)â†3,V (ω2)â†4,H(ω1)
]
|0〉
(7.34)

where the coefficients are:
A(ω1, ω2) = φHV (ω1, ω2)

[
−fr(ω1)fr(ω2)e−iω2τ + ift(ω1)fr(ω2)e−i(ω1+ω2)τ

+ ifr(ω1)ft(ω2) + ift(ω1)ft(ω2)e−iω1τ
] (7.35)

B(ω1, ω2) = φV H(ω1, ω2)
[
+fr(ω1)fr(ω2)e−iω2τ + ift(ω1)fr(ω2)e−i(ω1+ω2)τ

+ ifr(ω1)ft(ω2)− ift(ω1)ft(ω2)e−iω1τ
] (7.36)

C(ω1, ω2) = φV H(ω1, ω2)
[
−fr(ω1)fr(ω2)e−iω2τ + ift(ω1)fr(ω2)e−i(ω1+ω2)τ

+ ifr(ω1)ft(ω2) + ift(ω1)ft(ω2)e−iω1τ
] (7.37)

D(ω1, ω2) = φHV (ω1, ω2)
[
+fr(ω1)fr(ω2)e−iω2τ + ift(ω1)fr(ω2)e−i(ω1+ω2)τ

+ ifr(ω1)ft(ω2)− ift(ω1)ft(ω2)e−iω1τ
] (7.38)

By applying the coincidence operator M̂ for the HV and V H cases we then
calculate the coincidence probability Pc(τ) = PHV (τ) + PV H(τ), where

PHV (τ) = 〈Ψc|M̂HV |Ψc〉 =1
4

∫∫
dω3 dω4

[
|A(ω3, ω4)|2 + |B(ω3, ω4)|2

+ A∗(ω3, ω4)B(ω4, ω3) + A(ω4, ω3)B∗(ω3, ω4)
] (7.39)

PV H(τ) = 〈Ψc|M̂V H |Ψc〉 =1
4

∫∫
dω3 dω4

[
|C(ω3, ω4)|2 + |D(ω3, ω4)|2

+ C∗(ω3, ω4)D(ω4, ω3) + C(ω4, ω3)D∗(ω3, ω4)
] (7.40)
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Figure 7.8: Simulated HOM probability for the HPF entangled state considered
in Figure 7.2 (facet reflectivity R=27 %). From (a) to (c) the time axis is zoomed
around τ = 0, in order to show the additional modulation. The scattered points
are caused by numerical artifacts in the integration.

It is worth noting that, even if the photons are mixed by the cavity, they are always
generated with crossed polarizations and therefore we can neglect the HH and V V
cases.

The resulting integral has been calculated numerically for a JSA composed
of two Gaussian peaks centered at 1546 nm having a 0.3 nm width and a relative
distance of 6 nm, a situation close to the experimental one reported in the following
sections.

Figure 7.8 reports the HOM interferogram for different levels of close-up around
the τ = 0 position. The coincidence probability has almost the same shape than
in the case without cavity: a Gaussian envelope and a sinusoidal oscillation (Fig-
ure 7.8a), but zooming in we note that another oscillation is superimposed to the
first one (Figure 7.8b). This modulation has a period of 2.3 fs, corresponding to
the inverse of the pump frequency (Figure 7.8c).

This additional oscillation is due to the fact that the cavity does not determin-
istically separate the two photons, so they have a non-zero probability of exiting
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the same facet. The result is a Franson-type two-photon interference scheme [265]:
the situation in which the photons are both emitted in the signal arm interferes
with the one in which the photons are both emitted in the idler side, producing a
cos
(
ωpτ

)
modulation.

Here the Franson-type interference occurs for a time delay shorter than the
photon coherence time and therefore it is superimposed to the HOM interference,
as it has already been reported in [266].

Conversely, if the time delay is larger than the photon coherence time, only
the Franson-type interference remains and its measurement, in this experimental
condition, is widely employed in the literature to prove energy-time entanglement
of photon pairs [59, 267, 268].

Another difference of the interferogram of Figure 7.8a with the cavity-free case
is that the lower and upper global envelopes are not symmetric anymore. The
lower envelope still reaches zero, but the upper envelope does not reach one. We are
currently working on the analytic resolution of the integral yielding the coincidence
probability, so as to gain more physical insight into this phenomenon.

Our current HOM experimental setup does not have enough resolution (i.e.
mechanical stability of the mirrors and of the delay line) to resolve the modulation
oscillating at the pump frequency and therefore we can measure only its temporal
average, which is numerically evaluated in Figure 7.9. Averaging these oscillations
essentially restores the symmetry between the upper and lower envelope, thus
resembling the situation in absence of cavity (Figure 7.6); however, the visibility
of this averaged interferogram is reduced. In this particular case (facet reflectivity
R = 27%) the visibility drops to 60%. By performing several simulations we
have verified that, for low reflectivity values (R < 50%), the visibility decays
monotonically as a function of R.

In conclusion, our analytic and numerical studies point out that the cavity effect
complexifies the quantum state emitted by the source, creating new phenomena
that are currently under study. As a first step our objective is to demonstrate
the generation of hybrid polarization/frequency entangled states; for this reason
we will be interested in the elimination of the cavity effect, by reducing the facet
modal reflectivity.

7.4 Experimental demonstration of HPF entan-
glement generation by an AlGaAs source with
built-in cavity

In the previous sections we have analytically and numerically studied HPF entan-
gled states and their typical signature in a HOM interferometer. Now we exper-
imentally demonstrate that our source can effectively emit such states. First of
all, we measure the Joint Spectral Intensity (JSI) of the state to ensure that it is
in agreement with the simulated one, having two well-separated frequency modes.
After that, in order to demonstrate that the state is not only anti-correlated but
truly entangled, we measure the HOM interference.

The experimental data and analysis that follow are performed for two different
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Figure 7.9: Simulated HOM probability for the HPF entangled state considered
in Figure 7.2 (facet reflectivity R=27 %), averaging the oscillations of the pump
frequency. The visibility of the interferogram is reduced to V = 60%.

samples. In this section we focus on the sample used in the previous chapters,
with facet reflectivity about R ∼ 27%. In the following section we will present
measurements done employing a new device treated with an antireflection coating,
with facet reflectivity about R ∼ 10%.

7.4.1 JSI measurement via the single-photon fiber spectro-
graph

At the beginning of this chapter we showed the simulated JSI for a HPF entangled
state emitted by our device (Figure 7.2), which is formed by two gaussian lobes
separated by 6.4 nm, due to the modal birefringence. We now experimentally
reconstruct the JSI and verify the simulations.

The measurement has been done using the single-photon fiber spectrograph
technique, already presented in section 4.1, where Figure 4.1 reports a sketch of
the setup. In the present case the photons are not selected using polarizers and thus
both interactions are kept. In addition, two long-pass filters (cut-off wavelength
1400 nm) are used to remove any residuals of the pump or eventual luminescence.

The measurement, reported in Figure 7.10a, has been performed with the pump
beam perpendicular to the waveguide, at a wavelength λp = 773.15 nm, fixed by
the microcavity resonance, and with a Gaussian spatial profile (waist of wz = 1
mm and flat phase profile). The result shows two peaks symmetric with respect
to degeneracy, with a relative distance ωdeg

− greater than their dimension. This
ensures the orthogonality of the two frequency modes of the state.

In order to evaluate the distance ωdeg
− we analyze the signal marginal spectrum,

obtained using only one dispersive fiber. The data, presented in Figure 7.10b,
feature two peaks separated by 97 bins. This value corresponds to a wavelength
span of about 4.8 nm, obtained using the bin time duration (81 ps) and the DCF
dispersion (-1650 ps/nm). The experimental value of ωdeg

− slightly differs from the
numerical simulation, which gives an expected ωdeg

− of about 6.4 nm. This difference
is due to the difficulty to have a good estimation of the modal refractive indices
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Figure 7.10: JSI (a) and signal marginal spectrum (b) of the HPF entangled state
generated by our counter-propagating source, with facet reflectivity ∼ 27%. The
measurement is done via a single-photon fiber spectrograph with a total integration
time of half an hour. The pump beam is set at λp = 773.15 nm, fixed by the
microcavity resonance, and it has a Gaussian profile with waist wz = 1 mm and
flat phase profile.

and, since the device presents a low modal birefringence (approximately 0.4%),
even a small variation of the refractive indices can cause a significant birefringence
change.

We can identify two main causes affecting the values of the modal refractive
indices. The most probable one is a slight difference between the actual epitaxial
growth and the nominal structure. The second is related to the fabrication process:
the chemical etching technique is very sensitive to the etching time and does not
allow a perfect control of the ridge width. However, the numerical simulations
reported in Figure 7.4 show that for a wide enough ridge, a width variation (and
therefore a change of the waveguide aspect ratio) has an almost negligible effect
on the modal birefringence, while for a smaller ridge width (around 1.5 µm) the
variation is significant. Since the device has a 5 µm-wide ridge, we think that
the birefringence difference between the actual device and the nominal one comes
mainly from the epitaxial growth.

7.4.2 HOM interference measurement
After having ensured that the experimental JSI features two well defined frequency
modes, we verify that the state is also HPF entangled by employing a HOM inter-
ferometer. The experimental setup is reported in Figure 7.11 and is very similar
to the one used in chapter 6. Indeed, the pump scheme is the same: a 1 mm-waist
gaussian beam with a flat phase spatial profile is focused on the waveguide and its
characteristics are monitored via the wavefront analyzer. The SLM is only used to
correct eventual phase aberrations. The main difference with the setup mentioned
before is the filtering stage. Due to its nature, the state has a wider spectral range
than the 1.2 nm filters that we have employed in chapter 6, therefore here we use
instead long pass bulk filters at 1400 nm, inserted in the free space paths before
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Figure 7.11: Experimental setup used to measure the HOM interference of a HPF
entangled state (see text for description). Focal lengths are given in millimeters.

the fiber couplers, so as to remove eventual luminescence noise. For all the other
components of the setup we refer to chapter 6.

The polarization is controlled using a half-wave plate (HWP) in the signal arm
and a fibered polarization controller (FPC) in the idler arm. As we have noted in
section 7.3, in order to obtain the interference effect, the output polarization of the
photons has to be maintained and therefore we employ the HWP and the FPC to
ensure that the two photons arrive at the beamsplitter with crossed polarizations.

Figure 7.12 reports the experimental interferogram measured in the situation
described before. Experimental raw data, in black with error bars, show a clear
sinusoidal modulation with a Gaussian envelope. Each point is obtained by a time
integration of 20 s and its error bar is calculated assuming a Poissonian statistics.
The blue line superimposed to the points is a fit realized using a modified version
of Equation 7.30, in order to account for a non-perfect visibility. The employed
fitting function is:

C(τ) = a(τ − τ0) + 1
2

1− V exp
(
−(τ − τ0)2

∆τ 2

)
sin
(

2π
τp

(τ − τ0)
) (7.41)

where we have normalized the coincidence rate to one and we have added a possible
linear offset with slope a to account for a slight drift of the alignment during the
total time of the measurement. Here, V is the interferogram visibility, ∆τ the
envelope width and τp the oscillation period.
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Figure 7.12: HOM experimental interferogram for a sample with facet reflectivity
R ≈ 27%: raw data points are reported in black while the blue curve is a fit.

Parameter Theoretical Value Experimental Value
Visibility V 60% 48%

Modulation Period τp 1.3 ps 1.7 ps
Envelope Width ∆τ 11.5 ps 11.4 ps

Table 7.1: Theoretical and fitted parameters of the HOM interferogram for the
device with a facet reflectivity R ≈ 27%, reported in Figure 7.12.
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The fitting parameters are reported in Table 7.1 and compared to the ones
expected from the numerical simulations. The experimental value of the visibility
(48%) is lower than the one given by the simulation (60%), but the latter considers
only the Fabry-Pérot effect as possible limiting factor. As we have seen in subsec-
tion 6.4.2, other factors must be taken into account (i.e. the pump incidence angle
and eventual pump spot imperfections) which lower the visibility by about 10%.
In conclusion, a reduction of 12% from the expected theoretical visibility is well in
agreement with the numerical simulations.

We notice that the measured value of the modulation period τp,exp = 1.7 ps
differs notably from the expected one τp,sim = 1.3 ps. The modulation period is
inversely proportional to the frequency difference between the modes ωdeg

− and is
thus related to the birefringence, which is difficult to estimate, as we have already
commented.

The modulation period can be also derived from the experimental value of the
distance ωdeg

− that we have reported above, measured with the fiber spectrograph.
Doing so we obtain an expected value of τp =1.67 ps, which is much better in
agreement with the experimentally measured one, τp,exp = 1.7 ps. From this value
we can evaluate the modal birefringence of the device ∆nexp ∼ 0.009, slightly
smaller than the expected value ∆nsim ∼ 0.0125.

Regarding the experimental value of the envelope width (∆τexp = 11.4 ps), it
is in agreement with the expected one (∆τsim = 11.4 ps), and both values are
also consistent with the value of HOM dip envelope width (10.8 ps), measured
in section 6.4. As we have commented in that chapter and in chapter 5, the en-
velope width is inversely proportional to the phase-matching width and therefore
depends on the relative value of the pump beam waist dimension and the device
length. Indeed, in our case the waveguide is 1.9 mm long and the waist 1 mm
wide, therefore the waveguide acts as a spatial filter on the pump beam spatial
profile and the phase-matching is given by the convolution of a sinc function with
a Gaussian function (as explained in section 5.2). Conversely, a purely Gaussian
phase-matching function, obtainable with a longer waveguide, would have an en-

velope width ∆τ =
√

2 wz
v̄g

= 14.8 ps, for a 1 mm waist.

7.4.3 Discussion

The results we have presented, in particular the JSI shape and the HOM in-
terferogram, indicate that the emitted quantum state is entangled in the fre-
quency/polarization degree of freedom. Nevertheless the visibility of the HOM
interferogram is poor, mainly due to the cavity effect. Indeed our simulations
highlight that, if we cannot resolve the modulation at the pump frequency, the re-
flectivity is detrimental for the visibility. This limits the visibility to 60%. For this
reason we have developed a technique to reduce the facet reflectivity by applying
an antireflection coating. In the remaining part of this chapter we will present the
measurement done on a coated device.
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(a) (b)

Figure 7.13: Simulated HOM probability of a HPF entangled state, emitted
by a counter-propagating source with a facet reflectivity of R = 10%. The left
panel (a) reports the raw simulation data while the right panel (b) shows the data
time-averaged over the pump frequency (V = 82%).

7.5 Experimental demonstration of HPF entan-
glement generation by an anti-reflection coated
AlGaAs waveguide

In this section we present the result concerning the generation of a HPF entangled
state in a counter-propagating source with a low facet reflectivity, obtained by
applying an anti-reflection coating. The device has been characterized and it shows
a significant reduction of the modal reflectivity, compared to the uncoated device:
from R ≈ 27% to R ≈ 10%. The sample belongs to the same epitaxial wafer than
the uncoated one and has a length of 2.6 mm. The details about the development
of the coating technique, its fabrication and characterization steps are reported in
the next chapter.

7.5.1 Numerical simulations
By inserting the value (R = 10%) of the obtained experimental reflectivity in the
numerical model described in subsection 7.3.2 we simulate the expected HOM in-
terferogram. Figure 7.13 reports the result: the left panel shows the raw simulation
data, containing the rapid oscillations at the pump frequency due to the Franson
interference effect, while the right panel shows the simulation data averaged over
the pump frequency. From the latter we evaluate an expected visibility of the
HOM interference around V = 82 %.

7.5.2 Experimental results
The experimental measurements are done using the same setup presented in Fig-
ure 7.11, except for the detectors. In this case we have used superconducting
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Figure 7.14: JSI (a) and signal marginal spectrum (b) of the HPF entangled state
generated by a source with low facet reflectivity (R =10%). The measurement is
done with a fiber spectrograph with a total integration time of 5 minutes. The
pump wavelength is λp = 773.1 nm and the pump beam has a waist wz = 1 mm
and a flat phase profile.

nanowire single-photon detectors (SNSPDs) from Quantum Opus™, which have
been purchased in the meantime by the team. These detectors have a better quan-
tum efficiency (around ηd = 80 %), a lower dark count rate (< 100 counts/s at our
working wavelength) and a smaller dead time (50 ns), allowing to speed up the
measurement and to reduce the noise.

JSI measurement via the single-photon fiber spectrograph

First of all, we reconstruct the JSI of the state with the pump beam at normal
incidence, via the single-photon fiber spectrograph. Figure 7.14a reports the result:
the JSI is very similar to the one obtained with the untreated sample (Figure 7.10),
only with a better signal to noise ratio due to the SNSPDs.

Figure 7.14b reports the signal marginal spectrum of the experimental JSI: the
two peaks have a relative distance of 97 time bins, corresponding to a wavelength
difference of 4.8 nm. This value corresponds to the one measured for the uncoated
sample, so the two samples have the same value of birefringence (∆n ∼ 0.009).

Experimental HOM interference measurement

Figure 7.15 reports the raw experimental data obtained in the HOM experiment.
Each point results from a 3 s integration and the errorbars are calculated assuming
a Poissonian statistics. The blue curve is a fit performed using Equation 7.41 and
the fitted parameters are reported in Table 7.2. We obtain a visibility of 70%.
i.e. a 22% improvement compared to the uncoated sample (see Figure 7.12). As
previously, the experimental value is slightly lower than the one obtained from the
simulation (82%), which can be explained by slight experimental imperfections of
the pumping scheme, as discussed in section 6.4.

The experimental value of the envelope width (∆τexp = 14.1 ps) is in good
agreement with the simulated one (∆τsim = 14.2 ps). The values differ from the
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Figure 7.15: Experimentally measured HOM interferogram for a sample with
facet reflectivity R=10%: raw data points are reported in black while the blue
curve is a fit.

Parameter Theoretical Value Experimental Value
Visibility V 82% 70%

Modulation Period τp 1.3 ps 1.8 ps
Envelope Width ∆τ 14.2 ps 14.1 ps

Table 7.2: Theoretical and fitted parameters of the HOM interferogram for a
source with a modal facet reflectivity R = 10%.

case of the uncoated waveguide because the two devices have different lengths. Here
the waist (wz =1 mm) is much smaller than the waveguide length (2.6 mm) and
therefore the phase-matching function is almost Gaussian, while for the uncoated
waveguide the phase-matching function was given by the convolution of a Gaussian
and a sinc function. We can also note that in this case the value of ∆τ (14.1 ps) is
comparable with the expected value for a purely Gaussian phase-matching function
(14.8 ps), generated by a 1 mm-waist pump beam.

For the modulation period τp, the measured value differs from the expected one
as in the previous case, but it is comparable to the one obtained experimentally
employing the uncoated waveguide. Moreover, also the experimental value of ωdeg

− ,
obtained from the marginal spectrum, is the same as in the previous case (4.8
nm), as expected since the two devices have been fabricated from the same wafer
(F3W083) and with the same ridge width.

7.5.3 Entanglement analysis
In order to quantify the entanglement of the generated state we now estimate a
restricted density matrix in the hybrid polarization/frequency space.
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Figure 7.16: Estimated restricted density matrix.

We consider the basis produced by all the possible permutations of the {H},
{V } polarizations and {ω1}, {ω2} frequencies, with ω1 < ω2. This produces a 16 x
16 density matrix. However, from physical considerations it is possible to restrict
it.

Indeed, since the source exploits type II SPDC, generating orthogonally polar-
ized photons, we can discard the HH and V V cases. Moreover, from the energy
conservation we know that the source cannot emit photon pairs with the same
frequency. Therefore, the elements {ω1ω1} and {ω2ω2} are zero. From the above
considerations we obtain the following restricted density matrix:

ρ =



0 0 0 0
0 p

V

2 e
iϕ 0

0 V

2 e
−iϕ 1− p 0

0 0 0 0


(7.42)

where we employ the base {|Hω1〉s |V ω2〉i }, {|Hω2〉s |V ω1〉i }, {|V ω1〉s |Hω2〉i },
{|V ω2〉s |Hω1〉i }. The additional zero elements in the restricted matrix are de-
termined by the phase-matching condition. Indeed, the photons at frequency ω1
are always V polarized and the photons at frequency ω2 are always H polarized.
The parameters p and V are real and obey to physical constraints: 0 ≤ p ≤ 1 and
0 ≤ V/2 ≤

√
p(1− p) [260].

From the JSI measurement we can evaluate the population p = 0.517, while
the absolute value of the coherences V/2 is estimated from the HOM interferogram
visibility (V = 0.71) [260]. Moreover, since the source is pumped by only one pump
beam, the phase ϕ between the two interactions is zero.

From these values we can evaluate the resulting restricted density matrix, which
has been plotted in Figure 7.16.
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From this density matrix we can extract some useful physical quantities that
characterize the state:

Parameter Estimated value
Target-state fidelity F 0.855

Purity P 0.753
Concurrence C 0.710

Tangle T 0.504

The target-state fidelity, evaluated as F = Tr(ρρΦ), indicates the fidelity of the
generated state to the ideal HPF entangled state ρΦ = |Φ〉〈Φ| with:

|Φ〉 = 1√
2
(
|V, ω1〉s |H,ω2〉i + |H,ω2〉s |V, ω1〉i

)
(7.43)

The estimated value F = 0.855 evidences that the generated state is very close to
the target one.

The purity, calculated as P = Tr(ρ2), evaluates the purity of the state and it
is equal to 1 for a pure state.

Finally, the concurrence and the tangle quantify the entanglement level of the
state [269]. The first is defined as:

C = max(0,√e1 −
√
e2 −

√
e3 −

√
e4) (7.44)

where e1 ≥ e2 ≥ e3 ≥ e4 are the eigenvalues of R = ρΣρtΣ and Σ is defined as
follows:

Σ =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 (7.45)

The tangle is simply defined as T = C2. These two quantities are equal to 0 for
a separable state and to 1 for a maximally entangled state. Their experimental
values (C = 0.710 and T = 0.504) confirm the entanglement of the hybrid po-
larization/frequency state and are comparable with those reported in [260] for a
two-color entangled state.

7.6 Conclusion
In this chapter we have demonstrated the direct generation, at room temperature
and telecom wavelength, of hybrid polarization/frequency entangled states with a
chip-based source. First of all we have theoretically detailed the characteristics of
the state, showing that it presents simultaneous but not independent entanglement
in the frequency and polarization degrees of freedom. Indeed, when only one
of the two DOFs is observed the state collapses into a mixed state. We have
then presented two possible techniques to recover either frequency or polarization
entanglement by erasing the information on the other DOF.

In the second section of the chapter we have shown that the HOM interferom-
eter can be employed to quantify the entanglement in this hybrid DOF. We have
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theoretically analyzed the behaviour of this state in a HOM interferometer in two
different situations: when the state is generated in a device without Fabry-Pérot
cavity effect and in a device with Fabry-Pérot cavity effect. In the first case the
state produces a HOM interferogram composed by an oscillation, whose period de-
pends on the frequency difference between the two photons, modulated by a Gaus-
sian envelope. On the other hand, when we considered the presence of the cavity,
our theoretical analysis showed that a second modulation at the pump frequency
arises (2.3 fs period), due to the Franson interference effect which complexifies the
quantum state. This modulation is not accessible with our experimental setup,
thus resulting in a reduction of the HOM interferogram visibility.

After the theoretical analysis, we have presented the experimental measure-
ments of JSI and HOM interference. The first was used to ensure that the two
frequency modes were well separated and the latter to quantify the hybrid entangle-
ment. Experiments were performed for two samples: the standard source we have
analyzed so far with facet reflectivity R ≈ 27% and another one treated with anti-
reflection coating (R ≈ 10%). In both cases, the results, in good agreement with
the numerical simulations, demonstrated that the sources emit genuine HPF en-
tangled states, with well separated frequency modes. In addition, we have reported
an increase of the HOM visibility of 22% for the sample with the anti-reflection
coating compared to the uncoated one, leading to an increase of the quality of the
generated hybrid entangled states.

The next step of this project will be the experimental projection of the HPF
entangled state into a polarization Bell state or into a two-color entangled state, as
detailed in section 7.1. This will allow to target different applications, increasing
the versatility of the source.

An interesting follow-up of this work is the possibility to produce a non-
birefringent counter-propagating source, by reducing its ridge width to ≈ 1.12
µm (see Figure 7.4). In this case the source would directly emit polarization Bell
states. In addition, if the pump beam spatial profile is properly shaped (e.g. with
a π phase step, as in chapter 5), biphoton states hyperentangled in the frequency
and polarization degrees of freedom could be generated.
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In the previous chapter we have demonstrated that our nonlinear source based
on counter-propagating geometry can generate polarization/frequency hybrid en-
tanglement, but the quality of the emitted state is spoiled by one main factor: the
facet modal reflectivity that creates a Fabry-Pérot cavity.

The modal reflectivity of semiconductor waveguides is a subject that has been
studied for many years, since the development of optical amplifiers, for which
it is a fundamental parameter [270]. In our case, since we do not couple high-
intensity fields inside the waveguide, it was not of fundamental concern. However,
the possibility of reducing the modal reflectivity and eliminating the Fabry-Pérot
cavity would allow to increase the quality of the polarization/frequency hybrid
entanglement and to remove the chessboard-like modulation of the biphoton JSA
(subsection 2.2.5).

In the present chapter we illustrate two possible methods to deal with this
issue in our counter-propagating sources. First we study the effect of tilting the
waveguide facet, in either the horizontal or vertical direction. Then, we focus on
the deposition of an anti-reflection coating. For both proposals we perform 3D
numerical simulations with Lumerical FDTD.

As we will explain, for practical reasons we have finally decided to implement
the anti-reflection coating. In the last part of the chapter, we outline the clean
room processes that we followed to fabricate the coating and we report the optical
measurements performed on the resulting device.
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8.1 Waveguide modal reflectivity
The facet reflectivity of our device results from the refractive index mismatch
between the waveguide (n ≈ 3) and the air. Indeed, the Fresnel equations predict
that, when an electromagnetic wave encounters an interface between two optical
media, the wave is in part reflected and in part transmitted, depending on the
refractive indices and on the wave polarization.

Since our photon pairs are generated in a guided mode, we have to consider
the modal reflectivity, which depends on the mode spatial profile. The modal
reflectivity is defined as the fraction of incident power that is coupled back into
the same or another guided mode of the waveguide, after the reflection from the
facet [270]. It can be expressed in the following way:

ρkl = P r
l

P i
k

(8.1)

where P i
k is the power of the incident mode k, P r

l is the power reflected in mode l,
considering the mode k as the only incident field. The total modal reflectivity of
the mode k is then:

ρk =
∑
l

ρkl (8.2)

Following Jaskorzynska et al. [270], ρkl can be calculated analytically for a
waveguide with only one vertical mode (x axis in Figure 8.1) and an arbitrary
number of lateral modes (y axis in Figure 8.1). The process could be simplified in
the following steps:

• first of all, the incident mode is represented in the spatial frequency space by
taking the Fourier Transform of its spatial profile;

• then, each plane wave of the spectrum is reflected using the Fresnel equations,
obtaining the spectrum of the reflected mode;

• finally, the overlap between the incident and the reflected mode gives the
modal reflectivity.

Even if this is a simple explanation of the actual calculation, it gives very impor-
tant insights into the modal reflectivity behavior. First of all, we note that the
possibility for a mode to be either reflected back into itself, or into other modes,
depends on the facet geometry. Indeed, if we consider an untilted facet, the re-
flected field will have the same spatial profile than the incident one, implying that
only the terms ρkk are different from zero. On the other hand, if we consider a
tilted facet the reflection modifies the spatial profile and the field couples in many
modes, which can be guided or not.

Among the several different proposals that are present in the literature to reduce
the modal reflectivity we consider: the application of an anti-reflection coating
[271] or the tilt of the waveguide facets [272]. Both of them act on the reflected
mode, reducing its overlap with the incident one, but have different advantages
and disadvantages.
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(a) Horizontal tilt (b) Vertical tilt

Figure 8.1: 3D sketch of the simulated waveguide: (a) for an horizontal tilt of
the facet and (b) for a vertical tilt.

The application of an anti-reflection coating was one of the first proposals; it
induces a destructive interference between the incident and the reflected field, if
the thickness is properly designed. However, in order to obtain very low reflectivity
(near 10−3) single-layer coatings require narrow tolerances for fabrication and in
general do not perform well enough for both polarizations [270].

Conversely, tilting the facet allows to reach very low modal reflectivity, in case
of a monomode waveguide. Indeed, the whole reflected power can be diverted into
non-guided modes radiating out. However, considering multimode waveguides the
reflected power may couple back into other guided modes (i.e. ρkl 6= 0 for k 6= l)
and thus the overall reflectivity is not completely reduced.

From the above considerations it is clear that the good solution to lower the
modal reflctivity depends on the waveguide design, in particular on the presence
of higher-order guided modes or birefringence. Indeed, the latter may prevent to
obtain sufficiently low reflectivity for both polarizations.

In order to obtain a very low modal reflectivity, more than one technique is
often used (e.g. antireflecion coating and facet tilt in the same waveguide [270,
273]). In our case, as we are interested in lowering the modal reflectivity only
down to a few percents, we study the two techniques separately to identify the
more suited one to our case.

8.2 Tilting the facet
In the previous section we have explained the effect of a facet tilt on the modal
reflectivity, here we study its implementation on the counter-propagating source,
for both horizontal and vertical directions, as illustrated in Figure 8.1. Since the
device is multimode in both vertical and lateral directions, we perform 3D simula-
tions using the FDTD module of Lumerical. The software, given an input mode,
calculates the fraction of power reflected in each guided mode, which corresponds
to the modal reflectivity ρkl.
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8.2.1 Guided modes
Before describing the simulations, we need to focus our attention to the guided
modes supported by our source. In the previous chapters, we have studied photon
pair emission only in the fundamental mode. However, the source, given its core
dimensions (approximately 5 µm x 1 µm), is highly multimode.

Figure 8.2 and Figure 8.3 report the intensity profile of the first guided modes
of a 5 µm-wide ridge source for respectively TE and TM polarizations at 1550 nm.
In the vertical direction, since the core is less than 1 µm thick, the source has only
two guided modes, while in the lateral direction many modes are supported. The
figures display only the first three, even if up to 10 modes are supported.

We note that the second-order vertical guided mode is not well confined into the
core, but is localized mainly in the Bragg mirrors, with an asymmetry due to the
design itself. Indeed, the bottom Bragg mirror, conceived to avoid penetration of
the pump in the substrate, is thicker than the top Bragg mirror and this weakens
the confinement due to the refractive index difference. On the other hand, the
higher-order lateral guided modes are well confined into the core.

Comparing the TE and TM guided modes we note that they have almost the
same intensity profiles, except for the fact that the TM polarized fields are influ-
enced by the stack of layers that composes the structure, while the TE polarized
fields are not. This induces a modulation of the TM profiles in the x direction: the
field is slightly more concentrated inside the high refractive index layers (i.e. the
layers with low Al content), as we have already commented in section 1.4.

8.2.2 Numerical simulations
By tilting the facet, the reflected field profile is modified and can couple back into
modes different from the incident one. Considering a tilt in the horizontal (vertical)
direction, but not in both directions simultaneously, simplifies the problem, because
the incident field will couple back only into the lateral (vertical) modes. Thus, in
the following, we study first the effect of a horizontal tilt and then of a vertical one.
Figure 8.1 displays a 3D sketch of the waveguide for each situation respectively,
showing the tilt angle θ used in the numerical simulations.

The simulation results are plotted in Figure 8.4 for both horizontal (Figure 8.4a,
Figure 8.4b) and vertical tilt (Figure 8.4c, Figure 8.4d). Since the tilt does not
mix the polarizations, it is possible to simulate the modal reflectivity for each
polarization separately. We start by analyzing the horizontal tilt. We note that, for
both polarizations, the modal reflectivity of the fundamental mode into itself (ρ00)
decreases when θ is increased. However, the total reflectivity does not decrease
appreciably because the field couples back into higher order modes (in the plot
only the first five modes are considered but more are possible). In conclusion,
horizontally tilting the facet is not a viable solution to reduce the modal reflectivity,
because the light remains coupled inside the device.

We now consider the vertical tilt. The plots, reported in Figure 8.4c and Fig-
ure 8.4d, illustrate a slightly different behavior, compared to the horizontal case.
Indeed, since the waveguide has only two vertical guided modes, when the tilt
increases ρ00 decreases and ρ01 rises, but for a sufficiently large tilt value both
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fall to zero. For instance, a vertical tilt of θ = 15° results in total reflectivity of
approximately 5%, which is low enough for our needs.

In conclusion, by vertically tilting the waveguide facets, the total reflectivity
can be lowered to acceptable values. However, a practical caveat has to be con-
sidered: this solution introduces also a tilt in the photon propagation direction
at the waveguide outputs and thus, in order to efficiently collect the photons, the
optical setup has to be modified. The issue can be addressed, but for the sake of
simplicity, we decide to focus our attention rather on the second solution: applying
an anti-reflection coating.
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Figure 8.3: Intensity profile of the lateral and vertical TM-polarized guided modes for a 5 µm-wide ridge waveguide at 1550 nm.
Due to its small vertical dimension (the core height is less than 1 µm), the waveguide has only two vertical guided modes. Conversely,
it has many lateral guided modes, even if here, for matter of space, only the first three are displayed..
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(a) Horizontal tilt, TE polarization (b) Horizontal tilt, TM polarization

(c) Vertical tilt, TE polarization (d) Vertical tilt, TM polarization

Figure 8.4: Numerical simulation of the modal reflectivity at a wavelength of
1550 nm, considering the fundamental mode as incident field (ρ0l) and for either
horizontal ((a), (b)) or vertical tilt ((c), (d)). In (a) and (b) we consider only the
first five lateral guided modes, even if more are possible.
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8.3 Anti-reflection coating: design
We have shown that a vertical tilt can decrease the modal reflectivity, but it intro-
duces a tilt in the photon pair beam. The alternative solution that we investigate
now is to apply an anti-reflection coating, which would work for all the guided
modes, given that they have similar modal refractive indices, without deviating
the photon propagation direction.

Thin-film anti-reflection coatings employ single or multilayer depositions to
take advantage of the constructive and destructive interference effect among the
multiple reflections. Let us start by analyzing the single layer case. Figure 8.5
displays a sketch of the situation. We consider a field guided in the fundamental
mode and incident onto the facet: a first reflection is generated at the interface
between the waveguide and the coating, and a second one at the interface between
the coating and the air. By properly choosing the thickness and the refractive index
of the coating, the two reflections can acquire a π relative phase shift and interfere
destructively. The reflectivity vanishes completely if the two reflected fields have
the same amplitude at the waveguide-coating interface. The resulting conditions
for the coating thickness (d) and refractive index (nc) are [274]:

nc = √ngna (8.3)

d = λ0

4 nc
(8.4)

where ng, na and λ0 are respectively the waveguide modal refractive index, the air
refractive index and the working wavelength in the air. Therefore, since ng ≈ 3.1
and na = 1 are fixed, we need a material with nc = 1.75. From that we derive a
coating thickness of d ≈ 220 nm, for a working wavelength λ0 = 1550 nm.

The choice of the material for the coating is constrained by the refractive index
of the available materials and by their adhesion on our samples. A perfect solution
would be Aluminium Sesquioxide (Al2O3), which has a refractive index nAl2O3 =
1.7462 at 1550 nm and can be efficiently deposited by Atomic Layer Deposition
(ALD) [275, 276]. However, ALD is not available in our clean room, we thus
decide to employ Silicon Dioxide (SiO2), a common material that can be deposited
by Plasma-Enhanced Chemical Vapor Deposition (PECVD). SiO2 has a refractive
index of nSiO2 = 1.45 at 1550 nm, which does not allow to completely eliminate the
reflection, but, by properly adjusting the coating thickness, it is possible to obtain
acceptably low values of reflectivity.

8.3.1 3D numerical simulations
In order to determine the optimal thickness of a SiO2 single layer coating to min-
imize the reflectivity ρ00, we perform 3D numerical simulations with Lumerical
FDTD module, considering a 5 µm-wide ridge. Figure 8.6a reports the calculated
reflectivity as a function of the coating thickness at a fixed wavelength λ0 = 1550
nm; we note that both TE and TM polarizations have a minimum around d = 270
nm, corresponding to a reflectivity R ≈ 4%.

Fixing the coating thickness to this value, we then evaluate the wavelength
dependence of the reflectivity, to check that it remains low for the frequency region
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Figure 8.5: Working principle of a single layer anti-reflection coating. The layer
produces a π relative phase shift between the first and the second reflection, which
thus interfere destructively. Note that both reflected fields do not acquires a π
phase shift for the reflection, being reflected from a medium with lower n than
that of the medium they are traveling in (ng > nc > na).

200 250 300 350

Coating Thickness d (nm)

4

6

8

10

R
efl

ec
ti
v
it
y
(%

) TE

TM

(a) Reflectivity vs thickness

1540 1545 1550 1555 1560

Wavelength (nm)

3.6

3.8

4

4.2

4.4

R
efl

ec
ti
v
it
y
(%

) TE

TM

(b) Reflectivity vs wavelength

Figure 8.6: Numerical simulation of the reflectivity ρ00 as a function of: (a) the
SiO2 coating thickness, for λ = 1550 nm, and (b) the wavelength, for a thickness
d = 270 nm.
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of our interest. Figure 8.6b confirms that, in the region between 1540 nm and 1560
nm, the reflectivity for both polarizations is always less than 4%.

The numerical study has been carried out considering the injected field in the
fundamental mode and evaluating the intensity of the reflection, but, since the
higher-order modes have a refractive index similar to the fundamental mode, the
results can be extended to them.

A more complex solution with multi-layer coating could be applied to decrease
even more the reflectivity and increase its working bandwidth [277]. However,
for our applications the SiO2 single-layer anti-reflection coating is suitable and
therefore in the next part of the chapter we will present its fabrication process and
its optical characterization.

8.4 Anti-reflection coating: fabrication
The anti-reflection coating has been fabricated in the MPQ clean room, by deposit-
ing a thin film of SiO2 through a Plasma-Enhanced Chemical Vapor Deposition
(PECVD) process. This method allows to deposit thin films from a gas state to a
solid state on a substrate. The process has been performed on a sample containing
several counter-propagating ridge waveguides (5 µm wide and 2.6 mm long).

As a first step, the machine has been calibrated in order to determine the
optimal parameters for the process. In particular, the main parameter to be de-
termined is the time duration of the deposition, which controls the layer thickness.
It can be evaluated by depositing various layers on a substrate and by measuring
their actual thicknesses. However, this method does not take into account the edge
effects: when depositing a thin layer on a surface the deposition near the edges is
always of a worse quality. Since the surface of a waveguide facet is very small, the
deposition is strongly influenced by such edge effects. And unfortunately, an actual
calibration of the process directly using waveguide facets is challenging, because it
is not possible to use a profilometer (as a Dektak) on a so small area. Instead, the
process has been therefore calibrated on a large flat sample, without considering
the edge effect: different depositions of SiO2 have been done on a large Si substrate
and the actual thickness has been related to the process time duration. As we will
show in the next section, the experimental measurements of reflectivity validates
this approximated calibration technique.

The process has been performed by depositing the thin layer on the sample
placed perpendicularly, by using two microscope glasses on each side in order to
keep it stable in that position. This configuration enables to deposit the thin film
only on the facets and not on the top of the waveguides, where the pump beam
impinges. Indeed, due to the high pump intensity the thin film could burn and
damage the waveguide. The deposition on the facets on the other side of the
waveguide has been done directly after.

Figure 8.7 shows an optical microscope image taken, from above the sample,
after the PECVD deposition. It shows two bunches of three waveguides, and close
to the waveguide termination (on a region of 300 µm near the facets) it is possible
to notice the color change due to the thickness gradient of the thin film deposition
(which was directed perpendicularly to the facets). From that, we can conclude
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Figure 8.7: Optical microscope image (5x magnification) of the sample after the
PECVD deposition of a SiO2 thin layer. The image is taken from above the sample.
From right to left the layer thickness decreases and the colors change. The light
and dark modulation is due to the partial etch of the lower Bragg mirror of the
sample, leading to an oxidation of the high Al content layers.

that the SiO2 deposition has "leaked" only in a small portion of the waveguide
(which is 2 mm long) and it does not cover the top of it, where the pump beam
impinges.

8.5 Optical characterization

In order to determine the effects of the coating on the waveguide, we measure
the Fabry-Pérot fringes of the transmitted intensity through the device before and
after the process. Figure 8.8 reports the measured Fabry-Pérot oscillations for the
TE polarization for both the uncoated and coated samples.

Regarding the sample before the deposition, from the fringe contrast and the
facet modal reflectivity (RTE = 28.5% and RTM = 24.7%), calculated with 3D
numerical simulations, we can evaluate the propagation losses employing the tech-
nique detailed in section 1.4. The obtained values αTE = 0.6 cm-1 and αTM = 0.6
cm-1 indicate that the waveguide has a good fabrication quality.

After the deposition, we perform the same measurement. Figure 8.8b displays
the Fabry-Pérot oscillations of the TE-polarized mode for the coated waveguide.
From these data we calculate a contrast K=0.18, which has to be compared with
K=0.42 for the uncoated sample. Since the deposition has been performed only
on the facets, we can safely assume that the propagation losses are the same than
before the process and hence we employ their value (α = 0.6 cm-1) to retrieve the
modal reflectivity from the fringe contrast. By applying this procedure we find
approximately the same value of modal reflectivity for both polarizations: R ≈
10%. This value is higher than the one expected from the numerical simulations
(Rsim ≈ 4%), probably due to a small difference between the nominal and the
actual layer thickness.
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(a) Before deposition (b) After deposition

Figure 8.8: Fabry-Pérot oscillation of the transmitted intensity for the TE-
polarized infrared fundamental mode of the uncoated sample (a) and for the coated
one (b).

8.6 Conclusion

In this chapter we have investigated the possibility of decreasing the facet reflec-
tivity of the counter-propagating source, which can have several applications, e.g.
improving the quality of the polarization/frequency hybrid entangled state emit-
ted by the source, as we demonstrated in section chapter 7. Two possible methods
have been envisaged: tilting the waveguide facets or depositing an anti-reflection
coating.

Tilting the waveguide facet modifies the spatial profile of the reflected mode,
which can thus radiate through non-guided modes. However, if the waveguide
is not monomode, the reflected field can still be guided inside the device by the
higher-order guided modes. In our case, through numerical simulations, we have
demonstrated that a horizontal tilt of the facet is not a viable solution, since the
waveguide is highly multimode in the lateral direction. On the other hand, only
two vartical guided modes exist and therefore a vertical tilt of 15° would allow to
decrease the reflectivity to 5% . However this design introduces a tilt in the photon
propagation direction at the waveguide outputs and therefore for practical reasons
we have discarded it.

By contrast, depositing an anti-reflection coating allows to obtain a low reflec-
tivity, while maintaining the same propagation directions. Performing 3D numeri-
cal simulations, we have shown that a 270 nm-thick single-layer of SiO2 results in
an expected modal reflectivity R=4%.

The coating deposition has been performed on both facets of the waveguides
by a PECVD technique in the MPQ clean room, followed by the experimental
characterization of the coated sample. By measuring the Fabry-Pérot fringes of
the intensity transmitted through the waveguide before and after the process, we
have evaluated the facet modal reflectivity. The results show a decrease of the
modal reflectivity from R ≈ 27% without the coating to approximately R ≈ 10%
with the coating, for both polarizations.

187



Chapter 8. Design and fabrication of sources with low facet reflectivity

To conclude, we have proven that depositing a thin film of SiO2 as anti-reflection
coating is an easy and viable method to decrease the modal reflectivity of our Al-
GaAs waveguide sources. As we have already described, the coated source has been
used in chapter 7 to demonstrate the generation of hybrid polarization/frequency
entangled states, obtaining an increase of the experimental HOM visibility from
V = 48% to V = 70%.

This chapter is a proof of principle of the technique and, at the moment, we are
optimizing the coating deposition process, in order to reach the expected modal
reflectivity of 4%. In addition, more complex techniques could be envisaged to
futher decrease the reflectivity, if needed for particular demanding applications.
For example, by combing a single-layer coating and a facet tilt it would be possible
to obtain reflectivity values as low as 10−4 [270].
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In the first and second part of this thesis we have exploited the high-dimensional
Hilbert space of the frequency degree of freedom of photon pairs and demonstrated
the engineering of spectral quantum correlations. We now focus on the spatial
degree of freedom, and more precisely, the transverse position of photons in a
lattice of waveguides. The choice of the spatial degree of freedom has several
motivations: it can be robustly transported in optical fibers and waveguides and
it is naturally suited for interfacing channels and modes in a on-chip quantum
network.

The device that we have developed consists of a lattice of parallel co-propop-
agating nonlinear sources (c.f. section 1.5), evanescently coupled (see Figure 9.5).
In such device, the generated photons can continuously tunnel from one waveguide
to the other during their propagation, undergoing random quantum walks [278]
and creating entanglement in the spatial degree of freedom. Quantum walks have
proven to be a very promising resource in quantum information, for tasks such
as boson sampling [279], Shor factoring algorithm [20] and simulation of complex
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condensed matter problems [280].
Our goal is ultimately to employ this platform for quantum simulations tasks;

indeed, tailoring the waveguide lattice parameters (statically and/or dynamically)
should allow to implement various Hamiltonians of condensed-matter systems and
study phenomena such as topological protection in the quantum regime [281] or
Anderson localization of multiparticle states [82].

In this chapter, after a brief overview of the state of the art, we detail the
device design and the corresponding numerical simulations. Then, we introduce
the quantum theory of SPDC in an array of nonlinear waveguides, focusing on the
spatial correlations generated by quantum walks and their engineering. Finally, in
the last two sections, we present our development and optimization of the device
fabrication processes, followed by its first optical characterizations that set the
ground for further experimental development.

9.1 Quantum walks in integrated photonics
Quantum random walks are the quantum counterpart of classical random walks.
In this case, particles evolve simultaneously towards all their possible quantum
states and the coherent nature of the phenomenon leads to interference among the
multiple paths. Two distinct models of quantum walks (QWs) exist: discrete-time
QWs in which the walkers evolve in randomly chosen discrete steps, and continuous-
time QWs in which the walkers dynamics is described by a time-independent lattice
Hamiltonian [282]. In both cases, single-particle QWs do not exhibit any different
behavior from classical wave propagation; however, when multiple particles are
considered (entangled or not) non-classical effects arise.

Several physical systems can be employed to implement QWs, such as spin
chains [283], ultra-cold atoms [284], trapped ions [285] and waveguide lattices [18].
Integrated photonic circuits in particular, thanks to the photon long coherence time
and the phase stability of integrated interferometers, is a very promising candidate
to implement QWs.

Discrete-time QWs have been implemented in photonics employing directional
couplers and phase shifters, as illustrated in Figure 9.1. In this contest, two promis-
ing platforms have emerged up to now: femtosecond laser written circuits on silicate
glass and silicon-based waveguides.

Femtosecond laser written circuits on silicate glass allow to realize very precise
arbitrary circuits in a three-dimensional structure, with low propagation losses (0.1
dB cm-1). However, due to the low refractive index contrast of 10-3, the bending
radii are limited to the centimeter regime. Moreover, since silicate glass does not
present any nonlinearity, the photons have to be produced externally, limiting the
device scalability. This platform has been employed to study boson sampling [110],
Anderson localization of entangled photon pairs [82], quantum Bloch oscillations
[286] and multi-photon interference (boson clouding) [287].

Silicon-based circuits, thanks to a higher refractive index contrast and nonlin-
earity, allows to achieve a higher integration density and to include SFWM-based
photon sources in a monolithic chip [288]. This platform has been employed to
study boson sampling [279] and it is also very promising for integrated quantum
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Figure omitted due to missing permission

Figure 9.1: Scheme of a network of directional couplers and phase shifters imple-
menting discrete-time QWs. Adapted from [82].

computing; for example a fully programmable two-qubit quantum process has al-
ready been realized [51].

Concerning continuous-time QWs, the natural photonic implementation is an
integrated lattice of evanescently coupled waveguides. Interestingly, this kind of
device has already been employed in the classical regime during the years 1990-2000
to study the phenomenon of discrete diffraction of optical waves. Exploiting the
similarities between optical waves in a spatially periodic dielectric structure and
electrons in a semiconductor crystal, it was possible to emulate solid-state physics
systems, studying effects such as photonic Bloch oscillations, optical discrete soli-
tons and disorder effect [289].

Switching to the quantum regime, the first experiment on continuous-time QWs
with evanescently coupled waveguides was carried out by Peruzzo et al. [18] in 2010.
Employing an array of silicon oxynitride waveguides, reported in Figure 9.2, and an
external source of photon pairs, the authors observed and controlled non-classical
spatial photon correlations, by changing the input quantum state.

Then, in 2014, cascaded quantum walks have been experimentally demonstrated
for the first time by Solntsev et al. [290] exploiting SPDC in an array of lithium
niobate waveguides. In this case, the photons are directly generated inside the
device and the generation can take place at any position along the waveguide. This
process results in a significantly higher level of spatial entanglement, due to the
interference between quantum walks started at all possible longitudinal positions.

Moreover, the possibility of accurately control the gap between adjacent waveg-
uides of the array has allowed to introduce and study topological effects. In 2018,
Blanco-Redondo et al. [96], employing an array of silicon nano-wires and taking
advantage of their nonlinearity to obtain spontaneous four-wave mixing, demon-
strated the topological protection of photon pairs against scattering and imperfec-
tions.

These proofs of principle highlight the interest of waveguide arrays as a promis-
ing platform to develop not only quantum simulators but also sources of robust
quantum states, topologically protected, which can be exploited to increase the
scalability of quantum information systems.
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Figure omitted due to missing permission

Figure 9.2: A continuously coupled waveguide array for realizing correlated pho-
ton quantum walks. (a) Image of the integrated chip. (b) Simulation of the inten-
sity of laser light propagating in the array showing the discrete diffraction of light.
(c) Intensity output pattern. Adapted from [18].

In this context the advantages of the AlGaAs material platform could be lever-
aged to realize arrays of electrically injected nonlinear sources [60] whise parameters
are directly controlled in-situ via the electro-optical effect [54]. In addition, the
use of AlGaAs will allow reducing the footprint of the devices from the centimeter
to the millimeter scale, thanks to its high refractive index contrast.

9.2 Design of the waveguide lattice
In this section we start by introducing the fundamental phenomenon on which the
device is based: evanescent coupling. We first consider the case of two waveguides
and we briefly introduce the coupled-mode theory. Then, we present our device
and we determine its optimal design by means of numerical simulations.

9.2.1 Evanescent coupling
Evanescent coupling is a core effect of integrated photonics that allows to realize
a variety of integrated components, such as directional couplers, switches, filters
and many others. In order to introduce it, we consider the simple case of two
straight monomode waveguides. If they are brought sufficiently close so that the
guided modes overlap, light can tunnel from one waveguide to the other. Since the
overlap between the two modes typically occurs in the evanescent tails of the field
distribution, this effect is called evanescent coupling.

To model this effect we employ an approximated theory, called coupled-mode
theory [291], which provides satisfactory results for our experimental conditions.
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Figure 9.3: Sketch of two weakly coupled waveguides and their even (green) and
odd (orange) guided supermodes.

We assume that the two waveguides are weakly coupled so that the presence of the
first waveguide does not influence the transverse profile or the propagation constant
of the second waveguide mode. The coupling thus induces only a modulation
of the amplitude of the guided modes along the propagation direction z. The
overall system supports two guided supermodes that are given by the sum (even
supermode) and the difference (odd supermode) of the guided mode of each isolated
waveguide. Figure 9.3 reports a sketch of the two waveguides and the even (in
green) and odd (in orange) supermode transverse profiles.

Calling a1(z) and a2(z) the amplitudes of the guided mode of the isolated
waveguides, the total field distribution in the device can be written:

Et(x, y, z, t) = a1(z)E1(x, y)ei(β1z−ωt) + a2(z)E2(x, y)ei(β2z−ωt) (9.1)

where Ej(x, y) is the guided mode transverse profile for waveguide j = 1, 2 and βj
its propagation constant1. Under the assumptions detailed above the amplitudes
aj(z) are governed by the following coupled mode first-order differential equations:

da1(z)
dz = −iCei∆βz · a2(z)

da2(z)
dz = −iCei∆βz · a1(z)

(9.2)

where ∆β = β1 − β2 is the propagation constant mismatch and C is the coupling
coefficient, which is proportional to the overlap between the guided modes of the
two isolated waveguides:

C ∝
∫∫

dxdyE∗1(x, y)E2(x, y) (9.3)

1In this chapter we call the propagation constant β instead of k, to avoid any confusion with
the transverse momentum k⊥ that we will introduce later.
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Alternatively, the coupling constant C can be calculated from the effective refrac-
tive index of the even and odd supermode [291]:

C = π

λ
(nodd − neven) (9.4)

which provides an easier and faster method.
Once the equations are solved and the amplitude retrieved, we can evaluate the

power in each waveguide by taking the squared modulus Pj(z) ∝ |aj(z)|2.
Let us consider the particular case in which light is injected only in the first

waveguide (i.e. a1(0) 6= 0 and a2(0) = 0). The power in each waveguide as a
function of the propagation distance z reads [292]:

P1(z) = P1(0)
cos2(γz) +

(
∆β
2γ

)2

sin2(γz)


P2(z) = P1(0)
(
C

γ

)2

sin2(γz)
(9.5)

which are oscillating functions of period 2π/γ where:

γ =

√√√√(∆β
2

)2

+ C2 (9.6)

In case of synchronous coupling, defined as ∆β = 0 (i.e. the two guided modes
have the same propagation constant), Equation 9.5 reduces to:P1(z) = P1(0) cos2(Cz)

P2(z) = P1(0) sin2(Cz)
(9.7)

In this case the optical power completely transfers from one waveguide to the other
on a length called coupling distance, Lc = π/2C.

Figure 9.4 reports the plot of P1(z) as a function of the propagation distance, for
two different values of propagation constant mismatch ∆β = 0 (blue) and ∆β = 4C
(red). We notice that in the second case the power transfer is not complete and it
oscillates at a higher frequency than in the first case.

The coupled-mode theory, presented here in the case of two waveguides, can be
generalized to describe the coupling among N equidistant waveguides.

9.2.2 Device design and working principle
Figure 9.5a reports a scheme of the device, which is composed of a lattice of parallel
co-propagating nonlinear waveguides, which have been presented in section 1.5. All
the waveguides composing the lattice have the same ridge width and are separated
by a distance that we call gap. In the following we will refer to the space between
adjacent waveguides as trenches and we will call etching depth the ridge height, as
summarized in Figure 9.5b.

We want to design a device in which the SPDC-generated photons can tunnel
into the neighboring waveguides (as sketched in red in Figure 9.5b), while the pump
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Figure 9.4: Optical power in two weakly-coupled waveguides as a function of
the propagation length (in units of π/2C), as described by Equation 9.5 when
waveguide 1 is injected. The blue curve represent the case of synchronous coupling
∆β = 0, while for the red curve ∆β = 4C.

beam stays confined in only one waveguide without coupling into the others. This
can be achieved by evanescently coupling the fundamental Gaussian modes at 1550
nm and preventing the coupling of the Bragg modes at 775 nm (corresponding to
the pump beam). In order to interfere, the photons must have the same polarization
and thus we will employ a type I SPDC process, in which a TM-polarized pump
beam generates TE-polarized photon pairs. In the following calculation we will
drop the polarization label, always referring to the fundamental TE mode at 1550
nm and to the TM Bragg mode at 775 nm.

Coupling constant evaluation

In order to determine the device parameters, in particular the gap width and the
etching depth, we perform numerical simulations with Lumerical MODE on two
coupled waveguides and, since the device consists of identical and periodically
distributed waveguides, the results can be generalized.

We start by fixing the gap length to 500 nm, which is a reasonable value achiev-
able with standard clean room processes, and the ridge width to 2 µm. Then we
evaluate the modal refractive indices of the odd and even supermodes guided into
the device (nodd and neven), while varying the etching depth. Figure 9.6 reports
the transverse intensity profile of TE polarized supermodes at 1550 nm.

From the modal refractive indices we then calculate the coupling constant C,
employing Equation 9.4. Figure 9.7 reports the calculated coupling length Lc =
π/2C as a function of the etching depth for both the SPDC Gaussian modes (at
1550 nm) and the pump Bragg mode (at 775 nm). The curves have been obtained
by fitting additional data that lay outside the graph range. The vertical blue lines
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Figure 9.5: (a) Sketch of a lattice of parallel ridge nonlinear waveguides. (b)
Epitaxial structure of the device (1: top Bragg mirror, 2: core, 3: bottom Bragg
mirror) and definition of the lattice parameters.

indicate the waveguide core position along the epitaxial direction. We note that
for both modes the coupling length increases more than linearly with the etching
depth and the Bragg modes are less coupled than the infrared ones, as expected
since they have a shorter wavelength and a shorter evanescent tail, resulting in a
smaller spatial overlap.

From these simulations we choose an etching depth of 2.7 µm, for which the
coupling length is about 300 µm for the infrared modes and 2.3 mm for the Bragg
modes. These values, in a 2 mm-long device, ensure that the infrared modes are
evanescently coupled while the Bragg modes are almost completely uncoupled.

Waveguide addressing

Since the waveguides in the array are too close to each other to allow a precise
individual optical addressing, we design two s-bend parts to overcome this issue.
Figure 9.8 is a sketch of the complete device that is composed by three injec-
tion waveguides (on the left), a central coupling region where the waveguides are
brought closer and a collection region (on the right) where the waveguides are sep-
arated by 127 µm, which corresponds to the standard pitch of a fibered array that
we plan to use to collect light out of the device. The s-bend waveguides are de-
signed with a high curvature radius (approximately 600 µm), in order to minimize
losses.

9.3 Spatial entanglement in a nonlinear waveg-
uide array

We now introduce the quantum theory of SPDC in such array of nonlinear waveg-
uides, following the analysis given in [293]. As stated before, we consider an array
in which the generated photons can couple from waveguide to waveguide before
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9.3. Spatial entanglement in a nonlinear waveguide array

Figure 9.6: Intensity profiles of the even (left) and odd (right) TE guided super-
modes at 1550 nm for an etching depth of 2.7 µm. The odd mode has a node in
the center, while the even one does not.

Figure 9.7: Coupling length Lc as a function of the etching depth (for a ridge
width of 2 µm and a gap of 500 nm) for the TE Gaussian modes at 1550 nm
(red) and the TM Bragg mode at 775 nm (black). The curves are fitted using
additional data that lay outside the graph range. In blue we show the position of
the waveguide core.
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Figure 9.8: Sketch of the complete device. The injection part (left) is made
of three s-bend waveguides connected to the central waveguides of the coupling
region (center). Conversely, in the collection (right) part all the waveguides are
connected.

exiting the device, while the pump beam (injected in one or more waveguides) does
not diffract (due to its much smaller coupling constant), as depicted in Figure 9.5a.

The analysis is similar to the one given in chapter 2 for a counter-propagating
source, but it includes now also the spatial degree of freedom (i.e. the transverse
position in the array). The calculation follows the same steps. We first define the
involved fields and the first-order perturbation term of the linear Hamiltonian, and
then the biphoton wavefunction is derived by solving the Schrodinger equation.

The nearest neighbor coupling in the array introduces a discretized dispersion
relation, modifying the propagation constant in the z direction:

β(ω, k⊥) = β(0)(ω) + 2C(ω) cos
(
k⊥
)

(9.8)

where β(0)(ω) = ωn(ω)/c is the propagation constant in a single waveguide at
frequency ω, which is governed by the modal refractive index n(ω). The second
term, where k⊥ = kyd is the normalized transverse momentum (d is the center-to-
center distance between the waveguides), corresponds to the modification of the
dispersion relation induced by the presence of the waveguide array. The coupling
parameter C(ω), previously evaluated, depends primarily on the gap length and
secondly on the field frequency.

The signal and idler fields in the nth waveguide can be written as follows:

Ê(+)
n (z, t) = Ê(−)†

n (z, t) = B
∫ π

−π
dk⊥

∫ ∞
−∞

dω eik⊥nei[β(ω,k⊥)z−ωt]â†(ω, k⊥) (9.9)

with B a normalization constant. Since the signal and the idler fields are both TE
polarized we have dropped the polarization label in the operator â†.

On the other hand, the pump field can be considered as a bright undepleted
optical beam and thus treated classically. Moreover, as already stated, the pump
beam does not couple to neighboring waveguides and thus we can neglect the
influence of the array. The pump field in the nth waveguide can be written as
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9.3. Spatial entanglement in a nonlinear waveguide array

follows:

E(+)
p,n (z, t) =E(−)∗

p,n (z, t) =
∫ ∞
−∞

dωp A(n)fspectrum(ωp)ei[β
(0)
p (ωp)z−ωpt]

=
∫ π

−π
dk⊥p

∫ ∞
−∞

fspectrum(ωp)Ã(k⊥p )eik⊥p nei[β
(0)
p (ωp)z−ωpt]

(9.10)

where fspectrum(ωp) is the spectral shape of the pump beam and β(0)
p its propaga-

tion constant. In the second line of Equation 9.10 we have expressed the spatial
amplitude pattern of the pump A(n) via its Fourier Transform, obtaining its Bloch
mode distribution Ã(k⊥p ) = 1

2π
∑
nA(n)e−ik⊥p n.

We now define the nonlinear Hamiltonian of the SPDC process:

ĤNL(t) = ε0
2

∫ L

0
dz
∑
n

χ(2)[E(+)
p,n (z, t)Ê(−)

n (z, t)Ê(−)
n (z, t) + h.c.] (9.11)

where L is the length of the array. Since the interaction inside the medium is weak
we can employ first-order perturbation theory, as we have done in chapter 2. The
biphoton state emerging from the waveguide array is then:

|ψ〉 = 1√
N

∫ ∞
−∞

dωs
∫ ∞
−∞

dωi
∫ π

−π
dk⊥s

∫ π

−π
dk⊥i f(ωs, ωi, k⊥s , k⊥i )â†(ωs, k⊥s )â†(ωi, k⊥i ) |0〉

(9.12)
where 1/

√
N is a normalization constant. The signal and idler photons are created

into a superposition of spectral and spatial modes determined by the joint spatio-
spectral amplitude f(ωs, ωi, k⊥s , k⊥i ), which reads:

f(ωs, ωi, k⊥s , k⊥i ) =fspectrum(ωs + ωi)Ã(k⊥s + k⊥i )

· sinc
[
L

2 ∆β(ωs, ωi, k⊥s , k⊥i )
]

︸ ︷︷ ︸
φ(ωs,ωi,k⊥s ,k⊥i )

e−iL∆β(ωs,ωi,k⊥s ,k⊥i )/2︸ ︷︷ ︸
ϕ(ωs,ωi,k⊥s ,k⊥i )

(9.13)

where the phase-mismatch ∆β is defined as:

∆β(ωs, ωi, k⊥s , k⊥i ) = β(0)
p (ωs + ωi)− β(ωs, k⊥s )− β(ωi, k⊥i ) (9.14)

The first two terms of Equation 9.13, fspectrum(ωs +ωi) and Ã(k⊥s + k⊥i ), are deter-
mined respectively by the spectral and spatial characteristics of the pump beam.
Then we have identified the phase-matching amplitude φ(ωs, ωi, k⊥s , k⊥i ) and phase
factor ϕ(ωs, ωi, k⊥s , k⊥i ), which are given by the waveguide array properties (i.e. the
modal dispersion and gap length).

In order to relate f(ωs, ωi, k⊥s , k⊥i ) to spatially or spectrally resolved correlation
measurements, we calculate the correlation function between a photon at (ωs, k⊥s )
and an other one at (ωi, k⊥i ):

Γ̃ω,k(ωs, ωi, k⊥s , k⊥i ) = 〈ψ|â†(ωs, k⊥s )â†(ωi, k⊥i )â(ωi, k⊥i )â(ωs, k⊥s )|ψ〉

=
4/N |f(ωs, ωi, k⊥s , k⊥i )|2 if ωs = ωi and k⊥s = k⊥i

1/N |f(ωs, ωi, k⊥s , k⊥i )|2 else
(9.15)
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where the factor 4 accounts for the case of indistinguishable photons.
By tracing over the spectral degree of freedom we retrieve the correlation func-

tion in the transverse-momentum space:

Γ̃k(k⊥s , k⊥i ) =
∫

dωs
∫

dωi Γ̃ω,k(ωs, ωi, k⊥s , k⊥i ) (9.16)

In the real space (corresponding waveguide numbers ns and ni) the correlation
function Γ(ns, ni) can be calculated as follows:

Γn(ns, ni) =
∫

dωs
∫

dωi Γω,n(ωs, ωi, ns, ni) (9.17)

where Γω,n(ωs, ωi, ns, ni) = |FT(f(ωs, ωi, k⊥s , k⊥i ))|2 and FT stands for Fourier Trans-
form. Γn(ns, ni) is called Joint Spatial Intensity and gives the probability of de-
tecting the signal and idler photons at the outputs ns and ni, respectively.

Phase-matching

In order to obtain a significant down-conversion rate, the phase-matching condi-
tion must be nearly perfectly satisfied, i.e. ∆β(ωs, ωi, k⊥s , k⊥i ) ≈ 0. This induces
spatio-temporal correlations between the frequency (ωs, ωi) and the k⊥-components
(k⊥s , k⊥i ) of the generated signal and idler photons.

The phase-mismatch ∆β(ωs, ωi, k⊥s , k⊥i ), Equation 9.14, can be split into two
terms:

∆β(ωs, ωi, k⊥s , k⊥i ) = ∆βω(ωs, ωi) + ∆βA(ωs, ωi, k⊥s , k⊥i ) (9.18)
where the first term ∆βω(ωs, ωi) describes the spectral phase-matching of an iso-
lated waveguide and reads:

∆βω(ωs, ωi) = ∆β(0)
p (ωs + ωi)− β(0)(ωs)− β(0)(ωi) (9.19)

On the other hand, the second term ∆βA(ωs, ωi, k⊥s , k⊥i ) is the phase-matching
induced by the dispersion of the array and reads:

∆βA(ωs, ωi, k⊥s , k⊥i ) = −2C(ωs) cos
(
k⊥s
)
− 2C(ωi) cos

(
k⊥i
)

(9.20)

which depends on the transverse k⊥-components of the generated photons (k⊥s , k⊥i )
and on the coupling parameter C(ω), which is frequency dependent.

For our device, consisting of co-propagating nonlinear sources presented in sec-
tion 1.5 and based on modal phase-matching, the phase-matching condition of an
isolated waveguide (Equation 9.19) reads:

∆βω = 1
c

[
ωpnBragg, TM(ωp)− ωsnTE(ωs)− ωinTE(ωi)

]
(9.21)

where we have considered a type I SPDC process, in which a TM pump photon
is down-converted into two TE photons; nBragg, TM(ωp) is the effective refractive
index of the Bragg guided mode of the pump at 775 nm and nTE(ω) the one of
the fundamental guided mode at 1550 nm. For a more detailed discussion about
modal phase-matching we refer to section 1.5.
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9.3. Spatial entanglement in a nonlinear waveguide array

Numerical simulations

In order to gain insight into the generation of spatial correlations, we now con-
sider the simple case of a monochromatic pump beam and perfect spectral phase-
matching (i.e. ∆βω = 0). Figure 9.9 reports the Joint Spatial Intensity in real
space Γn(ns, ni), numerically calculated with a Matlab script, for a 2 mm-long de-
vice with a frequency-independent coupling constant C = 5 mm-1, corresponding
to a coupling length Lc ≈ 310 µm, as simulated for our device design (ridge width
2 µm, gap 500 nm and etching depth 2.7 µm).

When pumping only the central waveguide (Figure 9.9a), we observe that the
photons are more likely to exit through the same waveguide (spatial bunching) or
through opposite waveguides (spatial anti-bunching). When pumping the waveg-
uides n = 0 and n = 1 in phase, anti-bunching is enhanced (Figure 9.9b), while
when the same two waveguides are pumped out of phase, bunching is favored (Fig-
ure 9.9c). More complex quantum states can be obtained by further tailoring of
the pump configuration.

Spatial correlations can be experimentally verified by measuring photon coinci-
dences between output pairs, thus reconstructing the joint spatial intensity. In our
case, the source has a typical brightness of 5-10 MHz [59], leading to approximately
100 Hz of measured coincidences using a standard setup with avalanche photodi-
odes. This requires about 20 min in total to measure a correlation map such as
shown in Figure 9.9. Moreover, the quantum nature of the generated quantum
state could be directly assessed using Bell-type criteria [290].

In this analysis we have considered the simplest array with equidistant waveg-
uides and fixed coupling constants. However, by controlling these parameters it
is possible to simulate condensed-matter systems. Indeed, quantum walks in a
waveguide lattice can be described by a tight-binding Hamiltonian which is widely
encountered in many condensed-matter phenomena. Each waveguide represents a
site and its modal refractive index has the role of the on-site energy. The coupling
constant determines the tunneling between sites. The first can be controlled by
modifying the waveguide width or by employing the elctro-optic effect, while the
latter can be controlled by varying the gap, as we have seen. Thus, the waveguide
array offers a wide flexibility to define any form of tight-binding Hamiltonian, and
can serve as a platform to simulate fundamental physical effects otherwise difficult
to access in condensed- matter systems

In addition, the possibility of varying the lattice parameters, i.e. alternating
different values for the gap, would allow to study topological effect: for exam-
ple implementing the Su-Schriefer-Heeger (SSH) Hamiltonian [294], which is the
simplest tight-binding Hamiltonian featuring topological properties [96].

In conclusion, the designed device is a versatile and compact source of spatially
high-dimensional entangled photon pairs in the telecom range and operating at
room temperature, which could be employed to perform quantum simulations.
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Figure 9.9: Calculated Joint Spatial Intensity in real space Γn(ns, ni) at the
output of a L = 2 mm lattice with coupling constant C = 5 mm-1, when pumping
with a CW laser: (a) the central waveguide (n = 0), (b) the waveguides n = 0 and
n = 1 in phase and (c) the waveguides n = 0 and n = 1 out of phase. We assume
that the spectral phase-matching condition is perfectly satisfied (i.e. ∆βω = 0).
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9.4. Device fabrication

Figure 9.10: Sketch of the clean room fabrication steps for the fabrication of the
device.

9.4 Device fabrication

The fabrication of parallel 2 µm-wide ridge waveguides spaced by 500 nm requires
a robust clean room process with a good resolution (of the order of 50 nm at least).

The counter-propagating source presented in the previous part of the thesis has
been fabricated using photolithography and chemical wet etching, a simple and fast
process thanks to the parallel illumination of the whole chip at once. Yet, this tech-
nique has several drawbacks when fabricating more complex photonic circuits than
simple waveguides. Indeed, the isotropic wet etching produces waveguides with
curved sidewalls, which, in our case, would prevent a precise control of the gap and
thus of the coupling parameter. Moreover, the wet etching process strongly de-
pends on the employed solvent and on the soaking speed and orientation, resulting
in hardly reproducible samples. Finally, the resolution that can be achieved with
UV photolitography, in our clean room, is limited to 150 nm.

For all these reasons, for the fabrication of the waveguide array we have opti-
mized a new fabrication process based on electron beam lithography (EBL) and
inductively coupled plasma etching (ICP). EBL allows to draw on the resist waveg-
uides with high lateral resolution, thanks to the low electron diffraction-limit. ICP
is a technique of directional etching allowing to obtain vertically shaped waveguide
sidewalls and to precisely control the etching depth.

In this section we detail the fabrication steps, which are illustrated in Fig-
ure 9.10.
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9.4.1 Resist deposition
We choose the negative electron-sensitive resist HSQ (hydrogen silsesquioxane)
Dow Corning XR-1541 at 6% concentration, for its high resolution (6 nm).

As a first step, in order to optimize the adhesion of the resist on the sample, we
deposit a 10 nm-thick film of SiO2 by Plasma-enhanced Chemical Vapor Deposition
(PECVD). Then the resist is deposited by spin-coating using the following recipe:

HSQ resist deposition
HSQ spin-coating 4000 rpm, tramp= 3 s, tspin=30 s

baking 1 150°C, t=2 min
baking 2 200°C, t=2 min

obtaining a resist thickness of approximately 160 nm.

9.4.2 Electron beam lithography
Electron beam lithography is a high-resolution and maskless exposure method that
allows to draw custom shapes on a surface covered with an electron-sensitive resist.
Thanks to the low electron diffraction-limit, the resolution can be less than 10 nm.
Yet, the versatility of this technique is counter-balanced by a slow speed, because
the electron beam needs to scan the whole sample surface, drawing point by point.
For this reason, EBL is not employed for industrial high-volume production and it
is mainly adopted for academic research or prototyping.

In this thesis we use the Raith eLine lithographic system of the Ecole Normale
Supérieure clean room in Paris belonging to the Paris Centre clean room consor-
tium. This system allows to work both in the normal mode and in the fixed beam
moving stage (FBMS) exposure mode, in which the electron beam is fixed and
the sample moves. This procedure enables rapid exposure of long structures, such
as waveguides, without stitching errors2 and it is thus particularly suited for the
fabrication of our waveguide array.

The main parameter to optimize in EBL lithography is the area dose (the flux
of irradiating electrons), which mainly depends on the employed resist. To do so,
we perform a dose test employing a mask with 25 arrays of 7 straight waveguides
in which the area dose ranges from 100 µC/cm2 to 1300 µC/cm2 with steps of 50
µC/cm2. The EBL is set to 30 µm beam aperture and an acceleration voltage of
20 kV.

After the lithography we develop the resist with the developer AZ400K for 1
min.

2During a standard exposure the electron beam is deflected by electromagnetic lenses to write
inside an area called writing field (typically 100 µm by 100 µm). To fabricate samples that are
larger than the writing field, the stage has to move each time the beam reaches its maximum
deflection angle. This procedure is critical and usually results in a misalignment of the order
of 10 nm. Such imperfections are not desirable in a waveguide, as they cause optical losses.
Conversely, during a FBMS exposure the electron beam is always fixed and the stage moves to
write the waveguide, with a high mechanical stability, thus allowing to fabricate long samples
without stitching errors.
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Figure 9.11: Optical microscope images at 150x magnification of the dose test
sample after ICP etching: from left to right, increasing values of EBL area dose.

9.4.3 ICP dry etching
After the resist is developed, we start the inductively coupled plasma etching (ICP).
ICP is a dry etching technique based on Reactive-Ion Etching (RIE), which uses a
chemical reactive plasma to remove material from a piece of wafer. The ions are
accelerated by a high voltage and collide with the sample. Two processes occur:
the ions react chemically with the materials on the surface, but they also knock
off (sputter) materials transferring part of their kinetic energy. Due to the mostly
vertical direction of the flux of reactive ions, the technique produces samples with
anisotropic etch profiles (i.e. vertical sidewalls), contrary to the typical isotropic
profile produced by wet etching. For this work we employ a Sentech SI500 machine
and SiCl4 chemistry.

The ICP recipe we employ is based on low RF acceleration voltage and power
(V = 115 V and P = 15 W), low plasma power (20 W) and the etching species
SiCl4 (3 sccm)3 and Ar (3 sccm). This recipe allows to gently etch the sample
without completely removing the resist and to obtain a profile with low roughness.
On the other hand, the etch rate is low, approximately 10 nm/min.

Figure 9.11 reports images taken with an optical microscope at 150x magnifi-
cation after the ICP process for four different EBL dose values, ranging from 450
µC/cm2 to 1300 µC/cm2. We find that for the lower values the resist has not
been exposed enough and thus the etching process has completely removed it (Fig-
ure 9.11a). Conversely, for the higher dose values the resist has been too exposed
and the waveguides have merged (Figure 9.11d). In conclusion, we identify an
optimal dose around 800 µC/cm2, and in the following fabrication we will always
employ this value.

Etching rate and gap

After having determined the optimal dose for EBL, we perform an etching test to
evaluate the etching rate in the trenches between adjacent waveguides. Indeed, in
this particular situation it is not possible to employ the interferometric system of

3Standard cubic centimeters per minute (SCCM) is a unit of flow measurement indicating
cubic centimeters per minute (cm3/min) in standard conditions for temperature and pressure of
a given fluid.
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the machine, because the trenches are too narrow with respect to the laser spot size.
We also need to check that the obtained gap width between adjacent waveguides
corresponds to the target one.

In order to perform a systematic study, we design a mask with eleven array of
straight 2µm-wide waveguides where the gap spans from 200 nm to 700 nm, the
target gap being 500 nm. After the ICP etching we cleave the sample in two pieces
and observe the waveguide facets with a scanning electron microscope (SEM), as
shown in Figure 9.12.

First of all we note that the etched trenches between the waveguides do not
have perfectly vertical sidewalls, but are slightly under-etched: the gap is smaller
at the top and the bottom of the trenches and bigger in the center, as shown in
Figure 9.12a for a nominal gap of 500 nm.

By looking at Figure 9.12b, reporting an array of waveguides with a nominal
gap of 700 nm, we observe that this effect is less pronounced when the gap increases.
Indeed, in this case the reactive ions employed in the ICP process can etch more
easily inside the gap. This behavior is confirmed by the lateral sidewalls of the
array, which have almost perpendicular profiles, as can be seen in the same image.

We then compare the nominal gap dimension with the measured one, for each
array of waveguides. In general we find that the actual gaps are wider than their
nominal dimension and this effect is more pronounced when the gap is increased:
for gaps with a small nominal value (< 400 nm) we measure an actual value
approximately 5% greater, while for gaps with a larger nominal value (600-700
nm) the difference rises up to approximately 15%. However, this discrepancy can
be early corrected by adjusting the EBL mask accordingly.

Finally, we measure the etching rate. By looking at Figure 9.12b we note that
the etched depth differs if we consider the central waveguides or the lateral ones.
This is a known effect called aspect ratio dependent etching [295] and it is mainly
due to a decrease of transport of the reactive species when the trench aspect ratio
increases. We evaluate an etching rate of approximately 10 nm/min inside the
trenches and of approximately 13 nm/min outside.

9.4.4 Fabrication of the complete device
So far we have performed a dose test and evaluated the etching rate, in order to
optimize the fabrication process for arrays of straight waveguides. We now focus on
the fabrication of a "complete" device, as depicted in Figure 9.8, which is composed
of: an injection region with three waveguides, a coupling region with an array of
seven waveguides and a collection region where the waveguides split apart.

In order to overcome the issue of different etching rates inside and outside the
array, we add two additional waveguides on each side of the central array, without
connecting them to the injection nor to the collection region. In this way, the seven
central waveguides, in which we expect the photons to propagate, are etched to
the same depth.

Figure 9.13a reports a SEM image of a close-up on the fabricated device, show-
ing the coupling region and the collection waveguides, while Figure 9.13b shows a
larger view of the device. For both the coupling region and the s-bend parts we
observe a good fabrication quality.
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Figure 9.12: SEM images of the waveguide facets for two different nominal gap
values: 500 nm (a) and 700 nm (b).

It is worth noting that, without cleaving the sample in two pieces, it is im-
possible to determine the trench depth in the coupling region. Nevertheless, by
measuring the etching depth for a waveguide outside the coupling region (3.5 µm)
and knowing the ratio between the inside and outside etching rates, we evaluate
that the trenches have been etched to a depth of approximately 2.7 µm, which
corresponds to the target depth.

9.5 Optical characterization
We now proceed to the optical characterization of several types of fabricated de-
vices. We start by analyzing a sample containing only arrays of straight waveguides
with different gap widths, in order to determine if the devices properly guide light
and to evaluate the propagation losses. We then test a sample containing three
complete devices with injection and collection s-bent waveguides. The two samples
have been fabricated from the same wafer (EBW002) but at different dates.

9.5.1 Guided modes
As a first test, we analyze a 0.9 mm-long array of straight waveguides with a
nominal gap of 600 nm, employing first a laser beam at 775 nm and then one at
1550 nm.

We use a Ti:Sapphire laser at 775 nm in a quasi-continuous wave regime and
inject the beam in the waveguide array employing a microscope objective (x40,
NA=0.75), as sketched in Figure 9.14. The output light is collected using another
microscope objective (x40, NA=0.65) and focused on a CDD camera with a con-
verging lens (f=300 mm), in order to image at the same time the device facets and
the output guided modes.
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Figure 9.13: SEM images of the waveguide array device. (a) Coupling region and
collection waveguides. On the sides of the coupling region it is possible to notice
the four waveguides that we have added to obtain a uniform etching depth, which
are not connected with the collection region. (b) Top view of the device; starting
from the top: injection, coupling and collection regions.
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Figure 9.14: Optical setup employed to image the device output facet and the
output guided modes at 775 nm. The same setup, without the converging lens, is
used to image the infrared guided modes at 1550 nm.

Figure 9.15 reports the images taken with the CDD camera, displaying the out-
put facets (whose envelope is highlighted in white) and the output guided modes.
When moving the laser beam from the right to the left we inject a different waveg-
uide of the array and the output mode consequently shifts, as shown from Fig-
ure 9.15a to Figure 9.15e. The images show also that the beam is guided in a
single waveguide without coupling to the neighboring waveguides. This demon-
strates that the waveguides are essentially not evanescently coupled at 775 nm, as
required for the correct functioning of the device.

In addition to the modes guided in single waveguides, when injecting light at a
lower height in the device we observe a supermode confined in the top part of the
lower Bragg mirror, which spans the whole device, as shown in Figure 9.15f. We
think that the presence of this mode is due to the device design: the waveguides
are very close to each other and the core is not completely etched (see Figure 9.5b),
creating a confined supermode in the bottom Bragg mirror.

As a second step, we investigate the infrared guided modes at 1550 nm, by using
a setup similar to the one reported in Figure 9.14. We employ a Tunics CW laser,
the same two microscope objectives and an infrared camera to image the modes
(without converging lens). Figure 9.16 reports the measured output modes. The
images have a low quality due to the IR camera low sensitivity and resolution, but
it is still possible to distinguish the output light. We observe that light exits from
more than one waveguide, on average from three, meaning that the waveguides are
evanescently coupled at 1550 nm, as required during the design. Moreover, also for
the infrared beam, the device presents a supermode guided in the bottom Bragg
mirror, as shown in Figure 9.16d.

9.5.2 Propagation losses
In order to evaluate the quality of the fabrication process, we evaluate the propa-
gation losses at 1550 nm, by employing the technique detailed in section 1.4. We
inject the infrared laser beam inside the sample and measure the power of the
output light while sweeping the laser wavelength; from the contrast of the Fabry-
Pérot fringes we evaluate the propagation losses. This procedure relies on the
knowledge of the modal reflectivity of the considered guided modes. In our device,
the input beam spreads over multiple waveguides during the propagation but re-
mains guided in their fundamental modes. We can thus reasonably approximate
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Figure 9.15: Images of the device output facet (highlighted in white) and Bragg
guided modes at 775 nm: from (a) to (e) the input beam is moved from right to
left and thus coupled into a different waveguide of the array. (f) Supermode guided
in the bottom Bragg mirror.
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Figure 9.16: Output guided modes at 1550 nm. From (a) to (c) the input beam
is moved from right to left. (d) Supermode guided in the bottom Bragg mirror.

the modal reflectivity of the involved modes to that of the fundamental modes in a
2 µm-wide ridge single waveguide, whose values have been numerically calculated
in section 1.5 (RTE = 28.2% and RTM = 27.8%).

We perform the loss measurement for several positions of the input beam, thus
selecting different waveguides of the array. From the measured fringe contrast we
evaluate that the propagation losses are in the range α = 5− 9 cm-1. Figure 9.17
reports a measurement done in one waveguide of the array. Comparing these values
to the typical losses that we obtain in single waveguides, processed by wet etching
(α ≈ 0.5 cm-1 [159]) that induces very low roughness, we see that these value
remain acceptable but there is room for further improvement of the EBL and ICP
fabrication process.

9.5.3 Test of the complete device
The complete device has been fabricated from the same wafer than the sample
previously analyzed, but since it has been fabricated at different dates, it may
have a different fabrication quality and thus different optical losses. The device
total length is 8 mm divided as follows: 2 mm for the coupling region and 3+3 mm
for the injection and collection parts.

By employing the optical setup reported in Figure 9.14, without the converging
lens, we try to couple a laser beam at 775 nm and at 1550 nm inside the device.
Yet, it is not possible to identify the guided modes, neither at 755 nm nor at 1550
nm.

In order to have more clues about this apparent absence of guided modes, we
couple the 775 nm laser while imaging the top surface of the sample with a CDD
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Figure 9.17: Normalized power transmitted through one waveguide of the waveg-
uide array. From the contrast of the Fabry-Pérot oscillations we derive the optical
losses.

Figure 9.18: Optical setup used to image the top surface of the sample.

camera mounted on a trinocular, as illustrated in Figure 9.18. The resulting image
is reported in Figure 9.19. The input beam is injected in the lower input arm
(point 1) and propagates through the device while scattering light from the waveg-
uide surface. We notice that the output facets (point 3) are slightly illuminated,
meaning that the beam has traveled through the whole device, even if no guided
mode is visible after the collection microscope objective (probably the beams are
too attenuated).

Moreover at point 2, where the array is connected to the s-bend part, we ob-
serve a bright point corresponding to the location of the output facets of the lat-
eral waveguides that we have added to obtain a more uniform etching depth, as
explained in subsection 9.4.4. We thus think that the guided mode highly diffracts
during the propagation in the coupling region and a part of the injected power
reaches the lateral waveguides which are not connected to the collection region (as
shown in Figure 9.13a).

As we have said previously, the guided modes at 775 nm are supposed to be
uncoupled and this was the case for the array of straight waveguides whose mea-
surements are reported in Figure 9.15. We suppose that in the present sample the
coupling at 775 nm is caused by an insufficient etching in the central region and
thus by a non-negligible coupling constant of the Bragg mode.

Moreover, the fact that light scatters out of the waveguide top confirms also
the hypothesis that the guided modes have high propagation losses, which however
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Figure 9.19: Top view of the device while injecting a 755 nm beam in the lower
input arm (1). We notice that the output facets (3) are slightly illuminated, mean-
ing that the beam is guided. In (2) we observe a bright spot where the coupling
region is connected to the s-bend part. See text for additional details.

are difficult to evaluate without measuring the transmitted power. Alternatively,
they can be roughly estimated from the exponential decay of the scattered light
measured with the camera [296]. By fitting the exponential decay we obtain a
value of propagation losses around α ≈ 25 cm-1 for the pump Bragg mode, which
is higher than the one obtained in previous works (approximately 5 cm-1 [159]).
However, in the latter case the waveguide was fabricated by wet etching, which
usually produces smoother sidewalls, and the waveguide ridge was larger (5 µm);
therefore, the guided mode was less influenced by eventual fabrication defects.

In conclusion, we presume that the combined factors of high propagation losses
and an insufficient etching depth are the causes of the absence of output guided
modes of measurable intensity. We are currently working to improve the fabrication
processes, in particular the ICP etching step.

9.6 Conclusion and perspectives
In this chapter we have presented a new device designed to produce spatially entan-
gled photon pairs, based on cascaded quantum walks in an array of co-propagating
nonlinear waveguides. We have first presented the design of the device and its work-
ing principle, focusing on the possibility of engineering the spatial correlations of
the generated photon pairs.

Then, we have optimized the clean room process to fabricate the device, deter-
mining the best parameters for the electron beam lithography and the inductively
coupled plasma etching processes. The fabricated samples, observed with a scan-
ning electron microscope, showed a good fabrication quality, with parameter in
accordance with the design.

With an optical characterization, carried out on arrays of straight waveguides,
we have determined that the infrared guides at 1550 nm are evanescently coupled
while the modes at 775 nm are not, confirming the correct functioning of the device.

However, when we have tested a complete device, containing also two s-bend
regions to enable individual waveguide addressing, no output guided modes have
been detected. The two probable causes of this issue are the high propagation
losses inside the device, which is 8 mm long, and an insufficient etching depth.

In order to fabricate a complete functioning device, we are currently optimizing
the clean room processes to improve the quality of the trenches of the coupling
region and to reduce the propagation losses.
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This PhD thesis is devoted to the study and development of AlGaAs integrated
photonic devices to be employed in the field of quantum technologies. The main
focus of this work is the generation and the engineering of photon pairs entangled in
high-dimensional degrees of freedoms, such as frequency or spatial modes. Indeed,
in contrast to polarization, these degrees of freedom span a larger Hilbert space
and thus the capability of controlling and shaping them opens novel possibilities
for quantum information protocols.

The photon pairs sources studied in this work present several advantages that
make them a perfect candidate for the development of integrated photonic chips for
quantum information applications. Indeed, they operate at room temperature and
emit in the telecom range, which allows the transmission of the generated quantum
states over long distance through optical fibers. Moreover, the AlGaAs platform
offers the possibility to integrate pump lasers and electro-optic modulators, which
are key steps towards the realization of active and monolithic photonic devices.

In the first part of this thesis we have reported the study of the biphoton states
emitted by a SPDC source based on a counter-propagating phase-matching scheme,
focusing on frequency correlations. To this end, we have first introduced the Joint
Spectral Amplitude (JSA), a complex-valued function that describes all the tem-
poral and spectral properties of the photons, and two experimental techniques (a
single-photon fiber spectrograph and the Stimulated Emission Tomography) that
allow to reconstruct its squared modulus, the Joint Spectral Intensity (JSI).

Then, through numerical simulations and experimental measurements we have
demonstrated that both the intensity and phase of the JSA can be shaped by tai-
loring the pump beam spatial profile, directly at the generation stage and without
any post-selection. The pump beam shaping has been achieved by employing a
spatial light modulator in a 4f configuration, obtaining either intensity or phase
shaping.

In particular, we have shown that tuning the pump beam waist allows to pro-
duce correlated, anti-correlated and separable frequency states, while modifying
the spatial phase profile allows to switch between symmetric and antisymmetric
spectral wavefunctions and to modify the exchange statistics of the photons, which
is measured via a Hong-Ou-Mandel interferometer. These results open the possi-
bility to study the effect of exchange statistics (bosonic and fermionic) in various
quantum simulation problems, and to implement communication and computation
protocols exploiting antisymmetric high-dimensional quantum states.

Moreover, we have also proven that the counter-propagating source, thanks to
its structure and design, can emit photon pairs entangled in a hybrid polariza-

217



Conclusions and Perspectives

tion/frequency degree of freedom. This particular quantum state exhibits simul-
taneous but not independent entanglement in these two degrees of freedom and
when only one is measured the state becomes mixed. The presence of entangle-
ment in this hybrid degree of freedom has been verified through a Hong-Ou-Mandel
interferometer, showing also that the cavity effect, produced by the source facets
reflectivity, complexifies the quantum state. For this reason we have developed
an anti-reflection treatment that has allowed to reduce the facet reflectivity from
R ≈ 27% to R ≈ 10% and to increase the quality of the generated hybrid polar-
ization/frequency entangled state.

In the future, more complex high-dimensional frequency entangled states, such
as time–frequency compass states, could be generated by a further engineering
of the pump beam [240]. An other interesting perspective is the possibility of
fabricating non-birefringent waveguide, by reducing the ridge width to ≈ 1.2 µm.
This should allow to directly generate polarization Bell states whose frequency
can be tuned by tilting the pump beam. In addition, the techniques employed in
this thesis to shape the frequency correlations could be used on such a device to
generate hyperentangled biphoton states in the frequency and polarization degrees
of freedom, this time independently.

Finally, in the last part of the manuscript we have designed and developed a
novel device in the aim of emitting spatially entangled photon pairs. The device
consists of a lattice of parallel co-propagating SPDC sources evanescently coupled,
in which the generated photons, undergoing cascaded quantum walks, are entangled
in their spatial position in the lattice. The device fabrication processes have been
optimized and a first optical characterization has been carried out. For the moment,
the level of optical propagation losses has not allowed to obtain a fully working
sample. Thus, we are currently working on the optimization of the fabrication
processes.

The proposed and developed device will be eventually a versatile and compact
source of spatially entangled photon pairs in the telecom range and operating at
room temperature, which could be employed in quantum information protocols.
In addition, it could also be used to perform quantum simulation tasks, studying
phenomena such as Anderson localization of multipartite particles or topological
protection in the quantum regime.

The devices studied in this thesis can be easily integrated in more complex
photonic circuits. For instance, the counter-propagating source has already been
integrated with a 50:50 beamsplitter [297] and investigation are currently under-
going to integrate the co-propagating source with a polarizing beamsplitter and an
electro-optical modulator. These ongoing developments together with the possi-
bility of electrically injecting the co-propagating source, already demonstrated in
2014 [60], will open the way to the realization of quantum tasks completely on-
chip with a limited footprint, a key step towards real-world quantum technologies
applications.
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Génération sur puce d’états
photoniques intriqués à haute
dimension

Introduction
La photonique joue actuellement un rôle clé dans le développement des technologies
pour l’information quantique. En effet les photons, grâce à leur vitesse de propa-
gation et leur robustesse à la décohérence, transportent efficacement l’information
sur de longues distances. Jusqu’à présent les protocoles d’information quantique
ont principalement utilisé les degrés de liberté associés à des variables discrètes
des photons (par exemple la polarisation), mais pour exploiter au mieux tous les
avantages de la mécanique quantique on assiste à un intérêt croissant pour les de-
grés de liberté associés à des variables continues. La définition d’un alphabet dans
des espaces de Hilbert de dimension infinie permettrait par exemple d’accroître la
sécurité et la densité de codage dans la transmission d’information. Dans cette
perspective, il est donc essentiel de développer des outils pour générer et contrôler
les états quantiques dans ces degrés de liberté.

Grâce à leur maturité technologique et leur propriétés optoélectroniques, les
matériaux III-V constituent une plateforme idéale pour développer des sources de
lumière quantique sur puce. Grâce à sa forte nonlinéarité du deuxième ordre, la
plateforme GaAs/AlGaAs permet la génération de paires de photons aux longueurs
d’onde télécom, par conversion paramétrique spontanée (SPDC en anglais) à tem-
pérature ambiante.

Dans ce contexte, cette thèse de doctorat est consacrée au développement de
nouvelles sources semi-conductrices de paires de photons. En exploitant la grande
flexibilité offerte par la conversion paramétrique spontanée dans les guides d’ondes
AlGaAs, nous démontrons la génération et l’ingénierie d’états de lumière non clas-
siques à haute dimension, en particulier dans les degrés de liberté de fréquence et
de modes spatiaux.

Dans cette thèse deux types de sources sont développées et analysées. D’abord,
nous démontrons qu’en utilisant l’accord de phase contra-propageant et une géométrie
de pompage transverse il est possible d’obtenir un haut niveau de contrôle sur l’état
quantique en fréquence émis. Ensuite, nous commençons le développement d’un
nouveau dispositif formé par un réseau de guides d’ondes nonlinéaires parallèles
capable d’émettre des paires de photons intriquées dans le degré de liberté spatial
en exploitant des marches quantiques en cascade.
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(a) (b)

Figure 9.1: Schéma de la source de photons jumeaux basée sur l’accord de phase
contra-propageant (a) et image au microscope électronique à balayage (MEB) de
sa facette (b).

.

Ingénierie d’états en fréquence

Dans cette partie de la thèse, nous utilisons un guide d’onde avec microcavité ver-
ticale intégrée, émettant des photons jumeaux se propageant dans des directions
opposées, comme montré sur la Figure 9.1. Ce dispositif est basé sur une config-
uration de pompage transverse, dans laquelle un champ de pompe (à 775 nm) est
incident avec un angle θ sur le dessus du guide d’onde et génère par SPDC deux
champs guidés, appelés signal (à droite) et idler (à gauche), avec des polarisations
orthogonales.

Notre travail démontre expérimentalement l’ingénierie des corrélations en fréquence
des paires de photons générées. À cette fin, nous avons d’abord introduit l’amplitude
spectrale jointe (JSA en anglais), une fonction à valeur complexe qui décrit toutes
les propriétés temporelles et spectrales des photons, et deux techniques expéri-
mentales (la tomographie par émission stimulée et un spectographe à fibre pour
photons uniques) qui permettent de reconstruire le module carré de la JSA, appelé
intensité spectrale jointe (JSI en anglais).

Les propriétés spectrales des états générés par la source sont directement héritées
des propriétés de la pompe via les relations de conservation de l’énergie et du
vecteur d’onde. Ainsi, en modifiant la taille et la phase spatiale du faisceau de
pompe on peut soit générer soit effacer des corrélations spectrales selon l’application
visée.

La Figure 9.2 montre l’intensité spectrale jointe (JSI) mesurée par tomographie
par émission stimulée. Nous avons changé la taille du faisceau de pompe pour
générer des états corrélés, non corrélés et anti-corrélés (de gauche à droite).

D’autre part, le profil de phase spatial du faisceau de pompe détermine la phase
de la JSA et permet donc une ingénierie plus poussée de l’état quantique. Dans
la Figure 9.3, en utilisant un modulateur spatial de lumière, nous avons ajouté un
déphasage au centre du faisceau de pompe ; on observe alors une séparation de la
densité spectrale jointe en deux lobes distincts lorsque le déphasage introduit est
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Figure 9.2: Corrélations en fréquence mesurées expérimentalement en changeant
la taille du faisceau de pompe.

de π (Figure 9.3d), par rapport à un déphasage nul (Figure 9.3a).
Ensuite, en utilisant un interféromètre de Hong-Ou-Mandel (HOM) nous avons

analysé la parité de la fonction d’onde de ces deux états quantiques (sans et
avec déphasage). Les simulations numériques de la probabilité de coïncidences
(troisième colonne de la figure) et les mesures expérimentales (quatrième colonne)
montrent un net changement allant d’un comportement coalescent (creux de coïn-
cidences), typique de la statistique bosonique, à un comportement anti-coalescent
(pic de coïncidences), typique de la statistique fermionique.

Ces résultats pourraient ainsi être exploités pour étudier l’effet des statistiques
d’échange dans divers problèmes de simulation quantique, et pour mettre en œu-
vre des protocoles de communication et de calcul exploitant des états quantiques
antisymétriques à haute dimension.

De plus, nous avons également prouvé que cette source, grâce à sa structure
et à son design, peut émettre des paires de photons intriqués dans un degré de
liberté hybride polarisation/fréquence. Cet état quantique présente une intrication
simultanée mais non indépendante dans ces deux degrés de liberté. La présence
d’intrication dans ce degré de liberté hybride a été vérifiée par un interféromètre de
Hong-Ou-Mandel, montrant également que l’effet de cavité, produit par la réflec-
tivité des facettes de la source, complexifie l’état quantique produit. Pour cette
raison, nous avons développé un traitement anti-reflet qui a permis de réduire la
réflectivité des facettes de R=27% à R=10% et ainsi d’augmenter la qualité de
l’intrication hybride. La Figure 9.4 montre les interferogrammes HOM expérimen-
taux : à gauche sans le traitement anti-reflet (visibilité V=48.2%) et à droite avec
le traitement anti-reflet (visibilité V=70.1%).

Ingénierie d’états intriqués spatialement
Dans la deuxième partie du manuscrit, nous avons détaillé le développement d’un
nouveau dispositif capable d’émettre des paires de photons intriqués spatialement.
Le dispositif consiste en un réseau de sources SPDC parallèles et couplées par
couplage évanescent. Un schéma du dispositif est montré dans la Figure 9.5a. Les
photons générés, effectuant des marches quantiques en cascade, sont intriqués dans
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Figure 9.3: Intensité spectrale jointe (JSI) mesurée avec un spectrographe fibré à
photons uniques pour un faisceau de pompe à phase plate (ϕ′ = 0) (a), et interféro-
grammes HOM correspondants calculé (b) et mesuré (c). Intensité spectrale jointe
(d) et interférogrammes HOM (e-f) pour un faisceau de pompe avec un déphasage
(ϕ′ = π).

Figure 9.4: Interférogrammes HOM générés par un état intriqué dans le dégrée
de liberté hybride polarisation/fréquence dans le cas d’un dispositif sans (gauche)
et avec (droite) traitement antireflets.
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Figure 9.5: (a) Schéma d’un réseau de guides d’ondes non linéaires. Le faisceau de
pompe (en vert) génère des paires de photons qui subissent des marches quantiques
(rouge), qui entraîne une intrication spatiale sur l’ensemble du réseau. (b) Image
MEB d’un réseau de guides d’ondes AlGaAs.

leur position spatiale dans le réseau.

Les procédés de fabrication de ce dispositif ont été optimisés et la caractérisation
optique d’une première génération du dispositif a été réalisée. La Figure 9.5b
montre une image MEB d’un réseau de guides. Ceci nous a permis d’identifier des
pistes pour l’optimisation des processus de fabrication du dispositif.

Ces réseaux de guides doivent permettre à terme d’effectuer des tâches de sim-
ulation quantique, pour étudier des phénomènes comme la localisation d’Anderson
d’état multipartites ou la protection topologique dans le régime quantique.

Conclusions

Les résultats présentés dans ce travail de thèse démontrent l’ingénierie d’états pho-
toniques à haute dimension générés dans des puces photoniques semi-conductrices.
Ces dispositifs fonctionnent à température ambiante et aux longueurs d’onde télé-
com et peuvent donc être intégrés dans des circuits photoniques plus complexes,
capable d’effectuer des tâches quantiques avec une empreinte limitée , une étape clé
pour le déplacement hors-laboratoire des technologies quantiques du monde réel.
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