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Je tiens tout d’abord à remercier l’IFP Energies nouvelles pour cette opportunité de
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Chapter 1

Introduction

1.1 A short history and advantages of Floating Offshore Wind
Turbines

The concept of offshore wind turbines was first invented in 1972 by Heronemus [1972] but
it took twenty years to generate electricity with the first fixed offshore park ”Windeby”
built in 1991. Since then, many offshore wind farms have been built resulting in a total
net installed capacity of 35.3 GW at the end of 2020 for a total wind energy capacity of
743 GW (GWEC [2021]). 2.9 GW of offshore wind gross power capacity was installed
in 2020 in Europe, UK, Germany, Netherlands, Belgium and Denmark being the major
players as shown in Fig. 1.1 and 1.2.

Figure 1.1: Evolution of the total installed ca-
pacity of offshore wind in Europe (Ramı́rez et al.
[2020]).

Figure 1.2: Annual gross offshore wind capacity
installations per country in 2020 in Europe (MW)
(Ramı́rez et al. [2020]).

Currently, the most common offshore wind turbine type is bottom-founded. However,
Floating Offshore Wind Turbines (FOWTs) are developing and their part in the offshore
energy market is forecasted to increase quickly as detailed by Equinor in Fig. 1.3, which
predicts a total FOWT installed capacity of 180 GW by 2050.
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1.1. A SHORT HISTORY AND ADVANTAGES OF FLOATING OFFSHORE WIND TURBINES

Figure 1.3: Floating wind global outlook by Equinor.

In 2021, FOWTs are still at pre-commercial development stage. FLOAT was the first
model test realised in 1993 to prove FOWT concept, as detailed by Quarton [2004].
It consisted in a spar floater with catenary mooring lines. A lot of projects have been
proposed over the past few years. In 2009, the world’s first full-scale floating wind turbine
”Hywind” (developed by Equinor and Siemens) was installed in Karmoy, Norway. This
2.3 MW floating wind turbine produced more than 40 GWh of electricity in eight years
of operation. The success of Equinor’s demo wind turbine led to the construction of the
first floating wind farm composed of 5 turbines (5 x 6 MW) off the coast of Aberdeen,
Scotland (Fig. 1.4) followed by other projects (Fig. 1.5. Equinor’s FOWT farm has been
producing electricity since October 2017 with a 65% capacity factor (the capacity factor
of onshore wind turbines being around 30%, offshore wind: 40%, hydro-power: 50% and
photo-voltaic: 18%, based on IEA data). In 2011, Principle Power Inc. installed its first
2 MW FOWT prototype WindFloat off the coast of Aguçadoura, Portugal. The FOWT
was dismounted in 2016 after 5 years of deployment, to let place to the new generation
of WindFloat units as illustrated in Fig. 1.6: a farm of 3 turbines was installed in 2019
off the coast of Viana de Castelo, Portugal.
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1.1. A SHORT HISTORY AND ADVANTAGES OF FLOATING OFFSHORE WIND TURBINES

Figure 1.4: Hywind floating wind park (Source: Equinor website).

Figure 1.5: Hywind floating roadmap (Source: IOWTC2021 Equinor presentation).
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1.1. A SHORT HISTORY AND ADVANTAGES OF FLOATING OFFSHORE WIND TURBINES

Figure 1.6: WindFloat FOWTs (Source: WindFloat website).

More and more research is done to support the development of FOWT and new projects
are often announced at dedicated international events such as Floating Offshore Wind
Turbine Conference or the International Offshore Wind Technical Conference.

Floating wind turbines have many advantages compared to their fixed counterpart, as
detailed by Sarmiento J. [2018]:

• They are less sensitive to water depth than bottom-fixed turbines (limited to shallow
waters ' 20-50 m). This increases the number of possible installation sites (in
France, UK, Japan, Norway or USA).

• The wind is more stable and higher far from the coast and can be more easily
predicted. This leads to a better control of electricity generation and eases grid
management.

• Installation emits less noise thus decreasing the environmental impact. Heavy and
intrusive foundations required for bottom-fixed foundations are not used for floaters
and replaced by anchoring system. The turbine can be assembled at quayside and
then towed to the location with standard vessels, which decreases the time of instal-
lation compared to bottom-fixed offshore wind turbines.

In Fig. 1.7 below, different kinds of offshore wind structures are depicted:
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1.2. BOTTOM FIXED OFFSHORE WIND STRUCTURES

Figure 1.7: Different types of offshore wind turbines (Source: Principle Power website).

In the next sections, bottom-fixed foundations are presented followed by the various
floating structures.

1.2 Bottom fixed offshore wind structures

Different structures co-exist as it can be seen in Fig. 1.8. The most common, because of
its rather easy manufacturing and installation, is the monopile. It is suited for shallow
waters with a depth between 0 and 30 m. Jacket structures also exist and are suited
for larger water depth (20 m-50 m). Wave loads on these structures are smaller than for
monopiles: no wave vibration is induced and the turbine behaves quite like an onshore
one. However, jackets are more expensive and maintenance costs are larger than for
monopiles. Gravity based structures (GBS) that can also be used to support offshore
fixed turbines, are limited to moderate wave loads but the manufacturing cost remains
rather low due to the use of concrete.
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1.3. FLOATING OFFSHORE WIND TURBINES (FOWT)

Figure 1.8: Typical fixed offshore wind turbine foundations (Source: EAWE website).

1.3 Floating Offshore Wind Turbines (FOWT)

A FOWT is made of three components: the wind turbine, the floater and its mooring
system.

1.3.1 Degrees of freedom for floater motion

In waves, large motions of the floater occur and can be decomposed in 6 rigid body modes:
surge, sway, heave, roll, pitch and yaw.

They correspond to three translations and three rotations around the main axes of the
structure under study, in an orthogonal coordinate system as explained in MARINeT2
courses by Gueydon S. [2018] and as represented in Fig. 1.9 and 1.10.
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1.3. FLOATING OFFSHORE WIND TURBINES (FOWT)

Figure 1.9: Translation Figure 1.10: Rotation

Figure 1.11: Degrees of freedom definition of the floating body.

1.3.2 Mooring system

Station-keeping solutions avoid the drift of the floater (limited surge and sway offset rep-
resented in Fig. 1.9). FOWT are anchored to the seabed by different means, depending
on the soil characteristics and mechanical constraints: dead weight anchors, drag embed-
ment anchors, anchor piles or vertical load anchors. The station keeping solutions put at
stake catenary mooring line or tension leg solutions. In the case of Tension Leg Platform
(TLP), the mooring system also aims at stabilising the floater and minimising its motion.

1.3.3 Stability strategies

Floating wind turbines are usually categorised according to the floater stability strategy
as shown in Fig. 1.7.

• Ballast stabilized: the center of gravity is far below the mean sea level. Spar-type
floaters consist in long cylindrical platforms with ballast weight at the bottom to
lower the gravity center.
Ex: Hywind Scotland wind farm, Equinor.

• Mooring line stabilised: the stability is provided by the station-keeping system which
consists in tensioned lines. The mooring system keeps the platform at a draft that is
larger than its natural equilibrium value. The resulting excess in buoyancy maintains
the tension in the moorings, which in turn preserves the stability of the platform.
Ex: Pelastar TLP (Nordstrom, 2013), Iberdrola TLP, SBM Offshore/IFPEN TLP.

• Buoyancy stabilized: the restoring effect from a large water-plane area ensures sta-
bility. Semi-submersible floaters consist of large-diameter hulls that are connected

23



1.4. DESIGN OF A FOWT

with slender braces. This configuration limits the wave loads compared to a barge.
Ex: WindFloat 1 (2 MW) installed off the Portuguese coast (2011-2015).

1.4 Design of a FOWT

1.4.1 Coupled engineering tools

Specific engineering tools are used to design FOWT. These so-called aero-hydro-servo-
elastic solvers simulate the coupled behaviour of the turbine subject to wind and the
floater motion due to waves, including elasticity of the whole structure. The modelling
of coupled interactions such as the aerodynamic impact on mooring-line fatigue or con-
versely the impact of the platform motion on aerodynamic loads. Thousands of Design
Load Cases (DLC) are run to test the behaviour of the FOWT in different conditions,
including fatigue and extreme events. The design of the system is thus validated or mod-
ified according to modelling results, to verify design criteria on the motion, acceleration,
tension in mooring lines, structural forces and moments, ...

IFPEN with Principia has developed a tool marketed since 2011 under the name of
DeepLinesWind™. This aero-servo-hydro-elastic solver is used to simulate wind turbines
in their environment, aiming at optimising their design and reducing costs. Coupled
simulations with aerodynamic loads, turbine and floater structural dynamics, active con-
troller, hydrodynamic loads and mooring line dynamics can be performed. As detailed
by Le Cunff et al. [2013], a non linear beam finite element formulation is included to
model the structural component flexibility - blades, drivetrain, tower, floater, mooring
lines and umbilicals - for both horizontal and vertical axis wind turbines. The floating
supports are defined with hydrodynamic database computed with seakeeping program
such as DIODORE or WAMIT, including added mass and radiation damping matrices,
1st order and 2nd wave loads (Chapter 2.4). Wave loads can also be computed based on
Morison empirical formulation (Chapter 2.3).

OpenFAST is another engineering tool, opensource, able to simulate the coupled dy-
namic response of wind turbine. This aeroelastic computer-aided engineering (CAE) code
is developed by Jonkman et al. [2005] from NREL. As DeepLinesWind™, aero-hydro-
servo-elastic simulations of wind turbines are run to analyse a range of wind turbine
configurations.

Aerodynamics for onshore wind (rating below 5 MW) and hydrodynamics for O&G
offshore structures have been developed for many years. However, their application to
design FOWT raises new research questions. In particular, the use of hydrodynamic
theories inherited from the O&G sector to predict wave loads on FOWT can reveal some
limitations.
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1.4.2 Limitations of the standard O&G hydrodynamic practices when ap-
plied to FOWT design

Two theories, extensively used for offshore O&G systems, are implemented in design
solvers to model the hydrodynamic load and behaviour of FOWT. The choice of the
theory applied to describe wave loads on the floater mainly depends on the diameter of
the system (D) and of the wave amplitude (A) as presented in Fig. 1.12 and detailed in
Molin [2002]:

– Potential flow theory (large body, A«D)

The oscillating flow is not fast enough for the detachment of the boundary layer.
Hydrodynamic forces on the floater can be calculated thanks to linear potential
theory detailed in the section 2.4.2.

– Morison empirical formula (small body, A »D)

The oscillating flow is detached from the surface of the body. Morison force requires
empirical coefficients as detailed in the section 2.3.

A more detailed classification is presented in the section 2.3.3.

Figure 1.12: Potential theory and Morison empirical formula.

Historically developed for the design of offshore O&G systems, using these theories for
FOWT design with the same standard practices, may not lead to an optimised design:

• Under specific wave characteristics and structure dimensions, the FOWT can be at
the limit of the validity range of these theories and combination of both theories
require to be considered as explained in the section 2.3.3.

• Regarding Morison formula, database of hydrodynamic coefficients were obtained
with various test campaigns (section 2.3.1) and were extensively used for the design
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of offshore platform. Some assumptions or simplifications are commonly considered
for sake of simplicity and robustness, such as using one set of coefficients whatever
the sea state and identical for all the braces. One can wonder if such databases
and their standard implementation are sufficiently accurate in the context of FOWT
design (higher economic constraints, lower safety constraints). Morison coefficients
depend on the braces and the buoys dimensions (diameter and length), the proximity
of the considered part of the floater with the free surface, the interaction between the
braces, the braces orientation and the motion of the floater or the wave characteristics
(amplitude, frequency). Including this complexity in the design process could lead
to design optimisation.

• Irregular waves are responsible for second-order wave loads that are known not to
be accurately predicted with engineering tools compared to experimental results
(section 4.1.3). They appear to be under-estimated applying potential flow theory
and on the contrary over-estimated when using Morison formula.

• Some limits of the experimental tests extensively used to validate and calibrate
the design models can also be highlighted: they are expensive and their number is
limited. Also, scaling relative problems exist. Keeping relevant all non-dimensional
similarity parameters between the scaled model and the full-scale prototype remain
difficult. A choice has to be made between Froude and Reynolds similarities detailed
in Annexes 9.1.

1.4.3 High fidelity simulations to model the hydrodynamic of a FOWT floater

The above mentioned limitations justify the study of FOWT hydrodynamics with an
alternative tool: the Computational Fluid Dynamics (CFD). CFD is a recent solution
to model the hydrodynamic behaviour of a FOWT in waves. Navier-Stokes equations
are resolved for the fluid and Newton law is applied to determine the floater motion.
CFD simulations provide comprehensive information about pressure and velocity fields,
as well as load distributions on specific part of the float. Different wave characteristics
and structure dimensions can be modelled in CFD simulations. However, it often comes
with high computation costs and numerical uncertainties. The latter has to be evaluated
with validation studies.

1.5 The thesis objective

In such a context, this thesis is proposed to contribute to the following problematic: How
can we evaluate, improve and adapt the commonly used hydrodynamic theories to FOWT
design, thanks to CFD modelling?

To address this research question, a three-stage methodology is followed in the thesis:
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1.5.1 Numerical Wave Tank implementation

A Numerical Wave Tank (NWT) is implemented in the open-source CFD tool Open-
FOAM, in which waves are generated, propagated and absorbed. Different CFD libraries
are tested to generate waves, in order to select the most appropriate library to then run
fluid-structure interaction cases. The numerical model is validated against experiments
(Stansberg [1997]). The waves at stake are regular, deep-water and non breaking type.
A rigorous methodology is developed in order to ascertain the accuracy of the wave-only
model. Once it is ensured that waves can be generated and propagated in a controlled
way, minimising any reflection or damping phenomena, the structure is included into the
simulation. This first step dealing with the validation of the Numerical Wave Tank is
crucial since the hydrodynamic analyses proposed in the thesis rely on the CFD results.

1.5.2 Surface piercing cylinder in regular waves

Secondly, the interaction of a fixed surface-piercing cylinder with regular waves is mod-
elled. The CFD case is validated against experiments Stansberg [1997]. It consists in a
vertical piercing cylinder in deep water waves, similar sea conditions in which FOWTs
usually operate. This simple case enables us to validate a first wave-structure interaction
CFD case before focusing on a more complex structure: the TLP. A first comparison
between CFD results and Morison approach is led on this case. We propose the so-called
slice methodology to determine Morison coefficients from CFD loads along the cylinder.
The impact of the interface on the loads, not taken into account in Morison empirical
formula, is also investigated. This methodology can then be extended to more complex
structures and realistic floating offshore wind turbines.

1.5.3 SBM Offshore/IFPEN Tension Leg Platform in regular waves

The Tension Leg Platform developed by SBM Offshore/IFPEN is modelled in deep wa-
ter waves. CFD results are validated against experiments performed at MARIN Off-
shore wave tank, Netherlands and presented by Caillé et al. [2017]. As a first stage,
the structure is set fixed. This simplifies the CFD model, comparing experimental and
numerical excitation loads only and easing the analysis of the results. The motion of the
floater using a 6 degrees of freedom (DOF) solver is simulated separately, see for example
Borràs Nadal and Bozonnet [2020], and both features (wave and motion) will be com-
bined in a future work. Once the CFD model has been validated against experimental
data, an analysis is performed to evaluate the commonly used Morison empirical formula
based on CFD simulations. First, Morison coefficients are determined from CFD loads,
adapting the above-mentioned slice methodology to the FOWT platform. The coefficient
values are compared to those commonly used in DeepLinesWind™ (based on standards
or experimental comparison). The Morison theory assumptions (infinite cylinder, undis-
turbed flow, submerged cylinder) are checked by comparing CFD loads to theoretical
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loads derived from design tool simulations. The load and Morison coefficient variation
throughout the structure is assessed. Finally, this work is extended to other wave char-
acteristics (height, period). Combined with the other structure characteristics (length,
orientation, vicinity with other braces or free surface), a database of Morison coefficients
adapted to FOWT is thus obtained.

1.6 Outline of the thesis

This report is constructed as follows:

The context and the problematic of the thesis were described in Chapter 1.

Part I is devoted to the state of the art of the thesis. Chapter 2 is devoted to the
commonly used hydrodynamic theories for FOWT design and potential limitations.

In Chapter 3, OpenFOAM software and the specifics at stake to implement a NWT
are presented.

The state of the art dealing with the hydrodynamic modelling of FOWT studies to
improve theoretical and empirical formulations is conducted in Chapter 4.

Part II presents the main results of the thesis, articulated in three chapters.
Chapter 5 presents the two-step methodology proposed in the PhD thesis to investigate

wave loads on a floater. The first section deals with the set up of a Numerical Wave Tank.
We propose some guidelines to generate, propagate and absorb waves in a controlled
way along space ant time. The numerical slice methodology for determining Morison
coefficients from CFD loads on the complex FOWT floater is developed in the second
section.

In Chapter 6, the case of a surface-piercing cylinder in regular waves is presented.
The CFD model implementation and validation is presented. Then the wave loads on
the structure are studied and the agreement between Morison approach and CFD results
is investigated. The last section focuses on the physical analysis of the influence of the
interface on the wave loads.

In Chapter 7, we investigate FOWT hydrodynamics. The SBM Offshore/IFPEN TLP
floater is modelled in a constrained configuration subjected to regular waves. The CFD
case is validated against experiments. Three different waves are modelled. The appli-
cability of Morison formula for FOWT load prediction is evaluated. The impact of the
structure, the interface and the brace orientation on the wave loads, not taken into ac-
count when applying Morison approach in design tools, is investigated. To conduct this
analysis, Morison coefficients are notably derived from CFD loads applying the numerical
slice methodology. Some advice to improve Morison formula for FOWT load prediction
are proposed at the end of the chapter.

Finally, conclusions, main findings and perspectives are summarised in Chapter 8.
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State of the Art
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Chapter 2

Hydrodynamics of offshore floating
structures

This part describes the theoretical background to study the motion of floating structures
in waves, referred as hydrodynamic or sea-keeping theories. Though the thesis aims at
evaluating the hydrodynamic loads on a complex and realistic FOWT platform, in this
chapter, hydrodynamic background for a cylinder is presented. Indeed, a major part of
hydrodynamics for offshore structures deals with circular cylinders and can be extended
to more complex offshore systems, with some assumptions and modifications, since these
structures mostly consist of cylinders assembly.

2.1 Wave theory

Most of this part focusing on waves is based on the book of Molin [2002] entitled ”Hy-
drodynamique des structures offshore”. First, the potential theory applied to determine
regular wave velocity and elevation is detailed. Then, Airy waves (1st order), Stokes 2nd

and Stokes 3rd order wave formulations are presented.

2.1.1 Regular wave characteristics

Only regular waves are considered in this report. Irregular waves are commonly defined
as a sum of regular waves but are not detailed here. A regular wave is progressive if it
propagates in one direction. Regular wave consists in harmonic wave characterised by
several parameters depicted in Fig. 2.1:
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2.1. WAVE THEORY

Figure 2.1: Regular wave main characteristics.

• H: Wave height (crest to trough) [m]

• A: Wave amplitude [m]

• h: Mean water depth [m]

• T: Wave period [s]

• g: Gravitational acceleration [m.s−2]

• λ: Wavelength [m]

2.1.2 Potential theory

In the orthonormal basis (Oxyz), the velocity potential Φ is defined as:

~V (x, y, z, t) = 4Φ(x, y, z, t) (2.1)

Considering u, v and w the velocity components of the flow along (Ox), (Oy) and
(Oz) axes, the potential difference between two points A and B in the fluid is introduced
by Massie and Journée [2001] as:

4ΦA−→B =
∫ B

A

~V · d~s =
∫ B

A
(u · dx+ v · dy + w · dz)

=
∫ B

A
(∂Φ
∂x

dx+ ∂Φ
∂y

dy + ∂Φ
∂z

dz) =
∫ B

A
dΦ = Φ(B)− Φ(A)

(2.2)

The potential function Φ can thus be defined by the three following equalities:

u = ∂Φ
∂x

v = ∂Φ
∂y

w = ∂Φ
∂z

(2.3)

Considering an infinite ocean of water filled by an incompressible, non-viscous, irrota-
tionnal (i.e. null velocity gradient) flow, the four conditions below have to be verified:
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1. Laplace equation (mass conservation):

4 Φ = 0 (2.4)

2. No-leak boundary condition: The vertical velocity of a water particle at the sea
bed is zero.

∂Φ
∂z

= Φz = 0 z = −h (2.5)

3. Free surface dynamic boundary condition

The pressure p of the fluid at the free surface (z = η(x, y, t)) is equal to the atmo-
spheric pressure p0. This leads to:

Φt + 1
2(∇Φ)2 + gz = 0 at z = η(x, y, t) (2.6)

4. Free surface kinematic boundary condition

The vertical velocity of a particle at the free surface is equal to the vertical velocity
of the free surface itself. This means that the free surface is considered as a material
surface.

ηt + Φxηx + Φyηy = Φz at z = η(x, y, t) (2.7)

Φ can also be developed in a Taylor series for z along water depth as:

Φ(x, y, z, t) = Φ(x, y, 0, t) + zΦz(x, y, 0, t) + · · · 0 6 z 6 η(x, y, t) (2.8)

The resolution of the system formed by 2.4, 2.5, 2.6 and 2.7 for the potential, with
Taylor development leads to Stokes wave theory. Stokes order depends on the order of the
Taylor development realised. In Fig. 2.2, Le Méhauté diagram details the wave theories
and the order of Taylor development that should be selected to correctly model a wave
depending on the wave height, wave period (noted τ in the graph) and water depth.
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2.1. WAVE THEORY

Figure 2.2: Validity of several theories for periodic water waves, according to Méhauté [1976].

2.1.3 Airy waves

First the wave is assumed periodic in time and in space. The flow is restrained to
the (Oxz) vertical plane. The resolution of the system above using first order Taylor
development for the velocity potential leads to the following expression of the free surface
elevation:

η(1) = A cos(kx− ωt) (2.9)

The first order velocity potential is expressed as:

Φ(1) = Ag

w

cosh k(z + h)
cosh kh sin(kx− ωt) (2.10)

The free surface kinematic boundary condition leads to the dispersion relation valid
only for regular waves:

ω2 = gk tanh kh (2.11)

The wavelength λ = 2π
k

can then be expressed as:

λ = gT 2

2π tanh 2πh
λ

(2.12)

This relation can be solved iteratively. For infinite depth (i.e. tanh 2πh
λ
' 1), it can be
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simplified as:
λ = gT 2

2π = 1.56T 2 (2.13)

From the velocity potential 2.10 and the dispersion relation, the kinematics of water
particle can be expressed by the orbital velocities expressed below:

u = ∂Φ
∂x

= ∂x

∂t
= Agk

ω

cosh k(z + h)
sinh kh sin(kx− ωt) (2.14)

w = ∂Φ
∂z

= ∂z

∂t
= Agk

ω

sinh k(z + h)
sinh kh sin(kx− ωt) (2.15)

Depending on water depth, velocity fields will be different as shown below:

Figure 2.3: Velocity field (left side) and velocity orbitals (right side) in deep, intermediate and shallow
water (Susbielles et al. [1981]).

Also, with the dispersion relation, the phase velocity (velocity of peaks) c = ω/k can
be determined as:

c =
√
g

k
tanh kh (2.16)

In deep water, tanh kh = 1 leads to c = g/ω.
In shallow water, tan kh = kh leads to c =

√
gh
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2.1.3.1 Pressure field for Airy waves

The pressure and velocity are key variables in hydrodynamics. For Airy waves, the
pressure field can be obtained by solving Bernoulli equation with the expression of the
velocity potential given in 2.10.

As detailed by Massie and Journée [2001], for an unsteady and irrotational flow, the
Bernouilli equation leads to:

∂Φ
∂t

+ 1
2(u2 + v2 + w2) + p

ρ
+ gz = Constant (2.17)

In two dimensions (v = 0) and assuming the waves have a small steepness (u and w
are small), this equation becomes:

p = −ρgz − ρ∂Φ
∂t

(2.18)

From the wave velocity potential 2.10, the following expression of the linearised pres-
sure at first order is obtained:

p = −ρgz + ρgA
cosh k(h+ z)

cosh kh cos(kx− ωt) (2.19)

The first term of this expression is the hydrostatic pressure. The second one is the
dynamic pressure, associated to waves.

In deep water (kh ≥ 3), the linearised pressure is:

p = −ρgz + ρgAekz cos(kx− ωt) (2.20)

In shallow water (kh� 1), the pressure becomes:

p = −ρgz + ρgAcos(kx− ωt) (2.21)

2.1.4 Stokes 2nd order waves

In operation conditions, FOWT are usually subjected to waves belonging to the second or-
der Stokes category according to Le Méhauté classification (Fig. 2.2). The wave elevation
expression is notably used to compare the CFD wave elevation obtained at one location in
the NWT to the corresponding theoretical signal. Velocity and acceleration expressions
are crucial in the numerical slice method proposed to derive Morison coefficients from the
CFD loads on the floater.

Stokes second order wave potential is the sum of the velocity potential Φ(1), derived in
the previous paragraph, and the second order potential Φ(2). The three boundary condi-
tions (2.5, 2.6 and 2.7) combined with Laplace Eq. 2.4 leads to the following expression:

Φ(2)(x, z, t) = 3
8

A2w

sinh2 kh
cosh 2k(z + h) sin 2(kx− ωt) (2.22)
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The free surface elevation is obtained as:

η(x, t) = η(1)(x, t) + η(2)(x, t) (2.23)

in which η(2)(x, t) is the second order component of the free surface elevation defined
as as:

η(2)(x, t) = A2k

4 (3 coth3 kh− coth kh) cos 2(kx− wt) (2.24)

If one deals with deep water waves (i.e kh ≥ 3), Φ(2) is null and the second order free
surface elevation component becomes:

η2(x, t) = 1
2A

2k cos 2(kx− wt) (2.25)

2.1.5 Stokes 3rd order waves

In this section, the waves are assumed infinite. The velocity potential developed to the
third order is defined in Eq. 2.26 as:

Φ(x, z, t) = Ag

ω
ek
′z sin(k′x− ωt) (2.26)

where k′ = (1− A2k2)k.
The free surface elevation is defined in Eq. 2.27 as:

η(x, t) = (1− 3
8A

2k2)A cos θ + 1
2A

2k cos(2θ) + 3
8A

3k2 cos 3θ (2.27)

where θ = (k′x− ωt).
The development of the velocity potential to the third order does not impact the

prediction of the peak-to-peak amplitude but can lead to a difference on the predicted
value of the wavelength compared to Airy and Stokes 2nd order theories.

More complex methods exist, to notably to take into account wave nonlinearties such
as Dean [1976] stream function, but are not used in this PhD thesis.

The velocity potential, free surface elevation and pressure field describing waves were
detailed in this section. The following section focuses on hydrodynamic loads on a cylinder
in an oscillating flow. Finally, hydrodynamic loads on offshore floating structures will be
described in the last section.

2.2 Cylinder in an oscillating flow

This section aims at describing the hydrodynamic loads on a cylinder in an oscillating
flow representing wave effects. It focuses on the dynamic loads obtained due to the
oscillating flow. In this case, the hydrostatic load is the buoyancy. First, the potential
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theory is applied to describe dynamic loads on the cylinder referring to Molin [2002].
Then, Morison experimental formula is introduced.

As for wave theory described previously in the section 2.1, the following fluid hypothe-
ses have to be respected in order to be in potential flow condition: incompressible, non
viscous, continuous and homogeneous fluid.

The inline flow on a given cylinder, represented in Fig. 2.4 ((R,θ) the cylinder frame),
is considered.

Figure 2.4: Cylinder scheme and reference frames.

The flow is supposed oriented along (Ox) and u(t) is the velocity along this axis. This
leads to the incident potential ΦI respecting the following Eq. 2.28:

ΦI = u(t)x = u(t)R cos θ (2.28)

The cylinder is considered as infinite and loads on the cylinder are given per cylinder
length in the following subsections.

2.2.1 Fixed cylinder in an oscillating flow

The cylinder is considered fixed. The resulting forces on the cylinder in (Ox) direction
is given by:

Fx(t) =
∫
S
p(R, θ, t) ~dr · ~n =

∫ 2π

0
p(R, θ, t)R cos θdθ = 2ρπR2u̇(t) (2.29)

where p is the dynamic pressure defined in Eq. 2.19.
Fx is also known as Froude-Krilov force: the force resulting of the integration of

pressure over the surface of the cylinder in an undisturbed flow.

2.2.2 Moving cylinder in a flow at rest

Considering a moving cylinder in a flow at rest, Ẍ(t) its acceleration in (Ox) direction,
the hydrodynamic force is given by:
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Fx = −ρπR2Ẍ(t) (2.30)

2.2.3 Generalisation to a moving cylinder

Finally, hydrodynamic loads on a moving cylinder in an oscillating flow applying potential
theory are expressed by:

Fx = (1 + Caxx)ρSu̇(t)− CaxxρSẌ(t) (2.31)

Fy = (1 + Cayy)ρSv̇(t)− CayyρSŸ (t) (2.32)

where S is the cylinder section in (Oxy) plan, u(t) and v(t) the flow velocity compo-
nent in (Ox) and (Oy) directions, X(t) and Y (t) the position of the cylinder in (Oxy)
coordinate system. Caxx and Cayy are the added mass coefficient for radiation in each
direction (equal to 1 for a circular section in potential flow theory).

In equations 2.31 and 2.32, due to the assumption of a perfect flow, no viscosity is
taken into account. To include viscous loads and detached flow on the cylinder, a specific
empirical formula was derived for oscillating viscous flows on a cylinder: Morison formula.

2.3 Morison force approach

When one deals with small structures (D/λ < 0.1), viscous effects become important and
have to be included to derive hydrodynamic loads in motion equation. In 1950, Morison
et al. [1950] introduced the famous empirical formula for the wave force on a constrained
vertical cylinder (infinite cylinder, ignoring end effect), as the sum of an inertia and a
drag term. The consideration of an infinite cylinder combined with the restriction to
slender cylinders implies that the surrounding flow around the cylinder is the same at
any instant t. The flow can thus be characterized at a single point: the center of the
cylinder.

Fx(t) = ρCM
πD2

4 u̇x(t) + 1
2ρCDDux(t)|ux(t)| (2.33)

In which:

• x: the component in the direction of wave propagation

• CD: the dimensionless drag coefficient

• CM = 1 + Ca: the dimensionless inertia coefficient

• ux(t) and u̇x(t) are respectively the wave orbital velocity and acceleration in the
direction of the force x at the center of the cylinder. |ux(t)| the magnitude of the
velocity.
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More precisely, the inertia term expression was demonstrated by Morison to be the
sum of the Froude-Khrilov force (2.29) and an additional force to model the impact of
the structure on the flow expressed by:

CAρSu̇(t) (2.34)

CA is often known as the hydrodynamic mass. Thus the total inertia force is:

FI = (1 + CA)ρSu̇(t) = CMρSu̇(t) (2.35)

If CA is equal to one, then CM is 2 and one deals with a potential flow (Eq. 2.31).

This formula was then generalised by Borgman [1958] and other researchers (Chakrabarti
et al. [1977], Sumer et al. [2006] and Massie and Journée [2001]) to arbitrarily oriented
cylinders. We propose the following notation for the generalisation of Morison formula,
as represented in Fig. 2.5.

Figure 2.5: Frame of the brace.

A local orthonormal frame is defined as follows: Y is the vector along the axis ori-
ented from A to B, X and Z the normal vectors to the cylinder axis. The axial force
component (parallel to the cylinder axis along Y) is considered as negligible and so the
force vector is included in the plan perpendicular to the cylinder axis containing X and
Z, its components defined as:

FX(t) = 1
2ρCDDU(t)‖Vn(t)‖+ ρπD2

4 CM U̇(t) (2.36)

FY (t) = 0 (2.37)

FZ(t) = 1
2ρCDDW (t)‖Vn(t)‖+ ρπD2

4 CMẆ (t) (2.38)
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In which:

• U(t) and U̇(t) are respectively the wave orbital velocity and acceleration in the
direction X.

• W (t) and Ẇ (t) are respectively the wave orbital velocity and acceleration in the
direction Z

• ‖Vn(t)‖ is the magnitude of the normal orbital velocity to the cylinder defined as√
U(t)2 +W (t)2

Venugopal et al. [2006] used directional coefficients replacing, in each direction X and
Z in Eq. 2.36, CD by CDX

and CDZ
and CM by CMX

and CMZ

Morison empirical formula was also extended to describe hydrodynamic loads on a
moving cylinder (Ẋ(t) and Ż(t) the cylinder velocity in the local frame):

FX(t) = 1
2ρCDD(U(t)− Ẋ(t))

√
(U(t)− Ẋ(t))2 + (W (t)− Ż(t))2

+ ρπD2

4 CM U̇(t)− ρπD2

4 (CM − 1)Ẍ(t)
(2.39)

FZ(t) = 1
2ρCDD(W (t)− Ż(t))

√
(U(t)− Ẋ(t))2 + (W (t)− Ż(t))2

+ ρπD2

4 CMẆ (t)− ρπD2

4 (CM − 1)Z̈(t)
(2.40)

Morison inertia and drag coefficients have been determined experimentally as explained
in the following subsection.

2.3.1 Determination of the inertia and drag coefficients in Morison empirical
formula

In this section, only smooth-surfaced cylinders are considered. Nevertheless, the accu-
mulation of marine growth on the surface that modifies the hydrodynamic forces can be
accounted imposing a cylinder roughness.

Many experiments have been carried out in the 80’s to derive CD and CM in the
context of the design of O&G platforms. The experiments consisted either in placing
a constrained tube in a oscillating flow or submitting the tube to forced oscillations in
still water. The coefficients were derived from the measured inline force on a section of
the cylinder or on the entire cylinder, applying Fourier series or least squares methods
resolution to identify the coefficient values as detailed in the section 5.2.

One of the first experiment was led by Keulegan et al. [1958]. It consisted in a hor-
izontal tube at the node of a standing wave in a tank (one-dimensional flow). They
demonstrated that CM and CD depends on the Keulegan-Carpenter number KC defined
as:
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KC = um · T
D

(2.41)

in which um is the maximum velocity and T is the period of the oscillatory flow.
Considering the flow velocity given at first order by:

u = um sin(ωt) (2.42)

The maximum orbital particle velocity is defined as:

um = Aω = 2πA
T

(2.43)

where ω is the angular frequency and A is the amplitude of the motion.
From 2.41 and 2.43, the expression of KC number for an oscillating flow is thus:

KC = 2πA
D

(2.44)

The Reynolds number is thus defined as:

Re = umD

ν
(2.45)

Another study by Sarpkaya [1977] dealt with horizontal cylinder in a vertical U-tube
in which the water oscillates harmonically back and forth the cylinder. He also found a
dependence between the inertia and drag coefficients and the Keulegan-Carpenter number
testing different values of the ratio β, see Fig. 2.6 and Fig. 2.7.
β, which characterizes the oscillation frequency, is the ratio of Reynolds and Keulegan-

Carpenter numbers defined as:

β = Re

KC
= umD

ν
· D

umT
= D2

νT
(2.46)

Figure 2.6: Cylinder in a oscillating flow. Inertia coefficient CM as a function of KC for different values
of β (Sarpkaya [1977]).
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Figure 2.7: Cylinder in a oscillating flow. Drag coefficient CD as a function of KC for different values of
β (Sarpkaya [1977]).

It must be kept in mind that Sarpkaya results were obtained with an oscillating flow
perpendicular to the cylinder, there is only one velocity component. However, considering
a vertical/horizontal cylinder in waves, at least two directions for the velocity field have
to be taken into account because of the so-called orbital velocities typical of wave velocity
field (Fig. 2.3).

Chakrabarti’s studies deal with the investigation of Morison coefficients on vertical
cylinder(s) in waves in experimental tanks. He performed different experimental tests:
one vertical tube (Chakrabarti et al. [1976]), several vertical tubes (Chakrabarti [1979]),
one tube with different orientations (Chakrabarti et al. [1975]). He plotted the variation
of coefficients in function of KC, based on experimental values. The derivations are very
often done on the total force measured experimentally on the whole cylinder or on one or
two specific sections. The coefficients are plotted in function of umT/D in Fig. 2.8 where
um is the horizontal maximal velocity from Airy theory at the point where the force is
considered.
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Figure 2.8: Hydrodynamic coefficients derived by Chakrabarti from two 1-ft sections force data on a
vertical cylinder for different wave periods.

In Morison empirical formula, the cylinder is totally submerged by water. However,
the FOWT floater is crossed by the air/water interface. One can wonder if Morison
load prediction is still enough accurate for surface-piercing braces. The effect of the free
surface on wave load prediction has been investigated by Dean et al. [1981]. The wave
loads were obtained on an instrumented platform in the Gulf of Mexico. Four vertical piles
were instrumented by seven or height force transducers above their bottom. Dean et al.
[1981] observed that, for experimental waves of Reynolds number higher than 2 × 106,
the average predicted forces are greater than the measured in the range −1.5 < s′ < 0
but higher for −4 < s′ < −1.5 where s′ = −s

u2/2g (Fig. 2.9) with s the distance below the
undisturbed free surface. A ”bow wave” effect caused by the pilling may be responsible
for the additional drag on the measured force.
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Figure 2.9: Free surface effect as shown by the ratio of predicted to measured forces as a function of
free-surface proximity (Dean et al. [1981]).

Based on the fitting of the measured force with Morison prediction, the Morison for-
mula was adapted to take into account the free surface effects as:

F = V CD
ρ

2u|u|+ CM
ρπD

4 u̇ (2.47)

in which

V −1 = 1 + e−0.188s′ cos 0.925s′ if s′ ≤ −1 (2.48)

V −1 = −1.37 + 6.37
(1− s′)1.15 if − 1 ≤ s′ < 1 (2.49)

(2.50)

Dean et al. [1981] applied their empirical recommendations on a design example (the
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wave characteristics being H = 17.4 m, T = 12 s, h = 24.4 m and D = 1.22 m). The
resulting predicted forces and moments, applying Morison formula or the adapted free
surface formula (Eq. 2.47) vs. position of the wave crest from the piling are plotted
in Fig. 2.10. The ratio of maximum forces and moments with and without free surface
effects accounted are respectively 0.833 and 0.817. The force distribution along the depth
obtained with the two different prediction ways is plotted in Fig. 2.11. The ”bow wave”
effect may be responsible for the feature at approximately 95 ft.

Figure 2.10: Total force and moment on a 4-ft diameter pile in the region of the crest -with and without
free surface modifications, wave travelling from left to right, near breaking wave (Dean et al. [1981]).
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Figure 2.11: Distribution forces on a 4-ft diameter pile at crest phase - with and without free surface
modifications, near breaking waves (Dean et al. [1981]).

The CFD load distribution along the braces crossing the interface will be compared
to Dean’s load predictions. Nevertheless, it is important to underline the specificity of
Dean’s results: obtained experimentally from loads on the piles of an O&G platform for
a few waves (Re > 2× 106) with 7 force transducers.

Rainey [1989, 1995] modified the Morison inertia term calculating the potential flow
wave-load accurate to second order in wave height. In that way, Rainey slender-body
theory considers the axial divergence, the surface intersection and surface distortion com-
ponents. Rainey dealt thus with complex cylinders such as cylinder of arbitrary cross
sections and formed into a partially immersed lattice with joints.

These different campaigns show large scatter in the coefficient values derived from
experimental loads according to the cylinder orientation, the diameter, the wave ampli-
tude and the period. Several studies also modified Morison formula to better handle the
load prediction on oriented and surface-piercing cylinders. CFD is an alternative way to
determine Morison coefficients with CFD loads as it was done with experimental loads.
With CFD, the applicability of Morison formula itself can also be investigated. This will
be deeply investigated in the thesis.
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A transverse force can also exist but is not defined in Morison formula. It consists
in a lift force due to the separation of the flow and the formation of eddies: FL(z, t) =
0.5CLρDu(z, t)2. Sarpkaya [1977] derived the lift coefficient values for different periods.
Chakrabarti et al. [1976] concluded that for umT/D < 5 this lift force was negligible but
should be taken into account for umT/D > 15. In the PhD, we will verify if the transverse
force is negligible or should be considered compared to the inline forces when analysing
the CFD wave loads.

2.3.2 Application of Morison empirical formula in engineering tools

In engineering design tools using Morison empirical formula, the cylinder is commonly
discretized in slices (or strips) on which the Morison load are determined. The same set of
Morison coefficient is applied for all the slices. The coefficient values are given by norms
(DNV Veritas [2010], API, SNAME) and are adapted according to the wave/structure
interaction case studied characterised by the Keulegan-Carpenter number, the Reynolds
number and the cylinder roughness. Some corrections are given for wall interaction and
free surface effects, based on experiments. The acceleration and velocity of the flow
impacting each slice are also computed based on wave theory (cf. section 2.1). This
enables to compute a specific value of Morison force on each slice of the cylinder.

The following subsection sums up the method proposed by Chakrabarti [2005] to
choose between the potential theory (section 2.2) and Morison formula (section 2.3) to
predict wave loads on a cylinder. Chakrabarti’s classification identifies the dominance of
inertia over drag loads and the possible presence of diffraction loads.

2.3.3 Wave loads classification according to Chakrabarti [2005]

The ratio of Morison drag term over inertia term gives the following expression:

Fdrag
Finertia

= 1
π2 ·

CD
CM
·KC (2.51)

Considering CD ' 1 and CM ' 2, the last relation can be expressed as:

Fdrag
Finertia

' 0.043 ·KC (2.52)

Fig. 2.12 represents the regions where diffraction/inertia/drag effects are predominant;
the y-axis H/D is equivalent to the Keulegan-Carpenter number whereas the x-axis is
the diffraction parameter πD/L.
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Figure 2.12: Determination of wave loads according to H,D, and λ by Chakrabarti [2005].

If the diameter of the cylinder has the same order of magnitude than the wavelength,
the potential flow theory has to be applied in order to consider diffraction effects (zone
II, IV). This corresponds to the right part on the x-axis. On the contrary, for small
diameters compared to the wavelength, Morison empirical formula can be used to predict
wave loads on the cylinder (zone I, III, V and VI):

• For KC < 3 (zone I), the inertia term is dominant and drag loads are negligible.
Thus both the potential flow theory and Morison formulation are applicable.

• For 3 < KC < 15 (zone III), drag load becomes significant, the drag term can be
linearised.

• For 15 < KC < 45 (zone V), Morison expression is applied to describe loads on the
structure.

• For KC > 45 (zone VI), the drag force is dominant.

The hydrodynamic theories to describe loads due to an oscillating flow on a mov-
ing cylinder has been described, including potential flow theory and Morison empirical
formula. The potential flow theory can be advantageously extended to more complex
geometries. The so-called sea-keeping theory determining wave loads on offshore moving
structures is detailed in the following section.
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2.4 Sea-keeping theory for FOWT

2.4.1 Float motion in waves: 2nd Newton law

The system considered in this section is a floater, as represented in Fig. 1.9. The motion
of the rigid floater is defined by three translations of the gravity centre G and three
rotations around G, as detailed in the section 1.3.1.

As written by Massie and Journée [2001], three main systems exist to describe the
motion of a floating structure:

Figure 2.13: Coordinate systems.

• The earth-bound coordinate system S(x0, yy, z0): defined by (x0, y0) plan lying in the
still water surface. (Ox0) is the positive axis in the direction of wave propagation.
(Oz0) is directed upwards.

• The body-bound coordinate system G(xb, yb, zb): the origin of this system is the
floater centre of gravity G. (Gxb) is the direction in the longitudinal forward direc-
tion, (Gyb) in the lateral port side direction and (Gzb) in the upward direction.

• The steadily translating coordinate system O(x, y, z): this system moves with a ship
velocity V . For a stationary floater, the body-bound and steadily coordinate systems
have the same axes.

The position of the floater is given by the vector x(x, y, z, φ, θ, ψ, t) in (Oxyz) system.
Applying Newton 2nd law to the floater constrained to the seabed with a mooring

system, the following motion equation is obtained:

W + Π + Fmooring + Fhydrodynamic = Ma (2.53)

• a is the acceleration of the floater
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• W is the weight of the structure and Π is the Archimedes’ buoyant force. The sum
of both forces is often simplified as the hydrostatic force expressed as Kstiff · x,
where Kstiff is the linear hydrostatic stiffness matrix.

• Fmooring is the mooring force often expressed as Kanchor · x, with Kanchor the linear
mooring stiffness matrix.

• Fhydrodynamic is the hydrodynamic force due to waves and current. In this thesis,
only waves are considered.

2.4.2 Potential flow theory for hydrodynamic load determination

To determine hydrodynamic loads on the structure, the method detailed below is followed.
Assuming the flow is constant, incompressible, non viscous, irrotational and homoge-

neous, the potential flow theory described in the section 2.2 is applied. These hypotheses
imply that the floater is considered as a large structure, meaning that the wavelength is
negligible compared to the floater diameter (zone II in Fig. 2.12). Two conditions are
added to the four conditions previously detailed in Eq. 2.4, 2.5, 2.6 and 2.7 to determine
hydrodynamic loads on the float:

1. No leak condition on the float:
The wall of the structure is considered as impermeable and water can not come into
the float. At any given position on the floater wall, the following equation is verified:

∇Φ · n = u · n (2.54)

where n is the local normal vector to the surface and u the local velocity of the
floater wall.

2. No perturbation at infinity condition:
The radiated waves are completely dissipated far from the float.

The wave velocity potential, which is assumed linear, is decomposed as follows:

Φ(x, y, z, t) = Φ0 + Φ7 + Φ1−6 (2.55)

• Φ0: The incident wave potential: determined without the structure, focusing only
on the non-disturbed incoming wave.

• Φ7: The diffracted wave potential: resulting from the action of waves around the
structure considered as fixed. This is represented by the ”restrained in waves” term
on scheme 2.14.

• Φ1−6: The radiated wave potential: resulting from the motion of a body in water
without incoming waves. This corresponds to the ”oscillation in still water” term on
scheme 2.14.
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Figure 2.14: Linear decomposition of hydrodynamic loads (Massie and Journée [2001]).

In the potential flow theory, the hydrodynamic force Fhydrodynamic is thus decomposed
following the previous decomposition of the velocity potential.

Fhydrodynamic = Fincoming wave + Fdiffracted + Fradiation (2.56)

in which:

• Fincomingwave + Fdiffracted. This force is obtained considering a fixed floater submit-
ted to waves. The incoming force is known as the Froude-Krilov force resulting from
the integration of pressure on the surface of the body in the undisturbed waves. The
diffracted term corrects Froude-Krilov term to take into account the impact of the
floater on wave field. The sum of these two forces is known as the 1st order wave
excitation force Fexcitation.

• Fradiation = Maa + Bradiationv. Ma is the added mass matrix and Bradiation the
radiation damping matrix, both obtained by considering a moving floater in still
water.

Thus the motion equation 2.53 becomes:

(M +Ma)a + (Bradiation)v + (Kstiff +Kanchor)x = Fexcitation (2.57)

The equation of motion 2.57 is resolved in the frequency domain.

2.4.3 Resolution of the motion equation in the frequency domain

The resolution in the frequency domain aims at getting information about the motion of
the floater in waves, with strong linearity assumptions. Eq. 2.57 can be solved for each
degree of freedom.

Here, to provide an example and for the sake of simplicity, one degree of freedom
is considered: the heave response. The heave motion response to a regular wave is
described resolving Eq. 2.57 in the frequency domain. The incoming wave elevation is
defined by η = |η|e−iωt. z is the coordinate of the system along (Oz) axis and defined by
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z = |z|e−iωt. Knowing that the excitation force is proportional to the incoming wave, the
following equation is obtained:

− ω2(M +Ma(ω))z − ω(Brad(ω))z +Kz = F0η (2.58)

where Kstiff + Kanchor = K and F0 is the linear excitation force complex amplitude
per wave height.

The motion Response Amplitude Operator (RAO) can then be introduced as the ratio
between z and η:

RAO = z

η
= F0

−(M +Ma(ω))− (Brad(ω)) +K
(2.59)

This relation is verified in the frequency domain.

2.4.4 Second order loads: Quadratic Transfer Function (QTF)

In the case of irregular waves (often modelled as the sum of regular Airy waves), various
wave frequencies can interact. As detailed by Faltinsen [1990] and Roald et al. [2013],
their difference or sum leads to low frequency or high frequency loads, the so-called
second order wave loads. These second order loads are also computed in the framework
of the potential flow theory. Quadratic-transfer-functions, so-called QTF, are derived.
Fexcitation in Eq. 2.57 becomes the sum of first order and second order wave loads.

2.4.5 Combination of Morison equation to sea-keeping theory

In engineering software, such as DeepLinesWind™, the FOWT floater behaviour in waves
can be simulated combining different hydrodynamic models. For the SBM Offshore/IF-
PEN TLP floater for example, the potential linear flow theory is used to predict wave
loads on the large side buoys whereas Morison empirical theory is applied on thin braces
as depicted in Fig. 1.12. To take into account the fluid viscosity and flow separation, that
could also occur when dealing with ”large body”, for example in the axis of a large buoy
(vortex shedding occurs on the edges), Morison drag forces can also be superimposed to
the potential flow loads previously detailed.

In this chapter, regular wave theory is described. Another part is dedicated to loads
on a cylinder submitted to an oscillating flow: loads can be calculated based on potential
flow theory or thanks to empirical Morison formula. The choice between the two theories
is based on cylinder dimension and wave characteristics. Finally the last part focuses on
the sea-keeping theory for FOWT implemented in the engineering tools.

To investigate the behaviour of a floater in waves and compare it to loads provided by
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either potential flow theory or Morison formula, Computational Fluid Dynamics (CFD)
is used in the present PhD thesis. The following chapter aims at presenting this numerical
method to solve Fluid Mechanics equations and its application to offshore hydrodynamics.
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Chapter 3

CFD modelling in OpenFOAM for
the study of FOWT Hydrodynamics

This part focuses on CFD modelling, using OpenFOAM software (Greenshields [2020]),
in order to study wave-structure interaction. CFD is used in this study to mimic wave
basin experiments. A Numerical Wave Tank (NWT) is implemented: waves are generated
at the inlet, propagated along a given distance and absorbed at the end of the tank. A
structure, constrained or mobile, can then be added in the NWT where the interactions
between the structure and the waves are calculated.

Experiments are commonly used to validate CFD models. Once this validation ob-
tained, CFD can fruitfully complete experimental studies: a multitude of cases with
various wave conditions and different structures can be led, extreme events can be tested
without damaging any experimental facilities. The velocity and pressure fields are fully
determined and can provide access to detailed information on flow characteristics and
structural loads. Full scale simulations can be run and give access to ”measurements”
not available so far.

However, many simulations have to be run and analysed to get an accurate NWT,
where generated waves are well controlled. Also, since different numerical models able
to simulate such flows are implemented in OpenFOAM, we need to choose the most
appropriate for each study. Notably, different solvers exist to generate and absorb waves,
to track the air/water interface and to model turbulent flow.

The first section is dedicated to Fluid Mechanics equations solved in the CFD frame-
work. Then, a description of the finite volume method is presented explaining how fluid
mechanics equations are resolved in OpenFOAM. The last section focuses on wave gen-
eration, propagation and absorption in OpenFOAM.
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3.1 Fluid Mechanics equations

3.1.1 Navier-Stokes equations

The governing equations of fluid flow are the continuity and momentum equations known
as Navier-Stokes equations, as detailed by Jacobsen [2017].

∇ · u = 0 (3.1)
∂(ρu)
∂t

+∇ρu · u = −∇p∗ +∇ · (µtot∇u) + g · (x− xr)∇ρ+ fσ (3.2)

where:

• u is the velocity field in Cartesian coordinates [m.s−1]

• x is the Cartesian coordinate position vector and xr a reference location (defined as
sea level at rest) [m]

• OpenFoam does not solve directly the pressure p but instead a pseudo-dynamic
pressure defined as p∗ = p − ρg · x. This pressure consists in the dynamic pressure
only if the free surface at rest is located at z = 0 as detailed by Higuera [2015].
Near the waterline, ρ may change between the water density and the air density
depending on whether the probe location is. If one needs to determine the dynamic
pressure near the interface, it is advised to derive it as pdyn = p− ρwaterg ·min(x, 0)
[Pa]

• ρ: fluid density [kg.m−3]

• µtot: fluid dynamic viscosity [Pa.s]

• fσ: surface tension, null in the CFD simulations run and described in this report [N]

3.1.2 Turbulence modelling

The Reynolds number (Eq. 2.45) of the wave/structure cases modelled during the thesis
are high (Re ' 105−106) so the flow must be considered as turbulent. To model the tur-
bulence of the flow, a specific Reynolds Averaged Navier-Stokes (RANS) model is available
in OpenFOAM. It is based on Osborne Reynolds assumption: an instantaneous quantity
can be seen as the sum of a time-averaged and a fluctuating quantity. Menter [1994] de-
veloped the k-omega SST turbulence model tested during the thesis and commonly used
in CFD for offshore application. However, this model induces a high damping of wave
elevation, as noted by Larsen and Fuhrman [2018], Larsen et al. [2019] who proposed a
modified version, k-omega SST stabRAS, to improve the air/water interface resolution.

3.1.3 Free surface modelling

Wave propagation is a two-phase problem where we need to describe the interface between
the air and the water. In OpenFOAM, a Volume of Fluid method (VOF) is used to track
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the air/water interface, as explained in OpenFOAM user guide by Greenshields [2020].
VOF methods consists in introducing a variable α (phase fraction), defined as α = 1 in
cells filled by water, α = 0 in cells filled by air and α in the range [0:1] in the air/water
interface area. The local density and the viscosity are defined as:

ρ = αρwater + (1− α)ρair (3.3)

µ = αµwater + (1− α)µair (3.4)

and α is governed by the advection Eq. 3.5 expressed as:

∂α

∂t
+∇ · (αu) = 0 (3.5)

The wave elevation is obtained by integrating the alpha field over the height.
Equations 3.1, 3.2 and 3.5 are discretised using Finite Volume method as explained in

the next section.

3.2 Numerical implementation in OpenFOAM

3.2.1 Finite Volume Method in OpenFOAM

OpenFOAM applies the co-located finite volume method to solve the fluid mechanics
equations presented above. The equations are discretised to derive the value of the un-
known quantity (the pressure, velocity or phase fraction) at the center of each cell of the
mesh. Different numerical schemes exist to discretise each term of the governing equa-
tions. These schemes are precisely detailed by Greenshields [2015]. Tab.9.4 in Annexe
9.4 indicates the discretisation schemes chosen in our CFD model.

The governing equations are resolved applying a combination of the MULES and
the PIMPLE algorithms at each time step. The interFoam solver, dedicated to two-
phase incompressible flow, solves the advection Eq. 3.5 determining the phase fraction
field with MULES (Multidimensional Universal Limiter with Explicit Solver) detailed by
Deshpande et al. [2012]. Once the phase fraction field is known, the momentum and
continuity equations are resolved via the PIMPLE loop calculating the velocity-pressure
coupling. PIMPLE comes from the mix of PISO (Pressure Implicit with Splitting of
Operators) and SIMPLE (semi-implicit method for pressure linked equations), a compre-
hensive explanation of this algorithm is drawn by Jasak [1996]. Each resolution step is
notably controlled by a looping parameter that imposes the maximal error on pressure,
velocity and phase fraction fields.

In OpenFOAM, we can impose a fixed time step (maxDt) or impose a maximum
Courant Number (maxCo) to ensure the numerical stability. The Courant-Friedrichs-
Lewis (CFL) is defined by Lewy et al. [1928] as:
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Co = |ui|∆t∆xi
(3.6)

where |ui| is the magnitude of the velocity in (Oi) direction and ∆xi the cell size in
(Oi) direction. For any explicit convection problem, the Courant number must be equal
or smaller than 1. For implicit scheme, this CFD condition is not obligatory. Larsen
et al. [2019] investigated the performances of interFoam with the library waves2Foam and
demonstrated that the CFL should be smaller than 0.15 to correctly propagate waves.
This condition will be investigated throughout the thesis, notably when performing con-
vergence studies to define a valid Numerical Wave Tank in the section 5.

3.2.2 Free surface resolution

3.2.2.1 interFoam

The most common solver in OpenFOAM to solve the advection equation of the interface
(Eq. 3.5) is the algebraic one known as interFoam. It solves interface for 2 incompressible,
isothermal and immiscible fluids. Density and viscosity are assumed constant in each
phase. In each cell, the velocity field u, pressure p and volume fraction α are determined.

To get a sharp interface, interface compression is introduced in interFoam with MULES
limiter for boundness (Multi-dimensional Universal Limiter for Explicit Solution) adding
an artificial interface compression term in the advection equation to keep α bounded.
The phase fraction value in a given cell is thus determined as follows:

∂α

∂t
= −∇ · (αu)−∇ · (α(1− α)uc) (3.7)

The second term of the right hand side is known as the compression flux in which uc
is defined as:

uc = min(cα|u|,max(|u|)) ∇α
|∇α|

(3.8)

Where cα is typically equal to 1. This method is precisely detailed by Deshpande et al.
[2012].

Another approach to solve the interface is the geometric resolution with isoAdVector
solver.

3.2.2.2 isoAdVector

Roenby et al. [2016] developed a new VOF approach called isoAdVector based on geomet-
rical interface reconstruction for a two-phase incompressible flow. The interface resolution
follows two steps.

First, the isosurface concept is used to reconstruct geometrically the interface inside
each cell. Phase fraction is not interpolated from cell center to faces as in interFoam, but
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to vertices. Then for each edge, a cutting point is found by linear interpolation and these
points are connected to form the isosurface.

Secondly, the motion of the face-intersection line for a general polygonal face is mod-
elled to describe the time evolution of the submerged face area during a time step.

⇒ We did not have enough time to test precisely isoAdVector solver coupled recently
with the waves2Foam library. Nevertheless, it will be tested in the work following the
thesis.

3.3 Wave generation solvers

Numerical Wave Tank (NWT) are basins in which waves are generated, propagated
and absorbed. Specific boundary conditions for the velocity, pressure and phase fraction
fields are imposed on edges of the tank, as illustrated in Fig. 3.1.

Figure 3.1: Edges of the Numerical Wave Tank.

To accurately model a regular wave in a NWT and control the wave propagation, one
has to ensure minimal damping along the tank and reflection at the outlet and walls.
olaFlow and waveFoam are two solvers available in OpenFOAM to generate and absorb
waves applying different methods. CFD studies achieved with both solvers are presented
in 4.2.

3.3.1 waveFoam: a passive wave generation and absorption solver

The wavesFoam library, implemented by Jacobsen [2017], applies relaxation zone method
at the inlet and at the outlet of the domain. The generation zone at the inlet is responsible
for the creation of waves. The absorption zone at the outlet of the NWT controls the
wave absorption to avoid reflection. This method is considered as passive due to the use
of relaxation zones. In each zone, the velocity and alpha field are updated at each time
step based on a chosen weighted function χ defined below and represented in scheme 3.2.

u = χucomputed + (1− χ)utarget (3.9)

α = χαcomputed + (1− χ)αtarget (3.10)
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utarget and αtarget represent the target values of velocity and alpha fields which are
defined using a selected wave theory (as detailed in Chapter 2) at the inlet and a null
velocity and free surface at rest at the outlet. The computed values (ucomputed and
αcomputed) are the numerical values based on Navier Stokes and VOF equation resolution.

Three weighted functions can be defined as explained by Jacobsen [2017]. The most
common one is the default one: the exponential weight χ.

χ(ξ) = 1− exp (ξβ)− 1
exp (1)− 1 (3.11)

Figure 3.2: Relaxation zones.

ξ represents the local coordinate system for relaxation zones. χ is assigned such that
the target value (utarget or αtarget) gains more weight near the boundary wall (inlet or
outlet) away from the propagation zone. Thus the boundary conditions at the wall are
not affected by the computed field between the two relaxation zones.

3.3.2 olaFlow: an active wave generation and absorption solver

The solver olaFlow developed by Higuera et al. [2015] applies active wave generation and
absorption method. The wave is generated at the boundary imposing directly a specific
velocity and surface elevation.

3.3.2.1 Background: experimental method

This method was first described experimentally by Schäffer and Klopman [2000] with
piston-type wave maker. They simply explained that if waves are generated in x-positive
direction with time growing, they can be absorbed for time decreasing in x-negative
direction.
In the Fig. 3.3, the experimental closed-loop system used to generate waves and absorb
waves in order to avoid reflection is detailed (FSE: Free Surface Elevation).
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Figure 3.3: Active wave absorption experiments.

The motion of the paddle is imposed after measuring the free surface elevation at the
inlet of the tank and comparing with the initially prescribed wave. Thus a specific wave
is generated and then corrected with the servo system.

3.3.2.2 olaFlow library

To generate waves, Higuera uses this active absorption principle by implementing new
boundary conditions at the inlet and outlet for wave velocity and phase fraction.

More precisely, the elevation calculated in the first cells along the boundary is com-
pared with the theoretical value imposed by the user-defined wave parameters. According
to the results of this comparison, a specific face patch velocity and alpha field is then
imposed. The formulation is detailed below.

Shallow-Water Active Wave Absorption (SW-AWA)

The code was firstly implemented with SW-AWA strategy. A correction velocity is
defined and aims at absorbing reflected waves at the patch. It is determined assuming
two important hypotheses: the waves are in shallow water range and linear.

The shallow water hypothesis induces that the velocity is constant along the water
column, i.e. it does not depend on the depth. The horizontal correction velocity uc can
thus be written as:

uch = cη (3.12)

with:

• h: the water depth of the NWT

• c: wave celerity (defined by Eq. 2.16)

• η: the surface elevation measured at the inlet of the patch

In shallow water regime, c =
√
gh (as seen in Eq. 2.16). The correction velocity at the

boundary is given by:

60



3.3. WAVE GENERATION SOLVERS

uc = −
√
g

h
ηR (3.13)

with ηR the reflected wave elevation corresponding to the difference between the mea-
sured wave elevation and the target wave at the patch. If this boundary condition is
imposed at the inlet patch, the target wave corresponds to the theoretical wave. The
wave theory has been detailed in Chapter 2.

At the outlet, the aim is to absorb wave applying active absorption like at the inlet.
The boundary condition simply imposes the velocity to be equal to the sum of the the-
oretical velocity wanted (null velocity for total absorption) and the correction velocity
3.13, the target state being the mean sea water level at rest.

Extended-Range Active Wave Absorption (ER-AWA)

According to Higuera [2020], ER-AWA overcomes the initial shallow water limitation
by re-deriving Eq. 3.12. The velocity correction (cf. Eq. 3.13) is modified to take into
account the variation of the wave horizontal velocity profile along the depth. Higuera
implemented a new velocity correction defined as follows:

uc = −2ηR
cosh[k(h+ z)]

sinh[kh] (3.14)

⇒ olaFlow and waveFoam solvers will be tested at the beginning of the thesis to get
a proper comparison and analysis of their performance for wave modelling in deep water
and second order waves conditions (cf. section 2.1.4).

This Chapter 3 focused on the CFD implementation of a Numerical Wave Tank in
the open-source software OpenFOAM. The resolution of Fluid Mechanics and advection
equations to derive the pressure, velocity and alpha phase fraction fields was presented.
Two main wave generation and absorption methods were introduced, detailing olaFlow
and waveFoam libraries.

Having presented the theories underlying hydrodynamics of offshore floating struc-
tures in Chapter 2 and the CFD model of a Numerical Wave Tank in Chapter 3, the
limitations of the commonly used hydrodynamic theories when applied to FOWT and
their study thanks to CFD simulations as described in the literature will be summed-up
in the following chapter.
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Chapter 4

Hydrodynamics for FOWT:
limitations of current models and
CFD investigation

This state-of-the-art chapter is organised in three sections.
The first part is dedicated to the hydrodynamic modelling of FOWT platform with

engineering software, commonly used for the FOWT design. The limitations that have
been identified by the scientific community in this context will be detailed. To investigate
these limitations and propose improved hydrodynamic formulations, this PhD thesis aims
at studying FOWT hydrodynamics with a NWT.

Thus, the second section focuses on the implementation of Numerical Wave Tanks in
CFD with OpenFOAM software. This section intends to summarise what are the existing
solvers to generate and absorb waves and what are the limits of CFD models that have
been revealed so far.

Finally, the third section focuses on wave-structure interaction in OpenFOAM, first
focusing on cylinders and then on FOWT platforms. A review of numerical studies
putting at stake the simulations of decay tests and forced oscillations, fixed floater in
waves and free motion in waves having been led so far is proposed. The few studies
dealing with the analysis of CFD results to specify the hydrodynamic behaviour of a
floater will be presented.

4.1 Hydrodynamic modelling of FOWT with engineering solvers

As explained in the section 1.4.1, aero-hydro-servo-elastic solvers are used to design
FOWT. The principle limitations of the hydrodynamic theories applied in the engineering
tools to predict wave loads on the floater are listed in the section 1.4.2. This the sec-
tion 4.1 details the studies achieved so far that illustrate such limitations. Each subsection
focuses on one limitation: the complex combination of potential theory and Morison for-
mula for FOWT design, the important uncertainties when calibrate Morison coefficients
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for FOWT and the inaccurate prediction of second-order loads with the hydrodynamic
theories applied in the design tools.

4.1.1 Combination of Morison empirical formula and potential linear theory
to predict wave loads on FOWT

Most of the different engineering software used for floater design were benchmarked in the
Offshore Code Comparison Collaboration Continuation (OC4) project managed under the
framework of IEA Wind and presented by Robertson et al. [2014]. This code-to-code com-
parison project studied the OC4-DeepCWind semisubmersible platform equipped with a
5 MW NREL wind turbine. One of OC4 aims was to better understand the influence
of the hydrodynamic modelling on the FOWT response. The aforementioned tools are
all based on the use of the potential flow theory or the Morison empirical formula or a
combination of both (explained in the section 2.4 and 2.3).

The potential flow theory resolution requires hydrodynamic database that provides
Froude-Khrilov and diffraction loads, radiation and added mass matrices. They are ob-
tained with CAE preprocessor software, such as WAMIT or Diodore, that solve the
potential flow problem presented in the section 2.4. For some elements of the floater
such as slender buoys, Morison formula is applied to take into account the viscosity for
the prediction of wave loads. Morison drag and inertia coefficients are obtained with
empirical databases or standards, such as the DNV-RP-C205 by Veritas [2010].

Using such complex combinations of these theories coming from O&G is very recent
and specific to FOWT studies.

OC4 code-to-code comparison aimed to highlight the impact of different modelling
assumptions and choices, as well as various coefficient calibration on simulations results.
The results (motion, line tension, bending moment at tower bottom) were rather similar at
wave frequencies but some differences on low and high frequency ranges were highlighted
and are detailed in the section 4.1.3.

→ Many combinations of potential flow theory and Morison formulation are possible
to predict wave loads on FOWT floater. OC4 benchmark was performed by different
participants with an important range of open-source and commercial software, exploring
a wide range of Morison / potential flow theory combinations. Defining the validity range
of each theory during the PhD thesis will thus bring more precision to these current studies
and more generally to the prediction of loads on FOWT float.

4.1.2 Calibration of Morison hydrodynamic coefficients for FOWT

In OC4, hydrodynamic models were not validated against experiments and it was not
possible to assess the accuracy of one method over another one. Following the OC4
project, Robertson et al. [2017] launched the OC5 project: the Offshore Code Compari-
son Collaboration Continuation with Correlation project complements the code-to-code
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comparison with validation against wave tank experiments. Phase I of OC5 focused on
the calibration of hydrodynamic coefficients on a constrained cylinder applying Morison
formula. Different methods exist to derive Morison drag (CD) and inertia (CM) coeffi-
cients from load data (numerically or experimentally generated): Fourier analysis, least
squares methods. Look-up table approaches based on sea-state and structure diameter
are also available and commonly used in the design process, as suggested by norms and
standards. Values of CD and CM obtained by the participants according to the method
of their choice were rather dispersed and so the predicted loads.

OC5 phase II focused on a code comparison with experiments for a more complex
structure: the OC5-DeepCwind semisubmersible platform, for which basin tests were led
at MARIN. In OC5 Phase II, for each test (decay test / forced oscillations/ free motion
in waves), different set of coefficients were defined for the same float. Coefficients thus
depend on the structure but also on wave characteristics. The same conclusions were
obtained in Rivera-Arreba et al. [2019] work; the author adjusted drag coefficients for
decay tests of a FOWT floater and concluded that hydrodynamic coefficients should be
adjusted for any kind of wave regime.

In VALEF project, led by several French research laboratories, CD and CM are cali-
brated for each buoy and brace of a semisubmersible float. Though the same standard
was applied, very different results were obtained, highlighting the fact that uncertainties
exist in the prediction of wave loads on a FOWT floater.

→ From these projects and research works, it appears there is no clear standard
process, neither consensus on coefficient choices in the research and industry community.
Practically the coefficient choices heavily depend on the user expertise, available data
(for example is there a dedicated experimental campaign), and practical requirements.
CFD will be used in this PhD thesis in order to re-determine Morison coefficients on
a real offshore structure dedicated to floating wind. Variation of Morison coefficients
through the structure, due to cylinder diameters, orientations and vicinity with the free
surface, will be investigated. The effect of wave characteristics and scale (model-scale
versus full-scale) will also be examined. Coefficient comparison with standard values will
be discussed in Chapter 7.

4.1.3 Non-linear loads on FOWT

If the wave-structure interaction problem is considered as linear, incoming wave and
wave loads have the same frequency due to the linearity of the problem. In the case of
irregular waves, the various wave frequencies can interact. As detailed by Faltinsen [1990]
and Roald et al. [2013], their difference or sum leads respectively to low frequency or high
frequency excitation and thus the floater motion response. In the low frequency region,
according to the type of the platform, the natural motion frequency of the floater can be
excited. For high frequencies, mooring lines, tower and the turbine natural frequencies
can be excited resulting in vibrations and possible structure damages, related to fatigue.
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Wave tank tests also suggest that second-order effects might be crucial for FOWT. Several
papers focus on non-linear loads modelling of FOWT as detailed below.

4.1.3.1 Low frequencies

According to Coulling et al. [2013], it might be reasonable to neglect second-order loads
when modelling wind and wave loading on a FOWT in FAST. But, for specific turbine
condition (parked rotor), response driven by wave loads (similar to wave-only condi-
tion case), second-order difference-frequency loads can not be neglected. The authors
used the quadratic damping model in low frequency region to capture the response near
the surge natural frequency. However, for low frequencies, some discrepancies on am-
plitudes and phases between tank tests and simulations were observed. Bayati et al.
[2014] worked on second-order hydrodynamic effects on the OC4-DeepCWind semisub-
mersible platform using FAST and WAMIT, applying the same method as Roald et al.
[2013]. Hydrodynamic second-order loads were modelled with sum and difference QTF.
Results showed that second-order low frequency hydrodynamic loads excite the floater at
its natural frequency. This response was overestimated compared to experimental data
because WAMIT does not include elements to model viscous drag. Azcona et al. [2019]
and Pegalajar-Jurado and Bredmose [2019] highlighted similar under-prediction of the
low-frequency response.

4.1.3.2 High frequencies

For Roald et al. [2013], offshore structures are designed to have their eigen frequencies
out of the wave excitation range. However second-order loads may excite the structure
eigen-frequencies. High frequency vibrations can be generated if the damping of the
excited eigen modes is small. A TLP and a spar were modelled with FAST and WAMIT,
including first and second-order hydrodynamic loads (both sum and difference). The TLP
response in heave was dominated by sum frequency effects (with or without exciting any
eigen frequency). For the spar modelling, second-order forces were less important and
the motion due to aerodynamic loads dominates the global motion.

4.1.3.3 OCx projects

The IEA Wind project, OC5 phase II, notably dealt with non-linear loads on the OC5-
DeepCwind semisubmersible platform. If Morison formula is applied, low frequency loads
are well predicted but high-order effects are overestimated resulting in large motion of the
tower-top. On the contrary, models based on potential flow theory, including quadratic
transfer function (QTF) to consider non-linear loads, result in an underestimation of ul-
timate and fatigue loads in low frequency region (about 20%) whereas tower-top motion
is well predicted. To address this particular issue dealing with the under-prediction of
low-frequency hydrodynamic loads and responses of a FOWT floater, the investigations
were pursued within the OC6 Phase I project, as presented by Robertson et al. [2020].
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Participants built two configurations (fixed and floating floater) in their engineering tools
and their simulations were confronted to experimental data obtained at MARIN concept
basin. Different combinations of the hydrodynamic theories were used. Also, some par-
ticipants used a second-order solution including the quadratic transfer functions (QTF)
to derive the radiation/diffraction matrices. Due to important discrepancies on low fre-
quency load prediction, it was concluded that an improvement of the formulation of the
engineering models themselves should be considered more than tuning engineering-level
models. To investigate this low-frequency prediction issue, the OC6 project sets up CFD
simulations, as detailed in the section 4.3.2.1.

Bachynski and Moan [2014] modelled four baseline TLP (of different diameters, drafts
and pontoon radius/heights) in severe conditions, which can induce ringing response, ac-
cording to Faltinsen criteria. The model matches well with experimental data when using
second-order sum-QTF and third-order long wave Faltinsen, Newman, Vinje formulation
with a Morison drag term added. The authors also observe that viscous damping coef-
ficient has very small effect on ringing loads. This is in agreement with the results from
OC5 Phase I project, where some of the participants underestimate third harmonic loads
that are crucial in the prediction of ringing loads.

→ Second-order loads modelling is a hot research topic. Morison formulation and
potential flow theory lead to different results both at high- and low-frequencies. When
comparing to experiments, Morison formulation overestimates the response in a given
frequency range while underestimating the response in another frequency range, and
vice-versa for the potential flow theory.

→ The above mentioned uncertainties in the modelling of FOWT hydrodynamics
highlight the interest of implementing a Numerical Wave Tank. Some limitations of the
mid-fidelity engineering tools, such as the combination of the potential flow theory with
Morison formula and the calibration of Morison coefficients for FOWT design will be
investigated during the thesis with high-fidelity numerical modelling. The thesis work
will also set the basis for the study of second-order wave loads on the FOWT floaters.

Computational Fluid Dynamic is a solution to investigate the issues previously de-
tailed. With CFD simulation of the float, hydrodynamic loads on the structure can be
determined with a limited number of hypotheses. These simulations are expected to be
more accurate than the models previously described and to advantageously complement
the experimental data sets. Calibration of hydrodynamic coefficients and the validity
range of potential flow theory and Morison empirical formula can be investigated based
on this type of numerical simulations.

CFD modelling of wave-structure interaction imposes to master:

• Wave generation, propagation and absorption along a NWT (the section 4.2)

• Fluid interaction with a constrained (and moving in a second step) solid structure
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(section 4.3)

4.2 Numerical Wave Tank

This bibliographic review mainly relies on paper using OpenFOAM CFD software. This
code has many advantages: it is open source, a large growing community of users exist
and the code has been developed and improved over the past twenty years. That is why
OpenFOAM is used for this thesis. Other software exist such as StarCCM (developed by
CD-adapco and bought by Siemens in 2016), also known to be powerful for hydrodynamic
applications, but not open-source and thus implying high license costs.

4.2.1 Wave generation and absorption in OpenFOAM

Different solvers exist in OpenFOAM to generate and absorb waves. They rely on relax-
ation zone method or active absorption method as explained in 3.3. Most of the solvers
were tested and compared by Windt et al. [2019] and Miquel et al. [2018].

Windt et al. [2019], compared five wave generation and absorption methods for deep,
shallow water waves and polychromatic waves. They consisted in: a relaxation zone
method waveFoam (RZM, cf. section 3.3.1), a static boundary method olaFlow (SBM
ola, cf. section 3.3.2), a static boundary method directly implemented in OpenFOAM
v6 (SBM OF), a dynamic boundary method (DBM) and an impulse source method
proposed by Schmitt et al. [2019]. For deep water waves, the RZM suggested to be the
most interesting method with a low damping of amplitude along the tank (0.5%) and the
weakest reflection coefficient (5%) compared to SBM ola where its reflection coefficient is
about 25% due to its absorption method developed for shallow waters only. For shallow
waters, RZM and SBM ola showed similar results but active absorption came at lower
computational cost due to the smaller mesh size required.

Miquel et al. [2018] analysed the efficiency of a combination of relaxation method and
active absorption for intermediate water depth compared to relaxation zone or active
absorption boundary only. They concluded that the use of relaxation at the outlet provide
the lowest reflection in the tank for both short and long waves, with either relaxation or
active generation at the inlet. Active absorption at the outlet resulted in higher reflection
coefficient for long waves than short waves. As Windt et al. [2019], they insisted on the
fact that RZM comes at higher computational costs.

4.2.2 Numerical Wave Tank examples

Several Master theses present the implementation of a NWT in OpenFOAM.
Bruinsma [2016] from TU Delft modelled the propagation of a regular wave in inter-

mediate water depth in 2D with waves2Foam library. He proceeds to a grid convergence
study checking the diffusive error (the difference between the numerical wave elevation
and the analytical signal) over time. Based on Paulsen et al. [2012] convergence method,
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Bruinsma carried out the convergence study in a rectangular domain where cyclic bound-
ary conditions were applied. The domain was only one wave length and so the compu-
tational time was lower compared to a model including relaxation zones. He insisted on
the importance of performing a grid convergence study for each new wave modelled.

Davidson et al. [2015] also used waves2Foam library to implement a NWT. They
detailed the structure of the CFD case and the tools available to post-treat the results.
However, no information about mesh characteristics were given.

Afshar [2010] implemented a NWT with tailored boundary conditions to generate a
fifth order Stokes deep water wave in OpenFOAM. He applied relaxation zones at the
inlet and outlet of the NWT. He focused on the calculation of the error with analytical
solution, but no validation against experiment was led.

Diz-Lois Palomares [2015] modelled different waves from literature in 2D with IH-
FOAM solver, an active wave absorption solver developed at IHCantabria (Higuera et al.
[2015]). He observed that wave profiles for steep waves are very unstable, partially due
to the compression term in Eq. 3.8. As outlined by Windt et al. [2019], the use of active
absorption for the propagation of deep water waves led to high reflection occurring in the
tank.
→ From the above mentioned studies, passive solver using relaxation zones seem more

appropriate to propagate deep-water waves but come at higher computational cost than
active ones. A proper grid refinement and time step convergence study seems to be
necessary for each new wave generated. To our knowledge, no consensus about a general
set of dimensionless characteristics has been achieved so far.

4.2.3 VOF resolution limitation

Another point highlighted by Afshar [2010], Paterson [2008] and Pedersen et al. [2017] is
the unwanted high air velocity on the crest of waves obtained with VOF MULES method
available in interFoam solver. They are often called spurious air velocities though no
surface tension is imposed in the CFD models. According to Afshar, high air velocities
(5 to 8 times the maximum wave velocity) at interface induce premature wave breaking.
To solve this issue, Afshar proposed a relaxation of the velocities just above the water
surface.

Paterson [2008] also tried to minimize these high air velocities modifying the interface
transport equation: he multiplied the convective term by the phase fraction value to get
a null convective term in air and a reduced term in partially filled cells.

Larsen et al. [2019] investigated the performance of interFoam solver and how to min-
imize these air velocities on wave crests. Using diffusive convective schemes for the VOF
transport equation (upwind) decreased air velocities but caused wave height damping
along the NWT and along time. Larsen et al. [2019] also tested to resolve the convec-
tive term of the momentum equation with an upwind scheme but it induced a damping
of wave height (smaller than the damping obtained with upwind scheme for transport
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equation convective term).
Finally, Roenby et al. [2016] developed a new solver, called isoAdVector, applying

geometric reconstruction of the free surface. The interface is less smeared and sharper
than with interFoam solver.

⇒ In this PhD thesis, one first objective is to implement a proper Numerical Wave
Tank. waveFoam and olaFlow (coupled with the VOF MULES interFoam method) will
be tested and challenged for different sea conditions (results are presented in Appendix
9.2). According to the bibliography, both have advantages but also some limitations.
One solver will be chosen to then perform wave-structure interaction modelling. Also,
the resolution of the air/water interface, based on the VOF method, seems to be tricky
and will be handled with care. The final objective is to determine a set of numerical
parameters to generate, propagate and absorb waves in a controlled way, minimizing any
reflection or damping phenomenon, while keeping achievable computational time. The
reflection will be investigated analyzing wave elevation over time but also the spatial
variation of the wave height along the tank, the last one being rarely quantified in the
literature.

4.3 Fluid-structure interaction in CFD

To investigate fluid-floater interaction with CFD during the present thesis, it was decided
to begin with a simple structure, namely a cylinder, and then include the complex IF-
PEN/SBM Offshore TLP platform in the NWT. That is why this bibliographic review
is divided into two subsections: first a review of the CFD modelling of a vertical pierc-
ing cylinder in waves is presented and secondly papers dealing with CFD simulation of
FOWT floaters are discussed.

4.3.1 CFD modelling of vertical piercing cylinders in waves

4.3.1.1 Constrained vertical cylinder

Miquel et al. [2018] propagated waves on a constrained cylinder with a diameter larger
than the incident waves amplitude. They concluded that the reflection in the tank does
not impact significantly the forces (peak-to-trough) on the cylinder comparing two wave
generation solvers, putting at stake passive and active absorption. Still, wave force crests
with active absorption were 7% lower than with passive method.

Kristiansen and Faltinsen [2008] focused on wave loads on a constrained cylinder. A
null velocity was imposed on the cylinder wall to consider the adherence of the flow on
the wall. No turbulence model was implemented and viscous loads are captured thanks to
a mesh refinement able to directly simulate the viscous layer, as achieved by Chen et al.
[2019]. Paulsen et al. [2014] and Rivera Arreba [2017] did not consider the viscous layer
imposing a null velocity gradient on the cylinder. They justified this choice explaining
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that the flow is mainly inertial and viscous effects negligible for the regular wave they
model.

Turbulence models exist in OpenFOAM to take into account the turbulence of the
flow. Larsen and Fuhrman [2018] and Devolder et al. [2017] highlighted the fact that
the commonly used offshore turbulence model k-omega SST gives incorrect results when
combined with VOF resolution in OpenFOAM. In fact, an increase of kinetic turbulent
energy and eddy viscosity on wave crest is observed leading to a drastic damping of
amplitude in time and space. Larsen and Fuhrman [2018] implemented a modified version
of k-omega SST method called k-omegaSST stabRAS which “stabilizes the model in
nearly potential flow regions with modification remaining passive in sheared flow regions”.

→ From this part, it seems important during the thesis to check the reflection occurring
in the NWT and the possible impact on wave loads. Boundary conditions for velocity and
pressure on the cylinder/floater wall will also be examined to reproduce reality the most
accurately. Turbulence models for fluid-structure simulations, implying VOF resolution
and wave generation/absorption solvers, will also be investigated.

4.3.1.2 Cylinder in motion

To model the cylinder motion in waves, specific mesh techniques have to be used for
allowing floater motion: dynamic mesh (moving and compliant) is usually used, overset-
mesh is another promising technique. The CFD Fluid Mechanics equations have to be
coupled with 6-DOF equations of motion to compute the floater motion, including mass
and inertia effects as well as mooring stiffness. Dunbar et al. [2015] modelled the free
heave decay test of a circular cylinder and evidenced some instabilities when applying the
coupled CFD/6-DOF model. Rivera Arreba [2017] in her master thesis simulated Palm
et al. [2016] moored cylinder experiments with waveFoam solver. Rivera Arreba [2017]
used the CFD/6-DOF coupling adding the finite element method for mooring cables.
They highlighted the strong dependence of the cylinder motion on the wave height. Also,
heave and pitch responses show low error when compared to experiments (< 10%). Surge
motion differs due to the higher experimental front mooring line force and the restoring
response.

→ Simulating the motion of a floating structure seems rather complex, some numerical
difficulties exist when applying coupled CFD/6-DOF solvers. It has been chosen for the
thesis to only model fixed floater in waves. The motion of the floater in waves will be
modelled in a work following the thesis.

4.3.1.3 Hydrodynamic study of wave loads on a cylinder, based on CFD results

Paulsen [2013] in his thesis demonstrated the dependency to water depth, wave height
and structure diameter of wave loads on a bottom mounted surface piercing circular
cylinder for intermediate water depths. He performed an harmonic analysis of forces
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to check the evolution of each harmonic component depending on wave characteristics.
Paulsen also compared numerical loads to theoretical formula such as Morison empirical
formula and third-order perturbation theories to predict ringing, as presented by Faltinsen
et al. [1995] and š. Malenica and Molin [1995]. He notably checked the validity of these
theories, originally developed for waves of small steepness, to predict wave loads on
cylinder subjected to steep waves. He also studied the wave impact on the surface piercing
cylinder, focusing on the creation of a secondary load cycle, a phenomenon that has
already been discussed in Chaplin et al. [1997], Grue [2002], Rainey [2007].

Yan et al. [2020] investigated numerically the wave interaction with a fixed suspending
payload (cubic shape) for offshore lifting, performing the simulations with waves2Foam
library. He analysed the effects of the cuboid’s position and size and wave characteristics
on the loads and moments in order to identify the best posture of the payload, that would
minimize the wave loads and the change of moment around a given axis. Though the
study dealt with a suspended cuboid, it detailed a parametric study that can be valued in
the thesis analyzing the wave loads on the braces of the floater characterized by different
orientations, diameters, positions in the floater and under dfferent wave conditions.

Benitz et al. [2015] modelled a vertical surface piercing cylinder in a steady current.
They also modelled the slanted member of the semi submersible floater crossing the
interface in different orientations. The cylinder was divided in slices to determine the
loads on each slice. The author thus analyzed the variation of the inline force along the
cylinder length and derive a drag coefficient for each slice. Up to now, this is the only
CFD study that has sliced a cylinder along its axis to derive coefficients. However, no
waves were modelled, that would complicate the derivation of the coefficients.

⇒ Many papers present the implementation and the validation of CFD models of a
cylinder in waves. Few studies deal with the hydrodynamic investigation of the wave loads
derived from CFD and the comparison with the existing theories. This thesis will notably
study the wave loads on a surface-piercing cylinder and then on the FOWT platform
checking notably the load dependency on the wave characteristics (period, height, depth),
the structure dimension (diameter and length) and the orientation.

The study of extreme loads, occurring notably in steep water waves conditions or when
the wave frequency is close to the natural frequency of the floater, will not be carried
out. The purpose of the thesis is to set up a CFD model of a floater subjected to linear
and operational waves.

4.3.2 CFD studies of FOWT

Over the ten past years, many CFD studies of FOWT hydrodynamics have been reported
in the literature. Due to the complexity of modelling the free motion of the floater in
waves, different simplified configurations of the floater are usually performed: constrained
floater in waves, forced oscillations of the floater and decay tests. Most of the CFD
studies mentioned in this subsection are performed with OpenFOAM software. However,
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if a different software is used to derive hydrodynamic loads on a floater, its name is
systematically mentioned.

4.3.2.1 Constrained floater in waves

Figure 4.1: CFD modelling of the OO-star floater: schematic of the computational domain and boundary
conditions (left side), snapshot of the floater in the numerical wave tank (right side) (Sarlak et al. [2018]).

Sarlak et al. [2018] investigated the prediction of wave excitation loads on the OO-Star
semisubmersible platform, designed within the European project Life50+ for a 10 MW
wind turbine (Fig. 4.1). The platform behaviour, in a constrained configuration and
subjected to waves of increasing height, was simulated in OpenFOAM with library. The
influence of the mesh refinement on loads was also investigated, notably varying the grid
base resolution and the mesh refinement near the structure. They observed that the
steeper the wave is, the higher harmonics of heave and surge forces are.

A part of the OC6 project, still ongoing, aims at studying the under-prediction of
the low frequency response (cf. section 4.1) using CFD modelling. In Phase I of the
project, CFD simulations of the constrained OC5-DeepCWind semisubmersible platform
in bichromatic waves were performed but no experimental data was available to validate
the numerical results. Nevertheless, Wang et al. [2020a] proposed an intensive evaluation
of the numerical uncertainties to assess the accuracy of the CFD results. This estimation
is crucial, notably because of the smallness of the non-linear loads compared to the linear
loads (from direct wave excitation), which can be twice higher than non-linear loads.
Wang proposed a systematic uncertainty analysis, based on an iterative, a discretization
and a statistical source of uncertainty, to evaluate the different CFD models among them
and with future experimental data. The determination of the numerical uncertainty was
also detailed by Eça and Hoekstra [2009, 2014], Eça et al. [2019]. Wang et al. [2021] also
pointed out that all CFD models are responsible for higher nonlinear load prediction than
potential flow engineering solvers for the bichromatic wave case studied, up to twelve
times higher for the surge force. The differences between CFD and engineering tools
strongly exceed the numerical uncertainty estimated for the CFD results. The author
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mentioned that this result does not imply that the potential flow solver is not able to
capture resonance effect but it has to be adjusted. The transfer function dependence
on wave height could be implemented in the linear potential flow theory. The author
concluded that for preliminary design stages, potential solvers are essential because they
correctly predict motion and loads on the structure in operational sea conditions. CFD
provides an added-value for detailed design, focusing for instance on local effects such
as the wave run-up around buoys or on extreme nonlinear effects, such as ringing and
slamming phenomena.

Benitz et al. [2015] modelled the OC5-semisubmersible platform in regular waves.
Under the wave conditions imposed in the model, the loads contribution from Morison
formula are negligible compared to the one from the diffraction theory. No information
about the meshing strategy was given.

→ Defining a set of numerical parameters, such as mesh refinement, time step or CFL,
numerical schemes, to get an accurate CFD model is rather complex and specific to the
understudy case, even for simple cases with constrained structure. An intensive numerical
study will be achieved during the thesis to ascertain the accuracy of the CFD model. The
numerical uncertainty of the CFD model will be evaluated. Also, the CFD loads will be
compared to the loads derived with the mid-fidelity engineering solver DeepLinesWindTM.
No study has been found yet conducting the derivation of Morison coefficients from CFD
loads on a floater subjected to waves. In this work, we will propose a numerical method
to determine the hydrodynamic coefficients of each brace of the constrained floater in
waves (cf. section 5.2).

4.3.2.2 Forced oscillations

Contrary to the lack of studies dealing with the determination of Morison coefficients for
a constrained floater subjected to waves, some studies have been carried out to determine
the hydrodynamic coefficients on a structure subjected to forced oscillations.

Bozonnet et al. [2015] modelled a heave plate in OpenFOAM with the k − ω SST
model, imposing forced oscillations to the floater in still water. They determined drag
coefficients and added mass matrices with a Fourier analysis of the CFD signal. Dynamic
or overset mesh strategies have to be implemented to model the motion of the float. This
adds a new difficulty compared to the fixed floater case. Tao et al. [2004], Tao and Cai
[2004], Tao et al. [2007] also studied the hydrodynamic loads on an heave plate (cylinder
+ disk) in forced oscillation conditions. They precisely analysed the influence of vortex
shedding on the hydrodynamic coefficient values.

Zhang and Ishihara [2018], Zhang and Ishihara [2019] investigated the hydrodynamic
load prediction on multiple heave plates, thanks to large eddy simulations in the CFD
Ansys software, validated against experimental data. Predicting the added mass and
drag coefficients on such a floater compared to a simple heave plate is very challenging;
the interaction between elements and the complexity of the structure has to be taken into
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account.
Pan and Ishihara [2019] investigated the hydrodynamic coefficients for a semisub-

mersible floater used for the Fukushima Forward Project (Fig. 4.2). The author insists
on the importance of a validation step of the CFD simulation in order to conduct a coher-
ent load analysis. The effect of KC number on the numerically-predicted hydrodynamic
coefficients is detailed. The interaction between buoys themselves reduces the hydrody-
namic coefficients. The effect of the interface can be neglecting for coefficients in the
vertical direction obtained for CFD simulations of vertically forced oscillations. However,
the free surface strongly impacts the horizontal coefficients obtained for CFD simulations
of horizontally forced vibrations.

Figure 4.2: Mesh of the semisubmersible floater (Pan and Ishihara [2019]).

4.3.2.3 Decay tests

Sarlak et al. [2018] performed free decay tests simulations of the OO-Star floating platform
with dynamic meshing only allowing to move in heave. They obtained similar results than
with FAST simulations concerning damping magnitude and the trend of damping for large
motion amplitudes. They underline that the numerical stability strongly depends on the
choice of released degrees or freedom, the mesh and the floater mass.

Borràs Nadal and Bozonnet [2020] simulated surge decay tests of the SBM Offshore/IF-
PEN TLP floater and validated the CFD results against experiments. The simulations
run with the k-omega SST and the k-omega SST stabRAS (developed by Larsen and
Fuhrman [2018]) turbulence models show critical differences on the dynamic pressure
and the turbulent viscosity at the interface.

Bruinsma [2016] and then Rivera-Arreba et al. [2019], both from DTU Wind Energy
section, model the free and moored decay tests of the OC5-semisubmersible platform
with waveDyMFoam solver available in OpenFOAM. The heave, pitch and roll motions
were validated against experiments. Rivera-Arreba et al. [2019] compared results obtained
with potential-diffraction tools adding Morison elements (WADAM and SIMO-REFLEX)
with CFD simulations (OpenFOAM with waves2Foam library). No information about
the Morison coefficient values imposed in the design tool is given. For heave and pitch
decay tests, both numerical models give rather similar results.
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Burmester et al. [2017] and Wang et al. [2019] also modelled the free decay test of the
OC5-semisubmersible platform but using ReFRESCO with the KSKL turbulent model
(Menter and Egorov [2010]). They applied the PQ analysis (Van der Vegt [1984]) to
compute the damping coefficients from CFD loads.

Burmester et al. [2017] modelled the damping in surge motion (Fig. 4.3). Results
showed that the linear damping obtained in CFD is close to the experimental one. The
quadratic damping computed in CFD is lower than experimental value, maybe due to the
lack of mooring, turbine and power cable in the CFD model. Another aspect investigated
by Burmester et al. [2017] was the scaling effect on viscous damping. The damping at
model scale is larger than the damping at full scale, and the damping difference between
both models increases in time. The author explained this increase in damping by the
larger boundary layer at model scale than at full scale. A more recent study was proposed
by Burmester et al. [2018] to follow-up on the first linear/quadratic damping analysis
detailed in Burmester et al. [2017]. According to Burmester et al. [2018], the free surface
(radiation) has a major influence on linear damping whereas quadratic damping is mostly
due to viscous effects. Using non-linear model for the mooring lines does not improve the
difference on damping between CFD and experimental results. Burmester et al. [2018]
underlined the importance of CFD to determine the damping coefficients in order to
improve inputs for engineering models.

Figure 4.3: Free surface representation with radiated waves from the floater for the surge decay simulation
(Burmester et al. [2018]).

For Wang et al. [2019], the pitch period of the OC5-semisubmersible platform was
accurately predicted by the CFD model (ReFRESCO). They also highlighted that the
heave damping plates are responsible for a major hydrodynamic damping and an impor-
tant generated turbulent flow.

→ Forced oscillations and decay tests studies of FOWT floater in CFD highlight the
strong influence of the mesh, the turbulence model and the motion solver on the numerical
stability of the simulation. The damping seems also very sensitive to the modelling of
the free surface and the scale chosen. Some authors derive the linear/quadratic damping
coefficient from CFD results to improve mid-fidelity solvers.
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4.3.2.4 Free motion in waves

All the studies detailed in this section were performed with the OC5-DeepCWind semisub-
mersible platform.

Rivera-Arreba et al. [2019] modelled the free motion of the floater in nonsteep wave
and obtained good agreement between experiments and CFD for the pitch and heave
response (Fig. 4.4, wave steepness = 0.60). Rivera-Arreba et al. [2019] also analyzed
the response in heave resonance conditions propagating swell waves and comparing CFD
results with a second-order potential flow model (SIMO-RIFLEX). The potential flow
solver response is 40% lower than the CFD response.

Figure 4.4: Free surface elevation surrounding the OC5-DeepCWind semisubmersible in free motion in
waves (Rivera Arreba [2017]).

Like Rivera-Arreba et al. [2019], Pinguet et al. [2021] modelled the free motion of the
floater in regular waves with the waves2Foam library but coupled with the overset mesh
module recently available in OpenFOAM.

Wang et al. [2020b] modelled the motion of the floater under two regular waves using
ReFRESECO code the sea conditions are the ones imposed in the OC6 project. They
derive the Response Amplitude Operators from the CFD results of the heave, surge and
pitch motions and show acceptable agreement between numerical results and experiments
with moderate discrepancies in surge and pitch (20− 30%).

Tran and Kim [2015] also compared engineering tools to CFD (Star CCM) for the
floater in free motion. A dynamic overlapping grid technique was applied to account
for the dynamic motion of the FOWT. Regarding turbulence models, k-epsilon model is
responsible for an excessive damping as the k-omega SST model. The authors explain
that CFD simulations are run at full scale and compared to model scale experiments,
scaled down based on the Froude similitude. However, as already underlined before, this
similitude does not conserve the Reynolds number and might be responsible, in part, for
the differences between experiments and CFD results, especially as regards the viscous
damping.

→ All the above studies show the complexity of modelling the free motion of a floater
in waves. Like the forced oscillations/decay test, the choice of an accurate turbulence
model and a motion solver is uncertain. Also, waves must be generated, propagated and
absorbed in a control way. The CFD models are validated against experimental data and
results determined with design tool simulations.
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4.3.2.5 Aero-hydro coupled behaviour modelling

A few people tried to model the complete behaviour of the entire floating wind turbine
in CFD. The turbine motion is simulated with aerodynamic model while the motion of
the floating part and the mooring system are modelled as detailed in the last section.

Liu et al. [2017] modelled the coupled behaviour of the OC5-DeepCwind semisub-
mersible platform in CFD. They focused on the action of the platform motion on the
aerodynamic behaviour of the wind turbine and on the effect of the turbine on the plat-
form motion and cable tensions. Good agreement with experiments was obtained in heave
and pitch motion. The use of static mooring systems to model the dynamic mooring lines
induces an under-prediction of line tensions compared to experiments. According to the
authors, CFD brings precision to engineering studies about the aerodynamic flow field
and hydrodynamic loads description close to structure walls. The continuation of this
project was presented by Zhou et al. [2020], implementing a turbulent wind field with
a time-varying spectrum. They conclude that despite the creation of fluctuations of the
rotor thrust, the FOWT motion remains not influenced by the wind turbulence. Ren
et al. [2014] also modelled the coupled simulation in CFD with Fluent software of the
OC5-semisubmersible floater.

→ Modelling the response of a FOWT subjected to waves and wind in CFD is partic-
ularly complex and computationally expensive. It seems preferable to model separately
the hydrodynamic and the aerodynamic behaviour to precisely describe the associated
phenomena to the two different fluids. That is why in the thesis, we decided to only focus
on the hydrodynamic part of the FOWT.

Summary

A major part of the above mentioned CFD studies deals with the OC5-DeepCWind
semisubmersible platform that is modelled in the OC6 project and for which experimental
database are publicly available and continuously extended. The CFD studies of a TLP-
type floater are very limited. Here we will model the hydrodynamic behaviour of the
SBM/IFPEN TLP floater in waves.

A few simulations of the fixed platform in waves have been achieved so far, contrary to
decay tests/forced oscillations more often reproduced with CFD. Hydrodynamic analysis
of loads on a constrained platform subjected to waves are also limited. This justifies
the interest of this work that notably aims at investigating the wave loads on the TLP
floater. We will restrain the study to the constrained configuration subjected to waves.
This enables to simplify the problem understudy and investigate the influence of the
wave characteristics/ structure dimensions on total loads (floater and braces separately)
without taking into account the floater motion.

Hydrodynamic coefficients are often computed from CFD loads such as the drag coef-
ficient/added mass matrices for forced oscillations and the damping coefficients for decay
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tests. However, Morison coefficients are rarely derived from CFD loads on a floater sub-
jected to waves, maybe partially due to the complexity of estimating the wave velocity
field along each braces of the floater compared to a free surface at rest or a current
only conditions. In this work, we will develop a methodology, inspired from the 80’s
experiments, to derive the Morison coefficients from the wave loads calculated with CFD
approach for each braces. The influence on the coefficients values, of the buoys inter-
actions, orientations, dimensions, distances to the interface, and the flow characteristics
will be analysed.
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Chapter 5

A two-step methodology to
investigate wave loads on a floater

In this work, we define a two-step methodology to investigate wave loads on a floater.
The first step consists of a precise practice to validate the accuracy of the Numerical

Wave Tank. This methodology has been improved all along the thesis with the model-
ing of regular waves with different characteristics. The ultimate purpose is to provide
dimensionless criteria to set-up a NWT for a large range of waves.

The second step is a methodology to derive Morison coefficients from CFD loads
on a FOWT floater, inspired from the 80s experimental techniques (Chakrabarti [1981],
Wolfram and Naghipour [1999]) initially used to determine the hydrodynamic coefficients
on a cylinder subjected to waves.

5.1 How to set up a Numerical Wave Tank

In this section, we assess the validity of the NWT and propose criteria to set up a valid
NWT based on four different regular waves with waves2Foam library (cf. section 3.3.1).

Many grid and time step sensitivity studies are carried out comparing the CFD wave
elevation to the experimental and/or theoretical ones. The influence of the relaxation
zone lengths on the wave height is also investigated.

We always analyse two outputs:

• The wave elevation time series at the future position of the floater centre. The
objective is to obtain a CFD signal as close as possible to the corresponding theo-
retical/experimental wave elevation.

• The wave height variation along the tank. We check the wave damping along the tank
and the possible reflection occurring along the tank. The objective is to minimise
both phenomena.

Also, the velocity profiles derived from the CFD results at a given position in the
NWT are compared to theoretical ones (cf. section 6.2.1).
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Some dimensionless criteria are defined, and should be applied to correctly model
the wave imposed in the simulation. Nevertheless, even if these advice are followed, a
few extra simulations should be performed to ensure the quality of results and obtain a
negligible level or errors.

The set up of the NWT for Stansberg wave (cf. Tab. 5.1) is also detailed in a paper
submitted at the ASME 2020 39th International Conference on Ocean, Offshore and
Arctic (Clément et al. [2020]).

5.1.1 Characteristics of the four waves retained for the study

The four waves characteristics are detailed in Tab. 5.1. H is the wave height, T the
wave period, h the water depth, λ the wavelength, KC the Keulegan-Carpenter number
defined in Eq. 2.44 as um ∗ T/D where um is the maximum velocity of the flow and D
the diameter of the considered cylinder.

For Stansberg vertical surface-piercing cylinder (cf. Chapter 6), the maximum veloc-
ity considered in the formula is the maximum of the velocity time series under the wave
crest. For the TLP floater (cf. Chapter 7), the KC varies according to the considered
brace since um is taken equal to the non-disturbed velocity at the brace. In Tab. 5.1 we
give the minimum and maximum of the KC number for each case. The minimum corre-
sponds to the KC obtained for the deepest brace (lowest velocity) whereas the maximum
corresponds to the KC derived for the surface-piercing braces (highest velocity).

Case H [m] T [s] h [m] λ [m] kA (steepness) KC

Stansberg 0.33 1.5354 10 3.68 0.28 5.2

w1 0.0246 1.271 2.2 2.52 0.031 0.63-2.20

w2 0.123 1.271 2.5 2.52 0.155 3.17-11.01

w3 0.225 2.214 2.5 7.43 0.095 15.16-22.74

Table 5.1: Wave characteristics.

The four waves are reported in Le Méhauté [1976] classification in Fig. 5.1:
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Figure 5.1: Modelled waves reported in Le Méhauté [1976] classification.

Fig. 5.1 shows that all the waves modelled belong to the deep water wave range.

Stansberg wave, chosen from Stansberg [1997] experiments, is Stokes 3rd order. Fig. 5.2
reveals a very weak difference between the wave elevation time series derived with 2nd

and 3rd order theories (cf. sections 2.1.4 and 2.1.5).
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Figure 5.2: Wave elevation time series for Stansberg wave derived with Stokes 2nd and Stokes 3rd order
theories.

The profiles of the maximum velocity along the water depth determined with the two
theories extrapolated upper the mean sea level (cf. section 6.2.1) are rather similar as
shown in Fig. 5.3.

Figure 5.3: Velocity profile along water depth derived with Stokes 2nd and Stokes 3rd order theories.

That is why we decided to use Stokes 2nd order theory for the analyses performed with
Stansberg wave.

The TLP waves are second order, similar to sea conditions in which FOWTs are usually
installed. The purpose is to scan the range of waves that can be encountered by FOWT
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floater installed in open sea (with the limitation that in this study only regular waves are
considered).

Wave w1 is a typical wave encountered by the FOWT in operating conditions. The
wave w1 was performed at MARIN Offshore wave tank, Netherlands (Caillé et al. [2017]).

Wave w2 is an intermediate wave between w1 and w3. This wave was not performed
at MARIN, it is chosen to have the same period as the wave w1 but the height is five
times larger.

Wave w3 is an extreme wave barely encountered by the floater but used for the design
in extreme conditions. The turbine is not operating because the wind is above the cut-out
wind speed in this condition. This wave was performed as an irregular wave at MARIN.
Due to the complexity of modelling irregular wave in CFD, we simplify w3 as a regular
wave whose period and height are taken from the Jonswap spectra characteristics of the
irregular wave w3.

The wave elevation and velocities time series determined with the CFD model will
thus be compared to Stokes 2nd order analytical formula detailed in the section 2.1.4 or
experimental signals.

The waves are chosen to review different Morison contribution ranges as illustrated
in Chakrabarti classification in Fig. 5.4. Indeed, with these waves and the structure
diameter (the Stansberg cylinder or the FOWT braces), the structure can be considered
as a slender cylinder (D/λ < 0.1). The wave loads can be predicted applying Morison
empirical formula (Eq. 2.33).
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Figure 5.4: Wave/structure interaction case reported in Le Chakrabarti [2005] classification.

Fig. 5.4 shows that the wave/structure cases belong to different inertia/drag ratio
ranges.

Thus we will test our numerical slice methodology deriving Morison coefficients from
the CFD loads and investigate FOWT loads for different validity ranges of Morison for-
mula.

5.1.2 CFD post-treatment specifics

In the global frame (Oxyz) represented in Fig. 5.5, the wave elevation time series η(t, x, y)
at one given position (x,y) is determined by integrating the water phase fraction field on
a column of height 2H passing by M, the point of coordinate (x,y,0). This post-treatment
is based on the python code implemented by Higuera [2015] in the olaFlow code.

Signal dispersion

The dispersion of the signal is determined by the standard deviation σmax of the series of
the maxima of the temporal signal. The signal is considered as stabilised over time if the
maxima evolve in a ±2σmax band around the mean of maxima (95% confidence interval).
The same analysis is performed with the series of minima.
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Wave height

In the global frame (Oxyz), the wave height at one location (x,y) in the tank is determined
from η(t, x, y) as (Eq. 5.1):

Hcalc(x, y) = 2
√

2var(η(t, x, y)) (5.1)

where

var(η(t, x, y)) = σ2
max = 1

n

n∑
i=1

(η(ti, x, y)− η̄(x, y))2 (5.2)

Error quantification on wave height

To quantify the differences between the wave elevation time series derived from the CFD
simulations and the reference (experimental or theoretical signal), the error in the per-
centage between the height derived from both signals is determined as:

Error(HCFD, Href ) = HCFD −Href

Href

∗ 100 (5.3)

Error quantification on time series

The Normalised Root Mean Square Error (NRMSE) defined in Eq. 5.4 is also used to
precisely compare two signals over time:

NRMSE =

√
( 1
n
) ∑n

i=1(ηModel(ti, x, y)− ηReference(ti, x, y))2

HReference

, (5.4)

where ηModel is the wave elevation at time ti derived from the CFD simulation or from
the analytical formula, ηReference is derived from the experimental model, and n the total
number of time steps.

To complement those statistics, plots are presented but only a few periods are shown
for the sake of clarity.

All the above mentioned formula are also used to validate CFD wave loads on the struc-
ture against experimental data or theoretical formula, that will be detailed in Chapter 6
and Chapter 7.

5.1.3 Geometry and boundary conditions of the NWT

The NWT implemented with the relaxation zone solver waveFoam is sketched in Fig. 5.5.
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Figure 5.5: Numerical Wave Tank sketch.

The NWT is composed of three zones: the generation zone, the propagation zone
and the absorption zone of respective lengths LGeneration, LPropagation and LAbsorption. The
width of the tank is 10 times the diameter of the structure to avoid side wall effects. The
boundaries of the NWT are indicated in italic on the sketch and the boundary conditions
on each boundary are presented in Tab. 5.2.

Boundary patch Velocity Pressure Phase fraction

Inlet waveVelocity zeroGradient waveAlpha 0

Outlet fixedValue 0 zeroGradient zeroGradient

Bottom fixedValue 0 zeroGradient zeroGradient

Atmosphere pressureInletOutletVelocity totalPressure inletOutlet

Front slip zeroGradient slip

Back slip zeroGradient slip

Table 5.2: Boundary conditions for the NWT.

Boundary conditions at the inlet for the velocity and phase fraction are specific to
waves2Foam generation library (see section 3.3.1). For the four waves, Stokes 2nd order
wave theory is imposed at the inlet of the NWT. Other boundary conditions are standards.
The atmosphere behaves like an open face. The front and back walls are similar to
symmetry walls to represent the flow as infinite in (Oy) direction.

No turbulence model is activated for the simulations unless mentioned.
In the following sections, the key parameters to implement a NWT are detailed.

5.1.4 Relaxation zone lengths

The influence of the relaxation zone lengths on the wave reflection along the tank is
investigated in this section.

For the CFD model of Stansberg wave, three different absorption zone lengths are
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tested. We define LAbsorption as a multiple of the wavelength λ; LAbsorption = 3λ, LAbsorption =
6λ and LAbsorption = 9λ are referenced as 3 w.l., 6 w.l. and 9 w.l. respectively, in Fig. 5.6.

Figure 5.6: Wave height for three different absorption zone lengths (Stansberg wave).

We observe that oscillations due to reflection decrease with increasing absorption zone
length.

It is more common in literature (Paulsen [2013], Rivera Arreba [2017]) to absorb second
order deep water waves with an absorption zone length equal to 3λ. However, the mesh
with a 6λ absorption zone length being only 8% bigger than the 3λ mesh, we decided
to carry on with a LAbsorption = 6λ absorption zone length providing a good compromise
between accuracy and computation time.

The generation zone length LGeneration is defined such that LGeneration = 1λ. Con-
trary to the absorption zone length, the generation zone length has a small influence on
the variation of the wave height along the tank, as demonstrated during the internship
preceding this PhD thesis (Clément [2018]).

5.1.5 Grid refinement

The mesh convergence study is a crucial step to obtain a valid mesh and thus a correct
generation, propagation and absorption of the waves along the tank.

The mesh is depicted in Fig. 5.7 and a cross-section by (Oxz) plane is shown in Fig. 5.8.
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Figure 5.7: Numerical Wave Tank mesh (wave w2).

Figure 5.8: Free surface refinement (wave w2).

The base grid is generated with the blockMesh tool. An aspect ratio of AR = 1 is
imposed. The zone in which the free surface evolves has to be intensively refined to
correctly propagate the wave. This zone called ”the free surface zone” has a height of 2H
around the mean sea water level as represented in Fig. 5.8.

For wave w2, three levels of refinement are tested in the free surface zone: nz = 10,
nz = 20 and nz = 30, nz is the number of cells per wave height in (Oz) direction. The
influence of the number of points per wave height on the wave elevation variation along
the tank is shown in Fig. 5.9. The larger nz is, the smaller the damping of wave height
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along the tank is.

Figure 5.9: Influence of the number of cells per wave height (nz) on the wave height variation (wave w2).

In the simulations run to obtain the results plotted in Fig. 5.9, the number of points
per wave length on (Ox) was set fixed to 100. We consider the damping as important
even for the highest nz. That is why we then vary the cell size on (Ox) to check the
influence on the wave height variation. Fig. 5.10 represents the wave height variation
along the tank for two models with nz = 20 and different nx. A ratio r is defined in Eq.
5.5 to relate the vertical cell size dz and the horizontal one dx.

dz

dx
= H/nz

λ/nx
= H

λ
∗ r (5.5)

The ratios r for the two simulations are respectively 5 and 10.
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Figure 5.10: Influence of the ratio r (dz/dx = r ∗H/λ) on the wave height variation (wave w2).

For r = 10, we do not observe any damping so we keep this ratio as a reference.
Finally we define two refinement criteria that should be respected in the free surface

zone to control the wave propagation along the NWT:

• A minimum number of points per wave height (nz) on (Oz) direction of 10-20. The
cell size on (Oz) is defined as dz = H/nz.

• A ratio r that should be around 10. r is defined in Eq. 5.6 as:

r = nx

nz
= H/dz

λ/dx
(5.6)

in which dz and dx are the cell sizes in (Oz) and (Ox) directions and nz and nx are
the number of cells per wave height and wavelength.

Finally, we highlight that the refinements along (Ox) and (Oz) axes are not indepen-
dent and this numerical ratio r should be taken as a reference rather than only nz as it
is most of the time proposed in the literature.

Practically, the refinement of the mesh around the free surface is performed with
refinement levels in one or several directions using the snappyHexMesh solver available
in OpenFOAM.

The main characteristics of the meshes obtained with such refinement rules are detailed
in Tab. 5.3 for each wave case.
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5.1.6 Time step

In this time step convergence study, we vary the time step relating it with the period
T (dt = T/n where n is the number of time steps per wave period) while keeping the
simulation CFL under a certain value. The NWT cases are run with fixed time steps.

A convergence study is performed in order to optimise the time step, in order to get
results as close as possible from convergence while optimising the computational time.

With wave w3 and a mesh in agreement with the criteria previously mentioned, four
time steps between T/246 and T/1100 are tested. The influence of the time step on the
variation of the wave height along the tank is illustrated in Fig 5.11.

Figure 5.11: Wave height along the tank for the time step convergence study (wave w3).

The simulation performed with the largest time step (dt = 0.009 s = T/246) does not
reveal any instability but a strong damping of wave elevation along the tank is noticed.
For this time step, the visualisation of the velocity field reveals high air crest velocities
increasing along the NWT as shown in Fig. 5.12.
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Figure 5.12: Visualisation of air crest velocities along (Ox) (wave w3) (zoom x3 on (Oz)).

These important velocities seem to be responsible for the wave amplitude damping.
This phenomenon was also studied by Larsen et al. [2019]. For the authors, the resolution
of the interface applying VOF MULES method with large CFL (0.15 < CFL < 0.5) leads
to high crest velocities and wave height damping. They solved this problem by decreasing
the CFL (dz = H/12.5 and CFL < 0.05). We also observe that the air crest velocities
are reduced with smaller time steps.

However, wave height oscillations appear when the time step is reduced. This numer-
ical instability can be reduced increasing the absorption zone length. Each signal does
not have the same oscillation period though the same mesh and wave parameters are
imposed. Therefore we cannot properly speak of a physical reflection phenomenon.

The wave height variation along the tank obtained imposing dt = 0.003 s = T/738
slightly decreases along the tank so this choice of time step seems consistent.

The maximum CFL number obtained for these simulations in descending order of
time steps are 0.72, 0.5, 0.2 and 0.14. Larsen and Fuhrman [2018] advised to keep a
CFL number smaller than 0.05 for the numerical stability of the VOF MULES method.
Satisfying this criteria would lead to critical computational time. With dt = 0.003 s =
T/738, the maximum CFD achieved is 0.2. So we keep 0.2 as the maximum value of the
CFL number that should not be exceeded at the interface zone.

Finally, two main criteria drive the time step selection:

• The time step has to be smaller than T/700 to avoid numerical damping of the wave
height along the tank explained by the existence of high air crest velocities for large
time step. The time step has also to be higher than T/900 to limit the numerical
reflection along the tank and maintain a reasonable computational time

• To ensure numerical stability of the VOF MULES method, the maximum CFL in
the interface zone should not be higher than 0.2.
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5.1.7 General guidelines to setup a NWT

To generate, propagate and absorb waves in a controlled way along space and time, we
have the following suggestions:

• The generation zone length must be around 1λ

• The propagation zone length can not be too long along (Ox) to minimize the damping
of the wave height along the tank, but not too short to let the wave propagate.
That is why, we impose at least 1λ between the end of the generation zone and the
upstream part of the structure and 2λ between the downstream part of the structure
and the beginning of the absorption zone.

• An absorption zone of 6λ is necessary to correctly absorb the wave.

• The free surface must evolve in a 2H height refinement box, centered around the
mean sea water level (free surface zone). Its dimensions on (Ox) and (Oy) are the
same as the background grid ones. Still, the free surface box can be shorten 1λ after
the beginning of the absorption zone along (Ox) to reduce the mesh size. The ratio
r relating the cell size on (Oz) and (Ox) to the wave steepness (dz/dx = r ∗H/L)
has to be around 10, while keeping the maximum number of points per wave height
on (Oz) direction between 10 and 20. The mesh is coarsened from the free surface
zone to the base grid with several levels of refinements.

• We advise aiming for an aspect ratio of 1 for the cells of the base grid and the first
levels of refinement connecting this background grid to the free surface zone.

• The time step should be smaller than T/700 to minimize the wave height damping
along the tank and higher than T/900 to avoid numerical reflection along the tank
and maintain a reasonable computational time

• To ensure numerical stability of the VOF MULES method, the maximum CFL in
the interface zone should not be higher than 0.2.

It is important to keep in mind that these guidelines were identified and validated
only for the four regular waves considered in the PhD thesis, as detailed in the following
section. These tips can be used as a starting point, but we recommend running a few
more simulations to ensure the validity of the results. In any case, we strongly recommend
checking the temporal evolution of the wave elevation at a position in the NWT and also
the spacial variation of the wave height along the tank.

5.1.8 Results for the four waves

In this section, the results obtained with the final simulations for the four different waves
are presented. The CFD models are implemented applying the guidelines previously
detailed.
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More precisely, the mesh characteristics for each wave are detailed in Tab. 5.3. FSZ
stands for the Free Surface Zone, namely the box of height 2H centered on the mid-sea
water level. The refinement levels are given along (Ox), (Oy) and (Oz) directions, as a
reference the base grid refinement level is 0.

Case Base grid Refinement level in the FSZ nz in the FSZ r in the FSZ

Recommandations / / 10-20 ' 10

Stansberg 2H/3 3 3 3 12 11

w1 6H 3 3 6 11 13

w2 3H 5 0 6 20 10

w3 4H/5 4 4 6 20 8

Table 5.3: Mesh characteristics.

For all the waves apart from the Stansberg one, the free surface refinement zone ends
1 w.l. after the beginning of the absorption zone along (Ox) direction to optimize the
mesh size.

The time step imposed in the simulation as well as the maximum CFL obtained when
running the simulation are presented in Tab. 5.4.

Case Time step [s] Max CFL

Recommandations T/700 - T/900 < 0.2

Stansberg 0.002 (T/768) 0.08

w1 0.002 (T/640) 0.07

w2 0.002 (T/640) 0.19

w3 0.003 (T/738) 0.14

Table 5.4: Time step and maximum interface Courant number.

It can be noted that a time step of T/640 is sufficient for wave w1 (and for wave w2
that has the same period than w1) to keep the maximum CFL number lower than 0.2
and propagate the waves in a controlled way.

Finally, the variation of the wave height along the tank and the wave elevation time
series at the center of the tank for the four waves are shown in Fig. 5.13 and Fig. 5.14.
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(a) Stansberg (b) w1

(c) w2 (d) w3

Figure 5.13: Wave height variation along the tank for the four waves.
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(a) Stansberg (b) w1

(c) w2 (d) w3

Figure 5.14: Wave elevation time series for the four waves, at the position corresponding to the location
where will be placed the floater.

The wave height exhibits low variations along the tank and remains close to the the-
oretical value. The damping and the reflection along the NWT are negligible. We also
observe that the CFD and theoretical (and experimental) wave elevation time series at
the center of the tank are in excellent agreement.

The four NWT implemented are thus valid following the criteria detailed in this sec-
tion. The methodology we propose to derive Morison coefficients from the wave loads
determined once the structure is included in the NWT is described in the following sec-
tion.
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5.2 Development of a slice methodology on a complex floater
for determining Morison coefficients

As explained in the section 2.3.1, various test campaigns were conducted in the 80s to de-
termine database of hydrodynamic coefficients. The obtained standards were intensively
used for the design of offshore O&G platforms, but reveal some limitations for FOWT
design as detailed in the section 4.1.2. In this thesis, a method is proposed, inspired from
the experimental one, to derive Morison coefficients from the CFD loads obtained on the
braces of the floater.

In experiment, Morison coefficients are often derived from the total load on the cylin-
der. Very few studies take into account the load variation along the cylinder in the
determination of the coefficients since it is complex to get this type of detailed informa-
tion experimentally. Only Chakrabarti [1979] measured the inline force on two sections
of a given cylinder in addition to the total load. Thank to CFD, we propose to go further
and to determine Morison coefficients values along the cylinder by slicing the cylinder
along its axis. This method can be applied to any type of cylinder and thus on a realistic
and complex floater structure. The Morison coefficient values obtained for such a FOWT
floater will thus take into account the cylinder orientation, the position in the structure,
the distance to the interface and the interaction between the braces, as well as the wave
characteristics imposed in the NWT. In this section, we detail this slice methodology for
the complex SBM Offshore/IFPEN TLP floater.

5.2.1 The floater configuration

The braces of the floater are gathered in typical groups according to their diameter, length
and orientation. They are represented in Fig. 5.15 and consist in:

• Braci: 3 longest horizontal braces connecting the three lateral buoys, at the bottom
of the floater

• Brac1i: 3 shortest horizontal braces connecting the three lateral buoys to the central
buoy, at the bottom of the floater

• Transi: 3 inclined braces piercing the interface connecting the three lateral buoys to
the top of the platform

• Centi: 3 vertical braces piercing the interface connection the center buoy to the top
of the platform

• Interi: 6 inclined braces connecting the middles of the braces Transi and Braci

• Renforti: 9 small braces connecting the three Centi braces

Height braces are selected from these groups to apply the numerical slice method. They
consist in Brac1, Brac2, Brac12, Brac13, Cent1, Cent2, Trans2 and Trans3 as detailed
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in Fig. 5.16. They all have the same diameter (D = 1.24 m). The brace is discretized
in slices along its axis as illustrated in Fig. 5.16. All the braces are divided in 20 slices
apart from the Transi braces that are divided in 30 slices. Morison coefficient values are
determined for each slice.

The same slicing practice is applied for Stansberg [1997] cylinder. We divide the lateral
patch i.e., the patch without the basis of the cylinder in slices along its axis.

Figure 5.15: Typical groups of braces. Figure 5.16: Braces sliced in the floater.

CFD loads on each slice are determined in the global frame (Oxyz). However, the
generalization of the Morison empirical formula to oriented cylinders is obtained in the
local frame of the cylinder (Eq. 2.36). That is why the local frame of each brace is
rigorously defined in the following section. The CFD loads will be moved to this local
frame before post-processing them.

5.2.2 Definition of the local frames of the braces

The local frame (ΩXY Z) of a brace is defined as represented in Fig. 2.5 for an oriented
cylinder. Ω is the center of the brace.

Y is always the vector parallel to the cylinder axis and so X and Z belong to the plane
perpendicular to the cylinder axis. The local frame is obtained from the global frame
with the combination of three successive rotations: one around (Ox) by the angle α, then
around (Oy) by the angle β and finally around (Oz) by the angle γ. The rotation angles
are given in Tab. 5.5 in the trigonometric direction of rotation.
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Braces α β γ

Brac1 0 0 4π
3

Brac2 0 0 0

Brac12 0 0 3π
2

Brac13 0 0 7π
6

Cent1 π

2 0 0

Cent2 π

2 0 2π
3

Trans2 π

2 1.57-0.6435 0

Trans3 π

2 1.57-0.6435 2π
3

Table 5.5: Rotation angles (in rad) for each brace in the global frame (Oxyz).

The components (X,Y,Z) of a given vector A in the local frame are obtained using
Eq. 5.7:

A(X, Y, Z) = P (Brac i) ∗ a(x, y, z) (5.7)

where (x, y, z) are the components of the vector a in the global frame (Oxyz) and
P (Brac i) stands for the transfer matrix, defined by Eq. 5.8.

P (Brac i) = t(Rz(γ)Ry(β)Rx(α))

P (Brac i) = t(


cos(γ) −sin(γ) 0

sin(γ) cos(γ) 0

0 0 1




cos(β) 0 sin(β)

0 1 0
−sin(β) 0 cos(β)




1 0 0
0 cos(α) −sin(α)

0 sin(α) cos(α)

)

(5.8)

The three rows of P (Brac i) correspond to the coordinates of X, Y and Z in (Oxyz).
The local frames obtained are represented in Fig. 5.17.
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Figure 5.17: Local frames of the braces.

Having presented the definition of the local frames of the braces, the main steps of the
numerical slice method are described in the following section.

5.2.3 Main steps of the numerical slice methodology

Here we present our numerical slice methodology to derive Morison coefficients from CFD
loads for each brace.

For each slice, we proceed to the following steps:

1. The CFD load time series are calculated over 15-20 periods, referred as time interval
Tint. The time interval Tint is composed of an exact number of periods, NP (15 to
20). For each period k (k = [0 : NP ]), we output I time values of each component of
the force in the global frame (Oxyz), defined as F i

x, F i
y and F i

z , where i is the time
index (i = [0 : I]). We eventually have I×NP values of each component of the force
to post-process for each slice.

2. We project the forces on the local frame: F i
X , F i

Y and F i
Z are obtained thanks to Eq.

5.7.

3. We then calculate the theoretical fluid velocity (considered not disturbed by the
structure in Morison approach) Vn

i(U,W ) and acceleration An
i(U̇ , Ẇ ) components
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at the center of the slice in the local frame (OXY Z). The appropriate wave theory
is used, here equation 6.1.

4. For each period k of Tint, we calculate the hydrodynamic coefficients Ck
DX

, Ck
MX

,
Ck
DZ

and Ck
MZ

following the steps detailed below:

(a) We extend the least square method introduced by Sumer et al. [2006] to both
components of the force F i

X and F i
Z . To our knowledge, such a resolution has

never been proposed so far; only the inline force is considered when deriving
Morison coefficients. The forces predicted by Morison formulation in the local
frame are expressed as:

Fi
Mor = F i

XX + F i
ZZ (5.9)

F i
X = 1

2ρCDX
DU i‖Vi

n‖+ ρπD2

4 CMX
U̇ i (5.10)

F i
Z = 1

2ρCDZ
DW i‖Vi

n‖+ ρπD2

4 CMZ
Ẇ i (5.11)

(5.12)

(b) The error (R) between the CFD loads (Fi
CFD) and the ones based on Morison

theoretical expression (Fi
Mor) in the local frame of the brace is minimized, can-

celling its derivative in function of the drag and inertia constant term (fDk and
fIk) as detailed below:

Rk,2 =
I∑
i=1

[Fi
Mor − Fi

CFD]2

Rk,2 =
I∑
i=1

[12ρDCk
DUi‖Vi

n‖+ ρπD2

4 Ck
MU̇i − Fi

CFD]2

where Ck
D = Ck

DX
X + Ck

DZ
Z

Rk,2 =
I∑
i=1

[fk
DUi‖Vi

n‖+ fk
I U̇i − Fi

CFD]2

∂R2

∂fk
D

= 0 and ∂R2

∂fk
I

= 0

(c) For sake of brevity, we only consider FX for the following equations. Similar
equations are derived for FZ . FX and FZ are the CFD force components in the
local frame.
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Rk,2 =
I∑
i=1

[12ρDC
k
DX
U i‖Vi

n‖+ ρπD2

4 Ck
MX

U̇ i − F i
X ]2

∂Rk,2

∂fDX

= 0 and ∂Rk,2

∂fIX

= 0 (5.13)

where fDX
= 1

2ρDC
k
DX

and fIX
= ρπD2

4 Ck
MX

(d) We resolve the system of two equations Eq. 5.13 to obtain the Morison coeffi-
cients for a given period k. The sums in the equations are calculated over the I
elements of the period k.

Ck
DX

= 2
ρD

∑I
i=1 FXU‖Un‖

∑I
i=1 U̇

2 −∑I
i=1 FXU̇

∑I
i=1 U‖Un‖U̇∑I

i=1 U
2‖Un‖2 ∑I

i=1 U̇
2 − (∑I

i=1 UU̇‖Un‖)2
, (5.14)

Ck
MX

= 4
ρπD2

∑I
i=1 FXU̇

∑I
i=1 U

2‖Un‖ −
∑I
i=1 FXU‖Un‖

∑I
i=1 U‖Un‖U̇∑I

i=1 U̇
2 ∑I

i=1 U
2‖Un‖2 − (∑I

i=1 UU̇‖Un‖)2

(5.15)

Wolfram and Naghipour [1999] determined the drag and inertia coefficients ex-
pressions from experimental data for a vertical cylinder considering only the
inline force. Wolfram and Naghipour [1999] formula are consistent with the
ones derived in the present numerical slice methodology.

(e) The same process is applied for FZ and leads to:

Ck
DZ

= 2
ρD

∑I
i=1 FZW‖Un‖

∑I
i=1 Ẇ

2 −∑I
i=1 FZẆ

∑I
i=1W‖Un‖Ẇ∑I

i=1W
2‖Un‖2 ∑I

i=1 Ẇ
2 − (∑I

i=1WẆ‖Un‖)2
, (5.16)

Ck
MZ

= 4
ρπD2

∑I
i=1 FZẆ

∑I
i=1W

2‖Un‖ −
∑I
i=1 FZW‖Un‖

∑I
i=1W‖Un‖Ẇ∑I

i=1 Ẇ
2 ∑I

i=1W
2‖Un‖2 − (∑I

i=1WẆ‖Un‖)2

(5.17)

5. CDX
, CMX

, CDZ
and CMZ

are averaged over the NP periods in order to eliminate a
potential variation of the numerical loads over the time:

CDX
=

NP∑
k=0

Ck
DX

CMX
=

NP∑
k=0

Ck
MX

CDZ
=

NP∑
k=0

Ck
DZ

CMZ
=

NP∑
k=0

Ck
MZ

(5.18)

Thus we obtain a set of coefficients CDX
, CMX

, CDZ
and CMZ

for each slice of each
brace. We can then derive the mean coefficient for each brace.
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These Morison coefficients are then imposed in Morison formula to compare the CFD
loads to the theoretical ones. Thus the validity of our numerical slice methodology is
checked and the application of Morison formula for the prediction of FOWT loads is
investigated.

This is a brand new method that still may be improved and optimized. Nevertheless,
as it will be detailed in Chapter 7, this numerical slice method has proved, several times
during the thesis, its ability to derive consistent values of Morison coefficients.

Having defined the two-step methodology to investigate wave loads on a floater, the
CFD model of a vertical surface-piercing cylinder subjected to waves is presented in the
following chapter.
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Chapter 6

Wave loads on a surface-piercing
cylinder subjected to waves

We first investigate the wave loads on a simple structure: the vertical surface-piercing
cylinder subjected to regular wave from Stansberg [1997] experiments. This first wave-
structure interaction case is implemented in the CFD framework of OpenFOAM and
validated against experimental data. Once the accuracy of the CFD model has been
verified against experimental data, the wave loads on the cylinder are analysed. The
cylinder diameter being negligible compared to the wavelength (D = 0.2 m << λ =
3.65 m), the Morison formula (section 2.3) is used to analytically predict the wave loads
on the cylinder. Our numerical slice methodology to derive the hydrodynamic coefficients
from CFD wave loads (section 5.2) is thus tested and validated in a fist stage for a vertical
cylinder.

This first step will then be used as a basis to perform the analysis of the wave loads
on a more complex structure: the FOWT floater built as a set of cylinders of different
orientations, positions, diameters and lengths that will be presented in the Chapter 7.

The present chapter is composed of three subsections.
The first one presents the study case and the validation of the CFD simulations against

experiments. The second subsection deals with the application of the slice methodology
to this vertical cylinder case; we first focus on velocity profiles, then on the hydrodynamic
coefficient determination and finally on the analysis of the resulting loads on slices and
over the cylinder. The third subsection presents a physical analysis of the influence of
the interface on the wave loads.

6.1 Setup and validation of the CFD model

6.1.1 Physical case description

The surface-piercing cylinder CFD model is validated against experiments performed
by Stansberg [1997] at the MARINTEK wave tank facility. During this test campaign,
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regular and irregular deep-water waves were propagated along a basin (10m x 80m) and
interact with cylinders of various diameters. These tests were intensively modelled in
OC5 project in the framework of IEA Wind, where different engineering software were
benchmarked (Robertson and Jonkman). Only one test of a regular wave interacting with
a fixed vertical cylinder is selected for the present study. The reported wave characteristics
are the following: a height H of 0.33 m, a period T of 1.53 s. Accordingly the wave
can be classified as a Stokes 3rd order deep water wave (cf. Fig. 5.1). The cylinder
diameter is D = 0.2 m and located 38.6 m away from the wave paddles. Accordingly, the
corresponding location in Chakrabarti classification (Fig. 5.4) shows that the wave loads
should be correctly predicted by Morison formulation, with a small drag contribution and
a large inertia term.

In experiments, the measured data are the free surface elevation at the centre of the
cylinder when the latter is not present, as well as forces and moments applied to the
cylinder. The test configuration is detailed in Fig. 6.1. The Reynolds number (Eq. 2.45)
is equal to 1.4× 105, the flow is thus considered as turbulent.

Figure 6.1: Cylinder test configuration from Stansberg [1997].

106



6.1. SETUP AND VALIDATION OF THE CFD MODEL

Figure 6.2: Wave elevation time series from Stansberg experiments.

Analysis method

Only the stable part of the experimental signal is kept for the analysis and to derive the
statistics such as the wave height and the wave loads. Still, the wave elevation and load
signals are rather dispersed (5%) as visible for the wave elevation in Fig. 6.2.

To compare plot shapes (amplitude, phase, crest and trough shape), the visualisation
is restricted to four periods. To get a fair comparison, the starting time of this four-
period zoom is chosen when experiments and theoretical elevation (based on 2nd order
wave theory cf. section 5.1.1) match well enough, as represented in the rectangular zone
of Fig. 6.2.

6.1.2 CFD Numerical model

The validation of the NWT without the cylinder is presented in Chapter 5.1. This is also
precisely detailed in a paper submitted at the ASME 2020 39th International Conference
on Ocean, Offshore and Arctic (Clément et al. [2020]).

The cylinder is then included into the mesh. An extra refinement level is imposed
around the cylinder in order to get cells of D/15 size close to the structure. Though not
presented in this study, we checked that the mesh was fine enough to well predict the
wave forces.

We did not find in the literature a clear consensus on the boundary conditions for the
velocity/pressure fields that should be applied on the cylinder wall for a wave/structure
CFD case (section 4.3.1.1). For that reason three tests are performed and their impact
on forces are analysed. A slip boundary condition (B.C.) on the cylinder (null velocity
gradient) is compared to a no-slip B.C. (null velocity), both tests are performed without
turbulence model. The third CFD simulation is run activating k-omegaSST stabRAS
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Figure 6.3: Horizontal wave loads (Fx) on the fixed cylinder.

turbulence model with no-slip B.C. For this case, the mesh refinement close to the cylinder
satisfies wall functions requirements (30 < y+ < 300).

With a configuration of a vertical cylinder, Fy and Fz are negligible, leading to only
focus on the inline force Fx.

The CFD simulation duration is set to 120s, which corresponds to the time required
to get a stabilized wave elevation time series with a dispersion of the maxima lower than
2.5%. Statistics and plots are computed from 80s to 120s.

Figure 6.3 represents horizontal forces (i.e. inline force Fx) over four periods. CFD
loads are slightly underestimated compared to experiments. From Fig. 6.3, the difference
with experiments has been found below 5% for each CFD case. Furthermore, force average
value (shown in Tab. 6.1) and the small bump before the minimum are well predicted by
each CFD simulation.

Viscous forces are negligible compared to pressure forces for the horizontal load. That
explains why the three CFD results are very similar and implies that the turbulence
model may not be necessary. In the end, we choose to impose a no-slip BC on the
cylinder. The statistics obtained with this CFD model are shown in Tab. 6.1, Fx is the
determined by Eq. 5.1. These observations assess the validity of the CFD model against
the experimental data.

Case Fx [N] Error(CFD, Expe) [%] NRMSE(CFD, Expe) [%]

Experiments 196.6 / /

CFD 190.7 3% 5.62%

Table 6.1: CFD error relative to experimental results.
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The CFD model of the cylinder in waves being validated against experimental data,
the CFD wave loads are analyzed and the applicability of Morison approach for load
prediction is investigated in the following section.

6.2 Application of the slice methodology

With this first wave/structure interaction CFD case, our numerical slice methodology is
tested to derive Morison coefficients from CFD loads. Then, the variation of the wave
loads along the cylinder axis is investigated. Finally, the influence of the interface on the
wave loads and on the predicted Morison coefficient values is discussed.

6.2.1 Calculation of the wave velocity at the center of each slice

To derive Morison coefficients for each slice applying the numerical slice methodology, we
need the undisturbed velocity time series at the center of each slice.

The velocity/acceleration time series at the center of each slice can be derived from
CFD results but it implies complex post-processing. In CFD, the velocity time series are
determined at the center of each mesh cell that makes the interpolation at the slice center
difficult. Alternatively, we evaluate the wave velocity time series at the center of the slice
using a Stokes 2nd order wave model. However the theoretical model is only defined for
z < MSL (MSL standing for the Mean Sea water Level) as follows:

u(z, θ) = Aω
cosh k(z + h)

sinh kh cos(θ) + 3A
2ωk cosh(2kz)
4 sinh4(kh)

cos(2θ),

w(z, θ) = Aω
sinh k(z + h)

sinh kh sin(kθ) + 3A
2ωk sinh(2kz)
4 sinh4(kh)

sin(2θ),

(6.1)

where θ = kx− ωt+ Φ with Φ the wave phase.
In order to take into account the variation of the sea level with time, we need to

evaluate the theoretical velocity for z > MSL. With that goal, we use a so-called
stretching model to extrapolate the velocity profile between the MSL and the maximum
wave elevation Amax.

Different stretching methods are tested as shown in Fig. 6.4:

• The vertical stretching model is based on Stokes 2nd order wave theory for z < MSL.
Between the MSL and Amax, the velocity is kept constant and equal to the velocity
at the MSL (light blue dotted curve).

• The most commonly used model is the Wheeler stretching model (Wheeler et al.
[1970]) and consists in stretching the vertical scale (dark blue dotted curve). Wheeler
proposes to take the wave velocity/acceleration at z = η (η the wave elevation) equal
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to the velocity given by the linear theory at z = MSL. z is then changed in z’ as in
Eq. 6.2 (h the water depth):

z′ + h = h(z + h

h+ η
). (6.2)

• The extrapolated stretching model consists in extrapolating the Stokes 2nd order
formula (Eq. 6.1) for z > MSL. The velocity is imposed null when the wave
elevation is lower than z (green curve).

For comparison purposes, we extract the CFD wave velocity time series at the cell
centres on a vertical line corresponding to the cylinder axis. This is done for the simulation
without the cylinder. Based on these times series, we can determine the time averaged
vertical profile for the CFD velocity field. In Fig. 6.4, the profiles obtained with the CFD
model and with the different velocity theories are compared.

Figure 6.4: Velocity profile along water depth. CFD (−), Stokes 2nd order (−.), Vertical stretching
(− −), Wheeler stretching (...), Stokes 2nd order extrapolated (−−), Amax (−).

For water depth below the MSL, Stokes 2nd order wave theory (red curve) and CFD
(blue curve) are in good agreement whereas Wheeler stretching model leads to lower
velocities. Another major difference lies on the prediction of the velocity very close
to the crest (Amax). CFD seems to overestimate the maximum velocity compared to
Stokes 2nd order wave theory combined with extrapolated stretching model. This is also
highlighted by Larsen et al. [2019] that demonstrate that crest velocities are very often
overestimated with VOF methods.

To complete this comparison, the dispersion of the CFD velocity profile defined as the
standard deviation (σ) of the maximum velocity (with a 95% range chosen i.e. +/−1.96σ
on both sides of the maximum velocity) is plotted in Fig. 6.5.
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Figure 6.5: Velocity profile along water depth. CFD (−), Stokes 2nd order wave theory extrapolated
(−−), Standard deviation of CFD velocity (n), Amin:Amax (−−).

The dispersion of the CFD velocity is larger in the area between Amax and Amin (8.3%
of the velocity at z = 0.006), than below the MSL (1.8% of the velocity at z = −0.5). This
may be explained by the limits of the VOF MULES solver to reconstruct the interface or
the existence of high air velocities on wave crests as detailed in the section 4.2.3.

Nevertheless, the agreement on the velocity profiles between the CFD and the wave
theory with extrapolated stretching method is excellent. It is concluded that the theoret-
ical formulation can be used in the Morison formulation to estimate the hydrodynamic
coefficients for this cylinder case and the FOWT floater in Chapter 7. This is quite a
valuable result since it avoids to run an additional simulation without the structure to
extract the undisturbed velocity field.

6.2.2 Determination of Morison coefficients

For each slice, a set of Morison coefficients is derived from the inline CFD wave loads
(Fx) applying the slice methodology detailed in the section 5.2. The coefficient formula
to obtain CD and CM at the center of each slice are given by Eq. 5.14 and Eq. 5.15
replacing X by x, U and Un by u. The undisturbed velocity/acceleration time series
required in the equation at the center of each slice are determined applying the Stokes
2nd order wave theory and extrapolated stretching model as discussed previously. The
last 26 periods of the CFD signal are used to carry out the slice methodology and so the
coefficients are time-averaged over this duration (Eq. 5.18).

The resulting CM and CD values are plotted in Fig. 6.6 for each slice of the cylinder.
The theoretical interface area, z between Amax and Amin, is also displayed on the graph.
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6.2. APPLICATION OF THE SLICE METHODOLOGY

Figure 6.6: Morison drag and inertia coefficients for each slice along the cylinder. CM (•), CD (× : ),
Amin:Amax (−−).

The inertia coefficient CM varies slightly for submerged slices; a mean value of 2.08
with a standard deviation of 0.05 is obtained. The results are consistent with the val-
ues commonly defined in standards, such as the DNV-RP-C205 Veritas [2010]. In OC5
project, modelling this same cylinder with various design tools, participants came out
with a value of 2 (Robertson and Jonkman).

The drag coefficient CD varies a lot along the water depth, ranging from 0.03 to 1.87.
As it will be explained in the section 6.2.4, the drag force being negligible compared
to the inertia force, the determination of the drag coefficient is thus subject to high
uncertainties, but anyway it does not modify the total force. In OC5 project, the drag
coefficient value is between 1 and 1.2.

Regarding the zone located between Amin and Amax, the inertia coefficient strongly
decreases. This is explained by the fact that this zone is outside the applicability range
of Morison equation and the force cannot be predicted properly as discussed thereafter.

6.2.3 Analysis of CFD and Morison loads along the cylinder

The influence of the air/water interface on loads and the limitation of Morison theory to
predict loads for slices located in the interface area is discussed below. We compare the
loads computed from CFD pressure field and loads derived from Morison formulation.
Four slices centred at different water depths, z = −0.95 m, z = −0.35 m, z = −0.025 m
and z = 0.025 m, are considered for the analysis, as depicted in Fig. 6.7. The Morison
load for a given slice can be obtained following two ways:

• Using the coefficient of the slice derived from CFD (CD (slice) and CM (slice))

• Using the mean value of the coefficient averaged on all the submerged slices, for
z < Amin (CM (mean) and CM (mean)).
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The coefficients determined are indicated in Tab. 6.2.

Figure 6.7: Location of the four cylinder slices. Amin:Amax (−−).

Coefficient z = −0.95 m z = −0.35 m z = −0.025 m z = 0.025 m

CD (slice) 0.27 0.55 0.70 1.89

CD (mean) 0.50 0.50 0.50 0.50

CM (slice) 2.13 2.02 1.34 1.05

CM (mean) 2.08 2.08 2.08 2.08

Table 6.2: Morison coefficients for the four slices from CFD.

For a slice deeply submerged, at z = −0.95 m

In Fig. 6.8, the CFD and Morison loads are plotted for the slice centred at z = −0.95 m,
which is always submerged. Morison formulation, no matter which coefficient is used,
leads to a prediction in excellent agreement with the reference loads provided by CFD.
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6.2. APPLICATION OF THE SLICE METHODOLOGY

Figure 6.8: Loads on the slice centred at z = −0.95 m. CFD loads (−), Morison loads determined with
the specific slice coefficient (−.−), Morison loads determined with the coefficients averaged over the water
depth (−−).

For a slice below the interface zone, at z = −0.35 m

Figure 6.9: Loads on the slice centred at z = −0.35 m. CFD loads (−), Morison loads determined with
the specific slice coefficient (−.−), Morison loads determined with the coefficients averaged over the water
depth (−−).

For a slice closer to the interface but below z = Amin, centred at z = −0.95 m, a bump
occurs on the CFD force close to the trough. This phenomenon cannot be reproduced
with Morison formulation as depicted in Fig. 6.9. This shape appears to be related to
the interface influence on loads, which will be further investigated in the section 6.3.
Despite this slight difference, the load variation and amplitude are quite well predicted
by Morison formula and this whatever the coefficients.
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For a slice within the interface zone, below the MSL, z = −0.025 m

CFD and the two Morison load predictions are plotted in Fig. 6.10 for a slice centred at
z = −0.025 m.

Figure 6.10: Loads on the slice centred at z = −0.025 m. CFD loads (−), Morison loads determined
with the specific slice coefficient (−.−), Morison loads determined with the coefficients averaged over the
water depth (−−).

The loads are null as long as the slice is in the air. When the slice is submerged
by water, the loads are not well predicted by the Morison formulation; the Morison
formulation was indeed developed for a completely submerged cylinder and is thus not
suited for a surface-piercing cylinder. Regardless of the hydrodynamic coefficient chosen,
the sinusoidal shape of Morison signal does not reproduce correctly the complex shape
of the load on the slice.

Same conclusions are drawn for a slice above the MSL; see for example the results for
the slice centred at z = 0.025 m in Fig. 6.11.
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Figure 6.11: Loads on the slice centred at z = 0.025 m. CFD loads (−), Morison loads determined
with the specific slice coefficient (−.−), Morison loads determined with the coefficients averaged over the
water depth (−−).

Maximum load profile over the cylinder length

In Fig. 6.12 are plotted the maximum force profiles along the cylinder, obtained both
from CFD and Morison theory (averaged hydrodynamic coefficients are used for Morison
theory). The Morison theory correctly predicts maximum loads in the submerged part and
over-predicts loads in the interface region, in agreement with observations from Fig. 6.10
and Fig. 6.11. The importance of this load prediction deviation or gap on the total load
prediction is investigated in the following sub-section.

Figure 6.12: Maximum force profile along the cylinder length. CFD (−), Morison force with average
coefficients determined in CFD (−.).
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6.2.4 Analysis of CFD and Morison loads for the entire cylinder

This sub-section deals with the total load prediction on the cylinder. Morison loads are
derived by summing the loads on each slice. The Morison load on each slice is determined
using the mean value for hydrodynamic coefficients, as detailed in the section 6.2.3. Thus,
the total load, plotted in Fig. 6.13, is composed of an inertia term and a drag term
depicted on the figure. We clearly evidence that the inertia term in Morison formula is
preponderant compared to the drag term for this case as it was expected in the section
6.1.3; the value of CD has a very weak impact on the total load.

Figure 6.13: Total loads on the cylinder. Morison load (−.), Inertia term (−−), Drag term (...).

In Fig. 6.14, the time series of loads obtained from CFD simulation, Morison formula
and experiments are compared. We first observe that the three signals have the same
periods. The small bump just before the trough, related to the air/water interface be-
haviour as explained in the section 6.2.3, is visible on experiments and well predicted by
CFD. However, the Morison empirical formula is not able to predict this bump as the
interface influence is not taken into account in the Morison theory. The NRMSE between
the CFD loads and Morison loads is 7.89%, that is small enough to ensure the accuracy
of both models.
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Figure 6.14: Total load on the cylinder. CFD (−), Morison formula with averaged coefficients (−.),
Experiments (−).

It can be concluded that the interface does not impact significantly the total load in
terms of amplitude and period, though it slightly modifies the signal shape and can be
very important locally, as highlighted in the section 6.2.3.

The small bump noticed before the minimum in the load signal is investigated more
precisely in the following subsection, confronting our results to past studies. Thanks to
CFD, the direct impact of the interface on wave loads can be investigated by correlating
wave load time series to the visualisation of the run-up around the cylinder.

6.3 Physical analysis of the influence of the interface on the
wave loads

To analyse the influence of the interface on the wave loads for the surface-piercing cylin-
der, this section is composed of two parts. First we investigate the non-linear behaviour
of the total inline force (cf. bump visible before the minimum on the wave load plot),
by comparing the CFD loads with the ones obtained in past experimental and numer-
ical studies. Then, we study the correlation between the wave loads and the interface
behaviour using our CFD simulation.

6.3.1 Nonlinear diffraction load on the surface-piercing cylinder

The nonlinear effect visible in Fig. 6.14 has already been studied numerically and exper-
imentally.

Indeed, Paulsen et al. [2012] studied, thanks to CFD, the wave forcing of a bottom
mounted circular cylinder by steep regular waves at finite water depth, as presented in
the section 4.3.1.3. The authors detail the appearance of an additional local peak during
the time frame of minimum loading (T2). This phenomenon known as secondary load
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cycle is visible in Fig. 6.15.

Figure 6.15: Time histories of the inline force on a vertical cylinder (Paulsen et al. [2012]).

Ferrant [1998] describes the nonlinear interaction between a regular wave and a surface-
piercing-cylinder running simulations with ANSWAVE, a fully non linear Boundary El-
ement Model. He reveals the existence of short diffraction waves around the cylinder
(of second and third order) compared to the incident wave for the following simulation
characteristics: kR = 0.2, kA = 0.12 and kh = 8 (k = 2π/λ with λ the wavelength, R
is the cylinder radius). These non linear diffraction forces may trigger ringing, a poten-
tially dangerous nonlinear excitation of an elastic structure, with burst-like characteristics
precisely described by Chaplin et al. [1997].

Huseby and Grue [2000] investigated experimentally first- and higher-harmonic wave
loads on a vertical cylinder. A large set of waves with wave slope (kA) up to 0.24 was
performed. Ferrant [1998] modelled numerically Huseby and Grue [2000] experiments for
slope up to 0.145 (kR = 0.245). The harmonics derived numerically and experimentally
are compared in Fig. 6.16. A good agreement between both models is obtained for the
3 − 5th harmonics but significant differences are visible for the 2nd harmonic. Globally,
the force decreases as the wave slope kA becomes greater.
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Figure 6.16: Inline force on a vertical cylinder. 2nd harmonic (Top left), 3rd harmonic (Top right), 4th

harmonic (Bottom left) and 5th harmonic (Bottom right). Comparison between the values obtained
experimentally by Huseby and Grue [2000] and numerically by Ferrant [1998].

The characteristics of Stansberg wave/cylinder case are kR = 0.17, kh = 17, kA = 0.28
and so the wave slope kA is larger than the maximum wave slope performed by Huseby
and Grue [2000]. We compare in Tab. 6.3 the amplitudes of the first five harmonics
derived by Huseby and Grue [2000] with the ones determined from Stansberg experiments
and from the CFD model. The amplitude is made non-dimensional dividing the nth
harmonic by ρgAnR3−n.
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Case F1 [-] F2/F1 F3/F1 F4/F1 F5/F1

Huseby experiments (kA=0.24) 6.25 3.20% 3.52% 2.08% 0.80%

Stansberg experiments (kA=0.28) 6.01 6.35% 2.54% 1.16% 0.25%

CFD model of Stansberg experiments (kA=0.28) 5.57 4.66% 1.71% 0.53% 0.09%

Table 6.3: First normalised harmonic and ratio of second-and higher- harmonics relative to the first-
harmonic from the inline load on a vertical cylinder from Huseby and Grue [2000] experiments, Stansberg
[1997] experiments and the CFD model of Stansberg experiments.

Tab. 6.3 indicates that the harmonics derived from Stansberg experiments and the
CFD model are in good agreement with slightly larger harmonics for the experiments. The
harmonics derived from Huseby experiments are of the same order than the ones derived
from Stansberg cases. From the 3rd order, Stansberg harmonics (CFD and experiments)
are lower than Huseby ones. This is consistent with the decreasing trend in the 2nd− 5th

forces as the wave slope becomes greater (cf. Fig.6.16), the 1st harmonic varying little
with the wave slope.

The non-linearities visible on the experimental and numerical load signals (especially
the slope break before the minimum) may thus be related to the diffraction loads associ-
ated with the harmonics of order greater than 2. Molin [2002] details that for kR < 0.5,
the diffraction loads are well predicted by the inertia term in Morison formula. Indeed,
this assertion is confirmed for Stansberg cylinder (kR = 0.17) as visible in Fig. 6.14.

All the studies mentioned previously deal with the total load on the cylinder. Thanks
to CFD, we can precisely analyse the load evolution with water depth as detailed in the
following section, an information difficult to obtain experimentally.

6.3.2 Physical analysis of the influence of the interface on two slices

In the section 6.2.3, we showed that the closer to the interface the slice is, the more
important the bump before the wave load trough is. We focus this study on two slices:
the submerged slice centred at z = −0.225m and the slice in the interface region centred
at z = −0.025m (Fig. 6.7) for trying to explain the physical origin of the bump.

We divide each slice into two parts to evaluate the distribution of the loads on it: an
upstream one and a downstream one as presented in Fig. 6.17.

Figure 6.17: Slice split into an upstream and a downstream part.

The inline force Fx along (Ox) direction is reported on each part, as well as the total
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inline force (Fx) on the entire slice. Also, the transverse force along (Oy) is plotted.
These forces are plotted over one wave period. During this same period, the wave run-up
around the cylinder is visualized using the 0.5 iso-surface of the VOF volume fraction.
For the sake of clearness, only half of the NWT is displayed, being cut at its center by
the plane (xOz). Key moments over one period (between 0s and Tp) are described in the
two following subsections.

6.3.2.1 Slice fully submerged in water (z = −0.225m)

First, we investigate the impact of the wave run-up for the load on the submerged slice
located at z = −0.225m. Four remarkable moments (t1, t2, t3 and t4) are described
below and reported in Fig. 6.18 and Fig. 6.19.

Figure 6.18: Wave loads on the slice centred at z=-0.225 m.
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(a) t1 (b) t2

(c) t3 (d) t4

Figure 6.19: Visualisation of the air/water interface at four key moments for slice z = −0.225m.

• t1: Maximum of the upstream inline force. The maximum inline load on the up-
stream side of the cylinder is reached exactly at the time when the wave run-up
on the upstream part is maximum. We observe a roll shape of the upstream wave
run-up. For Paulsen et al. [2012], it is due to the stagnation pressure that accelerates
a sheet of water upwards.

• t2: First slope change of the total inline force. At this moment, the wave goes back
from the downstream to the upstream side of the cylinder. According to Paulsen
et al. [2012], this corresponds to the beginning of the secondary load cycle. Like
Paulsen et al. [2012], we note that the maximum wave run-up at the downstream
side occurs prior (t1) to the secondary load cycle (t2).

• t3: Second slope change of the total inline force. It corresponds to a slope change
of the upstream force and to the transition between a small roll to a linear shape of
the wave run-up on the upstream side. From this moment, on the upstream part,
the wave runs down faster corresponding to a faster decrease of the upstream force
(higher slope). This is the end of the secondary load cycle.

• t4: At the end of the period, the absolute value of the upstream and downstream
forces are equal, resulting in a null total force on the cylinder. The free-surface is
almost flat and barely disturbed by the cylinder.

From these observations, a clear relation exists between the wave run-up and the
slope change of the inline load signals: the wave return from the downstream part to the
upstream part seems to be responsible for the slope break on the total load.
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In the following subsection, the physical analysis of loads on a slice located in the
interface area will be performed to check if similar conclusions can be drawn.

6.3.2.2 Slice close to the interface (z = −0.025m)

Over one wave period, height remarkable key moments are described for analysing wave
loads on a slice located close to the interface region. Loads are plotted in Fig. 6.20 and
the air/water interface visible in Fig. 6.21.

Figure 6.20: Wave loads on the slice centred at z=-0.025 m.
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(a) t1 (b) t2 (c) t3

(d) t4 (e) t5 (f) t6

(g) t7 (h) t8

Figure 6.21: Visualisation of the air/water interface at height key moments for slice z = −0.025m.

• t1: At the beginning of the period, all forces are null because the slice is not im-
mersed in water yet.

• t2: The wave reaches the upstream part of the cylinder which in turn increases the
upstream inline force. The downstream inline force remains null since the down-
stream part of the cylinder is still in the air.

• t3: Maximum of the upstream force. The wave run-up is maximum on the upstream
part as observed for the slice centred at z = −0.225m when the maximum inline
force on the upstream part is reached (Fig. 6.19a). A slight change of the total force
slope is observed.

• t4: First local minimum of the total inline force. We observe a slope inversion of
the total inline force when the wave starts flowing back from the downstream to
the upstream side of the cylinder. This was also noticed for the submerged slice at
t2, resulting in a slope change of the total inline force. This phenomenon is greatly
emphasised here, for a slice closer to the interface. This is the beginning of the
secondary load cycle.

• t5: Local maximum of the total inline force. This peak occurs simultaneously with
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a strong slope change on the upstream inline force. It corresponds to the transition
between the roll to the linear shape of the wave run-up on the upstream side, as
noticed for the submerged slice (at time t3). Besides, a small transverse force is
noticeable whereas it was negligible until now. This might be explained by the
asymmetry of the flow around the cylinder when the wave flows back.

• t6: From t6, the upstream part is not immersed anymore, the corresponding force
is null.

• t7: Decrease of the downstream inline force. The wave runs down and finally comes
under the slice leading to a total null force on the slice.

• t8: The total inline load is null again when the slice is not immersed in water
anymore.

In conclusion, the specific variation of wave loads (slope change or inversion) is strongly
connected to the wave run-up. Specific times are determined to identify precisely the sec-
ondary load cycle. The latter is explained by the wave flowing back from the downstream
to the upstream part. This phenomenon impacts more the upstream part of the cylinder
compared to the downstream one.

6.4 Conclusion

With this first study, we set up, validated and analysed a CFD model for a simple
wave/structure interaction case, by modelling in the CFD framework of OpenFOAM the
Stansberg [1997] experiments.

Though the flow is turbulent (Re = 105), we demonstrated that a no-slip boundary
condition and no turbulence model were sufficient to reproduce the experimental load for
this constrained cylinder in waves.

We demonstrated the validity of our numerical slice methodology to determine Morison
coefficients from CFD loads, on the simple case of a vertical cylinder. For this case, the
drag term of Morison formula is found negligible, that makes the inertia term enough
to determine the wave load. The inertia coefficient varies slightly along the submerged
part of the cylinder (CM = 2.08 + −0.05). The total load obtained applying Morison
formula for each slice with CM = 2.08 (and CD = 0.5) is in good agreement with the
experimental and numerical loads. Only the non-linear behaviour before the minimum of
the load signal, caused by the air/water interface behaviour, is not captured by Morison
formula. Indeed, this interface strongly impacts the loads in the air/water area, where
Morison approach cannot be applied, but its influence remains negligible for the total
load.

Finally, we confronted our results to past hydrodynamic studies that also focused on
surface-piercing cylinders and highlighted the non-linear effect of the interface on the total
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load. This non linearity is called secondary-load cycle. Thanks to CFD, we were able
to detail this specific cycle highlighting key moments and correlating the wave run-up to
the load on the upstream and downstream parts of the cylinder. A wave backflow from
the downstream to the upstream part of the cylinder was evidenced, responsible for the
non-linear shape of the total wave load.

We have thus set up an accurate CFD model of a surface-piercing cylinder in waves
and proposed a first hydrodynamic study of the wave loads. In particular, Morison
coefficients were determined from CFD results, to then check the validity of Morison
approach for predicting the wave loads. With this bench of skills acquired, we will study
in the following chapter the hydrodynamic behaviour of the constrained FOWT floater
in waves, composed by multiple inclined submerged and surface-piercing cylinders.
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Chapter 7

Investigation of FOWT
hydrodynamics

In this chapter, we investigate the hydrodynamics of a FOWT floater.

Having defined some guidelines in order to propagate regular waves along a NWT in
a controlled way minimising any reflection or damping phenomena (section 5.1), we can
now include the TLP floater in the NWT.

The section 1 presents the understudy case: the TLP floater in a constrained con-
figuration subjected to regular waves. The corresponding experimental tests, so-called
captive tests, are detailed. The modelling of the captive test with DeepLinesWind™
and with CFD is then presented. Both models are validated against the experimental
data. The distribution of the forces on the floater can be investigated as illustrated in the
section 2 and thus the weight of the potential theory/Morison formula in the total load
prediction is precised. That notably highlights why it is important to specify Morison
load prediction accuracy for FOWT loads using CFD.

The three following sections (section 7.4, 7.5 and 7.7) study the applicability of Morison
approach for the prediction of FOWT loads. Three main limitations of Morison formula,
that may impact the wave loads, are investigated: the presence of the whole structure
(versus an isolated cylinder), the vicinity of the air/water interface and the brace orien-
tation. From the CFD results, we derive Morison coefficients applying the numerical slice
methodology detailed previously (cf. section 5.2) and we check the agreement between
the Morison prediction and the CFD results.

Finally, we propose in the section 7.9 some advice to improve Morison prediction for
FOWT floater loads.
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7.1 Captive test description and simulation

7.1.1 Experiments

Basin model tests were performed in 2015 at the MARIN wave tank facility (the Nether-
lands) to validate and ensure the proper behaviour of the TLP floater concept and also to
validate the design tools, such as DeepLinesWind™. Several captive tests, consisting in
the propagation of waves on the constrained floater, were performed as shown in Fig. 7.1.
The TLP floater was represented by a newly built model at a geometrical scale of 1:40.

Figure 7.1: Photos of the captive tests performed at MARIN (the Netherlands).

The wave elevation is measured with resistance type wave probes, at several places
in the tank without the floater presence. The wave loads and moments on the floater
are also measured with gauge force transducers (force frame depicted in Fig. 7.1). All
the data are provided by MARIN at full scale (a common practice in hydrodynamics).
That is why the results (from experiments and CFD) are post-treated at full scale in this
chapter, applying Froude similitude with a scale ratio of 40 (Annexe 9.1). It is important
to underline that Froude’s similitude does not maintain the Reynolds number between
the model and the full scale device. As a consequence the viscous forces may not be
properly evaluated.

In the present study, three different regular waves are modelled in CFD. Their charac-
teristics at full scale are detailed in Tab. 7.1 and reported in Méhauté [1976] classification
in Fig. 5.1:
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Case H [m] T [s] h [m] λ [m] kA (steepness) [-]

w1 0.984 8.039 100 100 0.031

w2 4.92 8.039 100 100 0.155

w3 9 14 100 297 0.095

Table 7.1: Wave characteristics (full scale).

Wave w1, consisting in operational wind turbine sea condition, was performed at
MARIN. w2 was not performed experimentally and is similar to w1 with a height five
times larger. w3 is an irregular wave performed at MARIN, it is a design wave for
turbine parked conditions. Due to the complexity of modelling irregular waves in CFD,
we simplify w3 as a regular wave whose period and height are taken from the Jonswap
spectra characteristics of the irregular wave w3. As indicated in the section 5.1.1, these
waves allow us to review different ranges of inertia/drag Morison contribution.

For wave w1, the experimental surge load Fx is stabilized over time but the heave load
Fz and the sway Fy are more dispersed as shown in Fig. 7.2 and quantified in Tab. 7.2.

In Tab. 7.2, the surge, sway and heave force values are detailed. Similarly to the
wave height, the load value is determined by F = 2

√
2var(F (t)). The dispersion of the

time signal corresponds to the standard deviation of the series of the maxima minus the
minima.

Figure 7.2: Experimental loads on the TLP (wave w1).

Wave w1 Surge (Fx) [kN] Sway (Fy) [kN] Heave (Fz) [kN]

Experimental data 377.20± 2.22 15.39± 1.57 211.57± 11.07

Table 7.2: Forces amplitudes and variation.

No information is reported concerning the experimental uncertainty.

7.1.2 Modelling of the captive test in DeepLinesWind™

In design tools, we commonly apply the same Morison coefficients CD and CM for each
brace throughout the whole structure. Calibration procedure aims to determine the best
set of coefficients that enables Morison theory, combined with the potential theory, to
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fit as close as possible the experimental data (here, heave, sway and surge forces on the
TLP floater). From a parametric study, CD = 0.8 and CM = 2.5 appears to be the
best set of coefficients for load prediction: the difference relative to the experiments for
Fx is −1.1% and for Fz is 26.1% as visible in Fig. 7.3. CM can be decreased to 1.5 to
better predict Fz (error of 8.25%) but this leads to a significant underestimation of Fx by
−21.09%. Because of the important dispersion of the experimental data for Fz, we chose
to calibrate DeepLinesWind™ model by favouring the prediction of Fx over Fz.

Figure 7.3: Calibration of DeepLinesWind™ on experiments (wave w1).

→ Thus we have to make a compromise between the heave and surge prediction in
DeepLinesWind™. It seems that imposing the same coefficients for every brace makes
the predictions of the wave loads on the whole structure difficult. Maybe the differences
between the experiments and the theoretical prediction could be decreased adapting Mori-
son formula for FOWT load prediction. That is why we use CFD in order to investigate
the hydrodynamics of FOWT and the applicability of Morison formula for FOWT load
prediction.

7.1.3 Setup and validation of the CFD model

7.1.3.1 Setup of the CFD model with the TLP floater

The wave-only case is detailed and validated in section 5.1. The TLP floater is then
included in the NWT.

The boundary conditions on the floater are of no-slip type, based on the conclusions
drawn for the Stansberg surface-piercing cylinder (Chapter 6). The cells next to the
floater are cubic and their size is comprised between D/10−D/13. Here we can point out
the complexity of correctly meshing the connection between the refined zone around the
interface and the refined zone required around the structure. A system of superimposed
refinement boxes is implemented in the meshing file snappyHexMeshDict. The final mesh
is shown in Fig. 7.4 and Fig. 7.5.
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Figure 7.4: Inclusion of the TLP floater in the NWT mesh.

Figure 7.5: Inclusion of the TLP floater in the NWT mesh (zoom).

The simulations of the TLP floater subjected to waves are run with adjustable time
step as it is detailed in the following section.

7.1.3.2 Sensitivity study to the CFL number

The wave-only NWT cases are run with a fixed time step. The combination of the time
step (Tab. 5.4) with the mesh refinement (section 5.1.5) leads to a maximum CFL below
0.2, necessary to get a proper resolution of the interface with the VOF MULES method
implemented in waveFoam solver.

With the TLP included in the NWT, for wave w2 and w3, the cells next to the floater
in the interface area are smaller than the smallest cells of the mesh without the floater.
So the time step has to be reduced compared to the wave only cases, in order to ensure at
least a CFL number below 1, ensuring the numerical stability of the solver. That is why
we perform a convergence study, with adjustable time step, varying the condition on the
maximum CFL imposed in the simulation. This aims at getting an optimal CFL number
that enables to generate correctly the waves and at the same time correctly model the
wave interaction with the floater.

Three maximum CFL numbers are tested with wave w2: maxCFL = 0.9, maxCFL =
0.75 and maxCFL = 0.5. The total loads on the floater in (Ox) and (Oz) direction
are plotted in Fig. 7.6. Tab. 7.3 details the load amplitudes and the time step obtained
during the simulation.
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Figure 7.6: Surge (Fx) and heave (Fz) forces for the convergence study in CFL number (wave w2).

max CFL imposed Fx [kN] Fz [kN] time step [s]

0.9 1645.95 999.34 0.0009-0.0018

0.75 1642.91 1000.78 0.0008-0.0018

0.5 1647.93 1000.81 0.0003-0.0015

Table 7.3: Wave loads statistics for the convergence study in CFL (wave w2).

Wave load differences between the three simulations are negligible and so the three
CFL numbers seem to be suitable to correctly model wave/floater interaction.

We choose to set a maximum CFL number to 0.75 for wave w2 (and w3). With
this imposed maximum CFL number, the time step obtained is within the range of the
requirements to get a proper wave propagation (for wave w2, 0.008 − 0.0018 s obtained
in the TLP simulation against 0.002 s recommended for the wave-only case).

7.1.3.3 Validation of the CFD model against experiments (wave w1)

Only the CFD model of the floater with wave w1 can be validated against experimental
data. For wave w1, the cells next to the floater have the same size as those in the free
surface zone. So we decided to run the CFD model of the TLP floater with wave w1 with
the fixed-time step determined for the w1 wave-only case (dt = 0.002 s). For wave w2
and w3, the simulation is run with adjustable time step with a maximum imposed CFL
number of 0.75 as explained in the section 7.1.3.2.

Applying the mesh recommendations as previously discussed, the CFD wave loads are
compared to the experimental ones for wave w1 in Fig. 7.7. The statistics obtained from
CFD and experiments are detailed in Tab. 7.4.
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Figure 7.7: Surge (Fx), sway (Fy) and heave (Fz) forces from CFD and experiments (wave w1).

Wave w1 Surge (Fx) [kN] Sway (Fy) [kN] Heave (Fz) [kN]

Experiments 377.20± 2.22 15.39± 1.57 211.57± 11.07

CFD 337.76± 0.05 0.45± 0.53 206.13± 0.12

Difference(CFD,Experiments) −10.46% −97% −2.57%

Table 7.4: Statistics for CFD and experimental forces (wave w1).

The heave loads Fz from CFD and experiments are in good agreement. A difference
of 10.46% is highlighted concerning the surge force (Fx), the CFD underestimates Fx
compared to the experiments. This gap may decrease by further improving the mesh
(complexity to control the mesh around the floater in the interface area). The sway
force predicted by the CFD model is negligible compared to the experiments, this may
be explained by the high dispersion for Fy in experiments and the very low amplitude
compared to Fx and Fz. We choose to carry on the hydrodynamic analysis of the CFD
wave loads on the floater, keeping in mind this under-prediction of the surge force.

7.1.3.4 Wave loads derived from the three CFD models

The simulations of waves w2 and w3 are run imposing a maximum CFL number of 0.75.
The wave loads derived for these two waves are detailed in Tab. 7.5. Wave loads are

much stronger than for w1, as expected because of the increased wave height.

Wave Fx [kN] Fy [kN] Fz [kN]

w1 337.76 0.45 206.13

w2 1642.91 18.98 1000.78

w3 3878.04 23.25 2803.15

Table 7.5: Surge (Fx) and heave (Fz) forces derived from the CFD model of the TLP for the three waves.

→ For the three waves, the heave force accounts for about 60% of the total load and
the surge force accounts for 40% of the total load. The contribution of the sway force to
the total loads remains negligible (< 1%). This is expected as the wave propagates along
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the (Ox) axis. In the following section, the load distribution is precisely analysed.
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7.2 Distribution of the forces on the floater

To study the floater load distribution, the braces are gathered in groups (Braci, Brac1i,
Centi, Transi, Interi and Renforti) as detailed in the section 5.2.1 and shown in Fig. 7.8.
Buoyi corresponds to the group formed by the three side buoys and the central buoy
(coloured in red).

Figure 7.8: Typical groups of braces and buoys.

For each group, the load time series is derived as the sum of load time series for each
brace (possible because of the floater symmetry). A load value is determined in (Ox),
(Oy) and (Oz) directions for each group (global frame shown in Fig. 7.8).

The load distribution among the groups for wave w1, w2 and w3 are respectively shown
in Fig. 7.9, Fig. 7.10 and Fig. 7.11.

Figure 7.9: Surge (Fx) and heave (Fz) force distribution from CFD (wave w1).
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Figure 7.10: Surge (Fx) and heave (Fz) force distribution from CFD (wave w2).

Figure 7.11: Surge (Fx) and heave (Fz) force distribution from CFD (wave w3).

For wave w1 and w2, the loads on the braces account for about half of the total
load. For wave w3, the braces account for about 30% of the total load. Although this
contribution is smaller than the one for wave w1 and w2, it remains significant.

The similar total load distribution is obtained for the three waves from DeepLinesWind™
models but not presented here. The wave loads on the four buoys in red in Fig. 7.13 are
commonly predicted applying the potential flow theory (cf. section 2.4). Some uncertain-
ties concerning second-order wave load prediction on the larger buoys of FOWT floaters
(cf. section 4.1.3) are currently investigated in the OC6 project performing in CFD bichro-
matic waves on the OC5-DeepCWind semisubmersible floater (cf. section 4.3.2.1). This
will not be investigated in the PhD thesis. Here we only focus on Morison’s prediction
applied for brace loading.

Focusing now on the braces: the contribution of each group of braces is compared
for the three waves. For each wave, the load value for each group (Fgroup) is normalized
by the sum of the load values of all the groups: Fgroup,normalized = Fgroup/Fsum where
Fsum = FBraci +FBrac1i +FCenti +FTransi +FInteri +FRenforti. Fig. 7.12 shows the results
in (Ox), (Oy) and (Oz) directions.
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Figure 7.12: Surge, sway and heave force distribution for the groups of braces for the three waves.

Fig. 7.12 shows significant differences between the three waves for Brac1i and Transi.
Here it is complex to conclude about the impact of the wave characteristics on the brace
loads. That is why in the following sections, we precisely investigate the load dependency
on the wave characteristics (amplitude and period) and the brace specifics (position in
the floater, vicinity of the interface, orientation).

→ The wave loads on the braces, that are determined with Morison approach, account
for an important part of the total loads (30-50%). Thus it makes sense to investigate
Morison applicability for FOWT load prediction. Also, the distribution of the wave
loads on the floater depends on the imposed wave. Therefore we will investigate the
applicability of Morison approach for FOWT load prediction with the three different
waves.

When applying Morison empirical approach for FOWT design, we do not take into
account some aspects and may wonder about the applicability of such a theory for FOWT:
Does the whole structure impact the wave loads on the braces, supposed as isolated in
Morison formulation (section 7.4)? Does the interface strongly influence the wave load
on the surface-piercing braces (section 7.5)? Can Morison formula predict wave loads on
oriented braces (section 7.7)? In the following sections, we will investigate these three
questions. The final aim is to propose advice when applying Morison empirical approach
to predict the wave loads on the FOWT floater.
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7.3 Two methods to determine Morison coefficients for brace
load prediction

We investigate Morison applicability for the brace load prediction. The braces studied in
the following sections are indicated in Fig. 7.13.

Figure 7.13: Detail of the brace names in the TLP floater.

From the CFD loads, we determine the Morison coefficients along the brace applying
the numerical slice methodology presented in the section 5.2. For each slice, a set of four
directional coefficients is derived in the local frame of the brace (ΩXY Z): CDX

, CMX

CDZ
and CMZ

.
To determine the Morison load on the entire brace, the theoretical slice loads are

summed. We have two methods to determine the Morison coefficients for the load pre-
diction on a slice:

• Variable coefficients: we take the slice coefficients determined from the CFD loads
on the slice. Thus we impose one set of coefficients per slice. This solution is the
most precised one but too advanced to be implemented in design tools.

• Constant averaged coefficients: we take the average of all the slice coefficients derived
from CFD. Thus we impose the same set of coefficients for every slice. For the brace
crossing the interface, the coefficients are averaged over the slices that are always
submerged, as concluded in Stansberg cylinder study (cf. section 6.2.3).

The Morison force on the brace is then compared to CFD.
We study locally the wave loads on the braces and the load prediction applying Morison

formula to then conclude at the level of the group of the braces and finally at the floater
level. We define four main levels of study: the floater level, the group of braces level, the
brace level and the slice level.
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7.4 Impact of the structure

First we investigate the impact of the structure on the loads with wave w1.

7.4.1 Impact of the TLP floater on all the braces

To evaluate the impact of the structure, we compare loads on a specific brace when it
is placed alone in the NWT (Fig. 7.14a), or when the whole structure is in the NWT
(Fig. 7.14b).

(a) Brac1 alone

(b) Brac1 in the TLP

Figure 7.14: Visualisation of the two configurations of Brac1 in the NWT (the free surface is coloured
with the dynamics pressure field)

The loads obtained from the isolated brace and from the configuration with the brace
included in the TLP are compared in Tab. 7.6. The relative differences between the two
models are detailed.
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Fx [kN] Fy [kN] Fz [kN]

Brac1 alone 3.22 5.46 13.39

Brac1 TLP 3.35 5.62 9.80

Difference Brac1(alone,TLP) -3.8 % -2.9 % 36.7 %

Brac2 alone 20.90 0.00 20.86

Brac2 TLP 21.84 0.01 18.06

Difference Brac2(alone,TLP) -4.3 % / 15.5 %

Brac12 alone 0.13 0.00 9.64

Brac12 TLP 0.12 0.01 10.33

Difference Brac12(alone,TLP) 12 % / -6.7 %

Cent1 alone 13.77 0.09 0.19

Cent1 TLP 18.33 1.08 0.18

Difference Cent1(alone,TLP) -24.9 % -91.9 % 10.1 %

Trans2 alone 17.05 0.15 22.51

Trans2 TLP 17.75 0.14 23.50

Difference Trans2(alone,TLP) -4 % 10.2 % -4.2 %

Trans3 alone 21.50 3.47 14.70

Trans3 TLP 22.85 6.77 16.46

Difference Trans3(alone,TLP) -6 % -48.7 % -10.7 %

Table 7.6: Surge, sway and heave loads on the braces alone and in the TLP.

Major differences are highlighted in Tab. 7.6. The heave force for the isolated Brac1
and Brac2 is much bigger than the brace force in the TLP (respectively +36.72% and
+15.48%). So the TLP floater severely impacts the forces in (Oz) direction on the
horizontal braces located at the bottom of the structure (Braci).

The surge force for Cent1 is also impacted by the structure: the force for the isolated
brace is much smaller than the brace force in the TLP (−24.89%).

The heave force on the isolated Trans3 is smaller than within the TLP (−10.72%).
The sway force is doubled when the brace is included in the TLP compared to the isolated
brace.
→ From these observations, we can assert that the TLP floater does modify the flow

in a manner that significantly impacts the wave loads on the braces. Except for the
brace at the centre of the floater, the inline force is slightly impacted. On the contrary,
the vertical loads are more prone to differences. However, checking only the brace load
amplitudes is not sufficient to understand how the floater impacts the loads on the brace.

Does these load differences between the isolated brace and the configuration with the
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brace included the TLP floater come from the disturbance of the flow by the structure?
Is it explained by the interconnections between the braces? In order to answer to these
questions, we will investigate the load distribution along two horizontal braces (Brac1
and Brac12) in the following two subsections.

7.4.2 Impact of the floater presence on a horizontal and deeply submerged
brace, intercepted by other braces, Brac1

First we focus on Brac1, which is coloured in Fig. 7.15.

Figure 7.15: Brac1 in TLP

The impact of the TLP floater on the heave force is illustrated on the loads in the
global frame (Oxyz) for the isolated Brac1 and in the configuration within the TLP
floater as shown in Fig. 7.16 (in agreement with the data presented in Tab. 7.6).

Figure 7.16: Surge, sway and heave forces for Brac1 alone and in the TLP.

In order to investigate how the floater impacts the loads, we analyse the loads along
the brace by cutting it into slices (Fig. 7.15) for both configurations.

We focus first on the not-pierced slices by the interconnections between the braces.
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The interconnection area encircled in red in Fig. 7.15 is shown in Fig. 7.17 to visualise
the pierced slices and two not-pierced slices on both sides.

Figure 7.17: Visualisation of the pierced slices and two not-pierced slices on both sides for Brac1.

The sum of loads derived for the not-pierced slices in the isolated brace and in the
TLP floater are plotted in Fig. 7.18.

Figure 7.18: Forces on the not-pierced slices of Brac1 alone and in the TLP.

Fig. 7.18 shows that the loads are identical for the two different configurations. The
floater does not disturb the flow perceived by the not-pierced slices (9/10th of the brace)
in a manner that significantly affects the loads.

However, we demonstrated the floater does significantly impact the heave load for
Brac1. So the impact of the floater seems to occur at the interconnections.

When applying Morison formula to predict wave loads on the braces in the design
tools, the impact of the interconnections are not taken into account (same coefficient all
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along the braces). We now analyse how the interconnections influence the coefficients
and the force predicted applying Morison formula.

The coefficients are derived along the brace following the method explained in the
section 5.2.

The coefficients derived from the loads with brace included in the TLP are plotted in
Fig. 7.19.

Figure 7.19: Morison coefficients derived from CFD for Brac1 in TLP.

Fig. 7.19 highlights that the coefficients determined for the pierced slices are rather
extreme (CDX

= 86 and CMX
= −1.38 for one of the two pierced slices). Indeed, in the

local frame (ΩXY Z), the phase shift between FX and FZ for the pierced slice differs from
the one for the whole slices as visible in Fig. 7.20 (3.8 s against 2.5 s).

Figure 7.20: FX and FZ CFD forces on a whole slice and a pierced slice in the brace local frame.

Nevertheless, we show in Fig. 7.21 that Morison prediction for the pierced slice loads
using these extreme values is quite close to the CFD loads. Only non-linearities on the
extrema of FX derived with Morison formula are visible.
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Figure 7.21: FX and FZ forces from CFD and Morison for a whole slice (CDX
= 2.9, CMX

= 1.85,
CDZ

= 2.05 and CMZ
= 1.97) and for a pierced slice (CDX

= 82, CMX
= 2.23, CDZ

= 3.7 and
CMZ

= −1.38).

These non-linearities on the extrema of Morison FX for the pierced slice are probably
due to the unexpected drag term in Morison force as shown in Fig. 7.22. Such extreme
drag force for the pierced slices are necessary to minimize the phase shift and the load
differences between Morison and CFD loads for the pierced slices. They may not have a
physical meaning but they are a way to fit CFD with Morison formulation that was not
developed for such geometries.

Figure 7.22: Morison prediction for a pierced slice.

In the following paragraph, we focus on the not-pierced slices: the coefficients are
plotted in Fig. 7.23.
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Figure 7.23: Morison coefficients derived from CFD for Brac1 in TLP without the pierced slices.

Fig. 7.23 indicates an important dispersion of CDX
along the brace. This is due to the

negligible value of the Morison drag term for the not-pierced slice loads.
We now focus on the inertia coefficients in Fig. 7.24.

Figure 7.24: Inertia Morison coefficients derived from CFD for Brac1 in TLP without the pierced slices.

Fig. 7.24 shows that the inertia coefficients slightly vary along the brace (variation
smaller than 10%) and increase at the extremities, certainly explained by the presence of
the buoys at the brace edges.

The two methods (cf. section 7.3) determining the Morison coefficients to impose in
the load formula for each slice are tested. For this horizontal pierced brace Brac1, a third
method determining the Morison coefficients is tested: we average the slice coefficients
only considering the not-pierced slices (the constant coefficient averaged over not-pierced
slices).

• The brace loads obtained with variable coefficients for each slice are shown in
Fig. 7.25.
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Figure 7.25: Morison prediction with variable coefficients for Brac1.

This method allows Morison formula to get predictions close to the CFD wave loads.
So our numerical slice methodology, already validated with Stansbserg vertical cylin-
der in the section 6.3, also works for the horizontal brace Brac1. However, this
method is not easy to apply in design tools.

• The brace loads determined with constant averaged coefficients (CDX
= 10.75,

CMX
= 1.92 CDZ

= 1.91 and CMZ
= 1.67) are shown in Fig. 7.26.

Figure 7.26: Morison prediction with constant averaged coefficients for Brac1.

The FX forces obtained in CFD and predicted by Morison are in good agreement.
The CFD heave force FZ is 13% smaller than Morison heave force, certainly due
to CMZ

too low for the whole slices (1.67 against 1.97 to correctly predict FZ on a
whole slice as shown in Fig. 7.21).

• The brace load obtained with constant coefficients averaged over not-pierced slices
(CDX

= 2.64, CMX
= 1.92 CDZ

= 2.14 and CMZ
= 2) are shown in Fig. 7.27. These
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coefficients are within the range of the standards commonly used in the design tool
(CD = 0.8 and CM = 2.5 for the model of the TLP in wave w1 in DeepLinesWind™).
This method is close to the common application of Morison in design tools that do
not take into account the interconnections.

Figure 7.27: Morison prediction with constant coefficients averaged over not-pierced slices for Brac1.

With this method, FZ derived with Morison is 39% higher than the CFD force.
Also, a phase shift is noticed between the two FX forces. In fact, this application of
Morison predicts well the load on the isolated Brac1 (load difference of 1.2%). The
difference is only attributed to the load difference on the pierced slices.

→ To conclude, we proved that neglecting the interconnections in Morison coefficients
lead to an error of 39% in heave (FZ) and a phase shift for FX in the brace local frame.
Using the average coefficients over the entire brace decreases the error to 13% in heave
and leads to a negligible phase shift between Morison and CFD FX force.

Similar conclusions are obtained for Brac2 also pierced at its centre but perpendic-
ular to (Ox). Morison load prediction with the coefficients using the constant average
coefficients leads to an error or 0.13% for FX and −1.5% for FZ .

To complete the analysis of the impact of the TLP on the wave loads, we study the
hydrodynamics of a horizontal brace aligned with the flow direction (Ox) and not-pierced,
Brac12.

7.4.3 Impact of the floater presence on a horizontal and deeply submerged
brace, between two large buoys, Brac12

Brac12 is coloured in Fig. 7.28.
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Figure 7.28: Brac12 in TLP

At the beginning of this section, Tab. 7.6 showed that the heave force Fz was 6.7%
smaller for the brace alone than the brace in the TLP. The CFD loads in the global frame
(Oxyz) for Brac12 alone and in the TLP are plotted in Fig. 7.29.

Figure 7.29: Surge, sway and heave forces for Brac12 isolated or in the TLP.

Contrary to Brac1, Brac12 is not intercepted by any brace. The structure impact
on Brac12 cannot be explained by the interconnections like for Brac1. To investigate
the impact of the TLP structure on Brac12, we analyse the variation of the coefficients
derived from the CFD loads for the brace alone and within the TLP.

For Brac12, which is aligned with the wave direction, Fx (the axial force) and Fy (the
transverse force) are negligible compared to Fz (Fig. 7.29 and Tab. 7.6). Only CDZ

and
CMZ

are determined. Like for Brac1, CDZ
is rather dispersed along the brace because

of the negligible contribution of the drag term in the total force. The variation of CMZ

along the Brac12, alone and in the TLP is plotted in Fig. 7.30.
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Figure 7.30: Morison CMX
and CMZ

derived from CFD loads on Brac12 alone and in the TLP.

The coefficients for the brace in the TLP varies a little bit more than the coefficients
derived for Brac12 alone (10% against 4%). For Brac12 in the TLP, the coefficients
increase by 0.2 at the extremities whereas for Brac12 alone, they decrease by 0.08. This
might be explained by the presence of large buoys at both extremities that can strongly
disturb the flow field.

The average of CDZ
and CMZ

for the two configurations are given in Tab. 7.7. CMZ
is

7.2% smaller for the brace alone than in the floater.

Brac12 CDZ
CMZ

Alone -1.74 1.93

In the TLP 1.24 2.08

Table 7.7: Morison coefficients derived for Brac12 averaging the coefficients all over the brace.

The two Morison coefficient methods to determine the loads on Brac12 in the brace
local frame are tested:

• The brace loads obtained with variable coefficients per slice are shown in Fig. 7.31.
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Figure 7.31: Morison prediction with variable coefficients for Brac12.

With these coefficients, Morison exactly predicts the CFD. Here our numerical slice
methodology proves again its ability to determine consistent coefficients. Still, as
mentioned for Brac1, taking one coefficient per slice is not applicable in the design
process.

• The brace loads determined with constant averaged coefficients (CDZ
= 1.24 and

CMZ
= 2.08) are shown in Fig. 7.32.

Figure 7.32: Morison prediction with constant averaged coefficients for Brac12.

Morison prediction perfectly fits with CFD. The effect of the extremities on the total
load are correctly predicted by taking the average of the coefficients for all the slices.

In addition, if we use the constant averaged coefficients in Morison prediction for
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Brac12 alone, Morison also predicts exactly the CFD loads.

Thus the impact of the structure is taken into account in the constant averaged coeffi-
cients with a difference of 7% between Brac12 alone and Brac12 in the TLP. To conclude,
if there is a substantial structure in the vicinity of the brace, the loads in the vicinity
of that structure may be affected and impact the total loading on the brace. But the
differences are such that averaging the coefficients gives a good prediction.
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7.5 Impact of the air/water interface vicinity

Several braces in the TLP floater cross the air/water interface. In the practical application
of Morison formulation for design purposes, the interface presence is taken into account
through the velocity/acceleration imposed in the formula. Still, Morison formula cannot
predict well the loads at the interface as explained for Stansberg surface-piercing cylinder
(cf. section 6.3). However the interface influence remains negligible when considering the
total load on Stansberg cylinder.

Is this observation still valid for the surface-piercing braces within the TLP floater?
Are the interface effects negligible on Morison coefficients imposed for the prediction of
the CFD wave loads for the FOWT floater? The influence of the interface on the brace
is successively investigated for two braces: a vertical brace Cent1 and an oriented brace
Trans2. In this section, we only study braces included in the TLP structure with wave
w1.

7.5.1 Impact of the interface vicinity on a vertical surface-piercing brace at
the centre of the floater, Cent1

Cent1 is coloured in Fig. 7.33. It consists of a vertical surface-piercing cylinder, like
Stansberg’s cylinder (Chapter 6), intercepted by several small braces. Since it is a vertical
brace, Fz (the axial force) is null.

Figure 7.33: Cent1 in TLP

First the influence of the interface is analysed at the brace level.
The CFD loads in the global frame (Oxyz) on the entire brace or only for the sub-

merged part of the brace are compared in Fig. 7.34. The submerged part of the brace is
defined using slices always submerged by water.
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Figure 7.34: Influence of the interface on Cent1 at the brace level.

Fx for the submerged part of the brace is 5.2% smaller than the total brace load, thus
the interface slightly influences the load amplitude.

The coefficients obtained along Cent1 applying the numerical slice methodology are
plotted in Fig. 7.35. In the brace local frame, FZ being negligible compared to FX for
the vertical brace Cent1, only the coefficients for FX are plotted. The null coefficients
obtained for the slices in air are not plotted.

Figure 7.35: Morison coefficients derived from CFD for Cent1 (CDX
on the left, CMX

on the right).

Fig. 7.35 shows that CDX
is dispersed because of the small drag contribution (−1.1 <

CDX
< 47.24). CMX

decreases approaching the interface: from 2.44 to 1.78 for submerged
slices. This variation was not observed for Stansberg cylinder. It might be explained by
the impact of the central buoy on the bottom of the brace. The CMX

for the two interface
slices (CMX

= 1.14 and CMX
= 0.21) are much smaller than for the submerged slices.

In Fig. 7.36 are plotted the Morison and CFD loads for one fully submerged slice
(Fig. 7.36a) and one in the interface (Fig. 7.36b), the z-coordinates of the slice centres
are indicated in the captions.
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(a) z = 2.31m ' −2.3H (CDX
= 0.13 and CMX

= 1.93) (b) z = −0.84m ' −0.1H (CDX
= 2.82 and CMX

= 1.14)

Figure 7.36: Morison and CFD loads for a submerged slice (on the left) and a slice in the interface (on
the right).

CDX
and CMX

can be derived from the loads over a submerged slice and lead to a
perfect prediction (cf. Fig. 7.36a). For the slice in the interface, the loads are rather non-
linear and asymmetrical and fitting Morison with CFD is more complex (cf. Fig. 7.36b).
Nevertheless, a difference for FX of 7.8% between the Morison and CFD loads is obtained.

Again, the two different ways to derive Morison loads in the brace local frame are
tested. A third method averages the slice coefficients over all the slices, including the
ones in the interface.

• The wave loads on the brace using variable coefficients per slice are shown in
Fig. 7.37.

Figure 7.37: Morison prediction with variable coefficients for Cent1.

Morison formulation rather well predicts the total CFD load.
A small non-linear effect is visible around the crests and troughs of the force based
on Morison coefficients. This non-linear effect is attributed to the pierced slices
where there are interconnections with other braces, as observed for the horizontal
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oriented brace Brac1 (cf. section 7.4.2). Fig. 7.38 presents loads for a not-pierced
slice and a pierced slice, both submerged.

(a) z = −5.59m ' −5.6H (CDX
= 0.13 and CMX

= 1.94) (b) z = −6.71m ' −6.7H (CDX
= 44.8 and CMX

= 1.87)

Figure 7.38: Morison and CFD loads for a not-pierced slice (on the left) and for a pierced slice (on the
right).

There is a good agreement between Morison and CFD loads on the entire slice (cf.
Fig. 7.38a). For the pierced slice (cf. Fig. 7.38b), the non-linear effect is visible on
FX . It is explained by the extreme CDX

value (44.8) that leads to a significant drag
term in FDX

.

We also observe from the CFD results that for the pierced slice, FZ is significant
compared to FX as visible in Fig. 7.38b. This transverse force FZ may be explained
by the presence of the structure surrounding Cent1. This cannot be predicted by
Morison formulation which only accounts for loads in line with the wave direction.

• The brace loads determined with the constant averaged coefficient (over only the
submerged slices) (CDX

= 14.53 and CMX
= 2) are shown in Fig. 7.39.

Figure 7.39: Morison prediction with constant averaged coefficients for Cent1.
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A relative difference with CFD of 19.7% for FX is obtained. This rather significant
difference is explained by the discrepancies at the extrema as visible in Fig. 7.40.
The large CDX

value (to account for the interconnection effect) leads again to a
significant drag term.

• The brace loads determined with the constant average coefficients over all the slices
(including the slices in the interface) (CDX

= 12.8 and CMX
= 1.82) are shown in

Fig. 7.40.

Figure 7.40: Morison prediction with constant averaged coefficients (including the slices in the interface)
for Cent1.

Morison formula rather correctly predicts the phase and the load, with a relative
difference of 14.2% compared to CFD. Thus including the coefficients for the slices
in the interface in the average improves very slightly Morison prediction.

→ For Cent1, in agreement with the results on Stansberg cylinder, the interface has
a very slight influence on the total load. We proved that Morison formula with the
constant average coefficient (over the submerged slices) leads to a rather valid prediction
of the CFD loads. For this particular brace, the interconnections with other braces have
a strong influence, in agreement with previous observations.

Having analysed the interface influence on wave loads for Cent1, the wave loads on
Trans2, also crossing the interface but inclined contrary to Cent1, are analysed in the
following section.

7.5.2 Impact of the interface vicinity on an inclined vertical surface-piercing
cylinder at the upstream of the floater, Trans2

Trans2 is an inclined brace, crossing the free-surface and located at the upstream part of
the floater. It is coloured in Fig. 7.41.
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Figure 7.41: Trans2 in TLP

Fig. 7.42 compares the total load with the load of the submerged part of the brace in
the global frame (Oxyz).

Figure 7.42: Influence of the interface on Trans2 at the brace level.

As observed for the vertical brace Cent1, the interface slightly influences the load
amplitudes. However, the plots exhibit a slight difference on the shape of the load cycles
that was not observed for Cent1. We will investigate further these differences at the slice
level and by determining the coefficients and Morison loads.

In Trans2 local frame, FZ is negligible compared to FX because the brace is aligned
with wave direction. Consequently, only CDX

and CMX
are derived for each slice and are

shown in Fig. 7.43. The coefficients for the pierced slice and the extreme bottom slice
are not plotted due to their outlying values (for the pierced slice at the centre of Trans2:
CDX

= 31.59 and CMX
= 8.37, for the bottom slice: CDX

= 265.98 and CMX
= 26.45)).
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Figure 7.43: Morison coefficients derived from CFD for Trans2 (CDX
on the left, CMX

on the right).

Like the other braces, CDX
is very dispersed along the brace due to the small contri-

bution of the drag term. Fig. 7.43 highlights that CMX
spreads on a wide range from 1.31

to 2.18. Trans2 seems to disturb locally the incoming flow. The coefficients obtained for
the slices in the interface strongly differ compared to the submerged slices.

Indeed, for the three slices in the interface, the CFD loads FX are highly non-linear
and asymmetrical that leads to a rather rough fitting by Morison as shown in Fig. 7.44.

(a) z = 1.3H (CDX
= −0.68 and CMX

= 1.46) (b) z = −0.4H (CDX
= −21.88 and CMX

= −4.72)

(c) z = −0.6H (CDX
= −20.24 and CMX

= −6.14)

Figure 7.44: CFD and Morison FX forces for the three slices in the interface for the oriented vertical
surface-piercing brace Trans2.
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Again, the two different ways to derive Morison loads in the brace local frame are
tested. The third method averaging all the slice coefficients, including the slices in the
interface is also tested. The results are presented in the brace local frame.

• The brace loads derived with Morison variable coefficients are shown in Fig. 7.45.

Figure 7.45: Morison prediction with variable coefficients for Trans2.

The amplitude of FX determined by Morison equation only differs from CFD by
−1%. Contrary to Brac1, the non-linear effects on the extrema, due to the intercon-
nections, are negligible because Trans2 has only one pierced slices contrary to Brac1
pierced all along its length.

A difference in the shape of the load cycles between both models is observed, as it
was observed on the CFD loads when comparing the total load and the submerged
brace load (cf. Fig. 7.42). This is explained by the influence of the interface that
is complex to predict applying Morison formula, originally developed for submerged
cylinder.

• The brace loads determined with the constant averaged coefficient (CDX
= 1.46,

CMX
= 2.21) are shown in Fig. 7.46.
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Figure 7.46: Morison prediction with constant averaged coefficients for Trans2.

Morison only underestimates the CFD FX by −4.5%. However, a phase shift is
observed between Morison and CFD forces.

• The brace loads determined with the constant coefficients averaged over all the slices
(CDX

= −0.68, CMX
= 1.49) are shown in Fig. 7.47

Figure 7.47: Morison prediction with constant averaged coefficients (including the slices in the interface)
for Trans2.

With this coefficient setting, Morison approach underestimates FX by 34.7% com-
pared to the CFD and a phase shift is observed between Morison and the CFD loads.
So taking into account in the average the coefficients derived for the slices in the
interface leads to an inaccurate load prediction. This differs from the vertical brace
Cent1 for which no significant differences were observed between the two constant
averaged coefficients.

In conclusion, the interface slightly impacts wave load amplitude (' 3%). However,
the interface impacts the CFD force period that cannot be correctly predicted apply-
ing Morison. Consequently, Morison prediction leads to a phase shift with CFD. This
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is explained by the significant non-linear slice loads in the interface for the vertical and
oriented brace Trans2, contrary to the vertical brace Cent1. From Cent1 and Trans2 anal-
ysis, we choose to only keep the submerged slices for the constant averaged coefficients,
as for Stansberg cylinder case (cf. section 6.2.3).

7.5.2.1 Impact of the interface vicinity on an inclined vertical surface-piercing cylinder at
the downstream part of the floater, Trans3

Similar results are obtained for Trans3, an inclined surface-piercing brace like Trans2
but on the lateral side of the TLP, as visible in Fig. 7.13. The loads determined in the
brace local frame from Morison formulation with the constant averaged coefficient (over
submerged slices only, (CDX

= 1.56, CMX
= 2.09, CDZ

= 0.71 and CMZ
= 1.84)) are

compared to the CFD results in Fig. 7.48 .

Figure 7.48: Morison prediction with constant averaged coefficients for Trans3.

As for Trans2, a phase shift caused by the interface prevents from correctly fitting in
time FX . Also a difference of 24% is observed on FX amplitude. On the contrary, Morison
correctly perfectly predicts FZ (relative difference with CFD of 7%) with non-linearities
on the extrema explained by the interconnections.

→ As for the Stansberg case, Morison formulation can hardly predict local load within
the free-surface area. But since this contribution remains small compared to the total
load, using average coefficients over the submerged part of the brace in the Morison for-
mulation provide rather good load amplitude predictions. Deviations from the Stansberg
case are observed, either due to the structure complexity (pierced slices) or to the brace
orientation. The latter is investigated further in the section 7.6.

⇒ We have seen at the brace and at the slice scales the impact of the interconnec-
tions (Brac1, Cent1), of the vicinity with large structure (Brac12) and with the interface
(Cent1, Trans2) on loads and on their prediction with Morison formulation. In the fol-
lowing section, we will compare the Morison prediction to the CFD loads at the scale of
groups of braces.
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7.6 Impact of the structure and the free-surface at the brace
group level

Here we investigate the impact of the interconnections and the interface at the brace
group level for the three waves w1, w2 and w3. The brace groups that are considered
are: Braci, Brac1i, Centi and Transi represented in Fig. 7.8. The loads are given in the
global frame (Oxyz)

The brace loads are predicted using the variable coefficients or the constant averaged
coefficients (cf. section 7.3).

Regarding the loads on the braces that have not been investigated before (Brac3,
Cent2, Trans1 cf. Fig. 7.13), the Morison coefficients are the same as the ones for their
symmetric counterparts (Brac1, Cent3, Trans3).

7.6.1 Analysis for the small wave w1

First, we focus on the results obtained with wave w1 for which the hydrodynamic analysis
at the brace/slice level was previously conducted. Tab. 7.49 presents the predicted loads,
using the variable coefficients or constant averaged coefficients, for the brace groups:
Braci, Brac1i, Centi and Transi. The constant averaged coefficients are detailed in
Tab. 7.8.
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Group of braces Variable coefficients Constant averaged coefficients

Braci

Brac1i

Centi

Transi

Figure 7.49: Morison and CFD forces at the brace group level (wave w1).
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Brace CDX
CMX

CDZ
CMZ

Brac1 10.74 1.93 1.91 1.67

Brac2 -0.64 1.95 2.16 1.59

Brac12 0.00 0.00 1.24 2.08

Brac13 2.45 2.02 2.47 1.96

Cent1 14.53 2.00 0.00 0.00

Cent2 -24.33 2.07 3.68 2.25

Trans2 1.46 2.21 0.00 0.00

Trans3 1.56 2.09 0.74 1.84

Table 7.8: Constant averaged coefficients (wave w1).

For Braci, results are in good agreement with the observations on Brac1. Match is
very good with the variable coefficients. The forces derived with the constant averaged
coefficients differ by −3.9% for Fx and by 8.8% for Fz relative to CFD.

For Brac1i, the two coefficient methods leads to a perfect load prediction applying
Morison formula. This was expected because we observed, at the brace level, that the
influence of the buoys at the extremities of the braces was correctly predicted using the
constant averaged coefficients.

For Centi, the two methods lead to similar loads between Morison and CFD. At the
brace level, we observed non-linear effects on the crests and troughs of the force predicted
by Morison in the brace local frame. They were attributed to the pierced slices. Here,
at the brace group level in the global frame, it seems that these non-linear effects are
cancelled, maybe due to the symmetry of the braces.

For horizontal loads on Transi, using the constant averaged coefficients overestimates
Fx by 21% and underestimates Fz by 46%. A phase shift between Morison and CFD
loads is also observed for Fz. This is explained by the strong non-linear effects observed
on CFD loads at the interface (as illustrated in Fig. 7.44) that impact the total load
amplitude and phase and that cannot be correctly predicted by Morison.

⇒ From these results, we conclude that the constant averaged coefficients enable
Morison formula to correctly predict the wave loads. Some difficulties remain when
applying Morison formulation to predict the loads on the group Transi (inclined braces
crossing the free surface).

This analysis is extended to wave w2, which has the same period as wave w1 but a
five time larger height.

Are these observations also noticed for wave w2?
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7.6.2 Analysis for the higher wave w2

Tab. 7.50 presents the predicted group loads for wave w2 using variable coefficients or
constant averaged coefficients detailed in Tab. 7.9.

Group of braces Variable coefficients Constant averaged coefficients

Braci

Brac1i

Centi

Transi

Figure 7.50: Morison and CFD forces at the brace group level (wave w2).
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Brace CDX
CMX

CDZ
CMZ

Brac1 1.74 0.65 -0.27 1.35

Brac2 -0.84 1.39 -0.13 1.04

Brac12 0.00 0.00 -0.76 2.07

Brac13 -0.28 1.11 -0.29 1.29

Cent1 2.78 2.30 0.00 0.00

Cent2 -4.40 1.17 1.19 2.35

Trans2 0.03 2.30 0.00 0.00

Trans3 0.03 1.87 -0.46 1.51

Table 7.9: Constant averaged coefficients (wave w2).

Similarly to wave w1, for Braci the constant averaged coefficients enable a good pre-
diction of the loads with a relative difference of only 8% for Fz.

The two coefficient methods lead to a good fitting between Morison and CFD for
Brac1i. As observed for w1, the effects of the side buoys on the extremities of the braces
Brac1i is included in the constant average coefficients and thus in Morison prediction.

For Centi, Morison fits rather well with the CFD though the braces are pierced and
crossed by the interface. Non-linear effects are visible on Morison peaks and troughs
contrary to wave w1. This is attributed to the complex fitting of Morison with CFD for
the loads in the interface. This interface has a stronger influence on the force prediction
for wave w2 than wave w1 on Centi, w2 having a five time larger height. Also, the
CFD Fx is no longer symmetrical, again explained by the loads in the interface that are
asymmetrical.

For Transi, similar conclusions are obtained with wave w2 than wave w1. Fx is rather
well predicted by Morison but important differences remain between Morison and CFD
for Fz. Thus the difficulty to fit Morison with CFD for the vertical load does not depend
on the wave height. It seems that Morison formula cannot correctly predict the vertical
load on the vertical and oriented braces Transi, independently of the wave conditions.

7.6.3 Analysis for the design wave for turbine park conditions w3

Tab. 7.51 presents the predicted group loads for wave w3 using variable coefficients or
constant averaged coefficients detailed in Tab. 7.10.
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Group of braces Variable coefficients Constant averaged coefficients

Braci

Brac1i

Centi

Transi

Figure 7.51: Morison and CFD forces at the brace group level (wave w3).
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Brace CDX
CMX

CDZ
CMZ

Brac1 1.70 0.83 0.38 0.63

Brac2 0.11 1.42 0.59 0.68

Brac12 0.00 0.00 0.45 2.12

Brac13 0.54 1.37 0.46 1.42

Cent1 4.17 2.04 0.00 0.00

Cent2 -5.38 1.62 1.97 2.15

Trans2 0.77 3.31 0.00 0.00

Trans3 0.11 3.28 0.31 1.40

Table 7.10: Constant averaged coefficients (wave w3).

For Braci, the CFD loads are asymmetrical and the signal has no longer a perfect
sinusoidal shape as for wave w1 and w2. We notably observe that the loads on Brac2,
the upstream horizontal brace perpendicular to the flow direction (cf. Fig. 7.13), are
highly non linear. This can be explained by the significant impact of the structure on the
incoming flow on Brac2. Still, Morison formula predicts rather well the loads on Braci.
Similar conclusions are obtained for Brac1i.

For Centi, significant differences on Fx force exist between CFD and Morison. This
can be attributed to the impact on the loads of the interconnections and the interface,
much stronger with wave w3 than with wave w1 and w2.

Surprisingly, Morison horizontal loads on Transi fit rather well with CFD but the
vertical CFD load is not accurately predicted as we observed for wave w2 and w3.

To conclude, for wave w3, the impact of the structure (interconnections and local flow
disturbance by buoys and braces) combined with the influence of the interface makes
Morison fitting rather complex with CFD, particularly for the brace crossing the interface.

⇒ The constant averaged coefficients enable Morison to correctly fit the CFD for
Braci, Brac1i and Centi with wave w1 and w2. We highlighted some limitations of
Morison formula to predict the vertical loads on the Transi braces, strongly influenced
by the air/water interface. With wave w3, we stand at the limit of the applicability of
Morison formula because of the complex combination of the impact of the structure and
the interface on the wave loads.

The following section focuses on the impact of the brace orientations on the wave
loads.
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7.7 Impact of the brace orientations varying the wave charac-
teristics

The idealised conditions in which Morison coefficients were derived (isolated and sub-
merged cylinder with a cross flow orientation in an oscillating and uniform velocity field)
are quite far from realistic conditions: interaction with other cylinders and the free-
surface, inclined orientation, moving structure within a complex wave field. The present
study investigates the effect on the loads of a few of these realistic conditions.

In the proposed numerical slice methodology, we take into account the orientation
of the braces. Two force components in the plane perpendicular to the brace axis are
considered. Consequently four coefficients, CDX

, CMX
, CDZ

and CMZ
, are determined.

Such a calculation is uncommon, Morison approach was originally developed for horizon-
tal/vertical cylinders with only one force component.

To investigate the influence of the brace orientation, we focus on two slices in two
oriented braces: Brac1 located in a horizontal plane and Trans2 included in a vertical
plane parallel to the flow direction. The selected slices are always submerged, not-pierced
and not located at the brace extremity in order to ease the analysis. Morison coefficients
are derived from the CFD loads for the three waves w1, w2 and w3. The loads are always
plotted in the brace local frame in this section.

The KC number for wave w3 (a design wave for a turbine parked) is much larger than
for wave w1 and w2 (cf. Tab. 7.11) and the contribution of the Morison inertia and
drag terms may significantly differ from wave w1 and w2. The KC for the two slices are
determined based on the maximum velocity at the centre of the slice and provided in
Tab. 7.11.

Wave KC (slice 3 of Brac1) KC (slice 5 of Trans2)

w1 0.63 1.02

w2 3.17 5.09

w3 15.16 17.65

Table 7.11: KC number for the two slices and the three wave conditions.

7.7.1 Impact of the brace orientation on the loads for an oriented horizontal
submerged brace, Brac1

First we focus on the slice number 3 in the oriented horizontal submerged Brac1 high-
lighted in Fig. 7.52.
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Figure 7.52: Slice 3 in Brac1 in TLP

The directional coefficients are derived from the CFD loads for the 3 waves and listed
in Tab. 7.12. The Reynolds number is determined at model scale.

Wave CDX
CMX

CDZ
CMZ

KC Re (MS)

w1 1.93 1.92 1.94 1.99 0.63 5× 102

w2 -0.53 0.32 -0.37 1.67 3.17 3× 103

w3 0.56 0.91 0.34 1.51 15.16 7× 103

Table 7.12: Morison coefficients derived from CFD for slice 3 in Brac1 for the three waves.

Boccotti [2014] determined Morison coefficients from experimental loads on a sub-
merged horizontal cylinder for a wide range of KC values between 3 and 30 (2.5× 104 <

Re < 2×105). The Reynolds number for the CFD cases are 10-100 times smaller than in
Boccotti’s experiments. We first investigate this difference focusing on Brac12. Brac12
is a submerged horizontal brace and inline with the wave direction, like the cylinder
in Boccotti’s experiments. The constant averaged coefficients for Brac12 are added to
Boccotti’s plots in Fig. 7.53.
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Figure 7.53: CDZ
(left side) and CMZ

(right side) for the horizontal and submerged Brac12 added on
Boccotti’s plots.

The inertia coefficient for the three waves fit well with Boccotti’s coefficients. The
differences for the drag coefficients are explained studying the oriented braces but are
not attributed to the Reynolds differences. Thus for the following analyses, the coeffi-
cient differences between CFD and Boccotti’s cases cannot be explained by the different
Reynolds numbers.

We add on Boccotti’s plots CDX
, CMX

, CDZ
and CMZ

derived from the CFD loads on
slice 3 in Brac1 (Fig. 7.54).

Figure 7.54: CDX
, CDZ

(left side), CMX
and CMZ

(right side) for slice 3 in the oriented horizontal
submerged Brac1 added on Boccotti’s plots.

We observe that the predicted CMZ
are consistent with CM Boccotti’s values maybe
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due to the fact that both are derived from vertical loads. The CMX
values fit worse with

Boccotti’s CM , especially for the CMX
obtained for wave w2. CMX

is derived on the
extended direction of Morison formula ΩX that might explain the differences between
Boccoti and CFD results.

On the contrary, CDX
and CDZ

both differ from Boccotti results apart from the co-
efficients for wave w2. For wave w1, it may be explained by the negligible drag term in
Morison force leading to high uncertainties in the estimation of the drag coefficients (cf.
section 7.4.2).

Here we can notice that negative values of CDX
and CDZ

can be obtained for wave w2,
but are consistent with Boccotti’s results. According to Boccotti, for KC smaller than 5,
the drag term is negligible and that can explain the negative values of CD. Indeed, for
wave w2, we observe in the local frame (ΩXY Z) in Fig. 7.55 that FDX

and FDZ
have a

negligible impact on FX and FZ amplitude.

Figure 7.55: CFD and Morison loads on slice 3 in Brac1 (wave w2).

Regarding wave w3, in the local frame (ΩXY Z), FX derived from CFD is highly
non-linear and asymmetrical (contrary to FZ) as visible in Fig. 7.56. Morison forces are
generally symmetrical because they depend on symmetrical Stokes velocity/acceleration
signals. Thus Morison prediction of asymmetrical load is subjected to high uncertainties.
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Figure 7.56: FX force on slice 3 in Brac1 (wave w3).

Regarding FZ for wave w3, Morison prediction seems rather consistent with CFD re-
sults as visible in Fig. 7.57. FDZ

amplitude is not negligible anymore, like FDX
, compared

to wave w1.

Figure 7.57: FZ force on slice 3 in Brac1 (wave w3).

→ The coefficients derived with the three waves does not always follow the trend
of Boccotti [2014] coefficient variations with the KC. It seems complex to predict the
adapted coefficients for the oriented braces with experiments commonly used in standards
for offshore design.

7.7.2 Impact of the brace orientation on the loads determined on a slice
within an oriented vertical surface-piercing brace, Trans2

We now focus on the slice 5 in Trans2, located in a vertical plane parallel to the flow
direction and highlighted in Fig. 7.58.
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Figure 7.58: Slice 5 in Trans2 in TLP

The directional coefficients are determined from the CFD loads for the three different
waves (Tab. 7.13). For all the waves, FZ is negligible compared to FX , so only CDX

and
CMX

are determined.

Wave CDX
CMX

KC Re (MS)

w1 -0.72 1.8 1.02 8× 102

w2 -0.77 1.52 5.09 4× 103

w3 0.46 2.33 17.65 8× 103

Table 7.13: CDX
and CMX

derived from CFD loads for slice 5 in Trans2.

To compare with experiments generally used in standard for design, the Morison direc-
tional coefficients derived from CFD are compared with Chakrabarti et al. [1976] results
who determine Morison coefficients from experimental loads on a vertical submerged
cylinder in waves (Re = 2.8× 104, D = 76 mm). The coefficients derived from CFD are
included into Chakrabarti’s graph in Fig. 7.59. The Reynolds number derived for the
three waves is 10 times smaller than Chakrabarti’s Reynolds.
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Figure 7.59: CMX
(at the top) and CDX

(at the bottom) derived from CFD loads on slice 5 in Trans2
reported in Chakrabarti et al. [1976].

For the three waves, the CFD coefficients significantly differ from Chakrabarti et al.
[1976] coefficients. Such differences may be explained by the orientation of the brace
Trans2. Though they differ from Chakrabarti’s results, the determined CDX

and CMX

lead to a good agreement between Morison prediction and the CFD results. For instance,
dealing with wave w3, the Morison and the CFD loads slightly differ as shown in Fig. 7.60.

Figure 7.60: FX derived from Morison (CDX
= 0.51 and CMX

= 2.32) and CFD for slice 5 in Trans2
(wave w3).

→ We have seen that the directional coefficients derived from CFD are consistent
with the experimental standards on horizontal cylinders that are commonly used during
design process to set the Morison coefficients. The inconsistency can come from the
inclined position of the brace in the present study, the wave field represented on two
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directions (versus inline oscillating flow).
Imposing directional coefficient seems to be necessary to correctly predict the wave

loads on the oriented brace. However, in design tools, only one drag and one inertia
coefficients are commonly applied to calculate the directional forces. So is it possible
to consider the brace orientation in the definition of Morison coefficients used in design
tools?

7.7.3 A attempt to consider brace orientation in the determination of Mori-
son coefficients used for design purposes

Here we investigate how we can apply Morison formula with one identical set of coefficients
(CD,CM) whatever the brace orientation. CDX

, CMX
, CDZ

and CMZ
are the constant

averaged coefficients. We proved several times in the past sections that imposing such
directional coefficients in Morison formula leads to a correct prediction of the CFD loads.
We test different methods to determine CD and CM :

• The simple average as (Eq. 7.1):

CD = CDX
+ CDZ

2 CM = CMX
+ CMZ

2 (7.1)

• The magnitude as (Eq. 7.2):

CD =
√
C2
DX

+ C2
DZ

CD =
√
C2
MX

+ C2
MZ

(7.2)

• The weighted average as (Eq. 7.3):

CD = CDX
FDX

+ CDZ
FDZ

FDX
+ FDZ

CM = CMX
FDX

+ CMZ
FDZ

FMX
+ FDZ

(7.3)

where FDX
, FDZ

, FMX
, FMZ

are the predicted Morison inertia and drag load ampli-
tudes on the brace.

The three methods are tested on Brac1 for wave w1, w2 and w3. The corresponding
coefficients are detailed in Tab. 7.14. The constant averaged coefficients CDX

, CMX
, CDZ

and CMZ
are indicated in Tab. 7.8, Tab. 7.9 and Tab. 7.10 for respectively wave w1, w2

and w3
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7.7. IMPACT OF THE BRACE ORIENTATIONS VARYING THE WAVE CHARACTERISTICS

Simple average Magnitude Weighted Average

Wave CD CM CD CM CD CM

w1 6.31 1.8 10.9 2.55 7.83 1.76

w2 0.74 1 1.76 1.5 1.14 1.22

w3 1.04 0.73 1.74 1.05 1.23 0.71

Table 7.14: CD and CM derived from the constant directional averaged coefficients CDX
, CMX

, CDZ

and CMZ
with three methods for the three waves w1,w2 and w3.

CMs obtained with the simple average or weighted average are similar apart for wave
w2 (difference of 20%). This difference was expected because CMZ

is the double of CMX

for wave w2. The coefficients determined with the magnitude are larger compared to the
simple and weighted averages.

The forces derived in the brace local frame for wave w1, w2 and w3 using the three
coefficient methods are shown respectively in Fig. 7.61, Fig. 7.62 and Fig. 7.63. The force
derived with the four directional constant averaged coefficients is added for comparison.

(a) Directional coefficients (b) Simple average

(c) Magnitude (d) Weighted average

Figure 7.61: Morison prediction with CD and CM determined with the three methods for Brac1 (wave
w1).
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7.7. IMPACT OF THE BRACE ORIENTATIONS VARYING THE WAVE CHARACTERISTICS

(a) Directional coefficients (b) Simple average

(c) Magnitude (d) Weighted average

Figure 7.62: Morison prediction with CD and CM determined with the three methods for Brac1 (wave
w2).

(a) Directional coefficients (b) Simple average

(c) Magnitude (d) Weighted average

Figure 7.63: Morison prediction with CD and CM determined with the three methods for Brac1 (wave
w3).
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7.8. DISTRIBUTION OF THE COEFFICIENTS THROUGH THE TLP FLOATER

For wave w1, we observe that FZ predicted here, whatever the method, is overesti-
mated compared to the CFD by about 26% with the averages and 82% with the magni-
tude. Whereas using the four directional constant averaged coefficients enable a proper
prediction of the vertical CFD loads with a difference smaller than 13%. FX is rather
well predicted with the simple or weighted averages CD and CM .

Similarly for wave w2, Morison loads obtained with the three methods differ from
the CFD loads in amplitude and in phase as shown in Fig. 7.62. The weighted average
method leads to the smallest difference for FZ between Morison and CFD (5.5%) but FX
is overestimated by 47%. Again, using one CD and CM prevents from correctly fitting
Morison to CFD.

For wave w3, FZ is strongly overestimated by Morison compared to CFD. The mag-
nitude method enables Morison to rather well predict FX .

→ Thus we did not find a proper method to estimate CD and CM from the constant
averaged coefficients CDX

, CMX
, CDZ

and CMZ
. Other methods should be investigated

to correctly predict wave loading on oriented braces. Maybe Morison formula could
be modified to include directional forces to correctly predict wave loading on oriented
braces. This implementation makes the design model more complex including beforehand
a prediction of the directional coefficients.

7.8 Distribution of the coefficients through the TLP floater

The four directional coefficients, at the brace level, are presented for the three wave cases
in Fig. 7.64

(a) CDX
(b) CDZ

(c) CMX
(d) CMZ

Figure 7.64: Directional coefficients for each brace derived from the CFD modelling of the TLP subjected
to the three different waves w1, w2 and w3.
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7.9. TOWARDS A FEW ADVICE TO IMPROVE MORISON FORMULA PREDICTIONS

• For the operational wave w1, CMX
varies slightly from one brace to another within

the TLP structure (< 14%). As observed in the section 7.4, such a variation has a
slight impact on the wave load prediction. Thus, using the same inertia coefficient
CMX

for all the braces to calculate the load components on (ΩX) should be a fair
assumption. However, CMZ

coefficient varies more within the TLP (about 34%).
Imposing the same CMZ

for all the horizontal braces would lead to a significant error
on the heave force. CDX

strongly varies within the floater, from -24.3 to 14.53. As
already observed, drag coefficients are subjected to a high level of uncertainty due
to the negligible drag term for wave w1.

• For the steeper wave w2, the variations of CMX
within the TLP are larger (107%)

than for wave w1, in particular for vertical braces. Also, the variations of CMZ
are

smaller than CMX
ones (82%). Thus increasing the wave height impacts a little

more CMX
than CMZ

. For wave w2, most of CDX
and CDZ

coefficients are negative
compared to wave w1.

• CMX
coefficients obtained for wave w3, as well as their variations within the floater

are close to the wave w2 ones for the horizontal brace. However, strong variations are
observed for the surface-piercing cylinders apart from Cent1. Such variations might
be explained by the influence of the interface observed on the Transi that varies with
the wave. CMZ

coefficients obtained for wave w3, as well as their variations within
the floater are close to the wave w2 ones, except for Brac1 and Brac2.

7.9 Towards a few advice to improve Morison formula predic-
tions

To conclude, we propose some advice to improve the use of Morison formula for FOWT
load prediction from the conclusions drawn above.

• We observed that the impact of the floater has to be included in Morison prediction.
For horizontal braces, we highlighted that the impact of the TLP floater could be
up to 37% on the heave loads in operating wave conditions. To include the effect of
the floater, mainly due to the interconnections between braces, we propose to use
Morison coefficients for each brace calculated from the average of the slice coefficients
derived for the submerged and pierced slices.

• The effect of the interface cannot be taken into account applying Morison formula.
In particular, a phase shift is observed between the CFD forces and the Morison
forces for the oriented surface-piercing braces at the scale of the brace. Strongly non
linear loads are locally observed and make the determination of Morison coefficients
difficult.
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7.9. TOWARDS A FEW ADVICE TO IMPROVE MORISON FORMULA PREDICTIONS

• We demonstrated that for braces with complex orientation, Morison formula can be
extended with two force components in the perpendicular plan to the brace axis.
Thus a set of four coefficients CDX

, CMX
, CDZ

and CMZ
is determined per brace and

enables a correct prediction of wave loads applying the extended Morison formula.
We proved that these coefficients cannot be averaged in order to get one set of CD
and CM per brace. Thus to improve Morison prediction in design tools, the Morison
formula should be extended to take into account directional coefficients.

• We observed variations of the Morison coefficient from one brace to another within
the floater for the three waves. These variations can be explained by the impact of
the interconnections, the interface vicinity and the brace orientation. As a result,
we advise taking one set of coefficients per brace or per type of brace, and not the
same set of coefficients for the whole structure, in order to improve the predictions
of the floater loads.

All the analysis conducted in this work bring some information to improve the use of
Morison formula for the prediction for FOWT loads. However, the generalisation of these
recommendations should be followed carefully for the following reasons:

• We base our conclusions on the CFD results derived from only three different waves.
We should extend our analysis to other wave characteristics in order to supply the
database of Morison coefficients to the whole range of waves encountered by a floater.
For instance, this study only deals with regular waves. It should be extended to bi-
chromatic waves to get closer to real wave conditions.

• The floater is constrained, its motion is not modelled. In reality, the flow field per-
ceived by a brace is the combination of the wave field and of the floater motion. This
leads too much more complex oscillations that may impact the Morison coefficient
values.

• Scaling problems exist. The Reynolds number is not conserved when upscaling
from the basin test to real sea condition. This can notably impact the viscous load
prediction. This uncertainty could be investigated modelling directly the TLP at
full scale with the three waves w1, w2 and w3. Morison coefficients could thus be
derived from the CFD model at full scale and compared to the model scale results.
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Chapter 8

Conclusion and perspectives

Two theories are commonly implemented in design solvers to model the hydrodynamic
loads on FOWT: the linear potential flow theory and the Morison empirical formula.
Historically developed for offshore oil and gas systems, using these theories with the same
standard practices may be questionable or too conservative when applied to FOWT. This
PhD thesis objective is to contribute to the following problematic: How can we evaluate,
improve and adapt the commonly used hydrodynamic theories to FOWT design, thanks
to CFD?

To address this research question, we first implement a Numerical Wave Tank with the
aim of propagating regular waves in a controlled way. The solver waveFoam in the CFD
framework of OpenFOAM is chosen to perform the simulations. This method applies
relaxation zones at both extremities of the tank: at the inlet to generate the waves and
at the outlet to absorb them. The air/water interface is solved by the VOF MULES
method. We propose a methodology to verify the proper wave propagation and assess its
validity against experimental data.

Then the floater is included in the Numerical Wave Tank. Due to the complexity of
the FOWT floater, we firstly choose to model the vertical surface-piercing cylinder case
of Stansberg [1997]. Then, a realistic FOWT floater (Caillé et al. [2017]) is included
in the NWT. Both structures are constrained and subjected to regular waves. Once
the wave/structure interaction validated against experimental data, the wave loads are
analysed: we notably derive Morison coefficients from the CFD wave loads on the complex
structure plunged in a wave field and discuss the validity of Morison prediction at different
scales within the structure.

The two main outputs of this PhD work are first the development of a methodology
to carefully setup a NWT, and then the development of a slice method to derive Morison
coefficients for a complex floater.

To setup a Numerical Wave Tank, we strongly recommend checking the temporal
evolution of the wave elevation at a position in the NWT, as commonly done in the
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literature, but also the spatial variation of the wave height along the tank. Thanks to a
parametric study on mesh refinement, time step convergence, and also on relaxation zone
lengths, we provide general guidelines to set-up a NWT for various ranges of waves:

• The generation zone length must be around 1λ

• An absorption zone length of 6λ is necessary to correctly absorb the wave and avoid
reflection phenomenon.

• The free surface must evolve in a 2H-height refinement box, centred around the mean
sea water level. The box dimensions on (Ox) and (Oy) directions are the same as
the ones of the background grid. The ratio r relating the cell size dz and dx, on
(Oz) and (Ox) directions respectively, to the wave steepness (dz/dx = r ∗H/L) has
to be around 10, while keeping the maximum number of points per wave height on
(Oz) direction between 10 and 20.

• The time step should be smaller than T/700 to minimise the wave height damping
along the tank and higher than T/900 to avoid numerical reflection along the tank.

• To ensure numerical stability of the VOF MULES method, the maximum CFL in
the interface zone should not be higher than 0.2.

Once we have validated the NWT, we applied the numerical slice methodology to derive
Morison coefficients for the complex floater. Various test campaigns were conducted in
the 80s to determine database of hydrodynamic coefficients commonly used for offshore
design. Based on the literature, we propose in this PhD thesis a methodology to derive
Morison coefficients from the CFD wave loads for slender cylinders, whose diameter is
much lower than the wavelength.

We slice the cylinder along its axis and determine Morison coefficients for each slice.
Thus, the load variation along the cylinder is taken into account, while these complex
information are impossible to obtain in experiments. Using this numerical methodology,
a complex set of two directional wave velocity/acceleration field is taken into account
contrary to the experiments for which only a unidirectional oscillating velocity field is
considered.

The main interest of the methodology lies on the possibility to be applied to any type
of cylinder whatever it orientation such as the braces of a realistic and complex FOWT
floater. Thus, the Morison coefficients obtained for an actual FOWT floater take into
account the brace orientation, the position in the structure, the distance to the interface
and the interaction between the braces, as well as the wave characteristics imposed in
the NWT.

FOWT Hydrodynamics is investigated for two structures: we first model Stansberg
vertical surface-piercing cylinder to then model a FOWT floater in regular waves.

184



This first simple case enables us to draw recommendations regarding mesh and numer-
ical characteristics to perform a valid CFD wave/structure model. We demonstrate that
the CFD wave loads on vertical, free-surface piercing cylinder are in good agreement with
experimental ones without activating any turbulence model though the flow is turbulent
(Re = 1.4× 105). Imposing a no-slip boundary condition on the cylinder wall with cells
of D/15-size near the structure is enough to capture the wave loads.

We apply the numerical slice methodology to derive Morison coefficients from the CFD
wave loads on the cylinder. In this methodology, the velocity/acceleration at each slice
centre has to be determined. We demonstrate that the CFD velocity field can be well
predicted, and thus used for the coefficient calculation, by Stokes 2nd order theory and
extrapolated stretching model.

For this case, the drag term of Morison formula is found to be negligible. The inertia
Morison coefficients appear to be constant along the water depth. We show that the
loads in the air/water area are highly non-linear and cannot be correctly predicted by
Morison formula originally developed for submerged cylinder only. Still, the average of
the coefficients over all the submerged slices leads to an inertia coefficient that provides a
good agreement between Morison forces and the CFD loads. Thus, though the interface
strongly impacts the loads in the air/water area, its influence remains negligible for the
total load.

We also observe a small bump close to the minimum of the wave loads attributed to
the air/water interface impact. This non-linear effect has already been studied in the lit-
erature and corresponds to a secondary-load cycle occurring for surface-piercing cylinder
subjected to steep waves. This non-linear effect can be related to load harmonics up to
the fourth order. Thanks to CFD, we are able to detail this specific cycle highlighting
key moments and correlating the wave run-up to the load variation on the upstream and
downstream parts of the cylinder.

With this bench of skills acquired from Stansberg cylinder study case, we then inves-
tigate the hydrodynamic behaviour of the constrained FOWT floater in waves, composed
by multiple inclined submerged and surface-piercing cylinders.

The TLP floater is included in the NWT. Three different regular waves are modelled
to scan the range of waves that can be encountered by a FOWT floater installed in the
open sea. The waves are also chosen to review different ranges of inertia/drag Morison
contribution. The three main limitations of Morison formula expected for the prediction
of FOWT loads, that may impact the wave forces, are investigated: the presence of the
whole structure (versus an isolated cylinder), the vicinity with the air/water interface and
the brace orientation. We demonstrate that different levels of study have to be considered
for this analysis, from the largest to the finest level: the floater, the brace and the slice
level.

First, we observe that the impact of the floater has to be included in Morison pre-
diction: for horizontal braces, we highlight that the impact of the TLP floater can be
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up to 37% on the heave loads in operating wave conditions. To include the effect of the
floater, mainly due to the interconnections between braces, we propose to use Morison
coefficients for each brace calculated from the average of the slice coefficients derived for
the submerged and pierced slices.

At the air/water interface, as for Stansberg cylinder study, non-linear loads are ob-
served locally making the determination of Morison coefficients difficult. That is why we
average only the submerged slice coefficients to derive the constant coefficient imposed in
Morison formula. For the vertical surface-piercing braces perpendicular to the flow direc-
tion, wave loads can be correctly predicted when excluding the effect of the interface for
operation sea condition. Nevertheless, the accuracy of load prediction degrades for more
extreme waves. For vertical and oriented braces, independently of the wave conditions,
the effect of the interface leads to a wrong load prediction contrary to vertical braces. In
particular, a phase shift is observed between CFD forces and Morison forces for oriented
surface-piercing braces at the scale of the brace.

We demonstrate that for braces with complex orientation, Morison formula can be
extended with two force components in the perpendicular plan to the brace axis. Thus
a set of four coefficients CDX

, CMX
, CDZ

and CMZ
is determined per brace and enables

a correct prediction of wave loads applying the extended Morison formula. We prove
that these coefficients cannot be averaged in order to get one set of CD and CM per
brace. Thus to improve Morison prediction in design tools, the Morison formula should
be extended to take into account directional coefficients.

We observe variations of the Morison coefficients from one brace to another within
the floater for the three waves. These variations can be explained by the impact of the
interconnections, the interface vicinity and the brace orientation. As a result, we advise
taking one set of four directional coefficients per brace or per type of brace, and not
the same set of coefficients for the whole structure in order to improve the predictions
of the floater loads. For the moment, such databases of coefficients per brace does not
exist and seem very complex to be included in the design process. Still, this PhD thesis
work provides methods and recommendations to derive coefficients per brace using CFD
modelling and determining these databases may be possible in the next few years with
the exponential deployment of CFD.

Several proposals for future work can be mentioned:

• In addition to the force study conducted in this PhD, the pitch moment could also
be analysed. The experimental moment could be compared to the CFD moment to
specify the load distribution on the TLP floater.

• Other regular waves with small amplitudes and different periods were performed at
the MARIN wave tank facility. They could be modelled to complete the PhD results
and make the methodology more robust.
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• The TLP FOWT floater could be modelled under bichromatic wave loading. The
numerical slice methodology should be extended to this case. Thus, Morison co-
efficients could be derived for cases close to more realistic conditions. Also, as it
currently investigated in the OC6 project for the OC5-DeepCWind semisubmersible
floater, the inaccurate second-order wave load prediction in design tools could be
investigated with the TLP floater.

• Scaling relative problems exist due to the difficulty of maintaining relevant all di-
mensionless parameters between the scaled model in a wave tank and the full-scale
floater in open-sea (namely a choice has to be made between Froude and Reynolds
similarities, Froude similarity is selected most of the time for wave tank tests). The
FOWT floater could be modelled in CFD at full scale to investigate this scaling
issue. A comparison between the wave loads both derived from the model scale and
full scale models could be achieved. Also, Morison coefficients could be determined
and compared with model scale ones. However modelling at full scale may imply
to model the turbulence, that makes the CFD model more complex than without
activating turbulence modelling as in the present work.

• Upgrades of the CFD model could be tested. Indeed, meshing could be improved
trying other mesh strategies.

We demonstrated that deep-water waves cannot be correctly absorbed with active
solver whereas the relaxation zone solver implies high computational time. New
methods for wave generation/absorption could be investigated.

• To better predict the loads on the TLP floater and notably on oriented braces,
directional coefficients should be implemented in DeepLinesWind™. This could im-
prove the assessment of the total TLP loads derived from DeepLinesWind™ when
compared to experimental data (relative difference observed of 20%).

• Other non-linear numerical models, naming weakly non-linear approaches or fully
non-linear potential-flow codes, could be tested to predict the loads on the complex
TLP floater.

• Finally, the models and methodology developed through this PhD work combined
with CFD models currently used for specific cases of decay test/forced oscillations
could model the free motion of the TLP floater in waves.

However, such simulations point out difficulties to derive complex hydrodynamic
coefficients and post-process the results. Still this combination of models could be
used to provide information for non-linear wave load models applied in design tools.
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Chapter 9

Annexes

9.1 Froude scale

Froude similitude is commonly used in Hydrodynamics for offshore structures, for instance
to downscale the floating wind turbine for the model test campaign at MARIN (Caillé
et al. [2017]). It allows to downscale dimensions while maintaining hydrodynamic forces.

The scale is noted e, the tank dimensions are linked to the realistic ones by the
relation d = eD, for surfaces by s = e2S and volumes by v = e3V . The other relations
are described in the following Tab. 9.1. Most of the time for the offshore sector, e is
included between 1/40 and 1/80.
µ is also defined as:

µ = ρd
ρs

(9.1)

ρd is the real basin density (pure water, 1 000 kg ·m−3) and ρs is the density of sea water
(1 025 kg ·m−3).

Time Velocity Acceleration Mass Pressure Force Moment

e
√
e

√
e µe3 µe µe3 µe4

Table 9.1: Froude scale

Froude similitude leads to changes for phenomena related to water viscosity described
by the Reynolds Number:

Re = UD

ν
(9.2)

Assuming that the cinematic viscosity ν is the same in pure water and seawater, the
Reynolds Number on Froude scale is:

Re = e
3
2Re (9.3)
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9.2. NUMERICAL WAVE TANK WITH OLAFLOW

9.2 Numerical Wave Tank with olaFlow

At the beginning of the PhD thesis, the solver olaFlow developed by Higuera [2015]
was tested for different sea states. A comparison between olaFlow and waveFoam was
achieved to determine which solver should be kept to model the FOWT floater in deep-
water waves. From the results, we concluded that waveFoam was more adapted for the
PhD thesis purposes.

Here we present the results obtained with olaFlow and why we chose waveFoam for
the PhD thesis.

Simulations were run in 2D to minimize computation costs. In each case, wave ele-
vation time series at different probes in the NWT were analysed in order to check the
stability of the simulation. Also, the envelop of amplitude along the tank was analysed to
get information about damping and reflection in the tank. Minimizing both phenomena
in the NWT with wave only cases is primordial to generate controlled waves to then
model the flow around an offshore structure.

9.2.1 Physical problem

Firstly, three different waves were tested with the shallow water library (SW-AWA) which
is the library Higuera developed olaFlow with. Then, the recent Extend-Range library
(ER-AWA,(June, 2019)) was used to run two simulations with deep water waves. On
Fig. 9.1, the tested waves are represented with a cross, their characteristics are detailed
in Tab. 9.2.
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9.2. NUMERICAL WAVE TANK WITH OLAFLOW

Figure 9.1: Cases run with olaFlow solver.

Case name Water Depth Wave order T (period), H (height), h (depth)

waveA Shallow water Cnoidal theory T= 4 s, H=0,02 m, h=0,2 m

waveB Intermediate depth Linear theory T= 3 s, H=0,007 m, h=0,2 m

waveC Intermediate depth Stokes 2nd order T= 3 s, H=0,05 m, h=0,4 m

waveD Deep water Stokes 2nd order T=1 s, H=0,06 m, h=0,45 m

waveE Deep water Stokes 2nd order T=1,265 s, H=0,025 m, h=2,5 m

Table 9.2: Tested waves with olaFlow solver.

waveA and waveB are chosen to test olaFlow solver in shallow water conditions using
SW-AWA library. waveC characteritics come from Higuera’s PhD to compare the wave
elevation analysed in his PhD report to the one obtained in our tests. waveD aims at
testing the new ER-AWA library imposing wave characteristics corresponding to deep
water waves. waveE belongs to the set of wave tested by Caillé et al. [2017] during the
2015 test campaign for the SBM Offshore/IFPEN TLP floater. The wave is modelled at
model scale in CFD. waveE is the wave 201018 detailed in Chapter5. Wave elevation is
then converted to full scale dimensions to be validated against experiments, reported at
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full scale by MARIN applying Froude similitude (Annexe 9.1).

9.2.2 Set up of OpenFOAM model

9.2.2.1 Control Volume

The main difference with the NWT implemented with waveFoam (Fig. 5.5) is the absence
of relaxation zones with olaFlow thus the length of the tank is much smaller than with
the waveFoam solver. This reduced mesh size, associated to smaller computational time,
is the main advantage of this active method for wave generation.

The length of the tank is typically 3-4 wavelength. The height of the tank depends on
the depth of the wave simulated.

9.2.2.2 Mesh

The following mesh characteristics were implemented before precisely investing the method-
ology to set up a NWT with waveFoam solver (Section 5.1.7).

This bench of tests is performed in 2D so the width of the domain is equal to one cell.
The free surface elevation is refined i.e. the cells get smaller around the interface and
become bigger approaching walls. The minimum cell height is H/8 and the maximum is
2H (or 4H). It was also obtained in the internship before the PhD thesis that 100 points
per wave length in (Ox) direction should at least be respected. The cell dimensions are
chosen in order to avoid a too important aspect ratio at the air/water interface. Cell
dimensions in (Ox) direction (dx) depends one the cell dimension along (Oz) axis (dz)
respecting a maximum aspect ratio (dx/dz) of 2.

9.2.2.3 Boundary conditions

On each of the 6 boundary faces (also called patch) of the tank, a boundary condition is
imposed. In Tab. 9.3, the BC on each patch are detailed for the velocity, pressure and
phase fraction variable.

Patch Velocity Pressure Phase fraction

Inlet waveVelocity fixedFluxPressure waveAlpha

Outlet waveAbsorption2DVelocity fixedFluxPressure zeroGradient

Bottom fixedValue 0 fixedFluxPressure zeroGradient

Atmosphere pressureInletOutletVelocity totalPressure inletOutlet

Front and Back empty empty empty

Table 9.3: Boundary conditions

Boundary conditions at the inlet and outlet for velocity and phase fraction are specific
to olaFlow generation and absorption libraries. They are defined based on the active
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numerical wave tank theory defined in section 3.3.2.2. Other boundary conditions are
standards. The atmosphere behave like an open face. The front and back walls are similar
to symmetry walls to represent the flow as infinite in (Oy) direction.

During this bench of CFD simulations, no turbulence model is implemented.

9.2.2.4 Time step control

This time step control was defined before precisely investing the methodology to set up a
NWT with waveFoam solver (Section 5.1.7).

It was determined that a maximum time step of 0.005 s, corresponding to around
T/250, should be imposed in simulation parameters, as well as a maximum CFL of 0.5.
The duration of the simulation is between 120-200 s, depending of the wave period. The
numerical stability of the wave elevation time series is generally from 80 s.

The dimension of the tank and characteristics of simulations having been detailed, the
CFD results are analysed in the following sections. In each case, wave amplitude time
series and the mean amplitude along the tank were checked.

9.2.3 Numerical results

9.2.3.1 SW-AWA results

First, shallow water active wave absorption library (SW-AWA) was tested with three
waves, as detailed in Tab. 9.2.

waveA

A shallow water and cnoidal wave is propagated in the NWT. The free surface elevation
time trace at the center of the tank is shown on graph 9.2.

Figure 9.2: Wave elevation time series at the center of the tank (waveA).
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Figure 9.3: Amplitude envelop during one period (waveA).

The signal is stabilized after 10 periods as visible on the graph 9.2.
The amplitude envelop is drawn on Fig. 9.3. To get this plot, the amplitude at gauges

every L/10 in the tank along (Ox) is drawn during one period starting at t =80 s.
This plot indicates that the mean amplitude is rather constant along the tank. A little

instability is visible but can be neglected compare to the wave height (less than 1%).
olaFlow thus propagates shallow water and cnoidal waves in a controlled way as ex-

pected.
In the following subsection, linear and intermediate water depth waves are tested, sea

conditions encountered for FOWT.

waveB

Wave amplitude time evolution at 5 different gauges spaced by 1.7 m (2L/5) at the center
of the tank is plotted on Fig. 9.4. The evolution of the amplitude over two wave lengths
(λ = 4.14) is analysed.

Figure 9.4: Wave elevation time series at 5 probes (waveB).
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Over time, free surface elevation seems rather stable. However, a difference of height
is observed at the different gauges. The difference between the biggest and smallest peak
amplitude of two probes (spaced by two wave lengths) over the theoretical height is 5.6%.
This increase of height along the tank is investigated in the following Fig. 9.5.

Figure 9.5: Amplitude envelop at t=80 s over one period along the tank (waveB).

The amplitude envelop plotted the same way than previously (9.3) indicates an increase
of the mean value of the amplitude along the NWT but conserving the same peak to peak
amplitude.

This test showed that intermediate and linear waves may lead to a non-physical be-
haviour of the amplitude along the propagation axes.

waveC

In the PhD thesis, the TLP floater needs to be modelled under Stokes 2nd order and
intermediate/deep water wave conditions. That is why, firstly, intermediate depth and
2nd order waves were tested. Figure 9.6 representing free surface time trace at the center
of the tank evidences a proper evolution.
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Figure 9.6: Wave elevation time series (waveC).

Figure 9.7: Amplitude envelop at t=80 s over one period along the tank (waveC).

However, the envelop amplitude underlines an important reflection phenomena in the
tank as seen in Fig. 9.7.

This shows that, as expected, SW-AWA may not be suited for intermediate water
depth waves due to the absorption strategy, based on shallow water wave theory (cf.
paragraph 3.3.2.2). In the following section, the ER-AWA library is tested in order to
check its capacity to propagate intermediate and deep water waves.

9.2.3.2 ER-AWA results

In this subsection, results obtained with simulations using the recent ER-AWA are pre-
sented. Deep water and Stokes 2nd order waves are propagated, characterized by different
periods and heights. In each case, wave elevation time series and the evolution of the
amplitude envelop along the tank were analysed.
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waveD

This test should help to prove the correctness of this new library for deep water and
second order waves. The short wave length of the waveD understudy, 1 m, induces a
short length of the domain compared to other simulations (8 m for 20 m lengths). Free
surface time trace at the center of the NWT indicates a correct behaviour of the signal
as seen in Fig. 9.8.

Figure 9.8: Free surface elevation time series at the center of the tank (x=4 m).

Comparing the envelop of amplitudes selected at the same time (T=93 s) along the tank
with SW-AWA library and ER-AWA library, crucial differences appear as it is observed
one the two figures 9.9 and 9.10.

Figure 9.9: SW-AWA library for 2nd order and deep water waves.
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Figure 9.10: ER-AWA library for 2nd order and deep water waves.

Various conclusions can be drawn from the comparison of these graphs:

• SW-AWA strategy does not lead to correct results for second order and deep water
waves propagation in the NWT. This was expected due to the specificity of this
library for shallow waters only. The amplitude along the NWT varies by 67%.

• With ER-AWA, the amplitude envelop presents less reflection and the amplitude
along the propagation axis varies only by 26% A. It still remains significant.

9.2.3.3 waveE: comparison of olaFlow and waveFoam

This test also deals with deep water and 2nd order waves, typical of FOWT sea conditions.
The results are compared with experiments performed at MARIN, Netherlands, for the
development of the SBM Offshore/IFPEN TLP floater. This case is run with olaFlow
(ER-AWA library) and waveFoam solvers for comparison purposes.

The same mesh is used for both simulations (same refinement in the free surface area),
with relaxation zones added for the passive solver waveFoam. CFD parameters are also
the same (resolution time step, numerical schemes). For each solver, the wave height
along the propagation zone is plotted on Fig. 9.11 . This propagation zone is the zone
between the inlet and outlet patch for olaFlow and the zone between each relaxation zone
for waveFoam.
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Figure 9.11: Wave height along the NWT obtained with olaFlow and waveFoam runs.

The plot obtained with olaFlow shows an important reflection in the tank. However,
waveFoam results seems more constant and less impacted by reflection. A slight decrease
of height along the tank is observed with the passive code. As concluded in Windt et al.
[2019], the active method olaFlow comes at lower computational cost due to smaller mesh
size required than the passive method waveFoam (3.5h for olaFlow, 7h for waveFoam on
72 processors).

9.2.3.4 Conclusions

This bench of tests first aims at assessing the validity of olaFlow in different wave con-
ditions. This active solver seems rather promising, notably on computation time. The
following conclusions are obtained from the analysis of CFD simulations:

• Using olaFlow library to propagate cnoidal and shallow water waves is coherent. A
proper wave elevation time series and amplitude envelop was achieved. This was
expected because the wave condition imposed is in the validity range of the solver.

• For 2nd order and deep water waves, a reflection phenomena occurs for every simula-
tion cases. Though an improvement was observed with the use of ER-AWA instead
of the SW-AWA, the reflection still remains significant and too important for the
purpose of our study. For the same wave imposed in CFD, results obtained with
waveFoam solver show less reflection than with olaFlow runs. That is why waveFoam
solver was chosen to perform the CFD simulations during the PhD thesis.

9.3 Scalability study for OpenFOAM

A scalability study performed at the VKI (Von Karman Institute), shows that 30 000 cells
par core is an optimal distribution for an OpenFOAM case, regardless of the processor
used. Fig. 9.12 shows a satisfactory scalability of OpenFOAM for simulations run with
the interFoam solver.
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9.4. NUMERICAL SCHEMES USED IN THE CFD SIMULATIONS

Figure 9.12: Scalability study with interFoam solver.

During the PhD thesis, CFD simulations are run with the IFPEN High Performance
Computer and the CEA Cobalt High Performance Computer.

For a wave-only NWT case run with waveFoam (11 768 659 cells), it takes 46h42mn to
run 140s of physical time using 108 cores (memory of the core 2.7 Go). For a simulation
of the TLP floater included in the NWT (18 460 592 cells), it takes 47h30mn to run 92s of
physical time using 170 cores. So we chose to keep the number of cells per core between
50 000 and 100 000.

9.4 Numerical schemes used in the CFD simulations

Tab.9.4 details the numerical schemes chosen in the CFD simulation to solve the Navier-
Stokes equations (continuity and momentum equations) and the interface advection equa-
tion with VOF MULES method. These numerical schemes are implemented in the
fvSchemes file.

Detail Term Numerical scheme

Time derivative terms ddt(U),ddt(alpha) Euler

Continuity equation grad(U) Gauss linear

Convection term in the momentum equation div(rhoPhi,U) Gauss limitedLinearV 1

Diffusion term in the momentum equation laplacian(gamma,phi) Gauss linear corrected

Convection term in the VOF equation div(phi,alpha) Gauss vanLeer

Compression term in the VOF equation div(phirb,alpha) Gauss interfaceCompression

Table 9.4: Numerical schemes used for the CFD model.
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Investigation of Floating Offshore Wind Turbine Hydrodynamics with
Computational Fluid Dynamics

Résumé

Afin d’accéder à un vent plus fort et plus régulier loin des côtes, et de s’affranchir des contraintes liées à la profondeur,
de nombreux projets sont en cours pour développer l’éolien flottant. Dans les logiciels de dimensionnement, deux théories
hydrodynamiques sont imposées pour prédire les chargements dus à la houle : la théorie linéaire potentielle et la formule
empirique de Morison. Historiquement utilisées dans le secteur pétrolier, l’applicabilité de ces théories dans le cadre de l’éolien
flottant peut être questionnée. La formule de Morison initialement établie pour un cylindre infini, immergé, perpendiculaire
à l’écoulement, est désormais appliquée à un flotteur de forme complexe. Les coefficients de Morison sont extraits de bases
de données expérimentales et certaines simplifications sont réalisées comme utiliser un seul jeu de coefficients pour toute la
structure et pour des états de mer différents. C’est pourquoi, l’hydrodynamique d’un flotteur d’éolienne est étudiée dans cette
thèse avec un outil complémentaire : la mécanique des fluides numérique (ou CFD, Computational Fluid Dynamics). L’objectif
est d’évaluer, améliorer et adapter la formule de Morison pour la prédiction des chargements hydrodynamiques dans le cadre
de l’éolien flottant.

En premier lieu un bassin à houle numérique est défini, avec le code libre de CFD OpenFOAM, dans lequel des houles
régulières sont générées, propagées et absorbées. L’élévation de la houle à la future position du flotteur ainsi que la variation
de la hauteur de houle le long du bassin sont analysées afin d’éviter tout phénomène de réflexion ou d’amortissement. Des
critères adimensionnels sont établis pour définir un bassin numérique pour différents types de houles régulières. Par la suite,
le flotteur est inclus dans le bassin numérique et trois différentes houles régulières sont modélisées : une opérationnelle, une
intermédiaire et une extrême. Nous développons une méthode des tranches pour déterminer les coefficients de Morison pour
chaque bracon à partir des forces issues des simulations numériques, données non accessibles expérimentalement. Cette méthode
évalue précisément les forces et les coefficients directionnels associés en prenant en compte la variation des forces le long du
bracon et au sein du flotteur. L’impact de la structure et l’orientation complexe du bracon sont inclus dans le calcul des
coefficients de Morison. Cependant, la forte influence de l’interface sur les forces des bracons inclinés et perçant l’interface ne
peut pas être correctement prédite en appliquant la formule de Morison. Enfin, des variations importantes des coefficients de
Morison pour les trois houles au sein de la structure sont observées.

Mots clés: Eolien flottant, Hydrodynamique, Mécanique des fluides numérique.

Abstract

Floating Offshore Wind Turbines (FOWT) offer the possibility to harvest wind energy far offshore and thus considerably
extend the potential of offshore wind energy. In the engineering tools used to design FOWT, two theories are implemented to
model the hydrodynamic loads: the potential flow theory and the Morison empirical formula. Often used for offshore oil and
gas systems, applying these theories to FOWT may be questionable. Since Morison formula was determined for an infinite
cross-flow oriented submerged cylinder, its extension to a complex FOWT floater may trigger some uncertainties. Also, Morison
coefficients come from standards obtained with various test campaigns and some simplifications are sometimes applied such as
using one set of coefficients whatever the sea state. That is why, FOWT hydrodynamics is studied in this PhD thesis with a
complementary tool: Computational Fluid Dynamics (CFD). The aim is to evaluate, improve and adapt the Morison formula
to FOWT load prediction with CFD modelling.

First, a Numerical Wave Tank (NWT) is implemented in the open-source CFD tool OpenFOAM, in which regular waves are
generated, propagated and absorbed. The wave elevation at the future position of the floater and the wave height along the tank
are checked to avoid any damping or reflection phenomena. Dimensionless criteria are obtained to set-up a controlled NWT for
different types of waves. Secondly, the FOWT floater is included in the NWT and three different regular waves are modelled:
an operational, an intermediate and an extreme wave. We develop a slice methodology to determine Morison coefficients from
CFD loads locally on each brace of the floater, such data cannot be accessed in experiments. This methodology provides an
accurate and detailed determination of loads, like the load variation along each brace and within the complex structure, and
associated directional Morison coefficients. We demonstrate that the impact of the structure and the brace orientation can be
included in Morison coefficients. However, the significant influence of the free-surface on inclined surface-piercing brace loads
cannot be correctly predicted using the Morison formula. Finally, we observe significant variations of the Morison coefficients
throughout the structure for the three waves.

Keywords: Floating Offshore Wind Turbines, Hydrodynamics, Computational Fluid Dynamics.
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