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Abstract 

Degradation is an unavoidable phenomenon that affects engineering components and systems, 

which may lead to their failures with potentially catastrophic consequences depending on the 

application. The motivation of this Thesis is trying to model, analyze and predict failures with 

prognostic methods that can enable a predictive management of asset maintenance. This would allow 

decision makers to improve maintenance planning and minimize unexpected shutdowns, thus 

increasing system availability and safety. To this aim, research during the Thesis has been devoted to 

the tailoring and use of both model-based and data-driven approaches to treat the degradation processes 

that can lead to different failure modes in industrial components, making use of different information 

and data sources for performing predictions on the degradation evolution and estimating the Remaining 

Useful Life (RUL).  

The main contributions of the Ph.D. work have been divided into two parts addressing two specific 

prognostic applications, including model-based prognostics for fatigue crack growth prediction and 

data-driven prognostics for multi-step ahead predictions of time series data of Nuclear Power Plant 

(NPP) components, respectively. 

The performance of a model-based prognostic approach depends on the choice of the adopted 

Physics-of-Failure (PoF) models. However, each degradation model is appropriate only to certain 

degradation process under certain operating conditions, which are often not precisely known. To 

address this problem, we develop two model-based methods based on the ensemble of multiple 

degradation models, in order to take advantage of the complementarity of different models, specific on 

the degradation trends to be predicted. The main contributions of the proposed ensemble of models-

based methods are two novel weighted ensemble strategies, which take into account the prediction 

accuracies of the individual models at previous time instances. In addition, recursive Bayesian filtering 

and Particle Filtering (PF) are employed to dynamically predict and update the degradation evolution 

and the component RUL at each prediction step. To validate the performances of the proposed methods, 

different case studies of fatigue crack growth generated with time-varying operating conditions are 

considered. 

In the nuclear industry, components and systems are designed to guarantee very high reliability 

levels given the potentially catastrophic consequences of their failures, and prognostic capabilities are 

sought to accurately predict the long-term degradation behaviors of the components and systems, 

allowing maintenance interventions of critical components to be planned well in advance and reducing 

maintenance costs. However, the further one attempts to predict into the future, the harder it is to 

achieve an accurate and stable prediction due to increasing uncertainty and error accumulation. For this 

reason, multi-step ahead prediction has remained a difficult task in many prognostic applications, 

particularly in the nuclear industry. To address this problem, this Thesis proposes two novel multi-step 
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ahead prediction methods based on Long Short-Term Memory (LSTM), a deep neural network 

developed for dealing with the long-term dependencies in time series data. The first multi-step ahead 

prediction method is applied for predicting up to 45 days ahead the operating parameters of NPP Steam 

Generators (SGs). The method also addresses the additional issues of automatic hyperparameter 

optimization and prediction uncertainty quantification by using a Tree-structured Parzen Estimator 

(TPE) optimization algorithm and a Monte Carlo (MC) Dropout technique, respectively. A case study 

concerning SG data acquired from different NPPs is carried out to validate the performance of the 

proposed method. On the other hand, the second multi-step ahead prediction method is developed based 

on a hybrid framework integrating Ensemble Empirical Mode Decomposition (EEMD) and LSTM 

neural network and applied to a case study concerning time series data acquired from Reactor Coolant 

Pumps (RCPs) of NPPs. In this prediction framework, EEMD is used to decompose time series into a 

set of components which allow effectively describing the system dynamics and therefore facilitates the 

prediction task. Then, LSTM neural network models are developed for predicting the multi-step ahead 

behavior of the individual components and the obtained predictions are aggregated to reconstruct the 

time series. A TPE algorithm is employed for automatic hyperparameter optimization. The performance 

of the proposed method is validated by considering three different long-term prediction horizons on a 

practical case study of NPP RCPs.  

 

Keywords: prognostics and health management, model-based prognostics, data-driven prognostics, 

particle filter, recurrent neural network, long short-term memory, time series prediction, multi-step 

ahead prediction, automatic hyperparameter optimization, fatigue crack growth, nuclear power plant, 

steam generator, reactor coolant pump 
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Resume 

La dégradation est un phénomène inévitable qui affecte les composants et les systèmes, qui peut 

entraîner leurs défaillances avec des conséquences potentiellement catastrophiques selon l'application. 

La motivation de cette Thèse est d'essayer de modéliser, d'analyser et de prédire les défaillances par 

des méthodes pronostiques qui peuvent permettre une gestion prédictive de la maintenance des actifs. 

Cela permettrait aux décideurs d'améliorer la planification de la maintenance et de minimiser les arrêts 

imprévus, augmentant ainsi la disponibilité et la sécurité du système. Dans cet objectif, la recherche 

pendant la thèse a été consacrée à l'adaptation et à l'utilisation d'approches basées sur des modèles et 

d'approches pilotées par les données pour traiter les processus de dégradation qui peuvent conduire à 

différents modes de défaillance dans les composants industriels, en utilisant différentes sources 

d'informations et de données pour effectuer des prédictions sur l'évolution de la dégradation et estimer 

la durée de vie utile restante.  

Les principales contributions de cette thèse ont été divisées en deux parties traitant de deux 

applications pronostiques spécifiques, y compris les pronostics basés sur des modèles pour la prédiction 

de la croissance des fissures par fatigue et les pronostics pilotées par les données pour les prédictions à 

pas multiples des données de séries chronologiques des composants des Centrales Nucléaires, 

respectivement. 

La performance d'une approche pronostique basée sur des modèles dépend du choix des modèles 

adoptés de Physics-of-Failure (PoF). Cependant, chaque modèle de dégradation ne convient qu'à 

certains processus de dégradation dans certaines conditions de fonctionnement, qui souvent ne sont pas 

connues avec précision. Pour résoudre ce problème, nous développons deux méthodes basées sur des 

modèles qui reposent sur l'ensemble de plusieurs modèles de dégradation, afin de tirer parti de la 

complémentarité de différents modèles, spécifiques aux tendances de dégradation à prévoir. Les 

principales contributions de l'ensemble proposé de méthodes basées sur des modèles sont deux 

nouvelles stratégies d'ensemble pondérées, qui prennent en compte les précisions de prédiction des 

modèles individuels lors d'instances de temps précédentes. De plus, le filtrage Bayésien récursif et le 

filtrage particulaire sont utilisés pour prédire et mettre à jour dynamiquement l'évolution de la 

dégradation et la durée de vie utile restante du composant à chaque étape de prédiction. Pour valider 

les performances des méthodes proposées, différentes études de cas de croissance des fissures par 

fatigue générées avec des conditions de fonctionnement variables dans le temps sont considérées. 

Dans l'industrie nucléaire, les composants et les systèmes sont conçus pour garantir des niveaux de 

fiabilité très élevés étant donné les conséquences potentiellement catastrophiques de leurs défaillances, 

et des capacités pronostiques sont recherchées pour prédire avec précision les comportements de 

dégradation à long terme des composants et des systèmes, permettant de planifier les interventions de 

maintenance des composants critiques bien à l'avance et de réduire les coûts de maintenance. 



 8 

Cependant, plus loin on tente de prédire l'avenir, plus il est difficile d'obtenir une prédiction précise et 

stable en raison de l'augmentation de l'incertitude et de l'accumulation d'erreurs. Pour cette raison, la 

prédiction à plusieurs étapes est restée une tâche difficile dans de nombreuses applications 

pronostiques, en particulier dans l'industrie nucléaire. Pour résoudre ce problème, cette thèse propose 

deux nouvelles méthodes de prédiction à étapes multiples basées sur la Long Short-Term Memory 

(LSTM), un réseau de neurones profond développé pour traiter les dépendances à long terme dans les 

données de séries chronologiques. La première méthode de prédiction à plusieurs étapes est appliquée 

pour prédire jusqu'à 45 jours à l'avance les paramètres de fonctionnement des Générateurs de Vapeur 

de Centrales Nucléaires. La méthode aborde également les problèmes supplémentaires d'optimisation 

automatique des hyperparamètres et de quantification de l'incertitude de prédiction en utilisant 

respectivement un algorithme d'optimisation Tree-structured Parzen Estimator (TPE) et une technique 

de Monte Carlo (MC) Dropout. Une étude de cas concernant les données des Générateurs de Vapeur 

acquises auprès de différentes Centrales Nucléaires est réalisée pour valider les performances de la 

méthode proposée. D'autre part, la deuxième méthode de prédiction à plusieurs étapes est développée 

sur la base d'un cadre hybride intégrant la Ensemble Empirical Mode Decomposition (EEMD) et le 

réseau de neurones LSTM, et appliquée sur une étude de cas concernant les données de séries 

chronologiques acquises à partir des Pompes de Refroidissement de Réacteurs de Centrales Nucléaires. 

Dans ce cadre de prédiction, EEMD est utilisée pour décomposer des séries temporelles en un ensemble 

de composants qui permettent de décrire efficacement la dynamique du système et facilitent donc la 

tâche de prédiction. Ensuite, des modèles de réseaux de neurones LSTM sont développés pour prédire 

le comportement à plusieurs étapes des composants individuels et les prédictions obtenues sont 

agrégées pour reconstruire des données de séries chronologiques. Un algorithme TPE est utilisé pour 

l'optimisation automatique des hyperparamètres. La performance de la méthode proposée est validée 

en considérant trois horizons de prédiction à long terme sur une étude de cas pratique des Pompes de 

Refroidissement de Réacteurs de Centrales Nucléaires. 

 

Mots clés: prognostics and health management, pronostics basés sur des modèles, pronostics pilotées 

par les données, filtrage particulaire, réseau de neurones artificiels, long short-term memory, prédiction 

de séries chronologiques, prédictions à pas multiples, optimisation automatique des hyper-paramètres, 

croissance des fissures par fatigue, centrales nucléaires, générateurs de vapeur, pompes de 

refroidissement de réacteurs. 
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Chapter 1  Introduction 

 

1.1 Prognostics and Health Management (PHM) 

Over the last decade, we have been witnessing the rapid and massive growth of the fourth industrial 

revolution with breakthroughs in many emerging technologies, such as Artificial Intelligence (AI), Big 

Data and the Internet of Things (IoT). The innovations are changing industrial and production systems, 

making them more efficient, more flexible and faster to create completely new and innovative products 

and services. However, no matter how good and reliable components and systems are designed, their 

degradation over time caused by operating stress and load in the real environment has always been a 

major concern in all industrial sectors, because if not controlled degradation can lead to failures with 

potentially catastrophic consequences [1]. In this context, maintenance engineering has played a 

fundamental role for maintaining the reliability, availability and safety of engineering components and 

systems during their useful lives [2]. 

In the old days, maintenance was regarded as repair work. Machines were operated until they broke 

down, and, then, they were repaired. Maintenance activities were passive (unplanned) and carried out 

after a failure had already occurred. This is what is known as corrective maintenance. Large downtimes 

can occur because the replacement or repair of failed units, with significant decreases of the system 

availability. To overcome this limitation, preventive maintenance has been developed. Differently from 

corrective maintenance, preventive maintenance is active (planned) and takes place at fixed time 

intervals, even if a failure has not yet occurred. The key is to decide when to perform the maintenance, 

so as to reduce the number of failures while avoiding unnecessary maintenance [3].  

In the context of preventive maintenance, condition-based maintenance (CBM) has been 

developed, whereby the decision of when to perform maintenance is taken based on the actual 

conditions of the components, based on condition monitoring data observed. By so doing, in principle, 

components and systems can operate as long as they are healthy, repairs or replacements are performed 

only when needed, so that system availability is increased and maintenance costs are minimized [1]. 

The development of maintenance engineering is summarized in Fig. 1.1 [4]. 
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Fig. 1.1  The development of maintenance philosophies [4]. 

In the years 2000, Prognostics and Health Management (PHM) has been introduced as an evolved 

form of CBM with a strong focus on prognostics [5]. Since then, PHM has developed to a field of 

research and application for detecting the degradation of engineering components (fault detection), 

diagnosing the type of faults (fault diagnostics), predicting the future evolution of the degradation and 

the Remaining Useful Life (RUL) (prognostics), and proactively managing the failure process [6]. Its 

strong development is due to the increased capacity in monitoring sensors and the significant 

advancements in the techniques of signal and data analysis, including data mining and AI, which enable 

the intelligent reading of the recorded signals and data for fault detection and diagnostics, and failure 

prediction.  

Fig. 1.2 shows an example of the degradation evolution in a component, where an initial defect 

propagates over time and eventually reaches a critical condition (failure threshold) that causes the 

component failure. PHM implemented at the present time can provide decision makers with advance 

failure warning, by the prediction of the degradation evolution in the future and the estimation of the 

component RUL, which is the time interval between the present time and the predicted failure time. 

Accurate and reliable predictions provided by PHM allow maintenance actions to be scheduled at the 

most convenient and inexpensive time, with great benefits on system safety and availability [7]. 
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Fig. 1.2. RUL prediction of a degrading component using prognostics [7]. 

 

1.2 Prognostic methods 

Depending on the information and data available for developing the predictive model, prognostic 

approaches can generally be classified into two main categories: model-based and data-driven 

approaches [3].  

1.2.1 Model-based prognostics 

Model-based approaches utilize the knowledge of the life cycle loading and Physics-of-Failure 

(PoF) models, control models, or other descriptive models of a component or system to assess its 

reliability and estimate the RUL. The use of actual operating conditions and PoF models allows model-

based approaches to achieve accurate predictions of the degradation-to-failure evolution [7]. However, 

their applications are typically constrained by the lack of sufficient information, such as explicit PoF 

models with proper values of the specific parameters of materials, geometry and operating loading, 

which may be difficult to obtain in practice.  

Daigle and Kai [8] have presented a model-based prognostic approach for a pneumatic valve from 

the Space Shuttle cryogenic refueling system in the aerospace industry and a PoF model of the 

pneumatic valve was developed based on mass and energy balances in which the damages depend on 

sliding velocity. Girard et al. [9] have applied model-based prognostics for the Steam Generators (SGs) 

of Nuclear Power Plants (NPPs), by utilizing the dynamic responses of the Wide Range Level (WRL) 

parameter to model the evolution of the tube supporting plate clogging. Baraldi et al. [10] have 

developed a model-based method based on Kalman Filter (KF) and Bootstrapping Aggregating 

(BAGGING) techniques and applied to turbine creep prognostics. Zhang et al. [11] have used model-

based prognostics for the prediction of the RUL of a Proton Exchange Membrane Fuel Cell (PEMFC) 

stack by using an ensemble of two degradation indicators. Model-based prognostics has also been 



1.3  Aims and contributions 14 

applied in the biopharmaceutical industry for predicting the gradual degradation process of the Ethylene 

Propylene Diene Monomer (EPDM) diaphragms [12]. 

1.2.2 Data-driven prognostics 

Differently from model-based approaches, data-driven approaches make use of historical condition 

monitoring data to determine data correlations, establish patterns of evolution and learn trends of 

degradation to failure, by means of statistical and machine learning models, such as Autoregressive 

Integrated Moving Average (ARIMA), Artificial Neural Network (ANN), Neuro-Fuzzy (NF) and 

Support Vector Machine (SVM). The advantage of data-driven approaches is their adaptive nature to 

available condition monitoring data, without the need of pre-specifying PoF models and operating 

parameters. Therefore, they are appropriate for prognostic applications where PoF models are not 

available and obtaining condition monitoring data is feasible. For example, a data-driven approach 

based on Extreme Learning Machine (ELM) has been implemented for the prediction of the degradation 

of rolling element bearings in rotating machines [13]. Liu et al. [14] have utilized data-driven 

prognostics for predicting the time series data of NPP Reactor Coolant Pumps (RCPs); the prognostic 

framework was built based on the ensemble of Probabilistic Support Vector Regression (PSVR) 

models. Zhang et al. [15] have employed a Long Short-Term Memory (LSTM) recurrent neural network 

for learning the long-term dependencies among the degraded capacities of lithium-ion batteries and 

predicting their RULs. To address the problem of different data availability in practical industrial 

applications, even in presence of mixed information sources, Baraldi et al. [16] have presented a 

strategy for selecting the model-based and data-driven prognostic approach which best suits the 

information setting, and applied the method to the prediction of the RUL of turbine blades affected by 

a developing creep.   

1.3 Aims and contributions  

Prognostic methods can widely vary for different types of components, failure modes and data 

available for the model development. The proper selection of prognostic methods for a particular 

domain plays a fundamental role for the effective implementation of a PHM system. For this reason, 

this Ph.D. Thesis aims at:  

• Investigating the challenges and problems in the implementation of prognostic approaches 

for industrial components with respect to both model-based and data-driven approaches 

• Proposing the appropriate prognostic methods for different domains 

• Evaluating the effectiveness of the proposed methods in addressing practical problems of 

industrial applications.  

Correspondingly, the main contributions of the Ph.D. work can be divided into two parts dealing 

with model-based and data-driven prognostic methods, respectively. 
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1.3.1 Model-based prognostics 

The performance of a model-based prognostic approach depends on the choice of the adopted PoF 

models [17], [18]. Many researches have indicated that each degradation model has its own specific 

applicability, appropriate to certain degradation processes under certain operating conditions [19]–[22]. 

To address this problem, we develop two model-based methods based on the ensemble of multiple 

degradation models, in order to take advantage of the complementarity of different models, specific on 

the degradation trends to be predicted. The main contributions of the proposed ensemble of models-

based methods are two novel weighted ensemble strategies, which take into account the prediction 

accuracies of the individual models at previous time instances. In addition, recursive Bayesian filtering 

and Particle Filtering (PF) are employed to dynamically predict and update the degradation evolution 

and the component RUL at each prediction step. Eventually, the performances of the proposed methods 

are validated by case studies of fatigue crack growth simulated with time-varying operating conditions.   

1.3.2 Data-driven prognostics 

The second main contribution of the Ph.D. work is the development of a data-driven prognostic 

method for multi-step ahead prediction of time series data of NPP components.  

In safety-critical applications, such as those typically encountered in the nuclear industry, 

components and systems are designed to guarantee very high reliability levels given the potentially 

catastrophic consequences of their failures. Given the long-term horizons of the degradation processes, 

prognostic capabilities are sought to accurately predict multi-step ahead the components and systems 

degradation behaviors. This is of paramount importance in the nuclear industry where maintenance 

interventions of some critical components should be planned well in advance, given the impossibility 

of performing some of them during plant operation. Long-term predictions of the components 

degradation process can also allow deciding whether a component can safely operate until the next 

planned plant outage, for opportunistic maintenance [23]–[25]. However, multi-step ahead prediction 

is a difficult task because uncertainty increases with the time horizon of the prediction. This is mainly 

caused by the intrinsic stochasticity of the degradation process, the accumulation of the prognostic 

model errors and the difficulty of predicting the component operating conditions, which can have a big 

influence on the degradation process [26], [27]. For this reason, prognostics in nuclear applications has 

been limited to short-term prognostics, based on one-step ahead prediction [24], [25], [28]–[30]. 

In this Thesis, we propose two novel multi-step ahead prediction methods based on LSTM, a deep 

neural network developed for dealing with the long-term dependencies in time series data. The first 

proposed method is applied for predicting up to 45 days ahead the values of the operating parameter of 

NPP SGs. The second proposed method is validated by considering different long-term prediction 

horizons on a practical case study concerning time series data acquired from RCPs of NPPs. In the 

proposed methods, additional practical issues are also addressed, including anomaly detection, 
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automatic hyperparameter optimization and prediction uncertainty quantification. 

1.4 Structure of the Thesis 

The Thesis is composed of two Parts. Part I consists of eight Chapters which present the 

introduction, the details of the original contributions, the integral conclusion, and the future research 

and development perspectives. Part II includes four journal papers, containing the details of the main 

original contributions. The structure of the Thesis is illustrated in Fig. 1.3. 

The rest of Part I is organized as follows: 

a) Chapter 2 presents an introduction to the prognostics of fatigue crack growth with model-based 

method and the approaches used for developing the proposed model-based prognostic methods 

in Chapters 3 and 4. 

b) Chapter 3 (Paper I) presents a model-based prognostic method for fatigue crack growth 

prediction, based on an integration of recursive Bayesian filtering and a novel weighted 

ensemble of multiple degradation models. To validate the performance of the proposed method, 

a case study concerning fatigue crack growth with evolving operating conditions is carried out 

and the results are compared with those obtained by applying single degradation models.  

c) Chapter 4 (Paper II) proposes an improved ensemble method for predicting the evolution to 

failure and the RUL of a simulated component undergoing fatigue crack growth. A weighted 

ensemble strategy based on the prediction accuracies of individual models in the previous time 

steps is proposed. Multiple prognostic performance indicators (PPIs) are employed to validate 

the prediction capability of the proposed method in a case study concerning multiple fatigue 

crack trajectories.  

d) Chapter 5 introduces the research background of multi-step ahead predictions and the 

methodologies of LSTM neural networks, Tree-structured Parzen Estimator (TPE) 

optimization and Dropout regularization, which are employed in Chapters 6 and 7.  

e) Chapter 6 (Paper III) presents the proposed multi-step ahead prediction method based on LSTM 

neural networks and validated in a case study considering SG data acquired from different 

French NPPs.  

f) Chapter 7 (Paper IV) presents a hybrid prediction framework based on Ensemble Empirical 

Mode Decomposition (EEMD) and LSTM neural networks.  The performance of the proposed 

method is validated by considering different long-term prediction horizons on a practical case 

study concerning time series data acquired from RCPs of NPPs.  

g) Finally, Chapter 8 concludes the Thesis and discusses the future research and development 

perspectives of our research work.  
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Fig. 1.3. The structure of the Ph.D. Thesis. 
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Chapter 2  Background of Model-Based Fatigue Crack 

Prognostics  

 

This Chapter presents an introduction to the prognostics of fatigue crack growth based on model-

based approaches. Four popular Physics-of-Failure (PoF) models of fatigue crack growth are 

presented in Section 2.2. Section 2.3 describes the detailed methods of recursive Bayesian filtering 

and Particle Filtering (PF) for dynamically estimating the degradation states and predicting the 

equipment RUL. The four fatigue crack growth models and the two filtering methods will be used 

for developing our proposed model-based prognostic methods in Chapters 3 and 4.    

 

2.1 Introduction 

In practice, the reliability of equipment usually starts decreasing due to gradual degradation, e.g., 

delamination [1], fatigue crack [2]–[5], corrosion [6], [7], etc., under periodic cyclic loads and 

eventually leads to failure. Fatigue crack growth is one of the most frequent degradation process 

affecting components and systems in various major industries, including energy [3], [8], automotive 

[4], aerospace [5], etc. For this reason, the demand of prognostic systems for dealing with fatigue crack 

growth has recently increased. 

Model-based prognostic approaches utilize the physical knowledge of the degradation for 

constructing a quantitative analytical model of the equipment behavior and have been applied for 

fatigue crack growth prognostics [9]–[11]. In [10], a failure prognostic scheme for fatigue crack growth 

prediction was introduced, which employed a stochastic crack growth model and a Bayesian technique 

to timely update the equipment degradation state based on a sequence of monitored measurements. 

Another Bayesian-based prognostic approach was presented to estimate the stress intensive range of 

the degradation in an online manner [11]; the capability of Bayes theorem was fully exploited for 

updating the degradation state of the target equipment and estimate the unknown parameters in the 

physical model, when a new measurement becomes available.  

Among Bayesian-based prognostic techniques, a sequential Monte Carlo (SMC) method, known 

as Particle Filtering (PF) method, has become very popular due to its capability of effectively handling 

non-linear systems and non-Gaussian noises. The key idea behind this method is to represent the 

posterior distribution of the equipment state by a random set of weighted samples, also called particles, 

and, then, compute the estimated state based on the particles and their associated weights. This 

methodology has been used for state estimation and prediction of crack growth [12]–[14], Lithium-ion 

batteries [15], [16], PEM fuel cells [17], bearings [18], etc. 
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On the other hand, the performance of model-based prognostic approaches for fatigue crack growth 

largely depends on the available physics-of-failure model [19], [20]. Models of fatigue crack growth 

have been extensively developed [2], [21]–[23]. In [21], a comprehensive comparison of stochastic 

models for fatigue crack growth, including the Markov chain model, the Yang’s power law-based 

model, and a polynomial model, was carried out. The results indicated that each degradation model has 

its own specific range of applicability, that is, each model is only appropriate to certain degradation 

processes under certain conditions. To the best knowledge of the authors, there is no general consensus 

on a prognostic model for fatigue crack growth under different degradation processes. Recently, hybrid 

and multi-degradation model ensembles have attracted the attention of industrial practitioners and 

researchers, due to their superiority over individual degradation models in terms of higher accuracy and 

better generalization capability [16], [24]. The fundamental idea of these empirical frameworks is to 

exploit the diversity of different degradation models, which can offer complementary information about 

the degradation states to be estimated. In an application of Lithium-ion battery prognostics, an 

Interacting Multiple Model Particle Filter (IMMPF) has been presented to combine the estimations 

from three different battery capacity degradation models [24]. The results experimentally indicated that 

the ensemble approach can yield a promising performance in terms of smaller estimation errors and 

more accurate predictions than single models. 

2.2 PoF models of fatigue crack growth 

2.2.1 Paris-Erdogan model 

The widely used Paris-Erdogan model describes the dynamic evolution of the crack depth  as a 

function of the load cycle number  as follows [25]: 

  (2.1) 

where  and  are constants related to the material properties, and  is the Irwin’s stress intensity 

factor defined by [26]: 

  (2.2) 

where  is the cyclic stress amplitude. In practice, the statistical variability of the crack growth rate 

can be addressed by modifying Eq. (2.1) with an intrinsic process stochasticity [27]: 

  (2.3) 

where  is a white Gaussian noise. For a sufficiently small , the Markov chain state-

space model of the degradation state  in Eq. (2.3) can be discretized as follows: 

x

N

( )mdx C K
dN

= D

C m KD

K xs pD =D

sD

( )mdx e C K
dN

w= D

2~ (0, )N ww s tD

x



 Chapter 2  Background of Model-Based Fatigue Crack Prognostics 

 

21 

  (2.4) 

2.2.2 Polynomial model 

The polynomial models were first introduced for fatigue crack growth in order to solve the 

mismatch between the traditional power function-based models, i.e. Paris-Erdogan, and the practical 

median crack growth curves [21], [28]: 

  (2.5) 

where  are the second-degree polynomial parameters. Indeed, various works showed that 

the polynomial models are able to yield the best fit of the linear stage of a degradation process, 

compared to conventional models [16], [28]. Specifically, the Markov process representation for a 

polynomial crack growth model can be given as follows: 

  (2.6) 

2.2.3 Global model 

Considering again the Paris-Erdogan model Eq. (2.4) and the fact that fatigue crack growth 

generally depends not only on material properties but also on equipment geometry, a so-called global 

model was introduced by reformulating the stress intensity factor  [29]: 

  (2.7) 

where  denotes the geometric factor of fatigue crack, defined by: 

  (2.8) 

where  and  are geometric coefficients and the width of the specimen, respectively. The 

global function-based model for fatigue crack growth can be, then, written as follows: 

  (2.9) 

2.2.4 Curve fitting model 

In [29], an empirical crack growth model based on a curve fitting function was presented to address 

the computational cost problem of the conventional models based on power functions, such as Paris-

Erdogan. The curve fitting model is given as follows:  

  (2.10) 
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where  are model constants. The discretized Markov process representation for the model can be 

given as follows: 

  (2.11) 

2.3 Predictions of the degradation evolution by Bayesian filtering algorithms  

This Section describes the methods of recursive Bayesian filtering and PF for: 1) estimating the 

actual degradation state at the present time based on available measurements; 2) predicting the future 

degradation states over a long-term horizon, in which future measurements are not available.  

2.3.1 Estimating the degradation state at the present time 

A.  Recursive Bayesian filtering 

Consider a dynamic system process which describes the evolution of the degradation state  and 

the measurement  at time t as: 

  (2.12) 

  (2.13) 

where  is the state noise sequence, and  is the measurement noise sequence at time t. 

The system state  can be estimated by constructing its posterior probability density function 

(PDF)  via two consecutive steps, namely prediction and update. In the prediction step, the 

previous state estimation  and the state transition model  are utilized to obtain the prior 

distribution of the system state  at the current time t by using the Chapman-Kolmogorov equation: 

  

  (2.14) 

where  is the conditional probability distribution and is defined by the state model in Eq. 

(2.12). In the update step, a new measurement  is collected and the posterior distribution of the current 

state  is obtained by updating the prior distribution via Bayes theorem: 

  (2.15) 

where  is the likelihood function defined by the measurement model in Eq. (2.13) and 

 is a normalizing constant given by: 
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  (2.16) 

B.  Particle Filtering 

However, no general consensus has been reached on the analytical solution of Eqs. (2.14) and (2.15) 

[16]. To address this problem, PF was developed as an improved Bayesian filtering algorithm, which 

utilizes Monte Carlo (MC) simulation to approximate the true probability distribution with a set of 

weighted particles , where  is the total number of particles [30]. These random 

particles evolve statistically independently of each other, according to the probabilistic state model Eq. 

(2.12). Then, the posterior distribution at time t can be approximated as: 

  (2.17) 

where  is the Dirac Delta function. The particle  is sampled from the importance sampling 

distribution  with a weight  computed as: 

  (2.18) 

By setting , the particle weight  can be updated with the new measurement 

 as follows: 

  (2.19) 

where  is the likelihood of measurement  given the particle . It is important to note that 

the weights are normalized as  

2.3.2 Predicting the future degradation evolution and the RUL 

Once the posterior distribution  of the current degradation state is estimated, it is possible 

to predict the future degradation evolution and the RUL of the equipment. However, note that there is 

no available information for estimating the likelihoods of the future degradation states, because future 

measurements , where T is the time horizon of interest for the analysis, have not been 

collected yet. The only available information is the dynamic state model Eq. (2.12). Then, the l-step 

ahead posterior distribution  can be written as follows:   
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The numerical evaluation of the integrals in Eq. (2.20) requires significant computational effort. In 

this work, an approach presented in [31] is adopted with the assumption that the particle weights do not 

change from time t to time t+l, i.e., . Accordingly, the predicted distribution at time 

t+l is given by: 

  (2.21) 

where the particle  is obtained by iteratively applying the state model Eq. (2.12) to the 

corresponding particle of the current state . 

Finally, the RUL associated to each particle at the present time t can be calculated with reference 

to the earliest time that the degradation state exceeds the failure threshold : 

  (2.22) 

where  is obtained by simulating the particle evolution via the state model Eq. (2.12). The predicted 

RUL distribution is, then, given by: 

  (2.22) 

More details can be found in [32], [33]. 
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Chapter 3  An Ensemble Method For Predicting Fatigue Crack 

Degradation 

 

In this Chapter, a prognostic framework for fatigue crack growth is proposed by integrating a 

recursive Bayesian filtering technique and a dynamic ensemble of models. The degradation state of 

the component is estimated based on the condition monitoring data collected until the current load 

cycle, and short-term degradation state prediction is performed to anticipate and proactively prevent 

sudden breakdowns of the component. The main contribution of the work is the dynamic ensemble 

which combines different Physics-of-Failure (PoF) models of fatigue crack growth with dynamic 

weights. The dynamic weights are computed based on the historical estimation error for a predefined 

number of the latest load cycles. To our knowledge, this ensemble framework has been here 

developed and applied for the first time for a prognostic problem of fatigue crack growth. To validate 

the performance of the proposed framework, a case study concerning fatigue crack growth with 

evolving operation conditions is carried out and the results are compared with those obtained by 

applying single degradation models. 

 

3.1 Proposed ensemble framework for fatigue crack growth prediction 

 

 

Fig. 3.1. Flow chart of the proposed prognostic framework. 
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In this Section, a weighted ensemble framework is presented to dynamically find the optimal 

combination of different crack growth models with respect to their estimation performances. Fig. 3.1 

illustrates the flow chart of the proposed prognostic framework, consisting of the following three steps: 

a) At the load cycle t, when a new measurement is available, the model parameters and the 

estimated degradation states given by each model are updated by using the recursive Bayesian 

filtering algorithm described in Chapter 2, Section 2.3.1.A.  

b) The estimated degradation state of each individual model is weighted by their estimation errors 

for the last cycles as follows:  

  (3.1) 

where  and  are the dynamic weight and estimation error coefficient of the ith model at 

time t, respectively. The estimation error coefficient  is computed:  

  (3.2) 

where  is the time horizon (  = 50 load cycles in the case study that follows) and  is the 

estimated degradation state of the ith model at time k. Thus, the highest weight is given to the 

model in the ensemble with lowest error at the present time t, whereas the smallest weight in 

constructing the ensemble is assigned to the least accurate model at time t.  

c) Once the dynamic weights for all models at the current time t are calculated, the predicted 

degradation state of the ensemble is computed as follows: 

  (3.3) 

where  is the ensemble predicted state at time t and NM is the number of degradation models.  

The model diversity plays an important role in deciding the generalization performance of an 

ensemble framework. For this reason, four different stochastic PoF models are considered to develop 

our ensemble model for fatigue crack growth prognostics, including: Paris-Erdogan, polynomial, 

global, and curve fitting models, as described in Chapter 2, Section 2.2. 

The proposed ensemble framework is applied for estimating the degradation states at the current 

time t, i.e. state regression, and at fixed predictions horizons , i.e. short-term state prediction where 

 is the prediction horizon. In the following case study, three scenarios are considered for validating 

the proposed method, including: 1) degradation state regression at the current time t; 2) short-term 

prediction at time t+100; and 3) short-term prediction at time t+300. It is important to note that for 

short-term predictions, the weights of individual models in the ensemble at prediction horizons 

are kept the same as the ones at the current time t because there is no measurement available to update 
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the weights at the future times.     

3.2 Illustrative case study of fatigue crack growth 

Numerical simulations of fatigue crack growth have been carried out with an initial crack length x0 

of 10-4 mm and a test frequency of 1 Hz. The total number of fatigue load cycles is N = 2000 cycles. 

To explore the capabilities of the proposed approach under time-varying degradation processes, the 

fatigue lifetime of the simulated crack growth is split into four continuous and equivalent periods, where 

the crack length is generated according to different crack growth models as follows:  

a) In the first 500-load-cycle period, the Paris-Erdogan model is employed to simulate the crack 

propagation process as described in Chapter 2, Eq. (2.4). In this regard, the Paris-Erdogan 

model can provide a linear relationship between  and , in other words, 

the stress intensity factor (SIF) range of simulated data is compatible to the Region II (Paris 

region).  

b) In the following period, the polynomial crack growth model in Chapter 2, Eq. (2.6) is used to 

generate the crack length.  

c) The global function-based crack growth model in Chapter 2, Eq. (2.9) is, then, employed for 

the third period.  

d) Finally, in the last period, from the cycle 1501 to 2000, the curve fitting function-based crack 

growth model in Chapter 2, Eq. (2.11) is utilized.  

The model parameters in this work are first initialized based on empirical knowledge, as detailed 

in Table 3.1. Subsequently, a Bayesian-based parameter identification approach is applied to adaptively 

update the parameters according to the real-time information from measured data at each load cycle. 

 
Table 3.1 Detailed settings of model characteristics of fatigue crack growth case studies. 

State noise variance 𝜎"#  = 0.49 

Measurement noise variance 𝜎$# = 0.16 

Paris-Erdogan model C = 0.1, m = 1.3 

Polynomial model 𝑝&= 1.4 x 10-3, 𝑝' = 1.5 x 10-3, 𝑝# = 1 x 10-5 

Global function-based model C = 0.005, m = 0.245 

Curve fitting function-based model w = 1 mm, C1 = 250, C2 = 0.3, m = -0.7 
 

For the purpose of extensively validating the effectiveness of the proposed approach for drifting 

degradation processes, two crack growth profiles under different conditions of load ratio, R = 0.1 and 

R = 0.15, are artificially integrated to expand the case study of the simulated crack growth, as illustrated 

in Fig. 3.2. Specifically, the load ratio R, or the stress ratio, measures the general influence of the mean 

log( / )dx dN log( )KD



3.3  Results and discussion 30 

stress on the fatigue crack growth behavior, and is defined by the ratio of the minimum to the maximum 

stresses experienced during a cycle. As the ratio R increases, the fatigue crack growth rate curve is 

shifted toward higher  [1]. 

 

Fig. 3.2. Simulated crack depth evolution profiles with different load ratios (a) R = 0.1 and (b) R = 0.15. 

3.3 Results and discussion 

The proposed prognostic framework based on recursive Bayesian technique and dynamic-weighted 

ensemble is applied to determine the best combination of multiple crack growth models in terms of 

degradation prediction performance. More specifically, when a new monitored measurement is 

available, the degradation states and crack growth model parameters are estimated online via the 

Bayesian technique. The four stochastic crack growth models described in Chapter 2, Section 2.2 are 

considered. The weight for each individual model is updated at the current load cycle and the ensemble 

is obtained by integrating the individual degradation models. The mean square error (MSE) is 

considered as the performance evaluation index to indicate prediction accuracy: 

  (3.4) 

where  and  denote the true degradation state and the prediction of the ith crack growth model at 

time t, respectively. 

The degradation state estimations at different load ratios are shown in Figs. 3.3 and 3.4. As 

expected, the estimated degradation states among different models are similar for the current time, as 

shown in Figs. 3.3(a) and 3.4(a), but obviously separated for short-term state predictions. This indicates 

the effectiveness of the prediction error-based dynamic weights in reflecting the performance of 

different degradation models. An interesting observation in Figs. 3.3 and 3.4 is that the polynomial 

model can exhibit satisfactory performance when the fatigue crack depth is small, but its performance 

is rapidly degraded when the crack becomes longer. This is mainly because of the fact that the 
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polynomial function only fits in the linear least square stage of the degradation process, as mentioned 

in Chapter 2, Section 2.2.2. In other words, the polynomial model is able to achieve satisfactory 

performance only for linear and deterministic fatigue crack growth processes. In contrast, by combining 

dynamically different degradation models, the proposed ensemble approach can achieve superior 

performance to the individual models in predicting the degradation states of fatigue crack growth. Table 

3.2 shows that the proposed ensemble framework outperforms the individual crack growth models, 

yielding a prediction accuracy of 2.07 and 33.14 in terms of MSE for short-term degradation state 

prediction at time t+300 under the load ratios R = 0.1 and R = 0.15, respectively.  

 

   

Fig. 3.3. Estimation of degradation state at load ratio R = 0.1 in three scenarios: (a) Regression at time t; (b) 

Prediction at time t+100; and (c) Prediction at time t+300.  

(a)

(b)

(c)



3.3  Results and discussion 32 

 

Fig. 3.4. Estimation of degradation state at load ratio R = 0.15 in three scenarios: (a) Regression at time t; (b) 

Prediction at time t+100; and (c) Prediction at time t+300. 

Table 3.2 MSE results of the degradation state regression and short-term prediction at different load conditions. 

 R = 0.1  R = 0.15 

 t t+100 t+300  t t+100 t+300 

Paris-Erdogan model 0.10 1.09 12.79  0.15 10.35 151.04 

Polynomial function-based model 0.10 4.51 60.90  0.15 278.25 9764.72 

Global function-based model 0.10 0.69 11.92  0.15 8.94 140.21 

Curve fitting function-based model 0.10 3.54 42.03  0.15 14.33 119.09 

Proposed ensemble 0.10 0.38 2.07  0.12 5.23 33.14 

  

The impact of uncertainty on the performance of the proposed framework in case of unknown initial 

state of degradation has also been investigated. In this case, the monitored data are assumed unavailable 

from time 1 to  (  = 500 in this study), and the true degradation state of the system is also assumed 

unknown. The performance of the proposed approach under different load ratio conditions is shown in 

Figs. 3.5 and 3.6. The dashed line with marker are the predicted degradation states of the proposed 

approach while the dotted lines are the 95% confidence intervals. The results in Figs. 3.5 and 3.6 show 

that the proposed framework can yield accurate state predictions even without knowledge of the initial 

degradation state. In Fig. 3.6(c), some abnormal spikes in the confidence intervals can be observed. 

(a)

(b)

(c)

0t 0t 0t
x
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Note that these abnormal spikes exist only in the case study in which the degradation state prediction 

is performed at time t+300 with no available measurement until the time  = 500. For the relative 

shorter prediction horizon, no spike is observed. This can be explained by the fact that for a long-term 

prediction time t+300, the performances of individual models in the ensemble can be unexpectedly 

degraded due to the propagation of uncertainty. As can be seen in Figs. 3.7 and 3.8 below, in the last 

400 load cycles, the performance diversity between the polynomial model and the others is clearly 

observed, and, furthermore, the variance of the polynomial model also rapidly increases, resulting in 

unsatisfactory performance in the estimation of the confidence intervals. 

 

 

Fig. 3.5. Estimation of degradation state with measurements that are not available until the time t0 = 500 at load 

ratio R = 0.1, in three scenarios: (a) Regression at time t; (b) Prediction at time t+100; and (c) Prediction at time 

t+300. 

0t

(a)

(b)

(c)
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Fig. 3.6. Estimation of degradation state with measurements that are not available until the time t0 = 500 at load 

ratio R = 0.15, in three scenarios: (a) Regression at time t; (b) Prediction at time t+100; and (c) Prediction at 

time t+300. 

 

Fig. 3.7. Degradation state prediction at time t+300 with measurements that are not available until the time t0 = 

500 at load ratio R = 0.15: (a) Ensemble weights of individual models; (b) Degradation state prediction of 

individual models; (c) Degradation state prediction of the proposed ensemble. 

(a)

(b)

(c)

(a)

(b)

(c)
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Fig. 3.8. The variance of degradation state predictions at time t+300 with measurements that are not available 

until the time t0 = 500 at load ratio R = 0.15. 
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Chapter 4  An Ensemble Method Based On Particle Filtering 

for Fatigue Crack Prognostics 

 

In this Chapter, an improved ensemble framework is presented for predicting the evolution to failure 

and the Remaining Useful Life (RUL) of an equipment undergoing fatigue crack growth. To 

maximize diversity in the ensemble, four stochastic degradation models of fatigue crack growth are 

considered. Moreover, Particle Filtering (PF) is used to track the crack propagation process with 

nonlinear and non-Gaussian characteristics, and eventually to predict the RUL of the equipment 

before breakdown. To further enhance the performance of the proposed framework, a dynamic 

weighted ensemble strategy is proposed, based on the previous accuracy performance in degradation 

state estimation and RUL prediction of each single model in the ensemble. Finally, a set of prognostic 

performance indicators (PPIs) is employed to validate the prediction capability of the proposed 

framework in a case study concerning multiple fatigue crack degradation processes. 

 

4.1 Ensemble-based framework for fatigue crack prognostics 

The flow chart of proposed ensemble-based framework for fatigue crack prognostics is illustrated 

in Fig. 4.1. In this framework, we aim at addressing three main issues: 1) how to select the degradation 

models for the ensemble; 2) how to use the degradation models for estimating the degradation states 

and predicting the RUL of the equipment; 3) how to combine the outputs of the individual models for 

achieving maximum accuracy. The details of the proposed framework are given as follows. 

 

 
Fig. 4.1. Flow chart of the proposed prognostic framework. 
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With respect to the way of calculating the weights of the models in an ensemble, ensemble 

approaches can generally be classified into three categories: 1) simple vote ensemble [1], where all 

individual models outputs are given the same weight coefficients in the voting strategy; in this 

approach, majority vote is the most popularly used rule; 2) weighted ensemble [2], which combines 

individual models with different weight coefficients, which means that each individual is assumed to 

have a different contribution to the performance of the ensemble model; 3) selective ensemble [3], 

which includes only an optimal subset of models. Recently, the selective ensemble approach has 

attracted increasing interest, due to its capability of significantly reducing the bias and variance in the 

ensemble estimation [3]. 

In this work, we propose a selective ensemble approach for prognostics of fatigue crack growth 

based on a Best-Worst Weighted Vote (BWWV) strategy. A novel ensemble weight constructed by 

using both previous estimation and prediction accuracies of each individual model in the population is 

presented. 

4.1.1 Previous estimation accuracy-based output weight  

Consider a sequence of measurements collected until the current time t, , the 

degradation states described by individual models, , where  is the 

number of individual models (NM = 4 in this work), can be estimated by using PF as described in Chapter 

2, Section 2.3.1.B. The weight coefficients of individual models are computed as the Root Mean Square 

Error (RMSE) of their previous estimates with respect to the corresponding measurements: 

  (4.1) 

where  is the time horizon of previous estimates considered (  load cycles in the case study 

that follows). The previous estimation accuracy-based output weight of each single model is, then, 

obtained based on the BWWV as follows: 

  (4.2) 

where  and . Specifically, the maximum weight = 1 is assigned to the 

model in the ensemble with the highest accuracy at the time t, whereas the null weight = 0 is given 

to the least accurate model, equivalent to temporarily removing it from the ensemble at time t. 

4.1.2 Previous prediction accuracy-based output weight 

Because there is no measurement available to predict the future states, the prediction accuracy of 

each model in the ensemble for the previous time steps is used to calculate the corresponding output 
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weight. We first identify a time instant  before the present time t in the time horizon, where 

   (  load cycles in the following case study), as illustrated in Fig. 4.2. The state 

prediction  (the dashed line) of one model at time  is obtained by iteratively applying the system 

model to the estimated state , which is set to  in this study. The weight coefficients of individual 

models are computed as the RMSE of their predictions for degradation states between time  and t 

with respect to the measurements: 

  (4.3) 

Thus, the previous prediction accuracy-based output weights of individual models are computed as:  

  (4.4) 

 

Fig. 4.2. An illustration for calculating the previous prediction accuracy-based output weight. 

4.1.3 Overall ensemble weight 

The complete ensemble weights of individual models are computed as the average of the previous 

estimation accuracy-based and previous prediction accuracy-based weights: 

  (4.5) 

and are normalized in the range [0; 1]: 
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  (4.6) 

Finally, the predictions of the degradation state and RUL of the ensemble framework are computed: 

  (4.7) 

  (4.8) 

where  and  are the predictions of the degradation state and RUL of the ensemble framework at 

time t, respectively, and  is the RUL predictions of individual models, which are obtained by 

using PF as described in Chapter 2, Section 2.3.2. 

4.2 Case study 

In this work, a case study considering 100 simulated degradation trajectories of fatigue crack 

growth is carried out, as shown in Fig. 4.3. The Paris-Erdogan Physics-of-Failure (POF) model as 

described in Chapter 2, Eq. (2.4) is employed to generate the crack depth trajectories with the 

parameters predefined as follows: 

• The model constants are  and . 

• The state and measurement noise variances are  and , respectively. 

• The initial crack depth is 10-4 mm. 

The crack depth measurements are recorded at every load cycle. A failure threshold xth is set to 100 

mm. The fatigue simulation for each degradation trajectory is performed with a total 800 load cycles. 
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Fig. 4.3. 100 fatigue crack growth degradation trajectories. 

4.3 Performance evaluation 

In this Section, the performance of the proposed ensemble-based prognostic framework is validated 

in predicting the degradation evolution and the RUL of the component. The results are compared with 

four single PoF models of fatigue crack growth with respect to five widely used PPIs, including 

Timeliness Weighted Error Bias (TWEB), Sample Mean Error (SME), Mean Absolute Percentage Error 

(MAPE), Mean Square Error (MSE), and Sample Median Error (SMeE). The definitions of the PPIs 

are given in Appendix 1 of this Chapter.  

When a new measurement is collected, the degradation state estimations of individual models are 

updated by using PF as described in Chapter 2, Section 2.3.1.B. Fig. 4.4 shows the estimation results 

of the four PoF models for the 1st simulated degradation trajectory, as mentioned in Section 4.2, over 

800 load cycles. The four single model shows distinctive characteristics in different stages of the 

degradation evolution of the fatigue crack, which is suitable for the diversity of the proposed ensemble 

framework. 

 

 
Fig. 4.4. State estimation results obtained by the individual PoF models for the 1st degradation trajectory. 

Based on the estimations of the individual models, the ensemble weights are computed and used to 

update the predictions of the degradation state and RUL of the proposed ensemble framework, as shown 
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in Figs. 4.5 and 4.6, respectively. In Fig. 4.6, the individual PoF models are quite inaccurate in 

predicting the RUL throughout the whole time horizon, which can be explained due to their low 

accuracies in predicting the degradation states, as shown in Fig. 4.5. On the other hand, the proposed 

framework shows a superior performance and obtain the predicted RUL close to the true one. 

 
Fig. 4.5. State estimation results obtained by all of the models for the 1st degradation trajectory. 

 

Fig. 4.6. RUL prediction results obtained by all of the models for the 1st degradation trajectory. 

To further validate the performance of the proposed ensemble framework, four scenarios are 

randomly chosen. The results of the proposed framework are shown in Figs. 4.7 and 4.8. As shown in 

these Figures, the proposed framework shows satisfactory performance in accurately predicting the 

equipment crack growth trend and the equipment RUL. In addition, in Fig. 4.8, the confidence intervals 

show that the RUL prediction accuracy of the proposed approach is improved with more available data. 
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This can be explained by the fact that the proposed approach which benefits from the diverse accuracy 

of the individual models by a weighting scheme that can adaptively select the best set of models.  

 

 

Fig. 4.7. Degradation state estimation using the proposed ensemble with different available measurements. 
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Fig. 4.8. RUL prediction using the proposed ensemble with different available measurements. 

Tables 4.1 and 4.2 present the average performances in terms of the predictions of the degradation 

states and RUL, which have been calculated over 100 crack depth growth scenarios. The results clearly 

show that the proposed ensemble framework consistently outperforms the individual models for all of 

the prognostic metrics. 

 
Table 4.1 Performance comparison for the estimations of degradation states. 

 Paris-Erdogan Polynomial Global function Curve fitting Proposed ensemble 

Avg. MSE 
(std) 

117.72 
(102.68) 

166.30 
(80.39) 

138.64 
(74.91) 

102.90 
(69.38) 

8.85 
(5.04) 

 

Table 4.2 Performance comparison for the RUL predictions.  

 TWEB SME MAPE MSE SMeE 

Paris-Erdogan 0.09 115.25 0.62 18.28×103 114.63 

Polynomial 0.07 85.68 0.37 11.56×103 85.43 

Global function 0.02 45.79 0.20 3.11×103 45.86 

Curve fitting 0.03 65.18 0.23 7.01×103 64.18 

Proposed ensemble 0.01 29.41 0.16 3.03×103 31.81 

Appendix 1. Detailed definitions of the PPIs. 

Formula Description 
1. Timeliness weighted error bias (TWEB) 

 

 

Measure the weighted prediction error over the lifetime Tj by 
using a penalty function and a weighting function . 

 is defined as a Gaussian kernel function with a mean 

value Tj and a standard deviation 0.5Tj. The optimal value for 
TWEB is 0, which indicates that the predicted RUL is centered 
on the true one. Higher values of TWEB indicate a great 
discrepancy between the predicted RUL and the true one.   

2. Sample mean error (SME) 

 

Calculate the average errors of all sample points during the 
lifetime Tj. The optimal value for SME is 0, which indicates 
that the average errors of all samples is 0, that is, the predicted 
RUL is centered on the true one. Higher values of SME indicate 
a great discrepancy between the predicted RUL and the true 
one. 

3. Mean absolute percentage error (MAPE) 

 

Measure the average absolute percentage error of all samples 
throughout the lifetime Tj. The optimal value for MAPE is 0, 
which indicates a negligible error for all samples during their 
lifetime. Higher values of MAPE indicate a great discrepancy 
between the predicted RUL and the true one. 

4. Mean square error (MSE) Take into account the average quadratic error of the predicted 
RUL of all samples during the lifetime Tj. The optimal value 
for MSE is 0, which indicates that the predicted RUL is equal 
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to the true one for all samples. Higher values of MSE indicate 
high errors in the predicted RUL. 

5. Sample median error (SMeE) 

 

Exploit the absolute median of average errors of all samples 
over the lifetime Tj. The optimal value for SMeE is 0, which 
indicates that the median error of all samples is zero. Higher 
values of SMeE indicate that most predicted RULs are wrong. 
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Chapter 5  Background of Multi-Step Ahead Predictions For 

NPP Time Series Data 

 

This Chapter introduces the research background and literature review of multi-step ahead prediction 

approaches, following by the detailed methodologies of Long Short-Term Memory (LSTM) neural 

network, Tree-structured Parzen Estimator (TPE) hyperparameter optimization and Dropout 

regularization approaches. These approaches will be applied in the development of our two proposed 

multi-step ahead prediction methods for the real time series data of different Nuclear Power Plant 

(NPP) components, as given in Chapters 6 and 7.   

 

5.1 Multi-step ahead predictions 

5.1.1 Introduction  

Several factors need to be accounted for when developing an effective PHM, such as the specific 

requirements of the application, the knowledge and data available on the components and systems 

degradation and failure processes, and the prediction horizon, i.e. how far into the future the model 

should predict and with what accuracy [1]. In safety-critical applications, such as those typically 

encountered in the nuclear industry, components and systems are designed to guarantee very high 

reliability levels given the potentially catastrophic consequences of their failures. Therefore, given the 

long-term horizons of the degradation processes, prognostics is called to accurately predict components 

and systems behaviors multi-step ahead. This is of paramount importance in the nuclear industry where 

maintenance interventions of some critical components should be planned well in advance, given the 

impossibility of performing some of them during plant operation. Also, long-term predictions of the 

components degradation are needed to decide whether a component can safely operate until the next 

planned plant outage, which can involve predictions over horizons of months [2]–[4]. Despite its 

importance, multi-step ahead prediction remains a difficult task of PHM, because uncertainty increases 

with the time horizon of the prediction. This is mainly caused by the intrinsic stochasticity of the 

degradation process, the accumulation of the prognostic model errors and the difficulty of predicting 

the component operating conditions, which can have a big influence on the degradation process in 

complex systems [1], [5]. Large prediction uncertainty has limited the development of prognostics in 

nuclear applications to only short-term prognostics, based on one-step ahead prediction [3], [4], [6]–

[8]. 

In general, multi-step ahead prediction models can be classified as statistical or machine learning 
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approaches [9], [10]. Statistical approaches, such as Autoregressive Integrated Moving Average 

(ARIMA) and Exponential Smoothing (ES), attempt to model the data autocorrelation structure and 

make predictions assuming a linear dependence between future and past data [11]. Because of this 

assumption, statistical approaches are not the appropriate choice for complex real-world systems, such 

as nuclear power plants which typically exhibit nonlinear and nonstationary behaviors. Alternatively, 

machine learning approaches have been shown able to automatically learn arbitrary complex mappings 

between inputs and outputs directly from historical data, and achieve accurate predictions without the 

need of predefining the model form [12]. The most widely used machine learning approaches for multi-

step ahead predictions are Support Vector Regression (SVR) [13]–[16], Artificial Neural Network 

(ANN) [9], [10], [17]–[19], Neuro-Fuzzy [5], [20], [21] and Recurrent Neural Network (RNN) [22]–

[24]. Recently, the use of Long Short-Term Memory (LSTM) has been proposed to improve the 

performance of conventional RNN in dealing with long-term predictions [25]. An LSTM is based on a 

series of memory cells recurrently connected through layers to capture and retain the data long-term 

dependencies, thus enhancing the network capability in learning and predicting multi-step ahead into 

the future. Successful applications of LSTM for multi-step ahead prediction have been reported in 

different fields, such as the forecasting of wind speed [26]–[31], solar energy [32]–[34], air quality 

[35]–[37], stock market [38], [39], electricity and gas demand [40]–[42], and oil and petroleum 

production [43], [44]. 

 

5.1.2 Multi-step ahead prediction strategies 

Given a univariate time series of the observations collected up to time t, , the main 

goal is to predict the H next observations , which can be formulated as below:  

 , (5.1) 

where f is the prediction model and d is the embedding dimension (or the number of lagged values). 

Depending on the desired horizon H, a prediction method can be classified into short-, medium-, 

or long-term prediction. As aforementioned, the further in the future one attempts to predict, the harder 

it is to achieve an accurate prediction due to the increasing uncertainty and accumulation of errors. To 

address this problem, there are three popular prediction strategies, namely recursive, direct and MIMO 

predictions, which are described as follows [5].    

A.  Recursive prediction strategy 

The recursive strategy attempts to train a model focused solely on one-step ahead prediction: 

  (5.2) 

where fR is the one-step ahead prediction model.  

{ }1 2, ,..., tx x x

{ }ˆ , [1, ]t hx h H+ Î

{ }1 2 1 1ˆ ˆ ˆ, ,..., ( , ,..., )t t t H t t t dx x x f x x x+ + + - - +=

1 1 1ˆ ( , ,..., )t R t t t dx f x x x+ - - +=



 Chapter 5  Background of Multi-Step Ahead Predictions For NPP Time Series Data 

 

47 

After the model is trained, the predictions are recursively estimated. In other words, intermediate 

predictions are used as inputs for predicting next values until the prediction at the time horizon H, , 

is obtained: 

  (5.3) 

An advantage of the recursive strategy is its low computational cost since only one single model is 

required for training. However, the prediction errors of the previous steps can easily accumulate in the 

next predictions, resulting in the decrease of accuracy in the long run. Besides, this prediction strategy 

does not take into account the data dependencies among time steps. 

B.  Direct prediction strategy 

In contrast to the recursive strategy which uses a single model, the direct strategy [45] constructs a 

set of H different models for different time steps and the same input data are used for feeding all the 

models as below: 

  (5.4) 

where  is the direct prediction model tuned to perform the prediction  at time  . 

In the direct strategy, each prediction model is trained and dedicated to a certain horizon, so the 

error accumulation can be avoided. However, training different prediction models will greatly increase 

the prediction complexity and time consumption, and, like the recursive strategy, the direct strategy 

does not take into account the dependencies among time-series observations.   

C.  MIMO prediction strategy 

Unlike the recursive and direct approaches, the MIMO approach is a multiple output strategy, in 

which the output of the prediction model is a vector of future values predicted by using only one model 

[46]:   

  (5.5) 

where fMIMO is the multiple output prediction model. In this sense, the objective function during the 

model training is to simultaneously minimize the prediction errors on different horizons. By so doing, 

the MIMO strategy can preserve the temporal stochastic dependencies of sequential data, addressing 

the limitation of the recursive and direct approaches. On the other hand, the computational cost of the 
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MIMO approach is less than that of the direct approach because it requires only one model to be trained. 

5.2 Long Short-Term Memory (LSTM) 

LSTM is a type of RNN which has been developed to address the problems of the vanishing or 

exploding gradient that are typically encountered when training traditional RNNs in case of long-term 

dependencies in the time series [25]. An LSTM network consists of a chain of repeating memory 

modules (Fig. 5.1).  

 

Fig. 5.1. The structure of LSTM repeating memory modules [47]. 

In each memory module, a cell state , which is composed of a sigmoidal layer function  and 

a pointwise multiplication operation, controls the network information using the forget, input and 

output gates. At time t when a new observation  is fed to the network, the forget gate decides to keep 

or remove the information of the preceding memory block output . The ouput of the forget gate is: 

  (5.6) 

where  and  are the input weights and bias of the forget gate, respectively, and “ . ” denotes the 

multiplication operation. The input gate determines whether  is stored in the cell state : 

  (5.7) 

where  and  are the input weights and bias of the input gate, respectively. A tanh layer function is 

used to generate a new information vector  to be added to : 

  (5.8) 

where  and  are the input weights and bias of the tanh layer function of , respectively. The tanh 

activation function is used to normalize the values flowing through the network in the range [-1; 1]. 
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The outputs of the forget and input gates and of the tanh layer function are used to update the cell state 

: 

  (5.9) 

Finally, the output of the memory block  is generated by using the output gate and another tanh layer: 

 , (5.10) 

  (5.11) 

where  and  are the input weights and bias of the output gate, respectively.  

5.3 Tree-structured Parzen Estimator (TPE) hyperparameter optimization 

Automatic hyperparameter optimization plays a fundamental role in the development of machine 

learning models, especially when deep neural networks such as LSTM [48] are used. It allows reducing 

the human effort necessary to develop the model and improving the network performance by selecting 

hyperparameter values optimal for the target application at hand [49], [50]. In this study, we apply Tree-

structured Parzen Estimator (TPE) [51], which is a Sequential Model-based Bayesian Optimization 

(SMBO) algorithm, to automatically select the hyperparameters of the LSTM model. The fitness 

function of our optimization problem is the Root Mean Square Error (RMSE) of the LSTM:  

  (5.12)  

where N is the number of observations and  and  are the time series true and predicted values, 

respectively. 

The TPE optimization process requires a number of function evaluations lower than other 

optimization techniques such as grid and random search, which means that it can achieve a faster 

convergence to the optimum. Also, differently from SMBO, it allows optimizing categorical and 

conditional hyperparameters, providing a wider range of hyperparameter choices [51].  

The key idea of TPE is to use the Parzen-window density estimation (also known as kernel density 

estimation) for building probability density functions in the hyperparameter search space. More 

specifically, each sample defines a Gaussian distribution in the hyperparameter space with a mean equal 

to the hyperparameter value and a properly set standard deviation. At the start-up iterations, a random 

search is performed to initialize the distributions by sampling the response surface  

, where  denotes the hyperparameter set and y is the corresponding value of the 

response surface (i.e. the fitness score) and  is the number of start-up iterations. Then, the 

hyperparameter space is divided into two groups, namely good and bad samples with respect to a 
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threshold value y* of the fitness score. The two groups are defined by the probability distributions  

and  of the hyperparameter set :  

  (5.13) 

Then, the expected improvement (EI) is computed at each iteration: 

  (5.14)  

And the hyperparameter configuration  which maximizes EI is chosen. Therefore, TPE selects the 

optimal hyperparameters based on a set of best observations and their distributions, not only the best 

one. Fig. 5.2 describes the overall flowchart of the TPE algorithm, where  denotes the number of 

TPE iterations. 

 

Fig. 5.2. Flowchart of the TPE optimization procedure. 

5.4 Dropout regularization 

A well-known and critical problem of deep neural networks such as LSTM is overfitting [52]. That 

is, when the training data is limited, complicated mappings between the inputs and outputs that are 

learned by the network might be the result of sampling noise, which only exist in the training set but 

not in the real test set. One way to regularize such a network is averaging the outputs of all possible 

configurations of the parameters, in which each configuration is weighted by its posterior probability 

given by the training data [53]. This method can be applied only for simple or small networks. With 
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large neural networks, the computation for training many different network architectures or training 

one architecture on different data sets is very expensive. Dropout is a technique that addresses this issue 

[53]. 

A motivation for dropout comes from a theory of sexual reproduction [54], in which new genes are 

naturally selected to spread throughout the population based on their competitiveness and less co-

adaptation which may reduce the chance of a new gene improving the fitness of an individual. Likewise, 

dropout aims to train each hidden unit in a neural network with a randomly chosen sample of other 

units. By dropping a unit out, we temporarily remove it from the network along with all its connections 

during the training process as illustrated in Fig. 5.3, in order to prevent units from high co-adaptation. 

By so doing, each hidden unit becomes more robust and is able to create useful features on its own 

without relying on other units, which helps the network avoid overfitting. 

  

(a) (b) 

Fig. 5.3.  An example of a dropout network model [53]: (a) A fully connected 2-hidden layers network; (b) The 

network obtained by applying dropout. Crossed units are excluded. 

Consider a neural network with L hidden layers, in which the input and output vectors of layer l 

(for 𝑙 ∈ {1,… , 𝐿}) are denoted as z(l) and y(l), respectively. w(l) and b(l) are the weights and biases of layer 

l, respectively. For a standard neural network, the feed-forward operation can be described as: 

 , (5.15) 

 , (5.16) 

where f is the activation function and i denotes the index of hidden unit, as illustrated in Fig. 5.4(a).  

With a dropout network (Fig. 5.4(b)), a vector of independent Bernoulli random variables r(l) with 

probability p is used at each hidden layer l to generate the thinned outputs ỹ(l) as follows: 

 , (5.17) 

 , (5.18) 

where * denotes an element-wise product. The thinned outputs are, then, used as inputs to the next layer 
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of the feed-forward operation: 

 , (5.19) 

 , (5.20) 

 

(a) Standard network (b) Dropout network 

Fig. 5.4.  Comparison of the basic operations of a standard and dropout network [53].  
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Chapter 6  A Multi-Step Ahead Prediction Method For NPP 

Steam Generator Signals 

 

Developing an accurate and reliable multi-step ahead prediction model is a key problem in many 

Prognostics and Health Management (PHM) applications. Inevitably, the further one attempts to 

predict into the future, the harder it is to achieve an accurate and stable prediction due to increasing 

uncertainty and error accumulation. In this Chapter, we address this problem by proposing a 

predictive model based on Long Short-Term Memory (LSTM), a deep neural network developed for 

dealing with the long-term dependencies in time-series data. The proposed prediction model tackles 

two additional issues. Firstly, the hyperparameters of the proposed model are automatically tuned by 

a Bayesian optimization algorithm, called Tree-structured Parzen Estimator (TPE). Secondly, the 

proposed model allows assessing the uncertainty of the prediction. To validate the performance of 

the proposed model, a case study considering steam generator data acquired from different French 

Nuclear Power Plants (NPPs) is carried out. Alternative prediction models are also considered for 

comparison purposes. 

 

6.1 Proposed LSTM-based prognostic framework 

In this Section, we present a prognostic framework for the multi-step ahead prediction of the time-

series data from steam generators (SGs), as illustrated in Fig. 6.1.  

  

Fig. 6.1. The flowchart of the proposed multi-step ahead prediction framework for SGs. 

The proposed framework consists of three main stages: data preprocessing, model selection and 

multi-step ahead prediction. Firstly, the data preprocessing stage is responsible for preparing the data 

for training and testing the prediction model. Then, in the second stage, a LSTM-based model is built 

for the Multi-Input Multi-Output (MIMO) prediction using the training data and its hyperparameters 

are automatically optimized with the objective function of minimizing the validation error. In the last 

stage, the performance of the trained prediction model is validated for multi-step ahead prediction and 

a Monte Carlo (MC) dropout technique is used to capture the prediction uncertainty. The procedure of 

the proposed framework can be summarized as in Algorithm 6.1, where max_iter is the number of 
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optimization iterations and NMC is the number of MC dropout realizations. The details of each stage are 

given in the following sections.  

Algorithm 6.1. Procedure of the proposed multi-step prediction framework 

Input: A raw time series data collected up to time t:  

Output: Predictions of H next observations and their uncertainty information 

Preprocessing stage 

1. Detect and remove outliers  

2. Impute missing data points 

Model selection stage 

3. for i in {1,…,max_iter} do 

a. Select the optimal network hyperparameters at the ith trial with TPE 

b. Validate the hyperparameters by using k-fold cross-validation 

c. Update the fitness value with the average training error measured over k folds 

4. Select the best hyperparameter setting with the lowest fitness value 

Multi-step ahead prediction stage 

5. for i in {1,…,NMC} do 

a. Build a LSTM-based prediction model with the selected hyperparameters 

b. Perform the predictions for H steps ahead  by using the MIMO 

prediction strategy 

6. Calculate the mean and confidence interval of the predictions over NMC realizations 

 

6.1.1 Data preprocessing 

The quality of the observation data for training is one of the most important factors for the 

successful performance of a prediction model. Due to the errors during sensor measurements or signal 

transmission, the acquired observations may include missing and anomalous data points, e.g. outliers, 

which can negatively impact the model performance. In this study, we adopt a raw data preprocessing 

module focusing on the two following tasks: 1) detecting and removing outliers; 2) imputing missing 

data points, the number of which may increase after removing outliers. 

The first problem is addressed by using the Isolation Forest, an outlier detection technique built on 

the basis of decision trees [1]. This technique is based on an assumption that outliers are few, different 

and susceptible to a mechanism called isolation. In comparison with conventional distance and density 

measures, isolation has been proved to be a much more effective indicator to detect anomalies. In 

addition, Isolation Forest also requires a small linear time complexity. Further details on the algorithm 

of Isolation Forest can be found in [1]. Once outliers are reduced, a local polynomial regression 

{ }1 2, ,..., tx x x

{ }ˆ , [1, ]t hx h H+ Î
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technique is used to reconstruct missing data samples and reduce noises. The preprocessed data is later 

used for training and testing the prediction model in the following stages. 

6.1.2 Model selection 

A.  Prediction horizon 

Several research works have been carried out on determining an optimal horizon of prediction in 

order to provide predictions accurately and timely, and to ensure the usefulness of the prognostic model. 

However, to the authors’ knowledge, there is no general rule reported for dealing with this issue. We 

have carried out a review on the horizons selected in recent prediction studies for industrial applications 

during 2015-2019 [2]–[28] and the result is summarized in Fig. 6.2. The result shows that multi-step 

ahead prediction has been less studied than single-step ahead prediction, and that most of the works 

were carried out with horizons ranging from 3 to 6 steps ahead. To demonstrate the effectiveness of the 

proposed model, a prediction horizon of 15 steps (45 days of operation) ahead is investigated in this 

study. 

 

Fig. 6.2. Prediction horizons of recent studies. 

B.  Hyperparameter optimization 

The TPE optimization approach described in Chapter 5, Section 5.3, is employed to automatically 

optimize the hyperparameters of the proposed prediction model. 

6.1.3 Multi-step ahead prediction 

In the testing stage, the MIMO prediction strategy introduced in Chapter 5, Section 5.1.2.C, is used 

to predict the future values. As mentioned in Section 6.1.2, the prediction horizon h is set to 15-step 

ahead in this study, as shown in Fig. 6.3. 
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Fig. 6.3. Multi-step ahead prediction procedure. 

To further assess the prediction performance, we adopt a MC Dropout technique [29] in order to 

capture the uncertainty information of the multi-step ahead predictions of the proposed model. It is 

important to note that the standard LSTM network is not capable to quantify the prediction uncertainty 

itself. In the MC dropout technique, a dropout probability is applied to all the weight layers in the 

network, which represents the network weights drawn from a Bernoulli distribution. Thus, the 

prediction uncertainty can be quantified by running several forward passes through the network. In this 

study, we perform NMC=100 stochastic forward passes, in which network units of each layer are 

randomly dropped out, and obtain the mean and confidence interval of the predictions.   

6.2 Experimental study 

6.2.1 SG data 

In this work, the prediction performance of the proposed model is evaluated on the SG data of 

French NPPs. SGs in pressurized water reactors (PWRs) are heat exchangers which use the heat from 

the primary reactor coolant to produce steam in the secondary side and, thus, drive the turbine 

generators. In addition, the SGs act as a safety barrier between the radioactive primary side and the 

non-radioactive secondary side. Due to their critical role in NPPs, any degradation mechanism in SGs 

should be monitored and prevented at the early stages of propagation. A widely used method of 

degradation monitoring is the analysis of the Wide Range Level (WRL) dynamic behavior recorded by 

control sensors [30], [31].  

WRL is one of the condition monitoring variables measured from the NPP SGs. It is estimated from 

the difference between the pressure measured at two difference heights, i.e. the dome and the bottom 

of the downcomer, as illustrated in Fig. 6.4 (label 18) [31]. Due to its nature, WRL is very sensitive to 

the temperature, the flow rate of the feed-water and the circulation ratio of the SG. Usually, WRL 

variations are monitored during slow transients and during manual control at low power load [31]. 

Among critical SG degradation mechanisms, clogging is a phenomenon where the flow holes of the 

tube support plates are partially or completely blocked by deposits, leading to the reduction of the 

circulation flow rate in the SGs [31]. Clogging in SG is a slow process which may take several years. 

In [32], it has been shown that the WRL of a SG is closely related to the clogging degradation. Thus, 
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the predictions of WRL can be converted to the clogging degradation state. 

 

Fig. 6.4. The front-cut schematic of a 51B-model SG [31]. 

The original SG data employed in this study were collected from six SGs of two different 900-MW 

NPPs, which are operated by Électricité de France (EDF). Each plant consists of three SGs. The WRL 

data were recorded during the stationary regimes in which the power demand percentage is stably 

maintained greater than 90%, at an interval of 3 days from July 1992 to June 2007. Fig. 6.5 shows the 

temporal evolution of the WRL observations of the two NPPs. The names of the plants are omitted for 

confidentiality reasons.  

  
(a) Plant No. 1 (b) Plant No. 2 
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Fig. 6.5. Raw WRL measurements recorded from control sensors of different NPPs.  

6.2.2 Data preprocessing 

Before being used for the model development, the raw SG data are preprocessed by using the 

Isolation Forest and local regression approaches described in Section 6.1.1. Fig. 6.6 shows the results 

of applying the Isolation Forest for reducing outliers in the data of SG 1 of plant No. 2. In Fig. 6.6(a), 

the solid line indicates the normal measurements whereas the detected outliers are highlighted as circled 

points, which are later eliminated in Fig. 6.6(b). An interesting observation in Fig. 6.6(a) is the 

anomalous spike between 1997 and 1999. Without the outlier detection step, this sudden spike could 

highly impact, in a negative manner, on the prediction accuracy. After reducing the outliers, imputations 

for missing data samples are given. The preprocessed data of all SGs after the preprocessing stage are 

shown in Fig. 6.7.   

  
(a) Original signal with outliers highlighted (b) Modified signal after outlier removal 

Fig. 6.6. Applying the Isolation Forest to the data of SG 1 of plant No. 2. 

  
(a) Plant No. 1 (b) Plant No. 2 

Fig. 6.7. The results of the preprocessing stage for all SG data. 

6.3 Results and discussion 

After the preprocessing stage, each SG data series is divided into a training set and a testing set. 

The data for the first 11 years, from July 1992 to December 2002, which include a total of 1230 samples 
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at a 3-day interval, are selected to train the proposed prediction model and the next 5-year data with 

510 samples are employed to test the model performance.  

Before constructing the proposed model, we employ the False Nearest Neighbor (FNN) algorithm 

[33] to determine the appropriate embedding dimension d of the data series. The main idea of the FNN 

algorithm is to find the minimum dimension where the distances between the nearest neighbors in the 

time series do not significantly change in the next higher dimensional embedding. Fig. 6.8 shows the 

result of applying FNN to the data of SG 1 of plant No. 1. A threshold for identifying the minimum 

embedding dimension is set to 0. In this Figure, the minimum embedding dimension value is found at 

12. We summarize the optimal embedding dimensions identified for all the SGs data series in Table 

6.1.   

   

Fig. 6.8. FNN result for SG 1 of plant No. 1. 

Table 6.1 Minimum embedding dimensions for all SGs. 

Plant No. 1 No. 2 

SG 1 2 3 1 2 3 

Embedding dimension 12 13 9 9 11 6 
 

In this study, we carry out three comparisons to evaluate the performance of the proposed 

prognostic model. The first comparison is conducted to analyze the viability of TPE in tuning the 

proposed model during the training stage. As a standard optimization approach, Random Search (RS) 

is considered for benchmarking purposes. Another comparison is, then, carried out to specifically 

validate the efficacy of dropout in the proposed prediction framework. In the third comparison, four 

hybrid prediction models, including single-output support vector regression using recursive strategy 

(SVR-REC), multi-output support vector regression using MIMO strategy (SVR-MIMO), single-output 

multilayer perceptron neural network using recursive strategy (MLP-REC) and multi-output multilayer 

perceptron neural network using MIMO strategy (MLP-MIMO), are employed as the benchmark 
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models for comparison with the proposed model in multi-step ahead predictions. In this performance 

evaluation, three prediction accuracy metrics are considered, including Root Mean Square Error 

(RMSE), Mean Absolute Percentage Error (MAPE) and Mean Absolute Scaled Error (MASE). Their 

definitions are given as follows: 

 , (6.1) 

 , (6.2) 

 , (6.3) 

where N is the number of testing observations, x and 𝑥2 are the observed and predicted values, 

respectively. 

6.3.1 Automatic hyperparameter optimization 

The proposed prediction model is constructed with one LSTM layer with 64 neurons. Four major 

hyperparameters of the model are to be tuned, including dropout rate, activation function type, 

optimizer type and learning rate. The details of the hyperparameter search space are shown in Table 

6.2. For a fair comparison, the TPE and RS algorithms are evaluated by using the same model 

configurations and hyperparameter search space. The number of optimization trials is selected as 30 for 

the two algorithms. In addition, a k-fold cross-validation (k = 3 in this study) is adopted to prevent 

overfitting during training the model. The Mean Square Error (MSE) is used as the objective function 

for model selection. In other words, at each optimization trial, the hyperparameter configuration with 

the lowest average prediction error evaluated by cross-validation is chosen. To achieve the training 

convergence, the number of training epochs is set to 100. 

 
Table 6.2 Hyperparameters of the proposed prediction model. 

Hyperparameter Type of distribution Value set or Range 

Dropout rate  Uniform float  [0, 0.5] 

Activation function Categorical {Linear, Sigmoid, Tanh, ReLU} 

Optimizer Categorical {SGD, RMSprop, Adam} 

Learning rate Uniform float  [0.0001, 0.1] 
 

Fig. 6.9 shows the comparison of the TPE and RS hyperparameter searches over 30 trials for SG 1 

( )2
1

1 ˆ
N

i i
i

RMSE x x
N =

= -å

1

ˆ1 100%
N

i i

i i

x x
MAPE

N x=

-
= ´å

1

2

ˆ1
1
1

N
i i
N

i
j i

j

x x
MASE

N x x
N

=

=

æ ö
ç ÷-ç ÷=
ç ÷

-ç ÷-è ø

å
å



6.3  Results and discussion 64 

of plant No. 1. The corresponding training loss is also given in Fig. 6.10. In particular, the TPE 

algorithm uses the first 20 startup trials for initializing the distributions of the good and bad 

hyperparameter sets, as mentioned in Chapter 5, Section 5.3. This initialization process is performed 

by employing a standard RS. Therefore, in Figs. 6.9 and 6.10, we can observe a similar performance 

between TPE and RS in both hyperparameter searching and their obtained training losses during the 

first 20 trials. However, the performance of TPE is quickly improved after the initialization. It much 

more focuses on the good hyperparameter configurations which was found in the previous trials, 

leading to faster converge and lower training loss than RS within 30 trials.   

RS 

    

TPE 

    
 (a) Dropout rate (b) Activation function (c) Optimizer (d) Learning rate 

Fig. 6.9. Hyperparameters tuning process over 30 trials by TPE (top Figures) and RS (bottom Figures) for SG 1 

of plant No.1. 

  
(a) RS (b) TPE 

Fig. 6.10. Training loss versus trials of TPE and RS for SG 1 of plant No. 1. 

In Table 6.3, we show the performance comparison between TPE and RS, in terms of their obtained 

best training loss for all SGs. The results obviously show that the optimal configurations found by TPE 

generally outperform the best ones found by RS in the considered case studies. Thus, the optimal 

hyperparameter configurations found by TPE are used for prediction in the next stage.   

 
Table 6.3 The best training loss obtained by TPE and RS in hyperparameter tuning for all SGs. 
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Plant No. 1 No. 2 

SG 1 2 3 1 2 3 

Random search 0.0487 0.0479 0.0307 0.0358 0.0321 0.0343 

TPE 0.0440 0.0370 0.0319 0.0350 0.0314 0.0270 
 

6.3.2 Dropout regularization 

In this section, a comparison is carried out between the proposed prediction model and a model 

with the same architecture but trained without dropout. The other hyperparameters are kept identical 

between the two models, as described in Section 6.3.1. The probability of the used dropout is 

automatically optimized by TPE. We employ all the six SG datasets to comprehensively evaluate 

dropout during both the training and test phases in terms of RMSE. The comparative results are shown 

in Fig. 6.11. The result shows that the prediction model trained without dropout has lower training 

errors but much higher test errors, which may be an indication of the presence of overfitting. In contrast, 

the dropout model significantly reduces the overfitting problem with lower test errors for all the 

datasets. The average error reduction of the dropout model is 51.91%, which strongly indicates the 

efficacy of dropout in reducing overfitting and improving the prediction performance of the neural 

network.   

  
(a) Training phase (b) Test phase 

Fig. 6.11. Training and test errors for the network architecture trained without and with dropout. 

6.3.3 Performance evaluation 

The WRL measurements of the six SGs are used for validating the developed prediction model for 

multi-step ahead prediction. It is important to remind that the prediction horizon used in this study is 

15 steps ahead, which equals 45 operating days of the SGs. After the training is finished, the prediction 

model is used to continuously predict 15-step ahead in the next 5 years. Fig. 6.12 illustrates the 

prediction results of the proposed model for all SGs. The predicted values are shown as the dashed line, 

whereas the solid line depicts the actual observations. The 95% confidence interval of the predictions, 
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obtained via MC simulations, is depicted as the grey region. The results show that the proposed model 

is able to keep track with the changes of the WRL data while achieving accurate predictions, which are 

very close to the actual data for all SGs. Moreover, the 95% confidence bounds of the predictions are 

narrow and close to the target values, indicating predictions with a high precision. In industrial 

applications, these results are of crucial importance for accurately estimating the equipment RUL.    

  
(a) SG 1 of plant No. 1 (b) SG 2 of plant No. 1 

  

(c) SG 3 of plant No. 1 (d) SG 1 of plant No. 2 

  

(e) SG 2 of plant No. 2 (f) SG 3 of plant No. 2 

Fig. 6.12. Multi-step ahead prediction results by the proposed model for all SGs. 

The prediction results obtained by the proposed model are, then, evaluated with respect to the four 
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benchmark models, i.e. SVR-REC, SVR-MIMO, MLP-REC and MLP-MIMO, in terms of prediction 

accuracy. For a fair comparison, the hyperparameters of the compared models are optimized by using 

TPE with 30 trials. The details of the hyperparameter search spaces of the compared models are shown 

in Table 6.4. 

 

Table 6.4 Hyperparameters of the benchmark models.  

Model Hyperparameter Value set or Range 

SVR 
(including SVR-REC  
and SVR-MIMO) 

Kernel function {Linear, RBF, Poly, Sigmoid} 

Degree (of the polynomial kernel 
function) 

[2, 4] 

Regularization parameter (C) [0.01, 100] 

Kernel coefficient (gamma) [0.01, 10] 

MLP 
(including MLP-REC  
and MLP-MIMO) 

Hidden layer size [1, 5] 

Activation function {Logistic, Tanh, ReLU} 

Optimizer {LBFGS, SGD, Adam} 

Learning rate {Constant, Invscaling, Adaptive} 

Regularization parameter (alpha) [0.0001, 0.01] 
 

The comparative results of the proposed model and the four benchmark models for multi-step ahead 

predictions are shown in Fig. 6.13. Table 6.5 summarizes the prediction results in terms of the three 

accuracy indicators for different SG data. As can be seen in Fig. 6.13 and Table 6.5 (values in bold), 

the proposed prediction model outperforms the four other benchmark models and achieves higher 

accuracy for all SGs. The results indicate the accurate and efficient learning of the proposed prediction 

model for the long-term dependencies of the SG data. 

  
(a) SG 1 of plant No. 1 (b) SG 2 of plant No. 1 
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(c) SG 3 of plant No. 1 (d) SG 1 of plant No. 2 

  

(e) SG 2 of plant No. 2 (f) SG 3 of plant No. 2 

Fig. 6.13. Multi-step ahead predictions using different models for all SGs. 

Table 6.5 Comparison of the prediction performance in multi-step ahead predictions for all SGs.   
 

Method 
SG 1 SG 2 SG 3 

RMSE MAPE MASE RMSE MAPE MASE RMSE MAPE MASE 

Plant No. 1 

SVR-REC 0.0382 2.0775 15.2484 0.0333 2.1970 10.2221 0.0508 3.3173 12.1521 

SVR-MIMO 0.0283 1.6511 12.2085 0.0331 2.3878 10.8281 0.0640 5.1793 19.2863 

MLP-REC 0.0597 2.7824 20.8682 0.0656 3.3349 15.3398 0.0577 3.3597 13.4886 

MLP-MIMO 0.0339 1.7074 11.8887 0.1888 15.1554 62.2885 0.1867 15.2453 52.7662 

Proposed model 0.0212 1.0950 8.6166 0.0239 1.6973 5.8214 0.0426 2.7230 4.0846 

Plant No. 2 

SVR-REC 0.0572 3.6462 12.8555 0.0906 4.7909 7.0354 0.0242 1.5005 6.1132 

SVR-MIMO 0.0401 3.1774 11.8732 0.0849 4.7575 7.4570 0.0247 1.7842 7.5984 

MLP-REC 0.0751 3.0309 11.2367 0.0862 4.7819 7.4403 0.0734 3.4535 14.2511 

MLP-MIMO 0.0607 4.8530 17.4741 0.0888 5.4251 7.5992 0.0499 4.1168 17.2689 

Proposed model 0.0281 2.0117 8.6455 0.0791 4.4033 9.3923 0.0206 1.3992 7.9604 

 

The average computational time of training the proposed prediction model is 3.2 hours, on a 

GPGPU node comprising 2 Intel Xeon CPU E5-2695 (24 cores at 2.40 Hz with 32 GB of RAM) and 2 
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Nvidia Tesla K40m graphic cards (with 12 GB of GRAM). It is important to note that SG data used in 

this work were recorded at an interval of 3 days. After being trained, the proposed model can be used 

to perform a 15-step ahead prediction, which is equivalent to 45 operating days ahead of the SGs. Due 

to this reason, the proposed prediction framework can be applied for a real-time time series prediction 

of the considered application.  
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Chapter 7  A Multi-Step Ahead Prediction Method for NPP 

Reactor Coolant Pump Signals 

 

Multi-step ahead prediction can help decision makers improving maintenance planning and 

minimizing unexpected shutdowns in the nuclear industry. In this Chapter, we develop a hybrid 

prediction framework based on Ensemble Empirical Mode Decomposition (EEMD) and Long Short-

Term Memory (LSTM) neural network. EEMD decomposes time series into a set of components, 

which allow effectively describing the system dynamics and therefore facilitates the prediction task. 

Then, LSTM neural network models are developed for predicting the multi-step ahead behavior of 

the individual EEMD components and the obtained predictions are aggregated to reconstruct the time 

series. A Tree-structured Parzen Estimator (TPE) algorithm is employed for hyperparameter 

optimization. The performance of the proposed method is validated by considering different long-

term prediction horizons on a practical case study concerning time series data acquired from Reactor 

Coolant Pumps (RCPs) of Nuclear Power Plants (NPPs). The proposed method shows superior 

performances with respect to alternative prediction models. 

 

7.1 Hybrid prediction approaches 

A problem typically encountered in the development of multi-step ahead prediction models is the 

data complexity, which means that time series collected from real-world systems can contain at the 

same time multiple and very different dynamic trends superposed on each other. Attempting to 

simultaneously capture various trends in the data can lead to the degradation of the prediction 

performance as the time horizon of the prediction increases [1]. To address this issue, research on hybrid 

prediction models have been recently carried out to take advantage of the strength of using ensemble 

of different individual models. For example, Moshkbar-Bakhshayesh and Ghofrani [2] have presented 

a hybrid framework integrating ARIMA and ANN for separately dealing with linear and nonlinear 

components of the time series trends. Similarly, Buyuksahin and Ertekin [3] have presented a 

comparison among hybrid ARIMA-ANN models and individual models considering different 

applications. Their experimental results show that hybrid models are much more accurate in capturing 

different data structures than individual models, and, thus, allow improving prediction performance. Li 

et al. [4] have developed a decomposition-based hybrid model, which combines Wavelet Packet 

Decomposition (WPD) and ANN for the prediction of wind speed data over a 9-step ahead horizon. 

The basic idea behind decomposition-based hybrid models is to break down time-series data into 

several components, which are characterized by more linear and more stationary trends, and, therefore, 
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are easier to be individually predicted. The work demonstrates the superior performance of the 

decomposition-based hybrid approach with respect to conventional models in long-term horizon 

predictions. Comprehensive analyses on hybrid approaches for the applications concerning multi-step 

ahead prediction can be found in [1], [5], [6]. 

7.2 Signal decomposition methods 

This Section presents methods for signal decomposition based on empirical mode decomposition 

(EMD). Section 7.2.1 and 7.2.2 are dedicated to the original EMD and the EEMD algorithms, 

respectively.  

7.2.1 Empirical Mode Decomposition (EMD) 

EMD was proposed by Huang et al. [7] as an adaptive signal processing method for decomposing 

nonlinear and nonstationary time-series into separate spectral modes called Intrinsic Mode Functions 

(IMFs). Specifically, IMFs are Amplitude-Modulated-Frequency-Modulated (AM-FM) signals 

representing certain frequency bands of the original time series from high-frequency (first IMF) to low-

frequency bands (last IMF) [8]. Each IMF satisfies the following properties: 1) the number of zero-

crossings and local extrema differ at most by one; 2) the mean value of the upper and lower envelopes 

of an IMF, identified by local maxima and minima, is zero at any time. The main advantage of EMD 

with respect to other decomposition methods such as WPD is that the time series is decomposed into a 

finite set of IMFs and a monotonic residue by an adaptive decomposition process (also known as the 

sifting process), without any need of predefining basic functions (Algorithm 7.1) [9].  

Algorithm 7.1. EMD decomposition process 

Input: Time series , threshold of the stopping criterion  (typically set in the 

range [0.2; 0.3] [7]). 

Output: A set of Nc IMFs  and a residue . 

Decomposition process: 

1. Initialize the index  and residue . 

2. Extract : 

a. Assign the ith component equal to the previous residue: , with the sifting 

iteration index j set equal to 1. 

b. Determine the local maxima and minima of  and use a cubic spline interpolation 

to compute their upper and lower envelopes,  and , respectively. 

c. Compute the envelope mean: 

1 2{ , ,..., }t tX x x x= e
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  (7.1) 

d. Generate the new component  of the next sifting iteration: 

  (7.2) 

e. Compute the squared difference between two consecutive siftings as follows: 

  (7.3) 

f. If the stopping criterion  is verified, the new  is defined and 

go to Step 3; otherwise, update  and repeat a sifting iteration by performing 

Steps 2.b) – 2.f). 

3. Update the residue as follows: 

  (7.4) 

4. If the number of extrema of  is less than 2 or  becomes monotonic, the 

decomposition process is terminated; otherwise, repeat Step 2 with . 

  

The sifting process decomposes the original time series  into: 

  (7.5) 

7.2.2 Ensemble Empirical Mode Decomposition (EEMD) 

Limitations of EMD are that different oscillation components may coexist in a single IMF and very 

similar oscillations may reside in different IMFs, which are called mode-mixing [10]. To address these 

problems, EEMD has been developed [11]. The key idea of EEMD is to use an ensemble of IMFs 

obtained by performing EMD over several different realizations of the original time series obtained by 

adding to it a white Gaussian noise. The effect of adding a white Gaussian noise reduces the mode-

mixing problem by populating the whole time-frequency space and utilizing the dyadic filter bank 

behavior of EMD [8]. The EEMD algorithm is described in Algorithm 7.2.  

Algorithm 7.2. EEMD decomposition process 

Input: Time series . 

Output: A set of ensemble IMFs . 

Decomposition process: 

1. Generate the noisy time series: 

( ) ( ) ( ) / 2j j jm t U t L té ù= +ë û

1( )jc t+

1( ) ( ) ( )j j jc t c t m t+ = -

2

1
2

1

( ) ( )
( )

( )

t
j j

l j

c l c l
SD j

c l
+

=

-
=å

( )SD j e< 1( ) ( )i jIMF t c t+=

1j j= +

( ) ( ) ( )i i ir t r t IMF t= -

( )ir t ( )ir t

1i i= +

tX

1
( ) ( )

c

c

N

t i N
i

X IMF t r t
=

= +å

1 2{ , ,..., }t tX x x x=

{ ( )}iIMF t ( 1,2,..., ; 1,2,..., )ci N tt= =



7.3  Proposed multi-step ahead prediction method 74 

 ,  (7.6) 

where  are realizations of white Gaussian noise and J is the predefined number of noise 

realizations. 

2. Apply Algorithm 1 to each time series  and obtain the corresponding , 

, . 

3. Compute  by averaging the : 

   (7.7) 

 

The EEMD decomposes the original time series  into Nc IMFs and a residue: 

  (7.8) 

7.3 Proposed multi-step ahead prediction method 

The proposed prediction method is composed of two main parts: decomposition and multi-step 

ahead prediction (Fig. 7.1). The input is a time series , which is formed by signal 

measurements collected from a component and provides in output the multi-step ahead predictions 

, where H represents the prediction horizon. The details of the method are 

described in the following Sections. 

 
 

Fig. 7.1. Overview of the proposed multi-step ahead prediction method. 

7.3.1 Decomposition of the original time series  

EEMD is employed for decomposing the raw time series  into separate frequency components 

. The number of obtained IMFs Nc varies depending on the time series 

characteristics. Fig. 7.2 shows an example of EEMD decomposition of a signal measured from a NPP 

reactor coolant pump (RCP), which is highly nonlinear, nonstationary and noisy. The number of noise 

realizations J, which determines the ensemble size, is set equal to 100 and the noise standard deviation 
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 to 0.05, based on trial and error. EEMD decomposes the original time series into Nc = 9 IMFs and 

one residue component, as shown in Fig. 7.2(b). Notice that the complexity of the original time series 

is reduced in the decomposed components, which appear easier to predict.  

 
(a) Raw measurements obtained from a NPP RCP. 

 
(b) Decomposed IMFs and residue. 

Fig. 7.2. Time series decomposition by using EEMD. 

7.3.2 Multi-step ahead prediction step 

In the second stage of the proposed method, we develop a dedicated model for the multi-step ahead 

prediction of the EEMD IMFs, based on LSTM and MIMO prediction. The hyperparameters of each 

prediction model are automatically set during the training phase by using the TPE procedure of Chapter 

5, Section 5.3. In the testing phase, the predictions of the components are performed and aggregated to 

obtain the multi-step ahead prediction of the original time series. The details of the hyperparameter 

optimization during the training phase and the MIMO prediction strategy are described in the following 

Ns
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Sections.    

A.  Hyperparameter optimization 

The three hyperparameters of the LSTM models optimized by the TPE are the activation  and 

optimization  functions, and the learning rate . The hyperparameters search spaces are 

reported in Table 7.1. The optimization process is performed with 30 iterations and we employ a k-fold 

cross-validation with , to avoid overfitting in the computation of the objective function. The 

number of epochs  considered for the LSTM training is 100. 

Table 7.1. Hyperparameters of the LSTM models optimized by the TPE and possible settings of the proposed 
method considered.  

Hyperparameter Type of distribution Possible setting 

Activation function  Categorical {Linear, Sigmoid, Tanh, ReLU} 

Optimization function  Categorical {SGD, RMSprop, Adam} 

Learning rate  Uniform float  [0.0001, 0.1] 

 

B.  MIMO prediction strategy 

In general, there are three widely used strategies addressing multi-step ahead prediction: Recursive, 

Direct and MIMO [12], [13]. Each strategy is characterized by different trade-offs between accuracy 

and complexity. In this work, we employ the MIMO strategy, since using only one model with multiple 

outputs offers two main advantages: 1) avoiding error accumulation in long-term predictions; 2) 

reduction of  the training computational cost [13]. The main difficulty to be addressed in developing a 

MIMO prediction model is the selection of the appropriate model configurations, which in this work is 

handled by TPE.  

The MIMO approach (also known as the Parallel approach) aims at simultaneously predicting 

multiple future observations by using one single predictor [14]. It is illustrated in Fig. 7.3, where 

 denote the predictor and its hyperparameters, respectively, and d the embedding dimension 

which is set by using the False Nearest Neighbor (FNN) approach [15].  

 

Fig. 7.3. Multi-step ahead prediction model with MIMO strategy. 
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7.4 Case study: Prediction of the leakage flow of NPP RCPs 

We consider the Reactor Coolant Pumps (RCPs) of a NPP, which is the most critical component of 

the Reactor Coolant System (RCS), given its functions of transferring the thermal energy generated in 

the reactor core to the primary coolant, and circulating the coolant between the reactor and the steam 

generators. Fig. 7.4 depicts the structures of the RCS and the RCP of a Pressurized Water Reactor 

(PWR).  

 

 

 

(a) Reactor Coolant System (b) Reactor Coolant Pump 
 

Fig. 7.4. Detailed structures of the PWR Reactor Coolant System (RCS) and Reactor Coolant Pump (RCP). The 

image has been taken from [16]. 

One of the most vulnerable components of a RCP is the shaft seal system, which is composed of 

three mechanical seals located between the electric motor and the impeller, as shown in Fig. 7.4(b). 

The shaft seal system plays an important role in limiting the leakage of the primary circuit to the 

ambient environment, which are collected and routed to the seal leakoff system [17]. A failure of the 

shaft seal system can cause the loss of the reactor primary coolant, which can potentially lead to 

catastrophic consequences [18]. Therefore, as soon as the leakage flow exceeds a safety threshold, the 

plant is shut down to protect personnel and facilities and prevent environmental impacts due to 

radioactive releases from the nuclear reactor core. 

We consider five different scenarios of leakage flow from the first seal of the RCPs. The data have 
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been acquired from real RCPs. The time series are measured at a 4-hour interval, starting from different 

time instances and for different durations, as shown in Fig. 7.5. The durations of the time series are 

listed in Table 7.2. For each scenario, the time series is divided into two subsets: the first 70% of the 

time series is used as training set for developing the prediction models and the latter 30% as test set for 

evaluating the model performance. For confidentiality reasons, the names of the NPPs are not 

mentioned and the time series data are normalized from 0 to 1. A different model is developed for each 

one of the five time series.   

  
(a) RCP 1 (b) RCP 2 

  
(c) RCP 3 (d) RCP 4 

 
(e) RCP 5 

Fig. 7.5. The RCP leakage flow time series corresponding to the five RCP leakage scenarios considered in the 

case study. 



 Chapter 7  A Multi-Step Ahead Prediction Method for NPP Reactor Coolant Pump Signals 

 

79 

Table 7.2. Number of observations available in the five time series. 

RCP 1 2 3 4 5 

Number of observations 2120 1394 2770 1064 864 

 

7.5 Results and discussion 

We carry out the validation of the proposed method with three performance evaluations considering 

different aspects of the methodology structure. Firstly, the effectiveness of the decomposition 

algorithm, i.e. EEMD, in improving the prediction performance is evaluated. Secondly, we employ a 

multivariate prediction model to validate the viability of our hybrid prediction framework, which 

integrates several univariate models. The final experiment focuses on the performance evaluation of 

the LSTM network, the central part of our method for multi-step ahead prediction. A prediction model 

based on Echo State Network (ESN) is employed for benchmarking purposes.  

For each experiment, we consider three different prediction horizons to assess the prediction 

capability of the proposed method, including 6 steps (1 day), 12 steps (2 days) and 18 steps (3 days) 

ahead. The performance of the prediction models are measured with respect to three accuracy metrics, 

including RMSE (as stated in Chapter 5, Section 5.3), Mean Absolute Percentage Error (MAPE) and 

Mean Absolute Scaled Error (MASE). The definitions of MAPE and MASE are given as follows: 

 , (7.9) 

 , (7.10)  

where  is the number of test observations,  and  are the observed and predicted values, 

respectively. For the computational point of view, all of the experiments are implemented on a GPGPU 

node composed of two Intel Xeon CPU E5-2695 (24 cores at 2.40 Hz, 32 GB of RAM) and two Nvidia 

Tesla K40m graphic cards (12 GB of GRAM). 

7.5.1 Effectiveness of applying the decomposition technique for multi-step ahead prediction 

In order to validate the EEMD, we employ a comparative model which is obtained by removing 

the EEMD module from the proposed method, as illustrated in Fig. 7.6. In this comparative model, the 

original time series are directly fed to the LSTM prediction model, with the hyperparameters optimized 

by TPE, as described in Section 7.3.2.A. It is important to note that the LSTM model is constructed 

with two LSTM layers consisting of 64 neurons for each layer. The predictions with the three horizons 
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are performed using the MIMO strategy for all of the time series scenarios.  

 

Fig. 7.6. Compared prediction model without using EEMD. 

Fig. 7.7 depicts the prediction results for different horizons obtained by the comparative model 

(Fig. 7.7(a) – (c)) and the proposed model (Fig. 7.7(d) – (f)) for the RCP 5 time series. In each sub-

figure, the predicted values are shown as the red solid line, whereas the blue line depicts the actual 

observations. Fig. 7.7 shows that the predictions of the proposed method are highly accurate and close 

to the actual values, whereas those of the comparative model are not so accurate in all of the three cases 

of the prediction horizon. The overall comparison results for all of the time series scenarios are 

summarized in Table 7.3. The more accurate results (the lower values of the metrics) are highlighted in 

bold. The results show that the proposed method outperforms the comparative model with a significant 

improvement in the prediction accuracy, implying the important contribution of the EEMD module to 

the proposed method for dealing with multi-step ahead predictions. 

   

(a) Model without decomposition 
– 6 steps ahead 

(b) Model without decomposition 
– 12 steps ahead 

(c) Model without decomposition 
– 18 steps ahead 

   

(d) Proposed model – 6 steps 
ahead 

(e) Proposed model – 12 steps 
ahead 

(f) Proposed model – 18 steps 
ahead 

Fig. 7.7. Results of the multi-step ahead predictions for RCP 5. 

TPE – LSTM MIMO prediction 
strategy

Multi-step-ahead prediction

Raw time-series 
Xt={x!}

Complete predictions 
{xt+h}



 Chapter 7  A Multi-Step Ahead Prediction Method for NPP Reactor Coolant Pump Signals 

 

81 

Table 7.3. Comparison results of the proposed model and the model without using the EEMD decomposition. 

 

7.5.2 Univariate model versus multivariate model 

This experiment focuses on the evaluation of the use of the proposed hybrid framework, in which 

several univariate prediction models are developed for all of the decomposed components obtained 

from EEMD, as mentioned in Section 7.3.2. We employ a prediction model based on a multivariate 

LSTM network for comparison purposes, as illustrated in Fig. 7.8. Specifically, the multivariate LSTM 

model uses all of the decomposed IMFs as the model inputs and performs predictions using the MIMO 

strategy. The TPE algorithm is used to select the optimal model hyperparameters.   

 

Fig. 7.8. Compared prediction model using a multivariate LSTM network. 

The prediction results obtained by the proposed and comparative models for the RCP 3 and 4 

scenarios are illustrated in Figs. 7.9 and 7.10, respectively. Table 7.4 summarizes the performance 

comparison of the two models for all of the data scenarios. As can be seen in Fig. 7.10, the prediction 

results of the multivariate LSTM model seem quite inaccurate, particularly in Fig. 7.10(c) with a lot of 

noisy spikes in the predictions. This can be explained by the fact that the data trend of the RCP 4 time 

series is complicated, strongly nonlinear and nonstationary, making it difficult for a single model to 

achieve good predictions. On the contrary, the prediction results of the proposed method, Figs. 7.10(d) 

Data
scenario Approach

6 steps ahead 12 steps ahead 18 steps ahead

RMSE MAPE MASE RMSE MAPE MASE RMSE MAPE MASE

RCP 1
Without decomposition 0.0405 13.8939 1.6168 0.0608 30.1245 2.3199 0.0667 30.4937 2.6540

Proposed model 0.0203 8.7511 1.0871 0.0226 11.4607 1.2278 0.0338 20.1416 1.7015

RCP 2
Without decomposition 0.0776 11.6117 3.5690 0.0897 18.9838 5.2261 0.0893 16.2510 4.5966

Proposed model 0.0246 3.9053 1.1355 0.0300 4.3849 1.3255 0.0463 6.3652 1.9812

RCP 3
Without decomposition 0.0627 7.9651 1.7586 0.0868 11.1782 2.5560 0.1081 14.2730 3.6001

Proposed model 0.0256 4.0837 0.8898 0.0309 4.9342 1.0701 0.0408 5.9058 1.2537

RCP 4
Without decomposition 0.0568 5.4109 3.1283 0.0730 6.9583 4.1817 0.0891 8.3991 4.9783

Proposed model 0.0231 1.9948 1.1201 0.0303 2.8291 1.6248 0.0312 2.8147 1.6339

RCP 5
Without decomposition 0.1583 16.7301 4.1357 0.1651 18.9645 4.5333 0.0988 12.9969 2.5915

Proposed model 0.0347 4.7995 1.0016 0.0471 6.1768 1.1888 0.0548 7.5077 1.4756

Multivariate
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MIMO 
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– (f), are remarkably accurate. In Table 7.4, it appears that the hybrid framework provides better results 

for the whole tests on the five data scenarios than the multivariate model. This indicates that using the 

hybrid framework integrating univariate prediction models can achieve more accurate multi-step ahead 

predictions.  

   

(a) Multivariate LSTM model – 6 
steps ahead 

(b) Multivariate LSTM model – 
12 steps ahead 

(c) Multivariate LSTM model – 
18 steps ahead 

   

(d) Proposed model – 6 steps 
ahead 

(e) Proposed model – 12 steps 
ahead 

(f) Proposed model – 18 steps 
ahead 

Fig. 7.9. Results of the multi-step ahead predictions for RCP 3. 

   

(a) Multivariate LSTM model – 6 
steps ahead 

(b) Multivariate LSTM model – 
12 steps ahead 

(c) Multivariate LSTM model – 
18 steps ahead 

   

(d) Proposed model – 6 steps 
ahead 

(e) Proposed model – 12 steps 
ahead 

(f) Proposed model – 18 steps 
ahead 
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Fig. 7.10. Results of the multi-step ahead predictions for RCP 4. 

Table 7.4. Comparison results of the proposed model and the multivariate LSTM model. 

 

7.5.3 Performance evaluation of the LSTM prediction models 

LSTM models play a fundamental role in our proposed method for learning complex data 

mappings, especially long-term dependency, and performing multi-step ahead predictions with the 

supports of the TPE optimization and the MIMO prediction strategy. In this Section, we validate the 

prediction performance of the LSTM models via a comparison with another widely used RNN called 

Echo State Network (ESN).  

ESN is a RNN with a sparsely connected hidden layer [19]. The connectivity and weights of the 

hidden neurons (also known as reservoirs) are randomly assigned and fixed, whereas the weights of the 

output neurons are learned by using a linear regression algorithm. The advantages of ESN are the simple 

network structure and a low computational cost compared to conventional RNNs. More details about 

ESN can be found in [19], [20].  

The compared prediction model is developed by replacing the LSTM models with the ESN models, 

and the rest of the framework is kept unchanged, as illustrated in Fig. 7.11. In this framework, the TPE 

is used to optimize the two major hyperparameters of the ESN models, including the number of 

reservoirs and the spectral radius, as described in Table 7.5.    

 

 

Data
scenario Approach

6 steps ahead 12 steps ahead 18 steps ahead

RMSE MAPE MASE RMSE MAPE MASE RMSE MAPE MASE

RCP 1
Multivariate LSTM 0.0249 9.3767 1.3214 0.0386 20.3446 1.9242 0.0455 17.8378 2.4970

Proposed model 0.0203 8.7511 1.0871 0.0226 11.4607 1.2278 0.0338 20.1416 1.7015

RCP 2
Multivariate LSTM 0.0709 9.2070 2.8689 0.0483 6.3916 1.9585 0.0916 20.2789 6.2618

Proposed model 0.0246 3.9053 1.1355 0.0300 4.3849 1.3255 0.0463 6.3652 1.9812

RCP 3
Multivariate LSTM 0.0500 8.1171 1.8032 0.0747 10.8237 2.6785 0.0760 10.5087 2.5134

Proposed model 0.0256 4.0837 0.8898 0.0309 4.9342 1.0701 0.0408 5.9058 1.2537

RCP 4
Multivariate LSTM 0.0851 8.1530 5.0001 0.0607 5.6678 3.4487 0.0819 7.7580 4.5046

Proposed model 0.0231 1.9948 1.1201 0.0303 2.8291 1.6248 0.0312 2.8147 1.6339

RCP 5
Multivariate LSTM 0.1375 18.8527 3.8056 0.3038 27.1751 6.1985 0.1340 18.1811 3.6363

Proposed model 0.0347 4.7995 1.0016 0.0471 6.1768 1.1888 0.0548 7.5077 1.4756
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Fig. 7.11. Compared prediction model using the ESN RNNs. 

Table 7.5. Hyperparameters of the ESN model. 

Hyperparameter Type of distribution Possible setting 

Number of reservoirs Uniform integer [20, 500] 

Spectral radius Uniform float [0.01, 1] 
 

Figs. 7.12 and 7.13 show the results of the multi-step ahead predictions obtained by the ESN 

framework and the proposed framework for the RCP 1 and 2 scenarios, respectively. We summarize 

the overall performance comparison in Table 7.6. According to these results, the prediction framework 

using LSTMs consistently outperforms the ESN-based framework, achieving a greater accuracy for 

multi-step ahead predictions. Thus, LSTM is a more suitable choice for the development of a multi-

step ahead prediction framework.  

   

(a) ESN model – 6 steps ahead (b) ESN model – 12 steps ahead (c) ESN model – 18 steps ahead 

   

(d) Proposed model – 6 steps 
ahead 

(e) Proposed model – 12 steps 
ahead 

(f) Proposed model – 18 steps 
ahead 

Fig. 7.12. Results of the multi-step ahead predictions for RCP 1. 
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(a) ESN model – 6 steps ahead (b) ESN model – 12 steps ahead (c) ESN model – 18 steps ahead 

   

(d) Proposed model – 6 steps 
ahead 

(e) Proposed model – 12 steps 
ahead 

(f) Proposed model – 18 steps 
ahead 

Fig. 7.13. Results of multi-step ahead predictions for RCP 2. 

Table 7.6. Comparison results of the proposed model and the ESN-based prediction model. 

 

References  

[1] Z. Hajirahimi and M. Khashei, “Hybrid structures in time series modeling and forecasting: A review,” Eng. 
Appl. Artif. Intell., 2019. 

[2] K. Moshkbar-Bakhshayesh and M. B. Ghofrani, “Development of a new method for forecasting future states 
of NPPs parameters in transients,” IEEE Trans. Nucl. Sci., 2014. 

[3] Ü. Ç. Büyükşahin and Ş. Ertekin, “Improving forecasting accuracy of time series data using a new ARIMA-
ANN hybrid method and empirical mode decomposition,” Neurocomputing, 2019. 

[4] Y. Li, H. Shi, F. Han, Z. Duan, and H. Liu, “Smart wind speed forecasting approach using various boosting 
algorithms, big multi-step forecasting strategy,” Renew. Energy, 2019. 

[5] Z. Qian, Y. Pei, H. Zareipour, and N. Chen, “A review and discussion of decomposition-based hybrid 
models for wind energy forecasting applications,” Applied Energy. 2019. 

[6] Z. Shao, F. Chao, S. L. Yang, and K. Le Zhou, “A review of the decomposition methodology for extracting 
and identifying the fluctuation characteristics in electricity demand forecasting,” Renewable and 
Sustainable Energy Reviews. 2017. 

[7] N. E. Huang et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-

Data
scenario Approach

6 steps ahead 12 steps ahead 18 steps ahead

RMSE MAPE MASE RMSE MAPE MASE RMSE MAPE MASE

RCP 1
ESN model 0.0450 18.2183 2.4145 0.0521 20.1742 2.7480 0.0544 21.2928 2.9608

Proposed model 0.0203 8.7511 1.0871 0.0226 11.4607 1.2278 0.0338 20.1416 1.7015

RCP 2
ESN model 0.0496 7.7376 2.2372 0.0511 9.4669 2.6751 0.0672 11.1388 3.1238

Proposed model 0.0246 3.9053 1.1355 0.0300 4.3849 1.3255 0.0463 6.3652 1.9812

RCP 3
ESN model 0.0647 11.3833 2.3444 0.0616 11.1641 2.3267 0.0750 12.7170 2.5916

Proposed model 0.0256 4.0837 0.8898 0.0309 4.9342 1.0701 0.0408 5.9058 1.2537

RCP 4
ESN model 0.0419 3.7228 2.0821 0.0480 4.5109 2.5750 0.0675 6.0974 3.5221

Proposed model 0.0231 1.9948 1.1201 0.0303 2.8291 1.6248 0.0312 2.8147 1.6339

RCP 5
ESN model 0.0380 5.1331 1.0158 0.0578 8.0459 1.5163 0.0835 13.3672 2.3941

Proposed model 0.0347 4.7995 1.0016 0.0471 6.1768 1.1888 0.0548 7.5077 1.4756



7.5  Results and discussion 86 

stationary time series analysis,” Proc. R. Soc. A Math. Phys. Eng. Sci., 1998. 

[8] P. Flandrin, G. Rilling, and P. Goncalves, “Empirical mode decomposition as a filter bank,” IEEE Signal 
Process. Lett., vol. 11, no. 2, pp. 112–114, 2004. 

[9] P. Nguyen and J. M. Kim, “Adaptive ECG denoising using genetic algorithm-based thresholding and 
ensemble empirical mode decomposition,” Inf. Sci. (Ny)., 2016. 

[10] Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition: A noise-assisted data analysis method,” 
Adv. Adapt. Data Anal., 2009. 

[11] M. E. Torres, M. A. Colominas, G. Schlotthauer, and P. Flandrin, “A complete ensemble empirical mode 
decomposition with adaptive noise,” in ICASSP, IEEE International Conference on Acoustics, Speech and 
Signal Processing - Proceedings, 2011. 

[12] S. Ben Taieb and A. F. Atiya, “A Bias and Variance Analysis for Multistep-Ahead Time Series Forecasting,” 
IEEE Trans. Neural Networks Learn. Syst., 2016. 

[13] R. Gouriveau and N. Zerhouni, “Connexionist-systems-based long term prediction approaches for 
prognostics,” IEEE Trans. Reliab., 2012. 

[14] S. Ben Taieb, G. Bontempi, A. Sorjamaa, and A. Lendasse, “Long-term prediction of time series by 
combining direct and MIMO strategies,” in Proceedings of the International Joint Conference on Neural 
Networks, 2009. 

[15] M. B. Kennel, R. Brown, and H. D. I. Abarbanel, “Determining embedding dimension for phase-space 
reconstruction using a geometrical construction,” Phys. Rev. A, 1992. 

[16] “Reactor Cooling System (PWR).” [Online]. Available: http://www.nucleartourist.com/systems/rcs1.htm. 

[17] R. Loehberg, W. Ullrich, and K. Gaffal, “Shafts of main coolant pumps - failure analysis and remedies,” 
Nucl. Eng. Des., 1989. 

[18] J. Liu and E. Zio, “An adaptive online learning approach for Support Vector Regression: Online-SVR-FID,” 
Mech. Syst. Signal Process., 2016. 

[19] H. Jaeger, “Echo state network,” Scholarpedia, 2007. 

[20] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to recurrent neural network training,” 
Comput. Sci. Rev., 2009. 

 

  



 Chapter 8  Conclusion 

 

87 

Chapter 8  Conclusion 

 

8.1 Original contributions and limitations 

The underlying objective of the research work carried out in the Ph.D. Thesis is to develop 

prognostic methods tailored for different types of components and different information sources 

available for the model development, and to evaluate their effectiveness on case studies concerning 

prognostic problems of industrial applications. Specific focus was on two prognostic problems: model-

based prognostics for fatigue crack growth prediction and data-driven prognostics for multi-step ahead 

predictions of the real time series data of NPP SGs and RCPs.  

8.1.1 Model-based prognostic methods for fatigue crack growth prediction 

The Thesis has presented two model-based prognostic methods for addressing the problems of 

selecting proper degradation models and using them for predicting the component degradation 

evolution and the RUL when new observations are collected. The proposed model-based methods have 

been developed based on the integration of filtering approaches, i.e. recursive Bayesian filtering and 

PF, and two novel ensemble strategies in which the weights of the individual models in the ensemble 

are computed based on their prediction performance at previous time steps. The proposed methods have 

been applied to case studies of fatigue crack growth simulated under different operating conditions and 

different degradation trajectories. The results have shown that the proposed models are able to 

accurately predict the degradation states and the RUL under various operating conditions, and 

outperform individual models in various prognostic performance indicators. 

However, both proposed methods have some limitations. First, the performance of the proposed 

methods should be validated with respect to a real case study of fatigue crack growth and other 

ensemble approaches to assess the effectiveness of the proposed weighted ensemble strategies. Also, 

the prediction performance of the proposed ensemble models depends on the individual models 

considered in the ensemble. More advanced degradation models, such as the FKM Directive of fatigue 

crack growth [1], can be further investigated to improve the proposed methods.   

8.1.2 Multi-step ahead prediction methods of NPP time series data 

Multi-step ahead prediction is another strong focus of the Thesis, and two prediction methods based 

on LSTM deep neural network have been proposed, developed and applied to real case studies 

concerning different NPP components. The two proposed methods have not only addressed the problem 

of multi-step ahead prediction of time series data, but also addressed several practical issues, including 

anomaly detection, automatic hyperparameter optimization and prediction uncertainty quantification. 
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The first multi-step ahead prediction method has been evaluated with a case study concerning the real 

WRL measurements of six NPP SGs, which had been collected over a period of 16 consecutive years, 

whereas the second method has been applied to predict the time series data of different NPP RCPs, with 

three long-term prediction horizons considered. The results have showed the promising performance 

of the two proposed methods in adaptively estimating the optimal settings for their network 

architectures and capturing the underlying long-term dependencies inherent in the given data, for 

achieving accurate predictions over long-term horizons and outperforming conventional prediction 

approaches.  

A limitation of the two proposed multi-step ahead prediction methods is the lack of degradation-

to-failure time information, which would enable the RUL estimation for effective predictive 

maintenance. Another limitation is the input data for model development, which consider only 

univariate time series measurements. In fact, sufficient information and data for performing 

multivariate predictions are not provided, such as the information of the interdependency between 

measured variables and degradations, the interdependency within the variables, and the maintenance 

reports of the NPP components. Further investigations of the effectiveness of the proposed methods 

with multivariate time series measurements are needed.  

8.2 Future research and development perspectives  

The ultimate goal of the research and developments carried out in this Ph.D. Thesis is to contribute 

to the reliability, availability, maintainability and safety (RAMS) improvement of industrial 

components and systems by predictive modelling. However, there are still methodological and technical 

issues that must be dealt with to provide more effective prognostic systems. Suggestions for future 

research and development include: 

1) For the model-based prognostic methods: 

- Validate the proposed methods with a real case study of fatigue crack growth in industrial 

components and systems. 

- Perform further comparisons with respect to other ensemble approaches, and integrate 

advanced PoF models of fatigue crack growth.   

2) For the multi-step ahead prediction methods: 

- Develop a multivariate time series prediction method to utilize the great amount of 

condition monitoring data in NPPs for prognostic purposes.   

- Integrate the proposed methods within a RUL estimation step for PHM and predictive 

maintenance. 

- Develop a generalized long-term prediction method for different NPP components by using 

transfer learning [2]. 

- Apply the proposed methods to long-term anomaly prediction for anticipating and 
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reasoning out abnormal phenomena and failures which can occur during plant condition 

monitoring.   

- Provide a reliable prediction uncertainty quantification method for confident decision-

making. 
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Abstract 

This paper proposes a prognostic framework for online prediction of fatigue crack growth in 

industrial equipment. The key contribution is the combination of a recursive Bayesian technique and 

a dynamic-weighted ensemble methodology to integrate multiple stochastic degradation models. To 

evaluate the effectiveness of the proposed framework, a case study concerning fatigue crack growth 

under time-varying operation conditions is carried out. The results indicate that the proposed 

prognostic framework outperforms single crack growth models in terms of prediction accuracy under 

evolving operating conditions. 

Keywords: Prognostics and Health Management (PHM); Recursive Bayesian; Dynamic ensemble; 

Multiple stochastic degradation; Fatigue crack growth 

 

1. Introduction 

Cracks are among the most common degradations in equipment of several major industries, 

including manufacturing [1, 2], construction [3, 4], aerospace [5-7], automotive [8, 9], energy [10, 11], 

etc. A study conducted by the American Society of Civil Engineers (ASCE) [4] has revealed that more 

than 80% of the collapses of American bridges in steel were caused by fatigue and fracture in structural 

elements. In [5], it has been shown that in aerospace industry, cracks develop in most critical 

components of rotorcrafts, such as the main rotor blade, the major cabin frame cap splice, and the tail 

boom. These unexpected degradations increase the operation risk and can cause severe economic losses 

in case of breakdowns [12-15]. Thus, for the past several decades, the development of reliable 

prognostic systems to accurately analyze and estimate the crack propagation in an equipment has 

attracted the attention of industrial practitioners and researchers.  

Some prognostic models have been developed using historical degradation data from a population 

of similar equipment, whereas the real-time condition monitoring data of the specific equipment were 
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not considered [16-19]. These historical information, however, may not be always available in practical 

industrial systems, especially for newly produced equipment or expensive components where the data 

acquisition costs too much [20]. More importantly, different practical operational conditions, such as 

load, temperature, and speed, could significantly impact on the rate of the degradation processes, which 

makes each specific system present a particular degradation trajectory [21]. Therefore, it is important 

to include the condition monitoring data of the targeted equipment. To address this issue, Cadini et al. 

[14] introduced a failure prognostic method for fatigue crack growth prediction using a stochastic crack 

growth model and a Bayesian technique to dynamically update the degradation state from a sequence 

of monitored measurements. In this sense, recursive Bayesian algorithms are potentially suitable for 

model-based prognostic frameworks. Indeed, the prior distribution of the degradation states can be 

combined with the likelihood of the monitored measurements for updating the posterior distribution of 

the states adaptively when new measurements are available. In [22], Boris et al. presented a prognostic 

method based on a Bayesian technique to dynamically update the stress intensive range of the physical 

degradation model at each load cycle until failure, using the condition monitoring measurements. In 

another study, a comprehensive architecture for both fault detection and isolation (FDI), and failure 

prognosis for a UH-60 planetary carrier plate was carried out by exploiting a non-linear degradation 

model and a Bayesian variant, to effectively detect abnormal conditions and predict online the crack 

depth evolution of the equipment [23].  

In practice, the performance of online prognostic models for fatigue crack growth heavily depends 

on the adopted physics-of-failure model and it is very important to figure out an appropriate modelling 

framework for a specific degradation process under time-varying operation conditions. To address this 

issue, numerous fatigue crack growth models have been extensively studied [24-30]. In [31], a 

comparison of stochastic fatigue crack growth models including the Markov chain model, the Yang’s 

power law model, and a polynomial model were carried out. The results showed that each degradation 

model has its own range of applicability, and only fits a certain particular degradation process. To the 

knowledge of the authors, there is no general consensus on a comprehensive prognostic model for 

fatigue crack growth under different degradation processes. Recently, in the applications of Lithium-

ion battery prognostics, hybrid and multi-degradation model ensembles have gained interest because 

of higher accuracy and better generalization capability than individual degradation models [32, 33]. 

The basic idea behind these empirical frameworks is to find a set of diverse degradation models which 

cover different situations so that they complement each other. In [33], an interacting multiple model 

particle filter (IMMPF) was introduced to combine the estimations from three battery capacity 

degradation models. The study concluded that the interacting multiple model can achieve higher 

robustness in terms of smaller estimation errors and more stable performance than a single model.  

In this paper, a prognostic framework for fatigue crack growth is proposed by integrating a 

recursive Bayesian technique and a dynamic ensemble. The degradation state of the component is 

estimated based on the condition monitoring data collected until the current load cycle, and short-term 
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degradation state prediction is performed to anticipate and proactively prevent sudden breakdowns of 

the component in a near future. The key contribution of the work is the dynamic ensemble which 

combines different crack evolution models with dynamic weights. The dynamic weights are computed 

based on the historical estimation error for a predefined number of the latest load cycles. To the authors’ 

knowledge, this ensemble framework has been here developed and applied for the first time for a 

prognostic problem of fatigue crack growth. To validate the performance of the proposed framework, 

a case study concerning fatigue crack growth with evolving operation conditions is carried out and the 

results are compared with those obtained by applying single degradation models. 

The rest of this paper is organized as follows. Section 2 introduces the degradation models for 

fatigue crack growth and details the proposed prognostic framework. Section 3 describes the illustrative 

case study of fatigue crack growth with different load conditions. Finally, Section 4 concludes the study. 

2. Proposed prognostic framework 

Fig. 1 illustrates an overall flow diagram of the proposed prognostic framework, which consists of 

the following two main stages: current degradation state estimation based on a recursive Bayesian 

technique and dynamic-weighted ensemble for prediction. More details about the proposed prognostic 

framework are described in the following sections. 

 

 

Fig. 1. Flow diagram of the proposed prognostic framework. 
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2.1. Recursive Bayesian technique for state estimation and parameter identification   

2.1.1.  State estimation with fixed parameters 

In this section, we first describe the technique for estimating the degradation state at time  

, given the available condition monitoring measurements . We consider a state-

space model describing the evolution of the degradation state  and the measurement  at the 

inspection time , given by: 

 , (1) 

  (2) 

where  denotes the state transition function and  is the measurement function;  and  are 

independent identically distributed (i.i.d.) state noise and measurement noise sequences, respectively. 

The current degradation state  depends only on the previous state , and not on the states at 

previous times. This represents a first-order Markov process with independent degradation increments. 

The Bayesian technique can be used for estimating the system state  at time  by constructing the 

posterior probability density function (pdf)  based on the state transition function and the 

monitored measurements. More specifically, the system state is recursively estimated by performing 

the following two steps, namely prediction and update.  

The prediction step involves using both the previous state estimation  and the state transition 

model in Eq. (1) to estimate the prior distribution of the current state  via the Chapman-Kolmogorov 

equation, as follows: 

  (3) 

where  is the conditional probability distribution defined by the state model in Eq. (1). The 

initial distribution  is assumed to be available and is known as the prior. In the update 

step, the new measurement  is used for obtaining the posterior state pdf  by applying Bayes’ 

theorem, as follows:  

  (4) 

where  is the likelihood function defined by the measurement model in Eq. (2) and  

is a normalizing constant which is defined by: 

  (5) 
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A main advantage of the proposed prognostic framework lies also in the capability of identifying 

time-varying parameters from the sequential data, as detailed in this section. Let us add the time-varying 

parameter  to the state vector at the inspection time t, as follows: 

  (6) 

For this new state vector, the state-space system model in Eqs. (1) and (2) can be reformulated as 

follows: 

 , (7) 

  (8) 

where  

  (9) 

  (10) 

Based on the modified model, the posterior joint distribution  can be 

obtained by employing the recursive Bayesian algorithm discussed in the previous section. In this 

circumstance, the initial distribution is assumed independent of , that is, . 

Finally, the marginal posterior distributions of the system state  and the time-varying parameter  

can be obtained by: 

  (11) 

  (12) 

2.1.3. Short-term state prediction 

We consider the degradation state estimation not only at the current load cycle , i.e. state 

regression, but also the prediction at fixed prediction horizons , i.e. short-term prediction. In 

the following case study, three scenarios are considered: 1) degradation state regression at the current 

time ; 2) short-term state prediction at time ; and 3) short-term state prediction at time 

. 

2.2. Fatigue crack growth models 

For applying the Bayesian recursive technique for state estimation to the fatigue crack growth 

process, four stochastic degradation models of fatigue crack growth are considered, including Paris-

Erdogan, polynomial, global function-based, and curve fitting technique-based models. 
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2.2.1.  Paris-Erdogan model 

One well known degradation model for fatigue crack growth is the Paris-Erdogan law [34], which 

represents the dependence between the crack growth rate  and the Irwin’s stress intensity factor 

 [35] as follows:  

  (13) 

where x is the crack length, C and m are material constants, and N is the number of fatigue load cycles. 

In this study, the Paris-Erdogan model is employed for considering an infinite plate with a center crack 

subjected to a sinusoidally applied stress , where the geometric factor is equal to 1 and the stress 

intensity factor  is defined as follows [35]: 

  (14) 

where  is the cyclic stress amplitude. 

To take into consideration the statistical variability of the crack growth rate in practice, Myötyri et 

al. [36] introduced a stochastic variant of the Paris-Erdogan model by using a process intrinsic 

stochasticity, given by: 

  (15) 

where  is an additional white Gaussian noise. For  sufficiently small, the state-space 

model in Eq. (15) can be discretized as follows: 

  (16) 

which represents a non-linear Markov process with independent evolution of the degradation state x.  

2.2.2. Polynomial model 

A mismatch of crack growth models based on power function with the median crack growth curve 

has been discovered [31, 37]. To address this issue, a crack growth model based on polynomial function 

was proposed as follows [31]: 

  (17) 

where  are polynomial constants. The stress intensity factor  is not considered in this 

model [31]. In other studies, the polynomial model was shown to yield the best fit in the linear least 

square stage of the degradation process [32, 33].  

The Markov process representation for a polynomial function-based crack growth model can be 

defined as follows: 
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2.2.3. Global function 

Despite the fact that the Paris-Erdogan model and polynomial model show satisfactory performance 

in the description of the fatigue crack growth process, the effects of equipment geometry on the 

degradation process have not been taken into consideration [30]. To tackle this shortcoming, Hossien 

et al. [30] introduced a global function by further reformulating the model for stress intensity range in 

Eq. (14), using a geometric factor defined as follows: 

  (19) 

where h(x) is the geometric factor. In this work, a case study considering a center-cracked plate under 

uniform tension is considered for validating the global function-based crack growth model, in which 

the geometric factor h(x) is defined by [38]:  

  (20) 

where w is the specimen width. 

The global function-based crack growth model can be further discretized as follows:  

  (21) 

2.2.4. Curve fitting function 

Still in [30], the authors presented another empirical crack growth model based on a curve fitting 

technique, given by: 

  (22) 

where C1, C2, m denote the model constants, whose values need to be estimated. According to [30], the 

stress intensity factor  is not considered in the model. 

The authors showed that the crack growth model based on the curve fitting function had capabilities 

of outperforming the conventional models, such as the power function and the polynomial function, in 

terms of higher prediction accuracy and lower computation cost. The discretized Markov process 

representation for a curve fitting function-based crack growth model can be defined as follows: 

  (23) 

2.3. Dynamic-weighted ensemble for prediction  

Although various stochastic crack growth models have been studied, it is still difficult to develop 

a unique accurate model for specific degradation processes, particularly for the ones under time-varying 
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operation conditions. In this section, a dynamic-weighted ensemble is presented to find automatically 

the best combinations of multiple crack growth models with respect to their estimation performances. 

The proposed algorithm consists of the following three steps: 

a) Step 1: At the load cycle time t, when the new measurement is available, the time-varying 

model parameters and the estimated degradation states given by each model are updated by 

using the recursive Bayesian algorithm described in Section 2.1.  

b) Step 2: The estimated degradation state of each individual model is weighted by their 

estimation errors for the last cycles as follows:  

  (24) 

where  and  are the dynamic weight and estimation error coefficient of the ith model at 

time t, respectively. The estimation error coefficient  is defined as follows:  

  (25) 

where  is the time horizon (  = 50 load cycles in the case study that follows) and  is the 

estimated degradation state of the ith model at time k. Consequently, the highest weight is given 

to the model in the ensemble with lowest error at the present time t, and vice versa, the smallest 

weight in constructing the ensemble is assigned to the least accurate model at time t.  

c) Step 3: Once the dynamic weights for all models at the current time t are calculated, the 

predicted degradation state of the ensemble is computed as follows: 

  (26) 

where  is the ensemble predicted state at the load cycle T and NM is the number of 

degradation models (NM  = 4 in this study). Note that the weights are for the current load cycle 

as no new measurements are available for any future load cycles. 

3. Results and discussion  

3.1. Illustrative case study of fatigue crack growth    

Numerical simulations of fatigue crack growth have been carried out with an initial crack length x0 

of 10-4 mm and a test frequency of 1 Hz. The total number of fatigue load cycles is N = 2000 cycles. 

To explore the capabilities of the proposed approach under time-varying degradation processes, the 

fatigue lifetime of the simulated crack growth is split into four continuous and equivalent periods, where 

the crack length is generated according to different crack growth models as follows:  
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a) In the first 500-load-cycle period, the Paris-Erdogan model is employed to simulate the crack 

propagation process as described in Eq. (16). In this regard, the Paris-Erdogan model can 

provide a linear relationship between  and , in other words, the stress 

intensity factor (SIF) range of simulated data is compatible to the Region II (Paris region).  

b) In the following period, the polynomial crack growth model in Eq. (18) is used to generate the 

crack length.  

c) The global function-based crack growth model in Eq. (21) is, then, employed for the third 

period.  

d) Finally, in the last period, from the cycle 1501 to 2000, the curve fitting function-based crack 

growth model in Eq. (23) is utilized.  

The model parameters in this work are first initialized based on empirical knowledge, as detailed 

in Table 1. Subsequently, a Bayesian-based parameter identification approach, as presented in Section 

2.1.2, is applied to adaptively update the parameters according to the real-time information from 

measured data at each load cycle. 

 
Table 1   
Detailed settings of model characteristics of fatigue crack growth case studies. 

State noise variance 𝜎"#  = 0.49 

Measurement noise variance 𝜎$# = 0.16 

Paris-Erdogan model C = 0.1, m = 1.3 

Polynomial model 𝑝&= 1.4 x 10-3, 𝑝' = 1.5 x 10-3, 𝑝# = 1 x 10-5 

Global function-based model C = 0.005, m = 0.245 

Curve fitting function-based model w = 1 mm, C1 = 250, C2 = 0.3, m = -0.7 
 

For the purpose of extensively validating the effectiveness of the proposed approach for drifting 

degradation processes, two crack growth profiles under different conditions of load ratio, R = 0.1 and 

R = 0.15, are artificially integrated to expand the case study of the simulated crack growth, as illustrated 

in Fig. 2. Specifically, the load ratio R, or the stress ratio, measures the general influence of the mean 

stress on the fatigue crack growth behavior, and is defined by the ratio of the minimum to the maximum 

stresses experienced during a cycle. As the ratio R increases, the fatigue crack growth rate curve is 

shifted toward higher  [38]. 

log( / )dx dN log( )KD

/dx dN
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Fig. 2. Simulated crack depth evolution profiles with different load ratios (a) R = 0.1 and (b) R = 0.15. 

In order to validate the SIF ranges of the generated crack growth data, an investigation is carried 

out on the first 500-load-cycle period, where the crack size is very small, and the results are illustrated 

in Figs. 3 and 4. The state noise is also considered in this investigation. As expected, the results clearly 

show a linear relationship between  and  in all cases of stress ratio conditions, 

which means that the simulated data completely correspond to the Region II (Paris region). 

 

 

Fig. 3. Stress intensity factor range, ∆𝐾 log scale, with R = 0.1. Without state noise considered (left) and with 

state noise 𝜎"# = 0.49 (right). 

(b)(a)

log( / )dx dN log( )KD
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Fig. 4. Stress intensity factor range, ∆𝐾 log scale, with R = 0.15. Without state noise considered (left) and with 

state noise 𝜎"# = 0.49 (right). 

3.2. Performance evaluation    

The proposed prognostic framework based on recursive Bayesian technique and dynamic-weighted 

ensemble is applied to determine the best combination of multiple crack growth models in terms of 

degradation prediction performance. More specifically, when a new monitored measurement is 

available, the degradation states and crack growth model parameters are estimated online via the 

Bayesian technique. The four stochastic crack growth models described in Section 2.2 are considered. 

The weight for each individual model is updated at the current load cycle and the ensemble is obtained 

by integrating the individual degradation models. The mean square error (MSE) is considered as the 

performance evaluation index to indicate prediction accuracy: 

  (27) 

where  and  denote the true degradation state and the prediction of the ith crack growth model at 

time t, respectively. 

The degradation state estimations at different load ratios are shown in Figs. 5 and 6. As expected, 

the estimated degradation states among different models are similar for the current time, as shown in 

Figs. 5(a) and 6(a), but obviously separated for short-term state predictions. This indicates the 

effectiveness of the prediction error-based dynamic weights in reflecting the performance of different 

degradation models. An interesting observation in Figs. 5 and 6 is that the polynomial model can exhibit 

satisfactory performance when the fatigue crack depth is small, but its performance is rapidly degraded 

when the crack becomes longer. This is mainly because of the fact that the polynomial function only 

fits in the linear least square stage of the degradation process, as mentioned in Section 2.2.2. In other 

words, the polynomial model is able to achieve satisfactory performance only for linear and 

deterministic fatigue crack growth processes. In contrast, by combining dynamically different 
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degradation models, the proposed ensemble approach can achieve superior performance to the 

individual models in predicting the degradation states of fatigue crack growth. Table 2 shows that the 

proposed ensemble framework outperforms the individual crack growth models, yielding a prediction 

accuracy of 2.07 and 33.14 in terms of MSE for short-term degradation state prediction at time t+300 

under the load ratios R = 0.1 and R = 0.15, respectively.  

 

   

Fig. 5. Estimation of degradation state at load ratio R = 0.1 in three scenarios: (a) Regression at time t; (b) 

Prediction at time t+100; and (c) Prediction at time t+300. 

(a)

(b)

(c)
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Fig. 6. Estimation of degradation state at load ratio R = 0.15 in three scenarios: (a) Regression at time t; (b) 

Prediction at time t+100; and (c) Prediction at time t+300. 

Table 2   
MSE results of the degradation state regression and short-term prediction at different load conditions. 

 R = 0.1  R = 0.15 

 t t+100 t+300  t t+100 t+300 

Paris-Erdogan model 0.10 1.09 12.79  0.15 10.35 151.04 

Polynomial function-based model 0.10 4.51 60.90  0.15 278.25 9764.72 

Global function-based model 0.10 0.69 11.92  0.15 8.94 140.21 

Curve fitting function-based model 0.10 3.54 42.03  0.15 14.33 119.09 

Proposed ensemble 0.10 0.38 2.07  0.12 5.23 33.14 

  

The impact of uncertainty on the performance of the proposed framework in case of unknown initial 

state of degradation has also been investigated. In this case, the monitored data are assumed unavailable 

from time 1 to  (  = 500 in this study), and the true degradation state of the system is also assumed 

unknown. The performance of the proposed approach under different load ratio conditions is shown in 

Figs. 7 and 8. The dashed line with marker are the predicted degradation states of the proposed approach 

while the dotted lines are the 95% confidence intervals. The results in Figs. 7 and 8 show that the 

proposed framework can yield accurate state predictions even without knowledge of the initial 

(a)

(b)

(c)

0t 0t 0t
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degradation state. In Fig. 8(c), some abnormal spikes in the confidence intervals can be observed. Note 

that these abnormal spikes exist only in the case study in which the degradation state prediction is 

performed at time t+300 with no available measurement until the time  = 500. For the relative shorter 

prediction horizon, no spike is observed. This can be explained by the fact that for a long-term 

prediction time t+300, the performances of individual models in the ensemble can be unexpectedly 

degraded due to the propagation of uncertainty. As can be seen in Figs. 9 and 10 below, in the last 400 

load cycles, the performance diversity between the polynomial model and the others is clearly observed, 

and, furthermore, the variance of the polynomial model also rapidly increases, resulting in 

unsatisfactory performance in the estimation of the confidence intervals. 

 

 

Fig. 7. Estimation of degradation state with measurements that are not available until the time t0 = 500 at load 

ratio R = 0.1, in three scenarios: (a) Regression at time t; (b) Prediction at time t+100; and (c) Prediction at time 

t+300. 

0t

(a)

(b)

(c)
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Fig. 8. Estimation of degradation state with measurements that are not available until the time t0 = 500 at load 

ratio R = 0.15, in three scenarios: (a) Regression at time t; (b) Prediction at time t+100; and (c) Prediction at 

time t+300. 

 

Fig. 9. Degradation state prediction at time t+300 with measurements that are not available until the time t0 = 

500 at load ratio R = 0.15: (a) Ensemble weights of individual models; (b) Degradation state prediction of 

individual models; (c) Degradation state prediction of the proposed ensemble. 

(a)

(b)

(c)

(a)

(b)

(c)
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Fig. 10. Variances of degradation state prediction at time t+300 with measurements that are not available until 

the time t0 = 500 at load ratio R = 0.15. 

4. Conclusions 

This paper proposes a prognostic framework for predicting the degradation states of fatigue crack 

growth under different load conditions. Although several degradation models have been investigated 

for fatigue crack growth prognosis in the literature, there is no general consensus on a comprehensive 

crack growth model over different degradation processes. To address this issue, a dynamic-weighted 

ensemble of multiple degradation models is presented. The key idea of the proposed approach is to 

utilize a dynamic weight vector, which is updated at each load cycle when the new measurements 

become available, for evaluating individual degradation models performance with respect to their 

estimation errors on previous cycles. Short-term predictions of crack growth are also provided to 

anticipate and proactively prevent sudden breakdowns of the component in a near future. Simulation 

results show that the proposed prognostic framework can yield a satisfactory performance under 

evolving operating conditions, and outperforms individual models for fatigue crack growth in terms of 

prediction accuracy.  

The performance of the proposed dynamic-weighted ensemble framework depends also on the 

specific degradation models used in the ensemble. More advanced degradation models of fatigue crack 

growth (e.g. those of the FKM Directive [39]) can be accommodated in the framework. Moreover, not 

only state-dependent but also age-dependent models can be used for predicting the degradation process 

of fatigue crack growth [40]. Note that the predetermined initial values of the model parameters may 
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affect the prediction performance: their values should be initialized based on the available 

measurements of the equipment. To address this issue, research on dynamically initializing the model 

parameters, e.g. by using the Maximum Likelihood Estimation (MLE) [41], can be considered in future 

work.    
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Abstract 

Various models of fatigue crack growth in different scenarios have been proposed in the literature. 

Here, in this paper, we propose a general prognostic framework for tracking crack evolution in 

equipment undergoing fatigue and predicting the Remaining Useful Life (RUL). The main 

contribution of this work is to integrate Particle Filtering (PF) and a new ensemble model which 

combines diverse physical degradation models with respect to their accuracy performance in 

previous time steps, in order to maximize the overall prediction capability. To validate the 

effectiveness of the proposed framework, a case study concerning multiple fatigue crack growth 

degradations is extensively investigated. 

Keywords: Prognostics and Health Management; Fatigue crack growth; Dynamic ensemble; Multiple 

stochastic degradation; Particle Filter; Remaining Useful Life;  

 
 

Nomenclature 
 

Abbreviations 
BWWV Best-Worst Weighted Vote 

EOP End-Of-Process 
IMMPF Interacting Multiple Model Particle Filter 

MAPE Mean Absolute Percentage Error 
MC Monte Carlo 

MSE Mean Square Error 
PBM Physics-Based Model 

PDF Probability Density Function 
PF Particle Filtering 

PPI Prognostic Performance Indicator 
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RMSE Root Mean Square Error  
RUL Remaining Useful Life 

SMC Sequential Monte Carlo 
SME Sample Mean Error 

SMeE Sample Median Error 
TWEB Timeliness Weighted Error Bias 

 
Symbols 

a constant of polynomial crack growth model 
b constant of curve fitting model 

C material constant 
d width of the specimen undergoing fatigue crack (mm) 

f state transition function 
g measurement function   

h(x) geometric factor 
m material constant  

N number of fatigue load cycles (cycle) 
NM number of degradation models 

NP number of particles 
NS number of units under test 

p probability distribution 
q importance sampling distribution   

𝑅𝑈𝐿= actual RUL at time t (cycle) 

𝑅𝑈𝐿>=
?  estimated RUL of the ith degradation model at time t (cycle) 

𝑅𝑈𝐿>= estimated RUL of the ensemble at time t (cycle) 

t time (cycle) 

𝑇=? estimated failure time of the ith degradation model at time t (cycle) 

𝑤BC=
?,=  previous estimation accuracy-based output weight of the ith degradation model 

in the ensemble at time t 

𝑤DEB
?,=  previous prediction accuracy-based output weight of the ith degradation model 

in the ensemble at time t 

𝑤F$BEGHH
?,=  overall output weight of the ith degradation model in the ensemble at time t 

𝑤IF$BEGHH
?,=  normalized overall output weight of the ith degradation model in the ensemble 

at time t 

x degradation state (mm) 
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xth failure threshold (mm) 

𝑥2= estimated degradation state of the ensemble at time t (mm) 

𝑥2=? estimated degradation state of the ith degradation model at time t (mm) 

𝑥J=K:=
?  predicted degradation state of the ith degradation model at time t with 

measurements that are available up to time tp (tp < t) (mm) 
z measurement (mm) 

𝛼 geometric coefficient of fatigue crack 

𝛿BC= time horizon for previous estimates considered (cycles)  

𝛿DEB time horizon for previous predictions considered (cycles)  

∆𝐾 stress intensity factor (MPa√m) 

∆𝜎 cyclic stress amplitude (MPa)  

∆𝑡 time interval (cycle)  

𝜀 weight coefficient of individual degradation model 

𝜐 measurement noise 

𝜔 state noise 

1. Introduction 

The rapid development of technology and computer science is bringing opportunities for industrial 

systems to evolve smarter and faster, but also more complex. In this fast-changing environment, 

unanticipated risks and failures which may cause large-scale breakdowns with significant losses in both 

production and economics, have also increased [1]. To cope with this challenging situation, the 

development of reliability and health management strategies for preventing components and systems 

from such unexpected failures are urgently required. Specifically, these strategies aim to monitor health 

conditions of engineering components, predict their Remaining Useful Lives (RULs) and, ultimately, 

enable optimal maintenance decisions before the breakdown of the components [2], [3]. In practice, the 

reliability of equipment usually starts decreasing due to gradual degradation, e.g., delamination [4], 

fatigue crack [5]–[8], corrosion [9], [10], etc., under periodic cyclic loads and eventually leading to 

failures. Fatigue crack growth is one of the most frequent degradations leading to components and 

systems failures in several major industries, including energy [6], [11], automotive [7], aerospace [8], 

etc. Therefore, the demand of prognostic systems for dealing with fatigue crack growth has recently 

increased. 

To address this issue, Physics-Based Models (PBMs), which utilize the physical knowledge of the 

degradation for constructing a quantitative analytical model of the equipment behavior, have gained 

significant attention for fatigue crack growth prognostics [12]–[14]. In [13], a failure prognostic scheme 

for fatigue crack growth prediction was introduced, which employed a stochastic crack growth model 
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and a Bayesian technique to timely update the equipment degradation state from a sequence of 

monitored measurements. Other Bayesian-based prognostic approach was presented to estimate the 

stress intensive range of the degradation model in an online manner [14]. The capability of Bayes 

theorem was fully exploited for updating knowledge about the current degradation state of the target 

equipment and the unknown parameters in physical models, when a new measurement becomes 

available.  

Among Bayesian-based prognostic techniques, a sequential Monte Carlo (SMC) method, known 

as Particle Filtering (PF) method, has become very popular due to its capability of effectively handling 

non-linear systems and non-Gaussian noises. The key idea behind this method is to represent the 

posterior distribution of the equipment state by a random set of weighted samples, also called particles, 

and then compute the estimated state based on the particles and their associated weights. This 

methodology has been widely adopted for state estimation and prediction of crack growth [15]–[17], 

Lithium-ion batteries [18], [19], PEM fuel cells [20], bearings [21], etc. 

On the other hand, the performance of model-based prognostic frameworks for fatigue crack 

growth largely depends on the choice of the adopted physics-of-failure model [22], [23]. Numerous 

research on modelling fatigue crack growth have been extensively investigated and developed [5], [24]–

[26]. In [24], a comprehensive comparison of stochastic models for fatigue crack growth, including the 

Markov chain model, the Yang’s power law-based model, and a polynomial model, was carried out. 

The results indicated that each degradation model has its own specific range of applicability, that is, 

each model is only appropriate to certain degradation processes under certain conditions. To the best 

knowledge of the authors, there is no general consensus on a prognostic model for fatigue crack growth 

under different degradation processes. Recently, hybrid and multi-degradation model ensembles have 

attracted the attention of industrial practitioners and researchers due to their superiority over individual 

degradation models in terms of higher accuracy and better generalization capability [19], [27]. The 

fundamental idea of these empirical frameworks is to exploit the diversity of different degradation 

models, which can offer complementary information about the degradation states to be estimated. In an 

application of Lithium-ion battery prognostics, an Interacting Multiple Model Particle Filter (IMMPF) 

has been presented to combine the estimations from three different battery capacity degradation models 

[27]. The results experimentally indicated that the ensemble approach can yield a promising 

performance in terms of smaller estimation errors and more accurate predictions than single models. 

In this paper, an ensemble-based prognostic approach is presented for predicting the evolution to 

failure and the RUL of an equipment undergoing fatigue crack growth. To maximize the diversity 

property of the proposed framework, four stochastic degradation models of fatigue crack growth are 

considered in this work. Moreover, PF is used to track the crack propagation process with nonlinear 

and non-Gaussian characteristics and eventually to predict the RUL of the equipment before 

breakdowns. To further enhance the performance of the proposed framework, a dynamic weighted 

ensemble strategy is proposed in this paper, based on the previous accuracy performance in degradation 
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state estimation and RUL prediction of each single model in the ensemble. Finally, a set of prognostic 

performance indicators (PPIs) is employed to validate the prediction capability of the proposed 

framework. 

The rest of this paper is organized as follows. Section 2 introduces the degradation models for 

fatigue crack and details the proposed prognostic framework. Section 3 describes the illustrative case 

study and the experimental results of the proposed framework in comparison with individual models 

are shown in Section 4. Finally, Section 5 concludes the study. 

2. Ensemble-based framework for fatigue crack prognostics 

This section presents the proposed ensemble-based framework for fatigue crack prognostics. Three 

key issues are addressed: how to select the degradation models for the ensemble; how to use the 

degradation models for estimating the degradation states and predicting the RUL of the equipment; 

how to combine the outputs of the individual models for achieving maximum accuracy. Fig. 1 illustrates 

the flowchart of the proposed prognostic model; more details are given in the following sections. 

 

 
Fig. 1. Flow diagram of the proposed prognostic framework. 

2.1. Degradation models for fatigue crack 

Diversity is an important aspect to consider in the design of an ensemble modeling framework. To 

address this issue, four stochastic fatigue crack degradation models are selected for exploiting their 

diversity in the ensemble: Paris-Erdogan, polynomial, global function-based, and curve fitting models. 

2.1.1. Paris-Erdogan model 

The popular Paris-Erdogan model describes the dynamic evolution of the crack depth  as a 

function of the load cycle number  as follows [28]: 

x

N



  
 

 

119 

  (1) 

where  and  are constants related to the material properties, and  is the Irwin’s stress intensity 

factor defined by [29]: 

  (2) 

where  is the cyclic stress amplitude. In practice, the statistical variability of the crack growth rate 

can be addressed by modifying Eq. (1) with an intrinsic process stochasticity [30]: 

  (3) 

where  is a white Gaussian noise. For a sufficiently small , the Markov chain state-

space model of the degradation state  in Eq. (3) can be discretized as follows: 

  (4) 

2.1.2. Polynomial model 

The polynomial models were first introduced for fatigue crack growth in order to solve the 

mismatch between the traditional power function-based models, i.e. Paris-Erdogan, and the practical 

median crack growth curves [24], [31]: 

  (5) 

where  are the second-degree polynomial parameters. Indeed, various works showed that 

the polynomial models are able to yield the best fit of the linear stage of a degradation process, 

compared to conventional models [19], [31]. Specifically, the Markov process representation for a 

polynomial crack growth model can be given as follows: 

  (6) 

2.1.3. Global function 

Considering again the Paris-Erdogan model Eq. (4) and the fact that fatigue crack growth generally 

depends not only on material properties but also on equipment geometry, a so-called global function 

was introduced by reformulating the stress intensity factor  [32]: 

  (7) 

where  denotes the geometric factor of fatigue crack, defined by: 

  (8) 
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where  and  are geometric coefficients and the width of the specimen, respectively. The 

global function-based model for fatigue crack growth can be, then, written as follows: 

  (9) 

2.1.4. Curve fitting function 

In [32], an empirical crack growth model based on a curve fitting function was presented, which 

was shown to outperform the conventional models, such as Paris-Erdogan and polynomial models, in 

terms of higher prediction accuracy and lower computational cost:  

  (10) 

where ,  are model constants. The discretized Markov process representation for the model can be 

given as follows: 

  (11) 

2.2. Degradation state estimation and RUL prediction by PF 

In this work, PF is employed to estimate the current degradation state of the equipment and to 

predict its future evolution until failure. The key idea of PF is based on Bayesian filtering and Monte 

Carlo (MC) simulation [33]. The basics of the method are recalled in the following sections. 

2.2.1. Current degradation state estimation 

PF assumes that the state model can be represented as a first-order Markov process, where the 

current degradation state  at time  depends only on its previous state . The dynamic system 

process can be described by the following equations: 

  (12) 

  (13) 

where  denotes the measurement,  is the state noise sequence, and  is the measurement noise 

sequence at the inspection time . 

In a Bayesian framework, the system state  can be estimated by constructing its posterior 

probability density function (pdf), , via two consecutive steps, namely prediction and update. 

In the prediction step, the previous state estimation  and the state transition model  are utilized 
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to obtain the prior distribution of the system state  at current time  via the Chapman-Kolmogorov 

equation: 

  

  (14) 

where  is the conditional probability distribution and is defined by the state model in Eq. 

(12). As a new measurement  is collected, the required posterior distribution of the current state  

can, then, be obtained by updating the prior distribution via Bayes theorem as follows: 

  (15) 

where  is the likelihood function defined by the measurement model in Eq. (13) and  

is a normalizing constant given by: 

  (16) 

However, there is usually no analytical solution to Eqs. (14) and (15) [19]. To address this issue, 

PF utilizes MC simulation to approximate the true probability distribution with a set of weighted 

random particles , where  is the total number of particles. In fact, these particles 

evolve statistically independently of each other, according to the probabilistic state model Eq. (12). In 

this regard, the posterior distribution at time  can be approximated as: 

  (17) 

where  is the Dirac Delta function, often used to represent a discrete distribution as a continuous 

probability density function : 

  (18) 

where  is a discrete distribution with corresponding probabilities . In particular, 

the particle  is sampled from the importance sampling distribution  and its associated weight 

 is given by: 

  (19) 

By setting  defined in Eq. (12), the particle weight  can be updated with a new 

collected measurement  as follows: 
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  (20) 

where  is the likelihood of measurement  given the particle . Note that the weights are 

normalized as  

2.2.2. Future degradation evolution prediction 

Once the posterior distribution  of the current degradation state is estimated, it is possible 

to predict the future degradation evolution and the RUL of the equipment. However, note that there is 

no available information for estimating the likelihoods of the future degradation states, because future 

measurements , where  is the time horizon of interest for the analysis, have not been 

collected yet. The only available information is the dynamic state model Eq. (12). Then, the l-step ahead 

posterior distribution  can be written as follows:   

  (21) 

The numerical evaluation of the integrals in Eq. (21) requires significant computational effort. In 

this paper, an approach presented in [34] is adopted with the assumption that the particle weights do 

not change from time  to time , i.e., . Accordingly, the predicted distribution at 

time  is given by: 

  (22) 

where the particle  is obtained by iteratively applying the state model Eq. (12) to the corresponding 

particle of the current state . 

Finally, the RUL associated to each particle at the present time  can be calculated with reference 

to the earliest time that the degradation state exceeds the failure threshold : 

  (23) 

where  is obtained by simulating the particle evolution via the state model Eq. (12). The predicted 

RUL distribution is, then, given by: 

  (24) 

More details can be found in [35], [36]. 
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2.3. Selective ensemble based on previous estimation and prediction accuracies 

With respect to the way of calculating the weights of the models in an ensemble, the existing 

ensemble methods can generally be divided into three categories: (a) simple vote ensemble [37], where 

all individual models outputs are given the same weight coefficients in the voting strategy; in this 

scheme, majority vote is the most popularly used rule; (b) weighted ensemble [27], which combines 

individual models with different weight coefficients: each individual is assumed to have a different 

contribution to the performance of the ensemble model; (c) selective ensemble [38], which includes 

only an optimal subset of models. This latter method has recently attracted increasing interest, due to 

its capability of significantly reducing the bias and variance in the ensemble estimation [38].  

In this section, we present a selective ensemble approach for prognostics of fatigue crack growth 

based on a best-worst weighted vote (BWWV) strategy [39]. A novel ensemble weight constructed by 

using both previous estimation and prediction accuracies of each individual model in the population is 

proposed. 

2.3.1. Previous estimation accuracy based output weight calculation 

Suppose that we have a sequence of measurements collected until the current time , 

. The degradation states described by the individual models, 

, where  is the number of individual models in the population (  

in this study), can be estimated by using the PF described in Section 2.2. A weight coefficient of the ith 

model, based on the Root Mean Square Error (RMSE) of its previous estimates with respect to the 

corresponding measurements, can be calculated as follows: 

  (25) 

where  is the time horizon of previous estimates considered (  load cycles in the case study 

that follows). The previous estimation accuracy-based output weight of each single model is, then, 

obtained based on the BWWV as follows: 

  (26) 

where  and . By using the BWWV strategy, a maximum weight, = 1, 

is assigned to the model in the ensemble with highest accuracy at the present time t, and a null weight, 

= 0, is given to the model with least accuracy, which is equivalent to removing the model from the 

ensemble for the estimation at time t. 

2.3.2. Previous prediction accuracy-based output weight calculation 
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Due to the fact that there is no available information from observations to predict the future 

equipment RUL, the prediction accuracy of each model in the ensemble for the previous time steps is 

used to calculate the corresponding output weight. We first identify a time instant  before the present 

time  in the time horizon, where    (  load cycles in the following case study), as 

illustrated in Fig. 2. The state prediction  (the dashed line) of one model at time  is obtained by 

iteratively applying the system model to the estimated state , which is set to  in this study. We 

can now calculate the weight coefficient of the ith model, based on the RMSE of its predictions for 

degradation states between time  and , with respect to the measurements: 

  (27) 

Subsequently, the previous prediction accuracy-based output weight of each single model is computed 

as:  

  (28) 

 

Fig. 2. Sketch of the previous prediction accuracy-based output weight calculation approach. 

2.3.3. Output weight calculation 

Finally, the complete output weight of the ith model in the ensemble at time  is calculated as an 

average of the previous estimation accuracy-based and the previous prediction accuracy-based weights: 
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The output weight is, then, normalized as: 

  (30) 

Once the output weights for all models are updated, a weighted-sum strategy is used to obtain the 

degradation state estimation and the RUL prediction of the ensemble as follows: 

  (31) 

  (32) 

where  and  are the degradation state estimation and the RUL prediction of the proposed 

ensemble at the present time , respectively;  is the RUL prediction of the ith model in the 

ensemble. 

3. Case study 

A case study of fatigue crack growth is carried out in this work to demonstrate the effectiveness of 

the proposed method, including crack depth measurements of 100 simulated degradation trajectories, 

as shown in Fig. 3. The common Paris-Erdogan model in Eq. (4) is adopted for describing the evolution 

of the crack depth with the parameters predefined as follows: 

• The model constants are  and ; 

• The state and measurement noise variances are  and , respectively. 

The crack depths, with a 10-4 mm initial length, are recorded every load cycle. The failure threshold 

is mm. And the fatigue simulation for each degradation trajectory is performed with a total 

800 load cycles. 
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Fig. 3. 100 fatigue crack growth degradation trajectories. 

4. Performance evaluation 

In this section, the robustness of the proposed ensemble-based prognostic framework is exploited 

for tracking a fatigue crack growth trajectory and, then, predicting the equipment RUL. The results are 

compared with four models of fatigue crack growth to validate the improved performance in terms of 

degradation state estimation and RUL prediction. To evaluate the prognostic framework, five widely 

used PPIs are considered: a) Timeliness Weighted Error Bias (TWEB); b) Sample Mean Error (SME); 

c) Mean Absolute Percentage Error (MAPE); d) Mean Square Error (MSE); e) Sample Median Error 

(SMeE). Details of their definitions are given in Appendix.  

When a new measurement is collected, the estimation of the current degradation state for each 

individual model is also timely updated by using PF as described in Section 2.2. Fig. 4 illustrates the 

estimation results of four single models over the lifetime of the considered degradation trajectory. The 

first degradation trajectory from the simulated crack depth dataset described in Section 3 is taken. Each 

model shows a distinctive characteristic in different stages of the degradation evolution of the fatigue 

crack, which is perfectly suitable for diversity in the proposed ensemble. 
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Fig. 4. Degradation state estimation for the considered degradation trajectory using individual models. 

Based on the estimations of the individual models, the output weights can be determined and used 

to update the results of the state estimation and RUL prediction by the proposed ensemble, as shown in 

Figs. 5 and 6, respectively. As can be seen in Figs. 5 and 6, the individual fatigue crack growth models 

do not perform very well in the RUL prediction throughout the time horizon considered because of 

their low accuracy in estimating the current degradation state. In contrast, the proposed approach has a 

performance which is superior to any individual model throughout the entire life of the equipment, 

yielding a RUL prediction close to the true RUL. 
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Fig. 5. Degradation state estimation for the considered degradation trajectory using the proposed ensemble. 

 

Fig. 6. RUL prediction for the considered degradation trajectory using the proposed ensemble. 

To further investigate the performance of the proposed method, four different randomly chosen 

scenarios are considered, whose results are depicted in Figs. 7 and 8. As shown in these figures, the 

proposed ensemble method consistently exhibits satisfactory performance in estimating the equipment 

crack growth trend and accurately predicting the RUL. This is due to the proposed prognostic approach 

which benefits from the diverse accuracy of the individual models by a weighting scheme that can 

adaptively select the best set of models. Furthermore, in Fig. 8, the confidence intervals show that the 

RUL prediction accuracy of the proposed method is improved with more available data.  
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Fig. 7.  Degradation state estimation using the proposed ensemble with different available measurements. 

 

Fig. 8.  RUL prediction using the proposed ensemble with different available measurements. 

Tables 1 and 2 present the average performances in terms of degradation state estimation and RUL 
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prediction, which have been calculated based on 100 crack depth growth scenarios. The results clearly 

show that the proposed prognostic approach consistently outperforms the individual models for all of 

the prognostic metrics. 

 
Table 1 
Performance comparison in terms of MSE of degradation state estimations. 

 Paris-Erdogan Polynomial Global function Curve fitting Proposed ensemble 

Avg. MSE 
(std) 

117.72 
(102.68) 

166.30 
(80.39) 

138.64 
(74.91) 

102.90 
(69.38) 

8.85 
(5.04) 

 

Table 2 
Performance comparison in terms of PPIs of RUL predictions. 

 TWEB SME MAPE MSE SMeE 

Paris-Erdogan 0.09 115.25 0.62 18.28×103 114.63 

Polynomial 0.07 85.68 0.37 11.56×103 85.43 

Global function 0.02 45.79 0.20 3.11×103 45.86 

Curve fitting 0.03 65.18 0.23 7.01×103 64.18 

Proposed ensemble 0.01 29.41 0.16 3.03×103 31.81 

5. Conclusions 

In this paper, a prognostic modelling framework for fatigue crack growth is proposed. The main 

original contribution of the work is to combine the PF and a new adaptive ensemble approach, which 

integrates models of diverse accuracies in previous estimations and predictions for maximizing the 

generalized prediction performance. The proposed framework is, then, applied to track the degradation 

evolution and predict the equipment RUL. Various prognostic metrics are employed to evaluate the 

prediction performance. The results indicate that the proposed ensemble-based prognostic framework 

outperforms conventional models and is a powerful tool for prognostics of fatigue crack growth. 

A limitation of the study is the lack of a real application for validation. Even though several 

simulation tests were performed to prove the effectiveness of the proposed approach in terms of 

different PPIs, a real case study of fatigue crack growth is still needed. Further research on addressing 

this issue with practical applications of fatigue crack can be considered in future work.   

Appendix 

Detailed definitions of the PPIs 
Formula Description 
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6. Timeliness weighted error bias (TWEB) 

 

 

Measure the weighted prediction error over the lifetime Tj by 
using a penalty function and a weighting function . 

 is defined as a Gaussian kernel function with a mean 

value Tj and a standard deviation 0.5Tj. The optimal value for 
TWEB is 0, which indicates that the predicted RUL is centered 
on the true one. Higher values of TWEB indicate a great 
discrepancy between the predicted RUL and the true one.   

7. Sample mean error (SME) 

 

Calculate the average errors of all sample points during the 
lifetime Tj. The optimal value for SME is 0, which indicates 
that the average errors of all samples is 0, that is, the predicted 
RUL is centered on the true one. Higher values of SME indicate 
a great discrepancy between the predicted RUL and the true 
one. 

8. Mean absolute percentage error (MAPE) 

 

Measure the average absolute percentage error of all samples 
throughout the lifetime Tj. The optimal value for MAPE is 0, 
which indicates a negligible error for all samples during their 
lifetime. Higher values of MAPE indicate a great discrepancy 
between the predicted RUL and the true one. 

9. Mean square error (MSE) 

 

Take into account the average quadratic error of the predicted 
RUL of all samples during the lifetime Tj. The optimal value 
for MSE is 0, which indicates that the predicted RUL is equal 
to the true one for all samples. Higher values of MSE indicate 
high errors in the predicted RUL. 

10. Sample median error (SMeE) 

 

Exploit the absolute median of average errors of all samples 
over the lifetime Tj. The optimal value for SMeE is 0, which 
indicates that the median error of all samples is zero. Higher 
values of SMeE indicate that most predicted RULs are wrong. 
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Abstract 

Developing an accurate and reliable multi-step ahead prediction model is a key problem in many 

Prognostics and Health Management (PHM) applications. Inevitably, the further one attempts to 

predict into the future, the harder it is to achieve an accurate and stable prediction due to increasing 

uncertainty and error accumulation. In this paper, we address this problem by proposing a prediction 

model based on Long Short-Term Memory (LSTM), a deep neural network developed for dealing 

with the long-term dependencies in time-series data. Our proposed prediction model also tackles two 

additional issues. Firstly, the hyperparameters of the proposed model are automatically tuned by a 

Bayesian optimization algorithm, called Tree-structured Parzen Estimator (TPE). Secondly, the 

proposed model allows assessing the uncertainty on the prediction. To validate the performance of 

the proposed model, a case study considering steam generator data acquired from different French 

nuclear power plants (NPPs) is carried out. Alternative prediction models are also considered for 

comparison purposes. 

Keywords: Prognostics and health management; Time-series forecasting; Multi-step ahead 

prediction; Long short-term memory; Nuclear power plant prognostics; Steam generator 
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ANN Artificial neural network 
ARMA Autoregressive moving average 

ARIMA Autoregressive integrated moving average 
BO Bayesian optimization 

CNN Convolutional neural network 
DBN Deep belief network 

EDF Électricité de France 
EI Expected improvement 

FNN False nearest neighbor 
FIS Fuzzy interference system 

LSTM Long short-term memory 
MAPE Mean absolute percentage error 

MASE Mean absolute scaled error 
MC Monte Carlo 

MIMO Multi-input multi-output 
MLP-MIMO Multi-output multilayer perceptron neural network using MIMO strategy 

MLP-REC Single-input multilayer perceptron neural network using recursive strategy 
MSE Mean square error 

NF Neuro-fuzzy 
NPP Nuclear power plant 

PHM Prognostics and health management 
PWR Pressurized water reactor 

RBM Restricted Boltzmann machine 
RMSE Root mean square error 

RNN Recurrent neural network 
RS Random search 

RUL Remaining useful life 
SG Steam generator 

SVM Support vector machine 
SVR-MIMO Multi-Input Multi-Output support vector regression using MIMO strategy 

SVR-REC Single-input support vector regression using recursive strategy 
TPE Tree-structured Parzen estimator 

WRL Wide range level 
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 output of the LSTM cell state at time t  

 potential values of the LSTM cell state at time t 

d embedding dimension 
 prediction model 

 one-step ahead prediction model 

 direct prediction model for the horizon time t+h 

 MIMO prediction model 

 output of the LSTM forget gate at time t  

 output of the repeating network module of a LSTM at time t  

H prediction horizon  
 output of the LSTM input gate at time t  

L number of hidden layers in the LSTM network 
max_iter number of optimization iterations 

Ninit number of TPE startup iterations 
NMC number of MC dropout realizations 

 output of the LSTM output gate at time t  

 probability of being in the bad group in the TPE algorithm  

 probability of being in the good group in the TPE algorithm 

r(l) vector of independent Bernoulli random variables at layer l of the LSTM 
network 
t time t  

 observed value at time t  

 predicted value at time t  

y(l) output vector of the hidden layer l of the LSTM network  

ỹ(l) thinned output vector of the hidden layer l obtained by using dropout 

z(l) input vector of the hidden layer l of the LSTM network  

 weight and bias of the LSTM cell state, respectively  

 weight and bias of the LSTM forget gate, respectively 

 weight and bias of the LSTM input gate, respectively  

 weight and bias of the LSTM output gate, respectively  

 a network layer in the repeating network module of a LSTM 
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tC

tC!

f

Rf

,D hf

MIMOf

tf

th

ti

to

Prbad

Prgood

tx

ˆtx

( , )C CW b

( , )f fW b

( , )i iW b

( , )o oW b

s

q



 
 

138 

 selected hyperparameter set  

1. Introduction 

In recent years, prognostics and health management (PHM) has attracted increasing attention from 

academic researchers and practitioners in different industrial sectors. The primary characteristic of 

PHM is that it can enable estimation and prediction of the health state of components and systems, by 

making use of past, present and future knowledge, information and data on their operations, and this 

capability can be used to identify malfunctions and anticipate failure patterns [1]. This allows 

estimating the remaining useful life (RUL) of components and systems, and scheduling the maintenance 

interventions for the most opportune and convenient instances. By so doing, the availability and 

reliability of the assets can be maximized, with reduced unscheduled shutdowns and maintenance costs.   

Developing models for efficient PHM is a challenging task, with several issues to be addressed. 

Among them, determining an appropriate horizon for the prediction, i.e. how far into the future the 

model should predict and with what accuracy, is crucial and application dependent, in the sense that it 

depends on the use that is made of the prediction, typically for taking some decisions [2]. For instance, 

the selected horizon should be suitably long to allow that maintenance actions be timely carried out. 

This often requires long-term predictions in practice. However, long-term predictions are known to 

suffer from increasing uncertainties, which may arise from the accumulation of prediction errors or 

from the complex interactions and correlations in the underlying process at different time steps. This 

has challenged and somewhat limited the research on long-term prognostics for many years [3], [4]. To 

address this problem, the main focus of this paper is the development of a prognostic framework for 

the long-term prediction of parameters relevant to the operation of the steam generators (SGs) in nuclear 

power plants (NPPs).  

Depending on the information and data available for the model development, prognostic 

approaches can be divided into two main categories: model-based and data-driven approaches [5]. 

Model-based approaches predict the degradation evolution by formalizing it into physical analytical or 

computational models. These approaches are used in applications where the model of the degradation 

process exists and is not too complicated, e.g. models of fatigue crack growth [6], [7], of capacity 

degradation in Lithium-ion batteries [8], [9]. Alternatively, data-driven approaches utilize condition 

monitoring data collected from sensors to learn and predict the component or system behavior and 

degradation via statistical and artificial intelligent (AI) models, such as autoregressive integrated 

moving average (ARIMA) [10], artificial neural network (ANN) [11]–[14], neuro-fuzzy (NF) [2] and 

support vector machine (SVM) [15]–[17]. Due to the data-adaptive nature, data-driven approaches are 

quite appropriate for prognostic real-world applications where models are not available whereas 

obtaining condition monitoring data is becoming convenient with smart sensors.  

When applying data-driven approaches to prediction, models like ANN, NF and SVM are usually 
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limited in extracting and utilizing the temporal information of the given data which is necessary for 

prediction purposes. More specifically, these approaches consider each time step independently and 

make the prediction as a static mapping, which often takes into account only the current state of the 

process [18]. Recently, a connectionist neural network model called recurrent neural network (RNN) 

has been proposed to account for the dynamics [19]. RNN is a network with feedback connections from 

the hidden and output layers to the preceding ones, by which the dynamics of sequential data can be 

captured and the memories of the previous patterns are retained via cycles in the network. In the last 

decade, RNNs have been extensively investigated for a variety of prognostic applications, including 

engine systems [20]–[23], lithium-ion batteries [24]–[26], rolling element bearings [27]–[30] and fuel 

cells [31], [32]. Zhang et al. [24] utilized a RNN to extract the long-term dependencies underlying in 

the battery capacity degradation process. The obtained results showed that RNN outperformed the 

classical data-driven models in prediction robustness and accuracy. In [30], the RNN model was 

modified with an incremental learning technique, which was then applied for predicting the long-term 

propagation of rolling element bearing degradation to failure. RNN has also been used in the 

construction of health indicators for generator bearings of wind turbines [33]. The obtained RNN-based 

health indicator showed its effectiveness for improving the prediction performance of the bearing 

RULs. 

In this paper, a variational model of RNN, which is called long short-term memory (LSTM), is 

employed for developing a prognostic framework for SGs in NPPs. An important feature of the 

proposed framework is the ability to deal with a long-term prediction horizon. A multi-input multi-

output (MIMO) prediction strategy and LSTM network are integrated to predict the equipment health 

conditions for multiple steps ahead. The proposed framework also handles two practical problems in 

prediction model development. On one hand, the performance of the prediction model depends on the 

time-series data acquired from sensors: any anomalous or missing data that can degrade the 

performance should be dealt with. On the other hand, an optimal model setting for different available 

datasets is crucial to successfully apply the prediction model to practical problems. The effective 

handling of these two issues is another contribution of this work.  

In summary, the main contributions of this paper are as follows: 

(1) A data preprocessing module consisting of an outlier removal and a missing data imputation 

methods is introduced for filtering and preparing the data for the prediction task.  

(2) Automatic hyperparameter optimization based on the Tree-structured Parzen Estimator (TPE) 

algorithm is performed. The obtained results are compared to the conventional random search 

(RS) algorithm with respect to different data scenarios.   

(3) Dropout regularization and Monte Carlo (MC) techniques are integrated to assess the prediction 

uncertainty of the proposed model.  

(4) A case study using the data of SGs in French NPPs measured during the period 1992-2007 is 

carried out to evaluate the performance of the proposed LSTM-based framework for long-term 
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prediction. To the authors’ knowledge, this is the first study using LSTM for the long-term 

prediction and used on NPP SGs. Other prediction models are considered for comparison 

purposes. 

The rest of the paper is organized as follows. Section 2 presents a brief introduction of time series 

prediction approaches. Section 3 introduces the LSTM neural network. The proposed multi- step ahead 

prediction model is presented in Section 4. Section 5 describes the experimental case study, and the 

obtained results and their discussion are presented in Section 6. Finally, Section 7 concludes the paper.  

2. Time series prediction: background and related work 

Time series is a sequence of observations collected over time from a particular measured variable 

of an engineering component or system. In general, the main objectives of time series analysis are: 

characterization, modeling and prediction (also called forecasting) [34]. Firstly, characterization aims 

to extract inherent structural characteristics of the measured variable, e.g. temporal trend, variance and 

seasonality. Then, the extracted information may be used to formulate an appropriate model for 

capturing long-term behavior of the system (modeling), or to estimate the evolution of the variable in 

the future (prediction). This section presents a brief introduction of time series prediction approaches 

and further discusses the strategies for multi-step ahead prediction. 

2.1. Time series prediction 

The beginning of time series prediction might be set in 1927 when Yule [35] introduced the first 

autoregressive technique for predicting the annual number of sunspots. In that original work, the 

prediction of the next time step was estimated as a weighted sum of previous observations of the time 

series. This idea has become the basis of data-driven approaches for time series prediction since then.  

Among data-driven approaches, statistical models which attempt to express the future values as a 

linear function of the historical data have been popular and widely used in many applications of time 

series prediction, such as wind energy generation [36]–[39], weather forecasting [40]–[42], market 

demand forecasting [43], [44] and nuclear component prognostics [10]. Erdem and Shi [36] used an 

autoregressive moving average (ARMA) for predicting wind speed and direction. Kavasseri and 

Seetharamen [38] proposed a variant model of ARIMA which was called fractional-ARIMA in order 

to extract the long dependency features of the time series data and enhance the prediction accuracy over 

long-term horizons. In a nuclear application, Nguyen et al. [10] applied an ARIMA model to predict 

the long-term evolution of the tube supporting plate clogging degradation of NPP SGs for the first time, 

in which the predictions were performed up to 3 months ahead.  

Although statistical models have shown their notable prediction accuracy and flexibility in different 

time series applications, one of their major drawbacks is the presumed linear form of the associated 

data, which has limited their applicability to many modern dynamic systems where the collected data 
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are usually nonlinear and non-stationary [45], [46]. To address this problem, several machine learning 

algorithms have been employed in the time series prediction area, such as SVM [47]–[49], ANNs [50]–

[53] and fuzzy interference system (FIS) [54], [55]. Unlike statistical approaches, machine learning 

models can automatically learn arbitrary complex mappings between inputs and outputs directly from 

the historical data and perform accurate predictions without any assumption about the mapping 

functions required. In addition, another advantage of machine learning approaches is the recently rapid 

advancements of information science technologies, particularly Big Data and deep learning techniques, 

which are offering opportunities for new developments in time series analysis. Kuremoto et al. [56] 

proposed a deep belief network (DBN) with restricted Boltzmann machines (RBMs) to address 

problems of initialization and local optima in chaotic time series forecasting, which was shown to 

outperform conventional shallow learning models. Wang et al. [57] presented a prediction model for 

probabilistic wind power prediction based on a convolutional neural network (CNN) model to 

automatically extract deep invariant structures and hidden nonlinear features exhibited at separated 

frequency bands of the data. A specialized kind of deep neural networks proposed for sequential data 

analysis is RNNs, which aim to capture the dynamics of sequential data and be able to retain the 

memories of the previous patterns via cycles of feedback connections between the network layers [19]. 

Wang and Li [46] presented a hybrid model integrating a RNN model and an optimal feature extraction 

technique for multi-step ahead wind speed prediction. Likewise, Li et al. [58] utilized LSTM RNN for 

predicting 5 steps ahead of the wind speed time series. 

2.2. Multi-step ahead prediction strategies 

Given a univariate time series of the observations collected up to time t, , the main 

goal is to predict the H next observations , which can be formulated as below:  

 , (1) 

where f is the prediction model and d is the embedding dimension (or the number of lagged values). 

Depending on the desired horizon H, a prediction method can be classified into short-, medium-, 

or long-term prediction. As aforementioned, the further in the future one attempts to predict, the harder 

it is to achieve an accurate prediction due to the increasing uncertainty and accumulation of errors. To 

address this problem, there are three popular prediction strategies, namely recursive, direct and MIMO 

predictions, which are described as follows [2].    

2.2.1. Recursive prediction strategy 

The recursive strategy attempts to train a model focused solely on one-step ahead prediction: 

  (2) 

where fR is the one-step ahead prediction model.  
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After the model is trained, the predictions are recursively estimated. In other words, intermediate 

predictions are used as inputs for predicting next values until the prediction at the time horizon H, , 

is obtained: 

  (3) 

An advantage of the recursive strategy is its low computational cost since only one single model is 

required for training. However, the prediction errors of the previous steps can easily accumulate in the 

next predictions, resulting in the decrease of accuracy in the long run. Besides, this prediction strategy 

does not take into account the data dependencies among time steps. 

2.2.2. Direct prediction strategy 

In contrast to the recursive strategy which uses a single model, the direct strategy [59] constructs a 

set of H different models for different time steps and the same input data are used for feeding all the 

models as below: 

  (4) 

where  is the direct prediction model tuned to perform the prediction  at time  . 

In the direct strategy, each prediction model is trained and dedicated to a certain horizon, so the 

error accumulation can be avoided. However, training different prediction models will greatly increase 

the prediction complexity and time consumption, and, like the recursive strategy, the direct strategy 

does not take into account the dependencies among time-series observations.   

2.2.3. MIMO prediction strategy 

Unlike the recursive and direct approaches, the MIMO approach is a multiple output strategy, in 

which the output of the prediction model is a vector of future values predicted by using only one model 

[60]:   

  (5) 

where fMIMO is the multiple output prediction model. In this sense, the objective function during the 

model training is to simultaneously minimize the prediction errors on different horizons. By so doing, 

the MIMO strategy can preserve the temporal stochastic dependencies of sequential data, addressing 

the limitation of the recursive and direct approaches. On the other hand, the computational cost of the 
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MIMO approach is less than that of the direct approach because it requires only one model to be trained. 

3. Long short-term memory (LSTM) 

3.1. Network architecture 

LSTM is a variant of RNNs developed for dealing with the long-term dependency problem, which 

is also known as “vanishing gradients” or “exploding gradients” problem [61]. In general, an LSTM 

consists of a chain of repeating network modules, in which each module contains four interacting layers, 

as illustrated in Fig. 1 [62]. 

  
Fig. 1. The schematic of a repeating network module in a LSTM network. 

The key element of a LSTM network is the cell state C, which is depicted as the horizontal line 

running through the top of the diagram in Fig. 1. This cell state plays a role as a network memory, 

where information is added or removed via regulated structures called gates, which can optionally let 

information through. They are composed of a sigmoid neural network layer and a pointwise 

multiplication operation. An LSTM consists of three gates, including forget, input and output gates, in 

order to protect and control the cell state. Details on the LSTM procedure are described as follows.   

At time t, an input  is fed to the network. The forget gate first decides which information from 

the previous output  is discarded or kept, and then the output of the forget gate is calculated as: 

 , (6) 

where  are the input weights and bias of the forget gate, respectively,  is a nonlinear 

function (e.g. sigmoid function) and “ . ” means matrix multiplication.  

The next step is to determine which new information will be stored in the cell state, leading to the 

two following calculations. First, the input gate decides which states will be updated; then, a tanh layer 

generates a vector of new values  that could be added to the cell state, as follows: 

 , (7) 
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 , (8) 

where  and  are the input weights and bias of the input gate and the cell state layer, 

respectively. The outputs obtained from the forget gate, input gate and tanh layer are, then, used to 

update the new cell state : 

 . (9) 

Finally, the network output  is generated by the output gate and a tanh function, as: 

 , (10) 

 , (11) 

where  are the input weights and bias of the output gate, respectively.  

3.2. Dropout regularization 

A well-known and critical problem of deep neural networks such as LSTM is overfitting [63]. That 

is, when the training data is limited, complicated mappings between the inputs and outputs that are 

learned by the network might be the result of sampling noise, which only exist in the training set but 

not in the real test set. One way to regularize such a network is averaging the outputs of all possible 

configurations of the parameters, in which each configuration is weighted by its posterior probability 

given by the training data [64]. This method can be applied only for simple or small networks. With 

large neural networks, the computation for training many different network architectures or training 

one architecture on different data sets is very expensive. Dropout is a technique that addresses this issue 

[64]. 

A motivation for dropout comes from a theory of sexual reproduction [65], in which new genes are 

naturally selected to spread throughout the population based on their competitiveness and less co-

adaptation which may reduce the chance of a new gene improving the fitness of an individual. Likewise, 

dropout aims to train each hidden unit in a neural network with a randomly chosen sample of other 

units. By dropping a unit out, we temporarily remove it from the network along with all its connections 

during the training process as illustrated in Fig. 2, in order to prevent units from high co-adaptation. By 

so doing, each hidden unit becomes more robust and is able to create useful features on its own without 

relying on other units, which helps the network avoid overfitting. 
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(a) (b) 

Fig. 2. An example of a dropout network model [64]: (a) A fully connected 2-hidden layers network; (b) The 

network obtained by applying dropout. Crossed units are excluded. 

Consider a neural network with L hidden layers, in which the input and output vectors of layer l 

(for 𝑙 ∈ {1,… , 𝐿}) are denoted as z(l) and y(l), respectively. w(l) and b(l) are the weights and biases of layer 

l, respectively. For a standard neural network, the feed-forward operation can be described as: 

 , (12) 

 , (13) 

where f is the activation function and i denotes the index of hidden unit, as illustrated in Fig. 3(a).  

With a dropout network (Fig. 3(b)), a vector of independent Bernoulli random variables r(l) with 

probability p is used at each hidden layer l to generate the thinned outputs ỹ(l) as follows: 

 , (14) 

 , (15) 

where * denotes an element-wise product. The thinned outputs are, then, used as inputs to the next layer 

of the feed-forward operation: 

 , (16) 

 , (17) 
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(a) Standard network (b) Dropout network 

Fig. 3. Comparison of the basic operations of a standard and dropout network [64].  

The dropout technique was shown to significantly reduce overfitting and improve the performance 

of standard neural networks in a wide variety of application domains, including handwriting 

recognition, speech recognition, image processing, object classification and computational biology 

[64]. In this paper, dropout is used in the input and hidden layers of the proposed LSTM model in order 

to prevent overfitting and quantify the uncertainty information of the multi-step ahead predictions, 

which is further described in Section 4.3.  

4. Proposed LSTM-based prognostic framework 

In this section, we present a prognostic framework for the multi-step ahead prediction of the time-

series data from SGs, as illustrated in Fig. 4.  

  

Fig. 4. The flowchart of the proposed multi-step ahead prediction framework for SGs. 

The proposed framework consists of three main stages: data preprocessing, model selection and 

multi-step ahead prediction. Firstly, the data preprocessing stage is responsible for preparing the data 

for training and testing the prediction model. Then, in the second stage, a LSTM-based model is built 

for the MIMO prediction using the training data and its hyperparameters are automatically optimized 

with the objective function of minimizing the validation error. In the last stage, the performance of the 

trained prediction model is validated for multi-step ahead prediction and a MC dropout technique is 

used to capture the prediction uncertainty. The procedure of the proposed framework can be 

summarized as in Algorithm 1, where max_iter is the number of optimization iterations and NMC is the 
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number of MC dropout realizations. The details of each stage are given in the following sections.  

Algorithm 1. Procedure of the proposed multi-step prediction framework 

Input: A raw time series data collected up to time t:  

Output: Predictions of H next observations and their uncertainty information 

Preprocessing stage 

1. Detect and remove outliers  

2. Impute missing data points 

Model selection stage 

3. for i in {1,…,max_iter} do 

g. Select the optimal network hyperparameters at the ith trial with TPE 

h. Validate the hyperparameters by using k-fold cross-validation 

i. Update the fitness value with the average training error measured over k folds 

4. Select the best hyperparameter setting with the lowest fitness value 

Multi-step ahead prediction stage 

5. for i in {1,…,NMC} do 

c. Build a LSTM-based prediction model with the selected hyperparameters 

d. Perform the predictions for H steps ahead  by using the MIMO 

prediction strategy 

6. Calculate the mean and confidence interval of the predictions over NMC realizations 

 

4.1. Data preprocessing 

As mentioned in Section 1, the quality of the observation data for training is one of the most 

important factors for the successful performance of a prediction model. Due to the errors during sensor 

measurements or signal transmission, the acquired observations may include missing and anomalous 

data points, e.g. outliers, which can negatively impact the model performance.  In this study, we adopt 

a raw data preprocessing module focusing on the two following tasks: 1) detecting and removing 

outliers; 2) imputing missing data points, the number of which may increase after removing outliers. 

The first problem is addressed by using the Isolation Forest, an outlier detection technique built on 

the basis of decision trees [66]. This technique is based on an assumption that outliers are few, different 

and susceptible to a mechanism called isolation. In comparison with conventional distance and density 

measures, isolation has been proved to be a much more effective indicator to detect anomalies. In 

addition, Isolation Forest also requires a small linear time complexity. Further details on the algorithm 

of Isolation Forest can be found in [66]. Once outliers are reduced, a local polynomial regression 

technique is used to reconstruct missing data samples and reduce noises. The preprocessed data is later 

{ }1 2, ,..., tx x x
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used for training and testing the prediction model in the following stages. 

4.2. Model selection 

4.2.1. Prediction horizon 

Several research works have been carried out on determining an optimal horizon of prediction in 

order to provide predictions accurately and timely, and to ensure the usefulness of the prognostic model. 

However, to the authors’ knowledge, there is no general rule reported for dealing with this issue. We 

have carried out a review on the horizons selected in recent prediction studies for industrial applications 

during 2015-2019 [15], [58], [67]–[91] and the result is summarized in Fig. 5. The result shows that 

multi-step ahead prediction has been less studied than single-step ahead prediction, and that most of 

the works were carried out with horizons ranging from 3 to 6 steps ahead. To demonstrate the 

effectiveness of the proposed model, a prediction horizon of 15 steps ahead is investigated in this study. 

 

Fig. 5. Prediction horizons of recent studies. 

4.2.2. Hyperparameter optimization 

In machine learning, hyperparameters define the model architecture and control the learning 

process, e.g. the number of hidden layers, activation function type and learning rate. Automatic 

hyperparameter optimization is playing a fundamental role in the development of machine learning 

models, including the recent deep neural networks, e.g. LSTM, whose learning performance greatly 

depends on a number of hyperparameter choices [92]. Automatic hyperparameter optimization has 

several important advantages, such as: 1) reduction of the human effort in deploying machine learning, 

which is important in application because different hyperparameter configurations are needed for 

different datasets [93]; 2) improvement of the performance of machine learning models, by choosing 

the most appropriate (according to specified objectives) hyperparameters values for the target 

application at hand [94], [95]; 3) increase of the reproducibility of results, as automatic hyperparameter 

optimization is clearly more reproducible than manual tuning by human and allows fair comparisons 



  
 

 

149 

between different models by giving them the same level of tuning for the specific application [96].  

In this study, we implement a variant of Bayesian optimization (BO), called Tree-structured Parzen 

Estimator (TPE) [97], to automatically optimize the hyperparameters of the proposed prediction model. 

A common advantage of BO approaches is that they require less function evaluations than other 

classical optimization approaches, such as grid search or RS. This is because these approaches learn 

and select the best hyperparameter sets based on their distributions describing the fitness scores in the 

previous iterations. Thus, the number of samples drawn from the hyperparameter search space is 

probabilistically guided and reduced, allowing for proper evaluations of the most promising candidates 

for hyperparameter choices.  

Recently, TPE has been put forward to address the limitation of the conventional BO approaches 

in working with categorical and conditional parameters, and, thus, to improve the hyperparameters 

selection process [97]. It has, then, been widely used to tune machine learning models in various 

applications, such as image processing [96], [98]–[101], electricity price forecasting [102], solar 

irradiance forecasting [103], rail defect prediction [104], occupational accident prediction [105]. 

Parzen-window density estimation, which is also known as kernel density estimation, is a non-

parametric way to build a probability density function from empirical data. In the TPE algorithm, each 

sample from the empirical data defines a Gaussian distribution with a mean equal to the hyperparameter 

value and a specified standard deviation. At the start-up iterations, a random search is employed to 

initialize the distributions by sampling the response surface T𝜃(?), 𝑦(?), 𝑖 = 1,… , 𝑁?[?=\, where  

denotes the hyperparameter set, y is the corresponding value on the response surface, i.e. the validation 

loss or the fitness value, and Ninit is the number of start-up iterations. Then, the hyperparameter space 

is divided into two groups, namely good and bad samples, based on their fitness values and a predefined 

threshold value y* (usually set to 15% [92]), as follows: 

  (18) 

where  and  are the probabilities that the hyperparameter set  is in the good and bad groups, 

respectively. Fig. 6 illustrates an example of the TPE initialization process for the hyperparameter 

distributions, with y* = 15% and Ninit = 100. The red points are the samples with the lowest fitness 

values after evaluation, thus being classified into the good group whereas the others form the bad 

group . In this way, the selection of optimal hyperparameters does not rely on the best observation, 

but on a set of best observations and their distributions. Then, the more iterations one used for 

initialization, the better distribution we get at the beginning. An Expected Improvement (EI) is, then, 

calculated as follows: 

  (19)  
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Fig. 6. Samples classification from the TPE initialization process.  

At each iteration, the hyperparameter configuration  that maximizes the EI is chosen. Fig. 7 

shows the flowchart of the TPE optimization procedure.  

 

Fig. 7. Flowchart of the TPE optimization procedure.  

4.3. Multi-step ahead prediction 

In the testing stage, the MIMO prediction strategy introduced in Section 2.2.3, is used to predict 

the future values. As mentioned in Section 4.2.1, the prediction horizon h is set to 15-step ahead in this 

study, as shown in Fig. 8. 
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Fig. 8. Multi-step ahead prediction procedure. 

To further assess the prediction performance, we adopt a Monte Carlo (MC) dropout technique 

[106] in order to capture the uncertainty information of the multi-step ahead predictions of the proposed 

model. It is important to note that the standard LSTM network is not capable to quantify the prediction 

uncertainty itself. In the MC dropout technique, a dropout probability is applied to all the weight layers 

in the network, which represents the network weights drawn from a Bernoulli distribution. Thus, the 

prediction uncertainty can be quantified by running several forward passes through the network. In this 

study, we perform NMC = 100 stochastic forward passes, in which network units of each layer are 

randomly dropped out, and obtain the mean and confidence interval of the predictions.  

5. Experimental study 

5.1. SG data 

In this paper, the prediction performance of the proposed model is evaluated on the SG data of 

French NPPs. SGs in pressurized water reactors (PWRs) are heat exchangers which use the heat from 

the primary reactor coolant to produce steam in the secondary side and, thus, drive the turbine 

generators. In addition, the SGs act as a safety barrier between the radioactive primary side and the 

non-radioactive secondary side. Due to their critical role in NPPs, any degradation mechanism in SGs 

should be monitored and prevented at the early stages of propagation. A widely used method of 

degradation monitoring is the analysis of the wide range level (WRL) dynamic behavior recorded by 

control sensors [107], [108].  

WRL is one of the condition monitoring variables measured from the NPP SGs. It is estimated from 

the difference between the pressure measured at two difference heights, i.e. the dome and the bottom 

of the downcomer, as illustrated in Fig. 9 (label 18) [108]. Due to its nature, WRL is very sensitive to 

the temperature, the flow rate of the feed-water and the circulation ratio of the SG. Usually, WRL 

variations are monitored during slow transients and during manual control at low power load [108]. 

Among critical SG degradation mechanisms, clogging is a phenomenon where the flow holes of the 

tube support plates are partially or completely blocked by deposits, leading to the reduction of the 

circulation flow rate in the SGs [108]. Clogging in SG is a slow process which may take several years. 

In [109], it has been shown that the WRL of a SG is closely related to the clogging degradation. Thus, 
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the predictions of WRL can be converted to the clogging degradation state. 

 

Fig. 9. The front-cut schematic of a 51B-model SG [108]. 

The original SG data employed in this study were collected from six SGs of two different 900-MW 

NPPs, which are operated by Électricité de France (EDF). Each plant consists of three SGs. The WRL 

data were recorded during the stationary regimes in which the power demand percentage is stably 

maintained greater than 90%, at an interval of 3 days from July 1992 to June 2007. Fig. 10 shows the 

temporal evolution of the WRL observations of the two NPPs. The names of the plants are omitted for 

confidentiality reasons.  

  
(a) Plant No. 1 (b) Plant No. 2 
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Fig. 10. Raw WRL measurements recorded from control sensors of different NPPs.  

5.2. Data preprocessing 

Before being used for the model development, the raw SG data are preprocessed by using the 

Isolation Forest and local regression approaches described in Section 4.1. Fig. 11 shows the results of 

applying the Isolation Forest for reducing outliers in the data of SG 1 of plant No. 2. In Fig. 11(a), the 

solid line indicates the normal measurements whereas the detected outliers are highlighted as circled 

points, which are later eliminated in Fig. 11(b). An interesting observation in Fig. 11(a) is the 

anomalous spike between 1997 and 1999. Without the outlier detection step, this sudden spike could 

highly impact, in a negative manner, on the prediction accuracy. After reducing the outliers, imputations 

for missing data samples are given. The preprocessed data of all SGs after the preprocessing stage are 

shown in Fig. 12.   

  
(a) Original signal with outliers highlighted (b) Modified signal after outlier removal 

Fig. 11. Applying the Isolation Forest to the data of SG 1 of plant No. 2. 

  
(a) Plant No. 1 (b) Plant No. 2 

Fig. 12. The results of the preprocessing stage for all SG data. 

6. Results and discussion 

After the preprocessing stage, each SG data series is divided into a training set and a testing set. 

The data for the first 11 years, from July 1992 to December 2002, which include a total of 1230 samples 
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at a 3-day interval, are selected to train the proposed prediction model and the next 5-year data with 

510 samples are employed to test the model performance.  

Before constructing the proposed model, we employ the false nearest neighbor (FNN) algorithm 

[110] to determine the appropriate embedding dimension d of the data series. The main idea of the FNN 

algorithm is to find the minimum dimension where the distances between the nearest neighbors in the 

time series do not significantly change in the next higher dimensional embedding. Fig. 13 shows the 

result of applying FNN to the data of SG 1 of plant No. 1. A threshold for identifying the minimum 

embedding dimension is set to 0. In this Figure, the minimum embedding dimension value is found at 

12. We summarize the optimal embedding dimensions identified for all the SGs data series in Table 1.   

   

Fig. 13. FNN result for SG 1 of plant No. 1. 

Table 1   
Minimum embedding dimensions for all SGs. 

Plant No. 1 No. 2 

SG 1 2 3 1 2 3 

Embedding dimension 12 13 9 9 11 6 
 

In this study, we carry out three comparisons to evaluate the performance of the proposed 

prognostic model. The first comparison is conducted to analyze the viability of TPE in tuning the 

proposed model during the training stage. As a standard optimization approach, RS is considered for 

benchmarking purposes. Another comparison is, then, carried out to specifically validate the efficacy 

of dropout in the proposed prediction framework. In the third comparison, four hybrid prediction 

models, including single-output support vector regression using recursive strategy (SVR-REC), multi-

output support vector regression using MIMO strategy (SVR-MIMO), single-output multilayer 

perceptron neural network using recursive strategy (MLP-REC) and multi-output multilayer perceptron 

neural network using MIMO strategy (MLP-MIMO), are employed as the benchmark models for 

comparison with the proposed model in multi-step ahead predictions. In this performance evaluation, 
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three prediction accuracy metrics are considered, including root mean square error (RMSE), mean 

absolute percentage error (MAPE) and mean absolute scaled error (MASE). Their definitions are given 

as follows: 

 , (20) 

 , (21) 

 , (22) 

where N is the number of testing observations, x and 𝑥2 are the observed and predicted values, 

respectively. 

6.1. Automatic hyperparameter optimization 

The proposed prediction model is constructed with one LSTM layer with 64 neurons. Four major 

hyperparameters of the model are to be tuned, including dropout rate, activation function type, 

optimizer type and learning rate. The details of the hyperparameter search space are shown in Table 2. 

For a fair comparison, the TPE and RS algorithms are evaluated by using the same model configurations 

and hyperparameter search space. The number of optimization trials is selected as 30 for the two 

algorithms. In addition, a k-fold cross-validation (k = 3 in this study) is adopted to prevent overfitting 

during training the model. The mean square error (MSE) is used as the objective function for model 

selection. In other words, at each optimization trial, the hyperparameter configuration with the lowest 

average prediction error evaluated by cross-validation is chosen. To achieve the training convergence, 

the number of training epochs is set to 100. 

 
Table 2   
Hyperparameters of the proposed prediction model. 

Hyperparameter Type of distribution Value set or Range 

Dropout rate  Uniform float  [0, 0.5] 

Activation function Categorical {Linear, Sigmoid, Tanh, ReLU} 

Optimizer Categorical {SGD, RMSprop, Adam} 

Learning rate Uniform float  [0.0001, 0.1] 
 

Fig. 14 shows the comparison of the TPE and RS hyperparameter searches over 30 trials for SG 1 
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of plant No. 1. The corresponding training loss is also given in Fig. 15. In particular, the TPE algorithm 

uses the first 20 startup trials for initializing the distributions of the good and bad hyperparameter sets, 

as mentioned in Section 4.2.2. This initialization process is performed by employing a standard RS. 

Therefore, in Figs. 14 and 15, we can observe a similar performance between TPE and RS in both 

hyperparameter searching and their obtained training losses during the first 20 trials. However, the 

performance of TPE is quickly improved after the initialization. It much more focuses on the good 

hyperparameter configurations which was found in the previous trials, leading to faster converge and 

lower training loss than RS within 30 trials.   

RS 

    

TPE 

    
 (a) Dropout rate (b) Activation function (c) Optimizer (d) Learning rate 

Fig. 14. Hyperparameters tuning process over 30 trials by TPE (top Figures) and RS (bottom Figures) for SG 1 

of plant No.1. 

  
(a) RS (b) TPE 

Fig. 15. Training loss versus trials of TPE and RS for SG 1 of plant No. 1. 

In Table 3, we show the performance comparison between TPE and RS, in terms of their obtained 

best training loss for all SGs. The results obviously show that the optimal configurations found by TPE 

generally outperform the best ones found by RS in the considered case studies. Thus, the optimal 

hyperparameter configurations found by TPE are used for prediction in the next stage.   
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Table 3 
The best training loss obtained by TPE and RS in hyperparameter tuning for all SGs. 

Plant No. 1 No. 2 

SG 1 2 3 1 2 3 

Random search 0.0487 0.0479 0.0307 0.0358 0.0321 0.0343 

TPE 0.0440 0.0370 0.0319 0.0350 0.0314 0.0270 
 

6.2. Dropout regularization 

In this section, a comparison is carried out between the proposed prediction model and a model 

with the same architecture but trained without dropout. The other hyperparameters are kept identical 

between the two models, as described in Section 6.1. The probability of the used dropout is 

automatically optimized by TPE. We employ all the six SG datasets to comprehensively evaluate 

dropout during both the training and test phases in terms of RMSE. The comparative results are shown 

in Fig. 16. The result shows that the prediction model trained without dropout has lower training errors 

but much higher test errors, which may be an indication of the presence of overfitting. In contrast, the 

dropout model significantly reduces the overfitting problem with lower test errors for all the datasets. 

The average error reduction of the dropout model is 51.91%, which strongly indicates the efficacy of 

dropout in reducing overfitting and improving the prediction performance of the neural network.   

  
(a) Training phase (b) Test phase 

Fig. 16. Training and test errors for the network architecture trained without and with dropout. 

6.3. Performance evaluation 

The WRL measurements of the six SGs are used for validating the developed prediction model for 

multi-step ahead prediction. It is important to remind that the prediction horizon used in this study is 

15 steps ahead, which equals 45 operating days of the SGs. After the training is finished, the prediction 

model is used to continuously predict 15-step ahead in the next 5 years. Fig. 17 illustrates the prediction 

results of the proposed model for all SGs. The predicted values are shown as the dashed line, whereas 
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the solid line depicts the actual observations. The 95% confidence interval of the predictions, obtained 

via MC simulations, is depicted as the grey region. The results show that the proposed model is able to 

keep track with the changes of the WRL data while achieving accurate predictions, which are very close 

to the actual data for all SGs. Moreover, the 95% confidence bounds of the predictions are narrow and 

close to the target values, indicating predictions with a high precision. In industrial applications, these 

results are of crucial importance for accurately estimating the equipment RUL.    

  
(a) SG 1 of plant No. 1 (b) SG 2 of plant No. 1 

  

(c) SG 3 of plant No. 1 (d) SG 1 of plant No. 2 

  

(e) SG 2 of plant No. 2 (f) SG 3 of plant No. 2 

Fig. 17. Multi-step ahead prediction results by the proposed model for all SGs. 
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The prediction results obtained by the proposed model are, then, evaluated with respect to the four 

benchmark models, i.e. SVR-REC, SVR-MIMO, MLP-REC and MLP-MIMO, in terms of prediction 

accuracy. For a fair comparison, the hyperparameters of the compared models are optimized by using 

TPE with 30 trials. The details of the hyperparameter search spaces of the compared models are shown 

in Table 4. 

 
Table 4   
Hyperparameters of the benchmark models.  

Model Hyperparameter Value set or Range 

SVR 
(including SVR-REC  
and SVR-MIMO) 

Kernel function {Linear, RBF, Poly, Sigmoid} 

Degree (of the polynomial kernel 
function) 

[2, 4] 

Regularization parameter (C) [0.01, 100] 

Kernel coefficient (gamma) [0.01, 10] 

MLP 
(including MLP-REC  
and MLP-MIMO) 

Hidden layer size [1, 5] 

Activation function {Logistic, Tanh, ReLU} 

Optimizer {LBFGS, SGD, Adam} 

Learning rate {Constant, Invscaling, Adaptive} 

Regularization parameter (alpha) [0.0001, 0.01] 
 

The comparative results of the proposed model and the four benchmark models for multi-step ahead 

predictions are shown in Fig. 18. Table 5 summarizes the prediction results in terms of the three 

accuracy indicators for different SG data. As can be seen in Fig. 18 and Table 5 (values in bold), the 

proposed prediction model outperforms the four other benchmark models and achieves higher accuracy 

for all SGs. The results indicate the accurate and efficient learning of the proposed prediction model 

for the long-term dependencies of the SG data. 

  
(a) SG 1 of plant No. 1 (b) SG 2 of plant No. 1 
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(c) SG 3 of plant No. 1 (d) SG 1 of plant No. 2 

  

(e) SG 2 of plant No. 2 (f) SG 3 of plant No. 2 

Fig. 18. Multi-step ahead predictions using different models for all SGs. 

Table 5   
Comparison of the prediction performance in multi-step ahead predictions for all SGs.   

 

Method 
SG 1 SG 2 SG 3 

RMSE MAPE MASE RMSE MAPE MASE RMSE MAPE MASE 

Plant No. 1 

SVR-REC 0.0382 2.0775 15.2484 0.0333 2.1970 10.2221 0.0508 3.3173 12.1521 

SVR-MIMO 0.0283 1.6511 12.2085 0.0331 2.3878 10.8281 0.0640 5.1793 19.2863 

MLP-REC 0.0597 2.7824 20.8682 0.0656 3.3349 15.3398 0.0577 3.3597 13.4886 

MLP-MIMO 0.0339 1.7074 11.8887 0.1888 15.1554 62.2885 0.1867 15.2453 52.7662 

Proposed model 0.0212 1.0950 8.6166 0.0239 1.6973 5.8214 0.0426 2.7230 4.0846 

Plant No. 2 

SVR-REC 0.0572 3.6462 12.8555 0.0906 4.7909 7.0354 0.0242 1.5005 6.1132 

SVR-MIMO 0.0401 3.1774 11.8732 0.0849 4.7575 7.4570 0.0247 1.7842 7.5984 

MLP-REC 0.0751 3.0309 11.2367 0.0862 4.7819 7.4403 0.0734 3.4535 14.2511 

MLP-MIMO 0.0607 4.8530 17.4741 0.0888 5.4251 7.5992 0.0499 4.1168 17.2689 

Proposed model 0.0281 2.0117 8.6455 0.0791 4.4033 9.3923 0.0206 1.3992 7.9604 

 

The average computational time of training the proposed prediction model is 3.2 hours, on a 

GPGPU node comprising 2 Intel Xeon CPU E5-2695 (24 cores at 2.40 Hz with 32 GB of RAM) and 2 
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Nvidia Tesla K40m graphic cards (with 12 GB of GRAM). It is important to note that SG data used in 

this paper were recorded at an interval of 3 days. After being trained, the proposed model can be used 

to perform a 15-step ahead prediction, which is equivalent to 45 operating days ahead of the SGs. Due 

to this reason, the proposed prediction framework can be applied for a real-time time series prediction 

of the considered application.  

The authors have tested the proposed framework on data from several nuclear power plants, with 

satisfactory results. Unfortunately, for industrial confidentiality, the data cannot be disclosed and 

shared. 

7. Conclusion and future work 

This paper presents an original multi-step ahead prediction framework for PHM applications. The 

framework integrates three consecutive steps: (1) data preprocessing, (2) adaptive model building and 

(3) multi-step ahead prediction. Initially, the problems of abnormal outliers and missing data samples 

are addressed by employing two preprocessing techniques: Isolation Forest and local regression. Then, 

a LSTM RNN is constructed for making predictions over a long-term horizon, in which the network 

hyperparameters are automatically optimized by a TPE algorithm. A dropout regularization and a cross-

validation techniques are applied to address the overfitting problem during the training phase. Finally, 

the performance of the proposed model is evaluated for multi-step ahead predictions with a MIMO 

prediction strategy employed. A MC dropout is adopted to quantify the prediction uncertainty.   

The proposed multi-step ahead prediction framework can be used for the predictions of time series 

of NPP operating parameters. A case study concerning the real WRL measurements of SGs which were 

acquired from different NPPs in France over a period of 16 years is carried out for validating the 

proposed framework. The experimental results show that the developed prediction framework is able 

to adaptively estimate the optimal setting for its architecture and capture the underlying long-term 

dependencies inherent in the given data, for achieving accurate predictions over a long horizon, up to 

45 days ahead, outperforming conventional prediction approaches.  

However, for the application of NPP SGs used in this study, sufficient information and data for 

performing a multivariate prediction are not provided, e.g. the information of the interdependency 

between measured variables and degradations (or failures), the interdependency within the variables, 

and the maintenance reports of the NPP SGs. Future research will be performed to develop a 

multivariate time series prediction model and integrate the proposed framework within a RUL 

estimation task for PHM and predictive maintenance. 
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Abstract 

Multi-step ahead prediction can help decision makers improving maintenance planning and 

minimizing unexpected shutdowns in the nuclear industry. We address this problem by developing 

a hybrid prediction framework based on Ensemble Empirical Mode Decomposition (EEMD) and 

Long Short-Term Memory (LSTM) neural network. EEMD decomposes time series into a set of 

components, which allow effectively describing the system dynamics and therefore facilitates the 

prediction task. Then, LSTM neural network models are developed for predicting the multi-step 

ahead behavior of the individual EEMD components and the obtained predictions are aggregated to 

reconstruct the time series. A Tree-structured Parzen Estimator (TPE) algorithm is employed for 

hyperparameter optimization. The performance of the proposed method is validated by considering 

different long-term prediction horizons on a practical case study concerning time series data acquired 

from Reactor Coolant Pumps (RCPs) of Nuclear Power Plants (NPPs). The proposed method shows 

superior performances with respect to alternative prediction models 

Keywords: Maintenance; Prognostics; Time series prediction; Multi-step ahead prediction; Ensemble 

empirical mode decomposition; Long short-term memory recurrent neural network; Nuclear power 

plant; Reactor coolant pump. 

 
Nomenclature 
 

Abbreviations 
AM-FM Amplitude-Modulated-Frequency-Modulated 

ANN Artificial Neural Network 

ARIMA Autoregressive Integrated Moving Average 

EEMD Ensemble Empirical Mode Decomposition 
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EI Expected Improvement 

EMD Empirical Mode Decomposition 

ES Exponential Smoothing 

ESN Echo State Network 

FNN False Nearest Neighbor 

IMF Intrinsic Mode Function 

LSTM Long Short-Term Memory 

MAPE Mean Absolute Percentage Error 

MASE Mean Absolute Scaled Error 

MIMO Multi-Input Multi-Output 

MSE Mean Square Error 

NPP Nuclear Power Plant 

PHM Prognostics and Health Management 

PWR Pressurized Water Reactor 

RCP Reactor Coolant Pump 

RCS Reactor Coolant System 

RMSE Root Mean Square Error 

RNN Recurrent Neural Network 

RUL Remaining Useful Life 

SMBO Sequential Model-based Bayesian Optimization 

SVR Support Vector Regression 

TPE Tree-structured Parzen Estimator 

WPD Wavelet Packet Decomposition 

 

Symbols 

 component at the jth sifting iteration  

 output of the LSTM cell state at time t  

 new values of the LSTM cell state at time t 

 embedding dimension 

 prediction model 

 output of the LSTM forget gate at time t  

 output of the LSTM memory block at time t  

 optimization function of the LSTM network 

 prediction horizon  

 output of the LSTM input gate at time t  
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 ith decomposed IMF at time t 

 ith ensemble IMF at time t 

 number of the EEMD noise realizations 

 lower envelope of the decomposed component at the jth sifting iteration 

 envelope mean of the decomposed component at the jth sifting iteration 

 number of samples 

 number of IMF components 

 number of LSTM training epochs 

 number of TPE startup iterations 

 number of TPE iterations 

 output of the LSTM output gate at time t  

 probability that the hyperparameter set  belongs to the bad group 

 probability that the hyperparameter set  belongs to the good group 

 ith decomposed residue at time t 

 stopping criterion value at the jth sifting iteration 

 time instance 

 upper envelope of the decomposed component at the jth sifting iteration 

 jth realization of white Gaussian noise 

 weight and bias of the LSTM cell state, respectively  

 weight and bias of the LSTM forget gate, respectively 

 weight and bias of the LSTM input gate, respectively  

 weight and bias of the LSTM output gate, respectively  

 actual value at time t  

 predicted value at time t  

 time series collected up to time t 

 fitness score of the ith hyperparameter set in the search space 

 fitness score threshold for classifying hyperparameter groups 

 learning rate of the LSTM network 

 stopping criterion threshold of the EMD sifting process  

 hyperparameter set  

 optimal hyperparameter set  

 activation function of the LSTM network 
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 sigmoidal layer function used in the LSTM repeating memory modules 

 noise standard deviation used in EEMD 

 

1. Introduction 

Since the early 1950s, maintenance engineering has played a fundamental role for maintaining the 

reliability, availability and safety of engineering components and systems, and reducing their life cycle 

costs [1]. Nowadays, the rapid growth of information technologies, along with the massive increase in 

information and data availability, has enabled the development and application of Prognostics and 

Health Management (PHM). PHM is a field of research and application, which utilizes past and present 

information to detect at an early stage the degradation of industrial components and systems, diagnose 

the fault root causes and predict the future evolution of the degradation and the Remaining Useful Life 

(RUL) [2]. Accurate and reliable predictions provided by PHM allow maintenance actions to be 

planned at the most opportune and convenient time instances.  

Several factors need to be accounted for when developing an effective PHM, such as the specific 

requirements of the application, the knowledge and data available on the components and systems 

degradation and failure, and the prediction horizon, i.e. how far into the future the model should predict 

and with what accuracy [3]. In safety-critical applications, such as those typically encountered in the 

nuclear industry, components and systems are designed to guarantee very high reliability levels given 

the potentially catastrophic consequences of their failures. Therefore, given the long-term horizons of 

the degradation processes, prognostics is called to accurately predict components and systems 

behaviors multi-step ahead. This is of paramount importance in the nuclear industry where maintenance 

interventions of some critical components should be planned well in advance given the impossibility 

of performing some of them during plant operation. Also, long-term predictions of the components 

degradation are needed to decide whether a component can safely operate until the next planned plant 

outage, which can involve predictions over horizons of months [4]–[6]. Despite its importance, multi-

step ahead prediction remains a difficult task of PHM because prediction uncertainty tends to 

exponentially increase with the time horizon of the prediction. This is mainly caused by the intrinsic 

stochasticity of the degradation process, the accumulation of the prognostic model errors and the 

difficulty of predicting the component operating conditions, which can have a big influence on the 

degradation process in complex systems [3], [7]. Large prediction uncertainty in multi-step ahead 

predictions has limited the development of prognostics in nuclear applications to short-term 

prognostics, based on one-step ahead prediction [5], [6], [8]–[10]. In this context, this work develops a 

prognostic method specifically designed to deal with multi-step ahead predictions for practical 

applications in Nuclear Power Plants (NPPs). 

In general, multi-step ahead prediction models can be classified as statistical or machine learning 

s

Ns
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approaches [11], [12]. Statistical approaches, such as Autoregressive Integrated Moving Average 

(ARIMA) and Exponential Smoothing (ES), attempt to model the data autocorrelation structure and 

make predictions assuming a linear dependence between future and past data [13]. Because of this 

assumption, statistical approaches are not the appropriate choice for complex real-world systems, such 

as nuclear power plants which typically exhibit nonlinear and nonstationary behaviors. Alternatively, 

machine learning approaches have been shown able to automatically learn arbitrary complex mappings 

between inputs and outputs directly from historical data and achieve accurate predictions without the 

need of prespecifying the model form [14]. The most widely used machine learning approaches for 

multi-step ahead predictions are Support Vector Regression (SVR) [15]–[18], Artificial Neural 

Network (ANN) [11], [12], [19]–[21], Neuro-Fuzzy [7], [22], [23] and Recurrent Neural Network 

(RNN) [24]–[26]. Recently, the use of Long Short-Term Memory (LSTM) has been proposed to 

improve the performance of conventional RNN in dealing with long-term predictions [27]. An LSTM 

is based on a series of memory cells recurrently connected through layers to capture and retain the data 

long-term dependencies, thus enhancing the network capability in learning and predicting multi-step 

ahead into the future. Successful applications of LSTM for multi-step ahead prediction have been 

reported in many different fields, such as the forecasting of wind speed [28]–[33], solar energy [34]–

[36], air quality [37]–[39], stock market [40], [41], electricity and gas demand [42]–[44], and oil and 

petroleum production [45], [46]. 

A problem typically encountered in the development of multi-step ahead prediction models is the 

data complexity, which means that time series collected from real-world systems can contain at the 

same time multiple and very different dynamic trends superposed on each other. Attempting to 

simultaneously capture various trends in the data can lead to the degradation of the prediction 

performance as the time horizon of the prediction increases [47]. To address this issue, research on 

hybrid prediction models have been recently carried out to take advantage of the strength of using 

ensemble of different individual models. For example, Moshkbar-Bakhshayesh and Ghofrani [6] have 

presented a hybrid framework integrating ARIMA and ANN for separately dealing with linear and 

nonlinear components of the time series trends. Similarly, Buyuksahin and Ertekin [48] have presented 

a comparison among hybrid ARIMA-ANN models and individual models considering different 

applications. Their experimental results show that hybrid models are much more accurate in capturing 

different data structures than individual models, and, thus, allow improving prediction performance. Li 

et al. [49] have developed a decomposition-based hybrid model, which combines wavelet packet 

decomposition (WPD) and ANN for the prediction of wind speed data over a 9-step ahead horizon. The 

basic idea behind decomposition-based hybrid models is to break down time-series data into several 

components, which are characterized by more linear and more stationary trends, and, therefore, are 

easier to be individually predicted. The work demonstrates the superior performance of the 

decomposition-based hybrid approach with respect to conventional models in long-term horizon 

predictions. Comprehensive analyses on hybrid approaches for the applications concerning multi-step 
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ahead prediction can be found in [47], [50], [51]. 

In this work, a hybrid model combining ensemble empirical mode decomposition (EEMD) and 

LSTM networks with an automatic hyperparameter optimization is proposed for multi-step ahead time 

series prediction. EEMD is a self-adaptive decomposition technique specifically tailored for analyzing 

nonlinear and nonstationary data [52]. It is employed to increase the prediction performance by 

decomposing original time series into features representing separate spectral components, which are 

easier to predict. Then, multiple LSTM models are applied to the obtained features to predict their 

multi-step ahead behaviors. The obtained predictions are aggregated to reconstruct the multi-step ahead 

prediction of the original time series. A Multi-Input Multi-Output (MIMO) strategy is employed to 

avoid the error accumulation problem in long-term predictions. Also, we address the problem of 

automatic hyperparameter optimization by integrating a Tree-structured Parzen Estimator (TPE) 

algorithm within the LSTM models.  

In summary, the main methodological contributions of this work are: 

h) A novel multi-step ahead prediction method based on the combination of the EEMD 

decomposition algorithm and the LSTM neural networks is developed and applied to the 

prognostics of NPP components. 

i) Automatic hyperparameter optimization is integrated within the LSTM models by using the 

TPE optimization algorithm and a k-fold cross-validation technique.  

j) Multi-step ahead predictions are performed based on the MIMO strategy with three different 

long-term horizons.  

A case study based on real time-series datasets acquired from NPPs is carried out to validate the 

proposed model. To the authors’ knowledge, this is the first study using a hybrid framework combining 

EEMD and LSTM for addressing the multi-step ahead prediction problem of NPP signals.  

The rest of the paper is organized as follows. Section II introduces the EEMD decomposition 

technique, the LSTM neural network and the TPE hyperparameter optimization. Section III focuses on 

describing the proposed method for multi-step ahead prediction. The details of the practical case study 

are presented in Section IV and the obtained results are discussed in Section V. Finally, Section VI 

concludes the work.  

2. Related methodologies 

2.1. Signal decomposition methods 

This Section presents methods for signal decomposition based on empirical mode decomposition 

(EMD). Section 2.1.1 and 2.1.2 are dedicated to the original EMD and the EEMD algorithms, 

respectively.  
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2.1.1. Empirical Mode Decomposition (EMD) 

EMD was proposed by Huang et al. [53] as an adaptive signal processing method for decomposing 

nonlinear and nonstationary time-series into separate spectral modes called Intrinsic Mode Functions 

(IMFs). Specifically, IMFs are Amplitude-Modulated-Frequency-Modulated (AM-FM) signals 

representing certain frequency bands of the original time series from high-frequency (first IMF) to low-

frequency bands (last IMF) [54]. Each IMF satisfies the following properties: 1) the number of zero-

crossings and local extrema differ at most by one; 2) the mean value of the upper and lower envelopes 

of an IMF, identified by local maxima and minima, is zero at any time. The main advantage of EMD 

with respect to other decomposition methods such as WPD is that the time series is decomposed into a 

finite set of IMFs and a monotonic residue by an adaptive decomposition process (also known as the 

sifting process), without any need of predefining basic functions (Algorithm 1) [55].  

Algorithm 1. EMD decomposition process 

Input: Time series , threshold of the stopping criterion  (typically set in the 

range [0.2; 0.3] [53]). 

Output: A set of Nc IMFs  and a residue . 

Decomposition process: 

5. Initialize the index  and residue . 

6. Extract : 

j. Assign the ith component equal to the previous residue: , with the sifting 

iteration index j set equal to 1. 

k. Determine the local maxima and minima of  and use a cubic spline interpolation 

to compute their upper and lower envelopes,  and , respectively. 

l. Compute the envelope mean: 

  (1) 

m. Generate the new component  of the next sifting iteration: 

  (2) 

n. Compute the squared difference between two consecutive siftings as follows: 

  (3) 

o. If the stopping criterion  is verified, the new  is defined and 

go to Step 3; otherwise, update  and repeat a sifting iteration by performing 
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Steps 2.b) – 2.f). 

7. Update the residue as follows: 

  (4) 

8. If the number of extrema of  is less than 2 or  becomes monotonic, the 

decomposition process is terminated; otherwise, repeat Step 2 with . 

  

The sifting process decomposes the original time series  into: 

  (5) 

2.1.2. Ensemble Empirical Mode Decomposition (EEMD) 

Limitations of EMD are that different oscillation components may coexist in a single IMF and very 

similar oscillations may reside in different IMFs, which are called mode-mixing [56]. To address these 

problems, EEMD has been developed [52]. The key idea of EEMD is to use an ensemble of IMFs 

obtained by performing EMD over several different realizations of the original time series obtained by 

adding to it a white Gaussian noise. The effect of adding a white Gaussian noise reduces the mode-

mixing problem by populating the whole time-frequency space and utilizing the dyadic filter bank 

behavior of EMD [54]. The EEMD algorithm is described in Algorithm 2.  

Algorithm 2. EEMD decomposition process 

Input: Time series . 

Output: A set of ensemble IMFs . 

Decomposition process: 

4. Generate the noisy time series: 

 ,  (6) 

where  are realizations of white Gaussian noise and J is the predefined number of noise 

realizations. 

5. Apply Algorithm 1 to each time series  and obtain the corresponding , 

, . 

6. Compute  by averaging the : 

   (7) 

 

The EEMD decomposes the original time series  into Nc IMFs and a residue: 

( ) ( ) ( )i i ir t r t IMF t= -

( )ir t ( )ir t

1i i= +

tX

1
( ) ( )

c

c

N

t i N
i

X IMF t r t
=

= +å

1 2{ , ,..., }t tX x x x=

{ ( )}iIMF t ( 1,2,..., ; 1,2,..., )ci N tt= =

j j
t t tX X w= + 1,2,...,j J=

j
tw

j
tX { ( )}j

iIMF t

1,2,..., ci N= 1,2,...,j J=

( )iIMF t ( )j
iIMF t

1

1( ) ( )
J

j
i i

j
IMF t IMF t

J =

= å

tX



 
 

176 

  (8) 

2.2. Long Short-Term Memory (LSTM) 

LSTM is a type of RNN which has been developed to address the problems of the vanishing or 

exploding gradient that are typically encountered when training traditional RNNs in case of long-term 

dependencies in the time series [27]. An LSTM network consists of a chain of repeating memory 

modules (Fig. 1).  

 

Fig. 1. The structure of LSTM repeating memory modules [57]. 

In each memory module, a cell state , which is composed of a sigmoidal layer function  and 

a pointwise multiplication operation, controls the network information using the forget, input and 

output gates. At time t when a new observation  is fed to the network, the forget gate decides to keep 

or remove the information of the preceding memory block output . The ouput of the forget gate is: 

  (9) 

where  and  are the input weights and bias of the forget gate, respectively, and “ . ” denotes the 

multiplication operation. The input gate determines whether  is stored in the cell state : 

  (10) 

where  and  are the input weights and bias of the input gate, respectively. A tanh layer function is 

used to generate a new information vector  to be added to : 

  (11) 

where  and  are the input weights and bias of the tanh layer function of , respectively. The tanh 

activation function is used to normalize the values flowing through the network in the range [-1; 1]. 

The outputs of the forget and input gates and of the tanh layer function are used to update the cell state 
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: 

  (12) 

Finally, the output of the memory block  is generated by using the output gate and another tanh layer: 

 , (13) 

  (14) 

where  and  are the input weights and bias of the output gate, respectively.  

2.3. Tree-structured Parzen Estimator (TPE) optimization 

Automatic hyperparameter optimization plays a fundamental role in the development of machine 

learning models, especially when deep neural networks such as LSTM [58] are used. It allows reducing 

the human effort necessary to develop the model and improving the network performance by selecting 

hyperparameter values optimal for the target application at hand [59], [60]. In this study, we apply Tree-

structured Parzen Estimator (TPE) [61], which is a Sequential Model-based Bayesian Optimization 

(SMBO) algorithm, to automatically select the hyperparameters of the LSTM model. The fitness 

function of our optimization problem is the Root Mean Square Error (RMSE) of the LSTM:  

 , (15)  

where N is the number of observations and  and  are the time series true and predicted values, 

respectively. 

The TPE optimization process requires a number of function evaluations lower than other 

optimization techniques such as grid and random search, which means that it can achieve a faster 

convergence to the optimum. Also, differently from SMBO, it allows optimizing categorical and 

conditional hyperparameters, providing a wider range of hyperparameter choices [61].  

The key idea of TPE is to use the Parzen-window density estimation (also known as kernel density 

estimation) for building probability density functions in the hyperparameter search space. More 

specifically, each sample defines a Gaussian distribution in the hyperparameter space with a mean equal 

to the hyperparameter value and a properly set standard deviation. At the start-up iterations, a random 

search is performed to initialize the distributions by sampling the response surface  

, where  denotes the hyperparameter set and y is the corresponding value of the 

response surface (i.e. the fitness score) and  is the number of start-up iterations. Then, the 

hyperparameter space is divided into two groups, namely good and bad samples with respect to a 

threshold value y* of the fitness score. The two groups are defined by the probability distributions  

and  of the hyperparameter set :  
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  (16) 

Then, the expected improvement (EI) is computed at each iteration: 

  (17)  

And the hyperparameter configuration  which maximizes EI is chosen. Therefore, TPE selects the 

optimal hyperparameters based on a set of best observations and their distributions, not only the best 

one. Fig. 2 describes the overall flowchart of the TPE algorithm, where  denotes the number of 

TPE iterations. 

 

Fig. 2. Flowchart of the TPE optimization procedure. 

3. Proposed multi-step ahead prediction method 

The proposed prediction method is composed of two main parts: decomposition and multi-step 

ahead prediction (Fig. 3). The input is a time series , which is formed by signal 

measurements collected from a component and provides in output the multi-step ahead predictions 

, where H represents the prediction horizon. The details of the method are described 

in the following Sections. 
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Fig. 3. Overview of the proposed multi-step ahead prediction method. 

3.1. Decomposition of the original time series  

EEMD is employed for decomposing the raw time series  into separate frequency components 

. The number of obtained IMFs Nc varies depending on the time series 

characteristics. Fig. 4 shows an example of EEMD decomposition of a signal measured from a NPP 

reactor coolant pump (RCP), which is highly nonlinear, nonstationary and noisy. The number of noise 

realizations J, which determines the ensemble size, is set equal to 100 and the noise standard deviation 

 to 0.05, based on trial and error. EEMD decomposes the original time series into Nc = 9 IMFs and 

one residue component, as shown in Fig. 4(b). Notice that the complexity of the original time series is 

reduced in the decomposed components, which appear easier to predict.  

 
(a) Raw measurements obtained from a NPP RCP. 
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(b) Decomposed IMFs and residue. 

Fig. 4. Time series decomposition by using EEMD. 

3.2. Multi-step ahead prediction step 

In the second stage of the proposed method, we develop a dedicated model for the multi-step ahead 

prediction of the EEMD IMFs, based on LSTM and MIMO prediction. The hyperparameters of each 

prediction model are automatically set during the training phase by using the TPE procedure of Section 

2.3. In the testing phase, the predictions of the components are performed and aggregated to obtain the 

multi-step ahead prediction of the original time series. The details of the hyperparameter optimization 

during the training phase and the MIMO prediction strategy are described in Sections 3.2.1 and 3.2.2, 

respectively.    

3.2.1. Hyperparameter optimization 

The three hyperparameters of the LSTM models optimized by the TPE are the activation  and 

optimization  functions, and the learning rate . The hyperparameters search spaces are 

reported in Table 1. The optimization process is performed with 30 iterations and we employ a k-fold 

cross-validation with , to avoid overfitting in the computation of the objective function. The 

number of epochs  considered for the LSTM training is 100. 
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Table 1. Hyperparameters of the LSTM models optimized by the TPE and possible settings of the proposed 
method considered.  

Hyperparameter Type of distribution Possible setting 

Activation function  Categorical {Linear, Sigmoid, Tanh, ReLU} 

Optimization function  Categorical {SGD, RMSprop, Adam} 

Learning rate  Uniform float  [0.0001, 0.1] 

 

3.2.2. MIMO prediction strategy 

In general, there are three widely used strategies addressing multi-step ahead prediction: Recursive, 

Direct and MIMO [3], [7]. Each strategy is characterized by different trade-offs between accuracy and 

complexity. In this work, we employ the MIMO strategy, since using only one model with multiple 

outputs offers two main advantages: 1) avoiding error accumulation in long-term predictions; 2) 

reduction of  the training computational cost [7]. The main difficulty to be addressed in developing a 

MIMO prediction model is the selection of the appropriate model configurations, which in this work is 

handled by TPE.  

The MIMO approach (also known as the Parallel approach) aims at simultaneously predicting 

multiple future observations by using one single predictor [62]. It is illustrated in Fig. 5, where  

denote the predictor and its hyperparameters, respectively, and d the embedding dimension which is set 

by using the False Nearest Neighbor (FNN) approach [63].  

 

Fig. 5. Multi-step ahead prediction model with MIMO strategy. 

4. Case study: Prediction of the leakage flow of NPP RCPs 

We consider the Reactor Coolant Pumps (RCPs) of a NPP, which is the most critical component of 

the Reactor Coolant System (RCS), given its functions of transferring the thermal energy generated in 

the reactor core to the primary coolant, and circulating the coolant between the reactor and the steam 

generators. Fig. 6 depicts the structures of the RCS and the RCP of a Pressurized Water Reactor (PWR).  
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(a) Reactor Coolant System (b) Reactor Coolant Pump 
 

Fig. 6. Detailed structures of the PWR Reactor Coolant System (RCS) and Reactor Coolant Pump (RCP). The 

image has been taken from [64]. 

One of the most vulnerable components of a RCP is the shaft seal system, which is composed of 

three mechanical seals located between the electric motor and the impeller, as shown in Fig. 6(b). The 

shaft seal system plays an important role in limiting the leakage of the primary circuit to the ambient 

environment, which are collected and routed to the seal leakoff system [65]. A failure of the shaft seal 

system can cause the loss of the reactor primary coolant, which can potentially lead to catastrophic 

consequences [66]. Therefore, as soon as the leakage flow exceeds a safety threshold, the plant is shut 

down to protect personnel and facilities and prevent environmental impacts due to radioactive releases 

from the nuclear reactor core. 

We consider five different scenarios of leakage flow from the first seal of the RCPs. The data have 

been acquired from real RCPs. The time series are measured at a 4-hour interval, starting from different 

time instances and for different durations, as shown in Fig. 7. The durations of the time series are listed 

in Table 2. For each scenario, the time series is divided into two subsets: the first 70% of the time series 

is used as training set for developing the prediction models and the latter 30% as test set for evaluating 

the model performance. For confidentiality reasons, the names of the NPPs are not mentioned and the 

time series data are normalized from 0 to 1. A different model is developed for each one of the five 

time series.   
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(f) RCP 1 (g) RCP 2 

  
(h) RCP 3 (i) RCP 4 

 
(j) RCP 5 

Fig. 7. The RCP leakage flow time series corresponding to the five RCP leakage scenarios considered in the 

case study. 

Table 2. Number of observations available in the five time series. 

RCP 1 2 3 4 5 

Number of observations 2120 1394 2770 1064 864 
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5. Results and discussion 

We carry out the validation of the proposed method with three performance evaluations considering 

different aspects of the methodology structure. Firstly, the effectiveness of the decomposition 

algorithm, i.e. EEMD, in improving the prediction performance is evaluated. Secondly, we employ a 

multivariate prediction model to validate the viability of our hybrid prediction framework, which 

integrates several univariate models. The final experiment focuses on the performance evaluation of 

the LSTM network, the central part of our method for multi-step ahead prediction. A prediction model 

based on Echo State Network (ESN) is employed for benchmarking purposes.  

For each experiment, we consider three different prediction horizons to assess the prediction 

capability of the proposed method, including 6 steps (1 day), 12 steps (2 days) and 18 steps (3 days) 

ahead. The performance of the prediction models are measured with respect to three accuracy metrics, 

including RMSE (as stated in Section 3.2.1), Mean Absolute Percentage Error (MAPE) and Mean 

Absolute Scaled Error (MASE). The definitions of MAPE and MASE are given as follows: 

 , (18) 

 , (19)  

where  is the number of test observations,  and  are the observed and predicted values, 

respectively. For the computational point of view, all of the experiments are implemented on a GPGPU 

node composed of two Intel Xeon CPU E5-2695 (24 cores at 2.40 Hz, 32 GB of RAM) and two Nvidia 

Tesla K40m graphic cards (12 GB of GRAM). 

5.1. Effectiveness of applying the decomposition technique for multi-step ahead prediction 

In order to validate the EEMD, we employ a comparative model which is obtained by removing 

the EEMD module from the proposed method, as illustrated in Fig. 8. In this comparative model, the 

original time series are directly fed to the LSTM prediction model, with the hyperparameters optimized 

by TPE, as described in Section 3.2.1. It is important to note that the LSTM model is constructed with 

two LSTM layers consisting of 64 neurons for each layer. The predictions with the three horizons are 

performed using the MIMO strategy for all of the time series scenarios.  

 

Fig. 8. Compared prediction model without using EEMD. 
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Fig. 9 depicts the prediction results for different horizons obtained by the comparative model (Fig. 

9(a) – (c)) and the proposed model (Fig. 9(d) – (f)) for the RCP 5 time series. In each sub-figure, the 

predicted values are shown as the red solid line, whereas the blue line depicts the actual observations. 

Fig. 9 shows that the predictions of the proposed method are highly accurate and close to the actual 

values, whereas those of the comparative model are not so accurate in all of the three cases of the 

prediction horizon. The overall comparison results for all of the time series scenarios are summarized 

in Table 3. The more accurate results (the lower values of the metrics) are highlighted in bold. The 

results show that the proposed method outperforms the comparative model with a significant 

improvement in the prediction accuracy, implying the important contribution of the EEMD module to 

the proposed method for dealing with multi-step ahead predictions. 

   

(a) Model without decomposition 
– 6 steps ahead 

(b) Model without decomposition 
– 12 steps ahead 

(c) Model without decomposition 
– 18 steps ahead 

   

(d) Proposed model – 6 steps 
ahead 

(e) Proposed model – 12 steps 
ahead 

(f) Proposed model – 18 steps 
ahead 

Fig. 9. Results of the multi-step ahead predictions for RCP 5. 
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Table 3. Comparison results of the proposed model and the model without using the EEMD decomposition. 

 

5.2. Univariate model versus multivariate model 

This experiment focuses on the evaluation of the use of the proposed hybrid framework, in which 

several univariate prediction models are developed for all of the decomposed components obtained 

from EEMD, as mentioned in Section 3.2. We employ a prediction model based on a multivariate 

LSTM network for comparison purposes, as illustrated in Fig. 10. Specifically, the multivariate LSTM 

model uses all of the decomposed IMFs as the model inputs and performs predictions using the MIMO 

strategy. The TPE algorithm is used to select the optimal model hyperparameters.   

 

Fig. 10. Compared prediction model using a multivariate LSTM network. 

The prediction results obtained by the proposed and comparative models for the RCP 3 and 4 

scenarios are illustrated in Figs. 11 and 12, respectively. Table 4 summarizes the performance 

comparison of the two models for all of the data scenarios. As can be seen in Fig. 12, the prediction 

results of the multivariate LSTM model seem quite inaccurate, particularly in Fig. 12(c) with a lot of 

noisy spikes in the predictions. This can be explained by the fact that the data trend of the RCP 4 time 

series is complicated, strongly nonlinear and nonstationary, making it difficult for a single model to 

achieve good predictions. On the contrary, the prediction results of the proposed method, Figs. 12(d) – 

Data
scenario Approach

6 steps ahead 12 steps ahead 18 steps ahead

RMSE MAPE MASE RMSE MAPE MASE RMSE MAPE MASE

RCP 1
Without decomposition 0.0405 13.8939 1.6168 0.0608 30.1245 2.3199 0.0667 30.4937 2.6540

Proposed model 0.0203 8.7511 1.0871 0.0226 11.4607 1.2278 0.0338 20.1416 1.7015

RCP 2
Without decomposition 0.0776 11.6117 3.5690 0.0897 18.9838 5.2261 0.0893 16.2510 4.5966

Proposed model 0.0246 3.9053 1.1355 0.0300 4.3849 1.3255 0.0463 6.3652 1.9812

RCP 3
Without decomposition 0.0627 7.9651 1.7586 0.0868 11.1782 2.5560 0.1081 14.2730 3.6001

Proposed model 0.0256 4.0837 0.8898 0.0309 4.9342 1.0701 0.0408 5.9058 1.2537

RCP 4
Without decomposition 0.0568 5.4109 3.1283 0.0730 6.9583 4.1817 0.0891 8.3991 4.9783

Proposed model 0.0231 1.9948 1.1201 0.0303 2.8291 1.6248 0.0312 2.8147 1.6339

RCP 5
Without decomposition 0.1583 16.7301 4.1357 0.1651 18.9645 4.5333 0.0988 12.9969 2.5915

Proposed model 0.0347 4.7995 1.0016 0.0471 6.1768 1.1888 0.0548 7.5077 1.4756

Multivariate
TPE – LSTM

MIMO 
prediction 
strategy

Multi-step ahead prediction

Raw time-series 
Xt={x!}

EEMD

Decomposition

IMF 1
{IMF1(!)}

…

IMF Nc
{IMFNc(!)}
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{rNc(!)}
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{xt+h}
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(f), are remarkably accurate. In Table 4, it appears that the hybrid framework provides better results for 

the whole tests on the five data scenarios than the multivariate model. This indicates that using the 

hybrid framework integrating univariate prediction models can achieve more accurate multi-step ahead 

predictions.  

   

(a) Multivariate LSTM model – 6 
steps ahead 

(b) Multivariate LSTM model – 
12 steps ahead 

(c) Multivariate LSTM model – 
18 steps ahead 

   

(d) Proposed model – 6 steps 
ahead 

(e) Proposed model – 12 steps 
ahead 

(f) Proposed model – 18 steps 
ahead 

Fig. 11. Results of the multi-step ahead predictions for RCP 3. 

   

(a) Multivariate LSTM model – 6 
steps ahead 

(b) Multivariate LSTM model – 
12 steps ahead 

(c) Multivariate LSTM model – 
18 steps ahead 

   

(d) Proposed model – 6 steps 
ahead 

(e) Proposed model – 12 steps 
ahead 

(f) Proposed model – 18 steps 
ahead 
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Fig. 12. Results of the multi-step ahead predictions for RCP 4. 

Table 4. Comparison results of the proposed model and the multivariate LSTM model. 

 

5.3. Performance evaluation of the LSTM prediction models 

LSTM models play a fundamental role in our proposed method for learning complex data 

mappings, especially long-term dependency, and performing multi-step ahead predictions with the 

supports of the TPE optimization and the MIMO prediction strategy. In this Section, we validate the 

prediction performance of the LSTM models via a comparison with another widely used RNN called 

Echo State Network (ESN).  

ESN is a RNN with a sparsely connected hidden layer [67]. The connectivity and weights of the 

hidden neurons (also known as reservoirs) are randomly assigned and fixed, whereas the weights of the 

output neurons are learned by using a linear regression algorithm. The advantages of ESN are the simple 

network structure and a low computational cost compared to conventional RNNs. More details about 

ESN can be found in [67], [68].  

The compared prediction model is developed by replacing the LSTM models with the ESN models, 

and the rest of the framework is kept unchanged, as illustrated in Fig. 13. In this framework, the TPE 

is used to optimize the two major hyperparameters of the ESN models, including the number of 

reservoirs and the spectral radius, as described in Table 5.    

 

 

Data
scenario Approach

6 steps ahead 12 steps ahead 18 steps ahead

RMSE MAPE MASE RMSE MAPE MASE RMSE MAPE MASE

RCP 1
Multivariate LSTM 0.0249 9.3767 1.3214 0.0386 20.3446 1.9242 0.0455 17.8378 2.4970

Proposed model 0.0203 8.7511 1.0871 0.0226 11.4607 1.2278 0.0338 20.1416 1.7015

RCP 2
Multivariate LSTM 0.0709 9.2070 2.8689 0.0483 6.3916 1.9585 0.0916 20.2789 6.2618

Proposed model 0.0246 3.9053 1.1355 0.0300 4.3849 1.3255 0.0463 6.3652 1.9812

RCP 3
Multivariate LSTM 0.0500 8.1171 1.8032 0.0747 10.8237 2.6785 0.0760 10.5087 2.5134

Proposed model 0.0256 4.0837 0.8898 0.0309 4.9342 1.0701 0.0408 5.9058 1.2537

RCP 4
Multivariate LSTM 0.0851 8.1530 5.0001 0.0607 5.6678 3.4487 0.0819 7.7580 4.5046

Proposed model 0.0231 1.9948 1.1201 0.0303 2.8291 1.6248 0.0312 2.8147 1.6339

RCP 5
Multivariate LSTM 0.1375 18.8527 3.8056 0.3038 27.1751 6.1985 0.1340 18.1811 3.6363

Proposed model 0.0347 4.7995 1.0016 0.0471 6.1768 1.1888 0.0548 7.5077 1.4756
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Fig. 13. Compared prediction model using the ESN RNNs. 

Table 5. Hyperparameters of the ESN model. 

Hyperparameter Type of distribution Possible setting 

Number of reservoirs Uniform integer [20, 500] 

Spectral radius Uniform float [0.01, 1] 
 

Figs. 14 and 15 show the results of the multi-step ahead predictions obtained by the ESN framework 

and the proposed framework for the RCP 1 and 2 scenarios, respectively. We summarize the overall 

performance comparison in Table 6. According to these results, the prediction framework using LSTMs 

consistently outperforms the ESN-based framework, achieving a greater accuracy for multi-step ahead 

predictions. Thus, LSTM is a more suitable choice for the development of a multi-step ahead prediction 

framework.  

   

(a) ESN model – 6 steps ahead (b) ESN model – 12 steps ahead (c) ESN model – 18 steps ahead 

   

(d) Proposed model – 6 steps 
ahead 

(e) Proposed model – 12 steps 
ahead 

(f) Proposed model – 18 steps 
ahead 

Fig. 14. Results of the multi-step ahead predictions for RCP 1. 
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(a) ESN model – 6 steps ahead (b) ESN model – 12 steps ahead (c) ESN model – 18 steps ahead 

   

(d) Proposed model – 6 steps 
ahead 

(e) Proposed model – 12 steps 
ahead 

(f) Proposed model – 18 steps 
ahead 

Fig. 15. Results of multi-step ahead predictions for RCP 2. 

Table 6. Comparison results of the proposed model and the ESN-based prediction model. 

 

6. Conclusion 

The aim of this work is the development of a multi-step ahead prediction method, which is applied 

to time series predictions of NPPs components. For this aim, we have presented a hybrid prediction 

framework based on EEMD and LSTM. Moreover, our proposed method has also tackled two 

additional issues. Firstly, a TPE algorithm has been employed to address the automatic hyperparameter 

optimization for LSTM networks. Secondly, multi-step ahead predictions have been performed by 

applying a MIMO strategy with respect to three different long-term horizons. Several performance 

evaluations have been carried out to analyze and validate the methodology of the proposed method with 

a practical case study of the time series data acquired from real NPPs components. The results have 

shown the promising performance of the proposed hybrid method in achieving accurate predictions for 

long-term horizons.    

 

Data
scenario Approach

6 steps ahead 12 steps ahead 18 steps ahead

RMSE MAPE MASE RMSE MAPE MASE RMSE MAPE MASE

RCP 1
ESN model 0.0450 18.2183 2.4145 0.0521 20.1742 2.7480 0.0544 21.2928 2.9608

Proposed model 0.0203 8.7511 1.0871 0.0226 11.4607 1.2278 0.0338 20.1416 1.7015

RCP 2
ESN model 0.0496 7.7376 2.2372 0.0511 9.4669 2.6751 0.0672 11.1388 3.1238

Proposed model 0.0246 3.9053 1.1355 0.0300 4.3849 1.3255 0.0463 6.3652 1.9812

RCP 3
ESN model 0.0647 11.3833 2.3444 0.0616 11.1641 2.3267 0.0750 12.7170 2.5916

Proposed model 0.0256 4.0837 0.8898 0.0309 4.9342 1.0701 0.0408 5.9058 1.2537

RCP 4
ESN model 0.0419 3.7228 2.0821 0.0480 4.5109 2.5750 0.0675 6.0974 3.5221

Proposed model 0.0231 1.9948 1.1201 0.0303 2.8291 1.6248 0.0312 2.8147 1.6339

RCP 5
ESN model 0.0380 5.1331 1.0158 0.0578 8.0459 1.5163 0.0835 13.3672 2.3941

Proposed model 0.0347 4.7995 1.0016 0.0471 6.1768 1.1888 0.0548 7.5077 1.4756
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ECOLE DOCTORALE N°573  
Approches interdisciplinaires, fondements, 
applications et innovation (Interfaces) 

Titre : Méthodes de prédiction basées sur des modèles et pilotées par les données pour les pronostics 

Mots clés : prognostics and health management, pronostics basés sur des modèles, pronostics pilotées par les données, prédictions 
à pas multiples, croissance des fissures par fatigue, composants de centrales nucléaires 

Résumé : La dégradation est un phénomène inévitable qui 
affecte les composants et les systèmes, qui peut entraîner leurs 
défaillances avec des conséquences potentiellement 
catastrophiques selon l'application. La motivation de cette 
Thèse est d'essayer de modéliser, d'analyser et de prédire les 
défaillances par des méthodes pronostiques qui peuvent 
permettre une gestion prédictive de la maintenance des actifs. 
Cela permettrait aux décideurs d'améliorer la planification de 
la maintenance et de minimiser les arrêts imprévus, 
augmentant ainsi la disponibilité et la sécurité du système. Dans 
cet objectif, la recherche pendant la thèse a été consacrée à 
l'adaptation et à l'utilisation d'approches basées sur des 
modèles et d'approches pilotées par les données pour traiter 
les processus de dégradation qui peuvent conduire à différents 
modes de défaillance dans les composants industriels, en 
utilisant différentes sources d'informations et de données pour 
effectuer des prédictions sur l'évolution de la dégradation et 
estimer la durée de vie utile restante.  
Les principales contributions de cette thèse ont été divisées en 
deux parties traitant de deux applications pronostiques 
spécifiques, y compris les pronostics basés sur des modèles 
pour la prédiction de la croissance des fissures par fatigue et 
les pronostics pilotées par les données pour les prédictions à 
pas multiples des données de séries chronologiques des 
composants des Centrales Nucléaires, respectivement. 
La performance d'une approche pronostique basée sur des 
modèles dépend du choix des modèles adoptés de Physics-of-
Failure (PoF). Cependant, chaque modèle de dégradation ne 
convient qu'à certains processus de dégradation dans certaines 
conditions de fonctionnement, qui souvent ne sont pas connues 
avec précision. Pour résoudre ce problème, nous développons 
deux méthodes basées sur des modèles qui reposent sur 
l'ensemble de plusieurs modèles de dégradation, afin de tirer 
parti de la complémentarité de différents modèles, spécifiques 
aux tendances de dégradation à prévoir. Les principales 
contributions de l'ensemble proposé de méthodes basées sur 
des modèles sont deux nouvelles stratégies d'ensemble 
pondérées, qui prennent en compte les précisions de prédiction 
des modèles individuels lors d'instances de temps précédentes. 
De plus, le filtrage Bayésien récursif et le filtrage particulaire 
sont utilisés pour prédire et mettre à jour dynamiquement 
l'évolution de la dégradation et la durée de vie utile restante du 
composant à chaque étape de prédiction. Pour valider les 
performances des méthodes proposées, différentes études de 
cas de croissance des fissures par fatigue générées avec des 
conditions de fonctionnement variables dans le temps sont 
considérées. 
 

Dans l'industrie nucléaire, les composants et les systèmes 
sont conçus pour garantir des niveaux de fiabilité très élevés 
étant donné les conséquences potentiellement 
catastrophiques de leurs défaillances, et des capacités 
pronostiques sont recherchées pour prédire avec précision 
les comportements de dégradation à long terme des 
composants et des systèmes, permettant de planifier les 
interventions de maintenance des composants critiques bien 
à l'avance et de réduire les coûts de maintenance. Cependant, 
plus loin on tente de prédire l'avenir, plus il est difficile 
d'obtenir une prédiction précise et stable en raison de 
l'augmentation de l'incertitude et de l'accumulation d'erreurs. 
Pour cette raison, la prédiction à plusieurs étapes est restée 
une tâche difficile dans de nombreuses applications 
pronostiques, en particulier dans l'industrie nucléaire. Pour 
résoudre ce problème, cette thèse propose deux nouvelles 
méthodes de prédiction à étapes multiples basées sur la Long 
Short-Term Memory (LSTM), un réseau de neurones 
profond développé pour traiter les dépendances à long terme 
dans les données de séries chronologiques. La première 
méthode de prédiction à plusieurs étapes est appliquée pour 
prédire jusqu'à 45 jours à l'avance les paramètres de 
fonctionnement des Générateurs de Vapeur de Centrales 
Nucléaires. La méthode aborde également les problèmes 
supplémentaires d'optimisation automatique des 
hyperparamètres et de quantification de l'incertitude de 
prédiction en utilisant respectivement un algorithme 
d'optimisation Tree-structured Parzen Estimator (TPE) et 
une technique de Monte Carlo (MC) Dropout. Une étude de 
cas concernant les données des Générateurs de Vapeur 
acquises auprès de différentes Centrales Nucléaires est 
réalisée pour valider les performances de la méthode 
proposée. D'autre part, la deuxième méthode de prédiction à 
plusieurs étapes est développée sur la base d'un cadre 
hybride intégrant la Ensemble Empirical Mode 
Decomposition (EEMD) et le réseau de neurones LSTM, et 
appliquée sur une étude de cas concernant les données de 
séries chronologiques acquises à partir des Pompes de 
Refroidissement de Réacteurs de Centrales Nucléaires. Dans 
ce cadre de prédiction, EEMD est utilisée pour décomposer 
des séries temporelles en un ensemble de composants qui 
permettent de décrire efficacement la dynamique du système 
et facilitent donc la tâche de prédiction. Ensuite, des modèles 
de réseaux de neurones LSTM sont développés pour prédire 
le comportement à plusieurs étapes des composants 
individuels et les prédictions obtenues sont agrégées pour 
reconstruire des données de séries chronologiques. Un 
algorithme TPE est utilisé pour l'optimisation automatique 
des hyperparamètres. La performance de la méthode 
proposée est validée en considérant trois horizons de 
prédiction à long terme sur une étude de cas pratique des 
Pompes de Refroidissement de Réacteurs de Centrales 
Nucléaires.  
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Abstract : Degradation is an unavoidable phenomenon that 
affects engineering components and systems, which may lead 
to their failures with potentially catastrophic consequences 
depending on the application. The motivation of this Thesis is 
trying to model, analyze and predict failures with prognostic 
methods that can enable a predictive management of asset 
maintenance. This would allow decision makers to improve 
maintenance planning and minimize unexpected shutdowns, 
thus increasing system availability and safety. To this aim, 
research during the Thesis has been devoted to the tailoring 
and use of both model-based and data-driven approaches to 
treat the degradation processes that can lead to different failure 
modes in industrial components, making use of different 
information and data sources for performing predictions on the 
degradation evolution and estimating the Remaining Useful Life 
(RUL).  
The main contributions of the Ph.D. work have been divided 
into two parts addressing two specific prognostic applications, 
including model-based prognostics for fatigue crack growth 
prediction and data-driven prognostics for multi-step ahead 
predictions of time series data of Nuclear Power Plant (NPP) 
components, respectively. 
The performance of a model-based prognostic approach 
depends on the choice of the adopted Physics-of-Failure (PoF) 
models. However, each degradation model is appropriate only 
to certain degradation process under certain operating 
conditions, which are often not precisely known. To address 
this problem, we develop two model-based methods based on 
the ensemble of multiple degradation models, in order to take 
advantage of the complementarity of different models, specific 
on the degradation trends to be predicted. The main 
contributions of the proposed ensemble of models-based 
methods are two novel weighted ensemble strategies, which 
take into account the prediction accuracies of the individual 
models at previous time instances. In addition, recursive 
Bayesian filtering and Particle Filtering (PF) are employed to 
dynamically predict and update the degradation evolution and 
the component RUL at each prediction step. To validate the 
performances of the proposed methods, different case studies 
of fatigue crack growth generated with time-varying operating 
conditions are considered. 

In the nuclear industry, components and systems are 
designed to guarantee very high reliability levels given the 
potentially catastrophic consequences of their failures, and 
prognostic capabilities are sought to accurately predict the 
long-term degradation behaviors of the components and 
systems, allowing maintenance interventions of critical 
components to be planned well in advance and reducing 
maintenance costs. However, the further one attempts to 
predict into the future, the harder it is to achieve an accurate 
and stable prediction due to increasing uncertainty and error 
accumulation. For this reason, multi-step ahead prediction 
has remained a difficult task in many prognostic applications, 
particularly in the nuclear industry. To address this problem, 
this Thesis proposes two novel multi-step ahead prediction 
methods based on Long Short-Term Memory (LSTM), a deep 
neural network developed for dealing with the long-term 
dependencies in time series data. The first multi-step ahead 
prediction method is applied for predicting up to 45 days 
ahead the operating parameters of NPP Steam Generators 
(SGs). The method also addresses the additional issues of 
automatic hyperparameter optimization and prediction 
uncertainty quantification by using a Tree-structured Parzen 
Estimator (TPE) optimization algorithm and a Monte Carlo 
(MC) Dropout technique, respectively. A case study 
concerning SG data acquired from different NPPs is carried 
out to validate the performance of the proposed method. On 
the other hand, the second multi-step ahead prediction 
method is developed based on a hybrid framework 
integrating Ensemble Empirical Mode Decomposition 
(EEMD) and LSTM neural network and applied to a case 
study concerning time series data acquired from Reactor 
Coolant Pumps (RCPs) of NPPs. In this prediction 
framework, EEMD is used to decompose time series into a 
set of components which allow effectively describing the 
system dynamics and therefore facilitates the prediction task. 
Then, LSTM neural network models are developed for 
predicting the multi-step ahead behavior of the individual 
components and the obtained predictions are aggregated to 
reconstruct the time series. A TPE algorithm is employed for 
automatic hyperparameter optimization. The performance of 
the proposed method is validated by considering three 
different long-term prediction horizons on a practical case 
study of NPP RCPs.  
 

 

 


