Keywords: Discrete event system, weighted automata, state estimation, fault diagnosis, detectability, opacity Discrete event system, weighted automata, state estimation, fault diagnosis, detectability, opacity

State estimation is an important and fundamental problem in the systems and control theory. In many real-world systems, it is not always possible to obtain directly the state information due to measurement noises, uncertainties or limited sensor availability.

Therefore, estimating the state of a system is critical when one wants to make decisions in certain applications that rely on state information, such as supervisory control. State estimation aims at accurately characterizing the possible states by observing system's behaviour, i.e., the output information obtained during the evolution of the system.

Another important issue that is closely related to state estimation is the verification problem.

Given a system, it is important to check if it has some desired properties. That is, verify in a formal way whether the studied system satisfies some expected requirements or specifications. Generally, we would like to propose algorithmic and provably correct procedures to achieve the above checking, and such a formal satisfaction checking problem is called the verification problem. Property verification has been extensively studied since it is important in many complicated and safety-critical real-world systems.

Automata and Petri nets, two important classes of Discrete Event Systems (DESs) models, have been intensively used to deal with state estimation and property verification over the past few decades. A DES is a discrete-state, event-driven dynamic system in which the state evolution depends entirely on the abrupt occurrence of asynchronous discrete events. Many real-world systems, e.g., queueing systems, computer systems, communication systems, traffic systems, are discrete event systems. DES models have been widely used to deal with state estimation and verification problems in the literature. This thesis focuses on the state estimation and verification problems, including detectability and opacity verification, of DESs modeled as weighted automata (WAs). WAs are a quantitative extension of classical finite automata in which the transitions carry weights belonging to a semiring. The weight associated to a transition can model, e.g., the cost, the resource (energy), the time needed or the probability for executing the transition. The main work of this thesis is as follows. (1) An online procedure is proposed to deal with the problem of state estimation for WAs. (2) The state estimation approach is extended to tackle the fault diagnosis problem. (3) Given an unambiguous weighted automaton (UWA), a formal procedure with exponential complexity (resp. polynomial complexity) based on the construction of observer (resp. detector) is introduced to verify its current-state detectability.

(4) Given a UWA, an approach is proposed to verify its initial-state detectability and initialstate opacity.

Acknowledgement

First of all, I would like to express my deepest gratitude to my two supervisors, Prof.

Sébastien Lahaye and Prof. Alessandro Giua, for their unwavering support, guidance. In particular, Prof. Lahaye gave me a lot of freedom to explore anything I am interested in.

Like my friend or brother, he always patiently discusses issues with me, even things that seem naive. Prof. Giua made many valuable suggestions on this work. I clearly remember that when we met in Toulouse during the 2017 IFAC World Congress, he suggested me to study the state estimation of the max-plus automaton before considering the identification problem, which turns out to be good research topic. Without their instruction and patience, I would never have been able to complete the thesis.

In addition, I would like to express my sincere appreciation to Prof. Zhiwu Li, for his constant support, encouragement and trust. He always believes in me, and whenever I encounter some major choices that need to be decided, he can always give me valuable advice. I think he is more like a member of my family and gave me a lot of care.

I would also like to thank Prof. Jan Komenda and Prof. Bertrand Cottenceau for being the members of Individual Follow-up Committee of my thesis (CSI: Comité de Suivi Individuel) to monitor the progress of my research. Besides, Prof. Komenda gave me the idea to investigate the detectability of max-plus automata, which led to another contribution of the thesis. I sincerely thank Prof. Stéphane Gaubert and Prof. Isabel Demongodin for accepting to sit on my dissertation committee.

Finally, I sincerely thank my parents, Maosong Lai and Zhaozhu Lai, and my sisters Qiuju Lai, Qiuxiang Lai and Qiuliu Lai, for their constant support and love. I would not have been the person I am today without their support. I owe my fiancee, Ms. Jingfeng Lai, too much in past two and half years. I would like to express my deepest appreciation to jingfeng for her love, understanding and support. I love you, if there is a deadline, it will be 10,000 years.

Introduction

State estimation is a fundamental problem in discrete event systems (DES), and it has been extensively studied in the framework of automata and Petri nets. State estimation aims at accurately characterizing the possible states by observing system's behaviour, i.e., the output information obtained during the evolution of the system. Generally, state estimation can be partitioned into current-state estimation and initial-state estimation. In current-state estimation problem, we want to estimate all possible states the system can be in currently based on the observation. In initial-state estimation, we want to determine the set of initial states the system may start from.

Recently, the problem of state estimation has been investigated in terms of detectability.

Current-state detectability requires that the current state of the system can always be detected uniquely (or unambiguously) within a finite delay, i.e., a finite number of event observations. Initial-state detectability (I-detectability) requires that the initial state can always be determined uniquely (or unambiguously) after the occurrence of finite sequence of events.

The state estimation plays a very important role in some applications of DESs. One related application is opacity. Opacity is a general information flow property characterizing whether or not the "secret" of a system can be inferred by an external observer, called intruder. Another important application is the fault diagnosis. For those DESs where the failures are modeled by certain states, the diagnosis problem can be considered as a state estimation problem.

Literature review

State Estimation and Detectability Verification Problems

The state estimation of a dynamic system is a fundamental issue in control theory. This problem has been investigated both in time driven systems and discrete event systems (DESs). In time driven systems, the state estimation aims at generating an estimate x(t) of the current state x(t) at a time instant t while in DES, it consists in capturing the characterisation of possible states with respect to a finite set of observed outputs [Giua, 2011] .

In general, the output information of the considered system must be given in order to address state estimation problem. Typically, there exists two different kinds of outputs since DES can be described by states and events whereas sensors can be associated to events or states. The corresponding outputs are event observation and state observation. In the case of event observation, events are partitioned into observable and unobservable subsets. For state observation, a subset of states to which the current states of system belong is known.

Note that these two outputs can be combined, which means that there may exist event and state observations during the system evolution. Automata and Petri nets (PNs) are two wellknown abstractions for DES. These two mathematical formalisms can be used to deal with the state estimation problem, which has been studied over the past few decades.

In the framework of automata, the embryonic form of state estimation problem first appeared in [START_REF] Wonham | Towards an abstract internal model principle[END_REF] . Since then, this problem has been studied by many researchers using automata. The early work of investigating state estimation was done by Caines et al. [Caines and Wang, 1989] , Ramadge [START_REF] Ramadge | Observability of discrete event systems[END_REF] and Ozveren and Willsky [Ozveren and Willsky, 1990] . Caines et al. showed how it is possible to use the information contained in the past sequence of observation states and control inputs to calculate the set of states consistent with observation. Ramadge studied the issue of determining the current state of the system modeled by nondeterministic finite automaton and showed the possibility of designing an observer for a discrete event process. Ozveren and Willsky formulated the observability with an assumption that the current state of system is known. An approach is proposed to build an observer according to a finite string from outputs. Besides, they showed that an observer may have an exponential number of states although it can be built in polynomial time.

In the framework of PNs. Algorithms for state (or marking) estimaton are proposed for labeled PNs with silent or/and indistinguishable transitions in [Corona et al., 2007;[START_REF] Giua | [END_REF]Cabasino et al., 2011] . A transition is said to be silent if its firing cannot be detected by external agent. Two transitions are called undistinguishable if they are labeled by the same symbol. In [Corona et al., 2007;[START_REF] Giua | [END_REF] , the notion of basis marking is proposed to compute the consistent markings. The authors proved that consistent markings can be characterized by a linear system with a fixed structure that does not change as the length of the observed word increases. In [Cabasino et al., 2011] the marking estimation problem for PNs in the presence of silent and indistinguishable transitions is addressed first in order to solve the diagnosis problem. We have to mention that there exists a survey [Giua and Seatzu, 2014] pertaining the main contributions of state estimation in the field of PNs. Li and Hadjicostis [Li and Hadjicostis, 2013] proposed a recursive algorithm whose complexity is polynomial with respect to the length of observation for calculating the minimum initial marking of a labeled Petri net.

There are fewer works dealing with state estimation in timed DES compared to logical DES framework. In [Bonhomme, 2013;Bonhomme, 2015] , a method for current state estimation in P-time PNs is presented. A state observer is synthesized according to the corresponding untimed PN, and the schedulability of a firing sequence is defined. The candidate firing sequences of an observed word are obtained from the state observer.

One schedulable candidate sequence corresponds to a consistent marking. The checking of schedulability of a sequence is completed by solving a linear programming problem.

In [Declerck and Bonhomme, 2014] , timed labeled PNs with observable transitions are described by algebraic models. An approach for reconstructing the sequence of unobservable transitions, i.e., completing an observed word into a fireable sequence which is consistent with this observation is developed therein. Timed choice-free PNs are studied in [START_REF] Wang | On state estimation of timed choice-free Petri nets[END_REF] . The authors computed the set of basis markings, notion extended from [Corona et al., 2007] , and used the time equations to reduce this set by removing all markings that are inconsistent with the time information. Basile et al. [Basile et al., 2013;[START_REF] Basile | [END_REF] investigated the state estimation problem for time unlabeled and time labeled PNs respectively. An on-line approach based on the modified state class graph is presented therein. Note that the assumption of acyclicity of unobservable transitions is no more needed. The new assumption is that there is no cycle of unobservable transitions that can fire in a null time interval.

Besides the automata and PNs, the max-plus algebra plays an important role in some applications of timed DES [Komenda et al., 2017;[START_REF] Komenda | [END_REF] . Hardouin et al. [Hardouin et al., 2010] investigated the state estimation of timed event graphs, a subclass of timed PNs capturing only synchronization and delay phenomena. Timed event graphs can be represented by state-space equations in max-plus algebra, strongly reminiscent of discrete-time representations for conventional linear systems. The design of an observer matrix for timed event graphs is proposed in analogy to Luenberger observer for classical linear systems.

In some literature, the state estimation problem has been investigated in terms of detectability verification. Two common detectabilities are current-state detectability and I-detectability. Current-state detectability requires that the current state of the system can always be detected uniquely after observing a finite sequence of event observations. Idetectability requires that the initial state can always be determined uniquely within a finite delay.

In [Shu et al., 2007;[START_REF] Shu | Generalized detectability for discrete event systems[END_REF]Shu and Lin, 2013] , the detectability of nonprobabilistic DESs based on the construction of the observer automaton is investigated. [Shu et al., 2008;[START_REF] Keroglou | [END_REF]Keroglou and Hadjicostis, 2017;Yin, 2017] studied the detectability of probabilistic (stochastic) DESs. Note that the detectability in non-probabilistic systems characterizes whether the state of the system can be uniquely determined after a finite number of observations. While in the probabilistic framework, it characterises whether the probability of detecting the state of the system converges to one as the length of the observation increases. [START_REF] Shu | Generalized detectability for discrete event systems[END_REF] defined four types of detectabilities, i.e., strong detectability, detectability, strong periodic detectability, periodic detectability for nondeterministic finite automata (NFAs) so as to characterise different properties of current state estimation.

More precisely, an NFA is strongly detectable if its current state and subsequent states can be uniquely determined, after observing a finite sequence of events, for all trajectories of the system. Note that a trajectory of a system is represented by an infinite sequences that can be generated by the system. An NFA is weakly detectable if its current state and subsequent states can be uniquely determined, after observing a finite sequence of events, for some trajectories of the system. An NFA is said to be strongly periodically detectable if the unique current state for all trajectories of the system can be periodically determined. Similarly, if the unique current state for some trajectories of the system can be periodically determined, then the system is said to be weakly periodically detectable.

An observer is constructed as to derive necessary and sufficient conditions for checking these four detectabilities. In [Shu et al., 2008] the DES is represented as a non-deterministic probabilistic automaton where probabilities are associated with the non-deterministic transitions. A given probabilistic automaton is first converted into a non-probabilistic automaton, then necessary and sufficient conditions are proposed to check the strong and weak detectabilities. Keroglou and Hadjicostis [Keroglou and Hadjicostis, 2017;[START_REF] Keroglou | [END_REF] investigated the state estimation of a probabilistic automaton by defining the concepts of A-detectability and AA-detectability respectively. As the observed output symbols increase, the state estimation will become more accurate.

Shu and Lin [Shu and Lin, 2013] formulated the initial-state estimation problem of NFAs as I-detectability. It characterizes whether the initial state of an NFA can be uniquely determined after a finite number of events have been observed. An exponential algorithm is introduced for checking strong I-detectability based on the construction of an I-observer.

In additional, a polynomial-time algorithm is introduced for checking weak I-detectability based on the construction of an I-detector. Yin [Yin, 2017] introduced the notion of SIdetectability as an extension of I-detectability in the stochastic setting by considering the probabilistic sensor failures. SI-detectability characterizes the convergence of the probability for determining the initial-state of a probabilistic finite state automaton. An algorithm for verifying the SI-detectability is proposed, and the complexity of this verification is proved to be PSPACE-complete. Giua and Seatzu [Giua and Seatzu, 2002] investigated the detectability of PNs by assuming that the PN structure is known and the transition firings can be precisely observed. Masopust and Yin [Masopust and Yin, 2019b] explored the existence of algorithms to verify strong and weak detectability for labeled PNs. The authors showed that although there exists an algorithm for checking strong detectability, this algorithm is infeasible because it requires at least exponential space. Besides, it is proved that there is no algorithm for checking weak detectability.

We refer the reader to [Yin, 2019;Ghazel et al., 2009;[START_REF] Ño | [END_REF]Ma et al., 2017;[START_REF] Masopust | Complexity of deciding detectability in discrete event systems[END_REF]Masopust and Yin, 2019a;Sasi and Lin, 2018;Yin and Lafortune, 2017c;Zhang, 2017;Zhao et al., 2019] for more references on state estimation and detectability verification.

Fault Diagnosis Problem

The fault diagnosis of discrete event systems (DES) has received a lot of attention in recent years. A fault is defined to be any deviation of a system or of one of its components from its normal behavior. According to the manner in which faults are reset after they occur, faults are classified into permanent and intermittent ones. A fault is permanent if the recovery event occurs only due to a repair/replacement of the fault. On the contrary, a fault is intermittent if the recovery event can occur either spontaneously or through repair/replacement. In this thesis, we consider the case where all faults are permanent. In other words, the studied system cannot spontaneously move from the fault state to a normal state.

Generally, the goal of fault diagnosis is to achieve three complementary tasks [START_REF] Zaytoon | Overview of fault diagnosis methods for discrete event systems[END_REF] : fault detection, fault isolation and fault identification. Fault detection aims at determining whether a system is in normal status or whether a fault has occurred.

If a fault has occurred, fault isolation and identification aim at localizing the system component(s) causing the fault and identifying the nature of the fault respectively. In the thesis, we use the terminology of fault diagnosis to describe the objective of the detection of a fault class. Automata and Petri nets (PNs) have been intensively used to deal with fault diagnosis in the literature.

An overview of fault diagnosis approaches for DES is proposed in [START_REF] Zaytoon | Overview of fault diagnosis methods for discrete event systems[END_REF] . The classification of diagnosis approaches with respect to different kinds of criteria is provided. These criteria include fault compilation (on-line, offline), modelling formalism (automata, PNs), fault representation (models including faulty behavior, faultfree modes), and decision structure (centralized, decentralized, distributed).

In [Sampath et al., 1995] , fault diagnosis and diagnosability of DES are addressed in an event-based framework, that is, the failures are treated as unobservable events. Given an observation, the fault diagnosis consists in determining if a fault has occurred, i.e., if an evolution containing a transition labeled by a fault event has produced the given observation. A deterministic finite automaton is diagnosable if the occurrence of any fault event can be detected after a finite number of steps. Necessary and sufficient conditions for diagnosability of a DES are proposed therein. Besides, the diagnosers are introduced to solve the diagnosis problem. This approach has been extended to diagnosis of timed DES where different time bounds can be associated to different transitions of the same event label [Chen and Provan, 1997] . In [Tripakis, 2002] , the above framework is extended to timed automata. The notion of -diagnosability for timed automata is proposed. A timed automaton is -diagnosable if a fault can be detected with a delay of at most time units after it occurred. Besides, an algorithm is presented to check such diagnosability for a given timed automaton, and it was shown that this checking has PSPACE-complete complexity. In [Bouyer et al., 2005] , the fault diagnosis is studied for deterministic timed automata (DTA) and event-recording timed automata (ERA). The complexities for checking the existence of diagnoser for DTA and ERA are 2-EXPTIME-complete and PSPACE-complete respectively.

Other important contributions for fault diagnosis in the framework of probabilistic automata have been presented in [START_REF] Athanasopoulou | Probabilistic approaches to fault detection in networked discrete event systems[END_REF][START_REF] Fabre | Eric Fabre and Loïg Jezequel. On the construction of probabilistic diagnosers[END_REF][START_REF] Lunze | State observation and diagnosis of discrete-event systems described by stochastic automata[END_REF]Thorsley et al., 2008] , among others.

There exists work dealing with fault diagnosis in the state-based framework [Lin, 1994;Zad et al., 2003;Zad et al., 2005] . In a state-based approach, it is assumed that the states of the system can be partitioned according to the condition (normal or faulty status) of the system.

The fault diagnosis problem then becomes to use system output information to determine the block of the normal/faults partition to which the state belongs. Zad et al. [Zad et al., 2003] introduced state-based diagnoser to determine the occurrence of a failure mode based on the sequence of state outputs. The authors extended the above approach for solving fault diagnosis problem in timed DES [Zad et al., 2005] . Diagnosability of failures is discussed, and necessary and sufficient condition for time-diagnosability are derived.

In [Wu and Hadjicostis, 2005] , redundancy (additional places and the connections associated with them) is added into the original PN to enable fault identification using algebraic decoding techniques. Two types of faults have been considered: place faults that cause the corruption of the number of tokens in a certain place whereas transition faults that prevent tokens from being removed from (deposited at) the input (output) places of a particular transition. In other words, a place fault that corrupts the net marking, and a transition fault that causes an incorrect update of the marking after events occurrences. In this approach, the authors assumed that transition firings are not directly observable but that the system marking is periodically observable. Basile et al. [Basile et al., 2009] studied fault diagnosis through on-line computing of the set of possible fault events required to explain the last observed event. The diagnoser was built by defining and solving integer linear programming (ILP) problems. The computational complexity was reduced by reformulating these ILP problems on specific parts of the considered PN that influence the occurrence of the observed event. In [Basile et al., 2012] , the ILP technique was adopted to deal with the k-diagnosability, a fault can be detected within a finite delay of k-steps, for bounded PNs.

Necessary and sufficient condition for k-diagnosability is proposed. Moreover, there is no specific assumption on the structure of the subnet induced by unobservable transitions. In [Basile et al., 2015] , the modified state class graph is used to perform on-line fault diagnosis for labeled time PNs. Cabasino et al. [Cabasino et al., 2010;Cabasino et al., 2011] presented fault diagnosis approaches for unlabeled and labeled PNs respectively using the notion of basis marking.

Given an observation ω, this approach characterizes the minimal sequences of unobservable transitions whose firing enable ω using linear algebraic constraints. A diagnosis state was associated to each observation and to each fault class by an on-line diagnosis algorithm.

In the case of bounded PNs, the basis reachability graph can be computed offline and used to perform fast on-line fault diagnosis. In their recent work [Cabasino et al., 2014] , the diagnosability of labeled PNs is studied. Necessary and sufficient condition for diagnosability are proposed, and the basis reachability diagnoser and modified basis reachability graphs are introduced to test the diagnosability. Yin and Lafortune [Yin and Lafortune, 2017b] proved that checking diagnosability for labeled PNs is decidable and is EXPSPACE-complete.

Other important contributions for fault diagnosis in the framework of PNs have been presented in [Ramírez-Trevi ño et al., 2007;[START_REF] Hernandez-Flores | [END_REF]Wen et al., 2005;[START_REF] Lefebvre | Dimitri Lefebvre and Catherine Delherm. Diagnosis of DES with Petri net models[END_REF]Dotoli et al., 2009;Benveniste et al., 2003;[START_REF] Jiroveanu | The diagnosability of Petri net models using minimal explanations[END_REF][START_REF] Cong | Decentralized diagnosis by Petri nets and integer linear programming[END_REF] , among others.

Opacity Verification Problem

Security and privacy are crucial properties in online services and network communications. Opacity is an important aspect of such properties. It characterizes whether the "secret" of a system can be inferred by an intruder via observing its behavior. According to the definition of secrets, opacity can be classified into state-based opacity and languagebased opacity. Moreover, the state-based opacity can be further partitioned as initialstate opacity (I-opacity) ([Saboori and Hadjicostis, 2013b;Keroglou and Hadjicostis, 2013;[START_REF] Wu | Comparative analysis of related notions of opacity in centralized and coordinated architectures[END_REF][START_REF] Wang | [END_REF][START_REF] Tong | [END_REF]), current-state opacity [START_REF] Saboori | Anooshiravan Saboori and Christoforos N Hadjicostis. Notions of security and opacity in discrete event systems[END_REF]Saboori and Hadjicostis, 2013a;[START_REF] Tong | [END_REF][START_REF] Cong | On-line verification of current-state opacity by petri nets and integer linear programming[END_REF]), initial-and-final-state opacity ([START_REF] Wu | Comparative analysis of related notions of opacity in centralized and coordinated architectures[END_REF]) and K-step opacity ([START_REF] Saboori | Anooshiravan Saboori and Christoforos N Hadjicostis. Verification of k-step opacity and analysis of its complexity[END_REF]).

It is assumed the intruder has full knowledge of the system's structure but only partial observability. Based on its observations, the intruder constructs an estimate of the system's behavior. Given a secret as a set of states. A system is said to be current-state opaque if, for any observation, the intruder can never infer that the current state of the system is within the set of secret states. Given a secret as a language, i.e., a set of event sequences. A system is language opaque if the intruder cannot conclude that the evolution of the system belongs to the secret.

In this thesis, we focus on I-opacity. Given a secret as a set of states (Normally, the secret is a subset of the set of initial states). A system is said to be initial-state opaque if, for any observation, the intruder cannot determine if the evolution of the system has started from a secret state. More precisely, I-opacity requires that the set of initial states estimated by the intruder for any observation should contain at least one element that does not belong to the secret . The I-opacity is first introduced for Petri nets by [START_REF] Bryans | [END_REF] , and extended to labeled transition systems in [Bryans et al., 2008] . It is proved in [Bryans et al., 2005] that the problem of verifying I-opacity in bounded Petri nets is decidable. In [Bryans et al., 2008] , general opacity (including the I-opacity) problems in transition systems are proved to be undecidable. Recently, the I-opacity for bounded labeled Petri nets is solved by [START_REF] Tong | [END_REF] where the secret is defined as an arbitrary subset of the reachability set. A necessary and sufficient condition for checking I-opacity based on the construction of the modified basis reachability graph is proposed.

In the framework of automata, the I-opacity problem has been investigated in [Saboori and Hadjicostis, 2013b;Keroglou and Hadjicostis, 2013;[START_REF] Wu | Comparative analysis of related notions of opacity in centralized and coordinated architectures[END_REF][START_REF] Wang | [END_REF] . Particularly, in [Saboori and Hadjicostis, 2013b] , an initial-state estimator is constructed and it can be used to verify I-opacity of an NFA for both invariant-secret and varying-secret. That is, the structure of such an initial-state estimator does not need to be modified when the secret changes. The initial-state estimator has up to 2 n 2 states where n is the number of states in the NFA. In addition, when the secret is fixed, the complexity of verifying I-opacity is reduced to O(4 n) by introducing the notion of verifier. Recently, Wu and Lafortune [START_REF] Wu | Comparative analysis of related notions of opacity in centralized and coordinated architectures[END_REF] prove that the initial state of an NFA can be estimated by the observer of its reverse automaton, and as a result, the verification complexity of I-opacity is reduced to O(2 n). In [Keroglou and Hadjicostis, 2013] , I-opacity is studied in the framework of probabilistic finite automata.

Cassez [Cassez, 2009a] investigates the decidability of opacity verification in dense timed systems. It is shown that the opacity problem in timed automata is undecidable since it is already undecidable for event recording automata, which is a very restrictive subclass of timed automata. Recently, in [Wang et al., 2018] , the problem of I-opacity in real-time automata (timed automata with only one clock to be reset at each transition) is proved to be decidable by reducing it into the inclusion problem of regular languages.

Note that the state-based opacity verification problem is tightly related to state estimation problem. The verification of current-state opacity and I-opacity can be done by the construction of an observer (current state estimator) and an initial-state estimator respectively. Opacity is also closely related to anonymity [START_REF] Shu | State estimation and detectability of probabilistic discrete event systems[END_REF] , non-interference [Hadj-Alouane et al., 2005b;Hadj-Alouane et al., 2005a] , and secrecy [START_REF] Takai | Verification and synthesis for secrecy in discrete-event systems[END_REF] , which are other information flow security properties. Note that anonymity and secrecy can be formulated as opacity problems.

Jacob et al. [Jacob et al., 2016] presents an overview of different notions of opacity in DESs. The decidability of opacity verification problems in different DES models and the complexity of decidable opacity checks are presented therein. The reader is referred to the [Yin, 2019;[START_REF] Saboori | Anooshiravan Saboori and Christoforos N Hadjicostis. Verification of k-step opacity and analysis of its complexity[END_REF]Yin and Lafortune, 2017a;[START_REF] Saboori | Anooshiravan Saboori and Christoforos N Hadjicostis. Verification of initial-state opacity in security applications of des[END_REF][START_REF] Badouel | [END_REF][START_REF] Yin | Infinite-step opacity and k-step opacity of stochastic discrete-event systems[END_REF]Bérard et al., 2015] for more references on opacity verification in the area of DESs.

Motivation of the Thesis

From the above literature review, we know that state estimation, fault diagnosis, and detectability and opacity verification problems are very important in DESs. Most of the existing work on these topics is focused on logical DESs, that is, classical automata and PNs where there is no quantitative information associated with the firing of transitions in a PN or the occurrence of events in an automaton. However, in some real-world systems, the quantitative information is very important and necessary. In fact, the occurrence of an event or the state transition of the system takes some time or requires some energy or resources.

For instance, in a manufacturing system, a product needs to undergo a series of processing before it goes on the market, and each processing consumes a certain amount of power and time.

Weighted finite automata (WAs) are classical NFAs in which the transitions carry weights belongs to a semiring. These weights may model, e.g., the cost involved when executing a transition, the amount of resources or time needed for this, or the probability or reliability of its successful execution [Droste et al., 2009] . From here, we know that a WA is a DES model that takes into account the quantitative information of real-world systems.

For such a DES model, as in classical automata and PNs, we think it makes sense to investigate its state estimation as well as the property verification problems. In this thesis, on one hand, we proposed formal online algorithms to tackle the state estimation and fault diagnosis problems of WAs. On the other hand, the current-state detectability, I-detectability and I-opacity verification problems are studied for unambiguous weighted automata (UWAs).

Organization and Contribution of the Thesis

This thesis investigates the state estimation and detectability and opacity verification in the framework of WAs. The organization and main contributions of the thesis are summarized as follows:

• Chapter 2. Some basics on classical automata and weighted automata are presented in this chapter.

• Chapter 3. This chapter deal with state estimation of WAs. One on hand, we first give the definition of the set of states consistent with an observation and a given weight value. Then we propose algorithms to solve online the state estimation problem. The main idea behind the proposed algorithms originates from the fact that the dynamic behavior of a WA can be characterized by its state vector, solution of recurrent equations on words representing the sequence of occurring labels (events). On the other hand, the state estimation approach is extended to deal with fault diagnosis of a WA. First, for a given WA where faults are associated with unobservable events, we propose an algorithm that transforms it into another automaton, called augmented automaton. Then, we prove that solving fault diagnosis of the original WA is equivalent to estimating the states of the augmented automaton. In addition, we define the diagnosis states, "normal" or "faulty" or "uncertain", with respect to an observation, a given value and a fault class. Finally, an on-line algorithm is proposed to compute these diagnosis states.

• Chapter 4. The of current-state detectability verification problem is studied for UWAs in this chapter. We first define the concept of consistent states for an infinite sequence of labels, which represents a trajectory of the system. Then, inspired by the work in [Shu et al., 2007;[START_REF] Shu | Generalized detectability for discrete event systems[END_REF] , we define four types of detectabilities, i.e., strong detectability, weak detectability, strong periodic detectability, and weak periodic detectability, for WAs. This chapter can be divided into two parts. In the first part of this chapter, an exponential approach is presented to check strong and weak detectabilities. The main contributions of this part are as follows. (1) A novel algorithm is introduced to construct a finite state automaton (called observer) for a given UWA, and we prove that this observer can be used for the current-state estimation of the studied system. Note that this algorithm is first presented in this chapter, and will be adapted to deal with the verification problem of I-detectability and I-opacity for UWAs in Chapter 5. (2) Necessary and sufficient conditions based on the constructed observer are derived for verifying the strong and weak four detectability properties of UWAs. In the second part of this chapter, a polynomial approach is introduced to check strong detectability and strong periodic detectability, or simply called strong detectabilities. The main contributions of this part are as follows.

(1) For a given UWA, we construct its detector, which is a special finite state automaton over a weighted alphabet. The number of states of detector is polynomial with respect to the state space cardinality of original system. (2) Necessary and sufficient conditions based on the constructed detector are proposed for checking strong detectabilities of the studied UWA. (3) We present an example to illustrate that the conditions stated for observer for weak detectability and weak periodic detectability, simply called weak detectabilities, cannot be transposed to detector so as to check the weak detectabilities.

• Chapter 5. This chapter deals with the verification of I-detectability as well as the I-opacity verification for UWAs. (1) We extends the notion of I-detectability and Iopacity from logical DESs to the framework of WAs. Two types of I-detectability, namely strong Idetectability and weak I-detectability are defined for WAs. A WA is said to be strong I-detectable if we can uniquely determine its initial state for all trajectories after a finite number of observations. A WA is said to be weak I-detectable if we can uniquely determine its initial state for some trajectories after a finite number of observations. (2) For a given UWA, a formal procedure is proposed to construct its initial-state estimator (called I-observer). More precisely, given a UWA, an algorithm is first proposed to construct its augmented version, called augmented automaton, which is also a WA. Each node (state) of the augmented automaton is a pair of states of the original WA indicating that the first state of the pair is reachable from the second state in the system. Then, the algorithm that is first presented in Chapter 4 is used to construct the current-state estimator of augmented automaton, and we prove that this estimator can serve as the initial-state estimator of original system. (3) Necessary and sufficient conditions are developed for verifying I-detectability and I-opacity of the studied UWA based on the constructed I-observer.

• Chapter 6. Conclusion and future directions related to this thesis are described in this Chapter.

CHAPTER 2. PRELIMINARIES

Automata

In this section we recall some basics of automata. For more details, we fefer the reader to [Cassandras and Lafortune, 2009] .

Alphabet and Language

Definition 2.1. An alphabet E is a finite and empty set of labels. The number of labels that E contains is called its cardinality and is denoted by |E|.

Definition 2.2. A string ω defined on E is a finite sequence of labels in E. The number of labels of that ω contains is called its length and is denoted by |ω|. The set of all finite strings defined over alphabet E is denoted by E * , including the empty string having length zero.

In this thesis, the empty string is denoted by instead of ε because ε will be used as a neutral element of a semiring. Its prefixes are , a, ab, aba and abac. Its suffixes are , c, ac, bac and abac. Its substrings are: all its prefixes, all its suffixes and b, a and ba.

Languages are defined as the sets of strings over an alphabet. In other words, L is said to be a language over alphabet E if it is a subset of E * , i.e., L ⊆ E * . Definition 2. 5. A language L defined on an alphabet E is a set of strings on this alphabet. Its cardinality, i.e., the number of strings that it contains, is denoted by |L|.

Example 2.2. Consider an alphabet E = {a, b, c} and the following sets of strings.

L 1 = {aa, ab, ac, ca} , L 2 = {a, b, c} , L 3 = { } , L 4 = ∅, L 5 = {ab, d} .
We find that sets L 1 , L 2 , L 3 and L 4 are languages defined on alphabet E. Set L 5 is not a language defined on E since it contains an element d that does not belong to E. Language L 1 consists of four strings, i.e., |L 1 | = 4. Language L 2 consists of three strings, i.e., |L 1 | = 3, which is consistent with the alphabet. Language L 3 only consists of the empty string.

Language L 3 is the empty set that does not contain any strings.

Sequence projection

Definition 2.6. Let E ⊆ E be a subset of E. The natural projection of E on E is denoted by P E : E * → E * and is defined as:

             P E () = P E (a) = a, i f a ∈ E ; P E (a) = , i f a ∈ (E \ E); P E (sa) = P E (s)P E (a), s ∈ E * , a ∈ E.
(2.1)

The inverse of projection P E is denoted by P -1 E : E * → E * and is defined as:

P -1 E (ω) = {σ ∈ E * | P E (σ) = ω} ⊆ E * . (2.2)
From the above definitions, we know that the projection operator P E (σ), σ ∈ E * , removes all the labels that are not in E from string σ, while its inverse projection P -1 E (ω) associates to a sequence ω the set of all strings whose projection on E is ω.

Example 2.3. Let E = {a, b, c}, E = {b, c} and σ = abcbac. The projection of σ on E

is P E (σ) = bcbc. Let ω = bc ∈ E * . Then P -1 E (ω) = a i ba j ca k where i, j, k ∈ N = {0, 1, 2, • • • }.

Automaton Models

In this subsection, we introduce the notions of non deterministic finite automata and deterministic finite automata.

Definition 2.7. A nondeterministic finite automaton (NFA) is a 5-tuple

G = (Q, E, δ, Q i , Q m) where • Q is a finite set of states;
• E is a finite alphabet;

• δ : Q × E → 2 Q is a (partial) transition relation; • Q i ⊆ Q is the set of initial states; • Q m ⊆ Q is the set of final states.
An automaton can be described by a graph in which each state corresponds to a node, and is represented by a circle. In particular, the initial state is specified by an input arrow, and a final state is represented by a double circle.

Example 2. 4. Fig. 2.1 is the graphical representation of an NFA

G = (Q, E, δ, Q i , Q m) with Q = {1, 2, 3, 4}, E = {a, b, c, d}, Q i = {3, 4} and Q m = {2}. Its transition function is given in Table 2.1. b a d c 1 2 3 4 d b Figure 2.1 -Nondeterministic finite automaton δ a b c d 1 2 - - - 2 -{2, 3} - - 3 - - 4 - 4 - - -{1, 2} Table 2.1 -Transition relation of the NFA in Fig. 2.1
The transition relation δ :

Q × E → 2 Q can be extended to strings δ : Q × E * → 2 Q , which
is defined as follows.

   δ(q,) = a, f or all q ∈ Q;

δ(q, σa) = δ(δ(q, σ), a), f or σ ∈ E * and a ∈ E.

Note that for a subset of state set, e.g., Q ⊆ Q, and a label a ∈ E, δ(Q , a) is defined as

δ(Q , a) = q ∈Q
δ(q , a).

Definition 2. [START_REF]An unambiguous weighted automaton G[END_REF].

Given an NFA G = (Q, E, δ, Q i , Q m)
, the set of labels enabled in state q ∈ Q is defined as

E(q) = {a ∈ E | δ(q, a) is defined} . Definition 2.9. Consider a state q ∈ Q in an NFA G = (Q, E, δ, Q i , Q m). State q ∈ Q is said
to be:

• reachable (or accessible) from state q ∈ Q if there is a string ω such that q ∈ δ(q , ω). A state q reachable from an initial state q 0 ∈ Q i is simply called reachable;

• co-reachable (or co-accessible) to state q ∈ Q if there is a string ω such that q ∈ δ(q, ω).

A state q co-reachable to a final state q m ∈ Q m is simply called co-reachable;

• dead if no transition is enabled in state q, i.e., E(q) = ∅.

Definition 2.10.

Consider an NFA G = (Q, E, δ, Q i , Q m).
It is said to be:

• reachable if all its states are reachable;

• co-reachable if all its states are co-reachable;

• trim if it is reachable and co-reachable.

In this thesis, the studied automaton is always supposed to be accessible. We use G = (Q, E, δ, Q i) to represent an NFA if no final state is specified in the system.

In Def. 2.7, if the the initial states set Q i is a singleton, i.e., |Q i | = 1, and the transition relation δ is a one to one function: δ : Q × E → Q, then the defined automaton becomes a deterministic finite automaton (DFA). The following is the formal definition of a DFA.

Definition 2.11. A deterministic finite automaton (DFA) is a 5-tuple

G = (Q, E, δ, q 0 , Q m)
where objects Q, E, Q m have the same interpretation as in the definition of NFA, δ :

Q × E →
Q is a one to one transition function, q 0 ∈ Q is the initial state, and Q m ⊆ Q is the set of final states.

The transition function δ of a DFA G = (Q, E, δ, q 0 , Q m) can be extended to string δ :

Q × E * → Q in the
= (Q, E, δ, q 0 , Q m) with Q = {1, 2, 3, 4}, E = {a, b, c, d}, q 0 = 4 and Q m = {2}.
δ a b c d 1 2 --- 2 -3 -- 3 --4 - 4 ---1 Table 2.2 -Transition function of the DFA in Fig. 2.2
Now we give the definition of language generated by an NFA. Definition 2.12. Given an NFA G = (Q, E, δ, Q i), its generated language is defined as

L(G) = {σ ∈ E * | ∃q 0 ∈ Q i : δ(q 0 , σ) is defined} .

Weighted Automata

In this section we recall some basics of weighted automata, which is the formalism used in this paper. Weighted automata are classical automata where the transitions carry weights belonging to a semiring. For more details we refer the reader to [Droste et al., 2009] .

Semirings

A semiring is a specific algebraic structure [Baccelli et al., Wiley 1992;[START_REF] Gondran | Michel Gondran and Michel Minoux[END_REF]Heidergott et al., 2014;Hardouin et al., 2018] . The following is the definition of this structure.

• the distributive laws (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c) and c ⊗ (a ⊕ b) = (c ⊗ a) ⊕ (c ⊗ b) hold for any a, b, c ∈ D; • ε is absorbing for ⊗, i.e., ε ⊗ a = a ⊗ ε = ε.
A semiring S is said to be idempotent if addition ⊕ is idempotent, i.e., a ⊕ a = a holds for every a ∈ D. An idempotent semiring is also called a dioid. Example 2.7. Other important semirings include: The set of nonnegative integers equipped with the usual addition and usual multiplication operations, i.e., S = (N, +, ×, 0, 1).

Boolean semiring ({0, 1} , ∨, ∧, 0, 1), tropical semiring (R ∪ {+∞} , min, +, +∞, 0), maxplus semiring (R ∪ {-∞} , max, +, -∞, 0) and probability semiring ([0, 1] , max, ×, 0, 1).

The set of matrices with m rows and n columns over S = (D, ⊕, ⊗, ε, e) is denoted by S m×n . For matrices A, B ∈ S m×n and C ∈ S m×n , the matrix sum and product under semiring framework are defined in the following way: , α, µ, β) where

[A ⊕ B] ij A ij ⊕ B ij [A ⊗ C] ij n k=1 A ik ⊗ C kj (2.3)

Weighted Automaton Models

G = (Q, E
• Q and E are respectively a non-empty finite set of states and an alphabet;

• α ∈ S 1×|Q| is a row vector specifying the initial weights. A state q ∈ Q is said to be an initial state iff α q = ε, and α q is the corresponding initial weight;

• µ: E → S |Q|×|Q| is a morphism representing the state transitions given by the family of matrices µ (a) ∈ S |Q|×|Q| , a ∈ E. For any string ω = e 1 • • • e k ∈ E * , we have

µ(ω) = µ(e 1) ⊗ µ(e 2) • • • ⊗ µ(e k).
• β ∈ S |Q|×1 is a column vector specifying the final weights. A state q is said to be a final state iff β q = ε, and β q is the corresponding final weight.

Note that |Q| represents the number of states of G and S can be any semiring in the above definition. In particular, it can be the Boolean semiring ({0, 1} , ∨, ∧, 0, 1), in which case the corresponding WA is a classical finite automaton. Besides, if S represents the maxplus semiring, i.e., S = R max = (R ∪ {-∞} , max, +, -∞, 0), then the corresponding WA becomes a max-plus automaton.

From the above definition, we know that a WA may be nondeterministic because there may be more than one element different from ε in α or/and in a row of µ(a) for any a ∈ E.

Therefore, one can say that WA are classical NFA in which the transitions carry weights belonging to a semiring. We simply write G = (Q, E, α, µ) if there is no final state in a WA.

A WA G can be associated with a useful graphical representation, which is a valued multigraph:

• Q corresponds to the set of nodes;

• an initial state q ∈ Q (i.e., α q = ε) is characterized by an input arrow labeled by α q representing its initial weight. Let us denote Q i ⊆ Q the set of initial states;

• a final state q ∈ Q (i.e., β q = ε) is characterized by an output arrow labeled by β q representing its final weight;

• there exists an arrow from q to q , labeled by a/µ(a) qq , iff µ(a) qq = ε, a ∈ E. It represents the state transition when label a occurs. In this paper, µ(a) qq is interpreted as the activation weight1 for label a before it can occur for the transition from q to q .

Note that we assume the states of G are well ordered by natural numbers. With an abuse of notation, we denote µ(a) qq the element in the q th row and q th column of the matrix µ(a)

for any a ∈ E. The following is an equivalent representation of a WA G = (Q, E, α, µ, β).

Definition 2.16. A WA G = (Q, E, α, µ, β) can be equivalently defined by

G = (Q, E, t, Q i , Q m , , ρ)
where

• t : Q × E × Q → D is the transition function, which is defined as t(q, a, q) µ(a) qq ,
for any q, q ∈ Q;

• Q i {q ∈ Q | α q = ε} is the set of initial states; • Q m {q ∈ Q | β q = ε}
is the set of final states;

• : Q i → D is the function of initial weights (q) α q , for any q ∈ Q i ;

• ρ : Q m → D is the function of final weights ρ(q) β q , for any q ∈ Q m .

Note that items α and β in Def. 2.15 are replaced by the set of initial states Q i and the set of final states Q m . Functions and ρ are adopted to specify the weights of initial and final states. Throughout this thesis, we denote by Q i the set of initial states of a WA G. We simply The equivalent representation of this automaton is

write G = (Q, E, t, Q i ,) if no final state is specified. Example 2.8. Fig. 2.3 shows the graphical representation of a WA G = (Q, E, α, µ, β) with set of states Q = {1, 2, 3, 4}, alphabet E = {a, b, c, d}, transitions µ(a) 1,2 = 2, µ(b) 2,2 = 1, µ(b) 2,3 = 6, µ(c) 3,4 = 3, µ(d) 4,1 = 2, µ(d) 4,2 = 1, initial weights vector α = (ε, ε, 2, e),
G = (Q, E, t, Q i , Q m , , ρ) with Q = {1, 2, 3, 4}, E = {a, b, c, d}, Q i = {3, 4}, Q m = {2}, (1) = (2) = ε, (3) = 2, (4) = e, ρ(1) = ρ(3) = ρ(4) = ε, ρ(2) = 3. The transitions t(q i , a, q j) = ε for any q i , q j ∈ {1, 2, 3, 4} and any a ∈ E, except t(1, a, 2) = 2, t(2, b, 2) = 1, t(2, b, 3) = 6, t(3, c, 4) = 3, t(4, d, 1) = 2 and t(4, d, 2) = 1. / 6 b / 2 a / 2 d / 3 c 1 2 3 4 / 1 d / 1 b e 2 3 / 3 d Figure 2.3 -Weighted automaton
Now we introduce the notion of unambiguity property for a WA.

Definition 2.17. Given a WA G = (Q, E, α, µ), a path of length k is defined as a sequence of transitions π = (q 1 , e 1 , q 2) (q 2 , e 2 , q 3) • • • (q k , e k , q k+1) (2.4)

where

q i ∈ Q, e i ∈ E and µ(e i) q i q i+1 = ε for i = 1, • • • , k.
Path π is said to be labeled by string e 1 e 2 • • • e k , and π is a circuit if q 1 coincides with q k+1 . We use notation p ω q to represent the set of paths labeled by string ω ∈ E * leading from state p to state q. By convention, if ω equals the empty string , i.e., ω = , then p ω q is the empty set, i.e., p ω q = ∅. For any P, R ⊆ Q, we denote by P ω R the union of p ω q for all p ∈ P and q ∈ R.

Definition 2. 18.

A WA G = (Q, E, α, µ) is said to be unambiguous if ∀q ∈ Q, ∀ω ∈ E * , |Q i ω {q} | ≤ 1, where Q i is the set of initial states of G.
In simple words, the unambiguity requires that for any state q of G and any string ω in E * , there is at most one path labeled by ω leading to q from an initial state. WAs with unambiguity property are called unambiguous weighted automata (UWAs).

Remark 2.1. Different definitions can be found for the notion of unambiguity in the literature. In [Béal et al., 2008] , the unambiguity is defined as

: ∀p, q ∈ Q, ∀ω ∈ E * , |p ω q| ≤ 1.
That is, for any p, q ∈ Q and any string ω ∈ E * , there exists at most one path leads from p to q labeled by ω. In [Klimann et al., 2004;Kirsten and Lombardy, 2009] , an automaton is

said to be unambiguous if ∀ω ∈ E * , |Q i ω Q m | ≤ 1, where Q m is the set of final states. That
is, the unambiguity requires that if for any string ω in E * , there is at most one successful path2 of label ω. The unambiguity given in the above two definitions and the unambiguity given in Def. 2.18 have the following relationship.

(1) The unambiguity in Def. 2.18 is more restrictive than the first definition above if the automaton is accessible. That is, for a given

accessible WA G, if ∀q ∈ Q, ∀ω ∈ E * , |Q i ω {q} | ≤ 1, then ∀p, q ∈ Q, ∀ω ∈ E * , |p ω q| ≤ 1.
This can be proved as follows. Assume ∃p, q ∈ Q, ∃ω ∈ E * , |p ω q| > 1. Since G is accessible, then there is a path leading from an initial state to state p (assume this path is labeled by ν). Hence, there must exist more than one path labeled by string νω leading from an initial state leading to state q. That is, we have ∃q ∈

Q, ∃ω ∈ E * , |Q i ω {q} | > 1 (here ω = νω).
The structure in Fig. 2.4 illustrates this visually.

(2) The unambiguity in Def. 2.18 is more general than the second one if the automaton is co-accessible. That is, for a given co-

accessible WA G, if ∀ω ∈ E * , |Q i ω Q m | ≤ 1, then ∀q ∈ Q, ∀ω ∈ E * , |Q i ω {q} | ≤ 1. This can be proved as follows. Assume ∃q ∈ Q, ∃ω ∈ E * , |Q i ω {q} | > 1. Since G is accessible,
then there is a path leading from state q to a final state (assume this path is labeled by string ν). Hence, there must exist more than one path labeled by string ων leading from an initial state. The structure in Fig. 2.5 illustrates this process. Remark 2.2. Given a WA G = (Q, E, α, µ), its unambiguity given in Def. 2.18 can be verified by some algorithms in the literature, such as [Allauzen et al., 2011;[START_REF] Weber | On the degree of ambiguity of finite automata[END_REF] .

In fact, algorithms in these two work are proposed for checking the unambiguity defined in [Klimann et al., 2004] . That is, these algorithms are introduced to check if for any string ω belongs to E * , there is at most one successful path labeled by ω. Although this unambiguity is different from the unambiguity defined in this thesis, according to their relationship stated in Remark 2.1, the algorithms in [Allauzen et al., 2011;[START_REF] Weber | On the degree of ambiguity of finite automata[END_REF]] can be used to

    q i Q m Q Figure 2
.5 -Structure explaining the relation between the unambiguity in Def. 2.18 and in [Klimann et al., 2004]. check the unambiguity in Def. 2.18. This can be done by considering a state q of WA G to be the unique final state when we want to check, for any string ω, whether there is at most one path labeled by ω leading to q from the initial states, that is, at most one successful path.

In the remaining of this thesis, the unambiguity property of a WA refers to the one defined in Def. 2. 18.

Example 2.9. The WA presented in Fig. 2.6 is unambiguous. This automaton is a modification of the WA in Fig. 2.3 by removing the output transition of initial state 3 that is labeled by d.

/ 6 b / 2 a / 2 d / 3 c 1 2 3 4 / 1 d / 1 b e 2 3 Figure 2.6 -Unambiguous weighted automaton Remark 2.3. For a WA G = (Q, E, α, µ)
where all states are initial states, i.e., Q i = Q, G is unambiguous iff every state in G has no two or more input transitions labeled by the same symbol. On one hand, suppose (q , a, q) and (q", a, q) with q , q" ∈ Q and a ∈ E, are two input transitions of state q in G. Since q and q" are final states, then there exists a string

ω = a such that |Q i ω {q} | > 1.
That is G is not unambiguous. On the other hand, assume

G is not unambiguous, i.e., |Q i ω {q} | > 1.
Let a be the last label of ω. Then we know that there is more than one input transition of q that are labeled by a. In the case where

Q i = Q,
it is easy to check that any state in G has no two or more input transitions labeled by the same symbol is a sufficient condition for the unambiguity. Whereas, a WA is unambiguous does not mean that any state in G has no two or more input transitions with the same label.

Remark 2. 4. As in the case of finite automata, a WA is said to be deterministic if it has a unique initial state and from any state, no two output transitions are labeled by the same symbol. From here we know that the determinism implies the unambiguity, but the reverse is not always true.

Example 2.10. Consider the WA shown in Fig. 2.7. This automaton is unambiguous.

However, we find that one of its states, i. The following subsection introduces the notions of state vector, weighted sequence generated by a path and weighted language generated by a WA.

Generated Language of Weighted Automaton

Definition 2.19. Given an arbitrary path π = (q 1 , e 1 , q 2) (q 2 , e 2 , q 3) • • • (q k , e k , q k+1) of a WA G = (Q, E, α, µ), its weight is denoted by W(π), and is defined as

W(π) =          α q 1 ⊗ i=1,••• ,k µ(e i) q i q i+1 , i f q 1 ∈ Q i ; i=1,••• ,k
µ(e i) q i q i+1 , otherwise.

(2.5)

Note that if the first state in a path is an initial state, then its initial weight is included in the weight of the path.

Definition 2. 20. Given a WA G = (Q, E, α, µ), its state vector is denoted by x(ω) ∈ S 1×|Q| , ω ∈ E * , and is defined as

x(ω) =    α, i f ω = ; α ⊗ µ(ω), otherwise.
(2.6)

For any string ω ∈ E * , by considering the matrix sum and product defined in Eq. (2.3), it can be verified that x(ω) q corresponds to the sum ⊕ of weights of paths labeled by ω from an initial state to state q:

x(ω) q =

π∈Q i ω q W(π) = p∈Q i α p ⊗ µ(w) pq .
(2.7)

Note that x(ω) q is a real value, and we interpret it as the weight to reach state q according to ω. By convention, x(ω) q k = ε if q k is not reachable via ω from an initial state. Again, different interpretations can be associated to the weights of WA G = (Q, E, α, µ), such as the amount of time, resources (energy), or cost of firing the transitions. If the time interpretation is adopted, then we say that x(ω) q is the time instant at which state q is reached when string ω is completed. If the energy interpretation is adopted, then x(ω) q is interpreted as the energy consumed to reach state q by the occurrence of sequence ω.

In addition, ⊗ and ⊕ can represent different operations, depending on the underlying semiring S. For example, in probability semiring, ⊕ represents the max operation, i.e., ⊕ = max, and ⊗ represents the usual multiplication, i.e., ⊗ = ×. In max-plus semiring R max , ⊕ represents the max operation, i.e., ⊕ = max, and ⊗ is equal to the usual addition, i.e.,

⊗ = +.

Example 2.11.

Consider the WA G = (Q, E, α, µ) in Fig. 2.8 with Q = {1, 2, 3, 4}, E = {u, b}, µ(u) 1,2 = 1, µ(u) 4,3 = 2, µ(b) 2,2 = 6, µ(b) 2,1 = 4, µ(b) 3,2 = 3, α = (e, ε, ε, e).
The other values for α, β, µ(b) and µ(u) are equal to ε. We assume that the underlying semiring of G is the max-plus semiring.

It can be checked that x(u) = (ε, 1, 2, ε), x(ub) = (5, 7, ε, ε), and |Q i ub 2| = 2 since

π 1 = (1, u, 2)(2, b, 2) and π 2 = (4, u, 3)(3, b,
2) are the two paths labeled by ub from an initial state to state 2. When u is completed, state 2 is reached with a weight value of 1 because x(u) 2 = 1. Besides, x(ub) 2 = 7 means that state 2 is reached with a weight value of 7 when ub is completed. Here we observe that labels along path π 1 occur as soon as the activation weights of the corresponding transitions have been reached. However, this is not always the case. In particular, along path π 2 , state 3 is first reached with a weight value of 2 since x(u) 3 = 2, and state 2 is then reached with a weight value of 7 when string ub is completed. Whereas the activation weight of label b for transition (3, b, 2) is equal to µ(b) 3,2 = 3, this label here occurs 5 units of weight (7 -2 = 5) after state 3 is reached. Value 5 is the real weight needed for transferring from state 3 to state 2 along path π 2 . This is consistent with the interpretation that µ(b) 3,2 specifies the activation weight before label b can occur for this transition.

1 2 3 4 0 0 0 1 / u 4 / b 6 / b 3 / b 2 / u Figure 2.8 -Weighted automaton Consider the occurrence of label a ∈ E for transition (q, a, q), µ(a) qq = ε in WA G = (Q, E, α, µ).
Suppose that state q is reached with a weight value of τ q . It may happen that label a occurs with a weight value that is different from

τ q ⊗ µ(a) qq . This can happen if ∃q ∈ Q, ∃ω ∈ E * : |Q i ω q| ≥ 1, i.e.
, several paths labeled by ω leading from an initial state to state q. Such a configuration captures a synchronization occurring in the system, which is a common phenomenon in DESs.

Formally, considering the occurrence of label a ∈ E for transition (q, a, q), µ(a) qq = ε, suppose that q is reached with a weight value of τ q , it may happen that label a occurs with a weight value that is strictly greater than τ q + µ(a) qq . This can happen if ∃q ∈ Q,

∃ω ∈ E * : |Q i ω q| ≥ 1, i.e., several paths labeled by ω leading from an initial state to state q. Such a configuration captures a synchronization occurring in the system, which is a common phenomenon in DES.

Based on the above discussion, we can say that a WA describes a system characterized by synchronizations between concurrent sequential weighted processes. A path in a WA represents a concurrent process whose transition weights denote the activation weight before the transitions can fire. The weighted evolution of the automaton will be given by the synchronization of the evolutions of processes corresponding to paths with the same labeling and reaching the same state. Therefore, we associate to each path π of WA G a weighted sequence corresponding to this synchronization.

Definition 2. 21. Given a path π = (q 0 , e 1 , q 1) (q 1 , e 2 , q 2)

• • • (q k-1 , e k , q k) of a WA G = (Q, E, α, µ) with q 0 ∈ Q i , the weighted sequence generated by π is denoted by σ(π) ∈ (E × D) *
and is defined as follows:

σ(π) = (e 1 , τ 1)(e 2 , τ 2) • • • (e k , τ k) (2.8)
where τ j is defined by

τ j = x(e 1 , • • • , e j) q j for j = 1, • • • , k.
We use notation q 0 σ(π)

q k to denote the fact that path π starts from initial state q 0 and generates the weighted sequence σ(π) reaching state q k . Such a generated weighted sequence consists of pairs composed by a label and a weight value, i.e., (e j , τ j) with e j ∈ E,

τ j ∈ D for j = 1, 2, . . . , k.
In simple words, it specifies a sequence of labels, i.e., the unweighted sequence generated by π, and their occurrence weights.

If WA G is unambiguous, then x(ω) q defined in Eq. (2.7) as well as the weighted sequence generated by a path π defined in Eq. (2.8) can be simplified as follows.

Definition 2. 22. Consider an arbitrary string

ω = e 1 • • • e k ∈ E * and a state q ∈ Q in UWA G = (Q, E, α, µ).
The value x(ω) q defined in Eq. (2.7) can be simplified to:

x(ω) q =          α p ⊗ µ(ω) pq , i f q is reachable from p according to ω (i.e.|p ω q| = 1); ε, otherwise .
(2.9) This is simply because, for any ω ∈ E * and any q ∈ Q, there exist at most one path labeled by ω leading from an initial state to state q in a UWA. As a result, the weighted sequence generated by a path can be simplified.

Definition 2. 23. Given a path π = (q 0 , e 1 , q 1) (q 1 , e 2 , q 2) • • • (q k-1 , e k , q k) of a UWA G = (Q, E, α, µ) with q 0 ∈ Q i , the weighted sequence (E × D) * generated by π defined in Eq.

(2.8) can be simplified to:

σ(π) = (e 1 , τ 1)(e 2 , τ 2) • • • (e k , τ k) (2.10)
where

τ 1 = α q 0 ⊗ µ(e 1) q 0 q 1 , τ i = τ i-1 ⊗ µ(e i) q i-1 q i for i = 2, • • • , k.
Based on the definition of weighted sequence generated by a path π, we define the generated weighted language of a WA as follows.

Definition 2. 24. Given a WA G = (Q, E, α, µ), the generated weighted language L(G) (set of all weighted sequences generated by G) is defined as:

L(G) = {σ ∈ (E × D) * | ∃q ∈ Q, ∃ω ∈ E * , ∃π ∈ Q i ω q : σ(π) = σ}.
(2.11)

For any weighted sequence σ ∈ L(G), we denote by (E f (σ), w f (σ)) the last pair in σ.

That is, E f (σ) is the last label of σ, and w f (σ) is the completion weight of σ.

Example 2.12. Consider again path

π 1 = (1, u, 2)(2, b, 2) and path π 2 = (4, u, 3)(3, b, 2) of WA G in Fig. 2.8 with Q i = {1, 4}.
Let max-plus semiring be the underlying semiring of G.

Then, the generated weighted sequences are σ 1 = σ(π 1) = (u, 1)(b, 7) and

σ 2 = σ(π 2) = (u, 2)(b, 7). Therefore, (E f (σ 1), w f (σ 1)) = (b, 7) and (E f (σ 2), w f (σ 2)) = (b, 7).
Remark 2. 5. In the existing literature, e.g., [START_REF] Droste | Weighted automata and weighted logics[END_REF]Buchholz, 2008;Droste et al., 2009] , the behavior of a WA is usually represented by a mapping, called a formal power series. More precisely, for a WA G defined over semiring S, its behavior is defined by the formal power series l(G) :

E * → S with L(G)(ω) = α ⊗ µ(ω) ⊗ β, which
assigns to each string a weight in semiring S. Compared with such a formal series, the generated weighted language of G, defined in this thesis, gives more information on the evolution of the system. In fact, formal power series only compute the completion weight of a task (represented by a string), which is the sum ⊕ of the weights of its successful paths, while weighted sequence specifies a series of labels and their occurrence weights. In general and for some purposes, such as for the state estimation problem investigated in this thesis, more information is needed. Hence, from a practical point of view, the generated weighted language defined in the thesis is useful.

As in the classical automata, for any weighted sequences σ 1 , σ 2 ∈ (E × D) * , notation (a, 1)(a, 5). In this thesis, we denote by P E (L(G)) the projection of the generated language of WA G on E , that is,

σ 1 • σ 2 is
P E (L(G)) = σ ∈ (E × D) * | ∃σ ∈ L(G) : P E (σ) = σ .
(2.12)

If E represents the set of observable labels, then P E (L(G)) is the set of all possible observations, i.e., all weighted sequences that can be obtained by an external agent during the evolution of system G.

In the case of classical finite automata, a trajectory of the system is represented by an infinite sequence of labels that the system may generate. The set of all possible trajectories of the system is called ω-language [Thistle and Wonham, 1994;[START_REF] Shu | Generalized detectability for discrete event systems[END_REF] . Similarly, given a WA G, a trajectory is represented by an infinite sequence of pairs (label, weight) that G may generate. The set of all possible trajectories of G defines the ω-language, which is denoted by L ω (G). For an arbitrary finite or infinite sequence σ that can be generated by G, we denote Pr(σ) the set of all its prefixes.

State Estimation and Fault Diagnosis of

Weighted Automata

This chapter investigates the current-state estimation and fault diagnosis problems for weighted automata (WAs).

Introduction

In this chapter, we focus on current-state estimation and fault diagnosis problems for WAs where only partial labels (events) of the system are observable for the external agents.

That is, the set of label is divided into two disjoint subsets, i.e., observable and unobservable subsets. We consider the case where the observations are static, i.e., an label is either observed or not observed at every state in which it can occur. Besides, the failures are associated to some of the unobservable labels, and supposed to be permanent. In other words, the system cannot spontaneously move from the fault state to a normal state. Given an observation and a weight value, state estimation consists in calculating the set of possible states that are consistent with them, and fault diagnosis is to determine whether a fault label has occurred or not. Note that the general terminology fault diagnosis refers to detecting the occurrence of fault labels in this chapter.

This chapter is organized as follows. Section 3.2 formally states the problem of state estimation and fault diagnosis and specifies our assumptions. In subsection 3.3.1, we propose algorithms to estimate the consistent current states for any observed weighted sequence over the operation of the system. Following the proposed algorithms, one numerical example is shown to illustrate them. In Subsection 3.3.2, we analyse the computational complexity of state estimation for a fixed-length observation using our approach. Section 3.3.3 shares the failure experience of building a structure like "observer" for state estimation. In Section 3.4, we extend the state estimation approach to deal with fault diagnosis. We first propose an algorithm to construct the augmented automaton of a WA, and another algorithm is presented to summarize how to perform on-line fault diagnosis.

Finally, conclusions are drawn in Section 3. 5.

Problem Statement

State Estimation

The studied WA is completely known, namely, initial states, state transitions, weights of transitions are available. The label set E is partitioned into two disjoint parts: the observable part E o and the unobservable part E uo . Considering that the firing of unobservable labels cannot be distinguished by an external agent observing the system evolution, we assume that all the unobservable labels are represented by the same symbol u, i.e., E uo = u and

E = E o ∪ {u}.
We make the following assumption when dealing with state estimation.

Assumption 3.1. There is no circuit labelled only by unobservable labels.

Assumption 3.1 implies that generated sequences of unobservable labels (strings composed exclusively of u) have finite length.

For any state q ∈ Q, we use notation q • to represent the set of its output transitions, i.e., q • = (q, a, q)|a ∈ E, q ∈ Q : µ(a) qq = ε . Given a weighted sequence σ = (e 1 , t 1)(e 2 , t 2) • • • (e k , t k), we denote lab(σ) = e 1 e 2 • • • e k the sequence of labels associated with σ, neglecting the occurrence weights. The fact that a label a ∈ E appears in sequence lab(σ) is denoted by a ∈ lab(σ).

Given an observed weighted sequence σ o ∈ P(L(G)) and a weight value τ, we define the set C(σ o , τ) of (σ o , τ)-consistent states as the set of all possible states in which the system may be at τ after the observation of σ o . We assume that there is no further observation after the last label in σ o .

Definition 3.1. Given an observed weighted sequence σ o ∈ P(L(G)) and a weight value

τ ≥ t f (σ o), the set of all (σ o , τ)-consistent states is defined as C(σ o , τ) = {q ∈ Q | (∃σ ∈ L(G), ∃q 0 ∈ Q i : q 0 σ q, P(σ) = σ o , t f (σ) ≤ τ)∧ ((q • = ∅) ∨ (∃(q, a, q) ∈ q • : τ < x(lab(σ)a) q))} (3.1)
Note that x(lab(σ)a) q is the element in state vector x(lab(σ)a) that corresponds to state q . From the above definition, a state q without output transition is a consistent state, if there exists a weighted sequence σ from an initial state to q such that the projection of σ coincides with the observation, and the completion weight of σ is less than or equal to given value τ.

If q has output transition(s), then at least one of the output transitions is required to occur after τ.

(σ o , τ) = {1}. In fact, π = (1, u, 2)(2, b, 2)(2, b, 1)
is the unique path whose weighted sequence is consistent with

σ o . We have σ = σ(π) = (u, 1)(b, 7)(b, 11), 1 σ 1, t f (σ) = 11 ≤ 11.

Fault Diagnosis

The label set E is partitioned into two disjoint parts: the observable part E o and the unobservable part E uo . And E uo is partitioned as E uo = E f ∪ E reg where E f is the set of fault labels1 (modeling the faulty behavior), while E reg is the set of regular labels that, although not observable, do not describe a faulty behavior. In addition to Assumption 3.1 in Subsection 3.2.1, we make another hypothesis when dealing with fault diagnosis.

Assumption 3.2. For any two different states p, q ∈ Q, there is at most one unobservable state transition from p to q.

Remark 3.1. Unobservable state transition is a transition that is labeled by an unobservable label. For state estimation described in Subsection 3.2.1, it is considered that an external agent cannot distinguish one unobservable label from the others, and all the unobservable labels are denoted with the same symbol u. In fault diagnosis problem, we admit different symbols for unobservable labels since fault and normal unobservable labels must be distinguished. Then Assumption 3.2 is needed to avoid the confusion between unobservable labels for a transition from state p to state q.

Given an observed weighted sequence, the fault diagnosis problem is to detect the occurrence of some labels that belong to fault class E f . In fault diagnosis problem, rather than being interested in finding the states in which the system can be, we are interested in determining the set of labels that may have occurred.

Definition 3.2. Given an observed weighted sequence σ o ∈ P(L(G)) and a weight value

τ ≥ t f (σ o).
The set of weighted sequences consistent with σ o and τ is

S(σ o , τ) = {σ ∈ L(G) | (P(σ) = σ o , t f (σ) ≤ τ)∧ (∃q 0 ∈ Q i , ∃q ∈ Q : q 0 σ q, (q • = ∅) ∨ (∃(q, a, q) ∈ q • : x(lab(σ)a) q > τ))} (3.2)
In simple words, weighted sequence σ is a consistent sequence, if its projection coincides with the observation, and its completion weight is less than or equal to τ. In addition, there must be a state q that can be reached by σ from an initial state such that it has no output transition or at least one of its output transitions is required to occur with a weight greater than τ.

We extend the notion of diagnoser for PNs proposed in [Cabasino et al., 2011] •

ϕ(σ o , τ, E f) = N if ∀σ ∈ S(σ o , τ) and ∀e f ∈ E f , we have e f / ∈ lab(σ).
In such a case fault cannot have occurred, because none of the generated sequences consistent with the observation contains fault labels belonging to class E f .

•

ϕ(σ o , τ, E f) = F if ∀σ ∈ S(σ o , τ), ∃e f ∈ E f such that e f ∈ lab(σ).
In such a case fault must have occurred, because all generated sequences consistent with the observation contain at least one fault label belonging to class E f .

• ϕ(σ o , τ, E f) = U if the following conditions are satisfied:

(i) if ∃σ ∈ S(σ o , τ), ∃e f ∈ E f such that e f ∈ lab(σ); (ii) if ∃σ ∈ S(σ o , τ) such that ∀e f ∈ E f , we have e f / ∈ lab(σ).
In such a case a fault label belonging to E f may have occurred or not, namely, it is uncertain.

Problem 3.2. The fault diagnosis problem of a WA consists in finding a systematic approach to compute the diagnosis state for any observation σ o , any given weight τ ≥ t f (σ o) and the fault class E f .

State Estimation of Weighted Automata

An Online State Estimation Approach

In this subsection we introduce an approach to solve Problem 3.1.

Definition 3.4. Given a WA G = (Q, E, α, µ, β), a pair (q j , ω j) with q j ∈ Q and ω j ∈ E *
is said to be compatible with a weighted sequence

σ o = (e 1 , t 1)(e 2 , t 2) • • • (e j , t j) ∈ P(L(G)),
j ≥ 1, if there exists path π labeled by ω j ending with e j from an initial state q 0 in G such that P(σ(π)) = σ o and q 0 σ(π) q j . We define W(σ o) as the set of all pairs compatible with σ o .

We first define two functions U pdateW and ConsistentSet, which are given in Algorithms 3.1 and 3.2 respectively. Then we propose the propositions to show that the current state according to system's evolution can be correctly calculated by combining the functions U pdateW and ConsistentSet.

2: W(σ o • (e, t)) := ∅ 3: for each (q , ω) ∈ W(σ o) do 4:
for each q ∈ Q do 5:

for i = 0 to |Q| -1 do 6: if x(ω) ⊗ µ(u i) ⊗ µ(e) q = t and µ(u i) ⊗ µ(e) q q = ε then 7: W(σ o • (e, t)) := W(σ o • (e, t)) ∪ (q, ω u i e)
() = {(q,) | q ∈ Q i }. Called for successive pairs in sequence σ o = (e 1 , t 1)(e 2 , t 2) • • • (e j , t j) ∈ P(L(G)), function U pdateW returns W(σ o).
Proof. Proposition 3.1 can be proved by induction on the length of the observation.

W() = {(q,) | q ∈ Q i } is the compatible set for the empty weighted sequence. Let

σ o = (e 1 , t 1)(e 2 , t 2) • • • (e j-1 , t j-1
), and assume that function U pdateW returns W(σ o) when it has been called for successive pairs in σ o . When called for (e j , t j), function U pdateW first computes the state vectors x(ω) ⊗ µ(u i) ⊗ µ(e j) q and µ(u i) ⊗ µ(e j) q q , i = 0, • • • , |Q| -1, for each pair (q , ω) ∈ W(σ o) and for any q ∈ Q. Then, any pair (q, ω u i e j) is included in set W(σ o) if x(ω) ⊗ µ(u i) ⊗ µ(e j) q = t j and µ(u i) ⊗ µ(e j) q q = ε. Note that the condition x(ω) ⊗ µ(u i) ⊗ µ(e j) q = t j ensures that state q can be reached with the weight t j via string ω u i e j and the condition µ(u i) ⊗ µ(e j) q q = ε ensures that there exists a path labeled by u i e j from state q to q. Since (q , ω) is compatible, the above two conditions ensure that (q, ω u i e j) is compatible with σ o . Therefore, function U pdateW returns W(σ o) when it has been called for successive pairs in σ o .

Function ConsistentSet in Algorithm 3.2 is employed to determine the set of states consistent with an observation σ o and a weight τ ≥ t f (σ o). Although we assume that no observable label occurs between t f (σ o) and τ, unobservable labels may occur between them. This requires us to enumerate all the possible unobservable transitions in continuation of compatible pairs in W(σ o).

W(σ o), τ ≥ t f (σ o). Output: C(σ o , τ). 1: function ConsistentSet(W(σ o), τ) 2: C := ∅ 3: for each (q , ω) ∈ W(σ o) do 4:
for i = 0 to |Q| -1 do 5:

Q τ := ∅ 6:
for each q ∈ Q do 7:

if ε = x(ω) ⊗ µ(u i) q ≤ τ and µ(u i) q q = ε then 8: Q τ := Q τ ∪ {q} 9:
end if 10:

end for 11:

for q ∈ Q τ do 12:

T q := ∅ 13:

if q • = ∅ then for each (q, a, q) ∈ q • do 17:

T q = T q ∪ x(ω) ⊗ µ(u i) ⊗ µ(a) q 18:
if ∃t ∈ T q such that t > τ then Proof. According to Algorithm 3.1, we know that W(σ o) is composed of all pairs (q , ω) such that q is reached with a weight t f (σ o) from an initial state by a path π labeled by ω ending with the last label in σ o , and P(σ(π)) = σ o . For each pair (q , ω) ∈ W(σ o) and for any q ∈ Q, function ConsistentSet computes the state vectors x(ω) ⊗ µ(u i) q and µ(u

i) q q , i = 0, • • • , |Q| -1. Conditions ε = x(ω) ⊗ µ(u i) q
≤ τ and µ(u i) q q = ε ensure that state q can be reached by a generated weighted sequence σ such that P(σ) = σ o and t f (σ) ≤ τ.

Besides, the existence of transition (q, a, q) ∈ q • such that x(ω) ⊗ µ(u i) ⊗ µ(a) q > τ guarantees that at least one of the occurrence weights of the output transitions of q is greater than τ. Condition q • = ∅ ensures that q has no output transition. All states satisfying the above conditions is included in C(σ o , τ), which coincides with the definition of (σ o , τ)-consistent states.

Using functions proposed in Algorithms 3.1 and 3.2, Algorithm 3.3 is introduced to deal with the state estimation problem during the operation of the system.

Algorithm 3.3: Online state estimation

Input: G = (Q, E, α, µ, β).

Output: C(σ o , τ).

µ(u) =        ε 1 ε ε ε ε ε ε ε ε ε ε ε ε 2 ε        , µ(b) =        ε ε ε ε 4 6 ε ε ε 3 ε ε ε ε ε ε        . 1) Initialize W() = {(1,), (4,)}.
2) Update compatible set when observation (b, 5) arrives:

Firstly, compute µ(u i), i = 0, 1, 2, 3:

µ(u 0) =        e ε ε ε ε e ε ε ε ε e ε ε ε ε e        , µ(u 2) = µ(u 3) =        ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε        . Secondly, for pair (1,), compute x() ⊗ µ(u i) ⊗ µ(b) and µ(u i) ⊗ µ(b) 1,• (the row corresponding to state 1 in matrix µ(u i) ⊗ µ(b)), i = 0, 1, 2, 3: x() ⊗ µ(u) ⊗ µ(b) = (5, 7, ε, ε); x() ⊗ µ(u i) ⊗ µ(b) = (ε, ε, ε, ε), for i = 0, 2, 3; [µ(u) ⊗ µ(b)] 1,• = (5, 7, ε, ε); µ(u i) ⊗ µ(b) 1,• = (ε, ε, ε, ε), for i = 0, 2, 3. According to function U pdateW, any pair (q, u i b) is recorded as an element of the compatible set if x() ⊗ µ(u i) ⊗ µ(b) q = 5 and µ(u i) ⊗ µ(b) 1,q = ε. In this case, the only pair (1, ub) is obtained as an element of the updated set W since [x() ⊗ µ(u) ⊗ µ(b)] 1 = 5 and [µ(u) ⊗ µ(b)] 1,1 = 5 = ε.
Thirdly, for pair (4,)

, compute x() ⊗ µ(u i) ⊗ µ(b) and µ(u i) ⊗ µ(b) 4,• , i = 0, 1, 2, 3: x() ⊗ µ(u) ⊗ µ(b) = (5, 7, ε, ε); x() ⊗ µ(u i) ⊗ µ(b) = (ε, ε, ε, ε), for i = 0, 2, 3; [µ(u) ⊗ µ(b)] 4,• = (ε, 5, ε, ε); µ(u i) ⊗ µ(b) 4,• = (ε, ε, ε, ε), for i = 0, 2, 3.
Similar to the above process, any pair (q, u i b) is added into the updated set W if

x() ⊗ µ(u i) ⊗ µ(b) q = 5 and µ(u i) ⊗ µ(b) 4,q = ε.
In this case, no pair is recorded.

Hence, function U pdateW returns W((b, 5)) = {(1, ub)}.

3) Update compatible set when observation (b, 10) arrives: Similar to step 2), any pair (q, ubu i b) is recorded as an element of the new compatible set if x(ub) ⊗ µ(u i) ⊗ µ(b) q = t 2 = 10 and µ(u i) ⊗ µ(b) 1,q = ε. In this case, the unique pair (1, ubub) is recorded, and function U pdateW returns W((b, 5)(b, 10)) = {(1, ubub)}.

x(ubub) ⊗ µ(u i) and µ(u i) 1,• , i = 0, 1, 2, 3: x(ubub) ⊗ µ(u 0) = (10, 12, ε, ε); x(ubub) ⊗ µ(u) = (ε, 11, ε, ε); x(ubub) ⊗ µ(u i) = (ε, ε, ε, ε), for i = 2, 3; µ(u 0) 1,• = (e, ε, ε, ε); [µ(u)] 1,• = (ε, 1, ε, ε); µ(u i) 1,• = (ε, ε, ε, ε), for i = 2, 3.
According to Algorithm 3.2, we get Q τ = {1, 2}. State 1 is not consistent with σ o = (b, 5)(b, 10) and τ = 14 since it has only one output transition labeled by u leading to state 2, and x(ababa) 2 = 11 < τ. State 2 is consistent with σ o and τ because one of its output transitions occur with a weight x(ababab) 2 = 17 greater than τ. Therefore C(σ o , τ) = {2}.

Computational Complexity Analysis

Complexity of Our Online State Estimation Approach

In this subsection, we discuss the computational complexity of estimating all possible states consistent with an observation

σ o = (e 1 , t 1)(e 2 , t 2) • • • (e k , t k) ∈ P(L(G)) and a given value τ ≥ t f (σ o) = t k using Algorithm 3.3.
Function U pdateW is used to update the compatible set each time a label is observed.

Let σ o = (e 1 , t 1)(e 2 , t 2) • • • (e j-1 , t j-1) and σ o = (e 1 , t 1)(e 2 , t 2) • • • (e j , t j) with 1 ≤ j ≤ k.
In order to calculate W(σ o) from W(σ o) when observation (e j , t j) arrives, we have to check whether the pair (q, ω u i e j), i = 0, • • • , |Q| -1, satisfies x(ω) ⊗ µ(u i) ⊗ µ(e j) q = t j and µ(u i) ⊗ µ(e j) q q = ε for each pair (q , ω) belonging to W(σ o). The function ConsistentSet is called to calculate all states consistent with observation σ o and τ. Any state q ∈ Q is a consistent state if there exists a pair (q , ω) ∈ W(σ o) and an

integer number l ∈ [0, |Q| -1] such that ε = x(ω) ⊗ µ(u l) q ≤ τ and µ(u l) q q = ε.
Besides, the occurrence weights of output transitions of q need to be compared with τ. In the worst case, the number of comparisons required to check this for all states in the worst

case is (3 + |E|) × |Q| k+3 .
Therefore, in the worst case, the total complexity of solving the problem of state estimation for a fixed-length observation σ o = (e 1 , t 1) (e 2 , t 2) • • • (e k , t k) and a given value

τ ≥ t k using Algorithm 3.3 is O(k ∑ j=1 2 × |Q| j+2 + (3 + |E|) × |Q| k+3).
Remark 3.2. The computational complexity, in terms of the number of comparisons, of our online algorithm grows exponentially with the length of the observation. This is because each time a new label is observed, the compatible set should be updated from the previous one. For an observation σ o = (e 1 , t 1) (e 2 , t 2) • • • (e k , t k), all possible sequences of unobservable transitions interleaved with it should be taken into account. That is, at worst, we have to consider all sequences

u i 1 e 1 u i 2 e 2 • • • u i k e k with i 1 , • • • , i k = 0, 1, • • • |Q| -1 to determine W(σ o). This implies that in the worst case |W(σ o)| = |Q| k+1 .

Complexity of Some approaches for State Estimation or Related Problems

WAs automata, such as max-plus automata, can be considered as a class of timed DES models if time interpretation is associated to the weights of transitions. The complexity of our state estimation approach is due to the fact that we are considering a timed model. After a careful analysis of the literature, we can make the following comments on the complexity of some existing approaches for state estimation or related problems.

(1) In the case of automata, there exist online algorithms that are polynomial in the number of states of the system for detectability [START_REF] Shu | Generalized detectability for discrete event systems[END_REF] and for online fault diagnosis [Jiang et al., 2001;[START_REF] Yoo | Polynomial-time verification of diagnosability of partially observed discrete-event systems[END_REF] .

More precisely, in [START_REF] Shu | Generalized detectability for discrete event systems[END_REF] , an approach whose complexity is polynomial in the number of states |Q| of an automaton G is presented to check (strong) detectability of G. A new automaton called detector G det , the cardinality of its state space is bounded by 1 + |Q| + |Q|(|Q| -1)/2, is first constructed. Then necessary and sufficient condition is proposed to check the ability to determine the current and subsequent states of G. Clearly, once G det is built, it can be used to perform online state estimation with a polynomial complexity in the length of observation and in the number of states of G. Yoo and Lafortune [START_REF] Yoo | Polynomial-time verification of diagnosability of partially observed discrete-event systems[END_REF] check diagnosability by constructing a verifier and Jiang et al. [Jiang et al., 2001] (2) For the diagnosis of place/transition nets, online approaches are typically based on integer linear programming (ILP) techniques which are known to be NP-complete, but they do not need to enumerate the reachability space.

For instance, in [Basile et al., 2009;Dotoli et al., 2009] , the authors present an online algorithm solving at each observed event some ILP problems in order to determine the occurrence of different faults. Since, no polynomial algorithm for ILP is known to exist, so 58CHAPTER 3. STATE ESTIMATION AND FAULT DIAGNOSIS OF WEIGHTED AUTOMATA the online computational effort of these proposed algorithms in these work can be high (may not be polynomial). They also prove that the computational complexity can be reduced to be polynomial if the unobservable subnet of the studied Petri nets enjoys suitable properties (for instance, the subnet is an acyclic state machine and the studied Petri nets system is bounded). In Cabasino et al. [Cabasino et al., 2010] , the basis reachability graph is offline constructed to reduce the complexity of online fault diagnosis.

(3) When timed models are considered, the complexity of online approaches for state estimation and fault diagnosis (usually) becomes exponential.

For instance, Basile et al. [Basile et al., 2015] investigate state estimation for time labeled Petri nets based the construction of modified state class graph (MSCG). The complexity comes from two folds: 1) the number of nodes of the MSCG increases exponentially with the system complexity (net structure, and number of tokens in the initial marking). 2) Based on the MSCG, a process consists of two main steps is introduced to determine the set of consistent states for a given observed sequence of events σ o and a given time instant τ.

More precisely, during the first step, the author compute the set of paths in the MSCG that are logically consistent with the observation σ o . The complexity of finding all such paths is O(|T| l max) where l max is the length of the longest path in the MSCG that is logically consistent with the observation σ o and the given value of τ. During the second step, an integer linear programming problems with 1 + |T| + 3 × l max × |T| + l max constraints is formulated to establish if the above paths are timing consistent with all the labels in σ o . It is clear that l max increases as the length of the observation σ o increases. Hence the total complexity of this approach is exponential in the length of the observation σ o .

Tripakis [Tripakis, 2002] and Bouyer et al. [Bouyer et al., 2005] investigate the diagnosability for timed automata. The algorithm proposed in [Tripakis, 2002] is based on state estimation in a timed automaton with ε-transitions (unobservable transitions), its complexity to diagnose faults for an observation is doubly exponential in the size of the plant and in the size of the observation. An algorithm based on regions (and no more on zones) with a complexity exponential in both the size of the plant and of the observation could be proposed as well. Bouyer et al. [Bouyer et al., 2005] deals with the diagnosability for deterministic timed automata (DTA) and event-recording timed automata (ERA). The authors prove that the checking of existence of diagnoser in the class DTA (with bounded resources) is 2EXPTIME-complete whereas it is PSPACE-complete for the class ERA (with bounded resources). Moreover if a diagnoser exists, it is possible to construct one: the size of such a diagnoser is doubly exponential in the granularity and in the size of the plant, but only linear in the length of the observation.

Some Attempts of Constructing Observer for State Estimation

As discussed in subsection 3.3.2, our proposed approach has an exponential complexity in the length of the observation, which may be an issue during the implementation phase.

However, there may be approaches (similar to the construction of the observer [Sampath et al., 1995;[START_REF] Shu | Generalized detectability for discrete event systems[END_REF] or similar structure [Cabasino et al., 2010;[START_REF] Basile | [END_REF]) that would move the complexity to the offline phase. But the complexity of this may be even worse than exponential. Once this is done, the complexity of the online phase would be minimal. In fact, we tried but did not succeed in building such structures that can minimize the complexity of the online estimation process. Let us sketch some of the attempts and explain informally why they are not conclusive.

(1) Our first idea was to build a WA G obs (possibly nondeterministic) playing the role of "observer" in the sense that its alphabet is restricted to observable labels and that it can generate the same observation. A straightforward construction could be to define the transition matrices by

µ obs (a) = i=1,••• ,|Q|-1 µ(u i) ⊗ µ(a) , for all a ∈ E o
If we consider the following simple WA G in Figure 3.1 where u is unobservable and b is observable. Assume G is defined over the max-plus semiring. Then, we have

µ(u) =      ε 1 ε ε ε ε ε ε ε      , µ(b) =      ε ε 1 ε ε 1 ε 2 ε      , µ obs (b) = µ(b) ⊕ (µ(u) ⊗ µ(b)) =      ε ε 2 ε ε 1 ε 2 ε      .
The resulting "observer" G obs is depicted in Figure 3.2. G obs is not satisfactory since it cannot generate, for instance, the observation (b, 1)(b, 3) which can be generated by G.

(2) Another possibility could be to define a specific alphabet for G obs composed of symbols corresponding to strings u i a for each a ∈ E o and i = 0, 1, • • • , |Q| -1 (remember that there is no circuit labeled only by unobservable labels). Transition matrices for G obs can

1 2 3 Figure 3.1 -Weighted automaton G 2 / b 2 / b 1 / b 1 2 3 Figure 3.2 -G obs with µ obs (b) = i=1 µ(u i) ⊗ µ(b) , f or i = 0, 1 be defined by µ obs (u i a) = µ(u i a), f or a ∈ E o
The idea behind is that letters appearing in possible observation from G are the projections of letters into the alphabet of G obs . In this case, for example, the "observer" G obs of the WA G in Fig. 3.1 is depicted in Figure 3.3.

1 2 3 / 1 b / 1 b / 2 b / 2 ub Figure 3.3 -G obs with µ obs (u i b) = µ(u i b), for i = 0, 1
Then, based on G obs , to check if state q k is consistent with a given observation

(a 1 , t 1)(a 2 , t 2) • • • (a k , t k) we not only need to verify that there exist i 1 , i 2 , • • • , i k ∈ {0, 1, • • • , |Q| -1} such that x obs ((u i 1 a 1)(u i 2 a 2) • • • (u i k a k)) q k = t k but also verify that ∃q k-1 s.t. x obs ((u i 1 a 1)(u i 2 a 2) • • • (u i k-1 a k-1)) q k-1 = t k-1 and µ obs (u i k a k) q k-1 q k = ε . . . ∃q 1 s.t.
x obs (u i 1 a 1) q 1 = t 1 and µ obs (u i 1 a 1) q 0 q 1 = ε with q 0 ∈ Q i Finally, this leads to the same enumerations as in our algorithms, and complexity is not enhanced.

(3) We also tried to iteratively build "observer" G obs whose states would reflect the consistent states in the original WA G. In other words, G obs now is a finite automaton, and each of its states q obs is a subset of states of G, i.e., q obs ⊆ Q. G obs can be built as follows:

• the initial state of G obs is defined to be the set of initial states of G;

• for any state q obs of G obs , a state transition is defined for each possible "observed transition".

For example, consider the WA G in Fig. 2.8, its "observer" G obs obtained according to the above principle is depicted in Fig. 3. 4.

5 / b 7 / b 7 / b 5 / b 4 / b 6 / b 7 / , 6 / b b 5 / , 4 / b b   1, 2   1, 4   1   2 Figure 3.4 -G obs of weighted automaton G in Fig. 2.8
One of the problems with such construction is that the resulting "observer" may generate trajectories that are not possible observations in the original automaton. In this example, (b, 5)(b, 11) is generated by G obs , but it is impossible in G.

We have investigated a lot of different ways for building an "observer" through a WA (or even a finite automaton with tailored labellings), but so far, we have not succeeded.

Nevertheless, the feasibility of constructing an observer or similar structures for state estimation of a WA can be considered as a future work.

Fault Diagnosis of Weighted Automata

In the framework of logical DES, Zad et al. [Zad et al., 2003]

Construction of the Augmented Automaton

Suppose that we want to determine the occurrence of some labels belonging to fault class

E f . We transform the original WA G = (Q, E, α, µ, β) into G * = Q * , E, t * , Q * i , Q * m , * , ρ * , where Q * ⊆ Q × {0, 1} is the set of states, t * : Q * × E × Q * → R max is the transition function, Q * i ⊆ Q * (resp. Q * m ⊆ Q *) is the set of initial states (resp. final states), * : Q * i → R max (resp. ρ * : Q * m → R max)
is the function of initial weights (resp. final weights). Note that, each element q * ∈ Q * is a pair (q, f) where q is a state symbol of G, and f is a boolean variable. Variable f is used to mark the state status of G * . More precisely, (q, f) is a normal (resp. fault) state when f is equal to 0 (resp. 1). In other words, Q * is partitioned into two parts, i.e., For automaton G = (Q, E, α, µ, β), we denote R(q, a) the set of reachable states for a ∈ E from state q, i.e., R(q, a) = q ∈ Q | µ(a) qq = ε . Now we define the set of reachable states for a ∈ E from state (q, f) in G * as: R * ((q, f), a) = {(q , f) | q ∈ R(q, a)} , if a / ∈ E f , and

Q * = Q * N ∪ Q * f where Q * N and Q * f are
R * ((q, f), a) = {(q , 1) | q ∈ R(q, a)} , if a ∈ E f .
Algorithm 3.4 is used to construct the augmented automaton of G with respect to fault class E f .

Steps 2-5 of Algorithm 3.4 enables us to compute the set of initial states and to specify the function of initial weights for G * . In its graphical representation, these states are represented by nodes. The initial states of G are initial states of G * and have a value 0 defining that no fault label has occurred at the beginning of the system evolution. We use stack Queue to store these nodes. Now, for each element (q, f) in Queue, we calculate all states that can be reached by labels a ∈ E, i.e., R * ((q, f), a). If a pair (q , f) ∈ R * ((q, f), a) is not contained in the previous nodes, a new node is added to G * . The arc going from (q, f) node to (q , f)

node is labeled by a/µ(a) qq . At step 18, (q , f) is added into stack Queue. The procedure is iterated until stack Queue becomes empty. Steps 24-27 of Algorithm 3.4 determine the set of final states and the function of final weights.

Example 3.3. Consider the WA G in Fig. 3. 5. Assume that

E o = {a, b, c}, E uo = E f ∪ E reg with E f = f and E re f = { n }.
After applying Algorithm 3.4, the augmented automaton G * is shown in Fig. 3.6 where the fault states are highlighted in red.

Algorithm 3.4: Construction of the augmented automaton Input: A WA G = (Q, E, α, µ, β) and the fault class E f . Output: An augmented automaton G * of G.

1: function Trans f ormG(G, E f) 2: Let Q * i = ∅ 3: for each q ∈ Q i do 4: Q * i = Q * i ∪ {(q, 0)}, * ((q, 0)) = α q 5: end for 6: Let Q * = Q * i , Queue = Q * i 7: while Queue = ∅ do 8:
Dequeue (q, f) from Queue 9:

for each a ∈ E do 10:

if a ∈ E f then 11:
R * ((q, f), a) = {(q , 1) | q ∈ R(q, a)} 12:

else 13: R * ((q, f), a) = {(q , f) | q ∈ R(q, a)} 14: end if 15: for each (q , f) ∈ R * ((q, f), a) do 16: if (q , f) / ∈ Q * then 17: Q * = Q * ∪ {(q , f)} 18:
Enqueue (q , f) in Queue t * ((q, f), a, (q , f)) = µ(a) qq

21:

end for

22:

end for 23: end while 24: Let Q * m = ∅ 25: for each (q, f) ∈ Q * such that β q = ε do 26: Proof. We need to prove for any weightedd sequence σ, σ ∈ L(G) ⇔ σ ∈ L(G *).

Q * m = Q * m ∪ {(q, f)}, ρ * ((q, f)) = β q 27: end for 28: Let G * = Q * , E, t * , Q * i , Q * m , * , ρ * 29: return(G *) 30: end function 1 2 3 0 0 0 / 2 a / 4 f / 1 n / 2 b / 3 a / 2 c
/ 2 a / 1 n / 2 b / 3 a / 2 c / 2 a / 4 f / 1 n / 2 b / 3 a / 2 c   2,0   1,0   3,0   2,1   1,1   3,
(Only If) For any σ = (e 1 , τ 1)(e 2 , τ 2) • • • (e k , τ k) ∈ L(G)
, by the definition of generated weighted language of G, there must be at least one path from one initial state, and the weighted sequence it generates is equal to σ. Assume π = (q 0 , e 1 , q 1)(q 1 , e 2 , q 2) • • • (q k-1 , e k , q k) is such a path. By Algorithm 3.4, there must exist the following path in G * : π = ((q 0 , 0), e 1 , (q 1 , f 1))((q 1 , f 1), e 2 , (q 2 , f 2)) • • • ((q k-1 , f k-1), e k , (q k , f k))

where (q 0 , 0) ∈ Q * i , and

for i = 1, • • • , k, f i = 1 if e i ∈ E f , otherwise, f i = f i-1 .
Besides, the weights of transitions of π are t * ((q i-1 , f i-1), e i , (q i , f i)) = µ(e i) q i-1 q i , for i = 1, • • • k. Now we assume that the weighted sequence generated by π is different from σ, i.e., σ(π) = (e 1 , τ 1)(e 2 , τ 2) • • • (e k , τ k). This implies that there exists at least one i ∈ {1, • • • , k}, such that

x(e 1 • • • e i) (q i , f i) = τ i , which contradicts x(e 1 • • • e i) q i = τ i . Therefore, σ is generated by π , i.e., σ ∈ L(G *). Hence, ∀σ ∈ L(G) ⇒ σ ∈ L(G *). (If) For any σ = (e 1 , τ 1)(e 2 , τ 2) • • • (e k , τ k) ∈ L(G *
), there must be at least one path from one initial state in G * , and its associated weighted sequence is equal to σ. Assume the following is such a path: π = ((q 0 , 0), e 1 , (q 1 , f 1))((q 1 , f 1), e 2 , (q 2 , f 2))

• • • ((q k-1 , f k-1), e k , (q k , f k))
where f i ∈ {0, 1}, i = 1, • • • , k. By Algorithm 3.4, there must exist the path π = (q 0 , e 1 , q 1)(q 1 , e 2 , q 2) • • • (q k-1 , e k , q k) in G where q 0 ∈ Q i . Besides, the weights of transitions of π are µ(e i) q i-1 q i = t * ((q i-1 , f i-1), e i , (q i , f i)), for i = 1, • • • k. Similar to the prove process of (Only If), we know that σ is generated by π , i.e., σ ∈ L(G). Hence, ∀σ ∈ L(G *) ⇒ σ ∈ L(G).

Intuitively, according to Algorithm 3.4, G * does not change the state transitions of G because the reachable states of any state (q, f) in G * is defined by the reachable states of q in G, i.e., R * ((q, f), a), a ∈ E, is calculated based on R(q, a). Besides, the transition weights in G * are equal to the corresponding weights in G since t * ((q, f), a, (q , f)) = µ(a) qq . Finally, G and G * have the same initial states with identical weights, and the same final weights.

Diagnosis State Determination

This subsection shows that solving the diagnosis problem for G is equivalent to solving the state estimation problem for its augmented automaton G * .

Given an observed weighted sequence σ o ∈ P(L(G)), obtained from WA G, and a weight •

τ ≥ t f (σ o), the set of all consistent states C(σ o , τ) in G is
ϕ(σ o , τ, E f) = N if C * (σ o , τ) ⊆ Q * N ; • ϕ(σ o , τ, E f) = F if C * (σ o , τ) ⊆ Q * f ; • ϕ(σ o , τ, E f) = U if C * (σ o , τ) ∩ Q * N = ∅ and C * (σ o , τ) ∩ Q * f = ∅.
Proof. Let S * (σ o , τ) denotes the set of sequences, generated by G * , that are consistent with σ o and τ. By Lemma 3.1, we have S * (σ o , τ) = S(σ o , τ). From Definition 3.2 and Definition 3.1, we know that for each consistent state q * = (q, f) ∈ Q * , there must be a corresponding consistent sequence by which it is reached. Assume σ = (e 1 , τ 1)(e 2 , τ 2)

• • • (e k , τ k) ∈ L(G *)
is such a sequence. According to Algorithm 3.4, we know that q * belongs to Q * N iff there exists at least one i ∈ {1, 2, • • • k} such that e i ∈ E f . Therefore, according to Definition 3.

if C * (σ o , τ) ⊆ Q * N then 11: ϕ(σ o , τ, E f) = N 12: else if C * (σ o , τ) ⊆ Q * f then 13: ϕ(σ o , τ, E f) = F 14: else 15: ϕ(σ o , τ, E f) = U 16: end if 17:
end if 18: end while

Step 1 of Algorithm 3.5 calls Function Trans f ormG to transform G into G * with respect to fault class E f . Initially, the observation is (nothing has been observed at the beginning of system's evolution). Each time a new observable label occurs, the observation is updated as the concatenation of previous observation and the new occurred label (with its occurrence weight), and, when needed, the diagnosis state is determined based on the consistent states obtained by calling the state estimation algorithm.

Remark 3.3. As pointed out in Remark 3.1, the algorithm proposed in Subsection 3.3.1 for state estimation uses the single symbol u for all the unobservable labels. It is then required to replace all the labels corresponding to unobservable labels in the augmented automaton G * by u to be able to call the state estimation algorithm at step 9.

Example 3.4. Consider again the WA G in Fig. 3.5, where [START_REF]An unambiguous weighted automaton G[END_REF] and τ = 12.

E o = {a, b, c}, E uo = E f ∪ E reg with E f = f and E re f = { n }. Let observation σ o = (a, 3)(c, 5)(a,
We want to determine the occurrence of fault class E f , i.e., determine the diagnosis state value ϕ(σ o , τ, E f).  

1,0   1,1   2,1   3,1   4,0 / 1 a / 4 b / 6 b / 3 b / 2 a 0 0 0 0 / 1 a

Conclusion

This chapter copes with the problems of state estimation and fault diagnosis in the framework of WAs. Once a weighted sequence is observed and a weight value is given, the state estimation problem consists in determining the states in which the system may be, and the fault diagnosis is to determine if a fault label has occurred or not. One one hand, an algorithm based on the analysis of state vector is proposed to deal with state estimation online. One the other hand, the state estimation approach is extended to cope with fault diagnosis problem. For a given WA, we first proposed an algorithm that transforms it into its augmented version with respect to a fault class. Then we prove that the diagnosis problem can be reduced to the problem of state estimation. Finally, an algorithm is presented to summarize the online procedure for detecting the occurrence of some labels that belong to a given fault class.

Introduction

chapter 3 deals with the current-state estimation problem, which aims at accurately characterizing the set of possible current states of the system based on the partial observation of its evolution. In this chapter, we deal with the detectability problem for UWAs. The problem is to determine if, after a finite number of observations, the current state can be uniquely determined. That is, the set of possible current states is reduced to a singleton.

Four types of detectabilities, namely, strong detectability, weak detectability, strong periodic detectability, and weak periodic detectability are defined in terms of different requirements for current state estimation. On one hand, given a UWA G, we propose an approach based on the construction of observer G obs of which the number of states is exponential with respect to the number of states of G to verify the four detectabilities. On the other hand, we introduce another approach based on the notion of detector G det of which the number of states is polynomial with respect to the state space cardinality of G to verify the strong detectabilities, i.e., strong detectability and strong periodic detectability.

The structure of this chapter is as follows. Section 4.2 formally defines the problem of detectability and gives the definitions of four types of detectabilities. In Section 4.3, given a UWA G, we detail the process of constructing the observer, i.e., current-state estimator, of G.

Note that such an observer is a DFA over a weighted alphabet. In Section 4.3.2, necessary and sufficient conditions based on constructed observer are introduced for checking the detectabilities of a UWA. Section 4.4 details the construction process of the detector of a UWA and then proposes a Lemma to illustrate its relationship with the observer built in Section 4.3. In Section 4.5, we present the necessary and sufficient conditions based on the detector for verifying strong detectabilities of UWAs. Section 4.6 summarizes the conclusion of the work in this chapter.

Problem Formulation

In this chapter we restrict our attention to a WA G with identity initial weights 1 . The label set E is partitioned into two disjoint parts: the observable part E o and the unobservable part E uo . Considering that the firing of unobservable labels cannot be detected by an external agent, we assume that all unobservable labels are represented by symbol u, i.e., E = E o ∪ 1. The coefficients in α different from ε are all equal to e. This assumption is without loss of generality since an automaton with non-identity initial weights can always be transformed into an equivalent automaton with identity initial weights by adding new states and by considering these weights as state transitions durations associated to new fictive initial labels.

{u}. We also make the following assumptions on the studied WA G when dealing with current-state detectability: Assumption 4.1. G is unambiguous. Assumption 4.2. G is deadlock free, that is, for any state, there exists at least one output transition:

(∀q ∈ Q)(∃a ∈ E, q ∈ Q)µ(a) qq = ε.

Assumption 4.3.

There is no circuit labelled only by unobservable labels in G.

Assumption 4.1 requires that for any state q of G and any string ω ∈ E * , there is at most one path labeled by ω leading to q from the initial states. However, Assumption 4.1 does not imply that an observed weighted sequence can be generated by a single path. For example, assuming that ⊗ is the usual addition +, the WA G in Fig. 4.1 is such that σ o = (b, 0.5)(b, 0.8) can be generated by two paths, i.e., π 1 = (1, u, 2)(2, b, 2)(2, b, 2) and π 2 = (4, u, 3)(3, b, 3)(3, b, 3). In addition, Assumption 4.2 implies that the length of the generated weighted sequence becomes infinite as the system evolves indefinitely. By Assumption 4.3, for an infinite sequence, the length of its projection is also infinite.

Consistent State

In a logical DES, a trajectory of the system consists in an infinite sequence of labels that the system may generate. The set of all possible trajectories of the system is called ω-language [Thistle and Wonham, 1994] . Similarly, given a WA G, a trajectory consists in an infinite sequence of (label, weight) pairs that G may generate. The set of all possible trajectories of G defines the ω-language L ω (G).

In Section 3.3, we investigate the problem of state estimation for WAs. Briefly, for a finite weighted sequence σ o and a given value τ ≥ w f (σ o), the goal is to determine the set of possible current states that are consistent with σ o and τ, which includes the states possibly reached by unobservable transitions after E f (σ o) leading to weights less than or equal to τ.

In this chapter, we check whether the set of possible current states at the end of weighted sequence σ o ∈ P(L(G)) shrinks to a singleton, and if this continues with next observations. We then focus on the states that can be reached at the completion of σ o for the following definition of consistent states. This is without restriction since the possible subsequent unobservable transitions (after E f (σ o)) are considered through possible observations in continuation of σ o . Definition 4.1. Given an observed weighted sequence σ o ∈ P(L(G)), the set of all σ o -consistent states is defined as

C(σ o) = {q ∈ Q | ∃σ ∈ L(G), ∃q 0 ∈ Q i : q 0 ω q, P(σ) = σ o , E f (σ) = E f (σ o)}. (4.1)
In simple words, a state q is consistent with observation σ o , if there exists a generated weighted sequence σ ending with the last label in σ o leading to q such that the projection of σ coincides with σ o .

Remark 4.1. In this chapter, we check whether we have the ability to know exactly the current state and the subsequent states for some or all trajectories of the system. Since the length of a weighted sequence can be infinite, the completion weight of the sequence can also be infinite. In this case, it does not make sense to consider a value greater than the completion weight of an observation when calculating the set of consistent states. That is why we consider a definition of consistent states that is different from the one given in Eq.

(3.1).

Example 4.1. Consider again the WA G in Fig. 4.1 with ⊗ = +, E o = {b, c} and E uo = {u}.

Given σ o = (b, 0.5)(b, 0.8), it can be verified that the set of consistent states is C(σ o) = {2, 3}. In fact, two different paths from an initial state have weighted sequences that are consistent with σ o , namely,

π 1 = (1, u, 2)(2, b, 2)(2, b, 2) and π 2 = (4, u, 3)(3, b, 3)(3, b, 3).
Considering π 1 , we have

σ 1 = σ(π 1) = (u, 0.2)(b, 0.5)(b, 0.8), 1 σ 1 2 and E f (σ 1) = E f (σ o) = b.

Detectability notions in Weighted Automata

In this subsection, we extend the detectability problem defined for logical DESs modeled by NFAs in [START_REF] Shu | Generalized detectability for discrete event systems[END_REF] to the framework of WAs.

Observer-Based Approach

In this section, we first construct an observer that can be used to perform the current-state estimation for a UWA. Then, based on the constructed observer, the necessary and sufficient conditions for verifying the four detectabilities are proposed.

Construction of the Observer

In this subsection, we first construct an observer, denoted by G obs , for an unambiguous WA G. In detail, the observer G obs is a finite state automaton over a weighted alphabet Step 2 determines the initial state of the observer G obs , which is equal to the set of initial states of G. Stack Queue is employed to store it. At step 5, an element q obs (which corresponds to a subset of Q) is removed from Queue for analysis. For each label a ∈ E o , for each state q ∈ q obs , and for each

E obs ⊂ E o × D,
i ∈ {0, 1, • • • , |Q| -1}:
we first include the value µ(u i a) qq (resp. (q , µ(u i a) qq)) in the set W a (resp. Ω a) for q that can be reached from q via the occurrence of u i a (q is reachable from q according to u i a if and only if µ(u i a) qq = ε). Note that when the for loop on i is completed, W a consists of the weights of all paths in G labeled by u i a from state q, Ω a contains all states that can be reached by paths labeled by u i a from q and the corresponding weights µ(u i a) qq associated with the paths. At steps 16-18, for each t ∈ W a , any state q ∈ Q is included to q obs if there exists a pair (q , τ) belonging to Ω a such that τ = t. If q obs is not contained in Q obs (the current set of states for G obs), then it is added in Q obs , an arc labeled by (a, t) from node q obs to node q obs is defined, and q obs is added in stack Queue. This process is repeated until stack Queue becomes empty. Ensure: The observer G obs of G.

1: function ObserverG(G) 2: Let q i,obs = Q i , E obs = ∅, Q obs = {q i,obs } 3: Enqueue q i,obs in Queue 4: while Queue = ∅ do 5:

Dequeue q obs from Queue / * Note that q obs is a subset of Q * / 6:

for each a ∈ E o do 7:

Let W a = ∅, Ω a = ∅ 8:

for each q ∈ q obs do 9:

for i = 0, 1, • • • , |Q| -1 do 10:
for each q s.t. µ(u i a) qq = ε do 11:

W a = W a ∪ µ(u i a) qq 12
:

Ω a = Ω a ∪ (q , µ(u i a) qq) 13:
end for 14:

end for 15:

end for 16:

for each t ∈ W a do

17:

E obs = E obs ∪ {(a, t)} 18: q obs = {q ∈ Q | (q , t) ∈ Ω a } 19: if q obs ∈ Q obs then 20:
δ obs (q obs , (a, t)) = q obs 21: Q obs = Q obs ∪ q obs 23:

δ obs (q obs , (a, t)) = q obs 24:

Enqueue q obs in Queue end for 28: end while 29: return G obs = (Q obs , E obs , δ obs , q i,obs) 30: end function Note that each state q obs of G obs is a non-empty subset of Q, i.e., q obs = ∅ ∧ q obs ⊆ Q.

Therefore, in the worst case, the number of states of G obs is 2 |Q| -1, and Algorithm 4.1 always terminates. As a result, the computational complexity of constructing the observer using Algorithm 4.1 is O(2 |Q|). As usual for finite state automata, we extend the transition function δ obs : Let E * obs be the set of strings over weighted alphabet E obs including (, e) corresponding to empty string and the identity weight value. The language generated by the observer G obs = (Q obs , E obs , δ obs , q i,obs) is defined as:

Q obs × E obs → Q obs to strings δ obs : Q obs × E * obs → Q obs .
  1, 2,3, 4   1   2   3   4   2,3   ,0.4 b   ,0.2 b   ,0.5 b   ,0.6 c   ,0.3 b   ,0.4 c   ,0.3 a   ,0.3 b   ,0.3 a   ,0.1 a   ,0.5 b   ,0.5 a   ,0.2 b   ,0.3 b   ,0.4 c       ,0.1 , ,0.2 , ,0.4 a b b     ,0.3 , ,0.5 b b     ,0.4 , ,0.6 c c     ,0.3 , ,0.5 a a   , e
L(G obs) = {ω ∈ E * obs | ∃q obs ∈ Q obs : δ obs (q i,obs , ω) = q obs }.
It should be noticed that the language generated by G obs is a subset of E * obs , i.e., L(G obs) ⊆ E * obs . While the language generated by G is a subset of (E × D) * , i.e., L(G) ⊆ (E × D) * . For any observed weighted sequence

σ o = (a 1 , τ 1)(a 2 , τ 2) • • • (a n , τ n) ∈ P(L(G)), we define σ elem o = (a 1 , τ 1)(a 2 , τ 2 ⊗ -1 τ 1) • • • (a k , τ k ⊗ -1 τ k-1
) to denote its equivalent notation in E * obs where τ k ⊗ -1 τ k-1 representing the weight2 for the elementary transition according to a k ,

k = 2, 3, • • • , n. Similarly, for any sequence ω = (a 1 , τ 1)(a 2 , τ 2) • • • (a n , τ n) ∈ L(G obs), its equivalent notation in (E × D) * can be defined by ω cum = (a 1 , τ 1)(a 2 , τ 2) • • • (a n , τ n) where τ k = τ 1 ⊗ • • • ⊗ τ k , k = 2, 3, • • • , n, representing the cumulated weight for sequence a 1 a 2 • • • a k . We denote L cum (G obs) the equivalent notation of L(G obs), that is, L cum (G obs) = {σ ∈ (E × D) * | ∃ω ∈ L(G obs) : ω cum = σ}.
Similarly, we define

P(L(G)) elem = {σ ∈ (E o × D) * | ∃σ o ∈ P(L(G)) : σ elem o = σ}.
The following proposition shows that for any observation generated by system G, its consistent states can be determined by the observer G obs .

Proposition 4.1. The set of consistent states in G after observing the weighted sequence

(a 1 , τ 1)(a 2 , τ 2) • • • (a k , τ k) is given by δ obs (q i,obs , (a 1 , τ 1)(a 2 , τ 2 ⊗ -1 τ 1) • • • (a k , τ k ⊗ -1 τ k-1)),
where q i,obs and δ obs are the initial state and transition function of observer G obs .

Proof. We prove the proposition by induction on the length of the observed weighted sequence.

(Base step.) The initial set of consistent states of G is given by C() = q i,obs . Algorithm 4.1 states that q i,obs = Q i . That is, q i,obs is the set of states that can be reached from all initial states when no label has occurred, which coincides with the definition of C().

(Inductive step.) Let σ o = (a 1 , τ 1)(a 2 , τ 2) • • • (a n , τ n) ∈ P(L(G)) be an observed weighted sequence. Assume that C(σ o) = δ obs (q i,obs , σ elem o) ∈ Q obs . We need to prove that if a new pair (a, τ) is observed in continuation of σ o , then C (σ o • (a, τ)) = δ obs (C(σ o), (a, τ ⊗ -1 τ n)).
According to Algorithm 4.1, we have

δ obs (C(σ o), (a, τ ⊗ -1 τ n)) = {q ∈ Q | ∃q ∈ C(σ o), ∃i ∈ {0, 1, • • • , |Q| -1} : µ(u i a) q q = τ ⊗ -1 τ n }. That is, δ obs (C(σ o), (a, τ ⊗ -1 τ n))
consists of all states that can be reached from a state in

C(σ o) via a path labeled by u i a, i ∈ {0, 1, • • • , | Q | -1}
, and the weight associated with the path is equal to τ ⊗ -1 τ n . From Definition 4.1 of consistent states, we know that C(σ o) contains all states that can be reached by some generated weighted sequences ending with the last label in σ o , and the projection of these generated weighted sequences is equal to

σ o . By assumption, C(σ o) = δ obs (q i,obs , σ elem o). Since G is assumed to be unambiguous , ∀q ∈ C(σ o) we have q ∈ C(σ o • (a, τ)) iff ∃i ∈ N such that τ = τ n ⊗ µ(u i a) qq . Therefore, δ obs (C(σ o), (a, τ ⊗ -1 τ n))
consists of all states q that can be reached by a weighted sequence Besides, from Proposition 4.1, we can claim that

σ from an initial state such that E f (σ) = E f (σ o • (a, τ)) = a and P(σ) = σ o • (a, τ). This coincides with the definition of C(σ o • (a, τ)). That is, δ obs (C(σ o), (a, τ ⊗ -1 τ n)) = C (σ o • (a, τ)).
σ o ∈ P(L(G)) ⇒ {∃ω ∈ E * obs : δ obs (q i,obs , ω) = ∅ ∧ ω cum = σ o }.
This leads to the following corollary.

Corollary 4.1. The projection of language L(G) generated by G is a subset of L cum (G obs), that is, P(L(G)) ⊆ L cum (G obs).

Note that L cum (G obs) is the equivalent presentation of the generated language of G obs constructed by Algorithm 4.1.

The following lemma states the equivalence between the observed language generated by G and the language generated by observer G obs .

Lemma 4.1. The projection of language L(G) generated by G coincides with L cum (G obs), that is,

P(L(G)) = L cum (G obs). Proof. Using Corollary 4.1, it is sufficient to prove that L cum (G obs) ⊆ P(L(G)) or equivalently that L(G obs) ⊆ P(L(G)) elem . Let ω = (a 1 , τ 1)(a 2 , τ 2) • • • (a n , τ n) ∈ E * obs such that δ obs (q i,obs , ω) = ∅. According to Algorithm 4.1, there must exist q 0 ∈ Q i , q 1 , q 2 , • • • , q n ∈ Q and i 1 , i 2 , • • • , i n ∈ {0, 1, • • • , |Q| -1} such that µ(u i 1 a 1) q 0 q 1 = τ 1 , µ(u i 2 a 2) q 1 q 2 = τ 2 , • • • , µ(u i n a n) q n-1 q n = τ n . Defining π = (q 0 , u i 1 a 1 , q 1)(q 1 , u i 2 a 2 , q 2) • • • (q n-1 , u i n a n , q n), since automaton G is unambiguous, we have σ(π) = (u i 1 a 1 , τ 1)(u i 2 a 2 , τ 1 ⊗ τ 2) • • • (u i n a n , τ 1 ⊗ τ 2 ⊗ • • • ⊗ τ n). This implies that P(σ(π)) = (a 1 , τ 1)(a 2 , τ 1 ⊗ τ 2) • • • (a n , τ 1 ⊗ τ 2 ⊗ • • • ⊗ τ n) or equivalently that P(σ(π)) elem = (a 1 , τ 1)(a 2 , τ 2) • • • (a n , τ n) = ω, i.e., ω ∈ P(L(G)) elem .
Therefore L(G obs) ⊆ P(L(G)) elem holds. Remark 4.2. From Proposition 4.1 and Lemma 4.1, it follows that the observer G obs models the observable evolution of system G. On the one hand, for any observed sequence σ o of G, all its consistent states, resulting of evolutions in G, can be characterised by the unique evolution labeled by σ elem o in G obs . On the other hand, for any sequence ω of G obs , there must be at least one evolution in G whose generated sequence coincides with ω. In addition, in the proof of Proposition 4.1 and Lemma 4.1, it is required that for any

path π = (q 0 , u i 1 a 1 , q 1)(q 1 , u i 2 a 2 , q 2) • • • (q n-1 , u i n a n , q n) with q 0 ∈ Q i , we have σ(π) = (u i 1 a 1 , τ 1)(u i 2 a 2 , τ 1 ⊗ τ 2) • • • (u i n a n , τ 1 ⊗ τ 2 ⊗ • • • ⊗ τ n) where τ k = τ k-1 ⊗ µ(u i k a k) q k-1 q k for k = 1, 2, • • • , n and τ 0 = 0.
Unambiguity of G is a sufficient condition for this property. This justifies Assumption 4.1 in this paper.

Criteria for Verifying Strong and Weak Detectabilities

In this subsection, we propose necessary and sufficient conditions, inspired by those presented in [START_REF] Shu | Generalized detectability for discrete event systems[END_REF] , to verify the four types of detectabilities for a UWA G.

Special attention must be paid to states belonging to elementary circuits because the trajectories of observer G obs = (Q obs , E obs , δ obs , q i,obs) can visit these states indefinitely. We denote S ci the set of all elementary circuits of G obs as:

S ci = {(q obs , s) ∈ Q obs × E * obs | δ obs (q obs , s) = q obs ∧ |s| ≥ 1 ∧ (∀s ∈ Pr(s) s.t. s = s : δ obs (q obs , s) = q obs)}.
Besides, a state of G obs is defined as a subset of Q, and if this subset is a singleton then the state belongs to Q single obs , which is defined as:

Q single obs = {q obs ∈ Q obs | |q obs | = 1} .
It should be noted that if a state in Q single obs is reached in G obs , then there is a single consistent state for the corresponding observed weighted sequence. The following are the necessary and sufficient conditions for verifying the detectabilities of UWA G = (Q, E, α, µ) based on its observer G obs = (Q obs , E obs , δ obs , q i,obs).

G obs belongs to Q single obs , that is: (∀(q obs , s) ∈ S ci)(∀q ∈ Q obs s.t. ∃ω ∈ E * obs , δ obs (q obs , ω) = q)q ∈ Q single obs .
Proof. (If) Assume that G is not strongly detectable with respect to projection P, namely,

(∀n ∈ N)(∃σ ∈ L ω (G))(∃σ ∈ Pr(σ))|P(σ)| > n ∧ |C(P(σ))| = 1. Let n = |Q obs |. Consider σ, σ such that σ ∈ Pr(σ), |P(σ)| > n and |C(P(σ))| = 1. Since |P(σ)| > n = |Q obs |, the sequence P(σ) elem ∈ E *
obs must visit at least one elementary circuit (q obs , s) ∈ S ci in G obs . Let v ∈ E * obs such that δ obs (q i,obs , v) = q obs and ω ∈ E * obs such that P(σ) elem = vω. By Proposition 4.1, we have δ obs (q obs , ω) = C(P(σ)).

By assumption |C(P(σ))| = 1, we know that δ obs (q obs , ω) / ∈ Q single obs . Therefore, we can claim that (∃(q obs , s)

∈ S ci)(∃q ∈ Q obs s.t. ∃ω ∈ E * obs , δ obs (q obs , ω) = q)q / ∈ Q single obs . (Only If) Assume (∃(q obs , s) ∈ S ci)(∃q ∈ Q obs s.t. ∃ω ∈ E * obs , δ obs (q obs , ω) = q)q / ∈ Q single obs . Let v ∈ E *
obs such that δ obs (q i,obs , v) = q obs . By assumption δ obs (q obs , ω) / ∈ Q single obs , we have δ obs (q i,obs , νs j ω) / ∈ Q single obs for j ∈ N. Define σ such that P(σ) elem = vs j ω, by Proposition 4.1 and Lemma 4.1, we have C(P(σ)) = 1. Since j can be any arbitrary integer, we can conclude that

(∀n ∈ N)(∃σ ∈ L ω (G))(∃σ ∈ Pr(σ))|P(σ)| > n ∧ |C(P(σ))| = 1.
That is, UWA G is not strongly detectable with respect to projection P.

Remark 4.3. Due to Assumption 4.2, the finite state automaton G obs constructed by Algorithm 4.1 is a (weakly connected) directed graph when ignoring the labels associated with its transitions. There exist algorithms to enumerate all the elementary circuits of such a directed graph in the literature, for instance in [Johnson, 1975] . These can be used to check whether any state in an elementary circuit of G obs and any state reachable from such an elementary circuit belongs to Q single obs , that is to verify the strong detectability criterion stated in Theorem 4.1.

Theorem 4.2 (Criterion for Checking Detectability).

A UWA G is detectable with respect to projection P iff there is at least one elementary circuit composed of states which all belong to Q single obs in observer G obs , that is: (∃(q obs , s) ∈ S ci)(∀ω ∈ Pr(s))δ obs (q obs , ω) ∈ Q single obs .

Proof. (If) We assume that (∃(q obs , s) ∈ S ci)(∀ω ∈ Pr(s))δ obs (q obs , ω) ∈ Q single obs . Let v ∈ E * obs such that δ obs (q i,obs , v) = q obs . Define σ ∈ P(L(G)) such that P(σ) elem = vs j where j is an arbitrary integer. By assumption δ obs (q obs , ω) ∈ Q single obs , we then have δ obs (q i,obs , vs j ω) ∈ Q

(∃n ∈ N)(∃σ ∈ L ω (G))(∀σ ∈ Pr(σ))|P(σ)| > n ⇒ |C(P(σ))| = 1.
That is, unambiguous automaton G is detectable with respect to projection P.

(Only If) Assume that G is detectable with respect to projection P, that is,

(∃n ∈ N)(∃σ ∈ L ω (G))(∀σ ∈ Pr(σ))|P(σ)| > n ⇒ |C(P(σ))| = 1.
Since σ is an infinite sequence, then P(σ) elem must visit at least one elementary circuit (q obs , s) ∈ S ci in G obs infinitely often. Let v ∈ E * obs such that δ obs (q i,obs , v) = q obs . By assumption |C(P(σ))| = 1 and Proposition 4.1, we have (∀ω ∈ Pr(s))δ obs (q i,obs , vω) ∈ Q single obs , which is equivalent to (∀ω ∈ Pr(s))δ obs (q obs , ω) ∈ Q single obs . Therefore, (∃(q obs , s) ∈ S ci)(∀ω ∈ Pr(s))δ obs (q obs , ω) ∈ Q single obs .

Theorem 4.3 (Criterion for Checking Strong Periodic Detectability).

A UWA G is strongly periodically detectable with respect to projection P iff each elementary circuit of observer G obs contains at least one state belonging to Q single obs , that is: (∀(q obs , s) ∈ S ci)(∃ω ∈ Pr(s))δ obs (q obs , ω) ∈ Q single obs .

Proof. (If) Assume that G is not strongly periodically detectable with respect to projection P, namely,

(∀n ∈ N)(∃σ ∈ L ω (G))(∃σ ∈ Pr(σ))(∀σ ∈ (E × D) *) σ σ ∈ Pr(σ) ∧ |P(σ)| < n ⇒ |C(P(σ σ))| = 1. Let n = |Q obs | + 1 and |P(σ)| = |Q obs |.
From the above assumption, we know that P(σ) elem must visit at least one elementary circuit (q obs , s) ∈ S ci in G obs such that it is the last elementary circuit passed by P(σ σ) elem . Since (∀σ

∈ (E × D) *)σ σ ∈ Pr(σ) ∧ |P(σ)| < |Q obs | + 1 ⇒ |C(P(σ σ))| = 1, by Proposition 4.1, we have (∀ω ∈ Pr(s))δ obs (q obs , ω) / ∈ Q single obs . Therefore, (∃(q obs , s) ∈ S ci)(∀ω ∈ Pr(s))δ obs (q obs , ω) / ∈ Q single obs . (Only If) Assume that (∃(q obs , s) ∈ S ci)(∀ω ∈ Pr(s))δ obs (q obs , ω) / ∈ Q single obs . Let v ∈ E *
obs such that δ obs (q i,obs , v) = q obs . Define σ such that P(σ) elem = vs j where j is an infinite integer and σ such that P(σ) elem = v. By assumption δ obs (q obs , ω) / ∈ Q single obs , we then have δ obs (q i,obs , vs j ω) / ∈ Q single obs . Therefore, by Proposition 4.1 and Lemma 4.1, we can conclude that

(∀n ∈ N)(∃σ ∈ L ω (G))(∃σ ∈ Pr(σ))(∀σ ∈ (E × D) *) σ σ ∈ Pr(σ) ∧ |P(σ)| < n ⇒ |C(P(σ σ))| = 1.
That is, unambiguous automaton G is not strongly periodically detectable with respect to projection P. Theorem 4.4 (Criterion for Checking Periodic Detectability). A UWA G is periodically detectable with respect to projection P iff there is at least one elementary circuit in observer G obs which contain at least one state belonging to Q single obs , that is:

(∃(q obs , s) ∈ S ci)(∃ω ∈ Pr(s))δ obs (q obs , ω) ∈ Q single obs . Proof. (If) Assume (∃(q obs , s) ∈ S ci)(∃ω ∈ Pr(s))δ obs (q obs , ω) ∈ Q single obs . Let v ∈ E *
obs such that δ obs (q i,obs , v) = q obs . Define σ such that P(σ) elem = vs j where j is an arbitrary integer.

By assumption δ obs (q obs , ω) ∈ Q single obs , we then have δ obs (q i,obs , vs j ω) ∈ Q

(∃n ∈ N)(∃σ ∈ L ω (G))(∀σ ∈ Pr(σ))(∃σ ∈ (E × D) *) σ σ ∈ Pr(σ) ∧ |P(σ)| < n ∧ |C(P(σ σ))| = 1.
That is, unambiguous automaton G is periodically detectable with respect to projection P.

(Only If) Assume that G is periodically detectable with respect to projection P, that is,

(∃n ∈ N)(∃σ ∈ L ω (G))(∀σ ∈ Pr(σ))(∃σ ∈ (E × D) *) σ σ ∈ Pr(σ) ∧ |P(σ)| < n ∧ |C(P(σ σ))| = 1.
Given an infinite sequence σ satisfying the conditions in the above equation, then P(σ) elem must visit at least one elementary circuit (q obs , s) ∈ S ci of G obs in which |C(P(σ σ))| = 1 holds for any σ ∈ Pr(σ) and for some σ ∈ (E × D) * . Let v ∈ E * obs such that δ obs (q i,obs , v) = q obs . According to Proposition 4.1, we have (∃ω ∈ Pr(s))δ obs (q i,obs , vω) ∈ Q single obs , which is equivalent to (∃ω ∈ Pr(s))δ obs (q obs , ω) ∈ Q single obs . Therefore, (∃(q obs , s) ∈ S ci)(∃ω ∈ Pr(s))δ obs (q obs , ω) ∈ Q is shown in Fig. 4.4. From G obs , after applying the above theorems, one can conclude that G is strongly detectable (hence, detectable, strongly periodically detectable and periodically detectable) since all states reachable from any elementary circuit of G obs are entirely within

Q single obs . 1 2 3 4 e e / 0.2 b / 0.3 b / 0.3 u / 0.2 u / 0.3 d / 0.4 c Figure 4.3 -Unambiguous weighted automaton G {1, 4} {2,3} {2} {3}   ,0.2 b   ,0.7 c   ,0.5 d   ,0.5 b     ,0.2 , ,0.3 b d     ,0.3 , ,0.4 b c   ,0.3 b   ,0.4 c   ,0.3 d   , e

Computational Complexity Analysis

From the procedure of constructing the observer G obs for a UWA G = (Q, E, α, µ), we know that, in the worst case, the number of states of G obs is 2 |Q| -1. As a result, the computational complexity of constructing G obs using Algorithm 4.1 is exponential with respect to the state space cardinality of G, that is, O(2 |Q|).

Remark 4.4. For a UWA, in order to verify its detectabilities using Theorems 1-4, we have to construct its observer. Since the observer has at most 2 |Q| -1 states, the computational complexity of verifying the detectabilities is exponential with respect to the number of states of the underlying system.

The verification of detectabilities using observer-based criteria has a high computational complexity. Therefore, it is important to search for more efficient approaches to check detectabilities.

Detector-Based Approach

In this section, inspired by [START_REF] Shu | Generalized detectability for discrete event systems[END_REF] , the notion of detector is introduced for UWAs in order to reduce the verification complexity.

Construction of the Detector

Detector G det is a finite state automaton whose structure relies on G obs = (X, E obs , δ, x 0).

Each state of G det is a subset of states of G, with a cardinality equals to one or two (except for the initial state). The detector is defined in the following way:

G det = (Y, E obs , ξ, y 0) = Ac(Y , E obs , ξ, y 0)
where y 0 is the unique initial state of detector G det , defined as y 0 = x 0 = Q i , Ac(•) represents the accessible part, i.e., Ac(Y , E obs , ξ, y 0) is the automaton obtained by removing all the states that are not reachable from the initial state y 0 as well as transitions associated with such states in automaton (Y , E obs , ξ, y 0), and Y is the set of subsets of Q that contains at most two elements, including the initial state, that is,

Y = y : y ⊆ Q ∧ |y | ≤ 2 ∪ {y 0 } .
The transition function ξ : Y × E obs → 2 Y is defined, for y ∈ Y and a ∈ E obs , based on the transition function δ of G obs as follows: We now prove this lemma by induction on the length |ω| of ω based on (F1) and (F2).

ξ(y , a) =          {δ(y , a)} , i f |δ(y , a)| = 1; {y : y ⊆ δ(y , a) ∧ |y| = 2} , i f |δ(y , a)| ≥ 2; undefined, i f |δ(y , a)| = 0.
 , e   1, 2,3, 4   1, 2,3   1, 2, 4   1,3, 4   2,3, 4   1, 2   1,3   1, 4   2,3   2, 4   3, 4   1   2   3
(Base step.) Consider |ω| = 1, that is, ω = a ∈ E obs . Part (1) of the lemma can be proved by letting y = y 0 in (F1), and part (2) of the lemma can be proved by letting y = y 0 = x 0 in (F2).

 

, e (Induction hypothesis (IH).) Suppose that Lemma 1 holds for any ω ∈ E * obs such that |ω| ≤ n.

  1, 2,3, 4   1, 2   1,3   1, 4   2,3   2, 4   3, 4   1   2   3   4 (a,
(Inductive step.) We now need to prove that Lemma 1 is true for any ωa ∈ E * obs such that |ωa| = n + 1. Considering that the cardinality of set δ(x 0 , ω) and δ(x 0 , ωa) may be one or more than one, the following four possible cases need to be discussed.

Case 1: |δ(x 0 , ω)| = 1 and |δ(x 0 , ωa)| = 1. Since |δ(x 0 , ωa)| = 1, we need to prove ξ(y 0 , ωa) = {δ(x 0 , ωa)}, which can be done as follows. any y ⊆ Q such that |y| = 2, y ∈ ξ(y 0 , ωa) ⇔ y ⊆ δ(x 0 , ωa), which can be done as follows.

⇔ y ⊆ δ(δ(x 0 , ω), a)
⇔ y ⊆ δ(x 0 , ωa) Therefore, Lemma 4.2 is established.

Creteria for Verifying Weak Detectabilities

In this section, we first show that strong detectability and strong periodic detectability of a UWA G can be efficiently checked by using its detector G det . We then illustrate that the conditions stated for the observer for weak detectability and weak periodic detectability cannot be transposed to the detector.

We denote by EC det the set of all elementary circuits of detector G det , which is defined as:

EC det = {(y, s) ∈ Y × E * obs | y ∈ ξ(y, s) ∧ |s| ≥ 1 ∧ (∀s ∈ Pr(s) s.t. s = s : y / ∈ ξ(y, s))}.
Besides, we denote by Y single the set of singleton states of G det , that is, (Only If) Assume (∀(x, s) ∈ EC obs)(∃ω ∈ Pr(s))δ(x, ω) ∈ X single , then any elementary circuit contain at least one state δ(x, ω) ∈ X single . Such a singleton state δ(x, ω) will not be split in G det . Formally, for any (x, s) ∈ EC obs , let v be any string that leads to x from the initial state, that is, δ(x 0 , v) = x. By Lemma 1, ξ(y 0 , vω) = {δ(x 0 , vω)}. According to the construction procedure of G det , although G det may have more elementary circuits than G obs , all the elementary circuits in G det must contain at least one singleton state. Therefore, if

Y single = {y ∈ Y | |y| = 1}.
(∀(x, s) ∈ EC obs)(∃ω ∈ Pr(s))δ(x, ω) ∈ X single then (∀(y, s) ∈ EC det)(∃ω ∈ Pr(s))ξ(y, ω) ⊆ Y single .
(If) Assume that (∀(x, s) ∈ EC obs)(∃ω ∈ Pr(s))δ(x, ω) ∈ X single is not true, i.e., (∃(x, s) ∈

EC obs)(∀w ∈ Pr(s))δ(x, w) / ∈ X single . Then we have the following path in G obs .

x 1

a 1 -→ x 2 a 2 -→ x 3 • • • a n-2 --→ x n-1 a n-1 --→ x n
where a 1 , a 2 , • • • , a n-1 ∈ E obs , n ∈ N is a large enough number, and

   x i = δ(x i-1 , a i-1), i = 2, 3, • • • , n; |x i | ≥ 2, i = 1, 2, • • • , n.
Note that x 1 can be any state that belongs to elementary circuit (x, s). Let x n be a sub-state of x n of cardinality two, that is, x n ⊆ x n and |x n | = 2. For x n and a n-1 , according to the construction procedure of G obs , we can find x n-1 ⊆ x n-1 such that x n ⊆ δ(x n-1 , a i-1) and |x n-1 | = 2. By the same way, we can find

x n-2 ⊆ x n-2 , x n-3 ⊆ x n-3 , • • • , x 1 ⊆ x 1 such that    x i ⊆ δ(x i-1 , a i-1), i = 2, 3, • • • , n -1; |x i | = 2, i = 1, 2, • • • , n -2.
According to the construction procedure of G det , we have a path in G det as

x 1 a 1 -→ x 2 a 2 -→ x 3 • • • a n-2 --→ x n-1 a n-1 --→ x n .
Since n is large enough and G det is finite, then there must be an elementary circuit in the above path such that each node consists of two states of the original system G.

(∀(x, s) ∈ EC obs)(∀x ∈ X s.t. ∃ω ∈ E * obs , x = δ(x, ω))x ∈ X single iff (∀(y, s) ∈ EC det)(∀y ∈ Y s.t. ∃ω ∈ E * obs , y ∈ ξ(y, ω))y ∈ Y single . (Only If) Assume (∀(x, s) ∈ EC obs)(∀x ∈ X s.t. ∃ω ∈ E * obs , x = δ(x, ω))
x ∈ X single , then in particular, each state in any elementary circuit of G obs belongs to X single , that is, (∀(x, s) ∈ EC obs)x ∈ X single . According to the construction of G det , all these states will not be split in G det . Formally, for any (x, s) ∈ EC obs , let v be any string that leads to x from the initial state of G obs , that is, δ(x 0 , v) = x. By Lemma 4.2, ξ(y 0 , v) = {δ(x 0 , v)}. Since (∀x ∈ X s. Because there is elementary circuit, e.g., {1, 3}

(d,4)

-→ {1, 4}

(b,3)

-→ {1, 3}, with all its states belong to Y \ Y single in G det , according to Theorems 4.5 and 4.6, G is not strongly detectable and not strongly periodically detectable.

In Section 4.3.2, it is proved that a UWA G is weakly detectable iff there is at least one elementary circuit composed of states that all belong to X single in its observer G obs , and is weakly periodically detectable iff there is at least one elementary circuit in G obs which contain at least one state belonging to X single . However, we cannot use the same conditions stated for detector G det to check weak detectability and weak periodic detectability. The following example illustrates this. is not weakly detectable as well as not weakly periodically detectable since each state of all elementary circuits belongs to X \ X single . However, in G det , there exists elementary circuit

{7}

(c,1)

-→ {9} (f ,2)
-→ {7} that has all its states in Y single . Therefore, the fact that there exists a circuit with all its states in Y single is neither sufficient nor necessary for weak detectability and weak periodic detectability.

/ 1 u / 1 a / 1 a / 1 a / 3 b / 3 b / 3 b / 1 c / 1 c / 1 d / 1 d / 1 d
 1   3, 4,5   6,7   8,9   , 2 a   , e   , 3 b   , 1 c   , 1 d   , 2 f
  , e   1   7   9   3, 4   3,5   4,5   6,7   8,9   , 2 a   , 2 a   , 2 a   , 3 b   , 3 b   , 3 b   , 1 c   , 1 c   , 2 f   , 2 f   , 1 d   , 1 d   , 1 d   , 1 d

Conclusion

In this chapter, we deal with the current-state detectability problem for UWAs under partial event observation. An algorithm is proposed to build a DFA, called observer, having the ability to estimate the current states of the studied system for any infinite or finite observation. Inspired by the work in [START_REF] Shu | Generalized detectability for discrete event systems[END_REF] , criteria are proposed for checking four types of detectabilities. A disadvantage of the observer-based approach is that the verification complexity is very high since the observer's state number is exponential with respect to the number of states of the original system. In order to overcome this shortcoming, a computational complexity reduced approach is proposed to deal with strong detectabilities. Instead of using observer, this approach relies on the tool of detector whose size is polynomial with respect to the number of states of the original UWA. The complexity of checking strong detectability and strong periodic detectability by using a detector is polynomial time.

I-Detectability and I-Opacity Verification for UWAs

This chapter focuses on the verification of initial-state detectability (I-detectability) and initial-state opacity (I-opacity) for unambiguous weighted automata (UWAs).

Introduction

In Chapter 4, we investigate the verification of current-state detectability for UWAs.

Current-state detectable requires that system's current state can be uniquely determined.

However, in some applications, instead of determining the current state of the system, one may be interested in knowing which initial states the system may start from. This is referred to as the initial-state estimation problem. In this chapter, this problem is investigated in terms of I-detectability, characterizing whether one can uniquely determine the initial state of a system after a finite number of observations. On the other hand, we study the I-opacity of UWAs, which is characterized by whether an intruder can infer that the evolution of the system has started from a secret initial state.

This chapter is structured as follows.

Problem Formulation

In this chapter, we assume that the studied WA G = (Q, E, α, µ) have identity initial weights and that all unobservable labels are represented by symbol u, i.e., E = E o ∪ {u}.

In addition, the assumptions in Chapter 4 are needed when dealing with the verification of I-detectability and I-opacity, i.e.,

• G is unambiguous;

• G is deadlock free, that is, for any state of the system, there exists at least one output transition:

(∀q ∈ Q)(∃a ∈ E, q ∈ Q)µ(a) qq = ε;
• There is no circuit labeled only by unobservable labels in G.

I-Detectability

Definition 5.1. Given a UWA G, the set of possible initial states after observing σ o ∈ P(L(G)) is defined as .1) In simple words, I(σ o) consists of all initial states from which there exist generated weighted sequences such that their projections coincide with the observation.

I(σ o) = {q ∈ Q i | ∃q ∈ Q, ∃σ ∈ L(G) : P(σ) = σ o , q σ q }. (5
Lemma 5.1. Let .2) Then I(σ o) = I (σ o).

I (σ o) = {q ∈ Q i | ∃q ∈ Q, ∃σ ∈ L(G) : P(σ) = σ o , q σ q , E f (σ) = E f (σ o)}. (5
Proof. Let q i be an initial state with q i ∈ I (σ o). According to Eqs. (5.1) and (5.2), q i ∈ I(σ o). On the other hand, consider an initial state q 0 ∈ I(σ o). According to Eq. (5.1), there must exist a path π from q 0 and ending with E f (σ o) or an unobservable label such that P

(σ(π)) = σ o . If π ends with E f (σ o), then it is trivial that q 0 ∈ I (σ o).
When π ends with an unobservable label, we assume that it can be represented as π = (q 0 , u j 1 e 1 , q 1) • • • (q n-1 , u j n e n , q n)(q n , u, q n+1), where j 1 , • • • , j n ∈ N. Let π = (q 0 , u j 1 e 1 , q 1) • • • (q n-1 , u j n e n , q n). Then π satisfies Eq. (5.2). Hence, q 0 belongs to I (σ o).

In a logical DES, a possible trajectory of the system is represented by an infinite sequence of labels that the system may generate. The set of all possible trajectories of the system is denoted by the ω-language [Thistle and Wonham, 1994] . Similarly, in the framework of WAs, let a possible trajectory of a WA G also be represented by an infinite sequence of (label, weight) pairs that G may generate. The set of all possible trajectories of G defines the ω-language L ω (G). For any finite or infinite sequence σ, we denote by Pr(σ) the set of all its prefixes.

Inspired by [Shu and Lin, 2013] where I-detectability is investigated for NFAs, we define strong I-detectability and weak I-detectability for UWAs as follows. From the above definitions, we know that if a UWA is strongly I-detectable, then it is weakly I-detectable.

Problem 5.1. Check, in a systematic way, if a given UWA G = (Q, E, α, µ) is strongly Idetectable (resp. weekly I-detectable).

I-Opacity

The generated weighted language of a UWA G = (Q, E, α, µ) from an initial state q i ∈ Q i is defined as

L(G, q i) = {σ ∈ (E × D) * | ∃q ∈ Q, ∃ω ∈ E * , ∃π ∈ q i ω q : σ(π) = σ}. (5.3)
In addition, given a subset of the initial state set X ⊆ Q i , we define the weighted language generated by X as L(G, X) = q i ∈X L(G, q i).

Due to unambiguity, if Q i is divided into two disjoint subsets: Q 1 i and Q 2 i , then the generated weighted language of G can be represented by

L(G) = q i ∈Q i L(G, q i) = L(G, Q 1 i) ∪ L(G, Q 2 i),
and we have

P(L(G)) = P(L(G, Q 1 i)) ∪ P(L(G, Q 2 i)).
Given a UWA G = (Q, E, α, µ) with generated weighted language L(G), the intruder can only observe the projected weighted sequences, i.e., P(L(G)). Assume that the intruder has full knowledge of the structure of G, and that the secret is described by an arbitrary subset of Q. A system is said to be initial-state opaque with respect to the secret if the intruder can never infer that the initial state of the system is within the secret. The I-opacity property of a UWA is formally defined as follows.

Verification of I-Detectability and I-Opacity

Inspired by the work in [Shu and Lin, 2013;Saboori and Hadjicostis, 2013b] , we propose a formal procedure to solve Problems 5.1 and 5.2, that is, to check whether a UWA G is strongly (or weakly) I-detectable, and whether G is initial-state opaque. A two-step approach is first proposed to construct the initial-state estimator for G, called I-observer.

Then, based on the constructed I-observer, necessary and sufficient conditions are proposed to check I-detectability and I-opacity of system G.

Construction of the I-Observer

First, we build the augmented UWA for G by extending its states to state pairs. Then, we construct the current-state estimator of the augmented automaton, which can be used as the initial-state estimator of G.

Construction of the Augmented Automaton

We extend UWA G = (Q, E, α, µ) into its augmented version

G aug = Q aug , E, t aug , Q aug i , aug where Q aug ⊆ Q × Q i is the set of states; t aug : Q aug × E × Q aug → D is the transition function; Q aug i ⊆ Q aug is the set of initial states; aug : Q aug i
→ D is the function of initial weights. It should be noted that each state q aug ∈ Q aug is a pair (q c , q i), implying that state q c can be reached in G from initial state q i . In particular, the set of initial states of G aug is defined as:

Q aug i = {(q i , q i) | q i ∈ Q i } .
For automaton G = (Q, E, α, µ), we denote by R(q, a) the set of reachable states for label a ∈ E from state q, i.e., R(q, a) = q ∈ Q | µ(a) qq = ε . From a given state (q c , q i) in G aug , the occurrence of a label a ∈ E from state q c in G is modeled in G aug by transitions to states (q c , q i) with q c ∈ R(q c , a). That is, the set of reachable states for a ∈ E from state (q c , q i) in G aug is defined as:

R aug ((q c , q i), a) = (q c , q i) | q c ∈ R(q c , a) .

Algorithm 5.1 details the process of constructing such an augmented automaton for G.

Steps 2-5 calculate the set of initial states Q aug i and specify the function of initial weights for G aug . These initial states are first stored in the stack Queue. Then, for each pair (q c , q i) q i ∈ Q i and q c is reachable from q i . Using Algorithm 5.1, this situation occurs if there exists more than one path from the initial states to state q c labeled by string e 1 e 2 • • • e i in G. This contradicts the unambiguity of G. Therefore, G aug is unambiguous.

/ 1 u / 6 b / 2 u / 1 u / 2 c / 2 c / 4 b / 2 c / 2 d   1,1   2,1   3,1   4, 4   5, 4   6, 4   3, 4  
Lemma 5.3. The weighted language generated by the augmented automaton G aug is equal to the weighted language generated by UWA G, i.e., L(G aug) = L(G).

Proof. We have to prove that for any weighted sequence σ ∈

(E × R) * , σ ∈ L(G aug) if and only if σ ∈ L(G).
First, consider a weighted sequence σ = (e 1 , τ 1)(e 2 , τ 2) • • • (e n , τ n) ∈ L(G). Suppose that π = (q 0 , e 1 , q 1)(q 1 , e 2 , q 2) • • • (q k-1 , e k , q k) is a path from initial state q 0 such that the weighted sequence it generates is equal to σ. Since G is unambiguous and has null initial weights, we have τ 1 = µ(e 1) q 0 q 1 , τ k = τ k-1 ⊗ µ(e k) q k-1 q k for k = 2, 3, • • • , n. According to Algorithm 5.1, there must be the following path in G aug : π = ((q 0 , q 0), e 1 , (q 1 , q 0))((q 1 , q 0), e 2 , (q 2 , q 0)) • • • ((q k-1 , q 0), e k , (q k , q 0)) along which the weights of transitions are equal to the weights of the corresponding transi-

tions in π. Since G aug is unambiguous, σ(π) = (e 1 , µ(e 1))(e 2 , µ(e 1) ⊗ µ(e 2)) • • • (e n , µ(e 1) ⊗ • • • ⊗ µ(e n)) = (e 1 , τ 1)(e 2 , τ 2) • • • (e n , τ n). That is, σ is generated by π , i.e., σ ∈ L(G aug). Hence, ∀σ ∈ L(G), σ ∈ L(G aug).
Second, for a sequence σ = (e 1 , τ 1)(e 2 , τ 2) • • • (e n , τ n) ∈ L(G aug), we assume that it is generated by the following path π = ((q 0 , q 0), e 1 , (q 1 , q 0))((q 1 , q 0), e 2 , (q 2 , q 0)) • • • ((q n-1 , q 0), e n , (q n , q 0)) with (q 0 , q 0) being an initial state of G aug , and τ 1 = µ(e 1) (q 0 ,q 0)(q 1 ,q 0) , . . . , τ k = τ k-1 ⊗ µ(e k) (q k-1 ,q 0)(q k ,q 0) for k = 2, 3, • • • , n. According to Algorithm 5.1, there must exist the path π = (q 0 , e 1 , q 1)(q 1 , e 2 , q 2) • • • (q k-1 , e k , q k) in G with q 0 ∈ Q i . Besides, the weights of transitions in π are µ(e i) q i-1 q i = µ(e i) (q i-1 ,q 0)(q i ,q 0) , for

i = 1, 2, • • • , n. Since G is unambiguous, we know that σ(π) = (e 1 , τ 1)(e 2 , τ 2) • • • (e n , τ n).
That is, σ is generated by π , i.e., σ ∈ L(G). Therefore, for all σ ∈ L(G aug), we have σ ∈ L(G).

I-observer

Let G aug = (Q aug , E, α aug , µ aug) be the equivalent representation of augmented automaton G aug = Q aug , E, t aug , Q aug i , aug as defined in Def. 2.16. We first adopt Algorithm 4.1 to construct the observer of G aug = (Q aug , E, α aug , µ aug), While the language generated by G

      1,1 , 4, 4       3,1 , 3, 4     7, 4   , 7 b   , 4 d   , 2 c   , 2 c   , e
= (Q, E, α, µ) is a subset of (E × D) * , i.e., L(G) ⊆ (E × D) * . For any sequence ω = (a 1 , τ 1)(a 2 , τ 2) • • • (a n , τ n) ∈ L(G aug obs), its equivalent notation in (E × D) * can be defined by ω cum = (a 1 , τ 1)(a 2 , τ 2) • • • (a n , τ n) where τ k = τ 1 ⊗ • • • ⊗ τ k , k = 2, 3, • • • , n, represents the cumulated weight for sequence a 1 a 2 • • • a k . We denote by L cum (G aug obs) the equivalent notation of L(G aug obs), that is, L cum (G aug obs) = {σ ∈ (E × D) * | ∃ω ∈ L(G aug obs) : ω cum = σ}.
The following lemma states the relationship between the observed language generated by G and the language generated by I-observer G

o = (a 1 , τ 1)(a 2 , τ 2) • • • (a k , τ k) ∈ P(L(G)) can be calculated by I(σ o) = {q i ∈ Q i | ∃q c ∈ Q : (q c , q i) ∈ δ aug obs (q aug i,obs , (a 1 , τ 1)(a 2 , τ 2 ⊗ -1 τ 1) • • • (a k , τ k ⊗ -1 τ k-1))}
where τ k ⊗ -1 τ k-1 is defined as the value x ∈ D such that x ⊗ τ k-1 = τ k , with τ k and τ k-1 ∈ D \ {ε}.

Proof. According to Algorithm 5.1, for all q i ∈ Q i , q c ∈ Q and σ ∈ L(G), we have q i σ q c ⇔ (q i , q i) σ (q c , q i). Therefore, for any σ o = (a 1 , τ 1)(a 2 , τ 2) • • • (a k , τ k) ∈ P(L(G)), we have

I(σ o) = {q i ∈ Q i | ∃q c ∈ Q, ∃σ ∈ L(G) : P(σ) = σ o , q i σ q c }
(by the definition of I(σ o) in Eq. (5.1))

= {q i ∈ Q i | ∃q c ∈ Q, ∃σ ∈ L(G) : P(σ) = σ o , q i σ q c , E f (σ) = E f (σ o)}
(by Lemma 5.1)

= {q i ∈ Q i | ∃q c ∈ Q, ∃σ ∈ L(G aug) : P(σ) = σ o , (q i , q i) σ (q c , q i), E f (σ) = E f (σ o)}
(by Algorithm 5.1) Therefore, Lemma 5.5 is established.

= {q i ∈ Q i | ∃q c ∈ Q : (q c , q i) ∈

Criteria for Verifying I-Detectability

This subsection focuses on Problem 5.1, that is, the verification of I-detectability. Idetectability problem can be rephrased as follows. If no observable label has been observed, we consider that all the states in Q i are possible initial states. Afterwards, from the successive observations, we may be able to restrict the set of possible initial states. 2. The set of possible current states of G after observing the weighted sequence (a 1 , τ 1)(a 2 , τ 2) • • • (a k , τ k) is given by δ obs (q i,obs , (a 1 , τ 1)(a 2 , τ 2 ⊗ -1 τ 1) • • • (a k , τ k ⊗ -1 τ k-1)), where δ obs is the transition function of the current-state estimator G obs = (Q obs , E obs , δ obs , q i,obs) of UWA G = (Q, E, α, µ).

Let Q aug I,obs be a subset of Q aug obs composed of states with the same second element (initial state of G), that is, Q aug I,obs = {q aug obs ∈ Q aug obs | ∃q ∈ Q i , ∀(q c , q i) ∈ q aug obs : q i = q}. Proof. (If) If Q aug I,obs is not empty, then the system can reach a state in Q aug I,obs after a finite number of observations for some trajectories of the system. As pointed out in Remark 5.4, we can determine the only possible initial state of the system G for trajectories corresponding to continuations of these observations. Hence, the system is weakly I-detectable.

(Only If) If Q aug I,obs = ∅, then the set of possible initial states does not shrink to a singleton whatever is the trajectory. Hence, the system is not weakly I-detectable.

Criteria for Verifying I-Opacity

In this section, we focus on Problem 5.2, that is, the verification of I-opacity for a UWA G = (Q, E, α, µ). The secret, denoted by Q s , is defined as an arbitrary subset of Q, i.e., Q s ⊆ Q. The set of initial states Q i of G is divided into two disjoint parts by the secret Q s :

Q i ∩ Q s and Q i \ Q s .
∈ Q i \ Q s)(∃q ∈ Q) (∃σ ∈ L(G))P(σ) = σ o ∧ q σ q
(by the definition of I(σ o) in Eq. (5.1))

⇔ (∀σ o ∈ P(L(G)))(∃q ∈ Q i \ Q s)(∃σ ∈ L(G, q)) P(σ) = σ o (according to Eq. (5.3))

⇔ (∀σ o ∈ P(L(G, Q i ∩ Q s)))(∃q ∈ Q i \ Q s) (∃σ ∈ L(G, q))P(σ) = σ o (by P(L(G)) = P(L(G, Q i ∩ Q s)) ∪ P(L(G, Q i \ Q s)) 3) ⇔ (∀q ∈ Q i ∩ Q s)(∀σ ∈ L(G, q))(∃q ∈ Q i \ Q s)
(∃σ ∈ L(G, q))P(σ) = P(σ)

which is consistent with Definition 5.4 of I-opacity. Hence the proof is completed.

3. More precisely, (⇒) holds true simply because P(L(G, Q i ∩ Q s)) ⊆ P(L(G)). In order to prove the correctness of (⇐), we have to prove that ∀σ o ∈ P(L(G, Q i \ Q s)), ∃q ∈ Q i \ Q s , ∃σ ∈ L(G, q) : P(σ) = σ o , which is self-evident.

For any q aug obs ∈ Q aug obs , we define I(q aug obs) = q i ∈ Q i | ∃(q c , q i) ∈ q aug obs as the initial states of automaton G that it contains. The following theorem illustrates that the I-observer G aug obs can be used to verify the I-opacity for UWA G. (4,4)}, {(3, 1), (3, 4)} and {(7, 4)}. Assume that the secret is Q s = {3, 4}. Since I({(7, 4)}) = 4 ⊆ Q s , according to Theorem 5.3, G is not initialstate opaque with respect to Q s and P. If now the secret is Q s = {1, 3}, then G is initial- state opaque since I({(1, 1), (4, 4)}) = {1, 4} Q s , I({(3, 1), (3, 4)}) = {1, 4} Q s and I({(7, 4)}) = 4 Q s .

Example 5.7. Consider the I-observer G aug obs in Fig. 5.6 of UWA G in Fig. 5.4 where Q i = {2, 4}. It can be checked that G is always non-opaque with respect to P and an arbitrary secret Q s so long as Q s ∩ Q i = ∅. In fact, among the states of G aug obs , we have I({1, 4}) = I({4, 4}) = I({3, 4}) = {4} and I({4, 2}) = I({3, 2}) = I({1, 2}) = {2}. Therefore, for a secret Q s containing initial state 2 and/or 4, there must exist one state q aug obs ∈ Q aug obs such that I(q aug obs) ⊆ Q s .

Remark 5.5. Note that the UWA whose transition weights are associated with a time interpretation are strongly related to real-time automata. Unlike in [Wang et al., 2018] where the verification of I-opacity in real-time automata has been investigated by solving the inclusion problem of regular languages, in this work, the I-opacity problem of a UWA is solved by the construction of its initial-state estimator.

Computational Complexity Analysis

Given a UWA G = (Q, E, α, µ), in the worst case, the number of states of its augmented automaton G aug obtained by using Algorithm 5.1 is |Q aug | = |Q| 2 . As a result, the computational complexity of constructing G aug using Algorithm 5.1 is polynomial with respect to the number of states of G.

Checking I-detectability and I-opacity for UWA G using Theorems 1-3 requires the construction of an I-observer. Since the augmented automaton has at most |Q| 2 states, where |Q| is the number of states of G, in the worst case, I-observer G aug obs has 2 |Q| 2 -1 states.

Therefore, verifying the I-detectability and I-opacity using G aug obs is of exponential complexity.

Conclusion

This paper addresses the verification of I-detectability and I-opacity for UWAs under partial event observation. Given a UWA G, an algorithm is first proposed to construct its augmented version G aug . It should be noted that each state q aug in G aug is a pair (q c , q i) of states from G, implying that state q c can be reached from initial state q i in system G. Then the initial-state estimator, I-observer, of G is obtained by constructing the current state estimator of the augmented automaton G aug . Finally, necessary and sufficient conditions are derived to verify strong I-detectability, weak I-detectability and I-opacity based on the constructed I-observer.

The work in this chapter has been submitted as follows:

A. Lai, S. Lahaye and Z. Li. "Initial-state detectability and initial-state opacity of unambiguous weighted automata", Automatica (submitted), 2019 [Lai et al., 2019d] .

Conclusion and Future Work

In this chapter, we make some conclusions on the main work of this thesis and discuss the possible directions for our future research.

Conclusion

State estimation and property verification are important problems in systems and control theory. These problems have been widely investigated for classical automata and Petri nets (PNs), two important models of discrete event systems (DESs). In addition to automata and PNs, weighted automata (WAs) can be considered as another class of DES models, which are a quantitative extension of nondeterministic finite automata (NFAs). WAs found much interest in Computer Science due to their importance both in theory as well as in current practical applications, e.g., natural language processing, speech recognition and digital image compression. From a different perspective, in this thesis, we use WAs as DES models to deal with state estimation, fault diagnosis, detectability and opacity verification problems, which are usually studied by researchers from the control community. The main work of this thesis is briefly described below.

• We formally define the state estimation problem for WAs. Given a WA where only partial labels are observable, state estimation aims at calculating all possible states the system can be in according to the observation. Algorithms are proposed in Chapter CHAPTER 6. CONCLUSION AND FUTURE WORK 3 for tackling this problem for WAs. The proposed approach is based on the analysis of state vector, and all paths consistent with the observation are enumerated so as to capture the possible current states.

• We deal with the fault diagnosis problem of WAs where failures are associated with partial unobservable labels. For a given WA, we first construct its augmented automaton with respect to a fault class, in which states are partitioned as fault states and non-fault states. Then the state estimation technique can be used to determine whether some fault labels have occurred or not given based on the observation.

• The verification of current-state detectability is investigated for unambiguous weighted automata (UWAs). A WA is said to be unambiguous if for any state and any string, there is at most one path labeled by this string leading from an initial state to that state. We define strong detectabilities (i.e., strong detectability and strong periodic detectability) and weak detectabilities (i.e., weak detectability and weak periodic detectability) for UWAs. Current-state detectability requires that the current state of the system can always be determined uniquely/unambiguously within a finite delay. An observer-based approach whose computational complexity is exponential with respect to the number of states of the studied UWA is proposed to verify the strong detectabilities and weak detectabilities. Besides, we find that the complexity of verification of strong detectabilities can be reduced by introducing the tool of detector whose size is polynomial with respect to the state cardinality of the original UWA.

• We study the verification of initial-state detectability (I-detectability) and initial-state opacity (I-opacity) of UWAs. Strong I-detectability and weak I-detectability, I-opacity are defined for UWAs. I-detectability requires that the initial state of the system can always be determined uniquely/unambiguously within a finite delay. I-opacity requires that the intruder can never be sure that the system is initially from a secret state for all trajectories of the system. Note that the secret in this thesis is modeled as a set of secret states. Algorithms are proposed to build the I-observer of a UWA so as to derive necessary and sufficient conditions for verifying strong I-detectability, weak I-detectability and I-opacity.

Definition 2. 3 .Definition 2 . 4 .

 324 The concatenation of two strings ω 1 ∈ E * and ω 2 ∈ E * is a new string, denoted by ω = ω 1 • ω 2 or simply by ω = ω 1 ω 2 , composed by the sequence of labels in ω 1 followed by the sequence of labels in ω 2 . If a string ω ∈ E * can be represented as ω = νγη with νγ, η ∈ E * , then string ν is called a prefix of ω, string γ is called a substring of ω, and string η is called a suffix of ω. Example 2.1. Consider an alphabet E = {a, b, c}. Its cardinality is |E| = 3. Strings ω 1 = ab, ω 2 = abc and ω 3 = abac defined on E have length |ω 1 | = 2, |ω 2 | = 3 and |ω 3 | = 4 respectively. The concatenation of ω 1 and ω 2 is ω 1 • ω 2 = ababc. Consider string ω 3 = abac.

Figure

 Figure 2.2 -Deterministic finite automaton

 Definition 2.13. A set D equipped with a binary operation ⊕ : D × D → D is a monoid,denoted by (D, ⊕), if • ⊕ is associative, i.e., (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) for any a, b, c ∈ D: • ⊕ has a neutral element ε, i.e., a ⊕ ε = ε ⊕ a = a for any a ∈ D. Monoid (D, ⊕) is said to be commutative if ⊕ is commutative, i.e., a ⊕ b = b ⊕ a for any a, b ∈ D. Definition 2.14. A semiring is a quintuple S = (D, ⊕, ⊗, ε, e) composed by a set D, two binary operations ⊕ and ⊗ on D, and two constant values ε, e ∈ D satisfying the following four axioms: • (D, ⊕) is a commutative monoid with neutral element ε (also called zero element), i.e., a ⊕ b = b ⊕ a, (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c), and ε ⊕ a = a ⊕ ε = a hold for any a, b, c ∈ D; • (D, ⊗) is a monoid with neutral element e (also called identity element), i.e., (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c), and e ⊗ a = a ⊗ e = a hold for any a, b, c ∈ D;

 The structure S = (R ∪ {-∞} , max, +, -∞, 0) is a typical instance of idempotent semiring, called max-plus semiring. By definition, D = R ∪ {-∞}, ε = -∞ and e = 0. The maximum plays the role of addition ⊕, i.e., ⊕ = max, and the conventional addition plays the role of multiplication ⊗, i.e., ⊗ = +. For any a, b ∈ D, we have a ⊗ b = a + b and a ⊕ b = max(a, b) . Max-plus semiring is also called Max-plus algebra, and is often denoted by R max .

 and final weights vector β = (ε, 3, ε, ε). The other values for µ(a), µ(b), µ(c) and µ(d) are equal to ε.

Figure 2 . 4 -

 24 Figure 2.4 -Structure explaining the relation between the unambiguity inDef. 2.18 and in[B éal et al., 2008].

Figure 2

 2 Figure 2.7 -Unambiguous weighted automaton in which state 2 has two input transitions labeled by b

Problem 3. 1 .

 1 The state estimation problem of a WA consists in finding a systematic approach to characterize the set C(σ o , τ) for any observation σ o and any time instant τ ≥ t f (σ o).

Example 3. 1 .

 1 Consider again the automaton G in Fig. 2.8. Assume that the underlying semiring of G is the max-plus semiring. Let σ o = (b, 7)(b, 11) and τ = 11.5. It can be verified that the set of consistent states is C

Proposition 3. 2 .

 2 For any σ o ∈ P(L(G)) whose compatible set is W(σ o) calculated by Algorithm 3.1, and for a weight τ ≥ t f (σ o), the set C(σ o , τ) returned by function Algorithm 3.2: Compute the set of consistent states Input:

 end for 26: return(C(σ o , τ) = C) 27: end function 54CHAPTER 3. STATE ESTIMATION AND FAULT DIAGNOSIS OF WEIGHTED AUTOMATA ConsistentSet is equal to C(σ o , τ) defined in Eq. (3.1).

1

 : σ o := , W(σ o) := ∅ 2: for each q ∈ Q i do 3:W(σ o) := W(σ o) ∪ {(q,)} 4: end for 5: while state estimation is required do 6: if observation (e, t) arrives then 7: W(σ o • (e, t)) := U pdateW((e, t), W(σ o)) 8:σ o := σ o • (e, t) o , τ) := ConsistentSet(W(σ o), τ) Algorithm 3.3 provides an online solution to Problem 3.1. Proof. Algorithm 3.3 initializes W() = {(q,) | q ∈ Q i } sinceall initial states can be reached via an empty string (no observation has occurred). Each time a new observable label occurs, function U pdateW is called to update the compatible set, and, when needed, the consistent states is determined by calling function ConsistentSet. According to Propositions 3.1 and 3.2, Algorithm 3.3 does provide a solution to Problem 3.1. Example 3.2. Let us consider again WA G in Fig. 2.8. Let us assume that the weighted sequence σ o = (b, 5)(b, 10) is observed and that the set of consistent states is required at a given weight τ = 14. It can be checked that α = (e, ε, ε, e), β = (e, ε, ε, ε),

4)

 4 Compute set of consistent states required at τ = 14: For pair (1, ubub), compute 56CHAPTER 3. STATE ESTIMATION AND FAULT DIAGNOSIS OF WEIGHTED AUTOMATA

 Therefore, computing W(σ o) requires 2 × |Q| 2 × |W(σ o)| comparisons where |W(σ o)| is the cardinality of W(σ o). In the worst case, it is equal to 2 × |Q| j+2 since |W(σ o)| ≤ |Q| j . There are k observed labels in σ o , which means that function U pdateW should be called k times. Thus, the total number of comparisons for calculating W(σ o) is at most k ∑ j=1 2 × |Q| j+2 .

 check diagnosability by constructing a new automaton G d based on the concurrent composition of two plant models. These algorithms are polynomial in the number of states of the system and also in the number of fault classes. Online fault diagnosis can be performed on verifier and G d with a polynomial complexity.

 the set of normal and faulty states, respectively. G * is called the augmented automaton of G with respect to fault class E f . In the worst case, the number of states of G * is |Q * | = 2 × |Q|.

Figure 3 . 5 -

 35 Figure 3.5 -A weighted automaton G

64CHAPTER 3 .

 3 STATE ESTIMATION AND FAULT DIAGNOSIS OF WEIGHTED AUTOMATA

f

 Figure 3.6 -The augmented automaton G * of G in Fig. 3.5

 defined in Eq. (3.1). In this section, we denote C * (σ o , τ) the set of states consistent with σ o and τ in augmented WA G * of G with respect to fault class E f . Lemma 3.2. Consider an observed weighted sequence σ o ∈ P(L(G)), a given weight τ, and fault class E f .

4 : 5 :

 45 3 of diagnosis states, Lemma 3.2 is established. In fact, all states of the set C * (σ o , τ) are outside (resp. inside) the set Q * f , which definitely means that fault class E f cannot (resp. must) have occurred. On the other hand, we cannot conclude whether a label in E f has occurred or not if C * (σ o , τ) contains normal and faulty 66CHAPTER 3. STATE ESTIMATION AND FAULT DIAGNOSIS OF WEIGHTED AUTOMATA states. Lemma 3.2 shows that the problem of detecting the occurrence of a fault label belonging to E f in G reduces to a state estimation problem for the WA G * . Algorithm 3.5 summarizes the online procedure for solving fault diagnosis problem. Algorithm 3.5: On-line fault diagnosis 1: G * = Trans f ormG(G, E f) / * Add comments in the way * / 2: Let σ o = 3: while fault diagnosis is required do if observation (e, t) arrives then Let σ o = σ o • (e, t) C * (σ o , τ) in G * using state estimation algorithm in Section 3.3 10:

Example 3 . 5 .

 35 First, we have to calculate the augmented automaton G * of G with respect to E f , which is presented inFig. 3.6. Then, calculate all states that consistent with σ o = (a, 3)(c, 5)(a, 8) and τ = 12 in G * . Applying the approach proposed in Subsection 3.3.1, we getC(σ o , τ) = {(1, 1)}. Since C * (σ o , τ) contains no normal state, then the diagnosis state ϕ(σ o , τ, E f) = F. In fact, from G we know that S(σ o , τ) = (a, 3)(c, 5)(a, 8)(f , 12), (a, 3)(c, 5)(n , 6)(a, 8)(f ,12) , which means that fault label f must have occurred if σ o = (a, 3)(c, 5)(a, 8) is observed at τ = 12. Consider again the WA G in Fig. 2.8, where E o = {b} and E f = E uo = {a}. Its augmented automaton G * calculated by applying Algorithm 3.4 is shown in Fig. 3.7 in which the faulty states are highlighted in red. Let observation σ o = (b, 5)(b, 10) and τ = 14. Then, we obtain the set of consistent states C(σ o , τ) = {(2, 1)} by applying the approach proposed in Subsection 3.3.1. Since C(σ o , τ) contains no normal state, then the diagnosis state ϕ(σ o , τ, E f) = F. In fact, from G we know that S(σ o , τ) = {ababa}, which means that fault label a must have occurred if σ o = (b, 5)(b, 10) is observed at τ = 14.

Figure 3 . 7 -

 37 Figure 3.7 -The augmented automaton G * of G in Fig. 2.8

Algorithm 4 .

 4 1 details the construction of such an observer G obs for a given unambiguous automaton G. This algorithm is first presented here and it will be adapted to deal with verification of the I-detectability in next chapter. Algorithm 4.1 can be explained as follows.

Algorithm 4 . 1 :

 41 Construction of the observer Require: An unambiguous WA G = (Q, E, α, µ, β) over semiring S.

Example 4 . 2 .

 42 Consider the unambiguous WA G in Fig.4.1 and ⊗ = +. After applying Algorithm 4.1, we obtain the observer G obs shown in Fig.4.2.

Figure 4 .

 4 Figure 4.2 -Observer G obs of G in Fig. 4.1

Proposition 4 .

 4 1 indicates that observer G obs can serve as the state estimator of WA G.

Theorem 4 .

 4 1 (Criterion for Checking Strong Detectability). A UWA G is strongly detectable with respect to projection P iff any state reachable from any elementary circuit in observer

 single obs . Let n = |v| ∈ N, then by Proposition 4.1 and Lemma 4.1, we can claim that

 single obs . Let n = |vs|, then according to Proposition 4.1 and Lemma 4.1, we have

Example 4 . 4 .

 44 Consider the observer G obs in Fig.4.2 of UWA G in Fig.4.1. By Theorem 4.1, G is not strongly detectable since there exists one elementary circuit, i.e., {2, 3} (b,0.3) -→ {2, 3}, with a state not in Q single obs . Because there are elementary circuits with all states in Q single obs , by Theorem 4.2, system G is detectable. For example, circuit {3} , 3} has its state in Q obs \ Q single obs , by Theorem 4.3, G is not strongly periodically detectable. Because there are elementary circuits in G obs which include at least one state belonging to Q single obs , by Theorem 4.4, automaton G is periodically detectable. Consider the UWA G in Fig. 4.3. Its observer G obs computed by Algorithm 4.1

Figure 4 . 4 -

 44 Figure 4.4 -Observer G obs of automaton G in Fig. 4.3

Example 4 . 5 .Figure 4 . 5 -

 4545 Figure 4.5 -An unweighted automaton G.



Figure 4 . 6 -

 46 Figure 4.6 -The observer G obs of automaton G in Fig. 4.5.

Figure 4 . 7 -

 47 Figure 4.7 -The detector G det of automaton G in Fig. 4.5.

 ξ(y 0 , ωa) = ξ(ξ(y 0 , ω), a)= {y ∈ Y | ∃y ∈ ξ(y 0 , ω) : y ∈ ξ(y , a)} = {y ∈ Y | ∃y ∈ {δ(x 0 , ω)} : y ∈ ξ(y , a)} (by IH and |δ(x 0 , ω)| = 1) = {y ∈ Y | y ∈ ξ(δ(x 0 , ω), a)} = {y ∈ Y | y ∈ {δ(δ(x 0 , ω), a)}} (by (F1) and |δ(x 0 , ωa)| = 1) = {δ(δ(x 0 , ω), a)} = {δ(x 0 , ωa)}Case 2: |δ(x 0 , ω)| ≥ 2 and |δ(x 0 , ωa)| = 1. Since |δ(x 0 , ωa)| = 1, we need to prove ξ(y 0 , ωa) = {δ(x 0 , ωa)}, which can be done as follows.

 ξ(y 0 , ωa) = ξ(ξ(y 0 , ω), a) = {y ∈ Y | ∃y ∈ ξ(y 0 , ω) : y ∈ ξ(y , a)} = {y ∈ Y | ∃y ⊆ δ(x 0 , ω) : y ∈ ξ(y , a)} (by IH and |δ(x 0 , ω)| ≥ 2) = {y ∈ Y | ∃y ⊆ δ(x 0 , ω) : y ∈ δ(y , a) } (by (F1) and 3 |δ(x 0 , ωa)| = 1) = {y ∈ Y | ∃y ⊆ δ(x 0 , ω) : y = δ(y , a)} = {δ(δ(x 0 , ω), a)} = {δ(x 0 , ωa)} Case 3: |δ(x 0 , ω)| = 1 and |δ(x 0 , ωa)| ≥ 2. Since |δ(x 0 , ωa)| ≥ 2, we need to prove for 3. Since |δ(x 0 , ω)| ≥ 2 and |δ(x 0 , ωa)| = 1, then there exists y ⊆ δ(x 0 , ω) such that |δ(y , a)| = 1. Moreover, for any y ⊆ δ(x 0 , ω), we have |δ(y , a)| = 1 or |δ(y , a)| = 0.

y

 ∈ ξ(y 0 , ωa) ⇔ y ∈ ξ(ξ(y 0 , ω), a)⇔ (∃y ∈ ξ(y 0 , ω))y ∈ ξ(y , a)⇔ (∃y ∈ δ(x 0 , ω))y ∈ ξ(y , a) (by IH and |δ(x 0 , ω)| = 1) ⇔ (∃y = δ(x 0 , ω))y ∈ ξ(y , a) ⇔ y ∈ ξ(δ(x 0 , ω), a) ⇔ y ⊆ δ(δ(x 0 , ω), a) (by (F2) and |δ(x 0 , ωa)| ≥ 2 ⇔ y ⊆ δ(x 0 , ωa)Case 4: |δ(x 0 , ω)| ≥ 2 and |δ(x 0 , ωa)| ≥ 2. Since |δ(x 0 , ωa)| ≥ 2, we need to prove for any y ⊆ Q such that |y| = 2, y ∈ ξ(y 0 , ωa) ⇔ y ⊆ δ(x 0 , ωa), which can be done as follows.y ∈ ξ(y 0 , ωa) ⇔ y ∈ ξ(ξ(y 0 , ω), a) ⇔ (∃y ∈ ξ(y 0 , ω))y ∈ ξ(y ,a) ⇔ (∃y ⊆ δ(x 0 , ω))y ∈ ξ(y , a) (by IH and |δ(x 0 , ω)| ≥ 2) ⇔ (∃y ⊆ δ(x 0 , ω))y ⊆ δ(y , a) (by (F2) and 4 |δ(x 0 , ωa)| ≥ 2)

Example 4 . 6 .

 46 Consider again the WA G in Fig.4.5. Its detector G det is depicted in Fig.4.7.

Example 4 . 7 .

 47 Consider the UWA G in Fig.4.8. Its observer G obs calculated by Algorithm 4.1 is depicted in Fig.4.9. Its detector G det is depicted in Fig.4.10. According to G obs , G

Figure 4 . 8 -

 48 Figure 4.8 -An unambiguous weighted automaton G.



Figure 4 . 9 -

 49 Figure 4.9 -The observer G obs of G in Fig. 4.8.

 ds

Figure 4 .

 4 Figure 4.10 -The detector G det of G in Fig. 4.8.

 1 I-Detectability .

 Section 5.2 formally defines the problem of I-detectability and gives the definitions of two types of I-detectabilities, i.e., strong I-Detectability and Weak I-Detectability. In Subsection 5.3.1, given a UWA G, we detail the process of constructing the I-observer, i.e., initial-state estimator, of G. In Subsection 5.3.2, necessary and sufficient conditions based on constructed I-observer are introduced to verify the I-detectabilities of a UWA. Subsection 5.3.3 presents a necessary and sufficient conditionfor verifying I-opacity. In Subsection5.3.4, we analyse the complexity of verification of Idetectability and I-opacity using our approach. Finally, conclusions are drawn in Section 5.4.

Definition 5 . 2

 52 (Strong I-Detectability). A UWA G is strongly I-detectable with respect to projection P if, for all trajectories, the set of possible initial states shrinks to a singleton after a finite number of observations, i.e.,(∃n ∈ N)(∀σ ∈ L ω (G))(∀σ ∈ Pr(σ))|P(σ)| > n ⇒ |I(P(σ))| = 1.Definition 5.3 (Weak I-Detectability). A UWA G is weakly I-detectable with respect to projection P if, for some trajectories, the set of possible initial states shrinks to a singleton after a finite number of observations, i.e., (∃n ∈ N)(∃σ ∈ L ω (G))(∀σ ∈ Pr(σ))|P(σ)| > n ⇒ |I(P(σ))| = 1.

Figure 5 . 2 -

 52 Figure 5.2 -Augmented automaton G aug of G in Fig. 5.1.

). Then we prove that G aug obs can serve as the initialstate estimator, called I-observer, of the original system G.Remark 5.2. Note that Algorithm 4.1 is presented in Subsection 4.3.1 for constructing the current-state estimator G obs = (Q obs , E obs , δ obs , q i,obs) of a given WA G = (Q, E, α, µ) to deal with the verification of current-state detectability. The I-observer G aug obs is a DFA over a weighted alphabet E aug obs ⊆ E o × D. That is, G aug obs has only one initial state, and from a given state no two transitions of G aug obs are labeled by the same weighted label (a, t a) ∈ E aug obs . It should be noted that from a state in G aug obs there may exist several output transitions labeled by the same label a ∈ E o but with different weights t a . In this case, the external agent can distinguish the transitions from the different associated weights. Example 5.3. Consider the UWA G in Fig. 5.1 whose augmented automaton G aug is visualized in Fig. 5.2. Its I-observer G aug obs computed by applying Algorithm 4.1 to G aug is shown in Fig. 5.3.

Figure 5 .

 5 Figure 5.3 -I-observer G aug obs of the automaton G in Fig. 5.1.

4 .

 4 The projection of language L(G) generated by G coincides with L cum (G aug obs), that is, P(L(G)) = L cum (G aug obs).

Proof . Lemma 5 . 5 .

 .55 Lemma 5.3 states that L(G aug) = L(G). Besides, by Lemma 4.1 1 , we haveP(L(G aug)) = L cum (Gaug obs). Therefore P(L(G)) = L cum (G aug obs) holds. The possible initial states of UWA G after observing weighted sequence σ

1.

 The projection of language L(G) generated by G coincides with L cum (G obs), i.e.,P(L(G)) = L cum (G obs), where L cum (G obs) = {σ ∈ (E × D) * | ∃ω ∈ L(G obs) : ω cum = σ}.

 , (a 1 , τ 1)(a 2 , τ 2 ⊗ -1 τ 1) • • • (a k , τ k ⊗ -1 τ k-1))} (by Proposition 4.1 2)

 The Idetectability problem is to determine if this set can shrink to a singleton after a finite number of observations, and then, to identify the only possible initial state. Necessary and sufficient conditions for checking strong I-detectability and weak I-detectability for UWA G based on its I-observer G aug obs are presented. We denote by S ci the set of all elementary circuits of G |s| ≥ 1 ∧ (∀s ∈ Pr(s) s.t. s = s : δ aug obs (q aug obs , s) = q aug obs)}.

Remark 5 . 3 .Remark 5 . 4 .

 5354 Since G is deadlock free and I-observer G aug obs is finite, there must exist at least one circuit in G aug obs . If an observed weighted sequence from G leads to a state in Q aug I,obs , then the set of possible initial states is a singleton and this remains true for any continuation of the observed weighted sequence. Therefore, if there are circuits in G aug obs , then all nodes of a circuit belong to either Q Criterion for Checking Strong I-Detectability). A UWA G is strongly Idetectable with respect to projection P iff (∀(q aug obs , s) ∈ S ci)(∀ω ∈ Pr(s))δ aug obs (q aug obs , ω) ∈ Q aug I,obs , that is, all the elementary circuits in G aug obs have their nodes in Q aug I,obs .Proof. (If) If (∀(q aug obs , s) ∈ S ci)(∀ω ∈ Pr(s))δ aug obs (q aug obs , ω) ∈ Q aug I,obs , then the system will eventually reach a state in Q aug I,obs after a finite number of observations for all possible trajectories of the system. According to Remark5.4, the set of possible initial states is a singleton for all possible continuations, that is, the system is strongly I-detectable.(Only If) Assume (∃(q aug obs , s) ∈ S ci)(∀ω ∈ Pr(s. Then a possible evolution of the system can iterate indefinitely such a circuit. That is, we cannot determine the initial state of G for some trajectories forever. Hence, the system is not strongly Idetectable. Theorem 5.2 (Criterion for Checking Weak I-Detectability). A UWA G is weakly I-detectable with respect to P iff Q aug I,obs = ∅.

Example 5 . 4 .Example 5 . 5 .

 5455 Consider the I-observer G aug obs in Fig.5.3 of UWA G in Fig.5.1. There are three states in G aug obs , i.e., {(1, 1), (4, 4)}, {(3, 1), (3, 4)}, {(7, 4)}, and we have Q aug I,obs = {{(7, 4)}}.By Theorem 5.1, G is weakly I-detectable since Q aug I,obs is not empty. On the other hand, G is not strongly I-detectable since not all elementary circuits have all their nodes within Q aug I,obs . For instance, elementary circuit {(3, 1), (3, Consider the UWA G in Fig.5.4 with ⊗ = +. Its augmented automaton G aug computed by Algorithm 5.1 is shown in Fig.5.5. After applying Algorithm 4.1 to G aug , we obtain the I-observer G aug obs shown in Fig.5.6. It can be checked that all elementary circuits have all their nodes in Q aug I,obs . Therefore, by Theorem 5.1, G is strongly I-detectable (hence weakly I-detectable).

Figure 5 . 5 -

 55 Figure 5.4 -An unambiguous automaton G

Lemma 5 . 6 .Figure 5

 565 Figure 5.6 -I-observer G aug obs of G in Fig. 5.4.

Theorem 5 . 3 .

 53 Given a UWA G = (Q, E, α, µ), projection P : E * → E * o , and a set of secret states Q s ⊆ Q, G is initial-state opaque with respect to Q s and P iff Consider the I-observer G aug obs in Fig.5.3 of UWA G in Fig.5.1. There are three states in G aug obs , i.e., {(1, 1),

 same way as inNFA. From the definitions of NFA and DFA, it is clear that a DFA is a special NFA in which there is only one initial state, and the transition relation is a one to one function. As in the case of NFA, we use G = (Q, E, δ, q 0) to represent a DFA if no final state is specified.

	Example 2.5. Fig. 2.2 is the graphical representation of a DFA G

 Its transition function is given in Table 2.2.

. 48 3.2 Problem Statement . 48 3

	.	56
	3.3.3 Some Attempts of Constructing Observer for State Estimation	59
	3.4	

Contents 3.1 Introduction .

2.1 State Estimation . 48 3.2.2 Fault Diagnosis . 50 3.3 State Estimation of Weighted Automata . 51 3.3.1 An Online State Estimation Approach 51 3.3.2 Computational Complexity Analysis

Fault Diagnosis of Weighted Automata

. 61 3.4.1 Construction of the Augmented Automaton 62 3.4.2 Diagnosis State Determination . 65 3.5 Conclusion . 67

 × D × E f that associates to each observation σ o ∈ P(L(G)), to each given weight τ, and to fault class E f , a diagnosis state.

to the framework of WAs. Definition 3.3. A diagnoser is a function ϕ : (E × D) *

 Therefore, state 2 is consistent with σ o . Similarly, state 3 is a consistent state by considering path π 2 .

 which is built so that it has the following structural properties: G obs has only one initial state, and from a given state no two transitions of G obs are labeled by the same weighted label (a, t a) ∈ E obs . That is, G obs is a DFA over the weighted alphabet E obs . Let us stress, however, that from a state in G obs there may exist several output transitions labeled by the same label a ∈ E o but with different weights t a . In this case, the external agent can distinguish the transitions from the different associated weights. Then, we prove that G

obs can be used to estimate the consistent states for any infinite or finite weighted sequence observed from system G.

 Theorem 4.5 (Criterion for Checking Strong Periodic Detectability). A UWA G is strongly periodically detectable with respect to projection P iff each elementary circuit of observer G det contains at least one state belonging to Y single , that is: (∀(y, s) ∈ EC det)(∃ω ∈Pr(s))ξ(y, ω) ⊆ Y single .Proof. We have to prove that (∀(x, s) ∈ EC obs)(∃ω ∈ Pr(s))δ(x, ω) ∈ X single iff (∀(y, s) ∈ EC det)(∃ω ∈ Pr(s))ξ(y, ω) ⊆ Y single .

 That is, (∃(y, s) ∈ EC det)(∀w ∈ Pr(s))ξ(y, w) Y single . (Criterion for Checking Strong Detectability). A UWA G is strongly detectable with respect to projection P iff any state reachable from any elementary circuit in observer G obs belongs to Y single , that is, (∀(y, s) ∈ EC det)(∀y ∈ Y s.t. ∃ω ∈ E * obs , y ∈ ξ(y, ω))y ∈ Y single . Proof. We have to prove that

	Theorem 4.6

 t. ∃ω ∈ E * obs , x = δ(x, ω))x ∈ X single , let y = x, and by Lemma 4.2, we get (∀y∈ Y s.t. ∃ω ∈ E * obs , y ∈ ξ(y, ω))y ∈ Y single . Therefore, if (∀(x, s) ∈ EC obs)(∀x ∈ X s.t. ∃ω ∈ E * obs , x = δ(x, ω))x ∈ X single is true, then (∀(y, s) ∈ EC det)(∀y ∈ Y s.t. ∃ω ∈ E * obs , y ∈ ξ(y, ω))y ∈ Y single . (If) Assume (∀(x, s) ∈ EC obs)(∀x ∈ X s.t. ∃ω ∈ E * obs , x = δ(x, ω))x ∈ X single is not true, i.e., (∃(x, s) ∈ EC obs)(∃x ∈ X s.t. ∃ω ∈ E * obs , x = δ(x, ω))x / ∈ X single. Now we need to prove (∃(y, s) ∈ EC det)(∃y ∈ Y s.t. ∃ω ∈ E * State x belongs to (x, s) and (x, s) contains at least one state belongs to X single . According to the construction procedure of G det , there must exist a circuit in G det containing a state that does not belong to Y single which is obtained by splitting state x . Case 2: State x belongs to (x, s) and all states in (x, s) do not belong to X single . According to the (If) part of Theorem 4.5, there exists a circuit in G det containing a state that does not belong to Y single . Case 3: State x does not belong to (x, s) and all states in (x, s) belong to X single . Let y = x, then according to the construction procedure of G det , there is a circuit (y, s) with all its states belonging to Y single in G det . Besides, since x / ∈ X single , by Lemma 4.2, we have (∃y ∈ Y s.t. ∃ω ∈ E * obs , y ∈ ξ(y, ω))y / ∈ Y single (y is obtained by splitting state x).

	obs , y ∈ ξ(y, ω))y / ∈ Y single , which can be done
	by discussing the following cases.
	Case 1:

Note that the activation weight can represent an amount of time, resources (energy), or a cost, depending on the interpretation of weights adapted in the underlying work.

A path starts from an initial state and ends with a final state is called a successful path.

Note that the set E f could be further partitioned to r disjoint subsets, i.e.,E f = E 1 f ∪ E 2 f ∪ • • • ∪ E r frepresenting different fault classes. However, in this chapter, we consider single fault class scenario for sake of clarity and without loss of generality.

Note that τ k ⊗ -1 τ k-1 is defined as the value x ∈ D such that x ⊗ τ k-1 = τ k , with τ k and τ k-1 ∈ D \ {ε}.

More precisely, since y ∈ ξ(y , a) and |y| ≥ 2, according to the definition of ξ, then |δ(y , a)| ≥ 2. By (F2), we have y ∈ ξ(y , a) ⇔ y ⊆ δ(y , a).

4) (b,4),(c,7) (a,3) (b,3) (d,4) (c,7),(d,5) (a,3),(a,4) (c,7) (b,3) (b,4),(d,4),(d,5) (a,3) (b,4) (d,5) (c,7) (a,3),(b,3) (b,4) (a,4) (d,5) (c,7) (a,3) (d,5) (a,4) (b,3) (b,4) (d,4) (a,3) (b,3) (a,3) (b,4),(c,7) (a,3) (c,7),(d,5) (b,4),(d,5) (b,3) (a,4) (c,7) (c,7)

List of Tables

2.1

Transition relation of the NFA in Fig. 2.1 . 32 2.2 Transition function of the DFA in Fig. 2.2 . 34 The work in this chapter has been published as follows:

A. Lai, S. Lahaye and A. Giua. "State estimation of max-plus automata with unobservable events", In Automatica, Vol. 105, pp. 36-42, 2019[Lai et al., 2019a] .

A. Lai, S. Lahaye and A. Giua. "A two-step approach for fault diagnosis of max-plus automata", In proceeding of the 6th International Conference on Control, Decision and Information Technologies (CoDIT), 2019 [Lai et al., 2019b] .

Current-State Detectability Verification for UWAs

This chapter studies the current-state detectability verification for unambiguous weighted automata (UWAs).

For an arbitrary finite or infinite sequence σ, we denote Pr(σ) the set of all its prefixes. Four types of detectabilities for WAs are defined as follows.

Definition 4.2 (Strong Detectability)

. A WA G is strongly detectable with respect to a projection P if one can determine, after a finite number of pair observations, the current state and subsequent states of the automaton for all trajectories of the automaton. That is,

Definition 4.3 (Weak Detectability).

A WA G is detectable with respect to a projection P if one can determine, after a finite number of pair observations, the current state and subsequent states of the automaton for some trajectories of the automaton. That is,

Definition 4.4 (Strong Periodic Detectability).

A WA G is strongly periodically detectable with respect to a projection P if one can periodically determine the current state of the system for all trajectories of the automaton. That is,

Definition 4.5 (Weak Periodic Detectability).

A WA G is periodically detectable with respect to a projection P if one can periodically determine the current state of the system for some trajectories of the automaton. That is,

Problem 4.1. Solving the detectability problem of a WA aims to find a systematic way to check if the automaton is strongly detectable, detectable, strongly periodically detectable, and periodically detectable.

Part of the work in this chapter has been submitted as follows:

A. Lai, S. Lahaye and A. Giua. "Initial-state detectability and initial-state opacity of unambiguous weighted automata", IEEE Transaction on Automatic Control (submitted), 2019 [Lai et al., 2019c] .

o , and a set of secret states Q s ⊆ Q, G is initial-state opaque with respect to Q s and P, if for all q ∈ Q i ∩ Q s and for all σ ∈ L(G, q), there exist q ∈ Q i \ Q s and σ ∈ L(G, q) such that

The following example illustrates the notion of I-detectability and I-opacity.

Example 5.1. Consider the UWA G in Fig. 5.1 with the set of initial states Q i = {1, 4} and ⊗ = +. We assume that the set of secret states is Q s = {3, 4}, and u is the only unobservable label.

Detectability analysis: Initially, the system can be in state 1 and/or state 4. When weighted sequence (b, 7) has been observed, there are two paths that are consistent with this observed weighted sequence, that is, (1, u, 2)(2, b, 3) and (4, No weighted sequence can be generated by G from non-secret initial state 1 such that its projection is equal to P(σ). Therefore G is not initial-state opaque with respective to secret S. Require: A UWA G = (Q, E, α, µ).

Ensure: An augmented automaton G aug for G.

∪ {(q, q)}, aug ((q, q)) = α q 4: Enqueue (q, q) in Queue 5: end for 6: Let Q aug = Q aug i 7: while Queue = ∅ do 8:

Dequeue (q c , q i) from Queue

9:

for each a ∈ E do 10: R aug ((q c , q i), a) = {(q c , q i) | q c ∈ R(q c , a)} 11:

for each (q c , q i) ∈ R aug ((q c , q i), a) do

Enqueue (q c , q i) in Queue 15:

end if 16:

t aug ((q c , q i), a, (q c , q i)) = µ(a) q c q c 17:

end for 18:

end for 19: end while 20: Return G aug = Q aug , E, t aug , Q aug i , aug belonging to Queue, we calculate all the reachable states for the occurrence of any label, i.e., R aug ((q c , q i), a), for all a ∈ E. If an element (q c , q i) ∈ R aug ((q c , q i), a) has not been defined, then it is added in Q aug and in the stack. Besides, an arc labeled by a/µ(a) q c q c from node (q c , q i) to node (q c , q i) is also defined. Repeat this procedure until stack Queue becomes empty, then the augmented automaton G aug is constructed.

Remark 5.1. In the worst case, the number of states of G aug is |Q aug | = |Q| 2 . As a result, the computational complexity of constructing the augmented automaton G aug using Algorithm 5.1 is polynomial with respect to the number of states of G. Proof. Assume that G aug is not unambiguous. Then, there is more than one path labeled by a string, e.g. e 1 e 2 • • • e i , from the initial states leading to a state (q c , q i) in G aug where

Future Work

In this section, we point out several possible directions for future research related to the work in this thesis.

• In this thesis, a fault is defined as "the occurrence of a faulty label", the same as in logical models. Maybe we can consider different types of faults for WAs because they are no longer logical models. For example, if we assume that a fault is "the occurrence of a transition with a delay", can we detect this type of fault? On the other hand, we will consider the problem of diagnosability of fault using WAs. The diagnosability characterizes whether one can always determine the occurrence of a fault within a limited number of delays, e.g., a finite number of label observations and a finite number of time units.

• All work on verifying current-state detectability and I-detectability as well as Iopacity of WAs is done with the unambiguity assumption. This assumption greatly limits the contribution of our research. As a future work, we plan to relax this assumption when dealing with these problems.

• In addition to state-based opacity, language-based opacity is another important class of opacity properties, where the secret is defined as a language, i.e., a set of label sequences. A system is said to be language opaque if the intruder can never infer if the evolution of the system belongs to the secret. Our future work will focus on current-state opacity and language opacity in the framework of WAs.

• The opacity verification problem is to determine whether a system is opaque with respect to a given secret or not. Another issue related to opacity verification is the problem of opacity enforcement. Given a system that is not opaque, the opacity enforcement problem is to make the system opaque. Our future work is of exploring techniques to deal with I-opacity enforcement and language-based opacity enforcement for UWAs. As in automata and PNs, such techniques may rely on supervisory control, dynamically changing the observability of labels, and inserting additional labels into the output behavior of the system.