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Spécialité : Automatique - Productique (AP)
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General Overview

The post industrial revolution era has resulted in the emergence of high-mix
low-volume production environment which is challenged by increasing de-
mand volume and diversity. Consequently, product life cycles has shortened.
In this fragile, complex and highly competitive production setting, market
share can only be increased and sustained by developing new technologies
and improved utilization of existing production capacities. However, fre-
quent changes in process recipes has led the drifting equipment behaviours
and increasing unscheduled equipment breakdowns which disrupts and re-
duces the production capacities. There exist multiple solutions to this prob-
lem. For example, we can invest to buy additional production equipment
and neutralize the challenges of high-mix low-volume. This will be an ar-
tificial transformation to low-mix low-volume but highly capital intensive.
Moreover, sustainable market share requires new technologies in short but
regular intervals; therefore, we have a risk of technological incompatibility
with these newly employed production equipment. These challenges can also
be addressed by incorporating automation system and computerized main-
tenance management. However, the hostile equipment behaviour requires
intelligent than programmable automation systems to improve production
capacities.

The increasing unscheduled equipment breakdown results in increasing
corrective and preventive maintenance. This not only unstabilizes but also
reduces the production capacities. As a matter of fact, shortened product
life cycles also result in shortened technology life cycle; therefore, increased
and sustainable market share cannot be ensure by incorporating only new
technology. The core problem lies in unstable and reduced production ca-
pacities. In this research thesis, we are objectively focused on stabilizing and
improving production capacities in high-mix low-volume production settings.
We argue that this can be achieved by improving increased corrective (CM)
and preventive maintenance (PM). This argument served as the basis for
initial investigation using data collected from the production line of a world
reputed high-mix low-volume production line. The analysis (see chapter 1,
section 1.2, subsections ??, 1.5.2) highlighted that the reason for increasing
CM is the misdiagnosis in identifying the source of product quality drifts and
failure(s)/cause(s). This results in increasing failure durations, failure counts
and repair actions. This has direct impact on increasing PM. It is because of
the fact that during the execution of CM actions, misdiagnosis often result in
the execution of PM actions by technicians, in anticipation to put machine

1



General Overview

back in production as early as possible.
In high-mix low-volume production settings, most commonly employed

maintenance practices are CM, systematic PM and Conditional Based Main-
tenance (CBM). The CM refers to run to failure maintenance strategy whereas
systematic PM refers to time or other elapsed unit based maintenance with
an objective to keep the equipment in functional condition. These mainte-
nance strategies could easily result in under or over engineering and lead to
the emergence of CBM where maintenance actions are triggered based on
the condition monitoring information available from the past until decision
time. The CBM is implemented with FDC (fault detection and classification
system) and is used to control equipment stoppage in case of abnormal be-
haviour detected through continuous monitoring of signals from equipment
sensors. It is accomplished in two steps, first the detection of the fault, and
second the identification of respective causes for the fault. Moreover, success
of CBM based on FDC depends on repeatable failures or equipment drifts.
It can be concluded that this maintenance strategy is not very useful in high-
mix low-volume because of changing equipment behaviours. In comparison
to these maintenance strategies, PdM (predictive maintenance) has emerged
as a promising solution where efforts are made to predict failures before their
occurrences. There is a high degree of uncertainty associated with the PdM
approaches. In this research thesis, we are subjectively focused on addressing
misdiagnosis in product quality drift source and failure(s)/cause(s) which re-
sult in increasing CM and PM. Consequently, production capacities becomes
unpredictable and reduced. We argue that an intelligent system, besides
automation and computerized maintenance management, is required to help
addressing this misdiagnosis issue to reduce CM and PM initiatives.

In literature (see chapter 2), we found that equipment is believed to be
the only source of product quality drifts. However, in high-mix low-volume
production settings, product quality drift source can vary from equipment,
product, process (technology) to maintenance. Therefore, we argue that in
the absence of multi source diagnosis model for product quality drifts, it is not
possible to reduce increasing unscheduled equipment breakdowns and respec-
tive CM and PM actions. We also found that most of the failure(s)/causes(s)
diagnosis approaches proposed are based on equipment sensor data. More-
over, these models are developed and benchmarked at the equipment level.
We argue that the sensor reliability issues could easily add up to misdiagnosis
rather than helping in reducing associated failure durations and repair ac-
tions executed during an unscheduled equipment breakdown. We also argue
that equipment are composed of modules also known as assemblies which
are linked to one another in parent child relation and has significant effect
on the functioning of each other. The emerging and promising PdM based
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approaches rely on the computation of RUL (remaining useful life) or identi-
fication of failure signatures. The RUL based approaches use physical degra-
dation models to predict the potential failure and are benchmarked at the
component level whereas failure signature based approaches are data driven
in nature and rely on machine learning and artificial intelligence techniques.
The drawback associated with the failure signature based approaches is that
these failure signatures do not guarantee the failure alert well before time
so that proactive/corrective measures can be either executed to avoid failure
occurrences or planned to improve resources utilization. Based on these ar-
guments, we fixed the scope of this research thesis in finding answers to (i)
how to address the misdiagnosis at the source product quality drift?, (ii) how
to improve failure(s)/cause(s) diagnosis and (iii) how to extract time bound
failure signatures to improve not only CM but also PM. These answers will
enable us to move towards implementing proactive maintenance framework
to improve production capacities in high-mix low-volume production envi-
ronment. Moreover to avoid equipment sensor reliability issue, we restricted
to recent based contextual information for the validation using case study
from world reputed semiconductor manufacturer.

The existing modelling approaches used for failure/cause diagnosis and
failure predictions are data driven (see chapter 4). These can be further
broadly classified as statistical (Principal Component Analysis, Discriminant
Analysis, Partial Least Square etc.) and machine learning (Support Vector
Machines, Fault Tree, Markov Model, Artificial Neural Network, Bayesian
Network etc.) techniques. The choice of BN as modelling approach, in this
research thesis, is based on the fact that we use event based contextual infor-
mation instead of temporal data from sensors. This limits the direct usage
of approaches which are based on purely temporal data. However, since sen-
sor based temporal data can be discretized; however, we argue that this will
result in aggregation of sensor bias leading to poor decisions. Moreover, our
objective is not to automate the product quality drift source, failure/cause
diagnosis and failure prediction but to help maintenance teams with deci-
sion support mechanisms. Inherently, uncertainty is also associated with the
occurrence of failures as well as failure/cause diagnosis due to the complex-
ity of production line operations (high-mix low-volume) and multi purpose
fully automated production equipment. The BN is directed acyclic graph
composed of nodes and edges. The nodes represent variables whereas edges
present the influence of one variable on the other depending on their direc-
tion. Therefore, we chose BN as our principal modelling approach as it gives
more accurate results with event based contextual information along with
probabilistic inference. Moreover, it provides a graphical visualisation of
variables of interest along with their influence structure. The drawback with
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BN is its limitation in treating large number of variables as it results into NP
hard problem when conditional probabilities are compute at each node. This
can be controlled by selecting most important and critical variables. How-
ever, there existing statistical approaches e.g. mutual information, entropy,
to rank most important variables in a given dataset under study. In this
research thesis, we based the selection of variables on the experts’ opinion
due to time constraints. Moreover, computation time for the construction
of BN and computation of conditional probabilities was further reduced by
enforcing structure learning rules. The variables are grouped into classes and
structure learning and computation or probabilities between these classes are
constrained.

To the best of our knowledge, there do not exist literature which is fo-
cused on identifying the source of product quality drift instead of believing
on the hypothesis that equipment is the only source of product quality drifts.
Therefore, we proposed, developed and validated a Bayesian network (BN)
to reduce misdiagnosis in the source of product quality drift as the first
line of defence against increasing unscheduled equipment breakdowns. The
failure(s)/cause(s) diagnosis with BN is developed using event based con-
textual information collected from product, process, equipment and mainte-
nance data sources at both equipment and module (assembly) levels. This
serves as the second line of defence against increasing unscheduled equipment
breakdowns. The results from the case study demonstrates that BN signifi-
cantly identifies the product quality drift source other than equipment and
that module (assembly) level BN gives more accurate predictions than the
equipment level. Besides this, we proposed, developed and validated time
bound failure signature extraction methodology based on BN and contextual
information. The role of BN in this methodology is to plot failure probabil-
ities over discretized and aggregated contextual information time line. This
methodology offers flexibility to extract multiple rules with varying associ-
ated lead times such that proactive/corrective measures can be executed to
either avoid the failure occurrences or plan maintenance resources. The lead
time computation associated with maintenance actions required is subjec-
tive and depends on the competence of maintenance team; hence, this is left
at the discretion of equipment experts. This methodology offers flexibility
to maintenance teams to relax or tighten the corresponding failure alerts
based on the production line drift indicators. This is important because an
inappropriate choice could result in over or under engineering.

This thesis is divided into three parts. The part I presents introduction
to problem context, research goal and objectives, relevant literature review
and positioning of the scientific contributions. The part II is focused on the
choice of modelling approach and presentation of integrated product quality

Univ. Grenoble Alpes, 2016 4



General Overview

drift source and failure/cause methodology, and extraction of time bound
failure signatures. In part III, we present the case study and validation
results of the proposed methodologies as presented in part 2. The detailed
thesis organization is presented in part 1, chapter 3.
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Chapter 1

Research Context

Introduction

The objective of this chapter is to present research context, problem back-
ground, research goal and objectives. In the start, evolution in production
environments from pre to post industrial revolution eras is presented which
highlights that industries are challenged with unstable and reduced produc-
tion capacities in high-mix low-volume production settings. This is due to
increasing Corrective (CM) and Preventive Maintenance (PM). Further data
collected from a world reputed semiconductor manufacturer, a high-mix low-
volume production environment, is analysed to identify causes against in-
creasing CM and PM. The results highlight increasing unscheduled equip-
ment breakdown, repair count, failure occurrences and failure durations as
the key contributors.
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Chapter 1. Research Context

1.1 Industrial Revolution and Emerging Pro-

duction Environments

The era from 1760 till 1850 is recognized as industrial revolution era which is
characterized as low-mix high-volume production (Flinn, 1974). This is at-
tributed to factory based manufacturing with shift from human to machine
power. The pre-industrial revolution era is known as low-volume low-mix
human based manufacturing whereas post industrial revolution era is pow-
ered by industrial automation that resulted in the emergence of high-mix
low-volume production environment.

Contrary to low-mix high-volume production (industrial revolution era),
where dedicated production lines are designed for specific products, in high-
mix low-volume production (post industrial revolution era):

• equipment are shared among different production tasks
• product life cycles are short
• automation and control technologies result in high capital tied up in

production equipment
• uncertain and diversified customer demands make it difficult to achieve

stable production
• experts knowledge is available but it is challenged by unknown failures

and causes

The competitiveness and performance of manufacturers in high-mix low-
volume production environment depend on the availability, reliability and
productivity of production equipment. In this context, many researchers have
emphasized the importance of the maintenance function of its role in keep-
ing and improving equipment performance and product quality (Al-Najjar,
1996; Al-Najjar and Alsyouf, 2003). However, depending on the industry,
maintenance activities and associated resources also represent 15-60% of the
cost of produced products (Mobley, 2002). This includes many unnecessary
or improperly carried out maintenance that significantly reduces production
time. Therefore, growing importance of effective maintenance has generated
an increasing interest in developing and implementing optimal maintenance
strategies to improve system availability, prevent occurrence of system fail-
ures, and reduce maintenance costs of deteriorating systems.

In high-mix low-volume production, manufactures need production flex-
ibility to cope up with uncertain volume and product changes to sustain
production capacities (Iravani et al., 2005) as well as optimization in equip-
ment utilization (Pehrsson and Al-Najjar, 2005). The equipment breakdowns
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significantly reduce and disrupt the production capacities. In case of unsched-
uled equipment breakdown, more data and information is required; however,
experts’ knowledge on such unwanted events are becoming more difficult to
obtain. This gives rise of interest in having an efficient and effective equip-
ment utilization which can only be ensured through appropriate maintenance
strategies.

1.2 High-Mix Low-Volume Production Char-

acteristics

This research thesis is completed in collaboration with STMicroelectronics
Crolles, France which is one of the world’s largest Semiconductor Industry
(SI), known for Integrated Circuit (IC) chip manufacturing. At present, the
SI is challenged by increasing demand diversity and volume that resulted
in short product life cycles and has emerged as a high-mix low-volume pro-
duction environment. The SI is fragile and fastest growing manufacturing
domain that has revolutionized our daily lives with IC chips. On average,
we use more than 250 chips and one billion transistors per day per person.
These are installed in almost all the equipment around us ranging from dish
washer, microwave ovens and flat screens to office equipment. These ICs
are manufactured on automated production line, comprising of hundreds of
production and metrology/inspection equipment, grouped as different work-
shops, based on type of operations. These chips are manufactured on silicon
wafers of 200/300 mm diameter that undergo up to 1100+ elementary oper-
ations, depending on the technology. These are processed in the lots of 25
wafers where each wafer contains around 900 chips and cost 6K to 12K US
dollars.

The SI production line comprise of 8 workshops; however, a field study
was carried out at the Thermal Treatment (TT) workshop. This is because
of the fact that TT is one of the most complex workshops in the SI and car-
ries out 30% of the production operations. Moreover, real time operations
and confidentiality limited us to one workshop in the production line. The
production capacities in the form of three types of equipment states (pro-
duction, scheduled equipment down and unscheduled equipment breakdown)
were plotted against the evolution in product mix1 (Figure 1.1a) and then

1Product mix as the number of product variety corresponding to new technology de-
veloped every 2-3 years

Univ. Grenoble Alpes, 2016 9



Chapter 1. Research Context

against the product commonality2 and difference3 (Figure 1.1b), as evidence.
The data is aggregated at quarter (Q) level and spans over six years (2008Q1
to 2014Q1). For confidentiality, data is manipulated; however, scale is kept
constant to maintain original trends.

(a)

(b)

Figure 1.1: Product mix, commonality and differentiation vs. equipment
utilization.

It can be seen that during 2008Q1 and 2012Q2, production capacities
are significantly larger than both scheduled and unscheduled breakdowns
(Figure 1.1a). In this period, we also observe slight increase in the product

2Product commonality as the number of common product between two consecutive
period

3Product difference as the number of different product between two consecutive period
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mix that decreases production capacities. The data till 2014Q1 shows that
with the fluctuation of the product mix, the production capacities suffer
instability and a significant decline. The Figure 1.1b presents impact of
commonality (Equation 1.1) and differentiation (Equation 1.2) in product
mix on equipment from two consecutive quarters. The difference in product
mix is plotted on secondary y-axis. This can be positive or negative and
ranges from -25% to +38%; whereas, product commonality is plotted on the
primary y-axis, that ranges from 49% to 92%.

Commonality =
Number of common product

Quarter’s product mix
(1.1)

Differentiation =
Previous quarter’s product mix− Current quarter’s product mix

Quarter’s product mix
(1.2)

It can be seen that production capacities increase with increase in prod-
uct commonality and are inversely proportional to unscheduled breakdowns.
Therefore, production learning curves against demand diversity can be im-
proved by reducing not only the unscheduled breakdowns but also by stabi-
lizing them. It is because instability in the capacities result quick changes
in production planning and reshuffling of production lots. In addition, time
constraint lots result in scrap that impacts not only cost but also cycle time.
The Figure 1.1a also shows that in last two years, an increase in product
mix with differentiation and short product life cycles have resulted in 30%
reduction of production capacities with high instability. Consequently, un-
scheduled breakdowns have increased exponentially.

1.3 Research Goal and Objectives

From the analysis, presented in section 1.2 (Figures 1.1a and 1.1b), it can
be concluded that the SI is challenged by increasing demand diversity and
volume which resulted in short product life cycles. Moreover, production ca-
pacities are unstable and reduced due to increasing unscheduled equipment
breakdowns, giving rise in unavailability due to corrective (CM) and preven-
tive (PM) maintenance due to CM. The latter is due to the fact that while
carrying out diagnosis in CM, technicians often perform PM procedures.
These actions give rise to PM actions in a high-mix low-volume production
environment.
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1.3.1 Goal

The success of the SI in a competitive production environment, challenged
by increasing demand volume and diversity, depends on improved, stable
and sustainable production capacities. Therefore, research goal in this PhD
thesis is to “improve and stabilize production capacities”. Illustration of goal
can be referred to Figure 1.2.

1.3.2 Objectives

Increasing corrective and preventive maintenance (due to CM) have resulted
in not only reduced but also highly unstable production capacities, attributed
to increasing unscheduled equipment breakdowns. This give rise of huge
interest in putting efforts to reduce these increasing corrective and preventive
maintenance (due to CM); hence, objectives in this PhD thesis are set as
under:

(a) minimize Corrective Maintenance (CM)

(b) improve Preventive Maintenance (PM) due to CM

Figure 1.2: Production capacities optimization in view of unavailability
linked to CM and PM (due to CM).
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1.4 Unscheduled Breakdown Triggering Mech-

anisms

In the SI production line, maintenance interventions are triggered by two
process control functions, Fault Detection and Classification (FDC) and Sta-
tistical Process Control (SPC). The definitions are provided in Mili (2009)
and an exemplary image which links these controls is provided by Bouaziz
(2012) as presented in Figure 1.3.

Figure 1.3: Example of process control in production.

• SPC: provides control using statistical indicators based on products’
(i.e. wafer) physical measures (e.g. thickness, length and height of
transistors) and other features. For each critical step, a wafer from a
process lot is automatically measured just after the production step
to check quality conformance (centring and dispersion). This control
methodology is applied to three different types of measures:

– Physical measurements : performed at critical steps (etching, chem-
ical mechanical polishing, ...) through metrology equipment.

– Intermediate electrical measurements : performed at the end of
transistors manufacturing.

– Final electrical measurements : performed at the end of production
operations and are also known as EWS (Electrical Wafer Sort).
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These are associated to two types of limits, (i) specification limits to
ensure the proper functioning of ICs and (ii) control limits to verify
the success of manufacturing step and detect equipment’s drift. If
control or specification limits are crossed, the equipment is stopped as
unscheduled equipment breakdown. However, in case of out of control,
the production lot is stopped for inspection whereas in case of out of
specs, production lot is scrapped.

• FDC: allows to monitor in real time the evolution of process equip-
ment parameters (e.g. temperature and pressure). Throughout pro-
duction, equipment parameters are collected for each wafer. The aim
is to control an abnormal equipment operation using statistical analysis
where equipment is stopped if necessary, and is qualified as unsched-
uled breakdown. The FDC is applied to control equipment stoppage.
It is divided into two processes, first the detection of the fault, and
second the identification of the causes for the fault. This is of particu-
lar interest for the SI as the root causes of faults in a complex process
may be dozens, even hundreds and in a dynamic and highly automated
production, experts face the difficulty in understanding the correlation
between abnormal events, causes and effects (Susto et al., 2012).

In summary, in the SI production line, unscheduled breakdown can be
triggered either at the equipment or product levels upon statistical limits
detection. At equipment level, unscheduled breakdown is triggered by FDC
system; however, misdiagnosis can occur due equipment failure undetection.
The reasons are sensor bias or absence of FDC rules in its statistical analysis.
At product level, unscheduled breakdown is triggered by SPC upon product
quality drift; however, misdiagnosis can occur due to unrelated equipment
failure. The reasons are absence of product drift source detection mechanism.
The triggered unscheduled breakdown can be characterized by several indica-
tors such as the number of triggered failure alarms (Failure count), stoppage
duration due to triggered failure alarms (Failure duration) and number of
repair actions upon triggered alarm (Repair count).

1.5 Challenges in High-Mix Low-Volume Pro-

duction

The challenges (increasing demand volume and diversity) faced by the SI
results in increasing unscheduled equipment breakdown which consequently
results in an increase of CM and PM (due to CM). Therefore, these increasing
CM and PM must be further investigated to identify the respective causes.
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1.5.1 Limitation in minimizing Corrective Maintenance

Further analysis using data from TT workshop is presented below in Fig-
ure 1.4 to identify factors for recent huge increase in unscheduled equipment
breakdowns and resulting CM. This analysis is extended on two type of fail-
ures (unscheduled breakdown events), as presented in Figure 1.4a and 1.4b.
The failure duration (sec) is plotted on the primary y-axis whereas failure
occurrences and number of repair actions in each occurrence are plotted on
the secondary y-axis.

(a) Elevator boat rotation failure

(b) Out of Control (OC) failure

Figure 1.4: Failure counts, durations and occurrences.

The data in Figure 1.4 is plotted for two significant failures: (a) Elevator
boat rotation and (b) Out of Control (OC) and is manipulated for confiden-
tiality reasons. It can be seen that failure count and average number of repair
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actions in each occurrence are inversely proportional to product commonality
that reduces process variations and result in stable capacities and controlled
unscheduled breakdowns. In addition, OC is 30% higher than elevator boat
rotation in its occurrence and failure duration. Therefore, increase in fail-
ure duration, occurrence and number of repair actions are the key indicators
proving misdiagnosis in increasing unscheduled breakdowns by the current
practice of FDC and SPC. Beside FDC equipment failures misdiagnosis, we
argue that misdiagnosis can also occur while identifying sources of product
quality drifts. In a complex production environment, e.g. SI, the likely
sources can be product itself (imperfections from previous process steps or
poor design), process (poor operations recipes design) or maintenance (poor
execution of maintenance actions). However, at present, the equipment is
blamed for all product quality drifts.

1.5.2 Limitations in improving Preventive Maintenance

From the analysis results in section 1.5.1, it can be suggested indirectly that
increase in CM increases PM as well due to the fact that while carrying out
diagnosis, technicians often perform PM procedures. These actions give rise
to PM actions in a high-mix low-volume production environment. Both CM
and PM due to CM can be improved by mastering the increasing uncer-
tain equipment behaviour using failure prediction, gearing the PM towards
Predictive Maintenance (PdM). At present, PdM is carried out by online
failure prediction approaches based on failure signatures and Remaining Use-
ful Life (RUL) computation. The RUL approaches uses physical models of
degradation benchmarked at component level. The failure signature based
approaches are promising but lacks time bound element that can ensure pre-
diction of a failure well before its occurrence such that proactive measures
can be taken to avoid failure and its propagation. To illustrate the impor-
tance of time bound element in failure prediction, a scenario from the same
production line is considered (Figure 1.5).

A production equipment is either single or multi chamber equipment with
5,000 sensors and data frequency at 10ms. In a complex and HMLV produc-
tion environment, production runs are long (around 4 to 6 hours) and cannot
be stopped once launched. Without the capability to project failure f1 at time
t1 such that f1 can corrected before starting of production run 2, then this
failure will propagate into other faults and failures. Each fault is converted
to work request and each failure is converted into work order which result in
higher failure counts, failure duration, CM, PM, unstable production capac-
ities and million USD loss and waste of maintenance resources. Therefore,
it is critical to introduce a time bound element through failure prediction to
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Figure 1.5: Example of process control in production.

avoid such failure propagation in a long and unstoppable production run.

1.6 Conclusion

The high-mix low-volume production environments are challenged by increas-
ing demand diversity which lead to increasing unscheduled equipment break-
downs. This results in increasing CM and PM actions, destabilizing and
reducing production capacities. In the competitive environment, like SI, the
success depends on our ability to improve and sustain production capacities.
This give rise of interest in improving and smoothing production capacities
while minimizing CM and improving PM. The analysis carried out using data
of Thermal Treatment workshop, from one of the world’s largest IC manu-
facturer, advocates that potential causes for increasing CM in high-mix low-
volume production environment is the misdiagnosis. This leads to increasing
failure durations, failure counts and repair counts. It is also observed that
in most of the equipment stoppages, equipment is not the source of product
quality drift whereas drifts source can also be traced to product design, pro-
cess and maintenance. This highlights that the challenges in reducing CM
are misdiagnosis of product quality drift sources and failure/causes during
unknown failures. Moreover, PM due to CM is also increased due to the fact
that while carrying out diagnosis for unscheduled breakdown, technicians of-
ten performs PM procedures. The challenge in reducing PM is lack of ability
to predict online failure using time bound failure signatures, well before time,
required to proactively correct causes and hence, avoid failure propagation.

Univ. Grenoble Alpes, 2016 17



Chapter 2

State of the Art

Introduction

This chapter presents literature review on the role of existing maintenance
strategies in reducing CM and improving PM in order to stabilize and sustain
production capacities. Moreover, existing approaches for diagnosis of product
quality drifts and failure and causes are briefly presented along with online
failure prediction to highlight scientific gaps in the context of high-mix low-
volume production. This chapter concludes with research questions focused
in this research thesis.
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2.1 Role of Maintenance Strategies

Maintenance strategy is defined as a collection of maintenance activities com-
bined with different methods, tools and techniques to reduce maintenance
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costs while increasing reliability, availability, maintainability and security of
equipments. These activities comprise of fault detection, isolation and iden-
tification, fault/failure prognostics, regular/ad hoc inspections, etc... The
goal of a maintenance strategy is to become aware of events, understand
them and act upon them appropriately.

To become aware of maintenance events, we refer to the standard french
maintenance terminology1 of 2001 for the concepts fault and failure. These
two concepts are employed largely in literature review for failure analysis
supporting the implementation of different maintenance strategies. Fault is
the state of an item characterized by inability to perform a required func-
tion, excluding the inability during preventive maintenance or other planned
actions, or due to lack of external resources. Failure on the other hand is
the termination of the ability of an item to perform a required function. It
is to be noted that fault is a state whereas failure is an event and after the
occurrence of a failure, equipment becomes faulty which may be complete
or partial. Moreover, the concept Defect refers to the difference between
actual and expected characteristic of an entity which exceeds the limits of
acceptability. This does not affect the overall ability of the equipment to per-
form a required function; therefore, defect does not always lead to a failure.
However, a failure systematically leads to a defect but this may also result
in defect (quality drift) of products.

In order to understand the events, it is important to distinguish the exist-
ing phenomena used when modelling an item’s fault and/or failures. Pérès
and Noyes (2003) give an extensive review of different forms and rates of
failures, consequently propose to analyse data to link the different types of
failure in a system to varying repair time. The most common of these phe-
nomena is the continuous degradation which is the irreversible process in one
or more characteristics of a component with either time, use or an external
cause. This degradation may lead to failure and is often referred as wear out.

Finally, to act consequently and appropriately to events, the evolution
and role of maintenance, strategies classified as CM and PM, is presented in
the next two subsections.

2.1.1 in reducing Corrective Maintenance (CM)

Industrial maintenance practices have gone through a process of change in
the last decades due to the increasing awareness of the importance of main-
tenance management. Starting the evolution in the 1950s, CM (or run-to-

1NF EN 13306, retrieved on 3rd May 2016 from: http://maint.t.i.b.free.fr/

Files/Other/NF%20EN%2013306.pdf
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failure) was the prevalent maintenance strategy. This strategy is reactive
in nature which involves inspection of faults/failures; however, maintenance
actions are triggered upon the occurrence of a fault/failure. These actions
can be either replacement or repair. The corrective maintenance actions are
divided between palliative actions which focus on correcting problem tem-
porarily without solving them permanently whereas curative actions involve
not only problem identification but also definitive repair.

The constant changes in the industrial production environment and field
of maintenance have enabled new and innovative maintenance strategies,
refer to section 2.1.2, however CM strategy can never be fully replaced as
equipment failure behaviour is stochastic (cannot be 100% predicted) and
breakdowns are unforeseen.

2.1.2 in improving Preventive Maintenance (PM)

In the 1960s, systematic preventive (time or other elapsed unit count based)
maintenance became popular when a group of Japanese engineers began a
new maintenance concept which was to simply follow recommendations from
equipment manufacturers to avoid failures. In the PM, regular and system-
atic equipment component replacements are scheduled to avoid any potential
unscheduled failure regardless of the real time health status and equipment
performance. However, in the latter half of the 1980s, the PM resulted in
over engineering problem (i.e. replacement of components with potentially
longer RUL) (Pintelon and Parodi-Herz, 2008). This and due to the fact that
sensors and the underlying techniques in equipment function became more
available, have resulted in condition monitoring and diagnostic techniques
which led the next class of PM strategy known as the Condition Based Main-
tenance (CBM). The CBM introduces continuous or periodic measurement
and interpretation of equipment’s condition data to determine the need for
maintenance based on decision thresholds. The objective of CBM is to avoid
unnecessary maintenance activities by triggering these actions only when
there is an evidence of failure (e.g. deterioration) or abnormal behaviour.
A CBM program, if properly established and effectively implemented, can
reduce maintenance cost by reducing the number of unnecessary systematic
PM actions (Pintelon and Parodi-Herz, 2008).

Recently, prognostic, which deals with fault and failure prediction before
occurrence, made its way as a concept to support proactive maintenance
strategy. This maintenance strategy monitors parametric evolution and de-
termines whether a fault/failure is impending and estimates how soon and
likely it will occur (Jardine et al., 2006). This results in another classification
of maintenance approaches as prognostics and diagnostics. The prognostic
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approaches are based on prior event analysis whereas diagnostic approaches
rely on posterior event analysis. A maintenance strategy which incorporates
prognostics in the decision process is defined as a Predictive Maintenance
(PdM). This means that, in comparison to CBM, PdM incorporates more
information into the maintenance decision process. The benefit of using in-
formation about future degradation over currently observed information is
illustrated in different publications (Zhou et al., 2007; Yang et al., 2008).

Figure 2.1 synthesized the differences between CM and PM strategies
(Castanier, 2001). The implementation of these strategies provide the most
basic distinctions to the different criteria for decision making in the field of
maintenance.

Figure 2.1: Evolution of maintenance strategies.

2.2 Failure/Cause Diagnosis Framework to re-

duce Corrective Maintenance

This section is dedicated to the presentation of two aspects for misdiagnosis
analysis as identification of product quality drifts sources leading to equip-
ment stoppage and failure/causes diagnosis during unscheduled breakdowns.
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2.2.1 Source of Product Quality Drifts

In any modern production environment, equipment and product are two ma-
jor actors and have a mutual link between them. The equipment is responsi-
ble to ensure transformation of raw material into products which are compli-
ant to customer specifications. However, the performance of an equipment
is highly dependent on historical maintenance actions and their execution
in compliance with operating procedures. Moreover, product design itself
can also be vulnerable to production line variations. As production is car-
ried out in production steps; therefore, outcome of the previous production
steps on subsequent steps can cause serious compliance issues with refer-
ence to customer specifications or product functionality. Similarly, poorly
designed process (technology) can also cause serious non compliance issues.
Contrary to these potential product quality drift sources, in literature, most
of the research is focused on identifying the causes against product failure
within equipment (Doty, 1996; Smith, 1998). They use causes classification
by Ishikawa (1990), a division of six assignable categories: man, machine
(equipment), method, material, measure and environment that explain ab-
normal situations. It is a well-known qualitative method, frequently used in
the diagnosis domain, but requires long brainstorming sessions with experts
and is performed for new excursion. Therefore, it cannot be used in com-
plex production environment for all excursions. Sarkar (2004) has combined
cluster analysis with engineering knowledge to classify big sets of equipment
failure events into small number of categories and use experts’ knowledge to
find root causes for each cluster. These are specific for the equipment related
failures and do not take into account other potential sources of drifts. Weidl
et al. (2005) model industrial process and product failure control system us-
ing generic object oriented Bayesian Network (BN) that proposes corrective
maintenance actions with explanation of root causes. Their set of root causes
contains all possible hypotheses on the failure sources or conditions coming
from the equipment sensors, process conditions and basic failures in mainte-
nance. This approach does not take into account the product related failure
events as the cause of product quality drifts. Besides this, the BN structure
is also defined by an expert; however, experts’ knowledge might need renewal
due to dynamically changing production environment behaviour.

Additionally, in the context of high-mix low-volume production, metrol-
ogy/test equipment allows control on product specifications compliance across
production steps. In certain cases, metrology equipment are not installed af-
ter every production step for economical reasons and due to limited control
capacity. This introduces the phenomena of failure propagation where de-
tection of an equipment from multiple consecutive production steps as the
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product quality drift source becomes challenging. Nguyen (2015) develops
a diagnostic logic and BN as a solution to this problem. The author also
concludes that product itself can be one of the causes for equipment failure
apart from human, recipe (process) and equipment anomalies.

As presented above, it can be concluded form literature that equipment
is blamed to be the only source of product quality drifts. Therefore, high-
mix low-volume production environment, challenged by increasing unsched-
uled equipment breakdowns, directly contributes to increase respective CM.
This is because of the fact that an equipment stopped due to product qual-
ity drift requires diagnosis and qualification procedures to be executed by
maintenance teams before it is added back to the production capacity pool.
This implies that equipment are stopped for diagnosis and repair for product
quality drifts when in fact the source probably is not the equipment. This
argument needs to be integrated in the modelling of equipment failure as it
serves as the first line of defence against the exponential increase in unsched-
uled equipment breakdowns, failure durations and number of repairs in each
failure.

2.2.2 Equipment Failure/Cause Diagnosis

The commonly used techniques to optimize production operations are Ad-
vanced Process Control (APC) methods that include Run to Run (R2R)
loops, Statistical Process Control (SPC) and Fault Detection and Classifi-
cation (FDC). Yue and Tomoyasu (2004); Lacaille and Zagrebnov (2007);
He and Wang (2007) used FDC approach to detect and classify equipment
failures by calculating several statistics of collected parameters from FDC
sensors data, on predefined time windows. These result in indicators which
are then monitored through SPC control charts to detect sources of variation
in the form of shift or drift of equipment signals. A comparable approach
has been proposed by Chen and Blue (2009) using EWMA (Exponentially
Weighted Moving Average) chart as a function of variance and covariance of
relevant parametric distributions to assess the quality of equipment. How-
ever, this approach is objectively different from the above approaches as it
integrates all sensors to generate one single index that reflects the overall
equipment health against the product quality and is argued to be more ro-
bust to recipe and operation changes. Chang et al. (2012) proposed a fault
detection and classification methodology for the SI using a sequential SVDD
(Support Vector Data Description) classifier algorithm.

A careful analysis of the existing approaches, methods and techniques,
highlights that till today, to model equipment behaviour, a significant num-
ber of its parameters (status variable identifications) from sensors are col-
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lected during wafer processing. With this data, the principal objective is to
improve fault detection and failure diagnosis on the equipment. However,
due to frequent changes in recipes (process) and diversity of operations, in
a high-mix low-volume production environment, overall equipment condi-
tion is very difficult to be evaluated. Because of these changes, Blue et al.
(2012) highlighted in their research that FDC indicators based on pattern
modelling for specific recipes can have reliability issues as they are not ap-
propriate to represent the equipment conditions continuously. Hence, they
proposed Generalized Moving Variance (GMV) technique in a hierarchical
scheme for monitoring; aiming for a robust estimation of overall equipment
condition based on the similar variations in FDC sensors data.

In literature, proposed approaches for failure/causes diagnosis use FDC
data which can be misleading in dynamic production environment. They
also focus on either estimating the components health or the overall equip-
ment health through an index for equipment failure diagnosis; whereas in
most of the cases, the cause assignment is left at the maintenance engineer’s
judgement. As the second line of defence, failure and causes prediction on
an unscheduled equipment breakdown must be modelled at module level
rather than at equipment level, using contextual and statistical information.
Equipment in the SI is composed of modules and sub modules. Each one rep-
resenting a system, however in previous works, it is considered as a unique
system. A comparison of diagnosis models at equipment and module level is
crucial to provide us with the more reliable model as maintenance decision
support for engineers. Consequently, reduction in failure durations and num-
ber of repair actions should stabilize and improve capacities with reduction
in the unscheduled equipment breakdowns.

2.3 Predictive Maintenance Framework to im-

prove Preventive Maintenance

Prediction of failure occurrence is the key task of PdM. Limiting the scope
to fault/failures, there are several areas where the term prediction is used.
For example, in reliability theory, the goal of reliability prediction is to assess
future reliability of an item from its design or specification. Denson (1998)
gives an overview of reliability prediction techniques applied to electronic
devices. These are concerned with long-term predictions based on the failure
rates, architectural properties, or the availability indicators such as MTTR
and MTBR. However, the focus of our survey is to identify during runtime
(online) whether a failure will occur in the near future based on an assess-
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ment of the monitored current system’s parameters evolution. Online failure
prediction is a domain concerned with this short-term assessment that allows
to decide, whether there will be a failure ahead in time or not (Salfner et al.,
2010).

This section is dedicated to the presentation of two key approaches from
the online failure prediction, those using Remaining Useful Life (RUL) esti-
mation and those that rely on failure signatures.

2.3.1 Online Failure Prediction Approaches

Since the introduction of prognostics and PdM, failure prediction is tradi-
tionally and most commonly defined as being the RUL estimation of a sys-
tem knowing his current health, failure signatures (representation of system
degradation) and/or future conditions of use. The estimation of RUL can
be achieved by various methods using different processing tools, modelling
techniques and type of analysis. Several attempts to classify these are pro-
posed in the literature. A synthesis of the RUL classification in the literature
can be referred in the Table 2.1. The key contributions on this concept can
be classified into methods that evaluate the content of input data (raw, fea-
tured data/information or expert’s knowledge)(Vasile, 2008) and the nature
of input data (events-based, states-based or both events and states) (Heng
et al., 2009). Furthermore, a classification according to the type of input data
(fault, error, symptom and failures) was proposed in (Salfner et al., 2010)
which includes the RUL estimation but also the failure signature approach.
These classification can be further categorized into methods that evaluate
continuous and regular temporal data and those that rely on discrete and
irregular inputs.

With the development of sensors technology and real-time data collection,
most research on failure prediction is placed in the temporal input category,
where system’s condition is usually modelled as periodic assessment using
structural time series followed by forecasting deterioration to functional fail-
ure using regression methods (Lu et al., 2007; Garćıa et al., 2010; das Cha-
gas Moura et al., 2011). This type of evaluation generally uses features from
sensors and they focus on discerning anomalies and estimation of RUL with-
out identification of state and/or type of failure of the equipment. This limits
its use in multi state equipment with multi failure types (failure modes un-
der different failure mechanisms) such as the case in high-mix low-volume
production. Moreover, due to diversity in operations, overall equipment con-
dition is exposed to sensor biases and is difficult to be evaluated accurately
(Blue et al., 2012).

It is also observed that the concept of online failure prediction through
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Table 2.1: Classification of RUL methods and tools

Criteria for classification The classification Works

Initial and most basic classification
- Based on a model
- Guided by data
- Based on experience

Lebold and Thurston, 2001

The content of input
- Raw data
- Featured data or Information
- Expert’s knowledge

Vasile, 2008

Nature of the input data
- Events-based
- States-based
- Both events & states

Heng et al., 2009

Decision based on 3 criteria:
The objectif, future context
utilisation, origin of knowledge

Combination of
- 3 types of objectifs
- 3 types of future context
- 4 types knowledge

Cocheteux, 2010

Decision based on four criteria:
The complexity, cost, accuracy
and applicability
(Referenced to Lebold and
Thurston classification)

1) Based on model, guided by data and
based on AI
2) Based on model, guided by data, based
on knowlegde and fusion of models
3)With vs. without models
4) Based on model, guided by data and
hybrid of model & data

Jardine, 2006
Peng et al., 2010
Zio and Di Maio, 2010
Lee et al., 2012

RUL estimation targets its application on component or system composed of
several components (Kothamasu et al., 2009; Sikorska et al., 2011; El-Koujok
et al., 2014). This estimation at component level is inevitable for its ability
to detect needs for components replacement, nevertheless the concept is mis-
leading at the equipment level and suggests that no prevention is possible.
The existing approaches primarily rely on sensors and continuous monitoring
of data to calculate features (or indicators) exceeding pre determined thresh-
old and subsequently real time failure prediction is used to plan corrective
actions.

In addition to the estimation of RUL there are few published examples of
prediction models being applied on complex systems. Only Wang (2002); Lin
et al. (2003) considers that in some situations, it is more desirable to predict
the chance that an item operates without failure up to some future time (e.g.
next inspection interval) given the current equipment condition and histori-
cal operation. Actually, in any situation, the probability that an equipment
operates without failure until next intervention (e.g. the systematic preven-
tive maintenance (PM) interval) could be a good reference for maintenance
teams to determine whether the inspection interval is appropriate or not.
In 2013, Bouaziz et al. (2013) propose this type of prediction in the SI in
his proposition to project next states of Equipment Health Factor (EHF) to
predict future states of the equipment. This approach is promising, however
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in high-mix low-volume production environment, these PM intervals are not
optimized.

2.3.2 Failure Signature based Approaches

Another key approach in online failure prediction is the prediction without
estimation of RUL using failure signatures involving discrete and irregular
inputs. Alternatively to temporal input data, prediction of failures can be
gained by working on a collection of equipment’s event and log data from
equipment and maintenance data sources, containing rich operational infor-
mation to draw failure signatures (Gu et al., 2008; Sipos et al., 2014). Several
techniques have been proposed to extract failure signatures from these type
of data:

• Classification: In this, temporal input vectors (one or more event
reports) are processed by classification techniques e.g. Nearest Neigh-
bour (NN) and Support Vector Machines (SVM), to associate it to a
class (Liang et al., 2007; Fulp et al., 2008; Fronza et al., 2013).
• Pattern recognition: This finds temporal sequences of events to iden-

tify patterns that indicate a failure-prone equipment state. Salfner
et al. (2006) present an approach called Similar Events Prediction
(SEP) which is a Semi-Markov model, where each event is represented
as a state, to identify suspicious patterns of faulty events. Sequence
similarity is computed by the product of state traversal probabilities.
To improve this method, several works have been developed using Hid-
den Markov Models (HMM) to estimate sequences of hidden degrada-
tion states of a system before a failure occurs (Salfner and Malek, 2007;
Zhou et al., 2010; Vrignat et al., 2015).
• Rules extraction: Similarly, this technique put interest in finding se-

quences of events; however, they express temporal ordering of events
such that “if event A and B occur within a specific time window x,
then target event (failure) C occurs within the next time window y with
probability p”. Several parameters such as the minimum and maximum
length of the time window (4tp and/or 4td), type of data accepted as
events and ordering requirements had to be pre-specified. Vilalta and
Ma (2002) describe a method to search for predictive subsets of faults
(eventsets) occurring prior to a target failure using plots of different
fault types in a moving fixed size time window (4tp). Their method
addresses the issue of class imbalance (rare failure occurrences com-
pared to non-failures) by filtering the eventsets appearing frequently
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Figure 2.2: Elements of time and their relation in online failure prediction.

prior to both failure and non-failure before they are combined into a
rule-based model for prediction.

The works mentioned above are distinguished following the data pre-
processing to identify predictors, to create vectors, to mine the sequences of
events and to label data using log files. These employ different techniques for
the extraction of the signatures and the treatment of the element of times in
their prediction approach. These approaches also take into account the class
skewness in the datasets with small number of failure occurrences, targeting
the application environment of information system. However, to the best of
our knowledge, no works have attempted to find the failure signatures inte-
grating other contextual informations coming from the process and product
database in a single model. Unlike events reported in equipment and main-
tenance logs that provide information on equipment behaviour, contextual
information of process and product data sources are only implicitly reported
to faulty equipment states; however, dependencies exist between contextual
information and equipment performances.

Most importantly, none of the works in this approach provides the time
bound failure signatures which enable to take into account production run
temporal constraint, either by preventing occurrence of a failure, or by prepar-
ing the diagnosis and repair actions in order to avoid failure propagation and
reduce the duration of unscheduled breakdown. To benefit the advantage of
online failure prediction more precisely, four different time elements need to
be explored (see Figure 2.2)2:

• Lead-time 4tl defines how far from present time failures are predicted
in the future. This is similar to the concept of RUL.
• Minimal warning-time 4tw defines the minimum lead-time such

that failure prediction is of any use. If lead-time were shorter than
the warning time, there would not be enough time to perform any
preparatory or preventive actions.

2 Figure is provided by Salfner et al. (2010)
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• Prediction-period 4tp is the time for which a prediction holds. In-
creasing 4tp increases the probability that a failure is predicted cor-
rectly. On the other hand, if 4tp is too large, the prediction is of little
use since it is not clear when exactly the failure will occur.
• Data window size 4td defines the amount of data that is taken

into account for failure prediction. Even if online failure prediction
algorithms take the current system state into account, many algorithms
additionally investigate what happened shortly before present time.
However, in some approaches the amount of data is not determined
by a time window but other measures such as, e.g. a fixed number of
error events. In this case 4td is also defined, but may vary with each
prediction.

In the above figure, present time is denoted by t. Failures are predicted
with4tl, which must be greater than minimal4tw. A prediction is assumed
to be valid for some time period, 4tp. In order to perform the prediction,
some data up to a time horizon of 4td are used. Different works exploit
different elements of time with different type of failure signatures, however,
none takes into account the time 4tw with the boundness to correct failure
while identifying the failure signatures. Significant gains in production sus-
tainability can be achieved by adopting a proactive approach where causes
are treated to avoid failure occurrences and its propagation in upcoming
production run.

2.4 Scientific Gaps

As presented above, it can be concluded from literature that equipment is
blamed to be the only source of product quality drifts. Qualitative (Doty,
1996; Smith, 1998; Sarkar, 2004) and quantitative (Weidl et al., 2005) meth-
ods have been developed to identify the causes against product drift but all
of these efforts are focused on finding causes within the equipment. How-
ever, Nguyen (2015) highlights that product itself can be one of the causes for
equipment failure apart from human, recipe (process) and equipment anoma-
lies. The scope of the qualitative approaches e.g. brain storming, Ishikawa
etc. can be equally adapted to find potential cause against the product qual-
ity drift beyond equipment. These approaches are based on subjective judge-
ments by group of experts’ and can produce most accurate results; however,
its inclusion in an automated high-mix low-volume production settings is not
possible. This is because of the fact that qualitative approaches are time con-
suming and automated production line cannot be stopped for each excursion
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(increasing unscheduled equipment breakdown) on the production line. In
comparison with qualitative, quantitative approaches are promising because
they can produce results in short time and are based on data which is col-
lected across the production line. These data driven statistical/probabilistic
approaches focus on identifying the causes within equipment for excursions
across the production line.

We argue that increasing unscheduled equipment breakdown in high-mix
low-volume production settings against product quality drifts comprise of
significant number of equipment stoppages where source is other than equip-
ment. Therefore, if we can identify the source of product quality drift other
than equipment, unscheduled equipment breakdowns and respective CM can
be significantly reduced. This is because of the fact that an equipment
stopped due to product quality drift requires diagnosis and qualification pro-
cedures to be executed by maintenance teams before it is added back to the
production capacity pool. This will also act as first line of defence against
increasing unscheduled equipment breakdown, failure durations and respec-
tive CM actions; and will contribute to stabilize and improve production
capacities.

From the above discussion, we conclude the first scientific gap as the
missing data driven methodology to identify actual source of product quality
drift in high-mix low-volume production settings with an objective to reduce
unscheduled equipment breakdowns and CM actions while stabilizing and
improving production capacities.

The most common Advanced Process Control (APC) methods used for
failure/cause diagnosis are FDC and SPC. These methods use sensor data on
predefined time windows. These are data driven approaches and are primar-
ily used with CBM maintenance strategy. Moreover, failure/cause diagnosis
models are developed using statistical and machine learning approaches. The
sensors data could easily add bias due to sensor reliability issues; however,
there are very few approaches that take into account contextual information
or hybrid of contextual and sensor data for modelling purposes. Moreover,
revolution in information technology has resulted in more sensors than ever
before. This increases not only the volume but also the dimensionality of
data. Consequently, modelling becomes complicated because accurate mod-
els can be developed with minimum dimensions and this gives rise of interest
in dimensionality reduction research. The literature on failure/cause diagno-
sis modelling also concludes that models are developed at equipment level.

Increasing data dimensionality and volume along with sensor reliability
issues cannot cope up with dynamically changing production line behaviour
(variations); therefore, we argue that contextual information if used for mod-
elling failure/cause diagnosis can give more accurate results. Moreover, we
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argue that if failure/cause diagnosis modelling is done at the module level,
the accuracy of the results will be much higher. These gaps, if bridged, will
help us in developing more robust and accurate failure/cause diagnosis mod-
els which will reduce not only the diagnosis durations but also respective CM
actions.

Literature on predictive maintenance framework presents RUL and fail-
ure signature based approaches that objectively focus on predicting failures
prior to their occurrences. The RUL based approaches use physical degra-
dation models and benchmark component usage whereas failure signature
based approaches focus on modelling and associating patterns with potential
failures. The former is promising approach; however, we argue that this can
be beneficial in improving preventive maintenance if and only if they pre-
dict a failure prior to its occurrence such that respective correction action
or proactive measures can be executed to avoid failure. This requires iden-
tifying time bound failure signatures where each failure has predefined time
required for proactive or corrective measures.

2.5 Research Questions

These scientific gaps, presented in section 2.4, are formulated into three re-
search questions as:

1. how to reduce misdiagnosis in product quality drift sources and failure
and causes in high-mix low-volume production?,

2. what is the best modelling level (equipment or module) for more accu-
rate failure causes diagnosis?, and

3. how to extract and validate time bound failure signatures (rules) for
predictive maintenance?

2.6 Conclusion

In this chapter, we have identified research gaps which are then formulated
into research questions. The first research gap is that equipment is believed to
be the only source of product quality drifts. In high-mix low-volume produc-
tion settings, product quality drift source can vary from equipment, product,
process (technology) and maintenance. Therefore, in the absence of multi
source diagnosis model for product quality drifts, it is not possible to reduce
increasing unscheduled equipment breakdowns and respective CM and PM
actions. The second research gap, identified from literature, is the level of
existing failure/cause diagnosis models. The existing failure/cause diagnosis
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models use sensors data that could easily generate reliability issues and are
benchmarked at the equipment level. The equipment in the SI are composed
of module and sub-modules and are modelled in parent child relation. We ar-
gue that modelling failure/cause diagnosis using contextual information from
multi-source data, collected across the production line, and bench marked at
module level will provide more accurate and robust diagnosis model. This
will help to reduce unscheduled failure/cause diagnosis durations with an
objective to stabilize and improve production capacities. The last research
gap is the absence of time bound failure signatures. The existing approaches
to identify failure signatures do not ensure failure prediction such that cor-
rective actions to avoid failures can be executed. Therefore, to improve PM,
it is very important to identify failure signatures (rules) such that we have
sufficient time to execute corrective and proactive measures to avoid failures.
These research gaps are formulated as three research questions which can be
referred in section 2.5.
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Positioning of Contributions
and Thesis Organization

Introduction

This chapter presents brief presentation of proposed contributions against
research questions (section 2.5) and positioning along with thesis graphical
schematic and thesis organization. The objective is to provide a picture of
this research thesis to the readers about its structure and presentation.
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3.1 Contribution and Positioning

3.1.1 Integrated 2-Level Product Quality Drift and Fail-
ure/Cause Diagnosis Methodology

The proposed methodology responds to research questions 1 & 2. The Level-
1 in this methodology acts as first defence line against increasing unscheduled
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equipment breakdowns. In this level, contextual information collected from
4 sources of data (product, process, equipment and maintenance) are used
to build Bayesian Network (BN) based diagnosis model to identify actual
source of product quality drifts. The objective is to intelligently optimize
equipment stoppages. This means that equipment must be stopped if it
is the source of product quality drift otherwise it should continue to serve
production capacities. The Level-2, in this integrated methodology, proposes
failure/cause diagnosis model, based on Bayesian network, both at equipment
and module levels. This level gets executed only if the source of product
quality drift is identified as equipment (Result from Level-1).

The Level-1 significantly reduce unnecessary equipment stoppages be-
cause, at present, in literature it is believed that equipment is the only
source of product quality drifts. The potential sources of product quality
drifts modelled in proposed integrated methodology are equipment, product,
process (technology) and maintenance. This level provides an added advan-
tage, over existing models in the literature, as it helps in stabilizing and
improving production capacities by stopping equipment only when it is the
source of drift. The Layer-2 complements the proposed integrated method-
ology by adding BN based failure/cause diagnosis model. Moreover, results
highlight that failure/cause diagnosis modelling is more beneficial at module
level than the equipment level, as benchmarked in the literature.

The proposed Integrated 2 levels product quality drift and failure/cause
diagnosis methodology1 is validated using data collected from world’s reputed
semiconductor manufacturer. The case study is presented in Part-III, Chap-
ter 7. The methodology itself is presented in Part-II, Chapter 5 whereas the
case study results of the methodology are presented in Part-III, Chapter 8.
This methodology also provides answers to following research questions:

Q(1): how to reduce misdiagnosis in product quality drift sources and
failure and causes in high-mix low-volume production?

A(1): An integrated 2 levels product quality drift and failure/cause di-
agnosis methodology, based on BN, is proposed and validated using multi
source data (product, process (technology), equipment, maintenance) col-
lected from world reputed semiconductor manufacturer.

Q(2): what is the best modelling level (equipment or module) for more
accurate failure causes diagnosis?

1(Abu-Samah et al., 2014, 2015b)
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A(2): Results obtained from failure/cause diagnosis model, based on BN,
developed at both equipment and module levels concludes that module level
failure/cause diagnosis models demonstrates more accurate results.

3.1.2 Methodology to Extract and Validate Time Bound
Failure Signatures for Predictive Maintenance

The proposed methodology responds to research question 3. In this method-
ology, we plot failure probabilities using already learned and trained BN.
Subsequently, patterns and rules are extracted along with validation using
historical data along with predictability index and computation of time gain
for each pattern and rule. This offers flexibility to the engineering managers
to select appropriate pattern/rule for each failure depending upon the pre-
requisite time required to execute corrective and/or proactive measures to
avoid failures.

The proposed methodology helps engineering managers in identifying
time bound failure signatures; however, in existing failure signature based
approaches, to predict failures, this time bound element is missing. The
existing approaches do not ensure sufficient time prior to the failure occur-
rence; hence, improvement in preventive maintenance by introducing pre-
dictive maintenance is not possible. In comparison, proposed methodology
helps in identification of time bound failure signatures for subsequent usage
in predictive maintenance.

The proposed methodology to extract and validate time bound failure
signatures2 is validated using data collected from world’s reputed semicon-
ductor manufacturer. The case study is presented in Part-III, Chapter 7.
The methodology itself is presented in Part-II, Chapter 6 whereas the case
study results of the methodology are presented in Part-III, Chapter 9. This
methodology also provides answer to following research question:

Q(3): how to extract and validate time bound failure signatures (pat-
tern/rules) for predictive maintenance?

A(3): A methodology to extract and validate time bound failure signa-
tures (patterns/rules) is proposed and validated using data collected from
world’s reputed semiconductor manufacturer.

2(Abu-Samah et al., 2015a, 2016)
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3.2 Thesis Schematic

This section presents graphical schematic of the thesis (Figure 3.1) with
inputs and outputs for each chapter.

Univ. Grenoble Alpes, 2016 36



Chapter 3. Positioning of Contributions and Thesis Organization

F
ig

u
re

3.
1:

T
h
es

is
sc

h
em

at
ic

.

Univ. Grenoble Alpes, 2016 37



Chapter 3. Positioning of Contributions and Thesis Organization

3.3 Thesis Organization

This research thesis is organized into three Parts whereas each Part consists
of 3 chapters.

3.3.1 Part-I: Introduction

The part 1 comprise of three chapters as presented below:

Chapter 1 presents research context, research goal and objectives and
briefly summarizes the challenges faced by high-mix low-volume production
settings. The research goal, objectives and challenges are input for chapter 2.

Chapter 2 briefly reviews the role of maintenance strategies and existing
approaches to reduce CM and PM actions. Moreover, this chapter reviews ef-
forts carried out in research within the framework of predictive maintenance
to improve PM. The output of these chapters are scientific gaps and three
research questions.

Chapter 3 presents graphical schematic of the research thesis, brief re-
view of scientific contributions and their positioning with reference to existing
approaches.

3.3.2 Part-II: Choice of Modelling Approach and Pro-
posed Methodologies

The part-II presents choice of modelling approach and proposed methodolo-
gies.
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Chapter 4 explores and justifies the use of BN as modelling approach.
This follows with the brief introduction to Bayesian Network (BN), struc-
ture learning algorithms, Conditional Probability Tables (CPT) computa-
tions and inferences.

Chapter 5 presents in detail the proposed integrated 2-level methodology
for product quality drift source and failure/cause diagnosis with an objec-
tive to reduce increasing unscheduled equipment breakdowns which leads to
increasing CM, failure durations. The goal is to stabilize and improve pro-
duction capacities in high-mix low-volume production capacities.

Chapter 6 presents 4-step methodology for the extraction and valida-
tion of time bound failure signatures (patterns/rules) for subsequent usage
in predictive maintenance.

3.3.3 Part-III: Application and Results

The third part of this research thesis is focused on the presentation of case
study and proposed methodologies results.

Chapter 7 presents a brief introduction to the Semiconductor Industry
(SI) along with its characteristics. Moreover, case study and data used to
validate proposed methodologies (from Part-II) is presented along with data
pre-processing steps.

Chapter 8 presents the results obtained after validating the proposed
methodology (Part-II, Chapter 4) using multi-source (product, process (tech-
nology), equipment, maintenance) data collected across the production line
from a world reputed semiconductor manufacturer.
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Chapter 9 presents the results of case study used to validate the pro-
posed methodology (Part-II, Chapter 5) for the extraction and validation of
time bound failure signatures (patterns/rules).

3.4 Conclusion

This chapter presents positions and contributions against existing approaches
in literature, the graphical schematic and organization of thesis.
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Chapter 4

Modelling Approach

Introduction

This chapter presents existing modelling approaches for the product quality
drift source diagnosis, failure/cause identification, and online failure predic-
tion based on failure signatures. The objective is to make a choice among
existing modelling approaches to find answers to the research questions (see
section 2.5). Consequently, BN is retained as the modelling approach; there-
fore, theoretical foundation on learning BN structure and computation of
conditional probabilities for inferences is also presented. This chapter con-
cludes with discussion and conclusion.

Contents
4.1 Existing Modelling Approaches . . . . . . . . . . . . 42

4.1.1 for Failure/Cause Diagnosis . . . . . . . . . . . . . . . 43

4.1.2 for Extraction of Failure Signatures . . . . . . . . . . 44

4.2 Discussion on the Choice of Modelling Approach . 45

4.3 Bayesian Network as a Choice for Modelling In-
tegrated Drift Source and Failure/Cause Diagnosis
and Time Bound Failure Signatures . . . . . . . . . 46

4.3.1 Bayesian Principle and Bayesian Network (BN) . . . . 46

4.3.2 BN for Classification . . . . . . . . . . . . . . . . . . . 49

4.3.3 Bayesian Network Structure Learning . . . . . . . . . 49

4.3.4 Estimating Conditional Probability Tables (CPT) . . 53

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Existing Modelling Approaches

This section presents critical review of the existing modelling approaches on
failure/causes and online failure prediction based on failure signatures. The
objective is to choose appropriate modelling approach to address the scientific
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gaps (see section 2.4) and find answers to the research questions (see section
2.5).

4.1.1 for Failure/Cause Diagnosis

The fault diagnosis in process control refers to the isolation task (deter-
mination of the exact fault location) as well as the identification task (of
time, type and magnitude of fault) (Gertler, 1998). The methods and tech-
niques differs depending on these tasks, but these are essentially a classifica-
tion problem and are traditionally classified as the knowledge (qualitative),
model (quantitative) and data driven (historical process) based approaches
(Venkatasubramanian et al., 2003c,a,b). The revolutionary changes in In-
formation and Communications Technology (ICT) and increasing data di-
mensionality and volumes have resulted in the emergence of data driven
methods for diagnosis. These approaches range from multivariate statisti-
cal methods (Principal Component Analysis (PCA) (Chiang et al., 2000),
Partial Least Squares (PLS), Discriminant Analysis (DA)) (Chiang et al.,
2000, 2004), Support Vector Machine (SVM)(Chiang et al., 2004; Widodo
and Yang, 2007) to black-box methods based on Artificial Neural Networks
(ANN) (Samanta and Al-Balushi, 2003). These classification approaches as-
sign abnormal observations to closely related fault/failure. Besides these
statistical approaches, Verron et al. (2010); Atoui et al. (2015) proposed and
used probabilistic approach, Bayesian Network (BN) as fault classifiers and
isolator.

The fault/failure detection techniques are characterized by robustness
(resilience to disturbances, noise, modelling errors), sensitivity (ability to
distinguish between closely related different faults), detectability, detection
time (faults/failures must be detected as soon as possible), and computation
effort. The data driven approaches primarily need more data to make good
fault/failure predictions. These approaches work well with the sensors data
collected across the production line. The predictive models developed based
on these approaches are impacted by sensor reliability issues. In compar-
ison to these approaches, probabilistic methods use both sensor data and
event based contextual data/information which is insensitive to the sensor
reliability issues. Moreover, these approaches associate probability with the
potential occurrence of an event.

Correa et al. (2009) compare artificial NN, another continuous data based
classifier, with BN in the problem of product quality detection, targeting au-
tomotive and aeronautical industry. The BN technique can deal with both
continuous and discrete data. Moreover, BN approach is proved to have
higher classification accuracy given new sets of measured variable and a bet-
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ter interpretability of resulting network. From the studies, ANN follows black
box model in the sense that non-linear relationships of cause and effect are
not easily interpretable. This makes it difficult to explain the underlying
causal relationship behind input and output.

4.1.2 for Extraction of Failure Signatures

Similarly, the most commonly used modelling approaches for failure signa-
ture (pattern/rules) extraction are Multivariate Statistical Process Control
(MSPC), probabilistic methods e.g. BN and machine learning based method
e.g. Nearest Neighbourhood (NN), Support Vector Machines (SVM) and
Hidden Markov model (HMM). In MSPC, abnormal process operations are
detected to find the source of abnormalities. The abnormalities include faulty
sensors or its measurements, product quality drift as well as equipment drift
or failure. As there are hundreds of sensors that offer continuous values on the
condition of equipment, enormous works to transform them into information
and/or indicator have been introduced to detect the signs of abnormalities.
Qin et al. (2001) for example aggregate the values from sensors to an index
using Squared Prediction Error (SPE) and Hotelling’s T 2 while Yue and
Qin (2001) used both to produce single index. The BN is used as modelling
approach by Bouaziz (2012) to compute Equipment Health Factor (EHF) in
industrial context whereas this approach is demonstrated to give good results
on the estimation of future equipment states based on the set of symptoms.
This is an interesting approach because it provides us with probabilities as-
sociated to the future occurrence of events. The machine learning methods
are data driven approaches and require large set of temporal data for the
extraction of failure signatures for accurate predictions.

All of these approaches, except probabilistic methods, use temporal data
or sequence of events as input where target prediction is the identification
of signs of abnormality. The key limitation associated with these methods is
that these approaches do not extract time bound failure signatures. We define
time bound failure signature as a failure signature which guarantees to gen-
erate an alert prior to specified time of failure occurrence such that proactive
measures can be taken to avoid failure occurrences. Hence, failure signature
identified using existing approaches cannot ensure reduction in unscheduled
equipment breakdown or improvement in preventive maintenance. Besides
failure signature based approaches, RUL based approaches approximate the
expected failure time of components, based on physical degradation models.
These approaches do not take into account failure propagation mechanisms
due to the fact that assemblies and sub-assemblies are linked in parent-child
relationship. However, in comparison, failure signature based approaches
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take into account this parent-child relationship but lack the prediction of
failures prior to the cumulative time required to take proactive measures.

4.2 Discussion on the Choice of Modelling

Approach

The BN is known to has the advantage of being relatively easy to encode
prior knowledge in network form, either by fixing portions of the structure,
forbidding relations, or by using prior distributions over the network pa-
rameters. Such prior knowledge can allow a system to heuristically learn
accurate models from small quantity of data. Kobbacy et al. (2011) discuss
the various utilities of BNs in manufacturing with emphasis on its applica-
bility when uncertainty is the key characteristic. Weber et al. (2012) present
a detailed review of BN applications in the domains of reliability, risk anal-
ysis and maintenance. For probabilistic evaluation and using event based
data, comparisons can be made between BN, Fault Trees (FT) and Markov
Model (MM) based models. The FT model, is limited in assessing just one
top event per model as opposed to BN which can model multiple states and
evaluate several outputs in the same model, a characteristic well suited for
the selection of alternative actions when we have to make a decision against
a problem with multiple failure modes and causes. On the other hand, MM
based approaches allows the representation of multi-state variables but these
are computationally expensive, even for simple problems. The system be-
comes complex with a large number of variables, which is the case in our
context where we try to integrate different variables coming from different
data sources with multiple states. With BN, the constraint is avoided since
the number of parameter within the conditional probabilities table is consid-
erably lower to MM (de Souza e Silva and Ochoa, 1992).

Additionally, MM based approach relies on the observation of sequence
of events prior to decision, while a BN relies on the conditional dependencies
between them regardless of the sequence of appearance. BN is defined as a
probabilistic graphical model. It also carries other names such as probabilis-
tic network. A BN is a comprehensive tool for visualization of variables and
their dependencies (or independencies). It is based on both graph and proba-
bility theories. It allows to quantitatively describe the operation of a system
through various probability calculations for the system variables. Moreover it
offers a compact encoding of a complex distribution over a high-dimensional
space using the graph based representation. The Bayesian network approach
has recently become a focus for dynamic maintenance management and fail-
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ure diagnosis in the SI. Yang and Lee (2012); Bouaziz et al. (2013) applied
BN for diagnostics and prognostics in the SI with an objective to investigate
causal relation among equipment conditions and their effects on product
quality. Moreover, there exist published methods and algorithms to adapt
the BN to fit to the specific case studies in the SI (Roeder et al., 2012).

In addition to their ability to represent causal relationships, BN has the
ability to perform learning efficiently in uncertain environments, involving
small amount of related failure data and short temporal change of states. It
is based on the conditional probability theory and has a compact graphical
presentation. Other advantages of using Bayesian network are its inherent
ability for deduction and inter-causal reasoning (Kjærulff and Madsen, 2006).
The deductive (causal) reasoning takes into account the causal links between
variables, from causes to effects using dynamic detection evolution. The
inter-causal reasoning is an interesting and powerful ability of BN where
evidence on one possible cause disapproves other possible causes. It can
also be used to represent compact joint probability distributions (Margaritis,
2003).

4.3 Bayesian Network as a Choice for Mod-

elling Integrated Drift Source and Fail-

ure/Cause Diagnosis and Time Bound Fail-

ure Signatures

4.3.1 Bayesian Principle and Bayesian Network (BN)

Generally in BN, variables are modelled as nodes and edges are created be-
tween these variables. The edges may reflect a causal phenomenon between
related variables (causal networks); however, this is not necessarily the case.
Indicating an arc between two variables (a parent and a child) implies a direct
dependence between them. BN can provide the state of the child variable
given the states of its (if several) parents. For this, each node has a Condi-
tional Probability Distribution (CPD), to quantify the effect of the parent
node(s) on that node. For the root nodes (without parents), the probability
table is not conditional; hence, prior probabilities are fixed. BN prohibits
child dependencies to parents. Thus, the set of variables and edges forms a
directed (edges with direction) and acyclic (no cycle) graph.

A traditional BN (Figure 4.1), B = (G,Θ) is defined by:

• A graphical (qualitative) component: a directed acyclic graph (DAG)
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G = (V,E), where V is the set of vertices (nodes) represents n discrete
random variables X = X1, ..., Xn, and E is the set of directed arcs
(edges) corresponding to conditional dependence relationships among
these variables.
• A numerical (quantitative) component: presents a set of parameters

Θ = Θ1, ...,Θn where each Θi = P (Xi | Pa(Xi)) denotes the conditional
probability distribution of each node Xi given its parents Pa(Xi). These
conditional probability distributions (CPD) are usually stored and or-
ganized in tables named conditional probability tables (CPTs). The
latter is constructed based on the Bayes rule (Equation 4.1).

P (x | y) =
P (y | x).P (x)

P (y)
(4.1)

Figure 4.1: Example of BN.

The BN reasoning computes probabilistic inference. It refers to the cal-
culation of the posterior probabilities distribution of each of the network
variables given new information concerning some other variables which are
set to certain states (evidence). Evidence can be ’hard’ (e.g. failurea hap-
pens 100% sure) or ’soft’ (e.g. failurea happens, it is 80% sure). Once the
information is entered, it is propagated in the network by any chosen infer-
ence algorithms (Figure 4.2). Such a process looks for the impact of a certain
information regarding some variables, on the remaining ones. The benefit of
BN is that it supports omni-direction reasoning (regardless of arc directions).
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For example, one can perform diagnostic reasoning, i.e. reasoning from symp-
toms to cause, such as when a maintenance personnel observes high frequen-
cies of equipment failure alarms, he then updates his belief about equipment’s
age and whether the equipment shall be replaced. Note that this reasoning
occurs in the opposite direction to the network arcs. Or again, one can per-
form predictive reasoning, reasoning from new information about causes to
new beliefs about effects, following the directions of the network arcs. This
distinction, however, only exists from the perspective of the users and based
on their current needs. In terms of algorithm of inference, Figure 4.2 shows
the main classification of BN Inference Algorithms. Detailed description of
these algorithms and their references are provided in Guo and Hsu (2002).
The probabilistic representation of a system in a graphical form with this
type of interrogation allows monitoring relationships among different vari-
ables (Pearl, 2014). It is an efficient feature to model causal relationships
between a set of events.

Figure 4.2: Example of Inference Algorithms.

The construction of a BN is realised following the 3 necessary tasks (Näım
et al., 2011), (i) identification of variables, (ii) definition of BN structure
and (iii) definition/computation of its CPT. Moreover, BN learning from
data implies structure learning and parameter estimation from complete or
incomplete training data. Finally, a BN can be used in several approaches
to fulfil different functions such as scoring, forecasting and classification.
To fulfil the target use of BN, we focus on BN as classifier learning from
complete data. The tasks (ii) and (iii) are further elaborated in the following
subsection.
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4.3.2 BN for Classification

In machine learning and statistics modelling, unsupervised learning refers
to the knowledge discovery without any target to predict or estimate in a
given large sets of data. There is no other external support other than the
data that were given. While, in supervised learning, users are provided with
sets of data, but are also given the target or outcome variable which is to
be predicted from the given set of variables. Using these set of variables, a
function is created to map the inputs to the desired outputs. The learning
process continues until the model achieves a desired level of accuracy on the
learning data. In this way, the machine is ’supervised’ to make its decisions.

In the context of BN, unsupervised learning of structure refers to the dis-
covery of ”structural” probabilistic relationships between a large number of
variables, without having to specify the input and output nodes. There are
no hypotheses constraining the exploration of possible relationships between
its variables. It is a practical approach for obtaining a general understanding
of simultaneous relationships between many variables without prior knowl-
edge. On the other hand, supervised learning has the same objective as many
traditional modelling methods, i.e. to develop a model for predicting a tar-
get variable. If the target variable is continuous, the predicted distribution
produces an expected value. For a discrete target variable, the process is
called classification. The learning algorithms in the latter type of learning
can focus on the characterization of the target node, rather than on a repre-
sentation of the entire joint probability distribution of the learning set. With
BN classification, beyond producing predictions, individual variables can be
quantified and identification of cause-effect links between the variables can
be established. To complete, in BN learning, it is possible to apply the hy-
brid approach called semi-supervised learning. It refers to the unsupervised
learning algorithms that searches and discovers the relationships between the
nodes that belong to a predefined distance of the target. The semi-supervised
learning algorithms allows learning a network centred on the target variable.
This approach is very useful for analysis that involve a lot of nodes but with
a target nodes in mind, which fits our target for A(1), A(2) and A(3) (see
section 3.1).

4.3.3 Bayesian Network Structure Learning

The task of finding a network structure is a combinatorial optimization prob-
lem, and is known to be NP-hard (Chickering et al., 1994), even if we restrict
each node to having at most two parents. As few as 3 nodes (with two par-
ents max) can be resulted in 25 different ways to form a network and for 5
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nodes in 29281 ways. A number of literature has been produced that seeks
to understand and provide methods of learning structure from data (Daly
et al., 2011). The standard approach for addressing this problem is to per-
form heuristic search over some space of possible structures. Many methods
have been proposed along these lines, varying both on the formulation of
the search space, and on the mechanism used to search the space. The BN
structure learning methods are typically divided into two main families. The
first family tackles this issue as a constraint satisfaction problem which looks
for independencies (alternatively dependencies) in the data, using statistical
tests, then try to find the most suitable graphical structure with this infor-
mation. Links are added or deleted according to the results of statistical
tests, which identify marginal and conditional independencies. The second
family, commonly known to be a better tool for learning structure from data
(Friedman et al., 1999) are the search & score based methods. This sec-
ond family treats learning as an optimization problem. Its search algorithms
evaluate how well a structure fits to the data using a score function (e.g.
K2 and Minimum Description Length (MDL) scores). So, these score-based
algorithms search for the structure that maximizes this function. This score
trades off network complexity against the degree of fit to the data, which
is typically expressed as the likelihood of the data given the network. All
search algorithms (Glover, 1986; Munteanu and Bendou, 2001; Chickering,
2002; Acid and de Campos, 2003; Teyssier and Koller, 2012) present,

1. a search space consisting of the various candidates for BN structure,
2. an effective search mechanism to move from one structure to another

in the search space, comprising of

• a mechanism to encode each of the states,
• a mechanism to move from state to state in the search space, and

3. a scoring function to assign a score to each candidate structure in the
search space.

In the context of learning the BN with clear target node, the problem
is to find the most adapted algorithms to characterize the target from as-
sociation and potentially causal discovery among the other chosen variables.
In the course of experimenting the different type of existing algorithms in
BayesiaLab 5.31, the combination of Equivalence Search (EQ) and Tabu al-

1a tool distributed by Bayesia. BayesiaLab handles exact and approximate inference. It
provides parameter learning using maximum likelihood estimation and a variety of struc-
ture learning algorithms. It supports missing data, prior knowledge addition, supervised,
unsupervised and semi-supervised learning, etc
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gorithms provides us consistently with the most accurate cross validation
scores.

Many have proposed heuristic algorithms to explore a small part of the
huge space of possible structures in order to find a local optimum to best
suit the structure. Given resources for learning, it recommended to employ
multiple searching procedures to raise the probability of finding the nearest
to the global optimum network. For example, as it has been employed in
our research, a combination of EQ and Tabu. The initial structure is learned
using the Equivalence Class (EQ), a heuristic algorithm to search highest
scoring network explicitly across the spaces of potential BN structures that
have same conditional independence relations (4.3.3). The learned struc-
ture is further optimized using Tabu (4.3.3), method that complement EQ
in term of search space and exploration strategy. Alternatively, a rather pos-
itive results have been obtained using combination of Tabu order and Tabu
algorithms.

A. Equivalence class framework The simplest formulation of search
space is the set of all possible individual DAG. The intuitive way to find
the best network is greedy search which starts at an initial structure in the
structure space then considers all nearest neighbours of the current structure
and moves to the neighbour that has the highest score. Neighbour comprise of
all structures that can be generated by current structure by adding, deleting
or reversing a single arc, subject to the acyclicity constraint. If no neighbours
have higher score, a local maximum is reached and the algorithm stops.
While the method is simple, it can be a disadvantage due to equivalence
class property. Two DAGs G and G′ are equivalent if for every BN,

B = (G,Θ) (4.2)

there exists a Bayesian network

B = (G′,Θ′) (4.3)

such that B and B′ define the same probability distribution, thus the
same score. This type of search can waste time re-scoring the same equiva-
lence class and in many cases, in order for the algorithm to move from one
equivalence class to another, it will have to make numerous moves within
the same equivalence class. Furthermore, in large network we can anticipate
accumulation of early stage wrong decisions thus end up with a final network
very different from the ideal one. In order to overcome these difficulties, we
can realize the search in the space of equivalence classes.
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Figure 4.3 illustrates the search strategy. This approach consists in al-
lowing the addition of undirected edges, transforming a DAG into PDAG
(Partially DAG) and complete PDAG (CPDAG). Edge orientation is delayed
until the interactions between edges make possible the choice of a direction
on the basis of the score. As the obtained partially directed graphs may be
interpreted as equivalence classes, this solution modifies the search space.
Consequently, the search algorithm explores the space of equivalence classes
of BNs instead of the space of BN DAGs. When all EQ is explored, a network
(DAG) with the best score is chosen as the final structure.

Figure 4.3: Illustration of EQ search strategy.

B. Tabu framework The Tabu is an extended form of greedy search al-
gorithm that tries to escape from a local maximum (in the search space of all
DAG) by selecting the solution that minimally decrease the value of scoring
function. Immediate re-selection of local maximum, just visited, is prevented
by maintaining a list of solutions (of predefined precise size) that are forbid-
den a.k.a. the Tabu list (Glover, 1986; Acid and de Campos, 2003). Figure
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4.4 illustrates this strategy and its Tabu listed networks in dotted boxes.
The search operators involved in transforming one DAG to another are ad-
dition, suppression and reversal. When sufficient changes occur but without
an increase in the minimum score ever encountered during search, the al-
gorithm terminates and the overall best scoring structure is then returned.
This strategy typically requires random restarts to find the optimized solu-
tion, but using EQ as the initial network largely reduce the restart number
as well as the size of necessary Tabu list. In complementary point of view to
EQ method, the Tabu approach offers the exploration of solutions that might
not be considered as consistent in EQ’s PDAG → DAG transformation.

Figure 4.4: Illustration of Tabu list search strategy.

4.3.4 Estimating Conditional Probability Tables (CPT)

Once the structure is identified, the parameters are estimated to compute
CPT and finalize the BN. In the case of Maximum Likelihood (ML) learning,
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the parameters could be the actual probabilities in the conditional probability
table attached to each node. This is a statistical estimation of the probability
of an event (positive counts) from the total count of occurrences without the
event in the data set. This is a fairly simple and widely used method (Heck-
erman, 2008) for cases with defined structure and with complete observation.
The probability estimation is given by the following formula,

P̂ (Xi = xk | parents(Xi) = xj) =
Ni,j,k∑
n=1 Ni,j,k

(4.4)

Ni,j,k is the number of positive counts where the variable Xi takes the
value xk and Xi’s parents take the value xj .

The combination of search algorithms (EQ and Tabu) involving two types
of search space and search exploration produces a final structure with the
lowest score Minimum Description Length (MDL) (For elaboration refers
Appendix A) and is accepted for further analysis. All BN models are learned
and tested using the 10-fold cross validation strategy.

4.4 Conclusion

From the above discussion on existing modelling approaches used for fail-
ure/cause diagnosis and failure predictions, it is concluded that these are data
driven approaches. Primarily, these approaches highly depend on the quality
of sensor signals. Moreover, limited availability of contextual data/information
also impacts the quality of decisions made. This can be improved by dis-
cretizing continuous (sensor signals) data; however, this would result in the
aggregation of sensor signal bias into contextual data/information, leading
to biased decisions. Therefore, in this thesis, besides the availability of sen-
sor signals data, we rely only on the contextual data/information collected
and stored across the production line databases. This reduces our choice of
the modelling approach as we do not have temporal data. Moreover, during
failure/cause diagnosis and failure prediction, our objective is not to au-
tomate the root cause analysis but to help maintenance teams in effective
failure/cause diagnosis and predictions. Inherently, uncertainty is also asso-
ciated with the occurrence of failures as well as failure/cause diagnosis due
to the complexity of production line operations (high-mix low-volume) and
multi purpose fully automated production equipment. Therefore, for both
failure/cause diagnosis and failure prediction, we retain Bayesian network
(BN) as our principal modelling approach.

Other modelling approaches are preferred by researcher due to the fact
that they need large temporal data sets and existing revolution in ICT have
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resulted in producing and archiving such large data sets. In BN, the nodes are
connected to one another and represent either predictor or target variables
whereas linkages (edges) between nodes formulates its structure. Moreover,
it uses discrete contextual data/information and provide inference with prob-
abilities based on the varying relationship between predictors. The BN is also
capable of learning variance relationship between predictors (structure) with
less observations. However, only drawback associated with this modelling
approach is its limitation in number of predictors to be used for learning
the BN structure and computing respective Conditional Probability Tables
(CPTs). In this thesis, predictors are not selected by ranking them using
statistical approaches like mutual information, entropy etc. however, these
are selected through brainstorming sessions. The predictors are associated
to the classes of variables and structure learning rules are restricted from
one class to another. This is referred as semi-supervised learning of the BN
structure. Consequently, structure learning is no more NP-hard as well as
more predictors can be added to the BN which leads to less computation
time for the CPTs.
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Integrated Drift Source and
Failure/Cause Methodology

Introduction

In this chapter, 2-level integrated methodology for product quality drift
source and failure/cause diagnosis is presented. The proposed methodology
also addresses first two research questions (see chapter 2, section 2.6) which
focus on reducing misdiagnosis and identifying the best modelling level as
either equipment or modules.

Contents
5.1 Key Elements for Modelling Equipment Failure . . 56

5.2 The Methodology . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Level-1: Product Quality Drift Source Diagnosis . . . 60

5.2.2 Level-2: Equipment Failure and Causes Diagnosis . . . 62

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Key Elements for Modelling Equipment

Failure

The key elements for modelling product and equipment failures/causes in
the SI are identified as linkages of product quality failures to equipment fail-
ure, equipment level (equipment, module, component) failures, failure modes,
failure causes and root causes. In chapter 2, section 2.2.1 and 2.2.2, it is con-
cluded from literature that equipment is blamed to be the source of product
quality drifts as well as failures are modelled either at equipment or compo-
nent levels. In the SI, equipment is composed of modules and sub-modules,
linked and modelled in parent child relationship. The change in the state
(failure) of parent or child has direct impact on the other. In addition to this,
equipment in the SI can be of single, batch or multi chamber type. Therefore,
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while modelling product quality failure source and equipment failure/cause
diagnosis, these particularities must be taken into account.

The equipment failure events can be extracted from equipment database
and have multiple operating modes (Mendez et al., 2005). The Figure 5.1
presents existing classification of equipment states in the SI1. For modelling
purpose, we selected five states (hold, online, fail, hold spc, preventive main-
tenance) which are further aggregated into two high level states as up and
down as under:

• normal (up/production) operation: This represents the state where
equipment is functional to manufacture products on given specifica-
tions.
• abnormal (down/breakdown) operation: This represents the state of

the equipment where it is no more functional to produce products in
accordance with specifications due to faults/failure(s).

Figure 5.1: Equipment states classification in the SI.

Consequently, several physical failure mechanisms exist for each abnormal
state. A failure mechanism denotes the relation of faults and system states
to a failure with focus on how the faults lead to the failure. This is closely
related to the term Failure Mode (FM) as defined by Stamatis (2003). We

1Retrieved from: http://www.semi.org/en/semi-e10-specification-equipment-

reliability-availability-and-maintainability
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argue that it is important to model not only failure events, but also the
failure modes inside an equipment.

The definition of failure cause can be traced to the NF EN 13306 stan-
dard2, as the reason which leads to failure. The reasons may be the result of
one or more of the following: design failure, manufacturing failure, installa-
tion failure, misuse failure, mishandling failure, maintenance related failure.
These causes are classified as related to the different stages in equipment
functional life cycle or the development phase from which any fault is seen
as been originated. The failure causes are also classified sometimes as design
faults, originate from bad system design as opposed to runtime faults which
occur during the production phase of a system. Another classification can
be found in the Ishikawa diagram (Ishikawa, 1990) or the cause and effect
diagram, developed in 1943 by Japanese scientist Kaoru Ishikawa. This di-
agram is used to identify all potential causes (or events) that may result in
a specified event. It is not only applicable to equipment failures, but also
for process operation and product quality drift diagnosis. The key (5M) cat-
egories which are proposed are manpower, methods, materials, machinery
(equipment), and milieu (environment). These categories however should be
selected to fit actual application. Several observable information and events
such as the defect in equipment parts, process recipe management or usage
conditions which are the (potential) underlying causes (or root-causes) be-
hind failure of equipment or which initiate a process that leads to failure.
These data are referred as potential root cause(s) whereas cause is the first
level cause detected upon the occurrence of failure from historical knowledge.
Below are the 4 sources of predictors (or potential root-causes) chosen for our
work with their respective potential predictors,

• Process : Abnormal changes in process conditions such as the influ-
ence of production recipes are normally registered by sensors. If not
identified and corrected, these abnormal conditions can enable events
causing an observed failure. Recipes implemented in production such
as the SI are qualified and have near zero chance to become the primary
source of failure. Nevertheless, due to the frequent change of recipes
and the diversity of operations in specific equipment, we argue that
information on its combination are of interest for root cause analysis
under uncertainty and for the purpose of decision support on corrective
actions. Other potential variables to be observed are the combination
of process steps, the amount of engineering and R&D process executed
in an equipment.

2NF EN 13306, retrieved on 3rd May 2016 from: http://maint.t.i.b.free.fr/

Files/Other/NF%20EN%2013306.pdf
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• Product : Similar to the process information, we propose to study the
influence of different product combinations processed in the same equip-
ment to the equipment behaviour. Other potential variables include the
redo work on products, the number of rework.
• Equipment : A lot of data is available on the maintenance work order

and work request. Analysis have shown that only a fraction of work
request records gives a notice of upcoming failures. Potential variables
include gradual build-up on process chamber, machine ageing, cleaning,
sensor drift.
• Maintenance: The contextual data on maintenance operations and the

generated maintenance indicators. The data can be reported by hu-
mans working on the maintenance interventions.

An example of the position of the different elements presented above in
failure analysis is illustrated in Figure 5.2

Figure 5.2: Relationship between equipment states at parent and child level.

5.2 The Methodology

The proposed methodology uses Bayesian Network as modelling approach
(see chapter 4, section ) and models increasing unscheduled equipment break-
downs at two levels. The first level is to determine the true product quality
drift failure source to stop equipment only when it is identified as the true
cause and the second level to diagnose potential failures (its localisation in-
side the equipment) and failure modes (FMs) along with causes. These two
levels are presented in the sub-sections below:
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5.2.1 Level-1: Product Quality Drift Source Diagnosis

Figure 5.3: Sub-steps in the identification of product quality drift source.

Step 1.1: Identification of predictors for BN model The predictors
(variables to be used as nodes in potential BN model) can be identified either
through experts’ knowledge or statistical or probabilistic approaches. This
requires multidisciplinary expertise from product, process, equipment and
maintenance domains. Therefore, this sub-step is completed using a task
force comprising of experts from each domain through brain storming ses-
sions. This collection of predictors is realized primarily through information
gathering sessions, commonly known as brainstorming.

The predictors might be modelled as having only the binary states (e.g.
normal vs abnormal), but BN can model the existing values as multiple
states without jeopardizing much the complexity and precision of the model.
In latter case where variables have many states with sparse occurrence of
values, the states and values are proposed to be selected using the Pareto,
detected by number and by cumulative time of occurrence (Hohmann, 2011).

Step 1.2: Classification of source of product quality drift into cat-
egories The objective of this level is to predict (identify) the real source
of product quality drift knowing the predictors; hence, source classification
will be referred henceforth as Failure Source (FS). The FS states as target
nodes are identified as product, process, equipment and maintenance.

Step 1.3: Train BN model In this sub-step, data comprising of pre-
dictors and target nodes are used to learn the BN structure and respective
Conditional Probability Tables (CPT). The BN structure is learned in semi
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supervised fashion. The structure is illustrated in Figure 5.4. The combina-
tion of EQ and Tabu is proposed as the most adapted learning algorithms.

Figure 5.4: Bayesian Network structure for product quality drift diagnosis.

Knowing the predictors of the model and its graphical structure, the fol-
lowing sub-step in BN creation is to compute joint and conditional probability
tables associated with different network predictors.

Step 1.4: Interrogation of source product quality drift category
Finally, the equipment stoppage decision is modelled as a function of FS
and predictors. The resulting BN for the source identification serves as first
decision support against the unscheduled equipment breakdowns. As an
output to the model, probability to each FS is obtained and the state with
highest probability is chosen for further investigation. It will help engineers to
make more accurate decision on the equipment stoppage when product drift
occurs. This serves as a defence against bad equipment stoppages. Figure
5.5 shows an example of reasoning results. As product has the highest value
of probability, the equipment shall not be stopped.

Figure 5.5: Example of reasoning and its use in Bayesian Network.

However, if equipment is identified as the source, further analysis needs
to be done at the equipment level. The same set of predictors are retained to
explore the localisation of the failed system inside equipment and its failure
mode. This will be further explained in the next subsection.
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Figure 5.6: Associated sub-steps for the integrated equipment failure cause
diagnosis.

5.2.2 Level-2: Equipment Failure and Causes Diagno-
sis

The second level of diagnosis advocates modelling the equipment localisation
of failure, determination of failure mode and identification of most probable
causes as a function of predictors at the module and equipment levels. The
objectives are to find the model that gives accurate using event based data.
The literature (see chapter 2, subsection 2.2.2) concludes that at present,
failure/cause diagnosis is modelled either at the equipment or component
level. However, in the last sub-step we model the failure/cause BN models
at equipment and module level followed by comparison of performance. This
will provide us answer to our research question 2 (see chapter 2, section 2.5).

Step 2.1: Identification and classification of failures, failure modes
and causes The predictors identified for product quality drift source are
retained and used for building equipment failure (localize where?), Failure
Mode (FM) (which failure?) and causes (why?) BN model. The failures
and failure modes will be our target node in the failure/cause diagnosis BN
model. The first sub-step is to identify the existing failures, failure modes
and their respective causes. This can be done, in a way using the FMECA
analysis performed on respective equipment and which are recorded as well in
the historical databases. The failure refers to the event on a block of system
inside the equipment that renders equipment in a non functional state to
produce products as per specifications, and FM defines the manner in which
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the system (potentially) fails. The (potential) failure mode may also be the
cause of a (potential) failure in a higher level system, or be the effect of a
(potential) failure in a lower level component.

Step 2.2: Learn and model failure BNs at module vs. equipment
level The objective in this sub-step is to find the modelling level (equip-
ment or module) which gives more accurate predictions on failures, failure
modes and causes. The conceptual framework for learning failure/cause BN
structure is presented in Figure 5.7. The failure (localisation) is set as the
target node, and the link from failure to FM is forced to imply the causality
link.

Figure 5.7: Conceptual framework of BN structure for integrated failure and
cause diagnosis.

Step 2.3: Computation and comparison of prediction accuracies
The BN models serve as second decision support against the unscheduled
equipment breakdowns. The next sub-step is to compare the prediction ac-
curacies for both level BN models. To evaluate BN model’s accuracy, two
metrics (precision and reliability) are employed in this thesis. Given an ex-
ample of following occurrence confusion matrix (Table 5.1), the definition of
precision and reliability are:

Table 5.1: Occurrence confusion matrix example.

Value (Real value/prediction) A (730) B (27) C (242)

A (723) 703 7 13

B (25) 5 20 0

C (251) 22 0 229
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• Precision: the ratio of predicted positive cases to total number of the
total actual cases (column),
• Reliability: the ratio of predicted positive cases to total number of

prediction cases (line).

From the above example, precision and reliability matrices are computed
and presented in Table 5.2 and 5.3.

Table 5.2: Precision matrix example.

Precision A (730) B (27) C (242)

A (723) 96.3% 25.92% 5.37%

B (25) 0.68% 94.07% 0%

C (251) 3.01% 0% 94.62%

Table 5.3: Reliability matrix example.

Reliability A (730) B (27) C (242)

A (723) 97.23% 0.96% 1.79%

B (25) 20.0% 80.0% 0%

C(251) 8.76% 0% 91.23%

To validate the BN models, we worked in particular with the 10-fold cross
validation strategy where the historical dataset is randomly partitioned into
10 equal sized subsamples. The validation process is then repeated 10 times,
with each of the 10 subsamples used exactly once as the test data. For each
fold, both reliability and precision matrices are computed for both BN mod-
els (equipment and module level). The results from the 10 folds are then
averaged to produce averaged reliability and precision. Finally, evaluation
and decision are made by comparing the accuracy for equipment BN (Equa-
tion 5.1 and module BN (Equation 5.2. The BN with higher accuracy will
be considered for future modelling of failures.

Accuracyeq =
Reliabilityeq + Precisioneq

2
(5.1)

Accuracymod =

∑Nbmodules

n=1 Reliabilitymodn +
∑Nbmodules

n=1 Precisionmodn

Nbmodules × 2
(5.2)

5.3 Discussion

In this chapter, we have presented two level integrated product quality drift
source and failure/cause diagnosis methodology which is based on BN ap-
proach. The proposed methodology offers two levels of defence against in-
creasing unscheduled equipment breakdowns. At the first level, Bayesian
Network (BN) model is proposed to address misdiagnosis in product quality
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drift (failure) source because we argue that equipment must be stopped only
if equipment is the source of drift. The second level of defence proposes to
develop an integrated failure/cause diagnosis BN model with an objective
to reduce failure and diagnosis durations which will ultimately stabilize and
improve production capacities. The objective of this methodology is to pro-
vide answer to first two research questions (see chapter 2, section 2.5). The
validation and answers to these research questions are obtained through a
case study results presented in chapter 7 and 8.
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Chapter 6

Methodology for the Extraction
and Validation of Time Bound

Failure Signatures

Introduction

In this chapter, we present 4-step methodology for the extraction and valida-
tion of time bound failure signatures. The objective of this methodology is to
provide answer to research question 3 (see chapter 2, section 2.5) to identify
time bound failure signatures for the improvement of preventive maintenance.
The goal is to stabilize and improve production capacities due to increasing
unscheduled equipment breakdowns in high-mix low-volume production set-
tings.

Contents
6.1 The methodology . . . . . . . . . . . . . . . . . . . . 66

6.1.1 Step-1: Dataset Preparation . . . . . . . . . . . . . . . 68

6.1.2 Step-2: Equipment Failure Probability Plots . . . . . 70

6.1.3 Step-3: Extraction of Time Bound Failure Signatures
(Patterns/Rules) . . . . . . . . . . . . . . . . . . . . . 72

6.1.4 Step-4: Validate Rules and Compute Predictability
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1 The methodology

The proposed 4-step methodology for the extraction and validation of time
bound failure signatures (patterns/rules) is presented in Figure 6.1. The first
two steps consist of building a BN to generate and plot equipment failure
probabilities at irregular intervals (data/time) and the final two steps focus
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on the failure probability plots for patterns/rules extraction and their valida-
tion such that these failure signatures ensure execution of proactive actions
to avoid failures occurrence. The 4-steps of the methodology are presented
and elaborated below:

Figure 6.1: The methodology.
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6.1.1 Step-1: Dataset Preparation

Figure 6.2: Summary of Step-1.

This first step involves the identification and selection of failure predictors
and FM, definition of regular intervals for failure probability estimation and
the data pre-processing. This data preparation for the modelling of BN is
important to present the conditional dependencies and potential causal links
between two types of nodes: (i) Predictors, corresponding to the observable
events and statistical information coming from multiple data sources and
(ii) Failure Mode (FM), with no failure included as the targeted equipment
state.

Step 1.1: Identification and selection of failure predictors and fail-
ure modes The first sub-step is to identify the predictor from product,
process, equipment and maintenance databases. It is one of the most dif-
ficult and complex task as it requires multidisciplinary expertise from each
domain. The task equally involves identification of FMs to be modelled as
target. The choice of predictors and FMs (indirectly) are similar to those
presented in chapter 5.

Step 1.2: Definition of data space interval for discretization In this
sub-step, discretization interval is defined to aggregate data collected from
multiple data sources. The BN is known for its ability of computing the
posterior probability of the target node given any evidence or a subset of
evidence available at time t, however in our methodology, we need to extract
patterns/rules based on failure probability plot. We propose data interval
such that we have one occurrence for all predictors.
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Figure 6.3: Validation scheme using historical data.

Step 1.3: Data pre-processing In this sub-step, we aggregate data col-
lected on identified predictors from multiple databases into a single dataset.
The data are sorted temporally using the definition of data intervals, with
FM as the primary key. The data must be synchronized and structured in
the form of Table 6.1. The first two columns however are not used to build
the BN.

Table 6.1: Preparation of data for BN training.

Date-time State duration Failure Mode P1 P2 ... Pn
08/03/2014 05:13 04:23:00 Failure a
08/03/2014 08:19 39:45:00 No Failure
08/03/2014 09:42 10:11:00 Failure b
...

It is necessary to divide the historical dataset to validate different steps
of the methodology. The division is initiated with two parts as BN Learning
with Rules Extraction (BNL&RE) and Validation (V). Specifically, in this
thesis, the notion of test and validation are distinguished. The test refers
to cross validation task using BNL&RE sample data while validation is the
final step of the methodology. The two parts of data are initially divided
evenly as 50:50. The rest of division can be illustrated using the validation
schema, proposed and presented in Figure 6.3.
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6.1.2 Step-2: Equipment Failure Probability Plots

The BN structure proposed in the methodology is similar to previous chap-
ter’s (chapter 5 module level BN model; however, it needs to be slightly
modified. The first change is the omission of causes nodes whereas second
change is the inclusion of no failure state in the FM. Finally, Failure and FM
are modelled as the target nodes (Figure 6.4), however, failure probability
will be computed upon the FM as the observed node. As a result, the modi-
fied BN can be used in real time not for failure/cause diagnosis purposes, but
as failure probability plots for the purpose of time bound failure signature
(patterns/rules) identification.

Figure 6.4: Conceptual framework for module level BN construction to plot
failure probabilities.

Figure 6.5: Summary of Step-2.

This step deals with the construction of BN model to plot failure prob-
abilities for its subsequent usage to extract time bound failure signatures.
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This step consists of 3 sub-steps as presented below:

Step 2.1: Learning and optimization of BN Structure The first task
is focused on learning and optimizing BN structure. The structure of BN can
be obtained either through experts knowledge or learned from the data using
any heuristic algorithm deems fit. In this methodology, it is proposed to
learn the BN structure from data using score-based semi-supervised learning
algorithm that uses Minimum Description Length (MDL) as an objective
function for its advantage of trade-off between data fit and model complexity
(Lam and Bacchus, 1994). The search and score algorithms for structure
learning are proposed as EQ (from scratch) with Tabu (for optimization).

Step 2.2: Learning and optimization of BN CPT Given the graphical
structure, if the assessment of the Conditional Probability Tables (CPTs)
are not done in parallel with chosen score-based algorithms, the next sub-
step is to compute CPT associated with different network nodes. Like the
training for structure, the probability distributions are entirely determined
by automatic learning from data. In our context we used the Maximum
Likelihood (ML).

Step 2.3: Validation of accuracy and precision The BN model valida-
tion is based on accuracy (reliability and precision) criteria which are set and
provided by the end user. If it is not fulfilled, the initial BN structure is to
be further optimized using other learning algorithm(s) and/or combination
of algorithms. This is because of the fact that heuristic search algorithms
might explore only a small part of a huge search space in order to find a local
optimum. It does not guarantee to find the global optimum. Use of different
search spaces or search strategies or both can lead to an optimized structure.
The non-compliance to the user defined criteria using selected algorithms
may require increasing and adjusting the ratio of BNL&RE and V dataset.
This task follows recursive relearning and optimization of BN structure until
user defined criteria is met or Size(V ) ≤ 0.25 ∗ Size(Complete Dataset).

Step 2.4: Plot Failure Probabilities In this sub-step, failure probabil-
ities using BN model are computed with aggregated BNL&RE dataset as
P (FMi | evidenceon all predictors). The probabilities associated to each FMi is
plotted upon testing dataset on the discretized data intervals, and for each
failure separately. These graphs are the input to next step.
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6.1.3 Step-3: Extraction of Time Bound Failure Sig-
natures (Patterns/Rules)

Figure 6.6: Summary of Step-3.

At this stage of the proposed methodology, we are equipped with the prob-
ability graphs for all FMs over discretized data intervals.

Step 3.1: Extraction of patterns/rules These probability plots from
the BNL&RE testing set are analysed to extract patterns/rules for all type
of FMs separately. Patterns are the specific rules where obvious regularities
of failure probability values are observed. We make the assumption that if
probability of a failure type at a given interval is superior to a certain level
and to all other types of failure, including the no failure, then the associated
failure is attributed as the source of equipment failure. Moreover, occurrence
of a failure can also be attributed depending on the consistency in failure
probability plots. This is based on the fact that dependencies among the
chosen predictors exist and are translated into conditional probabilities of
target failures accurately. We search to identify pattern in the plots, but in
case of no pattern, predictive boundaries and number of sufficient consecutive
points are computed as the basis to construct rule(s) for prediction. These
boundaries correspond to the lower and upper probability limits such as
minimum, maximum of observed probabilities. The identified patterns may
also use the predictive boundaries to refine the results.

Step 3.2: Predict failure using extracted patterns/rules The pre-
vious sub-step resumes with the prediction of failures using identified pat-
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terns/rules on the training BNL&RE dataset and the estimation of lead time
(the time interval from the prediction to the failure occurrence, 4tl) for each
prediction.

Step 3.3: Validation of lead times to fulfil predefined criteria To be
selective among generated patterns/rules, the last sub-step is the validation
of average lead time of a pattern/rule falling within the acceptance interval
of criteria (time bound) defined by the users. Example of time bound criteria
is the warning time (the minimum lead-time such that failure prediction is
of any use, 4tw)). Then the patterns/rules are preserved for the next step.
This approach offers flexibility over existing approaches such that the pat-
terns/rules are extracted to predict associated failures with 4tw as defined
by experts. These 4tw allow sufficient time to execute corrective/proactive
measures for failure avoidance as a proactive approach.

6.1.4 Step-4: Validate Rules and Compute Predictabil-
ity Index

Figure 6.7: Summary of Step-4.

The validation of chosen patterns/rules on validation dataset is the final step.
It is divided into 2 sub-steps.

Step 4.1: Prediction of failures on validation dataset The first task
is to perform the prediction of FM using selected patterns/rules from the
Step-3, but on the validation dataset. The metrics from confusion matrix
and the lead time are also computed for these predictions.

Step 4.2: Computation of predictability index In this final sub-step,
predictability index (PI) is computed for all chosen patterns/rules as the
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average of prediction accuracy (Equation 6.1), prediction precision (Equation
6.1) and percentage lead time (Equation 6.3)1. Prediction accuracy and
precision are the most commonly used metrics for off-line evaluation in the
domain of diagnostics and prognostics (Saxena et al., 2010), while lead time
percentage is the additional predictive metric required in our methodology
to score the prediction horizon through quantification of lead time gain and
loss. The qualifying patterns/rules are then used in subsequent real time
failure prediction.

Accuracy =
TP + TN

TP + FP + TN + FN
(6.1)

Precision =
TP

TP + FP
(6.2)

Lead time % =
4tlTP

4tlTP+ 4tlFP

(6.3)

6.2 Discussion

This chapter presents methodology for time bound failure signature extrac-
tion and validation. The proposed methodology empowers engineers in se-
lecting flexible failure signatures (patterns/rules) such that the failure pre-
diction ensures sufficient time to execute corrective/proactive measures with
an objective to avoid failure. The concept of predictability index (PI) is also
proposed which represent failure warning lead time. The maintenance teams
can use this methodology to extract failure signature for a given lead time.
This flexibility makes the proposed time bound failure signature extraction
methodology unique in its contribution.

1TP=True Positive, TN=True Negative, FP=False Positive and FN=False Negative
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Chapter 7

Case Study Description

Introduction

This research thesis is carried out in the ’INTEGRATE’ European project in
collaboration with STMicroelectronics, Crolles. In this chapter, we present
introduction to the Semiconductor Industry (SI), multi source data collected
across the production line, and pre-processing for subsequent usage and val-
idation of proposed methodologies in chapters 5 and 6. A brief description
of ’INTEGRATE’ project can be referred in Appendix-B.

Contents
7.1 Introduction to Semiconductor Industry (SI) . . . . 76

7.1.1 Characteristics of Integrated Circuits (IC) Production
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7.1 Introduction to Semiconductor Industry

(SI)

7.1.1 Characteristics of Integrated Circuits (IC) Pro-
duction Environment

The semiconductor industry (SI) is characterized as high-mix low-volume
production environment. It is fragile, fastest growing and highly complex
production settings where market is driving not only the product (demand
volume and diversity) but also the process (technology). The sales revenues
in the SI are characterized by cyclic demand patterns and positive compound
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annual growth rate (CAGR)1 of 7.72% (Figure 7.1) in 2015 as compared to
1989. The demand for ICs is mainly driven by end user markets from the
Electronics Industry (EI) e.g. data processing, communication, consumer
electronics, industrial sector and automotive. PricewaterhouseCoopers2 fore-
casts 5-years (2014-2019) growth rate of +11.2% for automotive sector. The
SI forms a part of this complex interaction among these multiple industrial
sectors (Kumar, 2008; Yoon and Malerba, 2010). Therefore, demand is in-
creasing not only in volume but also in diversity that led the emergence
of high-mix low-volume production environment and shortening product life
cycles, in the SI. The success in the SI requires sustainable production ca-
pacities to cope up with associated challenges in this complex and highly
competitive environment.

Figure 7.1: Global sales revenues of SI.

The overall semiconductor manufacturing process can be classified into
three main stages,

1. Design: The manufacturing process begins by receiving customer de-
mand (functional specifications) for product. This is also referred as
Computer Aided Design (CAD) phase during which simulation tools
are used to design the functional blocks needed to manufacture the
product. The design tools are also used to evaluate the electrical de-
scription of these blocks to respect the limits of functional parameters

1The CAGR formula is given by CAGR = ( Ending year of sales
Reference year of sale

1
Number of years )− 1

2Retrieved from: https://www.pwc.com/us/en/technology/publications/assets/

semiconductor-industry-device-deal-trends.pdf
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defined with the client. The CAD tools also help transform the design
into physical architecture (more commonly known as layouts) enabling
the generation of masks for IC production in the second stage.

2. Wafer fabrication (Front-end): In this stage, the ICs (transistors, re-
sistors, metal interconnections, etc.) are manufactured on the surface
of silicon wafers (example, of 200 mm or 300 mm diameter).

3. Wafer assembly and packaging (back-end): In this stage the processed
wafers are tested prior to be assembled and cut as individual ICs before
being encapsulated in a plastic moulding compound or ceramic case,
forming the package. Finally, the individual circuits are again tested
and shipped to customers.

Among these stages, front-end represents the most complex process flow
and in this environment is the main focus of our research. The wafers fabri-
cation is a multi stages process with re-entrant flows. It has eight different
production workshops performing manufacturing operations on each chip,
such as cleaning and polishing wafer surfaces using Chemical Mechanical
Polishing (CMP), ion implantation, oxidation and thermal treatment, de-
position of dielectric, deposition of metal, photo-lithography, etching and
metrology. For each product type, and depending on the technology, a wafer
undergoes about 1100+ elementary operations steps over a period of several
weeks (See Figure 7.2)3.

The SI production line consists of hundreds of equipment and are divided
into three types,

• Production equipment: These equipments are capable of performing
physical transformations on silicon wafers. They are used to perform
any of above mentioned elementary process steps. These equipment
can be of single, batch or multi process module type.
• Metrology equipment: These equipments measure and control the

quality of the processes performed by the production equipment. Among
others, these are used to measure critical dimensions and uniformity of
deposition or etching and contamination of wafers.
• Automated transport equipment: These are the automated robots

enabling the transport by batches of 25 wafers (called FOUP) from one
equipment to another throughout the production areas.

In such complex production environment, unscheduled equipment break-
down is the limiting factor for sustainable production capacities. Therefore,
higher level of complexity and uncertainties during production arise due to
the following facts:

3Figure is adapted from Yugma et al. (2015).
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Figure 7.2: Front-end proces flow.

• Technology is developed every 2-3 years (development cost 3-5 B$))
(Shahzad, 2012) to manufacture smaller designs while ensuring and
improving circuit performance. The high mix of products, but in low
volume demand leads to frequent changes in process recipe and there-
fore the operating conditions of equipment vary due to differences in
materials used, configuration or layout of devices and interconnections,
feature and overall chip size.
• High cost of process and equipment drives manufacturers to maximize

the use of their equipments, having as minimum break downs or idle
times as possible.
• Variations in product quality produced during manufacturing often

are functions of the product being produced as well as the produc-
tion equipments being used. Identical equipment may process identical
wafers differently based on conditions like number of lots processed
since the last maintenance event, small differences or minor variations
in ambient conditions.
• More and more data from multiple data sources are generated but no

existing R&D methods are yet implemented to link the high interac-
tion between different elements of the production to the unscheduled
breakdown events.
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7.1.2 Production Line multi-Source Data

Data is the fundamental basis for most preventive, conditional and predic-
tive functions and applications. A big quantity of data are generated ev-
eryday in the SI to maintain the processes at their specification levels, to
monitor product and equipment for potential drifts and faults. These data
are either intervention log data (installation, qualification, adjustment and
maintenance) or process data (production, R&D, measurements, inspections,
transportation of lots) made in the clean room. All these data are stored in
multiple databases to allow easy access to the data needed for different needs
of analysis. Figure 7.34 shows a representation of the automated production
environment which consist of production and metrology equipment, and Au-
tomated Material Handling System (AMHS), information systems (consist of
Automation and MES modules), existing data bases (TGV, EDA, FDC, etc)
and data analysis tools (Klarity, KLAACE, etc), to manage, supervise and
control the production system 300mm production line at STMicroelectronics,
Crolles.

The functions of different databases can be related to either production
or metrology equipment.

• Databases related to production equipment:

– Tool Global Visibility (TGV): This collects maintenance data. It
archives historical data and calculate the indicators which are then
used to control the maintenance activities.

– Fault Detection and Classification (FDC): This database stores
equipment parameters, collected in real time from equipment sen-
sors, during production operations.

– Engineering Data Analysis (EDA): This contains historical pro-
cess data from equipment including production operations (Work
In Process (WIP)), process (recipe), product and metrology.

• Metrology and inspection databases:

– Inline: This stores all physical measurements made on silicon
wafers during production operations and primarily serves to SPC
system.

– Parametric Test (PT): This includes the electrical measurements
performed on test structures located around the circuit for all
production wafers before the assembly and package phase.

4Figure is translated to English from Said (2016).
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Figure 7.3: Description of information systems of Crolles, 300mm production
line at STMicroelectronics, Crolles.

– Electrical Wafer Sort (EWS): This database stores all electrical
measurements (functional tests) made on IC chips after manufac-
turing.

– Defectivity (DEF): This stores inspection information of particles
on the surface of the wafers.

In the SI, equipment can have one or more process module(s) (a.k.a.
chamber), non-process modules, several sub systems associated directly with
the equipment and sub systems associated to the modules (Figure 7.4). These
are related to one another in parent child relation. This complex modelling
scenario results in the inherited failure concept where failure arising on either
parent or child has an impact on the state of other. The rules are illustrated
in Figure 7.5.
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Figure 7.4: Chart representing a hierachy of equipment composition in the
SI.

Figure 7.5: Rules on inherited failure within different level of components.

7.2 Presentation of Case Study

7.2.1 Thermal Treatment Workshop

In the Thermal Treatment (TT) workshop, two types of operation are per-
formed:

• Deposition of oxide and nitride layers using LPCVD (Low-Pressure
Chemical Vapor Deposition) technique in which a growth or deposition
is carried out at a relatively high temperature (>600◦C) on the surface
of the silicon wafer.
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• Annealing (heat treatment) process after the insulated layers deposi-
tion or ion implantations. This process is performed to densify, stabilize
crystalline structure of silicon wafers and/or cure the defects in deposi-
tions, or activate the electrical dopant after ion implantation operation,
prior to the next steps.

Figure 7.6: General structure of the LPCVD equipment (left) and the reactor
module (right) from TT workshop.

There are eight LPCVD equipment of type ’TASMI’ in the thermal treat-
ment workshop of the production line under consideration. The general
structure of this TASMI equipment is presented in Figure 7.65. The equip-
ment type in this production line is batch cluster with two process modules
known as reactors. The Reactor1 (TASMI0X 1), Reactor2 (TASMI0X 2)
and Mainframe (TASMI0X MF) are the three main modules of the equip-
ment. Mainframe can be further composed of many sub modules. Each of the
TASMI0X (X refers to numbers from 1 to 8) has similar functions but with

5Figure is retrieved from http://www.google.fr/ patents/US7553516 on 21st March
2014)
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different composition of its modules. In this thesis, we consider the three
main modules from TASMI03 (TASMI03 1,TASMI03 2 and TASMI03 MF).
The integrated failure/cause diagnosis BN models at module and equipment
levels which is the focus of methodology proposed and validated in chapters
5 and 8 are therefore developed only for these equipment modules.

7.2.2 Reactor Module of TASMI-03

The reactor module, (see Figure 7.6)6, considered is composed of:

1. Exterior chamber
2. Inner chamber with quartz (liner)
3. Wafer support (boat)
4. Elevator boat rotation
5. Watertight door for loading and unloading
6. Heating elements
7. Gas panel
8. Temperature sensor
9. Pressure gauge (manometer)

10. Pressure regulator.

7.3 Discussion

This chapter presents key characteristics of the SI and the case study car-
ried out on TASMI equipment selected from thermal treatment workshop
to validate the proposed methodologies in chapters 5 and 6. The individual
data dimensions (variables) used for modelling are presented in the respective
validation chapters 8 and 9.

6Figure is retrieved from Bouaziz (2012)
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Chapter 8

Application and Results of
Integrated Drift Source and
Failure/Cause Methodology

Introduction

This chapter presents the validation results of 3-step methodology for inte-
grated drift source and failure/cause diagnosis (chapter 5). This methodology
primarily provides answers to first two research questions that focus on re-
ducing misdiagnosis in the source of product quality drifts and failure/causes
and finding the best modelling level (equipment/module) for more accurate
failure/cause diagnosis in high-mix low-volume settings. The answers pro-
vide us the means to stabilize and improve production capacities which is
the key for success in the SI.
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Figure 8.1: Proposed 3-step methodology for reducing failure/cause misdi-
agnosis in the SI.

8.1 Level-1: Product Quality Drift Source Di-

agnosis

8.1.1 Identification and Classification of Predictors

The dataset used in the case study spans six months (from week 27th to
week 52nd of 2013) and are collected across the databases linked to both the
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production and metrology equipments for TT equipment. These databases
however are further distinguished as product, process, equipment and main-
tenance according to their specific functions. The acquired data are going to
be used as the predictors, failures and causes. The first task of the step-1 is
the identification of predictors from the four databases and are used as the
nodes to generate the BN to accurately identify the product quality Failure
Source (FS), as well as development of an integrated failure/cause diagnosis
BN models at the module and equipment level (subsections 8.2.3 and 8.2.2).

The predictors are classified in four axes as Product, Process, Equipment
and Maintenance. The identification and classification of potential predictors
from the databases is the most difficult and complex task. It requires mul-
tidisciplinary expertise from product, process, equipment and maintenance
domains; therefore, a task force with required expertise was formed. This
step of the case study is implemented using brainstorming between experts
which is capitalized in the Ishikawa diagram (Ishikawa, 1990), see Figure 8.2.
Alternative proposition is to use Pareto analysis on available Failure Mode,
Effects and Criticality Analysis (FMECA) to identify the important failure
predictors across the domains. The Ishikawa approach is more beneficial if
such FMECA files are updated and available at the equipment and mod-
ule levels. However, due to the absence of formally capitalized and updated
knowledge in the SI (Said et al., 2016), we can only rely on brainstorm-
ing without it. The brainstorming sessions resulted in the formalization of
well-known Fishbone diagram to find potential predictors and links to FS
from product, process, equipment and maintenance areas. The results are
presented in Figure 8.2.

The TASMI equipment is of batch cluster type; hence, they process mul-
tiple lots in a given step. Therefore current/previous product combinations
might influence the product quality. Number of reworks, wait time before
process and defect distribution from previous steps are also identified as key
product predictors linked with product quality drift. The process capability
(Cp) and process capability index (Cpk) are the key process predictors. It
is also identified that not only current recipe but also previous recipe and
their respective process steps combinations could be strongly linked with
product quality. The FDC sensor signals from equipment database are not
directly considered; however, decisional information based on these signals
is a good candidate for potential predictors. The key predictors from equip-
ment database are equipment capability (Cm) and equipment capability in-
dex (Cmk); however, Overall Equipment Efficiency (OEE) indicators and
counters are also included as the additional predictors. The counters are
the meters associated with equipment modules (process chambers and main-
frame), used for triggering preventive maintenance actions. Last category
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Figure 8.2: Classification of predictors.

of predictors is the maintenance where Reliability, Availability and Mainte-
nance (RAM), and failure indicators are identified as the key predictors. The
data is collected for these predictors against product quality drifts. The data
for OEE, RAM, process and equipment capability, and failure indicators are
aggregated on weekly basis whereas rest of the data is instantaneous for a
given product and process step.

8.1.2 Learn and Train Semi-Supervised Bayesian Net-
work

The structure of BN can be obtained either through experts’ knowledge or
learned from the data. The BN structure in this thesis is learned with the
BayesiaLab 5.3 using score-based unsupervised learning algorithms that use
Minimum Description Length (MDL) as an objective function. The struc-
ture is learned and optimized using combination of two search and score al-
gorithms, sequentially. The initial structure is learned using the Equivalence
Class (EQ), and it is further optimized using Tabu algorithm, that comple-
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ment EQ in terms of search space and exploration strategy. The learned
and optimized BN is presented in Figure 8.3 where FSs are modelled as
the function of predictors (differentiated with different colors respecting the
class of predictors). The green, pink, yellow and light brown colors represent
Product, Process, Equipment and Maintenance respectively). The objective
of showing this graph (Figure 8.3) is to present the complexity of resulting
network.

Figure 8.3: BN model for FS identification.

Figure 8.4 highlights the nodes that have direct causalities with the tar-
get. The probability to have each failure source shall differ based on different
values taken by these nodes. The proofs of concept are presented in Figures
8.5. Failure source (light red background) is the result of inference given
the observations of highlighted predictors (white background with distinct
coloured frames highlighting different categories). Chosen predictors are the
nodes with direct association. It can be seen that in the Figure 8.5a, BN
identifies Product (64%) and Maintenance related (36%) as failure sources.
Hence, in this situation, maintenance personnel should not stop the equip-
ment. Similarly, the Figure 8.5b shows that maintenance is found as the only
reason against given evidence from predictors; hence, BN model suggests to
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stop the equipment for further investigation on failures and causes.

Figure 8.4: Representative nodes for the proof of concept.

8.1.3 Test Bayesian Network for Product Quality Drift
Source Diagnosis

Table 8.1 presents the results from one of the FS BN model precision and
reliability matrices (refer paragraph 5.2.2 of chapter 5) based on 10-fold cross
validation strategy, whereas the aggregated results are summed in Figure 8.6
with box plots to demonstrate the distribution of true positive prediction
precision and reliability for each FS. The results show that the BN model
is more accurate in diagnosis of equipment and process as the source of
unscheduled brakdown drifts than product and maintenance. This can be
due to dependencies and choice of predictors. However, the overall model
accuracy is high and with low standard deviation.

Further analyses are executed using available tests in BayesiaLab 5.3.
The Figure 8.7 shows FS prediction performance with Receiver Operating
Characteristic (ROC) curve, a graph to plot true positive rate1 (Y-axis)
against false positive rate2 (X-axis). Its index represents the surface under
the ROC curve divided by the total surface and in the graph of product
for example, it represents a 99.66% average accuracy with 0.34% of false
positive prediction. Again, equipment and process ROC (100% and 99.9%
respectively) prove to provide with the better performances.

1True positive rate measures the proportion of positives that are correctly identified
2False positive rate measures the proportion of negatives that are correctly identified
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(a) Product as FS.

(b) Maintenance as FS.

Figure 8.5: Proof of concept of FS (Failure Source) identification.
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Table 8.1: Precision and reliability matrices of FS BN.

Precision Eq (1533) Maint (1417) Proc (1015) Prod (1035)

Eq (1533) 100% 0% 0% 0%

Maint (1338) 0% 95.67% 0% 0%

Proc (1043) 0% 0% 100% 0%

Prod (1086) 0% 5.58% 0% 97.77%

Reliability Eq (1533) Maint (1417) Proc (1015) Prod (1035)

Eq (1533) 100% 0% 0% 0%

Maint (1338) 0% 100% 0% 0%

Proc (1043) 0% 0% 97.83% 2.68%

Prod (1086) 0% 7.27% 0% 94.03%

Figure 8.6: Failure source standard deviation and the box plot graph of true
positive prediction performances.

Furthermore, the capability of FS identification model with gain curves
is presented in Figure 8.8. The x-axis represents rate of individual cases
taken into account for prediction whereas y-axis represents rate at which
they are predicted accurately with target failure source. In the figure, the
blue curve represents the gain curve of prediction using random policy and
the red using optimal policy. For example, the figure for product illustrates
that choosing 26% of individuals allows getting 100% of the individuals with
the target variable with the optimal policy. The data mining Gini index for
cross validation represents the gain over random model and is computed as
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Figure 8.7: Prediction accuracy with ROC curves for all FS.

the surface between the red curve and the blue curve divided by the surface
above the blue curve. The relative Gini index is computed by dividing the
area within triangle formed due to crossing of red, blue and black dotted
lines with area within yellow line triangle. The yellow curve is the curve
that enables us to determine the percentage of individuals allowing identical
value of the relative Gini index and ROC index. It is observed that FS
identification capability for product and process are higher than equipment
and maintenance.

8.2 Level-2: Equipment Failure/Cause Diag-

nosis

The FS identification model, presented in previous section, is the first step
towards reducing unscheduled equipment failure breakdowns. This is com-
plemented by failures and causes diagnosis through developed BN models at
module and equipment levels. For the experiment and proof of concept, we
have used three modules (i) Reactor1, (ii) Reactor2 and (iii) Mainframe.
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Figure 8.8: Gain curves for all FS.

8.2.1 Identification of Failure/Causes at Module and
Equipment Levels

The predictors from FS identification BN model (section 8.1.1) are comple-
mented with equipment (or module) level failures, failure modes and causes
to develop the integrated failure/cause BN at equipment and module lev-
els. For each model, the target nodes Failure (localisation), Failure mode are
modelled as the function of these predictors; however, causes are also allowed
to be directed from these predictors. Therefore, failures, failure modes and
causes are identified from equipment and maintenance databases (see Table
8.2). The causes are modelled as binary nodes.

8.2.2 Learn and Train Semi-Supervised Bayesian Net-
work at Module/Equipment Levels

The set of predictors resulting from section 8.2.1 are then used to learn the
structure of integrated failure/cause diagnosis BN models for three modules
(Reactor1, Reactor2, Mainframe). The resulting BN are presented in Fig-
ures 8.9a, 8.9b and 8.10, for Reactor1, Reactor2 and Mainframe. The color
scheme for predictors classes is modified as compared to the ones presented
in subsection 8.1.1. The green, light brown, dark pink, dark yellow represent

Univ. Grenoble Alpes, 2016 94



Chapter 8. Application and Results of Integrated Drift Source and
Failure/Cause Methodology

Table 8.2: List of failures and failure modes’s states and causes nodes.

Node/module
FAILURE
(Single node and list of its states)

FAILURE MODE
(Single node and list of its states)

CAUSES as binary nodes
(list of the cause nodes)

Reactor1

ELEVATOR BOATROTATION
OCAP SPC
REACTOR CARROUSEL
WHR BTM

BEARING
LOTS
MOTOR
NPW
WHR BTM
Z OTHER

Tool stop FDC generic
Reactor tube elevator boat pickup
Alarm Boat Elevator Integrator
OCAP
Pb limit calibration of robot
Overheat digital imput 12
Reactor Status Inhibit next load

Reactor2
ELEVATOR BOATROTATION
OCAP SPC
Z OTHER

BEARING
LOTS
NPW
Z OTHER

Abort the SPV following ”alarm section tube”
Wait boat alarm
OCAP
AbortINL

MainFrame

CHC CAROUSSEL
GAS FLOW
GATE VALVE
REACTOR CAROUSSEL
TUBE DOOR

BLOWER
SWITCH
Z OTHER

Problem loading the boat
Tube robot door open
Analysis bp remounted in O2

JobOut fail problem on TASMI03
Gate valve open
Gate Valve impossible to be opened
Pb with Pick up switch

Product, Process, Equipment and Maintenance respectively, whereas failure
modes and causes are added as nodes with blue and orange colors, respec-
tively. The nodes, not connected, in these BN models are found with zero
influence on either failures, failure modes or causes.

The proofs of concept for Reactor1, Reactor2 and Mainframe are pre-
sented in the Figures 8.11a, 8.11b and 8.12. Again, in it we present only few
chosen predictors for visualization purposes while the module’s failure, failure
mode and causes diagnosis made by BN model is presented as the function
of predictors (in green, green and orange frames of the right columns). In
the BN model, we have presented the key predictors having direct influence
on causes and failures.

8.2.3 Test and Compare Bayesian Network Performance
at Module/Equipment Levels

To find out, whether module level BN models are more accurate than equip-
ment level model, we developed an equipment level failure/cause diagnosis
model. Besides this, we added one node ’Module’ (maroon node) to diag-
nose failures for a given module in the equipment. The model is presented
in Figure 8.13. It can be observed that all nodes are connected. The nodes
having zero influence in module level BNs, are connected in this network
that add confusion and influence the equipment level diagnosis. Confusion
is also caused due to the fact that similar modules, Reactor1 and Reactor2
share common failures such as Out of control alarms which are detected by
the SPC system (OCAP SPC ), Reactor caroussel and Elevator boat rotation.
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(a) Reactor1

(b) Reactor2

Figure 8.9: Module level BNs for failure/cause diagnosis.

Each module has different occurrences of these failures but in this network,
they do overlap. It is also observed from the proof of concept (Figure 8.14)
that for given predictors, all modules have 33.33% probability of occurrence
that confirms the added confusion.

As the last task of the second step, the equipment level BN is modelled
and proposed to be updated upon new excursions, any structural change
between two consecutives equipment level BNs will be used as a signal to
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Figure 8.10: Mainframe BN for failure/cause diagnosis.

revise the module level BNs, with equipment experts’ intervention. This
loop back step is not completed in this case study; however, diagnosis results
from module and equipment level models are compared for their accuracies
as the final step of this methodology.

In this last step, performance from the failure/cause diagnosis models
are analysed. The prediction capabilities with selected failures from each
of the three modules BN models are presented in Figure 8.15. The rela-
tive Gini index results linking to ROC index show that learned models have
high accuracy. Besides this, it can also be observed that accurate prediction
capabilities are also very high in terms of Gini indices.

However prediction accuracy for equipment level BN model is quite low
and is presented in Figure 8.16 with gain and ROC curves. These results show
the declined gain and increasing false positive that significantly reduces the
diagnosis capability of the equipment level BN model. A box plot summary
on precision and reliability based on 10-fold cross validation for each type of
failures is presented in Figure 8.17.

Finally the analysis of reliability and precision for each type of failures
from module and equipment level BNs are computed and presented in Figure
8.18. For further conclusion on the performance, the accuracy (Figure 8.19
is computed as an average of reliability and precision for each BN model. It
shows that module level BN has almost overall 99.7% prediction accuracy
in comparison to 54% for the equipment level model. The gain obtained
in diagnosis with module level BNs is 45.7% that is significant in reducing
unscheduled equipment breakdowns. The likely reason for misdiagnosis by
equipment level BN model is the commonality in failures between different
modules that add confusion. Hence, the BN models, learned at module level,
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(a) Reactor1

(b) Reactor 2

Figure 8.11: Proofs of concept for Reactor1 and Reactor2 BN.

offer more accuracy over equipment level BNs for failure/cause diagnosis.

8.3 Conclusions and Discussions

The key results obtained in this chapter are the answers to the two re-
search questions. The case study results obtained using data collected across
the world reputed semiconductor manufacturer demonstrates that integrated
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Figure 8.12: Proofs of concept for Mainframe.

Figure 8.13: Equipment level BN for failure/cause diagnosis.

product quality drift and failure/cause BN model offers significant gains
in reducing increasing unscheduled equipment breakdowns. The BN model
learned and validated at the module and equipment levels confirm that mod-
ule level BNs give more accurate prediction than equipment level BN model.
The possible reason for this is the commonality in failures between different
modules which adds confusion at the equipment level.
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Figure 8.14: Proof of concept from equipment level BN.

Figure 8.15: Gain curves for module level BNs.
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Figure 8.16: Gain and ROC curves for equipment Level BN.

Figure 8.17: Equipment level standard deviation and the box plot graph of
true positive prediction performances, reliability (left) and precision (right).
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Figure 8.18: Reliability and precision comparison by failures and mod-
ule/equipment.

Figure 8.19: Gain in prediction accuracy for module level BNs over equipment
level.
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Chapter 9

Application and Results of
Online Failure Prediction

Methodology with Time Bound
Failure Signatures

Introduction

This chapter presents validation results of the methodology for the extraction
of time bound failure signatures (patterns/rules) as presented in chapter 6.
The Figure 9.1 presents the summary of the proposed methodology. The
dataset used in this case study spans 10 months (from week 27th 2013 till
week 16th 2014). The results are presented step by step from sections 9.1 till
9.4.
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Figure 9.1: Summary of the 4-steps failure signature extraction methodology
with respective colours for elaboration.

9.1 Step-1: Dataset Preparation

Each sub-step in dataset preparation step is presented in Figure 9.2.

Figure 9.2: Step-1: Identification of Predictors as failure predictors and
dataset pre-processing.
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Table 9.1: List of identified Predictors and failures for TASMI03 01.

Failure Product Process

No of rework
Defect distribution
Wait time
Previous product combination
Current product combination

Current step
Previous step
Current recipe
Previous recipe

Equipment Maintenance

Failure a
Failure b
Failure c
no failure

Previous state
No of alarms
No of warnings
MTTR
Up
Productive

Wafers processed
OEE
TT PM Boat meter
TT PM Trap meter
OEE time
Cm

9.1.1 Identification and Selection of Variables

This sub-step is based on the predictors identification step as elaborated in
chapter 8, subsection 8.1.1. However, re-identification of predictors is done
at equipment and module levels following the results of BN failure/cause di-
agnosis models (subsection 8.2.2) where certain predictors are found to have
zero influence on the target node and are thus omitted from use with ex-
perts opinion. Further revision of nodes are also proposed by the experts
following results of the methodology. In case of TASMI03 01, the total re-
maining predictors with conditional dependencies to the target nodes are 22
predictors (from initial 34) and are related to 3 significant modes of failure
(a) ElevatorBoatRotation (Bearing) (b) GazPanel (Gas flow) and (c) Out of
control (OC) (LOTS and NPW). The predictors and the three failure modes
are presented in Table 9.1 as Failure a, Failure b, Failure c, respectively, and
are organized under respective data sources. Moreover, the no failure state
is modelled as the fourth failure mode.

9.1.2 Interval Discretization

After the identification of predictors, data intervals are aggregated such that
we have atleast one value for all predictors. The objective is to integrally
evaluate the association between predictors (from multiple data sources) and
equipment failure type using BN. As a proof of concept, we aggregate pre-
dictors with multiple values in the data interval using mean and mode for
continuous and discrete values, respectively. Some predictors values are up-
dated either upon the occurrence of failure e.g. MTTR, failure mode; there-

Univ. Grenoble Alpes, 2016 105



Chapter 9. Application and Results of Online Failure Prediction
Methodology with Time Bound Failure Signatures

fore, these are kept constant between respective failures for all data intervals.
The data interval rules are given in the Figure 9.3.

Figure 9.3: Data interval discretization rules.

9.1.3 Dataset Pre-Processing

In this sub-step, data is transformed into a single dataset which is used in BN
modelling and patterns/rules extraction. Given historical data in the span of
10 months, we generated 6300 data intervals, equivalent to 82 occurrences of
failure. The intervals are not uniform and ranges from few minutes to several
hours. This newly constructed dataset are evenly split initially in 2 parts,
Bayesian Network Learning & Rule Extraction (BNL&RE) and Validation
set (V).
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Figure 9.4: Step-2: Unsupervised learning and optimization of Bayesian Net-
work.

9.2 Step-2: Equipment Failure Probability Plots

9.2.1 Learn/Optimize Bayesian Network Structure and
compute CPT

In the proposed methodology, this step (see Figure 9.4) consist of learning
and computation of BN structure and conditional probability tables. The
BN structure is learned and optimized using BayesiaLab 5.3 and based on
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Minimum Description Length (MDL). The criteria for model validation is
set for reliability and precision to be larger than 95%. The structure is first
learned using the Equivalence Class (EQ), a heuristic algorithm to search
for highest scoring network in a reduced space of potential BN structures
that have same conditional independence relations (Munteanu and Bendou,
2001; Chickering, 2002). Moreover, Maximum Likelihood (ML) is used to
estimate Conditional Probability Tables (CPT). The precision and accuracy
criteria are computed and compared to the validation criteria. If the first
attempt does not fulfill the criteria, the BN structure is further optimized
using Tabu algorithm (Glover, 1986; Acid and de Campos, 2003; Teyssier
and Koller, 2012). The model with the lowest MDL score is accepted for
further analysis.

The BN structure learning and optimization, and CPT computations
are repeated until we get the given prediction accuracy and accordingly the
BNL&RE and V data sets are adjusted. As a result, the BN model (Figure
9.5) was finally obtained with average accuracy of 97.2% and a final ratio
of BNL&RE to V equals to 62:38. The predictors, in this model, are differ-
entiated with different colors following their type of data sources. The light
brown, green, orange and pink colors represent product, process, equipment
and maintenance related predictors respectively whereas failure and failure
mode are the target nodes. In the figure, it is also highlighted that the first
set of predictors are removed based on our results from the integrated drift
source and failure/cause methodology, section 8.2.2 (in green frame). The
predictors removed by the experts before the learning process in this method-
ology are presented in the red frame. The final network is used therefore to
plot failure probabilities on testing dataset on the discretized data intervals
for each failure mode. These graphs are the input to next step.

9.2.2 Plot Failure Probability from Bayesian Network
for each Discretized Interval

The resulting BN is employed to infer failure probabilities in the BNL&RE
testing dataset upon observations (1890 data intervals with 24 failure oc-
currences). The probabilities for each failure can be distinguished by their
respective colors in Figure 9.6. The occurrences can be distinguished from
the set of points with high probabilities. For elaboration, refer to example
on Figure 9.7 with observation of Failure a (Blue curve) for data interval
3487. The failure is characterized by its high probability (0.64) compared to
average probability of Failure a which is 0.18, whereas no failure probability
drops to 0.2.
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Figure 9.5: BN model for failure probabilities plot.

Figure 9.6: Failure inferences in BNL&RE testing dataset, data interval
[2835,4725].
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Figure 9.7: Failure inferences in BNL&RE testing dataset, data interval
[3480,3490].

9.3 Step-3: Extraction of Time Bound Fail-

ure Signatures (Rules)

Plotted graphs provided in Figure 9.6 plays a pivotal role in this third step to
define rules for detection of failure before its occurrence. For the application
in this study case, we propose a scheme to extract the rules (Figure 9.8).

To extract the patterns/rules, first, based on the probabilities plot and
observation of each failure, detect the existence of a pattern. If it exists,
define predictive boundaries common to all of respective failure occurrences
for pattern Pi. The limits for this region are selected as min(probability) and
max(probability), observed among all failure occurrences. However, in case of
no pattern, the boundaries are defined first with min and max limits. Instead
of defining the lower limit as min(probability), it is defined as max(mean, mod,
median of overall failure probabilities) because in search of rules without
existence of obvious pattern, the focus is to look for the higher probabilities
which potentially result in the reduced performance in the equipment. This
follows the computation of existing min and max number of consecutive
points within the predictive boundaries and the cardinality of |min;max|of
the consecutive points translated into the the number of rules extracted for
each failure. This step concludes with the prediction of failure using extracted
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Figure 9.8: Step-3&4: Extraction of rules from each failure probability plot.

rule(s) on the training BNL&RE dataset and the computation of lead time
for each prediction. Rules respecting the lead time are reserved for step 4,
omitted otherwise.

As a result, patterns have been detected for occurrences of Failure b and
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Failure c. Failure b is continuous increasing probabilities and Failure c is a
W or M point-to-point pattern with consecutive values are at least 5 times
smaller or bigger. Next, predictive boundaries common to all occurrences of
each failure are defined. For Failure a, no pattern could be extracted and
predictive boundaries of all occurrences for this failure needs to be estab-
lished first before assigning the rules of consecutive number of points. The
probability plots for each failure in chosen data intervals with the count of
occurrences is presented in brackets (refer Figure 9.9). In the graphs we can
spot the horizontal lines showing the upper and lower limit of the predictive
boundaries whereas in brown boxes are the patterns associated to defined
rules. The Table 9.2 summarizes summarizes our results for extracted rules
and their respective predictive boundaries. Column rule(s) of the table de-
scribes the extracted rules. For example, Failure a is of non pattern type
with rules as [Min=2; Max=22] consecutive points inside the PB. In the
end, we have (22-2+1) rules corresponding to the Failure a. The Failure b,
is a pattern based rule as sequentially increasing probabilities and [Min=3;
Max=11] consecutive points. The Failure b has (11-3+1) rules. The same
applies to Failure c which is of type pattern. These pattern/no pattern rules
are further used to compute early and late predictions (hours, minutes, sec-
onds) for each failure such that maintenance teams can employ suitable rules
to ensure the execution of respective proactive actions.

Figure 9.9: Proof of concept for rule(s) extraction on failure.
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Table 9.2: Summary of results from rule(s) extraction.

Predictive Boundaries (PB)
Failure

Base
of Rule Lower limit Upper limit

Rule(s)

Failure a Non-pattern max(mean)=0.175
max(probability
observed for the

failure)=0.64

1) [Min=2;Max=22] consecutive points
inside the PB.

Failure b Pattern
min(probability of
failure occurrence)

=0.08

max(probability
observed for the

failure)=0.71

1) Sequentially increasing probabilities &,
2) [Min=3;Max=11] consecutive
points inside the PB following rule 1.

Failure c Pattern
min(probability of
failure occurrence)

=0.04

max(probability
observed for the

failure)=0.57

1) M/W Pattern &,
2) ∀ 2 consecutives points of the pattern,
P(t)=factor of 5*—P(t+1)—

Next, prediction of failures using rule(s) plus computation of lead time,
which will be categorized as early and/or late detection are made on the
BNL&RE training dataset. Table 9.3 presents some of the rules with their
associated earliest and latest lead time, while rules without late detection
are those that appear only once in between failure intervals. Failure c made
15 predictions, but 2 missed failure occurrences are recorded.

As the final sub-step of this step, the average lead time of each rule
are compared to the acceptance interval defined by the users, and rules are
preserved for the next step if their average lead time falls into the interval.
However, in this study case, this final sub-step could not be completed with
users opinion.

9.4 Step-4: Validate Rules and Compute Pre-

dictability Index

Step-4 (Figure 9.8) is composed of validation of accepted rules from Step-3
using Validation (V) dataset and of computation of PI. Due to the absence
of users criteria in final sub-step of Step-3, Predictability Index (PI) was ex-
ecuted for all patterns/rules. Some results are presented using five selected
rules in Figure 9.10. High indices are obtained for these selected rules, re-
sponding to average high prediction accuracy, reliability and lead time gain.

9.5 Conclusions and Discussion

There are several explanations on the observations from Table 9.3. Failure a,
rule 2 consecutive points in PB has a high number of predictions and big
early detection. These are not very significant and it is due to the choice

Univ. Grenoble Alpes, 2016 113



Chapter 9. Application and Results of Online Failure Prediction
Methodology with Time Bound Failure Signatures

Table 9.3: Example of results and information for rule(s) testing.

Failure PB
Total
Occ.

Rule(s)
Total
Pred.

Earliest
detection

[min. . . max]

Latest
detection

[min. . . max]

2 cons.
Points in PB

47
[7h28m . . .
513h15m]

[0h02m . . .
0h26m]

4 cons.
Points in PB

12
[3h26m . . .
478h37m]

[1h46m . . .
10h30m]

10 cons.
Points in PB

6 [1h10m . . . 5h09m]Failure a [0.175;0.64] 7

22 cons. Points in PB 3 [0h28m . . . 2h56m]

Rising & 3 cons.
Points in PB

13
[35h08m . . .

135h33m]
[4h22m . . .

5h30m]

Rising & 5 cons.
Points in PB

10
[5h33m . . .
125h37m]

[1h29m . . .
3h45m]

Failure b [0.08;0.71] 10
Rising & 11 cons.

Points in PB
7 [0h39m . . . 1h48]

Failure c [0.04;0.57] 13
Min Factor 5 W/M

Pattern in PB

15 (+
missed

prediction)

[7h32m . . .
78h55]

[4h22m . . .
5h30m]

Figure 9.10: Predictability Index for selected rules.

of 2 consecutive points which appears frequently. An increase in lower limit
is recommendable. Another significant remark is the missed predictions on
Failure c pattern. Even though failure detections are superior than the total
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existing failures occurrences, missed predictions still appear and we argue
that refinement on rules is required especially because Failure c is related to
out of control situation (unknown failure).

Figure 9.11 shows the proof of concept to potential causes behind high
probability estimation of Failure a (the disorientation of bearing supporting
Elevator Boat Rotation in the equipment). In the proof of concept, only
7 out of 22 predictors are showed, with Defect Distribution, No of Rework
and No of Alarms take the minimum values. Further diagnosis and correc-
tive actions are meanwhile pointed to Cm (with low equipment capability),
Wait Time (in between 1 and 2 hours) and the combination of Previous and
Current Step (as RTO ISSG and DEP TEOS respectively). Each of these
cause requires certain diagnosis and corrective actions while each action has
its own action time. If we want to avoid Failure a coming from this combi-
nation of predictors, the required warning time to be set by users as criteria
is minimum equal to the cumulation of estimated diagnosis and corrective
action times.

Figure 9.11: Proof of concept for identification of potential causes linked to
failure a.

The goals of any predictive analysis are to eliminate unplanned main-
tenance events thereby improving equipment predictability, and to control
costs. This includes advanced warning of impending or imminent failure
with enough confidence to plan response and high feasibility to act for a
given period of time. The concepts of early and late prediction are impor-
tant to find the balance of under and over engineering. On one hand, early
maintenance and repair can eliminate potential unscheduled time caused by
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equipment failure because early diagnosis and appropriate actions plans can
be activated. On the other hand, early interventions can cause unnecessary
corresponding cost of maintenance and resources. This is left to the choice
of end user who can better judge the type of failure and associated repair
duration to ultimately decide the target warning time for early failure pre-
diction.

The acceptance of the patterns/rules are for the moment provided by
the PI, a presentation of average of average from prediction accuracy and
precision plus lead time percentage. This evaluation is good enough as this
methodology provides the failure signatures to predict the state of system
with n-intervals ahead (fixed horizon), unlike the approach with remaining
useful life estimation where the assessment is exposed to different accuracies
and precision at different prognostic horizon. However, other metrics and a
more rounded PI is to be developed to provide the needed confidence and to
assure real time prediction reliability.
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Conclusion

The works that have been presented in this thesis deals with the reduction of
CM and PM in the context of high-mix low volume production. They take
place within the European project INTEGRATE and have been developed
in close collaboration with our industrial partner STMicroelectronics Crolles.
They are initiated through works made by Bouaziz (2012) in this field, within
the GCSP1 and SIREP2 teams of the G-SCOP3 laboratory

The contribution of our work are doubled. It has not only focused on
the two proposed methodologies to apprehend research gaps and industrial
problems, but also the identification of the following specificities:

• Use of event-based data/contextual information collected from product,
process, equipment and maintenance data sources in BN models to
avoid using sensors data which are exposed to biases,
• Work at equipment and modules decision level instead of focusing at

the component and system level, and
• Use of BN as the probabilistic modelling approach to complement the

widely used statistical approaches in industry.

The integrated drift source and failure/cause diagnosis methodology aims
to reduce failure breakdowns due to misdiagnosis in existing maintenance
practice. It uses BN at two levels of diagnosis. The methodology has several
functions, each with their own purposes and can be used independently.
However as a whole, one of the its strength is the use of a single identification
of predictors but which can be used in both levels.

1. In the first level, a BN model of product quality drift source as a func-
tion of event-based data is proposed. This step provides the decision
support against equipment stoppage if equipment is not identified as
the drift source.

1Gestion et Conduite des Systèmes de Production-FR, Production System and Oper-
ation Management-EN

2Système d’Information, conception RobustE des Produits-FR, Information Systems
and Multiple Product Representations-EN

3Grenoble-Sciences pour la conception, l’Optimisation et la Production-FR, Grenoble-
science for the design, optimization and the production-EN
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2. If equipment is identified as the failure source, further diagnosis is per-
formed as integrated failure (localisation), failure mode and causes di-
agnosis. The diagnosis is modelled at the module level and at the
equipment level using BN.

3. Finally, a comparison of performance from module levels and equipment
level BN models are made to provide decision on which level integrated
failure-cause diagnosis shall be modelled. Evidence using one of the
TT equipment case study provides module level with the more accurate
results. The results from this step can be benefited as input for the
second methodology.

In comparison to existing approaches to learn and extract failure signa-
tures, the time bound failure signatures extraction methodology offers extrac-
tion, selection and validation of rules/patterns which is linked to sufficient
time (time bound) to execute corrective and proactive measures to avoid
failures. It uses BN for equipment failure mode probability estimations and
their plots. The plots are then use to extract rules/patterns, follows by com-
putation of lead-time and PI to validate their use in subsequent online failure
prediction.

1. The event-based predictors, each with their own irregularities in the
scale of time are temporally characterized using data intervals for the
prediction of failures prior to their occurrence. A scheme for allocation
of available historical dataset into several datasets for learning, testing
and extracted failure signatures validation is also provided.

2. A BN model is then constructed to its advantage using the predictors of
different nature coming from multiple data sources in a single prediction
model. The target node is set as the failure (localisation), but the
failure mode node is observed to plot failure modes probabilities. Each
failure mode and a no failure are modelled as different states in the
node, so different failure signatures, unique to each type of failure can
be extracted.

3. Each of the failure mode’s failure probability plot are used to extract
rules and patterns as failure signatures using experts’ opinion or ma-
chine learning algorithms. This are complemented with the key action
of selecting rules/patterns with a time bound criteria which ensure the
sufficient time for corrective and proactive reactions ane measures to
avoid failures.

4. Selected rules/patterns are further explored and validated using Pre-
dictability Index, an index which measure the robustness of each rule
and pattern to be used in subsequent online failure prediction. The
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final extracted rules/patterns are expected to have several abilities in
online failure prediction such as the ability to detect impending or in-
cipient equipment drift, to detect a failure early enough, to distinguish
the failure type from one another and to have a low false alarm rate.

All steps in the methodologies have been tested and validated using one
Thermal Treatment (TT) equipment (TASMI03) and its module(s) from a
reputed semiconductor manufacturer.

Future works

At the end of these works conducted during three years, several considera-
tions emerged to be considered as research perspectives. Four areas of im-
mediate investigations may be considered,

– The methodologies have been tested using a single case study, with dif-
ferent amount of data (6 and 10 months). Within the project, another
dataset from another workshop of 12 months have been acquired, but
without experts opinion on the choice of predictors. The validation of
the two methodologies for this equipment is the first consideration for
future work. Similar target is the validation to similar type of equip-
ments (with common failure behaviours) in the TT workshop.

– Secondly, the methodologies involves experts opinion and knowledge
elicitation on several parts; the identification of predictors and their
states, provision of accepted reliability and precision of BN model, iden-
tification of rules/patterns from probability plots and provision of time
bound criteria (e.g. warning-time). Each of these task raise interest in
exploration of machine learning algorithms to replace or complements
experts’ opinions. Comparison of different approaches and techniques
are also in our interest.

– Thirdly, in the time bound failure signatures extraction methodology,
data intervals having one occurrence for all predictors are proposed.
This has resulted in encouraging extracted rules/patterns. However,
it is in our interest to see and compare this configuration with other
proposition of data intervals definition and see their impact on the
Predictability Index performance.

– Fourthly, methodologies have been proposed using event based contex-
tual information, it is desirable to see the impact of the methodologies
by integrating selective FDC sensors data (with least risk of biases) as
predictors.
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In the medium term, we can highlight at least 4 directions of research,

– First of all, in the modelling of integrated failure-cause diagnosis, we
have only taken into account the three main modules of TT equip-
ment, when in reality it has 8 modules which are in a ’parent-child’
relationship. Consideration of the whole modules with the relationship
(structural and organizational) shall be considered.

– Secondly, for the proposed PI (time bound failure signature extraction
methodolgy), it is a presentation of average of average from predic-
tion accuracy, precision and lead-time percentage. This is only a first
proposition of PI. We proposed to explore other metrics depending on
requirements to assure real time prediction reliability. This is important
as in failure prediction, assessment are exposed to different accuracies
and precision at earlier and imminent stages of failure.

– We make the assumption that if probability of a failure mode at a given
interval is superior to a certain level and to all other types of failure,
including the no failure, then the associated failure mode is attributed
as the type of equipment failure. Moreover, occurrence of a failure can
also be attributed depending on the consistency in failure probability
plots where rules/patterns are extracted, separately, for each failure
mode. The third consideration is to take this assumption out and
handle the confusion if multiple failure signatures are detected in a
common interval.

– With the time bound failure signatures, we can get ’trapped’ very eas-
ily in over engineering situation. A study to dynamically revise the
extracted signatures to minimize false alarm is highly recommendable.

Finally, in the longer term, consideration should be given to the study of,

– Reroute of product to avoid equipments which are predicted as having
imminent failure using the time bound failure signature.

– compatibility of the proposed methodologies in another context of ap-
plication such as the automotive, nuclear, hospital and energy distri-
bution.
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Bayesian Network Learning

A.1 Notation

Table A.1: Notation

B The network, B = (G,Θ)

D The data

G The DAG, G = (V,E)

E The edges of G

V The list/set of vertices (Nodes) in the network B

n the number of vertices in the network B

Θ Θ = Θ1, ...,Θn

Θi Θi = P (Xi | Pa(Xi))

Xi The nodes in V

qi number of possible configurations of the parent set
∏

Xi of Xi

ri number of states of the finite random variable Xi

Nijk

number of instances in the data D where the variable Xi takes its kth

value xik and the variables in
∏

Xi take their jth configuration
wij

Nij
number of instances in the data T where the variables in

∏
Xi take their

jth configuration wij

N total number of instances in the data D

H A list of neighbours DAGs
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A.2 Optimize Structure Learning using Equiv-

alence Class (EQ) and Tabu List

The Figure A.1 presents the flow of implementing the optimized structure
learning using EQ and Tabu list. The algorithm starts by ordering all the
BN edges using Algorithm 1. Elaboration on Maximum Description Length
(MDL) as an example of scoring function and which is used in the thesis is
provided in section A.3.

Figure A.1: Flow hcart for EQ+Tabu list search strategy.
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Algorithm 1 Ordering

Require: E: list of edges, V : List of nodes
Ensure: Eordered

1: Topological Tree(Xi) . Xi ∈ V
2: K ← 0
3: A← unordered(E)
4: repeat
5: Xj ← minj(Xj/(Xi, Xj) ∈ A . Lowest destination node of an

unordered edge
6: Xi ← maxi(Xi/(Xi, Xj) ∈ A . Greatest source node of an

unordered edge to Xj

7: order(Xi, Xj)← k
8: A← A\(Xi, Xj)
9: until A = ∅
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Algorithm 2 Equivalence class algorithm (DAG to CPDAG)

Require: G: a DAG
Ensure: CPDAGG: The Completed Partially Directed Acyclic Graph of

the DAG
1: Order (E) . The set of directed edges of G
2: ∀e ∈ E, label(e)← ∅
3: A← unlabeled(E)
4: repeat
5: (Xi, Xj)← minA(e) . Lowest unlabeled edge
6: ∀Kk/label(Xk, Xi)← irreversible
7: End← False
8: if Xk /∈ paXj then
9: label(∗, Xj)← irreversible

10: A← A\(∗, Xj)
11: End← True
12: else
13: label(Xk, Xj)← irreversible
14: A← A\(Xk, Xj)
15: end if
16: if End = False then
17: if ∃e(Xk, Xj)/Xk /∈ pa(Xi) ∪Xi then
18: ∀(Xk, Xj) ∈ A
19: label(Xk, Xj)← irreversible
20: A← A (Xk, Xj)
21: else
22: ∀(Xk, Xj) ∈ A
23: label(Xk, Xj)← reversible
24: A← A\(Xk,Xj)
25: end if
26: end if
27: until A = ∅
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Algorithm 3 Algorithm (PDAG to DAG)

Require: PDAG
Ensure: DAG

1: B ← PDAG
2: A← list of arcs of PDAG . Not sure??
3: repeat
4: Find node Xi such that
5: - No existence of Xi ← Xj in A
6: - and for all Xj such that Xi −Xj in A,
7: – Xj is adjacent to all other adjacents nodes of Xi

8: if Xi does not exist then
9: PDAG does not admin any extension o completely directed

10: else
11: ∀Xj such that Xi −Xj ∈ A
12: Xi ← XjinB
13: A← A\(Xi, Xj)
14: end if
15: until A = ∅

Algorithm 4 Generate MDL score

Require: : G: DAG
Ensure: : H: MDL score . cannot be provided, refer section A.3

Algorithm 5 Generate neighborhood

Require: : G: a BN structure
Ensure: : H: a list of neighbours DAGs

1: 1 H ← ∅
2: for all e ∈ G do
3: H ← H ∪ (G\{e}) . delete edge(e)
4: if acyclic (G\{e} ∪ invert(e)) then
5: H ← (H ∪ \{e} ∪ invert(e)) . invert edge(e)
6: end if
7: end for
8: for all all e /∈ G do
9: if acyclic (G ∪ {e}) then

10: H ← H ∪ (G ∪ {e}) . add edge(e)
11: end if
12: end for
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A.3 Minimum Description Length (MDL) Score

The Minimum Description Length (MDL) score (Lam and Bacchus, 1994) is a
two-component score, which has to be minimized to obtain the best solution.
In our machine-learning application, the “model” is a BN, consisting of a
graph and probability tables. More formally, we write this score as:

MDL(B | D) = LL(B | D)− 1

2
log(N) | B | (A.1)

where:

LL(B | D) =
n∑

i=1

qi∑
j=1

ri∑
k=1

Nijk log(
Nijk

Nij

) (A.2)

and

| B |=
n∑

i=1

(ri − 1)qi (A.3)

The log-likelihood (LL) score tends to favour complete network structures
and it does not provide a useful representation of the independence assump-
tions of the learned network. The over fitting phenomena which might occur
in LL score is trade off with the second MDL term where | B | denoted com-
plexity. Minimum value for this second term is obtained with the simplest
structure, i.e. the fully unconnected network, in which all variables are stated
as independent. The minimum value for the first term, is obtained with the
fully connected network, i.e. a network corresponding to the analytical form
of the joint probability distribution, in which no structural independences
are stated. Thus, minimizing this score consists in finding the best trade-off
between both terms. For a learning algorithm that starts with an uncon-
nected network, the objective is to add a link for representing a probabilistic
relationship if, and only if, this relationship reduces the log-likelihood of the
data, i.e. LL(B | D), by a large enough amount to compensate for the
increase in the size of the network representation, i.e. 1

2
log(N) | B |.
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The INTEGRATE PROJECT

B.1 Introduction

European IC manufacturers are on the way to become suppliers of customized
products for OEM companies, which means high flexibility and product di-
versity. The INTEGRATE1 project is initiated to conduct research to sup-
port the development of new manufacturing procedures, new organizations
and new information and control tools to enable IC production lines to ef-
ficiently manage a high product and technology mix and heterogeneous lots
of different size and priority for development, engineering and prototyping.

This project was preceded by the IMPROVE2 allowed the development
of algorithms to make the move from ’reactive ro predictive operations’. IN-
TEGRATE goes further by addressing the needed improvements of the high-
mix production environment allowing putting the pieces together and lifting
them to the fab level. INTEGRATE will therefore especially focus on: fac-
tory operation methodologies, data acquisition and analysis concepts, factory
information and control system, and process data analysis from heterogenous
samples. the objective is to develop procedures that dan be implemented on
existing fab information and control system. More information can be found
on the internet website of the project3.

B.1.1 Project management

The INTEGRATE consortium consists in 26 partners and is composed of:
6 European semiconductor major companies, 5 SME’s of solution providers,
2 equipment suppliers and 13 academic partners covering a wide range of
competencies and high level expertise in statistics, data analysis and man-
ufacturing science. To reach its objective, INTEGRATE addresses different
levels of fab organization and managements Figure B.1 and is organized into
five work packages (WP):

1INTEGRATE: Solutions for Agile Manufacturing in High-mix Semiconductor Fabs
2IMPROVE: Implementing Manufacturing science solutions to increase equipment pRo-

ductiVity and fab pErformance.
3http://www.eniac-integrate.eu/
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• WP2: the optimization of the equipment usage, taking especially into
account (first level) the EHF (Equipment Health Factor developed in
the IMPROVE project).
• WP4: the control of the lot flow with the idea to optimize the lots

trajectories with respect of the actual real time status of the production
equipment (second level)
• WP3 the optimization of the process control and quality, including the

actual use of Virtual Metrology algorithms developed in IMPROVE for
introduction of real time wafer to wafer regulation loops (third level)
• WP5: the data analysis and data management developments where

the necessary algorithms will be developed and assessed to support
the previous three levels. This approach will include an exhaustive
modelling of the yield.
• WP1: the collection of feedback from the other WPs based on their

experience and refines the generic specifications and architectures.

Figure B.1: The workpackages.

In this framework, our works is positioned as the provision of a method-
ology to extract signature to failure before its occurrence aiming to reduce
unavailability of equipment due to corrective maintenance and provide the
solution to implement predictive maintenance for optimization of the equip-
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Appendix B. The INTEGRATE PROJECT

ment usage, thus in the WP2. WP2 in particular deals with the three possi-
ble efficiency losses mechanism on production equipment, with each of them
received its own proper focus: (i) Recipe Management to eliminate waste
time in setting up and/or changing recipes, (ii) extra sensor information ag-
gregated in an equipment health index (EHI) to avoid and reduce unsched-
uled downtime, and (iii) wait-time-waste (WTW) to detect if equipment is
not running at golden speed settings. The works done in WP2 allowed to
lay down the industrialization and deployment to production of the various
smart manufacturing solutions by bringing together industrial mathemat-
ics (data analysis and model adaptation), big data IT-solutions (increase
data collection, CPU, database storage) and visual manufacturing (GUI-
screens, tablets, improved information everywhere). Integrating these new
solutions depends on collaboration to share methods and strategies. Our
works have been performed with close collaboration in particular with man-
ufacturer STMicroelectronics Crolles.

B.1.2 STMicroelectronics Crolles

STMicroelectronics (ST) is a global semiconductor manufacturer. The com-
pany designs, develops, manufactures and market a wide range of IC’s and
components used in many of the microelectronics and industrial applications.
ST’s strives to be the leader for delivering solutions key to smart driving and
the internet of things. As far as turnover and profit are concerned, the sit-
uation in December 1998 differs markedly from what had been, ST is now
up to tenth in the ranking of world’s leading manufacturers of semiconduc-
tors. ST has over 75 sales and marketing offices in over 35 countries and
a worldwide network of front-end (wafer fabrication) and back-end (assem-
bly and test and packaging) plants. ST’s principal wafer fabs are located in
Agrate Brianza and Catania (Italy), Crolles, Rousset, and Tours (France),
and in Singapore. These are complemented by assembly-and-test facilities
located in China, Malaysia, Malta, Morocco, the Philippines, and Singapore.
STMicroelectronics in Crolles has two manufacturing sites, the 200mm and
300mm (names in relation to the size of the fabricated wafers) and it has an
installed manufacturing capacity of 10,700 wafers per week.

This dissertation takes place within the wafer processing lines of 300mm
production site. Several case studies has been proposed within the framework
of this project, and we are particularly working with equipments from thermal
treatment (TT) and deposition of dielectric material (DIEL) workshops. For
presentation purpose, only application and results from the TT workshop,
equipment TASMI01 precisely are presented in this dissertation.
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PhD thesis, Université de Grenoble.
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Résumé français

Introduction

L’ère de l’après-révolution industrielle a débouché sur l’émergence environ-
nement de production de haute mix et faible volume (High-mix low-volume,
HMLV) qui est défié par l’augmentation de la diversité de demande. Par
conséquent, les cycles de vie de produit s’est raccourci. Dans ce contexte de
production fragile, complexe et extrêmement compétitif, la part de marché
peut seulement être augmentée et soutenue en développant de nouvelles tech-
nologies et une utilisation améliorée de capacités de production existantes.

Cependant, les changements fréquents dans les recettes (de processus)
ont mené les conduites dérivées d’équipement et l’augmentation des pannes
imprévus qui perturbent et réduisent les capacités de production. Là exister
des solutions multiples de ce problème. Par exemple, nous pouvons investir
pour acheter l’équipement de production supplémentaire et neutraliser les
défis de HMLV. Ce sera une transformation artificielle aux productions avec
bas volume et bas mixtes, mais à forte capacité de capital. Par ailleurs, la part
de marché durable exige de nouvelles technologies dans les intervalles courts
mais réguliers; donc, nous avons un risque d’incompatibilité technologique
avec l’équipement de production, ceux qui sont nouvellement employé. Ces
défis peuvent également être résolus en intégrant le système d’automatisation
et la gestion informatisée de la maintenance. Cependant, le comportement de
l’équipement hostile nécessite des systèmes d’automatisation plus intelligents
que les systèmes d’automatisation programmables pour améliorer les ca-
pacités de production. La panne d’équipement imprévu augmentant s’ensuit
dans l’augmentation de la maintenance corrective et préventive (déclenchement
action préventives due aux correctives maintenance). Cela non seulement
déstabilise, mais réduit aussi les capacités de production. En fait, les cycles
de vie de produit raccourcis s’ensuivent aussi dans le cycle de vie de technolo-
gie raccourci; donc, la part de marché augmentée et durable ne peut pas être
garantissent en incorporant seulement nouvelle technologie. Le problème de
base est dans les capacités de production instables et réduites. Dans cette
thèse de recherche, nous sommes objectivement concentrés à les stabiliser et
les améliorer.

Nous pensons que cela peut être réalisé en améliorant la maintenance
corrective (CM) et la maintenance préventive (PM). Cet argument a servi de
base à une enquête initiale à l’aide de données recueillies sur la châıne de pro-
duction HMLV d’une ligne de production mondialement réputée. L’analyse
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(voir le chapitre 1, sous-sections 1.5.1, 1.5.2) l’a accentué la raison d’augmentation
de la CM. Il s’agit du misdiagnosis dans l’identification de la source de dérives
de qualité de produit et de défaillance(s)/de cause(s). Ce fait est prouvé
dans les durées de pannes, les nombres de pannes et les nombres d’actions de
réparation augmentés. Cela a un impact direct sur le PM. Il est à cause du
fait que pendant l’exécution d’actions de CM, misdiagnosis s’ensuivent sou-
vent dans l’exécution d’actions de PM par les techniciens, dans l’anticipation
pour remettre la machine dans la production le plus tôt possible.

Dans les cadres de production HMLV, les pratiques de maintenance généralement
employées sont le CM, systématique PM et la maintenance conditionnelle
(Condition Based Maintenance, CBM). Le CM intervient une fois que le
problème est survenu, alors que systématique PM vise à empêcher tout inci-
dent technique au moyen de la prévention, autrement dit, par un entretien
régulier du bien concerné fait allusion au temps ou d’autre unité écoulée a
basé la maintenance avec un objectif de garder l’équipement dans sa con-
dition fonctionnelle. Ces stratégies de maintenance pourraient facilement
s’ensuivre dans sous ou sur l’ingénierie et à la base de l’émergence de CBM
où les actions de maintenance sont déclenchées basées sur des informations
disponible (du passée au temps de décision) de la condition d’équipement.
Dans l’industrie de semiconducteur, le CBM est exécuté avec FDC (Fault De-
tection and Classification) et est utilisé pour contrôler l’arrêt d’équipement
en cas de la conduite anormale découverte par le supervision continu de sig-
naux des capteurs d’équipement. Il est accompli dans deux pas, d’abord la
détection de la faute et ensuite par l’identification de causes respectives pour
la faute.

De plus, le succès de CBM basé sur FDC compte sur des fautes/défaillances
répétables d’équipement. Il peut être conclu que cette stratégie de mainte-
nance n’est pas très utile dans l’environnement HMLV à cause des conduites
d’équipement qui se change fréquemment. En comparaison de ces stratégies
de maintenance, PdM (la maintenance prédictive) a émergé comme une so-
lution prometteuse où efforts sont faits pour prédire des échecs avant leurs
occurrences avec des critères complémentaires à ceux du CBM. Il y a un
haut degré d’incertitude associée aux approches de PdM, et dans cette thèse
de recherche, nous sommes subjectivement concentrés d’adresser en premier
temps les misdiagnosis dans la source de dérive de qualité de produit et la
défaillance(s)/la cause(s). Dans la revue de littérature (voir le chapitre 2),
nous avons constaté que l’on croit que l’équipement est la seule source de
dérives de qualité de produit. Pourtant, dans les cadres de production de
HMLV, la source de dérive de qualité de produit peut varier de l’équipement,
le produit, le processus (e.g. changement de recette) et la maintenance.
Donc, nous soutenons qu’en absence d’un model diagnostic multi-source
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pour les dérives de qualité de produit, il n’est pas possible de réduire des
pannes d’équipement imprévus augmentantes et donc respectif CM et les
actions de PM due à la CM. Nous avons aussi constaté que la plupart des
approches de diagnostic de défaillance(s)/de causes(s) proposées est fondé
sur les données de capteurs d’équipement. De plus, les approches concernées
sont développées et testés au niveau d’équipement. Nous soutenons que les
problèmes de fiabilité de capteur pourraient facilement s’additionner à misdi-
agnosis plutôt qu’aider dans la réduction des durées de pannes et des nombres
de réparation exécutées pendant une panne d’équipement imprévue. Nous
soutenons aussi que l’équipement est composé des modules (les assemblages
qui sont reliés l’un à l’autre dans la relation parent-fils et a l’effet significatif
sur le fonctionnement l’un de l’autre).

Au delà de là, les approches émergentes et prometteuse basées sur le PdM
s’appuient sur le calcul de la durée de vie résiduelle (Remaining Useful life,
RUL) ou l’identification des signatures de pannes. Les approches basées sur
RUL utilisent des modèles de dégradation physique pour prédire la défaillance
potentielle et sont comparées au niveau des composants alors que les ap-
proches basées sur la signature de défaillance sont basées sur les données et
s’appuient sur l’apprentissage automatique et les techniques d’intelligence
artificielle. Le désavantage associé aux approches basées de la signature
consiste en ce que ces signatures de défaillance ne garantissent pas l’alerte
bien avant le temps pour que les mesures de proactive/corrective puissent
être exécutées/planifiées pour éviter des occurrences de défaillance ou pour
améliorer l’utilisation de ressources.

Basé sur ces arguments, nous avons fixé la portée de cette thèse dans la
recherche des réponses à (i) comment adresser le misdiagnosis à la dérive de
qualité de produit source?, (ii) comment améliorer le diagnostic de défaillance(s)
et ou de cause(s) et (iii) comment extraire le temps bornées aux signatures
de défaillance pour améliorer non seulement le CM, mais aussi le PM. Ces
réponses nous permettront de déplacer vers l’implémentation de maintenance
proactive pour améliorer les capacités de production dans l’environnement
de production de HMLV. De plus pour éviter le problème de fiabilité de cap-
teurs d’équipement pour la validation de nos approches, on se restreint aux
données de type informations contextuelles d’un cas d’étude d’une ligne de
production mondiale.

Choix de modèles et les approaches proposées

Les approches utilisées pour le diagnostic et les prédictions de défaillance(s)
sont basées sur les données (voir le chapitre 4). Ceux-ci peuvent être da-
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vantage généralement classifiés comme statistiques (ex: l’analyse en com-
posantes principale, l’analyse discriminante, régression des moindres carrés
partiels etc.) et les techniques de machine learning (ex: machine à vecteurs
de support, arbres de défaillances, modèle de Markov, réseau de neurone, le
réseau de Bayesian etc.). Le choix de BN comme modèle dans cette thèse
de recherche est fondé sur le fait que nous utilisons des informations con-
textuelles basées d’événement au lieu des données temporelles des capteurs.
Cela limite l’usage direct d’approches qui sont fondées sur les données pure-
ment temporelles. Cependant, puisque les données temporelles basées sur
les capteurs peuvent être discrétisées, nous pensons que cela se traduira par
l’agrégation des biais du capteur conduisant à de mauvaises décisions

De plus, notre objectif n’est pas d’automatiser la détection de source de
dérive de qualité de produit, le diagnostic automatique de défaillance/cause
et la prédiction de défaillance mais d’aider les équipes de maintenance avec
des mécanismes de prise de décision. Naturellement, l’incertitude est aussi as-
sociée à l’occurrence de défaillance aussi bien que diagnostic de défaillance/de
cause en raison de la complexité d’opérations de châıne de fabrication (con-
traint HMLV) et l’équipement de production à usages multiples complètement
automatisé. Le BN est un graphe acyclique dirigé composé de nœuds et
d’arcs. Les nœuds représentent des variables tandis que les arcs présentent
l’influence d’une variable sur l’autre en fonction de leur direction de cause
et effet. Par conséquent, nous avons choisi BN comme principale approche
de modélisation puisqu’elle donne des résultats plus précis avec des informa-
tions contextuelles basées sur des événements et une inférence probabiliste.
De plus, il fournit une visualisation graphique des variables d’intérêt avec
leur structure d’influence causale.

L’inconvénient de BN est sa limitation dans le traitement d’un grand nom-
bre de variables car il résulte en problème NP-dur lorsque des probabilités
conditionnelles sont calculées à chaque nœud. Cela peut être contrôlé en
sélectionnant les variables les plus importantes et les plus critiques. Il existe
des approches statistiques par exemple l’information mutuelle et l’entropie,
pour classer les variables les plus pertinente dans un ensemble de données
d’étude. Dans cette thèse, nous avons basé la sélection de variables en pre-
mier temps sur l’opinion des experts. De plus, le temps de calcul pour la
construction du BN et le calcul des probabilités conditionnelles a été encore
réduit par l’application des règles d’apprentissage de la structure.

Au meilleur de nos connaissances, il n’existe pas de littérature qui se con-
centre sur l’identification de la source de la dérive de la qualité du produit en
prenant l’hypothèse que l’équipement n’est pas la seule source de la qualité
des produits dérive. Par conséquent, nous avons proposé, développé et validé
un Réseau Bayésien (BN) pour réduire les erreurs de diagnostic dans la source
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de la dérive de la qualité du produit comme première ligne de défense con-
tre l’augmentation des pannes imprévues de l’équipement. Le diagnostic de
défaillance/cause(s) avec BN est développé en utilisant des informations con-
textuelles basées sur des événements collectées à partir de sources de données
de produit, de processus, d’équipement et de maintenance, à la fois au niveau
de l’équipement et du module (assemblage). Il s’agit de la deuxième ligne
de défense contre l’augmentation des pannes. Les résultats du cas d’étude
démontrent que BN identifie de manière significative la source de dérive de
la qualité du produit autre que l’équipement et que le modèle BN au niveau
de module (assemblage) donne des prédictions plus précises que le niveau de
l’équipement.

De plus, nous avons proposé, développé et validé une méthodologie d’extraction
de signature de défaillance au temps bornés basée sur BN et des informations
contextuelles. Le rôle de BN dans cette méthodologie est de tracer les prob-
abilités de défaillance par rapport à la ligne de temps discrétisée et agrégée
d’information contextuelle. Cette méthodologie offre la souplesse nécessaire
pour extraire plusieurs règles avec des délais de réalisation associés vari-
ables afin que des mesures proactives ou correctives puissent être exécutées
pour éviter les incidents de défaillance ou pour planifier les ressources de
maintenance. Le calcul du délai d’exécution associé aux actions de main-
tenance requises est subjectif et dépend de la compétence de l’équipe de
maintenance. Par conséquent, cela est laissé à la discrétion des experts en
équipement. Cette méthodologie offre la flexibilité aux équipes de mainte-
nance pour détendre ou resserrer les alertes de défaillance correspondantes en
fonction des indicateurs de dérive de ligne de production. Cela est important
parce qu’un choix inapproprié pourrait entrâıner un sur ou sous l’ingénierie.

Organisation de la thèse

Cette thèse est divisée en trois parties. La partie I présente l’introduction
au contexte de problème, le but de recherche et ses objectifs, la revue de la
littérature et positionnement scientifiques. La partie II est concentrée sur le
choix du BN pour modeler nos approches. Dans la partie III, nous présentons
le cas d’étude et les résultats de validation des méthodologies proposées
comme présentées dans la partie II. L’organisation de thèse schématisés et
détaillée est présentée dans la partie I, le chapitre 3.
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