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M. Joël Bergé
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café, co-bureau durant ma dernière année, mais avec qui j’ai dû partager plus de temps
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Chapter 0

General introduction

The history of our understanding of gravity has been imprinted by a rich variety of
experimental tests and observations. Tycho Brahe’s observations of the celestial bod-
ies’ motion led Kepler to formulate his laws in the 17th century. These laws paved the
ways to the inverse-square law of the gravitational force in Newtonian gravity in 1687.
Two centuries later, the detection of an anomaly in the advance of Mercury’s perihelion
questioned Newton’s theory and found its explanation in Einstein’s theory of general
relativity (GR) in 1915. This history has been paralleled by the formulation and evolu-
tion of the universality of free fall, a phenomenological principle that has been motivated
by numerous experiments performed since Galileo. It led Einstein to its revolutionary
consideration on gravity as a fictitious force that could not be distinguished from in-
ertia. While a wide part of the physics community was not keen on putting Newton’s
prediction behind, general relativity encountered difficulties to be accepted. It is only
when the deflection of light rays by the Sun has been observed by Eddington during
an eclipse four years later, as forecast by Einstein’s theory, that its acknowledgement
gained ground. Since then many predictions of this theory have been confirmed experi-
mentally, making it now our standard model for the gravitational interaction. A popular
application is for instance gravitational redshift which is verified at a 10�17 level with
atomic clocks and that allowed for satellite navigation systems.

Meanwhile many clues hinted to the fact that general relativity is not complete. In
cosmology, the observations of anomalous velocities of stars in galaxy and of galaxies in
galaxy clusters favoured the hypothesis of missing mass generically called dark matter.
More recently the observational of the acceleration of the universe’s expansion pleaded
for the addition of cosmological constant to GR or the existence of a new component
of matter named dark energy. An alternative to these new yet-undetected dark compo-
nents of matter is to modify or extend general relativity. Parallel to these cosmological
considerations, other motivations for such a modification come from the quantum world.
Quantum physics describes the microscopic nature of the very matter responsible for the
gravitation phenomenon. It has become a challenge to describe both these theories in
the same framework. This pressing need comes partly from our incapacity to describe
physics close to GR singularities such as the one of a black hole or the big bang.

Except for the aforementioned cosmological observations – whose explanation could
not be fully due to a modification of our standard theory –, GR is in such a good
agreement with all the numerous tests it has been submitted to, that there is not much
clues on the ways of modifying or extending it. The current strategy is to extend it in any
direction that are mathematically consistent and check for new observables that could
discriminate the new theory against GR or provide solutions to the cosmological problem.
With the same motivation to find such experimental hints it is crucial to increase the
precision of the current test of GR, as detecting a discrepancy would represent a smoking-
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gun for alternatives theories. The simplest example of such an extension are scalar-tensor
theories that consider a new scalar degree of freedom in addition to the tensor field
describing GR. Besides its simplicity, such scalar field is motivated by the fact that it
represents a possible candidate to solve cosmological problems such as dark energy or
because it naturally emerges from beyond-GR theories as string theory. This field –
when coupling to ordinary matter – gives rise to a gravity-like fifth force in addition to
classical gravity, electromagnetism and the weak and strong interactions from particle
physics. This force is expected to be able to induce a deviation from Newton’s inverse-
square law in the limit of weak gravitational fields or an apparent violation of one of
the founding pillar of general relativity: the equivalence principle or more specifically
the universality of free fall. For these reasons, the search of a fifth force has become
essential to probe gravity theories beyond GR.

Given the current precisions on the tests of GR, only weak fifth forces are still
viable. This makes them more difficult to detect. Many reasons are responsible for
this. For instance, if very weak, in a given experiment it would be more likely to be
lost in the noise. Space-borne experiments represent a possible breakthrough for this
problem as they enjoy a more stable environment free from any perturbations inherent to
human activity. To detect a fifth force, it is also crucial to have a precise understanding
of all classical effects at play in a given experiment as otherwise one could consider
some measured effects as due to a fifth force whereas it is only a classical effect. Such
classical effects are numerous, with examples given by electromagnetic effects due to
the experimental set-up or the need for modelling the classical gravitational effects as
the one induced by the experiment’s self-gravity. To the latter issue is also related the
need for knowing precisely the mass distribution of gravity source. While for self-gravity
it is easily addressed through the metrology of the experimental parts, for the case of
Earth, knowing its precise mass distribution is still an open problem. Of course geodesy
provides a model for it but it usually assumes Newton’s gravity. When considering a
fifth force such a model can be affected and the problem of determining Earth’s mass
distribution becomes a degenerate problem.

Another problem in the search for fifth forces comes from their parametrisation.
Such weak fifth forces are more likely to be found in the data of some experiment if
we know how they behave. This is still an open issue for many models, specially for
screened scalar field. This type of model has been introduced to provide a fifth force that
could act significantly on cosmological scales while remaining weak on local scales and
thus compatible with the high precision of current local tests. Screening mechanisms
usually involve a non-linear dependency to the matter distribution in the theory. The
prototype model of this theory is the chameleon model. In this theory, the magnitude
of the fifth force is expected to be higher in an environment of low density such as space
than in a high density environment such as Earth. The testability of such a force is thus
highly dependent on the environment in which an experiment takes place. Quantifying
this dependency requires to finely study the impact of a matter distribution on the field.
A key effect is the influence of the experimental apparatus on it. The non-linearities
of the theories make this evaluation difficult even if the matter distribution is known.
Solutions to this are only available for idealised matter geometries. Going beyond these
assumptions and evaluating precisely the fifth forces is still an open issue.

The aim of his PhD thesis is to investigate space-based experimental tests of these
fifth forces, with an emphasise on the MICROSCOPE mission. This experiment rep-
resents the latest development in the long history of the test of the universality of free
fall also known as the weak formulation of the equivalence principle. This type of test
is one of the source of constraints on scalar fifth forces due to their ability to provide a
violation of this principle. The MICROSCOPE mission recently improved the precision

CHAPTER 0. GENERAL INTRODUCTION 10



CHAPTER 0. GENERAL INTRODUCTION 11

on this test by an order of magnitude with an experiment in Earth’s orbit. This PhD
study focuses on two types of scalar fifth forces: unscreened scalar fields that have a lin-
ear coupling to matter and a screened scalar field exemplified by the chameleon model.
The simplicity of the first type allows us to evaluate the constraints MICROSCOPE can
provide and to study the experimental degeneracy of fifth force searches and the deter-
mination of the Earth mass distribution. We use the second model to study how the
environmental dependency of screening affects the experimental search of screened fifth
force. This type of model is particularly interesting in the case of MICROSCOPE as
the fact that it is performed in space could potentially lead to new possible constraints.

This thesis is organised as follows. The first two chapters are dedicated to intro-
ducing the physics of this problem. Chapter 1 reviews the concept of the equivalence
principle in Newton’s and Einstein’s theories and the history of the test of its weak
formulation, the universality of free fall. It ends with the presentation of the MICRO-
SCOPE mission. Chapter 2 is dedicated to gravity theories beyond GR. We focus on
scalar-tensor theories. We present the general theory and explore many models from un-
screened scalar field – such as the dilaton field or a massive field leading to a Yukawa-like
fifth force – to screened scalar field with the chameleon model. In chapter 3, we explore
the former type of models. We derive the constraints the MICROSCOPE results induce
on these models when idealising the shape of the Earth. These constraints have been
published in Physical Review Letters. We then go beyond these idealisations to study
the way of solving the degeneracy between the determination of Earth’s mass distribu-
tion and the search of a scalar fifth force. Study that has been published in Classical
Quantum Gravity. In chapter 4 we analyse the chameleon field with the aim of solving
its dynamics to determine its dependency to the environment. This was published in
Physical Review D. We solve the field profile for many geometries. In particular we solve
it for a geometry of nested cylinders very similar to the MICROSCOPE geometry. We
find that despite being performed in space, the MICROSCOPE is expected to screen
the field. We nonetheless show that forces due to the internal matter distribution of the
satellite can occur. Such a force arises from asymmetries in its geometry; in the case of
nested cylinders it occurs when a cylinder is shifted. We find that this force behaves as a
stiffness as it is linear to the displacement of the cylinder. Its use for possible chameleon
constraints by the MICROSCOPE experiment is then studied in Chapter 5. Setting
such constraints requires in the first place to estimate any other source of stiffness in
the MICROSCOPE experiment induced by classical interaction e.g. gravity and elec-
tromagnetism. These results are still to be published. Chapter 6 takes the advantage
of the solution of the chameleon field obtained in Chapter 4, to elaborate a new type of
experiment to test the existence of the chameleon field by looking at the modification of
the trajectory of charged particles in an electromagnetic field. This proposal has been
published in Physical Review D. We conclude with some perspectives in Chapter 7.
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Chapter 1

The equivalence principle

The equivalence principle can be considered as the deepest key principle in gravity.
It drove our understanding of this phenomenon from Galileo to Newton’s theory to
finally Einsteinian gravity. While our vision on the matter was evolving in history, the
formulation of this principle kept on changing.

1.1 The equivalence principle in Newtonian physics

The first historical formulation of the equivalence principle emerges from the exper-
imental observation of the universality of free fall. It is the fact that all test bodies,
if dropped in the same gravity field, would fall exactly the same way independently of
their masses and chemical compositions, provided that they are not submitted to any
other force – e.g. air resistance, friction, ... In other words they would experience the
exact same acceleration.

This observation has strong implications on our decription of the motion of masses in
a gravity field. In Newtonian physics [73], such motion results from the competition be-
tween two physical phenomena to which bodies are subjected, inertia and gravity. While
being thought as distinct phenomena, they are parametrised by a common quantity: the
mass of the bodies. In fact, due to this double role, the latter can be distinguished at
least conceptually into two quantities: the inertial mass and gravitational mass. These
are finally assumed to be equivalent only because of the observed universality of free
fall.

1.1.1 Inertia

In Newton’s Principia [73], inertia is defined as:

The vis insita, or innate force of matter, is a power of resisting, by which
every body, as much as in it lies, endeavours to persevere in its present state,
whether it be of rest, or of moving uniformly forward in a right line.

This force is ever proportional to the body whose force it is; and differs
nothing from the inactivity of the mass, but in our manner of conceiving it.

It is the capacity a massive body has to resist to a change in its state of motion that
is caused by an external force. It traduces both the difficulty to induce a movement to
a motionless body and the impulse a moving object holds, that causes the difficulty to
change its trajectory. Although it could be thought as a force, it is not, as emphasized
by the second part of the definition. It is an innate feature of a mass that only appears
when an external force is applied to it.

13
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The inertial mass quantifies this resistance. This is encoded, in Newtonian kinemat-
ics, by Newton’s second law. It states that in an inertial frame of reference the variation
in time of the momentum of the body p is given by the sum F of all forces it is subjected
to. The momentum of a body is defined in terms of its inertial mass mi and velocity v
as p � mi v such that

d

dt
pmivq � F. (1.1)

Inertial or Galilean frames are those in which any object of constant mass and free of
any forces – or submitted to forces of null resultant – would remain at rest or have a
straight trajectory of constant velocity. Equivalently, these frames are those that have
such a movement relative to the absolute space that Newton postulates. This defines
the equivalence class of Galilean reference frames.

If the body has a constant mass in time its motion is then governed by

mi a � F (1.2)

where a � d v
dt is the acceleration of the body. The inertial mass measures the strength

of the inertial resistance. The more massive the body, the more it resists to some force
i.e. the more substantial an external force is required to induce a given acceleration.

Note that these equations are only valid in inertial frames. In a non-inertial frame
of reference, such as a rotating frame for instance, fictitious inertial forces appear in
the previous equations to account for the fact that bodies tend to stay at rest or to
follow straight lines of inertial frames. These forces: the one deriving from the linear
acceleration of the frame, the centrifugal and Coriolis forces due to a rotation, and
the Euler force that appears when the rotation is accelerated. All these forces are
proportional to the inertial mass of the considered body.

1.1.2 Gravity

Gravity on the other hand is defined in Newton’s Principia as:

There is a power of gravity tending to all bodies, proportional to the several
quantities of matter which they contain. [...]

The force of gravity towards the several equal particles of any body is recip-
rocally as the square of the distance of places from the particles

This is the observed attractive interaction between all bodies that is proportional to their
quantities of matter. The masses of the bodies represent these quantities of matter. The
interaction between two bits of matter constituting these bodies decreases as the inverse
square of their distance r such that its magnitude is equal to Gm1m2

r2 where G is the
gravitational constant, and m1, m2 are the masses of the bits of matter. The mass is the
parameter of the gravitational force. This mass parameter is to be distinguished from
the inertial mass, in this way it is called the gravitational mass mg.

Note that this parameter plays a double role, of source and charge of the interaction.
This is made explicit in a different outlook of this interaction. A given body, because of
its active gravitational mass, sources a gravity field to which any other body would couple
because of its passive gravitational mass. As all bodies play this role, they have both
an active and passive gravitational mass. Nevertheless due to Newton’s action/reaction
law stating that the forces that two bodies exert mutually on each other are opposite in
sign but equal in magnitude, these two masses are not to be distinguished.

Mathematically, the theory is described as follows. The gravitational field is governed
by Poisson’s equation that relates the spatial Laplacien of the Newtonian potential to

CHAPTER 1. THE EQUIVALENCE PRINCIPLE 14
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the distribution of matter that is encoded in the matter density distribution ρ

∆Φ � 4πGρpx, tq (1.3)

where G � 6.674� 10�11 m3.kg�1.s�2 is the gravitational constant.
The integration of this equation around a static point particle or a static spherically

symmetric source of matter provides their Newtonian potential

ΦN prq � �GmS

r
(1.4)

where mS is the active gravitational mass of the source i.e. the integral of ρpxq over
its volume, and r the distance to its mass barycentre. The gravity field of an object
is simply the gradient of the Newtonian potential g � �∇Φ. The field of a point or
spherical body is given by

gprq � G
mS

r2
u (1.5)

where u � r{r is the unitary vector directed towards the barycentre of the source body.
For such bodies, the potential only depends on the distance r. Nevertheless, for more
general objects of arbitrary shape or matter distribution, one would obtain a more
complex non-radial gravity field with a dependency on the orientation relative to the
source object and a different orientation. Earth for instance is not perfectly spherical
nor homogeneous. Its gravity is complex and described in terms of a spherical harmonics
expansion. It is however dominated by the spherical monopole that is given by Eq. (1.5).
The next mode is the dipole that originates from the flattening of the poles. The latter
is caused amongst other causes by inertial forces due to Earth’s rotation.

Given an arbitrary gravity field g created by some matter distribution, a test point
particle then experiences a gravitational force proportional to the field

FN � mg g (1.6)

where the coupling parameter mg is the passive gravitational mass. Again, similarly
to the creation of the gravitational field, if this test particle is extended, the force is
more complex as one needs to integrate Eq. (1.6) over its volume to take into account
its inhomogeneities and the gradient of the field.

To sum up, the gravitational mass is the key parameter of Newton’s theory of gravity.
It holds both roles of sourcing the gravity field and of charge of the interaction with a
gravity field. The more massive the body, the stronger the gravity field it sources and
the stronger the force it feels.

1.1.3 The weak equivalence principle

When considering the motion of a test body in a gravity field, both gravity and
inertia are at play. One obtains an expression for the acceleration it experiences by
using the gravitational force of Eq. (1.6) in Eq. (1.2)

a � mg

mi
g (1.7)

The gravity force being proportional to the gravitational mass, the acceleration of the
body is proportional to the ratio of its gravitational and inertial masses. At first glance,
these two definitions of the mass have no reason to be equal as they account for two
distinct physical phenomena. One could always define two units of measure for both
masses as discussed in Ref. [27]. One could define an ‘inertial kilogram’ – from a reference
body whose mass would be for instance measured by collision experiments in which
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any gravitational influence could be ignored – and a ‘gravitational kilogram’ – from a
reference body whose mass would be for example deduced from a motionless experiment
involving gravity such as the tension of a spring as in a weighing scales.

Nevertheless, in the case the two definitions of mass coincide, they cancel in Eq. (1.7)
leaving the acceleration of the body independent of its mass. In that case two distinct
bodies of different mass would follow the exact same trajectory dictated only by the
gravity field: they fall in the same way. For example in a gravity field created by a
spherical homogeneous object, if one were to drop with same velocity two objects at
same height they would reach its surface at the exact same time.

This universality of free fall has been observed up to some precision on Earth, leading
us to the assumption that inertial mass and gravitational mass are indeed equal for all
bodies independently of their mass and chemical composition. The implications of this
empirical assumption are so deep on our conception of mass, that it has been raised
to the rank of principle, the weak equivalence principle (WEP). It makes gravity a
privileged interaction in which trajectories and orbits of test bodies are independent of
the bodies’ nature. It is nonetheless important to emphasise that in Newton’s theory it
is only an empirical fact and it does not emerge naturally from it. This theory of gravity
would still hold without this principle. In that case gravity would play a similar role
than the electromagnetic interaction. For instance in the presence of an electric field E,
a particle of charge q feels the Lorentz force FE � qE. The particle would then have
different trajectories depending on its charge-to-mass ratio q

mi
. In Newtonian gravity,

the mass ratio
mg

mi
would play the same role as q

mi
. It is however empirically not the

case. While being fortuitous in Newton’s theory, in general relativity this principle is
way more far-reaching as we will see in the next section.

Despite having assumed this principle, any experiment testing it, cannot exclude tiny
violations that are smaller than their current precision. The precision on the test has
been increasing over history [114]. The strength of such a violation is parametrised by
the Eötvös parameter η defined as the normalised difference between the accelerations

a1 and a2 of a pair of bodies of different mass ratios
�
mg

mi

	
j

η1,2 � |a1 � a2|
1{2|a1 � a2| � 2

�
mg

mi

	
1
�
�
mg

mi

	
2�

mg

mi

	
1
�
�
mg

mi

	
2

. (1.8)

Experimental tests of the WEP provide an upper bound on η for several different pairs
of bodies. The main tests will be broached in Sec. 1.3

Finally it is worth mentioning that, as one can see in this equation, it is not necessary

to have the ratio
�
mg

mi

	
equal to one for all bodies. Assuming it to be constant is sufficient

to obtain the universality of free fall i.e. η � 0. But this would be equivalent to rescale
the gravitational constant, so we can by convention assume it to be equal to one.

1.2 The equivalence principle in General Relativity

1.2.1 Einstein equivalence principle

In Einstein’s theory of gravitation, the equivalence principle holds a completely dif-
ferent status, it is its corner stone. It inspired Einstein’s thoughts that resulted in his
theory. The universality of free fall indeed paves the way to a geometrical description
of gravity. The fact that the free fall of a test body in an external gravity field is in-
dependent of the nature of the body means that the gravitational interaction is only a
feature of the gravity field and of the matter sourcing it. A little step further, it allows

CHAPTER 1. THE EQUIVALENCE PRINCIPLE 16



CHAPTER 1. THE EQUIVALENCE PRINCIPLE 17

the interpretation of gravity as the result of a new dynamical entity: a spacetime. As
opposed to Newton’s idea of a rigid absolute spacetime, this new spacetime is dynamical.
It is unique and its dynamics is ruled by the distribution of mass and energy, spacetime
is said to be curved by matter. Then any test body – whose self-gravity i.e. influence on
spacetime is negligible – follows the same trajectories, these are the geodesics which are
the curves of shortest path of this spacetime. In a flat spacetime, empty of any matter,
these curves are straight lines of spacetime – just as uniform straight trajectories of
Newton’s theory in the absence of gravity. In a spacetime curved by the presence of
matter, these geodesics are no longer straight lines but curved lines of spacetime. The
curvature of trajectories is the manifestation of gravity. Without the weak equivalence
principle, this outlook would not be possible, gravity would rely on the nature of the
body we consider, and could not be described by a unique spacetime.

Yet, Einstein went a big step further in these considerations. When a body free falls
in a gravity field, he wondered: if this body is an observer, what would he see and feel?
As reported in Ref. [37], he argued that:

For an observer in free fall from the roof of a house there is during the fall
– at least in his immediate vicinity – no gravitational field. Namely, if the
observer lets go of any bodies, they remain relative to him, in a state of rest
or uniform motion, independent of their special chemical or physical nature.
The observer, therefore, is justified in interpreting his state as being “at rest”.

This is a direct consequence of the universality of free fall. The observer can only
conclude the presence of gravity because he holds a point of reference by observing his
environment. If instead, he and the body he drops, were enclosed in a box freely falling
with them, having no external visual reference, he would have no way of detecting the
presence of gravity, the outcome of any experiment would be consistent with gravity
having disappeared. This is valid as long as air friction is negligible and the box is small
enough to neglect the effects of gravity gradients due to a non-homogeneous gravity field.
Finally consider this box to be instead placed far from any gravity source and with a
rocket at its bottom that provides a constant acceleration to it. Both the observer
and the objects he drops would now feel a constant inertial force that would drag them
towards the bottom of the box. But still having no external reference, the observer would
believe gravity has been in a way ”switched on” again. In this thought experiment known
as Einstein lift experiment, no one can tell the difference between a gravitational force
and an inertial force. This leads to the assumption that not only the inertial mass and
gravitational mass luckily happen to be equal, but gravity and inertia are completely
equivalent and even unified. Gravity is now an inertial fictitious force that completely
disappears in a new concept of inertial frames that are those that are freely falling.

This consideration resulted in two more advanced formulations of the equivalence
principle. First the Einstein equivalence principle that states

(1) The universality of free-fall is verified by test bodies
(2) In any freely falling frame, independently of its position (local position invari-

ance) and velocity (local Lorentz invariance) in spacetime, the outcome of a local non-
gravitational experiment is given by the laws of special relativity;
Then the strong equivalence principle that generalises the universality of free fall to
extended bodies – whose influence on the gravity field is no longer negligible –, and the
second assertion to include gravitational experiment. This formulation of the equivalence
principle implies that also gravitation binding energy falls the same way than matter.
With Nordström theory [75] that describes gravity with a scalar field, general relativity
is the only known field theory verifying this feature.

In other words no local experiment can locally distinguish two freely falling frames
and characterise the gravity field it is falling in, spacetime is locally flat or Minkowski.
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It is important to emphasize the fact that this only holds locally or when the gravity
field is completely uniform. In real situations, for a spherical source for instance, the
gravity field is both radially oriented towards its source and decreasing radially with the
distance to the source. This means two things for the observer of the previous thought
experiment. If he drops a body aside of himself, if the fall lasts long enough, he would
eventually see it getting closer to himself, as both bodies would follow two separate
geodesics that are radial. On top of that, if he were to drop the brush above himself,
being further away of the source of gravity, it would experience a weaker acceleration
leading to tidal effects that would tend to separate the observer from its dropped body.
So by these observations he could still betray the presence of gravity. The statement of
the Einstein equivalence principle is nonetheless local, spacetime is only locally flat, one
can only suppress gravity locally. One could always perform an experiment on smaller
length or time scales, in which these tidal effects would get smaller than its working
precision.

To sum up the equivalence principle holds a very different and central place in
Einstein’s theory than in Newton’s physics. Many features have been added to the
universality of free fall. It is a necessary requirement to its metricity, without which the
theory would fall.

1.2.2 General relativity theory

General relativity [33, 32] is described as follows. It is a geometrical theory in which
gravity is expressed as the curvature of spacetime. It is said to be a metric theory as
spacetime is a Lorentzian manifold described by a metric tensor gµν . This object is used
to define distances in this spacetime such that the distance ds between two infinitely
close events in spacetime is expressed as

ds2 � gµνdx
µdxν (1.9)

where dxµ is the separation vector separating these events. Following general relativity’s
convention, greek indices (µ, ν � 0, ..., 3) denote the spacetime components of a vector
or tensor, while latin ones (i, j � 1, ..., 3) denote only spatial components. We also use
the Einstein summation convention in which any indice that is contracted – i.e. that
appear twice – is summed upon. We use the signature convention (-,+,+,+) for gµν .

This tensor field is the dynamical quantity of the theory. It is governed by the
Einstein-Hilbert action

S � M2
Pl

2

»
d4x

?�g pR� Λq �
»

d4x
?�gLmpgµν , ψpiqm q, (1.10)

where g is the determinant of the metric, R the Ricci scalar defined below, Λ a cos-
mological constant, x the spacetime coordinates, M2

Pl � c4

8πG the Planck mass defined
through the gravity constant G and the speed of light c, Lm the Lagrangian density of

matter depending on field matter ψ
piq
m labelled by i.

When varying this action with gµν – the dual metric tensor defined as gµσgσν � δµν
–, one obtains the Einstein field equations governing the dynamics of gµν

Rµν � 1

2
Rgµν � Λ gµν � 8πG

c4
Tµν (1.11)

where Rµν � gρσRρµσν is the Ricci curvature tensor defined by the contraction of the
Riemann tensor which is a combination of gµν and its first two derivatives with the
spacetime coordinates. The factor 8πG

c4
coming from the Planck mass in the action,

is chosen such that when taking the Newtonian limit – weak-field and non-relativistic
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limit – of this equation, one retrieves Poisson equation Eq. (1.3) from Newton’s theory.
Finally Tµν is the stress-energy tensor defined as

Tµν � � 2?�g
δp?�gLmq

δgµν
(1.12)

and describes the matter content of the universe. Equation (1.11) tells how this matter
content and the geometry of spacetime are related, the matter telling to spacetime how
to curve. The total stress-energy tensor is divergence-free imposing energy conservation
for matter

∇µT
µν � 0, (1.13)

where ∇µ denotes the covariant derivative which is a way of defining a derivative on a
manifold. In general relativity it is defined as ∇µg

µν � 0 and its action is explicited in
terms of the Christoffel symbols defined below.

In such a spacetime, any test particle follows the geodesics of spacetime defined by
the parametric equation

d2xσ

ds2
� Γσµν

dxµ

ds

dxν

ds
� 0 (1.14)

for xσpsq the spacetime coordinates of the geodesic curve parametrised by the affine
parameter s that can be chosen to be the proper time τ and Γσµν the Christoffel symbols

defined through the metric tensor as Γρµν � 1
2g
ρσpBµgσν � Bνgµσ � Bσgµνq. These are

the curves of shortest path in spacetime, in the sense of the definition of distance from
Eq. (1.9). Particles follow these curves if they are freely falling i.e. submitted to no
other interaction but gravity. In agreement with the WEP, they are independent of the
mass of the particle. If the spacetime is flat, the Christoffel symbols cancel such that
we get an equation of null acceleration that in Cartesian coordinates is the one of a
straight line. Otherwise, the terms including the Christoffel symbols give the curvature
of geodesic resulting in the manifestation of gravity. This equation can be simplified
defining the 4-velocity vector along the curve uµ � dxµ

ds and the action of the covariant
derivative on it as ∇µu

ν � Bµuν � Γνµσu
σ, one obtains

aν � uµ∇µu
ν � 0. (1.15)

This equation gives the kinetics of a test mass and defines the 4-acceleration aµ in a
curved spacetime. All effects of gravity are included in this kinetic term. If a test mass
is submitted to a force, it would appear in the right part of this equation: mia

µ � Fµ.
In the weak-field limit, for non-relativistic particles, this equation reduces to Newton’s
equation of motion for gravity.

The equivalence principle is naturally included in general relativity so that neither
mi nor mg appear in Eq. (1.15). In the neighbourhood of any observer that follows
a geodesic of spacetime, one can always attach a non rotating frame to it and find a
coordinate system xµ [69] in which the metric takes the form

gµνpxµq � ηµν � 1

3
Rρµσν x

ρ xσ �Opx3q, (1.16)

Such a coordinate system is called Fermi normal coordinates. This reduces to the metric
of a flat spacetime of special relativity ηµν in the close neighbourhood i.e. xµ Ñ 0 of the
observer. In the same way, the first derivatives of gµν cancels in that neighbourhood,
leading the Christoffel symbols to cancel and thus the gravity to locally disappear.
The second derivatives of the metric do not however cancel, they are included in the
Riemann tensor. This term is responsible for tidal effects that would still be observable if
the neighbourhood is not small enough as mentioned in Sec. 1.2’s last paragraph. These
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effects are described by the geodesic deviation equation giving the relative acceleration
of two nearby geodesics. In the Newtonian limit it reads

d2δxi

dτ2
� �Ri0j0 δxj , (1.17)

δx being the spatial separation vector between the geodesics. In this limit one can show
that Ri0j0 � δik

BΦ
BxkBxj . One recognises the gravity gradient tensor or the Hessian of

the Newtonian potential Φ. For a homogeneous spherical source of gravity of mass mS,
one can show that in spherical coordinates attached to it Ri0j0 � GmS

r3 diagp�2, 1, 1q.
Inserting this into Eq. (1.17), one obtains equations accounting for the tidal effects
mentioned in Sec. 1.2. Due to the relative signs of the radial and angular components of
this tensor, the separation of two nearby free-falling objects increases if separated radially
and decreases if separated angularly. This illustrates the locality of the equivalence
principle in general relativity.

1.3 History of the equivalence principle tests

Before the implications of this equivalence principle it has become one of the more
precisely tested physical principle. Many different types of tests have been developped
to test the WEP. Their upperbound on the Eötvös parameter are summarized in Fig. 1.1
adapted from Ref. [114]. The history of this test has been marked by three periods: an
early period, anterior to the tests shown in Fig. 1.1, where mainly pendulum were used
reaching precisions up to 10�5 on η; then during the whole 20th century, WEP tests
made a big leap forward by use of the Eötvös experiment obtaining precisions of 10�8 in
the late 19th century and reaching 10�13 in the early 21th; finally more recently the era
of space-borne tests have been opened by the MICROSCOPE mission reaching the level
of 10�14 and maybe soon 10�15. The main tests are explained in the following sections.

1.3.1 Early tests

First measurements of the universality of free fall started during the Renaissance.
Their precision was very limited by the unprecise metrology techniques of the time.
Maybe the most popular test is Galileo’s experiment dropping balls at the leaning tower
in Pisa. Nevertheless this might be a popularising thought experiment. What Galileo
really used [47] is inclined planes. He was indeed aware that vertical free-falling exper-
iments such as the Pisa one, would be very limited by the action of air drag. Besides,
even though the v2 scaling of this drag was only known later, he knew that it was de-
pendent on the velocity of the ball. Then to obtain slower falling balls while still having
a long enough free-fall necessary to time measurement, he used slightly inclined planed
on which he made roll balls of different matter such that the acceleration of gravity is
g sinα for an inclination angle α. He compared their fall by measuring the falling time
by means of a water clock – similar to a hourglass but with water. To the precision this
means could provide, he did not measure any violation.

Galileo also tested the universality of free fall using swinging pendulums of different
composition. Such a pendulum consists of a massive body placed at the end of a thread.
If the WEP is verified, the swinging frequency must be independent of the mass of
the body and only a function of the length of the thread. This can be described in
Newtonian physics. If we denote this length L and the inertial and gravitational mass
as previously, the equation of motion is given by

:θ � ω2 sin θ � 0, (1.18)
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Figure 1.1: Evolution of upper bounds set on the Eötvös parameter η by different WEP
tests. The base of an arrow denotes an upper bound. Figure adapted from Ref. [114].

where ω � ω0

a
mg{mi with the proper angular frequency defined from the considered

local gravity field value g by ω0 �
a
g{L. In the limit of small oscillations the solution

of this equation is straightforward. One gets oscillation at the angular frequency of ω.
Consequently if two bodies have different mass ratio they would oscillate at different
frequencies. Such violation can be expressed by the Eötvös parameter as

η � |ω1 � ω2|
ω0

(1.19)

where the numerator contains the pulsation of each pendulum. If the WEP holds, the
mass ratio are equal and the movement would be independent of the mass, and they
would both oscillate at ω0.

Galileo conducted this experiment in the 17th century comparing pendulums of cork
and lead. He concluded [47] that after a hundred oscillations, the number of oscillations
of the two pendulum did not differ by much that one. For the WEP, this implies that
η   10�2. Not long after, Newton repeated the experiment using other types of matter
[73]. He improved it [10], by replacing the two masses by two identical hollow spheres in
which he would set different materials. This was done to minimise the difference in the
air drag. At the same time he came to a better evaluation of the latter. He concluded
that no violations were detected at a level of η   10�3. Finally Bessel made another
improvement with this experiment reaching η   10�5.

1.3.2 Torsion balances

The precision on the WEP tests improved radically in the late 19th century with
Eötvös’ experiment [108]. The principle of this experiment is sketched in Fig. 1.2. It
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consists in a torsion balance made of a rod suspended by a thread. At both ends of the
rod are fixed two masses of different composition. Were the WEP violated, one would
expect a torque that would twist the system. The explanation of such an outcome is
straightforward in Newtonian physics.

Figure 1.2: Sketch of a torsion balance from the Eötvös experiment.

Consider the wire to be perfect so that it opposes no rigidity to any torsion, and the
rod to be homogeneous and symmetrical enough such that its contribution to the torsion
is negligible, and finally that only the two masses are at play. Both masses are subjected
to two forces: the gravity force that is proportional to the gravitational mass, and the
inertial centrifugal force due to Earth’s rotation that is proportional to the inertial mass.
If we neglect the variation of the gravity field g and of the inertial acceleration ain on
the scale of the experiment, each mass experiences the total force Fj � mj

g g �mj
i ain,

where j � 1, 2 labels the masses. Now if the WEP is not respected, each mass has a
different gravitational-to-inertial-mass ratio so that the sum of the two forces gives two
different forces F1 and F2 that are non collinear. This creates a constant torque

T � r1 � F1 � r2 � F2. (1.20)

If initially the torque is not aligned with the wire, it rapidly swings such that the wire
gets naturally aligned with the sum of the forces. Then the torque is collinear to F1�F2

and

T � pF1 � F2q � r1 � F1 � F2 � r2 � F2 � F1

� r1 � F1 � F2 � r2 � F2 � F1

T � pF1 � F2q � r � F1 � F2.

where we defined r � r1 � r2. Hence the torque is given by

T � r � F1 � F2

|F1 � F2| . (1.21)

Clearly if the forces are collinear, the torque is null. Then if the WEP holds the rod is
expected to stay still. However if they are not, that is if the WEP is not respected and
the rod is not aligned with the meridian – as the total force would be in the apparatus
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plane –, a constant torque would twist the apparatus. In this experiment the presence
of a torque was checked by an optical telescope. In reality the actual experiment Eötvös
used is more complex. It uses a balance whose masses are placed at two different heights
separated by a few tenth of centimetres – as the apparatus was originally designed in
the hope of measuring gravity gradients for geophysics. This provided a way to put an
upper bound on the Eötvös parameter η. Eötvös team [109] and Renner [88] reached a
precision of a few 10�9 on η in the 1920s.

Then, mainly motivated by the fact that Eötvös version could not provide a zero-
check, the apparatus got improved in the 1960s by the Princeton group [90]. While they
could suppress the effect of Earth’s gravity and Earth’s induced inertial forces by aligning
the axis of the symmetry of the system with the meridian, they considered the motion of
the apparatus around the sun, and compared the sun’s gravity with the centrifugal force
whose intensity and direction is modulated by Earth rotation – the effective rotation
velocity of the apparatus around the sun peaks at midnight and is minimal at midday.
This leads to an anomalous total force that cancels at 6 am and 6 pm, this effective
velocity being then the one of the orbit so that both forces are equal in magnitude and
opposite in sign. All in all, a modulated torque with a 24 hours period would be expected
if the weak equivalence principle is violated. The design got also modified. They added
a third test mass of same composition than one of the masses, and put all of them on the
same horizontal plane. This was motivated to limit the sensitivity to the gravity gradient
to which the original Eötvös set-up was sensitive. They indeed estimated that Eötvös
should have been sensitive to the presence of the nearby experimentalist. In the same
spirit, taking advantage of new technical developments they used as rotation detection
system an optical system coupled to electronics by a photomultiplier, so that they could
suppress the necessity of a human operator. The influence of such a person have been
shown to be negligible at more than 6 m from the apparatus. Finally they suppressed
other sources of perturbations, placing the experiment in a vacuum chamber for instance,
or in a pit to improve temperature stability – temperature gradients could indeed lead to
parasistic forces –, or again in a magnetic shield to avoid magnetic contamination. They
were able to perform their experiment during several continuous days. They reached a
precision of a few 10�11 on η in the 1960s, that got improved to less than 10�12 by the
Moscow group [11] in the 1970s enjoying a more quiet seismic environment noise.

Finally, having in mind to use again Earth’s gravity field to probe the existence of
shorter-ranged Yukawa type fifth force, the EötWash group [3] implemented a turntable
providing a precise constant rotation motion to the balance that would allow to control
the modulation of Earth’s violation signal. They started with a precision of a few 10�11

on η in the 1990s [3] and reached in 2008 η   2.1� 10�13 at 1σ [93].

1.3.3 The Earth-Moon system & the equivalence principle

Alternatively to these laboratory tests conducted on Earth’s surface, another test
was imagined based on celestial mechanics. The Earth-Moon system can indeed be
seen as two bodies falling in the Sun’s gravity field. The description of this problem is
nonetheless more complicated than the one of laboratory tests. Due to the importance
of the mass of the bodies and to the shortness of the system compared with its distance
to the sun, one cannot neglect the interaction of Earth and Moon. This then must be
treated as a three-body problem. Its application to the test of the equivalence principle
was first done in 1825 by Laplace [63] who only looked for a violation of the weak
equivalence principle due to the different compositions of Earth and Moon – the Moon
being mainly only composed of Earth’s mantle material, while Earth has an iron core.
Later, in the 1960s, Nordtvedt [76, 77, 78] considered the possibility of a violation of the
strong equivalence principle due to the different binding energies that the two bodies
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hold.

Laplace effect

The first effect [63] known as Laplace effect is very well exposed in Ref. [27]. The
problem is treated in Newtonian mechanics. By parametrising a WEP violation through
the εj parameters defined as

mj
g

mj
i

� 1� εj (1.22)

with j � C,K labelling Earth and the Moon, one can show that the accelerations Earth
and Moon experience differ by

δa � pεC � εKqg@ � η g@, (1.23)

where g@ � Gm@{r2
C

is the Sun’s gravity field at the level of Earth’s orbit. Such an
anomalous acceleration is shown to introduce a variation of the Earth-Moon distance r,
given by

δrptq � δa
1� 2ωK{Ω
ω2
K
� Ω2

cos Ωt (1.24)

in which Ω � ωK � ωC defined in terms of the angular frequencies of the Moon and
Earth orbits. The angular frequency Ω corresponds to the synodic lunar period that
is the period at which the Moon retrieves a same position with respect to Earth and
Sun while orbiting the Earth. This period differs from the period of its orbit due to the
motion of the Earth around the Sun. This equation tells us that the variation of the
Earth-Moon system due to a WEP violation should occur at this period. It leads to a
polarisation of the Moon’s orbit toward the Sun.

Laplace compared his theory with celestial observation. He used the measure of
parallaxes that are the only way of measuring the distance to the Moon and the Sun
at that time. He actually formulated his theory considering that the weak equivalence
principle as Earth and Moon seeing a different solar mass. Nonetheless this is completely
equivalent to the previous description. His conclusion corresponds to a precision on the
WEP test of η   3� 10�7.

Lunar Laser Ranging (LLR) & the strong equivalence principle

A little more than one century after, Apollo missions provided a big technological
leap for this test. Several laser retro-reflectors have indeed been left on Moon’s sur-
face allowing for a precise measurement of the Earth-Moon distance by laser ranging.
Meanwhile, Einstein’s considerations about the equivalence principle lead to its strong
formulation. This latter implies that not only an anomalous acceleration in this system
is due to the difference of composition of Earth and Moon, but also to their different
gravitationnal binding energies that are no longer negligible for those bodies. This effect
is known as the Nordtvedt effect [76, 77, 78].

A simple model helps understand such effect. Assume that the binding energy does
not contribute equally to the gravitational mass and inertial mass in such a way that

mj
g � mj

i � κmj
b (1.25)

where κ is the Nordtvedt parameter of this model and mj
b � 1

c2
3Gpmjgq2

5R the mass associ-
ated to the binding energy here expressed for a spherical body of radius R. This model
leads to an anomalous acceleration between Earth and Moon that is

∆a � κ

�
mCb
mCi

� mKb
mKi



g@. (1.26)
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If κ � 0, i.e. a gravitational binding energy contributing equally to inertial and gravi-
tational mass, one obtains a null differential acceleration as long as WEP is respected
– as WEP violation are not included in this model. On the other hand for κ � 0, this
anomalous acceleration provides the same effect on the variation of Earth-Moon distance
as previously given by Eq. (1.24).

This variation has been tested by the Lunar Laser Ranging by monitoring precisely
this distance. The precision on the measurement of this distance has gone from a
few tenth of centimetres to the level of the millimetre [72]. Of course this distance is
observed to vary. Many other sources exist such as among others: tidal effects leading to
an increase of about 3.8 cm.yr�1, effects of other celestial bodies, effect of Earth’s geoid.
Ephemeris models are constructed to evaluate these effects. Subtracting these models
to the LLR observations one obtains a residual variation. This residual went from tenth
of centimetres to around 2 cm recently [111]. This result leads to a constraint on the
difference of acceleration of Earth and Moon to a level of ηLLR   0.9 � 10�13 at 1σ.
Such a differential acceleration must be seen as the result of both the Laplace effect
– WEP violation – and Nordtvedt effect – SEP violation. The former effect has been
nonetheless evaluated by the EötWash group. They measured it using torsion balance
with test masses mimicking the composition of Earth and Moon. They obtained the
result ηLLR

WEP   4.5 � 10�13 at 1σ [4]. This lead recently to a level of precision on the
SEP test of the order of 5.4� 10�13 at 1σ [111].

1.4 MICROSCOPE

The latest technology jump on the WEP test comes from space missions. Space
indeed offers a stable environment allowing to free ourself from most parasit forces one
suffers on Earth – mainly seismic perturbations due to human activity. Many concepts
have been proposed in the late 1990s and early 2000s such as the STEP mission [70]
aiming for a precision of 10�18 on η, Galileo Galilei (GG) mission [74] targeting a
precision of 10�17 and the MICROSCOPE mission [100] whose goal was to achieve a
precision of 10�15. So far, only the latter flew.

The MICROSCOPE experiment – MICRO-Satellite à Compensation de trâınée pour
l’Observation du Principe d’Équivalence – is a French mission led by a CNES-ESA-
ONERA-CNRS-OCA-DLR-ZARM collaboration. It has been launched in April 2016
and has been then performing its experiment until October 2018 when it has been
passivated and removed from a stable orbit. The mission has been a success, providing
a preliminary improvement of an order of magnitude on the WEP test [103, 104]. Final
results shall be published soon.

1.4.1 Mission and design

Principle

The mission inherits the expertise ONERA has been developing in the field of ultra-
sensitive electrostatic accelerometry that resulted in resounding successes obtained in
Earth gravimetry [101] with CHAMP [86], GOCE [91, 80], GRACE [87].

MICROSCOPE’s WEP test is based on a set of accelerometers that measures the
difference in the acceleration that test masses of different compositions are experiencing
as they orbit the Earth. The orbit is a quasi-circular sun-synchronous orbit with an ec-
centricity of 1.4�10�3 and an altitude of 710 km. The experiment is sketched in Fig. 1.3.
It consists of two sensor units each composed of two nested cylindrical accelerometers.
Such an accelerometer is designed to measure the acceleration experienced by a cylin-
drical test mass. While one sensor unit called SUEP performs the WEP tests, with two
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test masses of different compositions – a platinum alloy and a titanium alloy, the other
sensor unit called SUREF is used as a reference with two test masses of same composi-
tion – platinum alloy. This latter is made of 90% of platinum and 10% of rhodium and
the titanium alloy of 90% of titanium, 6% of aluminium and 4% of vanadium.

In such a set-up, if the WEP was violated, the two test masses of different nature
would tend to follow slightly different orbits. Actually, the accelerometer measurement
is based on a capacitive measurement – that will be described in Sec. 1.4.2 – in which
the test masses are forced to remain at a constant position with respect to the satellite.
This is achieved by means of an electric field whose magnitude is modulated via a servo
loop control. Then by measuring this magnitude one can reconstruct the acceleration
that the test masses are experiencing.

Figure 1.3: Sketch of the MICROSCOPE’s detection principle. The orientation of its
cylinders during its orbit is shown. The X and Z-axis are in the plane of the orbit. The
evolution of their orientation is compared with the Earth’s gravity field radial direction.

The accelerometers are able to measure the acceleration along the 6 degree of free-
dom of the test mass cylinders: 3 axis, one longitudinal denoted X along the main axis
of the cylinders composing the accelerometers, and two other perpendicular directions
radial to the cylinders; and 3 angles of rotation around these axis. One of these latter
axes is always perpendicular to the plane of the orbit, such that if the WEP violation
was to occur, a signal would appear only on the others two. Due to the orbital motion,
a sinusoidal signal is expected. This is explained by comparing the direction of measure-
ment and of the gravity. The source of the violation is indeed the Earth gravity field
which is radial at first order in the Earth geoid. But while the satellite orbits, its axes
are in rotation with respect to the direction of the gravity field. As a consequence the
sensitive axes are successively aligned and perpendicular to the gravity field’s axis as
depicted in Fig. 1.3. For a sensitive axis of the accelerometers, this leads to a periodical
gravitational acceleration and thus the WEP violation to be periodic. Even though the
test can be performed on two axes, the analysis is only done on the X-axis for which the
sensitivity is the better. The satellite can operate in two modes: an inertial mode where
its axes remain constant compared to distant stars, and a spin mode where the satellite
is spinning on itself in the orbital plane. In inertial mode, a hypothetical WEP viola-
tion would appear at the orbital frequency forb � 1.6818 � 10�4 Hz. In spin mode the
frequency is modulated by the spinning frequency such that the WEP violation would
appear at the frequency fEP � forbit � fspin. If the WEP was then violated, one would
expect a line to appear at this frequency in the Fourier spectrum of the difference of
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acceleration between the two test mass cylinders. This spin mode is a very important
feature of the mission as it allows for a modulation of the expected violation signal and
to perform the test at a frequency where the noise is minimal. All sources of noise will
be discussed later.

The benefits of space

Performing this experiment in space is motivated by many benefits. Space provides a
very stable environment. It indeed allows us to free ourselves from any non-gravitational
perturbations encountered on Earth due to human activities or seismic perturbations.
Besides, in the MICROSCOPE experiment, many other external perturbations are lim-
ited by the choice of the mission’s design. For instance, by choosing an altitude of
710 km, the residual atmosphere is poor enough such that the satellite is submitted to
a drag not greater than 10�8 m.s�2. A higher altitude could have been used, but at
the price of a smaller gravity acceleration and thus of a lower expected violation signal.
This altitude is the result of the balance between both these considerations. Moreover
the choice of a Sun-synchronous orbit, in which the satellite keeps showing the same
face to the sun, induces a thermal stability of the set-up. This minimises the occurrence
of temperature gradients that can cause perturbing forces due mainly to mechanical di-
latation, radiation pressure and the radiometer effect – as will be discussed in Sec. 1.4.4.
Finally to overcome the possibility of any other perturbation, the satellite is equipped
by a drag-free system using a set of cold gas thrusters that can compensate any force
that would be identified as non-gravitational.

This stability that the experiment enjoys allows it to be performed during an ex-
tended period of time. This is equivalent to a long free fall. The typical duration of
a measurement series is of 8 days. This duration is limited mission operations. This
permits to average out any stochastic errors.

Nevertheless space leads to some limitations. The first one is phenomenological.
While in an experiment performed in a laboratory on Earth – such as the Eötvös exper-
iment – the test masses can easily be changed to perform the WEP for different couples
of matter, in the MICROSCOPE mission – due to the payload limitation that the cost
of a space mission induces – the test is only done for one specific couple of material.
This narrows the impact on the phenomenology of the WEP and the constraints on
alternatives theories of gravity. A more expansive mission could however overcome this
issue. The second limitation is technical. The mission is one-shot. If any damage hap-
pens to any system of the satellite, the mission would be impacted with no possibility to
fix it. The MICROSCOPE mission suffered from this. At the beginning of the mission
two capacitor components ceased to function. It has been attributed to overheating.
Fortunately it did not paralyse the experiment, nevertheless it limited its operation. To
avoid a new failure that could be fatal to the mission, it was decided not to turn on both
sensors units at the same time, but to perform the measure on each sensor separately.

Experiment design

The instrument’s design is depicted in Fig 1.4. The experiment is performed in
a cylindrical cavity. This cavity is delimited by a hermetical invar shield designed
to suppress any external electromagnetic field that could perturb the experiment. A
vacuum system is present at the top of the cavity, which ensures a 10�5 Pa vacuum in
the cavity.

The very heart of the cavity is composed of the two accelerometers made in total of
6 nested cylinders. Each accelerometer is composed of 3 cylinders. One is the test mass
cylinder and is surrounded by two electrode cylinders. The latter cylinders are made
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Figure 1.4: Left: scheme a sensor unit of the MICROSCOPE experiment. Right: picture
of the inside of SUREF as viewed from above.

of silica covered by gold. On the side facing the test mass cylinder, this golden layer is
engraved by a series of grooves resulting in several electrically isolated rectangular gold
patches. Each of them constitutes an electrode. Its electric potential is controlled by a
wire weld to its surface and crossing the silica cylinder through a drilled hole. The test
mass potential on the other hand is controlled through a wire of a diameter of 7µm. The
control of these potentials is done by a system of electronics placed outside the vacuum
cavity. This control allows to use the test mass and the two electrode cylinders as a set
of two capacitors. This permits, by a process that will be explained in the next section,
to control the position of the test mass and to measure its acceleration. The 2 sets
of 3 cylinders that constitute an accelerometer are nested in each other, and enclosed
in an inner holed invar ferule that is directly enclosed by the shield. The geometrical
parameters of the cylinders as measured during integration are given by Tab. 1.1 for the
test masses of both SU and by Tab. 1.2 for the electrode cylinders of SUEP. The density
of the latter is of 2.203 g.cm�3. Finally the specifications about the ferrules are given
by Tab.1.3, their density is of 8.125 g.cm�3.

Table 1.1: Result of the metrology performed on the test masses geometrical parameters
during integration for both sensor units. IS1 and IS2 denotes respectively denotes the
internal and external test masses.

Parameter IS1-SUREF IS2-SUREF IS1-SUEP IS2-SUEP

Inner diameter [mm] 30.801 60.799 30.801 60.802
Outer diameter [mm] 39.390 69.397 39.390 69.401
Length [mm] 43.331 79.821 43.330 79.831
Mass [kg] 0.401533 1.359813 0.401706 0.300939
Density @ 20oC [g.cm�3] 19.967 19.980 19.972 4.420

1.4.2 Capacitive detection

The measurement of the acceleration is based on a capacitive detection. It can be
performed in three directions and three angles. The measurement in each direction
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Table 1.2: Geometrical parameters of the electrodes cylinders from SUEP as measured
during integration. ‘CylInt’ and ‘CylExt’ respectively denotes the internal and external
cylinder surrounding a test mass.

Parameter IS1-CylInt IS1-CylExt IS2-CylInt IS2-CylExt

Inner diameter [mm] 17.998 40.600 50.305 70.610
Outer diameter [mm] 29.602 49.700 59.601 80.009
Length [mm] 78.001 81.002 115.002 118.002

Table 1.3: Specified geometrical parameters of the inner and outer ferrule surrounding
all the cylinders.

Parameter Inner Ferrule Outer Ferrule

Inner diameter [mm] 86 115
Outer diameter [mm] 94 119

requires the use of at least a set of two electrodes that forms a pair of capacitors whose
plates are made by one electrode and one face of the test mass. Fig. 1.5 shows for
one test mass the different electrodes at play labelled X, Y, Z. Note that for Y and
Z directions, instead of a single pair of electrodes, a set of two pairs of electrodes are
used – labelled Y1, Y2 and Z1, Z2, respectively – to also control the orientation of the
cylinder – here labelled by θ and Ψ.

Figure 1.5: Scheme of the different electrodes at play for the measurement of the accel-
eration of a test mass. The Y and Z-axis are controlled by variation of the gaps. The
X-axis is controled by variation of the overlapping surfaces. The rotation of the test
mass around X is controlled by the electrodes labelled Φ.

This measurement is achieved as follows. It can be decomposed in two processes:
the detection of a displacement and the action to correct for this displacement. The test
mass is levitated in the cage formed by the electrodes and maintained at a rest position
equidistant with all electrodes with a gap of 600µm. Consider now one direction of
measurement i.e. a pair of electrodes. The test mass is maintained at some potential –
by a 7µm wire – and the electrodes at some other potentials that are equal in magnitude
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but opposite in sign. In the centred position, the situation is symmetrical such that the
two capacitances are equal. If the test mass is shifted – as caused by some external
acceleration for instance – the two capacitances are no longer equal. This variation is
measured and converted in a detection voltage that can be converted in an information
on the position of the test mass. From this voltage, a servo-control loop computes action
voltage the system needs to apply – by tuning the potential of the electrodes – to bring
back the test mass to the centred position. This action on the test mass is detailed in
the case of a plane capacitor in the boxed section A. Both these processes are based on
the imbalance of the capacitances due to the displacement. For the Y and Z directions
this imbalance is due to a variation of the gaps of the capacitors while for the X axis to
the variation of the overlapping area of the capacitors plates. In the details given in the
box we only develop the former.

Finally the rotation around the axis of the cylinder is controlled by using a set
of 4 pairs of electrodes – labelled by Φ. The measurement is possible thanks to the
special design of the test masses which are not perfectly cylindrical but instead have,
every 900, a longitudinal part of its surface that is flatten. If one such part is not
positioned symmetrically with respect to 2 electrodes, it again induces a difference in
the capacitances leading to a force.

Box A: A model for the action: the plane capacitor

Figure 1.6: Sketch of the model of a plane capacitor. The system of the electrodes
– thick black line – and the rectangular test masse – thinner lines forms a set of
two capacitors.

For a better understanding of the capacitive action of the test mass, we con-
sider the case of the plane capacitor shown in Fig. 1.6. This case is good to model
the measurement on the Y and Z axis. We consider a parallelepiped test mass
surrounded by two electrodes facing two opposite sides of the test mass. Consider
the gap in-between to be filled by a perfect vacuum. The test mass is maintained
at a constant electric potential Vp while the electrodes are maintained at respec-
tively Vx and �Vx, that we can modulate. This difference of potential leads to
a voltage through two capacitors. Due to this imposed difference of potential, a
force appears between the plates and the test mass, that would cancel if the test
mass is centred between the plates with a gap g on both sides. Now consider this
test mass to be slightly shifted toward one of the electrodes by a distance δ so
that it is separated by respectively g � δ and g � δ from each electrodes. This
difference of gap leads to a non null force.

Consider one capacitor. This capacitor stores the energy E � 1
2C∆V 2, where

∆V is the difference of potential between the two plates of the capacitor and
C � ε0A{e is the capacitance linked to the capacitor’s geometrical quantities:
A, the area of the overlapping surface of the plates, and e, the distance between
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the plates. This energy corresponds to the electrical work that has been needed
to create the difference of potential ∆V , or microscopically to make the charge
carriers migrate to one of the plate to create this difference of potential. This
energy also represents the potential energy the charge carriers hold and would
spend to restore electrical balance. This could occur electrically if the electrical
voltage maintaining the difference of potential was turned off; or mechanically
with a force if the plates were mobile as is the test mass in our case. This force
derives from this potential energy as

Fcap � dE

de
� 1

2

dC

de
∆V 2, (1.27)

where we assumed the difference of potential to remain constant. The force is
directed along the axis of displacement and is attractive. Microscopically it corre-
sponds to the attraction of the positive and negative charges that are respectively
present at the surface of the two plates due to the voltage.

Using the above formula for the capacitance, one gets an expression of the
magnitude of the force experienced by the plates of this plane capacitor – in the
MICROSCOPE’s case by the test mass–:

Fcappeq � 1

2

ε0A

e2
∆V 2. (1.28)

This attractive force increases if the plates get closer and if the difference of
potential is being increased.

We use this in the full problem of the two capacitors shown in Fig. 1.6. For
fixed electrodes, the test mass experiences two forces from the two electrodes
with which it forms the two capacitors. If the test mass is centred, the two forces
cancel. If instead it is shifted, the force are no longer balanced resulting in a
total force. The force is directed in the direction of the displacement eδ and is
expressed using Eq. (1.28) as

Fel � rFcappg � δq � Fcappg � δqs eδ
Fel � 1

2
ε0A

�pVx � Vpq2
pg � δq2 � pVx � Vpq2

pg � δq2
�

eδ,
(1.29)

where we have specified the difference of potential consistently with Fig. 1.6 and
we have considered the same area A for both capacitors.

One can Taylor expand this expression for small δ. By also developing the
difference of potential terms, one obtains at first order in δ

g

Fel � 2ε0A

g2

�
�VpVx � pV 2

p � V 2
x q
δ

g

�
eδ. (1.30)

This expression contains two terms. The first one is dominant for small displace-
ment and is opposed to the direction of the displacement. It is independent of δ.
One can act on Vx to tune this force that the test mass is experiencing such that
it can compensate any acceleration the test mass is feeling and maintain it at the
centred position. The MICROSCOPE measurement is based on this principle.
The potential Vx is tuned using a servo-control loop, the acceleration being then
deduced as a � 2ε0Ap

g2mTM
Vx, mTM being the mass of the test mass.

The second term is only dominant for large δ, it is directed in the direction
of the displacement so that it destabilises the system. Being linear to the dis-
placement it is called the electrostatic stiffness. The force is written Fk � �k δ
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the stiffness is equal to k � 2ε0A
g3 pV 2

p � V 2
x q. Even if sub-dominant, this term is

considered in MICROSCOPE servo-control loop.

Note that this is an idealised simple model. In the MICROSCOPE experiment,
more proper electrostatic models are considered taking into account more complex
features such as the curvatures of the electrodes for instance.

This principle is used to measure the acceleration on the Y and Z axes. The
measurement on the longitudinal axis X is based on another principle. The test
mass cylinder is nested in two cylindrical electrodes that do not cover the whole
surface of the test mass. While in the symmetric position the overlapping surfaces
with the two electrodes are equal, if the test mass cylinder is moving along the
X-axis, the two surfaces differ and create an imbalance of the capacitances. This
leads to a force similar to the previous. To evaluate it one can differentiating the
capacitance in Eq. (1.27) with respect to the area only the gap e is kept constant
with the Y and Z electrodes.

1.4.3 Measurement equation

We now derive the measurement equation for the experiment. We follow the same
procedure as Refs. [50, 104, 5]. The question is to determine in the satellite’s rest frame
the electrostatic force that one needs to apply to the 4 test masses to maintain them at
a fixed position. To that end we need to study the dynamics of both the test masses
and the satellite. We treat this problem in Newtonian physics. In particular we assume
gravity to be described in Newton’s theory. Nevertheless this description is still valid in
alternative theories of gravity as long as the gravity fields do not vary too rapidly at the
level of the experiment. If they do not, they should be treated as a perturbing force.

The satellite’s frame Rsat centred on the satellite centre of mass Osat
c is in rotation

compared to the geocentric frame Rgeo centred on O. This rotation is described by the
satellite angular velocity vector Ω of components pΩx,Ωy,Ωzq in the geocentric frame.
We denote Oi

c the centre of mass of the ith test mass. The dynamics of each test mass
is ruled by

mi
i

d2Osat
c Oi

c

dt2
� Fi

g �Fi
e �Fi

p �mi
i

�
d2OOsat

c

dt2
� rIns.Osat

c Oi
c � 2rΩs.dOsat

c Oi
c

dt



(1.31)

where Fi
g is the gravitational force experienced by the test mass as sourced by the Earth,

Fi
e is the electrostatic forces applied by the electrodes and described above, and Fi

p any
other perturbing forces. The last two terms describe the inertial forces that are due
to the rotation of Rsat. They depend on the distance between Osat

c and Oi
c and are

expressed by defining the rotation matrix rΩs as

rΩs �
�
� 0 �Ωz Ωy

Ωz 0 �Ωx

�Ωy Ωx 0

�
 (1.32)

and the gradient of inertia matrix as rIns � rΩs2 � 9rΩs. The term in rΩs corresponds to
the Coriolis force, the term in its squared rΩs2 to the centrifugal force and the term in
its time derivative to the Euler force. The dynamics includes the motion of the satellite
that is ruled by

msat
i

d2OOsat
c

dt2
� Fsat

g � Fsat
e � Fsat

p (1.33)
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resulting from the forces the satellite experiences: the gravitational force Fsat
g , any

perturbing force Fsat
p such as the residual air-drag of the atmosphere for instance and

Fsat
e � �°NTM

j�1 Fj
e the reaction forces due to the forces applied to the different test

masses by the electrodes.
The gravitational forces, which are the source for a possible WEP violation, are

described as follow. The precision goal of MICROSCOPE is such, that we must treat
the non homogeneity of the gravity field on the scale of the test masses and the satellite,
by integrating the gravity field over their volume. We can nonetheless Taylor expand
the gravity field around some arbitrary point A close to the center of mass Oc of the
considered body, for any point P in this body

gpPq � gpAq �TpAq.AP, (1.34)

where T � ∇g is the gradient of gravity evaluated at A. This object is an order 2
three-dimensional tensor whose components are linked to the Newtonian potential by
Tij � BiBjΦ. Note that the fact we express it around an arbitrary point will be useful for
considering the fact the center of mass of test masses, although they are nested, do not
coincide perfectly. In the MICROSCOPE’s data analysis the point A is chosen to be Osat

c

for all bodies, although it is not enclosed in any test cylinder, but this only introduces
an error smaller than 10�8 m.s�2 on the local gravity field, and when considering the
differential acceleration between two test masses the gravity gradient term would only
depend on the separation between their mass centre that is independent of Osat

c .
When integrating gravitational force associated to the Earth gravity field, given by

Eq. (1.6), over the volume of the considered body, one obtains the expression of the
gravitational forces for the ith test mass and the satellite

Fi
g � mi

g

�
gpOsat

c q �TpOsat
c q.Osat

c Oi
c

�
(1.35a)

Fsat
g � msat

g gpOsat
c q (1.35b)

where we have suppressed the spatial dependency in P by introducing the centres of
masses of each body which by definition the mass barycentre verifies

³
body Oi

cP dmpP q �
0.

Putting all these equations together one obtains the electrostatic acceleration one
needs to apply to keep a test mass at a fixed position and thus the acceleration it
experiences Γiapp � 1

mii
Fi

e that can be expressed as

Γiapp �
mi

g

mi
i

�
gpOsat

c q � rTspOsat
c q.Osat

c Oi
c

�
� 1

mi
i

Fi
p � rIns.Osat

c Oi
c � 2rΩs.dOsat

c Oi
c

dt
� d2Osat

c Oi
c

dt2

� 1

msat
i

�
msat

g gpOsat
c q �

NTM̧

j�1

Fj
e � Fsat

p

�
.

(1.36)

The first two lines depend on the considered test mass while the last does not. In
theory this last line is not source of any difference in the acceleration of a pair test
masses, and thus does not affect the measurement. Nevertheless as will be shown in the
next paragraph, geometrical defects of the cylinders can lead to a contribution of these
terms. But their contribution are limited by design of the instrument and by the drag-
free control system. This system acts on the whole satellite through cold-gas thrusters.
This latter are chosen to be operated to compensate the acceleration of one of the test
mass. The residual acceleration this test mass experiences is at the level 10�13 m.s�2.
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Of course, with this choice, the other test mass is affected, but as we are only interested
in measuring the differential acceleration it does not affect the test.

This model is idealised. One needs to take into account the stochastic errors and
the systematics errors that are caused by the instrument’s imperfections. These are
modelled for each test mass by the following equation

Γimeas � K0
i � rAisrθisΓiapp � rCouplsdΩTM

dt
� Γinoise (1.37)

where Ki
0 is a bias term containing the instrument bias and any other constant per-

turbation as the satellite self-gravity, rθis a rotation matrix accounting for the slight
misalignment between the axis of the cylinder and the satellite frame, rAis the sensitiv-
ity matrix whose diagonal corresponds to scale factor of the instrument and off-diagonal
terms model the parallelism default between the electrodes and the test mass cylinder,
and rCoupls models the possible coupling between the angular acceleration dΩTM

dt of a
test mass and its linear acceleration. All those error parameters have been estimated
during the mission with dedicated in-orbit calibration sessions, their estimations are
presented in Refs. [50, 104] and their magnitude will be mentioned in Sec. 1.4.5. The
last term corresponds to the stochastic noise sources that will be described in the next
section.

Finally we can define, for two test masses 1 and 2 of the same sensor unit, the
measured differential acceleration as

Γd
meas � Γ1

meas � Γ2
meas. (1.38)

The differential acceleration Γd
meas is the aim of the MICROSCOPE measurement and

is linked to the Eötvös parameter in the measurement equation as in Ref. [104] as

Γd
meas �rMcs

�
η g pOsatq � prTs � rInsq∆� 2 rΩs 9∆� :∆

	
�Kd

0 � 2 rMdsΓc
app � Γd

quad � rCouplds 9ΩTM � Γd
noise,

(1.39)

where the dot and the double dot denotes the first and second time derivative, ∆ �
O2

cO1
c is the separation between the centre of mass of the two test masses, rMds �

1{2 �rA1srθ1s � rA2srθ2s� is the difference of geometrical defects of the two inertial sen-
sors, following this, any other quantity labelled by d – apart from Γd

meas – is defined
as the semi-difference of the value it takes for the two test masses and any quantity
labelled by c is the mean of the associated quantity for the two test masses of a sensor
unit. Finally the term Γquad accounts for any term quadratic in the electrical potentials
in the electronics. An example are the terms quadratic in the potential of the electrodes,
that is not considered in an electrostatic model of Eq. (1.30) or the geometrical defects
that are not considered in rAs and rθs creates.

Note that two additional approximations led us to this equation. First in the defini-
tion of the Eötvös parameter η in Eq. (1.8) we only kept the numerator. This is justified

by the fact that previous WEP test have shown the mass ratios
mig
mii

to be very close

to 1. Similarly, if we denote εiWEP its discrepancy with 1, the gravity gradient term is
expanded as

rTspOsat
c q.

�
m1

g

m1
i

Osat
c O1

c �
m2

g

m2
i

Osat
c O2

c

�
� rTspOsat

c q.rO2
cO1

c � ε1WEPOsat
c O1

c

� ε2WEPOsat
c O2

cs � o
�pεiWEPq2q

�
.

(1.40)
In the MICROSCOPE analysis we only consider the first term.
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The measurement equation (1.39) is the basis of MICROSCOPE’s data analysis.
This equation describes the different contributors of a possible non-null differential ac-
celeration. Besides a WEP violation described by η, many effects can lead to such a
signal. These can be estimated and minimised as described in Refs. [50, 104]. The
geometrical defects, coupling terms, quadratic terms and off-centring on ∆y have been
estimated during in-flight calibration sessions. Any term involving time derivatives are
being kept under control by the servo-loop control keeping the test mass motionless.
The inertial forces are well known by precisely monitoring the satellite attitude using
star-sensors. The gravity gradient is estimated using Earth’s geoid models from the
previous gravity mission GRACE [98], the other off-centrings ∆x and ∆z are estimated
in the data analysis. Note that Eq. (1.39) shows explicitly the contribution on the dif-
ferential acceleration of the forces common to the two sensors described in Γc

app induced
by the geometrical defects. Again these perturbing common forces are minimised by the
drag-free system. Finally the noise whose contributor are described in the next section
is being handled in the data analysis by doing a Fourier spectral analysis.

1.4.4 Noise sources

There are three main sources of noise affecting the measurement of the acceleration of
the test masses. These have different signatures in the experiment acceleration spectrum
leading them to dominate at different frequencies. These signatures are shown in Fig. 1.7
and are clearly visible in Fig. 1.8 showing the spectrum of the differential acceleration
obtained for a measurement session on SUEP.

Figure 1.7: Expected noise signatures in the MICROSCOPE instrument. SU-EP stands
for SUEP and SU-RF for SUREF. I and E denotes the internal and external accelerom-
eter of each sensor unit. Figure adapted from Ref. [99].

Gold wire

The control of the electrical potential of the test mass requires a 7 µm-diametre gold
wire. This wire acts mechanically as a spring that induces a perturbing force. This effect
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has been studied with a torsion balance in Ref. [115]. Its stiffness has been estimated
to a few 10�5 N.m�1 which leads to a negligible differential acceleration. Yet, this wire
also leads to a damping term. This phenomenon described in [92] is explained by heat
loss due to friction in the wire. This contributor of the noise can be evaluated using the
fluctuation-dissipation theorem. It depends on the temperature of the wire. It has been
shown that it can dominate the signal at low frequency, with a f�1{2-behaviour.

Electronic noise

The electronics used for the capacitive measurement is expected to create a stochastic
noise on the position of the test masses. This leads to a f2-signal on the acceleration
that dominates only at high-frequency.

Thermal noise

Finally variations of the temperature in a sensor unit cavity are a source of noise.
Two main effects are responsible for this: the radiation pressure effect and the radiometer
effect.

The first one is due to the infra-red thermal photons, emitted by the electrode
cylinders because of their temperature, that hit the test masses and induce a pressure.
Temperature variations can then lead to difference of pressure on each side of the test
mass resulting in a force.

The radiometer effect is caused by the residual gas in the cavity. This effect appears
in rarefied atmospheres when a body is submitted to a difference of temperature on two
opposite sides of its volume.

The impact of these two effects depends on the thermal stability of the set-up. Many
sessions have been dedicated to estimate them, using for instance heaters in the cavity
to induce controlled temperature variations.

1.4.5 Spectral analysis and results of the mission

The analysis of the MICROSCOPE data is based on a spectral analysis using a fast
Fourier transform of the differential acceleration. It is done on the X-axis longitunal
to the cyclinders. As discussed before if a violation of the WEP was to be detected
it would appear as a sinusoidal signal of frequency fEP in the differential acceleration.
This should appear in Fourier space as a line at this frequency. We discussed in the
previous section the spectral signature of the different noise contributors. The gravity
gradient has also an interesting signature. To see it, we need to express the gravity
gradient tensor in the satellite’s frame. In the Earth’s spherical coordinates, if we only
consider the monopole of Earth’s geoid, only the diagonal-component contribute and
are multiple of 2 GMEarth{r3. In the satellite’s frame, given the quasi-circular orbit, the
gravity gradient reads [102] in the satellite frame as

rT s � GMEarth

r3

�
�1

2 � 3
2 cos 2α 0 �3 sin 2α
0 �1 0

�3 sin 2α 0 1
2 � 3

2 cos 2α

�
 (1.41)

where α is the angle defining the satellite’s orientation in the Earth’s reference of frame.
One clearly sees that the gravity gradient has two contributions, one constant that is not
distinguishable in spectral analysis and another at 2 fEP. Note that in the measurement
equation, the gravity gradient comes with the off-centring which, being constant in the
satellite frame, does not affect the expected frequency at which this effect should appear.
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During the mission, 24 120-orbits-long sessions have been performed on SUEP and
9 on SUREF. They have been operated with a satellite spin of 2.9432 � 10�3 Hz. This
spin has been chosen such that the WEP signal would appear at a frequency fEP �
3.1113� 10�3 Hz where the contribution of the noise described previously is minimised.
It was chosen during the in-flight characterisation sessions. As this thesis is being written
the results of only two measurement sessions have been published [103, 104]: one session
for each sensor units SUEP and SUREF. The analysis of the entire MICROSCOPE’s
data has since then been completed and the results are currently being validated for an
upcoming publication.

Figure 1.8: Power spectral density of the differential acceleration measured by SUEP
during a measurement session. The red arrows show fEP – at which a WEP violation
would appear – and 2 fEP – at which the gradient gradient signal appear. Figure adapted
from Ref. [103].

Figure 1.8 shows the power spectral density of the SUEP sensor unit for one session.
The noise clearly has the expected behaviours at low and high frequencies. This figure
shows clearly the expected gravity gradient ray at 2 fEP. On the other hand, at fEP

where a WEP violation would appear, no line is visible.

A constraint on η is obtained by analysing the differential acceleration using the
model given by Eq. (1.39) projected on the X-axis. The signal sampling rate is of
4 Hz. The analysis consists mainly in subtracting from the signal any effect described
before that are found to contribute during the calibration session. Their estimation
is given in Tab. 1.4. This leaves the measurement equation with three terms: η-term
and the gravity gradient terms sourced by the off-centring along X and Z. The WEP
violation term is expected to appear at frequency of fEP and the off-centring term at
2 fEP respectively. To analyse them, a discrete Fourier transform is performed, then
frequency bands are selected around fEP and 2 fEP to perform a least square fit to
estimate η, the off-centring ∆ along X and Z, gravity models being used at this point
to evaluate gpOsat

c q and rTspOsat
c q.

The result [103, 104] on the SUEP sensor is

ηTi,Pt � r�1� 9 pstatq � 9 psystqs � 10�15 pat 1σq, (1.42)

where the second and third terms are the statistical uncertainty at 1σ and systematic
uncertainty. The latter is obtained from Tab. 1.4 where it is derived from the systematics
on Γd

meas. η indeed appears in Γd
meas as multiplied by the gravity and rMcs. The former

has been estimated to 7.9 m.s�2 at the level of the satellite. The latter has been evaluated
to differ from identity by less than a percent. To sum up, this result excludes any WEP
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Table 1.4: Evaluation of systematic errors in the differential acceleration x-component
for SUEP at fEP.

Term in the Eq. (1.39) projected Amplitude or
on the x-axis ex in phase with gx at fEP upper bound in m.s�2

Txx∆x   10�18

Txy∆y   10�19

Txz∆z   10�17

9Ωy∆z � 9Ωz∆y 5� 10�17

ΩxΩy∆y � ΩxΩz∆z �
�
Ω2
y � Ω2

z

�
∆x 1.3� 10�17

prMdsΓc
appq.ex 1.7� 10�15

pΓd
quadq.ex 5� 10�17

prCouplds 9ΩTMq.ex   2� 10�15

Thermal systematics   67� 10�15

Magnetic systematics   2.5� 10�16

Total of systematics in Γd
meas.ex   71� 10�15

Total of systematics in ηTi,Pt   9� 10�15

violations greater than 1.9�10�14 at 1σ. This represents an improvement of the precision
on the WEP test of roughly one order of magnitude compared to the previous bound.

The result on the SUREF is the following

ηPt,Pt � r�4� 4pstatq � 8psystqs � 10�15 pat 1σq. (1.43)

This is comforting as no violation is expected, the two test masses being of same com-
position. Note that the precision is slightly better, this is due to a better noise level on
this instrument.

Chapter conclusion

The weak equivalence principle is one of the most well-tested physical princi-
ples. The history of its test is rich and goes back to Galileo’s epoch. The most
recent improvement of this test is the MICROSCOPE mission. By performing its
test in orbit, this experiment improved the precision of this test by an order of
magnitude.

The implications of the WEP on our vision of gravity are far-reaching. It is a
founding pillar of general relativity. Thence testing it allows for probing gravity
theories beyond GR. Such theories are the subject of the next chapter.
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Chapter 2

Gravity beyond general relativity

While the equivalence principle is the corner stone of general relativity, many al-
ternatives to this theory violate this principle. Some have already been ruled out by
the current precision on the test of the equivalence principle or by other means. Other
can predict a violation weaker than the current bound or provide a more complex phe-
nomenology of such a violation. Understanding this phenomenology is a great oppor-
tunity to constraint these theories, by re-analysing WEP test data or imagining new
experimental design for these tests.

Following the literature, we qualify these alternative theories to general relativity as
modified gravity even if it is clear that it is only general relativity that is modified and
not gravity itself.

2.1 Motivation for modifying general relativity

General relativity is our current standard theory for describing gravity. Its founda-
tions are well tested [114]. It passes all experimental tests e.g. deflection of light by
the Sun [34, 30, 61], precession of Mercury’s perihelion [34, 64], gravitational redshift
[31, 110], Shapiro time delay [95], Lense–Thirring effect [65, 42], Hulse–Taylor binary
pulsar’s gravitational radiation [54]. It also predicted the existence of black holes [94, 22].
More recently the long awaited direct detection [1] of the gravitational waves it predicted
[35] has been a crowning achievement for the theory and gave a proof of the existence
of astrophysical black holes. On cosmological scales, general relativity predicted the
expansion of the universe [36] that was later confirmed observationaly by Hubble [52].
Today it provids a framework to develop a theory reproducing most observations [55],
with the exception of: galaxy clustering [117] and galaxy rotation curves [45] leading
to the introduction of the so-far-undetected dark matter; and of the acceleration of the
universe’s expansion [81, 89] only explained by a cosmological constant or a dark energy.

Despite these successes, the history of gravity has been marked by a rich variety
of alternative theories of gravity. Most of these have been successively constrained
experimentally. A possible way to modify general relativity is to introduce new gravity
fields in addition to the metric field. The simplest field one can consider is a scalar field
[46]. It has been widely studied phenomenologically as it could provide a fifth force
that could violate the WEP. In cosmology it can provide a dynamical dark energy to
explain late time cosmic acceleration and is also a possible model of inflation [66]. The
next field that can be considered is a vector. It is used in Einstein-Aether theory [48] to
reintroduce the concept of a preferred reference frame in general relativity that would
violate local Lorentz invariance. In TeVeS theory [7] both scalar field and vector field are
used to provide a relativistic version of MOND theory. The latter theory was introduced
[71] as a modification of Newton’s gravity that would explain anomalies in the galaxy
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rotation curves without the hypothesis of dark matter. Then the next possible field
that can be introduced is a second metric tensor. Such a second tensor field is used for
instance in massive gravity [26] to again resolve cosmological problems.

In the following we will only consider scalar-tensor theories and their role in the weak
equivalence principle phenomenology.

2.2 Scalar-Tensor theories

2.2.1 General theory

In scalar-tensor theories, a new scalar field φ is introduced in addition to the metric
tensor of general relativity. We follow the same convention as Refs. [40, 27].

Action in the Einstein and Jordan frames

The theory enjoys two different representations in the so called Einstein frame and
Jordan frame. The Einstein frame is the one where the GR part of the action is given
by the Einstein-Hilbert action. In this frame the action of scalar-tensor theory takes the
form

S �
»

d4x
?�g

�
M2

Pl

2
R� 1

2
gµνBµφ Bνφ� V pφq

�
�
»

d4x
a
�g̃LmpΩ2pφqgµν , ψpiqm q, (2.1)

where V is the potential of the field, Lm is the matter Lagrangian as described in the

standard model by matter fields ψ
piq
m that are labelled by i. R, gµν , g are respectively

the Einstein frame’s Ricci scalar, the metric tensor and its determinant, and Ω2pφq is
the conformal factor function used to defined the Jordan frame metric g̃µν given as a
function of the scalar field as

g̃µνpφq � Ω2pφqgµν (2.2)

with Ωpφq the conformal factor function. By definition of the inverse metric tensor one
also has g̃µν � Ω�2pφqgµν . g̃ is the determinant of g̃µν .

In the Einstein frame, the scalar field is minimally coupled to the metric through
the term

?�g and its kinetic term. On the other hand the matter fields from Lm get
non-minimally coupled to the scalar field, leading to the fact that matter particles do
not follow geodesics of spacetime. Instead each matter field sees the Jordan frame metric
g̃µν leading it to follow curves modified by φ in the Einstein frame. One can obtain the
action in the Jordan frame, by performing the conformal transform in Eq. (2.2). The
Ricci scalar [112] transforms as

R̃ � Ω�2

�
R� 3

1?�gBµpg
µν ?�g Bν lnΩ2q � 3

2

�BlnΩ�2

Bφ

2

gµνBµφBνφ
�
, (2.3)

such that by defining two arbitrary functions F and Z of φ, a new potential U and the
scalar field rescaling φÑ φ̃ by the set of equations:

F pφ̃q � Ω�2pφq, (2.4a)�Bφ
Bφ̃


2

� Zpφ̃q
F pφ̃q � 3

M2
Pl

2

�BlnF

Bφ̃


2

, (2.4b)

Upφ̃q � V pφqF 2pφ̃q, (2.4c)

one obtains the action in the Jordan frame

S �
»

d4x
a
�g̃

�
M2

Pl

2
F pφ̃qR̃� 1

2
Zpφ̃qg̃µνBµφ̃ Bν φ̃� Upφq

�
�
»

d4x
a
�g̃Lmpg̃µν , ψpiqm q,

(2.5)
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Note that second term of Eq. (2.3) involves a total derivative that provides, when inte-
grated by part, a term that does not contribute to the dynamics of the theory.

These two descriptions are physically completely equivalent although one of them
can be more convenient to perform some calculations, but when computing observables
they provide the same result. Note that in the Einstein frame the scalar field has a
dimension of a mass, while in the Jordan frame it is dimensionless.

Field’s equations

One obtains the field’s equations by varying the action with respect to each field.
Leading this calculation in the Einstein frame is more convenient as we will retrieve
equations similar to GR and lead to a more straightforward calculation when considering
the Newtonian limit.

By varying the action with respect to gµν , one gets the modified Einstein field equa-
tions

Rµν � 1

2
Rgµν � 1

M2
Pl

�
Ω2pφqT̃µν � 2gµνBρφBρφ� BµφBνφ� V pφqgµν

�
. (2.6)

Compared to Einstein equation from GR, the scalar field here provides a new source to
curve spacetime geometry, besides it modifies the way matter curves space time through
the factor Ω2 in front of the stress-energy tensor. Note that here it is the Jordan frame
stress-energy tensor

T̃µν � 2?�g̃
Bp?�g̃Lmq

Bg̃µν (2.7)

that plays the role of source. This tensor is in fact the one describing ordinary matter
as in the standard model. This is because, in the Jordan frame, the matter fields only
couple to the metric and not to the scalar field. Consequently it is in this frame that
matter respects energy conservation ∇̃µT̃

µν � 0 as in classic general relativity – i.e. in
Eq. (1.13). On the contrary, in the Einstein frame the matter fields are affected by the
scalar field. This induces a modification of the energy conservation equation with an
additional term accounting for the coupling with φ. This coupling leads to an apparent
modification of masses of the matter fields or equivalently of the gravitational constant
when considering observables. Nonetheless in the Jordan frame, even if the masses are
constant, by looking at the action, one can tell that the gravitational constant – in MPl –
is modified, leading to an effective gravitational constant Geff � Ω2pφqG. These frame-
dependent considerations are however artificial. The important conclusion is obtained
when looking at observables given by these theories as for instance the gravitational
force one would measure. In such a case one would tell that the scalar field modifies the
product of the gravitational constant and the masses of the considered bodies: Gm1m2.
One can then equivalently interpret this as a variation of G or of the masses. The
variation depends on the local value of the field. An example will be given when studying
Brans-Dicke theory in Sec. 2.2.4. Note that when considering a non-universal coupling,
all physical constants will be subjected to variation from the scalar field [107].

When varying the action with φ, one obtains the Klein-Gordon equation governing
the dynamics of the field

BµBµφ � dV

dφ
� d lnΩ

dφ
Tµνgµν . (2.8)

The field couples to the trace of the Einstein frame stress-energy tensor - defined by
removing the tilde in Eq. (2.7). It is linked to the Jordan frame one by Tµνgµν �

41 TESTING GRAVITY IN SPACE



42 TESTING GRAVITY IN SPACE

Ω4pφqT̃µν g̃µν . From this we conclude that the scalar field sees ordinary matter affected
by the factor of Ω4. This is justified by our previous discussion emphasising the fact
that the ordinary matter we know from our description of nature without a scalar field
is properly described by the Jordan frame quantity. It is important to note that the
field is not sourced by traceless stress-energy tensor matter fields as for instance the
electromagnetic field.

Geodesics in Einstein frame

As mentioned previously the matter fields see the Jordan frame metric. In this frame,
as long as no additional coupling terms are added, the matter fields are indeed coupled
minimally to the metric field through the term

?�g̃. As a consequence matter particles
follow geodesics of the Jordan frame metric so that

d2xρ

ds2
� Γ̃ρµν

dxµ

ds

dxν

ds
� 0 (2.9)

where Γ̃σµν are the Christoffel symbols in the Jordan metric. Note that this does not
mean that in the Jordan frame matter follows geodesics as in pure GR. In this frame the
non-minimal coupling between the scalar field and the tensor field affects the gravity
field in such a way that the trajectories of matter particles get in the end modified
compared to pure GR.

The Christoffel symbols contain first derivatives of the metric that transform as

Bσ g̃µν � Ω2pφq
�
Bσgµν � 2

B ln Ω

Bφ gµν Bσφ


. (2.10)

Then the Christoffel symbols transform as

Γ̃ρµν �
1

2
g̃ρσpBµg̃σν � Bν g̃µσ � Bσ g̃µνq

� 1

2
Ω�2pφqgρσΩ2pφq rpBµgσν � Bνgµσ � Bσgµνq

� 2
B ln Ω

Bφ pBµφ gσν � Bνφ gµσ � Bσφ gµνq
�

Γ̃ρµν � Γρµν �
B lnΩ

Bφ
�Bµφ δρν � Bνφ δρµ � gρσ Bσφ gµν

�
.

(2.11)

Using this in Eq. (2.9), one gets a modified geodesics equations in the Einstein frame

d2xρ

ds2
� Γρµν

dxµ

ds

dxν

ds
� B lnΩ

Bφ
�

2Bµφ dxµ

ds

dxρ

ds
� gρσBσφ gµν dxµ

ds

dxν

ds



� 0. (2.12)

Similarly to Eq. (1.15), one can express this equation in the following form

uµ∇µu
ρ � �B lnΩ

Bφ KµρBµφ (2.13)

where uµ � dxµ

ds is the 4-velocity along the geodesic curve or its tangent vector and
Kµν � uµuν � gµν is the projector on the 3-space normal to uµ. Note that we used the
fact that uµuµ � �1 for massive particles.

From this new geodesics equation, one can thus conclude that the scalar field affects
the geodesics of the Einstein frame by a term that depends on the gradient of the field.
Doing so the scalar field creates a fifth force that can be expressed as

F ρφ � �B lnΩ

Bφ KµρBµφ. (2.14)
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This force can lead to WEP violation when considering a non-universal coupling of the
scalar field as will be discussed in Sec. 2.2.3.

A last feature that is worth mentioning in scalar-tensor theories, is that null geodesics
are not affected by the scalar field. The reason to this is the structure of the conformal
transformation from Eq. (2.2). As argued in Ref. [39], null geodesics are curves for which
the tangent vector to the curve is null i.e. g̃µνu

µuν � 0. If this property of nullity holds
in the Jordan frame, it holds also in the Einstein frame as gµνu

µuν � Ω�2g̃µνu
µuν � 0.

As a consequence, null geodesics are the same in the two frames, so that they do not
get affected by the scalar field. This implies that massless particles do not feel any force
from the scalar field. An important phenomenological consequence concerns bending of
light by the a massive body. In scalar-tensor theory, the result of such phenomena is
still the same as described by general relativity, that is in agreement with observations.

2.2.2 Newtonian limit

Similarly to general relativity one can study the Newtonian limit of scalar-tensor
theories. The procedure is the same as in pure GR. The Newtonian limit is the weak-
field and non-relativistic limit. We assume the metric field to be close to Minkowski
spacetime such that

gµν � ηµν � hµν , (2.15)

where ηµν � Diagp�1, 1, 1, 1q is Minkowski metric and hµν is a small perturbation.

Then to first order in hµν one gets [112]

Γρµν �
1

2
ηρσ pBµhσν � Bνhµσ � Bσhµν,q , (2.16a)

Rµν � 1

2
pBρBµhρν � BρBνhµρ � BρBρhµν � BµBνhq, (2.16b)

R � BµBνhµν � BρBρh, (2.16c)

where h � hµµ and ηµν is used to contract indices. By posing h̄µν � hµν � 1
2hηµν and

by fixing the freedom of coordinates system with the gauge Bν h̄µν � 0, Einstein field
equation (2.6) in the case of scalar-tensor theory becomes

BρBρh̄µν � � 2

M2
Pl

�
Ω2pφqT̃µν � 2ηµνBρφBρφ� BµφBνφ� V pφqηµν

�
. (2.17)

The 00-equation gives a modified Poisson equation. For non-relativistic matter we
have T̃00 � ρ̃, where ρ̃ is the local density matter distribution function. Moreover as
in pure general relativity the 00-component of h̄µν is linked to Φ the equivalent of the
Newtonian potential as h̄00 � �4Φ. We obtain the equation

BρBρΦ � 1

2

1

M2
Pl

�
Ω2pφqρ̃� BtφBtφ� 2BρφBρφ� V pφq� (2.18)

which for static configurations becomes

∆Φ � 4πG
�
Ω2pφqρ̃� 2p∇φq2 � V pφq� , (2.19)

where ∆ is the space Laplacian. From this modified Poisson equation, one concludes that
the potential is no longer the classic Newton potential ΦN � GM{r, instead it is modified
by the scalar field through the norm of its gradient and its potential. Likewise the gravity
potential sees a modified mass Ω2pφqρ̃. Note that nonetheless those modifications of
Newton’s potential are negligible for most theories.
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In the Newtonian limit the field’s Klein-Gordon equation becomes

lφ � dV

dφ
� d lnΩ

dφ
Ω4pφqρ̃ (2.20)

where l denotes the d’Alembertian that reduces to the Laplacian for static configu-
rations. Note that we have used the Newtonian limit of the trace of the stress-energy
tensor T̃µν g̃µν � �ρ̃.

The geodesics equation also simplifies in the Newtonian limit. The motion of test
particles is described by Eq. (2.12), again in the weak-field limit for non-relativistic
matter and static configuration one has from Eq. (2.16a)

Γi00 �
1

2
Bxih00 � BxiΦ (2.21)

where we have used h00 � 2Φ and where i denotes the three spatial dimensions. We
can then insert this in Eq. (2.12). By taking the proper-time τ as affine parameter and

using the fact that in the non-relativistic limit dτ
dt � 1 and dxi

dt � 1, one gets

d2xi

dt2
� �BxiΦ� B lnΩ

Bφ Bxiφ. (2.22)

Hence in the Newtonian limit, the fifth force that the scalar field creates, scales exactly
as the gradient of the field. For a test particle of mass m one has the 3-force

F φ � �mB lnΩ

Bφ ∇φ. (2.23)

We recall this formulation of the fifth force is only valid as long as the particles have
velocities v ! c small compared to the speed on light. This force can lead to a violation
of the WEP. It can be explicited through different functions Ωpiq if the field couples non
universally to each matter field as shown in the next section.

2.2.3 Non-universal scalar field coupling

Until now we have considered the scalar field to couple universally to each matter
component. One can however consider that it couples differently to each matter field.
This is described by associating a different conformal factor Ωpiq to each matter field.
This way one can associate a different Jordan frame metric for each field. But as matter
follows the Jordan frame geodesics, in the Einstein frame matter particles follow curves
that are different depending on their nature. Their equation is obtained by adding the
matter field dependency in Eq. (2.13) such that for each i we have

uµ∇µu
ρ � �B lnΩpiq

Bφ KµρBµφ. (2.24)

One concludes that particles of different nature experience different fifth forces. This
force is expressed by the second member of this equation. It leads to a violation of
the WEP. As a consequence WEP tests provide a great opportunity to constraint the
existence of such scalar-fields.

For extended bodies or composite particles, besides the fact that their influence on
the scalar field could not be negligible, one needs to integrate this force on their volume.
One however needs to do this integration for each matter field contained in the body.
This takes into account the possible inhomogeneities of the body. One gets the force it
experiences as

F ρextended � �
»

Vol

¸
i

ρ̃ipxq
B lnΩpiqpφq

Bφ KµρBµφ dV (2.25)
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where ρ̃i denotes the matter density function associated to the ith matter component of
the body.

This non-universal coupling also affects the dynamics of the scalar field. Similarly
to the force, each matter field brings a contribution to the scalar field that is weighted
by its coupling constant Ωpiq. The Klein-Gordon equation of the field in the Newtonian
limit then becomes

lφ � dV

dφ
�
¸
i

d lnΩpiq
dφ

Ω4
piqpφq ρ̃ipx, tq. (2.26)

As a consequence the matter fields do not source equally to the field. We recall again
that the electromagnetic field does not contribute to this equation.

2.2.4 Massless scalar field

In this section we explore different scalar-tensor theory models based on different
potentials and the coupling constants.

Jordan-Brans-Dicke theory: a prototype massless scalar field

The first scalar-tensor theory is the Jordan-Brans-Dicke theory [12, 29]. It was
introduced as a modification of General Relativity that respects Mach’s principle [67].
This principle is motivated by considerations about Newton’s bucket, a bucket filled
with water whose surface curves due to inertial forces if the bucket is rotating. Newton’s
interpretation was that this was a proof to the existence of an absolute space in which
the bucket would have an absolute rotation. Nonetheless, as relativity have ruled out
such concept of an absolute space, what would then explain the existence of such inertial
forces? Mach’s idea to solve this problem, was that these apparent forces were caused
by the gravitational interaction of the whole distribution of causally connected distant
matter around the bucket that would appear as rotating in the bucket frame.

This principle leads to an effective inertial mass of bodies that would have a spatial
and time dependence governed by the distribution of mass around it. One only having
experimentally access to G times the gravitational mass, it is equivalent to consider that
the gravitational constant G that varies. In Brans-Dicke theory, the variation of G is
encoded in a scalar field.

In the general formalism introduced previously Brans-Dicke theory corresponds in
the Jordan frame to

F pφ̃q � φ̃, (2.27a)

Zpφ̃q � M2
Pl

ω

φ̃
, (2.27b)

Upφ̃q � 0, (2.27c)

with ω being a constant parameter of the theory. Eqs. (2.4) gives the theory in the
Einstein frame with

φ � φ0 �MPl

a
ω � 3{2 ln

φ̃

φ̃0

, (2.28a)

Ωpφq � φ̃
�1{2
0 e

� φ�φ0
2MPl

?
ω�3{2 , (2.28b)

V pφq � 0 (2.28c)

where φ0 and φ̃0 are two constants. Note that the function Ω is, in this model, universal
to all the matter fields so that the WEP is respected.
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We want to see how this scalar field acts in the Newtonian limit around a spherical

ball such as Earth. As long as φ is small compared to MPl we have Ωpφq � φ̃
�1{2
0 .

One can moreover verify that the contribution of the field to the classic gravitational
potential is negligible so that it reduces to Newton’s potential multiplied by Ω2. To
evaluate the additional fifth force we need to determine the gradient of the field. For
static situations, it is obtained by integrating the Klein-Gordon equation that with the
above definition becomes

∆φ � � φ̃�2
0

MPl

a
2p2ω � 3q ρ̃. (2.29)

It is easily solved around a spherical body of mass M such as Earth, one obtains a result
very similar to Newton’s potential. And finally we obtain from Eq. (2.22) the total force
created by both the Newtonian gravity field and the scalar field that a test body of mass
m experiences

|F| � φ̃�1
0

2ω � 3� φ̃�1
0

2ω � 3

GMm

r2
. (2.30)

In conclusion the effect of Brans-Dicke scalar field in the Newtonian limit, is com-
pletely equivalent to a modification of the gravitational constant. The gravitational
constant one would measure is given by

Gcav � φ̃�1
0

2ω � 3� φ̃�1
0

2ω � 3
G (2.31)

where φ̃0 is the background value of the field determined by the distribution of mass
around the considered location and G is the bare gravitational constant parameter of
general relativity part of the theory. The effective gravitational constant Gcav is the
gravitational constant one would measure from a gravity experiment conducted in a
laboratory such as a Cavendish experiment for instance. In Brans-Dicke this value
would vary depending on the location in space and time due to the local value of φ̃0.
The most recent bound comes from the Cassini-Huygens mission [9] and shows that
ω ¡ 40000.

General universal massless scalar-tensor theories

A convenient way of parametrising such massless theory is given in [41, 39]. This
helps setting general constraints. It consists in developing the coupling function Ω
around the background value φ0 the field takes far from any massive source

ln Ωpφq � ln Ωpφ0q � α0pφ� φ0q � β0pφ� φ0q2 � oppφ� φ0q3q (2.32)

where α0 and β0 are constants parametrising respectively the linear and quadratic cou-
pling that the scalar field induces. In the language of Feynman diagrams, the former
corresponds to the exchange of a scalar particle while the latter to the exchange of two
particles. In this language Brans-Dicke theory corresponds to α2

0 � 1{p2ω � 3q and
β0 � 0.

In such a model, in the Newtonian limit similarly to the Brans-Dicke case, due to
the scalar field, one would experimentally measure an effective gravitational constant
given as

Gcav � GΩpφ0q2p1� α2
0q. (2.33)

Current constraints on massless scalar field in this language are given by Fig. 2.1. The
main constraints come from solar-system tests of general relativity and from observations
of distant binary pulsar systems.
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Figure 2.1: Constraints on a universal massless scalar-tensor theory as parametrised by
Eq. (2.32). Binary pulsars constraints are denoted by their name beginning by PSR.
K denotes constraints from Laser Lunar Ranging, A constraints from measurement of
Mercury’s precession of the perihelion, VLBI constraints from VLBI’s measurement of
light deflection, and Cassini constraints from the measurement of the Shapiro effect with
the Cassini spacecraft. The compilation of all constraints is shown in the darkest grey
region. This figure is extracted from Ref. [39].

It is worth mentioning that,although a scalar field does not affect the trajectory of
photons, a constraint is obtained from light deflection measurement. Such a constraint
is the result of the modulation by the field of the gravitational constant. In general
relativity, the deflection angle of photon by the sun is proportional to the gravitational
constant. In scalar-tensor theory, as the trajectory of photon is not affected by the
scalar field, this angle is still proportional to the bare gravitational constant G. On the
other hand, processes involving massive test bodies, as for instance Keplerian orbits,
depend on the effective gravitational constant Gcav, that depends on the value of the
field. By comparing the consistency of the gravitational constant obtained from the
latter process with the former, one can thus test scalar tensor theory. In other words,
if one analyses light deflections observations considering the value of the gravitational
constant measured from Keplerian orbits, one could measure a value of the deflection
angle different from GR. This provides a way of testing such theories.

Massless field and non universal coupling

In the Brans-Dicke model, the scalar field couples universally to each matter field.
A non-universal coupling would be created by a different function Ωpiq for each matter
field. Take

Ωpiqpφq � e
βi

MPl
φ
, (2.34)

with βi being a matter-field-dependent coupling constant. Again Ωpφq � 1, for small
field compared to MPl. Now when considering the coupling between two bodies two
different βi appear: one in the Klein-Gordon equation for the body sourcing the field,
and another one in the geodesic equation for the body falling in it. One obtains an
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interaction between the bodies i and j deriving from the potential

Vijprq � GM

r
p1� 2βiβjq. (2.35)

that is parametrised by their coupling constant βi.
This class of non universally coupled scalar field is often called dilaton field. This

denomination comes from a scalar field that emerges from string theory in the low
energy limit [25]. Many models exist for the composition dependent coupling constant.
Amongst other one can mention for instance a phenomenological model using linear
combinations of the baryonic and leptonic numbers of the atoms consituting the test
masses at play [44, 43]; or a more theorerically motivated model using different coupling
constant for each matter fundamental fields [23]. Such scalar fields being non universal,
lead to a composition dependent force that induces a WEP violation, which in the case
of two masses around Earth would give the Eötvös parameter

η � βEarthpβi � βjq
1� βEarthpβi � βjq (2.36)

Considerations about the naturalness problem of the coupling of this scalar field to
matter and about its cosmological implications, hinted at a possible violation to appear
in the range: 10�13 ¡ η ¡ 10�18 [79].

Another important feature of such a non-universal scalar field is that masses of
elementary particles and fundamental constant vary [107]. Similarly to the Brans-Dicke
case, the gravitational constant varies, but now it varies differently for each fundamental
matter field, such that each field sees a different constant. Nonetheless, the mass of a field
has no absolute signification, instead it is a way of parametrising physics and to compare
the fundamental interactions between each other. As a consequence if the gravitational
constant varies differently for each field, this is equivalent to vary the masses of the field
and thus the other fundamental constants.

2.2.5 Massive scalar field and the Yukawa approximation

φ2-potential

In the previous section we have considered null potentials for the scalar field. When
this potential is non zero, the field acquires a mass. The effect of such mass can be
understood with the potential

V pφq � 1

2
m2
φφ

2 (2.37)

for a mass of the scalar field denoted mφ. We still use the non universal coupling to

matter Ωpiqpφq � e
βi

MPl
φ
. In this case, the field’s Klein-Gordon equation in the Newtonian

limit for static configurations reads

∆φ � m2
φφ�

1

MPl

¸
i

βiρ̃i. (2.38)

This equation can be solved using Green’s function, the solution is defined as an integral
over the source volume Vs

φprq � 1

MPl

»
Vs

d3r1
e�mφ|r�r1|

4π|r� r1|
¸
i

βiρ̃ipr1q. (2.39)

For a point source of mass M with ρ̃i �Mδ3prq, this integral reduces to the field

φprq � βiM

4πMPl

e�mφr

r
, (2.40)
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βi being the coupling constant associated to its composing matter. This field profile
leads in Eq. (2.22) to a radial force Fr � m BrVYukawa which derives from the Yukawa
potential

VYukawaprq � GM

r
p1� 2βiβje�mφrq. (2.41)

Hence the implication of this model of a massive scalar field is a modification of Newton’s
potential with a term scaling in e�mφr. This modification gets exponentially suppressed
for r " λφ, where λφ is the Compton wavelength of the field defined in SI units as

λφ � h̄

cmφ
. (2.42)

The force of such a massive scalar field has thus a finite-range λφ.

For extended bodies the interaction has an additional geometrical function due to
the integral over the volume of the source body in Eq. (2.39) and over the volume of the
falling body. One can show [2] that for two spherical bodies of radii r1 and r2 the force
created by the only Yukawa field is given by

FYukawa

m
� GMβ1β2Φ

�
r1

λφ



Φ

�
r2

λφ


�
1� r

λφ



e�r{λφ

r2
, (2.43)

r being the separation between the two bodies and Φpxq � 3px coshx � sinhxq{x3 a
form factor functions coming from the above-mentioned integral. This formula is valid
for homogeneous bodies. Otherwise one needs to take into account the sum involving
different βi’s in the integration.

Such a massive scalar field has been widely used in the search of a local fifth force
with experiments performed on Earth and observations in the solar system. It has
been extensively tested and short-ranged interactions are the less constrained. Current
constraints on such a model will be given in Chapter 3.

Mass for an arbitrary potential

For an arbitrary potential with an arbitrary coupling to matter, one can still define
a concept of mass of the field for a potential exhibiting a minimum. The mass is defined
as the curvature of the potential at this minimum. Such that if this minimum is reached
at φmin, we have

m2
φ �

d2V

dφ2
pφminq. (2.44)

This is due to the fact that when the field oscillates close to the minimum of its potential
one can Taylor expand the potential

V pφq � V pφminq � dV

dφ
pφminq pφ� φminq � 1

2

d2V

dφ2
pφminq pφ� φminq2 (2.45)

V pφq � V pφminq � 1

2
m2
φ pφ� φminq2 (2.46)

leading to the same potential as previously, the constant V pφminq having no effect.
Green’s function for the scalar field’s equation are the same and an exponential suppres-
sion similarly appears on a scale given by the Compton wavelength.
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2.2.6 Scalar-tensor theories in cosmology

In the previous sections we have mainly been dealing with local effects of a scalar
field that appear in the Newtonian limit. Nevertheless scalar-tensor theories play an
important role in cosmology. As the simplest modification of GR, they are the first
proposals that step in to explain cosmological problems. They are for instance a very
good candidate for inflation as they naturally give rise to a phase of acceleration of the
expansion of the universe followed by a period of reheating [83]. They are also useful in
late time cosmology as they can be compatible with the currently observed acceleration
of expansion of the universe [81, 89] as a substitute to a cosmological constant.

Such a scalar field, without a conformal coupling to GR, is called quintessence [20].
In cosmology it behaves as a perfect fluid of equation of state P � wρ linking its pressure
to its energy density with

w �
1
2pBtφq2 � V pφq
1
2pBtφq2 � V pφq . (2.47)

If the field’s dynamics at current time is dominated by its potential, the field is said to be
slow-rolling. In this case it can behave as a cosmic fluid with w   �1{3 in Friedmann’s
equations that provide an accelerated expansion. It can even mimic a cosmological
constant with w � �1. While it is currently dominant, if the potential is chosen wisely,
the quintessence field can be sub-dominant in the early times and thus can be compatible
with cosmological observations. Such potentials are known to explain the coincidence
problem provinding a natural mechanism to explain why it is only dominant now. These
potentials are known as tracker solutions [116], one of the most studied being the Ratra-
Peebles potential [85]

V pφq � Λn�4

φn
, (2.48)

with Λ the energy scale of the potential and n its slope. The slow-roll of the field
requires the potential to be very shallow such that the field must be very light mφ  
H0 � 10�33 eV, where H0 is the value the Hubble constant takes today.

Quintessence has been extended to the framework of scalar-tensor theories in ex-
tended quintessence [82]. In that case, the condition on the potential holds. The field is
required to evolve adiabatically by staying close to the minimum of its potential. The
shallowness of the potential imposes the previous condition for the scalar field to be light.
But in scalar-tensor theories, the scalar field being coupled to matter, this condition im-
poses that the induced fifth force must be long-range. Such a force is incompatible with
current search of a fifth force, WEP tests, constancy of physical constants. Refs. [24, 25]
propose a mechanism to overcome this problem. More generally, to reconcile scalar-
tensor theories with local scale observations, one needs to hide the effects of the fifth
force locally: this is achieved through screening mechanisms.

2.3 Screening mechanisms and chameleon

Screening mechanisms have been developed to hide the effects of the fifth force in-
duced by the scalar field in Earth based and solar system experiments. Many mechanisms
exist and are encrypted in the choice of potential and coupling functions B ln Ω

Bφ .

In the symmetron model [51], the coupling function is chosen to depend on the scalar
field’s value. Then the screening mechanism is obtained by choosing wisely the potential
to lead to values of the field that would turn off the coupling function in high matter
density environment while they would act in low density environment.
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On the other hand in the chameleon model [60, 59], the field acquires a density-
dependent mass that makes the fifth force short-range in high density environments
while long-range in low density environments such as in cosmology.

2.3.1 Chameleon model principle

In this model, the coupling function is taken to be constant by choosing

Ωpiqpφq � e
βi

MPl
φ

(2.49)

with βi a coupling constant associated to the ith matter field. It can be either universal
to each matter component or not. Due to this coupling, the field acquires a local-mass-
density-dependent effective potential

Veffpφq � V pφq � 1

MPl

¸
i

βiρ̃i φ, (2.50)

with the field’s equation

lφ � dVeff

dφ
. (2.51)

This form of the effective potential is again valid for fields that are negligible compared

to the Planck mass. Otherwise one should consider the term e
4 βi

MPl
φ̃

in factor of ρ in the
field’s equation. For the sake of clarity we will now only consider a universal coupling.

The screening mechanism is encoded in the field’s potential. The idea is to choose
the potential in a way that the effective potential exhibits a density-dependent minimum
at which the curvature of the potential is variable. If the obtained curvature in high
density environments is way larger than in low density ones, then the field acquires a
large mass while remaining light for low density. This leads to a modulated range of the
fifth force dependent on the environment as is required for screening.

The simplest model is obtained by taking a monotonically decreasing potential that
tends to zero with null derivative at infinity and diverges in 0 with divergent derivative.
This is achieved with a Ratra-Peebles like inverse power law as depicted in Fig. 2.2.
The sum of this potential and the density-dependent coupling term provides the sought
behaviour for the field’s mass. The field’s mass sensitivity to density is determined by
the slope of the potential.

Figure 2.2: Sketch of the density-dependent chameleon effective potential (plain line).
It is the sum of the bare potential (dashed line) and the coupling to density (doted line).

Motivated by its use in cosmology the most studied potential is again the Ratra-
Peebles potential that provides the desired form for screening. However it has been
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proven [113] that the chameleon screening could not at the same time provide a late
time cosmic acceleration and a suppression of the fifth force locally. Then cosmologically
in the chameleon gravity a cosmological constant is still required, such that the most
studied potential is given by

V pφq � Λ4

�
1� Λn

φn



. (2.52)

In consequence such a model encounters the same naturalness problem than the cosmo-
logical constant. Nonetheless it is important to study it to understand the phenomenol-
ogy of screening mechanism.

2.3.2 Chameleon & matter

To better understand the chameleon screening, it is crucial to understand how the
field is influenced by the distribution of matter. The question is to understand how
the field propagates in the case of two interacting bodies in a background environment
of a given uniform density ρvac lower than those of the bodies ρin. In the absence of
these bodies, the field would be constant to the value φvac that minimises the potential
associated to its density. If now these bodies are embedded in this environment they will
perturb the field, as inside them the potential will be different and with a smaller value
φin that minimises its potential. In the model considered above, these density-dependent
values are given as

φminpρq �
�

MPl
nΛn�4

βρ


 1
n�1

, (2.53)

such that it is indeed greater for low density environments.
Far from these bodies the field should retrieve its unperturbed behaviour, so we

can expect the boundary conditions very far from the objects to be φ ÝÑ φvac and
φ1 ÝÑ 0. Getting closer to the bodies the field would slowly evolve towards the value φin.
Depending on the size of the bodies this value will be reached more or less deeply inside
the bodies or not. The question is the scale on which this evolution occurs. We know
that away from the boundary of the objects, the field would eventually be close enough
to its minimum that the effective potential could be approximated as in Eq. (2.46), so
that the field will exponentially get closer to φvac or φin on a scale given by the Compton
wavelength. We can then consider that the variations of the field are given by this scale.
It is defined for the effective potential in natural units as

λcpρq �
�

d2Veff

dφ2
pφminpρqq


� 1
2

. (2.54)

For the above inverse power-law potential, it is given by

λcpρq �
d

1

npn� 1qΛn�4

�
MPl

nΛn�4

βρ


n�2
n�1

. (2.55)

One sees that this scale is shorter in higher density environment. We denote λc,vac and
λc,in, the Compton wavelength associated to the two previous densities.

From this we can expect the field to reach φin inside the objects if the size of the
considered object is much larger than λc,in. In the space in between the bodies, depend-
ing on the comparison of their separation with λc,vac the field may or may not reach
φvac. In the case it does, the field would retrieve its unperturbed value, then any mutual
information between the two bodies would be suppressed such that no scalar interaction
would appear. Then depending on the density of the background environment, screening
will appear or not. For a high density environment, the bodies would have to be very
close from each other to avoid screening.
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2.3.3 Solution around a spherical ball and thin-shell effect

This modulated scale of variation of the field implying a modulated finite range of
the force is responsible for the screening mechanism. Nevertheless, other aspects of
screening appear in the chameleon theory. To understand them it is interesting to solve
the field around a ball. We follow the same procedure as Refs. [59]. We consider a
high density uniform spherical ball embedded in a low density background. We keep the
same notation for the densities, minimum of the potential associated to the inside and
the outside of the ball. The problem is to solve Eq. (2.51). We already got an idea of
the solution in the previous section. We impose the same boundary conditions$&

%
φ ÝÝÝÑ

rÑ8 φvac

φ1 ÝÝÝÑ
rÑ8 0

. (2.56)

These conditions are expected to be reached on scales given by the field Compton wave-
length associated to the vacuum background environment.

Depending on the Compton wavelength in the ball, many regimes appear in this
problem whether the field reaches the minimum of its effective potential deep inside the
ball or not. If it does, we say the ball is screened. In the thin-shell regime, it is reached
very quickly. In the partially screened regime, the variation of the field is slower. Instead
in the thick-shell regime the variation is slow enough that φin is not reached at the center
of the ball.

Thin-shell and partially screened solution

In the thin-shell regime and the partially screened regime, deep inside the ball, the
field stay very close to φin. At some radius RTS from the center, the field starts to
depart from this value, in such a way that φvac ¡ φ ¡ φin due to the hierarchy between
the minima of the two effective potentials. In that case in the region RTS ¤ r ¤ Rball,
the field is in the part of its potential where it is greater than its minimum, so that the
density-dependent term dominates

d2φ

dr2
� 2

r

dφ

dr
� β

MPl
ρin. (2.57)

This equation is straightforward to solve with φpRTSq � φin and dφ
dr prTSq � 0, one

obtains for RTS ¤ r ¤ Rball

φprq � φin � β

3MPl
ρin

�
r2

2
� R3

TS

r
� 3

2
R2

TS



. (2.58)

Then, at the boundary of the object, the effective potential suddenly changes due
to the dropping of the density. Now the field is in the potential dominant part of the
effective potential. Nonetheless, it has acquired in the ball a ”velocity” dφ

dr large enough
to lead the second left-hand-side term to dominate the potential. This leads the field
to keep increasing with a decaying first derivative. The difference between the field’s
value and φvac decreases as 1{r. Then eventually the field’s derivative decays enough
such as the effective potential dominates again, however at this point the field would
have reached a value close to its minimum. This allows one to approximate the effective
potential as in Eq. (2.46).

Thus in the region outside the ball we can then approximate that the field follows
the equation

d2φ

dr2
� 2

r

dφ

dr
� m2

φ φ, (2.59)
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with m2
φ � d2Veff

dφ2 pφminq.
One can integrate this equation from infinity where the field must be at φvac, and

obtain

φprq � φvac �K
e�mφpr�Rballq

r
, (2.60)

where K is a constant to be determined by reconnecting the two solutions at r � Rball.
The continuity of the field and its derivative at r � Rball provides a system of two
equations whose solutions give K and RTS. In the case the field’s mass outside the ball
mφ is small enough – otherwise more complex term should be added – one obtains

R2
TS � R2

ball

�
1� ∆R

R



, (2.61a)

K � 3βMPl
∆R

R
GMball � βρin

3MPl

�
R3

ball

2
�R3

TS �
3

2
R2

TSRball



, (2.61b)

where Mball is the total mass of the ball and ∆R
R is called the thin-shell parameter and

defined as
∆R

R
� R2

ball �R2
TS

R2
ball

� φvac � φin

3βMPlΦballpRballq , (2.62)

with ΦballpRballq being the Newtonian potential of the ball at its surface. This thin-shell
parameter determines how close RTS is to Rball, and then it distinguishes the thin-shell
regime and partially screened regime. In the thin-shell regime, it is so small that all
the variation of the field in the ball is concentrated on a very thin shell right under its
surface as RTS � Rball, for the remainder part of the ball the field is constant and equal
to φin. In such a case the second term in K is negligible such that the outside field is
well approximated by

φprq � φvac � 3βMPl
∆R

R

GMball

r
e�mφpr�Rballq. (2.63)

This solution is very similar to the Yukawa solution, it however includes the addi-
tional small factor 3∆R

R . This factor weakens the force around this ball, one gets a force
similar to the Yukawa interaction for a test particle around the ball

Fφ
m

� 3β2 ∆R

R

GMball

r2
p1�mφrq e�mφpr�Rballq. (2.64)

For a non-universal coupling the β2 would be the product of the coupling constant of
each body.

The ∆R
R -depletion term in this result is one of the reasons that leads to screening in

the chameleon theory. It suppresses the interaction between bodies. Consider this ball to
be the Earth. Around it, a test body – whose influence on the field is negligible – such as
a satellite in some conditions, would feel a long-ranged fifth force that would be similar
to a Yukawa interaction but depleted by the factor 3∆R

R . It could then be very small and
negligible compared to Newton’s interaction. However a precise enough experiment may
allow for its detection. Another interesting feature is if one instead considers celestial
motions in the solar system as for instance the scalar interaction between two planets.
This solution tells us that a planet perturbs the field in such a way that all the variation
of the field in the object is concentrated in a thin shell leading to the fact that only a
negligible volume of the planet feels the effect of a fifth force. This makes the influence
of the scalar interaction possibly negligible and consistent with our observations. Note
that in this problem of two planets, to obtain the force of their interaction, one needs to
solve the field created by the two bodies simultaneously to catch together the effect of
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the distant body and the influence of the studied body. This problem will be addressed
in the next section.

These aspects of screening add to the one developed in the previous section, that are
based only on the modulated range of the scalar interaction. The latter is nonetheless
still relevant in the case of the Earth, if one were to conduct an experiment at its
surface. In that case one needs to consider the atmosphere, which could also have a
thin-shell if the mass of the field associated to its density is small enough. In that case
the situation would be equivalent to the one discussed in the previous section and the
field would evolve so rapidly that it would be constant in most of the atmosphere leading
test particles to feel a null fifth force, and that any interaction between extended bodies
would be suppressed.

All previous considerations have been developed in the thin-shell regime as screening
is the strongest. If nonetheless, this screening factor ∆R

R is not negligible anymore, at
the center of the ball the field still reaches φin but it varies on a larger part of its volume
as RTS   Rball. In that case, as long as RTS ¡ 0 the above solution is still valid
with additional term due to the second term in Eq. (2.61b). This regime can be called
partially-screened. In that case, the chameleon screening is only partial, and effects
could be detectable. For instance the Yukawa-like interaction would only be partially
diminished, or in the atmosphere the range of the scalar interaction could be larger and
thus detectable.

Thick-shell solution

The thick-shell regime occurs when the Compton wavelength of the field inside the
ball is greater than its size. In such a case, the minimum of the potential is not reached
at the centre of the ball. Instead the field starts at some other value φ0 greater than
φin that depends on the ratio between the Compton wavelength and the size of the ball.
The field can be obtained by taking the limit RTS Ñ 0 in Eqs. (2.58-2.60) and replacing
φin by φ0. In that case, for the motion of a test body around this ball one retrieves
completely the Yukawa interaction as ∆R

R Ñ 1.

The occurrence of these regimes depends on the ratio between the Compton wavelength
associated to the considered body and its size and potential. In the model of chameleon
we are considering, one easily sees from Eq. (2.55) that the thin-shell regime is more
likely to occur for large β and small Λ.

2.3.4 Interaction between two extended bodies and apparent WEP
violation

In the previous section, we obtained the chameleon field around a spherical body.
This profile gives the force a pure test mass – in the sense that it does not affect the
chameleon field – would experience. In the case the mass is extended, the test mass
sources the field and modifies it in its neighbourhood leading to a modification of the
force it feels.

An expression for this force has been obtained in Refs. [17, 53] assuming the test
mass is much smaller than the main source body, so that it only perturbs its associated
profile and assuming their separation is smaller than the Compton wavelength of the
medium in which they are embedded. The interaction between two spherical bodies is
radial and expressed as

Fφ � 2QAQBFN (2.65)
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where A and B label the two bodies and Qi � βi∆R
R

∣∣∣∣
i

is for each body the product of

the coupling constant associated to its composition and its thin-shell parameter defined
above. This expression shows that the thin-shell of both bodies can deplete their inter-
action. In the case their separation exceed the Compton wavelength of the medium, a
Yukawa-like suppression is expected.

From such a formula one can also deduce an important feature of the model for WEP
phenomenology. Of course, as for any scalar-tensor theory, if the coupling to matter is
non universal, with a different constant βi for each types of matter, the WEP is not
fulfilled. But in the chameleon model, in the case of a universal coupling, the chameleon
model can still provide an apparent WEP violation. According to Eq. (2.65), the force
a body experiences in the neighbourhood of a more massive body is a function of its
own thin-shell parameter that depends on its mass density and Newton’s potential.
Two bodies of different compositions would hence feel different accelerations due to
their different thin-shell parameters, leading to an apparent violation of the equivalence
principle. Such a violation holds an uncommon feature. The WEP is indeed still holding
as two pure test particles would fall the exact same way. Now as discussed before
extended bodies affecting the field dynamics could fall at different rates. This violation
is different from a violation of the strong equivalence principle, as extended bodies
do not necessarily have a dominating gravitational bounding energy – as for instance
MICROSCOPE’s test masses. The violation of the equivalence principle induced by
the chameleon is in a way between a WEP violation and a strong equivalence principle
violation.

As discussed in Refs. [60, 59], such a violation would be more likely to appear in
orbit as otherwise in the atmosphere the short Compton wavelength leads the profile
sourced by Earth to be flat.

An important caveat to this apparent WEP violation is experimental. We assume
such WEP violations to be very small as otherwise it would have measurable effects on
the trajectory of planets. Those violations are thus expected to be observed in high
precision experiments. Such experiments nonetheless suffer two features regarding this
model. Just as the MICROSCOPE experiment, they are based on the comparison of the
acceleration of two test masses. But to perform this comparison they must be placed
in the same conditions, such as the same vacuum cavity or the same satellite similarly
to MICROSCOPE. It implies the considered extended test masses to be rather close
leading them to perturb each other such that the previous model may no longer be
relevant. This perturbation could either be one mass screening the effects from Earth
for the other or simply the interaction of the two test bodies to dominate. Besides such
experiments involve means of measurement that cannot be dispensable so as the use
of a vacuum cavity – this point will be discussed in the next section – to isolate the
experiment of any perturbation. Both these systems are made of high density matter
that usually encompass the experiment. The presence of matter is very likely to screen
the apparent WEP violation described above. Nonetheless this does not exclude other
effects that could originate from the inside of the experiment such as asymmetries due
to experimental defects or simply a designed presence of a dense matter source in the
cavity.

As a conclusion the chameleon model can provide apparent WEP violations in the
sense that only extended test masses would experience different gravitational accelera-
tions while proper test particles would follow the same geodesics. This WEP violation
is nonetheless very difficult to observe as the experimental means used to detect it are
very likely to screen it. Testing the chameleon by such an experiment hence requires a
huge effort to model all effects of their design and thus to design them.
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2.3.5 Chameleon constraints and experimental cavities

Except for tests coming from astrophysical or cosmological studies, all tests of the
chameleon model are performed in a vacuum cavity. The profile in such a cavity can be
guessed with our previous considerations.

Consider a spherical vacuum cavity delimited by a spherical wall of a given thickness
of high density. This wall will be subjected to a similar screening than for the dense
ball case. In the case, analogous to the thin-shell regime, where the associated Compton
wavelength of the field is much smaller than its thickness, the field will develop two
thin-shells on both its outer and inner sides. In these thin-shells the field will vary in
such a way that deeply in the wall the field would be nearly constant and equal to the
value φin of the field that minimises its associated potential. The field exterior to the
system will be similar to the one of a spherical ball leading to the outer thin-shell to be
similar. On the other hand, the magnitude of the variation in the inner thin-shell will
depend on the size of the inner vacuum space.

In the cavity, as argued in Refs. [59, 17], the field would tend to evolve towards the
value φvac of the field that minimises the potential in the vacuum. This value being
greater that φin, the field would have a bubble like shape reaching a maximum φ0 at
its center. This latter value depends on the size of the cavity. If the size is larger than
the Compton wavelength associated to the vacuum density, the field would have enough
room to reach its minimum so we would have φ0 � φvac. If the size is instead smaller,
one would have φvac ¡ φ0 ¥ φin. An order of magnitude of φ0 – given by Ref [59] for
spherical cavities and by Ref. [15] for cylindrical cavities – is given by the value of the
field whose mass equals the radius of the cavity, i.e. the value that solves

d

2
� m�1pφ0q � 1a

V 2
effpφ0q

, (2.66)

d being the size of the cavity. This estimate is however only an order of magnitude. Its
extremal behaviours – divergence for very wide cavities and nullity for infinitely small
cavities – are not relevant for the actual asymptotic behaviour of φ0 i.e. φvac for very
wide cavities and φin for infinitely small cavities as in that case we should retrieve the
case of a ball.

In the case the wall of the cavity is small enough compared with its Compton wave-
length to have a thick-shell, the overall form of the profile is still the same. The field does
however not reach its minimum in the wall, but a larger value. This affects φ0 and in
that case any outer body can affect the inner profile. Yet quantifying such an influence
is a difficult problem to address. It requires to solve the field’s Klein-Gordon equation.
Due to non-linearities of this equation, numerical methods are mainly required. But in
this problem as we need to catch at the same time the dynamics of the field inside and
outside the cavity, this requires to solve the field in 3D for large spatial regions. Com-
bined with the fact that in high-density environment the field can vary on very short
scales, the solution to this problem requires computing resources that are consequent.

2.3.6 Current constraints

Many efforts have been done to constraint this model. These have been gathered
in the reviews Refs. [19, 13]. Figure 2.3 shows them in the (β,Λ) plane for n � 1 and
(β, n) plane for Λ � ΛDE � 2.4 meV, the energy scale of dark energy.
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Figure 2.3: Current constraints on the existence of the chameleon field from several
experiences as gathered by Refs. [19, 13]. Excluded regions are coloured. Left panel:
constraints in the plane (β � 1{Mc, Λ) for n � 1. Right panel: constraints in the plane
(β � 1{Mc, n) for Λ � ΛDE � 2.4 meV.

Among these, the most stringent constraints are the following.

Atom interferometry

Atom interferometry [17, 49, 38, 56] is the more competitive way of testing this
model. The principle is to use the wave feature of clouds of atoms, to perform by means
of interferometry a very precise measurement of the acceleration they are submitted to.
The latest developmental of this experiment [56] provided a precision up to a few tenth
of nm.s�2 on such acceleration.

Using clouds of atoms is very interesting for the chameleon problem. These test
masses can indeed be considered as unscreened in a large part of the chameleon param-
eter space. This allows for a direct access to the profile inside the cavity by measuring
the force its gradient creates. This allows those experiments to be the more competitive
for testing the chameleon. They also use a matter ball in the cavity to source different
features of the chameleon profile.

Casimir test

This test is based on the experiments performed to test the Casimir effect [97, 62].
This effect arises in quantum electrodynamics when considering two parallel conducting
plates separated by a high-quality vacuum that are brought close enough. This is due
to the fact that the presence of the conductors constrains in the inter-plate region the
modes of the electromagnetic field that can emerge from quantum fluctuations. The
result is a force that pushes the plates together and that is expected to scale as d�4 for
d being the separation of the plates.

When considering the chameleon field, an additional force is expected to appear. It
is generated by the profile sourced by the pair of plates. When considering a single plate
far from any other matter, perpendicularly to the plate the field profile is very similar
to the radial profile of a ball. The field is symmetrical around the axis of the plate such
that any gradient of the field inside the plate cancel. If now a second plate is brought
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close to the first one this will affect the profile in such a way that a bubble-like profile
analogous to the one of cavity will settle. This leads to a reduction of the gradient on
the side of a plate facing the other, leaving the profile asymmetric in the plates. This
creates a force. This force is again pulling the plates closer.

Reference [14] provides an analytic model for this force. This model shows fea-
tures that are phenomenologically interesting. First the force is constant for very small
separations that are smaller than the Compton wavelength associated to the matter
composing the plates. For larger separations it scales as d�2n{pn�2q, n being the slope
of the chameleon potential as defined before. This is valid as long as the separation is
smaller than the Compton wavelength of the vacuum. Finally for the largest separation
the force is exponentially suppressed as the field tends to reach the minimum of its
potential in between the plates. This peculiar behaviour of the chameleonic interaction
provides a way to distinguish it from the quantum-originated one.

Eöt-Wash test

Torsion balance experiments, such as the one performed by the Eöt-Wash group [58],
use two rotating parallel disks pored with holes or radial grooves. These are designed
to test deviation from the inverse-square-law of Newton’s gravity. These grooves follow
the same pattern, such that if they are perfectly aligned and symmetrical no torque is
expected. If instead these are no longer aligned by for instance rotating one of the disks
on its axis, the other disk should feel a torque that would tend to restore the alignment.
By precisely modelling or cancelling the contribution of standard gravity to this torque,
one could then measure a deviation to the Newtonian model of gravity.

Refs. [106, 105] provide a model for the chameleon contribution to this torque that
allows to constrain it. The main limitation comes from the use of thin conducting foil
acting as a Faraday cage to shield any electrostatic forces between the disks. While such
a foil has no dominant effect on the Newtonian force or a Yukawa coupling of the disks,
it can completely screen their chameleonic interaction.

Astrophysical tests

Many astrophysical observables are used to constraint the chameleon model. The
main test [57] is based on the cosmic distance ladder, more precisely on use of Cepheid
variable stars as distance indicators. The need of distance indicators in astrophysics is
due to the fact that we do not have a direct access to the measurement of the distance
of stars, but only on their apparent magnitude which is a function of their absolute
magnitude and distance. One then needs an estimate of the absolute magnitude of an
object to estimate its distance.

Cepheid stars are one of the possible solutions to answer this problem. Such stars
have the distinctive feature to pulsate radially. This is due to a complex mechanism
involving a variability in the radiative process leading to a fluctuating balance between
these and the gravitational attraction. This process occurs in the outer shells of these
stars, and involves a variation of their temperatures leading to a fluctuation of their
magnitudes. This process occurs on a period that is directly linked to the star’s mean
brightness. The relation between the period of variation and the absolute magnitude is
well understood such that it can be used to estimate their distance using the absolute
magnitude deduced from the measurement of their period.

The interest for our problem, is that modifications of gravity in the outer shell of
Cepheids affect this process. In the case of the chameleon model, these modifications
would occur only if the considered star is unscreened or partially screened. This provides
a way to test this model. Ref. [57] uses a set of screened and unscreened galaxies
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whose distances are measured using Cepheids they contain. These distances are then
compared to another distance indicator which is not sensitive to the chameleon field. If
the chameleon model were to exist this would lead to a discrepancy between these two
distance indicators in the unscreened cases.

Note that many other astrophysical tests exists. The most recent development is
galaxy warping tests [28], that has not yet provided constraints.

Chapter conclusion

Scalar-tensor theories are one of the ways of modifying GR. When coupling to
matter, the scalar field they consider gives rise to a fifth force, that can induce
a violation of the WEP. Two main classes of such models are to be distinguish:
unscreened scalar fields that lead to a WEP violation for non-universal couplings
to matter; and screened scalar fields which can induce a WEP violation even for
universal couplings. The next chapter explores the constraints MICROSCOPE
can provide on the former class, while the latter class’ test is studied in the
remaining parts of the thesis with the case of the chameleon field.
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Chapter 3

Testing unscreened scalar field
with MICROSCOPE

Unscreened scalar fields are the most straightforward models to constrain with the
MICROSCOPE results. The reason is that unlike screened interaction – for which taking
into consideration the screening influence of the satellite is crucial – for unscreened
scalar fields one can directly compare the accelerations of two test masses that are both
created by Earth. In such a case, the influence of the satellite can be treated as a simple
perturbation adding up to the latter interaction as linearity of such unscreened models
leads to superposition principle. Following the pre-existing constraints on those models
in the literature we nonetheless neglect this effect.

For those unscreened models, MICROSCOPE is only able to test those who have a
non-universal coupling as otherwise they would not provide any WEP violation. Con-
straining those models comes down to independently study the interaction it creates
between a given test mass and the Earth. We consider a massless field for which the
force between two point-test-particles derives from the potential in Eq. (2.35) and a
massive Yukawa-like field given by Eq. (2.41). We need to specify how the coupling
functions βi in those potential varies with the chemical composition of the object we
study. Many models exist, some of which have a more phenomenological interest and
other a more theoretical motivation. The next step is to integrate this force over the vol-
ume of the bodies – this can be delicate for Earth being an extended body. For massless
fields treating this issue is similar to the Newtonian case as Gauss’ theorem is still valid,
and we can reduce a sphere to a point by averaging βi over the volume of the sphere if
it is not radially uniform. For massive Yukawa fields, this is no longer the case due to
the finite range of the interaction. Considering the Earth to be spherical leads to the
form factors already mentioned in Eq. (2.43). These account for the fact that the side
of the planet facing the test masses contributes more than the far side. This imbalance
is due to the Yukawa exponential suppression term that modifies the inverse square law
which no longer fulfil Gauss’ theorem. Nevertheless, when considering a more realistic
shape for Earth this becomes a more intricate problem. The shape of Earth is described
[84] by the geoid that consists in the components of the Earth gravity field in terms
of spherical harmonics. But these components are unknown. Experimentally one only
have access to the sum of those components, more specifically to the value it takes at
the latitude, longitude and altitude at which an experiment is being performed. From
such data one can then reconstruct the geoid. This reconstruction however depends on
the gravity theory one considers. In the literature [87] the geoid is reconstructed only
by considering Newton’s gravity. This geoid hence cannot be straightforwardly used as
prior to constraint a Yukawa scalar interaction.

In this chapter, we present these considerations following two articles. In the first
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one, we compute the constraints the MICROSCOPE’s results provide if the Earth is
assumed to be spherical. In the second article, we study the implication induced by the
consideration of Earth’s geoid on the test of massive Yukawa fields.

3.1 Assuming a spherical Earth

3.1.1 Introduction and summary

Several models are considered is this paper to study MICROSCOPE’s constraints
on them. They consist in different chemical dependence of the βi coupling functions in
Eq. (2.35) for massless fields, and in Eq. (2.41) for Yukawa-like massive fields. In this
article this function is denoted αi and two models are explored for it.

The first one, based on Ref. [43], decomposes the product of the coupling functions
of the two interacting bodies into a universal dimensionless coupling constant α, and
two coupling charges q that are functions of the isotopic composition of the bodies. We
consider two models for this charge that are given in terms of the baryon and lepton
number of the test masses. Besides this coupling, we consider the field to be massive
through a Yukawa suppression term. The range of this interaction is denoted λ. The
integration of this interaction over the test masses’ volumes is straightforward as we
precisely know their compositions and we can neglect the variation of the Yukawa term
over their sizes. The Earth integration is more intricate. The above-mentioned form
factors appear. They are denoted Φ and one needs to assume a model for Earth’s
composition. We consider it to be a sphere made of central iron core surrounded by a
mantle made of silica. This model provides a way of constraining the remaining free
parameters of the theory: pα, λq. The constraints are depicted and compared with the
current constraints. They show that the MICROSCOPE mission improves the bound of
the constraints by roughly one order of magnitude for interaction ranges λ ¡ 102 km, as
the experiment is only sensitive to interaction whose range is greater than the altitude
of its orbit.

The second model that we consider is the dilaton model as described in Ref. [23]. This
model assumes that the scalar field couples differently to each components of matter.
This is described by a set of five coupling dimensionless constants (dg, de, dme , dmu ,
dmd) parametrising respectively its coupling to the gluons, photons, electrons and quarks
contained in matter. This model leads to a coupling functions αi that is given by

αi � d�g �
�pdm̃ � dgqQ1

m̃ � deQ
1
e

�
i
, (3.1)

where d�g � dg � 0.093pdm̃ � dgq � 0.00027de, dm̃ is a linear combination of dmu and
dmd , and finally Q1

m̃ and Q1
e are charges that are functions of the isotopic composition of

the interacting body. This coupling function has a universal term d�g and a composition
dependent member. By construction, the universal term is dominating such that when
applying the formalism to the MICROSCOPE case, one can only consider the universal
term for Earth’s coupling function. This leads the difference of acceleration of the two
test masses of MICROSCOPE to be independent of Earth’s composition unlike the
previous model. In this analysis we consider both massless and massive dilaton fields.
The result shows that again the MICROSCOPE results narrow the constraints by an
order of magnitude.

Finally, we consider the case where this dilaton field only couples to electromagnetism
– i.e. to the photons. The MICROSCOPE constraints associated with it are compared
with those obtained by experiments designed to monitor hyperfine transition frequencies
of different atoms, for which a dilaton field is expected to cause variations. While
MICROSCOPE being very competitive for heavy fields, atomic constraints are better
for ultra-light fields.
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The existence of a light or massive scalar field with a coupling tomatter weaker than gravitational strength
is a possible source of violation of the weak equivalence principle. We use the first results on the Eötvös
parameter by theMICROSCOPE experiment to set new constraints on such scalar fields. For amassive scalar
field of mass smaller than 10−12 eV (i.e., range larger than a few 105 m), we improve existing constraints by
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light field:We find that, for masses smaller than 10−12 eV, the constraints on the dilaton coupling parameters
are improved by one order of magnitude compared to previous equivalence principle tests.
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Scalar-tensor theories are a wide class of gravity theories
that contain general relativity [1]. In the Newtonian limit,
they imply the existence of a fifth force, that can be well
described by a Yukawa deviation to Newtonian gravity. Its
range depends mostly on the mass of the scalar field and
can vary from submillimetric to cosmological scales [2,3].
It has so far been constrained on all scales from a few
microns to the largest scales of the Universe (see, e.g.,
Refs. [1,4,5]).
This new force may or may not be composition depen-

dent. A nonuniversal coupling implies both a violation of
the weak equivalence principle (WEP) and a variation of
the fundamental constants [6,7]. The former effect has
already been exploited by the Eöt-Wash group to bring the
current best constraints on Yukawa-type interactions and on
light dilaton interactions [8–10], while the latter allows one
to set constraints on cosmological to local scales [11].
The MICROSCOPE satellite aims to constrain the

WEP in space [12,13] by measuring the Eötvös parameter,
defined as the normalized difference of acceleration
between two bodies i and j in the same gravity field,
η ¼ ðΔa=aÞij ¼ 2ja⃗i − a⃗jj=ja⃗i þ a⃗jj. First results [14] give

η ¼ ð−1� 27Þ × 10−15 ð1Þ

at a 2σ confidence level. MICROSCOPE tests the WEP by
finely monitoring the difference of acceleration of freely
falling test masses of different composition (platinum and

titanium) as they orbit Earth, measured along the principal
axis of the (cylindrical) test masses. The measurement
equation is given, e.g., in Ref. [14] as aPt − aTi ¼ gxηþ
fðp⃗; nÞ, where gx is the projection of the Earth gravity field
onto the axis of the test and fðp⃗; nÞ is a function of the
instrumental and environmental parameters and measure-
ment noise.
The constraint (1) was obtained after analyzing only one

measurement session; therefore, the error bars should be
considered as the largest that can be expected from the
whole MICROSCOPE mission. The statistical error is
expected to decrease with increasing data and with the
refinement of the data analysis by the end of the mission in
2018. In the meantime, this new constraint of the WEP can
already be used to set new bounds on fifth force character-
istics. This Letter focuses on the implications of the first
results ofMICROSCOPE for an interaction between matter
and a light dilaton.
Scalar fifth force.—The existence of a light scalar field ϕ

modifies the Newtonian interaction between two bodies i
and j of massesmi andmj by a Yukawa coupling [4,15,16]:

VijðrÞ ¼ −
Gmimj

r
ð1þ αije−r=λÞ: ð2Þ

The scalar coupling to matter αij can be decomposed as the
product αiαj of the scalar couplings to matter for each test
body measured by the dimensionless factors (e.g., [23])
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αi ≡ ∂ lnmi=MP

∂ϕ=MP
ð3Þ

with M−1
P ¼ ffiffiffiffiffiffiffiffiffi

4πG
p

the Planck mass. The range λ of the
Yukawa interaction is related to the mass of the field by
λ ¼ ℏ=mϕc. The amplitude of the WEP violation is related
to the presence of a scalar field that does not couple
universally to all forms of energy, contrary to general
relativity. The magnitude of the scalar force varies from
element to element and is characterized by αiðϕÞ, which
requires the determination of miðϕÞ and thus the specifi-
cation of the couplings of the scalar field to the standard
model fields. Any dynamics or gradient of this scalar field
thus induces a spatial dependence of the fundamental
constants [6,7]. For two test masses in the external field
of a body E, the Eötvös parameter reduces to

η ¼ ðαi − αjÞαE
1þ 1

2
ðαi þ αjÞαE

≃ ðαi − αjÞαE: ð4Þ

In order to set constraints, we need to specify the couplings
of the field to matter as well as its masses.
Baryonic and leptonic charges.—The simplest analysis

consists in assuming that the composition-dependent cou-
pling αij depends on a scalar dimensionless “Yukawa
charge” q, characteristic of each material as [8,9]

αij ¼ α

�

q
μ

�

i

�

q
μ

�

j
; ð5Þ

where α is a universal dimensionless coupling constant
which quantifies the strength of the interaction with respect
to gravity and μ is the atomic mass in atomic units (e.g.,
μ ¼ 12 for carbon-12, or μ ¼ 47.948 for titanium).
Different definitions of the charge q are possible depending
on the detailed microscopic coupling of the scalar field to
the standard model fields. At the atomic levels, taking into
account the electromagnetic and nuclear binding energies,
the charge is usually reduced to the material’s baryon
and/or lepton numbers (B and L) (see, e.g., Refs. [24,25]).
Hence, for a macroscopic body, we must consider its
isotopic composition. Hereafter, we shall set constraints
on such interactions with either q ¼ B or q ¼ B − L.
Following Ref. [14] and their approximations, it is

straightforward to show [using Eqs. (2) and (4)] that, for
MICROSCOPE, the Eötvös parameter due to a Yukawa
potential is

η ¼ α

��

q
μ

�

Pt
−
�

q
μ

�

Ti

��

q
μ

�

E

�

1þ r
λ

�

e−r=λ; ð6Þ

where r is the mean distance from the satellite to the
center of Earth [26]. The Earth charge takes into account
the Earth differentiation between the core and mantle:

�

q
μ

�

E
¼
�

q
μ

�

core
Φ
�

Rc

λ

�

þ
�

q
μ

�

mantle

�

Φ
�

RE

λ

�

−Φ
�

Rc

λ

��

;

ð7Þ

where RE is the Earth mean radius and Rc the Earth core
radius. The function ΦðxÞ≡ 3ðx cosh x − sinh xÞ=x3 [4]
takes into account the fact that all Earth elements do not
contribute similarly to the Yukawa interaction at the
satellite’s altitude [27] (Φ ¼ 1 for the test masses, since
their sizes are much smaller than the ranges λ that can be
probed in orbit). We assume that the core of Earth is
composed of iron and that the mantle is composed of silica
(SiO2) [28]. The baryonic and lepton charges for the
MICROSCOPE experiment are summarized in Table I.
At the 2σ level, MICROSCOPE’s constraints on the

Eötvös parameter are given by Eq. (1) and can readily be
transformed into constraints on Yukawa parameters (α, λ).
Figures 1 and 2 depict the corresponding exclusion regions,
respectively, for q ¼ B and q ¼ B − L. In both analyses, we
compare our new constraint to the bounds from Eöt-Wash’s
torsion pendulum experiments [8,9,29] and the constraints
from the lunar-laser ranging (LLR) experiment [30,31].
Note that, while we plot only the latest, most competitive
constraints, several other experimental constraints are avail-
able (e.g., [4,32–40]). Moreover, the LLR constraint could

TABLE I. Baryonic, leptonic, and dilaton charges for MICRO-
SCOPE’s test masses.

Material B=μ ðB − LÞ=μ Q0
m̃ Q0

e

Pt=Rh 1.000 26 0.596 68 0.0859 0.0038
Ti=Al=V 1.001 05 0.540 44 0.0826 0.0019

FIG. 1. Constraints on the Yukawa potential parameters
(α, λ) with q ¼ B. The excluded region is shown in yellow
and compared to earlier constraints from Refs. [29] (dotted line),
[8] (dashed line), and [30,31] (dot-dashed line). MICROSCOPE
(solid line) improves on the Eöt-Wash constraints by one order of
magnitude for λ > a few105 m.
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be slightly strengthened in the near future [41]. This shows
that MICROSCOPE’s first results allow us to gain one
order of magnitude compared to previous analyses for
λ > a few105 m. As MICROSCOPE orbits Earth at about
7000 km from its center, one would naively expect that it
can probe only interactions with λ > a few106 m; smaller
ranges could not be probed, as they imply too much of a
damping at MICROSCOPE’s altitude. However, if a fifth
force with λ ≈ a few105 m were strong enough to affect
MICROSCOPE, the contribution from the nearest point of
Earth (as seen from MICROSCOPE) would be higher than
that of the farthest point of Earth, implying an asymmetric
behavior that can be probed byMICROSCOPE [as captured
by the function ΦðxÞ above]. Hence, MICROSCOPE is
sensitive to scalar interactions with ranges as low as a few
hundreds of kilometers.
Dilaton models.—We now consider the characteristics

of a generic dilaton with couplings described in
Refs. [17,18,28]. The mass of an atom (atomic number
Z and mass number A) can be decomposed as mðA; ZÞ ¼
Zmp þ ðA − ZÞmn þ Zme þ E1 þ E3, where mn;p is the
mass of the neutron or proton and E1 and E3 are the
electromagnetic and strong interaction binding energies.
Following Ref. [28], we consider that the coupling coef-
ficients of the dilaton to the electromagnetic and gluonic
fields are de and dg, while dme

, dmu
, and dmd

are its coupling
to the electron and u and d quark mass terms, respectively.
The latter two can be replaced by the couplings dδm and dm̃
to the symmetric and antisymmetric linear combination of
u and d. Assuming a linear coupling, one deduces that
the variation of the fine structure constants and masses
of the quarks are given by ΔαEM=αEM ¼ deϕ=Mp and
Δmu;d=mu;d ¼ du;dϕ=Mp.
First, we consider a massless dilaton (mϕ ¼ 0), whose

range λϕ is infinite, as was done by the Eöt-Wash group [9].

The dilaton coupling to matter, and hence the fifth force, is
parametrized by the five numbers (dg, de, dm̃, dδm, and dme

)
so that the coupling to matter (3) takes the form

αi ≈ d�g þ ½ðdm̃ − dgÞQ0̃
m þ deQ0

e�i; ð8Þ

where d�g ¼ dg þ 0.093ðdm̃ − dgÞ þ 0.00027de. The dila-
ton charges depend on the chemical composition of the test
masses and on the local value of the dilaton. Following
Ref. [28], they are well approximated by

Q0̃
m ¼ 0.093 −

0.036

A1=3 − 1.4 × 10−4
ZðZ − 1Þ
A4=3 ð9Þ

and

Q0
e ¼ −1.4 × 10−4 þ 7.7 × 10−4

ZðZ − 1Þ
A4=3 : ð10Þ

In the limit where λ is much larger than any other spatial
scales, the Eötvös parameter reduces to Eq. (4) so that (at
first order in dilaton chargesQ0

j—given that jQ0
jj ≪ 1) [28]

ηmassless¼Dm̃ð½Q0̃
m�Pt− ½Q0̃

m�TiÞþDeð½Q0
e�Pt− ½Q0

e�TiÞ; ð11Þ

where the coefficients Dm̃ ¼ d�gðdm̃ − dgÞ and De ¼ d�gde
are to be estimated. The values for Q0̃

m and Q0
e in the

MICROSCOPE case are given in Table I.
Figure 3 summarizes our new constraints and compare

them to the earlier ones from the Eöt-Wash [9] and the
Moscow groups [42]. The different slopes of the allowed

FIG. 2. The same as Fig. 1, but with q ¼ B − L, compared to
the earlier constraints from Refs. [29] (dotted line), [9] (dashed
line), and [30,31] (dot-dashed line).

FIG. 3. Constraints on the couplings of a massless dilaton (Dm̃,
De). The region allowed by the MICROSCOPE measurement
(black band) is compared to earlier constraints by torsion
pendulum experiments from Refs. [42] (green) and [9] (yellow
and cyan). The difference of slopes arises from the difference of
material used in these three experiments. MICROSCOPE allows
us to shrink the allowed region by one order of magnitude.
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regions are due to the different pairs of materials used by
each experiment.
Massive dilaton.—The mass of the dilaton modifies the

range of its interaction so that Eq. (11) is modified as

η ¼ ηmassless ×Φ
�

RE

λϕ

��

1þ r
λϕ

�

e−r=λϕ : ð12Þ

Note that this equation is simpler than Eq. (7), because
Eq. (11) does not depend on the Earth dilaton charge, and it
is therefore independent of the exact Earth model used.
From Figs. 1 and 2, we expect that MICROSCOPE shall

mainly be sensitive to masses in the range 10−14–10−12 eV.
Lower masses will result in constraints similar to those
for a massless dilaton (see Fig. 3), while larger masses
cannot be constrained, as they correspond to ranges
that MICROSCOPE cannot probe. This is indeed what
we conclude from our analysis summarized in Fig. 4.
Constraints in the (Dm̃, De) plane are rather loose for high-
enough masses, mϕ > 10−12 eV, and converge to those of
a long-range dilaton for mϕ < 10−14 eV.
Finally, we assume that the dilaton field couples only

to the electromagnetic field; i.e., the only nonvanishing
coupling is de. The coupling to proton and neutron is then
induced from their binding energy [43]. Several groups
set constraints on such a dilaton from the fine structure
constant oscillations in atomic frequency comparisons
[44–46]. These results are based on the time evolution
of the scalar field that oscillates within its self-potential. It
has been argued that these oscillations may lead to
oscillations of the Newtonian potentials if the scalar field
behaves like cold dark matter [19] (thereby affecting
MICROSCOPE in an unexpected way) or even break the

Yukawa approximation [20]. Here, we do not tie our scalar
field to describe dark matter, and we restrict our analysis to
linear couplings, thence avoiding those possible pitfalls
[47]. The MICROSCOPE constraints are obtained by
considering the Dm̃ ¼ 0 subspace of the parameter space
(Dm̃, De, mϕ) of Fig. 4 and recognizing that De ¼
d�gde ¼ 0.00027d2e. Figure 5 shows our constraints, com-
pared with those from the Eöt-Wash test of the WEP and
with atomic spectroscopy [44,45]. MICROSCOPE allows
us to exclude a new region above jdej ¼ 10−4, for a field of
mass 10−18 < mϕ=eV < 10−11. Atomic spectroscopy stays
more competitive for lighter fields.
Conclusion.—This Letter gave the first constraints

on a composition-dependent scalar fifth force from
MICROSCOPE’s first measurement of the WEP [14].
We first considered the case of a massive scalar field
coupled to either B or B − L to conclude that
MICROSCOPE is particularly competitive for a Yukawa
potential of a range larger than 105 m (corresponding to a
field of mass smaller than 10−12 eV). In that case, we
improved existing constraints on the strength of the field by
one order of magnitude. Below that range, torsion pendu-
lum experiments remain unbeaten. Then, we considered a
model describing the coupling of a generic dilaton to the
standard matter field with five parameters, for both mass-
less and massive fields. Formϕ < 10−14 eV, our constraints
are similar to those for a massless field and better by one
order of magnitude than the previously published ones.
From a theoretical perspective, a scalar long-range

interaction is severely constrained by its effects on plan-
etary motion. Since general relativity passes all tests
on Solar System scales, many mechanisms have been
designed to hide this scalar field in dense regions

FIG. 4. Constraints on the couplings of a massive dilaton for
various values of its mass. Each color shows the allowed (Dm̃,
De) for a given mass of the scalar field. The inset is an
enlargement of smaller (Dm̃, De). Constraints saturate for light
fields mϕ < 10−14 eV. MICROSCOPE is not sensitive to masses
larger than a few 10−12 eV.

FIG. 5. Constraints on de, for a dilaton coupled only to the
electromagnetic sector, compared with constraints from atomic
spectroscopy (dot-dashed line [44,45]) and the Eöt-Wash WEP
test (dashed line [8]).
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(e.g., chameleons [48,49], symmetron [50], K-mouflage
[51,52], or Vainshtein [53]). The generic dilaton model
considered in this Letter corresponds to another type of
screening (the least coupling principle [17]) and can
incorporate the behavior of many theories, such as the
string theory. The local prediction of the violation of the
WEP can be compared to the variation of the fundamental
constants on local and astrophysical scales (e.g., [54–57]).
Better constraints can be obtained from modeling the
profile (and time variation) of the scalar field along
MICROSCOPE’s orbit, as well as its propagation inside
the satellite up to the test masses; this is nontrivial, requires
some care, and will be done in a further work. Constraints
on the violation of the WEP will also have strong
consequences for bigravity models [58].
From an experimental perspective, these new constraints

were obtained fromonly twoMICROSCOPE’smeasurement
sessions of the Eötvös parameter [14]. As the mission is
scheduled to continue until 2018, new data are currently
coming in, thereby offering the possibility of decreasing the
statistical errors. We are also refining our data analysis
procedures to optimize the measurement of the WEP. We
therefore expect to improve on MICROSCOPE’s constraint
on the Eötvös parameter by the end of the mission: 10 times
as many data will be available than were used in Ref. [14];
furthermore, although we expect the data to become sys-
tematic dominated, the control on systematics will be
improved compared to Ref. [14], since calibration sessions
have been performed, whose results will be used in the next
data analysis. Therefore, we could improve the constraints
reported in that Letter by up to another order of magnitude
(unless aWEPviolation becomes apparent). But this forecast
is valid only for λ > a few105 m (mϕ < 10−12 eV). Probing
lower-range (more massive) scalar fields can be done only
using small scale experiments. Torsion pendulum and atomic
interferometry experiments represent our best hopes to look
for such extra fields. New, improved torsion pendulum will
then be required to probe laboratory and smaller scale
gravity, either through the measurement of the WEP or of
the gravitational inverse square law. A torsion pendulum
experiment in space seems the way forward to beat the
current on-ground limits [59].
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3.2 Yukawa and the geoid

3.2.1 Introduction and summary

This article furthers to the previous analysis to constraint a Yukawa-like deviation to
Newton’s gravity using Earth as a source for the interaction. The previous article started
broaching the crucial subject of knowing the geometric structure of it. The problem is
tackled by considering a simplistic model of Earth. When considering a more realistic
model, the analysis encounters degeneracy. As mentioned in the introduction of this
chapter, such a model is only known experimentally from geodesy. More specifically,
what is modelled is the asperities of the gravitational field that reflects both Earth’s
density inhomogeneities and departure from a spherical shape. The reference geoid
models are obtained from space missions such as GOCE [91, 80] and GRACE [87], that
measure the value of the gravity field in orbit spanning all latitudes and longitudes at
a specific altitude. In the standard analysis [84] one assumes the gravity field to be
Newtonian and decomposes it over a basis of spherical harmonics. Its components are
estimated by the set of measurements obtained in these missions. Nonetheless if an
additional gravitational interaction was to exist it would necessary need to consider it in
this analysis, otherwise discrepancy could appear between models obtained from different
experiments. In the case of a Yukawa interaction for instance, due to the finite range
of the interaction, geodesy experiments performed at different altitudes would obtain
different geodetic components. As a consequence, one cannot just use the pre-obtained
geodetic model to constraint modified gravity but instead reinterpret data including the
deviation to Newton gravity in the analysis. This article explores this entanglement
between geodesy and test of modified gravity.

For simplicity the problem is addressed by only considering a universal Yukawa
coupling that is parametrised by the dimensionless constant α. In analogy with the
Newtonian analysis, the modified gravity potential from Eq. (2.41) is decomposed over
a spherical harmonics basis. In this equation the product of βi is replaced by α. The
obtained components can be expressed as the sum of a Newtonian contribution and
Yukawa contribution. From this, the gravity field components are derived and a more
simple description is obtained using spin-weighted spherical harmonics. This mathe-
matical decomposition is the basis of the article. It is a generalisation of Eq. (2.43), to
an arbitrary geometry of the considered body. This model is used to build statistical
estimator to evaluate the impact of the existence of a Yukawa coupling on the estimation
of a Newtonian geoid. We find that for breaking the degeneracy between the measure-
ment of the geoid and the test a Yukawa interaction, we need to combine the results
of different gravitational surveys performed at different altitudes. An estimator of the
Yukawa parameters for such a combination of two experiments is given. A model of a
homogeneous ellipsoidal Earth is used to provide numerical values for these estimators.
The Yukawa interaction is found to be sub-dominant in geodesy experiment considering
their current precisions. For the matter of testing the Yukawa force as we did in the pre-
vious section, considering the Earth to be a sphere is found to be a good approximation
for experiments performed at high altitudes.

Parallel to that, this geodetic decomposition is used to express the impact of a
Yukawa coupling on the orbital dynamics of a satellite – such as the one used to perform
geodesy experiments – and is studied by deriving Lagrange-Gauss equations. In these
equations the Yukawa interaction is treated as a perturbing force that would induce a
secular change in the parameters of the Keplerian orbit.

3.2.2 Article
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Abstract
This paper revisits deviations from Newtonian gravity described by a Yukawa 
interaction that can arise from the existence of a finite range fifth force. 
We show that the standard multipolar expansion of the Earth gravitational 
potential can be generalised. In particular, the multipolar coefficients depend 
on the distance to the centre of the Earth and are therefore not universal to the 
Earth system anymore. This offers new ways of constraining such Yukawa 
interactions and demonstrates explicitly the limits of the Newton-based 
interpretation of geodesy experiments. In turn, limitations from geodesy data 
restrict the possibility of testing gravity in space. The gravitational acceleration 
is described in terms of spin-weighted spherical harmonics allowing us to 
obtain the perturbing force entering the Lagrange–Gauss secular equations. 
This is then used to discuss the correlation between geodesy and modified 
gravity experiments and the possibility to break their degeneracy. Finally we 
show that, given the existing constraints, a Yukawa fifth force is expected to be 
sub-dominant in satellite dynamics and space geodesy experiments, as long as 
they are performed at altitudes greater than a few hundred kilometres. Gravity 
surveys will have to gain at least two orders of magnitude in instrumental 
precision before satellite geodesy could be used to improve the current 
constraints on modified gravity.

Keywords: modified gravity, experimental gravitation, orbital dynamics
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1. Introduction

The efforts to test Newton and Einstein gravity have been continuous in the last hundred years 
and lie at the crossroads between theoretical and experimental physics, laboratory and space 
physics. Celestial mechanics has historically been crucial in that respect, motivated mostly by 
the imperfect understanding of the shape of the Earth, the stability of the Solar system and the 
long lasting Newtonian problem of the anomalous drift of the perihelion of Mercury. A main 
difficulty arises from the fact that gravity is a long range interaction that cannot be screened. 
Hence, the knowledge of our environment (Earth gravitational field and its evolution, Solar 
system structure, cosmological model) is a limitation to these tests. In that respect, the devel-
opments of dedicated satellite missions have brought new insights on both possible deviations 
from general relativity (GR) and the Earth gravitational field.

Today, GR is well-tested on local scales [1, 2] whilst the need to improve the existing 
constraints is partly motivated by cosmology. The accelerated cosmic expansion and other 
evidences, such as the dynamics of spiral galaxies, have led to the conclusion that there should 
exist a dark sector, composed of dark matter and dark energy, representing respectively 26% 
and 70% of the energy budget of the universe. This dark sector can also be interpreted as a sign 
that GR may not be a good description of gravity on cosmological scales and on low accel-
eration regimes. Many extensions of GR have been proposed (see e.g. [3–5] for reviews) and 
many tests of GR and of Einstein’s equivalence principle on cosmological scales have been 
designed to test them [6–10]. No deviations from GR have been detected so far (see e.g. [2, 3, 
11–13] for general reviews of laboratory and cosmological scales tests).

Concerning the recent experimental tests of GR, let us mention the Lense–Thirring effect 
[14–16], the pericentre anomaly [17–21], the gravitational redshift [22], the universality of 
free fall [23–27] and the constancy of fundamental constants [28–30], the last two involving 
Einstein’s equivalence principle. To these standard tests, let us add the new window opened 
by the detection of gravitational waves [31]. In particular, the detection of an electromagnetic 
counterpart to the gravitational-wave signal emitted by a binary neutron star merger [32] put 
severe constraints on a whole class of alternatives to GR [33–39].

Among all the extensions of GR, scalar–tensor theories [40], in which a scalar long range 
interaction that may be composition dependent, is added to the standard spin-2 interaction 
mediated by the gravitons, are still among the open alternatives. In particular, if this scalar is 
light, they may enjoy sizeable cosmological imprints. As a long range fifth force would then 
appear on Solar system scales, they need to include a screening or a decoupling mechanism 
[41–48]. While the parameter space of these models has been severely reduced (see e.g. [49] 
for up-to-date tests), they remain ideal candidates for extensions of GR. Even if the scalar 
field is heavy on Solar system scales, it is still responsible for a fifth force described, in the 
Newtonian regime, by a Yukawa potential (see e.g. the supplemental material of [50] and 
references therein). Many constraints on the mass and the amplitude of this extra-potential 
have been obtained so far (e.g. [3, 51] and references therein, and [50, 52–55] for more recent 
works).

The goal of this article is to revisit the constraints on such a Yukawa interaction drawn from 
the analysis of geodetic data. As already emphasised, it is a tautology to say that local GR tests 
are limited by our knowledge of the Earth gravitational field. Nevertheless, there have been 
extensive studies under the assumption of Newton’s gravity whilst the tests of Yukawa gravity 
have all been performed assuming at best a spherical and homogeneous Earth, but most often, 
assuming that the Yukawa interaction is sourced by a point-like Earth. We develop a method to 
describe the effects of such a modified gravity on the orbits of dedicated satellites in a realistic 
description of the Earth. Clearly, in that case our ignorance of the properties of the fifth force 
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does limit our reconstruction of the property of the mass distribution of the Earth, while the 
latter limits the constraints on this fifth force. We propose to analyze these interactions and 
provide tools to test GR in our terrestrial neighbourhood.

The shape and mass distribution of the Earth, and their variability, have so far been recon-
structed from local measurements of the gravitational field (on-ground or airborne) and global 
satellite models of the full gravitational field. Recent satellite geodesy missions have allowed 
geophysicists to map the Earth gravity model with an exquisite precision: e.g. GOCE [56, 57] 
or GRACE [58–60] and combinations of (satellite) missions [61, 62]. GOCE and GRACE 
provide measurements of the spherical harmonics coefficients up to degree and order 250, 
whereas the EGM2008 model goes up to degree and order 2159 [63].

The uncertainties on the shape of the Earth add up to other systematic errors (such as Solar 
radiation pressure, atmospheric drag, Earth tides, Earth magnetic field, thermal instabilities—
for discussions of systematics in both laboratory and space, see e.g. [20, 26, 64]). Then, they 
must be either shielded or corrected for during the data analysis process (see e.g. [26, 64–66]). 
This article focuses on satellite tests of gravity so that the main sources of gravitational error 
come from the zonal terms, and especially the first one, J2 (which describes the Earth flat-
tening) [15, 20]. Before the advent of the precise satellite measurements from GRACE and 
GOCE, the large uncertainty on J2 was considered a show-stopper for precise tests of gravity. 
Techniques were then elaborated to cancel its effect. For instance, by empirically combining 
the perigee shift and precession of the line of nodes of LAGEOS and LAGEOS II, it was 
shown that the contribution of J2 (and the associated error) to the perigee shift and to the 
Lense–Thirring effect could be cancelled [67]. The GRACE and GOCE missions changed the 
situation thanks to their remarkably precise measurements, giving the parameter J2 to a 10−8 
relative precision level when combined with LAGEOS data. In the case of the perigee shift 
measurement of the LAGEOS II satellite, Lucchesi and Peron [20] evaluate that using the 
errors on J2 provided by the EIGEN-GRACE02S gravitational field model [60] allows for a 
percent level test of GR’s perigee shift with no further empirical correction.

However, correcting for the shape of the Earth when testing gravity in space relies on two 
pillars: (i) a model of the Earth gravitational field and (ii) accurate and precise values of the 
coefficients of the model. To the best of our knowledge, the model is always described as a 
spherical harmonics expansion derived from Laplace equation  to solve for the Newtonian 
gravitational field sourced by the shape of the Earth. The values of the spherical harmonics 
coefficients are provided by Earth gravity surveys, such as GRACE, GOCE, LAGEOS, or 
local on-ground surveys.

The evaluation of the accuracy of coefficients estimator and of robust uncertainties is a 
highly non-trivial part of the data analysis needed to make a model of the gravitational field. 
Errors on spherical harmonic coefficients are commonly separated between formal and cali-
brated errors [20, 60]. Formal errors come from the data regression method and mainly include 
statistical errors as well as possible numerical uncertainties linked to the data analysis method 
itself. For instance, because of its Sun-synchronous orbit, GOCE never flew over the poles; 
the resulting polar gaps (whereby no data can constrain the spherical harmonics model in the 
polar regions) causes the least-square regression on spherical harmonics coefficients to be ill-
conditioned, thus requiring a regularization technique. With no regularization, estimating the 
(near)-zonal terms is particularly difficult. These coefficients come with large error bars; after 
regularization, the error bars can be seen to shrink [57, 68] (for J2, the error shrinks from a few 
10−9 to a few 10−12). However, there does not seem to be any investigation about the possible 
bias introduced by the regularization technique.

Under the Newtonian gravity hypothesis (i.e. the static part of spherical harmonics coef-
ficients should be consistent between different data subsets along the experiment’s time span, 
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or between different experiments), formal errors are a posteriori calibrated to account for sys-
tematic errors: for a single satellite model, subset solutions are generated from data covering 
different time periods, and the scattering of subset solutions is used as the calibrated error (see 
e.g. [60] for GRACE). The same method is applied to calibrate multi-satellite models, where 
an upper bounds for the systematic errors is derived from the difference between estimates 
of several satellite data [20]. In this case, it is implicitly assumed that any tension between 
different data sets comes from imperfectly controlled systematic errors. Although this is true 
if the underlying hypothesis (the Earth gravity is described by Newton’s theory) is true, any 
tension may also provide a smoking gun for physics beyond Newton’s inverse square law and 
GR. Indeed, a modified gravity model may very well predict non-universal spherical harmon-
ics coefficients, e.g. coefficients whose value depends on the distance to the centre of the 
Earth (in this paper, we show that it is indeed the case). Along this line, it should be noted that 
despite very precise measurements of the static J2 zonal term, the GRACE-only, GOCE-only 
and EIGEN-6C (combining LAGEOS, GOCE, GRACE and ground measurements) models 
provide inconsistent values (as was already noted by Wagner and McAdoo [69]), which differ 
by at least 700 σ; see table 1.

Whether this tension is due to largely underestimated errors, to biases introduced by regu-
larization techniques, to uncontrolled systematics, to inconsistent data sets, or to new physics 
beyond GR is not clear. However, it should invite us to extreme caution when using gravity 
surveys and geodesy results to model and correct for the Earth gravitational field when testing 
GR or looking for deviations to Newton’s inverse square law.

This article investigates the effects of modified gravity on the Earth gravitational field and 
our ability to reconstruct the shape of the Earth and, in turn, the effect of an imperfect knowl-
edge of the Earth gravitational field on searches for modified gravity. As explained, we base 
our discussion on phenomenological deviations from Newton gravity described by a Yukawa 
potential.

In particular, we shall show that although we can still describe the Earth gravitational 
field with a spherical harmonics expansion, a Yukawa interaction modifies the meaning of 
the expansion coefficients. They mix properties of the Earth and of gravity and get an explicit 
dependence on the distance to the centre of the Earth. As a consequence, they are not simply 
related to the Earth geometry any more, and should not be used to map the Earth mass distri-
bution and geoid. For instance, the J2(r) zonal term does not only describe the Earth flattening, 
but is impacted by the Yukawa interaction. Furthermore, we should not expect coefficients 
measured by different satellites at different altitude (or even by a single satellite at different 
times, provided that satellite’s orbit is not circular) to be consistent; combining different data 
sets should also be performed with great care.

Therefore, using geodesy results derived under the assumption that no deviation to GR (or 
to Newton’s law) exists is prone to errors when constraining modified gravity, just because 
the Earth gravity model used to correct for the Newtonian contribution may be incorrect. 
This may be the case if using (possibly inconsistent) multi-satellite models, or a model set 
with a satellite at an altitude other than the altitude of the gravity test. The underlying ques-
tion is that of the model to use. When looking for modified gravity in terms of a Yukawa 

Table 1. Constraints on the J2 parameter by several experiments.

GRACE J2 = 1.082 635 430 912 2197 × 10−3 ± 3.526 362 561 283 4223 × 10−12 [62]

GOCE J2 = 1.082 626 532 640 4513 × 10−3 ± 1.212 794 611 655 5258 × 10−11 [57]

EIGEN-6C J2 = 1.082 626 337 689 3369 × 10−3 ± 2.477 786 925 867 517 × 10−13 [70]
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interaction, two parameters are added to the Newtonian gravity sector (the strength and range 
of the interaction), de facto changing the model. Using geodesy results derived assuming a 
simple Newtonian model must then be seen as inconsistent with the task at hand, and will 
introduce biases and uncertainties that must be quantified and accounted for in the modified 
gravity constraints.

The way out of this difficulty is, as usual, to set all analyses within the same theoretical 
framework to ensure consistency. The Earth gravitational field should be measured under the 
assumption that a Yukawa interaction may exist. The Earth gravitational field models would 
then explicitly contain information about the Yukawa interaction, either explicit or marginal-
ised upon. In the former case, they would provide constraints on modified gravity; in the latter 
case, their estimated coefficients would have larger uncertainty, but would be unbiased and 
could safely be used by modified gravity experiments.

This paper is organised as follows. We first derive the spherical harmonic expansion of 
the Earth gravitational field in presence of a Yukawa interaction and give expressions for 
the gravitational acceleration and for the Gauss–Lagrange equations of motion in section 2; 
we give a worked-out example in section 3. Section 4 provides a general discussion of the 
entanglement between geodesy and modified gravity measurements; in particular, we discuss 
the statistics of geodesy and non-Newtonian gravity estimators built from the combination of 
different space geodesy missions; this section may be skiped at first reading. The impatient 
reader is directed to section 5, where we provide order-of-magnitude estimates derived with a 
simple Earth model. In particular, we show in section 5.1 that given their instrumental preci-
sion, current space geodesy experiments are immune to a Yukawa interaction (given the cur-
rent experimental constraints) as long as they fly high enough; we then show in section 5.2 that 
the effect of a Yukawa interaction on satellites orbits is at most of the same level as that from 
relativistic effects and planetary effects; finally, section 5.3 shows that our limited knowledge 
of the Earth’s interior and geometry is not yet a limiting factor when constraining the presence 
of a Yukawa interaction with the estimators defined in section 4.

2. Earth gravity in presence of a Yukawa potential

2.1. Gravitational potential

Among the various ways to modify Newton’s gravity, the introduction of a Yukawa potential 
describes the effect of an extra-massive degree of freedom that can appear, e.g. in scalar–ten-
sor gravity [2]. Assuming that the coupling of this new degree of freedom to the standard 
model fields is universal, the associated potential created by a point-mass source of mass M 
at a distance r is

Upm(r) = −GM
r

[
1 + α exp

(
− r
λ

)]
, (1)

where α is the strength of the Yukawa deviation with respect to gravity and λ its range. G is a 
constant that matches Newton’s gravitational constant, as it would be measured in a Cavendish 
experiment in the limit r � λ.

It follows that the gravitational potential generated by an extended source is obtained by 
integrating equation (1) over the source

U(r) =
∫

V
Upm(r − s)d3V , (2)
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where s is the position-vector of the infinitesimal element of volume d3V  and r = (r, θ, ξ) are 
the spherical coordinates of the point P where the potential is evaluated (see figure 1), where 
θ is the co-latitude, and ξ the longitude.

As usual, we relate the multipolar decomposition of this potential to that of the source. To 
that purpose, we use the standard expansion

1
q
=

1
r

∞∑

�=0

( s
r

)�

P�(cosϕ), (3)

where q ≡ |r − s| and P� are Legendre polynomials. r and s are the distances between the cen-
tre of mass O of the source and, respectively, the point P where we compute the gravitational 
potential or the infinitesimal volume element P′ of the source so that s/r  <  1. In conventional 
spherical coordinates centered on O, (ur, uθ, uξ), OP = rur, OP′ = sur′ or equivalently the 
coordinates of P (resp, P′) are (r, θ, ξ) (resp. (s, θ′, ξ′)); see figure 1 for the definitions. The 
Yukawa contributions can be expanded in a similar way thanks to (see [71])

e−q/λ

q
=

1√
rs

∞∑

�=0

(2�+ 1)K�+ 1
2

( r
λ

)
I�+ 1

2

( s
λ

)
P�(cosϕ), (4)

where I�+ 1
2
 and Kn+ 1

2
 are modified spherical Bessel functions of the second and third kinds.

Inserting the decompositions (3) and (4) in equation (2) and expanding the Legendre poly-
nomials in spherical harmonics Y�m

6 as

P�(cosϕ) =
1

2�+ 1

�∑

m=−�

Y∗
�m(θ

′, ξ′)Y�m(θ, ξ), (5)

Figure 1. Geometry of the problem. We compute the gravitational potential at point P 
due to a source (grey area) whose centre-of-mass is O. In a spherical coordinates system 
centered on O, θ (resp. θ′) is the co-latitude of P (resp. of the infinitesimal volume that 
sources the field at P′) and ξ (resp. ξ′) its longitude.We define the orthonormal basis 
(ur, uθ, uξ) in such a way that OP = rur and OP′ = sur′ so that cosϕ = ur.ur′.

6 Another common normalization for spherical harmonics is P�(cosϕ) =
4π

2�+1

∑�
m=−� Y∗

�m(θ
′, ξ′)Y�m(θ, ξ): we use 

equation (5) to ensure that in the case of a homogeneous sphere, we recover yN
00 = 1.
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the gravitational potential can be expressed as a multipolar decomposition as

U(P) = U(r, θ, ξ) = −GM⊕
r

∞∑

�=0

�∑

m=−�

(
R⊕
r

)�

y�m(r)Y�m(θ, ξ), (6)

where M⊕ and R⊕ are the mass and equatorial radius of the Earth. We shall use equivalently 
the notations Y�m(θ, ξ) or Y�m(ur) in the following.

The introduction of a Yukawa interaction does not modify the general multipolar expan-
sion of the Earth gravitational potential. Indeed, the multipolar coefficients y�m now enjoy two 
contributions and split as

y�m(r) = yN
�m + yY

�m(r) (7)

where the superscripts N and Y stand for the Newton and Yukawa contributions. After trivial 
algebra, one gets that

yN
�m =

1
(2�+ 1)M⊕

∫

V
d3Vρ(sur′)

(
s

R⊕

)�

Y∗
�m(ur′) (8)

and

yY
�m(r) =

α

M⊕

( r
λ

)�+ 1
2

K�+ 1
2

( r
λ

)∫

V
d3Vρ(sur′)

(
s

R⊕

)� (
λ

s

)�+ 1
2

I�+ 1
2

( s
λ

)
Y∗
�m(ur′) (9)

where ρ(sur′) is the Earth’s density in P′ and d3V = sds d2ur′ is the volume element around 
P′. The Earth density can then be expanded in spherical harmonics as

ρ(sur′) =
∑

�m

ρ�m(s)Y�m(ur′), (10)

so that we finally get, after integrating over d2ur′,

y�m(r) =
1

(2�+ 1)M⊕

∫
s2
(

s
R⊕

)�

ρ�m(s)
[
1 + αAl

( s
λ

)
Bl

( r
λ

)]
ds, (11)

with the two functions

A�(x) = x−(�+1/2)I�+1/2(x) (12)

B�(x) = (2�+ 1)x�+1/2K�+1/2(x). (13)

As expected, the kernel is m-independent so that the m-dependence arises only from the one 
of the density. Note that in equation (11) the integral is 1-dimensional. Indeed s is defined by 
the Earth surface R⊕(ur′) so is directionally dependent. Since we have performed a multipolar 
expansion, we need to take this boundary conditions into account in the function ρ so that

ρ(sur′) = ρ⊕(sur′) {1 −Θ[s − R⊕(ur′)]} (14)

where Θ is the Heaviside function The shape of the Earth is thus contained in the multipoles 
ρ�m.

2.2. Gravitational acceleration

The gravitational acceleration is defined, as usual, as

g(r, θ, ξ) = −∇U(r, θ, ξ). (15)
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We thus need to evaluate the gradient of equation (6) in spherical coordinates. It decomposes 
on the spherical basis as

g = g‖ + g⊥, with g‖ ≡ gr ur, g⊥ ≡ gθ uθ + gξ uξ. (16)

2.2.1. Radial component. The derivation with respect to r does not act on the spherical har-
monics so that

gr(rur) ≡
∑

�m

g�m
r (r) Y�m(ur) (17)

with

g�m
r (r) = −GM⊕

r2

(
R
r

)� [
(�+ 1)

(
yN
�m + yY

�m

)
− r

λ
ẏY
�m

]
 (18)

where a dot refers to a derivative with respect to x = r/λ. Since

(�+ 1)yY
�m − r

λ
ẏY
�m = yY

�m

[
�+ 1 +

r
λ

K�−1/2(r/λ)
K�+1/2(r/λ)

]
. (19)

Then, it is clear that equation (18) recasts as

g�m
r = −GM⊕

r2 (�+ 1)
(

R⊕
r

)�

z�m(r) (20)

where z�m is a radial function that differs from y�m only by its Kernel,

z�m(r) =
1

(2�+ 1)M⊕

∫
s2
(

s
R⊕

)�

ρ�m(s)
[
1 + αA�

( s
λ

)
C�

( r
λ

)]
ds (21)

where we have introduced the function

C�(x) = (2�+ 1)x�+1/2K�+1/2(x)
[

1 +
x

�+ 1
K�−1/2(x)
K�+1/2(x)

]
. (22)

2.2.2. Angular part. The angular components are given by

gθ(rur) =
GM⊕

r2

∑

�m

(
R⊕
r

)�

y�m(r)∂θY�m(ur) (23)

gξ(rur) =
GM⊕

r2

∑

�m

(
R⊕
r

)�

y�m(r)
1

sin θ
∂ξY�m(ur), (24)

with y�m(r) given by equation (11). However such a decomposition does not give a proper mul-
tipolar expansion since ∂θY�m mixes different multipoles. Indeed, after derivation the expansion 
is no more in an orthonormal basis. The standard way to express the gravitational acceleration 
in a good frame is to use recursion properties between spherical harmonics (see e.g. [72–75]). 
Here, we propose to use a simpler way by introducing spin-weighted spherical harmonics.

To that purpose, we first define the two complex vectors

u± ≡ 1√
2
(uθ ∓ juξ) , (25)
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where j2  =  −1 so that

g⊥ = g+u+ + g−u− with g± =
1√
2
(gθ ± jgξ) . (26)

With our notations, we get

g± =
1√
2

GM⊕
r2

∑

�m

(
R⊕
r

)�

y�m(r)
[
∂θ ±

j
sin θ

∂ξ

]
Y�m(ur). (27)

Now acting s-times with the complex derivative in the square brackets on the spherical har-
monics defines the spin-weighted spherical harmonics sY�m(θ, ξ) [76, 77].

From equation (2.7) of [77]), we have
[
∂θ ±

j
sin θ

∂ξ

]
Y�m(θ, ξ) = ±

√
�(�+ 1)±1Y�m(θ, ξ) (28)

from which it follows that the proper multipolar expansion of the gravitational acceleration is

g± =
∑

�m

g�m
± ±1Y�m(θ, ξ) (29)

with

g�m
± = ± 1√

2
GM⊕

r2

√
�(�+ 1)

(
R⊕
r

)�

y�m(r). (30)

2.2.3. Summary. Equation (20) for the radial component and (30) for the angular comp onent 
allow us to compute directly the contribution of the (�, m) multipole to the gravitational accel-
eration of any extended body once ρ(sur′) is known. They now need to be translated to non-
Keplerian perturbations applied to bodies orbiting around the Earth.

2.3. Orbital perturbations and secular effect on satellites osculating parameters

Given perturbing forces acting on a satellite, the Lagrange–Gauss equations  allow one to 
compute the secular variations of the satellite’s orbital parameters [78–80]. They can be also 
used to deduce the characteristics of a perturbing source from a measurement of the satellite’s 
dynamics. In particular, they can be used to estimate the Earth gravitational field spherical 
harmonic coefficients. This section establishes the Lagrange–Gauss equations and the expres-
sion of the perturbing force arising from the shape of the Earth and a non-Newtonian gravity 
modelled by a Yukawa potential.

2.3.1. Expression of the perturbing force. Let us define a perturbing force acting on an orbit-
ing body as the difference between the actual force applied to the body and the pure Newto-
nian monopole gravitational force. We ignore all non-gravitational forces, as well as gravity 
from the Sun, the Moon and other Solar system planets, so that the perturbing force is

Fpert = g +
GM⊕

r2 ur = ReR + SeS +WeW (31)

where R, S  and W  are the radial, tangential (in the orbital plane) and orthogonal components 
of the perturbing force per unit of reduced mass. The unit vectors eR, eS, eW are defined in 
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figure 2. Since eR = ur the change of coordinates between the two frames reduce to a rotation 
so that the components of the force are

R =
msat

µ

[
gr(r, θ, ξ) +

GM⊕
r2

]
 (32)

S = −msat

µ
[gθ(r, θ, ξ) sin i − gξ(r, θ, ξ) cos i] (33)

W = −msat

µ
[gθ(r, θ, ξ) cos i + gξ(r, θ, ξ) sin i] (34)

where µ = M⊕msat/(M⊕ + msat) is the reduced mass of the Earth-satellite system.
The perturbation force can also be decomposed in the basis (ur, u+, u−) as

Fpert = Rur +
∑

s=±
Rsus (35)

so that its angular component can be decomposed in spin-weighted harmonics as

R± =
1√
2
(S ± jW) = ∓msat

µ
exp

[
j
(π

2
∓ i

)]
g±. (36)

It follows that the multipolar decomposition is now well-defined as

Fpert =
∑

�m

[
R�mY�mur +

∑

s=±
Rs

�m sY�mus

]
 (37)

with

R�m =
GMtot

r2

[
−(�+ 1)

(
R⊕
r

)�

z�m(r) + δ�0δm0

]
, (38)

Figure 2. Left: comoving frame associated to the orbit and in which we decompose 
the perturbation. Notice that we have introduced i the inclination, Ω the longitude of 
the ascending node, ω the argument of the perigee P and ν the true anomaly. Right: a 
rotation to transform the spherical coordinates unit vectors uθ and uξ  into the comoving 
unit vectors eS and eW.
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R±
�m = ∓ 1√

2
GMtot

r2

√
�(�+ 1)

(
R⊕
r

)�

y�m(r) exp
[

j
(π

2
∓ i

)]
, (39)

where Mtot = M⊕ + msat and y�m(r) and z�m(r) are defined in equations  (11) and (21) 
respectively.

It immediately follows that the radial, tangential and othogonal components of the perturb-
ing force (equations (32)–(34)) are

R(r, θ, ξ) =
GMtot

r2

∑

�m

[
−(�+ 1)

(
R⊕
r

)�

z�m(r) + δ�0δm0

]
Y�m(θ, ξ) (40)

S(r, θ, ξ) = − j
2

GMtot

r2

∑

�m

√
�(�+ 1)

(
R⊕
r

)�

y�m(r)
[
e−ji

+1Y�m(θ, ξ) + e ji
−1Y�m(θ, ξ)

]
 (41)

W(r, θ, ξ) = −1
2

GMtot

r2

∑

�m

√
�(�+ 1)

(
R⊕
r

)�

y�m(r)
[
e−ji

+1Y�m(θ, ξ)− e ji
−1Y�m(θ, ξ)

]
. (42)

In Newtonian gravity, the perturbations arise only from the shape of the Earth, from the 
gravitational perturbations of other celestial bodies (Sun, Moon, planets, etc) and of friction 
forces from the atmosphere and radiation pressure. They all have been studied in details and 
shown to cause secular drifts such as the precession of the line of nodes (the latter being 
mostly sourced by the Earth equatorial bulge through the J2 ≡ −

√
5y20 zonal term) [80]. In a 

theory gravity beyond Einstein (or, on small scales, Newton), the existence of an extra gravi-
tational potential causes a new set of perturbations, also related to the shape of the Earth. In 
our model at hand, the Yukawa potential mixes the shape of the Earth contributions and the 
non-Newtonian interaction.

2.3.2. Lagrange–Gauss equations and secular effects. Secular effects due to a perturbing 
force on osculating parameters for a given orbit configuration can be computed from the 
Lagrange–Gauss equations once the component of the perturbative force (37) are known.

The Lagrange–Gauss equations then read

da
dt

= 2

√
a3

GMtot(1 − e2)
[Re sin ν + (1 + e cos ν)S] (43)

de
dt

=

√
a(1 − e2)

GMtot

[
R sin ν +

e + 2 cos ν + e cos2 ν

1 + e cos ν
S
]

 (44)

di
dt

=

√
a(1 − e2)

GMtot

cos(ω + ν)

1 + e cos ν
W dΩ

dt
=

√
a(1 − e2)

GMtot

sin(ω + ν)

1 + e cos ν
W
sin i

 (45)

dω
dt

=

√
a(1 − e2)

GMtot

[
−R

e
cos ν +

(2 + e cos ν) sin ν
e(1 + e cos ν)

S − sin(ω + ν)

1 + e cos ν
cos i
sin i

W
]

 

(46)

d�
dt

= n +

√
a

GMtot

1 − e2

e(1 + e cos ν)

[
R(−2e + cos ν + 2 cos2 ν)− sin ν(2 + e cos ν)S

]
 (47)
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where a is the semi-major axis of the orbit, e its eccentricity, i its inclination, Ω the longitude 
of the ascending node, ω the argument of the perigee and � = n(t − T)7 with n ≡

√
µ/a3 . 

Additionally, the true anomaly variation is given by

dν
dt

=

√
µ

a3(1 − e2)3 (1 + e cos ν)2, (48)

and does not depend on the perturbing force. The Ω, ω, i and ν angles are shown in the left 
panel of figure 2.

2.3.3. Summary. This provides all the equations for studying the orbital motion of a satellite 
in a theory of gravity including a Yukawa interaction together with the Newtonian force. The 
Lagrange–Gauss equations (43)–(47) can be solved for the secular effects caused by a Yukawa 
interaction on satellites dynamics, once the perturbing force (37) is known. The latter depends 
on the shape and mass distribution of the Earth, given by equation (10) through the y�m(r) 
functions, explicitly given in equation (11). As we have already emphasised, the parameter 
ρ�m describing the Earth and (α,λ) describing the non-Newtonian gravity are entangled. This 
formalism paves the way to many investigations to which we now turn.

3. Worked-out example: N-layer, rotationally symmetric Earth model

This section applies our previous formalism to a simple model of the Earth. It will allow us to 
better grasp the impact of the Yukawa interaction on the Earth gravitational field and the way 
it mixes with the usual perturbing effects arising from the shape of the Earth.

To that purpose, we consider a N-layer Earth, where each layer, of radius Ri(θ, ξ), is homo-
geneous with density ρi , such that

ρ(sur′) =

N∑

i=1

ρi{Θ[s − Ri−1(ur′)]−Θ[s − Ri(ur′)]}, (49)

where R0(ur′) = 0. In the case N  =  4, we recover the conventional figure of the Earth’s inter-
ior divided into inner and outer core, mantle and crust (e.g. [81]); increasing N allows one to 
approximate better the slow density variations of each of the main layers.

3.1. Monopole and quadrupole

Here, we provide explicit expressions for the first two non-zero spherical harmonics coef-
ficients (monopole and quadrupole), y00 and y20, usually called C00  and C20  in the literature. 
Note that with our normalization, y00 = C00  and y20 = C20 . The quadrupole y20 is linked to 
the J2 flattening of the Earth via J2 = −

√
5y20 if we ignore the rotation of the Earth.

Appendix A derives the expression of yl0(r) under the assumption that the Earth is made 
of N concentric, homogeneous ellipsoidal, rotationally symmetric layers. The computation 
involves integrating hypergeometric functions over θ, which can easily be done numerically, 
but requires further assumptions to allow for an analytic expression. Assuming that the flat-
tening of the Earth layers fi = (Req,i − Rpole,i)/Req,i are small ( fi � 1), we can Taylor expand 
the φ� functions, and we obtain the monopole (at first order in fi)

7 Note that this � is not to be confused with the multipole of the spherical harmonics expansion. We will not used it 
in the remainder of this paper.
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y00(r) =
4πR3

⊕
3M⊕

N∑

i=1

ρi

[
(1 − fi)

R3
eq,i

R3
⊕

− (1 − fi−1)
R3

eq,i−1

R3
⊕

]

+
4πα
3M⊕

e−r/λR3
⊕

2∑

i=1

ρi

{
3
λ3

R3
⊕

[
Req,i

λ
cosh

Req,i

λ
−
(

fiR2
eq,i

3λ2 + 1

)
sinh

Req,i

λ

]

−3
λ3

R3
⊕

[
Req,i−1

λ
cosh

Req,i−1

λ
−

(
fi−1R2

eq,i−1

3λ2 + 1

)
sinh

Req,i−1

λ

]}
,

 

(50)

where the first term is the Newtonian contribution (also computed under the assumption 
fi � 1).

In the simple case of a homogeneous ellipsoid (N  =  1), equation (50) reduces to

y00(r) = 1 +
α

1 − f
Φ

(
R⊕
λ

, f
)

e−r/λ, (51)

where we used that, for a homogeneous ellipsoid

M⊕ =
4
3
πR3

⊕ρ(1 − f ), (52)

and where

Φ(x, f ) = 3
x cosh(x)− sinh(x)

x3 − sinh x
x

f (53)

generalises the usual sphere’s form factor [3] to an ellipsoid of flatness f. In the case of a 
homogeneous sphere, we thus recover the result from the direct integration over the sphere 
[3], and in the case of a two-layer spherical Earth, we recover the expression given in [50]. The 
Φ function is discussed in appendix C.

Under the same assumption, at first order in fi, we find the quadrupole

y20(r) = − 8πR3
⊕

15
√

5M⊕

N∑

i=1

ρi

[
R5

eq,i

R5
⊕

fi −
R5

eq,i−1

R5
⊕

fi−1

]
+

8παR3
⊕

3
√

5M⊕
e−r/λ

(
3 + 3

r
λ
+

r2

λ2

)

×
N∑

i=1

ρi

{
3fi

λ5

R5
⊕

[
Req,i

λ
cosh

Req,i

λ
−
(

R2
eq,i

3λ2 + 1

)
sinh

Req,i

λ

]

−3fi−1
λ5

R5
⊕

[
Req,i−1

λ
cosh

Req,i−1

λ
−

(
R2

eq,i−1

3λ2 + 1

)
sinh

Req,i−1

λ

]}
 

(54)

where the first term is the Newtonian contribution.
For a homogeneous Earth of density ρ and flattening f, equation (54) simplifies to

y20(r) = − 2f
5
√

5(1 − f )

[
1 − 5αe−r/λκ

( r
λ

)
Φ2

(
R⊕
λ

)]
, (55)

where we used equation (52), κ(x) = 3 + 3x + x2 and where the function

Φ2(x) = 3
x cosh(x)−

(
x2/3 + 1

)
sinh(x)

x5
 (56)

is a form factor akin to the Φ function above (see appendix C).
Equations (11), (50) and (54) make the role of the Yukawa term clearer. The coefficients of 

the potential’s spherical harmonic expansion obviously depend on where they are estimated, 
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through the exponential decrease of the Yukawa interaction with respect to distance. Another 
major impact is the presence of a form factor, which emerges because Gauss’ theorem does 
not apply to a Yukawa interaction (even for a spherical Earth). In other words, it quantifies 
the fact that for a short-range Yukawa interaction, regions of the Earth close to the experi-
ment play a bigger part in the gravitational field than regions further away, so that the Yukawa 
interaction created by an extended body is not equal to the Yukawa interaction created by a 
point-mass of the same mass as the body’s. Hence, measurements of the gravitational field 
made on the ground, in low earth orbit, or at a greater distance of Earth, will provide different 
coefficients; we then should be careful when combining different gravity measurements.

In particular, the y00 coefficient is not equal to 1 by definition (as in pure Newtonian 
gravity), but is affected by a supplementary, distance-dependent term y00(r) = 1 + yY

00(r). 
Therefore, it should not be set a priori to 1 when measuring the Earth potential, but estimated 
like other coefficients. Actually, estimating it is akin to estimating an effective Newton con-
stant that depends on the distance to the centre of the Earth, with the ‘real’ Newton constant 
being estimated by Cavendish-like experiments on the ground.

Similar conclusions can be drawn for the y20 term. It is affected by the Yukawa term, whose 
value will depend on α and on the ratio between the Yukawa range and the characteristic scales 
of the experiment (r and R⊕), with a maximum effect around λ ∼ r . As shown in appendix 
C, Φ2(R⊕/λ) is of order a few percent in this regime, so that the Yukawa contribution to the 
y20 measured by a satellite orbiting the Earth at a low altitude amounts to a few percent of α.

We should finally note that under the assumptions used to obtain equations (50) and (54), 
higher terms (y40, y60...) vanish. We need to Taylor expand to higher orders in fi to get non-zero 
coefficients. We checked that the approximations (50)–(54) provide accurate numbers (up to 
the percent accuracy) by comparing them to the numerical integration of equation (A.2) and 
the corresponding equation for the Newtonian part.

3.2. Gravitational acceleration

The expressions above for the first spherical harmonic coefficients can be inserted in equa-
tions  (20) and (30) to derive the expression of the gravitational acceleration of an N-layer 
rotationally symmetric Earth (for which all m �= 0 multipoles cancel). However, this requires 
tedious algebra, so we will restrain ourselves to the homogeneous ellipsoid case N  =  1, and 
consider that only the � = 0 and � = 2 multipoles are non-negligible (this is a reasonable 
assumption since the measured J2 is 1000 times higher than the following spherical harmonic 
coefficients). We find that the norm of the radial and tangential components are

g||(r, θ, ξ) = −GMtot

r2

[
1 +

α

1 − f

(
1 +

r
λ

)
e−r/λΦ

(
R⊕
λ

, f
)]

− 3
√

5
2

GMtot

r2 z20(r)(3 cos2 θ − 1)
 

(57)

where we made z00(r) explicit, and

|g⊥(r, θ, ξ)| =
√

5
2

GM⊕
r2

(
R⊕
r

)2

|y20(r)| =
1√
2

GM⊕
r2

(
R⊕
r

)2

|J20(r)| (58)

where we used that

±1Y20(θ, ξ) = ∓1
4

√
15
2π

sin 2θ. (59)

J Bergé et alClass. Quantum Grav. 35 (2018) 234001

CHAPTER 3. TESTING UNSCREENED SCALAR FIELD WITH MICROSCOPE 83

83 TESTING GRAVITY IN SPACE



15

Note that the J2 contribution is formally identical to the Newtonian case, although now 
J2 is a function of r. Following the rotational symmetry of our model, those components 
are indeed independent of the longitude ξ. We provide order-of-magnitude estimates of the 
Yukawa accelerations and compare them with usual gravitational and non-gravitational per-
turbations, for a homogeneous Earth, in section 5.2.

3.3. Perturbations and secular effects on satellite dynamics

The Lagrange–Gauss equations (equations (43)–(47)) can be trivially obtained for a N-layer 
rotationally symmetric Earth in a way similar to that used to get the gravitational acceleration 
above, by inserting equations (A.7) and (A.8) in (40)–(42). As for the gravitational accelera-
tion, we restrain ourselves to the homogeneous ellipsoid. In this case, the components of the 
perturbing force are

R(r, θ, ξ) = −GMtot

r2

[
α

1 − f

(
1 +

r
λ

)
e−r/λΦ

(
R⊕
λ

, f
)
+

3
√

5
2

z20(r)(3 cos2 θ − 1)

]
 (60)

S(r, θ, ξ) =
3

2
√

2π
GMtot

r2

(
R⊕
r

)2

J20(r) sin 2θ sin i (61)

W(r, θ, ξ) = − 3
2
√

2π
GMtot

r2

(
R⊕
r

)2

J20(r) sin 2θ cos i. (62)

As was the case for the gravitational acceleration, those components are indeed independent 
of the longitude ξ.

Although we do not solve the Lagrange–Gauss equations  in this paper, it is instructive 
to express the components of the perturbing force as a function of the satellite’s unper-
turbed orbit’s Keplerian parameters (which is required to solve the equations). Using that 
r = a(1 − e2)/(1 + e cos ν) and that (following some algebra based on [82])

sin 2θ = 2 sin(ω + ν) sin i
√

1 − sin2(ω + ν) sin2 i (63)

cos θ = sin(ω + ν) sin i, (64)

we find that

R = GMtot
(1 + e cos ν)2

a2(1 − e2)2

{
3
5

(
R⊕(1 + e cos ν)

a(1 − e2)

)2 f
1 − f

(3 sin2(ω + ν) sin2 i − 1)

− α

1 − f
exp

(
− a(1 − e2)

λ(1 + e cos ν)

)[(
1 +

a(1 − e2)

λ(1 + e cos ν)

)
Φ

(
R⊕
λ

, f
)

+3
(

R⊕(1 + e cos ν)
a(1 − e2)

)2

fσ
(

a(1 − e2)

λ(1 + e cos ν)

)
Φ2

(
R⊕
λ

)
(3 sin2(ω + ν) sin2 i − 1)

]}
 

(65)

S =
6

5
√

2π
GMtotR2

⊕

(
1 + e cos ν
a(1 − e2)

)4 f
1 − f

sin(ω + ν) sin2 i
√

1 − sin2(ω + ν) sin2 i

×
[

1 − 5α exp

(
− a(1 − e2)

λ(1 + e cos ν)

)
κ

(
a(1 − e2)

λ(1 + e cos ν)

)
Φ2

(
R⊕
λ

)] 

(66)
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W = − 3
5
√

2π
GMtotR2

⊕

(
1 + e cos ν
a(1 − e2)

)4 f
1 − f

sin(ω + ν) sin(2i)
√

1 − sin2(ω + ν) sin2 i

×
[

1 − 5α exp

(
− a(1 − e2)

λ(1 + e cos ν)

)
κ

(
a(1 − e2)

λ(1 + e cos ν)

)
Φ2

(
R⊕
λ

)]
,

 

(67)

where σ(x) = 3 + 3x + 2/3x2 − x3/3 and κ(x) is defined above.
Equations (65)–(67) clearly show the impact of a Yukawa interaction on a satellite’s orbit. 

The first line of each equation provides the Newtonian part, while the Yukawa contribution is 
shown in the remaining terms. Not surprisingly, the Yukawa interaction impacts the perturbing 
force in a similar way it impacts the spherical harmonic coefficients (see section 3.1), through 
form factors and a complex radial dependence that couples an exponential decay with polyno-
mials σ(r/λ) and κ(r/λ) which tend to maximise the effect for r ∼ λ.

As aforementioned, it is well known that the J2 zonal term sources a precession of the line 
of nodes through the S  and W  components of the perturbing force in the pure Newtonian 
case [80]. Equations (66) and (67) show that a Yukawa interaction adds up to this effect. Its 
impact will depend on the strength α of the Yukawa interaction, but also on how its range λ 
compares to the orbit’s semi-major axis and to the radius of the Earth. We can therefore expect 
to measure different rates of precession for satellites orbiting at different altitudes. Even for 
a homogeneous sphere (f  =  0), although the tangential components vanish S = W = 0, the 
radial component remains affected by the form factor of the Earth: it simplifies to contain only 
the usual exponential decay coupled to the Earth’s form factor.

We can therefore expect observable effects of the coupling of the Yukawa interaction to the 
shape of the Earth on the dynamics of satellites. Hence, not taking the shape of the Earth into 
account to predict the very effects that are looked for to constrain a Yukawa interaction in orbit 
ends up in wrong predictions, and is likely to prevent reliable constraints.

In other words, it is incorrect to consider the perturbation due to the Yukawa interaction as a 
purely radial interaction sourced by a point-mass when working with satellite dynamics. Most 
existing works that aim to constrain a Yukawa interaction with satellites dynamics focused 
on measuring the perigee precession under this incorrect assumption [83–87]. Nevertheless, 
although those works miss the contribution of the tangential components of the Yukawa inter-
action, we should note that since they focus their analyses on λ ≈ a few R⊕ (where Φ ≈ 1, 
see figure C1) their simplifying assumption only marginally affects the radial component of 
the perturbation. However, if aiming to constrain short range Yukawa interaction, one has to 
take into account the fact that the Earth is an extended body, since in this regime the form fac-
tor is significantly greater than 1 and hence dramatically impacts the Gauss equations.

4. Entanglement of geodesy and gravitation experiments in the Earth  
gravitational field

The discussion above shows that modified gravity affects the spherical harmonic coefficients 
of the Earth gravitational field, and in turn gravity observables (such as the motion of satel-
lites). Although this comes hardly as a surprise, to the best of our knowledge, this has never 
been seriously taken into account, neither to survey and invert the Earth gravity (to estimate 
the shape of the Earth) nor to constrain the Yukawa parameters in orbit. In the former case, 
geophysicists assume that the Earth gravitational field is described by Newtonian gravity 
(hence, they ignore any Yukawa deviation altogether, see e.g. [57, 63]). In the latter case, for 
a Yukawa-like modification of gravitation, its effects on Keplerian parameters are most often 
computed under the assumption that the Yukawa acceleration is sourced by a point-mass Earth 
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[83, 84, 86, 88], or at best by a uniform, spherical Earth [50]. And yet, a Yukawa deviation 
has explicit effects such as a dependence of spherical harmonic coefficients on the radial dis-
tance from the Earth. Conversely, our imperfect knowledge of the Earth geometry may impact 
experimental constraints of the Yukawa parameters.

Hagiwara [89] investigated the effect of a non-Newtonian contribution to the Earth gravi-
tational field on geodesy experiments. He found that non-Newtonian terms could safely be 
ignored to measure the Earth geoid. However, he was considering 1980s experiments preci-
sion, and as modern in-orbit gravity experiments such as GRACE, GOCE and GRACE-FO 
bring unprecedented precision on the measurement of the Earth gravitational field, it is timely 
to revisit his work. This is the purpose of this section and the next one. In this section, we 
first show the limitations that modified gravity brings to geodesy measurements, then those 
that geodesy uncertainties bring to tests of modified gravity, before giving recommendations 
on how to go beyond current limitations. Order-of-magnitude estimates are then given in 
section 5.

Figure 3 shows the entanglement between modified gravity (illustrated with a Yukawa 
interaction) and the shape of the Earth when testing gravity or measuring the Earth geometry 
with experiments in the Earth gravity. For simplicity, we still ignore relativistic effects, the 
influence of the Moon and other planets and the rotation of the Earth. We will compare the 
contribution of a Yukawa interaction with those effects in section 5.2; a rigourous data analysis 
should of course take all known effects into account (i.e. correct for relativistic and Newtonian 
tidal effects before constraining the Yukawa interaction). The system of interest is the Earth, 
whose geometry is coupled to a possible Yukawa potential; we aim to measure the Earth 
geometry and/or the Yukawa parameters. In the sense of Kant, they are noumenons (the ‘true’ 
system), a priori not accessible to human senses, but which we can approximate by analyzing 
observable ‘phenomenons’. Those phenomenons can be as diverse as the value of the gravita-
tional field acceleration g, its gradient [T], the equivalence principle, or the secular variations 
of Keplerian parameters (perigee drift ∆ω, regression of the line of nodes ∆Ω, variation of 
the eccentricity ∆e). Experiments provide us with ‘measurements’ of those phenomenons, 
that are affected by statistical and systematic uncertainties. For instance, GOCE measured 
the gravitational gradient [T], LAGEOS measured the perigee drift ∆ω and the regression 
of the line of nodes ∆Ω, and MICROSCOPE tested the weak equivalence principle. We may 
perform several measurements (each with its own expected value for the phenomenons under 
scrutiny, and each with its own uncertainties—stacked boxes in the figure), that we can then 
combine, e.g. simply by averaging their individual results (〈. . . 〉 is the ensemble average). 
Finally, those measurements can be used under some hypotheses and with some priors Π on 
parameters to get estimates (possibly biased, and likely up to a given estimation error) of the 
underlying ‘true’ parameters. The three boxes in the lower part of the figure show three dif-
ferent possible uses of Earth gravity measurements: geodesy (hypothesis H1—section 4.1), 
tests of gravity (hypothesis H2—section 4.2) and simultaneous geodesy and tests of gravity 
(hypothesis H3—section 4.3).

In this section, based on figure 3, we quantify the limitations on parameter estimations 
given some hypotheses. We do not try to be exhaustive and only give examples based on 
the measurement of the Newtonian spherical harmonic coefficients (section 4.1) and on the 
estimation of the Yukawa strength for a given range λ from the combination of two satellite 
measurements (section 4.2). Section 4.3 discusses how to go beyond the limitations shown in 
sections 4.1 and 4.2 for modified gravity experiments. Our discussion can be generalised to 
other observables (e.g. secular variations of Keplerian parameters), but we refrain from pro-
viding a full analysis of all possible experiments. Such analyses shall be presented in future 
works.
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We note measurements and estimates with a hat: e.g. α̂ is the estimate of the Yukawa inter-
action strength. Modeled quantities are noted with a tilde: e.g. α̃ is the strength of the Yukawa 
interaction for some a priori model. We use the term ‘prior’ loosely to denote an a priori, pos-
sibly subjective information on a parameter, and do not restrict its use to the Bayesian ‘prior 
probability density function’.

Figure 3. Gravity experiments in the Earth gravitational field. The Earth (universal) 
geometry as described by the density spherical harmonics coefficients ρ�m (equation 
(10)), the gravitation constant and modified gravity parameters are unavailable to our 
senses (noumenons); they are the parameters of the theoretical model that can be used 
to try to know them. They can be observed through phenomenons (gravity acceleration, 
secular variations of satellites’ osculating parameters) whose values depend on the 
values of the parameters of the model. Measurements provide us with estimates of those 
phenomenons (affected by statistical and systematic uncertainties). Depending on what 
hypotheses we make, we can use those measurements to estimate the parameters of the 
model: geodesy (H1), modified gravity experiments (H2), or both (H3); the estimates 
E1–E3 may be biased and known with some error depending on the hypothesis made.
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4.1. Impact of Yukawa interaction on geodesy measurements (H1)

Geodesy surveys are shown in figure 3 by the left-hand-side panel. They aim to map the Earth 
geometry and mass distribution, as well as their time variations (estimates E1) through the mea-
surement of the static and/or variable gravitational field [56–63]: their goal is hence to estimate 
the spherical harmonics coefficients ρ�m(s) of the Earth density, as defined in equation (10).

Let us consider a satellite gravity survey performed at a distance r from the centre of the 
Earth. The survey provides estimates of the coefficients y�m of a spherical harmonic expan-
sion, a priori independently of any underlying gravity model (as long as the Earth gravita-
tional potentiel in a modified gravity model can be expanded in spherical harmonics): in our 
case, they contain both a Newtonian and a Yukawa contribution.

A gravity model hypothesis H1 is then required to extract ρ�m from the measured ŷ�m. It can 
either be a pure Newtonian field, or explicitly contain modified gravity. In the former case, ŷ�m 
is supposed to be given by equation (8); in the latter case, it is supposed to be given by equa-
tion (11). If modified gravity is considered, the best way to proceed is the latter: invert equa-
tion (11) with some prior Π(α,λ) on the Yukawa interaction to obtain ρ�m. However, to the 
best of our knowledge, all geodesy works use a Newtonian hypothesis and invert equation (8) 
(e.g. [90, 91]). In this case, a non-zero Yukawa contribution will contaminate the analysis. 
A possible way to use the existing inversion codes based on Newtonian gravity is then to 
consider the Yukawa contribution as a systematic error, and just remove it from the estimated 
ŷ�m to then invert an estimated Newtonian coefficient. We thus assume a prior on the Yukawa 
parameters, which may be biased (E(α̃) = α+ δα, E(λ̃) = λ+ δλ), where (α, λ) are the true 
values and (δα, δλ) are the prior’s bias; we finally assume some uncertainty (Var(α̃), Var(λ̃)) 
on our prior. The Newtonian coefficient estimator then reads

ŷN
�m = ŷ�m − α̃ ˜f�(r,λ)qY

�m/qN
00 (68)

where the function f�(r,λ) = Bl(r/λ)/(2�+ 1) encapsulates the prior on λ (which affects 
the gravitational field model in a non-trivial way that we do not attempt to compute) and the 
quantities

qN
�m =

∫
s2
(

s
R⊕

)�

ρ�m(s)ds (69)

qY
�m =

∫
s2
(

s
R⊕

)�

ρ�m(s)Al

( s
λ

)
ds (70)

are the integrals over the volume of the Earth that appear in equations  (8) and (9), whose 
dependence on the geoid and mass density are not yet important, but will be developed below. 
In the remainder of this section, we do not attempt to obtain ρ�m, but use ŷN

�m as a proxy. Note 
that trivially, qN

00 = M⊕.
The expected value and variance of the estimator (68) are

E(ŷN
�m) = yN

�m − αδ

[
f�(r,λ)

qY
�m

qN
00

]
− δα

(
f�(r,λ)

qY
�m

qN
00

)
− δαδ

[
f�(r,λ)

qY
�m

qN
00

]

 

(71)

and

Var(ŷN
�m) = Var(ŷ�m) + α̃2Var(

˜
f�(r,λ)

qY
�m

qN
00
) +




˜
f�(r,λ)

qY
�m

qN
00




2

Var(α̃) + Var(α̃)Var




˜
f�(r,λ)

qY
�m

qN
00




 (72)
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where we assume that the measurement itself is unbiased (E(ŷ�m) = y�m), that it is indepen-
dent of the prior on the Yukawa interaction and where, for clarity, we ignore all other possible 
systematic errors (e.g. solar radiation pressure, atmospheric drag, tidal effects, mass motion 
on the Earth surface...).

We should also note that beside a prior on the Yukawa interaction, a prior on the Earth mass 

distribution is implicitly used in ˜f�(r,λ)qY
�m/qN

00  (see equation (70)). It may as well come from 

experiments completely independent of the gravitational field (e.g. seismology surveys) or 
from gravitational field measurements, through the estimation of the spherical harmonic coef-
ficients. In the latter case, the problem becomes non-linear, since the prior is based on knowl-
edge similar to what we wish to measure. Although we should keep that in mind, we ignore 
this aspect and assume that the prior is indeed uncorrelated with the measurement.

Equations (71) and (72) allow us to conclude on the effect of a Yukawa interaction on the 
estimation of ŷN

�m. Equation (71) shows that a prior on the Yukawa interaction too far from the 
real characteristics of the Yukawa interaction (or simply ignoring the possibility of a Yukawa 
interaction if it actually exists) leads to a biased estimate of the Newtonian contribution to 
the Earth gravitational field. Equation (72) shows that a physically-motivated prior increases 
the variance of the estimator (i.e. which is not anymore equal to the variance of the measured 
ŷ�m as when ignoring the possibility of a Yukawa interaction): this is the price to pay to have 
an unbiased estimate ŷN

�m. With those observations in mind, one must be aware that using (as 
usual) the Newtonian framework for geodesy (i.e. assuming α = 0 and δα = 0) may lead to 
biased estimations of the Earth geometry if in reality α �= 0; furthermore, in this case, the 
uncertainties on the estimates are underestimated.

We can also note that the bias and variance of the ŷN
�m estimator depend on the distance of 

the experiment to the centre of the Earth through the radial dependence of f�(r,λ). Therefore, 
if modified gravity is real, then under the incorrect hypothesis that gravity is purely Newtonian 
(in which case it is assumed that the measured coefficients ŷ�m = ŷN

�m), we may expect that 
different estimators ŷN

�m obtained at different altitudes will be inconsistent, each with a non-
zero bias and an underestimated variance coming from an incorrect hypothesis, even if the 
measurements are perfect. This is reminiscent of the inconsistent measurements of the y20 
parameter between the GOCE-only, GRACE-only and EIGEN-6C models mentioned in the 
introduction. Answering the question of whether the tension between those measurements 
stems from data analyses or from the presence of a Yukawa interaction is beyond the scope of 
this paper, but could be done by re-analyzing all the concerned data with a model that takes 
into account the possible presence of a Yukawa potential and using realistic priors on the 
Yukawa interaction8.

Moreover, as shown by equation (72), the Yukawa interaction increases the variance of the 
ŷ�m estimator for non-circular orbits through the f�(r,λ)’s dependence on r. This increase 
is also non-zero when combining several measurements made with satellites at different 
altitudes.

We give order-of-magnitude estimates of the effect of a non-zero Yukawa interaction on the 
y�m coefficients in section 5.

8 Quick-and-dirty constraints of the Yukawa interaction from the 700 σ tension mentioned in the introduction 
provide results highly inconsistent with published constraints. The most likely reason is an incorrect error analysis 
from gravity surveys. See section 4.2 for a discussion on how to constrain the Yukawa interaction by combining 
GOCE and GRACE measurements.
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4.2. Impact of Earth’s gravity and shape errors on the measurement of Yukawa parameters 
(H2)

Tests of gravity are shown by the middle panel of figure 3. The aim is to measure the Yukawa 
interaction parameters E2 (other applications can be e.g. to measure any relativistic effect) 
under some hypotheses H2 and priors on the Yukawa parameters (α, λ) and/or the Earth shape 
(ρ�m) and/or a direct measurement of the gravitational field with no explicit discrimination 
between the Newtonian and Yukawa contributions (y�m). An extra prior consists in how the 
Yukawa interaction is modeled. Independently of the assumptions on the Newtonian gravita-
tional field, we can either assume that it is sourced by a point-mass-like Earth (H2a) or by the 
full, complex shape of the Earth (H2b). As aforementioned, to our knowledge, most works 
[83–85, 88] use the H2a hypothesis, when a handful either briefly discuss or effectively use a 
spherical Earth (simplified H2b hypothesis—[50, 87]), but we could not find any use of a non-
spherical Earth to constrain a Yukawa interaction. Similarly, to our knowledge, no prior on α 
nor λ has ever been used, although it is common practice to consider at least the measured y20 
zonal term of the Earth gravitational field to correct for its Newtonian contribution.

Several observables can be used to constrain a Yukawa interaction with experiments in the 
Earth gravitational field. Published works use the secular variation of Keplerian parameters of 
orbiting satellites like LAGEOS I and II [83–85, 88] under the H2a hypothesis (the Yukawa 
interaction is sourced by a point-mass Earth), or the measured (absence of) violation of the 
equivalence principle [50]. Given the link between the spherical harmonics coefficients and 
the Yukawa interaction, we could also think of constraining the Yukawa parameters directly 
from the measured ŷ�m, either from a single experiment or from a combination of experiments 
and/or different ŷ�m. To the best of our knowledge, such an analysis, based on hypothesis 
H2b, has never been performed. As already mentioned, we do not try to be exhaustive, and 
will only provide details for one possible way to constrain the Yukawa parameter. Therefore, 
in the remainder of this section, we propose to combine the ŷ�m coefficient measured by two 
experiments at different altitudes (for a given pair (�, m)) and show how it can shed light on 
the Yukawa interaction.

Let us assume that y�m is estimated by two different experiments at distances r1 and r2 from 
the centre of the Earth, to provide two estimators ŷ�m,1 and ŷ�m,2. Using equation (11), we can 
form the following estimator of α, for a given range λ, from the difference between the two 
ŷ�m estimators:

α̂�m =
qN

00(ρ̃(x), h̃(x))
[ f�(r1,λ)− f�(r2,λ)]qY

�m(ρ̃(x), h̃(x))
(ŷ�m,1 − ŷ�m,2), (73)

where the functions qN
�m and qY

�m were defined above and qN
00 = M⊕; we now write their explicit 

dependence on the mass density distribution ρ(x) and on the geoid h(x) –just another way 
to see the information contained in ρ�m(s). This estimator is clearly Earth-model-dependent. 
Although different in its purpose, it is related to Wagner and McAdoo’s error factor [69]; in 
that case, it serves as a way to calibrate different (Newtonian) gravitational field models, while 
we treat it as a measure of non-Newtonian deviations. We should also note that a better estima-
tor would be to average (73) over all (�,m) pairs, but for the sake of clarity, we only discuss 
(73) in the following.

The prior on the Earth model propagates in a non-trivial way to a bias and uncertainty on 
the q�m functions. We do not try to perform this computation (which should be done numer-
ically and requires specifying a model for the Earth), but assume that instead of dealing with 
priors on the mass distribution and the geoid, we have (biased) priors on the q�m functions (for 
clarity, we drop the ρ and h dependences), such as E(q̃�m) = q�m + δq�m , which applies both 
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to the Newtonian and to the Yukawa contributions to the gravitational field. Additionally, we 
assume that the Earth model is based only on data independent of the gravitational field (e.g. 
seismology surveys); otherwise, the problem is non-linear since (as seen in section 4.1) the 
model depends on our knowledge of the Yukawa interaction.

Under those hypotheses, the expected value of the α̂�m estimator is

E(α̂�m) =
qY
�m

qY
�m + δqY

�m
{α�m

+
qN

00

[ f�(r1,λ)− f�(r2,λ)]qY
�m

[(
1 +

δqN
00

qN
00

)
(δy�m,1 − δy�m,2) +

δqN
00

qN
00

(y�m,1 − y�m,2)

]}
.

 

(74)
We should note that the bias in the measured ŷ�m may not be the same for the two satellites. 
It is then apparent that a biased ŷ�m contributes an additive bias to α̂�m, while a biased Earth 
model contributes both an additive and a multiplicative bias to α̂�m. These biases can be mini-
mised by minimizing δy�m and δqN,Y

�m  (i.e. improving the accuracy of the y�m measurement and 
of the Earth model).

The variance of this estimator can then be shown to be

Var(α̂�m) =

(
qN

00 + δqN
00

[ f�(r1,λ)− f�(r2,λ)](qY
�m + δqY

�m)

)2

×
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00 + δqN
00
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+
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00 + δqN
00

)2 − 2
Cov(q̃N
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2

]
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 (75)
Now assuming that the spherical harmonics coefficients measurements are unbiased and 

the biases on the Earth model are small, then at first order, equation (75) reads

Var(α̂�m) ≈
(

qN
00

[ f�(r1,λ)− f�(r2,λ)]qY
�m

)2 (
1 − 2

δqY
�m

qY
�m

+ 2
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00
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00
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(76)

Similarly to what happened for the expected value, equations (75) and (76) show that sev-
eral contributions make up the variance of α̂�m: the variance and bias of the measured ŷ�m as 
well as the uncertainties and biases on the Earth model used for the analysis (which go in the 
H2b hypotheses of figure 3). In particular, a biased Earth model affects the variance of α̂�m in 
a non-trivial way, whereby the bias on the mass (remember that qN

00 = M⊕) may or may not be 
counterbalanced by the bias on qY

�m, so that the impact of the Earth model bias will depend on 
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the multipole (�, m) considered for the analysis. However, exploring the details of this ques-
tion is far beyond the scope of this paper.

Equations (74)–(76) are the bases for a signal-to-noise analysis to optimise the significance 
of the estimation of α for a given λ, for a given mission made of two satellites; for example, 
given a model of the Earth, it allows us to define the satellites’ altitude or the optimal y�m that 
should be used to constrain α with a given precision and accuracy. Furthermore, by comparing 
both contributions to the variance, it directly provides clues about the limitations brought by 
our imperfect knowledge of the Earth, and can therefore set a lower bound on the measure-
ment precision and accuracy required to reach a given precision on the Yukawa parameters.

Such an analysis, linked to a given mission concept, should be done numerically, and 
goes beyond the scope of this paper. Nevertheless, we can give some crude order of mag-
nitude estimate. More realistic estimates for equations (74)–(76) are given in section 5. For 
instance, ignoring the covariance between qN

00 and qY
�m and the bias on the Earth model, we 

can compare the relative contribution to the variance of the ŷ�m measurements and of our 
imperfect model of the Earth. For instance, considering (�, m) = (2, 0), and assuming that 
Var(q̃Y

20)/qY
20 ≈ Var(y20)/y20 ≈ 10−16 [57] and that Var(qN

00)/qN
00 = Var(M⊕)/M⊕ ≈ 10−8, 

we find that the variance of the Yukawa strength estimator is limited by the y20 measurement 
if Var(ŷ20) > 10−8(y20,1 − y20,2). Further assuming that y20,1 − y20,2 ∼ 10−13,9 we find that 
unless we have an improved Earth model, the error on α̂ will saturate as soon as we measure 
y20 with a precision (square root of the variance) better than 10−17. As the current measured 
uncertainty on y20 is of order 10−12 [62], this crude order of magnitude estimate shows that 
were we to use the difference of J2 between two satellite measurements made at different 
altitudes, we can improve the instrumental precision by five orders of magnitude before our 
constrain on α would become dominated by the Earth model. The limitation due to the Earth 
model would be even farther down if y20,1 − y20,2 happens to be less than our assumed 10−13.

As already mentioned, we consider the 700 σ tension between the y20 coefficient measured 
by GOCE and GRACE dubious, and hence refrain from deriving any constrain on the Yukawa 
interaction, since the most likely cause for the tension is linked to error analyses. We present a 
better motivated example for the y20 case, in a homogeneous Earth model, in section 5.

Although similar considerations could be made when constraining a Yukawa interaction 
from the measurement of satellite orbits and secular variations of Keplerian parameters, we 
only mention that given the dependence of the Lagrange–Gauss equations on the shape of the 
Earth, constraints will undoubtely be impacted by the model of the Earth used for the analysis.

4.3. Going beyond current hypotheses and analyses in modified gravity experiments

The discussion above allowed us to identify limitations inherent to current experiments in 
geodesy and modified gravity in the vicinity of the Earth. For instance, although Earth gravity 
surveys are almost model-independent (apart from the facts that it is assumed that the gravi-
tational field can be expanded on a spherical harmonics basis and that by definition y00  =  1 
and is not estimated), geodesy experiments must choose a model to invert a gravity map into 
a model of the Earth. On the one hand, ignoring the possibility for modified gravity may end 
up on a biased Earth model. On the other hand, modified gravity experiments based on an 
explicit Earth model (like the estimator presented in section 4.2) are impacted by a biased and 
imprecise model of the Earth. This is most likely the case if they rely on a model derived from 

9 For illustrative purpose. Given the current experimental limits on the Yukawa interaction, this value is about the 
maximum that could still be measured by two satellites, at altitudes of 250 km and 2500 km, for λ ∼ 1.2 × 105 
m—see section 5.
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a global gravity survey (small scale ground tests relying on the modeling of the laboratory 
surroundings are less prone to this kind of errors). This process is shown by the left arm of 
the flowchart depicted in figure 4: from a gravity survey and its measured y�m coefficients, a 
(biased) model of the Earth is derived under the assumption that gravity has only a Newtonian 
contribution (H1 hypothesis of figure 3 with no prior on modified gravity), then (biased) con-
straints on modified gravity are derived (H2 hypothesis).

As the bias and uncertainty of the Earth model propagate to the constraints on modified 
gravity only if those constraints are model-dependent, a possibility to avoid this limitation is to 
define model-independent constraints. Other combinations of spherical harmonic coefficients 
may be thought of that, in principle, cancel the contributions from the model of the Earth. 
For instance, the ratio of ŷ20 measured by two satellites is independent of the Earth details. 
However, this is true only for spherical harmonics coefficients as defined in section 2, where 
y00 is not universally equal to 1 but depends on the distance to the Earth. On the contrary, 
spherical harmonic coefficients provided by gravity surveys give y00  =  1 by definition. This 
discrepancy, beside implicitly combining inconsistent models, would force us to renormalise 
our y20 by y00, making them effectively depend on the Earth characteristics, with a different 
dependence for both satellites. Therefore, given the current gravity surveys measurements, it 
is not possible to avoid Earth model uncertainties.

Those difficulties arise in the H2b hypothesis, whereby we compute the Yukawa contrib-
ution sourced by the shape of the Earth. Most published constraints on the Yukawa interaction 
use the H2a hypothesis and ignore the shape of the Earth altogether, besides the effect of the 
Earth flattening. This is no better than using a biased Earth model, since it amounts to using 
inconsistent gravity models (extended Earth for the Newtonian part of the gravity field, and 
point-mass Earth for the Yukawa contribution). We then claim that the H2a hypothesis should 
be dropped and replaced by the H2b hypothesis.

At this point, it should be clear that we are currently facing two main problems. The first 
one is the use of inconsistent models in geodesy and in modified gravity experiments. The 
second one is the entanglement of geodesy and modified gravity experiments, which ends up 
in non-linear error propagation and interdependent models, priors and constraints.

A natural solution to the inconsistent models problem is simply to derive geodesy results 
from gravity surveys with modified gravity in mind. Instead of considering the measured spheri-
cal harmonics coefficients as pure representations of the (Newtonian) geometry, the contribution 
from modified gravity should be taken into account. This is shown by the H1’ frame in the right 
arm of figure 4’s flowchart. By assuming a gravity model to which both the Newtonian and the 
Yukawa interaction contribute and using an appropriate prior on the Yukawa parameters, the 
Earth model becomes unbiased, though its variance is increased, as shown in section 4.1. Then, 
we can safely use this Earth model to derive unbiased constraints on modified gravity (H2’ 
frame). The dashed line between H2 and the H1’ prior on modified gravity show how existing 
constraints on the Yukawa interaction can readily be used and marginalised over to obtain a 
better Earth model, from which updated constraints on the Yukawa interaction can be derived.

Another possibility is not only to derive geodesy results with modified gravity in mind, 
but to perform geodesy and modified gravity experiments simultaneously. This is shown by 
the H3 hypothesis in figures 3 and 4. This option has the advantage to allow for the use of the 
same data set for both analyses, thereby lowering the risk of errors coming from incompatible 
data sets. Moreover, as shown by the dashed lines in the H3 frame of figure 4, such a solution 
allows for easy iterations between priors, Earth models and modified gravity constraints, which 
solves the ‘non-linear error propagation’ problem. For instance, we could fly two satellites at 
different altitudes at the same time to break directly the degeneracy between the Newtonian 
and the Yukawa contributions to the spherical harmonic expansion of the gravitational field. 
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Assuming that systematic errors are well-controlled, any difference between measurements 
done simultaneously would stem from modified gravity, which would naturally be accounted 
for in the underlying model.

We shall close this discussion by noting that we only discussed explicitly Earth-model-
dependent constraints of modified gravity. For completeness, we briefly mention that some 
tests of (modified) gravity do not require any explicit Earth model. This is for instance the case 
of experiments that aim to look for a model-independent deviation to Newtonian gravity or 
GR and only need a gravity model as provided by gravity surveys to correct for systematics, 

Figure 4. Flowchart for modified gravity experiments in the Earth gravitational field 
with at least one aspect of data analysis based on an external gravity model. An external 
gravity survey provides the measured coefficients of a spherical harmonic expansion; 
they contain the contributions from the Newtonian (Earth shape) and the modified 
gravitational fields. A model is then decided upon to extract information from those ŷ�m 
coefficients: either we assume gravity is Newtonian (N-GR), or we include modified 
gravity in the model (MG). In the former case, we can derive a (possibly biased, if 
modified gravity actually exists) model of the Earth (figure 3’s H1 hypothesis), 
from which we can constrain (possibly biased) estimators for modified gravity (H2 
hypothesis). In the latter case, priors on modified gravity allow for an (unbiased) model 
of the Earth (H1’ hypothesis), from which (unbiased) constraints on modified gravity 
can be drawn (H2’ hypothesis). Using both priors on modified gravity and on the shape 
of the Earth, we can get an updated Earth model and modified gravity constraints 
simultaneously (H3 hypothesis). Dashed lines show the interplay between priors and 
measurements, and show that we can iterate to improve upon the analysis; a Bayesian 
approach is even better in the H3 case.
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with no explicit link to the real Earth geometry. For example, MICROSCOPE is sensitive to 
the Earth gravity gradient (GGT) [26], which is therefore corrected for with published ITSG-
GRACE14s spherical harmonic coefficients [62]. No error nor bias from any Earth model can 
thereby enter in the search for a violation of the equivalence principle. However, we warn that 
if a Yukawa interaction is present, then its effect at the MICROSCOPE altitude should not be 
the same than that at the altitude where the gravity model was measured by GRACE, poten-
tially creating a bias in the GGT correction. However, from the orders of magnitude derived 
in section 5, we expect this possible bias to be negligible. On the opposite, the constraints on 
the Yukawa interaction estimated from the first MICROSCOPE results [50] rely on an explicit 
model of the Earth; its impact will be assessed in a future work.

Finally, where possible, the most promising way to go beyond limitations from gravity 
surveys performed at different altitudes and from imperfect Earth models may be to embark a 
gravitational field measurement device onboard any satellite mission that aims to test modified 
gravity. For example, would a gradiometer surround the MICROSCOPE instrument, it could 
directly measure the actual GGT affecting the measurement, which could then be corrected 
for without relying on any external gravity model. However, we do not see how to go pass 
the limitations from our imperfect knowledge of the Earth model in tests that are explicitly 
model-dependent (e.g. the expected Yukawa interaction-induced equivalence principle viola-
tion explicitly depends on the Earth physical characteristics—and not only its local gravita-
tional field). An in-depth analysis of those limitations will be done in a future work.

5. Order of magnitude estimates: homogeneous ellipsoidal Earth model

In this section, we provide order-of-magnitude estimates of the impact that the imperfect knowl-
edge of the shape of the Earth and a Yukawa interaction have on each other, as applications of 
the discussion in section 4. Without loss of generality, we consider a very simple Earth model, 
where the Earth is a rotationally symmetric, homogeneous ellipsoid. We can therefore use the 
results of section 3, with N  =  1. We assume numerical values listed in table 2. We should note 
that our model’s flattening is not equal to the actual measured one: we chose it in order to recover 
the mass and J2 measured for the actual Earth, despite having an overly simple Earth model.

5.1. Impact of the Yukawa interaction on the measured Earth gravitational field

5.1.1. Impact on the quadrupole. We start with order-of-magnitude estimates of the contrib-
ution of the Yukawa interaction in the bias and variance of the Newtonian estimator of the y20 
coefficients, as an application of the discussion in section 4.1.

Using equation (55) for the y20 coefficient of a homogeneous Earth, the ŷN
20 estimator of 

equation (68) becomes

ŷN
20 = ŷ20(r) +

2f̃ α̃k(r,λ, R⊕)

5
√

5(1 − f̃ )
 (77)

where k(r,λ, R⊕) = 5e−r/λκ
( r
λ

)
Φ2

(
R⊕
λ

)
 and where we assume that we experimentally 

measured ŷ20(r). As before, the tilde symbols represents priors.
The expected value and variance of this estimator, derived from equations (71) and (72) 

give

E(ŷN
20) = yN

20 +
2fk(r,λ, R⊕)

5
√

5(1 − f )
δα (78)
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where we assume that the measurement and flattening model are unbiased but the prior on α 
is biased (E(α̃) = α+ δα), and

σ2
y20N = σ2

y20 +
4k2(r,λ, R⊕)

125(1 − f̃ )

[
f̃ α̃

(1 − f̃ )2
σ2

f̃ + σ2
α̃

]
. (79)

We can note that when ignoring the possibility of a non-zero Yukawa interaction, the bias in 
equation (78) is just the Yukawa contribution to the y20(r) coefficient (equation (55)).

Figure 5 shows the bias on the estimated ŷN
20 as given by equation (78), when (incorrectly) 

assuming α = 0, for a low-earth orbit experiment (altitude of GOCE—left panel) and a hypo-
thetical mid-earth orbit (2500 km—right panel) in the α− λ plane. The black line shows 
the current best constraints on the existence of a Yukawa interaction [50, 86]: the region of 
the plane above the line is excluded by previous experiments. It is clear that the effect of a 
given (α, λ) pair affects the measurement of y20 differently depending on the altitude, due 
to the exponential dependence of the Yukawa interaction. For instance, (α, λ)  ≈  (2 × 10−8, 
1.2 × 105 m), i.e. for δα = 2 × 10−8, brings a bias of about 10−13 for an experiment at the 
GOCE altitude, while it barely affects an experiment at 2500 km (δy20 ≈ 10−16). The exact 
value for a 250 km and 500 km altitude satellites is given in table 3.

Assuming a prior α̃ = 0 ± σα̃, and still assuming that the model of the flattening is unbi-
ased, equation (79) shows that the increase in the measured yN

20’s uncertainty is equal to the 
maximum bias that can be brought by allowed values for the Yukawa parameters. This once 
again shows that choosing a good prior on α helps to minimise the bias on yN

20 (at the price of 
increasing its error bar).

5.1.2. Impact on higher zonal terms. Table 3 lists the expected deviations for yn0 (n = 2, 4, 6, 8) 
due to a Yukawa interaction, for a rotationally symmetric, homogeneous ellipsoidal Earth, at 
altitudes of 250 km and 500 km, and compares them with current uncertainties on the mea-
sured coefficients for GOCE-only and GRACE-only gravitational field models [57, 62]. Those 
numbers are normalised such that the Newtonian contributions correspond to the measure-
ments for the actual Earth, to account for our oversimplified Earth model. The first column 
gives the expected bias from a Yukawa interaction with (α, λ)  =  (2 × 10−8, 1.2 × 105 m), or 
equivalently the increase in rms for (α, λ)  =  (0 ± 2 × 10−8, 1.2 × 105 m); the third and fourth 
columns give up-to-date tabulated values.

The results listed in the table show that current space geodesy missions, which fly higher 
than a few hundred kilometers, are immune to a Yukawa interaction (as currently constrained 
by other experiments). Currently allowed values of Yukawa parameters only marginally affect 
the measurement of the Newtonian spherical harmonics: the expected bias (equivalently, 
uncertainty increase would a Yukawa interaction be absent, but our imperfect knowledge 
about it considered) is between two and three orders of magnitude smaller than the current 
errors on the first few zonal terms. Nevertheless, should the measurement errors be decreased 
by two orders of magnitude (even for high-altitude satellites), care should be taken to include 
the Yukawa interaction in the model.

Table 2. Homogeneous Earth model parameters: equatorial radius R⊕, density ρ and 
(inverse) flatness 1/f.

R⊕ ρ 1/f

6378.1 km 5.51 × 106 g m−3 370 ± 10
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5.2. Impact of a Yukawa interaction on orbital dynamics

We now quantify the perturbing accelerations created by a Yukawa interaction on an orbit-
ing satellite (see section  3.2). Figure  6 compares the Yukawa monopole (i.e. the term in 
z00(r) in g‖, and quadrupole accelerations (i.e. the term in J20(r) in g⊥), to other usual grav-
itational and non-gravitational accelerations. The blue lines correspond to our fiducial (α, 
λ)  =  (2 × 10−8, 1.2 × 105 m) model, and the red lines represent a long-range Yukawa interac-
tion (α, λ)  =  (5 × 10−12, ∞), as still allowed by experiments. In each case, the solid line cor-
responds to the monopole acceleration and the dashed line shows the quadrupole acceleration.

The other lines show the acceleration of the Earth Newtonian monopole (GM), and sev-
eral gravitational (Newtonian Earth quadrupole—J20—, gravitational pull of the Moon, 
Sun, Venus and Jupiter, relativistic effects—GR—, Earth tides) and non-gravitational (solar 

Figure 5. Bias on the estimated yN
20 Newtonian zonal term from a Yukawa deviation for 

a homogeneous Earth (equation (78)) when incorrectly assuming α = 0 if a non-zero 
Yukawa interaction actually exists, in the α− λ plane, for two experiments orbiting the 
Earth at different altitudes: 250 km (like GOCE) and 2500 km. In this case, the bias is 
just the Yukawa contribution to the y20(r) coefficient (equation (55)). The black contour 
shows the best existing exclusion constraints on a Yukawa interaction [25, 50].

Table 3. Bias on the first few estimated Newtonian zonal terms from a Yukawa deviation 
for a rotationally symmetric, homogeneous ellipsoidal Earth, when incorrectly assuming 
α = 0 if a non-zero Yukawa interaction actually exists with (α, λ)  =  (2 × 10−8, 
1.2 × 105 m), at an altitude of 250 km (GOCE [57]) and 500 km (GRACE [62]).

Yukawa bias  
(rms increase—E(α̂) = 0)

Tabulated  
value

Tabulated 
uncertainty

GOCE

y20 7.4 × 10−14 −4.841 653 042 45 × 10−4 5.423 × 10−12

y40 1.3 × 10−15 5.399 505 09 × 10−7 2.758 × 10−12

y60 2.5 × 10−15 −1.499 796 81 × 10−7 3.556 × 10−12

y80 4.1 × 10−15 4.944 8989 × 10−8 3.972 × 10−12

GRACE

y20 1.0 × 10−14 −4.841 692 836 73 × 10−4 1.577 × 10−12

y40 1.8 × 10−16 5.399 933 70 × 10−7 3.35 × 10−13

y60 3.8 × 10−16 −1.499 746 14 × 10−7 1.88 × 10−13

y80 6.7 × 10−16 4.947 7947 × 10−8 1.35 × 10−13
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radiation pressure—SRP—, atmospheric drag, Earth albedo) perturbations. We followed [82] 
to compute those perturbations. The line showing the atmospheric drag is based on an upper 
limit of the atmospheric density, and therefore shows the maximum drag expected. The verti-
cal dotted lines show the altitude of GOCE, GRACE, LAGEOS and geostationary satellites 
from left to right.

A long-ranged Yukawa interaction is largely subdominant for altitudes higher than a few 
thousands kilometers; below that, its perturbation is of the order of those of Venus and Jupiter. 
In particular, the perturbation due to the coupling between the Earth’s quadrupole and a long-
ranged Yukawa interaction is several orders of magnitude lower than the perturbation caused 
by Jupiter.

Perturbations caused by a mid-ranged Yukawa interaction (as still allowed by experiments) 
fall off quickly with the altitude, so that they are ever more subdominant than a long-ranged 
Yukawa interaction for satellites orbiting the Earth higher than 500 km. However, they may 
have an impact similar to that of relativistic effects on low-earth satellites; the quadrupole 
acceleration, although less significant, can be of the same order as the perturbations caused 
by Venus and Jupiter.

Finally, figure 6 clearly shows the strong radial dependence of the Yukawa interaction that 
we mentioned throughout this paper. It means that satellites like GOCE and GRACE are not 
affected in the same way by a Yukawa interaction, although other perturbations (leaving apart 
the atmospheric drag) impact both of them in a similar manner. This confirms the possibil-
ity to use two such satellites to constrain a Yukawa interaction in low-earth orbit, as we have 
sketched in section 5.3, or directly through the comparison of their dynamics. This can be 
done by solving Lagrange–Gauss equations, which we will present in a future work.

5.3. Impact of the Earth geometry and mass distribution on the constraints  
on Yukawa parameters

We consider the impact of our imperfect knowledge of the Earth shape and compute an order 
of magnitude estimate of the level of error that we may expect on the estimation of α. In this 
section, we consider that we constrain α for fixed λ (then the α− λ plane can be constrained 
by binning it along λ) and use the estimator (73).

We keep the same Earth model (table 2), where we assume some error on the flattening 
(δf/f = 0.027). In the case of an homogeneous Earth, the estimator’s expected value is given 
by

E(α̂) = α− 5
√

5
2f [k(r1,λ, R⊕)− k(r2,λ, R⊕)]

δf
f
(y20(r1)− y20(r2)) (80)

where we assumed that the ŷ20 measurements are unbiased, and that the model of the flat-
tening is biased by δf . Assuming that α = 2 × 10−8 and λ = 1.2 × 105 m, and that the 
satellites orbit the Earth at 250 km and 2500 km (which allow for the larger difference 
y20(r1)− y20(r2) in the allowed region of the (α, λ) plane—see figure 5), we find a 40% bias 
δα = 8 × 10−9 on the estimation of α. This is a significant bias, that may point to a close 
limitation due to our knowledge of the Earth. However, our homogeneous Earth model is 
deliberately simplistic and implies a large error on the flattening. Since the bias on α scales 
linearly with the relative uncertainty on the flattening, we can expect that better Earth mod-
els (e.g. 2-layer models), with smaller error on the flattening, will have a less significant bias 
on the constraints on α.
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The uncertainty on the α̂ estimator is given (at first order) by

σα =
5
√

5(1 − f )
2f [k(r1,λ, R⊕)− k(r2,λ, R⊕)]

√
ŷ20(r1)− ŷ20(r2)

(1 − f )2

σ2
f

f 2 + 2σ2
y20 (81)

where we assumed σ2
y20(r1) = σ2

y20(r2) and ignored any bias on the flattening, but consider 
some uncertainty σf  on it. As discussed in section 4.2, the uncertainty on the α estimator 
has contributions from the measurement errors and from the uncertainty on the Earth model. 
Figure 7 compares those two contributions. It should be noted that in our simple example, if 
we assume a percent error on the flattening, the y20 measurement errors dominate down to 
σy20 ≈ 10−15. As soon as gravity surveys reach a better precision, then the Earth model will 
limit experiments aiming to constraints a Yukawa interaction.

Since the relative error on the mass of the Earth scales linearly with the relative error on the 
flattening, figure 7 can be used to confirm the crude estimate that we made in section 4.2: with 
σf /f ≈ σM⊕/M⊕ ≈ 10−4, this uncertainty will dominate over the y20 measurement errors as 
soon as the latter are better than 10−17 (in the case presently under consideration, where (α, 
λ)  =  (2 × 10−8, 1.2 × 105 m)).

Figure 6. Comparison of Yukawa interaction perturbation with usual gravitational and 
non-gravitational perturbations, for satellites up to geostationary altitude. Black solid 
lines represent usual perturbations, as can be computed e.g. from [82] (see main text). 
Colored lines show the Yukawa perturbation for two different allowed configurations: 
short-range, relatively strong interaction (blue) and long-range, weak interaction (red); 
solid lines show the acceleration of the Yukawa interaction monopole, and dashed lines 
show the acceleration due to the Yukawa interaction quadrupole. Dotted lines show the 
altitude of GOCE, GRACE, LAGEOS and geostationary satellites from left to right.
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Although the numbers given in this section are meant for rough order-of-magnitude esti-
mates, they show that current experiments are not yet limited by our ability to reliably model 
the Earth.

6. Conclusion

We have investigated the entanglement between the shape of the Earth and modified gravity. 
Describing deviations to Newtonian gravity with a Yukawa interaction, we showed that the 
Earth gravitational field potential can still be expanded in spherical harmonics, just like in 
the pure Newtonian realm. We derived explicit expressions for the spherical harmonic coef-
ficients, that we used to compute the (modified) gravity acceleration. We finally considered 
the Lagrange–Gauss equations, that describe the effect of a perturbing force on a satellite’s 
orbital dynamics, in the case where the Yukawa interaction is sourced by the complex shape of 
the Earth. To perform those calculations, we introduced a new method to compute a multipo-
lar decomposition of the gravity acceleration with spin-weighted spherical harmonics, which 
greatly simplifies the required algebra.

We showed that although formally the coefficients of the spherical harmonic expansion 
keep the same form as in the Newtonian case, they acquire a new meaning and are not univer-
sal to the Earth system anymore, since they become explicitly dependent on the distance from 
the centre of the Earth. Consequently, the gravitational acceleration and the perturbing force 
due to the shape of the Earth also acquire a new radial dependence.

This behavior has many implications both in geodesy and in modified gravity experiments:

 •  in presence of a non-zero Yukawa interaction, measurements of the Earth gravitational 
field performed at different altitudes inevitably provide inconsistent results (up to meas-
urement errors).

 •  in presence of a non-zero Yukawa interaction, using a Newtonian gravity model to map 
the Earth mass distribution by inverting the spherical harmonic coefficients measured for 
the gravitational field is prone to be biased; using a prior on modified gravity, considered 

Figure 7. Contribution to the α̂ estimator variance of the relative error on the modeled 
Earth flattening and of measurement error on y20, for λ = 1.2 × 105 m.
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as a systematic error, should help to minimise the bias, although the uncertainty on the 
mass distribution estimator will increase.

 •  Earth-model-dependent measurements of a Yukawa interaction are inevitably affected by 
any bias or uncertainty on the Earth model (e.g. coming from geodesy data). Model-
independent estimators might be constructed but require that gravity surveys go beyond 
the implicit assumption that the underlying field is Newtonian.

 •  even experiments that rely only on the measured Earth gravitational field (with no need 
to detail its source) are prone to errors if they are performed at an altitude different from 
that where the gravitational field was measured.

We proposed to combine gravitational surveys to define a new estimator of the Yukawa 
interaction strength α. Taking advantage of the radial dependence of the spherical harmonic 
coefficients in presence of a Yukawa interaction, we can simply take the difference of the 
values of a given coefficient as measured by two satellites at different altitude. We discussed 
the limitations caused by our imperfect knowledge of the Earth. Despite a significant bias in 
α if the model of the Earth is too simplistic, we found that we can increase the instrumental 
precision by several orders of magnitude before being limited by our knowledge of the Earth. 
However, we restrained from deriving new constraints on the Yukawa interaction from the 
strong tension in the J2 zonal term as measured by GOCE and GRACE, since we find it dubi-
ous and its most probable cause is underestimated measurement errors.

Although the limitations listed above seem profound, we showed that they are subdominant 
compared to other usual gravitational and non-gravitational perturbations. We based our con-
clusion on order-of-magnitude estimates using a simple Earth model and taking into account 
those values of the Yukawa interaction that are still allowed by experiments but that give the 
strongest effects. For instance, the strength of the perturbation imparted by the coupling of the 
Earth quadrupole with a Yukawa interaction on a satellite is smaller than that due to Jupiter. 
Very-low-altitude satellites could be affected by a mid-range, still undetected Yukawa interac-
tion, at the level of usual relativistic effects (which should obviously be corrected for before 
one can detect and characterize a Yukawa interaction). Thus, it is from low-altitude experi-
ments that it seems most likely to improve our knowledge about a possible Yukawa interac-
tion, provided that the atmospheric drag can be correctly taken into account (e.g. through a 
drag-free system).

We can therefore expect that although we should rigorously take into account the com-
plex shape of the Earth when constraining modified gravity in orbit, especially for experi-
ments performed in a low-Earth orbit, considering the Earth as a sphere remains a very good 
approximation for high-altitude satellites. Nevertheless, it would be sound to gather geodesy 
and modified gravity to minimise any modeling limitation. This can be done by perform-
ing geodesy experiments with modified gravity in mind (i.e. using a beyond-Newton gravity 
model), or even by designing experiments aiming to measure the shape of the Earth and modi-
fied gravity simultaneously.
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Appendix A. Multipolar coefficients yl0(r) for a layered Earth

The y�m coefficients are defined in equation (11) and have two components given in equa-
tions (8) and (9). Introducing the term qY

�m such that

yY
�m(r) ≡

α

M⊕

( r
λ

)�+ 1
2

K�+ 1
2

( r
λ

)
qY
�m

and making explicit the volume integral in spherical coordinates (we detail the computation 
only for yY

�m since the one of yN
�m derives trivially from it), we write

qY
�m =

∫ 2π

0
dξ

∫ π

0
dθ sin θY∗

�m(θ, ξ)QY
� (θ, ξ) (A.1)

with

QY
� (θ, ξ) ≡

∫ R(θ,ξ)

0
dsρ(s, θ, ξ)

s�+2

R�
⊕

(
λ

s

)�+ 1
2

I�+ 1
2

( s
λ

)
. (A.2)

Then, we introduce the function

φ�(x, k) = 2−�− 3
2 x�+3 Γ

(
�+3
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)

Γ
(
�+ 3

2
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Γ
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2
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,
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2
;

k2x2

4

)
,

 

(A.3)

where Γ is the Gamma function and 1F2 is a generalised hypergeometric function. We note 
that (see appendix B for an explicit proof)

∫ b

a
dxx�+2

(
λ

R⊕x

)�+ 1
2

I�+ 1
2

(
R⊕x
λ

)
= φ�

(
b,

R⊕
λ

)
− φ�

(
a,

R⊕
λ

)
, (A.4)

and letting x = s/R⊕, equation (A.2) becomes

QY
� (θ, ξ) = R3

⊕

N∑

i=1

[
φ�

(
Ri(θ, ξ)

R⊕
,

R⊕
λ

)
− φ�

(
Ri−1(θ, ξ)

R⊕
,

R⊕
λ

)]
. (A.5)

We now further assume that the Earth is made of N concentric, homogeneous ellipsoi-
dal, rotationally symmetric layers. Noting fi = (Req,i − Rpole,i)/Req,i the ith layer’s flattening, 
where Req,i and Rpole,i are its equatorial and polar radiuses, we get

Ri(θ, ξ) =
Req,i(1 − fi)√

1 − (2fi − f 2
i ) sin

2 θ
. (A.6)

Under the rotational symmetry assumption, y�m = 0 for all m �= 0, and

yN
�0 =

2π√
2�+ 1(�+ 3)M⊕

∫ π

0
dθ sin θP�0(cos θ)R3

⊕

×
N∑
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−
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2 θ




�+3



 (A.7)
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and

yY
�0(r) =

2πα
M⊕
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 (A.8)
where P�0(cos θ) is an associated Legendre polynomial.

Appendix B. Proof of equation (A.4)

We wish to compute

H ≡
∫ b

a
xn+2

(
λ

R⊕x

)n+ 1
2

In+ 1
2

(
R⊕x
λ

)
dx. (B.1)

Let us first introduce the new variables k = R⊕/λ and y  =  kx, such that

H = k−n−3
∫ bk

ak
y3/2In+ 1

2
(y)dy. (B.2)

We then define

φ�(x, k) = k−n−3
∫ kx

0
y3/2In+ 1

2
(y)dy (B.3)

such that H = φ�(b, k)− φ�(a, k). Using [92]

Iα(x) =

( x
2

)α
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4
), (B.4)

where 0F1() is the confluent hypergeometric limit function, and setting u = y
kx, we get
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An extra change of variable v = u2 provides
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Finally, using [92]

A+1FB+1(a1, . . . , aA, c; b1, . . . , bB, d; z)

=
Γ(d)

Γ(c)Γ(d − c)

∫ 1

0
tc−1(1 − t)(d−c−1)

AFB(a1, . . . , aA; b1, . . . , bB; tz)dt,
 (B.7)

we obtain
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,
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2
;

k2x2

4

)
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(B.8)

which proves equation (A.4).
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Appendix C. Form factors

This appendix discusses some aspects of the form factors introduced in section 3 for a homo-
geneous, rotationally symmetric ellipsoid of flatness f and equatorial radius RE

Φ(x, f ) = 3
x cosh(x)− sinh(x)

x3 − sinh x
x

f (C.1)

Φ2(x) = 3
x cosh(x)−

(
x2/3 + 1

)
sinh(x)

x5 . (C.2)

They are shown in figure C1, as a function of RE/λ. The left panel shows Φ(RE/λ, f ) for 
three different flatnesses, and the right panel shows Φ2(RE/λ). For long-range interactions 
(RE/λ → 0), both function tend to a finite limit: Φ(RE/λ, f ) → 1 − f  and Φ2(RE/λ) → −1/15. 
In this case, the form factor does not play a role in the monopole acceleration (up to the flat-
ness), but it limits the quadrupole acceleration. Short-range interactions are more strongly 
affected by those form factors, highlighting the fact that Gauss theorem does not apply to 
a Yukawa interaction. In particular, for λ ∼ 0.1RE , the Yukawa monopole acceleration is 
boosted by two orders of magnitude, meaning that it does not scale naively as αgNewton, but 
as 100αgNewton. Therefore, correctly taking this form factor into account is important to get 
correct constraints on the Yukawa interaction.
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Chapter conclusion

The MICROSCOPE results provided new bounds on the existence of many
models of unscreened scalar massless or massive field. For massive fields, those
constraints have been obtained by assuming some models for the Earth’s mass dis-
tribution. Going beyond those models suffers from degeneracy as this distribution
is only known via the measurement of the gravity fields variation. We proposed
a way of breaking this degeneracy by performing gravitational experiments at
different altitudes.
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Chapter 4

Modelling the chameleon field in
an experiment

While constraining unscreened scalar fields with MICROSCOPE’s results is pretty
straightforward, the case of the chameleon field is more tricky. Unlike the cases developed
in the previous chapter, this is due to the fact that the gravitational effects of the satellite
and of the measurement device and the possible interaction between the test masses
might no longer be negligible.

As discussed in Chapter 2 the screening mechanism is the reason to this. The high
density material constituting both the satellite and the means of measure are indeed
to be considered when solving the field’s Klein-Gordon equation Eq. (2.51). In the
same way, MICROSCOPE’s test being performed with extended bodies, their influence
on the chameleon’s dynamics is also to be considered. This latter point is central, as
we concluded from the previous discussion in Sec. 2.3.4 that this is this effect that can
create an apparent WEP violation in the case of a universally coupled chameleon through
different screening factors. Note that moreover the chameleon theory being non-linear
it does not verify the superposition principle. As a consequence these effects cannot be
treated as perturbations. Evaluating those contributions is a complex problem due to
the non-linearities of the equation and the lack of symmetries in the realistic geometrical
configuration.

Two kinds of effects are expected in the MICROSCOPE experiment. The first one,
similar to the case of a Yukawa interaction explored in the previous chapter, is a force
created by a source of the chameleon field placed at the exterior of the experiment. The
Earth – that MICROSCOPE is orbiting – is for such an effect playing the role of the main
source for the field. The question is thus to consider the chameleon interaction of both
test masses with it. Such an effect requires the satellite not to be completely screened,
as otherwise the walls of the satellite would suppress the force. Instead the satellite
needs to be only partially screened and the satellite influence is limited. The field must
not nonetheless be in a regime in which the screening is too weak. As otherwise this
would mean that the coupling to matter is too loose such that one would expect the
force created by the Earth to be too small. In any case this effect is difficult to evaluate.
One needs to model at the same time the influence of the Earth and the satellite. Due
to the lack of symmetry, this is a 3D problem for which an analytic solution is difficult
to find and a numerical solution is very costly in computing resources.

The second effect that could occur is sourced by the inside of the satellite. Such
an effect arises from the distribution of matter in the satellite and thus depends on the
geometry of the experiment. An asymmetry in this geometry could cause the field to
propagate in a way that each element of a test mass volume would unevenly be pulled.
Such an asymmetry can for instance be caused by wisely placing a big ball of heavy
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matter inside the experiment, such that its influence on the field would be consequent.
The MICROSCOPE mission has not been designed to maximise such asymmetry. On
the contrary, its design has a cylindrical symmetry. This symmetry can be broken by the
movement of the test masses, leading the cylinder to no longer be coaxial respectively
to the others. But this motion is controlled by the servo-control loop. This system is so
efficient that the displacement of the test masses as compared with their centred posi-
tion is less than a micron, such effect is thus not expected during WEP tests sessions.
However during the mission, measurement sessions have been dedicated by imposing
a sinusoidal motion to the test masses via the electrostatic forces. The goal of these
sessions was to measure the electrostatic stiffness inherent to the capacitive measure-
ment system. This stiffness has been presented previously with the idealised model in
Eq. (1.30). When interpreting these sessions, more realistic models are considered to
compute the expected values for the stiffness. Nonetheless a discrepancy has been mea-
sured between the expected and measured values. This represents an opportunity to test
the chameleon theory as a chameleonic force is expected to appear in this asymmetric
configuration. Putting constraints on the chameleon using this measurement requires us
to finely understand how the fields propagate inside the experiment.

It is important to note that these effects are not to be treated separately as they
might take place at the same time. In the case where the MICROSCOPE satellite is
screened, one would nevertheless expect only the latter. Note also that the chameleon
articles by Khoury & Weltman [60, 59] studied the possibility of a WEP violation in
space-borne experiments. They considered it through the interaction of the two test
masses. But their model does not take into account the effects of the matter present
in between the test masses e.g. the electrodes cylinders in MICROSCOPE. Besides, to
obtain a WEP violation they treat the case of a non-universal coupling of the chameleon
field. Such model could exist but it would not be comparable with the current constraint
that has been presented in Sec. 2.3.6. The work presented in this chapter aims to study
only universal coupling effects in MICROSCOPE.

This chapter intends to model the propagation of the chameleon field in an experi-
ment such as MICROSCOPE. It is organised around two articles. The first one focuses
on symmetrical geometries and aims to study the range of chameleon parameters at
which MICROSCOPE is screened. To that end, an effort is done to solve the field
numerically with as few approximations as possible in the chameleon’s Klein-Gordon
equation and a particular care on the way of posing boundary conditions of the prob-
lem. This way, we verify the literature’s criterion for screening that were based mainly
on approximated analytic models. In the second article, we explore the effect of non-
coaxiality in nested-cylinders-like geometries. We find a way of treating this 2D problem
at 1D. We find that to small displacement of a cylinder the chameleonic force behaves
as a destabilising stiffness. We study the properties of this force.

Note that in the articles we denote the chameleon conformal function Apφq while we
have denoted it Ωpφq in Chapter 2.

4.1 Symmetrical set-ups

4.1.1 Introduction and summary

The central thread of this article is to evaluate the influence of a system of matter –
that can correspond to a satellite – on the dynamics of the chameleon field. We consider
a background environment of low density in which we embed a matter system. We
consider symmetrical geometries. We start considering 1D situations, as the structure
of the Klein-Gordon in this case allows us to integrate once the equation on the exterior
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of the system. This provides a condition on the first derivative at some place that
leads the field to evolve at infinity to the minimum of the potential in the background
environment such that it verifies strictly the boundary conditions of the field. We choose
this place to be the boundary of the considered system and we use it as the initial point
of a numerical integration. Having obtained this condition, the value of the field at this
place is still a free parameter that we impose by a shooting method in such a way that
the solution we obtain in the system is consistent with what is expected. For instance
we expect the field derivative to cancel at the center of the system as justified by the
symmetry.

From this method we obtain the exact numerical profiles of the chameleon field
associated to the configuration of a single wall of a given thickness and of a pair of walls
separated by vacuum of the same type than the background environment. We analyse
those profiles to verify the aspects of screening that have been addressed in Chapter 2. In
the first case, by solving the field for different wall thicknesses we measure the difference
between the effective minimal value reached by the field in the wall and the value that
minimises its potential. We conclude that we can safely consider the wall to be screened
for a thickness greater than 100 times the Compton wavelength of the field associated
to its constituting matter. We also analyse the range of influence of a wall depending
on its thickness. Of course if the wall is screened it has a farer influence, but at most
its influence can be considered as null for distances to the wall greater than 10 times
the Compton wavelength associated to the background environment. This confirms the
exponential suppression behaviour of the field.

Having verified this latter behaviour, we then explore 2D and 3D configurations. We
cannot use the same procedure as the 1D case because the structure of the Klein-Gordon
no longer permits a first integration. But knowing now that we can safely set boundary
conditions at finite distance of the system, this gives the opportunity of proceeding to
a shooting method. We choose the center of the system to set the initial condition of
a numerical integration as we know the derivative cancels by symmetry. Then we act
by dichotomy on the initial value of the field to obtain the field that verifies the proper
boundary conditions at some large distance from the system. The result of the method
in 1D is very good agreement with the previous. From this method we obtain the field
profile for a cylindrical and spherical vacuum cavity and the profile of a spherical ball.

We use all these profiles to check several points of the chameleon’s literature. First
we study the profile inside both types of cavities and verify the expected value of the field
at its centre that was given by Eq. (2.66). We find that this criterion only gives a rough
order of magnitude. We then verify the Casimir-like force that appears between two
plates. We found a very good agreement at small separation d and slight divergence at
large separation. We find that the d�4 behaviour of the force at intermediate separation
is only an approximation of a smoother curve. We also verify the Khoury & Weltman’s
profile of a spherical ball [59].

Finally we come back to MICROSCOPE and solve the field for coaxial nested cylin-
ders. Because of the cylindrical symmetry no force is expected on any cylinder. The
occurrence of an externally sourced force is studied. The screening criterion provides the
region of the chameleon’s parameter space on which the experiment is screened. This
reveals that the MICROCOPE mission is not competitive with the current bounds. In
the unscreened region a force could appear but its quantification is beyond the scope of
this article as it requires a 3D treatment. A method has been explored to answer this
problem but without any conclusive success as will be addressed in Sec. 4.3.

4.1.2 Article
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In this article we investigate the profile of the scalar field of a scalar-tensor theory subject to the
chameleon mechanism in the context of gravity space missions like the MICROSCOPE experiment. We
analyze the experimental situations for models with an inverse power-law potential that can in principle
induce a fifth force inside the satellite, and hence either be detected or constrained. As the mass of the scalar
field depends on the local matter density, the screening of the scalar field depends crucially on both the
parameters of the theory (potential and nonminimal coupling to matter) and the geometry of the satellite.
We calculate the profile of the scalar field in one-, two- and three-dimensional satellite configurations
without relying on the thick- or thin-shell approximations for the scalar field. In particular, we consider
the typical geometry with nested cylinders which is close to the MICROSCOPE design. In this case we
evaluate the corresponding fifth force on a test body inside the satellite. This analysis clarifies previous
claims on the detectability of the chameleon force by space-borne experiments.
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I. INTRODUCTION

General relativity (GR) has successfully passed all
experimental tests from the Solar System scale [1] to
cosmology [2], including the recent confirmation of the
existence and properties of gravitational waves [3,4].
However, GR has to be endowed with a dark sector
(including dark matter and a cosmological constant) to
provide a cosmological model consistent with observations
[5,6]. The absence of convincing models for the dark sector
has revived the interest for gravity theories beyond GR
[1,7]. These theories introduce new degrees of freedom, the
effects of which need to be suppressed on small scales,
although they may play an important role on cosmological
scales.
The simplest extension of GR posits the existence of a

nonminimally coupled scalar field. Such a theory, with only
one extra degree of freedom, involves at least two free
functions (a potential and a universal coupling function
when enforcing the weak equivalence principle). These
scalar-tensor theories are currently well constrained from
local scales observations [1,8] to cosmology [9,10]. When
the potential and the coupling function enjoy the same
minimum these theories can exhibit a cosmological attrac-
tion mechanism toward GR in such a way that they are
in agreement with local experimental constraints [11].

The new degree of freedom can then be considered as a
valid dark-energy candidate [12].
On small scales, the scalar field is responsible for a fifth

force that has to be shielded in order to pass existing
experimental tests. Several screening mechanisms have
been proposed in the case of scalar-tensor theories, includ-
ing the least coupling principle [13], the symmetron [14],
and the chameleon mechanism [15,16]. The latter model
assumes that the coupling and potential functions do not
have the same minimum. It follows that the minimum of the
effective potential depends on the local density of matter.
Hence, in high-density environments, the field is heavier
and the fifth force may have a range that is too small to be
detected, while in low-density environments the fifth force
can be long ranged.
Local gravity experiments on the existence of a fifth

force already provide strong constraints on the existence
of the chameleon field [17,18] (see Sec. VI D). The main
bounds typically come from atom interferometry [19,20],
Casimir effect measurements [21], or torsion balance
experiments to detect short-scale forces [22]. Other efforts
could lead to new advances by improving sensitivity or by
imagining more original signatures [23]. It was originally
expected [15,16] that space-based experiments could be
highly competitive, as they would be performed in a lower-
density environment.
However, all of these experiments suffer from the

problem that their setups can screen the fifth force. The*martin.pernot_borras@onera.fr

PHYSICAL REVIEW D 100, 084006 (2019)

2470-0010=2019=100(8)=084006(15) 084006-1 © 2019 American Physical Society

110 TESTING GRAVITY IN SPACE

CHAPTER 4. MODELLING THE CHAMELEON FIELD IN AN EXPERIMENT 110



recent results on the test of the weak equivalence principle by
the MICROSCOPE mission [24] orbiting the Earth have
long been expected to provide new constraints on chameleon
theories (as argued in Refs. [15,16]). In this experiment,
even with a universal coupling, the proof masses can show
different screenings of the field, leading to different accel-
erations. As a consequence, one would expect the equiv-
alence principle to be violated for macroscopic extended
objects, while it still holds at the fundamental level. The
question is thus to determine how screened the chameleon
field is at the level of a proof mass under the influence of the
geometry of a given experiment, a study that has not been
performed so far and for which this article is a first step. This
is an intricate problem as the distribution of matter is often
complex and the chameleon’s dynamics is highly nonlinear.
Most of the experiments cited above typically consist of a
vacuum cavity enclosed in a shield that can contain
experimental devices, such as electrodes or test masses.
As these test masses are extended bodies, they must be taken
into account in the profile of the field when computing the
force they experience.
Two kinds of effects are expected depending on whether

a cavity can be considered isolated or not. On the one hand,
in the so-called “thin-shell” regime, the field inside the
cavity is decoupled from the exterior since the cavity walls
exponentially damp the field on a scale smaller than their
thickness; in this case, the force applied to a test mass inside
the cavity is local and is mostly determined by the structure
and geometry of the cavity. On the other hand, in the so-
called “thick-shell” regime, the exterior field can penetrate
the cavity as it is marginally influenced by the matter
constituting the cavity. The limit between these two
regimes depends on the model parameters and the geometry
of the experiments. In this article, we shall investigate these
two dependences and compute the force exerted on a test
mass in different settings.
To this end, we must determine the chameleon profile

inside the experiment. This is a complex problem mostly
because of the structure of the boundary conditions and the
attraction of the profile toward a fixed point. It has been
addressed in various ways in the literature. Analytic models
suffer from the nonlinearities of the chameleon equation;
to overcome them, the Klein-Gordon equation is often
approximated by neglecting some terms or by linearizing
the chameleon potential [16,21,25–32]. Numerical models
[22,33–36] suffer from the limited resources they have,
leading to solving the equation in a bounded region, setting
the boundary conditions at a finite distance, or neglecting
some short-scale variations of the field. Besides the fact that
this last point may lead to an incorrect field even where the
field varies slowly, this is very problematic for experiments
using extended test masses. Short-scale variations are
indeed more likely to happen in matter, impacting the very
gradient responsible for the force that is being measured.
This caveat is also encountered in analytic approaches.

This article overcomes these approximations. We tackle
the problem numerically and consider all of the terms in the
chameleon equation. To comply with the necessity to set
boundary conditions at infinity, we consider a low-density
background environment in which we embed a high-
density system whose complexity increases throughout
the paper. Our final goal is to approach the concentric-
cylinder geometry of the MICROSCOPE instrument [24].
Although we restrict ourselves to static configurations with
symmetries that are simpler than those in realistic cases,
this paper will pave the way to further studies that include
asymmetries and dynamics. We should note that most
configurations studied in this article have already been
partly explored in the literature, whether in specific regimes
or with assumed boundary conditions. Here we investigate
general profiles to clarify the boundary condition problem
and to infer robust criteria to legitimize the approximations
encountered in the literature.
This article is organized as follows. The first part of the

paper focuses on one-dimensional (1D) geometries. In
Sec. II, we discuss the dynamics of the chameleon field,
paying particular attention to the role of boundary con-
ditions. In Sec. III we analyze the case of an infinite wall,
and in Sec. IV we consider the case of a one-dimensional
cavity. Following these 1D configurations, we explore two-
dimensional (2D) and three-dimensional (3D) symmetrical
configurations in Sec. V. Finally, in Sec. VI we notice that
the exact numerical integration of the field profile in a
cavity leads to discrepancies with the analytic approxima-
tions used to evaluate the Casimir pressure induced by
the chameleon field. We also consider the effect of the
chameleon force on the motion of atoms in a cavity
and the corresponding drift time, which could serve as a
testing ground for such models. Finally, we present the
field profile in nested cylindrical configurations close
to the MICROSCOPE setting as a first step toward a
more thorough investigation of the constraints from
MICROSCOPE on chameleons, which is left for future
work. We conclude in Sec. VII.

II. THE CHAMELEON’S PROFILE
AND INITIAL CONDITIONS

A. Theoretical model

The chameleon mechanism is given in the Einstein
frame by

S ¼
Z

dx4
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
∂μ∂μϕ − VðϕÞ

�

−
Z

d4xLmðg̃μν;ψmatter;…Þ; ð1Þ

where ϕ is the chameleon field, V is its potential, MPl is
the reduced Planck mass, R is the Ricci scalar, gμν is
the Einstein frame metric, g is its determinant, andLm is the
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matter Lagrangian with ψmatter the matter fields. The field
couples nonminimally to matter through the Jordan frame
g̃μν ¼ A2ðϕÞgμν,whereA is a universal coupling function.We
define the dimensionless coupling constant β ¼ MPl

dlnA
dϕ . The

field could have different coupling functions for each com-
ponent of matter, but here we restrict to a universal coupling.
For static configurations of nonrelativistic matter, the

field follows the Klein-Gordon equation

∇2ϕ ¼ Veff;ϕ ≡ V;ϕ þ
β

MPl
ρmat; ð2Þ

where ρmat is the mass density function. For nonstatic
configurations, the Laplacian would be a d’Alembertian.
We use the Ratra-Peebles inverse power-law potential of
energy scale Λ and exponent n [17,37] as a typical example
of a chameleon model,

VðϕÞ ¼ Λ4

�
1þ Λn

ϕn

�
: ð3Þ

The effective potential Veff has a minimum given by

ϕminðρmatÞ ¼
�
MPl

nΛnþ4

βρmat

� 1
nþ1

: ð4Þ

It plays a central role in the chameleon dynamics.
We recall that in a medium with constant density, the

field is expected to relax exponentially to the minimum of
its potential. It varies on a typical scale of the order of its
local Compton wavelength,

λcðρmatÞ≡m−1ðρmatÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V 00
effðϕminÞ

p ; ð5Þ

which is explicitly given, in the models considered in this
article, by

λcðρmatÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nðnþ 1ÞΛnþ4

�
nMPlΛnþ4

βρmat

�nþ2
nþ1

s
: ð6Þ

The fifth force induced by the coupling to the chameleon
field on a test point mass is proportional to the gradient of
the scalar field and given by

F⃗ ¼ −
β

MPl
mtest∇⃗ϕ: ð7Þ

Nevertheless an extended body cannot a priori be consid-
ered as a test body since its own matter density impacts
the field profile inside and outside its volume. Hence, to
properly evaluate the force one needs to solve consistently
for the field profile including the extended body and
integrate this force over the whole volume of the body.
In what follows, it is convenient to rewrite the chame-

leon’s Klein-Gordon equation (2) in terms of ϕmin as

∇2ϕ ¼ nΛnþ4

�
1

ϕnþ1
min ðρmatÞ

−
1

ϕnþ1

�
; ð8Þ

where the dependence on the local mass density is now
contained in ϕmin.
If we consider a region of space with local density ρvac

that is large compared to the corresponding chameleon’s
Compton wavelength and far from any perturbing body,
we can assume that the field is uniform with a value
ϕvac ¼ ϕminðρvacÞ. We shall now study the way a one-
dimensional material structure affects this uniform profile
as experiencing the different ϕmin associated to the different
environments the field should depart from ϕvac.

B. Initial conditions in one dimension

The chameleon profile is a solution to a boundary value
problem. Given the previous discussion, the field shall relax
to its minimum value in the external space, such that8<

:
ϕ⟶

x→þ=−∞
ϕminðρvacÞ;

ϕ0⟶
x→þ=−∞

0:
ð9Þ

Such a boundaryvalue problemcanbe solved using finite-
difference methods. However, due to the finite extent of
computational memory we cannot set boundary conditions
at infinity. We then need to set the boundary conditions at
a finite distance from the considered object, and make a
compromise between computational memory limits and the
distance at which we can consider that the gap between the
value that the field takes and ϕvac becomes negligible.
The Compton wavelength in vacuum λc;vac is an estimate
of this distance [16,17]. This is an approximate criterion; a
more accurate onewill be determined in the following by the
direct integration of an initial value problem.
Initial conditions cannot be chosen to be at ϕvac with a

null derivative. To understand this we must note the key
role played by ϕmin as a fixed point of the theory. One can
check that for n > 0 we have

d2ϕ
dx2

8>><
>>:

> 0 if ϕ > ϕmin;

¼ 0 if ϕ ¼ ϕmin;

< 0 if ϕ < ϕmin;

ð10Þ

so that the field derivative increases (decreases) for ϕ >
ϕmin (ϕ < ϕmin). For ϕ ¼ ϕmin, the field’s derivative will
not vary.
Hence, if we choose the initial conditions ϕ0

i ¼ 0, as in
Fig. 1, the field will diverge monotonically toward þ∞ or
−∞ at large x, for an initial value ϕi > ϕmin or ϕi < ϕmin,
respectively. For an initial value ϕi ¼ ϕmin, since ϕmin is a
fixed point the field remains constant.
If we choose ϕ0

i ≠ 0, the considerations in Eq. (10) do not
change and theϕ0 evolution remains the same. Nevertheless,
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the field evolution will no longer be monotonic and will
eventually show maxima and minima. In the case where
ϕi > ϕmin, if ϕ0

i > 0, the field will diverge more rapidly than
if ϕ0

i ¼ 0, if ϕi < 0, new behaviors will occur. The different
possible evolutions for ϕ0

i ≠ 0 are sketched in Fig. 2. For
small values of jϕ0

ij, the field does not have enough “speed”
to reach ϕmin, and thus it will reach a minimum and then
diverge. For high values of jϕ0

ij, the field can reach ϕmin.
When crossing ϕmin, ϕ0 will still be negative, but as we now
have ϕ < ϕmin it will decrease and make the field diverge
negatively. For a given ϕi, there is only one value of ϕ0

i (in
between these two behaviors) that will cause ϕ0 to vanish
precisely when the field reachesϕmin. In this case,ϕi is fixed
by the considered matter distribution.
Note that the case where ϕi < ϕmin is completely

symmetric with the case where ϕi > ϕmin, as shown by
the light grey curves in Fig. 2.
In 1D, the problem can be treated relatively easily. The

chameleon equation can indeed be integrated once, from

infinity—where boundary conditions are verified—to the
place we want to set the initial conditions. This gives a
condition on ϕ0

i in terms of ϕi,

1

2
ϕ02
i ¼ n

ϕnþ1
vac

ðϕi − ϕvacÞ þ
�

1

ϕn
i
−

1

ϕn
vac

�
: ð11Þ

This leaves us with only one initial parameter to deal
with. We can use shooting methods, varying ϕi to obtain
the proper solution for the considered configuration.

III. EFFECT OF AN INFINITE WALL ON THE
CHAMELEON’S DYNAMICS

A. An interface between two infinite domains

As a first step, we consider the simple case of an
interface between two infinitely extended domains of
different densities, for instance, a high-density wall and
a low-density vacuum of density ρwall and ρvac, respectively.
Far from the interface, the field will tend toward the

value that minimizes the potential in each environment:
ϕwall and ϕvac, respectively. Note that Eq. (4) implies
ϕvac > ϕwall. In between, the field will evolve smoothly
and cross the interface with a value ϕI and a continuous
derivative, with ϕwall < ϕI < ϕvac. To solve for the profile
numerically, we set the initial conditions at this interface. In
the wall since ϕI > ϕwall, the profile is analogous to the
case shown by the black line that asymptotically tends
toward ϕmin in Fig. 2. In the other domain, the symmetric
dotted line is more relevant, as now ϕI < ϕvac.
In this configuration, no shooting methods are required.

This is because the asymptotic conditions on both sides of
the interface give two different conditions [equivalent to
Eq. (11)] on ϕI and ϕ0

I, given by

1

2
ϕ02
I ¼ n

ϕnþ1
vac

ðϕI − ϕvacÞ þ
�

1

ϕn
I
−

1

ϕn
vac

�
; ð12Þ

1

2
ϕ02
I ¼ n

ϕnþ1
wall

ðϕI − ϕwallÞ þ
�

1

ϕn
I
−

1

ϕn
wall

�
: ð13Þ

Combining these two equations givesϕI andϕ0
I in terms of

ϕwall and ϕvac. We can then integrate numerically in both
domains.Figure3depicts sucha solutionwith the interfaceat
x ¼ 0. Note that for this profile and for every other profile
computed in the following, if not stated otherwise, we
consider the case where n ¼ 2, β ¼ 1, Λ ¼ 1 eV, ρwall ¼
8.125 g cm−3, and ρvac ¼ 10−3ρwall (ϕvac ¼ 10ϕwall for
n ¼ 2). In each domain, the field reaches the corresponding
minimumof its potentialwithin scales given by theCompton
wavelength λcðρmatÞ. For the set of parameters and densities
considered throughout the article, we have λc;vac ≃ 2 m
and λc;wall ≃ 0.02 m. Note that for the sake of clarity,
we chose ρvac and ρwall values that are not vastly different.
Formore realistic vacuumcavities,ρvac ¼ 10−15ρwall, imply-
ing a more significant difference between λc;vac and λc;wall.

FIG. 1. Sketch of the field profiles for null initial derivatives:
ϕ0
i ¼ 0. Different behaviors are obtained depending on the

magnitude of ϕi compared to ϕmin.

FIG. 2. Sketch of the field profiles for nonzero initial deriv-
atives: ϕ0

i ≠ 0. Different behaviors (each line) are obtained
depending on the magnitude and sign of ϕ0

i. Grey lines corre-
spond to ϕi < ϕmin.
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B. A single wall

We then consider a single wall of uniform density
embedded in the low-density background environment.
we denote its thickness by e. On both sides of the wall, the
field will evolve similarly as in the previous section. We set
the initial conditions on one of the borders of the wall, say,
on the right side. We denote them by ϕe and ϕ0

e. By
symmetry, the field value will be the same on the other
border of the wall, with a derivative of opposite sign. As in
the previous section, we know that ϕwall < ϕe < ϕvac with
ϕe

0 > 0, and by direct integration the boundary conditions
give a condition on ϕ0

e in terms of ϕe,

ϕ0
e ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
n

ϕnþ1
vac

ðϕe − ϕvacÞ þ
�
1

ϕn
e
−

1

ϕn
vac

��s
; ð14Þ

where we choose the positive sign in this case.
If we look toward the wall, the initial field derivative ϕe

0
will look negative. As ϕe > ϕwall, the field will be similar to
the black line that shows a minimum in Fig. 2. The field
will then evolve from ϕe to a minimum value reached at the
center of the wall. The scale of this evolution will depend
on the magnitude of ϕe. Consequently, there is a one-to-one
mapping between e and ϕe: the larger the value of ϕe, the
smaller the value of e.
Figure 4 depicts the numerical integration of a series of

profiles for different values of e. Dotted lines delimit the
frontiers of the considered wall. As expected, the thicker
the wall gets, the more space the field has to evolve inside
the wall, so the closer it gets to ϕwall.

1. ϕeðeÞ relation
To compute the profile associated with any wall thick-

ness we need to determine the relation ϕeðeÞ, which can be

obtained by a shooting method. Figure 5 shows an example
of such a relation for our fiducial parameters (n, β, Λ), and
ϕwall, ϕvac.
This figure shows that a limited range for ϕe ∈ ½ϕI;ϕvac�

realizes all possible value of e ∈ Rþ. The bounds of this
range are given by two limiting regimes:

(i) ϕvac corresponds to the limiting case where the wall
becomes infinitely thin and represents a very tiny
perturbation to the background field.

(ii) ϕI corresponds to the other limiting case where the
field tends to reach ϕwall at the center of the wall: we
say that the field is completely screened inside the
wall. The profile can be seen as two concatenated
profiles of the case in Sec. III A, which explains the
value ϕI as the lower boundary. This behavior is
consistent with the fact that the field is exponentially

FIG. 3. Example of field profiles with an interface at x ¼ 0.
ϕmin values are shown with the two dashed lines. The grey zone is
the higher density domain.

FIG. 4. Field profiles for different wall thicknesses e. The two
values of ϕmin are shown by the two dashed lines. Dotted lines
show the extent of the walls.

FIG. 5. Example of the relation ϕeðeÞ. The black lines denote ϕI
and ϕvac.
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suppressed in the wall on scales of the Compton
wavelength λc;wall in the wall.

2. ϕeðeÞ’s dependence on Λ and β

ϕI and ϕvac depend on Λ and β in such a way that the
interval ½ϕI;ϕvac� spreads or shrinks. It spreads logarithmi-
cally with Λ and shrinks logarithmically with β. Figure 6
shows how the ϕeðeÞ relation depends on Λ. Here the
interval ½ϕI;ϕvac� is normalized to the interval [0, 1].
This figure shows that when varying Λ, the ϕeðeÞ

relations have the same slope, but are just shifted on the
e axis. The dependence on β is similar, albeit in the
opposite direction. To understand this variation, we can
choose a specific value in the ½ϕI;ϕvac� interval, say,
ϕe−ϕI
ϕvac−ϕI

¼ 0.5, and see how e varies with Λ and β. We
can fit this variation as

eðΛ; βÞ ¼ A × Λ × β−
2
3; ð15Þ

where A is a coefficient that depends in a nontrivial way
on ρwall and ρvac. In the cases considered in this figure,
A ¼ 2.15 × 10−3 meV−1.

3. Screening of the wall

As mentioned before, when the wall gets thicker, it gets
screened so that the field tends to the value that minimizes
the potential inside the wall ϕwall at the center of the wall. In
this case, we can consider that the field’s dynamics on both
sides of the wall decouple, such that if the matter distri-
bution were to change on one side of the wall it would not
influence the field on the other side. This will be important
for the case of a cavity.
This was expected to happen for walls thicker than λc;wall

[17]. Nevertheless, we can deduce from our simulations a
more accurate criterion. We can indeed measure the

difference between ϕwall and the effective minimum value
the field reaches at the center of the wall. Figure 7 shows its
evolution with the wall thickness.
As expected, we observe that this difference slowly

decreases as the wall gets thicker. It then suddenly
decreases when the wall thickness exceeds λc;wall. We
can consider that this gap becomes negligible when it
reaches a thickness of roughly 100λc;wall, as it gets smaller
than typical numerical precisions. This criterion is useful
for other numerical methods such as finite-difference
methods, in which one can only solve the field in a
bounded region. For instance, when considering a system
totally surrounded by walls, one can safely set initial
conditions for the field to be at its minimum deeply inside
these walls, as long as these walls have thicknesses greater
than 100λc;wall.

4. Range of influence of a wall

We can also deduce the scale of influence of a wall.
Outside the wall, the field slowly relaxes to its asymptotic
value ϕvac.
The typical relaxation scale Lϵ at which the gap between

the field and ϕvac becomes negligible is given by

ϕðe=2þ LϵÞ − ϕvac

ϕvac
¼ ϵ; ð16Þ

where we take ϵ to be small. We can then consider that for
distances to the wall larger than Lϵ, the dynamics of the
field is no longer influenced by the wall.
Figure 8 shows how this scale of influence varies with

the wall thickness, for ϵ ¼ 1%. We observe that it increases
when the wall gets thicker, and finally reaches a plateau
when the wall is totally screened, i.e., its thickness
exceeds λc;wall.

FIG. 6. Variation of ϕeðeÞ with Λ, for Λ ¼ 0.1; 1; 10 eV. The
interval on which ϕeðeÞ is defined is normalized to [0,1].

FIG. 7. Variation with the wall thickness e of the difference
between the value of the field at the center of the wall and ϕwall.
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We can infer a useful criterion from such a figure. We can
safely assume that the influence of the wall cannot be felt
farther than 10λc;vac from it.

IV. ONE-DIMENSIONAL CAVITY

A. Profile and ϕdðdÞ relation
The experimental case of a cavity in one dimension is

modeled as two walls of equal thickness e, separated by an
empty space of size d, as illustrated in Fig. 9. For simplicity
we assume that the cavity has the same density as the
background environment ρvac.
We follow the same approach as in the previous section.

We impose initial conditions at the external border of a
wall, say, the right one. When fixing the thickness of the
wall, the initial conditions will be determined by the size of
the cavity d, so we denote them by ϕd and ϕ0

d. The same
first integration in the external vacuum region gives a
condition on ϕ0

d in terms ϕd to satisfy the boundary
condition at infinity. The magnitude of ϕd determines

the dynamics of the field inside the walls/cavity system.
The overall profile will still be symmetric around the
cavity center.
Inside the walls, the field is no longer symmetric. It must

indeed reach a value smaller than ϕd on the inside border of
the wall, as otherwise it would have the same asymptotic
behavior as in the external vacuum region or diverge. Thus,
if ϕeðeÞ is the initial value of the field given in the previous
section for a wall of thickness e, we should now choose
ϕd < ϕeðeÞ. In this way, the field will not have enough
“speed” to reach ϕd again at the border of the cavity, but it
will instead reach a value ϕðd=2Þ < ϕd < ϕvac, with a
positive derivative. Then, in the cavity the field will have
the same kind of dynamics with a maximum as for the
bottom grey line in Fig. 2, and reach ϕðd=2Þ again at the
other side of the cavity.
For a fixed wall thickness e, ϕd will determine the

value of ϕðd=2Þ, which will determine the maximum field

FIG. 8. Scale of influence Lϵ of a wall as a function of e, for
ϵ ¼ 1%.

FIG. 9. 1D cavity.

FIG. 10. Field profiles for different cavity sizes with
unscreened (upper panel) and screened (lower panel) walls of
thickness e ¼ 0.01 m and e ¼ 0.2 m, respectively. The values of
ϕmin are shown as dashed lines. The walls are represented by
vertical colored strips.
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value ϕ0 at the cavity center. Thus, we will obtain the
corresponding cavity size d. We use the same shooting
method as in the previous section to numerically determine
how ϕd varies with d, and hence the ϕdðdÞ relation. Note
that the larger the value of d, the larger the value of ϕ0.
Figure 10 shows profiles corresponding to different

cavity sizes, with a thin wall of size e ¼ 1 cm (upper
panel) and a thick screened wall of size e ¼ 20 cm (lower
panel). We find bubble profiles inside the cavity similar to
Refs. [25,26].
Figure 11 shows an example of the ϕdðdÞ relation with

thin unscreened walls of size e ¼ 1 cm. As for the case of a
single wall, the whole interval for d ∈ R is spanned by a
restrained interval for ϕd, ½ϕeð2eÞ;ϕeðeÞ�, where ϕeð2eÞ
corresponds to the initial condition associated with a single
wall of size 2e.
The curve for ϕdðdÞ is similar to ϕeðeÞ in the previous

section, with two regimes. For d ≫ λc;vac, the field has
enough space in the cavity to reach a value ϕ0 at its center
close to the potential minimum ϕvac. In this regime, and as
the cavity grows larger the two walls can be considered to
be isolated, so the dynamics of the field is very similar to
the one seen in Sec. III B. This explains why ϕd varies very
slowly with d, with ϕd ≃ ϕeðeÞ.
On the other hand, as the size of cavity decreases the

field has less and less space to evolve, such that ϕ0 gets
smaller. In this regime, as the two walls get closer, the
dynamics of the field tends to the dynamics of a single wall
of thickness 2e. This explains why small values of d are
obtained for ϕd tending towards ϕeð2eÞ.

B. Chameleonic force in a cavity

Using the field profiles in a cavity, we can deduce
the fifth force that a test point mass would feel
using Eq. (7).

Figure 12 shows the magnitude of the fifth force
experienced by a test mass inside cavities of different sizes
for a constant wall thickness as expressed by Eq. (7).
This force is directed outward. Thewall is chosen here to be
screened with e ¼ 0.2 m. It shows that the force profile
does not vary much, but just stretches with the cavity. The
maximum force value reached at the border of the cavity
varies slightly.
Conversely, Fig. 13 shows how the force profile changes

as a function of the wall thickness, at constant cavity size.
One can see that the magnitude of the force increases as the
walls get thicker. In agreement with previous consider-
ations, it stops varying when the wall thickness exceeds
λc;wall ¼ 2.2 cm, as the screened walls isolate the inner
dynamics from the outside. Thus, larger forces are expected
in cavities separated by thick walls. Nevertheless, in the
case of thin walls, we expect it to be overtaken by effects
sourced by external objects.

FIG. 11. Relation ϕeðdÞ, for e ¼ 1 cm. ϕmin values are shown
with the two black lines.

FIG. 12. Force experienced by a test mass for different cavity
sizes, for screened walls with e ¼ 1 m.

FIG. 13. Force experienced by a test mass for different wall
sizes, for a fixed cavity size d ¼ 1.5 m.
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V. CYLINDRICAL AND SPHERICAL SYSTEMS

In 2D and 3D, the method previously used is no longer
applicable. The chameleon’s Klein-Gordon equation (8)
indeed becomes in cylindrical or spherical symmetries

d2ϕ
dr2

þ ðD − 1Þ
r

dϕ
dr

¼ nΛnþ4

�
1

ϕnþ1
min ðρmatÞ

−
1

ϕnþ1

�
; ð17Þ

where D is the dimension of the symmetry. For D ≥ 2, the
first field’s derivative term prevents us from obtaining a
condition on the initial field derivative by integrating the
chameleon equation once. Thus, we cannot follow the same
scheme as before, and we need to adjust the two initials
conditions ϕi and ϕ0

i.
Nevertheless, it is convenient to set the initial conditions

at the symmetry center, as by symmetry the derivative of
the field cancels. We thus have to determine a single
parameter—the value of the field ϕ0—to obtain the correct
profile. A dichotomy algorithm can be used to determine
the correct ϕ0 that satisfies the correct asymptotic boundary
conditions (9). A more complex analysis of the chame-
leon’s dynamics than the one in Sec. II B shows that if the
value of ϕ0 is greater (weaker) than its correct value, the
field will asymptotically diverge positively (negatively).
Then, by solving the field for some ϕ0, we can evaluate
whether the field is greater or lesser than ϕvac at some large
distance far greater than λc;vac from the considered system,
and then adjust ϕ0 as a dichotomy and reproduce the same
procedure.
This converges rapidly toward the correct profile. It is

important to note that, because the symmetry center is the
origin of the coordinate system (r ¼ 0), we cannot impose
initial conditions at this point as the second term in Eq. (17)
diverges numerically due to its dependence on r. We instead
impose them very close to r ¼ 0, with ϕi ¼ ϕ0 and ϕ0

i ¼ 0.
This should lead to an error on the obtained field. The fields
obtained in a 1D cavity with this method agreewith the fields
obtained with the previous method to less than 0.1%.

A. Cylindrical and spherical cavity

Analogously to Sec. IV, the cases of a cavity in 2D and
3D are, respectively, an infinitely extended cylinder and
an empty sphere. Here we still denote the diameter of the
cavity by d and the wall thickness by e.
The radial profiles in such cases are very similar to the

1D case. For equal cavity size, the effect of cylindrical and
spherical symmetry decreases the values reached in the
cavity. Figure 14 shows examples of radial profiles for 1D,
2D, and 3D cavities in the cases of screened walls and
unscreened walls.
When the wall is screened the nature of the cavity does

not affect the field outside. The field tends to reach lower
values in the cavity for larger cavity sizes, leading to a
weaker force. When the wall is not screened, the behavior

becomes inverted and the size of the cavity has an impact
on the exterior field.

B. ϕ0 variation

As for the 1D cavity, the larger the cavity, the larger the
value of ϕ0 reached by the field at the center of the cavity.
In the literature (e.g., Ref. [16] for a sphere or Refs. [18,38]
for a cylinder), this value was expected to be that of the
field whose mass matches the radius of the cavity, i.e., that
is given by

d
2
¼ m−1ðϕ0Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 00ðϕ0Þ

p : ð18Þ

In Fig. 15 the value of ϕ0 obtained with this approximate
criterion is compared to the actual value given by these
simulations for 1D, 2D, and 3D cavities. All curves
have the same global monotony. Nevertheless, whereas
simulations show that ϕ0 ∈ ½ϕwall;ϕvac�, the approx-
imated criterion does not give a bounded range for ϕ0.

FIG. 14. Field profiles for 1D, 2D, and 3D cavities in the case
of screened walls of thickness e ¼ 30 cm and unscreened walls
of thickness e ¼ 7 cm. Values of ϕmin are shown as dashed lines.
The wall is shown by the grey region.
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The comparison of the curves shows that they mainly
diverge by 100%, such that the approximated criterion turns
out to be very weak.

VI. APPLICATIONS AND DISCUSSION

A. Chameleonic Casimir-like force

The one-dimensional configuration in Sec. IV is similar
to the typical experimental setup in Casimir effect mea-
surements in which two nearby plates experience a force
of quantum origin [39,40]. In the case of the chameleon
field, one expects an extra effect that would add up to the
conventional Casimir force. In both cases, the force
between the walls is attractive. The walls play the role
of the plates, and the effect originates from the fact that the
field in the walls is not symmetrical and thus its gradient
does not cancel. The global behavior of the force as a
function of the distance between the walls was computed
with an approximate analytic model in Ref. [21].
The force a wall feels can be computed by integrating

the gradient of the field over the whole wall. Knowing the
profile associated with a two-wall configuration, a 1D
integration gives the pressure,

Fs ¼ −c2
β

MPl

Z d
2
þe

d
2

∇xϕρwalldx

¼ −c2
β

MPl
ρwall½ϕd − ϕðd=2Þ�: ð19Þ

Figure 16 shows the evolution of this pressure in the case
of our simulations and in the case of Ref. [21], as a function
of the separation of the walls. Both curves have the same

global behavior, with a plateau for small separations and an
exponential suppression for separations greater than λc;vac.
This latter behavior is consistent with Sec. V B, as we saw
that for large separations the walls can be considered as
isolated, so the field tends to the symmetrical case of
Sec. III B.
Despite their similar behavior, the two curves do not

match perfectly. For small separations they agree within a
few percent. In the intermediate regime λc;wall < d

2
< λc;vac,

they diverge by a few tenths of a percent, and for larger
separations they diverge more severely. The force we find is
weaker, and this might slightly relax current Casimir
measurement constraints on the chameleon [21].

B. Thin- and thick-shell approximations of a ball

Another important case is a spherical uniform ball. In the
chameleon’s original article [16], the profile around a ball
was approximated in two extremal regimes: the thick-shell
regime in which the ball is too small for the field to reach
the minimum of the potential in the ball; and the thin-shell
regime in which the ball is large enough for the field to
remain mainly at the minimum of the potential throughout
most of the ball. Our simulations can provide the field
around a ball in any regime.
Figure 17 compares our simulations with the thin-shell

and thick-shell approximations, with different contrasts
between the vacuum and the ball density (then different
values of ϕvac). In the thick-shell regime, our simulation
and the thick-shell model are in very good agreement (to
less than a percent) when the density contrast is low. When
the density contrast is larger, the agreement is even better
(to less than 0.01%). In the thin-shell regime, the two
profiles agree to within a few percent, except inside a zone

FIG. 15. Central value of the field in the cavity as a function of
the cavity size d for screened walls of thickness e ¼ 0.1 m. The
colored lines correspond to 1D, 2D, and 3D cavities. The black
line is an approximated estimation from Ref. [16]. ϕmin values are
shown by the two dotted lines. The lower panel shows the relative
difference between the two curves.

FIG. 16. Upper panel: chameleon-originated Casimir force as a
function of the separation d of the walls for screened walls with
e ¼ 0.2 m. The blue curve is the result of this simulation. The
green lines come from the analytical model of Ref. [21]. Lower
panel: Relative difference. Dotted lines show λc;vac and λc;wall.
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around the interface between the ball and the vacuum,
where they agree to within a few tenths of a percent. This
comes mainly from the difference in the skin depth of the
wall on which the field varies. For higher density contrasts,
the agreement is globally better, but there is still a slight
difference where the field starts to vary inside the ball.
We can therefore assume that, except for inside the ball,

the models are globally accurate in the thin-shell regime. In
between the two regimes, when the ball has an intermediate
radius, these two models are less accurate, particularly for
low density contrasts.

C. Radial drift of test masses in a cylinder

As shown above, the chameleon inside a cavity creates a
radial outward force that affects test masses (like atoms).

For instance, the profile of the force created in the
cylindrical case of Fig. 14 is shown in the upper panel
of Fig. 18. This force may affect any experiment based on
monitoring the trajectory of atoms inside a cylindrical
cavity [41], even if measuring it is not the primary objective
of the experiment (in which case it should be considered as
a source of systematic uncertainty).
Let us consider an experiment where atoms (test masses)

are dropped at a distance R0 from the main symmetry axis
of the cylinder (either alongside the axis, or radially): the
atoms will experience an outward radial drift, with a drift
rate depending on the parameters (β,Λ, n) of the model. For
instance, in the screened cylindrical case of Fig. 14, if they
are dropped with a null velocity at Rvac=10, the atoms will
reach the border of the cavity in 2498 s. The middle panel
of Fig. 18 shows the total drift time for the atoms to reach

FIG. 17. Radial field profiles of a ball embedded in vacuum. The shaded zone corresponds to the inside of the ball. These simulations
are compared to the models of Ref. [16] in the thin-shell regime (upper panels) and thick-shell regime (lower panels). The left and right
panels correspond to different matter contrasts between the ball and the vacuum. ϕmin values are shown as dashed lines.
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Rcav as a function of R0. In the unscreened case, as the
profile is flatter, the force is weaker than in the screened
case, so that the drift time is typically longer. Trivially, the
smaller R0, the longer the drift time. The lower panel shows
the evolution with time t of the radial position R of atoms in
the cavity for different initial positions R0.
In more realistic setups, the drift should be estimated in

view of typical integration times as it may become non-
negligible, even in experiments not specifically looking for
a chameleon inside the cavity. For instance, we could
conceive of an experiment where the motion of atoms under
the influence of the Earth’s gravitational field is measured.
If the chameleon force inside the cavity is strong enough
to impart a detectable drift on the atoms, it should be
considered as a source of systematic error (though its
detection would be a significant breakthrough). Another
typical case is where we drop two types of atoms, e.g., to
test the equivalence principle in the Earth’s gravitational
field; if the chameleon coupling β is not universal, then the
chameleon inside the cavity will make the atoms drift
differentially, thereby mimicking a violation of the equiv-
alence principle, though it would be considered as a
systematic uncertainty on the main measurement.

D. Nested cylinders: Toward the MICROSCOPE
configuration

Our computation generalizes to more complex configu-
rations, such as the case of nested infinite cylinders.
Figure 19 compares different profiles for two nested
cylinders of either same or different matter densities.

FIG. 18. Upper panel: Fifth force associated with the
cylindrical cavity in Fig. 14. Middle panel: Total drift time
from some initial position R0 to the border of the cavity Rcav.
Lower panel: Radial position of atoms R as they drift with time t
for different initial positions. Solid lines correspond to screened
walls (e ¼ 0.3 m) and dotted lines to unscreened walls
(e ¼ 0.07 m).

FIG. 19. Radial profiles for two nested cylinders of thickness
e and different matter densities, to which correspond different
values of ϕmin. These ϕmin values are represented by the
horizontal segments. Cylinders are delimited by the shaded
regions and separated by a distance gap.
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Consistently with our 1D study, the nature of the outer
cylinder has no influence on the profile inside the inner
cylinder when the cylinders are screened. Besides, in the
empty inter-cylinder space, atoms experience a drift similar
to the one discussed previously. But whereas in the
cylindrical cavity a change in the direction in the force
occurs at the center of the cavity, here it no longer occurs
at the middle of the empty space but rather at some other
location (at the maxima of the field) that depends on the
densities of the cylinders and on the parameters of the
model. This change of direction can even disappear, as it
does for the green line. Then, different signatures are
expected for different cylinders’ features and chameleon
parameters.
Figure 20 shows the radial profile obtained for three

nested cylinders. This configuration is similar to the
MICROSCOPE experiment’s design in which cylindrical
test masses are nested in cylindrical sensors. The middle
cylinder experiences a chameleonic fifth force from the
cylinders; nevertheless, when integrated over the whole
cylinder it vanishes due to the cylindrical symmetry. We
expect a force to appear when the symmetry is broken, e.g.,
when one of the cylinders is not perfectly centered. While
this would require more intricate computations, (which will
be described in a follow-up article), we can estimate the
magnitude of such a force. To that purpose, we consider the
force exerted on a cylindrical element (of opening angle dθ
and height dl) of a cylinder. In the case shown in Fig. 20,
this force is dF

dθdl ¼ 6.3 × 10−6 Nm−1 rad−1, and is directed
towards the center. We expect the total force in a decentered
configuration to be of the same order of magnitude up to a
geometry factor.
In Ref. [16] it was claimed that MICROSCOPE could

detect a clear violation of the weak equivalence principle

from the chameleon field sourced by the Earth. However,
the screening due to the experimental setup itself was
neglected. The MICROSCOPE setup is actually enclosed
in a shield of thickness eshield ≃ 1 cm. Using the screening
criterion of Sec. III B 3, we show in Fig. 21 that the
chameleon parameter space (for n ¼ 1) is divided into
two regions: above the black line (which shows where
100λc;shield ¼ eshield=2, where λc;shield stands for the
Compton wavelength associated with the shield’s density)
MICROSCOPE is not screened, but it is screened below the
line. Thus, no violation of the weak equivalence principle
can be expected below the line, while it could still be
expected above it. The colored regions in Fig. 21 corre-
spond to regions that have already been experimentally
excluded [17]. It is then clear that the constraining potential
of MICROSCOPE is much less than anticipated. It could
only improve our current knowledge about the chameleon
in a small region. This will be the subject of future work
where the effect of the Earth on the chameleon profile will
be included.

VII. CONCLUSION

In this article, we treated the problem of solving the
chameleon scalar field’s profile by paying special attention

FIG. 20. Radial profile for three nested cylinders of thickness e
with the same matter density. Cylinders are delimited by the
shaded regions and separated by a distance gap. The ϕmin values
are represented by the horizontal segments.

FIG. 21. The chameleon’s parameter space adapted from
Refs. [17,18]. The black line corresponds to parameters for
which 100λc;shield ¼ eshield=2 and delimits two regimes, i.e.,
whether the MICROSCOPE setup is screened or not. The colored
regions correspond to current constraints from other experiments:
atomic interferometry (purple [42]), Eöt-Wash (green [22,43]),
Casimir effect measurements (yellow [21,44]), astrophysics tests
(blue [45–47]), lensing (pink [48]), and precision atomic tests
(orange [49,50]).
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to the boundary conditions. We found that it is possible to
deal with this problem numerically without using any
approximations. Our approach considers a matter system
embedded in a background environment. We first consid-
ered 1D symmetrical systems. We treated the cases of a
single wall and a cavity modeled as two separated walls.
We determined a refined criterion which guarantees that
screening occurs within a cavity. For instance, we checked
that we can safely consider that the field reaches its
minimum inside a matter wall, as long as the wall thickness
exceeds 100 times the Compton wavelength associated with
the wall matter. In this case we can consider that such a wall
would screen the field. In the case of a cavity, we computed
the profiles of forces that test masses would experience
inside the cavity. We also computed the Casimir-like force
and found discrepancies with analytic approximations in
the literature. We then explored 2D and 3D symmetrical
geometries. The case of a ball was compared to the thin-shell
and thick-shell models from Ref. [16]. We found it to be in
very good agreement, except in the region close to the ball’s
boundary. In a cylindrical cavity, we studied how point
masses like atoms could experience a drift between the
cylinders which may either lead to an experimental method
of detecting chameleons or create a new source of systematic
uncertainty in future experiments.
Finally, we treated the case of nested cylinders of

different matter densities suited to the setup of the
MICROSCOPE mission. Despite the symmetry considered
here, which leads to a null force experienced by the
cylinders, we provided an estimate of the magnitude of

the force when the symmetry is broken. This effect will be
explored by simulating nonsymmetric configurations in a
follow-up article. Moreover, our analysis challenges the
previous claim on the ability of space experiments to detect
chameleon-sourced violations of the weak equivalence
principle sourced by the Earth [15,16]. Using the refined
screening criterion for cavities, we deduced that for a large
region of the parameter space such an effect would be
screened by the experimental setup. The Earth should be
included in simulations of the remaining region. This will
be the subject of a forthcoming article.
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4.2 Asymmetries in the geometry

4.2.1 Introduction and summary

This article focusses on the eventuality of the appearance of chameleonic forces
sourced by asymmetries in the geometry of an experiment. With MICROSCOPE’s
case in mind we want to estimate the force a cylinder nested in other cylinders would
feel if it is shifted in such a way that the cylinders are no longer coaxial. This problem
cannot be treated as those described in the previous article as it is a 2-dimensional
problem.

We start exploring this problem of asymmetries in 1D. We develop a way of treating
the case of a freely moving wall surrounded by two fixed parallel walls with methods
similar to those of the previous article. We obtain the profile for different displacements
of the middle wall and compute the force it experiences. We conclude that this force
is linear to the displacement as long as it is small. It thus behaves as a destabilising
stiffness just as MICROSCOPE’s electrostatic stiffness.

In the cylindrical case, we consider two nested cylinders where the inner one is freely
moving. Two methods are used to solve the field. The first is semi-analytical and uses
a cylindrical multipoles decomposition of the field. In this formalism we can decompose
the Klein-Gordon equation on this basis as a set of 1D equations. Due to the non-
linearities of the equation, all modes are coupled. We find that for small displacements
of the inner cylinder we can neglect these inter-modes coupling and consider each mode
equation as decoupled. We can then apply the methods from the previous article to
solve these 1D equations. We obtain a profile for each mode that we can reconstruct
in a 2D profile and we also compute the force from the multipoles. Parallel to this
method we implement a full numerical 2D method. We follow the idea proposed for
the chameleon problem by Ref. [38]. It consists in a finite-difference method in which
from an initial guess the algorithm iteratively converges towards the right solution. This
method provides results even for significant displacements. The two methods agree on
the force that they both provide. Besides, the accelerations one computes from those
forces in the cylindrical geometry are very close to the acceleration one obtains in 1D for
comparable configurations. This demonstrates that the cylindrical geometry does not
bring any additional effect. For large displacements we find that the force is no longer
linear.

We study the chameleonic stiffness in the small displacement regime. Its dependency
to the chameleon parameter is given. We find that the stiffness is increasing with β
even if for large values of this parameter the cylinders are screened. We also study
its dependency on the geometrical parameters. First we show that the result for the
force is independent of the density of the vacuum in between the cylinders as long as
the associated Compton wavelength of the field is significantly larger than the typical
inter-cylinder-gaps. Secondly we study its dependency on the size of the cylinder. By
analysing the Klein-Gordon equation we find a scaling relation that relates the solutions
of geometrical situations that are related by a homothetic transformation. We deduce
a force scaling that shows that smaller systems are more likely to provide a detectable
force.

The results of this article on the chameleon stiffness give an opportunity of an ad-
ditional force in MICROSCOPE data. Testing it requires applying the formalism with
the correct number of cylinders and the correct geometrical parameters presented in
Chapter 1. Testing modified gravity with the measurement of the test mass stiffness is
the subject of the next chapter.
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This article investigates the properties of a scalar fifth force that arises in a scalar tensor-theory with a
chameleon screening mechanism in the context of gravity space missions like the MICROSCOPE
experiment. In such an experiment, the propagation of the chameleon field inside the nested cylinders of the
experiment causes a fifth force when the cylinders are not perfectly coaxial. We propose a semianalytic
method to compute the field distribution and the induced fifth force and compare it to a full numerical
simulation, in settings where the cylindrical symmetry is broken. The scaling of the fifth force with both the
parameters of the model and the geometry of the experiment is discussed. We show that the fifth force is
repulsive, hence adds a destabilizing stiffness that should be included in the force budget acting on the
detector. This opens the way to a new method to constrain a scalar fifth force in screened models.
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I. INTRODUCTION

Scalar-tensor theories represent a large class of exten-
sions of general relativity (GR) that are widely studied
[1–3] to constrain deviations from GR and to investigate the
physical effects of a potential scalar partner to the graviton,
which may arise from high-energy theories, e.g., string
theory. On large scales, coupled scalars modify the evo-
lution of the universe and its structure. They have attracted
a lot of attention in connection with the modeling of the late
acceleration of the Universe, i.e., as possible dark energy
candidates [4]. On smaller scales, the extra-degree of
freedom is responsible for a fifth force. The properties
of this fifth force depends on the nature of the couplings of
the scalar field to standard matter, universal or not, on the
mass of the scalar field, and more generally on its potential.
While light field models can be attracted toward general
relativity [5,6] and are constrained in laboratory and space
gravity experiments, local tests are more difficult for
models exhibiting screening as they require to take into
account the effects of the environment [7]. Amongst such
models, let us cite the symmetron [8] and the chameleon
[9,10] mechanisms. In both cases, the profile of the scalar
field and thus the associated fifth force depends on the local
mass density: the field acquires a large mass in high density
environments responsible for the suppression of the fifth

force, whereas in low density environments the force can be
long-ranged.
The main goal of this article is to continue our inves-

tigation on the possibility to test such scalar-tensor theories
with a screening mechanism in gravity space experiments.
Even if the coupling of the field is universal, it can generate
composition dependent fifth force between macroscopic
objects since the profile of the scalar field, and thus the fifth
force that derives from it, inside the object depends on its
density, and thus on this composition. So far, many
experiments [11–13] have set constraints on the existence
of a chameleon field among which atom interferometry
[14,15], Casimir effect measurements [16] or torsion
balance experiments [17]. Space-borne experiments—as
the MICROSCOPE mission [18] testing the weak equiv-
alence principle in orbit—were originally argued to be a
possible smoking gun for the chameleon mechanism [9,10]
as the local density in space is much smaller than at the
surface of the Earth, hence leading to a lighter field and a
stronger fifth force. However, this intuitive argument
requires to be analyzed in depth, in particular to take into
account the fact that the experimental set-up can itself
screens the chameleon. Understanding this screening and
the propagation of the scalar field inside the measurement
device is a key issue to detect or constrain such a
mechanism. It requires to determine the field profile
for nontrivial matter distributions as the theory is highly
nonlinear and a special attention to the boundary conditions
must be paid. Multiple approaches have been used*martin.pernot_borras@onera.fr
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involving both analytic [10,16,19–26] and numerical
methods [17,27–30].
In a previous paper [31], we considered an idealized

experimental setting modeled by cylindrically or spheri-
cally nested geometries, and studied the propagation
of a chameleon field inside such a setting. This clarified
the occurrence of the screening mechanism and led
us to conclude that for experiments similar to the
MICROSCOPE mission, the screening induced by the
experiment’s cavity steps in for most of the parameter
space of the chameleon model, hence reducing the hope
of constraining chameleons with this space experiment.
Nevertheless, the different parts of the detector are subject
to a series of nongravitational forces that need to be
compensated. It follows that the inner cylinders of the
device can move and thus depart from the cylindrical
symmetry. This can induce an internal source for the fifth
force that needs to be modeled and constrained in the force
budget of the experiment.
To that purpose, we consider a model configuration

similar to the MICROSCOPE geometry involving an
accelerometer composed of nested test mass cylinders
and electrode cylinders. A force on a test mass appears
when the cylindrical symmetry is broken by shifting the
cylinder from its axis. The goal of this article is to quantify
the fifth force induced by this noncoaxiality. Thus, we
consider a static configuration of two infinite nested
cylinders. After summarizing briefly the theoretical context
in Sec. II, we start by a simplified exercise in Sec. II in
which we restrict to 1-dimensional configurations. Then we
tackle the case of nested cylinders by first developing a
semianalytical multipolar expansion in Sec. IV and the full
numerical integration in Sec. V. Both methods have their
own domain of validity and are compared when they both
apply. Once the profiles are determined, we compute in
Sec. VI the resulting force on the inner cylinder and then
discuss its scaling with the geometry of the model and the
parameters of the theory.
This provides the first analysis of the fifth force stiff-

ness induced by a chameleon field on an idealized gravity
experiment with a design similar to the MICROSCOPE
mission. It shows that the fifth force being repulsive,
it adds a destabilizing stiffness that would require to be
compared to the other forces acting on the detector,
from electrostatic and Newtonian origin (since the
Newtonian force vanishes only for infinite cylinders).
Hence, this work paves the way to the analysis of the
MICROSCOPE experiment that shall be presented in a
companion article [32].

II. GENERAL EQUATIONS

A. Theory

Let us consider the theory defined by the general scalar-
tensor action in the Einstein frame,

S ¼
Z

dx4
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
∂μϕ∂μϕ − VðϕÞ

�

−
Z

d4x
ffiffiffiffiffiffi
−g̃

p
Lmðg̃μν;ϕ;…Þ; ð1Þ

where ϕ is a scalar field, V its potential, MPl the reduced
Planck mass, R the Ricci scalar, gμν the Einstein frame
metric, g its determinant, and Lm the matter Lagrangian.
The field couples nonminimally to matter through the
Jordan frame metric

g̃μν ¼ A2ðϕÞgμν; ð2Þ

where AðϕÞ is a universal coupling function, from which
the dimensionless coupling constant

βðϕÞ ¼ MPl
dlnA
dϕ

ð3Þ

can be defined. It characterizes the magnitude of the
coupling to the scalar field to standard matter, and hence
the magnitude of the fifth force. Note that the coupling
may not be universal, so that the field could have different
couplings, AiðϕÞ for the different components of matter.
Such models involve spacetime variations of fundamental
constants that have been well-constrained [33–35] so that
we restrict our analysis to a universal coupling. The method
proposed here generalizes itself easily to nonuniversal
couplings.
In the Einstein frame, the scalar field dynamics follows

from the Klein-Gordon equation,

□ϕ ¼ dV
dϕ

−
βðϕÞ
MPl

Tμνgμν; ð4Þ

so its source term depends both on the potential and the
local value of the trace of the matter stress-energy tensor,
which reduces to the local energy density for a non-
relativistic matter.

B. Chameleon models

Chameleon models posits that the potential V and
coupling function A do not have the same convexity so
that the minimum of the effective potential depends on the
local matter density. We shall assume that the coupling
function is of the form

A ¼ eβϕ=MPl ð5Þ

and the potential is of the form

V ¼ Λ4

�
1þ Λn

ϕn

�
ð6Þ
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whereΛ is a mass scale, n a natural number and β a positive
constant. It follows that the Klein-Gordon equation (4)
reduces to

□ϕ ¼ dVeff

dϕ
ð7Þ

with the effective potential

Veff ¼ VðϕÞ þ β

MPl
ρϕ; ð8Þ

ρ being the mass density configuration. This equation
enjoys a density-dependent minimum

ϕ�ðρÞ ¼
�
n
MPlΛnþ4

βρ

� 1
nþ1

: ð9Þ

In media of constant density ρ the field would tend to reach
this minimal value. This would occur on scales given by the
density dependent Compton wavelength,

λcðρÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nðnþ 1ÞΛnþ4

�
nMPlΛnþ4

βρ

�nþ2
nþ1

s
; ð10Þ

which becomes shorter as ρ is larger.
Finally, if we assume static configurations, the field is

governed by the Laplace equation

Δϕ ¼ nΛnþ4½ϕ−ðnþ1Þ
� − ϕ−ðnþ1ÞÞ�: ð11Þ

With the rescalings ϕ=Λ → ϕ, β=Λ3 → β and Λr → r, it
reduces to

Δϕ ¼ β

MPl
ρðxÞ − nϕ−ðnþ1Þ: ð12Þ

From such a rescaling, a profile computed for specific Λ, β
and matter configurations specified by ρ, could directly lead
to profiles for different Λ and β and a rescaled geometry.

III. ONE-DIMENSIONAL ASYMMETRIC
CONFIGURATIONS

Let us first start by considering a nonsymmetrical one-
dimensional model. It consists of 3 infinite parallel walls of
the same thickness. The central wall can move and thus is
not necessarily at the same distance from the other two
external fixed walls.
The configuration is characterized by the thickness e of

the walls, the gap g between the walls in the symmetric
case, the distance 2gþ e between the two external walls
and the displacement δ of the central wall with respect
to the middle position. The density of the walls and of the
interwall regions are respectively denoted by ρin and ρvac.

Throughout this work, if not stated otherwise, we shall
assume

ρin ¼ 8.125 g:cm−3;

and

ρvac ¼ 10−3ρin

for which the corresponding Compton wavelengths are
λc;in ≃ 2 cm and λc;vac ≃ 2 m.

A. Resolution method

The profile of the field in the symmetrical case (δ ¼ 0)
has already been described in our former work [31]. We can
adapt the method to deal with the nonsymmetrical case and
solve Eq. (12) for a nonsymmetrical configuration.
The main problem is to determine the boundary con-

ditions for the numerical integration. When δ ¼ 0, it is
obvious, by symmetry, that the field’s derivative cancels at
the center of the central wall. Under that condition, one can
proceed by dichotomy on the value of the field at the center
to determine the value that is compatible with the boundary
conditions at large distance.
When δ ≠ 0, the derivative of the field does not vanish at

the center but at a slightly shifted location that depends
on δ. Again, it can be determined by dichotomy. Since the
central wall is separated from the two external walls by
distances of respectively g − δ and gþ δ, we start at some
initial position x0 in the central wall. We then determine
the profile that corresponds to the condition ϕ0ðx0Þ ¼ 0
with the same procedure as for the symmetrical case. The
different configurations encountered in each direction—
i.e., a gap of respective width g − δ and gþ δ—and the
boundary conditions, give two different values of ϕðx0Þ.
Depending on the sign of the difference of these values we
adjust x0, and repeat the procedure until convergence when
this difference gets negligible. This way we obtain the
correct position x0 and initial value ϕðx0Þ corresponding to
the profile satisfying the correct boundary conditions at
large distance.

B. Profile of the field and resulting force
on the central wall

The profile of the field for a configuration in which
e ¼ 0.2 m and g ¼ 0.25 m is depicted in Fig. 1 for
different displacement δ. Since the profile is no more
symmetrical inside the central wall, it implies that the
integration of the fifth force −β∇ϕ=MPl does not vanish.
Figure 2 depicts the evolution of the fifth force with δ. For
small displacements it is linear with a positive sign, i.e., a
repulsive force that tends to destabilize the configuration.
It develops a nonlinear scaling for large δ. Note, for
comparison, that the Newtonian force on the central wall
remains zero whatever δ.
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This result can be compared to the one obtained by
considering this problem as two joined Casimir-like
configurations—two sets of parallel plates whose
chameleonic force has been analytically computed in
Ref. [16]—where the central wall is pulled by each external
walls resulting in a total destabilizing force. The agreement
between our numerical computation and this analytical
form is excellent for almost all the range of displacements.
The Casimir-like force scales for one pair of plates as d−1

for n ¼ 2. Then applied to our cases here it scales as
2δ

ðgþδÞðg−δÞ. So it is linear as long δ ≪ g. For larger displace-

ment the agreement is not as good since our result departs
from linearity for larger δ. This is indeed not surprising

as for small displacements this is the regime where
λc;in ≪ d ≪ λc;vac for both sets of plates, for which a good
agreement already exists [16]. For large displacements this
is no longer the case, explaining the discrepancy.

IV. TWO-DIMENSIONAL CYLINDRICAL
ASYMMETRIC CONFIGURATION:
SEMIANALYTIC MULTIPOLAR

APPROXIMATION

Let us now turn to the less academic case of two infinite
nested cylinders. This geometry is close to the one of
MICROSCOPE’s accelerometers even though we still
assume that the cylinders are infinite to simplify the
analysis. The transverse geometry is detailed in Fig. 3
and the goal is to compute the force on the inner cylinder
once shifted from the center. This is indeed a more
complex problem than previously as it requires to treat
the full 2 dimensions in Eq. (12) and cannot be reduced to
1-dimensional problem as for configurations with cylin-
drical symmetry. Nevertheless, as we shall now see, for
small displacements the problem can be simplified using a
multipolar expansion of the field configuration.
The geometry we consider is described on Fig. 3 and

consists of two cylinders:
(i) an outer cylinder of radius R̄ and width ē centered on

O and with density ρout;
(ii) an inner cylinder of radius R and width e centered on

O0 and with density ρin. We assume that

OO0 ¼ δex; ð13Þ

where δ is the displacement of the inner cylinder
with respect to the axis of symmetry and ex the unit
vector in this direction, arbitrarily chosen to be the
x-axis.

FIG. 2. The pressure on the central wall for the configuration
described in Fig. 1 as a function of the displacement δ. The red
line corresponds to the two-Casimir-like configuration as com-
puted in Ref. [16].

FIG. 3. Geometry of the 2-dimensional configuration of the two
nested cylinders and definition of the notations of the problem.

FIG. 1. Profiles of ϕ for a three-wall asymmetric configuration
for walls of thickness e ¼ 0.2 m and for different displacements δ
of the central wall. The doted lines delimit the borders of the
central walls. The shaded zones correspond to the two fixed
external walls. The blue and green curves are superposed. The
model parameters have been chosen to n ¼ 2, β ¼ 1, Λ ¼ 1 eV.
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We define the basis of the Cartesian coordinates as ðex; eyÞ
and the polar coordinates system ðer; eθÞ with

ex:er ¼ cos θ; ey:er ¼ sin θ; ð14Þ

and

ex:eθ ¼ − sin θ; ey:eθ ¼ cos θ: ð15Þ

In complex notations, it is clear that the equation
of the inner cylinder is rðθÞeiθ ¼ δþ Reiψ so that
R2 ¼ r2 þ δ2 − 2δr cos θ, from which we determine the
equation of the inner disk in polar coordinates

rðθÞ ¼ R

�
δ

R
cos θ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

δ2

R2
sin2 θ

r �
; ð16Þ

this defines the inner and outer borders of the inner cylinder
as r−ðθÞ and rþðθÞ, respectively with R and Rþ e in
Eq. (16). It follows that the matter density is distributed as

ρðr; θÞ ¼ ρvac þ
8<
:

ρin − ρvac if r ∈ ½r−ðθÞ; rþðθÞ�
ρout − ρvac if r ∈ ½R̄; R̄þ ē�
0 otherwise

:

ð17Þ

It will be convenient to define the function Ξ such that
Ξðx; a; bÞ ¼ 1 is x ∈ ½a; b� and 0 otherwise, i.e., it is
defined in terms of the Heaviside distribution H as

Ξðx; a; bÞ ¼ Hðx − aÞ −Hðx − bÞ: ð18Þ

It follows that

ρðr; θÞ ¼ ρvac þ ðρout − ρvacÞΞðr; R̄; R̄þ ēÞ
þ ðρin − ρvacÞΞ½r; r−ðθÞ; rþðθÞ�: ð19Þ

A. Mode decomposition

In cylindrical coordinates, forgetting about the z-
dimension since by symmetry ϕ ¼ ϕðr; θÞ, the gradient
is given by ∇ ¼ ð∂r; ∂θ=rÞ and the Laplacian by

Δf ¼ ∂2
rf þ 1

r
∂rf þ 1

r2
∂2
θf: ð20Þ

for any function fðr; θÞ. One can always decompose f in
modes as

fðr; θÞ ¼
X
l∈Z

ulðrÞffiffiffi
r

p eilθ ð21Þ

with

ulðrÞffiffiffi
r

p ¼
Z

dθ
2π

fðr; θÞe−ilθ: ð22Þ

It follows that

Δf ¼ 1ffiffiffi
r

p
X
l∈Z

�
u00l þ

ð1
4
− l2Þ
r2

ul

�
eilθ: ð23Þ

Let us now turn to integration. We will have to integrate
functions fðr; θÞ, such as the components of the force, on
the inner cylinder as

Z
fðMÞdm ¼ ρinh

Z
inner cyl:

fðr; θÞrdθdr;

h being the length of the cylinder. For each θ, r varies
between r− and rþ so that

Z
fðMÞdm ¼ ρinh

Z
2π

0

dθ
Z

rþðθÞ

r−ðθÞ
fðr; θÞrdr: ð24Þ

It is then “easily” checked that for f ¼ 1 we get the mass of
the cylinder ρinπheð2Rþ eÞ. Indeed this is a tricky integral
which turns out to be trivial in terms of the angle ψ defined
in Fig. 3.

B. One cylinder

We start by considering only the outer cylinder. The
density profile has been fully described in our former
work [31] and is denoted by ϕ̄ðrÞ. It is solution of

ϕ̄00 þ 1

r
ϕ̄0 ¼ β

MPl
½ρvac þ ðρout − ρvacÞΞðr; R̄; R̄þ ēÞ�− n

ϕ̄nþ1

ð25Þ

with the boundary conditions

ϕ̄ð∞Þ ¼ ϕ�ðρvacÞ; ϕ̄0ð0Þ ¼ 0: ð26Þ

C. Two cylinder configuration

Starting from the previous profile ϕ̄ðrÞ, we consider the
effect of the second cylinder and decompose ϕ as

ϕðr; θÞ ¼ ϕ̄ðrÞ þ ψðr; θÞ: ð27Þ

Indeed, if the inner cylinder is centered in O then ψ in only
a function of r. Such configurations were also studied in
our previous work [31]. Now by subtracting Eq. (25) to the
Klein-Gordon equation (12) we get
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ψ 00 þ 1

r
ψ 0 þ 1

r2
∂2
θψ ¼ β

MPl
ðρin − ρvacÞΞ½r; r−ðθÞ; rþðθÞ�

þ n
ϕ̄nþ1ðrÞ −

n
½ϕ̄ðrÞ þ ψðr; θÞ�nþ1

:

ð28Þ

This equation is fully general and no approximation has
been made so far. It is a 2-dimensional nonlinear partial
differential equation. There is no way it can be analytically
solved in full generality.

D. Multipolar hierarchy

To go further, we decompose ψ in multipoles as in
Eq. (21) and we single out the monopole l ¼ 0,

ψðr; θÞ ¼ ψ0ðrÞ þ
ffiffiffi
δ

r

r X
l≠0

ulðrÞeilθ: ð29Þ

This decomposition is fully general. Since ψ is a real-
valued function, u�l ¼ u−l. We introduce the dimensionless

factor δ=r as it is clear that the nonradial terms all vanish
when δ ¼ 0 and that δ=R ∼ δ=ðRþ eÞ will serve as a small
parameter for our expansion. Thus, the generic Klein-
Gordon equation takes the form

ψ 00
0 þ

1

r
ψ 0
0 þ

ffiffiffi
δ

r

r X
l≠0

�
u00l þ

ð1
4
− l2Þ
r2

ul

�
eilθ

¼ β

MPl
ðρin − ρvacÞΞ½r; r−ðθÞ; rþðθÞ�

þ n

ϕ̄nþ1ðrÞ −
n

½ϕ̄ðrÞ þ ψðr; θÞ�nþ1
: ð30Þ

The goal is thus to determine the functions ψ0ðrÞ and ulðrÞ.
It is clearly a difficult task as the last term of the right-and
side (rhs) couples to all the modes.
The evolution of each mode can be obtained by

integrating Eq. (30) times e−il
0θdθ=2π over θ and singling

out the monopole from the l ≠ 0 modes so that Eq. (29)
splits as

ψ 00
0 þ

1

r
ψ 0
0 ¼

n

ϕ̄nþ1ðrÞ −
Z

nh
ϕ̄ðrÞ þ ψ0ðrÞ þ

ffiffi
δ
r

q P
l0≠0ul0 ðrÞeil0θ

inþ1

dθ
2π

þ β

MPl
ðρin − ρvacÞ

�Ξ½r;R;Rþ e� if δ ¼ 0R
Ξ½r; r−ðθÞ; rþðθÞ� dθ2π if δ ≠ 0

ð31Þ

ffiffiffi
δ

r

r �
u00l þ

ð1
4
− l2Þ
r2

ul

�
¼ β

MPlp
ðρin − ρvacÞ

Z
Ξ½r; r−ðθÞ; rþðθÞ�e−ilθ

dθ
2π

− n
Z

e−ilθ

½ϕ̄ðrÞ þ ψ0ðrÞ þ
ffiffi
δ
r

q P
l0≠0ul0 ðrÞeil0θ�

nþ1

dθ
2π

ð32Þ

Let us note that (1) this hierarchy is highly nonlinear and
that (2) the complex integrals on the rhs of Eqs. (31)–(32)
cannot be performed as one would need to know the poles
of its integrand, which depend on the whole solution and
because, due to the displacement, the radial width of the
inner cylinder depends on θ. Nevertheless as shown in the
Appendix A, the integral of Ξe−ilθ over θ can be computed
analytically so that the only big issue is the complex
integral involving ul.

E. Small displacement approximation

So far, the system (31)–(32) is fully general since we
made no approximation. Now, keeping in mind our goal,
we want the force on the inner cylinder, so that we are
interested on the field configuration on the cylinder, that is

close to r ∼ R. Since we assume δ ≪ R, we can expand our
solutions in e=R.
First, we define eðθÞ as

eðθÞ ¼ rþðθÞ − r−ðθÞ ð33Þ

with the definition (16). At lowest order in δ=R, it
reduces to

eðθÞ ¼ e

�
1þ δ2

RðRþ eÞ sin
2 θ

�
: ð34Þ

Then, consider Eq. (31).The computation of the integral of
Ξ is obtained by taking the limit l → 0 in Eq. (A3) as
½ϑþðrÞ − ϑ−ðrÞ�=π where ϑþðrÞ and ϑ−ðrÞ are two angles
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in ½0; π� at which the circle of radius r centered on O
intersects the circle centered on O0 of radius R and Rþ e
respectively. They are defined only for r ∈ ½R − δ; Rþ δ�
and r ∈ ½Rþ e − δ; Rþ eþ δ� respectively so that this
term vanishes outside of the support ½R − δ; Rþ Eþ δ�.
It can be checked that in the limit δ → 0 it reduces to the
function equal to 1 on this support, that is precisely
Ξ½r;R;Rþ e�. So, we get

β

MPl
ðρin − ρvacÞ

�Ξ½r;R;Rþ e� if δ ¼ 0

ϑþðrÞ−ϑ−ðrÞ
π if δ ≠ 0

ð35Þ

for the source term.
Then, consider Eq. (32). The multipolar components of

Ξ are derived in Appendix A, see Eq. (A3).
Now, we need to treat the nonlinear term. To that purpose

we consider an expansion in powers of δ=r. The dominant
term involves only functions of r so that the integral over θ
vanishes. It follows that

Z
e−ilθ

�
ϕ̄ðrÞ þ ψ0ðrÞ þ

ffiffiffi
δ

r

r X
l0≠0ul0 ðrÞeil0θ

�−ðnþ1Þ dθ
2π

reduces to

−ðnþ 1Þ
ffiffiffi
δ

r

r
ulðrÞ

½ϕ̄ðrÞ þ ψ0ðrÞ�nþ2

at lowest order. Then, the first nonlinear term is given by

ðnþ 1Þðnþ 2Þ
2

δ

r

P
L≠0uLðrÞul−LðrÞjl−L≠0
½ϕ̄ðrÞ þ ψ0ðrÞ�nþ3

: ð36Þ

In the equation for ψ0 we have the contribution of the
monopole −n=½ϕ̄ðrÞ þ ψ0ðrÞ�nþ1 and then the linear term
in ul vanishes so that the first correction is the nonlinear
term involving the sum

P
L≠0 uLðrÞu−LðrÞ ¼

P julðrÞj2.
In conclusion, we get the hierarchy for the modes as a

set of 1-dimensional differential equations to which we
need to add the equation for ϕ̄, so that the full system is
described by

ϕ̄00 þ 1

r
ϕ̄0 ¼ β

MPl
½ρvac þ ðρout − ρvacÞΞðr; R̄; R̄þ ēÞ� − n

ϕ̄nþ1
ð37Þ

ψ 00
0 þ

1

r
ψ 0
0 ¼

n
ϕ̄nþ1ðrÞ −

n
½ϕ̄ðrÞ þ ψ0ðrÞ�nþ1

þ nðnþ 1Þðnþ 2Þ
2

δ

r

P
L≠0juLðrÞj2

½ϕ̄ðrÞ þ ψ0ðrÞ�nþ3

þ β

MPl
ðρin − ρvacÞ

�Ξ½r;R;Rþ e� if δ ¼ 0

ϑþðrÞ−ϑ−ðrÞ
π if δ ≠ 0

: ð38Þ

u00l þ
ð1
4
− l2Þ
r2

ul ¼ β

MPl
ðρin − ρvacÞ

ffiffiffi
r
δ

r ½sinlϑþðrÞ − sinlϑ−ðrÞ�
πl

þ nðnþ 1Þ ulðrÞ
½ϕ̄ðrÞ þ ψ0ðrÞ�nþ2

−
nðnþ 1Þðnþ 2Þ

2

ffiffiffi
δ

r

r P
L≠0uLðrÞul−LðrÞjl−L≠0
½ϕ̄ðrÞ þ ψ0ðrÞ�nþ3

; ð39Þ

where Ξðr; R̄; R̄þ ēÞ is defined in Eq. (18), ϑ�ðrÞ in
Eq. (A1). The equation for ϕ̄ is closed and can be solved
easily numerically following the same method as in our
previous work [31]. Then, the equation for ψ0 is coupled to
all the modes. But, if we restrict to Oðδ=RÞ it becomes
closed. Then, the infinite set of equations for the ul
becomes again linear if we work at order Oð ffiffiffiffiffiffiffiffi

δ=R
p Þ,

and we can solve it having previously solved for ψ0. Note
that this set of equations is only valid for δ < e=2.

F. Numerical scheme

To completely specified the system, we need to define
properly the boundary conditions for ðψ0; ulÞ.

The total field ϕ must verify the same asymptotic
boundary condition than ϕ̄: ϕð∞Þ¼ϕ�ðρvacÞ. Conse-
quently, both the monopole and the multipoles must
asymptotically cancel,

ψ0ð∞Þ ¼ 0; ulð∞Þ ¼ 0: ð40Þ

We now have all the elements to integrate numerically
the set of equations (37)–(39). In the following all numeri-
cal examples will assume, if not specified otherwise,
that the cylinders are of same density ρin and that the
parameters of the geometry areR ¼ 0.2 m, e ¼ 0.05 m and
R̄ ¼ 0.6 m, ē ¼ 0.1 m.
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1. Monopole ψ0

The contribution of the monopole being cylindrically
symmetric, its derivative shall cancel at r ¼ 0: ψ 0

0ð0Þ ¼ 0.
We can therefore follow the same numerical resolution
scheme as we performed for ϕ̄ in Ref. [31].
Figure 4 shows the profile of the monopole for various

values of δ. It is compared to the one-cylinder profile ϕ̄
and to the symmetrical two-cylinder profile. As expected,
it can be checked that the monopole profile tends to the
former profile when δ tends to 0. As δ gets larger, the
minimum value of the field reached in the inner cylinder
departs slightly from the corresponding value in the two-
centered-cylinders case. The total field might then leak in
the multipoles.

2. Multipoles ul
The integration of the multipoles is more complex.

Indeed, we do not know the position at which the field’s
derivative cancels, position used previously as a starting
point to integrate ϕ̄ and ψ0. Nevertheless Eq. (29) gives
useful information. The factor in front of the multipole sum
scales as 1=

ffiffiffi
r

p
. For the total field not to diverge at r ¼ 0,

each ul must then scale at least as r
1
2 at r ¼ 0. We thus

deduce that we must have for all l: ulð0Þ ¼ 0. Similarly to
the method used to integrate ϕ̄ and ψ0, this leaves us with
one parameter u0lð0Þ for the dichotomy which determines
the correct initial condition giving the proper profile that
verifies ulð∞Þ ¼ 0.
Figure 5 depicts the first multipoles for several displace-

ments of the inner cylinder δ. We observe that, as expected,
the contribution of the multipoles is more important for

large δ. We also notice that for small δ the dipole (l ¼ 1)
is the main contribution whereas for larger δ, the l ¼ 4
term still provides a contribution to the field. We will see
in Sec. VI that this hierarchy is preserved when comput-
ing the force on the inner cylinder, such that the con-
tribution of the l ¼ 4multipole is always negligible. This
justifies the fact that we do not consider multipoles of
higher order.
Now, from these multipoles we can reconstruct

2-dimensional maps of the field using Eq. (29). Figure 6
shows such maps for different values of δ. Figure 7 gives a
clearer view of these maps showing slices of the field
profile in the plane y ¼ 0. One can notice that asymmetry
in the field appears along the axis of displacement. This is
significant in the inter-cylinder space, where the field gets
shrunk on the right side of the inner cylinder while
expanding on the left. Similarly, the maximum of the field
in the space enclosed by the inner cylinder departs from
x ¼ 0. When integrating over the whole cylinder this will
be responsible for a force on the inner cylinder.

FIG. 5. Multipoles of order l obtained for a set of displacement
δ ¼ 0.0001; 0.01; 0.023 m from top to bottom.

FIG. 4. Profiles of the field including the monopole correction
for an asymmetric system of two nested cylinders for different
displacements δ of the inner cylinder. The blue line shows the
one-cylinder profile ϕ̄. The green line is the centered two-nested-
cylinder profile. The dotted lines delimit the border of the
cylinders.
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G. Accuracy of the approximation

When solving Eqs. (38)–(39), we neglected the nonlinear
terms in ul—3rd in the rhs of both Eqs. (38) and (39).
Unfortunately, when evaluating them with the solution we
have obtained, we notice that despite the suppression at
high r caused by the powers of δr, they can dominate close to
the inner cylinder. This occurs for multipoles of order l ≥ 2.
To verify the impact of this terms, we solve again the

multipole equations (38)–(39) taking into account the
nonlinear terms that we evaluate with the solution we first
obtained by neglecting them. These terms involve a sum
over all multipoles and we only keep terms up to l ¼ 4
which is justified by the hierarchy of the multipoles
observed on Fig. 5. As expected, this procedure leaves
the monopole and the dipole unchanged, whereas for
higher multipoles there is a subsequent change in their
relative magnitude while their global shape is conserved.
This however has a limited impact on the total field and on
the associated force as we will show that the monopole
and the dipole are the dominant contributions to the force.
The impact lessen for smaller displacement δ. The multi-
pole shown in Fig. 5 take into account these nonlinear
corrections.

V. TWO-DIMENSIONAL CYLINDRICAL
ASYMMETRIC CONFIGURATION: FULL

NUMERICAL COMPUTATION

We can also address the problem of the nested cylinders
by a full numerical 2-dimensional simulation, that will
not rely on the approximations of the previous section.
We follow the same approach as Ref. [28] that uses an
iterative relaxation algorithm which, from an initial guess,
converges slowly to the solution. We apply it to the
2-dimensional chameleon equation

∂2ϕ

∂x2 þ
∂2ϕ

∂y2 ¼ β

MPl
ρðx; yÞ − nϕ−ðnþ1Þ; ð41Þ

which is discretized over a Cartesian 2D mesh by Taylor
expanding to get

ϕiþ1;j − 2ϕi;j þ ϕi−1;j

ðΔxÞ2 þ ϕi;jþ1 − 2ϕi;j þ ϕi;j−1

ðΔyÞ2

¼ β

MPl
ρðxi; yjÞ − nðϕi;jÞ−ðnþ1Þ; ð42Þ

where ϕi;j denotes the field in the cell ði; jÞ of the mesh, Δx
and Δy the resolutions of the mesh along the two axis.
Here, we use a square mesh so thatΔx ¼ Δy. Then, starting
from an initial guess we can iteratively redefine the field
over the mesh as

FIG. 7. Field profile slices for y ¼ 0 for a set of displacement
δ ¼ 0.0001; 0.01; 0.023 m. The shaded zones and the dotted lines
delimit the cylinders.

FIG. 6. Total field maps obtained by summing ϕ̄, ψ0 and the
multipoles for a set of displacement δ ¼ 0.0001; 0.023 m from
top to bottom. The dotted lines delimit the cylinders. The field is
truncated at 1300 eV in this scale.
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Φðkþ1Þ
i;j ¼ ϕðkÞ

iþ1;j þ ϕðkÞ
i−1;j þ ϕðkÞ

i;jþ1 þ ϕðkÞ
i;j−1

4

−
ðΔxÞ2
4

�
β

MPl
ρðxi; yjÞ − nðϕðkÞ

i;j Þ−ðnþ1Þ
�

ð43Þ

where k denotes the iteration. The process thus consists, at
each iteration, in taking the mean value of the field on the 4
closest neighbors to which one subtracts ðΔxÞ2 times the
second member of the equation evaluated with the current
solution. After enough iterations this converges to the
solution as long as the resolution of the mesh is fine
enough. Having a resolution a tenth smaller than the
smallest Compton wavelength of the field in the considered
setup—here λc;in—is sufficient by inspection.
Nevertheless, due to the nonlinearity of the equation,

instabilities can appear. To overcome them we use an
underrelaxation process, by adding a part of the kth
solution in the redefinition the kþ 1th as

ϕðkþ1Þ
i;j ¼ ð1 − ωÞϕðkÞ

i;j þ ωΦðkþ1Þ
i;j ð44Þ

where ω is the overrelaxation parameter that we take as
ω ¼ 0.9 and Φ is defined by the previous equation.
In this method, due to the finite extent of the mesh,

we must set boundary conditions at finite distance unlike
the method used in the previous section. In our case, this
requires the external cylinder to be thick enough for the
field to reach the minimum of its potential, so that the
internal field becomes screened. In our previous work [31],
we showed that for a wall to be safely screened, its
thickness needs to be roughly larger than 100 λc;wall.
Here, for the parameters we consider, due to the limited
computing resources, we have only been able to use a mesh
allowing one to have an external cylinder of thickness
80 λc;wall, which appears to be sufficient.
Note that we are also limited by the facts we need to have

a large enough mesh to treat the boundary conditions
correctly and to have a precise enough mesh to model the
small variations of the field that are more likely to happen
inside the cylinders, which are the very quantity needed to
evaluate the force. This limits us for exploring the chame-
leon parameter space, and makes this method complemen-
tary to the one presented in the previous section. This
problem is less likely to be encountered in Ref. [28] as it
focused on the field variations in the vacuum gaps and thus
could neglect all variations smaller than Δx, which anyway
have a limited impact on the larger scale variations.

A. Results

The results of this method are displayed in Figs. 8 and 9.
This method allows us to simulate larger displacements
than the multipole method. The structure is faithful to the
one observed in the previous section. We observe the
different behaviors for r > 0.6 m, due to the different ways

FIG. 8. Total field maps obtained by a full numerical simulation
for a set of displacements δ ¼ 0.023; 0.225 m from top to bottom.
The dotted lines delimit the cylinders.

FIG. 9. Field profile slices in the plane y ¼ 0 obtained by a
full numerical simulation for a set of displacements δ ¼ 0.023;
0.225 m. The shaded zones and the dotted lines delimit the
cylinders.
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of setting boundary conditions. The departure from cylin-
drical symmetry is more clearly apparent for large δ,
specially on both sides of the inner cylinder testifying of
a more intense force.

B. Comparison of the two methods

With the full numerical method we can treat any
displacements that are larger than the resolution of the
mesh. This overlaps with the previous semianalytical
method and enables us to compare them. To that end,
we must increase the thickness of the external cylinder in
the multipolar method. We are however limited by the
numerical precision, we use a thickness of 0.2 m. Figure 10
compares the first multipoles computed in the previous
section by considering or not the correction of the nonlinear
terms discussed in Sec. IVG to the multipoles extracted
from the 2D simulation.
We observe that, as expected, the nonlinear corrections

have no impact on the monopole and the dipole. And the
agreement is such that the largest difference between the
multipoles obtain by the method amounts to less than a
percent whether we considered nonlinear corrections or
not. For the modes l ¼ 2 and l ¼ 3, without nonlinear
corrections, the multipolar expansion fails at reproducing
the result of the 2D simulation, reaching differences in the
multipoles that represent an error of 69%. Fortunately,
when we consider nonlinear corrections this differences

falls to respectively less than a percent for l ¼ 2 and 9%
for l ¼ 3. This is a very strong confirmation of the validity
of the multipolar approximation. The difference of 9% for
l ¼ 3will be negligible when considering the force exerted
on the inner cylinder, as we shall discuss.

VI. FORCE BETWEEN CYLINDERS

Now, we have all the elements to study the force that the
cylinders are experiencing when shifting the inner one by δ.

A. Definition of the force

The force on the inner cylinder, is obtained by integrat-
ing the fifth force on the cylinder, hence

F ¼ −
β

MPl

Z
∇ϕdm ¼ −

β

MPl
ρinhF ½δ� ð45Þ

with

F ½δ�≡
Z

2π

0

dθ
Z

rþðθÞ

r−ðθÞ
∇ϕrdr: ð46Þ

We denote Fh ¼ F
h. Fh and F only differ by a constant

factor of −βρin=MPl.
Since we assume a displacement along the x-axis, the

y-components on two symmetric elements (i.e., on θ and
2π − θ) are equal and opposite so that

F x ¼ F ; F y ¼ 0: ð47Þ

It follows that

F ½δ�≡
Z

2π

0

dθ
Z

rþðθÞ

r−ðθÞ

�
cos θ∂rϕ −

sin θ
r

∂θϕ

�
rdr: ð48Þ

Replacing the multipolar expansion of the field we obtain

F ½δ� ¼
Z

2π

0

cos θ
Z

rþðθÞ

r−ðθÞ
½ϕ̄0 þ ψ 0

0�rdr

þ
X
l=0

Z
2π

0

eilθ
Z

rþðθÞ

r−ðθÞ

ffiffiffi
δ

r

r ��
u0l −

ul
2r

�
cos θ

− il
ul
r
sin θ

�
rdr: ð49Þ

We see that ϕ̄0 þ ψ 0
0� will contribute to all the multipoles of

the force.

B. Computation of the force

Let us proceed with a series of approximations that will
allow us to get to the full generic expression of the force.
Those approximations turn to be useful to understand the
magnitude of the force.

FIG. 10. Comparison of the multipoles computed by a full
numerical method and the multipolar expansion method with and
without considering terms nonlinear in ul in Eq. (39).
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1. Test inner cylinder

First, we consider that the inner cylinder as a test cylinder
in the sense that its presence does not affect the scalar field
profile inside the cavity. The latter is thus purely dictated by
the outer cylinder, thus is axially symmetric and given by
ϕ̄ðrÞ alone. It follows that the expression (48) reduces to

F jϕ̄½δ�≡
Z

2π

0

cos θdθ
Z

rþðθÞ

r−ðθÞ
ϕ̄0ðrÞrdr: ð50Þ

Now, since

r−ðθÞ≡ Rþ h−ðθÞ ¼ Rþ δ cos θ −
1

2

δ2

R
sin2 θ þ…

and

rþðθÞ≡ Rþ eþ hþðθÞ

¼ Rþ eþ δ cos θ −
1

2

δ2

Rþ e
sin2 θ þ…

where the dots contain terms which are higher powers of
sin2 θ, we split the integral over r as

Z
Rþe

R
−
Z

r−

R
þ
Z

rþ

Rþe
:

Obviously, the first does not depend on θ and gives 0
after angular integration. The other two reduce to
ϕ̄0ðRÞR½rðθÞ − R� and ϕ̄0ðRþ eÞðRþ eÞ½rþðθÞ − R − e�.
When integrating over θ only the linear term in δ survives
so we get

F jϕ̄;lin½δ� ¼ ½ϕ̄0ðRþ eÞðRþ eÞ − ϕ̄0ðRÞR� δ
2
: ð51Þ

In this approximation we can get the force directly from
our the results of our former work [31]. Even though we
assumed staticity, we can write down the equation of
motion for the inner cylinder as mδ̈ ¼ F so that

δ̈þ β

2πMp

�
ϕ̄0ðRþ eÞðRþ eÞ − ϕ̄0ðRÞR

ð2Rþ eÞe
�
δ ¼ 0;

i.e we expect a typical pulsation of order

ω2 ¼ β

2πMp

�
ϕ̄0ðRþ eÞðRþ eÞ − ϕ̄0ðRÞR

ð2Rþ eÞe
�
: ð52Þ

Note that this does not assume that ω2 is positive. If the
slope of F ½δ� is positive then the force destabilizes the
system and ω has to be thought as the inverse of a
stability time.

Table I summarizes the force for different δ by the
integration of ϕ̄ through both Eqs. (50)–(51), with or
without the linear approximation. Both methods reproduce
the same order of magnitude. We conclude that the force is
positive so that the fifth force destabilizes the system of
cylinders.

2. Inner cylinder with radial backreaction

To go one step further, we consider the change of
the profile of the field induced by the inner cylinder but
neglect the l ≠ 0 modes so that ψ0ðrÞ is taken as the
symmetric configuration when δ ¼ 0. It follows that the
expression (48) reduces to

F jϕ̄þψ0
½δ�≡

Z
2π

0

cos θdθ
Z

rþðθÞ

r−ðθÞ
½ϕ̄0ðrÞ þ ψ 0

0ðrÞ�rdr: ð53Þ

This leads us to a similar computation as the previous one
with a modified profile

F jϕ̄þψ0;lin½δ� ¼ ½ðϕ̄0 þ ψ 0
0ÞðRþeÞðRþ eÞ − ðϕ̄0 þ ψ 0

0ÞRR�
δ

2
:

ð54Þ

Table II contains the values of the force applied to the
inner cylinder corrected by the back reaction contribution
of ψ0, again by integrating it with or without the linear
approximation for the force. Now for all δ, the force is
negative and the linear approximation fails to give the
correct force by one order of magnitude. It shows that the

TABLE I. Magnitude of the force and of the associated
(inverse) of the stability time defined in Eq. (52) in the inner
cylinder test approximation.

δðmÞ jFhjϕ̄jðN:m−1Þ jFhjϕ̄;linjðN:m−1Þ jωjðrad:s−1Þ
10−6 9.57 × 10−11 3.57 × 10−11 1.18 × 10−4

10−4 9.57 × 10−9 3.57 × 10−9 1.18 × 10−4

10−2 9.57 × 10−7 3.57 × 10−7 1.18 × 10−4

0.023 2.20 × 10−6 8.21 × 10−7 1.18 × 10−4

TABLE II. Magnitude of the force and of the associated
pulsation taking into the cylindrically symmetric backreaction.
To be compared to Table I. Note the change of sign in the force
that shows the stabilizing effect of the monopole.

δðmÞ jFhjϕ̄þψ0
jðN:m−1Þ jFhjϕ̄þψ0;linjðN:m−1Þ jωjðrad:s−1Þ

10−6 −2.71 × 10−9 −3.20 × 10−10 3.54 × 10−4

10−4 −2.80 × 10−7 −3.20 × 10−8 3.54 × 10−4

10−2 −2.18 × 10−5 −2.87 × 10−6 3.35 × 10−4

0.023 −3.55 × 10−5 −5.76 × 10−6 3.13 × 10−4
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monopole induces a stabilizing force, as can actually be seen directly from Fig. 4 on which it can clearly be seen that the
gradient of the scalar field becomes positive.

3. Generic case

The general expression (49) includes the sum

X
l

Z
2π

0

eilθ
Z

rþðθÞ

r−ðθÞ

ffiffiffi
δ

r

r ��
u0l −

ul
2r

�
cos θ − il

ul
r
sin θ

�
rdr: ð55Þ

Again in the small δ limit, this can be computed by splitting the integral over r as

cos θ
Z

Rþe

R

ffiffiffi
δ

r

r �
u0lðrÞ −

ulðrÞ
2r

�
rdr − il sin θ

Z
Rþe

R

ffiffiffi
δ

r

r
ulðrÞdrþ cos θ

Z
RþeþhþðθÞ

Rþe
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δ

r
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2r

�
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− il sin θ
Z
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Rþe
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δ

r

r
ulðrÞdr − cos θ

Z
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R
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δ

r
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ulðrÞ
2r

�
rdrþ il sin θ

Z
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R
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δ

r

r
ulðrÞdr:

Hence, F is obtained by integrating over θ the following expression
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R
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: ð56Þ

The first two terms have a contribution of l ¼ �1 which
scales as

ffiffiffi
δ

p
. The terms in δ cos θ in h� leads to terms linear

in δ for l ¼ 2. Then higher multipoles arise from the shape
h�ðθÞ. Basically we will have a series with terms scaling as
½δ2 sin2ðθÞ�p each of which will involve multipoles up to
l ¼ 2pþ 1 and each term is a higher power of δ2. This
is good news since it better justifies the approximation
scheme.
The expected tendency, deduced from our analytical

analysis, that the contributions decrease with l is numeri-
cally confirmed. Table III shows the force computed for
each multipole, as shown in Fig. 5, up to l ¼ 4, i.e., the
contribution to the force resulting from the integration of
Eq. (55) jFhjulþu−l j compared to the integration of Eq. (56)
jFhjulþu−l;linj in the linear approximation. In both cases the
multipole l contains the contribution of ul and u−l to get a
real-valued quantity. We observe, as expected, that the
magnitudes of the multipoles decrease with higher l. This
decrease is slower than what expected in the linear
approximation of Eq. (56). For small δ, we can consider
that only the dipole contributes significantly to the total
force. For larger δ the contributions are more balanced, but

still, the multipoles with l > 2 can be neglected. In any
case, the main contribution to the force are the monopole
and dipole of the field and none can be neglected.

TABLE III. Magnitude of the first multipoles of the force taking
into account nonlinearities (top) and in the linear approximation
(bottom).

jFhjulþu−l jðN:m−1Þ
δðmÞ l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4

10−6 2.75 × 10−9 1.14 × 10−16 … …
10−4 2.74 × 10−7 9.77 × 10−11 1.29 × 10−11 …
10−2 2.11 × 10−5 8.71 × 10−7 1.11 × 10−7 7.40 × 10−9

0.023 3.12 × 10−5 4.27 × 10−6 5.42 × 10−7 3.65 × 10−8

jFhjulþu−l;linjðN:m−1Þ
δðmÞ l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4

10−6 2.74 × 10−9 5.06 × 10−17 … …
10−4 2.74 × 10−7 5.06 × 10−11 1.16 × 10−15 …
10−2 2.41 × 10−5 6.80 × 10−7 1.16 × 10−10 7.49 × 10−23

0.023 4.67 × 10−5 3.28 × 10−6 2.44 × 10−9 0
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C. Dependance of the total force on δ

We can now gather all the different contributions and
calculate the total force on the inner cylinder. Figure 11
depicts how it behaves with δ. The sum on l is truncated to
l ¼ 2 included. The force is repulsive and linear in the
displacement. The force obtained by both methods have
been compared: there is an overlap for δ between 10−3 and
2.10−2 m, where both methods agree. At each limit of this
interval, each method starts to show some of its limits by
departing from linearity. For the full numerical method, it is
due to the fact that the mesh is too coarse compared to δ.
For the multipolar method, it is due to the fact that some
higher nonlinear terms we have not considered become
non-negligible for large δ. Nevertheless, both method are
consistent and show the same global linear behavior and
magnitude. The linearity of the force occur for δ≲ 10−1 m
and have linear stiffness of kh ¼ −3.10−5 N:m−2—
assuming the convention F ¼ −kδ, and kh ¼ k=h.
These results can also be compared with the one-

dimensional simulation of asymmetry from Sec. III. To
be comparable to this cylindrical case, we consider a 4-wall
configuration where the two internal walls move together.
We compute the acceleration experienced by respectively
the twowalls and the internal cylinder. Figure 12 shows that
both cases are in excellent agreement. The linearity of the
force occurs for the same range of δ and the departure from
linearity for large δ are very much similar. The magnitude
of the accelerations using both methods differ by a factor
smaller than 2, so that the cylindrical geometry does not
bring any major additional contribution to the force—it
even lowers it slightly.

D. Total force variation with β and λ

Let us investigate the dependence of this fifth force on
the chameleon parameters β and Λ. We run the multipolar
method for different parameters for δ ¼ 10−6 m, and
compare kh that we estimate as the linear slope of FðδÞ.
Table IV summarizes the values of kh obtained for

different couples of parameters ðβ;ΛÞ. For each kh, the
sum of the multipole contribution is truncated at l ¼ 2
as the next contribution are negligible. Figure 13 shows
graphically its variation with β for Λ ¼ 1 eV, and with Λ

TABLE IV. Dependence of the slope per unit of length of the cylinder, kh ¼ −F=ðhδÞ, of the pressure with the
parameters β and Λ of the chameleon model.

Λ

kh N:m−2 0.4 1 3 5 10

β 0.01 6.72 × 10−10 2.81 × 10−10 2.31 × 10−10 2.26 × 10−10 2.24 × 10−10

0.1 1.25 × 10−6 5.13 × 10−7 3.91 × 10−8 3.01 × 10−8 2.65 × 10−8

1 5.55 × 10−6 3.78 × 10−5 1.69 × 10−4 3.67 × 10−5 5.55 × 10−6

4 4.37 × 10−5 8.78 × 10−5 8.85 × 10−4 2.20 × 10−3 1.57 × 10−3

10 … 3.03 × 10−4 1.41 × 10−3 4.46 × 10−3 1.51 × 10−3

FIG. 11. Total linear force as a function δ. The blue line refers
to the result of the multipolar expansion method while the red line
is the result of the full numerical simulation. The green line is a
linear model fitted on the two first points.

FIG. 12. Acceleration experienced by the inner cylinder of a
2-cylinders configuration computed by the multipolar expansion
method blue) and the full numerical simulation (red). The green
line represents the acceleration experienced by the two central
wall of a 4-wall configuration, i.e., of the analog 1-dimensional
problem.
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for β ¼ 1. The force increases with β and exhibits a
maximum along the Λ-axis, that flattens for small values
of β. Notice that the behavior of the stiffness is similar for
the 1-dimensional case of 4-walls. This behavior is inter-
esting considering screening. The cylinders indeed tend to
be screened for large β and small Λ, as the Compton
wavelength decreases. The behavior of the force shows that
it can still be relevant even when the system of cylinders
is screened—β large. This is promising as this could still
lead to a detectable internal effect even when screening
occurs, i.e., when externally sourced effects are shielded,
see Ref. [31].

E. Dependence on the geometry

For now, we have fixed the geometry with specific sizes
of cylinders, gaps, and matter densities. Varying these
parameters will indeed change the value of the force and its
stiffness, as well as shifting the sensitivity curves displayed
in Fig. 13.

1. Effect of the densities

In most experiments, the vacuum density is much smaller
than the one used in our analysis. Here, we estimate how
this impacts the force by varying the density of the
intercylinder vacuum. Figure 14 shows the result for a
displacement δ ¼ 10−6 m—for higher δ, the curve remains
similar. The intercylinder vacuum density is expressed as a
multiple of the cylinder density ρin, which we keep fixed.
So far we used ρvac=ρin ¼ 10−3.
We observe that on the one hand, improving the vacuum

quality leaves unchanged the magnitude of the force.
This is due to the fact that the field is in fact unchanged
in the intercylinder and exterior regions. When lowering
ρvac the associated Compton wavelength stretches such that
the field has less room to vary, but the associated minimum
of the potential ϕ� gets stretched at the same time. These

two effects compensate so that the profile and the force
remains unchanged. On the other hand, when worsening
the vacuum quality the force gets exponentially suppressed.
This occurs when the Compton wavelength associated to
ρvac becomes of same order of magnitude as the intercy-
linder gap, as then the field has enough room to reach its
minimum so that the previous argument is no longer
valid. The force becomes null when the vacuum density
equals the density of the cylinders. This is natural as, in this
case, the system can be considered as a solid cylinder in
which the field is flat and equal ϕ�ðρinÞ deeply inside the
cylinder at the level of where the inner cylinder was. This
confirms that everything we obtained previously with
ρvac=ρin ¼ 10−3 is directly transposable to case of a better
vacuum quality.

2. Scaling of the geometry

Considering smaller scales in the geometry by reducing
the sizes of the cylinders and the gaps would also affect the
force. The scaling mentioned in Eq. (12) should give us the
answer to this question. Indeed, it gives a correspondence
between two geometries with constant matter densities, as
long as the chameleon parameters are changed accordingly.
This can be generalized to a scaling of the type

x → x0 ¼ αxx;

Λ → Λ0 ¼ αΛΛ;

β → β0 ¼ αββ;

ϕ → ϕ0 ¼ αϕϕ

ρ → ρ0 ¼ α3ρρ; ð57Þ

keeping the Planck mass unchanged. In order for the field
equation to be unchanged, we need to impose that

FIG. 13. Dependence of the chameleon stiffness kh to β and Λ
for Λ ¼ 1 eV and β ¼ 1 respectively.

FIG. 14. Evolution of the force with the intercylinder vacuum
density while the cylinder density is kept fixed, for δ ¼ 10−6 m
and n ¼ 2, β ¼ 1, Λ ¼ 1 eV.
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αϕ ¼ αβα
3
ρα

2
x; and αnþ2

ϕ ¼ α4þn
Λ α2x: ð58Þ

Hence, Eq. (12) corresponds to αρ ¼ 1, αΛ ¼ αϕ ¼ α,
αx ¼ 1=α and αβ ¼ α3. It follows that the masses of the
cylinders scale as m → m0 ¼ α3ρα

3
x m. Since the force is

given by Fh ¼ − β
MPl

m
h ∇xϕ, it follows that it scales as

F → F0 ¼ αβα
3
ραxαϕF;

and that, given the constraint (58) the profile of the field is
obtained from a simple rescaling as the Klein-Gordon
equation remains unchanged, up to a general conformal
factor. Hence, in the particular case of Eq. (12), F0 ¼ α3F.
This tells us that small systems are more likely to provide
detectable forces since shrinking all physical dimensions
by a factor α (keeping the same materials; αρ ¼ 1) would
increase the force by a factor α3. On the other hand, this
corresponds to another theory as β has also been changed.
It follows that the dependence of the force on β and Λ is
impacted accordingly so that the curves of Sec. VI D should
be shifted along the β- and Λ-axis in a way consistent with
the above scaling relations. All these scalings have been
checked using our simulations.

VII. CONCLUSIONS

This article investigated the fifth force that arises on the
detector of a gravity experiment, in the case of chameleon
models. As the profile of the scalar field is affected by the
local matter density, this requires us to determine solutions
of the Klein-Gordon equation inside the instrument. To that
goal, we modeled the accelerometer in the simplest way as
two nested cylinders. We then extended our previous work
[31] to take into account the fact that the cylinders may
move, violating the axial symmetry, and hence creating a
nonvanishing fifth force on the cylinders.
The computation of this force requires full numerical

simulations but we estimated its magnitude and depend-
ence on the geometry and the parameters of the model by
first assuming that the cylinders are infinite. In such a
situation, the Newton force between the two cylinders
vanishes exactly. First, we considered an analog
1-dimensional model with 2 parallel walls containing a
third wall that can move from its central position. Then,
we explored the case of 2 infinite nested cylinders. We
developed a semianalytic method based on a multipolar
expansion of the field. It allowed us to solve the Klein-
Gordon equation iteratively. While the hierarchy of equa-
tions for the multipoles is a coupled system due to the
nonlinearity of the chameleon model, we showed that they
decoupled for small displacement. We thus solved these
equation numerically, first in the linear approximation and
then with the first nonlinear term, and compared them with
the profiles obtained from a full numerical simulation using
a finite difference relaxation method. The two approaches

are complementary and agree perfectly inside their
common domain of applicability.
In all the cases studied, 1- or 2-dimensional, the force is

linear in the displacement, as long at it is small compared to
the radius of the cylinders. The fifth force is repulsive so
that it does not stabilize the system by restoring the
symmetry. Interestingly, the accelerations induced by this
force in 1 or 2 dimensions are in very good agreement,
testifying that there is no significant effect created by the
cylindrical geometry. Then, we studied the dependence of
this force on the chameleon parameters. We mainly showed
that the force was increasing with β leading to the
conclusion that one could expect detectable effects even
when the cylinders are screened. We exhibited some scaling
relations between the geometry and the parameters of the
model and explored the sensitivity of the force to geomet-
rical parameters. Two features have been explored: (1) we
showed that the force was constant regardless of the
magnitude of the density in the vacuum of the intercylinder
gaps as long as this density is small enough, i.e., the
Compton wavelength of the field in vacuum is smaller than
the sizes of the gaps. This makes all our results valid for
realistic densities of vacuum. Finally (2) we showed that
reducing the size of the cylinders simultaneously would
affect the force in such a way that dividing them by a factor
α would multiply the force by a factor α3, leading to forces
more likely to be detectable for smaller system.
While this analysis gives a first insight on the effect

of a chameleon fifth force on a space detector with a
geometry close to the MICROSCOPE accelerometer, it is
still simplified. First it assumes infinite cylinders. Indeed,
with finite cylinders one expects edge effects which would
require full 3-dimensional simulations. Besides, while the
Newtonian force is strictly zero for 2 infinite nested
cylinders, it will be nonvanishing for finite cylinders.
This study allows us to control such simulations in the
limits h=R ≫ 1. Then, we assume that the configuration of
cylinders is static. While this is fine to compute the fifth
force, it may not be adapted for a dynamical analysis. Such
an analysis would require to study the relaxation of the field
when the inner cylinder is moving and would challenge the
hypothesis of a frozen field. Nevertheless, our formalism
paves the way to study the effects of a chameleon fifth
force on the detector of gravity experiments such as the
MICROSCOPE mission. An application to this experiment
will be presented, with more faithful geometrical param-
eters, in a follow-up article [32].
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APPENDIX: COMPUTATION OF IlðrÞ
To obtain Eq. (35), we need to compute integrals of eilθΞ

that contains terms like

IlðrÞ ¼
Z

dθ
2π

H½r − fðθÞ�eilθ

whereH is the Heaviside function and f stands for r− or rþ.
At constant r, the equation r ¼ fðθÞ has then 2 opposite

solutions in θ as fðθÞ is the polar equation of a circle of
radius R displaced of δ. These solutions exists only when
r ∈ ½R − δ; Rþ δ� and are given by

cos ϑðrÞ ¼ r2 þ δ2 − R2

2δr
; ðA1Þ

for which we keep only the positive root, the second
being −ϑðrÞ. Then it is clear that H½r − fðθÞ� ¼ 1 for
θ ∈ ½−ϑðrÞ; ϑðrÞ� so that

IlðrÞ ¼
Z

−ϑðrÞ

ϑðrÞ

dθ
2π

eilθ

and thus

IlðrÞ ¼ −
sinlϑðrÞ

πl
:

It follows thatZ
Ξ½r; r−ðθÞ; rþðθÞ�e−ilθ

dθ
2π

¼ sinlϑþðrÞ
πl

−
sinlϑ−ðrÞ

πl

ðA2Þ

from which we deduce thatZ
Ξ½r; r−ðθÞ; rþðθÞ�

dθ
2π

¼ ϑþðrÞ − ϑ−ðrÞ
π

: ðA3Þ
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4.3 Additional content: exploring methods

4.3.1 Quasi-cylindrical method for nested cylinders

In Sec. 4.2, we obtained the profile associated to a geometry of two nested cylinders
whose axes do not coincide by two methods. Before that, we tried to solve the problem
of computing the force the inner cylinder feels by making the assumption that the field
is quasi-cylindrical in the limit small displacements.

Figure 4.1: Sketch of the quasi-cylindrical method. The geometry is subdivided in radial
‘pie slices’ delimited by the dashed lines, one of them is shown with the shaded region,
its central radius is depicted with the dashed arrow.

The starting point of this method is the ones developed in the first article of this
chapter that allowed us to compute the field of a cylindrically symmetric geometry. The
principle of the method is sketched in Fig. 4.1. We subdivide the geometry in ‘pie slices’
zones and consider that in each of these zones, the field can be approximated by the one
of a cylindrically symmetric geometry of two centred nested cylinders whose boundaries
are given by those of the decentred cylinders at the level of the central radius of the
zone – dashed arrow in Fig. 4.1. Mathematically this corresponds to take as boundaries
for the inner cylinder

Rapprox
in{out pαq � Rin{out

�
δ

Rin{out
cosα�

d
1� δ2

R2
in{out

sin2 α

�
, (4.1)

with δ the displacement of the inner cylinder, α the angle of the considered zone and
Rin{out � R orR � e the real inner and outer radius of the cylinder. In each zone, the
approximated field can be computed with the methods of the first paper. But the aim is
to compute the force experienced by the inner cylinder. We compute it by summing over
each element of the cylinder the forces obtained in each zones with the approximated
field.

The results of this method were unsatisfying. While in the 1D case the force was
destabilising, here we found that it was stabilising. This has motivated the development
of the two others methods. These methods confirmed that this method was indeed
wrong and that the force was destabilising.
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4.3.2 Adaptive mesh refinement methods for a 3D treatment

In Sec. 4.1 we showed that MICROSCOPE is screened for most of the unconstrained
part of the chameleon parameter space. In the remaining part, where the field is only
partially screened, a WEP violation can appear. This effect is caused by the influence
on the field profile of both the Earth and the test masses. As discussed in Sec. 2.3.4,
two test masses are differently screened due to their different mass densities, thence they
experience different fifth forces. But in the case of MICROSCOPE, the two tests masses
interact and the matter from the satellite affects the field. To quantify the magnitude of
such WEP violation we need to solve simultaneously the field behaviour as sourced by
the Earth and the satellite. Solving this problem requires to run a 3D large simulation
containing both of them. Besides, the boundary conditions must be set at some large
distance of the system given by the scale of Compton wavelength associated to the low
density background environment. This imposes to the simulation to span a very large
region of space.

We attempted to answer this problem by using the relaxation method used in the
Sec. 4.2. In this method, the simulated region is subdivided in a regular Cartesian mesh
grid made of equal squared cells. A value of the field is attributed to each cell and is
redefined by the solver at each iteration of the method until convergence. In Sec. 4.2,
we used this method in 2D for a very limited region delimited by the outer cylinder of
the geometry we were studying – the screening of this cylinder allowed for imposing the
boundary conditions in it. Here, we need the simulation to be 3D and larger, this requires
a number of cells significantly larger. Given that resolution of the grid is dictated by
the size of the satellite and the magnitude of smallest Compton wavelength of the field
associated to the matter at play, the number of required cells is way over the capacities
of a computer and even maybe of a computer cluster.

Figure 4.2: Sketched of an adaptive refined mesh grid obtained from Ref.[16].

The idea to overcome this problem is to use an adaptive mesh refinement technique.
In these methods, instead of using a regular mesh grid, we use an adaptive mesh grid
with cells of variable sizes. An example of such a grid is sketched in Fig. 4.2. This
method optimises the usage of computing resources by focusing them where needed.
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In the chameleon problem, the computing resources need to be focussed where the
field varies sharply i.e. at the boundaries of matter in the satellite and in Earth. We
implemented this method for the chameleon problem by following Ref. [16] who already
applied it to elliptic equations problems i.e. Laplace-like equations. We used the package
PARAMESH [68] to generate the grid.

This investigation of 3D simulations was not convincing. We applied it to the 2D
case of nested cylinders to obtain their profile for chameleon parameters for which the
cylinders are more screened compared to those shown in Sec. 4.2. We found that it
did not provide a significant improvement to our ability of computing our chameleon
problem, given our computing resources. This is mainly caused by the fact that between
a coarse and a finely refined regions of the grid, the sizes of the cells must decrease step
by step, as depicted in Fig. 4.2. The reason to this is the treatment of the information
transmission at the transition between two levels of refinement. Thus, for our case, the
power of AMR to reduce the computing needs is limited. We concluded that solving
this problem is beyond our computing resources and, it seams to us, maybe beyond even
those of computing clusters. As a point of comparison, the typical grids we used in the
2D problem of Sec. 4.2 were made of 5002 cells, while an example of a large simulation
such as the TNG300 cosmological simulation [96] uses 25003 cells. Of course in the 3D
case we study, the field is less screened in the satellite such that we need less cells to
treat the dynamics in the satellite, but due to the boundary conditions treament, we
need a simulation at least a thousand times larger. This problem might thus require a
number of cells far larger than 25003, which seams currently unreachable. The problem
of the numerical treatment of the chameleon problem is thus still an open issue, it may
require a closer collaboration with numericians. As discussed in Ref. [18], finite element
methods should be privileged.

Chapter conclusion

We have numerically solved the chameleon profile associated to different ge-
ometries. The MICROSCOPE experiment has been found to be screened for
most of the unconstrained parameter space. Despite this screening, an internally
sourced force is expected to appear when a test mass cylinder is shifted from its
rest position. This force behaves as a destabilising stiffness.

This new stiffness is used in the next chapter to constraint the chameleon
model with measurement sessions dedicated to measure the electrostatic stiffness.
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Chapter 5

Application: testing the
chameleon stiffness with
MICROSCOPE

As already mentioned the measurement of the electrostatic stiffness in MICRO-
SCOPE may represent a novel and original opportunity for testing the chameleon theory.
The reason for it is both the existence of a chameleonic stiffness that we characterised
in the previous chapter and the discrepancy that has been observed between the mea-
sured stiffness and the expected stiffness from electrostatic models. Nevertheless before
concluding on potential constraints, one needs to study all the source for such a stiffness
and apply the formalism developed in the previous chapter to obtain the chameleon
stiffness to a realistic case accounting for MICROSCOPE’s geometrical parameters.

The MICROSCOPE mission has performed four sessions dedicated to the measure-
ment the electrostatic stiffness one expects from the electrostatic forces involved in the
capacitive measurement of the acceleration. A simple model for such a stiffness has been
introduced by Eq. (1.30) in Chapter 1. The measurement sessions consist in displacing a
test mass around its rest position and measure the force acting on it. This displacement
is sinusoidal with a frequency of 3 mHz and an amplitude of 5µm. The result is com-
pared to a more complex model than the one given in Eq. (1.30) that corresponds to the
geometrical specificities of the MICROSCOPE’s test masses and electrode cylinders. As
Ref. [21] shows, the result of the measured and the expected values of stiffness disagree
by more than 15%. The electrostatic model has been verified by numerical calculation
and shown to overestimate the electrostatic stiffness by a bit less than 10%. This leaves
a discrepancy that needs to be explained.

This chapter explores this discrepancy. The first part of the chapter re-analyses the
stiffness-measurement-sessions by including other possible sources of such a linear force.
The main new contributor comes from the mechanical action of the 7µm-gold-wire used
to maintain the test masses at a desired electrical potential and that acts as a spring.
The action of this wire is actually not completely quantified. This article evaluates
its possible contribution to the stiffness. It also explores that this discrepancy could
be caused by a Yukawa-like fifth force and pulls constraints from it by attributing the
whole residual discrepancy budget to it. The second part of the chapter intends to do
the same procedure to the case of the chameleonic fifth force. The procedure is less
straightforward as it requires the complex methods from last chapter.
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5.1 Measurement of the electrostatic stiffness in MICRO-
SCOPE

5.1.1 Introduction and summary

The aim of this article is to evaluate the magnitude of all possible classical source of
discrepancy between the measured and expected electrostatic stiffness in the MICRO-
SCOPE experiment before considering the interpretation of the observed discrepancy
as the result of a modified gravity effect. The analysis of these sessions presented here
goes beyond the original analysis [21] that consisted in measuring the amplitude of the
excess sinusoidal acceleration that a test mass is experiencing when it is sinusoidally
shifted from its rest position. In this work, we derive a measurement equation for the
acceleration the test mass experiences. The main new contributor comes from the gold-
wire to which it is connected. This wire acts as a spring that generates a stiffness term
and two damping terms. This damping consists of the internal damping that is already
known to be a contributor to the noise of the mission – see Sec.1.4.4 – and a viscous
damping. The former provides an out-of-phase acceleration whose phase is determined
by the quality factor of the wire. The latter provides an acceleration in opposition of
phase.

The question is to determine the contributions of these effects and more particularly
the physical parameters of the wire: stiffness on the jth-axis kwj , quality factor Q and
viscous damping factor. The degeneracy between theses parameters is discussed. By
fitting the slope of the acceleration noise of the detector one can have access to the ratio
kwj

Q . Under some assumptions we show that we can use this information to disentangle
the problem and estimate from the stiffness-measurement-sessions the parameters of
the wire. In the axes perpendicular to the MICROSCOPE’s cylinders, the contribution
of this mechanical stiffness is shown to be too small to explain the measured stiffness
discrepancy.

Then the possibility that the discrepancy is caused by a Yukawa fifth force is ex-
plored. Such a force does indeed lead to a stiffness when a cylinder is not centred in
the same way as the Newton force does. This is due to the interaction of the test mass
with the diverse parts of the apparatus. The contributions are diverse: the cylinders in
which the test mass is nested provide a destabilising stiffness while the part on the top
of these cylinders contribute as a stabilising stiffness. These effects are finely understood
by deriving a total Yukawa force. The discrepancy-budget can then be transformed in a
constraint on the (α, λ)-plane of the Yukawa interaction. The constraints are shown to
be eight orders of magnitude looser than the current best upper bounds for the consid-
ered ranges of interaction. This is not surprising since MICROSCOPE was not designed
to that purpose. Note that the equivalent effect from local Newtonian gravity has also
been evaluated to demonstrate it is negligible. The ambition of the next section of this
chapter is to perform the same analysis for the chameleon field.

5.1.2 Article

CHAPTER 5. APPLICATION: TESTING THE CHAMELEON STIFFNESS WITH
MICROSCOPE
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Abstract. The MICROSCOPE experiment was designed to test the weak

equivalence principle in space, by comparing the low-frequency dynamics of cylindrical

“free-falling” test masses controlled by electrostatic forces. We use data taken during

technical sessions aimed at estimating the electrostatic stiffness of MICROSCOPE’s

sensors to constrain a short-range Yukawa deviation from Newtonian gravity. We

take advantage of the fact that in the limit of small displacements, the gravitational

interaction (both Newtonian and Yukawa-like) between nested cylinders is linear, and

thus simply characterised by a stiffness. By measuring the total stiffness of the forces

acting on a test mass as it moves, and comparing it with the theoretical electrostatic

stiffness (expected to dominate), it is a priori possible to infer constraints on the

Yukawa potential parameters. However, we find that measurement uncertainties are

dominated by the gold wires used to control the electric charge of the test masses,

though their related stiffness is indeed smaller than the expected electrostatic stiffness.

Moreover, we find a non-zero unaccounted for stiffness that depends on the instrument’s

electric configuration, hinting at the presence of patch field effects. Added to significant

uncertainties on the electrostatic model, they only allow for poor constraints on the

Yukawa potential. This is not surprising, as MICROSCOPE was not designed for

this measurement, but this analysis paves the way to new experimental searches for

non-Newtonian gravity.
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1. Introduction

A hundred years after its invention, Einstein’s theory of General Relativity (GR) still

passes all experimental tests [1], from early tests (the Mercury perihelion puzzle and

the measurement of the gravitational deflection of stars’ light passing near the Sun

by Eddington) to current tests (gravitational lensing [2, 3], gravitational redshift [4, 5],

gravitational waves direct detection [6]). However, in order to stand still in front of (not

so recent) astrophysical and cosmological observations, GR must be supplemented by

dark matter and dark energy. The former explains the flat rotation curve of galaxies and

their dynamics in clusters [7,8], while the latter explains the acceleration of the cosmic

expansion [9, 10]. Whether our theory of gravitation must be revised or the content of

our Universe better understood is still an open discussion [11, 12]. In this article, we

adopt the former possibility.

Theories beyond the standard model propose the existence of new fields and

particles. For instance, string-inspired theories introduce a spin-0 dilaton-like particle

(e.g. Refs. [13, 14]), while scalar-tensor models modify GR’s equations via the

introduction of a new scalar field (see e.g. Refs. [11, 15, 16]). Although a new very

light scalar field should entail the appearance of a new long-range force incompatible

with current Solar system tests, its existence can be made compatible with experimental

constraints by virtue of a screening mechanism that makes the field’s mass environment-

dependent, thereby hiding it from local experimental tests [13,17–24]. Those models can

nevertheless have measurable effects, such as an apparent violation of the equivalence

principle (e.g. Refs. [20, 25]) or a variation of fundamental constants [26, 27].

Looking for short-range deviations from Newtonian gravity is essential to test

low-energy limits of high-energy alternative theories (such as string theory or extra

dimensions) and is the goal of several experimental efforts (see Refs. [28–30] for reviews

and references therein, and Refs. [31, 32] for recent results). While most of them are

highly optimised to look for specific minute signals, we propose, in this article, to search

for a short-range deviation from Newtonian gravity as a byproduct of MICROSCOPE

data.

The MICROSCOPE space experiment tested the weak equivalence principle (WEP)

to an unprecedented accuracy [33, 34] via the comparison of the acceleration of two

test masses freely falling while orbiting the Earth. If the WEP is violated, a signal is

expected at a well-known frequency depending on the satellite’s orbital and spinning

frequencies (since the motion of the satellite modulates the Earth gravity field –which

is the source of the measured acceleration). Since MICROSCOPE orbits the Earth at

a 700 km altitude, the experiment is then sensitive to long-ranged (more than a few

hundred kilometers) modifications of gravitation. Its first results thus allowed us to

set new limits on beyond-GR models involving long-range deviations from Newtonian

gravity parametrised by a Yukawa potential, a light dilaton [35] and a U-boson [36,37].

Updates of those works are under way following the final MICROSCOPE results [38,39].

In this article, we use MICROSCOPE sessions dedicated to the in-flight
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characterisation of its instrument to look for short-range deviations of Newtonian

gravity. Although in WEP-test configuration, the MICROSCOPE test masses are

kept almost motionless by the electrostatic measurement apparatus and are (by design)

barely affected by the satellite’s and instrument’s self-gravity, this is not the case in

some technical sessions where they are set in a sinusoidal motion. In this situation,

they are sensitive to other forces such as the instrument’s electrostatic stiffness and

the gravitational force from other parts of the instrument. Given the geometry of the

MICROSCOPE instrument, we can expect to see deviations from Newtonian gravity

ranging from the millimetre to the decimetre scales once all other environmental

interactions are accounted for (we recover the fact that gravity tests are degenerate

with the environment, as shown e.g. in Ref. [40]). Nevertheless, we must note that

MICROSCOPE was not designed for this experiment, and we cannot expect to obtain

competitive results. The intent of this paper is then to present this new experimental

concept and show how we could improve MICROSCOPE to test short-range gravity in

space.

The layout of this paper is as follows. After a brief introduction to the Yukawa

deviation from Newtonian gravity in Sect. 2, we introduce our experiment measurement

principle in Sect. 3. Sect. 4 provides an exhaustive account of the forces acting on the

experiment. We present the data analysis procedure and the measurement of relevant

parameters in Sect. 5. We then provide new (albeit not competitive) constraints in Sect.

6, before concluding in 7. Appendices give a pedagogical derivation of the electrostatic

force at play along MICROSCOPE’s cylinders’ radial axes, and an analytical expression

for the gravitational (both Newtonian and Yukawa) interaction between two cylinders.

2. Yukawa gravity

We parametrise a deviation from Newtonian gravity with a Yukawa potential, which is

simply added to the Newtonian potential. The total gravitational potential created by

a point-mass of mass M at distance r is then

V prq “ ´GM

r

”

1 ` α exp
´

´ r

λ

¯ı

, (1)

where G is Newton’s gravitational constant, α is the strength of the Yukawa deviation

compared to Newtonian gravity and λ is the range of the corresponding fifth force.

Despite its simplicity, the Yukawa parametrisation is useful as it describes the

fifth force created by a massive scalar field in the Newtonian regime (see e.g. the

Supplemental material of Ref. [35] and references therein). The range λ corresponds

to the Compton wavelength of the scalar field, and α is linked to its scalar charge.

Phenomenologically, this charge can depend on the composition of the interacting bodies

in various ways, e.g. through combinations of their baryon and lepton numbers [28].

In this paper, we consider composition-independent Yukawa interactions only (thereby,

we assume a universal scalar charge), and we do not relate to any phenomenological

subatomic model, but instead consider only α as the parameter to constrain.
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Many experiments have already provided tight constraints on its range and strength,

from sub-millimeter to solar system scales (e.g. Refs. [28,29] and references therein, and

Refs. [35, 41–44] for more recent works). In this article, we are concerned with ranges

between λ « 10´3 m and λ « 10´1 m, corresponding to the scale of MICROSCOPE’s

instrument. The best constraints on the strength of a Yukawa potential for such ranges

are |α| ď 10´3 [31, 45, 46].

3. MICROSCOPE measurement principle

3.1. Instrumental apparatus

The core of MICROSCOPE’s instrument consists of two differential accelerometers (or

Sensor Units – SU), the test masses of which are co-axial cylinders kept in equilibrium

with electrostatic actuation [47]. The test masses’ materials were chosen carefully so

as to maximize a potential violation of the WEP from a light dilaton [13, 48, 49] and

to optimise their industrial machining: the SUEP test masses are made of alloys of

platinum-rhodium (PtRh10 – 90% Pt, 10% Rh) and titanium-aluminium-vanadium

(TA6V – 90% Ti, 6% Al, 4% V), while the SUREF test masses are made of the same

PtRh10 alloy.

The test masses of each SU are controlled electrostatically, through electrodes,

without any mechanical contact; only a thin 7 µm-diameter gold wire, used to fix the

masses’ electrical potential to the electronics reference voltage, provides a mechanical

contact between the test masses and their cage. The test masses’ control is performed by

an electronic servo-loop. Two Front-End Electronics Unit (FEEU) boxes (one per SU)

include the capacitive sensing of masses, the reference voltage sources and the analog

electronics to generate the electrical voltages applied to the electrodes; an Interface

Control Unit (ICU) includes the digital electronics associated with the servo-loop digital

control laws, as well as the interfaces to the satellite’s data bus. Additionally, the same

electronics’ output is used by the drag-free system of the satellite responsible for the

cancellation of non-gravitational forces applied to the satellite, such as atmospheric drag

and solar radiation pressure [50].

Fig. 1 shows a cut out view of one SU, with its two test masses, their surrounding

electrodes-bearing cylinders, cylindrical invar shield, base plate, upper clamp and

vacuum system.

3.2. MICROSCOPE’s test mass measured acceleration

The electrostatic (control) force applied by the electronics servo-control to maintain the

jth test mass motionless (j “ 1, 2 for the internal and external test masses) is [51]

~Γcont,j “
~Fel,j

mIj

“ ~ΓC,j ` ~Γcin,j ´
~Floc,j

mIj

´
~Fpa,j

mIj

`
~Fext

MIsat

`
~Fth

MIsat

(2)

where mIj and MIsat are the inertial masses of the jth test mass and of the satellite,
~Fext are non-gravitational forces affecting the satellite (atmospheric drag, Solar radiation
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Figure 1. Cut out view of a MICROSCOPE sensor, with its two test masses, their

surrounding electrodes-bearing cylinders, cylindrical invar shield, base plate, upper

clamp and vacuum system. The reference system is shown on the left of the figure.

Figure from Ref. [34].

pressure), ~Fth are forces applied by the thrusters (to compensate for external forces) and
~Floc,j and ~Fpa,j are local forces (inside the sensor) that we can consider explicitly (e.g.

electrostatic stiffness, gold wire stiffness, self-gravity) or implicitly (e.g. electrostatic

parasitic forces), respectively. The Earth gravitational acceleration

#»

ΓC,j “ MGsat

MIsat

#»g pOsatq ´ mGj

mIj

#»g pOjq (3)

where mGj
and MGsat are the gravitational masses of the test mass and of the satellite,

#»g pOsatq (resp. #»g pOjq) is the Earth gravity acceleration at the center of mass of the

satellite (resp. test mass). We assume that the test mass are homogeneous. Moreover,

since we are concerned with short-range Yukawa deviations only, we assume that the

Yukawa contribution to the Earth’s gravity acceleration acting on the test-masses is

negligible. Finally, the second term of the r.h.s. of the Eq. (2) contains the contribution

from the satellite’s inertia and from the motion of the test-mass,

#»
Γ cin,j “ rIns #           »

OsatOj ` 2rΩs 9#           »
OsatOj ` :#           »

OsatOj, (4)

where rIns ” r 9Ωs ` rΩsrΩs is the gradient of inertia matrix of the satellite and rΩs its

angular velocity.

From Eq. (2), we show in Appendix A that the measured acceleration of a test
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mass, expressed in the instrument frame, is

#»

Γmeas,j|instr “ #»

B0,j ` #»

ΓC,j|sat ` #»

Γ cin,j|sat ´
~Floc,j|instr

mIj

` #»n j, (5)

where #»n j is the measurement noise and
#»
B0,j is the scale-factor-dependent bias, defined

from the local parasitic forces and measurement bias. This equation is the core of our

analysis.

In the remainder of this paper, we correct the measured acceleration for the Earth

gravity modeled as described in Ref. [53], and for the cinematic acceleration inferred

from satellite’s attitude measurements. We thus deal with the acceleration
#»
Γ j ” #»

Γmeas,j|instr ´ #»
ΓC,j|sat ´ #»

Γ cin,j|sat (6)

“ #»

B0,j ´
~Floc,j

mIj

` #»n j, (7)

where we also dropped the subscripts “|instr” and “|sat” for simplicity.

4. Stiffness measurement

4.1. Electrostatic stiffness measurement sessions

The stiffness is the component of the force undergone by a test mass proportional to the

offset of the mass from its equilibrium. Measurement sessions were dedicated to measure

MICROSCOPE’s instrument stiffness [52], the stiffness being expectedly dominated by

an electrostatic stiffness (see Sect. 4.3 and Ref. [47]). The principle of the measurement

is to impart a f “ 3 mHz sinusoidal excitation of amplitude x0 “ 5 µm to the test mass

and measure its acceleration (Fig. 2). The position of the test mass is thus forced to be

xptq “ x0 sinpωt` ψq, (8)

where xptq is any axis (x, y, z) of the instrument (along which we aim to estimate the

electrostatic stiffness), ω “ 2πf and ψ a given phase. Measurements lasted 1750 s for

each axis of each test mass.

In Ref. [52], it was assumed that only the electrostatic stiffness kǫ played a significant

role, such that ~Floc,j “ ´kǫ,j~x, where ~x is the displacement of the test mass with respect

to its equilibrium position, and Eq. (6) became (ignoring the quadratic factor)

#»
Γ j “ #»

B0,j ` kǫ,j
mIj

~x` #»n j . (9)

Under these assumptions, the electrostatic stiffness is simply the slope of the
#»

Γ j ´~x
relation (up to the factor mIj ), as shown in the right panel of Fig. 2. Chhun et al. [52]

used this simple technique to estimate the electrostatic stiffness on the three axes of each

MICROSCOPE’s test mass. They found significant disagreements with expectations

from the theoretical model summarised in Sect. 4.3, which they explained by model

inaccuracies and contribution from the gold wire aimed to control the charge of the test

masses (Sect. 4.4). We discuss their results in Sect. 5.2.
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Figure 2. Experimental process to measure a MICROSCOPE’s sensor’s stiffness

(here, the stiffness of SUREF’s internal mass is estimated along its Y axis): the test

mass is excited in position with a known amplitude of 5 µm, and we measure its

response in acceleration (left panel). Right panel: test mass’ acceleration as a function

of its position.

4.2. Local forces budget

In what follows, we go beyond the simple assumptions of Ref. [52] and explore how the

same measurement could shed light on short-range non-Newtonian gravity.

To that goal, we need to take into account all the different local forces applied

to the test mass as it moves inside its electrode cage during sessions dedicated to the

measurement of the stiffness. Our central equation then follows from Eq. (6):

#»

Γ j “ #»

Γ exc ` #»

B0,j ´
~Floc,j

mIj

` #»n j, (10)

where
#»
Γ exc “ x0ω

2 sinpωt ` ψq is the excitation acceleration imparted to the test

mass from the electronics control loop, and the local force is the sum of the following

contributors discussed in this section:

#»
F loc “ #»

F el ` #»
F w ` #»

F p ` #»
F r ` #»

F N ` #»
F Y (11)

where we ignored the j subscript for clarity. Here,
#»

F el is the electrostatic force (Sect.

4.3),
#»

F w is the force due to the gold wire (Sect. 4.4),
#»

F p is the radiation pressure

(Sect. 4.5),
#»
F r is the radiometric effect (Sect. 4.6),

#»
F N and

#»
F Y are the Newtonian and

non-Newtonian (Yukawa) gravity (Sect. 4.8).

4.3. Electrostatic force

The electrostatic force used to control the test mass is discussed at length in Ref. [47].

Here, we shall only state that it consists of a bias
#»

b ǫ and a stiffness kǫ,

#»

F el “ #»

b ǫ ´ kǫ
#»x . (12)
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Those factors depend on the geometry of the test mass and of the electrodes, and

on the electric configuration (voltages applied to the different parts of the sensor). In

particular, the electrostatic stiffness along the X-axis is expected to be zero for all

sensors. For completeness, and since this paper particularly focuses on the stiffness, we

provide below the electrostatic force imparted by the full set of electrodes on the radial

axes when the test mass moves along the Y -axis [47]:

Felpyq « ´4ǫ0Sy

e2i

sinpαy{2q
αy{2 pV 1

py ´ Vpqvy

` 2ǫ0S

e3i

ˆ

1 ` sinαy

αy

˙

rpV 1
py ´ Vpq2 ` V 2

d sy

` 2ǫ0S

e3i

ˆ

1 ´ sinαz

αz

˙

rpV 1
pz ´ Vpq2 ` V 2

d sy

` πǫ0LxpRx ` Rpq
e3e

rpV 1
px ´ Vpq2 ` V 2

d sy

` πǫ0RφLφ

e3e
rpV 1

pφ
´ Vpq2 ` V 2

d sy, (13)

where ǫ0 is the vacuum permittivity, ei (ee) is the gap between the inner (outer) electrode

cylinder and the test-mass, and where we assumed that all control voltages listed in

Ref. [47] are small compared to the Vp and Vd voltages. Those two voltages describe the

electric configuration. Two configurations are available: high-resolution mode (HRM)

and full-range mode (FRM). They are detailed in Ref. [47] and summarised in Appendix

B.

The first term of the r.h.s. of Eq. (13) defines the gain of the detector (the force

being proportional to the control voltage vy); the other terms define the stiffness created

by the Y , Z, X and φ electrodes. In this equation, S is the surface of the Y and Z

electrodes, Rx and Rφ are the inner radius of the X and φ electrodes, and h and Lφ are

their length. The angles αy and αz are defined by the angle between the displacement

of the test mass and the Y and Z axes, respectively. Appendix C proves the form of

the stiffness created by the Y electrodes (2nd term of the r.h.s. of the equation).

We assessed the accuracy of the stiffness terms of the model (13) with finite

elements simulations. We found it to be biased high: finite elements models provide

an electrostatic stiffness 7% to 10% lower than the model (13). Nevertheless, in the

remainder of this paper, instead of relying on finite elements simulations, we use

Eq. (13) corrected by a 8.5% bias. This allows us to easily propagate metrology and

voltage uncertainties in the electrostatic stiffness model, without the need to run a

time-consuming simulation for each allowed set of parameters. We then add an extra

3% statistical error to those uncertainties to reflect the uncertainty on the bias of the

model. The 7th column of Table 3 lists the electrostatic stiffness expected for each test

mass of MICROSCOPE.
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4.4. Gold wire

The electric charge on test masses is controlled via a gold wire linking them to the

satellite. The wire can be modelled as a spring acting on the test mass with the force

#  »
Fw “ ´kwr1 ` iφpfqs #»x ´ λw 9#»x , (14)

where λw describes the viscous damping of the wire, kw is the wire’s stiffness and φpfq
describes the internal damping; note that φ can depend on the frequency. The wire’s

quality factor Q “ 1{φ.
For a sinusoidal motion of the test mass (along the jth axis) xjptq “ xj0 sinpωt`ψq,

the force exerted by the gold wire is the sum of an out-of-phase sinusoidal signal [54]

and a (velocity-proportional) quadrature signal

Fw,jptq “ ´kw,jxj0 sinpωt` ψ ´ φq ` λwxj0ω cospωt` ψq. (15)

Thermal dissipation in the wire is at the origin of the f´1 low-frequency noise that

limits MICROSCOPE’s test of the WEP [33]. With the dissipation-fluctuation theorem,

it can be shown that this acceleration noise reads [54, 55]

Γn,wpfq “ 1

m

d

4kBT

2π

kw
Qpfqf

´1{2 ms´2{
?
Hz, (16)

where m is the mass of the test mass, T is the temperature and kB is the Boltzmann

constant. This allows for an estimation of the kw{Q ratio from the spectral density of

long measurement sessions (see Sect. 5.3).

4.5. Radiation pressure

The electrode-bearing cylinders, being at temperature T , emit thermal radiation through

photons that eventually hit the test mass and transfer their impulsion to it, thus creating

a pressure. A gradient of temperature and a difference of temperature ∆T between the

electrodes surrounding the test mass will therefore cause a force directed from the hottest

to the coldest regions [56, 57]:

#»

F p “ 16

3c
Sσ∆TT 3 #»e , (17)

where T is the average temperature, c the speed of light, σ the Stefan-Boltzmann

constant, S the surface of the test mass, and #»e is the vector directed from the hottest

to the coldest region.

The temperature and its gradient did not evolve in time during the measurement

sessions used in this paper (six temperature probes are positioned on each sensor in such

a way that we can monitor the temperature and have a glimpse at its gradient [58]; in the

worst case, we could note a 0.003K evolution of the temperature during the measurement

–while its mean is about 280K–, with all probes affected by the same evolution, entailing
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an unmeasurably small variation of the temperature gradients). Therefore, as far as we

are concerned, we can consider the radiation-pressure-induced force as a simple bias.

Given the measured temperatures, an order of magnitude estimation allows us to expect

the corresponding acceleration at a level of ap À 10´10 ms´2.

4.6. Radiometer effect

Taking its name from Crookes’ radiometer, originally thought to prove the photon

pressure, the radiometer effect is actually a residual gas effect affecting test masses

in rarefied atmospheres whose mean free path exceed the size of the container. In this

case, equilibrium conditions do not happen when pressure is uniform, but when the

ratios of pressure to square root of temperature equal one another [56, 57].

This entails a force on the test mass proportional to temperature gradient about

its faces ∆T ,
#»

F r “ 1

2
PS

∆T

T
#»e , (18)

where P is the pressure in the container, S the surface of the test mass orthogonal to

the temperature gradient, T the average temperature in the container and, as before,
#»e is the vector directed from the hottest to the coldest regions.

Even when stationary, a non-linear temperature profile can cause a position-

dependent radiometric effect and potentially a stiffness. However, the sparse

temperature measurements in MICROSCOPE sensors do not allow us to go beyond

the linear temperature profile hypothesis, thereby limiting the radiometric effect to a

constant acceleration. Orders of magnitude estimates provide a level of acceleration of

the same order as the radiation pressure, ar À 10´10 ms´2.

4.7. Other non-gravitational effects

Other non-gravitational forces could be considered, but are ignored due to their

negligible effect.

4.7.1. Residual gas drag: The test mass moves in an imperfect vacuum, so that

drag may be expected. Orders of magnitude estimates provide a related acceleration

« 10´23 ms´2, well below our capacity to detect it.

4.7.2. Outgassing: Gas molecules are released from the materials of the instrument’s

parts (in particular the electrode bearing cylinders) and can impact the test mass

and modify the pressure inside the instrument [56]. However, the vacuum system was

designed, and the materials chosen, such that outgassing can be safely ignored [47].

4.7.3. Lorentz force: Test masses have a non-zero magnetic moment, and can therefore

be affected by Lorentz forces, either from the Earth magnetic field or local magnetic

fields. The former applies a periodic signal at the orbital frequency and therefore does
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not affect the stiffness measurements (besides the fact that the Earth magnetic field is

largely suppressed by MICROSCOPE’s instrument magnetic shield). Local magnetic

fields are more difficult to assess. However, noting that their effect on the test of the

WEP is subdominant [58], we ignore them in this paper.

4.7.4. Contact-potential differences and patch fields Inhomogeneous distributions of

surface potentials create a force between charged surfaces. MICROSCOPE’s instrument

can be affected by such patch effects, which act as an additional stiffness dependent on

the test masses’ voltages, thus on the electric configuration [59]. It goes beyond the

scope of this article to develop a model of patch effects in MICROSCOPE, and we

will not try to quantify them. Note that they may affect MICROSCOPE only in the

stiffness measurement sessions used in this paper, where test masses are set in motion;

in MICROSCOPE’s test of the WEP, test masses are kept motionless, and thus immune

to patch effects.

4.7.5. Misalignments and geometrical defects Very small misalignments between

MICROSCOPE’s cylinders can be estimated [58]. As they break the cylindrical

symmetry, they can introduce additional terms in the electrostatic stiffness [60].

However, as we show below, the error budget in stiffness measurement sessions is largely

dominated by the gold wire, so that we can safely ignore them for the purpose of this

paper (thereby justifying our rθjs “ Id assumption in Appendix A).

4.8. Local gravity

The local gravity force applied to a MICROSCOPE test mass is the sum of the forces

between that test mass and the parts making the corresponding sensor (Fig. 1):

‚ seven co-axial cylinders: two silica electrode-bearing cylinders surrounding the

test mass, the second test mass and two other silica electrode-bearing cylinders

surrounding it and two cylindrical invar shields,

‚ and four plain cylinders: a silica base plate, an invar base plate, an invar upper

clamp, and a vacuum system.

The characteristics of those elements can be found in Ref. [47]. As we show below, the

gravity force is dominated by the closest elements, so that we can safely neglect the

contribution from the other sensor and from the satellite itself.

The gravitational interaction between two bodies centered on O1 and O2 is

ÝÑ
F “ ´

ż

V1

dV1

ż

V2

dV2
BV
Br pÝÑr1 ´ ÝÑr2qÝÝÝÑ

O1O2, (19)

where the 3-dimensional integrals are taken over the volume of the two bodies, and
#»ri “ pxi, yi, ziq is the coordinate vector of an infinitesimal volume element of the ith
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body. Noting ρi the ith body’s density, the Newtonian potential between infinitesimal

volumes

VNpÝÑr1 ´ ÝÑr2q “ ´Gρ1ρ2dV1dV2
|ÝÑr1 ´ ÝÑr2 | , (20)

and the Yukawa potential of strength α and range λ between infinitesimal volumes

VY pÝÑr1 ´ ÝÑr2q “ ´α Gρ1ρ2
|ÝÑr1 ´ ÝÑr2 | exp

ˆ

´|ÝÑr1 ´ ÝÑr2 |
λ

˙

dV1dV2. (21)

In the present case, as shown in Fig. 1, all contributions are interactions between

cylinders, either empty (test masses, electrode bearing cylinders, shield) or full (base

plate, upper clamp). For simplicity, we also assume that the vacuum system is a full

cylinder. Computing the gravitational force applied to the test mass then boils down to

computing the interaction between perfectly aligned cylinders (as we assumed in Sect.

3), and therefore computing the 6-dimensional integral (19).

Appendix D shows that, in the limit of small displacements with which we are

concerned in that article, the 6D integral (19) can be reduced to a 1D integral depending

on the geometry of the pair of cylinders. In these cases, the gravitational force can be

Taylor-expanded, and is dominated by a stiffness term K1. The expressions given below

apply both to the Newtonian (α “ 1, λ Ñ 8) and Yukawa forces. They give the force

exerted by any one of MICROSCOPE’s cylinders on a test mass.

4.8.1. Longitudinal force In the limit of small displacements δ of the test mass along

the cylinders’ axis, the force is given by

Fxpx0, δq « ´16π2Gρρ1α
ÿ

i

Kipx0qδi, (22)

where x0 is the distance between the center of the test mass and the center of the source

cylinder along their longitudinal axis (x0 “ 0 when the source is either an electrode-

bearing cylinder or the other test mass, but |x0| ą 0 if the source is one cylinder of

the base or the vacuum system –in which case the source and the test mass are above

each other), and where the x subscript corresponds to MICROSCOPE’s (longitudinal)

X-axis but is referred to as z in the more conventional cylindrical coordinate system

used in Appendix D. The Ki coefficients depend on the geometry of the test mass –

source pair as follows. If a and b are the inner and outer radii of the cylinder source,

2ℓ its height and ρ its density; and if a1 and b1 are the inner and outer radii of the test

mass, 2L its height and ρ1 its density, then:

(i) if the test mass is shorter than the source and they are concentric (which is the case
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e.g. of the pair made of the internal test mass and any electrode-bearing cylinder),

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

K0px0q “ 0

K1px0q “
ż 8

0

W pk; a1, b1qW pk; a, bq
κk

e´κℓ sinhpκLqdk

K2px0q “ 0

K3px0q “
ż 8

0

κ

6

W pk; a1, b1qW pk; a, bq
k

e´κℓ sinhpκLqdk,

(23a)

(23b)

(23c)

(23d)

where Ji are Bessel functions of the first kind and where we introduced the

parameter

κ “
a

k2 ` 1{λ2 (24)

and the function

W pk; a, bq “ bJ1pkbq ´ aJ1pkaq. (25)

(ii) if the test mass is longer than the source and they are concentric (which is the case

of the pair made of the internal test mass as the source and the external test mass):

the force is formally identical to that of the previous case, with ℓ and L switching

roles.

(iii) if the test mass and the source are above each other,

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

K0px0q “ x0
|x0|

ż 8

0

W pk; a1, b1qW pk; a, bq
κ2k

e´κ|x0| sinhpκℓq sinhpκLqdk

K1px0q “ ´
ż 8

0

W pk; a1, b1qW pk; a, bq
κk

e´κ|x0| sinhpκℓq sinhpκLqdk

K2px0q “ x0
|x0|

ż 8

0

W pk; a1, b1qW pk; a, bq
2k

e´κ|x0| sinhpκℓq sinhpκLqdk

K3px0q “ ´
ż 8

0

κ

6k
W pk; a1, b1qW pk; a, bqe´κ|x0| sinhpκℓq sinhpκLqdk,

(26a)

(26b)

(26c)

(26d)

4.8.2. Radial force Similarly, at 3rd order in δ{a1, where δ is the displacement of the

test mass along a radial axis (Y or Z), the radial force created by any one of the other

cylinders is

Frpx0, δq « ´2π2Gρρ1αpK1px0qδ ` K3px0qδ3q, (27)

where the Ki coefficients depend on the geometry of the test mass – source pair:

(i) if the test mass is shorter than the source and they are nested (which is the case
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e.g. of the pair made of the internal test mass and any electrode-bearing cylinder),
$

’

’

’

&

’

’

’

%

K1px0q “ 4

ż 8

0

kW pk; a1, b1qW pk; a, bq
κ2

„

L ´ e´κℓ

κ
sinhpκLq coshpκ|x0|q



dk

K3px0q “ ´
ż 8

0

k3W pk; a1, b1qW pk; a, bq
κ2

„

L´ e´κℓ

κ
sinhpκLq coshpκ|x0|q



dk,

(28a)

(28b)

with x0 « 0 in this case.

(ii) if the test mass is longer than the source and they are nested (which is the case of

the pair made of the internal test mass as the source and the external test mass):

the force is formally identical to that of the previous case, with ℓ and L switching

roles.

(iii) if the test mass and the source are above each other,
$

’

’

’

&

’

’

’

%

K1px0q “ 4

ż 8

0

kW pk; a1, b1qW pk; a, bq
κ2

e´κ|x0|

κ
sinhpκℓq sinhpκLqdk

K3px0q “ ´
ż 8

0

k3W pk; a1, b1qW pk; a, bq
κ2

e´κ|x0|

κ
sinhpκℓq sinhpκLqdk

(29a)

(29b)

4.8.3. Total gravitational force The gravity force applied to a MICROSCOPE test

mass is just the sum of the Newton and Yukawa forces created by the aforementioned

instruments’ parts,

#»

F g “ pFN,x ` FY,xq #»e x ` pFN,r ` FY,rq #»e r (30)

“
ÿ

j

pFN,x,j ` FY,x,jq #»e x `
ÿ

j

pFN,r,j ` FY,r,jq #»e r, (31)

where the r subscript stands for the Y and Z axes, and where the forces created by the

jth part of the instrument FN,x,j and FY,x,j are given by Eq. (22) and FN,r,j and FY,r,j

by Eq. (27).

As shown in Appendix D, a first order Taylor expansion of Eqs. (22) and (27) is

enough to precisely account for the gravitational interactions in the present article, where

displacements are limited to 5 µm. This means that the local gravitation effectively acts

as a stiffness on the test masses. We thus define the Newtonian and Yukawa, radial and

longitudinal stiffnesses such as

FN,r “ ´kN,rr (32)

FN,x “ ´kN,xx (33)

FY,r “ ´kY,rr (34)

FY,x “ ´kY,xx, (35)
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Figure 3. Newtonian (plain bars) and Yukawa (hashed bars) stiffnesses acted by the

SUEP’s parts (the external test mass –TM–, the four electrode-bearing cylinders –IS1-

int, IS1-ext, IS2-int, IS2-ext–, and the shielding cylinders) on its internal test mass.

The Yukawa potential is set such that pα, λq “ p1, 0.01 mq. The contribution of the

base plates, upper clamp and vacuum system to the Yukawa interaction is too small

to appear on the plot.

where x and r are the displacement of the test mass along the longitudinal and radial

axes of the instrument.

Newtonian gravity The plain bars of Fig. 3 show the Newtonian stiffnesses from all

cylinders on SUEP’s internal test mass along its radial axis. The force between nested

cylinders is destabilising (negative stiffness), whereas the force from the base plates,

upper clamp and vacuum system stabilises the test mass, with the total radial force

being destabilising. It can also be shown that the Newtonian gravitational interaction

along the X (longitudinal) axis acts as a stabilising stiffness.

Finally, it can be seen from the figure that the contribution from the outer shield is

subdominant. Thence, those from the other differential sensor and from the other parts

of the satellite are even more subdominant, and we ignore them.

The next-to-last column of Table 3 lists the Newtonian gravity stiffness of the four

MICROSCOPE test masses along their radial and longitudinal axes.

Yukawa gravity The hashed bars of Fig. 3 show the Yukawa stiffnesses from all

cylinders on SUEP’s internal test mass along its radial axis, for pα, λq “ p1, 0.01 mq. It
can be noted that only co-axial cylinders contribute, since the base, upper clamp and

vacuum system are more distant than 0.01 m from the test mass. Similarly, the closest
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Figure 4. Yukawa stiffness (normalised by α) for the four MICROSCOPE test masses,

on the radial (left) and longitudinal (right) axes, as a function of Yukawa’s range.

cylinders provide most of the signal. It can be noted that the Yukawa stiffness of the

closest cylinders is larger than their Newtonian stiffness. This difference comes from

the fact that with λ “ 1 cm, only a restricted part of the cylinders interact, causing

an effect more complex than just an exponential decay proportional to the Newtonian

stiffness.

Fig. 4 shows Yukawa gravity’s stiffness as a function of Yukawa’s range λ for all

MICROSCOPE test masses, along their radial (left panel) and longitudinal (right panel)

axes. Starting from the smaller λ reachable (linked to the distance between a test mass

and its closest cylinder), the radial stiffness increases steadily as more and more co-axial

cylinders are within reach of λ and contribute to the gravity signal. The stiffness peaks

around λ « 0.01 m, where the base and upper cylinders start to contribute but with

an opposite sign stiffness, thereby decreasing it until the Newtonian regime is reached

when λ becomes larger than the sensor’s largest scale. The longitudinal stiffness shows

a similar behaviour, though it changes sign while more and more cylinders contribute

to the signal.

Comparing Fig. 4 with Table 3, it is clear that the gravity stiffness (and therefore,

signal) is largely subdominant. We put it at test in Sect. 5.

4.9. Summary: measured acceleration

Taking all the forces above into account, the acceleration of the jth test mass measured

along the ith axis during a stiffness characterisation session is

Γjiptq “ bǫ,ji ` ap,ji ` ar,ji ` mjω
2 ` kǫ,ji ` kN,ji

mj
xi0 sinpωt` ψq

` kw,ji

mj

xi0 sinpωt` ψ ´ φq ` λw,ji

mj

ωxi0 cospωt` ψq ` kY,jipα, λq
mj

xi0 sinpωt` ψq, (36)

where we singled out the Yukawa gravity contribution and made its stiffness’ dependence

on pα, λq explicit, since it is this very dependence that we aim to constrain in the
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remainder of this article. The first line of the equation comprises the effect of the

measurement bias, radiation pressure and photometric effect (all three acting as a

constant bias) and of the in-phase stiffnesses (excitation, electrostatic and Newtonian

gravity). The second line of the equation gives the effect of the gold wire (internal and

viscous damping), with the last term giving the Yukawa gravity contribution.

5. Data analysis

This section presents least-square estimates of the parameters introduced in the previous

section. We measure the electrostatic stiffness, that of the gold wire, the quality factor

of the gold wire, and a velocity-dependent coefficient for each axis of each sensor. We

perform the exercice in the two electrical configurations (HRM and FRM) summarised

in Appendix B.

5.1. Measurement equation

The measurement equation (36) could be used in its original form to extract the

unknown parameters from the data and simultaneously constrain Yukawa interaction’s

parameters. However, since the Yukawa contribution is expected to be at most of the

order of the Newtonian contribution, which is itself largely less than the electrostatic

stiffness, its parameters have a small constraining power on the data, and we find more

suited to first estimate an overall stiffness, from which we can eventually extract the

pα, λq parameters.

Moreover, Eq. (36) requires the estimation of two phases. The first one, ψ, is that

of the excitation signal and can be estimated a priori by fitting the position data, then

used as a known parameter in the following analysis. The second, φ, is the phase-offset

induced by the gold wire’s internal damping. Instead of trying to estimate it from the

data (which may be difficult given the 4 Hz sampling of data, when assuming that the

quality factor of the wire is in the range Q « 1 ´ 100, corresponding a time offset less

than 2 s), we recast Eq. (36) as

Γptq « b` pκ0 ` κw cosφq sinpωt` ψq ´ pκw sin φ ´ κλq cospωt` ψq, (37)

where b ” bǫ`ap`ar, κ0 ” x0pmω2`kǫ`kN `kY q{m, κw ” x0kw{m and κλ ” x0λwω{m,

and we dropped the i and j indices for clarity.

Five parameters are left for estimation: b, κ0, κw, κλ and φ “ 1{Q. It is however

clear that fitting Eq. (37) will provide only three independent constraints. If estimating

b will be easy, the other parameters will remain degenerate unless we can use some prior

knowledge. We show in Sect. 5.3 that we can obtain an independent estimate of the

κw{Q “ κwφ combination.

Before going further in the parameters estimation in Sect. 5.4, we discuss Ref. [52]’s

stiffness measurement process and compare it with ours.
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Table 1. Total stiffness (identified as the electrostatic stiffness) measured in Ref. [52].

The expected values can be found in Table 3.

kǫ,x rˆ10´3 N{ms kǫ,y rˆ10´2 N{ms kǫ,z rˆ10´2 N{ms
IS1-SUREF 0.837 ˘ 0.003 ´1.515 ˘ 0.000 ´1.514 ˘ 0.000

IS2-SUREF 4.424 ˘ 0.010 ´8.170 ˘ 0.001 ´7.144 ˘ 0.001

IS1-SUEP 1.396 ˘ 0.003 ´1.494 ˘ 0.001 ´1.478 ˘ 0.002

IS2-SUEP 0.639 ˘ 0.002 ´6.424 ˘ 0.001 ´6.310 ˘ 0.001

5.2. Preliminary note: discussion of Chhun et al. [52] analysis

In Ref. [52], Chhun et al. compute the electrostatic stiffness in HRM, using the same

measurement sessions as those used here, with a simple ratio of sines amplitudes. They

neglect the local gravity stiffness and assume a negligible gold wire’s stiffness kw « 0

and no velocity-dependent term (λw “ 0), and they fit the position and acceleration as

xptq “ x0 sinpωt` ψxq (38)

Γptq “ Γ0 sinpωt` ψΓq, (39)

and infer kǫ “ mΓ0{x0 ´mω2, with the implicit assumption that ψx “ ψΓ. Table 1 sums

up their results.

Two important points need to be highlighted. First, the stiffnesses estimated

under the very restrictive assumptions of Ref. [52] are close to (yet inconsistent with)

the expected electrostatic stiffnesses (with an accuracy ranging from a few to a dozen

percent, especially on the radial axes, see Table 3). Second, the stiffness estimated on

the radial axes are consistent with each other, thus showing a good degree of cylindrical

symmetry; this symmetry is clearly expected for the electrostatic stiffness, but may

seem accidental for the gold wires. Unless coincidental, those facts hint towards a

total stiffness indeed dominated by the electrostatic stiffness, with negligible other

contributors (e.g. gold wires).

It is instructive to consider Eq. (37) in view of Ref. [52] analysis. However, instead

of assuming that the gold wire has no stiffness, we now assume that its quality factor

Q " 1 (this is equivalent from the point of view of MICROSCOPE’s test of the WEP,

where only the ratio kw{Q enters the measurement). Thus assuming φ Ñ 0, we re-write

Eq. (37) as (Taylor expanding the sine and cosine at first order in φ)

Γptq “ ˘
b

κ20 ` 2κ0κw ` κ2wp1 ` φ2q sin
ˆ

ωt` ψ ´ arctan
κwφ

κ0κw

˙

, (40)

which tends to limφÑ0 Γptq “ ˘|κ0 `κw| sinpωt`ψq. It is thus clear that using Eq. (38),

Ref. [52] estimates the total stiffness. Nevertheless, a subtlety remains. Rigorously,

although the phase in Eq. (40) should be that of the excitation, ψ “ ψx, which may

(and does) differ from the phase of the acceleration ψΓ, Ref. [52] assumes ψx “ ψΓ (which
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is consistent with the assumption that the gold wire has zero stiffness). Unfortunately,

the experiment contradicts this assumption (at least on the radial axes).

Relaxing the ψx “ φΓ hypothesis of Eq. (38), we find almost unchanged total

stiffnesses (with percent-level modifications), but a small residual with a π{2 phase

offset remains after removing the best fit from the acceleration. This remaining small

signal may be the sign of a non-zero contribution of the gold wires. Indeed, Eq. (37)

shows that at first order, the amplitude of this residual signal is proportional to the

kw{Q ratio of the gold wires (when assuming λw “ 0). Alas, this does not teach us

anything about the absolute order of magnitude of either kw or Q. We investigate the

gold wires’ characteristics below, before going back to Eq. (37) in Sect. 5.4.

5.3. Gold wire’s kw{Q ratio

As shown in Sect. 4.4, fitting the low-frequency part of the spectral density of the

acceleration measured along a given axis can provide an estimate of the ratio kw{Q for

this axis once temperature data are available (which is the case for all measurement

sessions). Performing this task for the three linear axes, we can get an estimate of the

gold wire stiffness along each axis, and the orientation of the force due to the wire. This

force is presumably collinear with the wire, although the glue clamping process may

complexify it. Noting ϕ the angle between the force and the test mass longitudinal axis

(X-axis), and θ the angle between the Y -axis and the projection of the wire on the (y, z)

plane (Fig. 5), the three stiffnesses that can be measured are

kw,x “ |kw| cosϕ (41)

kw,y “ |kw| sinϕ cos θ (42)

kw,z “ |kw| sinϕ sin θ (43)

from which we can recover the modulus of the stiffness and the orientation of the wire.

Fig. 6 shows the fit corresponding to SUEP-IS1’s X-axis from the session used to

estimate the WEP in Ref. [33]. Values obtained for the internal sensor of both SU are

given in Table 2. We checked that estimates from different sessions are consistent. Note

that rigorously, since the drag-free system is controlled by the external sensor, fitting the

internal sensor’s spectral density only provides information about the sum of the kw{mQ
ratios of both sensors (where m is their mass). Nevertheless, under the assumptions that

their masses are similar (which is enough given the goals of this article), that their wires

have similar kw{Q ratios, and that their spectral density are uncorrelated, fitting the

internal sensor’s spectral density indeed provides a constraint on each sensor’s wire’s

kw{Q ratio.

Willemenot & Touboul [55] used a torsion pendulum to characterise a gold

wire similar to those used by MICROSCOPE. Assuming that the wire is deformed

perpendicular to its principal axis (i.e. in flexion), they give a convenient scaling to

CHAPTER 5. APPLICATION: TESTING THE CHAMELEON STIFFNESS WITH
MICROSCOPE 167

167 TESTING GRAVITY IN SPACE



Fifth force stiffness 20

Figure 5. Gold wire and test mass geometry.

Figure 6. Typical spectral density of the acceleration measured along the X-axis of

SUEP-IS1. The orange line is the best fit of the low-frequency part.
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Table 2. Gold wire stiffness [10´3Nm´1] and orientation of the force [deg] estimated

from long measurement sessions’ acceleration noise spectral density.

kw,x{Q kw,y{Q kw,z{Q kw{Q ϕ θ

IS1-SUREF 0.07 ˘ 0.01 0.22 ˘ 0.1 0.66 ˘ 0.06 0.7 ˘ 0.08 84.4 ˘ 0.6 66 ˘ 30

IS1-SUEP 1.14 ˘ 0.2 0.31 ˘ 0.05 1.26 ˘ 0.2 1.73 ˘ 0.1 48 ˘ 4 70 ˘ 25

quantify the wire’s stiffness

kw “ 2.91 ˆ 10´5

ˆ

rw
3.75 µm

˙4 ˆ

1.7 cm

lw

˙3 ˆ

E

7.85 ˆ 1010 Nm2

˙

, (44)

where rw is the radius of the wire, lw its length and E its Young modulus. Using

MICROSCOPE’s gold wires’ characteristics (rw “ 3.5 µm, lw “ 2.5 cm and

E “ 7.85 ˆ 1010 Nm2), we expect kw « 9 ˆ 10´6. Combined with a quality factor

Q « 100 as measured in Ref. [55], this scaling provides kw{Q « 10´7 N{m, in flagrant

contradiction with the values estimated from flight data (Table 2).

Two explanations can be proposed: (i) the wire does not behave as shown in

Ref. [55] or (ii) its quality factor is much lower than expected. In the former explanation,

the wire may work in compression (i.e. it is deformed along its principal axis), which

potentially increases its stiffness. In the latter, the mounting process (wires being glued

to the test masses) may decrease the overall quality factor; differences between the glu

points in MICROSCOPE and in Ref. [55] may explain a significant difference of quality

factor.

Assuming that the electrostatic model of the instrument is correct and that the

measured stiffness is dominated by the electrostatic stiffness hints at a low quality factor

Q « 1. Note however that, even if the quality factor is really that low, MICROSCOPE’s

main results (the test of the WEP) depend on the kw{Q ratio, and are thus unaffected

by the current analysis.

5.4. Stiffness estimation

We now come back to Eq. (37), with the aim to estimate the model parameters for the

four sensors, starting with radial axes.

5.4.1. Radial axes (Y and Z) The following assumptions allow us to break the

degeneracy between the parameters mentioned in Sect. 5.1:

‚ for a given sensor and a given axis j, the gold wire’s ratio kw,j{Q is independent of

the electrical configuration (HRM or FRM), and can be estimated as shown in Sect.

5.3 for the internal sensors. We further assume that the mounting of gold wires

is general enough to assume that the external sensors’ kw,j{Q ratio is the same as

that of the internal sensor.
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‚ the ratio kw,j{Q varies from one axis to another, but the quality factor Q is a true

constant for a given sensor. In other words, since kw,j and Q are degenerate, we

assume that only the stiffness depends on the direction.

‚ by cylindrical symmetry, the total stiffness of the radial axis j (j “ y, z) k0,j “
mω2 ` kǫ,j ` kN ` kY is independent of the axis, and depends on the electrical

configuration only through the electrostatic stiffness kǫ.

Noting χ̂y “ kw,y{Q and χ̂z “ kw,z{Q the radial gold wire’s ratios estimated in

Table 2, and combining constraints from the model (37), where we add the subscripts

‘F’ and ‘H’ for measurements in FRM and HRM modes, we obtain the following system

of equations for a given sensor:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’
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’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

â0yF “ κ0rF ` κwy cosφ

â0yH “ κ0rH ` κwy cosφ

â0zF “ κ0rF ` κwz cosφ

â0zH “ κ0rH ` κwz cosφ

âwyF “ ´κwy sin φ ` κλyF

âwyH “ ´κwy sin φ ` κλyH

âwzF “ ´κwz sinφ ` κλzF

âwzH “ ´κwz sinφ ` κλzH

χ̂y “ kwy

Q

χ̂z “ kwz

Q
,

(45a)

(45b)

(45c)

(45d)

(45e)

(45f)

(45g)

(45h)

(45i)

(45j)

where we recall that φ “ 1{Q, κwj “ x0kwj{m, and similarly for κ0r (with the subscript

r “ y, z) and κλ and the â0 and âw coefficients are the estimates of the coefficients the

sine and cosine of Eq. (37).

On the one hand, Eqs. (45e-45h) trivially give the velocity-dependent terms as

a functions of the unknown Q and estimated χj and awj. On the other hand, Eqs.

(45a-45d), (45i-45j) can be combined to give

2pχ̂y ´ χ̂zqx0
m
Q cos

ˆ

1

Q

˙

“ â0yF ` â0yH ´ âwzF ´ âwzH, (46)

thus providing the equation

x cos

ˆ

1

x

˙

´ ξ “ 0 (47)

of which Q is a root, where ξ is defined through parameters estimated from Table 2 and

fitting Eq. (37) for the sensor’s two radial axes in each electrical configuration.

Once Q is estimated, Eqs. (45a-45d) readily provide κ0rF and κ0rH . Actually, they

give two estimates of each, which we checked to be consistent.
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5.4.2. Longitudinal axis X Under the same assumptions, it is then straightforward

to estimate the X-axis stiffness from Eq. (37) and Table 2, for a given electrical

configuration (that we do not make explicit in the equations below for simplicity):

$

’

’

’

&

’

’

’

%

κ0x “ â0x ´ x0
m
χ̂xQ cos

ˆ

1

Q

˙

κλx “ âwx ` x0
m
χ̂xQ sin

ˆ

1

Q

˙

.

(48a)

(48b)

5.4.3. Results Our results are listed in Table 3 for each sensor, in their two electrical

configurations. The left group’s four columns show the instrumental parameters: total

in-phase stiffness k0, gold wire stiffness kw and quality factor Q, and velocity-dependent

coefficient λw. The next two columns give the theoretical electrostatic stiffness kǫ,th
and the Newtonian gravity stiffness. The last column lists the difference between the

theoretical and the estimated electrostatic stiffness ∆k “ k̂0 ´ kN ´ mω2 ´ kǫ,th. Error

bars give 1σ uncertainties.

The electrostatic stiffness estimated in the HRM electrical configuration is

consistent with the theoretical one for most sensors and axes, with at most a « 2σ

discrepancy. However, we note a significant difference in the FRM configuration (Fig.

7). Being dependent on the electrical configuration, this discrepancy hints at the

existence of an electric potential-dependent additional stiffness completely degenerate

with the electrostatic one. Patch effects could be at its origin: the discrepancy being

significant for higher voltages is indeed consistent with the voltage-dependence of patch

effects’ stiffness. Disentangling this puzzle would require modeling patch effects in

MICROSCOPE’s sensors. As this goes far beyond the scope of this paper, and since

our experiment is not competitive with other short-ranged forces searches (as we discuss

below), we let the question of this discrepancy open. In the remainder of this paper, we

thence use HRM measurements only.

The gold wire’s quality factor is lower than could be expected from Ref. [55].

Nevertheless, Q being close to 1 is consistent with our discussion in Sect. 5.3.

Correspondingly, the gold wires’ stiffness is small and negligible compared to the

electrostatic stiffness of the radial axes, as was assumed by Ref. [52]; however, they

remain significantly degenerate in the longitudinal axis, giving a total stiffness similar

to that estimated in Ref. [52]. Moreover, this degeneracy, that also exists for the radial

axes, explains that the total error bars are dominated by the uncertainty on the gold

wire’s stiffness (k0 and kw are degenerate in the amplitude of Eq. (37)’s sine, meaning

that k̂0 error bars actually come from those on kw{Q).
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Figure 7. Difference between theoretical electrostatic stiffness and measured total

in-phase stiffnesses corrected for the excitation and Newtonian gravity stiffnesses,

∆k “ k̂0 ´ kN ´ mω2 ´ kǫ,th, for all axes (longitudinal and radial) of each sensor,

in the HRM (diamonds) and FRM (squares) electric configurations.
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Table 3. Estimated model parameters.

Sensor Axis (mode) k̂0 k̂w Q̂ λ̂w kǫ kN ∆k

[ˆ10´2 N{m] [ˆ10´2 N{m] [ˆ10´2 Ns{m] [ˆ10´2 N{m] [ˆ10´8 N/m] [ˆ10´2 N{m]

SUEP X (HRM) -0.00˘0.12 0.16˘0.08 1.5˘0.7 4.23˘3.82 0.00˘0.01 1.22 -0.021˘0.119

IS1 Y (HRM) -1.55˘0.06 0.04˘0.08 1.5˘0.7 1.87˘1.87 -1.57˘0.05 -0.96 0.009˘0.081

Z (HRM) -1.65˘0.26 0.19˘0.31 1.5˘0.7 5.50˘7.49 -1.57˘0.05 -0.96 -0.095˘0.260

X (FRM) 0.04˘0.12 0.16˘0.08 1.5˘0.7 2.88˘3.89 0.00˘0.01 1.22 0.024˘0.120

Y (FRM) -18.85˘0.06 0.04˘0.08 1.5˘0.7 1.35˘1.89 -14.08˘0.46 -0.96 -4.795˘0.460

Z (FRM) -18.87˘0.26 0.19˘0.31 1.5˘0.7 4.94˘7.53 -14.08˘0.46 -0.96 -4.809˘0.523

SUEP X (HRM) -1.35˘1.01 1.41˘1.01 12.8˘8.9 5.60˘2.93 0.00˘0.01 1.27 -1.366˘1.015

IS2 Y (HRM) -6.96˘0.73 0.40˘0.73 13.4˘9.5 5.03˘2.38 -7.01˘0.23 -0.88 0.039˘0.760

Z (HRM) -8.20˘2.94 1.74˘2.95 13.4˘9.5 9.65˘9.53 -7.01˘0.23 -0.88 -1.201˘2.949

X (FRM) -1.32˘1.02 1.41˘1.01 12.8˘8.9 5.96˘2.97 0.00˘0.01 1.27 -1.337˘1.015

Y (FRM) -78.47˘0.68 0.38˘0.69 12.7˘8.6 2.25˘2.39 -107.02˘3.37 -0.88 28.538˘3.440

Z (FRM) -78.56˘2.77 1.66˘2.78 12.7˘8.6 7.03˘9.53 -107.03˘3.37 -0.88 28.456˘4.366

SUREF X (HRM) 0.06˘0.09 0.02˘0.01 2.3˘1.3 -0.52˘4.35 0.00˘0.01 23.65 0.041˘0.092

IS1 Y (HRM) -1.58˘0.08 0.05˘0.08 2.5˘1.3 1.60˘1.33 -1.81˘0.06 -12.32 0.209˘0.095

Z (HRM) -1.71˘0.12 0.18˘0.12 2.5˘1.3 3.80˘1.40 -1.81˘0.06 -12.32 0.082˘0.133

X (FRM) 0.06˘0.09 0.02˘0.01 2.3˘1.3 -0.92˘4.51 0.00˘0.01 23.65 0.042˘0.095

Y (FRM) -19.25˘0.07 0.05˘0.08 2.5˘1.3 5.72˘1.33 -27.31˘0.86 -12.32 8.047˘0.862

Z (FRM) -19.16˘0.12 0.18˘0.12 2.5˘1.3 7.79˘1.41 -27.31˘0.86 -12.32 8.134˘0.866

SUREF X (HRM) 0.20˘0.35 0.20˘0.17 28.9˘20.9 0.85˘14.57 0.00˘0.01 5.72 0.144˘0.347

IS2 Y (HRM) -8.91˘1.09 0.68˘1.09 33.9˘19.2 5.81˘1.44 -9.09˘0.29 -3.98 0.111˘1.126

Z (HRM) -9.56˘1.69 2.38˘1.68 33.9˘19.2 9.34˘2.00 -9.08˘0.29 -3.98 -0.540˘1.710

X (FRM) 0.15˘0.34 0.20˘0.17 28.9˘20.9 -2.96˘14.45 0.00˘0.01 5.72 0.089˘0.345

Y (FRM) -80.24˘1.04 0.65˘1.04 32.4˘19.3 21.79˘1.45 -110.17˘3.47 -3.98 29.877˘3.629

Z (FRM) -80.09˘1.66 2.27˘1.66 32.4˘19.3 24.64˘1.88 -110.13˘3.47 -3.98 29.988˘3.847
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Figure 8. Difference between theoretical electrostatic stiffnesses and measured

total in-phase stiffness corrected for the excitation and Newtonian gravity stiffnesses,

∆k “ k̂0 ´ kN ´ mω2 ´ kǫ,th, for the radial axes of each sensor, in the HRM electric

configuration. The dashed line is the ∆k weighted average and the grey area shows its

1σ weighted uncertainty.

6. Constraints on short-ranged Yukawa deviation

In the previous section, we invoked patch effects to account for the non-zero difference

between theoretical electrostatic stiffness and measured total in-phase stiffness corrected

for the excitation and Newtonian gravity stiffnesses, ∆k “ k̂0´kN´mω2´kǫ,th. Actually,
∆k also contains the putative Yukawa potential that we aim to constrain in this paper.

Given the obvious dependence of ∆k on the electric configuration, which cannot

be explained by a Yukawa-like gravity interaction, we exclude the obviously biased

FRM measurements from our analysis below. Furthermore, as shown in Fig. 4, a

Yukawa potential has a stronger signature on the radial axes than on the longitudinal

one. Therefore, we use only the stiffness estimated on the radial axes in the HRM

configuration to infer constraints on the Yukawa interaction. Fig. 8 shows the

corresponding ∆k, together with their weighted average and 1σ uncertainty (dashed

line and grey area), x∆ky “ p7.1 ˘ 6.0q ˆ 10´4 N{m.

The marginal offset from 0 is surely due to unaccounted for patch effects and a

possible suboptimal calibration of our electrostatic model. However, as error bars are

largely dominated by gold wires, and are significantly larger than the remaining bias,

we use this estimation of x∆ky to infer the 95% upper bound on the Yukawa potential

in Fig. 9, noting that a positive x∆ky corresponds to a negative α.

The curves in the lower part of Fig. 9 show the current best upper bounds on a
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Figure 9. 95% confidence contour for a Yukawa potential. The light grey area shows

the excluded region by various experiments: Irvine [61], Eöt-Wash 2007 [41], HUST

2012 [45], HUST 2020 [31], and the yellow area shows the region excluded by the

current work.

Yukawa potential, inferred from dedicated torsion balance experiments [31, 41, 45, 61].

Note that the Eöt-Wash group recently updated its constraints [32]; however, since they

have been improved below the ranges considered here, we do not show them in Fig. 9.

Our constraints are clearly poor compared to the state of the art. It would have been

surprising otherwise, since MICROSCOPE was not designed to look for short-range

deviations from Newtonian gravity. However, our results suggest that thanks to its

non-trivial geometry, an experiment looking like MICROSCOPE, if highly optimised,

may allow for new constraints of gravity through the measurement of the interaction

between several bodies.

7. Conclusion

We used in-flight technical measurements aimed to characterise MICROSCOPE’s

instrument to search for short-ranged Yukawa deviations from Newtonian gravity.

MICROSCOPE not being designed for this task, this article serves as a proposal for

a new experimental concept in the search of small-scale modifications of gravitation, as

well as a first proof of concept. The analysis is based on the estimation of the stiffness

of the force underwent by MICROSCOPE’s test masses as they are set in motion in

their cage.

We listed all forces possibly intervening in the measurement, and computed the

total stiffness. We found that estimation uncertainties are dominated by those coming
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from the gold wires’ stiffness and quality factor (those wires being used to control the

potential of the test masses). As the electrostatic stiffness is expected to dominate

over other stiffnesses, we compared it with the estimated total stiffness. We found

a non-zero difference depending on the instrument’s electric configuration, hinting at

unaccounted for patch field forces. Due to the complexity of their modeling, we removed

those measurements with a significant bias from our inference of the Yukawa potential

parameters.

Not surprisingly, our constraints on the Yukawa potential parameter space (α, λ)

are not competitive with the published ones, obtained with dedicated laboratory tests.

We find |α| ă 104 ´106 for 10´4 m ď λ ď 1 m, eight orders of magnitude above the best

current upper bounds. Nevertheless, our work can be the starting point for optimisations

to be implemented in the proposed MICROSCOPE’s follow up. The gold wire should

be replaced by a contactless charge control management, as envisioned for LISA [62,63];

this replacement is already planned, since the gold wire is the main limiting factor for

MICROSCOPE’s test of the WEP [33, 34]. Furthermore, patch effects will need to

be either controlled or measurable. Finally, a possible Yukawa interaction at ranges

10´4 m ď λ ď 1 m is expected to have a strengh α ă 10´4, corresponding to a stiffness

seven orders of magnitude lower than the electrostatic stiffness. Since MICROSCOPE’s

capacitive control and measurement prevents us from using an electrostatic shield similar

to that used by torsion pendulum experiments, a competitive experimental constrain will

thus require a control of the instrument’s theoretical model of one part in 10 millions.

Whether this endeavour is possible remains an open question.

In the meantime, we use the measurements presented in this paper to provide new

constraints on the chameleon model in a companion paper [64] based on Refs. [65, 66].
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[39] Métris G in prep Class. Quant. Grav.
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Appendix A. Test mass dynamics

Equation (2) is an idealised version of the more realistic description of Ref. [51]. First,

the sensor is not perfectly aligned with the satellite’s frame; this is described by the rθjs
matrix

~Γcont,j|instr “ rθjs
˜

~ΓC,j|sat ` ~Γcin,j|sat `
~Fext|sat

MIsat

`
~Fth|sat

MIsat

¸

´
~Floc,j|instr

mIj

´
~Fpa,j|instr

mIj

, (A.1)

where the subscripts “|instr” and “|sat” mean that forces and accelerations are expressed

in the instrument or satellite frame, respectively.

Finally, the measured acceleration is given by the control acceleration (A.1) affected

by the matrix rAjs containing the instrument’s scale factors, by electrostatic parasitic

forces (since the applied electrostatic forces are the sum of the measured and parasitic

electrostatic forces mIj
~Γcont,j|instr “ ~Fel,j “ ~Fel,meas,j ` ~Felec,par,j), by the measurement

bias
#»

b 0,j due to the read-out circuit and by noise #»n j :

#»

Γmeas,j|instr “ #»

b 0,j ` rAjs
˜

#»

Γ cont,j|instr ´
#»
F elec,par,j|instr

mIj

¸

`K2,j

”

#»

Γ cont,j|sat

ı2

` #»n j. (A.2)
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Table B1. High-resolution mode (HRM) electric configuration. All voltages are in V.

Vd Vp V 1
px V 1

py{z V 1
pφ

IS1-SUREF 5 5 -5 2.5 -10

IS2-SUREF 5 5 -10 0 -10

IS1-SUEP 5 5 -5 2.5 -10

IS2-SUEP 5 5 0 2.5 -10

We can then wrap up and write the measured acceleration explicitly:

#»

Γmeas,j|instr “ #»

B0,j ` rAjsrθjs
˜

#»

ΓC,j|sat ` #»

Γ cin,j|sat `
#»

F ext|sat

MIsat

`
#»

F th|sat

MIsat

¸

´ rAjs
~Floc,j|instr

mIj

` K2,j

”

#»

Γ cont,j|sat

ı2

` #»n j, (A.3)

where
#»

B0,j ” #»

b 0,j ´ rAjs
˜

~Fpa,j|instr

mIj

`
~Felec,par,j|instr

mIj

¸

(A.4)

is the scale-factor-dependent bias and K2,j is the quadratic factor accounting for non-

linearities in the electronics.

In this article, following the measurements of Ref. [34], we assume that rAjs “
rθjs “ Id, that the drag-free perfectly cancels the external forces and we ignore the

quadratic factor (see Refs. [33, 50, 52]), so that our main measurement equation is

#»

Γmeas,j|instr “ #»

B0,j ` #»

ΓC,j|sat ` #»

Γ cin,j|sat ´
~Floc,j|instr

mIj

` #»n j. (A.5)

Appendix B. Electric configurations

MICROSCOPE can be used with two electric configurations: in the full-range mode

(FRM), voltages are high enough to be able to acquire the test masses, while the high-

resolution mode (HRM), with lower voltages, allows for an optimal control of the test

masses. Tables B1 and B2 summarise the corresponding voltages (which appear in Eq.

13).

Appendix C. Radial electrostatic stiffness due to the Y electrodes

In this appendix, we give a detailed computation of the electrostatic stiffness created by

MICROSCOPE’s Y electrodes on a given test mass as the test mass moves along the

Y -axis (but remains at z “ 0). Although this is textbook physics, this section allows us

to clarify the model of the electrostatic stiffness. See Ref. [60] for the detailed general

case. See Ref. [47] for details about the geometry involved in this computation. In short,
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Table B2. Full-range mode (FRM) electric configuration. All voltages are in V.

Vd Vp V 1
px V 1

py{z V 1
pφ

IS1-SUREF 1 42 0 0 0

IS2-SUREF 1 42 0 0 0

IS1-SUEP 1 42 0 0 0

IS2-SUEP 1 42 0 0 0

a given test mass is controled along its Y -axis by two pairs of diametrically-opposed Y

electrodes (at potential Ve` and Ve´), completed by two pairs of Z-electrodes, as shown

in Fig. C1.

Appendix C.1. Electrostatic force between the plates of a capacitor

At constant potential, the electrostatic force between conductors reads Felec “ ∇U ,
where U is the electrostatic energy. For a capacitor,

U “ 1

2
CV 2, (C.1)

where C is its capacitance and V the potential difference between its plates. The

electrostatic force created along the y-axis is then

F pyq “ 1

2

BC
By V

2. (C.2)

Appendix C.2. Capacitance of one Y electrode – test mass pair

Assuming electrodes are on an infinite cylinder (this assumption is reasonable since

electrodes are far enough from the edges of the cylinder) and using the Gauss theorem,

it is easy to show that the electric field of an electrode (of surface charge σ) at a distance

r from the axis of the cylinder is

Eprq “ σRey

ǫ0r
. (C.3)

The electric potential of the electrode is thus

V prq “ Reyσ

ǫ0
ln r. (C.4)

Finally, the capacitance of the electrode-test mass pair

C “ Q

∆V
“ 1

4

ˆ

2π ´ 4
d3
Rey

˙

Lyǫ0

ln Rmi

Rey

, (C.5)

where the charge

Q “ σS “ σ

4

ˆ

2π ´ 4
d3
Rey

˙

ReyLy, (C.6)
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Figure C1. Test mass’ Y - and Z-axes control geometry. Upper panel: test mass

(light brown) and inner electrode-bearing silica cylinder, with its two rings of pairs

of electrodes to control the Y -axis (red) and the Z´axis (blue). The outer electrode-

bearing silica cylinder controls the X-axis and is not shown here (see Ref. [47]). Lower

panel: Radial cut of a ring of Y and Z electrodes geometry, when the test mass is

offset by y along the Y -axis, with e being the gap between the electrodes and the

test mass in equilibrium. The inner cylinder carries the electrodes (Y and Z along

the corresponding axes –Y electrodes are shown at potential Ve` and Ve´) of external

radius Rey ; electrodes are separated by dips of width d3. The test mass (of inner radius

Rmi and potential VTM) surrounds this inner cylinder, and can move about it.
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where S is the surface of an electrode (of length Ly).

Noting e ” Rmi ´Rey the gap between the cylinder and the test mass, in the limit

e ! Rey „ Rmi, Eq. (C.5) reads

C “ 1

4

ˆ

2π ´ 4
d3
Rey

˙

Lyǫ0
Rmi ` Rey

2e
. (C.7)

Appendix C.3. Y electrodes electrostatic stiffness

When moving the test mass by an amount y along the Y -axis, the electrostatic force

between the electrodes and the test mass is the sum of the forces between the test mass

and the Ve` and Ve´ electrodes, F “ F` ` F´ (so far we consider only one pair of

electrodes).

Those forces are, from Eq. (C.2),

F` “ 1

2

BC`

By pVTM ´ Ve`q2, (C.8)

F´ “ 1

2

BC´

By pVTM ` Ve´q2, (C.9)

with

C˘ “ 1

4

ˆ

2π ´ 4
d3
Rey

˙

Lyǫ0
Rmi ` Rey

2pe˘ yq . (C.10)

The total force is thus

F “ k1

„

´pVTM ´ Ve`q2
pe` yq2 ` pVTM ´ Ve´q2

pe´ yq2


, (C.11)

where

k1 ” 1

16

ˆ

2π ´ 4
d3
Rey

˙

Lyǫ0pRmi ` Reyq. (C.12)

Assuming y ! e, the force reads, at first order in y{e,

F “ k1

e2

”

pVTM ´ Ve´q2
´

1 ` 2
y

e

¯

´ pVTM ´ Ve`q2
´

1 ´ 2
y

e

¯ı

. (C.13)

Keeping only the (stiffness) terms proportional to the displacement y and expanding

the square sums, we get

F “ 2
k1

e3
“

´2pVe` ` Ve´qVTM ` V 2
e´ ` V 2

e` ` 2V 2
TM

‰

y, (C.14)

with [47]
$

’

&

’

%

Ve´ “ V 1
p ´ vy

Ve` “ V 1
p ` vy

VTM “ Vp `
?
2Vd sinωdt,

(C.15)
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of which we take the mean value xVTMy “ Vp and xV 2
TMy “ V 2

p ` V 2
d (and omit the x. . . y

symbol hereafter), such that the stiffness contribution to the force is

F “ 4
k1

e3
“

pVp ´ V 1
pq2 ` V 2

d

‰

y. (C.16)

Considering now the two pairs of electrodes, and substituting Eq. (C.12) to k1,

F “ 1

2

ˆ

2π ´ 4
d3
Rey

˙

Lyǫ0
Rmi ` Rey

e3
“

pVp ´ V 1
pq2 ` V 2

d

‰

y. (C.17)

Since Rmi « Rey, using the expression for the surface of an electrode (Eq. C.6), we

find the expression given in Eq. (13), with αy “ 0.

Appendix D. Gravitational force between hollow cylinders

Ref. [67] derives the longitudinal Fzpr, zq and axial Frpr, zq forces between two hollow

cylinders by a Yukawa gravitation. In this appendix, we use those results to complement

them with the cases at hand in that paper. Note that contrary to the MICROSCOPE

reference frame used in the main text, we use a more intuitive coordinate frame, where

the z-axis is along the main axis of the cylinders, so that the natural cylindrical system

pr, ϕ, zq holds. This is the convention of Ref. [67].

The gravitational force created along the z-axis on a unit mass at pr, θ, zq by a

hollow cylinder of inner and outer radii a and b, height 2ℓ and density ρ is [67]

Fzpr, zq “ ´2πGαρ

ż 8

0

J0pkrqdk
κ

rbJ1pkbq ´ aJ1pkaqs ˆ

$

’

&

’

%

h2pz; kq if ´ ℓ ď z ď ℓ

h1pz; kq if z ą ℓ

h3pz; kq if z ă ´ℓ
(D.1)

where κ is defined in Eq. (24), with λ the Yukawa interaction range, Ji are Bessel

functions of the first kind and the hi functions depend on the altitude of the unit mass

and are defined below ;. The Newtonian interaction is straightforward to recover by

setting λ Ñ 8 (and α “ 1).

The corresponding radial force is given by

Frpr, zq “ ´2πGαρ

ż 8

0

kJ1pkrqdk
κ2

rbJ1pkbq ´ aJ1pkaqs ˆ

$

’

&

’

%

h4pz; kq if ´ ℓ ď z ď ℓ

h1pz; kq if z ą ℓ

´h3pz; kq if z ă ´ℓ
(D.2)

The hi functions are defined as

h1pz; kq “ expr´κpz ´ ℓqs ´ expr´κpℓ ` zqs
h2pz; kq “ expr´κpℓ ´ zqs ´ expr´κpℓ ` zqs
h3pz; kq “ exprκpz ´ ℓqs ´ exprκpℓ ` zqs
h4pz; kq “ 2 ´ expr´κpℓ ´ zqs ´ expr´κpℓ ` zqs.

(D.3)

; Note that h1 and h3 are confused in Ref. [67]
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Appendix D.1. Forces on a full cylinder

The forces exerted by the previous cylinder (called the “source”, centered on px, y, zq “
p0, 0, 0q) on another full cylinder (called the “target”, centered on pxs, 0, zsq) of radius
a1, height 2L and density ρ1, is obtained by integrating Eqs. (D.1) and (D.2) on the

volume of the target (at this point in the computation, we do not care whether the

geometry is physically sound –i.e. cylinders may overlap; this will be done below):

Fzpxs, zsq “ ρ1

ĳ

dxdy

ż zmax

zmin

dzFzpr, zq, (D.4)

and similarly for Frpxs, zsq, where, for convenience, we express the volume in Cartesian

coordinates (though we will quickly return to cylindrical coordinates below), with

r “
a

x2 ` y2. The z-integral is taken from the base zmin to the top zmax of the

target cylinder, and the px, yq-integral is taken over the disk section of the cylinder. We

explicit them below.

Appendix D.1.1. z-integral Fzpr, zq and Frpr, zq depend on z only through the hi
functions, so it is enough to compute Hipkq “

şzmax

zmin
hipz; kqdz. Several cases depending

on the position of the target with respect to the source must be considered:

(i) Target’s z-extend fully contained in source’s z-extend: in this case, zs ´ L ą ´ℓ
and zs `L ă ℓ, and only h2 and h4 are defined. Their integrals are straightforward

to compute, with zmin “ zs ´ L and zmax “ zs ` L:

H2pzs, kq “ 4e´κℓ

κ
sinhpκLq sinhpκzsq (D.5)

and

H4pzs, kq “ 4L ´ 4e´κℓ

κ
sinhpκLq coshpκzsq. (D.6)

(ii) Target’s z-extend fully covering source’s z-extend (zs ´L ă ´ℓ and zs `L ą ℓ): in

this case, all hi are defined, and

H1pzs, kq “ ´2

κ

`

e´κpzs`Lq ´ e´κℓ
˘

sinhpκℓq, (D.7)

H3pzs, kq “ ´2

κ

`

e´κℓ ´ eκpzs´Lq
˘

sinhpκℓq, (D.8)

H4pzs, kq “ 4ℓ ´ 4
e´κℓ

κ
sinhpκℓq (D.9)

and H2pzs, kq “ 0 by symmetry.

(iii) Target fully above source (zs ´ L ą ℓ): in this case, only h1 is defined and

H1pzs, kq “ 4e´κzs

κ
sinhpκℓq sinhpκLq. (D.10)
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(iv) Target fully below source (zs ` L ă ´ℓ): in this case, only h3 is defined and

H3pzs, kq “ ´4eκzs

κ
sinhpκℓq sinhpκLq. (D.11)

(v) Other cases correspond to the target’s and the source’s z-extend overlapping, with

none completely covering the other. Since they are not of use in MICROSCOPE,

we do not consider them here.

Appendix D.1.2. px, yq-integral With no loss of generality, we can set the target

cylinder on pxs, ysq “ pxs, 0q in the px, yq-plane (ys ‰ 0 cases are recovered by a simple

rotation). For an arbitrary function f ,

ĳ

dxdyfpx, yq “
ż θ`

θ´

dθ

ż R`pθq

R´pθq

rdrfpr, θq, (D.12)

where the integration boundaries depend on the geometry of the problem. Let us assume

that the disk over which we take the integral is centered on pxs, ysq “ pxs, 0q and has a

radius a (not to be confused with the radius of the source –which is of no use here).

(i) |xs| ą a

This case is illustrated by the left panel of Fig. D1. It is easy to show that the θ

integral runs from θ´ “ ´ arcsinpa{|xs|q to θ` “ arcsinpa{|xs|q. For a given θ in

that domain, the r-integration then runs from R´pθq to R`pθq which are solutions

of the quadratic equation

R2 ´ 2xsR cos θ ` x2s ´ a2 “ 0, (D.13)

and are given by

R˘pθq “ xs cos θ ˘
b

a2 ´ x2s sin
2 θ. (D.14)

(ii) |xs| ď a

In this case, shown in the right panel of Fig. D1, the θ boundaries are trivially

θ´ “ 0 and θ` “ 2π. It is also trivial that for a given θ, R´pθq “ 0. Finally, it

can be shown that the upper r-boundary is the same as that of the previous case,

R`pθq “ xs cos θ `
a

a2 ´ x2s sin
2 θ.

Appendix D.1.3. Longitudinal and radial forces Noting that the r-dependence of the

Fzpxs, zsq force appears only in the J0 Bessel function, and using Eq. (D.1) we re-write

Eq. (D.4) as

Fzpxs, zsq “ ´2πGρρ1α

ż 8

0

Kzpkq
κ

rbJ1pkbq ´ aJ1pkaqs rH1pzs, kq ` H2pzs, kq ` H3pzs, kqs dk,
(D.15)

where we abusively sum the Hi functions (setting them to 0 outside their definition

range).
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Figure D1. px, yq-integration geometry.

Since all cylinders of a given MICROSCOPE’s sensor unit are co-axial, we consider

only the |xs| ď a case in this paper, so that the px, yq-integration is

Kzpkq “
ż 2π

0

dθ

ż R`pθq

0

J0pkrqdr, (D.16)

and we note that

Izpk, θq ”
ż R`pθq

0

rJ0pkrqdr “ R`pθqJ1rkR`pθqs
k

. (D.17)

Similarly, the radial force

Frpxs, zsq “ ´2πGρρ1α

ż 8

0

Krpkq
κ

rbJ1pkbq ´ aJ1pkaqs rH1pzs, kq ` H4pzs, kq ´ H3pzs, kqs dk,
(D.18)

with

Krpkq “
ż 2π

0

cos θdθ

ż R`pθq

0

krJ1pkrqdr, (D.19)

and

Irpk, θq ”
şR`pθq

0
krJ1pkrqdr

“ π
2

tR`pθqJ1rkR`pθqsH0rkR`pθqs ´ R`pθqJ0rkR`pθqsH1rkR`pθqsu ,
(D.20)

where H0 and H1 are Struve functions (not to be confused with the previous Hi

functions).

Without any further assumptions, we cannot integrate Eqs. (D.16) and (D.19)

over θ analytically, and we end up with a 2D integral for the force between the two
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cylinders. We show below that in the limit of small displacements, we can integrate them

analytically. Nevertheless, in the general case, the θ integrations are easily performed

numerically.

Appendix D.1.4. Small displacements limit: longitudinal force We assume that the

target cylinder (of radius a1) moves about a “reference” position (x̄, 0, z̄), with a small

displacement δ along the z-axis. Assuming that x̄ ! a1, at first order in x̄{a1,

Izpk, θq « a1J1pka1q
k

` a1J0pka1q cos θx̄, (D.21)

so that

Kzpkq « 2π
a1J1pka1q

k
. (D.22)

Noting zs “ z̄`δ the altitude of the target’s center, and expanding the Hi functions

in the limit of small δ, taking care of their definition ranges of Sect. Appendix D.1.1,

we find that the longitudinal force created on the cylinder of radius a1 is, at 3rd order:

(i) if z̄ ! pℓ, Lq and ℓ ą L (target’s z-extend fully covered by that of the source):

Fzpz̄, δq « ´16π2Gρρ1αpK1δ ` K3δ
3q, (D.23)

where

K1 “
ż 8

0

a1J1pka1qrbJ1pkbq ´ aJ1pkaqs
κk

e´κℓ sinhpκLqdk (D.24)

and

K3 “
ż 8

0

κ

6

a1J1pka1qrbJ1pkbq ´ aJ1pkaqs
k

e´κℓ sinhpκLqdk (D.25)

(ii) if z̄ ! pℓ, Lq and ℓ ă L (source’s z-extend fully covered by that of the target): the

force is formally identical to that of the previous case, with ℓ and L switching roles.

(iii) if |z̄| ą ℓ ` L (cylinders above each other):

Fzpz̄, δq « 16π2Gρρ1αpK0 ` K1δ ` K2δ
2 ` K3δ

3q, (D.26)

with

K0 “ ´ z̄

|z̄|

ż 8

0

a1J1pka1qrbJ1pkbq ´ aJ1pkaqs
κ2k

e´κ|z̄| sinhpκℓq sinhpκLqdk, (D.27)

K1 “
ż 8

0

a1J1pka1qrbJ1pkbq ´ aJ1pkaqs
κk

e´κ|z̄| sinhpκℓq sinhpκLqdk, (D.28)

K2 “ ´ z̄

|z̄|

ż 8

0

a1J1pka1qrbJ1pkbq ´ aJ1pkaqs
2k

e´κ|z̄| sinhpκℓq sinhpκLqdk, (D.29)

and

K4 “
ż 8

0

κ

6k
a1J1pka1qrbJ1pkbq ´ aJ1pkaqse´κ|z̄| sinhpκℓq sinhpκLqdk, (D.30)
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Appendix D.1.5. Small displacements limit: radial force We assume that the target

cylinder (of radius a1) moves about a “reference” position (x̄, 0, z̄), with a small

displacement δ along the X-axis. Assuming that x̄ ! a1, at 3rd order in δ{a1,

Irpk, θq « πa1

2
rJ1pka1qH0pka1q ´ J0pka1qH1pka1qs ` ka1J1pka1q cos θδ

` k

2
rka1J0pka1q cos2 θ ´ J1pka1q sin2 θsδ2

` k2

6
rJ0pka1q cosp3θq ´ ka1J1pka1q cos3 θsδ3, (D.31)

so that

Krpkq « πka1J1pka1qδ ´ πk2

8
ka1J1pka1qδ3. (D.32)

The radial force created on the cylinder of radius a1 is thus, at 3rd order

Frpz̄, δq « ´2π2Gρρ1αpK1δ ` K3δ
3q, (D.33)

where, in the definition ranges of Sect. Appendix D.1.1:

(i) if z̄ ! pℓ, Lq and ℓ ą L (target’s z-extend fully covered by that of the source):

K1 “ 4

ż 8

0

ka1J1pka1qrbJ1pkbq ´ aJ1pkaqs
κ2

„

L ´ e´κℓ

κ
sinhpκLq coshpκz̄q



dk

(D.34)

and

K3 “ ´
ż 8

0

k3a1J1pka1qrbJ1pkbq ´ aJ1pkaqs
κ2

„

L´ e´κℓ

κ
sinhpκLq coshpκz̄q



dk

(D.35)

(ii) if z̄ ! pℓ, Lq and ℓ ă L (source’s z-extend fully covered by that of the target): the

force is formally identical to that of the previous case, with ℓ and L switching roles.

(iii) if |z̄| ą ℓ ` L (cylinders above each other):

K1 “ 4

ż 8

0

ka1J1pka1qrbJ1pkbq ´ aJ1pkaqs
κ2

e´κ|z̄|

κ
sinhpκℓq sinhpκLqdk (D.36)

K3 “ ´
ż 8

0

k3a1J1pka1qrbJ1pkbq ´ aJ1pkaqs
κ2

e´κ|z̄|

κ
sinhpκℓq sinhpκLqdk (D.37)

Appendix D.2. Forces between hollow cylinders

We finally come back to the problem at hand: the gravitational force between the two

hollow cylinders defined at the beginning of this appendix. By virtue of the superposition

principle, it is given by subtracting the force between the hollow source cylinder and

two full target cylinders of radii a and b. Thus, in the limit of small displacements, the

longitudinal and radial forces are formally given by Eqs. (D.23), (D.26) and (D.33), with

the Ki coefficients given below (they are obviously identical to those given in the main

text in the MICROSCOPE coordinates system, where the x and z-axes are inverted).

CHAPTER 5. APPLICATION: TESTING THE CHAMELEON STIFFNESS WITH
MICROSCOPE 189

189 TESTING GRAVITY IN SPACE



Fifth force stiffness 42

Appendix D.2.1. Longitudinal force

(i) if z̄ ! pℓ, Lq and ℓ ą L (target’s z-extend fully covered by that of the source):

Fzpz̄, δq « ´16π2Gρρ1αpK1δ ` K3δ
3q, (D.38)

where

K1 “
ż 8

0

rb1J1pkb1q ´ a1J1pka1qsrbJ1pkbq ´ aJ1pkaqs
κk

e´κℓ sinhpκLqdk (D.39)

K3 “
ż 8

0

κ

6

rb1J1pkb1q ´ a1J1pka1qsrbJ1pkbq ´ aJ1pkaqs
k

e´κℓ sinhpκLqdk (D.40)

(ii) if z̄ ! pℓ, Lq and ℓ ă L (source’s z-extend fully covered by that of the target): the

force is formally identical to that of the previous case, with ℓ and L switching roles.

(iii) if |z̄| ą ℓ ` L (cylinders above each other):

Fzpz̄, δq « 16π2Gρρ1αpK0 ` K1δ ` K2δ
2 ` K3δ

3q, (D.41)

with

K0 “ ´ z̄

|z̄|

ż 8

0

rb1J1pkb1q ´ a1J1pka1qsrbJ1pkbq ´ aJ1pkaqs
κ2k

e´κ|z̄| sinhpκℓq sinhpκLqdk

(D.42)

K1 “
ż 8

0

rb1J1pkb1q ´ a1J1pka1qsrbJ1pkbq ´ aJ1pkaqs
κk

e´κ|z̄| sinhpκℓq sinhpκLqdk

(D.43)

K2 “ ´ z̄

|z̄|

ż 8

0

rb1J1pkb1q ´ a1J1pka1qsrbJ1pkbq ´ aJ1pkaqs
2k

e´κ|z̄| sinhpκℓq sinhpκLqdk

(D.44)

K4 “
ż 8

0

κ

6k
rb1J1pkb1q ´ a1J1pka1qsrbJ1pkbq ´ aJ1pkaqse´κ|z̄| sinhpκℓq sinhpκLqdk,

(D.45)

Appendix D.2.2. Radial force

Frpz̄, δq « ´2π2Gρρ1αpK1δ ` K3δ
3q, (D.46)

(i) if z̄ ! pℓ, Lq and ℓ ą L (target’s z-extend fully covered by that of the source):

K1 “ 4

ż 8

0

krb1J1pkb1q ´ a1J1pka1qsrbJ1pkbq ´ aJ1pkaqs
κ2

„

L ´ e´κℓ

κ
sinhpκLq coshpκz̄q



dk

(D.47)

K3 “ ´
ż 8

0

k3rb1J1pkb1q ´ a1J1pka1qsrbJ1pkbq ´ aJ1pkaqs
κ2

„

L´ e´κℓ

κ
sinhpκLq coshpκz̄q



dk

(D.48)
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Figure D2. Relative difference between the exact expression (D.2) and its first order

Taylor expansion (first term of Eq. D.46) for the radial force created by the parts of

MICROSCOPE’s SUEP on the inner test mass, as a function of the displacement of the

test mass. Left: Newtonian force. Right: Yukawa force, for pα, λq “ p1, 0.01 mq; only

those cylinders which create a non-negligible Yukawa force allowing for a well-behaved

Fstiffness{Fexact ratio are shown.

(ii) if z̄ ! pℓ, Lq and ℓ ă L (source’s z-extend fully covered by that of the target): the

force is formally identical to that of the previous case, with ℓ and L switching roles.

(iii) if |z̄| ą ℓ ` L (cylinders above each other):

K1 “ 4

ż 8

0

krb1J1pkb1q ´ a1J1pka1qsrbJ1pkbq ´ aJ1pkaqs
κ2

e´κ|z̄|

κ
sinhpκℓq sinhpκLqdk

(D.49)

K3 “ ´
ż 8

0

k3rb1J1pkb1q ´ a1J1pka1qsrbJ1pkbq ´ aJ1pkaqs
κ2

e´κ|z̄|

κ
sinhpκℓq sinhpκLqdk

(D.50)

Appendix D.3. MICROSCOPE gravitational stiffness

Fig. D2 shows the relative difference between the exact expression (D.2) and its first

order Taylor expansion (first term of Eq. D.46) for the radial force created by the parts

of MICROSCOPE’s SUEP on the inner test mass, when the test mass moves within

the range used to estimate the stiffness in flight. A first order approximation provides

a 10´5 accuracy on the gravitational forces, and can thus be safely used.
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5.2 Use for constraining chameleon gravity

5.2.1 Introduction and summary

This article is dedicated to obtain equivalent constraints, using the MICROSCOPE’s
stiffness measurement sessions, for the chameleon field. We proceed exactly the same
way as for the Yukawa interaction. We compute the chameleonic stiffness we showed to
exist in Chapter 4, and compare it to the discrepancy observed on the MICROSCOPE’s
stiffness in the previous section.

Computing this stiffness requires the numerical methods we developed in Chapter 4.
We modify it to include more cylinders and the correct physical parameters associated
to the MICROSCOPE geometry. To span the larger part of the parameter space of
chameleon field, we use numerous 1D and 2D methods. This is justified by the fact
that we show that these two types of methods provide the same order of magnitude
on the acceleration for a test mass. As in the Yukawa case, we obtain constraints by
comparing the result of our simulation and the stiffness discrepancy from Tab. 3 of the
previous article. The obtained constraints are are shown not to be competitive with
current constraints and are 2 orders of magnitude looser.

5.2.2 Article
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This article is dedicated to the use the MICROSCOPE mission’s data to test chameleon theory of
gravity. We take advantage of the technical sessions aimed to characterize the electrostatic stiffness
of MICROSCOPE’s instrument intrinsic to its capacitive measurement system. Any discrepancy
between the expected and measured stiffness may result from unaccounted-for contributors, i.e.
extra-forces. This work considers the case of chameleon gravity as a possible contributor. It was
previously shown that in situations similar to these measurement sessions, a chameleon fifth force
appears and acts as a stiffness for small displacements. The magnitude of this new component of
the stiffness is computed over the chameleon’s parameter space. It allows us to derive constraints by
excluding any force inconsistent with the MICROSCOPE data. As expected –since MICROSCOPE
was not designed for the purpose of such an analysis–, these new bounds are not competitive with
state-of-the-art constraints, but they could be improved by a better estimation of all effects at play
in these sessions. Hence our work illustrates this novel technique as a new way of constraining fifth
forces.

I. INTRODUCTION

This article follows up from a series of articles [1–3]
aiming to test modified gravity theories with data from
the MICROSCOPE mission. This mission provided the
tightest constraint to date on the weak equivalence prin-
ciple (WEP) [4, 5]. Its instrument is based on a couple of
accelerometers measuring the differential acceleration of
two cylindrical test masses of different compositions. It
contains four test masses: two cylinders of different com-
position in the SUEP (Equivalence Principle test Sensor
Unit) sensor unit that is used to perform the WEP test
and two cylinders of same composition in the SUREF
(Reference Sensor Unit) sensor unit used as a reference.
In Ref. [6], we directly used the WEP test results to
improve the current constraints on the existence of un-
screened scalar fifth forces, a massive Yukawa fifth force
and a light dilaton field [7].

In Ref. [8], we proposed a new way of testing such the-
ories by using sessions dedicated to measuring the elec-
trostatic stiffness inherent to the capacitive measurement
system of MICROSCOPE. An electrostatic destabilizing
force appears when a test mass is displaced from its rest
position: in the limit of small displacements it is a lin-
ear dependence. We call stiffness its associated linear
factor. It has been measured by deliberately displacing
each test mass separately with an amplitude of 5µm. The

∗ martin.pernot borras@onera.fr

result of this series of tests has been compared to elec-
trostatic models and a discrepancy has been pinpointed
[9]. In Ref. [8], we modeled the total stiffness and studied
all possible sources of forces to explain this discrepancy.
They consist of mainly: (1) the satellite Newtonian self-
gravity and (2) the stiffness of a 7-µm-thick-gold-wire
used to control the electrical potential of the test masses
that acts as a spring. We found that the contribution of
the former is sub-dominant. After determining the pa-
rameters of the latter to evaluate its contribution to the
stiffness, we found an unexplained residual component
that depends on the electrical configuration, hinting at
patch field effects. We nonetheless considered the possi-
bility that this discrepancy may originate from modified
gravity fifth forces sourced by the satellite and exper-
imental apparatus. We have already [8] been able to
set constraints on a Yukawa-like interaction by excluding
any parameters of the interaction that lead to a stiff-
ness larger than the discrepancy. As expected, since MI-
CROSCOPE was not originally designed to such a test
–leading to a loose estimation of the gold-wire-stiffness
for instance–, the constraints are not competitive with
state-of-the-art constraints but it opens a possible novel
way of testing fifth force and demonstrate that its effect
has to be modeled in details at each step of the experi-
ment.

This article aims to extend this analysis to the
chameleon gravity model [10, 11]. Unlike Yukawa model,
this scalar field enjoys a screening mechanism that makes
its fifth force more sensitive to the matter environment
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and more subtle to compute. We use the numerical meth-
ods developed in Refs. [1, 2] to compute the chameleon
profile associated to a geometry of nested cylinders. In
these articles, we studied the case of dis-centering one
of the cylinders and showed that it should experience
a chameleonic force acting as a stiffness for small dis-
placements. Its magnitude depends on the geometrical
parameters of the cylinders and on the parameters of the
chameleon theory. This study was performed for only
two nested cylinders. Here, we extend this methods to
compute the field and the force associated to the geome-
try of the MICROSCOPE’s instrument with the proper
geometrical parameters. Each sensor unit is composed of
eight cylinders: two cylindrical test mass cylinders, each
of which is surrounded by two electrode cylinders; and
two ferrule cylinders encompassing all the six cylinders
[5]. The end of these ferrules are closed by two “lids”
that we do not consider in this study.

This article is organized as follows. In Section II, we
detail the methods used to compute the chameleon stiff-
ness, and more particularly the necessity of different ap-
proximations for the different regimes of the chameleon
gravity. In Section III, we present the constraints ob-
tained by combining the results of these computations
and the analysis of the MICROSCOPE stiffness measure-
ment sessions from Ref. [8]. To finish, in Section IV, we
discuss our results and the limits of this new approach.

II. CHAMELON STIFFNESS

A. Methods

We use three different methods to compute the
chameleon stiffness depending on the regimes of the
chameleon field. These regimes occur for the MICRO-
SCOPE geometry for different zones of the chameleon
parameter space [1]. The chameleon field is parameter-
ized by three parameters: its coupling constant to matter
β, and the energy scale Λ and index n of its inverse-power
law potential. We can distinguish three main regimes:
the screened regime in which a test mass and the two
electrode cylinders surrounding it can be considered as an
isolated system due to the fact that the electrode cylin-
ders screen the field; a deeply screened regime in which
the screening of the test mass is too deep to compute the
profile associated to three cylinders and instead we need
to consider it as two separate pairs of screened cylinders;
and a unscreened regime in which the field penetrates all
cylinders so that all of them must be taken into account
when computing the field profile. Let us detail the com-
putation techniques used in each regime.

a. Screened regime. This regime appears when the
Compton wavelengths of the field in the cylinders are of
the order of a twentieth of their thickness. It can be
addressed by using the semi-analytic 2D model we de-
veloped in Ref. [2]. This method was initially applied
to two cylinders. Here, we modify it to include a third

one. We impose the boundary conditions in the two ex-
ternal cylinders in such a way that the field must reach
the minimum of the potentials associated to their densi-
ties. We displace the central test mass cylinder and solve
the field’s multipole from which we compute the force.

b. Deeply screened regime. This regime occurs when
the Compton wavelengths are smaller than a twentieth
of the cylinder’s thickness. In this regime the screening
of the test mass makes it impossible to use the previous
method, as the value of the field reached deep in the test
mass is so close to the value that minimizes its potential,
that it is smaller than the typical numerical precision of
a computer. We instead use a 1D method, and consider
the three cylinders as two distinct pairs of screened par-
allel walls. To mimic two opposite sides of the cylinders,
we consider two such systems. This 1D approximation is
justified by the fact that we showed, in Ref. [2], that the
chameleonic force computed in these planar and cylin-
drical configurations lead to the order of magnitude for
the acceleration experienced by a test mass. We thus
postulate, for these analogous situations, that the test
masses’ accelerations verify a2D = αa1D, where α is a
geometrical factor that is expected to be of order unity.

From this equality, by using Newton’s law, one can
obtain a relation between the surface force Fs,1D expe-
rienced by the two walls in a planar configuration and
the force per unit length Fl,2D experienced by a cylin-
der in the corresponding 2D configuration. The ratio of
masses leads to the ratio of the wall thicknesses and the
transverse section area of the cylinder in the relation

Fl,2D ≈ α
π
[
(d+ e)2 − d2

]

2 e
Fs,1D, (1)

where d and e are respectively the internal radius and
the thickness of the test mass cylinder. The value of α is
discussed in Fig. 1 and below.

c. Unscreened regime. This regime takes place when
the Compton wavelengths of the field in the cylinders are
larger than their thicknesses. In this case the boundary
conditions must be set at some distance much larger than
the Compton wavelength associated to the density out-
side the cylinders. In this regime, this Compton wave-
length is likely to be so large that one must perform large
steps in terms of the numerical resolution in this zone,
hence losing the accuracy on the result. To overcome
this issue we again addressed this regime with a 1D res-
olution. In a 1D problem, as discussed in Ref. [1], the
chameleon equation can indeed be integrated once in the
region external to the cylinders and obtain, at the bound-
ary of the external cylinder, a condition φ′[φ(xb)] giving
the field derivative as a function of the field value that
leads the boundary conditions to be respected far from
it. We can use this condition to perform a dichotomy
method to adjust the initial condition of our numerical
method. We proceed in the same way as the case of
asymmetrical parallel walls in Ref. [2], with the differ-
ence that instead of using for the dichotomy method the
verification at some large distance from the cylinders that
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FIG. 1. Result of the comparison of the acceleration experi-
enced by a test mass in planar and cylindrical configurations
in different regimes of screening quantified by e

2λc
, where e is

the thickness of the cylinder and λc the Compton wavelength
of the field associated to it.

the boundary conditions are respected, we check that the
aforementioned condition is verified at the boundary of
the outer cylinder. These two conditions are equivalent
but the latter allows us to bypass solving the field in the
external region.

Similarly to the previous regime, in this 1D resolution,
to mimic two opposite radial directions of a 8-nested-
cylinder-configuration, we consider a set of 16 parallel
walls. In this 1D configuration a test mass is represented
by two of these walls. We again use Eq. (1) to compute
the corresponding 2D force. Note that due to the sym-
metry breaking by the shifting of the walls, the initial
conditions cannot be set at the center of the 16 walls but
instead at a slightly shifted location that we determine
similarly as in Ref. [2].

To evaluate α in Eq. (1), we compare the forces com-
puted in 1D and 2D. This requires to extend the method
used in the screened regime to the other regimes. To
overcome the problem encountered in these regimes, we
considered an unrealistic configuration of 3 cylinders of
same density with a external vacuum much denser than
the vacuum of space. This allows us to avoid the nu-
merical resolution issue encountered in the unscreened
regime. Even if unrealistic, it allows us to quantify the
geometrical factor between planar and cylindrical geome-
tries, that we expect to be independent of the densities.

As depicted in Fig.1, the numerical comparison
strongly hints at α = 1/2, a value reached in most of
the screening range but that appears to be smaller for
unscreened situations. We interpret this latter behavior
as the 2D method reaching its limits and we instead ex-
pect α = 1/2 also this regime. This is justified by the
longer Compton wavelength in this regime, that leads the

FIG. 2. Scaling of the chameleon fifth force as a function of
the displacement in the range δ = 1 . . . 10 µm for different
set of parameters (Λ, β) assuming n = 1. Λ are chosen in the
range 10−1−3×102 eV and β in the range 6−107. This shows
that logF = log kchameleon(Λ, β) + log δ is a good approxima-
tion to the behavior of the force at small displacements. We
use a log-log plot for convenience but it is easily checked that
the slope is unity so that linearity is confirmed.

field’s gradient to vary slowly within the cylinder. By ap-
proximating this gradient by the one obtained in planar
situations, one directly obtains Eq.(1) with α = 1/2 1.
Hence we choose to generalize this result to all regimes
in our present study.

B. Results

First, we check numerically that the force is linear for
small displacements. As shown in Ref. [2], this is ex-
pected to be the case even though the theory is non-
linear. Figure 2 depicts the behavior of F (δ) in the
range δ = 1 . . . 10 µm relevant for our study. Besides,
we know that by symmetry F (0) = 0. Hence it confirms
that in this range of displacements it is safe to model
the chameleon fifth force by a stiffness kchameleon(Λ, β)
(measured in N.m−1) so that

F = kchameleon(Λ, β)× δ +O(δ2). (2)

Even though one can witness a small deviation of this
linear relation for δ ∼ 10 µm for the largest values of Λ,

1 The origin of this value comes from the fact that while for pla-
nar situations all parts of a wall are submitted to a force, for
cylindrical configurations, only the parts of the cylinder that are
closer to the axis of displacement contribute to the acceleration.
This is due to the projection of the force that is mainly radially
directed and to the effective radial displacement of the cylinder
that varies with the cylindrical angle.
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FIG. 3. Evolution with the parameters β and Λ of the
chameleonic stiffness kchameleon of the external test mass of
the sensor unit SUEP from the MICROSCOPE mission for
n = 1. Its magnitude is shown by the background colors. This
function is obtained by linearly interpolating the data points.
These points are the result of the three numerical methods
discussed in the main text that are here distinguished by dif-
ferent points of colors. This is represented in log-scale for
β, λ, kchameleon. The black line is the contour line at which
the stiffness is equal to the measured 2-σ uncertainty on the
discrepancy ∆kMIC in the MICROSCOPE experiment.

these results comfort us in the linearity assumption in
the range of displacements compatible with the MICRO-
SCOPE data we are using and the parameter space we
consider.

Then, we present the numerical results in Fig. 3. We
computed the chameleonic stiffness kchameleon(Λ, β) expe-
rienced by a test mass when displaced radially by 1µm.
This figure shows the result for SUEP-IS2, the exter-
nal test mass of SUEP. We spanned the parameter space
(β,Λ) for n = 1, we denote each computation by a point
with a color code that labels which of the three method
were used. To obtain the continuous evolution of the
stiffness with (β,Λ), we performed a linear interpolation
of the simulation points in log-scale. We show with the
black solid line, the contour line at which the obtained
chameleonic stiffness equals the 2-σ uncertainty on the
discrepancy ∆kMIC on the stiffness measured in the MI-
CROSCOPE sessions as presented in Ref. [8]. This latter
article presents two distinct estimations over two perpen-
dicular radial axis of the cylinder; the chameleonic stiff-
ness being expected to be the same over these axes, we
choose to average these two estimations and quadrati-
cally average the error bars.

III. CONSTRAINTS ON THE CHAMELEON’S
PARAMETERS

The results shown in Fig. 3 mean that above the black
line the chameleonic stiffness is too large to explain the
observed stiffness residual in MICROSCOPE. This stiff-
ness could be compatible with these measurements, if a
stabilizing stiffness of the same magnitude were to exist.
Nevertheless standard physics combined with our under-
standing of the instrument do not provide any such con-
tribution. Thence we interpret these results as excluding
the existence of a chameleon field for these parameters.
Below the black line, the chameleonic stiffness is within
the error bars of the observed discrepancy so that we
cannot exclude its existence.

Note that we have not been able to span the whole pa-
rameter space. Our methods are unable to determine the
stiffness for large β and Λ. We expect this to be caused
by the fact that the field magnitude becomes so large that
our numerical precision fails at describing the gradient in
the test mass. Thus, the force vanishes. Nevertheless we
can guess the behavior of the stiffness in these unexplored
regions. For very large Λ, the field tends to be completely
unscreened such that we expect it to converge towards a
flat field providing a lower force. For very large β, on the
contrary, the field tends to be more screened. At some
point we expect the field to be able to reach the mini-
mum of its potential in the inter-cylinder vacuum gaps,
such that the cylinders would not interact through the
scalar field anymore. In this case the field is equivalent
to the field of an infinitely thick cylinder and gap. Given
the inter-cylinder gaps of 600µm for MICROSCOPE, we
expect this to happen for β & 1019. We thus expect the
MICROSCOPE constraint to have a rectangular shape.

We applied the same procedure to the other three test
masses. The result are summarized in Fig. 4. It shows
the 2σ-constraints from each test mass: the internal mass
of each sensor unit is called IS1 and the external IS2. We
compare the MICROSCOPE constraints to the current
constrains summarized in Refs.[12, 13]. They overlap
the constraints from atom interferometry [14, 15], torsion
balances [16, 17] and Casimir effect experiments [18, 19].
Nevertheless, they are not competitive with current con-
straints. This is not surprising since MICROSCOPE was
not designed for this test.

IV. DISCUSSION

The best constraints are obtained from the internal test
masses –IS1. This is explained by a better estimation –
by one order of magnitude– of the gold-wire-stiffness [8]
leading to a lower residual stiffness. The competitivity of
the internal masses is nonetheless depleted by the short-
ness of these test masses relative to the external ones
[5]. We observe that the constraints from the internal
test masses are very similar, their slight difference is only
caused by a slightly different residual stiffness. They in-
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FIG. 4. Constraints on the chameleon model for n = 1 from
the MICROSCOPE experiment using stiffness measurement
sessions: the region excluded at 2-σ is above the four lines
described in the legend. They correspond to the different test
masses: IS1 (resp. IS2) denotes the the internal (resp. ex-
ternal) test masses of the SUREF and SUEP sensor units.
Their constraints are compared to the current constraints
from other experiments denoted with the colored regions as
presented in Refs. [12, 13]. They come from atomic interfer-
ometry (purple, [14, 15]), Eöt-Wash group’s torsion balance
experiments (green, [16, 17]), Casimir effect measurements
(yellow, [18, 19]), astrophysics tests (blue, [20–22]) and lens-
ing (pink, [23]), precision atomic tests (orange, [24, 25]), mi-
crosphere (blue line, [26]) and neutron interferometry (blue
and red point, [27, 28]). The horizontal doted line denotes
the energy scale of dark energy.

deed experience the same chameleonic stiffness, which is
consistent with the fact that they have the same geomet-
rical parameters and are of the same composition. This
tells us that the effect on the inner masses from the ex-
ternal test mass –of different compositions for the two
sensor units– is negligible even in the unscreened regime
–upper part of the constraint.

Comparing the chameleonic forces of the external test
masses –that have same geometrical parameters but dif-
ferent densities– is interesting for the phenomenology of a
WEP violation. This requires to normalize them by their
masses. Doing so reveals that they each experience, in
these dis-centered configurations, a different acceleration
in both screened and unscreened regime. This confirms
the ability of the chameleon field to provide an apparent
WEP-violation-signal as the only result of the different
densities of test masses through their different screening
factors [11]. This has no direct repercussion on MICRO-
SCOPE’s WEP test as: (1) it is performed in a situa-
tion where coaxiality of all cylinders is well controlled
[5], (2) it is performed on a couple of test masses –IS1
and IS2– belonging to the same sensor unit for which
the different geometrical parameters could also be the
source of a differential acceleration. This dependence of

the force to the test masses’ densities nonetheless hints
at an apparent-chameleonic-WEP-violation to appear in
MICROSCOPE’s WEP test. Note that the common wis-
dom about chameleon inducing apparent WEP violation
in screened regimes [10, 11] is not applicable to MICRO-
SCOPE’s test of the WEP, since in this case, the satellite
itself screens the Earth’s chameleon field [1], preventing
any WEP violation signal at the frequency aimed by MI-
CROSCOPE. Instead, we expect such a signal to appear
in a lightly screened regime where the Earth’s chameleon
profile can penetrate the instrument. Of course in such a
regime the density dependence of the force would be de-
pleted but the signal it induces might still be detectable
if the precision of the experiment is high enough. Esti-
mating this effect is beyond the scope of this article.

We obtained these new constraints from numerical sim-
ulations of the chameleon profiles in the nested-cylinder-
geometry of the MICROSCOPE experiment. Some ap-
proximations must be discussed. Firstly, when evaluating
the chameleonic stiffness, we used the profiles of infinitely
extended cylinders. In MICROSCOPE, the cylinders be-
ing finite, we expect edge effects to appear that would re-
quire 3D simulations to quantify and that are beyond the
scope of this study. Nevertheless, we expect these effects
to decrease the computed stiffness. We indeed predict
the field to behave as follows. On the one hand far from
the ends of a cylinder, the transverse profile should be
close to the one of infinite cylinders. On the other hand,
at its ends, it should be influenced by the two cylindrical
“lids” that close the ends of the electrode cylinders. We
expect the presence of this matter to affect the chameleon
profile in such a way that it is flattened in comparison
to the profile of infinite cylinders. This flattening would
reduce the gradients in the test mass at its ends, leading
our computed stiffness to be overestimated. This would
induce our constraints to be slightly decreased.

Another assumption is that we computed the profile
for a static configuration while the stiffness measurement
sessions involve a periodic motion of the test mass. The
validity of this quasi-static assumption depends on the
relaxation time of the field in response to a change in
the matter distribution. We expect this assumption to
stay valid as long as the movement are slow compared
to the relaxation speed of the field. In analogy with
gravitational waves [29], and consistently with the dis-
cussion from Ref. [30], we expect this speed to be close
to the speed of light for light fields and lower for mas-
sive fields. This assumption could thus be questionable
for chameleon parameters providing the heaviest fields
such as in the deeply screened regime. Nevertheless, this
regime is not accessible to our methods.

Finally, we idealized the MICROSCOPE geometry by
not taking into account the influence of MICROSCOPE’s
satellite but only the effect of the instrument. This is de-
batable in the regime where the field is unscreened. The
complex geometry of the satellite could introduce pecu-
liar effects on the chameleonic force. Nonetheless, given
the null-effect on the internal test mass of the external
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ones, and the low factor of 100 between the mass of the
cylinders and of the satellite, we expect the influence of
mass distribution closest to the test masses, i.e. the elec-
trodes cylinders, to be dominant. This has for instance
been demonstrated for a Yukawa fifth force in Ref. [8].

To conclude, this work extends the search for new
methods to test chameleon models in the laboratory [3]
or in space [31, 32]. Here we took advantage of MICRO-
SCOPE’s instrumental characterization measurements to
draw constraints on the chameleon field. An unexplained
discrepancy between the measured and expected elec-
trostatic stiffness might hint at a non-zero chameleonic
force. The constraints we obtained are not competi-
tive with state-of-the-art constraints. This is not a sur-
prise. MICROSCOPE was not designed for testing short-
ranged modified gravity theories. The main limitations
of this test come from modeling uncertainties of the theo-
retical electrostatic stiffness and from the poor knowledge
of the gold-wire characteristics. A better estimation of
these physical parameters would reduce the error bars on
the stiffness discrepancy. An alternative, under study for
a next mission [33], is to suppress this gold wire as done
in LISA Pathfinder [34]. Besides, patch field effects may
be the most likely phenomenon to explain the observed

discrepancy on the measurement of the stiffness [8]. Es-
timating these effects would deplete this discrepancy and
thus improve the sensitivity of the test. While awaiting
these developments, the constraints we have provided are
conservative.
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[21] A. Cabré, V. Vikram, G.-B. Zhao, B. Jain, and
K. Koyama, “Astrophysical tests of gravity: a screening
map of the nearby universe,” Journal of Cosmology and
Astroparticle Physics, vol. 2012, pp. 034–034, jul 2012.

[22] V. Vikram, J. Sakstein, C. Davis, and A. Neil, “Astro-
physical tests of modified gravity: Stellar and gaseous
rotation curves in dwarf galaxies,” Phys. Rev. D, vol. 97,
p. 104055, May 2018.

[23] H. Wilcox, R. C. Nichol, G.-B. Zhao, D. Bacon,
K. Koyama, and A. K. Romer, “Simulation tests
of galaxy cluster constraints on chameleon gravity,”
Monthly Notices of the Royal Astronomical Society,
vol. 462, pp. 715–725, 07 2016.

[24] P. Brax and C. Burrage, “Atomic precision tests and light
scalar couplings,” Phys. Rev. D, vol. 83, p. 035020, Feb
2011.

[25] J. Jaeckel and S. Roy, “Spectroscopy as a test of
coulomb’s law: A probe of the hidden sector,” Phys. Rev.
D, vol. 82, p. 125020, Dec 2010.

[26] A. D. Rider, D. C. Moore, C. P. Blakemore, M. Louis,
M. Lu, and G. Gratta, “Search for screened interactions
associated with dark energy below the 100 µm length
scale,” Phys. Rev. Lett., vol. 117, p. 101101, Aug 2016.

[27] H. Lemmel, P. Brax, A. Ivanov, T. Jenke, G. Pignol,
M. Pitschmann, T. Potocar, M. Wellenzohn, M. Zawisky,
and H. Abele, “Neutron interferometry constrains dark
energy chameleon fields,” Physics Letters B, vol. 743,
pp. 310 – 314, 2015.

[28] K. Li, M. Arif, D. G. Cory, R. Haun, B. Heacock, M. G.
Huber, J. Nsofini, D. A. Pushin, P. Saggu, D. Sarenac,
C. B. Shahi, V. Skavysh, W. M. Snow, and A. R. Young,
“Neutron limit on the strongly-coupled chameleon field,”
Phys. Rev. D, vol. 93, p. 062001, Mar 2016.

[29] C. M. Will, “Bounding the mass of the graviton using
gravitational-wave observations of inspiralling compact
binaries,” Phys. Rev. D, vol. 57, pp. 2061–2068, Feb 1998.

[30] C. Burrage, E. J. Copeland, and E. A. Hinds, “Prob-
ing dark energy with atom interferometry,” J. Cosmol.
Astropart. Phys., vol. 2015, no. 03, p. 042, 2015.
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Chapter conclusion

We proposed a new test of modified gravity by measuring the stiffness it in-
duces in asymetrical geometries. We used the stiffness measurement sessions of
MICROSCOPE to perform this test. This requires the estimation of all other
classical sources of such a stiffness. We found a residual stiffness unexplained by
the electrostatic models, classical gravity nor the gold-wire stiffness. The best
explanation is patch field effects between the cylinders. We nonetheless explored
the hypothesis that the discrepancy is caused by a modified gravity effect. We ob-
tained a bound on a Yukawa force and a chameleon force. MICROSCOPE being
not designed for this test, the bounds are, not surprisingly, not competitive.
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Chapter 6

Application to the motion of
charged particles

This chapter explores another application of the chameleon profiles inside cavities
that have been obtained in Chapter 4. We consider the effect of a scalar field fifth force
on the motion of charged particles in a uniform magnetic field. In the absence of a fifth
force this dynamics is well known. The charged particles follow helix trajectories that
are coiled around the lines of the magnetic field. If a fifth force is present, as long as it
is large enough compared with its electromagnetic counterpart, these latter trajectories
will be modified leading to new drifting effects of the particles.

6.1 Introduction and summary

In this article, to obtain these effects, we derive the general equations of motion of a
relativistic charged particle in an arbitrary electromagnetic field and a scalar field from
a scalar-tensor theory. We analyse the effect of the general scalar fifth force obtained
in Eq. (2.14). From this general formalism we apply it to the non-relativistic case of a
uniform magnetic field. We introduce an analytic solution for the dynamics of charged
particles in the present of a scalar field.

We then analyse their trajectories. To continue this analytic treatment we use a
generic unrealistic form of the scalar field inside the cavity. The trajectories show some
peculiar features. For cylindrically symmetric scalar profiles, while without scalar field
the particles follow closed circles, with a weak scalar field these trajectories get opened
leading to an orthoradial drift or a precession of the trajectory. If the field is stronger,
the trajectories are even more modified through a gain of their amplitude. The case of
non cylindrically symmetric scalar field profiles is also studied. We show that such a
profile can now lead to a radial drift of the charged particles that could induce the walls
of the cavity to get charged.

From the drift of the trajectories of charged particles, we also consider the collective
effect they create on macroscopic scales. The idea is to consider some density of charged
particles between two parallel walls or two nested cylinders. If a magnetic field is present
the microscopic drift induces a global current of charges inside the cavity. In the first
case the current is parallel to the walls, in the second case, if the cylinders are co-axial,
the current is orthoradial and has a radial component if a cylinder is shifted. Such a
current could large enough to be detectable. An application to the chameleon field is
provided for the case of parallel plates. We consider the current created by the profiles
simulated in Chap. 4. From such a phenomena one could expect, if one were able to
segment in the direction transverse to the cavity the measurement of the current, to have
access the profile of the chameleon itself. The possible limitations of such an experiment
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are discussed. We show that a perturbation from a gravity field can be suppressed by
aligning it with the magnetic field of the experiment.

In short this article provides a new testable effect from a scalar fifth force. The
electrical current it creates are modelled for a chameleon field. It is however important
to note that the chameleonic effects have been studied for an idealised situation of
infinite parallel walls. In a more realistic set-up, one should also study edge effects and
the impact of the means of measurement that should impact the current.

6.2 Article
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1Institut d’Astrophysique de Paris, CNRS UMR 7095, Université Pierre & Marie Curie - Paris VI,
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This article describes the dynamics of a charged particle in an electromagnetic field in presence of a
scalar fifth force. Focusing to the fifth force that would be induced by a chameleon field, the profile of
which can be designed properly in the laboratory, it draws its physical effects on the cyclotron motion of a
particle in a static and uniform magnetic field. The fifth force induces a drift of the trajectory that is
estimated analytically and compared to numerical computations for profiles motivated by the ones of a
chameleon field within two nested cylinders. The magnitude of the effect and the detectability of this drift
are discussed to argue that this may offer a new experimental design to test small fifth force in the
laboratory. More important, at the macroscopic level it induces a current that can in principle also be
measured, and would even allow one to access the transverse profile of the scalar field within the cavity. In
both cases, aligning the magnetic field with the local gravity field suppresses the effects of Newtonian
gravity that would be several orders larger than the ones of the fifth force otherwise and the Newtonian
gravity of the cavity on the particle is also argued to be negligible. Given this insight, this experimental
setup, with its two effects—on a single particle and at the macroscopic level—may require attention to
demonstrate its actual feasibility in the laboratory.

DOI: 10.1103/PhysRevD.102.044059

I. INTRODUCTION

The search for a fifth force of nature has a long history
[1–3] related to the developments of the theories of
gravitation beyond Newton and Einstein gravity. The
existence of a scalar interaction [4] has been revived by
the development of theories of gravitation beyond general
relativity since the existence of any new field may lead to a
new long range force, depending on the nature of this new
degree of freedom.
Within the framework of scalar-tensor theories of gravi-

tation [5], the extra scalar degree of freedom, ϕ, is
characterized by its potential VðϕÞ and its coupling to
matter AðϕÞ, so that the action of the theory, in the Einstein
frame, is

S ¼
Z

dx4
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
∂μϕ∂μϕ − VðϕÞ

�

−
Z

d4xLmðg̃μν;matterÞ
ffiffiffiffiffiffi−g̃p

; ð1Þ

with MPl the reduced Planck mass, R the Ricci scalar, gμν
the Einstein frame metric, g its determinant and Lm the
matter Lagrangian. The field couples nonminimally to
matter through the Jordan frame metric g̃μν ¼ A2ðϕÞgμν,
where AðϕÞ is a universal coupling function.
If this field is massless, or its Compton wavelength

is larger than the size of the Solar system, one can constrain
its effects thanks to the parametrized post-Newtonian
formalism [6,7]. If the field is heavier, its action can be
well described by a Yukawa deviation from Newtonian
gravity. Such Yukawa deviations, composition indepen-
dent or dependent, have been tested from the submilli-
meter scales to the Solar system scales and cosmology
[8–12], with recent stringent constraints obtained from the
MICROSCOPE experiment [13,14].
If the coupling is universal then the scalar-tensor theory

satisfies the weak equivalence principle. Besides, among
those theories of gravity, general relativity and Nordström
theory which describes it by a scalar field in flat spacetime,
share the unique property to embody the strong equivalence
principle; see, e.g., Ref. [15]. If the coupling is not
universal, then the weak equivalence principle is violated
and one expects a space-time variation of the fundamental
constants, that can be tested in their own way [16–18].
Light scalar field models can survive only if their coupling
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is extremely weak today, which can be ensured in a large
class of models by an attraction mechanism toward general
relativity during the cosmic history [19,20]. Another class
of models, including the symmetron [21] and the chame-
leon [22,23] mechanisms, enjoy a screening mechanism in
which the coupling or the mass of the field depends of the
local matter density of matter. It follows that the environ-
ment can suppress the scalar force.
Many experimental setups have been proposed to test the

chameleon mechanism in the laboratory, see Ref. [13,
24–27] for reviews. This includes atomic spectroscopy
[28]; atom interferometry [29–34], Casimir force measure-
ment between plates [35,36], that have extensively been
used to test the inverse square law on submillimeter scales
[37,38]; the spectrum of ultracold neutrons in the Earth
gravitational field [39,40]; torsion balance experiments
[41–43]; neutron interferometry [44].

A. Goal

The driving idea we want to investigate in this article, is
to use the environmental setup to design the profile of the
scalar field inside the experiment, and hence the one of
the fifth force. To that end, we rely on the results we
obtained recently [45,46] to determine the propagation of
the chameleon field inside the MICROSCOPE satellite
experiment. Hence, we have been able to compute the
chameleon profiles (1) for one-dimensional systems made
of parallel plates and (2) two-dimensional systems as inside
a set of nested cylinders. Indeed when the axes of the
cylinders are parallel but not coincident, hence shifted by δ,
the field distribution is no more cylindrically symmetric. It
follows that the fifth force will modify the trajectory of any
particle trapped between the cylinders. It is important to
stress that in the chameleon situation, we can screen the
experiment from the outside and design the profile of the
fifth force inside the cavity. It will depend on the geometry
of the cavity, the density inside the cavity and the para-
meters of the theory. This is a major difference with a light
dilaton. The idea is thus to consider a charged particle in an
electromagnetic field and determine the effect of the fifth
force. Then, the system we shall consider is the trajectory
of a particle orbiting inside two cylinders, or two parallel
walls. This can be easily achieved thanks to a magnetic
field. This latter case may offer an interesting setup to
design an experiment. The Appendix gives equations for
the acceleration of a particle by an electric field in a
capacitor with parallel walls, and adding a magnetic field,
in order to determine if the fifth force affects the Hall
tension. As we shall see, this does not offer an interesting
method.
To that goal, we first derive in Sec. II the general

expression of the fifth force acting on a relativistic particle
and its equation of motion in presence of an electromag-
netic field; note that some subtleties concerning the fifth
force have to be considered. We shall then focus in Sec. III

on the case of a static and uniform magnetic field and study
the effect of the fifth force on the trajectory of the particle.
As we shall explain, the fifth force induces a drift of the
cyclotron motion with an amplitude and direction that
depends on the characteristics of the fifth force. In Sec. IV
we describe the macroscopic consequences of this drift. We
will give estimates in order to discuss whether this can be
measured and we will also compare it, in Sec. V, to the
reaction force arising from the radiation emitted by any
charge particle. This will provide all the elements for
discussion on the possibility to use such a setup as a new
experiment to constrain the existence of a fifth force. This
analysis provides the first elements to discuss this pos-
sibility but also to estimate the possible effects of this scalar
field on the propagation of high energy charged particle in
the universe.

B. Setup

While most of our results will not depend on the specific
choice of the coupling and the potential, let us be more
specific on the choices that will be used for our numerics.
We consider that the coupling function and potential are of
the form

A ¼ eβϕ=MPl ; V ¼ Λ4

�
1þ Λn

ϕn

�
ð2Þ

whereΛ is a mass scale, n a natural number and β a positive
constant. It follows that the Klein-Gordon equation
involves an effective potential that depends on the local
the mass density ρ,

□ϕ ¼ dVeff

dϕ
; Veff ¼ VðϕÞ þ β

MPl
ρϕ: ð3Þ

In our previous works, we have determined the profile
of the scalar field for two parallel walls and two nested
coaxial cylinders [45,46] and when their axes is shifted
[46]. In the latter case, the profile is no more cylindrically
symmetric so that a force appears between the two cylin-
ders. In this work, we consider the trajectory of a particle of
charge q and mass m.
Let us emphasize that the electromagnetic field does

not modify the scalar field profile since external matter
enters the Klein-Gordon equation only by a coupling to the
trace of the stress-energy tensor through T lnAðϕÞ in the
effective potential (3). We consider the Cartesian basis
ðex; ey; ezÞ and cylindrical basis ðer; eθ; ezÞ aligned with the
magnetic field.

II. DYNAMICS OF A CHARGED PARTICLE

A. Fifth force

Since the matter fields couple to the metric A2ðϕÞgμν the
equation of a point particle of mass m and charge q derives
from the action
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Spp ¼ −c2
Z

mðϕÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνuμuν

p
dτ þ q

Z
Aμuμdτ ð4Þ

where τ is the proper time and uμ the tangent vector to the
worldline, i.e., uμ ¼ dXμ=dτ and satisfies uμuμ ¼ −c2 and
Aμ the potential vector. Since we are considering particle,
i.e., weakly self-gravitating bodies, the mass functionmðϕÞ
reduces to mAðϕÞ with m constant, the Jordan mass, such
that particles with q ¼ 0 follow geodesic of the metric g̃μν.
The equation of motion is

mc2γμ ¼ q
AðϕÞF

μ
νuν −mc2

∂ lnA
∂ϕ ⊥μν∇νϕ ð5Þ

with γμ ≡ uν∇νuμ ¼ duμ=dτ is the 4-acceleration and
satisfies γμuμ ¼ 0, Fμν ¼ ∂μAν − ∂νAμ the Faraday tensor,
⊥μν ≡ gμν þ uμuν=c2 the projector on the 3-space normal
to uμ, which indeed ensures that uμuμ ¼ −c2; see e.g.,
Ref. [17]. It follows that the fifth force,

Fμ ¼ −mc2
βðϕÞ
MP

⊥μν∇νϕ; ð6Þ

remains perpendicular to the 4-velocity, uμFμ ¼ 0. Indeed,
this equation is 4-dimensional and we shall see below that
in the 3-dimensional language, it is associated to a non-
vanishing work. β, defined by

βðϕÞ ¼ MP
d lnA
dϕ

; ð7Þ

characterizes the sensitivity of the mass to a variation of the
scalar field; it is dimensionless. Clearly, in the Galilean
limit the projector plays no role. Note also that the Lorentz
force is proportional to q=AðϕÞ, the factor A arising from
the fact that the Einstein mass is mAðϕÞ. From now on, we
work in units in which c ¼ 1.

B. Equations of motion

In the Newtonian limit gμν reduces to the Minkowski
metric ημν and the geodesic is given in 3-dimensional
notations Xμ ¼ ðT;XÞ. We define the 3-velocity and
3-acceleration as

V ¼ dX
dT

; a ¼ dV
dT

; ð8Þ

where we use the convention that V have coordinates Vi

with i ¼ 1…3. With these notations (see Ref. [47] for
details), the scalar product is indeed a:V ¼ δijaiVj and
we have

u0 ¼ dX0

dτ
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − V2
p ; ui ¼ dXi

dτ
¼ Viffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − V2
p

with V2 ¼ δijViVj and

γ0 ¼ a:V
ð1 − V2Þ2 ; γi ¼ 1

1 − V2

�
ai þ a:V

1 − V2
Vi

�
:

The scalar force reduces to the Nordström force [4] (see
also Sec. 10.3 of Ref. [47]) and, once the Faraday tensor is
decomposed as F0i ¼ −Ei, Fjk ¼ eijkBi with eijk the Levi-
Civita symbol, the Lorentz force has components

F0
L ¼ q=AðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − V2
p E:V; FL ¼ q=AðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − V2
p ðEþ V ∧ BÞ ð9Þ

and the equation of motion (5) splits as

ma:V
ð1 − V2Þ2 ¼

q=AðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p E:V −
m
MP

β
V:∇ϕ

1 − V2
; ð10Þ

m
1−V2

�
aþ a:V

1−V2
V

�
¼ q=AðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1−V2
p ½EþV ∧B�

−
m
MP

β

�
∇ϕþðV:∇ϕÞ

1−V2
V

�
;

ð11Þ

respectively for the time and space components.
Equation (11) can be rewritten in a more compact
form as

d
dT

�
mVffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
�

¼ q
AðϕÞ ½Eþ V ∧ B�

−
m
MP

β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p �
∇ϕþ ðV:∇ϕÞ

1 − V2
V

�
:

ð12Þ

This form makes explicit the 3-momentum P≡mV=ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
so that the right-hand side (rhs) is just the sum

of the 3-dimensional form of the 2 forces, f em þ f 5. Note
also that once multiplied by V and using Eq. (10), it takes a
form closer to the standard Newton third law,

ma
1 − V2

¼ q=AðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p ½Eþ V ∧ B − ðE:VÞV� − m
MP

β∇ϕ:
ð13Þ

This provides the general relativistic equations of propa-
gation of a charged particle in an electromagnetic field in
presence of a fifth force.

C. Conservation of energy

For a static field with Aμ ¼ ðΦE;AÞ, it is easily checked
that Eq. (10), with use of the definition (7), implies that

d
dT

�
mAðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p þ qΦE

�
¼ 0 ð14Þ
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for any static configuration of the fields, hence the con-
servation of the energy of the particle

E ≡ mAðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p þ qΦE: ð15Þ

The point particle action is easily rewritten as
R
LdT

defining the Lagrangian

L ¼ −mAðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
þ qA:V − qΦE ð16Þ

from which we deduce the conjugate momenta

π ¼ mAðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p V þ qA: ð17Þ

Indeed, the Hamiltonian H ¼ π:V − L reduces to the
expression (15) of the energy or equivalently to

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2A2ðϕÞ þ ðπ − qAÞ2

q
þ qΦE: ð18Þ

As we shall see, the Lagrange equations

dπ
dT

¼ ∇L

will provide additional conserved quantities once the
symmetries of the problem are specified.

III. PARTICLE IN A MAGNETIC FIELD

We now assume that the particle is subject to a static and
uniform magnetic field, parallel to the axis of the cylinders,
B ¼ Bez. It follows that

AðrÞ ¼ 1

2
B ∧ r ¼ 1

2
Breθ ð19Þ

and the cyclotron pulsation

ω0 ¼
qB
m

; ð20Þ

is of the order of

ω0 ¼ 9.5 × 107 Z

�
B
1 T

��
m
mp

�
−1

s−1; ð21Þ

mp being the proton mass and Z the charge number.

A. Cyclotron motion

When the fifth force vanishes, the equations of motion
are easily integrated to give

du0;3

dτ
¼ 0;

du1

dτ
¼ ω0u2;

du2

dτ
¼ −ω0u1; ð22Þ

the solution of which is

X ¼ R0 sinω0τ; Y ¼ R0 cosω0τ;

Z ¼ UZτ; T − T0 ¼
ω0

Ω
τ: ð23Þ

with UZ, T0 and R0 constants of integration and

Ω ¼ ω0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

0ω
2
0 þU2

Z

p : ð24Þ

The charge travels on an helix of radius R0 and pitch
2πUZ=ω0 about B with an angular velocity ω0 (the
cyclotron frequency) when measured with its proper
time and Ω (the synchrotron frequency) when measured
with the coordinate time T of the inertial frame. Note
that since V2 ¼ ðR2

0ω
2
0 þ U2

ZÞ=ð1þ R2
0ω

2
0 þ U2

ZÞ we have

Ω ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
. We deduce that the Larmor radius is

given by

R0 ¼
V

ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p sinψ ; UZ ¼ Vffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p cosψ ; ð25Þ

ψ being the pitch angle.

B. Conserved quantities

In the configuration considered here, the electric field
vanishes and the magnetic field has been chosen as
B ¼ Bez and the field configuration as ϕðx; yÞ. It follows
from Eq. (13) that

a:ez ¼ 0 ð26Þ

so that Vz remains constant. In the following we shall
assume Vz ¼ 0 so that the motion is reduced to a plane
perpendicular to z.
Then, Eq. (17) implies that the motion satisfies the

constraint

dπθ
dT

¼ −mAðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
∂θ lnA ð27Þ

so that πθ, given by

πθ ¼ mr2
�

AðϕÞ_θffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p þ 1

2
ω0

�
; ð28Þ

can be identified with the angular momentum and con-
served if ϕ has an axial symmetry, i.e., if the fifth force is
radial. We also recall that the energy
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E ¼ mAðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p ð29Þ

will be conserved.

C. Nonrelativistic cyclotron motion

1. Nonrelativist equations

In the nonrelativistic regime the equation of motion (13)
reduces to

a ¼ ω0

AðϕÞ v ∧ ez − β∇φ;

with φ ¼ ϕ=MP. Even if the gradient of ϕ can be important,
A remains close to unity because φ ≪ 1 (see Fig. 8 below
for a concrete numerical example). So we shall approxi-
mate the dynamics by

a ¼ ω0v ∧ ez − β∇φ; with ω0 ¼
qB
m

; ð30Þ

i.e., A ∼ A0 ¼ 1. We assume that the two cylinders have
axis parallel to ez so that the scalar field profile is inde-
pendent of z, i.e., ϕðx; yÞ or ϕðr; θÞ in either Cartesian
coordinates or cylindrical coordinates. Hence, we got the
system

�
ẍ ¼ ω0 _y − βc2∂xφ

ÿ ¼ −ω0 _x − βc2∂yφ
: ð31Þ

It can trivially be checked that the conserved quantities
reduce to

E ¼ 1

2
ð_x2 þ _y2Þ þ βc2φ ¼ 1

2
ð_r2 þ r2 _θ2Þ þ βc2φ ð32Þ

for the massic energy (29), that is indeed conserved and the
angular momentum per unit mass (28)

lz ¼ r2
�
_θ þ 1

2
ω0

�
ð33Þ

is conserved only for cylindrically symmetric field con-
figuration since

_lz ¼ βc2∂θφ: ð34Þ

2. Orders of magnitude

To put some numbers, the pulsation is given by Eq. (21)
so that the radius of the trajectory in absence of a fifth
force is

R0¼1.4×10−4
�

E0

1 eV

�
1=2

�
m
mp

�
1=2

Z−1
�

B
1T

�
−1

m: ð35Þ

3. Dynamics with no fifth force

We have already discussed the free motion in full
generality. We just need to add the connection to the initial
conditions and consider a new description of the motion.
Assume that at t ¼ 0 the trajectory starts at ðx0; y0Þ with

velocity ðV0 cos α; V0 sin αÞ, its equation is then

�
x ¼ xc þ R0 sin ðω0t − αÞ
y ¼ yc þ R0 cos ðω0t − αÞ ð36Þ

with

R0 ¼ V0=ω0;

�
xc ¼ x0 þ R0 sin α

yc ¼ y0 − R0 cos α
: ð37Þ

R0 can be negative with our convention. This is indeed
trivial but it emphasizes that the center of the motion is not
the center of the coordinates system because the magnetic
force is not a central force. It is easily checked that

lz ¼
1

2
ðr2c − R2

0Þω0; E ¼ 1

2
R2
0ω

2
0

so that E ¼ V2
0=2 gives the relation between the radius of

the orbit and the pulsation.
Since

( dθ
dt ¼ lz

r2 −
1
2
ω0

ðdrdtÞ2 ¼ 2E − r2
�
lz
r2 −

1
2
ω0

	
2 ; ð38Þ

the minimum and maximum radius of the trajectory are
given by

r� ¼
ffiffiffi
2

p

ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E þ lzω0 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðE þ lzω0Þ

pq

that satisfy rþ − r− ¼ 2R0 as expected. Now, obviously θ
is not constant so that the period of the motion cannot be
extracted directly, however, since dt ¼ dr=_r, we have from
Eq. (38) that

t ¼
Z

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E − r2ðlzr2 − 1

2
ω0Þ2

q ;

so that the period of the motion is

T
2
¼

Z
rþ

r−

2rdr=ω0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2− − r2Þðr2 − r2þÞ

p ¼ π

ω0

: ð39Þ

Note also that Eq. (38) shows that the dynamics is the one
of a point particle with a potential ðω2

0r
2=4 − lzω0Þ=2, that

is nothing but the centrifugal potential. This may sound as a
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complicated way of describing a simple result but this can
be easily generalized to the case of a perturbing force.

4. Radial force

As can be trivially seen from Fig. 1, the magnetic force is
indeed not radial. It points toward the local center of
curvature. With our definition ϕ=MP ¼ φðrÞ the force per
unit mass is F ¼ βc2φ0ðrÞer. Since the field enjoys a
cylindrical symmetry, the angular momentum (33)–(34)
is conserved. We deduce that

( dθ
dt ¼ lz

r2 −
1
2
ω0

ðdrdtÞ2 ¼ 2E − r2
�
lz
r2 −

1
2
ω0

	
2
− 2βc2φðrÞ

; ð40Þ

which is a simple extension of Eq. (38). This shows that the
dynamics is similar to the one of a point particle of unit
mass in the effective potential

Ueff ¼ βφðrÞ þ r2

2

�
lz

r2
−
1

2
ω0

�
2

:

The integration of Eq. (40) by quadrature gives

t ¼
Z

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE − βc2φðrÞÞ − r2ðlzr2 − 1

2
ω0Þ2

q ; ð41Þ

θ ¼
Z ðlz=r2 − ω0=2Þdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðE − βc2φðrÞÞ − r2ðlzr2 − 1
2
ω0Þ2

q ð42Þ

which gives the equation of the trajectory in the parametric
form ftðrÞ; θðrÞg. The turning points are solution of

_r ¼ 0: ð43Þ

They delimit the domain of the allowed motion. If this
domain is of the form ½r−; rþ� then the trajectory is
restricted to an annulus and, thanks to Bertrand theorem
(1873), we know that the trajectory will be periodic only if
φ ∝ r2 or 1=r.
Numerically, once we set the initial conditions ðx0; y0Þ

and V0ðcos α; sin αÞ it is obvious that r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

p
,

θ0 ¼ arctanðy0=x0Þ, _θ0 ¼ ðV0=r0Þ sinðα − θ0Þ so that the
energy and angular momentum are E ¼ V2

0=2þ βc2φðr0Þ
and lz ¼ r20ð_θ0 þ ω0=2Þ, which determines the annulus of
allowed trajectories. As an example, we consider the
potential φ ¼ a=r, with a a constant with units of length.
When a → 0 we recover the free trajectory which is then
drifting along the center defined by the central force, as
shown on Fig. 2 (the values of the parameters are not meant
to be realistic but chosen to illustrate the properties of the
trajectory). Note also that by tuning the initial conditions,
we can either get a small trajectory drifting in between the
cylinders or a large trajectory precessing around the inner
cylinder.
Since the fifth force is small compared to the magnetic

force, we can estimate the period of the drift from the fact
that in the guiding center approximation [48], the drift
velocity is

vdrift ¼
F ∧ B
qB2

; ð44Þ

which holds as long as the force can be considered constant
on the scale of the gyroradius, a condition that is satisfied
for our models. For a radial force −mβc2φ0er and a
magnetic field along ez this leads to an orthoradial velocity,

vdrift ¼
βc2φ0

ω0

eθ ð45Þ

that is to the pulsation of the drift of the trajectory of C
around O as

ωdrift ¼
βc2φ0

rω0






r¼rc

: ð46Þ

This is indeed an approximation which works well when
the force is small and when the gradient of the fifth force is

FIG. 1. The geometry of the problem. The magnetic force Fm is
perpendicular to the motion and thus points locally toward the
center of curvature C of the trajectory. The dashed circle
represents the pure magnetic trajectory. The perturbative force
F, even if it is central is not parallel to Fm unless C ¼ O. We call
“radial” a force for which there exists a coordinate system such
that ϕðrÞ, i.e., such that the force points toward O. The magnetic
force points toward the local curvature center and is thus not
radial but simply perpendicular to the trajectory.
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small on the scale of the gyroradius. Figure 3 shows that it
gives an excellent estimation of the drift pulsation.

5. Radial chameleon

The previous analysis shows that a tiny central force will
modify the cyclotron motion in two ways: (1) by extending
the zone of allowed trajectories and (2) by making the
trajectory drift. For a fifth force of small amplitude we are
mostly interested by the latter effect.
The advantage of the chameleon field is that we can

“engineer” the profile of the field inside the cavity. If the
two cylinders have the same axis, then the experiment enjoys
a cylindrical symmetry and φðrÞ so that the fifth force is
radial. The simulations we are using [45,46] assume that
Rin¼0.2m, Rout¼0.6m, ρmat¼8.125 g:cm−3 (typical of
invar) for the cylinders and ρin ¼ 10−3ρ for the intercylinder
region. The theory assumes Λ ¼ 1 eV, n ¼ 2, β ¼ 1.
The free parameters at hand are ω0 (fixed by the choice

of the particle and the magnetic field) and V0 (fixed by the
initial kinetic energy. This defines the radius of the free
trajectory. If we start from ðx0; y0Þ ¼ ð0.2; 0Þ [in meter]
with α ¼ π=2 we need R0 ¼ 0.2 m for the trajectory to
remain inside the two cylinders. Assume that

φ ¼ ða=rÞ ð47Þ

so that F ¼ −βac2=r2 that we normalize to have an
amplitude of F0 ¼ βac2=r2c ∼ 10−7 N=kg on rc ¼ 0.4 m
so that F ¼ −F0ðrc=rÞ2. It follows that we get

ωdrift ¼
F0

rω0

:

This shows that the time for the orbit to drift from a distance
R is τ ¼ R=rcω0. We have the constraints that V0 < c
while we want to optimize the drift. To get some insight let
us consider the time for the orbit to drift from a length R
and ask whether this could be smaller to a time scale of
some hours. This sets the constraints
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FIG. 2. Example of a central force φ ¼ a=r. The solid red circle
corresponds to the free motion (a ¼ 0) while the dashed red
circles define the annulus of allowed trajectory when there is no
fifth force. We have represented the initial conditions (initial point
and initial velocity) as well as the center of the magnetic
trajectory (black dot). When a ≠ 0 the two black circles represent
the turning radii defining the annulus of allowed trajectories.
When βac2 is small (top: βac2 ¼ 0.1 m3=s2) the free trajectory
precesses slowly inside this annulus. When a is larger (middle:
βac2 ¼ 1 m3=s2), the trajectory can explore regions forbidden in
absence of the fifth force. The last example considers the case in
which the center of the free magnetic motion is O so that it will
the static circular trajectory is deformed in a precessing ellipse
(βac2 ¼ −0.3 m3=s2). All plots assume ω0 ¼ 0.5 s−1, V0 ¼
0.7 m=s and x0 ¼ 1 m.
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FIG. 3. Comparison of the variation of θðtÞ with the drift ωdriftt
[left] and of the residue θ − ωdriftt to the θðtÞ for the free motion
with an arbitrary offset to compare the curves [right]. Parameters:
ω0 ¼ 2, a ¼ 0.1, V0 ¼ 0.7, x0 ¼ 1 m.
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R0ω0ðB;m; ZÞ < c; τðR;B;m; ZÞ ¼ Rω0

F0

< Texp;

ð48Þ

Texp being the duration of the experiment. The second
relation implies that if R ∼ R0, i.e., a drift comparable to the
gyroradius, then R0ω0 < 3.6 × 10−4 m=s for F0 ∼
10−7 N=kg so that the first constraint will always be
satisfied. Using Eq. (21), this implies

�
B
1 T

��
m
mp

�
−1

< 3.8 × 10−9
ðTexp=1 hÞ

Z

×

�
F0

10−7 N=kg

��
R

10−3 m

�
−1

ð49Þ

which gives the constraint on ðB;mÞ that would allow one
to observe a drift of R on a time scale of Texp. As can be
read from Fig. 4, a typical drift of 1 μm on a timescale
smaller than 1 hr could be observed for a magnetic field of
1 mT and a particle of 100 mp. These orders of magnitude
can be recovered from the distance drifted in a time τ as

Rdrift

1 cm
¼ 3.8 × 10−3

�
B

10−3 T

�
−1
�

m
100mp

�
Z−1

�
τ

1 hr

�
:

ð50Þ

6. Generic chameleon

In Ref. [46], we have shown that we can generate a field
profile that depends on θ by shifting the axis of the inner
cylinder by δ. The amplitude of the monopoles were shown
to be proportional to δ=Rin and to decrease with the
multipole.
The main effect of an angular dependence is that the

angular momentum will not be conserved since

_E ¼ 0; _lz ¼ βc2∂θφ: ð51Þ

Since the angular momentum will vary along the trajectory,
it implies that the inner and outer radius of the annulus of
allowed trajectories will change over time. Indeed, it is still
given as the root of Eq. (43) with _r given by Eq. (40) but lz
is no more constant.
Then, the drift of the trajectory will not be orthoradial

anymore as in Eq. (45). Assume for the sake of the
argument that the field configuration is the sum of multi-
poles of the form

φnðrÞ ¼ ΦnðrÞ cos nθ; ð52Þ
to which one shall add multipoles in sin nθ, that we omit
since it does not modify our general argument. Then the
fifth force will be the sum of the multipoles

Fn ¼ −β
�
Φ0

nðrÞ cos nθer − n
ΦnðrÞ
r

sin nθeθ

�
ð53Þ

so that the drift velocity is

vðnÞdrift ¼
β

ω0

�
n
ΦnðrÞ
r

sin nθer þΦ0
nðrÞ cos nθeθ

�
: ð54Þ

V0/c=10 4

10 6

10 8

2 0 2 4
4

3

2

1

0

1

log(m/mp)

lo
g(

B
/1

T
)

drift of 10 6m

V0/c=10 4

10 6

10 8

2 0 2 4 6
4

3

2

1

0

1

log(m/mp)

lo
g(

B
/1

T
)

drift of 10 3m

FIG. 4. Constraints on the free experimental parameters ðB;mÞ
for a particle of charge Z ¼ 1 and a force of typical magnitude
F0 ∼ 10−7 N=kg for a drift of 10−6 m (left) or 10−3 m (right) over
a time scale smaller than 1 hr (white region) or 10 hr (blue region)
along the circle of radius rc. The dashed lines indicate the values
of V0=c, showing that a nonrelativistic description is sufficient.
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FIG. 5. Drift patterns for the 4 first multipoles (n ¼ 0…3)
assuming the form (52) for the field configuration with Φn ¼ a=r
for all n. All plots assume ω0 ¼ 1 s−1, V0 ¼ 0.7 m=s, and
βc2a ¼ 0.01 m3=s2 tangent to the circle with r ¼ 1 m initially
with initial angle θ0 ¼ 0 (black), π=4 (blue), π=2 (light blue),
5π=6 (gray), 5π=3 (light gray) so that the colors represent
trajectories with same initial conditions.
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If Φn ¼ an=r as assumed in our previous example, then
the fifth force induced drift will make an angle αn ¼
arctan½n tan nθ� with respect to the radial direction so that
the radial drift is boosted by a factor n compare to the
orthoradial drift. This is illustrated on Fig. 5. This opens
new ways of testing the fifth force since instead of
monitoring the drift, one can monitor the charge of the
inner or outer cylinder that will change due to the inward or
outward drifts of the particle that otherwise would have
remained inside the two cylinders.
To finish, let us also illustrate the effect of the fifth force

on trajectories that would be circles of center O in absence
of a fifth force. In that case, the guiding center approxi-
mation will not hold and the effect of the fifth force can
only be investigated numerically. Figure 6 gives some
examples of trajectories for a monopole, comparing an
attractive and repulsive force. Indeed it assumes a fifth
force with an unrealistically large magnitude for the sake of
the illustration. The effect of larger multipoles enlarge the
landscape of possible trajectories. The question of the best
experimental strategy and the design of the field distribu-
tion remain to be discussed.

IV. MACROSCOPIC CONSEQUENCES

So far we have described the microscopic effects of the
fifth force on the dynamics of charged particles. Let us now
show that it has a macroscopic side related to the drift
current associated with the fifth force.

A. One-dimensional current

Let us consider two parallel plates as depicted on Fig. 7
of size l × L along the xz-direction and separated by a
distance 2D along the y-axis and assume we impose a
magnetic field Bez. By symmetry the scalar field will have a

profile φðyÞ so that it generates a fifth force F ¼
−mβc2∂yφey.
It follows from Eq. (44) that the particles enjoy a

cyclotron motion of pulsation ω0 drifting along the x axis
at the velocity

vdrift ¼ −
βc2

ω0

ex: ð55Þ

Now, if the density of charge is ηq, this generates a current
density

j ¼ ηqqvdriftðyÞ ð56Þ

flowing in opposite directions in the upper (y > 0) and
lower (y < 0) parts, because ∂yϕ > 0 for y < 0 and ∂ϕ < 0

for y > 0. It follows that it will generate a total current

I ¼ l
Z

D

−D
jðyÞ:exdy: ð57Þ

In order to put numbers, let us assume that the profile of
φ is given by

φ ¼ φ0

�
1 −

y2

D2

�
ð58Þ

so that the force is

F ¼ 2m
βc2φ0

D
y
D
ey

and we set F0 ¼ 2βc2φ0=D ∼ 10−7 N=kg. Hence, the
current density is
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FIG. 6. Trajectories tuned such that the gyrocenter coincides
with the center of symmetry O initially. In absence of fifth force
the trajectory shall be a circle of center O. With a fifth force, the
trajectory will deviate from this “free” trajectory in a couple of
gyro-periods. All plots assume ω0 ¼ 2 s−1, V0 ¼ 0.7 m=s, and
βc2a ¼ 0.1 m3=s2 [left] and βc2a ¼ −0.1 m3=s2 [right] tangent
to the circle with r ¼ 1 m, 0.8 m, 0.6 m and 0.4 m initially with
initial angle θ0 ¼ π=4.

FIG. 7. Experimental design to generate macroscopic current
from a fifth force. All quantities are defined in the text and are
plotted assuming φ0 > 0 and q > 0. Top pictures show that
particles of opposite charges drift in opposite directions but
generate a current in the same direction.
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jðyÞ ¼ −2qηq
βc2φ0

ω0D
y
D
ex ð59Þ

so that the current profile is

dI
dy

¼ ljðyÞ ð60Þ

and the total current

I ¼ ∓qηqlD
βc2φ0

ω0D
ex

in the upper/outer region respectively (if q > 0 and
φ0 > 0).
In order to estimate its amplitude, we need assume a

typical value of the density. Assume we have a gas in
standard conditions, its density is 1 mol=20 l, i.e.,

ηq ¼ η0 ∼ 3 × 1025 m−3;

then

I
1 nA

¼ 5

�
ηq
η0

��
B
1 T

�
−1
�
m
mp

��
S⊥
1 m2

��
F0

10−7 m=s2

�

ð61Þ

with S⊥ ¼ lD. First we note that the current is independent
of the charge of the particle, simplify because qvdrift is, and
proportional to the mass. The current reaches 0.5 μA for
m ¼ mp and B ¼ 0.01 T.

B. Effect on the field profile

Still, we need to be careful. In the microscopic analysis
performed in Sec. III, we studied the effect of the fifth force
on a test particle and the density inside the cavity was fixed
externally. Now, we need to have a large number of
particles, with a number density η0 so that the mass density
inside the cavity ρ ∼ 5 × 10−2ðm=mpÞ kg:m−3. As a con-
sequence this will affect the profile inside the cavity since
the Klein-Gordon equation is

∂yϕðyÞ ¼ nΛnþ4½ϕ−ðnþ1Þ
� − ϕ−ðnþ1Þ� ð62Þ

in one-dimension, with

ϕnþ1� ¼ MPΛnþ4n
βρ

:

The field tends toward ϕ�ðρmatÞ in the wall on a length scale
of the order of the Compton length

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕnþ2�
nðnþ 1ÞΛnþ4

s

of the order of λwall ¼ 2 cm. This shows that one will need
to properly design the parameters of the experiment since
one would want to increasem and ηq to get a higher current,
but that would increase the density ρin so that ϕ� ∝ 1=ρnþ1

will decrease as well as λ ∝ 1=ρ1þn=2 so that the force will
scale as

F ∝ ∂yϕ ∝
ϕ�
λ

∝ ρ
− nþ2
2ðnþ1Þ

in :

Hence one can either adopt a model-independent approach
and constrain F0 for a chosen set ðB;m; ηqÞ or one can try
to constrain a given model, in which case the scaling above
and the dependence of the force on the density of matter
inside could be used to optimize the choice of ðηq; mÞ since
it sets the amplitudes of the current but also affects F0

through the mass density.
As an example, we provide the profile of the scalar field

from which one can deduce the profile of the force and of
the current density. These are depicted on Fig. 8.

C. Annular current inside the cylinders

Coming back to the case of the nested cylinders we
studied earlier, the same reasoning shows that there shall
exist an annular current along eθ given by

jðrÞ ¼ ηqq
βc2

ω0

φ0ðrÞeθ; ð63Þ

corresponding to a total current

I ¼ ηqqL
βc2

ω0

Z
Rext

Rin

φ0ðrÞdreθ: ð64Þ

if L is the length of the cylinders. And, as expected from the
Lenz law, it generates a magnetic field along the z-axis,
with typical magnitude on the axis

Bdrift ¼ μ0ηqq
βc2

ω0

Z
Rext

Rin

φ0ðrÞdr: ð65Þ

With the ansatz (47) we get the typical magnitudes

I ¼ −
ηqq

ω0

F0ðRext − RinÞLeθ ð66Þ

Bdrift ¼ μ0I=L ð67Þ

with the permeability of vacuum μ0 ¼ 4π × 10−7 T:m=A
and, again F0 ¼ βac2=RextRin. The typical order of
magnitude is identical to the one of Eq. (61) with
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S⊥ ¼ 2LðRext − RinÞ. It can then be checked that Bdrift ∼
10−18 T so that it can be completely neglected compared to
the experimental magnetic field.

D. Discussion

This shows that the effect of the fifth force on the
dynamics of a charged particle at the microscopic level has
several macroscopic consequences: (1) in 1 dimension, it
generates a drift current between the parallel walls, (2) in 2
dimensions with cylindrical symmetry, it generates an
annular current and (3) in 2 dimensions with no cylindrical
symmetry, the particles drift inward and/or outward and
may charge the walls of the cylinders, leading to the growth
of a radial electric field.
Our numerical estimations (61) favor high mass par-

ticles, with no dependencies on its charge, while at the
microscopic level, the drift effect favors large mass, low
charge particles. A key issue is the density that can be
reached in laboratory experiments. Plasma densities typi-
cally ranges from 103 to 1033 m−3 in nature. Pushing
to 1020 m−3 will allow one to get a current larger than 1 nA.
Note also that in the one-dimensional setup, one can in
principle access IðyÞ. Such a measurement would be

extremely valuable since it will enable to get some infor-
mation on the profile φðyÞ, i.e., it potentially gives access
to a way to constrain the parameters of the model—
see Eq. (60).
Note also that the temperature of the plasma is not a

key issue since the drift is insensitive to the velocity of
the particle. Nevertheless, we need it to be cold enough
so that the gyroradius is much smaller than the typical
size of the experiment, i.e., we shall demand thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=m

p
=ω2

0 ≪ 1 m, i.e., that T < 1011 K, which is
achieved easily for protons.
To finish let us remind that there is a force much larger

than the fifth force that causes the particle to drift: the
standard gravitation since its magnitude is of order g ¼
10 m=s2 and thus would cause a drift typically 9 orders of
magnitude larger, at least, than the one induced by the fifth
force. Luckily we can suppress this effect: since the drift
(44) behaves as F ∧ B, aligning the magnetic field with the
local gravitational field will ensure that it will not act on the
particle. This can be done in a table-top experiment for a
chameleon field since its profile is dictated by the geometry
of the experiment and screened from the local environment.
Actually, it offers a nice way to calibrate the experiment.
Since g ≫ F0 one can first set the walls vertical so that the
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FIG. 8. Profile of the scalar field φðyÞ for a chameleon model with n ¼ 2, Λ ¼ 1 eV and β ¼ 1 assuming that D ¼ 1, 0.5, 0.1 m
(black, blue, red) and that the density inside the cavity is ρ0 ¼ η0mp ¼ 0.05 kg=m3 (top); the changes in the profile for 10ρ0 and
10−3ρmat are not visible by eye. For the same models, we obtain the profile of the current density jðyÞ (solid lines) and the total intensity
per unit surface (dashed lines), both in nA=m2.
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magnetic field is horizontal and measure the current Imax
and then rotate the whole experiment until the magnetic
field is vertical. Hence the current shall change as

I ¼ Imax

�
sin θ þ F0

g

�
:

The measurement of Imax and of the local gravity field
allows one to evade the individual measurement of ηq and
B. Then, any upper limit on Ið0Þ provides a constraint
on F0=g. Concerning the Newton force induced by the
walls of the cavity, first let us remind that it will strictly
vanish if the walls are infinite. Then, for large parallel
walls, the residual gravity field has a component parallel
to the magnetic field; it induces no drift while only its
y-component has an effect that will modify the total
current while the x-component will modify the profile
of the current density. The amplitude of gy is smaller
than GρmateD=L ∼ 5 × 10−8ðe=10 cmÞðD=LÞ m=s2 hence
roughly 2 orders of magnitude smaller than the fifth force
we try to measure. Hence to maximize the current, we need
to maximize the surface, i.e., lD, while minimizingD=L in
order to make the gravity of the walls completely negli-
gible. As can be shown from Fig. 8 it also gives a higher
mean current density.
Let us also stress that in the discussions of Sec. III we

have not included the effect of the Newtonian gravitational
field induced by the cylinders. First, if the cylinders are
infinite the Newton force in the intercylinder space vanishes
exactly. Then for finite length cylinders, for the radial setup,
the gravitational force will be aligned with the axis of the
cylinders, and thus with the magnetic field so that it will
induce no drift. When the cylinders are not coaxial, there
will be a small residual Newton force that will be, similarly
to the case discuss in the previous paragraph, negligible.
To finish, let us mention a possible way to increase the

sensitivity. As seen from Eq. (51) the angular profile of the
force affects the evolution of the angular momentum which
is not conserved anymore when there is no cylindrical
symmetry. One can think of designing the shape of the
inner and outer “cylinders” so that the profile exhibits sharp
changes in ∂θφ, similar to electric point effect. That could
generate locally large gradients, the design of which could
be controlled and hence distinguished from other forces.
Such ideas need to be investigated later.
All these arguments convince us that this can provide a

new experimental concept to detect fifth force in the
laboratory. Indeed for now we just established orders of
magnitude for such an experimental setup, the technologi-
cal feasibility of which would need to be investigated in
details, a task much beyond the scope of this work.

V. RADIATION DAMPING

Besides the fifth force and the magnetic force, the
particle being accelerated shall undergo a reaction force,

the Abraham-Lorentz-Dirac force, the effect of which
needs to be compared to the fifth force. The equations
of motion have to be extended to

mγμ ¼ qðFμν
ext þ Fμν

selfÞuν; ð68Þ
in Gaussian units, where Fμν

ext is the Faraday tensor of the
electromagnetic field of the moving charge. The compu-
tation of the reaction forces requires to evaluate the self-
retarded potential. This is detailed in chapter II.19 of
Ref. [47]. It requires a regularization and many schemes
are used in electrodynamics, see e.g., Ref. [49]. Using a
regularization by averaging on the direction gives the
radiation reaction force

Fμν
selfuν ¼

2

3
qð_γμ − γ2uμÞ ð69Þ

as proposed by Abraham, Lorentz and Dirac. In the
nonrelativistic limit, the radiation reaction force takes the
form

Freac ¼
2

3

q2

4πε0c3
_a; ð70Þ

once we put the international units back.
It is easily evaluated on the free trajectory since

V ¼ V0ðcosωt − α; sinωtÞ. It is indeed a damping force

Freac ¼ −
2

3

q2

4πε0c3
ω2
0V:

This implies that it does not induce a drift but a shrinking of
the trajectory so that it cannot be confused with the effect of
the fifth force. Nevertheless, it needs to be evaluated since it
will limit the duration of the experiment.

VI. CONCLUSION

This article has investigated the effect of a small fifth
force of scalar origin on the dynamics of a charged particle.
It has derived the full relativistic equations of motion and
conserved quantities and gave their nonrelativist limit.
Then, it investigated the dynamics of a charge in a uniform
magnetic field to show that the standard cyclotron motion
enjoys a drift, similar to the one that can be observed if the
magnetic field is not uniform. This drift is fully dictated by
the profile of the scalar field. Focusing on profiles in
between two nested cylinders, as studied in our previous
works [45,46], we have shown that the drift is orthoradial if
the configuration is cylindrically symmetric and has a more
involved angular structure for a general profile.
One can control the cyclotron pulsation ω0 by choosing

the particle and tuning the magnetic field. Controlling the
initial velocity of the particle determines its gyroradius.
Then, the typical properties of the drift (timescale and
direction) depend on the fifth force, that is on the profile
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of the scalar field within the two cylinders. While the
profile of a light scalar field cannot be tuned for a light
dilaton, this is not the case for a chameleon field. Thanks to
the environmental dependence, the field inside the cavity is
screened from the outside and its profile will mostly depend
on the local density in the cavity, the nature of the walls
and the geometry of the cavity. This is a crucial property
of these models, allowing one to engineer these fields
(indeed if they exist). In particular, and as demonstrated in
Refs. [45,46], shifting the axis of the cylinders allows one
to design angular dependencies. The typical amplitude and
profile of the force will depend on the parameters of the
microscopic model ðΛ; n; βÞ and the design of the experi-
ment ðRin; Rext; δ; ρÞ and was shown to be typically of the
order of 10−7 m=s2. We already mentioned in Ref. [45] that
the force affects any experiment based on monitoring the
trajectory of atoms inside a cylindrical cavity of free falling
particles in space.
These effects on individual particles would require to

monitor a drift, or relative drift, of single particles on the
order of the gyroradius on a time scale of the hour for a
force of 10−7 m=s2. As explained, there is a macroscopic
side to these effects since the fifth force induces macro-
scopic currents that may be easier to measure. In that case
we need to have a plasma within the cavity, which would
affect the force and its profile since it modifies the local
mass density inside the cavity. In the particular case of the
one-dimensional experimental set-up proposed in this work
shows that a fifth force of 10−7 m=s2 can induce a drift
current drift larger than 5 nA. This would require to push
the density to the density of a gas in standard conditions
while the density of plasma in nature can range from 103 to
1033 m−3. Hence the density is one of the key parameters.
Otherwise one would need to operate with a magnetic field
of 1 μT and heavy particles. The temperature of the plasma
plays no major role since the drift velocity is independent
of the energy of the particle. Nevertheless we shall require
that the gyroradius is much smaller than the typical size
of the experiment. Setting R0 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=m

p
=ω0 ≪ 10−3 m

implies that the temperature be smaller than 5 × 106 K,
which is easily achieved—room temperature would corre-
spond to R0 ∼ 20 μm. It is also important to remind that the
effect of gravitation, that also induces a drift several orders
of magnitude larger, can be screened by aligning the
magnetic field with the local gravity field. As a conse-
quence, it is not necessary to go to space. Then, the gravity
of the walls of the cavity are roughly 2 orders of magnitude
smaller than the nominal fifth force we could measure.
Given these numbers, the feasibility or the existence of
loopholes in our arguments would require to be inves-
tigated with care. Note also that the experiment may also
enable to access the transverse profile of the chameleon
field, directly related to the properties of the potential and
coupling function, a possibility which has not been offered
by any other proposed experimental setup so far.

Indeed, it would be bold to argue that it offers so far a
new experimental design to test fifth force in laboratory.
We have just used toy field profile to illustrate the
physical effects and derive orders of magnitude. One would
need to implement, and most probably optimize, field
profiles, as shown in Ref. [46] and discuss the detectability
of the drifts and of the current and all sources of noise
that will unavoidably be present. The question of the
alignment of the magnetic field with the local gravity field
is crucial as well as a careful study of the gravity induced
by the surrounding of the experiment. To finish, we note
that we still have the freedom to let the magnetic field vary
in time.
Nevertheless we believe that it opens a way of reflection

to eventually reach such a new experimental setup. Let us
also mention, to finish, that the equations of motion derived
here are fully general and can also be applied to the
propagation of cosmic rays.
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APPENDIX A: INITIAL CONDITIONS

The initial conditions can be fixed by either choosing
ðx0; V0; αÞ or ðx0; E;lzÞ. The first are more natural since
one does not know the potential φ but the second allows
one to compare motion with the same constants of motions.
One can easily shift from one to the other since
(i) Starting from ðx0; V0; αÞ, we have r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

p
,

Vx0 ¼ V0 cos α, Vy0¼V0 sinα, E ¼ V2
0=2þ βφðr0Þ,

θ0 ¼ arctanðy0=w0Þ so that _θ0 ¼ V0 sinðα − θ0Þ=r0
and then lz ¼ r20ð_θ0 þ ω0=2Þ.

(ii) Starting from ðx0; E;lzÞ, we have r0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

p
so that V0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE − βφðr0ÞÞ

p
. Then,

θ0 ¼ arctanðy0=w0Þ and _θ0 ¼ ðlz=r20 − ω0=2Þ,
Vθ0 ¼ r0 _θ0 so that α ¼ θ0 þ arcsinðVθ0=V0Þ and
then Vx0 ¼ V0 cos α, Vy0 ¼ V0 sin α.

It is also interesting to rewrite the dynamical system by
using the dimensionless time τ ¼ ω0t and rescaling the
lengths in units of the gyroradius R0 as
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x00 ¼ y0 − γ
x
r3

;

y00 ¼ −x0 − γ
y
r3

; ðA1Þ

with the dimensionless parameter γ ¼ βc2a=ω2
0R

3
0 if the

field configuration is given by φ ¼ a=r. The initial con-
ditions are then given by v0 ¼ 1 so that ðx00; y00Þ ¼
ðcos α; sin αÞ and ðx0; y0Þ. Under such a form, the dimen-
sional analysis implies that the drift pulsation can only be a
function of ðγ; rcÞ.
It is easily checked that for γ ¼ 0 we have a circular

orbit, that is drifting when γ ≪ 1 and tend to a precessing
ellipse for large γ and a standard static ellipse for γ ¼ þ∞.

APPENDIX B: PARTICLE IN AN
ELECTRIC FIELD

For the sake of completeness, let us consider the case of a
one-dimensional electric field between two plates, E ¼ Eex
so that the only non-zero component of the Faraday tensor
is F0x ¼ E.

1. Standard acceleration

When the fifth force vanishes, it is clear from the
equation of motion (5) that the 4-acceleration has a constant
modulus

γμγ
μ ¼

�
qE
m

�
2 ≡ g2: ðB1Þ

This is indeed easy to understand since in the inertial
frame tangent to the charge worldline, the electric field
remains unchanged in a Lorentz transformation. It follows
that dUx=dτ ¼ gU0, i.e., d2X=dτ2 ¼ gdT=dτ with the con-
straints UμUμ ¼ −ðdT=dτÞ2 þ ðdX=dτÞ2 ¼ −1. It can be
integrated as

gT ¼ sinh gτ; gX ¼ cosh gτ ðB2Þ
giving the trajectory

gX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2T2

q
: ðB3Þ

2. Effect of the fifth force

We now consider that two parallel infinite plates so that
the field configuration in between them is given by ϕðxÞ.
Indeed since the force is extremely weak, typically smaller
than 10−7 N=kg, see e.g., Ref. [45], it will always be
subdominant. Nevertheless, it has been argued that such a
small force may affect any experiment based on monitoring
the trajectory of atoms inside a cavity [50]. Indeed the force
has to be compared to gravity and it has been pointed out in
Ref. [45] that in space, it is responsible for a drift of the
particle inside a cylindrical cavity on timescales of the hour.

An idea could be constrain such a tiny force by con-
sidering a particle in an unstable inertial motion. An easy
realization is to consider a charged particle inside a capacitor
with its two parallel walls normal to ey with positions
y ¼ �D and assume that there is a static electromagnetic
field

E ¼ Eey; B ¼ Bex:

A particle launched with the velocity V0 ¼ Uex will have a
straight trajectory if

U ¼ E=B: ðB4Þ
This is the standard classical Hall effect.
Now, assume there is a fifth force. The profile of the

scalar field will be of the form ϕðyÞ with ∂yϕ0 ¼ 0 by
symmetry. Hence, it implies, working with the nonrelativ-
istic equations of motion for the sake of simplicity, as

Ẍ ¼ qB
mAðϕÞ

_Y; ðB5Þ

Ÿ ¼ qB
mAðϕÞ ðU − _XÞ − β

MP
∂yϕ: ðB6Þ

We rely of the computations of the profile of the scalar field
we presented in Ref. [45]. Since ϕ ≪ MP A will almost not
vary within the walls so that A ¼ A½ðϕðy ¼ 0Þ�≡ 1.
Then, consider a set of trajectories fXðt; hÞ; Yðt;hÞg

labeled by a parameter h, with initial conditions

ðX; YÞ0 ¼ ð0; hÞ; ð _X; _YÞ0 ¼ ðU; 0Þ:
The trajectory h ¼ 0will indeed be an inertial motion along
Y ¼ 0 but, contrary to the usual Hall effect, the trajectories
starting fromh ≠ 0will deviate from this standard trajectory.
Let us start by a toy profile mimicking the profile inside

two walls, which has no analytic form,

ϕðyÞ ¼ ϕwall þ ϕ0

�
1 −

y2

D2

�
ðB7Þ

so that the force is

F ¼ 2
ϕ0βc2

MPD2
yey ≡Dω2

0η
y
D
ey ðB8Þ

with η ¼ 2ðϕ0=MPÞβc2=Dω2
0 ≪ 1 the relative extra accel-

eration induced by the fifth force.
If the gradient is constant within the plates, which indeed

not the case but allows to illustrate the phenomena, the
trajectories are simply given by

8><
>:

Xðt; hÞ ¼
h
U þ η

1−η hω0

i
t − η

1−η h
sin

ffiffiffiffiffiffi
1−η

p
ω0tffiffiffiffiffiffi

1−η
p

Yðt; hÞ ¼ h
h
1þ η

1−η ð1 − cos
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
ω0tÞ

i ðB9Þ
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for η < 1. We have the free parameters U (determined by E
and B), ω0 (determined by B, the charge and mass of the
particle), h ¼ 1…D, D determined by the size of the
experiment so that then η ¼ F0=Dω2

0 is the quantity we
want to constraint. Since we expect F0 < 10−7, η is
expected to be small compared to unity.

The main problem is that one would need an
extremely long capacitor which makes such an experi-
ment completely unrealistic. One solution may be to
consider periodic orbits and then turn to 2-dimensional
configurations.
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[46] M. Pernot-Borràs, J. Bergé, P. Brax, and J.-P. Uzan, Fifth
force induced by a chameleon field on nested cylinders,
Phys. Rev. D 101, 124056 (2020).

[47] N. Deruelle and J.-P. Uzan, Relativity in Modern Physics,
Oxford Graduate Texts (Oxford University Press, Oxford,
2018).

[48] G. Northrop, The guiding center approximation to charged
particle motion, Ann. Phys. (N.Y.) 15, 79 (1961).

[49] T. Damour, A new and consistent method for classical
renormalization, Nuovo Cimento B 26, 157 (1975).

[50] C. Llinares and P. Brax, Detecting Coupled DomainWalls in
Laboratory Experiments, Phys. Rev. Lett. 122, 091102
(2019).
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Chapter conclusion

We proposed a new test of scalar fifth force by looking at the effect it causes
on the trajectories of charged particles. We showed that it induces a shift to these
trajectories that on the macroscopic scales shall induce a current. The case of
the chameleon field between two plates have been used to illustrate this current.
It could be measurable in the proper conditions.
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Chapter 7

Conclusion and perspectives

In this thesis we analysed the different aspects required to be studied in order to
test the existence of scalar fifth forces with a given experiment. We placed ourselves
in the scope of the MICROSCOPE mission which represents the first test of the weak
equivalence principle in a laboratory in space. Partial results of this experiment allowed
the improvement of the current precision on this test by an order of magnitude. Full
results are to be published soon. The main aim of this study was to set constraints on
scalar fifth forces by using this bound on the WEP or by seeking for effects different
from a WEP violation in the MICROSCOPE data.

We first focused on unscreened scalar fields. These types of models are the most
straightforward to constrain. This is due to the linearity of their dependency to the
matter distribution. The only limitation in this analysis comes from the uncertainties
on this distribution. In the case of the MICROSCOPE mission, the matter at play
consists of the satellite’s matter and the Earth. The satellite’s mass distribution is well
known but its fifth force effects are expected to be sub-dominant due to the low mass
it represents compared with the Earth. Earth’s mass distribution is estimated from
the geodesic measurements of the spatial variation of its gravity field. This estimation
being done by assuming Newtonian gravity, when considering a new gravitational force
the estimation must be modified. We considered the cases of a dilaton-like massless
scalar field and of a massive one that lead the fifth force to be finite-range through
a Yukawa potential behaviour. By assuming a model for the Earth distribution of
matter, as done in the literature of the current constraints, we showed that the first
MICROSCOPE results improved the current bound on these models by nearly an order
of magnitude. For massive scalar fifth force, this improvement occurs only for ranges
that are greater than the distance between the satellite and the Earth center. Thence a
space mission such as MICROSCOPE is not ideal to test short-ranged-forces i.e. more
massive scalar field. A laboratory test in which the source mass and the test mass are
closer, would be more appropriate to provide competitive constraints. An idea would be
to perform torsion balances experiment – that provide the best bounds on short-ranged-
forces – in space to enjoy the stable environment it provides. For longer-ranged-forces,
the bounds from MICROSCOPE could be improved by increasing the precision of the
experiment. We also studied how to go beyond the assumed mass distribution for Earth.
We derived the mathematical tools needed for the derivation of a geoid model in the
case of considering an additional Yukawa force. However constraining at the same time
the geoid and the existence of a Yukawa force is degenerate. We showed that due to
the finite-range of this force, this degeneracy can be broken by performing two geodesic
missions at different orbits. Doing the same analysis with more general models of fifth
force, such as the screened ones, was beyond the scope of this study as its analytical
treatment is not as straightforward as for the Yukawa model.
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In the second half of the thesis, we studied screened fifth forces and how to model
them in an experiment such as MICROSCOPE. We considered the case of the chameleon
field. We addressed the resolution of its dynamics numerically for different matter ge-
ometries. In this resolution we paid a specific attention to the way of setting boundary
conditions of the problem. This allowed us to safely re-analyse the arguments for screen-
ing present in the literature. Many other aspects of this literature have been checked.
We solved the case of a geometry of nested cylinders similar to the MICROSCOPE’s one.
We concluded that the matter constituting the MICROSCOPE experiment is screening
any fifth force effect sourced by the Earth for most of the unconstrained parameter space
of the chameleon model. For the remaining part of parameter space such a force could
penetrate the satellite. Its quantification is nonetheless still an open issue. It requires
taking into account a matter distribution including both the satellite and the Earth.
We explored the way of solving it, but it requires subsequent computing resources which
is out of the scope of this study. Limiting the effects of the screening of the experi-
ment as encountered in MICROSCOPE is also still an open issue. It requires to find
ways to free ourselves from the need of putting the experiment in a vacuum cavity and
to increase the distance between the test masses and the means of measurement. In
the case of the MICROSCOPE experiment, the fact of using a capacitive measurement
precludes these possibilities. Besides, not using a vacuum cavity would lead to the pos-
sible difficulty of a least control of perturbations, that could induce lesser sensitivities.
Testing chameleon gravity might require to find the correct balance between optimising
screening and optimising the experiments’ sensitivity.

To overcome this limited competitiveness of the MICROSCOPE mission on the test
of the chameleon field, we also realised and pointed out for the first time the possibility
of a fifth force sourced by the asymmetries in the matter distribution internal to the
experiment. In MICROSCOPE, such an asymmetry can appear when one of its test
mass cylinder is shifted from its rest position with respect to the others. We solved the
chameleon field in this type of asymmetrical geometries. We found that the force the
displacement creates is destabilising and behaves as a stiffness due to its linear scaling
to the displacement. This stiffness is to be compared with the electrostatic stiffness
present in the MICROSCOPE experiment. This stiffness has been measured and found
to differ from the expected values from electrostatic models. We considered the use
of this discrepancy to test the chameleon stiffness. For that matter, we analysed any
other sources of such a stiffness with mainly the action of a gold wire fixed on the test
masses to control their potential. The physical quantities of this wire are indeterminate,
we estimated them with the results of these sessions. We used the residual stiffness,
we obtained from the analysis, to constrain a Yukawa model – other possible source
of stiffness – and the chameleon. We showed that the constraints are not competitive
which is not surprising as it was not designed for this measurement. A way to improve
the constraints would be to increase asymmetries in the device.

Finally with the help of the chameleon field profile obtained for cavities, we prospected
for new type of experiment to test its existence. We indeed studied how a fifth force
affects the trajectories of charged particles in a magnetic field. We showed that as long
as the fifth force is strong enough, the trajectories of particles in a cavity get progres-
sively shifted. When considering several charged particles such as in a plasma, this
drift induces a macroscopic electrical current that could in principle be detectable. The
feasibility of such experiment is still to be quantified.

To conclude, gravity tests in space are only at their beginning. They represent the
most promising way of testing gravity beyond GR. Besides the significant improvement
they allow on experimental sensitivities, they could provide possible phenomenological
breakthrough. Space tests give access to regimes of gravity that have not been probed
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yet with the precision of a laboratory experiment, leading to the possible detection of
new effects of modified gravity. As we illustrated with the case of environment dependent
theories, the testability of such effects is crucially dependent on the development of new
numerical methods for a realistic modelling of their features. Proposals of new space tests
flourish in the context of the democratisation of space. A successor to MICROSCOPE [6]
is expected to improve the precision on the WEP test with a larger number of different
materials. In the context of the ESA Voyage 2050 long term plan, a multi-scale test
of gravity have been proposed [8] to probe gravity beyond the boundaries of the solar
system. Ideas for novel tests are depending on new leaps in detection technologies and
in numerical sciences.
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Tester la gravité dans l’espace : Vers un traitement réaliste de la gravité Caméléon
dans la mission MICROSCOPE

Résumé : Ce travail examine la testabilité par des expériences menées dans l’espace de
théories de gravité alternatives à la Relativité Générale. Il profite du contexte offert par la mis-
sion MICROSCOPE qui a récemment amélioré la précision du test du principe d’équivalence
faible, principe pilier de la Relativité Générale. Étant la première expérience qui réalise ce test
de précision dans un laboratoire dans l’espace, ses résultats étaient attendus pour tester des
modèles de gravité présentant une dynamique dépendante de l’environnement via un mécanisme
d’écrantage. Nous étudions le cas des théories tenseur-scalaire. Nous commençons par con-
sidérer de simples modèles non écrantés, afin d’en obtenir leur contrainte par MICROSCOPE,
et d’explorer l’intrication entre la gravité modifiée et notre connaissance de la distribution en
masse de la Terre. Nous considérons ensuite le modèle écranté Caméléon. Les non-linéarités
de son mécanisme d’écrantage rendent la dépendance à l’environnement ainsi qu’au disposi-
tif expérimental difficile à évaluer. Nous développons de nouvelles méthodes pour calculer le
profil du Caméléon. La survenue de l’écrantage de MICROSCOPE et donc d’une 5eme force
sourcée par l’extérieur est discutée. Nous explorons aussi l’émergence d’une 5eme force résultante
d’asymétries dans sa géométrie interne. Nous caractérisons cette force et utilisons des sessions
de mesures de la raideur électrostatique pour contraindre son existence. Les résultats de ces
méthodes nous permettent aussi de comprendre l’influence du champ Caméléon sur le mouve-
ment de particules chargées afin de proposer un nouveau concept de test.

Mots clefs : Tests de gravité, gravité modifiée, spatial, principe d’équivalence, mécanisme
d’écrantage, modèle caméléon.

Testing gravity in space: Towards a realistic treatment of chameleon gravity in
the MICROSCOPE mission

Abstract: This work investigates the testability by space-based experiments of gravity
theories alternatives to general relativity. It enjoys the context of the MICROSCOPE mission
that recently improved the precision on the test of weak equivalence principle, pilar principle of
general relativity. Being the first experiment to perform such a precision test in a laboratory in
space, its results were awaited for testing gravity models that exhibit an environmental depen-
dent dynamics through a screening mechanism. We study the case of scalar-tensor theories. We
start by considering simple unscreened models, to obtain their constraints by MICROSCOPE
and to explore the entanglement between modified gravity and our knowledge about the Earth
mass distribution. We then consider the screened chameleon model. The non-linearities of its
screening mechanism makes its dependence to the environment and to the experimental appa-
ratus challenging to evaluate. We develop new methods to compute the chameleon profile. The
occurrence of screening in MICROSCOPE and thus of an externally sourced WEP-violating fifth
force are discussed. We also explore the emergence of a fifth force as the result of asymmetries in
its internal geometry. We characterise this force and take the advantage of stiffness-measurement
sessions from MICROSCOPE to constraint its existence. The results of our methods also allows
us to understand the influence of the chameleon field on the motion of charged particles and to
propose a new concept of test.

Keywords: Gravity tests, modified gravity, spatial science, equivalence principle, screening
mechanism, chameleon model.


