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Résumé long en français

Le cancer du col de l’utérus est le deuxième cancer le plus important pour les femmes après
le cancer du sein. En 2012, le nombre de cas recensés dépasse 500,000 à travers le monde,
dont la moitié se sont révéleés mortels.

Jusqu’à maintenant, le dépistage primaire du cancer du col de l’utérus est réalisé par
l’inspection visuelle de cellules, prélevées par frottis vaginal, par des cytopathologistes utilisant
la microscopie en fond clair dans des laboratoires de pathologie. Chaque lame peut contenir
jusqu’a 100.000 cellules. En France, environ 5 millions de dépistage sont réalisés chaque
année et environ 90% mènent à un diagnostic négatifs (i.e. pas de changements précancereux
détectés).

En terme d’ordre de grandeur cette consiste à chercher quelques balles de ping-pong sur
une vingtaine de terrain de foot en sachant que statistiquement ces balles ne peuvent etre
trouvées que sur deux de ces terrains, ce qui fait de ces analyses au microscope une tâche
extrèmement fastidieuses et couteuses en temps pour le cyto-techniciens et peut nécéssiter
l’avis conjoint de plusieurs experts. Ce processus impacte la capacité à traiter cette immense
quantité de cas et à éviter les faux négatifs qui sont la cause principale des retards de traite-
ments médicaux. Le manque d’automatisation et de traçabilité des deṕistage deviennent ainsi
de plus en plus critique à mesure que le nombre d’experts diminue.

En ce sens, l’integration d’outils numériques dans les laboratoires de pathologie devient
une réelle problématique de santé publique et la voie privilegiée pour l’amélioration de ces
laboratoires.

Depuis 2012, l’apprentissage profond a révolutionné le domaine de la vision par ordinateur,
en particulier grâce aux reseaux de neurones à convolutions qui se sont montrés fructueux sur
un large panel d’applications parmi lesquelles plusieurs en imagerie bio-médicale. Parallèle-
ment, le processus de digitalisation de lames entières a ouvert l’opportunité pour de nouveaux
outils et de nouvelles méthodes de diagnostic assisté par ordinateur.

Dans cette thèse, après avoir motivé le besoin médical et introduit l’état de l’art en terme
de méthodes d’apprentissage profond pour le traitement de l’image et en particulier pour le
traitement de lames entières, nous présentons nos contribution au domaine de la vision par
ordinateur traitant le dépistage du cancer du col de l’utérus dans un contexte de cytologie en
milieu liquide.

Notre première contribution consiste à proposer une méthode simple de régularisation pour
l’entrainement de modèles dans le contexte d’une classification ordinale (i.e. classes suivant un
ordre). Nous démontrons l’avantage de notre méthode pour la classification de cellules utérines
en utilisant sur le jeu de données Herlev sur lequel nous definissons un nouvel état-de-l’art
(66.8% de précision pour la classification de sévérité, 95.2% pour la classification binaire entre
les classes “normal” et “anormale” et un score KAPPA de 0.87). De plus, nous proposons
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de nous appuyer sur des explications basées sur le gradient pour réaliser une localisation
faiblement supervisée (précision de 80.4%) et plus généralement une détection d’anormalité.
Pour celà. nous créeons un jeu de donnée qui simule des régions de lames cintenant plusieurs
cellules. Finalement, nous montrons comment nous intégrons ces méthodes pour créer un
outil assisté par ordinateur qui pourrait être utilisé afin de reduire la charge de travail des
cytopathologistes en proposant un diagnostic a priori sur la lame et en identifiant des cellules
d’intérêt afin de guider la revue de la lame par l’expert.

La seconde contribution se concentre sur la classification de lames entières et l’interprétabilité
de ces approches. Nous formalisons le design commun des architectures de classification de
lames entières s’appuyant sur un contexte de “multiple instance learning” et proposons une
approche d’interprétabilité par morceaux s’inscrivant dans ce formalisme. Cette approche re-
pose sur les méthodes d’explicabilité basées sur le gradient, la visualisation de caractéristiques
et le context de “multiple instance learning”. A travers cette méthode, nous sommmes capable
d’expliquer aux experts sur quoi repose les décisions prise par l’algorithme. Nous étendons ce
travail en proposant une nouvelle façon de calculer des cartes de chaleurs pouvant expliquer
les décisions et guider l’expert dans sa revue. Deux études quantitatives, nous ermettent de
valider la méthode et de prouver que nous améliorons la qualité des cartes de chaleur (de plus
de 29% pour la mesure d’AUC). Finalement, nous appliquons ces méthodes pour le dépistage
du cancer du col de l’utérus en utilisant un detecteur d’ “anormalité” qui guide l’entrainement
pour l’échantillonages de régions d’intérêt.

Finalement, nous concluant en discutant des perspectives que ces travaux ouvrent.
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Chapter 1

Introduction

In the early 1940’s, Dr. Papanicolaou discovered that a visual inspection of cells sampled at
the entrance of the cervix could give evidence about the potential development of a cancer.
Moreover, the World Health Organization (WHO) states that 90% of cervical cancer cases
could be avoided if detected earlier. However, with more than 500,000 new cases every year
and about 250,000 deaths, cervical cancer still is a major worldwide healthcare issue.

Today, the screening of cervical cancer is performed by highly trained cytopathologists
assisted by cytotechnicians. These experts are screening microscopy slides containing the
sampled cells in a drop of preservative liquid, this is called Liquid-Based Cytology (LBC).
The slide that can be observed in Figure 1.1 highlights the difficulty of this task. Indeed, a
single slide can contain up to 100,000 cells, and the diagnosis may rely on a few cells only.
Moreover, on the one hand, most of the time there is no abnormality to be found but, on
the other hand, when abnormalities are to be found (around 10% of cases) it is critical not
to miss them. This requires time and expertize. These conditions make the task of screening
efficiently cervical cancer a real challenge.

Figure 1.1: Illustration of a liquid-based cytology slide for cervical cancer screening

In the mean time, the emergence of computer science gave birth to a new field, called
digital pathology, that regroups methods that bring together medical applications and com-
puter science (scanners, viewers, data management ...). Recently, with the success of Machine
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2 Chapter 1. Introduction

Learning (ML) methods in a large panel of fields and the improvement of whole slide imaging
process, digital pathology is about to be revolutionized. ML defines the subset of Artificial
Intelligence (AI) methods that are able to learn to perform a task through a training with
examples. For images, Convolutional Neural Networks (CNN), that were initially inspired
by the human visual cortex, are particularly popular, due to their incredible performances
through a wide range of tasks. Whole Slide Image (WSI) are microscopy slides digitized at a
really high resolution that enabled the creation of virtual microscopy. Thus, there is an oppor-
tunity for AI-based Computer-Aided Diagnosis (CAD) tools that can help cytopathologists
navigating through this enormous quantity of information. This defines the context of the
Ph.D. and raises the questions it will answer. Such as how to train an efficient cell classifier
? Or how to build an integrable and explicative CAD tool for cervical cancer screening ?

Thus the objective of this thesis is the development of an accurate, fast and explanable
CAD tool to help cytopathologists in their daily routine.

This manuscript presents the work I did during my Ph.D. under the supervision of Saïd
Ladjal and Isabelle Bloch, professors at Telecom Paris. The proposed methods have also
been developed in close collaboration with the Data Science team of Keen Eye (Hippolyte
Heuberger, Louis Jeay, Paul Klein, Thomas Le Meur, Melanie Lubrano and Yan Petit),
Leandro G. Almeida (former CSO) and Sylvain Berlemont (CEO).

In Chapter 2, we detail the medical context with a particular focus on the type of cells and
of malignancy that can be found on cervical LBC slides, and more generally the specificities
of cervical cancer screening.

In Chapter 3, we introduce Deep Learning (DL) methods on which we, and more generally
the computer vision community, rely on. We present the most popular feature extractors and
their application for different tasks (image classification, object detection and WSI classifica-
tion) and different cancers (breast, prostate, lung ...) that get close to our problem and will
enable to appreciate our contributions in the two next chapters.

In Chapter 4, we propose a method to perform an efficient and medically relevant classi-
fication of images of single cells. The method, that we call regression constraint, enables to
efficiently and simply introduce the notion of distances between classes in the training of a
model. In the second part of this chapter, we study the direct application of this method for
the classification of regions that may contain up to a dozen of cells (on a simulated dataset),
and we extensively use an attribution method to perform weakly supervised localization. We
finally extend this work on real slides, and integrate these methods in a pipeline that could
be used to reduce the workflow of cytopathologists.

In Chapter 5, we are mainly interested in the interpretability, i.e. explaining how a trained
model makes a specific decision and what has been learned at training time. We start by
questioning the concept of explicative heat-maps as currently defined in the literature, and
defining the current framework of most popular WSI classification architectures. In this
common design, we propose a piece-wise interpretability method that enables to identify
features that have been learned as contributing to describe the “tumor” class in a public
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dataset called Camelyon-16 (breast cancer biopsy slides). We further use these features to
compute new explicative heat-maps, and we demonstrate, through two measures, that they
improve the interpretability. We validate this approach on another dataset that contains
cervical cancer biopsy slides which enable to suspect the limitations for a direct usage on
LBC slides. In the end, we verify this hypothesis by working on a 393 “abnormal” cervical
LBC slides and propose to relax the learning context through weak “abnormality” detection,
which enables us to reach acceptable performances, and we use our interpretability work to
highlight the relevance of what has been learned.

Finally, in addition to being a conclusion to the manuscript and our work, Chapter 6
opens discussions and offers perspectives about future works that could be done to extend
the path we started to trace toward CAD tools for cytopathologists routine.

Our contributions consist of both new methods in computer vision and DL, and applica-
tions to the field of digital pathology.
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2.1 Cervical cancer screening

According to the World Health Organization (WHO) [WHO 2014], cervical cancer is the
second most important cancer for women after breast cancer. In this section, we present
stakes related to cervical cancer, how is it generally detected in the first place and why
Artificial Intelligence (AI) gives great promises to improve the performance of cervical cancer
screening.

2.1.1 Cervical cancer: what is it?

According to the National Cancer Institute, a cancer is defined as an abnormal and uncon-
trolled cells division that can leads to a tumor and invades nearby tissues.

The cervix (see Figure 2.1) is an organ that ensures, during pregnancy, that the embryo
stays in the uterus and is protected from bacterias.

5
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Figure 2.1: The cervix organ.

Cervical cancer is a type of cancer that develops inside the epithelium (outer layer of
the skin) of the cervix. Most of cervical cancers cases (about 90%) are developing in the
exocervix and are called Squamous Cells Carcinoma (SCC), the other 10% are Adenocarci-
noma that take place in glandular cells that form the endocervix. A very small percentage
of cases combine both (adenosquamous carcinoma). Generally, a cervical cancer starts from
the transformation zone (or junction zone) where endocervix and exocervix join, it is a zone
where a lot of cellular changes take place.

This cancer is mainly due to an infection by a virus called Human Papilloma Virus (HPV)
which counts over 200 genotypes that can lead to precancerous lesions called Cervical Intraep-
ithelial Neoplasia (CIN).

After being infected by HPV, it generally takes between 7 and 10 years for the infection
to turn into an actual cancer.

The main symptom of cervical cancer is unusual bleedings e.g. outside of periods or after
menopause. Treatments generally consist of surgery (e.g. ablation) or radiation therapy.

Cervical cancer is the second deadliest cancer after breast cancer with over 500 000 new
cases detected each year and over 250 000 deaths. WHO also states that around 90% of
cervical cancers could be avoided if they were detected and treated earlier.

Today, over 50 millions Pap tests (see Section 2.1.2) are made each year worldwide, among
which above 95% are classified as negative (e.g. 3.8% cases are abnormal in [Maraqa, Lataifeh,
and Otay 2017]).
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2.1.2 Cervical cancer screening

Cervical cancer is generally first detected using either a HPV test or a cytology analysis.
Both exams require a gynecologist to make a smear, i.e. sampling cells from the cervix using
a swab. HPV tests consist in detecting high-risk HPV phenotype DNA by molecular biology.
The second exam relies on the visual screening from a cytopathologist to detect abnormal
precancerous changes on microscopy slides. This second method is the base and the core of
our work.

Note that cytology defines the study of cells and relies on sampling methods such as
smears, which differs from histology that defines the study of tissues which implies performing
a biopsy. From the point of view of image analysis the main difference is that tissues are more
structured, textured and cells organization can be observed while in LBC we have to deal
with an ensemble of cells freely floating in liquid.

First introduced by Aurel Babes [Babes 1928] in 1927, visual inspection of cells through
a microscope for cervical cancer detection has been improved and popularized by Georgios
Papanicolaou [Papanicolaou and Traut 1943] in the early 1940’s through sampling, staining
and interpretation methods [Diamantis, Magiorkinis, and Androutsos 2010]. Indeed, Dr. Pa-
panicolaou proposed to detect precancerous changes that can be observed in the morphology
and staining of cells in the early stages of the infection, thus giving his name to the method:
Pap test or Pap smear.

A Pap test consists first in collecting samples from the cervix by scratching the epithelium
at the transformation zone (see Figure 2.1). The collected cells are stained using Pap staining
(see Figure 2.2), which uses three stains [Marshall 1983]:

1. Hematoxylin that stains cell nuclei in blueish colors;

2. Orange-G that stains keratin which is a protein that is secreted to protect epithelium
from external aggressions;

3. Eosin that stains cell cytoplasm in pinkish colors.

Secondly, a Pap test consists in analyzing visually the cells that have been sampled and
colored. At first, conventional Pap smears, where cells were directly put down and spread
on the microscopy slides, were highly used. But more recently Liquid-based Pap smears,
where an additional step consisting in placing cells in a preservative liquid to remove parasite
objects such as mucus, have proved to offer a better interpretation for cervical cancer screening
[Karimi-Zarchi et al. 2013; Qureshi et al. 2017; Singh, Anjum, and Qureshi 2018].

Then, cytology experts observe these slides, under a microscope, looking for atypical cells.
Next, we present cells that can be observed on Pap smear Liquid-Based Cytology (LBC)
slides and their interpretation w.r.t. the medical decision.
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Figure 2.2: Pap stain illustration; image from https://www.sigmaaldrich.com/catalog/product/mm/115925.

2.1.3 Liquid-based cytology slides content

2.1.3.1 Content of “normal” slides

As explained before, cells are sampled at the junction between endocervix (inner cervix) and
ectocervix (outer cervix), and respectively contain glandular cells and squamous epithelial
cells.

Generally, most cells observed on a Pap test are Squamous Epithelial Cells (SEC). These
cells are present in the external layer of the epidermis that covers hollow organs such as
the cervix. There are three kinds of SEC: Parabasal, Intermediate and Superficial cells (see
Figure 2.3).

Parabasal cells are immature squamous cells, they are the smallest epithelial cells and can
be found as single cells or in groups (see Figure 2.4). Their characteristics (cytomorphology)
are the following: they are round or oval shaped with a high nucleus over cytoplasm ratio
(NCR) and a dense cyanophilic (dark blue) cytoplasm.

Intermediate cells are semi-mature squamous cells that are smaller and less angular than
superficial cells. They can be recognized thanks to their cyanophilic cytoplasm (stained in
blue, due to Hematoxylin), their border tends to fold and they have vesicular nuclei (deeply
stained membrane and pale center) with reticular chromatin (chromatin that forms some
kind of network). Navicular cells are a kind of benign intermediate cells that are filled with
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Figure 2.3: Illustration of Squamous Epithelial Cells (SEC).

Figure 2.4: Parabasal cells.

glycogen, giving it a central halo with a yellow hue. Figure 2.5 illustrates intermediate and
navicular cells characteristics.

Superficial cells are mature squamous cells. They are the biggest cells found on Pap
smears, are polygonal (angular borders) and have small and dark nuclei with pyknotic ap-
pearance (condensation of chromatin, hint of cells death). They also have keratohylin gran-
ules. Their cytoplasm can also be kind of transparent. Figure 2.6 shows superficial cells and
keratohylin granules.

The other types of cells are glandular columnar cells that are elongated stick-shaped small
cells that pave the inner cervix (see Figure 2.7).

Also bacterias and artifacts organisms can be found on Pap smears. For example, bacterias
might be abundant over a Pap test slide. They look like small really dark nuclei and are totally
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Figure 2.5: Intermediate cells and their characteristics. (a) A group of navicular cells; (b)
An example of reticular chromatin nucleus; (c) A group of navicular cells; (d) An example of
glycogen cytoplasm.

Figure 2.6: Superficial cells (a) and keratohylin granules (b).

benign. There can also be blood cells such as neutrophilis (white blood cells) and erythrocytes
(red blood cells). Examples of these artifacts are shown in Figure 2.8

Finding only these kind of cells and organisms will lead to a “Negative for Intraepithelial
Lesion or Malignancy” (NILM) classification, which means that no pre-cancerous changes
have been detected.



2.1. Cervical cancer screening 11

Figure 2.7: Illustration of columnar cells (from Herlev dataset [Jantzen et al. 2005], see
Section 2.2.3)

Figure 2.8: Pap smear artifacts. (a) Bacterias on superficial cells (from
https://www.sciencesource.com/ ); (b) Erythrocyte; (c) Neutrophilis (from
http://pathology.jhu.edu/cytopath/masterclass/general/1gen16b.htm).

2.1.3.2 “Abnormal” Slides

Now that we have seen what is expected on a “normal” or negative Pap test, we can try
to understand what are the atypia that cytopathologists are looking for when they perform
reviews of slides.

There are three classification systems to classify an abnormal Pap smear slide: WHO [Ri-
otton et al. 1973], Richart [Wilbanks et al. 1968] and Bethesda [Solomon et al. 2002]. The
correspondence table that links these systems can be found in Figure 2.9. WHO and Richart
were created for histology exams while Bethesda was created, in 1988, for cytology exams
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and adapted until 2014 in order to offer guidelines and to standardize cytology slides inter-
pretation and results, i.e. improve intra-observer reproducibility [Stoler and Schiffman 2001;
Sherman et al. 2007].

Figure 2.9: (a) Pap smear classification systems (from [Riotton et al. 1973, [Wilbanks et al.
1968] and [Solomon et al. 2002]); (b) Illustration of Bethesda system abnormality grades
(from https://www.incytediagnostics.com/about/news-and-publications/asc-us-vs-asc-h-what-
is-the-difference/ ).

Thus, the guidelines [Solomon et al. 2002] and [Nayar and Wilbur 2015] arose from a med-
ical consensus in 2001 and then in 2014 to standardize and define cytomorphological features
that are discriminative for Pap smear cells classification regarding malignancy, terminology
used to report Pap test results, and management of abnormal Pap tests. Mainly, the four
characteristics used to determine whether a cell is abnormal or not are:

1. The cytoplasm color: Pap smears are stained using Hematoxilyn (pink) and Eosin (blue)
stainings and mature cells will have their cytoplasm mostly stained by Hematoxylin, so
changes are expected on these cells;

2. The nucleus texture: condensation of the chromatin in the nucleus and vanishing borders
are major features for abnormal cells;
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3. The nucleus shape: a concave and round shape is expected for a normal cell;

4. The Nucleo-Cytoplasmic Ratio (NCR), ratio between the nucleus size and the cytoplasm
size: the higher the more abnormal (except for one type of normal cells);

Note that from here on we will only deal with squamous cells atypia that represent the
vast majority of cervical cancer cases.

ASC-US ASCUS are Atypical Squamous Cells of Undetermined Significance (see Fig-
ure 2.10), meaning that this grade is used to classify cells (generally superficial or intermediate
cells) that appear mildly abnormal but the cause of changes is unclear. They appear with
a nuclear enlargement that makes the nucleus twice to three times bigger than normal ones.
Regarding the texture, there are several types of ASCUS: they may be hyperchromatic with
fine chromatin and smooth nuclear membrane. Multinucleation or a mildly irregular nuclei
membrane and/or an increase in the chromatin granularity with enlarged nuclei is also a sign
of ASCUS. Regarding the cytoplasm, ASCUS are sometimes recognized by orangeophilia
(which is keratinized cytoplasm which makes the cytoplasm appear orange).

Figure 2.10: Atypical Squamous Cells of Undetermined Significance grade. (a) ASC-US cell
example; (b) Multinucleation; (c) Orangeophilia cytoplasms.

LSIL LSIL are Low-grade Squamous Intraepithelial Lesions (see Figure 2.11). What differ-
entiates them from ASCUS is mainly the enlargement of nuclei that is even more important
(about 3 or 4 times bigger than normal), the chromatin that appears more granular and
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the presence of koilocyte (squamous epithelial cells that contain an acentric, hyperchromatic
nucleus displaced by a perinuclear vacuole).

Figure 2.11: Low-grade Squamous Intraepithelial Lesions grade. (a) LSIL cell example; (b)
Koilocytes.

ASC-H ASC-H (see Figure 2.12) are Atypical Squamous Cells that cannot enables to ex-
clude High-grade intraepithelial lesion. In [Chivukula and Shidham 2006], the authors explain
that this label is given to cells that “exhibit some equivocal features suggestive of but not
sufficient to call “HSIL”, and that cytomorphological criteria associated with ASC-H class
are wide and can easily be confused with LSIL and High-grade Squamous Intraepithelial Le-
sion (HSIL)”. In [Hata et al. 2019], the authors deeply study this class and conclude that
“the presence of small dysplastic cells displaying marked hyperchromasia, thickening of nu-
clear contour, and prominent nucleoli” are most discriminative cytomorphological features for
ASC-H.

HSIL and above HSIL are High-grade Squamous Intraepithelial Lesion (see Figure 2.13).
They can be identified with their highly enlarged nuclei and their reduced cytoplasm that
implies a NCR above 50%. The nucleus reveals important irregularities and granularities
(such as crowding) and appears most often to be hyperchromatic, but can also appear to be
hypochromatic.

2.1.4 Management of abnormal cases, evolutions and further medical ex-
ams

These grades are associated with a risk of evolving to an actual cancer and chances to observe
a natural regression of the lesion. Figure 2.14 shows these probabilities for each grade. We
can, for example, observe that more than 70% of ASCUS cases will lead to a regression of
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Figure 2.12: Atypical Squamous Cells that cannot exclude high-grade intraepithe-
lial lesion grade. (a) ASC-H cell example; (b) Marked hyperchromasia (from
http://pathology.jhu.edu/cytopath/masterclass/general/maligcri/1genp26.htm); (c) Promi-
nent nucleoli (from https://screening.iarc.fr/atlascyto_detail.php?flag=0&lang=2&Id=cyto7756&cat=F1a2 ).

lesions, around 50% for LSIL while only around 30% of HSIL cases have chances to regress.
More generally, the more severe the diagnosis is, the more chances there are to observe an
evolution towards an invasive cancer and the less chances there are to observe a regression.

In that regard, [Wright et al. 2002] present the medical consensus that came out of a
conference gathering 121 experts in cervical cancer screening. The recommendations for
women with abnormal Pap tests are summarized in Figure 2.15.

We can observe that cytology test is an efficient primary test and its results indicate the
following exam to do and its timing.

Colposcopy consists in inspecting cervix, using a binocular magnifier, looking for physical
lesions. Histological biopsies consist in removing a tissue sample from the cervix for further
microscopy analysis, that enables to grade the abnormality more precisely and to detect
potential infiltrations.



16 Chapter 2. Medical context

Figure 2.13: High-grade Squamous Intraepithelial Lesion grade
examples (from https://www.eurocytology.eu/en/course/1297 and
https://screening.iarc.fr/atlascyto_detail.php?flag=0&lang=1&Id=cyto7719&cat=F1c4 ).

Figure 2.14: Regression (left), progression (middle) and invasive cancer (right) rates w.r.t.
LBC Pap smear diagnosis.

2.1.5 Conclusion: advantages and limitations of liquid-based cytology Pap
tests

[Schwartz 2002] offers a great review and study about the efficiency and limitations of LBC
Pap tests in Switzerland. First, it highlights how important a regular and frequent Pap test
is in order to avoid invasive cancer [Janerich, Hadjimichael, and Schwarz 1995]. However,
this method has some limitations. Indeed, if over-grading is pretty rare (generally a great
specificity is measured), the sensitivity of Pap tests is generally estimated between 50% and
60% due to an important number of false negative cases. Studies show that around 20%
of women with pre-cancerous lesions or cancer have had a negative cytology exam in the
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Figure 2.15: Management of abnormal cases.

past two years [Nanda, McCrory, and Myers 2000, Morell et al. 1982, Gay, Donaldson, and
Goellner 1985, Kristensen et al. 1991, Joste, Crum, and Cibas 1995].

Even if promises offered by Pap tests are of interest (proved to be successful in developed
countries, good specificity, cost effective ...), there are limitations that are inherent to Pap tests
such as sampling limitations i.e. if cells have not been sampled in the transformation zone.
Also cells of interest may be removed during the slide preparation, and cells of interest can
be hidden under other cells. Some of these limitations have been tackled by the introduction
of LBC exams. However, the heavy process and sparsity of cells of interest induce a lot of
work and fatigue, while most of the time there is “nothing” to find.

To tackle the low sensitivity, two processes are applied: quality control process in pathol-
ogy laboratories, that consists in re-screening a certain percentage of slides classified as NILM
and repeat regularly Pap tests (at least every 3 years).

Moreover, in spite of efforts that have been made recently with the Bethesda consortium,
Pap test screening is completely rater dependent.

In that sense, a Computer-Aided Diagnosis (CAD) tool with a sensitivity of 100% (or close)
would enable to reduce the workflow of cytopathologists almost regardless of the associated
specificity.

2.2 Whole Slide Imaging process: towards digital pathology
next generation tools

Whole Slide Imaging [Farahani, Parwani, and Pantanowitz 2015, Nishat et al. 2017, Kumar,
Gupta, and Gupta 2020] is a process that enables to create Whole Slide Images (WSI) i.e.
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digitized microscopy slides that can then be visualized and used for medical applications
through a “virtual microscope”. The digitization is performed by a scanner (e.g. NanoZoomer
from Hamamatsu or Ultra-Fast Scanner from Philips) that outputs digital files in adapted
format (e.g. NDPI or PhilipsTIFF). Most scanning processes are tile-based, i.e. given a zoom
level (or magnification level) the scanner iteratively scans patches of fixed size. It may also
include “pyramid” information, i.e. digitized slide at lower magnification which enable to
simulate a microscope more efficiently and precisely (see Figure 2.16).

Figure 2.16: Whole Slide Imaging; From a microscopy slide to a WSI through a scanner
(left; from https://www.rhem.cnrs.fr/index.php/nos-services-en-ligne/numerisation-lames);
“Pyramid” image organization.

Moreover public libraries (such as OpenSlide or ASAP) have been developed to enable
computer science researchers to work with these images and, in the mean time, several pub-
lic WSI dataset have been published and strengthen the link between computer vision and
medical applications. Most popular public WSI datasets contain histology slides, and the
size of dataset we have for LBC use case is small. Thus, in this thesis, we will rely on these
larger histology datasets to develop and validate some of our methods before applying to our
dataset of interest.

2.2.1 Camelyon-16: Breast Cancer detection on Biopsies

Camelyon-16 [Ehteshami Bejnordi et al. 2017] is the most popular dataset containing WSIs. It
was introduced during the IEEE International Symposium on Biomedical Imaging conference
in 2016 to develop, evaluate and compare classification algorithms. The task (see Figure 2.17)
consists in classifying histological slides (from biopsies) between two classes: “normal” slides
that contain only “normal” tissue, and “tumor” slides that contains both “normal” tissue and
“tumor” tissue called “metastases”. The dataset contains 345 WSIs divided into 209 “normal”
cases and 136 “tumor” cases digitized at 40X magnification.
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Figure 2.17: Camelyon-16 dataset. Thumbnail (right) and about 5X zoom on tumorous region
(left)

2.2.2 The Cancer Genome Atlas (TCGA)

Another popular dataset of interest is TCGA [Tomczak, Czerwińska, and Wiznerowicz 2015]
(stands for “The Cancer Genome Atlas”). It contains data (WSI, genomic ...) of about 33
cancer types (such as lung cancer, cervical cancer ...) through more that 11,000 cases. It
aims at accelerating cancer research and discoveries. For example, it contains more that 1580
slides for lung cancer divided into three classes (“normal”, “Lung squamous cells carcinoma”
and “Lung adenocarcinoma”) which gave birth to an important number of researches (e.g.
[Chen, Chen, and Yu 2021] and other methods this work compares to).

2.2.3 Herlev dataset

There is no such WSI dataset available for cervical cancer in cytology context.

In this context, Herlev dataset [Jantzen et al. 2005] proposes to tackle single cells clas-
sification. This dataset is composed of 917 images showing single cells (between 50 and 400
pixels large), categorized using the seven labels of the WHO classification: normal columnar,
normal intermediate, normal superficial, light dysplastic, moderate dysplastic, severe dysplas-
tic and carcinoma in situ. The first three categories belong to the category of normal cells and
the last four are abnormal (in order of severity, with carcinoma in situ hinting the presence
of an actual cancer). It additionally gives the segmentation masks for nucleus, cytoplasm and
background.

Note that two other datasets exist for cervical cancer in cytology context ([ISBI 2015]
and [Ahmady Phoulady and Mouton 2018]), but they consist in segmenting cytoplasms and
detecting nuclei which is a challenging task but do not interest us here.
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Figure 2.18: Herlev dataset illustration.

2.2.4 Conclusion

These WSIs are considered to be the front door to the next CAD tools [Bera, Schalper, and
Rimm 2019]. But, as it as been introduced here, the context of LBC is a complicated one
with slides that can contain hundred of thousands of cells with really precise and complex
characteristics to learn and detect in order to be efficient. Thus in the next chapter we present
methods that are the most promising ones: Deep Learning (DL) methods.
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Over the past decades, two technologies have emerged: Deep Learning (DL), a subset of
Artificial Intelligence (AI) methods that enable deep architectures to learn complex features
and perform on a wide range of tasks; and Whole Slide Image (WSI), microscopy slides
digitized at high resolution enabling digital and virtual microscopes to be developed. Mixed
together, they revolutionized the field of digital pathology that mainly consists in improving
the pathologist workflow using digital information [Zarella et al. 2019].

In this chapter, we introduce different DL1 feature extractors and their specificities along
with their applications for image classification, objects detection and WSI classification. Each

1Deep Learning
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section ends with a presentation of applications to medical problems close to cervical cancer
screening. In the end, we go through approaches that reveal what is learned by these models,
which are called interpretability methods.

The background on DL is recalled in the appendices. In Appendix A, we go through
the methods that reached the Large-Scale Visual Recognition Challenge (LSVRC) state-of-
the-art performances, starting with AlexNet [Krizhevsky, Sutskever, and Hinton 2012] which
revolutionized the field of computer vision in 2012. In Appendix B, AlexNet architecture is
detailed, and common strategies for training are summarized.

3.1 Classification

Image classification is a task that consists in associating a class (or a score) to an image.

3.1.1 Metrics

Most of the the time, the metric with which the performances of the trained model will
be measured (on the test set) defines the final activation and the loss used for training.
For example, softmax activation and categorical cross-entropy loss are particularly efficient
for accuracy and Receiver Operating Characteristic (ROC) Area Under the Curve (AUC)
metrics (see Figure 3.1). These metrics are the most popular ones, even if some other metrics
can be encountered [Chicco and Jurman 2020].

Accuracy is defined, from the confusion matrix, as the proportion of images well classified
i.e. the number of image well classified divided by the total number of images. In the
context of binary classification and medical applications, sensitivity and specificity are also
often reported. Sensitivity is the proportion of images well classified when they belong to the
positive class, and specificity is the proportion of images well classified when they belong to
the negative class (see equations in Figure 3.1). ROC curves are computed as the sensitivity
(or true positive rate) in function of the recall (or 1 - specificity) using different decision
thresholds and AUC is the the area under this curve.

When it comes to continuous scoring, other loss functions, activation functions and met-
rics might be used. A standard implementation for continuous scoring is to use a single
neuron with a linear activation function and a Mean Square Error (MSE) loss function. For
a predicted score y and a ground truth score y′, the MSE loss LMSE is computed as:

LMSE = (y − y′)2.

This approach can be particularly interesting in the medical field where gradual labels
(also referred to as “ordinal regression”) are often used, for example when predicting the
severity or malignancy of a disease. In this case, a popular metric is called Cohen’s KAPPA
measure.
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Figure 3.1: Confusion matrix and ROC Curve.

Quadratic Cohen’s KAPPA [Brennan and Prediger 1981] is a measure used in the context
of ordinal regression problems (ordered classes). It consists in computing, based on the
confusion matrix, a single value that takes into account the distance between classes. We
define a normalized confusion matrix M , with coefficients mi,j in column j and line i, such
that

∑N
i=1(

∑N
j=1(mi,j)) = 1 for a N classes classification problem. The expected agreement

proportion Pe is Pe =
∑N
i=1(

∑N
j=1(mi,j).

∑N
k=1(mk,i)) and the observed agreement proportion

is Po =
∑N
i=1mi,i. KAPPA value K is then calculated as follows:

K = Po−Pe
1−Pe

.

The value ranges between -1 (worst predictor) and 1 (perfect predictor) with 0 corre-
sponding to a random predictor.

Using this measure or MSE and AUC, architectures or training strategies can be designed
to perform on ordinal regression task. [Cheng, Wang, and Pollastri 2008] and [Diaz and
Marathe 2019] are the most popular methods and will be further detailed, respectively in
Section 4.2.2.2 and Section 4.2.2.3, where they will be used as baselines.

A popular way to compare different methods for a task is to perform what is called a K
cross-validation study. It consists in creatingK different random splits (training/validation/testing
sets), and performing training and testing to ensure that the method is not dependent on the
split. It also enables to perform statistical tests between performance distributions to show
that a method is statistically better than another one, e.g. a Mann Whitney U Test [Nachar
2008].
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3.1.2 Feature extractor architectures

In this section we go through most popular CNN-based feature extractors that all come from
edition of LSVRC [Singh 2016] following 2012 edition.

AlexNet [Krizhevsky, Sutskever, and Hinton 2012] (see Appendix A) revealed the power
of deep learning CNN feature extractors. In 2013 edition, ZFNet [Zeiler and Fergus 2014],
a slightly modified AlexNet architecture, improved top-5 classification error rate from about
16% to about 12%. Architecturally, the changes consist in replacing first 11x11 (stride 4)
convolutional layers by a 7x7 convolutional layer with stride 2. The authors claim that these
changes enable the model to capture more details. Interestingly, these changes were motivated
by the visualization of filters proposed in their work. We will go more into details on this in
Section 3.4 about interpretability of models.

This same year, VGG (Visual Geometric Group) architectures [Simonyan and Zisserman
2015] were proposed. They rely on successive small 3x3 convolutional layers. The authors
claimed that two 3x3 consecutive convolutional layers have the same receptive field as one
5x5 convolutional layer but are lighter computationally speaking. It takes images of size
224x224(x3) as input and alternates 3x3 convolutional layers with increasing number of filters
(or depth) and 2x2 (stride 2) max pooling layers with two or three fully connected layers in
the end. For example, the most popular implementation called VGG-16 is made of two blocks
of two convolutional layers followed by three blocks of three convolutional layers (respective
depths being of 64, 128, 256, 512, 512), each block being intercut by max-pooling layers thus
outputting a 25088-descriptor that is fed to two consecutive 4096-fully connected layers and
a final 1000-fully connected layer. It is shown to be a very efficient implementation reaching
a performance of 6.8% top-5 error rate in 2014 which places it in second place behind another
well known model called GoogLeNet with 6.7% top-5 error rate.

GooLeNet architecture [Szegedy et al. 2015] relies on a module called Inception (see Fig-
ure 3.2). This module is motivated by the idea of mixing multi-scale information, and thus
consists of three parallel neural networks with different filter sizes and a pooling layer, us-
ing 1x1 convolution for dimension reduction and concatenating the resulting feature maps.
GoogLeNet is made of three first convolutional layers of filter sizes 7x7, 3x3 and 1x1, followed
by 9 successive inception modules and a final 7x7 pooling outputting a 1024-descriptor fed
into two fully connected networks. An interesting contribution of this work is also the two
auxiliary classification branches placed after the third and the sixth inception module that
oblige early layers to learn relevant features. The authors also extended their work a year
later and improved performances on LSVRC (5.6% top-5 error rate) by adapting inception
modules [Szegedy et al. 2016].

In 2015, by adding skip connections (see Figure 3.3) to deep VGG-like networks, an
ensemble of ResNet [He et al. 2016] reached 3.57% top-5 error rate. Skip connections (or
connection shortcuts) consist in adding (summing or concatenating) to a block output the
input so the information extracted by earlier blocks can not be lost in further blocks.

The architecture called DenseNet [Huang et al. 2017a] extends this idea with dense blocks
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Figure 3.2: Inception module.

Figure 3.3: Skip connections.

where every layer receives (by concatenation) outputs from all previous layers in the block
and passes forward its output to all layers that follow. In addition to making models lighter
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with generally twice as less parameters than in a DenseNet model to obtain equivalent per-
formances, this improves the obtained results over equivalent the single ResNet model from
22.4% top-1 error rate to 22.1%.

The latest breakthrough in feature extractor comes from EfficientNet architectures [Hoon
Tan et al. 2019] that come from a compound model scaling that consists in optimizing, through
a grid search on architectural hyper-parameters (width, depths, resolution ...) and under a
constraint on the total number of parameters, a baseline architecture to perform best. In this
work the authors propose to create a baseline architecture called EfficientNet-B0 with neural
architectural search [Tan et al. 2019] based on light MobileNet feature extractor [Howard
et al. 2017] and then propose nine (up to EfficientNet-B8) models scaled from the baseline
architecture. In the end, for example, Efficient-B7 reaches a top-1 error rate of 15.6% on
LSVRC with only 66 million parameters which is about as much as a ResNet-152 architecture
that performs at 22.3%.

Finally, the current state-of-the-art method for LSVRC comes from [Xie et al. 2020b] and
is an EfficientNet-B8 model which is trained benefiting from additional adversarial examples
and using auxiliary batch normalization [Ioffe and Szegedy 2015] during training not to bias
original images batch norm layers parameters. The performances are a top-1 error rate of
14.5%.

This paragraph introduced most popular and efficient Convolutional Neural Networks
(CNN) architectures and detailed their specificities and promises. It enables us to understand
the tools that we will further extensively use in our work and that are widely used for image
classification in medical applications as we will show in next paragraphs. We will also see how
they are directly integrated in pipelines for more challenging tasks such as object detection
or WSI classification.

3.1.3 Cervical cancer usage

Medical applications of the methods described so far quickly emerged for different indications
or image modalities. Among these applications, cervical cancer related applications also were
studied notably thanks to the publication of Herlev dataset (described earlier in Section 2.2.3)
which pushed for cell classification researches.

Regarding cervical cells classification, most of the literature focuses on the “abnormal”/“normal”
(from now on it will be referred to as “binary”) classification from Herlev dataset. In [Bora
et al. 2016] the authors used an unsupervised feature selection model after a CNN feature
extractor to reach a F1 score of 0.90 and an accuracy of 94%. In [Zhang et al. 2017], the
most current deep learning methods have been used and a deep neural network (pretrained
on ImageNet) has been trained on Herlev dataset categories to provide a full pipeline that
reports the best performances with an accuracy of 98.3% and an AUC of 0.99. A similar
approach has been evaluated in [Taha et al. 2017] with an AlexNet architecture followed by
a Support Vector Machine (SVM) and reached 99.51% recall, 99.5% precision and 99.19%
accuracy on the binary problem. In my opinion one limitation of both previous methods lies
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in their preprocessing, which consists in padding input images with black or white pixels to fit
the input size expected by the pretrained model they use. Indeed, we know that “abnormal”
cells are significantly smaller than “normal” cells, which implies more padding for “abnormal”
cells, thus padding can be learned as a discriminative feature for the problem. In [Forslid
et al. 2017], a ResNet architecture was trained on Herlev dataset categories resulting in an
accuracy of 84.45%. More recently, in [Lin et al. 2019], the authors tackle the multi (7)-class
classification challenge and propose to use, in addition to the image centered on the nuclei,
cytoplasm and nuclei segmentation masks to guide the training and help the prediction. It
enables them to reach an accuracy of 64.5% on the 7 classes classification task.

Regarding region (potentially containing several cells) classification, the results in [Kwon
et al. 2018] show an overall accuracy of 84.5% for binary “abnormal”/“normal” classification
and accuracy of 76.1% for a 3 labels dataset (NILM, LSIL and HSIL). In [Harinarayanan
and Nirmal 2018], a dataset of regions of Pap smears (961x961 pixels) has been labeled as
“usable for diagnosis” or not. The model reaches 83.01% accuracy on the test set and the
authors provide assistive maps to help pathologists by using feature maps, similarly to Grad
CAM [Selvaraju et al. 2017]. In [Zhang et al. 2014], the authors detect and segment cytoplasm
and nucleus, and rely on these segmentation features to train four classifiers: artifact filters,
nucleus/artifact classifier, abnormal/normal nucleus classifier and abnormal cell/hard nega-
tive classifier (each sample is going through classifiers in this order as long as it is not classified
as “artifact” or “normal”). They report a system with a sensitivity of 88.1% coupled with a
specificity of 100%. [Hyeon et al. 2017] propose to classify patches (about 8,300 per binary
class) extracted by medical experts using a VGG-16 model pretrained on ImageNet to extract
features and train a SVM. They obtain a F1 score of 0.78 regarding binary classification.

Finally, [Rahaman et al. 2020] offer a great review of methods dealing with the classifica-
tion of cells from cytopathology slides using most of the time Herlev dataset [Jantzen et al.
2005] and sometimes ISBI dataset [ISBI 2015] (both described in Section 2.2) or in-house
datasets. Interestingly, as we explained before, Nucleo-Cytoplasmic Ratio (NCR) is a criti-
cal characteristic for severity classification. So earliest works were consisting in a two stage
algorithm: first detecting and segmenting nucleus and cytoplasm, and then a second stage to
classify the cell using segmentation results.

The main limitation of these work is that they highly tackle the binary “normal”/“abnormal”
classification of cells and do not enter medical guidelines defined previously in Chapter 2.

3.2 Localization and object detection

Localization is defined as classifying an image and additionally proposing a bounding box of
the region of the image that is responsible for the predicted label. Object detection consists
in predicting a bounding box for each object that can be observed, and the class associated
to each box. Figure 3.4 illustrates these principles.

Both tasks are of interest because, in the context of Computer-Aided Diagnosis (CAD)
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Figure 3.4: Localization and object detection.

tools, localizing regions (e.g. cells) of interest in images can help pathologists to make their
reviews more quickly by being guided by these localizations.

The most popular datasets for object detection are Pascal VOC [Everingham, Van Gool,
and Williams 2010] and COCO [Lin et al. 2014] which, respectively, contain 20 and 80 classes
of objects.

The main metric used, in localization and object detection tasks, is the mean Average
Precision (mAP) that consists in computing the mean over all classes of the average precision.
It is the same as AUC but the positive prediction is defined with an additional Intersection
Over Union IOU thresholding applied to the bounding boxes and the ground truth boxes.
Given two regions (e.g. here) A and B, IOU is computed as the ratio between the size of
their intersection A ∩B and the size of their union A ∪B.

3.2.1 Architectures

Over the years two types of architectures for localization and object detection were developed:
two-stage architectures and single-stage architectures. They offer a trade-off between mAP
and speed: indeed [Huang et al. 2017b] compare most popular object detection architectures
and highlight that single-stage detectors are faster (due to lower computational complexity)
but less efficient in term of mAP. We present here the principles of these approaches and their
most popular implementations.
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3.2.1.1 Two-stages architectures

This section deals with object detection using Region-based Convolutional Neural Networks
(RCNNs). We propose a review of major RCNN papers with a specific detailed review of
Faster-RCNN architecture.

Overfeat [Sermanet et al. 2014] technique started to bring an answer to object detection
by proposing to use a classification network that takes, as input, crops from the original image
and regions that are collateral and are predicted as the same class. The problem is that this
process is really expensive (computationally speaking) to predict on every region. Moreover,
a priori, the scale at which objects are expected is not known.

RCNN RCNN method [Girshick et al. 2014] tackles computational limitations exposed
before by cropping about 2000 Regions Of Interest (ROI) using a region proposal algorithm
(based on edge boxes [Zitnick and Dollar 2014]) to reduce the number of candidate boxes
that are to classify. Then, every region is resized to fit the expected input size of a CNN (e.g.
224x224 for a VGG-16) that outputs low dimension descriptors. Finally, these descriptors are
given to two distinct branches. The first branch has several SVMs, one per class that outputs
whether the associated class is present in this crop or not. The second one is a bounding box
regression branch that outputs the correction to apply to the ROI. This approach reached a
new state-of-the-art performance on Pascal VOC 2007 improving from about 50% to around
66%. The main drawbacks of RCNN is that there is no training computation shared between
CNN features extraction, classification SVMs and bounding box regression branches and that
it is pretty slow (about 50 seconds per image).

Fast RCNN Fast RCNN architecture [Girshick 2015] uses the same region proposal and
CNN feature extraction ideas as RCNN, except that the region proposal algorithm is used to
extract regions from the intermediate feature maps of the CNN feature extractor instead of
the original image. This makes the whole architecture trainable, and the computation is thus
shared among the layers. The varying size of ROIs proposed by the region proposal algorithm
implies an additional (max-)pooling layer w.r.t. a grid that matches the fully connected layer
expected input size. This approach mainly improves performances of RCNN regarding testing
time since it takes about 2 seconds to make a prediction (25 times faster than RCNN) while
reaching about 66.9% on PASCAL VOC.

The real bottleneck is now the region proposal algorithm that counts for more than 80%
of the computation time.

Faster RCNN Faster-RCNN [Ren et al. 2015] proposes to use a Region Proposal Network
(RPN) i.e. a CNN trained to propose ROIs. The two advantages from this approach are that
features are shared with the region proposal algorithm thus it is trained to perform on the
specific task, and the region proposal becomes almost cost-free since most of the computation
is already done by the CNN feature extractor.
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RPN consists of a fully convolutional network that outputs ROIs by predicting bounding
boxes and an objectness score (i.e. probability to contain an object) for each of them. First,
there is a nxn (originally n = 3) convolutional layer over the last feature maps with same
padding and a depth of 256. Then, there are two 1x1 convolutional layers. One is a “class”
layer predicting 2×k values (k binary “object” / “not object” classification) and the other one
is a “regression” layer predicting 4×k (k bounding box regression parametrized scores). This
k parameter is generally set to 9 and defines the number of anchors used at each position
in the feature maps. Anchors are virtual boxes mapped on the original image considering
positions on the feature map. For example, for k = 9, there are 3 scales (e.g. 64 pixels, 128
pixels and 256 pixels) combined with 3 shapes ([1,1] ,[1,2], [2,1]), which gives 9 anchors. With
regards to their IOU with the ground truth bounding boxes, some anchors are paired or not
with a ground truth bounding box to train the RPN. The main advantage of Faster RCNN
is that it is trainable end-to-end and thus all components are adapted to the task of interest.

Performances achieved by Faster RCNN are around 0.2 second (10 times faster than Fast
RCNN, RP algorithm adds only 0.1 second) at test time and a mAP of 73.9% on PASCAL
VOC dataset.

Figure 3.5 illustrates all the RCNN architectures presented.

These two-stages approaches enable a good control of the design that can guide the training
of models. For example, [Eggert et al. 2017] deal with the question of small object detection
when using a Faster RCNN architecture. They propose a theoretical approach to understand
what is the minimum size of an object to be detectable, before looking independently at this
issue for the RPN and for the classifier. In the end, they propose a practical solution using
two RPNs at two different levels of the CNN and stabilize results for datasets with small
objects. Feature Pyramid Networks (FPN) [Lin et al. 2017] also tackle this object size issue
by combining highest-level feature maps up-scaled with early feature maps, and using the
combination to predict at different scales. This improved state-of-the-art results on COCO
by applying FPN to Faster-RCNN (using ResNet-101 CNN feature extractor) with a mAP
(threshold on IOU at 0.5) from 55.7% to 59.1%.

3.2.1.2 Single-stage architectures

In [Redmon et al. 2016] YOLO (You Look Only Once), an architecture able to perform object
detection in only 22 ms and still performs at 63.4% of mAP on Pascal VOC, is proposed.
Instead of a detection based on region proposal, that implies time consumption by going
back to the original image for each region, the idea is to divide the image directly according
to a regular grid (e.g. 7x7) and to have two parallel branches: one that predicts a class
probability for each grid cell, and one that predicts bounding box regression based on grid
cells with an associated objectness score (from ground truth bounding boxes). These outputs
are combined to obtain final predictions. The same authors improved these performances
with additional contributions with YOLO v2 [Redmon and Farhadi 2016] (15 ms at test time
and a 76.8% mAP) and Yolo v3 [Redmon and Farhadi 2018] (45 ms at test time and a 83.6%
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Figure 3.5: Region-based convolutional neural networks. (a) RCNN; (b) Fast-RCNN; (c)
Faster-RCNN.

mAP). A similar approach called SSD (for Single Shot Detector) [Liu et al. 2016] achieves a
mAP of 72.1% on PASCAL VOC with only 17 ms per image by using FPN on YOLO-like
architecture. The main contribution that enabled single stage object detectors to reach two-
stages performances is the focal loss [Lin et al. 2020], inspired by the class balancing, that
enables to give more importance to poorly classified samples, and to avoid impacting what
has already been well learned (mainly the easy “background” samples) during the training.

3.2.2 Cervical cancer usage

The general concept of objects detection might be the very fact of what defines the medical
expert work on a daily basis. Indeed, a large panel of medical tasks consists in a visual inspec-
tion of an organ through imaging methods such as MRI, X-ray, echography or microscopy.
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Thus, application of methods presented in the previous section have been popular over the
past few years for several medical applications.

Close to our application, [Hu et al. 2019] propose to use a faster-RCNN to detect lesion
on cervicography (or colposcopy), and reach an AUC of 0.91 on CIN2+ positive or negative
binary classification.

Regarding the kind of images, some interesting works have been made on histopathology
slides to detect nuclei or cells. For example, VOCA [Xie et al. 2019] performs multi-task
training by predicting, using the same network and three branches, three different outputs
(confidence score, localization vector and weight of contribution) for each pixel, that are then
combined to give nuclei localizations and thus improve state-of-the-art results on a colorectal
cancer dataset.

The closest and only work (to the best of my knowledge) that uses an object detection
pipeline on Pap smear slides is [Meiquan et al. 2018]. The dataset is made of 500 whole
slides (50 negatives / 450 positives) digitized at 20X. The test set is composed of the 50
negative samples and 50 random positive samples while the training set uses the 400 other
positive slides. Training slides are annotated with 5 labels: “ASC-US”, “LSIL”, “HSIL”,
“Endocervical Cells” (EC) and “Metaplastic Squamous Cells” (MSC). Each slide is divided
w.r.t. a non overlapping grid with patches of 1024x600 pixels and every patch that has at
least a target cell is kept. From the 5,721 training patches, 500 are used to build a validation
set, the rest for actual training. The statistics of the annotation are the following: 21.2%
(1962) are ASC-US, 9.3% (860) are LSIL, 10.2% (939) are HSIL, 38.8% (3589) are EC and
20.5% (1896) are MSC, for a total of 9246 annotations. For testing slides, the foreground
area is extracted (using a thresholding on the Z channel from XYZ color space) and patches
of 1024x60 pixels of foreground regions are extracted (which removes about 10% of patches).
The trained model is a Faster-RCNN with a ResNet-101 backbone (9 anchors with shape
128x128, 256x256 and 512x512 and scale 1:1, 1:2 and 2:1). The results at cell level of this
trained network on the validation set are a precision/recall of 0.74/0.52 for ASC-US, 0.83/0.5
fr LSIL and 0.87/0.44 for HSIL. At slide level, on the test set, the accuracy is 0.78 for a
classification into “positive” and “negative” cells, and the accuracy is 0.7 when it comes to
classify among “negative”, “ASC-US”, “LSIL” and “HSIL”. It is really unclear how to go from
cell based predictions to slide based diagnosis. The authors say that “the model detects the
five types of target cells at first, and then counts the number of cells in each category, finally,
generates a diagnosis”. We can only speculate that the most represented class is associated
with the slide. It takes about 5 minutes to classify a whole new slide. The precision of
positive cells is 0.91 but these performances drop to around 0.8 when it comes to differentiate
the different types of positive cells.

Even if object detection methods match the workflow of cytopathologists and if [Meiquan
et al. 2018] proved the interest of such approaches, the main and non negligible drawback of
such methods is that there is a need for extensive annotations that require a lot of expertise
and a lot of time. Moreover, it is not clearly defined how to go from cell detection to slide
global label. This motivates a more diagnosis-oriented method: WSI classification.
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3.3 Whole slide image classification

The emergence of WSI, along with deep learning methods, represents a real opportunity for
the development of efficient CAD tools to help pathologists. Indeed, over the last 3 years,
notably due to the datasets of WSIs publicly available (presented before [Ehteshami Bejnordi
et al. 2017, Tomczak, Czerwińska, and Wiznerowicz 2015]), deep learning pipelines for WSI
classification have been developed and compared.

The task of WSI classification consists in associating a label (e.g. proposition of a diag-
nosis) to a WSI input. It differs from regular classification task presented before due to the
large size of these images as input. Indeed, due to their very large size (generally around 10
giga pixels per slide), these images cannot be fed directly into regular classification pipelines.

In spite of this challenge, recent research led to really efficient and elegant solutions.

3.3.1 Methods and architectures

Early methods rely on patch classification, which implies annotations from medical experts
and a tiling process. Tiling consists in defining a grid with regard to which patches (called
tiles) will be extracted. These tiles are then used by regular classification pipelines.

3.3.1.1 Patch-based classification methods

For example, in [Liu et al. 2017], a model (Inception) is trained to classify patches (of size
299x299 pixels) as containing tumor or not (“normal” patch). The dataset is created from
270 slides from which a large number of patches (between 10.000 to 400.000) are extracted
and are assigned the label “tumor” if there is a tumor inside the 128x128 region in the middle
of the patch. At inference, a sliding window is used and each tile is classified, which enables
to output a probability heat map to have a tumor in the whole slide. Dataset balancing
is performed by balancing the sampling towards “tumor” patches (on a “tumor” slide there
are between 20 and 150.000 “tumor” patches). The slide classification is evaluated with
AUC-ROC (0.98 reached) and the tumor detection is evaluated with FROC (Free-response
Receiver Operating Characteristic, ROC-AUC adapted to object detection, 0.885 reached).
Interestingly, it is claimed that pre-training the model on ImageNet does not improve the
results (but ensures a faster convergence of the model).

[Iizuka, Kanavati, and Kato 2020] address the problem of classifying colon and stomach
WSI (from Hiroshima University Hospital and Fukuoka Haradoi Hospital) into three classes:
“non-neoplastic” (or “normal”), “adenocarcinoma” and “adenoma”. Their approach consists
in extracting 512x512 pixels tiles from pathologists annotations, and training a tile classifier.
WSI label is predicted through either max-pooling probability over tiles on the whole slide,
or through a Recurrent Neural Network (RNN) that recursively takes tile descriptors. An
AUC of 0.99 and 0.97 is reached for, respectively, “adenoma” and “adenocarcinoma” on the
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stomach application and 0.99 and 0.96 for the colon application. Interestingly, the authors
say that “the average annotation time per WSI was about 10 minutes” which shows one of
the limitations of such approaches, since it makes them unscalable for application on a larger
dataset.

[Sing et al. 2019] are interested in classifying normal tissues in different groups w.r.t.
organs and types of tissue. They rely on 1690 WSIs from rats biposies annotated by experts
with 46 classes. Three architectures and five magnifications are compared. The top model
reaches an accuracy of 83.4%. An interpretability study is performed using UMAP projection
method [McInnes and Healy 2018], and highlights the relevance of what has been learned
by exposing semantic clusters in visualizations (we will introduce interpretability methods
further in this chapter in Section 3.4).

In [Hoffman et al. 2014], the authors propose a method that consists in extracting a set
of (461) features using maximum relevance method [Peng, Long, and Ding 2005] on 512x512
selected patches that represent diseases and training a SVM on 600 manually annotated tiles.
Thus they reach about 97% and 98% accuracy on TCGA dataset annotated for respectively
ovarian serous cystad-enocarcinoma and renal clear cell carcinoma. They also measure the
Pearson correlation between predicted and ground-truth regions for each indication, and reach
over 0.3 score for most types of tissue.

Today the state-of-the-art method on Camelyon-16 dataset (described in Section 2.2)
is [Lee and Paeng 2018]. Their approach is a two-stage strategy where, first, 224x224 pixels
“tumor” tiles are extracted from tumorous regions in “tumor” slides (annotations available)
and “normal” tiles are extracted from “normal” slides to train a tile classifier. This model
is used to compute heat-maps with “tumor” class probability and 11 hand-crafted features
are extracted from it (e.g. largest tumorous region area or maximum confidence probability
in WSI). The descriptor that is composed of these features activation is then used to train a
random forest to predict the label of the slide. An AUC of 0.98 is reached and a KAPPA of
0.92 for the pN-stage classification.

All of these works are highly interesting, however, as for object detectors, they use exten-
sive annotations, which makes them unscalable to larger datasets or requires the presence of
a medical expert for every application.

3.3.1.2 Methods based on Multiple Instance Learning (MIL)

Here, we are interested in WSI classification architectures that use only the global label
(e.g. diagnosis) to train and require no intermediate information such as cell labeling or
tissue segmentation (which are time-consuming annotations). The training is regularized by
introducing prior knowledge by design in the architectures which, in addition, makes the
result interpretable (see Section 3.4).

Most popular approaches performing this rely on a context of Multiple Instance Learning
(MIL) (framed by [Maron and Lozano-Pérez 1997]), i.e. slides are represented by bags of
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tiles. Positive bags must contain at least one positive tile and negative bags contain only
negative ones (see Figure 3.6). The work in [Durand, Thome, and Cord 2016] particularly
contributed to popularize this MIL context by proposing an architecture called WELDON
(that stands for “WEakly supervised Learning of Deep cOnvolutional neural Networks”) and
reaching state-of-the-art performances on PASCAL-VOC. Their method consists in cutting
images in regions (tiling) with a regular grid and computing for each region a descriptor using
a backbone (i.e. CNN for feature extraction), then for each feature of the descriptors the top
3 and bottom 3 scores are summed which gives an image single value descriptor. This image
descriptor is then used to classify the image.

Figure 3.6: Multiple Instance Learning (MIL) context.

However, the MIL context for Camelyon-16, and in general for WSIs datasets, is more
complicated than for natural images mainly for two reasons. First, there are up to 10.000
tiles of size 224x224 pixels at 20X magnification, while for natural images bags are made of
only some dozens of regions. Secondly, tumorous regions can be as small as 100x100 pixels
(localized disease) while in natural images most objects of interest are visually predominant.

Taking this into account, [Courtiol et al. 2018] propose CHOWDER (that stands for
“Classification of HistOpathology with Weak supervision via Deep fEature aggRegation”), an
extension of WELDON solution for WSI classification. Their approach mainly includes the
“relaxing” of this MIL context by pre-computing tiles descriptors using a pretrained network
on ImageNet. Thus slides are represented by bags of descriptors (of size 2048) instead of
bags of tiles (of size 224x224 pixels). Also they add a 1x1 convolution layer to turn every tile
descriptor into a single tile score. Scores are then aggregated using a min-max layer, that
keeps the top-R and bottom-R scores (e.g. empirically R = 5 gives the best results), to give
a slide descriptor (of size 2xR) which is given to a two layers fully connected network, with
respectively 200 and 100 hidden neurons, that outputs the predicted score. This approach
reaches an AUC of 0.858 on Camelyon-16 and 0.915 on TCGA-lung (subset of TCGA dataset
related to lung cancer, see more details about datasets content in Section 2.2). Additionally,
the authors report that they use tile scores to compute a tumorous heat-map over WSI that
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can be used to perform segmentation of tumorous regions with an area under the free-response
ROC curve of 0.31 (which is good given the absence of tile-level annotation).

In general, WSI classification methods relying on MIL use preprocessing steps to encode
as efficiently as possible tiles from WSIs using tissue detection, tiling and normalization
methods and then use three trainable blocks to make the decision. This process is illustrated
in Figure 3.7.

Figure 3.7: WSI classification relying on MIL.

Preprocessing The first step of preprocessing generally consists in detecting samples on
the WSI since there are a lot of non-informative tiles that are just white background or
artifacts (see Figure 3.8).

The most popular method for tissue detection relies on Otsu thresholding [Otsu 1979] and
involves defining a threshold on the percentage of foreground pixels for a tile to be selected.
Tissue detection through color space transformation and thresholding is also widely used (e.g.
thresholding on RGB values in [Coudray, Ocampo, and Sakellaropoulos 2018] or thresholding
on the saturation channel of HSV color space for [Lu et al. 2020]). Tissue detection could also
be performed using a semantic segmentation pipeline such as U-Net [Ronneberger, Fischer,
and Brox 2015] as in [Ianni et al. 2020].

Once the tissue is detected, another step that consists of Stain Normalization (SN) is
generally carried out. The motivation behind this step is to improve the transferability to
other datasets that come from a different hospital and that might use a different scanner
or staining to create their WSIs (Figure 3.9). This question has been studied in [Ciompi
et al. 2017] where the authors show that the color normalization of [Ehteshami Bejnordi et al.
2016] improves the training process and the generalization on another test set. A rectal cancer
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Figure 3.8: Tissue detection process.

dataset (74 slides) is used for training and a colorectal cancer dataset (10 slides) is used as
a test set to measure the transferability of the learning. Indeed, training without SN gives
an accuracy of 75.55% if SN is performed on the testing set and 50.96% if not, and training
using SN gives an accuracy of 79.66% with SN on the testing set while only 45.65% is reached
without it.

Most SN techniques consist of color deconvolution [Zhou, Hammond, and Parker 1996] to
work in a color space where channels represent concentrations of stains. Several automatic
stain vector computations for color deconvolution have been proposed, among which [Macenko
et al. 2009] and [Khan et al. 2014] are the most popular ones. The color transfer method
proposed in [Reinhard et al. 2001] is also popular due to its simplicity/efficiency trade-off.
More advanced methods using state-of-the-art deep learning generative models, called Gener-
ative Adversarial Networks (GAN) [Goodfellow et al. 2014], were recently applied with more
specifically cycle-GAN approach [Zhu et al. 2017], to perform stain standardization [Bel et al.
2019].

Figure 3.9: Stain normalization illustation (from [Ciompi et al. 2017]).
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Architectures and applications We already presented CHOWDER approach, and in
general WSI classification architectures follow the same idea. For example, [Ilse, Tomczak,
and Welling 2018] propose to use an attention module (a two layers fully connected network
with 128 and 1 hidden neurons and a softmax layer) to compute competitive and normalized
(sum to 1) tile scores from tiles descriptors. Then, the slide descriptor is computed as the
weighted (by tile scores) sum of tile descriptors. They report an AUC of 0.775 for a breast
cancer dataset and 0.968 for a colon cancer dataset. They also highlight the relevance of
attention module tile scoring by visual improvement of heat-maps.

More recently, [Campanella et al. 2019] propose a two steps training to, first, adapt the
backbone part (and thus the relevance of tile descriptors computed with respect to the task),
while still using only global slide-level label. Then training the WSI classification part relies
on a RNN (Recurrent Neural Network [Raffel and Ellis 2015]) aggregator. They reach an
AUC of 0.991 for prostate cancer classification and 0.93 on Camelyon-16.

All these architectures have the great advantage of being efficient on a large range of
tasks. Some works also aim at adapting these to induce more a priori knowledge to tackle a
specific task. For example [Li et al. 2019] propose a two stage training for prostate cancer
classification that enables to perform a multi-scale approach that is closer to what pathologists
experience. They reach an accuracy of 84.3% on a 3-classes dataset and are able to propose
precise heat-maps.

On the same application as Camelyon-16 (breast cancer) but on a different dataset
(BioImaging 2015 Breast Histology Classification Challenge, 2048x1536 pixels images), [Li,
Wu, and Wu 2019] propose to use a four stage pipeline by tiling with tile size of 512 (big tiles)
and 128 (small tiles) since diagnosis of some classes can be made at a relatively low mag-
nification level (e.g. 5X) and others may require a higher level of magnification (e.g. 40X).
Two feature extractor CNNs are trained on each magnification (associating slide diagnosis
as the tile label). Small patches are clustered according to the phenotype (using thumbnail)
and only patches for most discriminative clusters are kept. Thus the slide is represented by
descriptors from 512 tiles and selected 128 tiles which are then aggregated using the root of
degree p of the sum of vectors to the power p (called P-norm pooling) as aggregator to obtain
a single slide descriptor. Finally a 4-classes SVM is trained to predict the slide label. With
this approach (that in addition requires training 5 different CNNs) an accuracy of 88.89% is
reached.

In general, as presented in Figure 3.7, these MIL pipelines rely on an encoding step of
tiles using a CNN and then three distinct learning blocks which consist in associating a score
with each tile, aggregating according to tile scores and classify the slide using the aggregated
vector or value. [Lu et al. 2020] and [Li, Li, and Eliceiri 2020] improve the baselines by
relaxing attention-based scoring, by respectively using a clustering layer and using contrastive
learning [Chen et al. 2020a] and multi-scale embedding. [Ianni et al. 2020] propose to train
their model using regularization based on dropout (inspired by [Gal and Ghahramani 2016]).

In [Coudray, Ocampo, and Sakellaropoulos 2018], TCGA-lung dataset is used with its
three classes “normal”, “LUAD” (adenocarcinoma tumor), “LUSC” (squamous cells carci-
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noma tumor). The 1634 slides were separated into training, validation and testing sets and
tiled using a 512x512 pixels non-overlapping grid. Each tile is associated with the slide
ground-truth label. An Inception-v3 model is trained and a slide score is computed using
either the proportion of tiles predicted per class or the average probability over tiles of a
slide. A “normal” vs “tumor” classification AUC of 0.99 and 0.993 is reached, and 0.97 for
the three-classes problem. The authors also work towards what is called “discoveries” which
consist in predicting from the image new clinical or medical information. Indeed, they use
the same approach to try to predict 10 gene mutations that are given by TCGA database,
and among these 6 gene mutations could be predicted with an AUC above 0.73 and up to
0.85.

This idea of “discovering” new links between WSI and clinical data through deep learning
has been very popular lately. For example for treatment response using average pooling as
aggregator [Naylor et al. 2019], or in [Coudray, Ocampo, and Sakellaropoulos 2018] where the
authors present and compare [Fu et al. 2020] and [Kather et al. 2020] approaches that worked
on predicting genetic information. [Naik, Madani, and Esteva 2020] train a model to predict,
from Hematoxylin & Eosin (H&E) stained WSIs estrogen receptor status which is usually
determined using other immunohistochemistry slides that are more expensive to prepare.

In the context of MIL, tile sampling is also a way to relax the complexity of the leaning
and to regularize the training. For instance, [Xie et al. 2020a] take an approach close to [Li et
al. 2019] but compute centroids of clusters and use the ensemble of tiles that are the closest
to centroids to classify the slide. [Combalia and Vilaplana 2018] propose Monte-Carlo like
sampling that selects tiles to constitute the next training bag and thus enable to train also
the feature extractor by reducing the size of the input.

Finally, [Srinidhi, Oxan, and L. 2021] offer a great and up-to-date review of state-of-the-art
methods for computational histopathology.

Recently, the gap between methods using annotations and methods using only global
labels for WSI classification has been closed by [Dehaene et al. 2020]. The authors explain
that the only difference is the fine-tuning of feature extractor backbone to be task specific.
The solution they propose is to use Moco v2 [Chen et al. 2020b], a contrastive unsupervised
learning method, to train the feature extractor in a self-supervised manner. Thus they improve
CHOWDER from a mean AUC of 82.3 (when using feature extractor from ImageNet) to 0.983.

3.3.2 Other methods for WSI classification

Even if MIL methods are the most popular ones and are about to gain even more interest
with [Dehaene et al. 2020] publication, other promising methods have been developed recently
such as Neural Image Compression-based methods [Tellez et al. 2019] that propose to keep
the spatial organization while it is lost in MIL context; thus [Tellez et al. 2020] adapt their
first work to a multi-task learning and reach state-of-the-art performances on TUPAC16 [Veta
et al. 2019] (baseline of 0.617) a dataset whose task is to predict tumor proliferation on breast
biopsies with a Spearman correlation 0.632. [Pinckaers, Ginneken, and Litjens 2019] propose
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a streaming-based method that reaches a Spearman correlation 0.570 on TUPAC16, and
that consists in benefiting from the locality of the majority of components that constitute
convolutional networks to adapt the forward and backward path to be performed directly on
tiles. [Cheng et al. 2020] propose to predict segmentation maps through a teacher-student
approach using self-similarity. [Barker et al. 2016] use a clustering-based method to have
only a coarse representation of tissues. [Shi et al. 2020] use intermediate targets for features
through semi-supervision. These methods open a new manner to tackle WSI classification
that could be merged with MIL pipeline to improve the results.

3.3.3 Cervical cancer and cytology applications

As said before, most applications of WSI classification have been made and thought for
histopathology slides.

Thus, an application of tile-based approach has been made to differentiate successfully
adenocarcinoma and Squamous Cells Carcinoma (SCC) in [Idlahcen, Himmi, and Mahmoudi
2020] through the extraction of 300 tiles from each class. In November 2020, the Société
Française de Pathologie (French Pathology Society) released a dataset of more than 1500
slides from cervical biopsies in four classes. This will open new opportunities for computer
scientists to contribute to research in this field.

But for cytology, very few works have been published on the subject of WSI classification.

[Sornapudi et al. 2019] propose a tile-based approaches working on 25 cervical Liquid-
Based Cytology (LBC) slides (19 “abnormal” and 6 “normal”) and combining it with Herlev
dataset. Their approach consists in using annotations from cytopathologists to extract around
4,120 tiles/cells and then train a classifier using Herlev images and 2,800 extracted and an-
notated cells for labeling. They reach an accuracy of 0.888, a sensitivity of 0.882 and a recall
of 0.897 using a VGG-16 architecture.

[Dov et al. 2021] are interested in classifying thyroid cytology slides according to The
Bethesda System (TBS). They use a semi-supervised approach using 142 annotated WSIs to
train a tile classifier and compute heat-maps. Then they train an aggregator that can be fed
with tile label and global label. They reach an AUC on tiles of 0.985 and at slide level they
have a mean AUC of 0.872 slide and an accuracy of 0.44 (on the 5 classes problem that is
TBS).

This overview shows that, in spite of the critical importance of cervical cancer screening,
using WSI classification pipeline is not popular mainly for two reasons. First, no dataset exists
and, secondly, this task is way more challenging than histopathology slides classification, and
there is a need to relax the MIL context by adding annotations.
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3.4 Explanations and interpretability

Interpretability (the ability to provide explanations that are relevant and interpretable by
experts in the field), also referred to as explanability here, is of critical interest in general but
even more when it comes to medical applications.

The main reasons why interpretability is crucial for medical applications are:

1. For routine tools where useful features are well known and are subject to a consensus
among experts (which is the case for cervical cancer screening), it is important to show
that trained models rely on the relevant features to make the decision in order to gain
the confidence of practitioners.

2. A good explanability would enable to assist more efficiently medical doctors in their
slide reviews by identifying discriminative regions.

3. The ability to train using only slide level supervision opens a new field we call discovery.
It consists in predicting, based on easier access data, outputs that generally require
heavy processes, for example, predicting a the response of a patient to a treatment
based on biopsy imaging (while generally the only solution to have this information is
to try and wait). In order to be able to guide experts towards new discoveries, the need
for reliable interpretability is obviously high.

In this section, we summarize the most popular interpretability methods, explain how they
can be used to retrieve information that were not given at training time (weak supervision),
present how to measure the interpretability and finally expose some medical cases using
interpretability.

3.4.1 Methods for interpretability

While interpretability for deep learning CNN models is still at its beginning, some methods
arise from the literature. “Feature Visualization” has been proposed in [Zeiler and Fergus
2014] and extensively developed in [Olah, Mordvintsev, and Schubert 2017]. It consists in
visualizing in the most interpretable manner features associated with a single neuron or
a group of neurons. It can be used to understand the general training of a model (see
Figure 3.10).

For example, the question of transferring features learned from natural images (ImageNet)
to medical images has only recently been deeply investigated [Raghu et al. 2019] while widely
used and yet surprisingly good. It has also been used to measure how robust a learned feature
is [Couteaux et al. 2019].

Another type of explanability methods is attribution methods. These methods measure,
for each component of the input (e.g. pixels), its contribution to the prediction. They are
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Figure 3.10: Feature Visualization examples (from [Olah, Mordvintsev, and Schubert 2017])

performed either through perturbation [Fong and Vedaldi 2017] or gradient computation (i.e.
measure of the gradient of the output with respect to the input). This second group of
methods is gaining more and more attention.

In [Simonyan, Vedaldi, and Zisserman 2014], the authors show that the gradient is a good
approximation of the saliency of a model and even put forward a possibility to perform weakly
supervised localization. This work opened a new way of accessing explanations in deep neural
networks and motivated a lot of interesting researches [Sundararajan, Taly, and Yan 2017;
Smilkov et al. 2017; Srinivas and Fleuret 2019; Goh et al. 2020] (see Figure 3.11).

Grad-CAM is another gradient-based attribution method [Selvaraju et al. 2017] that comes
from Class Activation Mapping (CAM) [Zhou et al. 2016]. It consists in computing a weighted
average of feature maps at a given depth of the feature extractor, where weights are computed
using gradients of the predicted class output with respect to these feature maps.

Figure 3.11: Gradient-based explanations examples (from [Srinivas and Fleuret 2019]).
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Another manner to approach interpretability and highlight what has been learned to
differentiate classes is through dimension reduction. t-SNE [Maaten and Hinton 2008] and
UMAP [McInnes and Healy 2018] methods offer efficient dimension reduction for deep learning
methods that enable to visualize how data are embedded and separated in a 2 or 3 dimensional
space with an iterative and probabilistic approach.

More recently, [Olah et al. 2020] introduce circuits that bring interpretability to the next
level. It takes neurons and by visualizing features associated to them (based on the previous
work from these authors [Olah, Mordvintsev, and Schubert 2017]), they imagine a set of tests
to validate what is interpreted. It also shows how a complex and deep CNN can be divided
into smaller networks (called circuits) that perform specific tasks.

3.4.2 Evaluation and quantification of interpretability

As the quality of explanations improved, the importance of quantifying these improvements
grew, which pushed researches to question interpretability methods and to compare them by
measuring their performances.

For example, RemOve And Retrain (ROAR) [Hooker et al. 2018] method consists in
removing contributing items (features, pixels ...) identified by an interpretability method
from training samples in order to evaluate the completeness and relevance of this method by
measuring the impact of such ablations on the learning and the performance of the model.
Tests (cascade randomization, data randomization ...) are designed in [Adebayo et al. 2018]
to show whether interpretability methods are sensitive to model parameters or input. In [Nie,
Zhang, and Patel 2018], it is shown that some popular interpretability methods are doing a
simple partial image recovery that makes them model or class sensitive and this is supported
by adversarial examples.

[Kindermans et al. 2019] propose a property that an attribution method should have,
called “shift invariance”, and show that some popular methods do not respect it. Note that
defining properties required for interpretability methods has motivated a lot of works such as
“completeness” property and “implementation invariance” property in [Sundararajan, Taly,
and Yan 2017], “weak dependence” property in [Srinivas and Fleuret 2019] or “sensitive-n”
in [Ancona et al. 2017].

3.4.3 Medical usage

Due to their growing importance, interpretability methods have been extensively used in
medical applications especially to access further and more complex information than what
the model is trained for.

For example in [Courtiol et al. 2018], as we said (and illustrated in Figure 3.7), inter-
pretability is induced by design in the training and it works well with a FROC (see Section
3.3.1.1 for definition) of 0.318 on Camelyon-16 detection while it is fully weakly supervised
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regarding detection. The same weakly-supervised localization is performed in [Sundararajan,
Taly, and Yan 2017] for diabetic retinopathy detection (while only image label is given at
training time) using their Integrated Gradients interpretability method.

In [Campanella et al. 2019], t-SNE tile visualization is proposed to show the relevance of
what is learned by the model by highlighting how it separates sub-types of tissues that were
never explicitly given to the model.

[Schutte et al. 2020] use a generative model (called StyleGAN [Karras, Laine, and Aila
2019]) to generate images that highlight which changes in image would be responsible for a
change in prediction.

More advanced works even propose to improve performances relying on interpretability
and guiding the fine-tuning of models by constraint on dimension reduction and clustering
method called “projective latent interventions” [Hinterreiter, Streit, and Kainz 2020].

Even if interpretability for medical application seems to grow and be efficient enough to
gain the confidence of medical experts, there are still some limitation in particular to guide
pathologists for their analysis of slides and to guide them towards new discoveries. Indeed,
the 0.318 FROC metric reached by [Courtiol et al. 2018] is interesting but is far from fully
supervised state-of-the-art methods performing at 0.807.

3.5 Conclusion and discussion

In this chapter, we presented the most popular CNN feature extractors and their performances
on ImageNet challenge. Object detection pipelines have been detailed and we showed that,
even if they perform well in general, their need for extensive annotations becomes a limitation
in their development. Thus, we introduced WSI classification mostly in a MIL context and
its instantiations on histology public datasets. We also explained why these approaches are
interpretable by design. Thus, we further detail importance and promises of interpretability
methods while highlighting how their performances can be measured.

From this literature overview, we can identify that crucial components for an efficient
automatic Pap smear WSI classification system are: an efficient tool for cell classification that
goes beyond the binary “normal” vs “abnormal” classification, an interpretability scheme, and
a whole slide image classifier adapted to cytology use case.
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While Pap tests are the most common diagnosis methods for cervical cancer, their results
are highly dependent on the ability of the cytotechnicians to detect abnormal cells on the
smears using brightfield microscopy.

In this chapter, we propose an explainable region classifier in whole slide images that could
be used by cyto-pathologists to handle efficiently these big images (100,000x100,000 pixels).

45
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We create a dataset that simulates pap smears regions and use a loss function, we call
classification under regression constraint, to train an efficient region classifier (about 66.8%
accuracy on severity classification, 95.2% accuracy on normal/abnormal classification and
0.870 KAPPA score).

We benefit from this loss function to obtain a model focused on sensitivity and, then, we
show that it can be used to perform weakly supervised localization (accuracy of 80.4%) of
the cell that is mostly responsible for the malignancy of regions of whole slide images. We
extend our method to perform a more general detection of abnormal cells (66.1% accuracy)
and ensure that at least one abnormal cell will be detected if malignancy is present.

Finally, we experiment our solution on a small real clinical slide dataset, highlighting
the relevance of our proposed solution, adapting it to be as easy to integrate in a pathology
laboratory workflow as possible, and extending it to make a slide-level prediction.

4.1 Cell-level classification

In this section we are interested in classifying cell images. As introduced in Chapter 2, in order
to classify a slide, pathologists need to go through a cornucopia of cells (up to 100×103). Thus
it makes sense to start by addressing the problem of automatic squamous cell classification.

4.1.1 Herlev severity

The Herlev Dataset ([Jantzen et al. 2005]; see Figure 2.18) is a cytology image set composed of
917 images gathered in 7 classes: normal columnar, normal intermediate, normal superficial,
light dysplastic, moderate dysplastic, severe dysplastic, and carcinoma in situ. The three
first classes belong to the category of normal cells and the last four are abnormal ones (in
order of severity, carcinoma in situ hinting at the presence of an actual cancer). Images are
between 50 and 400 pixels wide. Here, we merged normal images into a single class in order
to study the medical severity or malignancy only, thus building a 5 classes dataset, we call
Herlev severity consisting of: normal (242), light dysplastic (182), moderate dysplastic (146),
severe dysplastic (197) and carcinoma in situ (150).

4.1.2 Backbone comparison

We started by comparing two backbones (or feature extractor). For that we trained the
last fully connected layer of an Inception v3 and a ResNet-101 architecture (pre-trained on
ImageNet) on Herlev Severity using multi-class cross-entropy loss that we note

LCE(p; yclsx ) = −
∑5
i=1 y

cls
x,i . log(pi),

where p = (p1, . . . , p5) are class probability (neurons resulting of softmaxed logits neurons)



4.1. Cell-level classification 47

and yclsx the one hot label associated with the image x (zeros array with a 1 at ground truth
class index).

We used a 5 random folds (splits of the datasets) and obtained average confusion matrices
and KPIs distributions that can respectively be seen in Figure 4.1 and Figure 4.2.

Figure 4.1: Average confusion matrix for ResNet-101 and Inception-v3 backbones over 5
random folds

Figure 4.2: Distribution of performances (Accuracy, Area Under the Curve (AUC) and Binary
Accuracy) for ResNet-101 (in yellow) and Inception-v3 (in green) backbones over 5 random
folds.

Both models seem to perform the same with an average accuracy of 60% for the Inception
v3 model and 61.5% for the ResNet-101 model. The result we report confirms the fact that
these two feature extractors are not statistically significantly different (p > 0.1, using Mann-
Whitney U Test). Nevertheless, we chose to continue with a ResNet-101 backbone because it
seems to be more stable over trainings, i.e. invariant to split.
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4.1.3 Feature fine-tuning

Then, we fully retrained the ResNet-101 (pretrained on ImageNet) to measure the impact of
features fine-tuning on performances. Figure 4.4 shows the distribution of performances of
fine-tuned models and compare them to the “frozen” ImageNet ResNet-101 feature extractor.

Figure 4.3: Average confusion matrix for ResNet-101 with fine-tuned features over 5 random
folds.

Figure 4.4: Distribution of performances (Accuracy, AUC and Binary Accuracy) for ResNet-
101 with ImageNet features (in yellow) vs ResNet-101 with fine-tuned features (in red) over
5 random folds.

We report highly significant improvements regarding overall accuracy with a gain of 6.1%
and an increase of 4% in mean AUC.

However in Figure 4.3 we can see that the model tends to misclassify images from the
“normal” class and most severe classes (“severe dysplastic” and “carcinoma in situ”). This



4.1. Cell-level classification 49

was already reported in [Zhang et al. 2017] and identified to be due to the visual similarities
between normal columnar and carcinoma in situ cells. Obviously, missing a potential highly
abnormal diagnosis is to be avoided. Similarly, due to the fact that 93% of Pap smears
are normal during routine diagnosis, misclassifying normal cells would require an additional
action by the attending cytotechnicians.

4.1.4 Regression approach

Since the World Health Organization (WHO) classification used in the Herlev set has an order
of severity, the classification task can be interpreted as a regression problem. The regression
loss will push the network to clearly differentiate normal samples from most malignant ones.
We relabel Herlev samples using a score from 1 (for normal ones) to 5 (for carcinoma ones)
and use a Mean Squared Error (MSE) as loss function to optimize:

LMSE(s; yregx ) = (s− yregx )2

with s the predicted score and yregx the regression score associated with the image x.

Thus, we retrain the same ResNet-101 architecture replacing the softmax layer with a
fully connected layer.

Figure 4.5 and Figure 4.6 show respectively the average confusion matrix and the dis-
tribution of scores per class performed by these regressor models for the same 5 random
folds.

Figure 4.5: Average confusion matrix for ResNet-101 Regressor over 5 random folds.

Most importantly, we can see that models do not mis-classify any normal samples or
carcinoma in situ samples with each other. A further point to note from the confusion matrix
deriving from this distribution, these models do more mis-classifications than the categorical
model, with an accuracy of 58.2%. However these misclassifcations are less severe in the scope
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Figure 4.6: Distribution of scores predicted by ResNet-101 Regressor on test sets over 5
random folds.

due to their relative prognosis distance. This can be more easily displayed by the overall MSE
of 0.707 over the test set.

4.1.5 Classifier under regression constraint

While the regression loss was more adapted than a classification (cross entropy) loss to the
severity task, it nonetheless did not improve the performances per class. In this section we
combine the strength of both approaches into a single architecture.

We unify these two pipelines, in order to combine the strength of both approaches, into
a single architecture which we call “Classifier with Regression Constraint”. It consists in
summing the classification loss (softmax cross-entropy) with the regression loss thus strongly
penalizing classification errors when the predicted class and the ground truth classes are
medically distant. For that we turn classification probabilities p = (p1, . . . , p5) (output of the
classifier) into a regression score s using a fixed fully connected layer wr containing regression
scores per class (e.g. wr = [1, 2, 3, 4, 5] as shown in Figure 4.19):

s = RegConst(p;wr) =
5∑
i=1

(pi.wri ) (4.1)

Our training loss L is thus:

L(x, yx) = LCE(p; yclsx ) + LMSE(s; yregx ) (4.2)

where x is an image, yx the label (encoded as one hot vector yclsx for cross-entropy and as a
regression score yregx for the regression constraint).
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In Figure 4.7, Figure 4.8 and Figure 4.9, we can see that our ResNet-101 classifier under
regression constraint makes less misclassifications than the classifier and has lower MSE than
the regressor (see Figure 4.6). Thus, we have an architecture performing on classification task
(mean accuracy of 69.9% and mean AUC of 0.922) and on scoring severity task (average MSE
of 0.654). What is particularly appreciated here is that the “extreme” classes (“normal” and
“carcinoma in situ”) have the best AUC (respectively 0.98 and 0.94).

Figure 4.7: Average confusion matrix for ResNet-101 classifier under regression constraint
over 5 random folds.

Figure 4.8: ROC and AUC obtained by ResNet-101 classifier under regression constraint on
test sets over 5 random folds.

Figure 4.10 sums up the performances over the 5 random folds of the five architectures
we experimented: “frozen”Inception-v3, “frozen” ResNet-101, fully retrained ResNet-101,
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Figure 4.9: Distribution of scores predicted by ResNet-101 classifier under regression con-
straint on test sets over 5 random folds.

ResNet-101 regressor and ResNet-101 classifier under regression constraint. It shows that
overall our proposed classifier under regression constraint is statistically better than other
methods.

4.1.6 Interpretability

Attribution, introduced in the previous chapter, is a crucial task when it comes to medical
applications. Indeed, since the health of patients is at stake, there is a need to strengthen the
confidence of practitioners in the models, and especially to demonstrate that what is learned
is relevant and relies on medical features. In order to compute attribution maps (heat-maps
that highlight regions that participated to the given label), we applied the Integrated Gradient
method [Sundararajan, Taly, and Yan 2017] to highlight on which cyto-morphological features
our model relies to predict the severity. This attribution method consists in interpolating the
image from a baseline image (that is representative of the absence of object, e.g. a white
image in the context of cervical cell classification). Given a pixel value xi of the image x
at position i in the image domain Ω, x′ the baseline image (same size as x), F the model
outputting a score (e.g. class probability for the classifier pipeline or severity score for the
regression pipeline) given an input, and m the number of steps of the interpolation, the value
A(i) of the attribution map given by the Integrated Gradient method for a pixel at position
i is computed as:

A(i) = (xi − x′i)
m

.
m∑
k=0

dF (x′ + k
m .(x− x

′))
dxi

(4.3)
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Figure 4.10: Distribution of performances (Accuracy, AUC and Binary Accuracy) for the 5
architectures experimented over 5 random folds.

In order to reinforce our point, we propose a measure to quantify how much a region of
an image contributes to the predicted label. Given a region R of an image x (subset of Ω),
we denote by AR the contribution of this region to the predicted label, which is computed as:

AR =
∑
i∈R | A(i) |∑
i∈Ω | A(i) | (4.4)

Note that the completeness axiom defined in [Sundararajan, Taly, and Yan 2017] ensures
that, for a baseline defined as before, the attribution over the whole image (denominator) is
non-zero.

We can observe that the model seems to rely more on the nucleus region for more severe
classes (see Figure 4.11), which is coherent since most discriminative features for severe cells
are contained in the nucleus. However, we can not exclude that it could also be a simple bias
introduced by the relative surface of nuclei on abnormal cells.

4.2 Simulated tiles classification

In this section, we propose to apply the two methods introduced in the previous section
(classification using regression constraint and attribution method using integrated gradient)
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Figure 4.11: Herlev images, their associated nucleus segmentation maps and attribution maps
using integrated gradients on trained model (top); distribution of percentage of attribution
in nucleus per class (bottom).

to build a model able to predict a label on tiles containing several cells and to return a heat-
map of the “interesting” regions for a Whole Slide Image (WSI). We also benefit from these
explanation maps to perform localization of the cell responsible for the predicted severity and
detection of other “abnormal” cells. This approach has the advantage of getting us closer
to Whole Slide Image (WSI) classification by working on patches instead of individual cells
(indeed cyto-pathologists do not analyze every cell individually).

4.2.1 Simulated dataset

To create realistic tiles, we need proper cytology background images. We use a pap smear
WSI of size around 100,000x100,000 pixels, tile it (800x800 pixels non overlapping tiles), and
extract “flat white” regions (by thresholding).

To create our dataset (see Figure 4.12), we use the mask given by the Herlev dataset to
extract only the cytoplasm and the nucleus from these images and paste it on the background
images previously created (just making sure they do not overlap). We separate single cells
into 3 sets (training, validation and test) and create the “simulated” cytology tiles sets using
only single cells from the corresponding set. Cells are selected randomly and placed at a
random position on the tile that does not overlap other cells. Overlap is not considered in
order to avoid a cell to hide an informative part of another cell that would create adversarial
samples.



4.2. Simulated tiles classification 55

Figure 4.12: Simulated tile creation process.

The challenge presented by what we call the “simulated” cytology tiles dataset is to predict
the maximum severity present on the tile i.e. normal tiles are composed only of normal cells
and other tiles are labelized by the degree of the most severe cell in it (see Figure 4.13 (top),
note that in the figures, we show the ground truth boxes with a color code for clarity but
these boxes are never used in the training, only global image labels are used). We make sure
that each Herlev cell is used only in one split of the “simulated” tiles dataset.

Figure 4.13: Simulated tile labels.

We created a 1808 images dataset (1309 for training, 171 for validating and 328 for testing),
each image containing between 1 and 15 Herlev cells. The training set contains 217 normal
samples, 267 light dysplastic samples, 284 moderate dysplastic samples, 288 severe dysplastic
samples and 253 carcinoma in situ samples, while the test set contains 60 normal, 74 light
dysplastic, 77 moderate dysplastic, 67 severe dysplastic and 50 carcinoma in situ.

4.2.2 Classification

The problem of ordered classification task in known as “ordinal regression”. In the following
paragraphs, we start by training a classification architecture before detailing two methods
that are generally used to tackle these ordinal regression challenges. Finally, we apply the
classification pipeline under regression constraint on the “Simulated” tiles dataset to show and
validate the improvement that this method brings. We perform 5 trainings per pipeline to
ensure the statistical significance of the proposed improvements by comparing three evaluation
measures: overall accuracy, binary normal/abnormal accuracy and quadratic KAPPA value.
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4.2.2.1 Softmax cross-entropy approach

We start by training a regular (softmax cross-entropy for loss) classifier pipeline on these
simulated tiles. To deal with the size of the images (800x800 pixels), we added a 7x7 max
pooling layer after the third block (inspired from “ROI Pooling” in [Ren et al. 2015]). We
show, in Figure 4.14, that the confusion matrix computed on the 328 test images reveals an
average overall accuracy of 54.6% and a binary classification accuracy of 93.6%.

We can observe in Figure 4.15 the ROC curves for each class with an average mean AUC
of 0.866, revealing that the network learned almost perfectly the normal class (AUC of 0.99)
at the expense of other classes. The average quadratic KAPPA value is 0.784.

Figure 4.14: ResNet-101 classifier confusion matrix on “simulated” cytology tiles test set.

These two figures highlight that the classifier makes mistakes between carcinoma in situ
samples and normal ones. Using Integrated Gradient attribution method (see Section 4.16)
we show that this is once again due to normal columnar cells.

4.2.2.2 Ordinal regression approach

In [Cheng, Wang, and Pollastri 2008], the authors present their pipeline to address ordinal
regression problems. Instead of training classes one against the others, it consists in benefiting
from the order of classes to train one binary classifier per class to predict whether the input
sample passes the level of each class or not. For our problem it would be equivalent to train 5
classifiers. It is implemented by activating each pre-softmax neuron with a sigmoid activation
thus outputting an independent score for each class (see Figure 4.26). The ground truth
vector is [1, 0, 0, 0, 0] for normal class, [1, 1, 0, 0, 0] for light dysplastic, and so on up to [1,
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Figure 4.15: ResNet-101 classifier ROC curves and on “simulated” cytology tiles test set.

Figure 4.16: carcinoma in situ sample predicted as normal by ResNet-101 classifier and its
attribution map.

1, 1, 1, 1] for carcinoma in situ samples.

We train a ResNet-101 with the ordinal regression pipeline on the simulated tiles dataset
we created before.

Figure 4.17 shows the obtained confusion matrix. We report an average overall accuracy
of 62.2%, an average binary normal / abnormal accuracy of 93.7% and an average quadratic
KAPPA value of 0.83 using ordinal regression pipeline.

4.2.2.3 Soft Labels for Ordinal Regression Pipeline Results

Another, more recent, method proposes to tackle this ordinal regression problem using “Soft
Labels” [Diaz and Marathe 2019]. It simply consists in changing the ground truth labels to be
less critical than one-hot vectors. For that, positions of classes are defined (e.g. [1, 2, 3, 4] for
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Figure 4.17: ResNet-101 ordinal pipeline confusion matrix on “simulated” cytology tiles test
set.

4-ordered classes) and ground-truth labels are encoded as a softmax of the negative distances
(absolute value of the difference of the positions) between classes. As an example, instead
of having [0, 0, 1, 0] for class 3, we have a vector d,containing the opposite of distances,
equal to [-2, -1, 0, -1] and then the ground truth label is [0.0724, 0.1966, 0.5344, 0.1966] (see
Figure 4.26).

We train a ResNet-101 with the “Soft Labels” pipeline on the simulated tile dataset (same
random 5 folds). Figure 4.18 shows the confusion matrix obtained. We report an average
overall accuracy of 61.5%, an average binary normal / abnormal accuracy of 94.4% and an
average quadratic KAPPA value of 0.832 using the “Soft Labels” pipeline. This approach
statistically improves the ordinal regression approach.

4.2.2.4 Classifier under regression constraint

We consider again our classification under regression constraint method for the problem of
classification of tiles. Figure 4.19 illustrates the method explained in Eq. 4.1 and 4.2. Note
that the regression constraint weights are set to be linear (e.g. [1, 2, 3, 4, 5]).

Figure 4.20 shows the confusion matrix which highlights that most samples are well clas-
sified and that, once again, as for Herlev cells, we avoid predictions mistakes between normal
and carcinoma in situ tiles. It yields an accuracy of 66.8%. Figure 4.21 confirms that the clas-
sification is really good for the carcinoma in situ and normal samples with a respective AUC
of 0.96 and 0.99. The average mean AUC is 0.884. Interestingly, binary normal / abnormal
classification also benefits from this contribution, reaching an average accuracy of 94.5%. We



4.2. Simulated tiles classification 59

Figure 4.18: ResNet-101 “Soft Labels” pipeline average confusion matrix on simulated cytol-
ogy tile test set over 5 random folds.

Figure 4.19: Illustration of classifier with regression constraint architecture and losses.

can also report an average classification sensitivity of 98.4% along with a specificity of 90.7%.
The obtained average quadratic KAPPA value is 0.837.

We also report Positive Predicted Value (PPV or Precision) evolution with the increase
of the ratio between the number of negative samples and the number of positive samples in
Figure 4.22. Indeed, we expect to have many more negative samples than positive samples in
a real cases. As we explained, the goal is to focus on having no false negative samples to avoid
missing critical cases, and according to this requirement the highest the PPV the better. We
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Figure 4.20: ResNet-101 {classifier + regressor} confusion matrix on “simulated” cytology
tiles test set.

Figure 4.21: ResNet-101 {classifier + regressor} ROC curves and on “simulated” cytology
tiles test set.

extend this discussion in Section 4.3, showing that we do have false positive samples but in
an acceptable proportion.

Interestingly, when we run the integrated gradient process on images that confused the
simple classifier model (predicted normal for a carcinoma in situ sample), we can observe, in
Figure 4.23, that the error is due to a normal cell (and more precisely the normal columnar
one at the top right of the image) while the {classifier + regressor} model ignores this cell
and classifies correctly this sample as being carcinoma in situ. This enforces the fact that
the regression constraint enables to focus on these difficult cases and to drive the training
towards discriminative and relevant features.
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Figure 4.22: PPV evolution w.r.t. ratio between negative samples and positive samples.

Figure 4.23: Image (left )and attribution map for a carcinoma in situ sample that has been
classified as normal by classifier (middle) and as carcinoma in situ by {classifier + regressor}
(right).

4.2.2.5 Classifier under regression constraint with sensitivity focus

As explained before, there is a need to prune “easy” normal cases that represent the vast (up
to 93%) majority of cases so medical doctors can focus on tricky abnormal cases. Nevertheless,
we want to make sure that when a case is predicted as “normal” it is the right prediction i.e.
sensitivity of 100% (no False Negative) to avoid medical doctors missing an “abnormal” case.

For that we benefit from our regression constraint implementation to add more “distance”
between the “normal” class and the “abnormal” ones (sensitivity focus) as follows: 1 for
normal samples, 4 for light dysplastic samples, 5 for moderate dysplastic samples, 6 for light
dysplastic samples and 7 for carcinoma. This is implemented by changing the weights for
the fixed weights fully connected layer of the regression constraint (wr becomes [1, 4, 5, 6, 7]).
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Note that this shift of 3 between the “normal” class regression score and the “light dysplastic”
class regression score is purely hand-crafted.

Figure 4.24 shows the confusion matrix for 5 trainings with sensitivity focus. It gives an
accuracy of 66% with a sensitivity of 99.5% coupled with a specificity of 91%. As expected, this
change gives a better sensitivity but on the other hand the model has to make a compromise
that penalizes the overall accuracy. It improves the sensitivity by 1.1%. We also report that
the KAPPA measure also benefits from this change with a value of 0.870. It can be explained
by the fact that we strengthen the regression constraint on the classifier by increasing the
“distance” between the “normal” class and the “abnormal” ones, thus the regression constraint
pushes severity scores towards abnormal scores thus avoiding false negative cases and resulting
in an improvement of the binary accuracy and the sensitivity.

Figure 4.24: ResNet-101 {classifier + regressor} with sensitivity focus confusion matrix on
“simulated” cytology tiles test set.

4.2.2.6 Comparison of pipelines

Figure 4.26 illustrates pipelines to which our regression constraint method is compared and
Figure 4.25 shows the distribution of performances over the 5 random folds for each pipeline,
i.e. the overall accuracy, binary accuracy and KAPPA value over the 5 trainings. It shows
that the regression constraint really improves the general performances and particularly forces
the network to learn features that are discriminative regarding the severity. Mann-Whitney
U test [Nachar 2008] shows a statistical improvement from the ordinal regression pipeline to
the regression constraint one regarding overall accuracy value distribution over the 5 trainings
with a p-value of 0.005.

4.2.3 Interpretability

Now that we have a classifier (the {Classifier + Regressor} Pipeline one) that works well
on our “Simulated” cytology tiles dataset, we will check that our model relies on the right
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Figure 4.25: Overall accuracy, binary accuracy, KAPPA, sensitivity and specificity distribu-
tions for each pipeline.

Figure 4.26: Illustration of classifier, ordinal regression and Soft labels architectures and
losses.

cell(s) to make its decision by using the Integrated Gradient method presented previously.
The baseline image used is a white (800x800) image since it is representative of the absence
of objects in the cytology context. Moreover it is classified by the model as being normal so
it is a good baseline for severity attribution.

Figure 4.27 shows the result of the Integrated Gradient (bottom) on test images (top).
Two observations are interesting to note: first, for the normal tile example, all cells have been
identified as contributing to the predicted label and the cell that has the strongest attribution
is the normal columnar one. This hints that the model has learned to identify these cells to
avoid making the confusion with carcinoma cells (that also have a high NCR). Secondly, it
also highlights that for abnormal tiles at least one of the most severe cells is clearly identified
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by the model as strongly contributing to the predicted label, and that cells that are abnormal
but not the highest severity seem to contribute a bit as well. More generally, we can notice
that the model learns to find some cells that are discriminative to make its prediction and
some cells are just ignored.

These qualitative observations, in addition to strengthening the confidence in our model
training and predictions to come, really put forward the potential for medical support through
localization and more generally detection to guide diagnosis.

Figure 4.27: Simulated tile examples (with colored ground truth cell boxes) and the associated
attribution maps w.r.t. to the predicted class.

4.2.4 Weakly supervised localization

In the previous paragraph, attribution maps have proved to be useful for the interpretability of
what has been learned by the model. They also hint the possibility to be used for explanatory
localization. In this section, we extend this approach by proposing a method to localize and
detect, in a weakly supervised manner, most abnormal cells in a region containing several
cells.

The previous qualitative results provide a hint for a potential localization (while no boxes
were used during training). To go from the attribution map obtained by Integrated Gradient
to what we call “candidate boxes”, the steps are:

1. Binarize the attribution map (e.g. 128 threshold);

2. Apply a morphological closing operation (e.g. using a 9 pixels disk structuring element);

3. Identify individual objects using connected component labeling;

4. Compute bounding boxes for each object labeled.
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Results for example tiles can be seen in Figure 4.28.

After obtaining all candidate boxes, we first filter out boxes that are too small (under
50 pixels) then we select the most contributing box by computing the density inside each
box left. Figure 4.29 shows the resulting localization boxes associated with the global label
prediction.

Figure 4.28: Process to localize most contributing cell from attribution map.

Figure 4.29: Weakly supervised localization on “simulated” tiles examples.

The resulting weakly supervised localization accuracy is 80.4%.

4.2.5 Weakly supervised abnormal cell detection

We showed that we were able to localize precisely the cell that contributes the most to the
predicted label. But, as explained before, the model has learned to focus on two or three cells
to predict the label of the region and sometimes it seems to also use abnormal cells of lower
severity to predict. For example, in Figure 4.27 (right) the model predicted correctly the class
carcinoma in situ and we can observe that it strongly relies on the two carcinoma cells on
the right but also uses the three cells (and more particularly their nucleus) on the left that
are abnormal (two light dysplastic and one moderate dysplastic) while ignoring the two cells
in the middle that are indeed normal ones. Thus, we can enter a context of “abnormality”
detection and try to find abnormal cells.
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So, instead of keeping only the box with the highest density, we keep all candidate boxes
(after size filtering) and point to the middle of the box.

We count a true positive (TP) if the point is inside an abnormal box, false positive (FP)
if it is inside a normal box, a true negative (TN) if a normal box has no point inside and a
false negative (FN) if an abnormal box has no point inside (which is expected given the fact
that the model generally uses two or three cells to predict and that a tile can have up to 12
abnormal cells).

Thus, we count 501 TP along with 104 FP and 433 TN for 376 FN which gives an accuracy
of 66.1%. Deriving from this confusion matrix, we also report a sensitivity of 57.1% and a
specificity of 80.6%. Fig 4.30 shows some test images, their severity attribution map and the
detection associated. Additionally (and maybe even more essentially), we claim that in all
cases where abnormal cells are present, we detect at least one which ensures medical support
efficiency.

Figure 4.30: Weakly supervised abnormal cells detection examples.

4.3 Liquid-based cytology whole slide image classification

In this section, we discuss the performances of the proposed methods on a real clinical dataset
that includes artifacts and overlapping cells. We asked an expert cytopathologist to make
her diagnosis on 24 Pap smears WSI and to mark abnormal cells on abnormal slides. We
extracted, by tiling where cells were marked, 568 “abnormal” images at 10X magnification
thus obtaining a binary classification dataset, and more than 1,900 “normal” tiles extracted
from “normal” slides.

We trained the same ResNet-101 classifier architecture (using regression constraint) using
80% of these data and evaluated the performances on the 20% left (randomly split with
regards to slides). We balance the train set regarding classes by sampling more frequently
“abnormal” samples that are under-represented in our dataset.

Note that we considered using “simulated” cytology tiles to increase the size of the training
set but the non-overlapping of cells in these tiles simplifies the decision and would not transfer
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to tiles extracted from slides which would result in a loss of performances.

Figure 4.31 shows the confusion matrix obtained for 10X magnification on test images. It
shows an accuracy of 97.4%, a sensitivity of 89.1% and a specificity of 99.7%. We also report
a KAPPA measure of 0.812 and an AUC of 0.991.

Figure 4.31: ResNet-101 classifier confusion matrix on real cytology 10X tiles test set.

Using integrated gradient, we computed attribution maps and applied the post-processing
described previously to localize abnormal cells on “abnormal” tiles. In the case where another
candidate box is 80% as dense (in terms of attribution) as the best candidate box, we also
return this box as being an abnormality localization.

We report a localization accuracy of 32.8% (qualitative results obtained can be observed
in Figure 4.32).

This localization accuracy is quite satisfactory regarding the localization which is pretty
complicated. Indeed, there are generally around 15 cells per 10X tile, moreover there are
artifacts as it can be observed on the third example. This localization accuracy also indicates
the high number of FP detections. However, from our point of view, even when the localization
is wrong (see second example in Figure 4.32), it still captures rather interesting cells (dark
blue cell with high NCR). Note that this localization accuracy could be improved using a
Herlev cell classifier to validate the “abnormality” of identified cells.

This kind of supervision remains weakly supervised even with cells annotated by the
pathologist since we never use cell localization at training time and we are going to show that
we are able to localize some cells. The pathologist needs only to annotate few cells (which
is much less tedious than annotating all abnormal cells), and this proves sufficient for our
method to predict the class of the global tiles and localize abnormality. Typically training
an object detection pipeline would require much heavier annotation and would not give much
better results. We completed annotations of potential abnormality in tiles where abnormal
cells were marked, thus reaching about 3.300 annotations and 568 fully annotated tiles. We
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Figure 4.32: Example of weakly supervised localization on real cytology 10X tiles; Images and
ground truth annotations (left); Integrated gradients results (middle); Images and localization
results (right).

trained a Faster-RCNN [Ren et al. 2015] model for object detection and obtained an area
under Precision-Recall Curve of 0.22 due to the high sensitivity that triggers a high number of
FP detections. Moreover, our classification approach is twice faster than the object detection
approach. Quantitative and qualitative results can be observed in Figure 4.33. Both figures
highlight how sensitive the model is by detecting too many cells with a high “abnormality”
probability (over 0.9 on the detections showed), and that there is a compromise to make
between precision and recall performances (on the Precision-Recall curve).

4.3.1 Pre-processing

To validate the clinical usefulness of our work, we gathered 40 new slides for which only the
global diagnosis is known (20 “normal” and 20 “abnormal”) and we made a prediction on
each tile of the sample.

Our CAD tool starts with what we call “sample tiles selection” process that aims at
selecting tiles that are part of the sample and not digitalization artifact or background. It
starts with a removal of all “flat” (non informative) tiles by computing the histogram of each
tile and considering as background the ones that have over 95% of their histogram in a window
size of 30 pixels, called “background removal”. Then, we select only neighbors tiles that form
the biggest cluster. We call this “sample selection”. This process (results in Figure 4.34) gives
an average of number of tiles per slide of 3300 at 10X (with a minimum of 934 tiles and a
maximum of 7223 tiles).
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Figure 4.33: Results of Faster-RCNN object detection approach for cell detection; PR Curve
(left); Images and ground truth annotations (middle); Images and detection (with abnormality
score above 0.9) from trained Faster-RCNN (right).

Figure 4.34: Tiles selected after sample tile selection process; respectively “background re-
moval” and “sample selection”.

4.3.2 Integration in a computer-aided diagnosis pipeline

Figure 4.35 shows that most tiles are classified as being “normal” (severity score between 0
and 0.5) regardless of the fact that the slide is “normal” or “abnormal”. This is expected since
only some cells are abnormal on an abnormal slide. Obviously, false positive tiles are expected
but we relax highly the regions to analyze before making decision, which could result in a
significant gain of slide review time.

Figure 4.36 shows that significantly more tiles are classified as being “abnormal” (severity
score between 0.5 and 1) for “abnormal” slides, which enforces the confidence in the model.

The whole computer-aided tool process and results are illustrated in Figure 4.37.

We can observe that 38 regions (on more than 2700 potentially before classification) have
been classified as being abnormal and that cells that led to this decision have a high NCR
and chromatin condensation.
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Figure 4.35: Histograms w.r.t. abnormal tile scores for tiles from 10 normal slides vs 10
abnormal slides.

Figure 4.36: Zoom (for abnormal class probability above 0.5) on the histograms w.r.t. abnor-
mal tile scores for tiles from 10 normal slides vs 10 abnormal slides.

For comparison, the Faster-RCNN we trained detects between 1000 and 10000 cells per
slides and there is no correlation between the number of cells detected and the label of the
slides (i.e. there are no more abnormal cells detected on abnormal slides than on normal
slides).

Thus our work allows us to reduce the amount of tiles to analyze and can guide patholo-
gists to make their decisions on some regions instead of having to screen the complete WSI.
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Figure 4.37: Complete pipeline and qualitative results of the proposed method for computer-
aided decision.

Moreover, the localization method enables to guide the review towards discriminative cells.
These contributions might avoid false negative slides by directly proposing cells of interest
and could make slide review much faster by reducing the amount of data to process for
a cytopathologist. In the next subsection, we extend this method by considering a simple
aggregation to obtain slide-level predictions.

4.3.3 From tile-level predictions to slide-level diagnosis

We propose to study the impact of the threshold used to decide whether a tile is abnormal or
not on the number of tiles classified as abnormal per slide. Figure 4.38 shows the evolution
of the average number of tiles selected per slide w.r.t. the slide label and the threshold on
abnormal class probability. It confirms that statistically our method enables to select more
tiles on abnormal slides than on normal slides.

Therefore, we propose to use this number of selected tiles as a predictive value for slide-
label. For that, we compute accuracy and specificity w.r.t. the threshold on abnormal prob-
ability and the threshold on the number of selected tiles that triggers the abnormal label for
the slide. Figure 4.39 shows that the accuracy varies between 0.5 and 0.775 while specificity
varies between 0.5 and 0.83.

Finally, the best configuration is to threshold at 0.1 on tile scores (that is enough to remove
the vast majority of normal tiles) and to use a threshold of 30 tiles predicted as abnormal to
decide that a slide is abnormal. This configuration gives an accuracy of 77.5%, a specificity
of 82.3%, and a sensitivity of 73.9%. We point out that, using this configuration, there are
in general around 100 tiles to review on FP slides which makes the correction by an expert
fast and guided (except an outlier normal slide that requires more than 1000 tiles to review
which would be equivalent as reviewing the whole slide).
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Figure 4.38: Impact of tile-level decision threshold on the number of tiles selected w.r.t. slide
ground truth label.

4.4 Conclusion

In this chapter, we showed that our proposed method (classifier under regression constraint)
can be extended to the new task of classifying tiles from cytology images. We showed,
using an attribution method, that our model learned, under weak supervision, to find the
cells responsible for the predicted label. We also showed that the proposed architecture
outperforms a simple classifier in terms of overall accuracy and severity prediction.

Aiming at providing a tool that helps practitioners we successfully tuned our model to
achieve a sensitivity of 99.5% regarding normal tiles (almost never classify an abnormal tile
as normal) while maintaining a binary accuracy of 95.2% and a good performance regarding
severity stratification with a multi-class accuracy of (66%). Furthermore, we provide the user
with a localization of the cause of the label up to cell level, which is an essential feature
to have in order to gain the confidence of the practitioner in the tool and for this tool to
be integrated in the current workflow of cytopathologists. Besides, our attribution proposal
can be used to detect relevant cells without requiring experts to give extensive annotations
at cell level. Finally, we propose to use these tile predictions to make an efficient slide-level
prediction.

These very encouraging results on tiles are a critical step towards an efficient and ex-
plainable Whole Slide Image classifier. The next step will be to design a system capable of
aggregating in the order of 10 000 tiles while maintaining the same sensitivity, binary classifi-
cation and explanability. The ingredients needed for this challenge include a reliable pruning
pre-processing to alleviate the burden of testing all tiles followed by a suitable aggregation
method through which explanability can be safely propagated back to each individual tile.

Moreover, LBC is widely used worldwide for primary indication such as urinary or thyroid
cancer screening which makes our work even more relevant medically and extendable.
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Figure 4.39: Impact of threshold on tile scores and on the number of selected tiles on the
slide-level prediction.
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As presented in Chapter 3, Multiple Instance Learning (MIL) methods proved efficient
for Whole Slide Image (WSI) classification using only slide-level labels. In this chapter, after
presenting two of the most popular Multiple Instance Learning (MIL) classification approaches
(which we will use a lot in our experiments), we question the concept of interpretability in
these architectures and propose a method that improves slide-level heat-maps by identifying
features that have been learned as contributing to predictions. This approach is validated
on Camelyon-16 dataset. Finally we highlight the limitations for application on Liquid-
Based Cytology (LBC) datasets and provide a weakly-supervised solution that relies on the
annotation of a few cells only.
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5.1 Multiple instance learning approach for whole slide clas-
sification

As we said before, MIL context is the most popular approach for WSIs classification using
only global labels (which avoids requiring medical experts to spend important amount of time
drawing annotations on slides). This idea was first introduced and validated in [Courtiol et al.
2018] and [Ilse, Tomczak, and Welling 2018]. Both approaches are illustrated in Figure 5.1.

Figure 5.1: CHOWDER [Courtiol et al. 2018] and Attention-based [Ilse, Tomczak, andWelling
2018] approaches.

5.1.1 CHOWDER model

CHOWDER stands for Classification of HistOpathology with Weak supervision via Deep
fEature aggRegation [Courtiol et al. 2018]. It consists of preprocessing steps (tissue detection,
color normalization and tile-descriptors computation) that were presented in Chapter 3 to
create the bag of descriptors. Then a 1× 1 convolution layer turns each tile-descriptor into a
single tile score thus creating a bag of tile scores. These scores are then aggregated using a
min-max layer, that keeps the top-R and bottom-R scores (empirically R = 5 gives the best
results), to give a slide descriptor (of size 2×R) that is fed into a two-layers fully connected
network that proposes the diagnosis.
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5.1.2 Attention-based model

The Attention-based whole slide classifier [Ilse, Tomczak, and Welling 2018] uses an attention
module (two 1 × 1 convolution layers with respectively 128 and 1 channels, and a softmax
layer) to compute competitive and normalized (sum to 1) tile scores from tile descriptors.
Then, the slide descriptor is computed as the weighted (by tile scores) sum of tile descriptors
and, as in CHOWDER, given to a two-layers fully connected network that predicts the classes
probabilities.

5.2 Improving interpretability

As introduced in Chapter 3, the great advantage of these architectures, in addition to being
trainable and efficient with very few supervision, is that they are thought to mimic the
workflow of pathologists, which makes the result interpretable. However explanations are
relying on a single “medical” score which might limit the interpretability regarding complex
tissue structures that can be found on these slides.

5.2.1 Formalization and tile scores

This inspiration from pathologist’s workflow to classify a slide (analyzing the whole slide at
a high magnification level, identifying informative regions and making a decision based on
these regions) makes most pipelines entering a common framework.

We propose to formalize this common design here.

Let i be the slide index. The slide is divided into tiles w.r.t. a non overlapping grid after
a tissue detection relying on Otsu segmentation [Otsu 1979] (see Figure 5.2), and. Thus we
obtain a bag of tiles. Let j be the tile index for each slide.

Figure 5.2: Illustration of tissue detection and tiling processes.

There are four distinct blocks in a typical WSI classification architecture:

1. A feature extractor module fe (typically a CNN architecture) that encodes each tile
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xi,j into a descriptor di,j ∈ RN with N the descriptor size (depending on the feature
extractor): di,j = fe(xi,j);

Note that this block is part of pre-processing steps enabling to encode the slide into a
bag of tile descriptors.

2. A tile scoring module fs that, based on each tile descriptor di,j , assigns a single score
per tile si,j ∈ R: si,j = fs(di,j);

3. An aggregation module fa that, based on all tile scores si,j , and sometimes their tile
descriptors di,j , computes a slide descriptor Di ∈ RM with M the slide descriptor size
(depending on the aggregation module): Di = fa(si,j , di,j);

4. A decision module fcls that, based on the slide descriptor Di, makes a class prediction
Pi ∈ RC with C the number of classes: Pi = fcls(Di).

Heat-maps based on tile scores have been proven to be really efficient to the point of being
able to spot cancerous lesions that had been missed by experts (in [Campanella et al. 2019]).

Figure 5.3 illustrates this design and introduces our contributions for improving inter-
pretability.

5.2.2 Proposed method: Using gradient-based explanations

Our approach (illustrated in 5.3) consists in rewinding explanations from the decision module
to tile information by applying interpretability methods and by answering successively the
following three questions:

1. Which features of slide descriptors are relevant for a class prediction?

2. With regard to the aggregation module, which features of tile descriptors are responsible
for previously identified relevant slide descriptor features?

3. Are these features of tile descriptors relevant medically and representative of histopatho-
logical information?

The first question is answered using attribution vector Ac ∈ RM (one for each class c)
computed as the gradient of the component of index c of Pi (noted Pi,c) with respect to
Di. It enables us to identify a set of relevant positions (corresponding to features extracted)
Kc = {Kc,1, ...,Kc,L} in slide descriptors, i.e. the L (empirically determined) positions in Ac
with highest attributions over the slide predicted in class c. Each attribution Ac,m at position
m (∈ [0;M ]) of vector Ac is computed as:

Ac,m =
∑
i∈Ic
| ∂Pi,c

∂Di,m
|=

∑
i∈Ic
| ∂fcls(Di)c

∂Di,m
|,

with Ic the set of slides predicted to be in class c and | . | the absolute value.
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Figure 5.3: Overview of the proposed method. WSI Classification: (a) Tiling from the slide;
(b) Features extraction from the tiles; (c) Tile scoring from tile descriptors; (d) Aggregation;
(e) Decision from the slide descriptor; Interpretability (in red): (f) Feature identification from
gradient-based attributions; (g) Feature selection from feature colocalization; (h) Heat-map
computation from activation of selected features; (i) Individual feature visualization through
gradient ascent; (j) Individual feature visualization through tile feature activation.

Then, the second question is also answered using an attribution vector ac ∈ RN computed
as the gradient of tile score si,j with respect to tile descriptor di,j . This enables to identify
feature positions kc = {kc,1, ..., kc,l} in tile descriptors, i.e. the l (empirically determined) tile
descriptors that are responsible for high activation at previously identified Kc positions in
slide descriptor. Each attribution ac,n at position n (∈ [0;N ]) of vector ac is computed as:

ac,n =
∑

(i,j)∈Jc
| ∂si,j

∂di,j,n
|=

∑
(i,j)∈Jc

| ∂fs(di,j,n)
∂di,j,n

|

with Jc the set of tile positions (i, j) that most activate Kc positions in slide descriptors
(threshold empirically determined, explained in the next subsection).
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5.2.3 Feature identification on trained CHOWDER and attention-based
models

Dataset and Preprocessing. We validate our approach using Camelyon-16 dataset that
contains 345 WSI divided into 209 “normal” cases and 136 “tumor” cases. This dataset
contains slides digitized at 40X magnification from which we perform sample detection using
Otsu thresholding [Otsu 1979] on a thumbnail of the slide downscaled by a factor 32 and
keeping tiles that contain at least 50% of foreground pixels w.r.t. Otsu segmentation. Then,
we extract, with regard to a non-overlapping grid, 224× 224 pixels tiles at 20X magnification
without stain normalization. Then, we pre-compute, for each tile, 2048-tile descriptors using
a ResNet-50 model trained on ImageNet as it is done in [Courtiol et al. 2018; Campanella
et al. 2019; Naylor et al. 2019; Lu et al. 2020; Campanella, Silva, and Fuchs 2018; Li, Li, and
Eliceiri 2020]. 216 slides are used to train our models while 129 slides form the test set to
evaluate performances of the different trained models.

After training, both models perform similarly at slide-level classification with an AUC of
0.82 for CHOWDER and 0.83 for attention-based.

Results on CHOWDER model. Let us now illustrate and detail the results of our ap-
proach on the CHOWDER model guided by the three questions raised in the previous sub-
section.

The first question is “Which slide descriptors features are relevant for a class prediction?”
i.e. for CHOWDER, given the M=10 (R=5) tile scores given as slide descriptor (the 5
minimum tile scores and the 5 maximum tile scores), what is the contribution of each of these
values to the prediction?

Figure 5.4 shows, as histograms, the distribution of the (5-)min and (5-)max scores w.r.t.
predictions over the whole 129 test slides, and highlights that min scores are the ones that
contribute to discriminate between the two classes (i.e. the lower min scores, the more the
slide is predicted as being “tumor”). A Mann-Whitney U-Test between scores (min and
max independently) distributions reveals that min scores distributions per predicted class are
statistically different (p < 10−3) while max scores are not (p = 0.23). The attribution of
min and max scores distributions validates this assertion by showing a statistically higher
attribution on min tile scores than on max tile scores.

After finding that min scores are the ones describing tumorous regions and thus that max
scores are used for the “normal” class, we are interested in identifying which features of tile
descriptors are mostly responsible for minimum and maximum scores, i.e. to describe each
class. To address this second question, we use the same gradient-based explanation method
on tile scoring module.

Most minimal tile scores are under -5 and most maximal tile scores are above 11. For each
of these groups of tiles, we compute the average attribution of each of the N=2048 features
in tile descriptors (extracted by a ResNet-50 trained on ImageNet). Figure 5.5 shows the
distribution of features hence activated and allows us to identify which features are mostly
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Figure 5.4: Slide descriptor attribution for the “tumor” class; (a) Illustration of gradient on
the learned “Decision” block; (b) Distributions of min and max scores w.r.t. the predicted
class; (c) Distributions of attribution on each slide descriptor items (5-min scores and 5 max-
scores); (d) Detail of the distribution of attribution for min 1 (lowest) tile score item and
bimodal Gaussian approximation.

responsible for min and max tile scores, i.e. highest attribution for min and max scored tiles.

Figure 5.5: Attribution on tile descriptor items for the “tumor” class; (a) Illustration of gra-
dient on the learned “Tile Scoring” block; (b) Distributions of attributions for tile descriptors
with lowest score; (c) Zoom on the range of interest.

Thus we are able to claim that features (defined by their position in the descriptor) that
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are mostly useful for the trained model for the “tumor” class are 242, 420, 602, 1154, 1644,
1652 and 1866. Following the same process, we identified 565, 628, 647, 1158 and 1247 as
being the most contributing features for the “normal” class according to CHOWDER model.

Results on Attention-based model. Here, tile scores are used to weight how much each
tile is contributing to describe the slide w.r.t. the medical task the model has been trained
on. As we understand that high tile scores should put forward tile descriptors that activate
relevant features for the diagnosis, we also understand that, if the attention module makes
its job well, relevant features should be used by both attention module and decision module.
Thus, we propose to select features that have a high attribution in both tile descriptors and
slide descriptors..

Using gradient-based attribution, we compute the histogram of average attribution over
the 2048 features of both slide descriptors and high scored tile descriptors per class (re-
spectively w.r.t. the class prediction made and the tile score predicted). Figure 5.6 shows
the selection of features for “tumor” class i.e. attribution of slide and high (above 0.1) tile
descriptors for slides predicted as “tumor”.

Figure 5.6: Feature selection for the “tumor” class using the attention-based model. (a)
Illustration of the model and gradient-based explanation computation; (b) Distributions of
attributions for tile descriptors of high scored tiles; (c) Distributions of attributions for slide
descriptors of slides predicted as “tumor”.

This process once again enables us to select the 7 features identified as being the most
useful for “tumor” class prediction (position 242, 529, 602, 647, 762, 873 and 1543) and 5
features for the “normal” class (position 672, 762, 1151, 1644 and 1676).
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5.2.4 Tile-level explanations

As exposed in the previous paragraph, based on explanations on decision blocks, we have been
able to identify 7 and 5 features that are mostly used by the trained CHOWDER model to
make decisions (and we did the same for the attention-based model). Now, we are interested
in interpretable information to return to pathologists so that they can use their expertise
to understand what these features put forward histopathologically speaking. We benefited
from discussions with two experienced pathologists and report their overall feedback on the
interpretable visualization we proposed.

To answer the third question put forward in Section 5.2.2, we rely on feature activation
to highlight features identified as being discriminative to the task by selecting tiles xi,j that
have the highest activation per feature in kc identified over the whole test set. Along with
these tiles, we display, for each position in tile descriptors k ∈ kc, a maximum activation X k
image obtained by iteratively tuning pixels values to activate the feature by gradient ascent
as follows: X k is initialized as a uniformly distributed noise image X k0 ; then while fe(X kn−1)k
(activation at position k) increases, iterate over n > 0:

X kn = X kn−1 + ∂fe(Xk
n−1)k

∂Xk
n−1

.

Figure 5.7 shows the 7 tiles that activate the most (over all tiles) each feature and the
max activation image, that we expect to reveal what the feature means with regards to the
histopathological problem it has been trained on.

Figure 5.7: Patch-based visualizations obtained for features 242, 1154 and 1652 (for min-
scores features); 565 and 1247 (for max-scores features); tiles and max activation images
(right).

Pathologists agreed that patch-based tiles visualizations are highly interpretable and ex-
hibit features that are indeed related to each class [Hoon Tan et al. 2019]. For example,
feature 1652 tends to trigger spindle-shaped cells that indeed can be a metastasic tissue or-
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ganization. For “normal” tissue features, feature 565 describes mainly clustered lymphocytes
that are preponderant in normal tissues.

5.2.5 Feature-based heat-maps

Furthermore, we also propose a new way to compute heat-maps for each slide i. We note
Hc,i the map that highlights regions on slide i that explain what has been learned to describe
class c based on the identified features. For each slide i and tile j, the heat-map value Hc,i,j

is computed as the average of activations di,j,k (normalized per feature over all tiles of all
slides) over identified features k in kc for class c:

Hc,i,j = 1
|kc| .

∑
k∈kc

di,j,k−mink

maxk −mink

with maxk = maxi,j(di,j,k) and mink = mini,j(di,j,k).

This heat-map values (between 0 and 1) can be considered as a prediction scoring system,
and thus we propose to compute the Area Under the ROC (Receiver Operating Characteris-
tic) Curve to measure how relevant is the interpretability brought by our automatic feature
extraction approach using ground truth lesion annotations when given. This localization AUC
measures the separability between the class of interest (e.g. “tumor”) and other classes using
heat-maps. Indeed for a good heat-map we expect all tiles that are representative of the class
of interest to have a high score and all other tiles to have a low score.

5.2.6 Measure of interpretability through heat-maps relevance

We also validate results obtained with localization AUC by performing a ROAR analysis
adapted to MIL context. Indeed, good heat-maps put forward discriminative tiles, thus
removing these tiles from bags should prevent the model to learn. In this context, we propose
to gradually (by thresholding the tile scores) remove tiles with a high score and to train
a model with these new reduced bags. If heat-maps are relevant (i.e. if highlighted tiles
represent the class of interest) and complete (i.e. if tiles representing the class of interest all
have high tile scores) then slide classification performances should drop, while if heat-maps
are not relevant or not complete the performances should remain stable through training.

Further and deeper analysis on the impact of the number of features selected on the quality
of generated heat-maps presented in the next section enabled us to propose an additional
feature selection block (in Figure 5.3) to filter out the selected outliers. We will present this
method after motivating it by our results.

The coherence between patches extracted for a better interpretability led us to think about
another way to present features to pathologists. Indeed, since tissues have a coherent and
somehow organized structure, a relevant feature for histological problems would be activated
in a coherent and somehow organized way over slides. Thus, along with patch-based visu-
alization, we propose to access feature activation heat-maps Hc,i over slides, as presented in
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Section 5.2.5.

Figure 5.8 illustrates qualitative results, and highlights how our feature-based heat-maps
enable to extensively put forward “tumor” regions and ignore “normal” tissue. Quantita-
tively, we report a tile-level localization AUC of 0.884 for CHOWDER model and 0.739 for
Attention-based model, using feature-based heat-map values (that are the average normal-
ized feature activation over all features identified for the“tumor” class, see Hc,i,j computa-
tion in Section 5.2.2) as a “tumor” prediction score and using lesion annotation provided
by Camelyon-16 dataset to get the ground-truth label per tile. Both AUCs are significantly
high, which validates our approach of identifying features that are relevant and of computing
heat-maps for interpretation and explanation. Note that the AUC computed using tile scores
is 0.684 for CHOWDER model and 0.421 for Attention-based model (see Table 5.1). We can
also note that there is a gap in interpretability between CHOWDER model and Attention-
based model while classification performances are similar (AUC of 0.82 for the CHOWDER
model and 0.83 for the Attention-based model). The gap can be explained by the fact that,
in the context of Camelyon-16, identifying one tumorous tile is enough to label a slide as “tu-
mor”, so implicitly the tile classification does not need to be exhaustive to provide meaningful
information to the slide level decision module.

Figure 5.8: Slide-based visualizations: Heat-maps explaining the “tumor” class obtained by
computing average normalized activation over identified features; ground-truth annotations
for “tumor” tissue (left); CHOWDER model feature-based heat-maps (middle); attention-
based model feature-based heat-maps (right).

Table 5.1: Results: classification and localization AUC using both methods (improvement of
localization AUC by 0.200 for CHOWDER and 0.318 for Attention-based model).

Model Classification AUC Heat-map method Localization AUC

CHOWDER 0.82 Tile scores 0.684
Feature-based (ours) 0.884

Attention-based 0.83 Tile scores 0.421
Feature-based (ours) 0.739
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We also validate the better explanation given by our feature-based heat-maps with a
ROAR approach adapted to the MIL context. In the context of explanation heat-maps, we
expect hot colors regions (i.e. with high scored tiles) to be informative and cold colors regions
to be non-informative. So we propose to remove tiles with an increasing threshold and to
retrain from scratch (still pre-training from ImageNet) a model that we evaluate. Thus, for a
complete and relevant heat-map method the performances should dramatically drop as high
scored tiles, which would be the informative tiles, are removed. By contrast, for irrelevant
or incomplete heat-maps, performances should remain unchanged since informative tiles are
still available for learning (for that we included a control experiment consisting of randomly
distributed tile scores).

Figure 5.9 shows the performances of models retrained after the removal of tiles with dif-
ferent thresholds on the heat-maps obtained from the trained model on the full bags. We can
observe that our feature-based heat-maps are the ones impacting the most the performances,
which confirms the results in Table 5.1. Also it confirms that CHOWDER tile score heat-
maps are complete and relevant while attention-based tile scores heat-maps are equivalent
to random heat-maps due to the important number of positive tiles being scored with a low
score by the attention module.

Note that attention-based tile scores are not irrelevant but not complete. Indeed, these
scores are learned and optimized for slide classification with a competitive approach which
makes them not complete, and generally pushed most tile scores to a zero value, and one or
two (still relevant) tiles with high scores.

Figure 5.9: RemOve and Retrain experiment results: Impact of tile removal using heat-
maps from CHOWDER (left) and Attention-based model (right) on slide classification per-
formances.

5.2.7 Analysis of the number of features

Up to now the number of selected features is fixed by hand. We propose to thoroughly study
the impact of the number of selected features on the quality of our feature-based heat-maps.

First, we measured this impact with a small number of features from using only the one
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most contributing feature up to the first 7 most contributing identified features. We can ob-
serve, in Figure 5.10, that there is an important variability of localization AUC performances
depending on the number of features with a variation between 0.903 and 0.82 (which are still
great performances). We can also interpret that there are features of interest that make the
localization AUC increase (such as feature 602 or feature 1866) and adversarial features that
make the localization AUC decrease (such as feature 1644 or feature 420).

Figure 5.10: Impact of the number of selected features on localization AUC (between 0.80
and 0.92) for small numbers of features.

Thus, it seems critical to study more deeply this problem. So, by thresholding contribution
scores at different values, we select from 1 to (all) 2048 features (according to the distribution
in Figure 5.5) and show the evolution of localization AUC as we use more features to compute
heat-maps (see Figure 5.11).

Three behaviors can be identified depending on the number of selected features:

1. If the number of selected features is really low (here between 1 and 12 features), the
localization performances are unstable;

2. If the number of selected features is between 1% and 5% of features, we have a pretty
constant regime of performances;

3. If the number of selected features is too high, localization AUC performances drop.

This leads to the conclusion that our method enables to select statistically a majority of
features of interest among top-features identified. Thus when the number of selected features
is low the performances are really impacted by the few adversarial features. So we could
propose to select a fair amount of features that ensure good heat-maps. However, being able
to study individually a small number of features (that lead to about 10 minutes of discussion
per feature) really convinced pathologists, while it is not conceivable to ask a medical expert
to analyze deeply a lot of features individually.
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Figure 5.11: Impact of the number of selected features on localization AUC (between 0.7 and
0.9) for high numbers of features.

5.2.8 Colocalization filtering

This study about the impact of the number of selected features on heat-maps quality shows
that three kinds of features stand out for Camelyon-16 dataset among ImageNet features: fea-
tures of interest that activate homogeneously mostly in tumorous regions, adversarial features
that activate homogeneously not only in tumorous regions, and unrelated features that either
activate non homogeneously or almost do not activate over slides. Figure 5.12 illustrates the
difference between features of interest and adversarial features. We can observe that features
of interest indeed activate homogeneously and densely mostly in “tumor” regions, and that
adversarial features either activate homogeneously outside of “tumor” regions or non homo-
geneously. It also gives another way to think about the third question we put forward (“Are
these features of tile descriptors relevant medically and representative of histopathological
information?”) by introducing a manner to measure the potential transfer of each individual
feature to a given histopathological problem.

Under the hypothesis that our feature-based method enables to select statistically a ma-
jority of features of interest, we should be able to filter out adversarial features that do not
colocalize with the feature-based heat-maps (computed as the normalized average of selected
features).

To do so we propose to measure, for each selected feature individually, the Mean Absolute
Error (MAE) between the feature k activation (normalized) heat-map Hk,i and the feature-
based heat-maps Hc,i over whole slide i (given Ni the number of tiles on the slide i and Ns

the number of slides) as following:

MAEk = 1
Ni×Ns

×
∑Ns
i=1

∑Ni
j=1 | Hk,i,j −Hc,i,j |.
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Figure 5.12: Contributing feature activation over slides.

Thus we obtain a distribution of MAE through selected features and we propose to keep
only the ones that are on the lower half of the distribution. Figure 5.13 illustrates the
method in the case of the 7 selected features for the CHOWDER model. We can observe the
normalized activation of each single feature selected from which MAEs are computed. We
can see that one feature (the one at position 420) has a high MAE (compared to the others),
thus this feature is identified as adversarial and removed from the selection. Moreover, it can
be noted that feature 420 is the one associated with the most important drop in localization
AUC in Figure 5.10.

5.2.9 Application to the SFP Challenge

Datasets & Evaluation To validate the usefulness of our solution and come closer to our
use case of cervical cancer screening, we ran a qualitative and quantitative evaluation on
the SFP Challenge dataset [Pathologie (SFP) 2020]. This challenge consists in classifying
histology WSI that come from biopsies from cervix between four (ordered w.r.t. cancer
severity) classes: “normal”, “low grade lesion”, “high grade lesion” and “carcinoma”.

The dataset contains 1015 WSIs, uniformly distributed among classes. We use 80% slides
(810) to train and validate our model and 20% (205 slides) to evaluate its performances.

The evaluation metric is a custom one that takes into account distance between classes
and is computed as one minus the average error w.r.t. an error table that is detailed in
Figure 5.14 (aside with tiles that are representative of classes of interest):
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Figure 5.13: Illustration of the colocalization filtering method.

Given Msfp the error table, Mmodel the confusion matrix obtained by a predictive model
and � the element-wise multiplication, the SFP metric s is computed as:

s = 1− ( 1∑4
i=1

∑4
i=1 Mmodel

×
∑4
i=1

∑4
i=1Msfp �Mmodel)

It can be observed that most of classes are diagnosed through a visual inspection of the
epithelial surface. “Normal” slides will only have normal cells, stacked and well organized,
while “low grade lesions” and “high grade lesions” will reveal dysplastic cells (if the thickness
of the dysplastic layer fills more than two thirds of the epithelial surface then it is classified
as “high grade lesion”). The “carcinoma” class is triggered when the dysplasia invades the
tissue outside of the epithelial surface (thus a “carcinoma” diagnosis requires a screening on
the whole tissue).

Model training We trained an attention-based model using a linear regression constraint
(since classes are ordered) and tiling between 5X and 10X (standardizing on individual tiles
provided by the SFP challenge). We report an overall accuracy of 61.8%, a mean AUC of
0.845 and a SFP metric of 0.9 (see Figure 5.15) on the test set which reveals a good training.

Heat-maps and Interaction with Pathologists We had the chance to work with an
additional Data Scientist (Melanie Lubrano) and three pathologists (Yaelle Harrar, Raphael
Bourgade and Delphine Loussouarn) which enabled us to interpret explanation heat-maps.
We proposed to use both tile scores and feature-based heat-maps that revealed to be somehow
complementary. Indeed, feature-based heat-maps enabled to identify overall tissue and cell
organization that are responsible for the predicted labels, while tile score heat-maps, even if
less interpretable, highlight the reason of the misclassification in case of error in prediction.
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Figure 5.14: Error table for SFP metric computation and classes illustrations.

Figure 5.15: Attention-based model performances on SFP Challenge; the confusion matrix
(left); the ROC curve (right)

Figure 5.16 shows tile score heat-maps for a “normal” slide and a “high-grade lesion”,
both well classified. It can be observed and appreciated that these decisions are made in the
epithelial surface region and that most contributing tiles (w.r.t. tile scores) are coherent with
experts decisions.

Figure 5.17 shows a “high grade lesion” slide wrongly predicted as “carcinoma”. We can
observe, using tile scores heat-maps, that, even if the most contributing tile is not relevant
for the expected diagnosis, features associated with the “carcinoma” class (identified using
our method) highlight in the feature-based heat-map the relevant region for the expected
diagnosis. This confirms the relevance of features used by the model and validates the useful-
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Figure 5.16: Tile score heat-maps for well classified “normal” and “high-grade lesion” slides.

Figure 5.17: Tile score and feature-based heat-maps for a “high grade lesion” slide wrongly
predicted as “carcinoma in situ”.

ness of our interpretability study and proposed method for slide reviews. Thus pathologists
were able to identify histomorphological features that are responsible for errors made by the
model. For example, in Figure 5.17, the tile that has a high tile score reveals a colonization
of endocervical glands by the dysplasia, so it can be interpreted that the model gives a high
contribution to the “infiltration” but does not take into account the cellular aspect, for this
case, preventing it from differentiating between glandular infiltration and epithelial carcinoma
in situ.
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Perspectives on the potential use of this information to improve performances are consid-
ered and developed in Chapter 6.

We showed, using Camelyon-16 and the SFP Challenge histopathological datasets, that
we were able to improve interpretability from trained WSI classification models but we also
showed that features transferred from ImageNet were mostly textures that enable to capture
features such as infiltrations but no cellular level features. This observation may limit the
direct application of these methods to the LBC datasets, since, as explained in Chapter 2,
the decision can be made on single cells visual analysis.

5.3 LBC slides classification

In this section, we apply and adapt MIL-based WSI classification approaches to cytology
images. In particular, we use a dataset of about 400 LBC abnormal cervical smear slides
provided by a partner (Medipath). Then, we experiment the automatic classification of these
slides using the attention-based architecture and confirm the limitation identified before. We
overcome this limitation using a weak “abnormality” detector that enables us to relax the
difficult MIL context. In the end, we are able to train an efficient slide classifier and to detect
individual cells (at 40X) that are responsible for the prediction at slide-level and that could
be used to guide cyto-pathologists for slide reviews in routine.

5.3.1 Medipath dataset

Medipath is a group of anatomo-pathology laboratories in France that mainly performs cancer
diagnosis (breast, thyroid, cervix ...).

This group provided 393 slides distributed into 4 classes that are the malpighian abnormal-
ities: Atypical Squamous Cells of Undetermined Significance (ASCUS), Ligh-grade Squamous
Intraepithelial Lesion (LSIL), Atypical Squamous Cells that cannot exclude High-grade lesion
(ASC-H) and High-grade Squamous Intraepithelial Lesion (HSIL) (listed in order of severity).
Definitions, descriptions and examples can be found in Chapter 2. Figure 5.18 shows a LSIL
slide and a HSIL slide, and illustrates the difficulty of the task of classifying these slides that
is equivalent to searching for a needle in a haystack (given, once again, that most of the time
there is no needle in the haystack).

5.3.2 MIL classical approach

First, we naively train an attention-based model on this dataset. We know from practitioners
that the decision is made at 40X magnification, thus we perform tiling at this level. It gives
an average number of 31945 tile per slide (with a maximum of 39058) which is a difficult
MIL context knowing that discriminative information is really sparse. At 20X, differentiation
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Figure 5.18: “LSIL” and “HSIL” slide examples (whole slide, about 10X view and about 40X
view).

between classes is still possible but more difficult visually but the MIL context is more relaxed
with “only” an average of 7673 tiles per slide (maximum of 9810). For 10X tiling, important
cells are really hard to find and the MIL context is much relaxed with 1998 tiles per slide on
average (maximum of 2478 tiles).

Figure 5.19 shows the visual content associated with a relevant tile for a “HSIL” decision
at the three magnifications we consider.

Figure 5.19: Example of content of single tiles at 10X, 20X and 40X.

10X tiling gave poor results with a 29.5% accuracy and a 0.657 average ROC-AUC that
are barely better than a random predictor.

20X tiling gave better results with an accuracy of 34.6% and an average ROC-AUC of
0.68. Looking at the confusion matrix, on the left of Figure 5.20, it can be appreciated that
the submatrix that concerns only the three first classes is nicely diagonal. Only “HSIL” slides
have not been well learned, which makes the KAPPA measure drop to -0.052. Therefore,
we applied a linear regression constraint to increase the importance of the distance between
classes in the training. This improved accuracy a bit with 35.9% and drastically KAPPA
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measure with 0.14 (see the right confusion matrix in Figure 5.20).

Figure 5.20: Confusion matrix obtained using a tiling at 20X; (a) Using softmax cross-entropy
approach; (b) using classifier under regression constraint.

A similar approach applied at 40X gave promising results with an accuracy of 42.2% and
a KAPPA of 0.320, which shows a better agreement between our predicting system and the
expertize of cytopathologists. The confusion matrix can be observed in Figure 5.21 aside
with explicative attention-based tile score heat-maps. Although classification metrics hint
interesting results, these heat-maps do not show relevant information when the label is well
predicted (see Figure 5.21-b). Sometimes they show relevant cells but a wrong prediction is
made (see Figure 5.21-c). Good classification performances for bad reasons can be explained
by the large number of tiles and the low number of slides, aside with the complexity and large
variability that increase the possibility of overfit or irrelevant learning “short-cuts”.

5.3.3 “Abnormality” detector sampling approach

We showed that there is a limitation is the direct application of MIL approach for cytology
use case, either because of the too important number of tiles or because we have to work at
a magnification level that is high. Also after studying the transfer of ImageNet features to
histopathology problems, we know that most features seem to be texture features. Therefore,
we understand they can be transferred to describe histology slides but become less useful
for LBC problem where tissue structure and organization are lost and cells are analyzed
individually.

Thus, guided by the motivation to work at 40X to benefit as much as possible of texture
features, we chose to relax the MIL context by reducing the number of tiles using weakly
supervised localization.
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Figure 5.21: Confusion matrix obtained using a tiling at 40X; (a) using classifier under
regression constraint; (b) Explanation heat-map of a “ASC-H” slide predicted as “ASC-H”;
(b) Explanation heat-map of a “ASC-H” slide predicted as “ASC-US”.

5.3.3.1 Faster-RCNN training vs tile classifier

In Section 4.3, we presented two approaches for detecting potentially abnormal cells on LBC
slides: an object detection-based method using a Faster-RCNN and a classification-based
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method using a tile classifier and gradient-based explanations.

We showed that Faster-RCNN is not adapted for direct computer-aided diagnosis tools
by being over-sensitive and proposing way too much cells to review. Indeed, all abnormal
cells were detected but there were a lot of false positive detections which would not enable to
reduce the workload of cytopathologists and guide them efficiently.

On the other hand, we showed that classification and explanation-based method were
adapted for reducing the burden of analyzing all cells but were missing most abnormalities
(32.8% on localization accuracy).

To reduce the MIL context, we want to be sure to respect the fact that positive bags
contain at least one positive sample, thus Faster-RCNN approach is more adapted for this
purpose.

5.3.3.2 Count of cells

First, we analyze the count of “abnormal” cells per slide w.r.t. the slide label. Figure 5.22 (a)
shows the distribution of the number of detections per slide. We can observe, first, that there
is no correlation between the number of detections and the severity of the label associated
with the slide. Secondly, we can notice that there are few slides with a really low number of
detections (under 100 detections). Figure 5.22 (b) shows one of these slides and highlights that
it is actually a fully blurry slide due to a digitalization bug, thus these slides were removed
from the datasets. Note that this study was actually made before the other studies, so blurry
slides were also not used for the training of the other models presented previously in this
section.

5.3.3.3 WSI classification results based on weak “abnormal” cell detection

Figure 5.23 shows the confusion matrix obtained using the model trained on bags composed
only of bottlenecks computed from detected cells. We get an accuracy of 48.1% along with a
KAPPA of 0.407, which is above the “moderate accordance” threshold. These results give us
good hopes for a model that identified medically relevant features.

5.3.3.4 Attention-based tile score heat-maps

Moreover, tile score heat-map analysis reveals interesting results. Indeed, two tile scores heat-
maps can be observed in Figure 5.24. The first one (a) shows a “ASC-H” slide predicted as
“ASC-H” and the second one is a “ASC-H” slide predicted as “ASC-US”. We can appreciate
the consistency in tiles with high scores that all show groups of cells with dark blue nucleus.
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Figure 5.22: Study of the number of detections by the “abnormality” detector; (a) Distribution
of the number of detections per slide w.r.t. slide label; (b) Outlier slide visualization.

Figure 5.23: Confusion matrix obtained using a tiling at 40X based on “abnormality” detec-
tion

5.3.3.5 Features and feature-based heat-maps

Now that we validated the relevance of the trained model, we apply our feature-based method
to extract more information about what has been learned by this model.
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Figure 5.24: Tile score explanation heat-maps. (a) Explanation heat-map of a “ASC-H” slide
predicted as “ASC-H”; (b) Explanation heat-map of a “HSIL” slide predicted as “ASC-US”.

Following the same process presented previously, we identify four features that mostly
contribute to describe cells used for the “HSIL” class (the most malignant one). Figure 5.25
shows feature no 420, 434, 860 and 1652 with tiles that activate them mostly and a maximum
activation generated tile for interpretation. Interestingly, two of these features were part of
features identified for the “tumor” class in Camelyon-16 dataset study.

Using these four features, we compute our feature-based heat-maps that show meaningful
hot regions with groups of abnormal cells.

Note: An observation that we made is that often groups of cells are identified and not
often single cells.
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Figure 5.25: Identified features (420, 434, 860 and 1652); The dataset tiles that activate them
mostly and the maximum activation generated tile.

5.4 Conclusion

In this chapter, we presented our interpretability approach and researches that apply to WSI
classification architectures. We proposed a unified design that gather a vast majority of WSI
classification methods relying on MIL learning. We motivated and applied a gradient-based
attribution method to identify features that have been learned to be relevant in intermediate
(tile and slide) descriptors. Then, using on Camelyon-16 dataset, we showed the relevance
of these features by visualization (with dataset patches and max activation) and validation
by pathologists. These discussions made us consider measuring interpretability by computing
explanability heat-maps over whole slides taking into account only identified features. Allying
patch-based and slide-based visualization took interpretability to a next level for pathologists
to understand histological meaning of features used by trained models. They confirmed that
our approach gives explanations that are highly meaningful and interpretable, and convinced
them that characteristics used by the model are aligned with the experience of pathologists.
Our per-block approach can be used for all WSI classification pipelines trained on histopatho-
logical problems (and probably more, such as biomarker discoveries or treatment response)
that follow the general design defined in this work, and shed a light on how WSI pipeline
learn. Validating our approach on two distinct architectures enabled us to claim its general-
izability. Quantifying the improvement of heat-maps generated through two interpretability
measures strengthen this point. Finally, our individual analysis of each feature selected at
slide-level enabled us to filter out outlier features, to stabilize interpretability performances,
and to automatically select the right number of features needed for good heat-maps. This
work digs deeper in the interpretability of WSI classification trained models. Then we val-
idated this work on a new dataset and with pathologists. This dataset deals with cervical
cancer screening in a context of histopathology. In the end, we entered the LBC context
and highlighted the limitations for a direct transfer of previously presented methods for this
application. We proposed to use a weak "abnormality" detector to relax the MIL context.
This enabled us to reach acceptable performance and to prove, through our feature-based in-
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Figure 5.26: Feature-based explanation heat-maps. (a) Feature-based explanation heat-map
of a “ASC-H” slide predicted as “ASC-H”; (b) Feature-based explanation heat-map of a
“HSIL” slide predicted as “ASC-US”.

terpretability approach, the relevance of what has been learned, and to highlight the potential
limitations.





Chapter 6

Conclusion and Perspectives

In this manuscript we presented our work that aims at proposing new methods to build
an efficient Computer-Aided Diagnosis (CAD) tool for cervical cancer screening. Cervical
cancer screening, that tackles one of the most devastating cancer worldwide for women, is
performed by medical experts called cytopathologists that try to detect pre-cancerous changes
on microscopy slides that may contain more than 100,000 cells. While about 90% of the time
there is “nothing” to find, the 10% left are medically potentially critical cases that should not
be missed. The recent efficient process of Whole Slide Imaging enables to digitize microscopy
slides at a high resolution. Thus, it represents an amazing opportunity for medical experts
to benefit from most advanced Artificial Intelligence (AI). Indeed, latest Machine Learning
ML methods promise efficient and personalized Computer-Aided Diagnosis (CAD) tools.

In that sense, Chapter 2 and Chapter 3 respectively offer a review of the medical context
and a state-of-the art study of deep learning neural networks for image classification, object
detection, WSI classification and interpretability (that we identify as a crucial property for
our proposed methods).

Through these first two chapters, we can clearly understand that there are four desired
properties for the direct use of the most popular WSI classification methods to Liquid-Based
Cytology (LBC) applications, and there is accordingly a need for:

1. An efficient single cell classifier since the medical decision may rely on few individual
cells;

2. A method that can deal with WSI containing discriminative information at 40X;

3. A method that can make the decision relatively quick (experts generally take less than
5 minutes per case);

4. A method that is as interpretable as possible in order to efficiently guide medical doctors
toward relevant regions/cells.

Our first contribution, in Chapter 4, tackles the question of having an efficient cell classifier
that can be integrated in a CAD tool. We rely heavily on a public dataset called Herlev
dataset, that contains about a thousand images of single cells extracted from Pap smear slides
and divided into 7 classes. We turned this problem into a severity problem and experimented
a classification and regression approach before proposing a solution that unifies these two
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approaches and outperforms them: a regularization term that is implemented as a regression
constraint on top of a classifier, which enables to train a classifier while taking into account
the notion of “distance” between classes. Then, we exported this method closer to a WSI
system by working on simulated regions containing several cells. We validated the relevance
of our regression constraint and demonstrated that it qualitatively improved interpretability
by performing cell localization and abnormality detection in a weakly-supervised context.
Finally, we embedded this work into a single WSI classification system that can be used to
guide slide reviews for cytopathologists.

Thus, in this chapter, we tackle the two first properties. The point 1 is completed with
great performances. The point 2 could be improved with a better supervised object detector
(e.g. a multi-class detector). The point 3 regarding timing is still limitating with a prediction
time around 20 minutes per slide.

Our second contribution, in Chapter 5, aims at using WSI classification architectures
based on Multiple Instance Learning (MIL) for LBC cervical cancer screening. We started
by questioning the relevance of interpretability as usually defined in this context and brought
a new insight on how it could be improved. We relied on Camelyon-16 dataset to show
how we improved interpretability by extracting tile-level information, that we proved to be
highly relevant for medical experts, and slide level explanation heat-maps. We validated the
method by applying the exact same method to a cervical cancer histopathology dataset. In
a second step, we used a 400 WSI dataset of “abnormal” LBC slides for cervical cancer, and
established the limitations of current methods to perform on this dataset. Noticing that the
MIL context is too complicated, with over 30,000 tiles per slide at 40X, we overcame this by
using a weakly trained “abnormality” object detector for sampling. This enabled to reach
acceptable performances with an inference time around 3 minutes (point 3). Finally, our
interpretability methods enabled us to highlight the most contributing cells and to show the
relevance of the learning (point 4).

In the end, we answered all points listed above with an efficient and interpretable cell
classifier and a good WSI classification system with improved interpretability. However, all
points could also be taken further.

There are still several validation steps to complete to create a tool that is fully suited
to enter the routine of cytopathologists. Obviously, including “normal” slides and other
abnormalities, notably glandular atypia such as Atypical Glandular cells of Undetermined
Significance (AGUS) and Adenocarcinoma In Situ (AIS), would be the next step to create a
model that covers all cases. We would suggest using a hierarchical classification approach (see
Figure 6.1) with regression constraint on each “atypia” branch. We could imagine training a
model per node is that tree.

Training the feature extractor with a self-supervision method such as simCLR [Dehaene
et al. 2020; Chen et al. 2020b] would be a necessary step since it would improve the results
without any additional supervision. It could be applied to both cell-level classification and
WSI classification. Indeed, what we are looking for is not to describe the whole content of
the image of cells but to find features that cells from a certain class have in common.
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Figure 6.1: Hierarchical design for a complete CAD tool for cervical cancer screening.

Another approach that was considered and seemed promising to us in order to improve
interpretability and performances was to add even more prior knowledge (such as the fact
that discriminative features are localized) in the WSI classification architecture by including
gradient-based localization.

The motivation is to turn the workflow of cytopathologists into a deep learning pipeline to
bring explanability and medical feedbacks to practitioners when they are using the CAD tool
built on a trained model. Indeed, when a cytopathologist screens a slide, he/she generally
screens the full slide at (around) 10X magnification looking for potentially abnormal cells.
When he/she localizes a potentially abnormal cell or group of cells, it zooms on this region
and inspects the details of the nucleus at around 40X magnification. Finally, after repeating
this process over the whole slide, based on the presence or not of abnormal cells and their
malignancy (dysplasia), he/she makes a diagnosis. Thus, the proposed approach would be
divided into four stages:

1. A tile classifier that scores each tile at 10X magnification;

2. A 40X region/cell sampler that selects potentially abnormal cells based on 10X tiles
scores;

3. A cell level classifier that outputs a descriptor for each of top-N regions/cells previously
selected;

4. A MIL diagnosis classifier based on previous descriptors that aggregates them into a
slide descriptor and classifies the slide.

We now suggest a potential pipeline (see Figure 6.2):

The pipeline takes as input a bag of tiles of size 896x896 pixels (and the associated
diagnosis at training time) which are resized at 224x224 size to be 10X tiles. These tiles
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Figure 6.2: Suggested WSI classification architecture guided by localization and interpretabil-
ity.

are fed to the tile classifier which outputs a descriptor for each tile. These descriptors are
turned into a single score (implicitly abnormality score). Based on these “abnormality” scores,
the top-N tiles are selected, and the gradient of the score with respect to the tile pixels at
10X is computed. The value of N could be set to 22 because a method called ThinPrep
Images System [Heard et al. 2012], approved by FDA (Food and Drug Administration), is
currently used in the routine of cytopathologists, and proposes 22 regions for the expert to
make the decision. The absolute values of the resulting attribution maps are multiplied by
the negative of the 10X selected tile (since white background is known to be uninformative).
Thus we obtain attribution maps which are grayscale maps where the whiter a pixel the more
it contributes to the abnormality score. We propose to extract, per selected tile, the 56x56
region that has the more attribution (corresponding to a 224x224 region at 40X). A crop is
then made on input (896x896 pixels) images for each selected region (at 40X). Thus we obtain
N tiles at 40X of size 224x224 (hopefully most abnormal cells) that we call cell level tiles.
These images are then fed to the second “diagnosis” classifier that also outputs a descriptor
for each image. These descriptors are given to an attention module (described in the next
paragraph) that aggregates these cell-level descriptors into a single slide descriptor that is
finally given to a two layers multi-layers perceptron that outputs the logits pre-softmax. The
softmaxed class scores are the proposed diagnosis.
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In the end, our interpretability method could be used to improve slide-level classification
performances through active learning. Indeed in Subsection 5.2.9, we explained how patholo-
gists used both tile score and feature-based heat-maps to understand errors and validate good
decisions made by the network. Thus, we considered using these heat-maps to create editable
annotations that could be adapted by experts reviewing slides to correct the model and in-
duce discriminative features that have not been learned. The idea here is to benefit from
information that can be learned directly from slide-level labels. Then, using interpretability
from trained models, to rely on the expertise of pathologists to build new MIL bags that come
to correct errors. In current WSI classification architecture relying on MIL context, there are
two possible sources of errors: localization errors and decision errors. The first ones are when
the heat-map shows that the model based its decision on a non-informative tile. The second
ones are when the heat-map shows that the model based its decision on a relevant tile but
still cannot predict the right label. It is also important not to be biased by ground-truth
labels since a model can make a good prediction but for bad reasons, which is generally the
case if there is an overfitting due to the small size of validation set. The success of such an
approach would be highly beneficial since it would mean that we would be able to correct
models as pathologists are trained, and in general would mean a closer collaboration between
medical experts and computer scientists which is crucial for efficient CAD tools. A promising
approach to induce identified missing features in models is through multi-task and adversarial
training as it is done in [Graziani et al. 2020] which would require finding ways to quantify
it. For example, we could find a way to quantify the concept of epithelial cells vs glandular
cells that seems to have been missed by our trained model for SFP Challenge.

Thus, our work answered critical points for an efficient CAD tool for cervical cancer. Still
there is room for improvement through the new methods being proposed every day. It can
also be noted that cytology exams are widely used for other indications such as bladder cancer
or thyroid cancer screening which could be an interesting validation step for our methods.





Appendix A

From Machine Learning to Deep
Learning

In the wide field of Artificial Intelligence (AI), Machine Learning (ML) gathers methods that
are able to learn through a set of examples also called dataset. Deep Learning (DL) is a
specific group of ML methods relying on deep neural network architectures, thus allowing the
learning of specific features to solve complex tasks.

DL recently gained a lot of interest especially for image processing with architectures
called CNN and this is due to an event that happened in 2012.

A.1 Machine Learning and image classification before 2012

Every year since 2010, the Large Scale Visual Recognition Challenge (LSVRC) [Russakovsky
et al. 2015] enables the best computer vision teams worldwide to compare their image classifi-
cation methods on ImageNet dataset [Deng et al. 2009] (see Fig. A.1). This dataset contains
more that 1,400,000 images divided into 1000 categories, also called classes, inspired from
WordNet [Fellbaum 1998] hierarchy “leaf" classes such as dog breeds (“dalmatian", “golden
retriever", “border collie", ...), car kinds (“race car", “minivan", “cab", ...) or landscape types
(“cliff", “valley", “volcano", ...). The challenge consists in automatically classifying these
natural images in the ground truth class. It is mainly evaluated using top-5 accuracy i.e.
percentage of images well classified among 5 allowed predicted classes, and the hierarchical
cost i.e. the average distance to the closest common ancestor between predicted class and
ground-truth class according to WordNet semantic hierarchy.

A.1.1 Hand-crafted feature extraction

In 2010, the winning method, proposed by a team from University of Illinois (USA) and NEC
(Japan), performed with a top-5 accuracy of 71.8%, an error rate of 47.1% and a hierarchical
cost of 2.1144. This method [Lin et al. 2010] consists in extracting features from the image
in a dense grid descriptor using Histogram of Oriented Gradients (HOG) [Freeman and Roth
1995] and Local Binary Pattern (Local Binary Pattern) [Harwood et al. 1995], then encoding
this descriptor in a high-level descriptor using local coordinate coding [Yu, Zhang, and Gong
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Figure A.1: LSVRC ImageNet dataset images/classes examples

2009] and super-vector coding [Zhou et al. 2010], reducing computational needs by reducing
this descriptor size using spatial pyramid pooling [Lazebnik, Schmid, and Ponce 2006], and
predicting a class based on this pooled descriptor training efficiently a linear Support Vector
Machine (SVM) [Cortes and Vapnik 1995] with averaged stochastic gradient descent [Polyak
and Juditsky 1992].

The same year, the second best method, by Xerox Research Centre Europe team, proposed
to rely on Fisher vectors [Perronnin, Sánchez, and Mensink 2010]. First, features are computed
using Scale-Invariant Feature Transform (SIFT) [Lowe 2004] and color features, and then
reduced using Principal Component Analysis (PCA). A Gaussian Mixture Model (GMM) is
trained to compute Fisher vectors. Spatial pyramid pooling is also used and finally a linear
classifier is trained over these pooled Fisher vectors to make the decision using Stochastic
Gradient Descent (SGD) with two regularizations: L2 normalization, and power normalization
to remove image-specific information and to avoid Fisher vector sparsity. Thus these methods
reached a top-5 accuracy of 66.4% and a hierarchical cost of 2.5553.

The year after, this same team won by improving their classification method with a step of
compressing Fisher vectors using product quantization [Sánchez and Perronnin 2011], which
consists in splitting vectors in small sub-vectors, clustering these using k-means [Steinhaus
1956], and representing each sub-vector by its centroid (encoded by an index). This reduces
the size of the dataset, and thus enables to take the most out of computational and storage
power. The performance reported are a top-5 accuracy of 74.3% and a hierarchical cost of
0.10980.

The 2011 edition second best method was proposed by a team from University of Amster-
dam. Their localization method [Uijlings, Sande, and Gevers 2013] (interestingly this method
won 2011 localization LSVRC competition) combines graph-based segmentation [Felzenszwalb
and Huttenlocher 2004] and grouping methods (color-based [Sande, Gevers, and Snoek 2010],
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texture-based [Lowe 2004] and size-based) for hierarchical boxes proposals. Their classifi-
cation pipeline [Sande, Gevers, and Snoek 2010] uses key-point sampling [Mikolajczyk and
Schmid 2004] then a set of SIFT descriptors with spatial pyramid and vector quantization.
These descriptors are used to train an intersection kernel support vector classifier [Maji, Berg,
and Malik 2008]. The performances are a top-5 accuracy of 69% and a hierarchical cost of
0.13270.

As we can note, all of these methods rely on two stages:

1. Extracting hand-crafted features to describe the image;

2. Training a ML architecture to make the decision based on the image descriptor.

Indeed, due to the lack of computational and memory limitations, the datasets must be
down-sized drastically through embeddings, encodings, quantizations and poolings with hand-
crafted features, while keeping task-related relevant information to train a classifier (and it
works fairly well [Bristow and Lucey 2014]).

And more generally, beyond this LSVRC competition, this type of ML approach has been
extensively used for object recognition: In [Dalal and Triggs 2005], HOG [Freeman and Roth
1995] are used for face detection. In [Mu et al. 2008], Local Binary Pattern (LBP) [Harwood
et al. 1995] are used for human detection. [Jegou et al. 2010] propose Vector of Locally
Aggregated Descriptors (VLAD) as encoding method and use it for scene classification.

A.1.2 ML classification methods

At this time, SVMs [Cortes and Vapnik 1995] seemed to be the most popular ML classification
method. It is an extension of linear classifiers that enables to deal with non-linearly separable
problems. To do so, it projects samples into a higher dimension space using a kernel function
which makes the problem linearly separable and then tries to find the optimal separation
hyperplane i.e. the one that implies the largest margin (smallest distance between hyperplane
and a class sample) using other samples as support vectors (see Fig. A.2).

There are other popular and efficient classification methods [Wu et al. 2007,Dreiseitl and
Ohno-Machado 2002]. For instance, decision trees [Breiman et al. 1984] and random forest
[Brieman 2001] (ensemble of decision trees), that basically aim at dividing the decision into
small if/else condition problems on features values, were also very popular (e.g. [Rajendran
and Madheswaran 2001]).

Logistic regression [Cabrera 1994] and Perceptron [Rosenblatt 1958] are methods that try
to predict the conditional probability of a class with regard to the given input by tuning
parameters with maximum-likelihood estimation. Perceptron method is also called an Artifi-
cial Neural Network (ANN) that consists in multiplying each input feature xi by a weight wi
that is used to compute the weighted sum of the input features that is given to an activation
function, for example a sigmoid:
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Figure A.2: SVM principle.

P (y|x) = 1/(1− e−
∑

i
xi.wi)

We will go into detail about how these weights are computed in the next Appendix B.

Adaboost [Freund and Schapire 1997] proposes to uses an ensemble learning strategy by
training a first classifier and then iteratively training new classifiers giving more weight to
training samples that are poorly classified by previous classifiers.

The k-Nearest Neighbors [Kowalski and Bender 1972] method defines a distance measure
between samples and uses it to map the feature space to a class based on the k closest
neighbors.

A.1.3 2012 LSVRC Edition

The specificity of LSVRC is that with its million of images and 1,000 classes, having hand-
crafted features to describe images is limitating. Indeed features cannot be class-specific but
need to be generalizable to describe a large range of objects and of types of images.

In 2012, while the second best proposed method [Harada and Kuniyoshi 2012] still per-
forms around 74% top-5 accuracy using the same ML approach, a DL approach, proposed by
SuperVision team, succeeded with a top-5 accuracy of 84.7% and even a 62.5% top-1 accu-
racy. And the year after, in 2013, all top methods were using DL methods and performed at
this level (see Fig. A.3).

Thus, the 2012 edition of LSVRC shook the field and turned the spotlight on another way
of working with promises of greater results, namely using CNNs architectures.
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Figure A.3: LSVRC Results over the years; Inspired from: http://www.image-
net.org/challenges/LSVRC/2011/





Appendix B

Introduction to Convolutional
Neural Networks and their training

strategies

In this appendix, we detail the architecture called AlexNet which will enable us to introduce
important concepts to understand Convolutional Neural Networks (CNN) architectures and
their training strategies.

B.1 Convolution layers

The architecture named AlexNet [Krizhevsky, Sutskever, and Hinton 2012] is mainly known
to be the first convolutional neural network architecture to have been successfully trained on
a large scale dataset. Such architectures were introduced 30 years before [LeCun et al. 1989]
with convolutional layers that were used for zip code recognition.

As a reminder, given I a grayscale image of size (XI , YI) and F a linear filter (also called
kernel) of size (XF , YF ), the response A(I,F ) of the image to this kernel also called activation
map is computed using a convolution product as follows:

A(I,F )(x, y) =
∑XF
i=1

∑YF
j=1 I(x− XF−1

2 + i, y − YF−1
2 + j)× F (i, j)

Intuitively, it can be seen as screening the image for a low-level pattern represented by the
kernel. For example, Sobel filters are known to be good vertical and horizontal edge detectors
(see the top of Figure B.1).

CNNs are simply a stack of trainable layers among which there are convolutional layers
which contain trainable kernels that can be thus adapted to the task they are trained on (see
the bottom of Figure B.1). The intuition behind CNN relies on the fact that the mammal
visual cortex works approximately this way [Hubel and Wiesel 1962, Fukushima 1980, Lind-
say 2020] with visual cortexes from the first, detecting orientation and edges, to the sixth
that mixes information from previous cortexes to build a global representation of visual in-
formation. The capacity that brain synapses have to strengthen their link when being often
stimulated is called the synaptic plasticity and can be seen as similar to the weights that are
learned to mix information from different features learned.
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Figure B.1: Illustration of convolutional layer. Edge detector using Sobel filters (top); Con-
volutional layer and its trainable filters (bottom)

Convolutional Neural Networks layers are mainly composed of four type of layers:

1. Convolutional layers which are composed of sets of trainable kernels (kernel size, number
of kernels, stride size and padding method are hyper-parameters). A convolutional layer
is defined by its number of filters (also called depth), its stride, i.e. convolution “steps”
size or the number of pixels the kernel is translated at each step, and its padding, i.e.
the number of pixels that are added outside the image to compute convolution for pixels
close the border or the image (generally zero-padding or same-padding are used). For
c the number of channels of the input, k the kernel size and d the depth of the layer,
the number of trainable parameters in a convolutional layer is (k × k × c+ 1)× d. The
+1 term represents biases that are added to the pre-activation thus enabling a shift of
the output. These layers output features responses in the image space that are called
feature maps.

2. Pooling layers, that, given a rule (mean or max), downscale feature maps. Their role is
to reduce computational complexity, add some translation invariance and increase the
receptive field of deeper neurons (the type of pooling, which is generally mean or max
pooling, and the downscaling ratio are hyperparameters);

3. Activation layers that introduce non linearity in the network. The most popular ac-
tivation layer is Rectified Linear Unit (ReLU) [Nair and Hinton 2010]: ReLU(x) =
max(0, x);

4. Fully connected layers that mix learned high level features activations. A fully connected
layer (see Figure B.2) is defined by the number of its inputs and its number of neurons.
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It outputs a vector of size equal to its number of neurons, and it can be seen as a matrix
multiplication. For an input vector X = (x1, ..., xN ) ∈ RN , output Y = (y1, ..., yM ) ∈
RM using learned weights W ∈ RN×M , for j ∈ [1, ...,M ]:

yj =
∑N
i=1Wi,j × xi.

Figure B.2: Fully connected layer.

Mostly due to computational power limitations that have been overcome with the use
of Graphical Processors Units (GPUs) (e.g. two Nvidia Geforce GTX) for training (method
introduced in [Raina, Madhavan, and Ng 2009]), these architectures had to wait for 2012 and
AlexNet [Krizhevsky, Sutskever, and Hinton 2012] to be proved efficient at a large scale.

AlexNet architecture (see Figure B.3), a deeper (more kernels per layer) version on LeNet
from [LeCun et al. 1989], consists of a series of a 11×11 convolution layers with 96 filters, a
3×3 max pooling layer, a 5×5 convolution layer with 256 filters, a 3×3 max pooling layer,
three 3×3 convolutional layers (twice 384 and 256 filters), a 3×3 max pooling layer. The
feature map thus obtained is flattened and is iteratively given to two 4096-fully connected
layers. Finally a 1000-fully connected layer outputs pre-output logits that are turned into
class probabilities through a softmax layer (defined in Section B.2).
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Figure B.3: AlexNet architecture.

B.2 Supervised learning

Supervised training (see Figure B.4) consists in iteratively passing examples (e.g. images)
through the network to get the predicted output, compute the error (with respect to the
ground truth label) through a loss function, and then adapt the weights to reduce the error.
This is done through backpropagation and gradient descent [Rumelhart, Hinton, and Williams
1986].

Figure B.4: Supervised learning.

Given an input X and its associated label Y ∗, the model fmodel outputs a predicted
label Y = f(X). The error L is computed using a loss function floss: L = floss(Y, Y ∗).
Using a gradient descent-based optimizer, the inner-parameters θ are updated. For example,
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a standard method is Stochastic Gradient Descent (SGD) which consists in computing the
partial derivatives of the loss function floss with respect to the parameters of the model θ at
the point of interest Xand updating each parameter with a “step” in the opposite direction
of this gradient. Thus θ becomes θ − η∆θfloss(Y, Y ∗). This step is repeated until a stopping
criterion is reached. Parameter η is called learning rate, and defines the “size of the step”
that is taken at each iteration (it will be further explained later in Section B.3). This is called
backpropagation, defined by the optimization method (optimizer) and the loss function.

The loss function depends on the task that the model is trained to perform. For classifi-
cation, the most standard loss is categorical cross-entropy which consists of a softmax layer
and a cross-entropy loss computation. The softmax layer turns values from a vector pi of
size N into a value Pi as follows: Pi = epi∑N

j=1 e
pj
. A great interest of softmax layer is that

it outputs normalized values (
∑
i Pi = 1) and can be interpreted as class probabilities. The

cross-entropy, inspired from entropy measure in information theory, quantifies the difference
between two probability vectors. Given a ground-truth vector G and a probability vector P ,
the cross-entropy is defined as: CE(P,G) = −

∑N
i=1Gi × log(Pi). Thus, the derivative of the

categorical softmax cross-entropy w.r.t. the softmax input p is:

∂CE(P,G)
∂p =


epg∑N

j=1 e
p
j

− 1; at position g corresponding of the ground-truth label index
epn∑N

j=1 e
p
j

; at position n for n 6= g

The same kind of calculus can be made for layers defined above to compute errors and
gradients for every parameter of the architectures.

An optimizer is used to update weights with regards to the computed gradients. As an
example above, we presented SGD that is the most standard optimization method used in
deep learning. It simply consists in iteratively updating weights with gradients computed on
a single training sample. On the other hand, Batch Gradient Descent (or Vanilla Gradient
Descent) computes and accumulates the gradients over all training samples before updating
the weights. Batch Gradient Descent ensures a convergence to a local minimum but its com-
putational cost makes it not suitable for large-scale deep learning applications. By contrast,
SGD is way lighter in terms of computational cost, but is more noisy in its convergence,
although it has been shown to be pretty efficient for deep learning applications. Mini-batch
Gradient Descent proposes a compromise between these two approaches by updating param-
eters with gradients accumulated on a small subsample of training samples (a mini-batch).
Thus it converges more efficiently and remains light in its computation.

SGD is the basis of a lot of works that improved it. For example, a standard extension
of SGD is Momentum [Qian 1999]. It consists, as its name hints, in adding to the gradient
direction currently computed on the current training sample a fraction of the previously
computed gradient, thus enabling to avoid oscillating and making the model converge faster.

The main limitation using these methods is that the results highly depend on the learning
rate value. Indeed, a too high learning rate would imply a divergence of the loss, while a too
low learning rate would produce a slow convergence and would fall into a local minimum (see
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Figure B.5).

Figure B.5: Learning rate impact on model convergence.

Thus, some methods propose adaptive learning rate approaches. For example Ada-
Grad [Duchi, Hazan, and Singer 2011] proposes, in addition to apply a different learning
rate to each parameter, to automatically adapt the learning rate with respect to the past
gradient. For each parameter θi, the learning rate at an iteration T is: η√∑T

t=0(Gi,t)2+ε
with

Gi,t the gradient w.r.t. parameter θi, η the initial global learning rate and ε a positive term
to avoid dividing by zero. Adam [Kingma and Ba 2015] extends Adagrad by computing an
average exponentially decay of past squared gradients (AdaDelta [Zeiler 2012]) and an aver-
age exponentially decay of past gradients for momentum computation. It is considered as the
gold standard of optimizers.

[Ruder 2016] gives a good overall study of most popular gradient-based optimization
methods.

B.3 Training strategies to reduce overfitting: regularization
and transfer learning

The dataset, e.g. a set of {image, label} couples also called samples, is generally divided into
three sub-sets:

1. The training set: samples used for the actual training of the model, i.e. to compute
gradients and perform backpropagation. The model is trained to perform on these
samples. This set represents the majority of the dataset (generally around 70%);

2. The validation set: samples used to test the model regularly during the training process
to ensure its good learning capabilities, and detect problems that can happen during
training. It is particularly used to ensure the generalizability of features learned by
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the model. Indeed, because of the high number of parameters, models may learn non-
generalizable training set biases (knowledge that is not transferable to other sets), and
thus learn to perform really well on training samples (since it is optimized on them)
while performing poorly on other sets: this is called overfitting (see Figure B.6). The
validation set enables to check regularly during training the generalizability of what
is learned by the model on the training set. It is the smallest sub-set of the dataset
(generally around 10%);

3. The testing set: it is kept completely independent from the training process and is used
to evaluate the model, i.e. to compute measures of performances of the model for the
task it has been trained on. It gathers generally around 20% of the dataset.

Figure B.6 illustrates the overfitting phenomenon due to over parametrization. Generally
in deep learning the dataset is not large enough in comparison to the millions of parameters,
so overfitting is often a good statistical solution for a model during training. To ensure the
generalizability of what is learned, we generally rely on the validation set and more generally
on what is called regularizations [Caruana, Lawrence, and Giles 2000] that are methods to
avoid or at least fight the overfit.

Figure B.6: Illustration of overfitting on a second degree polynomial problem; (a) underfit:
the model has not enough learning capacity; (b) the model is well designed for the problem;
(c) overfit: the model overfits the problem and matches training samples.

Indeed, the validation set is made to measure the generalizability during training. Thus
monitoring the average loss over the validation set during training allows detecting the overfit.
Figure B.7 shows the evolution of the average loss on the training set and on the validation set
computed at regular intervals. Overfit can be “diagnosed” when these two measures diverge.
During the optimization, the average loss on the training set decreases, and at some point
the average loss on the validation set starts to increase, which means that what is learned
does not apply to this set anymore. As illustrated, these measures can be used to perform
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early stopping, which consists in stopping the training right before these two losses start to
diverge. It is implemented using a patience threshold, i.e. a number of intervals during which
the minimum validation loss obtained should decrease at least once.

Figure B.7: Detecting overfit with average loss computed on the validation set.

There are other ways to regularize the training of a model through the loss, the architecture
design or by transfer learning in order to inducing knowledge or expected behavior. Note that
regularization techniques are used during training and fixed at inference time.

For instance, a popular regularization consists in adding to the training loss a L2 norm
term computed on the squared weights of the model. The total loss thus becomes L+λ. ‖W‖2

with L the task related loss, λ the importance given to the regularization and W the model
weight matrix. Training a model with this regularization will guide the model to have weights
of the models to be small (close to zero), which disables the capacity of the model to give too
much importance to specific features.

Along the same idea of having all weights contributing to the prediction (and not giving
too much importance to a subset of weights) with a more design-driven approach, dropout [Sri-
vastava et al. 2014] regularization proposes to cut some connections, i.e. to set to zero a given
percentage of weights during training (see Figure B.8). It forces the network to learn how to
rely on all connections to predict and avoid “shortcuts” i.e. path of strong connections that
fit the training data.

Batch normalization [Ioffe and Szegedy 2015] (and later group normalization [Wu and He
2018]) is a method that proposes to standardize feature maps so that the network does not
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Figure B.8: Dropout illustration; Fully connected layers without dropout (left); Fully con-
nected layers with 50% dropout (right).

have to adapt to distribution shifts (also called covariate shift), which makes deeper neurons
more robust to early neuron changes, and in practice speed up and stabilize trainings. This
method consists in learning standardization parameters γ for scaling and β for shifting that are
applied as follows for a sample input x of a batch B: BatchNormγ,β(x) = γ. x−µB√

σ2
B+ε

+ β with

µB the mean over the batch and σ2
B the standard deviation over the batch. For inference,

precomputed values of µ and σ2 are used. Note that a simple batch normalization trick
enabled to improve performances on ImageNet of 0.7%, leading to a new state-of-the-art
method reaching a top-1 accuracy of 85.5% [Xie et al. 2020b].

Another regularization method that is used in most works is called transfer learning (see
Figure B.9). It consists in using a model trained on a (source) task to help training a second
model on another (destination) task. A great percentage of medical applications of deep
learning are performing transfer learning from a model pre-trained on ImageNet. It might
seem surprising to transfer knowledge and feature learned on natural images to medical specific
applications, but due to the very high number of classes and images per class in ImageNet,
dataset features learned on early layers by an efficient model can not afford to be class-specific
and need to be applicable for a wide range of cases. In practice this approach works really
well and enables to avoid quick overfit of the model due to a generally small dataset.

There are two main methods to perform transfer learning. The first method reminds of
early Machine Learning (ML) methods and consist in using the pre-trained model to encode
descriptors that are then used to train a classifier (generally some fully connected layers).
The second method, called “fine-tuning”, simply uses the pre-trained model as the starting
point for the training of the second model, and thus the learned filters will be adapted to the
new task. This requires source task and destination task to have the same number of classes.
Both methods can be used in the same training by fine-tuning the model while training a
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classifier.

Interestingly, transfusion work [Raghu et al. 2019] exposed that pre-training on ImageNet
was purely regularization since the same performances on several medical datasets were ob-
tained with a deep architecture pre-trained on ImageNet and with a smallest architecture
initialized with random weights. Using interpretability methods (see more details in Sec-
tion 3.4) the authors showed that features learned and used by both models in early low-level
layers were the same. More recently, transfer learning from a pre-trained network has been
questioned and outperformed using self-supervision in [Zoph et al. 2019].

Figure B.9: Transfer learning: transfer from ImageNet to Chest X-Ray Pneumonia dataset
(https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia).

Finally, a popular practice in computer vision challenges is called ensembling and consists
in training several models and combining their predictions to obtain more generalizable results
(e.g. [Breiman 1996]).

B.4 Other kinds of learning

There are different levels of supervision that can be used for training:

1. Supervised training (presented extensively above) refers to training processes where
every input is paired with its expected output or ground truth;

2. Weakly supervised training is a training where the expected output is not given but a



B.4. Other kinds of learning 125

more global information is used (e.g. only image label is given to perform localization);

3. Semi-supervised training defines a training where some inputs have their ground truth
labels and some others do not;

4. Unsupervised learning is a training where no information except the inputs is given.
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Titre : Méthodes de diagnostic assisté par ordinateur pour le dépistage du cancer du col de l’utérus sur
lames de frottis vaginal en milieu liquide basées sur les réseaux de neurones à convolutions : conception,
optimisation et interprétabilité.

Mots clés : Apprentissage profond ; Réseaux de neurones à convolutions ; Cytologie ; Classification de lames
entières ; Interprétabilité.

Résumé : Le cancer du col de l’utérus est le
deuxième cancer le plus important pour les femmes
après le cancer du sein. En 2012, le nombre de cas
recensés dépasse 500,000 à travers le monde, dont
la moitié se sont révéleés mortels.
Jusqu’à maintenant, le dépistage primaire du can-
cer du col de l’utérus est réalisé par l’inspection
visuelle de cellules, prélevées par frottis vaginal,
par des cytopathologistes utilisant la microscopie en
fond clair dans des laboratoires de pathologie. En
France, environ 5 millions de dépistage sont réalisés
chaque année et environ 90% mènent à un diagnos-
tic négatifs (i.e. pas de changements précancereux
détectés).
Pourtant, ces analyses au microscope sont extreme-
ment fastidieuses et couteuses en temps pour le cyto-
techniciens et peut nécéssiter l’avis conjoint de plu-
sieurs experts. Ce processus impacte la capacité à
traiter cette immense quantité de cas et à éviter les
faux négatifs qui sont la cause principale des retards
de traitements médicaux. Le manque d’automatisa-
tion et de traçabilité des deṕistage deviennent ainsi
de plus en plus critique à mesure que le nombre d’ex-
perts diminue.
En ce sens, l’integration d’outils numériques dans
les laboratoires de pathologie devient une réelle
problématique de santé publique et la voie privilegiée
pour l’amélioration de ces laboratoires.
Depuis 2012, l’apprentissage profond a révolutionné
le domaine de la vision par ordinateur, en particulier
grâce aux reseaux de neurones à convolutions qui
se sont montrés fructueux sur un large panel d’ap-
plications parmi lesquelles plusieurs en imagerie bio-
médicale. Parallèlement, le processus de digitalisa-
tion de lames entières a ouvert l’opportunité pour de
nouveaux outils et de nouvelles méthodes de diag-

nostic assisté par ordinateur.
Dans cette thèse, après avoir motivé le besoin
médical et introduit l’état de l’art en terme de
méthodes d’apprentissage profond pour le traitement
de l’image, nous presentons nos contribution au do-
maine de la vision par ordinateur traitant le dépistage
du cancer du col de l’utérus dans un contexte de cy-
tologie en milieu liquide.
Notre première contribution consiste à proposer une
méthode simple de régularisation pour l’entraine-
ment de modèles dans le contexte d’une classifica-
tion ordinale (i.e. classes suivant un ordre). Nous
démontrons l’avantage de notre méthode pour la clas-
sification de cellules utérines en utilisant sur le jeu de
données Herlev. De plus, nous proposons de nous
appuyer sur des explications basées sur le gradient
pour réaliser une localisation faiblement supervisée et
plus généralement une détection d’anormalité. Fina-
lement, nous montrons comment nous intégrons ces
méthodes pour créer un outil assisté par ordinateur
qui pourrait être utilisé afin de reduire la charge de
travail des cytopathologistes.
La seconde contribution se concentre sur la classi-
fication de lames entières et l’interprétabilité de ces
approches. Nous présentons en détails les méthodes
de classification de lames entières s’appuyant sur
l’apprentissage multi-instances, et améliorons l’in-
terprétabilité dans un contexte d’apprentissage fai-
blement supervisé via des visualizations de ca-
ractéristiques au niveau de la tuile et une nouvelle
manière de calculer des cartes de chaleur expli-
catives. Finalement, nous appliquons ces méthodes
pour le dépistage du cancer du col de l’utérus en utili-
sant un detecteur d’ “anormalité” qui guide l’entraine-
ment pour l’echantillonages de régions d’intérêt.
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Title : Computer-aided diagnosis methods for cervical cancer screening on liquid-based Pap smears using
Convolutional Neural Networks : design, optimization and interpretability.

Keywords : Deep Learning ; Convolutional neural networks ; Cytology ; Whole Slide Images Classification ;
Interpretability.

Abstract : Cervical cancer is the second most impor-
tant cancer for women after breast cancer. In 2012,
the number of cases exceeded 500,000 worldwide,
among which half turned to be deadly.
Until today, primary cervical cancer screening is per-
formed by a regular visual analysis of cells, sam-
pled by pap-smear by cytopathologists under bright-
field microscopy in pathology laboratories. In France,
about 5 millions of cervical screening are performed
each year and about 90% lead to a negative diagno-
sis (i.e. no pre-cancerous changes detected).
Yet, these analyses under microscope are extremely
tedious and time-consuming for cytotechnicians and
can require the joint opinion of several experts. This
process has an impact on the capacity to tackle this
huge amount of cases and to avoid false negatives
that are the main cause of treatment delay. The lack of
automation and traceability of screening is thus beco-
ming more critical as the number of cyto-pathologists
decreases.
In that respect, the integration of digital tools in pa-
thology laboratories is becoming a real public health
stake for patients and the privileged path for the im-
provement of these laboratories.
Since 2012, deep learning methods have revolutioni-
zed the computer vision field, in particular thanks to
convolutional neural networks that have been applied
successfully to a wide range of applications among
which biomedical imaging. Along with it, the whole
slide imaging digitization process has opened the op-

portunity for new efficient computer-aided diagnosis
methods and tools.
In this thesis, after motivating the medical needs
and introducing the state-of-the-art deep learning me-
thods for image processing and understanding, we
present our contribution to the field of computer vi-
sion tackling cervical cancer screening in the context
of liquid-based cytology.
Our first contribution consists in proposing a simple
regularization constraint for classification model trai-
ning in the context of ordinal regression tasks (i.e. or-
dered classes). We prove the advantage of our me-
thod on cervical cells classification using Herlev data-
set. Furthermore, we propose to rely on explanations
from gradient-based explanations to perform weakly-
supervised localization and detection of abnormality.
Finally, we show how we integrate these methods as
a computer-aided tool that could be used to reduce
the workload of cytopathologists.
The second contribution focuses on whole slide clas-
sification and the interpretability of these pipelines.
We present in detail the most popular approaches for
whole slide classification relying on multiple instance
learning, and improve the interpretability in a context
of weakly-supervised learning through tile-level fea-
ture visualizations and a novel manner of computing
explanations of heat-maps. Finally, we apply these
methods for cervical cancer screening by using a
weakly trained “abnormality” detector for region of in-
terest sampling that guides the training.
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