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de Technologie de Troyes and Prof. Blaise Hanczar from Université
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Abstract

English version
Proteomic analysis consists in determining which proteins are contained in biological samples

and in which quantity. Such analysis is often required in fundamental or clinical research, to find
proteins differentially expressed between several conditions, a.k.a. biomarkers. Modern proteomics
largely relies on analytical chemistry techniques, and notably, on mass spectrometry (MS) coupled
with high-pressure liquid chromatography (LC). To increase the depth and coverage of proteomics
analyses, multiplexed LC-MS acquisitions are increasingly relied on, despite the subsequent challenges
in data processing. Recently, it has been shown that some of these challenges could be addressed using
chromatogram libraries, which consist of elementary chromatographic profile collections corresponding
to different protein fragments present in the samples. The current state-of-the-art approaches propose
to construct the chromatogram library by means of additional (and costly) mass spectrometry
experiments. The aim of this work is to construct it numerically, through the direct analysis of the
LC-MS data using innovative machine learning approaches. Two approaches have been developed. The
first one, referred to as CHICKN (Chromatogram Hierarchical Compressive K-means with Nyström
approximation), proposes to cluster the observed elution profiles (defined as the columns of the matrix
containing the LC-MS data) and to construct the library using the consensus chromatograms resulting
from these clusters. This clustering method operates on a data sketch, as defined in the compressive
learning theory. Furthermore, the algorithm is compatible with the kernel trick, which is accelerated
thanks to Nyström kernel approximation. Finally, we have derived two new kernel functions, based on
the Wasserstein-1 distance. We have established on real proteomics data that these kernel functions
lead to better capturing the LC-MS data specificities. The second approach developed in this thesis
is an online dictionary learning algorithm, referred to as SSDL (Sketched Stochastic Dictionary
Learning), so as to use the trained dictionary as a chromatogram library. This method also relies
on the compressive learning theory. In addition, its computational efficiency is strengthened by a
stochastic version of Nesterov accelerated gradient descent method. The performance of both methods
has been assessed on real LC-MS data. We demonstrated that both of them lead to the construction
of meaningful chromatogram libraries, satisfying all LC-MS data requirements (notably physical
interpretability). Moreover, they have small computational cost and are efficient to build extremely
large chromatogram libraries, as required for complex biological samples.
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Abstract

French version
L’analyse protéomique consiste à déterminer les identités et quantités des protéines contenues

dans des echantillons biologiques. Une telle analyse est souvent nécessaire en recherche fondamentale
ou clinique, pour trouver des protéines différentiellement exprimées entre plusieurs conditions,
communément appelées � biomarqueurs �. La protéomique moderne s’appuie principalement sur
des techniques de chimie analytique, et notamment, sur la spectrométrie de masse (MS) couplée à la
chromatographie liquide haute pression (LC). Pour augmenter la profondeur et la couverture des
analyses protéomiques, le multiplexage des acquisitions est de plus en plus utilisé, malgré les défis que
cela soulève ensuite lors du traitement des données. Récemment, il a été montré que certains d’entre eux
pouvaient être résolus à l’aide d’une � bibliothèque de chromatogrammes �, c’est-à-dire une collection
de profils chromatographiques élémentaires correspondant à différents fragments de protéines présents
dans les échantillons. Les approches de l’état de l’art s’appuient sur des expériences complémentaires
(et coûteuses) de spectrométrie de masse pour construire cette bibliothèque de chromatogrammes.
L’objectif de ce travail a donc été de s’affranchir de ces expériences et d’appliquer des méthodes
d’apprentissage automatique innovantes pour construire in silico cette bibliothèque. Deux méthodes
ont été développées. La première, appelée CHICKN (Chromatogram Hierarchical Compressive
K-means with Nyström approximation), propose de partitionner les profils d’élution observés (définis
comme les colonnes de la matrice contenant les données LC-MS) en plusieurs groupes en fonction de
leur forme, puis de construire la bibliothèque en utilisant un représentant de chaque groupe. Afin
d’être calculatoirement efficace, l’étape de partitionnement s’appuie sur la théorie de l’apprentissage
compressif, qui permet de traiter un sketch des données (un résumé de taille fixe) plutôt que les
données complètes. Par ailleurs, l’algorithme ainsi obtenu est compatible avec l’astuce du noyau, qui
est accélérée grâce à l’approximation de Nyström. Enfin, nous avons proposé deux nouveaux noyaux
à partir de la distance Wasserstein-1. Nous avons établi sur des données protéomiques réelles que
ces deux noyaux permettent de mieux appréhender les spécificités des données LC-MS. La deuxième
méthode développée dans cette thèse est constituée d’un algorithme d’apprentissage de dictionnaire,
baptisé SSDL (Sketched Stochastic Dictionary Learning); afin d’utiliser ensuite le dictionnaire ainsi
appris comme bibliothèque de chromatogrammes. Cette méthode repose également sur la théorie
de l’apprentissage compressif. De plus, son efficacité computationnelle est renforcée par une version
stochastique de la méthode de descente de gradient accélérée de Nesterov. Les performances des deux
méthodes ont été évaluées sur des données LC-MS réelles. Nous avons démontré que les deux méthodes
conduisent effectivement à la construction de bibliothèques de chromatogrammes qui satisfont toutes
les exigences de données LC-MS (dont, notamment, l’interprétabilité physique). En outre, elles ont
un faible coût de calcul, ce qui leur permet de construire efficacement les très grandes bibliothèques
de chromatogrammes qui sont nécessaires à l’analyse d’échantillons biologiques complexes.
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Foreword

The book (universe) cannot be read until we have learnt the
language and become familiar with the characters in which it
is written. It is written in mathematical language, and the
letters are triangles, circles and other geometrical figures,
without which means it is humanly impossible to
comprehend a single word.

Galileo Galilei

Nowadays, it has become obvious that without mathematics and
thorough algorithmic investigations, even with the largest computational
capacity and the most performing instruments, many scientific problems
would remain unsolved: Because of the volume of data generated by
modern experimental settings, manual processing and classical statistical
validation are intractable.

Few decades ago, a new field of artificial intelligence called machine
learning appeared, but it has been witnessing an extreme popularity
increment for only the last 8 years. Today machine learning methods
allow not only to analyze newly produced massive data, but more
importantly, to rely on the preexisting and ever-growing information
ocean to predict new facts, or to extract hidden knowledge.

Machine learning applications are endless and limited only by de-
velopers’ vivid imagination. To date, machine learning has fertilized
technological developments that are already highly integrated in our
lives: Customized services; Personalized medicine; Biological or physical
scientific investigations; Climate change; etc. Among them, proteomics
is no exception and an increasing number of machine learning methods
are involved in the improvement of proteomics data analysis techniques,
as notably shown in this manuscript.

5



Foreword

To citizens as well as scientists from other domains, the unprecedented
ascent of machine learning popularity may be surprising. However, this
discipline is grounded on theories and methods, which thrived many
decades ago in different unrelated domains of mathematics: probabilities
and statistics, numerical optimization, signal processing, algorithmic
and linear algebra.

This work is expected to target both the proteomics researchers,
for the practical interest of the presented tools, as well as the machine
learning community, for our methodological proposals. To adapt to
this interdisciplinary readership, a pedagogical angle has been used
whenever possible. I hope machine learning experts will as pleasingly
discover proteomics and the kingdom of proteins; as biologists and ana-
lytical chemists will unveil an application to their former mathematical
education.
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Introduction

1.1 Overview

Proteomics analysis aims at identifying and quantifying proteins (i.e.
life building blocks) in a biological sample. While this discipline has long
been at the center of biological and medical investigation, it has also
heavily relied on analytical chemistry (the branch of science dedicated
to analyzing samples, as opposed their synthesis). Over the last decades,
analytical chemistry has made tremendous progresses, making it possi-
ble to orchestrate multiple instruments in a high-throughput workflow,
where thousands of compounds are analyzed by the hour. Although this
instrumentation has unleash proteomics analysis capabilities in terms of
sensitivity, robustness and application domain diversity, it has brought
new challenges; as for the first time, producing experimental data has
become easier than storing, processing and interpreting them. This big
data breakthrough has made proteomics even more interdisciplinary: it
is now a research field at the crossing of biology, analytical chemistry,
computer science and mathematics. Notably, developing new method-
ologies inspired by the recent trends of artificial intelligence with the
objective to extract in an automated fashion meaningful knowledge from
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1.2. Object and goals of proteomics analysis

this massive data has become an active research field.
The work presented in this document focuses on this research direc-

tion. Over the last three years we have tried to leverage the smoothness
of some time-varying biochemical measurements to: (1) Improve the
clustering of various signals according to the biological molecules that
originated them; (2) Learn libraries of patterns that will be instrumental
in the future to better exploit more complex experiments (due to their
noise level, or to the multiplexing strategy used to increase their cover-
age). This work has led to two research articles, either accepted or still
under review, that constitute the two main chapters of this thesis. In
addition, peripheral works were also valorized: Notably, a letter format
article addressing a homonymous definition between applied mathemat-
ics and proteomics (available in Appendix C); and a research article in
biology involving data processing and analysis.

This introductory chapter is structured as follows: Section 1.2 focuses
on the proteomics context: it introduces the basic proteomics termi-
nology, explains the role of proteins, and presents the goals, challenges,
and applications of proteomics. Section 1.3 contains descriptions about
analytical chemistry tools used for proteomics analysis and discusses
the advantages and drawbacks of classical data acquisition workflows.
Section 1.4 describes bioinformatics tools for data analysis (protein identi-
fication and quantification, as well as validation approaches). Section 1.5
is dedicated to the machine learning context: It provides general machine
learning notions and concepts; but also an overview of more specific ap-
proaches, on which our work has thrived. Finally, Section 1.6 formulates
and formalizes the problems that are addressed in this manuscript.

1.2 Object and goals of proteomics analy-
sis

This section summarizes a large background in molecular biology.
Interested readers can read the following references [1–5] which we relied

11



Chapter 1. Introduction

on to gather the material assembled and presented in the following
sections.

1.2.1 The kingdom of proteins

Proteins are complex molecular compounds, which play crucial roles
in all processes of living organisms. For instance, enzymes are a type
of proteins, which catalyze the biochemical reactions in cells[1]. Other
proteins protect our body from physical and chemical damages; as for
example, collagen and keratin, which form muscles, bones and skin; or
thrombin, which performs blood clotting; or liver enzymes, which carry
out the detoxification. The immune system uses proteins (antibodies
a.k.a. immunoglobulins) to neutralize pathogens, such as viruses or
bacteria. Proteins also transport and store atoms or small molecules:
ferritin stores iron in liver; hemoglobin transfers oxygen. Messenger
proteins transmit signals between different cells to coordinate biological
processes; such as insulin, which regulates the metabolism of carbohy-
drates in the organism. Regulatory proteins, such as transcription factor
proteins, control the gene expression by activating or deactivating their
transcription.

Whatever its functions, a protein is essentially a chain of amino acids,
linked together through so-called “peptide bounds”, as illustrated in
Figure 1.1. Amino acids are often called protein building blocks, and
the list of amino acids composing a protein is referred to as its primary
structure. Any amino acid is composed of an amino group, a carboxyl
group and a side chain (referred to as its R group), which is specific to
each amino acid and which defines its chemical properties.

A great number of different amino acids can be defined (depending on
the R group). However, 22 of them are sufficient to define all the proteins
of living organisms. Thus, proteins can be understood as chemical words
written in an alphabet of amino acids. Assembling specific amino acids

[1]Notably, trypsin is an enzyme which cleaves other proteins into pieces, making it an extremely
interesting analytical chemistry tool

12



1.2. Object and goals of proteomics analysis

Figure 1.1: The primary structure of a protein. The amino acids are
linked together into a chain by the peptide bounds, as depicted in the
zoom plot. The general structure of an amino acid is presented in the
left upper corner. The alpha carbon connects together amino, carboxyl
and R (side chain) groups. This figure has been inspired by the materials
found at https://www.technologynetworks.com/applied-sciences/articles/
essential-amino-acids-chart-abbreviations-and-structure-324357.

in the correct order to obtain well-formed proteins is possible thanks to
the genetic code. By analogy with the term genome (the entire genetic
material of an organism), one has defined the proteome. However, the
gene-to-protein translation being rather complex, the genome and the
proteome do not exactly mirror one another. As a result, two proteome
definitions coexist: It can either correspond to a set of proteins expressed
by a genome; or a set of proteins, expressed in a particular cell or tissue
at a given time under given condition. In this document, we will rely
on the second one, which is more adapted to the analytical approach
underlying this work.

13

https://www.technologynetworks.com/applied-sciences/articles/essential-amino-acids-chart-abbreviations-and-structure-324357
https://www.technologynetworks.com/applied-sciences/articles/essential-amino-acids-chart-abbreviations-and-structure-324357


Chapter 1. Introduction

1.2.2 Proteomics as a discipline

Proteomics is a field of molecular biology, which studies proteins.
In the lab hosting my PhD studies (EDyP[2]), the main objective is to
understand how they change over time or under different conditions. In
this context, one seeks to identify and quantify the maximum amount
of proteins among those present in a given sample. However, proteomics
can also encompass larger studies, about e.g. protein structure, their
functions, protein-protein interactions, or the discovery of new proteins.
In order to avoid any confusion in the terminology, it should be no-
ticed that the term discovery proteomics is generally not related to the
discovery of new proteins (which nowadays are scarce), but to the large-
scale and high-throughput identification (and possibly quantification) of
proteins in a biological sample (i.e. with the objective to discover, or
unveil, the sample content). In other words, EDyP essentially focuses
on discovery proteomics, and consequently, my PhD project has thrived
on this discipline.

Many factors make proteomics challenging: First, the proteome
varies depending on cell type, time and environmental conditions. Sec-
ond post-translational modifications (PTMs) make protein identification
difficult: PTMs are chemical compounds added to one or several amino
acids of the protein. PTMs occur at any time of the protein life cycle
(after its biosynthesis) and can significantly change its mass, structure
and function. The chemical compounds involved in PTMs are manifold,
but some of them are extremely frequent: phosphoryl group (the corre-
sponding PTM is termed phosphorylation), a methyl group (leading to
methylation), a carbohydrate molecule (glycosylation). Finally, proteins
may interact between each other, leading to complexes that are more
difficult to analyze.

Proteomics has many applications, but most of them can be clas-
sified into two main categories: medical applications and fundamental
researches in biology.

[2]Exploring the Dynamics of Proteomes
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1.3. Analytical chemistry tools and workflows for proteomics

In medical researches, proteomics is an essential tool of biomarker
discovery, i.e. of the identification of proteins which presence or concen-
tration can be the marker of a disease or of its severity.

In fundamental researches, proteomics is essentially a tool that biol-
ogists rely on to have a comprehensive picture of the protein expression
landscape in the context of their experiments.

1.3 Analytical chemistry tools and work-
flows for proteomics

While proteomics is of utmost importance for biomedical investi-
gations, performing a modern proteomic analysis requires analytical
chemistry tools, for it involves a series of specific high-throughput in-
struments. Broadly, an analysis relies on three steps: (1) the sample
preparation, which most important step is to digest proteins into smaller
molecules; (2) the elution of the sample by means of liquid chromatog-
raphy (LC); and (3) the analysis itself, by means of tandem mass
spectrometry (MS/MS). Figure 1.2 schematically depicts LC-MS/MS
pipeline.

This section does not provide an exhaustive description of all existing
analytical chemistry approaches and workflows used in the proteomics
analysis, but on the contrary, focuses on the very pipeline used in our
project. More details about mass spectrometers and the analytical
chemistry techniques for proteomics can be found in [6–14].

1.3.1 LC-MS/MS pipeline

1.3.1.1 Digestion

The protein digestion is an enzymatic cleavage of proteins into
shorter sub-sequences referred to as peptides. Generally, the digestion is
performed using trypsin. This enzyme cuts proteins after any lysine or
arginine: The frequency of both amino acids is such that many resulting

15
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1.3. Analytical chemistry tools and workflows for proteomics

peptides have an optimal size for mass spectrometry analysis (6 to 30
amino acids). However, for some specific experiments, other enzymes
than trypsin can be used.

A proteomics workflow starting with a protein digestion step is called
bottom-up. Relying on a digestion step makes the mixture even more
complex (as each protein is replaced by several peptides). However
working on peptides instead of intact proteins (referred to as top-down
proteomics), gives considerable advantages: broadly speaking, as pep-
tides are simpler molecules, they are easier and faster to analyze, which
largely balance the sample complexity increment.

1.3.1.2 Peptide separation by Liquid chromatography

Considering the number of peptides classically present in a complex
biological sample, it is not possible to analyze them simultaneously
with mass spectrometry. This is why, liquid chromatography is used
to separate peptides and to serialize them before analysis. Liquid
chromatography exploits hydrophobicity, i.e. the peptide propensity to
avoid contact with water molecules. The device encompasses a high-
pressure pump, which pushes a mixture of water and organic solvents
(mobile phase) containing the sample of interest through a column,
filled with a solid adsorbent material, referred to as a stationary phase.
The separation is achieved by gradually changing the water / solvents
proportion in the mobile phase (this varying proportion being called a
gradient). That leads to different peptide interactions with the stationary
and mobile phases. Concretely, when traversing the column, peptides are
adsorbed by the hydrophobic stationary phase. With an important water
proportion, lesser hydrophobic peptides detach and move with the mobile
phase. Conversely, the gradual increase of the solvent concentration
results in the progressive detaching of more hydrophobic peptides, until
the mobile phase hydrophobicity exceeds the one of stationary phase.

The time taken by a peptide to pass through the chromatography
column is referred to as its retention time. A curve that depicts the
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Figure 1.3: Example of a real chromatographic signal acquired along a 20 minutes
gradient. Each annotated peak corresponds to an individual chromatographic profile.

molecular flow of a given peptide at any retention time is called a chro-
matogram or a chromatographic profile. A good liquid chromatography
must prevent the chromatographic profile of different peptides to overlap.
A real chromatogram is supposed to form a narrow, Gaussian-like, but
slightly asymmetric curve, as the one depicted in Figure 1.3. Different
peptides pass through the column with different flow rates, so their
chromatographic profiles have different shapes. The chromatographic
profile uniqueness is the fundamental property, on which this project
relies.

1.3.1.3 Mass spectrometry analysis

Mass spectrometry is an advanced analytical chemistry technology,
which is used for measuring the masses of molecules presented in a
sample, thereby determining the sample composition. It can be used to
analyze other type of substances than protein mixtures, yet, for each
analysis, an appropriate spectrometer must be use (notably proteomics
mass spectrometry analysis has its own particularities, as detailed in
Section 1.3.2.1)

18



1.3. Analytical chemistry tools and workflows for proteomics

Figure 1.4: Examples of a mass spectrum; the annotated values represent the m/z
values of as many precursor ions.

There are many different types of mass spectrometers, but all of
them have the same objective (mass measurement), and broadly the
same structure. The classical structure of a mass spectrometer is the
following: an ionization source, a mass analyzer and a mass detector.
The ionization source aims at converting the sample components (in our
case peptides) into ions (positively charged molecules) by the addition
of protons to the molecules. It is a necessary step, because only a mass
to charge ratio (m/z) can be measured by a mass spectrometer. After
ionization, ionized peptides are transferred to a mass analyzer, which
measures their m/z values and separates them according to these values.
Finally, the mass detector registers the number of ions at each m/z

value and records a mass spectrum, that is a diagram which has ion m/z
values on the x-axis and the corresponding ion intensity on the y-axis
(see Figure 1.4).

A Q Exactive HF mass spectrometer was used to generate the data on
which this work relies. This instrument is equipped with an electrospray
ionization source (evaporation ionization technique)[3] and with a mass

[3]The dissolved sample is sprayed from a heated needle into an electromagnetic field. The
progressive evaporation of the solvent from the created droplets results in the production of charged
peptides
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analyzer called Orbitrap. Orbitrap mass analyzer traps ions between
two electrodes: a central in the form of a spindle and an outer barrel-like.
Ions turn around the central electrode with circular trajectories, whose
axial frequencies depend on the ion m/z only. Then, m/z values are
computed from frequencies using Fourier transforms.

1.3.2 Comparative description of the classical ac-
quisition modes

1.3.2.1 Fragmentation and Tandem mass spectrometry

Ionized peptides are too complex molecules to have their identity
recovered by mere m/z measurements. Two different peptides can have
identical masses, when they are composed of the same, but differently
ordered amino acids. To cope for this, mass spectrometers are used
in tandem mode: First, ionized peptides (a.k.a. precursor ions) have
their m/z measured (this is the MS1 mode; MS standing for Mass
Spectrometer). Then peptides are fragmented. Finally, the peptide
fragments have their m/z measured (MS2 or MS/MS mode).

Concretely, peptide fragmentation is performed as following: A mass
analyzer (it can be the same analyzer, which measures the masses or an
additional one) isolates precursor ions, which m/z values lay in a selected
range. These ions are injected in the collision chamber, where they react
with an inert gas. This reaction causes the destruction of the peptide
bounds along the amino acid chain leading to precursor fragmentation.
Only fragments carrying the charge are detected. However, as different
molecules of the same peptide are cut at different peptide bounds, it
should in theory leads to all possible fragments (in practice the majority
of fragments is presented).

As the peptides from sample progressively reach the mass spectrom-
eter, based on their specific retention time, it is necessary to alternate
between the MS1 mode, which globally provides the m/z value of all the
attending precursors, and the MS2 mode, where fragmentation patterns
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Figure 1.5: Comparison of DDA (top figure) and DIA (bottom figure) modes. In the
DDA mode, peptides are selected and fragmented one after the other. The peptide to
spectrum correspondence is preserved, but only the MS2 spectra of the most abundant
peptides (depicted as blue and green bars) are produced. In the DIA mode, all
detected peptides are selected and fragmented simultaneously. Thus, the resulting MS2
spectrum contains peaks resulting from all the peptides, including the least abundant
ones (red one). As a side effect, the peaks from different peptides, but with equal m/z
values are summed up, making the peptide identification non-trivial.

are registered. The two principal acquisition methods basically differ
according to MS1/MS2 pattern the instrument cycle on, see Figure 1.5.

1.3.2.2 Data Dependent Acquisition

In the Data Dependent Acquisition (DDA) method, each MS1 scan
is used to measure the m/z value of all the precursor ions that are
concomitantly present in the instrument. Then, a fixed number of
precursors (usually, the 20 most abundant ones) are selected and frag-
mented, one after the other, leading to as many fragmentation spectra
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Figure 1.6: Manual interpretation of the MS2 spectrum resulting from the ANELLL-
NVK peptide. The peptide sequence is deciphered by computing the mass difference
between consecutive y-type fragments. The b-type and y-type fragments are high-
lighted by blue and red colors, respectively. The list of all theoretical b-type and y-type
fragments is provided above the annotated mass spectrum. It can be observed that b1,
b6, b7, b8, y8 fragments are not identified in the mass spectrum. The example is taken
from https://www.bioinfor.com/denovo-tutorial/

(or MS2). As each fragmentation spectrum only contains the peaks of
a single precursor, it is possible to identify its constituting amino acid
chain, leading to the peptide identification: indeed we can manually find
which peak in the MS2 spectrum correspond to which fragment; and
the difference in masses between fragment peaks amounts to the mass
of amino acids. An example of the manual interpretation of the MS2
spectrum is illustrated in Figure 1.6. The fragments are annotated as
bn (if the charge was located on the left side of the peptide bond break)
or yn (if on the right), where the subscript n indicates the number of
amino acids in the fragment. The amino acid identities are determined
by computing the mass differences between consecutive y-type or b-type
fragments.

As a result, with DDA, peptides can be directly identified from
MS2 spectra, and numerous tools exist to automatize such task (see

22
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1.4. MS data analysis tools and methods

Section 1.4.1). It is important to understand that the number of MS2
spectra between two MS1 spectra is fixed to guarantee a short enough
cycle: if too many MS2 spectra were acquired, the peptides eluting
next would be missed. As a side effect, if too many peptides reach
simultaneously the instrument, some of the resulting precursors will
not be fragmented. Thus, not all detectable peptides can be analyzed,
leading to a loss of peptide coverage. Despite this drawback DDA is
the most classical acquisition mode and it is mostly used at EDyP for
regular proteomics analysis. However, it has recently been challenged by
an alternative acquisition mode, referred to as DIA (Data Independent
Acquisition).

1.3.2.3 Data Independent Acquisition

DIA was proposed to overcome the main disadvantage of DDA, the
limitation of the number of fragmented peptides. To do so, instead of
selecting a single peptide for fragmentation, all precursors within a given
m/z range are co-fragmented. Therefore, a given MS2 spectrum contains
fragments from all different co-fragmented precursors. No peptide is lost,
however, as a drawback, the direct links between an individual peptide
and a MS2 scan are lost and consecutive peak differences does not
related anymore to amino acid masses, because the peaks can potentially
correspond to fragments from different peptides. Therefore, alternative
and more elaborated strategies are necessary to exploit data resulting
from DIA analyses.

1.4 MS data analysis tools and methods

There exists a great variety of bioinformatics tools to process the
data resulting from proteomics analyses. For sakes of brevity, this
section is not exhaustive and only focuses on the most popular ones; as
well as the ones that are most frequently used in our laboratory. The
section follows the classical processing chronology: peptide identification,
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protein inference and peptide/protein quantification.

1.4.1 Peptide identification in DDA

This step aims at assigning peptide sequences to the acquired MS2
spectra. The most commonly used strategy is to perform a so-called
database search. It consists in comparing the acquired spectra with
those from a reference protein database. In practice, this database is
derived from a genomic database of the organism(s) which peptides are
potentially in the sample, by applying the gene-to-protein translation
rules as well as an in-silico simulation of the digestion and fragmentation
processes. The database search provides, for each spectrum, a list of
possible peptide sequences, ranked by decreasing similarity scores.

There exist many searching engines [15–21]. They principally differ in
their scoring function, as well as, to some extent, in the way they account
for PTMs. We dwell upon three widely used ones: Mascot [15] (the tool
generally used in our laboratory), X!Tandem [16] and SEQUEST [17].

Mascot score first computes the probability that the observed peaks
match by chance those of the theoretical spectra. Then, this probability
of a random peptide match, denoted p, is converted into a peptide-
spectrum match (PSM) score reading:

S = −10 log10(p). (1.1)

X!Tandem score calculates the dot product between the theoretical
(T ) and experimental (E) spectra: S(T,E) =

N∑
i=1

Ii · δ(T,Ei), where Ii
is the fragment ion intensity and δ(T,Ei) ∈ {0, 1} indicates whether an
experimental peak Ei is presented or not in the theoretical spectrum.

SEQUEST relies on two scores: the preliminary score is used to
reduce the set of peptide candidates and the second to evaluate the sim-
ilarity between spectra. The preliminary score (Sp) is the weighted peak
intensity sum, where weights take into account the peak continuity and
the peptide length. The main SEQUEST score, Xcorr, amounts to the
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cross-correlation between the theoretical spectrum and the normalized
experimental spectrum.

1.4.2 Peptide identification from DIA data

In DIA data, direct database search cannot be conducted because
of the simultaneous fragmentations. Methods for peptide identification
follow different strategies that can be classified into library-based and
library-free approaches.

The library-based tools, such as Skyline [22], OpenSWATH [23],
Spectronaut [24], DIA-NN [25], use a comparison with a spectral library
to identify peptides. A spectral library is generated using several DDA
analyses of related samples, where as many fragmentations as possible are
considered, and the precursor identifications from the DIA experiments
are guessed using those of the library which have compatible m/z and
retention time. The main limitation of the library-based approaches is
its strong dependence on the preliminary DDA experiments and their
subsequent peptide identification results. Only peptides, presented in the
library, can be detected, making the approach only useful to streamline
a large number of very precise quantitative analyses of similar samples
(with known peptides).

The principle of library-free DIA approaches consists in first de-
multiplexing the measured MS2 spectra into pseudo-DDA spectra (i.e.
restoring links peptide - its fragment ions). A pseudo-DDA spectrum is
a computationally constructed fragmentation spectrum, where all the
peaks derived from a same precursor have been grouped, to the exclusion
of peaks from other precursors. Having pseudo-DDA spectra makes it
possible to on standard DDA database search engines to perform peptide
identification. The spectrum-demultiplexing problem is challenging, as
for combinatorial reasons, there is a huge number of ways to cluster a
DIA spectrum into a set of pseudo-DDA spectra. In many library-free
approaches, such as DIA-Umpire [26] and Group-DIA [27],this is tackled
by relying on the fact that the chromatograms of a precursor and its
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fragment ions must have the same shapes and their chromatographic
peaks must be aligned (i.e. they must coelute; i.e. they have similar
retention time). Concretely, these tools compute the correlation between
the fragment and peptide chromatograms and construct groups accord-
ingly to build pseudo-DDA spectra. Another tool called Specter [28] is
based on the hypothesis that a multiplexed DIA spectrum is a linear
combination of DDA spectra. It looks over DDA spectra of some spec-
tral library to find which of them can best reconstruct the measured
DIA spectrum. It uses also several chromatographic peak scores to
measure the peptide identification quality. Since this approach employs
spectral libraries, it is not considered as a purely library-free tool, but
an in-between approach. Finally, PECAN [29] directly compares the
multiplexed MS2 spectra with the predicted fragmentation patterns. It
does not use any spectral library, but it requires a prejudiced list of
peptides.

1.4.3 Identification validation and protein inference

As proteins are the biologically meaningful entities, peptide iden-
tification is not sufficient: It is necessary to infer the identities of the
sample’s proteins from the peptide identities. The protein inference task
is made difficult by (1) the presence of shared peptides (i.e. peptides
that cannot be attributed to a unique protein; for evolutionary reasons,
many related proteins indeed share homologue subsequences); and by (2)
the fact that some protein-specific subsequences may not be detectable
by LC-MS/MS (inadequate peptide size, poorly ionizable peptides, etc.).
To cope for the resulting ambiguity, the principle of parsimony is often
applied: one reports the smallest set of proteins that can explain the
set of identified peptides. However, other strategies exist and there is
still no consensus on the best way to conduct protein inference [30–32].
Often, a subset of identified peptides confidently points toward several
homologous proteins, among which refinement is not possible, so that
equivalence classes are defined (and termed protein groups). Mainly
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tools are available to perform protein inference. Some of them also
propose to aggregate the peptide scores into protein scores, so that a
confidence measure can also accompany the protein level results: IN-
TERACT [33], DTAselect [34] and CHOMPER [35] simply provide the
list of the identified proteins, without computing any confidence protein
identification measure. However, Qscore [36] computes protein confi-
dence level on top of the SEQUEST scores (see Section 1.4.1). The tool
called ProteinProphet [31] uses a Bayes rule–based scoring scheme to
estimate the probability that a protein is presented in a sample relying
on the list of the identified peptides.

To avoid corrupting the biological conclusions with unreliably iden-
tified proteins, stringent validation rules are usually applied, either at
peptide or protein level, possibly both. The most mainstream approach
is to compute a false discovery rate at peptide spectrum matching (PSM)
level. The false discovery rate (FDR) [37] is defined as a conservative
estimate of the expected ratio between the number mismatches and the
total number of PSMs that have an identification score larger than a
user-defined threshold (or conversely, the threshold is adjusted to meet
a specific FDR, such as for instance, 1%). In this approach, the most
difficult part is to confidently estimate the likely number of mismatches.
To cope for this, the most classical approach is the target-decoy one.
Its purpose is to artificially generate mismatches by using a protein
sequence database that has been shuffled or reversed, hereby containing
non-existing peptides (termed “decoys”, as opposed to the real “target”
ones). The seminal assumption of target-decoy approaches is that the
probability of reporting an incorrect target identification is the same as
that of reporting a decoy one. Thus, the number of PSMs mapping to
the decoy database serves as an estimate of the number of false positive
matches. However, it has recently been demonstrated that this seminal
assumption may not always hold, notably with newer more-resolutive
mass spectrometers, so that more traditional approaches to FDR (such
as Benjamini-Hochberg ones) should be used instead [38].
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The protein-level validation is even more challenging, since the error
in the peptide identifications may propagate to protein ones. In line
with the peptide identification validation, target-decoy strategies can
be also used to estimate protein identification false discovery rates (see
for instance [39]), however, this remains an active research field which
moving state-of-the-art is of secondary importance for the work presented
here.

1.4.4 Quantification

Quantification is the process of determining the amount, or the
abundance, of a particular peptide or protein in a sample. The existing
quantitative techniques can be divided in two categories: label-free and
label-based. In the label-based quantification, peptides are chemically
bound with some compounds that allows to calculating their abundances,
such as stable isotopes (SILAC [40], ICATs [41] or an isobaric tag labeling
(TMT [42], iTRAQ [43]). However, label-free approaches are more
suited to discovery proteomics, as labelling becomes laborious and time-
consuming with the sample complexity increment. In addition, labelling
requires expensive reagents. On the other hand, a main drawback of
label-free approaches is restriction to relative quantification: it can only
be used to compute variations of peptide abundances across different
samples, and not to derive the exact peptide concentrations in each
sample. However, let us note recent attempt of interest for approaching
absolute quantification within a label-free setting [44].

The most known label-free quantification tools are Mascot Distiller
(http://www.matrixscience.com), Viper [45], MaxQuant [46]. How-
ever, at EDyP, we use an in-house software, Proline [47] to perform
quantification. All these software tools broadly follow the same strategy
to estimate peptide abundances, that is to integrate the area under the
peptide chromatogram.
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Figure 1.7: (a) 12 discretized chromatographic profiles. (b) A data matrix, con-
structed by storing these chromatographic profiles in the matrix columns. Matrix rows
correspond to the discrete retention time stamps.

1.5 Machine learning approaches

1.5.1 Background notions

1.5.1.1 Machine learning model, loss function and empirical
risk minimization

Let us consider a data collection, hereafter denoted asX = {x1, . . . , xN}.
A single data instance xi is usually represented as a vector in Rn and it
is called an observation. In the case of LC-MS data, X corresponds to
a collection of discretized chromatographic profiles, which form a data
matrix with chromatograms in columns, which is denoted as well as X.
An example of such matrix is presented in Figure 1.7.

Machine learning aims at exploring an observed data collection
through the viewpoint of a user-selected parametrized function, referred
to as a machine learning model, and to use it for a variety of tasks; Such
as for instance performing predictions about unseen (future) data, or
extracting hidden structures from the current data to improve decision
making. The specificity of machine learning is that the model is not
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fully specified by the expert. An algorithm is used to find the parameter
values that best fit the observed data: Doing so is referred to as learning
or training. To quantitatively estimate which combination of parameter
values yields the best data description, one measures the model error
for each data instance using another function (the loss function or the
objective function). The smaller value of the loss function, the better
the fit.

In theory, to find the best model fit, we need to compute the entire
model error, i.e. to evaluate the loss function for all possible data
instances (not only the observable ones at hand), which is obviously
impossible in practice. However, if the sample of observations is not
biased (i.e. it represents well the set of possible observations) the exact
model error can be approximated by the average of losses over the
observed data collection. This approximation is formally defined as the
empirical risk function:

ER(p,X) = 1
N

N∑
i=1

L(p, xi), (1.2)

where p = (p1, . . . , pK) denotes model parameter vector, L(p, xi) is a
loss function computed on the observation xi. In this context, the best
model is given by minimizing the empirical risk function with respect to
model parameters:

min
p1,...,pK

ER(p1, . . . , pK , X) (1.3)

Most machine learning tasks can be cast in this minimization framework,
which explains why machine learning is so grounded on optimization
theory; and why it exploits so many minimization methods (see Sec-
tion 1.5.1.2). In this context, one generally makes a difference between
supervised learning and unsupervised learning.

Supervised learning consists in analyzing labelled data, i.e. observa-
tions that are endowed with an output variable (such as for instance,
a label category). In this case, the goal is to infer a function, which
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will propose an output value or label for any new unlabeled observa-
tion. Classification and regression are examples of supervised learning
problems. Due to the random nature that most often underlies real
world’s observations, two prediction errors must be simultaneously con-
trolled: the bias and the variance. The bias is a difference between
the expected estimator value and the true value (broadly speaking, it
can be pictured as a systematic offset in the prediction). High bias can
cause an algorithm to miss the relevant relations between inputs and
target outputs (underfitting). The variance measures how the prediction
accuracy varies from an instance to another one. A model with high
variance shows good performances on the training set, but the perfor-
mances will not generalize well to other observations (a phenomenon
called overfitting). The objective is thus to minimize both: accurately
capture the regularities in the training data and generalize well to unseen
data. Unfortunately, the simultaneous minimization of both errors is
impossible, because reducing one generally leads to increasing the other,
and an in-between is sought: the so-called bias/variance trade-off. In
practice, detecting an important bias is easy, as the resulting model will
not capture well the data distribution. However, detecting overfitting is
more difficult, as it relates to generalization capabilities on other data
than those at hand. To cope for this it is recommended to divide in two
sets the labelled data: the training set (i.e. data on which the model
is trained), and the test set, (i.e. data used to estimate the prediction
error).

In unsupervised learning, the input data have no corresponding out-
puts. The goal is thus to learn more about the underlying structure of
the data (distribution, subgroups, repetitive patterns, etc.). Thus, unsu-
pervised learning does not necessarily target generalization capabilities,
although it sometimes appears. The learning algorithms developed in
this project (which perform cluster analysis and dictionary learning, see
below), belong to the unsupervised category.

Over the last decade, many problems that share similarities between
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supervised and unsupervised problem has been proposed, leading to
a continuum with respect to the presence (and the use) of labelled
data amongst the unlabeled ones: semi-supervised learning; Bayesian
learning; active learning; on-line learning; multi-view learning; etc.
These problems being beyond the scope of this work, we simply refer to
the adequate literature [48–51].

1.5.1.2 Objective function optimization

Many methods exist to efficiently solve a minimization problem akin
to Eq. (1.3). The most well-known is referred to as gradient descent. It
relies on the gradient function property: The gradient vector indicates
the direction of the greatest increase of the function, and the gradient
magnitude measures the increase rate of this function in the gradient
direction.

Concretely, to perform a minimization such as in Eq. (1.3), the
gradient descent algorithm starts from a random initialization of the
parameter vector p0 = (p0

1, . . . , p
0
K) and then iteratively approaches to

the function minimum by following the direction opposite to the gradient
one and making steps proportional to the gradient vector. More precisely,
at each iteration the parameter values are updated according to the
following formula:

pt+1 = pt − γ 1
N

N∑
i=1
∇pL(pt, xi), (1.4)

where∇pL(pt, xi) =
(

d
dp1
L(pt, xi), . . . , d

dpK
L(pt, xi)

)
is the gradient vector

of the loss function computed on the current parameter values and the
observed data, and where γ is a parameter called learning rate.

The gradient method is simple and efficient, but not universal. No-
tably, if the function to minimize has several local minima and a single
global minimum (i.e. in mathematical terms, the function is not convex),
the gradient descent approach does not guarantee an optimal minimiza-
tion. Generally, convex optimization problems (i.e. which address the
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minimization of a convex function[4] over convex sets of constraints) are
easier to minimize: As any local minimum of a convex function is also
a global minimum, simple minimization algorithms (such as gradient
descent) are sufficient to provide an optimal solution.

Often, the optimization problems occurring in machine learning are
ill-posed, i.e. their solution is not unique. To overcome this issue,
a classical solution is to regularize the objective function, by adding
to it some regularization term (or penalty term). Doing so allows
promoting a solution with the desired properties and penalizing other
ones. Many efficient regularization methods propose to use a penalty
proportional to the norm of the solution. For example, when relying
on the l2 norm (given by ‖x‖2 = ∑n

i=1 x
2
i ), the regularization is referred

to as Tikhonov regularization. Alternatively, using the l0 pseudo-norm
(which counts the non-zero coordinates of vector ‖x‖0 = ∑n

i=1[xi 6= 0])
leads to promoting sparse model, a frequently required feature in many
applications. Unfortunately, an l0 regularization yields non-convex
problems, however, as demonstrated with the LASSO regression (see [52])
it can easily be relaxed with an l1 norm: ‖x‖1 = ∑n

i=1 |xi|, (i.e. the l1
norm provides a convex approximation of a l0 penalized problem). A
more detailed discussion about sparse representation can be found in
Chapter 3.

1.5.1.3 k-means clustering

Cluster analysis aims to partition observations into groups in such
way that the similarities within any given group are higher than be-
tween different groups. The choice of the similarity measure strongly
influences the clustering result and it is guided by the problem objective
and the data type (see Section 1.5.2.1). Cluster analysis is frequently
used in many applications, including mass spectrometry data analysis:
For instance, DIA-Umpire (see Section 1.4.2) uses clustering to group
co-eluting fragments and precursors; Another tool, Xnet [53] (discussed

[4]That is a line connecting any two points lies above the function graph between these points
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in Chapter 2) performs a chromatogram clustering to recover isotopic
envelopes (different chemical form of a given precursor ion). Many clus-
tering methods coexist. This work focuses on a very popular approach
(among others), referred to as k-means clustering. This approach covers
many different algorithms, yet all seek to optimize the so-called k-means
objective function, which reads:

min
C1,...,Ck
µ1,...,µK

k∑
i=1

∑
x∈Ci
‖x− µi‖2

2, (1.5)

where µi is a mean of points in cluster Ci and it is called a cluster
centroid[5]. In other words, one searches for k cluster centroids such
that the sum of the squared distances between the data instances and a
cluster centroid, to which they are assigned, is minimal. As similarity
decreases as a function of the distance, the k-means objective function
provides the partitioning into k clusters, where the data instance within
each cluster are more similar than between clusters. It should be noted
that k-means objective function is non-convex, so that there is no
polynomial-time algorithm that can find its global minimum. The most
popular algorithm to solve Eq. (1.5) is Lloyd’s algorithm (which is often
improperly referred to as the classical k-means method). It works as
follows: (i) k cluster centroids are randomly initialized; (ii) the clusters
are formed by assigning the data instances to the closest cluster centroid;
(iii) cluster centroids are recomputed as a mean of data instances in
the newly constructed clusters; steps (ii) and (iii) are repeated while
the objective function can be still improved. This method has some
drawbacks: (1) Different random initializations of the cluster centroids
lead the algorithm to converge towards different local minima, yielding
different clustering results; (2) It is not adapted for large-scale data,
since the repeated distance computations (between all data instances
and cluster centroids) at each iteration is time consuming. Even so

[5]Let us note that in the mass spectrometry community, when the data points are chromatograms,
then, the µi’s are often referred to as consensus chromatograms
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in practice a few iterations are sufficient to reach a local minimum,
the theoretical complexity of Lloyd algorithm is super-polynomial; (3)
It requires specifying the number of expected clusters (which may be
unknown, notably on LC-MS data, see Chapter 2); (4) It cannot cope of
the presence of outliers, as all data points are necessary assigned to one
and only one cluster. Many approaches (other than Lloyd’s algorithm)
are available to minimize the k-means objective function. For instance
k-means++ [54] (which improves on Lloyd’s algorithm), discretizing the
eigenvectors of the covariance matrix in a PCA-like way (see [55]) or
using Orthogonal Matching Pursuit to have a decent initializer and then
perform a global optimization (see [56]), and notably, the algorithm
proposed in Chapter 2 relies on one of these. However, whatever the
approach, the last two drawbacks (number of cluster definition and
outlier management) remain, as they are inherent to the objective
function.

Hierarchical clustering is another type of cluster analysis approach,
which is intended to construct a cluster hierarchy. The most well-known
hierarchical clustering strategy is agglomeration of clusters together
going up in the hierarchy. Concretely, at the first hierarchy level, each
data instance belongs to its own cluster; then cluster are pairwise merged,
relying on their similarities. At the last step, all data are merged in a
single cluster.

It must be noted that in the proteomics community, the clustering
of mass spectra is often incorrectly referred to as the spectral clustering.
However, spectral clustering has long been a particular clustering algo-
rithm, which uses the spectrum (set of eigenvalues) of the data similarity
matrix to identify clusters [57].
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1.5.2 Selected overview of machine learning tech-
niques of interest to tackle LC-MS data

This section introduces a series of specific machine learning concepts
or algorithms on which our results from the following chapters have
thrived.

1.5.2.1 Scalar product, similarity measure, optimal transport
distance

The choice of the similarity measure involved in cluster analysis is of
the utmost importance, since it impacts a lot the clustering result. The
k-means objective function (see Eq. (1.5), implies that the similarity
is inversely proportional to the distance. When the data instances are
vectors in Rn, the space is referred to as Euclidean if its geometry is
induced by a function referred to as scalar product:

〈x, y〉 = x> · y = ‖x‖2 · ‖y‖2 · cos(θ), (1.6)

where θ is an angle between vectors x and y; where ‖ · ‖2 refers to the l2
norm of a vector (i.e. its length computed from the vector coordinates
using the Pythagorean theorem), and > is the matrix transpose operator.
Conversely, the Euclidean distance between two vectors can be written
using scalar products as follows:

‖x− y‖2 =
√
〈x, x〉 − 2 · 〈x, y〉+ 〈y, y〉. (1.7)

Beyond the classical Euclidean distance, many other distances (and
thus similarities) are insightful in machine learning, depending on the
targeted task and the type of data. Notably, the Wasserstein distance
(or optimal transport distance [58, 59]) as recently gain a strong inter-
est [60–62]. In optimal transport theory, one looks for a mapping Γ,
which transports one distribution µ into another distribution ν with
the minimal transportation cost c(µ, ν). Let M be a metric space, the
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mathematical definition of the Wasserstein-p distance is given by the
so-called Kantorovich formulation [63]:

Wp(µ, ν) =
 inf

Γ∈J(µ,ν)

∫
M×M

c(x, y)pdΓ(x, y)


1
p

, (1.8)

where J(µ, ν) denotes the set of all probabilistic measures in M ×M ,
and where the cost function is classically defined on the basis of the
Euclidean distance: c(x, y) = ‖x − y‖2. In Chapter 2, we consider a
special case of Wasserstein distance with p = 1, classically referred to
as Earth mover’s distance [64]. We demonstrated that this distance is
a good choice to define similarities between chromatographic elution
profiles.

1.5.2.2 Kernel trick

Another popular way to define meaningful similarities from algebraic
distances is to project the data into reproducing kernel Hilbert space H,
using a mapping of the form ϕ : X → H (note that H is also known
as the feature space). Finding the explicit form of the mapping ϕ is
not necessary thanks to the so-called kernel trick. This trick can be
applied only for algorithms, which can be reformulated to operate on
the scalar products between the data instances only, without explicit
use of the data vectors. An example is Lloyd’s algorithm, which can
thus be kernelized, leading to the popular kernel k-means approach.

To practically apply the kernel trick, it is necessary to define a specific
function, referred to as a kernel function, which is based on distances
d(x, y) in the initial space, make it possible to define similarities in the
feature space. Most often, the similarity function has the following form:
k(x, y) = f(d(x, y)). However, it is not necessary. What is necessary is
that the kernel function k meets the positive semi-definiteness (or PSD)
property, which essentially make it equivalent to a scalar product. More
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formally, the PSD property reads:

m∑
i=1

m∑
j=1

cicjk(xi, xj) ≥ 0, ∀c1, . . . , cm ∈ R, x1, . . . , xm ∈ Rn (1.9)

This property allows using Mercer’s theorem [65], which states that
the kernel function equates the canonical inner product of an Hilbert
space which is proven to exist (the feature space). Therefore, even if the
feature space (or its mapping onto it, ϕ) are not explicitly defined, it is
possible to exploit its specific geometry.

The most popular kernel functions are the following: the polynomial
kernel defined as k(x, y) = (x> · y + c)d; the Gaussian kernel k(x, y) =
exp

(
−dE(x,y)2

2σ2

)
, and Laplacian kernel k(x, y) = exp

(
−dE(x,y)

σ

)
, where

c ∈ R+ (non-negative constant) and d ∈ N are polynomial kernel
parameters, where dE(x, y) denotes the Euclidean distance and where
σ ∈ R∗+ is a Gaussian or Laplacian kernel parameter (positive constant).

In Chapter 2, we proposed to define similarities between chro-
matographic profiles by means of such a kernelization, yet based on
the Wasserstein-1 distance instead of the Euclidean one: k(x, y) =
exp(−γ · dW1(x, y)s), when s = 2, this leads to a Gaussian W1 kernel,
and when s = 1, to Laplacian W1 kernel.

1.5.2.3 Data factorization methods

Blind source separation problem consists in finding a representation
of a (complex) observation x as a linear combination of some (elementary,
yet unknown) signals d1, . . . , dk:

x ≈ α1 · d1 + · · ·+ αk · dk. (1.10)

The objective is to determine coefficients α1, . . . , αk, which are referred to
as a code, as well as signals d1, . . . , dk, (forming a matrix D) referred to as
a dictionary. It should be mentioned that the spectrum demultiplexing
problem addressed by Specter tool (see Section 1.4.2) can be reformulated
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as a blind source separation problem. In the literature, many different
alternative names exist: When the decomposition is performed for a
collection of signals concatenated in a matrix, the problem is referred
to as a matrix factorization. Additional requirements can be added
via mathematical constraints to yield more realistic problem modeling:
non-negative signals, orthogonal signals, etc. Notably, if all involved
matrices are non-negative, one falls back on the well-known non-negative
matrix factorization (or NMF) framework [66]. Alternatively, truncated
singular value decomposition (SVD) is a matrix factorization approach
suited to orthogonality constraints. SVD factorizes the data matrix
X ∈ Rn×N into a product of three matrices: U ·Σ ·V T , where U contains
right singular vectors of X, V contains left singular vectors and Σ is a
diagonal matrix of singular values. U and V are orthogonal matrices.
In practice, general SVD is replaced by its truncated approximation,
where only a subset of the largest singular values is computed.

Matrix factorization can also be called dictionary learning. In this
case, it is commonly assumed that the representation is sparse, i.e.
only some of the code’s coefficients α1, . . . , αk are non-zero. The dictio-
nary learning problem can be formulated as a constrained optimization
problem with a fixed sparsity level T :

min
A∈RK×N
D∈Rn×K

1
2

N∑
i=1
‖xi −D · αi‖2

2, ‖αi‖1 ≤ T, i = 1, . . . , N, (1.11)

as well as an unconstrained problem, where the regularization parameter
λ controls the sparsity level:

min
A∈RK×N
D∈Rn×K

1
2

N∑
i=1
‖xi −D · αi‖2

2 + λ‖αi‖1, (1.12)

where A = {α1, . . . , αN} denotes a code matrix.
It should be mentioned that the k-means objective function (pre-

sented above) can be reformulated as a matrix factorization prob-
lem [67, 68]. In fact, the most known dictionary learning algorithm
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K-SVD is a generalization of the k-means method [69].
Relying on algebraic methods (such as singular values or eigenvalues

decomposition) to factorize the data can be computationally costly, espe-
cially for large-scale ones. In general, matrix factorization is achieved by
solving the dictionary learning problem (Eq. (1.12)) using an alternative
optimization strategy. This strategy exploits the fact that the objective
function in Eq. (1.12) is non-convex with respect to both variables A
and D, (meaning it is hard and slow to solve), but it is convex on each
variable taken independently. Thus, it makes sense to convert the joint
minimization of Eq. (1.12) into an alternative minimization with respect
to one variable where the other one is fixed, and then to swap. This leads
to alternate between the minimization of the two following problems:

α∗1, . . . , α
∗
N = arg min

A∈RK×N
1
2

N∑
i=1
‖xi −D∗ · αi‖2

2 + λ‖αi‖1, (1.13)

d∗1, . . . , d
∗
K = min

D∈Rn×K
1
2

N∑
i=1
‖xi −D · α∗i‖2

2, (1.14)

where the optimal dictionary D∗ = {d∗1, · · · , d∗K}.
The first minimization (with respect to the code matrix A) can be

handled using for example LARS method [70] or hard thresholding
method [71] or Matching Pursuit [72]; As for the second one, we can
rely on methods such as Coordinate Descent [73] or Stochastic Gradient
Descent [74] (see Section 1.5.2.5 for details).

1.5.2.4 Nyström approximation

Proteomics data are both high dimensional and large-scale, which
makes their processing with state-of-the-art machine learning techniques
a challenge, as their complexity is often superlinear (to put it mildly).
Therefore, our work extensively relies on dimensionality reduction and
data compression techniques that are briefly recalled hereafter.

Nyström approximation [75] is a well-known kernel matrix approxi-
mation method. It is used to avoid the quadratic complexity induced by
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the computation of all the pairwise similarity stored in a kernel matrix.
It involves truncated SVD decomposition and data sub-sampling. Its
core idea is to randomly select column indices, and then to compute these
kernel matrix columns only. Finally, it uses these columns to approxi-
mate the entire matrix. More formally, the kernel matrix K ∈ RN×N is
approximated as follows:

C ·W−1
r · C> = C · Ur ·D−1

r · U>r C> (1.15)

where C ∈ RN×l is a kernel submatrix, W ∈ Rl×l is a matrix, obtained
from C by selecting corresponding rows as well, and Wr = Ur ·Dr ·U>r C>

is r-truncated SVD of W .
Recently, Mahoney’s team proposed scale-up the kernel k-means

using Nyström approximation [76]. Concretely, their approach clusters
the data in three steps: First, the kernel matrix K is approximated using
Nyström method. According to Eq. (1.15), it results in the construction
of r-dimensional feature vectors in the rows of the matrix Φ = C · Ur ·
D
− 1

2
r ∈ RN×r. Second, the feature dimension is reduced to s (s < r) by

applying an s-truncated SVD to Φ: Φs = Us ·Σs ·V >s . Third, rows of the
matrix B defined as B = Us ·Σs ∈ RN×s are clustered using any classical
(i.e. operating in the original space) k-means clustering algorithm.
This approach is computationally efficient and comes with theoretical
approximation error estimation. Concretely, they demonstrated that
their approach with feature dimension s fixed at k

ε , where k is the number
of clusters, provides the cluster assignment, which is at most 1 +O(ε)
times worse than the clustering obtained by the classical kernel k-means,
where ε ∈ (0, 1). Following this strategy in Chapter 2, we scaled-up
another k-means algorithm (the Compressive k-means, see below) using
Nyström approximation.
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1.5.2.5 Stochastic and Momentum based gradient descent
methods

Stochastic gradient descent (SGD [74]) is an adaptation of the clas-
sical gradient descent scheme for large-scale datasets. Let us assume
a classical objective function in an empirical minimization framework
(see Section 1.5.1.1): 1

N

N∑
i=1

L(p, xi). Stochastic scheme approximates
the time-consuming gradient computation on an entire dataset (see
Section 1.5.1.2) by the gradient of a single randomly selected summand
L(p, xi) (i.e. the empirical risk is estimated on a single data observation):

pt+1 = pt − γ · ∇pL(pt, xi). (1.16)

Applying this strategy for all the data instances defines an epoch. There
exist several variants of SGD: Mini-batch gradient descent performs the
update on a small subset of data, called a batch, instead of a single
vector. Other modifications, such as Momentum gradient descent [77]
and Nesterov accelerated gradient descent [78], make use of an additional
term at each iteration, called momentum, which is a weighted sum of
gradient vectors computed at previous iterations.

These momentum methods are based on a simple idea: If during
the previous iterations, the gradient vectors frequently pointed toward
a given direction, it is most likely the correct one to follow to find
the minimum, and changing it would not make sense. In this context,
the momentum term simply adds some inertia (by preventing excessive
changes from one iteration to another). More formally, it has been
demonstrated that it yields faster convergence than SGD (see [79]). The
update rule for the Momentum gradient descent is given by:

vt+1 = α · vt − γ · ∇pL(pt, xi), (1.17)
pt+1 = pt + vt+1, (1.18)

where vt denotes the momentum vector and α is a decaying parameter,
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which controls the influence of the previously accumulated gradients.
The difference between the Nesterov accelerated scheme and the

Momentum method lies in the gradient computation. In Nesterov’s
method, the gradient is computed at the intermediate parameter value
pt+

1
2 , which is the point indicated by the current momentum vector

(Eq. (1.19)). The rest remains unchanged:

pt+
1
2 = pt + α · vt, (1.19)

vt+1 = α · vt − γ · ∇pL(pt+ 1
2 , xi), (1.20)

pt+1 = pt + vt+1. (1.21)

1.5.2.6 Sketching learning

Recently, Remy Gribonval’s team proposed an original way to scale up
computationally demanding machine learning algorithm. Their method,
referred to as Compressive Learning [80] is based on constructing a data
sketch, i.e. a single vector of fixed size, which summarizes the data.
Then, the algorithm can operate on the sketch in place of the original
data, making it more efficient.

Let us assume the observed data obeys some law P referred to as the
data distribution. With this regard, the observed data is an empirical
sample from this unknown distribution X ∼ P . The characteristic
function of P , is defined as:

ϕX∼P (w) =
∞∫
−∞

exp(i · w> · x) · P (dx), (1.22)

where w ∈ Rn is a frequency vector. The characteristic function has two
important properties: It always exists, and it completely represents the
distribution, making it the best candidate to rely on for the construction
of the data sketch.

In practice, the data distribution P is unknown, and it is approxi-
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mated as a sum of Diracs located at the data instances as follows:

P = 1
N

N∑
i=1

δ(xi) (1.23)

Thus, substituting the continuous probability distribution by the empir-
ical one, we obtain the following formula for the characteristic function:

ϕX∼P (w) =
N∑
i=1

exp(i · w> · xi), (1.24)

Finally, the data sketch is derived by sampling the characteristic function
in the frequency domain in spirit of the random Fourier features [81]:

SK(X) = (ϕX∼P (w1), . . . , ϕX∼P (wm)) ∈ Cm, (1.25)

where w1, . . . , wm are frequency vectors sampled from some predefined
frequency probability distribution Λ. More details about the link between
the sketching operator and random Fourier features can be found in
Chapter 2.

An example of learning from sketched data can be found in [56],
which details an algorithm called Compressive k-means: It identifies
cluster centroids C = {µ1, . . . , µK} by solving the following minimization
problem:

min
µ1,...,µK
α1,...,αK

‖SK(X)− α · [SK(µ1) . . . SK(µK)] ‖2
2, (1.26)

where [SK(µ1) . . . SK(µK)] ∈ Cm×K denotes the matrix resulting from
the concatenation of the cluster centroid’s sketches, and α = (α1, . . . , αK) ∈
RK is a vector of cluster centroid’s weights. Let us note the equivalence
of the objective function of Eq. (1.26) and the signal decomposition
problem (Eq. (1.10)). Thus, the cluster centroid’s sketches can be seen
as dictionary elements and Compressive k-means as a way to decom-
pose the data sketch onto this dictionary. The Compressive k-means is
in fact the sketched version of the dictionary learning method named
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Orthogonal Matching Pursuit [82]. From an implementation viewpoint,
Compressive k-means is a greedy method, which iterates four steps: (i)
It expands the set of cluster centroids C with a vector µi, which sketch
is the most correlated to the residue (at the first iteration the residue is
equal to the data sketch vector):

µi = arg max
µ∈Rn
<
〈 SK(µ)
‖SK(µ)‖2

, r

〉 , (1.27)

where < denotes the real part of the complex number; (ii) It computes
weights of centroids:

min
α≥0

∥∥∥SK(X)− α ·
[
SK(µ1) . . . SK(µ|C|)

]∥∥∥2
2 ; (1.28)

(iii) It minimizes the objective function with respect both cluster cen-
troids and weights:

min
α≥0,C∈Rn×K

∥∥∥SK(X)− α ·
[
SK(µ1) . . . SK(µ|C|)

]∥∥∥2
2 ; (1.29)

(iv) It recomputes the residue:

r = r − α ·
[
SK(µ1) . . . SK(µ|C|)

]
. (1.30)

The second step can be achieved using any non-negative least-squares
solvers, the first and the last steps are fulfilled by gradient descent.
Since the objective function is non-convex with respect to both cluster
centroids and weights, the global minimization of the third step is the
main bottleneck of the method.

1.6 Problem statement and formulation

A recently published approach, EncyclopeDIA [83],introduces a new
workflow for DIA data analysis based on the construction of a chro-
matogram library. EncyclopeDIA generates the chromatogram library
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by using DIA with gas-phase fractionation ( [84], a specific acquisition
mode, where the same sample is injected multiple times, each one allow-
ing the data to be acquired in different m/z windows). As covering the
full m/z range requires several DIA runs on the same sample (at least
six), the approach is experimentally costly. However, it makes it possible
to demultiplexed DIA spectra on-the-fly, and to identify peptides in
each window using a DIA library-based approach or a DIA database
search engine (e.g. PECAN). The chromatogram library contains the
following information: retention time, peak shape, peptide mass, peptide
fragmentation patterns, and known interferences of detected peptides.

The authors demonstrate that using such a chromatogram library
allows for the identification of 20% to 25% additional peptides, compared
to both DDA analysis and library-based DIA analysis. However, Ency-
clopeDIA chromatogram library construction has some drawbacks: The
main one is its experimental cost. Another limitation is inherited from
the integrated demultiplexing methods: the constructed chromatogram
library contains only peptides present either in the used spectral library
or in the peptide list provided to PECAN. Chromatographic profile
pattern extraction can improve DDA peptide identification as well:
Recent investigations [85–87] showed that using both data types (chro-
matographic profiles and mass spectra) allows extracting more pieces
of information from DDA data; as a result, it yields better peptide
identification.

To summarize, the recently developed concept of chromatogram
libraries makes it possible to significantly improve peptide identifica-
tion for both DDA and DIA data. However, methods insofar available
for chromatogram library construction require extensive wet-lab ex-
periments. In this work, we have leveraged recent machine learning
advances to develop computational methods (i.e. without additional
wet-lab experiments) to construct chromatogram libraries directly from
the LC-MS data of interest.

Few previously published works have already proposed to apply
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machine learning algorithms on chromatographic data. However, they
focus on chromatographic profile recognition from DDA data: feature
recognition algorithms based on artificial neural network [88] or on
Bayesian probabilistic models [89,90], as well as chromatogram extraction
methods based on Wavelets transform [91,91–93]. Moreover, their goal
is closer to signal denoising than to pattern extraction.

To the best of the author’s knowledge, no method has so far proposed
to exactly address the problem of chromatogram library construction
from DIA data.

A potential strategy to learn the chromatographic patterns from
the data is to perform a chromatogram clustering and to form the
chromatogram library with the cluster centroids (or consensus chro-
matograms). This strategy has been investigated and has led to an
article which is accepted for publication in BMC Bioinformatics journal.
Its content forms Chapter 2.

An alternative method is to rely on an analogy between the En-
cyclopeDIA approach and the formalism of dictionary learning. This
suggests to directly learn the chromatogram library that best explains
the LC-MS data. This idea is appealing, as in the near future, it could
lead to a strategy to demultiplex DIA mass spectra, as investigated by
the developers of Specter [28]. Following this approach, the considered
problem would mathematically reads as:

min
D∈Rn×K
A∈RK×N

‖X −D · A‖2
2 (1.31)

where D denotes a chromatogram library matrix (with extracted chro-
matogram patterns as columns), and A is a matrix with pseudo-DDA
mass spectra as rows. As presented above, such an objective function is
now mainstream in machine learning. However, efficiently minimizing
on data as large and as noisy as LC-MS data remains a challenge. This
why, our investigation on this path has led to a manuscript submission
in Statistical Analysis and Data Mining, which constitutes Chapter 3.
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Abstract
Background: The clustering of data produced by liquid chromatography coupled
to mass spectrometry analyses (LC-MS data) has recently gained interest to extract
meaningful chemical or biological patterns. However, recent instrumental pipelines
deliver data which size, dimensionality and expected number of clusters are too
large to be processed by classical machine learning algorithms, so that most of the
state-of-the-art relies on single pass linkage-based algorithms.

[1]This article is accepted in BMC Bioinformatics journal
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Results: We propose a clustering algorithm that solves the powerful but com-
putationally demanding kernel k-means objective function in a scalable way. As a
result, it can process LC-MS data in an acceptable time on a multicore machine.
To do so, we combine three essential features: a compressive data representation,
Nyström approximation and a hierarchical strategy. In addition, we propose new
kernels based on optimal transport, which interprets as intuitive similarity measures
between chromatographic elution profiles.

Conclusions: Our method, referred to as CHICKN, is evaluated on proteomics
data produced in our lab, as well as on benchmark data coming from the literature.
From a computational viewpoint, it is particularly efficient on raw LC-MS data. From
a data analysis viewpoint, it provides clusters which differ from those resulting from
state-of-the-art methods, while achieving similar performances. This highlights the
complementarity of differently principle algorithms to extract the best from complex
LC-MS data.

Keywords: Large-scale cluster analysis; Liquid chromatography; Mass spectrome-
try; Proteomics; Wasserstein kernel; Optimal transport

2.1 Background

Liquid chromatography coupled to mass spectrometry (LC-MS) con-
stitute a technological pipeline that has become ubiquitous in various
omics investigations, such as proteomics, lipidomics and metabolomics.
Over the past decade, the MS throughput has continuously improved,
leading to unprecedented data volume production. To date, processing
these gigabytes of low level MS signals has become a challenge on its own,
for a trade-off between contradictory objectives is sought: On the one
hand, one needs to save memory and computational time with efficient
encoding, compression and signal cleaning methods [94]. On the other
hand, one needs to avoid too important preprocessing that systematically
smoothes signals of lower magnitudes, as it is now well-established that
interesting biological patterns can be found near the noise level [95]. To
face this challenge, a recent and efficient investigation path has been to
apply cluster analysis to LC-MS data. Cluster analysis refers to a large
family of unsupervised statistical learning and multivariate analysis
techniques which share a common goal: Aggregating similar data items
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into clusters, so that within-cluster similarities are larger than between
cluster ones. By doing so, it becomes possible to consider the various
clusters independently, and thus to reduce the computational footprint
without any quality loss. Moreover, as each cluster contains similar data
elements, it facilitates the extraction of repetitive but small biological
patterns.

2.1.1 State of the art

To date and contrarily to the presented work, investigations have
mainly focused on clustering LC-MS data across the chromatographic
(or elution time) dimension, i.e. when the data elements are MS spectra:
MS2grouper [96,97], Pep-Miner [98], PepMerger [99], the MS-Clustering
/ MS-Cluster / Pride-Cluster / spectra-cluster series [100–103], Bo-
nanza [104], CAMS-RS [105], MaRaCluster [106], N-cluster [107], and
msCRUSH [108]. All these approaches propose to improve peptide iden-
tification by benefiting from the aforementioned trade-off: By grouping
similar fragmentation spectra into a consensus representation, one clearly
reduces the data volume. Moreover, peaks corresponding to random
noise should not reinforce between spectra, while on the contrary, small
but chemically consistent peaks should [109].

Clustering across the mass-to-charge ratio (m/z) dimension, i.e.
when the data elements are chromatographic profiles (depicting the
signal changes along the elution time at a given m/z value), is also
insightful for many reasons: First, it proposes an original framework to
construct and extract precursor ion chromatograms, which integration
is essential for quantitative analysis [53]. Second, cluster centroids
naturally provide consensus elution profiles which are of interest for
retention time alignment [50]. Finally, elution profiles are also essential to
disentangle chimeric spectra [110]. Notably if the clustering is sufficiently
accurate, it can be insightful to disentangle multiplexed acquisitions
(e.g. Data Independent Acquisition [111], or DIA), without relying
on spectral libraries [28, 112]. To date, these practical problems have
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been tackled in the proteomics literature by applying various heuristics
which differ to some extend from the cluster analysis framework. For
instance, in DIA-Umpire [26], peptide fragments’ elution profiles are
clustered according to their correlations with precursor profiles, so that
formally, the approach is more that of classification (i.e. supervised)
than of clustering (i.e. unsupervised). Similarly, in many quantification
algorithms (Maxquant [46], OpenMS [113], MsInspect [114], Xnet [53])
cluster analysis aims to extract isotopic envelopes, i.e. to group the
elution profiles of several isotopes of a given molecule, within a closed
neighborhood of m/z values. As a consequence, two identical profiles in
different m/z regions are not grouped together. Although this behavior
(that will be referred to as the envelope assumption simplification in
the rest of the article) concurs with the objective of isotopic envelope
reconstruction, it makes the heuristic strongly attached to one objective;
and non applicable to other cluster analysis problems. In contrast,
we believe generic clustering algorithms would also be of interest, as
different tuning would make them appropriate to deal with different
objectives: e.g. by adding must-link/must-not-link constraints [115] so
as to guide the demultiplexing task as in the DIA-Umpire case; or by
incorporating an m/z difference in the similarity definition, in the case
of isotopic envelope extraction; and so on.

Moreover, a refine analysis of the algorithms underlying all these
(either spectrum or chromatogram) clustering techniques let appear a
strong filiation between them: All rely on agglomerative and linkage-
based methods, be it previously published algorithms (HAC [116,117],
DBSCAN [118] or UPGMA [119]) or ad-hoc procedures developed in
the specific context of LC-MS data clustering (proposed in MS2grouper,
Pep-Miner, PepMerger, the MS-Cluster series, Bonanza, CAMS-RS, N-
cluster and XNet). Despite their unquestionable efficiency, some diversity
would help. Cluster analysis is as much an art as a science [120] and
there does not exist such thing as the perfect clustering – at least, on
real data. Most of the time, data analysts need to rely on a toolbox
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of various algorithms to extract the best of their data [121]. With this
respect, MS-based omics would benefit from differently principled and
complementary algorithms which have demonstrated their efficiency in
data science [122]. For instance, spectral clustering [123–125] (which
should not be confused with the cluster analysis of mass spectra [57]),
mean shift algorithm [126,127], and variants of the k-medoids [128] and
k-means [129,130] are of prime interest.

Finally, one observes a difference between algorithms dedicated
to spectrum clustering and those dedicated to chromatogram cluster-
ing: While the former ones are mainly implemented in an independent
manner, the latter ones are all embedded in computational pipelines
(DIA-Umpire [26], Maxquant [46], OpenMS [113], MsInspect [114]). The
only exception is Xnet [53], which makes it a unique literature reference
for algorithmic and low-level comparisons. In addition, Xnet is the most
recently published algorithm, and it displays interesting performances
on a benchmark dataset.

In a nutshell, Xnet is a Bayesian algorithm which aims to cluster
elution profiles into isotopic envelopes. More precisely, it starts from
the construction of a network with chromatograms as nodes. Then, the
network is decomposed into preliminary clusters. The edges within each
cluster are scored by estimating the likelihood of two parameters: the cor-
relation between chromatograms and their m/z separation. Finally, the
edge validation is carried out using the scores and a chromatogram apex
match verification. This leads to the final isotopic envelope construction.

Xnet has many strengths: First, it is a parameter free clustering
method – the number of clusters can be inferred during the learning
process. Second, the time complexity of the algorithm is linear with
respect to the number of chromatograms in the data. However, it also has
weaknesses: First, it cannot work on raw data and requires an important
preprocessing step, referred to as ion chromatogram extraction, which
denoizes the LC-MS map and aggregates independent measurements
into well-formed traces (i.e. lists of peak intensities corresponding to a
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same ion, identified in consecutive mass spectra). Concretely, starting
from a raw file, it is first necessary to extract non trivial information and
to store them into an input CSV file with the following columns: m/z
ratios, retention times, intensities and trace labels. In addition to be
time consuming, it can arguably be considered that excluding the trace
construction from the algorithm amounts to transferring a bottleneck
question to another preliminary processing, or to a human annotator.
Second, it strongly relies on the envelope assumption simplification,
making it impossible to group elution profiles which m/z difference
exceeds a predefined threshold.

The third weakness is related to the generalization capabilities: As
acknowledged in [53], there is not enough data to accurately train the
probability model underlying Xnet, making it necessary to complement
it with a Bayesian prior. This obviously questions the applicability to
datasets that significantly differ from the ones that served to tune the
prior. Finally, Xnet does not provide a consensus chromatogram for
each cluster: Its output is a CSV file that only assigns a cluster index
to each line of the input CSV file.

2.1.2 Objectives and contributions

The objective of this article is twofold: First is to propose a new
cluster analysis pipeline adapted to the challenging problem of clustering
multiplexed chromatographic profiles resulting from data independent
acquisitions. The second objective is to build this pipeline around an
algorithm which is not agglomerative and linkage-based. Concretely, we
focused on k-means objective function, for two reasons: First, until re-
cently, it was considered by the proteomics community as non-applicable
to data as big as LC-MS data [100], while recent theoretical progresses
have made this scaling-up possible [131] (this explains the historical
predominance of agglomerative linkage-based clustering, less computa-
tionally demanding); Second, k-means can be reformulated to fit the
reproducing kernel Hilbert space theory [132] (leading to the so-called
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kernel k-means framework [133]), which provides new opportunities
to define similarity measures that capture the biochemical specificities
of LC-MS data (a challenge that has consistently been pinpointed as
essential over the last fifteen years [96,98,99,104–106]).

The contributions of this article are the following: First, it introduces
the use of Wasserstein-1 (W1) distance (a.k.a. earth mover’s distance,
a.k.a. optimal transport distance) to account for similarities between
elution profiles. Second, it shows that combining Nyström method and
random Fourier features leads to a dramatic data compression level
that makes the k-means objective function minimizable on raw and
high resolution proteomics data with a multi-core machine. Finally, it
demonstrates the applicability and interest of the method to process
proteomics data from DIA experiments.

2.2 Methods

2.2.1 Materials

To conduct our study, we have relied on three datasets. The first one,
hereafter referred to as UPS2GT, is a publicly available dataset [26]. To
be used as a benchmark for Xnet, this dataset had been preprocessed
and manually annotated with isotopic envelopes that can serve as ground
truth [134]. Moreover, the data had been converted into centroid mode,
i.e. a compressed version of the original profile data. In the profile mode,
each peak of the mass spectrum is represented by intensities reported for
several consecutive m/z values, so as to account for the measurement
imprecision. In contrast, the centroid mode summarises all the values
of the profile mode into a single m/z value, located at the center of
the measurement distribution. It leads to significantly smaller memory
footprint, at the price of blurring the differences between true signal
and noise.

The second dataset, hereafter referred to as Ecoli-DIA, is the raw

54



2.2. Methods

output of a DIA analysis of an Escherichia Coli sample (containing
over 15,000 peptides[2] which signals are multiplexed). To avoid any
distortion or information loss, it was stored using the profile mode. The
resulting file has an important memory footprint of 3.6 GB. Thus, even
though chromatogram clustering operates on fraction of the data only
(the so-called MS1 acquisitions, see Section 2.2.1.3), it requires adapted
software tools and methods.

Finally, to account for the rapid increment of data size in proteomics
(resulting from using ever longer LC and ever more resoluted MS ac-
quisitions), we have considered a third dataset, exactly similar to the
Ecoli-DIA dataset, but acquired as Full-MS instead of as DIA. This
means that 100% of the acquisition time was dedicated to MS1 signals, so
as to mimick the extraction of a much larger DIA dataset resulting from
more time- and m/z-resoluted acquisitions. This so-called Ecoli-FMS
dataset has a memory footprint of 3.2 GB. Even though of equivalent
size, this dataset is in fact 16 bigger than Ecoli-DIA (four times more
MS1 spectra which are four times more resoluted), see Section 2.2.1.3.

2.2.1.1 UPS2GT benchmark dataset

The UPS2GT dataset [134] resulted from the liquid chromatography
coupled to mass spectrometry analysis of 48 human proteins of the
Proteomics Dynamic Range Standard (UPS2) on a AB Sciex TripleTOF
5600 instrument using data dependent acquisition with an MS1 ion
accumulation time of 250 ms [26].

The 28,568,990 detected points in the resulting LC-MS map were
annotated according to their intensity value, either as informative or as
noisy. Over 1,2 million informative points were segmented into 57,140
extracted ion chromatograms referred to as traces. Then, the traces
were grouped into 14,076 isotopic envelopes. These envelopes constitute
the dataset ground truth (therefore, the objective of the clustering task

[2]We consider that a peptide is characterized by a triplet: its amino acid sequence, a list of
post-translational modifications and their localization on the sequence. Accordingly, different isotope
measurements can be grouped into a single peptide definition.
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would be to re-build the envelopes from the traces). The final fully
annotated data were stored in a CSV file, where each row depicts one
LC-MS point with four pieces of information: its mass to charge ratio,
retention time, intensity, trace label and envelope label. The points that
were assumed noise were given -1 or 0 as trace label.

2.2.1.2 Ecoli datasets: wet-lab analysis

Escherichia Coli bacteria were lysed with BugBuster reagent (No-
vagen, final protein concentration 1µg/µL). Around 560 µg of proteins
were stacked in the top of a 4 - 12% NuPAGE ZOOM gel (Life Technolo-
gies) and stained with R-250 Coomassie blue. Gel was manually cut in
pieces before being washed by six alternative and successive incubations
in 25 mM NH4HCO3 for 15 min, followed by 25 mM NH4HCO3 contain-
ing 50% (v/v) acetonitrile. Gel pieces were then dehydrated with 100%
acetonitrile and incubated with 10 mM DTT in 25 mM NH4HCO3 for
45 min at 56 ◦C and with 55 mM iodoacetamide in 25 mM NH4HCO3

for 35 min in the dark. Alkylation was stopped by the addition of
10 mM DTT in 25 mM NH4HCO3 (incubation for 10 min). Gel pieces
were then washed again by incubation in 25 mM NH4HCO3 followed
by dehydration with 100% acetonitrile. Modified trypsin (Promega,
sequencing grade) in 25 mM NH4HCO3 was added to the dehydrated gel
pieces for incubation at 37 ◦C overnight. Peptides were extracted from
gel pieces in three sequential extraction steps (each 15 min) in 30 µL of
50% acetonitrile, 30 µL of 5% formic acid, and finally 30 µL of 100%
acetonitrile. The pooled supernatants were aliquoted and dried under
vacuum.

The dried extracted peptides were resuspended in 5% acetonitrile and
0.1% trifluoroacetic acid and 500ng were analyzed by online nanoliquid
chromatography coupled to tandem mass spectrometry (LC-MS/MS)
(Ultimate 3000 RSLCnano and the Q-Exactive HF, Thermo Fisher
Scientific). Peptides were sampled on a 300 µm 5mm PepMap C18
precolumn (Thermo Fisher Scientific) and separated on a 75 µm 250
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mm C18 column (Reprosil-Pur 120 C18-AQ, 1.9 µm, Dr. Maisch HPLC
GmbH). The nano-LC method consisted of a 120 minute multi-linear
gradient at a flow rate of 300 nl/min, ranging from 5 to 41% acetonitrile
in 0.1% formic acid. The spray voltage was set at 2 kV and the heated
capillary was adjusted to 270◦C. For the Ecoli-FMS dataset, survey
full-scan MS spectra (m/z from 400 to 1,400) were acquired with a
resolution of 240,000 after the accumulation of 3 · 106 ions (maximum
filling time 200 ms). For the Ecoli-DIA dataset, survey full-scan MS
spectra (m/z from 400 to 1,400) were acquired with a resolution of
60,000 after the accumulation of 3 · 106 ions (maximum filling time 200
ms) and 30 successive DIA scans were acquired with a 33Th width and
a resolution of 30,000 after the accumulation of 2 · 105 ions (maximum
filling time set to auto). The HCD collision energy was set to 30%.
MS data were acquired using the software Xcalibur (Thermo Fisher
Scientific).

2.2.1.3 Ecoli datasets: Data preparation

The output of the LC-MS/MS experiments were converted from the
proprietary RAW format into mzXML files using ProteoWizard [135].
It led to files of 11.4 GB (Ecoli-DIA) and of 10.2 GB (Ecoli-FMS),
containing several pieces of information: discretized spectra under the
form of coupled lists of m/z and intensity values; as well as metadata
about the experiment (number of spectra, retention time range, etc).

In the case of the Ecoli-FMS dataset, all the spectra are peptide mass
spectra, also termed MS1. However, the Ecoli-DIA datasets contains two
types of spectra: precursor spectra (MS1) and fragmentation spectra
(MS2). Thus, to work on the elution profiles, we have extracted the
MS1 signals from the Ecoli-DIA file. Then, for both files, we have
reconstructed chromatographic signals from MS1 spectrum intensities.
As the proposed method aims to work on data as raw as possible (i.e.
without preliminary denoising, smoothing and so on), we converted
each mzXML file into an intensity matrix such as the ones of Figure 2.1

57



Chapter 2. Chromatographic profile clustering

Figure 2.1: Ecoli-DIA data matrix. Each matrix column corresponds to a chromato-
graphic profile for a fixed m/z value. Maximum Intensity for columns and for rows is
depicted in bar plots.

(Ecoli-DIA) and of Figure 2.2 (Ecoli-FMS), where each row corresponds
to a spectrum and each column to an elution profile (despite possible
m/z fluctuations that may hamper the signal continuity). We concretely
constructed each data matrix using the LC-MS analysis time-stamps
and a non-uniform sampling of the m/z range (see Appendix A for a
detailed description). Concretely, the resampled m/z values are given
by the following recursive formula:

mi+1 −mi = 0.015
Res

EXP

m
3
2
i , (2.1)

where mi is the ith sampled m/z value and Res
EXP

is the instrument
resolution used in the experiment (Res

FMS
= 240, 000 and Res

DIA
=

60, 000). Finally, we have linearly interpolated the intensity values at
each node mi of the grid:

Ii = Ileft + (mi −mleft) ·
Iright − Ileft

mright −mleft
, (2.2)

where m and I pairs with sub-indexes ”left”, ”right” refer the left and
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Figure 2.2: Ecoli-FMS data matrix. Each matrix column corresponds to a chromato-
graphic profile for a fixed m/z value. Maximum Intensity for columns and for rows is
depicted in bar plots.

right neighboring peaks. This is followed by the deletion of the few
empty columns. The resulting Ecoli-DIA data matrix is depicted in
Figure 2.1: it contains around 3,300 rows and 190,000 columns and it
has a footprint of 4.8 GB. As expected, the Ecoli-FMS data matrix
(Figure 2.2) is bigger: 14,000 rows, 700,000 columns and 82 GB. The bar
plots in the margins of both figures represent the intensity distribution
across the matrix columns and rows. They show that the Ecoli-FMS
and Ecoli-DIA matrices have the same structure and intensity range,
despite different size.

2.2.2 Methodology overview

The proposed methodology is composed of three consecutive parts,
hereafter detailed:

1. Profile similarity definition: As frequently discussed in the lit-
erature [96, 98,99,104–106], the choice of a similarity measure that
reflects the biochemical semantics of LC-MS data is essential to
achieve efficient processing. In this article, we relied on Wasserstein-
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1 distance [136–138] (or W1, detailed in Section 2.2.3.1) and we
transformed it into a similarity by applying a negative exponential
function: If xi and xj are two chromatograms (or columns from the
data matrix), their similarity thus reads:

k(xi, xj) = e−γ·[dW1(xi,xj)]p (2.3)

where dW1 is the W1 distance and where γ is a neighborhood pa-
rameter, which tuning authorizes up/down scaling the similarity
values. The use of a similarity measure of the form of a negative
exponential of a distance is convenient, since it makes it possible
to apply the kernel trick [139] (see Section 2.2.3.2), i.e. to apply
a machine learning algorithm as if it were operating in a so-called
feature space (depicting a non-linear data transform which respects
the semantic of the chosen similarity measure).

2. Data compression: Applying the kernel trick can be rather com-
putationally demanding: For a dataset of size N , it requires the
computation of a kernel (or similarity) matrix of size N ×N . Thus,
with between 105 and 106 chromatograms in the Ecoli datasets,
computing and storing the kernel matrix is simply not tractable.
The purpose of Nyström method [140] (see Section 2.2.4.1) is to
replace the kernel matrix by a low rank approximation, as illustrated
in Figure 2.3. By relying only on the similarities between each data
element and a randomly selected subset, it provides a dramatic
reduction of the computational burden at the price of a small and
controlled loss of accuracy. Even though Nyström approximation
allows for an efficient computation of the kernel matrix, it does
not accelerate the clustering algorithm itself, which requires mul-
tiple traversing of the entire dataset (i.e. N elements). To cope
for this, it has recently been proposed in the compressive learning
framework [80] to summarize the entire dataset by a relatively small
vector of fixed size, referred to as data sketch, and to have the
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algorithm operating on his sketch only, irrespective of the original
data. Concretely, we built the data sketch as an average of random
Fourier features of the chromatographic profiles in the feature space
(see Section 2.2.4.2).

3. Cluster and centroid definitions: Lloyd algorithm [141] (i.e.
the most classical algorithm to cluster data according to the k-
means objective function) cannot directly be applied on sketched
data. Fortunately, it is possible to rely on the Compressive k-
means (CKM) algorithm proposed in [142] (see Section 2.2.5.1).
However, CKM only returns a set of cluster centroids and does not
cluster the data per se. Therefore, traversing the entire (original)
dataset to perform the assignment of each chromatogram to its
closest centroid (according to the W1 distance) is necessary (see
Section 2.2.5.2). CKM complexity does not depend on the original
data size (as it operates on the data sketch) which makes it well-
scalable. However, its complexity grows rapidly with the number of
clusters, which is an issue as thousands of clusters can be sought
in LC-MS data. To cope for this, we implemented a hierarchical
clustering scheme, where each cluster is recursively divided into a
small number of sub-clusters until the desired number of clusters
is obtained (see Section 2.2.5.2). This procedure provides a set of
clusters with centroids only defined in the feature space. To recover
the corresponding consensus chromatograms, one has to solve a
pre-image problem. We practically did so by computing the mean of
the elution profiles neighboring each centroid (see Section 2.2.5.3).

To the best of the authors’ knowledge, this work is the first one
to combine Nyström method and compressive learning with random
Fourier features on a problem as difficult as the clustering of LC-MS
data, which combines high-dimensionality and a very large number
of potential clusters in addition to the traditional difficulties of raw
biological data (non-linearities, low signal-to-noise ratio, etc.). From
this point on, we refer to the proposed method as CHICKN (standing
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Figure 2.3: Nyström kernel approximation. The matrix C represents the similarity
between each data point and the random sample. The matrix W corresponds to the
pairwise similarity evaluation between selected data points.

for Chromatogram HIerarchical Compressive K-means with Nyström
approximation).

2.2.3 Profile similarity definition

2.2.3.1 Metric choice

Originally, the Wasserstein-1 (W1) metric was defined to compute
optimal transport strategies, which explains why it is also referred to as
the earth mover’s distance. It has witnessed a recent gain of interest in
machine learning as an efficient way to measure a distance between two
probability distributions [143,144]: Essentially, if one sees probability
distributions as earth heaps, the most energy efficient way to move one
earth heap in place of the other makes an interesting distance estimate.
In this work, we leveraged a similar analogy between an earth heap
and a chromatographic elution profile. Concretely, this approach is
insightful since it accounts for two distinct components of what makes
chromatographic elution profiles similar or not: their time separation
as well as their difference of shape. Let us also note that this distance
has recently been applied to LC-MS data, yet, to spectra rather than to
chromatograms [138].

In general, the W1 distance between distributions P and Q is com-
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puted by solving Kantorovitch minimization problem, namely:

dW1(P ,Q) = inf
ξ∈J (P,Q)

∫
‖x− y‖dξ(x, y) (2.4)

where J (P ,Q) denotes all joint distributions ξ(x, y) that have marginals
P , Q. However, in the 1-dimensional discrete setting where distributions
P and Q are replaced by chromatograms x = (x1, . . . , xn) and y =
(y1, . . . , yn) ∈ Rn, the W1 distance boils down to a difference between
empirical cumulative functions:

dW1(x, y) =
n∑
j=1
|Fx(j)− Fy(j)|, (2.5)

where Fx(j) = ∑
i≤j

xi
n∑
k=1

xk
is the jth component of the cumulative distribu-

tion function of chromatogram x.

2.2.3.2 Kernel trick

Converting distances between data vectors into similarities by means
of a negative exponential function is a good way to derive a similarity
measure endowed with the positive semi-definite (or PSD) property[3].
This property is essential to the application of the kernel trick [145],
which notably explains why kernels of the form k(xi, xj) = e−γ·[d2(xi,xj)]p,
with p = 1 (the Laplacian kernel) or p = 2 (the Gaussian kernel) and
with d2 depicting the Euclidean distance are classically used.

Concretely, let X = [x1, . . . , xN ] ∈ Rn×N be the data matrix com-
posed of N chromatograms. The kernel trick actually consists in using
the similarity measure to implicitly map the data onto a feature space
that better represents them. The mapping is deemed ”implicit” as it
does not require the computation of coordinates of the data point images
Φ = [φ(x1), . . . , φ(xN)], where φ denotes the mapping function. Two

[3]Positive semi-definiteness or PSD-ness, means the resulting similarity matrix will have only
non-negative eigenvalues (if the eigenvalues are positive, the matrix is called positive definite or PD,
see Appendix B, Section B.1).

63



Chapter 2. Chromatographic profile clustering

conditions must be met for this trick to work: First, the algorithm
must rely on similarity measures only (i.e. once the similarities are
computed, the values of the xi’s are not used any more). Second, the
similarity measure reproduces the inner product of the feature space:
k(x, y) = 〈φ(x), φ(y)〉. According to Mercer’s theorem [146], any PSD
similarity measure satisfies the second condition. From that point on,
we refer to K = ΦTΦ = [k(xi, xj)]i,j=1,...,N as the kernel matrix.

However, when using a distance like dW1, which does not derive
from a norm inducing an inner product on the data space (like for
instance d2), then the PSD-ness is not guaranteed [147]. In this work,
we have investigated both the Laplacian W1 and the Gaussian W1
kernels: While we exhibit a formal proof of the Laplacian W1 kernel
PD-ness (see Appendix B, Section B.3), we only have empirical evidence
in the Gaussian case (see Appendix B, Section B.2). As in practice,
both kernels lead to similar ranks in pairwise similarities, the resulting
clusters only marginally differ. Owing to its popularity in life science
applications, as well as to its easier tuning (interpretation and stability
of the hyperparameter) the article thus focuses on the Gaussian case.
Notably, as computational costs are necessarily higher with p = 2
than p = 1, the displayed runtimes are an upper bound for both cases.
However, for qualitative analysis, results with p = 1 are also depicted in
various figures (see below).

2.2.4 Data compression

2.2.4.1 Nyström approximation

Brute force computation of a kernel matrix has a quadratic com-
plexity, so that it does not easily scale-up. To cope for this, a classical
solution is to apply Nyström approximation. This approach relies on the
fast decaying property of the kernel spectrum (the set of kernel matrix
eigenvalues): the smallest eigenvalues of the kernel matrix can safely be
removed (intuitively, alike principal component analysis). Concretely,
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one approximates the kernel matrix K ∈ RN×N as following:

K ≈ CW−1C>, (2.6)

with C = KP ∈ RN×l and W = P>KP ∈ Rl×l, where P ∈ RN×l is
constructed from an N × N identity matrix where (N − l) randomly
selected columns are removed. The larger l, the better the approxima-
tion, but the heavier the computations. Finally, according to [140], an
additional rank-s truncated singular value decomposition (SVD) is of
interest to increase numerical stability. This leads to Algorithm 1, which
complexity[4] is O(N · n · l +N · l2).

Algorithm 1 The rank restricted Nyström kernel approximation
from [140]

1: Input: data set X ∈ Rn×N , similarity measure k(·, ·), Nyström
sample size l, intermediate rank r, target rank s.

2: Construct a random sample: {xp1, . . . , xpl} ∈ Rn×l

3: Compute matrix C and W: C = {k(xq, xpj)}q=1,...,N
j=1,...,l

, W =

{k(xpi, xpj)}i,j=1,...,l.
4: Perform r-truncated SVD of W : Wr = UrDrU

>
r .

5: Approximate matrix as K ≈ CW−1
r C> = CUrD

−1
r U>r C

> = RR>,
where R ∈ RN×r.

6: Perform s-truncated SVD of R: R = UsΣsV
>
s .

7: Output: Matrix approximation K ≈ Φ̃>Φ̃ = UsΣ2
sU
>
s .

It provides the following approximation of the kernel matrix: K ≈
Φ̃>Φ̃ where the matrix Φ̃ =

[
φ̃(x1), . . . , φ̃(xN)

]
is obtained by ap-

plying the feature mapping φ̃(xi) = (λ1u1i, . . . , λsusi), where λj and
uji, j = 1, . . . , s and i = 1, . . . , N are the s highest eigenvalues and eigen-
vectors (columns of matrix Us) of K (see Algorithm 1). Moreover, it is
demonstrated in [148] that the approximation accuracy is guaranteed
when Nyström sample size l is on the order of

√
N . It was also shown

in [140] that the target dimension s scales to O(
√
l · k), where k is the

number of clusters, and the intermediate rank r is equal to l
2 .

[4]As a recall, O(f(n)) indicates that with an input data of size n, the running time will not
exceed C.f(n) where C is a constant factor (i.e. independent of n).
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2.2.4.2 Random Fourier feature sketching

The sketching procedure of [80] is closely related to random Fourier
features [81], which seminal idea is to rely on Bochner’s theorem [149]
to approximate any shift-invariant (i.e. k′(x, y) = κ(x− y)) PD kernel
(by leveraging the fact it is a Fourier transform of some non-negative
measure µ):

k′(x, y) = Ew∼µ
(
e−iw

>(x−y)
)
. (2.7)

Elaborating on this, [80] proposed to apply a similar random Fourier
map

ϕ(x) = 1√
m

[
e−iw

>
j x
]m
j=1

, (2.8)

(where Fourier frequencies w1, . . . , wm are randomly sampled from some
distribution Ω) and to average it over all data points to approximate the
data distribution itself, instead of the kernel. Concretely, applying ϕ(·)
onto the Nyström extended data Φ̃ (that is Z = [ϕ(φ̃(x1)), . . . , ϕ(φ̃(xN))] ∈
Cm×N), led us to computing the data sketch as:

SK(Φ̃) = 1
N
√
m

 N∑
i=1

e−iw
>
j φ̃(xi)

m
j=1
∈ Cm (2.9)

The critical step of this data compression method lies in the frequency
distribution estimation. It has been empirically shown in [80] that
Ω = N (0, 1

σ2 I) is a suitable choice for it mimicks well the fast decaying
property of real life signals. Then, σ2 can be estimated from a small data
fraction using nonlinear regression. Applying this frequency distribution
law allows to promote more informative sketch components and to
eliminate small sketch values, which are usually related to noise. The key
computational benefit of the compression is the independence between
the data sketch length m and the data size N : m should be of the order
of k · s [80], where s is the target dimension in Nyström approximation
and k is the number of clusters.
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2.2.5 Cluster and centroid definitions

2.2.5.1 Cluster computations

CKM (the compressive implementation of the k-means clustering
presented in [142]) can be used to compute the cluster centroids from
the data sketch SK(Φ̃) introduced in Eq. (2.9). Briefly, and in contrast
with classical Lloyd’s algorithm, it is a greedy heuristic based on orthog-
onal matching pursuit, which searches for a data representation as a
weighted sum of cluster centroids by minimizing the difference between
corresponding sketches:

‖SK(Φ̃)−
k∑
i=1

αiSK(ci)‖2
2 (2.10)

The CKM involves two main steps summarized in Algorithm 2 (where
< denotes the real part of the complex number). First, across several
iterations, it alternates between expanding the cluster centroid set with
a new element, whose sketch is the most correlated to the residue;
and recomputing the centroid weights using non-negative least-squares
minimization. The second step consists in the global minimization of
(2.10) with respect to cluster centroids and their weights.

2.2.5.2 Cluster assignment

The CKM algorithm only provides the cluster centroids and does
not assign data points to clusters. Nevertheless, this can be achieved
afterwards by finding the centroid which has the highest similarity value
to each data point. Concretely, a cluster centroid c in the feature space
can be defined using Nyström extension as follows:

c ≈ φ̃(y) = Σ−1
s UT

s kc (2.11)

where y is a cluster centroid in the input (chromatograms) space, and
where kc = [k(x1, y), . . . , k(xN , y)] is an unknown vector of similarities
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Algorithm 2 Compressive k-means from [142]
1: Input: data sketch SK(Φ̃), frequency set w1, . . . , wm, the number

of centroids k, lower and upper bounds lb, ub of data Φ̃.
2: Initialization: r = SK(Φ̃), C = ∅
3: for t ← 1 to 2k do
4: Find new centroid: c = arg max

lb≤c≤ub
<
〈
r, SK(c)
‖SK(c)‖

〉
5: Expand centroid set: C = {C, c}
6: if t > k then
7: β = arg min

β≥0
‖SK(Φ̃)−

|C|∑
i=1

βi
SK(ci)
‖SK(ci)‖‖

2

8: Choose centroids with k largest weights C = {cβi1 , . . . , cβik}
9: end if

10: Project to find weights: α = arg min
α≥0
‖SK(Φ̃)−

|C|∑
i=1

αiSK(ci)‖2

11: Global optimization: C, α = arg min
lb≤ci≤ub
α≥0

‖SK(Φ̃)−
|C|∑
i=1

αiSK(ci)‖2

12: Update residue: r = SK(Φ̃)−
|C|∑
i=1

αiSK(ci)
13: end for
14: Output: C ∈ Rs×k and α1, . . . , αk.

between y and all given chromatograms. The columns of matrix Us

contain s eigenvectors of K corresponding to its s highest eigenvalues
(the diagonal matrix Σs). The estimation of kc can be achieved by
minimizing the difference between c and φ̃(y):

min
y∈Rn

∥∥∥∥∥∥Σ−1
s UT

s kc −
c

‖c‖

∥∥∥∥∥∥
2

(2.12)

The importance of the normalization term in (2.12) has been highlighted
in [150] as an energy-preserving term to balance Nyström approximation.
The solution of (2.12) can be found using the Moore-Penrose pseudo-
inverse:

kc ≈ UsΣs
c

‖c‖
≈ Φ̃T c

‖c‖
. (2.13)
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Finally, the chromatographic profile xi, i = 1, . . . , N is associated to
cluster j if

cj = arg max
c∈{c1,...,ck}

〈
φ̃(xi),

c

‖c‖

〉
(2.14)

The most important CKM feature is its constant execution time
regardless of the data size. However, its computational complexity grows
cubically with the number of clusters, so that it is not realistic to process
LC-MS data where tens of thousands of clusters are classically expected.
To cope for this, a divisive hierarchical scheme can be instrumental:
Starting from a small number of clusters, one iteratively splits each
cluster into k sub-clusters until a sufficiently large number of clusters
ktotal is achieved. However, this strategy requires, for each independent
call of the clustering algorithm, an update of the data sketch as well
as a complete assignment to clusters. Thus, to practically improve
its computational efficiency, we leveraged the expected decrease of the
cluster size at each iteration to optimize the code, and we decided to
compute all the data sketches from the same frequency samples, either on
the entire dataset (at first step) or on the cluster to be re-clustered (at the
following iterations). Finally, it appeared these repetitive computations
of the cluster sketches and assignments did not hamper the efficiency of
the whole process.

2.2.5.3 Pre-image computation

The combination of Nyström approximation and of random Fourier
features leads to an additional difficulty: To recover the signal of each
consensus elution profile, it is necessary to compute its reverse mapping
from the feature space back to the input space. This is referred to as
a pre-image problem and it is ill-posed: only an approximation of the
cluster centroids in the input space can be obtained. The conventional
fixed point iteration method [151] cannot be applied due to the use of the
W1 distance. Similarly, the reconstruction of a consensus chromatogram
as the mean of the cluster chromatograms is not adapted, due to large
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Chapter 2. Chromatographic profile clustering

Figure 2.4: Pre-image problem illustration. Consensus chromatogram construction
amounts to solve a pre-image problem, i.e. to map the feature space (right) back to
the space of chromatograms (left). Blue points depict the elution profiles (left) and
their images in the feature space (right). The red points are the cluster centroid (right)
and the corresponding consensus chromatogram (left). The yellow circles represent
the cluster centroid and consensus chromatogram neighborhoods. Due to the mapping
non-linearity, the mean chromatogram may lie outside the cluster, while the correct
consensus chromatogram should belong to it.

scale non-linearities between the input and feature spaces, as illustrated
in Figure 2.4.

To correct for this, we decided to compute a local (i.e. small-
scale) mean by considering only a subset of the closest chromatograms.
To determine the cluster centroid neighbourhood N (c), we proceeded
similarly to the cluster assignment step, by choosing the chromatograms
in the cluster J (c) with the highest similarities to the cluster centroid:

N (c) = {x1, . . . , xq} ⊂ J (c) |
k(c, x) > k(c, y) ∀x ∈ N (c), y ∈ J (c) \ N (c), (2.15)

where similarities k(c, ·) were estimated using Eq. (2.13). Concretely,
N (c) was defined by selecting the q closest neighbors (so that q = |N (c)|).
The tuning of parameter q is discussed with that of other parameters in
Section 2.3.3.

70



2.2. Methods

2.2.6 Performance metrics

For experiments annotated with a ground truth (like UPS2GT
dataset), clustering accuracy can be evaluated with the Rand index (RI).
The Rand index measures the percentage of correctly clustered pairs of
signals over the total number of pairs. Let us denote as U = {U1, . . . , Uk}
the obtained clusters and as V = {V1, . . . , Vq} the ground truth clusters.
A pair of signals is considered as correctly clustered: true positive (TP)
or true negative (TN), if signals are assigned to the same cluster in U

and V or on the contrary, to different clusters in U and V . A pair of
signals is called false positive (FP) (resp. false negative (FN)), if signals
are grouped in U (resp. V ) but not in V (resp. U). Then, the Rand
index is given by:

RI = TP + TN

TP + TN + FP + FN
(2.16)

The maximum value of the Rand index is 1 (perfect match with the
ground truth). Additionally, it is possible to evaluate how often different
chromatograms are grouped in the same cluster; and how often simi-
lar chromatograms were assigned to different clusters. To do so, one
classically relies on the Precision and Recall metrics, respectively:

Precision = TP

TP + FP
Recall = TP

TP + FN
(2.17)

For datasets without ground truth annotation (like both Ecoli
datasets), it is possible to rely on the Davies - Bouldin (DB) index.
Let us denote as J (cj) the jth cluster with the cluster centroid cj, and
as {J (c1), . . . ,J (ck)} the set of obtained clusters. The within cluster
distance reads:

Sj = 1
|J (cj)|

∑
xi∈J (cj)

dW1(xi, cj) (2.18)

The DB index is defined through the ratio of the within cluster distances
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to the between cluster distance dW1(ci, cj):

DB = 1
k

k∑
i=1

max
i6=j

Si + Sj
dW1(ci, cj)

, (2.19)

It should be noted that the distance metric in the DB index and in the
clustering algorithm must be the same, in our case the W1 distance in
the original space. Moreover, the smaller the DB index, the better the
clustering (as a good clustering minimizes cluster overlaps).

Finally, the computational load can easily be approximated by the
recorded execution time, i.e. the difference between the end and start
times, both of which being accessible in R with the Sys.time() function.
For sake of brievety, execution times are reported for the Gaussian W2
kernel only, as Laplacian similarities are necessarily faster to compute
(no squared distance to evaluate).

2.3 Results

2.3.1 Objectives of the experimental assessment

Many independent elements deserve evaluations: The first one is the
practical interest of W1 distance in the context of LC-MS data. The
second one is the computational load of our complete algorithm in func-
tion of the parameter tuning (on the one hand, an efficient compression
technique is used; on the other hand, one targets the clustering of raw
data into a high number of clusters, making its efficiency a challenge).
The third one is the clustering result itself. However, a classical evalua-
tion of the clustering performances will be of little interest: In fact, all
k-means related algorithms (including their kernelized versions) have
been extensively studied [131], so that their strengths and weaknesses
are now well-documented. For instance, k-means optimizers can easily
be trapped into local minima and cannot naturally deal with outliers,
which are both significant drawbacks; however, they scale up well to
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Figure 2.5: Xnet and CHICKN worflow comparison. To allow for fair comparisons,
we have focused on the core algorithms, depicted within the dotted rectangle.

very-high dimensional data, which definitely is an asset for LC-MS
applications. In contrast, highlighting the differences of our approach
with respect to linkage-based agglomerative clustering and showing that
despite noticeable differences, one obtains clusters which are meaningful,
is of real practical interest to computational mass spectrometry experts.

As reported in Section 2.1, comparisons with Xnet is mandatory.
However, considering the reported specificities (trace extraction prepro-
cessing, envelope assumption simplification, etc.), comparing Xnet and
CHICKN workflows may appear as somewhat arbitrary.

To cope for this, we have made the following choices: First, we
have focused on the core of each algorithm, as represented in Figure 2.5.
Second, we have adapted the UPS2GT and Ecoli datasets to be processed
by each algorithm: The UPS2GT data are already formatted into a CSV
file meeting Xnet requirements.

To construct a data matrix suitable to CHICKN from the UPS2GT
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data, we simply loaded the data points according to their retention time
and trace labels in the matrix columns (similarly to Xnet, we excluded
point with trace indices -1 and 0, as assumed to be noise). This led to a
data matrix containing 57,140 columns and 6,616 rows. Conversely, to
build the CSV files from Ecoli datasets, we stored any non-zero entry of
the data matrix in a row, the column index being used in place of the
trace labels.

2.3.2 Wasserstein distance validation

W1 distance was proposed to discriminate between signals that
represent different elution profiles. To assess this choice, we compared it
with two distances amongst the most widely used in mass spectrometry
signal processing: The first one is the classical Euclidean distance. The
second one is the peak retention time difference (or ∆RT): It corresponds
to the difference between the time stamps at which each signal reaches its
highest intensity value. Based on the Ecoli-FMS dataset (which provides
the finest temporal sampling), we examined two situations presented in
Figure 2.6: In the first one, we selected 3 signals with different shapes,
that we precisely aligned so that their pairwise ∆RT was zero; in other
words, only the shape difference makes it possible to discriminate them.
Conversely, in the second situation, an elution profile was translated to
mimic a case where only the ∆RT was meaningful. In both situations,
the second chromatogram (chr2) stands as an in-between the first (chr1)
and the third chromatogram (chr3). As illustrated by the distance
ratios given in the tables embedded in Figure 2.6, both the Euclidean
and the ∆RT distances are meaningful in one case: The Euclidean
distance captures the shape information, while ∆RT captures the time
translation effect. However, none of these classically used distances is
able to capture both the shape and the translation simultaneously. On
the contrary, W1 distance is efficient on both situations, making it a
suitable distance to construct a similarity measure adapted to LC-MS
data.
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Figure 2.6: Distance metrics for chromatographic data analysis. Comparison of
Wasserstein-1, Euclidean and RT difference distances on real chromatographic profiles
from the Ecoli-FMS dataset.

2.3.3 Parameter tuning

Unlike Xnet, CHICKN is governed by eight parameters. Four of them
are involved in the data compression: Nyström sample size (l), target
rank (s), kernel parameter (γ) and sketch size (m). Three parameters
are involved in the hierarchical clustering: number of clusters at each
iteration of the hierarchical clustering (k), upper bound of the total
number of expected clusters (ktotal) and maximum number of levels in
the hierarchy (T ). The remaining parameter is the neighbourhood size in
the consensus chromatogram computation (q). However, all parameters
except γ and q are interrelated (see Section 2.2.4 as well as [140,148]) and
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Figure 2.7: Influence of the sketch size on performances clustering of the Ecoli-DIA
dataset, in function of the computational cost and the number of clusters.

can be expressed through k, ktotal and N (the dataset size) as follows:

l ≈
√
N,

s ≈
√
k ·N 1/4,

m ≈ k3/2 ·N 1/4,

T = blog(ktotal, k)c.

(2.20)

These theoretical results can nonetheless be discussed. Notably, tuning
the sketch size m to a larger value may be of interest if contrarily to our
case, the computational efficiency is not the only targeted goal. Thus,
we have performed complementary investigation to relate the clustering
performance (in terms of DB index) to the sketch size (see Figure 2.7,
leftmost figure). Oddly enough, it appears the DB index increases (i.e.
the performances deteriorates) when the sketch size increases (leading
to a more refined representation of the data). However, it appears to be
an indirect consequence: when increasing m, more differences between
the signals are represented, making it possible to define a larger number
of smaller clusters (see Figure 2.7, rightmost figure).
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Dataset ν γ σ =
√

1
2·γ log10 σ

Ecoli-DIA

8 1.78e-05 167.63 2.22

16 1.32e-05 194.32 2.29

32 9.35r-06 231.29 2.36

64 6.13e-06 285.48 2.46

128 3.50e-06 377.82 2.58

Ecoli-FMS

8 1.77e-06 532.10 2.73

16 1.36e-06 606.41 2.78

32 9.35e-06 231.29 2.85

64 6.13e-06 285.48 2.92

128 4.69e-07 1032.33 3.01

Table 2.1: Gassian W1 kernel hyperparameter γ stability with respect to the neigh-
borhood maximum size ν.

Finally, four parameters remain (γ, q, k and ktotal). Concretely, we
tuned the kernel parameter γ as an average of the power of p distances
to the ν nearest neighbors for all chromatographic profiles:

γ = 1
N · ν

N∑
i=1

ν∑
j=1

[dW1(xi, xij)]p, (2.21)

where xi1, . . . , xiν are ν neighbors of xi (selected among the l points of
the Nyström sample) and p ∈ {1, 2} depending on the kernel type.

Practically, we observed that tuning ν to 32 guaranteed each data
point to be sufficiently connected to the rest of the dataset, as advised
in [125]. Moreover, we observed that γ was rather stable with respect
to ν, for both Laplacian W1 and Gaussian W1 kernels. However, as
expected, the stability is higher with the latter than with the former
(see Table 2.1 and Table 2.2).

For q (in the consensus chromatogram computation) we observed
that the shape cluster problem (see Section 2.2.5.3) could only occur with
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Dataset ν γ σ = 1
γ log10 σ

Ecoli-DIA

8 3.21e-03 311.67 2.49

16 3.76e-03 266.06 2.42

32 2.31e-03 433.62 2.64

64 1.85e-03 539.49 2.73

128 1.39e-03 719.38 2.86

Table 2.2: Laplacian W1 kernel hyperparameter γ stability with respect to the
neighborhood maximum size ν.

significantly large clusters (few tenth of elements). Thus, as preliminary
stability analysis indicated us that the consensus chromatogram shapes
were preserved across various values of ν (see Figure 2.8), we decided to
bound q with ν and to set q = min(ν, cluster size).

A known drawback of k-means objective function is the requirement
to set the maximum number of expected clusters (knowing some clusters
can remain empty). In our case, this is achieved by tuning k and ktotal.
Yet, it should be noted that increasing k leads to decreasing T for a
fixed value of ktotal so that a trade-off between T and k must be sought.
With this respect, we have evaluated different scenarios with k = 2, 4,
8 and 16. CHICKN execution times (excluding the data compression
step, which remains constant whatever the various scenario) on the
smallest (UPS2GT) and largest (Ecoli-FMS) datasets are depicted in
Figure 2.9. This experiment pointed out the importance of tuning k

to a small enough value, which is coherent with the observation that
the original CKM algorithm does not scale up well with the number of
clusters. Practically, working with k = 2 or 4 appeared to be the most
efficient.

In the case of UPS2GT, the expected number of isotopic envelopes
is known (i.e. 14,076). Thus, it is easy to tune ktotal accordingly (i.e.
214 = 47 = 16, 384). However, knowing that CHICKN does not rely
on the envelope assumption simplification, it can be expected to find
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Figure 2.8: Consensus chromatogram stability. A set of 6 figures illustrating the
stability of the pre-image computation through the averaging of a neighborhood of
varying size ν.
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Figure 2.9: CHICKN execution time as a function of k, the number of clusters at
each iteration, for both UPS2GT (blue) and Ecoli-FMS (red) datasets.

a much lower number of clusters: broadly, all the isotopic envelopes
corresponding to different charge states of a same peptide can be expected
to cluster together. Therefore, it also makes sense to tune ktotal to
45 = 1, 024; i.e. close enough from the expected number of identifiable
peptides in the sample (around 700, according to [26]).

Tuning ktotal for any real life data (i.e. unlabeled) is much more
complicated. However, the Escherichia Coli sample is well studied,
and based on prior biological/analytical knowledge, 15,000 different
peptides can be expected, broadly. Consequently, for both Ecoli datasets,
ktotal = 16, 384 seems reasonable. Finally, even though it is not as
sensible from a biological viewpoint, we have decided to also consider
ktotal = 46 = 4, 096, which provides an even ground for computational
load comparisons (see next section for details).

To summarize, three different ways to tune ktotal are insightful: 1,024
for the UPS2GT dataset only (as it matches the number of expected
peptides); 4,096 on all datasets (for computational benchmarcks); and
16,384 on all datasets (number of isotopic envelopes in UPS2GT and
number of expected peptides in Ecoli datasets).

Finally, we fixed the remaining parameter values using the formulas
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Parameter

Dataset
UPS2GT Ecoli-DIA Ecoli-FMS

γ 6e-06 7e-06 9.1e-06 9.3e-06 7.1e-07 7e-07

l 240 240 432 432 863 863

s 22 31 30 42 42 59

m 44 124 60 168 84 236

k 2 4 2 4 2 4

T
ktotal = 1, 024 10 5 - - - -

ktotal = 4, 096 12 6 12 6 12 6

ktotal = 16, 384 14 7 14 7 14 7

Table 2.3: Summary of the different combinations of parameter tuning.

in Eq. (2.20), as summarized in Table 2.3.

2.3.4 Computational load

We have compared the execution times of CHICKN and Xnet cores
(see Figure 2.5). Previously reported comparisons showed us that
CHICKN execution time largely depends on k. However, it only has a
sub-linear complexity with respect to ktotal: As illustrated in Figure 2.10,
multiplying ktotal by 4 only results in a threefold (resp. twofold) increase
in the CHICKN run-time for the Ecoli-FMS (resp. UPS2GT) dataset.
As reducing ktotal to limit the execution time will therefore be of little
interest, experiments hereafter reported only focused on the influence
of k. Despite CHICKN being more efficient when run with k = 2 and
4 (see Section 2.3.3), we also included comparisons with k = 8 and 16
to investigate the consequences of sub-optimal parameter tuning. The
corresponding tests are referred to as CHICKN2, CHICKN4, CHICKN8
and CHICKN16. Therefore, to rely on an even basis for comparisons,
we focused on ktotal = 4, 096: it is a power of 16, contrarily to 1,024 and
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Figure 2.10: CHICKN execution time as a function of ktotal, the maximum number
of clusters, for both UPS2GT (blue) and Ecoli-FMS (red) datasets.

16,384 (which are even not a power of 8).
Since CHICKN algorithm embeds a Compressive k-means algorithm

which may converge towards different local minima depending on the
stochasticity of several steps, each scenario was repeated 10 times and
the average execution time was reported. In contrast, Xnet being de-
terministic, it was executed once. In [53], Xnet exhibits impressive
computational times on pre-processed and adequately formatted data.
However, raw LC-MS data stored in a matrix format are more cumber-
some. Thus, our first experiment was to compare the efficiency of Xnet
and of CHICKN on the Ecoli-DIA dataset, using a laptop machine with
the following characteristics: HP Pavilion g6 Notebook PC with Intel(R)
Core(TM) i5-3230M CPU @ 2.60GHz, 8 Gb of RAM, 4 cores, running
under Ubuntu 18.04.4 LTS OS. Xnet produced an ”out-of-memory” er-
ror when trying to cluster more than 10,000 columns (i.e. 5% of the
Ecoli-DIA dataset) in a single batch. This is why Figure 2.11A compares
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the computational time of CHICKN2, CHICKN4, CHICKN8 and of
CHICKN16 on the entire Ecoli-DIA dataset to that of Xnet on only
5% of the same dataset. On this figure, different colors are used to dis-
criminate between the clustering step per se and CHICKN preliminary
data compression step. Let us note that the compression step is time
consuming, however, it also includes the computations of all the W1
similarities. This as-a-matter-of-factly illustrates the computational cost
of relying on more elaborated metrics to capture the semantics of data
as complex as LC-MS ones. Except for CHICKN16, which has already
been pointed as suboptimal, CHICKN is always faster for a dataset 20
times larger.

This first experiment clearly showed CHICKN could be used on a
simple laptop, even with large datasets, in long but acceptable times
(half an hour to two hours, broadly). Then, to reduce the execution
times of our multiple experiments, but also to allow Xnet working on
a larger dataset, we moved to a larger station using 10 cores of an
Intel Xeon CPU E5-2470 v2 @ 2.40GHz, 94 GB of RAM and running
with CentOS Linux release 7.4.1708. As depicted in Figure 2.11B, on
such a machine, CHICKN was able to process Ecoli-FMS within 5h30
(most of them being necessary to perform the preliminary compression),
despite its huge size. On the contrary, with the same machine, Xnet only
processed 10% of it in a comparable time (almost 8 hours). Moreover,
larger fractions of the dataset were not processable, as leading to memory
failure.

To explain this discrepancy, we noticed that Xnet spent a considerable
time to construct the preliminary network. The nature of Ecoli data
(raw data without any trace pre-processing and recorded with the highly
resoluted profile mode, see Section 2.2.1) contrasts with that of UPS2GT,
on which Xnet is really efficient. As it appears on Figure 2.11C, CHICKN
is clearly not as fast as Xnet to process UPS2GT: The Xnet analysis
took less then 40 seconds, while CHICKN computation times varied
from 2 to 7 minutes depending on values of parameter k (from 2 to 16).
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As a whole, these experiments illustrate the utmost importance of
prior preprocessing methods when studying LC-MS data. In this context,
algorithms working on raw data, such as CHICKN, are real assets.

2.3.5 Cluster evaluation

Figure 2.12 reports the Rand index, Precision and Recall (UPS2GT
dataset) as well as the DB index (Ecoli datasets) with different clustering
strategies: CHICKN2 and CHICKN4 (with ktotal ∈ {1, 024 ; 4, 096 ; 16, 384}
and with p = 2), as well as Xnet (on UPS2GT only, for computational
reasons). A similar statistical result analysis for p = 1 is available in
Figure 2.13.

First, it can be noted that the Rand index is hardly informative
(Figure 2.12A): All clustering methods exhibit an index of almost 1,
and it is necessary to go three (and sometimes four) decimals to notice
a difference. Such high values are a direct consequence of the huge
number of expected clusters in UPS2GT datasets, which comes with
an excessively large number of true negative pairs (almost 99 % of all
possible pairs). In this context, the Rand index obtained with ”only”
1,024 expected clusters is particularly highlighting: Despite 16 times less
clusters, it achieves an equivalent index. This indicates that, relatively,
the provided clustering is probably of better quality.

However, contrarily to the Rand index, Precision and Recall are
informative to compare with Xnet, as the true negative pair count does
not level the scores. With this regard, it clearly appears on Figures 2.12B
that the Precision is incomparably better with Xnet. Although foresee-
able (ground truth with 14,076 envelopes whereas CHICKN sought a
thousand of peptides), this requires a deeper analysis: Concretely, Xnet
tends to over-cluster (which artificially improves the Precision index), as
it provided 17,153 clusters covering 93% of the dataset (7% of the elution
profiles are excluded by Xnet) where the ground truth labels proposed
only 14,076 of them (on 100% of the dataset). In addition, Xnet priors
were trained on the same UPS2GT dataset as for evaluation, so that
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Figure 2.12: Statistical result analysis. CHICKN tests are performed with the
Gaussian W1 kernel. (A) Rand index, (B) Precision, (C) Recall and (D-E) DB index
depending on the k and ktotal parameters; CHICKN2 and CHICKN4 tests are depicted
in purple and light blue respectively; For the UPS2GT dataset, additional comparisons
with Xnet (in red) are provided.
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Figure 2.13: Statistical result analysis. CHICKN tests are performed with the
Laplacian W1 kernel. (A) Rand index, (B) Precision, (C) Recall and (D) DB index
depending on the k and ktotal parameters; CHICKN2 and CHICKN4 tests are depicted
in purple and light blue respectively; For the UPS2GT dataset, additional comparisons
with Xnet (in red) are provided. The performance on the UPS2GT dataset are a bit
lower than with the Gaussian W1 kernel (equivalent Rand index, better precision,
lower recall), making it unable to compete with Xnet. However, on raw data such
as Ecoli-DIA (i.e. on data CHICKN should work with), the Laplacian W1 kernel
exhibit slightly better DB index than its Gaussian counterpart; however, this is hardly
significant, making us conclude that strict performance should not be the criterion to
chose the kernel.
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high performance are expectable. With this regard, it is particularly
noteworthy that the Recall (Figures 2.12C) varies the other way around.
Concretely, it is best for CHICKN4 with ktotal = 1, 024 despite this
number being completely different from the one derived from the ground
truth. In addition to be in line with our observations on the Rand
index, this concurs with the peptide-level knowledge of the dataset:
CHICKN was supposed to group together differently charged peptides,
which it did (see Figures 2.14 and 2.15 as well as Section 2.4 below),
as it provided only 510 (CHICKN4)/ 740 (CHICKN2) clusters on the
entire UPS2GT dataset, hereby leaving 300 to 500 empty clusters[5];
and leading to a number of clusters in line with the expected number
of peptides in the sample. Overall, the differences between Xnet and
CHICKN on UPS2GT seem to be more related to the difference of ob-
jectives (finding isotopics envelopes vs. finding peptide-related clusters),
as already discussed. Interestingly, this interpretation is confirmed by
the Ecoli dataset experiments.

In absence of ground truth for both Ecoli datasets, we chose the
tuning minimizing the DB index (see Figure 2.12D and 2.12E): ktotal =
16, 384 for Ecoli-FMS and for Ecoli-DIA. With such a tuning, we obtained
around 11,600 (resp. around 9,400) non-empty clusters for Ecoli-FMS
(resp. Ecoli-DIA). This number is obviously lower than the expected
number of identifiable peptides (between 15 and 20 thousands), however
under-clustering was clearly supported by empirical observations (see
above, as well as Figure 2.7, rightmost figure). This clearly means
that CHICKN could not separate too many peptides with too similar
elution profiles. However, this can be easily explained by the difference
of complexity between the UPS2GT and the Ecoli samples: while the
former is fairly simple (a handful of spiked proteins), the latter ones
are complex real life samples for which the discriminative power of the
liquid chromatography is clearly challenged (as illustrated in the next
section). This is notably why fragmentation spectra are classically used

[5]More generally, the capability of CHICKN to adapt the cluster sizes to the data distribution is
illustrated on Figure 2.16.
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Figure 2.14: Differently charged ions of a same peptide clustered together. A
subset of clusters were manually inspected so as to label as many profiles with the
corresponding identified ion. Although this labelling cannot be exhaustively conducted
due to the largely incomplete coverage of MS/MS analysis, it could be established that
ions of a same peptide cluster together in many cases.
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Figure 2.15: Differently charged ions of a same peptide clustered together. Figure
similar to Figure 2.14. It depicts another subset of CHICKN clusters with chromato-
graphic profiles manually annotated with the corresponding peptide ion.
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Figure 2.16: Histograms of the cluster size distribution resulting from the application
of CHICKN on each of the three datasets.

to identify as many as 15 to 20 thousand peptides. However, achieving
to discriminate half of this number of peptides with MS1 processing
only is noticeable.

Finally, let us note, that, in general, relying on k = 4 provided slightly
better scores. We assume that k = 4 was a trade-off between cluster
diversity (k > 4) and computational efficiency (k = 2), as discussed
above.

2.4 Discussions

2.4.1 Cluster interpretability

Beyond evaluation metrics, it is insightful to compare algorithms
according to the interpretability of the clusters they can provide. Fig-
ure 2.17 represents different elution profiles from UPS2GT (their shape
as well as their m/z position) in the context of the clusters they fall
into, according to CHICKN and Xnet. The envelope assumption simpli-
fication clearly appears: As expected, Xnet splits into different clusters

91



Chapter 2. Chromatographic profile clustering

Figure 2.17: Xnet and CHICKN clusters for UPS2GT dataset. Each of the four lines
represent a series of chromatograms in the context of their Xnet and CHICKN Cluster.
On the plot of the leftmost column, a series of chromatograms with similar shapes
are represented in different colors (2 or 3) according to the distinct Xnet clusters they
belong to. In the second column, each elution profile is represented with the same color,
according to its m/z position, hereby illustrating that Xnet clusters similar signals in
different clusters because of a too large m/z difference. The plot of the third column
represents the CHICKN cluster which encompasses all the Xnets cluster profiles of
the leftmost column (in green), as well as other signals (in gray) falling in the same
CHICKN cluster, hereby illustrating CHICK builds meaningful patterns irrespective
of the m/z information that is essential to isotopic envelope construction. In the
rightmost column, the m/z positions of the signals of the third columns, depicted with
the same color code.
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elution profiles that are arguably similar for the reason they have too dif-
ferent m/z values. In contrast, CHICKN promotes the inner coherency
of clusters as it aggregates related Xnet clusters together. Notably,
Figures 2.14 and 2.15 show a subset of 12 clusters provided by CHICKN,
each gathering at least 2 differently charged ions from a same peptide
(all of them being identified and manually validated with the associated
MS2 spectra). Interestingly, the multiple isotopes of each ion also ap-
pear to be grouped, as illustrated by the manifold of profile co-clustered
with each ion. Morevoer, a refine analysis of CHICKN clusters shows
that, globally, they contain similar chromatograms, which is coherent
both with the clustering metrics provided above, and with the expected
behavior of the W1 kernel. However, some clusters also contain noise
signals, as for examples, the first two lines of Figure 2.17. Although
undesirable, this is a direct consequence of (i) the grouping capabilities
of CHICKN, which captures similarities between slightly different but
largely overlapping signals (third line); and (ii) the possibility to run
CHICKN on raw data, which also contains many spurious signals that
need be spread across various meaningful clusters.

Similar conclusions regarding CHICKN behavior can be derived from
the Ecoli datasets (let us focus on the Ecoli-FMS one, as it displays
elution profile signals with higher sampling resolution, due to the Full-
MS acquisition). The majority of clusters (Figure 2.18 for the Gaussian
W1 kernel and Figure 2.19, for the Laplacian W1 one) containing high
intensity signals depicts meaningful consensus chromatograms, as well
as similar profiles even though corresponding to different m/z values.

However, we observed that some clusters could be separated into
several sub-clusters to improve readability (see Figure 2.20). It could
intuitively be interpreted as the necessity to increase ktotal. However,
two observations goes against this: First, from a signal viewpoint, as the
phenomenon mainly impacts lower intensity profiles, it also highlights the
difficulty of finding consensus patterns near the noise level, which equally
affects most of the clustering algorithms. In this context, over-clustering
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Figure 2.18: Examples of well-formed clusters for the Ecoli-FMS dataset. 12 clusters
proposed by CHICKN with Gaussian W1 kernel (represented as time series), where
each chromatogram is represented in gray, and where the consensus chromatogram is
represented in red. The numbers above each example indicate the cluster ID and the
number of chromatograms it encompasses.
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Figure 2.19: Examples of well-formed clusters for the Ecoli-FMS dataset obtained
by CHICKN with Laplacian W1 kernel.
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Figure 2.20: Examples of multiplexed clusters for the Ecoli-FMS dataset using
CHICKN method. Figure illustrates that dividing multiplexed clusters into several
sub-clusters would improve the elution profile interpretation. The real chromatograms
and the consensus chromatograms are depicted in gray and in red, respectively.
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is usually not considered a viable solution. Second, from an analytical
viewpoint, the clustering algorithm cannot be expected to separate
beyond the chromatographic capabilities (as in Figure 2.20, where few
different profiles have too important overlap to expect discrimination).

Finally, it is worthy focusing on consensus chromatograms: interest-
ingly enough, most of those observed in Figure 2.18 and in Figure 2.19
have meaningful shapes that are not deteriorated by the presence of noisy
signals in the cluster, which can be interpreted as a positive consequence
of our method to compute the cluster centroids pre-image based on a
restricted neighborhood (see Section 2.2.5.3).

2.4.2 Implementation and code availability

CHICKN algorithm was implemented in R. The W1 distance compu-
tations and the gradient descent were accelerated using C and interfaced
with R thanks to Rcpp. The data compression procedure and the hi-
erarchical strategy were parallelized with RcppParallel, foreach and
doParallel. To access and manipulate large data matrices, we relied
on the File-backed Big Matrix class of the bigstatsr package [152].
A File-backed matrix allows to overcome the memory limitation by
storing the data on the disk, using a binary memory-mapped file. How-
ever, bigstatsr is only available under Linux OS, leading to a similar
restriction for CHICKN.

For practitioners, the proposed algorithm is available through an R
package, available on Gitlab [153], as well as on the CRAN [154].

2.5 Conclusion

We have presented two complementary contributions to the cluster
analysis of LC-MS data. First, we have proposed a unique combination of
hierarchical strategy, of Nyström approximation and of random Fourier
features based compression technique to scale up the kernel k-means
clustering to the large size, the large dimensionality and the large number
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of expected clusters of LC-MS data. Second, we have proposed to rely
on the optimal transport framework (Wasserstein-1 distance) to define
a similarity measure and we have shown it is insightful to capture the
semantics of elution profiles in LC-MS data. On a more theoretical front,
we have established the Wasserstein-1 distance could lead to a positive-
definite Laplacian kernel, and exhibit a path for further investigations
about a Gaussian one.

We have demonstrated these contributions could help extracting other
structures than isotopic envelopes, even on multiplexed data acquired
with Data Independent Acquisition protocol. However, the experimental
assessment of these contributions is difficult to interpret. On the one
hand, when compared to the canonical application of isotopic envelope
extraction, CHICKN does not outperform the state-of-the-art algorithm
(better Recall and worse Precision, as it tends to under-cluster rather
than over-cluster). However, it provides an important advantage: it can
be run on raw data and does not require costly preprocessing. As for
an application-independent evaluation, it clearly appears that CHICKN
is able to extract patterns from the data which are not accessible to
linkage-based algorithms. Put together, we interpret this as following:
Although cluster analysis has made important progresses in the theo-
retical front over the past 50 years, processing LC-MS data remains a
challenge which requires research efforts. It is still necessary to propose
complementary and differently principled algorithms that will help make
LC-MS practitioners extract the best from their data. In this context,
new kernels could be defined; and numerous state-of-the-art clustering
algorithms recently developed in the machine learning community could
advantageously be applied to LC-MS data.

Availability of data and materials
The UPS2GT dataset supporting the conclusions of this article is available in the
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The Ecoli DIA and Ecoli FMS raw data (generated and analyzed for the current
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• DIA, Data Independent Acquisition;
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Abstract
Factorization of large data corpora has emerged as an essential technique to extract
dictionaries (sets of patterns that are meaningful for sparse encoding). Following
this line, we present a novel algorithm based on compressive learning theory. In this
framework, the (arbitrary large) dataset of interest is replaced by a fixed-size sketch
resulting from a random sampling of the data distribution characteristic function. We
applied our algorithm to the extraction of chromatographic elution profiles in mass
spectrometry data, where it demonstrates its efficiency and interest compared to other
related algorithms.
Keywords: Dictionary learning; Stochastic gradient descent; Compressive statistical

[1]This article is submitted in Statistical Analysis and Data Mining journal

101



Chapter 3. Sketched Stochastic Dictionary Learning

learning; Nesterov accelerated descent; Computational mass spectrometry; Matrix
factorization

3.1 Introduction

Finding a linear decomposition of an observed signal x ∈ Rs is
essential for many applications, as it provides a way to exhibit its
elementary constitutive patterns, as well as to denoise it. Formally, this
task amounts to finding a vector of coefficients c = (c1, . . . , cK) ∈ RK ,
referred to as code, such that:

x = c1 · d1 + · · ·+ cK · dK + ε, (3.1)

where D = {d1, . . . , dK} ∈ Rs×K is a matrix referred to as dictionary,
which is composed of K s-dimensional column vectors (the dictionary
atoms), and where ε represents the (hopefully small) part of x that
is not explained by D. While many solutions to this problem are
already available when D is known, the decomposition of a signal, which
potential constitutive elementary patterns are unknown (referred to as
blind source separation), is much more difficult. As a result, despite
being almost 30 years old [155], this problem still focuses investigations.

According to compressive sensing theory [156], a good dictionary
is such that any signal can be precisely approximated using few dic-
tionary atoms only, i.e., only a restricted number of ci are non-null in
Decomposition (3.1); and the fewer the better. As emphasized in [157],
this type of representations, referred to as sparse representations, are
widespread in many real-life applications: image denoising [158], super
resolution [159], compression [160], etc.

The oldest strategies to decompose signal have used Riesz bases
as dictionaries (e.g., Fourier, wavelet or curvelet bases [161]). Their
mathematical properties have made the decomposition straightforward,
yet, for highly complex real-life signals, sparse representations have
generally been achievable only at the price of an important unexplained
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residue ε. In fact, it has since then been established [162] that sparse
representations were easier to obtain when Decomposition (3.1) involved
an overcomplete dictionary, i.e. a dictionary which size exceeds the
signal dimensionality K > s. However, working with an overcomplete
dictionary has two (related) drawbacks: First, the corresponding matrix
D is not full-rank, which can potentially lead to numerical issues; Second,
Decomposition (3.1) may not be unique, so that additional constraints
are usually necessary to lead to a well-posed problem and a practically
satisfactory solution. This is why as an alternative strategy, it has been
proposed to extract elementary patterns from a set of signals akin to
that for which a decomposition is sought, and to form an overcomplete
dictionary with these patterns. This approach, referred to as dictionary
learning, has been demonstrated to lead to dictionaries that are of real
practical interest, for three reasons: First, they capture well the speci-
ficities of the data [163]. Second, they yield even sparser representations;
Third, their atoms are easier to relate to physical signals and thus to
interpret [164]. Concretely, learning a dictionary from a set of observed
signals X ∈ Rs×N , is related to finding a decomposition of X into a
product of two low rank matrices [165]. The effectiveness of this matrix
factorization approach has been illustrated in many applications, such
as medical signal modeling and analysis [164], natural image process-
ing [166], audio and video processing [167]. In this article, we aim to
apply dictionary learning to another type of data: those resulting from
the high-throughput mass spectrometry analysis of complex biological
samples.

Mass spectrometry (MS) coupled with liquid chromatography (LC)
is a commonly used analytical chemistry technique, which has witnessed
an increasing popularity in the last decade [168], due to its application
to omics biology; as it is the method of choice for proteome, metabolome
and lipidome investigations. Despite increasing resolution and cycle
speed, the LC-MS pipeline is still challenged by the complexity of
classical biological samples. Therefore, deep sample coverage requires
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Figure 3.1: Toy illustration of a LC-MS data matrix with three analytes yielding
three distinct chromatograms and four spectra.

multiplexed measurements [111], which demultiplexing intuitively trans-
lates into solving a blind source separation problem [28]. Following [169],
which proposes to denoise simple LC-MS data by relying on a matrix
factorization formulation, we consider learning a dictionary of chemical
signals. Concretely, the LC-MS data can easily be formatted into a
matrix: Broadly, the LC can be seen as a way to serialize the analytes
into the MS, so as to avoid that too many of them are concomitantly
analyzed. Thus, if the mass spectra produced over time are stored
as high-dimensional vectors and stacked as matrix rows, the matrix
columns can be interpreted as chromatograms (a.k.a. elution profiles),
i.e. as vectors that represent each analyte’s flowrate outputted from
the LC toward the MS (see Figure 3.1). Notably, any analyte’s flowrate
being a physical signal, we have formerly established [170] it is insightful
to rely on the chromatogram smoothness to extract meaningful chemical
patterns through cluster analysis.

Learning a meaningful dictionary from LC-MS data comes along with
numerous challenges. First, the dictionary atoms must be interpretable
as chromatograms (i.e. smooth, non-negative, slightly heavy right-tailed
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waveforms, see Figure 3.1). Second, owing to the number of analytes in
a classical sample (up to tens of thousands), which largely exceeds the
signal dimensionality, the dictionary must be highly overcomplete. Third,
LC-MS data are already rather big and their size is ever-increasing due to
the constant improvement of MS resolution and cycle speed. Therefore,
processing them in a time compliant with the various constraints of a
standard analytical platform is a computational challenge that requires
scalable solutions.

We hereby describe a new approach meeting these constraints. From
a methodological viewpoint, our contribution is twofold: First, following
recent developments in compressive learning (see below), we give an
original formulation to the dictionary learning objective function; Second,
we rely on a stochastic gradient descent algorithm to efficiently minimize
this objective function. Together, this yields a new method referred to as
Sketched Stochastic Dictionary Learning (SSDL), which improve upon
the state-of-the-art to extract with a small computational footprint a
set of meaningful patterns from LC-MS data. The article is structured
as follows: Section 3.2 gathers the related works, including standard
dictionary learning formulation, presentation of state-of-the-art methods
and summary of background knowledge that are instrumental to a clear
exposure of SSDL. Then Section 3.3 presents SSDL. Finally, Section 3.4
is dedicated to experimental validations on LC-MS data.

3.2 Related works

3.2.1 Classical dictionary learning strategies

Let X = {x1, . . . , xN} ∈ Rs×N be a data matrix. The classical for-
mulation of dictionary learning reads as the following joint optimization
problem:

min
C∈RK×N
D∈S

1
N

N∑
i=1
‖xi − ci ·D‖2

2 + λ · ‖ci‖1 (3.2)
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where C is a matrix gathering all code vectors ci; where λ is the reg-
ularization parameter of a LASSO penalty [171], which controls the
representation sparsity; and where S is the convex set where dictionary
atoms can be picked up. It has been proven in [172] that solving the
minimization problem of Eq. (3.2) leads to sparse representations. More-
over, this problem being convex with respect to C and D separately,
most methods to solve it rely on an alternative minimization scheme
(i.e. minimization of Eq. (3.2) with respect to one variable while the
other is fixed):

min
C∈RK×N

1
N

N∑
i=1
‖xi − ci ·D‖2

2 + λ · ‖ci‖1 (3.3)

min
D∈S

1
N

N∑
i=1
‖xi − ci ·D‖2

2 (3.4)

The first sub-problem (Eq. 3.3), which consists in computing the code
matrix for a given dictionary, is referred to as sparse coding. It can
be solved using LASSO [171], LARS [70], iterative shrinkage threshold-
ing [173]. However, the specificity of any dictionary learning approach
essentially lies in the technique used to solve Eq. (3.4), i.e. the dictionary
update. For example, Engan et al. [174] rely on an analytical solution to
re-compute the dictionary at each iteration: D = X · C†, where C† is
the pseudo-inverse of the code matrix. Alternatively, K-SVD [69] up-
dates each dictionary atoms independently by performing singular value
decomposition. Finally, there are many ways to numerically address
Eq. (3.3) by relying on descent paradigms [175,176].

3.2.2 Large-scale dictionary learning techniques

Stochastic or online learning [74, 177] is an efficient and broadly
used technique to train a dictionary from a large dataset. It consists in
updating the dictionary and calculating the code at each iteration of
the minimization procedure, by relying on a randomly selected subset
of signals only (possibly, a single one). As working on a small sub-
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set drastically reduces the computational time of both sub-problems,
multiple passes through the data (called epochs) can be used until con-
vergence. We have singled out two online dictionary learning methods
to benchmark against our approach: MODL [178,179] and IcTKM [180].
The former is the state-of-the-art approach, and it demonstrates ex-
cellent computational performance on extremely large datasets. The
latter is a recently published method which underlying mathematics
are conceptually related to those leveraged in the present work, making
the comparison worth of interest. More precisely, MODL minimizes
Objective Functions (3.3) and (3.4): Sparse coding is achieved using
LARS algorithm, while coordinate gradient descent is applied to update
dictionary atoms. Formally, at the tth iteration, the dictionary atoms
are recomputed as follows:

dtk = dt−1
k − 1

At
kk

·
(
Dt−1 · At

:,k −Bt
:,k
)
, (3.5)

where auxiliary matrices At and Bt are defined as At = 1
t

∑t
i=1 ci ·

cti ∈ RK×K and Bt = 1
t

∑t
i=1 xi · cti ∈ Rs×K , and where At

:,k and Bt
:,k

denote kth columns of matrices At and Bt respectively. Using these
auxiliary matrices allows to gather the statistics about the signals
x1, . . . , xt and codes c1, . . . , ct observed at previous iterations without
explicitly storing them in memory. This strategy provides low memory
consumption and computational cost, at least for small K. MODL is
compliant with positiveness constraints on both the dictionary and code
matrices, as required by LC-MS data (see Section 3.1). Finally, MODL
embeds an optional dimensionality reduction step based on random
projections [181].

Although IcTKM reformulates dictionary learning as a constrained
minimization problem, it also proposes a solution based on alternate
minimization. Instead of a regularization parameter, the sparsity level
Λ is directly defined through a constraint on the number of non-zero
elements in the columns of the codes. Sparse coding is solved using
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Iterative Thresholding [182]. The dictionary update is carried out
by computing the K-residual means (following the known equivalence
between clustering and matrix factorization [67]). Concretely, each
dictionary atom dk is updated by averaging the data vectors xi with
non-null code coefficients Cki. To speed up the computations, IcTKM
relies on fast Johnson–Lindenstrauss transform [183].

3.2.3 Scaling-up by sketching

The method proposed in this article borrows two important features
from the large-scale machine learning literature and adapt them to the
dictionary learning context. The first one is the compressive statistical
learning framework [80]. Its seminal idea is to summarize the data
collection into a complex vector of fixed size, referred to as the data
sketch, so that the algorithm complexity does not depend on the data
size anymore. Concretely, the data sketch is constructed by sampling
the characteristic function of the data distribution P (X):

SK(X) =
[
Ex∼P (X)

(
eiw

T
j x
)]m
j=1

, (3.6)

where w1, . . . , wm ∈ Rs are frequency vectors, randomly sampled from
some predefined distribution [80]. Starting from this theoretical ground,
the main challenge is to adapt the machine learning method of interest
so that it operates on the data sketch rather than on the original data.
The authoring team demonstrated both the practical interest and the
efficiency of this approach on various problems, including Gaussian
mixture estimation [80] and data clustering [56]. However, to the best of
the authors’ knowledge, there is to date no dictionary learning method
based on this framework.

Our second cornerstone is Nesterov accelerated gradient descend
method (NAGD, [78]). Conceptually, it is akin to classical gradient
descent, however, it includes an additional term, the momentum, denoted
as η (a weighted average of the gradient vectors computed in the previous
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iterations). Adding this momentum term makes quadratic convergence
possible in the deterministic cases [78]. The NAGD update rule reads:

Dt+ 1
2 = Dt + α · vt

ηt+1 = α · ηt − γ · ∇Df
(
Dt+ 1

2

)
Dt+1 = Dt + ηt+1

(3.7)

where α is the momentum weight; where γ defines the length of each
gradient step (the learning rate); and where Dt+ 1

2 is referred to as the
ahead. Recently, NAGD scheme has attracted great interest for stochastic
optimization: Its convergence under convex and smooth optimization
has been heavily documented [184, 185], but scarce results are so far
available for non-convex cases. Despite, it is of practical interest, as
when correctly tuned, it outperforms the classical stochastic method [74].

3.3 SSDL method

3.3.1 Objective function

As SSDL follows a classical alternate minimization scheme, the
dictionary update and the code computation objective functions can
be separated. The former differs from the classical dictionary update
(Eq. 3.4), as we propose to include the sketching operator of Eq. (3.6).
As for the code computations, we have modified Eq. (3.3) to fit the
stochastic learning framework. Concretely, at each iteration, the code
matrix is computed for a randomly selected data subset only, denoted
X̂ = {x̂1, . . . , x̂n} ∈ Rs×n, where n < N :

C∗ = arg min
C∈RK×n

1
n

n∑
i=1
‖x̂i −D · ci‖2

2 + λ · ‖ci‖1, (3.8)
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Then SSDL looks for a dictionary D such that the data sketch SK(X)
is as close as possible to the sketch of the decomposition SK(D · C∗):

min
D∈S

F (D,C∗), with F (D,C∗) = ‖SK(X)− SK(D · C∗)‖2
2 (3.9)

Since the sketching procedure amounts to sampling an empirical char-
acteristic function, D does not only represent the observed data, but
to some extent, its underlying distribution. Therefore, the dictionary
resulting from this procedure can be expected to generalize well to
other data with similar distribution. This behavior should moreover
be strengthened by an adequate tuning of the frequency generation
procedure [80]; as it aims to capture only the most relevant features
and eliminate noise. Finally, it is also of interest in a stochastic learning
context: despite the use of a random sampling procedure on the training
set, the optimizer can also rely on the complete data summary provided
by the data sketch.

These changes in the objective functions lead to several advantages:
First, the stochastic minimization is fully efficient, as the additional
computations it requires are immaterial on small data batches. Notably,
the decomposition sketch SK(D · C∗) only involves O(K · s · n + m ·
s · n) operations, and even with small data batch X̂, one ends up with
sufficiently accurate approximations (even though the larger the data
batch, the more accurate the approximation). Second, the gradient
of Eq. (3.9) does not contain the term D · A, where the matrix A =∑n
i=1 ci · c>i ∈ RK×K , which computational footprint could be important

for highly overcomplete dictionary. Finally, the data sketch SK(X)
is computed once, at the algorithm initialization (afterwards the data
sketch remains unchanged) and this initial computation parallelizes well
in case of extremely large datasets.
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3.3.2 Minimization

At each iteration of SSDL, the dictionary is updated by performing
one gradient step as in Nesterov scheme (3.7), with the gradient of
Objective function (3.9) reading:

∇dl‖SK(X)− SK(D · C∗)‖2 = −2 (∇dlSK(D · C∗))> · r
δ

δdl
SKj(D · C∗) = 1i ·

1
n

n∑
i=1

C∗li ·
K∏
k=1

SKj(C∗ki · dk)
 · w>j (3.10)

where r = SK(X)−SK(D ·C∗) and SKj(·) is the jth coordinate of the
sketch vector. However, the dictionary update of SSDL differs from the
general Nesterov scheme. First, to ensure the positivity of the dictionary
atoms, the ahead dictionary is projected on Rs×K

+ (see Alg. 3, Line 6).
Second, SSDL uses a decaying learning rate (see Alg. 3, Line 7):

γt = γ0

(1 + (t− 1) · ν) . (3.11)

This is motivated by the following fact: using a large γ far away from
the minimum and progressively decreasing it allows to accelerate the
convergence. As a drawback, it requires to tune an additional parameter,
ν (the decay speed). The last difference relies in the Euclidean projection
on S = {d ∈ RK

+ | ‖d‖2
2 ≤ 1}, which is included after the dictionary

update (see Alg. 3, Line 9) to avoid too small scalars in the code matrix
C. The complete pseudocode of SSDL is presented in Alg. 3.

3.4 Experimental validation

3.4.1 Implementation

SSDL is implemented in R language. The gradient vector calculation
is implemented in C++ and it is wrapped to R using the Rcpp pack-
age [186] and parallelized using the RcppParallel package [187]. The
sparse coding problem is addressed by the glmnet R function from the
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Algorithm 3 Sketched Stochastic Dictionary Learning
Input: Data matrix X ∈ Rs×N ; Sketch SK(X); Initial dictionary
D0; Initial learning rate γ0; Decay parameter ν; Momentum weight
α; Batch size n; Regularization weight λ.

1: Initialization: t = 0, η0 = 0
2: Repeat until convergence:
3: Construct a data batch X̂ t ∈ Rs×n.
4: Sparse coding: Ct = min

C∈RK×n
1
n

n∑
i=1
‖x̂it −Dt · ci‖2

2 + λ · ‖ci‖1

5: Dictionary update:
6: Dt+ 1

2 = max(Dt + α · ηt, 0)
7: γt = γ0

(1+(t−1)·ν)
8: ηt+1 = α · ηt − γt · ∇DF (Dt+ 1

2 , Ct)
9: Dt+1 = PS (Dt + ηt+1), where PS(·) is a Euclidean projection

on convex set S = {d ∈ RK
+ | ‖d‖2 ≤ 1}

glmnet package [188], which is parallelized using the mclapply R function
from the parallel package [189]. The File-backed Big Matrix (FBM)
class of the bigstatsr [190] package is used to store and to manipulate the
matrices that are too large to be memory allocated. The SSDL code is
available on gitlab https://gitlab.com/Olga.Permiakova/ssdl. The
tests of SSDL and MODL were performed on a laptop machine with the
following characteristics: HP Pavilion g6 Notebook PC with Intel (R)
Core (TM) i5-3230M CPU @ 2.60GHz, 8 Gb of RAM, 4 cores, running
under Ubuntu 04/18/4 LTS OS. The IcTKM method being distributed
as Matlab code, it was tested on the same machine, but for license issues,
under another OS (Windows 8). To measure the execution time of SSDL,
we computed the difference between the times at the beginning and at
the end of the learning using Sys.time R function. For MODL, we
used the same procedure with the tic/toc python functions. Finally,
IcTKM matlab code provides the execution duration in terms of CPU
time.
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3.4. Experimental validation

3.4.2 Data description and data preprocessing

To validate SSDL, we relied on a proteomic dataset obtained with
the LC-MS analysis of a sample of Escherichia coli bacteria (E.coli). A
full description of the data acquisition pipeline as well as of the dataset is
available in [170]. An important feature of this pipeline is that the basic
elements that are analyzed are peptides (i.e. protein fragments). As
described in Section 3.1, the matrix columns contain discrete chromato-
graphic profiles obtained during the elution of the sample’s peptides in
liquid chromatography, while the rows represent mass spectra acquired
at different time stamps. The chemical properties of LCs are so that
peptides with low masses are usually eluted at the beginning of the
analysis, and heavy ones at the end. This leads to a specific matrix
structure with high intensity peaks distributed along the diagonal, and
with many zeros in the corners. This eases the data processing as
it makes it possible to split the data matrix horizontally into several
slightly overlapping slices, for which dictionaries can be independently
trained. Then, since each slice contains a different set of peptides, the
entire dictionary can be formed by concatenating the dictionaries from
all the slices, which significantly reduces the computational cost.

The learning procedure is the same for each slice, so we present
the experimental results for a single slice. We focus on a data slice of
718 rows acquired between 10 and 30 minutes (amongst the two hours
that lasted the complete LC-MS analysis, that is a quarter of the entire
dataset). We have chosen this specific slice as for chemical reasons, it
contains the highest density of MS peaks; making it the hardest part to
extract a dictionary from. The resulting data matrix contains 74,193
chromatographic profiles (matrix columns). To further reduce the data
dimension, the matrix rows were randomly sub-sampled (from 718 to
256 rows).
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3.4.3 Parameter tuning

SSDL capabilities to extract a dictionary from the Ecoli dataset [170]
are compared to those of MODL and IcTKM. Each method having its
own set of parameters, we hereafter survey their tuning.

SSDL method has eight parameters: the dictionary size K, the
regularization parameter λ, the sketch size m, the batch size n, the
initial learning rate γ0, the decay parameter ν, the momentum weight
α and the number of epochs T . In addition, SSDL requires an initial
dictionary D0, but it can easily be defined by a random selection from
the data. We observed that 3 epochs (T = 3) were practically sufficient
to reach convergence.

Among these parameters, a number of them should be tuned ac-
cording to the specificities of the LC-MS pipeline and to the data it
has delivered. Notably, the dictionary size must be consistent with the
number of distinct peptides that are expected to be found in the sample.
In our case, E.coli being well studied, the number of peptides identified
by a conventional mass spectrometry analysis is known to lie somewhere
between 12,000 and 15,000, depending on the instrument and its tuning.
Thus, for a single slice, a suitable dictionary size should be 3000 to 3750.
To investigate the effect of the dictionary size on the SSDL execution
time, we also considered smaller values of K. Notably, we considered
various scenarios with K = {384; 768; 1, 536; 2, 304; 3, 072; 3, 712}.

The regularization parameter λ should be tuned so that the number
of non-zero elements in the codes broadly amounts to the multiplexing
level of the MS acquisitions. With these regards, it is commonly assumed
that on data such as those produced, chromatograms with more than 20
peaks are not sufficiently resoluted: they either correspond to noise, or
to chemical species which disentanglement stands beyond the analytical
power of the instrument. We thus tried various values of λ to find the one
that would lead to the desired sparsity level. Concretely, we considered
λ ∈ {0, 0.001, 0.01}, and for each of these values, we computed the code
C0 using the initial dictionary D0. Figure 3.2a depicts the distribution
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3.4. Experimental validation

Figure 3.2: (a) Tuning of the regularization parameter λ. The distribution of the
number of non-zero coefficients for different values of the regularization parameter λ.
The coefficients are computed using the initial dictionary D0. Vertical dotted lines
indicate the mode of each distribution. (b) Value of the objective function of the
dictionary update with respect to the number of iterations, with different sketch sizes.

of the number of non-zero elements in each column of C0 for each λ:
According to our expectations, we chose λ = 0.001.

The tuning of the other five parameters (sketch size, batch size, initial
learning rate, decay parameter, and momentum weight) was carried out
by means of a classical greed search.

For the sketch size, we focused on how it impacted the objective
function value. Notably, increasing the sketch size allows revealing
more details about the data distribution, but it increases the exe-
cution time. We had tested increasing values of sketch size m =
{256; 1, 024; 4, 096; 8, 192}, and we observed that at some point, this
no longer reduced the objective function value (on Figure 3.2b, the
lines depicting m = 4, 096 and m = 8, 192 superimpose), so that the
additional computational time did not worth it: We finally fixed m to
4,096.

Naturally, using large batches leads to a better approximation of
the decomposition sketch SK(D · C∗) in Eq. (3.9); yet, from a com-
putational viewpoint the trade-off is not obvious: with larger batches,
fewer iterations are required, but each iteration is more computationally
demanding. We have considered various powers of 2 as batch sizes:
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Chapter 3. Sketched Stochastic Dictionary Learning

Figure 3.3: SSDL execution time for different batch size values. (a) The SSDL
execution time as a function of the dictionary size and of the batch size. (b) Total
average execution time as a function of the batch size as well as average execution time
for each step among: data sketch computation (green); dictionary update (yellow);
and sparse coding (blue).

210 = 1, 024, 211 = 2, 048, 212 = 4, 096, 213 = 8, 192, 214 = 16, 384. In
practice, we observed the batch size did not affect the method con-
vergence, so we focused on the execution time. Figure 3.3a depicts
SSDL execution time as a function of the dictionary size K for different
batch size tests. Figure 3.3b illustrates SSDL execution time, averaged
across the different possible values of K. Overall, SSDL execution time
mostly amounts to that of sparse coding, and thanks to our parallelized
implementation (see Section 3.4.1), the dictionary update time hardly
depends on n for n ≥ 4, 096.

The remaining three parameters (initial learning rate γ0, decay pa-
rameter ν and momentum weight α) influence the convergence speed.
We have compared the 27 combinations resulting from the following tun-
ing: γ0 = {0.05; 0.1; 0.2}, ν = {0; 0.01; 0.1} and α = {0; 0.5; 0.9}. The
tests with ν = 0 correspond to the case of constant learning rate. Three
momentum weight values α = {0, 0.5, 0.9} represent three scenarios,
respectively: (1) the momentum is not involved in the dictionary update
(i.e., the classical stochastic mini-batch method), (2) the gradient and

116



3.4. Experimental validation

Figure 3.4: SSDL method convergence depending on the learning rate, the momentum
weight, and the decay parameter. Subfigures correspond to different initial learning
rate tests (the smallest on the left and the biggest on the right). Each subfigure depicts
the dictionary update objective function F (D,C∗) as a function of the number of
iterations for different parameter value combinations. Different colors depict the three
momentum weight scenarios, and different line types illustrate different values of the
decay parameter. Batch size is fixed at 16,384. The regularization parameter λ is
equal to 0.001.

the momentum have equivalent weights; and (3) the momentum has the
majority impact. The results are presented in Figure 3.4.

At first glance, irrespective of the other parameters, the fastest
convergence is given by α = 0.9. Moreover, there is an important gap in
the convergence rate of the classical stochastic mini-batch scheme and
the momentum based Nesterov scheme. Naturally, we have considered
α = 0.9. Furthermore, the higher the initial learning rate γ0, the lower
the final value of the objective function. However, setting the initial
learning rate to 0.2 led to too large fluctuations in the objective function,
as illustrated on the rightmost part of Figure 3.4. In this case, a large
decay parameter ν = 0.1 can correct for this. We also observed that
using a decaying learning rate when the initial learning rate is smaller
than 0.2 did not improve the convergence rate, and even slowed it down
sometimes. Finally, we selected the following tuning: α = 0.9, γ0 = 0.2
and ν = 0.1.

MODL is driven by five parameters: the reduction parameter r, the
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batch size nMODL, the dictionary size K, the regularization parameter
λMODL and the number epochs TMODL. The last tree parameters are
the same as for SSDL and they are set to the same values. As for the
batch size, it is fixed to a value equal to that of the dictionary size K,
as recommended in [178]. Finally, we have tested two scenarios for the
reduction level r: (1) We have applied MODL to the original slice of 718
rows with r = 3; and (2) we have applied MODL to the sub-sampled
slice of 256 rows with r = 1. These tests are denoted as MODL718,r=3

and MODL256,r=1 respectively.
To select the parameters of IcTKM, we simply followed the rec-

ommendations of [180]: Random projector based on discrete Fourier
transform, sparsity level ΛIcTKM set to the same value as expected for
SSDL (see Sup. Mat. 1) and reduction parameter rIcTKM = 5 (the
highest value according to [180], Table 1, based on the sparsity level and
data dimension). As preliminary tests highlighted the important com-
putational load of IcTKM, we decided to combine this dimensionality
reduction with our subsampling to 256 rows, and the associated results
are denoted as those of IcTKM256,r=5. As for algorithm termination,
instead of a number of epochs, IcTKM requires to fix the number of
iterations. We observed that on our data, 32 of them were sufficient
to near the convergence plateau. Finally, concerning the initialization
required for all the considered methods, dictionary D0 is defined by a
random selection from the data.

3.4.4 Results

Our comparisons focus on the execution time as well as on the quality
of the resulting dictionaries with respect to the expectations listed in
Section 3.1. Figure 3.5a depicts the execution time of MODL256,r=1,
MODL718,r=3, IcTKM256,r=5 and SSDL (which for the symmetry is de-
noted as SSDL256) depending on the dictionary sizeK = {384; 768; 1, 152;
1, 536; 1, 920; 2, 304; 2, 688; 3, 072; 3, 712} see Section 3.4.3.

Despite the combination of both dimensionality reduction methods,

118



3.4. Experimental validation

Figure 3.5: (a) The execution time (logarithmic scale) of SSDL, MODL, IcTKM
tests as a function of the dictionary size K. The execution time of all methods consists
in the execution time spent on the sparse coding and the dictionary update. However,
for SSDL (resp. IcTKM) it also includes the data sketch computation time (resp. the
random projection operator construction time). (b) The distribution of the dictionary
atom total variation for MODL256,r=1 (purple), MODL718,r=3 (red) and SSDL256 (light
blue) resulting dictionaries.

IcTKM256,r=5 is the slowest approach. MODL is more computationally
efficient than SSDL for small dictionaries (broadly, less than 1,000-
1,500 atoms for MODL256,r=1 and less than 768 for MODL718,r=3), but
it does not easily scale up to too large dictionaries. As a result, for
datasets resulting from the LC-MS analysis of highly complex biological
samples, SSDL is more efficient: Concretely, for a single slice of E.coli
dataset, for which K ∈ [3000, 3750]), SSDL256 test is two times faster
than MODL256,r=1, three times than MODL718,r=3 and four times than
IcTKM256,r=5.

Concerning the dictionary quality, as discussed in Section 3.1, the
dictionary atoms must have shapes akin to that of real chromatographic
profiles: positive and smooth signals with a Gaussian like, yet slightly
asymmetric, shape. Figure 3.6 illustrates with several examples, the
type of dictionary atoms obtained by SSDL256 (first row), MODL256,r=1

(second row) and IcTKM256,r=5 (third row). Since IcTKM method
does not allow to impose any positiveness or smoothness constraints,
the obtained dictionary atoms cannot be interpreted as peptides chro-
matograms, hereby hampering their use for processing multiplexed
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acquisitions. In contrast, both SSDL and MODL provide dictionary
atoms with the expected chromatogram shape. Of course, both SSDL
and MODL also provides atoms that cannot be interpreted as single
chromatogram: for instance, the fourth dictionary atom in the first row
of Figure 3.6 contains many well-separated peaks; and the second one
in the second row of Figure 3.6 displays what appears to be an overlap
of various chromatograms. However, this is simply a consequence of the
biological complexity of the analyzed sample, which may require more
resoluted instruments as well as, possibly, further improvements in blind
source separation.

To obtain a more precise and more exhaustive comparison of MODL
and SSDL dictionaries, displaying the total variation distributions is
insightful (see Figure 3.5b): Since the dictionary atoms have a unitary
norm, chromatogram-like atoms should have a total variation smaller
than 2. Both MODL256,r=1 and MODL718,r=3 dictionaries contain many
atoms with a total variation norm around 2, but the distributions are
also heavy-tailed, with a significant proportion of less smooth atoms
(total variation norm lying between 3 and 10). In contrast, the total
variation norm distribution for SSDL256 does not exceed 6, and indicates
that a larger proportion of the atoms are smoother than their MODL
counterparts. Overall, SSDL provides with a smaller computational time,
dictionaries that are more suited to LC-MS data than those produced
with MODL and IcTKM.

3.5 Conclusions

Extracting meaningful patterns from LC-MS data is challenging,
because of the multiple constraints attached to their production method:
First, the corresponding matrix can be of very large size, especially
when resulting from last generation high resolution instruments, hereby
requiring scalable approaches. Second, the extracted patterns must have
the physical interpretation of a chromatogram and their number must
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be consistent with the number of analytes potentially detected in the
analyzed sample (up to several thousands). In this article, we have
introduced a new dictionary learning method, referred to as Sketched
Stochastic Dictionary Learning (SSDL), which combines the latest trends
of compressive statistical learning, as well as of online learning and
of stochastic optimization, while being compliant with all the afore-
mentioned constraints. This is notably the reason why, compared to
state-of-the-art methods, it provides more meaningful dictionaries at
a smaller computational cost. Beyond the specificities of LC-MS data,
SSDL is also of interest from a more fundamental viewpoint, as to the
best of the authors’ knowledge, it is the first dictionary learning method
that can directly operate on a data sketch (a controlled-sized proxy of
the data distribution in the Fourier domain). As future work, we will
consider embedding random projection based dimensionality reduction
techniques, hereby enabling the processing of entire datasets in a sin-
gle batch; as well as eventually, the processing of datasets acquired on
longer time frames with longer elution columns. From a more applicative
viewpoint, SSDL will unleash an efficient and convenient handling of
highly multiplexed data acquisitions. Such acquisitions are already an
important research direction in proteomics for the depth of analysis
they potentially enable, however to date the associated data processing
challenges have prevented their widespread use; a hurdle that SSDL will
help to overcome.
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General conclusions

and perspectives

Bottom-up and label-free approaches using LC-MS acquisition pipelines
have considerably increased the throughput of protein identification and
quantification. However, despite these progresses, the in-depth pro-
teomics analysis of a complex biological sample remains a challenge.
To cope for this, multiplexed acquisitions (based on the simultaneous
fragmentation of several peptides) are insightful, despite the multiple
issues they raised for subsequent data processing. Recently, it has been
demonstrated that relying on a chromatogram library (a collection of
chromatographic elution profiles, hopefully the post representative ones)
could help with the handling of multiplexed acquisitions, hereby leading
to an increment in the number of identified proteins (about 20%). How-
ever, to date, these chromatogram libraries can only be generated by
additional (and costly) experiments.

In this context, our objective was to propose a computational method-
ology to construct chromatogram libraries without any additional wet-lab
experiments, by exclusively leveraging the structure of the data at hand.
This concretely, constitutes a challenge for conceptual and applicative
reasons: First, the extracted patterns must look like real and well-formed
chromatographic profiles, while they must meaningfully represent all
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those of the peptides within the considered sample, even if it is of high
biological complexity. Second, the developed workflow must have a
computational footprint that is compatible with mass spectrometry
platforms constraints, which notably implies to rely on machine learning
methods that are scalable.

Overall, we have proposed two solutions to this challenge. The
first one, referred to as CHICKN, relies on cluster analysis (as the set
of cluster centroids forms a meaningful chromatogram library); while
the second solution (termed SSDL) elaborates on the conceptual links
between chromatogram libraries and dictionaries resulting from data
factorization approaches. The corresponding workflows are schematically
presented in Figure 4.1, which emphasizes their common embedding
of a data sketching procedure capable of compressing the large-scale
input data into a small size vector for subsequent processing[1]. However,
beside this common feature, the methods are conceptually different.

The novelty of CHICKN clustering method essentially relies in the
combination of the sketching procedure with Nystrom kernel approxima-
tion to achieve unprecedented compression level. Moreover, as CHICKN
is compliant with the kernel trick, we have proposed two new kernels
based on the Wasserstein-1 distance (W1), which both have an interest-
ing semantic for chromatographic elution profiles. Notably, compared
to the classically used distances (the Euclidean one as well as the time
difference between the retention time apexes) the Wasserstein-1 distance
is efficient in capturing simultaneously the shape and time differences.
By means of the exponentiation of this distance, we derived the Gaussian
W1 and Laplacian W1 kernel functions. The positive (semi-)definiteness
of the kernels was formally demonstrated in the Laplacian case and
supported by empirical evidence in the Gaussian one.

SSDL is a unique dictionary learning approach, which can learn the
dictionary by operating on the data sketch. SSDL updates the dictionary

[1]As mentioned in Chapter 1, there is also a methodological link between these approaches [67]:
Both can be formulated as the matrix factorization problem with the sparsity constraint. In the case
of the clustering the sparsity level is fixed at 1.
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using a stochastic version of the Nesterov accelerated gradient descent
(NAG) scheme. Combining these machine learning trends allowed SSDL
gaining the scalability over both data size and dictionary size and
respecting all requirements subsequent to LC-MS data production. To
further scale up the algorithm to complex biological samples (containing
thousands of peptides), we have also proposed to slice the dataset into
overlapping timeframe, and to process these chucks independently. As a
result, on LC-MS data, SSDL outperforms the state-of-the-art dictionary
learning methods regarding the computational time as well as the quality
of the constructed dictionary. Unfortunately, we did not find any way to
integrate a Wassertein-1 kernel into the dictionary learning procedure,
and thus to benefit from the semantic it would induce. This appoints
opens a possible future work direction of real interest (see below).

From a more applicative viewpoint, we observed both methods
produced interesting and meaningful chromatogram libraries: Most of
the extracted patterns have shapes that meet the expectations of a
chromatogram library: First, they have one well-distinguished narrow
peak, and their shapes look like a Gaussian bell, yet with a heavier right
tail. However, the libraries resulting from both approaches also contain
irregular shapes or have multiple peaks, that most likely corresponds to
repetitive patterns in the noise, without obvious biological or physical
interpretation. However, in both cases, some of them appeared to
correspond indeed to real chromatograms with multiple elution profiles.
This notably highlights the high level of signal multiplexing in LC-
MS data, as well as the room for future improvements. As detailed
in Chapter 2, the mass spectrometry engineers from the lab platform
were able to gather identification evidence about various precursor ions,
hereby validating that CHICKN correctly clusters isotopes of the same
peptide. Unfortunately, owing to the abstract nature of the patterns
extracted by SSDL (the elution profiles constituting the library are
not endowed with an m/z value), a similar validation is to date not
possible. It would require further mathematical developments (notably
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Figure 4.2: 20 examples of SSDL patterns with high intensity.

an efficient sparse projector on the cone spans by the library elements),
which despite their obvious interest, stand beyond the scope of this
work.

A refined comparison between CHICKN and SSDL libraries is
nonetheless insightful: Notably, we have observed that the SSDL li-
brary usually contains a greater number of correct shape patterns than
the CHICKN library. However, we have also noticed that the SSDL
patterns have simpler and smoother forms than CHICKN ones, which
is probably more a consequence of the preprocessing choices (SSDL
data sampling leading to simplified profiles) than a property strictly
attached to the methods. On the other hand, with raw data, CHICKN
also captures imperfections that sufficiently repeats across the LC-MS
matrix. Finally, both CHICKN and SSDL chromatogram libraries con-
tain duplicated elements, which indicate that in both cases, it would
be interesting to further refine the library size according to the data
complexity.
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Figure 4.3: 20 examples of SSDL patterns with low intensity.

Figure 4.4: 20 examples of CHICKN patterns with high intensity.
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Chapter 4. General conclusions and perspectives

Figure 4.5: 20 examples of CHICKN patterns with low intensity.

From a computational load viewpoint, CHICKN is faster than SSDL.
On a four-core computer, the execution time of the entire CHICKN
workflow on Ecoli-DIA dataset is around 45 minutes, including com-
pression (i.e., Nyström approximation and sketching), clustering, and
preimage computations. With the same machine, SSDL takes around 20
minutes to process 25% of the same dataset (thus, the total execution
time would be around 1 hour 20 minutes on the entire dataset). However,
considering the volume of the processed data, the computational times
of both workflows are acceptable. Moreover, as both approaches are al-
ready parallelized, a proteomics platform producing many exceptionally
large datasets can reduce the computational time by relying on a highly
multicore machine.

As already hinted when summarizing the main results, many direc-
tions would be worth investigating, even though they stand beyond
the scope of this thesis. One possible work direction is to focus on the
improvement of the quality of the chromatographic profiles. Denois-
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ing and filtering the LC-MS data before starting the learning process
would result in improved dictionary patterns, both for CHICKN and
SSDL. It could potentially solve the aforementioned problem of too
highly multiplexed patterns. It would also allow to reduce the neces-
sary number of chromatograms in the library, because there would be
less noisy structure to encode. However, this pre-processing should be
carefully performed. Excessive signal smoothing may result in loss of
meaningful peaks. However, this is challenging as the noise in LC-MS
data is multiplicative (rather than addition) and not uniform. This
is why, I think approaches based on the Wavelet transforms could be
effective, as already hinted in the literature [191–193].

As kindly suggested by one of our reviewers, it could be interesting to
improve the stopping criterion of CHICKN (decision rule to go further
through the clustering hierarchy). For the moment, the number of
levels is fixed: one stops when the cluster size is smaller than 2 · k.
Alternatively, more sophisticated criteria can be advantageous to solve
the problem of multiplexed clusters for small intensity chromatograms.
However, this would potentially lead to an additional parameter to tune,
which can be a hurdle from the user viewpoint.

Another enhancement of CHICKN is to use a data-dependent sam-
pling scheme in the Nyström kernel approximation instead of the cur-
rently used random sampling. I suggest choosing the recursive sampling
presented in [194]. It has been proven to yield a more accurate kernel
matrix approximation. This recursive sampling can evaluate the contri-
bution of each data point in the span of the kernel matrix relying on
ridge leverage scores, but unlike other related approaches, it has a linear
computational time complexity over the data size. This is an important
point for CHICKN as compression is its bottleneck.

The important theoretical work on CHICKN is to supplement our
empirical demonstration of the positive semi-definiteness of the Gaus-
sian W1 kernel by a theoretical proof. The corresponding investigations
can be grounded on the works presented in [147, 195, 196]. More pre-
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Chapter 4. General conclusions and perspectives

cisely, according to their theorems, we need to demonstrate either that
the squared Wasserstein-1 distance is a conditionally negative definite
function; or that the underlying metric space is flat. Both questions
are not trivial and require deeper theoretical analysis. However, our
experimental observations, together with the fact that the Laplacian
W1 kernel already possesses this property make us confident that one of
these paths should be successful.

It is worth noting that CHICKN has already been placed on CRAN
website, whereas for SSDL, this work has not been finished yet. This will
not take a lot of time, as the work is almost finished: the code has already
been packaged, and it only remains to complete the documentation,
add the examples, and make it compatible with Windows[2]. Once it
is done, I will submit SSDL on CRAN website. This technical work
requires fewer efforts and less time than other methodological works,
but it does not diminish its importance. It will make the SSDL method
more accessible and visible in both proteomics and machine learning
communities.

As it has already been mentioned in the conclusions of Chapter 3, the
performances of SSDL can be increased by introducing more elaborated
preprocessing, and notably (preliminary dimensionality reduction, for
example by exploring different random projection operators. The choice
of possible random projectors is vast, ranging from the classical one,
which elements are sampled from the normal Gaussian distribution
to the fast Johnson-Lindenstrauss transform, which is generated by
randomizing the discrete Fourier unitary matrix. The latter is more time-
consuming to construct, but it guarantees lower error rate. Using random
projection would lead to both speeding up the algorithm and improving
the smoothness of the obtained dictionary elements. However, it may
deteriorate the convergence rate since it introduces extra randomness
into the learning process (both rows and columns of data matrix being

[2]It is one of the CRAN requirements. The current version of SSDL can be executed only under
Linux-like OS. I know exactly how to carry out this work, because I had to do the same modification
for CHICKN package.
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subsampled).
Another strategy to improve SSDL is to incorporate the kernel trick

of CHICKN. It would be of prime interest, from a theoretical viewpoint
as well as from an applicative one. On one hand, we would be able to use
Nyström method to reduce the signal dimensionality[3]. On other hand,
the kernelization would allow to benefit from the appeal of Wasserstein-1
distance. However, doing so it not trivial, and such direction has many
caveats: First, it will require to modify both objective functions, sparse
coding, and dictionary update. However, it is not entirely clear how to
properly incorporate the feature mapping Φ(·) in the dictionary update
objective function, so that the equivalence of the data sketch and the
decomposition sketch is ensured. Moreover, this function must have an
explicit gradient and its calculation must have a small computational cost.
Second, there is no theoretical evidence that the stochastic scheme can
work in combination with kernelization and sketching. Third, we need
to assess whether the speed-up is significant so that the computationally
demanding compression does not degrade the total runtime. Finally,
computing the dictionary preimage would also be challenging, as we
could not use the same procedure as in CHICKN (where the consensus
chromatograms were approximated by averaging chromatograms in the
corresponding clusters).

On a more practical side, CHICKN and SSDL can be extended to
other applications. Contrary to SSDL, which was developed with a
very precise objective (i.e., to learn elementary patterns from multiplex
data), CHICKN can be used with more general aims, as it only helps
exploring the data structure to unveil hidden patterns. For example,
CHICKN could be used align retention times across different LC-MS runs,
hereby helping to cope for the poor reproducibility of LC output. This
problem often arises in clinical proteomics studies, where it is required
to compare the abundance of each peptide through different samples,

[3]It should be noted that Nyström method relies on the matrix column sampling to map the data
into the feature space, therefore combining it with the stochastic learning would not deteriorate the
convergence rate
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generally split into groups of healthy and diseased patients. In this
context, the Wasserstein-1 distance-based kernel functions could be of
interest, for they simultaneously capture the shape differences and time
shift. In addition, with its high-level compression procedure, CHICKN
can efficiently process a large number of LC-MS runs simultaneously.
Moreover, CHICKN could be dedicated to isotopic envelope construction
(this problem has been described in Chapter 2), by incorporating the
dependence on ∆m/z between chromatograms into the kernel function.

However, the appealing application of both methods is the demul-
tiplexing of M2 spectra in DIA data. Achieving this mathematically
amounts to factorizing the LC-MS data matrix so that the chromatogram
library forms the first matrix of the product (with the strong prejudice
that MS1 spectra and MS2 spectra display coherent elution profiles,
which is already empirically observed). Doing so would require pro-
jecting the MS2 spectra onto the libraries trained from MS1 data to
obtain “pseudo- DDA” MS2 spectra. As above, an appropriate projec-
tion method among those available in the literature must be chosen. It
is possible to use a classical LARS method, which is simple to implement
and easy to parallelize for large-scale data. A more elaborate method
is Fast Iterative Shrinkage-Thresholding (FISTA), which is naturally
adapted to large-scale problem, thanks to its quadratic convergence rate.
Another possibility is Nesterov gradient descent method, which has the
same global convergence rate as FISTA. It should be mentioned that
FISTA is more popular, so that many variants and extensions have been
proposed, such as adaptive restart [197] or robust step size search [198],
which allow to overcome some its drawbacks. For that reason, I would
suggest FISTA in our context.

An interesting aspect of this research direction is that it will connect
by the other tail the practical and theoretical sides of my work. More
precisely, it will provide an opportunity to concretely evaluate the
chemical meaningfulness of the dictionary elements, notably the abstract
ones derived from SSDL: In fact, once the projection is performed, it is
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possible to reconstruct pseudo-DDA spectra that can be processed with
classical proteomics workflows and to use classical proteomics metrics
(identification FDR, proteome coverage, etc.) to monitor and compare
various library construction strategies.

Aside these methodological research directions, it would be useful
to integrate both CHICK and SSDL into a software tool provided with
graphical user interfaces. This would allow proteomics experts who
are not familiar with programming or scripting to easily use them, to
visualize the results, and fine-tune their parameters to best fit their
data. Implementing the entire workflow, from building the data matrix
from raw LC-MS outputs to the final post-processing (such as automatic
pattern validation using peptide identification) is an important engineer-
ing workload, which overrides the scope of my PhD studies. Notably,
along most of my doctoral studies, my will was to put the focus on
the theoretical and algorithmic aspects of my research subject, and I
did not attach much importance to the engineering work. However, my
preferences and vision of scientific project management have significantly
evolved along these few years. In addition of enjoying both parts of
the work, and I have become convinced that theory and engineering are
in fact are equally important. If I had more time, I would handle this
engineering tasks to make my approaches more visible and useful to the
proteomics community.

This work experience taught me a lot: I have significantly improved
my programming skills as well as my knowledge in machine learning and
mass spectrometry. I realized the importance of non-scientific works
(communications, publication writing and networking). Notably, by
working with the mass spectrometry experts of the lab I learned how
to work in an interdisciplinary team. This has led me to improve my
pedagogical skills (to present my work to researchers from other fields
of study) as well as my curiosity towards other knowledge fields.
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Non-uniform grid construction

from RAW mass spectrometry

data

A.1 Motivation for grid-interpolation of
LC-MS data

LC-MS data are acquired progressively, one mass spectrum after the
other, which from a matrix viewpoint, means row-wise (see Figure 2.1 in
Chapter 2). However, CHICKN requires to process elution profiles, i.e.
accessing the data matrix column-wise. Unfortunately, direct access to
elution profiles is not possible: The spectra are acquired and discretized
independently from one another, with a non-uniform sampling of the
m/z scale, which depends on (i) the m/z values (finer for smaller m/z
values, coarser for larger ones); and (ii) the density of peaks (to avoid
storing too many zeros between peaks). To cope for these, it is thus
necessary to align the raw data, and to interpolate all spectra on a
common grid. Moreover, to optimaly store and exploit the LC-MS data,
the grid must respect the fluctuation of the m/z precision in function of
the m/z value (as aforementioned, finer for smaller m/z values, coarser
for larger ones).
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A.2. Non-uniform grid construction

A.2 Non-uniform grid construction

To unveil how the grid step should adapt across the m/z range,
we computed the differences between consecutive m/z values (referred
hereafter to as ∆m/z) within each raw spectrum and analyzed their
distribution in function of m/z over all spectra. However, some ∆m/z
reach very high values, as over large m/z intervals devoid of peaks,
the signal does not need to be sampled/stored. To cope for this, we
have gotten rid of the ∆m/z for which at least one of the two intensity
values was lower than 5 · 104. Although this strategy led to some
information loss, the remaining one was largely sufficient to compute
statistics and to derive conclusions on how the signal is discretized in the
MS constructor data format. In fact, despite this reduction, the amount
of obtained ([m/z]i, [∆m/z]i) pairs was still too large to be visualized on
a single plot. This is why Figure A.1 (respectively, Figure A.2) depicts
only a random 10% (respectively 2%) of them for Ecoli-DIA dataset
(respectively, Ecoli-FMS dataset).

It can be observed on both figures that most of the
([m/z]i, [∆m/z]i) aggregate along a curve, which appears continuous
and black (while it is in fact a collection of partly transparent crosses)
because of the point density (the others, in proportion, rather few of
them, being outliers). We empirically found that a power function of
degree 3

2 (dashed red line) led to a perfect fit on the data.
In addition, we noticed that the magnitudes of ∆m/z in the Ecoli-

DIA dataset were 4 times larger than those in the Ecoli-FMS one. As
the ratio of instrument resolutions is also exactly 4, a simple regression
provided us with the missing coefficient 0.015

Res
EXP

, with Res
EXP

being the
resolution tuning of the instrument. Finally, we obtain:

[∆m/z]i = 0.015
Res

EXP

[m/z]
3
2
i , ∀ i = 0, . . . , N − 1, (A.1)

where N is the last grid index of the grid. Using a more convenient
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Dataset m/z in Th ∆m/z in mTh

Ecoli-DIA

400 2.0

800 5.66

1,000 7.9

1,200 10.39

1,400 13.09

Ecoli-FMS

400 0.5

800 1.41

1,000 1.98

1,200 2.6

1,400 3.27

Table A.1: Some of ∆m/z values computed at different m/z values (in mili-thomsons)
using Eq. (A.2) for Ecoli-DIA (Res

EXP
= 60, 000) and Ecoli-FMS (Res

EXP
= 240, 000)

datasets.

notation where mi stands for [m/z]i, one obtains Equation (2.1) from
Chapter 2:

mi+1 −mi = 0.015
Res

EXP

m
3
2
i (A.2)

Table A.1 illustrates the change of the grid step (∆m/z, expressed in
mili-thomsons) obtained using Eq. (A.2) depending on the m/z values
for both considered datasets.
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A.2. Non-uniform grid construction

Figure A.1: Gray crosses (in fact, black transparent crosses) depict (m/z, ∆m/z)
pairs computed from raw Ecoli-DIA dataset. Red dashed line depicts Equation (2.1).
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Figure A.2: Gray crosses (in fact, black transparent crosses) depict (m/z, ∆m/z)
pairs computed from raw Ecoli-FMS dataset. Red dashed line depicts Equation (2.1).
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Positive (semi-)definiteness of

Wasserstein-1 based kernels for

real-valued signals

B.1 Notations and definitions

Definition 1 (Real-valued series). This work focuses on real-valued
signals, discretized on t time stamps, such as for instance x := [x1, . . . , xt]
which can simply be referred to as vector x ∈ Rt.

Definition 2 (Wasserstein-1 distance on real-valued series). Let x, y ∈
Rt. The W1 distance between x and y reads:

dW1(x, y) =
t∑

k=1
|Fx(k)− Fy(k)| = ‖Fx − Fy‖`1

where Fx and Fy are the empirical cumulative functions of signals x and
y, respectively:

Fx(k) =
k(k≤t)∑
i=1

xi

‖x‖`1

and
Fy(k) =

k(k≤t)∑
i=1

yi

‖y‖`1

Definition 3 (Positive definite and positive semi-definite kernel). A
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Appendix B. Positive (semi-)definiteness of W1 based kernels

kernel k(·, ·) is positive semi-definite (PSD) (respectively, positive definite
(PD)) if and only if it is symmetric and for any choice of n distinct
x1, . . . , xn ∈ Rt (respectively, ∈ Rt \ 0) and of c1, . . . , cn ∈ R:

n∑
i,j=1

cicjk(xi, xj) ≥ 0 (respectively, > 0). (B.1)

Property 1. A kernel k is PSD if and only if for any set of n dis-
tinct x1, . . . , xn ∈ Rt, the kernel matrix K ∈ Rn×n defined by Kij =
k(xi, xj) has only non-negative eigenvalues.

Proof. [199] (Theorem 4.1.10 p.231)

Definition 4 (Gaussian W1 kernel). ∀ x, y ∈ Rt,∀ γ ∈ R∗+, the Gaus-
sian W1 kernel reads:

kγGW1(x, y) = e−γ·dW1(x,y)2 (B.2)

Definition 5 (Laplacian W1 kernel). ∀ x, y ∈ Rt,∀ γ ∈ R∗+, the Lapla-
cian W1 kernel reads:

kγLW1(x, y) = e−γ·dW1(x,y) (B.3)

Definition 6 (Exponential 1D kernel [200]). ∀ x, y ∈ R,∀γ ∈ R∗+, the
Exponential 1D kernel reads:

kγE1D(x, y) = e−γ·|x−y| (B.4)

Property 2. ∀ x, y ∈ R, γ ∈ R∗+, the Exponential 1D kernel kγE1D(x, y)
is positive definite.

Proof. [201] (Corollary 2.10. p. 78 and Theorem 2.2 p. 74)
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B.2 Gaussian W1 kernel

Conjecture 1. ∀x, y ∈ Rt,∀ γ ∈ R∗+ the kernel kγ1 (x, y) = e−γ·‖x−y‖
2
`1 is

positive definite.

If Conjecture 1 holds, then, demonstrating the positive definiteness
of kγGW1 is possible by following a line akin to the one used in the kγLW1

case (see Section B.3).
Nevertheless, we provide here empirical supports for the PSD-ness

of kγGW1 (which is sufficient to apply the kernel trick): For each dataset,
we performed 5 Nyström approximations of the Gaussian W1 kernel
matrix, as described in Algorithm 1 (main article) with different random
subsampling, and we verified that all the eigenvalues were non-negative
(leading to a PSD kernel, according to Property 1). The results are
reported on Figures B.1, B.2 and B.3, which display the 5 series of eigen-
values (for datasets Ecoli-DIA, Ecoli-FMS and UPS2GT, respectively),
sorted by decreasing order, together with the largest (λmax) and smallest
(λmin) eigenvalues across all the 5 tests. In addition, we observed that
for raw data like Ecoli ones, for which CHICKN was designed, the λmin
is clearly positive (contrarily to datasets such as UPS2GT, which by
construction may not lead to full rank data matrices). This makes us
optimistic about Conjecture 1.

B.3 Laplacian W1 kernel

Lemma 1. Let (Xi)mi=1 is a sequence of non empty sets, ∀i ∈ {1, . . . ,m} xi, yi ∈
Xi and (ki)mi=1 is a sequence of positive definite kernels such that ki :
Xi ×Xi → R, then a kernel defined as:

K((x1, . . . , xm), (y1, . . . , ym)) =
m∏
i=1

k(xi, yi) (B.5)

is positive definite on X1 × · · · ×Xm.

Proof. [201] (Corollary 1.13 p. 70).
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Figure B.1: Matrix spectrum for the 5 repetitions (each with a specific color) of
Nyström approximation resulting from Ecoli-DIA dataset. The minimal and maximum
values (λmin and λmax, respectively) over these 5 tests are indicated in the upper right
corner.
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B.3. Laplacian W1 kernel

Figure B.2: Matrix spectrum for the 5 repetitions (each with a specific color) of
Nyström approximation resulting from Ecoli-FMS dataset. The minimal and maximum
values (λmin and λmax, respectively) over these 5 tests are indicated in the upper right
corner.
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Figure B.3: Matrix spectrum for the 5 repetitions (each with a specific color) of
Nyström approximation resulting from UPS2GT dataset. The minimal and maximum
values (λmin and λmax, respectively) over these 5 tests are indicated in the upper right
corner.
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Lemma 2. ∀x, y ∈ Rt and γ ∈ R∗+ the kernel kγ2 (x, y) = e−γ·‖x−y‖`1 is
positive definite.

Proof. The `1 norm of a vector x reads

‖x‖`1 =
t∑
i=1
|xi|,

where xi is ith coordinate of x. The kernel kγ2 (x, y) can be rewritten as
follows:

kγ2 (x, y) =
t∏
i=1

e−γ·|x
i−yi|

where (e−γ·|xi−yi|)ti=1 is a sequence of Exponential 1D kernels, which are
positive definite on R ( Property 2). Thus, according to Lemma 1,
kγ2 (x, y) is also positive definite.

Corollary 1. The Laplacian W1 kernel (see Definition 5) is positive
definite.

Proof. It is sufficient to notice that according the Definition 2, the
Wasserstein-1 distance dW1(x, y) reads ‖Fx−Fy‖`1, where Fx and Fy are
the empirical cumulative functions, i.e. vectors ∈ Rt. As the set of the
empirical cumulative function XF = {F ∈ Rt | F 1 ≤, · · · ≤ Ft,

∑t
i=1 F

i =
1} is a subset of Rt, the positive definiteness of kγLW1 derives directly
from the positive definiteness of kγ2 (Lemma 2).
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Distinguishing between spectral clustering
and cluster analysis of mass spectra[1]

Hélène Borges [2][a], Romain Guibert[2][a], Olga Permiakova[2][a], Thomas
Burger[a,b]

[a] Univ. Grenoble Alpes, CEA, INSERM, BIG-BGE, 38000 Grenoble, France
[b] CNRS, BIG-BGE, F-38000 Grenoble, France

Abstract
The term “spectral clustering” is sometimes used to refer to the clustering of mass
spectrometry data. However, it also classically refers to a family of popular clustering
algorithms. To avoid confusion, a more specific term could advantageously be coined.

[1]This letter article is published in Journal of Proteome Research
[2] Equal contribution, listed in alphabetical order
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Keywords: Cluster analysis; Spectral clustering; Mass spectrometry; Proteomics

Introduction

In proteomics literature, “spectral clustering” refers to performing
a cluster analysis on a dataset resulting from mass spectrometry (MS)
acquisitions, with the objective to answer a wide variety of analyti-
cal questions (which have recently been surveyed by Perez-Riverol et
al. [109]). However, this term also names a widespread family of algo-
rithms for cluster analysis. This ambiguity deteriorates the keyword
indexing quality of any work focusing on cluster analysis of MS spectra,
and thus complicates the inevitable state-of-the-art review of new re-
search in computational proteomics[3]. We believe there are advantages
to adjusting the naming convention. Therefore, we propose to refer to
the cluster analysis of MS data as “spectrum clustering” (its original
name, see below); or to avoid spelling similarities and improve indexing,
as “mass spectrum clustering”.

Cluster analysis refers to a wide family of unsupervised statistical
learning and multivariate analysis techniques. Roughly speaking, its goal
is to aggregate similar observations into clusters, so that the resulting

[3]An anonymous reviewer kindly remarked this question has been debated during the 2015 Mid-
Winter Proteomics Informatics meeting at Semmering, (https://coreforlife.eu/events/2014/
midwinter-proteomics-bioinformatics-seminar) where the consensus was that of the status quo.
The goal of this Letter is to extend and enlarge this discussion
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Appendix C. Spectral vs. spectrum clustering

clusters are as dissimilar as possible. Cluster analysis has numerous
applications in a variety of scientific domains, including omics biology.
Thus, its use on large-scale proteomics data is bound to develop [109].

To the best of the authors’ knowledge, the idea of applying cluster
analysis to MS based proteomics data [97, 98, 104, 202] goes back to the
mid-2000s. Interestingly, the first proposal (in 2004) [98] referred to
such clustering task as “spectrum clustering”, before the term “spectral
clustering” was coined in 2005 by Tabb et al. [97] The latter term was
then used from time to time (for instance Bonanza algorithm [104]
in 2008, or PRIDE Cluster [102] in 2013), before witnessing a recent
regain of interest [109, 203] notably through a scholarly discussion on
the subject relayed by Journal of Proteome Research [107,203].

The term “spectral clustering” also designates a specific family of
clustering algorithms, with theoretical foundations that are nearly twenty
years old [123, 204]. Its name roots in algebra vocabulary, where the
set of eigenvalues of a matrix is commonly referred to as its “spectrum”.
From an analytical chemistry viewpoint, this naming convention is
surprising, while remaining compliant with the general meaning of
“spectrum”, i.e. a decomposition into elementary constituents (light
spectrum, mass spectrum, etc.): Conceptually, eigenvalues amount to
the atomic elements of a matrix.

Spectral clustering first developed in the machine learning commu-
nity, and for several years, it has been almost exclusively applied to
computer vision problems. This largely explains why, (i) the term was
independently coined to refer to the cluster analysis of mass spectra; (ii)
no cluster analysis of spectra reported in the proteomics literature has
been conducted with it so far (on the contrary, other cluster analysis tech-
niques, e.g. hierarchical clustering, are regularly applied to MS-based
proteomics data) [102, 106]. However, since its original development,
spectral clustering techniques have stepped out of computer vision ap-
plications, and have been demonstrated to be extremely powerful on
various application domains, so that their popularity is now unparalleled.
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Authors & year Reference # citations

Ng, Jordan & Weiss (2002) 13 6,967

Von Luxburg (2007) 14 6,087

Zelnik-Manor & Perona (2005) 15 1,793

Dhillon, Guan & Kulis (2004) 16 999

Bengio et al. (2004) 17 1,050

Table C.1: List of the five first articles proposed by Google Scholar when searching
�Spectral Clustering�, accompanied with the number of citations of these articles (on
October 23, 2018).

To date, Shi and Malik’s seminal article [123] has gathered more than
15,000 citations according to Google Scholar, and other articles explicitly
referring to the term “spectral clustering” in their title gather as many
of them (see Table C.1).

Briefly, the principle of spectral clustering is the following: First,
the dataset is endowed with a graph structure. Then, one performs a
dimensionality reduction guided by the eigenvalues of a specific matrix,
referred to as the graph Laplacian (in the algorithm name, “spectral” thus
refers to the graph Laplacian eigenvalues). Lastly, k-means clustering
is performed via a Lloyd-type algorithm [130]. Concretely, the graph
Laplacian encodes the connectivity levels between the vertices of the
data graph (a kind of “diffusion capability” for each data item towards
its neighborhood). Therefore, working on this matrix makes sense, as
good clusters supposedly correspond to sets of highly connected vertices
with few inter-cluster connections. This explains why an accurate
clustering is expectable, even for datasets with a complex structure that
cannot be captured by ball-shape clusters (as with classical k-means).
For instance, Figure C.1 represents a famous toy dataset with two
intermingled spiraling clusters (classically referred to as Swiss-rolls),
on which spectral clustering achieves good performance. Nowadays,
applying spectral clustering algorithms to data of various types is rather
straightforward thanks to very detailed and pedagogical tutorials [125]
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Figure C.1: A typical toy dataset with a complex non-linear structure (two inter-
mingled Swiss-rolls) accurately clustered thanks to the default spectral clustering
algorithm available in Kernlab [205].

as well as efficient toolboxes (e.g. Kernlab R package) [205].
Finally, one nowadays uses “spectral clustering” to name two different

notions: First, it has been regularly used since 2000 to refer to a family
of clustering algorithms. Second, it has been sometimes used since 2005
to refer to cluster analysis of spectral data. Among the large number of
co-existing scientific domains, it is common to have the same names used
to refer to different concepts. However, as the computational aspects
of proteomics grow up, and as big data tools become pervasive in the
processing of MS data, some confusion may appear. This is likely for
the following reason: Spectral clustering popularity mainly comes from
the underlying data embedding into a graph structure, which makes
it particularly efficient for network-based data (ranging from social
network [206] to interaction networks in biology) [207–209]. As this
type of data becomes customary in interactomics studies [210], spectral
clustering techniques are likely to become essential tools for proteomics
data analysis. As a result, the proteomics community has much to gain
in avoiding vocabulary confusion.

In the past, similar vocabulary confusions due to proteomics getting
closer to data science were already witnessed. Notably, the concept
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of False Discovery Rate [211] was confused with what are respectively
called in the biostatistics literature, the False Positive Rate and the
False Discovery Proportion, as opportunely pointed by Käll et al. [212]
(for the former) and Serang & Käll [213] (for the latter). These two
confusions did not help MS experts to get involved with the increasing
use of statistics in proteomics. To avoid similar misunderstanding, it
would make sense to return to the original naming convention [98] (i.e.
“spectrum clustering”) or to coin a more precise one, specific enough to
be well visible and well indexed, such as “mass spectrum clustering”.
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[47] David Bouyssié, Anne-Marie Hesse, Emmanuelle Mouton-Barbosa, Magali
Rompais, Charlotte Macron, Christine Carapito, Anne Gonzalez de Peredo,

165



Bibliography
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Junot, Minale Ouethrani, and Jean-Luc Starck. Application of non-negative
matrix factorization to lc/ms data. Signal Processing, 123:75–83, 2016. (page 104).

[170] Olga Permiakova, Romain Guibert, Alexandra Kraut, Thomas Fortin, Anne-
Marie Hesse, and Thomas Burger. Chickn: Extraction of peptide chromatographic
elution profiles from large scale mass spectrometry data by means of wasserstein
compressive hierarchical cluster analysis. BMC Bioinformatics (under revision),
2020. (pages 104, 113, and 114).

[171] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.
(page 106).

[172] David L Donoho and Michael Elad. Optimally sparse representation in general
(nonorthogonal) dictionaries via l1 minimization. Proceedings of the National
Academy of Sciences, 100(5):2197–2202, 2003. (page 106).

[173] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202,
2009. (page 106).

[174] Kjersti Engan, Sven Ole Aase, and J Hakon Husoy. Method of optimal directions
for frame design. In 1999 IEEE International Conference on Acoustics, Speech,

177



Bibliography

and Signal Processing. Proceedings. ICASSP99 (Cat. No. 99CH36258), volume 5,
pages 2443–2446. IEEE, 1999. (page 106).

[175] Dar Gilboa, Sam Buchanan, and John Wright. Efficient dictionary learning
with gradient descent. In International Conference on Machine Learning, pages
2252–2259, 2019. (page 106).

[176] Bao-Di Liu, Yu-Xiong Wang, Bin Shen, Xue Li, Yu-Jin Zhang, and Yan-Jiang
Wang. Blockwise coordinate descent schemes for efficient and effective dictionary
learning. Neurocomputing, 178:25–35, 2016. (page 106).

[177] Konstantinos Slavakis and Georgios B Giannakis. Online dictionary learning from
big data using accelerated stochastic approximation algorithms. In 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 16–20. IEEE, 2014. (page 106).

[178] Arthur Mensch, Julien Mairal, Bertrand Thirion, and Gaël Varoquaux. Stochas-
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