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Abstract

Owing to ever increasing gate fidelities and to a potential transferability to industrial CMOS
technology, silicon spin qubits have become a compelling option in the strive for quantum com-
putation. However, hole spin qubits in silicon remain a barely explored hosting platform as
compared to their electron counterpart. Hole spins carry some attractive properties: for in-
stance, strong spin-orbit coupling enables fast coherent spin rotations using a radio-frequency
electric field; also, we expect long coherence times due to the absence of contact hyperfine
interaction. In this thesis, we conduct experiments on p-type silicon-nanowire devices to take
advantage of the above mentioned properties.

In order to pave the way for large-scale quantum processors, the development of scalable
qubit readout schemes involving a minimal device overhead is a compelling step. Here we re-
port the implementation of gate-coupled RF reflectometry for the dispersive readout of a fully
functional hole spin qubit device. We use a p-type double-gate transistor made using industry-
standard silicon technology. The first gate confines a hole quantum dot encoding the spin qubit,
the second one a helper dot enabling readout. The qubit state is measured through the phase
response of a lumped-element resonator to spin-selective interdot tunneling. The demonstrated
qubit readout scheme requires no coupling to a Fermi reservoir, thereby offering a compact and
potentially scalable solution whose operation may be extended above 1 K.

In a scalable architecture, each spin qubit will have to be finely tuned and its operating con-
ditions accurately determined. In this prospect, spectroscopic tools compatible with a scalable
device layout are of primary importance. Here we report a two-tone spectroscopy technique
providing access to the spin-dependent energy-level spectrum of a hole double quantum dot
defined in a split-gate silicon device. A first GHz-frequency tone drives electric-dipole spin
resonance enabled by the valence-band spin-orbit coupling. A second lower-frequency tone
(≈ 500 MHz) allows for dispersive readout via rf-gate reflectometry. We compare the measured
dispersive response to the linear response calculated in an extended Jaynes-Cummings model
and we obtain characteristic parameters such as g-factors and tunnel/spin-orbit couplings for
both even and odd occupation.
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Résumé

En raison de la fidélité croissante des grilles et de la transférabilité potentielle à la techno-
logie CMOS industrielle, les qubits de spin en silicium sont devenus une option incontournable
dans la course pour le calcul quantique. Cependant, les qubits de spin de trous dans le sili-
cium reste une plate-forme d’hébergement à peine explorée par rapport à leurs homologues
d’électrons. Les spins de trous ont des propriétés intéressantes : par exemple, un fort couplage
spin-orbite permet des rotations de spin cohérentes rapides en utilisant un champ électrique
radiofréquence ; aussi, on s’attend à de longs temps de cohérence dus à l’absence d’interaction
hyperfine de contact. Dans cette thèse, nous menons des expériences sur des dispositifs à na-
nofils de silicium de type p pour tirer parti des propriétés mentionnés ci-dessus.

Afin d’ouvrir la voie à des processeurs quantiques à grande échelle, le développement de
schémas de lecture de qubit évolutifs impliquant une surcharge minimale du dispositif est une
étape convaincante. Nous rapportons ici la mise en œuvre de la réflectométrie RF couplée par
grille pour la lecture dispersive d’un dispositif de qubit de spin de trou entièrement fonctionnel.
Nous utilisons un transistor à double grille de type p fabriqué à l’aide de la technologie silicium
au standard industriel. La première grille confine un ilot quantique de trou codant le qubit
de spin, la seconde un ilot auxiliaire permettant la lecture. L’état du qubit est mesuré par la
réponse de phase d’un résonateur à éléments localisés à un effet tunnel interdot sélectif en spin.
Le schéma de lecture de qubit démontré ne nécessite aucun couplage à un réservoir de Fermi,
offrant ainsi une solution compacte et potentiellement évolutive dont le fonctionnement peut
être étendu au-dessus de 1 K.

Dans une architecture évolutive, chaque qubit de spin devra être finement réglé et ses condi-
tions de fonctionnement déterminées avec précision. Dans cette perspective, les outils spec-
troscopiques compatibles avec une disposition évolutive des appareils sont d’une importance
primordiale. Nous rapportons ici une technique de spectroscopie à deux tons donnant accès au
spectre de niveau d’énergie dépendant du spin d’un double ilot quantique à trous défini dans
un dispositif de silicium à grille divisée. Une première tonalité de fréquence GHz entraîne la
résonance de spin dipolaire électrique activée par le couplage spin-orbite en bande de valence.
Une deuxième tonalité de fréquence inférieure (≈ 500 MHz) permet une lecture dispersive via la
réflectométrie à grille RF. Nous comparons la réponse dispersive mesurée à la réponse linéaire
calculée dans un modèle Jaynes-Cummings étendu et nous obtenons des paramètres caractéris-
tiques tels que les facteurs g et les couplages tunnel/spin-orbite pour une occupation paire et
impaire.
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PSB Pauli spin bloackade
EDSR electric dipole spin resonance
ESR electron spin resonance
g-TMR g-tensor magnetic resonance
IZ-EDSR iso-Zeeman electric dipole spin resonance (EDSR)
DAC digital analog converter
PCB printed circuit board
AWG arbitrary wave generator
DMM digital multi-meter
NPLC number of power line cycles
SEM scanning electron micrograph
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I used to wonder how it comes about that the
electron is negative. Negative-positive, these are
perfectly symmetric in physics. There is no reason
whatever to prefer one to the other. Then why is
the electron negative? I thought about this for a
long time and at last all I could think was “It won
the fight!”

Albert EINSTEIN
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Q
uantum computing is attracting a great deal of interest, as we are reaching the
limits in progress of transistor-based processors and is regarded as the Holy Grail
of quantum technologies. With the end of Moore’s law approaching, quantum
computing has emerged as one of the most prominent post-Moore paradigms rais-

ing the interest of top microelectronic firms toward exploring new computing paradigms. By
relying on the use of some specific properties of quantum systems, one could make an unusual
type of a processing unit, a quantum processor. Even though research and applications of quan-
tum computing are still in their infancy, the promises of this revolutionary computing concept
have recently led to the rapid growth of governmental and private funding in this emerging field.

0.1 Quantum computing

The concept of a quantum computer was proposed in the beginning of the eighties and it
has been since a subject of studies. In a famous speech, Richard Feynman argued [36] that
quantum phenomena as chemical reactions could be better simulated by means of quantum
processors. Since then, quantum computation has been an active area of research. However,
it was only in 1994 that Peter Shor gave [126] a proposition of an algorithm enabling to fac-
torize a large integer, way bigger than those affordable by the most powerful computing unit
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on earth, using a quantum computer. This application may seem as a minor application to
quantum computing but it has heavy consequences as most of cryptography systems rely on
integer factorization and the inability of a mere computer to factorize a large integer.

Quantum technologies rely on the fundamental principles of superposition and entangle-
ment. These aspects of quantum mechanics have so far been exploited in areas such as metrol-
ogy and magnetometry. Nevertheless, their applications remain at the basic level and their
full potential is yet demonstrated. The road toward quantum computing is a long one and it
involves many milestones whose achievement is conditioned to the level of control and maturity
of the unit cells forming a quantum processor. Fig. 0.1 shows an expected timeline of quantum
technologies detailing the main underlying phases and steps.

Major firms around the world, noticed the significant progress at the research level in this
field and started to invest on quantum technology since few years. For instance, Lockheed
Martin created two research centers in collaboration with the University of South California
and the University of Maryland, IBM is conducting research on quantum computing as well
as on low temperature superconducting electronics, Microsoft created its Station-Q laboratory
and went on the path of topological quantum computing, Google stepped into the game by
investing on the X-mon superconducting qubit concept, and Intel signed a 10-year partnership
with Qutech aiming to foster advance in both semiconductor- and superconductor-based quan-
tum computing.

Quantum bits, also commonly referred to as qubits, are the elementary building blocks of a
quantum computer. They can be seen as the quantum analog of classical bits. Their physical
realizations can be regarded as the quantum counterparts of conventional transistors. A field-
effect transistor an be either “ON” (i.e. conducting) or “OFF” (i.e. insulating), thereby offering
a natural physical realization of digital logic. In contrast to that, a qubit can be simultaneously
in a quantum superposition of its two basis states, say |0〉 and |1〉. Fig. 0.2 shows the geometric
representation of a qubit state, which can be written in the following form:

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 (1)

with cos2 θ/2 and sin2 θ/2 the probabilities of finding the states |0〉 and |1〉, respectively, and ϕ
a phase parameter.

A system of two qubits would be represented by a linear superposition of four states: |00〉,
|10〉, |01〉 and |11〉, and in general, a system of N qubits would result in a superposition of 2N

states. This gives rise to a naturally built-in parallelism that could be implemented to reach
exceptional computational powers well beyond those of the most powerful classical computer.

Due to interactions with the external environment, a quantum system will be subject to
noise and thus decoherence. This translates into a characteristic time scale on which a quantum
system can retain a given coherent superposition of states. Thus, a distinction should be made
between physical qubits (faulty implementation) and a logical qubits (faultless). The latter,
which is the one used to estimate the computing power of a quantum processor, requires a com-
bination of a certain number of physical qubits depending on their fidelity, i.e. how accurate
they are. The higher the individual fidelity, the less physical qubits are needed to form a logical
qubit. With error rates of 0.1 % on physical qubits, a single logical qubit requires thousands of
physical qubits [38]. The realization of a fault-less computation is theoretically possible thanks
to quantum error correction algorithms, e.g. in the so-called surface codes [38, 140, 3].
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Figure 0.1 – Quantum technologies timeline and future prospects. Taken from [24].
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Figure 0.2 – Bloch sphere representation of a qubit state. The qubit quantum state |ψ〉
could take any value on the Bloch sphere as a result of the superposition of |0〉 and |1〉 states.
It is characterized by the spherical parameters θ and ϕ.

Seeing the important number of physical qubits necessary for a functioning quantum pro-
cessor, scaling, one of the DiVincenzo criteria [30], takes a fundamental place in the conception
of qubit platforms. Implementations of qubits vary and one can find a multitude of physical
platforms, e.g. superconducting qubits [21], trapped ions [10], photonic qubits [74] and semicon-
ductor qubits [18]. And despite the fact that no clear implementation is yet to be universally
adopted as the most suitable for a quantum computer, there is a growing attention towards
silicon-based spin qubits which is motivated by the large-scale manufacturing capabilities of
the semiconductor industry.

0.2 Semiconductor qubits
Semiconductor qubits offer a distinctive potential for high density integration on a large

scale originating from the mature nanofabrication technologies of the semiconductor industry.
They span from systems operated in dilutions fridges at millikelvin temperatures to ones fully
functional at room temperature. A few major implementations can be cited, namely, color
centers [63], shallow dopants [114], and gate-defined quantum dots [112, 69].

Single spins localized in gate defined quantum dots have been recognized as a promising
platform for quantum computation early on [84] and the recent years have witnessed remarkable
progress in their development [112, 79, 31, 146]. While it is possible to use the charge degree of
freedom to encode quantum information, a charge qubit is highly affected by electrical noise,
making it fall short to achieve the required high coherence levels and unlikely to be considered
as a state encoding.

In a seminal proposal [84], Loss and DiVincenzo put forward the idea of using the spin of
localized electrons as the physical system encoding an elementary bit of quantum information.
As a physical realization, these authors referred to gate-defined quantum dots hosting individ-
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ual electrons. Along a similar idea, Kane proposed [67] a qubit implementation in silicon based
on the nuclear spins of phosphorous dopants. The first spin qubits were realized in quantum
dots electrostatically defined in GaAs-based heterostructure embedding a high-mobility two-
dimensional electron gas [75, 112]. Further experimental work, however, demonstrated that an
electron spin in GaAs loses its coherence very fast (around 10 ns) due to the hyperfine coupling
with the nuclear spins of the hosting crystal. This short coherence time has limited the devel-
opment of GaAs spin qubits.

In contrast to GaAs, the most abundant isotope of silicon, 28Si, has zero nuclear spin, re-
sulting in no hyperfine interaction. Even though natural silicon hosts 4.7 % of the only stable
isotope containing a non zero nuclear spin 29Si, this percentage can be highly reduced by isotopic
purification. The first silicon spin qubit was reported by a team of researchers at the University
of South Wales in 2012 consisting of an electron spin bound to a phosphorous dopant [113].
Lately, there has been an increasing focus on silicon-based realizations [69, 89, 115, 130, 45].

Access to isotopically enriched 28Si has enabled the achievement of very long spin coherence
times for both nuclear and electron spins [137, 96, 152]. In addition, two-qubit gates with in-
creasing high fidelities were demonstrated in electrostatically defined electron double quantum
dots [138, 155, 145, 57]. Leveraging the well-established silicon technology may enable facing
the scalability challenge, and initiatives to explore this opportunity are on the way including
one led by the Quantum Silicon team in Grenoble [58].

0.3 Hole qubits

While further improvements in single- and two-qubit gates can be expected, growing re-
search efforts are now being directed to the realization of scalable arrays of coupled qubits [136,
83, 65, 154, 135]. The steady evolution towards increasing the number of qubits has triggered
the quest for a compact control and read-out architecture. Considering qubit control, all elec-
trical qubit driving appears as a clear asset in dense quantum dot arrays.

A microwave excitation applied to a gate electrode drives Rabi oscillations of electron/hole
pseudospins via the EDSR mechanism originating from intrinsic or artificial spin-orbit coupling.
This has been shown in III-V semiconductors [103, 109] and in group IV semiconductors, such
as silicon [69, 89, 152, 27, 26] and germanium [146, 51, 50, 52, 119, 40]. Other than the intrinsic
mixing of the quantum-mechanical spin with the quantum orbital angular momentum (spin-
orbit interaction), the p-type symmetry of the wave function frees the holes from the contact
hyperfine interaction leaving only a generally weaker residual dipolar interaction [37].

Following some first experimental demonstrations of hole spin qubits in silicon [89, 27, 26],
there is a strong need to characterize and explore these qubits. Not only do hole spin qubits
allow for a dense integration of qubits [52] while preserving individual addressability [89, 81],
but there is plenty of physics in the interplay of orbital and spin degree of freedom to be ex-
plored and understood.
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0.4 Thesis outline
In Chap. 1, the theoretical background relevant to the experiments conducted during this

thesis is introduced. Concepts such as quantum dots, spin to charge conversion, electric dipole
spin resonance and reflectometry are discussed.
Chap. 2 presents the nanodevices used in the scope of this thesis as well as the underlying tech-
nologies and steps used to fabricate them. Additionally, it details the downstream procedures
of fabrication taking place after the reception of the said samples.
The experimental setup that lead to this thesis results and its characterisation are put forward
in Chap. 3. Our team’s vision on how to implement the reflectometry readout on qubit devices
can be captured in this part of the manuscript.
Chap. 4 retraces the steps of a recently published work [26] demonstrating gate-reflectometry
dispersive readout and coherent control of a hole spin qubit in silicon.
In order to remedy the long acquisition times associated with reflectometry measurements
that require high resolutions, Chap. 5 offers an approach to considerably reduce the disper-
sive measurements times by cutting back on communication times with the instruments while
maintaining an acceptable noise and feature signal levels.
An other published work [35] that is presently at the reviewing phase is included in Chap. 6
where a two-tone microwave spectroscopy technique dispersively probed is carried out on silicon
hole double quantum dot allowing its spectrum reconstruction.
This manuscript ends with a conclusion and an outlook on possible upcoming research that
could benefit from the results of this thesis. It includes also a glimpse into a recently started
experiment on a new generation of multi-gate qubit devices.
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Takeaway messages:

• Quantum computing is a new paradigm based on the use of quantum mechanical
properties of two-level quantum systems, namely the superposition of states and en-
tanglement.

• The building block of a quantum processor is called a qubit, short for quantum bit,
which is the quantum equivalent of the transistor in digital electronics.

• Silicon spin qubits offer a distinctive potential for high density integration leveraging
the mature semiconductor industry and long coherence times.

• Holes in silicon allow for all electrical driving due to their intrinsic spin-orbit coupling.
They do not suffer from the contact hyperfine interaction making their pseudospin
state an attractive choice for quantum information encoding.
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Chapter 1

Spin qubits: readout and
manipulation

The best that most of us can hope to achieve in
physics is simply to misunderstand at a deeper
level.

Wolfgang PAULI
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T
his chapter introduces the theoretical concepts necessary for the discussion of the
experimental results presented further in this thesis. It provides an introduc-
tory level background while detailed aspects of the treated subjects could be
found in the provided references throughout the chapter or in reviews [134, 47].

1.1 Quantum dots

1.1.1 Single quantum dots

Quantum dots (QDs) are man-made nanostructures that can be filled either with electrons
or holes [47]. A dot is electrically connected to Fermi reservoirs through tunnel barriers so that
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charges can be exchanged. It is also capacitively coupled to one or more gate electrodes acting
on its electrostatic potential as shown in Fig. 1.1.

±e

VSD

VG

Source

Drain

ISD

QD

=

QD

VS

VG

CG

RS,CS RD,CD

VDN

Figure 1.1 – Simple schematic of a lateral geometry QD and equivalent network of
tunnel resistors and capacitors. The dot exchanges charges with the source and drain
reservoirs through tunnel barriers, resulting in a current ISD depending on the source-drain
bias voltage VSD and the gate voltage VG.

QDs are dominated by two main effects:

— the Coulomb repulsion between holes/electrons leading to Coulomb blockade. Conse-
quently, adding a hole/electron to the QD costs energy.

— the 3D confinement leading to quantum effects and a discrete energy spectrum.

In order to understand transport through a QD, we need first to briefly mention the con-
stant interaction model [77] and adopt a simple representation of a single QD shown in Fig. 1.1.
This latter is based on two assumptions. First, Coulomb interactions in the QD as well as the
interactions between the charges in the dot and those in the environment are a function of a
single constant capacitance C = CS +CG +CD. Secondly, the energy level spectrum of the QD
is independent of the number of charges in the dot.

Using this model, we can now introduce the total energy U(N) of a QD withN holes/electrons
in the ground state as:

U(N) =
(±e(N −N0) + CSVS + CDVD + CGVG)2

2C
+

N∑
n=1

En(B), (1.1)

where e is the elementary charge, N0|e| is the charge in the dot compensating for the background
charge made by the impurities in the structure, B is the applied magnetic field and En(B) is
the energy of an occupied level. The electrochemical potential µ(N) of the QD can be defined
afterwards as:

µ(N) ≡ U(N)− U(N − 1). (1.2)
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At low-bias voltage (the potential difference between the source and the drain), charge
transport is only possible whenever the electrochemical potential of the dot is inside the bias
window, i.e. µS ≥ µ(N) ≥ µD, where µS(D) is the electrochemical potential of the source (drain).
Coulomb blockade occurs whenever this condition is not met and could be lifted by tweaking
the electrochemical potential of the dot using the voltage applied to the gate electrode. Fig. 1.2
shows examples of level alignments and the expected current through the dot as a function
of the gate voltage for a hole transport case. The magnitude of the observed current flowing
through the QD depends on the tunnel rates between the source and the QD (ΓS), and between
the QD and the drain (ΓD). The voltage difference between two consecutive peaks gives access
to the energy value Eadd necessary to add an electron to the dot also called addition energy:

Eadd(N) = µ(N + 1)− µ(N). (1.3)

S D DS

ISD
Eadd(N)/α

VG0

NN+1 N-1 N-2

μS

μ(N-1)

μ(N)

μ(N+1)

μ(N-1)

μ(N)

μ(N+1)

μS

μD μD

Figure 1.2 – Transport and energy levels alignment of a hole QD in the low bias
regime. Qualitative plot of the current ISD flowing through the QD as a function of the gate
voltage VG (bottom) and corresponding schematic diagrams of the electrochemical potentials at
the marked gate voltages (top). The addition energy Eadd(N) is marked for the N th transition
and α stands for the lever-arm coupling of the gate to the dot.

In the case of a high bias regime, multiple energy levels may contribute to the charge tun-
neling. When VSD is high enough to include excited states besides the ground state, the charge
finds more than possible a path to tunnel through the dot leading therefore to a variation in
the measured current allowing energy spectroscopy of the excited states [47].

1.1.2 Double quantum dots

The basic concepts introduced to discuss hole transport through a single QD can be applied
to the more complex case of two QDs in series. A schematic representation of a lateral geometry
double quantum dot (DQD) as well as an equivalent network of tunnel resistors and capacitors
is given in Fig. 1.3.
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=
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Figure 1.3 – Simple schematic of a lateral geometry DQD and equivalent network of
tunnel resistors and capacitors The dots exchange charges mutually and with the source
and drain reservoirs through tunnel barriers, creating a current ISD depending on the source-
drain bias voltage VSD and the gates voltages VG1 and VG2.

Using this representation and following the constant interaction model, the interactions for
the first and the second QD are characterized respectively by the capacitances C1 = CS +CG1 +
Cm and C2 = Cm +CG1 +CD. The two dots are coupled to each other by a tunnel resistor Rm

and a capacitor Cm. This latter coupling capacitance plays a major role on the shape of the
stability diagram since the energy levels of a dot depend now on the number of charges on the
other dot, hence the new definition of the electrochemical potentials:

µ1(N1, N2) ≡ U1(N1, N2)− U1(N1 − 1, N2),

µ2(N1, N2) ≡ U2(N1, N2)− U2(N1, N2 − 1),
(1.4)

where the electrochemical potential µ1(2)(N1, N2) is the energy necessary to add the N th
1(2) charge

to QD1(2) while maintaining N2(1) charges on the other dot.

By marking the transitions corresponding to µ1(N1, N2) = µS (dot-lead), µ2(N1, N2) = µD

(dot-lead) and µ1(N1, N2) = µ2(N1− 1, N2 + 1) (interdot charge transition (ICT)), and varying
the dots fillings N1 and N2 as a function of gate voltages VG1 and VG2, the stability diagram
of a DQD can be established. Fig. 1.4 puts forward two schematic stability diagrams of a hole
double quantum dot system with a moderate Cm in the case of no source-drain bias and in a
low bias regime.

Cm shapes the dot-lead transitions slopes in a stability diagram. If Cm → 0 (decoupled
dots), the honeycomb pattern becomes a square pattern and ICTs vanish. In the opposite
extreme case where the mutual capacitance becomes dominant (Cm/C1(2) → 1), the transitions
to reservoirs merge into a single line and the distance between triple points is maximal. This
results in a single dot behaviour.

If we start increasing the bias, as said previously, many energy levels can be contained in
the bias window allowing the charge to have more than one possible path. This results in the
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Figure 1.4 – Schematic stability diagrams of a hole DQD system for different bias
voltages. In the zero bias case (left), lines with negative slopes mark dot-lead transitions, and
those with positive slopes, ICTs. The boundaries of interdot lines are called triple points and
are marked by ◦ (hole transfer process) and • (electron transfer process). In this case, current
is present on the triple points. When the source drain voltage is nonzero (right), in addition
to all previous elements, bias triangles form. In a series configuration, the source-drain current
flows (and is measurable) only inside the bias triangles filled with red. (N1, N2) denotes the
charge filling of the DQD where N1(2) is the number of holes present in QD1(2).
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appearance of so-called bias triangles presented in the right panel of Fig. 1.4.

1.1.3 Spin states and energy diagram of a double quantum dot

Up until this point, we considered only the charge component of a hole/electron. And while
this aspect could explain many experimental findings, it cannot capture the full picture since
a hole/electron carries also a spin. As a result, dot-lead and interdot tunnelling events can be
affected in certain spin configurations.

In pursuit of simplification, we always consider that pairs of holes occupy progressively the
spin degenerate QD levels. As a result, the DQD system either carries a spin 1/2 if the charge
configuration is odd (total number of charges present in the system is odd), or a spin 0 for an
even charge configuration. Depending on this charge configuration, we present the spin states
of the dots and their energy diagrams.

Odd charge configuration

If we consider a left (right) charge state |L〉 (|R〉) where the hole/electron is fully located on
the left (right) QD, and at the same time, take into account the spin component of the particle
(either |↓〉 or |↑〉), we end up with four energy states for the DQD: |L ↓〉, |L ↑〉, |R ↓〉 and |R ↑〉.
In order to compute the energies of these, we adopt the following Hamiltonian:

Hodd = Hodd
0 +Hodd

SO +Hodd
Z , (1.5)

whereHodd
0 includes the tunnelling between states with same spin orientation,Hodd

SO the coupling
between states with different spin and orbital components by cause of spin-orbit coupling and
Hodd

Z the Zeeman splittings in the presence of an external magnetic field B. Using the charge
and spin Pauli operators (τ and σ, respectively), the detailed expressions of these three terms
are [97]:

Hodd
0 =

ε

2
τz + tτx

=
ε

2
(|L ↓〉 〈L ↓|+ |L ↑〉 〈L ↑| − |R ↓〉 〈R ↓| − |R ↑〉 〈R ↑|)

+ t(|L ↓〉 〈R ↓|+ |R ↓〉 〈L ↓|+ |L ↑〉 〈R ↑|+ |R ↑〉 〈L ↑|),

(1.6)

Hodd
SO = tSOτyσy

= tSO(|L ↑〉 〈R ↓|+ |R ↓〉 〈L ↑| − |L ↓〉 〈R ↑| − |R ↑〉 〈L ↓|),
(1.7)

Hodd
Z =

1

2
gL/RµBBσz

=
1

2
gLµBB(|L ↑〉 〈L ↑| − |L ↓〉 〈L ↓|)

+
1

2
gRµBB(|R ↑〉 〈R ↑| − |R ↓〉 〈R ↓|),

(1.8)

where ε is the energy detuning between the two QDs, t the tunnel coupling, tSO the spin-flip
tunnel coupling due to spin-orbit coupling, gL(R) the Landé g-factor of the left (right) dot and
µB the Bohr magneton.
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Putting together all the elements from Eqs. (1.5) to (1.8), we could write the matrix repre-
sentation of the Hodd Hamiltonian:

Hodd =


ε
2
− 1

2
gLµBB 0 t −tSO

0 ε
2

+ 1
2
gLµBB tSO t

t tSO − ε
2
− 1

2
gRµBB 0

−tSO t 0 − ε
2

+ 1
2
gRµBB

 . (1.9)

By numerically solving the above Hamiltonian (Eq. (1.9)), we obtain the energies (eigenval-
ues of the Hamiltonian) as a function of detuning energy. Fig. 1.5 shows the simulation interface
that allows us to have the energy diagram depending on tSO, t, gL, gR and B parameters. These
parameters are made into interactive sliders that allow for real time update of the energy levels.
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Figure 1.5 – Energy diagram simulation of a DQD for an odd charge configuration.
At the bottom, the interactive sliders of the tSO, t, gL, gR and B parameters allow for real time
update of the energy levels.

The simulation python code is included in Appendix A.1. Just copy-paste and have fun!

Even charge configuration

The landscape of spin states in a DQD changes completely when dealing with an even charge
configuration. Two holes in the same dot always form a spin singlet (total spin number S = 0)
as the ground state in zero external magnetic field [47]. The following excited states are triplet
states (total spin number S = 1) where one hole occupies a higher orbital. We find ourselves
with five energy states:

S(1, 1) = 1√
2
(|↓↑〉 − |↑↓〉)

T−(1, 1) = |↓↓〉
T0(1, 1) = 1√

2
(|↓↑〉+ |↑↓〉)

T+(1, 1) = |↑↑〉
S(0, 2)
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where (N1, N2) denotes the charge filling of the DQD and N1(2) is the number of holes present
in QD1(2).

This basis stays valid at finite magnetic field for electrons. But when dealing with holes, and
due to the fact that the g-factors are different for each QD, the spin states behave differently
and S(1,1) and T0(1,1) are no longer eigenstates. A new basis of states |↓↓〉, |↑↓〉, |↓↑〉 and |↑↑〉
provides a better approximation of the DQD eigenstates in the (1,1) charge configuration. In
this basis, the DQD Hamiltonian can be written as:

Heven =


ε
2
− ΣgµBB 0 0 0 tSO

0 ε
2
−∆gµBB 0 0 t

0 0 ε
2

+ ∆gµBB 0 t
0 0 0 ε

2
+ ΣgµBB tSO

tSO t t tSO − ε
2

 , (1.10)

where ∆g = g1 − g2, Σg = g1 + g2 and g1(2) the Landé g-factor of QD1(2).

As done previously, a simulation allows us to have the energy diagram of the even charge
configuration as a function of the tSO, t, g1, g2 and B parameters as illustrated in Fig. 1.6. The
code for this case is also included in Appendix A.2.
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B (T) 0.6

g2 2.5

g1 1.5
t ( eV) 10

tSO ( eV) 4

Figure 1.6 – Energy diagram simulation of a DQD for an even charge configuration.
At the bottom, the interactive sliders of the tSO, t, g1, g2 and B parameters allow for real time
update of the energy levels.

1.2 Spin to charge conversion

In a spin qubit, the spin state encodes the quantum information that needs to be read
or manipulated. But measuring the magnetic moment of a single particle (either electron or
hole) is a very hard task since it is very small. To that extent, we need a quantity that could
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be mapped to the spin state and, at the same time, more accessible measurement wise. The
charge state fulfills both these requirements and spin to charge conversion was suggested to
complement computation with quantum dots in Loss and Di Vincenzo proposal [84].

Many schemes for spin to charge conversion followed [67, 33, 34, 39, 46, 61]. But we focus
in this section particularly on two schemes: the energy selective technique and a method based
on Pauli spin blockade. For historical reasons, we present them for the case of electrons, but
they can be applied also to holes which are the focus of this thesis.

1.2.1 ‘Elzerman’ technique for spin readout

The spin readout discussed here, commonly referred to as ‘Elzerman’ readout [33], relies on
a spin-to-charge conversion by energy-selective tunneling. It requires the QD hosting the spin
qubit to be tunnel coupled to a Fermi reservoir. Following the application of an external static
magnetic field B, the degeneracy between the spin up state |↑〉 and a spin down state |↓〉 is
lifted, the Zeeman splitting energy being:

EZ = gµBB, (1.11)

where g is the Landé factor. If EZ is larger than the thermal energy, then it is possible to
readout the spin state by adjusting the energy of the up and down spin states such that they
lie below and above the Fermi energy of the reservoir, respectively. Fig. 1.7 displays the steps
to achieve such process.

EF

E

E

Figure 1.7 – Spin to charge conversion ‘Elzerman’ scheme. The quantum dot, subject to
an external magnetic field, undergoes successively starting from left a loading stage, a readout
stage and an emptying stage. Black vertical lines illustrate tunnel barriers and the gradient
blue boxes indicate the Fermi sea of the reservoir. Taken from [33].

The ‘Elzerman’ sequence could be divided into three stages:
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— Emptying: the cycle begins with an empty QD where both the spin up energy level E↑
and spin down energy level E↓ are lifted above the Fermi level EF. The electron encoding
tunnels out of the QD into the Fermi reservoir.

— Loading: by pulsing on the gate voltage controlling the chemical potential of the dot,
both E↑ and E↓ are lowered below the Fermi energy for a waiting time twait. An electron
with a randomly oriented spin is loaded into the QD. The spin down (up) scenario is
shown in the upper (lower) part of the diagram in Fig. 1.7.

— Readout: after the gate pulse QD energy levels are set to the readout position such
as EF lies in between E↑ and E↓. If the loaded electron spin is pointing up, its energy
level is below that of the Fermi sea and thus it remains on the QD. While in the other
case, if the spin in pointing down, its energy is higher than EF and a tunneling event to-
wards the reservoir occurs. Right after losing a spin-down electron the QD is repopulated
with a spin-up electron. The charge measurement is acheived by means of a charge sensor.

The ‘Elzerman’ sequence above offers a way to measure the spin relaxation time T1. If a
loaded spin down electron is maintained in the loading step long enough, it will end up relaxing
to the less energetic spin up state. Ergo, by following the spin down fraction of the measured
state as a function of the waiting time twait, an exponential decay should be observed from
which the characteristic spin relaxation time can be extracted.

Since the first proof of concept implementation [33] in GaAs QDs probed by a quantum
point contact (QPC), many groups around the world reproduced this experiment and adapted
it for their specific qubit device implementation from which we could mention silicon electron
qubits made by a depleted two dimensional electron gas (2DEG), probed by a single electron
transistor (SET) [94] and Ge hut wire hole qubits probed by radio frequency (RF) reflectometry
carried out on a single hole transistor (SHT) [143, 144].

The ‘Elzerman’ scheme offers some considerable advantages such as a robust measurable
signal enabling single-shot readout, a simple initialization in the fundamental state and the
possibility to be performed on a single spin. It remains widely adopted in the community.
Nonetheless, it carries some drawbacks. The need for a charge detector and for a reservoir,
where the density of states shouldn’t be structured, makes it hardly scalable. Besides, ‘Elz-
erman’ readout requires low operating temperatures and rather high external magnetic fields
(so that the Zeeman splitting exceeds the temperature broadening). The electron tunnel rates
need also to be fast compared to the spin relaxation time but slow enough compared to the
readout bandwidth. Moreover, the measurement of the quantum state is fully destructive as
the electron in the excited spin state tunnels out of the dot and is replaced by another one with
an opposite spin orientation.

1.2.2 Pauli spin blockade

The phenomenon of Pauli spin bloackade (PSB) was first observed in current transport
through a vertical DQD [104]. It was shown that interdot tunneling involving a transition from
a (1,1) to a (0,2) charge state is suppressed when the (1,1) state is a spin triplet. In this case,
since the (0,2) state is a spin singlet, the interdot transition does not conserve spin, which
makes it unfavorable in the absence of spin-flip mechanisms. This is a direct consequence of
the Pauli exclusion principle stating that two particles occupying the same orbital must have
opposite spins.
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As a result, PSB generally occurs in “even ↔ even” interdot transitions. Experimentally, it
manifests as a suppression of the the source-drain current ISD at the basis of the bias triangles
depending on bias voltage VSD polarities as presented in Fig. 1.8.

VG1 VG1

VG2 VG2

S

S

S

S ST

T

T
T

D DS

VSD>0 VSD<0

Figure 1.8 – Pauli spin blockade and bias triangles. Theoretical source drain current as a
function of gate voltages VG1 and VG2 in the cases of positive (left) and negative (right) source
drain bias. The red coloration indicates where the current is not zero. The dashed lines in the
negative bias voltage represent the limits of the bias triangles in the absence of PSB. Level
alignments diagrams corresponding to the marking stars on the stability diagrams illustrate
the transport mechanism at the bases at the bias triangles and explain the current suppression
when VSD < 0.

For the sake of simplicity, we consider a (1,1) ↔ (0,2) transition. In the case of a bias
voltage inducing an electron flow in the direction (0,2) → (1,1) and in each charge transfer, an
electron is initially loaded onto the right QD from the drain reservoir forming a S(0,2) state
(this tunneling event is always allowed since a Fermi sea can provide electrons with any spin
orientation). The electron can then tunnel to the initially empty left QD forming a singlet
S(1,1) state, and thereafter to the source reservoir.

For the opposite VSD polarity, where charge flow involves (1,1) → (0,2) transitions, trans-
port is allowed only via the path reservoir → S(1,1) → S(0,2) → reservoir. As soon as an
electron tunneling from the source populates the triplet T(1,1) state, transport gets blocked.
Seeing that tunnelling between QDs conserves spin, tunneling into the energetically accessible
S(0,2) is forbidden. The electron remains trapped in the right dot which materializes in the
disappearance of the ISD signal. The current flow cannot be restored until the spin in question
flips leading to a S(1,1) state, revoking thereby the blockade. Nevertheless, the timescale of
such relaxation is most of the time long enough to make the flowing current undetectable. In
the case of a relatively fast spin-flip mechanism, only a reduction in the measured current is
observed at the basis of bias triangles. On the other hand, the blockade can be lifted for suffi-
ciently large source-drain bias enabling the T(0,2) state to enter the bias window (this assumes
a bias greater than the energy difference between T(0,2) and S(0,2)). This is the reason why
the bias triangles are only partially visible for VSD < 0 (Fig. 1.8).
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PSB has been adopted as a spin to charge conversion technique granting spin state readout
in a DQD and a first demonstration was reported for GaAs-based devices [112]. Unlike the
‘Elzerman’ scheme, it offers more liberty when it comes to the readout method. It could be
probed by transport [64, 125, 13, 78, 82, 9, 89, 76], a charge detector [64, 112, 11, 132] or RF
gate reflectometry [26, 86]. It also relaxes the constraints on scalability since it doesn’t require
reservoirs nor proximal charge detectors if the readout technique could sense just the interdot
tunneling as we will discuss in Chap. 4.

In the prospect of developing a scalable path, this thesis has focused on the PSB spin to
charge conversion method in combination with gate reflectometry readout.

1.3 Electric dipole spin resonance

As we mentioned in Sec. 0.3, holes offer the possibility for an electric-field control of the spin
qubit state. This is made possible thanks to the presence of the spin-orbit interaction. In the
case of a moving particle experiencing an electrostatic potential V , the spin-orbit Hamiltonian
can be written as [149]:

HSO = − ~
4m2

0c
2
σ · (p×∇V ), (1.12)

where m0 is the particle mass, c the speed of light, σ a vector of the Pauli matrices and p the
momentum operator.

A charge with a mass m and with a velocity v = p/m submerged in an electric field E
sees in its proper frame an effective magnetic field BSO = −p × E/(mc2). The spin-orbit
interaction is no other than the result of interaction between BSO and the particle magnetic
moment. Based on Eq. (1.12), since both the momentum of a particle as well as the electric
field get larger when approaching the nucleus, the spin-orbit interaction is higher the closer we
get to the atomic core. First orbitals exhibit therefore the strongest spin-orbit couplings and a
similar logic leads to stronger spin-orbit interactions for heavier elements.

In QDs, the confinement is such as the momentum of a particle on average is zero in any
direction. As a consequence, the spin-orbit Hamiltonian (Eq. (1.12)) does not couple different
spins on the same orbital but couples states with different orbital as well as spin components [72].
This means that pure spin states are replaced by pseudo-spin states that are admixtures of both
orbital and spin states.

Due to the mixing of spin and orbital states, an electric field could couple to the pseudo-spin
states of the same Kramers doublet through spin-orbit coupling. It has been predicted [42] that
an electric dipole spin resonance (EDSR) could be induced by means of oscillatory electric fields
at a frequency matching the Zeeman splitting energy [103, 98, 89, 146, 26]. While this allows
for a compact qubit device design, free of metal striplines used to generate local AC magnetic
fields for electron-spin resonance, there is a price to pay. Electric field fluctuations originating
from charge noise or even lattice phonons [43] promote spin relaxation and decoherence [87, 14].
Nevertheless, it remains a viable approach for fast qubit manipulation [89, 151] and can result
in high qubit fidelity [152, 52, 15].

When applying an oscillating field at a microwave frequency fµw to a QD by means of a
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gate-voltage modulation, the trapped charge electronic orbitals jiggle. The spin-orbit interac-
tion translates this motion into rotations of the spin. This is the equivalent of applying an os-
cillating magnetic field to control the spin state via electron spin resonance (ESR) [75, 113, 137]
since as discussed previously, an oscillating electric field is equivalent to an oscillating magnetic
field in the charge referential. When the fµw matches the Larmor frequency, full spin rotation
from up to down states are observed. Fig. 1.9 schematizes the spin rotations induced by the
charge spatial movement.

Figure 1.9 – Illustration of EDSR. By shaking the charge with an external microwave electric
field at a frequency around the Larmor frequency, spin rotations are induced.

Two contributions, generally coexisting, underlie the EDSR mechanism and could be cap-
tured simultaneously by a g-matrix formalism [27]:

— iso-Zeeman EDSR (IZ-EDSR): It describes an EDSR where the g-factor is constant
(i.e. position independent) and was inspected originally in III-V semiconductor struc-
tures [103, 98, 109]. The charge moves in an electric field and sees in its referential an
oscillatory magnetic field that causes spin rotation around an equatorial axis (see Fig. 0.2).

— g-tensor magnetic resonance (g-TMR): Discovered in a GaAs/AlGaAs heterostructure [68],
it denotes a mechanism where the g-tensor changes with the position (i.e. the orbital wave
function) of the confined particle [68, 124, 129, 5, 141]. An electric-field induced spatial
oscillation results in a modulation of the g-tensor, which is equivalent to a transverse
modulation of the magnetic field leading to spin rotation.

1.4 Reflectometry
Both Elzerman and Pauli spin blockade are charge sensing based mechanisms as they are

spin to charge conversion schemes. As an alternative to transport-based readout, which is typ-
ically characterized by a limited bandwidth, the technique of RF reflectometry was introduced
by Schoelkopf and co-workers back in 1998 [121]. This first realization, using metal SETs, was
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shown to provide large readout bandwidth enabling a readout speed two orders of magnitude
greater. The idea was then exported to semiconductor devices in particular for achieving fast
spin-qubit readout and different implementations of RF reflectometry were reported over the
years.

1.4.1 Principle

RF reflectometry is a non invasive charge detection technique used to uncover new physics
at the single charge level taking place in nanoscale devices. This technique relies on the mea-
surement of the dispersive response of a RF resonator, excited at its resonance frequency, and
connected to either an ohmic contact or a gate. The dispersive response depends on shifts in the
device admittance [60] due to charge tunneling events or charge hybridisation. Fig. 1.10 gives
the basic idea behind RF reflectometry. This will not only allow probing full charge stability
diagrams at zero bias, but will also give access to excited quantum levels of the probed QD even
when a state isn’t generating enough DC current to be measured. In principle, this technique
could also use a resonant circuit shared by many qubits via frequency multiplexing [54].

fres
γ φ

L

Cp

Γ=γeiφ
Device

δC

Figure 1.10 – Illustration of reflectometry principle. The inductance L along with the
parasitic capacitance Cp (and eventually other added capacitors) form an LC resonator. By
exciting this resonator at its resonance frequency fres, it becomes sensitive to variations δC of
the device capacitance. These variation manifest as alterations in the reflected signal Γ that
gets separated from the injected signal by a directional coupler, then amplified before being
demodulated at fres in order to get its amplitude (γ) and phase (ϕ) variations.

Either the amplitude [121, 19, 117] or/and the phase [1, 26, 35] of the reflected signal can
be used as a readout signal but we will focus on the reflected phase since we are eventually in-
terested in quantum capacitance changes at the interdot transition leading to phase shifts only,
while dot lead transitions can lead to real and imaginary changes in the device admittance.
As shown in Fig. 1.11, the unwrapped phase derivative with respect to the injected frequency
finj exhibits a peak. This means that if the resonator is excited at its resonance frequency fres,
it will be very sensitive to variations of fres. Any shift in the quantum capacitance (and thus
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in the resonance frequency fres of the system {resonator + QD}), in this case, will lead to an
optimal response in terms of phase shift δϕ.
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Figure 1.11 – An example of a LC resonator response. Reflected phase ϕ and ampli-
tude γ of a LC resonator (top panel) as a function of the injected frequency finj and the
corresponding derivative of the ϕ with respect to finj (bottom panel). The phase derivative is
maximal around the resonance frequency (fres = 400 MHz) indicating a maximal sensitivity to
capacitance changes.

As charge sensors were at the heart of readout techniques at the beginnings of semicon-
ductor QD qubits, reflectometry was first transposed to SETs [121, 19, 85, 118, 101, 153] and
QPCs [117, 16, 2, 88]. It has immediately gained considerable interest because it gives access to
high sensitivities reaching 0.9 µe/

√
Hz, the best charge sensitivity known to date [12]. Single-

shot readout has also been achieved using reflectometry [143, 106, 144, 148, 71, 132, 51] with
fidelity up to 98 % for 6 µs integration time with on-chip resonators [156] which confirms its
potential for qubit readout. It was only later, in the effort of simplifying the qubit layouts,
that gate-coupled reflectometry appeared [23]. It is the adopted reflectometry disposition in
this thesis that will be detailed in the next section.

1.4.2 Gate-coupled reflectometry

The commonly used spin-to-charge conversion with subsequent charge detection through
nearby charge sensors is becoming increasingly challenging as the number of quantum dots to
sense increases [95, 52]. Gate-coupled RF reflectometry comes as an alternative to the proximal
QPC and SET techniques that also allow charge configuration detection in regimes where the
direct transport isn’t possible. Since it is necessary to integrate charge sensors to perform qubit
readout in order to achieve scalable quantum computers [116], and knowing that QPC and SET
rely on charge sensitive devices involving a considerable overhead in terms of gates and contact
leads raising a serious issue for scalability towards multi-qubits designs, gate-coupled RF reflec-
tometry [20, 28, 23, 44] has been proposed as an alternative technique for qubit readout. This
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would yield a simplified qubit physical layer [116] due to the absence of local charge sensors
and so a tighter qubit pitch.

Gate-coupled reflectometry has been proven to give access to sensitivities and bandwidths
comparable to the local charge detectors [44]. It has also been used, when combined with
charge-to-spin conversion processes, to measure spin states in DQDs [110, 66, 9]. In a similar
fashion, the phase shift of a superconducting microwave resonator coupled to the source of an
InAs nanowire has enabled spin qubit dispersive readout [109].

The measured device acts as a variable impedance load for the resonator, and the resonant
frequency fres undergoes a dispersive shift according to its state. A charge tunneling between
the probed dot and a reservoir or between the two dots gives rise to a small capacitance variation
δC seen by the resonator besides the other geometric capacitances. This variation is given [28]
by :

δC = −e α ∂〈ν〉
∂VG

, (1.13)

where e is the electron charge, α is the lever-arm parameter (the the proportionality factor
that allows the conversion of the gate voltage VG into energy, which can also be seen as the
effectiveness of the gate voltage to act on the QD chemical potential), and 〈ν〉 is the average
excess charge on the dot. This capacitance variation leads to phase variation [32]:

δϕ ∝ −δC, (1.14)

whenever the charge dynamics is faster than the probing frequency (fres).

In the case of DQD, the probed capacitance variations associated with interdot tunneling
can be split into two contributions [93]:

δC = δCquantum + δCtunneling, (1.15)

where Cquantum is the quantum capacitance corresponding to the second derivative of the in-
volved energy level with respect to the detuning ε (curvature of the energy level), and δCtunneling

the tunneling capacitance appearing whenever inelastic tunnelling processes occur.

Gate reflectometry can as well detect charge tunneling between a QD and a Fermi reservoir,
provided the tunnel rate exceeds the probing frequency. In this case a phase shift is produced
whenever a hole/electron is tunneling back and forth between the QD and the neighboring
reservoir. This requires the chemical potential of the dot to be aligned with the one of the said
reservoir.

We have just discussed the origin of the quantum capacitance in a semi-classical picture. A
fully quantum derivation will be presented in Chap. 6.
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Takeaway messages:

• Transport in a single QD is possible only when a chemical potential is in the bias
window.

• In a DQD, the chemical potential of a dot depends on the filling of the other QD due
to a mutual coupling capacitance and transport is only possible in specific regions of
the stability diagram near the ICTs.

• Spin states in a DQD differ from an odd to an even total charge number and simula-
tions made by diagonalizing the Hamiltonians in each case help us paint the energy
diagrams as a function of the system parameters.

• In order to read the spin state, a spin to charge conversion mechanism is needed.
Energy selective spin to charge conversion can be achieved either by the ‘Elzerman’
technique or by Pauli spin blockade.

• The spin orbit interaction, coupling the orbital state of a particle to its spin state,
is intrinsically present for holes and could be exploited to electrically manipulate the
spin state through EDSR.

• RF reflectometry is a readout technique offering better measurement speeds and high
sensitivities. It allows for single shot readout and, in the case of the gate-coupled
version, a more simplified qubit architecture through the removal of proximal charge
detectors.
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Chapter 2
Silicon-On-Insulator spin qubit

devices

No physical quantity can continue to change
exponentially forever. Your job is delaying forever.

Gordon MOORE
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N
owadays, transistors are everywhere. Either packaged individually or embedded in
integrated circuits, they are considered one of the fundamental building blocks of
modern electronics. A transistor can be seen as current switch as its base (gate)
voltage controls the charge flow between its emitter (source) and collector (drain).

It was invented in Bell Labs in 1947 and brought the 1956 Nobel prize to its creators.

As transistors grew smaller and smaller every year, they became viable solutions for quan-
tum applications. Their dimensions can allow for charge confinements presently when the
certain experimental conditions are met, e.g. cryogenic temperatures. While the first transistor
ever made could easily fit in the palm of a hand, the latest 2020 smartphone processors such as
Apple A14 (iPhone 12), Qualcomm Snapdragon 888 (Xiaomi Mi 11 and Samsung Galaxy S21)
and Samsung Exynos 2100 (Samsung Galaxy S21) rely on 5 nm node fabrication process.

The devices used during this thesis are nanowire field-effect transistor (NW-FET) made
on a 300 mm silicon-on-insulator (SOI) processing line [7] in CEA-LETI. We detail their fab-
rication in this chapter, their geometries and the steps leading to their cooldown inside cryostat.
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2.1 Complementary metal oxide semiconductor

Complementary metal oxide semiconductor (CMOS) is an integrated circuits production
technology. It links together numerous transistors in a proper way and is present in a vari-
ety of electronic components such as microprocessors. It relies on metal-oxide-semiconductor
field-effect transistors (MOSFETs), also called “MOS” transistors (hence the “MOS” part in
“CMOS”), the most widely used transistor type which was also invented at Bell Labs in 1959.
The “complementary” part of the naming refers to the use of pairs of n-type (high concentra-
tion of electrons) and p-type (high concentration of holes) transistors in order to achieve the
logic functions. This transistor technology is praised for its relatively low power consumption.
Except when they change from one state to another, the CMOS transistors do not require an
electric current through the gate electrode.

2.2 Silicon-on-insulator

Silicon-on-insulator (SOI) technology is a fabrication technique of semiconductor silicon de-
vices. Its name derives from the fact that the silicon channel is made on an insulator layer,
typically silicon oxide, deposited on a silicon substrate in turn. Despite the additional cost,
mainly due to the production of SOI substrates, compared to the traditional technology using
directly a bulk silicon substrate, this approach is adopted for numerous advantages such as
the reduction of the parasitic capacitance within the chip [17]. As we seek more than ever
the miniaturization of semiconductor devices, hoping to extend Moore’s Law, it is considered,
among others, a strategy towards that end.

There are two main methods to make a SOI wafer. The first called Separation by IMplan-
tation of OXygen (SIMOX) [100] starts by embedding an oxygen layer in the silicon bulk by
ion beam implantation. The wafer undergoes afterwards a high temperature annealing step
that creates a buried silicon oxide (SiO2) layer. The second process called wafer bonding [80]
consists of forming the insulating layer by oxidizing the upper part of the silicon substrate then
directly bond the said layer on a second silicon substrate.

2.3 Fabrication & device geometries

In order to obtain devices with qubit functionality, and at the same time leverage the well
established CMOS technology, we make our starting square an existing process flow aimed for
the manufacturing of CMOS transistors and we alter it [7]. We adopt thereby from the be-
ginning a scalable fabrication process that enables production of qubit devices in an industrial
cleanroom and allows the co-integration with classical circuitry.

Starting from a SOI wafer, a silicon nanowire is etched. Its width is trimmed to desired
width by controlled oxidation and etching process defined initially by deep ultra-violet lithog-
raphy. Starting from this point different geometries can be obtained based on the gate layout.

For the geometry where the gates are in series with respect to source and drain, which we
name ‘pump’ geometry, and using a combined deep ultra-violet lithography and e-beam lithog-
raphy, two separate gates are patterned on the next step. Thanks to the latter combination
of techniques, the necessary small spacing between the gates could be achieved. These gates
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are composed of two layers. The first one is a thin 5 nm TiN layer that lies under a 50 nm
thick polysilicon layer. They are electrically isolated by a dielectric stack of 7 nm SiO2 followed
by a 2 nm Hf-based high-k dielectric. SiN spacers are successively deposited around the gates
with a width large enough to fully cover the nanowire channel between the gates and protect it
from the next step. The device undergoes afterwards an ion implantation process, required for
the creation of low resistance ohmic contacts to the nanowire channel. The used samples are
doped with boron ions and therefor they are p-type. Their diffusion from the heavily doped
contact regions to the nanowire channel is limited by the wide SiN spacers. Fig. 2.1 shows
the described keys steps of the fabrication process. The sample is finalized thereupon with a
standard microelectronics back-end of line process.

a) b)

c) d)

Figure 2.1 – Schematic illustration of a pump device fabrication key steps. Silicon is
represented in yellow, SiO2 in purple, TiN in blue, polysilicon in red and SiN in green. (a)
Silicon nanowire etching. (b) Gate definition. (c) Deposition of insulating spacers around the
gates. (d) Boron doping.
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The resulting device is illustrated in Fig. 2.2 along with its scanning electron micrograph
(SEM). The doped electrodes become metallic and serve as source and drain charge reservoirs.
Transport from source to drain is only possible in this configuration when both gates open the
channel. At cryogenic temperatures, holes are accumulated under the gates. This geometry led
to the first demonstration of a CMOS hole spin qubit [89].
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Figure 2.2 – Schematic illustration of a two-gate pump sample. The gates are in a
series configuration with respect to source and drain. A charge could flow through the channel
only by acting on both gates. The insulating spacers around the gates are represented in semi-
transparent. The inset shows a false color SEM of the device with colors matching the 3D
schematic. The scale bar measures 100 nm.

For the ‘face-to-face’ geometry, also called ‘split-gate’ geometry, where the gates are in par-
allel with respect to source and drain, the fabrication steps differ slightly (see Fig. 2.3). Only
one gate is patterned using the same process as the previously described geometry and is also
composed of the same gate stack. This gate is thereupon split in two by etching a gap aligned
with the symmetry axis of the silicon channel. SiN spacers are deposited around the gates
with a width large enough to fully cover the nanowire channel between the gates and protect it
from the following dopant implantation. Finally, the boron implantation makes the nanowire
extremities metallic leads.

Fig. 2.4 gives a 3D schematic of a split gate device. The charges could flow from source to
drain from either side of the channel in this geometry. The holes are accumulated at the corner
interface on which the gate overlaps the silicon nanowire.

All of the above presented fabrication steps are fully based on standard processes of a CMOS
line except for the intermediate e-beam lithography step. Three different samples are investi-
gated in this thesis. Table 2.1 summarizes the characteristics for each one of them.
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a) b)

c) d)

e)

Figure 2.3 – Schematic illustration of a face-to-face device fabrication key steps.
Silicon is represented in yellow, SiO2 in purple, TiN in blue, polysilicon in red and SiN in
green. (a) Silicon nanowire etching. (b) Gate definition. (c) Gate splitting. (d) Deposition
of insulating spacers around the gates. (e) Boron doping.
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Source

Drain

Gate 1

Gate 2

Silicon oxide

Silicon

Figure 2.4 – Schematic illustration of a single split-gate sample. The gates are in
a parallel configuration with respect to source and drain. A charge could flow through the
channel by acting on only one gate. The insulating spacers around the gates are represented
in semi-transparent. The inset shows a false color SEM of the device with colors matching the
3D schematic. The scale bar measures 100 nm.

device 1 device 2 device 3
(Chap. 4) (Chap. 6) (Chap. 6)

Geometry pump face-to-face face-to-face
Doping p p p
Number of gates 2 2 2
Channel width (nm) 35 80 50
Channel height (nm) 11 10 10
Gate width (nm) 35 32 50
Gates separation (nm) 35 32 50

Table 2.1 – Samples characteristics and dimensions.
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2.4 Procedures upon reception
The devices used for cryogenic experiments are often received embedded in 300 mm wafers

containing at once thousands of them. Fig. 2.5 shows a picture of such received wafer. Be-
fore delivering a wafer, the LETI team, responsible for the device design and manufacturing,
performs some automated measurements on samples with simple geometries (single and double
gate). The measured I-V characteristics and gate leakages serve as guidelines in order to assess
the yield of the fabrication process and the quality of the transistors. They are also used on
our side to select the devices that show the expected room temperature properties.

Figure 2.5 – 300 mm wafer. The measured devices are fabricated on 300 mm wafer received
often as whole.

Whenever room temperature I-V measurements of samples with a large number of gates are
needed (more than two gates), the whole wafer is loaded into the in-lab automated measure-
ment station presented in Fig. 2.6. It can also be used to confirm measurements already done
on the LETI side. Micro-needles are programmed to enter in contact with the desired samples
pads and apply predetermined voltages while measuring at the same time a current flow.

In order to assess the viability of a device for being a cooldown candidate, we start by
measuring the inter-gate leakage. Once we are assured that no detectable current could be
measured between each set of two gates held at different potentials, we start looking at the
source-drain current ISD as a function of the gate voltages. Aside from enabling us to notice
any device fabrication anomalies, this room-temperature measurement can help extracting the
threshold voltage for each gate which will translate once the the sample is cooled down into an
approximate estimation of the gate voltage corresponding to the filling of the first hole in the
channel region under the gate. In the case of a pump geometry such as the case of device 1 of
which the I-V characteristic is displayed in Fig. 2.7, current can only flow from source to drain
when all gates open the channel. Therefore, whenever we sweep one of the gates, the others
are kept at relatively large negative voltage (typically −1.5 V or −2 V).

In the case of the face-to-face geometry, such as device 2 and 3, holes can flow under either
one or the other gate. Accordingly, when measuring the effect of one of the gates on ISD, the
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Figure 2.6 – Automated measurement station. Room temperature characteristics of the
samples are probed using the automated measurement station where a 300 mm wafer is loaded
as whole.

0 400 800 1200
VG (mV)

10 12

10 11

10 10

10 9

10 8

I S
D 

(A
)

Gate 1
Gate 2

Figure 2.7 – Room temperature I-V characteristic of device 1. Source-drain current ISD

as a function of gate voltage. A 5 mV bias is applied between the source and drain electrodes.
A Since the device is of a pump geometry, the other gate is held at 0 mV (fully open) while the
other gate is swept.
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other facing gate is held at a pinch-off voltage (typically either zero or positive voltage). See
Fig. 2.8 for the I-V characteristic of device 2 given as an example for this device geometry.
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Figure 2.8 – Room temperature I-V characteristic of device 2. Source-drain current ISD

as a function of gate voltage. A 5 mV bias is applied between the source and drain electrodes.
A Since the device is of a face-to-face geometry, the other gate is held at 1 V (fully closed) while
the other gate is swept.

Following a full wafer-scale characterization of the basic electrical properties, we cleave the
wafer along the silicon crystallographic directions into 13 mm by 16 mm dies as presented in
Fig. 2.9. This characterization is used in the selection process of a device, which consists of
exploring all I-V curves for a particular wafer and cross referencing them with the desired sam-
ple dimensions. In general, a die holds a specific functional circuit. In our case, a die is the
reproduced unit throughout the wafer that contains all device types (different geometries and
dimensions).

Now that the die containing the desired sample is cut ready, we need to further isolate the
device by cleaving a small piece that will fit into the sample holder as shown in Fig. 2.10. The
latter is a printed circuit board (PCB) containing the suitable connectors to the fridge RF and
DC lines. It is manually prepared by soldering the surface-mount components constituting the
bias tees and the readout resonator as well as the connectors. The chip containing the desired
device is glued on the PCB via silver paste to ensure electrical contact between the substrate
and a metal pad underneath.

Electrical connections between the contact pads on the sample holder and the device bond-
ing pads are made by means of an ultra-sonic micro-bonding machine, pictured in Fig. 2.11,
using silver micro-wires.

The device is now ready to be hooked up to the cryogenic setup.
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Figure 2.9 – Wafer dicing. The 300 mm wafer is cut into dies. Each die contains many
samples of different geometries serving different purposes. A wafer map helps identifying the
dies numbers depending on their positions in the said wafer. A piece of the second die (top
left) containing a desired sample has been cut.

Figure 2.10 – Sample holder. The PCB on which the sample is glued and which is connected
afterwards to the cold finger of the fridge. A piece of a die containing a desired sample has
been glued to the center of the sample holder using silver paste. Two mini-SMP connectors
(top left and bottom right) assure the delivery of microwave signals to the sample. The black
connectors (middle left and right) are used for DC signals. All the electronic components are
manually soldered.
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Figure 2.11 – Ultrasonic micro-bonding machine. The sample terminals are connected to
the sample holder pads by means of silver micro-wire bonded on each side using pressure and
ultrasonic vibrations. The binoculars help position the bonding needle in the desired spots.

Takeaway messages:

• The samples used in this thesis are silicon NW-FETs made on 300 mm SOI substrates.
• The key fabrication steps are the etching of the Si nanowire, the definition of gate

electrodes (by optical and e-beam lithography), deposition of spacers around the gates
and finally the doping of the source and drain electrodes.

• In a face-to-face geometry, also called split-gate geometry, the gates are partially
overlapping the channel and face each other. Source-drain current can flow under
either of them, with no need of having charge accumulation simultaneously under
both gates.

• In a pump geometry, also called series geometry, the gates are overlapping the whole
channel width at separate positions along the nanowire. Source-drain current can flow
only by simultaneously biasing both gates to charge accumulation mode.

• The devices are embedded in 300 mm wafers which are initially characterised using
additional measurements with an automated station and successively diced. Small
chips (typically 5 mm by 5 mm) containing the selected devices are then mounted and
microbonded on a sample holder with DC and RF connectors and passive surface-
mount components.
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The experiment should be set up to open as many
windows as possible on the unforeseen.

Frederic JOLIOT-CURIE
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I
n this chapter, the experimental setup used throughout this thesis is presented. We
shall provide some general experimental details common to the different experi-
ments discussed in the following chapters. The characterization of the resonators
used for RF gate reflectometry for each studied sample is also included in this

chapter. Furthermore, we introduce two important quantities that measure the probed signal
quality and the readout fidelity.

3.1 Experimental setup
The experimental setup consists mainly of an Oxford Instruments Triton ™ dilution refrig-

erator with a base temperature of Tbase ≈ 20 mK, shown in Fig. 3.1, and a set of instruments
allowing for the measurement and control of the studied sample.

The refrigerator is composed mainly of:
— a cryostat
— a control cabinet
— a compressor for the pulse tube refrigerator
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Figure 3.1 – Oxford Instruments Triton ™ dilution refrigerator. Picture of the used
fridge with a base temperature of Tbase ≈ 20 mK.

— a compressor for 3He/4He mixture

— ancillary pumps

— a computer based controller (different from the measurement computer)

The sample holder described in Sec. 2.4 is mounted at the bottom of the fridge column,
presented in Fig. 3.2, and connected to the cryostat measurement lines.

The cryostat is equipped with 24 noise-filtered DC lines going from the sample to the top of
the fridge and connected to a matrix box featuring an electrical switch for each line. A super-
conducting vector magnet allowing to generate high magnetic fields (up to 6 T in the vertical
direction z, and up to 1 T along the x and y axes) is positioned below the mixing-chamber plate
while being thermally and mechanically anchored to the 4 K plate.

All of the instruments in the experimental setup are connected to a computer serving as a
processing unit ensuring measurement control and data acquisition. Fig. 3.3 shows the mea-
surement circuitry of the experimental setup including the room temperature instruments.

DC voltages are generated by room-temperature digital analog converters (DACs) (Delft
IVVI electronics) and filtered at low temperatures by home-made silver epoxy filters and two-
stage RC filters, both thermally anchored to the mixing chamber plate of the dilution refriger-
ator. These signals are applied to the gate electrodes of the devices under study. Source and
drain contacts are kept grounded throughout the whole experiments described in Chaps. 4 and 6.

Transport measurements are realised by probing the current flow through the studied sam-
ple using the Delft IVVI current-voltage converter. Its analog output is fed to a digital multi-
meter (DMM) and averaged over the number of power line cycles (NPLC) (typically 2-10
NPLC).
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Figure 3.2 – Open cryostat column. Picture of the the opened cryostat column showing the
different refrigeration stages. The cold finger used to shield ans surround the sample has been
removed to get a view of the sample lodging spot. The 3-axis magnet has been lowered to give
access to the device.

The reflectometry channel is fed by an Agilent N5181A RF source, which also provides the
reference signal of a Zurich Instruments (ZI) ultra high frequency lock-in (UHF-LI) for demod-
ulation. The reflectometry tone is pass-band filtered at room temperature and attenuated at
different stages of the fridge for thermalization (see Fig. 3.3). It is added to the DC signal via
a bias tee mounted on the sample holder. The reflectometry tank circuit consists of a 220 nH
surface-mount inductor (Coilcraft 221XGLB), soldered on the PCB, and a parasitic capaci-
tance Cp (. 1 pF). The reflected signal is separated from the incoming wave by a directional
coupler (Mini-circuits ZEDC-15-2B) and amplified at the 4 K stage by a low noise amplifier
(Caltech ClTLF1) with 35 dB gain and 6 K noise temperature. The RF excitation power ap-
plied to the resonator is constant throughout all the measurements and is set to a value low
enough such that the AC-Stark effect is negligible. We estimate Pref ≈ −110 dBm.

One output of the UHF-LI is used in the arbitrary wave generator (AWG) mode to pre-
cisely gate the microwave tone delivered by an Agilent E8257D source for coherent spin rotations
(Chap. 4) and spectroscopy excitations (Chap. 6). The resulting microwave bursts are added
by a triplexer to the readout/manipulation pulses generated by the other UHF-LI channel. The
signal then passes through different attenuators and feeds a second bias tee on the board.

The video mode described in Chap. 5 relies on the addition of two fast ramps generated
by the AWG module of the UHF-LI to the gate voltages. The superposition of the signals is
ensured by the Delft IVVI summing module that we modified in its internal wiring in order to
support this functionality.
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Figure 3.3 – Schematic of the measurement setup. The circuitry of the right gate combines
DC voltages for DQD electrostatic tuning, fast voltage pulses and EDSR microwave tones. For
the left gate, the DC voltage is added to reflectometry radio-frequency signal for dispersive
homodyne detection.
For each gate, a bias tee combines a DC component and an AC component: VG1 and the
reflectometry signal for gate 1, and VG2 and the spectroscopy tone for gate 2.
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3.2 Resonator characterization
Once the sample is at Tbase, we start by characterizing the resonator response. Due to

variations in the bonding layout and sample holder (PCB) preparation (e.g. unavoidable vari-
ations in the soldering of the surface-mount components), this response, though more or less
comparable, is specific to each {sample + PCB} ensemble. As an example, Fig. 3.4 shows the
resonator response for device 2 at base temperature.

480 490 500 510
finj (MHz)

0

-

 (r
ad

)

-12

-11

-10

-9

 (d
B)

Figure 3.4 – Resonator characterization for device 2. Phase response ϕ and attenuation γ
of the LC resonator at base temperature in the case of device 2. We find a resonance frequency
fres = 497 MHz and a loaded quality factor Qloaded ≈ 24.

By unwrapping the reflected phase ϕ and removing the linear background, we extract the
inflection point marking the resonance at fres. The loaded Q-factor Qloaded is then obtained
from [55]:

dϕ

dfinj

∣∣∣∣
finj=fres

=
−4Qloaded

fres

, (3.1)

where finj is the injected frequency used to excite the resonator.

Once the resonance frequency is extracted, the parasitic capacitance Cp forming the tank
circuit along with the surface mount inductor L can be calculated using:

Cp =
1

(2πfres

√
L)2

. (3.2)

The extracted values for each device used in this thesis are detailed in Table 3.1.

3.3 Signal to noise ratio & fidelity
Before engaging in any complex measurements or experiments, it is judicious to be able to

state if the signal at hand is good enough. Starting with a small signal with a large relative
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device 1 device 2 device 3
(Chap. 4) (Chap. 6) (Chap. 6)

fres 339 MHz 497 MHz 560 MHz
L 220 nH 220 nH 220 nH
Cp 1 pF 466 fF 367 fF

Qloaded 18 24 54

Table 3.1 – Extracted resonators values.

noise level for example makes it almost sure that the future complicated measurements (qubit
manipulation, readout with pulsing, photon induced transitions, . . . ) will fail to provide a
detectable signal level that could stand out from noise. In the following we discuss how to
quantify the signal quality and its impact on qubit quality (fidelity).

3.3.1 Signal to noise ratio

Signal to noise ratio (SNR) is an indicator of the information transmission quality. It com-
pares the signal level to the background noise. In the context of qubit measurements using a
reflectometry technique, SNR can also be translated into charge sensitivity [117, 1].

SNR is a dimensionless quantity and is by definition the ratio between the signal power PS

and the background noise power PN:

SNR =
PS

PN

. (3.3)

SNR may also be expressed in decibels in order to better capture wide dynamic range of
signals:

SNRdB = 10 · log10(SNR). (3.4)

Since we always measure signals across the same impedance, the square amplitudes of signal
VS and noise VN can be compared to yield the SNR value:

SNR =

(
VS

VN

)2

. (3.5)

Two methods can be used to extract the SNR value. One relies on side-band modulation
and the other, more straightforward, on a direct measurement in the IQ plane.

Side band modulation method

One way of evaluating the SNR value for a phase signal on a given ICT consists of adding
a low frequency modulation on top of the injected carrier signal (resonator excitation) and
look at the side bands generated in the frequency spectrum [117, 1]. As a working point for
this technique, we take the side of the phase dip associated with an ICT, where the signal
amplitude corresponds to half of the total dip height. The modulation signal frequency fmod

can be arbitrarily chosen as long as it remains small compared to the carrier frequency finj and
its power Pmod should be set to the minimal value allowing for a full sweep of the ICT signal.

The described modulation results in a variation of the phase signal amplitude at the mod-
ulation frequency (hence the choice to sit on a point where the signal slope is maximal). This
variation is quantified using the fast Fourier transform (FFT) of the reflected signal computed
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Figure 3.5 – FFT of the reflected signal in the presence of a small additional mod-
ulation. The frequency axis is shifted so that the frequency origin corresponds to the carrier
frequency finj which is maintained at the resonance frequency of the oscillator (finj = fres). A
side-band appearing at fmod = 15 kHz is used to compute the SNR value.

in the phase ϕ domain as shown in Fig. 3.5.

Using the ZI UHF-LI, the limit frequency for the FFT measurement fmax is directly related
to the demodulator data transfer rate (DTR) as follows:

fmax =
DTR

2
. (3.6)

As for the FFT resolution δf , it could be deduced from:

δf =
2× fmax

N
, (3.7)

where N is the number of points to be set for the FFT measurement.

We see the appearance of a side-band on the FFT graph and the SNR value can be found
following:

SNR = 10 · log10

(
side band amplitude

noise floor level

)2

. (3.8)

IQ plane method

We consider two positions in the stability diagram, one being “ON” and the other “OFF"
the ICT. For each position, we measure N values of the UHF-LI demodulator response cor-
responding to in-phase (I coordinates) and quadrature (Q coordinates) components. Fig. 3.6
gives an example of such a measurement.

Using this method, the SNR value is given by [71]:

SNR =
d2

1
2
(σ2

ON + σ2
OFF)

, (3.9)
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Figure 3.6 – IQ plane measurements taken on and off an ICT. Scatter plot of N = 1000
points for each position: “ON” (cyan) and “OFF” (orange) the ICT. A circle centered on the
“OFF” (“ON”) points distribution center and with a radius of σOFF (σON), its standard deviation,
is drawn. The distance between the centers of these two circles is d. SNR = 1 corresponds to
the case where the two circle come in contact, i.e. d = σON + σOFF.

where σOFF (σON) is the standard deviation characterizing the “OFF” (“ON”) points distribution
and d the distance separating the centers of these two distributions in the IQ plane (see Fig. 3.6).

Signal to noise ratio dependencies

When the carrier signal power Pinj is high, it leads to a broadening of the interdot feature
as proved in Fig. 3.7. Therefore, investigating how SNR depends on Pinj is not useful in the
high-power regime. We choose then Pinj to be the highest value such as we have no feature
broadening. This condition yields the best SNR with no interdot signal broadening. For lower
Pinj, while the linewidth remains unchanged, the SNR degrades because the signal amplitude
decreases relative to the noise floor set by the cryogenic amplifier.

When using the side band modulation method, the SNR depends on the modulation signal
power Pmod as presented by Fig. 3.8. In fact, since we are sitting on the side on an interdot
phase dip, the reflected phase signal has maximal sensitivity to gate-voltage detuning, and
phase response increases with the amplitude of the signal modulation, which is proportional
to
√
Pmod. The maximal phase response is achieved when the working point oscillates between

the peak and the valley of the signal. This is clearly shown in Fig. 3.9. Once the Pmod starts to
broaden the probed transition, the separation between these maximum points increase. These
results are very similar to a recently conducted study [1].

When studying the dependence of SNR on the frequency fmod of the modulation signal,
the maximal FFT scan frequency depends on the UHF-LI DTR according to Eq. (3.6). The
UHF-LI cannot support high values of DTR for a continuous trigger mode (acquiring all the
time). Hence, the extraction of SNR values for modulation frequencies higher than 400 kHz
was not possible. The impact of fmod on the SNR has been shown [117] to be related to the
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Figure 3.7 – Injected power effect on interdot signal. ICT phase signal as a function of
gate voltage VG1 for various injected carrier powers Pinj. The interdot signal starts broadening
at −50 dBm.
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Figure 3.8 – Modulation power impact on SNR. SNRdB as a function of the modulation
signal power Pmod. The maximal value is obtained when the modulation power is enough to
make the working point oscillate between the peak and the valley of the probed phase signal
signal.
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Figure 3.9 – SNR as a function of VG1 and the modulation signal power Pmod. For a
given modulation power, two SNR maxima appear with a gate voltage whose separation that
increases as Pmod is increased. Their positions corresponds to the VG1 points of maximum slope
at either side of the ICT signal. The increasing separation with increasing Pmod suggests that
the transition is being broadened by the modulation signal.

bandwidth of the resonator. Thus, the SNR value is expected to be constant and maximal for
modulation frequencies included in the resonator bandwidth and then starts to deteriorate.

As expected, the SNR signal is maximal around the resonator resonance frequency as we
could conclude from Fig. 3.10. By sitting at the resonance frequency finj = fres, the system
finds itself at the most sensitive working point.

Another important component to take into account is the demodulator low pass filter in-
tegration time τint. The higher the integration time is, the more noise is filtered leading to
a higher SNR as highlighted in Fig. 3.11. While increasing τint results in a better measured
signal, it extends the time necessary to accomplish the measurement. A fine balance should
therefore be found between how fast one would want to measure and its effect on the SNR.

3.3.2 Readout fidelity

Given two quantum states, |↑〉 and |↓〉, the so-called readout fidelity is an indicator of how
good a measurement differentiates between these states. It expresses the possibility to measure
correctly the quantum state. In a certain sense, fidelity forms the bridge between the neat high
level flawless implementation and the messy reality of a fallible quantum hardware.

For a set of N measurements of the quantum state, we fit the histogram of measurement
results to overlapping Gaussian distributions, which we show for example in Fig. 3.12. The |↑〉
(|↓〉) distribution is centered around the phase value ϕ↑ (ϕ↓) and have a standard deviation σ.
These distributions are separated by a distance d and cross at ϕint. For the sake of simplicity,
we consider that both measured quantum states have the same σ and perfect spin-to-charge

48



3

Chapter 3. Implementation of reflectometry readout

315 330 345 360
finj (MHz)

10

15

20

25

SN
R d

B

Figure 3.10 – Injected frequency influence on SNR. SNRdB as a function of the injected
frequency finj. The curve exhibits a maxima when injected power matches the resonance fre-
quency of the tank circuit finj = fres.
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Figure 3.11 – SNR as a function of the demodulator low-pass filter integration time.
The less the signal is integrated, the higher the signal noise is and signal quality deteriorates.
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Figure 3.12 – Detected events number N distribution of up and down states mea-
surements. Each Gaussian, characterized by a standard deviation σ, simulates measurement
histograms for the states |↑〉 (cyan) and |↓〉 (orange). The two distribution are separated by a
distance d between the centers ϕ↑ and ϕ↓ and they intersect at ϕint.

The fidelities of the |↓〉 and |↑〉 states are given by [8]:

F↓ = 1−
∫ ϕint

−∞
N↓ dϕ, (3.10)

F↑ = 1−
∫ +∞

ϕint

N↑ dϕ. (3.11)

The resulting fidelity will be then [70]:

F =
F↓ + F↑

2

= 1− 1

2

(∫ ϕint

−∞
N↓ dϕ+

∫ +∞

ϕint

N↑ dϕ

)
.

(3.12)

If we consider Gaussian distributions for the up and down states as follows:

N↓(↑) =
1

σ
√

2π
e−

(ϕ−ϕ↓(↑))
2

2σ2 , (3.13)

we end up with a simpler expression for the fidelity:

F =
1

2

(
− erf

(
ϕint − ϕ↓√

2σ

)
+ erf

(
ϕint − ϕ↑√

2σ

))
= erf

(
d

2
√

2σ

)
,

(3.14)
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where erf denotes the Gauss error function.

Eq. (3.9) lets us then link F to the SNR value as:

F = erf

(√
SNR

2
√

2

)
. (3.15)

Even though we took a simple model for our calculations, Eq. (3.15) remains a very good
estimate for the fidelity using the SNR value. To better illustrate this, Fig. 3.13 shows the
evolution of the qubit error (1 − F) as a function of SNR. A quick approximation, even for
more complicated situations, yields then a fidelity of 99 % for SNR ' 26, and a fidelity of 99.9 %
for SNR ' 43.
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Figure 3.13 – Qubit error. Readout error as a function of SNRdB.
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Takeaway messages:

• The studied samples are held at a temperature Tbase ≈ 20 mK using a dilution refrig-
erator and a set of instruments assures their readout and manipulation.

• The experimental setup allows at the same time for transport measurements, by means
of the Delft IVVI IV converter, as well as reflectometry measurements, using the ZI
UHF-LI.

• The resonator characteristics (fres, Qloaded, Cp) are extracted by studying its phase
or/and amplitude response to the injected signal frequency finj.

• SNR is a measure of the signal quality and is directly linked to qubit readout fidelity.
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An experiment is a question which science poses
to Nature, and a measurement is the recording of
Nature’s answer.

Max PLANCK
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S
ilicon spin qubits have emerged as a promising path to large-scale quantum pro-
cessors. In this prospect, the development of scalable qubit readout schemes
involving a minimal device overhead is a compelling step. Here we report the
implementation of gate-coupled RF reflectometry for the dispersive readout

of a fully functional spin qubit device. We use a p-type double-gate transistor made using
industry-standard silicon technology. Two gates tune an isolated hole DQD, and two distinct
electric RF tones (one per gate) allow spin manipulation and dispersive readout. The qubit
state is measured through the phase response of a lumped element resonator to spin-selective
interdot tunneling. The demonstrated qubit readout scheme requires no coupling to a Fermi
reservoir, thereby offering a compact and potentially scalable solution whose operation may be
extended above 1 K. We assess hole single spin dynamics and show coherent spin control, vali-
dating a protocol for complete qubit characterization exploitable in more complex architectures.

The work described in this chapter has led to a recently published article [26].
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4.1 Methods

The experiment in this chapter is carried out on device 1 described in Sec. 2.3. The device
has two parallel top gates, gate 1 and gate 2, wrapping an etched Si nanowire channel. At low
temperature (≈ 20 mK), DC voltages VG1 and VG2 are applied to these gates to induce two
closely spaced hole quantum dots. The “Control” gate, gate 2, delivers also sub-µs pulses and
microwave excitation in the GHz range to manipulate the qubit. The “Readout” gate, gate 1,
is wire-bonded to a surface-mount inductor forming along with a parasitic capacitance and
the device impedance a tank circuit resonating at f0 = 339 MHz (see full characterization in
Sec. 3.2). We excite the resonator input at fres = f0 and power Pres ≈ −110 dBm. We measure
the phase variation ϕ of the reflected signal isolated from the incoming wave by a directional
coupler, amplified by 35 dB at 4 K and demodulated to baseband using homodyne detection.
The resonant frequency f0 undergoes a dispersive shift according to the state of the qubit as
explained in Sec. 1.4. The full measurement circuit is reported in Sec. 3.1.

4.2 Charge stability diagram

To determine the charge stability diagram of our DQD, we probe the phase response of
the resonator while sweeping the DC gate voltages VG1 and VG2. A series of nearly horizontal
parallel lines are visible in the left panel of Fig. 4.1. These lines repeat quite regularly from
metallic DQDs to depletion, and even when the silicon channel is completely closed (data not
shown). Consequently, we speculate that these features are related to the charging of objects
extrinsic to the channel. On top of this background, most of the short diagonal cuts on the
yellow background are interdot transition lines. A zoom into the area highlighted by the blue
square leads to the diagonal ridge in the right graph of Fig. 4.1 which denotes the interdot
charge transition we shall focus on hereafter.

In the many-hole (quasi-metallic) regime, the typical gate voltage between two charge states
is about 25 mV. This value is consistent with other experiments on similar samples [89, 27].
Away from the many hole regime, the interdot lines are unevenly spaced, as it is the case in
Fig. 4.1. Importantly, for interdot tunnel couplings of few GHz (like the one under study),
the interdot transition lines are quite thin in gate voltage, and are difficult to resolve in large
maps obtained with large voltage steps (a point that will be addressed in Chap. 5). We use
the threshold voltages at room temperature of the two gates and the addition voltage of the
many hole regime for a rough estimation of the absolute filling of the dots. We obtain around
5 and 10-20 holes in the left (mainly controlled by VG1) and right dot (mainly controlled by
VG2), respectively.

Along the ICT, the electrochemical potentials of the two dots line up enabling the shuttling
of a hole charge from one dot to the other. This results in a phase variation in the reflected
signal. Quantitatively, ϕ is proportional to the quantum capacitance associated with the gate
voltage dependence of the energy levels involved in the interdot charge transition. Interdot tun-
nel coupling results in the formation of molecular bonding (+) and anti-bonding (−) states with
energy levels E+ and E−, respectively. These states have opposite quantum capacitance since
CQ± = −α2(∂2E±/∂ε

2) [28]. Here, ε is the gate-voltage detuning along a given line crossing the
interdot charge transition boundary, and α is a lever-arm parameter relating ε to the energy
difference between the electrochemical potentials of the two dots (we estimate α ' 0.58 eV/V
along the detuning line in Fig. 4.1. The width of the phase ridge, once translated into energy,
gives the interdot tunnel coupling t.
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Figure 4.1 – Charge stability diagram of device 1. Phase shift of the reflected signal as
a function of VG2 and VG1 near the interdot transition line under study (right) and broadly
around it (left). As VG1 approaches the gate voltage threshold, ICTs are unequally placed. The
blue square in the left graph denotes the zoomed-in area in the right panel. The dashed arrow
indicates ε detuning axis.

A comprehensive description of the experimental phase signal is achieved by considering the
excited levels of the DQD as partially populated. Importantly, we make the assumption that
the average occupation probability of the available excited states are populated according to a
Boltzmann distribution with an effective temperature Teff , which is used as a free parameter.
Each state leads to an averaged phase signal:

〈ϕ〉i = ϕi|T=0 ·
e
− Ei
kBTeff

Z
, (4.1)

where ϕi|T=0 is proportional to the quantum capacitance of the state with energy Ei in the 0 K
limit, kB the Boltzmann constant, Teff an effective temperature, and Z is the partition function
over the states. The measured phase signal then is ϕ =

∑
i〈ϕ〉i [123].

The coupling term t is estimated from a detuning trace at B = 0 T. The full width at half
maximum (FWHM) of the phase interdot ridge is linked to the effective temperature Teff [93].
Two limiting situations are envisaged. At low temperature, kBTeff < t/10, the width of the
interdot signal is set by the tunnel coupling to ∼ 3t. Here, just the ground singlet is populated.
In the opposite limit of high temperature, kBTeff > 2t, the threefold triplet and both bond-
ing and anti-bonding singlet are thermally populated. By sweeping Teff , the magnitude of the
interdot resonance drops, but the FWHM saturates at ∼ 4t. In the intermediate regime, the
FWHM increases progressively with Teff , up to the saturation point occurring at kBTeff ' 2t.
Furthermore, this demonstrates that the FWHM allows to estimate t in the (3t, 4t) range what-
ever the temperature is. This distinguishes dispersive readout from charge sensing (especially
when kBTeff > 2t), as the resonator sensitivity is ultimately constrained to the avoided crossings
in the energy level diagram. Fits to the interdot detuning phase shift yield t = 8.5 µeV and
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t = 6.4 µeV in the low and high temperature limit, respectively.

4.3 Magnetospectroscopy of the double quantum dot

The total charge parity and the spin character of the DQD states can be determined from
the evolution of the ICT in an applied magnetic field B [123]. Fig. 4.2 shows the By dependence
of the phase signal at the detuning line indicated in Fig. 4.1. Four representative traces taken
from this plot are shown in Fig. 4.4. The interdot phase signal progressively drops with By.
At By = 0.35 T the line profile is slightly asymmetric, while a double-peak structure emerges
at B = 0.46 T. The two peaks move apart and weaken by further increasing By, as revealed by
the trace at B = 0.85 T.
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Figure 4.2 – Magnetospectroscopy of the ICT under study. Interdot dispersive signal
as a function of the magnetic field By oriented along the nanowire axis. The phase response
diminishes with By, denoting an ICT of (0,2)↔ (1,1) type. Inset: theoretical prediction of the
dispersive response for a DQD model taking into account thermally activated state populations.

The observed behavior can be understood in terms of an interdot charge transition with an
even number of holes in the DQD, in a scenario equivalent to a (0,2) ↔ (1,1) transition. We
shall then refer to a “(0,2)” and a “(1,1)” state, even if the actual number of confined holes is
larger as mentioned earlier. The ε dependence of the DQD states at finite B is presented in the
left panel of Fig. 4.3. Deeply in the positive detuning regime, different g-factors for the left (g1)
and the right dot (g2) result in four non-degenerate (1,1) levels corresponding to the following
spin states: |↓↓〉, |↑↓〉, |↓↑〉 and |↑↑〉 [98, 99, 109]. At large negative detuning, the ground state
is a spin-singlet state S(0, 2) and the triplet states T (0, 2) lie high up in energy. Around zero
detuning, the |↑↓〉, |↓↑〉 states hybridize with the S(0, 2) state forming an unpolarized triplet
T0(1,1) and two molecular singlets, Sg and Se, with bonding and anti-bonding character, re-
spectively.
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Figure 4.3 – Energy diagram and resulting phase response. Schematic of the DQD en-
ergy levels close to a (0,2)↔ (1,1) transition at finite B and for |g1−g2| = 0.5 (left panel), and
thermally-averaged phase response 〈ϕ〉 with Teff = 0.25 K (right panel). 〈ϕ〉 is second deriva-
tive of the energy-level dispersion of each state of the left graph, weighted by the Boltzmann
occupation probability. The alternating colors of the phase signal match the state colors.

The spin-orbit transition matrix elements are supposed weak compared to t and the Zee-
man terms. Sizable spin-flip tunnelling terms would lead to a dispersive signal with a strong
magnetic field dependence. We found no evidence of the corresponding dispersive signals in the
magnetospectroscopy data.

We use the spectrum of Fig. 4.3 to model the evolution of the interdot phase signal in
Fig. 4.2 (see Sec. 1.1.3 for more details). The right panel shows 〈ϕ〉i as a function of ε for
Teff = 250 mK. The spin polarized triplet states T−(1,1) and T+(1,1) (i.e. |↓↓〉 and |↑↑〉, re-
spectively) are linear in ε and, therefore, they do not cause any finite phase shift. Sg, Se, and
T0(1,1), on the other hand, possess a curvature and are sensed by the reflectometry apparatus.
We note that the phase signal for T0(1,1) has a peak-dip line shape whose minimum lies at
positive ε (dashed blue/green trace), partly counterbalanced by the positive phase signal due
to Se. The Sg state causes a pronounced dip at negative ε (dashed blue/red trace), dominating
over the peak component of T0(1,1). The overall net result is a phase signal with an asymmetric
double-dip structure consistent with our experimental observation.

This simple model, with the chosen Teff = 250 mK, qualitatively reproduces the emergence
of the double-dip structure at By ∼ 0.4 T, as well as its gradual suppression at higher By, as
shown in the inset to Fig. 4.2 and in Fig. 4.4 (increasing the Zeeman energy results in the
depopulation of the Sg and T0(1,1) excited states in favor of the T−(1,1) ground state, for
which ϕ = 0). The parameters used for the simulations are g1 = 1.52, g2 = 2.02 and t = 6 µeV.

Fast excitations/relaxations in the singlet manifold may contribute to the DQD phase re-
sponse through the tunnel capacitance [93]. However, if such nonadiabatic processes are slow
(∼ 100 MHz) compared to the probing frequency fres, the tunnel capacitance is small with re-
spect to the quantum capacitance. On the other hand, with fast charge relaxations (∼ 1 GHz)
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Figure 4.4 – Phase shift qualitative simulation. Line cuts of the plot in Fig. 4.2 at the
position of the dashed lines (left) and corresponding qualitative phase shift resulting from the
sum of all 〈ϕ〉 from the right panel of Fig. 4.3 (right). Data are offset for clarity. A double-peak
structure emerges at sufficiently high By in qualitative agreement with the experimental data.

the interdot ridge would have lineshape and width not compatible with the magnetic field evo-
lution reported Fig. 4.2.

Now that we have elucidated the energy level structure of the DQD, we can discuss the
operation of the device as a single-hole spin qubit with electrical control and dispersive readout.

4.4 Electric-dipole spin resonance detection

EDSR [89, 27, 139] is induced by a microwave voltage modulation applied to gate 2 (see
Sec. 1.3 for more details). To detect EDSR dispersively, the resonating states must have dif-
ferent quantum capacitances. The DQD is initially tuned to the position of the red star in
Fig. 4.4, where the DQD is in a “shallow” (1,1) configuration, i.e. close to the boundary with
the (0,2) charge state.

Fig. 4.5 shows the dispersive measurement of an EDSR line. The microwave gate modula-
tion of frequency fexc is applied continuously and B is oriented along the nanowire axis (y-axis).
We ascribe the resonance line to a second harmonic driving process where 2hfexc = gµBBy (h
the Planck’s constant, µB the Bohr magneton and g the effective hole g-factor). From this
resonance condition we extract g = 1.735 ± 0.002, in agreement with previous works [89, 27].
The first harmonic signal,is shown in the right panel of Fig. 4.5. Though both first and sec-
ond harmonic excitations can be expected [120], the first harmonic EDSR line is unexpectedly
weaker. A comparison of the two signal intensities requires the knowledge of many parameters
(relaxation rate, microwave power at the sample, etc.) and calls for deeper investigations.

The acquired EDSR signal is not satisfactory along the y-direction and would potentially
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Figure 4.5 – EDSR detection. Phase response as a function of By oriented along the nanowire
axis and microwave frequency fexc. The linear phase ridge of the second harmonic (left) and
first harmonic (right) is a hallmark of EDSR.

not be enough for the readout of manipulated states. Optimizing its level is necessary then
before doing further advanced manipulations. Fig. 4.6 highlights the effect of the magnetic
field B direction on the ICT phase signal while maintaining a constant field module B = 0.6 T.
We adopt a spherical description of the direction of B throughout the polar angle θB and the
azimuthal ϕB (see top left inset of Fig. 4.6). The interdot signal is found to be heavily impacted
by the magnetic field orientation. This suggests an evolution of the g-factors of the QDs as
well as the spin-orbit coupling terms depending on θB and ϕB [27].

Just as g-factors and state coupling terms are sensitive to B field orientation, the same can
be said about the curvature of the state we promote EDSR transitions to. Fig. 4.7 shows the
EDSR peak evolution as a function of ϕB while arbitrarily fixing θB to 90°. Along this az-
imuthal trajectory the maximum signal is observed for ϕB = 55°. Next, we explored the EDSR
dependence on the polar angle for ϕB = 55°. We find that the phase amplitude decreases as we
move away from θB = 90°. Therefore, in the following experiments of spin manipulation the
magnetic field orientation was set to ϕB = 55° and θB = 90°.

The visibility of the EDSR signal can be yet optimized by a fine tuning of the gate voltages.
Fig. 4.8 shows a high-resolution measurement over a narrow region of the stability diagram
around the interdot charge transition boundary at B = 0.52 T without (top left) and with (top
right) continuous resonant microwave tone fexc = 7.42 GHz. The interdot line has a double
peak structure consistently with the data of Figs. 4.2 and 4.4. EDSR appears as a distinct
phase signal around VG2 ' 363.5 mV and VG1 ' 1039.5 mV, i.e. slightly inside the (1,1) charge
region, pinpointed by the black arrow as “I/R”. Such EDSR feature is extremely localized in
the stability diagram reflecting the gate-voltage dependence of the hole g-factor [27].

The bottom part of Fig. 4.8 displays line cuts across the interdot transition line at fixed
VG1 (along the dashed lines of the figures above) and different microwave excitation condi-
tions. With no microwaves excitation, we observe the double-peak line shape discussed above.
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Figure 4.6 – ICT signal dependence on magnetic field direction. Phase shift of the
reflected signal as a function of the detuning ε and the magnetic field direction. The magnetic
field module B is equal to 0.6 T throughout the measurement and the angles θB and ϕB are
the polar angle and azimuthal angle of its spherical coordinates as illustrated in the top left
inset. The top right inset of each graph gives the value of the non-swept magnetic field angle
and shows a schematic of the trajectory of B marked by a red arrow that can be found again
at the vertical axis of the figure to make the parallel.
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Figure 4.7 – Magnetic field direction selection. EDSR peak phase shift as a function of
the azimuthal angle ϕB (left) and the polar angle θB (right) of the applied magnetic field B
with B = 0.5 T. The highest phase shift is found for ϕB = 55° and θB = 90°.

With a microwave gate modulation at fexc = 7.42 GHz, the spin resonance condition is met at
VG2 ' 363.5 mV, which results in a pronounced EDSR peak, the same observed at point “I/R”
in the top right panel. The peak vanishes when fexc is detuned by 20 MHz (green trace).

At point “I/R”, resonant microwave excitation enables the spectroscopy of the T0(1,1) state.
In a small detuning window, the populations of T−(1,1) and T0(1,1) are assumed to be bal-
anced by EDSR (see the energy levels in the inset to the top right panel of Fig. 4.8). This
results in a phase signal dramatically enhanced resembling the feature centered at “I/R”. A
further confirmation that the spin transitions are driven between T−(1,1) and T0(1,1) is given
by the extrapolated intercept at 0 T of the EDSR transition line in Fig. 4.5, found much smaller
(< 100 MHz) than t. In the following, we shall use point “I/R” to perform qubit initialization
and readout.

One might expect the detuning position of the EDSR peak to depend on fexc, along with
an increase of phase signal approaching ε = 0. However, as observed in other types of Si
qubits [122, 130, 91], in the vicinity of ε = 0 decoherence rates increase as well, which limits
the detuning window for convenient reflectometry readout. This argument is supported by the
data shown in Fig. 4.9.

As pointed out, the microwave-induced population of T0(1,1) state is detected in a “shallow”
(1,1) charge stability region with a nearly constant dispersion d|ET0(1,1) − ET−(1,1)|/dε. In this
regime, the qubit is robust with respect to fluctuations in detuning. Close to zero detuning
(363.2 < VG2 < 363.4 mV), the EDSR signal is not resolved, due to the increased noise sensi-
tivity. This makes this bias regime unsuitable for readout.

Now that the optimal conditions are met in order to ensure a good EDSR signal, we could
turn to time-domain coherent spin rotations.
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Figure 4.8 – Manifestations of EDSR in the stability diagram. Stability diagram at
B = 0.52 T (orientation ϕB = 55° and θB = 90° with no microwave excitation (top left) and
with fexc = 7.42 GHz (top left). The change of population induced by EDSR between T−(1,1)
and T0(1,1) (pink arrows in inset) is visible as a localized phase signal at point “I/R”. Phase
shift cuts are taken along the dashed line (bottom) without microwave irradiation, and with
on-resonance and off-resonance excitations at fexc = 7.42 GHz and 7.42 GHz respectively. When
the driving tone is resonant, EDSR-stimulated transitions appear as a pronounced peak.
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Figure 4.9 – EDSR peak dependence on gate voltage. Phase response as a function of the
gate 2 voltage and the driving frequency. The map is acquired by sweeping fexc and stepping
VG2. At the beginning of each line, the phase of the reflectometry signal is set to 0. The
magnetic field B = 0.5 T is oriented along ϕB = 55° and θB = 90°. ε = 0 corresponds to
VG2 ' 363.3 mV.

4.5 Single spin manipulation and relaxation time measure-
ment

The device is operated as a spin qubit implementing the protocol outlined in Fig. 4.10. The
upper part of the voltage sequence tunes the DQD at the control point “C” (' 1 mV deep in
the (1,1) region) where holes are strongly localized in either one or the other dot with negligible
tunnel coupling. A microwave burst of duration τburst and frequency fexc drives single spin
rotations between |↓↓〉 and |↑↓〉. The system is then brought back to “I/R” in the “shallow”
(1,1) regime for a time twait for readout and initialization. The dispersive readout eventually
relies on the spin-resolved phase shift at “I/R”, though the reflectometry tone fres is applied
during the whole sequence period TM and the reflected signal is streamed constantly to the
acquisition module.

We demonstrate coherent single spin control in the chevron plot of Fig. 4.11. The phase
signal is collected as a function of microwave burst time τburst and driving frequency fexc. The
spin state is initialized at point “I/R”. The phase signal is plotted as a function of τburst with
fexc set at the Larmor frequency fLarmor. The Rabi oscillations shown in the bottom panel have
a 10.1 MHz frequency, consistent with previous results [89, 27], and a decaying envelope with
a TRabi

2 = 0.45± 0.03 µs obtained by fitting the data to:

a0 + a1e
− τburst
TRabi

2 sin(2πfRabiτburst + a2), (4.2)

where a0,1,2 are free fitting parameters.

Fig. 4.11 witnesses the success of using electrical RF signals both for coherent manipulation
by EDSR and for qubit-state readout by means of gate reflectometry.
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Figure 4.10 – Qubit manipulation pulse sequence. The pulse sequence alternating between
“deep” (1, 1) regime (“C” point in Fig. 4.8) for spin manipulation and “shallow” (1, 1) regime
(“I/R” point in Fig. 4.8), close to the (0,2) ↔ (1,1) transition, for the readout and resetting
of the spin system. A microwave burst rotates the hole spin for τburst during the manipulation
stage. A waiting time twait at the “I/R” level ensures the resetting of the spin/charge state.
The readout tone is continuously applied throughout the sequence period TM.

We determine the lifetime T1 of the excited spin state at the readout point “I/R” by sweeping
twait after a π-burst at point “C”. The results are shown in Fig. 4.12. The magnetic field direc-
tion was set to ϕB = 0° and θB = 60° (after a refrigerator incident resulting in the warm-up of
the sample, the device was cooled down again and it was found that the EDSR signal was max-
imized for this magnetic field direction). The phase signal rapidly diminishes with increasing
twait because spin relaxation depopulates the excited spin state in favor of the non-dispersive
T−(1,1) ground state. The estimated spin lifetime at the readout position is T1 = 3.2± 0.3 µs.
By shifting the position of a 100 ns microwave burst within a 12 µs pulse, no clear decay of the
dispersive signal is observed, which suggests a spin lifetime longer than 10 µs at manipulation
point.

To extract the spin relaxation time at the readout position “I/R”, we use a pulse length of
250 ns and sweep twait. During the pulse, a microwave burst of 100 ns flips one of the two spins.
We normalize the amplitude of the phase shift by a factor TM/twait = 1 + 250 ns/twait since
the signal is acquired during the whole period TM. The readout projects the |↑↓〉 state on the
{T0(1,1),T−(1,1)} basis. The time-dependent probability that the spin relaxes in T−(1,1) is
given by:

P (t)T−(1,1) = P (t = 0)T0(1,1)e
−t/T1 . (4.3)

The time averaged data points in Fig. 4.12 are then fitted to:

ϕ =
TM

twait

[
a0 − a1

T1

TM

(
e−TM/T1 − 1

)]
, (4.4)

with TM = twait + 250 ns and a0,1 are fitting parameters.
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Figure 4.11 – Chevron pattern and Rabi oscillations. Dispersive signal ϕ(fexc, τburst)
(top left) and ϕ(τburst, Pexc) (top right), measured with the detuning pulses of Fig. 4.10 with
twait = 1 µs. Eight (three) maps have been averaged for the chevron pattern (power dependence)
graph. The Pexc for the chevron graph is marked by a dashed line on the power dependence
graph. A cut long along the dashed line in the top left figure shows Rabi oscillations (bottom
panel). A fit of these oscillations yields fRabi = 10.1 MHz and TRabi

2 = 0.45± 0.03 µs.
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Figure 4.12 – T1 measurement. Phase shift as a function of twait for a ' 1 mV pulse on VG2,
τburst = 100 ns and fexc = 12.865 GHz, with B = 0.62 T along ϕB = 0° and θB = 60°. The phase
signal approaches 0 when twait � T1. A simple model yields T1 = 3.2± 0.3 µs.

The measured T1 is compatible with the relaxation times obtained for hole singlet-triplet
states in acceptor pairs in Si [133] and in Ge/Si nanowire double quantum dots [53]. In both
cases T1 has been measured at the charge degeneracy point with reflectometry setups similar to
ours. Nonetheless, charge detector measurements have shown T1 approaching 100 µs for single
hole spins in Ge hut wire quantum dots [144] and . 1 ms for Ge/Si singlet-triplet systems [56].
This suggests that despite the intrinsic spin-orbit coupling single spin lifetimes in the ms range
might be achievable in Si too. Strategies to boost T1 at the readout point may consist of insert-
ing RF isolators between the coupler and the amplifier to reduce the back-action on the qubit
and avoiding high-κ dielectric in the gate stack to limit charge noise.

We note that T1 could depend on the orientation of the magnetic field as well [147]. Future
studies on magnetic field anisotropy will clarify whether T1, along with the effective g-factors
(and hence the dispersive shift for readout) and Rabi frequency, can be maximized at once
along a specific direction.

Technical improvements intended to enhance the phase sensitivity, like resonators with
higher Q-factor and parametric amplification, could push the implemented readout protocol to
distinguish spin states with a micro-second integration time, enabling single shot measurement
as reported in a recent experiment with a gate-connected superconducting resonant circuit [156].
Lastly, the resonator integration in the back-end of the industrial chip could offer the possibil-
ity to engineer the resonant network at a wafer scale, guaranteeing controlled and reproducible
qubit-resonator coupling.

The gate-based dispersive sensing demonstrated here does not involve local reservoirs of
charges or embedded charge detectors. This meets the requirements of forefront qubit archi-
tectures (e.g. Ref. [83]), where the spin readout would be performed at will by any gate of the
2D quantum dot array by frequency multiplexing.
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Dispersive spin detection by Pauli blockade has a fidelity not constrained by the tempera-
ture of the leads. As recently shown [150, 111], isolated DQDs can serve as spin qubits even
if placed at environmental temperatures exceeding the spin splitting, like 1 K or more. This
should relax many cryogenic constraints and support the co-integration with classical electron-
ics, as foreseen in a scale-up perspective [135].
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Takeaway messages:

• The device adopted for this experience is a double-gate, p-type pump device.
• We used gate-coupled RF reflectometry for the dispersive readout of a fully functional

spin qubit device.
• The demonstrated qubit readout scheme requires no coupling to a Fermi reservoir,

thereby offering a compact and potentially scalable solution.
• We measured Rabi oscillations with a 10.1 MHz frequency and a decaying envelope

with a TRabi
2 = 0.45 µs. We measured also a relaxation time T1 of 3.2 µs at the readout

gate-voltage setting.
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The trouble is, you think you have time.

Buddha

Contents
5.1 Understanding basic measurements . . . . . . . . . . . . . . . . . . . 69
5.2 Video Mode implementation . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Coarse Video Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 Post processing and interdot detection . . . . . . . . . . . . . . . . . 75

A
two dimensional stability diagram measurement is a very time consuming task
an experimenter faces on a daily basis and is considered as a key component in
the exploration of the device characteristics. It accounts for a huge amount of
measurement time in the first stage of any experiment when it is necessary to

find a working point to operate a qubit.

In transport experiments, the time required to explore large stability diagrams of DQD
devices can be reduced by applying relatively large source-drain bias voltages. Besides increas-
ing the current level, this turns point or line structures into two-dimensional features that can
be captured even with relatively coarse (hence less time-demanding) gate-voltage scans. This
cannot be done with gate reflectometry where features remain typically one-dimensional and
hence easy to miss. On the other hand, RF gate reflectometry allows for fast measurement
while current measurements are intrinsically slow.

We mainly focus in this chapter on optimizing the exploration time of a device by shortening
the measurement time of a 2D stability diagram using RF gate reflectometry.

5.1 Understanding basic measurements

In a basic measurement, in order to probe the two dimensional dependence of a measurable
parameter λ as a function of two adjustable parameters a and b, one would need to commu-
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nicate at least twice for each measurement point on the map. Fig. 5.1 illustrates such a process.

b

a

a.set(a1)
b.set(b1)
λ.get()

a.set(a1)
b.set(b2)
λ.get()
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λ.get()
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λ.get()
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λ.get()
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b1

b2
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a2 an

Figure 5.1 – Illustration of a basic 2D measurement process. Each square in the map
encapsulates the necessary instructions that need to be launched by a controlling unit, and
corresponds to a data point (pixel). an (bn) represent the setpoints of parameter a (b).

One could immediately see the flaw in such measurement procedure since each command,
to either set or get a parameter, requires a communication time τcom between the controlling
unit and the instrument. In the case of our measurement setup, τcom differs from an instrument
to another but it is in any case no less than 30 ms.

In order to evaluate a minimal measurement time tmin
meas for a N by M points map, used as

a reference size in this chapter, while omitting any processing time on the controlling unit, we
multiply the smallest communication time τmin

com by the number of operations communicated by
the latter unit:

tmin
meas = N(2M + 1)τmin

com. (5.1)

A quick estimation for a 201 by 201 point map, used as a reference size in this chapter,
predicts that the measurement will last for at least 40 min if we use 30 ms as a minimal com-
munication time. In real conditions where communication times vary between instruments and
depend even on the processor usage of the controlling computer, a similar map takes approxi-
mately one hour.

Nevertheless, these measurement times did not present any major drawbacks for the exper-
imenter acquiring a current signal or a conductance through a QPC in the past. This is due to
the fact that in these particular dispositions, the exploration of stability diagrams relied on two-
dimensional features that did not require a high resolution to be identified by the experienced
eye. For example, Fig. 5.2 shows a stability diagram where we could easily see the triangular
features associated with interdot tunneling often referred to as bias triangles. Therefore, we
could start with a rough quick scan with large spans, and then work our way to the interesting
parts of the map by increasing the resolution and lowering the scanned span.
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Figure 5.2 – Example of a stability diagram in current. Source-drain current as a function
of gate voltages VG1 and VG2. The applied 10 mV bias results in the opening of bias triangles
at the triple points making the search for features easier since the observed objects are two
dimensional.

RF gate reflectometry as a readout technique comes with a set of major advantages com-
pared to its transport-based techniques, but also with a major drawback. As explained in
Sec. 1.4, the reflectometry features consist of narrow 1D lines (either ICTs or dot-lead transi-
tions). Thus, doing fast scans with a rough precision on both axes is no longer an option since we
could totally miss information. An example of a reflectometry measurement is given in Fig. 5.3.

To get an idea on the orders of magnitude needed for a reflectometry based stability dia-
gram, let’s consider a 201 point by 201 point map. This map takes 1h15m to be measured using
the basic “set voltage, set voltage, get value” sequence. As mentioned before, high resolution
is needed for reflectometry, so if we consider a resolution of 50 µV on the gates, our map will
be only 10 mV by 10 mV. Thus, to explore a full stability diagram (let’s assume 700 mV by
700 mV), it would take nearly a year, and even though there are few tricks to go faster, it
remains a very time consuming and unaffordable task.

Considering the reasons listed above, we started developing the so-called video mode (VM)
acquisition technique in the interest of reducing the reflectometry measurement times.

5.2 Video Mode implementation

The idea behind this acquisition mode is to get rid of all the communication time with
the instruments. In a recent work by the Petta group it was introduced as a real-time tuning
tool of the DQD confinement potential [128]. Instead of the basic “set voltage, set voltage, get
value” sequence we sweep the gate voltages and acquire continuously the phase between the
beginning of the measurement and its end. This is done in our case by applying a saw-tooth
pulse to gate 1 and a staircase signal on gate 2. Both signals are commensurate, and each step
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Figure 5.3 – Example of a gate reflectometry measurement. Phase response of the res-
onator as a function of gate voltages VG1 and VG2. The visible ICT features are one dimensional
lines with sharp signals. A high resolution on at least one of the measurement axes is required
in order not to properly detect them.

of VG2 corresponds exactly to a VG1 sawtooth as illustrated in Fig. 5.4. The generated array of
acquired phase values is then transferred as a whole to the python interface.

VG1

t

VG2

t

Figure 5.4 – Pulse sequence used to generate VM maps. A sawtooth signal is applied to
gate 1 while a commensurate stair-shaped signal is applied to gate 2. For each step of VG2, the
whole VG1 space is swept. In our experiment, the sawtooth signal period is 20 ms

The high sensitivity of the RF gate reflectometry readout makes it possible to rapidly
measure charge stability diagrams, but this comes at price: noise. In order to be able to
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measure with VM, we need to reduce the demodulator integration time constant τc to be at
most the sawtooth signal period Tsawtooth divided by the number of points N required on gate 1:

τc ≤
Tsawtooth

N
. (5.2)

In our case, we set τc to be 5 times smaller than the maximal value above which corresponds
to the rise time of a second order filter. This results in an integration time of 20 µs and as a
consequence in a broad noise distribution. That’s why the acquired VM maps need to be aver-
aged in order to reduce noise and pop out the real signals. Fig. 5.5 shows an example of a VM
map averaged 10 times.
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Figure 5.5 – Example of a reflectometry map generated using VM technique. Phase
response of the resonator as a function of gate voltages VG1 and VG2 acquired with the VM
technique. The measurement shows an ICT and the corresponding dot-lead transitions. This
map was averaged 10 times.

By applying this method, the same 201 by 201 point map described above takes only 45 s to
be measured with an averaging of 10 maps. This represents a two order of magnitudes gain in
acquisition time compared to the basic slow measurement. We note that the noise amplitude
is higher in a VM measurement since the time constant used to filter the noise is set to a small
value allowing the fast gate sweeping, but nevertheless, the features standout if the map is
averaged enough.

Even though the technique described above allowed for fast stability measurements on a
window of 10 mV by 10 mV, exploring the full stability diagram using this new meshing still
requires a full week of measurements. And it’s also quite a heavy task to go through each of the
measured maps and searching for the desired interdot features: it requires still a considerable
amount of human time. That’s why I have further optimized this technique as described in the
next section.
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5.3 Coarse Video Mode
In order to further reduce the time for the exploration of a stability diagram, we came up

with an even faster measurement technique, baptised coarse video mode (CVM). Instead of
doing fine scans on both gates, we just maintain a high precision on gate 1 and we step gate 2
coarsely. This way, the maps generated are 201 point by 21 point with a resolution of 50 µV
on gate 1 and 500 µV on gate 2. The scanned window remains therefore the same 10 mV by
10 mV. It is worth mentioning that the 500 µV step is not arbitrarily chosen: it represents a
resolution yielding at least 2 points for the smallest of ICT features.
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Figure 5.6 – A CVM map example. Phase response of the resonator as a function of gate
voltages VG1 and VG2 acquired with the VM technique. The precision on gate 2 is 0.5 mV
(coarse) and 50 µV on gate 1 (fine). A peak detection algorithm runs through each line of the
map allowing the extraction of all dips marked by green points on the graph. All detected
points exhibit signals higher than a certain threshold which is set to 7 mrad in our experience.

Furthermore, we use a peak detection algorithm on each line of a CVM map to extract the
signal dips that are greater than a certain threshold in amplitude. We store for each detected
dip the coordinates in the (VG1, VG2) plane as well as its height and its FWHM. This allows us
afterwards to reconstruct the full stability diagram just by scattering the detected dips instead
of concatenating all the smaller scans, the latter option being really heavy on the processing
unit and requiring a lot of random access memory (RAM). Fig. 5.6 gives an example of a CVM
measurement where the detected peak positions are marked by green dots. This map took only
5 s to be measured, which represents an order of magnitude gain in measurement time as com-
pared to VM and a total of three orders of magnitudes gain as compared to a basic measurement.

As explained, instead of going through each of the measured maps, one could simply scatter
all the detected peaks on a plot to get the full stability diagram as shown in Fig. 5.7. This full
stability diagram was measured in only 20 hours and it contains all of the relevant information
in a stability diagram (except signals below the detection threshold which we consider not in-
teresting anyway).
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Figure 5.7 – A full stability diagram obtained by scattering all the detected peaks
measured by CVM technique. Detected dips positions as a function of gate voltages VG1

and VG2 . The full map is divided into small 10 mV by 10 mV units in which we detect all the
dips using the CVM technique.

Even though we were able to reconstruct the full stability diagram in way less time, the
obtained result still suffers from noise. A post processing stage is therefore required and will
be presented in the next section.

5.4 Post processing and interdot detection

We rely in the post processing stage on the density-based spatial clustering of applications
with noise (DBSCAN) algorithm to get rid of all the outlier detected dips that represent noise.
Given a maximal distance between the points, based on our knowledge of scan parameters, this
unsupervised machine learning algorithm labels all the singular points. This filtering process
is shown in Fig. 5.8.

At the same time, the DBSCAN algorithm classifies groups of nearby points. It identifies
core samples of high density and extends clusters from them. This allows us to separate the
detected dips into groups of continuous features. Fig. 5.9 makes a side by side comparison
between a filtered stability map and its corresponding clustered version.

After having a list of clustered points, we apply a linear regression on each group and we
look for regressions with positive slopes (only ICTs have positive slopes) and with a good
correlation coefficient (aligned points). This allows the identification of simple ICTs with no
detectable dot-lead transitions highlighted by red rectangles in Fig. 5.10. The scattered points
were plotted using their detected dip height for the color.

Although this ICT detection technique isn’t optimal and cannot be applied to Fig. 5.5, it
gives us a head start to be able to automate some routine measurement, e.g. magnetospec-
troscopy, on the detected ones. One could also browse the full stability diagram in its final
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Figure 5.8 – Filtering detected dips. Side by side comparison of a raw stability diagram
achieved by CVM technique (on the left) and the corresponding filtered version (on the right)
using DBSCAN clustering algorithm to detect outlier points emanating from noise and false
peak detection. A maximal distance between neighbouring points needs to be provided to the
algorithm.
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Figure 5.9 – Clustering detected dips. Filtered stability diagram (on the left) and the
corresponding clustered version (on the right) using DBSCAN clustering algorithm. Each
cluster of points is colored distinctively. A maximal distance between neighbouring points
needs to be provided to the algorithm.

76



5

Chapter 5. Video Mode

-850 -800 -750 -700
VG1 (mV)

-800

-700

-600

V G
2 

(m
V)

30 20 10 0
 (mrad)

Figure 5.10 – A full stability diagram after post processing and interdot detection.
Detected dips using CVM technique after being filtered. A clustering process coupled with a
simple linear regression detection algorithm allows the discovery of potential ICTs highlighted
with red boxes. Each point on the map is plotted with the corresponding detected height.

state as presented in Fig. 5.10 and look for the remaining required features.
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Takeaway messages:

• Basic measurements require a lot of time and are nor suited for stability diagram
exploration when the searched features are not 2D.

• The VM technique allows for a fast exploration of small windows of a stability diagram.
It is well suited when requiring to zoom on particular region of a bigger map and allow
a two order of magnitude gain in acquisition time.

• The CVM technique is a derivative of the VM technique where we reduce the precision
on one axis and detect the signal dips. It allows a lossless reconstruction of a full big
stability diagram by just scattering the detected dips.

• Post processing the results of the CVM technique with the DBSCAN algorithm al-
lows noise filtering and clustering of the features. Coupled with a simple regression
algorithm, it allows us to automatically find simple ICTs.
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Dispersively probed microwave

spectroscopy of a silicon hole double
quantum dot

Physics does not endeavour to explain nature. In
fact, the great success of physics is due to a
restriction of its objectives: it only endeavours to
explain the regularities in the behavior of objects.

Eugene Paul WIGNER
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O
wing to ever increasing gate fidelities and to a potential transferability to indus-
trial CMOS technology, silicon spin qubits have become a compelling option
in the strive for quantum computation. In a scalable architecture, each spin
qubit will have to be finely tuned and its operating conditions accurately de-

termined. In this prospect, spectroscopic tools compatible with a scalable device layout are of
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primary importance.

Despite all the advantages of gate-based dispersive readout, it also has its limitations. One
of the main drawbacks is the limited information about the fundamental energy spectrum of
each qubit gate-based dispersive readout is able to provide compared to commonly used charge
sensing. This includes trivial quantities such as gate lever arms and charge tunnel couplings in
general but also quantum dot level spacings and in particular for spin-orbit qubits the g-factor
and spin-orbit interaction strength. However, dispersive readout coupled with microwave spec-
troscopy has been proven to be a powerful tool to access some of these information, among
them lever arm [108] and charge tunnel coupling [110, 108].

Here we report on a two-tone spectroscopy technique providing access to the spin-dependent
energy-level spectrum of a hole DQD defined in a split-gate silicon device. A first GHz-frequency
tone drives electric-dipole spin resonance enabled by the valence-band spin-orbit coupling. A
second lower-frequency tone (≈ 500 MHz) allows for dispersive readout via RF-gate reflectom-
etry. We compare the measured dispersive response to the linear response calculated in an
extended Jaynes-Cummings model and we obtain characteristic parameters such as g-factors
and tunnel/spin-orbit couplings for both even and odd occupation allowing for the reconstruc-
tion of the entire energy spectrum of the DQD necessary for qubit control and readout.

6.1 Methods
The experiment in this chapter is carried out on devices 2 and 3 described in Sec. 2.3. The

face-to-face geometry of these devices allows the accumulation of holes DQD in parallel (with
source and drain) by applying negative DC voltages VG1 and VG2 on the gates when the device
is operated in a dilution refrigerator at the base temperature Tbase ≈ 20 mK. The two dots are
formed at the corners of the channel overlapped by the gates [142]. Gate 2 is connected to a
broadband high frequency coaxial line that allows to drive spin resonances. Gate 1 is connected
to a surface mount inductor, which forms with its parasitic capacitance and device impedance
an LC resonator with a resonance frequency fres = ωres/(2π) = 497 MHz on device 2 (ICT 1 and
ICT 2) and fres = 560 MHz on device 3 (ICT 3). The RF power Pres applied to the resonator
is constant throughout all the spectroscopy measurements and is set to a value low enough to
avoid any signal broadening. We estimate Pres ≈ −110 dBm. The full measurement circuit is
reported in Sec. 3.1.

The hole DQD acts as a variable load for the LC resonator and the resonance frequency
undergoes a dispersive shift depending on the DQD state (see Sec. 1.4). This can be readily
understood if one considers a (M+1,N)↔ (M,N+1) ICT with M (N) the charge number in the
left (right) dot. The two-state Hamiltonian of this system writes HDQD = −ε σz/2 − ∆σx/2,
where the Pauli matrices act in the space of the charge configuration. σx describes the tun-
neling between the dots that opens a gap ∆ in the energy spectrum. The difference in energy
of the two states reads E =

√
ε2 + ∆2 and is a function of the detuning ε. In the adiabatic

limit, when the resonator angular frequency ωres � E/~, the interaction between a charge
qubit and a resonator has often been treated semi-classically with the introduction of quantum
capacitances [32, 127, 93]. However, when the frequency of the readout oscillator is comparable
to the characteristic frequency of the measured system (ωres ' E/~), a quantum mechanical
treatment of the interaction with an extended Jaynes-Cummings Hamiltonian is convenient in
order to take into account the finite frequency of the readout apparatus.
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Recently, it was shown that for a charge qubit, such a model captures the interaction also in
the adiabatic limit [107]. Here, we therefore model all the interactions within the framework of
the Jaynes-Cummings Hamiltonian. This quantum approach provides complementary physical
insights and proves useful in describing more complex situations. In particular, we extend the
Jaynes-Cummings model to the driven case (with microwaves at frequency fexc), where we also
capture dispersive shifts due to resonantly driven transitions between states in the DQD (a
complete discussion of the underlying theory can be found in Appendix B).

The coupling between the DQD and the read-out resonator, described by the Hamilto-
nian Hr = ~ωres

(
a†a+ 1/2

)
, is expressed in the basis of the charge configurations as Hint =

~gcσz
(
a+ a†

)
, with a the annihilation operator of the oscillator, gc = (α1 − α2)eVrms/(2~) the

coupling strength between the charge and the microwave photons, Vrms =
√

~ωres/(2Cr) the
zero-point voltage fluctuation of the LC oscillator, and Cr is the capacitance of the LC circuit
(which includes the geometric capacitance of the DQD). The coupling between gate 1 and the
DQD charge leads to a phase shift between the incoming and the reflected microwaves. In the
linear regime discussed in Appendix B, the phase shift can be expressed as

δφ =
4QloadedReχ(ωres)

ωres

, (6.1)

where χ(ωres) is the charge response function whose real part represents the linear shift in the
resonant angular frequency of the LC circuit and Qloaded is the resonator loaded Q-factor. For
a pair of states near charge degeneracy with the readout oscillator in the adiabatic limit, the
response function is real and equals

χ = − 2~g2
c∆2

(ε2 + ∆2)3/2
; kBT, ~ωres, ~Γ2 � ∆, (6.2)

where kB is the Boltzmann constant, T is the equilibrium temperature of the DQD environment
and Γ2 is the decoherence rate of the DQD charge. Eq. (6.2) is equivalent to the standard os-
cillator shift δωres = −CQωres/(2Cr), with CQ the quantum capacitance of the DQD [110, 23, 93].

6.2 Stability diagrams and magnetospectroscopy
When measuring the phase response of the resonator at its resonance frequency while sweep-

ing the gate voltages VG1 and VG2, we obtain the charge stability diagram of the DQD system.
Diagonal features with positive slope in this diagram mark ICTs. This work is focused on three
interdot transitions ICT 1 and ICT 2 on device 1 and ICT 3 on device 2, all chosen to have
an estimated hole number below 20 in each dot. Figs. 6.1 to 6.3 show the stability diagrams
around ICT 1, ICT 2 and ICT 3 respectively. Using the model introduced above and fitting
the phase response as a function of detuning at each ICT we find a charge-photon coupling
gc/(2π) ' 35 MHz for all three interdot transitions (see Sec. 6.4.3).

Any given ICT is characterized by either an even or an odd parity of the total occupation
number in the DQD. Without knowing this number, different parities can still be discriminated
through the magnetic field evolution (magnetospectroscopy) of the corresponding ICT phase
response [25, 123, 131].

For holes in silicon, the presence of spin-orbit interaction is changing the magnetic field de-
pendence of the ICT as spin-flip tunneling is allowed and couples different spin states. However,
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Figure 6.1 – Interdot 1 stability diagram and magnetospectroscopy. (Top panel)
Phase response of the LC resonator as a function of VG1 and VG2 around ICT 1 highlighted
with a red rectangle. The map was acquired using the VM technique. Each scattered point
represents a detected peak in the scan. (Bottom left panel) Phase response of the LC
resonator as a function of VG1 and VG2 showing a zoom on ICT 1 of even parity. The insets
show the equivalent one- and two-electron charge configurations just above and below ICT 1.
The first (second) number represents the equivalent hole occupation in the dot under gate 1
(gate 2). (Bottom right panel) Phase response as a function of VG2 and Bz at fixed VG1 (see
dashed line in bottom left figure) revealing the ground-state evolution in magnetic field.
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Figure 6.2 – Interdot 2 stability diagram and magnetospectroscopy (Top panel) Phase
response of the LC resonator as a function of VG1 and VG2 around ICT 2 highlighted with a
red rectangle. The map was acquired using the VM technique. Each scattered point represents
a detected peak in the scan. (Bottom left panel) Phase response of the LC resonator as
a function of VG1 and VG2 showing a zoom on ICT 2 of even parity. The insets show the
equivalent one- and two-electron charge configurations just above and below ICT 2. The first
(second) number represents the equivalent hole occupation in the dot under gate 1 (gate 2).
(Bottom right panel) Phase response as a function of VG2 and Bz at fixed VG1 (see dashed
line in bottom left figure) revealing the ground-state evolution in magnetic field.

83



6

Chapter 6. Spectroscopy of a silicon hole double quantum dot

-920 -880 -840 -800 -760
VG1 (mV)

-840

-800

-760

-720

-680

V G
2 

(m
V)

ICT 3

-858 -856 -854 -852
VG1 (mV)

-740.5

-739

-737.5

-736

-734.5

V G
2 

(m
V)

-738 -737.8 -737.6 -737.4
VG2 (mV)

0.15

0.3

0.45

0.6

0.75

B z
 (T

)

(1,0)(0,1)

-45 -30 -15 0
 (mrad)

-24 -16 -8 0
 (mrad)

(1,0)

(0,1)

-4.8 -4 -3.2 -2.4 -1.6
log10| |

Figure 6.3 – Interdot 3 stability diagram and magnetospectroscopy (Top panel) Phase
response of the LC resonator as a function of VG1 and VG2 around ICT 3 highlighted with a
red rectangle. The map was acquired using the VM technique. Each scattered point represents
a detected peak in the scan. (Bottom left panel) Phase response of the LC resonator as a
function of VG1 and VG2 showing a zoom on ICT 3 of odd parity. The insets show the equivalent
one- and two-electron charge configurations just above and below ICT 3. The first (second)
number represents the equivalent hole occupation in the dot under gate 1 (gate 2). (Bottom
right panel) Phase response as a function of VG2 and Bz at fixed VG1 (see dashed line in
bottom left figure) revealing the ground-state evolution in magnetic field.
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we show in the next paragraph that it is still possible to infer the interdot charge parity from
the dispersive response in magnetic field. The phase response of the LC resonator is measured
as a function of VG2 and magnetic field, keeping VG1 constant. Measurements are shown in the
bottom right panels of Figs. 6.1 to 6.3.

In the even case, Figs. 6.1 and 6.2, the dip in phase at zero detuning and zero magnetic
field arising from the avoided crossing of the S(1,1) ↔ S(2,0) remains unchanged as long as
the Zeeman energy of the polarized triplet state EZ < ∆. Once EZ becomes larger than ∆,
the state |↓↓〉 becomes the ground state in the (1,1) configuration and a new avoided-crossing
mediated by spin-orbit interaction between |↓↓〉 and S(2,0) emerges, which we characterize by
an energy gap ∆SO, see Fig. 6.7 for an energy diagram at finite magnetic field. With increasing
magnetic field, this avoided crossing moves towards higher detuning, which explains why the
dips in phase in Figs. 6.1 and 6.2 move towards larger VG2 as the magnetic field is increased.
Moreover, the increase in phase shift is due to ∆SO < ∆, which gives rise to a higher disper-
sive shift χ at higher field following Eq. (6.2). We would like to stress out that the situation
described here is different from a previously reported situation in Chap. 4 of a hole DQD in
silicon [26]. There, the negligible ∆SO paired with a ∆ comparable to temperature, led to the
thermal population of higher laying states, which themselves led to a dispersive shift of the
resonator.

In the odd case, see Fig. 6.3, the central dip in phase does not vary much with increasing
magnetic field indicating that the nature of the ground state is unchanged. However Fig. 6.3
shows two additional phase signals appearing on either side of the central phase dip. These
originate from higher-lying avoided crossings in the DQD level spectrum that lead to nonzero
electric susceptibility, see Fig. 6.8 for an energy diagram at finite magnetic field. Their origin is
the spin-orbit mediated coupling of states with opposite spins in the two dots. With increasing
magnetic field, these dips in phase move away from the central feature and fade out. The
dispersion is again linked to a change in EZ, whereas the reduced phase signal is explained by
a lower occupation probability of the excited state by thermal activation. The slight dispersion
of the central dip arises from a difference in the Landé g-factors of the two QDs. The dispersive
detection of higher-lying avoided crossings due to spin-orbit interaction is similar to the recently
reported observation of valley splittings in cavity-coupled electron quantum dots in silicon [92].

6.3 Spectroscopy measurements

Having established the parity of each ICT, we proceed to microwave spectroscopy to explore
the full DQD level spectrum as a function of magnetic field, Bz, along the z-axis, i.e. perpendic-
ular to the substrate. Both even and odd charge configurations have two anti-crossing states,
with single and doublet spin character, respectively.

The even configurations are characterized by the additional presence of spin-triplet states,
which can be neglected at zero magnetic field because of their negligible dispersive shift. As
a result, in both even and odd cases, a single charge tunnels between the two QDs giv-
ing rise to a nonzero electric susceptibility at the ICT, see Eq. (6.2). We can extend this
model to capture microwave photon induced tunnel events by adding a fast electrical drive
Aexc cos (ωexct) /2 to gate 2. The Hamiltonian describing the full system includes now also
Hexc = Aexc cos (ωexct)σz/2, where Aexc is the amplitude of the fast drive signal. By solving the
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complete Hamiltonian H = HDQD +Hexc +Hr +Hint, we find a linear response function:

χ (ωres) = −
[
−2~g2

c∆2

E3

δω

ωR

+

(
gc
ε

E

ωR0

ωR

)2
1

ωR − ωres − iΓ̃2

]
D,

(6.3)

where δω = ωexc−E/~ is the detuning of the drive frequency ωd from the DQD transition energy
E, ωR =

√
δω2 + ω2

R0 is the Rabi frequency due to the resonant drive with ωR0 = Aexc∆/(2~E),
Γ̃2 is the decoherence rate of the driven system and D is the difference of the occupation prob-
ability of the ground and excited state in the dressed basis. The first term is the adiabatic
response already described in Eq. (6.2), whereas the second term includes now the dispersive
shift due to resonantly driven charge transitions in the DQD. Let us note that in Eq. (6.3)
we have only retained the rotating wave approximation (RWA) contribution of the resonant
term which is relevant to our regime of operations and accounts for the damping of the signal
when increasing dot detuning. The region of accuracy of the RWA is quite extended, over
a dot detuning range at least the gap ∆, and matches the important region of the resonant
signal. In other conditions where ωr � ωR the non-RWA contribution may also be included
straightforwardly. A detailed derivation of Eq. (6.3) is given in Appendix B.

6.3.1 Excitation power calibration

When applying a constant room temperature microwave power through the spectroscopy
line, the corresponding spectroscopy maps clearly indicate that the delivered power at the de-
vice level varies with fexc. In order to ensure a constant power seen by the sample, we search,
for each applied frequency, the spectroscopy power Plimit that will decrease the interdot signal
by 5 %. But doing so, Plimit values would be affected by the physics of the DQD. Therefore,
we perform this calibration procedure on different ICTs and then average all the curves to
minimize the individual physics related contributions of each interdot.

Fig. 6.4 presents an average of four calibration curves measured on four different ICTs. In
the case of ICT 1 (Sec. 6.3.3), the power of the microwave signal at frequency fexc is held
constant at room temperature, while in the case of ICT 2 (6.3.2) and ICT 3 (Sec. 6.3.4), the
power is adapted at each frequency in order to ensure that the power delivered to the sample
is quasi-constant. In doing so, frequency dependent attenuation as well as standing wave inter-
ferences leading to large power variations are mostly corrected for.

6.3.2 Spectroscopy at zero magnetic field

Fig. 6.5 shows the phase response of the even-parity ICT 2 as a function of VG2 and
fexc = ωexc/(2π) for fixed VG1. Qualitatively similar results can be found for odd parity cases,
such as ICT 3 (not shown). To analyze the data in the top panels of Fig. 6.5 we refer to the
corresponding energy diagram at zero magnetic field, shown in the bottom plot of Fig. 6.5.
Resonant microwave induced transitions are highlighted by double arrows at positive and neg-
ative detuning.

The vertical ridge at VG2 ' −669.1 mV corresponds to the dispersive shift arising from the
charge qubit associated to the S(1,1) ↔ S(2,0) anticrossing as described by the first term in
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Figure 6.4 – Excitation power calibration. Room temperature microwave source power
Pexc as a function of excitation frequency fexc such as the delivered power at the sample level
is quasi-constant.

Eq. (6.3). The phase dip along this line vanishes when the microwave excitation energy matches
the energy gap ∆ due to tunnel coupling, i.e. when δω → 0 [110, 108, 131]. From this we find
∆/h = 5.72± 0.04 GHz (see Sec. 6.4.1 for the detailed extraction).

Two side branches can be seen in the the same figure. They consist of dip-peak features
due to microwave-assisted excitation away from the charge degeneracy point at ε = 0. They
occur when the microwave tone is in resonance with the charge qubit energy E, once again
when δω → 0, and they are accounted for by the second term in Eq. (6.3).

At large detuning (ε � ∆), the side branch turn into straight lines whose slope can be
used to extract the lever-arm parameter α2 = 0.160± 0.001 relating detuning energy to gate 2
voltage, see Sec. 6.4.2. From the slope of the ICT 2 line in the bottom left panel of Fig. 6.2,
we can further infer the lever-arm parameter for gate 1, α1 = 0.50± 0.02.

The data in Fig. 6.5 shows a clear asymmetry between the two branches, with the branch at
positive detuning being more pronounced. This asymmetry may be ascribed to the presence of
the triplet states, which affects the population of the anti-crossing singlet states. At negative
detuning, the S(1,1) ground state is partially depopulated due the thermal population of the
closely lying triplet excited states. This should lead to fainter side branch since the triplets
do not contribute any measurable dispersive phase shift and cannot be photon-excited to the
S(2,0) state due to time-reversal symmetry at zero magnetic field.

Using the model introduced above, we can qualitatively reproduce the experimental results,
as shown in the top right part of Fig. 6.5, where the transition energy, E, is highlighted by
a white dashed line. The exact shape of the dip-/peak phase branches that emerge when the
charge qubit is driven resonantly at non-zero detuning is a sensitive function of dephasing and
relaxation whose complete modelling goes beyond the scope of this work.
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Figure 6.5 – Photon assisted spectroscopy at zero magnetic field. (Top left panel)
Phase response of the resonator as a function of VG2 and microwave frequency fexc at zero
magnetic field. The output power of the microwave generator is adjusted for each fexc in
order to deliver a constant power at the device level. We estimate the power at the device
level to be around −70 dBm. In addition to the central interdot transition signal vanishing
at 5.72± 0.04 GHz, two side branches mark photon-assisted charge transitions between the
quantum dots. (Top right panel) Theoretical simulation of the driven DQD phase response.
The central dip at ε = 0 vanishes when the excitation energy matches ∆. (Bottom panel)
Energy diagram of a DQD near the “(1,1)” ↔ “(2,0)” transition at zero magnetic field. The
double arrows mark the processes giving rise to the branches observed in top figures.
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When the system is strongly driven , multi-photon processes can occur (nhfexc = E, where
n is an integer). Fig. 6.6 shows the phase response at large microwave power. In addition to the
dispersive shift of the driven charge qubit originating from a one photon process, new branches
appear at half and one-third the frequencies of the original branches demonstrating two- and
three-photon processes, respectively. The theoretical description of the multi-photon case can
be found in Appendix B.
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Figure 6.6 – Multi-photon processes at zero magnetic field. Phase response of the
resonator as a function of VG2 and microwave frequency fexc at zero magnetic field at a high
driving power Pexc giving rise for multi-photon processes. The delivered microwave power is
increased by 10 dBm compared to Fig. 6.5. Additional side branches appear at one half and one
third of the side-branch frequency in Fig. 6.5 indicating two-photon and three-photon process,
respectively.

To sum up, microwave spectroscopy at zero magnetic field is a powerful tool to extract the
interdot charge tunnel coupling as well as the lever-arm parameters for both gates allowing the
reconstruction of the DQD spectrum at zero magnetic field.

6.3.3 Spectroscopy of a double quantum dot with an even charge
configuration at finite magnetic field

We now proceed with microwave spectroscopy at finite magnetic field to explore the spin-
split energy levels and the spin-orbit coupling in the DQDs. First, we present results for ICT 1.
At an external magnetic field Bz = 600 mT, the triplet states split leading to a DQD energy
spectrum as illustrated in the bottom of Fig. 6.7, where the |↓↓〉 is the ground state at ε = 0.
Due to a difference in g-factors between the two quantum dots, the T0(1,1) state mixes with
the singlet S(2,0) state around ε = 0 and a new basis for the (1,1) states consisting of four
non-degenerate states |↓↓〉, |↑↓〉, |↓↑〉 and |↑↑〉 needs to be adopted. At positive detuning, |↓↓〉
and S(2,0) couple due to the intrinsic spin-orbit coupling in the valence band of silicon. At
finite magnetic field, This gives rise to an avoided crossing ∆SO with characteristic energy ∆SO
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at a magnetic-field-dependent detuning ε = εSO.
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Figure 6.7 – Photon assisted spectroscopy at finite magnetic field for an even-parity
ICT. (Top left panel) Phase response of the LC resonator around the spin-orbit anticrossing
of |↓↓〉 with S(2,0) as a function of VG2 and fexc at Bz = 600 mT. The dashed horizontal lines
delimit regions in which the spectroscopy tone power is held constant at room temperature. The
dash-dotted vertical line marks the position of the ICT at zero magnetic field, corresponding to
ε = 0. The strong vertical structure is associated with the spin-orbit anticrossing at ε = εSO.
It vanishes at fexc = ∆SO/h =4.6± 0.1 GHz. The three side branches around the central signal
correspond to photon induced charge transitions between the quantum dots, as indicated in
the bottom figure. (Top right panel) Corresponding simulated phase response of the driven
DQD. (Bottom panel) Energy diagram of the DQD around a “(1,1)” ↔ “(2,0)” transition at
finite magnetic field and with g1 6= g2. The photon-induced charge transitions responsible for
the side branches in top figures are indicated by arrows and corresponding symbols.

Around εSO, the hole DQD could be operated as a “spin-flip” charge qubit. In the top left
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panel of Fig. 6.7, we show a two-tone spectroscopy around ε = εSO. The dispersive interaction
of the qubit with the resonator gives rise to the vertical dip structure at VG2 ' −803.9 mV.
As for the case of a spin-less charge qubit (Fig. 6.5), we observe a local suppression of this dip
structure from which we extract a spin-orbit-mediated avoided crossing ∆SO/h = 4.6± 0.1 GHz
(see Sec. 6.4.1).

Away from εSO, the dispersive shift due to the driven “spin-flip” charge qubit arises when
the microwave photon energy matches the energy splitting between S(2,0) and |↓↓〉. Close
to VG2 = −804.2 mV, i.e. close to zero detuning, the left branch bends towards a horizontal
asymptote around 16.1 GHz. This arises from the hybridization of the exited state S(2,0) with
the |↓↑〉 state, as shown in Fig. 6.7. In this regime, the “spin-flip” charge qubit evolves to
a single-dot “spin-orbit” qubit for which the electric dipole is largely reduced and cannot be
sensed by the LC resonator. From the frequency of the horizontal asymptote we extract the
g-factor of the second dot, g2 = 1.92 ± 0.02. At VG2 = −804.2 mV and for frequencies close
to 20 GHz an additional phase signal is visible in Fig. 6.7. This signal can be associated to
the transition between |↓↓〉 and the hybridized S(2,0) and |↑↓〉 states. In principle, this branch
could allow for the extraction of the g-factor of the first dot. However, due the upper limit of
20 GHz in our microwave generator, we were not able to fully capture this feature and we only
infer g1 > 2.38.

Similarly to the zero magnetic field case, the dispersive shift of the resonator can be mod-
eled by also taking into account the spin degree of freedom as well as the spin orbit interaction.
Apart from spin-flip tunnel events, the physics remains the same. We again find a qualita-
tive agreement with the measurements, see top right part in Fig. 6.7. The white dashed lines
highlight the transition energies as indicated with different arrows in the energy diagram of
Fig. 6.7. We again note that the exact shape of the side wings depend on the details of the de-
coherence of the driven system and therefore exact modeling goes beyond the scope of this work.

6.3.4 Spectroscopy of a double quantum dot with an odd charge con-
figuration at finite magnetic field

We now present in Fig. 6.8 microwave spectroscopy measurements for ICT 3, the odd-parity
ICT. At finite magnetic field the basis states |L〉 and |R〉 of an odd parity ICT are spin split
into |L ↓〉, |L ↑〉, |R ↓〉 and |R ↑〉, resulting in the energy diagram of the bottom plot in Fig. 6.8.
Around zero detuning, pure charge tunnel coupling gives rise to avoided crossings between
states with the same spin, i.e. between |L ↓〉 and |R ↓〉 and between |L ↑〉 and |R ↑〉. The
strong central feature in top panel of Fig. 6.8 is due to the dispersive shift associated with the
lowest energy one, involving spin-down states.

Similar to the even-parity case, two side branches arise when hfexc matches the energy dif-
ference between ground and excited states, corresponding to transitions from |L ↓〉 to |R ↓〉 and
vice-versa. They exhibit clear avoided crossings around 12 GHz. The one on the left (right) is
due to a spin-orbit-mediated tunnel coupling between |L ↑〉 and |R ↓〉 (|L ↓〉 and |R ↑〉). As for
the previous cases, we model the dispersive shift of the resonator. We again find a qualitative
agreement with the measurements, see top right part in Fig. 6.8. We would like to point out
that the observed branches, highlighted by white dashed lines, are in fact due to two-photon
excitations. As a consequence, transition frequencies in Fig. 6.8 are a factor of two smaller than
the actual transition energies. From the amplitude of the measured avoided crossings we find
a spin-orbit gap ∆SO/h = 2.4 GHz. In addition, the side branch on the left (right) approaches
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Figure 6.8 – Photon assisted spectroscopy at finite magnetic field for an odd-parity
ICT. (Top left panel) Phase response of the LC resonator around zero detuning as a function
of VG2 and fexc at Bz = 1.3 T. The dispersive response due to the charge qubit is visible as
the vertical feature at VG2 ≈ −737.35 mV. At resonance, 2hfexc = Ω, the resonator undergoes
as well a phase shift. Around 12 GHz spin-orbit anticrossings between states with opposite
spin localized in different dots are detectable in the driven response. (Top right panel)
Corresponding simulated phase response of the one hole driven DQD. (Bottom panel) Energy
diagram of a single hole in a DQD (“(0,1)” ↔ “(1,0)” transition) at finite magnetic field with
g1 ' g2. At zero detuning, the down spin states of the left and right dot undergo an anticrossing
due to tunneling t. A small anticrossing due to the spin-orbit interaction appears between the
down spin states of one dot and the up spin states of the other dot. Microwave induced
transitions that give rise to the two branches are highlighted with arrows and corresponding
symbols.
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asymptotically a constant frequency set by the Zeeman energy in the left (right) quantum dot.
This allows us to determine the two g-factors of the DQD, which happen to be differ slightly
from each other, i.e. gL = 1.27 and gR = 1.33.

6.3.5 Spin-orbit spatial mapping

Since the spectroscopy technique gives access to the spin-orbit coupling ∆SO, a spatial map-
ping of this interaction strength can be achieved. From Eqs. (6.1) and (6.2), we deduce that for
the non excited case (no spectroscopy tone) the phase shift due to the spin-orbit anticrossing
ϕ ∝ ∆SO

−1. Hence, once we link a phase shift value to a spin-orbit gap using the above de-
scribed spectroscopy measurement, we can access the values of this gap for the rest of magnetic
field directions just by measuring the phase signal and making the correspondence.

In Fig. 6.9, we fix the magnetic field module to 0.6 T and cover the upper hemisphere field
directions using a Fibonacci sphere sampling. For each direction we fit the ICT signal and
extract the phase shift height. We see a clear magnetic field direction dependence of the spin-
orbit coupling but we did not further extend the study to investigate this dependence.
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Figure 6.9 – Spin-orbit coupling spatial mapping. Spin-orbit phase dip height as a function
of Bx (along channel), By (in plane perpendicular to channel) and Bz (out of plane) while
keeping a constant 0.6 T magnetic field module to cover the upper field hemisphere using a
Fibonacci sphere sampling. The two plots show the same data from different view angles. The
spin orbit gap ∆SO could be directly linked to the dip height and therefore this measurement
maps spatially the spin-orbit coupling.

In conclusion, we have performed microwave magneto-spectroscopy in combination with
gate-based dispersive readout of silicon hole DQDs. By modelling the DQD coupled to the LC
resonator and microwave spectroscopic tone by a driven Jaynes-Cummings Hamiltonian, we
derive the linear response function of the system, which qualitatively explains our experimental
data. Due to the spin-orbit interaction present in the valence band of silicon, all spin-orbit
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states have been revealed by two-tone spectroscopy enabling a precise reconstruction of the
DQD energy diagram in both even- and odd-parity ICTs. Consequently, we were able to
extract all of necessary physical parameters of a DQD, i.e. gate lever arms, tunnel couplings,
g-factors and spin-orbit strength. The demonstrated two-tone spectroscopy and frequency
multiplexed gate dispersive readout could enable parameter characterization in dense arrays of
spin-orbit qubits without the need for local charge detectors and reservoirs whose integration
is technically challenging. Moreover, the use of superconducting LC resonators with higher
resonance frequency, Q-factor and impedance, either off-chip [59] or on-chip [156], would result
in larger dispersive shifts and hence improved signal-to-noise ratios.

6.4 Extractions

6.4.1 Tunnel coupling & spin-orbit interaction

In order to get a more precise and correct extraction of the tunnel coupling and the spin-
orbit interaction, we need to take into account the charge noise fluctuations impact into our
fitting model.

The transition frequency (f) of a charge qubit as a function of detuning (ε) is:

f =

√
ε2 + ∆2

h
, (6.4)

where h is the Planck constant and t is the tunnel coupling giving rise to an anticrossing gap ∆.

Low frequency charge noise will lead to fluctuations of the qubit transition frequency. As-
suming that the noise on the detunig axis is Gaussian, its probability density function can be
written as:

ρε(ε) =
1

σε
√

2π
· e−

1
2

( ε
σε

)2

, (6.5)

where σε is the standard deviation of the distribution of detuning noise. To transform the
probability density function of the detuning noise into the probability density function for the
transition frequency, we use the following relation:

ρy(y) = ρx(x(y)) · dx(y)

dy
, (6.6)

where ρy(y) is the probability density function of y and y(x) is a function of x, whose proba-
bility density function is given by ρx(x).

Therefore, we find the following probability density function for the transition frequency:

ρf (f) =


0 , f ≤ ∆/h

2h2f

σε
√

2π
· e
− 1

2 (
(hf)2−∆2

σ2
ε

)

√
(hf)2−∆2

, f > ∆/h
(6.7)

The factor of 2 in ρf (f) comes from the fact that there are two solutions to Eq. (6.4) for
ε(f).

The linewidth of the qubit transition is given by the lifetime of the excited state (assuming
that the ground state cannot decay and has infinite lifetime). From Heisenberg uncertainty
principle, we know that ∆E∆t ≥ ~ [29]. This directly translates into a spectral width ∆f =
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1/(2πT1), where T1 is the lifetime of the excited state. Then, the full linewidth is described by
a Lorentzian centered around frequency f0:

L(f) = A ·
(Γ

2
)2

(f − f0)2 + (Γ
2
)2
, (6.8)

where A is the amplitude of the spectral ray at f = f0 and Γ = 1
T1

is the full width at half
maximum and the lifetime of the excited state.

The final lineshape of the phase response as a function of drive frequency at an anticrossing
is given by the convolution of the intrinsic lineshape of the qubit (Lorentztian characterized by
T1) and the probability density function of the transition frequencies [108]:

ϕ(f) =

∫ +∞

−∞
L(ν) · ρf (f − ν) · dν + ϕ0, (6.9)

where ϕ0 is a phase offset. We compute Eq. (6.9) numerically and pass it as the fitting model
in order to extract the tunnel coupling at the anticrossing.

The fittings that allowed the extraction of ∆ (in the case of ICT 2) and ∆SO (in the case of
ICT 1) are presented in Fig. 6.10. The dashed line cuts along the anticrossing detuning were
taken from spectroscopy maps measured at the lowest constant room temperature power.

6.4.2 Alpha factor

By following the center of the dip-peak structure of the wings, we get the energy gap value
between the ground state and the excited state for each detuning value. Fig. 6.11 illustrates
the extraction of the α-factor. Starting from the calibrated spectroscopy map at zero magnetic
field, we mark both the position of the central dip and the center of wing dip-peak. We align
afterwards the positions corresponding to zero detuning around their mean value V0. We can
then fit alpha to the obtained wing positions with:

hfexc =
√
α2(VG2 − V0)2 + ∆2, (6.10)

where ∆ is the anticrossing gap extracted as in Sec. 6.4.1 and input in the model as a fixed
parameter.

6.4.3 Charge photon coupling

The charge photon coupling is extracted using Eq. (6.1) and Eq. (6.2) as a model. Each
experimental dip in Fig. 6.12 is a 40 time average of the same measurement at zero magnetic
field with no spectroscopy drive. We then fit these data while introducing the already extracted
entities (α, ∆, ∆SO, Qloaded . . . ) as fixed parameters. The decoherence rate Γ is neglected here
since we assume that it is small compared to the tunnelling.

6.4.4 g-factors

Due to g-factor difference between the two quantum dots, the Zeeman splitting induced by
the applied magnetic field is not the same for both spins. The energies Ef1 and Ef2 illustrated
in Fig. 6.13 represent the energies necessary to flip respectively the spin of QD 1 and the spin of
QD 2. These energies give access to the g-factors knowing the applied magnetic field B since:

Ef1 = g1µBB (6.11)
Ef2 = g2µBB (6.12)
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Figure 6.10 – Tunnel coupling and spin-orbit coupling extractions. Phase response of
the LC resonator as a function of VG2 and fexc is shown on the left in the case of ICT 1 (bottom)
and ICT 2 (top) and line-cuts (black dashed lines) are shown on the right. The line-cuts are
fitted with Eq. (6.9) in order to extract ∆ = 5.72± 0.04 GHz (top) and ∆SO/h = 4.6± 0.1 GHz
(bottom).
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Figure 6.11 – Alpha factor extraction. Phase response of the LC resonator as a function of
VG2 and fexc (with power calibration) for ICT 2 is shown on the left. The scatter plot on the
right retraces the positions of the central line as ell as the right dip-peak structure from the
left graph. The orange curve is a fit using Eq. (6.10) and the already extracted ∆ value which
yields α = 0.160± 0.001 eV/V.
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Figure 6.12 – Charge photon coupling extraction. The experimental data (blue) for
ICT 1 (left) and ICT 2 (right) are fitted (orange) with Eq. (6.1) and Eq. (6.2) to extract
gc = 35.2± 0.1 MHz and gc = 37.4± 0.1 MHz respectively.
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Ef1 and Ef2 are marked on a theoretical spectroscopy map on the top panel of Fig. 6.13.
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Figure 6.13 – g-factors extraction. Simulated response of the driven DQD system at finite
magnetic field in the case of an even charge parity (left panel) and the corresponding schematic
of the energy diagram (right panel) highlighting the transition energies Ef1 and Ef2 necessary
for g-factors extraction.
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Takeaway messages:

• The devices used for this experiment are p-type face-to-face.
• We achieved microwave spectroscopy in combination of gate-based dispersive readout.
• The dispersive signal is modeled using a quantum mechanical approach based on

driven Jaynes-Cumming Hamiltonian.
• We obtained characteristic parameters such as g-factors, tunnel/spin-orbit couplings

and α-factors enabling the reconstruction of the entire energy spectrum of the DQD
necessary for qubit control and readout.

• The adopted model gives also access to the charge-photon coupling.
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Conclusion

The great art consists in devising decisive
experiments, leaving no place to the imagination
of the observer. Imagination is needed to give
wings to thought at the beginning of experimental
investigations on any given subject. When,
however, the time has come to conclude, and to
interpret the facts derived from observations,
imagination must submit to the factual results of
the experiments.

Louis PASTEUR

C
ompanies and governments are racing to be the first to own a quantum processor
capable of performing useful calculations. While the global effort is to increase
the number of qubits in such a processor, leading for example to the latest 53
qubit prototype developed by Google [6], this thesis takes a step back to the

departure square by adopting a physical qubit implementation based on industrial-scale man-
ufacturing, shows that such an approach has a promising potential, and introduces some tools
needed for its future development.

The well known silicon properties as well as the maturity of the CMOS technology make
electrostatically defined quantum dots in a silicon nanostructure a suitable host for quantum
information. We presented in this thesis foundry-compatible silicon qubit devices with a rel-
atively simple geometry. The simplicity of the investigated device layouts (face-to-face and
pump geometries) led us to conclude that both control and readout are possible with a minimal
number of gates and prepare the path to the operation of quantum dot arrays.

We studied p-doped devices knowing that holes in silicon offer a set of attracting properties.
The possibility of an all electrical control of the qubit by taking advantage of the spin-orbit
coupling, the insensitivity to the surrounding nuclear spin bath, as well as the absence of a
valley-degeneracy issue as in the case of electrons make holes a compelling choice.

Combining the electrically mediated spin control with the RF gate reflectometry dispersive
readout and a Pauli spin blockade based spin to charge conversion scheme, we demonstrated
(Chap. 4) a fully functional hole qubit [26] which does not require any local charge sensor nor
a micromagnet. The pseudospin state, mixed with the orbital component due to spin-orbit
interaction, is driven coherently via EDSR using only an alternating voltage on one of the
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gates. Unlike in the very first demonstration of a silicon hole spin qubit [89] where readout was
performed by current transport through source and drain electrodes, here, the newly adopted
readout scheme requires no current flow through the leads, which are there only to provide a
reservoir of holes to populate the QDs under the gates. This simplifies the device design and
operation.

The RF gate reflectometry readout technique grants higher readout speeds and good sen-
sitivities when compared to other methods, but this comes at a price. The precision of gate
electrodes when scanning for signals needs to be high in order to be able to capture the desired
features in a stability diagram. For the sake of minimising measurement times that could be-
come excessive when taking in consideration the required voltage steps, a measurement method
known as video mode (VM) has been developed during this thesis and explained in Chap. 5.
Its concept relies on cutting off on the communication times for each data point by acquiring
continuously while sweeping the gate voltages.

Albeit the gain in device layout thanks to the electrical manipulation of hole spin state, an
important difficulty arises when dealing with hole based qubits. Holes typically exhibit a large
variability in their g-factors, which makes it harder to find the proper operation regime. This
is particularly true in the case of dispersively probed hole qubits. The reconstruction of the
energy diagram becomes then more and more difficult in contrast to the electron case where the
g-factor is always bordering on 2. To address this issue, a dispersively probed microwave spec-
troscopy technique has been established [35] and as discussed in Chap. 6. By inducing charge
transitions in a DQD system using a microwave excitation, one can access various parameters,
enabling the full reconstruction of the energy diagram which will in turn pinpoint the necessary
frequencies for qubit manipulation.

This thesis paves the way for a more in depth study of hole qubits in silicon. The demon-
strated gate-reflectometry readout opens access to the implementation of long spin manipulation
sequences, overcoming an important limitation of transport-based detection. This should enable
the implementation of long echo sequences (e.g. CPMG) and a more accurate measurement of
the characteristic spin relaxation and dephasing times. Moreover, it should enable randomized
benchmarking protocols for fidelity characterization. On the devices side, reducing the size of
the channel will be of a certain advantage because of the higher energy level quantization (which
makes life easier) offered by stronger hole confinement. Coupling remote hole spins can also be
an interesting track to pursue since long-distance quantum information transfer may open the
way to new opportunities for scalable quantum architectures. Furthermore, the realisation of
two-qubit gates (with our LETI devices) is yet a step to be acheived.

Optimizations on the technical level could also follow this work. By relying on a super-
conducting LC resonators with higher resonance frequency, Q-factor and impedance, either
off-chip [59] or on-chip [156], larger dispersive shifts could be acheived leading to improved
signal-to-noise ratios. Frequency multiplexing might additionally become a necessity in the
near future if more than a resonator is deployed for dispersive readout. On the level of EDSR
signature search, frequency chirping [114] could be deployed at the microwave signal generator
so that the EDSR lines in the maps become larger and more pronounced enabling larger scan-
ning steps and faster measurements. Moreover, knowing that the spin-orbit interaction of holes
may be a source of decoherence when uncontrolled electric fields act on the DQD, chopping
the reflectometry excitation and triggering the readout only for specific time lapses could help
extending qubit coherence and relaxation times.
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In the quest of more scalable complex structures, in the very last part of my thesis I began
to investigate devices with more than two gates. In particular, I eventually focused on a pump-
type device with five gates (see Fig. C.1). The LC resonator is connected to the middle gate
(gate 3). We can therefore create two DQD systems, either under gate 2 and gate 3 or under
gate 3 and gate 4.

By loading a small number of holes in the dots under the inner gates and then raising the
voltages on the outer gates we succeeded to create a long-lasting, meta-stable regime character-
ized by a fixed total number of holes in the inner DQD. In practice, we start the initialization
by accumulating a few holes under gate 2 and gate 3. This is achieved by setting their respec-
tive gate voltages near threshold voltage for the first hole while keeping the other gates at high
filling potentials and the leads grounded. The channel is successively pinched-off by creating
high tunnel barriers using positive voltages on gates 1 and 4. Doing so, we trap the holes in
the DQD as they cannot escape to the leads. Fig. C.1 shows the stability diagram of such a
system when the total occupation number of the DQD is four holes and five holes.

The lines with positive slopes denote ICTs extending over a very large voltage ranges in the
stability diagrams of Fig. C.1. The trapped holes cannot escape to source or drain electrodes,
but they can tunnel from one QD to the other. As a result, one can observe as many lines as
the number of holes in the DQD. In other words, we can determine the number of holes in
the DQD system simply by counting the ICTs. Such isolation protocol opens the possibility to
study very few holes, or even single holes, in a DQD using RF gate reflectometry, which may
lead to better coherence times and better hole qubits in general.
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Figure C.1 – Few holes in an isolated DQD. (Top) Schematic illustration of a five-gate
pump sample. The readout tank circuit is connected to gate 3. (Bottom) Phase response
of the LC resonator as a function of VG2 and VG3 for two different total occupation numbers,
five (left) and four (right) holes in the DQD. The maps were acquired using the VM technique.
Each scattered point represents a detected peak in the scan. The ICT lines stretch over a
large range of gate 2/gate 3 voltages since the holes cannot escape to the leads due to the high
barriers induced by gate 1 and gate 4. (M,N) denotes the hole filling of the DQD where M (N)
is the number of holes present under gate 2 (3). The dashed lines serve as eye guides for weak
ICT signals.
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Appendix A
Energy diagram simulation Python

codes
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A.1 Odd charge configuration

1 # -*- coding: utf-8 -*-
2 """
3 Created on Wed Jan 13 18:44:52 2021
4

5 @author: Rami EZZOUCH
6 """
7

8 import numpy as np
9 import scipy.linalg as la

10 import matplotlib.pyplot as plt
11 from matplotlib.widgets import Slider, Button
12

13 # Basis: |right up>
14 # |right down>
15 # |left up>
16 # |left down>
17 Ld = [[1,0,0,0], (0,255,0)] # green
18 Lu = [[0,1,0,0], (255,0,0)] # red
19 Rd = [[0,0,1,0], (128,128,128)] # gray
20 Ru = [[0,0,0,1], (0,0,255)] # blue
21

22 statesNColors = [Ld,Lu,Rd,Ru]
23

24 xMultiplier = 1e6
25 yMultiplier = 1e6
26

27 h = 4.135667662e-15 # in eV.s
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28 muB = 5.778381e-5 # in eV/T
29 kB = 8.61733e-5 # in eV/K
30 gr = 2
31 gl = 1.5
32 t = 12e-6 # in eV NB: 1GHz = 4ueV
33 tso = 5e-6 # in eV
34 sgn = 1
35 B = 0.6
36

37 def update(val):
38 global gr, gl, t, tso, sgn, fig, e0, e1, e2, e3
39 B = sB.val
40 gr = sGr.val
41 gl = sGl.val
42 t = sT.val * 1e-6
43 tso = sTso.val * 1e-6
44 solveEnergies(sgn, gr, gl, t, tso, B)
45 plt.sca(axs[0])
46 for i in range(4):
47 exec("e%d.remove()" % i)
48 e0 = plt.scatter(epsilonRange * xMultiplier, diagram[0] * yMultiplier,

marker='.', s=s, linewidth=linewidth,
c=colors[:,0,:].transpose()/255)

↪→

↪→

49 e1 = plt.scatter(epsilonRange * xMultiplier, diagram[1] * yMultiplier,
marker='.', s=s, linewidth=linewidth,
c=colors[:,1,:].transpose()/255)

↪→

↪→

50 e2 = plt.scatter(epsilonRange * xMultiplier, diagram[2] * yMultiplier,
marker='.', s=s, linewidth=linewidth,
c=colors[:,2,:].transpose()/255)

↪→

↪→

51 e3 = plt.scatter(epsilonRange * xMultiplier, diagram[3] * yMultiplier,
marker='.', s=s, linewidth=linewidth,
c=colors[:,3,:].transpose()/255)

↪→

↪→

52

53 (fig.axes[0]).set_ylim(bottom=diagram.min() * yMultiplier,
top=diagram.max() * yMultiplier)↪→

54 fig.canvas.draw_idle()
55

56 numPointsE = 1001
57 epsilonRange = np.linspace(-1e-4, 1e-4, numPointsE)
58

59 def flip(event):
60 global sgn
61 sgn = -sgn
62 update(1)
63

64 def solveEnergies(sgn, gr, gl, t, tso, B):
65 global cq, diagram, colors, energies
66 energies = []
67 colors = []
68 cq = []
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69 for epsilon in epsilonRange:
70 H = np.matrix([[sgn/2*epsilon + 1/2*gr*muB*B, 0, t, -tso],
71 [0, sgn/2*epsilon - 1/2*gr*muB*B, tso, t],
72 [t, tso, -sgn/2*epsilon + 1/2*gl*muB*B, 0],
73 [-tso, t, 0, -sgn/2*epsilon - 1/2*gl*muB*B]])
74 eigvals = la.eigh(H)[0]
75 eigvecs = la.eigh(H)[1].transpose()
76 energies.append(eigvals)
77 colorVect = []
78 for eigvec in eigvecs:
79 color = np.array([0,0,0])
80 for basisState in statesNColors:
81 color = np.add(color, np.multiply(basisState[1], (eigvec @

basisState[0])**2))↪→

82 colorVect.append(color)
83 colors.append(colorVect)
84 diagram = ((np.array(energies)).reshape(numPointsE, 4)).transpose()
85 colors = ((np.array(colors)).reshape(numPointsE, 4, 3)).transpose()
86

87 for i in range(4):
88 cq.append(-np.diff(np.diff(diagram[i]) / np.diff(epsilonRange)) /

np.diff(epsilonRange)[:-1])↪→

89 cq = ((np.array(cq)).reshape(4, numPointsE-2))
90

91 solveEnergies(sgn, gr, gl, t, tso, B)
92

93 xLabel = r'$\varepsilon$ ($\rm{\mu eV}$)'
94 yLabel = r'$E$ ($\rm{\mu eV}$)'
95

96 fig, axs = plt.subplots(2,1, constrained_layout=True)
97

98 plt.sca(axs[0])
99 axs[0].set_axisbelow(True)

100 plt.grid()
101 s = 0.2
102 linewidth = 1
103 e0 = plt.scatter(epsilonRange * xMultiplier, diagram[0] * yMultiplier,

marker='.', s=s, linewidth=linewidth, c=colors[:,0,:].transpose()/255)↪→

104 e1 = plt.scatter(epsilonRange * xMultiplier, diagram[1] * yMultiplier,
marker='.', s=s, linewidth=linewidth, c=colors[:,1,:].transpose()/255)↪→

105 e2 = plt.scatter(epsilonRange * xMultiplier, diagram[2] * yMultiplier,
marker='.', s=s, linewidth=linewidth, c=colors[:,2,:].transpose()/255)↪→

106 e3 = plt.scatter(epsilonRange * xMultiplier, diagram[3] * yMultiplier,
marker='.', s=s, linewidth=linewidth, c=colors[:,3,:].transpose()/255)↪→

107

108 plt.xlabel(xLabel)
109 plt.ylabel(yLabel)
110

111 slider_left_pad = 0.3
112 slider_lenght = 0.6

107



A

Appendix A. Energy diagram simulation Python codes

113 slider_height = 0.05
114 bottom_offsset = 0.02
115 factor = 0.7
116

117 plt.sca(axs[1])
118 plt.axis('off')
119

120 signax = plt.axes([0.7, bottom_offsset, 0.2, slider_height])
121 signButton = Button(signax, 'Flip', hovercolor='0.975')
122 signButton.on_clicked(flip)
123

124 axB = plt.axes([slider_left_pad, bottom_offsset+2*factor*slider_height,
slider_lenght, slider_height])↪→

125 sB = Slider(axB, r'$B$ (T)', 0, 1, valinit=B, valfmt='%g',valstep=0.01)
126 sB.on_changed(update)
127

128 axgl = plt.axes([slider_left_pad, bottom_offsset+4*factor*slider_height,
slider_lenght, slider_height])↪→

129 sGl = Slider(axgl, r'$g_{\rm{R}}$', 0, 3, valinit=gl,
valfmt='%g',valstep=0.01)↪→

130 sGl.on_changed(update)
131

132 axgr = plt.axes([slider_left_pad, bottom_offsset+6*factor*slider_height,
slider_lenght, slider_height])↪→

133 sGr = Slider(axgr, r'$g_{\rm{L}}$', 0, 3, valinit=gr,
valfmt='%g',valstep=0.01)↪→

134 sGr.on_changed(update)
135

136 axT = plt.axes([slider_left_pad, bottom_offsset+8*factor*slider_height,
slider_lenght, slider_height])↪→

137 sT = Slider(axT, r'$t$ ($\rm{\mu eV}$)', 0, 50, valinit=t*1e6,
valfmt='%g',valstep=1)↪→

138 sT.on_changed(update)
139

140 axTso = plt.axes([0.3, bottom_offsset+10*factor*slider_height, slider_lenght,
slider_height])↪→

141 sTso = Slider(axTso, r'$t_{\rm{SO}}$ ($\rm{\mu eV}$)', 0, 50,
valinit=tso*1e6, valfmt='%g',valstep=1)↪→

142 sTso.on_changed(update)

A.2 Even charge configuration

1 # -*- coding: utf-8 -*-
2 """
3 Created on Wed Jan 13 18:44:52 2021
4

5 @author: Rami EZZOUCH
6 """
7 import numpy as np
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8 import scipy.linalg as la
9 import matplotlib.pyplot as plt

10 from matplotlib.widgets import Slider, Button
11

12 # Basis1: S(1,1)=|UpDown - DownUp>/sqrt(2),
13 # T-(1,1)=|DownDown>
14 # T0(1,1)=|UpDown + DownUp>/sqrt(2)
15 # T+(1,1)=|UpUp>
16 # S(0,2)
17

18 # Basis2: |down, down>
19 # |down,up>
20 # |up, down>
21 # |up, up>
22 # S(0,2)
23

24 dd = [[1,0,0,0,0], (169,185,24)] # darkesh yellow
25 du = [[0,1,0,0,0], (0,255,0)] # green
26 ud = [[0,0,1,0,0], (0,0,255)] # blue
27 uu = [[0,0,0,1,0], (128,128,128)] # gray
28 s02 = [[0,0,0,0,1], (255,0,0)] # red
29

30 # statesNColors = [s02, s11, tp11, t011, tm11]
31 statesNColors = [s02, du, uu, ud, dd]
32

33 e = 1.60217662e-19
34 h = 4.135667662e-15 # in eV.s
35 muB = 5.778381e-5 # in eV/T
36 kB = 8.61733e-5 # in eV/K
37 g1 = 1.5
38 g2 = 2.5
39 t = 10e-6 # in eV NB: 1GHz = 4ueV
40 tso = 4e-6 # in eV
41 sgn = 1
42 B = 0.6
43

44 numPointsE = 1001
45 epsilonRange = np.linspace(-1e-4, 1e-4, numPointsE)
46

47 def update(val):
48 global gr, gl, t, tso, sgn, fig, e0, e1, e2, e3, e4
49 B = sB.val
50 gr = sGr.val
51 gl = sGl.val
52 t = sT.val * 1e-6
53 tso = sTso.val * 1e-6
54 solveEnergies(sgn, gr, gl, t, tso, B)
55 plt.sca(axs[0])
56 for i in range(5):
57 exec("e%d.remove()" % i)
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58 e0 = plt.scatter(epsilonRange * xMultiplier, diagram[0] * yMultiplier,
marker='.', s=s, linewidth=linewidth,
c=colors[:,0,:].transpose()/255)

↪→

↪→

59 e1 = plt.scatter(epsilonRange * xMultiplier, diagram[1] * yMultiplier,
marker='.', s=s, linewidth=linewidth,
c=colors[:,1,:].transpose()/255)

↪→

↪→

60 e2 = plt.scatter(epsilonRange * xMultiplier, diagram[2] * yMultiplier,
marker='.', s=s, linewidth=linewidth,
c=colors[:,2,:].transpose()/255)

↪→

↪→

61 e3 = plt.scatter(epsilonRange * xMultiplier, diagram[3] * yMultiplier,
marker='.', s=s, linewidth=linewidth,
c=colors[:,3,:].transpose()/255)

↪→

↪→

62 e4 = plt.scatter(epsilonRange * xMultiplier, diagram[4] * yMultiplier,
marker='.', s=s, linewidth=linewidth,
c=colors[:,4,:].transpose()/255)

↪→

↪→

63

64 (fig.axes[0]).set_ylim(bottom=diagram.min() * yMultiplier,
top=diagram.max() * yMultiplier)↪→

65 fig.canvas.draw_idle()
66

67 numPointsE = 1001
68 epsilonRange = np.linspace(-1e-4, 1e-4, numPointsE)
69

70 def flip(event):
71 global sgn
72 sgn = -sgn
73 update(1)
74

75 def solveEnergies(sgn, g1, g2, t, tso, B):
76 global energies, cq, diagram, ct, colors
77 energies = []
78 colors = []
79 cq = []
80 ct = []
81 for epsilon in epsilonRange:
82 H = np.matrix([[sgn/2*epsilon-1/2*(g1+g2)*muB*B, 0, 0, 0, tso],
83 [0, sgn/2*epsilon-1/2*(g1-g2)*muB*B, 0, 0, t],
84 [0, 0, sgn/2*epsilon+1/2*(g1-g2)*muB*B, 0, t],
85 [0, 0, 0, sgn/2*epsilon+1/2*(g1+g2)*muB*B, tso],
86 [tso, t, t, tso, -sgn/2*epsilon]])
87 eigvals = la.eigh(H)[0]
88 eigvecs = la.eigh(H)[1].transpose()
89 energies.append(eigvals)
90 colorVect = []
91 for eigvec in eigvecs:
92 color = np.array([0,0,0])
93 for basisState in statesNColors:
94 color = np.add(color, np.multiply(basisState[1], (eigvec @

basisState[0])**2))↪→

95 colorVect.append(color)
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96 colors.append(colorVect)
97 diagram = ((np.array(energies)).reshape(numPointsE, 5)).transpose()
98 colors = ((np.array(colors)).reshape(numPointsE, 5, 3)).transpose()
99 for i in range(5):

100 cq.append(-np.diff(np.diff(diagram[i]) / np.diff(epsilonRange)) /
np.diff(epsilonRange)[:-1])↪→

101 ct.append(np.diff(diagram[i])/np.diff(epsilonRange))
102 cq = ((np.array(cq)).reshape(5, numPointsE-2))
103 ct = ((np.array(ct)).reshape(5, numPointsE-1))
104

105 xMultiplier = 1e6
106 yMultiplier = 1e6
107

108 solveEnergies(sgn, g1, g2, t, tso, B)
109

110 xLabel = r'$\varepsilon$ ($\rm{\mu eV}$)'
111 yLabel = r'$E$ ($\rm{\mu eV}$)'
112

113 fig, axs = plt.subplots(2,1, constrained_layout=True)
114

115 plt.sca(axs[0])
116 axs[0].set_axisbelow(True)
117 plt.grid()
118

119

120 s = 0.2
121 linewidth = 1
122 e0 = plt.scatter(epsilonRange * xMultiplier, diagram[0] * yMultiplier,

marker='.', s=s, linewidth=linewidth, c=colors[:,0,:].transpose()/255)↪→

123 e1 = plt.scatter(epsilonRange * xMultiplier, diagram[1] * yMultiplier,
marker='.', s=s, linewidth=linewidth, c=colors[:,1,:].transpose()/255)↪→

124 e2 = plt.scatter(epsilonRange * xMultiplier, diagram[2] * yMultiplier,
marker='.', s=s, linewidth=linewidth, c=colors[:,2,:].transpose()/255)↪→

125 e3 = plt.scatter(epsilonRange * xMultiplier, diagram[3] * yMultiplier,
marker='.', s=s, linewidth=linewidth, c=colors[:,3,:].transpose()/255)↪→

126 e4 = plt.scatter(epsilonRange * xMultiplier, diagram[4] * yMultiplier,
marker='.', s=s, linewidth=linewidth, c=colors[:,4,:].transpose()/255)↪→

127

128 plt.xlabel(xLabel)
129 plt.ylabel(yLabel)
130

131 slider_left_pad = 0.3
132 slider_lenght = 0.6
133 slider_height = 0.05
134 bottom_offsset = 0.02
135 factor = 0.7
136

137 plt.sca(axs[1])
138 plt.axis('off')
139
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140 signax = plt.axes([0.7, bottom_offsset, 0.2, slider_height])
141 signButton = Button(signax, 'Flip', hovercolor='0.975')
142 signButton.on_clicked(flip)
143

144 axB = plt.axes([slider_left_pad, bottom_offsset+2*factor*slider_height,
slider_lenght, slider_height])↪→

145 sB = Slider(axB, r'$B$ (T)', 0, 1, valinit=B, valfmt='%g',valstep=0.01)
146 sB.on_changed(update)
147

148 axgl = plt.axes([slider_left_pad, bottom_offsset+4*factor*slider_height,
slider_lenght, slider_height])↪→

149 sGl = Slider(axgl, r'$g_{\rm{R}}$', 0, 3, valinit=gl,
valfmt='%g',valstep=0.01)↪→

150 sGl.on_changed(update)
151

152 axgr = plt.axes([slider_left_pad, bottom_offsset+6*factor*slider_height,
slider_lenght, slider_height])↪→

153 sGr = Slider(axgr, r'$g_{\rm{L}}$', 0, 3, valinit=gr,
valfmt='%g',valstep=0.01)↪→

154 sGr.on_changed(update)
155

156 axT = plt.axes([slider_left_pad, bottom_offsset+8*factor*slider_height,
slider_lenght, slider_height])↪→

157 sT = Slider(axT, r'$t$ ($\rm{\mu eV}$)', 0, 50, valinit=t*1e6,
valfmt='%g',valstep=1)↪→

158 sT.on_changed(update)
159

160 axTso = plt.axes([0.3, bottom_offsset+10*factor*slider_height, slider_lenght,
slider_height])↪→

161 sTso = Slider(axTso, r'$t_{\rm{SO}}$ ($\rm{\mu eV}$)', 0, 50,
valinit=tso*1e6, valfmt='%g',valstep=1)↪→

162 sTso.on_changed(update)
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In this Appendix we give the details of the theoretical analysis developed by Vincent Michal
relevant to Chap. 6. In Appendix B.1 we formulate the model of the driven double and in Ap-
pendix B.2 we reduce it to an effective two-state effective model that we explicitly analyze. In
Appendix B.3 we express the model of the environment and compute the rates of relaxation
and dephasing that enter into the master equations of Appendix B.4. Then in Appendix B.5
we compute the linear response function and the phase shift of the resonant circuit. In Ap-
pendix B.6 we extend the model to the multi-level system at arbitrary magnetic field and we
include the resonant multi-photon processes in Appendix B.7.

B.1 Model of the driven double quantum dot
The DQD system is resonantly driven by a fast electrical circuit with angular frequency

ωexc and probed by an LC circuit that is comparatively slow. The dynamics of the DQD is
described by the Hamiltonian:

H = ~ωres(a
†a+

1

2
)

+
∑
i=1,2

[
~gcini(a+ a†) + εi(t)ni +

Ui
2
ni(ni − 1)

]
+ Umn1n2 −

∑
〈ij〉σσ′

tiσjσ′c
†
iσcjσ′

+
∑
i=1,2

µB
2

(giBi) · σi +Hκ +HΓ.

(B.1)
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a is the microwave photon operator. ciσ is the fermion operator for dot i and effective spin
projection σ, ni = ni↓ + ni↑ is the occupation number of dot i, and σi is the vector whose
components are the operators

∑
σσ′ c

†
iσσασσ′ciσ′ , with σα (α = x, y, and z) the Pauli matrices.

The parameters of the model are:
— the time-dependent energy potential on dot i, εi(t) = eαi1VG1 + eαi2(VG2 + Vexc(t)), with

VG1, VG2 and Vexc(t) = Vexc cos(ωexct) the static and time-dependent voltages applied to
gates 1 and 2. αij > 0 is the lever arm parameter between gate j and dot i, and e > 0
the elementary charge.

— the spin-dependent charge tunneling matrix elements tiσjσ′ between the dots.
— the g-tensor gi and the magnetic field Bi on dot i (µB being the Bohr magneton).
— the intra-dot Coulomb energies Ui and the inter-dot Coulomb energy Um.
— the natural frequency of the probe LC circuit ωres = 1/

√
LrCr, and the parameter of

coupling between the dot charge and the quantum of the resonant circuit ~gci = eVrmsαi1,
with Vrms =

√
~ωres/(2Cr) the zero-point voltage of the LC circuit [25].

The Hamiltonians Hκ and HΓ describe the interaction of the environment with the LC circuit
and double quantum dot, respectively.

B.2 Two-state model
Let us first analyze a two-state model that describes the dynamics of the DQD in the vicinity

of a single avoided crossing due to tunneling of a charge. We generalize to the multi-level DQD
in Appendix B.6. Tunneling couples states with dot occupations (M,N) and (M + 1, N − 1)
that are detuned by the electrostatic energy ε = ε0 + (α21 − α11)eVG1 + (α22 − α12)eVG2 ≡
ε0−α1eVG1+α2eVG2, where ε0 is a constant (the detuning at zero gate voltages). Under driving,
the time-dependent component of this detuning is Aexc cos(ωexct), with Aexc = (α22−α12)eVexc.
Thus the two-state Hamiltonian reads:

H = −ε
2
σz −

∆

2
σx −

Aexc

2
cos(ωexct)σz

+ ~ωres(a
†a+

1

2
) + ~gcσz(a+ a†) +Hκ +HΓ.

(B.2)

Here we use the Pauli matrix representation in the space of the charge configurations so that
σz ≡ n1−n2, σx describes tunneling (which opens an energy gap ∆), and the coupling parameter
between the DQD charge and the microwave photon is:

~gc =
1

2
(α11 − α21)eVrms ≡

1

2
α1eVrms. (B.3)

The Hamiltonian Eq. (B.2) is formally equivalent to the theory of Ref. [49]. Our purpose
is to adapt the model to the dispersive readout in our specific regime (Appendix B.5) and to
apply it to the spectroscopy of the multi-level system (Appendix B.6). In the rotating frame
of the driven system Eq. (B.2) can be transformed [49] to:

H̃ =
~ωR

2
σz + ~ωres(a

†a+
1

2
) + ~χ̃σz(a†a+

1

2
)

+ ~g̃(σ+a+ σ−a
†) +Hκ + H̃Γ.

(B.4)

Here the effective coupling parameter writes:

g̃ = gc cos θ
ωR0

ωR

, (B.5)
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and the off-resonance frequency shift is:

χ̃ = −2~g2
c sin2 θ

E

δω

ωR

, ~ωres � E. (B.6)

The above equations include the mixing factors cos θ = ε/E and sin θ = ∆/E, where
E =

√
ε2 + ∆2 is the energy spacing of the levels near the avoided crossing. Furthermore

ωR =
√
δω2 + ω2

R0 is the full Rabi angular frequency, with δω = ωexc−E/~, ωR0 = Aexc∆/(2~E),
and H̃Γ represents the coupling of the system to the environment in the rotating frame. We
note that the off-resonance shift χ̃ is taken in the adiabatic limit, which requires going beyond
the rotating wave approximation [49, 157, 73, 107]. In our regime of parameters the interaction
between the resonantly driven system and the probe circuit is well described by the rotating
wave approximation (which is formally justified when ωR−ωres � ωR+ωres). The dot detuning
range where this approximation is accurate is δε ≈ Aexc∆/(4~ωr) > ∆.

B.3 Coupling to the environment

As a model of dissipation we consider the coupling between the active charge in the DQD
and bosonic modes that can be phonons or other modes of the environment with regular noise
spectra that couple to the charge. In the charge basis the coupling between the system and its
environment is described by the Hamiltonian:

HΓ =
∑
α

~ωαb†αbα + Aσz, (B.7)

with A =
∑

α λα(bα+b†α), α being the index of the mode of the environment. Then the standard
free evolution relaxation (Γ↓, Γ↑) and pure dephasing (Γϕ) rates are:

Γ↓ =
sin2 θ

~2
SAA(E/~), (B.8a)

Γ↑ =
sin2 θ

~2
SAA(−E/~), (B.8b)

Γϕ =
2 cos2 θ

~2
SAA(0), (B.8c)

with SAA(ω) the noise correlation function [22].

B.4 Master equations

We describe the dynamics of the probed system semi-classically with Bloch master equations.
In the same dressed basis set as Eq. (B.4),

〈σ̇−〉 = −iωR〈σ−〉 − 2iχ̃〈σ−(a†a+ 1/2)〉
+ ig̃〈σza〉 − Γ̃2〈σ−〉, (B.9a)

〈σ̇z〉 = −2ig̃(〈aσ+〉 − 〈a†σ−〉)− Γ̃1〈σz〉+ Γ̃↑ − Γ̃↓. (B.9b)

Here Γ̃2 = Γ̃1/2 + Γ̃ϕ is the total decoherence rate of the driven two-level system that includes
the relaxation rate Γ̃1 = Γ̃↓+ Γ̃↑ and the pure dephasing rate Γ̃ϕ. These rates differ from those
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relevant for free evolution (Eq. (B.8)) and are found [62, 48] to be:

Γ̃↓/↑ =
(1∓ cos η)2

4
Γ↓ +

(1± cos η)2

4
Γ↑

+
1

2
sin2 ηΓν , (B.10a)

Γ̃2 =
3− cos2 η

4
Γ1 + cos2 ηΓϕ +

1

2
sin2 ηΓν , (B.10b)

where cos η = δω/ωR and sin η = ωR0/ωR, Γ1 = Γ↓ + Γ↑ is the energy relaxation rate and Γν
is proportional to the spectral function of the noise at the Rabi frequency [62]. Within the
environment model taken here the rate Γν evaluates to:

Γν =
2 cos2 θ

~2
SAA(ωR). (B.11)

As derived in [62, 48], these expressions for the rates assume that the environment temperature
T is not too small (namely, kBT > ~ωR).

In fact, the photon number dependent term in Eq. (B.9a) is negligible in the linear regime
and is already included in Eq. (B.4) as an oscillator shift. Moreover, for a relatively weak
coupling gc the first term on the right-hand side of Eq. (B.9b) can be neglected and the slow
probe resonator does not significantly change the average population of the states. We note
D = −〈σz〉 = P̃− − P̃+ the difference of the stationary occupation probabilities of the dressed
ground and excited states, which becomes:

D =
Γ̃↓ − Γ̃↑

Γ̃1

; 4g2
cnph � Γ̃1Γ̃2, (B.12)

where nph is the average number of photons in the LC circuit. In this regime, with the relaxation
rates defined above, we find:

D =
− cos η(Γ↓ − Γ↑)

(1 + cos2 η)Γ1/2 + sin2 ηΓν
. (B.13)

This manifests population inversion in the dressed basis for cos η > 0 (δω > 0) [49].

B.5 Circuit phase response
We use input-output theory [41, 22, 123, 73] in order to calculate the phase shift of the signal

due to its interaction with the DQD. In the input-output approach the dynamics of the circuit
mode is given by the quantum Langevin equation [41]. With the Hamiltonian of Eq. (B.4), the
equation reads in the rotating frame of the incoming microwave photon of angular frequency
ωp (which is close to the natural angular frequency of the resonant circuit ωres):

ȧ = −i(ωres − ωp)a− iχ̃σza− ig̃σ− −
κ

2
a−
√
κbin, (B.14)

where κ is the rate of escape of the photons and bin is the incoming microwave photon field.

By solving Eq. (B.9a) at the frequency ωp together with Eq. (B.13), and using the input-
output relations, we obtain the coefficient of reflection between the incoming and the outgoing
microwave signals:

r(ωp) = 1 +
iκ

ωres − ωp − iκ2 + χ(ωp)
, (B.15)
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where χ(ωp) is the charge response function obtained at second order in the oscillator-DQD
coupling:

χ(ωp) = −
(
χ̃+

g̃2

ωR − ωp − iΓ̃2

)
D. (B.16)

The real part of Eq. (B.16) yields the linear shift of the resonator frequency. When ωp = ωres

and at linear order in the response function we get the phase shift δφ = 4 Reχ(ωres)/κ =
4QReχ(ωres)/ωres, with Q = ωres/κ the quality factor of the LC resonator.

B.6 Double quantum dot spectroscopy
The above model naturally generalizes to multi-level systems, and we apply it to the spec-

troscopy of the DQD. We diagonalize the part of the Hamiltonian of Eq. (B.1) that does not
include the drives and thus we obtain the energy levels and the corresponding states of the
DQD exactly. To calculate the response of the multi-level system we sum Eq. (B.16) over all
excited states. The mixing angles relevant for excited state |ε〉 with energy Eε are:

sin θ = 〈γ|(n1 − n2)|ε〉 = 2〈γ|n1|ε〉 = −2〈γ|n2|ε〉, (B.17a)
cos θ = 〈γ|n1|γ〉 − 〈ε|n1|ε〉 = −〈γ|n2|γ〉+ 〈ε|n2|ε〉, (B.17b)

where |γ〉 is the ground state of the DQD with energy Eγ.

B.7 Multi-photon processes
The above analysis generalizes to multi-photon resonant processes. For the n-photon tran-

sition between the levels γ and ε we stitute [105]:

δω → δω(n) = nωexc − (Eε − Eγ)/~,

ωR0 → ω
(n)
R0 = nωexc| tan θ|Jn

(Aexc| cos θ|
~ωexc

)
,

ωR → ω
(n)
R =

√
(δω(n))2 + (ω

(n)
R0 )2,

(B.18)

where Jn is the nth Bessel function of the first kind. For small argument it approximates as
Jn(z) ≈ (z/2)n/n! (z � 1). The total response is obtained by summing over all resonant
photon processes n = 1, 2, . . . .
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