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École Doctorale Mathématiques et Sciences et Technologie de l’Information et de la
Communication

Tieplova Daria

Application des grandes matrices aléatoires aux séries temporelles
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Resumé

Des techniques issues du domaine des grandes matrices aléatoires ont été récemment utilisées afin d’aborder
des problèmes de traitement du signal en grande dimension. Dans leur très grande majorité, les travaux
correspondants ont étudié des schémas d’estimation et de détection basés sur des fonctionnelles de la matrice
de covariance empirique des observations. La théorie des grandes matrices aléatoires a permis de déterminer
le comportement de ces fonctionnelles, et d’en déduire des approches statistiques nouvelles bien adaptées au
contexte des grandes dimensions. Cependant, de nombreux problèmes mettant en jeu des séries temporelles de
grande dimension font naturellement apparâıtre des matrices plus générales que les matrices de covariance
empirique. Le but de cette thèse est d’étudier les valeurs singulières de deux types de grandes matrices
aléatoires jouant un rôle fondamental en statistiques des séries temporelles multivariables, et de déduire des
résultats un nouvelle approche permettant d’estimer la dimension minimale des représentations d’état d’un
certain type de série temporelle de grande dimension à spectre rationnel. Plus précisément, l’observation est
supposée être une version bruitée d’une série temporelle (un)n∈Z de dimension M dont la densité spectrale
est rationnelle et de rang déficient, le bruit additif (vn)n∈Z étant supposé être blanc, et gaussien complexe
de matrice de covariance inconnue. Dans ce contexte, il est tout à fait fondamental d’être capable d’estimer
de façon consistante la dimension minimale P des représentations d’état de u à partir des N observations
y1, y2, . . . , yN . Si L est n’importe quel entier supposé plus grand que P , les approches les plus traditionnelles
sont basées sur le fait que P cöıncide avec le rang de la matrice d’autocovariance RLf |p entre les vecteurs de
dimension ML (yTn+L, . . . , y

T
n+2L−1)T et (yTn , . . . , y

T
n+L−1)T , mais aussi avec le nombre de valeurs singulières

non nulles de la matrice normalisée CL = (RL)−1/2 RLf |p(R
L)−1/2, où RL représente la matrice de covariance

des 2 vecteurs de dimensions ML qui viennent d’être introduits. Dans le régime asymptotique usuel dans
lequel N → +∞ et M et L restent fixes, les matrices RLf |p et CL peuvent être estimées de façon consistante
par leurs versions empiriques R̂Lf |p et Ĉ

L, et P peut sans difficulté être évalué à partir des plus grandes valeurs
singulières de ces estimateurs. Dans le régime des grandes dimensions dans lequel M et N convergent vers
+∞ de telle sorte que cN = ML

N converge vers 0 < c∗ ≤ 1, L étant fixe, R̂Lf |p et Ĉ
L ne sont plus des estimateurs

consistants de RLf |p et C
L au sens de la norme spectrale. Dans ces conditions, il n’est nullement évident qu’il

soit toujours possible d’estimer P de façon consistante à partir des valeurs singulières de R̂Lf |p et ĈL. Dans
cette thèse, le comportement des valeurs singulières de R̂Lf |p et ĈL est étudiée dans le régime des grandes
dimensions introduit plus haut. Le cas où u = 0, ou de façon équivalente y = v, est tout d’abord considéré.
Il est alors établi que les distributions empiriques des valeurs singulières de R̂Lf |p et ĈL convergent vers une
limite dont les supports SR et SC sont caractérisés. Il est montré que SC = [0, 2

√
c∗(1− c∗)] ∪ {1}1c∗> 1

2
, et

que SR a une structure plus compliquée. De plus, toutes les valeurs singulières de R̂Lf |p et ĈL sont situées
au voisinage de SR et SC respectivement. Si u est non nul, la dégénérescence du rang de la densité spectrale
de u est utilisée pour étudier si certaines valeurs singulières de R̂Lf |p et ĈL s’échappent de SR et SC . Il est
montré que le nombre de valeurs singulières de R̂Lf |p situées en dehors de SR n’est pas directement relié à
P , mais que, heureusement, P cöıncide avec le nombre de valeurs singulières de ĈL qui sont plus grandes
que 2

√
c∗(1− c∗) si c∗ < 1

2 , si le signal u est suffisamment puissant par rapport au bruit v, et si les valeurs
singulières non nulles de CL sont suffisamment grandes. Ces résultats impliquent que les valeurs singulières de
R̂Lf |p ne peuvent pas être utilisées pour estimer P de façon consistante dans le régime des grandes dimensions.
Par contre, moyennant quelques hypothèses, P peut-être estimé de façon consistante par le nombre de valeurs
singulières de ĈL qui sont plus grandes que 2

√
c∗(1− c∗).
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Abstract

A number of recent works proposed to use large random matrix theory in the context of high-dimensional
statistical signal processing, traditionally modelled by a double asymptotic regime in which the dimension
of the time series and the sample size both grow towards infinity. These contributions essentially addressed
detection or estimation schemes depending on functionals of the sample covariance matrix of the observation.
Large random matrix theory results were used to evaluate the behaviour of such functionals in the high-
dimensional context, and to propose new improved performance approaches. However, fundamental high-
dimensional time series problems depend on matrices that are more complicated than the sample covariance
matrix. The purpose of the present PhD is to study the behaviour of the singular values of 2 kinds of
structured large random matrices, and to use the corresponding results to address an important statistical
problem. More specifically, the observation (yn)n∈Z is supposed to be a noisy version of a M–dimensional
time series (un)n∈Z with rational spectrum that has some particular low rank structure, the additive noise
(vn)n∈Z being an independent identically distributed sequence of complex Gaussian vectors with unknown
covariance matrix. An important statistical problem is the estimation of the minimal dimension P of the
state space representations of u from N samples y1, . . . , yN . If L is any integer larger than P , the traditional
approaches are based on the observation that P coincides with the rank of the autocovariance matrix RLf |p
between the ML–dimensional random vectors (yTn+L, . . . , y

T
n+2L−1)T and (yTn , . . . , y

T
n+L−1)T , as well as with

the number of non zero singular values of the normalized matrix CL = (RL)−1/2 RLf |p(R
L)−1/2 where RL

represents the covariance matrix of the aboveML–dimensional vectors. In the low-dimensional regime where
N → +∞ while M and L are fixed, the matrices RLf |p and CL can be consistently estimated by their
empirical counterparts R̂Lf |p and ĈL, and P can be evaluated from the largest singular values of R̂Lf |p and
ĈL. If however M and N converge towards +∞ in such a way that cN = ML

N converges towards 0 < c∗ ≤ 1,
L being fixed, the above estimates R̂Lf |p and ĈL do not converge towards their true values in the spectral
norm sense. It is therefore not obvious whether the largest singular values of R̂Lf |p and ĈL can be used in
order to estimate P consistently. In this thesis, the behaviour of the singular values of R̂Lf |p and ĈL in the
above high-dimensional regime are studied. The case where u = 0, or equivalently y = v, is first considered
and it is established that the empirical singular values distribution of R̂Lf |p and ĈL converge towards a
limit. The supports SR and SC of the corresponding limit distributions are characterized: it is proved that
SC = [0, 2

√
c∗(1− c∗)] ∪ {1}1c∗> 1

2
and that the structure of SR is more intricate. It is moreover established

that all the singular values of R̂Lf |p and ĈL are located in the neighbourhood of SR and SC respectively.
When u is present, the low rank structure of u is used in order to study whether some singular values of
R̂Lf |p and ĈL escape from SR and SC . It is shown that the number of singular values of R̂Lf |p located outside
SR is not directly related to P , while, fortunately, P coincides with the number of singular values of ĈL

that are larger than 2
√
c∗(1− c∗), provided c∗ < 1

2 , the signal u is powerful enough compared to the noise
and the non zero singular values of CL are large enough. These results imply that while the singular values
of R̂Lf |p can be used in order to estimate P consistently in the standard low-dimensional regime, this is
no longer the case in the high-dimensional context considered here. Fortunately, under certain assumptions,
P can still be consistently estimated as the number of singular values of ĈL that are larger than 2

√
c∗(1− c∗).
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Глава 1

Introduction.

Due to the spectacular development of data acquisition devices and sensor networks, it becomes very common
to be faced with high-dimensional time series in various fields such as digital communications, environmental
sensing, electroencephalography, analysis of financial datas, industrial monitoring, .... In this context, it is
not always possible to collect a large enough number of observations to perform statistical inference because
the durations of the signals are limited and/or because their statistics are not time-invariant over large
enough temporal windows. As a result, fundamental inference schemes do not behave as in the classical low-
dimensional regimes. This stimulated considerably in the ten past years the development of new statistical
approaches aiming at mitigating the above mentioned difficulties. In particular, a number of works proposed to
use large random matrix theory in the context of high-dimensional statistical signal processing, traditionally
modelled by a double asymptotic regime in which the dimension of the time series and the sample size both
grow towards infinity. These contributions essentially addressed detection or estimation schemes depending
on functionals of the sample covariance matrix of the observation. Large random matrix theory results were
used to evaluate the behaviour of such functionals in the high-dimensional context, and to propose new
improved performance approaches. However, fundamental high-dimensional time series problems depend on
matrices that are more complicated than the sample covariance matrix. The purpose of the present PhD is
to study the behaviour of the eigenvectors of 2 kinds of structured large random matrices, and to use the
corresponding results to address certain important statistical signal processing problems.

1.1 Motivation

In this work we consider a M–dimensional multivariate time series (yn)n∈Z generated as

yn = un + vn, (1.1)

where (vn)n∈Z is a complex Gaussian "noise"term such that E(vn+kv
∗
n) = Rδk for some unknown positive

definite matrix R, and where (un)n∈Z is a "useful"non observable Gaussian signal with rational spectrum.
Thus, un can be represented as

xn+1 = Axn +Bωn, un = Cxn +Dωn, (1.2)

where (ωn)n∈Z is aK ≤M–dimensional white noise sequence (E(ωn+kω
∗
n) = IK δk), A is a deterministic P×P

matrix whose spectral radius ρ(A) is strictly less than 1, and where B,C,D are deterministic matrices. The
P -dimensional Markovian sequence (xn)n∈Z is called the state-space sequence associated to (1.2). The state
space representation (1.2) is said to be minimal if the dimension P of the state space sequence is minimal.
Given the autocovariance sequence (Ru,n)n∈Z of u (i.e. Ru,n = E(uk+nu

∗
k) for each n), the so-called stochastic

realization problem of (un)n∈Z consists in characterizing all the minimal state space representations (1.2)
of u, or equivalently in identifying all the minimum Mac-Millan degrees1 matrix-valued functions Φ(z) =
D + C(zI −A)−1B such that ρ(A) < 1 and

Su(e2iπf ) =
∑
n∈Z

Ru,ne
−2iπnf = Φ(e2iπf )Φ(e2iπf )∗ (1.3)

1The Mac-Millan degree of a rational matrix-valued function Φ is defined as the minimal dimension of the matrices A for
which Φ(z) can be represented as D + C(zI −A)−1B
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for each f . Such a function Φ is called a minimal degree causal spectral factorization of Su. We refer the
reader to [30] or [45] for more details.

The identification of P and of matrices C and A is based on the observation that the autocovariance sequence
of u can be represented as

Ru,n = E(un+ku
∗
k) = CAn−1G (1.4)

for each n ≥ 1, where the 3 matrices (A,C,G) are unique up to similarity transforms, thus showing that the
matrices C and A associated to a minimal realization are uniquely defined (up to a similarity). Moreover, if
we define the autocovariance matrix RLf |p,u between the past and the future of u as

RLf |p,u = E




un+L

un+L+1
...

un+2L−1

(u∗n, u∗n+1, . . . , u
∗
n+L−1

)
 (1.5)

then, it holds that
R

(L)
f |p,u = O(L) C(L), (1.6)

where matrix O(L) is the ML× P "observability"matrix

O(L) =


C
CA
...

CAL−1

 (1.7)

and matrix C(L) is the P ×ML "controllability"matrix

C(L) =
(
AL−1G,AL−2G, . . . , G

)
. (1.8)

For each L ≥ P , the rank of R(L)
f |p,u remains equal to P , and each minimal rank factorization of R(L)

f |p,u can

be written as (1.6) for some particular triple (A,C,G). In particular, if R(L)
f |p,u = ΘΓΘ̃∗ is the singular value

decomposition of R(L)
f |p,u, matrix ΘΓ1/2 coincides with the observability matrix O(L) of a pair (C,A). C and

A are immediately obtained from the knowledge of the structured matrix O(L). This discussion shows that
the evaluation of P , C and A from the autocovariance sequence of u is an easy problem. We mention that,
while C and A are essentially unique, there exist in general more than one pair (B,D) for which (1.2) holds
because the minimal degree spectral factorization problem (1.3) has more than 1 solution. We refer the reader
to [30] or [45].

We notice that as (vn)n∈Z in (1.1) is an uncorrelated sequence, it holds that Ry,n = E(yn+ky
∗
k) coincides with

Ru,n for each n ≥ 1. Therefore, P also coincides with the minimal dimension of state-space realizations of y,
and matrices C and A can still be identified from the autocovariance sequence of the noisy version y of u. In
practice, however, the exact autocovariance sequence (Ry,n)n≥1 is in general unknown, and it is necessary to
estimate P and (C,A) from the sole knowledge of N samples y1 = u1 + v1, y2 = u2 + v2, . . . , yN = uN + vN .
For this, P is first estimated as the number of significant singular values of the empirical estimate R̂Lf |p,y of
the true matrix RLf |p,y = RLf |p,u defined by

R̂Lf |p,y =
Yf,NY

∗
p,N

N
,

where matrices Yf,N and Yp,N defined as

Yp,N =


y1 y2 . . . yN−1 yN
y2 y3 . . . yN yN+1
...

...
...

...
...

...
...

...
...

...
yL yL+1 . . . yN+L−2 yN+L−1

 (1.9)
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and

Yf,N =


yL+1 yL+2 . . . yN−1+L yN+L

yL+2 yL+3 . . . yN+L yN+L+1
...

...
...

...
...

...
...

...
...

...
y2L y2L+1 . . . yN+2L−2 yN+2L−1

 . (1.10)

We note that the samples (yN+l)l=1,...,2L−1 are supposed to be available while we have assumed that only the
first N samples are observed. In order to simplify the presentation, this end effect is neglected. If (γ̂p)p=1,...,P

and Θ̂ = (θ̂1, . . . , θ̂P ) are the P largest singular values and corresponding left singular vectors of matrix R̂(L)
f |p,y,

and if Γ̂ is the P × P diagonal matrix with diagonal entries (γ̂p)p=1,...,P , the ML× P matrix Ô(L) = Θ̂Γ̂1/2

is an estimator of an observability matrix O(L). Ô(L) has not necessarily the structure of an observability
matrix, but C and A can be estimated respectively by the top M ×P block Ĉ of Ô(L) and by the argument
Â of the minimum of the quadratic fuction

Tr
((
Ô(L)

downA− Ô
(L)
up

)(
Ô(L)

downA− Ô
(L)
up

)∗)
,

where the operator "down"(resp. "up") suppresses the last (resp. the first) M rows from ML × P matrix
Ô(L). This approach provides a consistent estimate of P,C,A when N → +∞ while M , L and P are fixed
parameters. We refer the reader to [12] for a detailed analysis of this statistical inference scheme known as
the Principal Component Algorithm.

If M is large and that the sample size N cannot be arbitrarily larger than M , the ratio ML/N may not be
small enough to make reliable the above statistical analysis. It is thus relevant to study the behaviour of the
above estimators in asymptotic regimes where M and N both converge towards +∞ in such a way that ML

N

converges towards a non zero constant. In this context, matrix R̂(L)
f |p,y is no longer a consistent estimate of

the true matrix R(L)
f |p,y in the spectral norm sense. Therefore, the singular values of R̂(L)

f |p,y have no reasons

to behave as those of R(L)
f |p,y. Thus, it appears of fundamental interest to study the behaviour of the singular

values of R̂(L)
f |p,y, and to study whether its largest singular still allow to estimate P consistently, at least if

the useful signal u appears as powerful enough compared to the noise v. The behaviour of the associated
singular vectors would of course be of potential interest in order to address the estimation of matrices C and
A, but this important topic is not addressed in this thesis.

Another way to estimate P is to resort to the concept of canonical correlation coefficients between the past and
the future of the time series (yn)n∈Z. We denote by Yp and Yf the (infinite dimensional) subspaces generated
by the components of (yn)n≤0 and (yn)n≥1, and consider 2 orthonormal bases (ωp,k)k≥0 and (ωf,k)k≥0 of Yp
and Yf respectively. Then the canonical correlation coefficients between the past and future of y are defined
as the singular values of the (infinite) matrix with entries E(ωf,kω

∗
p,l) (see [25] for more informations), and

it is well known that P coincides with the number on non zero such coefficients. See [30] for an exhaustive
presentation of the related results and their important implications on questions such as the identification
of the state space models or on reduction model technics. Moreover, if Yp and Yf are replaced by the finite
dimensional spaces Yp,L and Yf,L generated respectively by the components of yn, n = −(L − 1), . . . , 0
and yn, n = 1, . . . , L for a certain integer L ≥ P , it turns out that the number of non zero canonical
correlation coefficients between Yp,L and Yf,L is still equal to P . We refer again to [30] for more details on
the effects of the truncation. In order to estimate P from the N avalaible observations y1, . . . , yN in the
standard low-dimensional regime N → +∞ while M and L are fixed, a standard solution is to estimate
the correlation coefficients between Yp,L and Yf,L by the canonical correlation coefficients between the row
spaces of matrices Yp,N and Yf,N defined by (1.9) and (1.10) respectively, and to estimate P as the number of
significant coefficients, i.e. as the number of significant singular values of matrix (R̂Lf,y)

−1/2R̂Lf |p,y(R̂
L
p,y)
−1/2,

or equivalently of the number of significant eigenvalues of (R̂Lf,y)
−1/2R̂Lf |p,y(R̂

L
p,y)
−1R̂L∗f |p,y(R̂

L
f,y)
−1/2. Here,

matrices R̂Lf,y and R̂
L
p,y are defined by R̂Lf,y =

Yf,NY
∗
f,N

N and R̂Lp,y =
Yp,NY

∗
p,N

N respectively. In the low-dimensional
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regime, this approach provides consistent estimates of P , but this is no longer the case in the high-dimensional
regime where M and N both converge towards +∞ in such a way that ML

N converges towards a non
zero constant. The study of the eigenvalues of (R̂Lf,y)

−1/2R̂Lf |p,y(R̂
L
p,y)
−1R̂L∗f |p,y(R̂

L
f,y)
−1/2 in the above high-

dimensional regime thus appears as a highly relevant problem.
Without formulating specific assumptions on u, these problems seem very complicated. In the past, a number
of works addressed high-dimensional inference schemes based on the eigenvalues and eigenvectors of the
empirical covariance matrix of the observation (see e.g. [37], [35], [38], [20], [47], [48], [13], [44]) when the
useful signal lives in a low-dimensional deterministic subspace. Using results related to spiked large random
matrix models (see e.g. [4] [5], [41]), based on perturbation technics, a number of important statistical
problems could be addressed using large random matrix theory technics. In this thesis, we follow the same
kind of approach to address the estimation problem of P when u satisfies some low rank assumptions.

1.2 Contribution of the thesis.

Time series y being the sum of the noise v with a useful signal u is generated by certain state-space models
(1.2) to be precised below, the general topic of the thesis is to study the singular values of the empirical
estimates R̂Lf |p,y and (R̂Lf,y)

−1/2R̂Lf |p,y(R̂
L
p,y)
−1/2 in the following asymptotic regime:

M and N both converge towards +∞ in such a way that cN = ML
N → c∗, L being a fixed integer.

When this will be possible, we will deduce from the corresponding results conditions under which P can be
consistently estimated from the above matrices. We notice that, as L is a fixed integer, M and N are thus of
the same order to magnitude. However, it should be mentioned that the case where both M and L converge
towards +∞ in such a way that cN → c∗ is also of potential interest. While a number of results of this thesis
obtained in the absence of signal (i.e. y = v) could be generalized to this context, the study of the largest
singular values of R̂Lf |p,y and (R̂Lf,y)

−1/2R̂Lf |p,y(R̂
L
p,y)
−1/2 in the presence of signal would be deeply modified

because, in contrast with the case L finite, matrices Yp,N and Yf,N would not be finite rank perturbations of
the matrices Vp,N and Vf,N defined from the noise samples v1, . . . , vN+2L−1. This thesis is thus only devoted
to the above high-dimensional regime with L finite.

This thesis is structured as follows.

In Chapter 2, we present some basic tools and notations that are used along the thesis.

Chapter 3 is dedicated to the study of the singular values of matrix R̂Lf |p,y, or equivalently of the eigenvalues
of R̂Lf |p,y(R̂

L
f |p,y)

∗, in the case when the signal is absent, i.e. yn = vn. In this context, it thus holds that
1√
N
Yp,N = 1√

N
Vp,N and 1√

N
Yf,N = 1√

N
Vf,N . In the following, we denote by Wp,N and Wf,N the normalized

matrices
Wp,N =

1√
N
Vp,N , Wf,N =

1√
N
Vf,N (1.11)

The goal of this chapter is to study the almost sure location of the eigenvalues of Wf,NW
∗
p,N Wp,NW

∗
f,N in

the above asymptotic regime.

For this, we first evaluate the behaviour of the empirical eigenvalue distribution ν̂N of the ML × ML
matrix Wf,NW

∗
p,NWp,NW

∗
f,N . Using Gaussian tools, i.e. integration by parts formula in conjunction with

the Poincaré-Nash inequality (see e.g. [40]), we characterize the asymptotic behaviour of the resolvent
QN (z) = (Wf,NW

∗
p,NWp,NW

∗
f,N − zI)−1. As the entries of Wf,NW

∗
p,NWp,NW

∗
f,N are biquadratic functions

of y1, . . . , yN+2L−1, we rather use the well-known linearization trick that consists in studying the resolvent
QN (z) of the 2ML× 2ML hermitized version(

0 Wf,NW
∗
p,N

Wp,NW
∗
f,N 0

)
of matrixWf,NW

∗
p,N . As is well known, the firstML×ML diagonal block of QN (z) coincides with zQN (z2).

Therefore, we characterize the asymptotic behaviour of QN (z), and deduce from this the results concerning

9



QN (z). The hermitized version is this time a quadratic function of y1, . . . , yN+2L−1, and the Gaussian calculus
that is needed in order to study QN (z) appears much simpler than if QN (z) was evaluated directly.

We introduce the M ×M matrix-valued function TN (z) defined by

TN (z) = −
(
zIM +

zcN tN (z)

1− zc2
N t

2
N (z)

RN

)−1

,

tN (z) being the unique solution of the equation

tN (z) =
1

M
TrRN

(
−zIM −

zcN tN (z)

1− zc2
N t

2
N (z)

RN

)−1

such that tN (z) and ztN (z) belong to C+ when z ∈ C+. tN (z) and TN (z) are shown to coincide with the
Stieltjes transforms of a scalar measure µN and of a M ×M positive matrix valued measure νTN respectively
(see Section 3.3 for a formal definition of a M ×M positive matrix valued measure). We recall that RN =
E(vnv

∗
n) is the covariance matrix of the random vectors (vn)n∈Z. It is shown that the resolvent QN (z)

of Wf,NW
∗
p,NWp,NW

∗
f,N has in some sense the same asymptotic behaviour than IL ⊗ TN (z). Moreover,

recalling that ν̂N denotes the empirical eigenvalue distribution of Wf,NW
∗
p,NWp,NW

∗
f,N , it is proved that

νN = 1
MTr(νTN ) is a probability measure such that ν̂N − νN → 0 weakly almost surely. νN is referred to as

the deterministic equivalent of ν̂N . We study the properties and the support of νN , or equivalently of µN
because the 2 measures are absolutely continuous one with respect to each other. For this, we study the
behaviour of tN (z) when z converges towards the real axis. For each x > 0, the limit of tN (z) when z ∈ C+

converges towards x exists and is finite. If cN ≤ 1, we deduce from this that νN is absolutely continuous w.r.t.
the Lebesgue measure. The corresponding density gN (x) is real analytic on R+∗, and converges towards +∞
when x→ 0, x > 0. If cN < 1, it holds that gN (x) = O( 1√

x
) while gN (x) = O( 1

x2/3
) if cN = 1. If cN > 1, νN

contains a Dirac mass at 0 with weight 1− 1
cN

and an absolutely continuous component. In order to analyse
the support of µN and νN , we establish that the function wN (z) defined by

wN (z) = zcN tN (z)− 1

cN tN (z)

is solution of the equation φN (wN (z)) = z for each z ∈ C− R+ where φN (w) is the function defined by

φN (w) = cNw
2 1

M
TrRN (RN − wI)−1

(
cN

1

M
TrRN (RN − wI)−1 − 1

)
.

This property allows to prove that apart {0} when cN > 1, the support of µN is a union of intervals whose end
points are the extrema of φN whose arguments verify 1

MTrRN (RN − wI)−1 < 0. A sufficient condition on
the eigenvalues of RN ensuring that the support of µN is reduced to a single interval is formulated. Using the
Haagerup-Thorbjornsen approach ( [17]), it is moreover proved in section 3.7 that for each N large enough,
all the eigenvalues of Wf,N W ∗p,N Wp,N W ∗f,N lie in a neighbourhood of the support of the deterministic
equivalent νN .

We finally indicate that the use of free probability tools is an alternative approach to characterize the
asymptotic behaviour of ν̂N . While this approach is simpler than the use of the Gaussian tools proposed
in the present chapter, we mention that the above free probability theory arguments do not allow to study
the asymptotic behaviour of the resolvent of Wf,NW

∗
p,NWp,NW

∗
f,N needed to address in Chapter 4 the case

where a useful signal u is present.

In Chapter 4 we pass to the case when the signal is present and study its influence on the eigenvalues
of matrix R̂Lf |p,y(R̂

L
f |p,y)

∗. For this, we use a classical approach based on the observation that matrix YfY
∗
p

N

is a finite rank perturbation of matrix VfV
∗
p

N due to the noise (vn)n∈Z. For simplicity we assume that the
support of µN is reduced to one interval denoted [0, xN,+]. We first present assumptions on the useful signal
as well as on the asymptotic behaviour of the empirical eigenvalue distribution of the covariance matrix RN
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of the noise. These assumptions ensure that a number of terms depending on N have finite limits when
N → +∞, and allow to prove that some of the largest eigenvalues of R̂Lf |p,y(R̂

L
f |p,y)

∗ may converge towards
limits that are located outside the “bulk” [0, xN,+] for each N large enough. More precisely, we assume that
the dimension P of the minimal state space representation (1.2) of u is a fixed integer P , that K is also
fixed, and that the matrices A and B do not scale as well with M and N . Therefore, the P–dimensional
markovian sequence x does not depend on M and N . If we denote by uLn the ML–dimensional vector
uLn = (uTn , . . . , u

T
n+L−1)T , it is easily seen that the covariance matrix RLu,N of uLn is rank deficient, and that

its rank r verifies P ≤ r ≤ P +KL. While r may depend on M,N , we assume that it is constant for N large
enough. If we introduce the eigenvalue / eigenvector decomposition of RLu,N = ΘN∆2

NΘ∗N , it is easily seen
that Ui,N√

N
is a rank r matrix for each N large enough, and if

Ui,N√
N

= Θi,N∆i,N Θ̃∗i,N

represents its singular value decomposition, then we infer that ‖Θi,NΘ∗i,N −ΘNΘ∗N‖ → 0 and ‖∆i,N−∆N‖ →
0. Moreover, for N large enough, matrix Θ̃∗f,N Θ̃p,N is a rank P matrix whose singular values are the canonical
correlation coefficients between the row spaces of Up,N and Uf,N , and when N → +∞, these coefficients have
the same asymptotic behaviour than the canonical correlation coefficients between the spaces generated by the
components of uLn and of uLn+L. In the following, we assume that the diagonal matrices ∆N converges towards
a limit matrix ∆∗ > 0 when N → +∞, or equivalently that the r non zero eigenvalues of RLu,N converge
towards non zero limits, and that the r× r rank P matrices Θ̃∗f,N Θ̃p,N converge towards a (necessarily rank
P ) matrix Ω∗. The empirical eigenvalue distribution of RN is also assumed to have a compactly supported
limit distribution carried by the interval [λ−,∗, λ+,∗] where λ−,∗ and λ+,∗ are the limits when N → +∞ of
the smallest and of the largest eigenvalues of RN assumed to exist. This imply that the sequence (µN )N≥1

converges towards a limit µ∗, and that the Stieltjes transforms sequence (tN )N≥1 converges towards a limit
t∗(z). Moreover, xN,+ converges towards a finite limit x+,∗. Finally, under a certain extra assumption that
will be stated inside the Chapter, the r × r matrix valued measure βN defined by

dβN (λ) = Θ∗N
(
IL ⊗ dνTN (λ)

)
ΘN (1.12)

is shown to converge towards a limit β∗. We are now in position to define the matrix-valued function H∗(z)
defined by

H∗(z) =

(
c∗t∗(z)

1−(c∗t∗(z))2
∆2
∗ − (Tβ∗(z))

−1 ∆∗Ω∗∗∆∗
(1−(c∗t∗(z))2

∆∗Ω∗∆∗
(1−(c∗t∗(z))2

c∗t∗(z)
1−(c∗t∗(z))2

∆2
∗ − (Tβ∗(z))

−1

)
where t∗(z) is defined by t∗(z) = zt∗(z2) and Tβ∗(z) = zTβ∗(z

2), Tβ∗(z) being the Stieltjes transform of β∗.
Then, we establish that the equation

det (H∗(y)) = 0

has s solutions that are larger than √x∗,+, where s is an integer verifying 0 ≤ s ≤ 2r. Moreover, for
N large enough, exactly s eigenvalues of R̂Lf |p,y(R̂

L
f |p,y)

∗ escape from the interval [0, x∗,+], and converge
towards the squares of the s solutions of det (H∗(y)) = 0 that are larger than √x∗,+. While it is difficult
to characterise s in the general case, we exhibit examples where P takes the same value, but s can takes
any value of {0, 1, . . . , 2r}. This means that the number of eigenvalues of R̂Lf |p,y(R̂

L
f |p,y)

∗ that escape from
[0, x∗,+] does not in general coincide with P , and it seems not obvious to estimate P consistently from the
largest eigenvalues of R̂Lf |p,y(R̂

L
f |p,y)

∗.

In Chapter 5, under the same kind of assumptions on the useful signal, we establish that in contrast
with R̂Lf |p,y(R̂

L
f |p,y)

∗, it is possible to estimate P consistently from the largest eigenvalues of the matrix
(R̂Lf,y)

−1/2R̂Lf |p,y(R̂
L
p,y)
−1R̂L∗f |p,y(R̂

L
f,y)
−1/2 provided the useful signal is powerful enough and its own correlation

coefficients between the past and the future are large enough. In the following, in order to simplify the
notations, we introduce matrix

Σi,N =
Yi,N√
N

=
Vi,N√
N

+
Ui,N√
N

= Wi,N +
Ui,N√
N
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for i = {p, f} (we recall that Wp,N and Wf,N are defined by (1.11)), and remark that

(R̂Lf,y)
−1/2R̂Lf |p,y(R̂

L
p,y)
−1R̂L∗f |p,y(R̂

L
f,y)
−1/2 = (Σf,NΣ∗f,N )−1/2Σf,NΣ∗p,N (Σp,NΣ∗p,N )−1Σp,NΣ∗f,N (Σf,NΣ∗f,N )−1/2

It is clear that apart 0, the eigenvalues of this matrix coincide with the eigenvalues of the matrix

Σ∗p,N (Σp,NΣ∗p,N )−1Σp,NΣ∗f,N (Σf,NΣ∗f,N )−1Σf,N = Πp,NΠf,N

where Πp,N = Σ∗p,N (Σp,NΣ∗p,N )−1Σp,N and Πf,N = Σ∗f,N (Σf,NΣ∗f,N )−1Σf,N represent the orthogonal projection
matrices over the row spaces of Yp,N and Yf,N respectively. Since the eigenvalues of Πp,NΠf,N do not exceed
1, it is natural to assume in this part that cN = ML/N → c∗ ∈ (0, 1].

In the absence of signal.

We first analyse the eigenvalues of Πp,NΠf,N when the signal is absent, i.e. y = v, or equivalently Yp,N√
N

=

Σp,N = Wp,N and Yf,N√
N

= Σf,N = Wf,N . We notice that for each n, vector vn can be written as vn = R
1/2
N viidn

where the vectors (viidn )n∈Z are independent and Nc(0, I) distributed. Then, it holds that Wi,N = R
1/2
N W iid

i,N

for i = p, f where matricesW iid
p,N andW iid

f,N are built from the Nc(0, I) distributed vectors (viidn )n=1,...,N+2L−1.
As the row spaces of Wi,N and W iid

i,N coincide, the two projectors Πp,N and Πf,N coincide with the projectors
Πiid
p,N and Πiid

f,N defined from W iid
p,N and W iid

f,N . Therefore, when the useful signal is absent, we can assume
without restriction that RN = I.

In Chapter 5, we denote by ν̂N the empirical eigenvalue distribution of Πp,NΠf,N despite the fact that ν̂N
represents in Chapter 3 the empirical eigenvalue distribution of Wf,NW

∗
p,N . If matrices Wp,N and Wf,N

were mutually independent random matrices with i.i.d. complex standard Gaussian entries, free probability
theory methods (see e.g. [50]) or Gaussian tools ( [46]) would imply that if ν̃N denotes the free multiplicative
convolution product of cNδ1 + (1− cN )δ0 with itself, then, ν̂N − ν̃N → 0 almost surely. As it is well known,
ν̃N is given by

dν̃N (λ) =

√
λ(4cN (1− cN )− λ)

2πλ(1− λ)
1[0,4cN (1−cN )]dλ+ (1− cN )δλ + max(2cN − 1, 0)δλ−1 (1.13)

and its Stieltjes transform, denoted t̃N (z), is equal to

t̃N (z) =
z − 2(1− cN ) +

√
z(z − 4cN (1− cN ))

2(1− z)z
(1.14)

for each z ∈ C+, where we define function z 7→
√
z for z = |z|eiθ, θ ∈ (0, 2π) as

√
z =

√
|z|eiθ/2. Moreover, for

each ε > 0, almost surely, for N large enough, all the eigenvalues of Πp,NΠf,N strictly less than 1 would belong
to [0, 4c∗(1− c∗) + ε]. In our context, the structured matrices Wp,N and Wf,N are not mutually independent,
and their elements are not i.i.d. However, we establish that the above results remain true. For this, we use
the Stieltjes transform approach and evaluate the asymptotic behaviour of the resolvent of matrix Πp,NΠf,N .
In order to be able to use Gaussian tools, the matrices Πp,N and Πf,N should be differentiable functions
of the entries of matrices Wp,N and Wf,N respectively. However, this is not the case when these entries are
such that Wp,NW

∗
p,N or Wf,NW

∗
f,N are not invertible. In order to address this technical problem, we use a

regularization scheme introduced in [21]. We introduce ηN defined by

ηN = det [φ(Wf,NW
∗
f,N )]det [φ(Wp,NW

∗
p,N )],

where φ is a smooth function such that

φ(λ) =

{
1, for λ ∈ [(1−√c∗)2 − ε], [(1 +

√
c∗)2 + ε],

0, for λ ∈ [−∞, (1−√c∗)2 − 2ε] ∪ [(1 +
√
c∗)2 + 2ε, +∞]

and φ(λ) ∈ (0, 1) elsewhere. As ηN = 0 if Wi,NW
∗
i,N is not invertible for i = p or i = f , ηNΠi,N , considered

as a function of the entries of Wp,N and Wf,N , is a differentiable function whose derivatives are bounded
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polynomially. Moreover, it is shown in [32] that the empirical eigenvalue distribution of Wi,NW
∗
i,N for i =

{p, f} converges towards the Marcenko-Pastur distribution, and that almost surely, for N greater than a
random integer, its eigenvalues located in the neighbourhood of [(1 −√c∗)2, (1 +

√
c∗)2]. Therefore, almost

surely, for N large enough, ηN = 1, and ηNΠi,N = Πi,N for i = {p, f}. The almost sure behaviours of the
resolvents (Πp,NΠf,N − zI)−1 and (ηNΠp,NηNΠf,N − zI)−1 thus coincide. In this chapter, we thus study the
resolvent QN (z) = (ηNΠp,NηNΠf,N − zI)−1 using the integration by parts formula and the Nash-Poincaré
inequality (we again use in Chapter 5 a notation used to denote a different object in Chapter 3). As in
Chapter 3, we rather evaluate the behaviour of the resolvent

QN (z) =

(
QN,pp(z) QN,pf (z)
QN,fp(z) QN,ff (z)

)
of the 2N × 2N block matrix

MN =

(
0 ηNΠp,N

ηNΠf,N 0

)
.

and deduce the results on QN (z) using the identity QN,pp(z) = zQN (z2). If tN (z) represents the Stieltjes
transform of the probability measure 1

cN
(ν̃N − (1− cN )δ0) (i.e. tN (z) is defined by cN tN (z) = t̃N (z)+ 1−cN

z ),
we establish that, in a certain sense, QN,pp and QN,ff behave as zt̃N (z2)IN while QN,pf and QN,fp behave
as tN (z2)IN . These results allows to justify that ν̂N − ν̃N → 0 and, after some work, imply that for each
ε > 0, almost surely, for N large enough, all the eigenvalues strictly less than 1 of Πp,NΠf,N belong to
[0, 4c∗(1− c∗) + ε].

When the signal is present.

In the second part of Chapter 5, we finally assume that the useful signal u is present, and, of course do not
assume that RN = I. We formulate the same assumptions on the useful signal than in Chapter 4, except
that we replace the hypotheses related to the convergence of the empirical eigenvalue distribution of RN and
of measure βN defined by (1.12) by the mild assumption that the r× r matrix sequence Θ∗N (I ⊗RN )−1 ΘN

converges towards a positive definite matrix denoted G∗ in the following. After expressing the orthogonal
projection matrices Πi,N on the row spaces of Σi,N as a low rank perturbation of matrices ΠW

i,N (we now
denote by ΠW

i,N the projection matrix on the row space of Wi,N ), and using the above results related to the
behaviour of the resolvent QW

N of ΠW
p,NΠW

f,N , we eventually obtain a clear characterization of the eigenvalues
of Πp,NΠf,N that escape from the interval [0, 4c∗(1− c∗)]. We establish that for N large enough, the number
of eigenvalues of Πp,NΠf,N that escape from [0, 4c∗(1− c∗)] coincides with the number s of solutions of the
equation

det

(
x

(
t̃∗(x)

(1− c)t∗(x)

)2

− F∗

)
= 0 (1.15)

that are larger than 4c∗(1 − c∗), where t̃∗ and t∗ represent the limits of the Stieltjes transforms t̃N and tN
(i.e. t̃∗(z) is obtained by replacing cN by c∗ in (1.14)) and where matrix F∗ is the rank P matrix (because
Ω∗ is itself a rank P matrix) defined as

F∗ =
(
I + ∆−1

∗ G−1
∗ ∆−1

∗
)−1

Ω∗∗
(
I + ∆−1

∗ G−1
∗ ∆−1

∗
)−1

Ω∗ (1.16)

Using the explicit expressions of t̃∗(x) and t∗(x), we verify that when x increases from 4c∗(1− c∗) to 1, then

x
(

t̃∗(x)
(1−c)t∗(x)

)2
increases from c∗

1−c∗ < 1 to 1 if c∗ < 1/2 and from c∗
1−c∗ ≥ 1 to

(
c∗

1−c∗

)2
if c∗ ≥ 1/2. As matrix

F∗ has rank P and verifies F∗ < I, we deduce immediately from this that s = 0 if c∗ ≥ 1/2. If c∗ < 1
2 ,

s ≤ P , and s coincides with the number of eigenvalues of matrix F∗ that are larger than c∗
1−c∗ . Finally, if

x1,∗ ≥ x2,∗ . . . ≥ xs,∗ are the solutions of (1.15) larger than 4c∗(1 − c∗), then the s largest eigenvalues of
Πp,NΠf,N converge towards x1,∗ ≥ x2,∗ . . . ≥ xs,∗. If c∗ < 1

2 , it turns out that, under the assumption that the
smallest eigenvalue of F∗ is strictly larger than c∗

1−c∗ , s coincides with P , and that it is possible to estimate P
consistently as the number of eigenvalues of Πp,NΠf,N that are larger than 4c∗(1− c∗). From the expression
(1.16), this condition will intuitively hold if both the r eigenvalues of RLu,N are large enough (thus making
matrix ∆−1

∗ small) and the canonical correlation coefficients between the past and the future of u large
enough as well (thus making the singular values of Ω∗ large).
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Глава 2

Some notations and basic tools.

In this chapter we introduce the assumptions and notations which will be used throughout the manuscript
as well as some fundamental tools.

Assumptions

• We assume that L is a fixed parameter, and that M and N converge towards +∞ in such a way that

cN =
ML

N
→ c∗, c∗ > 0. (2.1)

This regime will be referred to as N → +∞ in the following. In the regime (2.1), M should be
interpreted as an integer M = M(N) depending on N . The various matrices we have introduced above
thus depend on N and will be denoted RN , Yf,N , Yp,N , . . .. In order to simplify the notations, the
dependency w.r.t. N will sometimes be omitted.

• The sequence of covariance matrices (RN )N≥1 of M–dimensional vectors (vn)n=1,...,N is supposed to
verify

a I ≤ RN ≤ b I (2.2)

for each N , where a > 0 and b > 0 are 2 constants. λ1,N ≥ λ2,N ≥ . . . ≥ λM,N represent the eigenvalues
of RN arranged in the decreasing order and f1,N , . . . , fM,N denote the corresponding eigenvectors.
Hypothesis (2.2) is obviously equivalent to λM,N ≥ a and λ1,N ≤ b for each N .

Notations

• For each 1 ≤ i ≤ 2L and 1 ≤ m ≤ M , fmi represents the vector of the canonical basis of C2ML with
1 at the index m+ (i− 1)M and zeros elsewhere. In order to simplify the notations, we mention that
if i ≤ L, vector fmi may also represent the vector of the canonical basis of CML with 1 at the index
m+(i−1)M and zeros elsewhere. Vector ej with 1 ≤ j ≤ N represents the j –th vector of the canonical
basis of CN .

• For each integers l ∈ Z and K ∈ N such that K ≥ |l|, we define K ×K "shift"matrix J (l)
K as

(J
(l)
K )ij = δj−i,l. (2.3)

• R+ and R− represents respectively the set of all non-negative numbers and non-positive numbers, and
we denote R∗ ≡ R \ {0}, R+∗ ≡ R+ \ {0} and R−∗ ≡ R− \ {0}. We also define C+ ≡ z ∈ C : Im(z) > 0

• By a nice constant, we mean a positive deterministic constant which does not depend on the dimensions
M and N nor of the complex variable z. In the following, κ will represent a generic nice constant whose
value may change from one line to the other. A nice polynomial P (z) is a polynomial whose degree
and coefficients are nice constants.
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• If (αN )N≥1 is a sequence of positive real numbers and if Ω is a domain of C, we will say that a sequence of
functions (fN (z))N≥1 verifies fN (z) = Oz(αN ) for z ∈ Ω if there exists two nice polynomials P1 and P2

such that |fN (z)| ≤ αNP1(|z|)P2( 1
|Imz|) for each z ∈ Ω. If Ω = C+, we will just write fN (z) = Oz(αN )

without mentioning the domain. We notice that if P1, P2 and Q1, Q2 are nice polynomials, then
P1(|z|)P2( 1

|Imz|)+Q1(|z|)Q2( 1
|Imz|) ≤ (P1 +Q1)(|z|)(P2 +Q2)( 1

|Imz|), from which we conclude that if the
sequences (f1,N )N≥1 and (f2,N )N≥1 are Oz(αN ) on Ω, then it also holds f1,N (z) + f2,N (z) = Oz(αN )
on Ω.

• For any matrix A, ‖A‖ and ‖A‖F represent its spectral norm and Frobenius norm respectively. The
transpose, conjugate, and conjugate transpose of A are respectively denoted by AT ,Ā and A∗, for
matrix B of the same size A ≥ B stands for A − B non-negative definite. If moreover A is a square
matrix, Im(A) is the Hermitian matrix defined by Im(A) = A−A∗

2i .

• C∞c (R,R) represents the set of all C∞ real valued compactly supported functions defined on R.

• If ξ is a random variable, we denote by ξ◦ the zero mean random variable defined by

ξ◦ = ξ − Eξ. (2.4)

Fundamentals tools

We remind here one of the basic tool in random matrix theory, i.e. the Stieltjes transform.

Let µ be the finite measure with a support Supp(µ) ∈ R, then its Stieltjes transform fµ is defined as

fµ(z) =

∫
R

dµ(λ)

λ− z
, for each z ∈ C \ Supp(µ)

We first state well known properties of Stieltjes transforms (see e.g. the Appendix of [27], the Appendix A
of [18], and the references therein).

Proposition 2.1. The following properties hold true:
1. Let f be the Stieltjes transform of a positive finite measure µ, then
– the function f is analytic over C+,
– if z ∈ C+ then f(z) ∈ C+,
– the function f satisfies: |f(z)| ≤ µ(R)

Imz , for z ∈ C+

– if µ(−∞, 0) = 0 then its Stieltjes transform f is analytic over C/R+. Moreover, z ∈ C+ implies zf(z) ∈ C+.
– for all φ ∈ C∞c (R,R) we have∫

R
φ(λ)dµ(λ) =

1

π
lim
y↓0

Im

{∫
R
φ(x)f(x+ iy)dx

}
.

2. Conversely, let f be a function analytic over C+ such that f(z) ∈ C+ if z ∈ C+ and for which supy≥ε |iyf(iy)| <
+∞ for some ε > 0. Then, f is the Stieltjes transform of a unique positive finite measure µ such that
µ(R) = limy→+∞ −iyf(iy). If moreover zf(z) ∈ C+ for z in C+ then, µ(R−) = 0. In particular, f is given
by

f(z) =

∫ +∞

0

µ(dλ)

λ− z

and has an analytic continuation on C/R+.
3. Let F be an P × P matrix-valued function analytic on C+ verifying
– Im(F (z)) > 0 if z ∈ C+

– supy>ε ‖iyF (iy)‖ < +∞ for some ε > 0.
Then, F ∈ SP (R), and if µF is the corresponding P × P associated positive measure, it holds that

µF (R) = lim
y→+∞

−iyF (iy). (2.5)

If moreover Im(zF (z)) > 0, then, F ∈ SP (R+).
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One of the classical approach of random matrix theory is based on the fact that for the ensemble of random
hermitian N ×N matricesMN , the Stieltjes transform of its spectral distribution FM(λ) which is defined
as

F (λ) =
1

N
Card{eigenvalues ofMN ≤ λ}

coincides to the 1
NTrQN (z), where QN (z) is the resolvent of matrixMN which is defined by

QN (z) = (MN − z)−1

It is well known that resolvent of hermitian matrix is bounded for z ∈ C+ and from classical linear algebra
we have so called resolvent identity, more precisely:

• ‖QN (z)‖ ≤ (Imz)−1, for each z ∈ C+

• The resolvent identity: zQN (z) = −IN +QN (z)MN

these two properties will be used a lot throughout the manuscript.

We finally recall the 2 Gaussian tools that will be used in the sequel in order to evaluate the asymptotic
behaviour of corresponding resolvent. The corresponding proofs can be found for example in [39] and [11].

Proposition 2.2. (Integration by parts formula.) Let ξ = [ξ1, . . . , ξK ]T be a complex Gaussian random
vector such that E{ξ} = 0, E{ξξT } = 0 and E{ξξ∗} = Ω. If Γ : (ξ) 7→ Γ(ξ, ξ̄) is a C1 complex function
polynomially bounded together with its derivatives, then

E{ξiΓ(ξ)} =
K∑
k=1

ΩikE
{
∂Γ(ξ)

∂ξ̄k

}
. (2.6)

Proposition 2.3. (Poincaré-Nash inequality.) Let ξ = [ξ1, . . . , ξK ]T be a complex Gaussian random
vector such that E{ξ} = 0, E{ξξT } = 0 and E{ξξ∗} = Ω. If Γ : (ξ) 7→ Γ(ξ, ξ̄) is a C1 complex function
polynomially bounded together with its derivatives, then, noting ∇ξΓ = [ ∂Γ

∂ξ1
, . . . , ∂Γ

∂ξK
]T and ∇ξ̄Γ = [ ∂Γ

∂ξ̄1
, . . . , ∂Γ

∂ξ̄K
]T

Var{Γ(ξ)} ≤ E
{
∇ξΓ(ξ)TΩ∇ξΓ(ξ)

}
+ E

{
∇ξ̄Γ(ξ)∗Ω∇ξ̄Γ(ξ)

}
. (2.7)
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Глава 3

Large empirical autocovariance matrices
between the past and the future

This chapter is dedicated to the study of the singular values of matrix R̂Lf |p,y, or equivalently of the eigenvalues
of R̂Lf |p,y(R̂

L
f |p,y)

∗, in the case when the signal is absent, i.e. yn = vn. In this context, it thus holds that
1√
N
Yp,N = 1√

N
Vp,N and 1√

N
Yf,N = 1√

N
Vf,N . In the following, we denote by Wp,N and Wf,N the normalized

matrices
Wp,N =

1√
N
Vp,N , Wf,N =

1√
N
Vf,N .

We recall that the resolvent QN (z) of Wf,NW
∗
p,NWp,NW

∗
f,N is defined by

QN (z) =
(
Wf,NW

∗
p,NWp,NW

∗
f,N − zI

)−1
. (3.1)

As the direct study of QN (z) is not obvious, we rather introduce the resolvent QN (z) of the 2ML × 2ML
block matrix

MN =

(
0 Wf,NW

∗
p,N

Wp,NW
∗
f,N 0

)
. (3.2)

It is well known that QN (z) can be expressed as

QN (z) =

(
zQN (z2) QN (z2)Wf,NW

∗
p,N

Wp,NW
∗
f,NQN (z2) zQ̃N (z2)

)
, (3.3)

where Q̃N (z) is the resolvent of matrix Wp,NW
∗
f,NWf,NW

∗
p,N . As shown below, it is rather easy to evaluate

the asymptotic behaviour of QN (z) using the Poincaré-Nash inequality and the integration by part formula
(see Propositions 2.3 and 2.2 below). Formula (3.3) will then provide all the necessary information on QN (z).

In the following, every 2ML× 2ML matrix G will be written as

G =

(
Gpp Gpf

Gfp Gff

)
,

where the 4 matrices (Gij)i,j∈p,f are ML×ML. Sometimes, the blocks will be denoted G(pp), G(pf), ....

We denote by WN the 2ML×N matrix defined by

WN =

(
Wp,N

Wf,N

)
. (3.4)

Its elements (Wm
i,j)i≤2L,j≤N,m≤M satisfy

E{Wm
i,j(W

m′
i′,j′)

∗} =
1

N
Rmm′,Nδi+j,i′+j′ ,
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where Wm
i,j represents the element which lies on the (m+M(i− 1))-th line and j-th column for 1 ≤ m ≤M ,

1 ≤ i ≤ 2L and 1 ≤ j ≤ N . Similarly, Qm1m2
i1i2

, where 1 ≤ m1,m2 ≤ M and 1 ≤ i1, i2 ≤ 2L, represents the
entry (m1 +M(i1− 1)), (m2 +M(i2− 1)) of Q. For each j = 1, . . . , N , {wj}Nj=1, {wp,j}Nj=1 and {wf,j}Nj=1 are
the column of matrices W,Wp and Wf respectively.

3.1 On the literature.

The large sample behaviour of high-dimensional autocovariance matrices was comparatively less studied than
the high-dimensional covariance matrices. We first mention [26] which studied the asymptotic behaviour of
the eigenvalue distribution of the hermitian matrix R̂τ + R̂∗τ where R̂τ is defined as R̂τ = 1

N

∑N
n=1 xn+τx

∗
n

where (xn)n∈Z represents a M dimensional non Gaussian i.i.d. sequence, the components of each vector
xn being moreover i.i.d. with zero means and unit variance. In particular, E(xnx

∗
n) = I. It is proved that

the empirical eigenvalue distribution of R̂τ + R̂∗τ converges towards a limit distribution independent from
τ ≥ 1. Using finite rank perturbation technics of the resolvent of the matrix under consideration, the Stieltjes
transform of this distribution was shown to satisfy a polynomial degree 3 equation. Solving this equation
led to an explicit expression of the probability density of the limit distribution. [31] extended these results
to the case where (xn)n∈Z is a non Gaussian linear process xn =

∑+∞
l=0 Alzn−l where (zn)n∈Z is i.i.d., and

where matrices (Al)l≥0 are simultaneously diagonalizable. The limit eigenvalue distribution was characterized
through its Stieltjes transform that is obtained by integration of a certain kernel, itself solution of an integral
equation. The proof was based on the observation that in the Gaussian case, the correlated vectors (xn)n∈Z
can be replaced by independent ones using a classical frequency domain decorrelation procedure. The results
were generalized in the non Gaussian case using the generalized Lindeberg principle. We also mention [2] (see
also the book [3]) where the existence of a limit distribution of any symmetric polynomial of (R̂τ , R̂

∗
τ )τ∈T for

some finite set T was proved using the moment method when x is a linear non Gaussian process. [28] studied
the asymptotic behaviour of matrix R̂τ R̂

∗
τ when (xn)n∈Z represents a M dimensional non Gaussian i.i.d.

sequence, the components of each vector xn being moreover i.i.d. Using finite rank perturbation technics, it
was shown that the empirical eigenvalue distribution converges towards a limit distribution whose Stieltjes
transform is solution of a degree 3 polynomial equation. As in [26], this allowed to obtain the expression
of the corresponding probability density function. Using combinatorial technics, [28] also established that
almost surely, for large enough dimensions, all the eigenvalues of R̂τ R̂∗τ are located in a neighbourhood of
the support of the limit eigenvalue distribution. We finally mention that [29] used the results in [28] in order
to study the largest eigenvalues and corresponding eigenvectors of R̂τ R̂∗τ when the observation contains a
certain spiked useful signal that is more specific than the signals (un)n∈Z that motivated this thesis.

We now compare the results of the present chapter with the content of the above previous works. We first
study a matrix that is more general than R̂τ R̂∗τ . While we do not consider linear processes here, we do not
assume that the covariance matrix of the i.i.d. sequence (vn)n∈Z is reduced to I as in [28]. This in particular
implies that the Stieltjes transform of the deterministic equivalent νN of ν̂N cannot be evaluated in closed
from. Therefore, a dedicated analysis of the support and of the properties of νN is provided here. We also
mention that in contrast with the above papers, we characterize the asymptotic behaviour of the resolvent of
matrix Wf,NW

∗
p,NWp,NW

∗
f,N while the mentionned previous works only studied the normalized trace of the

resolvent of the matrices under consideration. Studying the full resolvent matrix is necessary to address the
case where a useful spiked signal u is added to the noise v. We notice that the above papers addressed the
non Gaussian case while we consider the case where v is a complex Gaussian i.i.d. sequence. This situation
is of course simpler in that various Gaussian tools are available, but appears to be relevant because in the
context of the present thesis, v is indeed supposed to represent some additive noise, which, in a number of
contexts, is Gaussian.

We finally mention that some of the results may be obtained by adapting general recent results devoted to
the study of the spectrum of hermitian polynomials of GUE matrices and deterministic matrices (see [6]
and [34]). If we denote by ZN theM × (N +2L−1) matrix ZN = (v1, . . . , vN+2L−1), then ZN can be written
as ZN = R

1/2
N XN where the entries of XN are i.i.d. complex Gaussian standard variables. Each M ×M

block ΣN,k,l (1 ≤ k, l ≤ L) of ΣN = Wf,NW
∗
p,NWp,NW

∗
f,N is clearly a polynomial of XN , X

∗
N and various

18



M ×M and M × (N + 2L− 1) deterministic matrices. Assume that M < N + 2L− 1. In order to be back
to a polynomial of GUE matrices, it is possible to consider the L(N + 2L− 1)× L(N + 2L− 1) matrix Σ̃N

whose (N + 2L− 1)× (N + 2L− 1) blocks are defined by

Σ̃N,k,l =

(
ΣN,k,l 0

0 0

)
.

It is clear that apart 0, the eigenvalues of Σ̃N coincide with those of ΣN . If X̃N is any (N+2L−1)×(N+2L−1)
matrix with i.i.d. complex Gaussian standard entries whose M first rows coincide with XN , then, it is
easily seen that each block of Σ̃N coincides with a hermitian polynomial of X̃N , X̃

∗
N and deterministic

(N + 2L− 1)× (N + 2L− 1) matrices such as

R̃N =

(
RN 0
0 0

)
.

Expressing X̃N as the sum of its hermitian and anti-hermitian parts, we are back to study the behaviour of
the eigenvalues of a matrix whose blocks are hermitian polynomials of 2 independent GUE matrices and of
(N + 2L− 1)× (N + 2L− 1) deterministics matrices. Extending Proposition 2.2 and Theorem 1.1 in [6] to
block matrices (as in Corollary 2.3 in [34]) would lead to the conclusion that ν̂N has a deterministic equivalent
νN and that the eigenvalues of Wf,NW

∗
p,NWp,NW

∗
f,N are located in the neighbourhood of the support of νN .

While this last consequence would avoid the use of the specific approach used in section 3.7 of the present
chapter, the existence of νN is not a sufficient information. νN should of course be characterized through its
Stieltjes transform, and we believe that the adaptation of Proposition 2.2 and Theorem 1.1 in [6] is not the
most efficient approach.

3.2 Use of the Poincaré-Nash inequality.

In this paragraph, we control the variance of various functionals of QN (z) using the Poincaré-Nash inequality.
For this, it appears useful to evaluate the moments of ‖WN‖. The following result holds.

Lemma 3.1. For any l ∈ N, it holds that supN≥1 E{‖WN‖2l} < +∞.

Proof. We first remark that it is possible to be back to the case where matrix RN = IM . Due to the
Gaussianity of the i.i.d. vectors (vn)n≥1, it exists i.i.d. Nc(0, IM ) distributed vectors (viid,n)n≥1 such that
E(viid,nv

∗
iid,n) = IM verifying vn = R

1/2
N viid,n. From this, we obtain immediately that the 2ML × N block

Hankel matrix Wiid,N built from (vn,iid)n=1,...,N satisfies

WN =

R
1/2
N

. . .
R

1/2
N

Wiid,N . (3.5)

As the spectral norm of RN is assumed uniformly bounded when N increases, the statement of the lemma
is equivalent to supN E{‖Wiid‖2l} < +∞. It is shown in [32] that the empirical eigenvalue distribution of
Wiid,NW

∗
iid,N converges towards the Marcenko-Pastur distribution, and that its smallest non zero eigenvalue

and its largest eigenvalue (which coincides with ‖Wiid,N‖2) converge almost surely towards (1 −√c∗)2 and
(1 +

√
c∗)2 respectively. We express E{‖Wiid‖2l} as

E{‖Wiid‖2l} = E{‖Wiid‖2l1‖Wiid‖2≤(1+
√
c∗)2+δ}+ E{‖Wiid‖2l1‖Wiid‖2>(1+

√
c∗)2+δ}

≤ κ+ E{‖Wiid‖2lF 1‖Wiid‖2>(1+
√
c∗)2+δ} ≤ κ+ E{‖Wiid‖4lF }1/2E{1‖Wiid‖2>(1+

√
c∗)2+δ}1/2

where κ > 0 is a nice constant. As E{‖Wi.i.d.‖4lF } = O(N2l), it is sufficient to prove that E{1‖Wiid‖2>(1+
√
c∗)2+δ}

is less than any power of N−1. We introduce a smooth function φ0 defined on R by

φ0(λ) =

{
1, for λ ∈ [−∞, −δ] ∪ [(1 +

√
c∗)2 + δ, +∞],

0, for λ ∈ [−δ/2, (1 +
√
c∗)2 + δ/2]
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and φ0(λ) ∈ (0, 1) elsewhere. Then, it holds that

E{1‖Wiid‖2>(1+
√
c∗)2+δ} = E{1λmax(WiidW

∗
iid)>(1+

√
c∗)2+δ} ≤ P[Trφ0(WiidW

∗
iid) ≥ 1]

≤ E{(Trφ0(WiidW
∗
iid))

2k}

for any k ∈ N. Lemma 3.1 thus appears as an immediate consequence of the following lemma.

Lemma 3.2. For each smooth function φ such that φ(λ) = 0 if λ ∈ [−δ/2, (1 +
√
c∗)2 + δ/2] and φ(λ)

constant on [−∞, −δ] ∪ [(1 +
√
c∗)2 + δ, +∞], it holds that ∀k ∈ N, E

{
(Trφ(WiidW

∗
iid))

2k
}
≤ κ

N2k
.

Proof. We prove the Lemma by induction. We first consider the case k = 1. For more convenience we will
write W instead of Wiid in the course of the proof. Here and below we take sum for all possible values of
indexes, if not specified. From (2.7) we have

Var{Trφ(WW ∗)} ≤
∑

E

{(
∂Trφ(WW ∗)

∂W
m1

i1,j1

)∗
E{Wm1

i1,j1
W

m2

i2,j2}
∂Trφ(WW ∗)

∂W
m2

i2,j2

}

+
∑

E

{
∂Trφ(WW ∗)
∂Wm1

i1,j1

E{Wm1
i1,j1

W
m2

i2,j2}

(
∂Trφ(WW ∗)
∂Wm2

i2,j2

)∗}
. (3.6)

We only evaluate the first term, denoted by ψ, of the right handside of (3.6), because the second one can be
addressed similarly. For this, we first remark that

∂Trφ(WW ∗)

∂W
m1

i1,j1

= Tr

(
φ′(WW ∗)

∂WW ∗

∂W
m1

i1,j1

)
=
(
φ′(WW ∗)W

)m1

i1,j1
.

Plugging this into (3.6) we obtain

ψ =
∑ 1

N
E
{(
φ′(WW ∗)W

)∗m1

j1,i1
δm1,m2δi1+j1,i2+j2

(
φ′(WW ∗)W

)m2

i2,j2

}
.

Denoting l = i1 − i2, it is easy to verify that ψ can be written as

ψ =
1

N

L−1∑
l=−(L−1)

E{Tr
(
φ′(WW ∗)W

)∗
(J

(l)
L ⊗ IM )

(
φ′(WW ∗)W

)
J

(l)
N }. (3.7)

where we recall that matrix JL is defined by (2.3). For each ML × N matrices A and B, the Schwartz
inequality and the inequality between arithmetic and geometric means lead to∣∣∣∣ 1

N
TrA∗(J∗ε(u)

L ⊗ IM )BJ
∗ε(u)
N

∣∣∣∣ ≤ 1

2N
TrA∗(J∗ε(u)

L J
(u)
L ⊗ IM )A+

1

2N
TrB∗J∗ε(u)

N J
(u)
N B.

Therefore, since J∗ε(u)
L J

(u)
L ⊗ IM ≤ IML and J∗ε(u)

N J
(u)
N ≤ IN∣∣∣∣ 1

ML
TrA∗(J∗ε(u)

L ⊗ IM )BJ
∗ε(u)
N

∣∣∣∣ ≤ κ

N
(TrA∗A+ TrB∗B). (3.8)

By taking here A = B = φ′(WW ∗)W , we obtain from (3.6) and (3.7)

Var{Trφ(WW ∗)} ≤ κ

N
E
{

Tr
(
φ′(WW ∗)

)2
WW ∗

}
. (3.9)

Consider the function η(λ) = (φ′(λ))2λ. It is clear that η(λ) is a compactly supported smooth function.
Therefore (see e.g. [32]), it holds that

E
{

1

ML
Tr
(
(φ′(WW ∗))2WW ∗

)}
=

∫
SMP,N

η(λ)dµMP,N (λ) +O
(

1

N2

)
,
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where µMP,N is the measure associated to Marcenko-Pastur distribution with parameters (1, cN ) and where
SMP,N ⊂ [0, (1 +

√
cN )2] represents the support of µMP,N . It is clear that for N large enough, the support

of φ′ and SMP,N do not intersect, so that
∫
SMP,N

η(λ)dµMP,N (λ) = 0. Therefore, we obtain that

E
{

1

ML
Tr
(
(φ′(WW ∗))2WW ∗

)}
= O

(
1

N2

)
.

This and (3.9) lead to the conclusion that Var{Trφ(WW ∗)} = O
(
N−2

)
. To finalize the case k = 1, we

express E{(Trφ(WW ∗))2} as E{(Trφ(WW ∗))2} = Var{Trφ(WW ∗)} + E{Trφ(WW ∗)}2. [32, Lemma 10.1]
implies that E{Trφ(WW ∗)} = O(N−1), which completes the proof for k = 1.
Now we suppose that for any n ≤ k we have E{(Trφ(WW ∗))2n} = O(N−2n) and are about to prove that it
holds for n = k + 1. As in the previous case we write

E{(Trφ(WW ∗))2(k+1)} = Var{(Trφ(WW ∗))k+1}+
(
E{(Trφ(WW ∗))k+1}

)2
. (3.10)

To evaluate the second term of the r.h.s. of (3.10), we use the Schwartz inequality and the induction
assumption

E{(Trφ(WW ∗))k+1} ≤
(
E{(Trφ(WW ∗))2k}E{(Trφ(WW ∗))2}

)1/2
= O

(
1

Nk+1

)
, (3.11)

We follow the same steps as in the case k = 1 to study the first term of the r.h.s. of (3.10). Using again the
Poincaré-Nash inequality, we obtain that

Var{(Trφ(WW ∗))k+1} ≤ κ

N
E
{

(Trφ(WW ∗))2k Tr
(
φ′(WW ∗)2WW ∗

)}
.

Using Holder’s inequality, we obtain

Var{(Trφ(WW ∗))k+1} ≤ κ

N
E
{

(Trφ(WW ∗))2k+2
} k
k+1 E

{(
Tr(φ′(WW ∗)2WW ∗)

)k+1
} 1
k+1

. (3.12)

The properties of function η(λ) = φ′(λ)2λ imply that it satisfies the induction hypothesis and that it verifies
(3.11), i.e. E

{
(Tr(φ′(WW ∗)2WW ∗))k+1

}
= O( 1

Nk+1 ). Plugging this into (3.12), we get that

Var{(Trφ(WW ∗))k+1} ≤ κ

N2
E
{

(Trφ(WW ∗))2k+2
} k
k+1

.

From this, (3.11) and (3.10), we immediately obtain

E{(Trφ(WW ∗))2k+2} ≤ κ1

N2
E{(Trφ(WW ∗))2k+2}

k
k+1 +

κ2

N2k+2
. (3.13)

We denote by zk,N the term zk,N = N2k+2 E{(Trφ(WW ∗))2k+2}. Then, (3.13) implies that

zk,N ≤ κ1 (zk,N )k/(k+1) + κ2.

This inequality leads to the conclusion that sequence (zk,N )N≥1 is bounded, or equivalently that
E{(Trφ(WW ∗))2k+2} ≤ κ

N2k+2 as expected. This completes the proof of Lemmas 3.2 and 3.1. �

We now evaluate the variance of useful functionals of the resolvent QN (z).

Lemma 3.3. Let (FN )N≥1, (GN )N≥1 be sequences of deterministic 2ML× 2ML matrices and (HN )N≥1 a
sequence of deterministic N ×N matrices such that max{supN ‖FN‖, supN ‖GN‖, supN ‖HN‖} ≤ κ. Then,
for each z ∈ C+, it holds that

Var

{
1

ML
TrFQ

}
≤ C(z)κ2

N2
, (3.14)

Var

{
1

ML
TrFQGWHW ∗

}
≤ C(z)κ6

N2
. (3.15)

where C(z) can be written as C(z) = P1(|z|)P2

(
1

Imz

)
for some nice polynomials P1 and P2.
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Proof. We first prove (3.14) and denote by ξ the term ξ = 1
MLTrFQ. The Poincare-Nash inequality leads

to

Var{ξ} ≤
∑

i1,j1,m1
i2,j2,m2

E

{(
∂ξ

∂W
m1

i1,j1

)∗
E{Wm1

i1,j1
W

m2

i2,j2}
∂ξ

∂W
m2

i2,j2

}

+
∑

i1,j1,m1
i2,j2,m2

E

{
∂ξ

∂Wm1
i1,j1

E{Wm1
i1,j1

W
m2

i2,j2}

(
∂ξ

∂Wm2
i2,j2

)∗}
.

We just evaluate the first term of the r.h.s. that we denote by φ. For this, we need the expression of the
derivative of Q with respect to the complex conjugates of the entries of W . We denote by Πpf and Πfp the
2ML × 2ML matrices defined by Πpf =

(
0 IML
0 0

)
and Πfp =

(
0 0

IML 0

)
. Then, after some algebra, we obtain

that

∂Q

∂W
m
i,j

= −Q
(wj,f

0

)
(fmi+L)TQ 1i≤L −Q

(
0

wj,p

)
(fmi−L)TQ 1i>L

= −QΠpfWej (fmi )TΠpfQ−QΠfpWej (fmi )TΠfpQ. (3.16)

From this, we deduce immediately that

∂ξ

∂W
m1

i1,j1

= − 1

ML

(
ΠpfQFQΠpfW + ΠfpQFQΠfpW

)m1

i1,j1
.

Using that E{Wm1
i1,j1

W
m2

i2,j2} = 1
NRm1m2δi1+j1,i2+j2 , we obtain that φ is given by

φ =
1

N(ML)2

∑
i1,j1,m1
i2,j2,m2

(ej1)T (ΠpfQFQΠpfW + ΠfpQFQΠfpW )∗fm1
i1
Rm1m2

× δi1+j1,i2+j2(fm2
i2

)T (ΠpfQFQΠpfW + ΠfpQFQΠfpW )ej2 .

We put u = i1−i2 and remark that
∑

m1,m2,i1−i2=u fm1
i1
Rm1m2(fm2

i2
)T = J

∗ε(u)
L ⊗R and that

∑
j2−j1=u ej2e

T
j1

=

J
∗ε(u)
N . Therefore, φ can be written as

φ =
1

MLN
E
{ L−1∑
u=−(L−1)

1

ML
Tr(ΠpfQFQΠpfW + ΠfpQFQΠfpW )∗(J∗ε(u)

L ⊗R)

× (ΠpfQFQΠpfW + ΠfpQFQΠfpW )J
∗ε(u)
N

}
. (3.17)

Each term inside the sum over u can be written as
1

ML
TrA∗(IL⊗R1/2)(J

∗ε(u)
L ⊗I)(IL⊗R1/2)AJ

∗ε(u)
N , where

the expression of the ML × N matrix A is omitted. As ‖R‖ is bounded by the nice constant b (see (2.2)),
(3.8) and (3.17) lead to the conclusion that we just need to evaluate 1

MLE{TrA∗A}. Using the Schwartz
inequality, we obtain immediately that

E{TrA∗A} ≤ 2E{Tr ((ΠpfQFQΠpfW )∗ΠpfQFQΠpfW )} (3.18)
+ 2E{Tr ((ΠfpQFQΠfpW )∗ΠfpQFQΠfpW )}.

Since (ΠpfQFQΠpf )∗ΠpfQFQΠpf ≤ ‖Q‖4‖F‖2 I and ‖Q‖ ≤ 1
Imz , we get that

1

ML
E{Tr ((ΠpfQFQΠpfW )∗ΠpfQFQΠpfW )} ≤ 1

(Imz)4
‖F‖2 1

ML
E{TrW ∗W}

≤ 1

(Imz)4
‖F‖2 E{‖W‖2}
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Lemma 3.1 thus implies that

1

ML
E{Tr ((ΠpfQFQΠpfW )∗ΠpfQFQΠpfW )} ≤ κ2P

(
1

Imz

)
for some nice polynomial P . The term 1

MLE{Tr (ΠfpQFQΠfpW )∗ΠfpQFQΠfpW )} can be handled similarly.
Therefore, (3.17) leads to φ ≤ κ2 1

N2P
(

1
Imz

)
. This establishes (3.14).

To prove (3.15) one can also use Poincaré-Nash inequality for ξ = 1
MLTrFQGWHW ∗. After some calculations,

we get that the variance of ξ is upperbounded by a term given by

κ1

N2
E
(

1

ML
Tr(FQGWH)∗(FQGWH) +

1

ML
Tr(FQWH)∗(FQWH) + η1 + η2

)
, (3.19)

where κ1 is some nice constant, and where η1 and η2 are defined by

η1 =
1

ML
Tr(ΠpfQGWHW ∗FQΠpfW )∗(ΠpfQGWHW ∗FQΠpfW ),

η2 =
1

ML
Tr(ΠfpQGWHW ∗FQΠfpW )∗(ΠfpQGWHW ∗FQΠfpW ).

Using Lemma 3.1 as well as the inequality QQ∗ ≤ 1
Im2z

I, we obtain immediately (3.15). This completes the
proof of Lemma 3.3. �

In the following, we also need to evaluate the variance of more specific terms. The following result appears
to be a consequence of Lemma 3.3 and of the particular structure (3.3) of matrix Q(z).

Corollary 3.1. Let (F1,N )N≥1 be a sequence of deterministicML×ML matrices such that supN ‖F1,N‖ ≤ κ,
and (HN )N≥1 a sequence of deterministic N ×N matrices satisfying supN ‖HN‖ ≤ 1. Then, if z ∈ C+ and
Imz2 > 0, the following evaluations hold:

Var

{
1

ML
TrF1Qij(z)

}
≤ κ2 1

N2
P1(|z2|)P2

(
1

Imz2

)
, (3.20)

where i and j belong to {p, f};

Var

{
1

ML
Tr

[
HW ∗Πi1j1

(
F1 0
0 0

)
Q(z)Πi2j2W

]}
≤ κ2 1

N2
P1(|z2|)P2

(
1

Imz2

)
, (3.21)

where i1, j1, i2, j2 still belong to {p, f}, but verify i1 6= j1 and i2 6= j2.

Proof. We first prove (3.20), and first consider the case where i = j = p. We define the 2ML× 2ML matrix

F by F =

(
F1 0
0 0

)
, and remark that 1

MLTrF1Qpp(z) coincides with ξ = 1
MLTrFQ(z). We follow the

proof of (3.14), and evaluate the right hand side of (3.18) in a more accurate manner by taking into account
the particular structure of the present matrix F . It is easy to check that

1

ML
E{Tr (ΠpfQFQΠpfW )∗ΠpfQFQΠpfW )}

=
1

ML
E{Tr

(
W ∗fQ∗ppF

∗
1 Q∗fpQfpF1QppWf

)
}.

As Qfp(z) = WpW
∗
fQ(z2), we obtain that

Q∗fp(z)Qfp(z) = (Q(z2))∗WfW
∗
pWpW

∗
fQ(z2) ≤ ‖W‖4 1

(Imz2)2
I

if Im(z2) > 0. Therefore, it holds that

F ∗1 Q∗fpQfpF1 ≤ κ2‖W‖4 1

(Imz2)2
I.
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From this, using the expression of Qpp = zQ(z2), we obtain similarly that

W ∗fQ∗ppF
∗
1 Q∗fpQfpF1QppWf ≤ κ2‖W‖6 |z|2

(Imz2)4
.

Lemma 3.1 thus leads to the conclusion that

1

ML
E{Tr

(
W ∗fQ∗ppF

∗
1 Q∗fpQfpF1QppWf

)
} ≤ κ2 κ1|z|2

(Imz2)4
,

where κ1 is a nice constant such that E(‖WN‖6) ≤ κ1 for each N . Using similar arguments, we obtain that

1

ML
E{Tr (ΠfpQFQΠfpW )∗ΠfpQFQΠfpW )} ≤ κ2 κ1|z2|2

(Imz2)4
.

This, in turn, implies (3.20) for i = j = p. As the arguments are essentially the same for the other values of
i and j, we do not provide the corresponding proofs.

In order to establish (3.21), we follow the proof (3.15) for F = Πi1j1

(
F1 0
0 0

)
, G = Πi2j2 . It is necessary

to check that the 4 terms inside the bracket of (3.19) can be upperbounded by κ2P1(|z2|)P2( 1
Imz2

) for nice
polynomials P1 and P2. As above, the use of the particular expression of matrices (Qij)i,j∈{f,p} allows to
establish this property. The corresponding easy calculations are omitted. �

3.3 Various lemmas on Stieltjes transform

In this paragraph, we provide a number of useful results on certain Stieltjes transforms. We recall that if
K is a positive integer, then a K ×K matrix-valued positive measure ω is a σ–additive function from the
Borel sets of R onto the set of all positive K ×K matrices (see e.g. [42], Chapter 1 for more details). In the
following, if A is a Borel set of R, we denote by SM (A) the set of all Stieltjes transforms of M ×M matrix
valued positive finite measures carried by A. S1(A) is denoted S(A).
We now state a quite useful Lemma.

Lemma 3.4. Let β(z) ∈ S(R+), and consider function β(z) defined by β(z) = zβ(z2). Then β ∈ S(R).
Moroever, it holds that

G(z) =

(
−zIM −

cβ(z)

1− c2β2(z)
R

)−1

∈ SM (R)

G(z) =

(
−zIM −

czβ(z)

1− zc2β2(z)
R

)−1

∈ SM (R+)

(3.22)

and that
G(z) (G(z))∗ ≤ IM

(Imz)2
, G(z) (G(z))∗ ≤ IM

(Imz)2
. (3.23)

Finally, matrices G(z) and G(z) are linked by the relation

G(z) = zG(z2) (3.24)

for each z ∈ C+.

Proof. Let τ be the measure carried by R+ corresponding to the Stieltjes transform β(z). We first prove
that β(z) is a Stieltjes transform. We first remark that if z ∈ C+, then z2 ∈ C− R+. β analytic on C− R+

thus implies that β(z) is analytic on C+. Moreover, it is clear that

Imβ(z) = Im

∫
R+

zd τ(λ)

λ− z2
=

∫
R+

Imz(λ+ |z|2)d τ(λ)

|λ− z2|2
> 0, when Imz > 0.
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To evaluate β(z) for z ∈ C+, we write ∣∣∣∣∫
R+

zd τ(λ)

λ− z2

∣∣∣∣ ≤ ∫
R+

d τ(λ)∣∣λ
z − z

∣∣ .
Using that

∣∣λ
z − z

∣∣ ≥ ∣∣Im(λz − z)
∣∣ ≥ Imz for z ∈ C+ and λ ≥ 0, we get that

|β(z)| ≤
∫
R+

d τ(λ)

Imz
=
τ(R+)

Imz
.

From this and Proposition 2.1, we obtain that β(z) ∈ S(R).
To prove (3.22), it is first necessary to show that G is analytic on C+. For this, we first check that m(z) =
1− c2β2(z) 6= 0 for z ∈ C+. Indeed, write β(z) = x + iy with y > 0, then m(z) = 1− c2x2 + c2y2 − 2cxyi.
Hence, if x = 0 we have m(z) = 1 + c2y2 > 0, and if x 6= 0 then 2xy 6= 0 since y > 0. In order to establish

that matrix
(
−zIM −

cβ(z)

1− c2β2(z)
R

)
is invertible on C+, we verify that

Im

(
−zIM −

cβ(z)

1− c2β2(z)
R

)
< 0 (3.25)

on C+. It is easy to check that

Im

(
−zIM −

cβ(z)

1− c2β2(z)
R

)
= −Imz IM −

cImβ(z)(1 + c2|β(z)|2)

|1− c2β2(z)|2
R < −Imz IM .

Therefore, Imz > 0 and Imβ(z) > 0 imply (3.25). The imaginary part of G(z) is given by

Im(G(z)) = −G(z)Im

(
−zIM −

cβ(z)

1− c2β2(z)
R

)
(G(z))∗ > Imz (G(z) (G(z))∗) > 0.

Therefore, ImG(z) > 0 if z ∈ C+. We finally remark that limy→+∞−iyG(iy) = IM , which implies that
supy>ε ‖iyG(iy)‖ < +∞ for each ε > 0. Proposition 2.1 eventually implies that G ∈ SM (R). Moreover, if
τG is the underlying M ×M positive matrix valued measure, (2.5) leads to τG(R) = IM .

We prove similarly the analyticity of G(z) on C+. We first check that 1 − zc2β2(z) 6= 0 if z ∈ C+, or
equivalently that |1− zc2β2(z)| 6= 0 if z ∈ C+. We remark that

|1− zc2β2(z)| = |zβ(z)||c2β(z)− 1

zβ(z)
| > Imz Imβ(z) Im

(
c2β(z)− 1

zβ(z)

)
. (3.26)

As β ∈ S(R+), it holds that Im
(
c2β(z)− 1

zβ(z)

)
> 0 if z ∈ C+. Therefore, 1 − zc2β2(z) 6= 0 if z ∈ C+. As

above, we verify that

Im

(
−zIM −

czβ(z)

1− z(cβ(z))2
R

)
= −Imz IM − Im

(
czβ(z)

1− z(cβ(z))2

)
R < −Imz IM . (3.27)

For this, we remark that

Im

(
czβ(z)

1− z(cβ(z))2

)
=

c

|1− z(cβ(z))2|2
(
Im(zβ(z)) + |zcβ(z)|2Imβ(z)

)
> 0

if z ∈ C+, which, of course, leads to (3.27). Therefore, matrix(
−zIM −

czβ(z)

1− z(cβ(z))2
R

)
is invertible if z ∈ C+, andG is analytic on C+. Moreover, we obtain immediately

that

Im(G(z)) = G(z)

(
Imz IM + Im

(
czβ(z)

1− z(cβ(z))2

)
R

)
(G(z))∗ > Imz (G(z)G(z)∗) > 0 (3.28)

Im(zG(z)) = G(z)Im

(
czβ(z)

1− z(cβ(z))2

)
R(G(z))∗ > 0
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for z ∈ C+. As above, it holds that limy→+∞−iyG(iy) = I and that supy>ε ‖iyG(iy)‖ < +∞ for each ε > 0.
This implies that G ∈ SM (R+), and that if τG represents the associated M ×M matrix-valued measure,
then τG(R+) = I.
In order to establish (3.23), we follow [17, Lemma 3.1]. More precisely, we remark that

ImG(z) = Imz

∫
R+

dτG(λ)

|λ− z|2
<
τG(R+)

Imz
=

I

Imz
.

Therefore, (3.28) leads to (G(z)G(z)∗) ≤ I
(Imz)2

. The other statement of (3.23) is proved similarly and this
completes the proof. �

Lemma 3.5. We consider a sequence (βN )N≥1 of elements of S(R+) whose associated positive measures
(τN )N≥1 satisfy for each N ≥ 1

τN (R+) =
1

M
TrRN (3.29)

as well as ∫
R+

λ d τN (λ) = cN
1

M
TrRN

1

M
TrR2

N . (3.30)

Then, it exist nice constants ω, κ such that

ImβN (z) ≥ κ Imz

(ω2 + |z|2)
(3.31)

and ∣∣∣1− z (cNβN (z))2
∣∣∣ ≥ κ (Imz)3

(ω2 + |z|2)2
(3.32)

for each z ∈ C+ and for each N ≥ 1. Moreover, if βN (z) is defined by βN (z) = z βN (z2), then, we also have

ImβN (z) ≥ κ (Imz)3

(ω2 + |z|4)
(3.33)

and ∣∣∣1− (cNβN (z))2
∣∣∣ ≥ κ (Imz)6

(ω2 + |z|4)2
(3.34)

for each z ∈ C+ and for each N ≥ 1.

Proof. We first establish (3.31). ImβN (z) is given by

ImβN (z) = Imz

∫
R+

d τN (λ)

|λ− z|2
.

For each ω > 0, it is clear that ∫
R+

d τN (λ)

|λ− z|2
≥
∫ ω

0

d τN (λ)

|λ− z|2
≥ τN ([0, ω])

2(λ2 + |z|2)
.

Assumption (2.2) and (3.30) imply that the sequence (τN )N≥1 is tight. For each ε > 0, it thus exists ω > 0
for which τN (]ω,+∞[) < ε for each N , or equivalently, τN ([0, ω]) > τN (R+)− ε. As τN (R+) = 1

MTr(RN ) >
a, we choose ε = a/2, and obtain that the corresponding ω verifies τN ([0, ω]) > a/2 for each N . This
completes the proof of (3.31). We now verify (3.32). For this, we use (3.26). As Im

(
1

zβN (z)

)
< 0, it holds

that Im
(
c2
NβN (z)− 1

zβN (z)

)
≥ c2

N ImβN (z). Therefore, we obtain that∣∣∣1− z (cNβN (z))2
∣∣∣ ≥ c2

N Imz (ImβN (z))2 (3.35)

which implies (3.32).
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We finally verify (3.33) and (3.34). For this, we first express βN (z) as

βN (z) = zβN (z2) =

∫
R+

z

λ− z2
d τN (λ)

which leads immediately to

ImβN (z) = Imz

∫
R+

λ+ |z|2

|λ− z2|2
d τN (λ) ≥ Imz |z|2

∫
R+

1

|λ− z2|2
d τN (λ)

≥ (Imz)3

∫
R+

1

|λ− z2|2
d τN (λ).

We observe that for ω > 0, then,∫
R+

1

|λ− z2|2
d τN (λ) ≥

∫ ω

0

1

|λ− z2|2
d τN (λ) ≥ 1

2(ω2 + |z|4)
τN ([0, ω]).

As justified above, it is possible to choose ω for which τN ([0, ω]) ≥ a
2 for each N . This leads to (3.33).

We now remark that |1− c2
Nβ

2
N | = |βN ||

1
βN
− c2

NβN |. As ImβN > 0 on C+, it holds that∣∣∣∣ 1

βN
− c2

NβN

∣∣∣∣ ≥ ∣∣∣∣Im( 1

βN
− c2

NβN

)∣∣∣∣ ≥ c2
N ImβN .

Using that |βN | ≥ ImβN , we eventually obtain that

|1− c2
Nβ

2
N | ≥ c2

N (ImβN )2

which, in turn, implies (3.34). �

3.4 Expression of matrix E{Q} obtained using the integration by parts
formula

We now express E{Q(z)} using the integration by parts formula and deduce from this an approximate
expression of E(Q(z)). For this, we have first to establish some useful properties of E{Q(z)} that follow from
the invariance properties of the probability distribution of the observations (yn)n=1,...,N . In the following, for
k, l ∈ {1, 2, . . . , L}, we denote by Qk,l

pp and Qk,l
ff the M ×M matrices whose entries are given by

(
Qk,l

pp

)
m,n

=

(Qpp)(k−1)M+m,(l−1)M+n and
(
Qk,l

ff

)
m,n

= (Qff )(k−1)M+m,(l−1)M+nfor each m,n ∈ {1, 2, . . . ,M}.

Lemma 3.6. The matrices E{Qpp} and E{Qff} are block diagonal, i.e. E
(
Qk,l

pp

)
= E{Qk,l

ff } = 0 if k 6= l,
and

TrE{Qpp}(IL ⊗R) = TrE{Qff}(IL ⊗R), (3.36)
E{Qpf} = E{Qfp} = 0. (3.37)

Proof. To prove (3.37), we consider the new set of vectors zk = e−ikθyk and construct the matrices Zp, Zf
in the same way as Yp and Yf . It is clear that sequence (zn)n∈Z has the same probability distribution that
(yn)n∈Z. Zp and Zf can be expressed as

Zp =

e
−iθIM . . . 0
...

. . .
...

0 . . . e−LiθIM

Yp

1 . . . 0
...

. . .
...

0 . . . e−(N−1)iθ

 ,

Zf = e−Liθ

e
−iθIM . . . 0
...

. . .
...

0 . . . e−LiθIM

Yf

1 . . . 0
...

. . .
...

0 . . . e−(N−1)iθ

 .
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Therefore, it holds that

ZfZ
∗
pZpZ

∗
f =

e
−iθIM . . . 0
...

. . .
...

0 . . . e−LiθIM

YfY
∗
p YpY

∗
f

e
iθIM . . . 0
...

. . .
...

0 . . . eLiθIM

 .

Similarly to Q we define matrix QZ =

(
−zIML

1
N
ZfZ

∗
p

1
N
ZpZ∗f −zIML

)−1

and obtain immediately that

E{QZ
pp} =

e
−iθIM . . . 0
...

. . .
...

0 . . . e−LiθIM

E{Qpp}

e
iθIM . . . 0
...

. . .
...

0 . . . eLiθIM

 .

Since E{QZ
pp} = E{Qpp}, then for any M ×M block E{Qpp

j,k}, we have

E{Qpp
j,k} = e−jiθE{Qpp

j,k}ekiθ = e(k−j)iθE{Qpp
j,k}.

This proves that E{Qpp
j,k} = 0 if k 6= j as expected. A similar proof leads to the conclusion that E{Qff} is

block diagonal. Moroever, the equality E{QZ
fp} = E{Qfp} implies that

E{QZ
fp} = e−Liθ

e
−iθIM . . . 0
...

. . .
...

0 . . . e−LiθIM

E{Qfp}

e
iθIM . . . 0
...

. . .
...

0 . . . eLiθIM

 .

Therefore, each M ×M block Qfp
j,k of Qfp verifies E{Qfp

j,k} = e−(L+j−k)iθE{Qfp
j,k}. As j − k ∈ {−(L−

1), . . . , L− 1}, this implies that E{Qfp
j,k} = 0. This leads immediately to E{Qfp} = 0. We obtain similarly

that E{Qpf} = 0.
To prove (3.36) we consider the sequence z defined by zn = y−n+N+2L for each n. Again, the distribution of
zn will remain the same and it is easy to see that Zp and Zf are given by

Zf =

 0 . . . IM
...

...
IM . . . 0

Yp

0 . . . 1
...

...
1 . . . 0

 ,

Zp =

 0 . . . IM
...

...
IM . . . 0

Yf

0 . . . 1
...

...
1 . . . 0

 .

From this, we obtain that

E{QZ
pp} =

 0 . . . IM
...

...
IM . . . 0

E{Qff}

 0 . . . IM
...

...
IM . . . 0

 .

As E{QZ
pp} = E{Qpp}, this immediately implies that E{Qff

j,j} = E{Qpp
L−j,L−j}, and, as a consequence,

that E{TrQpp(IL ⊗R)} = E{TrQff (IL ⊗R)}, as expected. �

In order to present the following approximation of E(QN (z)), we introduce some useful notations. αN (z) is
the function defined by

αN (z) =
1

ML
Tr (E{QN (z)(IL ×RN )}) . (3.38)

αN is clearly an element of S(R+). In order to evaluate its associated positive measure µN , we denote by
µ̂N the positive measure defined by

dµ̂N (λ) =
1

ML

ML∑
i=1

f̂∗i (IL ⊗R)f̂i δλ̂i , (3.39)
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where we recall that (λ̂i)i=1,...,ML and (f̂i)i=1,...,ML represent the eigenvalues and eigenvectors ofWfW
∗
pWpW

∗
f .

We remark that µ̂N is carried by R+ and that its mass µ̂N (R+) coincides with 1
MTrRN . Then, measure µN

is defined by ∫
R+

φ(λ) dµN (λ) = E
(∫

R+

φ(λ) dµ̂N (λ)

)
(3.40)

and satisfies µN (R+) = 1
MTrRN . We also define αN (z) as the function

αN (z) = zαN (z2) (3.41)

which, due to the identity Qpp(z) = zQ(z2), is also given by

αN (z) =
1

ML
E {TrQN,pp(z)(IL ⊗RN )} . (3.42)

Lemma 3.4 implies that αN ∈ S(R) and that the M ×M matrix-valued functions SN (z) and SN (z) defined
by

SN (z) = −
(
zIM +

cNzαN (z)

1− c2
NzαN (z)2

RN

)−1

(3.43)

and

SN (z) = −
(

cNα(z)

1− c2
Nα

2(z)
R+ z

)−1

= zSN (z2) (3.44)

belong to SM (R+) and SM (R) respectively. We are now in position to introduce the main result of this
section.

Theorem 3.1. The matrix E(QN (z)) can be written as

E{QN (z)} = IL ⊗ SN (z)− EN (z) (IL ⊗ SN (z)) , (3.45)

where EN (z) is an error term such that∣∣∣∣ 1

ML
TrEN (z)FN

∣∣∣∣ ≤ κ
1

N2
P1(|z|)P2(

1

Imz
) (3.46)

for each z ∈ C+ and for each deterministicML×ML sequence of matrices (FN )N≥1 such that supN≥1 ‖FN‖ ≤
κ.

In order to establish Theorem 3.1, we express E{Q(z)} for z ∈ C+ by using the integration by parts formula
(see Proposition 2.2), and deduce from that the expression (3.45) of E{Q(z)}. The properties of the error
term EN (z) is finally deduced from the results of section 3.2.

We recall that matrix M is defined by (3.2). In order to express E{Q(z)} for z ∈ C+, we use the identity

zQ(z) = −I2ML + Q(z)M = −I2ML +
N∑
j=1

Q(z)

(
0 wf,jw

∗
p,j

wp,jw
∗
f,j 0

)
. (3.47)

For every m1,m2 = 1, . . . ,M , i1 = 1, . . . , 2L and i2 = 1, . . . , L we denote by Âm1m2
i1i2

the 2N × 2N matrix
defined by

Âm1m2
i1i2

=

(
Âm1m2
i1i2

(pp) Âm1m2
i1i2

(pf)

Âm1m2
i1i2

(fp) Âm1m2
i1i2

(ff)

)
, (3.48)

where the 4 N ×N blocks are given by

(Âm1m2
i1i2

(pf))jk =
(
Q
(

0
wp,j

))m1

i1
(w∗f,k)

m2
i2
,

(Âm1m2
i1i2

(pp))jk =
(
Q
(

0
wp,j

))m1

i1
(w∗p,k)

m2
i2
,

(Âm1m2
i1i2

(ff))jk =
(
Q
(wf,j

0

))m1

i1
(w∗f,k)

m2
i2
,

(Âm1m2
i1i2

(fp))jk =
(
Q
(wf,j

0

))m1

i1
(w∗p,k)

m2
i2
.

(3.49)
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We also define matrix Am1m2
i1i2

by Am1m2
i1i2

= E{Âm1m2
i1i2

}. (3.47) implies that

zE{Qm1m2
i1i2

(z)} = −δi1,i2δm1,m2 + TrAm1m2
i1i2

(pf)1i2≤L + TrAm1m2
i1i2−L(fp)1i2>L. (3.50)

In the reminder of this paragraph, we evaluate for each i1, i2,m1,m2 the elements of matrix Am1m2
i1i2

using
(2.6) and (3.16). As we shall see, each element of Am1m2

i1i2
can be written as a functional of matrix E{Q} plus

an error term whose contribution vanishes when N → +∞. Plugging these expressions of Am1m2
i1i2

into (3.50)
will establish an approximate expression of E{Q}. As the calculations are very tedious, we just indicate how
each element (Am1m2

i1i2
(ff))j,k of matrix Am1m2

i1i2
(ff) can be evaluated. By using integration by parts formula

(2.6) and (3.16) we obtain

E

{(
Q

(
wf,j

0

))m1

i1

(w∗f,k)
m2
i2

}
=

L∑
i3=1

∑
m3

E{Qm1m3
i1i3

Wm3
i3+L,jW

m2

i2+L,k}

=
L∑

i3=1

∑
i′,j′

m′,m3

E{Wm3
i3+L,jW

m′

i′,j′} × E

{
∂
(
Qm1m3
i1i3

W
m2

i2+L,k

)
∂W

m′

i′,j′

}
=

1

N

L∑
i3=1

∑
i′,j′

m′,m3

Rm3m′

× δi3+L+j,i′+j′E

{
Qm1m3
i1i3

δm2,m′δi2+L,i′δk,j′ +W
m2

i2+L,k

∂Qm1m3
i1i3

∂W
m′

i′,j′

}

=
1

N

L∑
i3=1

M∑
m3=1

E
{
Qm1m3
i1i3

Rm3m2δi3,i2−(j−k)

}
− 1

N

∑
i3,j′

m3,m′

L∑
i′=1

Rm3m′δi3+L+j,i′+j′

× E
{
W

(f)m2

i2,k

(
Q
(wf,j′

0

))m1

i1
Qm′m3
i′+Li3

}
− 1

N

∑
i3,j′

m3,m′

2L∑
i′=L+1

Rm3m′δi3+L+j,i′+j′

× E
{
W

(f)m2

i2,k

(
Q
(

0
wp,j′

))m1

i1
Qm′m3
i′−Li3

}
=

1

N

L∑
i3=1

E
{((

Qpp

Qfp

)
(IL ⊗R)

)m1m2

i1i3

× δi3,i2−(j−k)

}
− 1

N

∑
m′,j′

L∑
i3,i′=1

δi3+L+j,i′+j′E
{(

Âm1m2
i1i2

(ff)
)
j′,k

(Qfp(IL ⊗R))m
′m′

i′i3

}

− 1

N

∑
m′,j′

L∑
i3,i′=1

δi3+j,i′+j′E
{(

Âm1m2
i1i2

(pf)
)
j′,k

(Qpp(IL ⊗R))m
′m′

i′i3

}
.

Now we define for every i1 = 1, . . . , 2L, i2 = 1, . . . , L and m1,m2 = 1, . . . ,M 2N × 2N matrix Bm1m2
i1i2

with
N ×N blocks (

Bm1m2
i1i2

(fp)
)
j,k

=
1

N
E
{(

Qpp

Qfp

)
(IL ⊗R)

}m1,m2

i1,i2−(j−k)−L
11≤i2−(j−k)−L≤L,(

Bm1m2
i1i2

(ff)
)
j,k

=
1

N
E
{(

Qpp

Qfp

)
(IL ⊗R)

}m1,m2

i1,i2−(j−k)
11≤i2−(j−k)≤L,(

Bm1m2
i1i2

(pp)
)
j,k

=
1

N
E
{(

Qpf

Qff

)
(IL ⊗R)

}m1,m2

i1,i2−(j−k)
11≤i2−(j−k)≤L,(

Bm1m2
i1i2

(pf)
)
j,k

=
1

N
E
{(

Qpf

Qff

)
(IL ⊗R)

}m1,m2

i1,i2−(j−k)+L
11≤i2−(j−k)+L≤L.

For every ML×ML block matrix D, we define the sequence (τ (M)(D)(l))l=−L+1,...,L−1 as

τ (M)(D)(l) =
1

ML
TrD(J

(l)
L ⊗ IM ) =

1

ML

M∑
m=1

∑
i−i′=l

Dm,m
i,i′ (3.51)
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and the N ×N Toeplitz matrix T (M)
N,L (D) given by

T (M)
N,L (D) =

L−1∑
l=−L+1

τ (M)(D)(l)J
∗ε(l)
N . (3.52)

In other words, the entries of T (M)
N,L (D) are defined by the relation[

T (M)
N,L (D)

]
j1,j2

= τ (M)(D)(j1 − j2) 1−(L−1)≤j1−j2≤L−1. (3.53)

We observe that if D is block diagonal, i.e. if Dm1,m2
i1,i2

= 0 for each m1,m2 when i1 6= i2, then, matrix

T (M)
N,L (D) coincides with the diagonal matrix T (M)

N,L (D) =
(

1
MLTrD

)
IN . It clear that

1

N

L∑
i3=1

E
{((

Qpp

Qfp

)
(IL ⊗R)

)m1m2

i1i3
δi3,i2−(j−k)

}
=
(
Bm1m2
i1i2

(ff)
)
j,k
.

In order to rewrite the term

1

N

∑
m′,j′

L∑
i3,i′=1

δi3+L+j,i′+j′ × E
{(

Âm1m2
i1i2

(ff)
)
j′,k

(Qfp(IL ⊗R))m
′m′

i′i3

}
in a more convenient way, we put l = i′ − i3, and remark that

1

N

∑
m′,j′

L∑
i3,i′=1

δi3+L+j,i′+j′ × E
{(

Âm1m2
i1i2

(ff)
)
j′,k

(Qfp(IL ⊗R))m
′m′

i′i3

}
=

ML

N

∑
m′

L−1∑
l=−(L−1)

E

(Âm1m2
i1i2

(ff)
)
L+j−l,k

1

ML

∑
i′−i3=l

(Qfp(IL ⊗R))m
′m′

i′i3

 .

Using the definition (3.51), this can be rewritten as

1

N

∑
m′,j′

L∑
i3,i′=1

δi3+L+j,i′+j′ × E
{(

Âm1m2
i1i2

(ff)
)
j′,k

(Qfp(IL ⊗R))m
′m′

i′i3

}
=

cN

L−1∑
l=−(L−1)

E
{(

Âm1m2
i1i2

(ff)
)
L+j−l,k

τM (Qfp(IL ⊗R)) (l)

}
.

We introduce j′ = L+ j − l, and using (3.53), we notice that

1

N

∑
m′,j′

L∑
i3,i′=1

δi3+L+j,i′+j′ × E
{(

Âm1m2
i1i2

(ff)
)
j′,k

(Qfp(IL ⊗R))m
′m′

i′i3

}
=

cN E


N∑
j′=1

[
T (M)
N,L (Qfp(IL ⊗R))

]
L+j,j′

(
Âm1m2
i1i2

(ff)
)
j′,k

 =

cNE
{(

JLNT
(M)
N,L (Qfp(IL ⊗R))Âm1m2

i1i2
(ff)

)
j,k

}
.

We obtain similarly that

1

N

∑
m′,j′

L∑
i3,i′=1

δi3+j,i′+j′E
{(

Âm1m2
i1i2

(pf)
)
j′,k

(Qpp(IL ⊗R))m
′m′

i′i3

}
=

cNE
{(
T (M)
N,L (Qpp(IL ⊗R))Âm1m2

i1i2
(pf)

)
j,k

}
.
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Therefore, matrix Am1m2
i1i2

(ff) is also given by(
Am1m2
i1i2

(ff)
)
j,k

=
(
Bm1m2
i1i2

(ff)
)
j,k
− cNE

{(
JLNT

(M)
N,L (Qfp(IL ⊗R))Âm1m2

i1i2
(ff)

)
j,k

}
− cNE

{(
T (M)
N,L (Qpp(IL ⊗R))Âm1m2

i1i2
(pf)

)
j,k

}
.

Writing Qfp and Qpp as Qfp = E{Qfp} + Q◦fp = Q◦fp (see (3.37)) and Qpp = E{Qpp} + Q◦pp, we obtain
that(

Am1m2
i1i2

(ff)
)
j,k

=
(
Bm1m2
i1i2

(ff)
)
j,k
− cNE

{(
T (M)
N,L (Qpp(IL ⊗R))Am1m2

i1i2
(pf)

)
j,k

}
− cNE

{(
JLNT

(M)
N,L (Q◦fp(IL ⊗R))Âm1m2

i1i2
(ff)

)
j,k

}
− cNE

{(
T (M)
N,L (Q◦pp(IL ⊗R))Âm1m2

i1i2
(pf)

)
j,k

}
.

We define the N ×N matrix ∆m1m2
i1i2

(ff) by

∆m1m2
i1i2

(ff) = −cNE
{
JLNT

(M)
N,L (Q◦fp(IL ⊗R))Âm1m2

i1i2
(ff)

}
− cNE

{
T (M)
N,L (Q◦pp(IL ⊗R))Âm1m2

i1i2
(pf)

}
.

Dropping the indices i1, i2, m1, m2, we eventually obtain that

Aff = Bff − cNE
{
T (M)
N,L (Qpp(IL ⊗R))

}
Apf + ∆ff .

Using similar calculations, it is possible to establish that:

Apf = Bpf − cNE
{
T (M)
N,L (Qff (IL ⊗R))

}
Aff + ∆pf ,

Afp = Bfp − cNE
{
T (M)
N,L (Qpp(IL ⊗R))

}
App + ∆fp,

App = Bpp − cNE
{
T (M)
N,L (Qff (IL ⊗R))

}
Afp + ∆pp,

where ∆pf , ∆fp, and ∆pp are defined as

∆pf = −cNE
{
T (M)
N,L (Q◦pf (IL ⊗R))J∗LN Âpf

}
− cNE

{
T (M)
N,L (Q◦ff (IL ⊗R))Âff

}
,

∆fp = −cNE
{
JLNT

(M)
N,L (Q◦fp(IL ⊗R))Âfp

}
− cNE

{
T (M)
N,L (Q◦pp(IL ⊗R))Âpp

}
,

∆pp = −cNE
{
T (M)
N,L (Q◦pf (IL ⊗R))J∗LN Âpp

}
− cNE

{
T (M)
N,L (Q◦ff (IL ⊗R))Âfp

}
.

By Lemma 3.6, matrices E{Qff} and E{Qpp} are block diagonal. Therefore, matrices E{T (M)
N,L (Qff (IL⊗R))}

and E{T (M)
N,L (Qpp(IL⊗R))} reduce to 1

MLE{TrQff (IL⊗R)} IN and 1
MLE{TrQpp(IL⊗R)} IN respectively.

As E{TrQff (IL ⊗R)} = E{TrQpp(IL ⊗R)} (see (3.36)), we eventually obtain that IN
cN
ML

E {TrQpp(IL ⊗R)} IN
cN
ML

E {TrQpp(IL ⊗R)} IN IN

A = B + ∆. (3.54)

Using (3.42), this can be written as(
IN cN αN IN

cN αN IN IN

)
A = B + ∆.
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Lemma 3.4 implies that
1− (cNα(z))2 6= 0

if z ∈ C+. This implies that the matrix governing the linear system (3.54) is invertible for z ∈ C+. Matrix
H given by

H =

(
IN cNα(z) IN

cNα(z) IN IN

)−1

.

is thus well defined for each z ∈ C+. The blocks of H are of course given by

Hpp = Hff =
1

1− c2
Nα(z)2 IN ,

Hpf = Hfp = − cNα(z)

1− c2
Nα(z)2 IN .

(3.54) implies that A = HB + H∆. (3.50) implies that we only need to evaluate matrices Apf and Afp. We
obtain that these matrices are given by

Apf = HppBpf + HpfBff + Hpp∆pf + Hpf∆ff ,

Afp = HfpBpp + HffBfp + Hfp∆pp + Hff∆fp.

This and definition (3.49) of matrix Am1m2
i1i2

lead immediately to(
E
{

Q
(

0 WfW
∗
p

WpW ∗f 0

)})m1m2

i1i2
= TrAm1m2

i1i2
(pf)1i2≤L + TrAm1m2

i1i2−L(fp)1i2>L =

1

1− c2
Nα

2
Tr
(
Bpf − cNαBff + ∆pf − cNα∆ff

)m1m2

i1i2
1i2≤L

+
1

1− c2
Nα

2
Tr
(
Bfp − cNαBpp + ∆fp − cNα∆pp

)m1m2

i1i2−L
1i2>L.

It is easy to notice that Tr (Bfp)m1m2

i1i2
= Tr (Bpf )

m1m2

i1i2
= 0, and Tr (Bpp)m1m2

i1i2
= E{(QΠff (I2L⊗R))m1m2

i1i2+L},
Tr (Bff )m1m2

i1i2
= E{(QΠpp(I2L⊗R))m1m2

i1i2
}, where Πff =

(
0 0
0 IML

)
and Πpp =

(
IML 0

0 0

)
. Hence, using that

E{Qpf} = E{Qfp} = 0, we obtain that(
E
{

Q
(

0 WfW
∗
p

WpW ∗f 0

)})m1m2

i1i2
= − cNα

1− c2
Nα

2

(
E{QΠpp(I2L ⊗R)}

+ E{QΠff (I2L ⊗R)}
)m1m2

i1i2
+ Em1m2

i1i2
= − cNα

1− c2
Nα

2

(
E{Q(I2L ⊗R)}

)m1m2

i1i2
+ Em1m2

i1i2
,

where Em1m2
i1i2

represents the remaining terms depending on the entries of matrix ∆m1m2
i1i2

. Using the identity
(3.47), we obtain that

zE{Q}+ I2ML = E
{

Q
(

0 WfW
∗
p

WpW ∗f 0

)}
= − cNα

1− c2
Nα

2
E{Q}(I2L ⊗R) + E , (3.55)

which immediately leads to

−E{Q}
(

cNα

1− c2
Nα

2
(I2L ⊗R) + z

)
= I2ML − E

or, equivalently,
E{Q} (I2L ⊗ S)−1 = I2ML − E ,

where we recall that S is defined by (3.44). As E{Q} is block diagonal, (3.55) implies that matrix E is also
block diagonal, i.e. Efp = Epf = 0. Moreover, it holds that

E{Q(z)} = I2L ⊗ S(z)− E(z) (I2L ⊗ S(z)) . (3.56)

33



This allows to evaluate E{Q(z)} by identification of the first diagonal blocks of the left and right hand sides
of (3.56). We thus obtain immediately that

E{Q(z2)} = IL ⊗ S(z2)− Epp(z)
(
IL ⊗ S(z2)

)
(3.57)

for each z ∈ C+, where we recall that S(z) is given by(3.43). Therefore, Epp(z) only depends on z2. As the
image of C+ by the transformation z → z2 is C − R+, we obtain that Epp(z) = E(z2) for some function E
analytic in C− R+. This discussion leads to

E{Q(z)} = IL ⊗ S(z)− E(z) (IL ⊗ S(z)) (3.58)

for each z ∈ C− R+.
In the following, we prove (3.46). For this, we establish following result.

Proposition 3.1. For each deterministicML×ML sequence of matrices (F1,N )N≥1 such that supN≥1 ‖F1,N‖ ≤
κ, then ∣∣∣∣ 1

ML
Tr(Epp(z)F1,N )

∣∣∣∣ ≤ κ 1

N2
P1(|z2|)P2(

1

Imz2
) (3.59)

holds for each z ∈ C+ for which Imz2 > 0, where P1 and P2 are 2 nice polynomials.

Proof. We define FN as the 2ML × 2ML matrix FN =

(
F1,N 0

0 0

)
and remark that

1

ML
TrEF =

1

ML
Tr(Epp(z)F1,N ) can be written as

1

ML
TrEF =

1

1− c2α2

∑
i1,i2
m1,m2

( (
Tr∆m1m2

i1i2
(pf)− cαTr∆m1m2

i1i2
(ff)

)
1i2≤L

+
(

Tr∆m1m2
i1i2−L(fp)− cαTr∆m1m2

i1i2−L(pp)
)

1i2>L

)
Fm2m1
i2i1

. (3.60)

As matrix F verifies Fm2,m1
i2,i1

= 0 if i2 > L,
1

ML
TrEF is reduced to the first term of the right hand side of

(3.60) that we now evaluate.∑
i1,i2
m1,m2

Tr∆m1m2
i1i2

(pf)Fm2m1
i2i1

1i2≤L = c
∑
i1,i2
m1,m2

∑
j,k

E
{
T MN,L(Q◦ff (IL ⊗R))jk

(
Q
(wf,k

0

) )m1

i1

×
(
w∗f,j

)m2

i2
Fm2m1
i2i1

+ (T MN,L(Q◦pf (IL ⊗R))J∗LN )jk

(
Q
(

0
wp,k

) )m1

i1

(
w∗f,j

)m2

i2
Fm2m1
i2i1

}
1i2≤L

= cTrE
{
T MN,L(Q◦ff (IL ⊗R))

(
Wf

0

)∗
FQ

(
Wf

0

)
+ T MN,L(Q◦pf (IL ⊗R))J∗LN

(
Wf

0

)∗
FQ

(
0
Wp

)}
= cTrE

{
T MN,L(Q◦ff (IL ⊗R)) (ΠpfW )∗ FQ (ΠpfW )

+ T MN,L(Q◦pf (IL ⊗R))J∗LN (ΠpfW )∗ FQ (ΠfpW )
}
.

Similar calculations lead to the following expression of
1

ML
TrEF :

1

ML
TrEF =

c

(1− c2
Nα

2)

1

ML
TrE

{
T MN,L(Q◦ff (IL ⊗R)) (ΠpfW )∗ FQ (ΠpfW )

+ T MN,L(Q◦pf (IL ⊗R))J∗LN (ΠpfW )∗ FQ (ΠfpW )− cαT MN,L(Q◦pp(IL ⊗R)) (ΠpfW )∗ FQ (ΠfpW )

− cαJLNT MN,L(Q◦fp(IL ⊗R)) (ΠpfW )∗ FQ (ΠpfW )
}
. (3.61)
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We now evaluate the right hand side of (3.61). The Schwartz inequality leads to∣∣∣∣ 1

ML
TrE

{
T MN,L(Q◦ff (IL ⊗R)) (ΠpfW )∗ FQ (ΠpfW )

}∣∣∣∣
=

∣∣∣∣∣
L−1∑

l=−L+1

E
{
τ (M)(Q◦ff (IL ⊗R))(l)

1

ML
Tr
(
J
∗ε(l)
N (ΠpfW )∗ FQ (ΠpfW )

)}∣∣∣∣∣
=

∣∣∣∣∣
L−1∑

l=−L+1

E
{ 1

ML
Tr(Q◦ff (IL ⊗R)(J

(l)
L ⊗ IM ))

1

ML
Tr
(
J
∗ε(l)
N (ΠpfW )∗ FQ (ΠpfW )

)◦}∣∣∣∣∣
≤

L−1∑
l=−L+1

Var

{
1

ML
Tr(Qff (IL ⊗R)(J

(l)
L ⊗ IM ))

}1/2

×Var

{
1

ML
Tr
(
J
∗ε(l)
N (ΠpfW )∗ FQ (ΠpfW )

)}1/2

.

Using Corollary 3.1, we obtain that

Var

{
1

ML
Tr(Qff (IL ⊗R)(J

(l)
L ⊗ IM ))

}
≤ 1

N2
P1(|z2|)P2

(
1

Imz2

)
and that

Var

{
1

ML
Tr
(
J
∗ε(l)
N (ΠpfW )∗ FQ (ΠpfW )

)}
≤ κ2 1

N2
P1(|z2|)P2

(
1

Imz2

)
.

Since L does not grow with N , this implies immediately that∣∣∣∣ 1

ML
TrE

{
T MN,L(Q◦ff (IL ⊗R)) (ΠpfW )∗ FQ (ΠpfW )

}∣∣∣∣ ≤ κ 1

N2
P1(|z2|)P2

(
1

Imz2

)
holds. It can be shown similarly that the 3 other normalized traces can be upper bounded by the same kind
of term. It remains to control the terms 1

1−(cN αN )2
and αN

1−(cN αN )2
. For this, we use Lemma 3.5 for the choice

βN (z) = αN (z). It is sufficient to verify that the measures (µN )N≥1 associated to functions (αN (z))N≥1

verify (3.29) and (3.30). For each N , it holds that∫ +∞

0
dµN (λ) = E

{∫ +∞

0
d µ̂N (λ)

}
=

1

M
TrRN

and ∫ +∞

0
λ dµN (λ) = E

(∫ +∞

0
λ d µ̂N (λ)

)
= E

(
1

ML
Tr((IL ⊗R)WfW

∗
pWpW

∗
f )

)
.

A straightforward calculation leads to E
{

1
MLTr(WfW

∗
pWpW

∗
f )
}

= cN
M2 TrRNTrR2

N . Therefore, (3.32) implies
that

1

|1− z(cNαN (z))2|
≤ P1(|z|)P2

(
1

Imz

)
for each z ∈ C+, and if z2 ∈ C+, it holds that

1

|1− z2(cNαN (z2))2|
≤ P1(|z2|)P2

(
1

Imz2

)
.

As αN (z) = zαN (z2), this is equivalent to

1

1− (cN αN )2
≤ P1(|z2|)P2

(
1

Imz2

)
.
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Finally, we remark that |αN (z)| ≤ 1
MTrRN

1
Imz ≤ b

1
Imz for each z ∈ C+. Therefore, if z2 ∈ C+, it holds that

|αN (z2)| ≤ b 1
Imz2

and that |αN (z)| = |z||αN (z2)| verifies

|αN (z)| ≤ b|z| 1

Imz2
≤ b(1 + |z|2)

1

Imz2
.

This completes the proof of Proposition 3.1. �

Proposition 3.1 immediately leads to the following Corollary.

Corollary 3.2. For each sequence (FN )N≥1 of deterministicML×ML matrices such that supN≥1 ‖FN‖ ≤ κ
we have ∣∣∣∣ 1

ML
Tr [(E{QN (z)} − IL ⊗ SN (z))FN ]

∣∣∣∣ ≤ κ 1

N2
P1(|z|)P2

(
1

Imz2

)
(3.62)

for each z ∈ C+. In particular, it holds that∣∣∣∣ 1

ML
Tr [(E{QN (z)} − IL ⊗ SN (z))]

∣∣∣∣ ≤ κ 1

N2
P1(|z|)P2

(
1

Imz2

)
. (3.63)

Proof. (3.57) implies that∣∣∣∣ 1

ML
Tr
[(
E{QN (z2)} − IL ⊗ SN (z2)

)
FN
]∣∣∣∣ =

∣∣∣∣ 1

ML
TrEpp(z)

(
IL ⊗ SN (z2)

)
FN

∣∣∣∣
As Epp(z) = E(z2) and ‖SN (z2)‖ ≤ 1

Imz2
if z2 ∈ C+, the application of Proposition 3.1 to matrix F1,N =

SN (z2)FN implies that∣∣∣∣ 1

ML
Tr
[(
E{QN (z2)} − IL ⊗ SN (z2)

)
FN
]∣∣∣∣ ≤ κ 1

N2
P1(|z2|)P2

(
1

Imz2

)
for each z such that z2 ∈ C+. Exchanging z2 by z eventually establishes (3.62). This, in turn, completes the
proof of Theorem 3.1.

3.5 Deterministic equivalent of E{Q}

3.5.1 The canonical equation

Proposition 3.2. If z ∈ C+, there exists a unique solution of the equation

tN (z) =
1

M
TrRN

(
−zIM −

zcN tN (z)

1− zc2
N t

2
N (z)

RN

)−1

(3.64)

satisfying tN (z) ∈ C+ and ztN (z) ∈ C+. Function z → tN (z) is an element of S(R+), and the associated
positive measure, denoted by µN , verifies

µN (R+) =
1

M
TrRN ,

∫
R+

λ dµN (λ) = cN
1

M
TrRN

1

M
TrR2

N . (3.65)

Moreover, it exists nice constants β and κ such that

1∣∣∣1− z (cN tN (z))2
∣∣∣ ≤ κ (β2 + |z|2)2

(Imz)3 (3.66)

for each N . Finally, the M ×M valued function TN (z) defined by

TN (z) = −
(
zIM +

zcN tN (z)

1− zc2
N t

2
N (z)

RN

)−1

(3.67)

belongs to SM (R+). The associated M ×M positive matrix-valued measure, denoted νTN , verifies

νTN (R+) = IM (3.68)

as well as
µN =

1

M
TrRNν

T
N . (3.69)
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Proof.AsN is assumed to be fixed in the statement of the Proposition, we omit to mention that tN , TN , µN , . . .
depend on N in the course of the proof. We first prove the existence of a solution such that z → t(z) is an
element of S(R+). For this, we use the classical fixed point equation scheme. We define t0(z) = −1

z , which is
of course an element of S(R+), and generate sequence (tn(z))n≥1 by the formula

tn+1(z) =
1

M
TrR

(
−zIM −

zctn(z)

1− zc2t2n(z)
R

)−1

.

We establish by induction that for each n, tn ∈ S(R+), and that its associated measure µn verifies µn(R+) =
1
MTrR and ∫ +∞

0
λµn(dλ) = c

1

M
Tr(R)

1

M
Tr(R2). (3.70)

Thanks to (2.2), this last property will imply that sequence (µn)n≥1 is tight. We assume that tn indeed
satisfies the above conditions, and prove that tn+1(z) also meets these requirements. Lemma 3.4 implies that

function Tn(z) =

(
−zIM −

zctn(z)

1− zc2t2n(z)
R

)−1

is an element of SM (R+). According to Proposition 2.1, to

prove that tn+1(z) ∈ S(R+), we need to check that Imtn+1(z), Imztn+1(z) > 0 if z ∈ C+, as well as that
limy→+∞ iytn+1(iy) exists. As Tn ∈ SM (R+) and tn+1(z) = 1

MTrRTn(z), it is clear that Imtn+1(z), Imztn+1(z) >
0. Finally, it holds that

−iytn+1(iy) =
1

M
TrR

(
IM +

ciytn(iy)

iy − (ciytn(iy))2
R

)−1

.

Since tn(z) is a Stieltjes transform we have −iytn(iy)→ µn(R+), which implies that −iytn+1(iy)→ 1
MTrR,

i.e. that µn+1(R+) = 1
MTrR.

We finally check that µn+1 satisfies (3.70). For this, we follow [18].∫ +∞

0
λµn+1(dλ) = lim

y→+∞
Re

(
−iy(iy

1

M
TrRTn(iy) +

1

M
TrR)

)
.

We can express Tn as

Tn = −1

z

(
IM +

ctn
1− zc2t2n

R

)−1

= −1

z
+
R

z

ctn
1− zc2t2n

−
(

ctn
1− zc2t2n

)2

R2Tn,

from which it follows that

−z
(

1

M
Tr(zRTn(z)) +

1

M
TrR)

)
= − cztn

1− zc2t2n

1

M
TrR2 +

(
cztn

1− zc2t2n

)2 1

M
TrR3Tn.

Since −iytn(iy)→ 1
MTrR and tn(iy)→ 0 we can conclude that −iy(iy 1

MTrRTn(iy)+ 1
MTrR)→ c

M2 TrRTrR2

as expected.

We now prove that sequence tn converges towards a function t ∈ S(R+) verifying equation (3.64). For this
we evaluate θn = tn+1 − tn

θn =
1

M
TrR(Tn − Tn−1) =

1

M
TrRTn

zc(tn − tn−1)(1 + zc2tntn−1)

(1− zc2t2n)(1− zc2t2n−1)
RTn−1

= θn−1
zc(1 + zc2tntn−1)

(1− zc2t2n)(1− zc2t2n−1)

1

M
TrRTnRTn−1.

We denote by fn(z) the term defined by

fn(z) =
zc(1 + zc2tntn−1)

(1− zc2t2n)(1− zc2t2n−1)

1

M
TrRTnRTn−1. (3.71)
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Lemma 3.4 implies that ‖Tk‖ ≤ 1
Imz and that |tk| ≤ b

Imz for each k ≥ 1 and each z ∈ C+. Therefore, it holds
that ∣∣∣∣zc(1 + zc2tntn−1)

1

M
TrRTnRTn−1

∣∣∣∣ ≤ κ( |z|
(Imz)2

(
1 +

|z|
(Imz)2

))
.

Moreover, it is clear that for each k, |1 − zc2t2k| ≥ (1 − c2 |z|
(Imz)2

). For each ε > 0 small enough, we consider
the domain Dε defined by

Dε = {z ∈ C+,
|z|

(Imz)2
< ε}. (3.72)

Then, for z ∈ Dε, it holds that

1

|1− zc2t2n|
1

|1− zc2t2n−1|
≤ 1

(1− c2ε)2

and that
|fn(z)| ≤ κ

(1− c2ε)2

(
ε+ ε2

)
.

We choose ε in such a way that κ
(1−c2ε)2

(
ε+ ε2

)
< 1/2. Then, for each z ∈ Dε, it holds that

|θn| ≤
1

2
|θn−1|.

Therefore, for each z in Dε, (tn(z))n≥1 is a Cauchy sequence. We denote by t(z) its limit. (tn(z))n≥1 is
uniformly bounded on every compact set of C − R+. This implies that (tn(z))n≥1 is a normal family on
C − R+. We consider a converging subsequence extracted from (tn(z))n≥1. The corresponding limit t∗(z)
is analytic over C − R+. If z ∈ Dε, t∗(z) must be equal to t(z). Therefore, the limits of all converging
subsequences extracted from (tn(z))n≥1 must coincide on Dε, and therefore on C − R+. This implies that
tn(z) converges uniformly on each compact subset towards a function which is analytic C − R+, and that
we also denote by t(z). It is clear that t(z) verifies (3.64) and that t ∈ S(R+) and verifies (3.65). Moroever,
Lemma 3.4 implies that T ∈ SM (R+), while (3.69) and (3.68) are obtained immediately.

As (3.65) holds, (3.66) is a consequence of the application of Lemma 3.5 to the function βN (z) = tN (z).

We now prove that if z ∈ C+ and t1(z) and t2(z) are 2 solutions of (3.64) such that ti(z) and zti(z) belong
to C+, i = 1, 2, then t1(z) = t2(z). In order to prove this, we first establish the following useful Lemma.

Lemma 3.7. If z ∈ C+ and if t(z) verifies the conditions of Proposition 3.2, then, it holds that

1− u(z) > 0 (3.73)

and
det (I−D) > 0, (3.74)

where

D =

(
u(z) v(z)
|z|2v(z) u(z)

)
, (3.75)

u(z) = c
|czt(z)|2 1

MTr(RT (z)(T (z))∗R)

|1− z(ct(z))2|2
, (3.76)

v(z) = c
1
MTr(RT (z)(T (z))∗R)

|1− z(ct(z))2|2
. (3.77)

Proof. Using the equation t(z) = 1
MTrRT (z), we obtain immediately after some algebra that(

Im(t(z))
Im(z)

Im(zt(z))
Im(z)

)
= D

(
Im(t(z))

Im(z)
Im(zt(z))

Im(z)

)
+

(
1
MTr(RT (z)(T (z))∗)

0

)
. (3.78)
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The first component of (3.78) implies that

(1− u(z))
Im(t(z))

Im(z)
= v(z)

Im(zt(z))

Im(z)
+

1

M
Tr(RT (z)(T (z))∗).

Therefore, it holds that (1− u(z)) > 0. Plugging the equality

Im(t(z))

Im(z)
=

v(z)

1− u(z)

Im(zt(z))

Im(z)
+

1

1− u(z)

1

M
Tr(RT (z)(T (z))∗)

into the second component of (3.78) leads to(
1− u(z)− |z|

2v2(z)

1− u(z)

)
Im(zt(z))

Im(z)
=
|z|2v(z)

1− u(z)

1

M
Tr(RT (z)(T (z))∗) > 0

and to (3.74).

To complete the proof of the uniqueness, we assume that equation (3.64) has 2 solutions t1(z) and t2(z)
such that ti(z) and zti(z) belong to C+ for i = 1, 2. The proof of Lemma 3.4 (see in particular (3.26))

implies that for i = 1, 2, then 1 − z(cti(z))2 6= 0 and matrix −zI − zcti(z)

1− zc2t2i (z)
R is invertible. We denote

by T1(z) and T2(z) the matrices defined by (3.67) when t(z) = t1(z) and t(z) = t2(z) respectively. ui(z) and
vi(z), i = 1, 2, are defined similarly from (3.76) and (3.77) when t(z) = t1(z) and t(z) = t2(z). Using that
ti(z) = 1

MTr(RTi(z)) for i = 1, 2, we obtain immediately that

t1(z)− t2(z) = (u1,2(z) + zv1,2(z)) (t1(z)− t2(z)),

where

u1,2(z) = c
czt1(z)czt2(z) 1

MTr(RT1(z)RT2(z))

(1− z(ct1(z))2) (1− z(ct2(z))2)
(3.79)

and

v1,2(z) = c
1
MTr(RT1(z)RT2(z))

(1− z(ct1(z))2) (1− z(ct2(z))2)
. (3.80)

In order to prove that t1(z) = t2(z), it is sufficient establish that 1−u1,2(z)−zv1,2(z) 6= 0. For this, we prove
the following inequality:

|1− u1,2(z)− zv1,2(z)| >
√

(1− u1(z))− |z|v1(z)
√

(1− u2(z))− |z|v2(z) (3.81)

which, by Lemma 3.7, implies 1− u1,2(z)− zv1,2(z)) 6= 0. For this, we remark that the Schwartz inequality
leads to |u1,2(z)| ≤

√
u1(z)

√
u2(z) and |v1,2(z)| ≤

√
v1(z)

√
v2(z). Therefore,

|1− u1,2(z)− zv1,2(z)| ≥ 1−
√
u1(z)

√
u2(z)−

√
|z|v1(z)

√
|z|v2(z).

We now use the inequality √
ab−

√
cd ≥

√
a− c

√
b− d, (3.82)

where a, b, c, d are positive real numbers such that a ≥ c and b ≥ d. (3.82) for a = b = 1 and c = u1(z),
d = u2(z) implies that 1−

√
u1(z)

√
u2(z) ≥

√
1− u1(z)

√
1− u2(z). Therefore, it holds that

|1− u1,2(z)− zv1,2(z)| ≥
√

1− u1(z)
√

1− u2(z)−
√
|z|v1(z)

√
|z|v2(z).

(3.82) for a = 1−u1(z), b = 1−u2(z), c = |z|v1(z) and d = |z|v2(z) eventually leads to (3.81). This completes
the proof of the uniqueness of the solution of (3.64) and Proposition 3.2. �

Remark 3.1. (3.73) and (3.74) are still valid if z belongs to R−∗. To check this, it is sufficient to remark if
z = x ∈ R−∗, the fundamental equation (3.78) is still valid, but Im(t(z))

Im(z) and Im(zt(z))
Im(z) have to be replaced by

t
′
(x) and (xt(x))

′ where ′ denotes the differentiation operator w.r.t. x. The same conclusions are obtained
because t′(x) > 0 and (xt(x))

′
> 0 if x ∈ R−∗.
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3.5.2 Convergence

In this paragraph, we establish that the empirical eigenvalue distribution ν̂N of matrix Wf,NW
∗
p,NWp,NW

∗
f,N

has almost surely the same deterministic behaviour than the probability measure νN defined by

νN =
1

M
TrνTN , (3.83)

where we recall that νTN represents the positive matrix valued measure associated to TN (z). For this, we first
establish the following Proposition.

Proposition 3.3. For each sequence (FN )N≥1 of deterministicML×ML matrices such that supN≥1 ‖FN‖ ≤
κ, then,

1

ML
Tr [(E{QN (z)} − IL ⊗ TN (z))FN ]→ 0 (3.84)

holds for each z ∈ C− R+.

Proof. Corollary 3.2 implies that

1

ML
Tr(E{QN} − (IL ⊗ SN ))FN = O

(
1

N2

)
.

We have therefore to show that 1
MLTr (IL ⊗ (SN − TN ))FN → 0. It is easy to check that

1

ML
Tr (IL ⊗ (S − T ))F =

1

ML
Tr(IL ⊗ S)

(
zcNα

1− zc2
Nα

2
− zcN t

1− zc2
N t

2

)
(IL ⊗RT )F

=
zcN (α− t)(1 + zc2

Nαt)

(1− zc2
Nα

2)(1− zc2
N t

2)

1

ML
Tr(IL ⊗ SRT )F. (3.85)

We express α− t as α− 1
MTrRS + 1

MTrR(S − T ), and deduce from (3.85) that

1

ML
Tr (IL ⊗ (S − T ))F =

(
α− 1

M
TrRS

)
zcN (1 + zc2

Nαt)

(1− zc2
Nα

2)(1− zc2
N t

2)

× 1

ML
Tr(IL ⊗ SRT )F +

1

M
TrR(S − T )

zcN (1 + zc2
Nαt)

(1− zc2
Nα

2)(1− zc2
N t

2)

1

ML
Tr(IL ⊗ SRT )F. (3.86)

(3.62) implies that α − 1
MTrRS = Oz( 1

N2 ). Therefore, in order to establish (3.84), it is sufficient to prove
that 1

MTrR(S − T )→ 0. For this, we take F = IL ⊗R in (3.86) and get that

1

M
TrR(S(z)− T (z)) = fN (z)

1

M
TrR(S(z)− T (z)) +Oz(

1

N2
) (3.87)

where fN (z) is defined by

fN (z) =
zcN (1 + zc2

Nαt)

(1− zc2
Nα

2)(1− zc2
N t

2)

1

M
Tr(RS(z)RT (z)).

fN (z) is similar to the term defined in (3.71). Using the arguments of the proof of Proposition 3.2, we obtain
that it is possible to find ε > 0 for which, supN≥N0

|fN (z)| < 1
2 for each z ∈ Dε for some large enough

integer N0. We recall that Dε is defined by (3.72). We therefore deduce from (3.87) that 1
MTrR(S(z) −

T (z)) → 0 and
1

ML
Tr (IL ⊗ (S(z)− T (z)))F converge towards 0 for each z ∈ Dε. As functions z →

1

ML
Tr (IL ⊗ (SN (z)− TN (z)))FN are holomorphic on C−R+ and are uniformly bounded on each compact

subset of C − R+, we deduce from Montel’s theorem that
1

ML
Tr (IL ⊗ (SN (z)− TN (z)))FN converges

towards 0 for each z ∈ C− R+. �

We deduce the following Corollary.
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Corollary 3.3. The empirical eigenvalue distribution ν̂N of Wf,NW
∗
p,NWp,NW

∗
f,N verifies

ν̂N − νN → 0 (3.88)

weakly almost surely.

Proof. Proposition 3.3 implies that E{ 1
MLTrQN (z)}− 1

MTr(TN (z))→ 0 for each z ∈ C−R+. The Poincaré-
Nash inequality and the Borel Cantelli Lemma imply that 1

MLTr(QN (z)) − E{ 1
MLTrQN (z)} → 0 a.s. for

each z ∈ C− R+. Therefore, it holds that

1

ML
Tr(QN (z))− 1

M
Tr(TN (z))→ a.s. (3.89)

for each z ∈ C−R+. Corollary 2.7 of [18] implies that ν̂N − νN → 0 weakly almost surely provided we verify
that (ν̂N )N≥1 is almost surely tight and that (νN )N≥1 is tight. It is clear that∫

R+

λ d ν̂N (λ) =
1

ML
TrWf,NW

∗
p,NWp,NW

∗
f,N ≤ ‖WN‖4,

where we recall that

WN =

(
Wp,N

Wf,N

)
.

It holds that ‖WN‖ ≤
√
b ‖Wiid,N‖ where Wiid,N is defined by (3.5). As ‖Wiid,N‖ → (1 +

√
c∗) almost surely

(see [32]), we obtain that 1
MLTrWf,NW

∗
p,NWp,NW

∗
f,N is almost surely bounded for N large enough. This

implies that (ν̂N )N≥1 is almost surely tight. As for sequence (νN )N≥1, we have shown that supN
∫
R+ λ dµN (λ) <

+∞. As µN = 1
MTrRNν

T
N , the condition RN > aI for each N leads to∫

R+

λ dµN (λ) ≥ a
∫
R+

λ d νN (λ).

Therefore, it holds that supN
∫
R+ λ d νN (λ) < +∞, a condition which implies that (νN )N≥1 is tight. �

3.6 Detailed study of νN .

In this section, we study the properties of νN . (2.2) implies that µN and νN are absolutely continuous one
with respect each other. Hence, they share the same properties, and the same support denoted SN in the
following. We thus study µN and deduce the corresponding results related to νN . As in the context of other
models, µN can be characterized by studying the Stieltjes transform tN (z) near the real axis. In the following,
we denote by M the number of distinct eigenvalues (λl,N )l=1,...,M of RN arranged in the decreasing order,

and by (ml,N )l=1,...,M their multiplicities. It of course holds that
∑M̄

l=1ml,N = M .

3.6.1 Properties of t(z) near the real axis.

In this paragraph, we establish that if x0 ∈ R+∗, then, limz→x0,z∈C+ t(z) exists and is finite. It will be
denoted by t(x0) in order to simplify the notations. Moreover, when c ≤ 1, limz→0,z∈C+∪R∗ |t(z)| = +∞, and
limz→0,z∈C+∪R∗ zt(z) = 0. The results of [43] will imply that measure µN is absolutely continuous w.r.t. the
Lebesgue measure, and that the corresponding density is equal to 1

π Im(t(x)) for each x ∈ R+∗. When c > 1,
a Dirac mass appears at 0.

We first address the case where x0 6= 0, and, in order to establish the existence of limz→x0,z∈C+ t(z), we prove
the following properties:

• If (zn)n≥1 is a sequence of C+ converging towards x0, then |t(zn)|n≥1 is bounded

• If (z1,n)n≥1 and (z2,n)n≥1 are two sequences of C+ converging towards x0 and verifying limzi,n→x0 = ti
for i = 1, 2, then t1 = t2.
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Lemma 3.8. If x0 ∈ R+∗, and if (zn)n≥1 is a sequence of C+ such that limn→+∞ zn = x0, then the set
|t(zn)|n≥1 is bounded.

Proof. We assume that |t(zn)| → +∞. Equation (3.64) can be written as

t(zn) =
1

M

M∑
l=1

ml λl

−zn(1 + ct(zn)λl
1−z (ct(zn))2

)
. (3.90)

As x0 6= 0, the condition |t(zn)| → +∞ implies that it exists l0 for which

1 +
ct(zn)λl0

1− z (ct(zn))2
→ 0

or equivalently

znct(zn)− 1

ct(zn)
→ λl0 .

As |t(zn)| → +∞, it holds that znct(zn)→ λl0 , a contradiction because |znct(zn)| → +∞. �

Lemma 3.9. Consider (z1,n)n≥1 and (z2,n)n≥1 two sequences of C+ converging towards x0 ∈ R+∗ and
verifying limzi,n→x0 t(zi,n) = ti for i = 1, 2. Then, it holds that t1 = t2.

Proof. The statement of the Lemma is obvious if x0 does not belong to S. Therefore, we assume that
x0 ∈ S − {0}. We first observe that if limn→+∞ zn = x0 (zn ∈ C+) and t(zn)→ t0, then

1− x0 (ct0)2 6= 0, (3.91)

1 +
ct0 λl

1− x0 (ct0)2
6= 0, l = 1, . . . ,M. (3.92)

Indeed, if (3.91) does not hold, Eq. (3.90) leads to t0 = 0, a contradiction because 1− x0 (ct0)2 was assumed
equal to 0. Similarly, if (3.92) does not hold, the limit of t(zn) cannot be finite. Therefore, matrix T0 defined
by

T0 = −
(
x0

[
I +

ct0
1− x0 (ct0)2

R

])−1

(3.93)

is well defined, and it holds that T (zn)→ T0 and that t0 = 1
MTrRT0. In particular, for i = 1, 2, T (zi,n)→ Ti

where Ti is defined by (3.93) when t0 = ti, i = 1, 2, and ti = 1
MTrRTi. Using the equation (3.64) for z = zi,n,

we obtain immediately that(
t(z1,n)− t(z2,n)

z1,nt(z1,n)− z2,nt(z2,n)

)
=

(
u0(z1,n, z2,n) v0(z1,n, z2,n)

z1,nz2,nv0(z1,n, z2,n) u0(z1,n, z2,n)

)
×
(

t(z1,n)− t(z2,n)
z1,nt(z1,n)− z2,nt(z2,n)

)
+

(
(z1,n − z2,n) 1

MTrT (z1,n)RT (z2,n)
0

)
, (3.94)

where u0(z1, z2) and v0(z1, z2) are defined by

u0(z1, z2) = c
cz1t(z1)cz2t(z2) 1

MTr(RT (z1)RT (z2))

(1− z1(ct(z1))2) (1− z2(ct(z2))2)
(3.95)

and

v0(z1, z2) = c
1
MTr(RT (z1)RT (z2))

(1− z1(ct(z1))2) (1− z2(ct(z2))2)
(3.96)

for zi ∈ C+, i = 1, 2. Taking the limit, we obtain that(
t1 − t2

x0(t1 − t2)

)
=

(
u0(x0, x0) v0(x0, x0)
x2

0v0(x0, x0) u0(x0, x0)

) (
t1 − t2

x0(t1 − t2)

)
,
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where u0(x0, x0) and v0(x0, x0) are defined by replacing zi, t(zi), T (zi) by x0, ti, Ti in (3.95, 3.96) for i = 1, 2.
If the determinant (1 − u0(x0, x0))2 − x2

0v0(x0, x0)2 6= 0 of the above linear system is non zero, it of course
holds that t1 = t2.

We now consider the case where (1−u0(x0, x0))2−x2
0v0(x0, x0)2 = 0. We denote by ui(x0) and vi(x0), i = 1, 2

the limits of u(zi,n) and v(zi,n), i = 1, 2 when n → +∞. We recall that u(z) and v(z) are defined by (3.76)
and (3.77) respectively. It is clear that ui(x0) and vi(x0) coincide with (3.76) and (3.77) when (z, t(z), T (z))
are replaced by (x0, ti, Ti) respectively. (3.74) thus implies that

(1− ui(x0))2 − x2
0vi(x0)2 ≥ 0 (3.97)

for i = 1, 2. Using the Schwartz inequality and (3.82) as in the uniqueness proof of the solutions of Eq. (3.64)
(see Proposition 3.2), it is easily seen that

|(1− u0(x0, x0))2 − x2
0(v0(x0, x0))2| ≥ (1−

√
u1(x0)

√
u2(x0))2 − x2

0v1(x0)v2(x0)

≥ (1− u1(x0))(1− u2(x0))− x2
0v1(x0)v2(x0)

≥
√

(1− u1(x0))2 − x2
0v1(x0)2

√
(1− u2(x0))2 − x2

0v2(x0)2 ≥ 0. (3.98)

Therefore, (1 − u0(x0, x0))2 − x2
0v0(x0, x0)2 = 0 implies that the Schwartz inequalities and the inequalities

(3.82) used to establish (3.98) are equalities. Hence, it holds that |u0(x0, x0)|2 = u1(x0)u2(x0), or equivalently
| 1
MTr(RT1RT2)| = ( 1

MTr(RT1T
∗
1R))1/2( 1

MTr(RT2T
∗
2R))1/2. This implies that T1 = aT ∗2 for some constant

a ∈ C. Moreover, as ti = 1
MTr(RTi) for i = 1, 2, it must hold that t1 = at∗2. (3.98) follows from (3.82)

{a = b = 1, c = u1(x0), d = u2(x0)} and {a = (1− u1(x0))2, b = (1− u2(x0))2, c = x2
0v

2
1, d = x2

0v
2
2}. Since

all these terms are positive real numbers,
√
ab−

√
cd =

√
a− c

√
b− d if and only if ad = bc. It gives us

u1(x0) = u2(x0),

(1− u1(x0))2x2
0v2(x0)2 = (1− u2(x0))2x2

0v1(x0)2.
(3.99)

Since x0 6= 0 and v1(x0) > 0, the inequality (1 − u1(x0))2 − x2
0v1(x0)2 ≥ 0 implies that u1(x0) 6= 1. Hence,

u1(x0) < 1 and (3.99) implies that v1(x0) = v2(x0). From the definition of ui and vi one can notice that
ui(x0) = c2x2

0|ti|2vi(x0). Which gives us immediately |t1|2 = |t2|2 and, as a consequence, |a| = 1. Using once
again the fact that v1(x0) = v2(x0) and T1 = aT ∗2 , we obtain that

|a|2 1
MTr(T ∗2RRT2)

|1− x0c2a2(t∗2)2|2
=

1
MTr(RT2T

∗
2R)

|1− x0c2t22|2
.

The numerators of both sides are equal and non zero, from what follows that the denominators are also
equal, i.e.

|1− x0c
2a2(t∗2)2| = |1− x0c

2t22|.

We remark that if w and z satisfy |1− w| = |1− z| and |w| = |z|, then, either w = z, either w = z̄. We use
this remark for w = x0c

2t22 and z = x0c
2a2(t∗2)2. If w = z, it holds that a2(t∗2)2 = t22 ⇒ t21 = t22 and since

Imti ≥ 0 we conclude t1 = t2. If w = z̄, we have a2(t∗2)2 = (t∗2)2. If t2 = 0 then it also holds that t1 = 0.
Otherwise, we have a = ±1. If a = 1, the condition Imti ≥ 0, leads to the conclusion that t1 and t2 are real
and coincide. We finally consider the case a = −1. We recall T1 = aT ∗2 = −T ∗2 . Therefore, it holds that

x0IM −
x0t
∗
2

1− x0c2(t∗2)2
R = −x0IM −

x0t
∗
2

1− x0c2(t∗2)2
R,

which is impossible, since x0 6= 0. This completes the proof of Lemma (3.9). �

Lemmas 3.9 and 3.8, and their corresponding proofs imply the following result.
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Proposition 3.4. For each x > 0, limz→x,z∈C+ t(z) = t(x) exists. Moreover, 1− x(ct(x))2 6= 0, and matrix
(I + ct(x)

1−x(ct(x))2
R) is invertible. Therefore, limz→x,z∈C+ T (z) = T (x) where T (x) represents matrix T (x) =(

−x(I + ct(x)
1−x(ct(x))2

R)
)−1

. Moreover, t(x) is solution of the equation

t(x) =
1

M
Tr(RT (x)). (3.100)

If u(x) and v(x) represent the terms defined by (3.76) and (3.77) for z = x, then it holds that

1− u(x) > 0 (3.101)

and
(1− u(x))2 − x2(v(x))2 ≥ 0 (3.102)

for each x 6= 0. Moreover, the inequality (3.102) is strict if x ∈ R+ − S. If moreover Im(t(x)) > 0, then, we
have

1− u(x)− xv(x) = 0. (3.103)

Proof. It just remains to justify (3.101), (3.102), and (3.103). As function z → t(z) is analytic on C − S,
x → t(x) is differentiable on R+ − S. As (t(x))

′
> 0 and (xt(x))

′
> 0 hold on R+ − S, the arguments used

in the context of Remark 3.1 are also valid on R+ − S, thus justifying (3.101) and the strict inequality in
(3.102). 1 − u(x) ≥ 0 and inequality (3.102) also hold on S − {0} by letting z → x, z ∈ C+ in Proposition
3.1. As v(x) > 0 for each x 6= 0, the strict inequality (3.101) is a consequence of (3.102).

In order to prove (3.103), we use the second component of (3.78), and remark that it implies that

Im(t(x)) = (u(x) + xv(x)) Im(t(x)).

Therefore, Im(t(x)) > 0 leads to (3.103). �

We also add the following useful result which shows that the real part of t(x) is negative for each x > 0.

Proposition 3.5. For each x ∈ R+∗, it holds that Re(t(x)) < 0.

Proof. It is easily checked that(
Re(t(z)

Re(zt(z))

)
=

(
u(z) −v(z)

−|z|2v(z) u(z)

) (
Re(t(z)

Re(zt(z))

)
+

(
−Re(z) 1

MTr(RT (z)(T (z))∗)
−|z|2 1

MTr(RT (z)(T (z))∗

)
(3.104)

for each z ∈ C − S. Moreover, as all the terms coming into play in (3.104) have a finite limit when z → x
when x 6= 0, (3.104) remains valid on R∗. For z = x, the first component of (3.104) leads to

Re(t(x))(1− u(x) + xv(x)) = −x 1

M
Tr(RT (x)T (x)∗). (3.105)

Proposition 3.4 implies that 1 − u(x) > 0, when x ∈ R∗. Therefore, 1 − u(x) + xv(x) is strictly positive as
well, and it holds that

Re(t(x)) = −x 1

1− u(x) + xv(x)

1

M
Tr(RT (x)T (x)∗). (3.106)

Therefore, x > 0 implies that Re(t(x)) < 0 as expected. �

We now study the behaviour of t(z) when z → 0. We first establish that limz→0,z∈C+∪R∗ |t(z)| = +∞, and
then that limz→0,z∈C+∪R∗ zt(z) = 0 if c ≤ 1 and is strictly negative if c > 1. We recall that t(x) for x > 0 is
defined by t(x) = limz→x,z∈C+ t(z). For this, we establish various lemmas.

Lemma 3.10. It holds that limz→0,z∈C+∪R∗ |t(z)| = +∞.
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Proof. We assume that the statement of the Lemma does not hold, i.e. that it exists a sequence of elements
of C+ ∪ R∗ (zn)n≥1 such that limn→+∞ zn = 0 and t(zn)→ t0. (3.64) and (3.100) imply that

znt(zn) = − 1

M

M∑
l=1

mlλl

1 + ct(zn)λl
1−zn(ct(zn))2

. (3.107)

1 + ct(zn)λl
1−zn(ct(zn))2

clearly converges towards 1 + ct0λl. As the left hand side of (3.107) converges towards 0, for
each l, 1 + ct0λl cannot vanish. Therefore, matrix I + ct0R is invertible, and taking the limit of (3.107) gives

1

M
TrR(I + ct0R)−1 = 0.

As Im 1
MTrR(I + ct0R)−1 cannot be zero if t0 is not real, t0 must be real. We now use the observation that

|zn|v(zn) ≤ 1 for each n (see Lemma 3.7 and Proposition 3.4 if zn ∈ C+∪R+∗, and Remark 3.1 if zn ∈ R−∗).
As |1 − zn(ct(zn))2|2 → 1, |zn|v(zn) bounded implies that |zn| 1

MTr(RT (zn)RT (zn)∗) is bounded. It is easy
to check that

|zn|
1

M
Tr(RT (zn)RT (zn)∗) =

1

|zn|
1

M
Tr(R(I + ct0R)−1R(I + ct0R)−1) +O(1).

Therefore, the boundedness of |zn| 1
MTr(RT (zn)RT (zn)∗) implies that 1

MTr(R(I+ct0R)−1R(I+ct0R)−1) = 0
which is of course impossible. �

Lemma 3.11. Consider a sequence (zn)n≥1 of elements of C+ ∪ R∗ such that limn→+∞ zn = 0. Then, the
set (znt(zn))n≥1 is bounded.

Proof. We assume that (znt(zn))n≥1 is not bounded. Therefore, one can extract from (zn)n≥1 a subsequence,
still denoted (zn)n≥1, such that limn→+∞ |znt(zn)| = +∞. Then,

ct(zn)

1− zn(ct(zn))2
=

1
1

ct(zn) − znt(zn)
→ 0.

Therefore,

− 1

M
TrR

(
I +

ct(zn)

1− zn(ct(zn))2
R

)−1

→ − 1

M
TrR.

This is a contradiction because the above term coincides with znt(zn) which cannot converge towards a finite
limit. �

Lemma 3.12. Assume that (z1,n)n≥1 and (z2,n)n≥1 are sequences of elements of C+∪R∗ such that limn→+∞ zi,n =
0 and limn→+∞ zi,nt(zi,n) = δi for i = 1, 2. Then, δ1 = δ2.

Proof. We first remark that |t(zi,n)| → +∞ for i = 1, 2. Equation (3.64) implies immediately that

zt(z) =

(
zct(z)− 1

ct(z)

)
1

M
TrR

(
R+

1

ct(z)
− zct(z)

)−1

. (3.108)

As 1
ct(zi,n) → 0, zi,nct(zi,n)− 1

ct(zi,n) → cδi for i = 1, 2. If δi 6= 0, Eq. (3.108) thus implies that

c 1
MTrR

(
R+ 1

ct(zi,n) − zi,nct(zi,n)
)−1

converges towards 1, which implies that matrix R − cδiI is invertible.
Therefore, either δi = 0, either δi is a solution of the equation

1 = c
1

M
TrR(R− cδiI)−1 (3.109)

or equivalently, δi verifies

δi = cδi
1

M
TrR(R− cδiI)−1. (3.110)
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We note that the solutions of this equation are real, so that δi ∈ R for i = 1, 2. Eq. (3.94) leads to

z1,nt(z1,n)− z2,nt(z2,n) = z1,nz2,nv0(z1,n, z2,n)(t(z1,n)− t(z2,n))

+ u0(z1,n, z2,n)(z1,nt(z1,n)− z2,nt(z2,n)).

It is straightforward to check that z1,nz2,nv0(z1,n, z2,n)(t(z1,n) − t(z2,n)) → 0 and that u0(z1,n, z2,n) →
u0(0, 0) = c 1

MTrR(R− cδ1I)−1R(R− cδ2I)−1. Therefore, we obtain that

δ1 − δ2 = u0(0, 0)(δ1 − δ2). (3.111)

We recall that |u0(z1,n, z2,n)| ≤
√
u(z1,n)

√
u(z2,n) ≤ 1. Moreover, we observe that u(zi,n) → ui(0) =

c 1
MTrR(R− cδiI)−1R(R− cδiI)−1 and that 0 < ui(0) ≤ 1. The Schwartz inequality leads to

|u0(0, 0)| ≤
√
u1(0)

√
u2(0) ≤ 1. (3.112)

If the Schwartz inequality (3.112) is strict, |u0(0, 0)| < 1, and δ1 = δ2. We now assume that u0(0, 0) =√
u1(0)

√
u2(0) = 1. This implies that

R− cδ1I = κ(R− cδ2I)

for some real constant κ, or equivalently, λl−cδ1 = κ(λl−cδ2) for each l = 1, . . . ,M . If R is not a multiple of
I, κ must be equal to 1, since otherwise, we would have λl = λl′ for each l, l′. κ = 1 implies immediately that
δ1 = δ2. We finally consider the case where R = σ2I. Then, (3.110) implies that δi is solution of δi σ2c

σ2−cδi = δi,
i.e. δi = 0 or

δi = σ2

(
1

c
− 1

)
. (3.113)

We now check that δ1 = 0, δ2 = σ2
(

1
c − 1

)
or δ2 = 0, δ1 = σ2

(
1
c − 1

)
is impossible. If this holds, u1(0) and

u2(0) cannot be both equal to 1, and |u0(0, 0)| < 1. Therefore, (3.111) leads to a contradiction, and δ1 = δ2

is equal either to 0, either to σ2
(

1
c − 1

)
. �

Lemmas 3.11 and 3.12 imply the following corollary.

Corollary 3.4. If c ≤ 1, it holds that
lim

z→0,z∈C+∪R∗
zt(z) = 0 (3.114)

and that
µ({0}) = 0. (3.115)

Proof. Lemmas 3.11 and 3.12 lead to the conclusion that limz→0,z∈C+∪R∗ zt(z) = δ where δ is either equal to
0, either coincides with a solution of the equation (3.110). In order to precise this, we remark that t(x) > 0
if x < 0 implies that δ ≤ 0. Therefore, δ coincides with a non positive solution of equation (3.110). If c ≤ 1,
it is clear that (3.110) has no strictly negative solutions. Therefore, (3.114) is established. (3.115) is a direct
consequence of the identity

µ({0}) = lim
z→0,z∈C+∪R∗

−zt(z).

�
In order to address the case where c > 1 and to precise the behaviour of Im(t(z)) when z → 0, z ∈ C+ ∪ R∗
if c ≤ 1, we have to evaluate z(t(z))2 when z → 0. The following Lemma holds.

Lemma 3.13. • If c = 1, it holds that limz→0,z∈C+∪R∗ |z(t(z))2| = +∞.

• If c < 1,

lim
z→0,z∈C+∪R∗

z(t(z))2 = − 1

c(1− c)
. (3.116)

• If c > 1, the assumption limz→0,z∈C+∪R∗ zt(z) = δ = 0 implies that limz→0,z∈C+∪R∗ z(t(z))
2 = − 1

c(1−c) ,
a contradiction because the above limit is necessarily negative. Hence, δ is non zero and coincides with
the strictly negative solution of Eq. (3.110), and µ({0}) = −δ.
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Proof. (3.64) implies that

z(t(z))2 = − 1

M
TrR

(
I

t(z)
+

c

1− z(ct(z))2
R

)−1

. (3.117)

We assume in the course of this proof that δ = 0 (if c ≤ 1, this property holds). We first establish the
first item of Lemma 3.13. We assume that c = 1 and that there exists a sequence (zn)n∈C+∪R∗ such that
zn → 0 and znt(zn)2 → α. As |t(zn)| → +∞, (3.117) leads to α = α− 1, a contradiction. Therefore, if c = 1,
limz→0,→C+∪R∗ |zt(z)2| = +∞ as expected.
We now establish the 2 last items. For this, we establish that if c 6= 1, then, |zt(z)2| is bounded when
z ∈ C+ ∪ R∗ and z is close from 0. For this, we assume the existence of a sequence (zn)n≥1 of elements of
C+ ∪ R∗ such that zn → 0 and |znt(zn)2| → +∞. Then, it holds that

1 = − 1

M
TrR

(
znt(zn)I +

cznt(zn)2

1− zn(ct(zn))2
R

)−1

.

As |znt(zn)2| → +∞, cznt(zn)2

1−zn(ct(zn))2
→ −1

c . Condition znt(zn) → 0 thus implies that c = 1, a contradiction.
Using again (3.117), we obtain immediately that if zn(t(zn))2 → α, then α = − 1

c(c−1) . As |zt(z)
2| remains

bounded when z ∈ C+ ∪R∗ is close from 0, this implies that limz→0,z∈C+∪R∗ z(t(z))
2 = − 1

c(1−c) as expected.
Taking z ∈ R−∗ leads to the conclusion that the above limit is negative. When c > 1, this is a contradiction
because − 1

c(1−c) is positive. Therefore, if c > 1, δ, the limit of zt(z), cannot be equal to 0. Hence, δ coincides
with the strictly negative solution of (3.110) and µ({0}) = −δ > 0. This completes the proof of the Lemma. �

Putting all the pieces together, we obtain the following characterization of µN .

Theorem 3.2. The density fN (x) of µN w.r.t. the Lebesgue measure is a continuous function on R+∗, and
is given by fN (x) = 1

π Im(tN (x)) for each x > 0. If cN ≤ 1, µN is absolutely continuous, and if cN > 1, then
dµN (x) = fN (x)dx+ µN ({0})δ0. 0 belongs to SN , and the interior S◦N of SN is given by

S◦N = {x ∈ R+, Im(t(x)) > 0}. (3.118)

If moreover cN < 1, it holds that

fN (x) ' 1

π

1√
x cN (1− cN )

(3.119)

when x→ 0+, while if cN = 1,

fN (x) ' 1

π

√
3

2

(
1

M
TrR−1

)−1/3 1

x2/3
. (3.120)

Proof. t(z) is not analytic in a neighbourhood of 0, hence, 0 ∈ S. As limz→x,z∈C+ t(z) = t(x) exists
for x 6= 0, Theorem 2.1 of [43] implies that if A ⊂ R+∗ is a Borel set of zero Lebesgue measure, then
µ(A) =

∫
A f(x)dx = 0. The continuity of f on R+∗ is a also a consequence of [43].

We now prove (3.119). For this, we remark that (3.116) implies that

lim
x→0,x>0

x(t(x))2 = − 1

c(1− c)
. (3.121)

As Im(t(x)) ≥ 0 for each x 6= 0, (3.121) implies that t(x) ' i√
x
√
c(1−c

when x → 0+, or equivalently that
1
π Im(t(x)) ' 1

π
1√

x c(1−c)
.

It remains to establish (3.120). For this, we first prove that

lim
x→0,x>0

x2(t(x))3 =

(
1

M
TrR−1

N

)−1

. (3.122)
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For this, we write (3.100) as

1

M
TrR

(
−xt(x)I +

1

1− 1
x(t(x))2

R

)−1

= 1. (3.123)

As c = 1, xt(x)→ 0 and |x(t(x))2| → +∞ when x→ 0, x > 0. The left hand side of (3.123) can be expanded
as

1

M
TrR

(
−xt(x)I +

1

1− 1
x(t(x))2

R

)−1

= 1− 1

x(t(x))2

+
1

M
TrR−1 xt(x) + xt(x)ε1(x) +

1

x(t(x))2
ε2(x),

where ε1(x) and ε2(x) converge towards 0 when x→ 0, x > 0. Therefore, (3.123) implies that

1

M
TrR−1 xt(x)− 1

x(t(x))2
= xt(x)ε̃1(x) +

1

x(t(x))2
ε̃2(x),

where ε̃1(x) and ε̃2(x) converge towards 0 when x→ 0, x > 0. This leads immediately to (3.122). As function
x→ x2(t(x))3 is continuous on R+∗, it holds that

lim
x→0,x>0

x2/3t(x) = e2ikπ/3

(
1

M
TrR−1

)−1/3

,

where k is equal to 0, 1 or 2. If k = 0, the real part of t(x) must be positive if x is close enough from 0.
Lemma 3.5 thus leads to a contradiction. If k = 2, Im(t(x)) < 0 for x small enough, a contradiction as well.
Hence, k is equal to 1. Therefore,

lim
x→0,x>0

x2/3Im(t(x)) = sin 2π/3

(
1

M
TrR−1

)−1/3

. (3.124)

This completes the proof of (3.120). �

We now show that function x→ t(x) and x→ f(x) possess a power series expansion in a neighbourhood of
each point of S◦N . More precisely:

Proposition 3.6. If x0 > 0 and Im(t(x0)) > 0, then, t and f can be expanded as

t(x) =
+∞∑
k=0

ak(x− x0)k, f(x) =
+∞∑
k=0

bk(x− x0)k

when |x− x0| is small enough.

Proof. As in [43] and [14], the proof is based on the holomorphic implicit function theorem (see [9]). We
denote t(x0) by t0. Then, Eq. (3.100) at point x0 can be written as h(x0, t0) = 0 where function h(z, t) is
defined by

h(z, t) = t− 1

M
Tr

(
R

(
−z(I +

ct

1− z(ct)2
R)

)−1
)
.

As x0 > 0 and Im(t0) > 0, function (z, t)→ h(z, t) is holomorphic in a neighbourhood of (x0, t0). It is easy
to check that (

∂h

∂t

)
x0,t0

= 1− u0(x0, x0)− x2
0v0(x0, x0), (3.125)

where we recall that functions u0 and v0 are given by (3.95) and (3.96). Following the proof of Lemma 3.9,
we obtain immediately that 1−u0(x0, x0)−x2

0v0(x0, x0) = 0 implies that T (x0) = aT (x0)∗, and that t0 = at∗0
for some a ∈ C. The arguments of the above proof then lead to the conclusion that t0 = t∗0, a contradiction
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because Im(t(x0)) > 0. Hence,
(
∂h
∂t

)
x0,t0

6= 0. The holomorphic implicit function theorem thus implies that
it exists a function z → t̃(z), holomorphic in a neigbourhood N of x0, verifying t̃(x0) = t0 and h(z, t̃(z)) = 0
for each z ∈ N . Moreover, condition Im(t0) = Im(t̃(x0)) > 0 implies that Im(t̃(z)) > 0 and Im(zt̃(z)) > 0
if |z − x0| < ε for ε small enough. Therefore, if z ∈ C+ and |z − x0| < ε, it must hold that t̃(z) = t(z)
(see Proposition 3.2). Hence, t(x) = limz→x,z∈C+ t(z) must coincide with t̃(x) when |x − x0| < ε. As t̃(z) is
holomorphic in a neighbourhood of x0, function x→ t(x) can be expanded as

t(x) =

+∞∑
k=0

ak(x− x0)k

when |x − x0| < ε. This immediately implies that f possesses a power series expansion in the interval
(x0 − ε, x0 + ε). �

We finally use the above results in order the study measure νN associated to the Stieltjes transform

tN,ν(z) =
1

M
TrTN (z).

As νN and µN are absolutely continuous one with respect each other, dνN (x) can also be written as dνN (x) =
gN (x)dx+ νN ({0})δ0. Using the identity

1

M
Tr

[
−z
(
I +

ct(z)

1− z(ct(z))2
R

)
T (z)

]
= 1.

we obtain immediately that

tν(z) = −1

z
− c(t(z))2

1− z(ct(z))2
. (3.126)

If x > 0, tν(x) = limz→x,z∈C+ tν(z) exists, and is given by the righthandside of (3.126) when z = x. Hence,
for x > 0, g(x) = 1

π Im(tν(x)), i.e.

g(x) = − 1

π

c Im((t(x))2)

|1− x(ct(x))2|2
. (3.127)

If c > 1, |zt(z)2| → +∞ if z → 0. (3.126) thus implies that νN ({0}) = limz→0−ztν(z) coincides with 1− 1
c ,

which, of course, is not surprising. We now evaluate the behaviour of g when x→ 0, x > 0 and c ≤ 1.

Proposition 3.7. If c < 1, it holds that

g(x) 'x→0
1

π

1√
c (1− c)

1

M
Tr(R−1)

1√
x

(3.128)

while if c = 1, it holds that

g(x) 'x→0
1

π

√
3

2

(
1

M
Tr(R−1)

)2/3 1

x2/3
. (3.129)

Proof. Using Eq. (3.117), we obtain after some algebra that

z(t(z))2 +
1

c(1− c)
'z→0

1

M
TrR−1 1

c2(1− c)3

1

t(z)
.

As t(x) 'x→0,x>0
i√

x
√
c(1−c)

, we get that

Im((t(x))2) ' −i 1

M
TrR−1 1

1− c
1

(c(1− c))3/2

1√
x
.

Therefore, (3.127) immediately leads to (3.128). (3.129) is an immediate consequence of (3.124). �

Proposition 3.7 means in practice that if cN ≤ 1, a number of eigenvalues of matrix Wf,NW
∗
p,NWp,NW

∗
f,N

are close from 0. Moreover, the rate of convergence of gN towards +∞ is higher if cN = 1, showing that in
this case, the proportion of eigenvalues close to 0 is even larger than if cN < 1.

We finally mention that tν(x) and g(x) possess a power expansion around eachpoint x0 ∈ S◦. This is an
obvious consequence of Proposition 3.6 and of the above expressions of tν(x) and of g(x) in terms of t(x).
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3.6.2 Characterization of SN .

We denote by wN (z) the function defined by

wN (z) = −(1− z(cN tN (z))2)

cN tN (z)
= zcN tN (z)− 1

cN tN (z)
. (3.130)

It is clear that w is analytic on C − S, that Im(w(z)) > 0 if z ∈ C+, that w(x) = limz→x,z∈C+ w(z) exists
for each x ∈ R∗, and that the limit still exists if x = 0. If we denote this limit by w(0), then, it holds that
w(0) = 0 if c ≤ 1 and that w(0) = cδ if c > 1, where we recall that δ is defined as the solution of (3.109).
Moreover, w(x) is real if and only if t(x) is real. Therefore, the interior So of S is also given by

So = {x ∈ R+, Im(w(x)) > 0}. (3.131)

Moreover, as t(x)′ and (xt(x))′ are strictly positive if x ∈ R−S, the derivative w′(x) of w(x) w.r.t. x is also
strictly positive on R − S. Using the equation t(z) = 1

MTrRT (z), we obtain immediately that t(z) can be
expressed in terms of w(z) as

t(z) =
1

z
w(z)

1

M
TrR (R− w(z)I)−1 . (3.132)

(3.130) implies that
1 + ct(z)w(z)− z(ct(z))2 = 0. (3.133)

Plugging (3.132) into (3.133), we obtain immediately that wN (z) verifies the equation

φN (wN (z)) = z, (3.134)

where φN (w) is defined by

φN (w) = cNw
2 1

M
TrRN (RN − wI)−1

(
cN

1

M
TrRN (RN − wI)−1 − 1

)
. (3.135)

Observe that (3.134) holds not only on C−S, but also for each x ∈ S. Therefore, it holds that φ(w(x)) = x
for each x ∈ R. For each x ∈ R − S, it thus holds that φ′(w(x))w

′
(x) = 1. Therefore, as w′(x) > 0 if

x ∈ R−S, w(x) satisfies φ′(w(x)) > 0 for each x ∈ R−S. This implies that if x ∈ R−S, then w(x) is a real
solution of the polynomial equation φ(w) = x for which φ′(w) > 0. Moreover, Proposition 3.5 implies that
if x ∈ R+ − S, then, t(x) = Re(t(x)) is strictly negative. Eq. (3.132) for z = x thus leads to the conclusion
that if x > 0 does not belong to S, then w(x) also verifies w(x) 1

MTrR (R− w(x)I)−1 < 0. If x < 0, then,
t(x) is this time strictly positive and w(x) still verifies w(x) 1

MTrR (R− w(x)I)−1 < 0. This discussion leads
to the following Proposition.

Proposition 3.8. If x ∈ R− S, then w(x) verifies the following properties:

φ(w(x)) = x, φ
′
(w(x)) > 0, w(x)

1

M
TrR (R− w(x)I)−1 < 0. (3.136)

As shown below, if x ∈ R− S, the properties (3.136) characterize w(x) among the set of all solutions of the
equation φ(w) = x and allow to identify the support as the subset of R+ for which the equation φ(w) = x
has no real solution satisfying the conditions (3.136). These results follow directly from an elementary study
of function w → φ(w).

We first consider the case c ≤ 1, and identify the values of x > 0 for which the equation φ(w(x)) = x has a real
solution verifying (3.136), and those for which such a solution does not exist. It is easily seen that if x > 0, all
the real solutions of the equation φ(w) = x are strictly positive. Therefore, the third condition in (3.136) is
equivalent to 1

MTrR (R− w(x)I)−1 < 0. We denote ω1,N < ω2,N < . . . < ωM,N the (necessarily real)M roots
of 1

MTrRN (RN − wI)−1 = 1
cN

and by µ1,N < µ2,N < . . . < µM−1,N the roots of 1
MTrRN (RN − wI)−1 = 0.

As c ≤ 1, it is easily seen that ω1 ≥ 0, and that ω1 < λM < µ1 < ω2 < λM−1 < . . . < µM−1 < ωM < λ1. It
is clear that 1

MTrR(R− wI)−1 < 0 if and only if w ∈ (λM , µ1) ∪ . . . ∪ (λ2, µM−1) ∪ (λ1,+∞).

For x > 0, the equation φ(w) = x is easily seen to be a polynomial equation of degree 2M + 1. Therefore,
φ(w) = x has 2M + 1 solutions. For each x > 0, this equation has at least 2M − 1 real solutions that cannot
coincide with w(x) if x ∈ (S◦)c:
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• M solutions belong to ]ω1, λM [, . . . , ]ωM , λ1[. None of these solutions may correspond to w(x) if x ∈
(S◦)c because 1

MTrR(R− wI)−1 > 0 at these points.

• On each interval ]λM , µ1[, . . . , ]λ2, µM−1[, the equation φ(w) = x has a real solution at which φ′ is
negative. Therefore, φ(w) = x has M − 1 extra real solutions that are not equal to w(x) if x ∈ (S◦)c.

As φN (w) → +∞ if w → λ1,N , w > λ1,N and that φN (w) → +∞ if w → +∞, it exists at least one
point in ]λ1,N ,+∞[ at which φ

′
N vanishes. This point is moreover unique because otherwise, φN (w) = x

would have more than 2M + 1 solutions for certain values of x. We denote by w+,N this point, and remark
that if x > x+,N = φN (w+,N ), φN (w) = x has 2M + 1 real solutions: the 2M − 1 solutions that were
introduced below, and 2 extra solutions that belong to ]λ1, w+[ and ]w+,+∞[ respectively. Therefore, w(x)
is real, and it is easily seen that w(x) coincides with the solution that belongs to ]w+,+∞[. This implies
that ]x+,+∞[⊂ R− S.

If φ′(w) does not vanish on ]λM , µ1[∪ . . .∪]λ2, µM−1[, for each x ∈]0, x+[, φ is decreasing on these intervals.
Therefore, none of the real solutions of φ(w) = x match with the properties of w(x) when x ∈ R+ − S.
Therefore, w(x) must be a complex number: φ(w) = x has thus 2M − 1 real solutions, and a pair of complex
conjugate roots: w(x) is the positive imaginary part solution. In this case, x ∈ S◦, and the support S coincides
with [0, x+].

We illustrate such a behaviour when M = 3. In the context of Fig. 3.1, the support is reduced to the single
interval [0, x+] because φ′(w) 6= 0 for w ∈ [λ3, µ1] ∪ [λ2, µ2].

.

µ1

ω1

ω2 ω3µ2

λ1λ3 λ2

x+

.

Рис. 3.1: Typical representation of φ (w) as a function of w forM = 3. There is no local maximum on [λ3, µ1]
and on [λ2, µ2], so that S = [0, x+].

In order to precise the support when φ
′ vanishes in ]λM , µ1[∪ . . .∪]λ2, µM−1[, we need to characterize the

corresponding zeros. For this, we first justify that φ′ cannot have a multiplicity 2 zero. Assume for example
that φ′ has a multiplicity 2 zero in ]λM+1−l, µl[, and denote by wl this zero. Then, if xl = φ(wl), the equation
φ(w) = xl has 2M − 1 simple real roots, and the multiplicity 3 root wl. Therefore, the equation φ(w) = xl
has 2M + 2 roots (counting multiplicities), a contradiction. We now establish the following useful result.

Proposition 3.9. The number of local extrema of φN in ]λM , µ1[∪ . . .∪]λ2, µM−1[ is an even number, say
2q, with 0 ≤ q ≤M − 1. If q ≥ 1, we denote the arguments of these extrema by w+

1,N < w−2,N < w+
2,N < . . . <
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w+
q−1,N < w−q,N , then x

+
1,N = φN (w+

1,N ), x−2,N = φN (w−2,N ), . . . , x+
q−1,N = φN (w+

q−1,N ), x−q,N = φN (w−q,N ) verify

x+
1,N < x−2,N < x+

2,N < . . . < x+
q−1,N < x−q,N . (3.137)

Moreover, for each l, the interval ]λM−(l−1), µl[ contains at most one interval [w+
p,N , w

−
p+1,N ], and x+

p,N (resp.
x−p+1,N ) is a local minimum (resp. local maximum) of φN .

Proof. We establish that if w1, w2 ∈ {w+
1 , w

−
2 , . . . , w

+
q−1, w

−
q } such that w1 > w2, the images x1 = φ(w1)

and x2 = φ(w2) are also satisfy x1 > x2. The goal is to show that ratio (x1−x2)/(w1−w2) is always positive.
For more convenience we put fn = cN

M TrRN (RN − wnIM )−1 = cN
M

∑M̄
1

λimi
λi−wn

for n = 1, 2. With this and
(3.135) we can rewrite

xn = φ(wn) = w2
nfn(fn − 1) = w2

npn(pn − 1), (3.138)

where pn = 1− fn. Let us notice that extremes w1 and w2 are by definition such that f1 and f2 are negative.
Using directly (3.138) for x1 and x2 we can write

x1 − x2

w1 − w2
=

(w2
1p

2
1 − w2

2p
2
2)− (w2

1p1 − w2
2p2)

w1 − w2

= (w1p1 + w2p2)
w1p1 − w2p2

w1 − w2
− w2

1p1 − w2
2p2

w1 − w2
. (3.139)

With the definition of f1,2 the first term of (3.139) can be expanded as

w1p1 − w2p2

w1 − w2
= 1 +

c

M

M̄∑
l=1

λimi

w1 − w2

(
w2

λi − w2

− w1

λi − w1

)

= 1− c

M

M̄∑
1

λ
2
imi

(λi − w1)(λi − w2)
.

And similarly the second one as

w2
1p1 − w2

2p2

w1 − w2
= (w1 + w2) +

c

M

M̄∑
1

λimi

w1 − w2

(
w2

2

λi − w2

− w2
1

λi − w1

)

= (w1 + w2)

1− c

M

M̄∑
1

λ
2
imi

(λi − w1)(λi − w2)

+ w1w2
c

M

M̄∑
1

λimi

(λi − w1)(λi − w2)
.

Putting the last two equation in (3.139) we obtain

x1 − x2

w1 − w2
= (w1p1 + w2p2 − w1 − w2)

1− c

M

M̄∑
1

λ
2
imi

(λi − w1)(λi − w2)


− w1w2

c

M

M̄∑
1

λimi

(λi − w1)(λi − w2)
= −(w1f1 + w2f2)

×

1− c

M

M̄∑
1

λ
2
imi

(λi − w1)(λi − w2)

− w1w2
c

M

M̄∑
1

λimi

(λi − w1)(λi − w2)
.

Now we recall that −fn is positive as well as w1, w2 > 0 from what we have −(w1f1 + w2f2) > 0. That
allows us to use the inequality

1

(λi − w1)(λi − w2)
≤ 1

2

(
1

(λi − w1)2
+

1

(λi − w2)2

)
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and to write

x1 − x2

w1 − w2
≥ −(w1f1 + w2f2)

1− c

2M

M̄∑
1

λ
2
imi

(λi − w1)2
− c

2M

M̄∑
1

λ
2
imi

(λi − w2)2


− w1w2

c

M

M̄∑
1

λimi

(λi − w1)(λi − w2)
.

It is easy to check that c
M

∑ λ
2
imi

(λi−w)2
= f(w) + wf ′(w). Using this we can rewrite last inequality as

x1 − x2

w1 − w2
≥ −1

2
(w1f1 + w2f2)

(
2− f1 − w1f

′
1 − f2 − w2f

′
2

)
− w1w2

c

M

M̄∑
1

λimi

(λi − w1)(λi − w2)
. (3.140)

Taking the derivatives of the expression (3.138), we obtain that φ′(wn) = 2wnf
2
n−2wnfn+2w2

nfnf
′
n−w2

nf
′
n. By

definition, w1,2 are extremes of function φ(w), i.e. φ′(w1,2) = 0. This gives immediately fn+wnf
′
n−1 = wnf ′n

2fn
.

After putting this into (3.140) and regrouping terms we obtain

x1 − x2

w1 − w2
≥ 1

4
(w1f1 + w2f2)

(
w1f

′
1

f1
+
w2f

′
2

f2

)
− w1w2

c

M

M̄∑
1

λimi

(λi − w1)(λi − w2)

=
1

4
(w2

1f
′
1 + w2

2f
′
2) +

1

4
w1w2

(
f ′1
f2

f1
+ f ′2

f1

f2

)
− w1w2

c

M

M̄∑
1

λimi

(λi − w1)(λi − w2)
.

Finally, we denote by I1, I2, I3 the three terms of the r.h.s and show that I1 + 1
2I3 and I2 + 1

2I3 can be
presented as the sum of positive terms. Using again the definition of f1,2 we expand I1 + 1

2I3 as

1

4

w2
1f
′
1 + w2

2f
′
2 − 2w1w2

c

M

M̄∑
1

λimi

(λi − w1)(λi − w2)


=

c

4M

∑
λimi

( w2
1

(λi − w1)2
+

w2
2

(λi − w2)2
− 2w1w2

(λi − w1)(λi − w2)

)
=

c

4M

∑
λimi

(
w1

λi − w1

− w2

λi − w2

)2

.

Similarly, I2 + 1
2I3 can be written as

1

4
w1w2

f ′1 f2

f1
+ f ′2

f1

f2
− 2

c

M

M̄∑
1

λimi

(λi − w1)(λi − w2)


= w1w2

c

4M

∑
λimi

(
f2/f1

(λi − w1)2
+

f1/f2

(λi − w2)2
− 2

(λi − w1)(λi − w2)

)

= w1w2
c

4M

∑
λimi

(√
f2/f1

λi − w1

−
√
f1/f2

λi − w2

)2

.

This shows that x1 − x2 > 0, and that (3.137) holds. It remains to justify that each interval
(]λM−(l−1), µl[)l=1,...,M−1 contains at most one interval [w+

p,N , w
−
p+1,N ]. Assume that the interval ]λM−(l−1), µl[

contains 2 intervals [w+
p1,N

, w−p1+1,N ] and [w+
p2,N

, w−p2+1,N ] with p1 < p2. Then, it also holds that [w+
p1+1,N , w

−
p1+2,N ] ⊂

]λM−(l−1), µl[. x
+
p1,N

is necessarily a local minimum because x+
p1,N

< x−p1+1,N while x−p1+1,N must be a
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local maximum. The same property holds for x+
p1+1,N and x−p1+2,N . However, this contradicts the property

x−p1+1,N < x+
p1+1,N . This completes the proof of Proposition 3.9. �

Proposition 3.9 allows to identify the support SN .

Corollary 3.5. When cN ≤ 1, the support SN is given by

SN = [0, x+
1,N ] ∪ [x−2,N , x

+
2,N ] ∪ . . . [x−q,N , x+,N ]. (3.141)

Proof. If x belongs to the interior of the righthandside of (3.141), φ(w) = x has only 2M − 1 real solutions.
This implies that the 2 remaining roots are complex valued, i.e. that x ∈ S◦. This leads to the conclusion
that

]0, x+
1,N [∪]x−2,N , x

+
2,N [∪ . . .]x−q,N , x+,N [⊂ S◦

and that
[0, x+

1,N ] ∪ [x−2,N , x
+
2,N ] ∪ . . . [x−q,N , x+,N ] ⊂ S.

Conversely, if x ∈ R+ −
(

[0, x+
1,N ] ∪ [x−2,N , x

+
2,N ] ∪ . . . [x−q,N , x+,N ]

)
, the equation φ(w) = x has 2M + 1 real

solutions, which implies that w(x) is real. Therefore,

R+ −
(

[0, x+
1,N ] ∪ [x−2,N , x

+
2,N ] ∪ . . . [x−q,N , x+,N ]

)
⊂ R+ − S

or equivalently,
S ⊂ [0, x+

1,N ] ∪ [x−2,N , x
+
2,N ] ∪ . . . [x−q,N , x+,N ].

This completes the proof of Corollary (3.5). �

We illustrate the above behaviour when M = 3. In the context of Fig. 3.2, φ′ vanishes on [λ3, µ1] and not
on [λ2, µ2]. The support thus coincides with S = [0, x+

1 ] ∪ [x−2 , x+].
.

λ2

µ1

ω1

ω2 ω3µ2

x+

λ1λ3

x1,+

x2,−

.

Рис. 3.2: Typical representation of φ (w) as a function of w for M = 3. There are 2 local extrema on [λ3, µ1]
and no local maximum on [λ2, µ2], so that S = [0, x+

1 ] ∪ [x−2 , x+].

When matrix RN is reduced to RN = σ2I, i.e. M = 1 and λ1 = σ2, the support of course coincides with
SN = [0, x+,N ], and x+,N is given by

x+,N = σ4cN

(
1 +

1
1+
√

1+8cN
2

)2 (
cN +

1 +
√

1 + 8cN
2

)
. (3.142)
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Moreover, w+,N is equal to

w+,N = σ2

(
1 +

1 +
√

1 + 8cN
2

)
. (3.143)

(3.142) and (3.143) are in accordance with the results of [28].

We now briefly address the case cN > 1. The behaviour of φN is essentially the same as if cN ≤ 1, except that
the first root ω1,N of the equation 1

MTrRN (RN − wI)−1 = 1
cN

is now strictly negative. As φN (0) = 0, this
implies that it exists w−,N ∈ (ω1,N , 0) for which φ′N (w−,N ) = 0. Moreover, this point is unique, otherwise, the
equation φN (w) = x would have more than 2M + 1 roots for certain values of x > 0. x−,N = φN (w−,N ) > 0
is thus a local maximum of φN whose argument is strictly negative. We also notice that φN (w) > 0 if
0 < w < λM . Apart these differences, the behaviour of φN for w > λM remains the same as if cN ≤ 1. In
particular, Proposition 3.9 still holds true. However, we remark that if 0 < x < x−,N , the equation φN (w) = x
has still 2M − 1 real solutions that are strictly positive, and 2 extra real roots, the smallest one being less
than w−,N and the other one being negative and largest that w−,N . This implies that wN (x) is real. We
also notice that wN (x) coincides with the smallest extra negative root because it satisfies conditions (3.136).
Hence, the interval ]0, x−,N [ is included into R+−SN . If φ

′
N does not vanish on ]λM , µ1[∪ . . .∪]λ2, µM−1[, for

x ∈]x−,N , x+,N [, the equation φN (w) = x has only 2M−1 real solutions that do not satisfy conditions (3.136)
and 2 extra complex conjugates solutions. Therefore, ]x−,N , x+,N [⊂ S◦N and [x−,N , x+,N ] ⊂ SN . Conversely,
]0, x−,N [∪]x+,N ,+∞[⊂ R+ − SN , which implies that SN ⊂ {0} ∪ [x−,N , x+,N ]. As it was established above
that {0} ⊂ SN , we deduce that SN = {0} ∪ [x−,N , x+,N ] if φ′N does not vanish on ]λM , µ1[∪ . . .∪]λ2, µM−1[.
If φ′N vanishes on ]λM , µ1[∪ . . .∪]λ2, µM−1[, i.e. if q ≥ 1 (we recall that q is defined in Proposition 3.9), the
support is given by

SN = {0} ∪ [x−,N , x
+
1,N ] ∪ [x−2,N , x

+
2,N ] ∪ . . . [x−q,N , x+,N ]. (3.144)

To justify this, we just need to establish that x−,N < x+
1,N , and to use the same arguments as in the proof of

Corollary 3.5. To justify x−,N < x+
1,N , we put w1 = w−,N , w2 = w+

1,N , and follow step by step the arguments
used to evaluate φ(w2) − φ(w1) > 0. We notice that in contrast with the context of the proof of Corollary
3.5, w1 < 0 and f1 > 0. However, f1w1 is still negative, so that −(w1f1 + w2f2) is still positive. This allows
to conclude that all the inequalities used in the course of the proof of Corollary 3.5 remain valid, except the
evaluation of the term I2 + I3/2 that needs the following simple modification: we express I2 + I3/2 as

−w1w2
c

4M

∑
λimi ×

(
−f2/f1

(λi − w1)2
+
−f1/f2

(λi − w2)2
+

2

(λi − w1)(λi − w2)

)
.

As −f2/f1 and −f1/f2 are positive, it holds that

I2 + I3/2 = −w1w2
c

4M

∑
λimi

(√
−f2/f1

λi − w1
+

√
−f1/f2

λi − w2

)2

.

Therefore, I2 + I3/2 > 0, and φ(w2)− φ(w1) > 0 holds.

In order to unify the cases cN ≤ 1 and cN > 1, we define x−,N for cN ≤ 1 by x−,N = 0, and summarize the
above discussion by the following result.

Theorem 3.3. The support SN is given by

SN = {0}IcN>1 ∪ [x−,N , x
+
1,N ] ∪ [x−2,N , x

+
2,N ] ∪ . . . [x−q,N , x+,N ]. (3.145)

We now establish that sequences (w+,N )N≥1 and (x+,N )N≥1 are bounded. In other words, for each N , the
support SN is included into a compact interval that does not depend on N .

Lemma 3.14.
sup
N≥1

w+,N < +∞, sup
N≥1

x+,N < +∞. (3.146)
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Proof. In order to prove this lemma, we use that w+,N > λ1,N and that φ′N (w+,N ) = 0. It is easy to check
that

φ
′
N (w) = 2c2

Nw
1

M
TrR(wI −R)−1 − (cNw)2 1

M
TrR(wI −R)−2

− 2c2
Nw

(
1

M
TrR(wI −R)−1

)2

− 2(cNw)2 1

M
TrR(wI −R)−2 1

M
TrR(wI −R)−1.

For w > b > λ1,N , it is clear that ‖(wI − R)−1‖ ≤ 1
w−b . Writing that w 1

MTrR(wI − R)−1 = 1
MTrR +

1
MTrR2(wI − R)−1 and w2 1

MTrR(wI − R)−2 = 1
MTrR + w

(
1
MTrR(wI −R)−2

)
− 1

MTrR2(wI − R)−1, we
obtain immediately that φ′N (w) can be written as

φ
′
N (w) = c2

N

1

M
TrR+ δN (w),

where δN (w) verifies |δN (w)| ≤ δ(w) and w → δ(w) is a rational function of w that does not depend on
N and which converges towards 0 when w → +∞. Therefore, for each η > 0, it exists w1 > b such that
φ
′
N (w) > c2

N
1
MTrR− η for each w ≥ w1. As cN → c∗ and that 1

MTrR ≥ a, we obtain that φ′N (w) > c2∗
2 a for

w ≥ w1. As φ
′
N (w+,N ) = 0, we deduce from this that w+,N < w1. As w1 does not depend onN , this establishes

that supN≥1w+,N < +∞. To prove that x+,N is bounded, we observe that x+,N = φN (w+,N ) < φN (w1). As
w1 > b, it is easily seen that

φN (w1) < 2c2
Nw

2
1

(
b

(w1 − b)2
+

b

(w1 − b)

)
.

Therefore, sequences (φN (w1))N≥1 and (x+,N )N≥1 are bounded. This completes the proof of Lemma 3.14. �

We finally provide a sufficient condition under which the support is reduced to SN = [0, x+,N ] if cN < 1 and
to SN = {0} ∪ [x−,N , x+,N ] if cN > 1. More precisely, the following result holds.

Proposition 3.10. Assume that there exists κ > 0 such that for eachM large enough, the following condition
holds:

|λk,N − λl,N | ≤ κ
(
|k − l|
M

)1/2

(3.147)

for each pair (k, l), 1 ≤ k ≤ l ≤ M . Then, for each M large enough, SN = [0, x+,N ] if cN ≤ 1 and to
SN = {0} ∪ [x−,N , x+,N ] if cN > 1.

Proof. We assume that (3.147) holds, and that S does not coincide with [0, x+] or S = {0} ∪ [x−, x+] , i.e.
φ
′
(w) vanishes at a point w0 such that λ1 < w0 < λM and 1

MTrR(R − w0I)−1 < 0. After some algebra, we
obtain that w0 satisfies:

1

M
Tr
(
R(R− w0I)−1

)2
=

− 1
MTrR(R− w0I)−1

1− 2c 1
MTrR(R− w0I)−1

.

As 1
MTrR(R− w0I)−1 < 0, this implies that

1

M
Tr
(
R(R− w0I)−1

)2
=

1

M

M∑
k=1

(
λk

λk − w0

)2

< − 1

M
TrR(R− w0I)−1

≤ 1

M

M∑
k=1

λk
|λk − w0|

.

Jensen’s inequality leads to
(

1
M

∑M
k=1

λk
|λk−w0|

)2
≤ 1

M

∑M
k=1

(
λk

λk−w0

)2
. Therefore, we obtain that 1

M

∑M
k=1

λk
|λk−w0| <

1, and that
1

M

M∑
k=1

(
λk

λk − w0

)2

< 1. (3.148)
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We assume that λj0 < w0 < λj0+1. Then, hypothesis (2.2) and condition (3.147) imply that(
λk

λk − w0

)2

>
a2

κ2

M

(|k − j0|+ 1)
.

Hence, it must hold that
a2

κ2

M∑
k=1

1

(|k − j0|+ 1)
< 1

for each M large enough, a contradiction because
∑M

k=1
1

(|k−j0|+1) is easily seen to be an unbounded term. �

3.7 No eigenvalues outside the support.

In this paragraph, we establish the following result:

Theorem 3.4. Assume that there exists ε > 0, κ1 ∈ R, κ2 ∈ R ∪ {+∞}, κ2 > κ1 and an integer N0 such
that

(κ1 − ε, κ2 + ε) ∩ SN = ∅ ∀N ≥ N0. (3.149)

Then with probability one, no eigenvalues of Wf,NW
∗
p,NWp,NW

∗
f,N appears in [κ1, κ2] for all N large enough.

We first remark that it is sufficient to consider the case where κ2 < +∞. To justify this claim, we recall
that ∪N≥1SN is a compact subset (see Lemma 3.14), and notice that ‖Wf,NW

∗
p,NWp,NW

∗
f,N‖ ≤ ‖WN‖4

where matrix WN is defined by (3.4). Moreover, (3.5) implies that almost surely, for N large enough,
‖WN‖2 ≤ b (1+δ+

√
c∗)2 where δ > 0. Therefore, almost surely, the largest eigenvalue ofWf,NW

∗
p,NWp,NW

∗
f,N

is, for each N large enough, upperbounded by the nice constant b2 (1 + δ +
√
c∗)4. This justifies that it is

sufficient to assume that κ2 < +∞ in the following.

In order to establish Theorem 3.4, we use the Haagerup-Thornbjornsen approach ( [17], see also [7]). The
crucial step of the proof is the following Proposition.

Proposition 3.11. ∀z ∈ C+, we have for N large enough,

E
{

1

ML
TrQN (z)

}
=

1

M
TrTN (z) +

1

N2
rN (z), (3.150)

where rN is holomorphic in C+ and satisfies

|rN (z)| ≤ P1(|z|)P2

(
1

Imz

)
(3.151)

for each z ∈ C+, where P1 and P2 are nice polynomials.

Proof. To prove (3.150) we write

E
{

1

ML
TrQN (z)

}
− 1

M
TrTN (z) =

1

ML
Tr [E {QN (z)} − IL ⊗ SN (z)]

+
1

M
Tr [SN (z)− TN (z)] .

As (3.63) holds, it is sufficient to establish that∣∣∣∣ 1

M
Tr[SN (z)− TN (z)]

∣∣∣∣ ≤ 1

N2
P1(|z|)P2(Im−1z) (3.152)

for some nice polynomial P1 and P2. In the following, we denote by sN (z) the function defined by

sN (z) =
1

M
TrRNSN (z). (3.153)
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It is clear that sN ∈ S(R+). Moreover, if µN,s represents the associated positive measure, then we have

µN,s(R+) =
1

M
TrRN ,

∫
R+

λ dµN,s(λ) = cN
1

M
TrRN

1

M
TrR2

N (3.154)

(3.154) can be proved using the arguments of the proof of Proposition 3.2.
As 1

MTr[SN (z)− TN (z)] is given by (3.86) for F = I, (3.152) appears equivalent to the property∣∣∣∣ 1

M
Tr[RN (SN (z)− TN (z))]

∣∣∣∣ = |sN (z)− tN (z)| ≤ 1

N2
P1(|z|)P2(Im−1z). (3.155)

In order to prove (3.155), we define the following functions that appear formally similar to functions u(z)
and v(z) defined by (3.76) and (3.77):

uα(z) = c
|czα(z)|2 1

MTr(RS(z)S∗(z)R)

|1− z(cα(z))2|2
,

vα(z) = c
1
MTr(RS(z)S∗(z)R)

|1− z(cα(z))2|2
,

ut,α(z) = c
|cz|2t(z)α(z) 1

MTr(RS(z)T (z)R)

(1− z(cα(z))2)(1− z(ct(z))2)
, (3.156)

vt,α(z) = c
1
MTr(RS(z)T (z)R)

(1− z(cα(z))2)(1− z(ct(z))2)
. (3.157)

Using equation t(z) = 1
MTrRT (z) and the definition of s(z) and S(z), we obtain easily that(

(s(z)− t(z))
z(s(z)− t(z))

)
= Dt,α(z)

(
(s(z)− t(z))
z(s(z)− t(z))

)
+

(
ε1(z)
ε2(z)

)
holds, where

ε1(z) = (α(z)− s(z))(zvt,α(z) + ut,α(z)),

ε2(z) = z(α(z)− s(z))(zvt,α(z) + ut,α(z)),

Dt,α(z) =

(
ut,α(z) vt,α(z)
z2vt,α(z) ut,α(z)

)
.

This can also be written as

(I−Dt,α(z))

(
(s(z)− t(z))
z(s(z)− t(z))

)
=

(
ε1(z)
ε2(z)

)
. (3.158)

The application of (3.62) to F = IL ⊗R leads to α(z)− s(z) = Oz(N−2). In order to verify that (εi(z))i=1,2

are Oz(N−2) as well, we have to control ut,α and vt,α. As t(z), α(z), ‖T (z)‖ and ‖S(z)‖ are Oz(1) terms, it
is sufficient to evaluate the denominator of the right handside of (3.156). As the mass and the first moment
of µ and µ (the measure associated to α(z)) both verify the conditions of Lemma 3.5, this Lemma implies
that (1− z(ct(z))2)−1 = Oz(1) and (1− z(cα(z))2)−1 = Oz(1). Therefore, we have checked that (εi(z))i=1,2

are Oz(N−2) terms.

In order to evaluate s(z)− t(z), it is of course necessary to show that matrix I −Dt,α(z) is invertible on C+,
and to control the action of its inverse on the vector (ε1(z), ε1(z))T . We define matrix Dα by

Dα(z) =

(
uα(z) vα(z)
z2vα(z) uα(z)

)
and establish the following result.
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Lemma 3.15. For each z ∈ C+, it exist nice constants κ and β such that

det (I −D(z)) ≥ κ (Imz)8

(|β|2 + |z|2)4
. (3.159)

Moreover, it exist 2 nice polynomials P1 and P2 for which

1− uα(z) > 0 (3.160)

and

det (I −Dα(z)) ≥ κ (Imz)8

(|β|2 + |z|2)4
(3.161)

for each z ∈ BN , where BN is defined as

BN =

{
z ∈ C+,

1

MN
P1(|z|)P2

(
1

Imz

)
≤ 1

}
. (3.162)

Finally, for each z ∈ BN , it holds that

det (I −Dt,α(z)) ≥ κ (Imz)8

(|β|2 + |z|2)4
. (3.163)

Proof. To evaluate det (I−D(z)), we use the calculations of the proof of Lemma 3.7. In particular, we have

(I −D(z))

(
Imt(z)
Imzt(z)

)
= Imz

(
1
MTrRT (z)T ∗(z)

0

)
. (3.164)

This implies that

1− u(z) =
Imz

Imt(z)
· 1

M
TrRT (z)T ∗(z) +

Imzt(z)

Imt(z)
v(z) ≥ Imz

Imt(z)
· 1

M
TrRT (z)T ∗(z).

By applying Cramer’s rule to (3.164), we obtain that

det (I −D(z)) =
Imz

Imt(z)
· 1

M
TrRT (z)T ∗(z)(1− u(z)) ≥

(
Imz

Imt(z)
· 1

M
TrRT (z)T ∗(z)

)2

. (3.165)

It is clear that Imt(z) ≤ |t(z)| ≤ 1
MTrR (Imz)−1 ≤ b (Imz)−1. Therefore, it holds that

Imz

Imt(z)
≥ 1

b (Imt(z))2.

We now evaluate 1
MTrRT (z)T ∗(z). For this, we remark that

1

M
TrRT (z)T ∗(z) =

1

M
TrRT (z)T ∗(z)RR−1 ≥ 1

b

1

M
Tr(RT (z)T ∗(z)R). (3.166)

Jensen’s inequality implies that 1
MTr(RT (z)T ∗(z)R) ≥

∣∣ 1
MTrRT (z)

∣∣2 = |t(z)|2 ≥ (Im t(z))2. Therefore, the
application of Lemma 3.5 to β(z) = t(z) implies that(

Imz

Imt(z)
· 1

M
TrRT (z)T ∗(z)

)2

≥ κ (Imz)8

(|β|2 + |z|2)4

for some nice constants κ and β. (3.159) thus follows from (3.165).

We now establish (3.160) and (3.161), and denote by ε(z) the function ε(z) = α(z)−s(z). Using the equation
s(z) = 1

MTrRS(z), and calculating Im s(z) and Im zs(z), we obtain immediately that

(I−Dα(z))

(
Imα(z)
Imzα(z)

)
= Imz

( 1

M
TrRS(z)S∗(z)

0

)
+

(
Imε(z)
Imzε(z)

)
. (3.167)
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The first component of (3.167) leads to

1− uα =
Imz

Imα
· 1

M
TrRSS∗ +

Imε

Imα
+

Imzα

Imα
vα ≥

Imz

Imα
· 1

M
TrRSS∗ +

Imε

Imα
. (3.168)

Using the same arguments as above, we obtain that
1

M
TrRSS∗ ≥ 1

b |s(z)|
2 ≥ 1

b (Ims(z))2. As (3.154) holds,
we can apply Lemma 3.5 to β(z) = s(z) and obtain as above that

Imz

Ims(z)
· 1

M
TrRS(z)S∗(z) ≥ κ (Imz)4

(|β|2 + |z|2)2

for some nice constants β and κ. We remark that
Imε

Imα
≥ − |ε|

Imα . Therefore, by Lemma 3.5 applied to β(z) =

α(z), it holds that
Imε

Imα
≥ −κ1|ε|

β2
1+|z|2
Imz for some nice constants κ1 and β1. As |ε(z)| ≤ 1

N2Q1(|z|)Q2( 1
Imz )

for some nice polynomials Q1 and Q2,we obtain that

1− uα ≥
Imz

Imα
· 1

M
TrRSS∗ +

Imε

Imα
≥ Imz

Imα
· 1

M
TrRSS∗ − |ε|

Imα
≥ 1

2

κ (Imz)4

(|β|2 + |z|2)2
(3.169)

if z belongs to the set B1,N defined by

κ (Imz)4

(|β|2 + |z|2)2
− 1

N2
Q1(|z|)Q2(

1

Imz
)κ1

β2
1 + |z|2

Imz
≥ 1

2

κ (Imz)4

(|β|2 + |z|2)2
.

The set B1,N is clearly defined in the same way than BN , but from 2 other nice polynomials P1,1 and P2,1.
Using the Cramer rule, we obtain that det (I−Dα) can be written as

det (I−Dα) =

(
Imz

Imα
· 1

M
TrRSS∗ +

Imε

Imα

)
(1− uα) +

Imzε

Imα
vα.

Plugging (3.169) in the last equation, we get that the inequality

det (I−Dα) ≥

(
1

2

κ (Imz)4

(|β|2 + |z|2)2

)2

− |z| |ε|
Imα

vα

holds for each z ∈ B1,N . As vα = Oz(1), we obtain that(
κ (Imz)4

(|β|2 + |z|2)2

)2

− |z| |ε|
Imα

vα ≥

(
1

4

κ (Imz)4

(|β|2 + |z|2)2

)2

for each z ∈ B2,N , where B2,N is defined as BN from 2 nice polynomials P1,2 and P2,2. We put P1(|z|) =
P1,1(|z|) +P1,2(|z|) and P2(1/Imz) = P2,1(1/Imz) +P2,2(1/Imz), and consider the set BN defined by (3.162).
It is clear that BN ⊂ B1,N ∩ B2,N , and that (3.160) and (3.161) hold if z ∈ BN .

It remains to establish (3.163). For this, we remark that the inequalities

|det (I−Dt,α(z))| ≥ |1− ut,α(z)|2 − |z|2|vt,α(z)|2 ≥ (1− |ut,α(z)|)2

− |z|vα(z) · |z|v(z) ≥ (1−
√
u(z)uα(z))2 − |z|vα(z) · |z|v(z) ≥ (1− u(z))(1− uα(z))

− |z|vα(z) · |z|v(z) ≥
√

((1− u(z))2 − |z|2v(z))((1− uα(z))2 − |z|2vα(z))

=
√

det (I−D(z))det (I−Dα(z))

hold for each z ∈ BN . Therefore, (3.163) follows from (3.159) and (3.161). This completes the proof of Lemma
3.15. �
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Solving (3.158), we obtain immediately that it exists 2 nice polynomials Q1 and Q2 such that,

|sN (z)− tN (z)| ≤ 1

MN
Q1(|z|)Q2

(
1

Imz

)
holds for each z ∈ BN . If z ∈ BcN , we use the argument in [17]. More precisely, if z ∈ BcN , the inequality
1 < 1

MNP1(|z|)P2(1/Imz) holds. As |sN (z)− tN (z)| ≤ 2 1
MTrRN

1
Imz on C+, we deduce that

|sN (z)− tN (z)| ≤ 2b
1

MN
P1(|z|)P2(1/Imz)

Imz

for each z ∈ BcN . This, in turn, leads to the conclusion that sN (z) − tN (z) = Oz( 1
N2 ) for each z ∈ C+.

This establishes (3.155) and 1
MTr(TN (z) − SN (z)) = Oz( 1

N2 ) as expected. This completes the proof of
Proposition 3.11. �
We now follow [8] and [17] and use the following Lemma.

Lemma 3.16. Let φ be a compactly supported real valued smooth function defined on R+, i. e. φ ∈ C∞c (R+,R+).
Then,

E
{

1

ML
Trφ(WfW

∗
pWpW

∗
f )

}
−
∫
SN

φ(λ)dµN (λ) = O
(

1

N2

)
.

Proof. Due to Proposition 2.1 we can write

E
{

1

ML
Trφ(WfW

∗
pWpW

∗
f )

}
=

1

π
lim
y↓0

Im

{∫
R+

φ(x)E
{

1

ML
TrQ(x+ iy)

}
dx

}
as well as ∫

SN
φ(λ)dµN (λ) =

1

π
lim
y↓0

Im

{∫
R+

φ(x)E
{

1

ML
TrT (x+ iy)

}
dx

}
Using Proposition 3.11, we obtain

E
{

1

ML
Trφ(WfW

∗
pWpW

∗
f )

}
−
∫
SN

φ(λ)dµN (λ)

=
1

N2

1

π
lim
y↓0

Im

{∫
R+

φ(x)rN (x+ iy)dx

}
. (3.170)

Since the function rN (z) = Oz(1), we can use the result which was proved in [7, Section 3.3] and obtain

lim sup
y↓0

∣∣∣∣∫
R+

φ(x)rN (x+ iy)dx

∣∣∣∣ ≤ κ
for some nice constant κ. This and (3.170) complete the proof. �

In order to establish Theorem 3.4, we introduce a function φ ∈ C∞c such that 0 ≤ φ(λ) ≤ 1 and

φ(λ) =

{
1, for λ ∈ [κ1, κ2],

0, for λ ∈ R− (κ1 − ε, κ2 + ε).

Since for N large enough (κ1 − ε, κ2 + ε) ∩ SN = ∅ then
∫
SN φ(λ)dµN (λ) = 0 and according to Lemma 3.16

E
{

1

ML
Trφ(WfW

∗
pWpW

∗
f )

}
= O

(
1

N2

)
.

Now we show that

Var

{
1

ML
Trφ(WfW

∗
pWpW

∗
f )

}
= O

(
1

N4

)
.
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For this we use again the Poincare-Nash inequality

Var{Trφ(WfW
∗
pWpW

∗
f )} ≤

∑
E
{(∂Trφ(WfW

∗
pWpW

∗
f )

∂W
m1

i1,j1

)∗
E{Wm1

i1,j1
W

m2

i2,j2}

×
∂Trφ(WfW

∗
pWpW

∗
f )

∂W
m2

i2,j2

}
+
∑

E

{
∂Trφ(WW ∗)
∂Wm1

i1,j1

E{Wm1
i1,j1

W
m2

i2,j2}

(
∂Trφ(WW ∗)
∂Wm2

i2,j2

)∗}
.

We only evaluate the first term of the r.h.s. of the inequality, denoted by ψ, because the second is similar.
For this we write first

∂Trφ(WfW
∗
pWpW

∗
f )

∂W
m1

i1,j1

= Tr

(
φ′(WfW

∗
pWpW

∗
f )
∂WfW

∗
pWpW

∗
f

∂W
m1

i1,j1

)

=

{
1 ≤ i1 ≤ L, (WpW

∗
f φ
′(WfW

∗
pWpW

∗
f )Wf )m1

i1j1
,

L+ 1 ≤ i1 ≤ 2L, (φ′(WfW
∗
pWpW

∗
f )W ∗fWfWp)

m1
i1−L,j1 .

Plugging this into (3.6) we obtain

ψ =
L∑

i1,i2=1

∑
j1,j2,m1,m2

( 1

N
E
{(
WpW

∗
f φ
′(WfW

∗
pWpW

∗
f )Wf

)∗m1

i1j1
Rm1m2δi1+j1,i2+j2

×
(
WpW

∗
f φ
′(WfW

∗
pWpW

∗
f )Wf

)m2

i2,j2

}
+

1

N
E
{(
φ′(WfW

∗
pWpW

∗
f )WfW

∗
pWp

)∗m1

i1j1

×Rm1m2δi1+j1,i2+j2

(
φ′(WfW

∗
pWpW

∗
f )WfW

∗
pWp

)m2

i2,j2

})
.

Following the proof of Lemma 3.1, we obtain

Var{Trφ(WfW
∗
pWpW

∗
f )} ≤ C

N
E{TrW ∗f φ

′(WfW
∗
pWpW

∗
f )WfW

∗
pWpW

∗
f

× φ′(WfW
∗
pWpW

∗
f )Wf}+

C

N
E{TrWfW

∗
pWpW

∗
pWpW

∗
f

(
φ′(WfW

∗
pWpW

∗
f )
)2}. (3.171)

To evaluate the first term ψ1 of the r.h.s of (3.171) we denote η(λ) = (φ′(λ))2λ and write

1

N
E
{

TrW ∗f φ
′(WfW

∗
pWpW

∗
f )WfW

∗
pWpW

∗
f φ
′(WfW

∗
pWpW

∗
f )Wf

}
≤ 1

N
E
{
‖Wf‖2Tr(η(WfW

∗
pWpW

∗
f ))
}
.

We recall that (3.5) implies that ‖Wf‖2 ≤ b‖Wiid‖2. Therefore, it holds that

ψ1 ≤
κ

N
E{‖Wiid‖21‖Wiid‖≤(1+

√
c∗)2+δTr(η(WfW

∗
pWpW

∗
f ))}

+
κ

N
E{‖Wiid‖21‖Wiid‖>(1+

√
c∗)2+δTr(η(WfW

∗
pWpW

∗
f ))}

≤ κ

N
E{Tr(η(WfW

∗
pWpW

∗
f ))}+ κE1/2{‖Wiid‖41‖Wiid‖>(1+

√
c∗)2+δ}

× E1/2

{(
1

N
Tr(η(WfW

∗
pWpW

∗
f ))

)2
}
.

Lemma 3.16 implies that 1
NE{Tr(η(WfW

∗
pWpW

∗
f ))} = O(N−2). Throughout the proof of Lemma 3.1, we get

that E‖Wiid‖41‖Wiid‖>(1+
√
c∗)2+δ = O(N−k) for all k. Since function φ′ ∈ C∞c , there exists a nice constant

κ such that |φ′(λ)| < κ for all λ and φ′(λ) = 0 for all λ > b + 2ε. We deduce from this that it exists a
nice constant κ such that ‖η(Wf,NW

∗
p,NWp,NW

∗
f,N )‖ < κ for each N . From what about we conclude that

ψ1 = O(N−2).
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As for the second term (ψ2) of the r.h.s of (3.171), we write

ψ2 =
κ

N
E
{

TrW ∗pWpW
∗
pWpW

∗
f

(
φ′(WfW

∗
pWpW

∗
f )
)2
Wf

}
≤ κE

{
‖Wp‖2

1

N
Tr
(
φ′(WfW

∗
pWpW

∗
f )
)2
WfW

∗
pWpW

∗
f

}
.

It is easy to see that ψ2 can be evaluated as ψ1, leading to the conclusion that ψ2 = O(N−2). Therefore, we
have checked that

Var{Trφ(WfW
∗
pWpW

∗
f )} = O

(
1

N2

)
.

Now we can complete the proof of Theorem 3.4 as in [8]. For this we apply the classical Markov inequality
and combine what above

P

{
1

ML
Trφ(WfW

∗
pWpW

∗
f ) >

1

N4/3

}
≤ N8/3E

{(
1

ML
Trφ(WfW

∗
pWpW

∗
f )

)2
}

= N8/3

(
Var

{
1

ML
Trφ(WfW

∗
pWpW

∗
f )

}
+

(
E
{

1

ML
Trφ(WfW

∗
pWpW

∗
f )

})2
)

= O
(

1

N4/3

)
.

Applying Borel-Cantelli lemma, we obtain that almost surely, the inequality
1

ML
Trφ(WfW

∗
pWpW

∗
f ∗) ≤

1

N4/3

holds for each N large enough. By the very definition of function φ, the number of eigenvalues of matrix
WfW

∗
pWpW

∗
f lying in the interval [κ1, κ2] is upper bounded by Trφ(WfW

∗
pWpW

∗
f ) ≤ 1

N1/3 . Since this number
of eigenvalues is an integer, we conclude that with probability one there is no eigenvalues in the interval [κ1, κ2]
for each N large enough. �

We finally illustrate the above results by the following numerical experiment.M,N,L are given byM = 500,
N = 1500 and L = 2 so that cN = 2/3. The eigenvalues of matrix RN are defined by λk,N = 1/2 +
π
4 cos

(
π(k−1)

2M

)
for k = 1, . . . ,M . Matrix RN verifies 1

MTr(RN ) ' 1. Fig. 3.3 represents the histogram
of the eigenvalues of a realization of Wf,NW

∗
p,NWp,NW

∗
f,N as well as the graph of the density gN (x). We

notice that the histogram and the graph of gN are in accordance, and that, as expected, no eigenvalue of
Wf,NW

∗
p,NWp,NW

∗
f,N lies outside the support of gN .

3.8 Recovering the behaviour of the empirical eigenvalue distribution ν̂N
using free probability tools

The purpose of this paragraph is to show that it is possible to use free probability tools in order to characterize
the limiting behaviour of the empirical eigenvalue distribution ν̂N of matrix Wf,NW

∗
p,NWp,NW

∗
f,N . As this

thesis is not focused on these kind of approach, we present briefly the following results and leave the details
to the reader.

The free probability approach is based on the following observations:

• Up to the zero eigenvalue, the eigenvalues of Wf,NW
∗
p,NWp,NW

∗
f,N coincide with the eigenvalues of

W ∗f,NWf,NW
∗
p,NWp,N

• The matricesW ∗f,NWf,N andW ∗p,NWp,N are almost surely asymptotically free. Therefore, the eigenvalue
distribution of W ∗f,NWf,NW

∗
p,NWp,N converges towards the free multiplicative convolution product of

the limit distributions of W ∗f,NWf,N and W ∗p,NWp,N . These two distributions appear to coincide both
with the limit distribution of the well known random matrix model 1

NX
∗
N (IL × RN )XN where XN is

a ML×N complex Gaussian random matrix with unit variance i.i.d. entries.
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Рис. 3.3: Histogram of the eigenvalues and graph of gN (x) for M = 500, N = 1500, L = 2.

In the following, we follow the definitions of asymptotic freeness provided in [22] (see in particular section 4.3)
which need the existence of certain limit distributions. This is in contrast with the approach developed in the
previous sections more focused on the behaviour of deterministic equivalents. We however mention that more
recent free probability works (see e.g. [36] and the references therein, [6]) allow to avoid the introduction
of limit distributions, and would allow to recover the previous results on the deterministic equivalent νN of ν̂N .

In order to be in accordance with [22], we thus formulate in this section the following assumption:

Assumption A-1: The empirical eigenvalue distribution ωN = 1
M

∑M
k=1 δλk,N of matrix RN converges

towards a limit distribution ω.

We remark that hypothesis 2.2 implies that ω is compactly supported. Moreover, it can be shown that
measures (µN )N≥1 and (νN )N≥1 both converge weakly towards limits denoted µ and ν in this section. We
also notice that Lemma 3.14 implies that µ and ν are compactly supported. It is also easily checked that the
Stieltjes transform t(z) of µ verifies the equation

t(z) = −1

z

∫
R+

τ dω(τ)

1 +
c∗τt(z)

1− zc2∗t2(z)

, (3.172)

while the Stieltjes transform tν of ν is given by

tν(z) = −1

z
− c∗t(z)2

1− z(c∗t(z))2
. (3.173)

We recall that c∗ represents the limit of cN = ML
N . In the following, we establish that (3.172) and (3.173)

can be obtained using free probability technics.

Before going further, we first recall the main useful definitions introduced in [22].

Definition 1. Consider a finite family of sequences of N ×N possibly random matrices ((Xi,N )N≥1)i=1,...,r.
Then (Xi,N )i=1,...,r is said to have an almost sure joint limit if for each non commutative polynomial
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P (x1, . . . , xr) in r indeterminates, then 1
NTrP (X1,N , . . . , Xr,N ) converges almost surely towards µ(P ) where

µ is a deterministic distribution defined on the set of all non commutative polynomials in r indeterminates
(i.e. µ is a linear form such that µ(1) = 1).

We remark that if r = 1 and (X1,N )N≥1 are Hermitian matrices, the above condition is equivalent to the
existence of a limit empirical eigenvalue distribution.

Definition 2. Consider p families (X
(1)
i,N )i=1,...,r1 , . . . , (X

(p)
i,N )i=1,...,rp of N × N possibly random matrices.

Then, X(1), . . . , X(p) are said to be almost surely asymptotically free if the 2 following conditions hold:

• For each q = 1, . . . , p, (X
(q)
i,N )i=1,...,rq has an almost sure joint limit

• ∀m, i1, · · · , im ∈ {1, 2, . . . , p} with i1 6= i2 6= · · · 6= im, and for each non commutative polynomials
(Pj)j=1,...,m in (rij )j=1,...,m indeterminates such that 1

NTr(Pj(X
ij
1,N , . . . , X

ij
rij ,N

))→ 0 a.s. it holds that

1

N
Tr(P1(Xi1

1,N , . . . , X
i1
ri1 ,N

) · · ·Pm(Xim
1,N , . . . , X

im
rim ,N

))→ 0 a.s.

We remark that when each family X(q) is reduced to a single sequence (X
(q)
N )N≥1 of N × N Hermitian, or

similar to hermitian matrices 1, the almost sure freeness of X(1), . . . , X(p) holds if

Definition 3. • For each q = 1, . . . , p, (X
(q)
N )N≥1 has a limit eigenvalue distribution

• ∀m, i1, · · · , im ∈ {1, 2, . . . , p} with i1 6= i2 6= · · · 6= im, and for each polynomials (Pj)j=1···m in one
indeterminate such that 1

NTr(Pj(X
ij
N ))→ 0 a.s. it holds that

1

N
Tr(P1(X

(i1)
N )P2(X

(i2)
N ) · · ·Pm(X

(im)
N ))→ 0 a.s. (3.174)

We also recall the definition of the S transform of a probability measure, and recall that the S transform of
the free multiplicative convolution product of two probability measures is the product of their S transforms.

Definition 4. Given a compactly supported probability measure µ carried by R+, we define ψµ(z) as the
formal power series defined by

ψµ(z) =
∑
k≥1

zk
∫
tkdµ(t) =

∫
zt

1− zt
dµ(t) (3.175)

Let χµ be the unique function analytic in a neighbourhood of zero, satisfying

χµ(ψµ(z)) = z (3.176)

for |z| small enough. Then, we define the S transform of µ as the function Sµ(z) defined in a neighbourhood
of zero by

Sµ(z) = χµ(z)
1 + z

z
. (3.177)

Moreover, if µ1 and µ2 are two compactly supported probability measures carried by R+, the S-transform
Sµ1�µ2 of µ1 � µ2 satisfies

Sµ1�µ2 = Sµ1Sµ2 . (3.178)

We are now in position to state the main result of this section.

Proposition 3.12. Matrices W ∗f,NWf,N and W ∗p,NWp,N are almost surely asymptotically free.

1in the sense that X(q)
N = U

(q)
N H

(q)
N (U

(q)
N )−1 for some N ×N Hermitian matrix H

(q)
N
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Proof. We first notice that it possible to replace matrices Wf and Wp by finite rank perturbations because
the very definition of almost sure asymptotic freeness is not affected by finite rank perturbations. We thus
exchange Wp and Wf by W̃p = 1√

N
Ỹp and W̃f = 1√

N
Ỹf where Ỹp and Ỹf are defined by

Ỹp =


y1 . . . . . . . . . . . . . . . yN
y2 . . . . . . . . . . . . yN y1

y3 . . . . . . . . . yN y1 y2
... . . . . . .

... ... ...
...

yL . . . yN y1 y2 . . . yL−1

 ,

Ỹf =


yL+1 . . . . . . . . . . . . . . . yN y1 . . . yL
yL+2 . . . . . . . . . . . . yN y1 . . . yL yL+1

yL+3 . . . . . . . . . yN y1 . . . yL yL+1 yL+2
... . . . . . .

... ... . . .
... ... ...

...
y2L . . . yN y1 . . . yL yL+1 yL+2 . . . y2L−1

 .

In other words, vectors yN+1, . . . , yN+L−1, . . . , yN+2L−1 are replaced by vectors y1, . . . , yL−1, . . . , y2L−1. In
order to simplify the notations, we still denote the above finite rank modifications by Yp, Yf ,Wp,Wf . We
define the N ×N matrix Π and the M ×N matrix Y by

Π =


0 . . . 0 1

1
. . . 0

...
. . . . . .

...
0 . . . 1 0

 , and Y = (y1, y2, . . . , yN )

and rewrite Yp (and Yf respectively) as

Yp =


Y
YΠ
...

YΠL−1

 , Yf =


YΠL

YΠL+1

...
YΠ2L−1

 .

This allows us to obtain the useful expression for W ∗pWp and W ∗fWf

W ∗pWp =
∑L−1

k=0 Π∗k
(
Y ∗Y
N

)
Πk, (3.179)

W ∗fWf =
∑2L−1

k=L Π∗k
(
Y ∗Y
N

)
Πk. (3.180)

Since N−1Y ∗Y can be written as N−1Y ∗iidRNYiid, where Yiid has i.i.d. Gaussian entries, the hermitian matrix
N−1Y ∗Y is unitarily invariant. Moreover, Assumption 1 implies that N−1Y ∗Y has a limit distribution
while it is easily checked that the family {I,Π∗,Π, . . . ,Π∗2L−1,Π2L−1} has the same property. This and
Theorem 4.3.5 in [22] leads to the conclusion that Y ∗Y/N and {I,Π∗,Π, . . . ,Π∗2L−1,Π2L−1} are almost
surely asymptotically free. Proposition 3.12 thus appears to be an immediate consequence of the following
Lemma adapted from Lemma 6 in [15]. In order to make the connections between Lemma 3.17 and Lemma
6 in [15], we use nearly the same notations than in [15] in the following statement.

Lemma 3.17. We consider a sequence of N × N Hermitian random matrices (XN )N≥1 and N × N
deterministic matrices UN1 ,W

N
1 , . . . , UNm ,W

N
m such that XN and {UN1 ,WN

1 , . . . , UNm ,W
N
m } are almost surely

asymptotically free. Then, if UN1 ,W
N
1 , . . . , UNm ,W

N
m satisfy

UNi W
N
i = WN

i U
N
i = IN (3.181)

for each i = 1, . . . ,m as well as 1
NTr(UNi W

N
j ) = δi−j for all i, j = 1 . . .m, then the random matrices

UN1 X
NWN

1 , . . . , UNmX
NWN

m are almost surely asymptotically free.
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Proof. We prove Lemma 3.17 by following step by step the proof from [15]. For simplicity we omit index N
below. Due to (3.181) we haveWi = U−1

i so that matrices (UiXWi)i=1,...,m are similar to the Hermitian matrix
X. We have thus to verify the 2 items of Definition 3. The first item is obvious. To check condition (3.174),
we consider any k, indexes i1, · · · , ik with i1 6= · · · 6= ik and polynomials Pj such that 1

nTr(Pj(UijXWij ))→ 0
a.s. Using again (3.181) it is clear that Pj(UijXWij ) = UijPj(X)Wij and, as a consequence, 1

nTr(Pj(X))→ 0
a.s. We define ηN as

ηN =
1

N
Tr(P1(Ui1XWi1)P2(Ui2XWi2) · · · (UikXWik)) =

1

N
Tr(Ui1P1(X)Wi1Ui2P2(X)Wi2 · · ·UikPk(X)Wik) =

1

N
Tr

 k∏
j=1

Wij−1UijPj(X)

 ,

where i0 = ik. If i1 6= ik then by assumption 1
nTr(Wij−1Uij ) = 0 for j = 1, . . . ,m. As we also have

1
nTr(Pj(X)) → 0 a.s, the almost sure asymptotic freeness of X and {U1,W1, · · · , Um,Wm} leads to the
conclusion that ηN → 0 a.s. In the case when i1 = ik we have WikUi1 = IN and the same conclusion holds.
�
By taking X = Y Y ∗

N , Ui = Π∗i−1 and Wi = Πi−1, Lemma 3.17 gives us immediately that Y ∗Y
N , Π∗(Y

∗Y
N )Π,

. . . ,Π∗2L−1(Y
∗Y
N )Π2L−1 are almost surely asymptotically free. Using the expression (3.179, 3.180) of W ∗pWp

and W ∗fWf , we obtain that W ∗pWp and W ∗fWf are almost surely asymptotically free. �

We also deduce that the limit distributions of W ∗pWp and W ∗fWf both coincide with the additive free
convolution product of L copies of the well known limit distribution of Y

∗Y
N . It is easily seen that the Stieljes

transform, denoted tMP (z) in the following, of this free addditive convolution product is solution of the
familiar equation

tMP (z) = − 1

z − c∗
∫ τω(dτ)

1 + τtMP (z)

. (3.182)

In the following, we denote by µMP the corresponding probability measure. It is clear that (3.182) coincides
with the equation verified by the Stieltjes transform of the limit eigenvalue distribution of the random matrix
1
NX

∗
N (IL×RN )XN where XN is aML×N complex Gaussian random matrix with unit variance i.i.d. entries.

We note that this result could also be easily obtained using the Gaussian technics developed in [32] in the
case where RN is reduced to a multiple of IM .

According to Proposition 3.12, the limit eigenvalue distribution of W ∗f,NWf,NW
∗
p,NWp,N is µMP � µMP . In

the following, we denote by ν̃ this measure and by f̃(z) its Stieltjes transform. To find an equation satisfied
by f̃(z), we use (3.178). (3.177) and (3.178) give us immediately

χν̃(z) =
1 + z

z
χ2
MP (z).

By replacing here z with ψν̃(z) and taking into account (3.176) we obtain

z =
1 + ψν̃(z)

ψν̃(z)
χ2
MP (ψν̃(z)). (3.183)

We notice that by definition (3.175), we have

ψν̃(z) =

∫
zt

1− zt
dν̃(t) =

∫
dν̃(t)

1− zt
− 1 = −1

z
f̃

(
1

z

)
− 1. (3.184)

Putting this into (3.183) and replacing z with 1
z give us

z2f̃(z)

1 + zf̃(z)
χ2
MP

(
ψν̃

(
1

z

))
= 1.
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From this, it is straightforward to obtain the expression of f̃(z). For more convenience, we introduce the
function g(z) = χMP (ψν̃(z−1)) which is analytic in the neighbourhood of infinity. It holds that

f̃(z) =
(
z2g2(z)− z

)−1
. (3.185)

It remains to determine g(z). For this we use (3.184) for ψMP , tMP and replace z with χMP (z). Then (3.176)
gives

z = −1− 1

χMP (z)
tMP

(
1

χMP (z)

)
⇒ tMP (χ−1

MP (z)) = −(1 + z)χMP (z).

To obtain the equation for χMP it is sufficient to use the above expression of tMP (χ−1
MP (z)), and to plug it

in (3.182) with z = χ−1
MP (z). Therefore, we obtain that

(1 + z)χMP (z) =
1

1

χMP (z)
− c∗

∫ τdω(τ)

1− τ(1 + z)χMP (z)

.

After simple algebra we get that

z

(1 + z)χMP (z)
= c∗

∫
τdω(τ)

1− τ(1 + z)χMP (z)
.

We finally replace z by ψν̃(z−1) in the above equation. Using (3.183), it is easy to see that the l.h.s. is equal
to zg(z). To evaluate the r.h.s., we use again (3.183) and obtain that ψν̃(z−1) = zg2(z)(1 − zg2(z))−1, and
that

g(z) =
1

z

∫
R+

c∗τ dω(τ)

1− τg(z)

1− zg2(z)

. (3.186)

We recall that t(z) is solution of the equation

t(z) = −1

z

∫
τω(dτ)

1 +
c∗τt(z)

1− zc2∗t2(z)

. (3.187)

The equations (3.186) and (3.187) are identical up to factor −c∗. Since it can be shown that Eq. (3.187) has
a unique solution on the set of Stieltjes transforms, we obtain that g(z) = −c∗t(z). Therefore, (3.185) leads
to the equation

f̃(z) = − 1

z [1− z(c∗t(z))2]
.

The Stieltjes transform of the limit eigenvalue distribution ofWfW
∗
pWpW

∗
f is clearly equal to 1

c∗

(
f̃(z) + 1−c∗

z

)
.

Using the expression (3.173) of tν(z), we obtain immediately that

1

c∗

(
f̃(z) +

1− c∗
z

)
= tν(z).

We have thus proved that the limit eigenvalue distribution of WfW
∗
pWpW

∗
f can be evaluated using free

probability technics.
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Глава 4

In the presence of signal.

In this chapter, we assume that signal (un)n∈Z is present, and evaluate its influence on the eigenvalues and
eigenvectors of matrix YfY

∗
p

N

(
YfY

∗
p

N

)∗
. For this, we use a classical approach based on the observation that

matrix YfY
∗
p

N is a finite rank perturbation of matrix VfV
∗
p

N due to the noise (vn)n∈Z. It will be assumed that
for each N large enough, the support SN of the support of measure µN associated to tN (z) is reduced to
the single interval SN = [0, xN,+], see paragraph 4.2 for more details on the assumptions that are needed to
establish solid mathematical results.

4.1 Signal model and first assumptions

We recall that the useful signal (un)n∈Z is generated by the minimal state-space representation (1.2). As M
is supposed to increase towards +∞, it is first necessary to precise how the parameters of (1.2) depend on
M . We formulate the following assumptions:

Assumption A-2:

• (ωn)n∈Z is a K–dimensional white noise sequence such that E(ωnω
∗
n) = IK , and which is independent

of M and N

• The dimension P of the state-space does not scale with M and N and matrices A and B are
independent of M and N .

• Matrices C = CN and D = DN depend of M and thus on N , and are supposed to verify

sup
N
‖CN‖ < +∞, sup

N
‖DN‖ < +∞ (4.1)

We assume moreover from now on that L ≥ P . As a consequence of Assumptions 2, the P–dimensional
Markovian signal (xn)n∈Z is independent ofM and N . We define matrix HN as theML×KL block-Toeplitz
matrix defined by

HN =



DN 0 . . . . . . 0

CNB DN 0
. . . 0

... CNB
. . . . . .

...

CNA
L−3B

. . . . . . . . .
...

CNA
L−2B CNA

L−3B
. . . CNB DN


(4.2)

Then, it is easy to check that the ML–dimensional vector uLn = (uTn , . . . , u
T
n+L−1)T can be written as

uLn = (ON ,HN )

(
xn
ωLn

)
(4.3)

where ωLn is defined as uLn and where we recall that the observability matrix ON is defined by (1.7). We
formulate the following assumption:
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Assumption A-3: The rank r ≤ P +KL of matrix (ON ,HN ) remains constant for N large enough.

As L ≥ P , the rank of matrix ON is equal to P so that r ≥ P . The covariance matrix RLu,N = E(uLnu
∗L
n ) is

given by

RLu,N = (ON ,HN )

(
Rx 0
0 IKL

)
(ON ,HN )∗

where Rx = E(xnx
∗
n) coincides with

Rx =
∞∑
k=0

AkBB∗A∗k

Rx is positive definite because the minimality of the state-space representation (1.2) of u implies that the
pair (A,B) is commandable. We deduce from this and from Assumption 3 that Rank(RLu,n) = r for each N
large enough. In the following, we denote by

RLu,N = ΘN∆2
NΘ∗N (4.4)

the eigenvalue / eigenvector decomposition of RLu,N where ∆2
N = Diag(δ2

1,N , . . . , δ
2
r,N ) and where ΘN is the

ML× r orthogonal matrix corresponding to the eigenvectors of RLu,N .

In the following, we denote by X1,N and XL+1,N the P ×N matrices defined by

X1,N = (x1, x2, . . . , xN ), XL+1,N = (xL+1, xL+2, . . . , xN+L) (4.5)

and by Nf,N and Np,N the KL×N matrices defined as the analogues of Yf,N and Yp,N obtained by replacing
M–dimensional vectors (yn)n=1,...,N+2L−1 by K–dimensional vectors (ωn)n=1,...,N+2L−1. Matrices Uf,N and
Up,N are defined in the same way from (un)n=1,...,N+2L−1. It is easy to check that

Up,N = ON X1 +HN Np,N , Uf,N = ON XL+1,N +HN Nf,N (4.6)

As P,K,L remain fixed, matrix
1

N

(
X1,N

Np,N

)(
X∗1,N N∗p,N

)
converges almost surely towards the covariance matrix of vector

(
xn
ωLn

)
, i.e. matrix

(
Rx 0
0 IKL

)

As the rank of this matrix is obviously P +KL, the same property holds for
(
X1,N

Np,N

)
for N large enough.

Moreover, (4.1) implies that
sup
N
‖(ON ,HN )‖ < +∞ (4.7)

from which we deduce that

‖RLu,N −
Up,NU

∗
p,N

N
‖ → 0 (4.8)

It holds similarly that

‖RLu,N −
Uf,NU

∗
f,N

N
‖ → 0 (4.9)

It is thus clear that the column space of matrices Up,N and Uf,N both coincide with the r–dimensional column
space of (ON ,HN ) for N large enough. We introduce the singular value decompositions of matrices Up,N√

N
and

Uf,N√
N

:
Up,N√
N

= Θp,N ∆p,N Θ̃∗p,N ,
Uf,N√
N

= Θf,N ∆f,N Θ̃∗f,N (4.10)
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where Θi,N ,∆i,N , Θ̃i,N are ML× r, r× r, N × r matrices that of course depend on N for i = p, f . (4.8) and
(4.9) imply that ‖Θi,NΘ∗i,N −ΘNΘ∗N‖ → 0 for i = p, f and similarly, that ‖∆i,N −∆N‖ → 0 for i = p, f .
We also remark that

1

N

(
XL+1,N

Nf,N

)(
X∗1,NN

∗
p,N

)
→ E

[(
xn+L+1

ωLn+L

)(
x∗n, ω

L∗
n

)]
=

[
E
(
xn+L(x∗n, ω

L∗
n )
)

0

]
Therefore, we obtain that∥∥∥∥ 1

N
(ON ,HN )

(
XL+1,N

Nf,N

)(
X∗1,NN

∗
p,N

)( O∗N
H∗N

)
− (ON ,HN )

(
E
(
xn+L u

L∗
n

)
0

)∥∥∥∥→ 0

because uL∗n = (x∗n, ω
L∗
n )O∗N (see (4.3)). It is easily seen that matrix E

(
xn+Lu

∗L
n

)
coincides with CN =

(AL−1G, . . . , G). Notice in particular that matrix G coincides with E(xn+1u
∗
n). Moroever, as RLf |p,N =

E(uLn+Lu
∗L
n ) is equal to ONCN , it holds that∥∥∥∥Uf,NU∗p,NN

−RLf |p,N

∥∥∥∥→ 0

Hence, Rank
(
Uf,NU

∗
p,N

N

)
= P for eachN large enough. As

Uf,NU
∗
p,N

N coincides with Θf,N∆f,N Θ̃∗f,N Θ̃p,N∆p,NΘ∗p,N ,

we obtain that Rank
(

∆f,N Θ̃∗f,N Θ̃p,N∆p,N

)
= P , Rank

(
∆N Θ̃∗f,N Θ̃p,N∆N

)
= P and that Rank

(
Θ̃∗f,N Θ̃p,N

)
=

P for each N large enough. In the following, we denote by ΓN the rank P r × r matrix defined by

ΓN = ∆N Θ̃∗f,N Θ̃p,N∆N (4.11)

It is clear that
‖RLf |p,N −ΘNΓNΘ∗N‖ → 0 (4.12)

If we consider the singular value decomposition

ΓN = ΥNΞN Υ̃∗N (4.13)

of matrix ΓN , then, (4.12) implies that the P non zero singular values of RLf |p,N have the same asymptotic
behaviour than the P non zero singular values (χk,N )k=1,...,P of ΓN .

4.2 New assumptions and their consequences.

In order to simplify the notations, we denote by Σi,N and Wi,N matrices Σi,N =
Yi,N√
N

and Wi,N =
Vi,N√
N

for
i = p, f . It is easy to check that

ΣfΣ∗p = WfW
∗
p + (Θf ,Wf Θ̃p∆p)

(
∆f Θ̃∗f Θ̃p∆p Ir

Ir 0

)(
Θ∗p

∆f Θ̃∗fW
∗
p

)
(4.14)

We denote by A and B the matrices defined by

A =
(

Θf ,Wf Θ̃p∆p

)
(4.15)

and

B =
(

Θp,WpΘ̃f∆f

) (
∆pΘ̃

∗
pΘ̃f∆f Ir
Ir 0

)
(4.16)

It is easy to check that(
−z I ΣfΣ∗p
ΣpΣ

∗
f −z I

)
=

(
−z I WfW

∗
p

WpW
∗
f −z I

)
+

(
A 0
0 B

) (
0 I2r

I2r 0

) (
A∗ 0
0 B∗

)
(4.17)
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We denote by QW (z) the resolvent of matrix
(
−z I WfW

∗
p

WpW
∗
f −z I

)
. Consider a positive real number y such

that y is not eigenvalue of
(

0 WfW
∗
p

WpW
∗
f 0

)
for each N large enough (some conditions on such an

eigenvalue will be precised below). For z = y, the left handside of (4.17) can also be written as(
−y I ΣfΣ∗p
ΣpΣ

∗
f −y I

)
=

(
−y I WfW

∗
p

WpW
∗
f −y I

) (
I2ML + QW (y)

(
A 0
0 B

) (
0 I2r

I2r 0

) (
A∗ 0
0 B∗

))
(4.18)

Therefore, y is eigenvalue of
(

0 ΣfΣ∗p
ΣpΣ

∗
f 0

)
if and only the determinant of the second term of the right

handside of (4.18) vanishes. Using the identity det(I+EF ) = det(I+FE), we obtain that y is an eigenvalue

of
(

0 ΣfΣ∗p
ΣpΣ

∗
f 0

)
if and only

det

(
I4r +

(
A∗ 0
0 B∗

)
QW (y)

(
A 0
0 B

)(
0 I2r

I2r 0

))
= 0 (4.19)

or equivalently if
det (I4r + FN (y)) = 0 (4.20)

where FN (z) is the 4r × 4r matrix valued function given by

FN (z) =

(
A∗QW,pf (z)B A∗QW,pp(z)A
B∗QW,ff (z)B B∗QW,fp(z)A

)
(4.21)

In order to study the asymptotic behaviour of the zeros of Eq. (4.20), it appears necessary to formulate

assumptions that allow to precise under which conditions y is not an eigenvalue of
(

0 WfW
∗
p

WpW
∗
f 0

)
for each N large enough, and that insure that matrix FN (y) has a limit when N → +∞. Some of these
assumptions are mainly purely technical in that they essentially allow to establish well founded mathematical
results, but, in practice, we believe that they are not very important. We need to distinguish 3 kinds of extra-
assumptions.

• Assumptions on the asymptotic behaviour of the eigenvalue distribution of matrix RN .

Assumption A-4: If ωN = 1
M

∑M
k=1 δλk,N is the eigenvalue distribution of matrix RN , it is assumed

that
lim

N→+∞
λ1,N = λ+,∗ lim

N→+∞
λM,N = λ−,∗ (4.22)

We note that λ−,∗ ≥ a > 0 and λ+,∗ ≤ b where a and b are defined by (2.2). Moreover, sequence
(ωN )N≥1 is assumed to converge weakly towards a probability measure ω∗, which, necessarily, is
carried by [λ−,∗, λ+,∗]

Assumption A-5: It is assumed that for each N large enough, eigenvalues (λk,N )k=1,...,M satisfy
condition (3.147), so that support SN of µN is equal to SN = [0, x+,N ]. Moreover, we add the
following condition: for each N large enough,

λ1,N − λk,N ≤ κ
k − 1

M
(4.23)

for some nice constant κ.

• Assumptions on the asymptotic behaviour of matrices depending of the useful signal.

Assumption A-6: r × r matrices ∆N and ΓN = ∆N Θ̃∗f,N Θ̃p,N∆N converge towards matrices ∆∗
and Γ∗ respectively. It is moreover assumed that ∆∗ > 0.
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• Assumptions on the asymptotic behaviour of matrices depending both of the useful signal and the
noise.

Assumption A-7: We denote by (fk,N )k=1,...,M the eigenvectors of matrix RN , and consider the
M ×M matrix-valued function positive measure ωRN defined by

ωRN =

M∑
k=1

δλk,N fk,Nf
∗
k,N

We introduce the r × r matrix-valued measure γN defined by

dγN (λ) = Θ∗N
(
IL ⊗ dωRN (λ)

)
ΘN (4.24)

Then it is assumed that the sequence (γN )N≥1 converges weakly towards a certain measure γ∗.

We have first to establish consequences of Assumption 4 and Assumption 5. The following result holds.

Proposition 4.1. • We denote by tω∗ the Stieltjès transform of limit distribution ω∗. Then,

lim
w→λ+,∗,w>λ+,∗

tω∗(w) = −∞ (4.25)

• The sequence (w+,N )N≥1 converges towards a finite limit w+,∗ which verifies w+,∗ > λ+,∗.

• The sequence (x+,N )N≥1 defined by x+,N = φN (w+,N ) converges towards a finite limit x+,∗.

• If φ∗(w) is the function defined on C− [λ−,∗, λ+,∗] by

φ∗(w) = (c∗w)2

(∫ λ+,∗

λ−,∗

λ dω∗(λ)

w − λ

)2

+ c∗w2

∫ λ+,∗

λ−,∗

λ dω∗(λ)

w − λ
(4.26)

it holds that
x+,∗ = φ∗(w+,∗) (4.27)

• The sequence (µN )N≥1 converges weakly towards a probability measure µ∗. The support S∗ of µ∗ is
included into [0, x+,∗], and the Stieltjès transform t∗(z) of µ∗ verifies the equation

t∗(z) =

∫ λ+,∗

λ−,∗

λ

−z(1 + c∗t∗(z)λ
1+z(c∗t∗(z))2

)
dµ∗(λ) (4.28)

for each z ∈ C− [0, x+,∗].

• Moreover, if w∗(z) is the function defined on C− [0, x+,∗] by

w∗(z) = c∗zt∗(z)−
1

c∗t∗(z)
(4.29)

then, w∗ is holomorphic on C− [0, x+,∗] and verifies

φ∗(w∗(z)) = z (4.30)

for each z ∈ C− [0, x+,∗]

•

lim
x→x+,∗,x>x+,∗

t∗(x) exists, is finite, is still denoted t∗(x+,∗), and Eq. (4.28) holds for z = x+,∗ (4.31)

Moreover, we have
w+,∗ = w∗(x+,∗) (4.32)
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Proof. We first establish (4.25). We have to prove that for each A > 0, it exists η > 0 such that

−tω∗(w) =

∫ λ+,∗

λ−,∗

dω∗(λ)

w − λ
> A

whenever w > λ+,∗ and w − λ+,∗ < η. For this, we consider w > λ+,∗, a condition that implies that
w − λ1,N > 0 is bounded away from 0 for N > N0(w) large enough. We remark that

1

M

M∑
k=1

1

w − λk,N
=

1

M

M∑
k=1

1

w − λ+,∗ + λ+,∗ − λ1,N + λ1,N − λk,N

For each δ > 0, (4.22) implies that it exists N1(δ) such that |λ+,∗ − λ1,N | < δ for each N ≥ N1(δ). Morever,
(4.23) leads to λ1,N − λk,N ≤ κ

(
k−1
M

)
. Therefore, we obtain that

1

M

M∑
k=1

1

w − λk,N
≥ 1

M

M∑
k=1

1

w − λ+,∗ + δ + κ
(
k−1
M

) ≥ ∫ 1

0

1

w − λ+,∗ + δ + κu
du

Therefore, for each B > 0, it exists η such that w − λ+,∗ < η and δ < η imply that∫ 1

0

1

w − λ+,∗ + δ + κu
du > B

For these choices of w and δ, it holds that

1

M

M∑
k=1

1

w − λk,N
> B

for each N > Max(N1(δ), N0(w)). The weak convergence of ωN towards ω∗ implies that for each w > λ+,∗
such that w − λ+,∗ < η, and for each γ > 0, it exists an integer N2(w, γ) such that∫ λ+,∗

λ−,∗

dω∗(λ)

w − λ
>

1

M

M∑
k=1

1

w − λk,N
− γ > B − γ

for each N ≥Max(N2(w, γ), N1(δ), N0(w)). Choosing B = A+ γ, we have shown that −tω∗(w) > A as soon
as w − λ+,∗ < η.

In order to establish that (w+,N )N≥1 converges towards a finite limit w+,∗, we first recall that Lemma 3.14
implies that sequences (w+,N )N≥1 and (x+,N )N≥1 are bounded. We put w+,∗ = lim inf w+,N and w∗+ =
lim supw+,N , and establish that w+,∗ = w∗+. For this, we first prove that w+,∗ > λ+,∗. We first remark that
w+,N > λ1,N for each N . Therefore, it holds that w+,∗ ≥ λ+,∗. We thus assume that the equality holds, and
show a contradiction by using (4.25). We consider a subsequence (w+,kN )N≥1 extracted from (w+,N )N≥1 and
converging towards w+,∗, assumed to be equal to λ+,∗. We denote by M(kN ) the value of the dimension of
the observations corresponding to the number of observations kN . x+,kN = φkN (w+,kN ) is given by

x+,kN = (ckNw+,kN )2

(∫
λ dωkN (λ)

w+,kN − λ

)2

+ ckNw
2
+,kN

∫
λ dωkN (λ)

w+,kN − λ

Therefore, it holds that

x+,kN > (ckNw+,kN )2

(∫
λ dωkN (λ)

w+,kN − λ

)2

= (ckNw+,kN )2

 1

M(kN )

M(kN )∑
i=1

λi,kN
w+,kN − λi,kN

2

(4.33)

For each k = 1, . . . ,M(kN ), we express w+,kN − λi,kN as

w+,kN − λi,kN = w+,kN − λ+,∗ + λ+,∗ − λi,kN
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As it is assumed that w+,∗ = λ+,∗, for each δ > 0, it exists N0(δ) for which w+,kN − λ+,∗ < δ for each
N > N0(δ). Therefore, we obtain that

1

M(kN )

M(kN )∑
i=1

λi,kN
w+,kN − λi,kN

>
1

M(kN )

M(kN )∑
i=1

λi,kN
δ + λ+,∗ − λi,kN

Assumption 4 implies that

lim
N→+∞

1

M(kN )

M(kN )∑
i=1

λi,kN
δ + λ+,∗ − λi,kN

=

∫ λ+,∗

λ−,∗

λ dω∗(λ)

δ + λ+,∗ − λ

Therefore, for each γ > 0, it holds that

1

M(kN )

M(kN )∑
i=1

λi,kN
δ + λ+,∗ − λi,kN

>

∫ λ+,∗

λ−,∗

λ dω∗(λ)

δ + λ+,∗ − λ
− γ

for each N > N1(δ, γ). (4.25) implies that for each A > 0, it exists η > 0 such that∫ λ+,∗

λ−,∗

λ dω∗(λ)

δ + λ+,∗ − λ
− γ > A

as soon as δ < η. For such a choice of δ, we have shown that

1

M(kN )

M(kN )∑
i=1

λi,kN
w+,kN − λi,kN

>
1

M(kN )

M(kN )∑
i=1

λi,kN
δ + λ+,∗ − λi,kN

> A

for each N > max(N0(δ), N1(δ, γ)). Using (4.33), this implies that limN→+∞ x+,kN = +∞, a contradiction
because sequence (x+,N )N≥1 is bounded. This establishes that w+,∗ > λ+,∗.

We consider function φ∗(w) defined by (4.26). As λ1,N and λM,N are assumed to converge towards λ+,∗ and
λ−,∗, the Stieltjès transform tωN (w) of ωN converges uniformly towards tω∗(w) on each compact subset of
C− [λ−,∗, λ+,∗]. This immediately implies that φN (w) and its derivative φ′N (w) converge uniformly towards
φ∗(w) and φ

′
∗(w) on each compact subset of C − [λ−,∗, λ+,∗]. As w+,∗ > λ+,∗, sequence w+,kN stays in a

compact subset of C− [λ−,∗, λ+,∗], and therefore, it holds that

φkN (w+,kN )− φ∗(w+,kN )→ 0, φ
′
kN

(w+,kN )− φ′∗(w+,kN )→ 0

As φ′kN (w+,kN ) = 0 for each N , we deduce that φ′∗(w+,kN ) → 0, and therefore that φ′∗(w+,∗) = 0. We
obtain similarly that φ′∗(w∗+) = 0 by introducing a subsequence w+,lN converging towards w∗+. We claim that
y → φ∗(y) is srictly increasing on ]w+,∗,+∞[. To justify this, we remark that φN is strictly increasing
on [w+,N ,+∞[. Therefore, if w+,∗ < w1 < w2, it holds that φN (w1) < φN (w2), and therefore that
φ∗(w1) ≤ φ∗(w2). The equality is impossible because it would imply that φ′∗(y) = 0 for y ∈ [w1, w2], a
contradiction because φ∗ is holomorphic in a neighbourhood of [w1, w2]. Similarly, φ∗ is strictly decreasing
on ]λ+,∗, w+,∗[ because φN is strictly decreasing on ]λ+,∗, w+,N [ for each N . If w+,∗ < w∗+, φ∗ would
have to be strictly decreasing on ]λ+,∗, w∗+[ and strictly increasing on ]w∗+,+∞[ for the same reasons, a
contradiction. Therefore, w+,∗ = w∗+, and limN→+∞w+,N = w+,∗. As φN (w+,N ) − φ∗(w+,N ) → 0 and that
φ∗(w+,N ) → φ∗(w+,∗), we evantually get that x+,N = φN (w+,N ) converges towards x+,∗ = φ∗(w+,∗). This
establishes (4.27).

Proposition 3.2 can be immediately generalized to the case where the eigenvalue distribution ωN = 1
M

∑M
k=1 δλk,N

is replaced by its limit ω∗. Therefore, for each z ∈ C+, equation (4.28) has a unique solution t∗(z) such that
t∗(z) and zt∗(z) belong to C+. Function z → t∗(z) is an element of S(R+), and thus coincides with the
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Stieltjès transform of a finite positive measure µ∗ carried by R+. Moroever, µ∗(R+) =
∫ λ+,∗
λ−,∗

λ dω∗(λ) =

limN→+∞ 1
MTr(RN ) = limN→+∞ µN (R+) and∫

R+

λ dµ∗(λ) = c∗

∫ λ+,∗

λ−,∗

λ dω∗(λ)

∫ λ+,∗

λ−,∗

λ2 dω∗(λ) < +∞ (4.34)

In order to establish that µN converges weakly towards µ∗, it is sufficient to establish that for each z ∈ C+,
limN→+∞ tN (z) = t∗(z). The proof is standard, and thus omitted. We just mention that, as in the proof of
Proposition 3.2, we need to control 1

|1−z(c∗t∗(z))2| . For this, as in the above proof, we use the observation that

1

|1− z(c∗t∗(z))2|
≤ 1

|z| (c∗ Im(t∗(z)))
2

and take benefit of (4.34) to establish, as in the course of the proof of Lemma 3.4, that

Im(t∗(z)) ≥ κ
Im(z)

β2 + |z|2

for some nice constants β and κ. As x+,N converges towards x+,∗, it holds that µN ([x+,∗+ε,+∞[) = 0 for each
N large enough. As µN → µ∗, this implies that µ∗([x+,∗+ε,+∞[) = 0 for each ε > 0, i.e. µ∗(]x+,∗,+∞[) = 0.
Therefore, the support S∗ of µ∗ is included into [0, x+,∗]. Function t∗(z) is thus holomorphic in C− [0, x+,∗].
We now justify that (4.28) is still valid if z = x ∈ R−∗∪]x+,∗,+∞[. For this, it is sufficient to prove that the
right handside of (4.28) is holomorphic on C− [0, x+,∗]. We consider function w∗(z) defined by (4.29). As t∗
is holomorphic in C− [0, x+,∗], so is w∗. Moreover, w∗(x) is of course real if x > x+,∗ and x < 0. Expressing
the right handside of (4.28) in terms of w∗(z), we obtain that (4.28) can be written as

t∗(z) =
w∗(z)
z

∫ λ+,∗

λ−,∗

λ dω∗(λ)

λ− w∗(z)
(4.35)

If x < 0, w∗(x) < 0 because t∗(x) > 0. Therefore, the right handside of (4.28) is analytic on C−R+. In order
to show that it is analytic on C − [0, x+,∗], it is sufficient to establish that if x > x+,∗, then w∗(x) > λ+,∗.
We remark that x > x+,N for N large enough. As tN (x) → t∗(x) when N → +∞, we get that wN (x) →
w∗(x). As x > x+,N , it holds that wN (x) > wN (x+,N ) = w+,N . Therefore, w∗(x) = limN→+∞wN (x) ≥
limN→+∞w+,N = w+,∗. As w+,∗ > λ+,∗, we conclude that w∗(x) > λ+,∗ as expected. Therefore, (4.28) holds
on C−[0, x+,∗]. We notice that this implies that φ∗(w∗(z)) = z for each z ∈ C−[0, x+,∗], i.e. that (4.30) holds.

As function x → t∗(x) is increasing on ]x+,∗,+∞[, limx→x+,∗,x>x+,∗ t∗(x) exists. In order to check that it
is finite, we remark that w∗(x) ≥ w+,∗ > λ+,∗ for x > x+,∗. Hence, the right handside of (4.35) remains
finite on ]x+,∗,+∞[. This implies that limx→x+,∗,x>x+,∗ t∗(x) is finite. We deduce from (4.29) that w∗(x) also
converges towards a finite limit when x → x+,∗. This limit is still denoted by w∗(x+,∗). We establish that
w∗(x+,∗) = w+,∗. For this, we remark that φ∗(w∗(x)) = x for x > x+,∗. As w∗(x) ≥ w+,∗ > λ+,∗, φ∗(w∗(x))
converges towards φ∗(w∗(x+,∗)) = x+,∗ when x → x+,∗. Moreover, x+,∗ = φ∗(w∗(x+,∗)) ≥ φ∗(w+,∗). (4.27)
thus implies that φ∗(w∗(x+,∗)) = φ∗(w+,∗) As φ∗ is strictly increasing on ]w+,∗,+∞[, this implies that
w∗(x+,∗) = w+,∗. We also remark that taking the limit in (4.35) when x→ x+,∗ leads to the conclusion that
(4.35), and therefore (4.28), also hold for x = x+,∗. This completes the proof of Proposition 4.1.

We recall that νTN is theM×M matrix-valued positive measure associated to matrix-valued Stieltjès transform
TN (z), and introduce for each N the r × r matrix-valued measure βN defined by

dβN (λ) = Θ∗N
(
IL ⊗ dνTN (λ)

)
ΘN (4.36)

Then, the following result is a consequence of Assumption 7.

Proposition 4.2. The sequence of measures (βN )N≥1 converges weakly towards a measure β∗ whose support
is included into [0, x+,∗]. The Stieltjès transform Tβ∗(z) of β∗ is given by

Tβ∗(z) =
w∗(z)
z

∫ λ+,∗

λ−,∗

dγ∗(λ)

λ− w∗(z)
(4.37)
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for each z ∈ C− [0, x+,∗]. Moreover, if TβN (z) represents the Stieltjès transform of βN , then, it holds that

Tβ∗(x+,∗) = lim
x→x+,∗,x>x+,∗

Tβ∗(x) = lim
N→+∞

TβN (x+,N ) =
w+,∗
x+,∗

∫ λ+,∗

λ−,∗

dγ∗(λ)

λ− w+,∗
(4.38)

Proof.We first notice that γN ([0, λ1,N ]) = Ir and γN (]λ1,N ,+∞[) = 0, and that, for each ε > 0, γN ([0, λ+,∗+
ε]) = Ir and γN (]λ+,∗+ε,+∞[) = 0 for each N large enough. As γN → γ∗, we obtain that γ∗([0, λ+,∗+ε]) = Ir
and γ∗(]λ+,∗ + ε,+∞[) = 0 for each ε > 0. This implies that γ∗([0, λ+,∗]) = Ir and that γ∗(]λ+,∗,+∞[) = 0.
As γN → γ∗, the Stieltjès transform TγN (w) of γN converges towards the Stieltjès transform Tγ∗(w) of γ∗ for
each w ∈ C− [0, λ+,∗]. In other words, for each z ∈ C− [0, λ+,∗], it holds that∫ λ1,N

0

dγN (λ)

λ− w
= Θ∗N

(
IL ⊗ (RN − wI)−1

)
ΘN →

∫ λ+,∗

0

dγ∗(λ)

λ− w
(4.39)

The convergence is moreover uniform on each compact subset C− [0, λ+,∗]. For each z ∈ C− [0, x+,N ], matrix
TN (z) can be written as

TN (z) =
wN (z)

z
(RN − wN (z)I)−1

This relation also holds for each z ∈ C− [0, x+,∗] if N is large enough. Therefore, TβN (z) is given by

TβN (z) =
wN (z)

z
Θ∗N

(
IL ⊗ (RN − wN (z)I)−1

)
ΘN =

wN (z)

z

∫ λ1,N

0

dγN (λ)

λ− wN (z)

We now prove that for each x > x+,∗, then

TβN (x)→ w∗(x)

x

∫ λ+,∗

λ−,∗

dγ∗(λ)

λ− w∗(x)
(4.40)

For this, we first notice that wN (x)→ w∗(x), and remark that∫ λ+,∗

0

dγN (λ)

λ− wN (x)
−
∫ λ+,∗

0

dγN (λ)

λ− w∗(x)
= (wN (x)− w∗(x))

∫ λ+,∗

0

dγN (λ)

(λ− wN (x))(λ− w∗(x))

As wN (x)→ w∗(x), forN large enough, wN (x)−λ+,∗ > 1
2(w∗(x)−λ+,∗) > 0. Therefore,

∫ λ+,∗
0

dγN (λ)
(λ−wN (x))(λ−w∗(x))

is upper bounded, and ∫ λ+,∗

0

dγN (λ)

λ− wN (x)
−
∫ λ+,∗

0

dγN (λ)

λ− w∗(x)
→ 0

when N → +∞. Hence, (4.39) implies that

TβN (x)− w∗(x)

x
TγN (w∗(x))→ 0

As γN → γ∗, TγN (w∗(x)) converges towards Tγ∗(w∗(x)). Therefore, we have established (4.40). As functions
TβN are Stieltjès transforms, Montel’s theorem also implies that (4.40) also holds for each z ∈ C− [0, x+,∗].
Moreover, function z → w∗(z)

z TγN (w∗(z)) is the Stieltjès transform of a r × r–valued positive measure β∗
carried by R+. It is moreover easy to check that β∗(R+) = Ir. The convergence of TβN (z) towards Tβ∗(z)
thus implies that (βN )N≥1 converges weakly towards β∗. For each N , βN is supported by [0, x+,N ], and
βN ([0, x+,N ]) = Ir. Therefore, for each δ > 0, it holds that βN ([0, x+,∗+δ]) = Ir and βN (]x+,∗+δ,+∞[) = 0.
Moreover, the support of β∗ is included into [0, x+,∗] so that β∗([0, x+,∗] = Ir.

We finally establish (4.38). For this, we remark that

TβN (x+,N ) =
w+,N

x+,N
Θ∗N

(
IL ⊗ (RN − w+,N )−1

)
ΘN
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It is clear that w+,N

x+,N
→ w+,∗

x+,∗
=

w∗(x+,∗)
x+,∗

and that Θ∗N
(
IL ⊗ (RN − w+,N )−1

)
ΘN has the same asymptotic

behaviour than Θ∗N
(
IL ⊗ (RN − w+,∗)−1

)
ΘN , which itself converges towards Tγ∗(w+,∗) = Tγ∗(w∗(x+,∗)).

We have thus proved that
lim

N→+∞
TβN (x+,N ) =

w+,∗
x+,∗

Tγ∗(w∗(x+,∗))

Therefore, (4.37) immediately implies (4.38).

We finally conclude this paragraph by characterizing the set of all positive real numbers y that are not

eigenvalue of matrix
(

0 WfW
∗
p

WpW
∗
f 0

)
.

Proposition 4.3. Assume that y > √x+,∗. Then, for each N large enough, y is not eigenvalue of matrix(
0 Wf,NW

∗
p,N

Wp,NW
∗
f,N 0

)
, and y2 is not eigenvalue of ΣfΣ∗pΣpΣ

∗
f .

Proof. As y > √x+,∗, it exists N0 such that y > √x+,N for each N ≥ N0. Therefore, y does not belong to

∪N≥N0SN . Theorem 3.4 thus implies that y cannot be one of the eigenvalues of a matrix
(

0 Wf,NW
∗
p,N

Wp,NW
∗
f,N 0

)
for N ≥ N0.

4.3 Asymptotic behaviour of the eigenvalues of ΣfΣ
∗
pΣpΣ

∗
f .

In this paragraph, we characterize the possible eigenvalues of ΣfΣ∗pΣpΣ
∗
f that escape from the interval

[0, x+,∗], or equivalently, the positive eigenvalues of
(

0 Σf,NΣ∗p,N
Σp,NΣ∗f,N 0

)
that are strictly greater

than √x+,∗. Almost surely, for each N large enough, function FN (z) defined by (4.21) is holomorphic on
C− [−√x+,N ,

√
x+,N ]. and on C− [−

√
x+,∗ + δ,

√
x+,∗ + δ] for each δ > 0.

We first establish that the sequence of analytic functions (FN (z))N≥1 almost surely converges uniformly on
each compact subset of C − [−√x+,∗,

√
x+,∗] towards a deterministic function F∗(z) which is analtyic in

C− [−√x+,∗,
√
x+,∗]. Using a classical stability result of the zeros of an analytic function (see [4] and [10]),

this will imply that the solutions of the equation det(I + FN (y)) = 0, y > √x+,∗, will converge towards the
solutions of the limit equation det(I + F∗(y)) = 0.

In order to study the asymptotic behaviour of FN , we first consider the asymptotic behaviour of matrix
A∗QW,N (pf)B, which is given by

A∗QW,N (pf)B =

(
Θ∗f

∆pΘ̃
∗
pW
∗
f

)
QW,N (pf)

(
Θp,WpΘ̃f∆f

) (
∆pΘ̃

∗
pΘ̃f∆f Ir
Ir 0

)
In order to study matrix A∗QW,N (pf)B when N → +∞, it is necessary to evaluate the asymptotic behaviour
of sesquilinear forms of matrices QW,N (pf),W ∗fQW,N (pf), QW,N (pf)Wp andW ∗fQW,N (pf)Wp. The following
result holds.

Lemma 4.1. For each z ∈ C− [−√x+,∗,
√
x+,∗] and for each bounded sequences (aN , bN )N≥1 and ãN , b̃N of

ML–dimensional and N–dimensional deterministic vectors, it holds that

• a∗N QW,N (pf) bN → 0 almost surely

• ã∗N W ∗f QW,N (pf) bN → 0 almost surely

• a∗N QW,N (pf)Wp b̃N → 0 almost surely

• ã∗N W ∗f QW,N (pf)Wp b̃N + (cN tN (z))2

1−(cN tN (z))2
ã∗N b̃N → 0 almost surely.
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Moreover, the convergence is uniform over each compact subset of C − [−√x+,∗,
√
x+,∗] and it holds that,

almost surely

A∗QW,N (pf)B −

(
0 0

− (cN tN (z))2

1−(cN tN (z))2
Γ∗N 0

)
→ 0 (4.41)

the convergence being uniform on compact subsets of C− [−√x+,∗,
√
x+,∗].

Sketch of proof. The proof of this result uses ingredients that are very similar to the calculations of
Paragraphs 3.4 and 3.5.2. We therefore only provide a sketch of proof. When z ∈ C+, the first item follows
from E(QW,N (pf)) = 0 and the Nash-Poincaré inequality. The convergence for each z ∈ C− [−√x+,∗,

√
x+,∗]

follows from the observation that almost surely, for each δ > 0, functions (a∗N QW,N (pf) bN ) are analytic on
C − [−

√
x+,∗ + δ,

√
x+,∗ + δ] for N large enough. The use of Montel’s theorem allows to prove the almost

sure convergence towards for each z ∈ C− [−√x+,∗,
√
x+,∗], as well as the uniformity of the convergence on

each compact subset of C− [−√x+,∗,
√
x+,∗]. To establish the second and the third item when z ∈ C+, it is

sufficient to establish that E(W ∗f QW,pf ) = 0, E(QW,pf Wp) = 0, to use the Nash-Poincaré inequality, and to
extend the convergence domain using the Montel’s theorem. We note that the sequences of functions defined
in item (ii) and (iii) are almost surely bounded on each compact subsets of C − [−√x+,∗,

√
x+,∗] because

matrices Wf and Wp are almost surely bounded.

The proof of the last item needs to use the calculations of paragraph 3.4 to establish that

ã∗N W
∗
f QW,N (pf)Wp b̃N +

(cNαN (z))2

1− (cNαN (z))2
ã∗N b̃N → 0 a.s.

for each z ∈ C+. It is proved in Paragraph 3.5.2 that αN (z)−tN (z)→ 0 for each z ∈ C+. As αN (z) = zαN (z2)
and tN (z) = ztN (z2), this implies that αN (z) − tN (z) → 0 if Arg(z) ∈]0, π/2[. This convergence domain
can be extended to C+ using classical arguments based Montel’s theorem. From this, we deduce immediately
that

(cNαN (z))2

1− (cNαN (z))2
− (cNtN (z))2

1− (cNtN (z))2
→ 0

for each z ∈ C+, and that, for each z ∈ C+,

ã∗N W
∗
f QW,N (pf)Wp b̃N +

(cNtN (z))2

1− (cNtN (z))2
ã∗N b̃N → 0, a.s. (4.42)

Matrices Wf and Wp are almost surely bounded. Therefore, for each δ > 0, ã∗N W
∗
f QW,N (pf)Wp b̃N and

(cN tN (z))2

1−(cN tN (z))2
are analytic on C − [−

√
x+,∗ + δ,

√
x+,∗ + δ] and bounded on each compact subset of C −

[−√x+,∗,
√
x+,∗]. Montel’s theorem thus implies that (4.42) holds for each z ∈ C−[−√x+,∗,

√
x+,∗]. Moreover,

the convergence is uniform on each compact subset of C− [−√x+,∗,
√
x+,∗].

(4.41) is an immediate consequence of the statements of items (i) to (iv) and of the observation that
r × r diagonal matrices ∆p,N and ∆f,N (resp. orthogonal ML × r matrices Θf,N and Θp,N ) have the same
asymptotic behaviour than matrix ∆N (resp. matrix ΘN ).

Using the same kind of arguments as in the proof of Lemma 4.1, it is possible to establish the following
result.

Proposition 4.4. For each z ∈ C− [−√x+,∗,
√
x+,∗], it holds that

A∗QW,N (pp)A−

 −Θ∗N
(
zI + cN tN (z)

1−(cN tN (z))2
IL ⊗RN

)−1
ΘN 0

0 cN tN (z)
1−(cN tN (z))2

∆2
N

→ 0 a.s. (4.43)

B∗QW,N (ff)B −
(

Γ∗N I
I 0

) (
−Θ∗N

(
zI + cN tN (z)

1−(cN tN (z))2
IL ⊗RN

)−1
ΘN 0

I 0

) (
ΓN I
I 0

)
→ 0 a.s.

(4.44)
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B∗QW,N (ff)A−

(
0 − (cN tN (z))2

1−(cN tN (z))2
ΓN

0 0

)
→ 0 a.s. (4.45)

The convergence is moreover uniform on each compact subset of C− [−√x+,∗,
√
x+,∗].

Lemma 4.1 and Proposition 4.4 imply that for each z ∈ C − [−√x+,∗,
√
x+,∗], almost surely, matrix FN (z)

has the same asymptotic behaviour than the 4r × 4r deterministic matrix Fd,N (z) defined by

Fd,N (z) =

(
F 11
d,N (z) F 1,2

d,N (z)

F 2,1
d,N (z) F 2,2

d,N (z)

)
(4.46)

where the 2r×2r blocks of Fd,N (z) are characterized in Lemma 4.1 and in Proposition 4.4. The assumptions
formulated in Paragraph 4.2 imply that matrix Fd,N (z) converges for each z ∈ C− [−√x+,∗,

√
x+,∗] towards

a limit F∗(z), the convergence being uniform on each compact subset of C− [−√x+,∗,
√
x+,∗]. More precisely,

tN (z) converges towards t∗(z) uniformly on each compact subset of C− [0, x+,∗], which implies that tN (z) =
ztN (z2) converges uniformly on each compact subset of C − [−√x+,∗,

√
x+,∗] towards t∗(z) = zt∗(z2). We

notice that matrix −
(
zI + cN tN (z)

1−(cN tN (z))2
IL ⊗RN

)−1
coincides with matrix IL ⊗ TN (z) = IL ⊗ zTN (z2) =

z
∫ x+,N

0
IL⊗dνTN (λ)

λ−z2 . We denote by TβN (z) the function defined by TβN (z) = zTβN (z2), which can also be
written as

Θ∗N (IL ⊗TN (z))ΘN = TβN (z)

Assumption 6 implies that TβN (z) converges uniformly on each compact subset of C − [−√x+,∗,
√
x+,∗]

towards the r × r matrix Tβ∗(z) defined by

Tβ∗(z) = zTβ∗(z
2) (4.47)

where we recall that Tβ∗(z) =
∫ x+,∗

0
dβ∗(λ)
λ−z is the Stieltjès transform of the positive matrix-valued measure

β∗. All this imply that

F
(1,1)
d,N (z) =

(
0 0

− (cN tN (z))2

1−(cN tN (z))2
Γ∗N 0

)
→ F 1,1

∗ (z) =

(
0 0

− (c∗t∗(z))2

1−(c∗t∗(z))2
Γ∗∗ 0

)

F
(1,2)
d,N (z) =

(
TN,β(z) 0

0 cN tN (z)
1−(cN tN (z))2

∆2
N

)
→ F 1,2

∗ (z) =

(
Tβ∗(z) 0

0 c∗t∗(z)
1−(c∗t∗(z))2

∆2
∗

)

F 2,1
d,N (z) =

(
ΓN I
I 0

)
F 1,2
d,N (z)

(
Γ∗N I
I 0

)
→ F 2,1

∗ (z) =

(
Γ∗ I
I 0

)
F 1,2
∗ (z)

(
Γ∗∗ I
I 0

)

F 2,2
d,N (z) =

(
0 − (cN tN (z))2

1−(cN tN (z))2
ΓN

0 0

)
→ F 1,1

∗ (z) =

(
0 − (c∗t∗(z))2

1−(c∗t∗(z))2
Γ∗

0 0

)
where we recall that Γ∗ is defined by Assumption 6. The previous results show that (FN (z))N≥1 converge
uniformly towards F∗(z) over each compact subset of C − [−√x+,∗,

√
x+,∗]. It is thus reasonable to expect

that the solutions of the equation det(I + FN (y)) = 0 satisfying y > √x+,∗ will converge towards the roots
of det(I + F∗(y)) = 0 satisfying y > √x+,∗. In order to establish this, we use in the following the classical
stability argument used in [4], Lemma 6.1 (see also [10]). Before invoking [4], we have first to study the
solutions of det(I + F∗(y)) = 0.

For y > √x+,∗, we now express in a more convenient manner the equation det(I+F∗(y)) = 0. This equation
holds if and only

det

((
I 0
0 Ω∗

)
(I + F∗(y))

(
I 0
0 Ω∗∗

))
= 0 (4.48)

where

Ω∗ =

(
Γ∗ I
I 0

)−1

=

(
0 I
I −Γ∗

)
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The matrix whose determinant vanishes in (4.48) is equal to
0 I Tβ∗(z) 0

I − Γ∗∗
(1−(c∗t∗(z))2

0 cN t∗(z)
1−(c∗t∗(z))2

∆2
∗

Tβ∗(z) 0 0 I

0 c∗t∗(z)
1−(c∗t∗(z))2

∆2
∗ I − Γ∗

(1−(c∗t∗(z))2

 (4.49)

As the lower diagonal 2r×2r block of this matrix is invertible, its determinant is 0 if and only the determinant
of its Schur complement is 0. After some calculations, we obtain that det(I + F∗(y)) = 0 if and only if
det(I−G∗(y)) = 0 where G∗(z) is the 2r×2r matrix-valued function defined for each z ∈ C−[−√x+,∗,

√
x+,∗]

by

G∗(z) =

(
c∗t∗(z)

1−(c∗t∗(z))2
∆2
∗Tβ∗(z)

Γ∗∗
(1−(c∗t∗(z))2

Tβ∗ (z) Γ∗Tβ∗ (z)

1−(c∗t∗(z))2
c∗t∗(z)

1−(c∗t∗(z))2
Tβ∗(z) ∆2

∗

)
(4.50)

G∗(z) can be factorized as

G∗(z) =

(
I 0
0 Tβ∗(z)

)( c∗t∗(z)
1−(c∗t∗(z))2

∆2
∗

Γ∗∗
(1−(c∗t∗(z))2

Γ∗
(1−(c∗t∗(z))2

c∗t∗(z)
1−(c∗t∗(z))2

∆2
∗

)(
Tβ∗(z) 0

0 I

)
For each y > √x+,∗, matrix Tβ∗(y) is negative definite, and thus invertible. Therefore, det(I − G∗(y)) = 0
if and only

det

((
c∗t∗(y)

1−(c∗t∗(y))2
∆2
∗

Γ∗∗
(1−(c∗t∗(y))2

Γ∗
(1−(c∗t∗(y))2

c∗t∗(y)
1−(c∗t∗(y))2

∆2
∗

)
−
(

(Tβ∗(y))−1 0
0 (Tβ∗(y))−1

))
= 0 (4.51)

In the following, we denote by H∗(z) the 2r × 2r matrix-valued defined on C− [
√
x+,∗,

√
x+,∗] by

H∗(z) =

(
c∗t∗(z))

1−(c∗t∗(z))2
∆2
∗ − (Tβ∗(z))

−1 Γ∗∗
(1−(c∗t∗(z))2

Γ∗
(1−(c∗t∗(z))2

c∗t∗(z)
1−(c∗t∗(z))2

∆2
∗ − (Tβ∗(z))

−1

)
(4.52)

H∗(z) is of course holomorphic on C − [−√x+,∗,
√
x+,∗], and the solutions of det(I + F∗(y)) = 0 coincide

with the solutions of
det (H∗(y)) = 0 (4.53)

where y > √x+,∗. In order to characterize the roots of (4.53), we first establish the following Proposition.

Proposition 4.5. For each z ∈ C+, Im(H∗(z)) > 0, and function y → H∗(y) is increasing in the sense of
the partial order defined on the set of all Hermitian matrices on the interval [

√
x+,∗,+∞[.

Proof. It is clear that Im
(
(Tβ∗(z))

−1
)
< 0 for each z ∈ C+. Therefore, in order to establish that Im(H∗(z)) >

0 on C+, it is sufficient to prove that Im(H∗,1(z)) > 0 on C+ where H∗,1(z) is the function defined by

H∗,1(z) =

(
c∗t∗(z)

1−(c∗t∗(z))2
∆2
∗

Γ∗∗
(1−(c∗t∗(z))2

Γ∗
(1−(c∗t∗(z))2

c∗t∗(z)
1−(c∗t∗(z))2

∆2
∗

)

After some calculations, we obtain that

Im(H∗,1(z)) =
1

|1− (c∗t∗(z))2|2

(
Im(c∗t∗(z))(1 + |c∗t∗(z)|2)∆2

∗ Im
(
(c∗t∗(z))2

)
Γ∗∗

Im
(
(c∗t∗(z))2

)
Γ∗ Im(c∗t∗(z))(1 + |c∗t∗(z)|2)∆2

∗

)
It is clear that Im(c∗t∗(z))(1 + |c∗t∗(z)|2)∆2

∗ > 0. Therefore, Im(H∗,1(z)) > 0 if and only if

Im(c∗t∗(z))(1 + |c∗t∗(z)|2)∆2
∗ −

[
Im
(
(c∗t∗(z))2

)]2
Im(c∗t∗(z))(1 + |c∗t∗(z)|2)

Γ∗∗∆
−2
∗ Γ∗ > 0
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or equivalently, if and only if

I −
[
Im
(
(c∗t∗(z))2

)]2
[Im(c∗t∗(z))(1 + |c∗t∗(z)|2)]2

∆−1
∗ Γ∗∗∆

−2
∗ Γ∗∆−1

∗ > 0 (4.54)

We first claim that ∆−1
∗ Γ∗∗∆

−2
∗ Γ∗∆−1

∗ ≤ I. To verify this, we notice that for eachN , matrix ∆−1
N Γ∗N∆−2

N ΓN∆−1
N

coincides with Θ̃∗f,N Θ̃p,N Θ̃∗p,N Θ̃f,N which is less than I. Therefore,

lim
N→+∞

∆−1
N Γ∗N∆−2

N ΓN∆−1
N = ∆−1

∗ Γ∗∗∆
−2
∗ Γ∗∆−1

∗ ≤ I

[Im((c∗t∗(z))2)]
2

[Im(c∗t∗(z))(1+|c∗t∗(z)|2)]2
is equal to

[
Im
(
(c∗t∗(z))2

)]2
[Im(c∗t∗(z))(1 + |c∗t∗(z)|2)]2

=
4 [Re(c∗t∗(z))]

2

(1 + |c∗t∗(z)|2)2

For z ∈ C+, Im(t∗(z)) > 0. Therefore, it holds that (Re(c∗t∗(z)))
2 < |c∗t∗(z)|2 and that[

Im
(
(c∗t∗(z))2

)]2
[Im(c∗t∗(z))(1 + |c∗t∗(z)|2)]2

<
4|c∗t∗(z)|2

(1 + |c∗t∗(z)|2)2
≤ 1

This establishes (4.54) and Im(H∗(z)) > 0.

We now prove that y → H∗(y) is increasing on the interval [
√
x+,∗,+∞[. For this, we use the following

representation of holomorphic matrix-valued functions whose imaginary part is positive definite on C+ (see
e.g. [16]):

H∗(z) = A+Bz +

∫
1 + λz

λ− z
dσ(λ)

1 + λ2
(4.55)

where A is Hermitian, B ≥ 0 and σ is a positive matrix-valued measure for which

Tr

(
dσ(λ)

1 + λ2

)
< +∞

We notice that B = limy→+∞
H∗(iy)
iy coincides with

B = lim
y→+∞

(
−Tβ∗ (iy)

iy 0

0 −Tβ∗ (iy)
iy

)
= I2r

and that for any interval [y1, y2], it holds that

σ([y1, y2]) =
1

π
lim
ε→0

∫ y2

y1

Im(H∗(y + iε))dy

As Im(H∗(y)) = 0 if |y| > √x+,∗, the support of σ is included into [−√x+,∗,
√
x+,∗]. Therefore, we get

immediately from (4.55) that y → H∗(y) is strictly increasing on ]
√
x+,∗,+∞], i.e. H∗(y2) > H∗(y1) if

y2 > y1. We also notice that the last item of Proposition 4.1 implies that limy→√x+,∗ H∗(y) = H∗(x+,∗)
exists and is finite. Moreover, it holds that H∗(

√
x+,∗) < H∗(y) for y > √x+,∗.

Corollary 4.1. The eigenvalues (arranged in the decreasing order) (λk,∗(y))k=1,...,2r of matrix H∗(y) are
strictly increasing functions y on [

√
x+,∗,+∞[, i.e., for each k = 1, . . . , 2r, it holds that

λk,∗(y1) < λk,∗(y2) if √x+,∗ ≤ y1 < y2 (4.56)

Moreover, the number s of solutions of (4.53) (taking into account their multiplicities) for which y > √x+,∗
belongs to {0, 1, . . . , 2r}, and coincides with the number of strictly negative eigenvalues of matrix H∗(

√
x+,∗).
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Proof. We have shown that if √x+,∗ ≤ y1 < y2, then H∗(y1) < H∗(y2). The Weyl’s inequalities (see
e.g. [24], Paragraph 4.3) thus imply that (4.56) holds. Moreover, as matrix B in (4.55) is equal to Ir, it is
clear that for each k = 1, . . . , 2r, λk,∗(y) converges towards +∞ when y → +∞. For k = 1, . . . , 2r, the
equation λk,∗(y) = 0 has thus 1 solution y > √x+,∗ if λk(x+,∗) < 0 and 0 solution if λk(x+,∗) ≥ 0. (4.53)
holds if and only one of the eigenvalues of H∗(y) is equal to 0. Therefore, if we denote by s̃ the number of
positive eigenvalues of H∗(

√
x+,∗), for j = 1, . . . , s̃, it must hold that λj,∗(y) > 0 for y > √x+,∗. Moroever,

λs̃+1,∗(
√
x+,∗) < 0 implies that the equation λs̃+1,∗(y) = 0 has a unique solution y1,∗ >

√
x+,∗. Similarly, the

equation λs̃+2,∗(y) = 0 has a unique solution denoted y2,∗. Moreover, as λs̃+2,∗(y) ≤ λs̃+1(y) for each y, we
deduce that λs̃+2,∗(y1,∗) ≤ λs̃+1(y1,∗) = 0. If λs̃+2,∗(y1,∗) < 0, y2,∗ must be strictly greater than y1,∗. As a
root of (4.53), y1,∗ has thus multiplicity 1. If λs̃+2,∗(y1,∗) = 0, the multiplicity of y1,∗ as a root of (4.53) is
at least equal to 2. Iterating the process, we obtain that the number of solutions s (taking into account the
multiplicities) of (4.53) is equal to s = 2r− s̃. Moreover, solutions y1,∗, . . . , ys,∗ satisfy y1,∗ ≤ y2,∗ ≤ . . . ≤ ys,∗.

Corollary 4.1 implies that Eq. det(I + F∗(y)) = 0 has s (0 ≤ s ≤ 2r) solutions (yk,∗)k=1,...,s strictly greater
than √x+,∗. We recall that, almost surely, the sequence of functions (FN (z))N≥1 converges uniformly on
each compact subset of C − [−√x+,∗,

√
x+,∗] towards F∗(z). Using the arguments used in [4], we obtain

immediately the following result.

Corollary 4.2. Almost surely, for N large enough, Eq. det(I+FN (y)) = 0 has s solutions y1,N ≤ y2,N . . . ≤
ys,N such that yk,N >

√
x+,∗, and for each k = 1, . . . , s, it holds that limN→+∞ yk,N = yk,∗.

We have thus established the Theorem:

Theorem 4.1. Almost surely, for each N large enough, the s largest eigenvalues λ̂1,N ≥ . . . ≥ λ̂s,N of matrix
Wf,NW

∗
p,NWp,NW

∗
f,N escape from the interval [0, x+,∗], and converge towards ρ1,∗ ≥ . . . ≥ ρs,∗ > x+,∗ defined

by ρk,∗ = y2
s+1−k,∗ for k = 1, . . . , s.

s and the limit eigenvalues (ρk,∗)k=1,...,s depend on the limit distributions ω∗ and β∗ that are rather immaterial.
It is thus more appropriate to evaluate the asymptotic behaviour of the largest eigenvalues ofWf,NW

∗
p,NWp,NW

∗
f,N

by using the finite N deterministic equivalent of H∗(z). We thus define function HN (z) by

HN (z) =

(
cN tN (z))

1−(cN tN (z))2
∆2
N − (TβN (z))−1 Γ∗N

(1−(cN tN (z))2

ΓN
(1−(cN tN (z))2

cN tN (z)
1−(cN tN (z))2

∆2
N − (TβN (z))−1

)
(4.57)

For each δ > 0, HN (z) is holomorphic in C − [−
√
x+,∗ + δ,

√
x+,∗ + δ] and converges uniformly on each

compact subset of C− [−√x+,∗,
√
x+,∗] towards function H∗(z). Using again the approach of [4], we obtain

that, for each N large enough, the equation det(HN (y)) = 0 has s solutions y1,N ≤ . . . ≤ ys,N that satisfy
yk,N − yk,∗ → 0 when N → +∞. Moreover, the convergence of x+,N and w+,N towards x+,∗ = φ∗(w+,∗) and
w+,∗ = w∗(x+,∗) imply that tN (x+,N ) converge towards t∗(x+,∗). Therefore, (4.38) leads to the following
Corollary.

Corollary 4.3. HN (
√
x+,N ) converges towards H∗(

√
x+,∗). Moroever, for N large enough, s also coincides

with the number of strictly negative eigenvalues of matrix HN (
√
x+,N ). Finally, if we define ρk,N by ρk,N =

y2
s+1−k,N for k = 1, . . . , s , then it holds that λ̂k,N − ρk,N → 0 almost surely.

Writing tN (z) as tN (z) = ztN (z2), and using the expression (3.132) of tN (z) in terms of wN (z), we obtain
after some algebra that matrix HN (

√
x+,N ) is given by

HN (
√
x+,N ) =

(
1 + cN

1

M
Tr(RN (w+,NI −RN )−1)

)(
GN (
√
x+,N ) Γ∗N

ΓN GN (
√
x+,N )

)
(4.58)

where GN (
√
x+,N ) is defined by

GN (
√
x+,N ) =

cNw+,N√
x+,N

1

M
Tr(RN (w+,NI −RN )−1)

[(
Θ∗N (IL ⊗ (w+,NI −RN )−1)ΘN

)−1 −∆2
N

]
(4.59)
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As
(
1 + cN

1
MTr(RN (w+,NI −RN )−1)

)
> 0, s coincides with the number of strictly negative eigenvalues of

the second term of the right handside of (4.58).

In order to get some insights on the number of eigenvalues s that escape from SN for each N large enough,
we first study the behaviour of s when cN → 0. Intuitively, we should recover the results corresponding
to the traditional regime, i.e. that s = P . For this, we remark that w+,N , that depends on cN , satisfies
φ
′
N (w+,N ) = 0. Therefore, the proof of Proposition 3.10 implies that 1

MTr(RN (w+,NI − RN )−1) < 1. As
RN > aI, we obtain that a 1

MTrRN (w+,NI −RN )−1 < 1, or equivalently

1

M

M∑
k=1

1

w+,N − λk,N
<

1

a

for each cN . This implies that lim infcN→0w+,N−λ1,N > 0, and that matrix
(
Θ∗N (IL ⊗ (w+,NI −RN )−1)ΘN

)−1

remains bounded when cN → 0. As x+,N = φN (w+,N ), it is easy to check that x+,N = O(cN ). Therefore,
cNw+,N√
x+,N

= O(
√
cN ), and GN (

√
x+,N )→ 0 when cN → 0. Therefore, when cN → 0,

HN (
√
x+,N )→

(
0 Γ∗N

ΓN 0

)

As mentioned previously, matrix ΓN has rank P ≤ r. Therefore, the eigenvalues of matrix
(

0 Γ∗N
ΓN 0

)
are 0 with mutiplicity 2(r − P ), (χk)k=1,...,P and −(χk)k=1,...,P where we recall that (χk)k=1,...,P represent
the P non zero singular values of matrix ΓN . Therefore, when cN → 0, s converges towards P . This is in
accordance with the traditional asymptotic regime where N → +∞ and M is fixed. Indeed, in this context,
matrix Σf,NΣ∗p,NΣp,NΣ∗f,N converges towards the rank P matrix RLf |p

(
RLf |p

)∗
, i.e. for N large enough, matrix

Σf,NΣ∗p,NΣp,NΣ∗f,N has P eigenvalues that are significantly larger the M − P smallest ones.

When cN does not converge towards 0, the presence of matrix GN (
√
x+,N ) in the expression (4.58) in general

deeply modifies the value of s. In particular, the value of s depends on the singular values (χk,N )k=1,...,P

of matrix ΓN , but also on the diagonal entries (δ2
k,N )k=1,...,r of matrix ∆2

N , or equivalently, on the non zero
eigenvalues of RLu,N = E(uLnu

∗L
n ). In particular, in contrast with the context of the usual spiked empirical

covariance matrix models, s may be larger than the number P of non zero eigenvalues of the true matrix
Rf |pR∗f |p. This implies that if cN is not small enough, then estimating the rank P of matrix Rf |pR∗f |p by
the number s of eigenvalues of Σf,NΣ∗p,NΣp,NΣ∗f,N that escape from [0, x+,N ] does not lead to a consistant
estimation scheme, even if the signal u is powerfull enough.

More precisely, assume that matrix GN (
√
x+,N ) is invertible. Then, matrix HN (

√
x+,N ) and the block

diagonal matrix (
GN (
√
x+,N ) 0

0 GN (
√
x+,N )− ΓN

(
GN (
√
x+,N )

)−1
Γ∗N

)
have the same number of strictly negative eigenvalues. If we denote by s1 and s2 the number of stricty
negative eigenvalues of GN (

√
x+,N ) and GN (

√
x+,N ) − ΓN

(
GN (
√
x+,N )

)−1
Γ∗N respectively, it holds that

s = s1 + s2. In order to evaluate s2, we denote by Υ⊥N a r × (r − P ) matrix for which (ΥN ,Υ
⊥
N ) is unitary

(we recall that ΥN is defined by (4.13)). It is clear that s2 coincides with the number of strictly negative
eigenvalues of the block matrix(

Υ∗NGNΥN − ΞN Υ̃∗NG
−1
N Υ̃NΞN Υ∗NGNΥ⊥N

Υ⊥∗N GNΥN Υ⊥∗N GNΥ⊥N

)
We have denoted GN (

√
x+,N ) by GN in order to simplify the notations. s2 also coincides with the number

of strictly negative eigenvalues of the block matrix(
Υ∗NGNΥN −Υ∗NGNΥ⊥N

(
Υ⊥∗N GNΥ⊥N

)−1
Υ⊥∗N GNΥN − ΞN Υ̃∗NG

−1
N Υ̃NΞN 0

0 Υ⊥∗N GNΥ⊥N

)
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As it holds that

Υ∗NGNΥN −Υ∗NGNΥ⊥N
(

Υ⊥∗N GNΥ⊥N
)−1

Υ⊥∗N GNΥN =
(
Υ∗NG

−1
N ΥN

)−1

s2 is equal to s2 = s2,1 + s2,2 where s1,2 (resp. s2,2) represents the number of strictly negative eigenvalues of(
Υ∗NG

−1
N ΥN

)−1 − ΞN Υ̃∗NG
−1
N Υ̃NΞN (resp. of Υ⊥∗N GNΥ⊥N ).

As it is difficult to evaluate precisely s in general cases, we focus on particular contexts. We first consider the
case where matrixGN is negative definite, i.e. s1 = r. This condition holds if ∆2

N >
(
Θ∗N (IL ⊗ (w+,NI −RN )−1)Θ∗N

)−1,
a condition which implies that all the entries of ∆2

N are large enough. In particular, it is easily seen that
GN < 0 as soon as δ2

r,N > w+,N − λM,N . As Υ⊥∗N GNΥ⊥N < 0, s2,2 coincides with r − P . Therefore, if all
the (δ2

k,N )k=1,...,r, i.e. if all the non zero eigenvalues of the covariance matrix RLu,N are large enough, then
s = 2r − P + s2,1 and s ≥ 2r − P . In order to discuss on the possible values of s2,1, we denote by KN

the positive definite matrix −GN . Then, s2,1 coincides with the number of strictly positive eigenvalues of(
Υ∗NK

−1
N ΥN

)−1 − ΞN Υ̃∗NK
−1
N Υ̃NΞN or equivalently, of matrix

IP −
(
Υ∗NK

−1
N ΥN

)1/2
ΞN Υ̃∗NK

−1
N Υ̃NΞN

(
Υ∗NK

−1
N ΥN

)1/2
Therefore, s is equal to 2r if and only if(

Υ∗NK
−1
N ΥN

)1/2
ΞN Υ̃∗NK

−1
N Υ̃NΞN

(
Υ∗NK

−1
N ΥN

)1/2
< IP (4.60)

This condition holds if and only if matrix ΞN can be written as

ΞN =
(
Υ∗NK

−1
N ΥN

)−1/2
EN

(
Υ̃∗NK

−1
N Υ̃N

)−1/2
(4.61)

where EN verifies ‖EN‖ < 1. This implies that for each k = 1, . . . , P ,

χk,N = eTk
(
Υ∗NK

−1
N ΥN

)1/2
EN

(
Υ̃∗NK

−1
N Υ̃N

)−1/2
ek

where (ek)k=1,...,P represents the canonical basis of CP . Therefore, for each k, it holds that

χk,N < ‖eTk
(
Υ∗NK

−1
N ΥN

)1/2 ‖‖(Υ̃∗NK
−1
N Υ̃N

)−1/2
ek‖

or equivalently,

χk,N <
(
eTk Υ∗NK

−1
N ΥNek

)1/2 (
eTk Υ̃∗NK

−1
N Υ̃Nek

)1/2

Therefore, if the (δ2
k,N )r=1,...,r are large enough, s = 2r implies that the P non zero singular values (χk,N )k=1,...,P

of ΓN have to be small enough. Conversely, s is reduced to 2r − P if and only ΞN can be written as

ΞN =
(
Υ∗NK

−1
N ΥN

)−1/2
FN

(
Υ̃∗NK

−1
N Υ̃N

)−1/2
(4.62)

where FN verifies FNF ∗N > IP . Therefore, for each k = 1, . . . , P , it holds that

χk,N = eTk
(
Υ∗NK

−1
N ΥN

)1/2
FN

(
Υ̃∗NK

−1
N Υ̃N

)−1/2
ek

and that
χk,N >

(
eTk Υ∗NK

−1
N ΥNek

)1/2 (
eTk Υ̃∗NK

−1
N Υ̃Nek

)1/2

Hence, (4.62) implies that all the singular values (χk,N )k=1,...,P have to be large enough. Therefore, if the
(δ2
k,N )k=1,...,r are large enough, then s is equal to 2r − P if the singular values (χk,N )k=1,...,P are large

enough. In sum, when the non zero eigenvalues of the covariance matrix RLu,N are large enough, s ≥ 2r− P ,
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and s is all the larger than the singular values (χk,N )k=1,...,P of ΓN are small, a rather non intuitive behaviour.

A different behaviour holds when matrix G(
√
x+,N ) > 0, i.e. s1 = 0, a condition which is verified if all the

non zero eigenvalues (δ2
k,N )k=1,...,P are small enough. A sufficient condition is δ2

1,N < w+,N − λ1,N . In this
case, s1 = s2,2 = 0 s = s2,1 ≤ P . Moroever, s2,1 coincides with the number of strictly negative eigenvalues of(
Υ∗NG

−1
N ΥN

)−1 − ΞN Υ̃∗NG
−1
N Υ̃NΞN , or equivalently of matrix

IP −
(
Υ∗NG

−1
N ΥN

)1/2
ΞN Υ̃∗NG

−1
N Υ̃NΞN

(
Υ∗NG

−1
N ΥN

)1/2
Using the same approach as when GN < 0, we obtain that s2,1 = 0, i.e. s = 0 implies that the (χk,N )k=1,...,P

are small enough, while s = s2,1 = P if the (χk,N )k=1,...,P are large enough. In sum, if the (δ2
k,N )k=1,...,P are

small enough, s = 0 if all the (χk,N )k=1,...,P are small enough, while s = P if the (χk,N )k=1,...,P are large
enough. We however notice that the (χk,N )k=1,...,P and the (δ2

k,N )k=1,...,P are not independent parameters. In
particular, it holds that ‖ΓN‖ ≤ δ2

1,N , and therefore that χk,N ≤ δ2
1,N for each k = 1, . . . , P . Therefore, the

conditions that (δ2
k,N )k=1,...,P are small enough and (χk,N )k=1,...,P are large enough may not be both verified.

In order to get more insights on the above discussion, we consider the simple case where P = 1 and RN =
σ2IM . w+,N and x+,N are given by (3.143) and (3.142). Moreover, for each w ≥ w+,N , x = φN (w) ≥ x+,N

and (cNw)2

x
1
MTr(RN (wI −RN )−1) is equal to

(cNw)2

x

1

M
Tr(RN (wI −RN )−1 =

σ2cN
w − σ2(1− cN )

Matrix GN is thus given by

GN =

(
σ2cN

w+,N − σ2(1− cN

)1/2 (
(w+,N − σ2)Ir −∆2

N

)
As P = 1, ΓN is a rank 1 matrix. Matrices ΥN and Υ̃N are reduced to r–dimensional vectors, and diagonal
matrix ΞN is reduced to a scalar χN .
We first consider the case where GN < 0. This condition holds if and only if δ2

r,N > w+,N − σ2. Our results
show that s is equal to 2r if

1− χ2
N

w+,N − σ2(1− cN )

σ2cN

r∑
k=1

|Υ|2k
δ2
k,N − (w+,N − σ2)

r∑
k=1

|Υ̃|2k
δ2
k,N − (w+,N − σ2)

> 0

while s = 2r − 1 if

1− χ2
N

w+,N − σ2(1− cN )

σ2cN

r∑
k=1

|Υ|2k
δ2
k,N − (w+,N − σ2)

r∑
k=1

|Υ̃|2k
δ2
k,N − (w+,N − σ2)

< 0

When GN > 0, i.e. if δ2
1,N < w+,N − σ2, s = 0 or s = 1. More precisely, s = 0 if and only if

1− χ2
N

w+,N − σ2(1− cN )

σ2cN

r∑
k=1

|Υ|2k
(w+,N − σ2)− δ2

k,N

r∑
k=1

|Υ̃|2k
(w+,N − σ2)− δ2

k,N

> 0

while s = 1 if

1− χ2
N

w+,N − σ2(1− cN )

σ2cN

r∑
k=1

|Υ|2k
(w+,N − σ2)− δ2

k,N

r∑
k=1

|Υ̃|2k
(w+,N − σ2)− δ2

k,N

< 0

In order to confirm this behaviour, we evaluate more directly the value of s by studying directly the solutions
of the equation det(HN (

√
x)) = 0, or equivalently the solutions of

det

(
GN (
√
x) Γ∗N

ΓN GN (
√
x)

)
= 0 (4.63)

that are larger than x+,N . In order to evaluate the solutions of (4.63), we establish the following Lemma.
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Lemma 4.2. x = φN (σ2 + δ2
l,N ) is solution of (4.63) if and only Υl = 0 or Υ̃l = 0. Moreover, if for each

k = 1, . . . , r, Υk and Υ̃k are non zero, then (4.63) holds if and only if

1− χ2
N

(
Υ∗GN (

√
x)−1Υ

) (
Υ̃∗GN (

√
x)−1Υ̃

)
= 0 (4.64)

Proof. If w is not equal to σ2(1− cN ), σ2 + δ2
1,N , . . . , σ

2 + δ2
r,N , the left handside of (4.63) can be written as

det

(
GN (
√
x) Γ∗N

ΓN GN (
√
x)

)
= det

(
GN (
√
x)
)

det
(
GN (
√
x)− ΓNGN (

√
x)−1Γ∗N

)
Moreover, it holds that

det
(
GN (
√
x)− ΓNGN (

√
x)−1Γ∗N

)
= det

(
Υ⊥∗GN (

√
x)Υ⊥

) ( 1

Υ∗GN (
√
x)−1Υ

− χ2
N

(
Υ̃∗GN (

√
x)−1Υ̃

))
where we recall that Υ⊥N is a r×(r−1) orthogonal matrix such that (ΥN ,Υ

⊥
N ) is a unitary matrix. Therefore,

if w is not equal to σ2(1− cN ), σ2 + δ2
1,N , . . . , σ

2 + δ2
r,N , it holds that

det

(
GN (
√
x) Γ∗N

ΓN GN (
√
x)

)
=

det(GN (
√
x)) det(Υ⊥∗GN (

√
x)Υ⊥)

(
1

Υ∗GN (
√
x)−1Υ

− χ2
N

(
Υ̃∗GN (

√
x)−1Υ̃

))
(4.65)

(4.65) still holds true when w coincides with one of the (σ2 + δ2
k,N )k=1,...,r because for each l = 1, . . . , r, the

right handside of (4.65) has a finite limit when w → σ2 + δ2
l,N . More precisely,

1

Υ∗GN (
√
x)−1Υ

=

(
w − σ2(1− cN )

σ2cN

r∑
k=1

|Υ|2k
δ2
k,N − (w − σ2)

)−1

→ 0

and

det(GN (
√
x))χ2

N

(
Υ̃∗GN (

√
x)−1Υ̃

)
→ χ2

N

∣∣∣Υ̃l,N

∣∣∣2 Πk 6=l(δ
2
l,N − δ2

k,N )

(
σ2cN

δ2
l,N + σ2cN

)r/2
Moreover, if we denote by Υ⊥,lN the (r − 1)× (r − 1) matrix obtained by deleting the l-th row of Υ⊥N ,

det(Υ⊥∗GN (
√
x)Υ⊥)→ det

(
(Υ⊥,lN )∗Υ⊥,lN

)
Πk 6=l(δ

2
l,N − δ2

k,N )

(
σ2cN

δ2
l,N + σ2cN

)(r−1)/2

This implies that the right handside of (4.65) converges towards

−χ2
N

∣∣∣Υ̃l,N

∣∣∣2 det
(

(Υ⊥,lN )∗Υ⊥,lN

)
Πk 6=l(δ

2
l,N − δ2

k,N )2

(
σ2cN

δ2
l,N + σ2cN

)r−1/2

which, of course, coincides with det

(
GN (
√
x) Γ∗N

ΓN GN (
√
x)

)
for x = φN (δ2

l,N + σ2). We denote by Υ⊥l,N the

l-row of Υ⊥N . Then, as Υ⊥N is orthogonal, it holds that Υ⊥∗l,NΥ⊥l,N +
(

Υ⊥,lN

)∗
Υ⊥,lN = Ir−1. Therefore,

det
(

(Υ⊥,lN )∗Υ⊥,lN

)
= det(Ir−1 −Υ⊥∗l,NΥ⊥l,N ) = 1− ‖Υ⊥l,N‖2

As matrix (ΥN ,Υ
⊥
N ) is unitary, it holds that |Υl,N |2 + ‖Υ⊥l,N‖2 = 1. Therefore, we obtain that if x =

φN (σ2 + δ2
l,N ), the left handside of (4.63) is equal to

−χ2
N |Υ̃l,N |2 |Υl,N |2 Πk 6=l(δ

2
l,N − δ2

k,N )2

(
σ2cN

δ2
l,N + σ2cN

)r−1/2
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(4.63) thus holds for x = φN (σ2 + δ2
l,N ) if and only if |Υ̃l,N |2 |Υl,N |2 = 0. If |Υ̃k,N |2 |Υk,N |2 > 0 for each k =

1, . . . , r, none of the (φN (σ2+δ2
k,N ))k=1,...,r is a solution of (4.63). Moroever, as det(GN (

√
x))det(Υ⊥∗GN (

√
x)Υ⊥) 6=

0 if x does not belong to {(φN (σ2 + δ2
1,N ), . . . , (φN (σ2 + δ2

r,N )}, we obtain that x > x+,N is a solution of
(4.63) if and only (4.64) holds. This completes the proof the Lemma.

In order to simplify the following discussion, we assume that for each k = 1, . . . , r, then |Υ̃k,N |2 |Υk,N |2 >
0. Lemma 4.2 implies that the eigenvalues of matrix Σf,NΣ∗p,NΣp,NΣ∗f,N that escape from [0, x+,∗], or
equivalently from [0, x+,N ], have the same asymptotic behaviour than the image by function φN of the
solutions of the equation

w − σ2(1− cN )

σ2cN

r∑
k=1

|Υ|2k
δ2
k,N − (w − σ2)

r∑
k=1

|Υ̃|2k
δ2
k,N − (w − σ2)

=
1

χ2
N

that are strictly larger than w+,N . We consider the function fN (w) defined by

fN (w) =
w − σ2(1− cN )

σ2cN

r∑
k=1

|Υ|2k
(w − σ2)− δ2

k,N

r∑
k=1

|Υ̃|2k
(w − σ2)− δ2

k,N

On each interval ]σ2 + δ2
k,N , σ

2 + δ2
k+1,N [ (k = 1, . . . , r − 1), functions w →

∑r
k=1

|Υ|2k
(w−σ2)−δ2k,N

and w →∑r
k=1

|Υ̃|2k
(w−σ2)−δ2k,N

have each a unique zero. Therefore, fN admits 2 zeros on ]σ2+δ2
k,N , σ

2+δ2
k+1,N [. Moreover,

fN converges towards +∞ when w → σ2+δ2
k,N and when w → σ2+δ2

k+1,N . Therefore, for each k = 1, . . . , r−1,
the equation fN (w) = 1

χ2
N

has at least 2 solutions that belong to ]σ2 + δ2
k,N , σ

2 + δ2
k+1,N [. As fN (w) → 0

when w → +∞, the equation fN (w) = 1
χ2
N

has at least 1 solution that belongs to ]σ2 +δ2
1,N ,+∞[. fN (w) < 0

if w < σ2(1 − cN ) and fN (w) → +∞ when w → σ2 + δ2
1,N . The equation fN (w) = 1

χ2
N

has thus at least

one solution that belongs to ]σ2(1 − cN ), σ2 + δ2
1,N [. This discussion shows that fN (w) = 1

χ2
N

has at least

2r solutions that belong to ]σ2(1 − cN ),+∞[. It is moreover easily seen that this equation is a polynomial
equation of order 2r. Therefore, the 2r real roots of fN (w) = 1

χ2
N

located in ]σ2(1− cN ),+∞[ coincide with

the set of all roots of the equation. This also implies that fN is strictly increasing on ]σ2(1− cN ), δ2
r,N + σ2[

and strictly decreasing on ]σ2 + δ2
1,N ,+∞[. Moreover, on ]σ2 + δ2

k,N , σ
2 + δ2

k+1,N [, fN is first decreasing, and
then increasing. This discussion leads to the conclusion that s coincides with the number of roots that are
strictly larger than w+,N . To connect with the above results, we remark that:

• If δ2
r,N > w+,N −σ2, i.e. if GN (

√
x+,N ) < 0, 2r−1 roots of fN (w) = 1

χ2
N

belong to ]δ2
r,N +σ2,+∞[, and

are therefore larger than w+,N . It thus holds that s ≥ (2r − 1). s = 2r if and only if 1
χ2
N
> fN (w+,N ),

i.e. χ2
N < 1

fN (w+,N ) , and s = 2r − 1 if and only if χ2
N > 1

fN (w+,N ) . This is of course in accordance with
the evaluation of s based on the number of strictly negative eigenvalues of matrix HN (

√
x+,N ).

• If δ2
1,N < w+,N − σ2, i.e. if GN (

√
x+,N ) > 0, the (2r − 1) roots of fN (w) = 1

χ2
N

that are located in

]σ2(1 − cN ), δ2
1,N + σ2[ are smallest that w+,N . Therefore, s = 0 or s = 1. As fN is decreasing on

]δ2
1,N + σ2,+∞[, s = 0 if and only 1

χ2
N
< fN (w+,N ), i.e. if χ2

N < 1
fN (w+,N ) , and s = 1 if χ2

N > 1
fN (w+,N )

as expected.

In the simple case P = 1, it is even possible to precise the value of s when δ2
l+1,N + σ2 < w+,N < δ2

l,N + σ2

for some l = 1, . . . , r − 1. The equation fN (w) = 1
χ2
N

has 2(l − 1) + 1 = 2l − 1 solutions belonging to

]δ2
l,N + σ2,+∞[. Therefore, s ≥ 2l − 1. If we denote by w1,l ≤ w2,l the 2 zeros of function fN located in

]δ2
l+1,N + σ2, δl,N + σ2[, it is moreover easy to check that:

• if w+,N < w1,l, then s = 2l + 1 if and only if f(w+,N ) > 1
χ2
N
, and s = 2l otherwise

• if w+,N > w2,l, s = 2l if and only if fN (w+,N ) < 1
χ2
N

and s = 2l − 1 otherwise
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It is also possible to understand how the eigenvalues of Σf,NΣ∗p,NΣp,NΣ∗f,N that escape from [0, x+,N ] behave
when cN tends to be very small. As mentioned previously, in the standard asymptotic regime where N → +∞
while M remains fixed, the smallest ML− 1 eigenvalues of Σf,NΣ∗p,NΣp,NΣ∗f,N converge towards 0, and its
largest eigenvalue has the same behaviour than χ2

N . When cN takes small values, this behaviour should be
observed. Assume for example that GN < 0, and that s = 2r, i.e. that fN (w+,N ) < 1

χ2
N
. Then, the 2r − 1

smallest solutions of fN (w) = 1
χ2
N
, denoted w2,N > w3,N . . . > w2r,N , belong to ]w+,N , δ

2
1,N + σ2[ while the

largest solution, w1,N is located into ]δ2
1,N + σ2,+∞[. The 2r− 1 smallest eigenvalues of Σf,NΣ∗p,NΣp,NΣ∗f,N

that escape from [0, x+,N ] behave as the (xl,N = φN (wl,N ))l=2,...,2r} and the largest one as x1,N = φN (w1,N ).
It is clear that xl,N ≤ φN (σ2 + δ2

1,N ) for l = 2, . . . , 2r. We recall that φN (w) is given by

φN (w) = cNw
2 σ2

w − σ2

(
1 +

σ2cN
w − σ2

)
As (δ2

1,N )N≥1 is assumed to be bounded, it holds that if l = 2, . . . , 2r, xl,N = O(cN ) when cN → 0. Therefore,
the 2r − 1 smallest eigenvalues of Σf,NΣ∗p,NΣp,NΣ∗f,N that escape from [0, x+,N ] converge towards 0 at rate
cN when cN → 0. In order to evaluate the behaviour of x1,N when cN → 0, we recall that w1,N > δ2

1,N + σ2

satisfies
w1,N − σ2(1− cN )

σ2cN

r∑
k=1

|Υ|2k
(w1,N − σ2)− δ2

k,N

r∑
k=1

|Υ̃|2k
(w1,N − σ2)− δ2

k,N

=
1

χ2
N

When cN → 0, w1,N has clearly to converge towards +∞. Moreover, it is easily seen that w1,N '
χ2
N

σ2cN

when cN → 0. Therefore, x1,N = φN (w1,N ) is itself equivalent to χ2
N as expected. Therefore, when cN takes

small values, the 2r − 1 smallest eigenvalues that escape from [0, x+,N ] are O(cN ) terms, while the largest
eigenvalue tends to be close from χ2

N . The same conclusions hold if GN is not negative definite.

We finally conclude this discussion by an even simpler case. We assume that P = K = 1, and that the scalar
state-space sequence (xn)n∈Z is given by xn+1 = axn + bνn where a ∈]0, 1[ and b ∈ C. Moroever, un is given
by

un = θNxn+1 = aθNxn + bθNνn (4.66)

where θN is a unit norm M–dimensional vector. Therefore, matrices CN and DN coincide with vectors aθN
and bθN respectively. We also consider the case where L = 1. Model (4.66) fits into the framework of [29].
In this context, matrix Uf,N and Up,N are given by

Uf,N = θN (x3, x4, . . . , xN+2), Up,N = θN (x2, x3, . . . , xN+1)

The covariance matrix E(unu
∗
n) is of course equal to E(unu

∗
n) = δ2 θNθ

∗
N where δ2 = E(|xn|2) = |b|2

1−a2 , so
that r = P = 1. We also mention that in the present case, δ2 does not depend on N . Moreover, the empirical
autocovariance matrix Uf,NU∗p,N/N coincides with

Uf,NU
∗
p,N/N = r̂x,N (1) θNθ

∗
N

where r̂x,N (1) = 1
N

∑N+1
k=2 xk+1x

∗
k is the traditional empirical estimate of E(xn+1x

∗
n) = aδ2. Therefore,

the usual r × r matrix ΓN is reduced to the scalar r̂x,N (1), and the associated singular value of ΓN is
χN = |r̂x,N (1)|. We notice that r̂x,N (1), and therefore χN , converge towards aδ2 when N → +∞. As
r = P = 1, s may take the values 0, 1, 2. In the following, we justify that it is possible to find a and b for
which the above 3 possible values of s are possible.

We first find a and b for which s = 2. s = 2 if and only if δ2 > w+,N − σ2 and 1 − χ2
NfN (w+,N ) > 0, or

equivalently

1− χ2
N

(
w+,N − σ2(1− cN )

σ2cN

)(
1

δ2 − (w+,N − σ2)

)2

> 0

As χN can be arbitrarily close from aδ2 for N large enough, this last condition can be replaced by

1− a2δ4

(
w+,N − σ2(1− cN )

σ2cN

)(
1

δ2 − (w+,N − σ2)

)2

> 0
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or equivalently by

a2 <
σ2cN

σ2cN + (w+,N − σ2)

(
1−

(w+,N − σ2

δ2

)2

(4.67)

In order to find a ∈]0, 1[ and b for which these conditions hold, we fix δ2 > w+,N − σ2, then choose a ∈]0, 1[
such that (4.67) holds, and finally select b in such a way that |b|2 = δ2(1− a2).

We now produce values of a and b for which s = 1 and δ2 > w+,N − σ2. For this, it is sufficient to find
a ∈]0, 1[ and δ2 > w+,N − σ2 such that

1 > a2 >
σ2cN

σ2cN + (w+,N − σ2)

(
1−

w+,N − σ2

δ2

)2

(4.68)

For each δ2 > w+,N − σ2, such an a exists because the term σ2cN
σ2cN+(w+,N−σ2)

(
1− w+,N−σ2

δ2

)2
is strictly less

than 1. Therefore, we consider any δ2 > w+,N −σ2, select a ∈]0, 1[ verifying (4.68), and finally choose b such
that |b|2 = δ2(1− a2).

We now show the existence of (a, b) for which δ2 < w+,N − σ2 and s = 1. For this, (4.68) has to be verified,
i.e. it must exist δ2 < w+,N − σ2 such that

1 >
σ2cN

σ2cN + (w+,N − σ2)

(
1−

w+,N − σ2

δ2

)2

(4.69)

It is easy to check that δ2 verifies (4.69) if and only if δ2 is chosen in such a way that

w+,N − σ2 > δ2 >
w+,N − σ2

1 +
(
σ2cN+w+,N−σ2

σ2cN

)1/2

We thus choose such a value for δ2, choose a for which (4.69) holds, and finally select b in such a way that
|b|2 = δ2(1− a2).

Finally, s = 0 if and only if (4.67) and δ2 < w+,N − σ2 hold. We simply choose δ2 < w+,N − σ2, select
a ∈]0, 1[ such that (4.67) holds, and choose b in such a way that |b|2 = δ2(1− a2).

We finally illustrate the above discussion by numerical experiments showing that s can indeed by equal to
0, 1 or 2. The particular values of a and b are not mentioned. Figures 4.1, 4.2, 4.3 represent histograms of the
eigenvalues of realizations of the matrix ΣfΣ∗pΣpΣ

∗
f as well as the graph of the density gN of measure νN .

Figure 4.1 corresponds to a choice of a, b for which s = 0, while s = 1 and s = 2 in the context of Figures
4.2 and 4.3 respectively.
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Рис. 4.1: Histogram of the eigenvalues and graph of gN , s = 0

Рис. 4.2: Histogram of the eigenvalues and graph of gN , s = 1

Рис. 4.3: Histogram of the eigenvalues and graph of gN , s = 2
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Глава 5

The canonical correlation coefficients
between the past and the future

As we can see from the previous chapter in the high dimensional regime the number of eigenvalues of R̂f |pR̂∗f |p
that escape from the support is a bad estimator for dimension P of the minimal state space representation
(1.2). So in this chapter we consider a different approach that is used in order to estimate P .
The canonical correlation coefficients are defined in time series analysis in order to evaluate the relationships
between the past and the future of a given multivariate time series (yn)n∈Z (see e.g. [25]). In this context, we
define the 2 subspaces, denoted Yp (the past) and Yf (the future), as the spaces generated by the components
of yn for n ≤ 0 and the components of yn for n > 0 respectively. We recall that if (ωp, k)k≥0 and (ωf,k)k≥0

represent orthonormal bases of Yp and Yf , the canonical correlation coefficients between the past and the
future of y are defined as the singular values of the infinite matrix with entries E{ωf,kω∗p,l}. In the case when
yn has a rational spectrum, the number of non zero canonical correlation coefficients between the past and
the future of (yn)n∈Z is finite, and coincides with the minimal dimension P of the state-space representations
of y. We refer the reader to [30] for an exhaustive presentation of the related results and their important
implications on questions such as the identification of state space models or on reduction model technics.
See also the concise monography [45]. In a number of practical procedures, Yp and Yf are replaced by the
finite dimensional spaces Yp,L and Yf,L generated respectively by the components of yn, n = −(L− 1), . . . , 0
and yn, n = 1, . . . , L for a certain integer L ≥ P , a condition that implies that the number of non zero
coefficients between Yp,L and Yf,L is still equal to P . We refer again to [30] for more details on the effects of
the truncation. As the second order statistics of y are very often unknown, the correlation coefficients between
Yp,L and Yf,L have to be estimated from N available samples y1, . . . , yN . The correlation coefficients between
Yp,L and Yf,L are usually estimated by the canonical correlation coefficients between the row spaces of Yp,L
and Yf,L, which are define as above, i.e.

Yp,N =


y1 y2 . . . yN−1 yN
y2 y3 . . . yN yN+1
...

...
...

...
...

...
...

...
...

...
yL yL+1 . . . yN+L−2 yN+L−1

 (5.1)

and

Yf,N =


yL+1 yL+2 . . . yN−1+L yN+L

yL+2 yL+3 . . . yN+L yN+L+1
...

...
...

...
...

...
...

...
...

...
y2L y2L+1 . . . yN+2L−2 yN+2L−1

 . (5.2)

The above estimation procedure produces reasonably accurate results when the ratio cN = ML/N is small
enough. However, if y is high-dimensional, i.e. if M is large, the condition cN << 1 will not be verified as
soon as the number of observations is not unlimited. It is therefore important to evaluate the behaviour of
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the above estimators when cN is not negligible. In this chapter, we address this problem when yn is generated
as in Chapter 4 by studying the behaviour of the above estimators in the same high-dimensional regime as in
the previous two chapters, i.e. where L is a fixed integer and where M and N both converge towards infinity
in such a way that

cN =
ML

N
→ c∗, 0 < c∗ ≤ 1.

The estimated canonical correlation coefficients coincide with the singular values of matrix
ĈLN = (YfY

∗
f )−1/2YfY

∗
p (YpY

∗
p )−1/2 because the rows of (YfY

∗
f )−1/2Yf and (YpY

∗
p )−1/2Yp represent orthonormal

bases of Yp,L and Yf,L. In the following, we rather study the singular values to the square, or equivalently the
eigenvalues of theML×MLmatrix ĈLN ĈL∗N which are also eigenvalues ofN×N matrix Y ∗p (YpY

∗
p )−1YpY

∗
f (YfY

∗
f )−1Yf

up to zeros. Here one can notice that matrices Y ∗p (YpY
∗
p )−1Yp and Y ∗f (YfY

∗
f )−1Yf are projectors and they

will be denoted by Πp,N and Πf,N respectively.
We mention that a number of previous works addressed the behaviour of canonical correlation coefficients in
the high-dimensional case. However, the underlying random matrix models are simpler than in the present
paper. More specifically, the random matrices Yp,L and Yf,L defined by (5.1, 5.2) are replaced by independent
matrices Y1 and Y2 with i.i.d. elements, a property that is not verified by Yp,L and Yf,L. In 1980, [51] addressed
the case of Gaussian i.i.d. entries and derived the limit distribution of the squared canonical correlation
coefficients between the row spaces of Y1 and Y2. We note that this result appears as a trivial consequence
of more recent free probability theory. More recently, [52] extended this result to the case where Y1 and Y2

are independent matrices with non Gaussian i.i.d. entries. We also note that [53] took benefit of this result
to propose independence tests between 2 sets of i.i.d. high-dimensional samples. We finally mention that [1]
extended the result of [51] to the case where Y1 and Y2 have Gaussian i.i.d. entries, but this time E{Y1Y∗2

N }
is a non zero low rank matrix.

5.1 With zero signal

This section is dedicated to the case when the signal is absent, so yn = vn and Yp, Yf coincide with Vp, Vf
defined from (vn)n=1,...,N+2L−1. Due to the Gaussianity of the i.i.d. vectors (vn)n≥1, it exists i.i.d. Nc(0, IM )

distributed vectors (viid,n)n≥1 such that E(viid,nv
∗
iid,n) = IM verifying vn = R

1/2
N viid,n. It is clear that the row

spaces of Vp and Vf coincide with the row spaces of the block Hankel matrices Vp,iid and Vf,iid defined from
vectors (vn,iid)n=1,...,N+2L−1. Therefore, the correlation coefficients between the 2 pairs of subspaces coincide,
and there is no restriction to assume that RN = IM in this section.

As before we denote by Wp,Wf the matrices defined by Wp = 1√
N
Vp and Wf = 1√

N
Vf , then Πp =

W ∗p (WpW
∗
p )−1Wp and Πf = W ∗f (WfW

∗
f )−1Wf . Also we define the 2ML×N matrix

WN =

(
Wp,N

Wf,N

)
,

its elements (Wm
i,j)i≤2L,j≤N,m≤M satisfy

E{Wm
i,jW

m′
i′,j′} = δi+j,i′+j′ .

where Wm
i,j represents the element which lies on the (m+M(i− 1))-th line and j-th column for 1 ≤ m ≤M ,

1 ≤ i ≤ 2L and 1 ≤ j ≤ N . For each j = 1, . . . , N ,{wj}Nj=1, {wp,j}Nj=1 and {wf,j}Nj=1 are the column of
matrices W,Wp and Wf respectively.

It is shown in [32] that the empirical eigenvalue distribution ofWi,NW
∗
i,N for i = {p, f} converges towards the

Marcenko-Pastur distribution, and that almost surely, for N greater than a random integer, its eigenvalues
located in the neighbourhood of [(1 − √c∗)2, (1 +

√
c∗)2]. Therefore, almost surely, for N large enough,

matrices WfW
∗
f and WpW

∗
p are invertible. However, considered as functions of the entries of Wf and Wp,

(WfW
∗
f )−1 and (WpW

∗
p )−1 are not differentiable everywhere. As we use in the following the Nash-Poincaré

inequality as well as the integration by parts formula, we introduce a regularization term ηN that avoids any
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technical problems.

In this chapter we slightly change already introduced notation, that is, we will say that function fN (z) =
Oz(αN ) if z belongs to a domain Ω ⊂ C and there exist two nice polynomials P1 and P2 such that
fN (z) ≤ αNP1(|z|)P2( 1

ρ(z)) for each z ∈ Ω, where ρ(z) = dist(z,R+). If Ω = C \ R+, we will just write
fN (z) = Oz(αN ) without mentioning the domain, and for any K ×K matrix A(z), by A(z) = OKz (αN ) we
mean that each element of A(z) is Oz(αN ). Finally, we will use a lot the notation fN (z) = Oz2(αN ) without
mentioning the domain, which will mean that z2 ∈ C\R+, or equivalently, that z ∈ C\R. We notice that if P1,
P2 and Q1, Q2 are nice polynomials, then P1(|z|)P2( 1

ρ(z)) +Q1(|z|)Q2( 1
ρ(z)) ≤ (P1 +Q1)(|z|)(P2 +Q2)( 1

ρ(z)),
from which we conclude that if functions f1 and f2 are Oz(α) then also f1(z) + f2(z) = Oz(α).

5.1.1 Preliminary results

In this subsection we present some useful results concerning our model.

5.1.1.1 Regularization term

This part is dedicated to regularization term and its properties that will help us in further calculations. We
define it as

ηN = det [φ(Wf,NW
∗
f,N )]det [φ(Wp,NW

∗
p,N )], (5.3)

where φ is a smooth function such that

φ(λ) =

{
1, for λ ∈ [(1−√c∗)2 − ε], [(1 +

√
c∗)2 + ε],

0, for λ ∈ [−∞, (1−√c∗)2 − 2ε] ∪ [(1 +
√
c∗)2 + 2ε, +∞]

and φ(λ) ∈ (0, 1) elsewhere. Taking into account the almost sure behaviour of the eigenvalues of matrices
WpW

∗
p and WfW

∗
f , ηN = 1 a.s. for each N larger than a random integer and

(Wi,NW
∗
i,N )−1ηN ≤

IML

(1−√c∗)2 − 2ε
. (5.4)

We first mention the following useful property.

Lemma 5.1. For each l, k ∈ N it holds that

E{ηlN} = 1 +O
(

1

Nk

)
(5.5)

Proof. Denote

EN = {one of the eigenvalues of WpW
∗
p or WfW

∗
f escapes from the [(1−

√
c∗)2 − ε], [(1 +

√
c∗)2 + ε]}

and define another smooth function φ0 as

φ0(λ) =

{
0, for λ ∈ [(1−√c∗)2], [(1 +

√
c∗)2],

1, for λ ∈ [−∞, (1−√c∗)2 − ε] ∪ [(1 +
√
c∗)2 + ε, +∞]

and φ0(λ) ∈ (0, 1) elsewhere. Then we have

P (EN ) ≤ P
(
Trφ0(WpW

∗
p ) ≥ 1

)
≤ E

{(
Trφ0(WpW

∗
p )
)2k}

for all k ∈ N. In order to evaluate E
{(

Trφ0(WpW
∗
p )
)2k} one can use the same steps as in the proof of

Lemma 3.2 [33] and get immediately

E
{(

Trφ0(WpW
∗
p )
)2k}

= O
(

1

N2k

)
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with P (EN ) = O
(

1
N2k

)
for each k. To show (5.5) we write

|E{ηlN − 1}|2 = |E{(ηN − 1)(1 + . . .+ ηl−1
N )}|2 ≤ E{(ηN − 1)2}E{(1 + . . .+ ηl−1

N )2}
≤ κE{(ηN − 1)21EN }

because ηN − 1 = 0 on EcN . Also since by definition φ(λ) ∈ [0, 1] we conclude that 0 ≤ ηN ≤ 1 and

0 ≤ (ηN − 1)2 ≤ 1. This allows us to write that κE{(ηN − 1)21EN } ≤ κE{1EN } = κP (EN ) = O
(

1

N2k

)
and

so complete the proof. �

This Lemma permits us to write that E{F} = E{ηlNF} + O(N−k), where F is bounded. Indeed, after
applying Schwartz inequality we obtain the familiar term:

|E{(ηlN − 1)F}|2 ≤ E{(1− ηlN )2}E
{
|F |2

}
= κ(1− 2(1 +O

(
1

Nk

)
) + 1 +O

(
1

Nk

)
) = O

(
1

Nk

)
.

Finally, since we use integration by parts formula and Poincaré-Nash inequality, the partial derivatives of η
with respect to elements of Wp,Wf will appear and the next lemma is needed.

Lemma 5.2. Let Ω be the event defined by:

Ω = EN ∩ {all eigenvalues of WpW
∗
p and WfW

∗
f ∈ Supp(φ)}. (5.6)

Then it holds that
∂ηN
∂Wm

i,j

= 0 on Ωc (5.7)

and

E


∣∣∣∣∣ ∂ηN∂Wm

i,j

∣∣∣∣∣
2
 = O

(
1

Nk

)
(5.8)

for all 1 ≤ m ≤M , 1 ≤ i ≤ 2L, 1 ≤ j ≤ N and each k.

The proof of the lemma is an adaptation of Lemma 11 and calculations from Proposition 4 of [19]

5.1.1.2 Linearisation

From what above we can conclude that for N large enough, ηNΠi,N = Πi,N almost surely and from that,
in order to evaluate the almost sure behaviour of the resolvent of Πp,NΠf,N , it is sufficient to study the
behaviour of the respective resolvent QN (z) defined by

QN (z) = (ηNΠp,NηNΠf,N − zI)−1

As the direct study of QN (z) is not obvious, we rather use the well known linearisation trick and introduce
the resolvent QN (z) of the 2N × 2N block matrix

MN =

(
0 ηNΠp,N

ηNΠf,N 0

)
.

It is known that QN (z) can be expressed as

QN (z) =

(
zQN (z2) QN (z2)ηNΠp,N

ηNΠf,NQN (z2) zQ̂N (z2)

)
(5.9)

where Q̂N (z) is the resolvent of matrix ηNΠf,NηNΠp,N . As shown below, it is rather easy to evaluate the
asymptotic behaviour of QN (z) using the Poincaré-Nash inequality and the integration by part formula (see
Propositions 2.3 and 2.2). Formula (5.9) will then provide all the necessary information on QN (z).

Since QN (z) and QN (z) are resolvents of non Hermitian matrices, the usual bounds ‖QN (z)‖ ≤ 1
Imz and

‖QN (z)‖ ≤ 1
Imz are not necessary valid. Thus a more specific control is needed.
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Lemma 5.3. If Imz 6= 0 (i.e. z2 ∈ C \ R+), then ‖Q(z)‖ = Oz2(1).

Proof. In order to bound ‖Q‖ it is sufficient to bound each of its blocks: Qpp, Qpf , Qff and Qfp. We will
start with Qpf . For this we use expression (5.9) for Qpf , the fact that Πp = Π2

p and that (AB − x)−1A =
A(BA− x)−1 for any matrices A,B. Then,

Qpf = (η2
NΠpΠf − z2)−1ηNΠp = ηNΠp(η

2
NΠpΠfΠp − z2)−1Πp.

Here (η2
NΠpΠfΠp − z2)−1 is the resolvent of a positive Hermitian matrix, from what follow that its norm

can be bounded by (ρ(z2))−1. Since ‖Πp‖ ≤ 1 and ηN ≤ 1, we have

‖Qpf‖ ≤
1

ρ(z2)
(5.10)

Analogues for Qfp we have:

Qfp = ηNΠf (η2
NΠpΠf − z2)−1 = ηNΠf (η2

NΠfΠpΠf − z2)−1Πf , (5.11)

from what we will have the same bound for Qfp. To deal with Qpp we use again (5.9) and resolvent identity.
Thus, we have

Qpp = z(η2
NΠpΠf − z2)−1 = −1

z
(IN + η2

NΠpΠf (η2
NΠpΠf − z2)−1) = −1

z
(IN + ηNΠpQfp)

Obviously ‖IN +ηNΠpQfp‖ ≤ 1+ 1
ρ(z2)

. To show that |z−1| ≤ P (ρ(z2)) for some nice polynomial P , we write

1

|z|2
≤ 1

ρ(z2)
≤ 1 +

1

ρ(z2)
≤
(

1 +
1

ρ(z2)

)2

(5.12)

This brings us to the conclusion that ‖Qpp‖ = Oz2(1) and so for Qff . This finishes the proof of the Lemma.
�

Remark 5.1. It is worth to remark that in the course of the proof we basically get that 1
|z|Oz2(1) is still

Oz2(1) and since |z| ≤ 1
2(1 + |z|2) we can also say that |z|Oz2(1) = Oz2(1).

Corollary 5.1. N−1TrQpf and N−1TrQfp coincide with the value taken by the Stieltjes transforms evaluated
at z2 of some positive measures carried by R+, moreover E{N−1TrQpf} and E{N−1TrQfp} also coincide
with the value taken by the Stieltjes transforms evaluated at z2 of some positive measures carried by R+ and
of total mass cN +O(N−k) for each k ∈ N.

Proof. It is obvious that N−1Tr(η2
NΠpΠfΠp − z)−1 is the Stieltjes transforms of some positive probability

measure carried by R+ and as a consequence we can easily obtain that function N−1TrηNΠp(η
2
NΠpΠfΠp −

z)−1Πp is also the Stieltjes transforms of a positive measure carried by R+ of total mass N−1TrηNΠ2
p =

N−1TrηNΠp. But in the Lemma we proved that Qpf = ηNΠp(η
2
NΠpΠfΠp−z2)−1Πp. This gives us immediately

the statement of the Lemma. Moreover we can notice that N−1E{TrQpf} and N−1E{TrQfp} are also the
Stieltjes transforms and the total mass of corresponding measures is N−1E{TrηNΠp} = cN + O(N−k) for
any k ∈ N. �

Analogous to the two previous chapters, in the following, every 2N × 2N matrix G will be written as

G =

(
Gpp Gpf

Gfp Gff

)
, (5.13)

where the 4 matrices (Gi,j)i,j∈p,f are N ×N . Sometimes, the blocks will be denoted G(pp), G(pf), ....
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5.1.1.3 Properties based on the invariance of the complex Gaussian distribution

Lemma 5.4. The matrix E{ηN (WiW
∗
i )−1} is block diagonal and matrices E{ηNΠi}, E{Qij}, E{ηNΠhQij}

and E{ηNQijW
∗
h (WhW

∗
h )−2Wh} are diagonal, for i, j, h = {p, f}. Moreover, if i, j, h = {p, f}

TrE{Qij} = TrE{Qĩ̃j}, (5.14)

TrE{ηNΠhQij} = TrE{ηNΠh̃Qĩ̃j}, (5.15)

where “ ˜ ” changes index to opposite: p→ f, f → p.

Proof. To prove that all E{Qij} are diagonal we consider the new set of vectors zk = e−ikθyk and construct
the matrices Zp, Zf in the same way as Yp and Yf . It is clear that sequence (zn)n∈Z has the same probability
distribution that (yn)n∈Z. Zp and Zf can be expressed as

Zp =

e
−iθIM . . . 0
...

. . .
...

0 . . . e−LiθIM

Yp

1 . . . 0
...

. . .
...

0 . . . e−(N−1)iθ

 ,

Zf = e−Liθ

e
−iθIM . . . 0
...

. . .
...

0 . . . e−LiθIM

Yf

1 . . . 0
...

. . .
...

0 . . . e−(N−1)iθ

 .

Then

ZiZ
∗
i =

e
−iθIM . . . 0
...

. . .
...

0 . . . e−LiθIM

YiY
∗
i

e
iθIM . . . 0
...

. . .
...

0 . . . eLiθIM

 , (5.16)

(ZiZ
∗
i )−1 =

e
−iθIM . . . 0
...

. . .
...

0 . . . e−LiθIM

 (YiY
∗
i )−1

e
iθIM . . . 0
...

. . .
...

0 . . . eLiθIM

 (5.17)

so for the corresponding functions φ(ZfZ
∗
f ) = φ(YfY

∗
f ) and φ(ZpZ

∗
p) = φ(YpY

∗
p ). This imply that new

regularization term ηz = det φ(ZpZ
∗
p)det φ(ZfZ

∗
f ) will remain the same, i.e. ηz = η. Next we define Πz

i =

Z∗i (ZiZ
∗
i )−1Zi, i = {p, f} it holds that

Πz
i =

1 . . . 0
...

. . .
...

0 . . . e(N−1)iθ

Πi

1 . . . 0
...

. . .
...

0 . . . e−(N−1)iθ

 (5.18)

for i = {p, f}. Similarly to Q we define matrix QZ =
(−zIML ηzΠzp

ηzΠzf −zIML

)−1
and obtain immediately that

E{QZ} =

(
A 0
0 A

)
E{Q}

(
A∗ 0
0 A∗

)
,

where N ×N matrix A defined as

A =

1 . . . 0
...

. . .
...

0 . . . e(N−1)iθ


Obviously for each N ×N block E{Qij

z}, i, j = {p, f}, we have

E{Qij
z} =

1 . . . 0
...

. . .
...

0 . . . e(N−1)iθ

E{Qij}

1 . . . 0
...

. . .
...

0 . . . e−(N−1)iθ
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and as consequence

E{ηNΠz
hQij

z} =

1 . . . 0
...

. . .
...

0 . . . e(N−1)iθ

E{ηNΠhQij}

1 . . . 0
...

. . .
...

0 . . . e−(N−1)iθ

 ,

for h = {p, f}. Since E{QZ} = E{Q}, for every element E{Qij
k,l} with 1 ≤ k, l ≤ N and i, j, h = {p, f} it

holds

E{Qij
k,l} = e(k−1)iθE{Qij

k,l}e−(l−1)iθ = e(k−l)iθE{Qij
k,l}

E{ηN (ΠhQij)
k,l} = e(k−1)iθE{ηN (ΠhQij)

k,l}e−(l−1)iθ = e(k−l)iθE{ηN (ΠhQij)
k,l}

This proves that E{Qij
k,l} = 0 and E{ηN (ΠhQij)

k,l} = 0 if k 6= l, as expected. Analogous we can prove the
same results for E{ηN (WiW

∗
i )−1}, E{ηNΠi} and E{ηNQijW

∗
h (WhW

∗
h )−2Wh} from (5.17) and (5.18).

To prove (5.14) let us consider sequence z defined by zn = y−n+N+2L for each n. Again, the distribution of
zn will remain the same and it is easy to see that for i ∈ {p, f} Zi can be found as

Zi =

 0 . . . IM
...

...
IM . . . 0

Yĩ

0 . . . 1
...

...
1 . . . 0

 ,

and as consequence

ZiZ
∗
i =

 0 . . . IM
...

...
IM . . . 0

YĩY
∗
ĩ

 0 . . . IM
...

...
IM . . . 0


Here one can see that ZiZ∗i is a unitary transformation of YĩY

∗
ĩ
, so both matrices has the same eigenvalues,

which means that φ(ZiZ
∗
i ) = φ(YĩY

∗
ĩ

). This imply that new regularization term ηz = det φ(ZpZ
∗
p)det φ(ZfZ

∗
f )

will remain the same, i.e. ηz = η. Next we find corresponding expressions for Πz
p,f and Qz. It is easy to see

that Πz
p = AΠfA and Πz

f = AΠpA, where this time A =

0 . . . 1
...

...
1 . . . 0

 is a N × N matrix. From this, we

obtain that

E{QZ} =

(
A 0
0 A

)
E
{(−zIN ηΠf

ηΠp −zIN

)−1 }(A 0
0 A

)
.

Using the formula for inverse block matrices and fact that E{QZ} = E{Q}, we obtain that E{Qpp} =
AE{Qff}A and E{Qpf} = AE{Qfp}A. This immediately implies that for every 1 ≤ k ≤ N and h, i, j = {p, f}
we have E{(Qij)

k,k} = E{(Qĩ̃j)
N+1−k,N+1−k} and E{ηN (ΠhQij)

k,k} = E{ηN (Πh̃Qĩ̃j)
N+1−k,N+1−k}. As

consequence E{TrQij} = E{TrQĩ̃j} and E{ηNΠhQij} = E{ηNΠh̃Qĩ̃j} as expected. �

Previous Lemma gives us that matrices E{ηN (WiW
∗
i )−1} and E{ηNΠi} are diagonal, in the next Lemma we

will prove that they are actually a multiple of identity matrix up to an error term.

Lemma 5.5. For i = {p, f}, we have:

E{ηN (WiW
∗
i )−1} =

1

1− cN
IML +OML

(
1

N3/2

)
(5.19)

E{ηNΠi} = cNIN +ON
(

1

N3/2

)
. (5.20)

Moreover, (ML)−1TrE{ηN (WiW
∗
i )−1} = (1− cN )−1 +O( 1

N2 ).
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Proof. We consider i = p, obviously for i = f the proof is analogous. In the following we drop index i and
denote G = (WW ∗)−1. To prove this lemma we will use the integration by parts formula (Proposition 2.2)
for ηNGm1m2

i1i2
Wm2
i2,j2

W̄m3
j1,i3

:

E{ηNGm1m2
i1i2

Wm2
i2,j2

W̄m3
j1,i3
} =

∑
m′,i′,j′

E{W̄m3
j1,i3

Wm′
i′,j′}

×

(
E

{
∂ηN

∂Wm′
i′,j′

Gm1m2
i1i2

Wm2
i2,j2

}
+ E

{
ηN

∂Gm1m2
i1i2

∂Wm′
i′,j′

Wm2
i2,j2

}
+ E

{
ηNG

m1m2
i1i2

∂Wm2
i2,j2

∂Wm′
i′,j′

})
(5.21)

Lemma 5.2 implies that the first term of r.h.s of (5.21) is of order O(N−k) for each k. Indeed,

E

{
∂ηN

∂Wm′
i′,j′

Gm1m2
i1i2

Wm2
i2,j2

}
= E

{
1Ω

∂ηN

∂Wm′
i′,j′

Gm1m2
i1i2

Wm2
i2,j2

}

and Schwartz inequality leads to∣∣∣∣∣E
{

1Ω
∂ηN

∂Wm′
i′,j′

Gm1m2
i1i2

Wm2
i2,j2

}∣∣∣∣∣
2

≤ E


∣∣∣∣∣ ∂ηN∂Wm′

i′,j′

∣∣∣∣∣
2
E

{∣∣∣1ΩG
m1m2
i1i2

Wm2
i2,j2

∣∣∣2} (5.22)

On event Ω all eigenvalues of WW ∗ belong to ((1 − √c∗)2 − 2ε, (1 +
√
c∗)2 + 2ε), so ‖G1Ω‖ and ‖W1Ω‖

are bounded, therefore we have immediately that
∣∣∣1ΩG

m1m2
i1i2

Wm2
i2,j2

∣∣∣ is bounded by some nice constant. Then,
after some calculations (5.21) becomes

E{ηNGm1m2
i1i2

Wm2
i2,j2

W̄m3
j1,i3
} =

1

N

∑
m′,i′,j′

δm′,m3δi3+j1,i′+j′

×
(
−E

{
ηNG

m1m′

i1i′
(W ∗G)m2

j′,i2
Wm2
i2,j2

}
+ E{ηNGm1m2

i1i2
δm′,m2δi2,i′δj2,j′}

)
+O

(
1

Nk

)
(5.23)

Defining l = i3 − i′ = j′ − j1 which changes from −L + 1 to L − 1 and taking into account (2.3) we get
δm′,m3δi3+j1,i′+j′ = (J

(l)
L ⊗ IM )m

′m3
i′i3

(J
(l)
N )j1j′ . Then, after summing over i′, j′ and m′, (5.23) becomes

E{ηNGm1m2
i1i2

Wm2
i2,j2

W̄m3
j1,i3
} = − 1

N
E
{
ηN

(
G(J

(l)
L ⊗ IM )

)m1m3

i1i3
(J

(l)
N W ∗G)m2

j1,i2
Wm2
i2,j2

}
+

1

N
E{ηNGm1m2

i1i2
(J

(l)
L ⊗ IM )m2m3

i2i3
(J

(l)
N )j1j2}+O

(
1

Nk

)
and again, this time summing both sides over i2,m2:

E{ηN (GW )m1
i1j2

W̄m3
j1,i3
} = − 1

N

L−1∑
l=−(L−1)

E
{
ηN (G(J

(l)
L ⊗ IM ))m1m3

i1i3
(J

(l)
N Π)j1j2

}

+
1

N

L−1∑
l=−(L−1)

E
{
ηN (G(J

(l)
L ⊗ IM ))m1m3

i1i3
(J

(l)
N )j1j2

}
+O

(
1

Nk

)
. (5.24)

At this point in order to prove (5.19) we take j2 = j1 and sum over this index, then, since GWW ∗ = IML

we have

E{ηN}IML = −
L−1∑

l=−(L−1)

E
{
ηNG(J

(l)
L ⊗ IM )

1

N
Tr(J

(l)
N Π)

}
+

L−1∑
l=−(L−1)

E
{
ηNG(J

(l)
L ⊗ IM )

1

N
TrJ

(l)
N

}
+O

(
1

Nk

)
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Obviously 1
NTrJ

(l)
N is equal to 0 for l 6= 0 and to 1 if l = 0 and as was discussed above we can replace E{ηN}

by 1 on the l.h.s. while adding term O(N−k) and ηN by η2
N on the r.h.s. Then

IML = −
L−1∑

l=−(L−1)

E
{
ηNG(J

(l)
L ⊗ IM )

}
E
{

1

N
Tr(ηNJ

(l)
N Π)

}
−

L−1∑
l=−(L−1)

E
{
ηNG(J

(l)
L ⊗ IM )

1

N
Tr(ηNJ

(l)
N Π)◦

}

+ E {ηNG}+O
(

1

Nk

)
(5.25)

Lemma 5.4 implies that E{ηNΠ} is diagonal, so E
{

1

N
Tr(ηNJ

(l)
N Π)

}
= 0 for all l 6= 0 and moreover since

1
NTrΠ = cN it is easy to see that E

{
1
NTr(ηNΠ)

}
= cN +O(N−k) for each k. Then from the last equation

we derive immediately the expression for E{ηNG}:

E
{
ηN (WW ∗)−1

}
=

1

1− c
IML +

1

1− c

L−1∑
l=−(L−1)

E
{
ηNG(J

(l)
L ⊗ IM )

1

N
Tr(ηNJ

(l)
N Π)◦

}
+ O

(
1

Nk

)
(5.26)

Finally, we show that each element of matrix
∑

E
{
ηNG(J

(l)
L ⊗ IM ) 1

NTr(J
(l)
N (ηNΠ)◦)

}
is of order O(N−3/2),

for this we apply Schwartz inequality:∣∣∣∣E{(fm1
i1

)∗ηNG(J
(l)
L ⊗ IM )fm2

i2

1

N
Tr(ηNJ

(l)
N Π◦)

}∣∣∣∣ ≤ (Var
(

(fm1
i1

)∗ηNG(J
(l)
L ⊗ IM )fm2

i2

)
Var

(
1

N
Tr(ηNJ

(l)
N Π)

))1/2

In order to evaluate variances one should follow the steps of the proof of Proposition 3.1 [32]. In [32], matrix
ηG is replaced by the resolvent of WW ∗ evaluated at z ∈ C+. The proof of Proposition 3.1 [32] uses the
fact that the norm of this resolvent is bounded by 1

Imz , a result that is of course not true in the present
context. However, the above upper bound is replaced by ηNG ≤ κIN (see (5.4)). This allows to obtain the
same estimations as in Proposition 3.1 [32]:

Var
(

(fm1
i1

)∗ηNG(J
(l)
L ⊗ IM )fm2

i2

)
= O

(
1

N

)
Var

(
1

N
Tr(ηNJ

(l)
N Π)

)
= O

(
1

N2

)
Var

(
1

ML
TrηNG(J

(l)
L ⊗ IM )

)
= O

(
1

N2

)
and conclude (5.19).
To estimate the expectation of (ML)−1TrηN (WW ∗)−1 we take a normalized trace from both sides of (5.26)
and use again the Schwartz inequality for an error term:∣∣∣∣E{ 1

ML
Tr(ηNG(J

(l)
L ⊗ IM ))

1

N
Tr(ηNJ

(l)
N Π◦)

}∣∣∣∣ ≤ (Var

(
1

ML
TrηNG(J

(l)
L ⊗ IM )

)
Var

(
1

N
Tr(ηNJ

(l)
N Π)

))1/2

= O
(

1

N2

)
Then we get immediately (ML)−1TrE{ηN (WiW

∗
i )−1} = (1− cN )−1 +O( 1

N2 ).
Finally, to prove (5.20) we return to equation (5.24) but this time we take m1 = m3, i1 = i3 and sum both
sides over these indexes:

E{ηNΠ} = −cN
L−1∑

l=−(L−1)

E
{

1

ML
Tr(ηNG(J

(l)
L ⊗ IM ))(J

(l)
N Π)

}

+ cN

L−1∑
l=−(L−1)

E
{

1

ML
Tr(ηNG(J

(l)
L ⊗ IM ))J

(l)
N

}
+O

(
1

Nk

)
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Analogous to what we have seen above, we replace ηN by η2
N in the first term of r.h.s. and remark that

E{Tr(ηNG(J
(l)
L ⊗ IM ))} = 0 for all l 6= 0, since E{ηNG} is block diagonal, moreover E{(ML)−1Tr(ηNG)} =

(1− cN )−1 +O( 1
N2 ), then after trivial algebra we get

E{ηNΠ} = cNIN +O
(

1

N2

)
+

L−1∑
l=−(L−1)

E
{

1

ML
Tr(ηNG(J

(l)
L ⊗ IM ))◦ηNJ

(l)
N Π

}
Like in previous case, with Schwartz inequality we obtain the necessary error terms. �

5.1.2 Expression of matrix E{Q} obtained using the integration by parts formula

Now we return to the expression of Q(z). Using the resolvent identity we have

zQ(z) = −I2N + Q(z)

(
0 ηΠp

ηΠf 0

)
= −I2N +

(
Qpf (z)ηΠf Qpp(z)ηΠp

Qff (z)ηΠf Qfp(z)ηΠp

)
. (5.27)

The goal will be to express all four blocks of r.h.s. in terms of Q(z) with help of integration by parts formula,
Proposition 2.2. We start with Qpp(z)ηΠp.

E{(QppηΠp)rs} =
N∑
t=1

L∑
i1,i2=1

M∑
m1,m2=1

E
{

Qrt
ppηW̄

m1
p,i1t

(
(WpW

∗
p )−1

)m1m2

i1i2
Wm2
p,i2s

}
=
∑

E{W̄m1
p,i1t

Wm3
i3u
}

× E

{
∂
(
Qrt

ppη
(
(WpW

∗
p )−1

)m1m2

i1i2
Wm2
p,i2s

)
∂Wm3

i3u

}
=

1

N

∑
E

{
δm1,m3δi1+t,i3+uQ

rt
ppη

(
(WpW

∗
p )−1

)m1m2

i1i2

∂Wm2
p,i2s

∂Wm3
i3u

+Qrt
ppη

∂
(
(WpW

∗
p )−1

)m1m2

i1i2

∂Wm3
i3u

Wm2
p,i2s

+
∂Qrt

pp

∂Wm3
i3u

η
(
(WpW

∗
p )−1

)m1m2

i1i2
Wm2
p,i2s

+Qrt
pp

∂η

∂Wm3
i3u

(
(WpW

∗
p )−1

)m1m2

i1i2
Wm2
p,i2s

}
(5.28)

Here we take derivative with respect to each element ofW , so index i3 takes values from 1 to 2L. We are going
to denote each term of r.h.s. without expectation by T1, T2, T3, T4 respectively and treat them separately.
First one is obvious

T1 =
1

N

∑
δm1,m3δi1+t,i3+uQ

rt
ppη

(
(WpW

∗
p )−1

)m1m2

i1i2

∂Wm2
p,i2s

∂Wm3
i3u

=
1

N

∑
δm1,m2δi1+t,i2+sQ

rt
ppη

(
(WpW

∗
p )−1

)m1m2

i1i2

We define a new index l = i1 − i2 which obviously takes values from {−(L − 1, . . . , L − 1)}, then we can
rewrite δi1+t,i2+s = δi1−i2,lδs−t,l = (J

(l)
M )i2i1(J

(l)
N )ts and taking into account (2.3) we obtain

T1 =
1

N

∑
(J

(l)
N )ts(J

(l)
L ⊗ IM )m2m1

i2i1
Qrt

ppη
(
(WpW

∗
p )−1

)m1m2

i1i2
=

L−1∑
l=−(L−1)

(
QppJ

(l)
N

)
rs

1

N
Tr
(

(J
(l)
L ⊗ IM )η(WpW

∗
p )−1

)
(5.29)

Now we take an expectation and rewrite

E{T1} =
L−1∑

l=−(L−1)

E
{(

QppJ
(l)
N

)
rs

} 1

N
E
{

Tr
(

(J
(l)
L ⊗ IM )η(WpW

∗
p )−1

)}

+
L−1∑

l=−(L−1)

E
{(

Q◦ppJ
(l)
N

)
rs

1

N
Tr
(

(J
(l)
L ⊗ IM )η(WpW

∗
p )−1

)}
In the obtained equation we denote the second term of r.h.s by T E1 . According to (5.19) E{(ML)−1Trη(WpW

∗
p )−1} =

1
1−cN +O( 1

N2 ), it means that if l = 0 we have

1

N
E{Tr(η(WpW

∗
p )−1)} =

cN
(1− cN )

+O
(

1

N2

)
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and if l 6= 0 then from Lemma 5.4 we have 1
NE
{

Tr
(

(J
(l)
L ⊗ IM )η(WpW

∗
p )−1

)}
= 0. Since resolvent is

bounded (see Lemma 5.3), the only term which gives impact appears when l = 0 and

E{T1} =
cN

1− cN
E
{

(Qpp)rs

}
+Oz2

(
1

N2

)
+ T E1 . (5.30)

For second term we have

T2 = − 1

N

∑
δm1,m3δi1+t,i3+uQ

rt
ppη

(
(WpW

∗
p )−1

)m1m3

i1i3

(
W ∗p (WpW

∗
p )−1

)m2

ui2
Wm2
p,i2s

Here we take l = i1 − i3 and again −(L − 1) ≤ l ≤ L − 1, then δi1+t,i3+u = δi1−i3,lδu−t,l = (J
(l)
M )i3i1(J

(l)
N )tu.

This gives us

T2 = −
L−1∑

l=−(L−1)

(
ηQppJ

(l)
N Πp

)
rs

1

N
Tr
(

(J
(l)
L ⊗ IM )(WpW

∗
p )−1

)
(5.31)

Taking the expectation and replacing η by η2, we have

E{T2} = −
L−1∑

l=−(L−1)

E
{(

ηQppJ
(l)
N Πp

)
rs

} 1

N
E
{

Tr
(
η(J

(l)
L ⊗ IM )(WpW

∗
p )−1

)}

−
L−1∑

l=−(L−1)

E
{(

ηQppJ
(l)
N Πp

)◦
rs

1

N
Tr
(
η(J

(l)
L ⊗ IM )(WpW

∗
p )−1

)}
+Oz2

(
1

Nk

)

Analogues to previous case, in the last equation we denote the second term of r.h.s. by T E2 and notice that in
the first term, according to Lemma 5.4, all terms except of when l = 0 are zeros, and E{(ML)−1Trη(WpW

∗
p )−1} =

1
1−cN +O( 1

N2 ), then

E{T2} = − cN
1− cN

E
{

(ηQppΠp)rs

}
+ T E2 +Oz2

(
1

N2

)
(5.32)

To deal with third term, T3, we first should find the derivatives of resolvent. For this we write

∂Q = −Q∂

(
0 ηΠp

ηΠf 0

)
Q = −

(
Qpf∂(ηΠf )Qpp + Qpp∂(ηΠp)Qfp Qpf∂(ηΠf )Qpf + Qpp∂(ηΠp)Qff

Qff∂(ηΠf )Qpp + Qfp∂(ηΠp)Qfp Qff∂(ηΠf )Qpf + Qfp∂(ηΠp)Qff

)
(5.33)

Now we take a derivative with respect to the element Wm3
i3u

. As was discussed before, since ‖Q‖ and ‖Πp,f‖
are bounded (see Lemma 5.3), the expectation of the terms that correspond to ∂η

∂W
m3
i3u

can be bounded by

any power of N−1. This justifies that we can put all this terms together and denote result general matrix
by E for which E{E} = Oz2(N−k) for any k, more precisely it will be discussed in Section 5.1.4. Finally we
recall the classic formula for the derivative of projector Πp (for Πf the formula is analogues)

δΠp = Π⊥p δ(W
∗
pWp)(W

∗
pWp)

# + (W ∗pWp)
#δ(W ∗pWp)Π

⊥
p (5.34)

where (W ∗pWp)
# is the pseudoinverse of W ∗pWp and in this case is equal to W ∗p (WpW

∗
p )−2Wp. Since we are

taking the derivative with respect to the Wm3
i3u

, formula (5.34) can be simplified, more precisely:

∂Πp

∂Wm3
i3u

=
(

Π⊥pW
∗
p fm3
i3

euW
∗
p (WpW

∗
p )−2Wp +W ∗p (WpW

∗
p )−2WpW

∗
p fm3
i3

euΠ⊥p
)

1i3≤L.

Here fm3
i3

is the basis vector of RML, obviously if i3 > L the derivative is 0. Also since Π⊥pW
∗
p = 0 the first

term is disappear and finally we have

∂Πp

∂Wm3
i3u

= W ∗p (WpW
∗
p )−1fm3

i3
e∗uΠ⊥p 1i3≤L
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For Πf the formula is absolutely analogous, but instead of fm3
i3

we will have fm3
i3−L:

∂Πf

∂Wm3
i3u

= W ∗f (WfW
∗
f )−1fm3

i3−Le∗uΠ⊥f 1i3>L

Putting these expression in (5.33) we have

∂Q

∂Wm3
i3u

= −η1i3≤L
(

Qpp(W ∗p (WpW
∗
p )−1fm3

i3
e∗uΠ⊥p Qfp Qpp(W ∗p (WpW

∗
p )−1fm3

i3
e∗uΠ⊥p Qff

Qfp(W ∗p (WpW
∗
p )−1fm3

i3
e∗uΠ⊥p Qfp Qfp(W ∗p (WpW

∗
p )−1fm3

i3
e∗uΠ⊥p Qff

)
− η1i3>L

(
Qpf (W

∗
f (WfW

∗
f )−1fm3

i3−Le∗uΠ⊥f Qpp Qpf (W
∗
f (WfW

∗
f )−1fm3

i3−Le∗uΠ⊥f Qpf

Qff (W ∗f (WfW
∗
f )−1fm3

i3−Le∗uΠ⊥f Qpp Qff (W ∗f (WfW
∗
f )−1fm3

i3−Le∗uΠ⊥f Qpf

)
+ E (5.35)

Now we are ready to deal with term T3, firs we sum over i2,m2:

T3 = − 1

N

∑
δm1,m3δi1+t,i3+uη

2
(
QppW

∗
p (WpW

∗
p )−1

)m3

ri3

(
Π⊥p Qfp

)
ut

(
(WpW

∗
p )−1Wp

)m1

i1s
1i3≤L

− 1

N

∑
δm1,m3δi1+t,i3+uη

2
(
QpfW

∗
f (WfW

∗
f )−1

)m3

ri3−L

(
Π⊥f Qpp

)
ut

(
(WpW

∗
p )−1Wp

)m1

i1s
1i3>L + E (5.36)

Then for first term of obtained r.h.s. we again define l = i1− i3, since i3 ≤ L index l ∈ {−(L− 1), . . . , L− 1}
and δi1+t,i3+u = δi1−i3,lδu−t,l = (J

(l)
L )i3i1(J

(l)
N )tu. In the second term we first change the variable i3 i3 → i3+L,

then new i3 runs from 1 to L and the term itself becomes

1

N

∑
δm1,m3δi1+t,i3+L+uη

2(QpfW
∗
f (WfW

∗
f )−1)m3

ri3
(Π⊥f Qpp)ut((WpW

∗
p )−1Wp)

m1
i1s

1i3<L.

Now as just above we denote l = i1− i3, then δi1+t,i3+L+u = δi1−i3,lδu−t,l−L = (J
(l)
L )i3,i1(J

(l−L)
N )tu. That gives

us, after summing over i3, j3,m3 and t, u:

T3 = −
L−1∑

l=−(L−1)

η2
(
QppW

∗
p (WpW

∗
p )−1(J

(l)
L ⊗ IM )(WpW

∗
p )−1Wp

)
rs

1

N
Tr
(

Π⊥p QfpJ
(l)
N

)

−
L−1∑

l=−(L−1)

η2
(
QpfW

∗
f (WfW

∗
f )−1(J

(l)
L ⊗ IM )(WpW

∗
p )−1Wp

)
rs

1

N
Tr
(

Π⊥f QppJ
(l−L)
N

)
+ E

Taking an expectation and rewriting, we get

E{T3} = −
L−1∑

l=−(L−1)

E
{
η
(
QppW

∗
p (WpW

∗
p )−1(J

(l)
L ⊗ IM )(WpW

∗
p )−1Wp

)
rs

} 1

N
E
{

Tr
(
ηΠ⊥p QfpJ

(l)
N

)}

−
L−1∑

l=−(L−1)

E
{
η
(
QpfW

∗
f (WfW

∗
f )−1(J

(l)
L ⊗ IM )(WpW

∗
p )−1Wp

)
rs

} 1

N
E
{

Tr
(
ηΠ⊥f QppJ

(l−L)
N

)}
+ E{E}+ T E3 ,

where, as above, T E3 is the term corresponding to
(
ηQppW

∗
p (WpW

∗
p )−1(J

(l)
L ⊗ IM )(WpW

∗
p )−1Wp

)◦
rs

and(
ηQpfW

∗
f (WfW

∗
f )−1(J

(l)
L ⊗ IM )(WpW

∗
p )−1Wp

)◦
rs
. According to Lemma 5.4, E{ηΠ⊥p Qfp} and E{ηΠ⊥f Qpp}

are diagonal, it means that traces of these matrices multiplied by J (k)
N for k 6= 0 are zeros. Then

E{T3} = −E
{
η
(
QppW

∗
p (WpW

∗
p )−2Wp

)
rs

} 1

N
E
{

Tr
(
ηΠ⊥p Qfp

)}
+ E{E}+ T E3 . (5.37)

Finally, the term T4 again consist factor ∂η

∂W
m3
i3u

so as before, since E{|Qpp
rt(WpW

∗
p )−1|1Ω} is bounded, we

can conclude that E{T4} is of order Oz2(N−k) for each k, and thus can be considered as the term E{EN}.
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Now we define N ×N matrix ∆pp containing the error terms, i.e. with elements ∆rs(pp) = E{T E1 + T E2 +
T E3 + E{E} + O( 1

N2 )}, without taking into consideration factor (1 − cN ), and by combining (5.30), (5.32),
(5.37) we get that E{QppηΠp} becomes

E
{

QppηΠp

}
=

cN
1− cN

E
{

Qpp

}
− cN

1− cN
E
{
ηQppΠp

}
− E

{
ηQppW

∗
p (WpW

∗
p )−2Wp

} 1

N
E
{

Tr
(
ηΠ⊥p Qfp

)}
+ ∆pp

From what immediately follows

E
{

QppηΠp

}
= cNE

{
Qpp

}
− (1− cN )E

{
ηQppW

∗
p (WpW

∗
p )−2Wp

} 1

N
E
{

Tr
(
ηΠ⊥p Qfp

)}
+ ∆pp (5.38)

Repeating step by step the above calculations we can get the analogous formula for E{QpfηΠp}:

E{QpfηΠp} = cNE
{

Qpf

}
− (1− cN )E

{
ηQppW

∗
p (WpW

∗
p )−2Wp

} 1

N
E
{

Tr
(
ηΠ⊥p Qff

)}
+ ∆pf (5.39)

Lemma 5.6. The matrices ∆pp and ∆pf are diagonal and for i = 1, . . . , N

∆ii(pp) = Oz2
(

1

N3/2

)
(5.40)

∆ii(pf) = Oz2
(

1

N3/2

)
(5.41)

moreover, N−1Tr∆pp = Oz2(N−2) and N−1Tr∆pf = Oz2(N−2).

Proof. Due to the Lemma 3.6 all terms of equations (5.38) and (5.39) except of ∆pp and ∆pf are diagonal,
what brings that ∆pp and ∆pf are also diagonal. The evaluation part is postponed to the Section 5.1.4.

On the other side, we recall that Qpf = Q(z2)ηΠp (see (5.9)), from what follows that QpfηΠp = ηQpf . Then
equation (5.39) becomes

E{Qpf}+Oz2
(

1

Nk

)
= cNE

{
Qpf

}
− (1− cN )E

{
ηQppW

∗
p (WpW

∗
p )−2Wp

} 1

N
E
{

Tr
(
ηQff Π⊥p

)}
+ ∆pf .

(5.42)

Now we express QffηΠ⊥p using (5.9) and resolvent identity

QffηΠ⊥p = z(η2ΠfΠp − z2)−1ηΠ⊥p = z

(
− 1

z2
ηΠ⊥p +

1

z2
(η2ΠfΠp − z2)−1η3ΠfΠpΠ

⊥
p

)
= −1

z
ηΠ⊥p (5.43)

We remind that N−1TrΠp = cN from what we get immediately E{N−1TrQffηΠ⊥p } = − (1−cN )
z +O( 1

Nk ) for

each k. This allows us to obtain expression for E
{
ηQppW

∗
p (WpW

∗
p )−2Wp

}
from (5.42) :

E
{
ηQppW

∗
p (WpW

∗
p )−2Wp

}
=

z

1− cN
E{Qpf}+

z

(1− cN )2
∆pf + E

{
ηQppW

∗
p (WpW

∗
p )−2Wp

}
Oz2

(
1

Nk

)
.

Let us rewrite zQpf as ηQppΠp ( see (5.9)) and notice that ‖ηQppW
∗
p (WpW

∗
p )−2Wp‖ = Oz2(1) (see

Lemma 5.3 and the fact that ‖ηWp‖, ‖η(WpW
∗
p )−1‖ ≤ κ). Thus, each element of E{ηQppW

∗
p (WpW

∗
p )−2Wp}Oz2( 1

Nk )

is Oz2( 1
Nk ) and the last expression becomes

E
{
ηQppW

∗
p (WpW

∗
p )−2Wp

}
=

1

1− cN
E{ηQppΠp}+

z

(1− cN )2
∆pf +ONz2

(
1

Nk

)
. (5.44)
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By putting this into (5.38), after some easy calculations we get:

E{ηQppΠp}
(

1 +N−1E{Tr(ηΠ⊥p Qfp)}
)

= cNE{Qpp} −N−1E{Tr(ηΠ⊥p Qfp)}

×
(

z

1− cN
∆pf +ONz2

(
1

Nk

))
+ ∆pp (5.45)

Since N−1E{Tr(ηΠ⊥p Qfp)} = N−1E{Tr(ηΠ⊥p QfpΠ⊥p )} and as was discussed in Corollary 5.1 N−1E{Tr(Qfp)}
is a Stieltjes transform at z2 of some positive measure, we have that N−1E{Tr(ηΠ⊥p Qfp)} is also a Stieltjes
transform at z2 of some positive measure. In particular it means that N−1E{Tr(ηΠ⊥p Qfp)} ≤ κ(ρ(z2))−1 and
as consequence N−1E{Tr(ηΠ⊥p Qfp)} = Oz2(1). Thus (5.45) becomes

E{ηQppΠp}
(

1 +N−1E{Tr(ηΠ⊥p Qfp)}
)

= cNE{Qpp}+Oz2(1)(∆pf + ∆pp) +ONz2
(

1

Nk

)
We take normalized trace from both sides of obtained equation and notice that due to the Lemma 5.6 both,
N−1Tr∆pp and N−1Tr∆pf , are of order Oz2(N−2)

1

N
E{TrηQppΠp}

(
1 +N−1E{Tr(ηΠ⊥p Qfp)}

)
=
cN
N

E{TrQpp}+ONz2
(

1

N2

)
(5.46)

Finally, to complete this paragraph, we denote

α̃N =
1

N
E{TrQpp} =

1

N
E{TrQff} (5.47)

αN =
1

N
E{TrQpf} =

1

N
E{TrQfp} (5.48)

and express N−1E{Tr(ηΠ⊥p Qfp)}, N−1E{TrηQppΠp} in terms of α̃. For this we use again the fact that
Qfp = ηΠf (η2ΠpΠf − z2)−1 and write

N−1E{Tr(ηΠ⊥p Qfp)} = N−1E{Tr(ηQfp)} −N−1E{Tr(η2ΠpΠf (η2ΠpΠf − z2)−1)}

= α− 1− zN−1E{Tr(Qpp)}+Oz2
(

1

Nk

)
= α− 1− zα̃ +Oz2

(
1

Nk

)
(5.49)

To deal with N−1E{TrηQppΠp} we simply remind that ηQppΠp = zQpf . Now what is left is to find the
connection between α and α̃. We have

1

N
TrηΠ⊥f Qpp =

1

N
Tr
(
ηQpp − ηNΠfz(η

2ΠpΠf − z2)−1
)

=
1

N
Tr (ηQpp − zQfp)

Taking the expectation from both sides and replacing in the first term η by 1 we get

1

N
E{ηTrΠ⊥f Qpp} = α̃− zα +Oz2

(
1

Nk

)
(5.50)

for each k.
On the other hand, using (5.9), resolvent identity and the fact that ΠfΠ⊥f = 0 we get

1

N
TrηNΠ⊥f Qpp =

1

N
Tr

(
z

(
− 1

z2
+

1

z2
(η2
NΠpΠf − z2)−1η2

NΠpΠf

)
ηNΠ⊥f

)
= − 1

zN
TrηNΠ⊥f

since N−1TrΠf = cN , we conclude immediately

1

N
E{ηNTrΠ⊥f Qpp} = −1− cN

z
+O

(
1

Nk

)
(5.51)

Compare the last expression to (5.50) we finally obtain after trivial algebra

αN (z) =
α̃N (z)

z
+

1− cN
z2

+Oz2
(

1

Nk

)
(5.52)
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Since, in (5.46) ηQppΠp = zQpf , by combining it with (5.52) and (5.49) we obtain the equation for α̃:

(1− z2)α̃2
N +

(
2(1− cN )

z
− z
)
α̃N +

(1− cN )2

z2
= Oz2

(
1

N2

)
. (5.53)

Also if we denote α̃N (z) = N−1E{TrQN (z)} and αN (z) = N−1E{TrηΠpQN (z)}, then α̃N (z) = zα̃N (z2)
and αN (z) = αN (z2). The respective equation for α̃N (z) will be

(1− z2)z2α̃2
N (z2) +

(
2(1− cN )− z2

)
α̃N (z2) +

(1− cN )2

z2
= Oz2

(
1

N2

)
.

The l.h.s of obtained equation is the function of z2, thus the error term of r.h.s is also necessary a function
of z2. By exchanging z2 with z we have

(1− z)zα̃2
N (z) + (2(1− cN )− z) α̃N (z) +

(1− cN )2

z
= Oz

(
1

N2

)
. (5.54)

Moreover, from (5.52) in the similar way one can easily deduce the corresponding expression on α̃N (z) and
αN (z):

αN (z) = α̃N (z) +
1− cN
z

+Oz
(

1

Nk

)
. (5.55)

Remark 5.2. It is easy to see that due to Corollary 5.1 αN is a Stieltjes transform of a positive measure
carried by R+ with mass cN + Oz(N−k). Since −1−cN

z is a Stieltjes transform of measure (1 − cN )δ0, we
conclude that α̃N (z) = αN (z) − 1−cN

z + Oz
(
N−k

)
is a Stieltjes transform of a positive probability measure

carried by R+ up to a term Oz(N−k) for each k ∈ N.

Finally, we prove here a useful Proposition.

Proposition 5.1. Matrices E{Qij}, E{QijηΠk} for i, j, k ∈ {p, f} are multiple of IN up to an error term.

Proof. For the beginning we deal with E{Qpp}. Before we obtain an equation (5.45) which along with
Lemma 5.6 gives:

E{ηQppΠp}
(

1 +N−1E{Tr(ηΠ⊥p Qfp)}
)

= cNE{Qpp}+ONz2
(

1

N3/2

)
Since E{ηQppΠp} = zE{Qpf}, last equation becomes

zE{ηQpf}
(

1 +N−1E{Tr(ηΠ⊥p Qfp)}
)

= cNE{Qpp}+ONz2
(

1

N3/2

)
(5.56)

In order to find the structure of E{Qpp} we need to obtain one more equation that connects E{ηQpp} and
E{ηQpf}. For this we repeat steps that led to (5.56). Following the calculations with integration by parts
formula for E{QpfηΠf} and E{QppηΠf} we obtain:

E
{

QpfηΠf

}
= cNE

{
Qpf

}
− (1− cN )E

{
ηQpfW

∗
f (WfW

∗
f )−2Wf

} 1

N
E
{

Tr
(
ηΠ⊥f Qpf

)}
+ ∆1

pf (5.57)

E
{

QppηΠf

}
= cNE

{
Qpp

}
− (1− cN )E

{
ηQpfW

∗
f (WfW

∗
f )−2Wf

} 1

N
E
{

Tr
(
ηΠ⊥f Qpp

)}
+ ∆1

pp, (5.58)

where error terms ∆1
pf and ∆1

pp are also satisfy Lemma 5.6. In the case with (5.38)-(5.39) we were able to
obtain from (5.39) that E{ηQppW

∗
p (WpW

∗
p )−2Wp} = 1

1−cN E{ηQppΠp}+ONz2(N−3/2). So now we show that
from (5.58) it can be deduced analogues expression, i.e. (1− cN )E{ηQpfW

∗
f (WfW

∗
f )−2Wf} = E{QpfηΠf}+

ONz2(N−3/2). Indeed, first let us remind that N−1E{Tr(ηΠ⊥f Qpp)} = −1−cN
z + Oz2(N−k) for each k (see

(5.51)). Since E{ηQpfW
∗
f (WfW

∗
f )−2Wf} = Oz2(1) we rewrite (5.58) as

(1− cN )E
{
ηQpfW

∗
f (WfW

∗
f )−2Wf

}
=

z

1− cN

(
E
{

QppηΠf

}
− cNE

{
Qpp

})
+ONz2

(
1

N3/2

)
(5.59)

106



Using resolvent identity and the facts that Π2
f = Πf , E{ηNΠf} = cNIN +Oz2(N−3/2) due to (5.20), we write

E{QppηΠf} = zE{(− 1

z2
+

1

z2
(η2
NΠpΠf − z2)−1η2

NΠpΠf )ηNΠf} = −1

z
E{ηNΠf}

+
1

z
E{QpfηΠf}+Oz2(N−k) = −cN

z
IN +

1

z
E{QpfηΠf}+Oz2(N−k)

for each k. Putting this into r.h.s. of (5.59) we have:

(1 − cN )E
{
ηQpfW

∗
f (WfW

∗
f )−2Wf

}
=

1

1− cN
(−cN (IN + zE{Qpp}) + E{QpfηΠf}) + ONz2

(
1

N3/2

)
It is left to notice that E{QpfηΠf} = E{(η2ΠpΠf − z2)−1η2ΠpΠf} = IN + zE{Qpp}. Thus we immediately
obtain that (1− cN )E{ηQpfW

∗
f (WfW

∗
f )−2Wf} = E{QpfηΠf}+ONz2(N−3/2).

Now we put obtained expression of (1−cN )E{ηQpfW
∗
f (WfW

∗
f )−2Wf into (5.57) and sinceN−1E{Tr(ηΠ⊥f Qpf )}

coincides with N−1E{Tr(ηΠ⊥p Qfp)} (due to the symmetry, see Lemma 5.4) and N−1E{Tr(ηΠ⊥p Qfp)} =
Oz2(1) we obtain

E{ηQpf Πf}
(

1 +N−1E{Tr(ηΠ⊥f Qpf )}
)

= cNE{Qpf}+ONz2
(

1

N3/2

)
or, taking into account E{QpfηΠf} = IN + zE{Qpp},

(IN + zE{Qpp})
(

1 +N−1E{Tr(ηΠ⊥f Qpf )}
)

= cNE{Qpf}+ONz2
(

1

N3/2

)
Further for more convenience we denote the scalars 1 +N−1E{Tr(ηΠ⊥f Qpf )} = 1 +N−1E{Tr(ηΠ⊥p Qfp)} by
wN (z) or simply wN . Thus the last equation can be rewritten as

cNE{Qpf} = wN + zwNE{Qpp}+ONz2
(

1

N3/2

)
(5.60)

Finally we have a system of equation (5.60), (5.56) for E{Qpf} and E{Qpp}:
cNE{Qpf} = wN + zwNE{Qpp}+ONz2

(
1

N3/2

)
cNE{Qpp} = zwNE{Qpf}+ONz2

(
1

N3/2

) (5.61)

By putting the first equation of (5.61) into second one multiplied by cN we obtain with little algebra:

E{Qpp}
(
c2
N − z2w2

N

)
= zw2

NIN +ONz2
(

1

N3/2

)
(5.62)

To conclude from this equation the statement of the lemma we need to prove that
(
c2
N − z2w2

N

)−1
= Oz2(1).

For this we write
1

c2
N − z2w2

N

= − 1

z2wN

(
− c2N
z2wN

+ wN

) (5.63)

It is known that if f(z) ∈ S(R+), then− 1
z(1+f(z)) ∈ S(R+). SinceN−1E{Tr(ηΠ⊥p Qfp)} = N−1E{Tr(ηΠ⊥p Qfp)ηΠ⊥p }

is a Stieltjes transform evaluated at z2 of some positive measure curried by R+ (due to reasons similar to
those in Corollary 5.1), this implies that −(z2wN )−1 = −(z2(1 +N−1E{Tr(ηΠ⊥p Qfp)}))−1 is also a Stieltjes
transform evaluated at z2 of some measure curried by R+, and as consequence we an say the same about
−z−2(− c2N

z2wN
+ wN )−1. So the absolute value of r.h.s. of (5.63) can be bounded with |z|2ρ−2(z2):

∣∣∣∣ 1

c2
N − z2w2

N

∣∣∣∣ =

∣∣∣∣∣∣ 1

z2wN

(
− c2N
z2wN

+ wN

)
∣∣∣∣∣∣ =

∣∣∣∣ 1

z2wN

∣∣∣∣ |z|2
∣∣∣∣∣∣ 1

z2(− c2N
z2wN

+ wN )

∣∣∣∣∣∣ ≤ κ|z|2

ρ2(z2)
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This means that we can divide by cN −
z2w2

N
cN

and obtain

E{Qpp} =
zw2

N

c2
N − z2w2

N

IN +ONz2
(

1

N3/2

)
Also this and the first equation of system (5.61) provide us with the expression for E{Qpf}:

E{Qpf} =
c2
N

c2
N − z2w2

N

IN +ONz2
(

1

N3/2

)

5.1.3 Stieltjes transform and limiting distribution

Let us introduce the measure ν̃N = (cNδ1 + (1− cN )δ0)� (cNδ1 + (1− cN )δ0), where δx is the Dirac measure
at the point x, and denote by t̃N its Stieltjes transform. The goal of this Section is to prove that α̃N− t̃N → 0
for N → +∞.
The form of t̃N and ν̃N is known (see for example Example 3.6.7. [49]). In particular it appears that t̃N
satisfies the equation (5.54), but in which the term Oz(N−2) is replaced 0, i.e.

z(1− z)t̃2N (z) + (2(1− cN )− z)t̃N (z) +
(1− cN )2

z
= 0 (5.64)

In order to evaluate α̃N − t̃N it is natural to take a difference between equations (5.54) and (5.64):

(α̃N − t̃N )((1− z)z(α̃N + t̃N ) + 2(1− cN )− z) = Oz
(

1

N2

)
We remind that α̃N = αN − 1−cN

z +Oz(N−k) (see (5.55)) and rewrite the l.h.s. of the last equation:

(α̃N − t̃N )((1− z)zαN − (1− z)(1− cN ) + (1− z)zt̃N + 2(1− cN )− z +Oz(N−k)) = Oz
(

1

N2

)
⇓

(α̃N − t̃N )((1− z)zαN − (1− z)(1− cN ) + (1− z)zt̃N + 2(1− cN )− z) + (α̃N − t̃N )Oz
(

1

Nk

)
= Oz

(
1

N2

)
Since αN is a Stieltjes transform then |αN | = Oz(1) and from (5.55) we have |α̃N | = Oz(1), also t̃N is a
Stieltjes transform thus bounded by ρ−1(z). This means that (α̃N − t̃N )Oz(N−k) = Oz(N−k). Finally we
obtain the expression for (α̃N − t̃N ):

α̃N − t̃N =
Oz
(
N−2

)
(1− z)zαN − (1− z)(1− cN ) + (1− z)zt̃N + 2(1− cN )− z

To evaluate denominator we return to (5.64) and write:

(1− z)zt̃N + 2(1− cN )− z = −(1− cN )2

zt̃N

Moreover, since t̃N is the Stieltjes transform of a positive measure curried by R+, Imzt̃N > 0 for z ∈ C+ and

we also get that Im((1− z)zt̃N ) = Imz − Im
(1− cN )2

zt̃N
> Imz. Now we rewrite denominator as

(1− z)zαN − (1− z)(1− cN ) + (1− z)zt̃N + 2(1− cN )− z = (1− z)
(
zαN − (1− cN )− (1− cN )2

(1− z)zt̃N

)
and notice that due to discussion in Corollary 5.1 αN also is the Stieltjes transform of a positive measure
curried by R+, so ImzαN > 0 for z ∈ C+. Thus

|(1− z)zαN − (1− z)(1− cN ) + (1− z)zt̃N + 2(1− cN )− z| ≥ |1− z|Im−(1− cN )2

(1− z)zt̃N
=

(1− cN )2Im((1− z)zt̃N )

|1− z||z|2|t̃N |2
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Finally, we remind that Im((1− z)zt̃N ) > Imz and t̃N ≤ (Imz)−1 and conclude that on C+

α̃N (z)− t̃N (z) ≤
Oz
(
N−2

)
(1 + |z|)|z|2

(1− cN )2(Imz)3
= Oz

(
N−2

)
. (5.65)

We introduce here the expression for t̃N on z ∈ C+

t̃N (z) =
z − 2(1− cN ) +

√
z(z − 4cN (1− cN ))

2(1− z)z

where we define function z 7→
√
z for z = |z|eiθ, θ ∈ (0, 2π) as

√
z =

√
|z|eiθ/2. In particular, if x ∈ R and z =

xeiθ then
√
z −−−→

θ↘0

√
x and

√
z −−−→

θ↗2π
−
√
x. Then one can easily obtain that there exists limz→x,z∈C+ t̃N (z)

for x ∈ (−∞, 0) ∩ (4cN (1− cN ),+∞) and x 6= 1, that we will denote by t̃N (x) and

t̃N (x) =


x− 2(1− cN )−

√
x(x− 4cN (1− cN ))

2(1− x)x
, x < 0

x− 2(1− cN ) +
√
x(x− 4cN (1− cN ))

2(1− x)x
, x > 4cN (1− cN ), x 6= 1

(5.66)

Moreover, t̃N (x) is a solution of equation (5.64) with z replaced by x. It is also known that ν̃N = (cNδ1 +
(1− cN )δ0) � (cNδ1 + (1− cN )δ0) is defined as

dν̃N (λ) =

√
λ(4cN (1− cN )− λ)

2πλ(1− λ)
1[0,4cN (1−cN )]dλ+ (1− cN )δλ + max(2cN − 1, 0)δλ−1 (5.67)

Besides, it is easy to see that measure νN = 1
cN
ν̃N − 1−cN

cN
δ0 is also a positive probability measure carried by

R+ with corresponding Stieltjes transform tN (z) = t̃N (z)
cN

+ 1−cN
cNz

and

tN (z) =
z(2cN − 1) +

√
z(z − 4cN (1− cN ))

2cN (1− z)z
, z ∈ C+

tN (x) =


x(2cN − 1)−

√
x(x− 4cN (1− cN ))

2cN (1− x)x
, x < 0

x(2cN − 1) +
√
x(x− 4cN (1− cN ))

2cN (1− x)x
, x > 4cN (1− cN ), x 6= 1

(5.68)

We deduce several immediate but useful facts.

Remark 5.3. Since αN (z) = α̃N (z) + 1−cN
z +Oz(N−k) for each k, we can conclude that

αN (z)− cN tN (z)→ 0

for z ∈ C+. Also if we denote tN (z) = tN (z2), t̃N (z) = zt̃N (z2), we have immediately for z2 ∈ C+

αN (z)− cNtN (z)→ 0 a.s. (5.69)

α̃N (z)− t̃N (z)→ 0 a.s. (5.70)

Moreover, due to the Proposition 3.4 t̃N ∈ S(R) and

t(z)N =
t̃N (z)

cNz
+

1− cN
cNz2

(5.71)

Corollary 5.2. The empirical eigenvalue distribution ν̂N of Πp,NΠf,N verifies

ν̂N − ν̃N → 0 (5.72)

weakly almost surely.
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Proof. Above we proved that E{ 1
NTrQN (z)} − t̃N (z) → 0 for each z ∈ C+. The Poincaré-Nash inequality

and the Borel Cantelli Lemma imply that 1
NTr(QN (z)) − E{ 1

NTrQN (z)} → 0 a.s. for each z ∈ C − R+.
Therefore, it holds that

1

N
Tr(QN (z))− t̃N (z)→ 0a.s. (5.73)

for each z ∈ C+. Corollary 2.7 of [18] implies that ν̂N − ν̃N → 0 weakly almost surely provided we verify
that (ν̂N )N≥1 is almost surely tight and that (ν̃N )N≥1 is tight. Since ν̃N is a multiplicative free convolution
of Dirac measures, it is known that (ν̃N )N≥1 is tight. For (ν̂N )N≥1 we write∫

R+

λ d ν̂N (λ) =
1

N
TrΠp,NΠf,N ≤ 1

almost surely. This implies that (ν̂N )N≥1 is almost surely tight. �

Also since ν̃N is a deterministic equivalent of the empirical eigenvalue distribution of Πp,NΠf,N , it immediately
follows that νN is a deterministic equivalent of the empirical eigenvalue distribution of
(R̂Lf,y)

−1/2R̂Lf |p,y(R̂
L
p,y)
−1R̂L∗f |p,y(R̂

L
f,y)
−1/2.

We define the support of ν̃N by SN , obviously, it coincides with the support of νN and SN = [0, 4cN (1−cN )]∪
{1}1cN>1/2. Moreover, the support of corresponding measure of t̃N is SN = [−

√
4cN (1− cN ),

√
4cN (1− cN )]∪

{±1}1cN>1/2. While tN is not a Stieltjes transform, we can however say that tN is also holomorphic outside
SN .

5.1.4 Proof of Lemma 5.6

To evaluate ∆pp and ∆pf we first should prove the next lemma which is based on the Poincaré-Nash
inequality.

Lemma 5.7. Let (FN )N≥1 and (GN )N≥1 be sequences of deterministic N×N matrices such that supN ‖FN‖,
supN ‖GN‖ ≤ κ, and consider sequences of deterministic N–dimensional vectors (a1,N )N≥1, (a2,N )N≥1 such
that supN‖ai,N‖ ≤ κ for i = 1, 2. Then, for each z ∈ C+ and i, j, h = {p, f}, it holds that

Var

{
1

N
TrFQij

}
= Oz2

(
1

N2

)
, (5.74)

Var

{
1

N
TrQijFηNΠhG

}
= Oz2

(
1

N2

)
, (5.75)

Var

{
1

N
TrQijFηNΠ⊥hG

}
= Oz2

(
1

N2

)
, (5.76)

Var
(
a∗1ηQijW

∗
h (WhW

∗
h )−1F (WkW

∗
k )−1Wka2

)
= Oz2

(
1

N

)
, (5.77)

Var {a∗1Qija2} = Oz2
(

1

N

)
, (5.78)

Var {a∗1QijFηNΠha2} = Oz2
(

1

N

)
. (5.79)

where C(z) can be written as C(z) = P1(|z|)P2

(
1

Imz

)
for some nice polynomials P1 and P2.

Proof.We first prove (5.74) for Qpp and denote by ξ the term ξ = 1
NTrFQpp. The Poincaré-Nash inequality

(2.3) leads to

Var{ξ} ≤
∑

i1,j1,m1
i2,j2,m2

E

{(
∂ξ

∂W
m1

i1,j1

)∗
E{Wm1

i1,j1
W

m2

i2,j2}
∂ξ

∂W
m2

i2,j2

}

+
∑

i1,j1,m1
i2,j2,m2

E

{
∂ξ

∂Wm1
i1,j1

E{Wm1
i1,j1

W
m2

i2,j2}

(
∂ξ

∂Wm2
i2,j2

)∗}
.
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We just evaluate the second term of r.h.s., denoted by φ. Since F does not depend on W , derivative of ξ can
be found with help of (5.35):

∂ξ

∂Wm1
i1j1

= − η

N
TrFQppW

∗
p (WpW

∗
p )−1fm1

i1
e∗j1Π⊥p Qfp1i1≤L

− η

N
TrFQpfW

∗
f (WfW

∗
f )−1fm1

i1−Le∗j1Π⊥f Qpp1i1>L +O
(

1

Nk

)
It is easy to see that φ composed with four similar parts of the form

1

N3

∑
i1,j1,m1
i2,j2,m2

δm1,m2δi1+j1,i2+j2E
{
η2e∗j1Π⊥p QfpFQppW

∗
p (WpW

∗
p )−1fm1

i1
fm2∗
i2

(WpW
∗
p )−1WpQ

∗
ppFQ∗fpΠ⊥p ej2

}
(5.80)

where 1 ≤ i1, i2 ≤ L. Now we again denote l = i1 − i2 = j2 − j1 which lies in (−L + 1, L − 1) and remark
that

∑
m1,m2,i1,i2

δm1,m2δi1−i2,lf
m1
i1

fm2∗
i2

= (J
(l)
L ⊗ IM ) as well as

∑
j1,j2

δj2−j1,lej2e
∗
j1

= J
(l)
N this allow us to

rewrite last expression as

1

N3

L−1∑
l=−(L−1)

E
{
η2TrΠ⊥p QfpFQppW

∗
p (WpW

∗
p )−1(J

(l)
L ⊗ IM )(WpW

∗
p )−1WpQ

∗
ppF

∗Q∗fpΠ⊥p J
(l)
N

}
(5.81)

For each N ×ML matrices A and B, the Schwartz inequality and the inequality between arithmetic and
geometric means lead to∣∣∣∣ 1

N
TrA(IM ⊗ J∗(l)L )B∗J∗(l)N

∣∣∣∣ ≤ 1

2N
TrA(IM ⊗ J∗(l)L J

(l)
L )A∗ +

1

2N
TrBJ

∗(l)
N J

(l)
N B∗.

Therefore, since IM ⊗ J∗(l)L J
(l)
L ≤ IML and J∗(l)N J

(l)
N ≤ IN∣∣∣∣ 1

N
TrA(IM ⊗ J∗(l)L )B∗J∗(l)N

∣∣∣∣ ≤ C

2N
(TrA∗A+ TrB∗B). (5.82)

We take A = B = Π⊥p QfpFQppW
∗
p η(WpW

∗
p )−1, then what is left is to bound N−1E{TrAA∗}. Since

Q∗ppF
∗Q∗fpΠ⊥p QfpFQpp ≤ κ2‖Qpp‖2‖Qfp‖2IN and ‖Qpp‖, ‖Qfp‖ = O2

z(1) we have with η2(WpW
∗
p )−2 ≤

((1−√c∗)2 − 2ε)−2IML (see (5.4)):

1

N
E
{

TrΠ⊥p QfpFQppW
∗
p η

2(WpW
∗
p )−2WpQ

∗
ppF

∗Q∗fpΠ⊥p
}
≤ O2

z(1)E
{
‖Wp‖2

}
= O2

z(1) (5.83)

Taking into account that L is constant, this gives us immediately

φ = O2
z

(
1

N2

)
which finishes the proof of (5.78). Obviously for Qff ,Qpf , etc. the proof is analogous.
To proof (5.75)-(5.76) we follow the same scheme. If we take ξ = 1

NTrQppFηNΠpG then, after some
calculation we come to the step where we need to evaluateN−1E{TrAA∗} withA = Π⊥p QfpFηNΠpGQppW

∗
p η(WpW

∗
p )−1

and A = ηNΠ⊥p GQppW
∗
p η(WpW

∗
p )−1. As we can see, these expressions are similar to (5.83) and can be

evaluated in the same way, thus we omit further explanation.
(5.78) is the consequence of (5.74) since a∗1Qa2 = TrQa2a

∗
1 = TrQF for F = a2a

∗
1. Analogous, (5.79) is the

consequence of (5.75). This completes the proof of Lemma 5.7. �
Now we can return to the proof of Lemma 5.6. We will focus on the ∆pp, the proof is analogues for ∆pf .
According to Lemma 5.4, E{QppηΠp},E{Qpp} and E{ηQppW

∗
p (WpW

∗
p )−2Wp} are diagonal, from this and
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(5.38) we conclude that ∆pp is also diagonal, so it is sufficient to evaluate only diagonal terms. We start
with (T E1 )rr and use Schwartz inequality:

|(T E1 )rr| =

∣∣∣∣∣
L−1∑

l=−(L−1)

E
{(

Q◦ppJ
(l)
N

)
rr

1

N
Tr
(

(IM ⊗ J (l)
M )η(WpW

∗
p )−1

)} ∣∣∣∣∣
≤

L−1∑
l=−(L−1)

(
Var

((
QppJ

(l)
N

)
rr

)
Var

(
1

N
Tr
(

(IM ⊗ J (l)
M )η(WpW

∗
p )−1

)))1/2

We apply (5.78) for a1 = er and a2 = J
(l)
N er and take into account that Var( 1

NTr((IM⊗J (l)
M )η(WpW

∗
p )−1)) =

O(N−2). Then

|(T E1 )rr| ≤ O2
z

(
1

N3/2

)
(5.84)

For second part we have

|(T E2 )rr| =

∣∣∣∣∣
L−1∑

l=−(L−1)

E
{(

ηQppJ
(l)
N Πp

)◦
rr

1

N
Tr
(

(IM ⊗ J (l)
M )η(WpW

∗
p )−1

)} ∣∣∣∣∣
≤

L−1∑
l=−(L−1)

(
Var

((
ηQppJ

(l)
N Πp

)
rr

)
Var

(
1

N
Tr
(

(IM ⊗ J (l)
M )η(WpW

∗
p )−1

)))1/2

From (5.79) we get immediately

|(T E2 )rr| = O2
z

(
1

N3/2

)
(5.85)

For T E3 we obtain

|(T E3 )rr| =

∣∣∣∣∣
L−1∑

l=−(L−1)

E
{(

ηQppW
∗
p (WpW

∗
p )−1(IM ⊗ J (l)

M )(WpW
∗
p )−1Wp

)◦
rr

1

N
Tr
(
ηJ

(l)
N Π⊥p Qfp

)}

+
L−1∑

l=−(L−1)

E
{(

ηQpfW
∗
f (WfW

∗
f )−1(IM ⊗ J (l)

M )(WpW
∗
p )−1Wp

)◦
rr

1

N
Tr
(
ηJ

(l−L)
N Π⊥f Qpp

)} ∣∣∣∣∣
≤

L−1∑
l=−(L−1)

(
Var

((
ηQppW

∗
p (WpW

∗
p )−1(IM ⊗ J (l)

M )(WpW
∗
p )−1Wp

)
rr

)
Var

(
1

N
Tr
(
ηJ

(l)
N Π⊥p Qfp

)))1/2

+

L−1∑
l=−(L−1)

(
Var

((
ηQpfW

∗
f (WfW

∗
f )−1(IM ⊗ J (l)

M )(WpW
∗
p )−1Wp

)
rr

)
Var

(
1

N
Tr
(
ηJ

(l)
N Π⊥f Qpp

)))1/2

from what, using again (5.77) and (5.76) we immediately get

|(T E3 )rr| = O2
z

(
1

N3/2

)
(5.86)

Finally, we have to deal with part E{E}, for this we remind that each of its terms is of the form E{ ∂η

∂W
m3
i3j3

F},
where F is some, maybe random, bound factor. Schwartz inequality and Lemma 5.2 gives us

E

{
∂η

∂Wm3
i3j3

F

}
≤ E


∣∣∣∣∣ ∂η

∂Wm3
i3j3

∣∣∣∣∣
2


1/2

E{F 2}1/2 = O2
z

(
1

Nk

)
for any k ∈ N. Since the number of such terms in E{E} is the multiply of L, we still have E{E} = O2

z(N
−k).

Combining all above we conclude (5.40).
To evaluate the normalized trace of ∆pp we follow the same steps as above but with only difference that
we can use the better estimate of traces (5.74)-(5.75) instead of ones for quadratic forms (5.78)-(5.79) which
will allow us to obtain order of O2

z(N
−2). �
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5.1.5 No eigenvalues outside the support.

We denote corresponding measure of t̃N by ν̃N and its support by SN . The goal of this Section is to prove
the next Theorem.

Theorem 5.1. Assume that there exists ε > 0, κ1 ∈ R, κ2 ∈ R ∪ {+∞} and an integer N0 such that

(κ1 − ε, κ2 + ε) ∩ SN = ∅ ∀N ≥ N0.

Then with probability one, no eigenvalues of η2
NΠp,NΠf,N appears in [κ1, κ2] for all N large enough.

We first remark that we can consider the case where κ2 < +∞. Indeed, we recall that ∪N≥1SN is a compact
subset, and almost surely, the largest eigenvalue of η2

NΠp,NΠf,N is for each N large enough upperbounded
by 1.
In order to establish Theorem 5.1, we use the Haagerup-Thornbjornsen approach ( [17], see also [7]). For this
we remark that in Section 5.1.3 we basically proved the next proposition.

Proposition 5.2. ∀z ∈ C+, we have for N large enough,

E
{

1

N
TrQN (z)

}
= t̃N +

1

N2
rN (z)

where rN is holomorphic in C+ and satisfies

|rN (z)| ≤ P1(|z|)P2

(
1

Imz

)
for each z ∈ C+, where P1 and P2 are nice polynomials.

Proof. Due to (5.65) for z ∈ C+ we have α̃N (z)− t̃N (z) = Oz(N−2), so it is sufficient to remark that since
(ρ(z))−1 ≤ (Imz)−1, there exist two nice polynomials P1 and P2 such that α̃N (z)− t̃N (z) ≤ P1(|z|)P2( 1

Imz ).

We now follow [8] and [17] and use the following Lemma

Lemma 5.8. Let φ be a compactly supported real valued smooth function defined on R+, i. e. φ ∈ C∞c (R+,R+).
Then,

E
{

1

N
Trφ(η2

NΠpΠf )

}
−
∫
SN

φ(λ)dν̃N (λ) = O
(

1

N2

)
(5.87)

Proof. Due to Proposition 2.1 we can write

E
{

1

N
Trφ(η2

NΠpΠf )

}
=

1

π
lim
y↓0

Im

{∫
R+

φ(x)E
{

1

N
TrQ(x+ iy)

}
dx

}
(5.88)

as well as ∫
SN

φ(λ)dν̃N (λ) =
1

π
lim
y↓0

Im

{∫
R+

φ(x)s̃N (x+ iy)dx

}
(5.89)

Using Proposition 5.2, we obtain

E
{

1

N
Trφ(η2

NΠpΠf )

}
−
∫
SN

φ(λ)dν̃N (λ) =
1

N2

1

π
lim
y↓0

Im

{∫
R+

φ(x)rN (x+ iy)dx

}
(5.90)

Since the function rN (z) = Oz(1), we can use the result which was proved in [7, Section 3.3] and obtain

lim sup
y↓0

∣∣∣∣∫
R+

φ(x)rN (x+ iy)dx

∣∣∣∣ ≤ κ, (5.91)
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for some nice constant κ. This and (5.90) complete the proof. �

In order to establish Theorem 5.1, we introduce a function φ ∈ C∞c such that 0 ≤ φ(λ) ≤ 1 and

φ0(λ) =

{
1, for λ ∈ [κ1, κ2],

0, for λ ∈ R− (κ1 − ε, κ2 + ε)

Since for N large enough (κ1 − ε, κ2 + ε) ∩ SN = ∅ then
∫
SN φ(λ)dν̃N (λ) = 0 and according to Lemma 5.8

E
{

1

N
Trφ0(η2

NΠpΠf )

}
= O

(
1

N2

)
.

Now we show that

Var

{
1

N
Trφ0(η2

NΠpΠf )

}
= O

(
1

N4

)
For this we use again the Poincaré-Nash inequality

Var{Trφ0(η2
NΠpΠf )} ≤

∑
E

{
∂Trφ0(η2

NΠpΠf )

∂Wm1
i1,j1

E{Wm1
i1,j1

W
m2

i2,j2}

(
∂Trφ(η2

NΠpΠf )

∂Wm2
i2,j2

)∗}

+
∑

E

{(
∂Trφ0(η2

NΠpΠf )

∂W
m1

i1,j1

)∗
E{Wm1

i1,j1
W

m2

i2,j2}
∂Trφ(η2

NΠpΠf )

∂W
m2

i2,j2

}
(5.92)

We only evaluate the first term of the r.h.s. of the inequality, denoted by ψ, because the second is similar.
For this we write first

∂Trφ0(η2
NΠpΠf )

∂W
m1

i1,j1

= Tr

(
φ′0(η2

NΠpΠf )
∂(η2

NΠpΠf )

∂W
m1

i1,j1

)

=


1 ≤ i1 ≤ L, (η2

NΠ⊥p Πfφ
′
0(η2

NΠpΠf )W ∗p (WpW
∗
p )−1)m1

i1j1
+O

(
1

Nk

)
,

L+ 1 ≤ i1 ≤ 2L, (η2
NΠ⊥f φ

′
0(η2

NΠpΠf )ΠpW
∗
f (WfW

∗
f )−1)m1

(i1−L)j1
+O

(
1

Nk

)
for each k ∈ N, here term O(N−k) represents the term with ∂ηN

∂W
m1
i1j1

in what follow we will omit it, since as we

see above it will not give impact. For convenience we denote A = η2
NΠ⊥p Πfφ

′
0(η2

NΠpΠf )W ∗p (WpW
∗
p )−1 and

B = η2
NΠ⊥f φ

′
0(η2

NΠpΠf )ΠpW
∗
f (WfW

∗
f )−1, than one can easily see that

ψ =
1

N

L∑
i1,i2=1

∑
j1,m1
j2,m2

E{Am1
i1j1

δm1,m2δi1+j1,i2+j2A
∗m2
i2j2

+Am1
i1j1

δm1,m2δi1+j1,i2+L+j2B
∗m2
i2j2

+Bm1
i1j1

δm1,m2δi1+L+j1,i2+j2A
∗m2
i2j2

+Bm1
i1j1

δm1,m2δi1+j1,i2+j2B
∗m2
i2j2
}

For all four terms we can apply the same trick from above, defining l = i1 − i2 than we have

ψ =
1

N

L−1∑
l=−(L−1)

E
{

Tr(AJ
(l)
N A∗(J (l)

L ⊗ IM )) + Tr(AJ
(l−L)
N B∗(J (l)

L ⊗ IM ))

+ Tr(BJ
(l+L)
N A∗(J (l)

L ⊗ IM )) + Tr(BJ
(l)
N B∗(J (l)

L ⊗ IM ))
}

Using (5.82) for respective A,B we obtain

|ψ| ≤ 4(2L− 1)

N
E{TrAA∗ + TrBB∗} (5.93)
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Let us evaluate

1

N
E{TrAA∗} =

1

N
E{Trη2

NΠ⊥p Πfφ
′
0(η2

NΠpΠf )W ∗p (WpW
∗
p )−2Wpφ

′
0(η2

NΠpΠf )ΠfΠ⊥p } (5.94)

We denote ξ(λ) = (φ′0(λ))2 and recall that Πf ,Π
⊥
p ≤ IN then

1

N
E{TrAA∗} ≤ 1

N
E{Trξ(η2

NΠpΠf )η2
NW

∗
p (WpW

∗
p )−2Wp}

It is easy to see that ‖η2
NW

∗
p (WpW

∗
p )−2Wp‖ = ‖η2

NWpW
∗
p (WpW

∗
p )−2‖ = ‖η2

N (WpW
∗
p )−1‖ ≤ ((1 +

√
c∗)2 −

2ε)−1. This allows us to write that N−1E{TrAA∗} ≤ κN−1E{Trξ(η2
NΠpΠf )}. Finally Lemma 5.8 implies

that 1
NE{Tr(ξ(η2

NΠpΠf )} = O(N−2). As for the second term, TrBB∗, we will have the same result:

1

N
E{TrBB∗} =

1

N
E{Trη2

NΠ⊥f φ
′
0(η2

NΠpΠf )ΠpW
∗
f (WfW

∗
f )−2WfΠpφ

′
0(η2

NΠpΠf )Π⊥f }

≤ κ

N
E{Trξ(η2

NΠpΠf )} = O(N−2)

Therefore, we have checked that

Var{Trφ0(η2
NΠpΠf )} = O

(
1

N2

)
. (5.95)

Now we can complete the proof of Theorem 5.1 as in [8]. For this we apply the classical Markov inequality
and combine with what above

P

{
1

N
Trφ0(η2

NΠpΠf ) >
1

N4/3

}
≤ N8/3E

{(
1

N
Trφ0(η2

NΠpΠf )

)2
}

= N8/3

(
Var

{
1

N
Trφ0(η2

NΠpΠf )

}
+

(
E
{

1

N
Trφ0(η2

NΠpΠf )

})2
)

= O
(

1

N4/3

)
.

Applying Borel-Cantelli lemma, for N large enough, we have with probability one

1

N
Trφ0(η2

NΠpΠf ) ≤ 1

N4/3

By the very definition of function φ0, the number of eigenvalues of matrix η2
NΠpΠf lying in the interval

[κ1, κ2] is upper bounded by Trφ0(η2
NΠpΠf ) ≤ 1

N1/3 . Since this number of eigenvalues is an integer, we
conclude that with probability one there is no eigenvalues in the interval [κ1, κ2] for each N large enough.

5.2 In the presence of signal

In this section we assume that signal (un)n∈Z is present, and evaluate its influence on the eigenvalues of matrix
Πp,NΠf,N . For this, we notice that matrices Y ∗p (YpY

∗
p )−1Yp and Y ∗f (YfY

∗
f )−1Yf are finite rank perturbation

of matrices W ∗p (WpW
∗
p )−1Wp and W ∗f (WfW

∗
f )−1Wf due to the noise (vn)n∈Z, so we can use the same

approach as in the previous chapter. Since the useful signal (un)n∈Z is generated by the same minimal
state-space representation (1.2), we are keeping notations from the Section 4.1. So as before we denote
Σi,N =

Yi,N√
N

= Wi,N + Θi,N∆i,N Θ̃i,N and ΠW
i,N = W ∗i (WiW

∗
i )−1Wi for i = p, f . Let us remind that in the

presence of signal we can not assume that RN = IM , thus Wi = (IL ⊗RN )1/2Wi,iid.
Also, naturally, we keep assumptions related to the signal model (Assumptions 2 and 3), as well as Assumption 6
on the limits of ∆N and ΓN . However, it appears that assumptions related to the asymptotic behaviour of the
eigenvalue distribution of RN (Assumption 4, 5) as well as assumption related to the asymptotic behaviour
of matrix which depends on both, signal and noise (Assumption 7), are not needed here and can be replaced
with milder one.
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Assumption 1. r × r matrix GN = Θ∗N (IL ⊗R−1
N )ΘN converge towards some matrix G∗.

In order to characterize the possible eigenvalues of Πp,NΠf,N that escape from S∗ = [0, 4c∗(1−c∗)]∪{1}1c∗>1/2

we, as before, consider the squares of the positive eigenvalues of linearised version, i.e.
(

0 Πp

Πf 0

)
, that escape

form [0, 2
√
c∗(1− c∗)] ∪ {1}1c∗>1/2. For this we should first find the convenient expression for Πi −ΠW

i .

Since it will be analogous for i = p, f , we consider only Πp and for simplicity we drop index p. It is easy to
see that ΣΣ∗ can be expressed as

ΣΣ∗ = WW ∗ + (W Θ̃∆,Θ)

(
0 Ir
Ir ∆2

)(
∆Θ̃∗W ∗

Θ∗

)
Then with help of Woodbury identity we take the inverse od both sides:

(ΣΣ∗)−1 = (WW ∗)−1 − ((WW ∗)−1W Θ̃∆, (WW ∗)−1Θ)D

(
∆Θ̃∗W ∗(WW ∗)−1

Θ∗(WW ∗)−1

)
,

where

D =

(
I2r +

(
0 Ir
Ir ∆2

)(
∆Θ̃∗ΠW Θ̃∆ ∆Θ̃∗W ∗(WW ∗)−1Θ

Θ∗(WW ∗)−1W Θ̃∆ Θ∗(WW ∗)−1Θ

))−1(
0 Ir
Ir ∆2

)
(5.96)

In order to avoid heavy calculations in what follows, below we simplify separately two expressions

(Θ∗(WW ∗)−1W Θ̃∆,Θ∗(WW ∗)−1Θ)D = (Ir, 0)

(
0 Ir
Ir ∆2

)(
∆Θ̃∗ΠW Θ̃∆ ∆Θ̃∗W ∗(WW ∗)−1Θ

Θ∗(WW ∗)−1W Θ̃∆ Θ∗(WW ∗)−1Θ

)
D

= (Ir, 0)

((
0 Ir
Ir ∆2

)(
∆Θ̃∗ΠW Θ̃∆ ∆Θ̃∗W ∗(WW ∗)−1Θ

Θ∗(WW ∗)−1W Θ̃∆ Θ∗(WW ∗)−1Θ

)
+ I2r − I2r

)
D

= (Ir, 0)

(
0 Ir
Ir ∆2

)
− (Ir, 0)D = (0, Ir)− (Ir, 0)D (5.97)

and analogous

D

(
∆Θ̃∗W ∗(WW ∗)−1Θ

Θ∗(WW ∗)−1Θ

)
=

(
0
Ir

)
−D

(
Ir
0

)
(5.98)

Now, with (5.97), one can easily obtain that

Σ∗(ΣΣ∗)−1 = W ∗(WW ∗)−1 − (ΠW Θ̃∆,W ∗(WW ∗)−1Θ)D

(
∆Θ̃∗W ∗(WW ∗)−1

Θ∗(WW ∗)−1

)
+ Θ̃∆Θ∗(WW ∗)−1 −

(
(0, Θ̃∆)− (Θ̃∆, 0)D

)(
∆Θ̃∗W ∗(WW ∗)−1

Θ∗(WW ∗)−1

)
= W ∗(WW ∗)−1 − (−ΠW,⊥Θ̃∆,W ∗(WW ∗)−1Θ)D

(
∆Θ̃∗W ∗(WW ∗)−1

Θ∗(WW ∗)−1

)
Finally, multiplying both sides of the last equation by Σ and taking into account (5.98) we have

Σ∗(ΣΣ∗)−1Σ = W ∗(WW ∗)−1W − (−ΠW,⊥Θ̃∆,W ∗(WW ∗)−1Θ)D

(
∆Θ̃∗ΠW

Θ∗(WW ∗)−1W

)
+W ∗(WW ∗)−1Θ∆Θ̃∗ − (−ΠW,⊥Θ̃∆,W ∗(WW ∗)−1Θ)

((
0

∆Θ̃∗

)
−D

(
∆Θ̃∗

0

))
= W ∗(WW ∗)−1W − (−ΠW,⊥Θ̃∆,W ∗(WW ∗)−1Θ)D

(
˜−∆Θ
∗
ΠW,⊥

Θ∗(WW ∗)−1W

)
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This allows us to conclude that for i = p, f

Πi −ΠW
i = −AiDiA∗i ,

where

Ai = (−ΠW,⊥
i Θ̃i∆i,W

∗
i (WiW

∗
i )−1Θi) (5.99)

Now it is easy to check that(
−zIN Πp

Πf −zIN

)
=

(
−zIN ΠW

p

ΠW
f −zIN

)
−
(
Ap 0
0 Af

)(
Dp 0
0 Df

)(
0 A∗p
A∗f 0

)
(5.100)

As for the first model in Chapter 4, we denote by QW(z) the resolvent of
(

0 ΠW
p

ΠW
f 0

)
and consider a

positive real number y such that y is not an eigenvalue of
(

0 ΠW
p

ΠW
f 0

)
for each large enough N . Then with

z = y we rewrite r.h.s. of (5.100) as(
−yIN Πp

Πf −yIN

)
=

(
−yIN ΠW

p

ΠW
f −yIN

)(
I2N −QW(y)

(
Ap 0
0 Af

)(
Dp 0
0 Df

)(
0 A∗p
A∗f 0

))
(5.101)

This gives us that y is an eigenvalue of
(

0 Πp

Πf 0

)
if and only if the determinant of the second factor on

r.h.s. of (5.101) equals to 0, or equivalently

det

(
I2r −

(
A∗pQW

fp (y)Ap A∗pQW
ff (y)Af

A∗fQW
pp(y)Ap A∗fQW

pf (y)Af

)(
Dp 0
0 Df

))
= 0 (5.102)

Also since due to (5.96) matrices Dp,f are invertible, last equation is also equivalent to

det

((
D−1
p 0

0 D−1
f

)
−
(
A∗pQW

fp (y)Ap A∗pQW
ff (y)Af

A∗fQW
pp(y)Ap A∗fQW

pf (y)Af

))
= 0 (5.103)

Lemma 5.9. For each z ∈ C \ S∗, where S∗ = (−2
√
c∗(1− c∗), 2

√
c∗(1− c∗)) ∪ {±1}1c∗>1/2 and i 6= j ∈

{p, f} we have:

• D−1
i −

(
−(1− cN )∆2

N Ir
Ir

1
1−cN Θ∗N (IL ⊗R−1

N )ΘN

)
→ 0 almost surely

• A∗iQW
ji Ai −

−
(1− cN )(1 + zt̃N (z))

zt̃N (z) + 1− cN
∆2
N 0

0
1 + t̃N (z)z

cN (1− cN )
Θ∗N (IL ⊗R−1

N )ΘN

→ 0 almost surely

• A∗fQW
ppAp −

−(1− cN )2

z2t̃N (z)
ΓN 0

0 0

→ 0 almost surely

• A∗pQW
ff Af −

−(1− cN )2

z2t̃N (z)
Γ∗N 0

0 0

→ 0 almost surely

Moreover, the 3 last convergence items hold uniformly on each compact subset of C \ S∗.
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Proof. The proof of this Lemma is postponed to the Section 5.2.1.
We remind that Θ∗N (IL ⊗ R−1

N )ΘN is denoted by GN , then after trivial algebra, Lemma (5.9) implies that
asymptotically, for N →∞, the "limiting form"of Eq. (5.103) is

det



(1− cN )cN

zt̃N (z) + 1− cN
∆2
N Ir

(1− cN )2

z2t̃N (z)
Γ∗N 0

Ir −1− cN + zt̃N (z)

cN (1− cN )
GN 0 0

(1− cN )2

z2t̃N (z)
ΓN 0

(1− cN )cN

zt̃N (z) + 1− cN
∆2
N Ir

0 0 Ir −1− cN + zt̃N (z)

cN (1− cN )
GN


= 0

(5.104)

Replacing zt̃N (z) + 1− cN by z2cNtN (z) (see (5.71)) and taking the limits of various terms when N → +∞
(due to Assumptions 3, 6, 1), following the classical stability results we can expect that the zeroes y of
equation (5.103) tend to the zeroes of limiting equation, i.e.

det



1− c∗
y2t∗(y)

∆2
∗ Ir

(1− c∗)2

y2t̃∗(y)
Γ∗∗ 0

Ir −y
2t∗(y)

1− c∗
G∗ 0 0

(1− c∗)2

y2t̃∗(y)
Γ∗ 0

1− c∗
y2t∗(y)

∆2
∗ Ir

0 0 Ir −y
2t∗(y)

1− c∗
G∗


= 0. (5.105)

Here t∗, t̃∗ are tN ,t̃N with cN replaced by c∗. Provided we establish that (5.105) has a finite number s of
positive solutions, a property established below, the classical stability results of the zeros of holomorphic
functions derived in [4] (see also [10]) will imply that almost surely, for N large enough, Eq. (5.103) has
exactly s positive solutions in ]2

√
c∗(1− c∗), 1[ that converge towards the s positive solutions of (5.105).

We now study the solutions of (5.105). If we interchange the second and third row blocks and second and
third column blocks the determinant will not change and with Schur complement formula the l.h.s. of (5.105)
becomes

det

−
y2t∗(y)

1− c∗
G∗ 0

0 −y
2t∗(y)

1− c∗
G∗

det

[
1− c∗
y2t∗(y)

∆2
∗

(1− c∗)2

y2t̃∗(y)
Γ∗∗

(1− c∗)2

y2t̃∗(y)
Γ∗

1− c∗
y2t∗(y)

∆2
∗

−
−

y2t∗(y)

1− c∗
G∗ 0

0 −y
2t∗(y)

1− c∗
G∗


−1 ]

Taking this into account and since det

(
−y2t∗(y)

1−c∗ G∗ 0

0 −y2t∗(y)
1−c∗ G∗

)
6= 0, Eq. (5.105) equivalent to

det


1− c∗
y2t∗(y)

(∆2
∗ +G−1

∗ )
(1− c∗)2

y2t̃∗(y)
Γ∗∗

(1− c∗)2

y2t̃∗(y)
Γ∗

1− c∗
y2t∗(y)

(∆2
∗ +G−1

∗ )

 = 0

Finally with another Schur complement formula, since det ( 1−c∗
y2t∗(y)

(∆2
∗ + G−1

∗ )) 6= 0 we obtained that y is

eigenvalues of
(

0 Πp

Πf 0

)
if and only if

det

(
(1− c∗)2

y4t2∗(y)
(∆2
∗ +G−1

∗ )− (1− c∗)4

y4t̃2∗(y)
Γ∗∗(∆

2
∗ +G−1

∗ )−1Γ∗

)
= 0,
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or equivalently,

det

(
1

(1− c∗)2

t̃2
∗(y)

t2∗(y)
− Γ∗∗(∆

2
∗ +G−1

∗ )−1Γ∗(∆2
∗ +G−1

∗ )−1

)
= 0 (5.106)

We remind that the eigenvalues of ΠpΠf that escape from the limiting spectrum S∗ = [0, 4c∗(1 − c∗)] ∪
{1}1c>1/2 of ΠW

p ΠW
f tend to the squares of the positive solutions of Eq. (5.106) that escape the limiting

spectrum S∗ = [−2
√
c∗(1− c∗), 2

√
c∗(1− c∗)] ∪ {±1}1c∗>1/2 of

(
0 ΠW

p

ΠW
f 0

)
. Since the eigenvalues of

ΠpΠf do not exceed 1, we conclude that we are interested in the solutions of Eq. (5.106) on the interval
]2
√
c∗(1− c∗), 1[. For more convenience we replace t̃∗(y) = yt̃∗(y2) and t∗(y) = t∗(y2), then by replacing y2

by y we have ( t̃∗(y)
t∗(y))2 → yt̃2∗(y)

t2∗(y)
and Eq. (5.106) becomes

det

(
y

(
t̃∗(y)

(1− c∗)t∗(y)

)2

− Γ∗∗(∆
2
∗ +G−1

∗ )−1Γ∗(∆2
∗ +G−1

∗ )−1

)
= 0 (5.107)

The eigenvalues of ΠpΠf that escape from S∗, i.e. that belong to (4c∗(1 − c∗), 1), tend to the solutions
of (5.107) that belong (4c∗(1 − c∗), 1). Let us also notice that Γ∗ is the limit of ∆N Θ̃∗f,NΘp,N∆N . Since,
according to Assumption 6, matrix ∆N tends to ∆∗, we conclude that the sequence of rank P matrices
(Θ̃∗f,NΘp,N )N≥1 converges towards a rank P matrix Ω∗ verifying Γ∗ = ∆NΩ∗∆N . Taking this into account,
as well as commonly used fact that det (I +AB) = det (I +BA), we rewrite (5.107) as

det

(
y

(
t̃∗(y)

(1− c∗)t∗(y)

)2

− F∗

)
= 0, (5.108)

where F∗ = Ω∗∗(Ir+∆−1
∗ G−1

∗ ∆−1
∗ )−1Ω∗(Ir+∆−1

∗ G−1
∗ ∆−1

∗ )−1. Since Ω∗ is rank P matrix, this gives immediately
that rankF∗ = Ω∗ = P . Therefore, if we show that y( t̃∗(y)

(1−c∗)t∗(y))2 is increasing function on [4c∗(1− c∗), 1] it
will mean that there exist at most P solutions of Eq. (5.107). This justifies that the stability results of [4]
holds, and as consequence, that at most P eigenvalues of ΠpΠf are outside S∗. To prove this it is sufficient
to show that t̃∗(y)

t∗(y) is positive increasing function on [4c∗(1− c∗), 1]. Indeed, since t̃∗(y) = c∗t∗(y)− 1−c∗
y , then

t̃∗(y)

t∗(y)
= c∗ −

1− c∗
yt∗(y)

. (5.109)

Also, due to (5.66), it is easy to see that yt̃∗(y) is increasing on [4c∗(1− c∗), 1]. However, c∗yt∗(y) = yt̃∗(y) +
(1− c∗) from what follows that yt∗(y) is also increasing on [4c∗(1− c∗), 1]. This along with (5.109) give that
t̃∗(y)
t∗(y) is an increasing function on [4c∗(1− c∗), 1]. Moreover, using (5.68) we can calculate explicitly the value
at 4c∗(1− c∗) :

(yt∗(y))
∣∣∣
y=4c∗(1−c∗)

=
4c∗(1− c∗)(2c∗ − 1)

2c∗(2c∗ − 1)2
=

2(1− c∗)
2c∗ − 1

⇒ t̃∗(y)

t∗(y)

∣∣∣
y=4c∗(1−c∗)

= c∗ −
2c∗ − 1

2
=

1

2

This proofs that t̃∗(y)
t∗(y) is also positive on [4c∗(1 − c∗), 1]. Finally, we conclude that yt̃2∗(y)

(1−c∗)2t2∗(y)
is increasing

on [4c∗(1− c∗), 1] and

yt̃2∗(y)

(1− c∗)2t2∗(y)

∣∣∣
y=4c∗(1−c∗)

=
4c∗(1− c∗)
4(1− c∗)2

=
c∗

1− c∗

We remark that if c∗ < 1/2, then due to (5.66), (5.68) we have

t̃∗(y)

t∗(y)

∣∣∣
y=1

= lim
y→1

c∗4(1− c∗)2(1− y)
(
y(2c∗ − 1)−

√
y(y − 4c∗(1− c∗))

)
y(1− y)4c∗(1− c∗)

(
y − 2(1− c∗)−

√
y(y − 4c∗(1− c∗))

) = 1− c∗
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and for c∗ ≥ 1/2

t̃∗(y)

t∗(y)

∣∣∣
y=1

= lim
y→1

c∗
(
y − 2(1− c∗) +

√
y(y − 4c∗(1− c∗))

)
y(2c∗ − 1) +

√
y(y − 4c∗(1− c∗))

= c∗

With this we obtained that on the interval [4c∗(1− c∗), 1] for c∗ < 1/2 the expression
yt̃2∗(y)

(1− c∗)2t2∗(y)
takes all

possible values from c∗
1−c∗ < 1 to 1 and for c∗ ≥ 1/2 value of

yt̃2∗(y)

(1− c∗)2t2∗(y)
runs from c∗

1−c∗ > 1 to ( c∗
1−c∗ )

2.

Since G∗ is positive defined matrix, one can notice that ‖F∗‖ < 1, so we conclude that for c∗ ≥ 1/2 almost
surely no eigenvalues of ΠpΠf escape from S∗ for N big enough and if c∗ < 1/2 the number of outliers
coincides with the number of eigenvalues of F∗ that are bigger than c∗

1−c∗ .

This implies that P coincides with the number of eigenvalues that escape from S∗ if and only if all the
non zero eigenvalues of F∗ are bigger than c∗

1−c∗ . In this case, P can be consistently estimated. In order to
interpret the practical significance of the above condition on the eigenvalues of F∗, we observe that for N
large enough, the singular values of Θ̃∗f,N Θ̃p,N coincide with the canonical correlation coefficients between
the row spaces of Up,N and Uf,N which have the same behaviour than the canonical correlation coefficients
between the spaces generated by the components of uLn and of uLn+L. So generally speaking we can say that
if the canonical correlation coefficients between the past and the future of u are large enough (thus making
the singular values of Ω∗ large) and if the r eigenvalues of RLu,N are also large enough (thus making matrix
∆−1
∗ small), then all non zero P eigenvalues of F∗ will be greater than c∗

1−c∗ and the number of outliers of
Πp,NΠf,N is a consistent estimator for P in high-dimensional regime.

Finally, we denote by y1 ≥ y2 . . . ≥ ys the s solutions of Eq. (5.107) that are greater that 4c∗(1 − c∗) and
summing the above discussion we conclude by the next Theorem.

Theorem 5.2. If c∗ ≥ 1/2 for N large enough no eigenvalues of Πp,NΠf,N lie outside the S∗.
If c∗ < 1/2 for N large enough, exactly s largest eigenvalues λ̂1,N . . . ≥ λ̂s,N of Πp,NΠf,N escape from
[0, 4c∗(1− c∗)] and λ̂i,N → yi for i = 1, . . . , s.

We illustrate the above discussion by numerical experiments showing that eigenvalues outside the bulk
indeed tend to the square of solutions of equation (5.106). We consider a simple case, when P = 2, K = 1
and A is diagonal with eigenvalues a1 and a2. Figures 5.1, 5.2 represent histograms of the eigenvalues of
realizations of the matrix (R̂Lf,y)

−1/2R̂Lf |p,y(R̂
L
p,y)
−1R̂L∗f |p,y(R̂

L
f,y)
−1/2, as well as the graph of the density of

measure νN = 1
cN
ν̃N − 1−cN

cN
δ0 and the values of the square of solutions of equation (5.106).

We take N = 2000, M = 130 and L = 4, so cN = 0.26. The eigenvalues of matrix RN are defined by
λk,N = 1/2 + π

4 cos
(
π(k−1)

2M

)
for k = 1, . . . ,M , that makes matrix RN to verify 1

MTr(RN ) ' 1. Figure 5.1
corresponds to a choice of (a1, a2) for which s = 1, while s = 2 in the context of Figure 5.2.

5.2.1 Proof of Lemma 5.9

Since the calculation are mostly similar to ones from Sections 5.1.2 and 5.1.4 we will present only sketch of
the proof.
We start with showing the first item of the Lemma. For this we obtain the expression for D−1

i from (5.96):

D−1
i =

(
−∆2

i Ir
Ir 0

)
+

(
∆iΘ̃

∗
iΠ

W
i Θ̃i∆i ∆iΘ̃

∗
iW
∗
i (WiW

∗
i )−1Θi

Θ∗i (WiW
∗
i )−1WiΘ̃i∆i Θ∗i (WiW

∗
i )−1Θi

)
(5.110)

Using the same arguments as in Lemma 5.4 it is easy to obtain that E{W ∗i (WiW
∗
i )−1} = E{(WiW

∗
i )−1Wi} =

0 for i = p, f . Also we remind that E{ΠW
i } = cNIr + O(N−k) and E{(WiW

∗
i )−1} = (1 − cN )−1(IL ⊗

R−1
N ) +O(N−k) for each k ∈ N (see (5.19)-(5.20)). Combining this with Poincaré-Nash inequality we obtain

immediately the first item of the Lemma.

Before passing to the second item of Lemma we introduce the next result
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Рис. 5.1: Histogram of the eigenvalues and graph of of density with 1 outlier

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

Рис. 5.2: Histogram of the eigenvalues and graph of density with 2 outliers

Lemma 5.10. For each z ∈ C \ S∗, i 6= j ∈ {p, f} and for each bounded sequences (aN , bN )N≥1 of N–
dimensional deterministic vectors, it holds that

• a∗N QW
ii N bN − t̃N (z)a∗NbN → 0 almost surely;

• a∗N QW
ij N

bN − cNtN (z)a∗NbN → 0 almost surely.

Moreover, these converges hold uniformly on each compact subset of C \ S∗.

Proof. Due to Remark 5.3, we have that for each z, such that z2 ∈ C+ it holds α̃N (z) − t̃N (z) → 0
and αN (z) − cNtN (z) → 0. Proposition 5.1 implies that both, E{QiiN} and E{QijN} are multiple of
IN up to an error term, from what immediately we have that each diagonal term of E{QiiN} converges
towards α̃N (z) and each diagonal term of E{QijN} converges towards αN (z). This implies immediately
that a∗NE{QiiN}bN − t̃N (z)a∗NbN → 0 and a∗NE{QijN}bN − cNtN (z)a∗NbN → 0 for each z, such that
z2 ∈ C+. Using Poincaré-Nash inequality and Borel–Cantelli lemma we obtain almost sure convergence
of a∗N QiiN bN − t̃N (z)a∗NbN → 0 for each z, such that z2 ∈ C+. To have convergence for each z ∈ C \ S∗
we remark that it can be concluded from Theorem 5.1 that almost surely for each δ > 0 QN (z) is analytic
on C \ Sδ∗ , where Sδ∗ = {x ∈ R : dist(x,S∗) ≤ δ}. In particular this implies that functions a∗N QiiN bN and
a∗N QijN bN are also analytic on C \Sδ

∗ for N large enough. The use of Montel’s theorem allows to prove the
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almost sure convergence towards for each z ∈ C \ S∗, as well as the uniformity of the convergence on each
compact subset of C \ S∗. �

We return to the proof of Lemma 5.9. To deal with A∗iQW
ji Ai we first notice that similar to what is in

Lemma 5.4 it can be proved that E{ΠW
i QW

ji W
∗
i (WiW

∗
i )−1} = E{QW

ji W
∗
i (WiW

∗
i )−1} = 0, from what follows,

with Poincaré-Nash inequality, that r × r blocks on secondary diagonal of A∗iQW
ji Ai tend to zeros, i.e.

(A∗iQW
ji Ai)(pf), (A∗iQW

ji Ai)(fp) → 0 (where we refer with pp, pf, . . . to r × r blocks of 2r × 2r matrix
analogous to (5.13)). Without loss of generality we consider i = p, j = f . In view of Lemma 5.10, to find an
asymptotic equivalent of block (A∗pQW

fpAp)(pp), it is sufficient to express ΠW,⊥
p QW

fp ΠW⊥
p in terms of QW

fp and
QW

pp. Since QW
fp = ΠW

f (ΠW
p ΠW

f − z2)−1 = (ΠW
f ΠW

p − z2)−1ΠW
f (see (5.9)), after straightforward calculations

we obtain

ΠW,⊥
p QW

fp ΠW,⊥
p = (QW

fp − IN − zQW
pp)ΠW,⊥

p = QW
fp − IN − zQW

pp − IN − zQW
ff + ΠW

p + z2QW
pf

⇓
E{ΠW,⊥

p QW
fp ΠW,⊥

p } = ((1 + z2)αN (z)− 1− 2zα̃N (z)− (1− cN ))IN +O(N−3/2)

Due to Lemma 5.10 we have that for any bounded sequences (aN , bN )N≥1 of N–dimensional deterministic
vectors a∗NΠW,⊥

p QfpΠW,⊥
p bN − ((1 + z2)cNtN (z)− 1− 2zt̃N (z)− (1− cN ))a∗NbN → 0. In order to obtain the

corresponding expression stated in the Lemma, we refer to (5.71) and replace cNtN (z) = t̃N (z)
z + 1−cN

z2
:

(1 + z2)cNtN (z)− 1− 2zt̃N (z)− (1− cN ) = t̃N (z)

(
1

z
− z
)

+
1− cN
z2

− 1 (5.111)

Let us remind that t̃N satisfies Eq. (5.53) but in which term Oz2(N−2) is replaced with 0, i.e.

(1− z2)̃t2
N (z) +

(
2(1− cN )

z
− z
)

t̃N (z) +
(1− cN )2

z2
= 0 (5.112)

In order to simplify (5.111) we rewrite Eq. (5.112) as

(zt̃N (z) + (1− cN ))

(
t̃N (z)

(
1

z
− z
)

+
1− cN
z2

− 1

)
+ (1− cN ) + z(1− cN )̃tN (z) = 0

From what we immediately get that r.h.s. of (5.111) equal to − (1−cN )(1+zt̃N (z))

zt̃N (z)+(1−cN )
, what was stated in the

Lemma.

Finally, it is left to find an asymptotic of ff block, more precisely, we need to find the asymptotic behaviour of
E{(WpW

∗
p )−1WpQ

W
fpW

∗
p (WpW

∗
p )−1}. Luckily, due to Lemma 5.4, this matrix is diagonal, so we can consider

only the diagonal elements. For this we need to repeat the calculations of Section 5.1.2. In order to avoid
another tedious and similar calculation, we provide only the idea and main steps. First it is necessary to apply
integration by parts formula for

∑
r,t,m2,i2

E{QW
fp rt

W̄m1
p,i1t

((WpW
∗
p )−1)m1m2

i1i2
Wm2
p,i2r
} and follow the calculations

of Section 5.1.2 applying analogues arguments. In the end we obtain

E{
(
(WpW

∗
p )−1WpQ

W
fpW

∗
p

)m1m1

i1i1
} = E{((WpW

∗
p )−1)m1m1

i1i1
} 1

N

(
E{TrQW

fp } − E{TrQW
fp ΠW

p }
)

− E
{(

(WpW
∗
p )−1WpQ

W
fpW

∗
p (WpW

∗
p )−1

)m1m1

i1i1

} 1

N
E{TrΠW,⊥

p QW
fp }+Oz2(N−2)

Since E{(WpW
∗
p )−1} = (1 − cN )−1IN + O(N−3/2) and QW

fp ΠW
p = IN + zQW

ff we can simplify the r.h.s. of
the last equation

E{
(
(WpW

∗
p )−1WpQ

W
fpW

∗
p

)m1m1

i1i1
} =

1

1− cN
(αN − 1− zα̃N )

− E
{(

(WpW
∗
p )−1WpQ

W
fpW

∗
p (WpW

∗
p )−1

)m1m1

i1i1

}
(αN − 1− zα̃N ) +Oz2(N−3/2) (5.113)
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Analogous we express E{
(
(WpW

∗
p )−1WpQ

W
ff W ∗p

)m1m1

i1i1
}:

E{
(
(WpW

∗
p )−1WpQ

W
ff W ∗p

)m1m1

i1i1
} = E{((WpW

∗
p )−1)m1m1

i1i1
} 1

N

(
E{TrQW

ff } − E{TrQW
ff ΠW

p }
)

− E
{(

(WpW
∗
p )−1WpQ

W
ff W ∗p (WpW

∗
p )−1

)m1m1

i1i1

} 1

N
E{TrΠW,⊥

p QW
ff }+Oz2(N−2)

We remark that N−1E{TrQW
ff ΠW,⊥

p } = −z−1E{N−1TrΠW,⊥
p } = −1−cN

z (see (5.43)), then last equation can
be rewritten as

E{
(
(WpW

∗
p )−1WpQ

W
ff W ∗p

)m1m1

i1i1
} = −1

z

+
1− cN
z

E
{(

(WpW
∗
p )−1WpQ

W
fpW

∗
p (WpW

∗
p )−1

)m1m1

i1i1

}
+Oz2(N−2) (5.114)

Moreover, using resolvent identity, (WpW
∗
p )−1WpQ

W
ff W ∗p can be rewritten as (WpW

∗
p )−1Wp(−z−1IN +

z−1(ΠW
f ΠW

p −z2)−1ΠW
f ΠW

p )W ∗p = −z−1IN +z−1(WpW
∗
p )−1WpQ

W
fpW

∗
p . Thus, comparing (5.113) and (5.114)

we retrieve the necessary formula for diagonal elements of E{(WpW
∗
p )−1WpQ

W
fpW

∗
p (WpW

∗
p )−1}:

E{
(
(WpW

∗
p )−1WpQ

W
fpW

∗
p (WpW

∗
p )−1

)m1m1

i1i1
} =

αN − 1− zα̃N

(1− cN )((1− cN ) + αN − 1− zα̃N )
+ Oz2(N−2)

As we can see, all diagonal elements of E{(WpW
∗
p )−1WpQ

W
fpW

∗
p (WpW

∗
p )−1} are equal up to an error term,

what means that the matrix E{(WpW
∗
p )−1WpQ

W
fpW

∗
p (WpW

∗
p )−1} is a multiple of IN up to an error term.

Using again Lemma 5.10, we conclude that

a∗N (WpW
∗
p )−1WpQ

W
fpW

∗
p (WpW

∗
p )−1bN −

cNtN − 1− zt̃N
(1− cN )((1− cN ) + cNtN − 1− zt̃N )

a∗NbN → 0. (5.115)

After replacing cNtN with t̃N (z)
z + 1−cN

z2
we find that cNtN − 1 − zt̃N = t̃N (z)(1

z − z) + 1−cN
z2
− 1 which is

also the expression obtained in (5.111). Thus, we remind that

t̃N (z)

(
1

z
− z
)

+
1− cN
z2

− 1 = −(1− cN )(1 + zt̃N (z))

zt̃N (z) + (1− cN )

and by putting this expression in (5.115) we obtain the necessary asymptotic expression for (A∗pQW
fpAp)(ff).

Last two items of the Lemma are similar, so we focus only on the one of them, A∗fQW
ppAp. Using the similar

arguments to ones in Lemma 5.4 we can obtain that pf , fp and ff blocks are zeros. To deal with pp block
we remark that ΠW

f QW
pp = zQW

fp and QW
ppΠW

p = zQW
pf and express again

ΠW,⊥
f QW

ppΠW,⊥
p = QW

pp − zQW
pf − zQW

fp + zIN + z2QW
ff

⇓

E{ΠW,⊥
f QW

ppΠW,⊥
p } =

(
(1 + z2)α̃N (z)− 2zαN (z) + z

)
IN +Oz2(N−3/2)

Analogous to what above we obtain that a∗NΠW,⊥
f QW

ppΠW,⊥
p bN − ((1 + z2)̃tN (z)− 2zcNtN (z) + z)a∗NbN → 0.

Using that cNtN (z) = t̃N (z)
z + 1−cN

z2
, the limiting expression becomes

(1 + z2)̃tN (z)− 2zcNtN (z) + z = (z2 − 1)̃tN (z)− 2(1− cN )

z
+ z

With (5.112) we get immediately that r.h.s. of the obtained expression equal to − (1−cN )2

z2t̃N (z)
. This finishes the

proof of the Lemma. �
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