
HAL Id: tel-03337988
https://theses.hal.science/tel-03337988

Submitted on 8 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling, Scheduling, Pipelining and Configuration of
Synchronous Dataflow Graphs with Throughput

Constraints
Alexandre Honorat

To cite this version:
Alexandre Honorat. Modeling, Scheduling, Pipelining and Configuration of Synchronous Dataflow
Graphs with Throughput Constraints. Signal and Image processing. INSA de Rennes, 2020. English.
�NNT : 2020ISAR0010�. �tel-03337988�

https://theses.hal.science/tel-03337988
https://hal.archives-ouvertes.fr


LOIRE MATHSTIC

THÈSE DE DOCTORAT DE

L’INSA RENNES

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Signal, Image, Vision

Par

Alexandre HONORAT

Modeling, Scheduling, Pipelining and Configuration of Synchronous
Dataflow Graphs with Throughput Constraints

Thèse présentée et soutenue à Rennes (35 000), le 27 novembre 2020
Unité de recherche : IETR – UMR 6164 du CNRS
Thèse No : 20ISAR 20 / D20 - 20

Rapporteurs avant soutenance :
Claire PAGETTI HDR, Ingénieur de Recherche à l’ONERA, Toulouse
Frédéric SUTER HDR, Directeur de Recherche au CNRS (USR 6402 – CCIN2P3), Lyon

Composition du Jury :
Président : Alain GIRAULT HDR, Directeur de Recherche à l’INRIA Grenoble
Examinateurs : Johan LILIUS Professeur à l’Åbo Akademi, Turku (Finlande)

Claire PAGETTI HDR, Ingénieur de Recherche à l’ONERA, Toulouse
Frédéric SUTER HDR, Directeur de Recherche au CNRS (USR 6402 –

CCIN2P3), Lyon
Dir. de thèse : Jean-François NEZAN HDR, Professeur à l’INSA Rennes
Encadr. de thèse : Karol DESNOS Maître de Conférences à l’INSA Rennes





Contents

Contents iii

List of Figures v

List of Tables vii

List of Algorithms ix

List of Listings xi

Acknowledgements xiii

Résumé en français xvii

Introduction xxvii

1 Background 1
1.1 Introduction: hardware, software, and parallelism . . . . . . . . . . . . . . 2
1.2 The SDF dataflow model and its flavors . . . . . . . . . . . . . . . . . . . 13
1.3 Scheduling of SDF graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4 The PREESM tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2 Modeling nested for loops, with SDF graphs 43
2.1 SIFT keypoints detection application . . . . . . . . . . . . . . . . . . . . . 45
2.2 Modeling of single loops having explicit parallelism . . . . . . . . . . . . . 47
2.3 Modeling of nested loops having explicit parallelism . . . . . . . . . . . . 49
2.4 When and how to use SDF iterators? . . . . . . . . . . . . . . . . . . . . . 52
2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

iii



iv CONTENTS

3 Scheduling partially periodic SDF graphs 61
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2 Partially periodic constraints . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3 Discussion on the schedulability conditions . . . . . . . . . . . . . . . . . 75
3.4 Scheduling SDF graphs with partially periodic constraints . . . . . . . . . 77
3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4 Pipelining SDF graphs automatically 95
4.1 Admissible graph cuts for pipelining . . . . . . . . . . . . . . . . . . . . . 97
4.2 Automatic pipelining of SDF graphs . . . . . . . . . . . . . . . . . . . . . 103
4.3 Automatic cycle breaking of SDF graphs . . . . . . . . . . . . . . . . . . . 108
4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5 Configuration of parameterized SDF graphs 121
5.1 PREESM parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2 DSE: entangled problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3 An exhaustive DSE method . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.4 Improving DSE with automatic delay placement . . . . . . . . . . . . . . 134
5.5 A naive heuristic for Integer malleable parameters . . . . . . . . . . . . . 137
5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.7 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Conclusion 149

Bibliography 155

List of published contributions 183

Acronyms 185

Edition notice 189
Autorisation de Reproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Attestation de Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191



List of Figures

1 Exemple de graphe SDF avec son équivalent SRSDF, et deux ordonnan-
cements possibles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

2 Logigramme des contributions telles qu’utilisées dans l’outil PREESM. . . xxiv

3 Flowchart of the contributions as used in the PREESM framework. . . . . xxxi

1.1 Odroid XU3 heterogeneous multi-processor. . . . . . . . . . . . . . . . . . 3
1.2 SDF graph example with its equivalent SRSDF graph and two possible

static schedules with the corresponding buffer usage. . . . . . . . . . . . 16
1.3 SRSDF graph equivalent representations. . . . . . . . . . . . . . . . . . . 17
1.4 SDF graph example with its equivalent SRSDF graph and a possible static

schedule with the corresponding buffer usage. . . . . . . . . . . . . . . . 18
1.5 CSDF graph example with its equivalent SRSDF graph and a possible

schedule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6 Example of PISDF graph in PREESM. . . . . . . . . . . . . . . . . . . . . 34
1.7 Example of generated SRSDF graph in PREESM. . . . . . . . . . . . . . 40

2.1 SIFT image processing application. . . . . . . . . . . . . . . . . . . . . . . 46
2.2 Map and Upscale at a coarse-grain level. . . . . . . . . . . . . . . . . . . 48
2.3 Modeling of iterators with SDF. . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4 Reduce of N elements in SDF, with chunk size c > 1. . . . . . . . . . . . . 53
2.5 Modeling of iterators with SDF, with broadcast actor. . . . . . . . . . . . 55

3.1 SDF graph scheduling examples. . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 Example of scheduler and graph iterations, with pipelining. . . . . . . . . 66
3.3 Example and counter-example of Assumption 1. . . . . . . . . . . . . . . . 68
3.4 Periodic actor Π generating an underflow. . . . . . . . . . . . . . . . . . 70
3.5 Valid schedule example of graph 3.4a. . . . . . . . . . . . . . . . . . . . . 70
3.6 Counter-example to generalization of Equation (3.6). . . . . . . . . . . . . 72
3.7 Floor function underestimation example, as used in Equation (3.7). . . . 73

v



vi LIST OF FIGURES

3.8 Sample graph for topology ranks example. . . . . . . . . . . . . . . . . . . 76
3.9 A false positive to Algorithm 3.1. . . . . . . . . . . . . . . . . . . . . . . . 77
3.10 SDF graph G and its corresponding SRSDF version G∗. . . . . . . . . . . 78
3.11 Schedule with an actor period smaller than its WCET. . . . . . . . . . . 84
3.12 Scheduling bounds on the number of PEs m. . . . . . . . . . . . . . . . . 86
3.13 Evaluation of the schedulability gap on small random graphs. . . . . . . . 89
3.14 Evaluation of the schedulability gap on large random graphs. . . . . . . . 90
3.15 Graph period refinement example. . . . . . . . . . . . . . . . . . . . . . . 91
3.16 Evaluation of the graph period computed by Algorithm 3.3 compared to

ADFG with global EDF policy. . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1 Topological ordering and schedule example without and with pipeline. . 99
4.2 Delay placement examples, resulting from invalid and admissible graph

cuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3 Graph with valid delay placement distributed on the paths. . . . . . . . . 101
4.4 Split-join graph with four parallel branches. . . . . . . . . . . . . . . . . . 101
4.5 Schedule example where pipelining does not compensate for the presence

of a global barrier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6 Graph cut example and related schedule for ALAP topological ordering. 105
4.7 Graph cut example and related schedule for ASAP topological ordering. 105
4.8 Graph cut examples for regular and modified ALAP topological ordering. 105
4.9 Preselected and final cuts computed by the delay placement heuristic on

a sample graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.10 SDF actor having a self-loop. . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.11 Cycle example with an entry actor, an exit one and a normal one. . . . . 110

5.1 Example of parameters and their dependencies, here to express image
resolution choices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2 Example of a parameterized PISDF graph path. . . . . . . . . . . . . . . 127
5.3 Example to estimate number of cuts in DSE. . . . . . . . . . . . . . . . . 137
5.4 Dichotomy bounds example of an Integer malleable parameter. . . . . . . 139
5.5 Duration of II as function of the SIFT application configuration, for dif-

ferent degrees of parallelism p. . . . . . . . . . . . . . . . . . . . . . . . . 142



List of Tables

1.1 Main notations used in this thesis. . . . . . . . . . . . . . . . . . . . . . . 42

2.1 Number of scheduled tasks, execution times in ms, and speedup for dif-
ferent number of cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1 Details of the random directed acyclic SDF graphs generated by Turbine,
and execution time of the algorithms. . . . . . . . . . . . . . . . . . . . . 88

4.1 Characteristics and throughput gain with delays (H) of SDF benchmark
applications, on four PEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2 Throughput gain with delays (H) of SDF benchmark applications, on four
PEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.3 Throughput gain with delays (H) of SDF benchmark applications, on
sixty-four PEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4 Throughput and memory increases with delays (H), on four PEs, for dif-
ferent parallelism parameters (p). . . . . . . . . . . . . . . . . . . . . . . . 117

4.5 Throughput increases with delays (H), on four PEs, for different paral-
lelism parameters (p). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1 Results of DSE on SIFT video. . . . . . . . . . . . . . . . . . . . . . . . . 144

vii





List of Algorithms

1.1 Modified DFS before computing the repetition vector ~r . . . . . . . . . . . 37
1.2 Computation of the repetition vector ~r based on the result of Algorithm 1.1 38

3.1 Modified BFS to compute nblf ↑π and related necessary conditions . . . . . . 74
3.2 Subroutines for partially periodic scheduling of tasks . . . . . . . . . . . . . 80
3.3 Partially periodic scheduling of tasks . . . . . . . . . . . . . . . . . . . . . 81

4.1 Selection of buffer breaking cycles . . . . . . . . . . . . . . . . . . . . . . . 111

ix





List of Listings

1.1 PISDF parameter definitions and use in Figure 1.6. . . . . . . . . . . . . 35
2.1 Simple one dimensional (1-D) for loop having explicit parallelism. . . . . 47
2.2 Simple 1-D upscale, by interpolation on the element and its successor. . . 48
2.3 Spit SDF actor code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4 Upscale SDF actor code. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.5 Three perfectly nested for loops having explicit parallelism. . . . . . . . 50
2.6 Iteration space simulator for three perfectly nested for loops having ex-

plicit parallelism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.7 Non affine 2-D for loop having explicit parallelism. . . . . . . . . . . . . 54
2.8 Non affine 2-D for loop SDF actor code. . . . . . . . . . . . . . . . . . . 54
2.9 Original non affine 4-D for loop in SIFT. . . . . . . . . . . . . . . . . . . 56
5.1 Parameter expression implementing a dictionary. . . . . . . . . . . . . . . 125
5.2 Parameter expression of nLocalKptmax in the SIFT application. . . . . . 126
5.3 Sample objective input for the DSE algorithm. . . . . . . . . . . . . . . . 133
5.4 Code of the power threshold comparator of DSE points. . . . . . . . . . . 134
5.5 Code of the global comparator of DSE points. . . . . . . . . . . . . . . . 135
5.6 Objective input for the DSE evaluation. . . . . . . . . . . . . . . . . . . . 140

xi





Acknowledgements

This thesis has received funding from the European Union’s (EU) Horizon 2020 research
and innovation programme under grant agreement №732105 (project CERBERO) and
from the Région Bretagne (France) under grant ARED 2017 ADAMS. First of all, I
would like to thank all persons involved in this project. More information about this
EU’s research program can be found on their website: http://www.cerbero-h2020.eu/.

I would like to thank all the jury members to have reviewed and accepted my thesis:
Alain Girault, Johan Lilius, Frédéric Suter and Claire Pagetti. I understood it was
quite difficult to read, but thanks to your reviews, I hope that this final version is now
readable by anyone interested in Synchronous DataFlow (SDF) graphs. However, I do
not guarantee the usefulness of this thesis for the reader!

This thesis has been supervised by Karol Desnos and Jean-François Nezan, and I
thank them for all their valuable advice and for their patience. I took a few detours, but
finally, we have worked on malleable parameters! I have really liked to work on the topic
of this thesis, and I am lucky that you hired me. Actually, I was not the only one that
you hired to work on this, I also have to thank Florian Arrestier and Antoine Morvan;
the majority of my work relies on their huge SDF and coding skills. Besides, after three
years in the same office, Florian has almost convinced me that artificial intelligence and
neural networks are useful; I acknowledge my own defeat on this point! During the
thesis, I have also been pleased to work with Maxime Pelcat, Mickaël Dardaillon and
Shuvra S. Bhattacharyya on different publications. In another collaboration, we have
worked with Michael Masin and his team; I thank you and your family for your warm
welcome in Haifa!

For sure, I also want to thank all my other colleagues of INSA Rennes and especially
the VAADER team. Despite the fact that we are working in a creepy building above
a stock of deadly toxic gaz, you manage to make this place enjoyable. And now I
understand why everyone likes to work in such a big team, because it means that we
have more conference trips, birthdays, and even newborns (!), to celebrate with pastries!
I cannot mention all of you here (yes, it is a big team), so I will mention one person
who incarnates the most the spirit of the VAADER team, the peaceful and funny guy

xiii

http://www.cerbero-h2020.eu/


xiv ACKNOWLEDGEMENTS

who never misses a joke nor a crossword: Pierre-Loup Cabarat! And special thanks to
Thomas Amestoy, the only person (except my supervisors) who physically attended my
defense. Moreover I thank all the team visitors, especially Claudio Rubattu (the beaver
pacifier) and Leonardo Suriano (the beaver imitator)!

Before working at INSA Rennes, I also worked during two years approximately 500
meters from there, at INRIA Rennes. When I arrived in Rennes, I did not know anyone
so I am deeply grateful to the welcoming TEA, PANAMA and RAINBOW teams and
their visitors. Thanks to you I discovered the spirit of life of Brittany, mainly consisting
in salty butter, galettes, beers, music, and friends to share all of this with. I was thinking
to stay only two years at the beginning ... you clearly changed my mind! In the end,
I am not even able to leave Rennes a single week-end by fear of missing the amazing
Lices’ market (one of the biggest in France, even having one “more organic than organic”
producer). Again, it is not possible to mention all of you here, but I will start with Simon
Lunel, the most Breton of all persons I met in Brittany! Be careful Simon, as Hai-Nam
Tran lives in Brest now, he might dethrones you one day. . .Moreover, I want to mention
two friends of the PANAMA team who have defended their PhD one week before and
one week after me, and who have supported, if not worsen, my weird taste in movies
(Braguino!): Antoine Chatalic (master of crêpes baking) and Diego Di Carlo (master of
tiramisu baking, or is Giorgia Cantisani the true master of this recipe??). Regarding my
weird taste in music, it has been even more worsen by Corentin Louboutin and Valentin
Gillot. However, not only food and music are important, so thank you Cássio Fraga
Dantas and Jean-Joseph Marty for all the board games you made me discover! And
of course, special thanks to my belote and billiards partners: Clément Gaultier, Nicolas
Bellot and Lesley-Ann Duflot! During the thesis, I also “played” LATEX a lot, a very
funny sort of escape game, where you have to find your way out of the numerous bugs
that you face while solving some challenges; thank you Katharina Boudgoust for the
ultimate LATEX challenge of putting the chapter title in the right margin of this thesis.

This thesis is actually the result of long studies, and by extension the result of all
the teachers and supervisors I have had (at ENSEIRB-MATMECA, Pothier, Bertran de
Born, ...). I would like to thank them all here, from music teachers (especially French
horn and piano) to mathematics teachers. I will only mention Olivier Aumage, Denis
Barthou and Jean Roman who have particularly motivated me to finish my engineering
diploma, and to continue in the academic field. I do not regret it.

Before Rennes, I have studied in Bordeaux, Orléans and Périgueux. It turns out that
almost one third of my friends from there did a PhD. Among them I am currently the
last one to have started and defended a PhD, with two or three years of delay, and I

https://clementcogitore.com/work/braguino/


xv

have to say: well, you trapped me! But I have no regrets, the friends I have met during
the PhD, and the food I have eaten during trips for the PhD (in Sardegna, Haifa and
Samos!) clearly compensate for these three years of severe stress. Yes, food is almost as
important as friends, especially because it is the first thing you want to share with them!
For brevity, I will mention only four of these friends. First, I thank Nicolas Lafon, whose
wedding date forced me to send my PhD manuscript on time! Then, I congratulate
Thomas Quezel, who managed to avoid my (yet remote) PhD defense thanks to the
birth of his first child on the same day! I also want to thank Anastasia Gkolfi, who has
inspired me with her sheerest determination to start a PhD, whatever it takes, even to
live in the Nordic cold (for her)! Last but not least, Raphaël Angel is certainly the friend
who has unconsciously driven me to this PhD. I am deeply grateful to him, especially
for having initiated me to my first programming language (Ruby).

Finally, I thank my family, especially my parents and my sister, who know better
than anyone at what point this three years were stressful. Thank you for your support,
during the thesis, and of course, during all my life. I remember that, as a child, you
subscribed me to the Research EUmagazine which describes the research projects funded
by the EU; well, more than fifteen years later, I have been funded by the EU too, it
might have had a greater influence than what you think.

To conclude these acknowledgements, I would like to thank XKCD to have perfectly
described the entanglement problem of the configuration challenge studied in this PhD:

Credit Card Rewards / XKCD

To put you in a good mood before reading this thesis, I suggest you to listen to nice
music first, as “La frite équatoriale” composed by François de Roubaix. Playing a good
old “Carcassonne” board game might also help, but only if you win at the end!

À Georges, Brigitte et Élisabeth.

https://cordis.europa.eu/research-eu
https://xkcd.com
https://xkcd.com/1908/
https://www.youtube.com/watch?v=s7j8c-Iycb0
https://en.wikipedia.org/wiki/Carcassonne_(board_game)




Résumé en français

Au fur et à mesure que les processeurs sont devenus de plus en plus petits et de moins en
moins coûteux, ils ont été utilisés dans de plus en plus d’appareils facilitant la vie de tous
les jours. L’un des exemples majeurs est le smartphone, qui est presque aussi puissant
qu’un ordinateur personnel. Les smartphones contiennent même plus de composants
qu’un ordinateur : au moins une caméra et une antenne. En 2019, 77% des Français
possédaient un smartphone, et 76% avaient accès à un ordinateur personnel1.

Chaque composant d’un smartphone peut en réalité contenir son propre processeur.
Par exemple, la dernière smartcamera Sony MX 500 intègre sur une même puce un
processeur situé en dessous du capteur d’image, pour une largeur n’excédant pas 1, 5
centimètre. Les Systèmes Multi-Processeurs Intégrés sur Puce (MPSoC)2 sont l’un des
principaux ingrédients de ce succès de miniaturisation. Comme les MPSoCs contiennent
plusieurs processeurs sur une même puce, ils abritent efficacement une forte capacité
de calcul. Cette capacité de calcul peut servir par exemple à stabiliser une vidéo en
temps-réel, en utilisant uniquement des algorithmes plutôt que de lourds stabilisateurs
mécaniques.

Un smartphone ne contient pas un, mais plusieurs processeurs hétérogènes : des
processeurs génériques pour les applications standards, et des processeurs spécifiques à
certains types de calcul, tels que pour le traitement du signal. Les calculs se composent
généralement de plusieurs tâches à exécuter, formant un graphe. Pour accélérer les cal-
culs, les tâches sont distribuées aux différents processeurs selon leur capacité à exécuter
tel type de calcul. La sélection de l’emplacement et de l’ordre des tâches à exécuter sur
les processeurs s’appelle l’ordonnancement. Le problème d’ordonnancement est complexe
à résoudre, et est aussi lié aux moyens de communication reliant les composants.

La création de panorama à partir d’images prises depuis différents points de vue
est un autre exemple d’application pour les smartphones et smartcameras. Plusieurs
algorithmes peuvent être utilisés pour ces applications logicielles, chacun offrant un dif-

1Ces statistiques sont extraites du rapport officiel Baromètre du numérique 2019 .
2Les acronymes sont gardés en langue anglaise afin de pouvoir les repérer dans le reste du document,

rédigé en anglais. Seules leurs formes étendues sont traduites.
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xviii RÉSUMÉ EN FRANÇAIS

férent niveau de qualité et de rapidité. En sus, l’utilisateur spécifie généralement une
Qualité de Service (QoS) minimale définissant des exigences logicielles telle qu’une réso-
lution d’image ou une cadence de prises de vue minimales. Cependant, les applications
logicielles de stabilisation d’image ou de création de panorama doivent aussi respec-
ter des contraintes matérielles : cadence et résolution maximales du capteur d’image,
puissance maximale de la batterie, ou fréquence maximale du MPSoC. Satisfaire les exi-
gences logicielles en même temps que respecter les contraintes matérielles est également
un problème complexe. Ce problème de configuration est en général résolu en testant
différentes configurations de l’application et du matériel jusqu’à ce que l’une des configu-
rations satisfasse toutes les exigences et contraintes. Le test des configurations possibles
correspond à l’Exploration de l’Espace des Designs (DSE). Les configurations diffèrent
les unes des autres par la fréquence du MPSoC ou par la résolution d’image supportée
par l’application. Si aucune configuration ne satisfait toutes les exigences et contraintes,
un compromis est nécessaire et certaines d’entre elles doivent être assouplies.

Au bout du compte, l’adaptation d’une application logicielle à une architecture ma-
térielle telle qu’un smartphone n’est pas triviale. Cette adaptation nécessite de résoudre
plusieurs problèmes à la fois, au moins l’ordonnancement et la configuration. Pour ce
faire, l’application ainsi que l’architecture sont toutes les deux modélisées. Le but du
modèle est d’abstraire les propriétés essentielles qui participent aux problèmes d’ordon-
nancement et de configuration.

Ces problèmes de modélisation, d’ordonnancement et de configuration existent de-
puis quelques dizaines d’années et sont des sujets actuels de recherche. Par exemple, le
Modèle de Calcul (MoC) Synchrone de Flux de Données (SDF) [LM87b] est dédié aux
applications de traitement du signal, pour les images ou les antennes. Dans le modèle
SDF, les tâches à exécuter et leurs données sont toutes deux représentées. Les tâches et les
échanges de données sont prédéterminés par le concepteur, ce qui permet une exécution
déterministe de l’application. Le modèle SDF peut être paramétré avec le Méta-Modèle
Interfacé et Paramétré (PiMM) [Des+13] par exemple, qui introduit le choix entre plu-
sieurs valeurs de paramètres et le rend donc éligible au problème de configuration. SDF
appartient à la grande famille des MoCs orientés flux de données, qui se concentrent sur
la représentation des échanges et des traitements de données.

De nombreux outils existent pour automatiquement générer et optimiser le code in-
formatique d’une application logicielle sur une architecture matérielle donnée, tel que
SynDEx [GLS99] qui repose sur la méthodologie Adéquation Architecture Algorithme.
SynDEx optimise l’exécution d’une application de flux de données sur une architec-
ture MPSoC ou autre, en déterminant l’ordonnancement offrant la meilleur cadence par
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exemple. Cependant, il ne configure pas lui-même l’application pour satisfaire des exi-
gences et contraintes. Autrement dit, SynDEx ne va pas automatiquement sélectionner la
meilleure résolution d’image pour des contraintes matérielles et des exigences logicielles
données. D’autres modèles et outils, comme AADL3 [Hug+08] et Ptolemy4 [Guo+14],
permettent au concepteur de représenter plus d’informations : l’application, l’architec-
ture, et respectivement les exigences et les contraintes associées. Cette approche aide
grandement la vérification de la satisfaction des exigences et contraintes ; mais de même
qu’avec SynDEx, le concepteur a toujours besoin de tester lui-même plusieurs confi-
gurations avant de choisir la meilleure. L’utilisation d’algorithmes de DSE accélère ce
processus, mais ne le résout pas complètement lorsqu’il faut configurer les exigences
de QoS. En effet ces outils n’ont pas connaissance des compromis acceptables pour le
concepteur.

Finalement, la sélection de la meilleure configuration satisfaisant contraintes maté-
rielles et exigences logicielles sur une architecture matérielle hétérogène est toujours un
défi à l’heure actuelle. Ce problème de configuration est composé de plusieurs autres
problèmes, dont certains sont introduits dans la section suivante. Les contributions pro-
posées dans cette thèse, concernent trois de ces problèmes en sus de la configuration
elle-même. Les sections restantes présentent brièvement le modèle SDF, puis les contri-
butions exposées dans cette thèse, et leurs possibles extensions.

Définition du problème

Cette thèse aborde le problème de configuration d’applications SDF paramétrées ayant
des exigences logicielles et étant exécutées sur des architectures de multi-processeurs
ayant des contraintes matérielles. Nos contributions ne concernent malheureusement que
le cas des multi-processeurs homogènes. Le problème de configuration se pose également
pour les architectures hétérogènes et est alors d’autant plus difficile à résoudre.

Exécuter un graphe SDF nécessite de résoudre plusieurs problèmes : l’ordonnance-
ment de l’exécution des tâches et celui des échanges de données, l’allocation de la mémoire
pour l’exécution des tâches et les échanges de données, tout en prenant en compte les
contraintes telles que le nombre de processeurs dans l’architecture et la périodicité de
certains tâches. Chacun de ces problèmes est complexe, NP-complet en général. Alors
que de nombreux algorithmes existent déjà pour résoudre chacun de ces problèmes, nous
nous concentrons sur ceux qui sont rapides et peuvent traiter de grands nombres de

3C.f. AADL et OpenAADL websites.
4C.f. Ptolemy website.

http://www.aadl.info
http://openaadl.org
https://ptolemy.berkeley.edu/
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tâches à la fois, de sorte que toutes les solutions possibles peuvent être testées dans un
court laps de temps, par exemple moins d’une heure.

La rapidité est particulièrement importante pour les graphes SDF paramétrés. Les
paramètres sont toujours fixés lors de l’exécution des tâches du graphe les utilisant,
mais ils permettent d’explorer automatiquement toutes les configurations possibles, et
de réagir dynamiquement à certaines données en entrée qui les modifieraient. En effet,
pour l’exploration des configurations, le nombre de configurations peut exploser de ma-
nière exponentielle en fonction du nombre de paramètres. Pour l’exécution dynamique,
la rapidité est aussi nécessaire pour limiter la surcharge de calculs créée par la résolu-
tion dynamique des problèmes d’ordonnancement et d’allocation. Dans cette thèse, nous
utilisons le modèle PISDF, qui est l’extension du modèle SDF obtenue en y appliquant
le méta-modèle PIMM. Les propriétés dynamiques de PISDF ne sont pas utilisées, et
notre travail se restreint à sa sémantique statique afin de trouver à l’avance une bonne
configuration de l’application satisfaisant au mieux l’ensemble des contraintes. Pour in-
formation, les paramètres matériels tels que la fréquence du processeur, peuvent aussi
être représentés par des paramètres de graphes PISDF.

Dans cette thèse, le mot contrainte peut autant signifier contrainte matérielle qu’exi-
gence logicielle. Bien que nous ayons distingué les deux notions jusqu’à présent, toutes
deux peuvent être liées à la même métrique. Par exemple, la cadence d’images est
contrainte par une valeur minimale du côté logiciel, et par une valeur maximale du
côté matériel. Les contraintes que nous considérons peuvent être : la périodicité de cer-
taines tâches, la minimisation de l’énergie ou de la puissance à chaque exécution du
graphe, la minimisation de la latence ou la maximisation de la cadence des exécutions,
la minimisation ou la maximisation de n’importe lequel des paramètres apparaissant
dans le graphe PISDF. La sélection de la meilleure configuration s’appuie sur une DSE
pour évaluer les plus intéressantes d’entre elles. Ce problème principal de configuration
peut être divisé en plusieurs problèmes, dont :

• paramétrisation d’une application statique dans le modèle PISDF ;

• modélisation de tâches périodiques dans le modèle PISDF ;

• ordonnancement rapide de graphes PISDF ayant des tâches périodiques ou non ;

• modélisation des contraintes de cadence, latence, énergie, puissance ou QoS.

Cette liste est largement incomplète. Nous détaillons maintenant le modèle (PI)SDF,
qui est utilisé par toutes les contributions.
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Modèle de calcul synchrone de flux de données SDF

Cette thèse utilise le modèle de calcul PISDF, une extension paramétrée du modèle
SDF [LM87b]. La Figure 1a présente un exemple de graphe SDF. Les tâches à exécuter,
A et B dans la figure, y sont représentées par les nœuds du graphe. Les échanges de
données, de A vers B dans la figure, y sont représentés par les arcs dirigés du graphe.
Ces arcs possèdent deux propriétés : un nombre entier précisant la quantité de données
produites lors de l’exécution de la tâche à l’extrémité de départ, et symétriquement un
nombre entier précisant la quantité de données consommées à l’extrémité d’arrivée. Les
arcs correspondent à des files d’attente stockant les données d’une tâche vers l’autre.
Chaque tâche peut être le départ ou l’arrivée de plusieurs arcs à la fois. Les arcs peuvent
aussi contenir des données présentes avant l’exécution de chacune des extrémités ; ces
données sont alors appelées délais.

Un des avantages du modèle SDF est son déterminisme. Un effet, grâce aux deux
propriétés de consommation et de production de chaque arc, il est possible de déterminer
le nombre d’exécution de chaque tâche de sorte que la taille des files d’attente reste
bornée au cours du temps. Ce nombre d’exécutions de chaque tâche s’appelle le vecteur
de répétition du graphe. Un tel vecteur n’existe pas toujours, et dans cette thèse nous
nous intéressons uniquement au cas des graphes SDF cohérents, c’est-à-dire lorsque le
vecteur de répétition existe. En somme le vecteur de répétition garantit qu’en exécutant
autant de fois toutes les tâches, les files d’attente contiendront toutes autant de données
qu’initialement. Dans la Figure 1a, la tâche A est ainsi exécutée trois fois et produit 15
données sur la file d’attente. À l’autre extrémité de l’arc, la tâche B est exécutée cinq
fois et consomme donc en tout 15 données également.

Le problème d’ordonnancement correspond au choix de l’ordre d’exécution des tâches.
Cet ordre doit garantir que chaque tâche a suffisamment de données disponibles dans les
files d’attente y arrivant, afin de pouvoir consommer autant de données que spécifié au
début de son exécution. Quant à la production des données, elle n’est effective qu’à la fin
de l’exécution. Pour garantir cet ordre, le graphe SDF est souvent déroulé en un graphe
Single Rate SDF (SRSDF) afin d’expliciter les dépendances de données entre les tâches.
Un exemple est donné dans la Figure 1b. Les arcs y sont représentés par de simples
traits car la quantité de donnée envoyée et reçue sur ces arcs y est fixée et égale ; elle est
spécifiée au milieu de chaque arc. Par ailleurs, le graphe SDF original contenait un délai
de 6 données, qui supprime donc les premières dépendances de données représentées en
pointillé. En effet, grâce au délai, les deux premières exécutions de la tâche B peuvent
démarrer avant même que A n’ait commencé à être exécutée. Les 6 données du délai se
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A

5
B

3

x6
(a) Exemple de graphe SDF, ayant pour
vecteur de répétition [3, 5]T . Un délai est
présent sur l’unique canal de transmission
de données, ce qui supprime la dépendance
de données depuis les tâches A1 et A2 vers
B1 et B2.

A1

A2

A3

B3

B4

B5

B1

B2

3
2

1
3
1

2
3

(b) Graphe SRSDF de 1a. Les dépendances de
données cassées par le délai sont représentées par
une ligne en pointillé.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Proc. 1 A1 A2 A3 B1B2B3B4B5

(c) Exemple d’ordonnancement du graphe 1a sur un processeur.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

#Données sur A⇒ B 6 6 11 16 18 15 12 9 6

(d) Remplissage de la liste d’attente lors de l’ordonnancement sur1c. Les nombres sont la quantité
de données présente à chaque unité de temps sur la liste d’attente entre les acteurs A et B.

1 2 3 4 5 6 7 8 9 10 11 12

Proc. 1 A1 B3 A1 B3 A1 B3

Proc. 2 A2 B4 A2 B4 A2 B4

Proc. 3 A3 B5 A3 B5 A3 B5

Proc. 4 B1B2 B1B2 B1B2

répétition itération du graphe

(e) Exemple d’ordonnancement du graphe 1a sur quatre processeurs. Trois répétitions de l’or-
donnancement statique sont représentées, séparées par une ligne verticale rouge. Une exécution
du graphe de bout en bout est délimitée par les lignes bleues.

0 1 2 3 4 5 6 7 8 9 10 11 12

#Données sur A⇒ B 6 3 0 6 3 0 6 3 0 6
répétition répétition

(f) Remplissage de la liste d’attente lors de l’ordonnancement sur1e. Les nombres sont la quantité
de données présente à chaque unité de temps sur la liste d’attente entre les acteurs A et B.

Figure 1 – Exemple de graphe SDF avec son équivalent SRSDF, et deux ordonnance-
ments possibles avec le remplissage de liste d’attente correspondant.
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retrouvent initialement dans la file d’attente dont l’évolution est décrite en Figure 1d.
Grâce au graphe de dépendances de données il est possible de réaliser l’ordonnance-

ment, dont un exemple est représenté sur la Figure 1c pour un processeur. L’ordonnance-
ment correspond au placement et à l’ordre d’exécution d’autant de tâches que spécifiées
dans le vecteur de répétition. Cet ordonnancement est ensuite répété indéfiniment (une
fois dans la figure). L’écoulement du temps est représenté par l’indexation au-dessus de
l’ordonnancement. La durée d’exécution de chaque tâche est fixée a priori et ne varie pas
en fonction du temps. L’ordonnancement de la Figure 1c dure 14 unités de temps et la
cadence du graphe est donc 1/14. L’ajout de délais permet parfois de réduire ce temps
d’exécution lorsque plusieurs processeurs sont disponibles. L’ordonnancement représenté
en Figure 1e pour quatre processeurs ne dure que 4 unités de temps. Dans ce cas, comme
des dépendances de données sont supprimées grâce au délai du graphe initial, on parle de
pipelinage. En effet, certaines exécutions de B chevauchent dans le temps les exécutions
de A correspondant à une précédente exécution du graphe de bout en bout, ce qui ne
serait pas possible sans délai. Une exécution du graphe de bout en bout, aussi appelée
itération du graphe, est représentée en Figure 1e sans couleur de fond et délimitée par
les lignes bleues.

Finalement, la paramétrisation des graphes SDF revient simplement à remplacer les
nombres entiers utilisés pour les tailles de délais, les propriétés de consommation et de
production, et pour les durées d’exécution des tâches, par des expressions arithmétiques
utilisant des variables mathématiques. Ces expressions sont évaluées avant la transfor-
mation du graphe SDF vers le graphe de dépendance de données SRSDF correspondant.

Contributions

Dans cette thèse, nous présentons quatre contributions, dont la principale est la configu-
ration automatique de graphes PISDF grâce à une DSE. Les trois autres contributions
aident toutes à réaliser cette DSE, par le biais de la modélisation de contraintes ainsi
que de l’ordonnancement respectant ces contraintes. Les contributions sont brièvement
résumées dans les paragraphes suivants ; chaque contribution correspond à un chapitre
de la présente thèse. L’application de traitement d’image SIFT [Low04] est notre prin-
cipal cas d’utilisation et sert à réaliser les évaluations expérimentales des contributions
présentées dans les chapitres 2, 4 et 5.

La Figure 2 représente schématiquement comment nos contributions sont intégrées
au l’outil PREESM [Pel+14] qui permet de développer des applications dans le modèle
PISDF. Comme SynDEx, PREESM sépare la modélisation de l’architecture de celle de



xxiv RÉSUMÉ EN FRANÇAIS

l’application. La phase Scénario dans la Figure 2 permet de définir les informations
spécifiques à la fois à une application et à la fois à une architecture, telles que les
durées d’exécution de chaque tâche. Nos contributions correspondent aux phases vertes* :
modélisation de l’application, pipelinage, ordonnancement et DSE. La configuration est
réalisée lors de la DSE.

Modélisation de
l’architecture

Modélisation de
l’application*

Scénario

Pipelinage*

Ordonnancement*

Design-Space
Exploration*

Allocation de la mémoire

Génération du code

te
st
er

un
e
au

tr
e
co
nfi

gu
ra
tio

n

Chapitres 2 et 3

Chapitre 4

Chapitre 3

Chapitre 5

Figure 2 – Logigramme des contributions telles qu’utilisées dans l’outil PREESM. Les
boîtes vertes* correspondent aux contributions. Le motif hachuré indique les contribu-
tions qui sont optionnelles lors de l’utilisation de PREESM.
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Chapitre 2 : modélisation des boucles for imbriquées dans le modèle SDF.
Le point de départ de la conception d’une application est sa modélisation. Cependant,
il n’est pas commun de commencer directement par le modèle SDF, et beaucoup de
concepteurs développent d’abord un prototype utilisant les langages de programmations
impératifs les plus répandus comme C ou Java. Dans cette contribution, nous étudions
la modélisation des boucles for, l’une des plus importantes structures de contrôle des
langages impératifs. Plus spécifiquement nous introduisons les itérateurs SDF, qui per-
mettent la modélisation des boucles for parfaitement imbriquées avec du parallélisme
explicite. Les itérateurs SDF sont particulièrement utiles lorsqu’ils sont paramétrés. Dans
ce cas, nous montrons comment adapter la parallélisation des boucles aux nombres de
processeurs disponibles dans l’architecture. La parallélisation est le fait de répartir les
calculs des tâches sur plusieurs processeurs de sorte que le temps d’exécution de l’ordon-
nancement est plus court.

Chapitre 3 : ordonnancement partiellement périodique des graphes SDF.
Dans cette contribution, nous étudions la modélisation de contraintes de périodicité de
certaines tâches, par exemple exécutées toutes les 10 unités de temps. Dans le contexte
des graphes SDF, ces contraintes entraînent l’existence d’une période du graphe. Nous dé-
taillons un algorithme permettant d’ordonnancer le graphe en respectant les contraintes
de périodicité de ses tâches. Cet algorithme est rapide car il appartient à la famille des
ordonnanceurs par liste de priorité, statiques et non préemptifs. Non préemptif signifie
que lorsqu’une tâche commence son exécution, il n’est pas possible de l’arrêter avant sa
complétion.

Chapitre 4 : pipelinage automatique de graphes SDF. Dans cette contribution,
nous présentons un algorithme calculant automatiquement les tailles de délais nécessaires
au pipelinage. Cette contribution n’est pas mentionnée dans le problème de départ mais
elle aide à réduire le temps d’exécution d’un ordonnancement. De ce fait, cette contri-
bution aide à réaliser la configuration sous contrainte de cadence.

Chapitre 5 : configuration de graphes SDF paramétrés. Cette dernière contri-
bution aborde le problème principal de configuration automatique de graphes PISDF.
Plusieurs algorithmes de DSE sont proposés, exhaustifs ou non, afin de sélectionner la
meilleure configuration de graphes PISDF en fonction des contraintes spécifiées. Les
contraintes peuvent concerner l’énergie, la puissance, la latence, la cadence ou la QoS
par le biais de n’importe quel paramètre du graphe, tel que la résolution d’image. Cette
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contribution repose sur les trois précédentes : elle paramétrise les itérateurs SDF avec le
niveau de parallélisme adéquat, elle évalue chaque configuration grâce à l’ordonnanceur
de tâches avec périodicité, et finalement elle ajoute des délais pour améliorer la cadence
lorsque cela est possible.

Conclusion et extensions

Dans cette thèse, nous avons étudié le problème de configuration des graphes SDF pa-
ramétrés ayant des contraintes de QoS et étant exécutés sur des architectures multi-
processeurs hétérogènes ayant des contraintes matérielles. Pour résoudre ce problème,
nous avons proposé quatre contributions concernant la modélisation, l’ordonnancement,
le pipelinage et la configuration elle-même. Malheureusement ces contributions sont li-
mitées au cas des architectures multi-processeurs homogènes. Néanmoins, les évaluations
expérimentales ont montré que le problème de configuration peut être résolu pour le cas
homogène en un temps raisonnable de quelques minutes, avec des contraintes sur la ré-
solution d’image ou la fréquence du MPSoC. Les contraintes d’énergie, de puissance, de
latence et de cadence sont aussi considérées. En particulier nous avons pu configurer l’ap-
plication de traitement d’image SIFT pour une utilisation en temps-réel, de sorte que la
qualité d’image est maximisée tout en respectant une contrainte de cadence de 30 images
par seconde. Toutes nos contributions sont implantées dans l’outil libre PREESM.

Parmi les extensions possibles, il est primordial de résoudre le problème de confi-
guration pour les architectures hétérogènes, qui sont la norme des MPSoCs modernes.
Par ailleurs, nos contributions ne prennent pas en compte les temps de communica-
tions ni les limites de la mémoire des systèmes intégrant ces MPSoCs. Pour attaquer ce
cas plus général, nous pensons que deux domaines sont particulièrement importants :
(1) l’analyse symbolique des paramètres et (2) le raffinement de solution par mesures
réelles. Le domaine (1) permettrait de rapidement connaître l’évolution des objectifs en
fonction des paramètres sans avoir à tester toutes les configurations. Le domaine (2) per-
mettrait d’évaluer la configuration choisie dans son environnement réel, car un modèle
ne modélise jamais tout. Enfin, l’extension de nos travaux par les domaines (1) et (2)
rendrait possible d’effectuer les configurations de manière dynamique, par exemple pour
pallier en temps-réel la panne d’un des processeurs.



Introduction

As computer processors went smaller and cheaper, they have been used in more and
more devices easing the human life. One of the most iconic example is the smartphone,
which is now almost as powerful as a personal computer. Smartphones embed even
more components than a computer: at least one camera and an antenna. In 2019, 77%
of French people owned a smartphone, and 76% had a personal computer5.

Each component of a smartphone may actually contain its own processor. For exam-
ple, the latest smartcamera Sony MX 500 integrates a processor directly on the chip
embedding the image sensor, not larger than 1.5 centimeter. Multi-Processor System-
on-Chips (MPSoCs) are one of the main ingredients for this miniaturization success.
Since MPSoCs contain multiple Processing Elements (PEs) on a single chip, they host
on-site efficient computation capacities which for example, allow us to stabilize a video
in real-time on our smartphone using algorithms instead of heavy mechanical stabilizers.

A smartphone contains not one, but multiple heterogeneous processors: multiple
generic processors for regular applications, and specific processors dedicated to a kind of
computations such as signal processing. Computations are generally composed of mul-
tiple tasks to execute, forming a graph. To accelerate the computations, their tasks are
shared over the processors and the specific processors execute the tasks they are dedi-
cated to. To select where and when to execute the tasks, that is scheduling, is a complex
problem to solve, also related to means of communication between the components.

Another smartphone and smartcamera application example is the creation of panorama
pictures thanks to regular pictures from different point of views. Multiple algorithms
may be used in such software applications, each offering a different degree of quality
and rapidity. Moreover, the user generally sets software requirements defining its min-
imal Quality of Service (QoS), such as the minimum image resolution or the minimum
frame rate. Yet, stabilization or panorama software applications require to be adapted
to the smartphone hardware constraints: maximum image resolution and frame rate
of the camera, maximum available power of the battery, maximum frequency of the
MPSoC. Meeting software requirements while respecting hardware constraints is also a

5Statistics extracted from the official French report Baromètre du numérique 2019 .
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challenging problem. This configuration problem is generally solved by testing different
configurations of the application and the hardware, that is Design Space Exploration
(DSE), until one matches all constraints and requirements. For example, configurations
may differ by the MPSoC frequency, or by the image resolution supported by the ap-
plication. If no configuration matches all constraints and requirements, a trade-off is
necessary. In such case, a few constraints or requirements have to be relaxed.

In the end, the adaptation of a software application to a target hardware architec-
ture, such as a smartphone application, is not trivial. This adaptation requires to solve
multiple problems at the same time, at least scheduling and configuration. To solve
these two problems, both the application and the architecture are modeled. The goal
of the model is to abstract the key properties which are involved in the scheduling and
configuration problems.

These modeling, scheduling, and configuration problems are all active research fields
existing for a few decades. For example, the Synchronous Data Flow (SDF) [LM87b]
Model of Computation (MoC) is dedicated to signal processing applications, including
processing tasks on image and antenna signals. In the SDF model, both processing tasks
and their data are represented. Processing tasks and data exchanges are fixed by the
designer and the SDF model allows for a deterministic execution of the application. SDF
may be parameterized with Parameterized Interfaced Meta-Model (PIMM) [Des+13] for
example, giving choice between multiple possible values and making it eligible for the
configuration problem. SDF belongs to the wide family of dataflow MoCs, which focus
on the representation of data exchanges and data processing.

Many tools exist to automatically generate and optimize the code of a software ap-
plication on a specific hardware architecture, as SynDEx [GLS99] implementing the
Algorithm Architecture Adequation methodology. SynDEx optimizes the execution of a
dataflow application on an architecture as an MPSoC, by selecting the shortest possible
schedule for example. However, it does not configure the application in order to meet
both hardware constraints and software requirements. For instance, SynDEx will not
select automatically the best parameter value of image resolution given hardware con-
straints and software requirements. Other models and related tools, such as Architecture
Analysis and Design Language (AADL)6 [Hug+08] and Ptolemy7 [Guo+14], enable the
designer to represent more information: the application, the architecture, and respec-
tively some of their requirements and constraints. This approach greatly helps to verify
if requirements and constraints are met, but as with SynDEx, designers still need to test

6See AADL and OpenAADL websites.
7See Ptolemy website.

http://www.aadl.info
http://openaadl.org
https://ptolemy.berkeley.edu/
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different configurations before selecting the best one. Using DSE algorithms accelerates
this selection process, but does not completely solve it yet, especially when configuring
software requirements or software QoS.

Finally, selecting the best configuration to meet hardware constraints and software
requirements on an heterogeneous hardware architecture is still a modern challenge.
This configuration problem is composed of multiple other problems, some of which are
introduced in the next section. The contributions proposed in this thesis concern three of
theses problems plus the configuration itself. The configuration and related problems are
introduced in the next section. Our contributions are listed in the second section of this
introduction. Then, chapter 1 presents the background of this thesis. The contributions
are detailed in Chapters 2 to 5 and each contribution has its own specific related work.
As the last contribution uses the three previous ones, we advise the reader to read this
thesis in order.

Problem statement

This thesis tackles the configuration problem of parameterized SDF applications having
software requirements and running on multi-processor architectures having hardware
constraints. The contributions proposed in this thesis consider only homogeneous multi-
processor architectures containing multiple identical PEs. However, the same configura-
tion problem applies for heterogeneous architectures, and is even more difficult to solve
in such case.

Executing an SDF graph requires to solve multiple problems: the scheduling of the
tasks and the one of data exchanges, the memory allocation for tasks execution and the
one for data exchanges, while taking into account constraints such as the number of PEs
in the architecture and the periodicity of some tasks. Each of this problem is complex,
NP-complete in the general cases. While many algorithms already exist to solve each
problem, we focus on the fast and scalable ones, so that all solutions can be tested in a
short time, for example, in less than one hour.

Rapidity is especially needed when considering parameterized SDF graphs. The
parameters have still to be fixed when executing the processing tasks of the SDF graph
using them, but they allow algorithms to automatically explore different configurations,
or to react dynamically to inputs. Indeed for configuration exploration, the number
of configurations may explode exponentially in the number of parameters. And in the
dynamic case, rapidity is needed to limit the overhead created by online solving of the
scheduling and allocation problems. In this thesis, we use the Parameterized Interfaced
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Synchronous Data Flow (PISDF) MoC, an extension of SDF parameterized with PIMM.
The dynamic properties of PISDF are not used, and instead we restrict our work to its
static semantics to find offline a suitable configuration of the modeled application, fitting
all its constraints when possible.

In this thesis, the word constraint may refer to both hardware constraint and soft-
ware requirement. Although we have distinguished software requirement from hardware
constraint in the previous paragraphs, both may be related to the same metric. For
instance, the frame rate is constrained by a minimum value the software side and a max-
imum value on the hardware side. Constraints may be the real-time periodicity of some
tasks, the minimization of energy or power consumption per execution, the minimization
of latency and the maximization of throughput of the executions, the minimization or
maximization of any graph parameter to ensure QoS. The choice among multiple con-
figurations results from a DSE to evaluate the interesting ones. This main configuration
problem may be split into multiple problems, a non-exhaustive list follows:

• parameterization of static applications in the PISDF MoC;

• modeling of periodic tasks with the PISDF MoC;

• rapid offline scheduling of PISDF graphs having periodic tasks;

• modeling of the throughput, latency, energy, power and QoS constraints.

We now detail our contributions with regard to the main problem and the list above.

Contributions

In this thesis we present four contributions, one of which is the configuration of PISDF
graphs via automatic DSE. The three other contributions all help to perform this DSE,
by the modeling of constraints and the scheduling of tasks respecting them. The contri-
butions are briefly summarized in the next paragraphs; each contribution corresponds to
a chapter of this thesis. The Scale Invariant Feature Transform (SIFT) [Low04] image
processing application provides our main use-case; it is used in the experiments all along
the thesis, in Chapters 2, 4 and 5.

Figure 3 illustrates how our contributions are related in the design process. All
have been implemented in the Parallel and Real-time Embedded Executives Scheduling
Method (PREESM) [Pel+14] tool supporting the PISDF model. Note that as SynDEx,
PREESM separates architecture modeling from application modeling, and the scenario
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Figure 3 – Flowchart of the contributions as used in the PREESM framework. Green*
boxes correspond to contributions. The hatch pattern indicates the contributions which
are optional in the PREESM workflow.

node in Figure 3 stores information specific to one architecture and one application, as
the Execution Times (ETs) of each task. Our contributions concern the green* steps:
application modeling, pipelining, scheduling and DSE, which performs configuration.

Chapter 2: Modeling nested for loops, with SDF graphs. The starting point of
the design of an application is its modeling. However, it is not common to start with an
SDF model, and many designers first develop a prototype using widespread imperative
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programming languages as C or Java. In this contribution we study the modeling of
for loops, one of the most important control structure in imperative languages. More
specifically we introduce SDF iterators, which support the modeling of perfectly nested
for loops having explicit parallelism. SDF iterators are especially useful if parameter-
ized. In such case, we show how to adapt the parallelization of loops to the number of
PEs in the target architecture. Parallelization is the process of splitting computations
of a task on multiple PEs, so that its execution time is shorter.

Chapter 3: Scheduling partially periodic SDF graphs. In this contribution, we
study the modeling of periodicity constraints, expressed on some tasks but not all. In
the context of SDF graphs, we show that any task period enforces a common graph
period. We develop an algorithm to schedule the graph while respecting the periodicity
constraints. This algorithm belongs to the family of offline static non-preemptive list
schedulers and thus is rapid and scalable. Non-preemptive means that when starting
the execution of a task, it is not possible to stop it.

Chapter 4: Pipelining SDF graphs automatically. SDF graphs model the ex-
change of data between tasks, and it is possible to feed these exchanges with initial
data, present before the execution. These initial data are called delays. They break the
data dependencies and thus they may improve the scheduling result, giving a greater
execution throughput. In this contribution, we present an algorithm to automatically
add such delays on an SDF graph. This process is called pipelining. While this contri-
bution is not mentioned in the problem statement, it helps to solve the main problem
by providing more possible configurations.

Chapter 5: Configuration of parameterized SDF graphs. This contribution
tackles the main problem, that is the automatic configuration of PISDF graphs. It
provides multiple DSE algorithms, exhaustive or not, to select the best PISDF graph
configuration with regard to multiple constraints. Constraints may be on energy, power,
throughput, latency, or QoS via any parameter, as the image resolution. This contri-
bution uses all the three others; it parameterizes the SDF iterators with the correct
amount of parallelism, it evaluates each configuration thanks to our fast list scheduler
and finally, it adds delays if the throughput can be improved.
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In this thesis, we study the configuration of a software application with Quality of
Service (QoS) constraints which has to be executed on a specific hardware architecture.
In this chapter, we briefly introduce the main concepts related to this configuration
problem, especially parallelism, on the hardware and software sides. In Section 1.2, we
introduce the main model used in this thesis, the Synchronous Data Flow (SDF) Model
of Computation (MoC). For each contribution, a specific related work is presented at
the end of the corresponding chapter. Thus, the Section 1.3 presenting the scheduling
and the analysis of Synchronous Data Flow (SDF) graphs only gives an overview of
these concepts. The Parallel and Real-time Embedded Executives Scheduling Method
(PREESM) tool used to implement the contributions of this thesis is described in Sec-
tion 1.4. In Section 1.5, we briefly recall the characteristics of the model used in this
thesis and give notations which are common to all chapters.

1.1 Introduction: hardware, software, and parallelism

Parallelism is the simple fact to execute two tasks in parallel. In the everyday life,
cooking is an example of activity where we often parallelize tasks. The parallelism
is clearly written in good recipes, in general stating: “while this thing is cooking, do
something else”. In the french recipe of “la tourte aux blettes ”, it is possible to
cook the pears while preparing the grapes and pine nuts. This kind of parallelism is
called task parallelism. To perform multiple different and independent tasks in parallel
accelerates the cooking process. Another way to accelerate the process is to have multiple
cookers performing the same task, for example each cooker peels one pear. This is data
parallelism, where the same task is performed on multiple inputs. The metaphor between
cooking and computer science can also be used for the software and hardware sides. The
software side is the recipe itself, that is the list of tasks to execute and extra instructions
on how to perform those tasks. The hardware side corresponds to the equipment and
the cookers. Cookers are the Processing Elements (PEs) processing the food. When the
food is not used, you place it in the fridge, that is the memory of a computer. Last but
not least, cooking comes with QoS constraints: the food must be good and served before
it becomes cold. In any restaurant, the main ingredient to respect the QoS actually is
parallelism. The chef is not only here to create the recipes but also to schedule the tasks
of the cookers.

In computer science, parallelism helps to accelerate the computations when multiple
Processing Elements (PEs) are available. Then, heavy computations such as weather
forecast, can be executed in a reasonable time. In the following subsections, we list

http://www.lemanger.fr/index.php/la-tourte-de-blettes-la-vraie/
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PE 4

Cache L2 (2048 KB)

4x ARM Cortex A15 4x ARM Cortex A7

RAM (2048 MB)

PE 5 PE 6 PE 7 PE 0

Cache L2 (512 KB)

PE 1 PE 2 PE 3

Samsung Exynos 5422

Figure 1.1 – Samsung Exynos 5422 MPSoC architecture: ARM big.LITTLE design with
4x Cortex A15 (@ 2.1 GHz) and 4x Cortex A7 (@ 1.5 GHz) CPUs. It also embeds a
GPU, not depicted here. Odroid XU3 board contains one Samsung Exynos 5422 and
2 Gbytes of RAM. Only LLC size is specified.

some of the main tools to perform parallelism. In Section 1.1.1, we list programming
languages and libraries dedicated to parallelism on regular Multi-Processor System-on-
Chips (MPSoCs). Programming languages are a common way to represent the recipes
in computer science, and we precise their main concepts in Section 1.1.2 dedicated to
the software side. Multiple kinds of hardware are listed in the last Section 1.1.3.

1.1.1 Common tools and hardware

Parallelism is made possible on the hardware side by the possibility to use multiple PEs
of a multi-processor architecture. Figure 1.1 depicts a MPSoC architecture having 8 PEs
of two different types. A main Random Access Memory (RAM) memory is accessible
from all PEs. To continue the cooking metaphor, the architecture is the map and the
elements of the kitchen, that is the position of the fridge compared to the gas stoves,
and the number of gas stoves.

The most common way to use all PEs at the same time is to create threads defined by
the Operating System (OS) running on the MPSoC. Threads are a Model of Computation
(MoC). Each thread contains a list of tasks to execute successively. There might be more
threads than PEs. In such case, extra threads are not executed until a currently executed
one finishes or is suspended. The OS may suspend the execution of any thread to execute
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another one; this is called preemption. Suspended threads can continue their execution
later on any PE, not necessarily the same as previously. One role of the OS is to ensure
that threads will be completed sooner or later.

Threads can express both data and task parallelism. When there is only one shared
memory, threads can exchange data between them without specific communication li-
brary. A library is a set of predefined functions made available to the designer. However,
if multiple threads have to work on the same data, a lock system may be needed to en-
sure that multiple data writes do not occur at the same time for example. Semaphores
between threads are the main lock system to temporarily limit parallelism. Parallelism
limitations are called bottlenecks and reduce the execution time of an application. The
extreme case of parallelism limitation is mutual exclusion, which enforces that only one
thread is executed at a time, even with multiple available PEs.

Parallelism through programming languages

Programming languages help to express the computations of an application. The text
files written in any programming language are called the code of the application. They
correspond to the language in which the cooking recipe is written. Their main advantage
is to be readable by human programmers, and by either compilers or interpreters which
translate the code into binary instructions for the OS or directly for the PEs.

Most of the modern programming languages support the thread MoC through na-
tive libraries: C/C++, Python, Java, etc. Some languages can even represent parallel
computation directly in the language without exposing a thread library: ADA, Cilk,
Chapel, Erlang, LARA [Car+12], ABS [Joh+12], etc. Programming languages support-
ing threads generally offer at least two functions: one function to create and launch a
thread, that is to make the thread executable by the OS, and one function to wait for
the completion of a thread. This is the fork-join model. Waiting for the completion of
multiple threads is called a synchronisation. It is also possible to synchronize threads
before their completion, usually with semaphores.

Parallelism through compiler

Mastering programming languages is difficult, especially when using threads. Human
programmers have to find which tasks may be executed parallel, which data have to be
protected for writing, which threads to wait and when, etc. The compiler does not only
translate the code for the PEs, but it can also perform parallelism automatically in a
few cases. For example, C/C++ compilers can control fine grain parallelism available
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on vector PEs implementing the SSE/AVX binary instruction sets. Such instruction
sets offer data parallelism at the instruction level: the same instruction is executed on
multiple data at the same time by only one PE.

However, both fine grain parallelism controlled by the compiler and coarse grain
parallelism controlled by the programmer are difficult to use properly. Thus, it is com-
mon to perform automatic code analysis and source-to-source transformations, such as
in the PIPS [IJT91] tool, to discover and improve parallelism. An important class of
static analysis is the polyhedral analysis [FL11], used in [Bon+08; NC12] for example.
Another alternative is to use modulo scheduling [RST92]. In order to guide the transfor-
mation, it is also common to use annotations as in [KL12] or pragma as for the OpenMP
or OpenACC libraries. Sometimes transformations are guided by interaction with the
programmer as in Parascope [Bal+89] in the past and in a few modern tools [Lar+12].

The OpenMP library is a major library for data and task parallelism. It is especially
useful to parallelize for loops, iterating over an array for example. If operations on
the elements of the array can be performed in parallel, the programmer indicates to
OpenMP and the compiler that the operations of the loops may be split over threads.
OpenMP will automatically create the threads and wait for them.

Parallelism through task and array manager

However OpenMP is not perfect for multiple reasons. The main reason is that OpenMP
offers a small amount of scheduling policies managing the start time of the threads.
Policies of OpenMP are efficient for homogeneous architectures having identical PEs, but
not always for heterogeneous architectures. Many libraries are designed for this purpose,
as StarPU [Aug+11], PaRSEC1, or XKaapi [Gau+13]. Such libraries can be interfaced
with OpenMP so that the programmer does not change the pragma annotations in the
code, but the scheduling policy of OpenMP is replaced by the one of the library. Such
libraries are usually called runtime managers. Many other parallelism libraries exist,
especially for arrays: DASK2 and Kokkos [ETS14].

In any case, with such parallelism libraries, programmers need to indicate by them-
selves where parallelism is available in the code and when synchronizations are needed.
Dedicated tools may help to locate where parallelism is possible and when it is not,
for example, STABILIZER [CB13] and COZ [CB18]. To locate where parallelism is
possible is a difficult task, depending on the model used to represent applications. In

1http://icl.utk.edu/parsec/
2https://dask.org/

http://icl.utk.edu/parsec/
https://dask.org/
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this subsection, we have listed the main programming languages and libraries support-
ing the thread MoC. In the next subsection, we present concepts and MoCs related to
parallelism, especially data flow programming which is used in this thesis.

1.1.2 Software side

Modern programming languages such as Python or Java are widely used for regular
applications. Threads or libraries upon threads are available in these languages and
ease the expression of parallelism, but they require caution from the programmer and
extensive analysis of the compilers or the libraries to be used efficiently. Indeed, man-
aging data accesses between threads is error-prone, and introduce synchronizations to
avoid concurrent data accesses, thus creating bottlenecks. A common source of errors
with threads is the introduction of deadlocks, for example when two threads wait for the
completion of the other one before continuing the execution of their own tasks. Another
source of error is the memory management when exchanging or storing data. Some con-
cepts and MoCs are dedicated to model specific behaviors of the applications, so that
the design process is easier to use for programmers and easier to analysis for compilers.
Such main concepts are: control flow and data flow.

Control flow and data flow

Control flow fixes the order of the computational tasks to execute. Especially, the
if/else control flow conditional statements of imperative languages, such as Python or
Java, enable the programmer to select a branch of instructions depending on the result of
previous computations. In a way, it is the opposite of parallelism since only one branch
is executed among all possible, the other branches of if/else statements will never be
executed. Threads available in imperative languages are the only way to escape such
exclusive choices and fixed orderings. Threads actually move part of the ordering of
tasks from the programmer responsibility to the OS or runtime library responsibility.
Imperative languages are control flow oriented.

On the other side, data flow focuses on the data exchange between the tasks to
execute. The order of tasks is defined only between tasks exchanging data. Thus, two
tasks which are not connected by any data flow can be executed in parallel. In data flow
programming, parallelism is explicit. Programmers still have to express by themselves
where parallelism is available, but such explicit parallelism is less error-prone and eases,
in some cases, the automatic analysis made by compilers.

Nevertheless, both control flow and data flow are useful to express different kinds
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of behaviors: exclusive choice for control flow and parallelism for data flow. Both con-
cepts usually integrate a part of the other: threads in imperative languages and mutual
exclusion in data flow languages. When possible, considering both at the same time is
preferable [GBL99] for the designer but harder to analyse and to optimize. In the rest
of this document, data flow is spelled dataflow, referring to both a flow of data and the
concept of representing flows of data.

Control flow examples: state machines. State machines are very close to the
concept of control flow when they are deterministic, that is when only one state is
enabled at a time. Many kinds of state machines exist: Finite State Machine (FSM),
automata, Kripke structures, Mealy machines, etc. While the aforementioned state
machines do not have timing properties such as task Execution Times (ETs), some other
kinds of states machines, Timed Input Output Automata (TIOA) [Dav+10; Jia+13],
are refined with timed transitions from one state to another. State machines are heavily
used to model systems in order to verify properties on it, as in model-checking, for
example for real-time systems [Ost95]. UPPAAL3 is a common model-checker for state
machines with timing properties. However state machines generally are only one part of
the system, and the computations performed at each state or each transition may rely
on any programming language.

Dataflow examples: communicating process networks. Dataflow is especially
needed for communicating systems where data exchanges have to be explicit because
there is no common shared memory. In the seminal Kahn Process Networks (KPNs) [Kah74],
tasks (called “processes”) exchange data and are executed only when they have received
enough data. Computations of a KPN are deterministic: for a given input, it always
returns the same output. Other dataflow languages, slightly less generic and so easier
to analyse, have been developed at the same time [Den74] or a few years later [DK82].
Dataflow Process Network (DPN) [LP95] extend KPNs with possibly non deterministic
behavior. Petri nets [Pet66] are another important example although not only dedicated
to communicating systems. They were originally thought as a more powerful alternative
to state machines and can also have non deterministic behavior. Petri nets are powerful
because they can formally represent lock systems and mutual exclusions; for example,
see [BSZ16] for an implementation on a Kalray architecture. Petri nets can be extended
with ETs [Zub91; Bér+05], or extended to dynamic systems [DA94], or be refined with
hierarchy [Hid+08]. Expressiveness of Petri nets is large but implies that they are diffi-

3http://www.uppaal.org/

http://www.uppaal.org/
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cult to analyze in the general case, especially because of their possible non deterministic
behavior. However it is stil possible to perform some analysis as throughput anaylisis
[Zub93]. Processing Graph Method (PGM) [Ste97; Kap97] proposes a MoC close to
Petri nets, see [God97] for an application example. Besides, we can consider that all
message passing middlewares, such as MPI4 for distributed architectures with multiple
memories or RabbitMQ5 for inter-connected embedded systems, and even some OSs such
as ROS6, are dataflow oriented. Middlewares are libraries at the frontier between the
software and hardware sides, right above the OS level if any. Finally, dataflow explic-
itly expresses task parallelism but sometimes implicitly data parallelism, for example if
threads are created with the same processing task. Note that both kinds of parallelism
are not always suitable depending on the application [CDY95]

Specialized languages

Many languages and MoCs are specialized to specific kind of computations or environ-
ments. We list here the most related to our work, at the frontier between real-time
systems and stream processing. Real-time systems are usually constrained by periodic
behaviors or maximum latency. Stream processing consists of applying the same process
to a never ending stream of successive inputs.

Synchronous languages. Synchronous languages are heavily used in the domain of
real-time systems where some timing properties are important to guarantee during the
application execution [BB91]. Synchronous languages support to model and to check
timing properties by the mean of periodic executions, that is for example, to execute
a task every 10 millisecond. Among such languages, there is ESTEREL [BG92], con-
trol flow oriented. On the dataflow side, there are LUCID [WA85], Lustre [HLR92],
Signal [LTL03] or even SynDEx [GLS99]. In its original publication [HLR92], Lustre
is qualified as a “synchronous dataflow language”, but this is not related to the Syn-
chronous Data Flow (SDF) MoC of Edward A. Lee, which is not cited in the references
of LUCID, Lustre and Signal. Nevertheless, dataflow synchronous language may execute
SDF graphs thanks to a few transformations, as for Signal [SGL99; Bes+10].

Languages for real-time systems. A few languages focus on the specification of real-
time constraints of complex application, as Giotto [HHK03]. Another language [PG16]

4https://www.open-mpi.org/
5https://www.rabbitmq.com/
6http://www.ros.org/

https://www.open-mpi.org/
https://www.rabbitmq.com/
http://www.ros.org/
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mixes Petri nets, SDF MoC, and synchronous languages for the modeling of Cyber-
Physical Systems (CPSs). Other languages are dedicated to industrial systems, such as
AutoSar7 for cars and Architecture Analysis and Design Language (AADL)8 for aircraft.
Both languages support extensive modeling and analysis. For example, AADL supports
synchronous and dataflow modeling and verification [Ma+13; Bes+14], and real-time
properties modeling and verification [Dis+10].

Languages for stream processing. Stream processing applications often use dataflow
languages to model and optimize their computations, such as the Canals [Dah+09] lan-
guage. Canals originality is that it supports the description of the architecture and the
task scheduler as well as the dataflow modeling of applications. There exist also the
Brook [Lia+06] and SPUR [Zha+05] languages and corresponding compilers dedicated
to dataflow stream applications. A more recent language also supports the description
of task implementations and stream specifications [Wei+14]. An important category of
stream processing applications is image processing, targeted by Diderot [Chi+12] for
example. Diderot is more dedicated to the expression of the mathematical functions of
the processing. Array-OL [Dem+95; Bou07] focuses on array traversals, and is dataflow
oriented. Besides, Polka [Dem+99] is an old attempt to model distributed multimedia
applications with CORBA.

Transformations towards dataflow. As many programmers first start by prototyp-
ing applications with imperative languages, some works study the automatic transforma-
tion of imperative languages to dataflow languages. For example, the DWhile [DFR11]
language is directly embedded in the host language, such as C++, to provide dataflow
specifications. Moreover, there exist an automatic transformation of Single Static As-
signment (SSA) code towards “dataflow threads” [LPC12], and an automatic extraction
of KPNs from while loops [Agu+15].

1.1.3 Hardware side

Multiple kinds of processor exist, generic or dedicated to specific computations. A pro-
cessor usually refers to a Central Processing Unit (CPU), able to compute any common
instruction. However, only in this chapter, we call “processor” any kind of PE, having
a possibly reduced instruction set, or even none at all if implementing a specific circuit

7https://www.autosar.org/
8http://www.aadl.info

https://www.autosar.org/
http://www.aadl.info
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design. Personal computers usually embed one CPU multi-processor and one Graph-
ics Processing Unit (GPU) card. GPUs are dedicated to data parallelism while CPUs
support any kind of computations, but then are less efficient. Efficiency is measured in
the number of floating point operations performed per second, sometimes also per Watt.
CPUs operate at a higher frequency than GPUs but a GPU card may contain more than
100 processors while a CPU multi-processor only contains around 8 processors.

When prototyping an application, the target hardware architecture has to be chosen
carefully, depending on the most suitable MoC for the application, and depending on
the throughput constraints. Moreover, more specialized processors require more complex
compilers to be used efficiently. Indeed, on the most specialized processors, there is no
OS to manage thread parallelism, and the compiler has to compute itself the scheduling,
that is the ordering and mapping of tasks. Hardware side and software side are not
meant to be opposed; OSs, middleware libraries and compilers are here to adapt both
sides to each other. To reach the optimal throughput, hardware has to perfectly match
the software, and vice versa.

Among the common properties of processors, the most important is their clock fre-
quency. All processors execute binary instructions or activate circuit gates at a maximum
throughput being their frequency, generally between 2 and 3 GHz for CPUs. Each in-
struction may require multiple tics of the clock frequency to be completed, but a new
instruction can be started at each tick, even if the previous ones are not completed.
This is hardware pipelining. The only exception to pipelining is when an instruction
must wait for the result of the previous one. However, Out of Order processors can
automatically execute a next instruction before the awaiting one if it does not break
any data dependence. In the next paragraphs and subsubsections, we briefly present the
main kinds of processors.

Flynn’s taxonomy [Fly72]. Flynn described four main kinds of processors, cate-
gorized by their ability to process single or multiple instructions on single or multiple
data. Today, two kinds are commonly used: Single Instruction Multiple Data (SIMD)
for GPUs and Multiple Instruction Multiple Data (MIMD) for cluster and grid of CPUs
or CPUs multi-processors directly.

Models of Architecture (MoA). When a compiler transforms code to binary in-
structions, it may rely on a model of the processor. Many Model of Architectures (MoAs)
exist, often integrated in and dedicated to the tools using them. MoAs also help to simu-
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late and prototype architectures, as with Gem59. In this thesis, we use the System-Level
Architecture Model (S-LAM) [Pel+09a] MoA. For example, MoAs are used to analyze
systems and to predict communication times [Cru91a; Cru91b; Boy+18], or Worst Case
Execution Time (WCET) of tasks [HRP17].

Regular CPUs

Regular processors are the CPUs used in laptops or desktops. Such processors are
generic, but already integrate multiple techniques to accelerate the computation. SSE/AVX
binary instructions are one of those techniques. With such instructions, a unique CPU
can perform the same instruction, such as an addition, on multiple data at once, that
is data parallelism. Only a few data elements, 8 in general, may be vectorized and
processed at the same time by this technique.

All modern CPUs integrate cache memory [Smi82] to buffer the data accesses to
the main RAM. Such cache buffers are especially useful for data parallelism on arrays
because when an array element is accessed on RAM, not only the element but also its
neighbors are loaded in the buffer, more precisely in a cache line. Caches are faster than
RAM and avoid time consuming direct data exchanges between the RAM and the CPU.
CPUs multi-processors, generally integrate one main shared Last Level Cache (LLC),
or multiple ones in the case of Non Uniform Memory Access (NUMA). NUMA implies
coherence protocols to keep track of the freshest value of a data.

Finally, as CPUs are generic processors, each one integrates multiple kinds of Arith-
metic Logic Units (ALUs), such as addition or multiplications. To not waste resources,
many processors support Simultaneous Multi-Threading (SMT) which means that they
actually execute multiple instructions in parallel and coming from different threads, only
if they do not involve the same ALUs at a time. For instance, Intel10 processors propose
hyperthreading to execute two threads at a time on the same CPU.

Many-cores

Many-cores processors are the extreme case of MIMD processors, containing in general
more than 100 identical processors on the same chip. Intel Xeon Phi is a standard
professional many-cores. There exist also: Celerity [Dav+18], Epiphany11, Bostan and
Coolidge from Kalray12, AEthereal [GH10], TILE64 [Bel+08], etc. Such many-cores

9https://www.gem5.org/
10https://www.intel.com
11https://www.parallella.org/2016/10/05/epiphany-v-a-1024-core-64-bit-risc-processor/
12https://www.kalrayinc.com/

https://www.gem5.org/
https://www.intel.com
https://www.parallella.org/2016/10/05/epiphany-v-a-1024-core-64-bit-risc-processor/
https://www.kalrayinc.com/
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processors require complex communication hardware between the cores, called Network
on Chip (NoC). This kind of architectures is difficult to use efficiently with regular
compilers and it requires a proper model [Li+17]. Similarly, the RAW [Wai+97; Lee+98;
Tay+02] processor exposes some of its NoC circuit logic to the compiler to use it more
efficiently, including for dataflow applications [Gor+02].

Ancestors of many-cores. Some old architectures also tried to integrate many pro-
cessors together, such as the Cube-Connected Cycles [PV81] or the Wavefront [Kun+82]
architecture and parallelism language, close to dataflow.

Exposed datapath

Exposed datapath architectures [Cor99; Bur+04] are even closer to the definition of
dataflow, on the hardware side. In such architectures, communication connections be-
tween the many processors may be adapted to the dataflow of an application. Flex-
Core [Thu+07] is a multi-processor with exposed datapath, as well as the simulated ar-
chitecture WaveScalar [Swa+07], or another targeting low energy and SIMD [Wae+15]
As for many-cores, multi-processors with exposed datapath require specific compilation
techniques [BJS16; BS17].

Embedded and specialized

Digital Signal Processors (DSPs) [Liu10] architectures, for instance, are multi-processors
dedicated to a few kind of computations; they correspond to Application-Specific Instruc-
tion set Processors (ASIPs). ASIPs support only a reduced set of binary instructions and
any application using only those instructions can be run on them. Field-Programmable
Gate Array (FPGA) processors may also be seen as ASIPs but having no instruction
set; indeed their logic circuits are reconfigurable but once configured they are dedicated
to rapidly execute a few kind of pipelined computations only triggered by data inputs,
they are far less generic than CPUs. Application-Specific Integrated Circuits (ASICs)
are the most specialized kind of processors, whose circuits are fixed and optimized for
only one application. When processors are specialized, they usually require less space
and less energy for the electronic circuits and thus are more easily embedded with other
components, such as sensors.

Qualcomm13, Texas Instruments14 and STMicroelectronics15 are examples of large
13https://www.qualcomm.com/
14https://www.ti.com/
15https://www.st.com

https://www.qualcomm.com/
https://www.ti.com/
https://www.st.com
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producers of ASIPs. Smaller companies, such as Renesas16 or Maxelers Technologies17

produce even more specific processors. With ASIPs, compilers perform not only the
translation of the programming code to the binary instructions or to the circuit de-
sign, but also complex memory mapping and scheduling, or floor-planning of the FPGA
circuits.

Processors for real-time systems. Verification and hardware synthesis of real-time
systems is challenging [HS06]. One of those challenges is to correctly model the behav-
ior of hardware, whereas circuit complexity of CPUs multi-processors is still increasing.
Thus, a few processors are designed specifically to ease the verification of real-time ap-
plications executed on them, such as T-CREST [Sch+15], used in the Patmos18 project.

1.2 The SDF dataflow model and its flavors

The Synchronous Data Flow (SDF) MoC has been introduced by Lee and Messer-
schmitt [LM87b]. In this thesis, SDF always refers to the SDF MoC. The main ad-
vantage of SDF is to represent both data parallelism and task parallelism of dataflow
applications with fixed and deterministic communications. Control flow is not available
in SDF. Such static behavior allows for extensive automatic code generation and opti-
mizations of the applications modeled with SDF. For example, designers are generally
not required to allocate by themselves the memory of SDF applications. SDF especially
targets stream applications which are executed indefinitely on new input data at each
execution.

An application modeled with SDF is usually represented with SDF graphs. Graphs
actually are a common and intuitive way to represent any dataflow MoC, as for the old
BLODI language [KLV61]. Moreover, graphs are close to the specifications of dataflow
architectures [AC86]. However, some languages and libraries support a programmatic
expression of SDF graphs, such as DIF [Hsu+04]. Code written in other programming
languages can even be analyzed in order to know if they fit into the SDF model [WR12;
Zeb+08]. The analysis related in [WR12] relies on abstract interpretation [CC10] while
[Zeb+08] relies on state machines describing communication rates of dataflow processing
actors.

16https://www.renesas.com/eu/en/
17https://www.maxeler.com/products/
18http://patmos.compute.dtu.dk/

https://www.renesas.com/eu/en/
https://www.maxeler.com/products/
http://patmos.compute.dtu.dk/
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1.2.1 Original SDF

SDF graphs are directed multi-graphs G = (V,E) composed of vertices, called actors,
and edges, called buffers. Actors in V represent processing operations, while buffers in
E represent the data communication between the different actors. Actors exchange data
through their incoming and outgoing buffers. The abstract unit of data is called token.
An example of SDF graph is depicted in Figure 1.2a. This graph does not expose task
parallelism since there is only one path, however, as we shall see, this graph exposes
data parallelism.

A buffer e ∈ E is a First In First Out (FIFO) queue connecting its source actor
src(e) ∈ V to its destination dst(e) ∈ V . Each buffer e is annotated with rates: a
production rate prod(e) ∈ N∗ at the source of e, and a consumption rate cons(e) ∈ N∗ at
the destination of e. Production and consumption rates may not be equal: this is how
data parallelism is expressed in SDF graphs. For example if an actor α sends 6 tokens
to an actor β through buffer e, whereas β expects 3 tokens at the other end of the buffer
e, it means that β will be executed twice: once on the first 3 tokens and another time on
the last 3 tokens on e. The tokens produced by one execution of src(e) are available to
be consumed only after the end of the execution of src(e), i.e. the completion of src(e).
The number of tokens initially present on a buffer e is denoted d0(e); these tokens are
called a delay. In order to not deadlock, cycles of the graph require delays on at least
one buffer of the cycle. This is the liveness property.

As the rates may not be equal on both sides of a buffer, there can be multiple
executions of an actor α ∈ V in order to avoid underflow or overflow on the buffer. The
graph is consistent if it ensures that buffers have bounded sizes. Then, it is possible to
compute a unique repetition vector ~r giving the minimal number of executions of each
actor needed to put the graph back to its initial state with the same number of tokens
in each buffer. The consistency property can be formalized with the repetition vector
as in the following Equation (1.1). This equation ensures that all data produced on a
buffer e can be consumed, and vice versa.

∀e ∈ E, prod(e)× ~r [src(e)] = cons(e)× ~r [dst(e)] (1.1)

The repetition vector defines a graph iteration in which the actor executions are
called firings, or equivalently jobs in the literature. Additionally, in this thesis, we
consider that graph iterations always respect the data dependencies of buffers, even those
broken by delays (except for cycles). Each actor in the SDF graph has a corresponding
implementation code, written in any programming language. An actor firing corresponds
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to the execution of its code.
The repetition vector can be computed by two algorithms. First algorithm [LM87c]

uses a topology matrix which corresponds to a linear function giving the number of tokens
present on each buffer for any repetition vector input. The repetition vector is the non
null vector holding smallest Integer number of firings and belonging to the kernel of the
topology matrix. Second algorithm uses a Breadth-First Search (BFS) graph traversal to
compute a lowest common multiple of all production and consumption rates. The algo-
rithm using graph traversal can be found in Section 3.1 of Bhattacharyya’s book [BML12]
dedicated to dataflow graphs. While both algorithms return the same repetition vector,
the second one is faster since it requires less memory space and less computations. A
similar version of this second algorithm is presented later in Section 1.4.3.

Thanks to the repetition vector, it is possible to expose data dependencies between
each firing, in the Single-Rate Synchronous Data Flow (SRSDF) graph obtained from
the original SDF. Such SRSDF graph is depicted in Figure 1.2b; it is sometimes referred
to as Homogeneous Synchronous Data Flow (HSDF) graph in the literature. SRSDF
graphs actually are a subset of SDF graphs where cons(e) = prod(e) for each buffer
e; consequently; each actor in an SRSDF graph is executed only once: ~r = ~1. The
SRSDF version of an SDF graph always exists, but requires more space to be stored
since all firings and data dependencies of the original SDF graph are exposed. To better
distinguish SDF graphs from their SRSDF equivalent, we use a simpler representation
as shown in Figure 1.3. In this thesis, buffers of SDF graphs are represented with double
arrows ⇒ while data dependencies of SRSDF graphs are represented with single arrows
→. The number of tokens of each data dependency is specified at the middle of the single
arrows. In Figure 1.3, both graphs are SRSDF graphs, but we use the representation
on the right to simplify the figures when the production and consumption rates of each
buffer are equal, or do not need to be explicit.

Knowing all data dependencies, it is possible to schedule the firings, as shown in
Figure 1.2c for one PE and in Figure 1.2e for four PEs. Additionally, Figures 1.2d
and 1.2f depicts the number of tokens present at any time on the unique FIFO buffer be-
tween actors A and B. The data transmitted on the buffers, i.e. tokens, are represented
on the SRSDF graph in Figure 1.2b. Actor A simply produces the French word “hip-
popotamesque”19, while actor B rewrites it in uppercase. Here, one token corresponds
to a letter of the word and vertical bars | respectively represent: where the tokens are

19“hippopotamesque” is a French adjective to describe the heaviness of anything. The funny part is
that it is composed of five words of three letters, all valid at the French Scrabble. When cutting the
word in three sections of five letters, it also matches with its etymological roots: hippo/horse of the
potam/river and esque is a suffix for some French adjectives.
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A
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(a) SDF graph example, of repetition vector
[3, 5]T . Actor A produces the word “hip-
popotamesque” while actor B rewrites it in
uppercase.
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(b) SRSDF graph of 1.2a.
1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE 1 A1 A2 A3 B1B2B3B4B5

(c) Schedule example of 1.2a on one PE.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

#Tokens on A⇒ B 0 0 5 10 12 9 6 3 0

(d) FIFO buffer usage during schedule of 1.2c. Numbers in boxes are the number of tokens
present at a time in the unique FIFO buffer between actors A and B.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PE 1 A1 B1 A1 B1 A1 B1

PE 2 A2 B2 A2 B2 A2 B2

PE 3 A3 B3 A3 B3 A3 B3

PE 4 B4B5 B4B5 B4B5

schedule repetition

(e) Schedule example of 1.2a on four PEs. Three repetitions of the static schedule are represented,
separated by a red vertical line at time unit 5. Three complete graph iterations are represented,
two with a gray background for all its firings, and the other without background color.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#Tokens on A⇒ B 0 0 3 0 0 3 0 0 3 0
schedule repetition

(f) FIFO buffer usage during schedule of 1.2e. Numbers in boxes are the number of tokens present
at a time in the unique FIFO buffer between actors A and B.

Figure 1.2 – SDF graph example with its equivalent SRSDF graph and two possible
static schedules with the corresponding buffer usage.
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Figure 1.3 – SRSDF graph equivalent representations.

spread on the output buffers on the production side (firings of A), and where the tokens
of the input buffers are joined on the consumption side (firings of B). Scheduling re-
quires to know the ETs of each actor per kind of PE. In this thesis, ETs are not reported
on the SDF graphs, but directly on the Gantt diagrams depicting their schedules.

A delay on a buffer e breaks data dependencies because it enables firing dst(e) without
having fired src(e). Such case is depicted in Figure 1.4. In the original publication
describing SDF, delay semantics is not completely explicit and delays are manually set.
However, the tokens of a delay may actually be set by the output of other actors [Arr+18].
Thanks to the delays, it is possible to increase the throughput of the schedule, as shown
in Figure 1.4c which is repeating faster than on Figures 1.2c and 1.2e. The throughput
is the average number of schedule repetitions per time unit, or equivalently the average
number of graph iterations per time unit. In the case of indefinitely repeated static
schedules, the throughput is defined as the inverse of the Initiation Interval (II) duration,
i.e. the time between two schedule repetitions, as shown in Figure 1.4c. When there
are delays, graph iterations do not match anymore with the schedule repetitions; the
time until the end of the first graph iteration defines the makespan or latency of the
scheduled application. A graph iteration is one end-to-end execution of the application
represented by the graph. Delays on buffers outside cycles always increase the makespan,
and imply that the makespan is greater than the II duration. In other words, there are
more executions of the whole application per time unit, but each application execution
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A

5
B

3

6
(a) SDF graph example, of repetition vector
[3, 5]T . Actor A produces the word “hip-
popotamesque” while actor B rewrites it in
uppercase. A delay is present on the only
buffer, breaking data dependencies of firings
B1 and B2 on A2 and A3. The delay carries
the six letters “dddddd” as initial data.

A1

A2

A3

hip|po

p|ota|m

es|que

B3

B4

B5

B1

B2

HIP

PO|P

OTA

D|DD once,
then M|ES
DDD once,
then QUE

3
2

1
3
1

2
3

(b) SRSDF graph of 1.4a. Dependencies broken by
the delay are represented with a dashed line.

1 2 3 4 5 6 7 8 9 10 11 12

PE 1 A1 B3 A1 B3 A1 B3

PE 2 A2 B4 A2 B4 A2 B4

PE 3 A3 B5 A3 B5 A3 B5

PE 4 B1B2 B1B2 B1B2

Makespan II duration
repetition graph iteration

(c) Schedule example of 1.4a on two PEs. Three repetitions of the static schedule are represented,
separated by a red vertical line at time unit 4. A complete graph iteration is represented and
delimited by the blue lines.

0 1 2 3 4 5 6 7 8 9 10 11 12

#Tokens on A⇒ B 6 3 0 6 3 0 6 3 0 6
schedule repetition

(d) FIFO buffer usage during schedule of 1.4c. Numbers in boxes are the number of tokens
present at a time in the unique FIFO buffer between actors A and B.

Figure 1.4 – SDF graph example with its equivalent SRSDF graph and a possible static
schedule with the corresponding buffer usage.

takes a longer time. Each different schedule repetition crossed by a single graph iteration
is called a pipeline stage. In Figure 1.4c, there are two pipeline stages.

Finally, note that SDF graphs are a subclass of Petri nets, sometimes called Timed
Weighted Event Graph (TWEG), where places correspond to buffers and transitions
to actors. Petri nets are a dataflow oriented MoC, briefly presented in the previous
Section 1.1.2. Thanks to their expressiveness, Petri nets have been rapidly used to
model applications including stream dataflow applications, see Jennings’ thesis [Jen81]
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for example (page 56). However, Petri nets are difficult to analyse and may imply
non deterministic selection of the dataflow path to execute when limiting parallelism
with locks. Indeed, parallelism may be limited and non deterministic with Petri nets
when multiple transitions pull tokens from the same places. At the opposite, SDF is
completely deterministic and there is no explicit lock system. To introduce an implicit
synchronization point, SDF requires to add a new actor which is fired only once and
depends on all firings of actors preceding the new actor in the graph. Besides, SDF
graphs are also a subclass of KPNs and Dataflow Process Networks (DPNs). SDF
graphs are sometimes referred to as Multi-Rate Dataflow graphs in the literature.

1.2.2 Static SDF flavors

Thanks to its static communications leading to the computation of a repetition vector,
and thanks to its expressiveness of data and task parallelism, SDF has been widely used
and extended for dataflow stream applications. Hereafter, we briefly introduce extensions
of SDF which still have static communications, i.e. fixed production and consumption
rates on buffers.

Cyclo-Static Data Flow (CSDF). Cyclo-Static Data Flow (CSDF) [Bil+96] differs
from SDF by the possibility to specify sequences of consecutive production or consump-
tion rates which are indefinitely iterated over, hence cyclic. SDF is a subclass of CSDF,
but CSDF has been developed after SDF. Figure 1.5 depicts an example of CSDF graph,
its data dependencies, and a possible schedule. The production rate of actor A is “2 5 8”,
which means that at the end of its first firing, A produces only 2 tokens, 5 after the sec-
ond firing and 8 after the last third firing. At its fourth firing, A loops over its production
sequence and produces again 2 tokens. The repetition vector of CSDF graphs can be
computed easily with a BFS algorithm as for SDF graphs. Instead of the production
or consumption rate, it uses a rational number in Q being the sum of all rates in the
sequence divided by the sequence length. Note that it is always possible to transform
CSDF graphs into SDF graphs [PPL95], but in the worst case it requires to duplicate
actors for each rate combination of its production and consumption sequences. The
StreamIt language [TKA02] supports both SDF and CSDF models.

Extensions for multi-dimensional arrays Multidimensional dataflow [ML02] al-
lows for considering exchanged data across multiple dimensions, and to have complex
sampling patterns on these data. This model is especially useful for image processing. A



20 CHAPTER 1. BACKGROUND

A

2 5 8
B

3

(a) CSDF graph example, of repetition vector [3, 5]T .

A1

A2

A3

B1

B2

B3

B4

B5

2

1
3
1
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3
3

(b) SRSDF graph of 1.5a.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PE 1 A1 A3 B3B5 A1 A3 B3B5

PE 2 A2 B1B2 B4 A2 B1B2 B4

schedule repetition

(c) Schedule example of 1.5a on two PEs. Two repetitions of the static schedule are represented,
separated by a red vertical line.

Figure 1.5 – CSDF graph example with its equivalent SRSDF graph and a possible
schedule.

full review [KD13] has been made by the creator of the “Windowed” version [KHT06],
which handles the case of elements in the halo of an image for example.

Extensions using polyhedral model SDF is especially useful to express data par-
allelism on arrays of data. However, a powerful analysis also exists to automatically
find such data parallelism in nested for loops of regular imperative languages; this is
the polyhedral analysis [Fea92]. Polyhedral Process Networks (PPN) [Ver10] combine
polyhedral analysis with KPNs but only a few works focus on SDF graphs [FMG17].

Other extensions One important extension of SDF is the support of hierarchy, as
with Interfaced-Based Synchronous Data Flow (IBSDF) [Pia+09]. Hierarchy eases the
refinement of actors by other SDF graphs and IBSDF provides composition rules to keep
consistent the whole SDF graph. SigmaC [Gou+11] is another extension, more dedicated
to many-cores architecture [DLC14] compared to similar languages as StreamIt. Besides,
there exist an extension of SDF with asynchronous communications between independent
graphs [PPL94], and another extension modeling global states [PCH99].
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1.2.3 Dynamic SDF flavors

Dynamic extension of SDF help to relax the constraint of fixed production and consump-
tion rates on buffer. For example, multiple tools, such as Odyn [Dau+19], support the
modification of the rates between each iteration of the graph. StreamDrive [SB19] also
supports such inter-iteration rate modifications for KPNs, thus including SDF graphs.

With scenarii. Scenarii help to automatically trigger the modifications of the rates,
for example in Scenario Aware Dataflow (SADF) [The+06], which uses Markov chains.
In SADF, detectors detect actor scenarii and trigger accordingly the rate modifications,
possibly intra-iteration. Not only rates but also actor ETs may be modified. Later, SADF
has been refined with FSM [Stu+11], see [KSG15] for an implementation. Besides, Mode
Aware Data Flow (MADF) [ZNS18] is inspired by SADF and more dedicated to real-time
systems.

Parameterized ones. Bhattacharya introduced the Parameterized Synchronous Dataflow
(PSDF) model supporting parameterized expression of the rates [BB01]. The param-
eters can be valuated by the output of other actors. PSDF relies on a hierarchic de-
scription of the SDF actors. Rate modifications may occur intra-iteration of the whole
graph, but inter-iteration of the internal graphs. Parameterized Interfaced Meta-Model
(PIMM) [Des+13] is quite similar to PSDF, with extra composition rules for hierarchy
and simpler description of the parameters. Other works studied the safe intra-iteration
modification of rates in non hierarchic graphs [FGP12]. A recent survey [BFG17] com-
pares multiple other parameterized SDF models. Regarding the polyhedral model, there
is a Parameterized extension of PPN (denoted P 3N) [ZNS11].

Reconfigurable topology. In a few SDF extensions, it is possible to modify the topol-
ogy of the graph of the application, for example with switch actors [Buc94]. Boolean
Parametric Dataflow (BPDF) [Bem15] is a parameterized model supporting the modi-
fication of the graph topology, by a specific Boolean flow enabling or disabling actors.
PIMM also handles the disabling of actors by setting to 0 the rates of buffers connected
to them. However, to our knowledge, only Reconfigurable Dataflow (RDF) [Fra+19] is
able to perform complete inter-iteration reconfiguration of the graph, by removing or
adding actors in it.
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1.3 Scheduling of SDF graphs

Scheduling is a large research field, and this section presents only a few works related
to this field. Scheduling may refer to the ordering or mapping of tasks, the ordering
or routing of their communications, and to the allocation of the memory. Scheduling is
actually applicable for every constrained resource, such as machines of a job shop for
the job shop scheduling problem.

Scheduling problems are generally formalized either for independent tasks or for
Directed Acyclic Graphs (DAGs) of dependent tasks, whereas we focus on SDF graphs.
Nevertheless, in most of the cases, static SDF graphs are first unfolded to acyclic SRSDF
graphs, that are DAGs if live, in order to schedule them. This unfolding is a standard
procedure, but it might produce large SRSDF graphs when the SDF repetition vector
specifies large number of firings; in a SRSDF graph, there are as many tasks as the sum of
the SDF repetition vector. It is possible to stream the construction of data dependencies
to avoid building the SRSDFs [Arr+19], and a few works mix the application model with
schedule information, such as Dataflow Schedule Graph (DSG) [Wu+11] or a work using
FSMs [Zeb+13]. An older work compares the impact of intermediate representations of
SDF graphs on their schedule [Bam+02]. In our contribution on scheduling, in Chapter 3,
we consider the standard unfolding of SDF graphs to their SRSDF equivalent.

In Section 1.3.1, we briefly present the main scheduling techniques. Tools dedicated
to SDF graphs are listed in Section 1.3.2. Finally, analyses of SDF graphs, usually
performed before the scheduling to compute its theoretical efficiency, are listed in Sec-
tion 1.3.3.

1.3.1 Scheduling techniques

Multiple techniques can be used for scheduling. In the next subsubsections, we first list
the main properties of schedulers, and then the most employed techniques to actually
compute schedules.

Scheduling types

Scheduling corresponds to the ordering of tasks, and by extension, to the ordering of
communications between tasks. Mapping, or partitioning, is the process of selecting the
PEs on which a task will be executed. Mapping may be resolved during the scheduling
process, and scheduling often refers to both mapping and scheduling. Similarly, the rout-
ing of communications, that is the selection of communication routes across a network,
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may also be resolved during the scheduling process. Although less common, memory
allocation may be considered during scheduling, as well as energy management or the
optimization of any constrained resource.

Schedulers can be categorized thanks to some of the following properties. A scheduler:

• computes any of a task or communication ordering, or task mapping, a communi-
cation routing, or any allocation;

• is online/dynamic, ordering tasks as they are released, or offline/static, statically
ordering tasks before their arrival;

• is starvation-free or non starvation-free, that is leading to not execute all given
tasks (e.g. in case of deadlock);

• is preemptive or non-preemptive, that is enforcing tasks to execute until their
completion without suspension;

• is time-triggered (e.g. by task periods) or event-triggered (e.g. self-timed data-
driven);

• is global to multiple PEs, or partitioned, that is performed independently for each
PE (only if mapping is already computed);

• supports dependencies, such as data communications between tasks, or not;

• supports dynamic job migration from one PE to another (only if online), or not;

• supports batch processing, that is to schedule independent tasks by groups accord-
ing to their deadlines, or not;

• targets unicore, homogeneous or heterogeneous multi-processors;

• takes into account energy, processor temperature or frequency, etc.

Scheduler of real-time systems consider a few more constraints on tasks. Real-time
systems generally consists of periodic tasks [LL73] whose executions have to be scheduled
in a given periodic time window, every 10 millisecond for example. The deadlines of
tasks are implicit when equal to their period. If a task is not completed before its hard
deadline, the system is considered non schedulable. Periodic tasks are especially used for
safety critical systems where determinism and verification is important [BS93]. Davis’
survey [DB11] lists main modern scheduling types for real-time systems. Fixed Priority
(FP) and Earliest Deadline First (EDF) are two common schedulers of periodic tasks;
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they are online schedulers respectively based on a static priority assignment of tasks
and on dynamic priorities depending on the deadlines. Some real-time models relax
the deadlines hard constraints, such as weakly-hard constraints [QE12]. Some others,
such as PolyGraph [Dub+19], release the periodic constraint on some tasks. Priority
assignment and periods of tasks are set by the system designer, or computed offline by
a scheduling synthesizer.

Timing properties of the tasks, such as latency from one task to another, may be
verified after the scheduling, but some schedulers can take them into account during the
scheduling process [Mai+18]. We present a few other metrics in the next subsubsection.

Scheduling metrics

One of the most important metric is the processor utilization factor U , derived from the
first schedulability test [Hor74] of tasks executed with preemption and a global deadline
on an homogeneous CPU multi-processor. In this case, U corresponds to the sum of the
task ETs, divided by the global deadline. To ensure a schedulable system, U must be
lower than m the number of PEs . U may also be computed separately on each PE, and
then serves as a metric measuring load-balancing [Car08].

The latency/makespan of a DAG of tasks is defined as the elapsed time from the
minimum start of the roots of the DAG to the maximum completion time of the leaves
of the DAG, considering tasks executed in the graph topological order, that is a graph
iteration. For example, in the static schedule of Figure 1.4c, the latency is 10 time units,
from the start time of A1 to the completion time of B2 in the second repetition of the
schedule. Indeed, delays create pipelining and the SDF graph is executed, in topological
order, across two schedule repetitions. Note that SDF graphs may contain cycles, but we
assume that enough delays are present to break the data dependencies, and thus their
corresponding SRSDF graph is a DAG.

In this thesis, we focus on static schedules which are repeated indefinitely. Roots of
the DAG of tasks generally correspond to input reads from a stream. Then, one new
element of the stream is read at each repetition of the schedule. In the thesis, each
repetition of the schedule is also called a scheduler iteration, which is different from a
graph iteration. When there is pipelining, a graph iteration can cross multiple scheduler
iterations, as in Figure 1.4c. The duration of a scheduler iteration is called II, equal to
8 time units in Figure 1.4c. In our context, the throughput of a graph is the inverse of
the II duration, and it depends on the schedule.
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Solving techniques

Scheduling has been proved NP-complete when minimizing the II duration , but some
specific cases may be polynomial [KA99]. Heuristics are generally used, such as list
scheduling which is based on a priority list of all tasks to execute20. List scheduling
is not always optimal, and may even have counter-intuitive behavior in specific cases,
such as increasing the II duration when increasing the number of PEs [Gra69]. List
scheduling can be used offline, and also online, especially by runtime schedulers such as
StarPU [Aug+11]. PREESM tool uses offline the FAST list scheduler [KAG96].

To compute optimal schedules, Integer Linear Programming (ILP) is used for a few
decades [LM69], but at the cost of solving only small systems due to the large amount
of computations that ILP requires. The benefit of using ILP is to specify an objective
function, for example minimizing the II duration. Constraint Programming (CP) can
also be used, for example with the OscaR21 tool [DDP18]. CP provides more expres-
siveness for constraints but it requires a huge computational time when exploring the
whole space of solutions. Local search is an alternative to explore only a subset of the
whole solution space, see [Pra17] for an example using OscaR. Evolutionary Algorithms
(EA) is another alternative to only explore a subset of solutions [ECP06]. Scheduling
can also be solved with Satisfiability (SAT) and Satisfiability Modulo Theories (SMT)
techniques, as originally in [KS92].

In any case, it is always possible to specify multiple objectives for the schedule, but
as they might be contradictory, there is not always one optimal solution; instead there
exists a Pareto front of solutions. Each solution of a Pareto front is optimal according
to at least one of the objectives, but not all. For multi-objective scheduling problems,
multiple heuristics exist, such as the maximum diversity approach [MB08]. Some results
of similar problems show that Linear Programming (LP)22 may scale efficiently [MR14].
EA has also been used to solve multi-objective scheduling [KC02]. Exploring multiple
solutions of the same scheduling problem is also referred to as Design Space Exploration
(DSE) [Pim17].

Unfolding. To optimize the schedule of a stream application running forever, unfolding
may be applied on the DAG of tasks. In this case, unfolding corresponds to consider
multiple graph iterations at once, which is a kind of task replication, in order to use
all the PEs more efficiently and so to increase the throughput. This technique has

20Fixed Priority (FP) and Earliest Deadline First (EDF) scheduling types rely on list scheduling.
21https://www.info.ucl.ac.be/~pschaus/oscar.html
22Linear Programming (LP) uses float numbers. It is less difficult to solve than ILP but is not optimal.

https://www.info.ucl.ac.be/~pschaus/oscar.html
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been employed for the execution of task graphs on DSPs [PM91]. It is especially useful
when the task graph exposes less parallelism than the number of available PEs. Spasić
[Spa17] also proposes an unfolding algorithm with task replication in order to execute
SDF graphs with periodic actors while maximizing throughput or minimizing energy
consumption.

Clustering. The opposite of unfolding is clustering, which is useful when the task
graph exposes more parallelism than the number of available PEs. Clustering merges
some tasks together. Bhattacharyya proposed multiple algorithms to perform clustering,
as APGAN [BML97]. Clustering is not only useful to reduce the amount of parallelism,
but also to reduce the size of the binary code generated by the compiler according to
the schedule [Bha+95].

Pipelining. Software pipelining [Lam04; All+95] is another technique to improve the
throughput of stream dataflow applications. Pipelining corresponds to the start of a new
graph iteration while the previous one is not yet completed. This objective is similar to
unfolding. For a DAG which is indefinitely executed with different input data, scheduling
with pipelining is sometimes referred to as pipelined workflow scheduling [Ben+13b].
Pipelining has been widely studied for SDF [LM87a]; it corresponds to add delays on
some buffers of the graph. When there are data dependencies, it is also possible to use
retiming techniques [LS91] to create pipelines. Retiming corresponds to move delays
from some buffers to others. Retiming and pipelining can be computed before calling
the scheduler or at the same time if offline.

1.3.2 Tools and benchmarks

Multiple algorithms and tools are able to schedule SDF graphs or their SRSDF equiv-
alent, for example onto regular CPUs [GR05], Other works target many-cores architec-
tures, such as Kalray [Has+17], with the help of OpenMP. The latter work adds clus-
tering and hierarchy to the work of Ha [KLH07]. The Diplomat framework [Bod+16]
statically analyses code to transform it in the SDF model and to execute it on CPUs
and GPUs with the help of OpenCL. OpenCL is a language and library dedicated to
GPUs, which can also be executed on CPUs. Design Space Exploration (DSE) is sup-
ported by some works, such as [Sch+19] for an extension of SDF with dynamic actors.
Multi-objective scheduling of SDF graphs has been considered for latency and through-
put, thanks to ILP and heuristics [LGE12]. There exists an offline scheduler using SMT
which tries to reduce memory and communication contention [Ska+18], and tightens the
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schedule with the help of online measurements. Contention is the ET overhead due to
the sharing of common resources such as cache memory or communication network.

All the aforementioned works use a large variety of techniques, and target a large
variety of architectures. However, they focus on the scheduling problem and the code
generation implementing the computed schedule. In the next subsubsection, we list some
important works which combine scheduling for the hardware side, and modeling of the
software side. For example, the StreamIt programming language [TKA02] supports the
SDF model and is linked to a dedicated compiler performing scheduling. StreamIt also
comes with an SDF benchmark. Tools to perform benchmarks of SDF applications are
presented in the second subsubsection.

For development: modeling and code generation

Numerous work tackle the design of dataflow or real-time applications (some works, such
as UML MARTE23 are listed in [RAK15]) or tackle the compilation of such applications
(some works, such as Silexica24, are listed in [Leu+19]). However, we focus in this
thesis on tools able to support both modeling and compilation or scheduling on given
target architectures. Such tools are sometimes referred to as co-design tools since both
application and architecture are modeled and refined during the design process. A survey
on co-design tools for real-time systems [Trö+06] lists some of the most important tool,
such as SynDEx [GLS99; GS03] and Ptolemy [Eke+03]. To our knowledge, none of this
tool supports automatic configuration of the QoS of the designed application.

An industrial co-design tool example is Scade25, which relies on the Lustre syn-
chronous language26. Matlab/SimuLink tool is also widely used in the industry, see [Pag+14]
for an example of a data-flow application modeled with SimuLink and executed on a
many-cores processor from Tilera. LabView too can be used to model SDF graphs and
execute them on FPGA processors [And+12a].

On the academic side, there is the Gaspard [Gam+11] co-design tool inspired by Ar-
rayOL, relying on UML MARTE model and inter-operable with synchronous languages
such as Signal or Lustre. PeaCE [Ha+08] is another co-design tool supporting SDF and
FSMs. Other tools, such as MAPS [CLA13] support more generic models such as KPNs
but are not specifically optimized for SDF graphs. TTool27 and more specifically its

23https://www.omg.org/omgmarte/
24https://www.silexica.com/
25https://www.ansys.com/en/products/embedded-software/ansys-scade-suite
26See the paragraph on synchronous languages in Section 1.1.2.
27https://ttool.telecom-paristech.fr/

https://www.omg.org/omgmarte/
https://www.silexica.com/
https://www.ansys.com/en/products/embedded-software/ansys-scade-suite
https://ttool.telecom-paristech.fr/
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Diplodocus part [Apv+06] supports the UML SysML28 model, which is an alternative
to UML MARTE.

Other academic tools such as PREESM [Pel+14] and its runtime version Synchronous
Parameterized and Interfaced Dataflow Embedded Runtime (SPIDER) [Heu+14], specif-
ically target SDF graphs, or more precisely the Parameterized Interfaced Synchronous
Data Flow (PISDF) extension. It is possible to convert some UML MARTE speci-
fications to the PISDF model [Amm+14]. Orcc [Yvi+13] is an ancestor of PREESM.
CAPH [SB14] and OpenDF [Bha+08] support SDF graphs and target FPGA processors.

Synthesis of real-time properties of tasks. One objective of the design process is
to avoid non schedulable systems. Algorithms exist to test the schedulability of SDF
graphs with periodic actors and without preemption [Ben+12]. However, rather than
ensuring schedulability or giving latency or buffer bounds [God97], it is even better to
compute directly during the design step some properties such as priority assignment
for FP scheduling [KM16]. Darts [BS11] and ADFG [Bou13; Hon+17] are more com-
plete scheduling synthesizers since they even compute the periods of the SDF actors.
One particularity of ADFG is to schedule directly the SDF graphs without expanding
them to SRSDF. Darts and ADFG cannot be considered as co-design tools since they
are tools targeting only homogeneous architectures and SDF applications without any
modeling facility as a Graphical User Interface (GUI). Nevertheless, they take both ap-
plication SDF graph and number of available homogeneous PEs as an input, and could
be used as underlying scheduling component of any larger co-design tool. This has been
demonstrated for ADFG to verify AADL dataflow specifications [Gau+19].

For benchmarks: use-cases, validation and generation of sample graphs

Many dataflow applications have been modeled with SDF graphs, such as a video decoder
and encoder [OH02] or multiple telecommunication applications [Dar+16; Moo+08;
PAN08]. A reinforcement learning application [HW07] has also been implemented in
PISDF, as well as various image processing applications29. The StreamIt [TA10] bench-
mark contains other SDF and CSDF dataflow applications related to signal processing.
There exists a refactored version of StreamIT for real-time system analysis [RP17]30. An-
other benchmark [JY17] generates random C code corresponding to actors; it is based
on the SDF3 [SGB06b] SDF graphs generator and analyzer.

28https://www.uml-sysml.org/sysml/
29See PISDF implementations on: https://github.com/preesm/preesm-apps
30https://gitlab.inria.fr/brouxel/STR2RTS

https://www.uml-sysml.org/sysml/
https://github.com/preesm/preesm-apps
https://gitlab.inria.fr/brouxel/STR2RTS
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Turbine [Bod+14]31 is a generator of SDF and CSDF graphs which can also ensure
their liveness. Turbine exports SDF graphs in the file format of SDF3. Such files can
be converted to the file format of PISDF by a simple script. Task Graph For Free
(TGFF) [DRW98] and GGen [Cor+10] focus on the generation of DAGs of tasks, a
subclass of SDF graphs not exposing data parallelism.

Finally, a few tools focus on the evaluation of the schedules. For example, Cheddar
[Sin+04] supports the SDF model and can simulate their periodic execution with the
FP scheduling type to track events such as preemption.

1.3.3 Analysis for scheduling efficiency

As the scheduling process may be long and result in a non schedulable system, multiple
algorithms have been developed to compute feasible bounds of metrics of the sched-
ules. These metrics mainly are: latency, throughput, and the memory size required by
the buffers. Bounds on these metrics are useful to asses the quality of the scheduling
algorithms. Such bounds are usually computed before the scheduling process, and inde-
pendently to it. If not specified in the next paragraphs, bounds are computed without
resource constraints on the system.

Liveness. Liveness ensures that all tasks may be executed even if the SDF graph
contains cycles. Delays are added to some buffers of cycles in order to break data
dependencies, and the goal is generally to minimize the amount of delays needed for
liveness [CR93]. There exist polynomial sufficient conditions for the delay sizes in live
SDF graphs [MM08; MM09], and in live CSDF graphs [Ben+13a]. Liveness has also
been studied in the case of self-timed execution [Gha+06a].

Throughput. Throughput may be limited by delays on cycles: the minimal delay
sizes ensuring liveness may reduce the expressed data parallelism. At the opposite,
delays placed on buffers outside cycles create pipelining and increase the throughput.
The Maximum Cycle Mean metric [SB09] helps to compute the maximum throughput
in such cases. Other optimal throughput analyses [Gro+12; Gha+06b] are based on
max-plus algebra [Bac+92; Kom+18]. It is possible to estimate the throughput of large
IBSDF hierarchical graphs [Der+17b; Der+17a]. Besides, the throughput of SDF graphs
can be estimated while taking into account processor constraints [GAM19a].

31https://github.com/bbodin/turbine

https://github.com/bbodin/turbine
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Latency. Latency is also dependent on the delays of the SDF graph: delays generally
increase the latency because one graph iteration is executed across multiple scheduler
iterations. Latency has been evaluated for SDF graphs with periodic actors without
preemption [Kha+16; GAM19b], and also with resource constraints on a many-cores
processor [MB07]. A few works rely on symbolic execution to compute the minimum
achievable latency, possibly under throughput and processor constraints [Gha+07].

Memory usage. It is possible to schedule SDF graphs such that buffer sizes are
minimized [ČP93], for which throughput may not be optimal. At the opposite, it is
possible to schedule SDF graphs such that the buffer size is minimized while ensuring
the maximum throughput. In between, some works compute close to optimal buffer
sizes while respecting a throughput constraint [WBS07]. The ADFG tool is also able to
minimize the buffer sizes [BFG16b; BFG16a] for FP and EDF scheduling types. While
all the aforementioned works considered that each buffer has its own memory, some other
works consider buffers shared among multiple actors to have memory reuse [Den+07]
and reduce the total memory size. Moreover, memory reuse can be optimized for SDF
graphs once their static schedule is known [Des+16a; Des+16b]. The latter technique
uses a graph of memory exclusion of the buffer accesses made by each actor in order to
reuse the memory of some buffers by other buffers when their accesses never overlap in
time during a scheduler iteration.

Trade-offs. As minimization of latency and maximization of throughput may be two
contradictory objectives, trade-offs have been studied for the general case [SGB08]
or for improved analysis with partial scheduling information [Dam+12]. The SDF3

tool [SGB06b] proposes multiple analyses, including trade-offs between buffer sizes and
throughput [SGB06a] which are also two contradictory objectives when considering one
dedicated memory per buffer. Same trade-offs between throughput and buffer size have
been studied for SDF graphs with periodic actors [Ben+10] and CSDF graphs with
periodic actors [BMD13]. Other works handle constrained processors [Les17], for an
extension of CSDF.

1.4 The PREESM tool

The PREESM [Pel+14] tool helps to design SDF applications. PREESM is developped
at INSA Rennes as an open-source project32. It provides a GUI to ease the modeling,

32https://preesm.github.io

https://preesm.github.io
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and multiple kinds of analyses are also implemented. Most importantly, PREESM has a
synthesis part to generate automatically parallelized C code of the modeled applications.
The models and files used by PREESM are described in Section 1.4.1. Then we focus
on the definition of application parameters in Section 1.4.2, and on the computation of
the repetition vector in Section 1.4.3. Finally, special kinds of actors are introduced in
Section 1.4.4; they are especially useful to generate the SRSDF graph of an application.

1.4.1 Architecture of a PREESM project

The dataflow model supported by PREESM is called PISDF; it is the application of the
Parameterized Interfaced Meta-Model [Des+13] to the SDF MoC. Regarding the MoA,
PREESM uses S-LAM [Pel+09a]. As PREESM is an Eclipse33 based platform, the files
related to an application and its targeted architectures are grouped in a project contain-
ing multiple folders. The Algo folder contains the files representing the PISDF graphs
of the application, while Archi contains the files representing the S-LAM architectures.
Other configuration files are located in the folders Code, Scenarios and Workflows. A
description of each project folder is given hereafter.

Algo project folder

This folder contains all the PISDF graphs of a project. The graphs are stored in an
XML format with a .pi file extension. Moreover, all .pi files can be converted to,
and automatically updated from, a GUI with corresponding .diagram files. The GUI
supports the live editing of all properties of a PISDF graph: actors, buffers, production
and consumption rates, parameters, etc. . . The GUI comes with an automatic layout
algorithm to clarify the representation.

Since the PISDF MoC supports the hierarchical description of a graph, there might
be multiple .pi files to represent a single PISDF graph. Indeed, an actor of the top
level graph might be refined in another hierarchical graph and related .pi files. There
is no limit to the number of subgraphs in the hierarchy. In this thesis only flat graphs,
i.e. without hierarchy, are considered ; this is not a strong assumption because all
hierarchical graphs can be automatically converted to their flat equivalent. When an
actor is not refined by another subgraph, it has to be refined with the prototype of the
function (coded in C) to execute. Eventually, all leaf actors of the whole graph are
refined with a C function.

33https://www.eclipse.org/

https://www.eclipse.org/


32 CHAPTER 1. BACKGROUND

Archi project folder

This folder contains all the S-LAM architectures of a project. The architectures are
stored in an XML format with a .slam file extension. Moreover, all .slam files can be
converted to, and automatically updated from, a GUI with corresponding .layout files.
The GUI supports the live editing of all properties of a S-LAM architecture, especially
PEs and data connections between them, with bandwidth specifications. Multiple .slam

files can be present in the same Archi project folder.
In this thesis, only homogeneous CPU architectures are considered and we use only

a subset of the S-LAM model. For example, the Intel i7-7820HQ @ 2.90GHz processor
having 4 physical cores is modeled with 4 PEs each connected, thanks to an undirected-
DataLink, to a single parallelComNode imitating the accesses to a shared RAM. The
bandwidth of parallelComNode is arbitrarily set to 109 data unit per time unit, while we
generally consider byte as data unit and nanosecond as time unit.

Code project folder

This folder contains all the C files of a project. Especially it contains the header .h

files defining the function prototypes used as actor refinements. Multiple actors may be
refined with the same prototype.

It is a common practice to store the implementations of the C functions in the Code

project folder too. Another common practice is to create a generated subfolder as the
target of the PREESM code generation. Thus all C files are closely located and it is
easier to manage and compile them. The PREESM code generation creates one main .c

file, plus one per PE. The purpose of the main file is to launch as many threads as PEs,
each executing the instructions of its corresponding file. The generated files defines all
the buffers and their static addresses on the memory stack.

A few other C files may be required, for example to wrap the communication means
on a specific DSP (provided by the designer), or to instrument the code with check sums
on the buffers content (provided by PREESM). It is also possible to instrument the code
with timing measurements of every actor, which are stored in a custom .csv file during
the execution.

Scenarios project folder

This folder contains all the scenario files of a project. The scenarios are stored in an
XML format with a .scenario file extension. Multiple .scenario files can be present in
the same Scenarios project folder. Each scenario file contains application information
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which are specific to a given architecture, as the actor ETs. Thus they refer to exactly
one top level PISDF graph and one S-LAM architecture. Moreover, a GUI supports the
live editing of all the stored properties of a scenario, as well as the import of the ETs
from .csv files resulting from the timing measurements done when instrumenting the
code.

Among other properties of the scenario, they also store mapping constraints, i.e.
whether or not an actor can be executed on a specific PE of the architecture. Values
of PISDF parameters can be override in the scenario, and the size of buffer data types
must be specified in the scenario. Finally, it is possible to specify the energy required
by each actor firing and the power consumption of the PEs.

Workflows project folder

This folder contains all the workflows of a project. The workflows are stored in an XML
format with a .workflow file extension. Multiple .workflow files can be present in the
same Workflows project folder. Each workflow file defines the sequence of transforma-
tions to apply on one scenario and especially the PISDF graph it refers to. Eventually,
the transformations lead to the scheduling of the application and to the code generation.
Moreover, all .workflow files can be converted to, and automatically updated from, a
GUI with corresponding .layout files. The GUI supports the live editing of all prop-
erties of a workflow, such as the add of a new transformation, for example the one to
flatten a hierarchical PISDF graph.

Each transformation is called a workflow task. All the contributions of this thesis
have been implemented as workflow tasks, whose names are given at the end of each
chapter. Note that the workflow tasks form a kind of dataflow graph: a given root task
outputs the scenario, the architecture and the top level PISDF graph, which can be
the input of any other workflow task. Multiple intermediate representations are used
between the workflows tasks, especially for the output of the scheduling workflow task.
The obtained schedule can be displayed in a GUI thanks to another workflow task. Last
but not least, workflows can be called in a script to avoid the Eclipse GUI, thus easing
the automation of transformations on multiple projects.

1.4.2 Definition of PISDF graphs and parameters

When working in PREESM, the main interest of a designer is to develop PISDF graphs
of the designed application. The easiest way is to use the dedicated GUI, which supports
the live editing of a graph and its parameters, displayed in the same diagram and stored
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Figure 1.6 – Exam-
ple of PISDF graph
in PREESM. This
example represents
the same graph as
in Figure 1.2a, but
with parameter-
ized production and
consumption rates.

in the same .pi file. Parameters are arithmetic expressions which can be used in the
definition of a few PISDF properties such as the production and consumption rates, and
also used in the definition of a few scenario properties such as the actor ETs.

In the GUI, parameters are represented with a different shape and a different color
than actors, as shown in Figure 1.6. Each parameter has a unique name, here suffixed
by param to be recognized more easily in the figure. As parameters are named, their
arithmetic expressions can depend on each other, and parameters eventually form a
DAG whose roots (here paramW and paramX) can only hold constant expressions (there
should be no cyclic dependency). A parameter can depend on multiple parameters, and
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can be used by multiple other parameters or actors. Dependencies must be explicitly
set by the designer. If an actor is dependent on a parameter, the parameter can be
used in the production or production rates of buffers connected to this actor, and also
as an argument of the C function refining this actor. The other arguments of the C
function of an actor are the memory pointers to its input and output buffers, if any. In
Figure 1.6, there is a single buffer named output for the producer actorA and input

for the consumer actorB. The PISDF model also supports the use of an actor output
in a parameter definition; then the parameter becomes dynamic, and it is not possible
anymore to statically schedule the application. In this thesis we only consider static
parameters, which are not depending on any actor output.

Concretely, the parameters especially ease the definition and the modification of
production and consumption rates. In Figure 1.6, they are defined by the following set
of equations in Listing 1.1, all related to the unique buffer denoted e for convenience. In
the GUI, only the right hand sides of those equations are set into the text fields of the
corresponding parameters or of the rates. For example, the arithmetic expressions of
production and consumption rates are given here with the notations used in this thesis,
respectively prod(e) and src(e), but in the GUI they are set directly in the Source port

rate and Target port rate text fields of the currently selected buffer.

paramW = 5 paramX = 1
paramY = paramX*ceil(pi)
paramZ = paramX*ln(paramY)/ln(2)

prod(e) = paramW src(e) = paramX+paramZ

Listing 1.1 – PISDF parameter definitions and use in Figure 1.6.

As you may notice, the definition of parameters is equivalent to a program in the SSA
form, but without control flow structures. However, conditional if statements are sup-
ported inside the arithmetic expressions (more details are given in Section 5.1). Finally,
since parameters are defined in an SSA form without cyclic control flow statements (they
form a DAG), when all parameters are static they can be rapidly valuated, even while
editing the graph in the GUI. Starting with the root parameters, the valuation process
recursively propagates their values to the parameters depending on them. The valuation
of a parameter is restricted to Integer numbers, it automatically truncates the floating
point results of arithmetic expressions. The valuation is visible in the Properties tab
of parameters and buffers, in the text field called Default Value.
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1.4.3 Computation of the repetition vector

Once the parameters of a PISDF graph have been valuated, all the actor production and
consumption rates are fixed and it is possible to compute the repetition vector, which
respects Equation (1.1). To do so, a mere graph traversal can be used [BML12]. In the
PREESM tool, this graph traversal is a Depth-First Search (DFS) taking into account
cases which are specific to the PIMM model, especially hierarchy and rates equal to 0.
As this thesis tackles only flat graphs, i.e. without hierarchy, the case of hierarchy is
not detailed in the presented algorithm. To simplify, the case of hierarchy requires a
recursive top-down approach, computing the repetition vector ~rParent of the parent graph
first, and then multiplying the repetition vector ~rChild of each child graph Child by its
upper level repetition factor, i.e. by the scalar ~rParent [Child]34.

In PREESM, the computation of the repetition vector can be represented as two
successive steps. The first step discovers all the largest weakly connected components of
the flat PISDF graph, as detailed in Algorithm 1.1. A weakly connected component of a
directed graph is a set of nodes such that an undirected path always exists between two
nodes of the set35. As the definition involves undirected paths, the algorithm explores
both the incoming IE(β) and outgoing OE(β) buffers of each actor β. During this
first step, buffers where both the production and consumption rates are equal to 0 are
ignored, see lines 20-22 and 27-29. Thus, if an actor has rates of all its buffers equal to 0,
it is not executed at all, see lines 33-34. The visiting order of the actors during the first
step is important and is reused for the second step. Indeed the second step actually sets
a firing ratio between the currently visited actor and all its direct neighbors according
to the DFS. A firing ratio is the local multiplicity of firings of an actor compared to one
of its direct neighbors. All the firing ratios are finally used to compute the repetition
vector, see lines 17-19 of Algorithm 1.2.

Note that Algorithms 1.1 and 1.2 set the repetition vector even for graphs having
multiple connected components, which corresponds to the case of multiple independent
applications described in the same graph. In such case, the algorithm automatically sets
the repetition vector such that all connected components have the same throughput.
For example, in the simplest case of a graph containing two unconnected actors without
buffer, the repetition vector is ~1: both actors are fired once.

However, the designer might need an unbalanced behavior, for example, with one

34In the parent graph, any child graph appears as an actor. The simplification concerns the rates
of PISDF data interfaces in the child graphs: extra logic is automatically added to ensure that the
repetition vector of any child graph is not modifying the repetition vector of its parent graph.

35At the opposite, cycles are strongly connected components of a directed graph.
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Algorithm 1.1: Modified DFS before computing the repetition vector ~r
1 function initializeCCs(V,~r) . The DFS initializes all connected components (CC).

2 forall α ∈ V do
3 ~r [α]← 1; . By default each actor is executed once.

4 visitedActors ← ∅;
5 setOfCCs ← ∅;
6 forall α ∈ V do . Main loop to discover all connected components (CC).

7 if α ∈ visitedActors then
8 continue ;
9 visitedActorsInCC ← ∅;

10 visitedBuffersInCC ← ∅;
11 toVisit ← ∅;
12 addFirst(toVisit, α);
13 while toVisit 6= ∅ do . Traverse a single connected component (CC).

14 β ← head(toVisit);
15 remove(toVisit, β);
16 addLast(visitedActors, β);
17 addLast(visitedActorsInCC , β);
18 nbZeroBuffer ← 0;
19 forall e ∈ IE(β) do . Iterate over the successors.

20 if cons(e) = 0 and prod(e) = 0 then
21 nbZeroBuffer ← nbZeroBuffer + 1;
22 continue ;
23 addLast(visitedBuffersInCC , e);
24 if src(e) /∈ toVisit and src(e) /∈ visitedActorsInCC then
25 addFirst(toVisit, src(e));

26 forall e ∈ OE(β) do . Iterate over the predecessors.

27 if cons(e) = 0 and prod(e) = 0 then
28 nbZeroBuffer ← nbZeroBuffer + 1;
29 continue ;
30 addLast(visitedBuffersInCC , e);
31 if dst(e) /∈ toVisit and dst(e) /∈ visitedActorsInCC then
32 addFirst(toVisit,dst(e));

33 if nbZeroBuffer = #IE(β) + #OE(β) and nbZeroBuffer > 0 then
34 ~r [β] = 0; . Not executed since all input and output rates are null.

35 cc ← new CC(visitedActorsInCC , visitedBuffersInCC );
36 addLast(setOfCCs, cc);
37 return setOfCCs; . The discovered connected components (CC).
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Algorithm 1.2: Computation of the repetition vector ~r based on the result of
Algorithm 1.1
1 procedure computeRV(setOfCCs, ~r)
2 forall cc ∈ setOfCCs do . Iterate over all connected components (CC).

3 forall α ∈ CC .visitedActorsInCC do . Initialize the firing ratios.

4 firingRatio(α)← 0
1 = 0; . The firing ratio is a fractional number. It

is relative to the direct predecessor in the DFS traversal.

5 forall e ∈ CC .visitedBuffersInCC do . Set the firing ratios.

6 ratioSrc ← firingRatio(src(e));
7 ratioDst ← firingRatio(dst(e));
8 if numerator(ratioSrc) = 0 and prod(e) > 0 and

numerator(ratioDst) > 0 then
9 firingRatio(src(e))← ratioDst × cons(e)

prod(e) ; . Fractional ×.

10 ratioSrc ← firingRatio(src(e));
11 if numerator(ratioDst) = 0 and cons(e) > 0 and

numerator(ratioSrc) > 0 then
12 firingRatio(dst(e))← ratioSrc × prod(e)

cons(e) ; . Fractional ×.

13 multiple ← 1;
14 forall α ∈ CC .visitedActorsInCC do . Compute the lowest common multiple

(lcm) of all ratios in the connected component (CC).

15 ratio ← firingRatio(α);
16 multiple ← lcm{multiple, denominator(ratio)};
17 forall α ∈ CC .visitedActorsInCC do . Set the repetition vector ~r.

18 ratio ← firingRatio(α);
19 ~r [α]← numerator(ratio)× multiple

denominator(ratio) ; . Is an Integer.
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connected component executed twice more than the others. Such unbalanced repetition
vector can also be useful to guarantee fairness in processor utilization of each connected
component of the original graph. This unbalanced behavior can be enforced by making
the whole graph weakly connected, i.e. having a single weakly connected component,
thanks to a dummy actor connected with dummy buffers to every original actor having
no incoming (or equivalently, outgoing) edge36. The dummy buffers have the smallest
possible rate 1 on both sides, except for the one going to the twice more executed
connected component, which takes the value 2 as a production rate.

1.4.4 Single-Rate graph and special actors

Once the repetition vector has been computed, it is possible to generate the SRSDF
version of the original PISDF graph, as in Figure 1.4b. However, the graph in Figure 1.4b
cannot be used in this form for the scheduling (because of delay management) and the
code generation (because of varying number of inputs and outputs). Thus, a few special
kinds of actors are used in PISDF in order to solve these problems. Figure 1.7 depicts the
actual SRSDF graph37generated by PREESM instead of the one depicted in Figure 1.4b.
The graph in Figure 1.7 contains 7 special actors, whose behavior is detailed in the
next paragraphs. As the behavior of those special actors is defined by PREESM, their
refinements in a C function do not have to be written by the designer. Moreover, some
memory optimizations [Des+16b] are automatically applied to the special actors.

Init/End actors. These special actors ensure that any live SRSDF is indeed a DAG
in PREESM. To simplify, we have stated earlier that all SRSDF graphs are DAGs
however this is true only for live SDF graphs where data dependencies coming from and
going to delays are replace by init and end actors, respectively. These actors are added
automatically by PREESM during the SRSDF graph generation; the user does not have
to manage them. An init actor only has an output buffer; it provides the data which

36The first method [LM87c] computing the repetition vector uses a topology matrix Γ instead of the
graph traversal. Note that this original method is only for connected graphs and its main result is that
a connected SDF graph is consistent if and only if dim(ker(Γ)) = 1, with the repetition vector ~r being
the basis of this kernel. We conjecture a generalization of this equivalence: an unconnected SDF graph
is consistent if and only if dim(ker(Γ)) = #CC, with #CC being the number of its weakly connected
components. If so, there exists a basis of ker(Γ), each basis vector being the repetition vector of one
connected component, filled with zeros on actors not belonging to this connected component. The same
relation dim(ker(L)) = #CC is already proved for the Laplacian matrix L of any undirected graph.

37Note that this automatically generated SRSDF graph has been modified to meet the indexing of
firing used in the thesis: PREESM normally starts at 0 while we start at 1 in the thesis. Moreover, the
generated names of the fork and join actor firings originally contains implode and explode instead of
fork and join here.
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Figure 1.7 – Example of generated SRSDF graph in PREESM. This example represents
the same graph as in Figure 1.4b, but with automatically added fork and join actors.
Init and end actors respectively retrieves data from and stores data to the delay.

have been stored into its corresponding delay during the previous scheduler iterations.
An end actor only has an input buffer; it stores the data into its corresponding delay
during the current scheduler iteration.

Fork/Join actors. These special actors behave as scatter and gather operations, re-
spectively. A fork actor scatters the data of its unique incoming buffer into all its
outgoing buffers (in order of appearance, from top to bottom). A join actor gathers
data of its incoming buffers (in order of appearance, from top to bottom) into its unique
outgoing buffer. The sum of their incoming rates is equal to the sum of their outgoing
rates. The fork and join actors are especially useful to ensure that all C functions of
actor refinements always take the same number of arguments. For example, in Fig-
ure 1.4b, firings of A have two (for A2) or three (for A1 and A3) output buffers whereas
the original actor A has only one output in the SDF graph in Figure 1.4a. The use
of fork actors solves this problem and all firings of A have only one output buffer in
Figure 1.7. Thus, the same C function is used for all firings of A, with the original
prototype actorA(int * output) if no PISDF parameters are used inside the C func-
tion, or actorA(int paramW, int * output) if considering the parameter defined in
the PISDF graph in Figure 1.6. Fork and join actors are automatically generated by
PREESM during the conversion into an SRSDF graph, but the designer can also add
them manually before the conversion.
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Broadcast/Roundbuffer actors. These special actors behave as duplicate and dec-
imate operations. A broadcast actor copy the data of its unique incoming buffer into
all its outgoing buffers, multiple times if the production rates are a multiple of the only
input consumption rate. A roundbuffer actor retains only the last data of its incoming
buffers (in order of appearance, from bottom to top) until reaching the production rate of
its unique outgoing buffer. In the case of hierarchical graphs, broadcast and roundbuffer
actors are automatically generated by PREESM during the conversion into a flat PISDF
graph, in order to ensure that subgraphs do not modify the repetition vector of their
parent graphs. The designer can also add broadcast and roundbuffer actors manually,
and they are used in two of our contributions, see Figures 2.5 and 5.2.

1.5 Conclusion

Parallelism and architectures can be modeled with multiple means. In this section, we
precise which models are used in this thesis and we detail the common notations.

1.5.1 Model used in this thesis

The dataflow model used in this thesis is PISDF, that is the application of PIMM to
SDF. However, we do not use all properties of PISDF, in particular we do not consider
dynamic configuration of the parameters nor hierarchical graphs. We focus on the static
part of the PISDF model because it explicitly exposes both data and task parallelism,
and is simple enough to perform extensive analyses on it. As PISDF supports any
expression of parameters for production and consumption rates, delay sizes, or even
ETs, it makes PISDF suitable for the automatic configuration of applications modeled
with it.

To perform analyses on the PISDF model, we use the PREESM co-design tool, which
also integrates the S-LAM architecture model. Our target architectures are modeled with
S-LAM. PREESM offers a code generation feature, which implements synchronization
barriers between each scheduler iteration. This feature corresponds to the scheduling
Assumption 1 described in Section 3.2.2. To generate the code, PREESM creates one
thread per PE. Each thread executes its tasks in a data-driven fashion.

1.5.2 Main notations

Main notations used in this thesis are detailed in Table 1.1. They are adapted from
standard Burns’ notations [Dav13] for real-time systems. Variables written in lower case
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are used in formulae or for indexation. Variables written in upper case are kept for
instance names in examples, such as actor names.

Symbol Meaning
G = (V, E) The considered SDF graph, with its set of actors V and buffers E.
α Any actor in V .
π Any periodic actor in V .
e Any buffer in E.
IE(α) Set of incoming buffers of actor α.
OE(α) Set of outgoing buffers of actor α.
d0(e) ∈ N Size of the delay on e.
src(e) ∈ V Source actor of the buffer e.
prod(e) ∈ N Production rate of src(e).
dst(e) ∈ V Destination actor of the buffer e.
cons(e) ∈ N Consumption rate of dst(e).
~r Repetition vector of G, sorted in the lexicographic order of its actors.
~r [α] Number of firings of actor α as specified in the repetition vector.
αj j-th firing of actor α within one scheduler iteration.
αi firing of actor α within the i-th graph iteration.
G∗ = (V ∗, E∗) The DAG being the SRSDF/HSDF version of G.
τ Any task in G∗.
Cα ∈ N Execution Time (ET) of actor α (more specifically, Worst Case Ex-

ecution Time (WCET) in Chapter 3).
Tπ ∈ N Period of periodic actor π.
m ∈ N Number of Processing Elements (PEs).

Table 1.1 – Main notations used in this thesis.
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Introduction

Signal processing applications are generally compute intensive and constrained in terms
of throughput and latency. For example, the throughput of video displays is constrained
in Frame Per Second (fps). Parallelization of such applications is the key to meet their
throughput and latency requirements: when possible, data are processed simultaneously
by different Processing Elements (PEs).

Parallelization of for loops can be achieved automatically in the code through
OpenMP, or manually using threads. However, it is not possible to handle all the cases
with OpenMP, as distributed memory. Moreover threads require to manually add syn-
chronizations and communications in the code. Thus, applications are usually modeled
in order to first expose their parallelism, and secondly analyze this available parallelism
and synthesize efficient schedules. Here we use the SDF [LM87b] MoC which expresses
parallelism in two ways: by the different paths in the graphs (task parallelism), and by
the possible executions of the same process on different chunks of data (data parallelism).

One can model single for loops with SDF graphs as long as loops can be divided in
sub-parts accessing chunks of data of equal size, to respect the SDF restriction of fixed
amount of data communication. Yet, there is no general technique to model multiple
nested for loops with SDF graphs, especially when bounds of the inner loops are varying.

The contribution of this chapter is the modeling with SDF graphs, of multiple per-
fectly nested loops having explicit parallelism and variable bounds in their inner loops.
In loops having explicit parallelism, all iterations are independent. Perfectly nested
loops perform computation only in the innermost loop. This contribution is motivated
by two facts. First, variable amounts of data can be modeled with the CSDF [Bil+96]
MoC, an extension of SDF; but previous experiments on modeling using the CSDF MoC
have shown that this model is not easy to understand for designers and does not always
offer a competitive benefit. CSDF modeling difficulty has been stated by the creators of
the SDF-based language StreamIt [TKA02], in a review of their own work [TA10] (see
section 5.2). Another option is to use dynamic dataflow MoCs such as Kahn Process Net-
work [Kah74], but KPNs are hard to analyse and are not statically schedulable. Hence,
we focus on SDF graphs instead. Second, we need to model nested loops with SDF
graphs in order to finely control the granularity of the application representation. More-
over, the representation should be easily adaptable to the target architecture, especially
to its number of PEs, while staying independent from the architecture.

A direct application of this contribution is the modeling of a computer vision feature
detection application. Indeed, keypoints detection is performed on images at different
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resolutions and different blur levels. Thus, nested loops iterate over images of different
sizes so the loops have variable bounds.

In this chapter, we introduce the notion of SDF iterators to model and optimize
multiple nested loops having variable bounds. Iterators are demonstrated on a Scale
Invariant Feature Transform (SIFT) keypoints detection [Low04] application, modeled
with an SDF graph. Iterators help modeling and parallelizing SIFT detection, although
some nested loops process images of variable sizes. At the same time, iterators help
reducing the scheduling complexity since it is possible to adapt the number of parallel
executions with regard to the number of PEs.

The chapter is organized as follows. The motivational SIFT application that serves as
an example throughout the chapter is presented in Section 2.1. Then the parallelization
of single loops with SDF graphs is recalled in Section 2.2. The main contribution,
SDF iterators for multiple perfectly nested loops having explicit parallelism and variable
bounds, is detailed in Section 2.3. The practical usage of such SDF iterators is detailed
in Section 2.4. An evaluation of iterators in SDF graphs is presented in Section 2.5.
Related work, in Section 2.6, is followed by a conclusion.

2.1 SIFT keypoints detection application

This section presents an overview of the SIFT application that is later modeled with SDF
graphs. Scale Invariant Feature Transform (SIFT) computes keypoints by comparing
points in the original image with the same points in blurred images obtained from the
original one, and at different resolutions. Figure 2.1a details the main steps of SIFT: first
the original image is upscaled once, and downscaled multiple times to build the images at
various resolutions. Each resolution is called an octave. Then, the image at each octave
is blurred multiple times. A blur level corresponds to a layer. All images are stored in
a 4-dimensional (4-D) array; the dimensions are, in order: octave, layer, height, width.
Difference of Gaussians (DoG), gradient, and rotational metrics are computed from this
4-D array. Each metric computation produces an array of the same size, except the DoG
which produces one less layer. At last, keypoints detection is performed on these three
4-D arrays. Then, the extraction step refines the computed keypoints.

Two main problems arise when modeling SIFT detection with an SDF graph. First,
the number of keypoints to detect is unknown since it depends on the image content.
Second, the images to process stored in the 4-D array have different sizes depending
on their octave, whereas the SDF MoC imposes data transfers of fixed size. The first
problem is fixed by setting a limit on the number of detected keypoints. For the second
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Octaves computation

Layers computation

DoG* Rot&Grd*

Keypoints extraction

Keypoints detection*

Input image, at different resolutions

Each initial image of one octave,
saved to different Gaussian blur levels

DoG: Difference of Gaussian
(for each octave, between two successive layers i.e. blurred images)
Rot/Grd: Rotational/Gradient
(for each octave and each layer)

Performed on all octaves and layers
(the number of keypoints is not predictable)

Main result: the keypoint descriptor of each keypoint

(a) SIFT workflow: green steps* are modeled with iterators in an SDF graph.
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(b) Layers and octaves in SIFT with four different regions of equal processing amount. Original
image is on top left. Blurring on abscissa and resolution downscale on ordinate.

Figure 2.1 – SIFT image processing application: main steps (Figure 2.1a) and data
storage (Figure 2.1b).

problem, the naive way to model different octaves is to create a specific actor for each
image resolution, which is not convenient because the model cannot be adapted to dif-
ferent numbers of octaves. Another difficulty is that the computation on the smallest
image resolution, the last octave, is faster than the computation of the first octave by
multiple orders of magnitude. Indeed, for an image of 640 × 800 pixel, the image is
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upscaled once and downscaled five times by a factor 2 on each dimension; thus the ratio
of the number of pixels in the first octave over the last is 46 = 4096. If multiple PEs are
available, an important question is how to parallelize the computation equally among
them. Figure 2.1b illustrates this problem with three layers, three octaves, and four
available PEs. One option is to assign each layer to a PE, but then a PE is not used.
The opposite option is to assign each octave to a PE, but then a PE is not used, and
computations are unbalanced. An example of equal distribution of the computation on
the four PEs is shown in the boxes of the four colors red, blue, green and yellow (each
with a specific dotted, dashed or straight line pattern). Each color encloses one quarter
of the computation. On that example, boxes clearly do not match the image bounds.

The iterators introduced in Section 2.3 can handle this computation partitioning
while staying in the SDF model. Iterators are used to model and parallelize the green
steps in the workflow in 2.1a, in our case according to the number of available PEs.
Iterators do not require duplicating any actor for each octave. Before describing the
iterators in details, modeling and parallelization of single loops with SDF graphs is
recalled in Section 2.2.

2.2 Modeling of single loops having explicit parallelism

This section discusses the modeling of single for loops with SDF graphs. for loops are
a basic control structure of any imperative language. The code in Listing 2.1 illustrates
a simple for loop. It iterates over an input array, processes each element and stores the
result in an output array; both arrays having the same size N, it represents a map oper-
ation. Here the parallelism is explicit: there is no dependency between the statements
of any iteration of the loop, and process is a pure function without side effects.

1 for (int i = 0; i < N; ++i) {
2 output[i] = process(input[i]);
3 }

Listing 2.1 – Simple one dimensional (1-D) for loop having explicit parallelism.

Figure 2.2a depicts the modeling with an SDF graph of a map operation with a
controllable degree of parallelism. p is the degree of expressed data parallelism: the Map
actor is executed p times, on chunks of data of size N

p , where p must be a divisor of N .
If p = N , all data parallelism is expressed, however, it is not always useful to express
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Map

N
p
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p

N

(a) Map in SDF,
of repetition vector [p]T .

Split
N N + p

N
Upscale

N
p + 1 2×N

p

(b) 1-D Upscale in SDF,
of repetition vector [1, p]T .

Figure 2.2 – Map and Upscale at a coarse-grain level.

all the parallelism, especially if the number of PEs is largely smaller than N . The code
of the Map actor is almost the same as in Listing 2.1; the only difference lies in the loop
index bound that is now N/p instead of N.

In image processing, a common operation is to perform an upscale, increasing the
resolution of the image with interpolation. This operation is more generic than map
since the output array does not have the same size as the input, and since multiple
elements of the input array are accessed simultaneously to perform the interpolation. A
code example is shown in Listing 2.2 for the 1-D case.

1 for (int i = 0; i < N-1; ++i) {
2 output[2*i] = input[i];
3 output[2*i+1] = interpolation(input[i], input[i+1]);
4 }
5 output[2*N-2] = input[N-1];
6 output[2*N-1] = input[N-1];

Listing 2.2 – Simple 1-D upscale, by interpolation on the element and its successor.

An upscale operation is similar to a map, but requires extra data to apply the
interpolation on the borders of the chunks of the original array. The last element of a
chunk is a copy of the first element of the next chunk. These extra data can be added
by a copy actor preceding the upscale actor. The SDF modeling of an upscale operation
is depicted in Figure 2.2b, where the interpolation actor is called Upscale, and the copy
actor is called Split. Split is executed once while Upscale is executed p times. The
code of the Split actor, in Listing 2.3, pre-processes the data to add an extra element to
each chunk then processed by Upscale. The code of the Upscale actor, in Listing 2.4, is
simpler and faster than the original one, in Listing 2.2, since the border case needs no
more to be handled thanks to the copies performed by Split.

The upscale modeling pattern presented in Figure 2.2b is used to model the compu-
tation of the upscale of the input image in the first step of SIFT, as shown in Figure 2.1a.
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1 for (int i = 0; i < p; ++i) {
2 // copy the whole chunk, can be optimized with memcpy
3 for (int j = 0; j < N/p; ++j) {
4 output[i*(N/p + 1) + j] = input[i*(N/p) + j];
5 }
6 // adds extra copy of last element of each chunk
7 output[i*(N/p + 1) + N/p] = input[i*(N/p) + N/P - 1];
8 }

Listing 2.3 – Spit SDF actor code.

1 for (int i = 0; i < N/p; ++i) {
2 output[2*i] = input[i];
3 output[2*i+1] = interpolation(input[i], input[i+1]);
4 }

Listing 2.4 – Upscale SDF actor code.

An image has two dimensions but the data parallelism is expressed only on the height of
the image, divided by the number of PEs. The same pattern is also used for the second
step of SIFT: the layers computation. However, the algorithm to compute the different
layers consists of two successive 1-D Gaussian blurs on lines of the image, each blur per-
forming a transposition. The Gaussian blur applies a 1-D stencil with two neighbors. As
data parallelism is expressed through the height of the image in any case, data must be
reordered between the two transpositions; this is creating an application bottleneck since
this reordering is fully sequential. We now generalize the SDF modeling patterns seen
in this section for single for loops to perfectly nested loops having explicit parallelism.

2.3 Modeling of nested loops having explicit parallelism

In this section, perfectly nested loops having explicit parallelism are considered. An
example is given in Listing 2.5, with three perfectly nested loops. Perfectly nested loops
do not contain any statement between the declaration of the loops: only the innermost
loop contains statements, line 4 of Section 2.3.2. Explicit parallelism means that in the
assignment statement on line 4, the indexes are the same on the right hand side and
the left hand side: the iterations of the loops can be executed in any order without
modifying the result. However, the index bounds of the inner loops may depend on
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the outer loop indexes, as abstracted by the functions f1 and f2, which can be any
mathematical function. The functions giving the index bounds depend solely on their
outer loop indexes, i for f1 and i,j for f2; in our work, those functions cannot depend
on the processed data. The parallelization of nested loops of the same form than in
Listing 2.5 is described in Section 2.3.1, and their modeling with SDF graphs thanks to
iterators is discussed in Section 2.3.2.

1 for (int i = 0; i < N1; ++i) {
2 for (int j = 0; j < f1(i); ++j) {
3 for (int k = 0; k < f2(i, j); ++k) {
4 output[i][j][k] = process(input[i][j][k]);
5 }
6 }
7 }

Listing 2.5 – Three perfectly nested for loops having explicit parallelism.

2.3.1 Iteration space splitting

An important property of the SDF MoC is that the rates of data exchanges are fixed.
Thus, the only solution to model loops as in Listing 2.5 with SDF graphs is to split the
whole iteration space into chunks of equal sizes. These chunks do not always match the
loop bounds as depicted in Figure 2.1b. In Listing 2.5, the whole iteration space size Sit
is ∑N1

i=0

(∑f1(i)
j=0 f2(i, j)

)
. In this example, the iteration space size equals the total size

of the array to process, it is a map operation. Following the structure of Listing 2.5, it is
possible to define Sit for any number of d nested loops, as formalized in Equation (2.1).
In Listing 2.5, there are d = 3 nested loops.

Sit =
N1∑
i1=0

f1(i1)∑
i2=0

f2(i1,i2)∑
i3=0

... fd−2(i1,i2,... ,id−2)∑
id−1=0

fd−1(i1, i2, ... , id−1)

 (2.1)

The most straightforward way to cut the whole iteration space into chunks of equal
size is to simulate the execution of the loops. A variable iter storing the number of
performed iterations is incremented instead of calling the process function. Each time
iter reaches a multiple of chunk_size, the loop indexes are recorded to be used as
start/stop indexes when splitting the loops. This algorithm is written in Listing 2.6,
with chunk_size being equal to any divisor of Sit. The role of an SDF iterator is to
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send the recorded indexes to split the real execution of the loops in the processing actor.

1 int iter = 0;
2 for (int i = 0; i < N1; ++i) {
3 for (int j = 0; j < f1(i); ++j) {
4 for (int k = 0; k < f2(i, j); ++k) {
5 if (iter++ % chunk_size == 0) {
6 record(i,j,k);
7 }
8 }
9 }

10 }

Listing 2.6 – Iteration space simulator for three perfectly nested for loops having explicit
parallelism. The recorded indexes will be stored in the SDF iterator.

Note that this simulation can be done offline: the start/stop indexes only need to
be saved in order to be used during the real execution of the loop (where the process is
performed). Besides, this simulation can be easily adapted to any number d of nested
loops: the structure is the same as the original nested loops.

2.3.2 SDF iterators

An SDF iterator actor outputs the start and stop indexes for each execution of the
process actor modeling the nested loops. Thus, if the nested loops iteration space Sit is
divided into p chunks, the iterator is executed once and the processing actor is executed
p times. The code for the processing actor is similar to its original version in Listing 2.5,
the only difference concerns the indexes that are set by the iterator output. The modeling
of the perfectly nested loops with SDF graphs is depicted in Figure 2.3. Sit elements
are sent to the Process actor, which is processing them by chunks of size Sitp . For each
execution of Process, the iterator produces 2× d indexes: one start index and one stop
for each loop of the d nested loops. These indexes i,j,k,... are the one recorded
during the loop simulation presented in Listing 2.6, considering that the stop indexes
of one execution of the process are the start indexes of its next execution. Hence, the
p executions of Process can be performed in parallel. As the p chunks may not match
with the dimension bounds, as for images in Figure 2.1b, the value of each recorded
index may be lesser than the index bound of its corresponding loop; Section 2.4.2 details
how to modify the processing actor code accordingly. Note that the map and upscale
patterns described in Figure 2.2b can also be applied to this general case of nested loops.
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Figure 2.3 – Modeling of iterators with SDF. Repetition vector of Iterator and Process
actors is: [1, p]T .

Finally, iterators empower the designer to control data parallelism in SDF graphs for
any perfectly nested loops having explicit parallelism. Iterators imply two drawbacks
which can be overcome. The first drawback is the restriction to nested loops having
explicit parallelism. However, this restriction can be removed in some cases, but not
all, thanks to prior source-to-source code transformations, such as loop-skewing. The
second drawback occurs when tagging an actor α, parallelized with an iterator, with a
measured ET Cα. Indeed, the ET is then not only dependent on the actor code, but
also on the chunk size. This drawback is easily overcome using symbolic expressions of
the ET, as formulated in Equation (2.2).

Cα(p) = Cα(1)
p

(2.2)

So when actor α is parallelized over p chunks of equal size, the ET of each execution of a
is equal to its sequential ET divided by the number of chunks. Equation (2.2) formalizes
an ideal case of data parallelism and does not respect the Amdahl’s law [Amd67], but
more realistic symbolic expressions can be used instead. In the heterogeneous case, note
that Cα(1) depends on the type of PE: while the amount of computations is equally
distributed on each firing, their ET on different types of PEs may differ.

2.4 When and how to use SDF iterators?

This section details when and how to use the SDF iterators presented in Section 2.3.
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Red.
c 1

Red.
c 1

N

logcN Red.

Figure 2.4 – Reduce of N elements in SDF, with chunk size c > 1. Repetition vector of
Reduce actors is: [Nc ,

N
c2 ,

N
c3 , ..., 1]T .

2.4.1 When are needed SDF iterators?

SDF iterators are required only when the loop indexes are used in the processing part.
For example, loop indexes enable knowing the image bounds in the 4-D arrays of the
SIFT application, and thus the processing is able to call specific code on borders of
the image. The indexes are needed in SIFT also to access the whole array; Listing 2.8
provides a code example. SDF iterators are restricted to perfectly nested loops having
explicit parallelism. Moreover, the bounds of the loops cannot depend on the processed
data. If loops are not perfectly nested, it is still possible to use SDF iterators; however,
in this case the computation times of the actor firings may be unbalanced.

On the contrary, SDF iterators are not required for standard map/reduce operations,
even on multidimensional data, since map/reduce operations do not need to be aware
of the current position in the input array. Indeed, in this case, only the size of the
iteration space is needed. However, iterators may still be used, for example in order to
handle padding data if the size of the iteration space is not a multiple of the number
of processors. The map operation in the SDF MoC is depicted in Figure 2.2a, while
the reduce operation is depicted in Figure 2.4. The reduce operation requires to create
logcN reduce actors in the corresponding SDF graph in order to control the degree of
parallelism; each reduce actor consumes N

c elements and produces 1. The repetition
vector of these reduce actors is (in the same order as in the graph): [Nc ,

N
c2 ,

N
c3 , ..., 1]T ,

where the total number of elements N is a power of the chunk size c. One drawback
to this reduce operation modeling is to manually fill the SDF graph with the correct
number of successive reduce actors. This drawback advocates for higher order languages
to represent SDF graphs, as HoCL1 developed by Jocelyn Sérot and inter-operable with
PREESM.

1https://github.com/jserot/hocl

https://github.com/jserot/hocl
https://github.com/jserot/hocl
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2.4.2 How the processing code must be modified?

Let’s consider the code in Listing 2.7, that has to be modeled with an SDF graph and
parallelized. This piece of code contains two nested non affine loops, iterating over a 2-D
array stored in a row-major fashion (outer loop dimension first). The array contains 14
elements in total and will be split in two chunks, to be processed in parallel on two PEs.

1 float* array = float[1+2*2+3*3]; // = 14
2 // fill array with file data
3 ...
4 // 2-D non affine processing loop
5 for (int i = 0; i < 3; i ++) {
6 int bound = (i+1)*(i+1);
7 for (int j = 0; j < bound; j ++) {
8 processing1cell(array, i, j);
9 }

10 }

Listing 2.7 – Non affine 2-D for loop having explicit parallelism.

When adding the iterator to the SDF graph, the code of the actor to parallelize has
to be adapted to its new inputs: the start and stop indexes of the loops. The modified
code is presented in Listing 2.8. In the inner loops, the bounds cannot be used directly:
they are used only if the upper loop is also using its start (respectively stop) index.

1 float* array = ; //provided as actor input
2 for (int i = start_i; i < stop_i; i ++) {
3 int begin_j = (i == start_i) ? start_j : 0;
4 int end_j = (i+1 == stop_i) ? stop_j : (i+1)*(i+1);
5 for (int j = begin_j; j < end_j; j ++) {
6 processing1cell(array, i, j);
7 }
8 }

Listing 2.8 – Non affine 2-D for loop SDF actor code.

In Listing 2.8, the size of the input array is not specified: only an address pointer
is given. If the full array is split in two chunks, the SDF processing actor is fired twice
by the SDF application execution framework, PREESM in our case. PREESM will feed
each chunk with the correct data thanks to pointer arithmetic. The order of firings
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Figure 2.5 – Modeling of iterators with SDF, with broadcast actor. Repetition vector of
Broadcast, Iterator and Process actors is: [p, 1, p]T .

follows the order of the data: the second firing gets the second chunk (elements 7 to 13).
It is also possible to have the full array as an input of each firing, without extra

memory consumption. This situation occurs in SIFT where the detection and extraction
of the keypoints depends on pixels at different octaves, and thus depends on data spread
everywhere in the 4-D array. To do so, a so-called Broadcast actor is added to the SDF
graph, and provides multiple virtual copies of the 4-D input array: there are as many
copies as there are firings of the processing actor. These copies are virtual since they
refer to the same physical memory, by using the memory scripts [Des+16b] introduced
by Karol Desnos et al. A graph extract corresponding to this solution is depicted in
Figure 2.5. In this solution, the Process actor is still fired p times, and still processes
only Sit

p elements of the array, however it has access to the whole array.

2.5 Evaluation

SDF iterators are now used to model the SIFT keypoints detection application. In SIFT
detection, images from different resolutions and blur levels are processed, which implies
to iterate over a 4-D array with four corresponding perfectly nested loops. There is one
loop per dimension of the array as written in Listing 2.9. The top loop iterates over the
octaves and the second loop iterates over the layers. The two innermost loops iterating
over the height and width of images have exponential bounds depending on the top
loop index. With the octaves indexed by the variable i, the image height (respectively,
width) to be processed is the biggest resolution height (resp. width) divided by 2i. In
Listing 2.9, the biggest image resolution is defined by the constants image_height and
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image_width ; these constants are multiples of all possible values taken by 2i and so a
bit shift >> is used for the division.

1 float* array = ; // 4-D array to iterate
2 for (int i = 0; i < nb_octaves; i ++) {
3 for (int j = 0; j < nb_layers; j ++) {
4 for (int k = 0; k < (image_height >> i); k ++) {
5 for (int l = 0; l < (image_width >> i); l ++) {
6 processing1cell(array, i, j, k, l);
7 }
8 }
9 }

10 }

Listing 2.9 – Original non affine 4-D for loop in SIFT.

SDF iterators are used to model such loops, expressing a degree of parallelism
p ∈ {1, 2, 4, 5, 10, 20}; this set contains the common divisors of the sizes of all the
4-D arrays. The SIFT detection code is a slightly modified version of the ezSIFT2 im-
plementation. The SDF model of SIFT is built with the PREESM [Pel+14] framework,
which also performs static scheduling and generates the static parallelized code.

Another parallel version of SIFT has been implemented using OpenMP, with parallel

for pragma above the loops iterating over the height of the images, which are the third
inner loops as in Listing 2.9. With OpenMP, the keypoint detection step requires a
critical section to add the detected keypoints into a shared list.

The execution times of the PREESM version and the OpenMP version of SIFT have
been reported in Table 2.1. All experiments used an Intel Xeon E5-2650 v4 @ 2.20GHz
processor (12 physical cores) and the GCC compiler version 5.4.0 (option -02) on a single
node of a cluster operated by Ubuntu 16.04 and managed by slurm. Both PREESM and
OpenMP execution times are similar, the best speedup (in bold) is achieved alternatively
by PREESM and OpenMP.

The number of scheduled tasks when unfolding the SDF graph of SIFT is also re-
ported in Table 2.1. This number is the sum of the repetition vector, i.e. the sum of the
minimal number of executions of each actor. As PREESM supports parameterized SDF
graphs [Des+13], first introduced in [BB01], the expressed degree of parallelism p is set
according to the number of targeted cores. The number of tasks is not multiplied by a

2See code on: https://github.com/robertwgh/ezSIFT

https://sourceforge.net/projects/ezsift/
https://github.com/robertwgh/ezSIFT
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#Cores #Tasks PREESM Time (Speedup) OpenMP Time (Speedup)
1 190 669 (0.96x) 645 (ref.)
2 293 412 (1.56x) 406 (1.59x)
4 355 277 (2.33x) 281 (2.29x)
5 386 263 (2.45x) 255 (2.53x)
10 541 171 (3.77x) 182 (3.54x)

Table 2.1 – Number of scheduled tasks, execution times in ms, and speedup for different
number of cores. Execution time is an average on 200 runs.

factor equal to the number of cores since not all steps of SIFT are parallelized through
iterators, as shown in Figure 2.1a.

This evaluation shows that it is possible to model and parallelize an application
having perfectly nested for loops with variable index bounds thanks to SDF iterators.
We achieve competitive performances against OpenMP, that we could even improve by
adding delays in the SDF graph (delays create pipelining). A heuristic to automatically
add delays is presented in Chapter 4. Moreover, with the SDF MoC, it is easier to
express task parallelism mixed with data parallelism: for example, if a task is executed
in parallel with a chunked loop. Finally, we are able to control the expressed degree of
parallelism, although restricted to be a divisor of the size of the iteration space.

2.6 Related work

The modeling of nested for loops with SDF iterators is related to two main aspects:
specialized dataflow languages, especially for image processing applications where at least
two dimensions are considered, and dataflow graph clustering, since iterators impact on
the degree of data parallelism.

2.6.1 On specialized dataflow languages

The most relevant dataflow MoC for image processing is the Multidimensional Syn-
chronous DataFlow (MDSDF) MoC [ML02], expressing data parallelism across multiple
dimensions. However this MoC does not solve the problem of variable image resolutions
such as in the SIFT octaves; it requires to split the 4-D array in SIFT in as many 3-D
arrays as the number of octaves, and thus the processing actors must be duplicated with
a specific array input size for each octave. The 3-D arrays would have different dimension
sizes according to the image resolution in each octave: [layer,height(octave),width(octave)].
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Moreover, only a few tools, listed in [KD13], support the MDSDF MoC such as Array-
OL [Dem+95; Bou07], or extend it, such as Windowed Synchronous DataFlow [KHT06].

The Brook stream language [Lia+06] supports a subset of MDSDF graphs, expressed
directly as C++ code. Brook only handles kernels with affine bounds, and thus cannot
be used for variable image resolutions inducing exponential bounds. More generally,
the same problem arises for all models relying on polyhedral analysis [Fea92], as the
Polyhedral Process Network (PPN) [Ver10], a parameterized extension of it [ZNS11], or
the OpenStream extension of OpenMP [CDF16]: they are dedicated to loops with affine
bounds only. Extensive analyses and graph and code transformations allow to model
any kind of loops with PPNs [NNS13] but then do not offer control of the degree of
parallelism. Dynamic dataflow languages, such as the one supported by Orcc [Yvi+13],
offer more flexibility on the application representation, however it is not possible to
derive static schedules from such languages when their semantics are fully exploited.

2.6.2 On the clustering of dataflow graphs

Clustering is usually performed on graphs expressing more parallelism than available on
the target architecture; clustering simplifies scheduling without increasing the applica-
tion execution time [PBL95]. The standard way to reach a coarse representation is to
limit the unfolding of the SDF graph into a precedence task graph. The unfolding is lim-
ited by merging different actors, or multiple executions of the same actor. This operation
artificially reduces the repetition vector size, or decreases the values held by the repeti-
tion vector. For example, APGAN and RPMC algorithms [BML97] are two heuristics
dedicated to merge actors of SDF graphs. Similar methods have been employed for SDF
graphs under real-time constraints [ZBS13]. The StreamIT benchmark has also been
successfully transformed into coarse SDF graphs for the RAW architecture [GTA06],
by an unfolding technique using actor “fusion” (actor merging) and “fission” (actor
duplication). Graph pattern detection and substitution is another way to merge ac-
tors [CS12]. Regarding reduction of the repetition vector size, there exists a vectoriza-
tion algorithm [Rit+93] for an extension of the SDF MoC called Scalable Synchronous
Dataflow, which inspired the recent Partial Expansion Graphs (PEG) [Zak+17]. PEG
are scheduled under dynamic scheduling.

Another method is to completely unfold the SDF graph into a precedence task graph,
and only then, to apply clustering algorithms; however, this significantly increases the
clustering complexity. Clustering algorithms exist for precedence graphs, including com-
piler intermediate representations [LPC12]. Hierarchical SDF graphs have also been used
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to model nested loops [PBR10], one per hierarchy, but they require an analysis of the
iteration space. Both methods do not offer control on the degree of parallelism.

Finally, all the aforementioned clustering methods rely on algorithms that analyze
the graph and create a coarse or hierarchical version of it, while the proposed iterators
only require to replace the for loop index bounds by the iterator output. Only one
iterator per iteration space is needed.

2.7 Conclusion

This chapter has demonstrated that it is possible to model a subclass of nested loops
having variable index bounds with an SDF graph, and to control the degree of expressed
parallelism. Thus, we can add to the observations of the StreamIt creators that the
CSDF model is not only complicated to use, but is also not always compulsory: the SIFT
application has been parallelized efficiently thanks to the SDF model and iterators.

The counter-intuitiveness of a MoC may be a argument to not use it, if another intu-
itive MoC exists and ensure equivalent performances. However, the ease to understand
the abstraction provided by a MoC, is subjective. For example, other related work
applied polyhedral techniques to multi-dimensional streams [LT19], motivating their
contribution by the abstraction cost of the SDF model. We disagree with the following
statement in the introduction of their paper: “Multi-dimensional streams can be repre-
sented in such models [Synchronous Data Flow (SDF)], albeit at the cost of abstraction,
which makes this less natural for the programmer and restricts potential transformations
in the compiler.”. Regarding the first assumption, it depends on the qualification of
the programmer: if the programmer is used to the LabVIEW software for example, the
SDF model will be perfectly natural for him/her. Regarding the second assumption, it
is actually the opposite since we demonstrate in this chapter that we can model loops
having non affine bounds. Nevertheless, as many programmers start by writing a code
and rely on tools to automatically transform it and improve it (typically, as a compiler
does), a future extension of this work is to automatically generate iterator code from a
code analysis in order to help the programmer.

In this chapter, SDF iterators have been used in conjunction with parameterized rates
of data consumption and production, for example, to adapt the number of firings of an
actor to the number of available PEs. However, depending on the parallel paths in the
SDF graph of the application, the best number of firings of an actor might be different
from the number of PEs. A simple DSE algorithm is presented in Chapter 5 and solves
this first problem. Another problem occurs when the number of firings explode: then,
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scheduling becomes a long process limiting the DSE capacity. Yet, having numerous
small firings may be useful to ensure that chunks of data fit in the cache memory.
To solve this second problem, a fast and scalable scheduling algorithm is presented
in Chapter 3. This scheduling algorithm is not only fast, but also takes into account
partially periodic constraints, such as a video frame rate.

Dissemination and Implementation

The contribution presented in this chapter has been published in the SAMOS’19
conference [Hon+19]. The implementation of the main use-case, the SIFT applica-
tion, is available on the preesm-apps public repository.

https://github.com/preesm/preesm-apps/tree/master/SIFT
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Introduction

Real-time systems correspond to systems whose tasks are constrained by deadlines. The
tasks are scheduled so that the deadlines are met, inside threads of an operating system
or directly on bare-metal. In order to perform their analysis and execution, such real-
time systems are generally modeled with tasks having extra periodicity constraints for
the deadlines, and precedence constraints for the data. For systems with only periodic
tasks, synchronous languages and related tools as Esterel [BG92] and SynDEx [GLS99]
are a good choice to check the schedulability and to compute a schedule. On the contrary,
a few online schedulers [Foh95; LB00] focus on the execution of aperiodic, sporadic and
periodic tasks together, but these schedulers do not consider precedences. Yet real-time
systems have periodic components interacting with aperiodic components, and with
precedence constraints here expressed in the SDF model. Our contribution aims to
analyze the schedulability of such real-time systems, called partially periodic, and to
schedule them systematically and efficiently. A few necessary conditions and an offline
non-preemptive scheduling algorithm are introduced for this purpose. Both have been
implemented in the PREESM tool [Pel+14].

Image signal processing systems and visual servoing are typical examples of par-
tially periodic real-time systems where certain components are periodic. For example,
a camera films at a periodic framerate and the images arrive to the aperiodic process-
ing components as a stream. Other components may also be periodic, as the input of
servo-motors which must be regularly updated. Thus the processing part often depends
on periodic inputs and must provide periodically one or more outputs, but does not
have to be periodic itself. The flexibility to deviate significantly from periodic operation
arises, for example, if data is buffered between components. One possible use-case is the
Simultaneous Localization And Mapping (SLAM) application: it constantly retrieves
information from a camera or a LIDAR and then processes data to reconstruct a map of
the environment and to move according to this map [Wen+18]. Sensor fusion [ZRW12]
or other techniques [Gee+16] take advantage of camera and LIDAR at the same time.

This contribution focuses on real-time systems with periodic and aperiodic compo-
nents, modeled with SDF graphs [LM87b]. SDF is commonly used to model image
processing applications, as for SLAM with one camera [Pia+18]. SDF graphs of real-
time systems often have imposed periodic inputs and outputs. However our approach is
more flexible as any component of the system can be periodic. This flexibility is helpful
in the case where multiple processing parts rely on different sensors.

Modeling systems is the first step of the design process. The systems then have
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to be verified and scheduled. Unfortunately the offline non-preemptive scheduling time
complexity is exponential in the number of tasks to get the optimal solution because
it is in general NP-complete [KA99]. This complexity limits the design of real-time
systems since optimal schedulers do not scale. In contrast, our approach gives results
that are not optimal but that can be used to quickly build and assess prototypes of large
applications. In other words, our approach is useful for the design space exploration of
scheduling solutions. Optimal schedulers and timing property checkers may still have to
be used. However, if they are used, it would only be after the prototyping step, on a
small set of prototypes.

We focus on offline non-preemptive scheduling because of two main reasons. First,
modern systems embed multi-processors where preemption, useful to perform multi-
tasking on a unicore processor, is not always required when executing a single application
as in our case. Preemptions may still be required to manage external inputs/outputs.
Unpredictable external inputs/outputs are not modeled in our case; but the predictable
periodic ones coming from sensors or addressed to actuators could be modeled thanks
to our partially periodic constraints. Moreover, the absence of preemption prevents
the overhead caused by context switching [LDS07] and simplifies the timing analysis.
Second, as SDF graphs model only systems where all tasks and their precedences are
known in advance, there is no necessity to have a reactive online scheduler. In our case
a static schedule on each PE is used for a global self-timed execution of the system.

In this chapter, we consider applications modeled with an SDF graph, where some
actors have periodic release times with implicit deadline. We say that such graph has
partially periodic constraints. Given a number of identical PEs to execute the application
and the WCET of each actor, the addressed problems are:

1. to quickly check the schedulability, without computing a schedule;

2. to compute an offline non-preemptive schedule satisfying the periodicity and prece-
dence constraints.

In the context of this chapter, a schedule consists of a list containing the start times of
all tasks and the PEs on which they are allocated. Communication times are not taken
into account.

The notations used in this chapter and details about SDF graphs are introduced
in Section 3.1. Then necessary conditions for the non-preemptive scheduling of SDF
graphs with some periodic actors are expressed in Section 3.2. Section 3.3 discusses the
algorithm checking if SDF graphs respect the necessary conditions. A greedy algorithm
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to schedule graphs with some periodic actors is presented in Section 3.4. Finally, a
discussion on this work, including an evaluation of the scheduling algorithm, is given in
Section 3.5. The related work is presented in Section 3.6 and is followed by a conclusion.

3.1 Background

This work is related to real-time systems and dataflow graphs, whose important notions
are discussed in the next two subsections. Note that the proposed algorithms only work
for homogeneous multi-processors where communications are not taken into account.

3.1.1 Real-time systems and assumptions

Real-time systems are composed of multiple computational tasks to execute before their
deadlines. In this contribution, each task τ has either no real-time constraint or a
periodic hard deadline. Tτ denotes the period of a periodic task τ . Tasks without
periodic deadlines are called aperiodic. For periodically released tasks, their deadline
dτ (relative to their release time) is implicit, which means equal to their period. The
WCET of each task τ is denoted Cτ . If a task τ is periodic, its period is greater than
its WCET: Cτ ≤ Tτ . In the Gantt diagrams of this chapter, the duration of a task
execution corresponds to its WCET. Moreover, periodic releases and implicit deadlines
are represented with orange down and up arrows, respectively.

During the execution of a real-time system, the tasks must be ordered and mapped
to the PEs in such a way that all tasks meet their deadlines (if any), which is not always
possible. In this chapter, a schedule refers to the start times and to the static mapping
of the tasks. When there is no schedule respecting the deadlines, the system is said to
be not schedulable. In this work only offline data-driven non-preemptive schedulers are
considered; the system repeats indefinitely a precomputed schedule. We consider that
the system has m identical PEs.

3.1.2 Synchronous Dataflow graphs

SDF graphs have already been introduced in Section 1.2.1. However, for this contribu-
tion, we would like to emphasize a few of their properties and introduce extra notations.
In particular, we consider an indefinitely repeated static schedule; each repetition is
called a scheduler iteration. Two examples of a schedule for an SDF graph are given in
Figure 3.1, where the repetition vector is [3, 5]T (indexed by actor names in the lexi-
cographic order). The repetition vector ~r defines a graph iteration, during which there
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A

5
B

3

(a) SDF graph example, of repetition vector [3, 5]T .
1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE 1 A1 A3 B4 A1 A3 B4

PE 2 A2 B1B2B3B5 A2 B1B2B3B5

schedule repetition

(b) Schedule example of 3.1a on two PEs. Two graph iterations are represented, separated by a
red vertical line.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PE 1 B1 A1 B2 A2 B3B4 A3 B5
B B B B A,BA A

(c) Unicore schedule example of 3.1a, respecting actor periods TA = 5 and TB = 3, but not
respecting the following precedences: A1 → B1, A2 → B2 and A3 → B4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PE 1 A1 B1 A2 B2B3 A3 B4B5
A A A

(d) Unicore schedule example of 3.1a, respecting the actor period TA = 5 and all data depen-
dencies. Actor B is not periodic here.

Figure 3.1 – SDF graph scheduling examples.

are as many firings as specified in ~r, released according to the graph topological order.
When the SDF graph contains delays, all firings of one graph iteration do not occur in
the same scheduler iteration: this is pipelining. Figure 3.2 gives an example of such a
pipelined schedule with delays: the firing of B consuming the data produced by the last
firing of A happens one scheduler iteration after. Graph iterations are indexed as firing
exponent in the Gantt diagram of Figure 3.2b.

In this chapter αj is the j-th firing of α in one scheduler iteration. The WCET of
an actor α, denoted Cα, is the same for each firing of α. Actors have uppercase names
for examples, and lowercase names for formula variables. P denotes the set of periodic
actors in G, and N denotes the set of aperiodic actors. The periods of the actors in P
are defined by the user; but the graph consistency restricts their possible values. Indeed
all periods are linearly related, as it will be demonstrated in Section 3.2.1.

Delays on buffers are allowed, with some restrictions for cycles in G. Indeed SDF
graphs deadlock if there is no delays in cycles, and G is live if no deadlock occurs. We
assume in the analysis that G is live, thanks to delays set by the user on one specific
edge of each cycle. Then, such specific edges will not be considered during the analysis
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A

1
B

1

(a) SDF graph having two periodic actors
with a dependency and one delay. The rep-
etition vector is [1, 1]T .

1 2 3 4 5 6 7 8 9

PE 1 A1 A2 A3

PE 2 B0 B1 B2

(b) Schedule example of 3.2a on two PEs. The
vertical red lines delimits the scheduler itera-
tions. Three scheduler iterations are represented
while only two graph iterations are completed
(iterations 1 and 2, denoted as firing exponents).

Figure 3.2 – Example of scheduler and graph iterations, with pipelining.

and thus, the considered SDF graphs are seen as DAGs in this work. Such specific
edges can also be computed automatically by a heuristic, which means that this cycle
assumption might simply result from prior transformation. The computation to break
cycles is detailed in the next chapter, in Section 4.3. It is also possible to ensure liveness
by adding delays on multiple edges, but our restriction eases the necessary conditions
presented in the next section. This restriction is not problematic since this way of
breaking cycles is common in the image processing applications, as it will be seen later
in Sections 4.3 and 4.4.

The case of cycles that are self-loops on an actor is also considered. Self-loops
disable auto-concurrency and, as cycles, require delays in order to be consistent. Auto-
concurrency means that multiple firings of an actor can be executed at the same time
on different PEs. For a self-loop l ∈ L ⊆ E, we assume cons(l) = prod(l) = d0(l).

3.2 Partially periodic constraints

Non-preemptive scheduling is often not the best strategy when considering only periodic
actors since it may lead to use the PEs below their full capacity. For example, consider
that two periodic actors A and B are scheduled as in Figure 3.1c. Actors A and B

are periodic, but the only functional requirement on B is that there are 3 executions of
A for 5 of B, according to the repetition vector of the SDF graph in Figure 3.1a. In
Figure 3.1c, the periods are TA = 5 and TB = 3. When ignoring the precedences, the
system is schedulable on one PE with the WCET respectively CA = 3 and CB = 1,
and the PE even idles during 1 time unit. If the execution time of A is now CA = 3.1
(instead of 3), the PE is still not used to its full capacity but the system is not schedulable
anymore since B3 would miss its deadline in any case. However, if B is not required to
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be periodic, the system is schedulable on 1 PE with CA = 3.1. When not ignoring the
precedences, and with CA = 3, releasing the periodic constraint on actor B also results
in a schedulable system, as shown in Figure 3.1d.

Thus, in these cases, partially periodic constraints help to fully use the capacities
of the PEs in the context of non-preemptive scheduling. In this section, we focus on
necessary conditions for schedulability of SDF graphs with partially periodic constraints.
The generic processor utilization necessary condition is recalled in Section 3.2.1 while a
more precise one is established in Section 3.2.2.

3.2.1 Plain schedulability condition

A widely used necessary condition for schedulability of periodic tasks derives from the
processor utilization factor [LL73] metric U = ∑ Cτ

Tτ
, without unit. U is the ratio

of computations to perform per time unit. U ≤ m is a necessary but not sufficient
condition, for all preemptive and non-preemptive schedulers of tasks with and without
precedence constraints: if U > m the system is not schedulable [Hor74].

In the case of weakly connected SDF graphs1, all actors are connected and specifying
the period of one actor π is equivalent to specifying a period for the whole graph. Indeed
the graph period TG will be ~r [π] × Tπ time unit. In Figure 3.1c, the graph period is
15, according to the periods TA = 5 and TB = 3, and to the repetition vector [3, 5]T .
Formally, in one graph iteration, the start time of the k-th firing of a periodic actor
π ∈ P with an implicit deadline must occur in the following time interval:

JkTπ; (k + 1)Tπ − CπK,with k ∈ J0;~r [π]J (3.1)

Consequently, on average ~r [α] firings of an aperiodic actor α are executed during each
graph period TG, since the repetition vector imposes ~r [α] firings of α for ~r [π] firings of
π. Moreover, note that Equation (3.1) disables auto-concurrency of periodic actors.

As each periodic actor π defines a graph period TG = ~r [π] × Tπ deriving from the
unique repetition vector, this implies that all the obtained graph periods must be equal:

∃!TG, ∀π ∈ P, TG = ~r [π]× Tπ (3.2)

Note that the repetition vector is computed before the graph period; hence, the actor
periods set by the user must be compatible with the repetition vector and they cannot
alter it. Then, the processor utilization factor metric may be reformulated in the context

1See Section 1.4.3 for a definition of weakly connected graphs and a related discussion.
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A

5
B

3

(a) SDF graph example, of repetition vector [3, 5]T .
1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE 1 A1 A3 A1 A3 B4

PE 2 A2 A2 B1B2B3B5

PE 3 B1B2B3B4B5

scheduler iter. 1 scheduler iter. 2
(b) 8 Alternating schedule example of 3.3a on three PEs, not respecting Assumption 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE 1 A1 A3 B4 A1 A3 B4

PE 2 A2 B1B2B3B5 A2 B1B2B3B5

PE 3

(c) 4 Normal schedule example of 3.3a on three PEs, respecting Assumption 1.

Figure 3.3 – Example and counter-example of Assumption 1.

of partially periodic constraints, considering the average number of aperiodic firings per
graph period TG. Equation (3.3) is a necessary but not sufficient schedulability condition
for partially periodic SDF graphs.

m ≥ U =
∑
α∈N ~r [α]× Cα

TG
+
∑
π∈P

Cπ
Tπ

(3.3)

The considered number of aperiodic firings per graph period is indeed an average
value since the schedule might be alternating, as shown in Figure 3.3b.

3.2.2 With no scheduler iteration overlapping

Results of this subsection make the following assumption on the scheduler.

Assumption 1 (A1). For every actor α, as many firings as specified in the repetition
vector ~r [α] must have been completely executed before the next scheduler iteration begins.

Figure 3.3 shows both an example and a counter-example of Assumption 1. Under
Assumption 1, another necessary condition can be derived from the path lengths in
the SDF graph with partially periodic constraints. This new necessary condition is
complementary to the processor utilization factor condition.
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A scheduler iteration is the static scheduling of the application that is indefinitely
repeated until the application is stopped. This assumption is made to ease the schedul-
ing, the code generation, and the memory allocation. Under Assumption 1, if there is a
graph period, all firings of one scheduler iteration must be done during a time interval
equal to this graph period. Assumption 1 is present in the PREESM SDF graph sched-
uler [Pel+14] where scheduler iterations cannot overlap in time and are separated by a
synchronization barrier between all PEs. One graph period TG separates two successive
barriers, so it ensures that for each actor α, there are ~r [α] executions of α between
two barriers. As the schedule is indefinitely repeated, each actor firing, independently
from each other of the same actor, can be seen as a periodic task of period equal to TG.
Note that Assumption 1 is similar to K-periodic scheduling [BMd12] with K being the
repetition vector ~r in our case. While K-periodic scheduling imposes a periodic schedule
of K[α] firings independently for each actor α, Assumption 1 enforces these periodic
schedules to be synchronized with barriers.

Assumption 1 supports schedules pipelined with delays, as in the previous example
depicted in Figure 3.2; such delays may actually help to break problematic data depen-
dencies. Indeed, scheduling a partially periodic SDF graph without taking care of data
dependencies may lead to buffer underflows and overflows as illustrated in Figure 3.4
where the SDF graph is however consistent. In this example the period of the actor Π
is 4 time units (and CΠ = 1), and the graph period is 12. The Gantt diagram in Fig-
ure 3.4b respects the periodic constraint but not the data dependencies. An underflow
occurs since B and ∆ are executed before having received the data produced by the
last firing of Π. To avoid such underflow, one possibility is to add delays on the graph.
Note that the delays are predefined by the user, and are not computed nor checked by
Algorithm 3.1, presented at the end of this section. However, such data dependency
errors are checked easily on static schedules. Another possibility to avoid the underflow
is to increase the actor period TΠ to 6 time units, as shown in Figure 3.5 which depicts
a valid schedule of Figure 3.4a.

Figure 3.4 illustrates an intuitive necessary condition to check the schedulability: all
actors depending on the tokens produced by the last execution of Π must be executed
in the slack time of Π. This necessary condition derives from Assumption 1. The slack
time of an actor corresponds to the interval of time between its period and its execution
time. The slack time of Π is formally defined by TΠ−CΠ; it must be non negative in our
case. A symmetrical necessary condition can be computed for the first execution of any
periodic actor, this time with all its incoming data dependencies, which are all actors
on a directed path leading to the periodic actor. In order to formalize these necessary
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A

1
B

1

3

2
∆

1

Π 1

(a) SDF graph with dependencies on a
periodic actor. The repetition vector is
[1, 1, 2, 3]T . nblf ↑

Π(B) = 1, nblf ↑
Π(∆) = 2

1 2 3 4 5 6 7 8 9 10 11 12

PE 1 A B ∆1 ∆2

PE 2 Π1 Π2 Π3
1 2 3

1 2 3graph period

(b) Schedule example of graph 3.4a, generating
underflow for the firings of B and ∆ if TΠ = 4.

Figure 3.4 – Periodic actor Π generating an underflow.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

PE 1 A B ∆1

PE 2 Π1 Π2 Π3 ∆2
1 2 3

1 2 3graph period

Figure 3.5 – Valid schedule example of graph 3.4a on two PEs and if TΠ = 6.

conditions, some notations and functions are introduced in the next paragraphs.
D↑π denotes the set of actors in G that are transitively data dependent on an actor

π: if α ∈ D↑π, the last firing of π enables at least one firing of α. D↑π can be computed by
a unidirectional graph traversal from π. For the SDF graph in Figure 3.4a, the actors
which are data dependent on the periodic actor Π are: D↑π = {B,∆}. The subgraph
restriction of G containing only the actors in D↑π, is denoted G↑π. In the notations of
this chapter, the up arrow ↑ is always paired with a reference actor, π in D↑π. The up
arrow emphasizes the fact that we are only considering the actors or firings which are
data dependent on the reference actor π. Symmetrically, all presented equations can be
reused for the first firing of π instead of the last, considering all actors D↓π on which π is
data dependent. For brevity, such equations are not shown.

The main metric to compute is the numbers of actor firings, enabled by a single firing
of a periodic actor π. These numbers of firings allow us to compute lower bounds of the
processor utilization factor. The analysis is simplified by restricting it to the last firing
of π and all induced firings of its successors in D↑π. Note that the number of remaining
dependent firings can be computed for two adjacent actors connected by a single buffer e:
k firings of src(e) enable max{0,

⌈
k×prod(e)−d0(e)

cons(e)

⌉
} firings of dst(e). The term k×prod(e)

corresponds to the new tokens incoming on the buffer e. The ceiling operator is needed
since the previous execution of the producer src(e) may have left unused tokens on e.
At the end of the graph iteration, e contains exactly d0(e) delays.
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The function computing the number of firings enabled by the last firing of a peri-
odic actor π is denoted nblf ↑π, defined in Equation (3.4). nblf ↑π is a recursive function,
depending on the predecessor actors in the graphs G↑π. The set of incoming edges to
an actor α in G↑π is denoted IE↑π(α); this set excludes self-loops l ∈ L. In Figure 3.4a,
IE↑π(B) only contains the edge coming from Π and not the one coming from A. Indeed,
A /∈ D↑π and thus, A /∈ G↑π.

nblf ↑π(α) = max
e∈IE↑π(α)

{
0,
⌈

nblf ↑π(src(e))× prod(e)− d0(e)
cons(e)

⌉}
(3.4)

The recursion stops at the root actor π, having no incoming edges (there is only one root,
by construction of G↑π), where nblf ↑π holds the value 1 if π is periodic and 0 otherwise.
Hence if the root actor is not periodic, nblf ↑π takes the value 0 on all vertices and it
does not help to find any necessary condition. For brevity, the proof of Equation (3.4)
is given for one direct predecessor only of dst(e).

Proof. To prove Equation (3.4), let us consider the firings of the actor dst(e) before
those that are induced by the last firing of π. By definition this number of firings
is ~r [dst(e)]− nblf ↑π(dst(e)). Under Assumption 1, there are exactly ~r [α] firings of each
actor α during one scheduler iteration. So this number can also be computed considering
all tokens produced on e by src(e) during one scheduler iteration, before the last firing
of π: this is why ~r [src(e)]− nblf ↑π(src(e)) multiplies the production rate in the following
equality.

~r [dst(e)]− nblf ↑π(dst(e)) =⌊
(~r [src(e)]− nblf ↑π(src(e)))× prod(e) + d0(e)

cons(e)

⌋

Thus nblf ↑π(dst(e)) is equal to:

~r [dst(e)]−
⌊
~r [src(e)]× prod(e)− nblf ↑π(src(e))× prod(e) + d0(e)

cons(e)

⌋

Knowing that ∀x ∈ R, −bxc = d−xe, it becomes:

nblf ↑π(dst(e)) =
⌈
~r [dst(e)]× cons(e)

cons(e) +

−~r [src(e)]× prod(e) + nblf ↑π(src(e))× prod(e)− d0(e)
cons(e)

⌉
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Π
3

A

11
B

1

(a) Sample SDF graph. The repetition vec-
tor is [3, 3, 1]T

1 2 3 4 5 6 7 8 9 10

PE 1 B1 B2 B3

PE 2 Π A1 A2 A3
Π

Πgraph period

(b) Schedule example of graph 3.6a, on two PEs,
with firings of a self-loop.

Figure 3.6 – Counter-example to generalization of Equation (3.6): actor A is not always
executed alone.

From the consistency of G, see Equation (1.1), ~r [dst(e)]×cons(e)−~r [src(e)]×prod(e) =
0, so the last formula can be simplified to Equation (3.4) (without the maximum, needed
when they are multiple direct predecessors).

The following formula is then a necessary condition for schedulability under As-
sumption 1. Equation (3.5) corresponds to the processor utilization factor of all firings
depending on the last firing of a periodic actor. This processor utilization factor is
computed over the slack time of the periodic actor, hence the division by Tπ − Cπ.

∀π ∈ P,
∑
α∈D↑π

nblf ↑π(α)× Cα
Tπ − Cπ

≤ m (3.5)

Note that the maximum length of any graph path starting at a periodic actor π
also provides a simple necessary condition of the schedulability: this length must be less
than the slack time of π. A necessary condition for actors with self-loops is formalized
in Equation (3.6).

∀α ∈ D↑π ∩ L, nblf ↑π(α)× Cα ≤ Tπ − Cπ (3.6)

Unfortunately, our published contribution [Hon+20a] contains an error in the algo-
rithm referencing Equation (3.6), and states: “Equation (3.6) can be extended to all
paths between a periodic root π and leaves of the DAG G↑π.” Experimental results were
not impacted by the error; we detail now why the previous quoted sentence is misleading.
The necessary condition in Equation (3.6) is correct but its direct extension to all paths
is wrong: firings dependent on the self-loop may be executed at the same time and the
WCET cannot simply be summed. Figure 3.6 gives an example where actor A having a
self-loop is executed at the same time as its outgoing dependency B (firings A2 and B1,
A3 and B2).

Indeed the necessary condition expressed in Equation (3.6) can be extended to all
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Π
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A
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B

1

(a) Sample SDF graph. The repetition vec-
tor is [3, 3, 1]T

1 2 3 4 5 6 7 8

PE 1 A2 B1 B3

PE 2 Π A1 A3 B2
Π

Πgraph period

(b) Schedule example of graph 3.7a, on two PEs,
with the co-existence of firings of different actors
at the same time (A3 and B1).

Figure 3.7 – Floor function underestimation example, as used in Equation (3.7).

paths between a periodic root π and leaves of the DAG G↑π, but at the cost of an
underestimation of the execution time. On each of these paths, each actor will be
executed at least once except if there are enough delays before the actor; if no delays,
the path length is greater or equal to the WCET sum of actors located on the path.
Again, all these path lengths must be lower than the slack time Tπ − Cπ. It is possible
to underestimate the number of times that the WCET of an actor must be added to
the path length, given the number of PEs m. The generic underestimated necessary
condition is given in Equation (3.7). For example, if nblf ↑π(α) = 6 and m = 3, then Cα
is added 2 times.

∀α ∈ D↑π, Cα ×max
{

1,
⌊

nblf ↑π(α)
m

⌋}
≤ Tπ − Cπ (3.7)

Figure 3.7 is an intuitive example to demonstrate why the floor function is used in
Equation (3.7): firings of different actors may be scheduled at the same time, and this
overlap is not easily predictable. The only certainty for the path length after Π is about
the concurrent execution of multiple firings of only one actor at a time. nblf ↑Π(A) =
nblf ↑Π(B) = 3 but there is only two PEs in the system so only b3

2c = 1 execution time of
each actor is added to the path length in this case.

Algorithm 3.1 checks the schedulability of a periodic actor π in G↑π thanks to the
aforementioned necessary conditions: the one derived from the processor utilization
factor, and the one derived from the path lengths. Note that the computation of the
path lengths (using Equation (3.7) instead of Equation (3.6)) is similar to a Max-Plus
algebra, as used for throughput analysis [Gha+06b]: “Max” operation is on line 17,
and “Plus” operation is on line 21 of Algorithm 3.1. The efficiency of Algorithm 3.1 is
discussed in the next section.

Finally, a very similar algorithm nbff ↓π can be written for the first periodic firing of
actor π in G↑π, by exchanging the incoming edges IE↑π with the outgoing edges OE↓π,
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Algorithm 3.1: Modified BFS to compute nblf ↑π and related necessary condi-
tions
1 function nblfExt(π)
2 forall α ∈ G do . Sets initial properties of each actor.

3 timeTo(α)← 0;
4 nblf ↑π(α)← 0;
5 nbVisits(α)← 0;
6 Ctot ← 0;
7 nblf ↑π(π)← 1; . π is the periodic root.

8 D↑π ← ∅; . Outgoing depencies are not known yet.

9 queue ← ∅;
10 addLast(queue, π);
11 while queue 6= ∅ do
12 α← pop(queue);
13 D↑π ← D↑π ∪ {α};
14 forall e ∈ OE↑π(α) do
15 dest ← dst(e);
16 nbVisits(dest)← nbVisits(dest) + 1;
17 timeTo(dest)← max{timeTo(dest), timeTo(α)};

18 nblf ↑π(dest)← max
{

nblf ↑π(dest),
⌈

nblf ↑π(α)×prod(e)−d0(e)
cons(e)

⌉}
; . See

Equation (3.4).

19 if nbVisits(dest) = #IE↑π(dest) and nblf ↑π(dest) > 0 then
20 addLast(queue, dest);

21 timeTo(dest)← timeTo(dest) + Cdest ×max
{

1,
⌊

nblf ↑π(dest)
m

⌋}
;

. Update the path length to dest with an underestimation of its

execution time. Generalization of Equation (3.7).

22 if timeTo(dest) > Tπ − Cπ then
23 return System not schedulable.

24 forall α ∈ D↑π − {π} do
25 Ctot ← Ctot + nblf ↑π(α)× Cα; . See Equation (3.5).

26 if Ctot
Tπ−Cπ > m then

27 return System not schedulable.
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the operator dst with src, and the variable dest with srce, and by switching production
and consumption rates. Note that to study the first firing instead of the last, we can
also reuse the exact same equations applied to the transpose graph of G. The transpose
GT of a graph G is its mirror, where all edges are directed in the opposite direction,
inverting all data dependencies.

3.3 Discussion on the schedulability conditions

Algorithm 3.1, implementing the necessary conditions for the schedulability of SDF graph
with partially periodic constraints, has a linear complexity in the number of edges in
G↑π. Thus if all actors in G are periodic, it may not be efficient to execute Algorithm 3.1
on each one: in specific cases the overall complexity can be more than quadratic in the
number of vertices in G, as for the star graphs with directed paths going to/from a
central vertex. In order to perform the algorithm on a subset of the periodic actors, a
heuristic is presented in Section 3.3.1. Algorithm 3.1 faces another problem: as it relies
only on necessary conditions, there are cases where the algorithm fails to detect a non
schedulable system. This point is discussed in Section 3.3.2.

3.3.1 Heuristic to run Algorithm 3.1 efficiently

In this subsection a heuristic is given to execute Algorithm 3.1 on a small set of periodic
actors: the one having small slack time and a low topological rank in G. Indeed a small
period Tπ will reduce the denominator in Equation (3.5), while a low topological rank
may increase the numerator because it means that more actors are located after π. Thus
this heuristic selects the actors being more discriminative regarding to the schedulability
tests of Algorithm 3.1.

Delay placement assumption on cycles enables us to see the SDF graph as a DAG,
so there is always a topological ordering existing. One topological ordering is used to
select actors: it corresponds to an As Soon As Possible (ASAP) schedule of GT , not
constrained by the number of PEs. The ASAP topological ordering on GT is denoted oT

and is used to select the periodic actors on which Algorithm 3.1 is called. Note that the
actor WCETs are not taken into account in this topological ordering, only the structure
of the graph is used. Such topological ordering can be computed with a BFS, having a
linear complexity in the number of edges in G.

Considering the SDF graph in Figure 3.8, there are three topological ranks: one
per actor in the longest graph path which is A → Γ → E. Thus oT (A) = 2, oT (Γ) =
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A

1

1
Γ

1 1
E

1

1B1 ∆ 1

Figure 3.8 – Sample SDF graph of repetition vector ~1, for topology ranks example. ASAP
ordering on the graph: o ≡ {A,∆} ≺ {B,Γ} ≺ {E}. ASAP ordering on the transpose
graph: oT ≡ {E,B} ≺ {Γ,∆} ≺ {A}.

1, oT (E) = 0. The other actors have the lowest topological ranks at which they can be
executed, that is oT (B) = 0, oT (∆) = 1. Indeed B has no incoming edges in GT so its
rank is 0. The ASAP ordering on the transpose graph of Figure 3.8 can be equivalently
represented as follows: oT ≡ {E,B} ≺ {Γ,∆} ≺ {A}. On the original graph, the ASAP
ordering is: o ≡ {A,∆} ≺ {B,Γ} ≺ {E}

Formally, the heuristic selects the periodic actors having the lowest Tπ−Cπ
o(π) . The

number of selected actors with this heuristic is arbitrarily chosen by the user. Note that
vertices with ASAP topological rank equal to 0 are not of interest since it means that
they have no successors; Algorithm 3.1 is not run on such vertices.

3.3.2 A false positive to Algorithm 3.1

Algorithm 3.1 performs two schedulability tests. One is using the processor utilization
factor U , Equation (3.5) lines 24−27, and thus does not consider the precedences between
actors. Considering multiple PEs, it may lead to keep invalid schedules where U < m,
but where a path from a periodic actor is longer than the slack time of this actor. This
situation is precisely checked by the other schedulability test using path lengths, lines
21 − 23 in Algorithm 3.1. Between these two situations, the algorithm may miss that
U is too large on a small portion of the slack time: for example, if nblf ↑of the last
actor is greater than m. Thus, Algorithm 3.1 fails to find that the graph represented
in Figure 3.9 is not schedulable with two PEs and TΠ = TG = 9. Yet the critical path
starting from Π in Figure 3.9a is equal to the slack time of Π and U = 15

9 is less than
the number of PEs m = 2.

Algorithm 3.1 may compute other false positive answers: only G↑π is considered and
thus, periodic actors having a period smaller than Tπ in G but not being in G↑π are not
taken into account. To avoid that, Algorithm 3.1 can be refactored with a subfunction
performing computations of lines 2− 25. The subfunction is called on π and on all the
periodic actors having a period smaller than Tπ, and not being connected by any path
in G. For brevity, the full algorithm is not presented here.
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Π
1

A

1 3
B

1

(a) SDF graph with one periodic actor.
The repetition vector is [1, 3, 1]T .

1 2 3 4 5 6 7 8 9 10 11 12

PE 1 Π A B1 B3
Π

Π
PE 2 B2

graph period

(b) Shortest schedule of graph in Figure 3.9a on
two PEs. TΠ = TG = 9.

Figure 3.9 – A false positive to Algorithm 3.1: B3 cannot be scheduled before the graph
period.

However, even if false positives appear, the system designer will logically continue its
work by calling a scheduler. The scheduler will give a final answer: schedulable or not.
In the next section, an offline scheduler is presented under Assumption 1. This scheduler
is a heuristic and thus does not attempt to find an optimal scheduling, it rather focuses
on quickly giving an answer to the designer.

3.4 Scheduling SDF graphs with partially periodic con-
straints

The problem studied in this section is the scheduling of G∗ with partially periodic con-
straints. G∗ is the SRSDF graph corresponding to the SDF graph G. In other words,
G∗ is the unrolled version of G, where data dependencies are expressed between fir-
ings instead of actors. Since all dependencies are explicitly expressed in G∗, it enables
computing a static schedule. Each SDF actor α in G has ~r [α] corresponding vertices
in the SRSDF graph G∗, and on each edge e of G∗ the rates of both sides are equal:
prod(e) = cons(e). In this section, tasks refer to vertices in G∗. As in G, delays break
cycles so G∗ is a DAG. An example of SDF graph G and its corresponding SRSDF ver-
sion G∗ is given in Figure 3.10, extracted from Figure 1.2. An example with delays has
been given in Figure 1.4.

Scheduling of DAG of tasks has been widely studied [KA99] however the periodic
case is specific since the start times of periodic actors are bounded in an interval of the
form of Equation (3.1).

For example, the FAST algorithm [KAG96], based on a list scheduling heuristic
and a neighborhood search, is not appropriate for periodic schedules. Especially its
list scheduling heuristic relies on a classification of tasks belonging to, or connected to,
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x 3
B
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(a) SDF graph example, of repetition
vector [3, 5]T .

A1

A2

A3
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B2

B3

B4

B5

3
2

1
3
1

2
3

(b) DAG deduced from SDF example 3.10a.

Figure 3.10 – SDF graph G and its corresponding SRSDF version G∗.

the critical path of the DAG2 with unlimited resources. The main difference between
the problem studied here and the one solved by FAST and other standard list schedul-
ing algorithms is that, because of partially periodic constraints, we have a bound on
the schedule length. This bound is the graph period; it is both the shortest and the
longest accepted schedule length. The bound implies that there might be no critical
path in graphs with partially periodic constraints: idle time can be present between any
successive tasks, as long as all tasks are completed within the graph period duration.

The scheduler that we have developed is presented in Section 3.4.1, while an optimal
ILP formulation is summarized in Section 3.4.2. In Section 3.4.3, we briefly discuss how
to adapt our scheduler to an extension of the periodic constraints.

3.4.1 A fast scheduling algorithm for partially periodic SDF graphs

The main difficulty to design a greedy list scheduling algorithm is to efficiently order
the vertices before trying to schedule them. The FAST algorithm cannot be used as
is but some of its techniques are reused in the presented Algorithm 3.3. As in FAST,
Algorithm 3.3 relies on ASAP and As Late As Possible (ALAP) orderings.

The minimum start time ns of each task in G∗ as well as the maximum start time
xs are computed first. This is done in two successive rounds: 1) for all periodic actors,
with Equation (3.1), 2) for all actors, with ASAP and ALAP. During round 2), ALAP
schedule has a global deadline equal to the graph period. If any task τ has ns(τ) > xs(τ),
the algorithm stops: the system is not schedulable.

2The critical path of a DAG is the longest path of connected tasks according to their ETs and the
communication times if specified. It gives the smallest possible schedule length.
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Algorithm 3.3 is executed once all ns and xs have been computed, starting with the
schedule procedure. The tasks are sorted according to their average start time xs + ns

2 .
This sorting criterion is a heuristic to balance the task executions over time. The list of
tasks to allocate, lt line 8, contains only vertices having all their dependencies satisfied,
initially the one having no incoming edges. If multiple tasks in lt have the same average
start time, ns is used to break the tie, by increasing order. The algorithm performs a
first fit approach: it selects the next task in lt and schedules it on the least loaded PE3.
Subroutines called by the schedule procedure are briefly presented in Algorithm 3.2.
The allocateAndRemoveIfBefore procedure, lines 13 − 24 maps an allocated task on
the PE most idling at the current time (shortest finishTime), and updates lt with tasks
having a direct dependency on the currently allocated task (line 24). This procedure
stops the scheduling process in two cases: 1) if a task is scheduled after its maximum
start time xs, at lines 16 − 17, 2) if the total idle time is more than the maximum
possible, at line 10, according to the formula at line 5 of the schedule procedure. Thus
Algorithm 3.3 stops as soon as it detects that it cannot schedule a task in G∗.

Algorithm 3.3 is greedy since if a task τ implies an idle time, the algorithm tries
to schedule before τ the tasks τb having ns < predFinishTime(τ), without delaying τ .
This is the purpose of lines 13− 17 in Algorithm 3.3. The test line 18 in Algorithm 3.2
ensures that τb can be executed without delaying τ , and if not it prevents its allocation.
Although Algorithm 3.3 is greedy, it is not subject to the Dhall’s effect [DL78]. Dahll’s
effect occurs on multi-processors when two tasks are ready at the same time and have the
same deadline, but the allocation order prevents from allocating both tasks because the
smallest task may be allocated first on the least loaded PE, not leaving enough space for
the other task. In Algorithm 3.3, as tasks are sorted by average start time from ASAP
and ALAP scheduling, the largest task will have a shorter average start time and thus
will appear sooner in the list of tasks ready to be scheduled.

The complexity of Algorithm 3.3 is upper bounded by the number of edges in G∗ and
by the linearithmic cost of the sorting operation on the vertices: O(#E∗ + #V ∗(m +
log(#V ∗))). The number of PEs m appears as a factor of #V ∗ since the list of PEs lPEs
must remain sorted to select the least loaded PE for every vertex in the ready queue lt.
The cost of transforming G in G∗ is not included in this complexity, it is upper bounded
by #E∗, which depends on the number of firings specified in the repetition vector. At
worst, the complexity of the transformation from G to G∗ is exponential in the number

3Additionally, our implementation handles mapping constraints to specify which PEs support the
execution of each SDF actor. So our first fit approach first selects the subset of PEs supporting the
execution of the next firing to schedule, and then selects the least loaded PE in this subset.
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Algorithm 3.2: Subroutines for partially periodic scheduling of tasks
1 procedure addReadyTasks(lt, τ,nbAllocs). Add tasks in the schedule queue only

if their predecessors are allocated.

2 remove(lt, τ);
3 nbAllocs ← nbAllocs + 1;
4 forall e ∈ OE(τ) do . Visit all successors of newly allocated τ.

5 dest ← dst(e);
6 nbVisits(dest)← nbVisits(dest) + 1;;
7 predFinishTime(dest)← max{predFinishTime(dest),finishTime(τ)};
8 if nbVisits(dest) = #IE(dest) then
9 add(lt, dest); . If all predecessors of dst(e) have visited it, dst(e) is

added in the queue.

10 procedure casIdleTime(startTimeDif , curIT ,maxIT ) . Check and set remaining

idle time. Raise an exception if curIT > maxIT.

11 function isThereAPEIdlingBefore(lPEs, deadline) . Returns true if one or

multiple PEs idle before the deadline.

12 function possibleAllocationsBefore(lt, deadline) . Returns tasks in lt which can

start before the given deadline, ensuring that the selected tasks total

execution time is not higher than the current idle time to the given deadline.

13 procedure
allocateAndRemoveIfBefore(lt, τ, lPEs, deadline,maxIT , curIT ,nbAllocs)

14 pesHead ← head(lPEs);
15 startTime ← max{predFinishTime(τ),finishTime(pesHead)};
16 if startTime > xs(τ) then
17 raise Scheduling failed.;
18 if startTime + Cτ > deadline then
19 return ;

. Various updates:

20 casIdleTime(startTime − finishTime(pesHead), curIT ,maxIT );
21 finishTime(τ)← startTime + Cτ ;
22 nbAllocs ← nbAllocs + 1;
23 add(pesHead, τ, startTime); . Side effect: may modify the order of lPEs.

24 addReadyTasks(lt, τ);
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Algorithm 3.3: Partially periodic scheduling of tasks
1 procedure schedule(tasks, graphPeriod,m)
2 forall τ ∈ tasks do . Sets initial properties of each task.

3 nbVisits(τ)← 0;
4 predFinishTime(τ)← ns(τ);
5 maxIT ← m× graphPeriod −

∑
τ Cτ ;

6 curIT ← 0;
7 nbAllocs ← 0;
8 lt ← list of currently ready tasks (initially without incoming edges), always

maintained by increasing average start time i.e. xs + ns
2 , and, if tie, by

increasing ns;
9 lPEs ← list of schedules, one per PE, always maintained by increasing finish

time;
10 while lt 6= ∅ do
11 τ ← head(lt);
12 prevNbAllocations ← nbAllocs;
13 if isThereAPEIdlingBefore(c, predFinishTime(τ)) then . predFinishTime

is the finish time of direct predecessors.

14 forall τb ∈ possibleAllocationsBefore(lt, lPEs, predFinishTime(τ)) do
15 allocateAndRemoveIfBefore(

lt, τb, lPEs, predFinishTime(τ),maxIT , curIT ,nbAllocs);
16 if prevNbAllocations < nbAllocs then

. We restart the loop since new tasks may be ready now:

17 continue ;

18 allocateAndRemoveIfBefore(lt, τ, lPEs,∞,maxIT , curIT ,nbAllocs);
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of actors in G. However, it is not the case in the applications we have considered.
Besides, note that the use of the parameter p in the Chapter 2 may limit this worst case
complexity since p controls the degree of parallelism, and so the repetition vector. The
transformation from G to G∗ is a standard transformation, already implemented in the
PREESM tool for example.

3.4.2 Standard ILP formulation with Choco

A scheduling model using ILP formulation has been developed in order to compare its
performance with Algorithm 3.3. Although the formulation is purely ILP, the generic
Choco4 CP solver has been used for technical simplicity (especially for reification pos-
sibility, and for simple integration in PREESM). Also, note that there is no objective
function in the formulation: the goal is only to test if there exists a valid schedule for
a given number of PEs m. Choco stops on the first valid schedule encountered, and
otherwise enumerates all possible schedules in order to prove that there is no solution.

The model uses 9 multi-dimensional arrays of variables in total. Only the first two
arrays contain free variables5.

V-3.1 start times of each task (free Integer), dimension Θ(#V ∗);

V-3.2 PE mapping of each task (free Boolean), dimension Θ(m×#V ∗);

V-3.3 transpose matrix of V-3.2 (non free Boolean);

V-3.4 finish times of each task (non free Integer), obtained from V-3.1 plus WCETs;

V-3.5 if two tasks are on the same specific PE (non free Boolean), obtained from V-3.2
and V-3.3, dimension O(m×#V ∗ ×#V ∗);

V-3.6 if task τ1 starts before τ2 finishes (non free Boolean), obtained from V-3.1 and
V-3.4, dimension O(#V ∗ ×#V ∗);

V-3.7 if two tasks overlap temporally (symmetrical non free Boolean), obtained from
V-3.6, dimension O(#V ∗ ×#V ∗);

V-3.8 if two tasks are on the same unknown PE (symmetrical non free Boolean), obtained
from V-3.5, dimension O(#V ∗ ×#V ∗);

4http://www.choco-solver.org/
5 A free variable has no predefined value and is set directly by the solver. A non free variable is

defined by equations depending on free or non free variables. The solver sets the non free variables
according to the equations defining it.

http://www.choco-solver.org/
http://www.choco-solver.org/
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V-3.9 if two tasks overlap temporally and are on the same unknown PE (symmetrical non
free Boolean, always false), obtained from V-3.7 and V-3.8, dimension O(#V ∗ ×
#V ∗).

The model size is bounded by the size of the transient Boolean matrix V-3.5 storing
mapping of each couple of tasks: O(m×#V ∗ ×#V ∗). A transitive closure of the DAG
G∗ is computed before the model construction in order to reduce the size of this Boolean
matrix. The transitive closure prevents from adding useless variables and redundant
constraints to all transient matrices (variables V-3.5 to V-3.9) used to check mapping
overlap: overlap between two tasks is checked only if there is no transitive precedence
between the two tasks. The number of constraints is reduced by up to 16% thanks to
the transitive closure. Last but not least, symmetries of the identical PEs are broken by
enforcing some properties on the mapping matrix V-3.2, see [TPM13].

3.4.3 Scheduler adaptation to extended periodic constraints

Our scheduler can actually be adapted to handle a wider range of periodic constraints.
For example, if considering specific deadlines instead of implicit ones, only the upper
bound of the start time interval in Equation (3.1) needs to be refined with the given
deadline. The deadline has to be greater than the WCET of its related periodic actor.
The SRSDF graph traversal to compute the minimum and maximum start times ns and
xs remains the same, using Equation (3.1) updated with a deadline. Algorithm 3.3 is
not modified. The necessary conditions can still be used without any change, but as
they do not consider the deadlines, they will be loose if an actor deadline is lower than
its period. On the contrary, if an actor deadline is greater than its period, the necessary
conditions are not necessary anymore.

Another improvement is to consider the case of periodic actors having a WCET
greater than their period: Tπ < Cπ. In such case, the interval of start times given by
Equation (3.1) does not hold anymore since the upper bound is negative while the lower
bound is positive. Simply removing the term Cπ from the original equation removes the
problem, but Cπ has to be removed from the equation only for periodic actors π having
Tπ < Cπ. Then, Equation (3.1) is modified into the following Equation (3.8).

JkTπ; (k + 1)TπJ,with k ∈ J0;~r [π]J (3.8)

Note that Equation (3.8) enables auto-concurrency of such periodic actors, whereas the
original Equation (3.1) disables it. Figure 3.11 gives an example for the periodic actor A.
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A

5
B

3

(a) SDF graph example, of repetition vector [3, 5]T .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PE 1 A1 B1 A1 B1

PE 2 A2 B2B3 A2 B2B3

PE3 A3 B4B5 A3 B4B5

TG TG

(b) Possible schedule of 3.11a on three PEs. Here, periodic actor A has a period smaller than its
WCET: TA = 2 < CA = 3. Assumption 1 is not respected.

Figure 3.11 – Schedule with an actor period smaller than its WCET.

In this case, multiple periodic executions of actor A overlap in time across two scheduler
iterations and Assumption 1 cannot be respected. Regarding our scheduler, the graph
traversal to compute the interval of start times has to be modified since xs is given by
the ALAP ordering until the barrier of Assumption 1. Instead of the barrier, another
limit can be used since the overlap of scheduler iterations occur during at most one graph
period TG. Then, xs is computed with the ALAP ordering given the limit of 2 × TG,
instead of 1 × TG in the original version. Moreover, the checking of the remaining idle
time until the barrier, as done in lines 10 and 20 of Algorithm 3.2 cannot be used anymore
and this function call must be removed. Last but not least, Algorithm 3.3 now has to
ensure that overlap in time does not occur on the same PE. This is made possible by
fixing an end time limit per each PE, set to the start time of the first firing allocated on
it plus one graph period TG. Multiple parts of Algorithms 3.2 and 3.3 have to modified
to reflect this time limit per PE. Finally, it is possible to adapt the scheduler to the case
of periodic actors π having Tπ < Cπ at the cost of heavy modifications. However, the
necessary conditions are not anymore valid for this case.

3.5 Evaluation

This section discusses how Algorithms 3.1 and 3.3 can be used in the design process of
real-time systems, and presents an evaluation.
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3.5.1 Partially periodic real-time applications

Only a few real-time use-cases are presented in the literature as partially periodic SDF
graphs. Indeed it is often assumed that every component is periodic in order to ease
the analysis and the code generation. Due to the lack of available partially periodic
implementations, and to the simplicity of the existing ones, our algorithms have been
evaluated on synthetic examples only. However, two small real examples are given here-
after. A pacemaker [Pel+09b] has been studied and modeled with the Architecture
Analysis and Design Language (AADL)6 and it is a partially periodic system. A critical
subpart of this pacemaker is described using the CSDF model [Bil+96], an extension
of SDF. In this subpart, two sensors (Motion and EKG) periodically send data to a
processing component, each with its own period. A second example is in the telecommu-
nication domain: the LTE standard has been studied and partially modeled with SDF
graphs [Pel10]. In the LTE standard, the signals retrieved by the antenna are down-
sampled and periodically sent to the decoder. To the best of our knowledge, no open
source benchmark exists that is explicitly partially periodic. Yet, the StreamIt [TKA02]
benchmark contains dozens of signal processing applications in the SDF model. Periods
are not specified in StreamIt but signal processing applications usually have one periodic
input actor and another periodic output.

Finally it is possible to generate random SDF graphs with SDF3 [SGB06b] and
Turbine [Bod+14], but they do not generate partially periodic constraints. Thus, our
experiments, detailed in Sections 3.5.3 and 3.5.4, have been performed on ten random
DAGs generated by Turbine, and on one existing use-case of the SDF3 data set. For the
first experiment, partially periodic constraints are added to these generated graphs as a
post-processing step that follows the graph generation.

3.5.2 Schedulability check and scheduling

The practical usage of the presented algorithms is summarized in Figure 3.12. In terms
of the number of PEs m, the necessary conditions (Algorithm 3.1) give a schedulability
lower bound (left part) while the scheduler (Algorithm 3.3) gives an upper bound (right
part). For example, the lower bound is 4 PEs while the upper bound is 7 PEs in
Figure 3.12. With less than 4 PEs, the application is proven to be not schedulable; with
7 PEs or more, the application is proven to be schedulable.

The algorithms have to be run iteratively with different values of m to shrink the
bounds. The starting point of our necessary condition is given by the processor utilization

6http://www.aadl.info

http://www.aadl.info
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Number
of PEs 0 4 7

necessary conditions
↪→NOT schedulable

scheduler
↪→schedulable?

m

Figure 3.12 – Scheduling bounds on the number of PEs m.

factor necessary condition in Equation (3.3); the number of PEs is then incremented until
our necessary condition returns true. This process could be automatized easily without
execution time issue since both algorithms are fast.

Algorithms 3.1 and 3.3 and the optimal Choco model have all been implemented in
the PREESM open-source7 tool dedicated to the design of embedded systems from ap-
plications modeled with SDF graphs. Regarding the scheduler, note that it can actually
be run for any unconnected DAG and thus is more generic than for SDF graphs with
partially periodic constraints.

PREESM automatically generates the SRSDF graph G∗ from a given SDF graph;
the generation time of G∗ is not included in the experiments. However, PREESM auto-
matically adds fork and join tasks in G∗ during the transformation, to respectively split
and reassemble data to and from multiple firings of the same actor. These extra tasks
are taken into account in the experiments, with a WCET equal to 1.

The next subsections report two experiments done on the algorithms presented in this
chapter. Both experiments have been performed on a laptop with an Intel i7-7820HQ
@ 2.90GHz processor.

3.5.3 Gap between necessary conditions and scheduler

This experiment measures the gap between the proposed necessary conditions, the pro-
posed scheduler, and the optimal solution. The gap is measured in number of PEs
required to synthesize a schedule while respecting all periodic constraints.

Dataset

The dataset contains ten random SDF DAGs generated with the Turbine tool [Bod+14].
Table 3.1 details the characteristics of the generated graphs. The first five graphs are
small, with only ten actors, in order to make possible comparison with the optimal
number of PEs computed by a CP solver. The generated graphs do not contain any

7https://preesm.github.io/

https://preesm.github.io/
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cycle nor delay. The degree, also called valency, of each actor α in the graphs is between
1 and 8: 1 < #OE(α) + #IE(α) < 8.

One periodic actor π is set in the middle of the longest path of each SDF graph;
largest number of firings breaks the tie between multiple possible actors. A second
periodic actor is set on RandomDAG6-10. Their periods Tπ are set manually, being the
smallest integer such that a solution exists. Formally, Tπ is the smallest integer which
ensures: ∀τ ∈ G∗, ns(τ) < xs(τ).

Evaluation results

The evaluation has been performed as follows. For each scheduling algorithm, the result
is the smallest number of PEs ensuring a valid schedule. For the necessary conditions,
the result is the smallest number of PEs ensuring that no valid schedule exists for all
lower number of PEs. All algorithms are run iteratively with an increasing number of
PEs. Diagram in Figure 3.13 presents the results for the five small random graphs. The
processor utilization factor Utot of the graph is given as reference on the left column. The
execution time of the algorithms are given in the right part of Table 3.1 (in millisecond
ms, and hour h). While the proposed algorithms always run in less than a second, Choco
takes hours for the small graphs.

Choco is optimal but cannot solve problems with too many firings or PEs. It actually
reaches timeout (T/O) of 12 hours for RandomDAG1 and RandomDAG4 with 9 PEs,
and it also takes multiple hours to prove that the same graphs have no solutions for 8
PEs. The timeout of Choco is specified by an error interval, materialized by a small black
line in Figure 3.13. The gap between the optimal solution and the proposed scheduler
is at most two PEs, for RandomDAG4, and at best zero as for RandomDAG5.

Results for the five large graphs are depicted in Figure 3.14, without comparison
with Choco because of the size of the problem (it would timeout in any case). On
all ten graphs, the necessary conditions appear to be weakly discriminating: in most
of the case, it states that the system is possibly schedulable as soon as m > Utot . The
necessary conditions are discriminating only for RandomDAG1 and RandomDAG6. Note
that RandomDAG1 and RandomDAG6 are also the graphs requiring a longer execution
time of the proposed scheduler. Yet two reasons may increase the complexity of the
scheduler: more tasks ready at the same time (which increases the size of the sorted list
l), or more idle time (which triggers the execution of lines 13 − 17 in Algorithm 3.3).
Further investigations are needed to characterize this phenomenon. Moreover, it could
be interesting to study the evolution of the necessary conditions and the scheduler while
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Figure 3.13 – Evaluation of the schedulability gap on the small random graphs
RandomDAG1-5. Number of PEs is given for the four following algorithms (from left to
right): total processor utilization factor, lower bound according to our necessary condi-
tions, upper bound according to our scheduler, valid minimum according to the optimal
ILP formulation.

increasing the number of periodic actors. In our experiments, only one and two periodic
actors were considered.

3.5.4 Gap between the proposed scheduler and preemptive EDF

This experiment measures the graph period gap between the proposed non-preemptive
offline scheduler Algorithm 3.3 and a standard preemptive real-time scheduler: EDF.
The ADFG tool [Hon+17] is used as a reference, using Global EDF scheduling [BB11]
with a synthesis algorithm adapted from the forced-forward demand bound function.
ADFG considers that all actors are periodic and computes their optimal smallest period
for a given number of PEs. Other synchronous languages and tools could have been
used to perform the experiments, especially to compare with the non-preemptive fully
periodic case. ADFG has been considered to ease the experiments since both ADFG and
PREESM read the SDF3 file format [SGB06b]. Moreover, ADFG also computes delays
on the buffers; these delays are kept in the input of Algorithm 3.3. Then Algorithm 3.3
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Figure 3.14 – Evaluation of the schedulability gap on the large random graphs
RandomDAG6-10. Number of PEs is given for the three following algorithms (from
left to right): total processor utilization factor, lower bound according to our necessary
conditions, upper bound according to our scheduler.

is initially run with a graph period equal to the sum of all WCET, and the latest finish
time of all firings found by Algorithm 3.3 is kept as a result. Indeed this last finish
time is the smallest graph period achievable by the proposed scheduler and it may be
smaller than the input graph period since Algorithm 3.3 is greedy and uses idle time as
soon as possible. Figure 3.15 illustrates this refinement process. The refinement of the
period does not modify the schedule: all maximum start times xs are reduced by the
same amount (oldTG − newTG), while the minimum start times ns and the ordering by
increasing average start time remain unchanged.

Results are depicted in Figure 3.16 for the Beamformer application from the StreamIt
benchmark. Beamformer graph contains 57 actors and 70 edges. Each actor is fired only
once, thus ensuring a fair comparison since ADFG does not handle auto-concurrency.
WCETs of actors in Beamformer are already fixed in the graph file provided by ADFG.
For each number of PEs, Algorithm 3.3 finds a graph period close to the optimal, and
even optimal from 28 PEs. The optimal graph period is equal to the greatest WCET
(5076) since numerous delays are added by ADFG and break the data dependencies.
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A
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(a) SDF graph example, of repetition vector [3, 5]T .
1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE 1 A1 A3 B5

PE 2 A2 B1B2B3B4

new TG
∑
Ci

(b) Schedule example of 3.15a, respecting the graph period TG =
∑
Ci. The graph period is

refined to 7 since no task is executed after this limit.

Figure 3.15 – Graph period refinement example.
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Figure 3.16 – Evaluation of the graph period computed by Algorithm 3.3 compared to
ADFG with global EDF policy. Number of PEs in abscissa.

3.6 Related work

Our model of partially periodic constraints is a restriction of the PolyGraph model [Dub+19]
to SDF graphs, but extended with deadlines. According to the PolyGraph model [Dub+19],
P corresponds to actors having a frequency.

To our knowledge, only the MAPS [CLA13] tool accepts SDF graphs with partially
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periodic constraints as specified in this chapter. However, MAPS does not exactly com-
pute a schedule, but instead it checks if execution traces can be executed on the target
architecture. As MAPS is not freely accessible, we were not able to compare to it. Dead-
lock [DRL16] and consistency [Dub+19] analysis of SDF graphs with partially periodic
constraints have also been studied. Another work [Lou19], related to the PolyGraph
model, shows an ILP formulation taking into account communication time to schedule
partially periodic SDF graphs. The work [Lou19] solves a more complex scheduling
problem than us since they take into account communication time, but is not as scalable
and fast as our scheduling Algorithm 3.3 since they rely on ILP formulation.

Other tools and papers are closely related to our scheduling problem and are listed in
the three next paragraphs, according to their category. We distinguish three categories
of schedulers, dedicated to: 1) tasks with precedence and real-time constraints, 2) SDF
graphs with periodic constraints, 3) SDF graphs with latency constraints.

Schedulers of real-time tasks with precedence constraints Real-time systems
have been widely studied for online periodic scheduling, the most common schedulers
being EDF and FP. Yet an offline part is still needed in most of the online schedulers:
either to compute the deadlines as in the Chetto’s algorithm [CSB90] to respect prece-
dence constraints under EDF, or to compute the task priorities in the case of FP. Some
online schedulers also take into account periodic and aperiodic tasks [LB00]; they still
may need an offline pre-schedule [Foh95], and may rely on EDF [IF00]. Regarding offline
non-preemptive scheduling, there exists an ILP formulation [XAP17] for sporadic and
periodic tasks under EDF and FP. A CP solution for periodic tasks only has also been
formulated [PNP15]. Both ILP and CP formulations have a high complexity and thus
are not scalable.

Schedulers of SDF graphs with periodic constraints The Darts tool [BS11]
is able to schedule SDF graphs under a throughput constraint, equivalent to a graph
period constraint, for EDF and FP schedulers. ADFG [Hon+17] is similar to Darts, but
it optimizes the throughput under a total buffer size constraint. SDF graphs can be
modeled with synchronous languages such as Prelude [Pag+11], which generates code
for EDF and FP schedulers. Still using synchronous language, activation clocks with
precedences [Coh+06] can be composed and checked. Yet, in all the aforementioned tools
of this paragraph, all SDF actors are periodic. Minimal actor periods can be computed
independently from the scheduling policy [AAP15], but only for SRSDF graphs. Note
that a polynomial algorithm [SEB18] exists for the unicore processor case under EDF,



3.
Sc
he

du
lin

g

3.7. CONCLUSION 93

with real-time tasks being specific SDF graphs. Other papers [BL06] specify throughput
constraints on the only input or output actor of an SDF graph G, which is equivalent to
specify a graph period TG.

Schedulers of SDF graphs with latency constraints A latency constraint on an
SDF graph G is equivalent to a throughput constraint or graph period if and only if
the scheduler assumes Assumption 1 and there is no delay in G (except to break cy-
cles). Indeed if delays are present, as in Figure 3.2, the latency may be higher than the
graph period. Latency constraints for SDF graphs have been heavily studied, especially
symbolically. For example, the latency has been analyzed either without scheduling
assumption to derive upper and lower bounds [Kha+16], or with self-time scheduling
of SDF [Gha+07] and SRSDF [MB07] graphs. Practically, the Ptolemy [Eke+03] tool
supporting SDF graphs has been extended to perform timing verification, as latency,
through system simulation [Guo+14]. Finally, there exists an offline scheduler accepting
throughput and latency constraints on SDF graphs [LGE12]; it takes into account com-
munications and computes the static schedule with ILP and heuristics. Thus all these
tools tackle only a small subset of partially periodic constraints: the specific case of one
graph period without any delay on the graph.

3.7 Conclusion

A few necessary conditions and an offline non-preemptive scheduling algorithm have
been presented in order to analyze and synthesize the schedule of partially periodic SDF
graphs. These results hold under a weak assumption on the execution of the systems:
the presence of barriers at each graph period. The proposed algorithms have, at most, a
linearithmic complexity and can thus be used on large cyber-physical systems modeled
with SDF graphs. Experiments show that the proposed non-preemptive scheduler is
fast, scalable, and efficient.

Next step is to extend the schedulability analysis to heterogeneous multi-processors,
that are becoming the new standard for embedded systems. When targeting heteroge-
neous multi-processors, it is important to take into account communications, especially
if the memory is distributed. A few efficient heuristics already exist and address the
scheduling problem of DAGs on heterogeneous hardware taking into account commu-
nications, such as the HEFT [THM02] list scheduling algorithm. However HEFT uses
average communication time while we need the worst case for the periodic constraints.
A first naive idea is to map tasks on the slowest PE when they are allocated in the
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greedy mode, that is when tasks are not located on the critical path (lines 13 − 17 of
Algorithm 3.3). When not in the greedy mode, we could use a best-fit mapping taking
into account the communication time.

Another direction for future work is to take into account not only periodic constraints,
but also latency constraints. For example, if an application contains both sensors and
actuators as SDF actors, it might be necessary to guarantee a maximum time interval
between a sensor measurement and the corresponding actuator response. In the SDF
model, such latency constraint raises the following question: which firing must be consid-
ered to compute the latency between two actors? Moreover, can this latency constraint
be set across multiple iterations of the whole application? Scheduling tasks according to
such constraints is tedious since latency constraints may be localized inside a part only
of the application graph and would require a kind of local priority when allocating all
tasks of this part.

Thanks to its rapidity and scalability, the proposed scheduler is fast enough to be
used in brute-force DSE. This point will be demonstrated in Chapter 5. Finally, the
presented necessary conditions made a few assumptions on cycles, which compulsorily
have to contain delays on one buffer. In Chapter 4, we detail a heuristic to automatically
place delays on regular buffers, and also in cycles.

Dissemination and Implementation

The contribution presented in this chapter has been published in the RTNS’20 con-
ference [Hon+20a]. The algorithms presented in this chapter have been implemented
as workflow tasks of the PREESM tool. See the following task description for the
implementation of Algorithm 3.1:
- org.ietr.preesm.pimm.algorithm.checker.periods. \

PeriodsPreschedulingChecker

See the following task description for the implementation of Algorithms 3.2 and 3.3:
- pisdf-mapper.periodic.DAG

- pisdf-synthesis.void-periodic-schedule

- pisdf-synthesis.simple

https://preesm.github.io/docs/workflowtasksref/#periods-prescheduling-checker
https://preesm.github.io/docs/workflowtasksref/#periods-prescheduling-checker
https://preesm.github.io/docs/workflowtasksref/#periodic-scheduling-from-pisdf-to-old-dag
https://preesm.github.io/docs/workflowtasksref/#periodic-scheduling-without-output
https://preesm.github.io/docs/workflowtasksref/#simple-synhtesis
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Introduction

A common way to represent pipelining in SDF graphs is to add delays on buffers. De-
lays represent initial data in buffers, which break data dependencies and create pipeline
stages. This method has already been proved to be efficient on SDF applications [LM87a]
but usually requires to add the delays manually in the SDF graph or to call heuris-
tics [KM08]. Indeed, computing the optimal throughput of an application is a problem
of high complexity that also requires computing the scheduling, the mapping and the
pipelining.

In this chapter we propose a fast heuristic to automatically pipeline an application
modeled with an SDF graph. Our pipelining heuristic computes the size and the place-
ment of delays on buffers of any SDF graph. The placement corresponds to an admissible
cut of the graph; it is a set of buffers. Delays are initial data present on the buffers before
starting to execute the application. The token values that the delays carry are not com-
puted, but they can remain undefined in the case of SDF DAGs. Following the semantics
introduced in [Arr+18], we assume all delays being permanent, which means that their
token values are transmitted from one scheduler iteration to the next. The heuristic
is performed before mapping and scheduling the application, and is thus suboptimal
but fast and scalable. As a consequence, any scheduler may benefit from the pipelining
heuristic, including the one developed in Chapter 3 for partially periodic constraints.
As an input, the heuristic requires the number of targeted homogeneous PEs and ap-
plication profiling information, i.e. the Execution Times (ETs) of actors. The heuristic
is parameterizable: the user chooses the number of pipeline stages that he wants to
add. Various experiments demonstrate that the heuristic increases the throughput of
the majority of the tested applications. When adding one pipeline, the heuristic finds
the solution ensuring optimal throughput for 19 applications out of 24 tested.

The chapter is organized as follows. Section 4.1 defines the notion of pipeline for SDF
graphs as well as related properties. Equations to assert the validity of the pipelines are
also presented. The main contribution, automatic pipelining of SDF graphs, is developed
in Section 4.2. A secondary contribution, about automatic cycle breaking is detailed in
Section 4.3. Extensive experiments follow in Section 4.4 with both theoretical evaluation
of the throughput gain and actual measurements on hardware. The main drawback of
pipelining, memory footprint increase, is also quantified. Related work is presented in
Section 4.5. Finally, Section 4.6 concludes this chapter.
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4.1 Admissible graph cuts for pipelining

Admissible graph cuts for pipelining correspond to feed-forward graph cuts as defined
for the design of integrated circuits [Par07]. Main properties of admissible graph cuts
are presented in Section 4.1.1. An ILP formulation to compute all admissible cuts of an
SDF graph is detailed in Section 4.1.2. The initialization of token values carried by the
delays are discussed in Section 4.1.3. Finally, Section 4.1.4 precises the advantages and
drawbacks of pipelining under the specific case of scheduling Assumption 1.

4.1.1 Properties of admissible cuts and definitions

A graph cut is a set of edges which, if removed, disconnects the graph in two or more
components. In a feed-forward graph cut, all edges of the cut are going in the same
direction. Hence, such cut cannot contain an edge from a cycle. The direction of an
edge is deduced from the topological ranks of the actors. An example of actor ranks of
ASAP and ALAP topological orderings is presented in Figure 4.1a. Lowest actor rank
1 correspond to actors without input buffers, and the highest actor rank correspond to
actors without output buffers. Note that these topological ranks differ from Figure 3.8
in Chapter 3: in the present chapter ranks start at value 1, and the transpose graph
is not used1. The topological orderings are computed on the raw SDF graph without
taking into account the presence of delays.

A pipeline is created by adding delays on all buffers of a feed-forward graph cut,
in order to break the data dependencies. For example, the feed-forward graph cut
(dashed line) between topological ranks 1 and 2 of the graph in Figure 4.1a breaks the
data dependencies between actors A and B, and A and ∆. The pipeline increases the
throughput of the graph, as depicted in Figure 4.1c. In this schedule example and in
the next ones, we assume that there is a synchronization barrier, represented by a red
vertical line, at the end of each scheduler iteration: this is Assumption 1. The barrier is
only used to simplify the examples; the heuristic presented in section 4.2 does not require
it. Moreover, in Figure 4.1a as in all SDF graphs illustrating this chapter, production
and consumption rates are all equal to 1 for simplification. This implies that all SDF
graphs in this chapter have their repetition vector ~r = ~1; single arrows emphasize this
property. Nevertheless, all results remain valid for any rate value.

We define the throughput of an SDF graph as the inverse of the II duration, that is the
duration to periodically execute one scheduler iteration. A scheduler iteration contains

1ASAP ordering is equivalent to the reversed ALAP ordering of the transpose graph. However, we
use here a slightly modified version of ALAP, as it will be detailed in Section 4.2.1.
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as many firings as specified in the repetition vector ~r. On the left part of Figure 4.1c,
without pipeline, the II duration is 3, whereas on the right part, the II duration is only
2 thanks to the pipeline. Note that, depending on the topological ordering, the graph
cuts may not be identical.

Scheduler iterations differ from graph iterations. Both of them contain as many
firings as specified in the repetition vector ~r, but a graph iteration contains the firings
in the order respecting the data dependencies broken by the delays. A graph iteration
corresponds to the end-to-end processing of a given data in the graph. This implies that
graph iterations are distributed over multiple scheduler iterations when pipeline delays
are present. See Figure 1.4c for an example were one graph iteration is spread over two
scheduler iterations.

To create one pipeline on an SDF graph, the size of a delay on a buffer e must be
equal to the number of tokens consumed on e during a whole graph iteration, as specified
in Equation (4.1). It is the direct application of the consistency property defined in
Equation (1.1).

d0(e) = prod(e)× ~r [src(e)] = cons(e)× ~r [dst(e)] (4.1)

Thus, dependencies between all firings of producer actor src(e) and receiver actor dst(e)
are broken. If multiple feed-forward graph cuts contain the same buffer, the delay sizes
are summed. In this chapter, a pipeline is a synonym for feed-forward graph cut, and n
pipelines divide the execution of the application in n + 1 pipeline stages. The number
of pipeline stages actually correspond to the number of scheduler iterations needed to
complete one graph iteration.

4.1.2 An ILP formulation to compute all admissible cuts

Thanks to Michael Masin and his team2, we were able to formulate the admissible feed-
forward cut constraint as the following recursive Equation (4.2). The equality must be
respected for every actor α ∈ V . It introduces the notion of actor delay, denoted k3. An
actor delay corresponds to a shift of data on all its input. The unit of the actor delay
function k is the number of pipeline stages: if k(α) = 2, there are two pipeline stages
until actor α.

2This PhD has been partly founded by the European Union H2020 project Cerbero. Michael Masin
was the leader of the Cerbero project, while working at IBM Research Labs in Haifa (Israel). We also
partly worked together on the entanglement problem discussed in Section 5.2.

3k literal name is “daleth”.
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(a) Graph example annotated with ASAP and ALAP
topological orderings. ALAP ordering is specified
with T , only if different from ASAP.

A

1 B

2
Γ
3
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2/3T

(b) Same graph with pipeline delays
added on the cut represented with a
dashed line on 4.1a.

1 2 3 4 5 6 7 8 9

PE 1 A1∆1 A2∆2 A3∆3

PE 2 B1 Γ1 B2 Γ2 B3 Γ3

1 2 3 4 5 6

PE 1 A1∆0A2∆1A3∆2

PE 2 B0 Γ0B1 Γ1B2 Γ2

(c) Two schedule examples of graph 4.1a on two PEs: on the left without pipeline, on the right
with one pipeline between ranks 1 and 2. Firing exponents denote their graph iteration.

Figure 4.1 – Topological ordering and schedule example without and with pipeline.

∀e ∈ {b ∈ E|dst(b) = α},k(α) = k(src(e)) + d0(e)
cons(e)× ~r [α] (4.2)

The recursion stops on actors having no incoming buffer, where the actor delay
is set to 1 by default: such actors are executed during the first pipeline stage. As
in Chapter 3, it is assumed that the user sets enough delays on at least one buffer of any
cycle. These buffers are ignored for the generation of the ILP constraints, otherwise the
formula Equation (4.2) would imply an indefinite recursion.

Valid and invalid delay placement examples are given in Figure 4.2 and illustrate
the preceding Equation (4.2). Let’s consider that actors A and B both produce one
Integer equal to the number of times they have been executed so far. Actor Γ checks
that both Integers have the same value. When executing the original graph on Fig-
ure 4.2a, Γ consumes successively (1, 1)(2, 2)(3, 3)(4, 4). . . Tuples (i, j) represent the head
of its two incoming buffers, from actor A for i and actor B for j. When execut-
ing graph with the misplaced delay carrying the initial value 0, on Figure 4.2b, Γ
consumes successively (0, 1)(1, 2)(2, 3)(3, 4). . . Finally, when executing graph with well
placed delays both carrying the initial value 0, on Figure 4.2c, Γ consumes successively
(0, 0)(1, 1)(2, 2)(3, 3)(4, 4). . . which only shifts the original output but does not modify
it. Hence, admissible graph cuts ensure to only shift the application result without
modifying it.
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Γ

(a) Original graph without
delay.

A

B

Γ

(b) 8 Graph with misplaced
delay (cannot result from an
admissible graph cut).

A

B

Γ

(c) 4 Graph with well placed
delays (resulting from an ad-
missible cut).

Figure 4.2 – Delay placement examples, resulting from invalid and admissible graph cuts.

The ILP formulation of Equation (4.2) contains two arrays of non free Integer vari-
ables plus one free Integer variable per buffer4. There is a fraction in Equation (4.2),
however the denominator is a non zero Integer constant and both sides of the equation
can be safely multiplied by it.

V-4.1 actor delay k (non free Integer), dimension Θ(#V );

V-4.2 buffer delay d0 (free Integer), dimension Θ(#E);

V-4.3 transient variable to express Equation (4.2) per buffer e, which must be equal to
k(dst(e)) of array V-4.1 (non free Integer), dimension Θ(#E).

The main constraint formalized in Equation (4.3) is put on actors α ∈ V having no
outgoing buffer (OE(α) = ∅): the maximum value of their actor delay k must be equal
to the number of pipeline stages wanted by the user. There is no objective function since
we want to list all admissible cuts.

max
OE(α)=∅

{k(α)} = #Stages (4.3)

In the implementation, we also force the delays to be a multiple of the pipeline size
in Equation (4.1). Thus, the fraction in Equation (4.2) can be equivalently formulated
with another free Integer variable q replacing d0, as shown in Equation (4.4).

∀e ∈ {b ∈ E|dst(b) = α},k(α) = k(src(e)) + q, q ∈ J1; #StagesK (4.4)

As the placement validity is defined recursively from the actors having no outgoing
buffers, delays may be distributed over the whole paths going to an actor, and not only
on its direct incoming buffers. Figure 4.3 illustrates this possibility.

4See Footnote 5 on Page 82 for a short definition of free and non free variables in our context.
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Figure 4.3 – Graph with valid delay place-
ment distributed on the paths. There are
two pipeline stages: k(∆) = k(E) =
k(B) = 1 and k(A) = k(Γ) = 2.

Figure 4.4 – Split-join graph with
four parallel branches. 2 admissible
cuts are represented with a dashed
line, among 81 possible.

Unfortunately, the number of admissible graph cuts may be large. An example is
given with a commonly used split-join graph topology [TPM13], which is a subcategory
of SDF graph. Although the graph represented in Figure 4.4 only contains 4 parallel
paths with 3 buffers each, 34 = 81 cuts are admissible. Indeed, if k paths connect a split
actor to a join actor, each path having b buffers, the total number of feed-forward graph
cuts is equal to bk. Because the number of admissible graph cuts may grow exponentially
with the number of edges of the graph, exploring them all is not feasible. For this reason,
our heuristic algorithm will only explore a subset of the admissible cuts. For example,
our heuristic considers at most 3 admissible cuts for the graph in Figure 4.4. Those
admissible cuts are detailed in the next section.

4.1.3 Initialization of delays

In the previous Section 4.1.2, it is stated in the explanations of Figure 4.2c that admis-
sible cuts only shift the application result without modifying it. Yet, this is true only
for SDF graphs being DAGs, such as Figures 4.2c, 4.3 and 4.4. Such graphs are said
to be be stateless and the token values carried by the pipeline delays of admissible cuts
can be undefined. Indeed, for the SDF DAGs, pipelining will only shift the application
results and the first firings based on the undefined token values are executed but they
will not modify the next results since there is no state.

However, cycles model such states: delays breaking the cyclic data dependencies
carry the states of cycles, even across consecutive graph iterations. Then, any shift
of input modifies the state of the cycle and so the application behavior. SDF graphs
having cycles are said to be stateful. For example, it is the case of Figure 4.1b, between
actors B and Γ. Thus, the token values of pipeline delays have to be chosen carefully
when applying admissible cuts on SDF graphs having cycles; the token values have to
be chosen by the designer so that the cycle states remain coherent with the original
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application behavior. Fortunately, for some implementations such as SIFT, cycles are
present but the initial token values of delays are discarded by the internal code of the
actors thanks to a firing counter. More precisely, the actors may operate as a switch and
select the value of an input buffer having a delay or not. In this specific case, even if
the SDF graph of SIFT has cycles, the token values of delays breaking those cycles may
remain undefined since those tokens are discarded by the internal code of the actors.

Finally, note that the semantics of SDF Setter actors [Arr+18] introduces the ini-
tialization of the token values of delays, set by the output of other actors in the graph.
Symmetrically, this semantics also defines Getter actors which pop the token value of a
delay to use it as an input of another actor in the graph. This semantics is especially
useful to model the initialization of variables in for loops having dependencies between
their iterations and to retrieve the value of the variables after the last loop iteration.
Metaphorically, Setter actors are executed during the prologue of the application while
the Getter actors are executed during its epilogue.

4.1.4 Impact on scheduling

Delays are a property of the SDF MoC by itself, independent to the scheduler used
to execute any SDF graph. Thus, adding pipeline delays to an SDF graph can be
performed without knowing the actual scheduler. In particular, pipelined SDF graphs
are compatible with partially periodic constraints defined in Chapter 3, and they can be
scheduled with the Algorithm 3.3.

Actually, pipelining may be a way to diminish the drawbacks of Assumption 1 used by
Algorithm 3.3. Assumption 1 implies the presence of a global barrier avoiding any overlap
between the scheduler iterations. On the contrary, the main objective of pipelining is to
cut the SDF graphs so that graph iterations are spread over multiple scheduler iterations,
artificially supporting overlap even under Assumption 1. Ideally, the graph cuts are
located on the parallelism bottlenecks of the graphs, in order to fill the potential idle
time of the PEs which could be created by the parallelism bottlenecks. The idle time of
the PEs can be filled with pipelined firings of other graph iterations. As a by-product,
cuts should be selected so that the processor utilization factor U increases5.

However, note that pipelining with delays is not always sufficient to avoid the draw-
backs of Assumption 1. Figure 4.5 depicts an example where it is better, with regard
to the throughput, to make the scheduler iterations overlap without Assumption 1 (Fig-
ure 4.5c, II duration is 3) than to pipeline the SDF graph executed under Assumption 1

5See Equation (3.3) for the definition of processor utilization factor.
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A B
(a) Simple graph with two actors. The only possible cut for pipelining
is represented with a dashed line.

1 2 3 4 5 6 7 8 9 10 11 12

PE 1 A1 A2 A3

PE 2 B0 B1 B2

barrier barrier
(b) 8 Schedule of 4.5a on two PEs with the barrier of Assumption 1: graph cut for pipelining
does not help to reach the optimal throughput. Firing exponents denote their graph iteration.

1 2 3 4 5 6 7 8 9 10

PE 1 A1 B1 A3

PE 2 B0 A2 B2

overlapping mirrored schedule repetitions

(c) 4 Schedule of 4.5a on two PEs without barrier and without graph cut: it increases the
throughput compared with 4.5b. Firing exponents denote their graph iteration. Two static
schedules (one and its mirror exchanging the PEs) actually alternate every 3 time units.

Figure 4.5 – Schedule example where pipelining does not compensate for the presence
of a global barrier.

(Figure 4.5b, II duration is 4). Figure 4.5c, without pipeline delays, is the optimal so-
lution; but in the case of indefinitely repeated static schedules, it requires to mirror the
schedule every 3 time units (exchanging PE 1 with PE 2) and to discard B0.

In the next section, we propose a heuristic to automatically pipeline SDF graphs.
This heuristic tries to cut the graphs where the degree of data and task parallelism is
low, to avoid idle time of the PEs.

4.2 Automatic pipelining of SDF graphs

The automatic pipelining heuristic has two main steps: (1) generation of all topolog-
ical graph cuts, (2) selection of topological graph cuts. The first step, described in
Section 4.2.1, computes a subset of admissible cuts. The second step, detailed in Sec-
tion 4.2.2, selects a few cuts among the cuts computed in step (1).

4.2.1 Computing topological graph cuts

The heuristic selects a subset of admissible graph cuts: topological graph cuts according
to the ASAP and ALAP topological orderings. A topological graph cut of rank cr
contains all buffers coming from an actor of rank lower than cr and going to an actor of
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rank higher than or equal to cr . Such topological cut is admissible if none of its buffers
is part of a directed cycle of the graph.

The number of admissible topological graph cuts is upper bounded by the diameter
of the graph, that is the number of buffers on the longest path. For example, the graph
depicted in Figure 4.4 admits only 3 topological cuts according to ASAP graph ordering,
whereas this graph admits 81 admissible cuts in total. Moreover, in the case of Figure 4.4,
ASAP and ALAP graph orderings are identical so the same 3 graph cuts are considered
for both topological orderings.

In order to build the ASAP and ALAP topological orderings, a cycle analysis of
the graph is run first: the Johnson’s algorithm [Joh75] computes all simple cycles of a
directed graph. Johnson’s algorithm upper bounds the complexity of the whole heuristic.
The buffers being part of cycles are recorded to later filter the admissible cuts. For
example, the topological cut of rank 3 in the SDF graph depicted in Figure 4.1a is
invalid since there is a cycle between actors B and Γ. If a cut contains at least one
buffer belonging to a cycle, then the cut is not admissible.

Note that it is assumed that the user sets enough delays on at least one buffer of
any cycle, so that this buffer breaks the data dependency of the cycle. Alternatively,
the heuristic presented in Section 4.3 can be used to automatically break the cycle
dependencies. Thanks to this assumption, ASAP and ALAP orderings are computed
by a mere breadth first search on the graph, not visiting the buffer breaking each cycle.
Thus, any cyclic SDF graph is seen as a DAG during the graph traversal.

The number of admissible topological graph cuts is small and upper bounded by
the graph diameter, enabling our heuristic to be fast. The admissible topological graph
cuts naturally include all cuts located at sequential bottlenecks of the application, so
they are the best candidates to increase the application performances by pipelining.
Formally, sequential bottlenecks are located on single paths of the graph: when two
successive actors of ranks cr−1 and cr are the only actors having these ranks. Selecting
such cuts particularly benefits the applications having single paths and their repetition
vector equal to ~1.

Only ASAP and ALAP topological orderings are considered in order to limit the
number of explored cuts. These two topological orderings are complementary and it
is useful to consider both. Indeed, depending on the ordering, cuts of same rank may
not contain all the same buffers and give more options to balance the computation
between them. Two examples are given in Figures 4.6 and 4.7 to illustrate the different
possibilities offered by ASAP and ALAP topological orderings. Cuts on each graph have
the same rank and give the same II in the related schedules, but the cut obtained with
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A

1 B

2
Γ
3

∆
3

(a) Graph example with ALAP topological ordering.
Delays are added in the represented cut of rank 3.

1 2 3 4 5 6 7 8 9

PE 1 A1B1∆0A2B2∆1A3B3∆2

PE 2 Γ0 Γ1 Γ2

(b) Schedule of Figure 4.6a on two PEs.
Firing exponents denote their graph it-
eration.

Figure 4.6 – Graph cut example and related schedule for ALAP topological ordering.

A

1 B

2
Γ
3

∆
2

(a) Graph example with ASAP topological ordering.
Delays are added in the represented cut of rank 3.

1 2 3 4 5 6 7 8 9

PE 1 A1B1∆1A2B2∆2A3B3∆3

PE 2 Γ0 Γ1 Γ2

(b) Schedule of Figure 4.7a on two PEs.
Firing exponents denote their graph it-
eration.

Figure 4.7 – Graph cut example and related schedule for ASAP topological ordering.

ASAP ordering avoids adding useless delays. Note that the represented graph and the
actors PEs are different from Figure 4.1.

Finally it is important to note that we actually use a modified version of ALAP
topological ordering, otherwise Equation (4.2) might not always be respected. The
modified ALAP version enforces that all actors having no incoming buffers (or only
incoming buffers breaking cycles) have the lowest topological rank. A counter-example
and a valid example are given in Figure 4.8.

A

1
B

2

Γ
3

∆
2

(a) 8 Regular ALAP topological order-
ing creating invalid graph cut.

A

1
B

2

Γ
3

∆
1

(b) 4 Modified ALAP topological ordering to have
valid (i.e. feed-forward) graph cuts.

Figure 4.8 – Graph cut examples for regular and modified ALAP topological ordering.
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4.2.2 Selecting best topological graph cuts

To select the best topological graph cuts, the presented heuristic relies on a map linking
topological ranks to an estimate of the Execution Time (ET) of all their actors. By
definition, all actors having the same topological rank can be executed in parallel. We
introduce a few notations to formalize the computation of this map. Cα denotes the ET
of an actor α. The number of firings of α is ~r [α]. The rank of α is rank(α). The number
of PEs is m. The ET estimate of rank cr , denoted rankLoad(cr), is computed as follows
in Equation (4.5).

rankLoad(cr) =
∑

rank(α)=cr

⌈
~r [α]
m

⌉
× Cα

#{α| rank(α) = cr} (4.5)

The main purpose of Equation (4.5) is to provide a metric indicating if cutting before
actors of rank cr improves the throughput, that is to balance the computation before
and after the cut. To do so, we actually compare the estimated ET of all ranks before
the cut of rank cr , ∑1≤i<cr rankLoad(i), with the estimated ET of all ranks after the
cut of rank cr , ∑cr≤i rankLoad(i). However, it is needed to weight the ranks according
to the amount of parallelism that they contain, so that the graph is cut where it matters
the most: on single paths for example. Thus, Equation (4.5) contains two divisions in
order to reduce the weight of already parallel ranks: the repetition factor is divided
by m, and the whole sum is divided by the number or actors in the considered rank.
More precisely, numerator and denominator of rankLoad are averaged for ASAP and
ALAP topological orderings; it is not specified in the equation for readability. Here
Equation (4.5) is presented for identical PEs, but it can be rewritten for heterogeneous
systems by considering the average ET time on each type of PE.

The selection of cuts is parameterized by a pair of two integers denoted H x, y: the
number of cuts wanted by the user x, selected among the number of balanced cuts to
consider y. We always have x lower than or equal to y, and y lower than the highest actor
topological rank. y helps to define a first set of equally distributed topological graph
cuts. To do so, the sum of all rankLoad(i) is divided by y + 1, giving an average stage
load avgStageLoad. Then we enumerate ASAP cuts by increasing order of their rank,
while summing their rankLoad and storing the rank of the closest cuts to a multiple of
avgStageLoad. At most y ranks are preselected by this mean. The same operation is
performed on ALAP cuts sorted by decreasing order of their rank. As cuts computed by
ASAP and ALAP orderings may not be identical, there might be two possible cuts per
preselected rank (only the ranks are stored in the aforementioned enumeration, not the
cuts themselves). Considering the example in Figures 4.6 and 4.7, avgStageLoad = 2 and
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our heuristic preselects the cut ranks 2 and 3. When both ASAP and ALAP topological
cuts are valid on the same rank, only the one with the smallest delay sizes is kept,
according to Equation (4.1). Thus, at most 2 × y balanced cuts are preselected for the
last step.

The last step of the heuristic is to select x cuts among the 2 × y balanced cuts.
This is done by two means: removing cuts that are too close from each other, and
then selecting the one using less delays. Two topological cuts of rank cr1 and cr2 are
considered too close from each other if the sum of their intermediate estimated ET is
lower than avgStageLoad, as formalized in Equation (4.6).

avgStageLoad >
∑

cr1≤i<cr2

rankLoad(i) (4.6)

Considering the example in Figures 4.6 and 4.7, the ASAP topological graph cut of rank
3 depicted in Figure 4.7a is finally selected for the configuration H 1, 1, since it is the
one implying less delays (all rates and pipeline delays are equal to 1 in this example).

An example of preselection and final selection of cuts is depicted in Figure 4.9. 4
cuts are preselected by the heuristic with configuration H 2, 3 on the given input SRSDF
graph having 9 actors in line. Each actor is executed only once and its ET is equal
to 10. The two cuts with a dashed line correspond to the cuts found during the first
enumeration of ASAP cuts. The two cuts with a dotted line correspond to the cuts
found during the second enumeration of ALAP cuts. Note that there are less than 3
cuts preselected by each traversal because an extra condition stops the traversal when
the sum of remaining rankLoad is higher than avgStageLoad = 22. The current value of
the sum of rankLoad and the closest multiple of avgStageLoad when a cut is preselected
is recalled below the cut in Figure 4.9. The ranks of the preselected cuts are: 4, 6, 7, 5,
in order of appearance. Except between cuts 4 and 7, none of the other pair of ranks
respects Equation (4.6). The removal procedure first sorts the cuts by the size of their
pipeline delays, and then starts in the reverse order of appearance to remove the largest
cuts in delay size. In this case, all cuts imply the same delay size, and the first two cuts to
compare are the cuts 5 and 7. As cuts 5 and 7 are too close to each other and imply the
same delay size, the highest rank is removed by default: 7. Then only three preselected
cuts remain: cuts 4, 6, 7 and the removal procedure stops since three is the number of
preselected cuts asked by the configuration H 2, 3. Finally, the heuristic selects the first
two of the remaining cuts: 4 and 6. An evaluation on real SDF applications is provided
in Section 4.4.
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A B Γ ∆ E Z H Θ I

ASAP
30/22

ALAP
50/44

ASAP
50/44

ALAP
30/22×

= 10 < avgStageLoad = 22

Figure 4.9 – Preselected and final cuts computed by the delay placement heuristic with
configuration H 2, 3 on a sample chain graph. Dotted cuts correspond to the preselected
cuts while the dashed cuts correspond to the 2 final cuts. Each actor is fired once and
has an ET equal to 10.

4.3 Automatic cycle breaking of SDF graphs

In the current chapter and in Chapter 3, an assumption is made on cycles: they have to
contain at least one buffer with a delay set by the user. This delay ensures liveness of
the cycle in the SDF graph. In this section, we propose a heuristic to automatically add
such delay in the cycles. Of course, another solution to ensure liveness is to add multiple
delays of smaller sizes on different buffers of the same cycle. Thus, the presented heuristic
is a sufficient but not necessary condition to ensure liveness of SDF graphs having cycles.

First, we recall that delays in cycles may have a strong impact on the application
behavior. Unlike pipeline delays on DAGs, they do not only shift the result but also
modify it. An example is given in Figure 4.10. Let’s consider that actor A computes
the sum of its two inputs and copy the result on its two outputs. The self-loop buffer,
which creates a cycle, has one delay which stores a kind of arithmetic carry: actor A
sums the n-th array input in with the previous output on−.... If the delay stores a unique
token value d0[0], then actor A behaves like a sum reduction of the input array and all
intermediate sums are sent to the Results actor. Formally, it corresponds to the recursive
sequence of Equation (4.7).

∀n ∈ N, on = on−1 + in, o0 = d0[0] (4.7)

Now if the delay on the self-loop buffer contains two tokens, the behavior is modified and
Equation (4.7) becomes Equation (4.8). Outputs with even (respectively, odd) indexes
only store the sum reduction of previous array elements with even (respectively, odd)
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Array A

1 1
Results Figure 4.10 – SDF actor having

a self-loop.

indexes6.
∀n ∈ N, on = on−2 + in, o0 = d0[0], o1 = d0[1] (4.8)

Only the user know the behavior he wants, and thus the number of delays needed
on a cycle. However, a placement pattern appears in the applications7 modeled with
the PREESM framework. Our heuristic only considers this pattern, where the plausible
delay breaking a cycle C on buffer e corresponds to a local pipeline delay according to the
repetition vector of the cyle only, as stated in Equation (4.9). According to the example
in Figure 4.10, it corresponds to Equation (4.7) for only one token on the self-loop buffer.

d0|C(e) = cons(e)× ~r|C [dst(e)] (4.9)

The repetition vector of the cyle ~r|C is obtained by dividing the original repetition
vector by the greatest common divisor (gcd) of all actors in the cycle C. Equation (4.10)
formally defines ~r|C .

~r|C = ~r

gcdα∈C{~r [α]} (4.10)

Equation (4.9) provides a plausible delay size to break a cycle on a specific buffer.
Our heuristic also selects the buffer where to place the delay. To do so, the heuristic
relies on a classification of actors belonging to the cycle. Actors may be:

• an entry point of the cycle if they have incoming buffers outside the cycle;

• an exit point of the cycle if they have outgoing buffers outside the cycle;

• both entry and exit point;

• normal if all buffers connected to it belongs to the cycle.

Figure 4.11 illustrates entry, exit, and normal actors. In Figure 4.10, actor A is both an
entry and an exit point.

6Besides, note that with two tokens on the self-loop buffer of Figure 4.10, the auto-concurrency of
actor A is limited to two firings at a time. With only one token, as for Equation (4.7), auto-concurrency
is not possible at all.

7https://github.com/preesm/preesm-apps

https://github.com/preesm/preesm-apps
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Entry A B Γ Exit

Figure 4.11 – Cycle example with one entry actor (A), one exit actor (Γ) and one normal
actor (B). A delay (as chosen by our heuristic) breaks the cycle data dependencies.

The most common pattern seen in the application developped in PREESM corre-
sponds to the example of Figure 4.11 where there are one entry actor, one exit actor,
multiple normal actors from the entry to the exit, and no actor from the exit to the
entry. The delay is placed on the buffer from the exit to the entry.

For the analysis, the heuristic builds a string representing the categories of actors in
the cycle. Normal actors are ignored: the heuristic relies only on the relative placement
of entries and exits. Entry actors are coded with the letter i while the exit actors are
coded with the letter o. If an actor is both an entry and an exit, it is coded with the
letter b. Graph in Figure 4.11 would be coded io or oi (all circular permutations are
possible).

The heuristic selects the buffer breaking the cycle by matching the cycle string with
regular expressions. An excerpt of the algorithm is presented as pseudo-code in Algo-
rithm 4.1. The heuristic works only when actors of each kind (entry or exit or both) are
not interleaved, otherwise it returns any buffer of the cycle (like in the cycle of the form
ioioi for example). When not interleaved (patterns on lines 1, 4 and 6), the heuristic
selects a buffer on the only path between the last exit and the first entry. Note that
regular expression patterns on lines 4 and 6 are a cyclic permutation of each other; they
are the most common cases. However, they do not return symmetrical answers. To be
symmetrical and indepenent from the cycle permutations, it should be returned on line
5 the buffer preceding the first entry after the last exit instead.

The heuristic selects the buffer placement and the delay size to break cycles. Multiple
cycles may share the same actors and buffers, but they are processed separately by
the heuristic. If the same buffer e is selected for multiple cycles, the delay size is the
maximum of each d0|C(e). Unfortunately, we did not formally prove that this solution
ensures the liveness of complex applications having nested cycles. The proof is kept for
future work.

Last but not least, the heuristic does not set the token value d0|C of the delay. A
neutral element would be the best default token value (as 0 for a sum, or 1 for a multi-
plication), but the SDF MoC is independent from the code of the actor, so the neutral
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Algorithm 4.1: Selection of buffer breaking cycles
1 if matching(i*b?i) or matching(o*b?o*) then
2 if exactly one b present then
3 return buffer preceding the unique “both” actor;
4 else if matching(i*b?o+i*) then
5 return buffer following the last “exit” actor;
6 else if matching(o*i+b?o*) then
7 return buffer preceding the first “entry” actor;
8 else
9 return any buffer of the cycle;

element cannot be guessed automatically. However, depending on the application, the
delay on cycles can be undefined data; it implies that some input or output of the first
firings of actors located after the delay are not taken into account. This happens in
the SDF graph of SIFT application, which contains cycles having delays with undefined
token value. The loop actors having an incoming buffer with a delay also take another
incoming buffer from a repetition counter actor. The repetition counters enumerate the
current number of firings in the current scheduler iteration, and enable the loop actors
to select the correct input in their internal code. The correct input may come from the
buffer having a delay with initial undefined token value of from another incoming buffer.

4.4 Evaluation

The presented heuristic to pipeline SDF graphs is evaluated on various applications com-
ing from the StreamIt [TKA02] benchmark, the examples provided with the SDF3 [SGB06b]
tool, and the applications8 provided with the PREESM [Pel+14] tool. These applica-
tions represent a panel of state of the art signal and image processing algorithms, as
well as more complex telecommunications, video coding and computer vision applica-
tions. The heuristic results are compared by throughput gain, relative to the sequential
non-pipelined throughput on a single Processing Element (PE).

Three different evaluations are performed. In Section 4.4.1, the theoretical through-
put gain is computed based on the schedule length, i.e. the II duration, obtained af-
ter adding the pipelines selected by the heuristic. This throughput gain is theoretical
since no actual execution of the application is performed. A comparison is made with
the optimal throughput gain among all admissible cuts, for applications amenable to

8https://github.com/preesm/preesm-apps

https://github.com/preesm/preesm-apps
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an exhaustive exploration. Large applications are detailed in Section 4.4.2. Finally
in Section 4.4.3, the throughput and memory footprint increases are measured on actual
executions of applications running on hardware.

The other heuristic to break cycles detailed in Section 4.3 has not been extensively
evaluated. We only have checked that the size and the placement of delays according to
the heuristic breaking cycles are exactly the same as the original size and placement of
delays set by the designers. On the two tested applications of PREESM having cycles
(SIFT and stereo), delays set by the heuristic breaking cycles are identical to those
originally set by the designer. In the remaining part of this section, the heuristic word
always refer to the one pipelining SDF graphs detailed in Section 4.2.

All experiments have been run with the PREESM open-source9 tool, on a laptop
with an Intel i7-7820HQ @ 2.90GHz processor (4 physical cores) and the GCC compiler
version 7.5.0 (option -02) on Ubuntu 18.04. For all selected applications, the execution
time of the proposed heuristic is between 1 and 18 ms (maximum reached for SIFT).
Note that the StreamIt/SDF3 applications are all stateless in our experiments, except
h263decoder (noAC) having self-loops. Self-loops disable auto-concurrency of an actor:
multiple firings are serialized. For simplicity, the implementation of the delay placement
heuristic in PREESM currently supports only homogeneous systems with identical PEs.
Indeed, we have measured the throughput gain with the scheduler proposed in Chap-
ter 3 which supports only homogeneous systems. However, the heuristic, in particular
Equation (4.5), could easily be updated to take into account heterogeneous systems, by
considering the average ET time on all types of PE.

Main characteristics of the applications are presented directly in the results tables.
In the second column, MAP is the Maximum number of Actors in Parallel in the SDF
graph; MAP equals the maximum number of parallel paths in the graph. When known,
the total number of admissible graph cuts is specified in the column labeled #Cuts.
Note that multiple versions of SIFT and sobel-morpho applications are considered: their
graph is identical but they do not have the same number of firings. Some of their actors
are fired a number of times equal to a multiple of a parameter p. Only SIFT and stereo
contain directed cycles in their SDF graph. In all results tables, the columns labeled
by H x, y contain the throughput gain obtained by the heuristic selecting x pipelines
among y balanced pipelines. Columns labeled by O x contain the optimal throughput
gain, over all admissible cuts, for x pipelines. Lines of results tables without any value
printed in bold means that the throughput gain is similar for all setups; otherwise, the
value in bold corresponds to the best gain along the line.

9https://preesm.github.io/

https://preesm.github.io/
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4.4.1 Theoretical throughput gain: regular applications

Theoretical throughput gain obtained with the heuristic is presented in Table 4.1, for
three setups: no pipeline, one pipeline among one, three pipelines among three. Most
applications have a repetition vector ~r equal to ~1, except Chain4.2noAC (which con-
tains self-loops), cd2dat, h263decoder, modem, mp3decoder, samplerate and satellite.
Chain4.2noAC and Chain4.1 are toy examples made to fit the best cases of the heuris-
tic; they correspond to the graph depicted in Figure 4.4, with only one path instead of
four.

In Table 4.1, the best throughput gain is obtained by the heuristic with 3 cuts (H 3,3)
for 11 of the 17 applications. More importantly, the heuristic finds a close to the optimal
throughput with 1 cut for all applications except mp3decoder. The number of admissible
cuts generating a throughput gain lower than or equal to H 1,1 is reported as a percentage
of the total number of admissible cuts, in column %. On average, H 1,1 reaches a better
throughput gain than 91% of the admissible cuts. The set of all admissible cuts has been
generated thanks to Equations (4.3) and (4.4) implemented in the generic Choco10 CP
solver. Note that two applications are not compared with the optimal gain, FMRadio
and Vocoder, because they admit too many cuts. These applications, and three others,
are discussed in section 4.4.2.

On DCT and h263decoder, the throughput gain is less than 2.0, even with 3 pipelines:
this comes from too few actors in the original graphs (respectively 8 and 4), having
unbalanced ETs. This configuration leads the heuristic to find only 2 graph cuts for
DCT and h263decoder, even if 3 pipelines were asked by the user. The number of
effectively selected cuts is specified as an exponent. The same behavior happens for
modem and mp3decoder applications: only 2 cuts are selected whereas 3 pipelines were
asked. To avoid this problem, only 2 pipelines among 3 are requested for the PREESM
applications, see Table 4.2 Indeed, in these applications the ETs are greatly unbalanced
and the ET of the longest actor represents up to 47% of the sequential ET of sobel-
morpho (p1).

For the PREESM applications evaluated in table 4.2, the heuristic reaches the best
throughput in 7 cases out of 9. SIFT application is a difficult case: its SDF graph is
widely parallel (up to 30 parallel paths) and contains multiple cycles. Moreover, its
parallel paths have unbalanced ET. In this situation, selecting topological cuts is not
the best option and 1 optimal cut (O 1) even reaches a better throughput than 2 cuts
from the heuristic (H 2,3): for SIFT (p1) and SIFT (p2). However, when more balanced

10http://www.choco-solver.org/

http://www.choco-solver.org/
http://www.choco-solver.org/
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Name MAP #V #Cuts H 0 H 1,1 O 1 % H 3,3
Chain4.1 1 4 3 1.0 2.0 2.0 100 3.9
Chain4.2noAC 1 4 3 1.4 2.3 2.3 100 3.4
BitonicSort 4 40 141 1.6 2.9 2.9 100 3.6
cd2dat 1 6 5 4.0 4.0 4.0 80 4.0
DCT 1 8 7 1.0 1.8 1.8 100 1.82

DES 3 53 128 1.2 2.2 2.2 96 2.4
FFT 1 17 16 1.0 2.0 2.0 100 3.7
FMRadio 12 43 — 3.1 3.3 — — 3.3
h263decoder (noAC) 1 4 3 1.8 1.8 1.9 100 2.02

modem 1 6 5 2.0 3.3 3.3 100 3.32

mp3decoder 2 14 33 3.7 3.7 3.8 66 3.72

MPEG2noparser 3 23 140 1.1 2.2 2.2 100 2.7
samplerate 1 6 5 4.0 4.0 4.0 60 4.0
SAR 2 44 63 1.0 1.8 1.8 100 2.3
satellite 3 22 90 4.0 4.0 4.0 68 4.0
TDE 1 29 28 1.0 1.9 1.9 100 3.4
Vocoder 17 114 — 1.2 2.1 — — 2.6

Table 4.1 – Characteristics and throughput gain with delays (H) of SDF benchmark
applications, on four PEs. H 0 corresponds to no pipeline. H 1,1 corresponds to one
pipeline selected among one. O 1 corresponds to the optimal single stage pipeline. % is
the percentage of cuts worst than or equal to the heuristic. H 3,3 corresponds to three
pipelines selected among three.

parallelism is expressed, for SIFT (p4), the heuristic configuration H 2,3 once again is
better than the other setups.

4.4.2 Theoretical throughput gain: widely parallel applications

This subsection evaluates the applications revealing the main advantage of the presented
heuristic: no explosion of the number of cuts to test when the SDF graph is already par-
allel. Indeed, all evaluated applications in Table 4.3 admit between 105 and 1010 cuts,
which makes it impossible to evaluate the throughput of each cut by performing schedul-
ing and mapping. Moreover, the number of possibilities also explodes with the number
of pipelines asked: it is equal to the number of cut combinations without repetition
(binomial coefficient):

( #Cuts
#Stages−1

)
.

Table 4.3 presents results for the applications already having parallelism expressed
in their graph: MAP is between 12 and 17 for all of them. In this experiment, the
throughput is evaluated on 64 PEs for the heuristic setup H 3,3 selecting 3 pipelines.
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Name MAP #V #Cuts H 0 H 1,1 O 1 % H 2,3
SIFT (p1) 30 54 868 1.2 1.6 2.2 92 1.6
SIFT (p2) 30 54 868 2.3 2.8 3.7 91 3.0
SIFT (p4) 30 54 868 3.5 3.5 3.6 80 3.7
sobel-morpho (p1) 1 6 5 1.0 2.0 2.0 100 2.0
sobel-morpho (p2) * 1 6 5 1.7 2.4 2.4 100 2.6
sobel-morpho (p3) * 1 6 5 2.3 3.5 3.5 100 3.4
sobel-morpho (p4) 1 6 5 2.3 2.8 3.3 40 3.3
stereo 3 28 3631 3.3 3.9 3.9 99 3.9
lane-detection * 3 11 24 1.0 1.7 1.7 100 2.5

Table 4.2 – Throughput gain with delays (H) of SDF benchmark applications, on four
PEs. H 0 corresponds to no pipeline. H 1,1 corresponds to one pipeline selected among
one. O 1 corresponds to the optimal single stage pipeline. % is the percentage of cuts
worst than or equal to the heuristic. H 2,3 corresponds to two pipelines selected among
three possibilities.

Having 64 PEs ensures to observe the effect of the pipelines instead of the inherent task
parallelism. Indeed, the maximum number of actors in parallel MAP (17) is almost 4
times smaller than the number of PEs. The maximum theoretical throughput gain with
unlimited PEs, denoted Max Θ, is given as a reference. All applications in Table 4.3
are acyclic, so Max Θ is computed by dividing the sequential ET of the application by
the ET of its longest actor, as if each buffer had a pipeline delay. Adding 3 pipelines
increases the throughput gain from a factor 2 (for FMRadio) to 3 (for ChannelVocoder).

Name MAP #V #Cuts H 0 H 3,3 Max Θ
Beamformer 12 57 1.7× 107 8.9 19.0 25.6
ChannelVocoder 17 55 1.3× 1010 11.1 33.2 33.4
Filterbank 16 85 4.3× 108 10.5 30.5 32.2
FMRadio 12 43 2.6× 105 6.0 12.7 13.1
Vocoder 17 114 3.0× 1010 1.2 2.7 2.8

Table 4.3 – Throughput gain with delays (H) of SDF benchmark applications, on sixty-
four PEs. H 0 corresponds to no pipeline. H 3,3 corresponds to three pipelines selected
among three possibilities. Max Θ corresponds to the maximum possible throughput
gain, with unlimited PEs.
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4.4.3 Practical experimentation

In this subsection, the throughput and memory measurements come from actual execu-
tions on hardware, on the same laptop used for all experiments, having 4 PEs. Memory
is allocated after the scheduling process, with buffer merging [Des+16b] optimizations
activated. The memory needed is computed by PREESM, and compared with the se-
quential version on 1 PE for reference.

Results are provided in Table 4.4, for an average of 100 executions for SIFT and
stereo, and 10000 executions for sobel-morpho and lane-detection. Note that the sched-
uler used in this practical experimentation differs from the one used in the theoretical
experimentation, it is a list scheduler taking into account communications [KAG96]. In-
deed, due to an implementation bug in the memory allocation process at the time of this
experiment, it was not possible to measure accurately the memory size when using the
scheduler of Chapter 3.

In Table 4.4, the heuristic especially improves the throughput of SIFT and sobel-
morpho with p = 1 and p = 2, that is, when the application is not parallel enough. Yet,
for lane-detection which has ~r = ~1, the heuristic only slightly increases the throughput,
while increasing the memory by a factor 1.9. The theoretical throughput gain of lane-
detection is 2.5, that is two times higher than reality. We assume that this gap is due
to the variability of the ET of the display actor, representing 28% of the application
sequential execution time. Extended experiments should be performed to confirm this
hypothesis. Also, synchronization points added by PREESM may be non-negligible.
None of the applications reaches the throughput expected in the theoretical evaluation.

An interesting point is that selecting 1 cut among 2 (H 1,2) gives better results than
1 among 1 for half of the cases. Such heuristic setups may compensate the case of
unbalanced ETs or cycles, especially for SIFT (p2). Moreover for SIFT (p2) the H 1,2
setup greatly reduces the memory footprint compared to H 1,1: from a factor 3.0 to
1.1. Finally, the heuristic offers a trade-off between memory footprint and throughput.
This trade-off is especially needed for memory bounded application as SIFT requiring
197 MBytes (reference). In the worst case, for sobel-morpho (p4), adding one pipeline
decreases the throughput while greatly increasing the memory (3.3 times). The memory
increase is due to the graph cut location: between buffers transmitting numerous data,
and thus it causes additional time for memory copies and synchronizations.

In Table 4.5, we also compare the practical throughput increase of the PREESM
legacy (Leg.) scheduler (FAST initial step [KAG96]) and the one developed for par-
tially periodic constraints (Per.) described in Algorithm 3.3. Results are roughly similar
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Name H 0 H 1,1 H 1,2 H 2,3
Sp. Mem.|Sp. Mem. Sp. Mem. Sp. Mem.

SIFT (p1) 1.2 1.1 |1.6 2.1 1.4 1.3 1.3 1.8
SIFT (p2) 1.8 1.1 |1.9 3.0 2.4 1.2 2.2 2.3
SIFT (p4) 2.5 1.2 |2.2 1.1 2.2 1.1 2.5 1.8
sobel-morpho (p1) 0.9 1.0 |1.3 2.2 1.3 2.6 1.6 3.8
sobel-morpho (p2) 1.7 1.6 |2.3 2.1 2.5 2.4 2.1 3.4
sobel-morpho (p3) * 2.3 2.1 |2.4 2.8 2.5 2.6 2.5 3.2
sobel-morpho (p4) 2.5 2.0 |1.9 2.6 2.2 2.3 2.4 3.3
stereo 2.2 1.1 |2.3 1.1 2.3 1.1 2.4 1.1
lane-detection * 1.0 1.0 |1.1 1.8 1.1 1.7 1.2 1.9

Table 4.4 – Throughput and memory increases with delays (H), on four PEs, for different
parallelism parameters (p). Specific mapping constraints are enforced for applications
marked with *: read and display actors are alone on their core if there is a pipeline.

for both schedulers, except for the lane-detection application, where the periodic one
is slower than the sequential time for H 0, H 1,1 and H 1,2. Further investigations
are needed to characterize this phenomenon but the first fit mapping strategy of Al-
gorithm 3.3 is a plausible cause. This first fit strategy is more likely to allocate two
successive data dependent firings on two different PEs, introducing a costly synchro-
nization lock between the firings.

4.5 Related work

Pipelining and more generally retiming has been extensively studied in the context of
Very Large Scale Integration (VLSI) circuit design [LS91; Par07]. Pipelining legality
was formally defined by Parhi [Par07] for a subset of SDF graphs: SRSDF graphs,
which always have their repetition vector equal to ~1. It was also studied for software
pipelining [Lam04; All+95], with retiming methods used in this context [CDR98]. Those
works only concern SRSDF graphs. Our work focuses on pipelining SDF graphs, avoiding
the costly conversion to SRSDF and thus reducing the analysis complexity.

Pipelining of SDF graphs was originally proposed by Lee and Messerschmitt [LM87a]
as an optimization. Gordon et al. [GTA06] proposed a heuristic to pipeline a partially
unfolded SDF graph, as well as Kudlur et al. [KM08]. The heuristic presented by Gordon
et al. relies on a first transformation of the original actors, in order to balance the ETs
and to adapt the amount of parallelism. The Stream Graph Modulo Scheduling presented
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Name H 0 H 1,1 H 1,2 H 2,3
Leg. Per.|Leg. Per. Leg. Per. Leg. Per.

SIFT (p1) 1.2 1.1 | 1.6 1.0 1.4 1.1 1.3 1.0
SIFT (p2) 1.8 1.6 | 1.9 2.6 2.4 1.6 2.2 1.4
SIFT (p4) 2.5 2.4 | 2.2 2.1 2.2 2.1 2.5 2.2
sobel-morpho (p1) 0.9 0.8 | 1.3 1.4 1.3 1.3 1.6 1.7
sobel-morpho (p2) 1.7 1.4 | 2.3 2.6 2.5 2.6 2.1 2.0
sobel-morpho (p3) * 2.3 2.2 | 2.4 2.7 2.5 2.5 2.5 2.4
sobel-morpho (p4) 2.5 2.6 | 1.9 2.6 2.2 2.1 2.4 2.3
stereo 2.2 2.0 | 2.3 2.1 2.3 2.0 2.4 2.2
lane-detection * 1.0 0.3 | 1.1 0.6 1.1 0.5 1.2 1.1

Table 4.5 – Throughput increases with delays (H), on four PEs, for different parallelism
parameters (p). Leg. is using the legacy PREESM scheduler while Per. is using Al-
gorithm 3.3. Specific mapping constraints are enforced for applications marked with *:
read and display actors are alone on their core if there is a pipeline.

by Kudlur et al. relies on an ILP formulation to set the unfolding limit, and it requires
the Initiation Interval (II) length as an input of their algorithm. In the work of Udupa
et al. [UGT09], the SDF graph is completely unfolded to its SRSDF equivalent allowing
for a fine tune of the added delays. They propose an ILP formulation to compute the
stage of each actor firing; this formulation requires a few minutes to be solved for large
graphs of the StreamIt benchmark. On the contrary, our heuristic works on the original
unfolded SDF graph and it requires a maximum number of pipelines as an input, in
order to minimize the II accordingly. Our heuristic is faster and more scalable than the
aforementioned works, however note that their algorithms also perform scheduling at
the same time while we do not.

Scheduling has been largely explored in optimal and heuristic forms [KA99; MG13].
Other works look at combining pipelining with scheduling, restricted to SRSDF graphs [YH09]
or acyclic SDF graphs [YH12]. Our work separates pipelining from scheduling. Schedul-
ing is computed afterwards on the pipelined graph, taking advantage of original data
and task parallelism, as well as temporal parallelism.

Finally, multiple works [Zhu+16; Liv+07] addressed the optimal search for a retiming
to reduce the makespan of a graph. Additionally, [Zhu+16] accepts a constraint on the
maximum number of PEs, at the cost of non-optimality. Both use symbolic execution of
a partially unfolded SDF graph to find a retiming. In our contribution we focus on the
pipelining of an SDF graph in its reduced original form to provide a fast heuristic. We
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do not perform any execution, symbolic or not. It is also possible to retime SDF graphs
by adding initial data in the buffers so that all firings of an actor can be performed in
parallel [KLE17]. The aforementioned work [KLE17] is especially convenient to execute
the same algorithm on multiple data at a time, similarly to a GPU. In our work, we
focus on the balancing of the ETs in the different pipeline stages, for generic CPU, DSP
or even FPGA.

4.6 Conclusion

A fast heuristic to automatically pipeline SDF applications at coarse grain has been
presented and actually improves the throughput of the evaluated applications. The
heuristic is able to quickly pipeline applications containing up to billions of admissible
cuts. Our algorithm limits its exploration to a few cuts to reduce analysis time, and
experiments show that this method is very often close to the optimal solution. The
presented heuristic is especially useful when considering a large number of PEs.

However, the last experiment in Section 4.4.3 shows a gap between the theoretical
throughput gain and the practical gain, always lower than expected. This gap is observed
for both our pipelining heuristic and the theoretical optimal solution. Even if pipelining
is a powerful optimization, its memory usage is a major drawback. The last experiment
also shows that when it is possible to adapt the parallelism grain, it is more efficient to
express enough parallelism inside the application than to pipeline it. Thus, the efficiency
of pipelining is heavily dependent on the choice of various parameters of the application,
and on the scheduling and mapping processes. In a joint work with the team of Michael
Masin of IBM Research Labs, we have tried to develop an integrated LP formulation
tackling multiple aspects: the pipelining, the scheduling, the mapping and the selection
of parameters. This integrated formulation of multiple problems at once is challenging,
and although we are close to a solution, we did not succeed yet. This formulation is
briefly discussed in Chapter 5, and an alternative DSE solution is presented.

Our heuristic can be improved on various directions. For example, by adding smaller
delays to break the dependencies between only a certain number of firings instead of
all. Instead of setting delay sizes d0(e) as a multiple of Equation (4.1), the size could
be a multiple of lcm{cons(e), dst(e)}, ensuring only a pipeline local to the buffer e. A
greater feature would be to compute the size of the added delays symbolically: as an
equation of the application parameters if any. This feature is challenging but would be
especially useful for the DSE approach presented in Chapter 5. Finally, this heuristic is
only one optimization method among various others, as the most related to this work:
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retiming. Retiming is especially useful when considering graphs having cycles. We have
also presented a heuristic to break data dependencies of cycles, and a combination of
our two heuristics and classic retiming techniques is kept for future work.

Dissemination and Implementation

The contribution presented in this chapter, except Section 4.3, has been published
in the SAMOS’20 conference [Hon+20b] (see also the video presentation here ).
The algorithms presented in this chapter have been implemented as workflow tasks
of the PREESM tool. See the following task description for the implementation of
the algorithm described in Section 4.2:
- pisdf-delays.setter

https://www.youtube.com/watch?v=wb6QFh_l0u4
https://preesm.github.io/docs/workflowtasksref/#automatic-placement-of-delays
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Introduction

Multiple extensions of the SDF MoC support parameters, some of which are listed
in Section 1.2.3. Parameters are used to modify the application behavior during its
execution, or to explore different ways to implement it, that is Design Space Exploration
(DSE). In particular, parameters of PISDF applications can modify the consumption and
production rates, the delay sizes, the actor ETs and energy consumption. Parameters
may also define the Quality of Service (QoS) of the application, as the image resolution.
In this chapter, we study the offline DSE of static PISDF applications, in order to select
and fix the best values of all their parameters. As the parameter values are fixed once
for all the indefinitely repeated executions of the static applications, the schedule, and
especially the throughput and latency can be optimized offline1. The case of dynamic
applications and online DSE is quite more challenging and is not considered here.

DSE is especially needed to adapt the application to the target architecture. For
example, in Chapter 2, a parameter p is used to control the degree of data parallelism
of an SDF graph. Experiments reported in Table 4.2 of Chapter 4 show that for the
sobel-morpho application, best throughput is achieved with one pipeline and p = 3
while there are m = 4 PEs available. The goal of the DSE is to automatically select
this configuration, but only if the designer accepts the extra latency due to the pipeline.
Thus, DSE not only adapts the application to the architecture, but it also has to respect
constraints and trade-offs specified by the designer.

As a last contribution of this thesis, we introduce in this chapter a method to perform
DSE on PISDF graphs, while respecting constraints and trade-offs regarding throughput,
latency, energy, or directly any parameter for QoS. Unfortunately, both memory and
communication contentions are not taken into account in our DSE. This contribution
uses all the previous ones detailed in Chapters 2 to 4. It is based on the new notion
of malleable parameters which introduce choice among multiple expressions defining the
value of a parameter.

This chapter is organized as follows. Section 5.1 presents the usage of parameters in
the PREESM tool. Section 5.2 describes a few challenges of DSE, due to the entangle-
ment of design objectives on one side, and the entanglement of the solving methods on
the other side. An exhaustive DSE workflow is detailed in Section 5.3. To improve the
DSE results, delays can be added automatically with the method presented in Chap-
ter 4. This procedure is detailed in Section 5.4. Moreover, a dichotomous DSE heuristic

1Other offline optimized properties are the memory allocation and the communication synchroniza-
tions. However, the memory allocation and the communications are not taken into account in our DSE.
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is presented in Section 5.5. Both approaches are evaluated and results are shown in
Section 5.6. Finally, related work is presented in Section 5.7 and Section 5.8 concludes
this contribution.

5.1 PREESM parameters

This section presents the usage of static parameters available in the PREESM tool. Static
parameters are a subset of the PISDF MoC. The PISDF model is the application of the
PIMM [Des+13] meta-model on SDF graphs. We restrict to static parameters in order
to generate statically optimized code, in which all the needed memory is pre-allocated
for every data communication on the buffers.

In Section 5.1.1, we detail which entities of the PISDF model can be parameterized
and their impact on the application. Following Section 5.1.2 gives examples of the
parameter syntax, and gives tricks to model multiple situations. Finally, we introduce
the malleable parameters in Section 5.1.3; malleable parameters have been developed for
the purpose of DSE.

5.1.1 What can be parameterized?

In the PREESM implementation, parameters are graphically represented by pentagons
with a rectangular base, as depicted in Figure 5.1. Each parameterizable entity has
incoming arrows for each parameter it depends on. In Figure 5.1, the tot_image_size

parameter (bottom right of the picture) depends on image_width and image_height;
the arithmetic expression of tot_image_size simply is: image_height*image_width.

All the parameterizable entities are:

E-1 parameters themselves in a PISDF graph;

E-2 data production and consumption rates of any buffer in a PISDF graph;

E-3 period of any non hierarchical actor in a PISDF graph, as well as the top graph
period itself (see Chapter 3);

E-4 size of a delay (see Chapter 4) in a PISDF graph;

E-5 Execution Times (ETs) of actors, set in the scenario of PREESM;

E-6 energy of actors, set in the scenario of PREESM.
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Figure 5.1 – Example of parameters and their dependencies, here to express image
resolution choices. Screenshot of the SIFT application PISDF graph in PREESM.

These parameterizable entities accept arithmetic expressions composed of predefined
mathematical functions and parameters. In the scenario model of PREESM used to
store application information dedicated to a specific architecture, the ET and energy of
actors are parameterizable entities, but not the data sizes. When the data consumption
and production rates are parameterized, parameters impact on the repetition vector (see
parameter p for the degree of data parallelism in Chapter 2). If used in any parameterized
entity, a parameter also has a direct impact on the scheduling process. Last but not least,
a parameter can be an argument of the C function associated with each actor.

Each parameter has a unique name and contains an arithmetic expression, possibly
depending on other parameters or predefined mathematical functions such as logarithm2.
Dependencies between parameters must be explicitly given by the designer. The param-
eters form a DAG whose roots3 hold only numerical values. The designer has to specify
the parameter expressions of the regular parameters and the numerical values of the
root parameters. As parameters have unique names and as their dependencies must not

2A few common mathematical functions are provided by the PREESM implementation, and it is
possible to code more complex functions directly in the Java code of PREESM (which needs to be
recompiled then).

3The roots of the DAG of parameters are the parameters having no incoming dependencies, i.e. the
parameters being a single numerical value.
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if(key==<key1>, <value1>, if(key==<key2>, <value2>, <defaultValue>))

Listing 5.1 – Parameter expression implementing a dictionary, here depending on key
parameter key.

create any cycle, they can be seen as an SSA program, ensuring that their expressions
can all be valuated to a number. The valuation has to be an Integer number in the
PISDF model, but internal computations may use floating point numbers. For example,
both expressions 9.9/3.3 and 10.0/3.0 are valuated to 3.

5.1.2 How to use PiMM parameters?

The syntax of PREESM parameters is simple and does not authorize assignments. This
limitation benefits the case of dynamic parameters, to avoid overhead while valuated
them with the dynamic version of PREESM: SPIDER. If the expression contains semi-
colon characters, it will be only evaluated until the first semi-colon occurrence (from
left to right). The only authorized control flow statement is the conditional state-
ment if(condition, ifTrueStatement, otherwise). The conditional statement can
be used to express a dictionary as in Listing 5.1. However, due to the SSA form, the
dictionary parameter has to be duplicated for each possible input parameter key.

In some cases, it might be necessary to guarantee that a parameter is a multiple or
divisor of another. For example, it happens for the degree of parallelism parameter p
in Chapter 2, which has to be a divisor of the size of an actor input array. Similarly
in the SIFT application4, a maximum number of keypoints has to be detected by a
data-parallel actor of the application. It is then necessary to ensure that each firing of
the data-parallel actor has at least one keypoint to detect, and that all firings have the
same value. Listing 5.2 presents the computation of this local number of keypoints to
detect, according to the maximum total number of keypoints defined by the user, and
the degree of parallelism.

Parameters are valuated to Integer numbers only, although they support floating
point numbers inside expressions. Then it is possible to use rational numbers in Q,
defined as two parameters: one Integer value for the numerator and another one for
the denominator. This is especially useful to express the aspect ratio selection of an
image resolution: for example, 16:9 or 4:3. This solution is depicted in Figure 5.1: the

4The SIFT application is briefly introduced in Chapter 2.
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max(1, floor(nKeypointsMaxUser/parallelismLevel))

Listing 5.2 – Parameter expression of nLocalKptmax in the SIFT application. This
parameter computes the number of keypoints detected by each firing of the corresponding
actor detect_keypoints.

common numerator is equal to 9 while the denominator (top left of the figure) can be
set to 16 or 12.

Finally, actor production and consumption rates can be equal to 0 in very specific
occasions, and otherwise are only positive Integers. A null buffer where both production
and consumption rates are equal to 0 is ignored during the analysis; consequently if an
actor is only connected to such null buffers, it is not fired at all. This behavior may lead
to inconsistencies during the PISDF graph execution: if an actor has a null buffer input,
what argument should be given to the underlying C function? Thus, only special actors of
PISDF, whose C function is predefined by PREESM, are authorized to have some of their
buffers with null production rate or consumption rates. Special actors mainly correspond
to standard duplicate/upsample or decimate/downsample actors which respectively copy
multiple times their unique input on all their outputs or copy only once a subset of all
their inputs on their unique output5. For example, this behavior enables the designer
to avoid executing actors forming a path between a duplicate and a decimate actors,
while not removing the path and actors from the application graph. If a parameter is
used to put all rates of the path to the value 0 with an if statement, this is especially
useful to easily test different configuration of the application. Figure 5.2 illustrates this
possibility, where a path containing two actors is not executed depending on a parameter
value. In any case, the special actors around the non executed path must still have a
non null buffer connecting them6, here from out2 to in2.

5.1.3 Malleable parameters: design choice in PiMM

Parameters in PREESM contain a single expression set by the designer, so the designer
has to change the expression manually to explore a new configuration of its application.

5In the PISDF model, these special actors are called: broadcast (for duplication), roundbuffer (for
decimation), fork (for split) and join (for concatenation).

6More precisely, the special actors require in any case a non 0 consumption rate on at least one input
buffer, and a non 0 production rate on at least one output buffer. Moreover, if one rate of the buffer is
0, then the rate on the other side must also be 0.
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Figure 5.2 – Example of a parameterized path: Actor1 and Actor2 are executed only if
parameter RemovePath is not 0. The path to remove is well delimited by two special ac-
tors (colored in orange, on left and right). Screenshot of PREESM, with rate expressions
of the buffer from Actor1 to Actor2.

In order to perform an automatized DSE of the application configuration, we introduce
here a new kind of parameters, called malleable parameters. Technically, malleable
parameters inherit from regular parameters and behave like them during the analysis of
the PISDF graph. Regular parameters may contain multiple sub-expressions delimited
by semi-colons, but only the first one is valuated (from left to right). On the contrary,
malleable parameters come with an optional specific analysis and synthesis algorithm
performing the DSE: it tests all combinations of sub-expressions stored in the malleable
parameters. The DSE then selects the best point according to designer objectives, by
setting the best sub-expression of each malleable parameter as its default (i.e. first)
sub-expression. The DSE will be detailed in the following Sections 5.3 to 5.5.

In the GUI of PREESM, malleable parameters are identified by a different color
(green instead of blue) and an extra {..} symbol on top. Figure 5.1 contain two malleable
parameters: one to set the image width and the other one to set the aspect ratio.
The image height and the total image size derive from these two malleable parameters.
The expression of the AspectRatioDenominator malleable parameter is: 12;9 since the
aspect ratio is either 4:3=16:12 or 16:9.

As they technically behave as regular parameters, malleable parameters can depend
on other malleable parameters. Any parameterized entity can depend on a malleable
parameter. The space of possible application configurations due to malleable param-
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eters corresponds to the Cartesian product of their sub-expression sets. For example,
10 malleable parameters each having two sub-expressions lead to 210 = 1024 possible
combinations. Because of this combinatorial explosion and because no symbolic analysis
is performed during the DSE, more complex expressions as interval definitions are not
supported yet.

5.2 DSE: entangled problems

Design Space Exploration (DSE) helps to compare various configurations of an applica-
tion and to select the best according to objectives given by the designer. Unfortunately,
these objectives may be contradictory. Moreover, depending on what variables are com-
puted by the DSE, i.e. the solving method, the variables themselves may be entangled
and have complex relationships between each other. In this section, we briefly list main
entanglements of the objectives (in Section 5.2.1) and main entanglements of the solving
methods (in Section 5.2.2), and we specify which objectives and solving methods are
used in our DSE. Note that DSE also refers to the selection of best target architectures,
however we only consider application configuration selection in this contribution: the
architecture is already predefined by the application designer.

5.2.1 Entanglement of the objectives

DSE require objectives, expressed as metrics to minimize, to maximize, or to limit, in
order to select the best application configurations, meeting most objectives. We list
below the most important metrics, and give a few details about their entanglement:

M-1 throughput (redundant if graph period set);

M-2 latency (entangled with M-1 when latency is expressed in number of scheduler
iterations);

M-3 power/energy (entangled with M-1 since both depend on processor frequency);

M-4 memory (entangled with M-1 and M-2 to compute mutual exclusions of buffer
usage, and to store delays creating latency);

M-5 communication (entangled with M-1, M-3 and M-4 to compute mutual exclusions
of network usage, and to store transmitted data);

M-6 application QoS (entangled with all above when it depends on any parameter);
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M-7 DSE execution time (entangled with all above);

M-8 generated code size (depending on the scheduler, and so on all above).

In our contribution, we consider only metrics M-1 to M-3, M-6 and M-7. Regarding
metric M-6 for the QoS, it can depend on any parameter such as the image resolution,
which defines the amount of computations in a video application. Metric M-8 is partially
considered since it may depend on the degree of parallelism parameter (metric M-6).
Metric M-4 is partially considered since it may depend on the latency (metric M-2).
Metric M-5 is not considered at all and we currently restrict the architecture to single
homogeneous multi-processors.

The fact that metrics are mutually entangled is not always a problem: if a mathe-
matical relation is known between two metrics, then it is possible to merge the objectives
referring to these metrics during the DSE. For example, the ADFG [Hon+17] real-time
periodic scheduling synthesizer offers an option to convert throughput loss in memory
gain, depending on a graph partitioning imbalance ratio. This relation is made possible
thanks to the ADFG specific scheduling model of SDF graphs (periodic firings with-
out auto-concurrency). However, such relations are not always known, and not always
predictable. For example, the repetition vector of an SDF application depends on the
lowest common multiple of all production and consumption rates, whereas the exact
distribution of prime numbers in N is not known yet.

When no relation is known between the metrics of the objectives, there is no single
best configuration and instead there is a Pareto front of best configurations. To enforce
a single best configuration, it is possible to use a weighted sum of the objectives or to
prioritize them7. In our contribution, we consider a prioritization of the objectives: an
objective is considered only if the ones of higher priority are already optimized.

5.2.2 Entanglement of the solving methods

Multiple variables are defined or computed during the design and synthesis processes
respectively. The main variables are the mapping and scheduling of firings, the routing
and scheduling of communications, the placement of delays, the estimation of ETs and
energy of firings, and the memory allocation. These variables are all entangled with the
scheduling of firings. Besides, note that delays are usually defined or computed at the

7More complex functions aggregating the objectives exist, as the Choquet integral. Besides, some
aggregation methods (usually convex functions) may find a single best configuration while discarding
other dominant configurations regarding to the actual Pareto front (see the discarded configuration x4
in Figure 1 (b) of [AGZ19].
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SDF graph G level, before the scheduling of the corresponding SRSDF graph G∗8. It is
one of the most common way to simplify the synthesis process: the entangled variables
are solved by successive and independent solving methods, each method focusing on the
computation of a specific category of variables, such as memory allocation. Considering
all entanglements and related variables at the same time is difficult already in the domain
of timing verification [Mai+18]; to synthesize all these variables at the same time is even
more difficult. There exists a global CP formulation [RS14] for SDF graphs, but it does
not take into account delay synthesis nor QoS configuration. In the work [RS14], the
CP formulation is especially useful to not explore all possible schedules: it decreases the
scheduling execution time but then the result may not be optimal.

ETs are also required to generate a concrete static schedule9 but they are modified
by it if memory and communication contention are taken into account [NYP16]. One
way to avoid contention is to perform spatial or temporal isolation [Per+16]. Also, there
exist heuristics to minimize the memory contention with SDF graphs, as one heuris-
tic [Tra+19] dedicated to the Kalray many-core processor, however they require a precise
knowledge of the memory accesses during the execution of an actor firing. Such knowl-
edge can be modeled with PREM (PRedictable Execution Model) [Pel+11] or memory
access patterns [Gho+12; Wan+14], but PREESM does not support any model about
memory access. Thus, both memory and communication contentions are not taken into
account in our DSE. When considering real-time constraints, such as periodic tasks, a
few works are able to perform timing verification during the schedule synthesis [Did+19],
but it does not adapt the QoS. In our DSE, we consider timing verification of partially
periodic SDF graphs via the scheduler presented in Chapter 3 which automatically stops
when the system is not schedulable. Non schedulable configurations are discarded. The
support of partially periodic constraints and its scalability are the main advantages of
the scheduler presented in Chapter 3, compared with the numerous schedulers developed
for DAGs of tasks which could be used instead.

In our work, we consider that variables are solved separately in the following order:

S-1 modeling of ETs and energy per actor firing, PREESM can generate instrumented
code to infer an averaged ET estimation10;

S-2 valuation of all parameterized expressions and computation of repetition vector;
8For example, Stream Graph Modulo Scheduling [KM08] places delays after a first partial unfolding

of the graph.
9A concrete static schedule specifies the start time and end time of each task, whereas some abstract

schedules only give partial information, as an ordered list of tasks to execute.
10Either directly, or using PAPIFY [Mad+19] for a better accuracy.
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S-3 if asked, flattening of the PISDF graph and call to the delay placement heuristic
of Chapter 4;

S-4 unfolding of PISDF graph G in the SRSDF equivalent DAG G∗;

S-5 scheduling and mapping of firings (at the same time);

S-6 scheduling and routing of communications (at the same time);

S-7 memory allocation (buffer addresses of each firing input and output);

S-8 code generation (one file per Processing Element (PE)).

The generated code corresponds to the firings and communication function calls, dis-
tributed over threads according to the static non-preemptive scheduling on each PE in
the target architecture. One thread is created per PE.

Note that during the PhD, we have worked with the team of Michael Masin at IBM
Research Labs11 to formulate efficient solving methods computing all entangled variables.
However we did not succeed yet since the problem formulation involves many variables
at the same time, which makes it difficult to verify and optimize. Two formulations have
been tried:

• a suboptimal LP relaxation relying on the IBM ILOG CPLEX constraint solver
which successively solves the variables of each category;

• an asymptotically optimal formulation relying on a non public tool extending the
CPLEX capacities with a test-and-retry feature automatically generating formu-
lations which randomly fix a subset of variables at each try.

Both formulations must be iterated multiple times to refine the solution.
The most complex feature of those IBM formulations was the memory allocation,

which is optimized for the duplication special actors of PREESM. The optimization keeps
the memory address of the data to duplicate and provide the same address to all outputs
of the duplication actor instead of actually copying it. Such optimization is needed for
SIFT which would use up to 2 Gbytes otherwise, and 10 times less with the equivalent
optimization already present in PREESM thanks to memory scripts [Des+16b]. This
optimization requires to double the number of buffer variables: logical buffers and phys-
ical buffers. Logical buffers respect the SDF original semantics while physical buffer

11See Footnote 2 on Page 98.

https://www.ibm.com/products/ilog-cplex-optimization-studio
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implement the optimization. Related equations also require a formulation of the depen-
dencies between firings12, itself depending on the size of delays. Despite our efforts, both
formulations still encounter problems which have not been solved yet. For example, the
optimal formulation does not respect the delay placement rules detailed in Section 4.1.

5.3 An exhaustive DSE method

The exhaustive DSE method that we have implemented in PREESM tests all possible
combinations of malleable parameter sub-expressions of an application for a single target
architecture. Each combination of malleable parameter sub-expressions is one possible
configuration of the application, and defines one DSE point. The DSE is run after having
modeled the application with PISDF, especially its malleable parameters and the ETs
of its actors. After describing the main steps of the DSE, we detail the objectives used
to select the best DSE point.

Concretely, the exhaustive DSE algorithm tests all possible DSE points by perform-
ing for each DSE point the workflow steps S-2 to S-5 according to the steps listed in
Section 5.2.2. Step S-1 is the definition of parameterized entities, such as ETs; it is user
responsibility. Energy and ETs are specific to the given architecture; all are set in the
PREESM scenario file. The repeated steps S-2 to S-5 respectively:

S-2 valuate the given combination of malleable parameter sub-expressions;

S-3 optionally add delays with heuristic of Chapter 4 (see also Section 5.4);

S-4 convert the PISDF graph into its SRSDF unfolded form

S-5 schedule it with algorithm proposed in Chapter 3.

At the end of step S-5, metrics of the current DSE point are recorded and compared to
the best current point, according to the objectives which are detailed below.

The objectives are an input of the algorithm. They may refer to the following metrics
(encoded each with one letter):

• Throughput T inverse (corresponds to II duration);

• Latency L (maximum value of actor delay kmax defined in Equation (5.1)) and
Makespan M (Latency multiplied by II duration);

12Generic equations for the dependencies between firings of the PISDF model have been formulated
by Florian Arrestier in [Arr+19].



5.
C
on

fig
ur
at
io
n

5.3. AN EXHAUSTIVE DSE METHOD 133

• Energy E and Power P (Energy of all firings divided by II duration).

The objectives using these metrics are either full minimization (encoded with a 0) or
threshold to not exceed (encoded with any positive Integer). An example is given in
Listing 5.3. The order of appearance of an objective defines its priority.

The total energy consumption and the II duration are computed during the schedul-
ing process, respectively at the beginning and at the end of the process. The unit of the
threshold objectives are the same as the metrics they refer to. The latency is evaluated
right before the scheduling process (between steps S-4 and S-5) thanks to a graph traver-
sal applying the kmax Max-Plus algebra variant of actor delay k (see Equation (4.2)).
The definition of actor delay k implies that all incoming buffers create the same actor
delay (i.e. feed-forward graph cut) so that it respects the original application semantics
if adding new delays. However, here the designer may have added delays which do not
form a feed-forward graph cut, and thus the equality is replaced by a maximum over
all incoming buffers. kmax is formally defined in Equation (5.1); its unit is the number
of pipeline stages, or equivalently the number of scheduler iterations on which one SDF
graph iteration is spread. In the remaining part of this chapter, latency refers to kmax

while makespan refers to kmax multiplied by II duration13.

∀α ∈ V,kmax(α) = max
{b∈E| dst(b)=α}

{
kmax(src(e)) + d0(e)

cons(e)× ~r [α]

}
(5.1)

1. Comparisons : T>L>P
2. Thresholds : 0>2>10.4
3. Params objectives : >+Hvideo/image_height \

>+Hvideo/AspectRatioDenominator

Listing 5.3 – Sample objective input for the DSE algorithm. The first line gives the
priorities of each objective (highest priority on the left). The second line specify the
threshold to not exceed for each objective of the first line (in the same order). A 0
encodes minimization. The third line gives the parameter objectives.

A second set of objectives can optionally be given by the designer to ask the mini-
13This makespan is actually an upper bound since the first firing in the SDF graph topological order

may happen at any time during a scheduler iteration if some delays are located after this firing. Same
reasoning is valid for the last firing in topological order, which might be the first inside a scheduler
iteration if delays are located right before it. The lower bound of the makespan is (kmax − 1) × T with
T equal to the II duration.
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mization or the maximization of any parameter of the PISDF graph. These objectives
may be used to control the QoS of the application. These objectives are also prioritized,
and are appended to the objectives based on metrics. Last line of Listing 5.3 gives an
example of two parameter objectives. Character + encodes maximization while - encodes
minimization.

Each objective is internally transformed as a DSE point comparator. Each DSE
point contains all metrics and parameters valuation of the corresponding combination of
malleable parameter sub-expressions. Minimization and maximization comparators are
obvious, but positive thresholds require a specific implementation: two points are con-
sidered equivalent only if both have their metric lower than the threshold. For example,
the power threshold comparator code is detailed in Listing 5.4.

1 public int compare(DSEpointIR arg0, DSEpointIR arg1) {
2 double power0 = (double) arg0.energy / (double) arg0.durationII;
3 double power1 = (double) arg1.energy / (double) arg1.durationII;
4 if (power0 > threshold || power1 > threshold) {
5 return Double.compare(power0, power1);
6 }
7 return 0;
8 }

Listing 5.4 – Code of the power threshold comparator of DSE points.

Finally, when testing each DSE point, the DSE algorithm calls a global comparator
which iterates over all single objective comparators in the priority order. An objective
comparator is called only if the ones of higher priorities did not return 0. In other words,
the global comparator stops the comparison as soon as one DSE point is better than
the other according to the currently tested objective. The global comparator code is
detailed in Listing 5.5. Note that any kind of objective is allowed to appear multiple
times in the list, possibly with different thresholds.

5.4 Improving DSE with automatic delay placement

When the highest priority DSE objective is the II duration minimization (i.e. throughput
maximization), it might be useful to pipeline the applications as demonstrated in Chap-
ter 4. After describing the general conditions to call the automatic pipelining heuristic,
we detail the formulae used to compute the number of pipeline stages to add.
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1 public int compare(DSEpointIR o1, DSEpointIR o2) {
2 // variable ``comparators''
3 // is the list of all objectives ordered by priority
4 for (final Comparator<DSEpointIR> comparator : comparators) {
5 final int res = comparator.compare(o1, o2);
6 if (res != 0) {
7 return res;
8 }
9 }

10 return 0;
11 }

Listing 5.5 – Code of the global comparator of DSE points.

5.4.1 Adding delays to improve the results

Pipeline delays may improve the throughput, and thus especially benefit the II duration
minimization objective. It may also help to respect a specified graph or actor period.
However, adding delays increase the latency and makespan metrics. Moreover, reducing
the II duration may increase the power consumption (since same energy for a smaller II).
Due to these drawbacks, the automatic delay placement is only an optional feature of
the DSE. Each original DSE point, is tested first without the delay placement heuristic.
If the point does not already respect the DSE objectives, it is tested a second time after
one call of the delay placement heuristic. At worst, this DSE improvement doubles the
original number of tested DSE points.

Moreover, the delay placement heuristic is never called if a makespan minimization
or a latency minimization objective has a highest priority than a II duration objective
(minimization or threshold). As soon as the objectives include a latency threshold, the
latency threshold becomes an upper bound of the number of accepted pipeline stages.
If the minimum latency threshold is equal to 1 pipeline stage, no delay is accepted in
the application and thus the delay placement heuristic is never called. Additionally, the
heuristic is not called if any of power, latency or makespan threshold objective is not
met. Indeed, adding pipeline stages to reduce the II duration will only worsen those
objectives.

The delay placement heuristic works even if some size of delays are parameterized
(see parameterizable entity E-4) since their valuation is resolved first. Unfortunately,
the delay placement heuristic does not take into account the delays already present in
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the graph, so it may add delays at the same place as preexisting delays. However, the
number of pipeline stages to add is limited by the difference of any latency threshold
and the latency of the current DSE point as we will see in the next subsection.

5.4.2 Precomputing the number of cuts

The delay placement heuristic presented in Chapter 4 requires two inputs: the number
of graph cuts to add x, and the number of balanced graph cuts to preselect y. When
calling the heuristic, we always set y ← x+ 1 so that we introduce slightly more choices
than necessary. Now we detail how x is computed.

Let’s note Lcur the latency of the graph resulting from the current DSE point. By
definition, Lcur = maxα∈Vcur{kmax(α)}. Also, LTHR denotes the minimum value of any
latency threshold objective. Then as stated at the end of the previous subsection, we
obtain Equation (5.2).

x ≤ LTHR − Lcur (5.2)

Based on the scheduling of the current DSE point without added delays, we know its
II duration Tcur. If a too small graph period was set, it may happen that the scheduling
process did not work, however in this case we know the relation Tcur = TGcur . Then it
is possible to estimate how far was the current schedule from the ideal case where the
processor utilization factor is full: Ucur = m. The estimate corresponds to an upper
bound of the cuts necessary to reach this ideal case, as stated in Equation (5.3). In the
ideal case Ucur = m, the fraction is equal to 1 and thus no cut is needed. Hence we add
the term −1 to convert number of pipeline stages to number of cuts. x is without unit
since we divide time unit by time unit.

x ≤
⌈

Tcur ×m∑
α∈V ~rcur [α]× Cα

⌉
− 1 (5.3)

Then, if any II duration threshold objective is present, x is refined according to it.
In this case, the number of cuts is upper bounded by the ratio of the current II duration
Tcur on the threshold TTHR, as stated in Equation (5.4).

x ≤
⌈
Tcur
TTHR

⌉
− 1 (5.4)

Figure 5.3 gives an example on the usage of TTHR to upper bound x. Considering
TTHR = 1 and Tcur = 2, Equation (5.4) states to add 1 cut. If adding the only possible
cut, between actors A and B, we indeed obtain a schedule where TTHR = Tcur which
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A B

(a) Graph example. The
only possible cut is repre-
sented with a dashed line.

1 2

PE 1 A B

PE 2

1

PE 1 A

PE 2 B

(b) Two schedule examples of graph 5.3a on two PEs: on the
left Tcur = 2 without any cut, on the right Tcur = 1 with one
cut between actors A and B.

Figure 5.3 – Example to estimate number of cuts in DSE.

corresponds to the ideal case Ucur = m.
For makespan threshold, we use a ratio with the ideal case U = m. The number of

cuts has to be less than the makespan threshold MTHR divided by the minimum ideal
II duration. The upper bound is defined in Equation (5.5).

x ≤
⌈

MTHR ×m∑
α∈V ~rcur [α]× Cα

⌉
− 1 (5.5)

Finally, x is selected as the maximum Integer respecting all Equations (5.2) to (5.5).
If any of the considered threshold is not present in the objectives, then the corresponding
equation is ignored. At worst, if there is no threshold at all, x is refined with Equa-
tion (5.3) only. The delay placement heuristic is not called if x ≤ 0 since it would be
useless. Note that Equations (5.2) and (5.5) are strong limits on the number of cuts,
whereas Equations (5.3) and (5.4) are only informative upper bounds which are not for-
bidden to exceed. If exceeding bounds of Equations (5.3) and (5.4), memory usage will
most probably increase while throughput gain will be negligible.

5.5 A naive heuristic for Integer malleable parameters

Another way to improve the DSE is to only explore a subset of all possible DSE points,
so that the DSE execution time decreases. Randomly selecting the subset to explore
may remove interesting points, so instead we focus on the malleable parameters holding
only Integer numbers in their sub-expressions. Indeed, we expect a relationship between
the evolution of any malleable parameter value and the evolution of some metrics of the
corresponding DSE points. For example, if the value of a specific malleable parameter
increases, the total number of firings may increase as well. Of course this is not always
true, yet this is the only possible expectation without further symbolic analysis of the
parameterized expressions. Hence, we have implemented a heuristic performing a kind of
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dichotomy on the Integer numbers of malleable parameters. The heuristic works only for
malleable parameters whose all sub-expressions are Integer numbers. For other malleable
parameters, the heuristic is not called and all their combinations of sub-expressions are
explored.

The heuristic is a kind of dichotomy on the sorted sets of values of all malleable
parameters holding only Integer numbers. We refer to such malleable parameters as
Integer malleable parameters. Two values are selected in the set of values of each Integer
malleable parameters, and these two values replace temporarily the full set of possible
values; an example is detailed in the next paragraph. Then, all combinations of other
non Integer malleable parameter sub-expressions with those two values are explored,
which gives a temporary best DSE point. The combination of sub-expressions of this
best point is tracked to reduce the full set of values of each Integer malleable parameter.
The non selected value of each Integer malleable parameter is removed, as well as all
values below (respectively, above) if it was the smallest (respectively, greatest) value of
the two values previously selected.

The set reduction process is iterated until all sets of values of the Integer malleable
parameters contain only one value. The final best DSE point is selected among all
combinations of sub-expressions over all iterations. The two sample values representing
a set at each iteration14 are symmetrically located at one third and two thirds of the set
size. Thus, if smax is the maximum size of all sets, approximately log 3

2
(smax) iterations

are needed in total. log 3
2
(smax) is an over approximation of the number of iterations

since the maximum set size minus 2 (for the two selected values to test at each iteration)
might not be a multiple of 3. More precisely,

⌊
scur−1

3

⌋
+ 1 values are removed from the

set containing scur values at each iteration. For an Integer malleable parameter holding
5 different values, 3 iterations are required to fix it, whereas log 3

2
(s) ≈ 3.419. Figure 5.4

depicts a set reduction example of an Integer malleable parameter holding 13 Integer
values.

At each iteration, all combinations of non Integer malleable parameter sub-expressions
are tested, along with the only two values of any Integer malleable parameter. Conse-
quently, the heuristic is useful especially when most of the malleable parameters are
Integer malleable parameters.

14The set may actually have been already reduced to a unique value. In such case, the parameter is
considered as fixed.



5.
C
on

fig
ur
at
io
n

5.6. EVALUATION 139

10 ; 11 ; 12 ; 13 ; 14 ; 15 ; 16 ; 17 ; 18 ; 19 ; 20 ; 30 ; 40× ©

⌊
#set−1

3

⌋
values

⌊
#set−1

3

⌋
values

reduced set

Figure 5.4 – Dichotomy bounds example of an Integer malleable parameter. Only values
14 and 18 have been tested in the previous DSE iteration because they split the set in
three subsets of equivalent sizes. Here the temporarily best value is 18: it gives a better
DSE point than the value 14. Thus, the reduced set of values for the next DSE iteration
contains only values greater than 14.

5.6 Evaluation

In this section, we present an evaluation of the DSE method detailed in the previous
sections. The evaluation is exclusively based on the SIFT video application, executed on
an homogeneous architecture with 4 PEs. The DSE execution time have been measured
for the exhaustive DSE and for its delay and Integer heuristics. The best DSE point
found is discussed for these different DSE cases.

5.6.1 Test application: live video SIFT

The SIFT live video application is a modified version of SIFT presented in Section 2.1.
Note that this version does not depend on any external image processing library. The
live video version uses a webcam stream to retrieve the input image and as an output,
it displays the keypoints above the input image in real-time. The application runs
indefinitely and its frame rate is limited either by the SIFT processing time or by the
webcam frame rate (30 fps maximum in our case, hardware dependent).

Malleable parameters

In order to control the processing time of the SIFT application, we have defined the
following malleable parameters in its PISDF graph:

MP-1 imgDouble to upsample the original image once via a parameterized path (true by
default);

MP-2 AspectRatioDenominator to select the image aspect ratio, 4:3 (= 16:12, by de-
fault) or 16:9;
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MP-3 image_width to select the image width, 640 (by default) or 320 pixels;

MP-4 parallelismLevel to select the degree of data parallelism (corresponding to the
parameter p introduced in Chapter 2) in {1; 2; 4; 5; 10} (4 by default);

MP-5 delayRead and delayDisplay to add delays on pre-processing and post-processing
(false by default);

MP-6 NumeratorFrequency to imitate a frequency selection, 1:1 (by default) or 3:4 or
5:4;

MP-7 nKeypointsMaxUser for the number of detected keypoints, in {80; 90; ...; 150; 160}
(100 by default).

All those malleable parameters hold only Integer values, so the heuristic presented in
Section 5.5 can be called to reduce the number of tested DSE points.

Main objectives of the DSE are a throughput threshold (to ensure 30 fps) and a
makespan threshold (below 100 ms to not disturb the user15). The next parameter
objectives gives a higher priority on the image resolution (image_height) and the quality
of the processing (imgDouble). The objective input is detailed in Listing 5.6.

1. Comparisons : T>M
2. Thresholds : 33000000>100000000
3. Params objectives : >+Hvideo/image_height \

>+SIFT/imgDouble \
>+Hvideo/AspectRatioDenominator\
>-Hvideo/parallelismLevel \
>-Hvideo/NumeratorFrequency \
>+Hvideo/nKeypointsMaxUser

Listing 5.6 – Objective input for the DSE evaluation of the SIFT video application.

Delay placement

Two malleable parameters (delayRead/Display, MP-5 in the preceding list) are used
to add pipeline delays delimiting pre- and post-processing (such as color scale to grey

15A very subjective and limited experiment has shown that seeing his/her own reflection with a delay
of more than 100ms on a webcam is annoying.
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scale conversion). The placement of these pipeline delays has not been deduced from
the heuristic presented in Chapter 4. Indeed, the heuristic depends on the repetition
vector of the application, which depends on the malleable parameter parallelismLevel.
The heuristic also depends on the ETs of the actors, modified by all the aforementioned
parameters, except MP-5 for the delays. As the delay placement should be recomputed
for each configuration, we have chosen to set by ourselves two possible placements, and
also to call the delay heuristic after the scheduling process, as seen in Section 5.4. If
delays are added by the heuristic at the same place as specified by delayRead/Display,
their sizes are summed (so it is a useless DSE point).

Execution times and energy modeling

Timings are linearily parameterized by the number of pixels, by the degree of parallelism
(as done in Equation (2.2)), and by the frequency. For example, the yuv_to_rgb pre-
processing actor has the following timing:

(1150000.0*tot_image_size*DenominatorFrequency)/

(RefTotSize*parallelismLevel*NumeratorFrequency)

Here 1150000 is the ET of actor yuv_to_rgb measured in nanosecond for the default
number of pixels RefTotSize. This linear computation of the ET is an ideal case which
does not respect the Amdahl’s law [Amd67], but it is sufficient regarding to the high
degree of data parallelism of the processing actors and to the small number of PEs in
the target architecture.

Unfortunately, we did not performed actual measurements for the energy consump-
tion. However, the parameterizable expressions of energy support common energy model
(for example, see equations (2.4) and (2.5) in the thesis of E. Nogues [Nog16]). Currently,
the DSE computes the energy as the sum of all energy expressions per actor firing, with-
out considering the energy of the processor alone. The power is obtained by dividing the
computed energy by the II duration. Moreover, the frequency minimization objective
that we define corresponds to a better power efficient strategy than idle-to-race as stated
in [Hol+14]. Another reason to not model energy in our experiments is that Dynamic
Voltage and Frequency Scaling (DVFS) [IY98] is automated on our laptop processor and
it is difficult to enforce its frequency.

5.6.2 Experiments

Experiments were performed on a laptop with an Intel i7-7820HQ @ 2.90GHz processor
(4 physical cores) and the GCC compiler version 7.5.0 (option -02) on Ubuntu 18.04.
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Note that after the DSE, a different scheduler (legacy PREESM scheduler, FAST initial
step [KAG96]) is called. This scheduler is longer to execute and cannot be used in the
DSE, especially because it takes communications into account and because it performs a
best fit mapping while the DSE scheduler only performs first fit mapping (see Chapter 3).

Two experiments have been performed. The first experiment assesses the choice
of the degree of parallelism of SIFT introduced in Chapter 2. The second experiment
details the DSE execution times and best DSE points depending on the DSE options
(exhaustive, delay heuristic, Integer heuristic).

Throughput versus degree of parallelism

Figure 5.5 depicts an excerpt of the exhaustive DSE with the SIFT malleable param-
eters MP-1 to MP-4. The II duration is represented in function of the application
configuration, with one line per degree of parallelism. The II duration is computed of-
fline by the scheduler, it is not measured on actual executions of the application. The
orange horizontal line corresponds to the II duration threshold objective ensuring 30 fps.
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Figure 5.5 – Duration of II as function of the SIFT application configuration, for different
degrees of parallelism p and four PEs. r640x480i0 encodes the image resolution and
the value of the imgDouble parameter. All other parameters are fixed to their nominal
value.
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As expected, the II duration decreases when the degree of parallelism increases; their
lines never cross each other. The degree of parallelism 4 (denoted p4 in Figure 5.5) has
the highest number of DSE points below the 30 fps II duration threshold. There are
also four PEs in the target architecture. Thanks to the parameter objectives detailed in
Listing 5.6, the exhaustive DSE method selects the best point having an image resolution
of 640x360, without the initial image upsample path (malleable parameter MP-1 set to
false), and with the degree of parallelism of 4. Note that even if including the delay
malleable parameter MP-5 in the DSE, the best point remains unchanged. This result
demonstrates that for the SIFT application, it is better to adapt the degree of parallelism
to the number of available PEs, than to pipeline the application. Moreover, the DSE
is able to select an acceptable configuration, which meets all threshold requirements: II
duration and makespan.

DSE execution time versus best point quality

DSE execution times are reported in Table 5.1, with and without delay and Integer
heuristics. Each point takes around half a second (538 millisecond) to be explored.
However this is an average since the scheduling process is linearithmic in the repetition
vector, itself depending on the malleable parameter values. Half a second per point is
not so fast, and advocates for the Integer heuristic to decrease the number of explored
DSE points.

The number of explored points and the best one are also reported in Table 5.1. As
for the previous experiments, delays are almost never added, except with the Integer
heuristic (delayRead). Using both heuristics for malleable parameters MP-1 to MP-
5 divides by a factor two the number of explored points (160 to 80). On one side, the
delay heuristic triggers slightly more points to explore, and on the other side, the Integer
heuristic drastically decreases the number of points to explore. For example, with both
heuristics for malleable parameters MP-1 to MP-7, only 316 points are explored over
4320 in total. The heuristics do not modify the best point quality: the same image
resolution is selected for all types of DSE. However, with malleable parameters MP-1
to MP-7, the highest frequency is selected, allowing for an increase of the aspect ratio,
from 16:9 to 16:12, and an increase of the number of keypoints, from 100 to 160.

Finally, the degree of parallelism selected by our DSE is always equal to the number
of available PEs, 4 in this experiment. In the meantime, delays are almost never added.
In this experiment on the SIFT application, it is more efficient to adapt the degree of
parallelism than to pipeline the application graph. This conclusion cannot be generalized
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to any graph and any number of PEs. Indeed the functions that we used to model the
actor ETs are inversely proportional to the degree of parallelism, which might favor
parallelism over pipelining. In the general case, this linear model is too optimistic. For
example, doubling the number of PEs executing a task would divide by less than two
the total ET of that task.

DSE type M. Param. #Points DSE time Best point Delays
Exhaustive MP-1 to MP-5 160 1 m 26 s r640x360i0p4 none
Delay MP-1 to MP-5 186 1 m 43 s r640x360i0p4 none
Integer MP-1 to MP-5 68 32 s r640x360i0p4 delayRead
Delay+Integer MP-1 to MP-5 80 38 s r640x360i0p4 none
Exhaustive MP-1 to MP-7 4320 37 m 19 s r640x480i0p4 none
Delay+Integer MP-1 to MP-7 316 2 m 57 s r640x480i0p4 none

Table 5.1 – Results of DSE on SIFT video for different configurations of the DSE algo-
rithm. Column #Points correspond to the number of points actually explored by the
DSE, possibly different than the total number of DSE points (higher if delay heuristic,
lower if number heuristic).

5.7 Related work

In our contribution, we explore multiple application configurations on the same archi-
tecture, with a unique scheduler. Thus, our work is related to multi-objective DSE, to
parameterized SDF applications, and also to parallelism grain adaptation.

5.7.1 Multi-objective DSE

Numerous works target DSE of applications on multi-processors [Pim17]. Joint en-
ergy consumption and real-time scheduling optimization have been widely studied using
DVFS, for both offline [WRG16] and online [GGP17] cases, and even considering the
temperature [AGZ19]. To these works, we can add a few tools also taking into account
energy and real-time constraints, which compute the best mapping [Abd14] or the best
mapping and frequency at the same time [Yan+19]. Finer compilation optimizations
may also result in energy trade-offs, such as function inlining [MF20]. However, in our
work, we stay at a coarse representation level of the applications, and we did not inves-
tigate the multiple existing compilation optimizations, especially the SSE/AVX vector
extensions. Moreover, we focus on SDF graphs whereas none of the aforementioned work
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supports it.
More specifically, there exists a previous work optimizing makespan and throughput

objectives for scheduling of SDF graphs, using ILP formulation and heuristics [LGE12].
However, their SDF input graph is not parameterized. Considering parameters, the
IGOR tool [Smi+19] helps to deduce the impact of each parameter, but it is especially
useful if there are numerous possible values per parameter. In our experiments, half
of the parameters are binary decision variables (malleable parameters MP-1 to MP-3
and MP-5).

Closely to the SDF model, the MASES tool [YKG18] optimizes throughput, makespan
and processor utilization of SRSDF graphs. Another tool [Kan+12] performs multi-
objective DSE of a variant of KPNs, especially focusing on the mapping and the network
usage. Code generation and DSE [Sch+19] has also been studied for an extended version
of SDF with dynamic actors, but it does not compute the placement of pipeline delays.

Additionally, many DSE tools consider multiple variables while optimizing a single
objective. The only objective usually is the throughput (see DSE of SRSDF appli-
cations with communication contention [KBB06]), or the schedulability according to
any requirement (for example, see DSE of Unified Modeling Language (UML) appli-
cations [Apv+06]). Yet they may integrate other objectives if expressed as strong re-
quirements, as it is the case of FoRTReSS [Duh+15] for the DSE of an SRSDF variant
on FPGAs, taking into account communications and floorplanning. Finally, DAMSHE
methodology [Sur+19] also takes into account heterogeneous hardware with both FPGAs
and regular CPUs, but the DAMHSE methodology is not an automatic DSE: it is driven
by the designer.

5.7.2 Parameterized SDF MoCs

A complete survey of parameterized SDF MoC has been done by Bouakaz et al. [BFG17].
One of the oldest work [BB01] separates the parameter valuation from their usage; all
parameters must be resolved and fixed before each graph (or subgraph) iteration. Other
work [TB06] analyses SDF graphs having intervals as production and consumption rates.

Parameterized SDF graph raise interesting problems about when the parameters can
change their value during the graph iterations. However, in our work, all parameters are
fixed for all iterations of the application. Consequently, we do not support parameters
depending on any actor output. Such limitation is an advantage for other aspects,
especially the memory usage which is predicted and optimized after scheduling.

Other parameterized models take advantage of symbolic analysis of the rates, as
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does BPDF (Boolean Parametric DataFlow) [Bem15]; but BPDF rate expressions are
restricted to multiplications. Unfortunately, our DSE algorithm does not benefit from
the symbolic expression of parameters: they are all evaluated and fixed before scheduling.
Thus we cannot benefit from promising parametric scheduling [PGB19], which defines
regions of equivalent schedules for tasks without dependencies. Similar parameter syn-
thesis techniques already exist for Timed Automata, as the IMITATOR tool [And+12b].

5.7.3 Parallelism adaptation

An important aspect of parameters is their influence over the parallelism of the applica-
tion. They may modify both data parallelism (through rate divisions or multiplications)
and task parallelism (trough path selection, with rates equal to 0 in PREESM).

For example, a method identifies hot actors, i.e. bottlenecks, and provides a heuristic
to split them [Far+11]. Similarly, multiple tools rely on SDF graph unfolding to obtain
efficient schedules [KM08; Zhu+16]. There exists also a Mixed Integer Linear Program-
ming (MILP) formulation to select the level of intra-parallelism [Zho+16] (here, note
that each task may require multiple processors at the same time). Besides, an extension
of the SDF MoC, Scalable Synchronous Dataflow, supports the automatic modification
of the repetition factor of some actors via a vectorization algorithm [Rit+93]. Graph
pattern detection and substitution is another way to reduce parallelism [CS12].

In our experiments, a single malleable parameter was controlling the degree of data
parallelism of multiple actors. Finer optimizations could configure this degree of data
parallelism independently for each actor in order to produce the best mix between task
parallelism and data parallelism according to the graph topology. To our knowledge, this
specific problem has not been widely studied for SDF graphs, but algorithms exist for a
kind of DAGs with parameterized data parallelism [Mar+18] executed on heterogeneous
target architectures [NSC07]. In the domain of DAG scheduling, such parameterized
parallelism corresponds to moldable tasks if the degree of parallelism is static, and to
malleable tasks if the degree of parallelism can be changed dynamically. Algorithms
developed for moldable tasks may integrate multiple objectives as makespan and en-
ergy minimization [DS10]. This fine data parallelism adaptation is especially needed
when considering clustered architectures with constraints on input and output data lo-
cality [BDS02]. Unfortunately, our scheduler does not consider neither data locality nor
communication times to move data.

Finally, only a few models support the modification of task parallelism, since it mod-
ifies the application semantics. However, it is an important feature when dynamically

https://www.imitator.fr/index.html
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adapting the QoS. The RDF (Reconfigurable DataFlow) model [Fra+19] supports it
via graph rewriting. The BPDF model [Bem15] supports the parameterized removal of
existing actors, but not their addition, via a Boolean activation input. The PREESM
tool supports the parameterized removal of existing actors, but not their addition, with
a few restrictions on the paths containing them.

5.8 Conclusion

Our DSE approach helps to design dataflow processing applications having minimum
QoS requirements, while minimizing other objectives, as latency for example. Instead
of assessing multiple target architectures or multiple possible mappings, the presented
DSE explores the available application configurations expressed with PISDF malleable
parameters. As in another work dedicated to the design of a real-time computer vision
application [AVA19], our DSE approach especially helps to compute the appropriate
degree of parallelism p, yet only if this degree of parallelism is modeled with a malleable
parameter in our case. If the processor frequency is also modeled with a malleable
parameter, we are able to find a suitable one given throughput or energy objectives.

Our approach naively performs an exhaustive search by default, and does not benefit
from a symbolic analysis of the application parameters. However, efficient heuristics for
scheduling, pipelining and parameter value selection, help to perform our DSE algorithm
in a reasonable time: a few minutes at most in our experiments. The presented DSE
can be improved in many directions, but such improvements would most likely increase
the DSE execution time.

Among possible improvements of our DSE, the most important one is to adapt its
internal tools (for scheduling and pipelining) to heterogeneous target architectures. Such
heterogeneous architectures also call for communication modeling (especially if memory
is distributed), which triggers the problem of communication contention on shared buses
for example. Memory is also a source of contention, and the memory footprint mini-
mization is not currently available as an objective. Both communication and memory
modelings require to heavily extend the capabilities of the DSE algorithms relying on
the PISDF application model and the S-LAM architecture model used by PREESM.

Another important future work is to consider multiple applications to configure to-
gether. It is easy to add a dummy actor connecting two application graphs together so
that both applications are seen as a single graph by our algorithms. With this method,
the fairness of the processor usage between the two applications may also be configured
with malleable parameters on the rates of the edges coming from the dummy actor.
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However, connecting the graphs of multiple applications implies that DSE objectives
as makespan and throughput are not anymore specific to each application, which is a
major drawback. A simpler future work is to implement other methods to select the
best DSE point according to the given objectives. The current method selects the best
point by prioritizing the objectives, while the domain of Multi-Criteria Decision Analysis
(MCDA) offers numerous other methods. Finally, the easiest improvement to perform
is to test multiple DSE points in parallel: for now, all points are tested sequentially, one
after the other.

Dissemination and Implementation

The contribution presented in this chapter has not been published nor submitted yet
for peer-review. The algorithms presented in this chapter have been implemented
as workflow tasks of the PREESM tool. See the following task description for the
implementation of all DSE algorithms described in this chapter:
- pisdf-mparams.setter

https://preesm.github.io/docs/workflowtasksref/#malleable-parameters-setter


Conclusion

In this thesis, we have studied the problem of configuration of parameterized Syn-
chronous Data Flow (SDF) graphs with Quality of Service (QoS) constraints on hetero-
geneous multi-processor architectures with hardware constraints. In order to solve this
problem, we have proposed four contributions regarding modeling, scheduling, pipelining
and configuration itself. Unfortunately, these contributions are limited to homogeneous
multi-processors. Nevertheless, experiments have shown that the configuration can be
performed in a reasonable time, a few minutes, with multiple parameters as the im-
age resolution and the multi-processor frequency. Energy, throughput and latency con-
straints are also taken into account. Contributions are summarized in the next section.
A discussion on future work closes this thesis.

Summary of contributions

The four contributions presented in this thesis cover different aspects of the design of a
dataflow processing application. The first design step is the modeling of the application;
then the application has to be configured to meet some constraints coming from hard-
ware or software side, as the frame rate of a camera. Design Space Exploration (DSE)
is a common technique to perform this configuration, and in our case it uses scheduling
and pipelining techniques. However, due to the exponential number of possible configu-
rations, an exhaustive DSE may be prohibitive. Thus, most of the algorithms presented
in this thesis are heuristics dedicated to accelerate the DSE and to scale to large SDF
graphs with dozens of actors. Our main use-case, the Scale Invariant Feature Transform
(SIFT) image processing application contains around 70 actors and is constrained with
a minimum throughput and a maximum latency. Thanks to the contributions we are
able to model SIFT with a parameterized SDF graph and to automatically configure its
image resolution to respect both throughput and latency constraints. All contributions
have been implemented in the PREESM open-source tool.

149
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Modeling Two contributions, detailed in Chapters 2 and 3, are related to modeling.
First we have shown in Chapter 2 how to model a category of imperative for loops
with the SDF model, so that theses for loops can be parameterized and adapted to
the number of Processing Elements (PEs) in the target architecture. This contribution
eases the design process since it avoids using more complex dataflow models as the Cyclo-
Static Data Flow (CSDF) Model of Computation (MoC). Then, in Chapter 3, we have
discussed the analysis of SDF graphs having periodic constraints on some of their actors,
to represent the behavior of some components of a processing application, especially its
sensors and actuators.

Scheduling While modeling is the first design step usually manually performed by
the designer, scheduling is the main next step, to automatically execute the modeled
application. In Chapter 3, a fast non-preemptive offline scheduler has been introduced
to schedule SDF applications, even when having periodicity constraints. This scheduler
is highly scalable and experiments show that is has a fair quality compared to an optimal
one: global Earliest Deadline First (EDF).

Pipelining A common optimization of SDF graphs is to pipeline them by adding de-
lays to break some of their data dependencies. While this optimization may dramatically
improve the throughput of an application, it also increases its memory footprint and its
latency. In Chapter 4, we define admissible graph cuts to insert delays on SDF graphs so
that the application semantics is not modified. We also present a pipelining heuristic to
automatically compute valid delay placements on a subset of such admissible cuts. This
pipelining heuristic has been tested on various SDF graphs, and it is especially efficient
when considering a large number of PEs in the target architecture. The heuristic is
performed before the scheduling step during the design process.

Configuration Our last contribution, presented in Chapter 5, uses all the aforemen-
tioned contributions to select the best configuration of a parameterized SDF graph ac-
cording to some constraints on energy, latency, throughput and QoS. We propose an
exhaustive DSE algorithm and two heuristics to configure the application according to
the constraints. The heuristics either reduce the number of explored configurations to
accelerate the DSE, or improve each explored configuration by automatically performing
an additional pipelining step. Our three DSE algorithms find a suitable configuration of
the SIFT image processing application, optimizing the image resolution under through-
put and latency constraints.
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Future work

Combined together, our contributions enable us to configure a parameterized SDF graph
on a multi-processor homogeneous architecture. However, multi-processors, and espe-
cially Multi-Processor System-on-Chips (MPSoCs) are now embedding various kinds of
processors which are specialized to reduce the energy consumption or to accelerate the
computations of specific algorithms. All our contributions have to be adapted to take
into account heterogeneous multi-processor architectures. We think that such adaptation
is achievable in short-term for the modeling, pipelining and configuration contributions,
but our scheduler requires more work, especially if integrating communication costs.

More broadly, we think that promising but difficult future work is to develop an end-
to-end global approach to accurately configure applications: from modeling to actual
execution. It implies at least two challenges: (1) powerful symbolic analysis to derive
the importance of each variable of a system, and (2) simulation and actual execution of
configurations to better match the reality. Regarding challenge (1), symbolic analysis
could allow us to parameterize the repetition vector, even when parameters use complex
arithmetic expressions. Regarding challenge (2), only a subset of the complete behavior
of an application in its actual environment is effectively and accurately modeled. Thus,
we always need to confront reality. Unfortunately, our configuration algorithm does not
use experimental results to refine its best, theoretical, configuration. For instance, Ex-
ecution Times (ETs) can be estimated by Parallel and Real-time Embedded Executives
Scheduling Method (PREESM) but they are not automatically refined.

Finally, in this thesis we have focused on static applications and offline synthesis,
for scheduling, and pipelining and configuration. However, another global future work
is to adapt our contributions to dynamic environments, for example, in the SDF run-
time manager Synchronous Parameterized and Interfaced Dataflow Embedded Runtime
(SPIDER). A possible use-case is the reconfiguration of the degree of parallelism p and
the QoS when one or multiple PEs are not anymore available, due to a failure or a power
shortage. SDF iterators may already be modeled with SPIDER. In this case, the iterator
not only stores the values of the indexes, but it also computes them. But computing the
best suitable degree of parallelism as done in the last contribution may still require mul-
tiple minutes, which is too long. We believe that both aforementioned challenges (1) and
(2) would help this future work: symbolic analysis would accelerate the reconfiguration
and online actual executions would detect the need for reconfiguration.

Hereafter we detail future work specific to each contribution.
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Modeling On modeling, the main long-term future work is to automatically transform
applications written with an imperative programming language to the SDF MoC. Indeed
this complex design step is often performed manually by the designer. Such transforma-
tion is difficult first because the SDF MoC is less expressive than almost all imperative
languages, and second because a suitable dataflow granularity has to be extracted. Re-
garding periodicity constraints, the main long-term future work is to complete them
with latency constraints. Indeed, an actuator may be dependent on a sensor activation
and be required to operate before a specific deadline, shorter than the period if any.

Scheduling The main future challenge for our scheduling algorithm is to consider het-
erogeneous multi-processors and communication times between the processors. However,
taking into account communications also imply taking into account communication con-
tention. Similarly, we did not take into account neither memory contention nor data
locality. This challenge is especially difficult to solve if the scheduler has to remain fast:
adding new variables and constraints will most probably reduce its rapidity and scala-
bility. Moreover, it requires a precise model of available means of communication on the
target architecture, and a precise model of memory accesses. A short-term future work,
is to adapt our scheduling algorithm to heterogeneous multi-processors without taking
into account communications.

Pipelining Pipelining of SDF graphs may increase the memory footprint of the ap-
plication. Our heuristic focuses on a subset of valid delay placements to be fast, thus
potentially excluding good solutions which imply a smaller memory footprint. Yet,
adding more solutions to explore will result in a longer execution time of the heuristic.
Another way to improve the pipelining heuristic is to benefit from a symbolic analysis of
the SDF graph parameters in order to output the placement and parameterized sizes of
delays to add instead of their concrete Integer sizes. This long-term future work would
especially benefit the last contribution regarding automatic configuration.

Configuration The current configuration is naive and close to brute-force. A sym-
bolic analysis of the SDF graph parameters would allow us to infer rapidly precious
information without performing scheduling. One of this information is the repetition
vector. However, such symbolic analysis is a long-term future work if considering com-
plex arithmetic expressions in parameters. Another long-term future work is to consider
multiple applications at once. This is already possible by connecting the SDF graphs of
the applications, but then the configuration objectives are not specific anymore to each



153

application. A short-term future work is to integrate multiple methods to compare the
explored configurations. Currently, objectives have to be prioritized, which allows for
a best configuration definition. Different methods, including Pareto front generation,
would benefit to the designer when some objectives cannot be prioritized.
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Titre : Modélisation, Ordonnancement, Pipelinage et Configuration de Graphes Syn-
chrones de Flux de Données sous Contrainte de Cadence

Mots-clés : SDF, modélisation, ordonnancement, pipelinage, DSE
Résumé : Les Systèmes Multi-Processeurs
Intégrés sur Puce (MPSoC) sont maintenant
embarqués dans de plus en plus d’appareils,
par exemple sur des caméras intelligentes qui
peuvent exécuter des applications de traite-
ment d’image en temps réel. La conception
d’applications exploitant entièrement les capa-
cités d’un MPSoC est difficile ; elle demande
de prendre en compte plusieurs contraintes
telles qu’une consommation maximale d’éner-
gie pour préserver la batterie et une fréquence
d’images minimale pour assurer une bonne
qualité vidéo. Grâce à de rapides heuristiques
d’analyse et de synthèse, cette thèse adopte
une approche globale, de la modélisation à
la configuration, au problème de conception.
Pour ce faire, l’application à concevoir est
d’abord modélisée indépendamment de n’im-
porte quel MPSoC. L’application est ensuite
automatiquement configurée pour un MPSoC

grâce à un logiciel d’analyse et de synthèse.
Les modèles utilisés dans cette thèse dé-
coulent du Modèle de Calcul (MoC) Syn-
chrone de Flux de Données (SDF), et le lo-
giciel d’analyse et de synthèse est PREESM.

Dans cette thèse, trois aspects de la
conception ont été abordés : la modélisation
de boucles itératives, l’ordonnancement sous
contraintes temps réel, et le pipelinage de
tâches. Une quatrième contribution allie ces
trois aspects, il s’agit d’un algorithme d’Ex-
ploration de l’Espace de Conception (DSE)
prenant en considération des contraintes de
cadence, de latence et d’énergie. Cette DSE
permet de configurer automatiquement les
paramètres d’une application de telle sorte
que toutes les contraintes soient respectées.
Toutes les contributions ont été implantées
dans le logiciel PREESM.

Title: Modeling, Scheduling, Pipelining and Configuration of Synchronous Dataflow
Graphs with Throughput Constraints

Keywords: SDF, modeling, scheduling, pipelining, DSE
Abstract: Multi-Processors System-on-Chip
(MPSoC) are now embedded in more and
more devices, for example, in smart cameras
which can run image processing applications
in real-time. Designing applications that fully
exploit the capacity of an MPSoC is a complex
task that requires addressing multiple con-
straints such as maximum energy consump-
tion to preserve the battery and minimal frame
rate to ensure a good video quality. This thesis
adopts a global approach to the design prob-
lem, from modeling to tuning, thanks to fast
analysis and synthesis heuristics. To do so,
the designed application is first modeled inde-
pendently from any MPSoC. The application
is later automatically tuned and mapped on
a MPSoC thanks to an analysis and synthe-

sis framework. The models used in this thesis
derive from the Synchronous DataFlow (SDF)
Model of Computation (MoC), while the analy-
sis and synthesis framework is PREESM.

In this thesis, three aspects of the design
process have been addressed, all at the soft-
ware level: the modeling of iterative loops, the
scheduling of real-time constraints, and the
pipelining of tasks. A fourth contribution com-
bines all these aspects: a Design Space Ex-
ploration (DSE) algorithm taking into account
throughput, latency, and energy constraints.
This DSE makes it possible to automatically
tune the parameters of an application so that
all constraints are met. All the contributions
have been implemented and evaluated in the
PREESM framework.
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