réelles. Le domaine (1) permettrait de rapidement connaître l'évolution des objectifs en fonction des paramètres sans avoir à tester toutes les configurations. Le domaine (2) permettrait d'évaluer la configuration choisie dans son environnement réel, car un modèle ne modélise jamais tout. Enfin, l'extension de nos travaux par les domaines (1) et (2) rendrait possible d'effectuer les configurations de manière dynamique, par exemple pour pallier en temps-réel la panne d'un des processeurs.
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Résumé en français

Au fur et à mesure que les processeurs sont devenus de plus en plus petits et de moins en moins coûteux, ils ont été utilisés dans de plus en plus d'appareils facilitant la vie de tous les jours. L'un des exemples majeurs est le smartphone, qui est presque aussi puissant qu'un ordinateur personnel. Les smartphones contiennent même plus de composants qu'un ordinateur : au moins une caméra et une antenne. En 2019, 77% des Français possédaient un smartphone, et 76% avaient accès à un ordinateur personnel 1 .

Chaque composant d'un smartphone peut en réalité contenir son propre processeur.

Par exemple, la dernière smartcamera Sony MX 500 intègre sur une même puce un processeur situé en dessous du capteur d'image, pour une largeur n'excédant pas 1, 5 centimètre. Les Systèmes Multi-Processeurs Intégrés sur Puce (MPSoC) 2 sont l'un des principaux ingrédients de ce succès de miniaturisation. Comme les MPSoCs contiennent plusieurs processeurs sur une même puce, ils abritent efficacement une forte capacité de calcul. Cette capacité de calcul peut servir par exemple à stabiliser une vidéo en temps-réel, en utilisant uniquement des algorithmes plutôt que de lourds stabilisateurs mécaniques.

Un smartphone ne contient pas un, mais plusieurs processeurs hétérogènes : des processeurs génériques pour les applications standards, et des processeurs spécifiques à certains types de calcul, tels que pour le traitement du signal. Les calculs se composent généralement de plusieurs tâches à exécuter, formant un graphe. Pour accélérer les calculs, les tâches sont distribuées aux différents processeurs selon leur capacité à exécuter tel type de calcul. La sélection de l'emplacement et de l'ordre des tâches à exécuter sur les processeurs s'appelle l'ordonnancement. Le problème d'ordonnancement est complexe à résoudre, et est aussi lié aux moyens de communication reliant les composants.

La création de panorama à partir d'images prises depuis différents points de vue est un autre exemple d'application pour les smartphones et smartcameras. Plusieurs algorithmes peuvent être utilisés pour ces applications logicielles, chacun offrant un dif-1 Ces statistiques sont extraites du rapport officiel Baromètre du numérique 2019 . 2 Les acronymes sont gardés en langue anglaise afin de pouvoir les repérer dans le reste du document, rédigé en anglais. Seules leurs formes étendues sont traduites.
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férent niveau de qualité et de rapidité. En sus, l'utilisateur spécifie généralement une Qualité de Service (QoS) minimale définissant des exigences logicielles telle qu'une résolution d'image ou une cadence de prises de vue minimales. Cependant, les applications logicielles de stabilisation d'image ou de création de panorama doivent aussi respecter des contraintes matérielles : cadence et résolution maximales du capteur d'image, puissance maximale de la batterie, ou fréquence maximale du MPSoC. Satisfaire les exigences logicielles en même temps que respecter les contraintes matérielles est également un problème complexe. Ce problème de configuration est en général résolu en testant différentes configurations de l'application et du matériel jusqu'à ce que l'une des configurations satisfasse toutes les exigences et contraintes. Le test des configurations possibles correspond à l'Exploration de l'Espace des Designs (DSE). Les configurations diffèrent les unes des autres par la fréquence du MPSoC ou par la résolution d'image supportée par l'application. Si aucune configuration ne satisfait toutes les exigences et contraintes, un compromis est nécessaire et certaines d'entre elles doivent être assouplies.

Au bout du compte, l'adaptation d'une application logicielle à une architecture matérielle telle qu'un smartphone n'est pas triviale. Cette adaptation nécessite de résoudre plusieurs problèmes à la fois, au moins l'ordonnancement et la configuration. Pour ce faire, l'application ainsi que l'architecture sont toutes les deux modélisées. Le but du modèle est d'abstraire les propriétés essentielles qui participent aux problèmes d'ordonnancement et de configuration.

Ces problèmes de modélisation, d'ordonnancement et de configuration existent depuis quelques dizaines d'années et sont des sujets actuels de recherche. Par exemple, le Modèle de Calcul (MoC) Synchrone de Flux de Données (SDF) [START_REF] Lee | Synchronous data flow[END_REF] est dédié aux applications de traitement du signal, pour les images ou les antennes. Dans le modèle SDF, les tâches à exécuter et leurs données sont toutes deux représentées. Les tâches et les échanges de données sont prédéterminés par le concepteur, ce qui permet une exécution déterministe de l'application. Le modèle SDF peut être paramétré avec le Méta-Modèle Interfacé et Paramétré (PiMM) [START_REF] Desnos | PiMM: Parameterized and Interfaced dataflow Meta-Model for MPSoCs runtime reconfiguration[END_REF] par exemple, qui introduit le choix entre plusieurs valeurs de paramètres et le rend donc éligible au problème de configuration. SDF appartient à la grande famille des MoCs orientés flux de données, qui se concentrent sur la représentation des échanges et des traitements de données.

De nombreux outils existent pour automatiquement générer et optimiser le code informatique d'une application logicielle sur une architecture matérielle donnée, tel que SynDEx [START_REF] Grandpierre | Optimized rapid prototyping for realtime embedded heterogeneous multiprocessors[END_REF] qui repose sur la méthodologie Adéquation Architecture Algorithme.

SynDEx optimise l'exécution d'une application de flux de données sur une architecture MPSoC ou autre, en déterminant l'ordonnancement offrant la meilleur cadence par xix exemple. Cependant, il ne configure pas lui-même l'application pour satisfaire des exigences et contraintes. Autrement dit, SynDEx ne va pas automatiquement sélectionner la meilleure résolution d'image pour des contraintes matérielles et des exigences logicielles données. D'autres modèles et outils, comme AADL3 [START_REF] Hugues | From the Prototype to the Final Embedded System Using the Ocarina AADL Tool Suite[END_REF] et Ptolemy4 [START_REF] Guo | Metronomy: A function-architecture co-simulation framework for timing verification of cyber-physical systems[END_REF], permettent au concepteur de représenter plus d'informations : l'application, l'architecture, et respectivement les exigences et les contraintes associées. Cette approche aide grandement la vérification de la satisfaction des exigences et contraintes ; mais de même qu'avec SynDEx, le concepteur a toujours besoin de tester lui-même plusieurs configurations avant de choisir la meilleure. L'utilisation d'algorithmes de DSE accélère ce processus, mais ne le résout pas complètement lorsqu'il faut configurer les exigences de QoS. En effet ces outils n'ont pas connaissance des compromis acceptables pour le concepteur.

Finalement, la sélection de la meilleure configuration satisfaisant contraintes matérielles et exigences logicielles sur une architecture matérielle hétérogène est toujours un défi à l'heure actuelle. Ce problème de configuration est composé de plusieurs autres problèmes, dont certains sont introduits dans la section suivante. Les contributions proposées dans cette thèse, concernent trois de ces problèmes en sus de la configuration elle-même. Les sections restantes présentent brièvement le modèle SDF, puis les contributions exposées dans cette thèse, et leurs possibles extensions.

Définition du problème

Cette thèse aborde le problème de configuration d'applications SDF paramétrées ayant des exigences logicielles et étant exécutées sur des architectures de multi-processeurs ayant des contraintes matérielles. Nos contributions ne concernent malheureusement que le cas des multi-processeurs homogènes. Le problème de configuration se pose également pour les architectures hétérogènes et est alors d'autant plus difficile à résoudre.

Exécuter un graphe SDF nécessite de résoudre plusieurs problèmes : l'ordonnancement de l'exécution des tâches et celui des échanges de données, l'allocation de la mémoire pour l'exécution des tâches et les échanges de données, tout en prenant en compte les contraintes telles que le nombre de processeurs dans l'architecture et la périodicité de certains tâches. Chacun de ces problèmes est complexe, NP-complet en général. Alors que de nombreux algorithmes existent déjà pour résoudre chacun de ces problèmes, nous nous concentrons sur ceux qui sont rapides et peuvent traiter de grands nombres de tâches à la fois, de sorte que toutes les solutions possibles peuvent être testées dans un court laps de temps, par exemple moins d'une heure.

La rapidité est particulièrement importante pour les graphes SDF paramétrés. Les paramètres sont toujours fixés lors de l'exécution des tâches du graphe les utilisant, mais ils permettent d'explorer automatiquement toutes les configurations possibles, et de réagir dynamiquement à certaines données en entrée qui les modifieraient. En effet, pour l'exploration des configurations, le nombre de configurations peut exploser de manière exponentielle en fonction du nombre de paramètres. Pour l'exécution dynamique, la rapidité est aussi nécessaire pour limiter la surcharge de calculs créée par la résolution dynamique des problèmes d'ordonnancement et d'allocation. Dans cette thèse, nous utilisons le modèle PISDF, qui est l'extension du modèle SDF obtenue en y appliquant le méta-modèle PIMM. Les propriétés dynamiques de PISDF ne sont pas utilisées, et notre travail se restreint à sa sémantique statique afin de trouver à l'avance une bonne configuration de l'application satisfaisant au mieux l'ensemble des contraintes. Pour information, les paramètres matériels tels que la fréquence du processeur, peuvent aussi être représentés par des paramètres de graphes PISDF.

Dans cette thèse, le mot contrainte peut autant signifier contrainte matérielle qu'exigence logicielle. Bien que nous ayons distingué les deux notions jusqu'à présent, toutes deux peuvent être liées à la même métrique. Par exemple, la cadence d'images est contrainte par une valeur minimale du côté logiciel, et par une valeur maximale du côté matériel. Les contraintes que nous considérons peuvent être : la périodicité de certaines tâches, la minimisation de l'énergie ou de la puissance à chaque exécution du graphe, la minimisation de la latence ou la maximisation de la cadence des exécutions, la minimisation ou la maximisation de n'importe lequel des paramètres apparaissant dans le graphe PISDF. La sélection de la meilleure configuration s'appuie sur une DSE pour évaluer les plus intéressantes d'entre elles. Ce problème principal de configuration peut être divisé en plusieurs problèmes, dont :

• paramétrisation d'une application statique dans le modèle PISDF ;

• modélisation de tâches périodiques dans le modèle PISDF ;

• ordonnancement rapide de graphes PISDF ayant des tâches périodiques ou non ;

• modélisation des contraintes de cadence, latence, énergie, puissance ou QoS.

Cette liste est largement incomplète. Nous détaillons maintenant le modèle (PI)SDF, qui est utilisé par toutes les contributions.
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Modèle de calcul synchrone de flux de données SDF

Cette thèse utilise le modèle de calcul PISDF, une extension paramétrée du modèle SDF [START_REF] Lee | Synchronous data flow[END_REF]. La Figure 1a présente un exemple de graphe SDF. Les tâches à exécuter, A et B dans la figure, y sont représentées par les noeuds du graphe. Les échanges de données, de A vers B dans la figure, y sont représentés par les arcs dirigés du graphe.

Ces arcs possèdent deux propriétés : un nombre entier précisant la quantité de données produites lors de l'exécution de la tâche à l'extrémité de départ, et symétriquement un nombre entier précisant la quantité de données consommées à l'extrémité d'arrivée. Les arcs correspondent à des files d'attente stockant les données d'une tâche vers l'autre.

Chaque tâche peut être le départ ou l'arrivée de plusieurs arcs à la fois. Les arcs peuvent aussi contenir des données présentes avant l'exécution de chacune des extrémités ; ces données sont alors appelées délais.

Un des avantages du modèle SDF est son déterminisme. Un effet, grâce aux deux propriétés de consommation et de production de chaque arc, il est possible de déterminer le nombre d'exécution de chaque tâche de sorte que la taille des files d'attente reste bornée au cours du temps. Ce nombre d'exécutions de chaque tâche s'appelle le vecteur de répétition du graphe. Un tel vecteur n'existe pas toujours, et dans cette thèse nous nous intéressons uniquement au cas des graphes SDF cohérents, c'est-à-dire lorsque le vecteur de répétition existe. En somme le vecteur de répétition garantit qu'en exécutant autant de fois toutes les tâches, les files d'attente contiendront toutes autant de données qu'initialement. Dans la Figure 1a, la tâche A est ainsi exécutée trois fois et produit 15 données sur la file d'attente. À l'autre extrémité de l'arc, la tâche B est exécutée cinq fois et consomme donc en tout 15 données également.

Le problème d'ordonnancement correspond au choix de l'ordre d'exécution des tâches.

Cet ordre doit garantir que chaque tâche a suffisamment de données disponibles dans les files d'attente y arrivant, afin de pouvoir consommer autant de données que spécifié au début de son exécution. Quant à la production des données, elle n'est effective qu'à la fin de l'exécution. Pour garantir cet ordre, le graphe SDF est souvent déroulé en un graphe Single Rate SDF (SRSDF) afin d'expliciter les dépendances de données entre les tâches.

Un exemple est donné dans la Figure 1b. Les arcs y sont représentés par de simples traits car la quantité de donnée envoyée et reçue sur ces arcs y est fixée et égale ; elle est spécifiée au milieu de chaque arc. Par ailleurs, le graphe SDF original contenait un délai de 6 données, qui supprime donc les premières dépendances de données représentées en pointillé. En effet, grâce au délai, les deux premières exécutions de la tâche B peuvent démarrer avant même que A n'ait commencé à être exécutée. Les 6 données du délai se

A 5 B 3 x6
(a) Exemple de graphe SDF, ayant pour vecteur de répétition [3,5] T . Un délai est présent sur l'unique canal de transmission de données, ce qui supprime la dépendance de données depuis les tâches

A 1 et A 2 vers B 1 et B 2 .
A 1

A 2 A 3 B 3 B 4 B 5 B 1 B 2 3 2 1 3 1 2 3 
(b) Graphe SRSDF de 1a. Les dépendances de données cassées par le délai sont représentées par une ligne en pointillé.
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Proc. 1

A 1 A 2 A 3 B 1 B 2 B 3 B 4 B 5
(c) Exemple d'ordonnancement du graphe 1a sur un processeur. Proc. 1

A 1 B 3 A 1 B 3 A 1 B 3 Proc. 2 A 2 B 4 A 2 B 4 A 2 B 4 Proc. 3 A 3 B 5 A 3 B 5 A 3 B 5 Proc. 4 B 1 B 2 B 1 B 2
B 1 B 2 répétition itération du graphe (e) Exemple d'ordonnancement du graphe 1a sur quatre processeurs. Trois répétitions de l'ordonnancement statique sont représentées, séparées par une ligne verticale rouge. Une exécution du graphe de bout en bout est délimitée par les lignes bleues. Finalement, la paramétrisation des graphes SDF revient simplement à remplacer les nombres entiers utilisés pour les tailles de délais, les propriétés de consommation et de production, et pour les durées d'exécution des tâches, par des expressions arithmétiques utilisant des variables mathématiques. Ces expressions sont évaluées avant la transformation du graphe SDF vers le graphe de dépendance de données SRSDF correspondant.

Contributions

Dans cette thèse, nous présentons quatre contributions, dont la principale est la configuration automatique de graphes PISDF grâce à une DSE. Les trois autres contributions aident toutes à réaliser cette DSE, par le biais de la modélisation de contraintes ainsi que de l'ordonnancement respectant ces contraintes. Les contributions sont brièvement résumées dans les paragraphes suivants ; chaque contribution correspond à un chapitre de la présente thèse. L'application de traitement d'image SIFT [START_REF] Lowe | Distinctive Image Features from Scale-Invariant Keypoints[END_REF] est notre principal cas d'utilisation et sert à réaliser les évaluations expérimentales des contributions présentées dans les chapitres 2, 4 et 5.

La Chapitre 5 : configuration de graphes SDF paramétrés. Cette dernière contribution aborde le problème principal de configuration automatique de graphes PISDF.

Plusieurs algorithmes de DSE sont proposés, exhaustifs ou non, afin de sélectionner la meilleure configuration de graphes PISDF en fonction des contraintes spécifiées. Les contraintes peuvent concerner l'énergie, la puissance, la latence, la cadence ou la QoS par le biais de n'importe quel paramètre du graphe, tel que la résolution d'image. Cette contribution repose sur les trois précédentes : elle paramétrise les itérateurs SDF avec le niveau de parallélisme adéquat, elle évalue chaque configuration grâce à l'ordonnanceur de tâches avec périodicité, et finalement elle ajoute des délais pour améliorer la cadence lorsque cela est possible. (1) l'analyse symbolique des paramètres et (2) le raffinement de solution par mesures

Conclusion et extensions

Introduction

As computer processors went smaller and cheaper, they have been used in more and more devices easing the human life. One of the most iconic example is the smartphone, which is now almost as powerful as a personal computer. Smartphones embed even more components than a computer: at least one camera and an antenna. In 2019, 77%

of French people owned a smartphone, and 76% had a personal computer 5 .

Each component of a smartphone may actually contain its own processor. For example, the latest smartcamera Sony MX 500 integrates a processor directly on the chip embedding the image sensor, not larger than 1.5 centimeter. Multi-Processor Systemon-Chips (MPSoCs) are one of the main ingredients for this miniaturization success.

Since MPSoCs contain multiple Processing Elements (PEs) on a single chip, they host on-site efficient computation capacities which for example, allow us to stabilize a video in real-time on our smartphone using algorithms instead of heavy mechanical stabilizers.

A smartphone contains not one, but multiple heterogeneous processors: multiple generic processors for regular applications, and specific processors dedicated to a kind of computations such as signal processing. Computations are generally composed of multiple tasks to execute, forming a graph. To accelerate the computations, their tasks are shared over the processors and the specific processors execute the tasks they are dedicated to. To select where and when to execute the tasks, that is scheduling, is a complex problem to solve, also related to means of communication between the components.

Another smartphone and smartcamera application example is the creation of panorama pictures thanks to regular pictures from different point of views. Multiple algorithms may be used in such software applications, each offering a different degree of quality and rapidity. Moreover, the user generally sets software requirements defining its minimal Quality of Service (QoS), such as the minimum image resolution or the minimum frame rate. Yet, stabilization or panorama software applications require to be adapted to the smartphone hardware constraints: maximum image resolution and frame rate of the camera, maximum available power of the battery, maximum frequency of the MPSoC. Meeting software requirements while respecting hardware constraints is also a Finally, selecting the best configuration to meet hardware constraints and software requirements on an heterogeneous hardware architecture is still a modern challenge.

This configuration problem is composed of multiple other problems, some of which are introduced in the next section. The contributions proposed in this thesis concern three of theses problems plus the configuration itself. The configuration and related problems are introduced in the next section. Our contributions are listed in the second section of this introduction. Then, chapter 1 presents the background of this thesis. The contributions are detailed in Chapters 2 to 5 and each contribution has its own specific related work.

As the last contribution uses the three previous ones, we advise the reader to read this thesis in order.

Problem statement

This thesis tackles the configuration problem of parameterized SDF applications having software requirements and running on multi-processor architectures having hardware constraints. The contributions proposed in this thesis consider only homogeneous multiprocessor architectures containing multiple identical PEs. However, the same configuration problem applies for heterogeneous architectures, and is even more difficult to solve in such case.

Executing an SDF graph requires to solve multiple problems: the scheduling of the tasks and the one of data exchanges, the memory allocation for tasks execution and the one for data exchanges, while taking into account constraints such as the number of PEs in the architecture and the periodicity of some tasks. Each of this problem is complex, NP-complete in the general cases. While many algorithms already exist to solve each problem, we focus on the fast and scalable ones, so that all solutions can be tested in a short time, for example, in less than one hour.

Rapidity is especially needed when considering parameterized SDF graphs. The parameters have still to be fixed when executing the processing tasks of the SDF graph using them, but they allow algorithms to automatically explore different configurations, or to react dynamically to inputs. Indeed for configuration exploration, the number of configurations may explode exponentially in the number of parameters. And in the dynamic case, rapidity is needed to limit the overhead created by online solving of the scheduling and allocation problems. In this thesis, we use the Parameterized Interfaced
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Synchronous Data Flow (PISDF) MoC, an extension of SDF parameterized with PIMM.

The dynamic properties of PISDF are not used, and instead we restrict our work to its static semantics to find offline a suitable configuration of the modeled application, fitting all its constraints when possible.

In this thesis, the word constraint may refer to both hardware constraint and software requirement. Although we have distinguished software requirement from hardware constraint in the previous paragraphs, both may be related to the same metric. For instance, the frame rate is constrained by a minimum value the software side and a maximum value on the hardware side. Constraints may be the real-time periodicity of some tasks, the minimization of energy or power consumption per execution, the minimization of latency and the maximization of throughput of the executions, the minimization or maximization of any graph parameter to ensure QoS. The choice among multiple configurations results from a DSE to evaluate the interesting ones. This main configuration problem may be split into multiple problems, a non-exhaustive list follows:

• parameterization of static applications in the PISDF MoC;

• modeling of periodic tasks with the PISDF MoC;

• rapid offline scheduling of PISDF graphs having periodic tasks;

• modeling of the throughput, latency, energy, power and QoS constraints.

We now detail our contributions with regard to the main problem and the list above.

Contributions

In this thesis we present four contributions, one of which is the configuration of PISDF graphs via automatic DSE. The three other contributions all help to perform this DSE, by the modeling of constraints and the scheduling of tasks respecting them. The contributions are briefly summarized in the next paragraphs; each contribution corresponds to a chapter of this thesis. The Scale Invariant Feature Transform (SIFT) [START_REF] Lowe | Distinctive Image Features from Scale-Invariant Keypoints[END_REF] image processing application provides our main use-case; it is used in the experiments all along the thesis, in Chapters 2, 4 and 5. node in Figure 3 stores information specific to one architecture and one application, as the Execution Times (ETs) of each task. Our contributions concern the green* steps: application modeling, pipelining, scheduling and DSE, which performs configuration.

Chapter 2: Modeling nested for loops, with SDF graphs. The starting point of the design of an application is its modeling. However, it is not common to start with an SDF model, and many designers first develop a prototype using widespread imperative
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programming languages as C or Java. In this contribution we study the modeling of for loops, one of the most important control structure in imperative languages. More specifically we introduce SDF iterators, which support the modeling of perfectly nested for loops having explicit parallelism. SDF iterators are especially useful if parameterized. In such case, we show how to adapt the parallelization of loops to the number of PEs in the target architecture. Parallelization is the process of splitting computations of a task on multiple PEs, so that its execution time is shorter.

Chapter 3: Scheduling partially periodic SDF graphs. In this contribution, we study the modeling of periodicity constraints, expressed on some tasks but not all. In the context of SDF graphs, we show that any task period enforces a common graph period. We develop an algorithm to schedule the graph while respecting the periodicity constraints. This algorithm belongs to the family of offline static non-preemptive list schedulers and thus is rapid and scalable. Non-preemptive means that when starting the execution of a task, it is not possible to stop it.

Chapter 4: Pipelining SDF graphs automatically. SDF graphs model the exchange of data between tasks, and it is possible to feed these exchanges with initial data, present before the execution. These initial data are called delays. They break the data dependencies and thus they may improve the scheduling result, giving a greater execution throughput. In this contribution, we present an algorithm to automatically add such delays on an SDF graph. This process is called pipelining. 
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In this thesis, we study the configuration of a software application with Quality of Service (QoS) constraints which has to be executed on a specific hardware architecture.

In this chapter, we briefly introduce the main concepts related to this configuration problem, especially parallelism, on the hardware and software sides. In Section 1.2, we introduce the main model used in this thesis, the Synchronous Data Flow (SDF) Model of Computation (MoC). For each contribution, a specific related work is presented at the end of the corresponding chapter. Thus, the Section 1.3 presenting the scheduling and the analysis of Synchronous Data Flow (SDF) graphs only gives an overview of these concepts. The Parallel and Real-time Embedded Executives Scheduling Method (PREESM) tool used to implement the contributions of this thesis is described in Section 1.4. In Section 1.5, we briefly recall the characteristics of the model used in this thesis and give notations which are common to all chapters.

Introduction: hardware, software, and parallelism

Parallelism is the simple fact to execute two tasks in parallel. In the everyday life, cooking is an example of activity where we often parallelize tasks. The parallelism is clearly written in good recipes, in general stating: "while this thing is cooking, do something else". In the french recipe of "la tourte aux blettes ", it is possible to cook the pears while preparing the grapes and pine nuts. This kind of parallelism is called task parallelism. To perform multiple different and independent tasks in parallel accelerates the cooking process. Another way to accelerate the process is to have multiple cookers performing the same task, for example each cooker peels one pear. This is data parallelism, where the same task is performed on multiple inputs. The metaphor between cooking and computer science can also be used for the software and hardware sides. The software side is the recipe itself, that is the list of tasks to execute and extra instructions on how to perform those tasks. The hardware side corresponds to the equipment and the cookers. Cookers are the Processing Elements (PEs) processing the food. When the food is not used, you place it in the fridge, that is the memory of a computer. Last but not least, cooking comes with QoS constraints: the food must be good and served before it becomes cold. In any restaurant, the main ingredient to respect the QoS actually is parallelism. The chef is not only here to create the recipes but also to schedule the tasks of the cookers.

In computer science, parallelism helps to accelerate the computations when multiple Processing Elements (PEs) are available. Then, heavy computations such as weather forecast, can be executed in a reasonable time. In the following subsections, we list 

Common tools and hardware

Parallelism is made possible on the hardware side by the possibility to use multiple PEs of a multi-processor architecture. Figure 1.1 depicts a MPSoC architecture having 8 PEs of two different types. A main Random Access Memory (RAM) memory is accessible from all PEs. To continue the cooking metaphor, the architecture is the map and the elements of the kitchen, that is the position of the fridge compared to the gas stoves, and the number of gas stoves.

The most common way to use all PEs at the same time is to create threads defined by the Operating System (OS) running on the MPSoC. Threads are a Model of Computation (MoC). Each thread contains a list of tasks to execute successively. There might be more threads than PEs. In such case, extra threads are not executed until a currently executed one finishes or is suspended. The OS may suspend the execution of any thread to execute another one; this is called preemption. Suspended threads can continue their execution later on any PE, not necessarily the same as previously. One role of the OS is to ensure that threads will be completed sooner or later.

Threads can express both data and task parallelism. When there is only one shared memory, threads can exchange data between them without specific communication library. A library is a set of predefined functions made available to the designer. However, if multiple threads have to work on the same data, a lock system may be needed to ensure that multiple data writes do not occur at the same time for example. Semaphores between threads are the main lock system to temporarily limit parallelism. Parallelism limitations are called bottlenecks and reduce the execution time of an application. The extreme case of parallelism limitation is mutual exclusion, which enforces that only one thread is executed at a time, even with multiple available PEs.

Parallelism through programming languages

Programming languages help to express the computations of an application. The text files written in any programming language are called the code of the application. They correspond to the language in which the cooking recipe is written. Their main advantage is to be readable by human programmers, and by either compilers or interpreters which translate the code into binary instructions for the OS or directly for the PEs.

Most of the modern programming languages support the thread MoC through native libraries: C/C++, Python, Java, etc. Some languages can even represent parallel computation directly in the language without exposing a thread library: ADA, Cilk, Chapel, Erlang, LARA [START_REF] Cardoso | LARA: An Aspect-oriented Programming Language for Embedded Systems[END_REF], ABS [START_REF] Johnsen | ABS: A Core Language for Abstract Behavioral Specification[END_REF], etc. Programming languages supporting threads generally offer at least two functions: one function to create and launch a thread, that is to make the thread executable by the OS, and one function to wait for the completion of a thread. This is the fork-join model. Waiting for the completion of multiple threads is called a synchronisation. It is also possible to synchronize threads before their completion, usually with semaphores.

Parallelism through compiler

Mastering programming languages is difficult, especially when using threads. Human programmers have to find which tasks may be executed parallel, which data have to be protected for writing, which threads to wait and when, etc. The compiler does not only translate the code for the PEs, but it can also perform parallelism automatically in a few cases. For example, C/C++ compilers can control fine grain parallelism available on vector PEs implementing the SSE/AVX binary instruction sets. Such instruction sets offer data parallelism at the instruction level: the same instruction is executed on multiple data at the same time by only one PE.

However, both fine grain parallelism controlled by the compiler and coarse grain parallelism controlled by the programmer are difficult to use properly. Thus, it is common to perform automatic code analysis and source-to-source transformations, such as in the PIPS [START_REF] Irigoin | Semantical Interprocedural Parallelization: An Overview of the PIPS Project[END_REF] tool, to discover and improve parallelism. An important class of static analysis is the polyhedral analysis [START_REF] Feautrier | Polyhedron Model[END_REF], used in [Bon+08; NC12] for example.

Another alternative is to use modulo scheduling [START_REF] Rau | Code Generation Schema for Modulo Scheduled Loops[END_REF]. In order to guide the transformation, it is also common to use annotations as in [START_REF] Kessler | Optimized Composition of Performance-aware Parallel Components[END_REF] or pragma as for the OpenMP or OpenACC libraries. Sometimes transformations are guided by interaction with the programmer as in Parascope [START_REF] Balasundaram | The parascope editor: an interactive parallel programming tool[END_REF] in the past and in a few modern tools [START_REF] Larsen | Parallelizing more Loops with Compiler Guided Refactoring[END_REF].

The OpenMP library is a major library for data and task parallelism. It is especially useful to parallelize for loops, iterating over an array for example. If operations on the elements of the array can be performed in parallel, the programmer indicates to

OpenMP and the compiler that the operations of the loops may be split over threads.

OpenMP will automatically create the threads and wait for them.

Parallelism through task and array manager

However OpenMP is not perfect for multiple reasons. The main reason is that OpenMP offers a small amount of scheduling policies managing the start time of the threads.

Policies of OpenMP are efficient for homogeneous architectures having identical PEs, but not always for heterogeneous architectures. Many libraries are designed for this purpose,

as StarPU [START_REF] Augonnet | StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Architectures[END_REF], PaRSEC1 , or XKaapi [START_REF] Gautier | XKaapi: A Runtime System for Data-Flow Task Programming on Heterogeneous Architectures[END_REF]. Such libraries can be interfaced with OpenMP so that the programmer does not change the pragma annotations in the code, but the scheduling policy of OpenMP is replaced by the one of the library. Such libraries are usually called runtime managers. Many other parallelism libraries exist, especially for arrays: DASK2 and Kokkos [START_REF] Edwards | Kokkos: Enabling manycore performance portability through polymorphic memory access patterns[END_REF].

In any case, with such parallelism libraries, programmers need to indicate by themselves where parallelism is available in the code and when synchronizations are needed.

Dedicated tools may help to locate where parallelism is possible and when it is not, for example, STABILIZER [START_REF] Curtsinger | STABILIZER: Statistically Sound Performance Evaluation[END_REF] and COZ [START_REF] Curtsinger | Coz: Finding Code That Counts with Causal Profiling[END_REF]. To locate where parallelism is possible is a difficult task, depending on the model used to represent applications. In this subsection, we have listed the main programming languages and libraries supporting the thread MoC. In the next subsection, we present concepts and MoCs related to parallelism, especially data flow programming which is used in this thesis.

Software side

Modern programming languages such as Python or Java are widely used for regular applications. Threads or libraries upon threads are available in these languages and ease the expression of parallelism, but they require caution from the programmer and extensive analysis of the compilers or the libraries to be used efficiently. Indeed, managing data accesses between threads is error-prone, and introduce synchronizations to avoid concurrent data accesses, thus creating bottlenecks. A common source of errors with threads is the introduction of deadlocks, for example when two threads wait for the completion of the other one before continuing the execution of their own tasks. Another source of error is the memory management when exchanging or storing data. Some concepts and MoCs are dedicated to model specific behaviors of the applications, so that the design process is easier to use for programmers and easier to analysis for compilers.

Such main concepts are: control flow and data flow.

Control flow and data flow

Control flow fixes the order of the computational tasks to execute. Especially, the if/else control flow conditional statements of imperative languages, such as Python or Java, enable the programmer to select a branch of instructions depending on the result of previous computations. In a way, it is the opposite of parallelism since only one branch is executed among all possible, the other branches of if/else statements will never be executed. Threads available in imperative languages are the only way to escape such exclusive choices and fixed orderings. Threads actually move part of the ordering of tasks from the programmer responsibility to the OS or runtime library responsibility.

Imperative languages are control flow oriented.

On the other side, data flow focuses on the data exchange between the tasks to execute. The order of tasks is defined only between tasks exchanging data. Thus, two tasks which are not connected by any data flow can be executed in parallel. In data flow programming, parallelism is explicit. Programmers still have to express by themselves where parallelism is available, but such explicit parallelism is less error-prone and eases, in some cases, the automatic analysis made by compilers.

Nevertheless, both control flow and data flow are useful to express different kinds of behaviors: exclusive choice for control flow and parallelism for data flow. Both concepts usually integrate a part of the other: threads in imperative languages and mutual exclusion in data flow languages. When possible, considering both at the same time is preferable [START_REF] Girault | Hierarchical finite state machines with multiple concurrency models[END_REF] for the designer but harder to analyse and to optimize. In the rest of this document, data flow is spelled dataflow, referring to both a flow of data and the concept of representing flows of data. 

Specialized languages

Many languages and MoCs are specialized to specific kind of computations or environments. We list here the most related to our work, at the frontier between real-time systems and stream processing. Real-time systems are usually constrained by periodic behaviors or maximum latency. Stream processing consists of applying the same process to a never ending stream of successive inputs.

Synchronous languages.

Synchronous languages are heavily used in the domain of real-time systems where some timing properties are important to guarantee during the application execution [START_REF] Benveniste | The synchronous approach to reactive and real-time systems[END_REF]. Synchronous languages support to model and to check timing properties by the mean of periodic executions, that is for example, to execute a task every 10 millisecond. Among such languages, there is ESTEREL [START_REF] Berry | The Esterel synchronous programming language: design, semantics, implementation[END_REF], control flow oriented. On the dataflow side, there are LUCID [START_REF] Wadge | LUCID, the Dataflow Programming Language[END_REF], Lustre [START_REF] Halbwachs | Programming and verifying real-time systems by means of the synchronous data-flow language LUSTRE[END_REF],

Signal [START_REF] Le Guernic | Polychrony for system design[END_REF] or even SynDEx [START_REF] Grandpierre | Optimized rapid prototyping for realtime embedded heterogeneous multiprocessors[END_REF]. In its original publication [START_REF] Halbwachs | Programming and verifying real-time systems by means of the synchronous data-flow language LUSTRE[END_REF], Lustre is qualified as a "synchronous dataflow language", but this is not related to the Synchronous Data Flow (SDF) MoC of Edward A. Lee, which is not cited in the references of LUCID, Lustre and Signal. Nevertheless, dataflow synchronous language may execute SDF graphs thanks to a few transformations, as for Signal [SGL99; Bes+10].

Languages for real-time systems.

A few languages focus on the specification of realtime constraints of complex application, as Giotto [START_REF] Henzinger | Giotto: a time-triggered language for embedded programming[END_REF]. Another language [START_REF] Pereira | Combining Data-Flows and Petri Nets for Cyber-Physical Systems Specification[END_REF] mixes Petri nets, SDF MoC, and synchronous languages for the modeling of Cyber-Physical Systems (CPSs). Other languages are dedicated to industrial systems, such as AutoSar7 for cars and Architecture Analysis and Design Language (AADL)8 for aircraft.

Both languages support extensive modeling and analysis. For example, AADL supports synchronous and dataflow modeling and verification [START_REF] Ma | Toward Polychronous Analysis and Validation for Timed Software Architectures in AADL[END_REF][START_REF] Besnard | Timed behavioural modelling and affine scheduling of embedded software architectures in the AADL using Polychrony[END_REF], and real-time properties modeling and verification [START_REF] Disseaux | AADL design patterns and tools for modelling and performance analysis of real-time systems[END_REF].

Languages for stream processing. Stream processing applications often use dataflow languages to model and optimize their computations, such as the Canals [Dah+09] language. Canals originality is that it supports the description of the architecture and the task scheduler as well as the dataflow modeling of applications. There exist also the Brook [START_REF] Liao | Data and computation transformations for Brook streaming applications on multiprocessors[END_REF] and SPUR [START_REF] Zhang | A Programming Model for an Embedded Media Processing Architecture[END_REF] languages and corresponding compilers dedicated to dataflow stream applications. A more recent language also supports the description of task implementations and stream specifications [START_REF] Wei | A Dataflow Programming Language and its Compiler for Streaming Systems[END_REF]. An important category of stream processing applications is image processing, targeted by Diderot [START_REF] Chiw | Diderot: A Parallel DSL for Image Analysis and Visualization[END_REF] for example. Diderot is more dedicated to the expression of the mathematical functions of the processing. Array-OL [Dem+95; Bou07] focuses on array traversals, and is dataflow oriented. Besides, Polka [START_REF] Demeure | Modélisation et support d'applications multimédias réparties[END_REF] is an old attempt to model distributed multimedia applications with CORBA.

Transformations towards dataflow.

As many programmers first start by prototyping applications with imperative languages, some works study the automatic transformation of imperative languages to dataflow languages. For example, the DWhile [START_REF] Demetrescu | Reactive Imperative Programming with Dataflow Constraints[END_REF] language is directly embedded in the host language, such as C++, to provide dataflow specifications. Moreover, there exist an automatic transformation of Single Static Assignment (SSA) code towards "dataflow threads" [START_REF] Li | Automatic Extraction of Coarse-Grained Data-Flow Threads from Imperative Programs[END_REF], and an automatic extraction of KPNs from while loops [START_REF] Aguilar | Extraction of Kahn Process Networks from While Loops in Embedded Software[END_REF].

Hardware side

Multiple kinds of processor exist, generic or dedicated to specific computations. A processor usually refers to a Central Processing Unit (CPU), able to compute any common instruction. However, only in this chapter, we call "processor" any kind of PE, having a possibly reduced instruction set, or even none at all if implementing a specific circuit design. Personal computers usually embed one CPU multi-processor and one Graphics Processing Unit (GPU) card. GPUs are dedicated to data parallelism while CPUs support any kind of computations, but then are less efficient. Efficiency is measured in the number of floating point operations performed per second, sometimes also per Watt.

CPUs operate at a higher frequency than GPUs but a GPU card may contain more than 100 processors while a CPU multi-processor only contains around 8 processors.

When prototyping an application, the target hardware architecture has to be chosen carefully, depending on the most suitable MoC for the application, and depending on the throughput constraints. Moreover, more specialized processors require more complex compilers to be used efficiently. Indeed, on the most specialized processors, there is no OS to manage thread parallelism, and the compiler has to compute itself the scheduling, that is the ordering and mapping of tasks. Hardware side and software side are not meant to be opposed; OSs, middleware libraries and compilers are here to adapt both sides to each other. To reach the optimal throughput, hardware has to perfectly match the software, and vice versa.

Among the common properties of processors, the most important is their clock frequency. All processors execute binary instructions or activate circuit gates at a maximum throughput being their frequency, generally between 2 and 3 GHz for CPUs. Each instruction may require multiple tics of the clock frequency to be completed, but a new instruction can be started at each tick, even if the previous ones are not completed.

This is hardware pipelining. The only exception to pipelining is when an instruction must wait for the result of the previous one. However, Out of Order processors can automatically execute a next instruction before the awaiting one if it does not break any data dependence. In the next paragraphs and subsubsections, we briefly present the main kinds of processors. Tay+02] processor exposes some of its NoC circuit logic to the compiler to use it more efficiently, including for dataflow applications [START_REF] Gordon | A Stream Compiler for Communication-exposed Architectures[END_REF].

Ancestors of many-cores. Some old architectures also tried to integrate many processors together, such as the Cube-Connected Cycles [START_REF] Preparata | The Cube-connected Cycles: A Versatile Network for Parallel Computation[END_REF] or the Wavefront [START_REF] Kung | Wavefront Array Processor: Language, Architecture, and Applications[END_REF] architecture and parallelism language, close to dataflow.

Exposed datapath

Exposed datapath architectures [START_REF]TTAs: Missing the ILP complexity wall[END_REF][START_REF] Burger | Scaling to the end of silicon with EDGE architectures[END_REF] are even closer to the definition of dataflow, on the hardware side. In such architectures, communication connections between the many processors may be adapted to the dataflow of an application. Flex-Core [START_REF] Thuresson | FlexCore: Utilizing Exposed Datapath Control for Efficient Computing[END_REF] is a multi-processor with exposed datapath, as well as the simulated architecture WaveScalar [START_REF] Swanson | The WaveScalar Architecture[END_REF], or another targeting low energy and SIMD [START_REF] Waeijen | A Low-Energy Wide SIMD Architecture with Explicit Datapath[END_REF] As for many-cores, multi-processors with exposed datapath require specific compilation techniques [BJS16; BS17].

Embedded and specialized

Digital Signal Processors (DSPs) [START_REF] Liu | Application Specific Instruction Set DSP Processors[END_REF] architectures, for instance, are multi-processors dedicated to a few kind of computations; they correspond to Application-Specific Instruction set Processors (ASIPs). ASIPs support only a reduced set of binary instructions and any application using only those instructions can be run on them. Field-Programmable Gate Array (FPGA) processors may also be seen as ASIPs but having no instruction set; indeed their logic circuits are reconfigurable but once configured they are dedicated to rapidly execute a few kind of pipelined computations only triggered by data inputs, they are far less generic than CPUs. Application-Specific Integrated Circuits (ASICs) are the most specialized kind of processors, whose circuits are fixed and optimized for only one application. When processors are specialized, they usually require less space and less energy for the electronic circuits and thus are more easily embedded with other components, such as sensors. produce even more specific processors. With ASIPs, compilers perform not only the translation of the programming code to the binary instructions or to the circuit design, but also complex memory mapping and scheduling, or floor-planning of the FPGA circuits.

Processors for real-time systems. Verification and hardware synthesis of real-time systems is challenging [START_REF] Henzinger | The Embedded Systems Design Challenge[END_REF]. One of those challenges is to correctly model the behavior of hardware, whereas circuit complexity of CPUs multi-processors is still increasing.

Thus, a few processors are designed specifically to ease the verification of real-time applications executed on them, such as T-CREST [START_REF] Schoeberl | T-CREST: Time-predictable multi-core architecture for embedded systems[END_REF], used in the Patmos18 project.

The SDF dataflow model and its flavors

The Synchronous Data Flow (SDF) MoC has been introduced by Lee and Messerschmitt [START_REF] Lee | Synchronous data flow[END_REF]. In this thesis, SDF always refers to the SDF MoC. Zeb+08]. The analysis related in [START_REF] Wipliez | Classification of Dataflow Actors with Satisfiability and Abstract Interpretation[END_REF] relies on abstract interpretation [START_REF] Cousot | A gentle introduction to formal verification of computer systems by abstract interpretation[END_REF] while [START_REF] Zebelein | Classification of General Data Flow Actors into Known Models of Computation[END_REF] relies on state machines describing communication rates of dataflow processing actors.

Original SDF

SDF graphs are directed multi-graphs G = (V, E) composed of vertices, called actors, and edges, called buffers. Actors in V represent processing operations, while buffers in E represent the data communication between the different actors. Actors exchange data through their incoming and outgoing buffers. The abstract unit of data is called token.

An example of SDF graph is depicted in Figure 1.2a. This graph does not expose task parallelism since there is only one path, however, as we shall see, this graph exposes data parallelism.

A buffer e ∈ E is a First In First Out (FIFO) queue connecting its source actor src(e) ∈ V to its destination dst(e) ∈ V . Each buffer e is annotated with rates: a production rate prod(e) ∈ N * at the source of e, and a consumption rate cons(e) ∈ N * at the destination of e. Production and consumption rates may not be equal: this is how data parallelism is expressed in SDF graphs. For example if an actor α sends 6 tokens to an actor β through buffer e, whereas β expects 3 tokens at the other end of the buffer e, it means that β will be executed twice: once on the first 3 tokens and another time on the last 3 tokens on e. The tokens produced by one execution of src(e) are available to be consumed only after the end of the execution of src(e), i.e. the completion of src(e).

The number of tokens initially present on a buffer e is denoted d 0 (e); these tokens are called a delay. In order to not deadlock, cycles of the graph require delays on at least one buffer of the cycle. This is the liveness property.

As the rates may not be equal on both sides of a buffer, there can be multiple executions of an actor α ∈ V in order to avoid underflow or overflow on the buffer. The graph is consistent if it ensures that buffers have bounded sizes. Then, it is possible to compute a unique repetition vector r giving the minimal number of executions of each actor needed to put the graph back to its initial state with the same number of tokens in each buffer. The consistency property can be formalized with the repetition vector as in the following Equation (1.1). This equation ensures that all data produced on a buffer e can be consumed, and vice versa.

∀e ∈ E, prod(e) × r [src(e)] = cons(e) × r [dst(e)]

(1.1)

The repetition vector defines a graph iteration in which the actor executions are called firings, or equivalently jobs in the literature. Additionally, in this thesis, we consider that graph iterations always respect the data dependencies of buffers, even those broken by delays (except for cycles). Each actor in the SDF graph has a corresponding implementation code, written in any programming language. An actor firing corresponds to the execution of its code.

The repetition vector can be computed by two algorithms. First algorithm [START_REF] Lee | Static Scheduling of Synchronous Data Flow Programs for Digital Signal Processing[END_REF] uses a topology matrix which corresponds to a linear function giving the number of tokens present on each buffer for any repetition vector input. The repetition vector is the non null vector holding smallest Integer number of firings and belonging to the kernel of the topology matrix. Second algorithm uses a Breadth-First Search (BFS) graph traversal to compute a lowest common multiple of all production and consumption rates. The algorithm using graph traversal can be found in Section 3.1 of Bhattacharyya's book [START_REF] Bhattacharyya | Software synthesis from dataflow graphs[END_REF] dedicated to dataflow graphs. While both algorithms return the same repetition vector, 
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spread on the output buffers on the production side (firings of A), and where the tokens of the input buffers are joined on the consumption side (firings of B). Scheduling requires to know the ETs of each actor per kind of PE. In this thesis, ETs are not reported on the SDF graphs, but directly on the Gantt diagrams depicting their schedules.

A delay on a buffer e breaks data dependencies because it enables firing dst(e) without having fired src(e). Such case is depicted in Figure 1.4. In the original publication describing SDF, delay semantics is not completely explicit and delays are manually set.

However, the tokens of a delay may actually be set by the output of other actors [START_REF] Arrestier | Delays and States in Dataflow Models of Computation[END_REF].

Thanks to the delays, it is possible to increase the throughput of the schedule, as shown in Figure 1.4c which is repeating faster than on Figures 1.2c and 1.2e. The throughput is the average number of schedule repetitions per time unit, or equivalently the average number of graph iterations per time unit. In the case of indefinitely repeated static schedules, the throughput is defined as the inverse of the Initiation Interval (II) duration, i.e. the time between two schedule repetitions, as shown in Figure 1.4c. When there are delays, graph iterations do not match anymore with the schedule repetitions; the time until the end of the first graph iteration defines the makespan or latency of the scheduled application. A graph iteration is one end-to-end execution of the application represented by the graph. Delays on buffers outside cycles always increase the makespan, and imply that the makespan is greater than the II duration. In other words, there are more executions of the whole application per time unit, but each application execution 
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Static SDF flavors

Thanks to its static communications leading to the computation of a repetition vector, and thanks to its expressiveness of data and task parallelism, SDF has been widely used and extended for dataflow stream applications. Hereafter, we briefly introduce extensions of SDF which still have static communications, i.e. fixed production and consumption rates on buffers.

Cyclo-Static Data Flow (CSDF).

Cyclo-Static Data Flow (CSDF) [START_REF] Bilsen | Cycle-static Dataflow[END_REF] differs from SDF by the possibility to specify sequences of consecutive production or consumption rates which are indefinitely iterated over, hence cyclic. SDF is a subclass of CSDF, but CSDF has been developed after SDF. Figure 1.5 depicts an example of CSDF graph, its data dependencies, and a possible schedule. The production rate of actor A is "2 5 8", which means that at the end of its first firing, A produces only 2 tokens, 5 after the second firing and 8 after the last third firing. At its fourth firing, A loops over its production sequence and produces again 2 tokens. The repetition vector of CSDF graphs can be computed easily with a BFS algorithm as for SDF graphs. Instead of the production or consumption rate, it uses a rational number in Q being the sum of all rates in the sequence divided by the sequence length. Note that it is always possible to transform CSDF graphs into SDF graphs [START_REF] Parks | A comparison of synchronous and cyclestatic dataflow[END_REF], but in the worst case it requires to duplicate actors for each rate combination of its production and consumption sequences. The StreamIt language [TKA02] supports both SDF and CSDF models. A 1

Extensions for multi-dimensional arrays

A 2 A 3 B 1 B 2 B 3 B 4 B 5 2 1 3 1 2 3 3 (b) SRSDF graph of 1.5a.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 full review [START_REF] Keinert | Multidimensional Dataflow Graphs[END_REF] has been made by the creator of the "Windowed" version [START_REF] Keinert | Modeling and Analysis of Windowed Synchronous Algorithms[END_REF], which handles the case of elements in the halo of an image for example.
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Extensions using polyhedral model SDF is especially useful to express data parallelism on arrays of data. However, a powerful analysis also exists to automatically find such data parallelism in nested for loops of regular imperative languages; this is the polyhedral analysis [START_REF] Feautrier | Some efficient solutions to the affine scheduling problem. Part II. Multidimensional time[END_REF]. Polyhedral Process Networks (PPN) [START_REF] Verdoolaege | Polyhedral Process Networks[END_REF] combine polyhedral analysis with KPNs but only a few works focus on SDF graphs [START_REF] Fontaine | Combining dataflow programming and polyhedral optimization, a case study[END_REF].

Other extensions One important extension of SDF is the support of hierarchy, as with Interfaced-Based Synchronous Data Flow (IBSDF) [START_REF] Piat | Multi-Core Code Generation From Interface Based Hierarchy[END_REF]. Hierarchy eases the refinement of actors by other SDF graphs and IBSDF provides composition rules to keep consistent the whole SDF graph. SigmaC [START_REF] Goubier | ΣC: A Programming Model and Language for Embedded Manycores[END_REF] is another extension, more dedicated to many-cores architecture [DLC14] compared to similar languages as StreamIt. Besides, there exist an extension of SDF with asynchronous communications between independent graphs [START_REF] Pino | Mapping multiple independent synchronous dataflow graphs onto heterogeneous multiprocessors[END_REF], and another extension modeling global states [START_REF] Park | Extended synchronous dataflow for efficient DSP system prototyping[END_REF].

Dynamic SDF flavors

Dynamic extension of SDF help to relax the constraint of fixed production and consumption rates on buffer. For example, multiple tools, such as Odyn [START_REF] Dauphin | Odyn: Deadlock Prevention and Hybrid Scheduling Algorithm for Real-Time Dataflow Applications[END_REF], support the modification of the rates between each iteration of the graph. StreamDrive [SB19] also supports such inter-iteration rate modifications for KPNs, thus including SDF graphs.

With scenarii. Scenarii help to automatically trigger the modifications of the rates, for example in Scenario Aware Dataflow (SADF) [The+06], which uses Markov chains.

In SADF, detectors detect actor scenarii and trigger accordingly the rate modifications, possibly intra-iteration. Not only rates but also actor ETs may be modified. Later, SADF has been refined with FSM [START_REF] Stuijk | Scenario-aware dataflow: Modeling, analysis and implementation of dynamic applications[END_REF], see [START_REF] Kampenhout | A Scenario-Aware Dataflow Programming Model[END_REF] for an implementation. Besides, Mode Aware Data Flow (MADF) [START_REF] Zhai | Modeling, Analysis, and Hard Real-Time Scheduling of Adaptive Streaming Applications[END_REF] Reconfigurable topology. In a few SDF extensions, it is possible to modify the topology of the graph of the application, for example with switch actors [START_REF] Buck | A Dynamic Dataflow Model Suitable for Efficient Mixed Hardware and Software Implementations of DSP Applications[END_REF]. Boolean Parametric Dataflow (BPDF) [START_REF] Bempelis | Boolean Parametric Data Flow Modeling -Analyses -Implementation[END_REF] is a parameterized model supporting the modification of the graph topology, by a specific Boolean flow enabling or disabling actors.

PIMM also handles the disabling of actors by setting to 0 the rates of buffers connected to them. However, to our knowledge, only Reconfigurable Dataflow (RDF) [START_REF] Fradet | RDF: Reconfigurable Dataflow[END_REF] is able to perform complete inter-iteration reconfiguration of the graph, by removing or adding actors in it.

Scheduling of SDF graphs

Scheduling is a large research field, and this section presents only a few works related to this field. Scheduling may refer to the ordering or mapping of tasks, the ordering or routing of their communications, and to the allocation of the memory. Scheduling is actually applicable for every constrained resource, such as machines of a job shop for the job shop scheduling problem.

Scheduling problems are generally formalized either for independent tasks or for Directed Acyclic Graphs (DAGs) of dependent tasks, whereas we focus on SDF graphs.

Nevertheless, in most of the cases, static SDF graphs are first unfolded to acyclic SRSDF graphs, that are DAGs if live, in order to schedule them. This unfolding is a standard procedure, but it might produce large SRSDF graphs when the SDF repetition vector specifies large number of firings; in a SRSDF graph, there are as many tasks as the sum of the SDF repetition vector. It is possible to stream the construction of data dependencies to avoid building the SRSDFs [START_REF] Arrestier | Numerical Representation of Directed Acyclic Graphs for Efficient Dataflow Embedded Resource Allocation[END_REF], and a few works mix the application model with schedule information, such as Dataflow Schedule Graph (DSG) [START_REF] Wu | A Model-Based Schedule Representation for Heterogeneous Mapping of Dataflow Graphs[END_REF] or a work using FSMs [START_REF] Zebelein | Representing mapping and scheduling decisions within dataflow graphs[END_REF]. An older work compares the impact of intermediate representations of SDF graphs on their schedule [START_REF] Bambha | Intermediate Representations for Design Automation of Multiprocessor DSP Systems[END_REF]. In our contribution on scheduling, in Chapter 3, we consider the standard unfolding of SDF graphs to their SRSDF equivalent.

In Section 1.3.1, we briefly present the main scheduling techniques. Tools dedicated to SDF graphs are listed in Section 1.3.2. Finally, analyses of SDF graphs, usually performed before the scheduling to compute its theoretical efficiency, are listed in Section 1.3.3.

Scheduling techniques

Multiple techniques can be used for scheduling. In the next subsubsections, we first list the main properties of schedulers, and then the most employed techniques to actually compute schedules.

Scheduling types

Scheduling corresponds to the ordering of tasks, and by extension, to the ordering of communications between tasks. Mapping, or partitioning, is the process of selecting the PEs on which a task will be executed. Mapping may be resolved during the scheduling process, and scheduling often refers to both mapping and scheduling. Similarly, the routing of communications, that is the selection of communication routes across a network, may also be resolved during the scheduling process. Although less common, memory allocation may be considered during scheduling, as well as energy management or the optimization of any constrained resource.

Schedulers can be categorized thanks to some of the following properties. A scheduler:

• computes any of a task or communication ordering, or task mapping, a communication routing, or any allocation;

• is online/dynamic, ordering tasks as they are released, or offline/static, statically ordering tasks before their arrival;

• is starvation-free or non starvation-free, that is leading to not execute all given tasks (e.g. in case of deadlock);

• is preemptive or non-preemptive, that is enforcing tasks to execute until their completion without suspension;

• is time-triggered (e.g. by task periods) or event-triggered (e.g. self-timed datadriven);

• is global to multiple PEs, or partitioned, that is performed independently for each PE (only if mapping is already computed);

• supports dependencies, such as data communications between tasks, or not;

• supports dynamic job migration from one PE to another (only if online), or not;

• supports batch processing, that is to schedule independent tasks by groups according to their deadlines, or not;

• targets unicore, homogeneous or heterogeneous multi-processors;

• takes into account energy, processor temperature or frequency, etc. Scheduler of real-time systems consider a few more constraints on tasks. Real-time systems generally consists of periodic tasks [START_REF] Liu | Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment[END_REF] whose executions have to be scheduled in a given periodic time window, every 10 millisecond for example. The deadlines of tasks are implicit when equal to their period. If a task is not completed before its hard deadline, the system is considered non schedulable. Periodic tasks are especially used for safety critical systems where determinism and verification is important [START_REF] Bowen | Safety-critical systems, formal methods and standards[END_REF]. Davis' survey [START_REF] Davis | A Survey of Hard Real-time Scheduling for Multiprocessor Systems[END_REF] lists main modern scheduling types for real-time systems. Fixed Priority (FP) and Earliest Deadline First (EDF) are two common schedulers of periodic tasks; they are online schedulers respectively based on a static priority assignment of tasks and on dynamic priorities depending on the deadlines. Some real-time models relax the deadlines hard constraints, such as weakly-hard constraints [START_REF] Quinton | Generalized Weakly-Hard Constraints[END_REF]. Some others, such as PolyGraph [START_REF] Dubrulle | A Data Flow Model with Frequency Arithmetic[END_REF], release the periodic constraint on some tasks. Priority assignment and periods of tasks are set by the system designer, or computed offline by a scheduling synthesizer.

Timing properties of the tasks, such as latency from one task to another, may be verified after the scheduling, but some schedulers can take them into account during the scheduling process [START_REF] Maiza | A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems[END_REF]. We present a few other metrics in the next subsubsection.

Scheduling metrics

One of the most important metric is the processor utilization factor U , derived from the first schedulability test [START_REF] Horn | Some simple scheduling algorithms[END_REF] of tasks executed with preemption and a global deadline on an homogeneous CPU multi-processor. In this case, U corresponds to the sum of the task ETs, divided by the global deadline. To ensure a schedulable system, U must be lower than m the number of PEs . U may also be computed separately on each PE, and then serves as a metric measuring load-balancing [START_REF] Caragiannis | Better Bounds for Online Load Balancing on Unrelated Machines[END_REF].

The latency/makespan of a DAG of tasks is defined as the elapsed time from the minimum start of the roots of the DAG to the maximum completion time of the leaves of the DAG, considering tasks executed in the graph topological order, that is a graph iteration. For example, in the static schedule of Figure 1.4c, the latency is 10 time units, from the start time of A 1 to the completion time of B 2 in the second repetition of the schedule. Indeed, delays create pipelining and the SDF graph is executed, in topological order, across two schedule repetitions. Note that SDF graphs may contain cycles, but we assume that enough delays are present to break the data dependencies, and thus their corresponding SRSDF graph is a DAG.

In this thesis, we focus on static schedules which are repeated indefinitely. Roots of the DAG of tasks generally correspond to input reads from a stream. Then, one new element of the stream is read at each repetition of the schedule. In the thesis, each repetition of the schedule is also called a scheduler iteration, which is different from a graph iteration. When there is pipelining, a graph iteration can cross multiple scheduler iterations, as in Figure 1.4c. The duration of a scheduler iteration is called II, equal to

Solving techniques

Scheduling has been proved NP-complete when minimizing the II duration , but some specific cases may be polynomial [START_REF] Kwok | Static Scheduling Algorithms for Allocating Directed Task Graphs to Multiprocessors[END_REF]. Heuristics are generally used, such as list scheduling which is based on a priority list of all tasks to execute 20 . List scheduling is not always optimal, and may even have counter-intuitive behavior in specific cases, such as increasing the II duration when increasing the number of PEs [START_REF] Graham | Bounds on Multiprocessing Timing Anomalies[END_REF]. List scheduling can be used offline, and also online, especially by runtime schedulers such as StarPU [START_REF] Augonnet | StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Architectures[END_REF]. PREESM tool uses offline the FAST list scheduler [START_REF] Kwok | FAST: a low-complexity algorithm for efficient scheduling of DAGs on parallel processors[END_REF].

To compute optimal schedules, Integer Linear Programming (ILP) is used for a few decades [START_REF] Lawler | A Functional Equation and Its Application to Resource Allocation and Sequencing Problems[END_REF], but at the cost of solving only small systems due to the large amount of computations that ILP requires. The benefit of using ILP is to specify an objective function, for example minimizing the II duration. Constraint Programming (CP) can also be used, for example with the OscaR 21 tool [START_REF] Landtsheer | Optimal Mapping of Task-Based Computation Models over Heterogeneous Hardware Using Placer[END_REF]. CP provides more expressiveness for constraints but it requires a huge computational time when exploring the whole space of solutions. Local search is an alternative to explore only a subset of the whole solution space, see [START_REF] Pralet | An Incomplete Constraint-Based System for Scheduling with Renewable Resources[END_REF] for an example using OscaR. Evolutionary Algorithms (EA) is another alternative to only explore a subset of solutions [START_REF] Erbas | Multiobjective optimization and evolutionary algorithms for the application mapping problem in multiprocessor system-on-chip design[END_REF]. Scheduling can also be solved with Satisfiability (SAT) and Satisfiability Modulo Theories (SMT) techniques, as originally in [START_REF] Kautz | Planning As Satisfiability[END_REF].

In any case, it is always possible to specify multiple objectives for the schedule, but as they might be contradictory, there is not always one optimal solution; instead there exists a Pareto front of solutions. Each solution of a Pareto front is optimal according to at least one of the objectives, but not all. For multi-objective scheduling problems, multiple heuristics exist, such as the maximum diversity approach [START_REF] Masin | Diversity Maximization Approach for Multiobjective Optimization[END_REF]. Some results of similar problems show that Linear Programming (LP) 22 may scale efficiently [START_REF] Masin | Linear programming-based algorithms for the minimum makespan high multiplicity jobshop problem[END_REF].

EA has also been used to solve multi-objective scheduling [START_REF] Knowles | On metrics for comparing nondominated sets[END_REF]. Exploring multiple solutions of the same scheduling problem is also referred to as Design Space Exploration (DSE) [START_REF] Pimentel | Exploring Exploration: A Tutorial Introduction to Embedded Systems Design Space Exploration[END_REF].

Unfolding. To optimize the schedule of a stream application running forever, unfolding may be applied on the DAG of tasks. In this case, unfolding corresponds to consider multiple graph iterations at once, which is a kind of task replication, in order to use all the PEs more efficiently and so to increase the throughput. This technique has 20 Fixed Priority (FP) and Earliest Deadline First (EDF) scheduling types rely on list scheduling. 21 https://www.info.ucl.ac.be/~pschaus/oscar.html 22 Linear Programming (LP) uses float numbers. It is less difficult to solve than ILP but is not optimal.

been employed for the execution of task graphs on DSPs [START_REF] Parhi | Static rate-optimal scheduling of iterative data-flow programs via optimum unfolding[END_REF]. It is especially useful when the task graph exposes less parallelism than the number of available PEs. Spasić [START_REF] Spasić | Improved Hard Real-Time Scheduling and Transformations for Embedded Streaming Applications[END_REF] also proposes an unfolding algorithm with task replication in order to execute SDF graphs with periodic actors while maximizing throughput or minimizing energy consumption.

Clustering. The opposite of unfolding is clustering, which is useful when the task graph exposes more parallelism than the number of available PEs. Clustering merges some tasks together. Bhattacharyya proposed multiple algorithms to perform clustering, as APGAN [START_REF] Bhattacharyya | APGAN and RPMC: Complementary Heuristics for Translating DSP Block Diagrams into Efficient Software Implementations[END_REF]. Clustering is not only useful to reduce the amount of parallelism, but also to reduce the size of the binary code generated by the compiler according to the schedule [START_REF] Bhattacharyya | Generating Compact Code from Dataflow Specifications of Multirate Signal Processing Algorithms[END_REF].

Pipelining. Software pipelining [Lam04; All+95] is another technique to improve the throughput of stream dataflow applications. Pipelining corresponds to the start of a new graph iteration while the previous one is not yet completed. This objective is similar to unfolding. For a DAG which is indefinitely executed with different input data, scheduling with pipelining is sometimes referred to as pipelined workflow scheduling [START_REF] Benoit | A Survey of Pipelined Workflow Scheduling: Models and Algorithms[END_REF].

Pipelining has been widely studied for SDF [START_REF] Lee | Pipeline interleaved programmable DSP's: Synchronous data flow programming[END_REF]; it corresponds to add delays on some buffers of the graph. When there are data dependencies, it is also possible to use retiming techniques [START_REF] Leiserson | Retiming synchronous circuitry[END_REF] to create pipelines. Retiming corresponds to move delays from some buffers to others. Retiming and pipelining can be computed before calling the scheduler or at the same time if offline.

Tools and benchmarks

Multiple algorithms and tools are able to schedule SDF graphs or their SRSDF equivalent, for example onto regular CPUs [START_REF] Gummaraju | Stream programming on general-purpose processors[END_REF], Other works target many-cores architectures, such as Kalray [START_REF] Hascoët | Hierarchical Dataflow Model for Efficient Programming of Clustered Manycore Processors[END_REF], with the help of OpenMP. The latter work adds clustering and hierarchy to the work of Ha [START_REF] Kwon | Data-Parallel Code Generation from Synchronous Dataflow Specification of Multimedia Applications[END_REF]. The Diplomat framework [START_REF] Bodin | Diplomat: Mapping of Multi-kernel Applications Using a Static Dataflow Abstraction[END_REF] statically analyses code to transform it in the SDF model and to execute it on CPUs and GPUs with the help of OpenCL. OpenCL is a language and library dedicated to GPUs, which can also be executed on CPUs. Design Space Exploration (DSE) is supported by some works, such as [START_REF] Schwarzer | Compilation of Dataflow Applications for Multi-Cores Using Adaptive Multi-Objective Optimization[END_REF] for an extension of SDF with dynamic actors.

Multi-objective scheduling of SDF graphs has been considered for latency and throughput, thanks to ILP and heuristics [START_REF] Lin | Communication-aware Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems[END_REF]. There exists an offline scheduler using SMT which tries to reduce memory and communication contention [START_REF] Skalistis | Safe and Efficient Deployment of Data-Parallelizable Applications on Many-Core Platforms: Theory and Practice[END_REF], and tightens the schedule with the help of online measurements. Contention is the ET overhead due to the sharing of common resources such as cache memory or communication network.

All the aforementioned works use a large variety of techniques, and target a large variety of architectures. However, they focus on the scheduling problem and the code generation implementing the computed schedule. In the next subsubsection, we list some important works which combine scheduling for the hardware side, and modeling of the software side. For example, the StreamIt programming language [TKA02] supports the SDF model and is linked to a dedicated compiler performing scheduling. StreamIt also comes with an SDF benchmark. Tools to perform benchmarks of SDF applications are presented in the second subsubsection.

For development: modeling and code generation

Numerous work tackle the design of dataflow or real-time applications (some works, such as UML MARTE23 are listed in [START_REF] Rashid | Toward the tools selection in model based system engineering for embedded systems-A systematic literature review[END_REF]) or tackle the compilation of such applications (some works, such as Silexica24 , are listed in [START_REF] Leupers | Software Compilation Techniques for Heterogeneous Embedded Multi-Core Systems[END_REF]). However, we focus in this thesis on tools able to support both modeling and compilation or scheduling on given target architectures. Such tools are sometimes referred to as co-design tools since both application and architecture are modeled and refined during the design process. A survey on co-design tools for real-time systems [START_REF] Tröngren | Co-design of control systems and their real-time implementation : a tool survey[END_REF] lists some of the most important tool, such as SynDEx [GLS99; GS03] and Ptolemy [START_REF] Eker | Taming heterogeneity -the Ptolemy approach[END_REF]. To our knowledge, none of this tool supports automatic configuration of the QoS of the designed application.

An industrial co-design tool example is Scade25 , which relies on the Lustre synchronous language26 . Matlab/SimuLink tool is also widely used in the industry, see [START_REF] Pagetti | The ROSACE case study: From Simulink specification to multi/many-core execution[END_REF] for an example of a data-flow application modeled with SimuLink and executed on a many-cores processor from Tilera. LabView too can be used to model SDF graphs and execute them on FPGA processors [START_REF] Andrade | From Streaming Models to FPGA Implementations: ERSA'12 Industrial Regular Paper[END_REF].

On the academic side, there is the Gaspard [START_REF] Gamatié | A Model-Driven Design Framework for Massively Parallel Embedded Systems[END_REF] co-design tool inspired by Ar-rayOL, relying on UML MARTE model and inter-operable with synchronous languages such as Signal or Lustre. PeaCE [START_REF] Ha | PeaCE: A Hardware-software Codesign Environment for Multimedia Embedded Systems[END_REF] is another co-design tool supporting SDF and FSMs. Other tools, such as MAPS [START_REF] Castrillon | MAPS: Mapping Concurrent Dataflow Applications to Heterogeneous MPSoCs[END_REF] support more generic models such as KPNs but are not specifically optimized for SDF graphs. TTool 27 and more specifically its Diplodocus part [START_REF] Apvrille | A UML-based Environment for System Design Space Exploration[END_REF] supports the UML SysML28 model, which is an alternative to UML MARTE.

Other academic tools such as PREESM [START_REF] Pelcat | PREESM: A Dataflow-Based Rapid Prototyping Framework for Simplifying Multicore DSP Programming[END_REF] and its runtime version Synchronous Parameterized and Interfaced Dataflow Embedded Runtime (SPIDER) [START_REF] Heulot | Spider: A Synchronous Parameterized and Interfaced Dataflow-based RTOS for multicore DSPS[END_REF], specifically target SDF graphs, or more precisely the Parameterized Interfaced Synchronous Data Flow (PISDF) extension. It is possible to convert some UML MARTE specifications to the PISDF model [START_REF] Ammar | MARTE to PiSDF transformation for data-intensive applications analysis[END_REF]. Orcc [START_REF] Yviquel | Orcc: Multimedia Development Made Easy[END_REF] is an ancestor of PREESM.

CAPH [START_REF] Sérot | High-Level Dataflow Programming for Reconfigurable Computing[END_REF] and OpenDF [START_REF] Bhattacharyya | OpenDF -A Dataflow Toolset for Reconfigurable Hardware and Multicore Systems[END_REF] support SDF graphs and target FPGA processors.

Synthesis of real-time properties of tasks.

One objective of the design process is to avoid non schedulable systems. Algorithms exist to test the schedulability of SDF graphs with periodic actors and without preemption [START_REF] Benabid-Najjar | Periodic Schedules for Bounded Timed Weighted Event Graphs[END_REF]. However, rather than ensuring schedulability or giving latency or buffer bounds [START_REF] Goddard | Analyzing the real-time properties of a dataflow execution paradigm using a synthetic aperture radar application[END_REF], it is even better to compute directly during the design step some properties such as priority assignment for FP scheduling [START_REF] Klikpo | Preemptive scheduling of dependent periodic tasks modeled by synchronous dataflow graphs[END_REF]. Darts [START_REF] Bamakhrama | Hard-real-time scheduling of data-dependent tasks in embedded streaming applications[END_REF] and ADFG [Bou13; Hon+17] are more complete scheduling synthesizers since they even compute the periods of the SDF actors.

One particularity of ADFG is to schedule directly the SDF graphs without expanding them to SRSDF. Darts and ADFG cannot be considered as co-design tools since they are tools targeting only homogeneous architectures and SDF applications without any modeling facility as a Graphical User Interface (GUI). Nevertheless, they take both application SDF graph and number of available homogeneous PEs as an input, and could be used as underlying scheduling component of any larger co-design tool. This has been demonstrated for ADFG to verify AADL dataflow specifications [START_REF] Gautier | Polychronous automata and their use for formal validation of AADL models[END_REF].

For benchmarks: use-cases, validation and generation of sample graphs

Many dataflow applications have been modeled with SDF graphs, such as a video decoder and encoder [START_REF] Oh | Fractional Rate Dataflow Model and Efficient Code Synthesis for Multimedia Applications[END_REF] or multiple telecommunication applications [START_REF] Dardaillon | A New Compilation Flow for Software-Defined Radio Applications on Heterogeneous MPSoCs[END_REF][START_REF] Moonen | Cache Aware Mapping of Streaming Applications on a Multiprocessor System-on-Chip[END_REF][START_REF] Pelcat | Optimization of automatically generated multi-core code for the LTE RACH-PD algorithm[END_REF]. A reinforcement learning application [START_REF] Van Hasselt | Reinforcement Learning in Continuous Action Spaces[END_REF] has also been implemented in PISDF, as well as various image processing applications29 . The StreamIt [START_REF] Thies | An Empirical Characterization of Stream Programs and Its Implications for Language and Compiler Design[END_REF] benchmark contains other SDF and CSDF dataflow applications related to signal processing.

There exists a refactored version of StreamIT for real-time system analysis [START_REF] Rouxel | STR2RTS: Refactored StreamIT benchmarks into statically analysable parallel benchmarks for WCET estimation & real-time scheduling[END_REF] 30 . Another benchmark [START_REF] Jang | Executable Dataflow Benchmark Generation Technique for Multi-core Embedded Systems[END_REF] generates random C code corresponding to actors; it is based on the SDF 3 [SGB06b] SDF graphs generator and analyzer.
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Turbine [START_REF] Bodin | Fast and Efficient Dataflow Graph Generation[END_REF] 31 is a generator of SDF and CSDF graphs which can also ensure their liveness. Turbine exports SDF graphs in the file format of SDF 3 . Such files can be converted to the file format of PISDF by a simple script. Task Graph For Free (TGFF) [START_REF] Dick | TGFF: task graphs for free[END_REF] and GGen [START_REF] Cordeiro | Random Graph Generation for Scheduling Simulations[END_REF] focus on the generation of DAGs of tasks, a subclass of SDF graphs not exposing data parallelism.

Finally, a few tools focus on the evaluation of the schedules. For example, Cheddar [START_REF] Singhoff | Cheddar: A Flexible Real Time Scheduling Framework[END_REF] supports the SDF model and can simulate their periodic execution with the FP scheduling type to track events such as preemption.

Analysis for scheduling efficiency

As the scheduling process may be long and result in a non schedulable system, multiple algorithms have been developed to compute feasible bounds of metrics of the schedules. These metrics mainly are: latency, throughput, and the memory size required by the buffers. Bounds on these metrics are useful to asses the quality of the scheduling algorithms. Such bounds are usually computed before the scheduling process, and independently to it. If not specified in the next paragraphs, bounds are computed without resource constraints on the system.

Liveness.

Liveness ensures that all tasks may be executed even if the SDF graph contains cycles. Delays are added to some buffers of cycles in order to break data dependencies, and the goal is generally to minimize the amount of delays needed for liveness [START_REF] Chrzastowski-Wachtel | Liveness of weighted circuits and the diophantine problem of Frobenius[END_REF]. There exist polynomial sufficient conditions for the delay sizes in live SDF graphs [MM08; MM09], and in live CSDF graphs [START_REF] Benazouz | Liveness Evaluation of a Cyclo-static DataFlow Graph[END_REF]. Liveness has also been studied in the case of self-timed execution [START_REF] Ghamarian | Liveness and Boundedness of Synchronous Data Flow Graphs[END_REF].

Throughput. Throughput may be limited by delays on cycles: the minimal delay sizes ensuring liveness may reduce the expressed data parallelism. At the opposite, delays placed on buffers outside cycles create pipelining and increase the throughput.

The Maximum Cycle Mean metric Latency. Latency is also dependent on the delays of the SDF graph: delays generally increase the latency because one graph iteration is executed across multiple scheduler iterations. Latency has been evaluated for SDF graphs with periodic actors without preemption [Kha+16; GAM19b], and also with resource constraints on a many-cores processor [START_REF] Moreira | Self-Timed Scheduling Analysis for Real-Time Applications[END_REF]. A few works rely on symbolic execution to compute the minimum achievable latency, possibly under throughput and processor constraints [START_REF] Ghamarian | Latency Minimization for Synchronous Data Flow Graphs[END_REF].

Memory usage.

It is possible to schedule SDF graphs such that buffer sizes are minimized [ČP93], for which throughput may not be optimal. At the opposite, it is possible to schedule SDF graphs such that the buffer size is minimized while ensuring the maximum throughput. In between, some works compute close to optimal buffer sizes while respecting a throughput constraint [START_REF] Wiggers | Efficient Computation of Buffer Capacities for Cyclo-Static Dataflow Graphs[END_REF]. The ADFG tool is also able to minimize the buffer sizes [BFG16b; BFG16a] for FP and EDF scheduling types. While all the aforementioned works considered that each buffer has its own memory, some other works consider buffers shared among multiple actors to have memory reuse [START_REF] Denolf | Exploiting the Expressiveness of Cyclo-Static Dataflow to Model Multimedia Implementations[END_REF] and reduce the total memory size. Moreover, memory reuse can be optimized for SDF graphs once their static schedule is known [START_REF] Desnos | Distributed Memory Allocation Technique for Synchronous Dataflow Graphs[END_REF][START_REF] Desnos | On Memory Reuse Between Inputs and Outputs of Dataflow Actors[END_REF]. The latter technique uses a graph of memory exclusion of the buffer accesses made by each actor in order to reuse the memory of some buffers by other buffers when their accesses never overlap in time during a scheduler iteration.

Trade-offs.

As minimization of latency and maximization of throughput may be two contradictory objectives, trade-offs have been studied for the general case [START_REF] Stuijk | Throughput-Buffering Trade-Off Exploration for Cyclo-Static and Synchronous Dataflow Graphs[END_REF] or for improved analysis with partial scheduling information [START_REF] Damavandpeyma | Modeling static-order schedules in synchronous dataflow graphs[END_REF]. The SDF 3

tool [START_REF] Stuijk | SDF 3 : SDF For Free[END_REF] proposes multiple analyses, including trade-offs between buffer sizes and throughput [START_REF] Stuijk | Exploring trade-offs in buffer requirements and throughput constraints for synchronous dataflow graphs[END_REF] which are also two contradictory objectives when considering one dedicated memory per buffer. Same trade-offs between throughput and buffer size have been studied for SDF graphs with periodic actors [START_REF] Benazouz | A new approach for minimizing buffer capacities with throughput constraint for embedded system design[END_REF] and CSDF graphs with periodic actors [START_REF] Bodin | Periodic schedules for Cyclo-Static Dataflow[END_REF]. Other works handle constrained processors [START_REF] Lesparre | Efficient evaluation of mappings of dataflow applications onto distributed memory architectures[END_REF], for an extension of CSDF.

The PREESM tool

The PREESM [START_REF] Pelcat | PREESM: A Dataflow-Based Rapid Prototyping Framework for Simplifying Multicore DSP Programming[END_REF] tool helps to design SDF applications. PREESM is developped at INSA Rennes as an open-source project 32 . It provides a GUI to ease the modeling, and multiple kinds of analyses are also implemented. Most importantly, PREESM has a synthesis part to generate automatically parallelized C code of the modeled applications.

The models and files used by PREESM are described in Section 1.4.1. Then we focus on the definition of application parameters in Section 1.4.2, and on the computation of the repetition vector in Section 1.4.3. Finally, special kinds of actors are introduced in Section 1.4.4; they are especially useful to generate the SRSDF graph of an application.

Architecture of a PREESM project

The dataflow model supported by PREESM is called PISDF; it is the application of the Parameterized Interfaced Meta-Model [START_REF] Desnos | PiMM: Parameterized and Interfaced dataflow Meta-Model for MPSoCs runtime reconfiguration[END_REF] to the SDF MoC. Regarding the MoA, PREESM uses S-LAM [START_REF] Pelcat | A System-Level Architecture Model for Rapid Prototyping of Heterogeneous Multicore Embedded Systems[END_REF]. As PREESM is an Eclipse33 based platform, the files related to an application and its targeted architectures are grouped in a project containing multiple folders. The Algo folder contains the files representing the PISDF graphs of the application, while Archi contains the files representing the S-LAM architectures.

Other configuration files are located in the folders Code, Scenarios and Workflows. A description of each project folder is given hereafter.

Algo project folder

This folder contains all the PISDF graphs of a project. The graphs are stored in an XML format with a .pi file extension. Moreover, all .pi files can be converted to, and automatically updated from, a GUI with corresponding .diagram files. The GUI supports the live editing of all properties of a PISDF graph: actors, buffers, production and consumption rates, parameters, etc. . . The GUI comes with an automatic layout algorithm to clarify the representation.

Since the PISDF MoC supports the hierarchical description of a graph, there might be multiple .pi files to represent a single PISDF graph. Indeed, an actor of the top level graph might be refined in another hierarchical graph and related .pi files. There is no limit to the number of subgraphs in the hierarchy. In this thesis only flat graphs, i.e. without hierarchy, are considered ; this is not a strong assumption because all hierarchical graphs can be automatically converted to their flat equivalent. When an actor is not refined by another subgraph, it has to be refined with the prototype of the function (coded in C) to execute. Eventually, all leaf actors of the whole graph are refined with a C function.

Archi project folder

This folder contains all the S-LAM architectures of a project. The architectures are stored in an XML format with a .slam file extension. Moreover, all .slam files can be converted to, and automatically updated from, a GUI with corresponding .layout files.

The GUI supports the live editing of all properties of a S-LAM architecture, especially

PEs and data connections between them, with bandwidth specifications. Multiple .slam files can be present in the same Archi project folder.

In this thesis, only homogeneous CPU architectures are considered and we use only a subset of the S-LAM model. For example, the Intel i7-7820HQ @ 2.90GHz processor having 4 physical cores is modeled with 4 PEs each connected, thanks to an undirected-DataLink, to a single parallelComNode imitating the accesses to a shared RAM. The bandwidth of parallelComNode is arbitrarily set to 10 9 data unit per time unit, while we generally consider byte as data unit and nanosecond as time unit.

Code project folder

This folder contains all the C files of a project. Especially it contains the header .h files defining the function prototypes used as actor refinements. Multiple actors may be refined with the same prototype.

It is a common practice to store the implementations of the C functions in the Code project folder too. Another common practice is to create a generated subfolder as the target of the PREESM code generation. Thus all C files are closely located and it is easier to manage and compile them. The PREESM code generation creates one main .c file, plus one per PE. The purpose of the main file is to launch as many threads as PEs, each executing the instructions of its corresponding file. The generated files defines all the buffers and their static addresses on the memory stack.

A few other C files may be required, for example to wrap the communication means on a specific DSP (provided by the designer), or to instrument the code with check sums on the buffers content (provided by PREESM). It is also possible to instrument the code with timing measurements of every actor, which are stored in a custom .csv file during the execution.

Scenarios project folder

This folder contains all the scenario files of a project. The scenarios are stored in an XML format with a .scenario file extension. Multiple .scenario files can be present in the same Scenarios project folder. Each scenario file contains application information which are specific to a given architecture, as the actor ETs. Thus they refer to exactly one top level PISDF graph and one S-LAM architecture. Moreover, a GUI supports the live editing of all the stored properties of a scenario, as well as the import of the ETs from .csv files resulting from the timing measurements done when instrumenting the code.

Among other properties of the scenario, they also store mapping constraints, i.e.

whether or not an actor can be executed on a specific PE of the architecture. Values of PISDF parameters can be override in the scenario, and the size of buffer data types must be specified in the scenario. Finally, it is possible to specify the energy required by each actor firing and the power consumption of the PEs.

Workflows project folder

This folder contains all the workflows of a project. The workflows are stored in an XML format with a .workflow file extension. Multiple .workflow files can be present in the same Workflows project folder. Each workflow file defines the sequence of transformations to apply on one scenario and especially the PISDF graph it refers to. Eventually, the transformations lead to the scheduling of the application and to the code generation.

Moreover, all .workflow files can be converted to, and automatically updated from, a GUI with corresponding .layout files. The GUI supports the live editing of all properties of a workflow, such as the add of a new transformation, for example the one to flatten a hierarchical PISDF graph.

Each transformation is called a workflow task. All the contributions of this thesis have been implemented as workflow tasks, whose names are given at the end of each chapter. Note that the workflow tasks form a kind of dataflow graph: a given root task outputs the scenario, the architecture and the top level PISDF graph, which can be the input of any other workflow task. Multiple intermediate representations are used between the workflows tasks, especially for the output of the scheduling workflow task.

The obtained schedule can be displayed in a GUI thanks to another workflow task. Last but not least, workflows can be called in a script to avoid the Eclipse GUI, thus easing the automation of transformations on multiple projects.

Definition of PISDF graphs and parameters

When working in PREESM, the main interest of a designer is to develop PISDF graphs of the designed application. The easiest way is to use the dedicated GUI, which supports the live editing of a graph and its parameters, displayed in the same diagram and stored In the GUI, parameters are represented with a different shape and a different color than actors, as shown in Figure 1.6. Each parameter has a unique name, here suffixed by param to be recognized more easily in the figure. As parameters are named, their arithmetic expressions can depend on each other, and parameters eventually form a DAG whose roots (here paramW and paramX) can only hold constant expressions (there should be no cyclic dependency). A parameter can depend on multiple parameters, and can be used by multiple other parameters or actors. Dependencies must be explicitly set by the designer. If an actor is dependent on a parameter, the parameter can be used in the production or production rates of buffers connected to this actor, and also as an argument of the C function refining this actor. The other arguments of the C function of an actor are the memory pointers to its input and output buffers, if any. In Figure 1.6, there is a single buffer named output for the producer actorA and input for the consumer actorB. The PISDF model also supports the use of an actor output in a parameter definition; then the parameter becomes dynamic, and it is not possible anymore to statically schedule the application. In this thesis we only consider static parameters, which are not depending on any actor output.

Concretely, the parameters especially ease the definition and the modification of production and consumption rates. In Figure 1.6, they are defined by the following set of equations in Listing 1.1, all related to the unique buffer denoted e for convenience. In the GUI, only the right hand sides of those equations are set into the text fields of the corresponding parameters or of the rates. For example, the arithmetic expressions of production and consumption rates are given here with the notations used in this thesis, respectively prod(e) and src(e), but in the GUI they are set directly in the Source port rate and Target port rate text fields of the currently selected buffer. 

Computation of the repetition vector

Once the parameters of a PISDF graph have been valuated, all the actor production and consumption rates are fixed and it is possible to compute the repetition vector, which respects Equation (1.1). To do so, a mere graph traversal can be used [START_REF] Bhattacharyya | Software synthesis from dataflow graphs[END_REF]. In the PREESM tool, this graph traversal is a Depth-First Search (DFS) taking into account cases which are specific to the PIMM model, especially hierarchy and rates equal to 0.

As this thesis tackles only flat graphs, i.e. without hierarchy, the case of hierarchy is not detailed in the presented algorithm. To simplify, the case of hierarchy requires a recursive top-down approach, computing the repetition vector r Parent of the parent graph first, and then multiplying the repetition vector r Child of each child graph Child by its upper level repetition factor, i.e. by the scalar r Parent [Child]34 .

In PREESM, the computation of the repetition vector can be represented as two successive steps. The first step discovers all the largest weakly connected components of the flat PISDF graph, as detailed in Algorithm 1.1. A weakly connected component of a directed graph is a set of nodes such that an undirected path always exists between two nodes of the set35 . As the definition involves undirected paths, the algorithm explores both the incoming IE(β) and outgoing OE(β) buffers of each actor β. During this first step, buffers where both the production and consumption rates are equal to 0 are ignored, see lines 20-22 and 27-29. Thus, if an actor has rates of all its buffers equal to 0, it is not executed at all, see lines 33-34. The visiting order of the actors during the first step is important and is reused for the second step. Indeed the second step actually sets a firing ratio between the currently visited actor and all its direct neighbors according to the DFS. A firing ratio is the local multiplicity of firings of an actor compared to one of its direct neighbors. All the firing ratios are finally used to compute the repetition vector, see lines 17-19 of Algorithm 1.2.

Note that Algorithms 1.1 and 1.2 set the repetition vector even for graphs having multiple connected components, which corresponds to the case of multiple independent applications described in the same graph. In such case, the algorithm automatically sets the repetition vector such that all connected components have the same throughput.

For example, in the simplest case of a graph containing two unconnected actors without buffer, the repetition vector is 1: both actors are fired once.

However, the designer might need an unbalanced behavior, for example, with one Algorithm 1.1: Modified DFS before computing the repetition vector r 1 function initializeCCs(V, r) The DFS initializes all connected components (CC).

2 forall α ∈ V do 3 r [α] ← 1;
By default each actor is executed once. 

Single-Rate graph and special actors

Once the repetition vector has been computed, it is possible to generate the SRSDF version of the original PISDF graph, as in Figure 1.4b. However, the graph in Figure 1.4b cannot be used in this form for the scheduling (because of delay management) and the code generation (because of varying number of inputs and outputs). Thus, a few special kinds of actors are used in PISDF in order to solve these problems. Figure 1.7 depicts the actual SRSDF graph37 generated by PREESM instead of the one depicted in Figure 1.4b.

The graph in Figure 1.7 contains 7 special actors, whose behavior is detailed in the next paragraphs. As the behavior of those special actors is defined by PREESM, their refinements in a C function do not have to be written by the designer. Moreover, some memory optimizations [START_REF] Desnos | On Memory Reuse Between Inputs and Outputs of Dataflow Actors[END_REF] are automatically applied to the special actors.

Init/End actors. These special actors ensure that any live SRSDF is indeed a DAG in PREESM. To simplify, we have stated earlier that all SRSDF graphs are DAGs however this is true only for live SDF graphs where data dependencies coming from and going to delays are replace by init and end actors, respectively. These actors are added automatically by PREESM during the SRSDF graph generation; the user does not have to manage them. An init actor only has an output buffer; it provides the data which have been stored into its corresponding delay during the previous scheduler iterations.

An end actor only has an input buffer; it stores the data into its corresponding delay during the current scheduler iteration.

Fork/Join actors. These special actors behave as scatter and gather operations, respectively. A fork actor scatters the data of its unique incoming buffer into all its outgoing buffers (in order of appearance, from top to bottom). A join actor gathers data of its incoming buffers (in order of appearance, from top to bottom) into its unique outgoing buffer. The sum of their incoming rates is equal to the sum of their outgoing rates. The fork and join actors are especially useful to ensure that all C functions of actor refinements always take the same number of arguments. For example, in Fig- Broadcast/Roundbuffer actors. These special actors behave as duplicate and decimate operations. A broadcast actor copy the data of its unique incoming buffer into all its outgoing buffers, multiple times if the production rates are a multiple of the only input consumption rate. A roundbuffer actor retains only the last data of its incoming buffers (in order of appearance, from bottom to top) until reaching the production rate of its unique outgoing buffer. In the case of hierarchical graphs, broadcast and roundbuffer actors are automatically generated by PREESM during the conversion into a flat PISDF graph, in order to ensure that subgraphs do not modify the repetition vector of their parent graphs. The designer can also add broadcast and roundbuffer actors manually, and they are used in two of our contributions, see Figures 2.5 and 5.2.

Conclusion

Parallelism and architectures can be modeled with multiple means. In this section, we precise which models are used in this thesis and we detail the common notations.

Model used in this thesis

The dataflow model used in this thesis is PISDF, that is the application of PIMM to SDF. However, we do not use all properties of PISDF, in particular we do not consider dynamic configuration of the parameters nor hierarchical graphs. We focus on the static part of the PISDF model because it explicitly exposes both data and task parallelism, and is simple enough to perform extensive analyses on it. As PISDF supports any expression of parameters for production and consumption rates, delay sizes, or even ETs, it makes PISDF suitable for the automatic configuration of applications modeled with it.

To perform analyses on the PISDF model, we use the PREESM co-design tool, which also integrates the S-LAM architecture model. Our target architectures are modeled with S-LAM. PREESM offers a code generation feature, which implements synchronization barriers between each scheduler iteration. This feature corresponds to the scheduling Assumption 1 described in Section 3.2.2. To generate the code, PREESM creates one thread per PE. Each thread executes its tasks in a data-driven fashion.

Main notations

Main notations used in this thesis are detailed in The contribution of this chapter is the modeling with SDF graphs, of multiple perfectly nested loops having explicit parallelism and variable bounds in their inner loops.

In loops having explicit parallelism, all iterations are independent. Perfectly nested loops perform computation only in the innermost loop. This contribution is motivated by two facts. First, variable amounts of data can be modeled with the CSDF [START_REF] Bilsen | Cycle-static Dataflow[END_REF] MoC, an extension of SDF; but previous experiments on modeling using the CSDF MoC have shown that this model is not easy to understand for designers and does not always offer a competitive benefit. CSDF modeling difficulty has been stated by the creators of the SDF-based language StreamIt [START_REF] Thies | StreamIt: A Language for Streaming Applications[END_REF], in a review of their own work [START_REF] Thies | An Empirical Characterization of Stream Programs and Its Implications for Language and Compiler Design[END_REF] Related work, in Section 2.6, is followed by a conclusion.

SIFT keypoints detection application

This section presents an overview of the SIFT application that is later modeled with SDF graphs. Scale Invariant Feature Transform (SIFT) computes keypoints by comparing points in the original image with the same points in blurred images obtained from the original one, and at different resolutions. problem, the naive way to model different octaves is to create a specific actor for each image resolution, which is not convenient because the model cannot be adapted to different numbers of octaves. Another difficulty is that the computation on the smallest image resolution, the last octave, is faster than the computation of the first octave by multiple orders of magnitude. Indeed, for an image of 640 × 800 pixel, the image is upscaled once and downscaled five times by a factor 2 on each dimension; thus the ratio of the number of pixels in the first octave over the last is 4 6 = 4096. If multiple PEs are available, an important question is how to parallelize the computation equally among them. Figure 2.1b illustrates this problem with three layers, three octaves, and four available PEs. One option is to assign each layer to a PE, but then a PE is not used.

The opposite option is to assign each octave to a PE, but then a PE is not used, and computations are unbalanced. An example of equal distribution of the computation on the four PEs is shown in the boxes of the four colors red, blue, green and yellow (each with a specific dotted, dashed or straight line pattern). Each color encloses one quarter of the computation. On that example, boxes clearly do not match the image bounds.

The iterators introduced in Section 2.3 can handle this computation partitioning while staying in the SDF model. Iterators are used to model and parallelize the green steps in the workflow in 2.1a, in our case according to the number of available PEs.

Iterators do not require duplicating any actor for each octave. Before describing the iterators in details, modeling and parallelization of single loops with SDF graphs is recalled in Section 2.2.

Modeling of single loops having explicit parallelism

This section discusses the modeling of single for loops with SDF graphs. for loops are a basic control structure of any imperative language. The code in Listing 2.1 illustrates a simple for loop. It iterates over an input array, processes each element and stores the result in an output array; both arrays having the same size N, it represents a map operation. Here the parallelism is explicit: there is no dependency between the statements of any iteration of the loop, and process is a pure function without side effects.

for In image processing, a common operation is to perform an upscale, increasing the resolution of the image with interpolation. This operation is more generic than map since the output array does not have the same size as the input, and since multiple elements of the input array are accessed simultaneously to perform the interpolation. A code example is shown in Listing 2.2 for the 1-D case.

(int i = 0; i < N; ++i) { output[i] = process(input[i]); } Listing 2.1 -Simple one dimensional (1-D) for loop having explicit parallelism.
for (int i = 0; i < N-1; ++i) { output[2*i] = input[i]; output[2*i+1] = interpolation(input[i], input[i+1]); } output[2*N-2] = input[N-1]; output[2*N-1] = input[N-1];
Listing 2.2 -Simple 1-D upscale, by interpolation on the element and its successor.

An upscale operation is similar to a map, but requires extra data to apply the interpolation on the borders of the chunks of the original array. The last element of a chunk is a copy of the first element of the next chunk. These extra data can be added by a copy actor preceding the upscale actor. The SDF modeling of an upscale operation is depicted in Figure 2.2b, where the interpolation actor is called Upscale, and the copy actor is called Split. Split is executed once while Upscale is executed p times. The code of the Split actor, in Listing 2.3, pre-processes the data to add an extra element to each chunk then processed by Upscale. The code of the Upscale actor, in Listing 2.4, is simpler and faster than the original one, in Listing 2.2, since the border case needs no more to be handled thanks to the copies performed by Split. An image has two dimensions but the data parallelism is expressed only on the height of the image, divided by the number of PEs. The same pattern is also used for the second step of SIFT: the layers computation. However, the algorithm to compute the different layers consists of two successive 1-D Gaussian blurs on lines of the image, each blur performing a transposition. The Gaussian blur applies a 1-D stencil with two neighbors. As data parallelism is expressed through the height of the image in any case, data must be reordered between the two transpositions; this is creating an application bottleneck since this reordering is fully sequential. We now generalize the SDF modeling patterns seen in this section for single for loops to perfectly nested loops having explicit parallelism.

The upscale modeling pattern presented in

Modeling of nested loops having explicit parallelism

In this section, perfectly nested loops having explicit parallelism are considered. An example is given in Listing 2.5, with three perfectly nested loops. Perfectly nested loops do not contain any statement between the declaration of the loops: only the innermost loop contains statements, line 4 of Section 2.3.2. Explicit parallelism means that in the assignment statement on line 4, the indexes are the same on the right hand side and the left hand side: the iterations of the loops can be executed in any order without modifying the result. However, the index bounds of the inner loops may depend on the outer loop indexes, as abstracted by the functions f1 and f2, which can be any mathematical function. The functions giving the index bounds depend solely on their outer loop indexes, i for f1 and i,j for f2; in our work, those functions cannot depend on the processed data. The parallelization of nested loops of the same form than in Listing 2.5 is described in Section 2.3.1, and their modeling with SDF graphs thanks to iterators is discussed in Section 2.3.2.

for (int i = 0; i < N1; ++i) { for (int j = 0; j < f1(i); ++j) {

for (int k = 0; k < f2(i, j); ++k) { output[i][j][k] = process(input[i][j][k]); } } }
Listing 2.5 -Three perfectly nested for loops having explicit parallelism.

Iteration space splitting

An important property of the SDF MoC is that the rates of data exchanges are fixed.

Thus, the only solution to model loops as in Listing 2.5 with SDF graphs is to split the whole iteration space into chunks of equal sizes. These chunks do not always match the loop bounds as depicted in Figure 2.1b. In Listing 2.5, the whole iteration space size S it is N 1 i=0 f 1(i) j=0 f 2(i, j) . In this example, the iteration space size equals the total size of the array to process, it is a map operation. Following the structure of Listing 2.5, it is possible to define S it for any number of d nested loops, as formalized in Equation (2.1).

In Listing 2.5, there are d = 3 nested loops.

S it = N 1 i 1 =0   f 1 (i 1 ) i 2 =0   f 2 (i 1 ,i 2 ) i 3 =0   ... f d-2 (i 1 ,i 2 ,... ,i d-2 ) i d-1 =0 f d-1 (i 1 , i 2 , ... , i d-1 )       (2.1)
The most straightforward way to cut the whole iteration space into chunks of equal size is to simulate the execution of the loops. A variable iter storing the number of performed iterations is incremented instead of calling the process function. Each time iter reaches a multiple of chunk_size, the loop indexes are recorded to be used as start/stop indexes when splitting the loops. This algorithm is written in Listing 2.6, with chunk_size being equal to any divisor of S it . The role of an SDF iterator is to send the recorded indexes to split the real execution of the loops in the processing actor. int iter = 0; for (int i = 0; i < N1; ++i) { for (int j = 0; j < f1(i); ++j) {

for (int k = 0; k < f2(i, j); ++k) { if (iter++ % chunk_size == 0) { record(i,j,k); } } } }
Listing 2.6 -Iteration space simulator for three perfectly nested for loops having explicit parallelism. The recorded indexes will be stored in the SDF iterator.

Note that this simulation can be done offline: the start/stop indexes only need to be saved in order to be used during the real execution of the loop (where the process is performed). Besides, this simulation can be easily adapted to any number d of nested loops: the structure is the same as the original nested loops.

SDF iterators

An SDF iterator actor outputs the start and stop indexes for each execution of the process actor modeling the nested loops. Thus, if the nested loops iteration space S it is divided into p chunks, the iterator is executed once and the processing actor is executed p times. The code for the processing actor is similar to its original version in Listing 2.5, the only difference concerns the indexes that are set by the iterator output. The modeling of the perfectly nested loops with SDF graphs is depicted in Figure 2.3. S it elements are sent to the Process actor, which is processing them by chunks of size S it p . For each execution of Process, the iterator produces 2 × d indexes: one start index and one stop for each loop of the d nested loops. These indexes i,j,k,... are the one recorded during the loop simulation presented in Listing 2.6, considering that the stop indexes of one execution of the process are the start indexes of its next execution. Hence, the p executions of Process can be performed in parallel. As the p chunks may not match with the dimension bounds, as for images in Figure 2.1b, the value of each recorded index may be lesser than the index bound of its corresponding loop; Section 2.4.2 details how to modify the processing actor code accordingly. Note that the map and upscale patterns described in Figure 2.2b can also be applied to this general case of nested loops. Finally, iterators empower the designer to control data parallelism in SDF graphs for any perfectly nested loops having explicit parallelism. Iterators imply two drawbacks which can be overcome. The first drawback is the restriction to nested loops having explicit parallelism. However, this restriction can be removed in some cases, but not all, thanks to prior source-to-source code transformations, such as loop-skewing. The second drawback occurs when tagging an actor α, parallelized with an iterator, with a measured ET C α . Indeed, the ET is then not only dependent on the actor code, but also on the chunk size. This drawback is easily overcome using symbolic expressions of the ET, as formulated in Equation (2.2).
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C α (p) = C α (1) p (2.2)
So when actor α is parallelized over p chunks of equal size, the ET of each execution of a is equal to its sequential ET divided by the number of chunks. Equation (2.2) formalizes an ideal case of data parallelism and does not respect the Amdahl's law [START_REF] Amdahl | Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities[END_REF], but more realistic symbolic expressions can be used instead. In the heterogeneous case, note that C α (1) depends on the type of PE: while the amount of computations is equally distributed on each firing, their ET on different types of PEs may differ.

When and how to use SDF iterators?

This section details when and how to use the SDF iterators presented in Section 2.3.
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When are needed SDF iterators?

SDF iterators are required only when the loop indexes are used in the processing part.

For example, loop indexes enable knowing the image bounds in the 4-D arrays of the SIFT application, and thus the processing is able to call specific code on borders of the image. The indexes are needed in SIFT also to access the whole array; Listing 2.8 provides a code example. SDF iterators are restricted to perfectly nested loops having explicit parallelism. Moreover, the bounds of the loops cannot depend on the processed data. If loops are not perfectly nested, it is still possible to use SDF iterators; however, in this case the computation times of the actor firings may be unbalanced.

On the contrary, SDF iterators are not required for standard map/reduce operations, even on multidimensional data, since map/reduce operations do not need to be aware of the current position in the input array. Indeed, in this case, only the size of the iteration space is needed. However, iterators may still be used, for example in order to handle padding data if the size of the iteration space is not a multiple of the number of processors. The map operation in the SDF MoC is depicted in Figure 2.2a, while the reduce operation is depicted in Figure 2.4. The reduce operation requires to create log c N reduce actors in the corresponding SDF graph in order to control the degree of parallelism; each reduce actor consumes N c elements and produces 1. The repetition vector of these reduce actors is (in the same order as in the graph): [ N c , N c 2 , N c 3 , ..., 1] T , where the total number of elements N is a power of the chunk size c. One drawback to this reduce operation modeling is to manually fill the SDF graph with the correct number of successive reduce actors. This drawback advocates for higher order languages to represent SDF graphs, as HoCL1 developed by Jocelyn Sérot and inter-operable with PREESM. follows the order of the data: the second firing gets the second chunk (elements 7 to 13).
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It is also possible to have the full array as an input of each firing, without extra memory consumption. This situation occurs in SIFT where the detection and extraction of the keypoints depends on pixels at different octaves, and thus depends on data spread everywhere in the 4-D array. To do so, a so-called Broadcast actor is added to the SDF graph, and provides multiple virtual copies of the 4-D input array: there are as many copies as there are firings of the processing actor. These copies are virtual since they refer to the same physical memory, by using the memory scripts [START_REF] Desnos | On Memory Reuse Between Inputs and Outputs of Dataflow Actors[END_REF] introduced by Karol Desnos et al. A graph extract corresponding to this solution is depicted in Figure 2.5. In this solution, the Process actor is still fired p times, and still processes only S it p elements of the array, however it has access to the whole array. Another parallel version of SIFT has been implemented using OpenMP, with parallel for pragma above the loops iterating over the height of the images, which are the third inner loops as in Listing 2.9. With OpenMP, the keypoint detection step requires a critical section to add the detected keypoints into a shared list.

Evaluation

The execution times of the PREESM version and the OpenMP version of SIFT have been reported in factor equal to the number of cores since not all steps of SIFT are parallelized through iterators, as shown in Figure 2.1a.

This evaluation shows that it is possible to model and parallelize an application having perfectly nested for loops with variable index bounds thanks to SDF iterators.

We achieve competitive performances against OpenMP, that we could even improve by adding delays in the SDF graph (delays create pipelining). A heuristic to automatically add delays is presented in Chapter 4. Moreover, with the SDF MoC, it is easier to express task parallelism mixed with data parallelism: for example, if a task is executed in parallel with a chunked loop. Finally, we are able to control the expressed degree of parallelism, although restricted to be a divisor of the size of the iteration space.

Related work

The modeling of nested for loops with SDF iterators is related to two main aspects: specialized dataflow languages, especially for image processing applications where at least two dimensions are considered, and dataflow graph clustering, since iterators impact on the degree of data parallelism.

On specialized dataflow languages

The offer more flexibility on the application representation, however it is not possible to derive static schedules from such languages when their semantics are fully exploited.

On the clustering of dataflow graphs

Clustering is usually performed on graphs expressing more parallelism than available on the target architecture; clustering simplifies scheduling without increasing the application execution time [START_REF] Pino | A hierarchical multiprocessor scheduling system for DSP applications[END_REF]. The standard way to reach a coarse representation is to limit the unfolding of the SDF graph into a precedence task graph. The unfolding is limited by merging different actors, or multiple executions of the same actor. This operation artificially reduces the repetition vector size, or decreases the values held by the repetition vector. For example, APGAN and RPMC algorithms [START_REF] Bhattacharyya | APGAN and RPMC: Complementary Heuristics for Translating DSP Block Diagrams into Efficient Software Implementations[END_REF] are two heuristics dedicated to merge actors of SDF graphs. Similar methods have been employed for SDF graphs under real-time constraints [START_REF] Zhai | Exploiting just-enough parallelism when mapping streaming applications in hard real-time systems[END_REF]. The StreamIT benchmark has also been successfully transformed into coarse SDF graphs for the RAW architecture [START_REF] Gordon | Exploiting Coarse-grained Task, Data, and Pipeline Parallelism in Stream Programs[END_REF],

by an unfolding technique using actor "fusion" (actor merging) and "fission" (actor duplication). Graph pattern detection and substitution is another way to merge actors [START_REF] Cudennec | Parallelism Reduction Based on Pattern Substitution in Dataflow Oriented Programming Languages[END_REF]. Regarding reduction of the repetition vector size, there exists a vectorization algorithm [START_REF] Ritz | Optimum vectorization of scalable synchronous dataflow graphs[END_REF] for an extension of the SDF MoC called Scalable Synchronous Dataflow, which inspired the recent Partial Expansion Graphs (PEG) [START_REF] Zaki | Implementation, Scheduling, and Adaptation of Partial Expansion Graphs on Multicore Platforms[END_REF]. PEG are scheduled under dynamic scheduling.

Another method is to completely unfold the SDF graph into a precedence task graph, and only then, to apply clustering algorithms; however, this significantly increases the clustering complexity. Clustering algorithms exist for precedence graphs, including compiler intermediate representations [START_REF] Li | Automatic Extraction of Coarse-Grained Data-Flow Threads from Imperative Programs[END_REF]. Hierarchical SDF graphs have also been used

to model nested loops [START_REF] Piat | Loop transformations for interfacebased hierarchies IN SDF graphs[END_REF], one per hierarchy, but they require an analysis of the iteration space. Both methods do not offer control on the degree of parallelism.

Finally, all the aforementioned clustering methods rely on algorithms that analyze the graph and create a coarse or hierarchical version of it, while the proposed iterators only require to replace the for loop index bounds by the iterator output. Only one iterator per iteration space is needed.

Conclusion

This chapter has demonstrated that it is possible to model a subclass of nested loops having variable index bounds with an SDF graph, and to control the degree of expressed parallelism. Thus, we can add to the observations of the StreamIt creators that the CSDF model is not only complicated to use, but is also not always compulsory: the SIFT application has been parallelized efficiently thanks to the SDF model and iterators.

The counter-intuitiveness of a MoC may be a argument to not use it, if another intuitive MoC exists and ensure equivalent performances. However, the ease to understand the abstraction provided by a MoC, is subjective. For example, other related work applied polyhedral techniques to multi-dimensional streams [START_REF] Leben | Polyhedral Compilation for Multi-dimensional Stream Processing[END_REF], motivating their contribution by the abstraction cost of the SDF model. We disagree with the following statement in the introduction of their paper: "Multi-dimensional streams can be represented in such models [Synchronous Data Flow (SDF)], albeit at the cost of abstraction, which makes this less natural for the programmer and restricts potential transformations in the compiler.". Regarding the first assumption, it depends on the qualification of the programmer: if the programmer is used to the LabVIEW software for example, the SDF model will be perfectly natural for him/her. Regarding the second assumption, it is actually the opposite since we demonstrate in this chapter that we can model loops having non affine bounds. Nevertheless, as many programmers start by writing a code and rely on tools to automatically transform it and improve it (typically, as a compiler does), a future extension of this work is to automatically generate iterator code from a code analysis in order to help the programmer.

In this chapter, SDF iterators have been used in conjunction with parameterized rates of data consumption and production, for example, to adapt the number of firings of an actor to the number of available PEs. However, depending on the parallel paths in the SDF graph of the application, the best number of firings of an actor might be different from the number of PEs. A simple DSE algorithm is presented in Chapter 5 and solves this first problem. Another problem occurs when the number of firings explode: then, scheduling becomes a long process limiting the DSE capacity. Yet, having numerous small firings may be useful to ensure that chunks of data fit in the cache memory.

To solve this second problem, a fast and scalable scheduling algorithm is presented in Chapter 3. This scheduling algorithm is not only fast, but also takes into account partially periodic constraints, such as a video frame rate.

Dissemination and Implementation

The contribution presented in this chapter has been published in the SAMOS'19

conference [START_REF] Honorat | Modeling Nested for Loops with Explicit Parallelism in Synchronous DataFlow Graphs[END_REF]. The implementation of the main use-case, the SIFT application, is available on the preesm-apps public repository.

Chapter 3

Scheduling partially periodic SDF graphs 

Introduction

Real-time systems correspond to systems whose tasks are constrained by deadlines. The tasks are scheduled so that the deadlines are met, inside threads of an operating system or directly on bare-metal. In order to perform their analysis and execution, such realtime systems are generally modeled with tasks having extra periodicity constraints for the deadlines, and precedence constraints for the data. For systems with only periodic tasks, synchronous languages and related tools as Esterel [START_REF] Berry | The Esterel synchronous programming language: design, semantics, implementation[END_REF] and SynDEx [START_REF] Grandpierre | Optimized rapid prototyping for realtime embedded heterogeneous multiprocessors[END_REF] are a good choice to check the schedulability and to compute a schedule. On the contrary, a few online schedulers [Foh95; LB00] focus on the execution of aperiodic, sporadic and periodic tasks together, but these schedulers do not consider precedences. Yet real-time systems have periodic components interacting with aperiodic components, and with precedence constraints here expressed in the SDF model. Our contribution aims to analyze the schedulability of such real-time systems, called partially periodic, and to schedule them systematically and efficiently. A few necessary conditions and an offline non-preemptive scheduling algorithm are introduced for this purpose. Both have been implemented in the PREESM tool [START_REF] Pelcat | PREESM: A Dataflow-Based Rapid Prototyping Framework for Simplifying Multicore DSP Programming[END_REF].

Image signal processing systems and visual servoing are typical examples of partially periodic real-time systems where certain components are periodic. For example, a camera films at a periodic framerate and the images arrive to the aperiodic processing components as a stream. Other components may also be periodic, as the input of servo-motors which must be regularly updated. Thus the processing part often depends on periodic inputs and must provide periodically one or more outputs, but does not have to be periodic itself. The flexibility to deviate significantly from periodic operation arises, for example, if data is buffered between components. One possible use-case is the Simultaneous Localization And Mapping (SLAM) application: it constantly retrieves information from a camera or a LIDAR and then processes data to reconstruct a map of the environment and to move according to this map [START_REF] Wen | Camera Recognition and Laser Detection based on EKF-SLAM in the Autonomous Navigation of Humanoid Robot[END_REF]. Sensor fusion [START_REF] Zhang | Sensor Fusion of Monocular Cameras and Laser Rangefinders for Line-Based Simultaneous Localization and Mapping (SLAM) Tasks in Autonomous Mobile Robots[END_REF] or other techniques [START_REF] Gee | Lidar guided stereo simultaneous localization and mapping (SLAM) for UAV outdoor 3-D scene reconstruction[END_REF] take advantage of camera and LIDAR at the same time.

This contribution focuses on real-time systems with periodic and aperiodic components, modeled with SDF graphs [START_REF] Lee | Synchronous data flow[END_REF]. SDF is commonly used to model image processing applications, as for SLAM with one camera [START_REF] Piat | HW/SW co-design of a visual SLAM application[END_REF]. SDF graphs of realtime systems often have imposed periodic inputs and outputs. However our approach is more flexible as any component of the system can be periodic. This flexibility is helpful in the case where multiple processing parts rely on different sensors.

Modeling systems is the first step of the design process. The systems then have to be verified and scheduled. Unfortunately the offline non-preemptive scheduling time complexity is exponential in the number of tasks to get the optimal solution because it is in general NP-complete [START_REF] Kwok | Static Scheduling Algorithms for Allocating Directed Task Graphs to Multiprocessors[END_REF]. This complexity limits the design of real-time systems since optimal schedulers do not scale. In contrast, our approach gives results that are not optimal but that can be used to quickly build and assess prototypes of large applications. In other words, our approach is useful for the design space exploration of scheduling solutions. Optimal schedulers and timing property checkers may still have to be used. However, if they are used, it would only be after the prototyping step, on a small set of prototypes.

We focus on offline non-preemptive scheduling because of two main reasons. First, modern systems embed multi-processors where preemption, useful to perform multitasking on a unicore processor, is not always required when executing a single application as in our case. Preemptions may still be required to manage external inputs/outputs.

Unpredictable external inputs/outputs are not modeled in our case; but the predictable periodic ones coming from sensors or addressed to actuators could be modeled thanks to our partially periodic constraints. Moreover, the absence of preemption prevents the overhead caused by context switching [START_REF] Li | Quantifying the cost of context switch[END_REF] and simplifies the timing analysis.

Second, as SDF graphs model only systems where all tasks and their precedences are known in advance, there is no necessity to have a reactive online scheduler. In our case a static schedule on each PE is used for a global self-timed execution of the system.

In this chapter, we consider applications modeled with an SDF graph, where some actors have periodic release times with implicit deadline. We say that such graph has partially periodic constraints. Given a number of identical PEs to execute the application and the WCET of each actor, the addressed problems are:

1. to quickly check the schedulability, without computing a schedule;

2. to compute an offline non-preemptive schedule satisfying the periodicity and precedence constraints.

In the context of this chapter, a schedule consists of a list containing the start times of all tasks and the PEs on which they are allocated. Communication times are not taken into account.

The notations used in this chapter and details about SDF graphs are introduced in Section 3.1. Then necessary conditions for the non-preemptive scheduling of SDF graphs with some periodic actors are expressed in Section 3.2. Section 3.3 discusses the algorithm checking if SDF graphs respect the necessary conditions. A greedy algorithm to schedule graphs with some periodic actors is presented in Section 3.4. Finally, a discussion on this work, including an evaluation of the scheduling algorithm, is given in Section 3.5. The related work is presented in Section 3.6 and is followed by a conclusion.

Background

This work is related to real-time systems and dataflow graphs, whose important notions are discussed in the next two subsections. Note that the proposed algorithms only work for homogeneous multi-processors where communications are not taken into account.

Real-time systems and assumptions

Real-time systems are composed of multiple computational tasks to execute before their deadlines. In this contribution, each task τ has either no real-time constraint or a periodic hard deadline. T τ denotes the period of a periodic task τ . Tasks without periodic deadlines are called aperiodic. For periodically released tasks, their deadline d τ (relative to their release time) is implicit, which means equal to their period. The WCET of each task τ is denoted C τ . If a task τ is periodic, its period is greater than its WCET: C τ ≤ T τ . In the Gantt diagrams of this chapter, the duration of a task execution corresponds to its WCET. Moreover, periodic releases and implicit deadlines are represented with orange down and up arrows, respectively.

During the execution of a real-time system, the tasks must be ordered and mapped to the PEs in such a way that all tasks meet their deadlines (if any), which is not always possible. In this chapter, a schedule refers to the start times and to the static mapping of the tasks. When there is no schedule respecting the deadlines, the system is said to be not schedulable. In this work only offline data-driven non-preemptive schedulers are considered; the system repeats indefinitely a precomputed schedule. We consider that the system has m identical PEs.

Synchronous Dataflow graphs

SDF graphs have already been introduced in Section 1.2.1. However, for this contribution, we would like to emphasize a few of their properties and introduce extra notations.

In particular, we consider an indefinitely repeated static schedule; each repetition is called a scheduler iteration. Two examples of a schedule for an SDF graph are given in 
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(c) Unicore schedule example of 3.1a, respecting actor periods T A = 5 and T B = 3, but not respecting the following precedences:

A 1 → B 1 , A 2 → B 2 and A 3 → B 4 .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PE 1 A 1 B 1 A 2 B 2 B 3 A 3 B 4 B 5 A A A
(d) Unicore schedule example of 3.1a, respecting the actor period T A = 5 and all data dependencies. Actor B is not periodic here. are as many firings as specified in r, released according to the graph topological order.

When the SDF graph contains delays, all firings of one graph iteration do not occur in the same scheduler iteration: this is pipelining. Delays on buffers are allowed, with some restrictions for cycles in G. Indeed SDF graphs deadlock if there is no delays in cycles, and G is live if no deadlock occurs. We assume in the analysis that G is live, thanks to delays set by the user on one specific edge of each cycle. Then, such specific edges will not be considered during the analysis The case of cycles that are self-loops on an actor is also considered. Self-loops disable auto-concurrency and, as cycles, require delays in order to be consistent. Autoconcurrency means that multiple firings of an actor can be executed at the same time on different PEs. For a self-loop l ∈ L ⊆ E, we assume cons(l) = prod(l) = d 0 (l).

A 1 B 1 (a) SDF

Partially periodic constraints

Non-preemptive scheduling is often not the best strategy when considering only periodic actors since it may lead to use the PEs below their full capacity. For example, consider that two periodic actors A and B are scheduled as in Figure 3.1c. Actors A and B are periodic, but the only functional requirement on B is that there are 3 executions of A for 5 of B, according to the repetition vector of the SDF graph in Figure 3.1a. In Figure 3.1c, the periods are T A = 5 and T B = 3. When ignoring the precedences, the system is schedulable on one PE with the WCET respectively C A = 3 and C B = 1, and the PE even idles during 1 time unit. If the execution time of A is now C A = 3.1 (instead of 3), the PE is still not used to its full capacity but the system is not schedulable anymore since B 3 would miss its deadline in any case. However, if B is not required to be periodic, the system is schedulable on 1 PE with C A = 3.1. When not ignoring the precedences, and with C A = 3, releasing the periodic constraint on actor B also results in a schedulable system, as shown in Figure 3.1d.

Thus, in these cases, partially periodic constraints help to fully use the capacities of the PEs in the context of non-preemptive scheduling. In this section, we focus on necessary conditions for schedulability of SDF graphs with partially periodic constraints.

The generic processor utilization necessary condition is recalled in Section 3.2.1 while a more precise one is established in Section 3.2.2.

Plain schedulability condition

A widely used necessary condition for schedulability of periodic tasks derives from the processor utilization factor [LL73] metric U = Cτ Tτ , without unit. U is the ratio of computations to perform per time unit. U ≤ m is a necessary but not sufficient condition, for all preemptive and non-preemptive schedulers of tasks with and without precedence constraints: if U > m the system is not schedulable [START_REF] Horn | Some simple scheduling algorithms[END_REF].

In the case of weakly connected SDF graphs1 , all actors are connected and specifying the period of one actor π is equivalent to specifying a period for the whole graph. Indeed the graph period T G will be r [π] × T π time unit. In Figure 3.1c, the graph period is 15, according to the periods T A = 5 and T B = 3, and to the repetition vector [3,5] T . Formally, in one graph iteration, the start time of the k-th firing of a periodic actor π ∈ P with an implicit deadline must occur in the following time interval:

kT π ; (k + 1)T π -C π , with k ∈ 0; r [π] (3.1)
Consequently, on average r [α] firings of an aperiodic actor α are executed during each graph period T G , since the repetition vector imposes r [α] firings of α for r [π] firings of π. Moreover, note that Equation (3.1) disables auto-concurrency of periodic actors.

As each periodic actor π defines a graph period T G = r [π] × T π deriving from the unique repetition vector, this implies that all the obtained graph periods must be equal:

∃!T G , ∀π ∈ P, T G = r [π] × T π (3.2)
Note that the repetition vector is computed before the graph period; hence, the actor periods set by the user must be compatible with the repetition vector and they cannot alter it. Then, the processor utilization factor metric may be reformulated in the context 
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m ≥ U = α∈N r [α] × C α T G + π∈P C π T π (3.3)
The considered number of aperiodic firings per graph period is indeed an average value since the schedule might be alternating, as shown in Figure 3.3b.

With no scheduler iteration overlapping

Results of this subsection make the following assumption on the scheduler.

Assumption 1 (A1). For every actor α, as many firings as specified in the repetition vector r [α] must have been completely executed before the next scheduler iteration begins. A scheduler iteration is the static scheduling of the application that is indefinitely repeated until the application is stopped. This assumption is made to ease the scheduling, the code generation, and the memory allocation. Under Assumption 1, if there is a graph period, all firings of one scheduler iteration must be done during a time interval equal to this graph period. Assumption 1 is present in the PREESM SDF graph scheduler [START_REF] Pelcat | PREESM: A Dataflow-Based Rapid Prototyping Framework for Simplifying Multicore DSP Programming[END_REF] where scheduler iterations cannot overlap in time and are separated by a synchronization barrier between all PEs. One graph period T G separates two successive barriers, so it ensures that for each actor α, there are r [α] executions of α between two barriers. As the schedule is indefinitely repeated, each actor firing, independently from each other of the same actor, can be seen as a periodic task of period equal to T G .

Note that Assumption 1 is similar to K-periodic scheduling [START_REF] Bodin | K-Periodic schedules for evaluating the maximum throughput of a Synchronous Dataflow graph[END_REF] with K being the repetition vector r in our case. While K-periodic scheduling imposes a periodic schedule of K[α] firings independently for each actor α, Assumption 1 enforces these periodic schedules to be synchronized with barriers.

Assumption 1 supports schedules pipelined with delays, as in the previous example depicted in Figure 3.2; such delays may actually help to break problematic data dependencies. Indeed, scheduling a partially periodic SDF graph without taking care of data dependencies may lead to buffer underflows and overflows as illustrated in Figure 3.4

where the SDF graph is however consistent. In this example the period of the actor Π (a) SDF graph with dependencies on a periodic actor. The repetition vector is

[1, 1, 2, 3] T . nblf ↑ Π (B) = 1, nblf ↑ Π (∆) = 2
1 2 3 4 5 6 7 8 9 10 11 12

PE 1 A B ∆ 1 ∆ 2 PE 2 Π 1 Π 2 Π 3 1 2 3 1 2 3
graph period (b) Schedule example of graph 3.4a, generating underflow for the firings of B and ∆ if T Π = 4. 

PE 1 A B ∆ 1 PE 2 Π 1 Π 2 Π 3 ∆ 2 1 2 3 1 2 3
graph period π , is denoted G ↑ π . In the notations of this chapter, the up arrow ↑ is always paired with a reference actor, π in D ↑ π . The up arrow emphasizes the fact that we are only considering the actors or firings which are data dependent on the reference actor π. Symmetrically, all presented equations can be reused for the first firing of π instead of the last, considering all actors D ↓ π on which π is data dependent. For brevity, such equations are not shown.

The main metric to compute is the numbers of actor firings, enabled by a single firing of a periodic actor π. These numbers of firings allow us to compute lower bounds of the processor utilization factor. The analysis is simplified by restricting it to the last firing of π and all induced firings of its successors in D ↑ π . Note that the number of remaining dependent firings can be computed for two adjacent actors connected by a single buffer e: k firings of src(e) enable max{0, k×prod(e)-d 0 (e) cons(e) } firings of dst(e). The term k×prod(e) corresponds to the new tokens incoming on the buffer e. The ceiling operator is needed since the previous execution of the producer src(e) may have left unused tokens on e.

At the end of the graph iteration, e contains exactly d 0 (e) delays.

The function computing the number of firings enabled by the last firing of a periodic actor π is denoted nblf ↑ π , defined in Equation (3.4). nblf ↑ π is a recursive function, depending on the predecessor actors in the graphs G ↑ π . The set of incoming edges to an actor α in G ↑ π is denoted IE ↑ π (α); this set excludes self-loops l ∈ L. In Figure 3.4a, IE ↑ π (B) only contains the edge coming from Π and not the one coming from A. Indeed,

A / ∈ D ↑ π and thus, A / ∈ G ↑ π . nblf ↑ π (α) = max e∈IE ↑ π (α) 0, nblf ↑ π (src(e)) × prod(e) -d 0 (e) cons(e) (3.4) 
The recursion stops at the root actor π, having no incoming edges (there is only one root, by construction of G ↑ π ), where nblf ↑ π holds the value 1 if π is periodic and 0 otherwise. Hence if the root actor is not periodic, nblf ↑ π takes the value 0 on all vertices and it does not help to find any necessary condition. For brevity, the proof of Equation (3.4) is given for one direct predecessor only of dst(e). The following formula is then a necessary condition for schedulability under Assumption 1. Equation (3.5) corresponds to the processor utilization factor of all firings depending on the last firing of a periodic actor. This processor utilization factor is computed over the slack time of the periodic actor, hence the division by T π -C π .

∀π ∈ P,

α∈D ↑ π nblf ↑ π (α) × C α T π -C π ≤ m (3.5)
Note that the maximum length of any graph path starting at a periodic actor π also provides a simple necessary condition of the schedulability: this length must be less than the slack time of π. A necessary condition for actors with self-loops is formalized in Equation (3.6).

∀α ∈ D ↑ π ∩ L, nblf ↑ π (α) × C α ≤ T π -C π (3.6)
Unfortunately, our published contribution [START_REF] Honorat | Scheduling of Synchronous Dataflow Graphs with Partially Periodic Real-Time Constraints[END_REF] contains an error in the algorithm referencing Equation (3.6), and states: "Equation (3.6) can be extended to all paths between a periodic root π and leaves of the DAG G ↑ π ." Experimental results were not impacted by the error; we detail now why the previous quoted sentence is misleading.

The necessary condition in Equation (3.6) is correct but its direct extension to all paths is wrong: firings dependent on the self-loop may be executed at the same time and the WCET cannot simply be summed. paths between a periodic root π and leaves of the DAG G ↑ π , but at the cost of an underestimation of the execution time. On each of these paths, each actor will be executed at least once except if there are enough delays before the actor; if no delays, the path length is greater or equal to the WCET sum of actors located on the path. Again, all these path lengths must be lower than the slack time T π -C π . It is possible to underestimate the number of times that the WCET of an actor must be added to the path length, given the number of PEs m. The generic underestimated necessary condition is given in Equation (3.7). For example, if nblf ↑ π (α) = 6 and m = 3, then C α is added 2 times.

∀α ∈ D ↑ π , C α × max 1, nblf ↑ π (α) m ≤ T π -C π (3.7)
Figure 3.7 is an intuitive example to demonstrate why the floor function is used in Equation (3.7): firings of different actors may be scheduled at the same time, and this overlap is not easily predictable. The only certainty for the path length after Π is about the concurrent execution of multiple firings of only one actor at a time. nblf ↑ Π (A) = nblf ↑ Π (B) = 3 but there is only two PEs in the system so only 3 2 = 1 execution time of each actor is added to the path length in this case. Algorithm 3.1 checks the schedulability of a periodic actor π in G ↑ π thanks to the aforementioned necessary conditions: the one derived from the processor utilization factor, and the one derived from the path lengths. Note that the computation of the path lengths (using Equation (3.7) instead of Equation (3.6)) is similar to a Max-Plus algebra, as used for throughput analysis [START_REF] Ghamarian | Throughput Analysis of Synchronous Data Flow Graphs[END_REF]: "Max" operation is on line 17, and "Plus" operation is on line 21 of Algorithm 3.1. The efficiency of Algorithm 

forall α ∈ D ↑ π -{π} do C tot ← C tot + nblf ↑ π (α) × C α ;
See Equation (3.5).

if C tot

Tπ-Cπ > m then return System not schedulable.

the operator dst with src, and the variable dest with srce, and by switching production and consumption rates. Note that to study the first firing instead of the last, we can also reuse the exact same equations applied to the transpose graph of G. The transpose G T of a graph G is its mirror, where all edges are directed in the opposite direction, inverting all data dependencies.

Discussion on the schedulability conditions

Algorithm 3.1, implementing the necessary conditions for the schedulability of SDF graph with partially periodic constraints, has a linear complexity in the number of edges in

G ↑ π .
Thus if all actors in G are periodic, it may not be efficient to execute Algorithm 3.1 on each one: in specific cases the overall complexity can be more than quadratic in the number of vertices in G, as for the star graphs with directed paths going to/from a central vertex. In order to perform the algorithm on a subset of the periodic actors, a heuristic is presented in Section 3.3.1. Algorithm 3.1 faces another problem: as it relies only on necessary conditions, there are cases where the algorithm fails to detect a non schedulable system. This point is discussed in Section 3.3.2.

Heuristic to run Algorithm 3.1 efficiently

In this subsection a heuristic is given to execute Algorithm 3.1 on a small set of periodic actors: the one having small slack time and a low topological rank in G. Indeed a small period T π will reduce the denominator in Equation (3.5), while a low topological rank may increase the numerator because it means that more actors are located after π. Thus this heuristic selects the actors being more discriminative regarding to the schedulability tests of Algorithm 3.1.

Delay placement assumption on cycles enables us to see the SDF graph as a DAG, so there is always a topological ordering existing. One topological ordering is used to select actors: it corresponds to an As Soon As Possible (ASAP) schedule of G T , not constrained by the number of PEs. The ASAP topological ordering on G T is denoted o T and is used to select the periodic actors on which Algorithm 3.1 is called. Note that the actor WCETs are not taken into account in this topological ordering, only the structure of the graph is used. Such topological ordering can be computed with a BFS, having a linear complexity in the number of edges in G.

Considering the SDF graph in Figure 3.8, there are three topological ranks: one per actor in the longest graph path which is Formally, the heuristic selects the periodic actors having the lowest Tπ-Cπ o(π) . The number of selected actors with this heuristic is arbitrarily chosen by the user. Note that vertices with ASAP topological rank equal to 0 are not of interest since it means that they have no successors; Algorithm 3.1 is not run on such vertices.

A → Γ → E. Thus o T (A) = 2, o T (Γ) = A 1 1 Γ 1 1 E 1 1 B 1 ∆ 1

A false positive to Algorithm 3.1

Algorithm 3.1 performs two schedulability tests. One is using the processor utilization factor U , Equation (3.5) lines 24-27, and thus does not consider the precedences between actors. Considering multiple PEs, it may lead to keep invalid schedules where U < m, but where a path from a periodic actor is longer than the slack time of this actor. This situation is precisely checked by the other schedulability test using path lengths, lines 21 -23 in Algorithm 3.1. Between these two situations, the algorithm may miss that U is too large on a small portion of the slack time: for example, if nblf ↑ of the last actor is greater than m. Thus, Algorithm 3.1 fails to find that the graph represented in Figure 3.9 is not schedulable with two PEs and T Π = T G = 9. Yet the critical path starting from Π in Figure 3.9a is equal to the slack time of Π and U = 15 9 is less than the number of PEs m = 2.

Algorithm 3.1 may compute other false positive answers: only G ↑

π is considered and thus, periodic actors having a period smaller than T π in G but not being in G ↑ π are not taken into account. To avoid that, Algorithm 3.1 can be refactored with a subfunction performing computations of lines 2 -25. The subfunction is called on π and on all the periodic actors having a period smaller than T π , and not being connected by any path in G. For brevity, the full algorithm is not presented here. However, even if false positives appear, the system designer will logically continue its work by calling a scheduler. The scheduler will give a final answer: schedulable or not.

Scheduling
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In the next section, an offline scheduler is presented under Assumption 1. This scheduler is a heuristic and thus does not attempt to find an optimal scheduling, it rather focuses on quickly giving an answer to the designer.

Scheduling SDF graphs with partially periodic constraints

The problem studied in this section is the scheduling of G * with partially periodic con- For example, the FAST algorithm [START_REF] Kwok | FAST: a low-complexity algorithm for efficient scheduling of DAGs on parallel processors[END_REF], based on a list scheduling heuristic and a neighborhood search, is not appropriate for periodic schedules. Especially its list scheduling heuristic relies on a classification of tasks belonging to, or connected to, A 1 the critical path of the DAG2 with unlimited resources. The main difference between the problem studied here and the one solved by FAST and other standard list scheduling algorithms is that, because of partially periodic constraints, we have a bound on the schedule length. This bound is the graph period; it is both the shortest and the longest accepted schedule length. The bound implies that there might be no critical path in graphs with partially periodic constraints: idle time can be present between any successive tasks, as long as all tasks are completed within the graph period duration.
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The scheduler that we have developed is presented in Section 3.4.1, while an optimal ILP formulation is summarized in Section 3.4.2. In Section 3.4.3, we briefly discuss how to adapt our scheduler to an extension of the periodic constraints.

A fast scheduling algorithm for partially periodic SDF graphs

The main difficulty to design a greedy list scheduling algorithm is to efficiently order the vertices before trying to schedule them. The FAST algorithm cannot be used as is but some of its techniques are reused in the presented Algorithm 3. the algorithm stops: the system is not schedulable.

Algorithm 3.3 is executed once all ns and xs have been computed, starting with the schedule procedure. The tasks are sorted according to their average start time xs + ns 2 . This sorting criterion is a heuristic to balance the task executions over time. The list of tasks to allocate, lt line 8, contains only vertices having all their dependencies satisfied, initially the one having no incoming edges. If multiple tasks in lt have the same average start time, ns is used to break the tie, by increasing order. The algorithm performs a first fit approach: it selects the next task in lt and schedules it on the least loaded PE3 . Subroutines called by the schedule procedure are briefly presented in Algorithm 3.2.

The allocateAndRemoveIfBefore procedure, lines 13 -24 maps an allocated task on the PE most idling at the current time (shortest finishTime), and updates lt with tasks having a direct dependency on the currently allocated task (line 24). This procedure stops the scheduling process in two cases: 1) if a task is scheduled after its maximum start time xs, at lines 16 -17, 2) if the total idle time is more than the maximum possible, at line 10, according to the formula at line 5 of the schedule procedure. Thus Algorithm 3.3 stops as soon as it detects that it cannot schedule a task in G * . Algorithm 3.3 is greedy since if a task τ implies an idle time, the algorithm tries to schedule before τ the tasks τ b having ns < predFinishTime(τ ), without delaying τ . This is the purpose of lines 13 -17 in Algorithm 3.3. The test line 18 in Algorithm 3.2 ensures that τ b can be executed without delaying τ , and if not it prevents its allocation. Although Algorithm 3.3 is greedy, it is not subject to the Dhall's effect [START_REF] Dhall | On a Real-Time Scheduling Problem[END_REF]. Dahll's effect occurs on multi-processors when two tasks are ready at the same time and have the same deadline, but the allocation order prevents from allocating both tasks because the smallest task may be allocated first on the least loaded PE, not leaving enough space for the other task. In Algorithm 3.3, as tasks are sorted by average start time from ASAP and ALAP scheduling, the largest task will have a shorter average start time and thus will appear sooner in the list of tasks ready to be scheduled.

The complexity of Algorithm 3.3 is upper bounded by the number of edges in G * and by the linearithmic cost of the sorting operation on the vertices:

O(#E * + #V * (m + log(#V * ))
). The number of PEs m appears as a factor of #V * since the list of PEs lPEs must remain sorted to select the least loaded PE for every vertex in the ready queue lt.

The cost of transforming G in G * is not included in this complexity, it is upper bounded by #E * , which depends on the number of firings specified in the repetition vector. At worst, the complexity of the transformation from G to G * is exponential in the number continue ; allocateAndRemoveIfBefore(lt, τ, lPEs, ∞, maxIT , curIT , nbAllocs); of actors in G. However, it is not the case in the applications we have considered.

Besides, note that the use of the parameter p in the Chapter 2 may limit this worst case complexity since p controls the degree of parallelism, and so the repetition vector. The transformation from G to G * is a standard transformation, already implemented in the PREESM tool for example.

Standard ILP formulation with Choco

A scheduling model using ILP formulation has been developed in order to compare its performance with Algorithm 3.3. Although the formulation is purely ILP, the generic Choco 4 CP solver has been used for technical simplicity (especially for reification possibility, and for simple integration in PREESM). Also, note that there is no objective function in the formulation: the goal is only to test if there exists a valid schedule for a given number of PEs m. Choco stops on the first valid schedule encountered, and otherwise enumerates all possible schedules in order to prove that there is no solution.

The model uses 9 multi-dimensional arrays of variables in total. Only the first two arrays contain free variables5 . V-3.1 start times of each task (free Integer), dimension Θ(#V * ); V-3.2 PE mapping of each task (free Boolean), dimension Θ(m × #V * ); V-3.3 transpose matrix of V-3.2 (non free Boolean); V-3.4 finish times of each task (non free Integer), obtained from V-3.1 plus WCETs; V-3.5 if two tasks are on the same specific PE (non free Boolean), obtained from V-3.2 and V-3.3, dimension O(m × #V * × #V * ); V-3.6 if task τ 1 starts before τ 2 finishes (non free Boolean), obtained from V-3.1 and

V-3.4, dimension O(#V * × #V * );
V-3.7 if two tasks overlap temporally (symmetrical non free Boolean), obtained from

V-3.6, dimension O(#V * × #V * );
V-3.8 if two tasks are on the same unknown PE (symmetrical non free Boolean), obtained from V-3.5, dimension O(#V * × #V * ); V-3.9 if two tasks overlap temporally and are on the same unknown PE (symmetrical non free Boolean, always false), obtained from V-3.7 and V-3.8, dimension

O(#V * × #V * ).
The model size is bounded by the size of the transient Boolean matrix V-3.5 storing mapping of each couple of tasks: O(m × #V * × #V * ). A transitive closure of the DAG G * is computed before the model construction in order to reduce the size of this Boolean matrix. The transitive closure prevents from adding useless variables and redundant constraints to all transient matrices (variables V-3.5 to V-3.9) used to check mapping overlap: overlap between two tasks is checked only if there is no transitive precedence between the two tasks. The number of constraints is reduced by up to 16% thanks to the transitive closure. Last but not least, symmetries of the identical PEs are broken by enforcing some properties on the mapping matrix V-3.2, see [START_REF] Tendulkar | Symmetry Breaking for Multi-criteria Mapping and Scheduling on Multicores[END_REF].

Scheduler adaptation to extended periodic constraints

Our scheduler can actually be adapted to handle a wider range of periodic constraints.

For example, if considering specific deadlines instead of implicit ones, only the upper bound of the start time interval in Equation (3.1) needs to be refined with the given deadline. The deadline has to be greater than the WCET of its related periodic actor.

The SRSDF graph traversal to compute the minimum and maximum start times ns and xs remains the same, using Equation (3.1) updated with a deadline. Algorithm 3.3 is not modified. The necessary conditions can still be used without any change, but as they do not consider the deadlines, they will be loose if an actor deadline is lower than its period. On the contrary, if an actor deadline is greater than its period, the necessary conditions are not necessary anymore.

Another improvement is to consider the case of periodic actors having a WCET greater than their period: T π < C π . In such case, the interval of start times given by Equation (3.1) does not hold anymore since the upper bound is negative while the lower bound is positive. Simply removing the term C π from the original equation removes the problem, but C π has to be removed from the equation only for periodic actors π having 

T π < C π .
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Possible schedule of 3.11a on three PEs. Here, periodic actor A has a period smaller than its WCET: to reflect this time limit per PE. Finally, it is possible to adapt the scheduler to the case of periodic actors π having T π < C π at the cost of heavy modifications. However, the necessary conditions are not anymore valid for this case.

T A = 2 < C A = 3. Assumption 1 is not respected.

Evaluation

This section discusses how Algorithms 3.1 and 3.3 can be used in the design process of real-time systems, and presents an evaluation.

Partially periodic real-time applications

Only a few real-time use-cases are presented in the literature as partially periodic SDF graphs. Indeed it is often assumed that every component is periodic in order to ease the analysis and the code generation. Due to the lack of available partially periodic implementations, and to the simplicity of the existing ones, our algorithms have been evaluated on synthetic examples only. However, two small real examples are given hereafter. A pacemaker [START_REF] Pellizzoni | Handling Mixed-criticality in SoC-based Real-time Embedded Systems[END_REF] has been studied and modeled with the Architecture Analysis and Design Language (AADL)6 and it is a partially periodic system. A critical subpart of this pacemaker is described using the CSDF model [START_REF] Bilsen | Cycle-static Dataflow[END_REF], an extension of SDF. In this subpart, two sensors (Motion and EKG) periodically send data to a processing component, each with its own period. A second example is in the telecommunication domain: the LTE standard has been studied and partially modeled with SDF graphs [START_REF] Pelcat | Rapid Prototyping and Dataflow-Based Code Generation for the 3GPP LTE eNodeB Physical Layer mapped onto Multi-Core DSPs[END_REF]. In the LTE standard, the signals retrieved by the antenna are downsampled and periodically sent to the decoder. To the best of our knowledge, no open source benchmark exists that is explicitly partially periodic. Yet, the StreamIt [START_REF] Thies | StreamIt: A Language for Streaming Applications[END_REF] benchmark contains dozens of signal processing applications in the SDF model. Periods are not specified in StreamIt but signal processing applications usually have one periodic input actor and another periodic output.

Finally it is possible to generate random SDF graphs with SDF 3 [START_REF] Stuijk | SDF 3 : SDF For Free[END_REF] and Turbine [START_REF] Bodin | Fast and Efficient Dataflow Graph Generation[END_REF], but they do not generate partially periodic constraints. Thus, our experiments, detailed in Sections 3.5.3 and 3.5.4, have been performed on ten random DAGs generated by Turbine, and on one existing use-case of the SDF 3 data set. For the first experiment, partially periodic constraints are added to these generated graphs as a post-processing step that follows the graph generation.

Schedulability check and scheduling

The practical usage of the presented algorithms is summarized in Figure 3.12. In terms of the number of PEs m, the necessary conditions (Algorithm 3.1) give a schedulability lower bound (left part) while the scheduler (Algorithm 3.3) gives an upper bound (right part). For example, the lower bound is 4 PEs while the upper bound is 7 PEs in Figure 3.12. With less than 4 PEs, the application is proven to be not schedulable; with 7 PEs or more, the application is proven to be schedulable. The next subsections report two experiments done on the algorithms presented in this chapter. Both experiments have been performed on a laptop with an Intel i7-7820HQ @ 2.90GHz processor.

Gap between necessary conditions and scheduler

This experiment measures the gap between the proposed necessary conditions, the proposed scheduler, and the optimal solution. The gap is measured in number of PEs required to synthesize a schedule while respecting all periodic constraints.

Dataset

The dataset contains ten random SDF DAGs generated with the Turbine tool [START_REF] Bodin | Fast and Efficient Dataflow Graph Generation[END_REF]. Table 3.1 details the characteristics of the generated graphs. The first five graphs are small, with only ten actors, in order to make possible comparison with the optimal number of PEs computed by a CP solver. The generated graphs do not contain any cycle nor delay. The degree, also called valency, of each actor α in the graphs is between 1 and 8: 1 < #OE(α) + #IE(α) < 8.

One periodic actor π is set in the middle of the longest path of each SDF graph; largest number of firings breaks the tie between multiple possible actors. A second periodic actor is set on RandomDAG6-10. Their periods T π are set manually, being the smallest integer such that a solution exists. Formally, T π is the smallest integer which ensures: ∀τ ∈ G * , ns(τ ) < xs(τ ).

Evaluation results

The evaluation has been performed as follows. For each scheduling algorithm, the result is the smallest number of PEs ensuring a valid schedule. For the necessary conditions, the result is the smallest number of PEs ensuring that no valid schedule exists for all lower number of PEs. All algorithms are run iteratively with an increasing number of PEs. Diagram in Figure 3.13 presents the results for the five small random graphs. The processor utilization factor Utot of the graph is given as reference on the left column. The execution time of the algorithms are given in the right part of Table 3.1 (in millisecond ms, and hour h). While the proposed algorithms always run in less than a second, Choco takes hours for the small graphs.

Choco is optimal but cannot solve problems with too many firings or PEs. It actually reaches timeout (T/O) of 12 hours for RandomDAG1 and RandomDAG4 with 9 PEs, and it also takes multiple hours to prove that the same graphs have no solutions for 8 PEs. The timeout of Choco is specified by an error interval, materialized by a small black line in Figure 3.13. The gap between the optimal solution and the proposed scheduler is at most two PEs, for RandomDAG4, and at best zero as for RandomDAG5.

Results for the five large graphs are depicted in Figure 3.14, without comparison with Choco because of the size of the problem (it would timeout in any case). On all ten graphs, the necessary conditions appear to be weakly discriminating: in most of the case, it states that the system is possibly schedulable as soon as m > U tot . The necessary conditions are discriminating only for RandomDAG1 and RandomDAG6. Note that RandomDAG1 and RandomDAG6 are also the graphs requiring a longer execution time of the proposed scheduler. Yet two reasons may increase the complexity of the scheduler: more tasks ready at the same time (which increases the size of the sorted list l), or more idle time (which triggers the execution of lines 13 -17 in Algorithm 3.3). Further investigations are needed to characterize this phenomenon. Moreover, it could be interesting to study the evolution of the necessary conditions and the scheduler while 3.1 -Details of the random directed acyclic SDF graphs generated by Turbine, and execution time of the algorithms. RandomDAG1-5 contain one periodic actor π. RandomDAG6-10 contain two periodic actors. increasing the number of periodic actors. In our experiments, only one and two periodic actors were considered.

Gap between the proposed scheduler and preemptive EDF

This experiment measures the graph period gap between the proposed non-preemptive offline scheduler Algorithm 3.3 and a standard preemptive real-time scheduler: EDF.

The ADFG tool [START_REF] Honorat | ADFG: a scheduling synthesis tool for dataflow graphs in real-time systems[END_REF] is used as a reference, using Global EDF scheduling [START_REF] Bertogna | Tests for Global EDF Schedulability Analysis[END_REF] with a synthesis algorithm adapted from the forced-forward demand bound function.

ADFG considers that all actors are periodic and computes their optimal smallest period for a given number of PEs. Other synchronous languages and tools could have been used to perform the experiments, especially to compare with the non-preemptive fully periodic case. ADFG has been considered to ease the experiments since both ADFG and PREESM read the SDF 3 file format [START_REF] Stuijk | SDF 3 : SDF For Free[END_REF]. Moreover, ADFG also computes delays on the buffers; these delays are kept in the input of Algorithm 3. For each number of PEs, Algorithm 3.3 finds a graph period close to the optimal, and even optimal from 28 PEs. The optimal graph period is equal to the greatest WCET (5076) since numerous delays are added by ADFG and break the data dependencies. 
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The graph period is refined to 7 since no task is executed after this limit. 

Related work

Our model of partially periodic constraints is a restriction of the PolyGraph model [START_REF] Dubrulle | A Data Flow Model with Frequency Arithmetic[END_REF] to SDF graphs, but extended with deadlines. According to the PolyGraph model [START_REF] Dubrulle | A Data Flow Model with Frequency Arithmetic[END_REF],

P corresponds to actors having a frequency.

To our knowledge, only the MAPS [START_REF] Castrillon | MAPS: Mapping Concurrent Dataflow Applications to Heterogeneous MPSoCs[END_REF] tool accepts SDF graphs with partially periodic constraints as specified in this chapter. However, MAPS does not exactly compute a schedule, but instead it checks if execution traces can be executed on the target architecture. As MAPS is not freely accessible, we were not able to compare to it. Deadlock [START_REF] Derler | Specification of precise timing in synchronous dataflow models[END_REF] and consistency [START_REF] Dubrulle | A Data Flow Model with Frequency Arithmetic[END_REF] analysis of SDF graphs with partially periodic constraints have also been studied. Another work [START_REF] Louise | Graph Transformations and Derivation of Scheduling Constraints Applied to the Mapping of Real-Time Distributed Applications[END_REF], related to the PolyGraph model, shows an ILP formulation taking into account communication time to schedule partially periodic SDF graphs. The work [START_REF] Louise | Graph Transformations and Derivation of Scheduling Constraints Applied to the Mapping of Real-Time Distributed Applications[END_REF] solves a more complex scheduling problem than us since they take into account communication time, but is not as scalable and fast as our scheduling Algorithm 3.3 since they rely on ILP formulation.

Other tools and papers are closely related to our scheduling problem and are listed in the three next paragraphs, according to their category. We distinguish three categories of schedulers, dedicated to: 1) tasks with precedence and real-time constraints, 2) SDF graphs with periodic constraints, 3) SDF graphs with latency constraints.

Schedulers of real-time tasks with precedence constraints

Real-time systems have been widely studied for online periodic scheduling, the most common schedulers being EDF and FP. Yet an offline part is still needed in most of the online schedulers:

either to compute the deadlines as in the Chetto's algorithm [START_REF] Chetto | Dynamic Scheduling of Real-time Tasks Under Precedence Constraints[END_REF] to respect precedence constraints under EDF, or to compute the task priorities in the case of FP. Some online schedulers also take into account periodic and aperiodic tasks [START_REF] Lipari | Schedulability analysis of periodic and aperiodic tasks with resource constraints[END_REF]; they still may need an offline pre-schedule [START_REF] Fohler | Joint scheduling of distributed complex periodic and hard aperiodic tasks in statically scheduled systems[END_REF], and may rely on EDF [START_REF] Isovic | Efficient scheduling of sporadic, aperiodic, and periodic tasks with complex constraints[END_REF]. Regarding offline non-preemptive scheduling, there exists an ILP formulation [START_REF] Xiao | Schedulability Analysis of Non-preemptive Real-Time Scheduling for Multicore Processors with Shared Caches[END_REF] for sporadic and periodic tasks under EDF and FP. A CP solution for periodic tasks only has also been formulated [START_REF] Puffitsch | Off-line mapping of multi-rate dependent task sets to many-core platforms[END_REF]. Both ILP and CP formulations have a high complexity and thus are not scalable.

Schedulers of SDF graphs with periodic constraints

The Darts tool [START_REF] Bamakhrama | Hard-real-time scheduling of data-dependent tasks in embedded streaming applications[END_REF] is able to schedule SDF graphs under a throughput constraint, equivalent to a graph period constraint, for EDF and FP schedulers. ADFG [START_REF] Honorat | ADFG: a scheduling synthesis tool for dataflow graphs in real-time systems[END_REF] is similar to Darts, but it optimizes the throughput under a total buffer size constraint. SDF graphs can be modeled with synchronous languages such as Prelude [START_REF] Pagetti | Multi-task implementation of multi-periodic synchronous programs[END_REF], which generates code for EDF and FP schedulers. Still using synchronous language, activation clocks with precedences [START_REF] Cohen | N-synchronous Kahn Networks: A Relaxed Model of Synchrony for Real-time Systems[END_REF] can be composed and checked. Yet, in all the aforementioned tools of this paragraph, all SDF actors are periodic. Minimal actor periods can be computed independently from the scheduling policy [START_REF] Ali | Generalized Extraction of Real-Time Parameters for Homogeneous Synchronous Dataflow Graphs[END_REF], but only for SRSDF graphs. Note that a polynomial algorithm [START_REF] Singh | Uniprocessor scheduling of real-time synchronous dataflow tasks[END_REF] exists for the unicore processor case under EDF, with real-time tasks being specific SDF graphs. Other papers [START_REF] Bhattacharyya | Optimization of signal processing software for control system implementation[END_REF] specify throughput constraints on the only input or output actor of an SDF graph G, which is equivalent to specify a graph period T G .

Schedulers of SDF graphs with latency constraints

A latency constraint on an SDF graph G is equivalent to a throughput constraint or graph period if and only if the scheduler assumes Assumption 1 and there is no delay in G (except to break cycles). Indeed if delays are present, as in Figure 3.2, the latency may be higher than the graph period. Latency constraints for SDF graphs have been heavily studied, especially symbolically. For example, the latency has been analyzed either without scheduling assumption to derive upper and lower bounds [START_REF] Khatib | Computing latency of a real-time system modeled by Synchronous Dataflow Graph[END_REF], or with self-time scheduling of SDF [START_REF] Ghamarian | Latency Minimization for Synchronous Data Flow Graphs[END_REF] and SRSDF [START_REF] Moreira | Self-Timed Scheduling Analysis for Real-Time Applications[END_REF] graphs. Practically, the Ptolemy [Eke+03] tool supporting SDF graphs has been extended to perform timing verification, as latency, through system simulation [START_REF] Guo | Metronomy: A function-architecture co-simulation framework for timing verification of cyber-physical systems[END_REF]. Finally, there exists an offline scheduler accepting throughput and latency constraints on SDF graphs [START_REF] Lin | Communication-aware Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems[END_REF]; it takes into account communications and computes the static schedule with ILP and heuristics. Thus all these tools tackle only a small subset of partially periodic constraints: the specific case of one graph period without any delay on the graph.

Conclusion

A few necessary conditions and an offline non-preemptive scheduling algorithm have been presented in order to analyze and synthesize the schedule of partially periodic SDF graphs. These results hold under a weak assumption on the execution of the systems:

the presence of barriers at each graph period. The proposed algorithms have, at most, a linearithmic complexity and can thus be used on large cyber-physical systems modeled with SDF graphs. Experiments show that the proposed non-preemptive scheduler is fast, scalable, and efficient.

Next step is to extend the schedulability analysis to heterogeneous multi-processors, that are becoming the new standard for embedded systems. When targeting heterogeneous multi-processors, it is important to take into account communications, especially if the memory is distributed. A few efficient heuristics already exist and address the scheduling problem of DAGs on heterogeneous hardware taking into account communications, such as the HEFT [THM02] list scheduling algorithm. However HEFT uses average communication time while we need the worst case for the periodic constraints.

A first naive idea is to map tasks on the slowest PE when they are allocated in the greedy mode, that is when tasks are not located on the critical path (lines 13 -17 of Algorithm 3.3). When not in the greedy mode, we could use a best-fit mapping taking into account the communication time.

Another direction for future work is to take into account not only periodic constraints, but also latency constraints. For example, if an application contains both sensors and actuators as SDF actors, it might be necessary to guarantee a maximum time interval between a sensor measurement and the corresponding actuator response. In the SDF model, such latency constraint raises the following question: which firing must be considered to compute the latency between two actors? Moreover, can this latency constraint be set across multiple iterations of the whole application? Scheduling tasks according to such constraints is tedious since latency constraints may be localized inside a part only of the application graph and would require a kind of local priority when allocating all tasks of this part.

Thanks to its rapidity and scalability, the proposed scheduler is fast enough to be used in brute-force DSE. This point will be demonstrated in Chapter 5. Finally, the presented necessary conditions made a few assumptions on cycles, which compulsorily have to contain delays on one buffer. In Chapter 4, we detail a heuristic to automatically place delays on regular buffers, and also in cycles.

Dissemination and Implementation

The contribution presented in this chapter has been published in the RTNS'20 conference [START_REF] Honorat | Scheduling of Synchronous Dataflow Graphs with Partially Periodic Real-Time Constraints[END_REF]. The algorithms presented in this chapter have been implemented

as workflow tasks of the PREESM tool. See the following task description for the implementation of Algorithm 3.1:

org.ietr.preesm.pimm.algorithm.checker.periods. \ PeriodsPreschedulingChecker See the following task description for the implementation of Algorithms 3.2 and 3.3:

pisdf-mapper.periodic.DAG pisdf-synthesis.void-periodic-schedule pisdf-synthesis.simple

Introduction

A common way to represent pipelining in SDF graphs is to add delays on buffers. Delays represent initial data in buffers, which break data dependencies and create pipeline stages. This method has already been proved to be efficient on SDF applications [START_REF] Lee | Pipeline interleaved programmable DSP's: Synchronous data flow programming[END_REF] but usually requires to add the delays manually in the SDF graph or to call heuristics [START_REF] Kudlur | Orchestrating the Execution of Stream Programs on Multicore Platforms[END_REF]. Indeed, computing the optimal throughput of an application is a problem of high complexity that also requires computing the scheduling, the mapping and the pipelining.

In this chapter we propose a fast heuristic to automatically pipeline an application modeled with an SDF graph. Our pipelining heuristic computes the size and the placement of delays on buffers of any SDF graph. The placement corresponds to an admissible cut of the graph; it is a set of buffers. Delays are initial data present on the buffers before starting to execute the application. The token values that the delays carry are not computed, but they can remain undefined in the case of SDF DAGs. Following the semantics introduced in [Arr+18], we assume all delays being permanent, which means that their token values are transmitted from one scheduler iteration to the next. The heuristic is performed before mapping and scheduling the application, and is thus suboptimal but fast and scalable. As a consequence, any scheduler may benefit from the pipelining heuristic, including the one developed in Chapter 3 for partially periodic constraints.

As an input, the heuristic requires the number of targeted homogeneous PEs and application profiling information, i.e. the Execution Times (ETs) of actors. The heuristic is parameterizable: the user chooses the number of pipeline stages that he wants to add. Various experiments demonstrate that the heuristic increases the throughput of the majority of the tested applications. When adding one pipeline, the heuristic finds the solution ensuring optimal throughput for 19 applications out of 24 tested.

The chapter is organized as follows. Section 4.1 defines the notion of pipeline for SDF graphs as well as related properties. Equations to assert the validity of the pipelines are also presented. The main contribution, automatic pipelining of SDF graphs, is developed in Section 4.2. A secondary contribution, about automatic cycle breaking is detailed in Section 4.3. Extensive experiments follow in Section 4.4 with both theoretical evaluation of the throughput gain and actual measurements on hardware. The main drawback of pipelining, memory footprint increase, is also quantified. Related work is presented in Section 4.5. Finally, Section 4.6 concludes this chapter.

Admissible graph cuts for pipelining

Admissible graph cuts for pipelining correspond to feed-forward graph cuts as defined for the design of integrated circuits [START_REF] Parhi | VLSI digital signal processing systems : design and implementation[END_REF]. Main properties of admissible graph cuts are presented in Section 4.1.1. An ILP formulation to compute all admissible cuts of an SDF graph is detailed in Section 4.1.2. The initialization of token values carried by the delays are discussed in Section 4.1.3. Finally, Section 4.1.4 precises the advantages and drawbacks of pipelining under the specific case of scheduling Assumption 1.

Properties of admissible cuts and definitions

A graph cut is a set of edges which, if removed, disconnects the graph in two or more components. In a feed-forward graph cut, all edges of the cut are going in the same direction. Hence, such cut cannot contain an edge from a cycle. The direction of an edge is deduced from the topological ranks of the actors. An example of actor ranks of ASAP and ALAP topological orderings is presented in Figure 4.1a. Lowest actor rank 1 correspond to actors without input buffers, and the highest actor rank correspond to actors without output buffers. Note that these topological ranks differ from Figure 3.8 in Chapter 3: in the present chapter ranks start at value 1, and the transpose graph is not used1 . The topological orderings are computed on the raw SDF graph without taking into account the presence of delays.

A pipeline is created by adding delays on all buffers of a feed-forward graph cut, in order to break the data dependencies. For example, the feed-forward graph cut (dashed line) between topological ranks 1 and 2 of the graph in Figure 4.1a breaks the data dependencies between actors A and B, and A and ∆. The pipeline increases the throughput of the graph, as depicted in Figure 4.1c. In this schedule example and in the next ones, we assume that there is a synchronization barrier, represented by a red vertical line, at the end of each scheduler iteration: this is Assumption 1. The barrier is only used to simplify the examples; the heuristic presented in section 4.2 does not require it. Moreover, in Figure 4.1a as in all SDF graphs illustrating this chapter, production and consumption rates are all equal to 1 for simplification. This implies that all SDF graphs in this chapter have their repetition vector r = 1; single arrows emphasize this property. Nevertheless, all results remain valid for any rate value.

We define the throughput of an SDF graph as the inverse of the II duration, that is the duration to periodically execute one scheduler iteration. A scheduler iteration contains as many firings as specified in the repetition vector r. On the left part of Figure 4.1c, without pipeline, the II duration is 3, whereas on the right part, the II duration is only 2 thanks to the pipeline. Note that, depending on the topological ordering, the graph cuts may not be identical.

Scheduler iterations differ from graph iterations. Both of them contain as many firings as specified in the repetition vector r, but a graph iteration contains the firings in the order respecting the data dependencies broken by the delays. A graph iteration corresponds to the end-to-end processing of a given data in the graph. This implies that graph iterations are distributed over multiple scheduler iterations when pipeline delays are present. See Figure 1.4c for an example were one graph iteration is spread over two scheduler iterations.

To create one pipeline on an SDF graph, the size of a delay on a buffer e must be equal to the number of tokens consumed on e during a whole graph iteration, as specified in Equation (4.1). It is the direct application of the consistency property defined in Equation (1.1).

d 0 (e) = prod(e) × r [src(e)] = cons(e) × r [dst(e)] (4.1) 
Thus, dependencies between all firings of producer actor src(e) and receiver actor dst(e) are broken. If multiple feed-forward graph cuts contain the same buffer, the delay sizes are summed. In this chapter, a pipeline is a synonym for feed-forward graph cut, and n pipelines divide the execution of the application in n + 1 pipeline stages. The number of pipeline stages actually correspond to the number of scheduler iterations needed to complete one graph iteration.

An ILP formulation to compute all admissible cuts

Thanks to Michael Masin and his team2 , we were able to formulate the admissible feedforward cut constraint as the following recursive Equation (4.2). The equality must be respected for every actor α ∈ V . It introduces the notion of actor delay, denoted 
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The recursion stops on actors having no incoming buffer, where the actor delay max

OE(α)=∅ { (α)} = #Stages (4.3)
In the implementation, we also force the delays to be a multiple of the pipeline size in Equation (4.1). Thus, the fraction in Equation (4.2) can be equivalently formulated with another free Integer variable q replacing d 0 , as shown in Equation (4.4).

∀e ∈ {b ∈ E| dst(b) = α}, (α) = (src(e)) + q, q ∈ 1; #Stages (4.4)
As the placement validity is defined recursively from the actors having no outgoing buffers, delays may be distributed over the whole paths going to an actor, and not only on its direct incoming buffers. Unfortunately, the number of admissible graph cuts may be large. An example is given with a commonly used split-join graph topology [START_REF] Tendulkar | Symmetry Breaking for Multi-criteria Mapping and Scheduling on Multicores[END_REF], which is a subcategory of SDF graph. Although the graph represented in Figure 4.4 only contains 4 parallel paths with 3 buffers each, 3 4 = 81 cuts are admissible. Indeed, if k paths connect a split actor to a join actor, each path having b buffers, the total number of feed-forward graph cuts is equal to b k . Because the number of admissible graph cuts may grow exponentially with the number of edges of the graph, exploring them all is not feasible. For this reason, our heuristic algorithm will only explore a subset of the admissible cuts. For example, our heuristic considers at most 3 admissible cuts for the graph in Figure 4.4. Those admissible cuts are detailed in the next section.

Initialization of delays

In the previous Section 4.1.2, it is stated in the explanations of Figure 4.2c that admissible cuts only shift the application result without modifying it. Yet, this is true only for SDF graphs being DAGs, such as Figures 4.2c, 4.3 and 4.4. Such graphs are said to be be stateless and the token values carried by the pipeline delays of admissible cuts can be undefined. Indeed, for the SDF DAGs, pipelining will only shift the application results and the first firings based on the undefined token values are executed but they will not modify the next results since there is no state. However, cycles model such states: delays breaking the cyclic data dependencies carry the states of cycles, even across consecutive graph iterations. Then, any shift of input modifies the state of the cycle and so the application behavior. SDF graphs having cycles are said to be stateful. For example, it is the case of Figure 4.1b, between actors B and Γ. Thus, the token values of pipeline delays have to be chosen carefully when applying admissible cuts on SDF graphs having cycles; the token values have to be chosen by the designer so that the cycle states remain coherent with the original application behavior. Fortunately, for some implementations such as SIFT, cycles are present but the initial token values of delays are discarded by the internal code of the actors thanks to a firing counter. More precisely, the actors may operate as a switch and select the value of an input buffer having a delay or not. In this specific case, even if the SDF graph of SIFT has cycles, the token values of delays breaking those cycles may remain undefined since those tokens are discarded by the internal code of the actors.

Finally, note that the semantics of SDF Setter actors [START_REF] Arrestier | Delays and States in Dataflow Models of Computation[END_REF] introduces the initialization of the token values of delays, set by the output of other actors in the graph.

Symmetrically, this semantics also defines Getter actors which pop the token value of a delay to use it as an input of another actor in the graph. This semantics is especially useful to model the initialization of variables in for loops having dependencies between their iterations and to retrieve the value of the variables after the last loop iteration.

Metaphorically, Setter actors are executed during the prologue of the application while the Getter actors are executed during its epilogue.

Impact on scheduling

Delays are a property of the SDF MoC by itself, independent to the scheduler used to execute any SDF graph. Thus, adding pipeline delays to an SDF graph can be performed without knowing the actual scheduler. In particular, pipelined SDF graphs are compatible with partially periodic constraints defined in Chapter 3, and they can be scheduled with the Algorithm 3.3.

Actually, pipelining may be a way to diminish the drawbacks of Assumption 1 used by Algorithm 3.3. Assumption 1 implies the presence of a global barrier avoiding any overlap between the scheduler iterations. On the contrary, the main objective of pipelining is to cut the SDF graphs so that graph iterations are spread over multiple scheduler iterations, artificially supporting overlap even under Assumption 1. Ideally, the graph cuts are located on the parallelism bottlenecks of the graphs, in order to fill the potential idle time of the PEs which could be created by the parallelism bottlenecks. The idle time of the PEs can be filled with pipelined firings of other graph iterations. As a by-product, cuts should be selected so that the processor utilization factor U increases 5 .

However, note that pipelining with delays is not always sufficient to avoid the drawbacks of Assumption 1. 
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(a) Simple graph with two actors. The only possible cut for pipelining is represented with a dashed line.
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PE 1 A 1 A 2 A 3 PE 2 B 0 B 1 B 2 barrier barrier
(b) Schedule of 4.5a on two PEs with the barrier of Assumption 1: graph cut for pipelining does not help to reach the optimal throughput. Firing exponents denote their graph iteration.

1 2 3 4 5 6 7 8 9 10

PE 1 A 1 B 1 A 3 PE 2 B 0 A 2 B 2
overlapping mirrored schedule repetitions (c) Schedule of 4.5a on two PEs without barrier and without graph cut: it increases the throughput compared with 4.5b. Firing exponents denote their graph iteration. Two static schedules (one and its mirror exchanging the PEs) actually alternate every 3 time units. (Figure 4.5b, II duration is 4). Figure 4.5c, without pipeline delays, is the optimal solution; but in the case of indefinitely repeated static schedules, it requires to mirror the schedule every 3 time units (exchanging PE 1 with PE 2) and to discard B 0 .

In the next section, we propose a heuristic to automatically pipeline SDF graphs. This heuristic tries to cut the graphs where the degree of data and task parallelism is low, to avoid idle time of the PEs.

Automatic pipelining of SDF graphs

The automatic pipelining heuristic has two main steps: (1) generation of all topological graph cuts, (2) selection of topological graph cuts. The first step, described in Section 4.2.1, computes a subset of admissible cuts. The second step, detailed in Section 4.2.2, selects a few cuts among the cuts computed in step (1).

Computing topological graph cuts

The heuristic selects a subset of admissible graph cuts: topological graph cuts according to the ASAP and ALAP topological orderings. A topological graph cut of rank cr contains all buffers coming from an actor of rank lower than cr and going to an actor of rank higher than or equal to cr. Such topological cut is admissible if none of its buffers is part of a directed cycle of the graph.

The number of admissible topological graph cuts is upper bounded by the diameter of the graph, that is the number of buffers on the longest path. For example, the graph depicted in Figure 4.4 admits only 3 topological cuts according to ASAP graph ordering, whereas this graph admits 81 admissible cuts in total. Moreover, in the case of Figure 4.4, ASAP and ALAP graph orderings are identical so the same 3 graph cuts are considered for both topological orderings.

In order to build the ASAP and ALAP topological orderings, a cycle analysis of the graph is run first: the Johnson's algorithm [START_REF] Johnson | Finding all the elementary circuits of a directed graph[END_REF] computes all simple cycles of a directed graph. Johnson's algorithm upper bounds the complexity of the whole heuristic.

The buffers being part of cycles are recorded to later filter the admissible cuts. For example, the topological cut of rank 3 in the SDF graph depicted in Figure 4.1a is invalid since there is a cycle between actors B and Γ. If a cut contains at least one buffer belonging to a cycle, then the cut is not admissible.

Note that it is assumed that the user sets enough delays on at least one buffer of any cycle, so that this buffer breaks the data dependency of the cycle. Alternatively, the heuristic presented in Section 4.3 can be used to automatically break the cycle dependencies. Thanks to this assumption, ASAP and ALAP orderings are computed by a mere breadth first search on the graph, not visiting the buffer breaking each cycle. Thus, any cyclic SDF graph is seen as a DAG during the graph traversal.

The number of admissible topological graph cuts is small and upper bounded by the graph diameter, enabling our heuristic to be fast. The admissible topological graph cuts naturally include all cuts located at sequential bottlenecks of the application, so they are the best candidates to increase the application performances by pipelining.

Formally, sequential bottlenecks are located on single paths of the graph: when two successive actors of ranks cr -1 and cr are the only actors having these ranks. Selecting such cuts particularly benefits the applications having single paths and their repetition vector equal to 1.

Only ASAP and ALAP topological orderings are considered in order to limit the number of explored cuts. These two topological orderings are complementary and it is useful to consider both. Indeed, depending on the ordering, cuts of same rank may not contain all the same buffers and give more options to balance the computation between them. Two examples are given in Figures 4.6 1 2 3 4 5 6 7 8 9 
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Selecting best topological graph cuts

To select the best topological graph cuts, the presented heuristic relies on a map linking topological ranks to an estimate of the Execution Time (ET) of all their actors. By definition, all actors having the same topological rank can be executed in parallel. We 

rankLoad(cr) = rank(α)=cr r [α] m × C α #{α| rank(α) = cr} (4.5)
The main purpose of Equation (4.5) is to provide a metric indicating if cutting before actors of rank cr improves the throughput, that is to balance the computation before and after the cut. To do so, we actually compare the estimated ET of all ranks before the cut of rank cr, 1≤i<cr rankLoad(i), with the estimated ET of all ranks after the cut of rank cr, cr≤i rankLoad(i). However, it is needed to weight the ranks according to the amount of parallelism that they contain, so that the graph is cut where it matters the most: on single paths for example. Thus, Equation (4.5) contains two divisions in order to reduce the weight of already parallel ranks: the repetition factor is divided by m, and the whole sum is divided by the number or actors in the considered rank.

More precisely, numerator and denominator of rankLoad are averaged for ASAP and ALAP topological orderings; it is not specified in the equation for readability. Here Equation (4.5) is presented for identical PEs, but it can be rewritten for heterogeneous systems by considering the average ET time on each type of PE.

The selection of cuts is parameterized by a pair of two integers denoted H x, y: the number of cuts wanted by the user x, selected among the number of balanced cuts to consider y. We always have x lower than or equal to y, and y lower than the highest actor topological rank. y helps to define a first set of equally distributed topological graph cuts. To do so, the sum of all rankLoad(i) is divided by y + 1, giving an average stage load avgStageLoad. Then we enumerate ASAP cuts by increasing order of their rank, while summing their rankLoad and storing the rank of the closest cuts to a multiple of avgStageLoad. At most y ranks are preselected by this mean. The same operation is performed on ALAP cuts sorted by decreasing order of their rank. As cuts computed by ASAP and ALAP orderings may not be identical, there might be two possible cuts per preselected rank (only the ranks are stored in the aforementioned enumeration, not the cuts themselves). Considering the example in Figures 4.6 and 4.7, avgStageLoad = 2 and our heuristic preselects the cut ranks 2 and 3. When both ASAP and ALAP topological cuts are valid on the same rank, only the one with the smallest delay sizes is kept, according to Equation (4.1). Thus, at most 2 × y balanced cuts are preselected for the last step.

The last step of the heuristic is to select x cuts among the 2 × y balanced cuts. This is done by two means: removing cuts that are too close from each other, and then selecting the one using less delays. 4.7a is finally selected for the configuration H 1, 1, since it is the one implying less delays (all rates and pipeline delays are equal to 1 in this example).

An example of preselection and final selection of cuts is depicted in Figure 4.9. 4 cuts are preselected by the heuristic with configuration H 2, 3 on the given input SRSDF graph having 9 actors in line. Each actor is executed only once and its ET is equal to 10. The two cuts with a dashed line correspond to the cuts found during the first enumeration of ASAP cuts. The two cuts with a dotted line correspond to the cuts found during the second enumeration of ALAP cuts. Note that there are less than 3 cuts preselected by each traversal because an extra condition stops the traversal when the sum of remaining rankLoad is higher than avgStageLoad = 22. The current value of the sum of rankLoad and the closest multiple of avgStageLoad when a cut is preselected is recalled below the cut in Figure 4.9. The ranks of the preselected cuts are: 4, 6, 7, 5, in order of appearance. Except between cuts 4 and 7, none of the other pair of ranks respects Equation (4.6). The removal procedure first sorts the cuts by the size of their pipeline delays, and then starts in the reverse order of appearance to remove the largest cuts in delay size. In this case, all cuts imply the same delay size, and the first two cuts to compare are the cuts 5 and 7. As cuts 5 and 7 are too close to each other and imply the same delay size, the highest rank is removed by default: 7. Then only three preselected cuts remain: cuts 4, 6, 7 and the removal procedure stops since three is the number of preselected cuts asked by the configuration H 2, 3. Finally, the heuristic selects the first two of the remaining cuts: 4 and 6. An evaluation on real SDF applications is provided in Section 4. 

Automatic cycle breaking of SDF graphs

In the current chapter and in Chapter 3, an assumption is made on cycles: they have to contain at least one buffer with a delay set by the user. This delay ensures liveness of the cycle in the SDF graph. In this section, we propose a heuristic to automatically add such delay in the cycles. Of course, another solution to ensure liveness is to add multiple delays of smaller sizes on different buffers of the same cycle. Thus, the presented heuristic is a sufficient but not necessary condition to ensure liveness of SDF graphs having cycles.

First, we recall that delays in cycles may have a strong impact on the application behavior. Unlike pipeline delays on DAGs, they do not only shift the result but also modify it. An example is given in Figure 4.10. Let's consider that actor A computes the sum of its two inputs and copy the result on its two outputs. The self-loop buffer, Equation ( 4.9) provides a plausible delay size to break a cycle on a specific buffer.

Our heuristic also selects the buffer where to place the delay. To do so, the heuristic relies on a classification of actors belonging to the cycle. Actors may be:

• an entry point of the cycle if they have incoming buffers outside the cycle;

• an exit point of the cycle if they have outgoing buffers outside the cycle;

• both entry and exit point;

• normal if all buffers connected to it belongs to the cycle. 6 Besides, note that with two tokens on the self-loop buffer of Figure 4.10, the auto-concurrency of actor A is limited to two firings at a time. With only one token, as for Equation (4.7), auto-concurrency is not possible at all. The heuristic selects the buffer breaking the cycle by matching the cycle string with regular expressions. An excerpt of the algorithm is presented as pseudo-code in Algorithm 4.1. The heuristic works only when actors of each kind (entry or exit or both) are not interleaved, otherwise it returns any buffer of the cycle (like in the cycle of the form ioioi for example). When not interleaved (patterns on lines 1, 4 and 6), the heuristic selects a buffer on the only path between the last exit and the first entry. Note that regular expression patterns on lines 4 and 6 are a cyclic permutation of each other; they are the most common cases. However, they do not return symmetrical answers. To be symmetrical and indepenent from the cycle permutations, it should be returned on line 5 the buffer preceding the first entry after the last exit instead.

The heuristic selects the buffer placement and the delay size to break cycles. Multiple cycles may share the same actors and buffers, but they are processed separately by the heuristic. If the same buffer e is selected for multiple cycles, the delay size is the maximum of each d 0 | C (e). Unfortunately, we did not formally prove that this solution ensures the liveness of complex applications having nested cycles. The proof is kept for future work.

Last but not least, the heuristic does not set the token value d 0 | C of the delay. A neutral element would be the best default token value (as 0 for a sum, or 1 for a multiplication), but the SDF MoC is independent from the code of the actor, so the neutral an exhaustive exploration. Large applications are detailed in Section 4.4.2. Finally in Section 4.4.3, the throughput and memory footprint increases are measured on actual executions of applications running on hardware.

The other heuristic to break cycles detailed in Section 4.3 has not been extensively evaluated. We only have checked that the size and the placement of delays according to the heuristic breaking cycles are exactly the same as the original size and placement of delays set by the designers. On the two tested applications of PREESM having cycles (SIFT and stereo), delays set by the heuristic breaking cycles are identical to those originally set by the designer. In the remaining part of this section, the heuristic word always refer to the one pipelining SDF graphs detailed in Section 4.2.

All experiments have been run with the PREESM open-source9 tool, on a laptop with an Intel i7-7820HQ @ 2.90GHz processor (4 physical cores) and the GCC compiler version 7.5.0 (option -02) on Ubuntu 18.04. For all selected applications, the execution time of the proposed heuristic is between 1 and 18 ms (maximum reached for SIFT).

Note that the StreamIt/SDF 3 applications are all stateless in our experiments, except h263decoder (noAC) having self-loops. Self-loops disable auto-concurrency of an actor: multiple firings are serialized. For simplicity, the implementation of the delay placement heuristic in PREESM currently supports only homogeneous systems with identical PEs.

Indeed, we have measured the throughput gain with the scheduler proposed in Chapter 3 which supports only homogeneous systems. However, the heuristic, in particular Equation (4.5), could easily be updated to take into account heterogeneous systems, by considering the average ET time on all types of PE.

Main characteristics of the applications are presented directly in the results tables.

In the second column, MAP is the Maximum number of Actors in Parallel in the SDF graph; MAP equals the maximum number of parallel paths in the graph. When known, the total number of admissible graph cuts is specified in the column labeled #Cuts.

Note that multiple versions of SIFT and sobel-morpho applications are considered: their graph is identical but they do not have the same number of firings. Some of their actors are fired a number of times equal to a multiple of a parameter p. Only SIFT and stereo contain directed cycles in their SDF graph. In all results tables, the columns labeled by H x, y contain the throughput gain obtained by the heuristic selecting x pipelines among y balanced pipelines. Columns labeled by O x contain the optimal throughput gain, over all admissible cuts, for x pipelines. Lines of results tables without any value printed in bold means that the throughput gain is similar for all setups; otherwise, the value in bold corresponds to the best gain along the line.

Theoretical throughput gain: regular applications

Theoretical throughput gain obtained with the heuristic is presented in Table 4.1, for three setups: no pipeline, one pipeline among one, three pipelines among three. Most applications have a repetition vector r equal to 1, except Chain4.2noAC (which contains self-loops), cd2dat, h263decoder, modem, mp3decoder, samplerate and satellite.

Chain4.2noAC and Chain4.1 are toy examples made to fit the best cases of the heuristic; they correspond to the graph depicted in Figure 4.4, with only one path instead of four.

In Table 4.1, the best throughput gain is obtained by the heuristic with 3 cuts (H 3,3)

for 11 of the 17 applications. More importantly, the heuristic finds a close to the optimal throughput with 1 cut for all applications except mp3decoder. The number of admissible cuts generating a throughput gain lower than or equal to H 1,1 is reported as a percentage of the total number of admissible cuts, in column %. On average, H 1,1 reaches a better throughput gain than 91% of the admissible cuts. The set of all admissible cuts has been generated thanks to Equations (4.3) and (4.4) implemented in the generic Choco10 CP solver. Note that two applications are not compared with the optimal gain, FMRadio and Vocoder, because they admit too many cuts. These applications, and three others, are discussed in section 4.4.2.

On DCT and h263decoder, the throughput gain is less than 2.0, even with 3 pipelines: this comes from too few actors in the original graphs (respectively 8 and 4), having unbalanced ETs. This configuration leads the heuristic to find only 2 graph cuts for DCT and h263decoder, even if 3 pipelines were asked by the user. The number of effectively selected cuts is specified as an exponent. The same behavior happens for modem and mp3decoder applications: only 2 cuts are selected whereas 3 pipelines were asked. To avoid this problem, only 2 pipelines among 3 are requested for the PREESM applications, see Table 4.2 Indeed, in these applications the ETs are greatly unbalanced and the ET of the longest actor represents up to 47% of the sequential ET of sobelmorpho (p1).

For the PREESM applications evaluated in table 4.2, the heuristic reaches the best throughput in 7 cases out of 9. SIFT application is a difficult case: its SDF graph is widely parallel (up to 30 parallel paths) and contains multiple cycles. Moreover, its parallel paths have unbalanced ET. In this situation, selecting topological cuts is not the best option and 1 optimal cut (O 1) even reaches a better throughput than 2 cuts from the heuristic (H 2,3): for SIFT (p1) and SIFT (p2 

Theoretical throughput gain: widely parallel applications

This subsection evaluates the applications revealing the main advantage of the presented heuristic: no explosion of the number of cuts to test when the SDF graph is already parallel. Indeed, all evaluated applications in Table 4.3 admit between 10 5 and 10 10 cuts, which makes it impossible to evaluate the throughput of each cut by performing scheduling and mapping. Moreover, the number of possibilities also explodes with the number of pipelines asked: it is equal to the number of cut combinations without repetition (binomial coefficient):

#Cuts #Stages-1 . Table 4.3 presents results for the applications already having parallelism expressed in their graph: MAP is between 12 and 17 for all of them. In this experiment, the throughput is evaluated on 64 PEs for the heuristic setup H 3,3 selecting 3 pipelines. 

Name

Practical experimentation

In this subsection, the throughput and memory measurements come from actual executions on hardware, on the same laptop used for all experiments, having 4 PEs. Memory is allocated after the scheduling process, with buffer merging [START_REF] Desnos | On Memory Reuse Between Inputs and Outputs of Dataflow Actors[END_REF] optimizations activated. The memory needed is computed by PREESM, and compared with the sequential version on 1 PE for reference.

Results are provided in Table 4.4, for an average of 100 executions for SIFT and stereo, and 10000 executions for sobel-morpho and lane-detection. Note that the scheduler used in this practical experimentation differs from the one used in the theoretical experimentation, it is a list scheduler taking into account communications [START_REF] Kwok | FAST: a low-complexity algorithm for efficient scheduling of DAGs on parallel processors[END_REF]. Indeed, due to an implementation bug in the memory allocation process at the time of this experiment, it was not possible to measure accurately the memory size when using the scheduler of Chapter 3.

In Table 4.4, the heuristic especially improves the throughput of SIFT and sobelmorpho with p = 1 and p = 2, that is, when the application is not parallel enough. Yet, for lane-detection which has r = 1, the heuristic only slightly increases the throughput, while increasing the memory by a factor 1.9. The theoretical throughput gain of lanedetection is 2.5, that is two times higher than reality. We assume that this gap is due to the variability of the ET of the display actor, representing 28% of the application sequential execution time. Extended experiments should be performed to confirm this hypothesis. Also, synchronization points added by PREESM may be non-negligible.

None of the applications reaches the throughput expected in the theoretical evaluation.

An interesting point is that selecting 1 cut among 2 (H 1,2) gives better results than 1 among 1 for half of the cases. Such heuristic setups may compensate the case of unbalanced ETs or cycles, especially for SIFT (p2). Moreover for SIFT (p2) the H 1,2 setup greatly reduces the memory footprint compared to H 1,1: from a factor 3.0 to 1.1. Finally, the heuristic offers a trade-off between memory footprint and throughput.

This trade-off is especially needed for memory bounded application as SIFT requiring 197 MBytes (reference). In the worst case, for sobel-morpho (p4), adding one pipeline decreases the throughput while greatly increasing the memory (3.3 times). The memory increase is due to the graph cut location: between buffers transmitting numerous data, and thus it causes additional time for memory copies and synchronizations.

In Table 4.5, we also compare the practical throughput increase of the PREESM legacy (Leg.) scheduler (FAST initial step [START_REF] Kwok | FAST: a low-complexity algorithm for efficient scheduling of DAGs on parallel processors[END_REF]) and the one developed for partially periodic constraints (Per.) described in Algorithm 3. 

Related work

Pipelining and more generally retiming has been extensively studied in the context of Very Large Scale Integration (VLSI) circuit design [START_REF] Leiserson | Retiming synchronous circuitry[END_REF][START_REF] Parhi | VLSI digital signal processing systems : design and implementation[END_REF]. Pipelining legality was formally defined by Parhi [START_REF] Parhi | VLSI digital signal processing systems : design and implementation[END_REF] for a subset of SDF graphs: SRSDF graphs, which always have their repetition vector equal to 1. It was also studied for software pipelining [Lam04; All+95], with retiming methods used in this context [START_REF] Calland | Circuit retiming applied to decomposed software pipelining[END_REF]. Those works only concern SRSDF graphs. Our work focuses on pipelining SDF graphs, avoiding the costly conversion to SRSDF and thus reducing the analysis complexity.

Pipelining of SDF graphs was originally proposed by Lee and Messerschmitt [START_REF] Lee | Pipeline interleaved programmable DSP's: Synchronous data flow programming[END_REF] as an optimization. Gordon et al. [START_REF] Gordon | Exploiting Coarse-grained Task, Data, and Pipeline Parallelism in Stream Programs[END_REF] proposed a heuristic to pipeline a partially unfolded SDF graph, as well as Kudlur et al. [START_REF] Kudlur | Orchestrating the Execution of Stream Programs on Multicore Platforms[END_REF]. The heuristic presented by unfolded SDF graph and it requires a maximum number of pipelines as an input, in order to minimize the II accordingly. Our heuristic is faster and more scalable than the aforementioned works, however note that their algorithms also perform scheduling at the same time while we do not.

Scheduling has been largely explored in optimal and heuristic forms [KA99; MG13].

Other works look at combining pipelining with scheduling, restricted to SRSDF graphs [START_REF] Yang | Pipelined data parallel task mapping/scheduling technique for MPSoC[END_REF] or acyclic SDF graphs [START_REF] Chen | Buffer minimization in pipelined SDF scheduling on multi-core platforms[END_REF]. Our work separates pipelining from scheduling. Scheduling is computed afterwards on the pipelined graph, taking advantage of original data and task parallelism, as well as temporal parallelism.

Finally, multiple works [Zhu+16; Liv+07] addressed the optimal search for a retiming to reduce the makespan of a graph. Additionally, [START_REF] Zhu | Multiconstraint Static Scheduling of Synchronous Dataflow Graphs Via Retiming and Unfolding[END_REF] accepts a constraint on the maximum number of PEs, at the cost of non-optimality. Both use symbolic execution of a partially unfolded SDF graph to find a retiming. In our contribution we focus on the pipelining of an SDF graph in its reduced original form to provide a fast heuristic. We do not perform any execution, symbolic or not. It is also possible to retime SDF graphs by adding initial data in the buffers so that all firings of an actor can be performed in parallel [START_REF] Kanur | Detecting data-parallel synchronous dataflow graphs[END_REF]. The aforementioned work [START_REF] Kanur | Detecting data-parallel synchronous dataflow graphs[END_REF] is especially convenient to execute the same algorithm on multiple data at a time, similarly to a GPU. In our work, we focus on the balancing of the ETs in the different pipeline stages, for generic CPU, DSP or even FPGA.

Conclusion

A fast heuristic to automatically pipeline SDF applications at coarse grain has been presented and actually improves the throughput of the evaluated applications. The heuristic is able to quickly pipeline applications containing up to billions of admissible cuts. Our algorithm limits its exploration to a few cuts to reduce analysis time, and experiments show that this method is very often close to the optimal solution. The presented heuristic is especially useful when considering a large number of PEs.

However, the last experiment in Section 4.4.3 shows a gap between the theoretical throughput gain and the practical gain, always lower than expected. This gap is observed for both our pipelining heuristic and the theoretical optimal solution. Even if pipelining is a powerful optimization, its memory usage is a major drawback. The last experiment also shows that when it is possible to adapt the parallelism grain, it is more efficient to express enough parallelism inside the application than to pipeline it. Thus, the efficiency of pipelining is heavily dependent on the choice of various parameters of the application, and on the scheduling and mapping processes. In a joint work with the team of Michael Masin of IBM Research Labs, we have tried to develop an integrated LP formulation tackling multiple aspects: the pipelining, the scheduling, the mapping and the selection of parameters. This integrated formulation of multiple problems at once is challenging, and although we are close to a solution, we did not succeed yet. This formulation is briefly discussed in Chapter 5, and an alternative DSE solution is presented.

Our heuristic can be improved on various directions. For example, by adding smaller delays to break the dependencies between only a certain number of firings instead of all. Instead of setting delay sizes d 0 (e) as a multiple of Equation (4.1), the size could be a multiple of lcm{cons(e), dst(e)}, ensuring only a pipeline local to the buffer e. A greater feature would be to compute the size of the added delays symbolically: as an equation of the application parameters if any. This feature is challenging but would be especially useful for the DSE approach presented in Chapter 5. Finally, this heuristic is only one optimization method among various others, as the most related to this work:

Introduction

Multiple extensions of the SDF MoC support parameters, some of which are listed in Section 1.2.3. Parameters are used to modify the application behavior during its execution, or to explore different ways to implement it, that is Design Space Exploration (DSE). In particular, parameters of PISDF applications can modify the consumption and production rates, the delay sizes, the actor ETs and energy consumption. Parameters may also define the Quality of Service (QoS) of the application, as the image resolution.

In this chapter, we study the offline DSE of static PISDF applications, in order to select and fix the best values of all their parameters. As the parameter values are fixed once for all the indefinitely repeated executions of the static applications, the schedule, and especially the throughput and latency can be optimized offline1 . The case of dynamic applications and online DSE is quite more challenging and is not considered here.

DSE is especially needed to adapt the application to the target architecture. For example, in Chapter 2, a parameter p is used to control the degree of data parallelism of an SDF graph. Experiments reported in Table 4. 

PREESM parameters

This section presents the usage of static parameters available in the PREESM tool. Static parameters are a subset of the PISDF MoC. The PISDF model is the application of the PIMM [START_REF] Desnos | PiMM: Parameterized and Interfaced dataflow Meta-Model for MPSoCs runtime reconfiguration[END_REF] meta-model on SDF graphs. We restrict to static parameters in order to generate statically optimized code, in which all the needed memory is pre-allocated for every data communication on the buffers.

In Section 5.1.1, we detail which entities of the PISDF model can be parameterized and their impact on the application. Following Section 5.1.2 gives examples of the parameter syntax, and gives tricks to model multiple situations. Finally, we introduce the malleable parameters in Section 5.1.3; malleable parameters have been developed for the purpose of DSE.

What can be parameterized?

In the PREESM implementation, parameters are graphically represented by pentagons with a rectangular base, as depicted in These parameterizable entities accept arithmetic expressions composed of predefined mathematical functions and parameters. In the scenario model of PREESM used to store application information dedicated to a specific architecture, the ET and energy of actors are parameterizable entities, but not the data sizes. When the data consumption and production rates are parameterized, parameters impact on the repetition vector (see parameter p for the degree of data parallelism in Chapter 2). If used in any parameterized entity, a parameter also has a direct impact on the scheduling process. Last but not least, a parameter can be an argument of the C function associated with each actor.

Each parameter has a unique name and contains an arithmetic expression, possibly depending on other parameters or predefined mathematical functions such as logarithm2 .

Dependencies between parameters must be explicitly given by the designer. The parameters form a DAG whose roots 3 hold only numerical values. The designer has to specify the parameter expressions of the regular parameters and the numerical values of the root parameters. As parameters have unique names and as their dependencies must not if(key==<key1>, <value1>, if(key==<key2>, <value2>, <defaultValue>))

Listing 5.1 -Parameter expression implementing a dictionary, here depending on key parameter key.

create any cycle, they can be seen as an SSA program, ensuring that their expressions can all be valuated to a number. The valuation has to be an Integer number in the PISDF model, but internal computations may use floating point numbers. For example, both expressions 9.9/3.3 and 10.0/3.0 are valuated to 3.

How to use PiMM parameters?

The syntax of PREESM parameters is simple and does not authorize assignments. This limitation benefits the case of dynamic parameters, to avoid overhead while valuated them with the dynamic version of PREESM: SPIDER. If the expression contains semicolon characters, it will be only evaluated until the first semi-colon occurrence (from left to right). The only authorized control flow statement is the conditional statement if(condition, ifTrueStatement, otherwise). The conditional statement can be used to express a dictionary as in Listing 5.1. However, due to the SSA form, the dictionary parameter has to be duplicated for each possible input parameter key.

In some cases, it might be necessary to guarantee that a parameter is a multiple or divisor of another. For example, it happens for the degree of parallelism parameter p in Chapter 2, which has to be a divisor of the size of an actor input array. Similarly in the SIFT application 4 , a maximum number of keypoints has to be detected by a data-parallel actor of the application. It is then necessary to ensure that each firing of the data-parallel actor has at least one keypoint to detect, and that all firings have the same value. Listing 5.2 presents the computation of this local number of keypoints to detect, according to the maximum total number of keypoints defined by the user, and the degree of parallelism.

Parameters are valuated to Integer numbers only, although they support floating point numbers inside expressions. Then it is possible to use rational numbers in Q, defined as two parameters: one Integer value for the numerator and another one for the denominator. This is especially useful to express the aspect ratio selection of an image resolution: for example, 16:9 or 4:3. This solution is depicted in Figure 5. Finally, actor production and consumption rates can be equal to 0 in very specific occasions, and otherwise are only positive Integers. A null buffer where both production and consumption rates are equal to 0 is ignored during the analysis; consequently if an actor is only connected to such null buffers, it is not fired at all. This behavior may lead to inconsistencies during the PISDF graph execution: if an actor has a null buffer input, what argument should be given to the underlying C function? Thus, only special actors of PISDF, whose C function is predefined by PREESM, are authorized to have some of their buffers with null production rate or consumption rates. Special actors mainly correspond to standard duplicate/upsample or decimate/downsample actors which respectively copy multiple times their unique input on all their outputs or copy only once a subset of all their inputs on their unique output 5 . For example, this behavior enables the designer to avoid executing actors forming a path between a duplicate and a decimate actors, while not removing the path and actors from the application graph. If a parameter is used to put all rates of the path to the value 0 with an if statement, this is especially useful to easily test different configuration of the application. Figure 5.2 illustrates this possibility, where a path containing two actors is not executed depending on a parameter value. In any case, the special actors around the non executed path must still have a non null buffer connecting them 6 , here from out2 to in2.

Malleable parameters: design choice in PiMM

Parameters in PREESM contain a single expression set by the designer, so the designer has to change the expression manually to explore a new configuration of its application. 5 In the PISDF model, these special actors are called: broadcast (for duplication), roundbuffer (for decimation), fork (for split) and join (for concatenation).

6 More precisely, the special actors require in any case a non 0 consumption rate on at least one input buffer, and a non 0 production rate on at least one output buffer. Moreover, if one rate of the buffer is 0, then the rate on the other side must also be 0. In order to perform an automatized DSE of the application configuration, we introduce here a new kind of parameters, called malleable parameters. Technically, malleable parameters inherit from regular parameters and behave like them during the analysis of the PISDF graph. Regular parameters may contain multiple sub-expressions delimited by semi-colons, but only the first one is valuated (from left to right). On the contrary, malleable parameters come with an optional specific analysis and synthesis algorithm performing the DSE: it tests all combinations of sub-expressions stored in the malleable parameters. The DSE then selects the best point according to designer objectives, by setting the best sub-expression of each malleable parameter as its default (i.e. first) sub-expression. The DSE will be detailed in the following Sections 5.3 to 5.5.

In the GUI of PREESM, malleable parameters are identified by a different color (green instead of blue) and an extra {..} symbol on top. Figure 5.1 contain two malleable parameters: one to set the image width and the other one to set the aspect ratio.

The image height and the total image size derive from these two malleable parameters.

The expression of the AspectRatioDenominator malleable parameter is: 12;9 since the aspect ratio is either 4:3=16:12 or 16:9.

As they technically behave as regular parameters, malleable parameters can depend on other malleable parameters. Any parameterized entity can depend on a malleable parameter. The space of possible application configurations due to malleable param-eters corresponds to the Cartesian product of their sub-expression sets. For example, 10 malleable parameters each having two sub-expressions lead to 2 10 = 1024 possible combinations. Because of this combinatorial explosion and because no symbolic analysis is performed during the DSE, more complex expressions as interval definitions are not supported yet.

DSE: entangled problems

Design Space Exploration (DSE) helps to compare various configurations of an application and to select the best according to objectives given by the designer. Unfortunately, these objectives may be contradictory. Moreover, depending on what variables are computed by the DSE, i.e. the solving method, the variables themselves may be entangled and have complex relationships between each other. In this section, we briefly list main entanglements of the objectives (in Section 5.2.1) and main entanglements of the solving methods (in Section 5.2.2), and we specify which objectives and solving methods are used in our DSE. Note that DSE also refers to the selection of best target architectures, however we only consider application configuration selection in this contribution: the architecture is already predefined by the application designer.

Entanglement of the objectives

DSE require objectives, expressed as metrics to minimize, to maximize, or to limit, in order to select the best application configurations, meeting most objectives. We list below the most important metrics, and give a few details about their entanglement: M-1 throughput (redundant if graph period set); M-2 latency (entangled with M-1 when latency is expressed in number of scheduler iterations); M-3 power/energy (entangled with M-1 since both depend on processor frequency); M-4 memory (entangled with M-1 and M-2 to compute mutual exclusions of buffer usage, and to store delays creating latency); M-5 communication (entangled with M-1, M-3 and M-4 to compute mutual exclusions of network usage, and to store transmitted data); M-6 application QoS (entangled with all above when it depends on any parameter); M-7 DSE execution time (entangled with all above); M-8 generated code size (depending on the scheduler, and so on all above).

In our contribution, we consider only metrics M-1 to M-3, M-6 and M-7. Regarding metric M-6 for the QoS, it can depend on any parameter such as the image resolution, which defines the amount of computations in a video application. Metric M-8 is partially considered since it may depend on the degree of parallelism parameter (metric M-6).

Metric M-4 is partially considered since it may depend on the latency (metric M-2).

Metric M-5 is not considered at all and we currently restrict the architecture to single homogeneous multi-processors.

The fact that metrics are mutually entangled is not always a problem: if a mathematical relation is known between two metrics, then it is possible to merge the objectives referring to these metrics during the DSE. For example, the ADFG [Hon+17] real-time periodic scheduling synthesizer offers an option to convert throughput loss in memory gain, depending on a graph partitioning imbalance ratio. This relation is made possible thanks to the ADFG specific scheduling model of SDF graphs (periodic firings without auto-concurrency). However, such relations are not always known, and not always predictable. For example, the repetition vector of an SDF application depends on the lowest common multiple of all production and consumption rates, whereas the exact distribution of prime numbers in N is not known yet.

When no relation is known between the metrics of the objectives, there is no single best configuration and instead there is a Pareto front of best configurations. To enforce a single best configuration, it is possible to use a weighted sum of the objectives or to prioritize them 7 . In our contribution, we consider a prioritization of the objectives: an objective is considered only if the ones of higher priority are already optimized.

Entanglement of the solving methods

Multiple variables are defined or computed during the design and synthesis processes respectively. The main variables are the mapping and scheduling of firings, the routing and scheduling of communications, the placement of delays, the estimation of ETs and energy of firings, and the memory allocation. These variables are all entangled with the scheduling of firings. Besides, note that delays are usually defined or computed at the 7 More complex functions aggregating the objectives exist, as the Choquet integral. Besides, some aggregation methods (usually convex functions) may find a single best configuration while discarding other dominant configurations regarding to the actual Pareto front (see the discarded configuration x4 in Figure 1 (b) of [START_REF] Abdi | ERPOT: A Quad-Criteria Scheduling Heuristic to Optimize Execution Time, Reliability, Power Consumption and Temperature in Multicores[END_REF].

SDF graph G level, before the scheduling of the corresponding SRSDF graph G * 8 . It is one of the most common way to simplify the synthesis process: the entangled variables are solved by successive and independent solving methods, each method focusing on the computation of a specific category of variables, such as memory allocation. Considering all entanglements and related variables at the same time is difficult already in the domain of timing verification [START_REF] Maiza | A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems[END_REF]; to synthesize all these variables at the same time is even more difficult. There exists a global CP formulation [START_REF] Rosvall | A constraint-based design space exploration framework for real-time applications on MPSoCs[END_REF] for SDF graphs, but it does not take into account delay synthesis nor QoS configuration. In the work [START_REF] Rosvall | A constraint-based design space exploration framework for real-time applications on MPSoCs[END_REF], the CP formulation is especially useful to not explore all possible schedules: it decreases the scheduling execution time but then the result may not be optimal.

ETs are also required to generate a concrete static schedule 9 but they are modified by it if memory and communication contention are taken into account [START_REF] Nélis | The Variability of Application Execution Times on a Multi-Core Platform[END_REF]. One way to avoid contention is to perform spatial or temporal isolation [START_REF] Perret | Temporal isolation of hard real-time applications on many-core processors[END_REF]. Also, there exist heuristics to minimize the memory contention with SDF graphs, as one heuristic [START_REF] Tran | Efficient Contention-Aware Scheduling of SDF Graphs on Shared Multi-bank Memory[END_REF] dedicated to the Kalray many-core processor, however they require a precise knowledge of the memory accesses during the execution of an actor firing. Such knowledge can be modeled with PREM (PRedictable Execution Model) [START_REF] Pellizzoni | A Predictable Execution Model for COTS-Based Embedded Systems[END_REF] or memory access patterns [Gho+12; Wan+14], but PREESM does not support any model about memory access. Thus, both memory and communication contentions are not taken into account in our DSE. When considering real-time constraints, such as periodic tasks, a few works are able to perform timing verification during the schedule synthesis [START_REF] Didier | Correct-by-Construction Parallelization of Hard Real-Time Avionics Applications on Off-the-Shelf Predictable Hardware[END_REF], but it does not adapt the QoS. In our DSE, we consider timing verification of partially periodic SDF graphs via the scheduler presented in Chapter 3 which automatically stops when the system is not schedulable. Non schedulable configurations are discarded. The support of partially periodic constraints and its scalability are the main advantages of the scheduler presented in Chapter 3, compared with the numerous schedulers developed for DAGs of tasks which could be used instead.

In our work, we consider that variables are solved separately in the following order: S-1 modeling of ETs and energy per actor firing, PREESM can generate instrumented code to infer an averaged ET estimation 10 ; S-2 valuation of all parameterized expressions and computation of repetition vector;

8 For example, Stream Graph Modulo Scheduling [START_REF] Kudlur | Orchestrating the Execution of Stream Programs on Multicore Platforms[END_REF] places delays after a first partial unfolding of the graph.

9 A concrete static schedule specifies the start time and end time of each task, whereas some abstract schedules only give partial information, as an ordered list of tasks to execute.

10 Either directly, or using PAPIFY [START_REF] Madroñal | PAPIFY: Automatic Instrumentation and Monitoring of Dynamic Dataflow Applications Based on PAPI[END_REF] for a better accuracy. The generated code corresponds to the firings and communication function calls, distributed over threads according to the static non-preemptive scheduling on each PE in the target architecture. One thread is created per PE.

Note that during the PhD, we have worked with the team of Michael Masin at IBM Research Labs 11 to formulate efficient solving methods computing all entangled variables.

However we did not succeed yet since the problem formulation involves many variables at the same time, which makes it difficult to verify and optimize. Two formulations have been tried:

• a suboptimal LP relaxation relying on the IBM ILOG CPLEX constraint solver which successively solves the variables of each category;

• an asymptotically optimal formulation relying on a non public tool extending the CPLEX capacities with a test-and-retry feature automatically generating formulations which randomly fix a subset of variables at each try.

Both formulations must be iterated multiple times to refine the solution.

The most complex feature of those IBM formulations was the memory allocation, which is optimized for the duplication special actors of PREESM. The optimization keeps the memory address of the data to duplicate and provide the same address to all outputs of the duplication actor instead of actually copying it. Such optimization is needed for SIFT which would use up to 2 Gbytes otherwise, and 10 times less with the equivalent optimization already present in PREESM thanks to memory scripts [START_REF] Desnos | On Memory Reuse Between Inputs and Outputs of Dataflow Actors[END_REF]. This optimization requires to double the number of buffer variables: logical buffers and physical buffers. Logical buffers respect the SDF original semantics while physical buffer 11 See Footnote 2 on Page 98.

implement the optimization. Related equations also require a formulation of the dependencies between firings12 , itself depending on the size of delays. Despite our efforts, both formulations still encounter problems which have not been solved yet. For example, the optimal formulation does not respect the delay placement rules detailed in Section 4.1.

An exhaustive DSE method

The exhaustive DSE method that we have implemented in PREESM tests all possible combinations of malleable parameter sub-expressions of an application for a single target The objectives are an input of the algorithm. They may refer to the following metrics (encoded each with one letter):

• Throughput T inverse (corresponds to II duration);

• Latency L (maximum value of actor delay max defined in Equation (5.1)) and

Makespan M (Latency multiplied by II duration);

• Energy E and Power P (Energy of all firings divided by II duration).

The objectives using these metrics are either full minimization (encoded with a 0) or threshold to not exceed (encoded with any positive Integer). An example is given in Listing 5.3. The order of appearance of an objective defines its priority.

The total energy consumption and the II duration are computed during the scheduling process, respectively at the beginning and at the end of the process. The unit of the threshold objectives are the same as the metrics they refer to. The latency is evaluated right before the scheduling process (between steps S-4 and S-5) thanks to a graph traversal applying the max Max-Plus algebra variant of actor delay (see Equation (4.2)).

The definition of actor delay implies that all incoming buffers create the same actor delay (i.e. feed-forward graph cut) so that it respects the original application semantics if adding new delays. However, here the designer may have added delays which do not form a feed-forward graph cut, and thus the equality is replaced by a maximum over all incoming buffers. max is formally defined in Equation (5.1); its unit is the number of pipeline stages, or equivalently the number of scheduler iterations on which one SDF graph iteration is spread. In the remaining part of this chapter, latency refers to max while makespan refers to max multiplied by II duration 13 . ∀α ∈ V, max (α) = max A second set of objectives can optionally be given by the designer to ask the mini-13 This makespan is actually an upper bound since the first firing in the SDF graph topological order may happen at any time during a scheduler iteration if some delays are located after this firing. Same reasoning is valid for the last firing in topological order, which might be the first inside a scheduler iteration if delays are located right before it. The lower bound of the makespan is ( max -1) × T with T equal to the II duration.

mization or the maximization of any parameter of the PISDF graph. These objectives may be used to control the QoS of the application. These objectives are also prioritized, and are appended to the objectives based on metrics. Last line of Listing 5. Finally, when testing each DSE point, the DSE algorithm calls a global comparator which iterates over all single objective comparators in the priority order. An objective comparator is called only if the ones of higher priorities did not return 0. In other words, the global comparator stops the comparison as soon as one DSE point is better than the other according to the currently tested objective. The global comparator code is detailed in Listing 5.5. Note that any kind of objective is allowed to appear multiple times in the list, possibly with different thresholds.

Improving DSE with automatic delay placement

When the highest priority DSE objective is the II duration minimization (i.e. throughput maximization), it might be useful to pipeline the applications as demonstrated in Chapter 4. After describing the general conditions to call the automatic pipelining heuristic, we detail the formulae used to compute the number of pipeline stages to add. 

Adding delays to improve the results

Pipeline delays may improve the throughput, and thus especially benefit the II duration minimization objective. It may also help to respect a specified graph or actor period.

However, adding delays increase the latency and makespan metrics. Moreover, reducing the II duration may increase the power consumption (since same energy for a smaller II).

Due to these drawbacks, the automatic delay placement is only an optional feature of the DSE. Each original DSE point, is tested first without the delay placement heuristic.

If the point does not already respect the DSE objectives, it is tested a second time after one call of the delay placement heuristic. At worst, this DSE improvement doubles the original number of tested DSE points.

Moreover, the delay placement heuristic is never called if a makespan minimization or a latency minimization objective has a highest priority than a II duration objective (minimization or threshold). As soon as the objectives include a latency threshold, the latency threshold becomes an upper bound of the number of accepted pipeline stages.

If the minimum latency threshold is equal to 1 pipeline stage, no delay is accepted in the application and thus the delay placement heuristic is never called. Additionally, the heuristic is not called if any of power, latency or makespan threshold objective is not met. Indeed, adding pipeline stages to reduce the II duration will only worsen those objectives.

The delay placement heuristic works even if some size of delays are parameterized (see parameterizable entity E-4) since their valuation is resolved first. Unfortunately, the delay placement heuristic does not take into account the delays already present in the graph, so it may add delays at the same place as preexisting delays. However, the number of pipeline stages to add is limited by the difference of any latency threshold and the latency of the current DSE point as we will see in the next subsection.

Precomputing the number of cuts

The delay placement heuristic presented in Chapter 4 requires two inputs: the number of graph cuts to add x, and the number of balanced graph cuts to preselect y. When calling the heuristic, we always set y ← x + 1 so that we introduce slightly more choices than necessary. Now we detail how x is computed.

Let's note L cur the latency of the graph resulting from the current DSE point. By definition, L cur = max α∈Vcur { max (α)}. Also, L THR denotes the minimum value of any latency threshold objective. Then as stated at the end of the previous subsection, we obtain Equation (5.2).

x ≤ L THR -L cur (5.2)

Based on the scheduling of the current DSE point without added delays, we know its II duration T cur . If a too small graph period was set, it may happen that the scheduling process did not work, however in this case we know the relation T cur = T Gcur . Then it is possible to estimate how far was the current schedule from the ideal case where the processor utilization factor is full: U cur = m. The estimate corresponds to an upper bound of the cuts necessary to reach this ideal case, as stated in Equation (5.3). In the ideal case U cur = m, the fraction is equal to 1 and thus no cut is needed. Hence we add the term -1 to convert number of pipeline stages to number of cuts. x is without unit since we divide time unit by time unit.

x ≤ T cur × m α∈V r cur [α] × C α -1 (5.3)
Then, if any II duration threshold objective is present, x is refined according to it.

In this case, the number of cuts is upper bounded by the ratio of the current II duration T cur on the threshold T THR , as stated in Equation (5.4).

x ≤ T cur T THR -1 (5.4) For makespan threshold, we use a ratio with the ideal case U = m. The number of cuts has to be less than the makespan threshold M THR divided by the minimum ideal II duration. The upper bound is defined in Equation (5.5).

x ≤ M THR × m α∈V r cur [α] × C α -1 (5.5)
Finally, x is selected as the maximum Integer respecting all Equations (5.2) to (5.5).

If any of the considered threshold is not present in the objectives, then the corresponding equation is ignored. At worst, if there is no threshold at all, x is refined with Equation (5.3) only. The delay placement heuristic is not called if x ≤ 0 since it would be useless. Note that Equations (5.2) and (5.5) are strong limits on the number of cuts, whereas Equations (5.3) and (5.4) are only informative upper bounds which are not forbidden to exceed. If exceeding bounds of Equations (5.3) and (5.4), memory usage will most probably increase while throughput gain will be negligible.

A naive heuristic for Integer malleable parameters

Another way to improve the DSE is to only explore a subset of all possible DSE points, so that the DSE execution time decreases. Randomly selecting the subset to explore may remove interesting points, so instead we focus on the malleable parameters holding only Integer numbers in their sub-expressions. Indeed, we expect a relationship between the evolution of any malleable parameter value and the evolution of some metrics of the corresponding DSE points. For example, if the value of a specific malleable parameter increases, the total number of firings may increase as well. Of course this is not always true, yet this is the only possible expectation without further symbolic analysis of the parameterized expressions. Hence, we have implemented a heuristic performing a kind of dichotomy on the Integer numbers of malleable parameters. The heuristic works only for malleable parameters whose all sub-expressions are Integer numbers. For other malleable parameters, the heuristic is not called and all their combinations of sub-expressions are explored.

The heuristic is a kind of dichotomy on the sorted sets of values of all malleable parameters holding only Integer numbers. We refer to such malleable parameters as 

Integer

Delay placement

Two malleable parameters (delayRead/Display, MP-5 in the preceding list) are used to add pipeline delays delimiting pre-and post-processing (such as color scale to grey scale conversion). The placement of these pipeline delays has not been deduced from the heuristic presented in Chapter 4. Indeed, the heuristic depends on the repetition vector of the application, which depends on the malleable parameter parallelismLevel.

The heuristic also depends on the ETs of the actors, modified by all the aforementioned parameters, except MP-5 for the delays. As the delay placement should be recomputed for each configuration, we have chosen to set by ourselves two possible placements, and also to call the delay heuristic after the scheduling process, as seen in Section 5.4. If delays are added by the heuristic at the same place as specified by delayRead/Display, their sizes are summed (so it is a useless DSE point).

Execution times and energy modeling

Timings are linearily parameterized by the number of pixels, by the degree of parallelism (as done in Equation (2.2)), and by the frequency. For example, the yuv_to_rgb preprocessing actor has the following timing: Here 1150000 is the ET of actor yuv_to_rgb measured in nanosecond for the default number of pixels RefTotSize. This linear computation of the ET is an ideal case which does not respect the Amdahl's law [START_REF] Amdahl | Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities[END_REF], but it is sufficient regarding to the high degree of data parallelism of the processing actors and to the small number of PEs in the target architecture.

Unfortunately, we did not performed actual measurements for the energy consumption. However, the parameterizable expressions of energy support common energy model (for example, see equations (2.4) and (2.5) in the thesis of E. Nogues [START_REF] Nogues | Energy optimization of Signal Processing on MPSoCs and its Application to Video Decoding[END_REF]). Currently, the DSE computes the energy as the sum of all energy expressions per actor firing, without considering the energy of the processor alone. The power is obtained by dividing the computed energy by the II duration. Moreover, the frequency minimization objective that we define corresponds to a better power efficient strategy than idle-to-race as stated in [START_REF] Holmbacka | Energy Efficiency and Performance Management of Parallel Dataflow Applications[END_REF]. Another reason to not model energy in our experiments is that Dynamic Voltage and Frequency Scaling (DVFS) [START_REF] Ishihara | Voltage scheduling problem for dynamically variable voltage processors[END_REF] is automated on our laptop processor and it is difficult to enforce its frequency.

Experiments

Experiments were performed on a laptop with an Intel i7-7820HQ @ 2.90GHz processor (4 physical cores) and the GCC compiler version 7.5.0 (option -02) on Ubuntu 18.04.

Note that after the DSE, a different scheduler (legacy PREESM scheduler, FAST initial step [START_REF] Kwok | FAST: a low-complexity algorithm for efficient scheduling of DAGs on parallel processors[END_REF]) is called. This scheduler is longer to execute and cannot be used in the DSE, especially because it takes communications into account and because it performs a best fit mapping while the DSE scheduler only performs first fit mapping (see Chapter 3).

Two experiments have been performed. The first experiment assesses the choice of the degree of parallelism of SIFT introduced in Chapter 2. The second experiment details the DSE execution times and best DSE points depending on the DSE options (exhaustive, delay heuristic, Integer heuristic). As expected, the II duration decreases when the degree of parallelism increases; their lines never cross each other. The degree of parallelism 4 (denoted p4 in Figure 5.5) has the highest number of DSE points below the 30 fps II duration threshold. There are also four PEs in the target architecture. Thanks to the parameter objectives detailed in Listing 5.6, the exhaustive DSE method selects the best point having an image resolution of 640x360, without the initial image upsample path (malleable parameter MP-1 set to false), and with the degree of parallelism of 4. Note that even if including the delay malleable parameter MP-5 in the DSE, the best point remains unchanged. This result demonstrates that for the SIFT application, it is better to adapt the degree of parallelism to the number of available PEs, than to pipeline the application. Moreover, the DSE is able to select an acceptable configuration, which meets all threshold requirements: II duration and makespan.

Throughput versus degree of parallelism

DSE execution time versus best point quality

DSE execution times are reported in Table 5.1, with and without delay and Integer heuristics. Each point takes around half a second (538 millisecond) to be explored.

However this is an average since the scheduling process is linearithmic in the repetition vector, itself depending on the malleable parameter values. Half a second per point is not so fast, and advocates for the Integer heuristic to decrease the number of explored DSE points.

The number of explored points and the best one are also reported in Table 5.1. As for the previous experiments, delays are almost never added, except with the Integer heuristic (delayRead). Using both heuristics for malleable parameters MP-1 to MP-5 divides by a factor two the number of explored points (160 to 80). On one side, the delay heuristic triggers slightly more points to explore, and on the other side, the Integer heuristic drastically decreases the number of points to explore. For example, with both heuristics for malleable parameters MP-1 to MP-7, only 316 points are explored over 4320 in total. The heuristics do not modify the best point quality: the same image resolution is selected for all types of DSE. However, with malleable parameters MP-1 to MP-7, the highest frequency is selected, allowing for an increase of the aspect ratio, from 16:9 to 16:12, and an increase of the number of keypoints, from 100 to 160.

Finally, the degree of parallelism selected by our DSE is always equal to the number of available PEs, 4 in this experiment. In the meantime, delays are almost never added.

In this experiment on the SIFT application, it is more efficient to adapt the degree of parallelism than to pipeline the application graph. This conclusion cannot be generalized to any graph and any number of PEs. Indeed the functions that we used to model the actor ETs are inversely proportional to the degree of parallelism, which might favor parallelism over pipelining. In the general case, this linear model is too optimistic. For example, doubling the number of PEs executing a task would divide by less than two the total ET of that task. 

DSE

Related work

In our contribution, we explore multiple application configurations on the same architecture, with a unique scheduler. Thus, our work is related to multi-objective DSE, to parameterized SDF applications, and also to parallelism grain adaptation.

Multi-objective DSE

Numerous works target DSE of applications on multi-processors [START_REF] Pimentel | Exploring Exploration: A Tutorial Introduction to Embedded Systems Design Space Exploration[END_REF]. Joint energy consumption and real-time scheduling optimization have been widely studied using DVFS, for both offline [START_REF] Wang | Energy and timing aware synchronous programming[END_REF] and online [START_REF] Gaujal | Dynamic Speed Scaling Minimizing Expected Energy Consumption for Real-Time Tasks[END_REF] cases, and even considering the temperature [START_REF] Abdi | ERPOT: A Quad-Criteria Scheduling Heuristic to Optimize Execution Time, Reliability, Power Consumption and Temperature in Multicores[END_REF]. To these works, we can add a few tools also taking into account energy and real-time constraints, which compute the best mapping [START_REF] Abdallah | Multiprocessor real-time partitioning with Quality of Service requirements and energy constraints[END_REF] or the best mapping and frequency at the same time [START_REF] Yang | Mapping and Frequency Joint Optimization for Energy Efficient Execution of Multiple Applications on Multicore Systems[END_REF]. Finer compilation optimizations may also result in energy trade-offs, such as function inlining [START_REF] Muts | Multi-Criteria Function Inlining for Hard Real-Time Systems[END_REF]. However, in our work, we stay at a coarse representation level of the applications, and we did not investigate the multiple existing compilation optimizations, especially the SSE/AVX vector extensions. Moreover, we focus on SDF graphs whereas none of the aforementioned work supports it.

More specifically, there exists a previous work optimizing makespan and throughput objectives for scheduling of SDF graphs, using ILP formulation and heuristics [START_REF] Lin | Communication-aware Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems[END_REF].

However, their SDF input graph is not parameterized. Considering parameters, the IGOR tool [START_REF] Smirnov | IGOR, Get Me the Optimum! Prioritizing Important Design Decisions During the DSE of Embedded Systems[END_REF] helps to deduce the impact of each parameter, but it is especially useful if there are numerous possible values per parameter. In our experiments, half of the parameters are binary decision variables (malleable parameters MP-1 to MP-3 and MP-5).

Closely to the SDF model, the MASES tool [START_REF] Yu | MASES: Mobility And Slack Enhanced Scheduling For Latency-Optimized Pipelined Dataflow Graphs[END_REF] optimizes throughput, makespan and processor utilization of SRSDF graphs. Another tool [START_REF] Kang | Multi-objective mapping optimization via problem decomposition for many-core systems[END_REF] performs multiobjective DSE of a variant of KPNs, especially focusing on the mapping and the network usage. Code generation and DSE [START_REF] Schwarzer | Compilation of Dataflow Applications for Multi-Cores Using Adaptive Multi-Objective Optimization[END_REF] has also been studied for an extended version of SDF with dynamic actors, but it does not compute the placement of pipeline delays.

Additionally, many DSE tools consider multiple variables while optimizing a single objective. The only objective usually is the throughput (see DSE of SRSDF applications with communication contention [START_REF] Khandelia | Contention-conscious transaction ordering in multiprocessor DSP systems[END_REF]), or the schedulability according to any requirement (for example, see DSE of Unified Modeling Language (UML) applications [START_REF] Apvrille | A UML-based Environment for System Design Space Exploration[END_REF]). Yet they may integrate other objectives if expressed as strong requirements, as it is the case of FoRTReSS [START_REF] Duhem | FoRTReSS: a flow for design space exploration of partially reconfigurable systems[END_REF] for the DSE of an SRSDF variant on FPGAs, taking into account communications and floorplanning. Finally, DAMSHE methodology [Sur+19] also takes into account heterogeneous hardware with both FPGAs and regular CPUs, but the DAMHSE methodology is not an automatic DSE: it is driven by the designer.

Parameterized SDF MoCs

A complete survey of parameterized SDF MoC has been done by Bouakaz et al. [START_REF] Bouakaz | A Survey of Parametric Dataflow Models of Computation[END_REF].

One of the oldest work [START_REF] Bhattacharya | Parameterized Dataflow Modeling for DSP Systems[END_REF] separates the parameter valuation from their usage; all parameters must be resolved and fixed before each graph (or subgraph) iteration. Other work [START_REF] Teich | Analysis of Dataflow Programs with Intervallimited Data-rates[END_REF] analyses SDF graphs having intervals as production and consumption rates.

Parameterized SDF graph raise interesting problems about when the parameters can change their value during the graph iterations. However, in our work, all parameters are fixed for all iterations of the application. Consequently, we do not support parameters depending on any actor output. Such limitation is an advantage for other aspects, especially the memory usage which is predicted and optimized after scheduling.

Other parameterized models take advantage of symbolic analysis of the rates, as does BPDF (Boolean Parametric DataFlow) [START_REF] Bempelis | Boolean Parametric Data Flow Modeling -Analyses -Implementation[END_REF]; but BPDF rate expressions are restricted to multiplications. Unfortunately, our DSE algorithm does not benefit from the symbolic expression of parameters: they are all evaluated and fixed before scheduling.

Thus we cannot benefit from promising parametric scheduling [START_REF] Pinxten | Parametric Scheduler Characterization[END_REF], which defines regions of equivalent schedules for tasks without dependencies. Similar parameter synthesis techniques already exist for Timed Automata, as the IMITATOR tool [START_REF] André | IMITATOR 2.5: A Tool for Analyzing Robustness in Scheduling Problems[END_REF].

Parallelism adaptation

An important aspect of parameters is their influence over the parallelism of the application. They may modify both data parallelism (through rate divisions or multiplications) and task parallelism (trough path selection, with rates equal to 0 in PREESM).

For example, a method identifies hot actors, i.e. bottlenecks, and provides a heuristic to split them [START_REF] Farhad | Orchestration by Approximation: Mapping Stream Programs Onto Multicore Architectures[END_REF]. Similarly, multiple tools rely on SDF graph unfolding to obtain efficient schedules [START_REF] Kudlur | Orchestrating the Execution of Stream Programs on Multicore Platforms[END_REF][START_REF] Zhu | Multiconstraint Static Scheduling of Synchronous Dataflow Graphs Via Retiming and Unfolding[END_REF]. There exists also a Mixed Integer Linear Programming (MILP) formulation to select the level of intra-parallelism [START_REF] Zhou | Scheduling of Parallelized Synchronous Dataflow Actors for Multicore Signal Processing[END_REF] (here, note that each task may require multiple processors at the same time). Besides, an extension of the SDF MoC, Scalable Synchronous Dataflow, supports the automatic modification of the repetition factor of some actors via a vectorization algorithm [START_REF] Ritz | Optimum vectorization of scalable synchronous dataflow graphs[END_REF]. Graph pattern detection and substitution is another way to reduce parallelism [START_REF] Cudennec | Parallelism Reduction Based on Pattern Substitution in Dataflow Oriented Programming Languages[END_REF].

In our experiments, a single malleable parameter was controlling the degree of data parallelism of multiple actors. Finer optimizations could configure this degree of data parallelism independently for each actor in order to produce the best mix between task parallelism and data parallelism according to the graph topology. To our knowledge, this specific problem has not been widely studied for SDF graphs, but algorithms exist for a kind of DAGs with parameterized data parallelism [START_REF] Marchal | Malleable task-graph scheduling with a practical speed-up model[END_REF] executed on heterogeneous target architectures [START_REF] N'takpé | A Comparison of Scheduling Approaches for Mixed-Parallel Applications on Heterogeneous Platforms[END_REF]. In the domain of DAG scheduling, such parameterized parallelism corresponds to moldable tasks if the degree of parallelism is static, and to malleable tasks if the degree of parallelism can be changed dynamically. Algorithms developed for moldable tasks may integrate multiple objectives as makespan and energy minimization [START_REF] Desprez | A Bi-Criteria Algorithm for Scheduling Parallel Task Graphs on Clusters[END_REF]. This fine data parallelism adaptation is especially needed when considering clustered architectures with constraints on input and output data locality [START_REF] Boudet | One-Step Algorithm for Mixed Data and Task Parallel Scheduling Without Data Replication[END_REF]. Unfortunately, our scheduler does not consider neither data locality nor communication times to move data.

Finally, only a few models support the modification of task parallelism, since it modifies the application semantics. However, it is an important feature when dynamically adapting the QoS. The RDF (Reconfigurable DataFlow) model [START_REF] Fradet | RDF: Reconfigurable Dataflow[END_REF] supports it via graph rewriting. The BPDF model [START_REF] Bempelis | Boolean Parametric Data Flow Modeling -Analyses -Implementation[END_REF] supports the parameterized removal of existing actors, but not their addition, via a Boolean activation input. The PREESM tool supports the parameterized removal of existing actors, but not their addition, with a few restrictions on the paths containing them.

Conclusion

Our DSE approach helps to design dataflow processing applications having minimum QoS requirements, while minimizing other objectives, as latency for example. Instead of assessing multiple target architectures or multiple possible mappings, the presented DSE explores the available application configurations expressed with PISDF malleable parameters. As in another work dedicated to the design of a real-time computer vision application [START_REF] Amert | OpenVX and Real-Time Certification: The Troublesome History[END_REF], our DSE approach especially helps to compute the appropriate degree of parallelism p, yet only if this degree of parallelism is modeled with a malleable parameter in our case. If the processor frequency is also modeled with a malleable parameter, we are able to find a suitable one given throughput or energy objectives.

Our approach naively performs an exhaustive search by default, and does not benefit from a symbolic analysis of the application parameters. However, efficient heuristics for scheduling, pipelining and parameter value selection, help to perform our DSE algorithm in a reasonable time: a few minutes at most in our experiments. The presented DSE can be improved in many directions, but such improvements would most likely increase the DSE execution time.

Among possible improvements of our DSE, the most important one is to adapt its internal tools (for scheduling and pipelining) to heterogeneous target architectures. Such heterogeneous architectures also call for communication modeling (especially if memory is distributed), which triggers the problem of communication contention on shared buses for example. Memory is also a source of contention, and the memory footprint minimization is not currently available as an objective. Both communication and memory modelings require to heavily extend the capabilities of the DSE algorithms relying on the PISDF application model and the S-LAM architecture model used by PREESM.

Another important future work is to consider multiple applications to configure together. It is easy to add a dummy actor connecting two application graphs together so that both applications are seen as a single graph by our algorithms. With this method, the fairness of the processor usage between the two applications may also be configured with malleable parameters on the rates of the edges coming from the dummy actor.

However, connecting the graphs of multiple applications implies that DSE objectives as makespan and throughput are not anymore specific to each application, which is a major drawback. A simpler future work is to implement other methods to select the best DSE point according to the given objectives. The current method selects the best point by prioritizing the objectives, while the domain of Multi-Criteria Decision Analysis (MCDA) offers numerous other methods. Finally, the easiest improvement to perform is to test multiple DSE points in parallel: for now, all points are tested sequentially, one after the other.

Dissemination and Implementation

The contribution presented in this chapter has not been published nor submitted yet for peer-review. The algorithms presented in this chapter have been implemented

as workflow tasks of the PREESM tool. See the following task description for the implementation of all DSE algorithms described in this chapter:

Modeling Two contributions, detailed in Chapters 2 and 3, are related to modeling. First we have shown in Chapter 2 how to model a category of imperative for loops with the SDF model, so that theses for loops can be parameterized and adapted to the number of Processing Elements (PEs) in the target architecture. This contribution eases the design process since it avoids using more complex dataflow models as the Cyclo-Static Data Flow (CSDF) Model of Computation (MoC). Then, in Chapter 3, we have discussed the analysis of SDF graphs having periodic constraints on some of their actors, to represent the behavior of some components of a processing application, especially its sensors and actuators.

Scheduling While modeling is the first design step usually manually performed by the designer, scheduling is the main next step, to automatically execute the modeled application. In Chapter 3, a fast non-preemptive offline scheduler has been introduced to schedule SDF applications, even when having periodicity constraints. This scheduler is highly scalable and experiments show that is has a fair quality compared to an optimal one: global Earliest Deadline First (EDF).

Pipelining A common optimization of SDF graphs is to pipeline them by adding delays to break some of their data dependencies. While this optimization may dramatically improve the throughput of an application, it also increases its memory footprint and its latency. In Chapter 4, we define admissible graph cuts to insert delays on SDF graphs so that the application semantics is not modified. We also present a pipelining heuristic to automatically compute valid delay placements on a subset of such admissible cuts. This pipelining heuristic has been tested on various SDF graphs, and it is especially efficient when considering a large number of PEs in the target architecture. The heuristic is performed before the scheduling step during the design process.

Configuration Our last contribution, presented in Chapter 5, uses all the aforementioned contributions to select the best configuration of a parameterized SDF graph according to some constraints on energy, latency, throughput and QoS. We propose an exhaustive DSE algorithm and two heuristics to configure the application according to the constraints. The heuristics either reduce the number of explored configurations to accelerate the DSE, or improve each explored configuration by automatically performing an additional pipelining step. Our three DSE algorithms find a suitable configuration of the SIFT image processing application, optimizing the image resolution under throughput and latency constraints.

Future work

Combined together, our contributions enable us to configure a parameterized SDF graph on a multi-processor homogeneous architecture. However, multi-processors, and especially Multi-Processor System-on-Chips (MPSoCs) are now embedding various kinds of processors which are specialized to reduce the energy consumption or to accelerate the computations of specific algorithms. All our contributions have to be adapted to take into account heterogeneous multi-processor architectures. We think that such adaptation is achievable in short-term for the modeling, pipelining and configuration contributions, but our scheduler requires more work, especially if integrating communication costs.

More broadly, we think that promising but difficult future work is to develop an endto-end global approach to accurately configure applications: from modeling to actual execution. It implies at least two challenges: (1) powerful symbolic analysis to derive the importance of each variable of a system, and (2) simulation and actual execution of configurations to better match the reality. Regarding challenge (1), symbolic analysis could allow us to parameterize the repetition vector, even when parameters use complex arithmetic expressions. Regarding challenge (2), only a subset of the complete behavior of an application in its actual environment is effectively and accurately modeled. Thus, we always need to confront reality. Unfortunately, our configuration algorithm does not use experimental results to refine its best, theoretical, configuration. For instance, Execution Times (ETs) can be estimated by Parallel and Real-time Embedded Executives Scheduling Method (PREESM) but they are not automatically refined.

Finally, in this thesis we have focused on static applications and offline synthesis, for scheduling, and pipelining and configuration. However, another global future work is to adapt our contributions to dynamic environments, for example, in the SDF runtime manager Synchronous Parameterized and Interfaced Dataflow Embedded Runtime (SPIDER). A possible use-case is the reconfiguration of the degree of parallelism p and the QoS when one or multiple PEs are not anymore available, due to a failure or a power shortage. SDF iterators may already be modeled with SPIDER. In this case, the iterator not only stores the values of the indexes, but it also computes them. But computing the best suitable degree of parallelism as done in the last contribution may still require multiple minutes, which is too long. We believe that both aforementioned challenges (1) and

(2) would help this future work: symbolic analysis would accelerate the reconfiguration and online actual executions would detect the need for reconfiguration.

Hereafter we detail future work specific to each contribution.

Modeling On modeling, the main long-term future work is to automatically transform applications written with an imperative programming language to the SDF MoC. Indeed this complex design step is often performed manually by the designer. Such transformation is difficult first because the SDF MoC is less expressive than almost all imperative languages, and second because a suitable dataflow granularity has to be extracted. Regarding periodicity constraints, the main long-term future work is to complete them with latency constraints. Indeed, an actuator may be dependent on a sensor activation and be required to operate before a specific deadline, shorter than the period if any.

Scheduling

The main future challenge for our scheduling algorithm is to consider heterogeneous multi-processors and communication times between the processors. However, taking into account communications also imply taking into account communication contention. Similarly, we did not take into account neither memory contention nor data locality. This challenge is especially difficult to solve if the scheduler has to remain fast:

adding new variables and constraints will most probably reduce its rapidity and scalability. Moreover, it requires a precise model of available means of communication on the target architecture, and a precise model of memory accesses. A short-term future work, is to adapt our scheduling algorithm to heterogeneous multi-processors without taking into account communications.

Pipelining Pipelining of SDF graphs may increase the memory footprint of the application. Our heuristic focuses on a subset of valid delay placements to be fast, thus potentially excluding good solutions which imply a smaller memory footprint. Yet, adding more solutions to explore will result in a longer execution time of the heuristic.

Another way to improve the pipelining heuristic is to benefit from a symbolic analysis of the SDF graph parameters in order to output the placement and parameterized sizes of delays to add instead of their concrete Integer sizes. This long-term future work would especially benefit the last contribution regarding automatic configuration.

Configuration

The current configuration is naive and close to brute-force. A symbolic analysis of the SDF graph parameters would allow us to infer rapidly precious information without performing scheduling. One of this information is the repetition vector. However, such symbolic analysis is a long-term future work if considering complex arithmetic expressions in parameters. Another long-term future work is to consider multiple applications at once. This is already possible by connecting the SDF graphs of the applications, but then the configuration objectives are not specific anymore to each application. A short-term future work is to integrate multiple methods to compare the explored configurations. Currently, objectives have to be prioritized, which allows for a best configuration definition. Different methods, including Pareto front generation, would benefit to the designer when some objectives cannot be prioritized.
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 1 Figure 1 -Exemple de graphe SDF avec son équivalent SRSDF, et deux ordonnancements possibles avec le remplissage de liste d'attente correspondant.
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 25224 Figure 2 -Logigramme des contributions telles qu'utilisées dans l'outil PREESM. Les boîtes vertes* correspondent aux contributions. Le motif hachuré indique les contributions qui sont optionnelles lors de l'utilisation de PREESM.
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 353 Figure 3 illustrates how our contributions are related in the design process. All have been implemented in the Parallel and Real-time Embedded Executives Scheduling Method (PREESM) [Pel+14] tool supporting the PISDF model. Note that as SynDEx, PREESM separates architecture modeling from application modeling, and the scenario
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  some of the main tools to perform parallelism. In Section 1.1.1, we list programming languages and libraries dedicated to parallelism on regular Multi-Processor System-on-Chips (MPSoCs). Programming languages are a common way to represent the recipes in computer science, and we precise their main concepts in Section 1.1.2 dedicated to the software side. Multiple kinds of hardware are listed in the last Section 1.1.3.

  FIFO buffer usage during schedule of 1.2e. Numbers in boxes are the number of tokens present at a time in the unique FIFO buffer between actors A and B.
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 12 Figure 1.2 -SDF graph example with its equivalent SRSDF graph and two possible static schedules with the corresponding buffer usage.

  FIFO buffer usage during schedule of 1.4c. Numbers in boxes are the number of tokens present at a time in the unique FIFO buffer between actors A and B.

Figure

  Figure 1.4 -SDF graph example with its equivalent SRSDF graph and a possible static schedule with the corresponding buffer usage.

  Multidimensional dataflow[START_REF] Murthy | Multidimensional synchronous dataflow[END_REF] allows for considering exchanged data across multiple dimensions, and to have complex sampling patterns on these data. This model is especially useful for image processing. CSDF graph example, of repetition vector[3, 5] T .

  (c) Schedule example of 1.5a on two PEs. Two repetitions of the static schedule are represented, separated by a red vertical line.
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 15 Figure 1.5 -CSDF graph example with its equivalent SRSDF graph and a possible schedule.

  is inspired by SADF and more dedicated to real-time systems. Parameterized ones. Bhattacharya introduced the Parameterized Synchronous Dataflow (PSDF) model supporting parameterized expression of the rates [BB01]. The parameters can be valuated by the output of other actors. PSDF relies on a hierarchic description of the SDF actors. Rate modifications may occur intra-iteration of the whole graph, but inter-iteration of the internal graphs. Parameterized Interfaced Meta-Model (PIMM) [Des+13] is quite similar to PSDF, with extra composition rules for hierarchy and simpler description of the parameters. Other works studied the safe intra-iteration modification of rates in non hierarchic graphs [FGP12]. A recent survey [BFG17] compares multiple other parameterized SDF models. Regarding the polyhedral model, there is a Parameterized extension of PPN (denoted P 3 N ) [ZNS11].

  [START_REF] Sriram | Embedded Multiprocessors: Scheduling and Synchronization[END_REF] helps to compute the maximum throughput in such cases. Other optimal throughput analyses [Gro+12; Gha+06b] are based on max-plus algebra[START_REF] Baccelli | Synchronization and linearity. 1st[END_REF][START_REF] Komenda | Max-plus algebra in the history of discrete event systems[END_REF]. It is possible to estimate the throughput of large IBSDF hierarchical graphs[START_REF] Deroui | Throughput Evaluation of DSP Applications based on Hierarchical Dataflow Models[END_REF][START_REF] Deroui | Relaxed Subgraph Execution Model for the Throughput Evaluation of IBSDF Graphs[END_REF]. Besides, the throughput of SDF graphs can be estimated while taking into account processor constraints[START_REF] Glanon | Analyzing Throughput for Cyber-Physical Systems modeled with Synchronous Dataflow[END_REF].
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 1 Figure 1.6 -Example of PISDF graph in PREESM. This example represents the same graph as in Figure 1.2a, but with parameterized production and consumption rates.

  paramY = paramX*ceil(pi) paramZ = paramX*ln(paramY)/ln(2) prod(e) = paramW src(e) = paramX+paramZ Listing 1.1 -PISDF parameter definitions and use in Figure 1.6. As you may notice, the definition of parameters is equivalent to a program in the SSA form, but without control flow structures. However, conditional if statements are supported inside the arithmetic expressions (more details are given in Section 5.1). Finally, since parameters are defined in an SSA form without cyclic control flow statements (they form a DAG), when all parameters are static they can be rapidly valuated, even while editing the graph in the GUI. Starting with the root parameters, the valuation process recursively propagates their values to the parameters depending on them. The valuation of a parameter is restricted to Integer numbers, it automatically truncates the floating point results of arithmetic expressions. The valuation is visible in the Properties tab of parameters and buffers, in the text field called Default Value.
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 1 Figure 1.7 -Example of generated SRSDF graph in PREESM. This example represents the same graph as in Figure 1.4b, but with automatically added fork and join actors. Init and end actors respectively retrieves data from and stores data to the delay.

  Figure 1.7. Thus, the same C function is used for all firings of A, with the original prototype actorA(int * output) if no PISDF parameters are used inside the C function, or actorA(int paramW, int * output) if considering the parameter defined in the PISDF graph in Figure 1.6. Fork and join actors are automatically generated by PREESM during the conversion into an SRSDF graph, but the designer can also add them manually before the conversion.
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 2 1a details the main steps of SIFT: first the original image is upscaled once, and downscaled multiple times to build the images at various resolutions. Each resolution is called an octave. Then, the image at each octave is blurred multiple times. A blur level corresponds to a layer. All images are stored in a 4-dimensional (4-D) array; the dimensions are, in order: octave, layer, height, width. Difference of Gaussians (DoG), gradient, and rotational metrics are computed from this 4-D array. Each metric computation produces an array of the same size, except the DoG which produces one less layer. At last, keypoints detection is performed on these three 4-D arrays. Then, the extraction step refines the computed keypoints. Two main problems arise when modeling SIFT detection with an SDF graph. First, the number of keypoints to detect is unknown since it depends on the image content. Second, the images to process stored in the 4-D array have different sizes depending on their octave, whereas the SDF MoC imposes data transfers of fixed size. The first problem is fixed by setting a limit on the number of detected keypoints. For the second image, at different resolutions Each initial image of one octave, saved to different Gaussian blur levels DoG: Difference of Gaussian (for each octave, between two successive layers i.e. blurred images) Rot/Grd: Rotational/Gradient (for each octave and each layer) Performed on all octaves and layers (the number of keypoints is not predictable) Main result: the keypoint descriptor of each keypoint (a) SIFT workflow: green steps* are modeled with iterators in an SDF graph. Layer (increasing image blurring) Octave (decreasing image resolution) 0 1 (b) Layers and octaves in SIFT with four different regions of equal processing amount. Original image is on top left. Blurring on abscissa and resolution downscale on ordinate.

Figure 2 .

 2 Figure 2.1 -SIFT image processing application: main steps (Figure 2.1a) and data storage (Figure 2.1b).

Figure 2 .

 2 Figure2.2a depicts the modeling with an SDF graph of a map operation with a controllable degree of parallelism. p is the degree of expressed data parallelism: the Map actor is executed p times, on chunks of data of size N p , where p must be a divisor of N . If p = N , all data parallelism is expressed, however, it is not always useful to express
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 22 Figure 2.2 -Map and Upscale at a coarse-grain level.

Figure 2 .

 2 2b is used to model the computation of the upscale of the input image in the first step of SIFT, as shown in Figure 2.1a. for (int i = 0; i < p; ++i) { // copy the whole chunk, can be optimized with memcpy for (int j = 0; j < N/p; ++j) { output[i*(N/p + 1) + j] = input[i*(N/p) + j]; } // adds extra copy of last element of each chunk output[i*(N/p + 1) + N/p] = input[i*(N/p) + N/P -1]; } Listing 2.3 -Spit SDF actor code. for (int i = 0; i < N/p; ++i) { output[2*i] = input[i]; output[2*i+1] = interpolation(input[i], input[i+1]); } Listing 2.4 -Upscale SDF actor code.
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 23 Figure 2.3 -Modeling of iterators with SDF. Repetition vector of Iterator and Process actors is: [1, p] T .
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 24 Figure 2.4 -Reduce of N elements in SDF, with chunk size c > 1. Repetition vector of Reduce actors is: [ N c , N c 2 , N c 3 , ..., 1] T .
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 25 Figure 2.5 -Modeling of iterators with SDF, with broadcast actor. Repetition vector of Broadcast, Iterator and Process actors is: [p, 1, p] T .

  SDF iterators are now used to model the SIFT keypoints detection application. In SIFT detection, images from different resolutions and blur levels are processed, which implies to iterate over a 4-D array with four corresponding perfectly nested loops. There is one loop per dimension of the array as written in Listing 2.9. The top loop iterates over the octaves and the second loop iterates over the layers. The two innermost loops iterating over the height and width of images have exponential bounds depending on the top loop index. With the octaves indexed by the variable i, the image height (respectively, width) to be processed is the biggest resolution height (resp. width) divided by 2 i . In Listing 2.9, the biggest image resolution is defined by the constants image_height and image_width ; these constants are multiples of all possible values taken by 2 i and so a bit shift >> is used for the division. float* array = ; // 4-D array to iterate for (int i = 0; i < nb_octaves; i ++) { for (int j = 0; j < nb_layers; j ++) { for (int k = 0; k < (image_height >> i); k ++) { for (int l = 0; l < (image_width >> i); l ++) { processing1cell(array, i, j, k, l); 9 -Original non affine 4-D for loop in SIFT.SDF iterators are used to model such loops, expressing a degree of parallelism p ∈ {1, 2, 4, 5, 10, 20}; this set contains the common divisors of the sizes of all the 4-D arrays. The SIFT detection code is a slightly modified version of the ezSIFT 2 implementation. The SDF model of SIFT is built with the PREESM[START_REF] Pelcat | PREESM: A Dataflow-Based Rapid Prototyping Framework for Simplifying Multicore DSP Programming[END_REF] framework, which also performs static scheduling and generates the static parallelized code.

  most relevant dataflow MoC for image processing is the Multidimensional Synchronous DataFlow (MDSDF) MoC [ML02], expressing data parallelism across multiple dimensions. However this MoC does not solve the problem of variable image resolutions such as in the SIFT octaves; it requires to split the 4-D array in SIFT in as many 3-D arrays as the number of octaves, and thus the processing actors must be duplicated with a specific array input size for each octave. The 3-D arrays would have different dimension sizes according to the image resolution in each octave: [layer, height (octave) , width (octave) ]. Moreover, only a few tools, listed in [KD13], support the MDSDF MoC such as Array-OL [Dem+95; Bou07], or extend it, such as Windowed Synchronous DataFlow [KHT06].The Brook stream language[START_REF] Liao | Data and computation transformations for Brook streaming applications on multiprocessors[END_REF] supports a subset of MDSDF graphs, expressed directly as C++ code. Brook only handles kernels with affine bounds, and thus cannot be used for variable image resolutions inducing exponential bounds. More generally, the same problem arises for all models relying on polyhedral analysis[START_REF] Feautrier | Some efficient solutions to the affine scheduling problem. Part II. Multidimensional time[END_REF], as the Polyhedral Process Network (PPN)[START_REF] Verdoolaege | Polyhedral Process Networks[END_REF], a parameterized extension of it[START_REF] Zhai | Modeling adaptive streaming applications with Parameterized Polyhedral Process Networks[END_REF], or the OpenStream extension of OpenMP[START_REF] Cohen | Static Analysis of OpenStream Programs[END_REF]: they are dedicated to loops with affine bounds only. Extensive analyses and graph and code transformations allow to model any kind of loops with PPNs [NNS13] but then do not offer control of the degree of parallelism. Dynamic dataflow languages, such as the one supported by Orcc[START_REF] Yviquel | Orcc: Multimedia Development Made Easy[END_REF],
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 353 Figure 3.1, where the repetition vector is [3, 5] T (indexed by actor names in the lexicographic order). The repetition vector r defines a graph iteration, during which there

  Schedule example of 3.1a on two PEs. Two graph iterations are represented, separated by a red vertical line.

Figure 3 .

 3 Figure 3.1 -SDF graph scheduling examples.

Figure 3 .

 3 2 gives an example of such a pipelined schedule with delays: the firing of B consuming the data produced by the last firing of A happens one scheduler iteration after. Graph iterations are indexed as firing exponent in the Gantt diagram of Figure 3.2b.In this chapter α j is the j-th firing of α in one scheduler iteration. The WCET of an actor α, denoted C α , is the same for each firing of α. Actors have uppercase names for examples, and lowercase names for formula variables. P denotes the set of periodic actors in G, and N denotes the set of aperiodic actors. The periods of the actors in P are defined by the user; but the graph consistency restricts their possible values. Indeed all periods are linearly related, as it will be demonstrated in Section 3.2.1.

  SDF graph example, of repetition vector[3, 5] T .

PE 3 (

 3 c) Normal schedule example of 3.3a on three PEs, respecting Assumption 1.

Figure 3 . 3 -

 33 Figure 3.3 -Example and counter-example of Assumption 1.

Figure 3 .

 3 Figure 3.3 shows both an example and a counter-example of Assumption 1. Under Assumption 1, another necessary condition can be derived from the path lengths in the SDF graph with partially periodic constraints. This new necessary condition is complementary to the processor utilization factor condition.

is 4

 4 time units (and C Π = 1), and the graph period is 12. The Gantt diagram in Figure 3.4b respects the periodic constraint but not the data dependencies. An underflow occurs since B and ∆ are executed before having received the data produced by the last firing of Π. To avoid such underflow, one possibility is to add delays on the graph.Note that the delays are predefined by the user, and are not computed nor checked by Algorithm 3.1, presented at the end of this section. However, such data dependency errors are checked easily on static schedules. Another possibility to avoid the underflow is to increase the actor period T Π to 6 time units, as shown in Figure3.5 which depicts a valid schedule of Figure3.4a.

Figure 3 .

 3 Figure 3.4 illustrates an intuitive necessary condition to check the schedulability: all actors depending on the tokens produced by the last execution of Π must be executed in the slack time of Π. This necessary condition derives from Assumption 1. The slack time of an actor corresponds to the interval of time between its period and its execution time. The slack time of Π is formally defined by T Π -C Π ; it must be non negative in our case. A symmetrical necessary condition can be computed for the first execution of any periodic actor, this time with all its incoming data dependencies, which are all actors on a directed path leading to the periodic actor. In order to formalize these necessary

Figure 3 . 4 -

 34 Figure 3.4 -Periodic actor Π generating an underflow.

Figure 3 . 5 -

 35 Figure 3.5 -Valid schedule example of graph 3.4a on two PEs and if T Π = 6.

Proof.

  To prove Equation (3.4), let us consider the firings of the actor dst(e) before those that are induced by the last firing of π. By definition this number of firings is r [dst(e)] -nblf ↑ π (dst(e)). Under Assumption 1, there are exactly r [α] firings of each actor α during one scheduler iteration. So this number can also be computed considering all tokens produced on e by src(e) during one scheduler iteration, before the last firing of π: this is why r [src(e)] -nblf ↑ π (src(e)) multiplies the production rate in the following equality. r [dst(e)] -nblf ↑ π (dst(e)) = ( r [src(e)] -nblf ↑ π (src(e))) × prod(e) + d 0 (e) cons(e) Thus nblf ↑ π (dst(e)) is equal to: r [dst(e)] -r [src(e)] × prod(e) -nblf ↑ π (src(e)) × prod(e) + d 0 (e) cons(e) Knowing that ∀x ∈ R, -x = -x , it becomes: nblf ↑ π (dst(e)) = r [dst(e)] × cons(e) cons(e) + -r [src(e)] × prod(e) + nblf ↑ π (src(e)) × prod(e) -d 0 Schedule example of graph 3.6a, on two PEs, with firings of a self-loop.

Figure 3 .

 3 Figure 3.6 -Counter-example to generalization of Equation (3.6): actor A is not always executed alone.

Figure 3 .

 3 6 gives an example where actor A having a self-loop is executed at the same time as its outgoing dependency B (firings A 2 and B 1 ,A 3 and B 2 ).Indeed the necessary condition expressed in Equation (3.6) can be extended to all Schedule example of graph 3.7a, on two PEs, with the co-existence of firings of different actors at the same time (A 3 and B 1 ).

Figure 3 . 7 -

 37 Figure 3.7 -Floor function underestimation example, as used in Equation (3.7).

Figure 3 .

 3 Figure 3.8 -Sample SDF graph of repetition vector 1, for topology ranks example. ASAP ordering on the graph: o ≡ {A, ∆} ≺ {B, Γ} ≺ {E}. ASAP ordering on the transpose graph: o T ≡ {E, B} ≺ {Γ, ∆} ≺ {A}.

  SDF graph with one periodic actor. The repetition vector is [1, 3, 1] T . Shortest schedule of graph in Figure3.9a on two PEs. T Π = T G = 9.

Figure 3 .

 3 Figure 3.9 -A false positive to Algorithm 3.1: B 3 cannot be scheduled before the graph period.

  straints. G * is the SRSDF graph corresponding to the SDF graph G. In other words, G * is the unrolled version of G, where data dependencies are expressed between firings instead of actors. Since all dependencies are explicitly expressed in G * , it enables computing a static schedule. Each SDF actor α in G has r [α] corresponding vertices in the SRSDF graph G * , and on each edge e of G * the rates of both sides are equal: prod(e) = cons(e). In this section, tasks refer to vertices in G * . As in G, delays break cycles so G * is a DAG. An example of SDF graph G and its corresponding SRSDF version G * is given in Figure 3.10, extracted from Figure 1.2. An example with delays has been given in Figure 1.4. Scheduling of DAG of tasks has been widely studied [KA99] however the periodic case is specific since the start times of periodic actors are bounded in an interval of the form of Equation (3.1).

  SDF graph example, of repetition vector[3, 5] T .

  DAG deduced from SDF example 3.10a.

Figure 3 .

 3 Figure 3.10 -SDF graph G and its corresponding SRSDF version G * .

3 .

 3 As in FAST, Algorithm 3.3 relies on ASAP and As Late As Possible (ALAP) orderings. The minimum start time ns of each task in G * as well as the maximum start time xs are computed first. This is done in two successive rounds: 1) for all periodic actors, with Equation (3.1), 2) for all actors, with ASAP and ALAP. During round 2), ALAP schedule has a global deadline equal to the graph period. If any task τ has ns(τ ) > xs(τ ),
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 53 Then, Equation (3.1) is modified into the following Equation (3.8).kT π ; (k + 1)T π , with k ∈ 0; r [π] (3.8) Note that Equation (3.8) enables auto-concurrency of such periodic actors, whereas the original Equation (3.1) disables it. Figure 3.11 gives an example for the periodic actor A.A a) SDF graph example, of repetition vector[3, 5] T .

Figure 3 .

 3 Figure 3.11 -Schedule with an actor period smaller than its WCET.

Figure 3 .

 3 Figure 3.12 -Scheduling bounds on the number of PEs m.

Figure 3 .

 3 Figure3.13 -Evaluation of the schedulability gap on the small random graphs RandomDAG1-5. Number of PEs is given for the four following algorithms (from left to right): total processor utilization factor, lower bound according to our necessary conditions, upper bound according to our scheduler, valid minimum according to the optimal ILP formulation.

Figure 3 .

 3 Figure 3.14 -Evaluation of the schedulability gap on the large random graphs RandomDAG6-10. Number of PEs is given for the three following algorithms (from left to right): total processor utilization factor, lower bound according to our necessary conditions, upper bound according to our scheduler.

  SDF graph example, of repetition vector[3, 5] T .

Figure 3 .Figure 3 .

 33 Figure 3.15 -Graph period refinement example.

  3 . An actor delay corresponds to a shift of data on all its input. The unit of the actor delay function is the number of pipeline stages: if (α) = 2, there are two pipeline stages until actor α. Graph example annotated with ASAP and ALAP topological orderings. ALAP ordering is specified with T , only if different from ASAP. Same graph with pipeline delays added on the cut represented with a dashed line on 4.1a.

  c) Two schedule examples of graph 4.1a on two PEs: on the left without pipeline, on the right with one pipeline between ranks 1 and 2. Firing exponents denote their graph iteration.

Figure 4 .

 4 Figure 4.1 -Topological ordering and schedule example without and with pipeline.

  is set to 1 by default: such actors are executed during the first pipeline stage. As in Chapter 3, it is assumed that the user sets enough delays on at least one buffer of any cycle. These buffers are ignored for the generation of the ILP constraints, otherwise the formula Equation (4.2) would imply an indefinite recursion. Valid and invalid delay placement examples are given in Figure 4.2 and illustrate the preceding Equation (4.2). Let's consider that actors A and B both produce one Integer equal to the number of times they have been executed so far. Actor Γ checks that both Integers have the same value. When executing the original graph on Figure 4.2a, Γ consumes successively (1, 1)(2, 2)(3, 3)(4, 4). . . Tuples (i, j) represent the head of its two incoming buffers, from actor A for i and actor B for j. When executing graph with the misplaced delay carrying the initial value 0, on Figure 4.2b, Γ consumes successively (0, 1)(1, 2)(2, 3)(3, 4). . . Finally, when executing graph with well placed delays both carrying the initial value 0, on Figure 4.2c, Γ consumes successively (0, 0)(1, 1)(2, 2)(3, 3)(4, 4). . . which only shifts the original output but does not modify it. Hence, admissible graph cuts ensure to only shift the application result without modifying it. Graph with well placed delays (resulting from an admissible cut).

Figure 4 . 2 -

 42 Figure 4.2 -Delay placement examples, resulting from invalid and admissible graph cuts.

Figure 4 .3 illustrates this possibility. 4 Figure 4 . 3 -

 4443 Figure 4.3 -Graph with valid delay placement distributed on the paths. There are two pipeline stages: (∆) = (E) = (B) = 1 and (A) = (Γ) = 2.

Figure 4 . 4 -

 44 Figure 4.4 -Split-join graph with four parallel branches. 2 admissible cuts are represented with a dashed line, among 81 possible.

Figure 4 .5

 4 5 depicts an example where it is better, with regard to the throughput, to make the scheduler iterations overlap without Assumption 1 (Figure 4.5c, II duration is 3) than to pipeline the SDF graph executed under Assumption 1 See Equation (3.3) for the definition of processor utilization factor.
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 45 Figure 4.5 -Schedule example where pipelining does not compensate for the presence of a global barrier.

  and 4.7 to illustrate the different possibilities offered by ASAP and ALAP topological orderings. Cuts on each graph have the same rank and give the same II in the related schedules, but the cut obtained with A Graph example with ALAP topological ordering. Delays are added in the represented cut of rank 3.

Figure 4 .

 4 6a on two PEs. Firing exponents denote their graph iteration.

Figure 4 . 6 -

 46 Figure 4.6 -Graph cut example and related schedule for ALAP topological ordering.

Figure 4 .

 4 7a on two PEs. Firing exponents denote their graph iteration.

Figure 4 . 7 -

 47 Figure 4.7 -Graph cut example and related schedule for ASAP topological ordering.

Figure 4 . 8 -

 48 Figure 4.8 -Graph cut examples for regular and modified ALAP topological ordering.

  introduce a few notations to formalize the computation of this map. C α denotes the ET of an actor α. The number of firings of α is r [α]. The rank of α is rank(α). The number of PEs is m. The ET estimate of rank cr, denoted rankLoad(cr), is computed as follows in Equation (4.5).

Figure 4 . 9 -

 49 Figure 4.9 -Preselected and final cuts computed by the delay placement heuristic with configuration H 2, 3 on a sample chain graph. Dotted cuts correspond to the preselected cuts while the dashed cuts correspond to the 2 final cuts. Each actor is fired once and has an ET equal to 10.

Figure 4 .

 4 which creates a cycle, has one delay which stores a kind of arithmetic carry: actor A sums the n-th array input i n with the previous output o n-... . If the delay stores a unique token value d 0 [0], then actor A behaves like a sum reduction of the input array and all intermediate sums are sent to the Results actor. Formally, it corresponds to the recursive sequence of Equation (4.7).∀n ∈ N, o n = o n-1 + i n , o 0 = d 0 [0] (4.7)Now if the delay on the self-loop buffer contains two tokens, the behavior is modified and Equation (4.7) becomes Equation (4.8). Outputs with even (respectively, odd) indexes only store the sum reduction of previous array elements with even (respectively, odd) 10 -SDF actor having a self-loop.indexes 6 . ∀n ∈ N, o n = o n-2 + i n , o 0 = d 0 [0], o 1 = d 0 [1] (4.8)Only the user know the behavior he wants, and thus the number of delays needed on a cycle. However, a placement pattern appears in the applications 7 modeled with the PREESM framework. Our heuristic only considers this pattern, where the plausible delay breaking a cycle C on buffer e corresponds to a local pipeline delay according to the repetition vector of the cyle only, as stated in Equation (4.9). According to the example in Figure4.10, it corresponds to Equation (4.7) for only one token on the self-loop buffer. d 0 | C (e) = cons(e) × r| C [dst(e)] (4.9) The repetition vector of the cyle r| C is obtained by dividing the original repetition vector by the greatest common divisor (gcd) of all actors in the cycle C. Equation (4.10) formally defines r| C . r| C = r gcd α∈C { r [α]} (4.10)

Figure 4 .

 4 Figure 4.11 illustrates entry, exit, and normal actors. In Figure 4.10, actor A is both an entry and an exit point.

Figure 4 .

 4 Figure 4.11 -Cycle example with one entry actor (A), one exit actor (Γ) and one normal actor (B). A delay (as chosen by our heuristic) breaks the cycle data dependencies.

by

  Kudlur et al. relies on an ILP formulation to set the unfolding limit, and it requires the Initiation Interval (II) length as an input of their algorithm. In the work of Udupa et al.[START_REF] Udupa | Software Pipelined Execution of Stream Programs on GPUs[END_REF], the SDF graph is completely unfolded to its SRSDF equivalent allowing for a fine tune of the added delays. They propose an ILP formulation to compute the stage of each actor firing; this formulation requires a few minutes to be solved for large graphs of the StreamIt benchmark. On the contrary, our heuristic works on the original

  2 of Chapter 4 show that for the sobel-morpho application, best throughput is achieved with one pipeline and p = 3 while there are m = 4 PEs available. The goal of the DSE is to automatically select this configuration, but only if the designer accepts the extra latency due to the pipeline. Thus, DSE not only adapts the application to the architecture, but it also has to respect constraints and trade-offs specified by the designer.As a last contribution of this thesis, we introduce in this chapter a method to perform DSE on PISDF graphs, while respecting constraints and trade-offs regarding throughput, latency, energy, or directly any parameter for QoS. Unfortunately, both memory and communication contentions are not taken into account in our DSE. This contribution uses all the previous ones detailed in Chapters 2 to 4. It is based on the new notion of malleable parameters which introduce choice among multiple expressions defining the value of a parameter. This chapter is organized as follows. Section 5.1 presents the usage of parameters in the PREESM tool. Section 5.2 describes a few challenges of DSE, due to the entanglement of design objectives on one side, and the entanglement of the solving methods on the other side. An exhaustive DSE workflow is detailed in Section 5.3. To improve the DSE results, delays can be added automatically with the method presented in Chapter 4. This procedure is detailed in Section 5.4. Moreover, a dichotomous DSE heuristic is presented in Section 5.5. Both approaches are evaluated and results are shown in Section 5.6. Finally, related work is presented in Section 5.7 and Section 5.8 concludes this contribution.

Figure 5 . 1 .

 51 Each parameterizable entity has incoming arrows for each parameter it depends on. In Figure 5.1, the tot_image_size parameter (bottom right of the picture) depends on image_width and image_height; the arithmetic expression of tot_image_size simply is: image_height*image_width. All the parameterizable entities are: E-1 parameters themselves in a PISDF graph; E-2 data production and consumption rates of any buffer in a PISDF graph; E-3 period of any non hierarchical actor in a PISDF graph, as well as the top graph period itself (see Chapter 3); E-4 size of a delay (see Chapter 4) in a PISDF graph; E-5 Execution Times (ETs) of actors, set in the scenario of PREESM; E-6 energy of actors, set in the scenario of PREESM.

Figure 5 . 1 -

 51 Figure 5.1 -Example of parameters and their dependencies, here to express image resolution choices. Screenshot of the SIFT application PISDF graph in PREESM.

Listing 5 . 2 -

 52 1: the max(1, floor(nKeypointsMaxUser/parallelismLevel)) Parameter expression of nLocalKptmax in the SIFT application. This parameter computes the number of keypoints detected by each firing of the corresponding actor detect_keypoints. common numerator is equal to 9 while the denominator (top left of the figure) can be set to 16 or 12.
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 52 Figure 5.2 -Example of a parameterized path: Actor1 and Actor2 are executed only if parameter RemovePath is not 0. The path to remove is well delimited by two special actors (colored in orange, on left and right). Screenshot of PREESM, with rate expressions of the buffer from Actor1 to Actor2.

S- 3

 3 if asked, flattening of the PISDF graph and call to the delay placement heuristic of Chapter 4; S-4 unfolding of PISDF graph G in the SRSDF equivalent DAG G * ; S-5 scheduling and mapping of firings (at the same time); S-6 scheduling and routing of communications (at the same time); S-7 memory allocation (buffer addresses of each firing input and output); S-8 code generation (one file per Processing Element (PE)).

  architecture. Each combination of malleable parameter sub-expressions is one possible configuration of the application, and defines one DSE point. The DSE is run after having modeled the application with PISDF, especially its malleable parameters and the ETs of its actors. After describing the main steps of the DSE, we detail the objectives used to select the best DSE point. Concretely, the exhaustive DSE algorithm tests all possible DSE points by performing for each DSE point the workflow steps S-2 to S-5 according to the steps listed in Section 5.2.2. Step S-1 is the definition of parameterized entities, such as ETs; it is user responsibility. Energy and ETs are specific to the given architecture; all are set in the PREESM scenario file. The repeated steps S-2 to S-5 respectively: S-2 valuate the given combination of malleable parameter sub-expressions; S-3 optionally add delays with heuristic of Chapter 4 (see also Section 5.4); S-4 convert the PISDF graph into its SRSDF unfolded form S-5 schedule it with algorithm proposed in Chapter 3. At the end of step S-5, metrics of the current DSE point are recorded and compared to the best current point, according to the objectives which are detailed below.

3 .

 3 Params objectives : >+Hvideo/image_height \ >+Hvideo/AspectRatioDenominator Listing 5.3 -Sample objective input for the DSE algorithm. The first line gives the priorities of each objective (highest priority on the left). The second line specify the threshold to not exceed for each objective of the first line (in the same order). A 0 encodes minimization. The third line gives the parameter objectives.

4 -

 4 3 gives an example of two parameter objectives. Character + encodes maximization whileencodes minimization. Each objective is internally transformed as a DSE point comparator. Each DSE point contains all metrics and parameters valuation of the corresponding combination of malleable parameter sub-expressions. Minimization and maximization comparators are obvious, but positive thresholds require a specific implementation: two points are considered equivalent only if both have their metric lower than the threshold. For example, the power threshold comparator code is detailed in Listing 5.4. public int compare(DSEpointIR arg0, DSEpointIR arg1) { double power0 = (double) arg0.energy / (double) arg0.durationII; double power1 = (double) arg1.energy / (double) arg1.durationII; if (power0 > threshold || power1 > threshold) { return Double.compare(power0, power1)Code of the power threshold comparator of DSE points.

Listing 5 . 5 -

 55 public int compare(DSEpointIR o1, DSEpointIR o2) { // variable comparators // is the list of all objectives ordered by priority for (final Comparator<DSEpointIR> comparator : comparators) { final int res = comparator.compare(o1, o2); Code of the global comparator of DSE points.

Figure 5 .

 5 Figure 5.3 gives an example on the usage of T THR to upper bound x. Considering T THR = 1 and T cur = 2, Equation (5.4) states to add 1 cut. If adding the only possible cut, between actors A and B, we indeed obtain a schedule where T THR = T cur which

  Two schedule examples of graph 5.3a on two PEs: on the left T cur = 2 without any cut, on the right T cur = 1 with one cut between actors A and B.
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 53 Figure 5.3 -Example to estimate number of cuts in DSE.

(s max ) iterations are needed in total. log 3 2 ( 3 + 1 2 ( 4 ;

 23124 s max ) is an over approximation of the number of iterations since the maximum set size minus 2 (for the two selected values to test at each iteration) might not be a multiple of 3. More precisely, scur-1 values are removed from the set containing s cur values at each iteration. For an Integer malleable parameter holding 5 different values, 3 iterations are required to fix it, whereas log 3 s) ≈ 3.419. Figure 5.4 depicts a set reduction example of an Integer malleable parameter holding 13 Integer values. At each iteration, all combinations of non Integer malleable parameter sub-expressions are tested, along with the only two values of any Integer malleable parameter. Consequently, the heuristic is useful especially when most of the malleable parameters are Integer malleable parameters. MP-3 image_width to select the image width, 640 (by default) or 320 pixels; MP-4 parallelismLevel to select the degree of data parallelism (corresponding to the parameter p introduced in Chapter 2) in {1; 2; 4; 5; 10} (4 by default); MP-5 delayRead and delayDisplay to add delays on pre-processing and post-processing (false by default); MP-6 NumeratorFrequency to imitate a frequency selection, 1:1 (by default) or 3:4 or 5:MP-7 nKeypointsMaxUser for the number of detected keypoints, in {80; 90; ...; 150; 160} (100 by default).All those malleable parameters hold only Integer values, so the heuristic presented in Section 5.5 can be called to reduce the number of tested DSE points.Main objectives of the DSE are a throughput threshold (to ensure 30 fps) and a makespan threshold (below 100 ms to not disturb the user 15 ). The next parameter objectives gives a higher priority on the image resolution (image_height) and the quality of the processing (imgDouble). The objective input is detailed in Listing 5.6. Objective input for the DSE evaluation of the SIFT video application.

(

  1150000.0*tot_image_size*DenominatorFrequency)/ (RefTotSize*parallelismLevel*NumeratorFrequency)

Figure 5 .

 5 Figure 5.5 depicts an excerpt of the exhaustive DSE with the SIFT malleable parameters MP-1 to MP-4. The II duration is represented in function of the application configuration, with one line per degree of parallelism. The II duration is computed offline by the scheduler, it is not measured on actual executions of the application. The orange horizontal line corresponds to the II duration threshold objective ensuring 30 fps.
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 55 Figure 5.5 -Duration of II as function of the SIFT application configuration, for different degrees of parallelism p and four PEs. r640x480i0 encodes the image resolution and the value of the imgDouble parameter. All other parameters are fixed to their nominal value.

  

  Dans cette thèse, nous avons étudié le problème de configuration des graphes SDF paramétrés ayant des contraintes de QoS et étant exécutés sur des architectures multiprocesseurs hétérogènes ayant des contraintes matérielles. Pour résoudre ce problème, nous avons proposé quatre contributions concernant la modélisation, l'ordonnancement,

le pipelinage et la configuration elle-même. Malheureusement ces contributions sont limitées au cas des architectures multi-processeurs homogènes. Néanmoins, les évaluations expérimentales ont montré que le problème de configuration peut être résolu pour le cas homogène en un temps raisonnable de quelques minutes, avec des contraintes sur la résolution d'image ou la fréquence du MPSoC. Les contraintes d'énergie, de puissance, de latence et de cadence sont aussi considérées. En particulier nous avons pu configurer l'application de traitement d'image SIFT pour une utilisation en temps-réel, de sorte que la qualité d'image est maximisée tout en respectant une contrainte de cadence de 30 images par seconde. Toutes nos contributions sont implantées dans l'outil libre PREESM. Parmi les extensions possibles, il est primordial de résoudre le problème de configuration pour les architectures hétérogènes, qui sont la norme des MPSoCs modernes. Par ailleurs, nos contributions ne prennent pas en compte les temps de communications ni les limites de la mémoire des systèmes intégrant ces MPSoCs. Pour attaquer ce cas plus général, nous pensons que deux domaines sont particulièrement importants :

  This configuration problem is generally solved by testing different configurations of the application and the hardware, that is Design Space Exploration (DSE), until one matches all constraints and requirements. For example, configurations may differ by the MPSoC frequency, or by the image resolution supported by the application. If no configuration matches all constraints and requirements, a trade-off is necessary. In such case, a few constraints or requirements have to be relaxed.In the end, the adaptation of a software application to a target hardware architecture, such as a smartphone application, is not trivial. This adaptation requires to solve multiple problems at the same time, at least scheduling and configuration. To solve these two problems, both the application and the architecture are modeled. The goal of the model is to abstract the key properties which are involved in the scheduling and configuration problems.

	6 See AADL	and OpenAADL	websites.
	7 See Ptolemy	website.	
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These modeling, scheduling, and configuration problems are all active research fields existing for a few decades. For example, the Synchronous Data Flow (SDF)

[START_REF] Lee | Synchronous data flow[END_REF] 

Model of Computation (MoC) is dedicated to signal processing applications, including processing tasks on image and antenna signals. In the SDF model, both processing tasks and their data are represented. Processing tasks and data exchanges are fixed by the designer and the SDF model allows for a deterministic execution of the application. SDF may be parameterized with Parameterized Interfaced Meta-Model (PIMM)

[START_REF] Desnos | PiMM: Parameterized and Interfaced dataflow Meta-Model for MPSoCs runtime reconfiguration[END_REF] 

for example, giving choice between multiple possible values and making it eligible for the configuration problem. SDF belongs to the wide family of dataflow MoCs, which focus on the representation of data exchanges and data processing.

Many tools exist to automatically generate and optimize the code of a software application on a specific hardware architecture, as SynDEx

[START_REF] Grandpierre | Optimized rapid prototyping for realtime embedded heterogeneous multiprocessors[END_REF] 

implementing the Algorithm Architecture Adequation methodology. SynDEx optimizes the execution of a dataflow application on an architecture as an MPSoC, by selecting the shortest possible schedule for example. However, it does not configure the application in order to meet both hardware constraints and software requirements. For instance, SynDEx will not select automatically the best parameter value of image resolution given hardware constraints and software requirements. Other models and related tools, such as Architecture Analysis and Design Language (AADL) 6 [Hug+08] and Ptolemy 7 [Guo+14], enable the designer to represent more information: the application, the architecture, and respectively some of their requirements and constraints. This approach greatly helps to verify if requirements and constraints are met, but as with SynDEx, designers still need to test xxix different configurations before selecting the best one. Using DSE algorithms accelerates this selection process, but does not completely solve it yet, especially when configuring software requirements or software QoS.

  State machines are very close to the concept of control flow when they are deterministic, that is when only one state is enabled at a time. Many kinds of state machines exist: Finite State Machine (FSM),

	cult to analyze in the general case, especially because of their possible non deterministic
	behavior. However it is stil possible to perform some analysis as throughput anaylisis
	[Zub93]. Processing Graph Method (PGM) [Ste97; Kap97] proposes a MoC close to
	Petri nets, see [God97] for an application example. Besides, we can consider that all
	message passing middlewares, such as MPI 4 for distributed architectures with multiple
	memories or RabbitMQ 5 for inter-connected embedded systems, and even some OSs such
	as ROS 6 , are dataflow oriented. Middlewares are libraries at the frontier between the
	software and hardware sides, right above the OS level if any. Finally, dataflow explic-
	itly expresses task parallelism but sometimes implicitly data parallelism, for example if
	threads are created with the same processing task. Note that both kinds of parallelism
	are not always suitable depending on the application [CDY95]
	machines with timing properties. However state machines generally are only one part of
	the system, and the computations performed at each state or each transition may rely
	on any programming language.
	Dataflow examples: communicating process networks. Dataflow is especially
	needed for communicating systems where data exchanges have to be explicit because
	there is no common shared memory. In the seminal Kahn Process Networks (KPNs) [Kah74],
	tasks (called "processes") exchange data and are executed only when they have received
	enough data. Computations of a KPN are deterministic: for a given input, it always
	returns the same output. Other dataflow languages, slightly less generic and so easier
	to analyse, have been developed at the same time [Den74] or a few years later [DK82].
	Dataflow Process Network (DPN) [LP95] extend KPNs with possibly non deterministic
	behavior. Petri nets [Pet66] are another important example although not only dedicated
	to communicating systems. They were originally thought as a more powerful alternative
	to state machines and can also have non deterministic behavior. Petri nets are powerful
	because they can formally represent lock systems and mutual exclusions; for example,
	see [BSZ16] for an implementation on a Kalray architecture. Petri nets can be extended
	with ETs [Zub91; Bér+05], or extended to dynamic systems [DA94], or be refined with
	hierarchy [Hid+08]. Expressiveness of Petri nets is large but implies that they are diffi-

Control flow examples: state machines. automata, Kripke structures, Mealy machines, etc. While the aforementioned state machines do not have timing properties such as task Execution Times (ETs), some other kinds of states machines, Timed Input Output Automata (TIOA) [Dav+10; Jia+13], are refined with timed transitions from one state to another. State machines are heavily used to model systems in order to verify properties on it, as in model-checking, for example for real-time systems [Ost95]. UPPAAL 3 is a common model-checker for state

Flynn's taxonomy [Fly72]. Flynn described four main kinds of

  

	late and prototype architectures, as with Gem5 9 . In this thesis, we use the System-Level processors require complex communication hardware between the cores, called Network
	Architecture Model (S-LAM) [Pel+09a] MoA. For example, MoAs are used to analyze on Chip (NoC). This kind of architectures is difficult to use efficiently with regular
	systems and to predict communication times [Cru91a; Cru91b; Boy+18], or Worst Case compilers and it requires a proper model [Li+17]. Similarly, the RAW [Wai+97; Lee+98;
	Execution Time (WCET) of tasks [HRP17].
	Regular CPUs
	Regular processors are the CPUs used in laptops or desktops. Such processors are
	generic, but already integrate multiple techniques to accelerate the computation. SSE/AVX
	binary instructions are one of those techniques. With such instructions, a unique CPU
	can perform the same instruction, such as an addition, on multiple data at once, that
	is data parallelism. Only a few data elements, 8 in general, may be vectorized and
	processed at the same time by this technique.
	All modern CPUs integrate cache memory [Smi82] to buffer the data accesses to
	the main RAM. Such cache buffers are especially useful for data parallelism on arrays
	because when an array element is accessed on RAM, not only the element but also its
	neighbors are loaded in the buffer, more precisely in a cache line. Caches are faster than
	RAM and avoid time consuming direct data exchanges between the RAM and the CPU.
	CPUs multi-processors, generally integrate one main shared Last Level Cache (LLC),
	or multiple ones in the case of Non Uniform Memory Access (NUMA). NUMA implies
	coherence protocols to keep track of the freshest value of a data.
	Finally, as CPUs are generic processors, each one integrates multiple kinds of Arith-
	metic Logic Units (ALUs), such as addition or multiplications. To not waste resources,
	many processors support Simultaneous Multi-Threading (SMT) which means that they
	actually execute multiple instructions in parallel and coming from different threads, only
	if they do not involve the same ALUs at a time. For instance, Intel 10 processors propose
	hyperthreading to execute two threads at a time on the same CPU.
	processors, cate-
	gorized by their ability to process single or multiple instructions on single or multiple Many-cores
	data. Today, two kinds are commonly used: Single Instruction Multiple Data (SIMD) Many-cores processors are the extreme case of MIMD processors, containing in general
	for GPUs and Multiple Instruction Multiple Data (MIMD) for cluster and grid of CPUs more than 100 identical processors on the same chip. Intel Xeon Phi is a standard
	or CPUs multi-processors directly. professional many-cores. There exist also: Celerity [Dav+18], Epiphany 11 , Bostan and
	Coolidge from Kalray 12 , AEthereal [GH10], TILE64 [Bel+08], etc. Such many-cores
	Models of Architecture (MoA). When a compiler transforms code to binary in-
	structions, it may rely on a model of the processor. Many Model of Architectures (MoAs)
	exist, often integrated in and dedicated to the tools using them. MoAs also help to simu-

  Qualcomm 13 , Texas Instruments 14 and STMicroelectronics 15 are examples of large producers of ASIPs. Smaller companies, such as Renesas 16 or Maxelers Technologies 17

  The firing ratio is a fractional number. It is relative to the direct predecessor in the DFS traversal. component executed twice more than the others. Such unbalanced repetition vector can also be useful to guarantee fairness in processor utilization of each connected component of the original graph. This unbalanced behavior can be enforced by making the whole graph weakly connected, i.e. having a single weakly connected component, thanks to a dummy actor connected with dummy buffers to every original actor having no incoming (or equivalently, outgoing) edge 36 . The dummy buffers have the smallest possible rate 1 on both sides, except for the one going to the twice more executed connected component, which takes the value 2 as a production rate.

		Algorithm 1.2: Computation of the repetition vector r based on the result of
		Algorithm 1.1	
	8	continue ; 1 procedure computeRV(setOfCCs, r)
	9	visitedActorsInCC ← ∅; forall cc ∈ setOfCCs do	Iterate over all connected components (CC).
		visitedBuffersInCC ← ∅;	Initialize the firing ratios.
		toVisit ← ∅; firingRatio(α) ← 0 1 = 0; Fractional ×.
			Is an Integer.
		return setOfCCs;	The discovered connected components (CC).

4 visitedActors ← ∅; 5 setOfCCs ← ∅; 6 forall α ∈ V do Main loop to discover all connected components (CC).

7 if α ∈ visitedActors then addFirst(toVisit, α); while toVisit = ∅ do Traverse a single connected component (CC). β ← head(toVisit); remove(toVisit, β); addLast(visitedActors, β); addLast(visitedActorsInCC , β); nbZeroBuffer ← 0; forall e ∈ IE(β) do Iterate over the successors. if cons(e) = 0 and prod(e) = 0 then 21 nbZeroBuffer ← nbZeroBuffer + 1; 22 continue ; addLast(visitedBuffersInCC , e); if src(e) / ∈ toVisit and src(e) / ∈ visitedActorsInCC then 25 addFirst(toVisit, src(e)); forall e ∈ OE(β) do Iterate over the predecessors. if cons(e) = 0 and prod(e) = 0 then 28 nbZeroBuffer ← nbZeroBuffer + 1; 29 continue ; addLast(visitedBuffersInCC , e); if dst(e) / ∈ toVisit and dst(e) / ∈ visitedActorsInCC then 32 addFirst(toVisit, dst(e)); if nbZeroBuffer = #IE(β) + #OE(β) and nbZeroBuffer > 0 then r [β] = 0; Not executed since all input and output rates are null. cc ← new CC(visitedActorsInCC , visitedBuffersInCC ); addLast(setOfCCs, cc); forall α ∈ CC .visitedActorsInCC do forall e ∈ CC .visitedBuffersInCC do Set the firing ratios. ratioSrc ← firingRatio(src(e)); ratioDst ← firingRatio(dst(e)); if numerator(ratioSrc) = 0 and prod(e) > 0 and numerator(ratioDst) > 0 then 9 firingRatio(src(e)) ← ratioDst × cons(e) prod(e) ; Fractional ×. 10 ratioSrc ← firingRatio(src(e)); if numerator(ratioDst) = 0 and cons(e) > 0 and numerator(ratioSrc) > 0 then 12 firingRatio(dst(e)) ← ratioSrc × prod(e) cons(e) ; multiple ← 1; forall α ∈ CC .visitedActorsInCC do Compute the lowest common multiple (lcm) of all ratios in the connected component (CC). ratio ← firingRatio(α); multiple ← lcm{multiple, denominator(ratio)}; forall α ∈ CC .visitedActorsInCC do Set the repetition vector r. ratio ← firingRatio(α); r [α] ← numerator(ratio) × multiple denominator(ratio) ; connected

. 59 Introduction

  Table 1.1. They are adapted from standard Burns' notations [Dav13] for real-time systems. Variables written in lower case are used in formulae or for indexation. Variables written in upper case are kept for instance names in examples, such as actor names.Parallelization of for loops can be achieved automatically in the code through OpenMP, or manually using threads. However, it is not possible to handle all the cases with OpenMP, as distributed memory. Moreover threads require to manually add synchronizations and communications in the code. Thus, applications are usually modeled

	Signal processing applications are generally compute intensive and constrained in terms
	Symbol Chapter 2 of throughput and latency. For example, the throughput of video displays is constrained Meaning
	G = (V, E) in Frame Per Second (fps). Parallelization of such applications is the key to meet their The considered SDF graph, with its set of actors V and buffers E.
	α π throughput and latency requirements: when possible, data are processed simultaneously Any actor in V . Any periodic actor in V . e Any buffer in E. IE(α) Set of incoming buffers of actor α. Modeling nested for loops, with by different Processing Elements (PEs).
	OE(α) d 0 (e) ∈ N SDF graphs Set of outgoing buffers of actor α. Size of the delay on e.
	src(e) ∈ V	Source actor of the buffer e.
	prod(e) ∈ N	Production rate of src(e).
	dst(e) ∈ V	Destination actor of the buffer e.
	cons(e) ∈ N	Consumption rate of dst(e).

r

Repetition vector of G, sorted in the lexicographic order of its actors. r

[α] 

Number of firings of actor α as specified in the repetition vector. α j j-th firing of actor α within one scheduler iteration. α i firing of actor α within the i-th graph iteration.

G * = (V * , E * )

The DAG being the SRSDF/HSDF version of G. τ Any task in G * . C α ∈ N Execution Time (ET) of actor α (more specifically, Worst Case Execution Time (WCET) in Chapter 3). T π ∈ N Period of periodic actor π. m ∈ N Number of Processing Elements (PEs). Table 1.1 -Main notations used in this thesis. Contents 2.1 SIFT keypoints detection application . . . . . . . . . . . . . . 45 2.2 Modeling of single loops having explicit parallelism . . . . . . 47 2.3 Modeling of nested loops having explicit parallelism . . . . . 49 2.3.1 Iteration space splitting . . . . . . . . . . . . . . . . . . . . . . 50 2.3.2 SDF iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.4 When and how to use SDF iterators? . . . . . . . . . . . . . . 52 2.4.1 When are needed SDF iterators? . . . . . . . . . . . . . . . . . 53 2.4.2 How the processing code must be modified? . . . . . . . . . . . 54 2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.6.1 On specialized dataflow languages . . . . . . . . . . . . . . . . 57 2.6.2 On the clustering of dataflow graphs . . . . . . . . . . . . . . . 58 2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . in order to first expose their parallelism, and secondly analyze this available parallelism and synthesize efficient schedules. Here we use the SDF [LM87b] MoC which expresses parallelism in two ways: by the different paths in the graphs (task parallelism), and by the possible executions of the same process on different chunks of data (data parallelism). One can model single for loops with SDF graphs as long as loops can be divided in sub-parts accessing chunks of data of equal size, to respect the SDF restriction of fixed amount of data communication. Yet, there is no general technique to model multiple nested for loops with SDF graphs, especially when bounds of the inner loops are varying.

Table 2

 2 The number of scheduled tasks when unfolding the SDF graph of SIFT is also reported in Table2.1. This number is the sum of the repetition vector, i.e. the sum of the minimal number of executions of each actor. As PREESM supports parameterized SDF graphs[START_REF] Desnos | PiMM: Parameterized and Interfaced dataflow Meta-Model for MPSoCs runtime reconfiguration[END_REF], first introduced in [BB01], the expressed degree of parallelism p is set according to the number of targeted cores. The number of tasks is not multiplied by a

	#Cores	#Tasks	PREESM Time (Speedup)	OpenMP Time (Speedup)
	1	190	669 (0.96x)	645 (ref.)
	2	293	412 (1.56x)	406 (1.59x)
	4	355	277 (2.33x)	281 (2.29x)
	5	386	263 (2.45x)	255 (2.53x)
	10	541	171 (3.77x)	182 (3.54x)

.1. All experiments used an Intel Xeon E5-2650 v4 @ 2.20GHz processor (12 physical cores) and the GCC compiler version 5.4.0 (option -02) on a single node of a cluster operated by Ubuntu 16.04 and managed by slurm. Both PREESM and OpenMP execution times are similar, the best speedup (in bold) is achieved alternatively by PREESM and OpenMP.

Table 2 .

 2 1 -Number of scheduled tasks, execution times in ms, and speedup for different number of cores. Execution time is an average on 200 runs.

  Two topological cuts of rank cr 1 and cr 2 are considered too close from each other if the sum of their intermediate estimated ET is lower than avgStageLoad, as formalized in Equation (4.6).

	avgStageLoad >	rankLoad(i)	(4.6)
	cr 1 ≤i<cr 2		
	Considering the example in Figures 4.6 and 4.7, the ASAP topological graph cut of rank
	3 depicted in Figure		

  Table4.1 -Characteristics and throughput gain with delays (H) of SDF benchmark applications, on four PEs. H 0 corresponds to no pipeline. H 1,1 corresponds to one pipeline selected among one. O 1 corresponds to the optimal single stage pipeline. % is the percentage of cuts worst than or equal to the heuristic. H 3,3 corresponds to three pipelines selected among three.

	Name	MAP #V #Cuts	H 0	H 1,1 O 1 %	H 3,3
	Chain4.1	1	4	3	1.0	2.0	2.0 100	3.9
	Chain4.2noAC	1	4	3	1.4	2.3	2.3 100	3.4
	BitonicSort	4	40	141	1.6	2.9	2.9 100	3.6
	cd2dat	1	6	5	4.0	4.0	4.0 80	4.0
	DCT	1	8	7	1.0	1.8	1.8 100	1.8 2
	DES	3	53	128	1.2	2.2	2.2 96	2.4
	FFT	1	17	16	1.0	2.0	2.0 100	3.7
	FMRadio	12	43	-	3.1	3.3	-	-	3.3
	h263decoder (noAC)	1	4	3	1.8	1.8	1.9 100	2.0 2
	modem	1	6	5	2.0	3.3	3.3 100	3.3 2
	mp3decoder	2	14	33	3.7	3.7	3.8 66	3.7 2
	MPEG2noparser	3	23	140	1.1	2.2	2.2 100	2.7
	samplerate	1	6 4.0
	TDE	1	29	28	1.0	1.9	1.9 100	3.4
	Vocoder	17	114	-	1.2	2.1	-	-	2.6
	parallelism is expressed, for SIFT (p4), the heuristic configuration H 2,3 once again is
	better than the other setups.							
				). However, when more balanced

Table 4 .

 4 2 -Throughput gain with delays (H) of SDF benchmark applications, on fourPEs. H 0 corresponds to no pipeline. H 1,1 corresponds to one pipeline selected among one. O 1 corresponds to the optimal single stage pipeline. % is the percentage of cuts worst than or equal to the heuristic. H 2,3 corresponds to two pipelines selected among three possibilities.Having 64 PEs ensures to observe the effect of the pipelines instead of the inherent task parallelism. Indeed, the maximum number of actors in parallel MAP (17) is almost 4 times smaller than the number of PEs. The maximum theoretical throughput gain with unlimited PEs, denoted Max Θ, is given as a reference. All applications in Table4.3 

		MAP #V #Cuts	H 0	H 1,1 O 1 %	H 2,3
	SIFT (p1)	30	54	868	1.2	1.6	2.2 92	1.6
	SIFT (p2)	30	54	868	2.3	2.8	3.7 91	3.0
	SIFT (p4)	30	54	868	3.5	3.5	3.6 80	3.7
	sobel-morpho (p1)	1	6	5	1.0	2.0	2.0 100	2.0
	sobel-morpho (p2) *	1	6	5	1.7	2.4	2.4 100	2.6
	sobel-morpho (p3) *	1	6	5	2.3	3.5	3.5 100	3.4
	sobel-morpho (p4)	1	6	5	2.3	2.8	3.3 40	3.3
	stereo	3	28	3631	3.3	3.9	3.9 99	3.9
	lane-detection *	3	11	24	1.0	1.7	1.7 100	2.5
	are acyclic, so Max Θ is computed by dividing the sequential ET of the application by
	the ET of its longest actor, as if each buffer had a pipeline delay. Adding 3 pipelines
	increases the throughput gain from a factor 2 (for FMRadio) to 3 (for ChannelVocoder).
	Name	MAP #V	#Cuts	H 0 H 3,3 Max Θ
	Beamformer	12	57	1.7 × 10 7	8.9	19.0	25.6
	ChannelVocoder	17	55 1.3 × 10 10	11.1 33.2	33.4
	Filterbank	16	85	4.3 × 10 8	10.5 30.5	32.2
	FMRadio	12	43	2.6 × 10 5	6.0	12.7	13.1
	Vocoder	17	114 3.0 × 10 10	1.2	2.7	2.8
	Table 4.3 -Throughput gain with delays (H) of SDF benchmark applications, on sixty-
	four PEs. H 0 corresponds to no pipeline. H 3,3 corresponds to three pipelines selected
	among three possibilities. Max Θ corresponds to the maximum possible throughput
	gain, with unlimited PEs.							

Table 4 .

 4 4 -Throughput and memory increases with delays (H), on four PEs, for different parallelism parameters (p). Specific mapping constraints are enforced for applications marked with *: read and display actors are alone on their core if there is a pipeline. for both schedulers, except for the lane-detection application, where the periodic one is slower than the sequential time for H 0, H 1,1 and H 1,2. Further investigations are needed to characterize this phenomenon but the first fit mapping strategy of Algorithm 3.3 is a plausible cause. This first fit strategy is more likely to allocate two successive data dependent firings on two different PEs, introducing a costly synchronization lock between the firings.

	3. Results are roughly similar

Table 4 .

 4 5 -Throughput increases with delays (H), on four PEs, for different parallelism parameters (p). Leg. is using the legacy PREESM scheduler while Per. is using Algorithm 3.3. Specific mapping constraints are enforced for applications marked with *: read and display actors are alone on their core if there is a pipeline.

	Gordon

  malleable parameters. Two values are selected in the set of values of each Integer malleable parameters, and these two values replace temporarily the full set of possible values; an example is detailed in the next paragraph. Then, all combinations of other non Integer malleable parameter sub-expressions with those two values are explored, which gives a temporary best DSE point. The combination of sub-expressions of this best point is tracked to reduce the full set of values of each Integer malleable parameter.The non selected value of each Integer malleable parameter is removed, as well as all values below (respectively, above) if it was the smallest (respectively, greatest) value of the two values previously selected.The set reduction process is iterated until all sets of values of the Integer malleable parameters contain only one value. The final best DSE point is selected among all combinations of sub-expressions over all iterations. The two sample values representing a set at each iteration 14 are symmetrically located at one third and two thirds of the set size. Thus, if s max is the maximum size of all sets, approximately log 3 2

Table 5 .

 5 1 -Results of DSE on SIFT video for different configurations of the DSE algorithm. Column #Points correspond to the number of points actually explored by the DSE, possibly different than the total number of DSE points (higher if delay heuristic, lower if number heuristic).

	type	M. Param.	#Points DSE time	Best point	Delays
	Exhaustive	MP-1 to MP-5	160	1 m 26 s r640x360i0p4	none
	Delay	MP-1 to MP-5	186	1 m 43 s r640x360i0p4	none
	Integer	MP-1 to MP-5	68	32 s	r640x360i0p4 delayRead
	Delay+Integer MP-1 to MP-5	80	38 s	r640x360i0p4	none
	Exhaustive	MP-1 to MP-7	4320	37 m 19 s r640x480i0p4	none
	Delay+Integer MP-1 to MP-7	316	2 m 57 s r640x480i0p4	none

C.f. AADL et OpenAADL websites.

C.f. Ptolemy website.

1.1. INTRODUCTION: HARDWARE, SOFTWARE, AND PARALLELISM

http://icl.utk.edu/parsec/

https://dask.org/

http://www.uppaal.org/

https://www.open-mpi.org/

https://www.rabbitmq.com/

http://www.ros.org/

https://www.autosar.org/

http://www.aadl.info

https://www.gem5.org/

https://www.intel.com

https://www.parallella.org/2016/10/05/epiphany-v-a-1024-core-64-bit-risc-processor/

https://www.kalrayinc.com/

https://www.qualcomm.com/

https://www.ti.com/

https://www.st.com

1.2. THE SDF DATAFLOW MODEL AND ITS FLAVORS

https://www.renesas.com/eu/en/

https://www.maxeler.com/products/

http://patmos.compute.dtu.dk/

"hippopotamesque" is a French adjective to describe the heaviness of anything. The funny part is that it is composed of five words of three letters, all valid at the French Scrabble. When cutting the word in three sections of five letters, it also matches with its etymological roots: hippo/horse of the potam/river and esque is a suffix for some French adjectives.

1.3. SCHEDULING OF SDF GRAPHS

time units in Figure1.4c. In our context, the throughput of a graph is the inverse of the II duration, and it depends on the schedule.

https://www.omg.org/omgmarte/

https://www.silexica.com/

https://www.ansys.com/en/products/embedded-software/ansys-scade-suite

See the paragraph on synchronous languages in Section 1.1.2.

https://ttool.telecom-paristech.fr/

https://www.uml-sysml.org/sysml/

See PISDF implementations on: https://github.com/preesm/preesm-apps

https://gitlab.inria.fr/brouxel/STR2RTS

https://github.com/bbodin/turbine

https://preesm.github.io

1.4. THE PREESM TOOL

https://www.eclipse.org/

In the parent graph, any child graph appears as an actor. The simplification concerns the rates of PISDF data interfaces in the child graphs: extra logic is automatically added to ensure that the repetition vector of any child graph is not modifying the repetition vector of its parent graph.

At the opposite, cycles are strongly connected components of a directed graph.

The first method[START_REF] Lee | Static Scheduling of Synchronous Data Flow Programs for Digital Signal Processing[END_REF] computing the repetition vector uses a topology matrix Γ instead of the graph traversal. Note that this original method is only for connected graphs and its main result is that a connected SDF graph is consistent if and only if dim(ker(Γ)) = 1, with the repetition vector r being the basis of this kernel. We conjecture a generalization of this equivalence: an unconnected SDF graph is consistent if and only if dim(ker(Γ)) = #CC, with #CC being the number of its weakly connected components. If so, there exists a basis of ker(Γ), each basis vector being the repetition vector of one connected component, filled with zeros on actors not belonging to this connected component. The same relation dim(ker(L)) = #CC is already proved for the Laplacian matrix L of any undirected graph.

Note that this automatically generated SRSDF graph has been modified to meet the indexing of firing used in the thesis: PREESM normally starts at 0 while we start at 1 in the thesis. Moreover, the generated names of the fork and join actor firings originally contains implode and explode instead of fork and join here.

1.5. CONCLUSION

2.1. SIFT KEYPOINTS DETECTION APPLICATION

2.2. MODELING OF SINGLE LOOPS HAVING EXPLICIT PARALLELISM

2.3. MODELING OF NESTED LOOPS HAVING EXPLICIT PARALLELISM

2.4. WHEN AND HOW TO USE SDF ITERATORS?

https://github.com/jserot/hocl

2.5. EVALUATION

See code on: https://github.com/robertwgh/ezSIFT

2.6. RELATED WORK

2.7. CONCLUSION

3.2. PARTIALLY PERIODIC CONSTRAINTS

See Section 1.4.3 for a definition of weakly connected graphs and a related discussion.

3.3. DISCUSSION ON THE SCHEDULABILITY CONDITIONS

The critical path of a DAG is the longest path of connected tasks according to their ETs and the communication times if specified. It gives the smallest possible schedule length.

Additionally, our implementation handles mapping constraints to specify which PEs support the execution of each SDF actor. So our first fit approach first selects the subset of PEs supporting the execution of the next firing to schedule, and then selects the least loaded PE in this subset.

http://www.choco-solver.org/

A free variable has no predefined value and is set directly by the solver. A non free variable is defined by equations depending on free or non free variables. The solver sets the non free variables according to the equations defining it.

http://www.aadl.info

https://preesm.github.io/

3.5. EVALUATION

3.7. CONCLUSION

4.1. ADMISSIBLE GRAPH CUTS FOR PIPELINING

ASAP ordering is equivalent to the reversed ALAP ordering of the transpose graph. However, we use here a slightly modified version of ALAP, as it will be detailed in Section 4.2.1.

This PhD has been partly founded by the European Union H2020 project Cerbero. Michael Masin was the leader of the Cerbero project, while working at IBM Research Labs in Haifa (Israel). We also partly worked together on the entanglement problem discussed in Section 5.2.

literal name is "daleth".

4.2. AUTOMATIC PIPELINING OF SDF GRAPHS

4.4. EVALUATION

https://preesm.github.io/

http://www.choco-solver.org/

4.5. RELATED WORK

Other offline optimized properties are the memory allocation and the communication synchronizations. However, the memory allocation and the communications are not taken into account in our DSE.

A few common mathematical functions are provided by the PREESM implementation, and it is possible to code more complex functions directly in the Java code of PREESM (which needs to be recompiled then).

The roots of the DAG of parameters are the parameters having no incoming dependencies, i.e. the parameters being a single numerical value.

The SIFT application is briefly introduced in Chapter 2.

5.1. PREESM PARAMETERS

5.2. DSE: ENTANGLED PROBLEMS

Generic equations for the dependencies between firings of the PISDF model have been formulated by Florian Arrestier in[START_REF] Arrestier | Numerical Representation of Directed Acyclic Graphs for Efficient Dataflow Embedded Resource Allocation[END_REF].

The set may actually have been already reduced to a unique value. In such case, the parameter is considered as fixed.

A very subjective and limited experiment has shown that seeing his/her own reflection with a delay of more than 100ms on a webcam is annoying.

5.8. CONCLUSION

Please provide its error type and precise at what level it has affected you, sorted by U type.
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How the processing code must be modified?

Let's consider the code in Listing 2.7, that has to be modeled with an SDF graph and parallelized. This piece of code contains two nested non affine loops, iterating over a 2-D array stored in a row-major fashion (outer loop dimension first). The array contains 14 elements in total and will be split in two chunks, to be processed in parallel on two PEs. When adding the iterator to the SDF graph, the code of the actor to parallelize has to be adapted to its new inputs: the start and stop indexes of the loops. The modified code is presented in Listing 2.8. In the inner loops, the bounds cannot be used directly: they are used only if the upper loop is also using its start (respectively stop) index. float* array = ; //provided as actor input for (int i = start_i; i < stop_i; i ++) { int begin_j = (i == start_i) ? start_j : 0; int end_j = (i+1 == stop_i) ? stop_j : (i+1)*(i+1); for (int j = begin_j; j < end_j; j ++) { processing1cell(array, i, j); } } Listing 2.8 -Non affine 2-D for loop SDF actor code.

In Listing 2.8, the size of the input array is not specified: only an address pointer is given. If the full array is split in two chunks, the SDF processing actor is fired twice by the SDF application execution framework, PREESM in our case. PREESM will feed each chunk with the correct data thanks to pointer arithmetic. The order of firings Algorithm 3.2: Subroutines for partially periodic scheduling of tasks 1 procedure addReadyTasks(lt, τ, nbAllocs) Add tasks in the schedule queue only if their predecessors are allocated. 

function possibleAllocationsBefore(lt, deadline)

Returns tasks in lt which can start before the given deadline, ensuring that the selected tasks total execution time is not higher than the current idle time to the given deadline. element cannot be guessed automatically. However, depending on the application, the delay on cycles can be undefined data; it implies that some input or output of the first firings of actors located after the delay are not taken into account. This happens in the SDF graph of SIFT application, which contains cycles having delays with undefined token value. The loop actors having an incoming buffer with a delay also take another incoming buffer from a repetition counter actor. The repetition counters enumerate the current number of firings in the current scheduler iteration, and enable the loop actors to select the correct input in their internal code. The correct input may come from the buffer having a delay with initial undefined token value of from another incoming buffer.

Evaluation

The presented heuristic to pipeline SDF graphs is evaluated on various applications coming from the StreamIt [TKA02] benchmark, the examples provided with the SDF 3 [START_REF] Stuijk | SDF 3 : SDF For Free[END_REF] tool, and the applications 8 provided with the PREESM [START_REF] Pelcat | PREESM: A Dataflow-Based Rapid Prototyping Framework for Simplifying Multicore DSP Programming[END_REF] tool. These applications represent a panel of state of the art signal and image processing algorithms, as well as more complex telecommunications, video coding and computer vision applications. The heuristic results are compared by throughput gain, relative to the sequential non-pipelined throughput on a single Processing Element (PE).

Three different evaluations are performed. In Section 4.4.1, the theoretical throughput gain is computed based on the schedule length, i.e. the II duration, obtained after adding the pipelines selected by the heuristic. This throughput gain is theoretical since no actual execution of the application is performed. A comparison is made with the optimal throughput gain among all admissible cuts, for applications amenable to 8 https://github.com/preesm/preesm-apps retiming. Retiming is especially useful when considering graphs having cycles. We have also presented a heuristic to break data dependencies of cycles, and a combination of our two heuristics and classic retiming techniques is kept for future work.

Dissemination and Implementation

The contribution presented in this chapter, except Section 4.3, has been published in the SAMOS'20 conference [START_REF] Honorat | A Fast Heuristic to Pipeline SDF Graphs[END_REF] (see also the video presentation here ).

The algorithms presented in this chapter have been implemented as workflow tasks of the PREESM tool. See the following task description for the implementation of the algorithm described in Section 4.2:

pisdf-delays.setter 

Evaluation

In this section, we present an evaluation of the DSE method detailed in the previous sections. The evaluation is exclusively based on the SIFT video application, executed on an homogeneous architecture with 4 PEs. The DSE execution time have been measured

for the exhaustive DSE and for its delay and Integer heuristics. The best DSE point found is discussed for these different DSE cases.

Test application: live video SIFT

The SIFT live video application is a modified version of SIFT presented in Section 2.1.

Note that this version does not depend on any external image processing library. The live video version uses a webcam stream to retrieve the input image and as an output, it displays the keypoints above the input image in real-time. The application runs indefinitely and its frame rate is limited either by the SIFT processing time or by the webcam frame rate (30 fps maximum in our case, hardware dependent).

Malleable parameters

In order to control the processing time of the SIFT application, we have defined the following malleable parameters in its PISDF graph: A discussion on future work closes this thesis.

Summary of contributions

The four contributions presented in this thesis cover different aspects of the design of a dataflow processing application. The first design step is the modeling of the application;

then the application has to be configured to meet some constraints coming from hardware or software side, as the frame rate of a camera. Design Space Exploration (DSE) is a common technique to perform this configuration, and in our case it uses scheduling and pipelining techniques. However, due to the exponential number of possible configurations, an exhaustive DSE may be prohibitive. 
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In this thesis, three aspects of the design process have been addressed, all at the software level: the modeling of iterative loops, the scheduling of real-time constraints, and the pipelining of tasks. A fourth contribution combines all these aspects: a Design Space Exploration (DSE) algorithm taking into account throughput, latency, and energy constraints. This DSE makes it possible to automatically tune the parameters of an application so that all constraints are met. All the contributions have been implemented and evaluated in the PREESM framework.