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RESUME

Cette these s’intéresse a la modélisation non-supervisée de séries
temporelles univariées. Nous abordons tout d’abord le probleme de
prédiction linéaire des valeurs futures de séries temporelles gaussi-
ennes sous hypothése de longues dépendances, qui nécessitent de tenir
compte d'un large passé. Nous introduisons une famille d’ondelettes
fovéales et causales qui projettent les valeurs passées sur un sous-
espace adapté au probleme, réduisant ainsi la variance des estima-
teurs associés. Dans un deuxieéme temps, nous cherchons sous quelles
conditions les prédicteurs non-linéaires sont plus performants que les
méthodes linéaires. Les séries temporelles admettant une représen-
tation parcimonieuse en temps-fréquence, comme celles issues de
I’audio, réunissent ces conditions, et nous proposons un algorithme de
prédiction utilisant une telle représentation. Le dernier probleme que
nous étudions est la synthese de signaux audios. Nous proposons une
nouvelle méthode de génération reposant sur un réseau de neurones
convolutionnel profond, avec une architecture encodeur-décodeur, qui
permet de synthétiser de nouveaux signaux réalistes. Contrairement
a I'état de l’art, nous exploitons explicitement les propriétés temps-
fréquence des sons pour définir un encodeur avec la transformée
en scattering, tandis que le décodeur est entrainé pour résoudre un
probléme inverse dans une métrique adaptée.
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ABSTRACT

This dissertation studies unsupervised time-series modeling. We first
focus on the problem of linearly predicting future values of a time-
series under the assumption of long-range dependencies, which re-
quires to take into account a past of large duration. We introduce a
family of causal and foveal wavelets which project past values on a
subspace adapted to the problem, thereby reducing the variance of
the associated estimators. We then investigate under which conditions
non-linear predictors exhibit better performances than linear ones.
Time-series which admit a sparse time-frequency representation, such
as audio ones, satisfy these requirements, and we propose a prediction
algorithm using such a representation. The last problem we tackle is
audio time-series synthesis. We propose a new generation method
relying on a deep convolutional neural network, with an encoder-
decoder architecture, which allows to synthesize new realistic signals.
Contrary to state-of-the-art methods, we explicitly use time-frequency
properties of sounds to define an encoder with the scattering trans-
form, while the decoder is trained to solve an inverse problem in an
adapted metric.






REMERCIEMENTS

En premier lieu, je remercie mon directeur de these, Stéphane Mallat,
pour le temps et 1'énergie qu’il m’a consacrés, et dont j’ai énormé-
ment appris. Ses encouragements constants m’ont aidé a me frayer
un chemin a travers la jungle tortueuse mais fascinante qu’est la
recherche. Son exceptionnelle vision scientifique ainsi que la passion
de la recherche qui I'anime continueront longtemps & m’inspirer.

Je remercie également les membres du jury de soutenance. Merci
a Emmanuel Dupoux d’avoir accepté de présider cette soutenance
qui a donné lieu a une discussion trés stimulante. Merci 8 Emmanuel
Vincent et Bruno Torrésani d’avoir accepté de rapporter ce manuscrit
et en particulier pour leurs remarques tres pertinentes. Merci enfin a
Mathieu Lagrange et Gilles Wainrib d’avoir accepté d’étre membres
du jury et pour les échanges scientifiques que nous avons eus.

Je remercie Sira Ferradans, Sébastien Loustau, Camille Saumard,
Aladin Virmaux, Bruno Torrésani et Stéphane Rivaud pour leurs
invitations a présenter mes travaux de recherche.

Au cours de ces trois années de thése, j’ai eu la chance de rencon-
trer des personnes absolument formidables au sein de I'équipe Data
avec qui j’ai passé de tres bons moments, qu’il s’agisse de collaborer
scientifiquement, de refaire le monde autour d’un verre ou encore
d’escalader des blocs : Tomas Angles, Antoine Brochard, Carmine
Emanuele Cella, Samuel Chang, Ivan Dokmani¢, Michael Eickenberg,
Georgios Exarchakis, Sira Ferradans, Ravi Kiran, Roberto Leonarduzzi,
Vincent Lostanlen, Chris Miller, Edouard Oyallon, Matthew Ricci, Gas-
par Rochette, Alberto Romagnoni, Grégoire Sergeant-Perthuis, Amos
Sironi, Louis Thiry, Gilles Wainrib, Iréne Waldspurger, John Zarka,
Sixin Zhang. Merci a eux. Mention spéciale aux personnes dont j’ai
pu partager le bureau. Petit clin d’oeil également aux compagnons de
cette aventure pédagogique qu’est le Challenge Data.

Un grand merci a Lise-Marie Bivard, Joélle Isnard, Sophie Jaudon
et Valérie Mongiat pour leur incroyable efficacité administrative, qui
est tres précieuse dans un monde de chercheurs. Merci également aux
membres du SPI, notamment Jacques Beigbeder et Ludovic Ricardou,
pour leur grande aide informatique, notamment dans les “deadlines”
critiques.

Je remercie les enseignants qui ont stimulé mon gofit des sciences et
de l’écriture au cours de mes études, m’éveillant ainsi a de nouveaux
mondes ; c’est notamment le cas de Frédéric Cuvellier, Thierry Meyer,
Béatrice Stoll et Denis Hirson.

Pour leur relecture attentive du manuscrit malgré la canicule, un
grand merci a John, Gaspar, et surtout Léopold.

vii



Je remercie vivement mes amis pour les trés bons moments que nous
avons partagés, ainsi que pour leur soutien et leur affection. Merci tout
d’abord a mes co-chatelains, Stanislas puis Julia, et a leurs associés,
Anouk et Naoufal, ainsi qu’au noyau des nageurs, Antoine, Marie,
Mathieu, Léopold et Louise. Merci ensuite aux glorieux anciens : ceux
de Kléber, Jonas et Pierre-Edouard ; ceux du MVA, notamment Michel
et Matthias. Enfin, merci au groupe des Alsaciens, en particulier
Benjamin et Arnaud.

A tous les stades de mes longues études, j’ai eu la chance de pouvoir
compter sur ma famille. Merci tout d’abord a mes parents, Luc et
Patricia, pour m’avoir transmis le gotit de 'effort, pour leur soutien de
tous les jours, et surtout leur amour inconditionnel. Merci également
a mes soeurs, Claire et Pénélope, ainsi qu’a leurs familles respectives,
Antoine, Manu, Eléonore et Arthur : leurs encouragements m’ont
grandement aidé dans les moments les plus difficiles. Merci enfin
a mes grands-parents, tantes, oncles, cousines et cousins pour leur
présence bienveillante.

Enfin, j’ai rencontré au cours de ce doctorat une personne qui a
illuminé ma vie. Pour son soutien et son amour, merci a Juliette, sans
qui rien n’aurait été possible.

viii



CONTENTS

1

INTRODUCTION

1.1

1.2

1.3

Standard priors for px . . ... .. ... oL
1.1.1  Curse of dimensionality . . . .. ... ... ...
1.1.2  Stationarity . ... ... ... 0L
1.1.3 Strong assumptions: Gaussian distribution and
short-term dependence . ... ... ... .. ..
Looking for new priors: challenges . . . . .. ... ...
1.2.1  Non-Gaussian distribution . . .. ... ... ..
1.2.2 Long-range dependencies . . . . . ... ... ..
1.2.3 Deep neural network priors . . . . .. ... ...
Contributions . . ... ... ... .. ... .. .. ...,
1.3.1  Foveal wavelets for long-range dependencies in
the Gaussiancase . . . . .. .. ... .......
1.3.2 Prediction of sparse time-frequency processes .
1.3.3 Sparse time-frequency time-series generation

FOVEAL WAVELET LINEAR PREDICTION

2.1

2.2

2.3

2.4

2.5

Linear forecasting . . . . . ... ... .. ... ......
2.1.1 Linear estimationinabasis . . . .. ... ....
2.1.2 Empirical estimation problem . . . . . ... ...
2.1.3 Approximation and estimation control . . . ..
Waveletbases . . .. ... ... ... .. ... ... ..
2.2.1  Wavelets and Long-range dependent processes

222 Fovealcone . ....................
2.2.3 Forecasting with the Haar foveal family . . . . .
2.2.4 Causality constraint . . .. ... ... ... ...
Foveal wavelets . . .. ... ... .............
23.1 General principle . . . ... ... ... .. ...
2.3.2 Indicatorwindow . . . . ... ... ... L.
2.3.3 Gaussianwindow . ... ... ... .. .. ...
2.3.4 Exponential window . . ... ... ... ... ..
Forecasting experiments . . . ... ... .........
2.4.1  Synthetic time-series . . . . ... ... ... ...
2.4.2 Real time-series . . . . . ... ... ........
243 Results . . ... ... ... oo
Conclusion . . . . . ... .. . . L

NON-LINEAR PREDICTION WITH SPARSITY IN NEURAL
NETWORKS

3.1

3.2

Related work . . . ... ... .. ... ... .. .. ....
3.1.1 Sparsity . ... ...
3.1.2 Neuralnetworks . ... ... ...........
Time-frequency sparsity can be exploited to forecast
time-series . . . .. ... ...

W NN R

O oo Ul Ul

11

12
14
15
17
18
18
22
23
25
25
29
33
35

36
38
40
41
41
42
44
46
47

49
50
50
55

57

ix



X

CONTENTS

3.2.1 Forecasting framework . . . . .. ... ... ... 58
3.2.2 Empirical observation: sparse time-frequency
decompositionin t--MLP. . . . .. ... ... .. 59
3.2.3 Analysis of the empirical results . . . . . .. .. 61
3.3 Sparse Forecasting algorithm . . .. ... ..... ... 63
3.3.1 Description of the problem . . ... ... .... 63
3.3.2 Causal sparse decomposition . . . . ... .. .. 65
3.3.3 Choice of dictionary . . ... ........... 67
3.3.4 Foveal multiscale extension . . . . ... ... .. 69
3.4 Numerical benchmark . .. ... ... ... ....... 71
3.4.1 Synthetic time-series . . . ... ... ... ... .. 71
3.4.2 Real time-series . . . . . ... ... ........ 73
3.5 Conclusion . . . . .. ... L 74
4 TIME-SERIES GENERATION WITH SCATTERING INVERSE
NETWORKS 75
41 Background ... ......... ... ... .. ... .. 76
4.1.1 Linearmodels . . . . ... ... ... ... ... . 77
4.1.2 Latent generative models . . . . ... ... ... 78
4.1.3 Autoregressive probabilistic networks . . . . . . 80
4.1.4 Sampling constrained by statistics . . . . . . .. 82
4.2 Generalapproach . . ... ..... .. ... .. .. ... 83
4.2.1  Encoder predefined with priors: whitened scat-
tering transform . . ... ... ... 84
4.2.2  Generator: Scattering Inverse Network . . . . . 84
4.3 Whitened Scattering ®: informative Gaussian encoder 85
4.3.1 Low-pass averaging yields Gaussianization. . . 85
4.3.2 Scalogram: Wavelet Modulus Transform . ... 86
4.3.3 Time-Frequency Scattering . . ... ... .. .. 89
4.3.4 Whitening operator H . . . . . ... ... .... 91
4.4 Generator G . . .. ... ... ..o L 92
4.4.1  Network definition . . . . . ... ... ... ... 92
4.4.2 Relative time shifts ensure causality . . . . . . . 94
4.4.3 Network training . . . ... ... ... ...... 95
4.5 Experimental validation . . ... ............. 96
451 Protocol .. ... ... ... ... .. .. 97
4.5.2  Choice of the reconstruction metric . . ... .. 99
4.5.3 Impact of the moment matching loss . . .. .. 101
4.5.4 Inputrepresentation ®(X) ............ 103
4.5.5 Interpolation examples. . . . .. ... ... ... 105
4.6 Conclusion . . . .. ... ... 107
5 CONCLUSION 109
5.1 Summary of contributions . . . .. ... ... ... 109

5.1.1 Linear forecasting under long-range dependencies109

5.1.2 Non-linear forecasting of sparse time-frequency
PrOCeSSes . . . . v . v i 110

5.1.3 Time-series Generation. . . . . .. ... ... .. 110



CONTENTS

52 DPerspectives . .. ... ... ... ... 0L 111
5.2.1 Spatiotemporal forecasting . . ... ... .. .. 111
5.2.2 Beyond MSE prediction . . ... ......... 112
5.2.3 Invertible linearized dynamics . . . ... .. .. 113
APPENDIX 115
A.1 Proof of Proposition2.2.1 ... .............. 115

A.2  Numerical algorithms constructing the foveal wavelets 117

BIBLIOGRAPHY 119

xi



LIST OF FIGURES

Figure 1.1

Figure 1.2

Figure 1.3

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

xii

Fat tails in the daily (left) or monthly (right)
distributions of returns in some US stocks. The
horizontal axis represents thresholds # and the
vertical axis represents the corresponding tails
P [|X(t)| > n]. Figure extracted from [BPog]. .
Speech signal from the VCTK dataset [Yam12].
Top: Waveform. Bottom: Corresponding spec-
trogram (black values are small). The signal is
sparse in the time-frequency domain. . . . ..
Implicit probability density modeling. A known
probability distribution pz is mapped through
G to a signal distribution px (1.10) approach-
ing the true probability distribution px, only
known from samples x;. . .. ... ... ... ..
Covariance matrix I' of a long-memory process
(fGn, H = 0.9) in the Dirac basis (left) and Haar
basis (right). The covariance matrix is sparse in
the waveletbasis. . . ... ... ... .. ... ..
Foveal cone of width K = 1. Functions from
the Haar family belonging to the cone are de-
picted in full curve, while the dotted wavelets
are eliminated. The present is on the left, and
one goes into the past on the right. . . .. ..
Covariance vector between the past and future
value ya(u) (top) and its decomposition in the
Haar family (bottom). The horizontal axis cor-
responds to the distance to the past, with the
present on the right. The foveal cone corre-
sponds to the coefficients of large magnitude.

31

Upper bound on the approximation error C(V) (2.32)

for the Haar foveal subspaces Hy; (2.59) and
for the autoregressive spaces A, (2.6). The hori-
zontal axis corresponds to the dimension of the
subspace, while the vertical axis corresponds to
the ratio between the upper bound C(V) and
the optimal MSE. The dotted curve for foveal
Haar corresponds to the family {Hi,}i<j<j,
while the solid curve corresponds to the family
{HK,]}nggzj, bothfor J=8. .. ........



Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

Figure 2.11

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

LIST OF FIGURES

Evolution of the relative MSE (2.65) with re-
spect to the temporal support of the autore-
gressive subspaces {.A,}, and the Haar foveal

subspaces {Hyjfi<j<y. v v v v vi o 34
Closest wavelets to the present boundary on
the left, with the past on the right. . . . .. .. 35

Foveal wavelets {¢7'},c(0,12) for a fixed scale

2/. Left: Indicator wavelets. Center: Gaussian
wavelets. Right: Exponential wavelets. . ... 37
MSE for various foveal representations with
respect to the number of numbers of scales |

for M = 0. Left: Relative MSE (2.65). Right:
Approximation error (2.28). All quantities are
expressed divided by the optimal MSE so as to

have adimensional units. . .. ... .. .. .. 43
MSE for the proposed foveal wavelets at | = 4

with respect to the maximal polynomial order

M Left: Relative MSE (2.65). Right: Approxi-
mation error (2.28). All quantities are expressed
divided by the optimal MSE so as to have adi-
mensional units. . ... ... ... 0 0L 43
Realistic 1D time series as used in the exper-
iments. Left: Subset of the time series; right:
Power spectrum |7x|* (w). From top to bottom:
“Sunspot”, “MacKey-Glass”, “PM10”. . . . .. 45
Forecasting results for real time series: NMSE (2.91)
with respect to the number of parameters, or
dimension of the subspace used. Horizontal

lines correspond to the autoregressive baseline. 46
Histogram of the /2 norm of the weights of the

tirst layer of the neural network (3.29). The
weights whose norm is about 6 appear to be
responsible for the prediction capabilities of the
network. . . ... ... L Lo 59
Discrete Fourier Transform of the rows of the
input neural network matrix W;. Each Fourier
transform appears to select a certain frequency

corresponding to brighter coefficients. . . . . . 60
Histogram of the individual entries of the out-
put weight W, € RMs (3.29). . . ... ...... 61

Effect of the choice of the window on the sta-
tionary cosine model (3.32) with two coeffi-
cients in the Fourier domain (positive frequen-
cies only). Windowing the signal yields sparse
Fourier coefficients. . . . . ... ... ... ... 64

xiii



Xiv

LIST OF FIGURES

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 4.1

Figure 4.2

Sparse forecasting algorithm. The windowed
past is decomposed onto a dictionary, out of
which the future value is extrapolated. . . . . .
Left: Gabor atoms ¢, ;(u) in (3.62) for poly-
nomial order n = 0 (full curve) and n = 1
(dotted curve). The blue curves are the real
parts, and the red curves the imaginary parts.
Right: Windows g; at multiple dyadic scales 2/.
Small scales carry the information closer to the
boundary and thus retrieve parts of the signal
which have been lost by larger scales. . . . . .
Foveal multiscale extension of the sparse fore-
casting algorithm. The weak extension (3.65)
linearly combines the predictions X;(t + A) at
each scale, while the strong extension (3.67)
makes a linear prediction based on the concate-
nated codesz). . . ... ... L.
Relative RMSE results on the cosine model (3.32)
(lower is better). The top line gives the error of
the linear estimator. Below is the error of the
neural network. Each sparse 0, ..., m curve cor-
responds to a dictionary computed with poly-
nomials up to an order m. The horizontal axis
specifies the size of the dictionary, which also
depends upon the oversampling factor P. . . .
Relative RMSE on VCTK as a function of the
future lags A. Sparse (T) stands for weakly
parametrized multiscale forecasting (3.65), and
sparse (L) for strongly parametrized multiscale
forecasting (3.67). Sparse methods outperform
the linear predictor, and have an error which is
nearly the same as the neural network.

General approach to generate new signals from
a white noise input. The encoder ® is chosen
using priors on the signals, while the generator
G is trained to invert the encoder. . . . . . ..
Morlet wavelets (left) and Gammatone wavelets
(right). The blue and red curves respectively
correspond to the real and imaginary parts of
the wavelet, while the green curve denotes the
envelope. . .. ... ... .. L L

65

69

70

72

74

83



LIST OF FIGURES XV

Figure 4.3 Time-frequency scattering transform S;(X). The
scalogram is obtained with a first wavelet trans-
form i} followed by a point-wise modulus. A
joint time-frequency filtering of this log-spectrogram
with the filters h; ® i3, regularizes the time-
frequency deformations of the signal. The low-
pass convolution with ¢; Gaussianizes the re-
sulting tensor. . . . .. ... ... L. 89

Figure 4.4 A Scattering Inverse Network is a linear recur-
rent network followed by a causal deep con-
volutional network with | layers. It takes as
input a vector of Gaussian white noise Z(2/n)
(top right, red), and computes the correspond-
ing scattering vector X;(2/n) by applying H™1,
and a ReLU to ensure non-negativity. Inter-
mdiate layers X;(t;) are then computed with
causal convolutions denoted by blue arrows
and zero insertions (white points). The sin-
gle vector Z(2/n) outputs 2/ values for Xo(to),
marked with red points. . . . ... ... .. .. 93

Figure 4.5 Impact of the metric on the reconstructions per-
formed by Y. Qualitative reconstruction exam-
ples on testing parts of all datasets. Left col-
umn: TIMIT example. Right column: Beethoven
example. Top line: groundtruth excerpt. Middle
line: reconstruction by a network trained with
MSE. Bottom line: reconstruction by a network
trained with perceptual metric. Note how both
the waveforms and the spectral contents are

much closer with the perceptual metric. . . . . 99
Figure 4.6 Generation examples from networks trained

with (top) and without (bottom) a moment-

matching term on the Beethoven dataset. . . . 101
Figure 4.7 Comparison of the reconstruction with and

without the moment matching term Lyp on
the testing part of the Beethoven dataset. Each
column corresponds to a different example. The
top line is the original signal, the middle line is
the reconstruction from a network trained with-
out the moment-matching term and the bottom
line the reconstruction from a network trained
with the moment matching term. Notice the
clear improvement in quality when adding the
moment matching term. . . .. ... ... ... 102



Figure 4.8

Figure 4.9

Figure 4.10

Reconstruction from an ablated scattering (no
second order terms) in the middle line and from
a full scattering in the bottom line, compared to
the original signal (top line). Left: TIMIT exam-
ple. Right: Beethoven example. Notice the im-
provement in quality, notably for the Beethoven
dataset: the second-order terms allow to recover
the temporal dynamics within the dominating
frequency. . .. ... ... L.
Generation from Gaussian white noise G(Z) on
the TIMIT data-set. Top examples: computed
with | = 10. Bottom examples: with | = 6.
As the scale 2/ increases, Sj(X) becomes more
Gaussian and the model is more realistic. The
duration of each time series is 3.3 seconds.

Pitch interpolation. Left column: G(Z;). Middle
column: G((Z; + Z2)/2). Right column: G(Z;).
Z1 and Z; are the embeddings of samples from
the test set. The generator interpolates the fun-
damental frequency with a simple arithmetic.
The frequential displacement from left to right
corresponds to 5 MIDI scales. . . . . ... ...

LIST OF TABLES

104

106

Table 4.1

Table 4.2

Table 4.3

XVvi

Reconstruction losses on both datasets. Reported
numbers correspond to the perceptual metric,
which is relative: a value close to 1 has 100%
error, while a value close to 0 has 0% error.
In both cases, the SIN Y was trained with the
same hyperparameters, except for the recon-
struction metric. Direcly training with the per-
ceptual metric brings a clear quantitative im-
provement. . . ... ...,
Moment matching loss term on the Beethoven
dataset. Note how adding the moment-matching
term allows us to create samples whose distri-
bution is as close to the training set as to the
testset. . . ... .. .. oL
Reconstruction error results on the Beethoven
dataset. Adding the moment-matching term
during training improves the reconstruction re-
sults and the generalization. . ... ... ...



LIST OF TABLES XVvii

Table 4.4 Reconstruction losses on both datasets, mea-
sured via the perceptual metric (lower is bet-
ter). In both cases, the network was trained
with the perceptual metric. The second-order
terms (full scattering) bring a clear quantitative
improvement. . . ... .. ... ......... 105






INTRODUCTION

This dissertation falls into the realm of unsupervised learning. Unsu-
pervised learning aims at inferring a model of the data studied from
examples.

The data we consider consists in univariate real-valued time-series
x of length T, sampled at discrete times x = {x () }1<¢<7. For instance,
such time-series may correspond to financial recordings (the daily val-
uations of a stock), audio signals (music) or astrophysical observations
(the number of dark spots observed on the sun each month).

For each general category of time-series, we assume the existence
of an underlying stochastic process X generating the data, so that
each observation x is a realization of X. We also postulate that the
probability distribution of X admits a probability density function
px with respect to the Lebesgue measure. However, this probability
density function px is unknown.

Modeling the time-series x consists in building an estimator px of
the true probability density function px. The estimator is obtained with
an algorithm which uses a finite dataset of observations {x;}1<i<n-
The choice of the estimating algorithm incorporates prior assumptions
made by the modeler on the density px.

Many different tasks and applications are encompassed by this
framework. Among them, time-series generation is an important one:
it corresponds to sampling the original probability distribution. The
resulting additional samples can then be used e.g. for data augmenta-
tion in a semi-supervised learning setting. Unsupervised learning for
time-series also encompasses forecasting. Indeed, predicting future
values of a time-series corresponds to estimating the conditional prob-
ability density px(x(f 4+ A)|x(< t)). We can also mention the anomaly
detection problem, which consists in detecting outliers among a popu-
lation. This requires to approximate the probability density function
of the data points and identify samples with low probability.

The probability density estimation problem raises two fundamental
questions. The first one deals with the ability to estimate px. What are
the implications of different assumptions, or priors, for px regarding
the quality of the estimator px? To answer this question, one needs to
create adapted notions of distance between the estimate px and the
actual density px, in order to measure the quality of the estimation.
The optimal sample complexity is a key issue: how many samples
are required to reach some error level in the worst case? The second
question concerns the actual algorithm used to perform the estimation.
Which algorithms are suitable to estimate a probability distribution



INTRODUCTION

from samples? What is the runtime which is required to attain an error
close to the optimal error given those samples?

In this chapter, we provide a short introduction to standard as-
sumptions for the probability density function, such as stationarity,
Gaussianity and Markov dependencies. These assumptions simplify
the estimation problem. We then review the challenges to model
probability distributions with less restricting priors. This allows us
to introduce and put in perspective the contributions exposed in this
work.

1.1 STANDARD PRIORS FOR px

We stress the difficulty of the estimation problem, which faces the
curse of dimensionality, and review standard hypotheses which allow
to make the problem tractable.

1.1.1  Curse of dimensionality

The probability density estimation problem for an arbitrary process X
defined in a vector space of large dimension T is intractable due to
the so-called curse of dimensionality: the number of samples to reach
a given precision grows exponentially with the ambient dimension.
We provide a simple example of this major difficulty with multivariate
kernel density estimators, following [Har+o4; Powo6].

Let us assume that px is three times differentiable and that we
have access to N samples {x;}1<;<n. Let K be a kernel function of
L'(RT) N L2(RT), summing to one and whose first-order polynomial
moment is zero. The kernel density estimator of bandwidth i > 0
induced by K is defined as:

1 Y X — X;
Px(x) = K l ) . 1.1
() = g 5K (55 ()
In other words, this estimator is the counting measure made of Dirac
delta functions located at x; smoothed by the kernel K dilated by .
A simple yet popular choice of kernel is the Gaussian isotropic one:
K(x)=xe™ I¥17/2 where x > 0 is a normalizing constant. Insofar as
[, K(u)du =1, px is a probability distribution summing to 1 over
its domain.

As shown in [Hér+o4], it is possible to lower-bound the pointwise
mean-square error E|px (x) — px(x)|?. This can be done by decom-
posing the mean-square error into a bias and a variance term, and
getting an asymptotic behavior for small values of h with a second-
order Taylor expansion of px. By optimizing the sum of bias and
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variance with respect to /1, one obtains the following lower-bound on
the mean-square error:

1 4/(4+T)
) , (1.2)

Elpx(x) - px(x)2 2 € (
where C > 0 is a constant depending on K. From Equation (1.2), we
see that in order to achieve an error level of €, one needs 7(e) samples

where
1\ 1774
n(e) =0 <<€> ) . (1.3)

The exponential dependency on the ambient dimension T makes it
impossible to achieve this bound. For audio time-series, T = 10° is a
small value, as it corresponds to 40 ms if the sampling rate is 22050 Hz.
If one wants to achieve an error € = 10~!, which is not very small with
respect to typical values of px(x), one would theoretically need about
n(10~!) ~ 10%! independent samples. Since the estimated number of
atoms in the observable universe is about 10%° [Guto3], it is completely
impossible to have access to that many samples.

This simple result can be extended to more complex estimators,
where the same problem appears [Har+o4]. This so-called curse of
dimensionality is fundamentally due to the fact that in high dimension,
all samples are isolated from each other in general. It is necessary to
make stronger assumptions on px in order to reduce the dimension
on which it is defined.

1.1.2 Stationarity

Stationarity is an hypothesis of translation invariance of the proba-
bility distribution [BD91]. In its stronger mathematical formulation,
it requires that the probability density functions of the original pro-
cess {X(t)}+ and of its translated version {X(t — 1)}, are equal®. This
means that for all time-series x,

px({x(t)}) = px({x(t =1)}s) . (1.4)

By recurrence and symmetry, Equation (1.4) will hold for all trans-
lated versions of x. There are weaker formulations of stationarity, for
instance by requiring only first- and second-order moments to be in-
variant by translation. This latter formulation is useful in the Gaussian
case, which is exposed in the next subsection.

The stationarity assumption makes it possible to dramatically aug-
ment the number of samples which are available. Indeed, each ob-
served time-series x; yields its translations x;(- — u) for all possible
steps u. However, this does not necessarily simplify the estimation

We ignore boundary issues in the definition of this translation on R”, which is seen
as a numerical restriction of RZ.



INTRODUCTION

problem, as these samples may be highly dependent. For instance,
consider the toy process defined by X(t) = B for all ¢, where B is a
Bernoulli variable. This process is clearly stationary, but all its trans-
lations are perfectly correlated with itself so one realization of the
time-series is not sufficient to estimate its probability density. The
stationarity prior becomes more effective when used in conjunction
with other assumptions on the probability distribution.

1.1.3 Strong assumptions: Gaussian distribution and short-term depen-
dence

We now review two standard assumptions on stochastic processes
which simplify the estimation of their probability distribution: the
Gaussian prior and the existence of short-term, or Markovian, depen-
dencies [BDog1].

The Gaussian prior assumes that the stochastic process X is Gaus-
sian, so that the probability density function px follows a multivariate
Gaussian distribution. As a consequence, px is entirely character-
ized by the first-order moments E[X(t)] and second-order moments
E[X(t)X(s)] for all t,s. Estimating px is thus simpler, as it is sufficient
to estimate this restricted number of moments, which grows as O(T?).
In the general case, one would have needed to estimate all higher-
order moments E[X(t1) -+ X(#)] for k > 2 and all ty,...,t, whose
number grows as O(27).

Under the stationarity assumption, the first- and second-order mo-
ments admit a much simpler structure [BDg1]. Indeed, because of the
translation invariance, all X(f) share the same mean, which is called
the mean of the process. Up to a subtraction by the square of the mean,
the second-order moments are characterized by the autocovariance
function yx(t) = Cov(X(s), X(s +t)), where s is a shadow variable.
As a consequence, there are only O(T) numbers to estimate in order
to characterize px entirely, which greatly simplifies the problem.

The other important assumption which is often used in practice
is the short-term dependence assumption, or Markov dependence
assumption. This assumption posits that the variables X(t) and X(s)
become less and less dependent as |t — s| grows. Depending on the
framework, this decreasing dependence can be formulated in differ-
ent fashions. In the strict Markov sense, there exists a dependence
horizon T < T such that X(t) is only conditionally dependent on
X(t—1),...,X(t —1) and not on previous values:

px[x(t)]x(< 1)] = px[x(H)|x(t —5),0 <5 < 7] (1.5)

If we further assume stationarity, there are two very important benefits
for the estimation of px. First, in order to estimate px as a whole, it
is sufficient to estimate px(x(t — T),...,x(t)), where t is a shadow
variable, which is defined in a vector space of much lower dimension
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than T. Second, a single time-series yields about | T/7] independent
samples.

In the Gaussian stationary case, it is possible to reformulate the
Gaussian dependence with the autocovariance function yx. The new
formulation assumes that correlations decrease exponentially quickly:
there exists v > 0 such that

yx () = O(e /vy (1.6)

As a consequence, dependencies admit a typical time-scale of T = 5v
beyond which correlations are negligible, so that the related variables
are almost independent. This short-term dependence assumption
provides similar benefits to the density estimation problem as the
more general formulation [BDg1].

Many algorithms exploit the Gaussian and short-term dependencies
hypotheses. Among them, the autoregressive moving-average (ARMA)
models are very important: they allow to parametrize such distribu-
tions with very few coefficients. Further, these models allow to linearly
predict future values of the time-series. In the Gaussian case, linear
predictors are optimal in terms of mean-square error.

1.2 LOOKING FOR NEW PRIORS: CHALLENGES

The assumptions introduced in the previous section are sufficiently
restrictive to allow the estimation of models, but limits their expres-
siveness. In this section, we stress the need for different priors which
will allow to describe time-series with different properties, notably
non-Gaussian distributions and long-range dependencies. Among
these assumptions, the hypothesis induced by deep generative models
allow to reproduce these characteristics. A major challenge lies in un-
derstanding what these deep priors imply for the modeled processes.

1.2.1  Non-Gaussian distribution

Many time-series of interest seem to follow a distribution for which
the Gaussian assumption is ill-suited. We provide two examples of
such series, stress the difficulties raised by these assumptions and
review solutions which have been proposed to model these behaviors.

In finance, the well-documented phenomenon of “fat tails” is ev-
idence of a deviation from the Gaussian model [BPog, Chapter 6].
Assume that X represents the daily returns of a given stock valuation,
X being stationary. We consider the marginal probability distribu-
tion of X(t). According to the Gaussian prior, X(t) should follow
a Gaussian distribution. Yet, empirical measurements show that ex-
treme values are much more frequent than authorized by a Gaussian
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Figure 1.1: Fat tails in the daily (left) or monthly (right) distributions of
returns in some US stocks. The horizontal axis represents thresh-
olds # and the vertical axis represents the corresponding tails
IP [|X(t)| > n]. Figure extracted from [BPog].

distribution, as displayed in Figure 1.1. The tails # — P[|X(¢)| > ] de-
crease extremely slowly compared to the expected Gaussian behavior,
typically following a power-law, hence the “fat-tail” denomination.

Many natural audio signals have characteristics which can hardly
be modeled by Gaussian variables. In particular, due to physical
constraints on the way they are produced, harmonic sounds such as
speech or music admit sparse time-frequency decompositions: there
exists a linear transform W such that for all x ~ X, Wx has very few
non-zero coefficients [RS78; GME11]. This phenomenon is depicted
in Figure 1.2 with a windowed Fourier transform. This sparsity is not
compatible with a Gaussian prior, as it also leads to fat tails for the
marginal probability distributions of each coefficient [Vinoy]. Further,
the resulting decompositions exhibit very particular structures. The
non-zero coefficients tend to be activated in groups which form some
patterns, such as formants for speech, attacks in music, etc [Malo8;
MTos5]. These very structured patterns are another evidence of a non-
Gaussian behavior for these time-series.

As we have stressed in the previous section, it is very difficult
to estimate non-Gaussian densities without other hypothesis. It is
necessary to use assumptions which reduce the dimensionality of the
problem in order to derive tractable estimators.

Several restrictive assumptions have been proposed to model these
specific non-Gaussian behaviors. In finance, multiple closed-form mod-
els have been proposed so as to reproduce the empirical characteristics
of the series. For instance, Lévy processes allow to model time-series
with exponential tails instead of Gaussian ones [BPog; Appo4]. In
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Figure 1.2: Speech signal from the VCTK dataset [Yam12]. Top: Waveform.
Bottom: Corresponding spectrogram (black values are small). The
signal is sparse in the time-frequency domain.

order to model the sudden jumps in the series, specific point processes
such as Poisson [Appog] or Hawkes processes [BMM15] have been
introduced. These parametric models typically have few parameters
which can be estimated from data. However, this lack of parameters
restricts their expressivity.

In the case of music, closed-form parametric models relying on time-
frequency decompositions have been proposed, see e.g. [MTos; KTo6].
These models were designed to reproduce the characteristic patterns
of speech and music signals, using Hidden Markov Models in order
to create groups of activations. These models allow to derive tractable
estimators, but they lack expressivity due to the small numbers of
parameters they use.
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In order to model non-Gaussian probability distributions in a non-
parametric fashion, a generalized method of moments has recently
been introduced [Bru+15]. It relies on the estimation of iterated wavelet
transform moments. Contrary to polynomial moments, which charac-
terize probability densities but suffer from variance explosion, these
moments rely on contractive operators which prevent such an explo-
sion [BM13a]. The probability distribution is then estimated as the
maximum entropy distribution constrained by the estimated moments.
It enables the capture of non-Gaussian behaviors such as intermittency
and time-frequency sparsity.

1.2.2 Long-range dependencies

There is evidence that the short-term dependence assumption does
not hold in many domains of interest.

Long-range dependent time-series were first observed in hydrol-
ogy [Gra+17]. By looking at recordings of floods from the Nile river,
Hurst [Hurs1] observed very long correlations between past and cur-
rent values. This phenomenon was then recognized in many different
fields, be it finance or telecommunications [DOTo3; Gra+17]. These
time-series are modeled by Gaussian stationary processes X whose
autocovariance 7yx has a power-law behavior:

Tx(t) = O([t| P), (1.7)

for B > 0. Contrary to short-term dependent processes, long-range
dependent processes do not have a typical time-scale beyond which
correlations can be neglected. In fact, these processes exhibit a scale-
invariant behavior: a downsampling does not change the rate p at
which the autocovariance decreases. As a consequence, correlations
between X () and X(s) decrease slowly and neglecting them leads to
large errors, even at long temporal intervals.

Some processes with a non-Gaussian distribution also exhibit long-
range dependencies. This is notably the case of music signals, even
though the exact nature of these dependencies is more difficult to
formalize. Music signals are roughly defined according to a hierarchi-
cal structure which has at least three layers: the overall composition,
individual notes, and the waveform {x () }; [L]83; Cel11; Koe+13]. Due
to choices of the composer, notably the use of repetitive patterns, the
composition creates strong dependencies between notes at very long
intervals, see e.g. [JPHo7]. In turn, individual notes and corresponding
portions of the waveform are extremely dependent. The formalization
of this dependence is still an intense research topic [PMK1o0], but it
is clear that the relationship involves more than mere second-order
correlations. Overall, the hierarchical structure of music creates very
long dependencies at the scale of the waveform, such that X(f) and
X(s) are not independent even when |t — s| is of the order of T. The
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same line of reasoning can be applied to speech signals to show the
existence of long-range dependencies.

Both in the Gaussian and non-Gaussian cases, long-range dependen-
cies increase the dimension of the domain of the probability density
function, as it does not factorize into smaller terms. Estimating the
problem’s probability density function thus becomes much more chal-
lenging.

In the Gaussian case, the assumption of a power-law behavior for
the autocovariance yx allows the derivation of tractable estimators
through the wavelet transform. Indeed, under this assumption, which
may be reformulated as a scale invariance, wavelet coefficients of a
long-range dependent process have a short-term dependence behavior
along the temporal axis [DOTo3]. This short-term dependence allows
the construction of tractable estimators of the decay parameter S,
which parametrizes the probability distribution [AVFg8].

In the non-Gaussian case, the assumption of a hierarchical structure
allows the capture of some part of the long-range dependencies. For
instance, it is possible to assume Markov dependencies over frames of
speech signals [GME11]. The resulting Hidden Markov Models allow
to capture part of the long-range dependencies. Refining the priors to
cope with longer dependencies is still an active research topic [Ron+16;
Per+18].

1.2.3 Deep neural network priors

Deep neural networks [LBH15] have recently provided very realistic
models px for signals which are non-Gaussian and have long-range
dependencies, such as speech or music [Oor+16; Meh+17]. However,
the explicit assumptions made by these models are not enough to
explain their success [Zha+17; Aro+17]. One of the current challenges
in unsupervised learning lies in understanding what the implicit
assumptions made in the design of these models, notably the choice
of architecture, imply for the underlying processes.

A deep neural network is a parametric function fy : R? - R/
between two vector spaces [GBC16]. In its most basic form, it can
be described as a succession of affine mappings W; followed by non-
linearities p applied independently on each coordinate of input vectors:

fo(v) =p (Wip (...0(W10))) . (1.8)

The function fy is parametrized by 6, which is the collection of all the
mappings Wy, ..., W;. The number of parameters is typically larger
than 10°. The set of the networks { fy }¢ is called an architecture: it only
depends on the size of each layer and on choice of the types of con-
nections and non-linearities between these layers. There are multiple
variants or restrictions of the generic model (1.8). Among them, net-
works which only employ convolutional linear mappings [LBg8] are
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of chief importance: they have allowed breakthroughs in both super-
vised [KSH12; AH+14] and unsupervised learning [RMC16; Oor+16].

Autoregressive neural networks [LM11] use neural networks to
build a model px. They use two explicit assumptions: stationarity, and
Markov dependencies with a past size 7. This leads to a model of the
form:

~

px(x) = Tpx(x(t)|x(t —7),...,x(t - 1)) (1.9)

t=1

The parametrized function fy is a neural network estimating the condi-
tional probability distributions, under the stationarity and Markov as-
sumptions. It is usually chosen as a convolutional neural network [LB98]
or as a recurrent one [HSg7]. It can be fitted by maximizing the log-
likelihood of the model over training data.

Autoregressive networks have lead to outstanding audio genera-
tion results, notably with the WaveNet [Oor+16; Oor+17] and Sam-
pleRNN [Meh+17] networks. Incorporated into larger hierarchical
models, these networks have increased the state-of-the-art in text-
to-speech applications. The same idea has also been applied to im-
age [OKK16] and video [Kal+16] generation, with an equal success:
it appears to be a powerful generic method to model non-Gaussian
signals.

Deep neural networks have also been used to implicitly model the
probability density function px, as depicted in Figure 1.3. These im-
plicit models rely on a so-called latent space Z and an application

Latent space Signal space

Pz

Figure 1.3: Implicit probability density modeling. A known probability distri-
bution pz is mapped through G to a signal distribution px (1.10)
approaching the true probability distribution px, only known
from samples x;.
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G : Z — RT mapping latent vectors z to signals x. A known distribu-
tion pz is assumed on the latent vectors and is push-forwarded by G
on the signals, so that

Px = Gupz. (1.10)

The mapping G is usually chosen as a deep convolutional neural
network. Generative Adversarial Networks (GANs) [Goo+14] and
Variational Auto-Encoders (VAEs) [KW14] are two instances of such
implicit generative networks, even though their training methods
radically differ. Deep implicit generative networks have achieved very
impressive results for image generation, and their improvement is an
active topic of research [RMC16; ACB17; Tol+18]. In particular, these
models are able to factorize the variabilities of images, so that linear
interpolations in the latent space result in meaningful interpolations
in the signal space.

The empirical success of deep generative networks in modeling
non-Gaussian processes with long-range dependencies is not well un-
derstood [Aro+17; ARZ18]. Indeed, the hypotheses explicitely claimed
by these models are insufficient to explain their success. In the case
of autoregressive neural networks for instance, the past size S which
is used is typically large, S ~ 10°. As shown in the previous section,
the probability density estimation is subject to the curse of dimension-
ality with such a large past value. In the case of GANSs, no explicit
assumption is done on the underlying signal.

As a consequence, there must be implicit priors in the definition
of deep generative models which allow to circumvent the curse of
dimensionality. Among these assumptions, the choices of architecture
and training method are particularly important [GBC16]. One of the
main challenges raised by these models is to understand what the
modeler’s assumptions on the signal are when making the choice
of a deep neural architecture, and how these assumptions make the
estimation problem tractable. The difficulty lies in the large complexity
of these architectures, which involves tens of layers and millions of
parameters, along with many tricks and hooks whose importance is
not well understood.

1.3 CONTRIBUTIONS

This dissertation investigates three questions related to the probability
density estimation problem with challenging characteristics.

In Chapter 2, we first tackle the problem of time-series forecasting
in the Gaussian case, under long-range dependencies assumptions.
We show that one can exploit priors on the autosimilarity of the
autocovariance function in order to make the estimation tractable, by
projecting the past of the time-series on adapted subspaces.

We then look for assumptions on signals which allow non-linear fore-
casting algorithms to beat linear forecasting methods. Time-frequency

11
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sparsity is identified as such a prior: we propose in Chapter 3 an
algorithm exploiting this property and relate it to neural networks
with one hidden layer.

Chapter 4 investigates the problem of generating time-series under
the assumption of non-Gaussian sparse time-frequency distributions
with long-range dependencies. We show that these assumptions allow
to explicitly design a deep generative network tackling the problem in
a tractable fashion.

Chapter 5 concludes this dissertations and discusses future perspec-
tives.

1.3.1  Foveal wavelets for long-range dependencies in the Gaussian case

In Chapter 2, we first consider the problem of forecasting a station-
ary centered Gaussian process X. Given a future lag A > 0, this
boils down to the estimation of the conditional probability density
px[x(t+ A)|X (< t) = x(< t)]. By stationarity, to simplify notations,
we set the variable f at 0 in all subsequent equations.

Insofar as the time-series is stationary and Gaussian, it is sufficient
to estimate the conditional mean E[X(A)|X (< 0)]. Further, linear esti-
mators of this conditional mean are optimal in the mean-square error
sense. Therefore, the forecasting problem consists in building a linear
estimator X(A) = aTX(< 0), where a is a vector. The quality of this
estimator is measured by the mean-square error E|X(A) — X(A)[%.

Under short-range dependence assumptions, the whole past X(< 0)
can be replaced with negligible error by the vector [X(—S),..., X(0)]
of size S + 1, where S is the typical length of correlations in the time-
series. Provided that the time-series is much larger than S or that one
has access to multiple independent realizations of the process, the
estimation problem becomes tractable.

Instead, we assume that the process X has long-range dependen-
cies: there exists an exponent f > 0 such that the autocovariance
vx(t) = Cov(X(0),X(t)) behaves as a power-law at large times:
vx(t) = O(|t|=P). As a consequence, one cannot neglect correlations
at long intervals. The fractional Gaussian Noise (fGN) is a well-studied
closed-form model for these time-series [DOTo3]. In this context, we
investigate which linear representation of the past X (< 0) allows
us to make the estimation problem tractable while leading to low
forecasting error.

Previous works have shown the adequation of wavelet representa-
tions for long-range dependent processes [AVFg8]. A wavelet family
{W¥jn}jn is defined by the dilatations and translations of a single
mother wavelet i of 0 mean:

Pin(t) = 27129277t —n) . (1.11)
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Thanks to their vanishing polynomial moments, wavelets transform
long-range dependences into short-range ones [DOTo3]. It is therefore
tempting to use wavelets to represent the past X (< 0) as (X(< 0), ;).
However, save for the Haar wavelets, standard wavelets are smooth
and the values at the borders of their support very close to 0. Since
wavelets are not allowed to access future values, a wavelet representa-
tion of the past would lose the values closest to present X (0), X(—1), ...
Insofar as these values have the largest correlation with the value to
predict, this leads to poor forecasting results.

The case of Haar wavelets reveals a key property of long-range
dependent processes. The covariance between the target value X(A)
and past values X (< 0) admits a sparse representation in the Haar
basis. The most important coefficients are those related to wavelets
closest to the temporal singularity X(0), at all scales. This is a conse-
quence of the autosimilarity of the underlying stochastic process: a
downsampling X (t) = X(2t) does not change the exponent g such
that 7, (1) = O(|[#).

We call the set of Haar wavelets closest to the present the foveal Haar
family. Indeed, this family spans a set of functions with a resolution
decreasing exponentially as one moves away from the present value.
Such a behavior is observed in the retina, where the density of cones
decreases exponentially around the center, called fovea, hence this
name [Pur+o1].

Our main contribution in Chapter 2 consists in introducing a new
family of wavelets which are more flexible than the foveal Haar family:
the foveal wavelets. These wavelets are inspired by a previous wavelet
construction [Malos], but they are simpler in their design and easier
to implement, at the expense of orthogonality. These foveal wavelets
are defined by the dilations of a family of functions at a single scale
195" , .

yjt =272 (1.12)
The family ¢’ consists in polynomials modulated by a fixed causal
window. By construction, the set of the foveal wavelets at all scales
{l[)}" }jm<m captures the most important coefficients in the covariance
structure of the process X, thereby leveraging the long-range depen-
dent prior. In order to match complex covariance structures, it is
possible to increase the number M of functions at each scale, thereby
filling a larger space while keeping a similar temporal support.

Numerical results on synthetic and real time-series demonstrate
an improvement in the estimation accuracy with respect to the linear
baseline. Indeed, the approximation error of foveal wavelets is almost
unchanged, but its estimation error reduces because there are fewer
coefficients to estimate.

13
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1.3.2 Prediction of sparse time-frequency processes

In Chapter 3, the problem of forecasting stationary time-series is
considered. In the Gaussian case, on which focus has been given in the
previous chapter, it is sufficient to consider linear estimators of future
values. In many cases, it turns out that linear estimators are robust
baselines very difficult to improve significantly. This is notably the
case in finance, despite the non-Gaussian behaviors mentioned in 1.2.1.
It is therefore legitimate to investigate which priors allow non-linear
predictors to achieve a prediction error substantially lower than linear
predictors.

In signal processing, the assumption of a sparse decomposition
of the signal has allowed non-linear algorithms to improve over lin-
ear ones in many tasks, for instance denoising [Fev+08] or inpaint-
ing [Adl+12]. This sparse prior is empirically valid for audio signals
with time-frequency dictionaries [Malo§].

Neural networks have recently attained state-of-the-art performances
in modeling audio signals. The best performing networks, such as
WaveNet [Oor+16], use an autoregressive formulation which focuses
on modeling px(x(t+1)|X(< t) = x(< t)). Due to the sheer size and
complexity of their architectures, understanding the operations per-
formed by these networks is challenging.

In order to simplify these architectures, we focus on the simplest
non-linear neural network, a multi-layer perceptron (MLP) with one
hidden layer [GBC16]. We empirically show that this neural network
is able to perform better than linear predictors when forecasting
processes which are sparse in time-frequency dictionaries.

Based on this observation, we investigate how the sparse time-
frequency prior can be harnessed for forecasting in a principled fash-
ion. A detailed analysis of the weights of the MLP reveals that it
actually performs a time-frequency decomposition of the past X(< t)
on time-frequency atoms, and recombines the coefficients of this de-
composition for forecasting.

Using a simple cosine model, we explain this fact mathematically.
A simple method to forecast a time-series made of a cosine function
oscillating at a fixed frequency w consists in extracting the local phase
wt + ¢ and increasing the phase by wA in order to reach the adequate
value: this last operation can be performed linearly by using complex
numbers. In order to accurately estimate the local phase, one must take
into account the causality constraint and therefore window the past.
For a time-series containing a few frequential components, one can
use this idea to obtain a non-parametric forecasting method. It consists
in first decomposing the time-series onto a time-frequency dictionary,
then using the resulting components which contain the local phases
to get a forecast of each component, and eventually summing them to
obtain a prediction by linearity.
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We introduce a non-linear forecasting algorithm relying on this
idea, with adapted time-frequency dictionaries, to predict sparse time-
frequency processes. It is extended in a multiscale fashion, using
multiple windows of the past, in order to accommodate processes
which are more complex than a pure cosine function. The resulting
predictor resembles a multi-layer perceptron, but it can be well un-
derstood. Numerical results on synthetic and real data show that this
method reaches similar results as the perceptron, which validates our
simplification.

1.3.3 Sparse time-frequency time-series generation

We consider the problem of audio time-series generation, which con-
sists in building an estimate px of the probability density function px.
The time-series we consider follow a non-Gaussian distribution, as
they admit sparse time-frequency distributions, and have long-range
dependencies, as explained in the previous section. Without any ad-
ditional priors, this estimation problem is extremely difficult, due to
the large dimension of the space on which the process is defined.
Deep neural networks provide outstanding generation results to this
problem [Oor+16; Meh+17], but it is unclear which assumptions on
the data they actually make to circumvent the curse of dimensionality.
Chapter 4 investigates which priors on audio signals can be used so
as to estimate px in a tractable fashion.

The solution we introduce adapts the framework proposed for im-
ages in [AM18b]. We propose an implicit generative model obtained
by sampling a random latent variable Z with a white Gaussian distri-
bution pz, and applying a non-linear transform G such that X = G(Z)
is a generated signal. Mathematically, the modeled probability density
Px is the push-forward of the latent probability density pz through the
generator G: px = G,pz. We use an autoencoder architecture which
relates the latent variable Z to the original signal X with an encoder ®.

Since both Z and X are defined on large-dimensional vector spaces,
the curse of dimensionality prevents the training of the encoder and
the decoder to match the respective probability densities pz and px.
Instead, we use priors on the signals to define a fixed encoder such that
the signals X are mapped to approximately Gaussian white noise vari-
ables ®(X). The existence of a sparse time-frequency decomposition,
perceptual stability to time-frequency deformations and decorrelations
at long scales are priors which are used for this purpose. The resulting
encoder consists in a scattering transform, followed by a whitening
operator which removes the covariance structure.

The generator G we propose is a deep causal convolutional neural
network. In order to avoid using probability distributions, G is trained
to invert the encoder on examples. This is a difficult problem for
a network with a finite number of neurons. We propose to use an
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adequate scattering norm to solve this inverse problem, in order
to focus on the content which is perceptually important. Further,
in order to control the behavior of the network at generation time,
we introduce a moment-matching loss which loosely controls the
scattering moments of the generated samples.

The resulting deep generative network G is able to map latent Gaus-
sian variables Z to new realistic signals of speech and music. We show
that by crafting the encoder to be stable to time-frequency deforma-
tions, the resulting generator can transform low-level attributes of
music, such as pitch, with a simple linear interpolation in the latent
space. The samples do not reach the quality of state-of-the-art ap-
proaches, but these results pave the way for a simpler approach to
sample complex probability distributions in a tractable and explicit
fashion.
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In this dissertation, the first topic we tackle is time-series forecasting.
In particular, this chapter is concerned with linear autoregressive time-
series prediction, with a focus on long-range dependent time-series.

Long-range dependent time-series are time-series such that the
correlation between two points decreases slowly, typically as a power-
law, with respect to the temporal gap between these points. As such,
it implies that one should take a look at a very large past in order to
make a precise prediction of future values. However, in the context of
a finite time-series, increasing the past size also leads to an increase in
variance. It is thus necessary to consider a representation of the past
of the time-series to circumvent these problems.

In this chapter, we investigate how to represent long-range depen-
dent time-series for forecasting applications.

Linear autoregressive forecasting methods consider a past size trun-
cated up to a certain point. This basic representation is suitable for
many applications with short-range dependencies. On the contrary,
in the case of long-range dependencies, multiple works have studied
better suited representations. In particular, wavelet decompositions
have emerged as an adequate representation for these series [DOTo3].
Thanks to their vanishing moments, wavelets reduce long-range depen-
dent processes to short-term dependent processes, thereby simplifying
estimation procedures. However, these representations are not directly
amenable to forecasting applications due to causality constraints.

Despite the apparent simplicity of the topic, this problem reveals
simple principles which structure the problem: causality and foveality.
Causality refers to the fact that we cannot access future values to
perform the prediction, thus leading to a “singularity” at the present.
Combined with the auto-similar behavior of long-range dependent
time-series, this singularity will lead us to define a foveal representa-
tion, i.e. a multiscale representation centered around this point whose
resolution diminishes as the distance from the singularity increases.

We can summarize the contributions of this chapter as follows. We
introduce a general class of representations of the past of the time-
series, the foveal wavelets. These foveal wavelets are adapted to the
causality and long-range dependent constraints, and are thus suitable
for forecasting applications.

This chapter is organized in four sections. In Section 2.1 we review
and formalize the linear prediction task in a given representation for
a long-range dependent process. Section 2.2 we review the wavelet
tool used to represent long-range dependent processes, and highlight
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their limitations for forecasting applications. In Section 2.3, we de-
velop the representation proposed, namely foveal wavelets. Section 2.4
experimentally validates the use of this representation for forecasting
applications.

2.1 LINEAR FORECASTING

In this section, we formalize the notion of the representation of
time-series in the linear forecasting case. Building on standard time-
series and supervised learning tools, notably the Yule-Walker equa-
tions [BD9g1] and the bias-variance trade-off [HTFog], we express a
criterion which measures how good a subspace is to represent the past
of a time-series for forecasting.

2.1.1 Linear estimation in a basis

2.1.1.1 Framework

GAUSSIAN STOCHASTIC PROCESS Let (X(f));ez be a discrete real-
valued stochastic process. We assume that X is stationary, has zero
mean, and has a Gaussian distribution. Let us denote its autocovari-
ance function as

rx(u) == Cov(X(t), X(t+u)) =E [X(t)X(t+u)], (2.1)

where the right-hand-side quantity is independent of ¢ by stationarity.
To alleviate notations when the context is clear, we will drop the
subscript X and simply write yx = 7.

FUTURE VALUE ESTIMATOR  We consider the linear estimation of
future values X(t + A) of the process from its past values

X(t)

X(t—1)

X(S t) = <X(S))t—1’<s§t = eR" , (2.2)

X(t —.r—i- 1)

restricted to a maximal lag T € IN* to avoid considering infinite vectors.
It will be convenient to view the collection X(< f) as a vector in R”.

Let us denote the linear estimator of X(t + A) from its past with the
following notation:

71
aTX(<t) = Y a(u)X(t—u) = X*a(t), (2.3)
u=0

for some a € R". We ignore biases thanks to the zero-mean assump-
tion.
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Notice that « is interpreted both as a vector, with which we per-
formed a dot product with the vector X(< t), and as a causal filter
(a(u))yez, with a(u) = 0 if u ¢ [0, 7 — 1]. The filter notation stems
from the stationarity of the process X, but the dot product notation
will be convenient to express restrictions to subspaces.

SUBSPACES OF THE PAST In this framework, we restrict the fore-
casting coefficients a to a vector subspace V of dimension p of the
ambient space R*. Let us stress that we view V as included in R*
through the canonical injection. Therefore, any vector a € V satisfies
a € R7. In particular, the scalar product a’ X(< t) still makes sense
for « € V, even if the dimension of V is lower than the ambient space.

In this chapter, V will always correspond to the span of a given
matrix D € R™*? with p < 7, so that any vector « € V can be written
a« = Dp for some B € RP. While this latter view is closer to the
numerical aspects of this work, we prefer to focus on the subspace V
than D spans and not D itself in order to avoid cumbersome matrix
notations.

Instead of using matrices generating V, we will often use projectors
on V to simplify equations. Let Py : R" — R™ denote the orthogonal
projector on V with respect to the canonical scalar product. Note that
because of the convention with respect to the canonical injection, Py
is self-adjoint,

P$ = Py. (2.4)

By definition of Py, it holds that
Va €V, aTX(<t) = aTPyX(< 1), (2.5)

Therefore, performing a prediction with coefficients & € V implies
that the knowledge of the past X(< t) is restricted to the subspace V.
The subspace V encodes a prior knowledge on the time-series about
which part of the past is useful to predict future values.

We will often consider a family of such subspaces, {Vp}p, indexed
by their dimension p and partially ordered for the inclusion. The
parameter p will allow to tune a trade-off between different types of
errors.

As an example of such a family, let us introduce the autoregressive
(AR) subspaces A, for 1 < p < 7. They are generated by the Dirac
delta functions J, located at u foru =0,1,...,p — 1

Ap = Span ({n}o<n<p) (2.6)

The family {Ap}1<p<< is ordered, as A, C A, 1. Projecting X(< t)
over A, is equivalent to keeping X(t —s) for 0 < s < p. In other
words, this is an autoregressive forecast with p past values.

The autoregressive subspaces A, will serve as a baseline for linear
forecasting. Indeed, any process with a continuous spectral density can
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be approximated arbitrary well by an autoregressive process, provided
p is large enough [BD9g1, Chapter 4].

Finally, let us introduce the notion of a temporal support of a
subspace V C R". This temporal support corresponds to the minimal
integer 7, such that all vectors of V are supported in [0, ..., T;):

T, = min{g € N|Va € V,Vu > q,a(u) = 0}. (2.7)

In general, the temporal support is different from the dimension of a
subspace. For instance, consider the subspace generated by a single
vector 1 € R™:

71

V = Span (Z (5u> , (2.8)

u=0
where J,, stands for the Dirac delta function. In this case, the temporal
support of V is T, while the dimension of V is equal to 1.

2.1.1.2 Forecasting in a subspace

We formulate the mean-square estimation problem of X(t + A) from
the projection of its past lags X(< t) on a subspace V.

YULE-WALKER EQUATION Let Py denote the orthogonal projector
on V with respect to the canonical scalar product. The optimal fore-
casting coefficients corresponding to this linear estimation are solution
of the optimal mean-square error (MSE) forecasting problem:
2
a;:a%HMJﬂXa+A)—MquS0‘
aeV

(2.9)

ay; is the vector of V for which the differential of this quadratic form
is 0. Since one can explicitly compute its gradient as

V. (E[X(t+4) = TPy X(< H*) = PVE [X(< HX(<1)T] Pla

—PyE[X(t+A)X(L )],
(2.10)
the minimizer a7, is characterized by the relationship

PyTPyay, = Pyya, (2.11)
where
['={y(u—0)}ocuocr € R™T (2.12)
is the covariance matrix of the past X(< t) and
o = {v(u+A)}ocucr €RT (2.13)

is the covariance vector of the past X; and the future X(¢t + A). Equa-
tion (2.11) is called the Yule-Walker equation [BD9g1].
When V is equal to the ambient past space R", we simply write

ot = aRe (2.14)

to denote the optimal solution using all the past of size 7.
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CHARACTERIZATION WITH A PROJECTION Assuming that a* is
known, one can derive an alternative characterization of the restricted
solution aj, which will be useful to bound the mean-square error of
the associated estimator. To this end, we use the following result.

Proposition 2.1.1. For any a € RY, the mean-square error of the estimator
aTX(< t) is related to the mean-square error of (w*)T X(< t) through the
relationship:

E[X(t+4) —a’X(< ) = E[X(t+A) = («") X(< )P + [la” — alf

(2.15)
where || - || is the norm induced by the scalar product (u,v)r = u'To.
Proof. Let us decompose the left-hand side of (2.15):

E|X(t+A) —a'X(< 1P = E[X(t+A)]*—2a"B[X(t+ A)X(< 1))

+aTE[X(< H)X(< 1) a
= E|X(t+A)]?—2aTy5 +aTa  (2.16)

From this last equation, we get in the particular case of a*:
E[X(t+4) = (@)X = EX(t+48)—2(a") 7
+(a*) T
fvzm E|X(t+A)* — (&*)Tya (2.17)
Using the same argument,
l* = al[f = («")ya — 20T ya +a'Ta (2.18)
Summing (2.17) and (2.18) leads to (2.16), which proves (2.15). O

Thanks to Proposition 2.1.1, aj; is equivalently solution of the prob-
lem
&} = argmin ||a* — &/} (2.19)
aeV
As a consequence, aj; is the orthogonal projection of a* on V with
respect to the scalar product induced by I', which we note

wy = Pha* (2.20)

where P‘E stands for the projector on V with respect to (-, )1, which is
defined as:
PLz = argmin ||z — o||r. (2.21)
veV

This quadratic problem can be solved in closed-form, and the operator
P} is linear with respect to its input.

By orthogonality, we get a corollary which expresses the MSE of
an arbitrary vector « € V with respect to the MSE of the optimal
coefficients a* defined by Equation (2.14).
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Corollary 2.1.2. For any o € V, the mean-square error of the estimator
ol Xy is related to the mean-square errors of (a*)T Xy and ()T through the
relationship:

E|X(t+A)—aTX(<H]? = E[X(t+A)— (a)TX(<Lt)?

Hla* — a [[F + llay — allf

(2.22)

where || - || is the norm induced by the scalar product (u,v)r = u'To.

2.1.2  Empirical estimation problem

We formulate the estimation problem in a subspace V' in the empirical
setting, where the autocovariance function 7 is unknown.

Let us assume that a single time-series {X, () }1<¢<7 of finite size
T, which is a realization of the original process X, is observed. Let T,
denote the temporal support of V defined in Equation (2.7), which
corresponds to the maximal temporal lag spanned by V.

With this notation, the empirical estimation of (2.9) exploiting all
the available data points is:

arg min 2

acV t=T;

o(t+A) —aTPyX,(< ) (2.23)

Similarly to (2.11), the minimizer is characterized by &y € V and the
empirical Yule-Walker equation:

PyTPlay = Pyya (2.24)

where the estimates T and 7, are given by:

f(u,v) _ mz Xo(t—u)Xo(t—v) if 0 < u,vgrs(izg,)

0 otherwise.

T L Xo(t+ A)Xp(t—u) if0<u <1,

Talu) = (2.26)

0 otherwise.

Let us note that the optimal coefficients &y are a random vector
which depends on the observation (X,(t))i1<t<7. Conditionally on
this observation, Corollary 2.1.2 allows to express the out-of-sample
mean-square error of the estimator ayTX (< t), i.e. the MSE for a new
realization independent of the observations, as:

E[[X(t+8) - &X(< OP|X| = EIX(t+8) = (@)TX(< 1)

+lla* — apllf + [lag — vl -
(2.27)
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Taking the expectation over the random observations X,, the complete
MSE of &, X; has the following decomposition:

E[|X(t+8) —afX(<)P] = EX(t+A) - (@) X(<H)P

Minimal error

+ Jla* —aplf +Elay —av|}

‘,—/ h,—/

Approximation error Estimation error
(2.28)
The minimal error is the error attained in the full information setting.
The approximation error comes from the restriction to the subspace V.
The estimation error is a deviation from the optimal predictor in the

subspace, which comes from the randomness of the observations.

2.1.3 Approximation and estimation control

We now explain how to control the approximation and estimation
error terms in decomposition (2.28) with the subspace family {V}},.
On the one hand, we introduce a criterion C(V) which bounds the
approximation error. On the other hand, the dimension p of the sub-
space controls the estimation error, provided the temporal support of
the subspace is small compared to the total length of the time-series T.

2.1.3.1 Approximation error

We show that the approximation error diminishes when the dimension
of the subspace V grows. We bound the approximation error with the
approximation error of the covariance vector y, in V with respect to
the scalar product induced by I'.

MONOTONY  Let V), V,y be subspaces such that p < p" and V, C V.
Because of the inclusion, we have that

VycV, (2.29)

where V+ denotes the orthogonal subspace of V with respect to (-, -)r.
Equation (2.20) and Proposition 2.1.1 imply that

* * 2 * * 12
[ _“VP/HF < |a —‘Xv,,Hr (2.30)
Thus, the approximation error diminishes with the dimension p.
UPPER BOUND Let us now consider a single subspace V. Let us

introduce the orthogonal projector P‘r/ . on the orthogonal of V with
respect to the scalar product (-, -)r, defined as

P‘SL =1d— P‘l;, (2.31)

where P}, is defined by Equation (2.21). This operator allows to upper
bound the approximation error, as stated in the following proposition.
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Proposition 2.1.3. For any subspace V, autocovariance <y and future lag A,
let us define the quantity

C(V) = lla*[Il(Py) vall, (2.32)

where a* is the optimal forecasting coefficient in the ambient vector space R®.
Then the following upper-bound holds:

la* — ay [[F < C(V). (2.33)

Notice that C(V) implicitly depends on 7 and A, but we drop these
dependencies for simplicity. The quantity || (P‘r/ )Ty, ]| measures the
residual of the future coefficient in the orthogonal of V, with respect
to the scalar product of V. This quantity appears naturally given the
structure of the Yule-Walker equation (2.11).

Let us note that the upper bound on the approximation relies on
the standard ¢? norm ||a*|| of the optimal prediction coefficients. It is
reasonable to assume that this quantity is bounded. Otherwise, we can
add an additional regularization parameter to control it if necessary.

Proof. Let us decompose in detail the approximation error:
l —apllf = (¢ —ap) T(a" —ay), (234)
= (" —ay)" (s —Tay)), (235)

where we have exploited I'n* = 4.

Since a7, is equivalently characterized by (2.20), it holds that a* — af;
belongs to the orthogonal subspace V- of V with respect to the scalar
product induced by I'. As a3, € V, by orthogonality it holds that

(0" —ap) Tay = (&* —ay,ay)r =0. (2.36)
Further, Equations (2.20) and (2.31) imply
ot — = P‘Eﬂx*. (2.37)
Combining these last two equations, we finally obtain
l* —ayllf = (a")"(Py.) 7a. (2:38)

Thanks to the Cauchy-Schwartz inequality in the canonical scalar
product, we finally derive the desired bound:

lo* — e [IE < [la ||| (Py.) " vall- (2:39)
cv)
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2.1.3.2 Estimation error

When it comes to the estimation error, one knows that in the case of
autoregressive moving-average (ARMA) processes [BD91], asymptoti-
cally as N — +oco,

E||&y — ay|r — N~ 'Tr(PyTPy) (2.40)

This last quantity is non-decreasing with respect to p, the dimension
of V, hence the asymptotic growth of the estimation error with p.
Therefore, p represents a trade-off between approximation error (small
p) and estimation error (large p).

In the remaining of this chapter, we will be interested in long-range
dependent processes, which, as explained later, exhibit very particular
statistical properties. In this case, it becomes much more difficult to
derive similar asymptotic estimations, see e.g. [FT; KS12].

As a rule of thumb, we therefore control the estimation error by
bounding the dimension p of the subspace V.

2.2 WAVELET BASES

In this section, we introduce wavelet bases. We analyze the subspaces
they define with respect to the forecasting criterion derived in the pre-
vious section. Because of the autosimilarity of the covariance function
of long-range processes, a particular subspace emerges: the so-called
foveal subspace, spanned by all the dilations of the wavelet closest to
the present time t, without translations.

The number of vanishing polynomial moments of a wavelet is an
important quantity which controls the quality of the approximation in
this subspace. We stress that for forecasting purposes, the causality
constraint forces to use discontinuous wavelets, in other words practi-
cally nothing but the Haar family. This will motivate our construction
of a richer foveal family in the remaining part of this paper.

2.2.1  Wavelets and Long-range dependent processes

2.2.1.1 Wavelets

Wavelets are designed to provide a multiscale representation of a
signal [Malo8]. They are defined thanks to a mother function i by
dyadic dilations and translations:

1 —n
bl = =0 () 40

A low-pass function ¢ is associated to 1, and we consider similar
dilations and translations ¢; , of this function. The low-pass function
¢ spans a given scale, while the wavelets characterize the transitions
between different scales.
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The regularity of a wavelet ¢ is measured by its number of vanishing
polynomial moments: it is the largest integer M such that

YO<n<M, /u”tp(u) =0 (2.42)

The oldest and simplest example of wavelets is the Haar family,
which has only M = 1 vanishing moment. In this case, the mother
wavelet is piecewise constant:

1 ifo<u<y,
pu) =4 -1 ifl<u<i, (2.43)

0 otherwise.

as well as the associated low-pass function

P(u) = Ljgqy(u). (2.44)

Together with the low-pass ¢, the Haar family defines an orthonormal
basis of L?(]0,1]). There exists more complex orthonormal wavelets,
such as those of Battle-Lemarié [Bat87] or Daubechies [Dau88].
Wavelets can be discretized on a regular grid u € Z. After discretiza-
tion on the interval [0, 2J ), one obtains a basis with the Haar family

made of the atoms {{9; . }o<,<o-i}1<j<j U {¢;} where

27172 2dn<u<2n+4271
Yin(u) = {2772 2n4201<u<2in+1), (245
0 otherwise,

9 = 27171, (2.46)

2.2.1.2 Long-range Dependent Processes

Long-range dependent time series have been introduced to model
natural processes in fields as diverse as hydrology, telecommunications
or finance [AV98; DOTo3; Samoy]. We now review their important
properties.

A discrete stationary time series (X(t));ez exhibits a long-range de-
pendent behavior or has a long memory if its autocovariance function
7 decreases so slowly that it is not summable:

ZZ |7 (u)| = 400 (2.47)

Typically, 7(u) behaves asymptotically as a power-law: there exists
B <1and c; > 0 such that

+oo _
[y ()| "= ey ful P (2.48)
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In the Fourier domain, under mild conditions on  [DOTo3], this
translates to a divergence of the spectral density at low frequencies,
while remaining overall integrable. In other words, there exists 0 <
v < 1 and ¢; > 0 such that:

. 0 -
9 (w)] “R7 ea few] (2.49)

The fractional Gaussian noise (fGn), defined as the increment of
the fractional Brownian motion (fBm), is a well-studied long-memory
process that we shall use as a simple mathematical model of long-
range dependence [DOTo3]. The fGn is a centered stationary Gaussian
process X (t) whose normalized autocovariance function -y (u) satisfies

() = Cov(X(1), X(t — ) = 5 (lu+ 1P 4 |u— 1P 2 [u)

(2.50)
The Hurst exponent 0 < H < 1 governs the memory of the time series:

() ST H2H = 1) [u (2.51)

This proves that ), |y(u)| is summable if and only if H < 1/2. There-
fore, the fGn has a long-memory if 1/2 < H < 1. We will use this
range for synthetic explorations.

Long-range dependent processes have statistical properties which
are different than short-memory ones: estimators typically suffer from
a larger variance. For instance, the convergence of the standard mean
and covariance estimator from a single time-series is qualitatively
slower than in the short-memory case [Berg4]. Instead of the rate
of convergence in O(N~1/2) which are usually obtained for these
estimators, one gets O(N *(PH)) for the fGn if H > 1/2 [Hoso6].
Since linear forecasting methods rely on such estimates, it becomes all
the more important to reduce this variance.

2.2.1.3 Wavelets and long-range dependent processes

Wavelets are well suited to represent and study long-range dependent
processes, as has been noted since long, see e.g. [Flag2; DOTo3]. This
section reviews the main properties of the wavelet coefficients of long-
range dependent processes. This will motivate our use of wavelets for
forecasting purposes.

Wavelets transform long-range dependent processes into short-range
ones along the temporal axis. Indeed, let X be a long-range dependent
process and let us filter it with a wavelet ¢; at a given scale 2/, resulting
in a new process X * i;. The power spectrum of the filtered process
Yxxy; can be expressed as

Fxup; (@) = Tx ()| Pj(w) % (2.52)
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The dilated wavelet ¢; has the same number M of vanishing moments
as the original wavelet ¢. The number of vanishing moments translates
into a regularity at low frequencies [Malo8] as

§i(w) =0 0(wM). (2.53)

Plugging the behavior of the original long-range dependent process X
at w = 0 expressed in Equation (2.49), one gets

Fxap, (@) “Z° O(w™M), (2.54)

Since M > 1 and v < 1, the filtered process X x 1; has no singularity
at the origin. As a consequence, it has a short memory, contrary to the
original process.

Figure 2.1: Covariance matrix I' of a long-memory process (fGn, H = 0.9) in
the Dirac basis (left) and Haar basis (right). The covariance matrix
is sparse in the wavelet basis.

Figure 2.1 illustrates this short-memory effect. On the left, the co-
variance matrix I'(u,v) = yx(u — v) of the fractional Gaussian noise
(H = 0.9) is displayed in the canonical Dirac basis. This covariance ma-
trix is dense because of the slow decay of correlations. On the right, the
same covariance matrix is displayed in the Haar basis: each diagonal
block corresponds to the intra-scale covariance matrix of {(Xt;,) }»
for varying j, while off-diagonal blocks correspond to inter-scale co-
variance matrices. In all these sub-matrices, off-diagonal coefficients
quickly vanish as a consequence of short-memory. Inter-scale interac-
tions tend to be more important than intra-scale interactions.

One could be tempted exploit the resulting sparse structure to
compress the covariance operator in a wavelet basis, by a priori thresh-
olding small coefficients [BCR91]. Indeed, this would result in little
approximation error, while the total number of parameters would
shrink. One could then solve the Yule-Walker Equations (2.24) with
the approximated operator.

Such an approach would completely ignore the structure of the
forecasting problem, which is mainly governed by the interaction
of I' and <y, defined in Equations (2.12)-(2.13). In what follows, we
will therefore follow the approach outlined in Section 2.1, where
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we directly restrict the subspace of coefficients with respect to this
interaction. In particular, this particular structure of the forecasting
problem will lead us to keep the family of wavelet coefficients at
various scales, but at a fixed position. The resulting subspaces will be
called the foveal subspaces.

2.2.2  Foveal cone

We now analyze the subspaces generated by a wavelet family for
forecasting purposes. In light of the forecasting error decomposition
performed in Section 2.1, a family of subspaces naturally emerges: the
foveal subspaces. These subspaces are generated by wavelets closest to
the present boundary at all scales. The functions belonging to these
subspaces have a resolution which decreases exponentially as one
moves away from the present ¢, like the concentration of cones in the
retina, hence their name [Pur+o1; Bur88; Malos].

Our exposition is organized as follows. We first perform a numerical
and mathematical analysis of the decomposition of 5 in the Haar
basis. A foveal cone emerges, which we formalize with the notion
of Haar foveal subspaces. A comparison of the upper bound on the
approximation error between Haar foveal subspaces and autoregres-
sive ones shows that the former have a much lower approximation
error on the fGN. Eventually, an empirical forecasting experiment
shows the favorable behavior of Haar foveal subspaces with respect to
autoregressive ones.

2.2.2.1 Insights of an adapted foveal decomposition

A well-chosen subspace V for forecasting purposes should yield small
approximation and estimation errors. Intuitively, the estimation error
is controlled by the dimension of V, while the approximation error
is controlled by the decomposition of 7y (2.13) over V, as a result
of Equation (2.33). We now look at the decomposition of y, over
subspaces generated by the Haar family.

ASYMPTOTIC ANALYSIS OF 7y  Let us first perform a back-of-the-
envelope calculation to see how the scalar products (; ,,, 7a) behave
for Haar wavelets ; ,. We only consider wavelets whose support is
included in [0, +00).

Let us assume that we are in the asymptotic regime where there
exists ¢ > 0 and 0 < v < 1 such that

Ya(u) =y(A+u)=c(A+u)" (2.55)

Further, let us focus in the case where A is small with respect to u on
the support of ¢; ,, so that we perform the crude approximation

(A+u) " mut, (2:56)
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Figure 2.2: Foveal cone of width K = 1. Functions from the Haar family
belonging to the cone are depicted in full curve, while the dotted
wavelets are eliminated. The present is on the left, and one goes
into the past on the right.

Under these assumptions, ya (#) =~ cu~". Let us now state a simple
asymptotic analysis of the scalar product of u ™" and wavelets ¢; ,, in
the continuous-time setting.

Proposition 2.2.1. Let ¢ be a wavelet with M vanishing moments and with
a bounded support included in [0, +00). Let 0 < v < 1. For all n € IN*, one
has

+oo ,
/ U= i (u)du = O (a]n’(”M)) , (2.57)
0
where a = 227, with a bounding constant independent of j and n.

This proposition is proved in Appendix A. Under the harsh assump-
tions we have made, the scalar product (¢, 7a) roughly scales as the
right-hand-side of Equation (2.57). Importantly, the decreasing rate in
n, v+ M is independent of j. It is larger than the one of the original
process since M > 1, thanks to the shorter memory of wavelet-filtered
processes.

As a consequence, the renormalized decomposition coefficients
satisfy

<1/Jj,n/’)’A> - n*(”M), (2.58)
($j0,va)

for all j. If these renormalized coefficients are thresholded with respect
to any value, one ends up with a family of coefficients (4;,, va) for
all j and for all 0 < n < K, for a certain K > 0. We call the resulting
set of coefficients the foveal cone of width K. Figure 2.2 depicts the
Haar wavelets belonging to the foveal cone of width K = 1.
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Figure 2.3: Covariance vector between the past and future value 5 (1) (top)
and its decomposition in the Haar family (bottom). The horizontal
axis corresponds to the distance to the past, with the present on
the right. The foveal cone corresponds to the coefficients of large
magnitude.

EMPIRICAL DECOMPOSITION OF Y5 In the previous paragraph,
a rough mathematical analysis of v has shown the emergence of a
so-called foveal cone {j} x {0 < n < K}. We now look at numerical
decompositions of 74 on the discrete Haar family {¢; . }; . U {¢}
to see if these subspaces do indeed appear in the discrete empirical
setting.

Figure 2.3 shows the decomposition of the vector A (u) in the Haar
family for the fGN with H = 0.9 and A = 10. The image displays the
decomposition coefficients lp;n’m with j along the y-axis and n along
the x-axis. The coefficients are displayed as a colored checkerboard,
with the width of each box corresponding to the temporal support of
the corresponding wavelet.

One can see that the coefficients {gbjT,n'yA }io<n<k for each K are the
ones concentrating most of the energy of -y, up to a scaling factor. This
is another evidence of the relevance of the foveal cone for forecasting.

2.2.2.2  Haar foveal subspaces

In the previous section, we have shown that the energy of 7y, in
the Haar family is mostly concentrated in the wavelets nearest the
temporal boundary. We now provide a formal definition of this set of
coefficients in the discrete setting.

HAAR FOVEAL SUBSPACE Let us consider a maximal scale 2/ such
that 2/ < 1, so that the support of the Haar wavelets is lower than
the maximal past. The Haar family at scale 2/ consists in the wavelets
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{¥jn}1<j<y (2.45) along with the low-pass ¢; (2.46). The Haar foveal
subspace of cone width K and scale parameter | is defined as the set of
wavelets closer to the temporal boundary, up to a maximal translation
K, with all scales up to 2/

Hy,; = Span <{{’~Pj,n}0§n<min(l<,27*f)}1§j§] U {<PJ}> : (2:59)

The technical term min(K,2/~/) ensures that all functions of H
are supported in [0,2/). When the parameters are large enough, one
recovers the whole space of support 2/:

]

H2]—1J = RZ . (2.60)

The family { Hk j } k,j is induced with a partial order for the inclusion.
Indeed, if K < K’, Hx; C Hgs,;. Moreover, if | < ], then Hx; C Hg .

FOVEAL SPACE When | — +oo, the limiting subspace Hxo C
(%(IN) defined by the relation

Hg o = Uf:i Hg (2.61)

satisfies the following property:
Vf € Hkeor f (EJ) € Hro. (2.62)

Equation (2.62) is a discretized version of a property called foveality,
which characterizes a subspace V of L?(IR) verifying [Malo3]

VfevV, f (E) ev. (2.63)

The finite-dimensional subspaces Hg j satisfy a weaker property than
Equation (2.62):

Vf € Hy such that Supp(f) C [0,2/71), f (bJ) € Hxj. (2.64)

Nonetheless, by analogy, we stick to the adjective foveal for these
subspaces.

2.2.2.3 Comparison of the Haar foveal subspaces and the autoregressive
subspaces

We now compare the Haar foveal subspaces Hk ; and the autoregres-
sive subspaces A, in terms of approximation power on the fGN, for
which the auto-covariance 7 is known (2.50).

Figure 2.4 compares the upper bound on the approximation er-
ror (2.32) for the Haar foveal subspaces Hg ; (2.59) and for the autore-
gressive spaces A, (2.6), for a fGN with H = 0.9 and A = 10 and
for | = 8. The horizontal axis corresponds to the dimension of each
sub-space, while the vertical axis is the ratio between the upper bound
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Figure 2.4: Upper bound on the approximation error C(V) (2.32) for the Haar
foveal subspaces H ; (2.59) and for the autoregressive spaces
Ay (2.6). The horizontal axis corresponds to the dimension of the
subspace, while the vertical axis corresponds to the ratio between
the upper bound C(V') and the optimal MSE. The dotted curve for
foveal Haar corresponds to the family { H ; }1<j<j, while the solid
curve corresponds to the family {H j}; <o, both for | = 8.

and the optimal MSE. A subspace V should achieve a value below 1
with as few parameters as possible. The blue curve corresponds to
the autoregressive subspaces, while the red curves to the foveal Haar
subspaces. There are two regimes for the Haar subspaces: the dotted
curve corresponds to the family with fixed cone width and growing
scale { Hy}1<j<j, while the full curve corresponds to a fixed scale and
growing cone width {Hg |} k.

We observe that for an similar dimension, C(Hkj) < C(A;). As a
consequence, the foveal Haar subspaces should be more adapted than
the autoregressive subspaces for forecasting purposes. Further, the
maximal scale 2/ allows the approximation error to diminish at a faster
rate than the past size p of the autoregressive subspaces.

We note in particular that for the subspace H; j, which has the same
temporal support as .A,;, the upper bounds on the approximation error
are almost equal. However, the dimension of Hj; is | + 1, whereas
Ay has dimension 2/, so we will expect the corresponding estimation
error to be much larger in the latter case.

Finally, the cone width K appears to have little effect on the approx-
imation error. We therefore only use K = 1 in the following.

2.2.3 Forecasting with the Haar foveal family

In the previous section, we have introduced the Haar foveal family,
which was motivated after an analysis of the decomposition of
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Figure 2.5: Evolution of the relative MSE (2.65) with respect to the temporal
support of the autoregressive subspaces {A,}, and the Haar
foveal subspaces {Hy j}1<j<;-

onto the subspaces induced by the Haar family. We now evaluate the
effectiveness of the foveal Haar subspaces { H; ;}; compared the base-
line autoregressive subspaces {A,}, on the f{GN model. Numerical
experiments show that {Hj ;}; achieve a smaller relative MSE than

{Ap}p-

2.2.3.1  Experimental setup

Let us introduce the relative MSE with respect to the optimal MSE
attained by a*:
CE[X(t+A) —alX P —E[X(t+ D) — ()X

relMSE(«) = E[X(t+A) — (@)X, (2.65)

The relative MSE measure the sum of the approximation and estima-
tion errors of coefficients a in a subspace V, in units renormalized by
the optimal MSE attained at a*.

We use time-series of length T = 10*, which are realizations of a fGN
of Hurst parameter H = 0.9. For each subspace V, which is either A,
or Hy,j for some p or ], we compute a numerical estimate of the relative
MSE with 100 independent realizations. We take | € {1,...,11} and
p € {2/}1<j<11. We restrict ourselves to a cone width K = 1 since a
larger cone only brings minor improvements.

2.2.3.2 Results

The evolution of the relative MSE with respect to the temporal support
of the subspace is represented in Figure 2.5. The foveal Haar subspaces
achieve a smaller relative MSE than the autoregressive subspaces.
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Indeed, for the foveal Haar subspaces, the minimum is attained for a
past size 2/ = 210 = 1024, corresponding to a space of dimension 11,
whereas it is attained for p = 128 in the autoregressive case.

These results were expected given the decomposition of the mean-
square error (2.28). Indeed, the foveal Haar family H; ; allows to span
a similar temporal support as A,; with a similar approximation error,
whereas the former has a much lower dimension. Therefore, the esti-
mation error of the foveal Haar family is lower than the corresponding
autoregressive spaces.

These experiments validate the choice of the foveal Haar family for
forecasting purposes on long-range dependent time-series.

2.2.4 Causality constraint

In the previous section, we have identified a class of subspaces gener-
ated by a family of dilations of wavelets, the foveal subspaces. Numer-
ical experiments with the Haar wavelets have demonstrated that their
forecasting performances compare favorably with respect to the au-
toregressive subspaces on a long-range dependent model, the f{GN. We
now investigate whether it is possible to use another mother wavelet
y for building such foveal spaces. To enlighten this choice, we list the
constraints that i should satisfy.

Figure 2.6: Closest wavelets to the present boundary on the left, with the
past on the right.

On the one hand, ¥ should be causal, i.e. ¥(t) = 0 for t < 0.
This constraint comes from the fact that we should not use future
information when performing a forecast. On the other hand, 1 should
take a non-zero value in 0. Indeed, index 0 corresponds to the value
which is temporally closest to the future, which we attempt to forecast:
among all past values, it should be the most correlated with the future.
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Both constraints imply that i should be discontinuous. As shown
in Figure (2.6), this rules out standard Daubechies wavelets. Insofar
as a discontinuity is necessary, we are left with nothing but the Haar
wavelets. Previous works related to forecasting with wavelets were
also led to the same conclusion, see e.g. [RSMos].

Haar wavelets obtain good forecasting performances on synthetic
time-series, but the foveal subspaces they generate may lack flexibility
for real time-series, as the cone width parameter K appears to have
little effect. In the remaining of this chapter, we therefore introduce a
new class of foveal wavelets, which should be more flexible than the
foveal Haar family.

2.3 FOVEAL WAVELETS

In this section, a new representation of the past of a long-range de-
pendent time-series for forecasting purpose is proposed, inspired by
previous works studying foveal spaces. The resulting wavelets are
foveal by construction, amenable to the causality constraint, and have
more flexibility than the Haar wavelets.

2.3.1  General principle

We first give a formal construction of the new foveal wavelets. Since
this construction relies on dyadic dilations in the spirit of the foveality
property of Equation (2.63), we use notations related to a continuous
time variable. Discretization issues are addressed in the next sections
for each particular family we build.

2.3.1.1 Strategy

Starting from a single causal function, which defines a window ¢°
at a base scale, its dilations 47? at all scales 2/ define a first foveal
subspace. To enlarge this subspace and recover useful information
that might have been lost, polynomial terms u"¢°(u) of increasing
order are added to the family at all scales in a foveal fashion. These
polynomial terms are designed so as to have vanishing polynomial
moments, leading to functions ¢;". Finally, we consider differences

between consecutive scales 2/ and 2/~! to increase the number of
vanishing polynomial moments, thus defining the foveal wavelets Pi

2.3.1.2 Formal construction

WINDOW FUNCTION Let 6 : RT — R™ be a non-increasing func-
tion, with at least an asymptotic exponential decay in +co. Based on 6,
we define a causal normalized window function

¢°(u) =co (0(u/2) — 68(u)), (2.66)
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Figure 2.7: Foveal wavelets {gb;?}ne {0,1,2) for a fixed scale 2/, Left: Indicator
wavelets. Center: Gaussian wavelets. Right: Exponential wavelets.

where ¢y > 0 is a normalizing constant ensuring ||¢°|| = 1. We then
consider dilations of this window for all j € Z:

¢7 (u) = 271729 (27T u). (2.67)

roLYNOMIALS To enlarge the space of functions spanned by {(p? Yiez,

we consider products of these functions with polynomials. More pre-
cisely, we define

¢ (u) = (2 akuk> ¢°(u), (2.68)
k=0
where the coefficients aj are specified by enforcing a vanishing moment
property:
“+00
Vpe{0,...,m— 1},/ tPe™ (t)dt = 0. (2.69)
0

Plugging Equation (2.68) into Equation (2.69) leads to a linear system
with m + 1 unknowns and m constraints. The constraints a,, > 0 and

™|l = 1 are further enforced so as to avoid ambiguities. This new
function {¢™} is in turn dilated at all scales j:
¢ () = 272" (27 u). (2.70)

DIFFERENCES IN SCALE At this point, we note that the order m = 0
has non vanishing moment, since ¢° does not flip sign. To increase
the number of vanishing moments of the elements of the family, we
consider differences between scales, following a method introduced
in [Malo3]

b
l/)]m = C?m(l)]m - ij(P]nill (2'71)
. b _
where the coefficients ¢}, ¢;,, are chosen such that cj,, > 0, ||1/J;” |=1

and ¢ has m + 1 vanishing moments. We call the functions ¢7" the
foveal wavelets.

FOVEAL WAVELETS In the continuous setting, we would consider
the foveal family {y}" ?GSZ’" My {gpim=M_ Tet V denote the span of
this family. It holds that

feV=f (E) ev, (2.72)
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which shows that V' is a true foveal space of functions [Malo3]. Note
that the idea of considering multiple mother functions is close to the
Alpert multi-wavelets [Alpg3], except that we only consider dilations
of these functions and no translations.

In the discrete setting, we bound the maximal and minimal scales
of the wavelet family considered. Let us therefore define the foveal
family F(J, M) with minimal scale 1, maximal scale 2/ and maximal
polynomial order M as

F(J, M) = {1052, U {gp =M. (2.73)

The associated foveal subspace is the span of F(J, M).

2.3.1.3 Link with previous foveal wavelets

Foveal subspaces were mathematically formalized in [Malo3]. In our
construction, we use the same basic principle for building a foveal
subspace by considering the dilations at all scales of a family of
functions. In particular, Equation (2.66) is adapted from [Malo3].

However, there are several differences between the foveal wavelets
we introduce and those proposed in [Malo3]. Indeed, we do not use
any orthogonalization procedure between scales: ¢ and ;' are not
orthogonal. Further, the procedure we use to generate the functions
¢;" with more polynomial moments is different than the one proposed.
Last, at a given scale 2/, we consider all the generating functions 1/1]’.“ for
0 < m < M, which have an increasing number of vanishing moments,
instead of keeping a single one.

2.3.2 Indicator window

2.3.2.1  Definition
In this section, we consider the simplest window function as the
building block of the foveal wavelets, which is the indicator window:

00 = 1. (2.74)

In this case, one can verify that

¢° =11, (2.75)

and therefore _
(P]O = 27]/2]1[2];1,2]‘}. (2.76)

We note that 4)]9 and q)]Q, have distinct supports if j # j'.

As a consequence of Equation (2.75), the functions ¢™, defined
by Equation (2.69), consist in an orthonormal family of polynomials
whose support lies in the compact interval [0, 1]. Therefore, the func-
tions ¢™ are affine transforms of the Legendre polynomials, which are
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an orthonormal basis of polynomials on [—1,1] [AS73]. As a conse-
quence, note that in this particular case the wavelets ¢/ and gb;-”/ for
m # m' are orthonormal. Figure 2.7 displays foveal wavelets ;" for
varying m.

2.3.2.2 Discretization

The procedure is summarized in Algorithm 1 in Appendix A.2.

CASE OF ¢  For each integer j > 0, let us define the dyadic integer
interval I; which supports ¢;" as:

0 ifj=0,
I = [ ] ' , J (2.77)
2/ —1,2/,...,2/F7L —2] ifj>1.

Since |I;| = 2/, in particular it is impossible to build more than 2/
free functions on I;. As a consequence, gb]m can only be constructed for
0 < m < 2/.1In cases where m remains smaller than 10, this limitation
is only felt for the small scales j < 3.

For each separate scale 2/ > 2, we orthonormalize the discrete poly-
nomial vectors {(u™)yer, },, <o With the Gram-Schmidt algorithm.

We thus obtain the functions {¢7' }}”<2j. Note that for the case j = 0,
we can only build

$o = do, (2.78)

where §( stands for the Dirac function located at 0.

cask OF ¢i*  To obtain the foveal wavelets 7" with an additional
vanishing moment, we first define

Pt = 9" — C?b‘l’ﬁl/ (2.79)

and find ¢ fm by enforcing the additional moment property

Y, u"¢l(u) =0. (2.80)

MEIj,lUI]'

¢;” is finally found by normalizing fp;"

o = 19711 9" (2.81)

Let us note that if m > 2/~1, then qb}”_l is not defined. In this
case, we propose a proxy for pi" as follows. In Equation (2.79), we

replace ¢i’ ; by 1,[);”_1, which also has m vanishing moments. By
applying this trick recursively on 1, one builds a function ¢ which
has support in I; 1 U I}, is polynomial on I; and on I;_; and has
m + 1 vanishing moments. As these criteria characterize the wavelets
1,0}” in the continuous case, this proxy is consistent.
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2.3.3 Gaussian window

2.3.3.1 Definition

We now consider foveal wavelets defined by a Gaussian window, in
order to define smoother wavelets which have a better localization in
the Fourier domain:

0(C) (u) = e /202, (2.82)

The bandwidth parameter o2 is adapted so that the functions cp? have
approximately the same support as the indicator window. We use
0? = 0.3 in numerical applications. Contrary to the indicator wavelets,
in this case the functions ¢;" are no longer orthogonal between each
other.

2.3.3.2 Discretization

Let us now detail the construction of the discrete wavelets 1/J]’-”, which
is summarized in Algorithm 2 in Appendix A.2.

For j = 0, we collapse all polynomial orders in the Dirac delta
function Jy. For each j > 1, we define a maximal support size 7; such
that the tail of the Gaussian can be neglected:

vt > 1;,0(¢) (277u) <1075 (2.83)

On the discrete interval [0, 7], we define the family {¢/"}, o by
orthonormalizing the family

{ (um(G(G) (270t y) — (@) (277y) )) } (2.84)
ue€0g] J <o
with the Gram-Schmidt orthogonalization procedure.

Note that the constraint m < 2/ in Equation (2.84) is not necessary
since 2/ < Tj, but it is added to allow a fair comparison with the
discretized indicator foveal wavelets. The foveal families will thus
have the same number of elements for the same values of the hyper-
parameters | and M.

Based on the resulting family {{¢/"},, .y }o<j<), the foveal wavelets
{{1/)}”},71 <2 f1<j<j are built following the same procedure as for the

indicator foveal wavelets. We first define, for m < 2/-1,

g =@ — ol (2.85)
where C;’m is found to ensure that
Y, u"gl(u) =0. (2.86)
ue(0,7]

Then, Pitisa normalized version of 1/3]’”

' = (19112 (2.87)
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If m > 271, then we use the same recursive approach as for the
indicator wavelets, defining first

g =g =yt (2.88)

and following the same steps. The support size and the number of
vanishing moments are conserved with this alternative approach.

2.3.4 Exponential window

2.3.4.1 Definition

We now introduce the exponential window, which is defined as
0F) (u) = e, (2.89)

where p > 0 is a constant. This window is smoother than the indicator
window, so in the Fourier domain it has a faster decay than its indicator
counterpart. Contrary to the Gaussian window, the foveal wavelets
generated by this function can be implemented as a rational filter in
the discrete case. These wavelets therefore have a lower computational
burden than the Gaussian ones.

The constant u is adjusted so that the functions 4)? have approx-

imately the same support for 8(F) and (). Numerically, u = 1.4 is
used.

2.3.4.2 Discretization

The wavelets " based on the exponential window can be built accord-
ing to the same procedure as the Gaussian one, with an appropriate
truncation of the support. However, they can also be implemented as
a rational filter.

Indeed, it is clear that () can be implemented as an IIR filter, as
it corresponds to an exponential moving average. This remains true
for its dilations, provided the temporal constant is dilated accordingly,
and for linear combinations of such functions. Similarly, filters of the
type (u*q"), for some integer k and 0 < g < 1 can be implemented
with a rational filter. As the remaining operations for the construction
of l[);-” only involve dilations and linear recombinations, the wavelets
;" can be implemented as rational filters.

2.4 FORECASTING EXPERIMENTS

In this section, we validate the foveal wavelets we have introduced
with forecasting experiments on synthetic and real wavelets.
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2.4.1  Synthetic time-series

We compare the forecasting performances of the proposed foveal
wavelets to the foveal Haar wavelets with the f{GN synthetic model.
This closed-form model allows us to experiment the effect of the
parameters | and M of the proposed foveal families 7.

2.4.1.1  Methods

The experiments use the setup introduced in Section 2.1.2, where only
a single observation X, is accessible and one wants to find optimal
forecasting parameters ay in a subspace V. We aim at measuring the
out-of-sample mean-square error (2.28) for each subspace V. Decom-
position (2.28) is used to approach each term separately.

The optimal value with respect to the whole past is approached
numerically by solving the Yule-Walker Equation (2.11) for a large
past window. The past window size T = 2 x 10* used is much larger
than the temporal supports of the considered subspaces in order to
avoid boundary effects.

The approximation error is computed by solving the Yule-Walker
Equation (2.11) into each subspace V. The resulting coefficients «J;
are then plugged in the closed-form expression of this approximation
error.

We do not have any closed-form equation for the estimation error.
Therefore, a simple Monte-Carlo simulation is used, where indepen-
dent realizations of a f{GN X, of length T = 10* are generated to
compute empirical coefficients &, which are then used to evaluate
the deviation from the optimum. Using 10% independent realizations
allows to obtain reasonable confidence intervals on the means.

We report relative MSE for coefficients a (relMSE(«)) with respect
to the optimal MSE attained at a*, as defined in Equation (2.65). From
Equation (2.28), the relative MSE is the sum of the approximation error
and the estimation error, both properly renormalized by the optimal
MSE.

The future lag A = 100 is used to avoid discretization artifacts. The
fractional Gaussian Noise has a Hurst parameter H = 0.9. Realizations
are simulated using the fast procedure described in [WCo4].

2.4.1.2  Impact of the maximal scale 2/

This section investigates the evolution of the forecasting error with the
maximal scale 2/ of the foveal family F(J,0). For a fairer comparison
with the foveal Haar family, only M = 0 polynomials are used: thus,
all foveal representations have the same number of components at a
given scale 2/.

Figure 2.8 reports the relative MSE as well as the approximation
error in adimensional units when the maximal scale | varies. When
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Figure 2.8: MSE for various foveal representations with respect to the num-
ber of numbers of scales | for M = 0. Left: Relative MSE (2.65).
Right: Approximation error (2.28). All quantities are expressed
divided by the optimal MSE so as to have adimensional units.
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Figure 2.9: MSE for the proposed foveal wavelets at | = 4 with respect to the
maximal polynomial order M Left: Relative MSE (2.65). Right:
Approximation error (2.28). All quantities are expressed divided
by the optimal MSE so as to have adimensional units.

] grows, the approximation error of all foveal wavelets diminishes,
with a lower value for foveal wavelets. Indeed, the approximation
error mainly diminishes with the temporal support of the represen-
tation. When ] becomes too large, the relative MSE grows because
the estimation error grows. Indeed, this corresponds to the regime
where the past size is commensurate with the size of the time-series,
so the number of samples used to estimate correlations diminishes.
Opverall, the minimal value attained over all | tends to be the same for
all representation for a simple process such as the fGN.

2.4.1.3 Impact of the maximal polynomial order M

We now investigate the impact of the maximal polynomial order M
on the forecasting MSE of the f{GN. Figure 2.9 displays the evolution
of the relative MSE with respect to M for | = 4.

In all cases, the approximation error diminishes with respect to
M, with a rate which is much faster for the indicator foveal wavelets
than the other ones. When it comes to the expected MSE, it tends to
diminish with respect to M for the Gaussian and Exponential wavelets,
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but not for the indicator window. Indeed, for the indicator window the
MSE is dominated by the estimation error, which is almost unchanged
when varying J, as the support size is not affected by this value.

We conclude that the polynomial order M brings flexibility for the
foveal wavelets with a very large support, such as the Gaussian and
Exponential ones. The benefit is less obvious for the indicator foveal
wavelets.

2.4.2  Real time-series

This section investigates the impact of the proposed representations
on three real time-series exhibiting a long-range dependence behavior.
On this benchmark, the flexibility of the proposed foveal wavelets
allows to reduce the mean-square error both with respect to the foveal
Haar wavelets and the autoregressive baseline.

2.4.2.1 Dataset

The real time-series we use are depicted in Figure 2.10, together
with their power spectra |7x|* (w). The first one is the “Sunspot”
time series [SIL49], which is a measure of the number of black spots
observed on the Sun each month since 1749. The second one is the
“MacKey-Glass” time series [MGy7]: it is the solution of a chaotic
time-delayed differential equation:

H0) = a2 — Bl (2.0

with delay T =10, v =2, = 1 and x(t = 0) = 0.2625. The solution
was computed numerically using a fourth-order Runge-Kutta method.
Both time series are known in the forecasting literature to exhibit
long-range dependent patterns, as can be read from their spectral
density function . The third time series, called “PM10” is original: it
results from hourly measurements of the concentration of atmospheric
particulate matter of diameter below 10 ym in Paris, encompassing
more than 4 years of data. It features a long memory, witness its
power spectrum in Figure 2.10 (bottom right). Prior to preprocessing,
it initially displayed a complex seasonal behavior, which was removed
to end up with an approximately stationary series.

2.4.2.2  Methods

PREPROCESSING  We split the time series in a training part and a
testing part with respectively 70% and 30% of the data points, the
training part coming first chronologically. We then ensured that the
training part had zero mean and unit variance and applied the cor-
responding affine transformation to the testing part. Prior to these
steps, in the case of the “PM10” time series, which had very strong
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Figure 2.10: Realistic 1D time series as used in the experiments. Left: Subset

of the time series; right: Power spectrum |’)?X|2 (w). From top to
bottom: “Sunspot”, “MacKey-Glass”, “PM10”.

seasonal patterns and multiplicative increments, we used a logarithmic
mapping and filtered out the corresponding frequencies so as to end
up with an approximately stationary time series.

FORECASTING For all representations, we performed a simple least-
squares regression (with a bias) to forecast the target at t + A. We did
not use any regularization, insofar as the foveal representations act as
regularization. To measure the accuracy of this forecasting, we used
the Normalized Mean Square Error (NMSE), defined on the testing
set as follows:

~ 2
1 Zteltest |x<t+A> _x(t+A)|

NMSE = , 2.91
‘Itest’ Var[(x(t)>i61test] ( ? )

where It is the subset of test indices ¢, X(f + A) denotes the forecast
and x(t 4 A) the value to predict.
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We optimized upon the hyperparameters of each representation,
notably the past size, with oracle, i.e. according to test set results. This
reduces the bias linked to causality by crossed validation in the train
set, at the expense of a slight underestimation of the generalization
error on the test set. But since the number of parameters for all foveal
methods is commensurate, this underestimation remains limited.

The baseline consists in an autoregressive method. The values A
were set as follows: for “Sunspot”, A = 12 (corresponding to one-
year-ahead forecasting); for “Mackey-Glass”, A = 20 (in order to
avoid discretization artifacts); for “PM10”, A = 24 (corresponding to
one-day-ahead forecasting).

2.4.3 Results

1.0
* vm ¢
081 Sunspot
¢ — Mackey-Glass
0.6
T R R I IR EERE S PM10
s & Linear baseline
0.4 : e Haar foveal
T ¢ v Indicator wavelets
0.2 i m  Gaussian wavelets
¢ Exponential wavelets
0.0 ‘
10t 102

Number of parameters

Figure 2.11: Forecasting results for real time series: NMSE (2.91) with respect
to the number of parameters, or dimension of the subspace used.
Horizontal lines correspond to the autoregressive baseline.

Figure 2.11 shows the forecasting results for all series, with respect
to the number of parameters each method used. Observe how, in all
cases, the foveal representations use at least one order of magnitude
fewer parameters, with at least as good forecasting accuracy as the
linear baseline.

More precisely, in the case of “Sunspot”, all foveal representations
use the same number of parameters, and obtain slightly better results
than the linear baseline. In the case of “PM10”, our foveal wavelets
obtain slightly better results than both the foveal Haar representation
and the linear baseline, but the gap is small. In the case of “Mackey-
Glass”, there is a much greater different between our foveal wavelets
and the foveal Haar representation. This is due to Equation (2.90),
where the past dependency is exact: to achieve good results, one
needs to select a precise time in the past representation. While this
is impossible for the foveal Haar representation, which lack such
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a “vertical” flexibility, it is possible with the proposed wavelets, by
increasing the maximal polynomial order. Hence the larger number of
parameters of our wavelets in this case.

2.5 CONCLUSION

This chapter introduces a new family of linear estimators of future
values of a univariate time series, the foveal family. These estimators
consist of a projection of the past of the time series onto a low di-
mensional subspace. This subspace is built by dilating a small set of
functions at a fixed scale.

Three window functions are presented: the indicator window, the
Gaussian window and the exponential window. By construction, the
exponential window yields convolutions which can be computed
recursively. The dyadic dilations match the power-law decay of the
correlations with the future values, thus ensuring a small projection
error. Crucially, this class of estimators has more expressivity than the
foveal Haar family without losing its foveal nature.

Numerical experiments on synthetic and real time-series exhibit
a long-range dependent behavior demonstrate that these new esti-
mators allow to reach a lower mean-square error than the baseline
autoregressive and Haar wavelet methods.

The foveal wavelets are designed to handle processes with cusp
singularities, such as the fGn. Since this kind of singularities are often
found in real time series, this bodes well for the wide application of
these wavelets, as our numerical experiments have shown. However,
for other types of processes, it might not necessarily be adapted. For
instance, chirp singular processes, or so-called oscillating singulari-
ties [Arn+98], whose spectrum behaves like sin(1/w), do not leave
the major part of their energy on the foveal coefficients. Therefore,
these kinds of processes would be a major failure case of the proposed
foveal wavelets.
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NON-LINEAR PREDICTION WITH SPARSITY IN
NEURAL NETWORKS

In Chapter 2, we have focused on linear prediction, considering the
problem of forecasting future values under long-range dependence.
Linear prediction methods form very strong baselines in many ap-
plications, for which non-linear methods rarely achieve significant
gains. This is notably the case in finance, where linear methods are
widely used despite large tails behaviors [BPog], which are evidence
of a non-Gaussian behavior. The difficulty lies in taking advantage of
non-Gaussian priors for forecasting purposes.

In this chapter, we investigate what priors on the stochastic pro-
cesses allow non-linear prediction methods to bring a significant
improvement upon linear predictions. A natural and related question
concerns the nature of the forecasting algorithms that can be used for
this purpose.

On the one hand, in signal processing, assuming the existence of a
sparse decomposition has proven to be very effective to solve numer-
ous tasks in an efficient manner [BDEog]. This hypothesis, which holds
for many time-series of interest, including audio signals, allows non-
linear methods to improve results with respect to linear algorithms
for denoising [Malo8] or inpainting [Adl+12]. One may therefore try
to use this assumption for time-series forecasting.

On the other hand, deep neural networks, which are non-linear
algorithms, have shown exceptional results at generating time-series
exhibiting such a sparse structure, notably audio time-series [Oor+16].
In particular, autoregressive networks [LM11] rely on the estimation
of a conditional probability density, which is very close to the fore-
casting task. However, these networks do not explicitly incorporate
the sparsity assumption in their architecture, and the exact priors they
use remain poorly understood [Zha+17].

In this chapter, we propose a non-linear algorithm which can be
interpreted as a neural network in order to forecast time-series. This
algorithm explicitly uses sparse time-frequency decompositions in
order to deliver a prediction.

Our demonstration is organized as follows. After a review of the
background work in signal processing and deep learning, we show that
a simple neural network is able to beat linear predictors on time-series
with a sparse time-frequency structure. An analysis of the weights of
such a network demonstrates that this sparsity is implicitly exploited.
A simple mathematical model is derived to explain it. We then propose
a sparse algorithm which exploits the sparsity of the time-series in
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an explicit fashion. It is extended in a foveal fashion in order to take
into account longer temporal dependencies. Eventually, numerical
experiments demonstrate that the proposed algorithm outperforms
the neural network on synthetic time-series, and reaches close error
rates on real time-series, thereby corroborating our modelization.

3.1 RELATED WORK

We begin this chapter by reviewing works related to the non-linear
forecasting problem.

Section 3.1.1 tackles sparse priors. Indeed, the existence of a sparse
decomposition is an important assumption which regularizes inverse
problems such as denoising or inpainting. The resulting solutions are
computed with non-linear algorithms, whose quality improves over
the ones recovered by linear algorithms.

In Section 3.1.2, feed-forward neural networks are introduced. They
implement parametric non-linear algorithms and have been used with
success to model audio time-series. In particular, existing connections
between these networks and sparse priors are reviewed.

3.1.1 Sparsity

3.1.1.1 Sparse time-frequency decompositions

DECOMPOSITION IN AN OVER-COMPLETE DICTIONARY Let x be
a univariate time-series, possibly complex-valued. We view x as a
vector of dimension the length of the time-series. Let D = {¢p} yer be
a family of unit-norm base signals, indexed by the set I'. D is called
a dictionary, and the signals ¢, atoms of this dictionary. D should
be overcomplete, i.e. |T| is larger than the dimension of the signal
x. Let us introduce the analysis operator ® and its dual synthesis
operator ®*:

D:x = {(x,¢p)}per, (3.1)
Oz — Z ZpPp. (3.2)
pel

The signal x can be decomposed in the dictionary D if there exists a
set of coefficients z = {z,} ycr such that

X = Z zppp = Pz (3-3)
pel
Due to the redundancy of the dictionary D, such a decomposition
is not unique. The exact decomposition (3.3) may be relaxed to an
approximate one, provided the residual x — ®*z has a negligible norm
compared to x.
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Time-frequency dictionaries are made of functions which are mean-
ingful in the time-frequency plane. Typically, p is a doublet containing
the temporal and frequential locations of f,. Among such dictionaries,
local Gabor atoms [Gab46], wavelets [Malo8, chap. 4] and wavelet
packets [CMg1] are the most popular.

SPARSE DECOMPOSITION The decomposition (3.5) is called sparse
if the coefficients {z,}, are parsimonious, i.e. if few of them are non-
zero. Such a sparsity is measured by the so-called /°-“norm”, which
counts the number of non-zero coordinates:

Izllo =) 1,50 - (3-4)

pel

Such a decomposition is also called a sparse latent code, or simply
code, for the signal x. Empirical measurements show that audio signals
admit a sparse decomposition in time-frequency dictionaries [Malo8].

Among all decompositions of signal x in an adapted dictionary D, it
is often desirable to find the sparsest one. Indeed, this parsimony can
be understood as a proxy for simplicity, which should be favored from
Ockham’s razor. Sparse decomposition coefficients z can be found by
solving a constrained optimization problem:

. 1 %02
min 5 ||x — d*z||5,

= Z ’ (3:5)
st |zlo <7,

where 77 > 0 is a parameter to tune.

Unfortunately, Problem (3.5) is non-convex and NP-hard [Natgs],
which makes it very hard to solve. Numerically, good heuristics exist
to find approximate solutions, notably greedy pursuit methods [MZg3;
PRKog3].

¢! NorRM PROXY One can relax Problem (3.5) into a convex op-
timization problem by replacing the ¢9 norm term by an / 1 norm,
yielding the Lasso [Tibg6] or Basis Pursuit Denoising [CDSg8]. In its
unconstrained form, this relaxed convex problem reads

ming [x = ®23+ 7l 6)
where A > 0 is a hyperparameter, expressed in units independent of
the size of the dictionary |T'|.

The convexity of Problem (3.6) allows it to be solved up to machine
precision. Further, the recovered solutions may actually be solutions
of the original non-convex problem (3.5). [Fucog; Troo6] prove that
provided the existence of a sparse decomposition of the original signal
and some technical conditions on the dictionary, parameter A can
be tuned so that solutions to (3.6) recover the correct atoms solution

of (3.5).
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ALGORITHMS The sparse decomposition problem (3.6) contains a
smooth quadratic term and a non-smooth ¢! term, which are both
convex. It can be solved by proximal gradient descent [CP11], which
is equivalent in this case to the iterative soft-thresholding algorithm
(ISTA) [DDDMoy4].

From any initialization z° (typically, z° = 0), ISTA iterates a guess
value zF which becomes closer and closer to the minimizer of (3.6)
with the update rule

= Fy, [zk — Td(D*ZF — x)} , (3.7)
where F. is the soft-thresholding or shrinkage operator, defined as
Fe@) = { 2zl =)} 69
P P
and v is a step size which should satisfy the bounds
0 <v < [lo|™! (3.9)

to ensure convergence.

ISTA is very simple to implement, but converges slowly. It can be
accelerated by using some momentum, leading to the fast iterative
soft-thresholding algorithm (FISTA) [BTog].

FISTA initializes ! = 1, v! = 20, and iterates:

& = F [vk — O(P o — x)} , (3.10)
w1+ TR
t = 2 7 (3'11)
k1 e -1
ot = 4 s (z° —Z71). (3.12)

The sequence of decomposition coefficients z* converges in O(k2) to
the optimum z*, compared to a convergence in O(k~!) for ISTA [BTog].

LEARNING THE DICTIONARY Without any prior knowledge on the
nature of the dictionary in which x admits a sparse decomposition, it
is temptable to learn this dictionary D. This is possible provided that
multiple examples {x;}1<j<n from the same class of images are avail-
able. This approach was pioneered by [OF96] on natural images and
later applied on time-series [Gro+o7]. The resulting sparse dictionary
learning problem becomes:

mn - (ls-eziie Ml 6o
oz S 12 Az sy 313
Problem (3.13) is non-convex and therefore difficult to solve in gen-
eral. A widely-used heuristic is the K-SVD algorithm [AEBo6], which
alternates optimization over the codes {z;} and over the dictionary
®*. If one wants to use the codes {z;} for another task, for instance
classification, the supervision feedback from this task can be used to
influence the dictionary learning [MBP12; MG13].
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3.1.1.2 Regularization of inverse problems

INVERSE PROBLEM Let us assume that we only have a partial
measurement of signal x, possibly noisy:

y=Mx+e, (3.14)

where M is a known linear measurement operator and € a noise
variable. Retrieving the actual variable x from the measurement y is
called an inverse problem. Typically, M is rank-deficient, which makes
the inverse problem ill-posed.

On the one hand, a standard linear regularization for Problem (3.14)
is a Tikhonov regularization [TAyy], which assumes that the ¢, norm
of x is small. Finding x is therefore cast as a minimization problem

o1
mmeHy—MxH%—FAHXH%, (3.15)

where A > 0 ensures the existence of a solution, which admits a
closed-form solution

X = (M*M+2AI1d) ' M*y. (3.16)

This solution is linear with respect to y, but it does not use any sparse
prior information.

On the other hand, it is possible to exploit a parsimonious prior to
regularize inverse problem (3.14). Indeed, let us assume that x admits
a sparse decomposition in dictionary D. Instead of attempting to find
x, we now try to find a code z such that x = ®*z. With a regularization
term to promote sparse z-solutions, the minimization problem (3.15)
is rewritten as

A
min 3 |y = M&"2( + 5 2 G.17)

The approximation X of x is then defined as:
X=d*z. (3.18)

In most cases, solutions to Problem (3.17) are non-linear in y, as they
are obtained with e.g. FISTA.

Under appropriate assumptions on the measurement operator M
and the dictionary ®*, solving the sparse regularized inverse prob-
lem (3.17) allows us to recover a vector very close to the original one,
provided it is sparse enough [Dono6].

APPLICATIONS A wide range of signal processing tasks on time-
series data can be cast as inverse problems. Under a parsimonious
prior, these tasks can benefit from the sparse regularization approach
(3.17). The resulting solutions, obtained with a non-linear algorithm,
are typically better than the linear solutions obtained with a Tikhonov
regularization (3.15).
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Denoising is the simplest inverse problem, for which M = Id. For
audio, [Fev+08] has shown that not only do sparse priors bring good
results, but such sparse methods can even be improved by taking into
account the time-frequency structure of the decomposition.

In blind source separation, also known as the cocktail party problem,
the observation is assumed to be a linear combination of different
signals, with mixing weights indicated by the matrix M, which has
a horizontal shape. In order to recover each individual recording,
[Plu+10] has shown that a sparse prior in time-frequency dictionaries
can be exploited.

Closer to this work is the inpaiting problem: the measurement
operator M becomes a masking one, as some temporal samples are
lost. Again in this case, sparse priors can be exploited to restore the
missing measurements, e.g. for audio [Adl+12]. Notice that inpainting
is an interpolation problem, i.e. missing points are always surrounded
by known values, whereas the forecasting problem, discussed in the
next section, requires to extrapolate values outside of the convex hull
of the known values.

3.1.1.3 Forecasting applications

We now review and discuss sparse decompositions methods which
have been applied to the forecasting problem.

Several authors [Fak1s; HFA18] have proposed to use a sparse de-
composition method in a spirit close to the k-Nearest Neighbors (KINN)
algorithm [HTFog]. Their idea consists in building two dictionaries: a
dictionary of past values, which is the collection of all past windows
x;i(< t) in the training set, and a dictionary of target values, which
is the collection of all corresponding future values x;(t + A) in the
training set. Given a new past window x(< t), the idea consists in
decomposing this past over the dictionary of past values, and using
the same code to predict the future value thanks to the dictionary of
future values. Contrary to our approach, this forecasting method does
not exploit the sparse time-frequency properties of time-series.

In order to forecast electricity demand, a sparse coding method very
close to our approach has been proposed by [YMHz17]. In this work, a
sparse dictionary is learned on the past windows, and the resulting
codes are used to predict future values with a ridge regression. The
resulting dictionaries contain oscillatory components, meaning that
the original time-series have time-frequency properties, even if this
property is not explicitly exploited. Algorithmically, our approach is
very close to the work done in this paper, except that our dictionary
is already known from priors on the signals. However, this paper
does not provide any explanation of the ridge regression coefficients,
while this chapter proposes an explicit link through the sparse inverse
problem framework.
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3.1.2  Neural networks

We provide a review of neural networks and their ability to model
structured time-series, focusing on the emerging links between these
networks and sparsity.

3.1.2.1  Multi-layer perceptron

Neural networks are parametric functions fy, defined in vector spaces
RT. They are used to approximate a given function of interest, by
tuning their parameters 6. In our case, these functions are real-valued,
so the neural networks we consider are also real-valued.

Multi-layer perceptrons (MLP) [GBC16, Chapter 6] are the sim-
plest neural networks. MLPs are a composition of multiple layers
j € {1,...,]}, each of them consisting of an affine mapping and a
pointwise non-linearity

v p (Wip+b)), (3.19)

where W; is a matrix of same input dimension as v and the bias b; is a
vector of same output dimension as W;. p is a pointwise non-linearity,
which is a convenient notation to denote the mapping of the same
non-linear function p to all coordinates of a vector v:

p(v) = (p(vi)); - (3.20)

The most popular non-linearity is the rectified linear unit (ReLU)

p(u) = max(u,0) . (3.21)

Note that this choice of non-linearity combined with the bias has
a thresholding effect: the i coordinate in the output vector (3.19)
returns a non-zero value if and only if the linear combination (W;v);
is larger than the threshold —(b;);.
In general, an MLP can thus be written as a combination of multiple
layers
fg(U) = W]p (sz (Wﬂ)—l—b1) —|—b2...)—|—b], (3.22)

where
0 ={W; bjti<j<) (3-23)

is the set of parameters, which can be stacked as a large vector. The
depth of the network denotes the number of layers of the network.
Notice that in the last layer, no non-linearity is applied in order to
regress values in an unbounded domain, but for other applications
such a non-linearity might be present.

An MLP is trained by tuning the parameters or weights 6 in order to
minimize an objective function. This objective function L is typically
defined as an average empirical loss ¢ between the desired value f(x;)
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of the network on examples {x;}1<j<ny and the approached value

fo(xi):

N
C(fo(xi), f(xi)) (3-24)
1 1

L is a function of 6, which can be optimized by gradient descent
methods. The value of the gradient for each weight W; or b; is found
according to the backpropagation algorithm [Liny6; RHW86], which
recursively applies the chain rule for differentiation on the different
layers, starting with the last one.

Among all possible MLPs, MLPs with only one hidden layer (1-
MLP), or shallow neural networks, are of particular interest. Accord-
ing to the universal approximation theorem [HSW89], they are able
to approach functions up to an arbitrary precision, provided the
size of the hidden layer is large enough and the weights are prop-
erly tuned [Pini5]. MLPs without hidden layers do not enjoy this
property [MP69g], while MLPs with more hidden layers clearly en-
joy it as well. Although theoretical insights [ES16] and empirical
results [LBH15] tend to indicate that deep networks have better ap-
proximation properties than shallow ones, the few number of layers
in 1-MLPs makes it easier to analyze and understand the role of each
layer.

3.1.2.2  Autoregressive networks

Autoregressive networks are designed to build a parametric model
px of the probability density px of the process X. This model is
constructed by exploiting the decomposition of the probability density
into conditionals:

HPX (t+DIX(<t) =x(< ). (3.25)

Building on a stationarity assumption, autoregressive networks focus
on approaching each term px(x(f+1)|X(< t) = x(< t)) by a single
neural network fy:

fo(x(< 1), x(t+1)) = px(x(t+D[X(< 1) = x(< 1) . (3:26)
Thus, autoregressive networks do ultimately rely on a neural network
trained for a forecasting task.

Autoregressive networks have recently achieved outstanding results
in modeling time-series exhibiting a sparse time-frequency decom-
position, such as speech or music. These networks notably include
the WaveNet [Oor+16] and the SampleRNN [Meh+17]. The result-
ing generation capabilities are now already deployed in industrial
applications [Oor+17; She+17].

In state-of-the-art autoregressive networks, the architecture of the
predictive network fy does not correspond to a multi-layer percep-
tron. Instead fy is chosen either as a deep convolutional neural net-
work [Oor+16] or a recurrent neural network [Meh+17], together with
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modern tricks such as residual connections [He+16] and multiplicative
gates [HSg7]. The resulting architecture is very complicated, with
many sub-components whose importance is not well understood. As a
consequence, it is unclear what operations these networks implement,
and how these operations relate to the time-frequency properties of
the signals.

3.1.2.3 Sparsity and neural networks

We review existing links which have been drawn between sparse
decomposition methods and neural networks.

Artifical neural networks with binary activations were historically
proposed as a computational model for biological neurons [MP43;
Ros58]. Indeed, biological neurons exhibit very sparse activations [ALo1;
Lenos]. Drawing inspiration from these observations, ReLU non-
linearities were introduced in order to promote sparsity of the neu-
ron activations, instead of the then-common hyperbolic tangent non-
linearity [GBB11]. Thus, the role of the ReLU as a sparsifying non-
linearity is well-known.

In terms of signal processing, a striking bond connects the ISTA
step (3.7) and a layer of an MLP (3.19). Indeed, provided the original
input is concatenated to the intermediate output of the j-th layer, the
ISTA step can be rewritten as an MLP layer with a particular choice of
matrices and soft-thresholding operator F),, which is very close to a
ReLU.

Building on this similarity, the LISTA algorithm [GL10] was pro-
posed to learn an unrolled set of matrices to perform the same task.
LISTA achieves the same reconstruction error and sparsity level as
ISTA with much fewer iterations. Recent works suggest that this ap-
proach actually exploits a particular matrix factorization to speed-up
the convergence of the decomposition [MB17].

Inspired by the same observation, a more direct connection between
a sparse decomposition model and convolutional neural networks
has been recently proposed [PRE17]. Under the proposed ML-CSC
model, the signals are generated by a cascade of convolutional sparse
coding (CSC) layers. The estimation of the decomposition coefficients
in a pursuit scheme is then shown to be equivalent to the forward
pass of a convolutional neural network. One should however note that
this model is completely unsupervised, whereas most convolutional
neural networks are trained and used in a supervised setting.

3.2 TIME-FREQUENCY SPARSITY CAN BE EXPLOITED TO FORE-
CAST TIME-SERIES

In this section, we show and explain how time-frequency sparsity can
be exploited by a multi-layer perceptron with one hidden layer (1-MLP)
to beat linear predictors. In 3.2.1, the considered forecasting framework
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is detailed. In 3.2.2, forecasting results with a 1-MLP are reported and
an empirical analysis of its weights is performed, revealing a sparse
structure. In 3.2.3, a simple cosine model for sparse time-frequency
time-series is introduced. This model provides insights which are
coherent with previous empirical results on how to exploit the sparsity
for forecasting purposes.

3.2.1 Forecasting framework

Let x = (x(t));ez denote a real-valued time series. We assume that x is
sampled from a stationary process X, x ~ X, such that each realization
x admits a sparse decomposition in time-frequency dictionaries. In
particular, this is the case for audio signals.

We consider the problem of forecasting x(t + A) from its past
x(< t) = {x(s) }s<+- We bound the past x(< t) to a size 7, leading
to a sliding window denoted with an abuse of notation

x(<t) = {x(s) }t-r<s<t € R (3-27)

We look for a forecasting function f, which may depend on parame-
ters, which minimizes the mean-square forecasting error at a lag A for
the process X

min E |X(t + A) — F(X(< 1)) ‘2
f
Theoretically, the minimizer of this quantity is the expected value
E[X(t4+ A)|X(t —s),0 <s < 7] of the future value conditioned on its
past. Therefore, f should approach this conditional expected value as
best as possible from a finite number of samples, among a given set of
functions.

As noted in 3.1.2, neural networks have recently achieved very good
performance to model conditional probability densities — a task more
complex than approaching conditional expected values. Further, 1-
MLP are the simplest universal neural networks, which make them
easier to analyze and understand. This explains why we use 1-MLPs
as a baseline for non-linear prediction:

(3-28)

fx(< 1) = Wip(Wix(< ) +b1) + b, (3-29)

with W; € REXT, by e RH, b, € R, W, € RH and p being the ReLU
non-linearity (3.21).

The linear baseline model we consider consists in autoregressive
linear predictors, defined as

x(<t) = alx(<t) +B, (3-30)

where « € R and 8 € R.
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3.2.2  Empirical observation: sparse time-frequency decomposition in 1-MLP

We show experimentally that a 1-MLP is able to beat linear predictors
on the forecasting task (3.28). The analysis of the weights of a trained
network reveals that its first layer performs a sparse time-frequency
decomposition.

3.2.2.1  Experimental setup

Experiments are performed with time series extracted from the VCTK
dataset [Yam12], which consists in recordings of native English speak-
ers uttering short sentences. We refer to Section 3.4 for a detailed
presentation of this dataset and for all experimental methods. In this
part, the prediction is performed for A = 2.5 ms.

Figure 3.9 shows that an autoregressive linear predictor (3.30) has a
relative root mean-square error (RMSE) (3.68) above 1. On the contrary,
a neural network with a single hidden layer implemented with ReLU
non-linearities (3.29) produces a relative RMSE below 1. This shows the
non-linearities reduce the forecasting error significantly compared to
the standard deviation of the target. To understand this improvement,
we study in more details the calculations performed by the neural
network.
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Figure 3.1: Histogram of the /2 norm of the weights of the first layer of the
neural network (3.29). The weights whose norm is about 6 appear
to be responsible for the prediction capabilities of the network.

In Figure 3.1, a small subset of input weights in the matrix Wy,
corresponding to 6.8% of the total number of inputs weights, has
an (> norm significantly larger than the rest. Restricting W; to these
coefficients yields the same error as using the full network, which
shows that the predictive power of the network almost exclusively
relies on these weights. We thus restrict our analysis to the restriction
of Wj to these Ng = 278 hidden units.
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3.2.2.2  Sparse time-frequency behavior of the network

Qor 102 103
Frequency (Hz)
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Figure 3.2: Discrete Fourier Transform of the rows of the input neural net-
work matrix Wj. Each Fourier transform appears to select a certain
frequency corresponding to brighter coefficients.

Figure 3.2 shows the row-wise discrete Fourier transform of the
weights of the matrix W;. We did a proper permutation of the hidden
units to restore the continuity across rows of the maxima of this
Fourier transform. The weights are partly organized into blocks which
are mostly sensitive to a certain frequency, especially for frequencies
below 10° Hz.

The output Wy x(< t) + by is then filtered by the ReLU non-linearity p
which produces a highly sparse output. This sparsity is measured by
the average proportion of non-zero coefficient at the output:

5= ﬁsk L) [ﬂp(W1x(§t)+b1)k>o (3.31)

Empirically, we measure an average of 3 ~ 7% non-zero coefficients
after the ReLU, which are then filtered by the operator W5.

Figure 3.3 shows a histogram of the output weights W,. Their abso-
lute value is concentrated around 0.25, with flipping signs. It indicates
that all hidden units are playing a similar role in the prediction, but
within different frequency channels.

This analysis shows that the multilayer neural network filters the
input signal within different frequency channels with the operator W,
and outputs a highly sparse array of coefficients which are linearly
combined by W, with weights of approximately equal magnitude but
flipping signs.
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Figure 3.3: Histogram of the individual entries of the output weight
W, € RNs (3.29).

3.2.3 Analysis of the empirical results

We introduce a mathematical framework which incorporates the mech-
anisms of the neural network studied in 3.2.2. To better understand
the difficulty of this forecasting problem, we begin with a simple
signal model obtained by summing cosine functions of unknown fre-
quencies. We shall see that linear predictors perform poorly on these
signals. This model provides a general strategy on how to exploit the
time-frequency sparsity to forecast future values.

3.2.3.1  Cosine Model

We introduce a simple cosine signal model, which is sparse in the
time-frequency domain. Linear predictors fail on this model.

DEFINITION Let us consider signals which are sums of K cosine
functions of unknown frequencies and amplitudes

K .
x(u) =R { ) ake“"k”} , (3.32)
k=1

with K small and where
ar = e, (3-33)
with e > 0, ¢ € [0,271) and wy € [Wmin, Wmax] C [0, 7). The values
of ¢ and wy are randomly drawn from i.i.d. uniform distributions
over their supports, while the values of r; are i.i.d. and drawn from
an exponential distribution over (0, +c0). The resulting process from
which x is drawn is therefore stationary.
This cosine model is a very crude model of audio time-series, as
it only contains pure harmonics. In particular, it does not take into
account the temporal variations of the envelopes a;, and the temporal
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variations of the frequencies. Therefore, it should only be seen as a
localized model of audio time-series.

FAILURE OF LINEAR PREDICTION A linear autoregressive predic-
tor yields a large error on this stationary process.

Indeed, for each fixed set of frequencies {wy }x, one can find a set
of linear weights giving good prediction results. This amounts to
linear predictive coding (LPC) [O’S88] with an all-pole filter, which is
a well-known local model of audio time-series [GME11].

For a single frequency w, one can derive analytical weights as:

cos(w(t+ A)) = 2cos(wA) cos(wt) — cos(w(t — A)). (3-34)

As seen on this toy example, the resulting predictive weights will
depend on the given frequency w. This remains true for a whole set
of frequencies {wy }-

For the cosine process we consider, each realization will express
a different set of frequencies. Therefore, there is no single set of
linear weights which predicts all realizations, and linear autoregressive
predictors will yield a large average prediction error.

3.2.3.2 Exploiting the sparse decomposition

We investigate the cosine model to provide insights on how to exploit
the time-frequency sparsity for forecasting purposes.
Let X(w) denote the Fourier transform of a signal x(u),

Hw) =Y x(u)e ™" (335)

Let x* be the analytical part of x carrying its non-negative frequencies,
which is defined in the Fourier domain as

(W) = 28(w) L0 - (3.36)
The cosine model defined in Equation (3.32) may be rewritten as
r) =R () =2 ([ P@edo) G
0

where the analytical part x* is defined in the Fourier domain as a sum
of Dirac delta functions:

K
=Y b (5.38)
k=1

Equations (3.37)-(3.38) indicate that x* has a sparse decomposition over
the Fourier family of non-negative frequencies {€""} (o »- Moreover,
there exists a linear operator mapping the coefficients (ay) of the
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sparse decomposition (3.38) to the value x(t + A), by taking u =t + A
in Equation (3.37):

x(t+A)=% </On9?’(w)eiw(t+A)dw> ) (3-39)

As a consequence, a natural strategy to obtain a forecast of x(t +
A) is to retrieve such a sparse decomposition of x”. One can then
apply a linear operator derived from (3.39), which is independent of
frequencies analyzed in x*.

This strategy is coherent with the empirical analysis of the 1-MLP
we have performed: it is likely that the 1-MLP exploits these ideas for
forecasting. Our goal is now to derive an algorithm involving minimal
learning that fully exploits this sparse time-frequency prior.

3.3 SPARSE FORECASTING ALGORITHM

In the previous section, we have shown that non-linear algorithms
can outperform linear predictors on time-series exhibiting a sparse
time-frequency decomposition. Based on a simple cosine model, we
have outlined a general strategy to exploit this time-frequency decom-
position without learning.

In this section, we derive a sparse time-frequency forecasting algo-
rithm based on the aforementioned strategy. The forecasting problem
is viewed as an inverse extrapolation problem in Section 3.3.1, which
is difficult to solve due to the causality constraint. In the following
Section 3.3.2, we show that windowing the input allows us to exploit
the sparse time-frequency prior to regularize this inverse problem.
Multiple time-frequency dictionaries adapted to the cosine model
are then proposed in Section 3.3.3. In order to be amenable to more
complex time-series than the cosine model, we introduce a foveal
multiscale extension in Section 3.3.4.

3.3.1 Description of the problem

3.3.1.1 Inverse problem formulation

In order to forecast x(t + A), we only have access to past values
{x(u)}t—r<u<:t due to the causality constraint. Let M; denote the
masking operator relative to the forecasting problem:

Mix =x X L_ry - (3.40)

We have access to M;x, from which we would like to extrapolate
x(t+ A). This is an inverse problem, which is ill-posed in general. We
would like to use a sparse prior in order to regularize it.

Following the cosine model presented in Equation (3.32), a natural
prior is the existence of a sparse decomposition of the analytical part
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x" of x. Rewriting Equation (3.37) in abstract terms, there exists a
dictionary {f,}yer such that

=) zpfp (3.41)
pel
with [|z||p < |T'|. We focus on the analytical part as it allows us to
extract the phases with a simple Lasso formulation in z, using complex
numbers. A tentative regularized inverse problem could therefore be
formalized as
2
+ Azl (342)
2

(Mix)* = Y 2, M,f,

pel

min
ya

with a given regularization parameter A > 0.

3.3.1.2  Causality issue

Problem (3.42) is ill-posed because of the causality constraint. Indeed,
by linearity of M;, Equation (3.41) implies

My (x) = Z zp M fp. (3.43)
pel
However, the analytical part operator and the masking operator do
not commute

(Mx)" # Mi(x"), (3-44)

so that a sparse decomposition retrieved by Problem (3.42) would not
retrieve the correct coefficients for the decomposition of x*.
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Figure 3.4: Effect of the choice of the window on the stationary cosine
model (3.32) with two coefficients in the Fourier domain (positive
frequencies only). Windowing the signal yields sparse Fourier
coefficients.

The non-commutativity of the two operators is a consequence of
the discontinuity of the indicator window 1(,_., which has a slow
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Figure 3.5: Sparse forecasting algorithm. The windowed past is decomposed
onto a dictionary, out of which the future value is extrapolated.

decay in the Fourier domain. Indeed, by convolution, x X 1;_,, is
not sparse in the Fourier domain. In particular, there are significant
overlaps between negative and positive frequencies, as well as between
the different frequencies wy, as displayed in Figure 3.4. Hence the non-
commutativity of the operators.

Therefore, we cannot exploit the analytical part of M;x in order
to get information on the analytical part of x”, from which we could
make the prediction. Further, the overlaps within the analytical part
degrades the estimation of the frequencies wy and coefficients a;. One
needs to mitigate this causality issue in order to exploit the sparsity of
the signal x for forecasting.

3.3.2  Causal sparse decomposition

We propose an approach to mitigate the causality constraint in order
to exploit the sparse time-frequency prior of the cosine model. Fig-
ure 3.5 summarizes the proposed approach. The past signal is first
artificially windowed in a causal fashion. A sparse decomposition
of this windowed signal is obtained in a windowed time-frequency
dictionary. The future value is obtained by removing the window
from the dictionary’s atoms and evaluating the value of their linear
combination at the future point t + A.

SPARSIFYING CAUSAL WINDOW Let us assume that T = 2/ for
some positive integer j. In order to build a sparse time-frequency
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representation of the past signal x X 1(;_,, we multiply it by a causal
and regular window g; with support in (¢t — 7,t]. We thus define a
new windowing operator

Grjx(u) = x(u)gj(u) = yj(u) . (345)

Notice that G; ; and the previous masking operator M; commute, so
that we can effectively access G; jx from empirical data.

We assume that g; is smooth and symmetric with respect to t —2/~!
in order to ensure that its Fourier transform has a fast decay. In the
following, ¢; is a Hanning window:

gj(u) = sin? <7T(u_t)> : (3-46)

T—1

Figure 3.4 compares the Fourier transform of the signal windowed
with the indicator function M;x and of the windowed signal G; ;x
computed with a Hanning function. Notice that G; jx is much sparser
in Fourier than M;x. In particular, as proved in Section 3.3.3.1, there
is no overlap between the positive and negative frequencies, provided
that the frequencies are larger than some threshold. Therefore, it holds
that

(Grjx)" ~ Gii(x") . (3.47)

Using the new masking operator G;; to circumvent the causality
problem, it becomes possible to regularize the inverse problem with
the sparse prior.

WINDOWED DICTIONARY We assume that x* admits a sparse rep-
resentation in a family of complex-valued functions {f,(u) } per;. I is
the set of indices for this family, which depends on the parameter ;.

We associate to the family {fy(u)}per; a complex-valued dictionary
D; supported over past values and windowed by g;:

D] = {qj]',P}PETjI (348)
Pip(u) = fp(u)gi(u) . (3.49)

We obtain a time-frequency dictionary by choosing f, to be a com-
plex exponential whose frequency varies with p. However, we shall
later see that better results are obtained by incorporating polynomial
components.

SPARSE CAUSAL DECOMPOSITION  We compute a sparse decompo-
sition of y; onto the dictionary D;:

i) = Y 20 ¢y (u), (3-50)

pel"]
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for u € (t — 2/,t]. The complex decomposition coefficients zy ) should
satisfy ||z)|o < |Tj|. They are found by solving a basis pursuit

problem:
2

+AHZHL (3.51)

ZZP Pjp

min
z pel;

where A > 0 is a hyperparameter.
Since y; ~ Gij(x") and ¢;, = G fp, under appropriate sparsity
()

conditions, the coefficients z;,” obtained by solving Problem (3.51) are
the ones corresponding to the actual decomposition of x* [Malo8].

FORECAST Since ¢;j,(u) = fy(u)gj(u) we eventually derive from
the sparse expansion (3.50) a sparse expansion of x(u) for u > t which

is given by
=R ( )3 z,Epr(u)) . (52
PEF/‘

In particular, for the target time u = t + A we get the estimator
Xi(t+A) = (Z zp fp t—i—A)) (3.53)
pel’;

3.3.3 Choice of dictionary

We now show that the dictionary D; can be defined with functions
fp(u) which are oversampled Fourier exponentials, or oversampled
Fourier exponentials with polynomial terms.

3.3.3.1  Windowed Fourier dictionary

Let us first study in detail the effect of windowing on the sum of
cosine model. Inserting (3.32) in (3.50) with expression proves that for
all w € [—r, 7t]:

K ok
Z ) ( Pegi(w —wi) +e” 1¢k8](w+wk)> (3-54)

Extracting the analytical part as in Equation (3.37) means restricting
the Fourier support to positive frequencies. This is effective only if the
negative and positive frequencies have a negligible interaction. Since
Wk > Wmin, it is sufficient to have

18j(0)] > 18;(2wmin) |- (3:55)
When (3.55) holds, then for all w > 0,

~

1& .
Ji(w) ~ E,gakgj(w — wy), (3.56)
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which translates in the time domain as
K .
yi(u) = x(u) gj(u) = R ) akgj(u)é”“”‘“> : (3:57)
k=1

This approximate analytical decomposition, proving Equation (3.47),
motivates the choice of f,(u) = ¢/r", for appropriate frequencies &,.

Let us emphasize that the analyticity property is essential to obtain
good forecasting results. Indeed, the forecasting problem boils down
to a phase estimation which requires the use of analytical functions
for precision.

3.3.3.2 Oversampled windowed Fourier dictionary

Following (3.57) we may choose

fr(u) = Cpeiépu/ (3-58)

where ¢, is a renormalization factor ensuring [|¢; ,||2 = 1. To obtain
a complete set of time-frequency atoms cpe'¢r" g;j(u), the positive fre-
quencies {{, } yer must sample [0, 77| at intervals smaller than 27/, with
an oversampling factor P > 2:

27tp ;
= — ] -1
Cp = py; for0<p=<P2. (3-59)
The inner products <y;?, ¢p) are efficiently computed with a Fast Fourier
Transform (FFT) algorithm.

3.3.3.3 Polynomial windowed Fourier dictionary

To compute the sparse expansion coefficients a; in (3.56) with a good
precision, we typically need to use a large large oversampling fac-
tor P > 16 which increases computations. We now show that the
dictionary size can be reduced with polynomial terms.

Let ¢x denote the frequency on a discrete Fourier grid (possibly
oversampled as well) closest to a frequency wy. If €y = wi — ¢ then
forall u € (t —2/,1], inserting the expansion

m,,m

et =1+eu+-- +

T o(e™) (3.60)

in Equation (3.57), we derive that
K m e )
i)y =R Y ) akn—k'u”gj(u)elgku . (3.61)
k=1n=0 ’

Therefore, y;? admits a sparse decomposition in the dictionary

{‘P]}n,ﬁ(u) = Cn,é”ngj(”)el szu} , (3.62)
0<n<m,0<¢<p2i-1
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where c,,; is a normalization constant ensuring ||¢;,¢||2 = 1. For this
dictionary, we shall write p = (1, /) and

21l

fp(u) = cn,gu”ezﬁu. (3.63)

The inner products (y]”.,(p]-,p> can also be computed with an FFT
thanks to the following equation:

27l 2ml

Y i) = (U], cpugie’ 7 ") = (cpugjyf e o). (364)

Figure 3.6 (left) shows two atoms with the same frequency, but varying

polynomial order n.
/ N

Figure 3.6: Left: Gabor atoms ¢, ;(u) in (3.62) for polynomial order n = 0
(full curve) and n = 1 (dotted curve). The blue curves are the real
parts, and the red curves the imaginary parts. Right: Windows
gj at multiple dyadic scales 2/. Small scales carry the information
closer to the boundary and thus retrieve parts of the signal which
have been lost by larger scales.

3.3.4 Foveal multiscale extension

The sparse forecasting algorithm we have previously proposed as-
sumes a cosine model, which is very simple. Moreover, a single win-
dow g; of size 2/ nearly eliminates signal information over the temporal
interval (t — 2/71,t], as shown in Figure 3.6 (right). We therefore pro-
pose to combine windows at multiple scales 1 < j < | in order to
recover the missing information and to be amenable to more complex
processes than the cosine model.

As we tackle a forecasting task, following Chapter 2, it is natural
to consider a foveal multiscale extension, where we take into account
multiple windows g; near the temporal border ¢t. In the following,
we propose two types of such multiscale extensions, a weak one
combining predictions and a strong one combining dictionaries, shown
in Figure 3.7.
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Linear combi-

. ! __ = ! P /
Tt =t+A) 7)) nation (3.63)

Linear

L(+1) 2()
S+ 2V) regression (3.65)

\/ W

Known past t Unknown future

Figure 3.7: Foveal multiscale extension of the sparse forecasting algorithm.
The weak extension (3.65) linearly combines the predictions x;(t +
A) at each scale, while the strong extension (3.67) makes a linear
prediction based on the concatenated codes z(/).

3.3.4.1 Weak combination

We propose a weak combination of the predictions performed at each
scale X;j(t + A), using a weighted linear combination:

J
f(t + A) = Z (Xjf]‘(t + A)/
=1

with weights a; € R. When j = 1 we set 1 (¢ + A) = x(t), which keeps
track of the last value. Inserting (3.53) gives

J ‘
(t+0)=) R | ) zlg,])fp(t—i—A) : (3.65)
jIl pel"]
Xi(t+A)

The weights a; are learnt using training time-series in order to
minimize the forecasting mean-square error (MSE), which is a convex
problem in &;. This recombination of the fixed predictors defines a
data-dependent predictor which can be learned by a small amount of
data because it only depends upon | variables.

3.3.4.2 Strong combination

We now propose a stronger combination of the different scales. This
combination merges the decomposition vectors z/) in a single vector
and directly learns the linear operator L mapping this vector to the
output prediction.
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By observing that Equation (3.65) can be interpreted as a real-valued
linear operator ‘
{zV}<jy — X(t+A), (3.66)

whose coefficients are specified by «; and f,(t 4 A), we can generalize
this operator as

L: {Z(j)}lgjgj — Z% Z wp,jzg) =Xx(t+ A7), (3.67)
j=1 pel;

J
for arbitrary complex coefficients wy, ;.

The coefficients {{wy,;} er; }1<j<j can be learnt by minimizing the
MSE of the prediction. This is a convex problem which can be solved
efficiently. It allows more flexibility than the weak combination of
predictions. Nevertheless, compared with (3.65) this approach requires
to estimate much more parameters. For an oversampling P and a
polynomial order m the matrix L has O(2/Pm) parameters instead of

J in (3.65).
3.4 NUMERICAL BENCHMARK

In this section, we compare the performance of the proposed algorithm
to the baseline non-linear predictor (multi-layer perceptron). We show
that it is able to outperfom it on synthetic time series, and to match its
performance on real time series.

3.4.1 Synthetic time-series

We first consider the prediction problem for the cosine sum model
(3-32). The Gabor dictionary D; is computed at a single large scale
2) = 512. In this case, increasing the window size 2/ improves results
because the signal is stationary. Using smaller scale windows does
not reduce the error. We shall compare the impact of the maximum
polynomial order m and the oversampling P. The sparse forecasting
is compared with a linear regression and a one hidden layer neural
network.

3.4.1.1 Experimental setup

The random process x is defined according to (3.32) with K = 2
frequencies, and a; = pe'? where ¢ is a random variable uniformly
distributed in [0, 27t] and px has an exponential distribution of mean
1. The two frequencies w; and w; have a uniform distribution over
[1/10,97t/10]. with rejection sampling when |w1 — wy| > 1. The future
lag A is set to 1. The lasso hyperparameter A is fixed to 100 for all
dictionaries. The oversampling parameter P is chosen within the set
{1,2,4,8}.
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We use the FISTA algorithm [BTog] exposed in Section 3.1.1.1 to
perform the minimization problem (3.51). The step size v is equal
to 0.9 of the upper bound on the step size ensuring convergence,
defined in Equation (3.9). The numerical implementation is performed
in python and relies on the Tensorflow library [Aba+16], implemented
on Graphical Processing Units (GPUs) to speed up computations. In
all numerical experiments, unless mentioned otherwise, we use 103
iterations which provides a convergence of the loss up to +107°.

.
N\,
N,
N,
N,
................... R
\.
X
i \,
n e
= '\’ \
@ 107t :
0]
2
o+
o
[0]
o —v— Sparse 0
Sparse 0, 1
—e— Sparse 0,1, 2
—— MLP
1072 e Linear

103
Dictionary size

Figure 3.8: Relative RMSE results on the cosine model (3.32) (lower is better).
The top line gives the error of the linear estimator. Below is the
error of the neural network. Each sparse 0, ..., m curve corresponds
to a dictionary computed with polynomials up to an order m.
The horizontal axis specifies the size of the dictionary, which also
depends upon the oversampling factor P.

For fair comparison, baseline methods are also computed on an
input of size 2° = 512. The neural network has one hidden layer of
4096 units, with ReLU activations and linear readouts. This neural
network is trained on 10° independent instances of the problem with a
stochastic gradient descent using the Adam optimizer of [KB14], with
standard hyperparameters for 100 epochs, with batches of size 1024.
The linear predictor is trained in a batch mode on 10* independent
examples with a ridge regularization parameter of value 10~°.

The forecasting error is computed with a relative Root Mean-Square
Error (RMSE) in order to provide dimensionless results:

\/IE x(t+A) — %(t+A) [
Var[x(t + A)]

Relative RMSE = , (3.68)

where all expectations should be understood in an empirical sense.
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3.4.1.2  Results

The forecasting results are displayed in Figure 3.8. The worst results
are obtained by the linear estimator. For a fixed maximum polynomial
order m, results are improved by increasing the oversampling factor
P and hence the dictionary size. Increasing the polynomial order m
also improves results provided P is large enough. For a sufficiently
large dictionary, the sparse windowed forecasting outperforms both
the linear and neural network estimators in this case.

3.4.2 Real time-series

We now test these forecasting algorithms over speech signals which are
known to be sparse in a time-frequency dictionary. We show that the
sparse windowed forecasting (3.67) yields an error which is smaller
than with linear estimators and which is of the same order as the error
of a one hidden layer neural network, although it uses much fewer
parameters.

3.4.2.1 Experimental setup

The CSTR voice cloning toolkit (VCTK) [Yam12] is a corpus of speech
data, with standardized sentences uttered by 109 native English speak-
ers with various accents. Biophysical mechanisms producing speech
generate signals with a sparse time-frequency structure [GME11].
Figure 1.2 illustrates this sparsity on an example of the VCTK dataset.

In these experiments, we only used recordings of the “p260” speaker
in the data set. Among them, we chose 25 files randomly, split as 20/5
in train and test sets. For each recording, we normalized the time series
to have values in [—1, 1], and cropped the beginning and the ending of
the signal with a threshold on the absolute value of 0.1. For a past of
512 samples and a future lag A = 200, this left us with approximately
3 x 10° examples in the train set, and approximately 6 x 10* examples
in the test set. We study forecasting results over this subset of the
VCTK dataset, at multiple future lags A. The multiscale sparse win-
dowed forecasting is computed for scale parameters 1 < j < 8 using
past samples over 51.2 ms. The Gabor dictionary is computed with
oversampling factor P = 4 and a maximum polynomial degree m = 1.
The sparse regularization parameter A is set to 1 at all scales. Results
are compared with a one hidden layer network with 4096 hidden
units with ReLU activations. Training uses batches of size 128, and 20
epochs over the training dataset, to achieve convergence.

Results are measured with the relative RMSE. The future lags are
sampled logarithmically from A = 107! ms (smallest possible lag) to
20 ms, which is chosen as the smallest value for which all methods
returned an RMSE larger than the standard deviation of the target.
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Figure 3.9: Relative RMSE on VCTK as a function of the future lags A. Sparse
(T) stands for weakly parametrized multiscale forecasting (3.65),
and sparse (L) for strongly parametrized multiscale forecasting
(3.67). Sparse methods outperform the linear predictor, and have
an error which is nearly the same as the neural network.

3.4.2.2 Results

The results of all methods computed on the test set for the forecasting
task at multiple future lags A are displayed in Figure 3.9. In more
details, the forecasting RMSE of a linear estimator, a neural network
and multiscale sparse forecastings computed with a small number
of parameters in (3.65) or a large number of parameters in (3.67) are
given. In all cases, the non-linear estimators achieve a lower error
than the optimized linear estimator. Multiscale forecasting with large
number of parameters yield an error of the same order as the neural
network.

3.5 CONCLUSION

In this chapter, we have investigated what priors can be used to im-
prove upon linear predictors. Numerical experiments show that sparse
time-frequency priors are good candidates for this task, allowing a
1-MLP to beat linear predictors. Building on a simple cosine model,
a sparse time-frequency forecasting estimator has been proposed. It
takes advantage of this sparsity by solving an inverse problem calcu-
lated with multiscale windows. Numerical experiments on synthetic
and real signals show that numerical errors are close for the 1-MLP
and the sparse multiscale windowed predictions.



TIME-SERIES GENERATION WITH SCATTERING
INVERSE NETWORKS

In this dissertation, the second modeling task we consider is univariate
time-series generation. This consists in estimating the unknown prob-
ability density function px of the stochastic process X from a finite
number of samples {x;}1<;<n. We focus on audio time-series, such
as speech or music recordings. Such time-series exhibit sparse linear
decompositions in time-frequency dictionaries, such as wavelets. This
sparsity leads to fat tails for the decomposition coefficients, which is
evidence of a non-Gaussian distribution of the underlying process.
Due to the presence of a hierarchical structure, these time-series also
have long-range dependencies. Therefore, as explained in Section 1.1.1,
without any additional assumption, the probability density estimation
problem suffers from the curse of dimensionality.

Thus, in this context, we investigate the following questions: which
priors can be used on the time-series to estimate the probability density
in a tractable fashion? What algorithms can be used to perform this
estimation?

Deep neural networks have recently achieved outstanding genera-
tion results for such processes. For audio generation, state-of-the-art
results are obtained with probabilistic autoregressive networks, such
as WaveNet [Oor+16] or SampleRNN [Meh+17]. These networks as-
sume that the time-series has Markov dependencies of size 7, such
that the modeled probability density reads

~

px({x(O)}) = [Tpx(x(®)|x(t —1),...,x(t=1)), (4.1

t=1

where T is the total length of the time-series. Each conditional density
px(x(t)|x(t —T),...,x(t — 1)) is then approximated by a neural net-
work fo(x(t —T),...,x(t)) under the assumption of stationarity. The
past size T is typically large, T > 10°, so that this approach should
suffer from the curse of dimensionality. The outstanding generation
results lead to speculate the existence of implicit priors in the architec-
ture of the network. However, due to the complexity of these networks,
it is difficult to relate these priors to the actual processes.

In the case of image generation, remarkable results have been ob-
tained in modeling complex, non-Gaussian distributions with implicit
models [RMC16; Tol+18]. These models rely on a non-linear generator
G and a latent variable Z having a fixed, white Gaussian distribu-
tion pz. New signals X are sampled as G(Z), so that the probability
density px is modeled as px = G.pz. The generator G is typically a
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deep convolutional neural network, as is the case in Generative Ad-
versarial Networks (GANs) [Goo+14] and Variational Auto-Encoders
(VAEs) [KW14]. The white noise structure of Z shows that G disen-
tangles the variabilities of the input signal along its different dimen-
sions [Benog]. This simplification of the variabilities of the signals
also appears with signal transformations: a simple linear interpolation
in the latent space G(6z1 + (1 — 0)z2) corresponds to a meaningful
warping in the signal space from G(z1) to G(z2) [RMC16].

The mathematical objective optimized by GANs and VAEs with a
deterministic encoder requires to measure the equality of probability
distributions, in the signal space for GANs or in the latent space for
VAEs. However, the curse of dimensionality makes these measure-
ments intractable in high dimension [Aro+17]. In order to circumvent
this limitation, [AM18b] recently introduced an approach where the
encoder is not learned, but replaced by a fixed scattering transform
chosen using priors on the input signal. Learning the generator G
is framed as an inverse problem, which is tractable under sparsity
assumptions [Malo8].

In this chapter, we bridge the gap between latent generative net-
works and sparse time-frequency time-series, with the following con-
tributions. Building on the framework proposed by [AM18b], we
introduce an unsupervised architecture to generate time-series of arbi-
trary length from a white noise input, as X = G(Z). The architecture
of this Scattering Inverse Network G is especially crafted to take into
account causality constraints, both during training and generation.
Further, we introduce an adapted loss to train this model: it combines
two terms, one stemming from an inverse problem in an adapted
metric, the other a moment-matching term to control the generation
from white noise. Part of the material contained in this chapter has
been published in [AM18a].

This chapter is organized as follows. In Section 4.1, we cover the
background material related to this chapter, notably linear models,
GAN:Ss, VAEs, and audio probabilistic approaches such as WaveNet. In
Section 4.2, a general overview of our non-linear filtering technique,
relying on a scattering autoencoder model, is provided. In Section 4.3,
we define the fixed encoder with a scattering transform using our
priors on the signals. In Section 4.4, we describe the generator G
used to produce signals, focusing on its architecture and training
loss. In Section 4.5, numerical experiments performed to validate our
approach are reported.

4.1 BACKGROUND

In this section, we provide a detailed review of the different methods
and priors which enable to generate univariate stationary time-series.
Under a Gaussian distribution assumption and a Markov dependence
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hypothesis, the statistics of the time-series can be reproduced by linear
models, which lead to simple generative models. Latent generative
networks such as GANs and VAEs generate non-Gaussian signals
from noise using a convolutional neural network, but the relationship
between the noise vector and the corresponding signal is unclear and
their training presents theoretical and numerical issues. Autoregres-
sive probabilistic networks provide state-of-the-art generation results
for audio time series, but are much more difficult to interpret math-
ematically than GANs and VAEs and also suffer from the curse of
dimensionality. We finally review sampling strategies constrained by
statistics and discuss their relevance to our problem.

4.1.1  Linear models

Linear models yield a minimal mean-square error under a Gaussian
prior for the process X. The process X is Gaussian if and only if for any
number of coordinates k, for any temporal indices ¢4, ..., and for
any weights wy, ..., wy € R, the random variable fozl w; X (t;) has a
Gaussian distribution. Under this assumption, the probability density
px is characterized by its first and second-order moments: the mean
u = E[X(t)] and the autocovariance yx(t) = Cov(X(0), X(t)).

A standard simplifying prior for px is the assumption of short-term
dependence: there exists a time T > 0 such that yx(t) = O(e” /7).
Under this hypothesis, Herglotz’ theorem [BDg1] states that the auto-
covariance yx is characterized by its Fourier transform 7x, also called
power spectrum:

Tx(w) =Y yx(t)e .

ARMA models are linear parametric model which approach the
power spectrum with a rational function yx defined in Fourier as:

—~ 2%70 by plwm
x(w) = =227 (4-2)
This is equivalent to assuming that there exists a Gaussian white
process Z, of zero mean and with uncorrelated temporal samples,
such that the approximated process X satisfies

L M
Y aX(t—1)= ) buZ(t—m). (4-3)
1=0 m=0

Provided that the polynomial Y, a;u' has no zero on the complex
unit circle |u| = 1 [BDg1, Chapter 3], one can invert this relationship
to view X as the white noise Z convolved by a filter h:

X(t) = Jio hwZ(t—m) =hxZ(t), (4-4)

m=—oo
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where the coefficients /1, are defined on an open set containing the
complex unit disk by

+00 M m
Y. = TPt @5)
m=—oo Zl:() aju
In the end, linear models yield a generative model defined as the
convolution of a Gaussian white noise Z by a filter / (4.4). The resulting
signal is therefore Gaussian, and is poorly suited to generate natural
signals such as speech or music, whose statistics are non-Gaussian.

4.1.2  Latent generative models

We review in detail latent generative models relying on deep neural
networks, which are depicted schematically in Figure 1.3. We cover
in particular Auto-Encoders and Generative Adversarial Networks
(GANSs). These models map a Gaussian white noise variable Z de-
fined on a latent space Z to the signal space X with a generator G,
which consists in a neural network. Therefore, the model px for the
probability distribution of X is implicitly defined as px = G.pz. In
both cases, these networks have shown a great success at modeling
complex image distributions. However, the reasons supporting these
successes remain unclear, since both approaches are subject to the
curse of dimensionality.

4.1.2.1  Auto-Encoders

In what follows, we review the approach of [Tol+18], which uses
deterministic auto-encoders instead of probabilistic ones. This ap-
proach is conceptually simpler than the original Variational Auto-
Encoders [KW14], while still leading to remarkable modeling results.

Auto-encoder models rely on two networks: an encoder E : X — Z
and a decoder G : Z — X. These networks are trained with respect to
a loss based on two terms, balancing reconstruction and latent space
modeling.

The first loss term is a reconstruction loss measuring how close
G(E(x)) and x are, for all training inputs x, with respect to a criterion
c(x, G(E(x)). Such a criterion can simply be chosen as the mean-square
error ||x — G(E(x))|[3.

The second loss term controls the distance between the distribution
of Z = E(X) and a prior density distribution pz, such as a white
centered Gaussian distribution, with an adequate divergence dz. Such
a divergence can be implemented e.g. with a Maximum Mean Discrep-
ancy Distance [Gre+o7].

Maximum Mean Discrepancy measures a distance between two
probability measures by computing the maximal difference of ex-
pectations under the two measures, among a given set of functions.
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Provided this function set can be spanned by a Reproducible Kernel
Hilbert Space, this distance can be computed empirically thanks to
the “kernel trick” [Gre+o7].

The resulting loss reads:

min Elc(X, G(E(X))] +ndz(pz. pz) . (4-6)
where 77 > 0 is a trade-off parameter, and the expectations and dis-
tances are computed from samples.

Auto-Encoders have lead to outstanding generation results [Tol+18].
Combined with an additional supervision in the latent space, they
allow to transform signals with a simple modification of coordinates
in the latent space [Lam+17; Eng+17]. For time-series, multiple works
have focused on modeling of spectrograms with 2D auto-encoders
to generate and transform audio [BB16; HZG1y]. However, the re-
sulting spectrograms need to be inverted with the Griffin-Lim algo-
rithm [GL84], which leads to undesired artifacts.

Auto-Encoders face the curse of dimensionality with the second
term in loss (4.6), which is impossible to estimate accurately with-
out additional assumptions. Therefore, hidden priors must lie in the
architecture used by these networks.

4.1.2.2  Generative Adversarial Networks

DEFINITION Generative Adversarial Networks (GANSs) [Goo+14]
rely on two networks, a generator G : Z — X and a discriminator
D : X — (0,1). These networks are trained jointly from a corpus of
samples {x;}1<i<n.

These networks are both deep neural networks, but have opposite, or
adversarial, objectives. The goal of the generator is to map a Gaussian
white noise variable Z € Z to new realistic samples X = G(Z). The
goal of the discriminator is to classify actual images belonging to the
training set from newly generated images. These competing objectives
result in the following loss:

mgn max E [log D(X)] + E [log (1 — D(G(Z)))] . (4.7)

MATHEMATICAL ANALYSIS For a fixed generator G, the maximum

over all possible functions D : X — (0,1) is attained for the Bayes
classifier )
* px\x

P = ) e 48

For this choice of optimal discriminator D*, it can be shown [Goo+14]

that the generator G minimizes the Jensen-Shannon divergence [Ling1]

between the distribution px and the distribution pg, which motivates

this training formulation.
As shown by [Aro+17], this appealing property is in fact fooled
for two reasons. First, because of the finite size of the discriminative

79



8o

TIME-SERIES GENERATION WITH SCATTERING INVERSE NETWORKS

network, it is impossible to approach the optimal discriminator (4.8)
in a large dimensional setting, unless additional assumptions are
made. Second, the estimation of the Jensen-Shannon divergence is
subject to the curse of dimensionality, unless dimensionality reduction
assumptions are made.

EMPIRICAL SUCCESS Despite these theoretical issues, GANSs rely-
ing on deep convolutional networks [RMC16] have led to outstanding
generation results for images. In particular, these networks appear to
factorize the variabilities of images: linear interpolations in the latent
space lead to meaningful interpolations in the signal space. In the case
of audio, a recent work [DMP18] shows that GANSs are also able to
generate raw audio with an impressive quality.

Because of the theoretical limitations reviewed above, there must
be hidden priors made by GANSs, notably the deep convolutional
architecture, which allow to obtain such results.

4.1.3 Autoregressive probabilistic networks

4.1.3.1  General approach

Autoregressive probabilistic networks aim at modeling the probability
density px of the process X in an explicit fashion, with a model px
fitted on data.

For any probability density function px, the following conditional
decomposition holds:

px(x) = | [ px(x(H)|x(< 1)) - (4-9)

—1~

t=1

Autoregressive probabilistic networks simplify this decomposition
with a Markov dependency assumption, which allows the replacement
of x(< t) by x(t —1),...,x(t — 1), and a stationarity assumption,
which makes it possible to model px(x(t)|x(t —k),1 < k < 7) with
the same function fy for all ¢:

T
px(x) = Hﬁ;} (x(B)|x(t—k),1<k<T). (4.10)
! fo (x(t— (1)

The parametrized fy is a neural network with parameters 0.

The autoregressive formulation (4.10) allows for a tractable evalua-
tion of px on samples x. This is a noticeable difference from energy-
based unsupervised models, which require to compute a partition
function containing an exponential number of terms [DBC11]. Further,
such a model permits to sample new signals exactly and easily, by
sampling each conditional px(x(t)|x(t —k),1 < k < T) sequentially
fort=1,2,...
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The model px is fitted by maximizing its log-likelihood by a variant
of stochastic gradient descent, Adam [KW14], or, equivalently, by
minimizing its negative log-likelihood, on training data {x;}1<i<n

N
mein - Zbglogﬁ;}(xi). (4.11)

Plugging (4.10) into (4.11) yields the minimization problem

1 N

n%in N Z;logfg(xi(t —T),...,x(t) . (4.12)

i=1

4.1.3.2 WaveNet

WaveNet [Oor+16] is the prominent model for time-series following
this autoregressive approach. It uses a deep causal convolutional
neural network for f.

The convolutional structure of fy allows a parallel evaluation of (4.12)
both across time t and samples i. This parallelization can be used to
speed-up training on GPUs, thereby allowing to process large datasets.

In order to attain a large receptive field T without having too many
layers, it uses so-called dilated convolutions [YK16]. Dilated convolu-
tions insert zeros between the coefficients of the kernel of the convolu-
tion, so that the receptive field is broader than the size of the kernel.
By doubling the size of the inserted zeros at each layer, one obtains a
receptive field of T with log,(7) layers.

This network has achieved outstanding modeling results on audio
time-series, such as speech and piano music, by directly working
on the raw waveforms. When conditioned on higher-level features,
such as words or phonemes, it reaches state-of-the-art text-to-speech
quality [Ari+17; She+17].

4.1.3.3 ParallelWavenet

WaveNet [Oor+16] allows for a fast training thanks to its convolutional
structure. However, generation is sequential along time, which may
be too slow for real-time audio synthesis.

The Parallel WaveNet [Oor+17] architecture was proposed to make
both training and generation parallel across time. Its generator archi-
tecture maps white noise variables Z to probability densities G(Z), so
that new samples are obtained as X (t) ~ G(Z)(t). The generator G is
a deep convolutional neural network close to the original WaveNet.
Thanks to its convolutional structure, synthesis can be performed in
parallel across time, reaching a thousand-fold speed-up with respect
to sequential generation.

The Parallel WaveNet is trained with a pre-trained WaveNet. This
pre-trained WaveNet evaluates the log-likelihood probability densities
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produced by the Parallel WaveNet after sampling, and sends a feed-
back to the Parallel WaveNet so as to maximize this log-likelihood.
Such an approach is very close to the adversarial training of GANS.

4.1.3.4 Mathematical Analysis

Both WaveNet and Parallel WaveNet rely on the evaluation of the
log-likelihood of the model on samples. This is equivalent to mea-
suring the Kullback-Leibler divergence between the model and the
empirical measure of the process. However, without prior assump-
tions on the underlying process, this empirical estimate is a very poor
measurement of the divergence between the model and the actual
probability density px [Aro+17]. Therefore, the network must use
hidden assumptions made by its architecture.

The architecture of the WaveNet is very difficult to understand. It
relies on many modern deep learning tricks, such as residual connec-
tions [He+16] and multiplicative gates [HS97], whose importance is
difficult to assess. Interpreting this network in light of signal process-
ing knowledge is a very complex task.

4.1.4 Sampling constrained by statistics

We now review a sampling method standard for textures which can
be used to perform signal transformations, and discuss the differences
with our approach.

Given an original signal xo sampled from the process X, let ®(x)
be a vector representation of xj. This technique generates new signals
close to x by solving a minimization problem in x

min |[(x) - & (x0)|| . (413)

By using different random seeds for x and solving the minimization
problem up to a threshold €, one gets new different samples, which
might differ from the original xo. Notice the algorithmic difference
with deep implicit generative models, where no minimization problem
is solved at generation time.

This approach is especially useful in modeling audio or visual
textures [Jul62]. Textures consist in a repetition of patterns, for instance
bricks on a wall or cicadas singing. These signals are modelled as
ergodic processes [BDg1]. Provided the representation ®(x) involves
a spatial or temporal mean, by ergodicity it will converge to the mean
of the process up to a renormalization constant, i.e. ®(x) ~, EP(X).
As a consequence, assuming a maximum entropy distribution on the
space of admissible solutions to (4.13), the newly generated signals are
endowed with a Gibbs probability distribution constrained by these
statistics [ZWMog8].

In neuroscience, these methods are used to probe neural perceptual
systems [CRSo5; MS11]. The goal is to find neurally plausible statistics
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Figure 4.1: General approach to generate new signals from a white noise
input. The encoder ® is chosen using priors on the signals, while
the generator G is trained to invert the encoder.

which lead to perceptually indistinguishible textures [DF81; PSoo].
More generally, this approach can be used to probe a given representa-
tion ® which will be later used e.g. for classification purposes [BM13a;
GEB15; Los17].

While this approach builds a model of the probability density of the
whole process in the case of textures, this is not true for more complex,
non-ergodic signals. As a consequence, we stress that such a sampling
is conceptually different from generative modeling, whose goal is to
model the whole probability distribution of the signals.

Statistics matching can be used to transform signals, with a method
which is more complicated than mere linear interpolations. Assuming
that the representation @ is splitted between a content representation
and a style representation, it is possible to transfer the style of a signal
to another signal while keeping the content. For instance, this allows
the generation of contemporary building pictures as if painted by
impressionnists [GEB16]. For speech, this approach enables changing
the voice of a speaker without altering its content [Cho+18]. In the case
of music signals, early results [Gri+17] stress the difficulty of defining
and separating the style from content of complex musical pieces; the
more convincing results are obtained when one of the signals is a
simple texture.

4.2 GENERAL APPROACH

In this section, we give a general overview of our approach to solv-
ing the unsupervised generation problem, sketched in Figure 4.1. It
consists in an encoder ® : X — Z and a decoder G : Z — X, which
are mappings between the signal space X’ and the latent space Z. The
encoder @ is fixed, and defined so as to map the input signals X to an
approximately Gaussian white noise Z. The decoder or generator G is
learnt to invert ® on training examples. The generator G should then
be able to map new noise vectors Z to realistic signals X = G(Z).
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4.2.1  Encoder predefined with priors: whitened scattering transform

Following [AM18b], ® is designed by hand. Indeed, optimizing ® to
ensure that the distribution of Z = ®(X) is close to the distribution of
Z is intractable, since the very objective of this optimization suffers
from the curse of dimensionality. @ should ideally map X to a Gaus-
sian white noise variable, while preserving invertibility in a stable
fashion. Using prior information on the input signals, notably the exis-
tence of a sparse time-frequency decomposition and the decorrelation
of the coefficients of such a decomposition at long time intervals, it is
possible to hand-craft this encoder.

The main tool we employ to produce Gaussian variable is a local
averaging, computed with a low-pass filter along time. Under as-
sumptions of decorrelations of first- and second-order moments, and
provided the averaging window is large enough, the resulting variable
will asymptotically converge to a Gaussian one [Daso8]. However,
averaging can also lose a lot of information on the original signal. To
alleviate this effect, we follow the scattering approach, which consists
in employing multiple channels recursively splitting the informa-
tion contained in different frequency bands [Mal12; BM13b; AM14;
ALMais].

Provided the aforementioned assumptions on the signals hold, the
resulting representation, known as the scattering transform S;(X),
will be invertible in a tractable fashion. Indeed, it exploits an under-
lying sparse representation, known to stabilize deconvolution prob-
lems [Malo8].

S;(X) may be close to a Gaussian variable, but it does not have
a white covariance matrix: it has non-negligible channel-wise and
temporal correlations. In order to map it to a Gaussian white noise, we
use an autoregressive filter H trained on the dataset, and output the
corresponding innovations H(S;(X)). The latter defines the encoder
®(X) = H(S;(X)).

4.2.2  Generator: Scattering Inverse Network

The operator G consists in a de-whitening operator H ~1 which re-
trieves approximate scattering vectors, followed by a causal convolu-
tional neural network Y which maps scattering vectors to signals X.
The operator G is learned so as to invert the scattering transform, with
an adequate metric.

The inverse problem that G is trained to solve is tractable. Indeed,
the scattering transform performs an averaging with respect to the tem-
poral axis. Insofar as the underlying representation of the scattering is
sparse, this averaging can be inverted. Further, the scalogram repre-
sentation without averaging can also be inverted [Wal15]. Note that
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the training of G does not rely on probability distribution estimates,
so that the training avoids the curse of dimensionality.

G is trained to invert the mapping ® on training examples. However,
it does not hold that G is the inverse of ®. Indeed, G has a finite
expressivity because of the finite number of neurons in each layer. As
a consequence, G is a regularized inverse of ®. The exact nature of
this regularization remains an open problem, which is linked to the
general inductive bias of deep neural networks [Zha+17; AM18b].

4.3 WHITENED SCATTERING ®: INFORMATIVE GAUSSIAN EN-
CODER

In the previous section, we have introduced the general approach to
generate time-series. In this section, following [AM18b], we show how
priors on the signals X allow to specify an embedding Z = & (X)
which is an approximately Gaussian white noise, yet contains sufficient
information on X to reconstruct an approximation of X from & (X).
Among such priors are a sparse decomposition of the signals in time-
frequency dictionaries, the perceptual stability to small deformations,
and the decorrelation of signals at large scales.

These assumptions lead us to use a whitened scattering transform
® = Ho S;(X), where H is a whitening operator and S; the scat-
tering transform [ALM15]. Indeed, by construction, the scattering
transform is stable to small deformations of the input signal. The spar-
sity of the input signals stabilize the inversion of S;(X). Its low-pass
averaging yields approximately Gaussian variables under decorre-
lation assumptions thanks to the central limit theorem. H whitens
the Gaussian variable S;(X) thanks to a vector autoregressive (VAR)
filter, outputting the innovations of the process. H can be inverted
analytically.

4.3.1 Low-pass averaging yields Gaussianization

Gaussian variables naturally arise asymptotically as a result of the cen-
tral limit theorem. In its original statement, the central limit theorem
requires independent random variables. However, under decorrelation
assumptions of first- and second-order moments on the stationary
sequence X (t), Z%]:,Q ; X (t) converges asymptotically to a Gaussian
variable, up to a renormalization term [Daso8]. As a consequence, we
consider that for | “large enough”, this variable is “approximately”
Gaussian. In order to reach a faster decay in the Fourier domain, local
sum Zf]:_ o1 X(t) is approached as a convolution X x ¢;(0) with a
smooth averaging filter ¢; whose temporal support scales as 2/

¢r(u) =2719(27u). (4.14)
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We will therefore consider the whole sequence (X % ¢ (t) )¢, which
then becomes approximately Gaussian when | grows large. Since ¢;
is a smooth low-pass filter, it is possible to subsample X x ¢; without
loss of information, leading to the quantity

(X*cp](ZIn))nEZ. (4.15)

However, for the signals in which we are interested, the low-pass
filtering removes all information from X: most of the energy of the
signals lies in a frequency band higher than the cut-off frequency of
the filter ¢;.

As a consequence, one should not simply average X, but a whole
representation U(X) containing more information on the original X,
where U(X)(t) is a vector with K coordinates. Provided this rep-
resentation U(X) also decorrelates for large temporal intervals, the
representation

§(X)(2/n) = U(X) gy (2n) (4.16)

will approximately converge to a Gaussian variable. In the next sec-
tions, we explain how to build U(X) so that S;(X) is sufficiently
informative about X and is stable to time-frequency deformations.

4.3.2  Scalogram: Wavelet Modulus Transform

4.3.2.1  Wavelet Transform

The low-pass averaging X  ¢; loses too much information on the orig-
inal signal X. The missing information is located in high frequencies,
which can be accessed with band-pass filters. Such filters could stem
from a windowed Fourier transform. However, the high frequencies
of a windowed Fourier transform are instable with respect to small
temporal warpings [AM14]. In order to achieve stability with respect
to temporal deformations, it is necessary to group frequencies among
dyadic packs, leading to wavelets [Mal12; AM14].

Wavelets {) } e are obtained from the dilatations of a single
mother wavelet i, possibly complex-valued:

Pa(t) =27 p(27). (4-17)

Contrary to Chapter 2, A is not limited to integer values: typically,
one uses A = q/Q where g is an integer, and Q > 1 is the number
of intermediate scales per octave. This allows us to finely segregate
partials at high frequencies. We detail later in this subsection adequate
choices for ¢ used in this dissertation, namely Morlet and Gammatone
wavelets.

The set A is chosen so that the wavelet transform W, defined as

W:x = (xxdp {xxPatren), (4.18)
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is approximately isometric: in other words, there exists € > 0 such
that for all signals x with limited bandwidth,

A =e)llxl* < llxxyll* + Y llxxyal® < [lx]% (4.19)
AEA

4.3.2.2  Wavelet Modulus

In order to obtain approximately Gaussian features, we would like
to average the wavelet coefficients X x ¢, with the low-pass filter ¢;.
Unfortunately, since i, is well located in high frequencies, the re-
sulting signal X % 1) * ¢; contains almost zero energy. It is necessary
to consider a non-linear transform of X x ¢, before performing the
averaging. In [Bru13], a pointwise complex modulus is proved to be
an adequate non-linearity to achieve stability with respect to small
time warpings. As a consequence, we use the modulus wavelet fea-
tures |X * i, | for all A, which are then averaged. We thus denote the
scalogram or log-spectrogram U; (X), defined as

UL (X) (1, A) = |X % 9 (0). (4:20)

In order for the averages |X % 15| * ¢j to be informative, |X * i, |
should be a low-pass signal. A sufficient condition for |X % 1, | to be
a low-pass signal is that in the Fourier domain, the wavelets 1, are
concentrated around a single frequency [Oya1y]. In particular, they
need to be approximately analytic, that is

Vw < 0,9 (w) = 0. (4.21)

Even though |X % 1, | is designed to have significant low-frequency
energy, the low-pass averaging with ¢; might neglect significant por-
tions of its spectrum. It is therefore tempting to apply recursively
another wavelet transform on top of each |X ¢, |, followed by a mod-
ulus. This would give rise to the temporal wavelet transform, which
was introduced by [BM13b; AM14]. In this dissertation, we use a
stronger version of scattering, the time-frequency scattering proposed
by [ALM15], where the second wavelet transform is applied both
across time and scale index A. Section 4.3.3 is devoted to its exposition.

We conclude this section with an overview of the wavelets used in
this chapter.

4.3.2.3 Symmetric Morlet Wavelets

Morlet wavelets ¢ are very close to Gabor filters [Gab46], up to a low-
pass term which ensures an exact zero-mean, making them proper
wavelets. Figure 4.2 (left) shows a Morlet wavelet. The Morlet mother
wavelet 1, centered at frequency ¢ and with bandwidth ¢, is defined
as:

(1) = ago(t) (e = p), (4.22)
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Figure 4.2: Morlet wavelets (left) and Gammatone wavelets (right). The blue
and red curves respectively correspond to the real and imaginary
parts of the wavelet, while the green curve denotes the envelope.

where « is a normalization parameter ensuring ||¢|; = 1, B is a
parameter adapted so that ¢ has zero mean, and g, is a Gaussian
envelope:

ot
go(t) =e 2?2, (4.23)
The corresponding low-pass filter ¢ is defined as

_ g%(t)
180 12

¢(t) (4-24)
where 0, is a bandwidth parameter. This parameter is tuned so as to
ensure the energy stability of the whole wavelet transform, by filling
exactly the frequency gap left by the band-pass filters.

4.3.2.4 Causal Gammatone Wavelets

Pseudo-analytic gammatone wavelets were designed in [VAS14] in
order to provide a mathematical frame to the gammatone filters which
are common in the neurophysiology literature. These filters model the
low-level filters used in the brain to process audio. In the continuous-
time, the Gammatone mother wavelet is defined as

d o
P(t) = o (fpe t/Uelgt) Li>o, (4.25)

where the integer p > 1 controls the smoothness of ¢, o controls the
bandwidth of ¢, ¢ is its central frequency, and « is a normalizing
parameter. Figure 4.2 (right) displays one Gammatone wavelet.

Thanks to the exponential damping, Gammatone wavelets can be
implemented with recursive infinite impulse response (IIR) and fi-
nite impulse response (FIR) filters. After discretization, the Fourier
transform of the filters reads:

(1—e )N
(1— e*fTAg—i(W—g)\))

() = S(1-e), (4.26)

where o) = 2_)‘04, and &, =27¢.
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The corresponding low-pass filter is defined as

A 1— )N
() = ey 427)

with o7 = 2o,

The parameters Ty, Gy and op are chosen in order to preserve energy.
One can follow calculations similar to those derived in [Los17], after
an adaptation to the discrete setting.

4.3.3 Time-Frequency Scattering

We review the time-frequency scattering transform [ALM15]. It makes
it possible to recover the information lost by the averaging of the
scalogram |X % ¢} |  ¢;, while ensuring the stability of the result-
ing representation to joint time-frequency warpings. As shown in
Figure 4.3, it consists in a time-frequency filtering of the scalogram
|X x 1 |(t) in the variables (t,A) with time-frequency wavelets.

Wavelet
"' |' ' Modulus

2D fﬂter % Lp
Modulus N

Averaging
Subsampling

Scattering —
P; 2,

Figure 4.3: Time-frequency scattering transform S;(X). The scalogram is ob-
tained with a first wavelet transform ¢} followed by a point-wise
modulus. A joint time-frequency filtering of this log-spectrogram
with the filters hz ® 2, regularizes the time-frequency deforma-
tions of the signal. The low-pass convolution with ¢; Gaussianizes
the resulting tensor.

4.3.3.1  Time-Frequency Deformations

Time-frequency deformations correspond to local deformations of the
scalogram U (t,A), seen as an image in the variables (f,A). Among
these deformations are frequential transpositions, which correspond
to displacements along the axis A:

Here, we used an approximate equality because in general, such
an operation is mathematically ill-defined due to constraints on the
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wavelet transform [Malo8, Chapter 4]. We refer to [Los17] for a detailed
treatment of transpositions.

Applying only temporal convolutions on top of the scalogram
U; (t,A) would result in a representation which is unstable to fre-
quential transpositions, that is, a small displacement |b| < 1 would
result in a large displacement in the representation [Los17]. In order
to ensure stability along such frequential displacements, one could
think of performing convolutions along the frequential axis only. Such
an approach would lose too much information on the original signal,
as it would be unable to differentiate separable deformations from
joint ones.

Joint time-frequency deformations cannot be written as a plain
temporal or frequential warping. A simple example consists in a
frequency-dependent time-shift b(A):

ToyUa(t,A) = Up(t = b(A),A). (4-29)

Performing separate convolutions along time or frequency on 7y,
would ignore the relative displacements of the different frequencies,
thus losing crucial information. It is thus necessary to employ a joint
time-frequency filtering of the scalogram in order to obtain an infor-
mative and stable encoder.

4.3.3.2 Time-Frequency Scattering

We present the time-frequency scattering transform [ALMz15]. It is dis-
played in Figure 4.3. This transform applies joint time-frequency filters
to the scalogram U (t,A) = |X x ¢}(t)| in order to obtain an infor-
mative representation of the signal which is stable to time-frequency
deformations.

The time-frequency filters are built as a separable product iz ® 93,
of frequential filters hz and temporal filters 13,. The frequential filters
hg are localized Fourier atoms of discrete frequency ¢ with a Hann
window whose size P matches one octave, P = Q. The convolution
is computed in half-overlaps over the frequency axis. The temporal
filters 3, are similar to the wavelets used to compute U, but with
only Q> = 1 wavelet per octave hence the use of a subscript 2 to
distinguish them from the filters 1} used in the first scalogram Uj.
After performing the convolution, a modulus non-linearity is also
applied in order to remove the local phase, thereby regularizing the
representation. We thus define:

UR™ (1,8, A) = (| X %t | *ea (e © 93)] - (4.30)

As shown empirically in [ALM15], only the paths with A’ > A need to
be considered because the other ones contain negligible energy.
The scalogram U; (£, A) is also filtered along frequency as

U™ (8,8) = [Un(t, ) *a hel. (4.31)
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in order for U, to also be stable to such time-frequency deformations.
Note that a true analog to Equation (4.30) would have required to use
the joint filter iz © ¢;, but as a low-pass filter will still be applied to
Ullomt afterwards, this intermediate low-pass filter is redundant.

The final representation U(X) for the joint time-frequency scattering
is thus:

X)) = X0, U™, ™o )], 432
U(X) is a vector evolving along time with K; coordinates or channels
indexed by (¢, A"). One can compute that

Kj=1+Q(2]+3)+Q(J —2)% (4-33)

U(X) is finally averaged along time with ¢; and downsampled by a
factor 2/ as

5)(X)(2/n) = U(X) % ¢y(2/n),
= [ Xy @), X gl gl @ (2m), (4.3)

15519l (he © 93| e 92

As shown in [ALM15], there is no need to apply a third wavelet
transform on top of the time-frequency scattering, insofar as it contains
only negligible energy. Further, the sparse structure of the channels
contains enough information so as to allow to reconstruct an approxi-
mate inverse of X from 5;(X).

4.3.4 Whitening operator H

The scattering operator maps the time-series X to a random variable
Sj(X) which is approximately Gaussian. S;(X) has a non-white cor-
relation structure, both along the temporal axis and the channel axis.
The whitening operator H removes this covariance structure using
an autoregressive filter trained for prediction. It outputs the inno-
vations of the process, which follow an approximately white noise
distribution.

The whitening operator H is defined by a vector autoregressive
(VAR) model of S;(X) [BDg1, Chapter 11]. It is calculated by regress-
ing S;(X)(2/(n + 1)) over M; past values S;(X)(2/(n — m)) for lags
0<m< Mjas

M;—1
SO@n1D)) = ¥ WS (0@ (n—m) 1, 439)

m=0
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where W, ; are regression matrices of size K; x Kj and by is a vector of
dimension Kj. The resulting regression error is defined by a zero-mean
white noise vector Z = H(S;(X)), which satisfies:

Z@n+1)) = TV28(X)@2 (n+1)) - §(X)(2 (n+1))]

= T2 [8,(x) (2 (n+1)) ~ by

My—1
= X W)@ -m)|,  436)

m=0

where X is the covariance matrix of the centered regression errors.

4.4 GENERATOR G

In the previous section, a causal embedding Z = ®(X) has been
introduced. In this section, we define a neural network G to invert
this embedding. The architecture of G is crafted so as to take into
account the causality structure of the embedding Z with respect to
the original time-series X, and long-range dependencies within X.
The generator G then maps a Gaussian white noise Z to approximate
signals X = G(Z).

The network G is built with two components, Y and H -1 as
G = Y o H™!. On the one hand, H ! is the inverse of the whitening
operator H. H ™! maps a white noise Z to an approximation X of the
scattering S;(X). The autoregressive nature of H ! allows us to cre-
ate long-range dependencies in X; with few parameters. On the other
hand, the convolutional network Y contains | hidden layers computed
with causal 4 trous convolution filters and pointwise non-linearities. Y
is trained to invert S;(X) and outputs X = Y (X)), an approximate
reconstruction of the original signal X.

Y and H~! are trained separately. H is trained by minimizing a
prediction error on S;(X). Y is trained to invert the scattering trans-
form S;(X) on training examples. We introduce a perceptual metric
to carry out this inversion in order to reconstruct high frequencies.
Further, in order to control the behavior of the network G inputted
with white noise, we introduce a loss term controlling the scattering
moments of the generation.

4.4.1  Network definition

Figure 4.4 illustrates the architecture. Linear predictions are computed
at the largest scale 2/ by the autoregressive layer H!. Each prediction
is propagated across scales by a network Y which inverts the scattering
transform. One prediction outputs a block of 2/ time samples.
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Figure 4.4: A Scattering Inverse Network is a linear recurrent network fol-
lowed by a causal deep convolutional network with | layers. It
takes as input a vector of Gaussian white noise Z(2/n) (top right,
red), and computes the corresponding scattering vector X;(2/n)
by applying H~!, and a ReLU to ensure non-negativity. Inter-
mdiate layers X;(f;) are then computed with causal convolutions
denoted by blue arrows and zero insertions (white points). The
single vector Z(2/n) outputs 2/ values for X,(to), marked with
red points.

4.4.1.1  Top autoregressive layer

The first layer consists in the linear autoregressive filter H~! applied
on the noise Z. The resulting vector sequence H'Z should represent
scattering vectors, which are non-negative by construction. In order to
enforce this non-negativity, the linear operator H! is followed by the
pointwise ReLU non-linearity p(#) = max(u,0) to compute X; as

Xj=p (H’IZ> : (4.37)

The operator H ™! is readily defined from Equation (4.36) as
{H'ZY@ (0 1) = Ll Wau (H'ZH(2 (0= m)) + by
+2127(2)(n+1)) .
(4-38)
Each vector X;(2/n) has the same dimension K; as S;(X)(2/n). The
matrices W, ; and the vector b are the same as the ones corresponding
to the whitening operator H.

4.4.1.2  Convolutional layers Y

The convolutional network Y constitutes the rest of the network G: it
maps the layer X;, which represents the scattering vectors obtained
from the noise Z, to the temporal values Xy. The layers of Y are
convolutional layers X; for 0 < j < J, where X; is mapped to X;
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with an upsampling followed a convolution and a ReLU pointwise
non-linearity. Let K; denote the number of channels of each layer X,
with Ko = 1.

At each layer j, we first double the size of X; with a zero insertion
leading to )v(j

X;i(2n) = X;(2/n) and X;(2n+2"1) =0. (4-39)
Xj_1 is then calculated from Xj as
Xi-1=p (WXj) . (4.40)

Following standard convolutional network architectures, the operator
Wi, is an affine operator along channels and a convolutional operator
along time. More precisely, the parameters of W; are matrices W; ;, of
size K;_1 X K;j for 0 < m < M; and a bias vector b; such that

. M1 . .
WiX}2n+k27) = Y WX (2n+2/ + (k—m)2 ) + b;.
m=0

(4.41)
Numerically, as is standard for deep architectures [GBC16], W; is
implemented as the composition of a linear operator and a batch
normalization to ensure training stability. The last operator Wy is not
followed by a ReLU in order to be able to output a signal with negative
values.

4.4.2 Relative time shifts ensure causality

A subtle aspect of the construction of the Scattering Inverse Network
is how to handle the relative temporal shifts between each layer. In
Figure 4.4, the network is shown to perform block-wise causal com-
putations: each new vector Z(2/n) yields 2/ temporal points X,(t) for
2/(n —1) < ty < 2/n. Actually, this is only the case when consider-
ing relative time-shifts t; = t — 2/ at each layer. We now explain the
rationale behind these time-shifts.

We assume that the scattering of the encoder relies on the Gamma-
tone wavelets (4.25). As a consequence, the low-pass filter ¢; as well as
the wavelets are causal, so that the scattering transform S; is causal. It
results that S;(x)(2/n) only depends on past values {x(t)},<o/,. Since
the filters used are smooth in time, if 2/(n — 1) < t < 2/n then the
values of x(t) have a relatively small impact on values of S;(x)(2/k)
for k < n. Recovering these x(t) from S;(x)(2/k) for k < n would thus
be unstable.

In order to remove the instability, the future value S;(x)(2/(n + 1))
is used as well as previous values of Sj(x) to retrieve the values x(t)
for which 2/(n —1) +1 < t < 2/n + 1. This means that a future
value is used, and that this information is exploited to obtain an
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interpolation at finer scales 2/ < 2. At training time, this future value
is obtained from the groundtruth. At generation time, this future value
is obtained with a linear prediction X; at the largest scale 2/, where
S;(X) is approximately Gaussian; this prediction is then distributed
over previous values at finer scales.

The interpolation is carried out by making a 2/-time-shift at each
layer x;. From Equation (4.41), X;_1(2/n +2/~1) is obtained by access-
ing X;(2/n +2/). As a consequence, the new value X;(2/(n + 1)) yield
2/ values X;(t) at layer j for all j and for 2/ (n — 1) + 2/ < t < 2/n + 2.

Introducing the relative time-shift

ti=t— 2, (4.42)

one can straighten the path followed by the algorithm, yielding Fig-
ure 4.4. The same graph with absolute times t would yield a tree
slanted to the right, due to the causality of the encoder.

From an algorithmic point of view these time-shifts of internal
network variables can be ignored, and computations exactly occur as
in Figure 4.4. In SampleRNN [Meh+17] or WaveNet [Oor+16] networks,
this time-shift does not appear because the internal variables are not
related to the input value as our proposed encoder.

4.4.3 Network training

The parameters of the network G = Y o H™! are trained separately
with respect to each operator H and Y. Let (x;)1<;<n denote N inde-
pendent time-series of length T used for training.

4.4.3.1 Training H

The whitening operator H is defined by Equation (4.36). Its parameters
Wiy,;, by and X are found by minimizing a prediction error on the

training dataset :

N |T277]-1 My—1
min Sixi(2/(n+1)) = Y Wiy Syxi(2/(n —m)) — by
Win b1 123 n=M;+1 m=0

(4-43)
This minimization can be carried out by solving the corresponding

vectorial Yule-Walker equations, similar to the ones introduced in
Chapter 2, or by performing a stochastic gradient descent. Once opti-
mal parameters W, ; and b; have been found, the matrix X is defined
as the covariance matrix of the resulting prediction errors.

4.4.3.2 Training Y

The parameters of the network Y are optimized by inverting the scat-
tering transform S;(X). The loss £ is composed of two terms: a first
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term L,y measuring the accuracy of the inversion, and a second dis-
criminative term Lypn measuring the distance between the scattering
moments of the synthesized signals and the scattering moments of the
original signals:

min £ = Liny + 17Lmm, (4-44)

where # > 0 is a trade-off parameter.

PERCEPTUAL LOSs The inverse problem loss Lin, computes the
reconstruction error on each training example x; from its scattering
Sj(x;). The reconstruction error is calculated over scattering coeffi-
cients computed at a scale 2X < 2/:

N
Line = 3 2 I5c(6) = SkY(S)(x0) (445)
i=1

The ¢! norm favors sparse responses, while the scattering Sk allows
us to generate signals which may be locally deformed, but are percep-
tually similar to the original ones.

MOMENT-MATCHING LOSS  The loss Liny, does not control the qual-
ity of the generated samples G(z) when z is sampled as a Gaussian
white noise and transformed into a pseudo-scattering as H'z. Simi-
larly to GANs which have a discriminator, this is controlled by intro-
ducing another loss term Ly, which controls the distance between
the generated distribution and the distribution of the original signals.

This moment-matching term controls the distance between scatter-
ing coefficients of generated signals averaged over time t and sub-batch
index i, SkG(z;)(t), and scattering coefficients of the training signals
averaged over time t and training examples i, Sgx;(t):

Laat = |[SralD) - SKG(zi)(t)HZ . (4.46)

The codes {z;} correspond to a batch of random vectors which is
renewed at each iteration of the gradient descent algorithm.

The loss Ly is similar to the Maximum Mean Discrepancy regu-
larization introduced in [Gre+o7], which was already proposed for
generative models [LSZ15; Li+17]. The moment matching term can be
interpreted as a distance with a scattering transform kernel. However,
in this case it can be directly implemented as a difference of empirical
moments over the distributions.

4.5 EXPERIMENTAL VALIDATION

In this section, we numerically validate the modeling capacities of the
proposed approach on music and speech signals. As explained in Sec-
tion 1.2, these signals are non-Gaussian, exhibit very long dependen-
cies and have a sparse decomposition in time-frequency dictionaries;
as a consequence, they are an excellent testbed for our method.



4.5 EXPERIMENTAL VALIDATION

We first describe in 4.5.1 the protocol used for the experiments.
In 4.5.2, we investigate the impact of the loss term Li,, on the re-
construction quality. In 4.5.3, we evaluate the effect of the moment-
matching term. In 4.5.4, we check the impact of the input scattering
®(X) on the reconstruction and the generation. In 4.5.5, we investigate
the ability of the network to perform meaningful interpolations in the
signal space via linear interpolations in the latent space.

4.5.1  Protocol

We describe the experimental protocol used to perform our experi-
mental validation.

4.5.1.1  Metrics

We evaluate the performance of the inverse scattering network G over
three types of input data. Training errors compare Y (S;(x)) with x for
signals x which are in the training set. Testing errors are evaluated for
signals x which are not in the training set. In both cases, the recon-
struction error is measured in term of the scattering loss Liny (4-45).

Generation properties are evaluated from realizations of the Gaus-
sian white noise Z by computing synthesized signals X = G(Z). We
report the moment-matching loss Ly (4.46). Insofar as our synthesis
is not based on estimations of conditional probability distributions,
we cannot report any log-likelihood measures to compare to Autore-
gressive Networks.

4.5.1.2 Datasets

We use three different datasets: TIMIT [FDGM86], NSynth [Eng+17]
and Beethoven [Meh+17], which are standard for audio generation
[Chu+15; HZG17; Meh+17].

For all datasets, the amplitudes of all recordings is normalized so as
to fit in [—1, 1], without adding any bias which would artificially create
low frequencies. The sampling rate is reduced to 4096 Hz with a Kaiser
filter [KS80], which corresponds to a low phone quality [GME11], so
as to reduce the computational complexity. It is very likely that the
quality of the synthesis could be greatly improved by increasing this
sampling rate.

TIMIT TIMIT [FDGMS86] contains 6300 sentences lasting each a few
seconds, elicited by 630 different speakers. A pre-defined data split
between the training and testing sets is provided by the authors.

NsYNTH NSynth [Eng+17] is a large dataset consisting of about
300, 000 annotated musical notes from multiple instruments. All record-
ings have a standardized length of 4 s, with the onset of the note at
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the beginning of the note, and a sample rate of 16000 Hz. We restrict
ourselves to two classes of instruments: acoustic keyboards and acous-
tic flutes, totalling about 40 different instruments, with pitches on the
MIDI scale ranging from 20 to 110. In the original dataset, there is
no intersection between the instruments of the training set and the
testing set. In this paper, we use an alternative split, based on the MIDI
velocity’s attributes of the original training set, which measures the
force with which each note is played. for each considered instrument,
a random velocity is picked to define the test set. We limit ourselves
to the first 2 s of the recordings, insofar as it is the region which
concentrates most of the energy across the whole dataset.

BEETHOVEN The Beethoven [Meh+17] dataset consists in 8 s extracts
of Beethoven’s piano sonata, with a sampling rate of 16000 Hz. In this
case, we use the train-test split provided by the authors, leading to
about 15 x 10% training samples after preprocessing and 1024 test
samples. This dataset is closer to an actual musical composition than
NSynth, insofar as it has a greater temporal density of musical events.

4.5.1.3 Hyperparameters

The scattering embedding introduced in Section 4.3 is computed with
wavelets ¢! having Q = 12 intermediate frequencies per octave. In or-
der to alleviate the large variations in the amplitudes of the scattering
coordinates, scattering coefficients are renormalized coordinate-wise
so that, for each coordinate, the mean over the whole training dataset
is equal to 1.

The neural network loss (4.45) is computed with a scattering trans-
form Sk calculated with a automatically differentiable implementation,
adapted from the 2D version [OBZ17]. An independent release is cur-
rently undergoing in order to merge this 1D scattering transform with
the 2D version. We use Morlet wavelets for Sk because causality is not
required for this metric. The scale factor is chosen to be 2K = 2° = 32.
Only first order coefficients are used, so that Sk is a time-averaged
scalogram.

The parameters of the scattering inverse network are set as follows.
The number of channels K; of the convolutional network vectors X;
are chosen to grow arithmetically between K; = 10 and Kj as set
in (4.33). The vector autoregressive filter H is of order M; = 4, and
for all j < | the convolution filters have a time support of size M; = 7.
Between each convolution and the ReLU non-linearity, we use a batch-
normalization [IS15], as is standard for generative networks [RMC16].

For each data-set and corresponding experiment, unless specified
otherwise, we train a separate network. In all cases, the scattering
inverse networks are trained for 1200 epochs using the Adam opti-
mizer [KB14] with an initial learning rate of 1073,
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Figure 4.5: Impact of the metric on the reconstructions performed by Y. Qual-
itative reconstruction examples on testing parts of all datasets.
Left column: TIMIT example. Right column: Beethoven exam-
ple. Top line: groundtruth excerpt. Middle line: reconstruction
by a network trained with MSE. Bottom line: reconstruction by
a network trained with perceptual metric. Note how both the
waveforms and the spectral contents are much closer with the
perceptual metric.

¥

4.5.2  Choice of the reconstruction metric

We investigate the impact of the metric used in the reconstruction loss
Liny to measure the quality of the reconstruction of x from S ](x) by Y.
We compare the proposed perceptual metric (4.45)

[1Skx — SkY(Sy(x))l1, (4-47)
to the baseline mean-square error (MSE)
lx = Y(Sy(x))3 - (4-48)

We train two networks Y with each of these metrics.

4.5.2.1  Reconstruction results

Figure 4.5 shows qualitative reconstruction examples on the training
and testing sets of all datasets. We report in Table 4.1 quantitative
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TIMIT Beethoven

Training metric
Train | Test | Train | Test

MSE (4.48) 0.65 | 0.84 | 0.64 | 0.77

Perceptual (4.47) | 0.22 | 0.50 | 0.14 | 0.34

Table 4.1: Reconstruction losses on both datasets. Reported numbers corre-
spond to the perceptual metric, which is relative: a value close to 1
has 100% error, while a value close to 0 has 0% error. In both cases,
the SIN Y was trained with the same hyperparameters, except
for the reconstruction metric. Direcly training with the perceptual
metric brings a clear quantitative improvement.

results. Notice that a network trained with MSE overfits the training
set, and does not generalize the testing set. Early stopping could be
thought of as a possible regularization, but then it would lead to bad
quality reconstructions both on the training and testing sets. Directly
training the network with the perceptual metric clearly improves
results both qualitatively and quantitatively.

4.5.2.2  Analysis

We analyze two factors which contribute to the improvement of the
results with the scattering metric.

FINITE NETWORK SIZE The Scattering Inverse Network (SIN) G
is trained to retrieve the signal x from the encoder ®(x). However,
this network does not have access to the structure of ® (e.g. through a
computational graph), but only to samples {®(x;) }1<i<n, which are
used in the empirical loss. Moreover, the network only has a finite
size, meaning a finite set of weights to tune and therefore a finite
“capacity” of patterns of operations to store [Aro+17]. In order to avoid
wasting the finite capacity on patterns which are non-discriminative,
the training of the network should incentivize the perceptual content
of the reconstructed samples.

The MSE metric is not only sensitive to the local frequencies of the
signals, but also to the absolute phase of each partial. Because of the
wavelet modulus, the scattering transform supporting the encoder
®(x) loses the absolute phase of these partials. As a consequence,
when trained with the MSE loss, the network G needs to store the
patterns in the input allowing to retrieve the local phase for each input.
This raw memorization is useful at training time, but does not allow
to generalize. The MSE metric is therefore prone to overfitting.

Using a scattering metric allows the model to focus on the perceptual
content of the original and reconstructed signals, and to compare them
accurately. Since absolute phases are also lost with this metric, the
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Figure 4.6: Generation examples from networks trained with (top) and with-
out (bottom) a moment-matching term on the Beethoven dataset.

Method | Liny | Linv + Lvm | Testing set
Lvv | 387 0.176 0.334

Table 4.2: Moment matching loss term on the Beethoven dataset. Note how
adding the moment-matching term allows us to create samples
whose distribution is as close to the training set as to the test set.

network does not waste its finite capacity to remember them, and does
generalize.

RECOVERY OF HIGH FREQUENCIES The scattering metric enjoys
the benefits of the scattering transform, including its invariance to
small time-frequency deformations. This invariance is useful to retrieve
high-frequency components. Under the MSE metric, solutions to the
deconvolution problem typically lack high-frequency components as
a small error in the position yields a large error in the reconstruction.
The invariance to small translations of the scattering metric allows
us to retrieve high-frequency components of the signal, both on the
training and testing sets of the signal.

4.5.3 Impact of the moment matching loss

The effect of the moment matching loss on the generated samples
is difficult to assess qualitatively. Figure 4.6 shows time-series gen-
erated from different white noise realizations z; with a network G
trained with and without the moment matching term on the Beethoven
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Figure 4.7: Comparison of the reconstruction with and without the moment
matching term Ly on the testing part of the Beethoven dataset.
Each column corresponds to a different example. The top line
is the original signal, the middle line is the reconstruction from
a network trained without the moment-matching term and the
bottom line the reconstruction from a network trained with the
moment matching term. Notice the clear improvement in quality
when adding the moment matching term.

Data split / Method Perceptual Perceptual

+ Moment Matching

Train 0.16 0.23
Test 0.37 0.31
Relative gap test/train (dB) 3.53 1.21

Table 4.3: Reconstruction error results on the Beethoven dataset. Adding the
moment-matching term during training improves the reconstruc-
tion results and the generalization.
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dataset. One observes a slight qualitative difference between the log-
spectrograms, as those obtained with a network trained with this term
appear to be slightly more structured. Quantitatively, there is a large
gap between both distributions, as seen in Table 4.2. In terms of scat-
tering moments, the samples generated from the MM-SIN are almost
indistinguishable from the training samples, witness relative moments
which even closer to the training dataset than the testing set. Thus, the
distributions are much closer in this weak metric. In order to measure
the variability of the generated samples, we measure the spread ¢
of the distribution of the time-averaged scattering coefficients Sk (X)
of the samples. This spread corresponds to the average Euclidean
distance between the time-averaged scattering of the waveforms and
the average scattering coefficients of this distribution. In the case of
the training distribution, o = 6.69 is obtained, whereas ¢ = 3.51 is
obtained for the distribution generated from white noise. This shows
that the generated samples exhibit a non-negligible variability, even
though it is lower than the one expressed in the training set.

We now investigate whether the moment matching term improves
the reconstruction. We hypothesize that the loss term Ly should
regularize the network and provide an additional supervision. As such,
the generalization of the network to unknown data points should be
improved. Figure 4.7 displays several reconstruction examples from
networks trained with and without moment matching. Qualitatively,
we observe that this additional loss term allows the network to retrieve
several frequential contents which are lost otherwise. Quantitatively,
Table 4.3 shows that the moment matching term slightly hurts results
on the training set, but improves results on the testing set and also
reduces the generalization gap between the training set and the testing
set.

4.5.4 Input representation ®(X)

In this section, we confirm the choice of the input representation ®(X),
which was solely based on prior information on signals X. We first
perform an ablation experiment to validate the usage of second-order
scattering coefficients. We then show that the scale parameter 2/ is
a trade-off parameter between reconstruction and generation, which
hints at the underlying Gaussianization occurring.

4.5.4.1  Second order coefficients

We consider the ablation of the second-order terms in the representa-
tion S;(X). Because of the temporal averaging with ¢, this ablation
is expected to yield reconstructions of lower quality. This is demon-
strated quantitatively in Table 4.4 and qualitatively in Figure 4.8.
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Figure 4.8: Reconstruction from an ablated scattering (no second order terms)
in the middle line and from a full scattering in the bottom line,
compared to the original signal (top line). Left: TIMIT example.
Right: Beethoven example. Notice the improvement in quality,
notably for the Beethoven dataset: the second-order terms allow to
recover the temporal dynamics within the dominating frequency.
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Figure 4.9: Generation from Gaussian white noise G(Z) on the TIMIT data-
set. Top examples: computed with | = 10. Bottom examples: with
J = 6. As the scale 2/ increases, S;(X) becomes more Gaussian
and the model is more realistic. The duration of each time series
is 3.3 seconds.
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4.5.4.2  Averaging scale 2/

We show that the scale 2/ is a trade-off between Gaussianization
(leading to good generation) and invertibility (leading to a good
recovery). Figure 4.9 displays generation examples for | = 10 and
J = 6 on the TIMIT data-set. As the scale 2/ increases, S;(X) becomes
more Gaussian and the model is more realistic.

4.5.5 Interpolation examples

We now study the ability of the algorithm to transform the pitch of
musical signals with arithmetic operations in the latent space. We use
the NSynth dataset, whose careful construction allows us to perform
modifications with fixed factors of variability. In the test set, we pick
two samples belonging to the same instrument, but with a pitch
separated by 5 MIDI scales. We compute their embeddings Z; and Z,,
their mean embedding (Z; + Z») /2, and reconstruct the corresponding
signals with the generator: G(Z1), G(Z), and G((Z1 + Z3)/2).

The results are displayed in Figure 4.10. The interpolation in the
latent space does not result in a linear interpolation in the signal
space, which would double the number of harmonics. It yields one
fundamental frequency in each case. Furthermore, this fundamental
frequency is indeed interpolation by this simple arithmetic. Observe
that this is also the case of the partials, as can be seen in particular in
the bottom example. However, this interpolation suffers from some
artifacts: for instance, in the middle example, the partials at highest
frequencies are cluttered and the resulting signal misses harmonicity.
Yet, these results showcase the ability to transform signals via simple
linear interpolations in the latent space with a simple unsupervised
learning procedure and a predefined embedding.

TIMIT Beethoven

Scattering / Dataset
Train | Test | Train | Test

1st order (ablated) 0.37 | 0.64 | 0.28 | 0.39

1st and 2nd order (full) | 0.22 | 0.50 | 0.14 | 0.34

Table 4.4: Reconstruction losses on both datasets, measured via the percep-
tual metric (lower is better). In both cases, the network was trained
with the perceptual metric. The second-order terms (full scattering)
bring a clear quantitative improvement.
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Figure 4.10: Pitch interpolation. Left column: G(Z;). Middle column: G((Z; +
Z5)/2). Right column: G(Z;). Z; and Z; are the embeddings
of samples from the test set. The generator interpolates the
fundamental frequency with a simple arithmetic. The frequential
displacement from left to right corresponds to 5 MIDI scales.
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4.6 CONCLUSION

This chapter investigates which assumptions can be used to derive
estimators of probability densities in a tractable fashion, and which
algorithms can be used to build the corresponding models.

Inspired by state-of-the-art deep learning algorithms and by recent
works in image generation, this chapter introduces a scattering auto-
encoder architecture to build such an estimator. The encoder is defined
as a whitened scattering transform thanks to assumptions on the sig-
nals, notably the existence of sparse time-frequency decompositions
and decorrelation over long time intervals, in order to Gaussianize
the input signal with local averages. The generator is a causal convo-
lutional neural network which maps back the resulting codes to raw
waveforms. The resulting system synthesizes new realistic signals and
performs the transformation of low-level attributes, such as pitch, by
simple linear interpolation in the latent space.

Although this work proposes an estimator which is trained in a
tractable fashion, it still relies on the implicit regularization of convo-
lutional neural networks to perform the generation. The nature of the
regularization performed by this network to compute the inverse is
still an open research question. It would be worth investigating the
nature of the operations performed by the generative network in order
to gain more understanding of the implicit assumptions it postulates.
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We now summarize the main findings of this dissertation on time-
series modeling, discuss their limitations and propose future research
directions.

51 SUMMARY OF CONTRIBUTIONS
5.1.1 Linear forecasting under long-range dependencies

The first problem considered is the linear forecasting of a Gaussian
long-range dependent process (X(t));, which consists in regressing
X(t+ A) based on the knowledge of the past X(< t). Because of
the Gaussian prior, it is sufficient to consider linear estimators of the
future value. The power-tail behavior of the autocovariance operator
x implies that X (< ) needs to be large to achieve a low mean-square
error, but this increases the number of parameters to estimate. In this
framework, Chapter 2 investigates how to represent the past X(< t)
for forecasting purposes.

State-of-the-art representations for long-range dependent processes
rely on wavelets [DOTo3]. Indeed, dilation properties make them
amenable to the power-tail behavior of such processes [Flagz]. An
analysis of the structure of the Yule-Walker equation, which governs
linear forecasting, for a closed-form model of long-range dependence,
leads us to consider a particular subspace induced by wavelet: the
foveal cone. This foveal cone consists in the wavelets closer to the
present t, at all scales. However, the causality constraint implies that
only Haar wavelets can really be useful for forecasting purposes,
which leaves little flexibility.

Our main contribution consists in introducing a new class of foveal
wavelets, which is simpler than the existing ones [Malo3]. These new
wavelets rely on the choice of a window function, which is multiplied
by polynomials and dilated at multiple scales. They are therefore foveal
by design, while the space of functions they span can be increasingly
refined thanks to the polynomials. Three classes of such wavelets
are proposed: indicator, Gaussian and exponential foveal wavelets.
Numerical experiments on synthetic and real time-series exhibiting
a long-range behavior demonstrate that they result in a lower mean-
square error than the foveal Haar family.
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5.1.2 Non-linear forecasting of sparse time-frequency processes

In many instances of time-series forecasting problems, the algorithms
yielding the lowest error are linear estimators, despite being in a non-
Gaussian regime. Chapter 3 therefore investigates which priors could
be leveraged for non-linear algorithms to outperform linear ones.

In signal processing, the prior knowledge of the existence of a
sparse decomposition has led to improvements over linear algorithms
for many tasks, for instance inpainting [Malo8]. Recently, non-linear
deep neural networks algorithms have achieved exceptional results at
modeling sparse time-frequency time-series, such as audio [Oor+16].
Therefore, sparse time-frequency time-series are good candidates for
our forecasting problem.

Our main contribution in this chapter consists in formalizing how
to exploit a sparse time-frequency decomposition for forecasting pur-
poses. Building on the analysis of a trained multi-layer perceptron
(MLP) and a simple cosine model, a non-linear algorithm which per-
forms forecasting in a sparse inverse problem framework is proposed.
This algorithm is extended in a foveal multiscale fashion in order
to accommodate more complex signals. Forecasting experiments on
artificial and real data show that this algorithm performs almost as
well as a trained MLP for a forecasting task, thereby validating our
approach.

5.1.3 Time-series Generation

The last problem we tackle is time-series generation, focusing on
those exhibiting a sparse time-frequency behavior, such as audio
signals. These time-series follow a non-Gaussian distribution and
exhibit long-range dependencies, which makes the probability density
estimation problem very challenging. In this context, we investigate
which assumptions on the signals can be leveraged to build models
of such time-series, and which algorithms can be used to learn these
models.

Recent developments of deep learning algorithms [Oor+16; RMC16]
have shown that these networks are able to generate realistic natural
signals, such as images or music time-series, with a spectacular quality.
However, the understanding of these performances remains at best
elusive [Aro+17; ARZ18]. Indeed, the explicit assumptions are not
sufficient to explain the quality of the generated samples. It is likely
that these networks exploit implicit assumptions on the signals they
model, but it is difficult to uncover these priors due to their sheer
complexity.

Building on the framework proposed in [AM18b] in the case of
images, we introduce an autoencoder approach to model time-series.
The encoder part is not learned and defined thanks to assumptions on
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the signals as a whitened time-frequency scattering transform. Under
the stationarity hypothesis and assuming the signals exhibit sparse
time-frequency decompositions which decorrelate at long times, this
encoder maps the signals to approximate Gaussian random variables
because of the central limit theorem.

The decoder consists in a convolutional neural network which takes
into account the particular temporal structure of the encoder, and
closely resembles state-of-the-art architectures. The decoder training
is cast as the inverse problem of retrieving the samples from their
encodings, thereby avoiding any reference to probability distributions.
In order to make this inversion tractable, we have proposed to use
a scattering metric, which exploits at best the capacity of the neural
network to reconstruct the perceptual content. We have also proposed
a moment-matching loss to better control the behavior of the network
at generation time.

Numerical experiments on speech and music signals demonstrate
the ability of the proposed architecture to reproduce and generate
realistic samples. In particular, we show that the use of a pre-defined
encoder regularizing small time-frequency deformations allows us
to perform transformations of low-level attributes of music, such as
pitch, through a linear interpolation in the latent space.

5.2 PERSPECTIVES

We now discuss possible improvements for the work exposed in this
thesis and propose new directions of research.

5.2.1 Spatiotemporal forecasting

In this dissertation, we have only considered univariate time-series
forecasting, both in a linear and non-linear fashion. Our work has thus
focused on the temporal axis: in Chapter 2, we have considered long-
range dependent time-series, while in Chapter 3 we have considered
sparse time-frequency processes. The resulting modeling has allowed
us to derive tractable estimators in both cases.

However, many time-series of interest are generated in groups,
leading to multivariate time-series (x(t)); where x(t) € R? is a vector.
It is often useful to consider the joint trajectory of this vector, leading
to a multivariate forecasting problem. This is notably the case in fields
as diverse as finance, medicine, fluid dynamics or video analysis.

Just like univariate forecasting, multivariate forecasting suffers from
the curse of dimensionality, which is amplified by the dimension d of
the vectors. Indeed, for a similar past size 7, one needs to consider
probability distributions defined in dimension d7 instead of 7. It thus
becomes paramount to reduce the dimension of the problem, which
requires to make assumptions on the data.
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It would be possible to devise extensions of the algorithms pro-
posed in Chapter 2 and 3. Under the assumption that each univariate
time-series follows the same priors as the ones assumed for the corre-
sponding algorithm, one can simply use a different representation of
the past for each time-series, and use the resulting vector for forecast-
ing the next vector. The dimension is thus reduced across the temporal
dimension, but the dimension of the channels is left unchanged. Pre-
liminary experiments in the linear forecasting case have shown little
effect on the forecasting accuracy for financial stocks.

In fact, the fundamental richness of this problem lies in the interac-
tion between the different dimensions of the time-series. When these
coordinates correspond to an underlying structure, recent works have
shown that it is possible to exploit this prior to improve forecasting. For
instance, in meteorology, the different coordinates of the time-series
correspond to an underlying spatial grid, which allows convolutional
neural networks to exploit this structure [Xin+15]. Similarly, when
each coordinate corresponds to the positions of a point cloud sampled
from a low-dimensional manifold, as is the case for three-dimensional
shapes, smart representations stemming from harmonic analysis ex-
ploiting this geometry allow to improve forecasting [Kos+18].

Eventually, an accurate forecasting model for multivariate time-
series will involve a dimension reduction jointly performed across the
temporal and coordinates axis, and not simply factorized across each
of the axis. It is likely that the tools proposed in this dissertation for
temporal forecasting will remain useful in such a joint setting.

5.2.2  Beyond MSE prediction

In this dissertation, we have mainly considered deterministic fore-
casting in the mean-square error sense. This amounts to estimating
the conditional expectation E[X(t + A)|X(< t)] instead of the whole
probability density px(x(t + A)|x(< t)).

The MSE criterion is relevant for Gaussian stationary time-series,
as is the case in Chapter 2, since the variance of the variable X(t + A)
can be extrapolated from the past, so that the probability density is
entirely known. However, for non-Gaussian time-series such as sparse
time-frequency processes considered in Chapter 3, this criterion leads
to a quantity which characterizes very little of the probability density.
In order to allow for a better modeling, one would need more than
conditional means.

We therefore face the question of characterizing the conditional
density px(x(t + A)|x(< t)). Despite the fact that x(f + A) is one-
dimensional, the past x(< t) is still large so that this problem suffers
from the curse of dimensionality. The main question is therefore to
understand which priors allow to derive tractable estimators for this
quantity.
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Deep autoregressive networks such as WaveNet [Oor+16] estimate
a full probability density for A = 1 with a complex estimator. This es-
timator relies on an intricate architecture which involves convolutions,
multiplicative gates and residual connections. The interpretation of
this network is therefore very challenging.

As we have shown both for forecasting with a MSE criterion and for
generation purposes, using a sparse time-frequency decomposition
allows us to simplify such estimation problems. It is therefore probable
that the WaveNet exploits this sparse time-frequency to perform this
task. Yet, to the best of our knowledge, no empirical analysis of these
networks has been performed to ground this fact. Moreover, it is
unclear whether these networks exploit other properties of audio or
speech signals. For instance, are larger coherent structures used as
well? We believe that performing such an analysis would result in
an increased knowledge both with respect to the signals and to deep
learning algorithms.

5.2.3 Invertible linearized dynamics

A pregnant idea in the study of both univariate and multivariate time-
series is the linearization of dynamics: let us assume that the original
time-series (x(t)) follows a non-linear dynamics:

x(t+1) = f(x(< 1), (1), (5.1)

where ((t) is a noise variable, possibly non-Gaussian. Ideally, one
would like to find an invertible and causal mapping ®x such that

Px(t+1) = AdDx(t) + Z(¢), (5.2)

where A is a linear operator and Z a Gaussian noise. In this case, the
time-series x could be predicted through the mapping ®.

In Chapter 4, we have exploited the existence of a sparse time-
frequency decomposition as well its decorrelation at long time inter-
vals to map the original signal to a vector-valued time-series with an
approximate Gaussian distribution, using the scattering transform.
This approximate Gaussian distribution has allowed us to whiten
the scattering vectors with a linear autoregressive model. In other
words, the dynamics of the original process have been linearized by
the scattering transform.

However, there are several obstacles to the use of the scattering
operator as a forecasting operator. First, we have seen that causality
constraints prevents the recovery of (x(u)),<¢ from (Syx(u))u<s: typ-
ically, one can only recover x(u) until x(t — 2/). Second, and more
importantly, the scattering transform removes the phase of the wavelet
transforms. This means that the original signal x can only be recovered
up to a global phase. Since forecasting is very sensitive to the phase,
the scattering transform seems to be ill-suited for this purpose.
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A promising direction of research would therefore consist in de-
veloping an analogue of the scattering transform, but invertible in a
pointwise fashion. This new operator would not only provide a simple
and elegant forecasting algorithm, but could also be used to study
and characterize dynamical systems whose behavior remains poorly
understood, such as turbulent fluid dynamics.



APPENDIX

A.1 PROOF OF PROPOSITION 2.2.1

Let us introduce a convenient notation for Taylor expansions of non-
integer power functions. For any f € R — N and any integer n € IN,

define
(ﬁ) _ 1 ifn=0, Ax)
! % HZ;& B —k otherwise.

This notation makes it possible to easily write the derivative of power
functions uP for B non integer, as:

dd:k ( ﬁ) — k! (i) ubk, (A.2)

Let us now state and prove a technical lemma, which will be useful
for the main proof.

Lemma A.1.1. Let I be a compact interval of non-negative real numbers,
0 < v < 1and M be a positive integer. For any integer n > 1 and real
u € I, the following decomposition holds:

M=1/_,,
(u+n)"V=n"+ Z < ' >uk + Ry1(u), (A.3)
k=1

where Ryp—1(u) is bounded as
Ry ()] < n= MM, (A.g)
Proof of Lemma A.1.1. For any n > 1, let us introduce the function

fa: [0,40) — RT

(A.5)
u = (u+n)"".
fn is infinitely differentiable, and in particular one gets:
f;SM)(”) = M! (;}) (u+ n)*(lﬁi’M). (A.6)
The positive quantity u > (u + n)~(+M) decreases with u as v > 0,
so that
Yu >0, |u+ n[’(”M) < n~W+M), (A7)
Using the bound
.y M-1 M-1
M! = —v—kl < 1+k) =M, A8
o)=L 1< fforo-m s
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where we have used | —v — k| = v+ k < k+ 1, we thus obtain the
bound:

Vu > 0,n > 1, [fM™w)| < Min= M) .= C,,. (A.9)

Using this upper bound C, on f,EM), we now apply Taylor-Lagrange’s
theorem to f, atorder M —1on I: forall u € I,

fu(u) = £a(0) = A:g t ’gk,i,(o) uk| < CXZ (A.10)
Ryi-1(u)
Since f(k) o _V
nk! _ ( ] >n(v+k), (A1)
and f,(0) = n~Y, we recognize that
Rag(u) = (-4 m) " —n " A:Z (e

Since C,, = M!n*(“M), we get that for all u € I,
|Rpy—1(u)| < n~v+M)yM, (A.13)
Hence the result. O
We can now proceed to the main proof.

Proof of Proposition 2.2.1.
Let us write

—+o00
(u™", i) = /0 u= " (u)du. (A.14)

Thanks to the change of variable z = 277y, for n € N it holds that

i) = 2037 (270, g ). (A.15)

Thus, the decomposition of the function u — 1~ has no characteristic
scale, and all scales 2/ carry information.
The change of variable u = z — n gives

—+o00
(z7, Yon) = / (u+n)""¢P(u)du. (A.16)
—n
Let I denote the support of ¢, which is compact and included in
[0, +0c0) by assumption. We can restrict the right-hand-side integral to
this interval:

@ on) = [ (u+m) p(wdn (A1)
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Using Lemma A.1.1, we get that for all u € I,

M=1,/_,
(n+u) ™ =n""+ ) ( . )u" +Ry1(u),  (A18)
k=1

and the residual Ry;_q is bounded as
Rypy ()] < GFM M, (A19)

Using the property of vanishing moments of ¢ for k < M, we obtain
00
(u™", You) = ; Ry—1(w)y(u)du. (A.20)

Bounding the right-hand-side integral by its absolute value, we thus
get
[(u™Y, go,u)| < n WM /uM\gb(u) ldu (A.21)
I

-’
Constant independent of n

where the last integral is finite because I is compact.
Equations (A.15) and (A.21) prove Equation (2.57). O

A.2 NUMERICAL ALGORITHMS CONSTRUCTING THE FOVEAL WAVELETS

Algorithm 1 Indicator foveal wavelets ¢/ generation

Input: Scale J, Maximal polynomial order M
1) Construction of the functions ¢;":
forj=0,...,] do
Orthonormalize {(#")tep; },,<,i via the Gram-Schmidt algorithm,
resulting in {¢}"},, »
end for
2) Construction of the foveal wavelets ¢7":
Initialization: ¥ — ¢
forj=1,...,] do
form=0,...,Mdo
if n < 2/~! then
= (Zien, 9 (") (Siep,, 911 (")
b b
Pt = ¢ =iy
else
¢l (Zeen, 9 (08" ) (Tren, wup, ¥4 (")
b b
R i |
end if
¥t = /7l

end for
end for
return ¢7 and ¢

-1

-1
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Algorithm 2 Gaussian foveal wavelets l/)]m generation

Input: Scale |, Maximal polynomial order M
1) Construction of the functions ¢;":
forj=0,...,] do
if j = 0 then
o < %o
else
Orthonormalize { (tm(9<G) (2-0+Dt) — (©) (2_71‘))) 05, }
<]

via the Gram-Schmidt algorithm
end if
end for
2) Construction of the foveal wavelets 7":
Initialization: ¥ — ¢
forj=1,...,] do
form=0,...,M do
if m < 2/~1 then
C;}m — (Zte[o,sj] ¢;ﬂ(t)tm> <Zte[0,5j,1} ¢;"_1<t)tm)
P = 9 =
else
(Tuens 87 (Soes, 04 (007)
Rk il
end if
9 72

end for
end for
return ¢ and @°

m<2/
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Résumé

Cette thése s’intéresse a la modéli-
sation non-supervisée de séries tem-
porelles univariées. Nous abordons
tout d’abord le probleme de prédic-
tion linéaire des valeurs futures de
séries temporelles gaussiennes sous
hypothése de longues dépendances,
qui nécessitent de tenir compte
d’'un large passé. Nous introduisons
une famille d’'ondelettes fovéales et
causales qui projettent les valeurs
passées sur un sous-espace adapté
au probleme, réduisant ainsi la vari-
ance des estimateurs associés. Dans
un deuxiéme temps, nous cherchons
sous quelles conditions les pré-
dicteurs non-linéaires sont plus per-
formants que les méthodes linéaires.
Les séries temporelles admettant
une représentation parcimonieuse
en temps-fréquence, comme celles
issues de l'audio, reunissent ces con-
ditions, et nous proposons un algo-
rithme de prédiction utilisant une telle
représentation. Le dernier probleme
que nous étudions est la synthése
de signaux audios. Nous proposons
une nouvelle méthode de généra-
tion reposant sur un réseau de neu-
rones convolutionnel profond, avec
une architecture encodeur-décodeur,
qui permet de synthétiser de nou-
veaux signaux réalistes. Contraire-
ment a I'état de I'art, nous exploitons
explicitement les propriétés temps-
fréquence des sons pour définir un
encodeur avec la transformée en
scattering, tandis que le décodeur
est entrainé pour résoudre un prob-
leme inverse dans une métrique
adaptée.

Mots Clés

Séries  temporelles,  Scattering,
Réseaux de neurones profonds,
Audio, Prédiction, Synthése

Abstract

This dissertation studies unsuper-
vised time-series modeling. We first
focus on the problem of linearly pre-
dicting future values of a time-series
under the assumption of long-range
dependencies, which requires to take
into account a past of large duration.
We introduce a family of causal and
foveal wavelets which project past
values on a subspace adapted to the
problem, thereby reducing the vari-
ance of the associated estimators.
We then investigate under which con-
ditions non-linear predictors exhibit
better performances than linear ones.
Time-series which admit a sparse
time-frequency representation, such
as audio ones, satisfy these require-
ments, and we propose a prediction
algorithm using such a representa-
tion. The last problem we tackle is
audio time-series synthesis. We pro-
pose a new generation method re-
lying on a deep convolutional neu-
ral network, with an encoder-decoder
architecture, which allows to synthe-
size new realistic signals. Contrary
to state-of-the-art methods, we ex-
plicitly use time-frequency properties
of sounds to define an encoder with
the scattering transform, while the de-
coder is trained to solve an inverse
problem in an adapted metric.

Keywords

Time-Series, Scattering, Deep learn-
ing, Audio, Prediction, Synthesis
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