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I do not know anything, but I do know that everything  

is interesting if you go into it deeply enough. 

Richard P. Feynman 
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Titre : Optimisation de la gestion de l'énergie d'une centrale hybride ferme éolienne-

stockage connectée à un réseau électrique insulaire 

Résumé  

Les îles sont des endroits propices au développement de l’énergie éolienne, mais les 

réseaux insulaires sont plus fragiles que les réseaux interconnectés et l’augmentation du taux 

de pénétration éolienne peut avoir des impacts sur la qualité de l’énergie et la stabilité du réseau. 

Dans un contexte d’augmentation de la part de l'énergie éolienne dans les DOM-TOM, les parcs 

éoliens sont de plus en plus confrontés aux exigences d’engagement sur la production malgré 

le caractère stochastique des ressources renouvelables.   

Cette thèse porte sur la modélisation, la simulation et la gestion optimisée de l’énergie 

produite par une centrale hybride éolien/stockage électrochimique connectée sur le réseau 

insulaire de Guadeloupe. La centrale doit être capable d’injecter l’énergie dans le réseau en 

considérant plusieurs conditions de fonctionnement, y-compris le respect d’un engagement pris 

un jour à l’avance. Comme le non-respect du profil engageant entraine des pénalités, la 

maximisation des revenus de la centrale exige une stratégie optimisée pour la gestion du 

système de stockage. 

Pour y parvenir, la solution mise au point pendant cette thèse est basée sur une stratégie 

de commande prédictive à base de modèle (Model Predictive Control) et un algorithme 

d’optimisation quadratique. Cette stratégie permet de maximiser les revenus et en même temps 

de préserver la durée de vie du système de stockage. La méthodologie intègre les prévisions de 

production et peut être adaptée à plusieurs types d’énergies renouvelables et technologies de 

stockage.  

Les performances de la centrale hybride éolien/stockage Lithium-ion pilotée par cette 

stratégie de commande innovante ont été analysées et validées dans le contexte du réseau 

insulaire de Guadeloupe grâce à l’environnement de co-simulation Matlab/PowerFactory.  

Mots clés : réseau insulaire, réseau faible, éolienne, stockage, centrale hybride, gestion 

d’énergie, EMS, contrôle optimal, contrôle prédictif par modèle, programmation quadratique, 

garantie d’injection, profil engageant, énergies renouvelables. 

Soutiens : Les travaux de recherche menés avec cette thèse doctorale ont été co-financés 

par la Région Nouvelle-Aquitaine, BPI France et la Fondation d’entreprises ESTIA dans le 

cadre du projet FUI Insul’Grid.  
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Title : Energy management optimization of a wind-storage based hybrid power plant 

connected to an island power grid 

Abstract 

Often wind resources are abundant islands, making them good places for the 

development of wind power. However, island grids are more fragile than interconnected grids 

and increasing wind turbines penetration rates can affect grid stability and power quality. In a 

context of an increasing share of wind energy in the French overseas departments and 

territories, wind farms are increasingly faced with firm power requirements despite the 

stochastic nature of renewable resources.  

This thesis focuses on the modeling, simulation and energy management optimization 

of the power output of a hybrid wind farm-battery storage power plant connected to the 

electrical system of Guadeloupe island. The plant must inject power into the grid considering 

several operating conditions, including the fulfillment of a commitment profile made one day 

in advance. As the disrespect of the commitment entails penalties, the plant revenues 

maximization requires a management strategy to optimally control the storage system.  

To achieve this, a model predictive control and quadratic optimization-based strategy is 

proposed. This strategy maximizes revenues and at the same time preserves the lifespan of the 

storage system. The strategy integrates production forecasts in the optimization problem and 

can be adapted to several types of renewable energy and storage technologies.  

The performance of the wind farm-Lithium-ion storage hybrid power plant driven by 

this innovative control strategy has been analyzed and validated considering the island grid 

context through a PowerFactory/ Matlab co-simulation environment. 

Keywords: island grid, weak grid, wind turbine, energy storage, hybrid power plant, 

energy management, EMS, optimal control, model predictive control, quadratic programming, 

firm power injection, commitment profile, renewable energies. 

Support: The research work carried out with this doctoral thesis was co-funded by the 

Nouvelle-Aquitaine Region, BPI France and the ESTIA Business Foundation as part of the FUI 

project Insul’Grid. 
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Título: Modelado y simulación de la operación de una central híbrida para la integración 

de energías renovables en sistemas insulares 

Resumen 

Las islas son sitios usualmente adecuados para el desarrollo de la energía eólica. Las 

redes eléctricas de islas y sitios remotos, sin embargo, son más frágiles que las redes 

interconectadas y el aumento de la tasa de penetración de la generación eólica puede afectar la 

calidad de la energía y la estabilidad de la red. En un contexto de creciente participación de las 

turbinas eólicas en los departamentos y territorios franceses de ultramar, los parques eólicos se 

enfrentan cada vez más a requisitos de compromiso de producción.  

Esta tesis se centra en el modelado, simulación y gestión optimizada de la energía 

producida por una planta híbrida parque eólico-baterías conectada a la red de la isla de 

Guadalupe. La planta debe inyectar energía a la red considerando varias condiciones de 

operación, incluyendo el cumplimiento de un compromiso de potencia adquirido con un día de 

anticipación. Dado que el incumplimiento del compromiso conlleva al pago de multas, la 

maximización de los ingresos de la central requiere de un sistema de gestión de la energía que 

controle eficazmente el sistema de almacenamiento.  

Para lograrlo, la estrategia de gestión desarrollada asocia control predictivo de modelos 

(MPC) y optimización cuadrática, e integra en el problema de optimización las previsiones de 

producción eólica. La metodología maximiza los ingresos de la central y al mismo tiempo 

preserva la vida útil del sistema de almacenamiento.  

El desempeño de la central híbrida gestionada por la estrategia de control propuesta ha 

sido analizado y validado considerando el contexto de la red insular en co-simulación dentro de 

los entornos PowerFactory y Matlab. 

Palabras clave: red insular, red débil, turbina eólica, almacenamiento de energía, 

central híbrida, gestión de la energía, EMS, control óptimo, control predictivo por modelos, 

programación cuadrática, suministro firme de electricidad, perfil de compromiso, energías 

renovables. 

Financiamiento: Los trabajos de investigación realizados en esta tesis doctoral fueron 

cofinanciados por la Región de Nueva Aquitania, BPI France y la Fundación Empresarial 

ESTIA como parte del proyecto FUI Insul’Grid. 
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Acronyms 

AC Alternative current MWp Megawatts peak 

EMS Energy management system NLP Non-linear programming 

ESS Energy storage system P Active power 

BESS Battery energy storage system PHS Pumped hydro storage 

CAES Compressed air energy storage PI Proportional-integral 

DC Direct current PCC Point of Common Coupling 

DFIG Doubly fed induction generator PV Photovoltaic 

DG Distributed generation QP Quadratic programming 

DoD Depth-of-discharge RE Renewable energy 

DSO Distribution system operator RES Renewable energy source 

FES Flywheel energy storage RSC Rotor side converter 

HPP Hybrid power plant SO System operator 

LSC Line-side controller SoC State-of-charge 

LP Linear programming TSO Transmission system operator 

MILP 
Mixed-integer linear 

programing 
VSC Voltage source converter 

MPC Model predictive control WECS Wind energy conversion system 

MPPT 
Maximum power point 

tracking 
  

Symbols 

𝑨 System matrix 𝑄𝑚𝑎𝑥 
Maximum battery cell capacity 

(𝐴ℎ) 

𝐴 Exponential zone amplitude(V) 
𝑸𝑢 Matrix weighting and adjusting 

the control effort of the inputs 

𝑨𝑖𝑛𝑒𝑞 
Matrix containing information 

of the trajectory constraints 

𝑅 Battery cell internal resistance 

(Ω) 

𝑩 Input matrix 𝑆𝑜𝐶 State-of-charge (%) 

𝐵 
Exponential zone time constant 

inverse (𝐴ℎ)−1 

𝑺𝒐𝑪𝑟𝑒𝑓 State-of-charge set-point (%) 

𝒃𝑖𝑛𝑒𝑞 
Matrix containing information 

of the trajectory constraints 

𝑆𝑜𝐶𝑚𝑖𝑛 State-of-charge lower threshold 

(%) 
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𝑪 Output matrix 
𝑆𝑜𝐶𝑚𝑎𝑥 State-of-charge upper threshold 

(%) 

𝑪𝑐 Matrix of constrained variables  
𝑸𝑦 Matrix giving a weight to the 

different control objectives 

𝑪𝑟 
Matrix of regulated state 

variables 
𝑡, 𝑘 

Current time of the optimization 

process 

𝑫 Feedthrough matrix 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 

Distance between 𝑃𝑆𝐶𝐻𝐸𝐷 and 

the tolerated injection region 

limits (% of 𝑃𝑀𝐴𝑋) 

𝐷𝑜𝐷 Depth-of-discharge 𝒖 Control action vector 

𝐸0 
Open-circuit voltage constant 

(𝑉) 
𝒖̃(𝑘) 

Control actions sequence at time 

𝑘 

𝒇 
Matrix containing information 

of the outputs prediction 
𝒖𝑇 

Transposed of the control action 

vector 

𝑯 Hessian matrix 𝑣𝐵𝐸𝑆𝑆 BESS voltage 

𝑖∗ Filtered current (A) 𝒙(𝑡), 𝒙(𝑘) 
Continuous and discrete-time 

state vector 

𝑖𝑡 
Battery cell extracted capacity 

(𝐴ℎ) 
𝒙̇(𝑡), 𝒙̇(𝑘) State vector Derivative 

𝐾 
Polarization resistance (Ω) or 

polarization constant (𝑉 𝐴ℎ⁄ ) 
𝒙̃(𝑘) State trajectory vector 

𝑛 Number of state variables 𝒙(𝑘 + 1) 
One-step-ahead prediction of 

the state vector 

𝑛𝑐  
Number of constrained 

variables 
𝒙(𝑘 + 𝑖) 

Prediction of the state vector for 

any 𝑖 ∈  {1, … , 𝑁𝑝} 

𝑛𝑟 Number of regulated outputs 𝒚𝑟(𝑘) Vector of regulated outputs 

𝑛𝑢 Number of inputs 𝒚̃𝑟(𝑘) 
Sequence of the predictions for 

the regulated outputs 

𝑁𝑐 Control window length 𝒚̃𝒓𝒆𝒇(𝑘) Vector of future desired outputs 

𝑁𝑝 
Control and optimization 

window length 

𝒚𝑟(𝑘) Vector of regulated outputs 

𝑃𝐵𝐸𝑆𝑆 BESS Power (MW) 𝛼 Current filter mitigating factor 

𝑃𝐵𝐸𝑆𝑆𝑟𝑒𝑓  BESS power set-point ∆𝑡 BESS model step time 



Acronyms and symbols 

   

𝑃𝐼𝑁𝐽 Power transferred to the grid 𝛤 Objective function 

𝑃𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 Tolerated injection region lower 

threshold (MW) 
𝜆𝑖 Sub-cost weight 

𝑃𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 Tolerated injection region upper 

threshold (MW) 
𝚷𝒊 

Selection matrix giving the i-th 

vector of 𝒖̃, 𝑖 ∈  {1, … ,𝑁𝑝} 

𝑃𝑀𝐴𝑋 WECS’ installed capacity 
𝚽 

Constant matrix involved in the 

prediction that depends on 𝑨 

𝑃𝑆𝐶𝐻𝐸𝐷  Committed power injection 
𝚿 

Constant prediction matrix that 

depends on 𝑨 and 𝑩 

𝑃𝑊𝐸𝐶𝑆 Wind-generated power 
𝜏 

BESS model current filter time 

constant 

𝑄 Reactive power (Mvar)   
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General introduction 

 

Towards a smarter grid 

Although the electricity is as old as nature itself, it took centuries of progress and 

ultimately science for the mankind to start understanding it. It was barely in the late 1900s that 

the electrical power systems started developing to gradually transform into the large networks 

equipped with sophisticated devices and centralized operation we know nowadays. Under the 

current energy paradigm, electrical systems are three-phase, 50 or 60 Hz AC networks that can 

be separated into [1]: 

• Generation sites, large units located at strategic locations usually from several 

kilometers to a few hundreds of kilometers away from consumption sites. 

• Transmission lines, high-voltage aerial cables connecting the generation sites to 

distribution grids through step-up and step-down substations. 

• Distribution grids, radial networks allowing the unidirectional flow of electricity 

towards passive end-users. 

In a context of growing carbon footprint awareness, sustainable development has 

become a means for social welfare improvement. The requirements for clean and reliable power 

supply have led to the establishment of incentives favoring the use of renewable energies. The 

connection of this kind of energy sources at the transmission and distribution levels, the arrival 

of smart meters and consumers that produce and consume energy, the advent of electric vehicles 

and the possibility to store the generated energy in DC batteries or other storage technologies, 

are all signs of a new power system paradigm: the Smart Grid [1]. The Smart grid term appeared 

for the first time in 2003 in an article of Public Utility Fortnightly Magazine [2], [3]. According 

to the European commission's Smart Specialisation Platform (S3P) [4] a smart grid is an 

electricity network that employs amongst others a communication infrastructure, intelligent 

electronic devices, sensors, cyber security devices and an advanced metering infrastructure. 

Therefore, it can integrate the actions of all users connected to it in order to ensure an economic, 

efficient, sustainable and secure electricity supply.  

In a few words it consists of adding control, sensors, and information technologies to 

the existing power grids so rendering them “smarter”. 

Renewable energy sources and weak island grids 
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Up to now, the growth seen by renewable sources has been mainly associated with 

continental-scale interconnected grids. The penetration of renewable sources in those systems 

is however very low if compared with the capacity installed. This implies that in large electrical 

networks the variability in the output of renewable facilities is absorbed by the system [1]. In 

contrast, as the penetration of renewable energy resources in islands and remote areas grow, 

ensuring power quality and reliability based on sources whose outputs are more variable 

becomes a challenging task. Moreover, overseas territories power systems are weak grids in 

which the frequency stability is highly vulnerable to load variations. 

Remote islands grids are also characterized by: 

• Having geographical locations that favor the access to solar radiation and wind, making 

them good candidates for wind turbines and PV panels deployments.  

• Impractical interconnecting to neighboring grids due to remoteness or other constraints 

related to climate conditions or subsea conditions. 

• Dependence on imported and usually expensive fossil fuels, which means carbon 

dioxide emissions and higher kWh prices for consumers. 

Hybrid plants combining wind turbines and battery storage 

While the power output of flexible generation facilities such as hydroelectric dams or 

natural gas power plants can be rapidly increased or decreased, wind-generated power depends 

on wind currents that cannot be controlled or stored. Hence, even if a wind turbine can be shut 

off or slowed down, nothing can be done if the power demand is high during low wind speed 

conditions.  

When paired with wind turbines, battery energy storage systems (BES) add the capacity 

to absorb power production fluctuations and to adjust the power output. Within a grid-connected 

wind farm-battery storage hybrid power plant (HPP) the dispatch of generation and storage 

resources to meet day-ahead power production plans requires an energy management system 

(EMS). In the current case, the EMS must control the battery system charges and discharges 

according to the instant variations in the wind energy conversion system (WECS) output while 

respecting the generation schedule. Commonly, EMSs are focused not in one but several 

objectives at the same time (making the maximum possible profit, obtaining the minimum 

possible losses, etc).  

The efficient arbitrage of the power exchanges within the hybrid plant so the plant output 

(the power injected into the island grid) respect both the contractual supply commitment and 

the applicable grid codes is a power dispatch problem. The sizing of the plant (WECS and 
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BESS) is not part of the reach of this PhD. The spotlight is rather put on both on the plant’s 

EMS and the modeling of the HPP and the utility grid.  

Objectives of this PhD 

Within the frame described above, the general objective of this PhD. is: 

• To develop an energy management strategy ensuring the wind farm-Li-Ion BESS 

Hybrid Power Plant the provision of a grid service that consists in complying a 

day-ahead power injection commitment as the WECS output evolves. 

• The main case of application which is considered is the Guadeloupean electricity 

network. 

In addition to this main objective, the secondary goals of the present work are: 

• To review the management techniques applied in island grids. 

• To take into account the grid code requirements for wind energy conversion systems in 

island networks. 

• To review energy management approaches for the optimal control of the BESS. 

• To implement models describing the functioning of the wind farm-BESS HPP and for 

the Guadeloupean utility grid. 

• To develop advanced control strategies for the control of the BESS. 

• To test and validate the developed energy management strategy in a simulator 

considering the HPP and island network models. 

Therefore, in the scope of this thesis, first, the management strategies applied in island 

grids are analyzed, followed by the review of the grid code specifications for wind turbine 

systems in isolated grids. From this analysis are reviewed the possible energy management and 

optimization algorithms. Then, the modeling takes place alongside the development of the 

advanced control strategy. Then after, the resulting strategy is tested through simulation without 

the interaction with the utility grid and finally, considering all the models developed .  

Overview of this PhD 

This doctoral dissertation is organized into seven chapters. 

The first chapter describes the grid management aspects of island grids as well as the 

grid code requirements for the supply of power using wind turbines in such isolated context. 

After discussing the benefits of associating energy storage and wind power, the chapter ends 

with the definition of the operational requirements for the hybrid power plant. 
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Then, the second chapter deals with wind-storage hybrid power plants. A review of 

architectures and the different strategies employed for the energy management of hybrid 

renewable-storage power plants is presented. 

The third chapter establishes the models for the main grid and the hybrid power plant 

systems. The software tools employed for the modeling implementation and validation are 

DIgSILENT PowerFactory and Matlab. 

Next, the fourth chapter presents the design of the model predictive control (MPC) 

strategy for the energy management of the hybrid power plant. For this purpose, several steps 

are defined comprising the problem definition, the optimization method selection and the cost 

function definition, which converge in a global mathematical description of the strategy. 

The fifth chapter presents the validation of the proposed control and optimization 

strategy through Matlab/Simulink simulations. A rule-based algorithm is employed for 

comparison. 

In the sixth chapter the proposed control and optimization strategy is applied to the 

management of the grid-connected power plant in PowerFactory. 

Finally, chapter 7 presents the concluding points and contributions offering future lines 

about the developed topics. A diagram to present the chapters and their organization is 

presented in Fig. 0.1.  
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Fig. 0.1. Chapters organization diagram. 
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Chapter overview 

This Chapter describes the grid management aspects of island grids as well as the grid 

code requirements for the supply of power using wind turbines in such isolated context. After 

discussing the benefits of associating energy storage and wind power, the Chapter ends with 

the definition of the operation requirements for the hybrid power plant. 

1.1 Introduction  

This thesis was prepared in the context of the Insul’Grid project. Headed by 

VALOREM, this project promotes the deployment of RES technologies on non-interconnected 

island networks and aims at the energy independence of those remote territories. Even with 

abundance of renewable energy resources such as wind and sun, weak grids pose challenges for 

the integration of RE-based facilities. The project’s main objective is the development of an 8 

MW  wind turbine system, 4 MW / 2,32 MWh Li-Ion battery storage hybrid power plant (HPP) 

to supply power to the Guadeloupean electrical system.  

The problems of storage system type selection and sizing, as well as the generation 

technology choice and design, and plant architecture definition are not part of the scope of the 

thesis. Other project partners carried out those studies, and therefore, the results they found are 

here considered as input data. The efforts are focused on the formulation of an energy 

management strategy to effectively manage the HPP power flows to provide guaranteed (firm) 

power to the utility grid. The development of the simulation models allowing the test of the 

proposed EMS is also part of this work. 

This first Chapter starts with a description of the differences between mainland and 

island grids. Then, the grid code requirements for supplying power from wind turbines into 

insular grids is presented.  After describing the possibilities offered by associating a storage 

system to wind power, the Chapter ends with the specification of the HPP contractual operation 

conditions.  

1.2 Island grids features and management 

The main feature characterizing island power grids is their very limited size. Two types 

of island grids can be identified: 

• Non-interconnected island power systems (like Guadeloupe or Nouvelle 

Calédonie). 
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• Partially interconnected islands (like Corse, relied through the AC link Sardinia-

Corse). 

By contrast, island grids non-linked to a mainland power system are characterized by: 

• Low short-circuit power: the transmission-level voltages are usually lower in 

small island systems if compared to large interconnected mainland systems. 

Moreover, isolated island systems comprise a lower number of generation units 

whose installed capacity is also lower. All this leads to small short-circuit power 

values. 

• High sensitivity to production variations: the frequency variations in mainland  

systems are minor since the instantaneous mismatches between generation and 

loads are small compared to the amount of synchronous generation dispatched. 

In small islands, the frequency deviations are more important and can lead to 

frequency collapse. 

• Limited installed capacity: due to technical and economic reasons the maximum 

power of the generation units is limited, leading to higher installation costs per 

kilowatt. 

The latter two island systems characteristics lead to primary reserve requirements that 

are important (in percent of the total installed capacity). This is contrary to the mainland grid 

case where the instant primary reserve values  are very small with respect to the total amount 

of power produced. The maximum available power supply minus the expected peak demand is 

known as the reserve margin. 

In order to ensure that the primary reserve required is available, some generators in the 

power system are operated below their rated power, lowering the efficiency of the 

transformation from primary energy to useful energy. The considerable margins of reserves 

involve significant costs and have an important impact on the cost price of the energy produced 

in the island grid. Thus, reserve margins need to be reduced as much as possible while 

maintaining the reliability of the electricity system. As outages compromising the existing 

capacity may occur, load-shedding procedures are a common means for restoring the balance 

between generation and consumption.  

In addition to the above points, island grids do not present the following advantages of 

mainland systems [5]: 

• The possibility of relying on larger and cheaper power stations. 
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• The load smoothing due to the distribution of the consumption centers 

throughout a continental-size power grid, which eases the daily power 

consumption forecasting and generation scheduling. 

1.2.1 Island grids management: possibilities and challenges 

An electrical system can be characterized by its frequency and voltage levels. The 

stability of these variables around contractual values ensuring the system stability. It is 

important for the network’s operator to satisfy the system load in the best possible way, that is 

ensuring the economical and reliable operation of the grid while ensuring that the different grid 

elements are within permissible limits. 

Variations in active power affect mainly the grid frequency whereas reactive power is 

principally dependent on voltage magnitude. Hence, active power-frequency and reactive 

power-voltage are controlled separately [6]. The main characteristics of these controls are 

briefly presented in the following sections. 

 Active power-frequency control   

The frequency in a conventional power system represents the speed of synchronous 

generators (all alternators run at the same electrical speed). Frequency stability is ensured by 

the balance between production and consumption. The balance between production and 

consumption provides frequency stability. Thus, load or production variations have the effect 

of modifying the system frequency. When the production is greater than the consumption, the 

frequency increases and vice versa. The grid frequency is maintained at its set-point (50 Hz in 

Europe) by acting on the generation units. This is made possible by power reserves distributed 

over different generation units and according to a three-levels hierarchical control, called 

primary, secondary and tertiary frequency control [7]. 

Primary control 

After a disturbance, the governors of the units participating in the primary frequency 

control increase or decrease their turbine power to drive the frequency close to the set-point 

value. Primary control aims to re-establish a balance between generation and demand within a 

few seconds. According to the frequency deviation the generator power is changed. 

Shortly following a disturbance, the governors of the units participating in primary 

control will increase/decrease their turbine power and drive the frequency close to its nominal 

value. The change in the generator power is proportional to the frequency deviation and is 

shared among participating units according to the gain 1 𝜕⁄ , of their primary controllers. 
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where 𝜕 represents the slope of the droop (%), 𝑃 is the modified power output of the generator 

(MW), 𝑃0 is the scheduled active power of the generator (MW) that is supplied at nominal 

frequency, 𝑓𝑁 (Hz), and 𝑓 is the grid frequency (Hz), Fig. 1.1. 

Two concepts that intervene in this control strategy are the primary reserve and the 

power frequency characteristic. The first corresponds to the system's ability to restore 

production-consumption balance when consumption is in excess. For that, the system must have 

enough power reserve, 𝑃 − 𝑃0. The power frequency characteristic, 𝐾 (MW/Hz), of the 

generator corresponds to the variation of power compared to the variation of frequency. 

This expression is valid for productions below the nominal power. In an island grid a 

critical incident could lead to the saturation of the production units, making the power frequency 

characteristic difficult to determine [5]. 

Secondary control 

The primary control permits re-establishing the balance between production and 

consumption. Nonetheless, it leads to a gap ∆𝑓 among the grid frequency and the set-point 

value. In an island network the secondary regulation has a single objective which is to bring out 

the system frequency at its set-point. In an interconnected system, secondary regulation has the 

additional objective of restoring the power exchanges between adjacent control areas to their 

contractual values. The secondary frequency control intervenes about 10 seconds after the 

primary control has stabilized the system frequency, when generation units not participating of 

the secondary control rebuild their primary reserve by returning to their initial operating point. 

Tertiary control 

(𝑃 − 𝑃0) =
1

𝜕
(𝑓 − 𝑓𝑁) Eq. 1.1 

𝐾 =
1

𝜕

𝑃𝑁
𝑓𝑁

 Eq. 1.2 

 

Fig. 1.1. Frequency droop characteristic curve. 
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Following an incident in the island system, it is possible that the secondary reserve is 

exhausted before completely resolving the frequency deviation. Tertiary control modifies the 

dispatch set-points of the generation units participating so that the secondary reserve can be 

restored, and the frequency restored to its nominal value. It also compensates for the imbalances 

among production and consumption as this difference slowly evolves. In island systems tertiary 

control is basically composed by combustion turbine generators. 

Critical case: load shedding 

In critical situations caused by the sudden loss of a substantial part of the production, 

primary control may not be enough to limit the frequency drop. In this case, some loads are 

shed in order to stabilize the system as quickly as possible. In island environments where such 

situations occur more frequently, certain critical loads are preserved and not considered for 

shedding. Also, the interconnections affected by the load shedding are varied periodically (e.g. 

every month) not to affect the same consumers each time there is a grid event [5], [7]. 

 Reactive power-voltage control   

This section presents the main characteristics of voltage regulation in island networks. 

Same as for active power, the overall balance of the reactive power produced and 

consumed in the electrical system must be maintained. The aims of reactive power control in 

the network are [5]:  

• Maintain the system voltage profile within the contractual ranges. 

• Reduce overall network losses. 

• Maximization transmission capacities of active power in the lines;  

• Maintain high stability margins. 

While the loads in an electrical system present active power and reactive power 

components, the reactive power absorbed in the system is delivered by generation units and 

reactive compensators.  The active and reactive power exchanges between sources and loads 

lead to voltage variations. Given the small size of an island network, the difference between 

sending and receiving end voltage of a transmission line can be expressed as  

where ∆𝑉 is voltage variation (V), 𝑉 is the receiving end voltage (V), 𝑅 and 𝑋 are the line 

resistance and reactance (Ω), 𝑃 (MW) and 𝑄 (Mvar) are the amounts of active and reactive 

power being transmitted. 

∆𝑉 =
𝑅 ∙ 𝑃 + 𝑋 ∙ 𝑄

𝑉
 Eq. 1.3 
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In order to reduce the transits of reactive power between transmission and distribution 

networks (𝑄 in Eq. 1.3), the reactive compensators should be installed near the loads, in 

consumption nodes. Moreover, high-voltage level lines in the transmission network being more 

inductive than resistive, the reactive power transits induce important voltage drops in those 

lines. In the case of transmission lines in an island grid, the reactances are typically five times 

bigger than the resistances [5]. 

Voltage control in continental grids is hierarchical and operates at three different levels 

temporary and spatially independent. Primary control keeps the voltage at the terminal of the 

generators at their set-point values. Secondary voltage regulation’s first objective is the 

automatic voltage control at the power system’s main transmission buses. Tertiary regulation 

is a nationwide  voltage-reactive power optimization function providing  voltage set-points to 

ensure the safe and economic system operation. Unlike mainland systems like France’s 

transmission network comprising about 35 voltage control zones, insular grids usually contain 

only one control zone [8]. Thus, the tertiary regulation of island systems becomes secondary 

regulation. Two types of adjustments can be identified in non-interconnected  grids: 

Primary control 

Primary control of generators stator voltages is realized by devices known as automatic 

voltage regulators (AVR). Rapid voltage variations at the generator’s terminals are 

compensated by the primary control which brings the voltage back to a value close to the set-

point [8]. 

Secondary control 

Secondary voltage regulation is a manual adjustment through which the network’s 

operator coordinates the control actions required to maintain the voltage profile within 

permissible limits. For economic (losses reduction) and safety (stability of the generating sets 

and dynamic withstand of the voltage) reasons weak grid network operators seeks to maintain 

the voltage profile as high as possible [5]. 

1.3 Grid codes requirements 

Grid codes are technical specifications defining the requirements for grid-connected 

facilities (power plants or loads) to ensure the safe, secure and economic operation of the 

electricity system. Severe penalties may be incurred if the facilities do not meet the 

requirements.  It is the corresponding transmission system operators (TSO) or distribution 

system operators (DSO) who determines the requirements for a given project. Nonetheless, grid 
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codes are more or less standardized among countries with developed electrical networks, 

aiming at the simplification of the planning and implementation of new projects [9].  

1.3.1 Grid code for RE in weak grids  

Wind turbines power levels steady growth has led to an important penetration of wind 

energy into the existing power systems [10]. Consequently, WECS are increasingly coping with 

system stability support requirements, that historically were handled by conventional power 

stations.  

In the context of island grids, the issue of variability in the output of RES-based sources 

like wind turbine or PV panels is more pronounced as penetration increases [11], [12]. Power 

quality issues associated with RES include voltage transients, harmonics and frequency 

deviation. For that, maintaining reliability, stability and efficiency of insular grids with highly 

variable energy resources is a particularly complex task [11], [13]. To provide stability and 

power quality, several technical requirements known as grid codes have been gradually 

developed by TSOs or DSOs regarding the interconnection of WECSs with the electric power 

systems.  

Several relevant publications are available that deal with grid code requirements for 

wind turbine (WT) technology. Reviews of the grid code requirements for integration of 

WECSs in mainland systems have been provided [9, 13-20]. However, academic literature 

discussing island grid code requirements is scarcer. Grid code requirements for large-scale 

integration of renewables in an insular context are discussed in [21], [11], references on which 

the description presented below is mainly based . 

Grid codes define the physical connection point requirements to be followed by the 

energy production equipment for being connected to the grid. Moreover, it should provide rules 

for a regulatory framework  for renewable energy plants  to support grid stability [21], [11]. 

 Regulations for continuous operation  

Voltage and frequency 

The voltage fluctuation sensed at the PCC is linked to the connection point’s short circuit 

impedance and the real/reactive power output of the renewable energy plant. For this, 

maintaining the voltage stable within a desired range of values may be challenging for the 

continuous operation of the renewable plant. Consequently, the weaker the isolated system, the 

more difficult becomes the injection of additional renewable generation. In addition to that, the 

requirements set by the corresponding system operator vary depending on each insular power 

grid’s characteristics (in terms of size or strength). 
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Frequency nominal range is dictated by the power connections’ strength, extension and 

size of the power reserve, and overall inertia of the installed power generation infrastructure. 

Fig. 1.2 presents, as an example, the operation area of voltage and frequency defined for the 

French insular grid code. 

Active power control 

Active power control refers to control rules to manage the power the generation units 

deliver to the grid. Solar power plants and wind turbine systems must comply with this 

requirement by incorporating local and remote active power control capabilities. Wind turbine 

systems must be able to adjust their power output to a given level (active power curtailment), 

either by disconnecting wind turbines or by pitch control action [15]. 

• Upper limitation: parameter intended for restricting the renewable plant’s maximum 

power output. Allows the SO to prevent instabilities in the active power balance caused 

by the stochastic nature of wind and solar resources.  

• Range control: unlike conventional generation units, renewable sources are non-

dispatchable. To introduce output power dispatch flexibility and extend the primary 

control function to RES-based facilities, renewable generation units need to be equipped 

to curtail their power production. With their active power production modulated to a 

 

 
Fig. 1.2. Operating area of voltage and frequency, French insular grid code [22]. 
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range given by a minimum and a maximum of their rated capacity, output power 

dispatch flexibility can be introduced, and the primary control function can be  extended 

to RES-based facilities.  

• Ramping control: the ramping speed of active power production must be limited in 

upwards direction (increased production due to increased wind speed or due to 

modification of the upper limitation) [16]. Faster wind power output variations are 

filtered through the imposition of a ramp rate. 

• Delta control: delta control is a way of securing spinning reserve based on renewable 

generation. The output power is artificially lowered below the available power at the 

time when the generation takes place. The difference is kept as a reserve and can be 

released for frequency regulation (primary and secondary control) and to support the 

grid voltage through the injection of reactive power into the grid. 

Power-frequency response 

Energy unbalances deviate the power grid frequency from its nominal value. As the 

unbalance grows, a larger deviation of frequency is expected to occur, threatening normal 

power operation. To maintain the deviations within safe levels, frequency monitoring and 

corrective actions are handled by conventional generators (primary control), and if necessary, 

the system operator activates the spinning reserve (secondary control). In the case of European 

grid islands, frequency regulation from wind farms is not required by local grid codes [11]. 

However, the capability to restore generation/demand balance is required by some European 

countries [11], [23-26]. Usually, mainland TSOs impose the wind power plants a droop 

characteristic for primary reserves activation while no compliance of these regulations is 

directly required  for solar power plants. 

As an example, in Fig. 1.3 is presented the droop characteristic for activation of primary 

reserves corresponding to the requirements set out by the Irish regulations for wind power 

plants. Points 𝐴 to 𝐸 are determined by the TSO before the beginning of operation of the 

generation unit. The activation of the power reserves is to be overseen by automatic local 

controllers . At nominal system frequency, the power extracted from the WECS is below its 

available active power. This derated operation allowing the WECS to supply positive and 

negative power reserves (i.e. to ramp power both upwards and downwards in response to 

deviations in the system frequency [18]. Thus, once the frequency falls below the point 𝐵, the 

frequency response system must ramp the WECS power output upwards in accordance with the 

trajectory 𝐵 − 𝐴. If the frequency rises to a level above the point 𝐷, the WECS output shall 
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ramp down following the trajectory 𝐶 − 𝐷 − 𝐸. For frequencies at or above 𝐸, no active power 

output is expected from the WECS [15]. 

Reactive power control 

Reactive power control helps compensate transmission equipment like cables and 

transformers, as well as maintaining voltage stability. Reactive power control is then an 

important technical requirement for ensuring the reliable and efficient operation of transmission 

and distribution grids [10]. While at the distribution level voltage regulation is still controlled 

by the distribution substations, wind turbines are no longer operated to maintain the power 

factor at 1, as in early implementations, and the task of ensuring bulk system voltage regulation 

at the transmission-level is not exclusive to synchronous generators. In fact, most European 

grid codes in the mainland context have extended reactive power capability along with active 

power generation to wind turbines and solar PV. Similarly, the strong technical constraints 

associated with the increasing propagation of RES-based plants in insular systems, will force 

the incorporation of this ancillary service for security reasons [21]. 

WECs deployed in remote areas are often connected at weak points in the insular grid. 

For this, grid vulnerability to voltage drop due to the energy transit at the point of common 

 

Fig. 1.3. Power-frequency response according to requirements set by Irish regulation for wind power 

plants [25] 
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coupling is high. Alongside this is the fact that the variability of RES introduces complexity to 

the task of maintaining the voltage the acceptable limits. 

Since each isolated power network has its own specificities, reactive power needs must 

be dealt with to meet local interconnection issues. This requirement is intervening in three 

different ways: by power factor control, by means of a Q set-point or by managing reactive 

power flows as a function of the grid voltage. For now, the insular approach relies on a power 

factor band specification that must be respected by the wind power facility under normal 

operating conditions. Common power factors range go from 0,95 lagging to 0,95 leading at full 

active power  with voltage within 90 % and 110 % of nominal. Other power factor ranges may 

go from 0,86 inductive to 1. 

Given the alternative ways to express reactive power support are not imposed by island 

grid operators, the P-Q and V-Q specifications for two European countries are shown in Fig. 

1.4 as examples. the reactive power requirement 𝑄𝑔 as a function of the active power 𝑃𝑔 

according to the German grid code Fig. 1.4.a show, whereas Fig. 1.4.b displays 𝑄𝑔 as a function 

of the grid voltage 𝑉𝑔 specified in the Spanish grid code. When the wind farm provides nominal 

active power, it should be able to deliver 0,41 pu or to absorb 0,33 pu reactive power. The 

power factor should then be adjusted somewhere between 0,93 leading and 0,95 lagging. At 20 

% of the rated active power, the power factor ranges between 0,44 leading and 0,52 lagging. 

Between 0 and 20 % of the rated power the reactive power requirement is variable  [10]. 

Modern WECS configurations like the doubly-fed induction generator (DFIG) or the 

permanent magnet synchronous generator (PMSG) types can deliver or absorb reactive power 

while at the same time active power is generated, configurations that will be explained in 

Chapter 2. These capabilities also apply to PV power stations which can be relied to the grid 

through the same topologies of power converters. 

(a) (b) 

 
 

Fig. 1.4. Reactive power requirements for grid-connected wind power facilities: (a) P-Q profile in 

Germany, and (b) V-Q profile in Spain. Modified from [10]. 
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According to the reactive power compensation method according to the grid voltage 

(Fig. 1.4.b), the wind turbines have to meet the reactive power capability contained in by the 

polygon specified by the TSO. 

Emulating inertia of conventional power plants 

When there is a failure in one of the generation groups, or new loads are connected, grid 

frequency drops at a rate determined by the inertia sum of all generators. One of the 

characteristics of small island grids is lower grid inertia in comparison to mainland continental 

-size power networks  [11]. “Virtual” wind inertia is a relatively new concept that can increase 

wind turbine’s power-frequency capability to act on the grid frequency. Using additional 

control loops a variable-speed wind turbine can provide emulated inertia. The concept is based 

on the utilization of the kinetic energy stored in the rotating masses of the wind turbines [27]. 

An alternative method for generating emulated inertia consists in increasing the wind turbine 

torque allowing a reduction in the system’s load-generation imbalance[11]. In [28], it is 

demonstrated that virtual wind inertia can exceed the inertial power response of a DFIG or 

PMSG generator with the same inertia [21], [28]. 

 Specific requirements under network disturbances   

Whereas conventional power plants, such as synchronous generation groups-based 

plants, have strong capabilities to withstand symmetrical and asymmetrical faults without being 

disconnected, when the deployment of wind turbines started, grid faults handling was not 

critical. This means wind turbine were disconnected during grid faults. In an island grid scenario 

in which the energy mix comprises considerable RE generation if a large wind power facility 

is unexpectedly shutdown,  the impact on frequency stability can be important. For grid security 

reasons, RE plants in an island grid context should tolerate grid faults for a short time, at least 

for the fault clearance. 

Fault ride-through (FRT) capability 

Grid disturbances like voltage sags/swells may lead to the disconnection of large-scale 

wind generation units. FRT requirements are imposed to overcome instability scenarios in the 

utility grid stimulated by the sudden disconnection of generation units. Starting with the 

German utility operator E.ON in early 2003, the TSO and DSO of various countries imposed 

similar FRT profiles with diverse voltage dip magnitudes and grid fault durations [10], [29], 

[30]. The FRT requirement is a general category covering zero-voltage ride-through (ZVRT), 

low-voltage ride-through (LVRT), and high-voltage ride-through (HVRT). ZVRT and LVRT 
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stipulations are related to grid voltage sags, while the HVRT corresponds to grid voltage swells. 

In the ZVRT profile, the grid voltage becomes zero during a grid fault, whereas in the LVRT  

profile, the voltage becomes 15-25 % of its rated value [10]. 

Fig. 1.5.a and Fig. 1.5.b present the ZVRT and HVRT curves of the E.ON regulation. 

According to this, during a fault at PCC, the wind turbine should “ride-through” instead of trip. 

In Fig. 1.5.a, in the event of a grid voltage sag the FRT should start working within one cycle 

(20 ms), withstanding the voltage drop for a time duration of 150 ms when the grid voltage 

drops below 0,9 pu and should deliver 1,0 pu reactive power. If the grid voltage falls below the 

ZVRT limit, the wind turbine disconnection is allowed. In the event of a voltage swell where 

the grid voltage swells to 1,2 pu, the wind turbine must ride-through for 0,1 seconds (Fig. 

1.5.b,). The wind turbine should absorb 1,0 pu reactive power to ensure grid voltage recovery 

[10]. 

LVRT compliance has been imposed in large European island territories, such as the 

Crete Island (Greece) or the Canary archipelago (Spain) . In Fig. 1.6 are compared the profiles 

(a) 

 

(b) 

 
Fig. 1.5. FRT requirement of E.ON regulation: (a) ZVRT profile, and (b) HVRT profile [10], [29]. 
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for Crete, Canary islands and French islands [21], [26], [31-33]. When compared to the FRT of 

E.ON regulation mainland system presented in Fig. 1.5.a, the requirements from Fig. 1.6 look 

alike. 

Reactive power response 

In order to reduce the contribution of conventional generators to the restoration of the 

grid voltage after default, this role needs to be also assumed by non-dispatchable power sources. 

The reactive energy support mechanism employed in the recovery of an under-voltage event, 

must be followed by the progressive reintroduction of active power at the RE unit output. The 

latter allows securing the consumption- generation balance, necessary to keep the frequency 

within the acceptance range. This capability is more critical in the case of island grids given 

their size and typical weak connection, implying any disturbed operating condition is sensed 

everywhere in the network. On top of that, island grids usually present low short circuit power 

which further promotes instability, implying for instance a significant variation in the voltage 

when a faulty condition appears  [11]. 

Fig. 1.7 compares the reactive power requirements during voltage disturbances. The grid 

code of Canary Islands is compared with the specification for two European mainland systems. 

As can be appreciated, in the case of the insular grid code the consumption of reactive power 

takes place when the voltage disturbance recovery is still present. Moreover, for voltage drops 

beyond 50 % of the rated voltage, the reactive current is not bigger than 90 % of the global 

current, and reactive power consumption is not allowed while the voltage disturbance has not 

been cleared. According to the German grid code, when required the wind turbine must provide 

pure reactive current while providing at the same time active power. This meaning that, in order 

 
Fig. 1.6. FRT profile examples in European island grids [21]. 
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to provided reactive power capability, the power converter must be sized according to the 

maximum possible active and reactive current.   

1.4 Wind power and energy storage systems  

Pollution reduction, global warming slowdown and risk reduction of nuclear disasters 

are among the reasons behind the current concern for improving the way in which energy is 

generated and used [34]. Renewable energy technologies such as biomass, hydroelectric, wind 

power and photovoltaic (PV) solar power, produce energy from natural resources that will not 

run out while releasing low quantities of greenhouse gas emissions. For these reasons over the 

last decades, decision-makers have been facilitating the development of renewable energy.  

Next, wind power and energy storage systems are dealt with. 

1.4.1 Wind power and commitment profiles  

For thousands of years wind power has been used for sailing, grinding grain, or for 

pumping water. Starting from the 1980s, wind turbines have developed from 50 kW class 

machines to 10 MW turbines being unveiled nowadays [35]. While initially, the construction 

of wind turbines was a costly venture, thanks to recent improvements, wind power has begun 

to set peak prices in wholesale energy markets and cut into the revenues and profits of the fossil 

industry [36]. 

According to the report issued by WindEurope on February 2020, Europe has 205 GW 

of wind energy capacity: 183 GW onshore and 22 GW offshore, and wind accounted for 15 % 

of the electricity the European Union consumed in 2019. The same year, Spain (2,3 GW), 

 
Fig. 1.7. Comparison of reactive power specifications during grid voltage disturbance  [11]. 
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Sweden (1,6 GW) and France (1,3 GW) led the installation of onshore wind farms. Germany 

was fourth with 1,1 GW [37]. The European Commission claims Europe will need among 230 

GW and 450 GW of offshore wind by 2050, making it a cornerstone in the energy mix together 

with onshore wind. 450 GW would meet 30 % of Europe’s demand for electricity in 2050, 

which would have grown 50 % compared to 2015 [38]. 

 Wind power in the electricity markets 

The electrical systems evolved from their historical paradigm based on vertical 

integration, with regional or state enterprises owning and controlling the whole energy chain 

(generation, transmission, distribution and retail), towards a free competitive market Within 

such a liberalized framework, competition is promoted mainly in generation and retail. In 

contrast, the grid-related activities (transmission and distribution) remain natural monopolies 

as it is not possible creating several competitive transmission and distribution system 

infrastructures [39]. 

Wholesale market transactions (such as power exchanges between neighboring systems 

or countries) happen via transmission grids. Their operation is ensured by transmission system 

operators, in charge of ensuring the security of the electrical grid and guaranteeing non-

discriminatory access. Meanwhile, distribution grids allow the management of the energy 

delivered to end-users. Distribution system operators also manage the connection of RESs with 

power rating below a certain threshold (about 10 MW in France) [39]. 

The power transactions related to the generation of renewable energies take place within 

a liberalized framework. In such a framework, future wind power generation is offered through 

contracts and auctions mechanisms, therefore based on forecasts [40]. 

Short-term markets trading floors 

Two different trading floors are typically available in electricity markets. Trading on 

long-term horizons takes place in medium/long-term markets (also known as futures markets). 

The participants in these markets can trade by mean of forward contracts, signed between two 

parties to buy or sell a certain amount of energy at a future time. Base load and peak load 

contracts are two examples of standard products in forward contracts [40]. 

On their part, short-term markets (also known as electricity pools), allow trading of 

electricity daily or hourly horizons. Day-ahead, intraday and balancing markets among the 

trading floors included in short-term markets [40]:  

• Day-ahead market: in the day-ahead market, energy transactions are agreed 1 day prior 

to delivery. Bid/offer and buy/sell proposals with the maximum/minimum price and the 
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quantity of energy the participants (buyers and sellers) are willing to consume/provide, 

are submitted to a market operator. The buy offers are ranked in price-decreasing order 

to form a cumulative buying curve. Similarly, the cumulative selling curve is formed by 

ordering the sell offers in price-increasing order. The intersection of the curves gives 

the market-clearing price and volume. Offers on the left of the clearing volume are 

accepted (and generally remunerated at the clearing price) whereas those at the left are 

rejected. 

• Intraday market: the intraday adjustment market is the market for the energy 

transactions performed the day of delivery. It takes place between noon, when the day-

ahead market closes, and before the delivery (the next day). At this market, the 

participants (conventional and stochastic producers and buyers) can change their 

positions close to real-time, when futures and day-ahead markets have closed and based 

on more accurate forecasts. The intraday market allows the continuous placement of 

offers/bids which are automatically matched. 

• Balancing market: the balancing market permits balancing supply and demand close to 

real-time. Regulating power for upward and downward regulation is usually provided 

by conventional generators whereas stochastic producers participate in this market to 

fix deviations from contracted production. Typically taking place in a separated session 

for every trading period, balancing markets allow to trade, besides electrical energy, 

ancillary services.  

Conventional generation plants can contract part of their capacity in medium/long-term 

agreements that allow fixed revenues, and the remaining capacity in electricity pools. In 

contrast, given their stochastic nature, it is hard for renewable generation facilities such as wind 

farms or solar plants to guarantee a certain level of production long time before operation [40]. 

In the present dissertation, market participation is represented by the application of a 

remuneration system determining the energy producer profit that includes the amount of power 

supplied and the occurrence of commitment failure penalties, according to a commitment 

profile agreed the day-ahead. The available information on the basis of which the dispatch 

decisions are made, are references related to both the commitment profile and the supply 

ancillary services, as well as measurements of the current system state. Participation in the 

intraday adjustment market or balancing market mechanism are left for future works. 
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 Commitment profile and injection band  

The two main advantages of using wind power in small and non-interconnected islands 

are lower electricity production costs and CO2 emissions reduction, as the import of expensive 

fuels is replaced by the utilization of local energy supplies. However, the variability and 

uncertain scheduling and dispatch of wind power combined with the smaller inertia of those 

grids translates into the need for extra spinning reserve, mostly fossil fuels based.  

The use of production forecasts is one of the ways to cut the need for spinning reserve. 

Energy storage enters the equation to cope with the errors in the forecast, which is never perfect. 

In this manner, the association wind power, energy storage and day-ahead wind forecasts make 

it possible the respect of day-ahead commitment profiles [41]. 

Deviations between contracted generation and actual deliveries may induce financial 

penalties. For this, in the decision-making problem of dispatching a RES-based generation site 

according to a contractual generation schedule, the energy producer should make optimal use 

of all the information available [40]. 

Forecast data (or the appropriate forecast software) being usually unavailable, most 

academic literature dealing with energy management of wind-storage systems follow a 

stochastic approach. Firm commitment profiles (injection commitment profiles in the present 

case) are generated by treating available production data and by adding some synthetic random 

error [41]. The first assumption consists in considering the production data as forecast data. The 

second assumption is considering the resulting profile to be the offer bade the day-ahead (day 

D-1) to the power generation and accepted by the market operator. 

Following the project stipulations, the commitment profile must be composed by 30 

minutes steps corresponding to the 48 volumes of power the production facility engaged in 

supplying during the day D. In Fig. 1.8.a is presented, as an example, a commitment profile 

obtained by averaging some production data and then, adding a random error.  

According to this profile, average productions under 3 MW are then expected during 

the early morning, until gradually increase since 07:30. From before 09:30 and until the end of 

the day, the variations in the mean of the output power range mostly between 4 and 6 MW, as 

the foreseen wind speeds are stronger. 

 

Fig. 1.8.b. shows the injection band established based on the commitment profile. If 

tolerance of 20 % is chosen, and the WECS installed capacity (𝑃𝑀𝐴𝑋) is of 8 MW, the band is 

given by 



Energy management optimization of a wind-storage based HPP connected to an island power grid 

26 R. LOPEZ - 2021 

𝑃𝑢𝑝 𝑙𝑖𝑚 = 𝑃𝑆𝐶𝐻𝐸𝐷 +  ,2 ∙ 8 × 1 
6 = 𝑃𝑆𝐶𝐻𝐸𝐷 + 1,6 × 1 

6 

Eq. 1.4 

𝑃𝑙𝑜𝑤 𝑙𝑖𝑚 = 𝑃𝑆𝐶𝐻𝐸𝐷 −  ,2 ∙ 8 × 1 
6 = 𝑃𝑆𝐶𝐻𝐸𝐷 − 1,6 × 1 

6 

Where the profile 𝑃𝑆𝐶𝐻𝐸𝐷 is one of the inputs to the problem of dispatching the power flows of 

the grid-connected HPP. 

1.4.2 ESS applications for grid-connected WECS  

The applications of adding an ESS to a WECS are not reduced to the peak shaving and 

smoothing of the wind turbine generated power, and represent advantages for different 

stakeholders: hybrid plant operator, grid operator and energy consumer [42]. 

 ESS applications for WECS integration  

The issues of output intermittency and variability, and ramp rate requirements are the 

main challenges of wind power systems. ESSs are power sources that can be charged and 

discharged. The Associating with an ESS may represent for the wind farm improvements in 

terms of dispatchability and grid-friendliness.  

• Generation-demand time correlation: wind power non-dispatchability implies the 

availability of the wind-generated power cannot be guaranteed during peak demand 

 

Fig. 1.8. (a) commitment profile determined from the day-ahead production forecast, (b) injection band 

for the same period. 
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periods. In the same way, high wind power can take during off-peak demand periods. 

The possibility to store the surplus and compensate for the lack of power represents then 

a substantial  benefit. 

• Output smoothing: the variable nature of wind power can introduce fluctuations in both 

the frequency and the voltage at the connection point. The smoothing made available by 

the ESS reduces the need for power quality and ancillary services in the system [42], 

[43]. 

•  Transmission utilization efficiency: often wind resources are abundant in rural/remote 

areas that are away from the transmission lines. Additional ESSs can reduce the 

transmission lines congestion, defer or avoid the expansion of distribution and 

transmission systems [42], [44]. 

 ESS applications for grid support  

The ESS can provide ancillary services and contribute to meeting the grid codes 

imposed by the network operator. 

• Energy arbitrage/load leveling: with varying electricity prices a possibility ESSs can be 

used to store low-cost peak-off energy to be discharged when the price is higher, which 

can help reducing market risk exposure to volatile peak prices.  

• Frequency regulation: using a droop controller ESSs could be managed to provide 

active power in response to frequency deviations (primary frequency control) [42], [45]. 

With a control procedure centralized by the network operator ESSs can also provide 

secondary frequency control. 

• Inertia emulation: increased grid inertia reduces frequency variability to sudden 

generation and/or load variations. Addition of a supplementary loop to the active power 

control of the ESS can permit the increment of the system’s apparent inertia [42]. 

• Oscillation damping: in interconnected systems, sudden changes in the power being 

transmitted through a tie line might introduce frequency oscillations ranging between 

0,5 and 1 Hz [42], [46]. Applications of EMS to reduce frequency oscillations in wind-

EMS systems have been reported in the literature [42], [47, 48]. 

• Voltage control support: wind power variability can degrade the stability of the grid 

voltage [42], [49]. Using the appropriate power conversion interface, ESSs can be 

controlled to provide reactive power to maintain the local voltage level. This aspect is 

discussed in section 2.4. 
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• LVRT support: some grid codes require wind turbines to supply up to maximum reactive 

current during to grid voltage sags. To compensate for switching losses associated with 

the provision of reactive power, the converter should withdraw active power from the 

utility grid. During severe faults no power can be withdrawn, and the DC voltage falls. 

ESS can support the DC voltage during the faulty conditions [42]. 

• Reserve: due to wind power’s forecast error additional reserves are required. According 

to their response time and discharge duration some ESS technologies can be suitable for 

providing primary, secondary or tertiary frequency reserve. In section 2.3 are described 

several of these storage technologies that can be associated with wind turbines or farms. 

• Emergency power supply/black start: after a blackout, ESS may be used to support the 

energize an islanded portion of a grid. This function is called black-start [42].  

• Transmission utilization efficiency: ESS can be utilized by grid operators to use the 

transmission system more efficiently, reduce transmission costs and defer the expansion 

of transmission systems [42]. 

 Demand-side applications of ESS  

In the consumer side, ESS can not only be used to support the integration of REs, but 

also to enable demand-side-management1 related applications [42], [50].  

Moreover, electrical vehicles (EV) vehicle-to-grid (V2G) feature, making possible the 

transfer of energy to the grid when the car is not being used, imply the possibility for the 

batteries inside those cars of supporting the grid and reducing the consumer’s energy bill. Thus, 

the energy stored could help regulate the grid frequency or reduce the amount of energy 

purchased at peak times. 

1.5 Definition of the operating conditions for the wind-storage 

hybrid power plant  

According to the stipulations of the Insul’Grid project, next is explained the basis of the 

desired operating conditions for the HPP: 

• Forecasts: the plant operation is based on 24 hours of wind speed/power forecasts for 

the period 0:00 – 23:59. A scheduling algorithm represents the commitment injection in 

the form of a half-hourly stepped profile. The injection within a time step is assumed to 

be constant.  

 
1 Modification of consumer energy consumption habits through methods usually involving education and 
financial incentives. 
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• Power injection band bounds: the injection limits are determined from the 24 hours half-

hourly stepped production profile, which is taken here as daily day-ahead electricity 

commitment generation schedule (𝑃𝑆𝐶𝐻𝐸𝐷) as depicted in Fig. 1.9. According to the 

project’s stipulations, the BESS must be controlled so that the 30 minutes duration 

scheduled injection steps can be met even though the wind farm output variability. 

During the first year of operation of the HPP, the BESS should allow the respect of a 

tolerance region of 25 % of the installed power 𝑃𝑀𝐴𝑋, above and below the scheduled 

injection. The band will be narrowed down to 20 % the second year and to 15 % from 

the third year. The tests carried out in this thesis consider the tolerance for the first year, 

namely 25 %. 

• Penalties: power injections of with excursions of 60 consecutive seconds outside the 

limits are penalized with non-payment of the power supplied to the grid for the next 10 

minutes. 

• Power variation speed limits: during upward or downward step changes of the 

generation schedule, the injected power must respect the next variation speed bounds.  

According to this, the time for the injected power to go from 0 to 𝑃𝑚𝑎𝑥 must be within 

30 seconds and 5 minutes. Also, to go from 𝑃𝑚𝑎𝑥 to 0 the time taken must be within1 

and 10 minutes, or: 

where: 

𝑑𝑃𝐼𝑁𝐽𝑢𝑤
𝑚𝑖𝑛

𝑑𝑡
≤
𝑑𝑃𝐼𝑁𝐽
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≤
𝑑𝑃𝐼𝑁𝐽𝑢𝑤

𝑚𝑎𝑥

𝑑𝑡
 

𝑑𝑃𝐼𝑁𝐽𝑑𝑤
𝑚𝑖𝑛

𝑑𝑡
≤
−𝑑𝑃𝐼𝑁𝐽
𝑑𝑡

≤
𝑑𝑃𝐼𝑁𝐽𝑑𝑤

𝑚𝑎𝑥

𝑑𝑡
 

Eq. 1.5 

 

Fig. 1.9. Power injection limits. 
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• State-of-charge: the storage system must be operated with a maximum deep-of-

discharge of 60 % so that replacements of the BESS are not required during the project 

duration (15 years). 

1.6 Chapter conclusions  

Island electric grids are weak systems whose management differs from that of mainland, 

continental-size grids. The management of the key variables in the system is done by means of 

two hierarchical control schemes: active power-frequency control and reactive power-voltage 

control. Each of these control schemes is composed of three different levels of control loops 

operating temporary and spatially independent called primary, secondary and tertiary control. 

Given the size of island grids, the reactive power-voltage control can be understood as 

composed only of primary and secondary control. 

Next, the technical specifications regulating the operation of grid-connected facilities 

both under normal and faulty conditions are denominated grid codes. In this case the attention 

is focused on the requirements wind turbines operating in island grids. If all the specificities of 

the operation of a wind farm are not covered by a grid code dedicated to operation in island 

grids (this is true for France and other countries), in practice DSOs and TSOs establish the 

regulations the generation facilities must follow. Moreover, the operation conditions for the 

HPP presented in this Chapter are part of the contractual agreement signed between the DSO 

and the plant operator. Some of the aspects found in the grid codes review are part of these 

contractual conditions (e.g. ramp rate limitations and upper power output limitation). 

The hybrid power plant control must be done by means of an EMS having access to the 

production forecasts and the ESS state-of-charge. Such an EMS must send orders to the ESS in 

such a way that the plant’s operation conditions are met. 

The aim of the energy management scheme required is to provide a grid service that 

consists of complying a day-ahead power injection commitment. The use of forecasts data (in 

this case the forecasts translate into a commitment profile) and energy storage respond to the 

economic burden that would imply depending only on power reserves to comply with the 

commitment. 

𝑑𝑃𝐼𝑁𝐽𝑢𝑤
𝑚𝑖𝑛

𝑑𝑡
=
𝑃𝑀𝐴𝑋
3  

 [MW/s]; 
𝑑𝑃𝐼𝑁𝐽𝑢𝑤

𝑚𝑎𝑥

𝑑𝑡
=
𝑃𝑀𝐴𝑋
3 

 [MW/s] 

𝑑𝑃𝐼𝑁𝐽𝑑𝑤
𝑚𝑖𝑛

𝑑𝑡
=
−𝑃𝑀𝐴𝑋
6  

 [MW/s]; 
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Eq. 1.6 
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Chapter overview 

This Chapter deals with wind/storage hybrid power plants. A review of architectures 

and the different strategies employed for the energy management of hybrid renewable/storage 

power plants is presented. The Chapter finishes with some concluding thoughts. 

2.1 Introduction  

The present Chapter starts by defining HPPs, energy production systems born as a 

consequence of the changing trends the energy industry has been experiencing during the last 

decades.  

A wide range of renewable energy sources is available for generating electricity through 

HPPs. However, the focus in this dissertation is on wind power-based systems supplying 

electricity and ancillary services into island grids including several combinations of wind 

turbines and other RES: wind/PV, wind/diesel, wind/hydro and wind/diesel/hydro, followed by 

the description of the short and long-term storage technologies suitable for the HPP dealt with 

in the present thesis. 

Next, distributed and centralized storage architectures within wind power-based HPPs 

architectures are briefly explained.  

The last section of the Chapter is dedicated to Energy Management Systems (EMS) for 

HPPs. The investigated EMSs is developed based on control and optimization strategies to 

optimally manage the production facilities power flows. A literature review of management 

strategies applied to hybrid systems combining RES and different energy storage systems is 

presented at the end of the Chapter. 

2.2 Hybrid power plants and MicroGrids definition  
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Hybrid energy systems are defined as the integration of several types of energy 

generation equipment such as electricity generators, electrical energy storage systems, and 

renewable energy sources. 

A hybrid power plant (HPP) is an electricity generation facility associating localized 

renewable energy resources (such as wind generator, PV panel, etc.) and conventional 

generators (such as a diesel engine ), with energy storage devices (such as batteries or fuel cells) 

[51], [52]. Generally, HPPs operate connected to the Low Voltage (LV) or Medium Voltage 

(MV) distribution network in a unique point called Point of Common Coupling (PCC). 

The generation and storage units within an HPP are interfaced between them but also 

with the distribution network through an EMS, as shown in Fig. 2.1. 

The hybrid system depicted in Fig. 2.2 is a microgrid (MG). In opposition to HPPs, 

whose aim is injecting power into loads connected to the main grid, MGs are conceived for 

supplying power to local loads. In this case, the power exchanged with the grid is bidirectional 

so that the loads supply can be ensured even in situations of low power production and depleted 

energy storage means. 

A MG is generally defined as a weak electric grid based on localized grouping of 

electricity Distributed Generation, loads and storage systems operating connected to the LV or 

MV distribution network. 

From the grid point of view, a MG can be regarded as a controlled entity that can be 

operated as a single aggregated load or even as a small power source or ancillary service 

supporting the network. From the customer’s point of view, a MG provides enhanced power 

quality and reliable energy supply. The most important characteristic of a MG is its ability to 

  

 Fig. 2.1. Components of an HPP. 
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operate in grid-connected or islanding mode. According to the definitions given, HPPs and MGs 

are closely related terms. 

2.2.1 Components of a hybrid power plant  

Generation sites pairing at least one type of RES with an energy storage system (ESS) 

and an adapted EMS are defined here as HPPs. The mix of different types of renewable sources, 

energy storage technologies together with the use of conventional generators is also covered by 

this definition of HPP.  

Not only hybrid power plants can accommodate several types of production and storage 

resources, but their integration into conventional power grids can bring reliability and efficiency 

to supply the demand. Moreover, the cost of renewable energy production components is 

expected to decrease [51]. The sources intermittencies and stochastic nature make the control 

of HPPs a complex task, though.  

The generic structure of an HPP is presented in Fig. 2.3. As shown, the system’s aim is 

injecting power into the main grid, exploiting the local resources  

In such a generation facility, an ESS is a necessary backup as the power generation is 

not constant. Also, an EMS must control the ESS charges and discharges according to the 

instant production and other considerations such as the level of ancillary services required by 

the grid (primary reserve, frequency and voltage regulation, etc.).  

 (a) (b) 

  
 Fig. 2.2. Generic structure of a microgrid: (a) grid-connected operation, and (b) islanding mode. 
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 Fig. 2.3. Generic structure of an HPP. 
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Commonly, the energy dispatch decisions determined by the EMS (active and reactive 

power extraction from sources and absorption or the injection of power from the storage units) 

are executed using power electronic converters (not shown in the figure).  

The EMS’s aim is that of guarantying that the power supply is always available within 

a time interval covered by a commitment. Different strategies can be adopted to accomplish 

that. For instance, a PV panels-based plant which supplies power during the day can be 

controlled to store as much as possible the energy excess during the day or to reach a target 

charge level needed for the next day. 

As for the nonrenewable sources, diesel generators are commonly used as backup 

resources in HPPs. Storage technologies such as batteries are considered bidirectional backup 

resources, characterized by their capacity to absorb and inject power. On the other side, 

unidirectional backup sources, like diesel generators, can only inject. The principle of the first 

is storing energy during surplus production periods and supplying when renewable energy 

production is not enough. In contrast, unidirectional backup supply power for long periods, 

depending on the fuel tank level, but their use implies CO2 emissions [53]. 

In the case of HPP connected to island electricity grids, an additional drawback of 

unidirectional backup sources is their reliance on imported fuels which are usually expensive, 

increasing the cost of the electricity ($/kWh) sold to the grid by the producer. In those territories, 

resources like wind and solar energy are abundant, making wind power and PV panels good 

candidates for producing electricity and supplying ancillary services with the aid of an ESS. 

Depending upon the island’s geographic conditions, some other types of sources can be 

exploited (e.g. geothermal, tidal or biomass generation, hydroelectric storage, etc.). 

2.2.2 Wind energy-based HPPs  

Fossil fuels like gas, diesel or coal, used in the production of electricity, are often hardly 

available on islands and overseas territories. When needed, their supply depends on 

transportation chains that increase electricity production costs and environmental impact. In 

contrast, resources like wind and solar irradiance are abundant in those territories and are free. 

Moreover, depending on the island’s specific topography conditions (presence of volcanos, 

waterfalls, caves, etc.), additional forms of primary energy resources can be at disposal for 

electricity production. 

If conventional generation means can guarantee the power supply when the demand is 

highest, wind-generated power is not correlated to the consumption needs. Hybridization (i.e. 
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combination with other types of RES and with conventional power stations) and energy storage 

are the main ways to cope with this issue of wind power. 

Following are described sources combinations involving wind power that can be found 

in grid-connected HPPs in islands. 

2.2.2.1 Wind and PV power  

The common practice in HPPSs based on wind power and PV panels as the sources is 

the use of a centralized ESS which is shared by all the generation units. Typically, in this case, 

the storage technology used is battery storage (see Fig. 2.4). Also, the integration of the two 

types of sources allows systems with higher capacity factor2 than in the separated situation and 

a lower cost, since the infrastructure of power conversion, storage and distribution is shared 

[54]. 

The Tilos project, in the island with the same name in Greece, tests the capacity of a 

small wind/PV/battery storage generation facility plant to provide the local grid with firm power 

while contributing to the frequency regulation [55-57]. 

2.2.2.2 Wind power and diesel generator 

Wind/diesel hybrid plants are commonly found at small size in the power supply of 

isolated communities’ local grids. Grid-connected or not, the infrastructure in this type of HPP 

is shared by the wind turbines and diesel units which are commonly combined with battery 

banks. The diesel generators are used as backup units meaning they are used when the wind 

turbines and batteries cannot ensure a smooth power output (see Fig. 2.5). In many cases the 

EMS in wind/diesel/battery HPPs and microgrids counts among the optimization objectives 

with the minimization of CO2 emissions, meaning reducing the consumption of diesel fuel. The 

 
2 Ratio of energy generated (by a generation facility or generating unit) over a period of time, to the 
hypothetical maximum possible. 

  

 Fig. 2.4. Wind/PV/battery HPP. 
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component of wind turbines usually having a larger part in the installed capacity of the plant 

[54]. 

An example of Wind/diesel combination is the Ross Island research station project 

which also integrates flywheel storage [58]. 

2.2.2.3 Wind power and hydro storage 

Wind/hydro-based power plants use wind power to pump water at a higher-level 

reservoir. Commonly, this is done during the night, when the energy demand is low. The 

machines connected to the hydraulic turbines are used as motors for pumping water, and as 

generators when water is released to turn the turbines. In this type of HPP, hydro storage is used 

for smoothing the power generated by the wind turbines. This kind of system present rather 

higher efficiency as they involve only mechanical-electrical energy conversion [54]. 

El Hierro, an 100% renewable hybrid system based on wind and hydro was installed in 

the Canary Islands, Spain [59-61]. Sometimes this kind of hybrid power system is 

complemented by a diesel generator which is only used in cases of deficit of power, allowing 

increased reliability. The EMS in this type of facility, controls the internal power flows by 

acting on the wind generators, hydraulic plant motor/generator units, and the diesel generator(s) 

through power converters. The Kodiak Island project is an example in Alaska, the United States, 
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which uses wind/diesel/hydro and flywheel storage to provide smooth power will contributing 

to grid frequency regulation [62],[63]. 

2.3 Energy storage technologies for wind power integration 

The variable nature and uncertainty of wind energy pose substantial challenges for the 

operation and planning of the power systems. This is even more challenging in weak or isolated 

grids. For those reasons, grid codes related to wind power plants generally require for output 

power adjustment and ancillary services supply. Recent developments in energy storage 

technologies add up to the reasons for the interest in associating wind power with energy storage 

systems. 

Discharge duration (or energy capacity, in MWh) and power rating (MW) are design 

parameters varied to select the ESS suitable for a given application. Based on their discharge 

duration, energy storage systems used in combination with wind power can be classified into 

long term (minutes or hours) and short-term (a few seconds or minutes) systems [64].  

In Fig. 2.7 are depicted the storage technologies that are co-located with wind turbines 

or farms, that can be mechanical, electrochemical and electrical. Pumped hydro storage (PHS), 

flywheel energy storage (FES) and compressed air energy storage (CAES) are examples of 

mechanical storage. For electrochemical storage, battery energy storage (BES) and  hydrogen 

energy storage (HES) are considered. Finally, super capacitor (SC) and super conductive 

magnetic storage (SMES) are examples of electrical storage [65]. The technologies for which 

applications in wind-storage systems in non-interconnected islands were identified are 

highlighted in Fig. 2.7. 

  

 Fig. 2.7. Short and long-term energy storage technologies for wind farms and wind power-based hybrid 

systems. 
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Next, those storage technologies are described. 

2.3.1 Long-term storage technologies  

Long-term storage systems absorb and supply power during minutes or hours and are 

mainly applied in energy management, frequency regulation and grid congestion management 

[64].  

2.3.1.1 Pumped hydro storage (PHS)  

PHS is the most common type of long-term ESS. Typically, PHS involves a lower and 

an upper water reservoir. The charging procedure takes place during peak-off periods and 

consists of pumping water from the lower to the upper reservoir. In the discharging process, 

water is released from the upper reservoir to generate through hydro turbines during peak 

periods. When PHS is a high-power (for instance, the Bath County Pumped Storage Station 

capacity is of 3,030 MW) and high-energy resource (can supply power during several hours 

continuously) it is suitable to integrate wind power variations handling and hourly dispatch, 

frequency control, and non-spinning reserve supply [66], [42]. If high-power and high-energy 

PHS is useful for reducing the fluctuations of wind power, the main problems for building these 

stations are the lack of appropriate places and the environmental impact.  

Nonetheless, the El Hierro 100% Renewable Project (11,5 MW total wind farm power, 

6 MW pumps and 11,32 MW in hydro turbines) is an example of a small-scale hydro wind 

power plant supplying power since 2014 to El Hierro Island in the Spanish Canaries. Managed 

by Gorona del Viento El Hierro S. A., the initiative aims at supplying the island’s electricity 

requirements with renewable energy. The power plant comprises five wind turbines, a system 

of pumps for moving seawater from a lower to a higher deposit with energy supplied by the 

wind farm and 4 Pelton wheels.  

Located in Gaildorf Germany, the Naturstromspeicher pilot project is a second example 

of a small wind hydro project (17,3 MW wind farm, 16 MW / 70 MWh pump hydro system 

using reversible machines). The particularity of this promising initiative rendering wind supply 

dispatchable and providing ancillary services to the continental grid is it utilizes the towers and 

bases of wind turbines as water reservoirs. Participation in the 15-minute reserve market is part 

of the services proposed by the owners of the project, currently in the pilot phase. 

2.3.1.2 Battery energy storage (BES)  

A battery storage system consists of a set of series and parallel-connected low-voltage 

cells arranged to achieve a desired electrical characteristic [42]. The several BES technologies 

used for providing short-term fluctuation reduction, power quality applications, and some 
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ancillary services, differentiate from each other in terms of energy density, lifetime, cost and 

efficiency [66].  

Among those technologies are lithium-ion (Li-ion), lead-acid (LA), nickel-cadmium 

(NiCd), nickel-metal hydride (NiMH) and sodium-sulfur (NaS) [66], [42]. Others like 

vanadium redox (VRB) and zinc-bromine (ZnBr) correspond to the flow battery type 

distinguished by using a liquid electrolyte and for having higher energy density making them 

more suitable for the arbitrage of wind energy while offering the benefits of the other batteries 

with regard to response time [66]. 

Husahagi wind farm is a demonstrator project using wind-battery storage hybrid system. 

It is connected to the Danish Faroe Island isolated electrical system. A wind installed capacity 

of 11.7 MW is combined with a 2.3 MW /700 kWh Li-ion battery ESS. Ramp rate control of 

the wind power plant reduces the network’s operator need for demanding other producers to 

change output rapidly. Variations at a maximum rate of 1 MW / minute are tolerated. During 

downward wind variations, the BESS is used to keep the power output level constant. In the 

case of upward variations, ramp rate control is ensured by both the BESS and the wind turbines 

via active power control, to reduce their power output. The storage system also provides 

capacity firming while respecting the MW/min rate and eliminating rapid voltage and power 

swings on the grid. Moreover, frequency regulation is ensured through charging and 

discharging the storage system when needed [67], [68]. 

2.3.1.3 Hydrogen energy storage (HES)  

Hydrogen storage systems comprise an electrolyzer, a hydrogen tank, and a fuel cell. To 

generate power, hydrogen and oxygen resultant from the electrolysis of water flow into the fuel 

cell where they react delivering water, and heat is discharged producing electricity [64]. The 

advantage of the hydrogen fuel cell is its low environmental impact, and the main drawbacks 

are the low density per volume and price. 

NTU (Nanyang Technological University), ENGIE and Schneider Electric collaborate 

with several other stakeholders in the SPORE (Sustainable Powering of Off-Grid Regions) 

project in Semakau Island, located approximately 8 km south of Singapore. The project is part 

of the REIDS initiative (Renewable Energy Integration Demonstrator – Singapore) which aims 

at the development of the world’s largest microgrid demonstrator in the tropics.  

SPORE microgrid uses hydrogen to complement the 200 kW / 200 kWh Li-Ion BESS. 

With a storage capacity of 2 MWh for 80 kg of hydrogen, the HES system is advantageous to 

mitigate the impact of seasonal changes. Meanwhile, the battery system is more suitable for 
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shorter-term storage, particularly to support the daily consumption of 5 to 10 households [69]. 

The microgrid also involves a 100 kW wind turbine (Singapore’s first long-span wind turbine), 

two PV systems for a total capacity of 77 kW, and the hydrogen production required for a 

vehicle hydrogen refueling station [69], [70]. 

2.3.1.4 Compressed air energy storage (CAES) 

CAES consists of using the potential energy of compressed air to generate electricity. 

At a first time, the air is pumped into either an underground structure (e.g. a cavern or a mine) 

or an above-ground system of pipes [42]. The air is heated, expanded and directed to a high-

pressure turbine, and then it is mixed with fuel to drive a gas low-pressure turbine [66]. This 

storage technology provides high-storage and high-energy as PHS. For this, it also can be 

integrated with wind turbines offering to the grid arbitrage and ancillary services support at 

quick response times [66]. However, CAES is only suitable for large scale storage. CAES plants 

use to be at the scale of hundreds of MW or GW, i.e. larger than island-scale wind power 

facilities, like for instance the Huntorf CAES plant in Germany which provides a peak output 

of 290 MW for two hours.  

Nonetheless, the Canadian company Hydrostor is developing underwater compressed 

air electrical storage (UW-CAES) systems for grid-scale energy storage applications. The 

company claims the storage solution costs half as the Li-ion batteries and that device’s lifetime 

would be of around 30 years. As for Mars 2019, Hydrostor had multiple CAES projects under 

construction or in operation in Canada and Australia as the 0.7 MW Toronto island project 

which is in service since late 2015, or the 1.75 MW / 7 MW Goderich project system,  currently 

under construction [71-73]. 

2.3.2 Short-term storage technologies  

Short-term systems have high power density (MW/m3) and typically can absorb or 

supply electrical energy during few seconds or minutes and are commonly used in power quality 

improvement, particularly for maintaining voltage stability during transients [64]. Next are 

presented some short-term storage technologies used in wind power hybrid systems. 

2.3.2.1 Flywheel energy storage (FES)  

FES consists in storing energy in the form of rotational energy in a massively accelerated 

rotor. During the charging process, a motor is used to accelerate the rotor to a high speed and 

the energy is stored by keeping the rotor rotating at a constant speed. In the discharge process, 

the flywheel releases energy to drive the machine which is working in this case as a generator.  

Flywheels can ramp up very quick but they offer short discharge times allowing them to 



Energy management optimization of a wind-storage based HPP connected to an island power grid 

42 R. LOPEZ - 2021 

suppress wind power fluctuations,  under-voltage ride through to interruptions and perform fast 

response regulation of the grid frequency, but only over short periods (a few seconds or 

minutes) [66], [42]. For instance, the Kodiak Island project located in Alaska (9 MW wind farm, 

33 MW hydro, 30.9 MW diesel microgrid, 2 MW / 33 MWs flywheel and 3 MW / 2 MWh lead-

acid battery) pairs two 1 MW flywheel systems and a battery system to smooth the wind power 

fluctuations while taking advantage of the different discharge times the two storage 

technologies offer. 

2.3.2.2 Super capacitor (SC) storage 

SCs contain an electrolyte solution placed between the two solid electrodes instead of 

the solid dielectric between two conductors found in conventional capacitors and present much 

larger capacitance (thousands of farads [74]) and energy density, as well as fast charging and 

discharging due to their low inner resistance, unlimited cycle stability, and very high-power 

density. Among the advantages of supercapacitors are the durability, reliability, no 

maintenance, low environmental impacts and operation in diverse environments over a large 

temperature range. Their discharge time is in the range of seconds to hours and are applied to 

the power leveling of wind farms just like for smoothing fast fluctuations in combination with 

batteries [42].  

A 300 kW / 150 kWh energy storage facility combining super capacitor and Li-ion 

batteries was connected to the Irish distribution network in 2015. The network is essentially an 

island grid with only limited connection to the UK [75]. Additionally, over 23% of Ireland’s 

total electricity demand was supplied through wind-generated power that year [76]. The battery 

system is used for peak shifting and operative reserve, taking advantage of its higher storage 

capacity, whereas the super capacitor’s ability to provide more immediate power allows it to 

perform fast functions such as frequency response.  

Nonetheless, some research works have been carried out studying the use of ESS based 

only in SCs for the integration of wind energy in grid-connected facilities. For instance, the 

authors in [77] exploit a super capacitor storage system to minimize the short-term fluctuations 

of a grid-connected permanent magnet synchronous generator (PMSG)-based wind turbine 

generator. During a grid fault, the proposed controller forces the wind turbine generated power 

to be stored in the super capacitor, allowing the generation system to continue to operate during 

grid faults (capability known as fault-ride-through - FTR). In normal operation conditions, the 

controller exploits the ESS to minimize the power fluctuations caused by the varying wind 

speed. 
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2.3.2.3 Superconducting magnetic storage (SMES)  

Direct current flowing a superconducting cryogenically cooled coil at low temperatures 

create a magnetic field in which energy is stored [64]. The stored energy can be released to the 

system when required. The main advantage of SMES is its quick charge and discharge making 

power to be available almost instantaneously [79]. An overview of the applications of SMES 

in power systems, including those related to wind power integration, is introduced in [80] and 

 

Fig. 2.8. Positioning of energy storage technologies [78] 

Table 2.1 Typical parameters of storage technologies for wind power systems 

Technology Power rating (MW) Typical discharge time  Response time 

PHS 100-5000 1-24 h+ min 

CAES 5-300 1-24 h+ min 

FES 0-0.25 s-h <s 

LA 0-20 s-h <s 

NiCd 0-40 s-h <s 

Li-ion 0-0.1 min-h <s 

NaS 0.05-8 s-h <s 

VRB 0.03-3 s-10 h s 

ZnBr 0.05-2 s-10 h s 

FC 0-50 s-24 h+ s-min 

SC 0-0.3 ms-1 h <s 

SMES 0.1-10 ms-8 s <s 
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a performance comparison is presented in [81], of several case studies reported in the literature 

of SMES for stabilizing grids integrated with wind power. 

Table 2.2 Application examples of hybrid wind power/storage systems for islands 

 Sources Storage system    

Project name Type Power Type Capacity Functionalities Location Ref. 

AGIOS 
EFSTRATIOS-

GREEN ISLAND 

WT 
PV 

H2G 

800 kW 
200 kW 
100 kW 

N/S BESS 
1 MW / 2,5 

MWh 
N/S 

Agios 
Efstratios, 

Greece 
[82], [83] 

Auwahi Wind Farm WT 21 MW Li-Ion BESS 
11 MW / 
4,4 MWh 

Frequency regulation 
Voltage regulation 

Kula, Hawaii, 
United States 

[84] 

El Hierro 100% 
renewable 

WT 
Hydro 

6 MW 
11,3 MW 

PHS 6 MW N/S 
Canary 

Islands, Spain 
[59-61] 

Husahagi wind 
farm 

WT 11,7 MW Li-Ion BESS 
2,3 MW / 
0,7 MWh 

Ramp rates smoothing  
Frequency regulation 

Capacity firming 

Faroe Island, 
Denmark 

[67],[68] 

Insul'Grid WT 8 MW Li-Ion BESS 
4 MW / 2 

MWh 

Frequency regulation 
Voltage regulation 

Ramp rates smoothing  
Active power reserves 

Capacity firming 

Sainte-Rose, 
Guadeloupe, 

France 
[59-61] 

Kodiak Island 
WT 

Hydro 
Diesel 

9 MW 
33 MW 

30,1 MW 
Flywheel 

2 MW / 33 
MWs 

Frequency regulation 
Wind power 
smoothing 

Alaska, 
United States 

[62],[63] 

Niijima Island 
Microgrid 

WT 
PV 

Diesel 

N/S 
(~1 MW 
in total) 

Li Ion BESS 
1 MW / 0,5 

MWh 

Frequency Regulation 
Ramp rates smoothing  

Capacity Firming 

Niijima, Izu 
Island, Japan 

[63],[85],[86] 

Porto Santo  
WT 
PV 

Diesel 

1.5 MW 
2.25 MW 
16 MW 

N/S BESS 
4 MW / 3 

MWh 
Frequency regulation 

Voltage regulation 
Porto Santo, 

Portugal 
[63] 

Sustainable 
Powering of Off-

Grid Regions 
(SPORE) 

WT 
PV 

100 kW 
77 kW 

Li Ion BESS 
Hydrogen 

200 kW / 
200 kWh 
2 MWh  

N/S 
Semakau 

Island, 
Singapore 

[69],[70] 

Ross Island 
research station 

WT 
Diesel 

900 kW 
1100 kW  

Flywheel 500 kW N/S 
Ross Island,  

Antartica 
[58] 

Tilos 
WT 
PV 

800kW 
160kWp 

NaNiCl2 
BESS 

2.8 MWh 
Frequency Regulation 
Ramp rates smoothing  

Capacity firming 

Tilos Island, 
Greece 

[55-57] 

 

Diesel: Diesel generator 

H2G: Hydrogen driven genset 

Hydro: Hydroelectric power plant 

N/S: No specified 

PHS: Pumped hydro storage 

PV: photovoltaic panels 

WT: Wind turbines 
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The portfolio of storage technologies associated with wind power was introduced in this 

section. Fig. 2.8 summarizes the capabilities of various storage technologies providing services 

to the electric grid. The positioning of the technologies is done with respect to their power 

ratings and energy relationship of those technologies. It is clarified that the comparison 

presented in the figure is a generalization, meaning that some of the storage options considered 

can present broader discharge time and power ranges [78]. 

In addition, in Table 2.1 are shown the discharge and response times for the storage 

technologies described above, according to typical power rating values [42]. In the table, 

common power capacities for PHS and CAES technologies are quite big in comparison with 

the needs of wind power-based facilities for islands. 

Wind power-PHS storage for islands projects such as El Hierro or Naturstromspeicher 

remain for now exceptional uses of technologies historically employed in interconnected power 

grids. 

Several pilot and demonstrator projects have been put into operation to test the capacity 

of wind power-based hybrid facilities to contribute to supply the need for electricity in non-

interconnected island grids. Table 2.2 presents a non-exhaustive summary of demonstrators and 

initiatives of implementation of hybrid systems in non-interconnected island territories using 

ESSs with wind turbines and other renewable and non-renewable sources. 

In the following, attention is given to the HPP architecture. The analysis considers wind 

turbines, for the power production, and a generic storage energy system. 

2.4 Architectures of grid-connected wind-storage hybrid plants in 

islands 

Even though wind is an abundant resource in island territories, it is variable and has a 

stochastic nature. Consequently, in order to achieve their smooth operation, WTGs are 

combined with an ESS. Interfacing power converters rely generators, storage units and island 

grid. Moreover, the controller operation is dispatched from an energy management system 

(EMS) [87]. The energy storage units in a wind power-based hybrid facility can be configured 

in an aggregated way serving the whole wind farm, or it can be distributed in which case there 

is a storage unit associated locally to each WT.  

2.4.1 HPP with wind power and distributed storage 

Distributed architecture is shown in Fig. 2.9. It consists of small storage units along with 

each wind turbine generator placed with the aim of providing smooth output power [87]. In this 

case, a back-to-back voltage source converter (VSC) interconnects the sources with the low or 
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medium voltage level of the AC grid. In this structure, the wind turbines are controlled by AC-

DC converters to deliver the maximum amount of energy. Also, the ESS is connected to the dc-

link through a DC/DC converter in charge of maintaining the DC bus voltage and controlling 

the power extracted or absorbed by the storage unit. Distributed storage is more suitable in 

small wind generation facilities comprising a few wind turbines as installing a single ESS for 

each WTG is economically viable and allows smoothing the outputs of the generators [88]. 

Finally, the converter in the grid-side must be controlled to allow the continuous supply of good 

quality energy. All this is achieved with an adapted control scheme [89]. 

Numerous control strategies have been developed. A detailed operation of a 

configuration with wind power and distributed storage connected through a power converter 

DC-link, is presented in [90]. In that work, the battery system is used to smooth the wind turbine 

output fluctuations and to reduce the import of power from the grid. The robust nonlinear 

controller developed for this application works in grid-connected and standalone modes. 

2.4.2 HPP with wind power and aggregated storage  

Aggregated storage consists of a extensive system that permits storing significant 

amounts of energy for power management and grid improvement services purposes.  

A number of studies have investigated the smoothing effects of the spatial distribution 

of wind turbines on the output fluctuation [91-93]. Due to this phenomenon, the fluctuation of 

total wind farm power is smaller than that of every wind generator. Therefore, as the capacity 

and size of the WECS increases (for instance up to a few hundreds of MW or more), using 

aggregated storage becomes cheaper as it implies substantially less MWh of energy capacity 

than in the case of distributed storage, and also fewer power converters and smaller losses in 

 

 Fig. 2.9. Distributed storage configuration. 
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the power conversion. A comparative analysis of the ESS capacity required for a large wind 

power plant in the case of using aggregated or distributed storage is presented in [88].  

In the present configuration, the centralized ESS is connected to the point of common 

coupling in AC through a DC/AC VSC (see Fig. 2.10). Moreover, the WTGs can be integrated 

to inject power at the PCC at grid frequency by using either back-to-back or partial-scale 

converter with a doubly-fed induction generator (DFIG) configuration.  

An example of an aggregated storage configuration operation is detailed in [94], where 

a power management strategy based on fuzzy logic is employed to calculate the active and 

reactive power references for the components of a system comprising a 1.5 MW DFIG 

generator,  and a 100 kWh battery - 2.5 kWh super capacitor ESS. The strategy combines the 

SC fast response and the large battery capacity for the hybrid operation according to the grid 

requirements and storage restrictions. 

After discussing production, storage and architectures of wind-storage hybrid power 

plants, the two remaining Chapter sections are dedicated to energy management strategies. As 

EMSs are about control and optimization, a literature review is presented covering several 

strategies for the dispatch of the power flows within hybrid generation facilities pairing wind 

turbines and energy storage. 

2.5 Energy management approaches for HPPs 

In order to find the most suitable management approach for a hybrid system, several 

aspects must be considered. Among these elements are the generation facility design, the 

operation requirements, and the choice of a control or  optimization strategy. 

 

 Fig. 2.10. Aggregated storage configuration 
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Different energy management approaches have been proposed to tackle the energy flows 

management of generation sites combining renewable power and storage. The next list, far from 

being exhaustive, shows that before the present thesis several works that deal with this subject 

have been published by G2ELAB and ESTIA-Recherche (host laboratories):  in [95] the authors 

use a linear programming (LP) based method to limit the output power variations of a wind-

hydro power system. A study case is formulated to test the method through simulation. The 

results show that the optimization of the storage management allows the system to meet the 

power grid demand. Reference [96] presents a deterministic non-optimal management approach 

for a distribution grid connected PV-batteries storage-loads system where the power can flow 

towards the grid or towards the. An objective function is minimized considering  production 

forecasts, storage system ageing and electricity prices. The aim is supplying the load with the 

minimum cost while  limiting the power exchanged amplitude fluctuation. The algorithm can 

be used to analyze the sizing and energy management of renewable power-storage systems. An 

innovative control strategy for a four-leg inverter under unbalanced load conditions is studied 

in [97]. The inverter is proposed for transformerless hybrid power systems to supply single-

phase and three-phase AC loads with constant frequency and balanced voltage. The strategy 

performance in transient and steady-state operation conditions is tested through simulation and 

experimental tests. The authors in [98] propose a predictive control-based energy management 

strategy for a PV-batteries storage-load system. Simulation results with a stand-alone operation 

case study show the objectives of home energy comfort and economic size of the system are 

met. The work [99] studies the use of a three-level neutral point clamped (3LNPC) converter 

for controlling the power flow and interconnecting to a microgrid a hybrid energy storage 

system. The knowledge of the power division due to the architecture of the 3LNPC converter 

allowed the authors to analyze the converter operation limits. Consequently, the control 

structure developed integrates the storage system management limits which made possible the 

optimization of the storage use. In [100] a simple power management strategy for a hybrid PV- 

wind turbine- battery storage system implemented experimentally is applied using the 

LabVIEW software.  The authors in [101] apply a centralized predictive controller on a group 

of microgrids interconnected with a main grid. The objective is maximizing the benefits for 

both the microgrids elements and the grid itself. The algorithm requires forecast data for energy 

process and production and consumption power. Simulation results highlight the algorithm’s 

capacity to maximize the benefits for all the elements considered in the network. The 

importance of cooperation between MG to sell their excess of power and provide a higher 

benefit if compared to standalone operation mode is proved. In [102], a gas microturbine-solid 
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oxide fuel cell hybrid power plant allows electrically valorizing the biogas produced by 

transformation of organic waste in a rural area. In order to obtain the best efficiency while 

ensuring a safe operation, the HPP is controlled using a 3LNPC inverter. Digital robust R-S-T 

controllers are designed to control the  fuel cell power in the DC-side of the inverter as well as 

the voltage and frequency in the AC-side, in an islanded microgrid. The performance of the 

3LNPC inverter and the controllers is then evaluated in simulation and experimentally. In [103], 

a second-order sliding mode controller is developed for the power flow control of the ESS in a 

hybrid renewable power source-VRB and Li-Ion battery storage. A four-leg 3LNPC power 

converter topology is proposed for interfacing the hybrid plant within a micro-grid. Simulations 

and experimental results show the strategy can manage the storage system to control the 

injection of renewable energy into a microgrid while improving the power quality and grid 

stability. In reference [104], the authors present a universal method to generate accurate 

state-space models for controlled power converters used to interface intermittent energy 

sources with the grid and while also improving power quality and grid stability. The 

proposed method accuracy is demonstrated through simulation on a four-leg three-level 

Flying Capacitor (3LFC) topology associated with a LCL filter. Finally, in [105] a 

comprehensive literature review of the main hierarchical control algorithms for building 

microgrids is discussed, emphasizing their main strengths and weaknesses. 

2.5.1 Hybrid systems and dynamic optimization  

The optimal operation of renewable energy systems is attained through optimization 

techniques. Optimization concerns the systematic selection from among a set of feasible 

solutions of values that minimize or maximize a function. Some typical examples of 

optimization problems found in renewable energy systems and more specifically in HPPs and 

MicroGrids, are: 

• Optimal sizing and siting of renewable energy-based production units. 

• Optimal dispatch of MicroGrids including renewable sources. 

• Optimal operation of single and multi-source renewable energy-based plants. 

• Optimal sizing of energy storage systems for renewable energy-based power plants. 

For solving such optimization problems, multiple algorithms have been developed and 

there exist several criteria to classify optimization problem types. For instance, when the 

optimal solution obtained is valid for a specific instant, the problem can be understood as a one-

decision-making problem and is said static. Conversely, in dynamic optimization, multiple 
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decisions are made over time, and the optimization performance relies on all the decisions made 

[106].  

For this and given that representing dynamic phenomena often requires more variables 

than for static systems, higher computational efforts associated with the resolution of dynamic 

optimization problems.  

Based on whether or not the evolution of all the variables is known for the whole 

investigated time interval in a given problem, dynamic optimization problems can be divided 

into global (also known as predictive) and reactive optimization [106], [107]: 

• Global optimization: in global optimization, the “future” is known with certainty and 

hence the optimal solution is calculated through a single execution of the optimization 

algorithm. Such “a priori” knowledge of the future is commonly associated in power 

flow management problems with forecasts.  Typical examples of problems that can be 

solved through global optimization are the sizing of the storage system for a hybrid plant 

while assuming the energy production for the next 10 years is known, or the 

determination of a day-ahead generation schedule from wind forecast data. In [108], a 

global approach for the energy management and sizing of a MicroGrid with PV panels 

and flywheel storage is presented. The authors test through simulation several power 

flow dispatching strategies for predicting the optimal references for power flows based 

on nonlinear programming (NLP). Also, as the second optimization step related to the 

MicroGrid components sizing requires for wide horizon simulations, a fast power 

dispatching approach based on mixed-integer linear programming (MILP) techniques is 

proposed. In reference [109], linear programming (LP) is used for the optimal sizing of 

the renewable power sources in a hybrid wind/tidal/PV/batteries system. Seeking a 

configuration to match with high reliability the off-grid Ouessant French Island load 

demand, several scenarios are studied varying conditions such as the location, solar 

radiation, and temperature. In line with the results, the optimal scenario is that 

combining several renewable resources. The authors in [110], present an approach based 

on DIviding RECTangles (DIRECT algorithm) to calculate the optimal number of wind 

turbines, PV panels and batteries in a hybrid wind-PV system. Six months of data 

corresponding to wind speed, ambient temperature, and solar irradiation estimates are 

used in the optimization process. In [111], the authors investigate the sizing of hybrid 

wind-PV-storage system for a 4 people household. The hybrid system size was 

optimized considering economic aspects, using 25 years of 1-hour irradiance, wind 

speed and temperature data. Reference [112] applies particle swarm optimization (PSO) 
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to the constrained multi-objective problem of the optimal sizing, economic, energy 

management and planning expansion for a hybrid renewable energy system designed to 

satisfy the loads in a stand-alone area in Brittany, France. The  hybrid system consists 

of wind/tidal/PV/battery, therefore, the solar radiation, ambient temperature, tidal 

speed, wind speed, location and electrical load are taken into consideration. The 

economic problem was represented by several scenarios depending on variables such as 

weather data and electric load demand. According to the results, the best configuration 

in the area under study is a wind turbine with batteries. 

• Reactive optimization: Being the “future” unknown, or predictable with a degree of 

incertitude, the optimal solution to apply is determined at every calculation step (not 

necessarily in real-time) based on the present system state. Another way to perform 

reactive optimization is by readjusting a global solution based on the difference between 

the forecasts and the real values of the variables. Dynamic problems in which the plant 

is subject to system state variations, as the optimization occurs, are solved by this type 

of methods. Two examples of reactive optimization problems are the power dispatch of 

an isolated MicroGrid to meet a load varying at every instant, and the operation of a 

hybrid RES-storage plant to meet the different hourly power injection levels defined in 

its commitment profile, as the renewable energy resources vary. The authors in [113] 

apply an optimization technique to the management of a storage system in a generation 

facility coupling renewable power sources with energy storage. Thus, for the sake of 

smoothing the power produced from ocean waves, the storage system is controlled using 

a dynamic programming (DP) algorithm. 

The power dispatch of the wind-storage HPP is a problem without a priori knowledge 

of future events in the environment. Indeed, the instant wind turbine production and other 

measurements of the hybrid plant are input information received at every calculation instant for 

the resolution of the optimization problem. Therefore, the problem treated requires reactive 

optimization. The literature review of energy management strategies presented in the following 

section is mainly focused on reactive optimization schemes. Some global optimization 

examples are included though. 

2.5.2 Control and optimization of wind-storage hybrid systems  

Recent research addressing the dispatch of grid-connected MicroGrids and hybrid 

power plants integrating wind turbines and an energy storage system has given rise to various 

publications. Below are presented several energy management strategies identified in the 
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literature. The description begins with energy management schemes based on control and 

decision-making approaches not optimizing a performance index, hereinafter referred to as cost 

function. 

2.5.2.1 Approaches not optimizing a cost function 

EMS strategies based on these methods do not optimize numerical cost functions. This 

category of approaches covers heuristic methods and predictive control. 

a) Heuristic methods 

Methods that present low computational cost and allow quick results. However, this is 

achieved by trading optimality and accuracy for speed. Some examples of heuristic methods 

are rule-based and fuzzy logic: 

• Rule-based programming: strategies based upon rule-sets of the “if-then/else” form, that 

are defined starting from the expertise or the knowledge of the system. In [114], to 

facilitate the integration of a PV system production into the grid, the authors propose 

peak shaving at the minimal cost. For guaranteeing peak shaving, a set of rules is defined 

for the PV-BESS system to operate with the storage system at maximum SoC. This 

power management strategy is compared with a global, day-ahead approach of power 

management based on dynamic programming. The simulation results  showed that both 

the fluctuations and the cost obtained were reduced through the latter strategy. In [115], 

a rule-based energy management algorithm is proposed for the power supply of the load 

in an isolated MicroGrid. As represented in Fig. 2.11, the algorithm makes decisions 

about the use of the different sources, storage system or even the possibility to import 

energy from the main grid while, maintaining the battery system’s state-of-charge 

between 20% and 80%.  
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The authors in [116] employ a rule-based algorithm implementing five operation modes 

depending on time and weather conditions to reduce the user electricity price and to 

reduce the voltage variations in a PV-BESS system. The authors in [117], propose an 

energy management strategy for an isolated grid-connected wind-Li-ion BESS system 

in order to fulfill a power production commitment to the utility grid. Two classes of 

energy management strategies are compared: one capable of providing a global 

optimum of the power flow planning based on a linear programming  approach assuming 

a priori knowledge on the future events; and another, based on rule-based control 

without any a priori knowledge on the future, therefore applicable in real-time. As the 

comparison shows that the heuristic method can be improved, a second rule-based 

algorithm is developed based on LP behavior showing major performance 

improvements. 

• Fuzzy logic: these methods are based upon transition rules between states each of which 

are associated with a degree of truth (real value between 0 and 1). Human expertise is 

the basis for the assignation of the mentioned degrees of truth. In [94], a fuzzy logic 

controller is used to modify the storage units active power references calculated by the 

supervisory control system of a wind-BESS-SC hybrid system. The fuzzy rules 

specified allow maintaining the SoC of the storage units inside the margins desired. 

According to the simulation results, fuzzy logic allowed better compared to other control 

techniques (state machine, and the same structure without the fuzzy logic compensator). 

In [118], a fuzzy self-adjusting filter-based 𝑆𝑜𝐶 controller regulates the state-of-charge 

 

Fig. 2.11. Flowchart of rule-based EMS algorithm implemented in [115]. 
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of a BESS according to a pre-calculated 𝑆𝑜𝐶 optimal range in a wind-BESS system. 

The approach also keeps the WECS output smooth in real-time. The method is tested 

through simulation. In [119], a control management strategy is proposed for a hybrid 

PV-diesel generator-BESS-PHS system. The strategy aims at ensuring the water volume 

in need, while maximizing the use of the PV panels, and limiting the utilization of the 

diesel generator. For this, a fuzzy logic controller is dedicated to ensuring the maximum 

power point tracking of the PV system. 

b) Model predictive control 

MPC relies on a plant model used for the prediction of future states. The method uses 

information about the current system state as well as a trajectory of future references which 

spans over a finite time horizon. From that information MPC outputs at each calculation step a 

sequence of future control actions of which only the first element is applied to the physical 

system. The process is repeated at the next calculation step with a new set of measurements, 

and so on. The main advantages of MPC are the handling of constraints as well as multi-variable 

and nonlinear models. Also, it integrates the disturbances and future variations in the references 

in the optimization problem. However, MPC main disadvantage is its reliance on the accuracy 

of the physical system model [120]. Rather than an optimization algorithm, model predictive 

control is a family of control methods that can be used in real-time implementations [121], 

[122]. Nonetheless, it is frequently combined with optimization methods such as quadratic 

programming [123] or brute-force search [120]. In [124], a MPC scheme is proposed for the 

interlinking converter in a hybrid AC/DC MicroGrid. The scheme allows the local power and 

voltage control and is connected to a second control stage, in charge of maintaining the power 

balance under varying generation and consumption conditions. Compared totraditional cascade 

linear, the strategy requires less tunning work. Often, the method is used to include the RES 

production forecasts in the optimization problem, either in terms of the expected generation or 

in terms of the primary source, (wind speed, solar irradiance, etc) [121], [122]. In [123] QP is 

used to minimize a quadratic cost function fed at every calculation step by an MPC-based 

algorithm developed for the optimal operation of several converters in a DC-grid connected 

wind-BESS MicroGrid. The design concept has been verified through simulation. However, 

further experimental validation is required because measurement and modeling errors in the 

parameters of the actual system affect the controller performance in practical implementation.  
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2.5.2.2 Approaches optimizing a cost function  

This second group of methods permits the definition of EMS schemes based on the 

optimization of a cost function. The methods are divided into deterministic, metaheuristic 

search techniques, and artificial intelligence approaches.  

a) Deterministic approaches 

Approaches that taking advantage of the analytical properties of the problem, generate 

a sequence of points that converge to a global optimal solution. They can provide a global 

optimum or an approximate global optimum [125]. These techniques can be used in the 

resolution of global or reactive optimization problems. Some examples are: 

• Linear programming (LP): the problem of maximizing or minimizing a linear cost 

function subject to a set of linear equality or inequality constraints. In [126], a 

formulation is proposed for the energy management of grid-connected wind-PV-

microturbine- BESS-FC MicroGrid using LP optimization jointly with artificial 

intelligence techniques. Hence, a LP-based multi-objective energy management 

strategy is proposed to minimize both the operational expenses and the CO2 emissions 

of the sources in the MicroGrid. Also, a neural network ensemble (NNE) is developed 

to predict 24-hours- ahead PV generation and 1-hour-ahead wind power generation and 

load demand. This strategy is implemented in a MicroGrid simulation model and 

validated using experimental data. In [127] is addressed the optimal management of a 

BESS supplied by a PV system in a grid-connected PV-BESS microgrid. The main 

contribution of the work is the consideration given to uncertainty in the electricity price 

while managing the storage. Hence, the optimal operation of the BESS is determined 

by solving a linear cost function comprising the conditional value at risk. The cost 

function is the difference among the power sold and bought, subject to constraints 

limiting both the charging and discharging rates for the battery, and the state-of-charge 

desired range. Simulation confirms that risk consideration has a significant impact on 

the results obtained. 

Integer linear programming (ILP) optimization problems contain linear cost function 

and constraints. MILP is a variant of ILP in which some of the variables must be integers 

whereas the others can be non-integers. The authors of [128] formulated an online EMS 

for a grid-connected hybrid wind-PV-diesel-BESS system. The EMS proposed solves 

in real-time an optimization problem in the form of a MILP framework with the 

objectives of minimizing the operating cost and minimizing the pollutant gas emissions. 

To do that, a rolling optimization algorithm is established to schedule operation based 
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on forecast data using MPC. The rolling dispatch scheduling is then adjusted through 

feedback intrasample correction, that reschedules BESS, renewable production and grid 

imports to minimize the operation cost. 

• Quadratic programming (QP): QP is the problem of maximizing or minimizing a 

quadratic cost function, meaning that it has terms with the decision variable squared, 

subject to a set of linear equality or inequality constraints.  

The simplest possible function which has a minimum is 𝑓(𝑥) = 𝑥2, which has a 

minimum in 𝑥 =  . Shifting the function into 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥, leads to a more general 

function whose minimum is located at 𝑥 = 𝑏 2𝑎⁄  is generated. That means that 𝑓(𝑥) =

(1 2⁄ )𝑎𝑥2 + 𝑏𝑥 has a minimum in 𝑥 = 𝑏 𝑎⁄ , leading to the standard form of QP 

problems, that can be represented as 

where 𝒙 is the decision variable, 𝒇 is a vector and 𝑯 is a squared matrix. A constant 

term could be added in the equation affecting its minimum. However, in essentially all 

the applications of optimization in the framework of natural phenomena, the aim in 

solving this kind of problems is focused in finding where the minimum occurs in 

opposition to what is the value of the function at that minimum. Another important 

aspect of Eq. 2.1, that if the matrix 𝑯 is positive definite, the problem is a special case 

of convex optimization. In minimization problems, a convex objective function ensures 

that all local minimums are global minimums, allowing local search algorithms to find 

optimal solutions. The same can be applied to concave objective functions and 

maximization. Without convexity, local search algorithms may converge to local 

minimums. 

An optimization strategy for the optimal scheduling of an island microgrid with high 

penetration of wind and PV generation is proposed in [129]. A two-stage robust model 

predictive control (RMPC) based optimization approach is used for obtaining a robust 

operation schedule for the MicroGrid. Uncertainties related to RES and loads are 

considered through interval forecasting methods. Robust linear methods are used for 

transforming the robust optimization method into a mixed-integer quadratic 

programming model. 

• Dynamic programming (DP):  

min
𝒙

1

2
𝒙𝑻𝑯𝒙+ 𝒇𝑇𝒙 Eq. 2.1 
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According to Richard Bellman's principle of optimality, on which DP is based, optimal 

solutions can be found by breaking the problems into simpler sub-problems and then 

sequentially finding optimal solutions to those sub-problems. As an example, Fig. 2.12 

shows a multi-stage weighted graph that has costs (or distances) between the nodes, 

usually useful for representing resources allocation. The graph’s nodes are divided into 

stages such that the edges are connecting nodes from one stage to the next stage only. 

The first stage (source) and last stage (target) have a single node each. As there are 

various paths from source to target, the objective of the problem is finding the path that 

gives minimum cost. This optimization problem can be solved by applying a dynamic 

programming strategy. 

Let 𝐹(𝑥) be the minimum distance required to reach node 9 from a node 𝑥.  

Starting at stage 5 (backward recursion-DP), 𝐹(9) is equal to zero because there is no 

path cost to get to itself. 

Going back a level, F(6), F(7) and F(8) are respectively 13, 8 and 9, simply based on 

the weighting edges. A knowledge base is filled in with the costs of the functions, and 

the information of the sub-path with the minimum cost for each node (see Table 2.3). 

In the table, N represents the nodes (0 to 9), F the sub-path costs, and d the minimum 

cost for each stage. 

Now for the third stage, 𝐹(4) is calculated as the minimum cost between 3 options, or: 

𝐹(4) = min[8 + 𝐹(6), 7 + 𝐹(7), 1 + 𝐹(8)] 

 

Fig. 2.12. Weighted graph with distances between the nodes [130]. 

Table 2.3 Knowledge base for stage 5 of example problem, backward recursion. 

N 0 1 2 3 4 5 6 7 8 9 

F - - - - - - 13 8 9 0 

d - - - - - - 9 9 9 9 
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Where F(6), F(7) and F(8) are known and available in memory. Hence 𝐹(4) = 15 and 

this minimum cost is obtained by going through node 7. The same for node 5, resulting 

in a cost of 14 and node 7 as optimum path. 

By repeating this procedure for the remaining stages, the knowledge base is filled with 

the next information: 

Now, based on the data available, the sequence of decisions is going to be determined 

starting from the source node.  According to the resulting table, the first decision 

consists in going from the source node to node 3. Then, starting from node 3 the optimal 

decision is going to node 5. From node 5, the decision retained is going to node 7, and 

finally, the last step in the sequence is going from node 7 to the target node. Hence, the 

optimal path that minimizes this problem is 0-3-5-7-9. 

The DP global strategy proposed in [114] allows the scheduling of the battery use from 

24-hours ahead forecasting data for helping a PV system to provide peak shaving at the 

lowest cost in a grid-connected PV-BESS system. A multi-stage optimization approach 

is employed to find the optimal sequence of the battery system SoC from the initial time 

to the final time. The transition between two stages is the SoC variation written ∆𝑆𝑜𝐶, 

a constrained variable. For each ∆𝑆𝑜𝐶, the battery use (𝑃𝐵𝐴𝑇) and the power exchanged 

with the grid (𝑃𝐺𝑅𝐼𝐷) are calculated according to the a priori knowledge base of the loads 

consumption (𝑃𝐿𝑂𝐴𝐷𝑆) and the PV availability (𝑃𝑃𝑉). The authors in [131] employ DP 

for the energy management problem of a PV-diesel-BESS MicroGrid. The DP strategy 

is an extended version of Bellman’s principle applied in the optimization of switching 

times for the on/off modes of the diesel generator. The time it takes to the strategy to 

find global optimal solutions is less than a second. This is important as the energy 

management problem is formulated as an optimal control problem. 

b) Meta-heuristic search techniques 

Metaheuristic techniques sample a set of solutions which is too large to be completely 

sampled. They provide a sufficiently good solution to an optimization problem [132]. These 

techniques are more commonly applied to the resolution of global optimization problems. Some 

examples are: 

Table 2.4 Knowledge base filled. 

N 0 1 2 3 4 5 6 7 8 9 

F 27 24 22 21 15 14 13 8 9 0 

D 3 4 4 5 7 7 9 9 9 9 
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• Genetic algorithms (GA): iterative search inspired by Charles Darwin’s theory of natural 

evolution. The process begins with an initial population of individuals (chromosomes 

filled by genes). Each one of those individuals is a solution to the optimization problem. 

Every generation of parents gives origin to new chromosomes for their children through 

the crossover. Such genetic recombination results in variations and adaptations. If an 

adaptation makes an individual more fit, it will increase its chances to survive and pass 

on its genes. Typically, fitness is the value of the cost function obtained by evaluating 

each individual. Least satisfactory individuals are thrown out while the more fit ones 

are recombined to produce a new generation. The algorithm stops either after a 

maximum number of generations or when reaching a satisfactory fitness level.  

A global management strategy is presented in [133] for the optimal operation of a 

MicroGrid, based on power forecasting inputs. It is composed of a power forecasting 

module, an ESS management module and an optimization module. The forecasting 

module is used for the hourly prediction of the PV panels power generation according 

to weather forecast inputs. Meanwhile, as energy storage needs to be optimized over 

multiple time steps to fulfill the load, the matrix real-coded genetic algorithm (MRC-

GA) optimization module coordinates the optimal operation schedule in terms of 

economic dispatch (energy prices reduction for consumers and daily MicroGrid 

operational cost reduction).  

• Particle swarm optimization (PSO): approach that iteratively optimizes a 

problem. Similar to the case of genetic algorithms, the method starts with an initial 

population and searches for solutions by updating generations. In PSO, candidate 

solutions are particles whose position and velocity depend on each particle’s best-

known position, which is also refreshed in every iteration by better positions found by 

other particles. In [134], an optimal EMS strategy based on PSO is proposed for a grid-

connected MicroGrid including generation units and energy storage devices. 

Uncertainties of the wind turbines and PV panels energy production, as well as load 

demand and market prices,  are introduced using a point estimate method. The proposed 

method is tested through simulation under different operational scenarios. Moreover, 

the results obtained using the PSO algorithm are found to be either better or comparable 

to those obtained using other methods reported in the literature such as GA, fuzzy self-

adaptive particle swarm optimization (FSAPSO), combinatorial particle swarm 

optimization (CPSO), and adaptive modified particle swarm optimization (AMPSO). 

c) Artificial intelligent approaches: 
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Artificial intelligence is an area of computer science that aims at creating computational 

entities that act intelligently. Under this definition, acting intelligently, implies that the entity 

does what is appropriate given the circumstances and goals, is flexible to changing 

environments and goals, learns from experience, and makes appropriate choices given its 

perception and computational limitations [135]. Multi-agent system is one example of artificial 

intelligent methods: 

• Multi-agent system (MAS): the multi-agent approach is broad and not necessarily used 

for optimization. MAS is a computer-based system that comprises several interacting 

agents each of which has a certain degree of intelligence. An agent is a computerized 

system able to carry out a task on behalf of a user by determining the actions required 

to satisfy design objectives, as opposed to regularly receiving orders. To solve complex 

problems, rather than employing a single agent (generally implying more computational 

power or time), multiple (simpler) agents can be implemented to interact with each other 

and collaborate to solve the problem based on locally accessible information. There 

exist several methods for MAS to intelligently tend to find the best solution without 

intervention. However, the search policies that the agents ought to follow are sometimes 

unobvious and optimality is practically impossible to attain . An energy management 

scheme for an islanded microgrid based on the MAS approach is proposed in  [136]. 

The PV system, wind energy conversion system, FC system, BESS and loads with their 

corresponding breakers, are the strategy’s agents. Following a global optimization 

approach, the energy management system manages the utilization of power among the 

agents based on predicted renewable powers and load demand. A STATCOM is used 

for reactive power compensation to mitigate the voltage fluctuations and harmonics. 

The simulation model of the agents and the central controller were implemented and 

tested through simulation. 

Fig. 2.13 summarizes the optimization methods considered in the literature review of 

EMS strategies. According to the review, the management strategies are based on: non-optimal 

control strategies, optimization algorithms (implying the optimization of a cost function), or the 

association of methods from the two groups to build more advanced control-optimization 

schemes. 
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2.6 Chapter conclusions 

The present Chapter defined and dressed a state of the art related to the operation of 

wind energy-based HPPs. First, hybrid power plants were defined as systems closely related to 

MicroGrids with the difference that the latter could operate connected or isolated to the main 

grid. Apart from that, both are hybrid systems accommodating generation equipment 

(conventional and/or renewable sources, and energy storage devices), interfaced through an 

energy management system. 

The attention has been on wind power, one of the primary energy resources available in 

islands and overseas territories. Due to the intermittency and variation of wind ressources, 

hybridization (i.e. combination with other forms of generation, and with energy storage means) 

was presented as the adapted solution to allow a dispatchable supply.  

Regarding the energy storage, according to their discharge time storage technologies 

were classified into long-term and short-term storage. While long-term storage (minutes or 

hours) is more adapted to energy dispatch and frequency regulation, short-term technologies 

are usually employed in voltage stability improvement applications. 

The storage technologies used with wind turbines or WECSs, while offering a long 

discharge time are pumped hydro, batteries, compressed air, and hydrogen energy storage. 

Conversely, some short-term technologies employed in wind power facilities are flywheel, 

supercapacitor and superconducting magnetic storage. Among those, several outstood for being 

more suitable for HPPs in non-interconnected islands (PHS, BESS, and FES). To illustrate the 

existing hybrid power systems, some application examples of storage systems implemented in 

demonstrator projects testing wind power in isolated islands have also been depicted. 

After discussing production and storage, the architectures of wind-storage HPPs were 

put under the spotlight. Because of the smoothing effects of distributed wind turbines, 
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centralized storage was found to be more suitable for wind farms with a capacity of the order 

of hundreds of MW. In the same way, distributed storage tends to be more adapted for facilities 

integrating only a few wind turbines. 

The last part of the Chapter dealt with the energy management of hybrid systems, which 

is attained through optimization. Several optimization methods there exist yet there is no 

specific one able to solve a particular problem. 

On the other hand, the power dispatch of an HPP consists in the dynamic search for the 

values of the degrees of freedom either optimizing a performance index or at least providing a 

result which is good enough. In the problem of managing the power flows of an island grid-

connected wind-storage HPP, the handling of production forecasts is a key aspect. 

The energy dispatch of RES-storage hybrid systems has inspired numerous research 

works in the last years. Diverse groups of strategies were reviewed. Among those groups, 

deterministic optimization methods are both compatible with reactive optimization problems 

and allow for optimal or approximately optimal solutions. QP is one of the several deterministic 

methods examined. It presents the advantage of assuring the existence of a global optimum 

when the cost function is convex. On the other side, model predictive control is not an 

optimization method per se, however, it is commonly associated with optimization algorithms 

to produce optimal outputs. MPC outstands for being a common way to integrate forecasts in 

optimization problems related to the energy management of RES-storage system hybrid plants.  

Given the nature of the system and the complexity of the revenue optimization problem 

dealt with, it seems appropriate to focus on methods capable of finding optimal solutions 

combined with control strategies handling the forecasting aspects, rather than heuristic 

strategies. 
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Chapter overview 

This Chapter establishes the models for the main grid and the hybrid power plant 

systems. The software tools employed for the modeling implementation and validation are 

DIgSILENT PowerFactory and Matlab. 

3.1 Introduction  

Even though wind energy is one of the most promising renewable energy sources (RES) 

for non-interconnected island territories, such as Guadeloupe island, the energy mix of this 

French overseas department is still mainly based on fossil fuels.  

This Chapter begins with a description of the current state of the electrical system of 

Guadeloupe island, where the hybrid power plant (HPP) studied is implemented. After 

describing the main features of the infrastructure and exploitation of the electrical system, the 

validation of the modeled network’s static and dynamic behavior is presented.  

3.2 Guadeloupe electrical grid: current  state description  

The archipelago of Guadeloupe is a French insular region and overseas department 

located in the eastern Caribbean Sea. Guadeloupe counts with a land area of 1 628 km2 and an 

estimated population of 394 100 inhabitants as of June of 2018. The two main islands, 

commonly referred to as the main island, Basse-Terre (848 km2) and Grande-Terre (586.7 km2) 

are separated by a narrow strait and are connected by bridges. The other three islands in the 

archipelago are the Dependencies of the Department: Les Saintes, Marie-Galante and La 

Désirade. Even though its enormous potential for renewable energies development, 

Guadeloupe’s energy mix depends predominantly upon power plants producing electricity from 

imported petroleum-based fuels.  
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3.2.1 Transmission system  

Guadeloupe’s electrical grid comprises three different levels: 

• The transmission network (presented in Fig. 3.1), which is operated at 63 kV 

(high-voltage level). 

• The 20 kV network (medium-voltage), allowing the electricity to be transmitted 

to the distribution network. 

• The distribution network at 220/380 V (low-voltage), through which energy is 

delivered to customers. 

 Several transforming and distribution substations are installed between the voltage 

levels mentioned. 15 transforming substations (63 kV/ 20 kV) are also represented in Fig. 3.1. 

The main production sites as well as the 20 kV distribution network, are connected to these 

substations.  

The Guadeloupean transmission system is composed of two big loops of overhead lines. 

The loop covering Basse-Terre is interconnected at the Jarry Sud substation with Grande-

Terre’s loop. Submarine cables at 20 or 30 kV interconnect the distribution substations located 

Fig. 3.1. Guadeloupe transmission network and substations. 
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in the islands  Les Saintes, Marie-Galante and La Désirade to the 63 kV network covering 

Basse-Terre and Grande-Terre. 

3.2.2 Electricity consumption  

In the present section, the main features of Guadeloupe’s gross consumption (not 

considering transportation and distribution losses) are described.  

3.2.2.1 Evolution of the demand  

The total generation delivered to the island system of Guadeloupe in 2018 reached 1 704 

GWh. An average annual gross per capita consumption of 4,32 MWh was registered that year 

versus 6,5 MWh at the whole of France in 2017 [137]. 

Whereas from 2005 to 2010, the electricity delivered to the island system of Guadeloupe 

grew more than 15%, the consumption was stable between 2010 and 2014, and presented a 

growth exceeding 3,3% between 2014 and 2016. Later on, a downward trend begun in 2017 

and was confirmed in 2018 with a decrease of 3% (see Fig. 3.2).  

The economic crisis, but also the implementation of administrative measures promoting 

energy demand management and increased energy efficiency of the equipment of buildings and 

industrial facilities, could explain the tendency change in the demand pattern [138]. 

3.2.2.2 Seasonality  

In 2018 the monthly gross electricity consumption in the archipelago averaged 142 

GWh. In comparison with other months, February exhibited an atypical behavior, as shown in 

Fig. 3.3. This is explained by the fact the month only counted 28 days. As can be seen, the 

energy demand is relatively stable over the year, and therefore the demand seasonality is low. 

However, there seem to be a correlation among the monthly consumption and the evolution of 

the temperature throughout the year [139]. 

      

Fig. 3.2. Electricity consumption starting from 2005. 
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 Fig. 3.3. 2018 monthly consumptions and mean temperature measured at the substation Raizet. 

3.2.2.3 Load curve 

Daily consumptions are characterized by two peaks. The first one occurs at 12h and is 

attributed to the services sector (private and public). Attributed to consumptions in the 

residential sector, the remaining one is the most important and takes place at 20h.  

 As an example, Fig. 3.4 displays daily load curves for three standard days and for the 

peak consumption days in 2016. From the figure, the evening peaks in 2016 resulted in demands 

ranging from 200 MWh and more than 250 MWh during the evening. The gaps between the 

evening and noon peaks where of around 10 MWh in the case of the standard working day 

profile while no difference is observed for the peak consumption day. This difference was more 

marked for the standard weekend days. Thus, the gaps associated to standard Sunday and 

standard Saturday consumptions are of a 25 MWh and 40 MWh, respectively. 

Conversely, the profiles reveal low consumption periods happening at 7h30 and 16h, in 

the case of standard weekend days, and at 4h and 17h30 for the remaining types of days.  

3.2.3 Existing capacity  

In the French overseas departments, among which is Guadeloupe, the tasks of the public 

service of the supply of electricity are carried out by EDF’s (Électricité de France) insular power 

 

Fig. 3.4. 2016 standard and peak days representative load curves. 
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systems department (EDF SEI). EDF SEI is responsible for the following tasks on the 

Guadeloupean territory: 

• Supply of electricity at regulated sale tariffs, 

• purchase all the electricity generated within the insular territory, 

• balancing electricity supply and demand continuously, and 

•  ensure the transmission, distribution and supply of electricity to all the 

costumers. 

 However, EDF is not granted a monopoly on generating electricity, meaning that other 

actors can also own and/or operate power generating facilities on Guadeloupe. 

A particular feature of the archipelago is the diversity of its energy sources, particularly 

renewables. Thus, apart from coal, diesel and fuel (the latter two are here referred to as thermal 

production means), several renewable sources are being exploited to produce electricity on the 

island territory: solar (photovoltaic), geothermal, wind, hydroelectric and biogas. 

The geographical distribution of the main generation facilities according to their primary 

source, is represented in Fig. 3.5. 

Fig. 3.5. Available power in Guadeloupe’s power grid by type of primary energy in 2018. 
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3.2.3.1 Base and semi-base thermal production facilities  

• Bagasse/coal power plant (Albioma): the Le Moule power plant was put in service in 

1998. It is composed of two units totaling 59,5 MW. It runs using sugarcane bagasse 

and coal as sources of fuel during the sugarcane harvest season (between February and 

June), and using coal the rest of the year. In 2018 Le Moule produced 55 755 MWh 

from bagasse, thereby constituting the third renewable energy source after geothermal 

and solar PV. 

The thermal plant Caraïbes Energie, with an installed capacity of 34 MW, is a coal-fired 

power station. These two power stations belong to the group Albioma. 

• Pointe Jarry diesel power station (EDF-PEI): between 2014 and 2015, the formerly 

known Jarry Nord diesel station (eight 20,9 MW diesel engines for a total capacity of 

167 MW), was gradually replaced by the new EDF-PEI Pointe Jarry (EDF Production 

Electrique Insulaire, subsidiary of EDF). The power station is now composed by the 

twelve 17,6 MW diesel engines (total capacity of 210 MW). 

• Energies Antilles diesel power station (Contour Global): with a capacity of 18 MW, the 

station is constituted of four diesel engines. Energies Antilles runs at Baie-Mahaut since 

2000 and is currently operated by Contour Global. 

3.2.3.2 Peaking and emergency thermal production facilities  

• Jarry-Sud combustion turbines (EDF): composed of four combustion turbine generators 

located at Jarry-Sud, the installed capacity of this production plant is of 100 MW. Units 

2, 3 and 4 have a generation capacity of 20 MW each, whereas the unit 5 has a capacity 

of 40 MW. Some of these units are not equipped with proper flue gas denitrification 

systems, therefore their use is constrained to no more than 500 hours per year. 

If compared to other types of generators in the system, combustion turbines present the 

shortest starting times. However, producing energy from these units is more expensive 

(generation based on fuel oil), consequently they are employed to meet peak demands.  

• Southern islands diesel emergency generators (EDF): southern islands (Marie-Galante, 

les Saintes, la Désirade) are fed though submarine cables from Guadeloupe. These 

islands are provided with small diesel emergency plants (7,1 MW at Marie-Galante, 1,5 

MW at les Saintes, and 1,6 MW at la Désirade) which produce power in case  the 

corresponding relying line is unavailable or on the occasion of periodic tests. The 

emergency generators can also be used in case of production outages on the main island. 

In total, 10,2 MW can be made available. 
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3.2.3.3 Renewable energies 

Within the archipelago context, two kinds of renewable sources can be distinguished: 

stable  and intermittent renewables. The former, interfaced with the grid through 

synchronous generators and the most of the times relied to the 20 kV network due to 

their significant generation capacity (Biomass, geothermal, hydroelectric power), while 

the latter are interfaced through power electronic converters and are often relied to either 

medium or low voltage busbars, like is the case for PV and wind power. 

The integration of these intermittent and unpredictable production means into the island 

systems poses several challenges. Their power output being variable, it is necessary to ensure 

adjustment margins so that they can contribute to maintaining the balance between production 

and consumption. Energy storage but also the spatial distribution of the sources can contribute 

to the smoothing of the output fluctuations.  

On the other side, as intermittent RES power sources inject power in the medium or 

low-voltage level (feeders supplying end-users), the imposition of specific behaviors seeking 

the protection of persons and goods is made necessary. Also, high penetration of power 

electronic interfaced power sources without contribution to inertia is known to be associated 

with excessive frequency rate of change, particularly when sudden power imbalances occur 

while total system inertia is low within the synchronous area  [140]. 

 For this, Ministerial Order of 23 April 2008 limits the intermittent RES use whenever 

the addition of the power injected by those sources reaches 30 % of the active power passing 

over the network. Moreover, according to decree No 2017-570 of 19 April 2017, the trend is 

for this limitation to evolve in the years to come. In order to maintain the quality of the 

electricity service while increasing the coverage of intermittent RES, solutions must to the 

devised to the above-mentioned impacts. Both system operator and renewable energy  

producers are called to apport the remedial actions required [141]. 

• Geothermal: the Bouillante plant is composed of two units (4,4 MW and 10,25 MW) 

put into service in 1986 and 2004, respectively. Fed by the heat from the earth which 

escapes as steam, the plant produced power taking advantage of Basse-Terre’s cluster 

of composite volcanoes. The plant was formerly operated by Géothermie Bouillante, 

subsidiary of BRGM, the French geological survey, but since 2016 it is owned by the 

group ORMAT. Bouillante generated 106 794 MWh in 2018, more than any other 

renewable energy source in the archipelago. 

• Small hydroelectric plants: there are several mini-hydroelectric power stations that take 

advantage of the mountainous terrain and water potential in Basse-Terre. In total, those 
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power stations combined add around 10,5 MW. The existing sites are operated either by 

FHA (Force Hydraulique Antillaise), or by EDF. 

• Wind: wind production started on the island in 1992. The first wind farm with storage 

was commissioned end of 2016 at Marie-Galante with an installed capacity of 2,5 MW. 

In 2018, wind turbines represented a production capacity of 22,1 MW and generated 3 

% of the total production.  

The farms operators are Quadran, Société d’Eolienne Caribéenne or EDF Energies 

Nouvelles. In 2018 wind turbines produced 52 424 MWh. 

• Photovoltaic: as of 2018, the Guadeloupean system counts 70,4 MW of PV panels. That 

year the panels produced 94 836 MWh. On the other hand, wind turbines represent a 

production capacity of 22,1 MW. The first wind farm with storage was commissioned 

end of 2016 at Marie-Galante with an installed capacity of 2,5 MW.  

3.2.3.4 Evolution of renewables share in production 

Renewable energies allowed producing 21,2% of the total production in 2018, that is 

361 895 MWh. After a first decrease from 2008 to 2010, the increment of geothermal and 

photovoltaic power meant a change in the tendency until a new decrease took place in 2015. 

Together, geothermal and photovoltaic represent today more than 55 % of energy from 

renewable sources (see Fig. 3.6). 

 

Fig. 3.6. Guadeloupe distribution of RES shares from 2006 to 2018. 
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distribution of the electricity production depending on the primary energy source for the 

year 2018. 

3.2.3.6 Daily balance 

Guadeloupe’s power generation park is marked by an overcapacity situation. In fact, the 

generating capacity of  base production facilities is such that often the evening peak can be 

handled without the combustion turbines of Jarry-Sud. As an example, Fig. 3.8 depicts the 

generating means stacking for  a working in Guadeloupe. At this day, the noon/evening peaks 

present similar levels. The use of the combustion turbines is avoided by the PV production at 

noon, and by the diesel Pointe Jarry power station, which covers for the consumption increment 

at the evening. Moreover, in the example the average demanded power and peak consumption 

are respectively 205 MW and 261 MW while the dispatchable base production facilities (PEI 

Jarry, Albioma Caraïbes, Albioma le Moule and Contours Global) can supply a close to 320 

MW [141], [142].   

         

Fig. 3.7.  Guadeloupe 2018 energy mix. 
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Fig. 3.8. Example of generating means stacking. 
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3.3 PowerFactory Modeling 

The first part of the present section describes the situation of the island’s electrical 

network represented by the grid model. Then, the grid model allowing the simulation of the 

wind-storage hybrid power plant operation, is explained. After presenting the modeling in 

PowerFactory, the static and dynamic validation of the grid model is dealt with.  

3.3.1 Modeled grid  

As the aim of this research work is to assess the impact of a new wind-storage hybrid 

power plant injecting power into the node Saint-Rose of the Guadeloupean electrical grid, a 

grid model representing the grid’s dynamics has been investigated. The current situation of the 

transmission grid was presented in section 3.2.1. While the node Saint-Rose, in which is located 

the point of connection of the hybrid plant has not been impacted by grid evolutions in the last 

years, the transforming substation Trois-Rivières and the underground line relying the 

substations Sainte Anne and Gardel, as well as the evolution of installed capacity and 

consumption, most recent modifications, are not considered in the modeling. 

3.3.1.1 Grid description  

The model set up contains 13 nodes that correspond to transforming substations each 

comprising two 63 kV/20 kV step down transformers each feeding one 20 kV busbars to which 

are connected loads and, in some cases, loads and reactive compensation stations. An additional 

node that corresponds to Jarry Nord generation site (composed of five 28,5 MVA synchronous 

machines) is also part of the model. The generation stations located in the islands Les Saintes, 

Marie-Galante and La Désirade, as well as the interconnection through submarine links and 

step-up transformers of those stations to the 63 KV overhead lines transmission network 

covering the main island, are not part of the grid model. 

The electrical network of Guadeloupe has been subject to different studies, especially 

concerning the participation of wind energy conversion systems in the grid frequency regulation 

and grid stability [5, 22, 143-148]. Using the data reported in [5], a simulation model of the 

Guadeloupean grid has been implemented and validated in the present thesis using the 

PowerFactory tool.  

The installed capacity reported for the generation facilities in the electricity grid is of 

439 MW. Because of the following reasons, such installed capacity cannot be considered the 

instantaneous available power [5]: 
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• The efficiency of the machines, some which were at the end of their useful life 

by the time at which the grid data collection took place, presenting thereby 

particularly small efficiencies. 

• The consumption of ancillary services within the generation sites, meaning a 

part of the production is not available to be transmitted to the consumption side. 

• The technical losses. 

• The availability of the generation units which are subject to maintenance 

schedules and can experience failures. 

• The operating conditions of the generation units, some of which are sensitive to 

air temperature conditions (e.g. the combustion turbines). 

Fig. 3.9 shows the energy production in the archipelago that involves diverse primary 

sources. The different types of sources are: 

• Diesel: several diesel-fueled generators can be found at the generation sites Jarry-Nord 

and Péristyle. In 2006, 52,5 % of the total energy generated came from Jarry-Nord 

station. 

• Combustion turbines: Jarry-Sud generation site comprises several combustion turbine 

generation units. This power station is only used during consumption peaks or when a 

 
Fig. 3.9. Guadeloupe’s main generation centers as of 2006. 
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backup is required. The power produced by the generation site in 2006 corresponded to 

3,5 % of the total consumption that year.  

• Bagasse/coal: the Le Moule thermal power plant runs using sugarcane bagasse and coal 

as sources of fuel. For this, about 18 % of the yearly production in the power station is 

considered renewable. In 2006 Le Moule delivered 26,7% of the total production. 

• Geothermal: the Bouillante plant is fed by the heat from the earth which escapes as 

steam. 5,1% of the production was attributed to this plant in 2006. 

• Hydroelectric: several run-of-river mini-hydroelectric power stations using 

synchronous machines to generate power. Mini-hydro stations supplyied for 1,2 % of 

the total consumption in 2006. 

• Wind: wind turbines represent a small production capacity in the archipelago. Such 

generation units are mainly exploited on the islands Les Saintes, Marie-Galante and La 

Désirade. The share of wind turbines in the total production of 2006 is of 2,3 %. 

• Photovoltaic: photovoltaic production is also small even though the proper conditions 

in the archipelago. The power delivered by PV panes in the archipelago in 2006 is 

estimated in 0,3 %. 

• Southern islands diesel emergency generators (EDF): Other than the wind turbines, 

Marie-Galante, les Saintes and la Désirade islands have small diesel emergency plants 

used only in exceptional cases. The production of those plants in 2006 was 0,1 % of the 

total production. 

Fig. 3.10 depicts the partitioning of the generation sources described above. 

3.3.1.2 Power system control components  

Next, the main features of frequency and voltage control are briefly exposed. Depending 

on the period of the day, Guadeloupe’s primary frequency control policies establish a primary 

reserve ranging between 20 MW and 26 MW. This corresponds approximately to the size of 

 
Fig. 3.10. Partitioning of power generation in 2006. 
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the largest generation unit connected to the power system (located at Le Moule thermal power 

station). 

Frequency and active power control 

The power plants in the energy system are called according to the following order [5]:  

1. Renewable power plants benefit from an obligation on the part of EDF to purchase the 

power they generate. For this reason, they are the first to be brought online to meet 

demand. However, these sources (in exception of the geothermal station) are not 

dispatchable because of their intermittency and stochastic behavior. For that, renewable 

energy plants do not contribute to the frequency control in the archipelago.  

2. The diesel generation units of Péristyle are operated most of the times close to their 

nominal power. In the case of consumption troughs, their power setpoints are slightly 

reduced. The share in the frequency control of these diesel units is low.   

3. The thermal units of Le Moule are operated between 20 MW and 28 MW, depending 

on the time of the day. Those generators participate in the primary frequency regulation.  

As the two generation units are dimensioned for 30 MW, they are in charge of a part of 

the primary reserve. 

These three first-generation sources in the generation ordering are exploited by 

independent operators and their operation is subject to contractual agreements. 

4. The diesel generators of Jarry Nord are operated by EDF to ensure the system’s 

production-consumption balance while participating in the constitution of the primary 

reserve. Lastly in the production order are the combustion turbines connected at the 

peaking station Jarry-Sud. These generators are used eventually during peak periods or 

when other generators are at a stop. 

Given the size of the system, secondary frequency control is ensured by the generators 

of Jarry Nord station. Adjustments are made manually by the power-station operator. Tertiary 

frequency control is also ensured manually but by the system operator, according to the 

availability of the generator units in the system. 

Fig. 3.11 presents the evolution of the generating fleet production over a typical day as 

well as the ordering system described. 
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The Guadeloupean grid is operated with a primary reserve which is close to the rating 

power of the largest generation unit in the system. This can lead to the need for shedding loads 

during power shortfalls. According to [5], the degree of load-shedding depends on the system 

frequency level: 48,5 48,2 47,9 47,6 and 47,2 Hz. 

Control of voltage and reactive power 

The first level of compensation of the reactive power demanded by the loads is done 

through the static var compensators installed at the 63 kV/20 kV transforming substations. The 

number of capacitors switched on is controlled manually from the dispatch center based on the 

consumption level. The capacitors that allow the consumption compensation during low-

consumption periods are switched on all the time. Other capacitors are activated in the morning 

when the consumption increases and remain connected to produce a part of the reactive power 

demand of the nearby loads during peak hours. 

The excitation current of the conventional generator units is controlled so that the 

setpoint of the voltage at their terminals is a little higher than the rated values. This allows the 

precise control of the voltage at medium-voltage busbars while dynamically providing the grid 

with reactive power balance. 

In addition, the 63 kV/20 kV transformers are equipped with automatic on-load tap 

changers that adjust the voltages at the 20 kV side by shifting the number of turns on the 63 kV 

side winding. Typically, high settings are applied in order to keep the distribution level voltages 

at around 20,5 kV. This allows obtaining voltages within the required ranges for busbars where 

loads are connected. 

 

Fig. 3.11. Energy production distribution. 
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3.3.2 PowerFactory grid model 

The PowerFactory model of Guadeloupe island electrical system shown in Fig. 3.12 was 

implemented from data presented in [5]. The shaded area corresponds to the point of common 

coupling located within the node Sainte-Rose, where the hybrid power plant is connected. 

A zoom of Fig. 3.12 at the Sainte-Rose substation is presented in Fig. 3.13. As shown, 

Sainte-Rose comprises a 63 kV busbar connected through 63 kV/20 kV transformers with two 

20 kV busbars (Terminals 1 and 2). Sainte-Rose transformers comprise 17 tap changer positions 

(the minimum position is -8, the maximum is 8 and the neutral is position 0) with 1,75 % 

additional voltage per tap. The terminal 1 relies a local load and serves as the PCC for the hybrid 

plant. Meanwhile, the terminal 2 relies a load and a static var system. 

Sainte-Rose’s main busbar is connected to the main busbars of the neighboring 

substations Bouillante and Baie-Mahault through transmission lines at 63 kV.  

The grid model described in PowerFactory contains the different synchronous 

generators with their respective transformers, 63 kV/20 kV transformers with static loads and 

static var compensators, as well as overhead power lines connecting the different substations. 

A particularity of PowerFactory is that the description of the transmission lines must be 

implemented through the unit resistance and reactance (both in Ohm/km). Consequently, the 

transmission lines length must be known. As the total resistance and reactance for every 

transmission line were available while the line lengths were unknown, it was necessary to 

estimate the line lengths. For that, the web mapping service of the French government 

geoportail3 was employed. The service allows seeing the transportation lines in the French 

 
3 www.geoportail.gouv.fr/ 

Fig. 3.12. PowerFactory Guadeloupe grid investigated model. 
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territories. Also, a distance measurement tool permitted approximating the transmission lines 

lengths.  

Diverse DSL models are available in the library of PowerFactory that can be equipped 

on power system components being part of a grid. Attached to the generator components are 

automatic voltage controller, and governor and turbine DSL models. The latter containing the 

primary controller and the prime mover unit. 

The IEEET1 model, one of many standard types of voltage regulators existing, is the 

AVR model equipped on the generators. In Annex A are described the governors of the diesel 

generators of Jarry Nord and Péristyle stations, as well as those of the steam generators of Le 

Moule, all participating in the primary frequency control, that were defined using DSL models. 

For the remaining generators in the system, built-in PowerFactory governors were used.  

According to the data collection work presented in [5], 53% of the load in Guadeloupe 

can be considered static, representing mainly home appliances which do not have an electric 

engine, while the remaining 47% are dynamic loads based on induction motors. For the sake of 

simplicity, in the implemented grid model, all the loads were assumed static and invariant with 

respect to the frequency and voltage changes 

The system is composed by 3 types of buses: 

• Slack bus: specifies the reference magnitude and phase angle of the voltage. The 

generator connected to this bus (known as the slack generator) is in charge of balancing 

the system active and reactive production with the consumption and the losses. The 

diesel generator unit 1 at the substation Jarry Nord is the slack generator. 

• PQ buses: at which active and reactive powers are specified. In the grid model, PQ buses 

integrate static loads and var compensators. The latter allow the voltage control at the 

 

Fig. 3.13. Sainte-Rose substation. 
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directly connected busbars, depending on the load situation, injecting reactive power in 

response to reactive power demand.  

• PV buses: production nodes fixing the active power and adjusting the reactive power 

production in order to keep a given voltage magnitude. In the investigated grid model, 

PV nodes are composed of generators, loads, and or generators, loads and var 

compensators. 

3.3.3 Grid model validation 

• The aim here is verifying the data used in the grid model description, such as the 

transportation lines impedances and reactances, and the transformers reactances 

and time constants. For that, the model validation presented is separated into 

static and dynamic validation. The static validation requires controlling the grid 

model by the imposition of an operation point or scenario. In the present case, 

such scenario is determined by the following conditions: The slack bus voltage 

and angle setpoints. 

• The distribution of the consumption (active and reactive) and reactive power 

compensation among the different PQ nodes in the system. 

• The active power setpoints of the generators, as well as the setpoints for the 

voltages at their relying busbars, in the case of PV nodes. 

Then, the repartition of power flows obtained by the run of a load flow4 can be validated 

through comparison with respect to a valid reference. Typically, telemetry data collected from 

the real power grid is used as the basis for the definition of validation scenarios. 

The dynamic validation will consider the disconnection of a generator during the most 

restrictive operating conditions,  that is, during off-peak hours, when the grid’s inertia is at its 

lowest level [5].  

3.3.3.1 Static validation  

The scenario implemented for the static validation of the grid model is similar to the one 

proposed by [5]. Such an operation point corresponds to a time of peak consumption for which 

the telemetry data is available for comparison. 

Definition of the validation scenario 

 
4 Power flow study that consists in determining the magnitudes and phase angle of voltages at each bus, and 
active and reactive power flow in each line. In solving a power flow problem, balanced system operations are 
assumed, and a single-phase model is employed. 
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The scenario is described in the following paragraphs. In Table 3.1 are displayed the 

setpoints for the reference voltage and angle established by means the slack generator.  

The power injections into the 63 kV grid are detailed in the second column of Table 3.2. 

Finally, the system’s consumption (active and reactive power) is presented in Table 3.3. 

These values correspond to power flows at the high-voltage feeders, therefore the losses 

in step-down transformers and injections from reactive compensators are considered. Given the 

lack of measurements for the nodes Raizet and Petit Pérou, the values shown were estimated in 

[5]. 

 Load flow results 

A load flow was run from the scenario described. The reactive power injections that 

result from the active power dispatch and the voltage targets defined above are displayed in 

Table 3.5. The values are compared with the telemetry data of the system operator (EDF SEI).   

Table 3.1. Slack generator setpoints (generator convention).  

Slack generator V [kV] Angle [°] 

Diesel - Jarry Nord unit 1 5,53 0 
 

Table 3.2. Distribution of the production (generator convention).  

Generator units P [MW] Voltage [kV] 

Diesel - Jarry Nord units 2 - 8 106,46 5,56 

Geothermal - Bouillante 10,01 5,41 

Combustion turbine - Jarry Sud 16,64 11 

Hydroelectric - Capesterre 0 6,2 

Bagasse/coal - Le Moule 51,17 10,96 

Diesel - Péristyle 14,9 5,5 

Total 199,18 - 
 

Table 3.3. Distribution of the consumption (load convention).  
 Consumption 

Consumption nodes P [MW] Q [Mvar] 

Sainte-Rose 13,41 3,84 

Bouillante 4,72 1,86 

Rivière Sens 19,6 -5,50 

Capesterre 18,1 3,9 

Jarry-Sud 22,54 -1,48 

Raizet 14,04 2,26 

Besson 26,2 9,70 

Petit Pérou 20,65 -4,64 

Sainte-Anne 10,7 0,7 

Saint-François 8,8 -2,8 

Gardel 6,31 3,39 

Blanchet 18,3 10,1 

Baie-Mahault 19,61 -3,67 

Total 203,0 17,16 
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Also, the active and reactive power production of the slack generator is detailed in Table 

3.4.  

This means a total injection of active power into the high-voltage network of: 

𝑃𝑖𝑛𝑗𝑠𝑖𝑚𝑢 = production of slack generator + other generation units = 5,38 + 199,18 = 

204,56 MW. 

Meanwhile, according to the telemetry data the active injection is: 

𝑃𝑖𝑛𝑗𝑡𝑒𝑙𝑒𝑚 = 17,28 + 199,18 = 216,5 MW. 

In closing, Fig. 3.14 presents the voltages for the different transmission network busbars 

in the system obtained both from simulation and measurements. Even though the transmission 

network nominal voltage is of 63 kV, the network is operated with a normal range of variation 

of  55 kV to 72 kV. 

Comparative analysis 

  

Fig. 3.14. High-voltage busbars comparison. 

Table 3.4. Slack generator active power injection into the 63 kV network (generator convention).  

 Active injection [MW] 

Slack generator  𝒔𝒊𝒎𝒖  𝒕𝒆𝒍𝒆𝒎 

Diesel - Jarry Nord unit 1 5,38 17,28 
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Table 3.5. Reactive power injected into HTB busbars at generation nodes (generator convention).  

  Reactive injection [Mvar] 

Generation site 𝑸𝒔𝒊𝒎𝒖 𝑸𝒕𝒆𝒍𝒆𝒎 

Diesel - Jarry Nord 1 12,12 2,17 

Diesel - Jarry Nord units 2 - 8 -0,85 8,94 

Géothermal - Bouillante 18,19 0 

Combustion turbine - Jarry Sud  -30,31 3,16 

Bagasse/coal - Le Moule 11,20 6,31 

Diesel - Péristyle 13,54 8,94 

Total reactive injection into HTB network 23,9 29,52 
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• The total injected active power obtained from simulation is 204,4 MW. The active 

injection obtained from telemetry is 216,5 MW. This means a difference of 12,1 MW 

(5,6 %). This error is big and can be explained by the difference among the telemetry 

data corresponding to production and consumption (216,5 and 203 MW, respectively). 

Considering that according to simulation the active power losses amount 3,01 MW, it 

appears unlikely that losses are the only explanation to the gap in the measurements. 

Incorrect or missing consumption data would be the source of the difference. 

• According to simulation, the total reactive injections comes to 25,8 Mvar. Meanwhile, 

the telemetry data amounted 29,5 Mvar. Thus, the difference among the Mvar obtained 

through simulation and those measured on the grid is of 3,7 Mvar (12,7 %). Even though 

the difference is smaller than that obtained in the earlier case, the percentage error is 

bigger as the total injection of reactive power is between seven and eight times smaller 

than that of active power. 

• It seems that the gap between the reactive power injections can be related to the 

differences obtained in terms of voltages in high-voltage busbars. As a matter of fact, 

simulation results present not only smaller reactive injections but also smaller voltages. 

Removing the voltage measurement data for Sainte Anne busbar, which seems to be 

incorrect, the voltages obtained from simulation are 2,8 % smaller. Yet, all voltages at 

load busbars are between 20,4 kV and 20,6 kV. 

To sum up, the total production (active and reactive) obtained for the scenario 

introduced through simulation appears to be consistent with the real data even though the 

production distributions throughout the generator units are not identical. As for the voltages, 

simulation results show smaller values at high-voltage busbars. Nonetheless, the voltages at the 

connection points of the users are within the right interval. After the run of a load flow without 

the hybrid power plant, it is found that the match between the results obtained and the data of 

the SO is good enough, which validates the static behavior of the model. 

3.3.3.2 Dynamic validation  

The scenario implemented for the dynamic validation of the grid model reproduces real 

telemetry and is also inspired by [5]. 

Definition of the scenario for dynamic validation 

It is during off-peak periods that the variability in the frequency of an electrical system 

tends to be more important. Indeed, because of the limited number of generation units in 

operation, both the kinetic energy stored in the rotating masses and the primary reserve, 
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allocated on fewer generators, are close to their minimum. In any case, the production-

consumption imbalance caused by the failure of a generator is more or less important depending 

mainly on the generator’s share in the total island production [146]. 

Some aspects determining whether an imbalance leads or not in a certain level of load-

shedding are the available primary reserve, the failure of a generator participating in the primary 

reserve, and the dynamic behavior of both the loads and the generation facilities within the 

system [146]. That said, a candidate for validation scenario can be found via the analysis of 

recordings of production-related incidents. 

Based on EDF SEI’s production incidents data collected at the Guadeloupean 

archipelago during the period 2006-2008, in [146] is presented an analysis of the relationship 

among the total production before an incident and the resulting amount of load shed (in MW). 

Next are summarized the elements emerging from that analysis: 

• Production-consumption unbalances inferior to 15 MW seemed not to represent 

any risk for the supply of the consumers. 

• The system’s dynamics appears to be weakened whenever the consumption is 

lower (as expected). Hence, production failures in the 15 – 25 WM range leaded 

to greater levels of load-shedding when the system’s consumption was smaller. 

This can be seen in Table 3.6. 

• The occurrence of load-shedding beyond 25-30 MW fault incidents was less 

common and rather related to the simultaneous failure of several generation 

units. Events of this kind are, in general, rare (yet likely to happen). 

The situation of loads and reactive compensators in the consumption nodes is described 

in Table 3.7 (load convention is applied). These values take into account the losses in 63 kV/20 

kV transformers. 

Table 3.6. Production-consumption imbalances within 15 – 25 WM and load-shedding 

according to the consumption level.  

Consumption 

level range 

% of incidents leading 

to load-shedding 

 120-160 MW ~66 % 

 

160-200 MW ~50 % 

 

200-240 MW ~33 % 
 

 

34%

50%

70%
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As it can be seen, the total consumption under this scenario is of 146,3 MW, (i.e. within 

the 120-160 MW range). Moreover, the usual nighttime (off-peak hours) consumptions in the 

archipelago at the period mentioned above were smaller than 150 MW [5], [146]. 

At the operation point considered, the active power dispatch of each of the generators 

in Le Moule is set at 20 MW. A participation of 4 MW per generation unit in the primary 

frequency reserve is also considered. 

Meanwhile, the geothermal station and the hydroelectric plant are operated at 15 MW 

and 3 MW, respectively. These generation units do not participate in the primary reserve.  

The diesel generators located at the station Péristyle are operated at 14 MW, which is 

its typical production during off-peak periods. A participation of 2,2 MW in the primary reserve 

is considered for this power station. Besides, the combustion turbines, which are peaking 

resources, are not injecting power into the system as the operation point represented, 

corresponds to an off-peak period. 

Next, the number of generation units to be connected at the station of Jarry Nord is going 

to be calculated. For this off-peak condition, the total primary reserve must be of around 22 

MW and the active power losses around 3 MW. 

Total consumption: 

𝐿𝑜𝑎𝑑 +  𝑙𝑜𝑠𝑠𝑒𝑠 =  146,3 +  3 =  149,3 𝑀𝑊 

Total production without Jarry Nord: 

𝐿𝑒 𝑀𝑜𝑢𝑙𝑒 +  𝑔𝑒𝑜𝑡ℎ.+ ℎ𝑦𝑑𝑟𝑜 +  𝑃é𝑟𝑖𝑠𝑡𝑦𝑙𝑒 =  2 × 2 +  15 +  3 +  14 =  72 𝑀𝑊 

Remaining reserve to be allocated: 

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 – (𝐿𝑒 𝑀𝑜𝑢𝑙𝑒 +  𝑃é𝑟𝑖𝑠𝑡𝑦𝑙𝑒)  =  22 − (4 × 2 +  2,2)  =  11,8 𝑀𝑊 

Table 3.7. Consumption nodes (load convention). 

 Consumption and static compensation 

Substation P [MW] Q [Mvar] 

Sainte-Rose 11,2 1,8 

Bouillante 3,48 -0,05 

Rivière Sens 13,44 -0,8 

Capesterre 7,47 0,1 

Jarry-Sud 24,89 1,9 

Raizet 14,93 1,3 

Besson 17,42 0,11 

Petit Perou 11,2 -3,2 

Sainte-Anne 7,47 1 

Saint-François 8,71 2,3 

Gardel 3,73 1,2 

Blanchet 12,44 -0,1 

Baie-Mahault 9,96 -1,5 

Total 146,3 4,06 
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Now, the number of generators to turn on at Jarry Nord is determined as to ensure the 

balance production-consumption. 

Generation required at Jarry Nord: 

𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 +  𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑟𝑒𝑠. –  𝑜𝑡ℎ𝑒𝑟 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 =  149,3 + 11,8 − 72 = 89,1 𝑀𝑊 

Hence, four diesel generators operated at 20,9 MW and one more operated at 12,6 MW 

are connected at Jarry Nord. 

Table 3.8 summarizes the power dispatch as well as primary and secondary frequency 

control settings for the production nodes in the system. The transformers losses are considered. 

As can be seen, there is a difference of 2,2 MW among the total production and consumption. 

Such a difference corresponds to the estimated system losses. The information displayed in 

Table 3.8 corresponds to the situation of the grid prior to the fault of the generation unit 2 of Le 

Moule station (highlighted in the table). It must be noticed that the generator failure is within 

the 15 – 25 MW range mentioned above. 

As shown in the third column, before the incident the primary reserve allocated by the 

SO is of 29,1 MW. This reserve is very close to the maximum capacity of the generation unit 

being disconnected. 

Moreover, the droop of the generation units participating in the primary frequency 

reserve is of 4 %. 

Simulation results 

A load flow was run from the scenario described. The active and reactive losses obtained 

from simulation are shown in Table 3.9. The results achieved in PowerFactory are compared 

with those of the reference modeling. 

Table 3.8. Validation scenario: PV nodes settings (generator convention).  

Generation units 
[MW] Sec. frequency  

control [%] Active power Prim. reserve  

Diesel - Jarry-Nord 1-5 76,5 19,7 100 

Géothermal - Bouillante 15 0 - 

Hydroelectric - Capesterre 3 0 - 

Bagasse/coal – Le Moule 1 20 4 - 

Bagasse/coal – Le Moule 2 20 4 - 

Diesel – Péristyle 1-3 14 2,2 - 

Total 148,5 29,1 100 
 

Table 3.9. P and Q values obtained at slack bus (generator convention).  

 Active losses [MW] Reactive losses [Mvar] 

Generation site Simu PF Simu ref. scen. Simu PF Simu ref. scen. 

Diesel - Jarry-Nord 1 1,18 2,16 17, 8 16 
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Fig. 3.15.a-c presents the grid frequency, the dynamics of Jarry Nord station generation 

units and the voltage at the point of common coupling of the HPP, respectively, according to 

the modeling of reference. 

In  Fig. 3.16.a-c are presented the dynamic evolutions of grid frequency, active power 

production at one of the generation units in Jarry Nord station, and voltage at the PCC, obtained 

for the same scenario with the model implemented in PowerFactory. 

And according to the results shown in Fig. 3.15 and Fig. 3.16:  

• The frequency dynamic of the PowerFactory model is slower than that of the reference 

scenario. The times to get to a new steady-state where 11 s and 8 s, respectively.  

The ∆𝑓 achieved in the steady-state was 0.24 Hz in PowerFactory, whereas in the 

reference scenario the frequency deviation was 0.25 Hz. 

The droop in this case can be computed as: 

𝐾 =
1

𝜕

∑𝑃

𝑓
=

1

 , 4

2 ,9 × 4 + 12,6 + 32 + 5,4 × 3

5  
= 72,2 

𝑀𝑊

𝐻𝑧
 

Thus, with 

𝑃 − 𝑃0 = −𝐾(𝑓 − 𝑓𝑁), 

 

Fig. 3.15. Reference scenario dynamics: (a) grid frequency, (b) dynamic behavior generation units of 

Jarry nord, and (c) voltage at HPP connection busbar. 
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the disconnection of a machine delivering 20 MW, produces a frequency deviation of: 

𝑓 − 𝑓𝑁 =
124,4 − 144,4

−72,2
=  ,28 𝐻𝑧 

which is the expected frequency variation. Hence, the result obtained (0.24 Hz) presents a 40 

mHz difference which can be attributed to the parameters of the governors and turbine models. 

Even if there is an important gap among the voltages obtained, a similarity can be 

observed between the dynamics from the two models. 

3.3.4 Hybrid power plant model 

The wind-BESS hybrid power plant is depicted Fig. 3.17. As shown, the 20 kV busbar 

1, at Sainte Rose substation serves as a point of common coupling for the HPP. The wind 

generation system comprises four 2 MW wind turbines with their respective converters and 

transformers. Meanwhile, the BESS consists of four 1 MW 580 kWh Li-ion storage devices, 

with their respective converters and transformers. 

As mentioned in Chapter 1, not only the HPP sizing but also the selection of Li-ion as  

storage technology took place during the pre-study conducted in the context of the Insul’Grid 

  

Fig. 3.16. Dynamic behavior of PowerFactory model: (a) grid frequency, and (b) Active power 

production of unit 4 Jarry Nord, and (c) voltage at HPP connection busbar. 
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project. For that, the study carried out in the present thesis considers the HPP configuration 

shown in Fig. 3.17. 

Next, the modeling of the HPP is introduced by the modeling of the WECS and followed 

by that of the ESS. 

3.3.4.1 Wind generation system modeling and validation 

Fig. 3.18 presents the wind generation system single line diagram described in 

PowerFactory. The system consists of four 2 MW DFIG generators connected to the point of 

common coupling at 20 kV through underground lines, medium and low voltage busbars and 

transformers. 

Wind turbines 

In the wind generation system shown in Fig. 3.18, a built-in wind turbine template 

representing the turbines as induction machine electrical grid components configured as a DFIG 

= 

= 

=

 
=

 

= 

= 
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=

 

HYBRID POWER PLANT

Ste. Rose - 21 kV Busbar 1 Guadeloupe Grid

=

 
=

 

=

 

=

 

8 MW Wind Energy Conversion System

4MW / 2,32 MWh
Battery Energy Storage System

   

Fig. 3.17. Hybrid power plant. 

 

Fig. 3.18. Wind generation system implemented in PowerFactory. 
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is utilized. Conceived for low voltage ride through simulation, the wind turbine modeling 

comprises DSL blocks defining the behavior of the different modeled aspects: the electrical 

component (doubly-fed induction machine), the mechanical system, the aerodynamic system, 

the control system, and the protection system. Those aspects are briefly described below. 

• Modeling of the DFIG: Fig. 3.19 shows the doubly-fed induction machine model, that 

integrates a rotor side converter (RSC), and is a model with AC and DC terminals. 

The PWM converter allows for a flexible and fast control of the machine by modifying 

the magnitude and phase of the output voltage 𝑈𝐴𝐶 on the rotor-side. This is achieved 

by adjusting a modulation factor. On the basis of the power balance between the AC 

and DC sides of the converter, the DC voltage and DC current can be calculated. The 

following equation defines the AC-DC relationship of the converter (the AC voltage is 

expressed as line-to-line voltage): 

𝑈𝐴𝐶𝑟 =
√3

2√2
𝑃𝑊𝑀𝑟 ∙ 𝑈𝐷𝐶 

𝑈𝐴𝐶𝑖 =
√3

2√2
𝑃𝑊𝑀𝑖 ∙ 𝑈𝐷𝐶 

Eq. 3.1 

where 𝑃𝑊𝑀𝑟 and 𝑃𝑊𝑀𝑖 are the real and imaginary components of the modulation 

factor. 

It is assumed that a standard bridge consisting of six transistors builds the converter. 

The relationship between AC and DC currents can established by: 

𝑃𝐴𝐶 = 𝑅𝑒(𝑈𝐴𝐶 ∙ 𝐼𝐴𝐶
∗ ) = 𝑈𝐷𝐶 ∙ 𝐼𝐷𝐶 = 𝑃𝐷𝐶 Eq. 3.2  

Equation Eq. 3.2 assumes an ideal, loss-less PWM-converter. 

During time domain simulations the converter is controlled via the pulse width 

modulation factors 𝑃𝑊𝑀𝑑 and 𝑃𝑊𝑀𝑞 that define the the ratio between DC voltage and 

AC voltage at the slip rings. 

The model equations of the doubly-fed machine are: 

 

Fig. 3.19. Doubly-fed induction machine with rotor-side converter. 
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where the vectors 𝒖, 𝒊 and 𝝍 are voltage, current and flux. Also, 𝜔𝑠𝑦𝑛 is the synchronous 

speed, 𝜔𝑔𝑒𝑛 is the generator rotor speed, and 𝜔𝑛, the nominal electrical frequency of the 

grid. 

The per unit rotor voltage that appears in Eq. 3.3 is related to the DC voltage as follows: 

where 𝑈𝑟𝑛𝑜𝑚 is the nominal rotor voltage. 

• Mechanical model: On the drive train side, the shaft is modeled as a two-mass model 

representing the two major sources of inertia: the wind rotor with a larger inertia 𝐽𝑟𝑜𝑡 

and the generator rotor with a smaller inertia 𝐽𝑔𝑒𝑛, which is part of the induction machine 

grid component. In other words, besides the electromagnetic description, the generator 

model also contains the generator inertia 𝐽𝑔𝑒𝑛. While the low-speed side of the shaft is 

modeled by a stiffness 𝑘 and a damping coefficient 𝑐, the high-speed shaft is assumed 

stiff. Also, an ideal gear-box with ratio 1: 𝑛𝑔𝑒𝑎𝑟 is included. Below are the equations 

describing the mechanical model of the wind turbine: 

 𝜃̇𝑟𝑜𝑡  = 𝜔𝑟𝑜𝑡 (rad/s)  

 𝜃̇𝑘  = 𝜔𝑟𝑜𝑡 −
𝜔𝑔𝑒𝑛

𝑛𝑔𝑒𝑎𝑟
 

(rad/s) 
Eq. 3.5 

 𝜔̇𝑟𝑜𝑡  = (𝑇𝑟𝑜𝑡 − 𝑇𝑠ℎ𝑎𝑓𝑡) 𝐽𝑟𝑜𝑡⁄  (rad/s2) 
 

where 𝜃𝑘 = 𝜃𝑟𝑜𝑡 − 𝜃𝑘 𝑛𝑔𝑒𝑎𝑟⁄  is the angular difference between the two ends of the shaft. 

The mechanical torque on the low-speed side and the mechanical power of the generator 

are: 

 𝑇𝑠ℎ𝑎𝑓𝑡 = 𝑐 (𝜔𝑟𝑜𝑡 −
𝜔𝑔𝑒𝑛

𝑛𝑔𝑒𝑎𝑟
) + 𝑘𝜃𝑘 

(Nm) 

Eq. 3.6 

 𝑃𝑡 = 𝜔𝑔𝑒𝑛
𝑇𝑠ℎ𝑎𝑓𝑡

𝑛𝑔𝑒𝑎𝑟
 

(W) 

𝒖𝑠 = 𝑅𝑠𝒊𝑠 + 𝑗
𝜔𝑠𝑦𝑛

𝜔𝑛
𝝍𝑠 +

1

𝜔𝑛

𝑑𝝍𝑠
𝑑𝑡

 

Eq. 3.3 

𝒖𝑟 ∙ 𝑒
−𝑗(𝜔𝑠𝑦𝑛−𝜔𝑔𝑒𝑛)𝑡 = 𝑅𝑟𝒊𝑟 + 𝑗

(𝜔𝑠𝑦𝑛−𝜔𝑔𝑒𝑛)

𝜔𝑛
𝝍𝑟 +

𝑑𝝍𝑟

𝑑𝑡
, 

𝒖𝑟𝑑 =
√3

2√2
𝑃𝑊𝑀𝑑 ∙

𝑈𝐷𝐶
𝑈𝑟𝑛𝑜𝑚

 

Eq. 3.4 

𝒖𝑟𝑞 =
√3

2√2
𝑃𝑊𝑀𝑞 ∙

𝑈𝐷𝐶
𝑈𝑟𝑛𝑜𝑚
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where 𝑃𝑡 is the mechanical power (W) of the wind turbine. The damping coefficient 𝑐 

is given by: 

 𝑐 = 2𝜉√𝑘𝐽𝑟𝑜𝑡  Eq. 3.7 

where 𝜉 represents the damping ratio can be expressed as: 

 𝜉 =
𝛿𝑠

√𝛿𝑠2 + 4𝜋2
 

 
Eq. 3.8 

with 𝛿𝑠, the logarithmic ratio between the amplitude at the beginning of the period and 

the amplitude at the end of the next period of oscillation: 

 𝛿𝑠 = ln(
𝑎(𝑡)

𝑎(𝑡 + 𝑡𝑝)
) 

 
Eq. 3.9 

where 𝑎  represents th amplitude of the signal. 

• Aerodynamic model: the aerodynamic torque developed on the main shaft of the turbine 

is modelled by the equation: 

𝑇𝑟𝑜𝑡 =
𝑃𝑟𝑜𝑡
𝜔𝑟𝑜𝑡

=
1

2𝜔𝑟𝑜𝑡
𝜌𝐴𝑟𝑜𝑡𝐶𝑝(𝜃, 𝜆)𝑣𝑤

3  Eq. 3.10 

where 𝜌 is the air density in kg/m3, 𝐴𝑟𝑜𝑡 is the area covered by the wind turbine rotor in 

m2, 𝐶𝑝 is the power coefficient, which is a function of the pitch angle 𝜃 and the tip-speed 

ratio 𝜆, and 𝑣𝑤 (m/s) is the wind speed. On the other side, the tip-speed ratio is computed 

as: 

𝜆 =
𝜔𝑟𝑜𝑡𝑅

𝑣𝑤
 Eq. 3.11 

where  𝑅 (m) is the radius of the rotor. 

𝐶𝑝 is obtained by the aerodynamic model through a look up table using 𝜃 and 𝜆 as inputs, 

allowing the maximization of the power generated. Originally, the model generates an 

equivalent wind speed 𝑣𝑤 at the hub height of the wind turbine that considers the effect 

of rotational turbulence and the effect of tower shadow influence [149]. Nevertheless, a 

block was added allowing the variable 𝑣𝑤 to be an input to the model defined through a 

time series of wind speed measurements. 

• Control system: Fig. 3.20 presents a generic control scheme for the DFIG generator 

model. The rotor side converter is part of the DFIG model which is a d-q built-in model 

with predefined inputs and outputs.  DFIG and rotor side converter are modeled in rotor 

reference frame (RRF) rotating at generator speed. Nonetheless, the controller of the 

RSC is expressed in the stator flux reference frame (SFRF) rotating at grid synchronous 
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speed. Different coordinate transformations are performed to interconnect these blocks. 

The output of the generator model is expressed in RRF, so it has to be transformed  to 

SFRF in order to be used by the RSC’s controller. 

RSC control modifies the stator active (P) and reactive (Q) power by regulating the q 

and d-axis rotor currents 𝐼𝑞,𝑟𝑜𝑡𝑜𝑟
𝑆𝐹𝑅𝐹  and 𝐼𝑑,𝑟𝑜𝑡𝑜𝑟

𝑆𝐹𝑅𝐹 , respectively. The control of active and 

reactive power is decoupled. The induced controlled rotor voltage is modulated with 

pulse-width factor PWM and is expressed in SFRF. This modulation factor is 𝑃𝑊𝑀𝑟𝑜𝑡𝑜𝑟
𝑆𝐹𝑅𝐹  

and is the output of the rotor side converter. 

Similarly, to the RSC, the grid side converter is current regulated. The DC-voltage is 

controlled indirectly through the control of the grid side converter current. The converter 

current control operates in the voltage-oriented reference frame (GCVRF). Reference 

frame transformation in the framework of wind generators modeling is treated in 

reference [150]. 

• Protection system: The protection of the DFIG comprises a crowbar, the possibility to 

disconnect the DFIG and the possibility to re-synchronize it.  If the speed, the voltage 

or the rotor current exceeds the limits for a certain time the DFIG is disconnected. The 

crowbar is an additional inductance inserter in case of overcurrent [151]. Some of 

parameter values of the protection model where modified so that the modeled wind 

 

Fig. 3.20. Generic control model scheme for DFIG template. 
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turbine starts to produce power at a windspeed of 3 m/s, instead of 6 m/s with the default 

configuration. In Annex B are listed the settings used for the protection system. 

Performance of the DFIG and rotor-side converter model 

The power curve of the wind turbine whose modeling was discussed in the earlier 

section is displayed in Fig. 3.21. The curve presents the steady-state electrical power obtained 

from simulation. As noted, the modeled wind turbine produces power for wind speeds between 

3 m/s and 29 m/s.  

Two operation modes can be observed in Fig. 3.21: power limitation and power 

optimization. The power output is limited to nominal power (2,06 MW) when speed is between 

nominal wind speed (12 m/s as indicated by the dashed line) and 29 m/s. In this operation mode, 

in order to get a constant power output above nominal speed the pitch angle 𝛽 is adjusted 

accordingly to control the stall effect. 

On the other side, between 3 m/s  and 12 m/s the power output is maximized. In this 

operation mode, the pitch angle 𝛽 is adjusted to optimize the power coefficient 𝐶𝑝 and this way 

maximize the power output. 

In Fig. 3.22.a is presented an available dataset of wind speed measurements. The wind 

data comprise 86,400 measurement points of wind speed (m/s) with timestamps that were 

collected every second during a 1-day period. The readings were received from an anemometer 

mounted on a 2 MW DFIG Gamesa G87 wind turbine. The data is considered as if it had been 

obtained from an anemometer mounted at the top of a measuring mast (i.e., the influence of the 

wind turbine rotor on the wind data measured is considered negligible). 

Fig. 3.22.b plots the output power obtained from the wind profile through the DFIG 

PowerFactory model as well as the power obtained by application of the power curve shown in 

Fig. 3.21. 

 

Fig. 3.21. Calculated power curve of the modeled DFIG wind turbine. 
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3.3.4.2 Energy storage system modeling and validation  

Fig. 3.23 presents the ESS implemented in PowerFactory. The model of the battery 

system is based on the commercial storage solution Intensium Max 20M of Saft. The IM20M 

 

Fig. 3.22. (a) wind profile, and (b) production obtained from the profile with both power curve 

and DFIG model. 

 

Fig. 3.23. ESS implemented in PowerFactory. 
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is composed of 20 parallel branches and 174 series of the VL41M cell (3,6V and 41 Ah) and 

allows a nominal power of 1 MW for a capacity of 580 kWh.  

Next, the modeling of the storage units is dealt with. The configuration used for 

converters, transformers and lines in the ESS is described in Annex C. 

Battery storage units modeling 

In the present thesis, the Tremblay battery model is employed for the modeling of the 

storage units. This model, on which the battery block available in Simulink is based, is a 

modification of the widely known Shepherd model [152]. 

The Shepherd model describes the output voltage of a cell as a function of the capacity 

in ampere-hours (𝐴ℎ) obtained from it. Fig. 3.24 shows the evolution of the battery voltage with 

the capacity at a constant discharge current. 

The discharge characteristic shown in Fig. 3.24 is composed of three sections: 

exponential zone, nominal zone, and end of discharge. The first section represents the 

exponential voltage drop that takes place when the battery is discharged from its fully charged 

voltage (𝑉𝑓𝑢𝑙𝑙). The second section indicates the charge that can be extracted from the battery 

before the voltage drop below its nominal value (𝑉𝑛𝑜𝑚). Within this almost linear region the 

battery state-of-charge ranges between 80 % and 20 % of the nominal capacity. Lastly, in the 

section below 𝑉𝑛𝑜𝑚 (i.e. SoC under 20%) the battery voltage drops rapidly [107, 152].  

Under this model, the battery cell is represented by a voltage source with variable 

magnitude in series with a resistance. The battery cell terminal voltage is calculated through 

Eq. 3.12: 

𝑉𝑏𝑎𝑡𝑡 = 𝐸0 − 𝑅 ∙ 𝑖𝑏𝑎𝑡𝑡 − 𝐾
𝑄𝑚𝑎𝑥

𝑄𝑚𝑎𝑥 − 𝑖𝑡
𝑖𝑏𝑎𝑡𝑡 − 𝐴 ∙ 𝑒

(
−𝐵∙𝑖𝑡
𝑄𝑚𝑎𝑥

)
 Eq. 3.12 

 

Fig. 3.24. Battery discharge characteristic. 
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where 𝐸0 is the open-circuit voltage constant (𝑉), 𝑅 is the battery cell internal resistance (Ω), 

𝑖𝑏𝑎𝑡𝑡 is the battery current (𝐴), 𝐾 is the polarization resistance (Ω) or polarization constant 

(𝑉 𝐴ℎ⁄ ), 𝑖𝑡 = ∫ 𝑖𝑏𝑎𝑡𝑡 𝑑𝑡 is the battery cell extracted capacity (𝐴ℎ), 𝑄𝑚𝑎𝑥 is the maximum battery 

cell capacity (𝐴ℎ) (as shown in Fig. 3.24), 𝐴 is the exponential zone amplitude (𝑉), and 𝐵 is the 

exponential zone time constant inverse (𝐴ℎ)−1. 𝑖𝑏𝑎𝑡𝑡 is negative during the battery cell charging 

and positive during the discharging, and the parameters 𝐸0, 𝑅, 𝐾, 𝐴 and 𝐵 are known as the 

Shepherd model parameters. Finally, the term 𝐾
𝑄𝑚𝑎𝑥

𝑄𝑚𝑎𝑥−𝑖𝑡
𝑖𝑏𝑎𝑡𝑡 describes a non-linearity in the 

terminal voltage that depends on the battery cell current and extracted capacity, and the term 

𝐴 ∙ 𝑒
(
−𝐵∙𝑖𝑡

𝑄𝑚𝑎𝑥
)
 is used to approximate the exponential part of the discharge curve. 

Tremblay’s model main contribution is extending the validity of the model described 

above for variable charging and discharging currents [153]. The model consists of an internal 

resistance in series with a controlled voltage source. Eq. 3.13 allows the computation of the 

terminal voltage for a Lithium-ion battery: 

𝑉𝑐ℎ𝑎𝑟𝑔𝑒 = 𝐸0 − 𝑅 ∙ 𝑖𝑏𝑎𝑡𝑡 − 𝐾𝑐𝑟
𝑄𝑚𝑎𝑥

𝑖𝑡 +  .1𝑄𝑚𝑎𝑥
𝑖∗ − 𝐾𝑐 

𝑄𝑚𝑎𝑥
𝑄𝑚𝑎𝑥 − 𝑖𝑡

𝑖𝑡 + 𝐴 ∙ 𝑒(−𝐵∙𝑖𝑡) 

𝑉𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 𝐸0 − 𝑅 ∙ 𝑖𝑏𝑎𝑡𝑡 − 𝐾𝑑𝑟
𝑄𝑚𝑎𝑥

𝑄𝑚𝑎𝑥 − 𝑖𝑡
𝑖∗ − 𝐾𝑑 

𝑄𝑚𝑎𝑥
𝑄𝑚𝑎𝑥 − 𝑖𝑡

𝑖𝑡 + 𝐴 ∙ 𝑒(−𝐵∙𝑖𝑡) 
Eq. 3.13 

where the term concerning the polarization resistance in the previous model, 𝐾
𝑄𝑚𝑎𝑥

𝑄𝑚𝑎𝑥−𝑖𝑡
, is 

replaced by 𝐾𝑐𝑟
𝑄𝑚𝑎𝑥

𝑖𝑡+0.1𝑄𝑚𝑎𝑥
 and 𝐾𝑑𝑟 (

𝑄𝑚𝑎𝑥

𝑄𝑚𝑎𝑥−𝑖𝑡
), polarization resistance for charge and discharge, 

respectively. Also, the term 𝐾𝑐 
𝑄𝑚𝑎𝑥

𝑄𝑚𝑎𝑥−𝑖𝑡
𝑖𝑡, called the polarization voltage, allows the open-

circuit voltage varying with the SoC.  

The filtered current (𝑖∗) is the one flowing through the polarization resistance. 

Experimental results show a slow voltage dynamic for a current step response. 𝑖∗ solves 

algebraic loop problems in Simulink and is equal to 𝑖𝑏𝑎𝑡𝑡 when the current is in steady-state. 

This filtered current can be expressed as the first order step response of the battery current: 

𝑖∗ = 𝑖𝑏𝑎𝑡𝑡(1 − 𝑒
−∆𝑡 𝜏⁄ ) Eq. 3.14 

where 𝜏 is the filter time constant (in seconds), and ∆𝑡 is the simulation step time (in hours). 

Lastly, the term 𝐴 ∙ 𝑒(−𝐵∙𝑖𝑡) is exclusive for describing the exponential zone in Li-ion batteries. 

Given that the polarization resistances and constants for charge and discharge have 

similar values with an order of magnitude of 1 −4, one simplification on Eq. 3.13 consists in 
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assuming 𝐾𝑐𝑟 , 𝐾𝑑𝑟, 𝐾𝑐  and 𝐾𝑑  to be equal [154]. The replacement of those parameters by the 

constant 𝐾 (while keeping the corresponding units), giving: 

𝑉𝑐ℎ𝑎𝑟𝑔𝑒 = 𝐸0 − 𝑅 ∙ 𝑖𝑏𝑎𝑡𝑡 − 𝐾
𝑄𝑚𝑎𝑥

𝑖𝑡 +  .1𝑄𝑚𝑎𝑥
𝑖∗ − 𝐾

𝑄𝑚𝑎𝑥
𝑄𝑚𝑎𝑥 − 𝑖𝑡

𝑖𝑡 + 𝐴 ∙ 𝑒(−𝐵∙𝑖𝑡) 

𝑉𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 𝐸0 − 𝑅 ∙ 𝑖𝑏𝑎𝑡𝑡 − 𝐾
𝑄𝑚𝑎𝑥

𝑄𝑚𝑎𝑥 − 𝑖𝑡
𝑖∗ − 𝐾

𝑄𝑚𝑎𝑥
𝑄𝑚𝑎𝑥 − 𝑖𝑡

𝑖𝑡 + 𝐴 ∙ 𝑒(−𝐵∙𝑖𝑡) 

Eq. 3.15 

Fig. 3.25 shows the discharge model of the battery. 

Battery model parameters values 

A method for the identification of the parameters 𝐴, 𝐵, 𝐸0, 𝐾 and 𝑅 is described in [153] 

that does not require to take experimental measures on the battery. According to this, with the 

three points on the battery manufacturer’s discharge curve (0, 𝑉𝑓𝑢𝑙𝑙), (𝑄𝑒𝑥𝑝, 𝑉𝑒𝑥𝑝), and (𝑄𝑛𝑜𝑚, 

𝑉𝑛𝑜𝑚), as well as the internal resistance and maximum capacity, the following equations (Eq. 

3.16, Eq. 3.17 and Eq. 3.18) can be solved, using Eq. 3.13. 

For the fully charged voltage, the extracted charge is 0 (𝑖𝑡 = 0) and the filtered current 

(𝑖∗) is 0 as the current step has just begun, giving: 

𝑉𝑓𝑢𝑙𝑙 = 𝐸0 − 𝑅 ∙ 𝑖𝑏𝑎𝑡𝑡𝐴 Eq. 3.16 

At the end of the exponential zone, the factor 𝐵 can be approximated to 3 𝑄𝑒𝑥𝑝⁄  as the 

energy of the exponential term is almost 0 after 3 time constants. The filtered current 𝑖∗ is equal 

to 𝑖𝑏𝑎𝑡𝑡 given the current is in steady-state: 

𝑉𝑒𝑥𝑝 = 𝐸0 −𝐾
𝑄𝑚𝑎𝑥

𝑄𝑚𝑎𝑥 − 𝑄𝑒𝑥𝑝
(𝑄𝑒𝑥𝑝 + 𝑖𝑏𝑎𝑡𝑡) − 𝑅 ∙ 𝑖𝑏𝑎𝑡𝑡 + 𝐴 ∙ 𝑒

(
−3
𝑄𝑒𝑥𝑝

∙𝑄𝑒𝑥𝑝)
 Eq. 3.17 

The nominal zone voltage is given by: 

 

Fig. 3.25. Discharge battery model. 
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𝑉𝑛𝑜𝑚 = 𝐸0 − 𝐾
𝑄𝑚𝑎𝑥

𝑄𝑚𝑎𝑥 − 𝑄𝑛𝑜𝑚
(𝑄𝑛𝑜𝑚 + 𝑖𝑏𝑎𝑡𝑡) − 𝑅 ∙ 𝑖𝑏𝑎𝑡𝑡 + 𝐴 ∙ 𝑒

(
−3
𝑄𝑒𝑥𝑝

∙𝑄𝑛𝑜𝑚)
 Eq. 3.18 

The level of accuracy of this approach depends on the precision of the points extracted 

from the discharge curve. However, those points are found via observation of the discharge 

curve in the battery datasheet, which is not straightforward, especially when it comes to (𝑄𝑒𝑥𝑝, 

𝑉𝑒𝑥𝑝), and (𝑄𝑛𝑜𝑚, 𝑉𝑛𝑜𝑚) [155].  

In [154], the Tremblay model parameters are approximated for the IM20M, selected in 

the present work for the modeling of the storage system. As the manufacturer does not specify 

the internal resistance of the VL41M cell, the aforementioned approximation approach does not 

suffice to describe fully describe the model. For that, the authors employed the method proposed 

in [107], which consists of varying the Tremblay parameters to adjust the resulting discharge 

curves to those available for several C-rates5 in the manufacturer’s datasheet. The method 

applies optimization techniques to find the values of the 𝑿 vector, subject to 𝑿𝑚𝑖𝑛 and 𝑿𝑚𝑎𝑥: 

𝑿 = [𝐸0 𝐴 𝐵 𝐾 𝑅] 

𝑿𝑚𝑖𝑛 = [𝐸0
𝑚𝑖𝑛 𝐴𝑚𝑖𝑛 𝐵𝑚𝑖𝑛 𝐾𝑚𝑖𝑛 𝑅𝑚𝑖𝑛] 

𝑿𝑚𝑎𝑥 = [𝐸0
𝑚𝑎𝑥 𝐴𝑚𝑎𝑥 𝐵𝑚𝑎𝑥 𝐾𝑚𝑎𝑥 𝑅𝑚𝑎𝑥] 

Eq. 3.19 

that minimize the cost function 𝑓𝑜𝑏𝑗(𝑿) for the discharge currents 𝐼1, … , 𝐼𝑛: 

so that the quadratic error among the manufacturer’s voltage 𝑉𝑚𝑒𝑠 and the model estimations 𝑉 

is minimized. For that, the amperes-hour delivered 𝑄 and the discharge current 𝐼 are varied. In 

that sense, the method identifies simultaneously 𝑖 discharge curves. 

Long simulation times (several years) were considered in [154] allowing battery 

capacity degradation analysis. Good accuracy was achieved at reduced computational costs 

through sampling periods ranging from 1 minute up to 60 minutes. 

Nonetheless, in the context of the energy management of the wind/battery storage HPP, 

a step time of 1 minute would be too long. Assuming the maximum frequency for the reception 

of wind farm production measurements is 1 second, the BESS model (and in general all the 

models employed to describe the hybrid plant) need to be used with a simulation sample time 

 
5 Discharge current is usually expressed as a C-rate which is a measure of the rate at which a battery is discharged 
with respect to its maximum capacity. Thus, a 1-C rate refers to the discharge current that will discharge the 
battery in 1 hour. Other C-rates can be defined that are multiples and submultiples of the unitary C rate (e.g. 5C, 
C/2, etc.). 

𝑓𝑜𝑏𝑗(𝑿) = √∑  𝑖=𝑛
𝑖=1 ∑ (𝑉𝑚𝑒𝑠(𝑄, 𝐼𝑖) − 𝑉(𝑄, 𝐼𝑖))

2𝑄𝑛𝑜𝑚
𝑄=0 , Eq. 3.20 
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small enough to allow the energy management strategy to generate and apply control actions 

every second. 

To describe the IM20M storage system through the Tremblay model equations in 

Matlab, the VL41M battery parameters values shown in Table 3.10 were used along with the 

following values given to the Tremblay model parameters: 𝐸0=3,2399 𝑉, 𝑅=0,00197367 Ω, 

𝐾=0,00010415 𝑉 𝐴ℎ⁄ , 𝐴=0,7541 𝑉, and 𝐵=0,0348 (𝐴ℎ)−1 [154]. Also 𝑆𝑜𝐶𝑚𝑎𝑥=80 %, 

𝑆𝑜𝐶𝑚𝑖𝑛=20 %, 𝜏=1,8 𝑠6,  ∆𝑡=1/3600 ℎ, and 20 parallel cells as well as 174 cells in row. 

 
6 According to VL41M battery specification. 

Table 3.10.  VL41M cell parameters values [154]. 

Symbol Description Unit Value 

𝑉𝑓𝑢𝑙𝑙 Fully charged voltage 𝑉 3,95 

𝑉𝑛𝑜𝑚 Nominal voltage 𝑉 3,6 

𝑉𝑒𝑥𝑝 Exponential voltage V 3,9 

𝑄𝑛𝑜𝑚 Nominal capacity 𝐴ℎ 39 

𝑄𝑚𝑎𝑥 Maximum cell capacity 𝐴ℎ 41 

𝑄𝑒𝑥𝑝 Exponential capacity 𝐴ℎ 1 

𝐼 Nominal discharge current A 13,67 

𝑉𝑐ℎ𝑙𝑖𝑚 Cell charge voltage limit 𝑉 4 

𝑉𝑑𝑐ℎ𝑙𝑖𝑚 Cell cut-off voltage 𝑉 2,7 
 

 
Fig. 3.26. Validation of Matlab implementation: (a) input current. In (b), (c) and (d) the signals 

obtained for 𝑖𝑡, 𝑖 ∗ and 𝑆𝑜𝐶 are compared. 
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For validating this nonlinear model, the current signal displayed in Fig. 3.26.a was 

applied to both the implemented model and the Simulink battery block, the latter configured to 

represent the 1 MW / 580 kWh storage system (using the values in Table 3.10 and the numbers 

of parallel and series cells). An initial state-of-charge of 50 % was chosen for the test. Fig. 

3.26.b-d show the signals obtained for 𝑖𝑡, 𝑖 ∗ and 𝑆𝑜𝐶. As can be seen in Fig. 3.26.d, at the 

beginning of the simulation the initial 𝑆𝑜𝐶 is slightly lower than the value declared. A look-up 

table was used so that the 𝑆𝑜𝐶 value for the first iteration of the script describing the IM20M 

could follow the Simulink battery.  

On its turn, Fig. 3.27 depicts the percentage errors obtained when the Simulink signals 

are taken as theoretical values and the implemented model signals, as approximated values. 

The errors in the model for the signals 𝑖𝑡 and 𝑆𝑜𝐶 are close to zero (Fig. 3.27.a and Fig. 

3.27.c). Meanwhile, Fig. 3.27.b reveals an error caused by a delay between the 𝑖 ∗ signals 

obtained. Error peaks take place during several seconds when the input current changes (see 

Fig. 3.28.a and  Fig. 3.28.b). As can be noted from Fig. 3.28.b the implemented model presents 

a dynamic which is a bit faster (of the order of 4 seconds) than that of the Simulink model. In 

that sense, the model implemented is less realistic 

 

 

Fig. 3.27. Percentage errors of: (a) 𝑖𝑡, (b), 𝑖 ∗, and (c) 𝑆𝑜𝐶 signals obtained. 
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Fig. 3.29 presents the discharge of the modeled 1 MW / 580 kWh storage system (Fig. 

3.29.a). For this test, the initial state-of-charge was set at 100 % and the minimum and 

maximum 𝑆𝑜𝐶 limits, at 0 and 100 % (Fig. 3.29.b). Furthermore, the power reference was 

defined to withdraw 580 kW from the battery for one hour. As can be seen, the power followed 

the reference until the 𝑆𝑜𝐶 reached 0 % after 52 minutes. 

PowerFactory model validation 

A step taken before the battery nonlinear model implementation in PowerFactory, was 

the validation of a standalone storage unit in the same software through comparison with the 

Matlab battery block. To do so, the setup shown in Fig. 3.30 was employed. The IM20M 

modeling was based on the battery template available in the library of PowerFactory. Such a 

battery template implements a static generator grid element with several DSL models. A DPL 

(DIgSILENT Programming Language) script with the Tremblay model equations was added. 

The validation setup also contains a PowerFactory external grid element, used to represent 

external networks, a 4,6 MVA, 0,9 lagging power factor PowerFactory synchronous motor 

 
Fig. 3.29. Discharge of IM20M storage system model. 

 

Fig. 3.28. Zoom in on time axis around the second change in the input current signal: (a) input current 

and i* signals obtained (b) i* error. 
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element configured to consume 2 MW and 2 Mvar, and a 10 kV busbar linking the three first 

elements. 

The frequency control and the voltage support feature, originally present in the template, 

were removed. With this modification, the battery active power reference is no longer 

calculated depending on the frequency but imposed through an external file. Fig. 3.31 shows 

the resulting DSL frame on which the battery modeling is based. The DSL models, 

measurement devices and PowerFactory elements of which the frame is composed are [156]: 

• Power profile: link to external file with timestamped active power data. The data is used 

as reference for the battery active power. 

• Current: current signals required by the battery model and the static generator block. 

• Battery Model: Model of the battery. 

• Static generator: Link to a static generator, representing the battery and the inverter. 

• Frequency Measurement: Frequency measurement for frequency control. 

 
Fig. 3.30. System employed to test the battery model in PowerFactory. 

  
Fig. 3.31. DSL frame for integrating the battery model and an external file. 
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Fig. 3.33 presents the validation test results of the BESS modeling. Fig. 3.33.a  shows 

the reference power profile as well as the battery power signals obtained from the Simulink 

battery bloc and the PowerFactory implementation. Given a power reference was used as input, 

the battery current in Matlab was calculated by dividing the target power by the battery voltage 

(Fig. 3.33.b). The state-of-charge (𝑆𝑜𝐶) and integral current (𝑖𝑡) signals obtained are presented 

in Fig. 3.33.c-d. The simulation time is of seven days and the minimum and maximum state-of-

charge limits are set at 20 % and 80 %. A sampling time of 1 second was employed in the 

simulations.  

Fig. 3.32 and Fig. 3.34 take up the signals from Fig. 3.33, zooming around the first hour 

of simulation. 

 
Fig. 3.32. Simulation results of BESS modeling in PowerFactory in comparison to Matlab, zoom around 

the first simulation hour: (a) power reference profile and active power obtained, (b) battery current. 

             

          

 

 

 

 

 

  
 
 
  
  
 
 
 

    

                 

              

        

             

          

 

 

 

 

  
 
 
  
  
 
 

    

              

        

             

          

    

    

    

    

  

  
 
 
  
 
 

    

              

        

             

          

   

   

   

   

  
  
  
 
 

    

              

        

 
Fig. 3.33. Simulation results of BESS modeling in PowerFactory in comparison to Matlab: (a) power 

reference profile and active power obtained, (b) battery current, (c) 𝑆𝑜𝐶, (d) 𝑖𝑡. 

    

    

    

 

   

   

  
 
 
  
  
 
 
 

    

                 

              

            

    

 

   

  
 
 
  
  
 
 

    

              

        

        

           

  

  

  

  

  
 
 
  
 
 

                  

        

        

           

 

   

   

   

   

  
  
  
 
 

    

              

        

    

    

    

 

   

   

  
 
 
  
  
 
 
 

    

                 

              

            

    

 

   

  
 
 
  
  
 
 

    

              

        

        

           

  

  

  

  

  
 
 
  
 
 

                  

        

        

           

 

   

   

   

   

  
  
  
 
 

    

              

        



3. Electrical grid and hybrid power plant modeling and validation 

 R. LOPEZ - 2021 105 
 

As can be seen, the power signals are superposed indicating the Matlab and 

PowerFactory implementations models produce similar results. 

3.4 Model for control 

A control-oriented linear model is required by the controller to generate optimal control 

actions. A linear time-invariant (LTI) system described by the following state-space 

representation is used: 

𝒙(𝑘 + 1) = 𝑨𝑑 ∙ 𝒙(𝑘)+ 𝑩𝑑 ∙ 𝒖(𝑘) 

𝒚(𝑘) = 𝑪𝑑 ∙ 𝒙(𝑘) 
Eq. 3.21 

where 𝑘 represents the sampling time, 𝒙(𝑘) ∈  ℝ𝑛 represents the system states, 𝒖(𝑘) ∈ ℝ𝑛𝑢 the 

decision variable or input, and 𝒚(𝑘) ∈ ℝ𝑛𝑟, the controlled output. 

The linear model for control presented next is founded on the BESS model, whose input 

is the storage system current.   

3.4.1 Linear model for control  

In the discrete-time implementation, the BESS actual storage system charge 𝑖𝑡 is 

calculated as [154]: 

𝑖𝑡(𝑘 + 1) =  𝑖𝑡(𝑘)+ ∆𝑡 ∙ 𝑖𝐵𝐸𝑆𝑆(𝑘 + 1) Eq. 3.22 

𝑖∗ is calculated through filtering the BESS current as: 

𝑖∗[𝑘 + 1] =  (1 − 𝛼) ∙ 𝑖∗[𝑘] + 𝛼 ∙ 𝑖𝐵𝐸𝑆𝑆(𝑘 + 1) Eq. 3.23 

where the mitigating factor 𝛼 is defined as [154]: 

𝛼 =
∆𝑡

(𝜏 + ∆𝑡)
 Eq. 3.24 

The SoC in percent is calculated from the storage system extracted capacity (𝑖𝑡) as: 

 

Fig. 3.34. Simulation results of BESS modeling in PowerFactory in comparison to Matlab, zoom around 

the first simulation hour: (a) 𝑆𝑜𝐶, (b) 𝑖𝑡. 
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𝑆𝑜𝐶(𝑘 + 1) =  1  (1 −
𝑖𝑡(𝑘)

𝑄
) −

∆𝑡

𝑄
𝑢(𝑘 + 1) Eq. 3.25 

Rewriting Eq. 3.22 - Eq. 3.25 in the form of state-space representation gives:  

[

𝑖𝑡(𝑘 + 1)
𝑖∗(𝑘 + 1)
𝑆𝑜𝐶(𝑘 + 1)

1  

] = [

1    
 (1 − 𝛼)   

−1  𝑄⁄   1
   1

] [

𝑖𝑡(𝑘)
𝑖∗(𝑘)
𝑆𝑜𝐶(𝑘)
1  

]  + [

∆𝑡
𝛼

−∆𝑡 𝑄⁄
 

]  𝑢(𝑘 + 1) Eq. 3.26 

Eq. 3.26 describes the ESS model used in this thesis to approximate the storage system 

extracted capacity 𝑖𝑡, filtered current 𝑖∗, and state-of-charge 𝑆𝑜𝐶. As can be seen, 𝑖𝑡, 𝑖∗, 𝑆𝑜𝐶 

and a constant used in the SoC calculation, conform the state vector in the representation.  

The model input and storage system active power is given by 

where the subscript “BESS” in the variables names indicates the storage model considers four 

IM20M units. Also, the injected power is calculated according to: 

where 𝑃𝐵𝐸𝑆𝑆 is the power absorbed or delivered by the storage system. Its sign is negative during 

charging and positive during discharging cycles of the battery. 

As stated in Eq. 3.28, by means of 𝑃𝐵𝐸𝑆𝑆 can be controlled the power injection into the 

grid (𝑃𝐼𝑁𝐽), which as said is one of the problem outputs. 

Eq. 3.15, used for computing the output battery voltage, presents two non-linearities: 

1. The exponential zone on the discharge curve (Fig. 3.24). 

2. The non-linear terms containing the parameter 𝐾. 

Instead of considering 𝑣𝐵𝐸𝑆𝑆 among the output variables of the HPP model for control, 

the proposed implementation uses a measurement of the voltage coming from the plant. It is 

assumed that the voltage measurement signal is available at every calculation step. 

 Also, in order to decouple the control of the output 𝑃𝐼𝑁𝐽 from the model input, it is 

necessary to define among the regulated variables a current signal that is equivalent to 𝑖𝐵𝐸𝑆𝑆. In 

section 3.3.4.2 was mentioned that the filtered current 𝑖∗ and 𝑖𝑏𝑎𝑡𝑡 have the same magnitude in 

steady state.  

To compare these signals, the linear model equations were implemented in Matlab. Fig. 

3.35.a illustrates the stepped exciting current 𝑖𝐵𝐸𝑆𝑆 used as input to the BESS model along with 

the filtered current 𝑖∗ signal obtained. The relative error obtained by comparing these two 

𝑢 =  𝑖𝐵𝐸𝑆𝑆 

𝑃𝐵𝐸𝑆𝑆 = 𝑣𝐵𝐸𝑆𝑆 ∙ 𝑖𝐵𝐸𝑆𝑆 
Eq. 3.27 

𝑃𝐼𝑁𝐽 = 𝑃𝑊𝐸𝐶𝑆 + 𝑃𝐵𝐸𝑆𝑆 Eq. 3.28 



3. Electrical grid and hybrid power plant modeling and validation 

 R. LOPEZ - 2021 107 
 

signals: 𝑖𝐵𝐸𝑆𝑆 as the theoretical or reference signal, and 𝑖∗ as the measured signal, is depicted 

in Fig. 3.35.b. 

The instantaneous variations in the input current are nonrealistic yet allow to appreciate 

the difference among the two signals. As evidenced in the figures, 𝑖∗ presents a slight delay 

with respect to the storage system current. As in the calculation of the variable 𝑖𝑡 (employed to 

compute the variable 𝑆𝑜𝐶), this implementation uses 𝑖∗ instead of 𝑖𝐵𝐸𝑆𝑆 (see Eq. 3.22), the delay 

in 𝑖∗ implies that the linear modeling presents a dynamic which is a bit slower than that of the 

system. Such a dynamic is expected not to affect the control strategy though. 

Other than 𝑖∗, another signal to regulate is the state-of-charge. Thus, Eq. 3.29 describes 

the model output vector 𝑦 containing the regulated variables. 

Later, the model for control will allow the optimal control effort calculation and with it, 

the estimation of states and output. For that, the knowledge of the storage system voltage 

(𝑣𝐵𝐸𝑆𝑆) and instant wind farm production (𝑃𝑊𝐸𝐶𝑆)  is required, as sketched in Fig. 3.36.  

𝑦[𝑘] = [
𝑖∗(𝑘)
𝑆𝑜𝐶(𝑘)

 ] = [
 1   
  1  

] [

𝑖𝑡(𝑘)

𝑖∗(𝑘)
𝑆𝑜𝐶(𝑘)
1  

] Eq. 3.29 

 

Fig. 3.35. 𝑖𝐵𝐸𝑆𝑆 and 𝑖∗: (a) current plots, (b) error function. 

    

Fig. 3.36. Model for control and output calculation. 
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3.4.2 Control model validation 

The model for control which is based on the storage system linear model described in 

Matlab is next validated by comparison with the nonlinear BESS model implemented in 

PowerFactory. The PowerFactory configuration is the one depicted in Fig. 3.23. 

Fig. 3.37.a-c present the integral current, the filtered current, and the state-of-charge, 

respectively. Under the simulation conditions studied, it can be said that the linear model 

behaved as the more detailed description of the BESS implemented in PowerFactory. 

3.5 Chapter conclusions 

In this third Chapter, the models developed for simulation and control have been 

described.  

Power flow and dynamic simulations have allowed analyzing static and dynamic 

behavior of the grid model with respect to two operation scenarios for which real data was 

available for comparison. In the static case, power flows throughout the grid obtained via 

simulation seem consistent with respect to the telemetry data. Even though HTB-level busbars 

voltages from simulation were on average 2,8 % smaller than the measured ones, the voltages 

at load busbars were inside the desired limits and consistent with the telemetry. 

 
Fig. 3.37. Validation test signals comparison: (a) integral current, (b) filtered current, (c) state-of-

charge, (d) BESS power. 
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Control models in DIgSILENT simulation language were used to represent the wind 

turbines and the storage units within the hybrid power plant using. The wind turbines modeling 

considers electrical, mechanical, aerodynamic and control system aspects. The energy storage 

elements modeling was based on the Tremblay model equations. A simulation was performed 

that allowed to follow up the evolution of several signals as the IM20M, commercial storage 

solution retained, was charged and discharged over a seven days period. 

A discrete-time and linear version of the ESS model was the basis for the HPP model 

for control. Comparison with the more detailed representation of the BESS implemented in 

PowerFactory showed similar results when the state-of-charge was within the 20 % - 80 % 

range, where the variation of the output voltage with respect to the charge is approximately 

linear.  
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This Chapter presents the design of the MPC control strategy for the energy 

management of the hybrid power plant. For this purpose, several steps are followed comprising 

the problem definition, the optimization method selection and, the cost function definition, 

which converge in a global mathematical description of the strategy. 

4.1 Introduction 

Several criteria can be used to figure out an optimization problem. Indeed, the type of 

an optimization problem can be identified depending features like the presence and type of 

constraints, the “nature” of the system model variables, the problem physical structure, the 

allowed values for the decision variables, or the number of quantities to minimize or maximize 

(objectives) in the cost function.  

Accordingly, considering the presence and type of constraints, optimization problems 

subject to one or more constraints are said constrained problems. Meanwhile, problems with no 

constraints are called unconstrained problems. Otherwise, if the constraints depict restrictions 

in the system behavior, the problem is said to have functional constraints whilst those with 

constraints representing physical limitations on the system variables are problems with 

geometric or side constraints [157]. If the system variables in the optimization problem do not 

change over time, the variables are said to be static and the problem is a static optimization 

problem. Conversely, if the variables are function of the time, the problem is known as a 

dynamic optimization problem [157].  

In static optimization problems, the values of the system variables are considered for a 

specific instant, hence the optimal corresponds only to one instant. In dynamic problems the 

system variables represent the phenomena over a period of time, that is, system change over 

time is considered. Also, dynamic problems implicate a number of calculation stages. Several 

other types of optimization problems can be found considering the system modeling strategy 

(discrete, continuous, linear, nonlinear, etc.).  

By taking into account the allowed values for the decision variables, two ways to 

classify them can be depicted: first, as integer or real-valued and second, as deterministic or 

stochastic [157]. According to the first classification, if some or all the decision variables in the 

problem only can take integer (or discrete) values, the problem is referred to as an integer 

programming problem. On the other hand, if the problem consists of choosing values of real 

variables to minimize or maximize a real function, the problem is said real-valued. Under the 

second classification, deterministic problems are those in which a given starting point and 
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parametrization produce a unique result [107]. Finally, in stochastic problems, some or all 

variables are probabilistic (also termed non-deterministic or stochastic).  

Optimization problems can also be classified into optimal control problems or non-

optimal control problems. Optimal control problems are mathematical programming problems 

defined by two types of variables: control or decision variables (controlled by the decision-

maker), and state variables (describing the mathematical state of the system) [157]. A key aspect 

in understanding optimal control is that solving an optimal control problem means finding the 

set of control variables minimizing the cost function (not present in non-optimal control 

problems) to achieve the desired performance. 

One last criterion to identify optimization problems is the number of optimization 

objectives (variables to minimize or maximize). Under this classification, problems having only 

one objective are called single-objective programming problems. Consequently, problems 

having two or more are called multi-objective programming problems [157]. 

Considering this, the next section focuses on the design of a control strategy that at every 

timeslot solves the energy dispatch problem of controlling the HPP, so its output complies a 

power injection commitment. The design process is explained step-by-step starting at the 

problem definition and ending at the equations leading to finding the optimal solutions. 

4.2 Control strategy design 

The present section deals with the design of the control strategy for the energy 

management of the hybrid power plant. For that, the HPP’s operating conditions and 

mathematical representation are reviewed to identify the quantitative measures to optimize, the 

controllable variables that affect the state of the system, and the problem restrictions limiting 

the set of feasible solutions. After that, a short description of different optimization problem 

types precedes both the selection of an optimization method and the definition of the cost 

function.  

The algorithm selection, done according to the nature of the constraints and the 

equations involved, as well as to the permissible values for the decision variables, affects the 

mathematical form of the cost function defined in this section. Finally, the algorithm to obtain 

optimal outputs taking into consideration both wind production forecasts and the system state, 

is developed. 
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4.2.1 Plant description 

The transmission of power from the wind power generation-battery energy storage 

system HPP towards the Guadeloupe island grid is coordinated by an EMS. Fig. 4.1 depicts a 

simplified version of the hybrid power plant considered.  

The hybrid plant is composed of 4 DFIG wind turbines for a total of 8 MW and 4 

Intensium Max 20M battery storage units connected in parallel for a total capacity of 4 MW / 

2,32 MWh. In such a generation facility, the power injected into the island power system 𝑃𝐼𝑁𝐽 

is the addition of the power coming from the wind energy conversion energy system 𝑃𝑊𝐸𝐶𝑆 and 

the storage system power 𝑃𝐵𝐸𝑆𝑆 (negative in case of discharge), or: 

𝑃𝐼𝑁𝐽 = 𝑃𝑊𝐸𝐶𝑆 + 𝑃𝐵𝐸𝑆𝑆 Eq. 4.1 

4.2.2 Problem definition 

The problem definition consists in the identification of control objectives, decision 

variables, and problem constraints. These steps precede the development of an optimization 

strategy adapted to the problem dealt with. Below, the control objectives identification process 

starts with a recall of the contractual hybrid power operating conditions.  

4.2.2.1 Objectives  

The aim of the hybrid power plant EMS is ensuring that the power supplied to the main 

grid respect the operating rules, defined at the Insul’Grid project specification, while 

maximizing the plant’s profit. Below are described the functioning rules taken into 

consideration in the definition of the EMS. 

• State-of-charge: the storage system must be operated with its 𝑆𝑜𝐶 (in %) limited to 

within the range [𝑆𝑜𝐶𝑚𝑎𝑥, 𝑆𝑜𝐶𝑚𝑖𝑛]. 

• Forecasts and power injection band: the plant operation is based on 24 hours of wind 

speed forecasts for the period 0h00 – 23h59 of the day D+ 1 (i.e. the next day, when the 

 

Fig. 4.1. Simplified representation of the hybrid wind-storage power plant. 
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actual production is taking place). A scheduling algorithm represents the forecasted 

production in the form of a half-hourly stepped profile. Such a profile is taken here as 

daily day-ahead electricity commitment generation schedule (𝑃𝑆𝐶𝐻𝐸𝐷).  

The tolerated injection region determines how far the power transferred towards the grid 

(𝑃𝐼𝑁𝐽) can get from the commitment profile (𝑃𝑆𝐶𝐻𝐸𝐷) without triggering a penalty 

condition (see Fig. 1.9). As the output power of the WECS is limited at 8 MW (𝑃𝑀𝐴𝑋), 

by setting the tolerance at 25 % of the installed capacity, the upper and lower limit are 

2 MW above and below 𝑃𝑆𝐶𝐻𝐸𝐷 (see the example presented in section 1.4.1.2): 

𝑃𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 = 𝑃𝑆𝐶𝐻𝐸𝐷 +  .25 ∙ 8 × 1 
6 

Eq. 4.2 

𝑃𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 = 𝑃𝑆𝐶𝐻𝐸𝐷 −  .25 ∙ 8 × 1 
6 

• Power variation speed limits: during the positive or negative step changes of the 

generation schedule, the injected power variation (MW/s) must respect the following 

rate of change limitations: during upward steps, the passing from 0 to 𝑃𝑀𝐴𝑋 must happen 

between 30 seconds and 5 minutes. Also, during downward steps, the passing from 

𝑃𝑀𝐴𝑋 to 0 must take place between 1 and 10 minutes.  

• Plant revenues and penalty system: the plant revenues are determined via a penalty 

system. According to this, power injections with excursions of 60 consecutive seconds 

outside the limits are penalized with non-payment of the power supplied to the grid for 

the next 10 minutes. The plant revenue during the simulation time can then be calculated 

considering the energy selling price (𝑆𝑃 in /c per kWh) as: 

𝑃𝑅 = ∑ 𝑃𝐼𝑁𝐽(𝑡) × 𝑆𝑃(𝑡) × 𝜕(𝑡)

𝑠𝑖𝑚.  𝑡𝑖𝑚𝑒

𝑡=0

  

where 

𝜕(𝑡) = {
 
1

 
when a penalty condition is active Eq. 4.3 

 In other cases, 

The hybrid plant operating conditions having been explained, the attention shall focus 

now on the model design variables. 

4.2.2.2 Design variables 

A model is a mathematic representation of the interactions between the system variables 

and its environment [158]. Different elements in the system model play a role in the definition 

of the cost function and constraints, e.g. the number of independent variables and equations it 
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is composed, or the decision variables, which are controllable parameters that affect the state 

of the system. The definition of the latter is another step in the problem definition phase 

preceding the problem’s cost function definition and control strategy development. 

A model for the wind-storage HPP was introduced in Chapter 3. Such a model, is based 

on the Li-ion battery state-space representation presented in the same Chapter, as represented 

in Fig. 3.36, and defined by Eq. 3.22 – Eq. 3.29. 

The hybrid plant’s ESS consists of a Li-ion 4 MW / 2.32 MWh battery system 

comprising four units of the Saft’s IM20M (1 MW / 580 kWh). The latter is composed by packs 

of VL41M cells. This is described in the BESS state-space representation which implements 

the parameters of that cell (described in Table 3.11) and the corresponding series and parallel 

branches required to reach the power and energy ratings mentioned. 

The state-space representation considers as state variables the BESS actual charge 

measured in Ah, the filtered current in Amperes and the state-of-charge in percent, as follows: 

[

𝑥1
𝑥2
𝑥3
] = [

𝑖𝑡
𝑖∗

𝑆𝑜𝐶
] Eq. 4.4 

 Meanwhile, the model input 𝑢 is the BESS current. 

𝑢 =  𝑖𝐵𝐸𝑆𝑆 Eq. 4.5 

Also, the model outputs are 𝑃𝐼𝑁𝐽 and 𝑆𝑜𝐶, or 

𝒚 = [
𝑃𝐼𝑁𝐽
𝑆𝑜𝐶

], Eq. 4.6 

namely the storage system state-of-charge and power transferred to the grid. The 𝑆𝑜𝐶 is the 

third state variable (𝑥3), whereas 𝑃𝐼𝑁𝐽 can be computed through Eq. 4.7 via the BESS voltage 

(considered a measurable variable) and the battery current, which is part of the state-space 

representation model. 

𝑃𝐵𝐸𝑆𝑆 = 𝑣𝐵𝐸𝑆𝑆 ∙ 𝑖𝐵𝐸𝑆𝑆 Eq. 4.7 

 However, 𝑖𝐵𝐸𝑆𝑆 is also the decision variable of the model, i.e. the signal used to control 

the hybrid power plant ESS. In sections 3.4.1 and 3.4.2 it was demonstrated that the filtered 

current (𝑖∗) can be assumed equal in magnitude to 𝑖𝐵𝐸𝑆𝑆 for the calculation of the BESS power. 

In line with this, Eq. 4.7 can be rewritten as  

𝑃𝐵𝐸𝑆𝑆 = 𝑣𝐵𝐸𝑆𝑆 ∙ 𝑖
∗ Eq. 4.8 
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Finally, the storage system is used to compensate for the lacking power required to meet 

the commitment. The amount of battery power required at any instant is given by: 

Until now, the system design variables have been stated and discussed. In order to 

complete the problem definition, in the following section, the problem constraints will be 

defined. 

4.2.2.3 Constraints  

According to the description of the system operation presented, the following are the 

problem constraint variables introduced in the form of inequalities. The constraints allow the 

definition of “forbidden” operating regions with respect to the constrained quantities. 

Therefore, they also limit the set of feasible values for the decision variable in the search for an 

optimal solution. 

• Maximal power injection: the power injected into the utility grid is subject to excursions 

outside the injection band whose boundaries are those defined in Eq. 4.2. Those 

excursions are undesired as they can trigger penalty conditions reducing the hybrid plant 

profit. As sketched in Fig. 4.2, the maximal power injection constraint is given by:  

With this, injections above the band ceiling are forbidden, making available extra power 

for charging the ESS. 

This constraint is implemented via the current, by translating the instant upper power 

injection limit in terms of current. In inequality form, the constraint is given by: 

𝑖∗ ≤ 𝑖∗𝑚𝑎𝑥 Eq. 4.11 

𝑃𝐵𝐸𝑆𝑆𝑟𝑒𝑓 = 𝑃𝑆𝐶𝐻𝐸𝐷 − 𝑃𝑊𝐸𝐶𝑆 Eq. 4.9 

𝑃𝐼𝑁𝐽 ≤ 𝑃𝐼𝑁𝐽
𝑚𝑎𝑥 Eq. 4.10 

 

 

Fig. 4.2 Power injection constraint: forbidden and allowed injections regions. 
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• Rate of change of power injected: in the proposed strategy, given an instantaneous wind 

turbine production level, the power injection is controlled through the storage system 

power which in turn is controlled through the input 𝑢 = 𝑖𝐵𝐸𝑆𝑆 (Eq. 3.28 and Eq. 4.1). 

This means that the rate of change of the power transferred to the utility grid (𝑑𝑃𝐼𝑁𝐽 𝑑𝑡⁄ ) 

can be limited by restricting the derivative of the storage system current. Expressing the 

power variation bounds as current variation bounds gives in inequality form: 

𝑑𝑖𝐵𝐸𝑆𝑆
𝑚𝑖𝑛

𝑑𝑡
≤
𝑑𝑖𝐵𝐸𝑆𝑆
𝑑𝑡

≤
𝑑𝑖𝐵𝐸𝑆𝑆

𝑚𝑎𝑥

𝑑𝑡
 Eq. 4.12 

where the set-point signal for 𝑢 = 𝑖𝐵𝐸𝑆𝑆 at any calculation instant 𝑘 is computed as 

follows: 

• State-of-charge: the ESS must be operated in accordance with the recommendations of 

the manufacturer in terms of depth-of-discharge (𝐷𝑜𝐷) and charging rates as to avoid 

premature aging. 𝐷𝑜𝐷 and 𝑆𝑜𝐶 are related terms giving an idea of current storage 

system capacity in percentage. The first, measures the ESS capacity that has been 

discharged starting from the maximum capacity while the second, measures the present 

ESS capacity as a percentage of maximum capacity. The relation among 𝐷𝑜𝐷 and 𝑆𝑜𝐶 

is as follows [122]: 

According to Eq. 4.14, a 100 % 𝑆𝑜𝐶 is a 0 % 𝐷𝑜𝐷, and so on. The depth-of-discharge 

recommendations can thus be translated into 𝑆𝑜𝐶 bounds. In inequality form, the 𝑆𝑜𝐶 

constraints are expressed as follows: 

𝑆𝑜𝐶𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶 ≤ 𝑆𝑜𝐶𝑚𝑎𝑥 Eq. 4.15 

4.2.3 Control and optimization: application to the hybrid power plant  

After the problem definition phase, previously presented, the remaining steps in the 

control strategy design are the optimization algorithm selection and the cost function 

formulation. Firstly, the deterministic problem types are discussed. An algorithm is then 

selected from among those types, and in conformity with the problem definition, a compatible 

cost function is defined. 

𝑖𝐵𝐸𝑆𝑆𝑟𝑒𝑓(𝑘) =
𝑃𝐼𝑁𝐽𝑟𝑒𝑓(𝑘)

𝑣𝐵𝐸𝑆𝑆(𝑘)
=
𝑃𝑆𝐶𝐻𝐸𝐷(𝑘)

𝑣𝐵𝐸𝑆𝑆(𝑘)
 Eq. 4.13 

𝑆𝑜𝐶 = 1   % − 𝐷𝑜𝐷 Eq. 4.14 
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4.2.3.1 Deterministic optimization problems 

A general form of optimization problems is presented as follows: 

where 𝒙 ∈  ℝ𝑛 is the vector of decision variables or the control input, 𝑓0 ∶ ℝ
𝑛 → ℝ is the cost 

function, and 𝑓𝑖 ∶ ℝ
𝑛 → ℝ, 𝑖 = 1,… ,𝑚 represent the constraints. The set {𝒙: 𝑓𝑖(𝒙) ≤  , 𝑖 =

1, … ,𝑚} is known as the feasible set or search space and contains all the possible points that 

satisfy the constraints of the problem. An 𝒙𝑜𝑝𝑡 is defined as the optimal solution to the problem 

if 𝑓0(𝒙𝑜𝑝𝑡) gives the optimal cost and if 𝒙𝑜𝑝𝑡 is inside the feasible set [157]. 

On the basis of the equations describing the cost function and constraints, optimization 

problems can be divided into linear, nonlinear, geometric, and quadratic problems [157]. For 

instance, given 𝑨 ∈ ℝ𝑚×𝑛 and 𝒃 ∈ ℝ𝑚, finding the vector 𝒙 ∈ ℝ𝑛 that minimizes the cost 

function 

min
𝒙
‖𝑨𝒙 − 𝒃‖2 

Eq. 4.17 

 

is a least-squares problem or a linear least-squares problem. In other case, if the problem 

consists in finding a 𝑛 −vector,  

𝒙 = (

𝒙1
⋮
𝒙𝑛
) 

Eq. 4.18 

 

to solve 

given 𝒄 ∈ ℝ𝑛,  𝑖 ∈ ℝ
𝑛 and 𝒃𝑖 ∈ ℝ

𝑛, where  𝒄𝑇 denotes the transpose of 𝒄, the problem is called 

a linear programming (LP) problem. When the objective or at least one of the constraints is 

nonlinear, the problem is said to be a nonlinear programming (NLP) problem. 

Problems of the form: 

in which the cost function and constraints are polynomials of the decision variable 𝒙 are called 

geometric programming problems. 

min
𝒙
𝑓0(𝒙) subject to 𝑓𝑖(𝒙) ≤   Eq. 4.16 

 

min
𝒙
 𝒄𝑇𝒙 =  𝑖

𝑇𝒙 ≤ 𝒃𝑖 , 𝑖 = 1,… ,𝑚, Eq. 4.19 

 

𝑔(𝒙) = ∑𝒄𝒌𝒙1
 𝟏𝒌𝒙2

 𝟐𝒌 …𝒙𝑛
 𝒏𝒌

𝑚

𝑘=1

 
Eq. 4.20 

 



Energy management optimization of a wind-storage based HPP connected to an island power grid 

120 R. LOPEZ - 2021 

In like manner, quadratic programming (QP) problems are a type of NLP problems 

containing a quadratic objective function and linear constraints. The standard form of a QP 

problem can be represented as: 

where 𝒇 is a vector and 𝑯 is a squared matrix. To consider an objective function to be convex 

(condition for the existence of a global minimum) the H matrix must be positive definite (in 

addition to symmetric) [157], [159]. 

4.2.3.2 MPC feedback control design  

Model Predictive Control (MPC), also known as Receding Horizon Control (RHC) 

[160-163], refers to a family of control methods which use the model of the controlled system 

to obtain a control signal by minimizing an objective function [161]. MPC allows the 

incorporation of constraints as part of the control design requirements, enabling their systematic 

handling. The ability to handle constraints is important as real-life applications are subject to 

several kinds of restrictions that should be considered in the search for optimal solutions. 

Compared to classical linear unconstrained methodologies such as PID techniques, MPC has 

proven to produce much better results as it permits operating the systems near their constraint 

boundaries [164]. Other features of MPC are the handling of multi-variable and nonlinear 

systems. 

Predictive control is an intuitive strategy. It consists of planning over a finite time 

window the future control actions that would lead to the predicted and desired outcome, like 

humans do every day. The cost function is a scalar function that evaluates the future control 

actions in the search for those minimizing the cost. Low values of cost imply good closed-loop 

performance. In general, a closed-loop system is the one taking a measurement of the output 

and using it for comparison with a reference signal, in order to estimate the states. In this 

dissertation, MPC control law is considered a closed-loop process because it uses the state-

feedback to compute control actions stepwise [164].  

Once a cost function has been defined, the MPC strategy implements the following steps 

[163]: 

• Measure the state at time 𝑘. 

• Calculate the trajectory of control actions that minimize the cost function. 

• Apply the first control action in the trajectory during the timeslot [𝑘, 𝑘 + 1]. 

𝑘 + 1 refers to the timestep one sample interval after the timestep 𝑘. 

min
𝒙

1

2
𝒙𝑻𝑯𝒙+ 𝒇𝑇𝒙 Eq. 4.21 
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Measure the state at time 𝑘 + 1 and restart the process. 

In an MPC algorithm, all the input dynamics take place within the time horizon selected 

and the assumption is done that the control inputs remain constant all along the prediction 

window. Long horizons tend to allow better closed-loop behavior and stability but add more 

complexity to the optimization problem resolution due to the growth in the matrices sizes they 

involve [164]. To calculate the best trajectory of control actions at each step, the strategy needs 

to predict the consequences on the cost function of every possible control sequence. The state-

space representation of linear time-invariant (LTI) systems 

is a one-step-ahead prediction map as it gives the state 𝒙(𝑘 + 1) from the current state vector 

𝒙(𝑘) ∈ ℝ𝑛 and the input or control action 𝒖(𝑘) ∈ ℝ𝑛𝑢, where the matrices 𝑨 and 𝑩 have 

dimensions 𝑛 × 𝑛 and 𝑛 × 𝑛𝑢, respectively. 

A multi-step ahead map is then required to apply the predictive control agenda 

mentioned above. The state trajectory vector containing estimates for the next 𝑁𝑝 sampling 

instants is described by: 

𝒙(𝑘) = (

𝒙(𝑘 + 1)
⋮

𝒙(𝑘 + 𝑁𝑝)
) Eq. 4.23 

which means that the 𝑁𝑝 state vector estimates 𝒙(𝑘 + 1),… , 𝒙(𝑘 + 𝑁𝑝) are piled up in 𝒙̃(𝑘) ∈

ℝ𝑁𝑝𝑛. The parameter 𝑁𝑝 is the length of the optimization window, or the prediction horizon.  

The future control sequence is composed of the 𝑁𝑐 elements 𝒖(𝑘),… , 𝒖(𝑘 + 𝑁𝑐 −

2), 𝒖(𝑘 + 𝑁𝑐 − 1), where 𝑁𝑐 is called the control horizon. For simplicity, in the present work 

the control horizon size is defined as equal to the length of the optimization window (𝑁𝑐 = 𝑁𝑝). 

Thus, the future control trajectory 𝒖̃(𝑘) ∈ ℝ𝑁𝑝𝑛𝑢 is a vector composed by the concatenation of 

𝑁𝑝 vectors: 

𝒖̃(𝑘) =

(

 

𝒖(𝑘)
⋮

𝒖(𝑘 + 𝑁𝑝 − 2)

𝒖(𝑘 + 𝑁𝑝 − 1))

  Eq. 4.24 

This is represented in Fig. 4.3, in which 𝒙̃(𝑘|𝒖̃(𝑘)) denotes the fact that the state 

trajectory 𝒙̃(𝑘) calculation takes place at the current timestep 𝑘 and results from the control 

actions sequence 𝒖̃(𝑘) [163]. 

𝒙(𝑘 + 1) = 𝑨𝒙(𝑘) + 𝑩𝒖(𝑘) Eq. 4.22 



Energy management optimization of a wind-storage based HPP connected to an island power grid 

122 R. LOPEZ - 2021 

Applying the one-step-ahead prediction map between the time samples for the instants 

𝑘 + 1 and 𝑘 + 2 leads to 

𝒙(𝑘 + 2) = 𝑨𝒙(𝑘 + 1) + 𝑩𝒖(𝑘 + 1) 

= 𝑨[𝑨𝒙(𝑘) + 𝑩𝒖(𝑘)] + 𝑩𝒖(𝑘 + 1) 

= 𝑨2𝒙(𝑘) + 𝑨𝑩𝒖(𝑘) + 𝑩𝒖(𝑘 + 1) 

Eq. 4.25 

And more generally, for any 𝑖 ∈  {1, … ,𝑁𝑝}: 

𝒙(𝑘 + 𝑖) = 𝑨𝑖𝒙(𝑘) + [𝑨𝑖−1𝑩,… , 𝑨𝑩,𝑩] ∙ (

𝒖(𝑘)
⋮

𝒖(𝑘 + 𝑖 − 2)
𝒖(𝑘 + 𝑖 − 1)

) 
Eq. 4.26 

 

The matrix 𝚷
𝑖

𝑛𝑢,𝑁𝑝
 is defined allowing the selection of the i-th vector of dimension 𝑛𝑢 

from the 𝑁𝑝 elements of 𝒖̃ [163]: 

(

𝒖(𝑘)
⋮

𝒖(𝑘 + 𝑖 − 2)

𝒖(𝑘 + 𝑖 − 1)

) =

(

 
 

𝚷1
𝑛𝑢,𝑁𝑝

⋮

𝚷
𝑖−1

𝑛𝑢,𝑁𝑝

𝚷
𝑖

𝑛𝑢,𝑁𝑝
)

 
 
𝒖̃ Eq. 4.27 

Here, every 𝚷
𝑖

(𝑛𝑢,𝑁𝑝)
 is computed as an identity matrix concatenated with a zero matrix 

whose sizes change with 𝑖, i.e.: 

𝚷
𝑖

(𝑛𝑢,𝑁𝑝) = (𝕀𝑛𝑢𝑖×𝑛𝑢𝑖 𝕆𝑛𝑢∙𝑖×(𝑁𝑝−1)∙𝑛𝑢) 
Eq. 4.28 

 

With this, Eq. 4.26 can then be rewritten as 

𝒙(𝑘 + 𝑖) = 𝑨𝑖𝑥(𝑘) + ([𝑨𝑖−1𝑩,… , 𝑨𝑩,𝑩] ∙ 𝚷
𝑖

𝑛𝑢,𝑁𝑝) 𝒖̃(𝑘) Eq. 4.29 

and the prediction of future states can be written in a compact form as 

𝒙(𝑘 + 𝑖) = 𝚽𝑖𝒙(𝑘) + 𝚿𝑖𝒖̃(𝑘) Eq. 4.30 

 

Fig. 4.3. 𝑁𝑝-step-ahead map to calculate for each possible control sequence 𝑢̃(𝑘), the trajectory of 

predicted states 𝒙̃(𝑘|𝒖̃(𝑘)) with 𝑥(𝑘) as the initial state. 

…

𝒖(𝑘)
𝒖(𝑘 + 𝑁𝑝 − 1)

𝒙 𝑘

𝑘 𝑘+1 𝑘 + 𝑁𝑝

…

𝒙̃ 𝑘|𝒖̃(𝑘)
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where 𝚽𝑖 and 𝚿𝑖 are constant matrices given for every value of 𝑖 and depend on 𝑨 and 𝑩, the 

state and input matrices, respectively: 

𝚽𝑖 = 𝑨
𝑖 

Eq. 4.31 
𝚿𝑖 = [𝑨

𝑖−1𝑩,… , 𝑨𝑩,𝑩] ∙ 𝚷
𝑖

𝑛𝑢,𝑁𝑝
 

On the other hand, the cost function was defined in Eq. 4.16 as a function of the decision 

variable used in the calculation of the optimal sequence of actions 𝒖̃𝒐𝒑𝒕(𝑥(𝑘)). One among 

several ways to define a cost function reflecting the control objectives and the time horizon is 

to choose an output vector containing linear combinations of the state vector. This means that 

the output 𝒚𝑟 is defined from a matrix 𝑪𝑟 with dimension 𝑛𝑟 × 𝑛, where 𝑛𝑟 is the number of 

variables that the control designer wants to regulate [163]. In Eq. 4.32, the output equation is 

presented including the feedthrough matrix 𝑫 with dimension 𝑛𝑟 × 𝑛𝑢, allowing for more 

general systems.  

Two more vectors are introduced at this point: 

𝒚̃𝑟(𝑘) = (

𝒚𝑟(𝑘 + 1)
⋮

𝒚𝑟(𝑘 + 𝑁𝑝)
)  

 

Eq. 4.33 

and 

𝒚̃𝑟𝑒𝑓(𝑘) = (

𝒚𝑟𝑒𝑓(𝑘 + 1)

⋮
𝒚𝑟𝑒𝑓(𝑘 + 𝑁𝑝)

)  

 

Eq. 4.34 

where 𝒚̃𝑟(𝑘) represents the sequence of the predictions for the regulated outputs whereas 

𝒚̃𝒓𝒆𝒇(𝑘) is the future references (or desired outputs) sequence. 

𝒚𝑟(𝑘 + 𝑖) = 𝑪𝑟𝒙(𝑘 + 𝑖) + 𝑫𝒖(𝑘) Eq. 4.32 

 

Fig. 4.4. MPC strategy. Future references 𝒚̃𝒓𝒆𝒇(𝑘), outputs predictions 𝒚̃𝑟(𝑘), and control sequence 𝒖̃. 

…
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As seen, the system model allows the prediction of future states and hence the estimation 

of the future outputs. Fig. 4.4 illustrates the fact that the tracking error (the difference among a 

regulated output and a corresponding set-point signal) is minimized through the application of 

the “right” sequence of future control actions. Such a sequence is the solution² to an 

optimization problem which considers the future tracking of error and the problem constraints.  

Until here, a generic description of the equations of the prediction phase has been 

presented. An optimizer, in charge of generating stepwise the optimal sequence of inputs from 

the prediction stage result while considering the constraints and cost function is also part of the 

strategy (see Fig. 4.5). 

As the output to the optimization problem 𝒖̃ is part of the prediction equations (see Eq. 

4.30), the selection matrix 𝚷𝑖 introduced above allows pointing to the different 𝑢(𝑘 + 𝑖 − 1) 

elements of the control sequence (undefined at the moment the prediction takes place), is used 

in the calculation of the prediction matrices received by the optimizer. Next, the cost function is 

discussed, followed by the adaptation of the prediction to a form compatible with the optimizer 

utilized. 

4.2.3.3 Quadratic cost function  

In the previous section, the predictive control principle and equations were presented 

using the generic state-space representation of an LTI system.  

When an optimization problem is formulated using MPC, it is important that it can be 

solved in a time not bigger than the sampling interval. For this, linear programming and 

quadratic programming are typical formulations employed in combination with MPC. While 

LP may sometimes be advantageous for very large optimization problems, in general QP 

formulations lead to smoother control actions and more intuitive effects of changes in the tuning 

parameters [165]. 

   

Fig. 4.5. Structure of an MPC: prediction and optimization. 
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The present section is based on the QP and predictive control strategy for LTI systems 

presented by the author in [163]. The fact that the strategy uses QP induces a cost function that 

is quadratic in the decision variable. In this section, a cost function derived from the MPC 

control law presented above is adapted to the problem of the energy management of the hybrid 

power plant by considering the problem control objectives. 

The quadratic function to be minimized is a scalar function of the form: 

min
𝒖̃

1

2
𝒖̃𝑇𝑯𝒖̃ + 𝒇𝑇𝒖̃ + 𝑐 Eq. 4.35 

where 𝑐 is a constant not affecting the position of the minimum solution on the parabola 

associated to Eq. 4.35. Also, the control effort 𝒖̃ is the variable to minimize, 𝒖̃𝑇 denotes the 

transpose of 𝒖̃, and the matrix 𝑯 ∈ ℝ𝑁𝑝𝑛𝑢×𝑁𝑝𝑛𝑢 , called the Hessian matrix, must be positive 

definite according to the following condition to ensure the optimal solution is finite and 

uniquely defined, and therefore that a global minimum exists: 

𝒖̃𝑇𝑯𝒖̃ ≥ 𝑎 ∙ ‖𝒖̃‖2 for some 𝑎 >   Eq. 4.36 

If 𝒖̃𝑇𝑯𝒖̃ ≥  , the matrix 𝑯 is said to be positive semidefinite (or non-negative). 

Based on Eq. 4.33 and Eq. 4.34, a general quadratic cost function reflecting the 

predictive control goal of minimizing the errors between predicted output and set-point is given 

by: 

𝛤(𝑘) =∑‖𝒚𝑟(𝑘 + 𝑖) − 𝒚𝑟𝑒𝑓(𝑘 + 𝑖)‖𝑄𝑦

2

𝑁𝑝

𝑖=1

  

 

Eq. 4.37 

with the subscript 𝑸𝑦, a positive diagonal matrix giving a weight to the tracking of errors of the 

control objectives, and the superscript 2, an exponent. Thus, the norm delimiters ‖ ‖ employed 

to define the cost function, are applied considering: 

‖𝒙𝑨‖𝑸
2 = [𝒙𝑨]𝑇𝑸𝑨𝒙  

 

Eq. 4.38 

where 𝐴 ∈ ℝ𝑛×𝑛 and 𝑥 ∈ ℝ𝑛. 

By injecting Eq. 4.30 in Eq. 4.32, the prediction of future outputs results in 

𝒚𝑟(𝑘 + 𝑖) = 𝑪𝑟𝚽𝑖𝒙(𝑘) + 𝑪𝑟𝚿𝑖𝒖̃ + 𝑫𝒖̃ Eq. 4.39 

which leads to a cost function given by: 

𝛤(𝑘) =∑‖𝑪𝑟𝚽𝑖𝒙(𝑘) + (𝑪𝑟𝚿𝑖 +𝑫)𝒖̃ − 𝒚𝑟𝑒𝑓(𝑘 + 𝑖)‖𝑸𝑦

2

𝑁𝑝

𝑖=1

 Eq. 4.40 

and the Hessian of 𝛤 is obtained by developing Eq. 4.40: 
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𝑯 = 2∑(𝑪𝑟𝚿𝑖 +𝑫)
𝑇
𝑸𝑦(𝑪𝑟𝚿𝑖 +𝑫)

𝑁𝑝

𝑖=1

= 2∑‖𝑪𝑟𝚿𝑖 +𝑫‖𝑸𝑦

2

𝑁𝑝

𝑖=1

 Eq. 4.41 

Even if 𝑸𝑦 is positive definite, if  the number of rows in 𝑪𝑟 is smaller than the number 

of states (or 𝑛𝑟 < 𝑛), the Hessian matrix can violate the condition described by Eq. 4.36 [163]. 

Clearly, 𝑯 is nonnegative because 

𝒖̃𝑇𝑯𝒖̃ = 𝒖̃𝑇 [2∑‖𝑪𝑟𝚿𝑖 +𝑫‖𝑸𝑦
2

𝑁𝑝

𝑖=1

] 𝒖̃ Eq. 4.42 

This non negativity does not allow to ensure 𝑯 is always positive, meaning  there is a 

risk that the optimal solution is not appropriately defined. 

For the condition Eq. 4.36 to be respected in the resulting 𝑯 matrix, a term taking into 

consideration the control effort employed in keeping 𝒚𝑟 close to 𝒚𝑟𝑒𝑓 can be added to the cost 

function 𝛤. Using the definition of control effort from Eq. 4.27, 𝛤 results in 

𝛤(𝑘) =∑‖𝑪𝑟𝚽𝑖𝒙(𝑘) + (𝑪𝑟𝚿𝑖 +𝑫)𝒖̃ − 𝒚𝑟𝑒𝑓(𝑘 + 𝑖)‖𝑄𝑦

2
+∑‖𝚷

𝑖

𝑛𝑢,𝑁𝑝𝒖̃‖
𝑄𝑢

2
𝑁𝑝

𝑖=1

𝑁𝑝

𝑖=1

 Eq. 4.43 

where the control actions weighting design parameter 𝑸𝑢 ∈ ℝ
𝑛𝑢×𝑛𝑢 is a positive diagonal 

matrix for weighting and adjusting the control effort of the inputs. 𝑸𝑢 is chosen to give the right 

tradeoff between minimizing the tracking error ∑(𝒚𝑟 − 𝒚𝑟𝑒𝑓)
2
 and keeping ∑ 𝒖̃2 not too big.  

Also, and the second term in the equation can alternatively be expressed as: 

‖𝚷
𝑖

𝑛𝑢,𝑁𝑝𝒖̃‖
𝑄𝑢

2

= [𝚷
𝑖

𝑛𝑢,𝑁𝑝𝒖̃]
𝑇

𝑸𝑢 [𝚷𝑖
𝑛𝑢,𝑁𝑝𝒖̃]  

 

Eq. 4.44 

Thus, 𝑯 becomes 

= 2 [∑‖𝑪𝑟𝚿𝑖 +𝑫‖𝑸𝑦

2
+∑‖𝚷𝑖

𝑛𝑢,𝑁𝑝𝒖̃‖
𝑄𝑢

2
𝑁𝑝

𝑖=1

𝑁𝑝

𝑖=1

]  

 

Eq. 4.45 

Then, adding a positive definite matrix to a non-negative matrix allowed to obtain a 

positive definite Hessian. 

Eq. 4.43 represents a quadratic function in the variable 𝒖̃. Moreover, 𝛤 can be 

interpreted as the cost obtained by the evaluation of the future control actions function 𝒖̃ given 

the future references 𝒚𝑟𝑒𝑓(𝑘) and the present system state 𝑥(𝑘) within the time horizon 

[𝑘, 𝑘 + 𝑁𝑝]. 
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During the problem definition phase, the operational objectives of maximizing the 

plant’s profit and respecting the SO’s conditions were presented. Besides, Eq. 4.3 defined the 

plant revenue through the function 𝜕(𝑡) which changes between zero and one according to 

whether the penalty is active or inactive. However, the description of if-else-then conditions is 

incompatible with the predictive control scheme described. It is for this reason that, the revenue 

maximization is treated indirectly by minimizing the commitment failures occurrence. 

Moreover,  𝐼𝑁𝐽 and 𝑺𝒐𝑪 are chosen as regulated quantities. With this, tuning parameters allow 

to act on both the transferred power and the storage system usage while the commitment failures 

are minimized. 

 𝑆𝐶𝐻𝐸𝐷 and 𝑺𝒐𝑪𝑟𝑒𝑓 are defined as the references for the transfer of power to the grid 

and for the 𝑆𝑜𝐶 variable. In this thesis, the 𝑆𝑜𝐶 set-points definition does not consider the 

storage system ageing. 

 The integration of both the control objectives and the control effort into Eq. 4.40 gives 

rise to the following cost function: 

where 𝜆1 and 𝜆2 are the control objective weights introduced through the diagonal matrix 𝑸𝑦.  

In the next section, optimization problem solving tools will be described and then the 

cost function depicted in Eq. 4.46 will be adapted so that the at every calculation instant the 

MPC predictor may feed the QP solver with the adequate matrices. 

4.2.4 Prediction and optimization using MPC and Matlab QP solver  

The cost function described in Eq. 4.46 was derived based on MPC control law while 

considering the control objectives. An appropriate optimization algorithm is required to reduce 

future errors based on such a quadratic function and in the presence of linear constraints. For 

that, a parametric prediction is proposed which is compatible with quadprog, the quadratic 

programming solver provided by Matlab’s optimization toolbox.  

This solver finds the minimum 𝒙 for problems specified by [166] 

min
𝒙

1

2
𝒙𝑇𝑯𝒙+ 𝒇𝑇𝒙 

Eq. 4.47 
Subject to 𝑨𝑖𝑛𝑒𝑞𝒙 ≤ 𝒃𝑖𝑛𝑒𝑞 

𝑨𝑒𝑞𝒙 = 𝒃𝑒𝑞 

𝒍 ≤ 𝒙 ≤ 𝒖 

Γ(𝑘) =∑{𝜆1‖𝑃𝐼𝑁𝐽 − 𝑆𝐶𝐻𝐸𝐷‖
2
+ 𝜆2‖𝑆𝑜𝐶 − 𝑺𝒐𝑪𝑟𝑒𝑓‖

2
+ [𝚷

𝑖

𝑛𝑢,𝑁𝑝𝒖̃]
𝑇
𝑸𝑢 [𝚷𝑖

𝑛𝑢,𝑁𝑝𝒖̃]}

𝑁𝑝

𝑖=1

 Eq. 4.46 
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where 𝑯, 𝑨𝑖𝑛𝑒𝑞, and 𝑨𝑒𝑞 are squared matrices whereas 𝒙, 𝒇, 𝒃𝑖𝑛𝑒𝑞, 𝒃𝒆𝒒, 𝒍 and 𝒖 are vectors and 

the above cost function is convex if 𝑯 is positive definite. Also, 𝑨𝑖𝑛𝑒𝑞 and 𝒃𝑖𝑛𝑒𝑞 allow defining 

inequality constraints whereas 𝑨𝑒𝑞 and 𝒃𝑒𝑞 are used to define equality constraints.   

To use MPC with quadprog, the prediction information given to the optimizer must be 

defined by (𝑯, 𝒇, 𝑨𝑖𝑛𝑒𝑞 , 𝒃𝑖𝑛𝑒𝑞, 𝑨𝑒𝑞 , 𝒃𝑒𝑞, 𝒍, 𝒖), where 𝑯 and 𝒇 are required terms and the others 

are optional. In the applied strategy, the quadprog function is called with the input variables 

𝑯, 𝒇, 𝑨𝑖𝑛𝑒𝑞 and 𝒃𝑖𝑛𝑒𝑞. Further, 𝑨𝑖𝑛𝑒𝑞𝒙 ≤ 𝒃𝑖𝑛𝑒𝑞 implies that the inequality is taken element-wise 

over 𝑨𝑖𝑛𝑒𝑞𝒙 and 𝒃𝑖𝑛𝑒𝑞. As the problem formulation must be conform to the above form, the 

mathematical operator ≥ can be declared by rewriting the inequality as −𝑨𝑖𝑛𝑒𝑞𝒙 ≤ −𝒃𝑖𝑛𝑒𝑞.  

4.2.4.1 Unconstrained MPC/QP prediction and optimization  

With the power injected into the island grid 𝑃𝐼𝑁𝐽 and the ESS state-of-charge 𝑆𝑜𝐶 as the 

regulated quantities, an adapted cost function was derived in Eq. 4.46. 

The matrix 𝑪𝑟 is now defined as to include the regulated quantities 𝑖∗ and 𝑆𝑜𝐶 (𝑥2 and 

𝑥3) in the problem output. Recalling that 𝑃𝐼𝑁𝐽 is controlled through  𝑃𝐵𝐸𝑆𝑆 as in Fig. 3.36. 

Hence, according to Eq. 4.1 and Eq. 4.8, the regulated output is given by 

 Also, the term related to the size of the control effort in Eq. 4.46 is not considered in 

the formulation for the search of optimal solutions of the quadprog solver (see Eq. 4.47). 

Indeed, what is being searched is the 𝑢 whose image is the vortex of the parabola (the global 

minimum) resulting of the combination of the parabolas ‖𝑃𝐼𝑁𝐽 −  𝑆𝐶𝐻𝐸𝐷‖
2
 and ‖𝑆𝑜𝐶 −

𝑺𝒐𝑪𝑟𝑒𝑓‖
2
. The neglected term only affects the parabola’s vertical position on the 2-d plane 

without changing the value that minimizes the cost function, as represented in Fig. 4.6. 

The application of the definition of output trajectory prediction defined on the term 

‖𝑃𝐼𝑁𝐽 −  𝑆𝐶𝐻𝐸𝐷‖
2
 produces: 

𝒚𝑟 = [
𝒄𝑟1
𝒄𝑟2
] 𝒙(𝑘) + 𝑫𝒖̃ = [

𝑖∗

𝑆𝑜𝐶
] 𝒙(𝑘) + 𝑫𝒖̃ = [

 1  
  1

] 𝒙(𝑘) + 𝑫𝒖̃ Eq. 4.48 

   

Fig. 4.6. Other terms that ‖𝑃𝐼𝑁𝐽 −  𝑆𝐶𝐻𝐸𝐷‖
2
 and ‖𝑆𝑜𝐶 − 𝑺𝒐𝑪𝑟𝑒𝑓‖

2
 introduce offsets in the parabola 

vortex searched. 

𝑢𝑜𝑝𝑡𝑢𝑜𝑝𝑡 𝑢

Γ

𝑢

Γ
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[𝒄𝑟1𝚽𝑖𝒙(𝑘) + (𝒄𝑟1𝚿𝑖 +𝑫)𝒖̃ − 𝑆𝐶𝐻𝐸𝐷]𝑇 ∙ [𝒄𝑟1𝚽𝑖𝒙(𝑘) + (𝒄𝑟1𝚿𝑖 +𝑫)𝒖̃ − 𝑆𝐶𝐻𝐸𝐷] Eq. 4.49 

Developing Eq. 4.49: 

[𝒄𝑟1𝚽𝑖𝒙(𝑘) + (𝒄𝑟1𝚿𝑖 +𝑫)𝒖̃]
𝑇 ∙ [𝒄𝑟1𝚽𝑖𝒙(𝑘) + (𝒄𝑟1𝚿𝑖 +𝑫)𝒖̃] + 𝑆𝐶𝐻𝐸𝐷

2

− 2[𝒄𝑟1𝚽𝑖𝒙(𝑘) + (𝒄𝑟1𝚿𝑖 +𝑫)𝒖̃] 𝑆𝐶𝐻𝐸𝐷 
Eq. 4.50 

As in finding min
𝑥
𝑎𝑥2 + 𝑏𝑥 + 𝑐, the first derivative is 2𝑎𝑥 + 𝑏 (meaning the minimum 

is 𝑥 = −𝑏 2𝑎⁄  and the minimization is independent of 𝑐), the constant term  𝑆𝐶𝐻𝐸𝐷
𝟐
 is not 

considered. With that modification, the development of Eq. 4.50 yields 

[𝒄𝑟1𝚽𝑖𝒙(𝑘)]
𝑇 ∙ 𝒄𝑟1𝚽𝑖𝒙(𝑘) + [(𝒄𝑟1𝚿𝑖 +𝑫)𝒖̃]

𝑇 ∙ (𝒄𝑟1𝚿𝑖 +𝑫)𝒖̃+ 

2(𝒄𝑟1𝚽𝑖𝒙(𝑘) ∙ (𝒄𝑟1𝚿𝑖 +𝑫)𝒖̃) − 2(𝒄𝑟1𝚽𝑖𝒙(𝑘) + (𝒄𝑟1𝚿𝑖 +𝑫)𝒖̃) 𝑆𝐶𝐻𝐸𝐷 
Eq. 4.51 

Finally, with the application of the vector operations property of Eq. 4.44, the Eq. 4.51 

can be rewritten as: 

𝒄𝑟1𝚽𝑖𝒙(𝑘) ∙ 𝒄𝑟1𝚽𝑖𝒙(𝑘) + 𝒖̃
𝑇(𝒄𝑟1𝚿𝑖 +𝑫)𝒖̃+ 

2𝒄𝑟1𝚽𝑖𝒙(𝑘) ∙ (𝒄𝑟1𝚿𝑖 +𝑫)𝒖̃− 2(𝒄𝑟1𝚽𝑖𝒙(𝑘) + (𝒄𝑟1𝚿𝑖 +𝑫)𝒖̃) 𝑆𝐶𝐻𝐸𝐷 
Eq. 4.52 

Repeating the same procedure on term ‖𝑆𝑜𝐶 − 𝑺𝒐𝑪𝑟𝑒𝑓‖
2
 gives: 

𝒄𝑟2𝚽𝑖𝒙(𝑘) ∙ 𝒄𝑟2𝚽𝑖𝒙(𝑘) + 𝒖̃
𝑇(𝒄𝑟2𝚿𝑖 +𝑫)𝒖̃+ 

2𝒄𝑟2𝚽𝑖𝒙(𝑘) ∙ (𝒄𝑟2𝚿𝑖 +𝑫)𝒖̃− 2(𝒄𝑟2𝚽𝑖𝒙(𝑘) + (𝒄𝑟2𝚿𝑖 +𝑫)𝒖̃)𝑺𝒐𝑪𝑟𝑒𝑓 
Eq. 4.53 

Factoring out 𝒖̃ and coupling the similar terms together from Eq. 4.52 and Eq. 4.53 (once 

again, the terms independent of 𝒖̃ do not affect the minimization), gives:  

[
2𝒄𝑟1𝚽𝑖 ∙ (𝒄𝑟1𝚿𝑖 +𝑫)𝒙(𝑘) −2(𝒄𝑟1𝚿𝑖 +𝑫) 𝑆𝐶𝐻𝐸𝐷
2𝒄𝑟2𝚽𝑖 ∙ (𝒄𝑟2𝚿𝑖 +𝑫)⏟              

𝑭1

𝒙(𝑘) −2(𝒄𝑟2𝚿𝑖 +𝑫)⏟          
𝑭2

𝑺𝒐𝑪𝑟𝑒𝑓] 𝒖̃ Eq. 4.54 

where 𝑭1 and 𝑭2 matrices contain information of future outputs predictions. By doing:  

𝒇𝑇 = 𝑭1 ∙ 𝒙(𝑘) + 𝑭2 ∙ 𝒚̃𝑟𝑒𝑓(𝑘) Eq. 4.55 

is obtained the vector 𝒇𝑇, which is compatible with the formulation of the optimization 

subroutine used to solve the QP problem (see Eq. 4.47). 

Moreover, coupling the  𝒖̃
𝑇(𝒄𝑟𝚿𝑖 +𝑫)𝒖̃ terms gives the Hessian matrix, 𝑯, 

𝒖̃𝑇 [
𝒄𝑟1𝚿𝑖 +𝑫

𝒄𝑟2𝚿𝑖 +𝑫
]

⏟        
𝑯

𝒖̃ 
Eq. 4.56 

which is part of Eq. 4.47 as well as is 𝒇𝑇. Given 𝑯, 𝑭1 and  𝑭2 are independent of both the 

current state 𝒙(𝑘) and the reference output trajectory 𝒚̃𝑟𝑒𝑓(𝑘), they can be defined off-line. This 
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means that they can be computed once and stored to be invoked when necessary to obtain new 

optimal solutions. 

With this unconstrained formulation, optimal solutions can be obtained at every instant 

over a given simulation time. For that, a closed loop including an MPC/QP controller composed 

by prediction and optimization stages like the one depicted in Fig. 4.7 can be used to control 

the hybrid plant. In that case, the optimization subroutine must receive at every timeslot the 

input (𝑯, 𝒇) with the prediction information. As said 𝑯 is constant whereas 𝒇 value is updated 

at every calculation step. Future references in Fig. 4.7 and current state measurements appear 

in the controller input. Furthermore, the first element from the control action optimal sequence 

is sent to the BESS so as to indirectly control the power transferred to the grid 𝑃𝐼𝑁𝐽. 

Now that the unconstrained version of the control strategy has been detailed, the 

constrained case, this is, calculations for filling 𝑨𝑖𝑛𝑒𝑞 and 𝒃𝑖𝑛𝑒𝑞 at every calculation instant are 

the subject of the next section.  

4.2.4.2 Constraints handling  

This last part deals with the constraint’s inclusion in the optimization problem. Three 

main kinds of operational constraints can be classified as: 

• Trajectory constraints (on the outputs or states): supposing that the future outputs 

trajectory has lower and upper limits 𝒚𝑐
𝑚𝑖𝑛 and 𝒚𝑐

𝑚𝑎𝑥, these constraints can be 

represented in the form:  

where 𝒚𝑐 contains the outputs with constraints. In the context of predictive control, those 

limits must be defined for all the instants in the moving time window [𝑘 , 𝑘 + 𝑁𝑝]. 

Moreover, Eq. 4.57 can be expressed with two lower than-like inequalities as: 

 𝒚𝑐(𝑘 + 𝑖) ≤ 𝒚𝑐
𝑚𝑎𝑥 

Eq. 4.58 
−𝒚

𝑐
(𝑘 + 𝑖) ≤ −𝒚

𝑐
𝑚𝑖𝑛 

𝒚𝑐
𝑚𝑖𝑛 ≤ 𝒚𝑐(𝑘 + 𝑖) ≤ 𝒚𝑐

𝑚𝑎𝑥 Eq. 4.57 

 
Fig. 4.7 MPC/QP strategy structure. 
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By applying the definition of output trajectory of Eq. 4.37, Eq. 4.58 becomes: 

𝑪𝑐𝚽𝑖𝒙(𝑘) + (𝑪𝑐𝚿𝑖 + 𝑫)𝒖̃ ≤ 𝒚̃𝑐
𝑚𝑎𝑥 

Eq. 4.59 
−(𝑪𝑐𝚽𝑖𝒙(𝑘)+ (𝑪𝑐𝚿𝑖 +𝑫)𝒖̃) ≤ −𝒚̃𝑐

𝑚𝑖𝑛
 

where 𝑪𝑐 ∈ ℝ
𝑁𝑝𝑛𝑐×𝑁𝑝𝑛𝑐 contains the variables with constraints and 𝑛𝑐 is the problem’s 

number of variables with trajectory constraints. This can be written in the form: 

where 𝑨𝑖𝑛𝑒𝑞
𝑡𝑟𝑎𝑗

 and 𝒃𝑖𝑛𝑒𝑞
𝑡𝑟𝑎𝑗

 contain the information of the problem’s trajectory constraints. 

In the case of the hybrid plant management, the matrix +𝑪𝑐 and −𝑪𝑐 are given by: 

And the references are: 

where 𝑃𝐼𝑁𝐽
𝑚𝑎𝑥 is equal to 𝑃𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡, calculated as stated in Eq. 4.2. Also, in the hybrid 

plant problem 𝑛𝑐=3 as the variables with trajectory constraints are 𝑖∗, 𝑆𝑜𝐶 and −𝑆𝑜𝐶. 

• Constraints on the amplitude of the decision variable: let 𝒖𝑚𝑖𝑛 and 𝒖𝑚𝑎𝑥 denote control 

amplitude lower and upper bounds due to operational conditions. In that case, the 

constraints are represented in the form given by 

Again, the constraints can be separated into the two inequalities: 

which can also be written as 

(

 
 
 
 

+𝑪𝑐𝚿1 + 𝑫𝚷1
𝑛𝑢,𝑁𝑝

−𝑪𝑐𝚿1 − 𝑫𝚷1
𝑛𝑢,𝑁𝑝

⋮

+𝑪𝑐𝚿𝑁𝑝
+ 𝑫𝚷𝑁𝑝

𝑛𝑢,𝑁𝑝

−𝑪𝑐𝚿𝑁𝑝
− 𝑫𝚷𝑁𝑝

𝑛𝑢,𝑁𝑝

)

 
 
 
 

⏟              

𝑨
𝑖𝑛𝑒𝑞
𝑡𝑟𝑎𝑗

∈ℝ𝑁𝑝𝑛𝑐×𝑁𝑝

𝒖̃ ≤

(

 
 

+𝒚𝑐
𝑚𝑎𝑥

−𝒚𝑐
𝑚𝑖𝑛

⋮
+𝒚𝑐

𝑚𝑎𝑥

−𝒚𝑐
𝑚𝑖𝑛)

 
 

⏟      
𝑁𝑝𝑛𝑐

+

(

 
 

−𝑪𝑐𝚽1
+𝑪𝑐𝚽1
⋮

−𝑪𝑐𝚽𝑁𝑝
+𝑪𝑐𝚽𝑁𝑝)

 
 

⏟        
𝑁𝑝𝑛𝑐×n

𝒙(𝑘)

⏞          

𝑁𝑝𝑛𝑐

⏟                    

𝒃
𝑖𝑛𝑒𝑞
𝑡𝑟𝑎𝑗

∈ℝ𝑁𝑝𝑛𝑐

 
Eq. 4.60 

+𝑪𝑐 = [
𝒄𝑐1
𝒄𝑐2
] = [

𝑖∗

𝑆𝑜𝐶
] 

Eq. 4.61 

                                 −𝑪𝑐 = [−𝒄𝑐2] = [−𝑆𝑜𝐶] 

+𝒚𝑐
𝑚𝑎𝑥 = [

𝑃𝐼𝑁𝐽
𝑚𝑎𝑥 𝑣𝐵𝐸𝑆𝑆⁄

𝑆𝑜𝐶𝑚𝑎𝑥
] 

−𝒚𝑐
𝑚𝑖𝑛 = [−𝑆𝑜𝐶𝑚𝑖𝑛] 

 

Eq. 4.62 

𝒖𝑚𝑖𝑛 ≤ 𝒖(𝑘 + 𝑖 − 1) ≤ 𝒖𝑚𝑎𝑥 Eq. 4.63 

𝒖(𝑘 + 𝑖 − 1) ≤ 𝒖𝑚𝑎𝑥 

Eq. 4.64 
−𝒖(𝑘 + 𝑖 − 1) ≤ −𝒖𝑚𝑖𝑛 
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or 

• Constraints on rate of change of the decision variable: with 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 as bounds, 

the limitation of the incremental variation of the control actions, is expressed as 

Which can be rewritten as the inequalities: 

Putting Eq. 4.68 into a more detailed form, gives: 

where  𝐴𝑖𝑛𝑒𝑞
𝑟𝑎𝑡𝑒  is formed by piling ∆∈ ℝ𝑁𝑝𝑛𝑢×𝑁𝑝𝑛𝑢 over  −∆. At the beginning of its 

calculation the matrix ∆ is filled with zeros. Then, as 𝑖 increases between 1 and 𝑁𝑝, the 

𝑖-th row of  ∆ is replaced by the difference 𝚷𝑘
𝑛𝑢,𝑁𝑝 − 𝚷𝑘−1

𝑛𝑢,𝑁𝑝
, as: 

(
𝕀𝑁𝑝𝑛𝑢
−𝕀𝑁𝑝𝑛𝑢

) 𝒖̃ ≤ (
𝒖̃𝑚𝑎𝑥

−𝒖̃𝑚𝑖𝑛
) Eq. 4.65 

(

 
 
 
 
 
 
 
 

+𝚷1
𝑛𝑢,𝑁𝑝

⋮

+𝚷
𝑖−1

𝑛𝑢,𝑁𝑝

+𝚷
𝑖

𝑛𝑢,𝑁𝑝

−𝚷1
𝑛𝑢,𝑁𝑝

⋮

−𝚷
𝑖−1

𝑛𝑢,𝑁𝑝

−𝚷
𝑖

𝑛𝑢,𝑁𝑝
)

 
 
 
 
 
 
 
 

⏟        

𝑨
𝑖𝑛𝑒𝑞
𝑎𝑚𝑝𝑙

∈ℝ2𝑁𝑝×𝑁𝑝

𝒖̃ ≤

(

 
 
 
 
 

𝒖𝑚𝑎𝑥

⋮
𝒖𝑚𝑎𝑥

𝒖𝑚𝑎𝑥

−𝒖𝑚𝑖𝑛

⋮
−𝒖𝑚𝑖𝑛

−𝒖𝑚𝑖𝑛)

 
 
 
 
 

⏟      

𝒃
𝑖𝑛𝑒𝑞
𝑎𝑚𝑝𝑙

∈ℝ2𝑁𝑝

 
Eq. 4.66 

𝛿𝑚𝑖𝑛 ≤ 𝒖(𝑘) − 𝒖(𝑘 − 1) ≤ 𝛿𝑚𝑎𝑥 Eq. 4.67 

𝒖(𝑘) − 𝒖(𝑘 − 1) ≤ 𝛿𝑚𝑎𝑥  

−(𝒖(𝑘) − 𝒖(𝑘 − 1)) ≤ −𝛿𝑚𝑖𝑛 
Eq. 4.68 

(

 
 
 
 
 +∆
 
 
 
−∆

{

+𝕀 +𝕆 +𝕆 ⋯ +𝕆 +𝕆
−𝕀 +𝕀 +𝕆 ⋯ +𝕆 +𝕆
+⋮ +⋮ +⋮ ⋮ +⋮ +⋮
+𝕆 +𝕆 +𝕆 ⋯ −𝕀 +𝕀

{

−𝕀 +𝕆 +𝕆 ⋯ +𝕆 +𝕆
+𝕀 −𝕀 +𝕆 ⋯ +𝕆 +𝕆
+⋮ +⋮ +⋮ ⋮ +⋮ +⋮
+𝕆 +𝕆 +𝕆 ⋯ +𝕀 −𝕀)

 
 
 
 
 

⏟                          
𝑨𝑖𝑛𝑒𝑞
𝑟𝑎𝑡𝑒∈ℝ4𝑁𝑝×𝑁𝑝

𝒖̃ ≤

(

 
 
 
 
 

𝜹𝑚𝑎𝑥
𝜹𝑚𝑎𝑥
⋮

𝜹𝑚𝑎𝑥
−𝜹𝑚𝑖𝑛
−𝜹𝑚𝑖𝑛
⋮

−𝜹𝑚𝑖𝑛)

 
 
 
 
 

⏞      

4𝑁𝑝

+

(

 
 
 
 

𝕀
𝕆
⋮
𝕆
−𝕀
𝕆
⋮
𝕆)

 
 
 
 

⏞  

4𝑁𝑝

⏟            
𝒃𝑖𝑛𝑒𝑞
𝑟𝑎𝑡𝑒∈ℝ4𝑁𝑝

𝒖(𝑘 − 1) Eq. 4.69 
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In the hybrid plant EMS, the bounds for the incremental variation of the battery current 

(𝜹𝑚𝑖𝑛 and 𝜹𝑚𝑎𝑥) are calculated from the power variation speed limits and the voltage 

of the BESS.  

The strategy proposed uses a control action variable considering both the ESS charge 

and discharge, rather than separated control action variables (e.g. 𝑢𝑐ℎ𝑎𝑟𝑔𝑒 and 

𝑢𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒). This means that the strategy cannot integrate individual change rate 

constraints for charging and discharging, therefore a simplification of the variation 

speed limits stipulated  in the HPP contractual operation requirements specified in 

Chapter 1, is required. The simplification consists in assuming the same minimal and 

maximum times for upward and downward variations in 𝑑𝑃𝐼𝑁𝐽 𝑑𝑡⁄ . The definition of 

the limits for the constraints described is left for Chapter 5 where the strategy is 

application is dealt with. 

Finally, the three types of constraints explained above are piled up to form 𝑨𝑖𝑛𝑒𝑞 and 

𝒃𝑖𝑛𝑒𝑞 according to the quadprog solver form (see Eq. 4.47), giving: 

where 𝑨𝑖𝑛𝑒𝑞 ∈ ℝ
𝑁𝑝(𝑛𝑐+6)×𝑁𝑝 can be computed off-line, whereas 𝒃𝑖𝑛𝑒𝑞 ∈ ℝ

𝑁𝑝(𝑛𝑐+6) 

changes dynamically as it depends on 𝒙(𝑘) and 𝒖(𝑘 − 1).  

In this manner, the solutions to the hybrid power plant energy management constrained 

problem can be found through using the input (𝑯, 𝒇, 𝑨𝑖𝑛𝑒𝑞, 𝒃𝑖𝑛𝑒𝑞) when calling the subroutine 

that computes 𝒖̃𝑜𝑝𝑡. 

The publications [167-171], dealing with to the use of MPC/QP strategies for the 

management of the hybrid power plant where produced during the thesis work. Other 

publications that were co-published in the context of the PhD are [172-174]. 

4.3 Chapter conclusions 

∆=

(

  
 

𝚷1
𝑛𝑢,𝑁𝑝

𝚷2
𝑛𝑢,𝑁𝑝 − 𝚷1

𝑛𝑢,𝑁𝑝

⋮

𝚷𝑁𝑝
𝑛𝑢,𝑁𝑝 − 𝚷𝑁𝑝−1

𝑛𝑢,𝑁𝑝

)

  
 

 Eq. 4.70 

(

𝑨𝑖𝑛𝑒𝑞
𝑡𝑟𝑎𝑗

𝑨𝑖𝑛𝑒𝑞
𝑎𝑚𝑝𝑙

𝑨𝑖𝑛𝑒𝑞
𝑟𝑎𝑡𝑒

)

⏟      
𝑨𝑖𝑛𝑒𝑞

𝒖̃ ≤ (

𝒃𝑖𝑛𝑒𝑞
𝑡𝑟𝑎𝑗

𝒃𝑖𝑛𝑒𝑞
𝑎𝑚𝑝𝑙

𝒃𝑖𝑛𝑒𝑞
𝑟𝑎𝑡𝑒

)

⏟      
𝒃𝑖𝑛𝑒𝑞

 
Eq. 4.71 
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Chapter 4 is devoted to the control and optimization strategy on which the EMS for the 

hybrid power plant is based. The optimization problem definition was the first of three steps 

performed for the control strategy design. This step consisted in the identification of problem 

objectives, hybrid plant model design variables and operation constraints. 

The problem objectives are strictly related to the hybrid plant operating conditions. 

Those conditions are part of a contractual agreement among the SO and the energy producer. 

A penalty system punishes the excursions outside the injection band built around the day-ahead 

engaged generation plan. For this, the EMS’ task is to ensure the transfer of as much power as 

possible towards the distribution grid of the island while considering the ESS lifetime protection 

and the injection band respect.  

While the aims of the EMS are the maximization of the power plant revenue and the 

respect of the technical conditions, optimal use of the BESS is the key to achieve that. The 

BESS state-space representation, working with discrete systems at a timestep of 1 second, is 

the backbone of the power plant modeling. The BESS current is considered as input to the 

power plant model, and as the main assumption, the voltage is considered linear which implies 

that voltage small variations can be despised. 

In the control strategy, the regulated variables are the BESS filtered current and state-

of-charge, two of the system states, whereas the constrained ones are the decision variable and 

the state-of-charge. As the representation is an LTI representation and the constraints are linear, 

the selection of an appropriate optimization method was focused on linear approaches.  

 Optimization problem types were classified into linear, nonlinear, geometric, and 

quadratic problems. The concepts of decision variables, cost function, optimal solution and 

convexity were discussed along with a short description of the problem types. In this manner, 

Model Predictive Control schemes were introduced, that are characterized by being independent 

of any particular optimization method. Another important feature of MPC is that it implements 

a feedback control scheme over a finite horizon, where the closed-loop performance is usually 

better as the horizon size tends to the infinite.  

Some advantages of MPC are highlighted, for example, it allows a relatively simple 

design framework, enables the systematic handling of constraints, and permits generation 

forecasts in the optimization problem. Even though MPC is not in itself an optimization method, 

it can be coupled with mathematical optimization-based methods. 

A quadratic cost function was proposed based on the problem definition and the 

description of the predictive control law. The instant wind power generation is an input for the 

controller.  
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A predictive algorithm was developed on the assumption that the wind production is the 

same at future instants inside the prediction horizon, which is probably the strongest of the 

assumptions done. At the same time, with the aim of reducing the amount of on-line 

calculations, a prediction strategy in which certain calculations can be done off-line and stored 

for their later use is adapted to the problem. According to the philosophy of predictive control, 

the optimal solution issued by the optimizer is a trajectory of optimal control actions of which 

only the first element is sent to the system.  

Weighting parameters allow adapting the EMS controller to the user’s needs by giving 

more importance to certain control objectives than others. Also, the application of positive or 

negative offsets on the references set-points was established as a way to introduce modifications 

in the strategy. This capacity to adjust the relative levels of satisfaction of the control objectives 

added to the fact that the strategy does solve at every calculation instant a constrained, multi-

objective optimal problem considering the wind production forecasts, are the aspects making 

the present EMS strategy remarkably better than classical PID or heuristic decision-making 

approaches. 

Rather than minimizing the cost function, the optimal solution found through this 

MPC/QP strategy searches the operation point located on the vortex of the parabola formed by 

adding the two quadratic objectives present in the cost function. After calculating the matrices 

and vectors allowing to connect the prediction stage with the QP subroutine quadprog, in the 

last section of the Chapter, the problem constraints are put in a form compatible with the 

selected solver. 
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This Chapter presents the validation of the proposed control and optimization strategy 

through simulations conducted in Matlab/Simulink. A rule-based algorithm is employed for 

comparison. 

5.1 Introduction 

The optimization problem described in this thesis consists of deciding on the storage 

system usage (i.e. which part of the production is used to charge the BESS or how much power 

is to be discharged) as the wind turbines output instantly varies, so as to inject power into the 

island grid fulfilling a committed generation schedule. As outlined in Chapter 1, the 

commitment profile is generated based on day-ahead forecast data. Also, the disrespect of the 

tolerated injection region may lead to commitment failures (triggered by injection band 

overtakes lasting 60 seconds) that are associated with economic penalties. Fig. 5.1 illustrates 

the commitment schedule ( 𝑆𝐶𝐻𝐸𝐷) and power injection (𝑃𝐼𝑁𝐽) signals, as well as the tolerated 

injection region, determined by upper and lower limits  𝑆𝐶𝐻𝐸𝐷 + 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 and  𝑆𝐶𝐻𝐸𝐷 −

𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒. The aim being the plant revenues maximization, an EMS is required to reduce the 

occurrence of commitment failures while considering the BESS lifespan. 

Fig. 5.2 sketches the setup implemented in Matlab/Simulink for testing the proposed 

energy management approach. The Simulink battery block is configured to the represent the 

BESS (nonlinear model). It is remembered that the output of the optimization process are the 

𝑁𝑝 elements of the sequence of current control actions 𝒖(𝑘), 𝒖(𝑘 + 1),…𝒖(𝑘 + 𝑁𝑝 −

2), 𝒖(𝑘 + 𝑁𝑝 − 1) from which only the first element 𝒖(𝑘) is applied. As represented in the 

figure, at every calculation step 𝑘 the controller receives the information of the instantaneous 

wind-generated power 𝑃𝑊𝐸𝐶𝑆(𝑘) along with the elements 𝑘 + 1, 𝑘 + 2,… , 𝑘 + 𝑁𝑝 of the 

vectors of future references  𝑆𝐶𝐻𝐸𝐷 and 𝑺𝒐𝑪𝑟𝑒𝑓.  

 

Fig. 5.1. Power injection tolerance region. 
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The first part of this Chapter deals with the definition of the problem inputs, thresholds 

and performance indicators. Then is tackled the validation of the proposed control and 

optimization algorithm with the system connected to an infinite bus in Matlab/Simulink. 

Several runs of the algorithm employing different management strategies allow testing the 

approach. The aim of those simulations is determining the approach’s most adequate parameters 

set and management strategy to be implemented in PowerFactory environment in part Chapter 

6. 

5.2 Energy management of the HPP with respect to a 24h 

commitment profile  

This section presents the definition the optimization problem input signals, variables 

thresholds and performance indicators to be employed in the Matlab/Simulink tests of the 

strategy. Those tests are the subject of the subsequent sections. 

5.2.1 Admissible thresholds, performance indicators and commitment 

profiles  

Next are defined the optimization problem inputs and variables limitations, as well as 

the indicators proposed to allow the comparison of results. 

Constraints limitations 

Eq. 5.1 presents the quadratic cost function that was defined in Chapter 4 to optimize 

the HPP operation.  

The first and second terms in Eq. 5.1 are linked to the minimization of the errors between 

predicted outputs and set-point trajectories for 𝑃𝐼𝑁𝐽 and 𝑆𝑜𝐶, respectively, while the third term 

reflects the consideration given to the size of the control action in making Γ(𝑘) as small as 

Γ(𝑘) =∑{𝜆1‖𝑃𝐼𝑁𝐽 − 𝑆𝐶𝐻𝐸𝐷‖
2
+ 𝜆2‖𝑆𝑜𝐶 − 𝑺𝒐𝑪𝑟𝑒𝑓‖

2
+ 𝒖̃𝑇𝑸𝑢𝒖̃}

𝑁𝑝

𝑖=1

 Eq. 5.1 

 

Fig. 5.2. Diagram of the setup utilized for Matlab/Simulink simulation. 
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possible. It is also recalled that 𝜆1, 𝜆2 and 𝑸𝑢 are tuning parameters for adding relative weighs 

to the three terms. It is reminded that the role of the optimizer is finding the sequence 𝒖 of 𝑁𝑝 

elements minimizing Γ.  

Such cost function is subject to a set of constraints whose limits are discussed below 

together with the plant limits. To start with, the power transferred to the grid is delimited by the 

HPP size, or: 

 ≤ 𝑃𝐼𝑁𝐽 ≤ 𝑃𝑀𝐴𝑋 + 𝑃𝐵𝐸𝑆𝑆𝑚𝑎𝑥_𝑑𝑖𝑠𝑐ℎ  Eq. 5.2 

where the limits represent the following cases in which: 

• no power is delivered by the wind turbines nor discharged from the BESS, and 

• the wind turbines deliver nominal power while the storage system is discharged at 

maximum discharge current. 

Besides, the plant model limits the state-of-charge variable to the range: 

2  % ≤ 𝑆𝑜𝐶 ≤ 8  % Eq. 5.3 

These limitations are saturations of the controlled hybrid system.  

In more traditional control strategies using simple saturation, if a variable exceeds a 

limit the limit value is implemented, and no consideration is given to the impact of the current 

control action over the future performance of the algorithm. In contrast, MPC algorithms 

including proper systematic knowledge of the constraints within the optimization, propose 

trajectories satisfying the constraints and can improve the closed-loop performance where 

constraints are active [160]. 

Below is the definition of the numerical values for those constraints:  

•  Maximal power injection: as explained in Chapter 4, the power injection is constrained 

with a limit equal to the upper band boundary. With this, the algorithm will not consider 

possible solutions that drive the power injection above the mentioned boundary in the 

search for optimal solutions. In line with this, 𝑃𝐼𝑁𝐽
𝑚𝑎𝑥, the upper limit for the power 

transfer is computed according to the evolution of the commitment profile, as follows: 

where the tolerance is of 2 MW (25 % of 𝑃𝑀𝐴𝑋).  

This constraint is implemented by means of the current 𝑖∗: 

𝑃𝐼𝑁𝐽
𝑚𝑎𝑥(𝑘) =  𝑆𝐶𝐻𝐸𝐷(𝑘) + 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 Eq. 5.4 

𝑖∗(𝑘) ≤
 𝑆𝐶𝐻𝐸𝐷(𝑘) + 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

𝑣𝐵𝐸𝑆𝑆(𝑘)
 Eq. 5.5 
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• Rate of change of power injected: according to the contractual specifications of the HPP 

operation, the speed at which 𝑃𝐼𝑁𝐽 varies (in MW/s) must be limited, so that: 1), the time 

it takes passing from 0 to 𝑃𝑀𝐴𝑋 is in the range [30 s – 5 min], and 2), the time it takes 

passing from 𝑃𝑀𝐴𝑋 to 0 is in the range [1 min – 10 min]. However, as it was explained 

in the last part of section 4.2.4.2, one single range is applied for the increasing and 

decreasing changes of 𝑃𝐼𝑁𝐽. The range retained is [1 min – 5 min], that is a mix of the 

original time ranges. Also, as the constrained variable is the controller model input, 

𝑢 = 𝑖𝐵𝐸𝑆𝑆, the limits are expressed in terms of current: 

where the use of absolute value indicates that the equation is valid for both the passing 

from 𝑃𝑀𝐴𝑋 to 0 and vice versa. As noted, the lower limit is associated to the larger time 

in the range (5 minutes or 300 seconds), whereas the upper limit is related to the case 

where the passing takes place in 1 minute (60 s). The reason for this is a shorter passing 

time implies a steepest slope, or a bigger rate of change limit. Putting the limits for the 

rate of change of 𝑣𝑖𝐵𝐸𝑆𝑆 in inequality form, gives:  

where the bounds are in [𝑊 𝑉 ∙ 𝑠⁄ ] or [𝐴 𝑠⁄ ].  

• State-of-charge: as mentioned, the 𝑆𝑜𝐶 is constrained as follows: 

This range corresponds to the storage solution manufacturer recommendation for 

achieving 20 years design life [175]. 

• ESS maximum charge/discharge current: considering the sign convention defined for 

BESS charge and discharge, the maximum continuous recharge and discharge currents 

are 3280 and -6400 Amperes, respectively [175]. Hence, the battery current is 

constrained as 

Lower limit 
[ − ( 𝑆𝐶𝐻𝐸𝐷(𝑘) + 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒)] 3  ⁄

𝑣𝐵𝐸𝑆𝑆(𝑘)
[
𝑊 𝑠⁄

𝑉
] 

Eq. 5.6 

Upper limit 
[( 𝑆𝐶𝐻𝐸𝐷(𝑘) + 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒) −  ] 6 ⁄

𝑣𝐵𝐸𝑆𝑆(𝑘)
[
𝑊 𝑠⁄

𝑉
] 

−
1

3  
∙
 𝑆𝐶𝐻𝐸𝐷(𝑘) + 𝑡𝑜𝑙

𝑣𝐵𝐸𝑆𝑆(𝑘)
≤
𝑑𝑢(𝑘)

𝑑𝑡
≤
1

6 
∙
 𝑆𝐶𝐻𝐸𝐷(𝑘) + 𝑡𝑜𝑙

𝑣𝐵𝐸𝑆𝑆(𝑘)
 Eq. 5.7 

2  % ≤ 𝑆𝑜𝐶 ≤ 8  % Eq. 5.8 

−64   𝐴 ≤ 𝑢 ≤ 328  𝐴 Eq. 5.9 
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Table 5.1 recapitulates the constraints limits explained.  

Performance indicators 

To solve the issue of handling the power produced during strong wind periods and the 

energy storage system is not available to be charged, curtailment of wind power is assumed to 

happen if the production is above the band upper limit with the BESS fully charged.  

Hence, whenever  𝑊𝐸𝐶𝑆 >  𝑆𝐶𝐻𝐸𝐷 + 𝑡𝑜𝑙erance with 𝑆𝑜𝐶 = 8  %, the lost power due 

to curtailment is calculated as 

Then, the percentage of the power produced that was curtailed is obtained from 

Meanwhile, the commitment failures are calculated as the percentage of the time during 

which the penalty condition was active (overtakes of the injection band upper threshold lasting 

60 seconds with 𝑆𝑜𝐶 = 8  % are not considered in this calculation but in 𝑃𝑐𝑢𝑟𝑡), or 

Also, whenever a commitment failure has been triggered, the unbilled power is 

computed as 

This means that the total remunerated power injected is given by 

(if  𝑊𝐸𝐶𝑆 > upper limit and  𝑆𝑜𝐶 is max): 𝑃𝑐𝑢𝑟𝑡 =  𝑊𝐸𝐶𝑆 − ( 𝑆𝐶𝐻𝐸𝐷 + 𝑡𝑜𝑙) Eq. 5.10 

𝑃𝑐𝑢𝑟𝑡 % = 1  ∙
𝑃𝑐𝑢𝑟𝑡
𝑃𝑊𝐸𝐶𝑆

 
 

Eq. 5.11 

𝐶𝐹 % = 1  ∙
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑤𝑖𝑡ℎ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 

𝑇𝑜𝑡𝑎𝑙 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑚𝑖𝑛𝑢𝑡𝑒𝑠
 Eq. 5.12 

(if 𝐶𝐹 = 𝑂𝑁): 𝑃𝑢𝑛𝑏𝑖𝑙𝑙𝑒𝑑 = 𝑃𝑊𝐸𝐶𝑆 + 𝑃𝐵𝐸𝑆𝑆  
Eq. 5.13 

𝑃𝐼𝑁𝐽 = 𝑃𝑊𝐸𝐶𝑆 + 𝑃𝐵𝐸𝑆𝑆 − 𝑃𝑐𝑢𝑟𝑡 − 𝑃𝑢𝑛𝑏𝑖𝑙𝑙𝑒𝑑  Eq. 5.14 

Table 5.1. Limitations assigned to the constraints. 

Parameter Description Unit Value 

𝑖∗𝑚𝑎𝑥 Filtered current upper bound A 
 𝑆𝐶𝐻𝐸𝐷(𝑘) + 𝑡𝑜𝑙

𝑣𝐵𝐸𝑆𝑆(𝑘)
 

𝑢𝑚𝑖𝑛 Control amplitude lower bound A -6400 

𝑢𝑚𝑎𝑥 Control amplitude upper bound A 3280 

𝑆𝑜𝐶𝑚𝑖𝑛 State-of-charge upper limitation % 20 

𝑆𝑜𝐶𝑚𝑎𝑥 State-of-charge lower limitation % 80 

𝑑𝑢 
𝑚𝑖𝑛

𝑑𝑡
 Control actions rate of change lower bound  [A/s] −

1

3  
∙
 𝑆𝐶𝐻𝐸𝐷(𝑘) + 𝑡𝑜𝑙

𝑣𝐵𝐸𝑆𝑆(𝑘)
 

𝑑𝑢 
𝑚𝑎𝑥

𝑑𝑡
 Control actions rate of change upper bound [A/s] 

1

6 
∙
 𝑆𝐶𝐻𝐸𝐷(𝑘) + 𝑡𝑜𝑙

𝑣𝐵𝐸𝑆𝑆(𝑘)
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The energy injected (𝐸𝐼𝑁𝐽 in MWh) is computed from the injected power by considering 

the time. Finally, the percent of the production non-remunerated due to commitment failures is 

obtained from 

Also, to keep track of the storage system usage, the account of the partial charging and 

discharging cycles is kept: 

with ∆𝑆𝑜𝐶 = 𝑆𝑜𝐶(𝑘) − 𝑆𝑜𝐶(𝑘 − 1). Then, the number of cycles of the storage system is given 

by:   

where a maximal depth-of-discharge (𝐷𝑜𝐷) of 60 % is considered. The BESS cycles counting 

method here employed is based on the approach introduced in [176]. 

The error of the injected power is given by the mean of the absolute value of the relative 

error with respect to the reference 𝑃𝑆𝐶𝐻𝐸𝐷: 

Finally, the absolute value of the state-of-charge relative error is computed as 

The above-described indicators 𝑃𝑐𝑢𝑟𝑡, 𝑃𝑛𝑜𝑡 𝑏𝑖𝑙𝑙𝑒𝑑, 𝐸𝐼𝑁𝐽, 𝐶𝐹, 𝐵𝐸𝑆𝑆 𝑐𝑦𝑐𝑙𝑒𝑠, 𝑃𝐼𝑁𝐽 𝑒𝑟𝑟𝑜𝑟 

and 𝑆𝑜𝐶 𝑒𝑟𝑟𝑜𝑟 will be used as comparison criteria of the simulation results obtained from the 

application of the proposed algorithm with respect to different strategies. 

Next, the power production data and generation of the day ahead power commitment 

are discussed. The profile with the power production information ( 𝑊𝐸𝐶𝑆) is obtained from real 

wind data, whereas the commitment data is generated by applying a simple stochastic approach.   

Presentation of the production data and commitment profiles generation 

The 27 days of wind measurements shown in Fig. 5.3.a were collected every minute 

using a measurement tower at Guadeloupe during February of 2016. The associated wind power 

profile is plotted in Fig. 5.3.b. The latter was generated by a WECS operator by applying the 

power curve of a 2 MW Gamesa G90 wind turbine. The total energy produced by the WECS 

𝑃𝑢𝑛𝑏𝑖𝑙𝑙𝑒𝑑 % = 1  ∙
𝑃𝑢𝑛𝑏𝑖𝑙𝑙𝑒𝑑
𝑃𝑊𝐸𝐶𝑆

 
 

Eq. 5.15 

𝑐ℎ𝑔 = 𝑐ℎ𝑔 + ∆𝑆𝑜𝐶, if ∆𝑆𝑜𝐶 >   

𝑑𝑐ℎ𝑔 = 𝑑𝑐ℎ𝑔 + ∆𝑆𝑜𝐶, if ∆𝑆𝑜𝐶 <   

 

Eq. 5.16 

𝐵𝐸𝑆𝑆 𝑐𝑦𝑐𝑙𝑒𝑠 = (𝑐ℎ𝑔 + 𝑑𝑐ℎ𝑔) 12 ⁄   
Eq. 5.17 

𝑃𝐼𝑁𝐽 𝑒𝑟𝑟𝑜𝑟 % = 𝑚𝑒𝑎𝑛 |1  ∙
𝑃𝐼𝑁𝐽 −  𝑆𝐶𝐻𝐸𝐷

 𝑆𝐶𝐻𝐸𝐷
| 

 
Eq. 5.18 

𝑆𝑜𝐶 𝑒𝑟𝑟𝑜𝑟 % = 𝑚𝑒𝑎𝑛 |1  ∙
𝑆𝑜𝐶 − 𝑺𝒐𝑪𝑟𝑒𝑓
𝑺𝒐𝑪𝑟𝑒𝑓

| 
 

Eq. 5.19 
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during that time period amounts to 1,817 GWh. According to the average of both the wind 

speeds and the productions obtained, these are classed as:  

• weak wind zones (displayed in Fig. 5.3 in violet). The average wind speeds and 

power productions are 4,8 m/s and 0,83 MW,  

• medium wind zones (in blue), average speeds of 7.2 m/s and average productions 

of 2,50 MW, and 

• strong wind zones (in gray), average speeds of 9,2 m/s and average productions 

of 4,71 MW. 

It is reminded that at every timestep 𝑘, a sample of  𝑊𝐸𝐶𝑆 is provided to the energy 

management strategy. The prediction is made under the assumption that such sample, received 

at the beginning of the prediction window, will stay constant all through the instants 𝑘 + 1, 𝑘 +

2, … , 𝑘 + 𝑁𝑝, which is one of the assumptions on which the algorithm is based. 

The test of the energy management algorithm requires a firm injection commitment 

( 𝑆𝐶𝐻𝐸𝐷), associated with the production data. In the absence of wind speed or power prediction 

data (and having no access to a forecasting tool), a stochastic approach is followed to generate 

the day-ahead commitment profile. Under this approach, the commitment is obtained from the 

production data by adding a given amount of synthetic random error.  

 

 

Fig. 5.3. (a) Wind measurements profile, and (b) associated power production profile. 
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The proposed method requires inputs being received every second. For this, the 

production data is modified by replicating every measurement 59 times. Starting from the 30 

minutes average of the production profile, random errors were added within the ±10 % range, 

giving a first commitment profile shown in Fig. 5.4 for the first day. 

Fig. 5.5 plots the error of this commitment profile with respect to the profile of averages. 

Two more commitment profiles were created based on the latter by adding up to ± 20 % and ± 

30 % errors, respectively. The resulting commitment profiles for the first simulation day are 

shown in Fig. 5.6. whereas in Fig. 5.7 are shown the commitments for the 27 days period. 

 

Fig. 5.6. Commitment profiles, first day. 

 

Fig. 5.4. Production average with 30 minutes steps and injection commitment with maximum 10 % error, day 1. 

 

Fig. 5.5. Error of commitment profile. 
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In Fig. 5.8 is displayed the tolerated injection zone for the commitment profile with 

maximum 20 % error. The retained tolerance of  .25𝑃𝑀𝐴𝑋 implies the injection band bounds 

are 2 MW up and down the committed profile 𝑃𝑆𝐶𝐻𝐸𝐷. 

Along with the commitment signals 𝑃𝑆𝐶𝐻𝐸𝐷 defined, the production profile from Fig. 

5.3.b is used as input to the simulations, representing the production ( 𝑊𝐸𝐶𝑆). 

A simulation sample time (𝑇𝑠) of 1 second has been defined for the validation tests in 

Matlab/Simulink. On the other side, as the commitment failures are triggered by the disrespect 

of the injection band during 60 consecutive seconds, the parameter 𝑁𝑝 is given values smaller 

than 1 minute. 

During a first part of the tests, 𝑁𝑝 will be fixed at 10 seconds, implying that at every 

timestep the samples from the vector of future references corresponding to the 10 seconds 

following the current calculation instant are received by the controller. Later, 𝑁𝑝 values of 15, 

 

Fig. 5.7. Commitment profiles, 27 days period. 

 

Fig. 5.8. Commitment with 20 % error and corresponding tolerated region, 27 days period. 

Table 5.2. Simulation settings for tests in Matlab/Simulink. 

Parameter Description Unit Value 

𝑇𝑠 Simulation sample time s 1 

𝑁𝑝 Optimization window length s 10, 15, 30, 45  

𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 Injection band tolerance MW 2 

𝑆𝑜𝐶𝑖𝑛𝑖𝑡 Initial state-of- charge % 50 
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30 and 45 seconds will also be considered. All the simulations have been run with an initial 

state-of-charge of 50 %. Table 5.2 summarizes the values for these simulation settings. For their 

part, the constraints are defined as in Table 5.1. 

5.2.2 Economic optimization of the HPP operation with respect to a 24 

hours commitment profile  

The aim of the proposed algorithm is to maximize the plant revenues via the 

minimization of the commitment failures. As more transferred energy means an increased plant 

turnover, the algorithm settings allowing to act on the amount of power injected to the main 

grid need to be adjusted. The settings influencing on the power injection are 𝜆1, 𝜆2, 𝑄𝑢 (see  Eq. 

5.1), and the positive or negative offset that can be added to the commitment 𝑃𝑆𝐶𝐻𝐸𝐷 (see Fig. 

5.9). 

𝑄𝑢 is tuned by the user and can be assumed a fixed parameter. The influence of the 

control objectives weights and the vertical offset are next studied separately. Other than plant 

revenues maximization, other strategies may focus on maximizing the energy stored in the ESS, 

while the commitment failures are minimized. These strategies are explored below. 

5.2.2.1 Profit maximization strategy 1 

To start with, a strategy with greater weight attributed to the minimization of the 

tracking error of the power injection (or sub-cost of the optimization objective related to the 

injection) with respect to the minimization of the 𝑆𝑜𝐶 tracking error (or 𝑆𝑜𝐶-related objective 

sub-cost), is considered (Eq. 5.1). Table 5.3 introduces the controller parameter values used in 

this first strategy. The sub-costs’ weights 𝜆1 and 𝜆2 are non-negative and are defined to add up 

100 (𝜆1 + 𝜆2 = 1  ). Meanwhile, a value for 𝑄𝑢 is chosen to adjust the control effort so that 

the amplitude of  𝐵𝐸𝑆𝑆 is equivalent to the difference  𝑆𝐶𝐻𝐸𝐷 −  𝑊𝐸𝐶𝑆, this is, the amount 

 

Fig. 5.9. The power injection set-point can be modified to increase (positive offset) or decrease 

(negative offset) the transfer of power to the grid. 

𝑆𝑜𝐶𝑚𝑖𝑛

 𝑆𝐶𝐻𝐸𝐷

lower limit

upper limit

 𝑆𝐶𝐻𝐸𝐷
+𝑜𝑓𝑓𝑠𝑒𝑡

 𝑆𝐶𝐻𝐸𝐷
−𝑜𝑓𝑓𝑠𝑒𝑡
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power provided by or transferred to the storage system that allows holding the firm injection 

commitment. 

As the variables in the cost function present different magnitudes, scale factors are 

applied to (𝑖∗ − 𝑃𝑆𝐶𝐻𝐸𝐷 𝑣𝐵𝐸𝑆𝑆⁄ )2,  (𝑆𝑜𝐶 − 𝑆𝑜𝐶𝑟𝑒𝑓)
2
 and 𝑢2. These scale factors are typical 

values dividing the respective sub-costs. The injection sub-cost in the optimization problem is 

expressed in terms of the regulated variable 𝑖∗ which is a current signal. Thus, the scale factors 

for the injection objective and control effort are similar. 

Table 5.3. Profit maximization strategy 1: algorithm parameters values. 

Parameter Description Unit Value 

𝜆1 Injection sub-cost - 100, 50 and 0 

𝑆𝐹1 Injection sub-cost scale factor 𝐴2 [(𝑢𝑚𝑖𝑛 − 𝑢𝑚𝑎𝑥) 2⁄ ]
2
 

𝜆2 𝑆𝑜𝐶 sub-cost - 0, 50 and 100 

𝑆𝐹2 𝑆𝑜𝐶 sub-cost scale factor %2 5 2 

𝑄𝑢 Parameter for adjustment of the control effort -  ,5 

𝑆𝐹𝑢 Control effort scale factor 𝐴2 [(𝑢𝑚𝑖𝑛 − 𝑢𝑚𝑎𝑥) 2⁄ ]
2
 

𝑜𝑓𝑓𝑠𝑒𝑡 Vertical  displacement of 𝑃𝑆𝐶𝐻𝐸𝐷  MW 0 

𝑆𝑜𝐶𝑟𝑒𝑓 𝑆𝑜𝐶 set-point level % 50 

𝑁𝑝 Optimization window length s 10 
 

(a) 

 
(b) 

 
Fig. 5.10. Approach to act on the transfer of power through the weights 𝜆1and 𝜆2 (Strategy 1). Set-

points and allowed regions for the evolution of: (a) power injection , and (b) state-of charge. 

allowed region

 𝐼𝑁𝐽 𝑆𝑜𝐶𝑚𝑖𝑛

𝑆𝑜𝐶𝑚𝑎𝑥

forbidden region

 𝑆𝐶𝐻𝐸𝐷

 𝑆𝐶𝐻𝐸𝐷+ 𝑡𝑜𝑙

 𝑆𝐶𝐻𝐸𝐷− 𝑡𝑜𝑙

𝑆𝑜𝐶𝑚𝑖𝑛 2 %

8 %

allowed region

𝑆𝑜𝐶𝑚𝑎𝑥

𝑺𝒐𝑪𝑟𝑒𝑓 5 %
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As explained in Chapter 4, the power transferred to the grid is limited so that injections 

beyond the band ceiling are avoided. In the current strategy, the commitment is kept in the 

middle of the band and the SoC reference is set at the 50 % level, as sketched in Fig. 5.10.a and 

Fig. 5.10.b. The capacity of the strategy to influence the power injection (and thus, the plant 

turnover) is to be established through simulation. 

A sample of the production profile shown in Fig. 5.3.b is selected for testing the capacity 

of the MPC/QP algorithm to maximize the injection. The sample is shown in Fig. 5.11.a and 

consists of the data for the 5th, 6th and 7th days of the dataset. The total production during those 

3 days amounts 380,1 MW. A simulation run with the algorithm using the commitment profile 

with maximum 10 % error and 𝜆1=100, 𝜆2=0 (interest focused on the respect of the injection 

reference), results in the injection profile shown in Fig. 5.11.b. Several overtakes of the band 

(gray region in the figure) can be observed, some of which trigger commitment failures. Indeed, 

under the present conditions, during 1,4 % of the time commitment failures were active. 

Because of the penalties, 0,6 % of the total production was unbilled. Also, 0,006 % of the power 

produced was curtailed. As it was said earlier in the Chapter, curtailments happen when the 

production is above the upper band limit and the BESS is fully charged (𝑆𝑜𝐶=80%). A total of 

376,9 MWh are injected into the grid and the injection error (absolute value of the relative error) 

totals 2,9 %.  

 
Fig. 5.11. Profit maximization strategy 1: (a) wind generated power data for 3 days period, and (b) 

resulting injection with 𝜆1=100, 𝜆2=0, initial SoC of 50 % and  𝑃𝑆𝐶𝐻𝐸𝐷  with maximum 10 % error. 
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As the algorithm controls the storage system power through current control actions, the 

dynamic behavior of the ESS power is similar to that of the calculated storage system current, 

as can be seen in Fig. 5.12.a and Fig. 5.12.b which present the evolutions of 𝑃𝐵𝐸𝑆𝑆 and 𝐼𝐵𝐸𝑆𝑆 

during the 3-day period. In Fig. 5.12.a, the signal 𝑃𝐵𝐸𝑆𝑆 is compared with 𝑃𝑆𝐶𝐻𝐸𝐷 − 𝑃𝑊𝐸𝐶𝑆, 

reference signal indicating what is the instant power the storage system must compensate for 

according to the commitment. As shown, the 𝑃𝐵𝐸𝑆𝑆 follows closely its set-point. On several 

occasions the storage system’s maximum discharge capacity is reached, as indicated by the 

saturation in the positive side of both the power and current plots. It is reminded that the 

maximum discharge current is equal to 3,28 kA whereas the storage system maximum charge 

current is -6,4 kA. The current signal is the optimized variable in the energy management 

scheme proposed. 

Fig. 5.13 presents the evolution of the state-of-charge. Several times the upper 𝑆𝑜𝐶 

limitation is attained which gives explanation to the occurrence of curtailments in this case. The 

number of charging cycles (8,6) is slightly bigger than the number of discharge cycles (8,3). 

Consequently, a total of 16,9 cycles during the 3 days is registered. Meanwhile, the state-of-

charge error totals 31,8 %. 

In Fig. 5.14.a a zoom is made around the first time the upper 𝑆𝑜𝐶 limit is reached. Fig. 

5.14.b displays the control actions corresponding to the same time period taking place the 5th 

 

Fig. 5.12. Profit maximization strategy 1: (a) storage system power, and (b) storage system current 

with 𝜆1=100, 𝜆2=0, initial SoC of 50 % and  𝑃𝑆𝐶𝐻𝐸𝐷  with maximum 10 % error. 
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day between 11h and 12h. As can be appreciated in the control actions plot, the instants during 

which the constraint 𝑆𝑜𝐶𝑚𝑎𝑥 is activated the control actions are essentially null. 

Now the ponderation of the power injection objective is decreased by a half (𝜆1=50). 

Following the condition 𝜆1 + 𝜆2 = 1   defined for the weights, the same value is assigned to 

𝜆2. In Fig. 5.15  are superposed the plotted the 𝑆𝑜𝐶 signals obtained when 𝜆1=100, 𝜆2=0 and 

𝜆1=𝜆2=50. In the latter case, less importance is given to the respect of the reference 𝑃𝑆𝐶𝐻𝐸𝐷 

while the weight given to the tracking of 𝑆𝑜𝐶𝑟𝑒𝑓 is increased. Consequently, the EMS optimizes 

the injection whilst allowing smaller variations in the state-of-charge. Thus, the number of 

charging and discharging cycles with 𝜆1=𝜆2=50 is 6,6 and 6,4 for a total of 13 cycles, smaller 

than the 16,9 cycles obtained with 𝜆1=100 and 𝜆2=0. 

    
Fig. 5.13. Profit maximization strategy 1: state-of-charge with 𝜆1=100, 𝜆2=0, initial SoC of 50 %  and  

𝑃𝑆𝐶𝐻𝐸𝐷 with maximum 10 % error. 

                  

     

  

  

  

  

  

  
 
  
  
  
  
 
 
 
  
 
  
 
 

 

  

Fig. 5.14. Zoom around the first period with 𝑆𝑜𝐶𝑚𝑎𝑥  restriction activated: (a) state-of-charge, and (b) 

storage system current, 𝜆1=100, 𝜆2=0, initial SoC of 50 %  and  𝑃𝑆𝐶𝐻𝐸𝐷  with 10 % error 
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Fig. 5.16 compares the control actions resulting from these two situations. With a higher 

value of  𝜆1, IBESS  evolves with bigger amplitudes during both the BESS charging and 

discharging, which explains why the storage  system usage is bigger when 𝜆1=100 and 𝜆2=0. 

In both cases it can be appreciated that the BESS current reaches several times the upper 

boundary (𝑢𝑚𝑎𝑥) leading to the activation of the control action amplitude constraint. 

While the number of cycles changed when the ponderations were modified, the 

percentage of time during which commitment failures where active was the same (1,4 % in both 

situations). After considering unbilled power and curtailments, the total injection is slightly 

higher when 𝜆1=𝜆2=50 (377,3 MW and 376,9 MW in the other case). Fig. 5.17 displays the 

power injection plots. With λ1=100, λ2=0 the BESS usage is less limited, and the amplitude of 

the resulting power injection signal is higher.  

In Fig. 5.18 are presented the resulting cost plots. The scales were modified so that the 

addition of the sub-costs is within the [0,2] range and the control effort sub-cost within [0,1], 

for a total cost between 0 and 3. Even though the total injection is higher when λ1=λ2=50, the 

   

Fig. 5.16. Profit maximization strategy 1: comparison of storage system current with 𝜆1=100, 𝜆2=0 

and 𝜆1= 𝜆2=50, initial SoC of 50 %  and  𝑃𝑆𝐶𝐻𝐸𝐷  with maximum 10 % error. 

    

Fig. 5.15. Profit maximization strategy 1: state-of-charge signals with 𝜆1=100, 𝜆2=0 and 𝜆1=𝜆2=50, 

initial SoC of 50 %  and  𝑃𝑆𝐶𝐻𝐸𝐷  with 10 % error. 
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injection and state-of-charge errors are bigger in this case. Then, the mean cost is also higher. 

Indeed, the mean cost is 0,13 with λ1=λ2=50, and 0,06 in the case where λ1=100 and λ2=0. 

It is reminded that the total cost is the addition of the injection, state-of-charge and 

control effort sub-costs, presented in Fig. 5.19-Fig. 5.21. λ2=0 implies the optimizer does not 

consider the 𝑆𝑜𝐶 cost in the search for optimal solutions. Fig. 5.20 show this cost is zero when 

λ2=0 and reaches 25 % of its highest value with λ1=λ2=50. In Fig. 5.21, the values beyond the 

saturation region in the control effort plots correspond to the charge peaks in the current plots 

presented in Fig. 5.16. 

Table 5.4 recapitulates the results obtained from the present strategy with several 

combinations of λ1 and λ2 in terms of the proposed performance indicators. Whenever using 

only one value after the comma was not enough to understand the effect on a given indicator of 

varying the ponderation of the control objectives, the number of values was augmented. 

Apart from the atypical results obtained with 𝜆1=0, 𝜆2=100 and 𝜆1=10, 𝜆2=90 a certain 

uniformity can be observed among the remaining results shown in the table. 

    

Fig. 5.17. Profit maximization strategy 1: injected power signals with 𝜆1=100, 𝜆2=0 and 𝜆1=𝜆2=50, 

initial SoC of 50 %  and  𝑃𝑆𝐶𝐻𝐸𝐷  with 10 % error. 

    

Fig. 5.18. Profit maximization strategy 1: comparison of the total costs with 𝜆1=100, 𝜆2=0 and 

𝜆1=𝜆2=50, initial SoC of 50 %  and  𝑃𝑆𝐶𝐻𝐸𝐷  with maximum 10 % error. 
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 Apart from the atypical results obtained with 𝜆1=0, 𝜆2=100 and 𝜆1=10, 𝜆2=90 a certain 

uniformity can be observed among the remaining results shown in the table.  

The obtained amounts of commitment failures and unbilled power were similar among 

those results with 0,5 % and 0,6 %, respectively. 

While low levels of production curtailments took place in these cases (the maximum 

curtailment level is 0,006 %), the range of values of energy injected obtained was narrow (745 

    
Fig. 5.19. Profit maximization strategy 1: comparison of the injection costs with 𝜆1=100, 𝜆2=0 and 

𝜆1=𝜆2=50, initial SoC of 50 %  and  𝑃𝑆𝐶𝐻𝐸𝐷  with maximum 10 % error. 

    
Fig. 5.20. Profit maximization strategy 1: comparison of the SoC costs with 𝜆1=100, 𝜆2=0 and 

𝜆1=𝜆2=50, initial SoC of 50 %  and  𝑃𝑆𝐶𝐻𝐸𝐷  with maximum 10 % error. 

    
Fig. 5.21. Profit maximization strategy 1: comparison of the control effort costs with 𝜆1=100, 𝜆2=0 

and 𝜆1=𝜆2=50, initial SoC of 50 %  and  𝑃𝑆𝐶𝐻𝐸𝐷  with maximum 10 % error. 
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kW difference among the minimum and maximum values). The storage system cycles increase 

with 𝜆1 while the relation among the 𝜆 values and both the injection errors and mean costs is 

less obvious 

Fig. 5.22 compares the state-of-charge plots when the firm injection commitments are 

those with maximum 10 %, 20 % and 30 % maximum error, with 𝜆1=𝜆2=50. The production 

data from day 5 is used in this test. As shown in the figure, with a bigger forecast error, more 

Table 5.4. Several results obtained from strategy 1 by varying the weights relation. 

 𝝀𝟏 − 𝝀𝟐 ponderation 

Indicator 0-100 10-90 20-80 50-50 60-40 80-20 100-0 

𝐶𝐹 [%] 13,9 7,4 0,5 0,5 0,5 0,5 0,5 

𝑃𝑢𝑛𝑏𝑖𝑙𝑙𝑒𝑑 [%] 14,9 8,2 0,6 0,6 0,6 0,6 0,6 

𝑃𝑐𝑢𝑟𝑡 [%] 0,000 0,000 0,001 0,004 0,004 0,004 0,006 

𝐸𝐼𝑁𝐽 [MWh] 323,4 348,7 377,7 377,3 377,5 377,0 376,9 

𝐵𝐸𝑆𝑆 𝑐𝑦𝑐𝑙𝑒𝑠  [-] 0,005 2,8 6,6 13,0 11,4 15,8 16,9 

𝑃𝐼𝑁𝐽 𝑒𝑟𝑟𝑜𝑟 [%] 13,4 11,2 8,3 3,4 4,6 2,3 2,9 

𝑆𝑜𝐶 𝑒𝑟𝑟𝑜𝑟 [%] 1,0 18,5 34,1 32,2 32,0 31,8 31,8 

𝑀𝑒𝑎𝑛 𝑐𝑜𝑠𝑡 [-] 0,00 0,11 0,17 0,13 0,19 0,09 0,06 
 

   
Fig. 5.22. Profit maximization strategy 1: state-of-charge signals comparison with 𝑃𝑆𝐶𝐻𝐸𝐷  with 

maximum 10, 20 and 30 % error, 𝜆1=𝜆2=50 and initial SoC of 50 %   

                  

               

  

  

  

  

 
 
 
  
 
 

                              

                             

                             

   
Fig. 5.23. Profit maximization strategy 1: comparison of the power injections with 𝑃𝑆𝐶𝐻𝐸𝐷  with 

maximum 10 % error and 30 % error, 𝜆1=𝜆2=50 and initial SoC of 50 %.   
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BESS usage is required to accomplish the injection schedule. This leads to bigger 𝑃𝐼𝑁𝐽 and 𝑆𝑜𝐶 

sub-costs, and ultimately the increment of the resulting cost 

Fig. 5.23 presents the power injection signals with the first and third commitment 

profile. As in the earlier case, the amplitude of the injection signal increases with the 

commitment error.  

Fig. 5.24 shows the comparison of the resulting costs for the commitments with 10 % 

and 30 % error and Table 5.5 summarizes the results obtained using the proposed comparison 

indicators. 

While close amounts of commitment failures and unbilled power are achieved in the 

three cases, some indicators increase with the commitment error. Such is the case of production 

curtailment, number of cycles, injection and 𝑆𝑜𝐶 errors, and mean cost. It is noted that the 

number of cycles increment between the second and third columns is more than two times 

bigger than the increment between the first and second columns. This non-linearity among the 

variations is due to the upper limit of the 𝑆𝑜𝐶 variable (Fig. 5.22).  

Table 5.5. Summary of the results obtained from strategy 1 with 𝑃𝑆𝐶𝐻𝐸𝐷  with maximum 10 % error and 

30 % error, 𝜆1=𝜆2=50 and initial SoC of 50 % 

 𝑃𝑆𝐶𝐻𝐸𝐷 with maximum error 

Indicator 10 % 20 % 30 % 

𝐶𝐹 [%] 0,69 0, 69 0, 69 

𝑃𝑢𝑛𝑏𝑖𝑙𝑙𝑒𝑑 [%] 0,79 0,80 0,83 

𝑃𝑐𝑢𝑟𝑡 [%] 0,01 0,09 0,38 

𝐸𝐼𝑁𝐽 [MWh] 129,0 129,0 128,8 

𝐵𝐸𝑆𝑆 𝑐𝑦𝑐𝑙𝑒𝑠  [-] 4,8 5,0 5,6 

𝑃𝐼𝑁𝐽 𝑒𝑟𝑟𝑜𝑟 [%] 4,0 6,0 8,6 

𝑆𝑜𝐶 𝑒𝑟𝑟𝑜𝑟 [%] 30,9 33,1 35,2 

𝑀𝑒𝑎𝑛 𝑐𝑜𝑠𝑡 [-] 0,14 0,28 0,31 
 

   

Fig. 5.24. Profit maximization strategy 1: comparison of the objective function costs with 𝑃𝑆𝐶𝐻𝐸𝐷  with 

maximum 10 % error and 30 % error, 𝜆1=𝜆2=50 and initial SoC of 50 %.   
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As mentioned, the injection errors and mean costs obtained also grow with the 

commitment error. The values for these indicators with the commitment profile with the 30 % 

error are more than two times bigger than those obtained with commitment with 10 % error. 

The curtailment is particularly big with the commitment profile having a maximum 30 % error 

compared to the other two cases. 

Next, to understand the effect on the results of the constraints defined, the strategy is 

tested with 𝜆1=𝜆2=50, 𝑄𝑢=0.25 and initial 𝑆𝑜𝐶 of 50 %, without considering the constraints in 

resolving the optimization problem. The production data for the period starting on the fifth day 

and ending at the end of the seventh day is employed in the tests. 

In the absence of constraints, only the plant saturations impose limits to the variables. 

Fig. 5.25 plots the control actions determined by the controller and applied to the plant. 

Meanwhile, in Fig. 5.26 is shown the evolution of the 𝑆𝑜𝐶. If the state-of-charge stays inside 

the [0 %,100 %] 𝑆𝑜𝐶 range when the constraints are turned off is because of the saturations 

imposed by the storage system controlled. 

Other than an important increment in the amplitude of the control actions oscillations 

(in Fig. 5.16 is presented the constrained current plot for the same period with λ1=λ2=50), it 

    

Fig. 5.25. Profit maximization strategy 1 - constraints deactivated: control actions  with 𝜆1=𝜆2=50, 

𝑃𝑆𝐶𝐻𝐸𝐷 with maximum 10 % error and initial SoC of 50 %. 

                  

     

  

  

 

 

 

 
 
  
 
 
  
  
 
 

               

    

Fig. 5.26. Profit maximization strategy 1 - constraints deactivated: state-of-charge  with 𝜆1=𝜆2=50, 

𝑃𝑆𝐶𝐻𝐸𝐷 with maximum 10 % error and initial SoC of 50 %. 
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can be observed that during periods in which the storage is not available, e.g. around 32 

simulation hours (Fig. 5.26), the BESS current is not zero like happened in the presence of 

constraints, meaning that in those situations bigger control actions are employed to manage the 

BESS. 

Fig. 5.27 plots the resulting profile of injection which presents oscillations with a bigger 

amplitude than those observed in the presence of constraints (compare with power injection 

signal with λ1=λ2=50 presented in Fig. 5.17). In this case using constrained control allowed 

obtaining a smoother output while employing smaller control actions. 

5.2.2.2 Profit maximization strategy 2 

It was mentioned that other than the relative weight 𝜆1, the vertical offset that can be 

added to the signal  𝑃𝑆𝐶𝐻𝐸𝐷 has an influence on the power injection. Strategy 2 is a modification 

of Strategy 1 in which an offset is added to 𝑃𝑆𝐶𝐻𝐸𝐷. Table 5.6 summarizes the values of the 

parameters employed in the strategy. Two values for the vertical displacement are utilized in  

simulation  giving results presented in Fig. 5.28 - Fig. 5.30. On the other hand, the weights 𝜆1 

and 𝜆2 as well as the other remaining parameters are fixed. 

Table 5.6. Profit maximization strategy 2: algorithm parameters values. 

Parameter Description Unit Value 

𝜆1 Weight of injection sub-cost - 50 

𝜆2 Weight of 𝑆𝑜𝐶 sub-cost - 50 

𝑄𝑢 Control effort adjustment parameter - 0,5 

𝑜𝑓𝑓𝑠𝑒𝑡 Vertical  displacement of 𝑃𝑆𝐶𝐻𝐸𝐷  MW -0,5, 0 

𝑆𝑜𝐶𝑟𝑒𝑓 𝑆𝑜𝐶 set-point level % 50 

𝑁𝑝 Optimization window length s 10 
 

    

Fig. 5.27. Profit maximization strategy 1 - constraints deactivated: injected power with 𝜆1=𝜆2=50, 

𝑃𝑆𝐶𝐻𝐸𝐷 with maximum 10 % error and initial SoC of 50 %. 
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With a vertical displacement of  -0,5 MW the commitment is moved downwards by the 

same amount. With this modification the commitment profile error is inferior to 23 % during 

96 % of the simulation time and bigger the rest of the time, with a maximum of 37,7%. Such 

error is displayed in Fig. 5.28.  

Fig. 5.29 shows the resultant state-of-charge signal. Because of the decrement in the 

scheduled injection set-point, a surplus of power is made available to be stored. To mobilize 

the power required to follow the power injection set-point, the BESS is charged from the 

beginning of the simulation. With this, the 𝑆𝑜𝐶 increases until reaching 80 % after 1,9 hours. 

At that moment, the constraint 𝑆𝑜𝐶𝑚𝑎𝑥 gets activated and the algorithm forbids any charging 

of the BESS. From there, the injection follows the production (𝑃𝐼𝑁𝐽 =  𝑊𝐸𝐶𝑆) until there is not 

enough power production meet the commitment, that is  𝑊𝐸𝐶𝑆 <  𝑆𝐶𝐻𝐸𝐷 and the storage 

system is discharged. When 𝑃𝑊𝐸𝐶𝑆 becomes greater than  𝑆𝐶𝐻𝐸𝐷 the storage system is charged 

again and so on. 6,2 cycles of the storage units were registered in the present test (without 

modification of the commitment the number of cycles was of 13,0 cycles).  

Fig. 5.30 shows the resultant injection profile plot. In this case, the injection reference 

is followed from close the BESS units are fully charged. With the storage system unavailable 

    

Fig. 5.28. Error of commitment profile with maximum 10 % error with -0,5 MW offset and initial SoC 

of 50 %. 

                  

     

   

   

   

   

 

 
 
 
 
  
 
 
 
  
 
  
 
  
  

             
     

         

    

Fig. 5.29. Profit maximization strategy 2: state-of-charge with -0,5 MW offset, 𝜆1=𝜆2=50, commitment 

with maximum 10 %  error and initial SoC of 50 %  . 

                  

     

  

  

  

  

 
  
  
  
  
 
 
 
  
 
  
 
 



Energy management optimization of a wind-storage based HPP connected to an island power grid 

160 R. LOPEZ - 2021 

to store much power, the injection takes place most of the time between the commitment profile 

and the upper threshold of the tolerated injection region. With commitment failures occurring 

during 0,5 % of the simulation time, 0,5 % of the total power produced is unbilled. 0,03 % of 

the production is curtailed, and a total of 377,3 MWh are injected into the grid. 

 In Fig. 5.31, the objective function costs resulting from using a vertical offset of -0,5 

MW is compared to the cost without vertical displacement of the commitment profile. With the 

vertical displacement a constant cost was added because of the disrespect of the 𝑆𝑜𝐶 reference. 

Moreover, this strategy tends to rely heavily on the storage system which is frequently 

charged. Thus, the BESS units tend to be fully charged and therefore unavailable. This is 

inconvenient as implies a lack of storage capacity during strong wind periods when the BESS 

must store the surplus so that the injection can be flatten. In Table 5.7 are presented the 

indicators values obtained using offsets between -1 MW and +1 MW. According to these 

results, the strategy performs better with small offset values (such as -0,2 MW) or no offset. 

    

Fig. 5.30. Profit maximization strategy 2: power injection with -0,5 MW offset, 𝜆1=𝜆2=50, 

commitments with maximum 10 %  error and initial SoC of 50 %. 

 

Fig. 5.31. Profit maximization strategy 2: comparison of the objective function costs with -0,5 and 0 

offset, 𝜆1=𝜆2=50, commitment with maximum 10 % error and initial SoC of 50 %. 
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5.2.3 Technical optimization of the HPP operation  

While the commitment failures are minimized, another objective that can be prioritized 

is the maximization of the stored energy. Such maximization can be achieved by fixing the set-

point 𝑆𝑜𝐶𝑟𝑒𝑓 to attract the 𝑆𝑜𝐶 signal towards the highest admissible value, 80 %, as portrayed 

in Fig. 5.32. The relative weights 𝜆1 and 𝜆2 also play a role in the achievement of this objective.  

Before checking the effect of  𝜆2 in the 𝑆𝑜𝐶 maximization in section 5.2.3.1, 𝑆𝑜𝐶𝑟𝑒𝑓 is 

given the values 20 %, 50 % and 80 % while fixing 𝜆1 and  𝜆2. 

5.2.3.1 Strategy focused on the storage system state-of-charge maximization  

In Table 5.8 are presented the algorithm’s parameter values used in a first set of tests in 

which the set-point 𝑺𝒐𝑪𝑟𝑒𝑓 is varied. 

The data of the 11th day  is employed in this part. Fig. 5.33 presents the corresponding 

production and commitment data. That day the wind park production totals 57,1 MW. 

Fig. 5.34.a shows the storage system state-of-charge when λ1=0 and λ2=100 and the 

𝑆𝑜𝐶 variable references are set at the 20 %, 50 % and 80 % levels. Under these conditions, it 

      

Fig. 5.32. Approach to maximize the SoC through the parameter 𝜆2: set-point and allowed regions for 

the state-of charge. 

𝑺𝒐𝑪

𝑺𝒐𝑪𝒎𝒊𝒏 2 %

8 %

allowed region

𝑺𝒐𝑪𝒓𝒆𝒇

Table 5.7. Results summary of strategy 2. Several offset values, 𝜆1=𝜆2=50, commitment with maximum 

10 % error and initial SoC of 50 %. 

 𝒐𝒇𝒇𝒔𝒆𝒕 [MW] 

Indicator -1 -0,5 -0,2 0 +0,2 +0,5 +1 

𝐶𝐹 [%] 0,5 0,5 0,5 0,5 3,7 7,9 10,4 

𝑃𝑢𝑛𝑏𝑖𝑙𝑙𝑒𝑑 [%] 0,5 0,5 0,5 0,6 3,8 8,7 11,8 

𝑃𝑐𝑢𝑟𝑡 [%] 0,03 0,03 0,02 0,00 0,00 0,00 0,00 

𝐸𝐼𝑁𝐽 [MWh] 377,4 377,3 377,2 377,3 365,9 347,4 335,6 

𝐵𝐸𝑆𝑆 𝑐𝑦𝑐𝑙𝑒𝑠  [-] 3,1 6,2 9,7 13,0 10,0 6,2 2,3 

𝑃𝐼𝑁𝐽 𝑒𝑟𝑟𝑜𝑟 [%] 31,1 14,2 7,0 3,4 5,9 9,7 16,6 

𝑆𝑜𝐶 𝑒𝑟𝑟𝑜𝑟 [%] 59,9 58,8 54,7 32,182 51,0 57,9 59,5 

𝑀𝑒𝑎𝑛 𝑐𝑜𝑠𝑡 [-] 0,5 0,5 0,2 0,1 0,1 0,5 0,5 
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takes a little more than 24 hours for the 𝑆𝑜𝐶 to reach 20 % or to 80 % when the initial value is 

50 %.  In the case where the reference is set at 50 %, the variations in the 𝑆𝑜𝐶 during the day 

are minimal. In the three cases, the BESS usage is minimum 

The corresponding control actions generated by the optimizer are presented in Fig. 

5.34.b. As can be noted, when the optimization problem is solved focusing only on the 

minimization of the tracking error of the 𝑆𝑜𝐶 variable, the current variations are very limited. 

Therefore, the power charged into or discharged from the BESS is also limited and therefore, 

insufficient to compensate the forecast errors. Table 5.9 presents the performance indicators 

obtained for the three tests. In all of them, an important injection error (superior to 22 %) can 

be observed.  

    

Fig. 5.33. SoC maximization strategy: wind generated power data for day 11 and commitment profile. 

Table 5.8. SoC maximization strategy: algorithm parameters values. 

Parameter Description Unit Value 

𝜆1 Weight of injection sub-cost - 0 

𝜆2 Weight of 𝑆𝑜𝐶 sub-cost - 100 

𝑄𝑢 Control effort adjustment parameter - 0,5 

𝑜𝑓𝑓𝑠𝑒𝑡 Vertical  displacement of 𝑃𝑆𝐶𝐻𝐸𝐷  MW 0 

𝑺𝒐𝑪𝑟𝑒𝑓 𝑆𝑜𝐶 set-point level % 20, 50, 80 

𝑁𝑝 Optimization window length s 10 
 

                  

           

 

 

 

 

 

 
 
 
 
  
  
 
 

  
    

  
     

                    

Table 5.9. Results summary of strategy 2. 𝑺𝒐𝑪𝑟𝑒𝑓 of 20 %, 50 % and 80 %. 

Indicator 𝑺𝒐𝑪𝑟𝑒𝑓=20 𝑺𝒐𝑪𝑟𝑒𝑓=50 𝑺𝒐𝑪𝑟𝑒𝑓=80 

𝐶𝐹 [%] 2,8 4,2 4,2 

𝑃𝑢𝑛𝑏𝑖𝑙𝑙𝑒𝑑 [%] 4,0 4,9 4,8 

𝑃𝑐𝑢𝑟𝑡 [%] 0 0 0 

𝐸𝐼𝑁𝐽 [MWh] 55,2 54,3 53,8 

𝐵𝐸𝑆𝑆 𝑐𝑦𝑐𝑙𝑒𝑠  [-] 0,2 0,0 0,2 

𝑃𝐼𝑁𝐽 𝑒𝑟𝑟𝑜𝑟 [%] 22,6 22,4 22,3 

𝑆𝑜𝐶 𝑒𝑟𝑟𝑜𝑟 [%] 35,1 0,7 37,3 

𝑀𝑒𝑎𝑛 𝑐𝑜𝑠𝑡 [-] 0,03 0,00 0,05 
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In Fig. 5.35 are compared the 𝑆𝑜𝐶 signals resulting of using the ponderations λ1=0, 

λ2=100 and  λ1=100, λ2=0 when the SoC set-point is set at 80 %. As can be seen, the bigger 𝜆2 

the bigger the attraction effect of the state-of-charge towards the set-point 𝑺𝒐𝑪𝑟𝑒𝑓. With this 

bigger attraction the BESS usage decreases. With λ1=0, λ2=100 the total cycles are 0,2 and 4,2 

cycles with λ1=100, λ2=0. 

Table 5.10 presents the parameters employed for several tests done with the data of the 

11th day, and Table 5.11 summarizes the results obtained with several ponderations of the 

control objectives with the data of the 11th day. 

In the cases where λ1 was equal  or greater than λ2, no commitment failures or unbilled 

injections were registered. Also, in those cases the injection errors were significantly smaller. 

      

Fig. 5.34. SoC maximization strategy: (a) SoC signals, and (b) control actions with set-point levels 20 

%, 50 % and 80 %, commitment with maximal 20 % error, 𝜆1=0 and 𝜆2=100 and initial SoC of 50 %. 

  

  

  

  

 
  
  
  
  
 
 
 
  
 
  
 
 

    
             

   
    

             
   
    

             
   
    

                  

           

    

   

 

  

   

 
 
  
 
 
  
  
 

                             
   
   

                         
   
   

                         
   
   

  

  

  

  

 
  
  
  
  
 
 
 
  
 
  
 
 

    
             

   
    

             
   
    

             
   
    

                  

           

    

   

 

  

   

 
 
  
 
 
  
  
 

                             
   
   

                         
   
   

                         
   
   

Table 5.10. SoC maximization strategy: algorithm parameters values. 

Parameter Description Unit Value 

𝜆1 Weight of injection sub-cost - 0, 10, 20, 60, 80, 100  

𝜆2 Weight of 𝑆𝑜𝐶 sub-cost - 100, 90, 80, 50, 40, 20, 0 

𝑄𝑢 Control effort adjustment parameter - 0,5 

𝑜𝑓𝑓𝑠𝑒𝑡 Vertical  displacement of 𝑃𝑆𝐶𝐻𝐸𝐷  MW 0 

𝑺𝒐𝑪𝑟𝑒𝑓 𝑆𝑜𝐶 set-point level % 50 

𝑁𝑝 Optimization window length s 10 
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According to these results, the pursuit for the technical objective of reducing the BESS usage 

lead to an increment in the commitment failures. In this thesis, the decision was made to define 

relative weights 𝜆1 and 𝜆2 that add up 100. This was done to highlight the fact that the user of 

the algorithm can  give a quantitative value to the importance of each of the control objectives. 

The range [0,100] is straightforward but, as shown above, when λ1 and λ2 are 0 and 100, the 

𝑆𝑜𝐶 can go from 20 % or 80 % level towards 50 % within nearly 24 hours while the control 

actions are minimal. 

Seeking that the BESS can be either charged or discharged at the beginning of every 

day, a user of the algorithm can be interested in ensuring that a certain amount of power (e.g. a 

𝑆𝑜𝐶 of 50 %) is stored in the battery units at the end of the day. 

For achieving this, other couples of values λ1, λ2 can be explored. As an example, in 

Fig. 5.36.b are compared the 𝑆𝑜𝐶 signals obtained with λ1=λ2=50, λ1=50 and λ2=10 000, and 

λ1=50 and λ2=100 000 with the 𝑆𝑜𝐶 set-point at 50 %. For this test, the power data used 

corresponds to the period starting the day 11 and ending at the end of the 17th day. Fig. 5.36.a 

    

Fig. 5.35. SoC maximization strategy: state-of-charge with 𝜆1 = 𝜆2=50, commitment with maximum 20 

% error, initial SoC of 50 % and SoC set-point at 80 %. 

Table 5.11. Results summary of strategy 2. Several ponderations 𝜆1, 𝜆2, commitment with maximum 20 

% error, initial 𝑆𝑜𝐶 and 𝑆𝑜𝐶𝑟𝑒𝑓  of 50 %.. 

 𝝀𝟏 − 𝝀𝟐 weights 

Indicator 0-100 10-90 20-80 50-50 60-40 80-20 100-0 

𝐶𝐹 [%] 4,2 1,4 0,7 0,0 0,0 0,0 0,0 

𝑃𝑢𝑛𝑏𝑖𝑙𝑙𝑒𝑑 [%] 4,9 2,5 0,8 0,0 0,0 0,0 0,0 

𝑃𝑐𝑢𝑟𝑡 [%] 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

𝐸𝐼𝑁𝐽 [MWh] 54,3 55,4 56,2 56,6 56,6 56,7 56,7 

𝐵𝐸𝑆𝑆 𝑐𝑦𝑐𝑙𝑒𝑠  [-] 0,0 0,7 1,6 3,2 3,4 3,9 4,2 

𝑃𝐼𝑁𝐽 𝑒𝑟𝑟𝑜𝑟 [%] 22,4 18,7 13,9 5,5 4,0 2,8 3,2 

𝑆𝑜𝐶 𝑒𝑟𝑟𝑜𝑟 [%] 0,7 5,7 11,7 21,0 22,4 22,9 22,8 

𝑀𝑒𝑎𝑛 𝑐𝑜𝑠𝑡 [-] 0,00 0,02 0,07 0,13 0,07 0,08 0,03 
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presents the production and commitment profiles used as simulation inputs whereas in Fig. 

5.36.b are presented the corresponding 𝑆𝑜𝐶 signals. 

Of course, the bigger λ2, the closer to the 50 %, reference level the 𝑆𝑜𝐶 will evolve. 

Thus, with increasing λ2 the 𝑆𝑜𝐶 error should decrease. λ2 values of 50, 10 000 and 100 000 

produce 𝑆𝑜𝐶 errors of 21,1 %, 8,3 % and 3,3 %, respectively. It is because of several activations 

of the 𝑆𝑜𝐶 constraint that the number of cycles with λ2=50 is not the biggest, as indicated in 

Table 5.12. Results summary of strategy 2. Other ponderations 𝜆1, 𝜆2, commitment with maximum 20 

% error, initial 𝑆𝑜𝐶 and 𝑆𝑜𝐶𝑟𝑒𝑓  of 50%. 

 𝝀𝟏 − 𝝀𝟐 weights 

Indicator 50-50 50-10 000 50-100 000 

𝐶𝐹 [%] 0,4 0,1 0,7 

𝑃𝑢𝑛𝑏𝑖𝑙𝑙𝑒𝑑 [%] 0,2 0,2 0,2 

𝑃𝑐𝑢𝑟𝑡 [%] 0,01 0,00 0,00 

𝐸𝐼𝑁𝐽 [MWh] 523,5 523,5 523,7 

𝐵𝐸𝑆𝑆 𝑐𝑦𝑐𝑙𝑒𝑠  [-] 25,1 25,7 23,7 

𝑃𝐼𝑁𝐽 𝑒𝑟𝑟𝑜𝑟 (RPD) [%] 0,06 0,06 0,11 

𝑆𝑜𝐶 𝑒𝑟𝑟𝑜𝑟 [%] 21,1 8,3 3,3 

𝑀𝑒𝑎𝑛 𝑐𝑜𝑠𝑡 [-] 0,1 4,1 2,9 
 

   

 

Fig. 5.36. SoC maximization strategy: (a) wind generated power for days 11-18 and commitment 

profile and (b), state-of-charge with 𝜆1-𝜆2 weights: 50-50, 50-10 000 and 50-100 000, commitment 

with maximum 20 % error, initial SoC of 50 % and 50 % as SoC set-point. 
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Table 5.12. From the table, the total injections resulting from the bigger λ2 values considered 

are in the same order as in the case with λ1=λ2=50. Even so, the mean costs are greater. 

As the commitment is equal to 0 MW for several hours during the 17th day, the injection 

error cannot be calculated using relative error (Eq. 5.18). For this, the injection error in Table 

5.12 was calculated  using the relative percent difference (RPD), a common alternative to the 

relative error used in laboratory quality control procedures. The RPD is defined as the 

difference of 𝑃𝐼𝑁𝐽 and  𝑆𝐶𝐻𝐸𝐷 to their average magnitude: 

The value of the RPD always lies between -2 and 2. 

𝑆𝑜𝐶 levels of 20 % or 80 % correspond to the maximum and minimum admitted values. 

Therefore, pursuing 𝑆𝑜𝐶 references defined at or close to those levels may lead to conditions 

in which the BESS is unavailable (storage units depleted or fully charged). From thereon, 

seeking to favor the BESS availability while not penalizing the objective of respecting the 

injection target, 𝑆𝑜𝐶𝑟𝑒𝑓 is set at 50 %. 

5.2.4 Impact of 𝑸𝒖 and  𝒑 on the results 

In the following are considered the impacts of the control effort parameter and the 

optimization horizon size on the performance of the strategy. 

5.2.4.1 Impact of 𝑄𝑢  

In order to test the influence of the control actions size on the performance of the 

algorithm, the parameter 𝑄𝑢 is now given the values 0 and 0,1 while fixing the remaining 

parameters, as indicated in Table 5.13. 

The plots of the resulting control actions are superposed in Fig. 5.37. With 𝑄𝑢=0, no 

consideration is given to the size of the control actions in resolving the optimization problem. 

Hence, the algorithm may use as much control action as required to ensure the regulated 

𝑅𝑃𝐷 % = 𝑚𝑒𝑎𝑛 |
𝑃𝐼𝑁𝐽 − 𝑆𝐶𝐻𝐸𝐷

(|𝑃𝐼𝑁𝐽| + | 𝑆𝐶𝐻𝐸𝐷|)/2
| 

 
Eq. 5.20 

Table 5.13. Influence of 𝑄𝑢 on the results: parameters values. 

Parameter Description Unit Value 

𝜆1 Weight of injection sub-cost - 50 

𝜆2 Weight of 𝑆𝑜𝐶 sub-cost - 50 

𝑄𝑢 Control effort adjustment parameter - 0, 1 

𝑜𝑓𝑓𝑠𝑒𝑡 Vertical  displacement of 𝑃𝑆𝐶𝐻𝐸𝐷  MW 0 

𝑆𝑜𝐶𝑟𝑒𝑓 𝑆𝑜𝐶 set-point level % 50 

𝑁𝑝 Optimization window length s 10 
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variables set-points are closely respected accordingly to the relative weights assigned. As can 

be seen, with a greater value of 𝑄𝑢, the control actions amplitude decreases. 

The state-of-charge signals are plotted in Fig. 5.38. With 𝑄𝑢=0 the 𝑆𝑜𝐶 present more 

variations. With 𝑄𝑢=0 and 𝑄𝑢=1 the storage system cycles amounted 5,9 and 2,2 cycles, 

respectively. 

Fig. 5.39 presents the power injections obtained with both Qu values. Considering the 

commitment failures, unbilled power and production curtailment, that are zero when 𝑄𝑢=1, the 

 
Fig. 5.38. Influence of 𝑄𝑢 on the results: state-of-charge with 𝑄𝑢=0,  and 1, commitment with maximum 

30 % error, initial SoC of 50 % and 50 % as SoC set-point. 

                  

           

  

  

  

  

 
 
 
  
 
 

           
 
  

           
 
  

                  

           

  

  

 

 

 
 
  
 
 
  
  
 
 

                      
 
  

                      
 
  

    
Fig. 5.37. Influence of 𝑄𝑢 on the results: control actions with 𝑄𝑢=0,  and 1, commitment with maximum 

30 % error, initial SoC of 50 % and 50 % as SoC set-point. 

                  

           

  

  

  

  

 
 
 
  
 
 

           
 
  

           
 
  

                  

           

  

  

 

 

 
 
  
 
 
  
  
 
 

                      
 
  

                      
 
  

    
Fig. 5.39. Influence of 𝑄𝑢 on the results: power injection with 𝑄𝑢=0  and 1, commitment with maximum 

30 % error, initial SoC of 50 % and 50 % as SoC set-point. 
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total injection is bigger in that case. These indicators totaled 1,4 %, 0,6 % and 0,05 % with 

𝑄𝑢=0. The energy injections totaled 56,65 MWh and  56,58 MWh, with 𝑄𝑢=1 and 𝑄𝑢=0. 

Table 5.14 summarizes these results obtained with the 𝑄𝑢 values 0, 0,5 1 and 10. 

As can be noted from the last column (𝑄𝑢=10), a bigger  𝑄𝑢 is associated to more 

attenuated control actions, less storage system cycles, a smaller injection and a bigger injection 

error. 

5.2.4.2 Impact of 𝑁𝑝  

To gain insight into the consequences of modifying the prediction and optimization 

window size, the algorithm is tested utilizing the parameters from Table 5.15. 

Fig. 5.40 presents the power injections when the number of samples of the control and 

optimization window 𝑁𝑝 is set at 10 s and 45 s. These are the smallest and biggest optimization 

window sizes considered. A smaller optimization windows means predicting the future system 

states over a shorter number of timesteps. With 𝑁𝑝 of 45 s more information is used at time 𝑘 

to calculate estimates over the period 𝒙(𝑘 + 1)…𝒙(𝑘 + 𝑁𝑝). However, the assumption done 

that 𝑃𝑊𝐸𝐶𝑆(𝑘) stays invariant over that period becomes less truthful as 𝑁𝑝 increases. Thus, with 

𝑁𝑝 of 10 s, the total energy injection is bigger (218,0 MWh and 189,3 MWh with 𝑁𝑝 of 45 s). 

Table 5.15. Influence of 𝑁𝑝 on the results: parameters values. 

Parameter Description Unit Value 

𝜆1 Weight of injection sub-cost - 50 

𝜆2 Weight of 𝑆𝑜𝐶 sub-cost - 50 

𝑄𝑢 Control effort adjustment parameter - 0,5 

𝑜𝑓𝑓𝑠𝑒𝑡 Vertical  displacement of 𝑃𝑆𝐶𝐻𝐸𝐷  MW 0 

𝑆𝑜𝐶𝑟𝑒𝑓 𝑆𝑜𝐶 set-point level % 50 

𝑁𝑝 Prediction and optimization window length s 10, 15, 30, 45 
 

Table 5.14. Results summary of tests with different 𝑄𝑢 values. Initial 𝑆𝑜𝐶 of 50 %. 

  𝑸𝒖  

Indicator 0 0,5 1 10 

𝐶𝐹 [%] 1,4 0,0 0,0 5,6 

𝑃𝑛𝑜𝑡 𝑏𝑖𝑙𝑙𝑒𝑑 [%] 0,6 0,0 0,0 8,1 

𝑃𝑐𝑢𝑟𝑡 [%] 0,05 0,00 0,00 0,00 

𝐸𝐼𝑁𝐽 [MWh] 56,58 56,75 56,65 52,45 

𝐵𝐸𝑆𝑆 𝑐𝑦𝑐𝑙𝑒𝑠  [-] 5,9 3,5 2,2 0,1 

𝑃𝐼𝑁𝐽 𝑒𝑟𝑟𝑜𝑟 [%] 16,8 6,8 14,0 25,7 

𝑆𝑜𝐶 𝑒𝑟𝑟𝑜𝑟 [%] 32,8 23,0 19,5 0,4 

𝑀𝑒𝑎𝑛 𝑐𝑜𝑠𝑡 [-] 0,27 0,15 0,06 0,00 
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The 𝑆𝑜𝐶 evolution for the four 𝑁𝑝 values considered, namely 10 s, 15 s, 30 s and 45 s, 

is presented in Fig. 5.41. According to the figure, increasing the 𝑁𝑝 values appear to be 

associated with a narrower range of variations for the state-of-charge variable (or a smaller 

number of cycles). Thus, the biggest number of cycles obtained is 11,2 with an optimization 

window of 10 s. Meanwhile, with 15 s, 30 s and 45 s, the cycles were 6,1, 0,9, and 0,2, 

respectively. 

In Table 5.16 are displayed the indicators found trough simulation when using time 

windows of 10 s, 15 s, 30 s and 45 as prediction and optimization horizon with the data of the 

11th day. From the observation of this results, the obtained performance with a time horizon of 

10 s is the best with respect to several of the indicators (commitment failures, unbilled power, 

energy injection an injection error).  

    

Fig. 5.41. Control horizon size influence on the results: SoC with 𝑁𝑝=10, 15, 30, 45  commitment with 

maximum 10 % error, initial SoC of 50 % and 50 % as SoC set-point. 

    
Fig. 5.40. Control horizon size influence on the results: power injection with 𝑁𝑝=10,  and 45, 

commitment with maximum 10 % error, initial SoC of 50 % and 50 % as SoC set-point. 
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Until here, several tests with a duration of one or three days were done with the aim of 

figuring out the impact of the elements in the cost function described in Eq. 5.1 on the algorithm 

performance. Next, the algorithm is tested during a month.   

5.3 Energy management of the HPP during a month  

The proposed algorithm is now applied to manage the hybrid plant during a 27-days 

period. In Table 5.17 are displayed the algorithm parameter values to be employed. 

A rule-based energy management technique used in the Insul’Grid project during the 

HPP design phase is chosen as a benchmark. After defining the principle of the technique are 

presented some simulation results obtained from the two energy management algorithms. 

5.3.1 Rule-based strategy description  

Fig. 5.42 shows the different cases considered by the strategy with respect to the current 

production 𝑃𝑊𝐸𝐶𝑆. 

Table 5.17. Retained parameters values. 

Parameter Description Unit Value 

𝜆1 Weight of injection sub-cost - 50 

𝜆2 Weight of 𝑆𝑜𝐶 sub-cost - 50 

𝑄𝑢 Control effort adjustment parameter - 0,5 

𝑜𝑓𝑓𝑠𝑒𝑡 Vertical  displacement of 𝑃𝑆𝐶𝐻𝐸𝐷  MW 0 

𝑺𝒐𝑪𝑟𝑒𝑓 𝑆𝑜𝐶 set-point level % 50 

𝑁𝑝 Optimization window length s 10 
 

Table 5.16. Results summary of tests with different 𝑁𝑝 values. Initial 𝑆𝑜𝐶 of 50 %. 

 Time horizon [s] 

Indicator 10 15 30 45 

𝐶𝐹 [%] 0,2 0,5 8,3 9,5 

𝑃𝑢𝑛𝑏𝑖𝑙𝑙𝑒𝑑 [%] 0,5 0,7 11,9 13,7 

𝑃𝑐𝑢𝑟𝑡 [%] 0,02 0,00 0,00 0,00 

𝐸𝐼𝑁𝐽 [MWh] 218,0 218,0 193,1 189,3 

𝐵𝐸𝑆𝑆 𝑐𝑦𝑐𝑙𝑒𝑠  [-] 11,2 6,1 0,9 0,2 

𝑃𝐼𝑁𝐽 𝑒𝑟𝑟𝑜𝑟 [%] 4,2 10,7 17,3 18,3 

𝑆𝑜𝐶 𝑒𝑟𝑟𝑜𝑟 [%] 25,1 12,7 3,0 1,1 

𝑀𝑒𝑎𝑛 𝑐𝑜𝑠𝑡 [-] 0,09 0,04 0,02 0,02 
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The same convention for the storage system is used with this basic rule-based strategy: 

the power is assumed negative for discharge and positive for charge. In this manner, the amount 

of power discharged from or provided by the storage system required to fulfill the commitment 

profile is as described in Eq. 4.10.  

According to this strategy, for productions exceeding the band ceiling (𝑃𝑊𝐸𝐶𝑆 >

𝑃𝑆𝐶𝐻𝐸𝐷 + 𝑡𝑜𝑙), the target injection is the upper value of the band (𝑃𝑆𝐶𝐻𝐸𝐷 + 𝑡𝑜𝑙) and the 

difference is stored in the BESS. If due to the storage system limits a part of the oversupply of 

power cannot be stored, this excess in the wind turbines production is considered curtailed. On 

the contrary, if the power production is below the band floor (𝑃𝑊𝐸𝐶𝑆 < 𝑃𝑆𝐶𝐻𝐸𝐷 − 𝑡𝑜𝑙), the target 

injection is the lower value of the band (𝑃𝑆𝐶𝐻𝐸𝐷 − 𝑡𝑜𝑙) and the BESS is discharged. 

Commitment failures are triggered in the same way as in the case of the optimal management 

strategy, namely when the power transferred to the grid is outside of the tolerated region for 1 

minute.  

As for the case when 𝑃𝑊𝐸𝐶𝑆 is within the tolerance band, two possibilities are 

considered: 

• If 𝑃𝑆𝐶𝐻𝐸𝐷 < 𝑃𝑊𝐸𝐶𝑆 < 𝑃𝑆𝐶𝐻𝐸𝐷 + 𝑡𝑜𝑙 and 𝑆𝑜𝐶 < 6 %, the targeted injection is the 

commitment (𝑃𝑆𝐶𝐻𝐸𝐷) and the power excess is stored.  

• If 𝑃𝑆𝐶𝐻𝐸𝐷 − 𝑡𝑜𝑙 < 𝑃𝑊𝐸𝐶𝑆 < 𝑃𝑆𝐶𝐻𝐸𝐷 + 𝑡𝑜𝑙 but 𝑆𝑜𝐶 ≥ 6 %,  the ESS is not 

charged or discharged 

5.3.2 . Simulation results 

The injection profiles resulting from simulation using the MPC/QP and rule-based 

management schemes for the 27-days period (Fig. 5.3.b) with 𝜆1=𝜆2=50, are presented in Fig. 

5.43. The injection band upper limit overshooting is higher in the case of the MPC/QP 

algorithm, for which the curtailment is bigger in this case (0,007 %, against 0 % of the 

  

Fig. 5.42. Simple energy management algorithm. 

𝑃𝑊𝐸𝐶𝑆

Charge with set-point:
𝑃𝐵𝐸𝑆𝑆 𝑟𝑒𝑓= (𝑃𝑆𝐶𝐻𝐸𝐷+𝑡𝑜𝑙) − 𝑃𝑊𝐸𝐶𝑆

Discharge with:

𝑃𝐵𝐸𝑆𝑆 𝑟𝑒𝑓= (𝑃𝑆𝐶𝐻𝐸𝐷−𝑡𝑜𝑙) − 𝑃𝑊𝐸𝐶𝑆

If 𝑃𝑊𝐸𝐶𝑆> 𝑃𝑆𝐶𝐻𝐸𝐷 and 𝑆𝑜𝐶 < 6 % :
𝑃𝐵𝐸𝑆𝑆 𝑟𝑒𝑓= 𝑃𝑆𝐶𝐻𝐸𝐷−𝑃𝑊𝐸𝐶𝑆 (charge)

If 𝑆𝑜𝐶 ≥ 6 % :
𝑃𝐵𝐸𝑆𝑆 𝑟𝑒𝑓 =  (no BESS use)

𝑃𝑆𝐶𝐻𝐸𝐷 + 𝑡𝑜𝑙

𝑃𝑆𝐶𝐻𝐸𝐷 − 𝑡𝑜𝑙

𝑃𝑆𝐶𝐻𝐸𝐷
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production curtailed with the rule-based algorithm). On the other hand, the commitment failures 

and unbilled power totals associated to the proposed strategy are smaller (1,8 % and 0,4 %) 

than those obtained with the rule-based scheme (8,5 % and 13,6 %). Consequently, the total 

injection with the MPC/QP controller is 16,6 % higher (MPC/QP :1 807,3 MWh and rule-based: 

1 504,5 MWh).  

Fig. 5.44 plots the resulting BESS power signals. The time of no use of the storage 

system is longer in the case of the scheme based on rules, as can be seen in the figure. The more 

recurrent non-availability of the ESS translates into lesser filtering of the wind turbine 

production lacks and excesses and ultimately the smaller injection of power. While the MPC 

algorithm calls upon the BESS whenever the 𝑆𝑜𝐶 is not at its maximum or minimum threshold, 

the rule-based strategy tends to use the BESS at maximum power either during charging or 

discharging. Thus, the plot of the resulting power obtained from the latter strategy suggests  an 

on/off-like behavior.  

    

Fig. 5.44. MPC/QP and rule-based algorithms: storage system power with 𝜆1=𝜆2=50, commitment 

with maximum 10 % error, initial SoC of 50 % and 50 % as SoC set-point. 

                                               

    

  

  

  

 

 

 
 
 
 
  
  
 
 

  
    

       

  
    

           

    

Fig. 5.43. MPC/QP and rule-based algorithms: injection profiles with 𝜆1=𝜆2=50, commitment with 

maximum 10 % error, initial SoC of 0 % and 50 % as SoC set-point. 
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Fig. 5.45 plots the state-of-charge charts obtained from the algorithms. It is remarked 

from the figures that the MPC/QP activates several times the constraints 𝑆𝑜𝐶𝑚𝑖𝑛 and 𝑆𝑜𝐶𝑚𝑎𝑥, 

that is, minimum and maximum allowed levels. Under the rule-based algorithm, the 𝑆𝑜𝐶 

evolves between the 40 % and 80 % levels. The cycles accounted are 91,2, for MPC/QP and 

15,8, for the strategy based on rules. 

Finally, in Fig. 5.46 are compared to the resulting costs. In this case, the mean of the 

cost resulting from the control actions calculated by the MPC/QP strategy is higher than the 

mean cost of the rule-based strategy.  

In Table 5.18 are included the results obtained from runs of the algorithms using four 

different ponderations of the control objectives defined. 

An additional line was included in the table to account the additional injection obtained 

through the MPC proposed strategy.  

 

    

Fig. 5.46. MPC/QP and rule-based algorithms: objective function cost with 𝜆1=𝜆2=50, commitment 

with maximum 10 % error, initial SoC of 50 % and 50 % as SoC set-point. 

                                               

    

 

   

 

   

 

 
 
  
 
  
  
  
 
 
 
  
 
 
  
 
 
 

           

               

    

Fig. 5.45. MPC/QP and rule-based algorithms: state-of-charge with 𝜆1=𝜆2=50, commitment with 

maximum 10 % error, initial SoC of 50 % and 50 % as SoC set-point. 
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5.4 Chapter conclusions  

The main objective of the first part of this Chapter was related to the choice of the values 

for the MPC/QP energy management strategy parameters, that are part of the cost function 

defined in the framework of the hybrid power plant energy management. Using a simple 

stochastic approach, three profiles were generated that served during the tests as schedule 

profiles. The schedule and a reference signal for the state-of-charge have been used as the future 

input references for the algorithm. Along with the references, a vector containing wind 

production data was supplied stepwise with a sample time of 1 second. Imposing the initial 

state-of-charge, the proposed strategy calculates the control actions considering optimizing two 

control objectives and a set of constraints. 

Several case studies were investigated focusing the interest on economic or technical 

aspects of the HPP operation. The impact of the tuning parameters was figured through 

simulation, allowing to adapt the strategy to a simulation over a period of 27 days using power 

production data that has been supplied by the operator of a real wind farm. The simulations 

results obtained after running several simulations without the electric grid context, have proved 

the optimization capabilities of the proposed MPC algorithm to the manage of the storage 

system. 

In Chapter 6, the lessons learned are applied to the arbitrage of the HPP to inject power 

into Sainte-Rose PCC of the Guadeloupean power grid in the PowerFactory environment. 

 

Table 5.18. Results summary 27 days simulation, commitment with maximum 10 % error, initial SoC of 

50 % and 50 % as SoC set-point. 

 20-80  50-50 60-40 80-20 

Indicator MPC RB  MPC RB MPC RB MPC RB 

𝐶𝐹 [%] 1,7 8,5  1,8 8,5 1,7 8,5 1,7 8,5 

𝑃𝑛𝑜𝑡 𝑏𝑖𝑙𝑙𝑒𝑑 [%] 0,3 13,6  0,4 13,6 0,4 13,6 0,4 13,6 

𝑃𝑐𝑢𝑟𝑡 [%] 

510-4 0 

 710-

3 0 

910-

3 0 

110-

2 0 

𝐸𝐼𝑁𝐽 [MWh] 1811,2 1504,5  1807,3 1504,5 1806,8 1504,5 1807,5 1504,5 

𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐼𝑁𝐽𝑀𝑃𝐶  
[%] 20,4 - 

 

20,1 - 20,1 - 20,1 - 

𝐵𝐸𝑆𝑆 𝑐𝑦𝑐𝑙𝑒𝑠  [-] 45,6 15,8  91,2 15,8 99,6 15,8 111,7 15,8 

𝑃𝐼𝑁𝐽 𝑒𝑟𝑟𝑜𝑟 (𝑅𝑃𝐷) [%] 0,18 0,24  0,09 0,24 0,08 0,24 0,06 0,24 

𝑆𝑜𝐶 𝑒𝑟𝑟𝑜𝑟 [%] 20,3 27,7  27,2 27,7 27,7 27,7 28,7 27,7 

𝑀𝑒𝑎𝑛 𝑐𝑜𝑠𝑡 [-] 0,15 0,19  0,17 0,13 0,15 0,11 0,10 0,19 
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Chapter overview 

In this Chapter the proposed control and optimization strategy is investigated in order 

to manage the grid-connected power plant in the context of the Guadeloupean power system 

using PowerFactory.  

6.1 Introduction 

Along with the PowerFactory models for the HPP and the island grid that were presented 

in Chapter 3, a control structure was implemented in PowerFactory. Such a structure is a 

DIgSILENT Simulation  Language model serving as an interface to Matlab. Hence, once the 
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MPC/QP control and optimization strategy described in Chapter 4 or the simple rule-based 

algorithm introduced in Chapter 5 are implemented as Matlab functions, those instructions can 

be executed by PowerFactory to dispatch the power output of the HPP. In this Chapter, a brief 

description of the implemented control structure is presented, followed by the results obtained 

through co-simulation between PowerFactory and Matlab for three case studies. 

6.2 Control strategy definition in PowerFactory  

Storage units converters serve as interface among the HPP and the island grid systems 

implemented in PowerFactory. The aim of the control structure developed is the generation of 

power set-points for those converters. During simulations the DSL structure executes a m-file 

containing a Matlab function describing either the MPC/QP or rule-based algorithm equations. 

In the case of the predictive control-based strategy, the file also contains the model for control 

in state-space representation. This is sketched in Fig. 6.1. 

PowerFactory inserts the key signals that are handled by the DSL control structure into 

a common workspace that can be accessed by Matlab. This way, the simulation takes place in 

the PowerFactory environment while enabling using the different Matlab functions and 

toolboxes. The co-simulation can occur, a Matlab’s release needs to be installed in the computer 

where the PowerFactory project is being executed. The linking method here employed is one 

of several possible approaches. A variation to this interfacing method includes, in addition to 

the m-file, the use of a Matlab/Simulink model (mdl). References [177-179] discuss the several 

alternative interfacing methods existing. 

The key signals mentioned above are the input and outputs signals received and 

computed at each timestep through the Matlab script. In Fig. 6.2 and Fig. 6.3 are represented 

the inputs and outputs of the rule-based and MPC/QP control structures described in DSL. In 

the case of the rule-based algorithm, the inputs are the current, voltage and 𝑆𝑜𝐶 measurements 

from the BESS units, voltage and frequency measurements from the PCC,  the WECS’s instant 

 

Fig. 6.1. PowerFactory/Matlab co-simulation scheme. 

DSL modelNetwork model

PowerFactory Matlab

Ctrl. action
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power production, and the current element of the firm injection commitment vector. 

Meanwhile, the outputs are the active and reactive power references to the storage system units’ 

converters. Through the PowerFactory wind farm model, the wind speed dataset presented in 

Chapter 5 is used to generate instant power production measurements. 

Regarding the MPC/QP strategy control structure (Fig. 6.3), the inputs are as in the 

earlier case except for the references 𝑃𝑆𝐶𝐻𝐸𝐷 and 𝑆𝑜𝐶𝑟𝑒𝑓 that are vectors rather than scalars. 

Indeed, in accordance with the predictive control philosophy, given a current time 𝑘 the future 

control objectives references for the next 𝑁𝑝 instants are the samples 𝑘 + 1: 𝑘 + 𝑁𝑝 form those 

reference profiles. Along with the input and output signals, the control structure handles state 

variables as well as other internal variables and uses the quadprog function to determine the 

optimal control moves.  

 
Fig. 6.2. PowerFactory/Matlab rule-based co-simulation implementation scheme. 
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Fig. 6.3. PowerFactory/Matlab MPC/QP co-simulation implementation scheme. 
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In the PowerFactory simulations, the simulation step size measures 20 ms. This value is 

imposed by the wind turbine system model. Also, the reactive power references are set to zero. 

Table 5.2 summarizes the simulation settings employed in the PowerFactory tests. 

6.3 Study cases and co-simulation results 

The production data used in Chapter 5 is also used in the present Chapter as input to the 

energy management schemes. The situation of loads, reactive compensators and generation 

units considered for the simulations corresponds to the validation scenario defined in section 

3.3.3.2 prior to the disconnection of the unit 2 of Le Moule station (Table 3.7 and Table 3.8).  

Three simulation cases of the HPP operation are studied with respect to the expected 

and actual production of the D-day and the initial 𝑆𝑜𝐶 of the storage system: Scenario 1 

considers a power production that is greater than the firm injection commitment and initial 𝑆𝑜𝐶 

near the maximum threshold defined, whereas in Scenarios 2 and 3 the actual power production 

is below the commitment profile and the initial 𝑆𝑜𝐶 is close the minimum allowed value. In 

Scenario 3 only the MPC/QP scheme is tested and the disconnection and reconnection of the 

biggest generation unit in the system is introduced as perturbation when the storage system 𝑆𝑜𝐶 

is at its minimum (constraint 𝑆𝑜𝐶𝑚𝑖𝑛 activated). In opposition to the results presented in the 

earlier Chapter (Matlab/Simulink simulations), the simulations carried out in PowerFactory 

consider the HPP in the island grid context. 

Table 6.1. Simulation settings for tests in PowerFactory. 

Parameter Description Unit Value 

𝑇𝑠 Simulation sample time ms 20 

𝑁𝑝 Optimization window length s 10  

𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 Injection band tolerance MW 2 
 

Table 6.2. PowerFactory implementation: algorithm parameters values Scenario 1, Scenario 2 and 

Scenario3. 

Parameter Description Unit Value 

𝜆1 Weight of injection cost - 50 

𝑆𝐹1 Injection cost scale factor 𝐴2 [(𝑢𝑚𝑖𝑛 − 𝑢𝑚𝑎𝑥) 2⁄ ]
2
 

𝜆2 Weight of 𝑆𝑜𝐶 cost - 50 

𝑆𝐹2 𝑆𝑜𝐶 cost scale factor %2 502 

𝑄𝑢 Parameter for adjustment of the control effort - 0,5 

𝑆𝐹𝑢 Control effort scale factor 𝐴2 [(𝑢𝑚𝑖𝑛 − 𝑢𝑚𝑎𝑥) 2⁄ ]
2
 

𝑜𝑓𝑓𝑠𝑒𝑡 Vertical  displacement of 𝑃𝑆𝐶𝐻𝐸𝐷  MW -0,2 

𝑆𝑜𝐶𝑟𝑒𝑓 𝑆𝑜𝐶 set-point level % 50 

𝑆𝑜𝐶𝑖𝑛𝑖𝑡 𝑆𝑜𝐶 level at the beginning of the simulation % 70, 30, 23,5 

𝑁𝑝 Optimization window length s 10 
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The commitment profile with maximum 10 % error presented in Chapter 5 is employed. 

Table 5.13 shows the parameter values used in the simulation of the case studies in 

PowerFactory. 

6.3.1 Scenario 1: scheduled injection lower than the actual production  

Scenario 1 investigates the HPP impact on the island grid when the production forecast 

error is not above 10 %, and the power production is big enough for predominantly requiring 

the storage system to be charged. Fig. 6.4 presents both the D-1 commitment and the actual 

generation for the period considered that corresponds to the day 14 of the dataset shown in Fig. 

5.3.b. The power produced by the wind turbines during the period analyzed amounts 10,1 MW. 

The resulting injection profiles obtained in PowerFactory from both the proposed 

algorithm and the rule-based scheme are presented in Fig. 6.5. 

As can be seen from the figure, the power injected follows the commitment more closely 

in the case of the MPC/QP algorithm. The resultant injection errors are 11,3 % and 23,6 %, the 

commitment failures 0 % and 0,7 %, and the total injected power 9,85 MWh and 9,03 MWh 

for the predictive control and rule-based schemes, respectively. Several peaks in both injection 

profiles are observed. Relatively rapid variations in the WECS output production originate 

    
Fig. 6.4. Scenario 1 input data: production and commitment profiles for investigated period. 

                        

     

 

 

 

 

  

 
 
 
 
  
  
 
 

  
    

  
     

    
Fig. 6.5. Scenario 1, MPC/QP and rule-based algorithms in PowerFactory: injection profiles with 

𝜆1=𝜆2=50, commitment with maximum 10 % error, initial SoC of 70 % and 50 % as SoC set-point. 
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those peaks. As shown in Fig. 6.6.a, the predictive control-based algorithm varies 𝑃𝐵𝐸𝑆𝑆 to 

compensate or to absorb power according to the evolution of the instant production with respect 

to the commitment. Meanwhile, the rule-based algorithm seeks to avoid the utilization of the 

storage system.  

With a 𝑆𝑜𝐶 above 60 % at the beginning of the simulation, the variations in stored 

energy obtained from the rule-based algorithm are minimal, as shown in Fig. 6.6.b. 

    
Fig. 6.7. Scenario 1, MPC/QP and rule-based algorithms in PowerFactory: cost with 𝜆1=𝜆2=50, 

commitment with maximum 10 % error, initial SoC of 70 % and 50 % as SoC set-point. 
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Fig. 6.6. Scenario 1, MPC/QP and rule-based algorithms in PowerFactory: storage system power with 

𝜆1=𝜆2=50, commitment with maximum 10 % error, initial SoC of 70 % and 50 % as SoC set-point. 
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The MPC/QP strategy presents greater  SoC and squared current cost than the rule-based 

scheme. The costs efforts for both cases are compared in Fig. 6.7, and as can be seen, the 

MPC/QP total cost is higher. 

6.3.2 Scenario 2: scheduled injection greater than the actual 

production 

Scenario 2 investigates the EMS performance during a period where the production is 

greater than expected. Fig. 6.8 shows the scheduled power injection and the actual power 

production obtained the day D. The power production data was stored early in the morning 

during day 14 (Fig. 5.3.b). 

During the period shown the wind turbines generated 14,0 MW. Fig. 6.9 presents the 

power injection plots, followed by the BESS power and the 𝑆𝑜𝐶 evolution plots in Fig. 6.10.a 

and Fig. 6.10.b. The signal 𝑃𝐵𝐸𝑆𝑆 obtained from the algorithm based on simple rules is zero 

most of the time but for the reasons different than in the earlier case. During the first part of the 

simulation this algorithm charges from 30 %, initial 𝑆𝑜𝐶, until 60%. From there, the variations 

in the state-of-charge are minimal. 

    
Fig. 6.8. Scenario 2 input data: production and commitment profiles for studied period. 

                  

     

 

 

 

 

 

 
 
 
 
  
  
 
 

  
    

  
     

    
Fig. 6.9. Scenario 2, MPC/QP and rule-based algorithms in PowerFactory: power injection  with 

𝜆1=𝜆2=50, commitment with maximum 10 % error, initial SoC of 30 % and 50 % as SoC set-point. 
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Unlike the MPC-based controller, the rule-based strategy does not discharge the BESS 

a single time during the simulation (Fig. 6.10.b). As the initial 𝑆𝑜𝐶 is smaller than 60 %, 

whenever 𝑃𝑊𝐸𝐶𝑆 is bigger than 𝑃𝑆𝐶𝐻𝐸𝐷, the storage system is charged accordingly to the rules 

explained in section 5.3.1. Then, the charging stops when the 60 % level is reached. 

As can be seen, the state of charge presents very small variations until the end of the 

simulation.  

6.3.3 Scenario 3: scheduled injection lower than actual production and 

power system disturbance  

 

In this last Scenario 3, the MPC/algorithm is tested in the PowerFactory environment 

under an extreme operation condition by including a perturbation in the power grid. As was 

mentioned, the situation of loads, reactive compensators and generation units in the grid used 

for the simulations in the present Chapter is the same used in Chapter 3 for the dynamic 

validation of the grid model. In the present scenario, the generation unit 2 of Le Moule station 

is disconnected and reconnected with the BESS charged at the minimum admissible level (𝑆𝑜𝐶 

constraint activated). To do this, the opening and reclosure 50 ms latter of the corresponding 

(a) 

 
(b) 

 
Fig. 6.10. Scenario 2, MPC/QP and rule-based algorithms in PowerFactory: (a) storage system power, 

and (b) storage system state-of-charge with 𝜆1=𝜆2=50, commitment with maximum 10 % error, initial 

SoC of 30 % and 50 % as SoC set-point. 
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switch in the grid side is configured before the start of the simulation. Fig. 6.11 shows the 

scheduled injection for the day D+1 and actual production obtained the day D. The total power 

production for the period with data from day 12 amounts 365,7 MW. 

In Fig. 6.12 are presented the resulting injected power profiles, whereas the storage 

system power and 𝑆𝑜𝐶 plots are shown in Fig. 6.13 and Fig. 6.14.  

As the BESS initial 𝑆𝑜𝐶 is below 60 %, from the beginning of the simulation the rule-

based algorithm charges the BESS every time the power production is above the commitment. 

As in Scenario 2, after the 𝑆𝑜𝐶 reaches 60 % the storage system power becomes zero 

with several negative peaks associated with concise duration charges (around 10 s each) that 

affect the power injection. 

Around t=5,6 h occurs the disconnection and reconnection of the generation unit. 10 

seconds later the oscillation caused on the signal 𝑃𝐼𝑁𝐽 has been entirely damped, as shown in 

Fig. 6.15 for both algorithms. During the development of the proposed management strategy, it 

was found that the wrong parameter tuning of the strategy can lead to unfeasibility of the 

optimization problem, particularly when the constraints are active. This scenario is considered 

an extreme condition for the MPC/QP scheme because the disturbance occurs during an off-

   
Fig. 6.12. MPC/QP and rule-based algorithms, PowerFactory: power injection profiles with 

𝜆1=𝜆2=50, commitment with maximum 10 % error, initial SoC of 50 % and 50 % as SoC set-point. 

   
Fig. 6.11. Scenario 3 input data: power production and commitment profiles for studied period. 
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peak period with 𝑆𝑜𝐶 constraint activated. As appreciated in Fig. 6.12 - Fig. 6.14, the 

perturbation does not stop the two strategies from dispatching the ESS power. 

Table 6.3 summarizes the simulation results of the three scenarios considered in the 

present Chapter.  

In the three cases, the rule-based algorithm presented smaller 𝑆𝑜𝐶 errors. This happened 

because the algorithm either reduced the state-of-charge variations to a narrower range 

(Scenario 1), or conveyed the 𝑆𝑜𝐶 to evolve closer to the target signal 𝑆𝑜𝐶𝑟𝑒𝑓 (Scenarios 1, 2 

and 3), if compared with the decisions made by the MPC/QP scheme. On the opposite, 

MPC/QP’s injection errors were smaller in all the cases. 

The injected energy totals were larger with the proposed algorithm, for which the BESS 

utilization was higher in Scenarios 1 and 2. 

While commitment failures, unbilled power and production curtailments were not 

present at Scenarios 2 and 3, in Scenario 1 the MPC/QP algorithm registered curtailments as 

around t=14,8 h the production is above the tolerated injection region’s upper threshold while 

   
Fig. 6.14. MPC/QP and rule-based algorithms, PowerFactory: power injection profiles with 

𝜆1=𝜆2=50, commitment with maximum 10 % error, initial SoC of 50 % and 50 % as SoC set-point. 

                  

     

 

  

  

  

 
  
  
  
  
 
 
 
  
 
  
 
 

           

               

   
Fig. 6.13. MPC/QP and rule-based algorithms, PowerFactory: power injection profiles with 

𝜆1=𝜆2=50, commitment with maximum 10 % error, initial SoC of 50 % and 50 % as SoC set-point. 
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the storage units are fully charged. Meanwhile, the rule-based strategy presented several the 

storage units are fully charged. Meanwhile, the rule-based strategy presented several overtakes 

of the band’s threshold, the first of them taking place at the first commitment level shift, at 

t=13,5 h. Because of these overtakes, the plant operator cannot bill 8,3 % of the power produced 

by the wind turbines. 

6.4 Chapter conclusions 

In this Chapter, the PowerFactory/Matlab co-simulation environment has been used to 

validate the ability of the proposed MPC/QP algorithm to manage the power flow of a wind 

turbine/BESS power plant connected to the Sainte Rose PCC of the Guadeloupean island power 

grid. The control structure implemented in DIgSILENT Simulation Language inserts the key 

control signals into a shared workspace that can be accessed by Matlab. Hence, the simulations 

integrate the complexity of the Guadeloupean power grid, and the power system analysis and 

control tools were combined with the mathematical optimization toolbox available in Matlab. 

Table 6.3. Results summary of PowerFactory tests. 

 Scenario 1 Scenario 2 Scenario 3 

Indicator 𝑴 𝑪/𝑸  Rule-based 𝑴 𝑪/𝑸  Rule-based 𝑴 𝑪/𝑸  Rule-based 

𝐶𝐹 [%] 0,0 0,7 0,0 0,0 0,0 0,0 

𝑃𝑛𝑜𝑡 𝑏𝑖𝑙𝑙𝑒𝑑 [%] 0,0 8,3 0,0 0,0 0,0 0,0 

𝑃𝑐𝑢𝑟𝑡 [%] 0,2 0,0 0,0 0,0 0,0 0,0 

𝐸𝐼𝑁𝐽 [MWh] 9,9 9,0 14,0 13,9 7,4 7,2 

𝐵𝐸𝑆𝑆 𝑐𝑦𝑐𝑙𝑒𝑠  [-] 0,5 0,0 0,3 0,2 0,1 0,3 

𝑃𝐼𝑁𝐽 𝑒𝑟𝑟𝑜𝑟 [%] 11,3 23,6 3,0 12,0 2,8 14,6 

𝑆𝑜𝐶 𝑒𝑟𝑟𝑜𝑟 [%] 53,5 40,7 49,0 19,5 55,1 20,3 

𝑀𝑒𝑎𝑛 𝑐𝑜𝑠𝑡 [-] 0,6 0,3 0,4 0,3 0,4 0,6 
 

   
Fig. 6.15. MPC/QP and rule-based algorithms, PowerFactory, zoom around t=5,6 h: power injection 

profiles with 𝜆1=𝜆2=50, commitment with maximum 10 % error, initial SoC of 50 % and 50 % as SoC 

set-point. 
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If the co-simulation permitted considering additional models simulation models and 

power systems analysis tools, a smaller simulation time step made it necessary to reduce the 

number of samples of the input data. Even in the case of simulations of a few hours, the 

proposed strategy allowed a better follow-up of the injection targets and a greater transfer of 

energy towards the utility grid. 

The simulation tool implemented for the validation of the management strategy 

comprises several models (production of electricity with RES, energy storage, weather forecasts 

and energy conversion) and economic aspects. The control strategy parameters were tuned in 

this Chapter with values retained from the tests without the grid context, to find  through 

simulation a behavior similar to that obtained in Matlab/Simulink. 

The MPC/QP strategy was applied here to the management of a wind farm-battery 

storage HPP. However, the strategy can be adapted to consider the hybridization of several 

types of RES-based sources with multiple energy storage technologies, as well as their 

corresponding physical and technical constraints. Similarly, it can still evolve to accommodate 

additional grid services such as the supply of voltage and frequency regulation, or the reserve 

participation.   

 



 

Conclusions and future research lines 

 

In this PhD study, the energy management strategy for a wind farm-Li-Ion batteries 

hybrid power plant (HPP) provision of the grid service of complying the day-ahead 

commitment as the WECS output instantly changes, has been developed. To reach this 

objective,  the storage system is used to absorb the variability in the wind generated power. The 

power flow is driven using model predictive control and quadratic programming. The strategy 

minimizes commitment failures while extending the battery energy storage system (BESS) 

lifetime. 

At every control step in the predictive control stage of the strategy, the future system 

states are estimated over the next 10 seconds. The prediction matrices with all the information 

of present and future states are sent stepwise to the optimizer, which calculates the control 

moves over the same period. Comparison to a heuristic decision-making algorithm and analysis 

of performance indicators revealed the capacity of the strategy to manage the system with up 

to 30 % forecast error. Co-simulation was also employed to test the EMS using the modelled 

HPP and island grid.  

Therefore, the main contribution of this PhD is the development of an adapted 

management strategy based on model predictive control and quadratic programming 

optimization that determines the power flow management of a wind farm-Li-Ion BESS HPP to 

comply the day-ahead commitment according to the WECS output variations. The solution can 

be adapted to any number and types of renewable generation and storage technology. 

Other contributions of this PhD are summarized as follows: 

• Identification of the power and voltage management strategies employed in an island 

grid along with the grid codes applicable to wind power-based plants in that insular 

context.  

• Identification of the control algorithms that can be used to reactive optimization 

problems. A detailed analysis of the control algorithms used in the management of 

hybrid systems has been performed. A final selection has been made considering the 

need for including the forecasts in the problem.  

• Matlab-PowerFactory co-simulation framework: simulation tool for studying the 

strategy’s ability to manage the HPP with respect to the desired operation conditions. 

Uses the combined power of the mathematical analysis tool Matlab and the dedicated 
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functionalities of the power system analysis PowerFactory. The co-simulation 

framework can accommodate different management strategies and architectures of the 

hybrid plant to test its interaction with the grid.  

To complete the research work undertaken during this PhD, the following future 

research lines were identified: 

• Perform a sensitivity analysis for the choice of the weight of the control 

objectives minimizing the tracking error of the injected power and minimizing 

the tracking error of the state-of-charge (𝜆1 and 𝜆2). 

• Include objectives ancillary services support-related objectives (voltage, 

frequency, generation reserves) in the cost function. 

• Improve the storage system control model (within the predictive controller and 

the optimization problem) by taking in to account the ageing of the Li-Ion BESS.  

• Compute the SoC set-points  according to the BESS state-of-health. 

• Perform an economic analysis of the proposed strategy. 

• Evaluate the intraday market participation of the control of the BESS power. It 

implies the reception of additional forecast data allowing the update of the 

injection targets cleared. 

• Improve the forecasting method used in the generation of the commitment power 

injection profiles. 
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Annex A: Governor and turbine models 

for generators

 

The governor model for diesel machines implemented represents a diesel turbine with 

20,9 MW nominal power and inertia of 2,08 MWs/MVA [5]. The model formulations are 

described in [180]. 

Fig. A.1 depicts the model of a diesel generator participating to primary frequency 

control (proportional-action to control the generator speed). Eq. A.1 describes the control law 

of the frequency controller: 

𝑃𝑚𝑟𝑒𝑓 = 𝑃𝑟𝑒𝑓 +
∆𝜔

𝛿
 Eq. A.1 

where 

𝑃𝑚𝑟𝑒𝑓: reference power (pu) 

𝑃𝑚: mechanical power (pu) 

𝜔𝑟𝑒𝑓: reference speed (pu) 

𝜔: generator speed (pu) 

∆𝜔: generator speed deviation (pu) 

𝛿: slope of the droop 

𝑞: fuel Flow (pu) 

 

Fig. A.1. Model of diesel turbine participation to primary frequency control. 
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The values employed for the parameters are presented in Table A.1. 

Fig. A.2 shows the control system diagram representing the governing action for steam 

turbines. A 32 MW turbine with an inertia of 3,36 MWs/MVA is represented [5].  

 

 The parameters values are presented in Table A.2. 

 

Fig. A.2. Modelisation of steam turbine participation to primary frequency control. 
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Table A.2. Steam turbine governor parameters.  

Name Description  Unit Value 

𝛿 Slope of the droop pu 0,04 

T1 Diesel generator model time constant s 0,18 

T2 Diesel generator model time constant s 51 

T3 Diesel generator model time constants s 44 
 

Table A.1. Diesel governor parameters.  

Name Description  Unit Value 

𝛿 Slope of the droop pu 0,04 

T1 Actuator time constant s 0,09 

T2 Diesel generator model time constant s 5,56 

T3 Diesel generator model time constants s 7,52 
 


	Cover
	Acknowledgments
	Résumé
	Abstract
	Resumen
	Acronyms
	Symbols
	General introduction
	1. Grid code requirements for island grid-connected wind-storage hybrid power plants
	Chapter overview
	1.1 Introduction
	1.2 Island grids features and management
	1.2.1 Island grids management: possibilities and challenges
	1.2.1.1 Active power-frequency control
	1.2.1.2 Reactive power-voltage control


	1.3 Grid codes requirements
	1.3.1 Grid code for RE in weak grids
	1.3.1.1 Regulations for continuous operation
	1.3.1.2 Specific requirements under network disturbances


	1.4 Wind power and energy storage systems
	1.4.1 Wind power and commitment profiles
	1.4.1.1 Wind power in the electricity markets
	1.4.1.2 Commitment profile and injection band

	1.4.2 ESS applications for grid-connected WECS
	1.4.2.1 ESS applications for WECS integration
	1.4.2.2 ESS applications for grid support
	1.4.2.3 Demand-side applications of ESS


	1.5 Definition of the operating conditions for the wind-storage hybrid power plant
	1.6 Chapter conclusions

	2. State of the art of energy management approaches for wind power and energy storage hybrid plants
	Chapter overview
	2.1 Introduction
	2.2 Hybrid power plants and MicroGrids definition
	2.2.1 Components of a hybrid power plant
	2.2.2 Wind energy-based HPPs
	2.2.2.1 Wind and PV power
	2.2.2.2 Wind power and diesel generator
	2.2.2.3 Wind power and hydro storage


	2.3 Energy storage technologies for wind power integration
	2.3.1 Long-term storage technologies
	2.3.1.1 Pumped hydro storage (PHS)
	2.3.1.2 Battery energy storage (BES)
	2.3.1.3 Hydrogen energy storage (HES)
	2.3.1.4 Compressed air energy storage (CAES)

	2.3.2 Short-term storage technologies
	2.3.2.1 Flywheel energy storage (FES)
	2.3.2.2 Super capacitor (SC) storage
	2.3.2.3 Superconducting magnetic storage (SMES)


	2.4 Architectures of grid-connected wind-storage hybrid plants in islands
	2.4.1 HPP with wind power and distributed storage
	2.4.2 HPP with wind power and aggregated storage

	2.5 Energy management approaches for HPPs
	2.5.1 Hybrid systems and dynamic optimization
	2.5.2 Control and optimization of wind-storage hybrid systems
	2.5.2.1 Approaches not optimizing a cost function
	2.5.2.2 Approaches optimizing a cost function


	2.6 Chapter conclusions

	3. Electrical grid and hybrid power plant modeling and validation
	Chapter overview
	3.1 Introduction
	3.2 Guadeloupe electrical grid: current  state description
	3.2.1 Transmission system
	3.2.2 Electricity consumption
	3.2.2.1 Evolution of the demand
	3.2.2.2 Seasonality
	3.2.2.3 Load curve

	3.2.3 Existing capacity
	3.2.3.1 Base and semi-base thermal production facilities
	3.2.3.2 Peaking and emergency thermal production facilities
	3.2.3.3 Renewable energies
	3.2.3.4 Evolution of renewables share in production
	3.2.3.5 Current energy mix
	3.2.3.6 Daily balance


	3.3 PowerFactory Modeling
	3.3.1 Modeled grid
	3.3.1.1 Grid description
	3.3.1.2 Power system control components

	3.3.2 PowerFactory grid model
	3.3.3 Grid model validation
	3.3.3.1 Static validation
	3.3.3.2 Dynamic validation

	3.3.4 Hybrid power plant model
	3.3.4.1 Wind generation system modeling and validation
	3.3.4.2 Energy storage system modeling and validation


	3.4 Model for control
	3.4.1 Linear model for control
	3.4.2 Control model validation

	3.5 Chapter conclusions

	4. Model predictive control & quadratic programming-based energy management strategy
	Chapter overview
	4.1 Introduction
	4.2 Control strategy design
	4.2.1 Plant description
	4.2.2 Problem definition
	4.2.2.1 Objectives
	4.2.2.2 Design variables
	4.2.2.3 Constraints

	4.2.3 Control and optimization: application to the hybrid power plant
	4.2.3.1 Deterministic optimization problems
	4.2.3.2 MPC feedback control design
	4.2.3.3 Quadratic cost function

	4.2.4 Prediction and optimization using MPC and Matlab QP solver
	4.2.4.1 Unconstrained MPC/QP prediction and optimization
	4.2.4.2 Constraints handling


	4.3 Chapter conclusions

	5. Control strategy validation under Matlab/Simulink
	Chapter overview
	5.1 Introduction
	5.2 Energy management of the HPP with respect to a 24h commitment profile
	5.2.1 Admissible thresholds, performance indicators and commitment profiles
	5.2.2 Economic optimization of the HPP operation with respect to a 24 hours commitment profile
	5.2.2.1 Profit maximization strategy 1
	5.2.2.2 Profit maximization strategy 2

	5.2.3 Technical optimization of the HPP operation
	5.2.3.1 Strategy focused on the storage system state-of-charge maximization

	5.2.4 Impact of ,𝑸-𝒖. and ,𝑵-𝒑. on the results
	5.2.4.1 Impact of ,𝑄-𝑢.
	5.2.4.2 Impact of ,𝑁-𝑝.


	5.3 Energy management of the HPP during a month
	5.3.1 Rule-based strategy description
	5.3.2 . Simulation results

	5.4 Chapter conclusions

	6. Control strategy implementation and co-simulation between PowerFactory and Matlab
	Chapter overview
	6.1 Introduction
	6.2 Control strategy definition in PowerFactory
	6.3 Study cases and co-simulation results
	6.3.1 Scenario 1: scheduled injection lower than the actual production
	6.3.2 Scenario 2: scheduled injection greater than the actual production
	6.3.3 Scenario 3: scheduled injection lower than actual production and power system disturbance

	6.4 Chapter conclusions

	Conclusions and future research lines
	References
	Publications
	Annex A: Governor and turbine models for generators

