
HAL Id: tel-03338961
https://theses.hal.science/tel-03338961

Submitted on 9 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dépliages et interprétation abstraite pour réseaux de
régulation biologiques paramétrés

Juraj Kolcak

To cite this version:
Juraj Kolcak. Dépliages et interprétation abstraite pour réseaux de régulation biologiques paramétrés.
Bioinformatics [q-bio.QM]. Université Paris-Saclay, 2021. English. �NNT : 2021UPASG048�. �tel-
03338961�

https://theses.hal.science/tel-03338961
https://hal.archives-ouvertes.fr

Th
ès

e
de

 d
oc

to
ra

t
N
N
T:
2
0
2
1
U
PA

S
G
0
4
8

Unfoldings and Abstract
Interpretation for Parametric

Biological Regulatory Networks

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦580, sciences et technologies de
l’information et de la communication (STIC)

Spécialité de doctorat: Informatique
Unité de recherche: Université Paris-Saclay, CNRS, ENS Paris-Saclay,

Laboratoire Méthodes Formelles, 91190, Gif-sur-Yvette, France
Référent: ENS Paris-Saclay

Thèse présentée et soutenue en ligne, le 06/07/2021, par

Juraj KOLČÁK

Composition du jury:

Pascale Le Gall Présidente
Professeure, Centrale Supélec
Gilles Bernot Rapporteur
Professeur, Université Nice Sophia Antipolis, Polytech
Nice Sophia
Paolo Zuliani Rapporteur
Professeur associé, Newcastle University
Barbara König Examinatrice
Professeure, Universität Duisburg-Essen
Heike Siebert Examinatrice
Professeure, Freie Universität Berlin

Stefan Haar Directeur
Professeur, Université Paris-Saclay GS Informatique et
science du numérique
Loïc Paulevé Codirecteur
Chargé de recherche, CNRS

Résumé

L'analyse de la dynamique des réseaux de régulation biologique, notamment
des réseaux de signalisation et de régulation génique, fait face à l'incertitude
du modèle de calcul exact. En e�et, la plupart des connaissances disponibles
concernent l'existence d'interactions (éventuellement indirectes) entre des en-
tités biologiques (espèces), par ex. protéines, ARN, gènes, etc. Les détails sur
la manière dont les di�érents régulateurs d'une même cible coopèrent, et plus
encore sur les taux cohérents pour ces interactions, sont cependant rarement
disponibles. A cet égard, des approches de modélisation qualitative sous forme
de réseaux de régulation discrets, tels que les réseaux booléens et Thomas,
o�rir un niveau d'abstraction approprié pour la dynamique du réseau de régu-
lation biologique. Les réseaux de régulation discrets étant basés sur un graphe
d'in�uence, ils nécessitent peu de paramètres supplémentaires par rapport aux
modèles quantitatifs classiques. Néanmoins, la détermination des paramètres
discrets est un dé� bien connu et un goulot d'étranglement majeur pour fournir
des prédictions robustes à partir de modèles informatiques.

Le graphe d'in�uence d'un réseau de régulation établit des dépendances
pour l'évolution de chaque espèce, spéci�ées par les arêtes dirigées du graphe.
Les dépendances seules, cependant, ne su�sent pas pour spéci�er la fonction
logique régissant l'évolution d'une espèce. Au lieu de cela, les fonctions lo-
giques associées à chaque espèce, contraintes par le graphe d'in�uence, sont
codées dans les paramètres d'un réseau de régulation discret. L'espace des
fonctions logiques admissibles est alors représenté par un réseau de régulation
paramétrique. D'une part, les réseaux de régulation paramétriques peuvent être
utilisés pour l'identi�cation de valeurs de paramètres pour lesquelles le réseau
de régulation discret résultant satisfait des propriétés (dynamiques) données.
L'identi�cation des paramètres des réseaux de régulation peut ainsi être vue
comme un exemple particulier de synthèse de modèle, dans le cadre contraint
du graphe d'in�uence sous-jacent. D'autre part, les réseaux de régulation para-
métriques peuvent être analysés comme un modèle autonome, pour faire des
prédictions robustes vis-à-vis de la variabilité du réseau.

L'analyse de la dynamique du réseau de régulation paramétrique est en-
travée par la double explosion combinatoire, de l'espace d'états et de l'espace
des paramètres. Dans cette thèse, nous développons de nouvelles méthodes
d'analyse de réseau de régulation paramétrique, sous forme de sémantique spé-
cialisée, visant à atténuer l'explosion combinatoire. Tout d'abord, nous in-

iii

iv

troduisons une interprétation abstraite de l'ensemble des évaluations de para-
mètres admissibles (paramétrisations). L'abstraction permet de représenter
n'importe quel ensemble de paramétrisations par un encodage de taille con-
stante, au prix d'une sur-approximation conservatrice. Deuxièmement, nous
élevons la sémantique d'ordre partiel sous la forme d'un déploiement des réseaux
de Petri vers des réseaux de régulation paramétriques. Les graphiques d'in�uence
des réseaux de régulation biologique ont tendance à être relativement clair-
semés, ce qui permet une grande concurrence. Cela peut être exploité par
des méthodes de réduction d'ordre partiel pour produire des représentations
d'espace d'état concises.

Les deux approches visent à aborder les deux aspects de la double explo-
sion combinatoire et sont introduites de manière compatible, ce qui permet
de les utiliser simultanément. Une telle application est soutenue par une im-
plémentation prototype utilisée pour mener des expériences sur divers réseaux
de régulation paramétriques. Nous considérons en outre des ra�nements des
méthodes, comme une méthode de réduction de modèle à la volée portée aux
réseaux de régulation paramétriques à partir de réseaux d'automates.

Abstract

The analysis of dynamics of biological regulatory networks, notably signalling
and gene regulatory networks, faces the uncertainty of the exact computational
model. Indeed, most of the knowledge available concerns the existence of (pos-
sibly indirect) interactions between biological entities (species), e.g. proteins,
RNAs, genes, etc. The details on how di�erent regulators of a same target
cooperate, and even more so on consistent rates for those interactions, how-
ever, are rarely available. In this regard, qualitative modelling approaches in
the form of discrete regulatory networks, such as Boolean and Thomas net-
works, o�er an appropriate level of abstraction for the biological regulatory
network dynamics. As discrete regulatory networks are based on an in�uence
graph, they require few additional parameters compared to classical quant-
itative models. Nevertheless, determining the discrete parameters is a well
known challenge, and a major bottleneck for providing robust predictions from
computational models.

The in�uence graph of a regulatory network establishes dependencies for
the evolution of each specie, speci�ed by the directed edges of the graph. The
dependencies alone, however, do not su�ce to specify the logical function gov-
erning the evolution of a specie. Instead the logical functions associated to each
specie, constrained by the in�uence graph, are encoded within the parameters
of a discrete regulatory network. The space of admissible logical functions is
then represented by a parametric regulatory network. On the one hand, para-
metric regulatory networks can be used for identi�cation of parameter values
for which the resulting discrete regulatory network satis�es given (dynamical)
properties. Parameter identi�cation of regulatory networks can thus be seen as
a particular instance of model synthesis, in the constrained setting of the un-
derlying in�uence graph. On the other hand, parametric regulatory networks
may be analysed as a stand-alone model, for making predictions that are robust
with respect to variability in the network.

The analysis of parametric regulatory network dynamics is hampered by
dual combinatorial explosion, of the state space and of the parameter space.
In this thesis, we develop novel methods of parametric regulatory network
analysis, in the form of specialised semantics, aimed at alleviating the com-
binatorial explosion. First, we introduce abstract interpretation for the set of
admissible parameter evaluations (parametrisations). The abstraction allows
us to represent any set of parametrisations by a constant size encoding, at

v

vi

the cost of a conservative over-approximation. Second, we lift partial order
semantics in the form of unfolding from Petri nets to parametric regulatory
networks. The in�uence graphs of biological regulatory networks tend to be
relatively sparse, allowing for a lot of concurrency. This can be harnessed by
partial order reduction methods to produce concise state space representations.

The two approaches are aimed at tackling both aspects of the dual com-
binatorial explosion and are introduced in a compatible manner, allowing one
to employ them simultaneously. Such application is supported by a prototype
implementation used to conduct experiments on various parametric regulatory
networks. We further consider re�nements of the methods, such as an on-
the-run model reduction method lifted to parametric regulatory networks from
automata networks.

Contents

Contents vii

1 Introduction 1

I Background 5

2 Discrete Regulatory Networks 7
2.1 Semantics of Discrete Regulatory Networks 8
2.2 In�uence Graphs . 11
2.3 Multivalued Networks . 13
2.4 Discrete Regultory Networks as Automata Networks 16
2.5 Examples . 17

3 Partial Order Semantics of Transition System Products 25
3.1 Petri Nets . 25
3.2 Unfolding . 26
3.3 Behavioural Equivalence . 29
3.4 Complete Finite Pre�x . 30

II Theoretical Contributions 33

4 Parametric Regulatory Networks 35
4.1 Parametrisations . 37
4.2 Concrete Semantics of Parametric Regulatory Networks 39
4.3 Abstract Semantics of Parametric Regulatory Networks 43

5 In�uence Constraints as Global Constraints on Parametrisa-
tions 51
5.1 Concrete Constrained Semantics of Parametric Regulatory Net-

works . 52
5.2 Abstract Constrained Semantics of Parametric Regulatory Net-

works . 54
5.3 Examples . 64

vii

viii CONTENTS

6 Unfolding Semantics of Parametric Regulatory Networks 69
6.1 Parametric Regulatory Network Unfolding 69
6.2 Complete Finite Pre�x of Parametric Unfolding 73
6.3 Examples . 75

7 Goal-Driven Unfolding 79
7.1 Goal-Driven Reduction . 80
7.2 Computation of Regulation Cover Sets 90
7.3 Examples . 93

IIIApplications 99

8 Related Work 101
8.1 Model Checking . 102
8.2 Reachability Analysis . 103
8.3 Other Applications . 106

9 Experimental Results 109

IVDiscussion 117

10 Summary 119

11 Ongoing and Future Work 121
11.1 Attractor Analysis . 123
11.2 Most Permissive Semantics . 124

Bibliography 127

Chapter 1

Introduction

Modelling in systems biology is commonly conducted manually or semi-auto-
matically using the available molecular interaction knowledge. Qualitative
models are therefore often preferred for biological systems as they require com-
paratively little parametrisation on top of the knowledge available in literature
and databases. The biological knowledge typically consists of one-on-one inter-
actions, positive and negative, between species (molecules) within the system.
Discrete regulatory networks are particularly well suited for representing and
generalising such information, making them commonplace in modelling gene
regulation and signalling pathways [52, 45, 1, 19, 71, 20] since their introduc-
tion in late 60s [44, 69]. Discrete regulatory networks are well known for being
able to express complex emerging behaviour, owing in particular to loops on
the inter-component in�uences (commonly known as feedback loops) [68, 4, 27].

The modelling of gene regulatory networks or signalling pathways as dis-
crete regulatory networks presents a challenging task due to the high level of
abstraction involved. The inference of discrete regulatory networks can be clas-
sically split into two phases. First, available data on specie interaction from
databases and literature is used to deduce the topology of the network in the
form of an in�uence graph. In�uence graph is a directed graph whose nodes
represent the variables (species) of the system and edges the pairwise in�uences,
possibly marked as positive or negative. In the second step, a dynamical model
is built from the in�uence graph by specifying a regulation function. The reg-
ulation function determines the variable value evolution across di�erent states
of the network, given as vectors of variable values.

While the topology of the discrete regulatory networks in the form of in-
�uence graph is often well supported by data from literature and databases,
the speci�cation of a regulation function requires additional parameter infer-
ence. Indeed, whereas the in�uence graph establishes the potential dependen-
cies (possibly signed) between the variable value changes, the pairwise depend-
encies are not su�cient to determine the combined e�ect of several in�uences
on a single variable. In other words, it is commonly known that two variables
both have a positive in�uence on the value of a third variable. However, it is

1

2 CHAPTER 1. INTRODUCTION

rarely known if both of the variables have to be active, i.e. have value above a
determined threshold, for the value of the third variable to increase or if just
one is su�cient.

In general, the regulation function may take the form of an arbitrary logical
function. The individual target values of a variable in possible combinations of
the values of its regulator variables, the variables that have an in�uence on it,
are hence discrete parameters. The regulation function is therefore equivalent
to an assignment of a value to each such parameter, referred to as paramet-
risation. A discrete regulatory network can thus be speci�ed by an in�uence
graph, encoding the topology, paired with a parametrisation, giving the dynam-
ics. Within the scope of this thesis we focus on discrete regulatory networks
where each variable has a �nite discrete domain. Finite variable domains guar-
antee that the number of parameters as well as each parametrisation are also
�nite, making it possible to enumerate them. The restriction to �nite variable
domains is in line with models studied in the literature, which typically utilise
variable domains of very small size, often Boolean [69, 25, 51, 8, 72].

As biological knowledge on combined e�ects of two or more regulator vari-
ables is scarce, parametrisations cannot be easily derived from literature. We
therefore avoid precise parametrisation speci�cation, focusing instead on para-
metric regulatory networks. A parametric regulatory network is, similarly to
discrete regulatory networks, based on an in�uence graph. However, para-
metric regulatory networks do not rely on a speci�c regulation function, or
equivalently a single parametrisation. The dynamics instead encompass any
parametrisation which is compatible with the in�uence graph (admissible), in-
cluding any in�uence signs. A parametric regulatory network is thus a formal
model constructed to represent exactly the available biological knowledge. It
contains all the pairwise in�uence information available in the literature, how-
ever, no assumptions are made on the unknown regulator interplay, retaining
all possibilities by the means of di�erent parametrisations.

The analysis of parametric regulatory networks therefore does not consist
merely of asking whether the model satis�es given dynamical properties (e.g.
reachability), but with which parametrisations are the properties satis�ed. The
exploration of possible parametric regulatory network dynamics, however, suf-
fers from dual combinatorial explosion, limiting the scalability. Not only do
parametric regulatory networks experience the combinatorial explosion of the
state space, where the number of states is exponential in the number of vari-
ables, a challenge also for discrete regulatory networks, but the number of
parametrisations is in the worst case double exponential in the number of vari-
ables.

The dual combinatorial explosion arising from the combination of state
space and number of parametrisations both being exponential in the number
of variables forms the principal challenge tackled in this thesis. To this end,
we propose new semantics for parametric regulatory networks.

First, we propose abstract semantics of parametric regulatory networks.
The semantics rely on abstraction of the parametrisation space by the means
of bounded convex sublattices of the parametrisation set with a preestablished

3

order. Our abstraction is not only compact, being represented by only two
bounds, but can re�ect possible state transitions without explicit enumera-
tion of parametrisations. Furthermore, the abstraction is exact assuming no
additional constraints (signs) on the in�uences.

The abstraction also extends to parametric regulatory networks with signed
in�uences. The in�uence signs translate into monotonicity constraints on the
in�uences. If a variable is in�uenced positively (resp. negatively) by a reg-
ulator, decrease (resp. increase) in the value of the regulator may not cause
increase in the value of the variable. Di�erent constraints are also captured by
the abstraction, such as observability. If a variable is observably in�uenced by
a regulator, then there must exist at least one state in which the sole change
in the value of the regulator leads to a change in the value of the variable.
Indeed, in the general case, we allow for an in�uence to have no impact on the
regulation of a variable in spite of being speci�ed.

Such constraints on in�uences are handled by the parametrisation space
abstraction at the cost of over-approximation. It is shown, however, that the
abstraction is tight, i.e. the proposed abstraction is the smallest bounded
convex sublattice containing all the admissible parametrisations. The tight-
ness result ensures that if a state is reachable under the abstract semantics,
there exists at least one parametrisation which allows a sequence of concrete
transitions leading to the state. Thus, while the over-approximation allows for
false positives in the form of falsely declaring a state reachable by a particular
parametrisation, it may not introduce spurious transitions.

Second, we de�ne partial order semantics for parametric regulatory net-
works in order to obtain a more compact representation of the reachable state
space. The partial order semantics rely on constructing unfoldings, akin to
Petri net unfoldings. The unfolding semantics may additionally by combined
with either the concrete or abstract semantics of parametric regulatory net-
works, allowing us to use both the parametrisation space abstraction and par-
tial order reduction at the same time, thus addressing both aspects of the dual
combinatorial explosion.

Finally, we introduce a goal-oriented model reduction for parametric reg-
ulatory networks. The model reduction relies on polynomial static analysis
methods to determine which transitions are guaranteed to not lead to a given
target state. This allows us to prune the transitions which are known not to
reach the goal, allowing us to avoid exploring dead end branches of the state
space. Moreover, the method is compatible with both the abstract and the
unfolding semantics of the parametric regulatory networks, allowing for the
combination of all three methods.

This thesis expands upon results previously published in [50, 41]. Several
discrete regulatory network applications have also bene�ted from the insights
gathered working with the parametric regulatory networks. Namely in the
area of concurrency [15] and a new symbolic semantics of Boolean networks
that subsume any multivalued or continuous re�nement [63].

4 CHAPTER 1. INTRODUCTION

Outline The thesis is partitioned into four main areas. In the �rst part, we
introduce in detail the necessary theoretical background. Chapter 2 de�nes
the regulatory network model and related concepts, forming the basis for the
parametric regulatory network which is the object of our studies. Chapter 3
introduces the unfolding based partial order semantics for Petri nets, including
the construction of complete �nite pre�xes.

The second area deals with our main contribution in the form both abstract
semantics and partial order semantics of the parametric regulatory networks.
Chapter 4 introduces the parametric regulatory networks as well as their con-
crete and abstract semantics. Chapter 5 extends both the concrete and abstract
semantics of parametric regulatory networks to incorporate additional biolo-
gical knowledge in the form of in�uence constraints. Chapter 6 introduces the
partial order semantics of parametric regulatory networks based on the Petri
net unfolding, including the complete �nite pre�x construction. Chapter 7
introduces an optimisation of the unfolding procedure for the parametric reg-
ulatory networks in a setting with predetermined target con�guration.

The third part is dedicated to application areas of our parametric regulat-
ory network semantics and related work. Chapter 8 explores related work on
parametric regulatory networks and equivalent models within various applic-
ation areas. Chapter 9 o�ers experimental results on the compactness of the
state space representation with our parametric regulatory network semantics.

Finally, the last, fourth part gives a summary of our work and outlines
possible future work. Chapter 10 o�ers a brief summary of our contributions.
Chapter 11 describes the directions of the currently ongoing and future work
related to semantics of parametric regulatory networks and regulatory networks
in general.

Notations Π applied to sets denotes the Cartesian product. If the order of

the elements matters, we write
≤
Π
x∈X

. . . where ≤ is a total order on X.

Given a sequence of n elements π = (πi)1≤i≤n, we write π̃
∆
= {πi | 1 ≤ i ≤ n }

to denote the set of its elements.
Given a monotonic function f , we write f∗ (x) to denote the �xpoint of the

iteration of the function f initially applied to x.
Given a vector vvv = (vvv1, . . . , vvvn), we write vvv [i 7→ y] to denote the vector

identical to vvv except for the component i value, which is equal to y, vvv [i 7→ y]
∆
=

(vvv1, . . . , vvvi−1, y, vvvi+1, . . . , vvvn).

Part I

Background

5

Chapter 2

Discrete Regulatory Networks

In this chapter we introduce discrete regulatory networks, �nite transition sys-
tems which are commonly employed for modelling biological systems, especially
gene regulatory and signalling networks [25, 27, 68].

A discrete regulatory network consists of a �nite number (n) of variables
(nodes). Each variable v has associated a �nite discrete domain Xv of possible
values. For the sake of simplicity, we consider the �nite set of variables to be
indexed by {1, . . . , n} and by abuse of notation, we unify the variables with
their respective indices. The set of states (state space) of the discrete regulatory

network is then given as vectors of possible values for each variable,
n

Π
v=1

Xv.

The dynamics of a discrete regulatory network are captured by a regulation
function F which speci�es new value each variable should take based on the
current state. There are several ways to apply the regulation function, di�ering
especially in simultaneity of updates of individual variables. To re�ect the
possibility of updating individual variables we decompose the function F into
local functions fv for each variable v.

As domain of the regulation function is the cartesian product of the domains
of the individual variables, a discrete regulatory network is thus fully speci�ed
solely by the regulation function.

De�nition 2.1 (Discrete Regulatory Network). A discrete regulatory net-

work of a dimension n is a function F :
n

Π
v=1

Xv →
n

Π
v=1

Xv, where, for every

v ∈ {1, . . . , n}, Xv is �nite.
A state of F is a vector xxx which assigns each variable a value from the

respective domain, xxx ∈
n

Π
v=1

Xv.

The regulation functions of individual variables, f1, . . . , fn, are obtained as
projections of F to the respective variables, for all u ∈ {1, . . . , n}:

fu :
n

Π
v=1

Xv → Xu fu : xxx 7→ F (xxx)u

In the rest of the chapter, we elaborate on discrete regulatory networks
and introduce some commonly used variations. Namely, in Section 2.1 we

7

8 CHAPTER 2. DISCRETE REGULATORY NETWORKS

give a detailed description of multiple di�erent semantics which can be used
with discrete regulatory networks. Subsequently, in Section 2.2 we introduce
additional representation and constraints for discrete regulatory networks. The
introduced concepts are used heavily in the parametric version of the model,
elaborated on in Chapter 4. In Section 2.3 we introduce some of the most
commonly used con�gurations of discrete regulatory networks, such as Boolean
networks or multivalued networks. Finally, for comparison and to give better
intuition, we introduce automata networks, a model equivalent to the discrete
regulatory networks which is de�ned using interacting automata instead of
functions, in Section 2.4.

2.1 Semantics of Discrete Regulatory Networks

The de�nition of discrete regulatory networks is simple, but signi�cantly �ex-
ible, making discrete regulatory networks suitable for a variety of modelling
tasks. This �exibility is re�ected in numerous di�erent updating schemes �
semantics used with discrete regulatory networks. The main distinction of the
di�erent semantics lies in simultaneity of variable updates. The variables of
discrete regulatory networks may change value either simultaneously, all at
the same time, (synchronous semantics) or individually, one at a time, (asyn-
chronous semantics). Additionally, several variations of mixed semantics have
been considered. We focus on the most universal of such mixed semantics,
called generalised asynchronous semantics, which allows arbitrary combination
of synchronous and asynchronous transitions.

Synchronous Semantics of Discrete Regulatory Networks

Using synchronous semantics, all variables are updated simultaneously, by the
same transition. One can therefore envision the transitions as being simply the
application of the function F on the current state of the discrete regulatory
network.

De�nition 2.2 (Synchronous Semantics). Let F be a discrete regulatory

network of dimension n. The synchronous semantics of F is a relation F−→
sync
⊆

n

Π
v=1

Xv ×
n

Π
v=1

Xv de�ned as:

(xxx,yyy) ∈ F−→
sync

∆⇐⇒ yyy = F (xxx)

We use the natural in�x notation xxx
F−→
sync

yyy to denote membership in the

semantics relation, (xxx,yyy) ∈ F−→
sync

.

2.1. SEMANTICS OF DISCRETE REGULATORY NETWORKS 9

We further use xxx
F

−→∗
sync

yyy, where
F

−→∗
sync

⊆
n

Π
v=1

Xv ×
n

Π
v=1

Xv is the re�exive

and transitive closure of F−→
sync

to denote reachability of state yyy from state xxx by

synchronous transitions.

Under synchronous semantics, each state xxx ∈
n

Π
v=1

Xv has exactly one suc-

cessor, namely F (xxx). Synchronous semantics of discrete regulatory networks
are thus fully deterministic. The determinism of the semantics allows for re-
latively simpler analysis of discrete regulatory networks such as reachability
or attractor analysis. However, synchronism assumes strict timing constraints
on the model by demanding value changes of each variable to have the same
duration, or be otherwise synchronised.

Although several real world applications, such as electronic circuits, out-
right rely on synchronisation, the use of synchronous semantics is much more
debatable in areas where variable updates can take di�erent amounts of time.
In particular, the timing of substrate concentration changes in biological sys-
tems is not necessarily uniform and the precise timing is often unpredictable
or scarcely known. Simultaneity therefore cannot be guaranteed, leading us to
explore the asynchronous semantics which assume temporal independence of
variable updates.

Asynchronous Semantics of Discrete Regulatory Networks

In asynchronous semantics, the state is updated one variable at a time. Rather
than the regulation function F , the transitions are given by application of the
individual regulation functions f1, . . . , fn. As any of the regulation functions
f1, . . . , fn may be chosen to update the state, the asynchronous semantics is
nondeterministic.

De�nition 2.3 (Asynchronous Semantics). Let F be a discrete regulatory
network of dimension n. The asynchronous semantics of F = (f1, . . . , fn) is a

relation F−→
async

⊆
n

Π
v=1

Xv ×
n

Π
v=1

Xv de�ned as:

(xxx,yyy) ∈ F−→
async

∆⇐⇒ D (xxx,yyy) = {v} ∧ yyyv = fv (xxx)

where D :
n

Π
v=1

Xv ×
n

Π
v=1

Xv → 2{1,...,n} is the function computing the set of vari-

ables with di�erent values in the two input states, D : xxx,yyy 7→ {v ∈ {1, . . . , n} |
xxxv 6= yyyv}.

Similar to the synchronous semantics, we use the in�x notation xxx F−→
async

yyy for

membership in the semantics relation and the re�exive and transitive closure

xxx
F

−→∗
async

yyy to denote reachability of state yyy from state xxx in F .

10 CHAPTER 2. DISCRETE REGULATORY NETWORKS

Since D (xxx,yyy) is a singleton set for asynchronous transitions t = (xxx,yyy) ∈
F−→

async
, we denote the unique element, the only variable that changes value, as

v (t) (D (xxx,yyy) = {v ((xxx,yyy))}).

One may be led to believe the asynchronous semantics are a re�nement
of the synchronous semantics. Although true for some discrete regulatory
networks, the two semantics are incomparable in the general case. The syn-
chronous semantics often allow normal transitions � transitions which are not
decomposable into a sequence of asynchronous transitions, thus allowing the
synchronous semantics to exhibit behaviours unreachable in the asynchronous
case. The existence of normal transitions has been linked to simple structural
elements of discrete regulatory networks, called NOPE cycles, by Noual et
al. [60].

Apart from the two extreme cases, the fully synchronous and the fully
asynchronous semantics, other simultaneity restrictions might be considered
depending on the domain. As the fully synchronous and fully asynchronous
semantics are incomparable with regards to expressivity (reachability) in the
general case, it is natural to consider their combination. To this end, we con-
sider generalised asynchronous semantics, which allow any subset of variables
to be updated at a time, thus allowing the fully asynchronous behaviour as
well as normal transitions.

Other approaches are possible, such as globally asynchronous locally syn-
chronous (GALS) employed extensively in circuit design [13], or the, essentially
dual concept, of bounded asynchrony [33]. As local synchrony is subsumed by
the generalised asynchronous semantics and bounded asynchrony can be mod-
elled with a suitable fairness criterion, we do not treat either in detail.

Generalised Asynchronous Semantics of Discrete Regulatory

Networks

In the generalised asynchronous semantics, each transition updates a (nonempty)
subset of variables synchronously.

De�nition 2.4 (Generalised Asynchronous Semantics). Let F be a dis-
crete regulatory network of dimension n. The generalised asynchronous se-

mantics of F = (f1, . . . , fn) is a relation F−→
gen
⊆

n

Π
v=1

Xv ×
n

Π
v=1

Xv de�ned as:

(xxx,yyy) ∈ F−→
gen

∆⇐⇒ ∀ v ∈ D (xxx,yyy) 6= ∅, yyyv = fv (xxx)

where D is again the function computing the set of variables which di�er in
values between the input states.

Similarly to the synchronous and the asynchronous semantics, we use the
in�x notation xxx F−→

gen
yyy for membership and the re�exive and transitive closure

xxx
F

−→∗
gen

yyy to denote reachability of state yyy from state xxx in F .

2.2. INFLUENCE GRAPHS 11

By de�nition, any behaviour exhibited by either the synchronous or the
asynchronous semantics is reproducible in the generalised asynchronous se-
mantics. However, the generalised asynchronous semantics not only retains
the nondeterminism of the asynchronous semantics, it allows up to exponen-
tially more transitions 1.

We brie�y revisit the question of discrete regulatory network semantics,
especially for Boolean networks (see Section 2.3), in Chapter 11, where we
make connection with the most permissive semantics of Boolean networks.

2.2 In�uence Graphs

The regulation functions as presented in the de�nition of discrete regulatory
networks (De�nition 2.1) take all variables of the system as the input. In real
world applications, however, such `dense' interdependency is rare. In particular,
the direct interaction of components of gene regulatory networks and other
biological systems is often considerably sparse.

The (in)signi�cance of some inter-variable dependencies introduced topo-
logy to discrete regulatory network in the form of a directed graph, called in�u-
ence (or interaction) graph, whose nodes represent the variables of the network.
The edges between the variables then denote the signi�cant in�uences.

For the purposes of discrete regulatory networks, an in�uence of variable u
on variable v is signi�cant if there exists at least one state, in which the sole
change in the value of variable u changes the result of the partial regulation
function fv. We relax this de�nition, however, allowing also other variables to
be declared signi�cant. This is to accommodate for the uncertainty involved
with the design of parametric regulatory networks (Chapter 4), the de�nition
of which is strongly tied to the in�uence graphs. The above criterion then
corresponds to the smallest in�uence graph.

De�nition 2.5 (In�uence Graph). Let F be a discrete regulatory network
of dimension n.

Then a graphG = {V, I} such that V = {1, . . . , n} is an in�uence graph of F
if, for each pair of states xxx,yyy ∈

n

Π
w=1

Xw such thatD (xxx,yyy) = {u}∧fv (xxx) 6= fv (yyy),

(u, v) ∈ I.
We use G(F) to denote the smallest in�uence graph of the regulatory net-

work F .

The in�uence graph allows us to specify which variable values does the
target value of a variable v directly depend on. We call such variables the
regulators of v.

De�nition 2.6 (Regulator). Let G = (V, I) be an in�uence graph of discrete
regulatory network F of dimension n and let v ∈ {1, . . . , n} be an arbitrary
variable of F .

1While in asynchronous semantics, there is one transition per variable, the generalised
asynchronous semantics have one transition for each subset of variables.

12 CHAPTER 2. DISCRETE REGULATORY NETWORKS

Then, variable u ∈ {1, . . . , n} is a regulator of v according to G, if (u, v) ∈ I.
We write R(v) to denote the set of all regulators of the variable v.

As the output of the regulation function fv does not change with di�er-
ent values of variables u /∈ R(v), the domain of the regulation function may
be restricted to R(v) without loss of information. We thus rede�ne regula-
tion functions fv for regulator states, which are projections of global states to
regulators of v.

De�nition 2.7 (Regulator State). Let F be a discrete regulatory network
of dimension n, G an in�uence graph of F and v ∈ {1, . . . , n} an arbitrary
variable of F .

A regulator state of v is a vector ωωω ∈ Π
u∈R(v)

Xu.

We use Ωv = Π
u∈R(v)

Xu to denote the set of all regulator states of a variable

v ∈ {1, . . . , n}.
We further use Ω (F,G) (or simply Ω where F and G are obvious from the

context) to denote the set of all regulator states of all variables of F , annotated
with the respective variables, Ω (F,G) = { (v,ωωω) | v ∈ {1, . . . , n} ∧ωωω ∈ Ωv }.

Finally, given an arbitrary state xxx ∈
n

Π
w=1

Xw, we use ωv (xxx) = ωωω to denote the

regulator stateωωω ∈ Ωv of variable v ∈ {1, . . . , n} such that ∀u ∈ R(v), ωωωu = xxxu.

As regulator states are merely projections of the states, the restriction of
the regulation functions f1, . . . , fn to variable regulators is straightforward. For
all v ∈ {1, . . . , n}:

fv : Ωv → Xv fv : ωωω 7→ fv (xxx)

where xxx ∈
n

Π
u=1

Xu is arbitrary such that ωv (xxx) = ωωω.

On the one hand, smaller domains of regulation functions directly translate
into less parameters one needs to evaluate to fully specify the network. Thus,
even if the exact regulation functions are unknown, one can greatly simplify
the model inference task by considering only interactions which are known to
be important in the system. The knowledge of one-to-one interaction between
species is much more common in the biological setting than the complex in-
terplay of the regulators which constitutes the regulation function. We thus
assume the knowledge of the in�uence graph and utilise regulator states for the
de�nition of parametric regulatory networks in Chapter 4.

On the other hand, smaller domains of regulation functions allow us to
clearly capture independence of the individual variable regulation functions.
E.g. if v ∈ {1, . . . , n} is not a regulator of u ∈ {1, . . . , n} and vice versa, the
variable u is not a regulator of the variable v, the two regulation functions fv
and fu are independent and can be executed concurrently (the order of their
execution is irrelevant). The concurrency in discrete regulatory networks can
be exploited for smaller representations of the state space, which is generally
exponential in the number of variables. We present such a partial order reduc-
tion method in Chapter 6.

2.3. MULTIVALUED NETWORKS 13

2.3 Multivalued Networks

We have presented discrete regulatory networks in the their most generic form.
In practice, however, the variables of regulatory networks are commonly an
abstraction (discretisation) of a quantitative value, e.g. concentration or pro-
duction rate of a certain protein [69, 37, 73]. Although continuous models,
such as di�erential equation systems, are generally more suited for quantitat-
ive data, the use of discrete abstraction is well justi�ed in the biological setting.
As data available for biological systems is sparse, constructing a precise con-
tinuous model with all the necessary kinetic parameters is often impossible or
requires many design decisions which are ad-hoc by nature. A discrete model
requires less parameters whose impact on the system is easier to estimate, mak-
ing them more suited for the reverse engineering scenario common for systems
biology.

In this section we introduce the subclass of discrete regulatory networks
suited for the aforementioned task of quantitative variable interpretation, com-
monly referred to as multivalued networks.2 Multivalued networks are distin-
guished by having a total order associated with each variable domain. For
simplicity, we can assume the variable domains to be downward closed sub-
sets of natural numbers with zero (Xv = ↓x for some x ∈ N0) without loss of
generality.

De�nition 2.8 (Multivalued Network). A multivalued network F of di-

mension n is a function F :
n

Π
v=1
↓mmmv →

n

Π
v=1
↓mmmv where ↓x = { y ∈ N0 | y ≤ x }

is the smallest downward closed subset of natural numbers with zero contain-
ing x, And mmm = (mmm1, . . . ,mmmn) ∈ Nn is the vector of maximum values of the
individual variables.

To simplify notation, we write Xmmm =
n

Π
v=1
↓mmmv to denote the state space of

multivalued networks.

Multivalued networks allow for all the semantics we introduced for the gen-
eral discrete regulatory networks (Section 2.1). However, multivalued networks
are most often used as a discretisation of a continuous system. To emulate the
underlying continuous evolution, we restrict the semantics to only allow the
variables to change value stepwise along the total order on their respective do-
mains. In case of subsets of natural numbers, the variables are only allowed
to change value by steps of size 1. Note that the restriction has little impact
on multivalued networks with asynchronous semantics, as discrete regulatory
networks inherently impose no timing information3. Replacing one transition

2The term multivalued networks was adopted to distinguish them from Boolean networks

which, although technically a subclass of multivalued networks, are chronologically older as
they were used in the �rst discrete regulatory network application [44].

3Modi�cations exist for models where timing constraints are critical. E.g. models con-
taining both metabolic pathways, where reactions happen within fractions of seconds, and
gene regulation, which, being reliant on protein synthesis, takes time in the order of tens of
minutes to hours.

14 CHAPTER 2. DISCRETE REGULATORY NETWORKS

changing value by an absolute value of 2 by two transitions changing the value
by absolute value of 1 (in the same direction) thus results in the same beha-
viour.

We only present the necessary modi�cation of generalised asynchronous
semantics as it subsumes both synchronous and asynchronous semantics.

De�nition 2.9 (Generalised Asynchronous Semantics of Multivalued
Networks). Let F be a multivalued network of dimension n andmmm the vector
of maximum values of the individual variables.

The multivalued generalised asynchronous semantics of F = (f1, . . . , fn) is

a relation F−→
gen
⊆ Xmmm ×Xmmm de�ned as:

(xxx,yyy) ∈ F−→
gen

∆⇐⇒ ∀ v ∈ D (xxx,yyy), fv (xxx) ≥ yyyv = xxxv + 1 ∨ fv (xxx) ≤ yyyv = xxxv − 1

Having total order on variable domains allows us to express several use-
ful properties in multivalued networks. A prime example of such a property
is monotonicity of in�uences (or local monotonicity). As is standard, mono-
tonicity comes in two forms. An in�uence (u, v) ∈ I is said to be positive
monotonic or activation if an increase in the value of the regulator u cannot
cause a decrease of the value of the target variable v. Similarly, an in�uence
(u, v) ∈ I is said to be negative monotonic or inhibition if an increase in the
value of the regulator u cannot cause an increase of the value of the target
variable v.

De�nition 2.10 (Positive Monotonicity). Let F be a multivalued network
of dimension n, mmm the vector of maximum values of the individual variables
and let G = (V, I) be an in�uence graph of F .

An in�uence (u, v) ∈ I is positive monotonic (activation) if for any two
states xxx,yyy ∈ Xmmm such that D (xxx,yyy) = {u},

(xxxu < yyyu) =⇒ (fv (xxx) ≤ fv (yyy))

u is then a positive regulator (activator) of v.

De�nition 2.11 (Negative Monotonicity). Let F be a multivalued network
of dimension n, mmm the vector of maximum values of the individual variables
and let G = (V, I) be an in�uence graph of F .

An in�uence (u, v) ∈ I is negative monotonic (inhibition) if for any two
states xxx,yyy ∈ Xmmm such that D (xxx,yyy) = {u},

(xxxu < yyyu) =⇒ (fv (xxx) ≥ fv (yyy))

u is then a negative regulator (inhibitor) of v.

Since data on biological systems is sparse, it is often di�cult or outright
impossible to infer the exact regulation functions. Local monotonicity, however,
describes the relationship of only couple variables in isolation, as opposed to the

2.3. MULTIVALUED NETWORKS 15

complex interplay of regulators. Thanks to the relative simplicity, information
on in�uence monotonicity is widely available. Monotonicity is thus a powerful
constraint on admissible multivalued networks in place of the exact regulation
functions for the purposes of network inference. The exact uses and bene�ts of
in�uence monotonicity information are explored in Chapter 5.

Due to the di�culty of �nding correct regulation functions for multivalued
networks, networks with simpler domains are often preferred in practice. In
particular, two subclasses of multivalued networks with Boolean vector domain
for F are commonly employed, Boolean networks and Thomas networks.

Boolean Networks

Boolean networks are the most fundamental multivalued networks and as the
name suggests, they are characterised by only being composed of Boolean vari-
ables, ∀ v ∈ {1, . . . , n}, Xv = B.

De�nition 2.12 (Boolean Network). A Boolean network F of dimension n
is a function F : Bn → Bn on Boolean vectors of length n.

The Boolean domain is the smallest reasonable4 domain a variable of a
multivalued network can have. Boolean networks of dimension n are thus the
simplest (smallest) discrete regulatory networks of the dimension n. Although
the Boolean domains directly translate to smaller number of possible and thus
also reachable states as well as smaller number of regulation states and thus
the number of parameters (more in Chapter 4), the reduction is not enough to
break out of the combinatorial explosion in either case and the number of both
the states and parameters is in the general case exponential in n.

Despite the minimalistic variable domains, Boolean networks exhibit relat-
ively high expressiveness leading to their widespread use [25, 1, 19].

Thomas Networks

Thomas networks allow the use of Boolean regulation functions while main-
taining arbitrary (natural) bounds for the individual variable domains. This
is achieved by introduction of regulation thresholds in the form of labelling on
in�uences. More precisely, each in�uence e = (u, v) ∈ I is assigned a regula-
tion threshold t (e) ∈ Xu. The threshold acts as a binarisation delimiter when
feeding the multivalued state to the Boolean regulation function. Any value
of the regulator u smaller than t (e) is binarised to 0, while any value of the
regulator u larger than or equal to t (e) is treated as 1.

Due to the use of thresholds, Thomas networks are also known as multi-
valued threshold networks or simply multivalued networks with threshold. We,
however, stick with the traditional nomenclature of Thomas networks, legacy
of their �rst use for modelling cellular regulation by René Thomas [69] as it

4Excluding the pathological case of singleton sets.

16 CHAPTER 2. DISCRETE REGULATORY NETWORKS

allows for a clearer distinction between Thomas networks and general multi-
valued networks.

De�nition 2.13 (Thomas Network). A Thomas network of dimension n is a
couple (F, t) where F : Bn → Xmmm is the regulation function and t : {1, . . . , n}2 →
N is a threshold labelling function such that for any pair of variables u, v ∈
{1, . . . , n}, t ((u, v)) ≤mmmu.

Although all discrete regulatory network semantics are applicable to Thomas
networks, we modify the standard de�nition to account for the thresholds. We
present only the generalised asynchronous semantics of Thomas networks as it
subsumes both the synchronous and asynchronous semantics.

De�nition 2.14 (Generalised Asynchronous Thomas Semantics). Let
(F, t) be a Thomas network of dimension n and mmm the vector of maximum
values.

The generalised asynchronous semantics of (F, t) is a relation
(F,t)−→
gen
⊆ Xmmm ×

Xmmm de�ned as:

(xxx,yyy) ∈ (F,t)−→ ∆⇐⇒ ∀ v ∈ D (xxx,yyy), fv (bbbv) ≥ yyyv = xxxv + 1 ∨ fv (bbbv) ≤ yyyv = xxxv − 1

where for each v ∈ {1, . . . , n}, bbbv ∈ Bn is a binarisation of xxx according to the
relevant thresholds, ∀u ∈ {1, . . . , n}, bbbv [u] = 1⇐⇒ t ((u, v)) ≤ xxxu.

Thomas networks naturally subsume Boolean networks and o�er more ex-
pressivity while maintaining the same complexity of the regulation function.
The extra expressivity, however, translates into the need to determine the reg-
ulation threshold for each in�uence. The regulation thresholds essentially dic-
tate which variables respond fastest to a monotonic change of the value of a
common regulator. In other words, thresholds determine the sensitivity of vari-
ables to their regulators changing value. Such sensitivity information, however,
is seldom readily available in the biological setting.

2.4 Discrete Regultory Networks as Automata Networks

In this section we approach discrete regulatory networks from a di�erent stand-
point. In particular, we provide an alternative de�nition of discrete regulatory
networks in the form of automata networks making use of �nite automata in-
stead of regulation function to describe the dynamics. Although we speak of
alternative de�nition automata networks may be independently studied as a
standalone model [34].

An automata network is a collection of �nite automata which take the
current state of their neighbours as the input. Automata networks are thus
closely related to cellular automata, however, instead of a grid, the topology of
an automata network is given by an arbitrary directed graph. In general, auto-
mata networks may be in�nite. Since the number of automata in an automata

2.5. EXAMPLES 17

network corresponds to the dimension of the equivalent discrete regulatory net-
work5, however, we focus on �nite automata networks to match the restriction
on the dimension of discrete regulatory networks.

Although we introduce automata networks as collections of �nite automata,
it is usual for automata networks to produce in�nite executions. The �nal states
of the individual automata are therefore omitted in the de�nition. Additionally,
since discrete regulatory networks do not have an explicitly de�ned initial state,
we do the same for the automata networks and omit also the initial states of
the automata. The notions of �nal states and initial states may be employed
for speci�cation of a concrete, typically reachability, problem.

De�nition 2.15 (Automata Network). An automata network N =
(A1, . . . , An) is a collection of simpli�ed �nite automata such that for each
i ∈ {1, . . . , n}, Ai = (Qi,Σi, δi), where Σi ⊆ 2

⋃
j 6=iQj and δi : Qi × Σi → Qi.

Note that the alphabet Σi does not necessarily contain the state of every
other automaton in the network. Having a restricted alphabet identi�es de-
pendencies between the automata (in-neighbours), thus de�ning the (graph)
topology of the automata network.

One can easily �nd a correspondence between automata networks with n
states and discrete regulatory networks of dimension n. The individual auto-
mata A1, . . . , An correspond to the variables of the discrete regulatory network.
The states of the automaton are then the elements of the domain of the vari-
able, Qi = Xi, and the transition relation δi corresponds to the individual
regulation function fi, δi (xi, {x1, . . . , xi−1, xi+1, . . . , xn}) = fi ((x1, . . . , xn))6.
Following the above correspondence, one can easily apply any of discrete reg-
ulatory network semantics for the automata networks.

2.5 Examples

In this section we provide a few examples of the di�erent discrete regulatory
networks including the in�uence graphs and dynamics for di�erent semantics
types. As the associated structures, such as the state space graph, tend to
grow in size very quickly for larger discrete regulatory networks, we present toy
examples rather than actual models from biology. While our toy examples are
considerably minimalistic, they su�ce to illustrate the important properties
in this as well as following chapters, where we repurpose them as running
examples.

Example 2.1. In the following we give an example of a multivalued network
FA with three variables a(= 1), b(= 2), c(= 3). We consider only one variable,

5This is true for networks of deterministic automata. Nondeterministic �nite automata
in the network should be converted to deterministic automata �rst as nondeterminism on
the level of automata is equivalent to F being a regulation relation instead of a function.

6For convenience, we list a value for each automaton in the network in the input of Ai.
However, only a subset of the automata (the in-neighbours) has to be considered in general.
The automata which are not in-neighbours of Ai have no direct impact on δi.

18 CHAPTER 2. DISCRETE REGULATORY NETWORKS

a b

c

Figure 2.1: The smallest in�uence graph of the multivalued network FA.

a, with a domain of size three, Xa = [0, 2]. The remaining variables b and c
are considered with only Boolean domains, Xb = Xc = B.

FA : xxx 7→
(

(xxxa + 1) mod 3, 1− xxxb,
⌊
xxxa + xxxb

2

⌋)
FA can be equivalently speci�ed using the individual regulation functions

FA = (fa, fb, fc):

fa : xxx 7→ (xxxa + 1) mod 3

fb : xxx 7→ 1− xxxb

fc : xxx 7→
⌊
xxxa + xxxb

2

⌋
Note that according to FA, respectively fa, the value of the variable a tends

to increase to the maximum mmma = 2 and tends to decrease back to 0 once the
maximum value is achieved. However, as the multivalued network semantics
are restricted to updating variable values by steps of size 1, the value of variable
a must decrease to 1 before reaching 0, at which point the tendency changes
towards increase. Variable a thus cannot reach the value 0 once it reaches 1 or
2. This is also illustrated in Figure 2.2 and Figure 2.3 showing the state space

graph of FA with synchronous semantics,
FA−→
sync

, and asynchronous semantics,

FA−→
async

, respectively.

The smallest in�uence graph G(FA) of FA is given in Figure 2.1.
The state space graph of FA with the synchronous semantics in Figure 2.2

features states with simpli�ed notation. Instead of writing the full state nota-
tion, e.g. (0, 1, 0) for xxx with xxxa = xxxc = 0 and xxxb = 1, we use a shorthand
notation with the variable values only, e.g. 010, for simplicity. The same
notation is also adopted in the state space graph of FA with the asynchronous
semantics Figure 2.3. Since each asynchronous transition t changes value of
a unique variable v = v (t), we additionally annotate the transitions with v (t)
and the direction of the value change (+ for value increase and − for value
decrease) in Figure 2.3.

2.5. EXAMPLES 19

010 200 111 000

100 210 201 110

011 101 211 001

Figure 2.2: The state space of the multivalued network FA with the synchron-
ous semantics. States are represented by concatenation of variable values in
the natural order.

200 210 211 201

100 110 111 101 100

000 010 011 001 000

b+

b−

b−

b+

b+

b−

b−

b+

b+

b−

b−

b+

a− a+ a− a+ a− a+ a− a+

a+ a+ a+ a+

c+

c+

c−

c−

c−

c+

Figure 2.3: The state space of the multivalued network FA with the asynchron-
ous semantics. States are represented by concatenation of variable values in the
natural order and transitions are annotated by the unique variable changing
value (v (t)) and the direction of the change.

Observe that the choice of semantics has a signi�cant impact on the dy-
namics of the regulatory network. In the case of FA, the di�erence is mainly
caused by the variables a and b being regulated only by themselves, R(a) = {a}
and R(b) = {b}. Thus, while in the asynchronous semantics either variable a
or variable b is allowed to change value independently of each other, their value
updates are synchronised under the synchronous semantics. Such synchron-
isation is responsible for the state space graph in Figure 2.2 being split into
two connected components. One component drains into the loop 101↔ 210 (a
and b change value in the same direction) while the other drains into the loop
111↔ 201 (a and b change value in the opposite direction).

Example 2.2.

FB : xxx 7→ ((xxxb ∨ xxxc) ∧ ¬ (xxxd) ,¬ (xxxb) ,xxxb,¬ (xxxd))

FB is an example of a Boolean network with four variables a(= 1), b(= 2), c(=
3), d(= 4). The Boolean network FB can be equivalently expressed using the

20 CHAPTER 2. DISCRETE REGULATORY NETWORKS

a

b

c

d

Figure 2.4: The smallest in�uence graph of the Boolean network FB .

individual regulation functions fa, fb, fc, fd:

fa : xxx 7→ (xxxb ∨ xxxc) ∧ ¬ (xxxd)

fb : xxx 7→ ¬ (xxxb)

fc : xxx 7→ xxxb

fd : xxx 7→ ¬ (xxxd)

Since all variable domains are Boolean, the regulation functions can be spe-
ci�ed within the Boolean algebra.

The smallest in�uence graph of FB is given in Figure 2.4. While variables
b, c, d only depend on a single regulator (|R(b)| = |R(c)| = |R(d)| = 1), the
value of variable a evolves according to 3 regulators (R(a) = {b, c, d}).

Figure 2.5 and Figure 2.6 illustrate the state space graphs of FB with syn-

chronous semantics
FB−→
sync

and asynchronous semantics
FB−→
async

, respectively. The

sole regulators of variables b and d are the variables themselves, R(b) = {b},
R(d) = {d}. Moreover, since the variables b and d have negative monotonic
in�uence on themselves, they are frustrated in each state, fb (xxx) 6= xxxb and
fd (xxx) 6= xxxd for any state xxx. The variables b and d wanting to change value
in any state leads to signi�cant number of transitions in the asynchronous se-
mantics. The transitions updating the value of the variables b and d are thus
abstracted in Figure 2.6 to improve readability.

Observe that similarly to Example 2.1, the choice of semantics has a sig-
ni�cant impact on the dynamics of the network. In particular, while the state
space graph of FB is a single connected component under asynchronous se-
mantics, it consists of several components for the synchronous case. This can
be partially attributed to the synchronisation of the variable b and d value up-
dates disallowing transitions from states where the variables b and d have the
same value to states in which their values di�er and vice versa.

2.5. EXAMPLES 21

0000 0101 1000

0111 0010 1101 1010

1111 0001 0110

0011 0100 1011 1100

1001 1110

Figure 2.5: The state space graph of the Boolean network FB with synchronous
semantics. States are represented by concatenation of variable values in the
natural order.

0000 1000 0001 1001

0010 1010 0011 1011

0100 1100 0101 1101

0110 1110 0111 1111

b+ b− b+ b−

d+

d−

d+

d−

c+ c+ c+ c+

c− c− c− c−
a+

a+

a+

a− a−

a−

a−

a−

Figure 2.6: The state space graph of the Boolean network FB with asynchron-
ous semantics. States are represented by concatenation of variable values in
the natural order and transitions are annotated by the unique variable chan-
ging value (v (t)) and the direction of the change. The transitions updating the
value of variables b and d are given only schematically for the sake of clarity.

22 CHAPTER 2. DISCRETE REGULATORY NETWORKS

Example 2.3. Consider the in�uence graph G(FA) = (V, I) (Figure 2.1) from
Example 2.1 and a threshold function t : I → [0, 2] de�ned as:

t : (a, a) 7→ 2

t : (b, b) 7→ 1

t : (a, c) 7→ 2

t : (b, c) 7→ 1

We use the threshold function t to de�ne a Thomas network (FC , t) on the
same variables a, b and c with the same domains, Xa = [0, 2], Xb = Xc = B,
and the same smallest in�uence graph G(FC) = G(FA) as the multivalued
network FA from Example 2.1.

FC : bbb 7→ (2 (1− bbba) ,¬ (bbbb) , bbba ∨ bbbb)

Or equivalently using the individual regulation functions fa, fb, fc:

fa : bbb 7→ 2 (1− xxxa)

fb : bbb 7→ ¬ (xxx)b
fc : bbb 7→ xxxa ∨ xxxb

The states depend on the variable domains and are thus identical for (FC , t)
and FA, the regulatory function itself, however, is de�ned on Boolean vectors
for Thomas networks, FC : B3 → [0, 2]× B2. While the simpli�cation to the
Boolean domain is often desired, the resulting regulatory function is not as
expressive as the original FA.

Indeed, one may note that although the regulatory function FC has been
constructed to emulate FA, there are di�erences in the dynamics of (FC , t)
and FA. In particular, the value of variable c tends to decrease when xxxa = 0
regardless of the value of xxxb under FA. In the case of (FC , t), however, the
value of variable c tends to increase when xxxb = 1 regardless of the value of xxxa.
This is also illustrated in the state space graph of (FC , t) in Figure 2.7.

While the di�erence on the target value of variable c in state (0, 1, 0), re-
spectively (0, 1, 1), can be amended by a di�erent Thomas network, the exact
behaviour of FA cannot be replicated by any Thomas network with the same
variables and in�uence graph. This follows from the fact that the impact of
variable b on variable c is di�erent for each possible value of variable a (see
Table 2.1).

2.5. EXAMPLES 23

200 210 211 201

100 110 111 101 100

000 010 011 001 000

b+

b−

b−

b+

b+

b−

b−

b+

b+

b−

b−

b+

a− a+ a− a+ a− a+ a− a+

a+ a+ a+ a+

c+

c+

c+

c−

c−

c+

Figure 2.7: The state space of the Thomas network (FC , t) with the asynchron-
ous semantics. States are represented by concatenation of variable values in the
natural order and transitions are annotated by the unique variable changing
value (v (t)) and the direction of the change.

xxxa 0 0 1 1 2 2
xxxb 0 1 0 1 0 1
fc (xxx) 0 0 0 1 1 1

Table 2.1: The table of target values of variable c (fc) in the multivalued
network FA for all possible combinations of variable a and b values. Note that
di�erent target values are observed for all three values of variable a.

Chapter 3

Partial Order Semantics of

Transition System Products

The state space of discrete regulatory networks is in the general case exponen-
tial in the dimension (number of variables). As such, discrete regulatory net-
work analysis more often than not su�ers from combinatorial explosion. Gene
regulatory networks and other biological models that constitute our primary
application domain, however, are generally sparsely connected, leading to a
high degree of concurrency. For this reason, it is natural to consider partial
order semantics for discrete regulatory networks, in order to bene�t from a
more compact representation of the state space.

A well established and extensively studied partial order semantics for trans-
ition systems exists for Petri nets in the form of unfoldings, or more precisely
branching processes. Thanks to their high expressivity, the unfolding semantics
of Petri nets can be used for any general transition system, including discrete
regulatory networks [30]. Petri net unfolding therefore appears to be the ideal
partial order semantics candidate to study in relation to discrete regulatory
networks, as well as their parametric extension introduced in Chapter 4.

3.1 Petri Nets

Prior to starting on the unfolding itself, we brie�y recall the de�nition of a Petri
net. A Petri net is a directed bipartite graph between places and transitions.
Each place can hold any natural number of tokens. Marking is a function
specifying the number of tokens for each place. A transition can �re (is enabled)
if a token is present in all places in the set of its in-neighbours (preset). Firing
a transition consumes a token from each place in the preset and produces a
token in each place in the set of out-neighbours (poset) of the transition1 thus

1In the general case, the arcs of a Petri net may have labels specifying the number of
tokens consumed/produced by a transition. The same quantities of tokens then apply to
both enabling and �ring of the transition. Within our work, however, we assume all arcs to
be unlabelled (labelled with 1).

25

26
CHAPTER 3. PARTIAL ORDER SEMANTICS OF TRANSITION

SYSTEM PRODUCTS

reaching a new marking.
In this work we limit ourselves to safe Petri nets. A Petri net is safe (or 1-

safe) if any place has at most one token at a time in any reachable marking. The
limitation is well justi�ed as domains of all the variables of discrete regulatory
networks are guaranteed to be �nite. A safe Petri can thus emulate a Discrete
regulatory network by representing each value of each variable by a unique
place. Similarly, we consider only �nite Petri nets as the number of variables
in discrete regulatory networks is also �nite. Observe that this representation
closely resembles the automata networks.

De�nition 3.1 (Petri Net). A (1-safe) Petri net is a tuple (P, T,W,M),
where P ∩ T = ∅ are �nite sets of places and transition, respectively, W ⊆
(P × T) ∪ (T × P) is a set of arcs (edges) between places and transitions and
M : P → B is the initial marking.

For each node x ∈ P ∪T we write •x = { y ∈ P ∪ T | (y, x) ∈W } to denote
the preset of x and x• = { y ∈ P ∪ T | (x, y) ∈W } to denote the poset of x.

Note that for safe Petri nets, a markingM can be easily represented as a set
of the places which contain a token,M = { p ∈ P |M (p) = 1 }. Remark further
that (P ∪ T,W) is a directed bipartite graph between places and transitions by
de�nition and we employ it as such. Finally, we omit the initial marking from
the de�nition of a Petri net where convenient. When omitted, we consider the
Petri net with any initial marking which supports the safeness criteria.

3.2 Unfolding

Petri net unfolding relies on branching processes, a partial order semantics of
Petri nets. Intuitively, a Petri net unfolding is similar to an unfolding of a
graph. Given an initial vertex, any directed graph can be unfolded into a
tree whose nodes represent the paths leading from the initial vertex. Petri
nets can also be unfolded into labelled occurrence nets, a subclass of Petri nets
bene�tting from simple structure similar to trees. The resulting occurrence net
is called a branching process. The nodes of the branching process are labelled
with places and transitions of the original Petri net. Unfolding of a Petri net
may be stopped at any time, yielding many di�erent branching processes. The
Petri net unfolding refers to the maximal (generally in�nite) branching process
which unfolds as much as possible.

Petri net unfolding di�ers from the unfolding of the state space graph of the
underlying transition systems. The Petri net transitions are local � they a�ect
only a subset of the places of the Petri net, allowing for two or more transition
to act independently of each other. Such transitions are called concurrent. By
exploiting concurrency, Petri net unfolding results in a more compact structure.
This is achieved by allowing "merging" concurrent branches within the unfold-
ing. Petri net unfoldings therefore avoid representing equivalent branches twice
at the expense of the tree structure. We give the formal notion of concurrency
below, using the causal and con�ict relations on the nodes of a Petri net.

3.2. UNFOLDING 27

De�nition 3.2 (Causal Relation). Let x, y ∈ P ∪ T be two nodes of the
Petri net (P, T,W,M0).

x and y are in causal relation, x < y, if there exists a directed path from x
to y in the graph (P ∪ T,W).

De�nition 3.3 (Con�ict Relation). Let x, y ∈ P ∪ T be two nodes of the
Petri net (P, T,W,M0).

x and y are in con�ict relation, x# y, if there exist two paths (a, t0, . . . , x)
and (a, t1, . . . , y) in the graph (P ∪ T,W) leading to x and y, respectively,
which start from the same place and subsequently diverge.

De�nition 3.4 (Concurrency Relation). Let x, y ∈ P ∪ T be two nodes of
the Petri net (P, T,W,M0).

x and y are in concurrency relation, x ‖ y, if ¬ (x < y), ¬ (y < x) and
¬ (x# y).

As the causal, con�ict and concurrency relations suggest, occurrence nets
are indeed event structures. We adapt the usual notation and call the places
of an occurrence net conditions (the b notation comes from Petri's original
`Bedingungen') and the transitions of an occurrence net events.

De�nition 3.5 (Occurrence Net). An occurrence net O = (B,E, F) is a
Petri net such that:

1. ∀ b ∈ B, |•b| ≤ 1;

2. The causal relation is a partial order (O is acyclic);

3. For every x ∈ B ∪ E, the set { y ∈ B ∪ E | y < x } is �nite (O is �nitely
preceded);

4. ∀ b ∈ B, ¬ (b# b) (O is con�ict-free).

As aforementioned, a branching process is an occurrence net whose con-
ditions and events are labelled by the places and transitions, respectively, of
the original Petri net they represent. Unlike an occurrence net, the branching
process is a "proper" Petri net, including the initial marking. To ease the nota-
tion, we override the min function for occurrence nets to produce the causality-
minimal subsets of nodes, min: (B,E, F) 7→ {x ∈ B ∪ E | ∀ y ∈ B ∪ E, x ≤ y }.

De�nition 3.6 (Branching Process). A branching process of a Petri net
(P, T,W,M0) is an occurrence net O labelled with function β : B ∪ E → P ∪ T
such that:

1. β (B) ⊆ P and β (E) ⊆ T (β preserves the nature of nodes).

2. Given an arbitrary event e ∈ E. ∀ b ∈ •e, β (b) ∈ •β (e) and vice versa,
∀ p ∈ •β (e), there exists a unique b = β−1 (p) and b ∈ •e. (β restricted
to •e is a bijection.) Similarly, ∀ b ∈ e•, β (b) ∈ β (e)

• and vice versa,
∀ p ∈ β (e)

•
, b = β−1 (p) is unique and b ∈ e•. (β restricted to e• is a

bijection.)

28
CHAPTER 3. PARTIAL ORDER SEMANTICS OF TRANSITION

SYSTEM PRODUCTS

3. ∀ b ∈ min((O)), β (b) ∈M0 and ∀ p ∈M0, b = β−1 (p) is unique and b ∈
min((O)). (β restricted to causality-minimal conditions is a bijection
with the initial marking.)

4. ∀ e0, e1 ∈ E, •e0 = •e1 ∧ β (e0) = β (e1) =⇒ e0 = e1 (No duplicate trans-
itions).

min((O)) is the initial marking of the branching process.

Many (possibly in�nitely many) di�erent branching processes may be con-
structed for a single Petri net. However, all the branching processes are con-
structed by the same process, unfolding, di�ering essentially on `how much'
are they unfolded. Thanks to the acyclic structure of occurrence nets and
thus branching processes, everything captured by a branching process which
has been unfolded less (to a lesser depth) is also captured by a larger, `more
unfolded', branching process (with larger depth). The smaller, `less unfolded',
branching process can thus be called a pre�x of the larger branching process.

De�nition 3.7 (Branching Process Pre�x). Let (O, β) and (O′, β′) be two
branching processes of the same Petri net (P, T,W,M).

Then, (O, β) is a pre�x of (O′, β′) if the following conditions are satis�ed:

1. B ⊆ B′, E ⊆ E′ and F ⊆ F ′ (O is a subnet of O′);

2. min((O′)) ⊆ B (The natural initial marking is the same for both branch-
ing processes);

3. For each condition b ∈ B and the single event e ∈ E′ such that e ∈ •b (if
it exists), e ∈ E;

4. Similarly, for each event e ∈ E and each condition b ∈ B′ such that
b ∈ •e ∪ e•, b ∈ B;

5. For each x ∈ B ∪ E, β (x) = β′ (x) (β is the restriction of β′ to O).

The notion of pre�xes gives a partial order structure on branching processes
allowing us to formally capture the notion of `unfolding more'. In [29], it has
been shown that there exists a unique maximal branching process of a Petri
net, up to isomorphism. The maximal branching process is known as the Petri
net unfolding.

De�nition 3.8 (Petri Net Unfolding). Let (P, T,W,M) be a Petri net.
The unfolding of (P, T,W,M) is a branching process (O, β) of (P, T,W,M)

such that any other branching process (O′, β′) of (P, T,W,M) is a pre�x of
(O, β).

The unfolding of a Petri net is unique up to isomorphism.

3.3. BEHAVIOURAL EQUIVALENCE 29

3.3 Behavioural Equivalence

Although the unfolding of a Petri net is in the general case in�nite, it gives a
complete acyclic representation of the behaviour of the original Petri net. The
behavioural equivalence is captured by the isomorphism of (graph) unfoldings
of the reachability graphs of a Petri net and its unfolding. In particular, the set
of reachable markings of a Petri net contains exactly the markings obtained as
β (M) where M is reachable in the unfolding of the Petri net. Moreover, the
possible �ring sequences of the Petri net are also reproduced by the unfolding.
Given a marking M reachable in the unfolding, another marking M ′ and a
transition t ∈ T of the original Petri net, An event e ∈ E such that M e−→M ′

and β (e) = t exists if and only if β (M)
t−→ β (M ′).

To capture the notion of behavioural equivalence of Petri nets and their
branching processes formally, we introduce the concepts of con�guration and
cut, which represent the �ring sequence and marking of the original Petri net,
respectively, within the branching process.

De�nition 3.9 (Con�guration). A con�guration of a branching process
(O, β) is a set of events C ⊆ E such that:

1. e ∈ C =⇒ ∀ e′ < e, e′ ∈ C (C is causally closed);

2. ∀ e, e′ ∈ C, ¬ (e# e′) (C is con�ict-free).

Con�guration is a set of events which can be �red within one run of the
branching process. More precisely, for each con�guration there exists a �ring
sequence which allows each event in the con�guration to execute exactly once
starting from the natural initial state and respecting the causal relation. These
�ring sequences mirror the �ring sequences of the original Petri net through
the labelling function β.

Thanks to being con�ict free and causally closed, �ring each event in a
con�guration results in a set of concurrent conditions (coset). Since we assume
our input Petri net to be 1-safe, any two conditions b, b′ of a branching process
such that β (b) = β (b′) are either in causal relation or con�ict. As such, β
restricted to any coset of the branching process is injective. A maximal coset
of a branching process is called a cut and corresponds to a marking of the
original Petri net when projected via β. Of particular interest are then cuts
produced by con�gurations, as they represent the reachable markings.

De�nition 3.10 (Cut). A set of conditions γ ⊆ B is a cut, if ∀ b, b′ ∈ γ, b ‖ b′
and ∀ b ∈ B \ γ, ∃ b′ ∈ γ, ¬ (b ‖ b′).

Given a �nite con�guration C, the set of conditions obtained by executing
every event in C from the initial state is a cut of the following form Cut (C) =
(min((O)) ∪ C•) \ •C.

We have already stated, in less formal terms, that a markingM is reachable
in the original Petri net if and only if the unfolding of said Petri net contains a

30
CHAPTER 3. PARTIAL ORDER SEMANTICS OF TRANSITION

SYSTEM PRODUCTS

con�guration C such that β (Cut (C)) = M . Petri net unfoldings therefore o�er
a comprehensive way to study the reachable state space of transition systems
in a concurrency aware environment. This property is captured in the notion
of completeness of branching processes.

De�nition 3.11 (Complete Branching Process). Let (P, T,W,M0) be a
Petri net.

We say that a branching process (O, β) of (P, T,W,M0) is complete, if for
every marking M reachable in (P, T,W,M0), there exists a con�guration C in
(O, β), satisfying:

1. β (Cut (C)) = M (M is represented in the branching process);

2. For every transition t ∈ T enabled in M , there exists an event e ∈ E \C
such that β (e) = t and C ∪ {e} is a con�guration of (O, β) (all enabled
transitions can be reproduced in the branching process).

3.4 Complete Finite Pre�x

Unfolding of a Petri net is trivially a complete branching process, however, the
applicability of Petri net unfoldings is largely impeded by the unfoldings being
in�nite in the general case. As the reachable state space of a �nite (safe) Petri
net is also �nite, envisioning a branching process which is both complete and
�nite is far from absurd. A technique to construct such a representation, called
a complete �nite pre�x of the unfolding, has been introduced by Kenneth L.
McMillan et al. [58] and later improved by Javier Esparza et al. [31], including
an upper bound on the size of the constructed pre�x.

The construction of the complete �nite pre�x is based on identifying events,
called cut-o� events, at which the unfolding procedure can be stopped while
guaranteeing the resulting branching process is complete. Determining whether
an event can be declared a cut-o� or not relies on a key observation about the
isomorphism of extensions of con�gurations whose cuts have the same projec-
tion via β.

More precisely, let (O, β) be a branching process of a Petri net (P, T,W,M)
with a con�guration C. We write ⇑C = (O′, β′) to denote the part of (O, β)
which `comes after' C. Formally, O′ = (B′, E′, F ′) where B′ = {b ∈ B \ •C |
∀ e ∈ C, ¬ (b# e)}, E′ = { e ∈ E \ C | ∀ e′ ∈ C, ¬ (e# e′) } and F ′, β′ are re-
strictions of F and β, respectively, to B′ ∪ E′. Then, (O′, β′) is a branch-
ing process of the Petri net (P, T,W, β (Cut (C))). In particular, if (O, β)
is the unfolding of the Petri net (P, T,W,M), (O′, β′) is the unfolding of
(P, T,W, β (Cut (C))). Thus, as the unfolding is unique up to isomorphism,
for any two con�gurations C and C ′ such that β (Cut (C)) = β (Cut (C ′)), we
have ⇑C = I (⇑C ′) where I is the isomorphism of the unfoldings.

We therefore have an isomorphism of con�guration extensions provided the
con�gurations reach the same marking (projected via β). This very isomorph-
ism is exploited in the construction of the complete �nite pre�x to determine

3.4. COMPLETE FINITE PREFIX 31

which branches of the unfolding can be omitted without loss of completeness.
To be able to apply the reasoning about isomorphic extensions directly to
events, McMillan et al. [58] associate a local con�guration to each event. A
local con�guration of an event e is the minimal con�guration which allows e to
�re.

De�nition 3.12 (Local Con�guration). Let (O, β) be a branching process
with O = (B,E, F) and let e ∈ E be an arbitrary event.

The local con�guration [e] ⊆ E of event e is the downward closure, with
respect to the causality relation, of the singleton set {e} within the set of events
E, [e] = { e′ ∈ E | e′ ≤ e }.

The local con�guration of any event e ∈ E is trivially a con�guration of
(O, β).

Any con�guration C containing an event e is necessarily an extension of
the local con�guration, e ∈ C =⇒ [e] ⊆ C. Thus, shall there exist a di�erent
event e′ with β (Cut ([e])) = β (Cut ([e′])), there must exist an extension of [e′]
isomorphic to C, or more precisely to C \ [e].

The unfolding procedure detailed in [58, 31] constructs the branching pro-
cess by including individual events and their posets one-by-one, selecting them
from a set of possible extensions. A possible extension is an event of the unfold-
ing whose preset is already included in the pre�x constructed thus far and which
can therefore be included in the pre�x with no further modi�cation necessary.

De�nition 3.13 (Possible Extension). Let (O, β) be the unfolding of a Petri
net (P, T,W,M) and let (O′, β′) be a pre�x of the unfolding.

An event e ∈ E \E′ is a possible extension of the pre�x (O′, β′) if and only
if ∀ b ∈ •e ⊆ B, b ∈ B′.

The set of all possible extensions of a pre�x (O′, β′) is denoted by
PE ((O′, β′)).

We now have all the tools needed to de�ne the cut-o� criterion for events,
which determines when to stop the unfolding procedure.

De�nition 3.14 (Cut-O� Event). Let (O, β) be a �nite branching process
of a Petri net (P, T,W,M) and let (O′, β′) be another branching process of the
same Petri net such that B′ = B ∪ e• and E′ = E ∪{e}, where e ∈ PE ((O, β))
is a possible extension of the branching process (O, β).

Then the event e is a cut-o� in (O′, β′), e ∈ cutoffs ((O′, β′)), if and only if
there exists an event e′ ∈ E such that β (Cut ([e])) = β (Cut ([e′])).

Notice that the de�nition of a cut-o� event depends heavily on the possible
extension chosen. More precisely, which events are marked cut-o� depends on
the order in which the unfolding procedure adds events into the constructed
branching process. The in�uence of the order in which potential extensions
are chosen is signi�cant enough to separate between complete and incomplete
�nite pre�xes while using the same cut-o� criterion.

32
CHAPTER 3. PARTIAL ORDER SEMANTICS OF TRANSITION

SYSTEM PRODUCTS

Esparza et al. [31] identify a class of adequate orders on con�gurations of
the branching process and prove that including events in an order that aligns
with an adequate order on the local con�gurations guarantees the produced
�nite pre�x to be complete. A concrete example of an adequate order based
on counting transitions of the con�guration (as projected via β) in a manner
similar to Parikh vectors is also provided in [31].

De�nition 3.15 (Adequate Order). Let (O, β) be the unfolding of a Petri
net (P, T,W,M).

A (partial) order ≺ on the con�gurations of the unfolding (O, β) is an
adequate order if it satis�es the following requirements:

1. ≺ is well founded.

2. Given two con�gurations C0, C1, C0 ⊂ C1 =⇒ C0 ≺ C1.

3. Given two con�gurations C0, C1 with β (Cut (C0)) = β (Cut (C1)) and
C0 ≺ C1, for any extension C ′ ⊆ E\C0 of the con�guration C0, C0∪C ′ ≺
C1∪I (C ′) where I is the isomorphism of the extensions of C0 and C1 (un-
foldings of (P, T,W, β (Cut (C0))), respectively, (P, T,W, β (Cut (C1)))).

Esparza et al. [31] further prove that if the used adequate order is also a
total order, the number of non cut-o� events in the constructed complete �nite
pre�x is bounded by the number of reachable states of the original Petri net.
This result is underlined by an example of a total adequate order, which being
an extension of the partial adequate order example again counts transitions,
however, does so per the causal layers of the con�guration, utilising the Foata
normal form.

The complete �nite pre�x is thus guaranteed to not be (asymptotically)
larger than the reachable state space graph. Moreover, by keeping track of the
concurrency in the system, unfoldings and their complete �nite pre�xes bene�t
from partial order reduction. The complete �nite pre�x of a highly concurrent
Petri net is therefore a very compact way to represent the reachable state
space.

Part II

Theoretical Contributions

33

Chapter 4

Parametric Regulatory Networks

In this chapter we introduce parametric regulatory networks, a parametric
version of discrete regulatory networks where the exact regulation function is
unknown � represented by parameters.

Parametric regulatory networks are motivated by the lack of precise in-
formation on the complex regulations of genes and other molecular interaction
in biological systems. Parametric regulatory networks aim at extracting the
available regulation information while making no assumption on the unknown
interactions. This is achieved by the use of parameters to represent the target
values of the individual regulation functions, where unknown.

Standing for a target value of an individual regulation function, a parameter
Kv,xxx ∈ Xv represents the value variable v takes in state xxx (fv (xxx)). Having
a parameter for each variable and each state thus allows us to completely
parametrise the regulation function, yielding a parametric regulatory network.

The parameters, as illustrated above, depend on the states of the network.
It is thus easy to see that the total number of parameters is exponential in the
number of variables, possibly limiting the tractability of parametric regulatory
network analysis. However, each state and variable combination has to be used
only if no prior knowledge is considered. Not only would such construction yield
an impractical network, as mentioned in Section 2.2, the knowledge of one-on-
one interactions between biological species is far more widespread than the
information on the complex regulation. It is therefore reasonable to consider
an in�uence graph to be part of the input.

Having an in�uence graph allows us to restrict the parameters to the regu-
lator states of individual variables without loss of information, much like we il-
lustrated for regulation functions of discrete regulatory networks in Section 2.2.
We therefore consider parameters of the form Kv,ωωω ∈ Xv to represent the tar-
get value of variable v in the regulator state ωωω ∈ Ωv. Note that using regulator
states does not improve on the number of parameters asymptotically, as the
number of regulator states is still exponential in the number of variables in
the general case. The size of the exponent, however, depends on the number
of regulators of individual variables rather than the total number of variables.

35

36 CHAPTER 4. PARAMETRIC REGULATORY NETWORKS

In practice, this allows sparse in�uence graphs to exponentially decrease the
number of regulator states, and by extension parameters, compared to the
theoretical maximum.

Similarly to a discrete regulatory network, which can be de�ned by a single
function, parametric regulatory network is fully captured by the parameters
that build up said function. Unlike for discrete regulatory networks, how-
ever, where the variable domains are inherently captured within the domain of
the function, we have to explicitly specify the variable domains, or parameter
ranges, for parametric regulatory networks. Instead of listing all the paramet-
ers in the de�nition, we can simply utilise the in�uence graph, which by itself
fully characterises all the regulator states and thus the parameters.

De�nition 4.1 (Parametric Regulatory Network). A parametric regulat-
ory network Gd of dimension n is a directed graph G = (V, I) such that n = |V |
coupled with a function d : v 7→ Xv mapping each variable (vertex) v ∈ V to
the corresponding domain Xv.

De�nition 4.1 captures the most generic parametric regulatory network,
corresponding to the most generic discrete regulatory network in De�nition 2.1.
All the restrictions we discussed for discrete regulatory networks in Section 2.3,
whether being a restriction on the variable domains (Boolean and multivalued
networks) or also on the regulation function (Thomas networks) can be lifted
to the parametric regulatory networks.

In here we focus on the multivalued restriction only, as it subsumes the
Boolean networks and is a prerequisite for the Thomas networks. As the vari-
able domains of a multivalued network must come with a total order, they can
always be represented as intervals of natural numbers (with zero), ranging from
zero to a given maximum.

De�nition 4.2 (Parametric Multivalued Network). A multivalued para-
metric regulatory network Gmmm of dimension n is a directed graph G = (V, I)
such that n = |V | coupled with a vector mmm = (mmm1, . . . ,mmmn) ∈ Nn of maximum
values for each variable.

An example of a parametric multivalued network is given in Example 4.1.
One may observe that De�nition 4.2 does not need any further modi�ca-

tions to work for parametric Thomas networks as the restriction to Boolean
regulatory states is pushed to the inference of the regulator states from the
in�uence graph.

In further work, we focus almost entirely on the modelling of gene regulatory
networks. As the values of variables in a model gene regulatory network most
commonly represent the concentration level of a protein or another molecule
within the cell, models of gene regulatory networks are a prime example of
networks whose variables are discrete abstractions of real-valued measurements.
As mentioned in Section 2.3, the multivalued restriction of discrete regulatory
networks, and in turn of parametric regulatory networks is highly suitable for
these types of models. We will thus limit ourselves to parametric multivalued

4.1. PARAMETRISATIONS 37

networks when referring to parametric regulatory networks in further text,
unless explicitly states otherwise.

4.1 Parametrisations

Semantics of parametric regulatory networks are closely tied to the semantics
of discrete regulatory networks. To be able to give a formal de�nition of para-
metric regulatory network semantics, we �rst have to formalise the connection
between parametric and discrete networks. Intuitively, by replacing the target
values of the regulation function by parameters, parametric regulatory net-
works obtain freedom to choose between multiple di�erent regulation functions
to use. As such, a parametric regulatory network can be understood as a set of
discrete regulatory networks sharing common topological properties (in�uence
graph and variable domains). To capture this relationship formally, we employ
the concept of a parametrisation.

A parametrisation is essentially a function assigning each parameter a con-
crete value from the associated variable domain. For practicality of presenta-
tion, however, we prefer to think of a parametrisation as a vector of the values
of individual parameters. To this end we assume an arbitrary but �xed total
order J≤⊆ Ωv × Ωv on the regulator states of each variable v ∈ V . Such an
order is guaranteed to exist for each variable as there is always only �nitely
many regulator states, lexicographic order is a natural example. We then use
the total order J≤ on regulator states in combination with the natural total
order E on variables, �rst utilised in Section 2.2 to represent regulator states
as vectors, to obtain a total order on parameters � of a parametric regulatory
network:

Kv,ωωω � Kw,ωωω′
∆⇐⇒ (v / w) ∨ ((v = w) ∧ (ωωω J≤ ωωω′))

Using � as a �xed order on parameters, de�nition of a parametrisations as
vectors becomes straightforward.

De�nition 4.3 (Parametrisation). Let Gmmm be a parametric regulatory net-
work.

Then, a parametrisation of Gmmm is a vector PPP of length |Ω (G)| and of the
following form:

PPP ∈
�
Π

(ωωω,v)∈Ω(G)
{0, . . . ,mmmv}

We further use P (Gmmm) =
�
Π

(ωωω,v)∈Ω(G)
{0, . . . ,mmmv} to denote the set of all

parametrisations of the parametric regulatory network Gmmm.
Finally, to ease notation, we write simply PPP v,ωωω instead of PPPKv,ωωω to denote

the value of parameter Kv,ωωω in parametrisation PPP .

The parameters stand for the values of the regulation function at individual
inputs. Thus, by specifying a concrete value for each parameter, a paramet-
risation e�ectively describes a full regulation function of a discrete regulatory

38 CHAPTER 4. PARAMETRIC REGULATORY NETWORKS

network. A parametric regulatory network overlaid by a parametrisation thus
de�nes a single discrete regulatory network, or parametrised network.

De�nition 4.4 (Parametrised Network). Let Gmmm be a parametric regu-
latory network of dimension n and let PPP ∈ P (Gmmm) be a parametrisation of
Gmmm.

Then, the multivalued network FPPP = (f1, . . . , fn) with

fv : Ωv → {1, . . . ,mmmv}
fv : ωωω 7→ PPP v,ωωω

for variable each v ∈ {1, . . . , n}, is the parametric regulatory network Gmmm
parametrised by PPP .

We can now expand on the previous intuition of parametric regulatory
networks being sets of discrete regulatory networks. Although a simple union
is unsatisfactory, as is elaborated in Section 4.2 where the formal de�nition of
parametric regulatory network semantics is given, the semantics of parametric
regulatory networks may be understood as an aggregation over the semantics
of all the parametrised networks FPPP of all the parametrisations PPP ∈ P (Gmmm).

Example 4.1. Let G = G(FA) be the minimal in�uence graph of the multi-
valued network FA from Example 2.1 and let mmm = (2, 1, 1). Gmmm is then the
parametric regulatory network with the same in�uence graph and variable do-
mains as the multivalued network FA.

The parametrisations of Gmmm assign a value to each regulator state in Ω (Gmmm).
This gives us three parameters for the variable a, two parameters for the vari-
able b and six parameters for the variable c. All the parameters, their domains
inherited from the respective variable and an example parametrisation PPP are
given in Table 4.1

The total number of parametrisations of the parametric network Gmmm is
33×22×26 = 6912 = |P (Gmmm)|. One should note that the in�uence graph G is re-
latively sparse (variables a and b only have one regulator, |R(a)| = |R(b)| = 1),
a trait common for in�uence graphs of gene regulatory networks. The number
of parametrisations is thus not particularly high among other graphs of similar
size and with the same variable domains. As biological examples naturally tend
to have higher numbers of variables, the enumeration of all parametrisations is
not viable for most computations.

Parametrising Gmmm by PPP gives us the discrete regulatory network, in our
case multivalued network, FPPP de�ned as,

FPPP (xxx) =
(
PPP a,ωa(xxx),PPP b,ωb(xxx),PPP c,ωc(xxx)

)
=

(
(xxxa + 1) mod 3, 1− xxxb,

⌊
xxxa + xxxb

2

⌋)
= FA

coinciding with the de�nition of the multivalued network FA from Example 2.1.

4.2. CONCRETE SEMANTICS OF PARAMETRIC REGULATORY

NETWORKS 39

PPP
Ka,(a=0)

∈ Xa

1
Ka,(a=1) 2
Ka,(a=2) 0
Kb,(b=0) ∈ Xb

1
Kb,(b=1) 0
Kc,(a=0,b=0)

∈ Xc

0
Kc,(a=0,b=1) 0
Kc,(a=1,b=0) 0
Kc,(a=1,b=1) 1
Kc,(a=2,b=0) 1
Kc,(a=2,b=1) 1

Table 4.1: Table of all parameters of the parametric multivalued network Gmmm
with their respective domains. An example assignment of parameter values, a
parametrisation PPP is given in the last column.

Before proceeding with the de�nition of parametric regulatory network se-
mantics, we introduce a partial order on the parametrisations of a parametric
regulatory network. The parametrisation order is given as a piecewise order
on vectors of length |Ω|.

De�nition 4.5 (Parametrisation Order). Let Gmmm be a parametric regulat-
ory network.

Then the parametrisation order on the parametrisations of Gmmm is the partial
order ≤Gmmm de�ned as

PPP ≤Gmmm PPP
′ ∆⇐⇒ ∀ (v,ωωω) ∈ Ω, PPP v,ωωω ≤ PPP ′v,ωωω

for all PPP ,PPP ′ ∈ P (Gmmm).

The parametrisation order allows us to showcase some nice structural prop-
erties of the parametric regulatory network semantics and forms the basis for
the abstract regulatory network semantics introduced in Section 4.3.

4.2 Concrete Semantics of Parametric Regulatory

Networks

We have already given the intuition of the parametric regulatory network se-
mantics being akin to union over the semantics of all possible parametrised
networks. A simple union, however, allows the parametric regulatory network
to behave according to a di�erent parametrised network after each transition.
This would, in particular, allow the same state visited more than once to be
followed by a transition from di�erent parametrised network semantics each
time. To eliminate such inconsistent behaviour, instead of taking the union

40 CHAPTER 4. PARAMETRIC REGULATORY NETWORKS

over all the semantics, we consider the union over all the behaviours (traces)
of the parametrised networks. In other words, given a trace of the parametric
regulatory network, there should exists at least one parametrisation PPP , such
that the parametrised network FPPP can reproduce the trace.

In this section we examine the semantics of parametric regulatory networks
in detail and give a formal de�nition satisfying the outlined consistency con-
dition. To this end, for each transition in the union of parametrised network
semantics, we identify parametrisations which enable said transition. Intuit-
ively, a transition is enabled (allowed) by a parametrisation if it belongs to the
semantics of the corresponding parametrised network.

De�nition 4.6 (Parametrisation Set Enabling a Transition). Let Gmmm
be a parametric regulatory network and let

FPPP−→ be a multivalued network
semantics of an arbitrary but �xed type for all PPP ∈ P (Gmmm).

Then, for any transition t = (xxx,yyy) ∈
⋃
PPP∈P(Gmmm)

FPPP−→, the parametrisation
set p (t) enabling t is de�ned as follows:

p (t)
∆
=
{
PPP ∈ P (Gmmm)

∣∣∣ t ∈ FPPP−→
}

The de�nition of p (t) can be naturally extended to sets of transitions T as
the intersection of p (t) for each transition t ∈ T .

De�nition 4.7 (Parametrisation Set Enabling a Transition Set). Let

Gmmm be a parametric regulatory network and let
FPPP−→ be a multivalued network

semantics of an arbitrary but �xed type for all PPP ∈ P (Gmmm).

Then for any set of transitions T ⊆
⋃
PPP∈P(Gmmm)

FPPP−→, the parametrisation set
enabling T is de�ned as follows:

p (∅) ∆
= P (Gmmm),

p (T)
∆
=
⋂
t∈T p (t) if T 6= ∅.

By de�nition, all transitions in a set T belong to the semantics of the para-
metrised network FPPP (T ⊆ FPPP−→) if and only if PPP ∈ p (T). Thus, taking T = π̃
to be the set of transitions of a trace π over the union of parametrised network
semantics, p (π̃) becomes the set of all parametrisations PPP such that π is a trace
of the parametrised network FPPP . Putting the consistency condition on para-
metric regulatory networks semantics outlined in the beginning of the section
to formal terms, a trace π over the union of parametrised network semantics is
a trace of the parametric regulatory network (is realisable) if p (π̃) 6= ∅.

By only considering realisable traces, we prevent the network from behav-
ing di�erently in the same state over the course of a single trace. However,
separate traces are still allowed to display di�erent behaviours in the same
state. Parametric regulatory network semantics thus cannot be de�ned on the
states alone. To this end, we annotate the states with an information on past
choices to disqualify inconsistent behaviour. As the required information is

4.2. CONCRETE SEMANTICS OF PARAMETRIC REGULATORY

NETWORKS 41

independent of the order of past transitions, the set of transition taken, or its
parametrisation set directly, is su�cient.

De�nition 4.8 (Concrete Semantics of Parametric Regulatory Net-
works). Let Gmmm be a parametric regulatory network of dimension n and let
FPPP−→ ⊆ X × X be a multivalued network semantics of an arbitrary but �xed
type on state space X for all PPP ∈ P (Gmmm).

Then the parametric regulatory network semantics ofGmmm is a relation Gmmm−→ ⊆(
X × 2P(Gmmm)

)
×
(
X × 2P(Gmmm)

)
de�ned as follows:

(x,P)× (y,P ∩ p ((x, y))) ∈ Gmmm−→ ∆⇐⇒
P ∩ p ((x, y)) 6= ∅ ⇐⇒

∃PPP ∈ P, xxx FPPP−→ yyy

While all subsets of parametrisations are considered for the de�nition, not
all necessarily have to appear in the resulting transitions. We write P

(
Gmmm−→
)

to denote the set of all parametrisation sets of Gmmm enabling some transition set
possible under the semantics Gmmm−→, formally:

P
(
Gmmm−→
)

∆
=

 p (T)

∣∣∣∣∣∣ T ⊆
⋃

PPP∈P(Gmmm)

FPPP−→


The parametric regulatory network semantics as given in De�nition 4.8 can

be constructed for arbitrary choice of multivalued network semantics. The
generality is certainly welcome in making the parametric regulatory networks
more versatile. Due to the unknown nature of the multivalued network se-
mantics used, however, no information can be obtained on the properties of
the parametrisation sets enabling the individual transitions. With no struc-
tural information, one is forced to represent the parametrisation sets explicitly,
despite the number of parametrisations being asymptotically double exponen-
tial in the number of variables.

To be able to exploit structural information of the parametrisation sets
enabling transitions, we limit ourselves to the most widely used semantics of
multivalued networks, the generalised asynchronous semantics and its subsets,
such as the synchronous and asynchronous semantics. As we are working purely
with multivalued networks, we consider the generalised asynchronous semantics
as adjusted for multivalued networks in De�nition 2.9, taking advantage of the
value changes by steps of size 1.

Generalised asynchronous semantics subsumes all the types of semantics we
consider, however, the very versatility of generalised asynchronous semantics
may obscure some kinetic information. E.g. xxx

F−→ xxx [v 7→ xxxv + 1] may refer
to a variety of transitions. It may refer to a fully asynchronous transition
updating the value of v only. However, it may as well refer to a transition that
synchronously updates values of v and another variable, or several variables, u

42 CHAPTER 4. PARAMETRIC REGULATORY NETWORKS

such that Fu (xxx) = xxxu. We therefore introduce S :
Gmmm−→
gen
→ 2{1,...,n} to annotate

each transition t ∈ Gmmm−→
gen

with a set of all variables updated synchronously, even

if their value is not allowed to change.
Consider now the inconsistent behaviour, where a variable v �rst increases

and then decreases value in a repeatedly visited state xxx. With the generalised
asynchronous semantics and its subsets, we can characterise this inconsistency
directly on the level of parametrisations rather than transitions. When the
value increases, a regulation function with increasing value in state xxx is required
fv (xxx) > xxxv, or in terms of parametrised networks, PPP v,ωv(xxx) > xxxv. On the other
hand, the decrease uses fv (xxx) < xxxv, or PPP v,ωv(xxx) < xxxv. Any such inconsistency
can thus be characterised by a con�ict on a single parameter value. Similar
distinction can be made for inconsistencies when a variable v once changes
value and once remains constant under the same transition t with v ∈ S (t).

A value changing (or in synchronous updates staying the same) during
each transition can thus be interpreted as making a decision on the value of
a particular parameter. Working only with parametrisations which comply
with the previously made choices thus guarantees a consistent behaviour. We
identify such compatible sets of parametrisations similarly to De�nition 4.6 for
transitions.

De�nition 4.9 (Parametrisation Set Directing Variable Evolution).

Let Gmmm be a parametric regulatory network and let
FPPP−→ ⊆ FPPP−→

gen
be semantics

with synchronicity relation S for all PPP ∈ P (Gmmm).
Then, for any parameter Kv,ωωω and any value i ∈ {1, . . . ,mmmv}, the paramet-

risation sets p (Kv,ωωω ≥ i) and p (Kv,ωωω ≤ i) of all parametrisations that prevent
v from decreasing, respectively increasing, value in ωωω are de�ned as follows:

p (Kv,ωωω ≥ i)
∆
= {PPP ∈ P (Gmmm) | PPP v,ωωω ≥ i }

p (Kv,ωωω ≤ i)
∆
= {PPP ∈ P (Gmmm) | PPP v,ωωω ≤ i }

Although the inconsistent behaviour is fully preventable by following the
decisions made on single parameter values, the decisions themselves are tied
to transitions. Therefore, by grouping the parametrisation sets sharing para-
meter value, representing the choices of a individual parameter values, by the
respective transition, we obtain a re�nement of De�nition 4.6:

De�nition 4.10 (Parametrisation Set Enabling a Transition under
Generalised Asynchronous or Derived Semantics). Let Gmmm be a para-

metric regulatory network and let
FPPP−→ ⊆ FPPP−→

gen
be a multivalued network se-

mantics of an arbitrary but �xed type for all PPP ∈ P (Gmmm).

Then, for any transition t = (xxx,yyy) ∈
⋃
PPP∈P(Gmmm)

FPPP−→, the parametrisation

4.3. ABSTRACT SEMANTICS OF PARAMETRIC REGULATORY

NETWORKS 43

set p (t) enabling t is de�ned as follows:

p ((xxx,yyy))
∆
=
{
PPP ∈ P (Gmmm)

∣∣∣ (xxx,yyy) ∈ FPPP−→
}

=
⋂

P∈K((xxx,yyy))

P

where K ((xxx,yyy)) is the set of all the parametrisation sets restricting individual
parameters:

K ((xxx,yyy))
∆
=
{
p
(
Kv,ωv(xxx) ≥ yyyv

) ∣∣ v ∈ D (xxx,yyy) ∧ yyyv = xxxv + 1
}
∪{

p
(
Kv,ωv(xxx) ≤ yyyv

) ∣∣ v ∈ D (xxx,yyy) ∧ yyyv = xxxv − 1
}
∪{

p
(
Kv,ωv(xxx) ≥ xxxv

)
, p
(
Kv,ωv(xxx) ≤ xxxv

) ∣∣ v ∈ S (t) \D (xxx,yyy)
}

Example 4.2. Take the parametric regulatory network Gmmm from Example 4.1
and a generalised asynchronous transition t = (201, 111) with S (t) = {a, b, c}.

The parametrisation set p (t) enabling the transition t is the set of all para-

metrisations PPP ′ ∈ P (Gmmm) with t ∈ FPPP ′−→.
As t is a transition of the generalised asynchronous semantics, in fact t is

fully synchronous (S (t) = V), we get:

p (t) = p (Ka,2 ≤ 1) ∩ p (Kb,0 ≥ 1) ∩ p (Kc,20 ≤ 1) ∩ p (Kc,20 ≥ 1)

by De�nition 4.10. The parametrisation set p (t) is therefore the set of all
parametrisations PPP ′ ∈ P (Gmmm) with PPP ′a,2 ≤ 1, PPP ′b,0 ≥ 1 and PPP ′c,20 = 1.
|p (t)| = 1152 is still too many parametrisations to list. To give an example,

the parametrisation PPP = (Ka,0 = 1,Ka,1 = 2,Ka,2 = 0,Kb,0 = 1,Kb,1 =
0,Kc,00 = 0,Kc,01 = 0,Kc,10 = 0,Kc,11 = 1,Kc,20 = 1,Kc,21 = 1) from Ex-
ample 4.1 belongs to p (t), PPP ∈ p (t). This is also documented by the transition
t = (201, 111) appearing in the state space graph of FA = FPPP with the syn-
chronous semantics in Figure 2.2.

By limiting ourselves to generalised asynchronous semantics and its subsets,
we have obtained important link between transitions and the properties of the
sets of parametrisations that enable them. This connection is heavily exploited
in the following Section 4.3.

4.3 Abstract Semantics of Parametric Regulatory

Networks

The parametric regulatory network semantics as per De�nition 4.8 rely on
annotating the states with parametrisation sets. As the number of paramet-
risations is exponential in the number of regulation states and thus in general
double exponential in the number of variables, explicit representation of the
parametrisation sets is practically infeasible. To combat the computational lim-
itation, we introduce an abstract version of the parametric regulatory network
semantics which allows us to represent the parametrisation sets without expli-
cit enumeration of the parametrisations. To this end we rely on the structural

44 CHAPTER 4. PARAMETRIC REGULATORY NETWORKS

connection between transitions and parametrisations that enable them, high-
lighted in De�nition 4.10, maintaining the restriction to semantics Gmmm−→ ⊆ Gmmm−→

gen
.

To illustrate how the connection between transitions and parametrisations
can be utilised to avoid explicit enumeration of parametrisations, consider
the parametrisation set P (Gmmm) as a lattice (P (Gmmm) ,≤Gmmm) with the paramet-
risation order from De�nition 4.5. We �rst remark that there exists unique
≤Gmmm -maximal parametrisation 111Gmmm =

∥∥n
i=1
{mmmi}|Ωi| ∈ P (Gmmm), as well as a

≤Gmmm-minimal parametrisation 000Gmmm = {0}|Ω| ∈ P (Gmmm). As such, the lattice
(P (Gmmm) ,≤Gmmm) is bounded.

Consider now a parametrisation PPP de�ned as follows for each (u,ωωω′) ∈ Ω:

PPPu,ωωω′ =

{
i if (u,ωωω′) = (v,ωωω)
mmmu otherwise

}
for arbitrary (v,ωωω) ∈ Ω and i ∈ {0, . . . ,mmmv}. For any such parametrisation,
we can construct the principal ideal P =

{
PPP ′ ∈ P (Gmmm)

∣∣ PPP ′ ≤Gmmm PPP } of the
lattice (P (Gmmm) ,≤Gmmm) with PPP as the principal element. Since all parameters
except Kv,ωωω are at their maximum values in PPP , any parametrisation PPP ′ ∈
P (Gmmm) with PPP ′v,ωωω ≤ i is necessarily smaller or equal to PPP according to the
parametrisation order, PPP ′ ≤Gmmm PPP , as it assigns smaller or equal value to each
variable. We can therefore describe the principal ideal of PPP simply as P ={
PPP ′ ∈ P (Gmmm)

∣∣ PPP ′v,ωωω ≤ i} = p (Kv,ωωω ≤ i), which is equivalent to the de�nition
of the parametrisation set preventing variable value increase.

Symmetrically, consider the parametrisation PPP to be of the following form
for each (u,ωωω′) ∈ Ω:

PPPu,ωωω′ =

{
i if (u,ωωω′) = (v,ωωω)
0 otherwise

}
for arbitrary (v,ωωω) ∈ Ω and i ∈ {0, . . . ,mmmv}. Then, the principal �lter
(the dual of a principal ideal) with PPP as the principal element is the set
P =

{
PPP ′ ∈ P (Gmmm)

∣∣ PPP ′ ≥ PPP } =
{
PPP ′ ∈ P (Gmmm)

∣∣ PPP ′v,ωωω ≥ i} = p (Kv,ωωω ≥ i),
which is equivalent to the parametrisation set preventing variable value de-
crease by symmetrical reasoning.

We know that any ideal or �lter of a lattice is a convex sublattice. Addition-
ally, a principal ideal or a principal �lter of a bounded lattice is also bounded
with the principal element as the maximum, respectively minimum. Any para-
metrisation set directing variable evolution is thus a bounded convex sublattice
of the lattice (P (Gmmm) ,≤Gmmm) of all parametrisations. A bounded convex sub-
lattice is uniquely identi�ed by its minimum and maximum elements. The set
of parametrisations ∅ 6= P ∈ P

(
Gmmm−→
)
can thus be solely represented by the

minimum and maximum elements, 000,111 ∈ P, respectively. We refer to bounded
convex sublattices of the lattice of all parametrisations represented by their
minimum and maximum as parametrisation lattices.

4.3. ABSTRACT SEMANTICS OF PARAMETRIC REGULATORY

NETWORKS 45

De�nition 4.11 (Parametrisation Lattice). Let Gmmm be a parametric reg-
ulatory network and let (P (Gmmm) ,≤Gmmm) be the lattice of all parametrisations
of Gmmm with the parametrisation order.

Then, a parametrisation lattice generated by 000,111 ∈ P (Gmmm) is the lattice
[000,111] = (P,≤Gmmm) where P = {PPP ∈ P (Gmmm) | 000≤Gmmm PPP ≤Gmmm 111 }.

We write P] (Gmmm) = { [000,111] | 000,111 ∈ P (Gmmm) } to denote the set of all para-
metrisation lattices of the parametric regulatory network Gmmm.

By abuse of notation we write PPP ∈ [000,111] for any PPP ∈ P where (P,≤Gmmm) =
[000,111].

Observe that De�nition 4.11 imposes no restriction on the minimum and
maximum parametrisations 000,111. Instead, any [000,111] with 000>Gmmm 111 is interpreted
as the empty lattice ∅ = (∅,≤Gmmm) which is also a parametrisation lattice. In
fact, ∅ is the only parametrisation lattice which is not bounded and convex.
On the other hand, all bounded and convex sublattices of the lattice of all
parametrisations (P (Gmmm) ,≤Gmmm) are expressible as parametrisation lattices us-
ing their bounds. This corresponds to every bounded convex sublattice [000,111]
being uniquely given as an intersection of a principal ideal, whose principal
element is the maximum 111, with a principal �lter, whose principal element is
the minimum 000.

The parametrised lattices, being essentially bounded convex sublattices
of (P (Gmmm) ,≤Gmmm) allow us to represent more than just parametrisation sets
directing variable evolution. In particular, parametrisation sets enabling a
transition are built from parametrisation sets directing variable evolution us-
ing only intersections. Similarly parametrisation sets enabling transition sets
are built from parametrisation sets enabling transition using only intersections.
As a non-empty intersection of bounded convex sublattices is a bounded con-
vex sublattice, any non-empty parametrisation set enabling a transition set,
∅ 6= P ∈ P

(
Gmmm−→
)
, coupled with the parametrisation order is a bounded convex

sublattice of the lattice (P (Gmmm) ,≤Gmmm) of all parametrisations. Any paramet-
risation set enabling a transition set thus forms a parametrisation lattice when
coupled with the parametrisation order.

Hence, the parametrisation order allows us to easily capture parametrisation
sets of interest by parametrisation lattices, represented by only two elements.
We utilise parametrisation lattices to de�ne an abstraction of parametrisation
sets. In formal terms, the abstraction can be captured using a Galois connec-
tion [22].

De�nition 4.12 (Parametrisation Set Abstraction). Let Gmmm be a para-
metric regulatory network.

The parametrisation set abstraction of Gmmm is de�ned by the following Galois
connection

α

γ
:

α : 2P(Gmmm) → P] (Gmmm) γ : P] (Gmmm)→ 2P(Gmmm)

α : ∅ 7→ ∅ γ : (P,≤Gmmm) 7→ P
α : P 7→ [

∧
P ,
∨
P] for P 6= ∅

46 CHAPTER 4. PARAMETRIC REGULATORY NETWORKS

Ka,0 Ka,1 Ka,2 Kb,0 Kb,1

000 =
∧
p(t) 0 0 0 1 0

111 =
∨
p(t) 2 2 1 1 1

Kc,00 Kc,01 Kc,10 Kc,11 Kc,20 Kc,21

000 =
∧
p(t) 0 0 0 0 1 0

111 =
∨
p(t) 1 1 1 1 1 1

Table 4.2: The in�mum and supremum parametrisations of the parametrisation
set p (t).

where ∧ and ∨ are the standard lattice operators of meet and join, in the lattice
of all parametrisations (P (Gmmm) ,≤Gmmm).

Example 4.3. Let p (t) be the parametrisation set enabling the transition t =
(201, 111) with S (t) = {a, b, c} from Example 4.2.

The abstraction α (p (t)) =
[∧

p(t),
∨
p(t)

]
is characterised by the in�mum

and supremum of p (t). From Example 4.2, p (t) = p (Ka,2 ≤ 1)∩p (Kb,0 ≥ 1)∩
p (Kc,20 ≥ 1).1 The in�mum 000 =

∧
p(t) and supremum 111 =

∨
p(t) are given by

the bounds on the parameters de�ning the parametrisation sets in K (t). We
list the parametrsations 000 and 111 in Table 4.2.

The backwards concretisation γ ([000,111]) is simply the parametrisation lattice
[000,111] stripped of the lattice structure (order). As such, PPP ′ ∈ γ ([000,111]) ⇐⇒
∀ (v,ωωω) ∈ Ω, 000v,ωωω ≤ PPP ′v,ωωω ≤ 111v,ωωω. By foregoing all 0 valued parameters in 000 and

maximum valued parameters in 111, we get PPP ′ ∈ γ ([000,111])⇐⇒ PPP ′a,2 ≤ 1 ∧PPP ′b,0 ≥
1 ∧ PPP ′c,20 ≥ 1, which is exactly when PPP ′ ∈ p (t). Thus γ (α (p (t))) = p (t), the
abstraction α (p (t)) is exact.

We use the parametrisation set abstraction to de�ne the abstract semantics
of parametric regulatory networks. Instead of annotating the states of the
network by explicit parametrisation sets, abstract semantics utilise paramet-
risation lattices, which are fully speci�ed by only two parametrisations. The
state annotations thus end up being of linear rather than exponential size in
the number of parameters.

De�nition 4.13 (Abstract Semantics of Parametric Regulatory Net-
works). Let Gmmm be a parametric regulatory network of dimension n and let
FPPP−→ ⊆ FPPP−→

gen
be a multivalued network semantics of �xed type for all PPP ∈ P (Gmmm).

Then the abstract parametric regulatory network semantics of Gmmm is a

1We drop p (Kc,20 ≤ 1) from the intersection as 1 =mmmc giving us p (Kc,20 ≤ 1) = P (Gmmm).

4.3. ABSTRACT SEMANTICS OF PARAMETRIC REGULATORY

NETWORKS 47

relation Gmmm−→
abs
⊆
(
Xmmm × P] (Gmmm)

)
×
(
Xmmm × P] (Gmmm)

)
de�ned as follows:

(x, [000,111])× (y, [000,111] ∩ α (p ((x, y)))) ∈ Gmmm−→
abs

∆⇐⇒(
∃PPP ∈ P (Gmmm), x

FPPP−→ y
)
∧ ([000,111] ∩ α (p ((x, y))) 6= ∅)

To ease notation, we write p] (t) = α (p (t)) to denote the abstract paramet-

risation set enabling a transition t ∈
⋃
PPP∈P(Gmmm)

FPPP−→ and p] (T) = α (p (T)) to
denote the abstract parametrisation set enabling a transition set
T ⊆

⋃
PPP∈P(Gmmm)

FPPP−→.

The Galois connection in De�nition 4.12 captures arbitrary set of paramet-
risations P ⊆ P (Gmmm). In general, such parametrisation set P may not have a
minimum,

∧
P /∈ P or maximum,

∨
P /∈ P (P is not bounded) or it may not

be convex, with respect to the parametrisation order ≤Gmmm . The abstraction
thus constructs the smallest bounded convex cover of P in the form of para-
metrisation lattice [

∧
P ,
∨
P]. Therefore, in the general case, the abstraction is

an over-approximation of the parametrisation set.
As illustrated in the beginning of the section, however, the parametrisation

sets enabling transition sets, P ∈ P
(
Gmmm−→
)
, are exactly the element sets of the

parametrisation lattices. The abstraction restricted to P
(
Gmmm−→
)
is hence exact.

Theorem 4.1 (Parametrisation Set Abstraction is Exact). Let Gmmm be a para-

metric regulatory network with semantics
Gmmm−→ ⊆ Gmmm−→

gen
.

Then, for any P ∈ P
(
Gmmm−→
)
and for any [000,111] ∈ P] (Gmmm):

γ (α (P)) = P α (γ ([000,111])) = [000,111]

Proof. We �rst prove γ (α (P)) = P.
Let us assume P 6= ∅ �rst. By de�nition we have:

γ (α (P)) = γ

([∧
P
,
∨
P

])
=

{
PPP ∈ P (Gmmm)

∣∣∣∣∣ ∧
P
≤GmmmPPP ≤Gmmm

∨
P

}

The direction P ⊆ [
∧
P ,
∨
P] and thus also P ⊆ γ ([

∧
P ,
∨
P]) is trivial.

Since (P,≤Gmmm) is an intersection of bounded convex sublattices of
(P (Gmmm) ,≤Gmmm), it is also a bounded convex sublattice. Therefore, by bounded-
ness, P has a minimal and a maximal parametrisation,

∧
P ,
∨
P ∈ P. Con-

sequently, by convexity, we have ∀PPP ∈ P (Gmmm),
∧
P ≤GmmmPPP ≤Gmmm

∨
P =⇒ PPP ∈ P.

Thus, γ ([
∧
P ,
∨
P]) ⊆ P and γ (α (P)) = P.

The case for empty set follows directly from de�nition:

γ (α (∅)) = γ (∅) = ∅

48 CHAPTER 4. PARAMETRIC REGULATORY NETWORKS

Similarly, α (γ ([000,111])) = [000,111] also follows directly from de�nition:

α (γ ([000,111])) = α ({PPP ∈ P (Gmmm) | 000≤Gmmm PPP ≤Gmmm 111 }) = [000,111]

Thanks to Theorem 4.1 we can guarantee that the abstract parametrisation
sets represent the exactly same parametrisations as their concrete counterpart.
As such, usage of the abstract semantics of parametric regulatory networks
introduces no false positives (over-approximation), nor false negatives (under-
approximation) when compared against the concrete semantics. In fact, the
concrete and abstract semantics of parametric regulatory networks are equival-
ent, provided states are only annotated by the parametrisation sets enabling
transition sets, PPP ∈ P

(
Gmmm−→
)
.

Corollary 4.1.1 (Concrete and Abstract Semantics of Parametric Regulatory
Networks are Equivalent). Let Gmmm be a parametric regulatory network and let
Gmmm−→ ⊆ Gmmm−→

gen
,
Gmmm−→
abs
⊆ Gmmm−→

abs·gen
be the concrete and abstract semantics of Gmmm of

arbitrary but �xed type.

Then, for an arbitrary set of transitions T ∈
⋃
PPP∈P(Gmmm)

FPPP−→ and arbitrary
states xxx,yyy ∈ Xmmm:

(xxx, p (T))
Gmmm−→ (yyy, p (T ∪ {(xxx,yyy)}))⇐⇒

(
xxx, p] (T)

) Gmmm−→
abs

(
yyy, p] (T ∪ {(xxx,yyy)})

)
Theorem 4.1 also gives us stronger grasp on the abstract parametrisa-

tion sets enabling a transition themselves. In particular, we now have PPP ∈
α (p (t)) ⇐⇒ PPP ∈ p (t). This allows us to simplify the De�nition 4.13 of
abstract parametric regulatory network semantics, similarly to the concrete
semantics, De�nition 4.8.

Corollary 4.1.2 (Equivalent De�nition of Abstract Parametric Regulatory

Network Semantics). Let Gmmm be a parametric regulatory network and let
Gmmm−→
abs
⊆

Gmmm−→
abs·gen

be abstract semantics of Gmmm.

Then, for an arbitrary parametrisation lattice [000,111] ∈ P] (Gmmm) and arbitrary
states xxx,yyy ∈ Xmmm:

(xxx, [000,111])
Gmmm−→
abs

(
yyy, [000,111] ∩ p] ((xxx,yyy))

)
⇐⇒ ∃PPP ∈ [000,111], xxx

FPPP−→ yyy

The abstract parametrisation sets as used within the abstract semantics
of parametric regulatory networks, are therefore a perfect equivalent for their
concrete counterparts, while avoiding any explicit enumeration of parametrisa-
tions. The practical applicability of the abstract semantics, however, relies
on computing several operations on the abstract parametrisation sets without

4.3. ABSTRACT SEMANTICS OF PARAMETRIC REGULATORY

NETWORKS 49

resorting to enumeration of parametrisations. The principal operations re-
quired are the computation of p] (T ∪ {t}) form p] (T) and membership check-
ing PPP ∈ [000,111]. While, membership checking is realisable without enumeration
of parametrisations directly by de�nition,

PPP ∈ [000,111]⇐⇒ 000≤Gmmm PPP ≤Gmmm 111⇐⇒ ∀ (v,ωωω) ∈ Ω, 000v,ωωω ≤ PPP v,ωωω ≤ 111v,ωωω

the computation of p] (T ∪ {t}) bene�ts again from Theorem 4.1.

Corollary 4.1.3 (Abstract Parametrisation Set Enabling a Union of Trans-
ition Sets is the Intersection). Let Gmmm be a parametric regulatory network with

semantics
Gmmm−→
abs
⊆ Gmmm−→
abs·gen

.

Then, for arbitrary transition sets T, T ′ ∈
⋃
PPP∈P(Gmmm)

FPPP−→:

p] (T ∪ T ′) = p] (T) ∩ p] (T ′)

Computation of p] (T ∪ {t}) from p] (T) can thus be conducted by the op-
eration of intersection. Intersections of bounded convex sublattices in general
are easy to capture using the meet and join operators. In particular, the min-
imum of the intersection is the join of the minimums and the maximum of
the intersection is the meet of the maximums. By including the empty lattice
∅, the set of parametrisation lattices merely become closed under intersection
as opposed to general bounded convex sublattices. This is captured formally
in Proposition 4.1.

Proposition 4.1 (Intersection of Parametrisation Lattices). Let Gmmm be a para-
metric regulatory network and let [000,111] ,

[
000′,111′

]
∈ P] (Gmmm) be two arbitrary

parametrisation lattices of Gmmm.

Then, [000,111] ∩
[
000′,111′

]
=
[
000 ∨ 000′,111 ∧ 111′

]
.

Proof.

PPP ∈ [000,111] ∩
[
000′,111′

]
⇐⇒

(000≤Gmmm PPP ≤Gmmm 111) ∧
(
000′ ≤Gmmm PPP ≤Gmmm 111′

)
⇐⇒

000 ∨ 000′ ≤Gmmm PPP ≤Gmmm 111 ∧ 111′ ⇐⇒
PPP ∈

[
000 ∨ 000′,111 ∧ 111′

]

To fully capture the computation of p] (T ∪ {t}) from p] (T), we also need
to be able to infer p] (t). Recall, however, that p (t) is already an intersection
of the parametrisation sets in K (t). Thus, by Corollary 4.1.3, p] (t) can be
computed as the intersection of α (P) for each P ∈ K (t). The maximums and

50 CHAPTER 4. PARAMETRIC REGULATORY NETWORKS

minimums of each p (Kv,ωωω ≥ i) and p (Kv,ωωω ≤ i) are obvious from de�nition:

∨
p(Kv,ωωω≥i) = 111Gmmm

∨
p(Kv,ωωω≤i) =

�
Π

(u,ωωω′)∈Ω

{
i if (u,ωωω′) = (v,ωωω)
mmmu otherwise

}
∧
p(Kv,ωωω≥i) =

�
Π

(u,ωωω′)∈Ω

{
i if (u,ωωω′) = (v,ωωω)
0 otherwise

} ∧
p(Kv,ωωω≤i) = 000Gmmm

We formalise the computation of p] (T ∪ {t}) from p] (T) by a narrowing
operator σt

2.

De�nition 4.14 (Narrowing Operator of Abstract Parametrisation
Sets). Let Gmmm be a parametric regulatory network with abstract semantics
Gmmm−→
abs
⊆ Gmmm−→
abs·gen

and let t ∈
⋃
PPP∈P(Gmmm)

FPPP−→ be arbitrary.

Then, the narrowing operator σt for transition t is a function de�ned as:

σt : P
] (Gmmm)→ P] (Gmmm)

σt : p
] (T) = [000,111] 7→


�
Π

(v,ωωω)∈Ω
max(({ i | p (Kv,ωωω ≥ i) ∈ K (t) } ∪ {000v,ωωω})),

�
Π

(v,ωωω)∈Ω
min(({ i | p (Kv,ωωω ≤ i) ∈ K (t) } ∪ {111v,ωωω}))


where T ⊆

⋃
PPP∈P(Gmmm)

FPPP−→ is arbitrary set of transitions.

It is easy to see that the time complexity of the narrowing σt for arbitrary
transition t is linear in the number of parameters, O (Ω).

2We refer to the σt operator as narrowing, for a lack of a better name. However, the σt
operator is not be confused with the usual notion of narrowing in abstract interpretation [22].

Chapter 5

In�uence Constraints as Global

Constraints on Parametrisations

The abstract semantics of parametric regulatory networks introduced in Sec-
tion 4.3 are proven to be exact by Theorem 4.1 and the resulting corollaries.
Theorem 4.1 is, however, only applicable if all considered parametrisation sets
belong to P

(
Gmmm−→
)
. The parametrisations of the form p (T) ∈ P

(
Gmmm−→
)
for some

set of transitions T only allow us to di�erentiate parametrisations solely on
their ability to replicate past transitions. As discussed in Section 2.3, however,
information on the monotonicity of isolated in�uences, De�nitions 2.10, 2.11,
is often available in the literature. In this chapter we formalise the in�uence
monotonicity properties as global constraints on the admissible parametrisa-
tions and relax the claim in Theorem 4.1 to obtain similar results for paramet-
risation sets constrained by the presence of in�uence properties.

We introduced the in�uence monotonicity as properties of multivalued net-
works, De�nitions 2.10, 2.11. In this section, however, we consider the in�uence
monotonicity to be given as an input and use it as monotonicity constraints
on parametrisations [8]. Intuitively, a parametrisation satis�es a monoton-
icity constraint, if the associated parametrised network has the corresponding
monotonicity property. More precisely, a PPP satis�es a positive, respectively
negative, monotonicity constraint on an in�uence (u, v), if an increase in the
value of u cannot cause the decrease, respectively increase, in the value of v,
and vice-versa in the parametrised network FPPP . The monotonicity properties
of this form are expressible as inequalities on parameter values, we therefore
de�ne monotonicity constraints anew, without reliance on the parametrised
networks.

We additionally include a constraint called observability, used to emphasise
necessity of some in�uences. A parametrisation PPP satis�es an observability con-
straint on in�uence (u, v), if there exists a state such that the sole change in the
value of u forces a change in the value of v in the parametrised network FPPP . An
observability constraint therefore requires the associated in�uence to be part
of the minimal in�uence graph. Similarly to the monotonicity constraints, an

51

52
CHAPTER 5. INFLUENCE CONSTRAINTS AS GLOBAL

CONSTRAINTS ON PARAMETRISATIONS

observability constraint is expressible as inequalities on the parameter values,
and can be de�ned on the parametrisations themselves.

De�nition 5.1 (Global Constraints on Parametrisations). Let Gmmm be a
parametric regulatory network with in�uence graph G = (V, I) and let e = I
be arbitrary in�uence.

Then, an in�uence constraint r is tuple r = (e, ?) ∈ I × {+1,−1, o}.
We call a constraint of the form (e,+1) a positive monotonicity constraint

on in�uence e. Similarly, a constraint of the form (e,−1) a negative mono-
tonicity constraint on in�uence e. Finally, a constraint of the form (e, o) is an
observability constraint on in�uence e.

To reduce notation nesting, we write (u, v, ?) = (e, ?) for any in�uence
e = (u, v).

Set of all in�uence constraints of an in�uence graph G = (V, I) is denoted
R (G) ⊆ I×{+1,−1, o}. An in�uence constraint set R (G) is well-formed if for
any in�uence e ∈ I, {(e,+1) , (e,−1)} 6⊆ R (G).

The in�uence constraints can be considered labels on the edges of the in-
�uence graph. We then consider the set of all constraints present for the given
in�uence graph to restrict the parametrisation space. In�uence constraints
are not exclusive, meaning each in�uence can have multiple constraints. This
applies in particular to combinations of monotonicity and observability con-
straints, as having both monotonicity constraints on a single in�uence is, within
our framework, equivalent to having no such in�uence. We thus consider only
well-formed constraint sets further on, to avoid such pathological cases.

5.1 Concrete Constrained Semantics of Parametric

Regulatory Networks

De�nition 5.1 �xes the notation for the in�uence constraints, however, does
not provide the semantics. The semantics of the monotonicity constraints fol-
low the monotonicity properties in De�nitions 2.10, 2.11. Without the use
of parametrised networks, a parametrisation PPP ∈ P (Gmmm) satis�es a positive
monotonicity constraint (u, v,+1), if:

∀ωωω ∈ Ωv, ∀ i ∈ {1, . . . ,mmmu}, PPP v,ωωω[u 7→i] ≥ PPP v,ωωω[u7→i−1]

i.e., the sole increase of the activator u cannot cause a decrease of the regulated
variable v.

Similarly, a parametrisation PPP ∈ P (Gmmm) satis�es a negative monotonicity
constraint (u, v,−1), if:

∀ωωω ∈ Ωv, ∀ i ∈ {1, . . . ,mmmu}, PPP v,ωωω[u 7→i] ≤ PPP v,ωωω[u7→i−1]

i.e., the sole increase of the inhibitor u cannot cause an increase of the regulated
variable v.

5.1. CONCRETE CONSTRAINED SEMANTICS OF PARAMETRIC

REGULATORY NETWORKS 53

Finally, a parametrisation PPP ∈ P (Gmmm) satis�es an observability constraint
(u, v, o), if:

∃ωωω ∈ Ωv, ∃ i ∈ {1, . . . ,mmmu}, PPP v,ωωω[u 7→i] 6= PPP v,ωωω[u7→i−1]

i.e., there exists a state where the sole change of the regulator u triggers a
change of the regulated variable v.

As we are generally interested in all parametrisations that satisfy a partic-
ular constraint, we de�ne sets of parametrisation restricted to in�uence con-
straints.

De�nition 5.2 (Concrete Parametrisation Set Satisfying an In�uence
Constraint). Let Gmmm be a parametric regulatory network and let r ∈ I ×
{+1,−1, o} be an arbitrary in�uence constraint.

Then, the set of parametrisations Pr satisfying the in�uence constraint r is
de�ned as follows:

P(u,v,+1)
∆
=

{
PPP ∈ P (Gmmm)

∣∣∣∣ ∀ωωω ∈ Ωv, ∀ i ∈ {1, . . . ,mmmu} ,
PPP v,ωωω[u 7→i] ≥ PPP v,ωωω[u7→i−1]

}
P(u,v,−1)

∆
=

{
PPP ∈ P (Gmmm)

∣∣∣∣ ∀ωωω ∈ Ωv, ∀ i ∈ {1, . . . ,mmmu} ,
PPP v,ωωω[u 7→i] ≤ PPP v,ωωω[u7→i−1]

}
P(u,v,o)

∆
=

{
PPP ∈ P (Gmmm)

∣∣∣∣ ∃ωωω ∈ Ωv, ∃ i ∈ {1, . . . ,mmmu} ,
PPP v,ωωω[u 7→i] 6= PPP v,ωωω[u7→i−1]

}
The de�nition naturally extends to sets of in�uence constraints by intersec-

tion.

De�nition 5.3 (Concrete Parametrisation Set Satisfying In�uence
Constraints). Let Gmmm be a parametric regulatory network and let R ⊆ I ×
{+1,−1, o} be a well-formed in�uence constraint set.

Then, the set of parametrisations satisfying the in�uence constraints in R
is de�ned as follows:

PR
∆
=
⋂
r∈R
Pr

The parametrisation restrictions imposed by in�uence constraints are no
longer constraints on a single parameter, but rather inequality constraints on
parameter values. The intersection based construction, however, aligns with
the representation of parametrisation sets enabling a transition set. Indeed,
intersections are su�cient to express the combination in the form of paramet-
risation sets enabling a transition set while satisfying a constraint set as well.

De�nition 5.4 (Concrete Parametrisation Set Enabling a Transition
Set and Satisfying In�uence Constraint Set). Let Gmmm be a parametric

regulatory network with semantics Gmmm−→ ⊆ Gmmm−→
gen

and let R ⊆ I × {+1,−1, o} be
a well-formed in�uence constraint set.

54
CHAPTER 5. INFLUENCE CONSTRAINTS AS GLOBAL

CONSTRAINTS ON PARAMETRISATIONS

Then the set of parametrisations pR (T) enabling a transition set T ⊆⋃
PPP∈P(Gmmm)

FPPP−→ and satisfying the constraint set R is de�ned as follows:

pR (T)
∆
= p (T) ∩ PR

The seamless inclusion of in�uence constraints in the parametrisation sets
enabling transition sets facilitates the de�nition of in�uence constraint aware
semantics for parametric regulatory networks. The in�uence constraints are,
moreover, de�ned for in�uence graph and are therefore global for the whole
parametric regulatory network. The same applies to the resulting parametrisa-
tion set satisfying the constraint set. Thanks to this, instead of using para-
metrisation sets as per De�nition 5.4 explicitly, the constrained semantics of
parametric regulatory network can be de�ned to the same e�ect simply by re-
stricting the concrete semantics to subsets of the parametrisation set satisfying
the in�uence constraints.

De�nition 5.5 (Constrained Semantics of Parametric Regulatory Net-

works). Let Gmmm be a parametric regulatory network, let Gmmm−→ ⊆ Gmmm−→
gen

be a type

of parametric regulatory network semantics and let R ⊆ I × {+1,−1, o} be a
well formed in�uence constraints of the in�uence graph G.

Then, the constrained semantics of the parametric regulatory network Gmmm
is the relation Gmmm−→

R
⊆
(
Xmmm × 2PR

)
×
(
Xmmm × 2PR

)
de�ned as:

(x,P ∩ PR)
Gmmm−→
R

(y,P ′ ∩ PR)
∆⇐⇒ (x,P)

Gmmm−→ (y,P ′) ∧ P ′ ∩ PR 6= ∅

As illustrated by De�nition 5.5, in�uence constraints can only limit the
semantics of parametric regulatory networks and therefore cannot introduce
new behaviour.

5.2 Abstract Constrained Semantics of Parametric

Regulatory Networks

Introduction of in�uence constraints can, often signi�cantly, reduce the number
of parametrisations that need to be considered. However, the induced reduc-
tion of parametrisation space is not asymptotic. The parametrisation sets thus
not only remain exponentially large in the general case, the structure of the
parametrisation sets imposed by the in�uence constraints is highly nontrivial.
Considering only the monotonicity constraints, PR(G) can be used to enumerate
all monotonic Boolean functions of a given dimension. Even counting mono-
tonic Boolean functions, however, is known to be a hard problem [66].

To avoid explicit representation of parametrisation sets, we rely once again
on the abstract semantics of parametric regulatory networks (De�nition 4.13).
We implement the in�uence constraints r ∈ R (G) by the means of a narrowing
operator σr on the parametrisation lattices. While the narrowing operator

5.2. ABSTRACT CONSTRAINED SEMANTICS OF PARAMETRIC

REGULATORY NETWORKS 55

produces over-approximation of the concrete parametrisation sets, we show
the over-approximation to be optimal in terms of bounded convex sublattices.

Due to fundamental di�erences in the nature of the monotonicity and ob-
servability constraints (universal versus existential quanti�cation), we treat the
de�nition of σr separately depending on r being monotonicity of observability
constraint. First, let us consider monotonicity constraints.

De�nition 5.6 (Monotonicity Constraint Narrowing of Abstract Para-
metrisation Sets). Let Gmmm be a parametric regulatory network and let r =
(u, v, s) ∈ R (G) where s ∈ {+1,−1} be an arbitrary monotonicity constraint.

Then, the narrowing operator σr is de�ned as:

σr : P] (Gmmm)→ P] (Gmmm)

σr : [000,111] 7→ [f0
∗ (000) , f1

∗ (111)]

where the functions f0, f1 : P (Gmmm)→ P (Gmmm) are de�ned as follows:

f0 : PPP 7→ PPP ∨
∨
ωωω∈Ωv

PPP
[
(v,ωωω) 7→ PPP v,ωωω[u7→ωωωu−s]

]

f1 : PPP 7→ PPP ∧
∧
ωωω∈Ωv

PPP
[
(v,ωωω) 7→ PPP v,ωωω[u 7→ωωωu+s]

]
Since both of the functions f0, f1 are monotonic in ≤Gmmm , the �xed points

f0
∗, f1

∗ are guaranteed to exist for any input. Moreover, the restriction of
parameter values by f0, f1 happens progressively in the direction of the mono-
tonicity constraint on the in�uence (u, v). E.g. assuming (u, v) to be an activ-
ation, s = +1, increasing the lower bound of ωωω of v by f0 leads to increase of
the lower bound also for the ωωω [u 7→ ωωωu + 1] in the subsequent iteration of f0,
if necessary, etc. We formalise this concept by the means of a partial order on
regulator states of individual variables, called monotonicity order.

De�nition 5.7 (Monotonicity Order). Let Gmmm be a parametric regulatory
network, R a well-formed in�uence constraint set and v ∈ V and arbitrary
variable of Gmmm.

Then, the monotonicity order on Ωv is the partial order �v,R ⊆ Ωv × Ωv
de�ned as:

ωωω �v,R ωωω′
∆⇐⇒ ∀ (u, v, s) ∈ R, sign (ωωω′u −ωωωu) ∈ {0, s}

We write ωωω ‖v,R ωωω′ if and only if ωωω and ωωω′ are not comparable according to
�v,R. This is the case notably when ωωωu 6= ωωω′u for some u ∈ R(v) such that the
in�uence (u, v) is not monotonic in R, {(u, v,+1) , (u, v,−1)} ∩R = ∅.

To ease notation, we write simply �v instead of �v,R when the entire in-
�uence constraint set R = R (G) is considered.

56
CHAPTER 5. INFLUENCE CONSTRAINTS AS GLOBAL

CONSTRAINTS ON PARAMETRISATIONS

In terms of the monotonicity order, the narrowing operator simply adjusts
the parameter values in 000 to maximum value of the parameters associated with
�v,{(u,v,+1)}-smaller regulator states and the parameter values in 111 to minimum
value of �v,{(u,v,+1)}-larger regulator states. An analogical operation with the
maximums and minimum reversed is done for negative monotonic in�uence
constraints. More formally, the monotonicity order allows for an alternative
de�nition of the monotonicity in�uence constraint narrowing:

σ(u,v,s)[000,111]
∆
=


J≤
Π

(w,ωωω)∈Ω

{
max

{ωωω′∈Ωv | ωωω′�v,{(u,v,s)}ωωω }
(000v,ωωω′) if w = v

000w,ωωω otherwise

}
,

J≤
Π

(w,ωωω)∈Ω

{
min

{ωωω′∈Ωv | ωωω′�v,{(u,v,s)}ωωω }
(111v,ωωω′) if w = v

111w,ωωω otherwise

}


Note that by iterating over ωωω ∈ Ωv in increasing, respectively decreasing,
direction of �v,{(u,v,s)}, the maximum, respectively minimum, can be computed
on the run, rather than explicitly for each parameter. The computation of the
whole narrowing σr is thus linear in the number of parameters of the variable
v (O (|Ωv|)).

Since the narrowing operator only computes minimums and maximums, it
is easily composable with narrowing operators for other monotonicity in�uence
constraints on the same variable. It is enough to take the smaller of the min-
imums, respectively larger of the maximums, obtained for two di�erent mono-
tonicity constraints and the same parameter. This comparison is moreover
automatically included once monotonicity order over both of the monotonicity
constraints is considered. Indeed, replacing the order �v,{(u,v,s)} in the above
de�nition by �v,R for arbitrary R ⊆ R (G) is enough to compute the narrowing
operator of all monotonicity constraints in R at the same time, while keeping
the linear complexity. Of particular interest is then the narrowing operator σv
using the full monotonicity order �v which allows us the compute the mono-
tonicity narrowing for all monotonicity in�uence constraints on the variable v
at the same time.

Unlike for the monotonicity in�uence constraints, which introduce universal
inequality constraints on the parameter values for individual regulator states,
the observability in�uence constraint is existential, yielding no global inequality
constraints on parameter values. Indeed, to ensure observability, the paramet-
risations which do not satisfy the in�uence constraint have to be removed on
individual basis. Due to the nature of the abstract parametrisation lattices,
namely the convexity, it is impossible to individually treat parametrisations
unless they happen to be the lower or upper bounds, 000 and 111 respectively. As
such, any parametrisations 000<GmmmPPP <Gmmm 111 that do not satisfy the observability
in�uence constraints are ignored, at the cost of over-approximation.

The narrowing operator σ(u,v,o) therefore translates into checking whether
the observability in�uence constraint (u, v, o) is satis�ed under both of the
extreme cases of 000 and 111. By negation of the observability in�uence constraint
condition as given in De�nition 5.2, (u, v, o) is not satis�ed under 000, respectively

5.2. ABSTRACT CONSTRAINED SEMANTICS OF PARAMETRIC

REGULATORY NETWORKS 57

111, if for each ωωω ∈ Ωv and each i ∈ {0, . . . ,mmmu}:

000v,ωωω = 000v,ωωω[u 7→i] respectively: 111v,ωωω = 111v,ωωω[u7→i]

Once the in�uence (u, v) is determined to be unobservable under 000, respect-
ively 111, increasing 000v,ωωω, respectively decreasing 111v,ωωω, for any ωωω ∈ Ωv ensures
the observability of (u, v) under the new parametrisation. In fact, once a value
is changed for one regulator state, all in�uences are guaranteed to be observ-
able under the new parametrisation unless values for each other regulator state
di�ering only in the value of the corresponding regulator are adjusted to match
the new value. This introduces a measure of distance between unobservable
parametrisations, formally captured in Lemma 5.1.

Lemma 5.1 (Unobservable Parametrisation Distance). Let Gmmm be a paramet-
ric regulatory network, r = (u, v, o) ∈ R (G) an arbitrary observability in�uence
constraint and PPP ∈ P (Gmmm) be such that the in�uence (u, v) is not observable
under PPP .

Then, for any ωωω ∈ Ωv, i ∈ {0, . . . ,PPP v,ωωω − 1,PPP v,ωωω + 1, . . . ,mmmv} and all u′ ∈
R(v), the in�uence (u′, v) is observable under PPP ′ = PPP [(v,ωωω) 7→ i].

Proof. Let ωωω ∈ Ωv, i ∈ {0, . . . ,mmmv} be arbitrary such that PPP v,ωωω 6= i.
Let PPP ′ = PPP [v,ωωω 7→ i] denote the modi�ed parametrisation and ω̂ωω denote a

regulator state of variable v di�ering from ωωω in the value of u,

ω̂ωω = ωωω [u 7→ ωωωu + j] where j =

{
1 if ωωωu = 0

−1 otherwise

For the in�uence constraint r we get PPP ′v,ω̂ωω = PPP v,ω̂ωω = PPP v,ωωω 6= PPP ′v,ωωω and thus
PPP ′ ∈ Pr. Now let us assume v has at least two (observable) in�uences and let
r′ = (w, v, o) ∈ R (G) be arbitrary such that w 6= u.

First, we introduce two additional regulator states. The regulator state ωωω′

identical to ωωω up to the value w and the regulator state ω̂ωω′ identical to ω̂ωω up to
the value of w,

ωωω′ = ωωω [w 7→ ωωωw + k]
ω̂ωω′ = ω̂ωω [w 7→ ω̂ωωw + k]

where k =

{
1 if ωωωw = 0

−1 otherwise

We use the four regulator states ωωω, ω̂ωω,ωωω′ and ω̂ωω′ to prove the in�uence (w, v)
is indeed observable under PPP ′. To do this, we need to show either PPP ′v,ωωω 6= PPP ′v,ωωω′

or PPP ′v,ω̂ωω 6= PPP ′v,ω̂ωω′ as both ωωω,ωωω′ and ω̂ωω, ω̂ωω′ di�er only in the value of w. The proof
also relies on the analogous proximity of ωωω, ω̂ωω and ωωω′, ω̂ωω′, which di�er only in
the value of u.

We know PPP ′v,ωωω = i and PPP ′v,ωωω′ = PPP v,ωωω′ . Thus, if i 6= PPP v,ωωω′ , the result is
trivial.

Let us therefore assume PPP v,ωωω′ = i = PPP ′v,ωωω. Since (u, v) is not observable
under PPP , PPP /∈ Pr, we have PPP v,ωωω = PPP v,ω̂ωω and PPP v,ωωω′ = PPP v,ω̂ωω′ . PPP ′ only di�ers from

58
CHAPTER 5. INFLUENCE CONSTRAINTS AS GLOBAL

CONSTRAINTS ON PARAMETRISATIONS

PPP in the value of ωωω. We can thus expand the prior observation to obtain PPP ′v,ωωω 6=
PPP v,ωωω = PPP v,ω̂ωω = PPP ′v,ω̂ωω and PPP ′v,ωωω′ = PPP v,ωωω′ = PPP v,ω̂ωω′ = PPP ′v,ω̂ωω′ . By our assumption,
PPP v,ωωω′ = PPP ′v,ωωω, we obtain the coveted PPP ′v,ω̂ωω′ = PPP v,ωωω′ = PPP ′v,ωωω 6= PPP ′v,ω̂ωω.

While Lemma 5.1 guarantees that a single value change is su�cient to en-
sure observability under 000, respectively 111, for all in�uences of v, the value
change may not be desirable for every ωωω ∈ Ωv. We therefore identify regu-
lator states that are open for value change (or simply open) as regulator states
ωωω ∈ Ωv such that increasing 000v,ωωω, respectively decreasing 111v,ωωω, does not break
any monotonicity constraints in R (G) and does not result in an empty para-
metrisation lattice.

De�nition 5.8 (Open Regulator State For Observability Enforce-
ment). Let Gmmm be a parametric regulatory network of dimension n and let
R (G) be a well-formed set of in�uence constraints. Let further [000,111] ∈ P] (Gmmm)
and v ∈ {1, . . . , n} be arbitrary.

Then a regulator state ωωω ∈ Ωv is open to value increase in [000,111] if 000v,ωωω < 111v,ωωω
and for all ωωω′ ∈ Ωv such that ωωω′ �v ωωω, 000v,ωωω′ > 000v,ωωω.

Similarly, a regulator state ωωω ∈ Ωv is open to value decrease in [000,111] if
000v,ωωω < 111v,ωωω and for all ωωω′ ∈ Ωv such that ωωω′ ≺v ωωω, 111v,ωωω′ < 111v,ωωω.

We write O+
v ([000,111]) = {ωωω ∈ Ωv | 000v,ωωω < 111v,ωωω ∧ ∀ωωω′ �v ωωω, 000v,ωωω′ > 000v,ωωω } to

denote the set of all regulator states of v open to value increase in [000,111]. Ana-
logically, O−v ([000,111]) = {ωωω ∈ Ωv | 000v,ωωω < 111v,ωωω ∧ ∀ωωω′ ≺v ωωω, 111v,ωωω′ < 111v,ωωω } is used
to denote the set of all regulator states of v open to value decrease in [000,111].

The action taken by the narrowing operator depends on the regulator states
open in the parametrisation lattice [000,111]. If no regulator states are open, an
empty state is returned to re�ect that the in�uence u, v is not observable under
any parametrisation in [000,111]. If, on the other hand, more than one regulator
state is open to value increase, respectively value decrease, no values are in-
creased, respectively decreased, to preserve all possibilities at the cost of over-
approximation. The value is only restricted if a unique regulator state is open
to value increase, respectively decrease.

De�nition 5.9 (Observability Constraint Narrowing of Abstract Para-
metrisation Sets). Let Gmmm be a parametric regulatory network and let r =
(u, v, o) ∈ R (G) be an arbitrary observability in�uence constraint.

Then, the narrowing operator σr is de�ned as:

σr : P] (Gmmm)→ P] (Gmmm)

σr : [000,111] 7→

{
∅ if (000 /∈ Pr ∧O+

v ([000,111]) = ∅) ∨ (111 /∈ Pr ∧O−v ([000,111]) = ∅)[
000′,111′

]
otherwise

where

000′ =

{
000 [(v,ωωω) 7→ 000v,ωωω + 1] if 000 /∈ Pr ∧O+

v ([000,111]) = {ωωω}
000 otherwise

5.2. ABSTRACT CONSTRAINED SEMANTICS OF PARAMETRIC

REGULATORY NETWORKS 59

111′ =

{
111 [(v,ωωω) 7→ 111v,ωωω − 1] if 111 /∈ Pr ∧O−v ([000,111]) = {ωωω}
111 otherwise

Determining the observability of the in�uence u, v under 000 and 111 has linear
complexity with respect to the number of parameters of variable v (O (|Ωv|)).
By iterating over regulator states in Ωv in decreasing order of �v, respectively
increasing order of �v, the open regulator state set O+

v ([000,111]), respectively
O−v ([000,111]), can be computed with the same linear complexity. Computing the
narrowing operator σ(u,v,?) thus has complexity in O (|Ωv|) for both monoton-
icity and observability in�uence constraints.

By aggregating the narrowing operators for all the individual in�uence con-
straints we obtain a global narrowing operator σR(G). As observability narrow-
ing respects the monotonicity constraints thanks to the use of the monotonicity
order, the global narrowing is de�nable simply as a function composition.

De�nition 5.10 (In�uence Constraint Set Narrowing). Let Gmmm be a
parametric regulatory network of dimension n and R (G) a well-formed set of
in�uence constraints.

Then the global in�uence constraint narrowing operator σR(G) : P] (Gmmm)→
P] (Gmmm) is de�ned as a function composition:

σR(G) = ©
(u,v,o)∈R(G)

σ{(u,v,o)} ◦ ©
v∈{1,...,n}

σv

The constrained abstract semantics are de�ned using a combination of the
in�uence constraint narrowing and the transition narrowing, De�nition 4.14.

De�nition 5.11 (Constrained Abstract Parametric Regulatory Net-
work Semantics). Let Gmmm be a parametric regulatory network of dimension
n and let R (G) be a well-formed set of in�uence constraints.

Then the constrained abstract parametric regulatory network semantics of
Gmmm is a relation Gmmm−→

R(G)·abs
Gmmm ⊆

(
Xmmm × P] (Gmmm)

)
×
(
Xmmm × P] (Gmmm)

)
de�ned as

follows:

(x, [000,111])×
(
y,
[
000′,111′

])
∈ Gmmm−→
R(G)·abs

Gmmm
∆⇐⇒

∃ t ∈ Gmmm−→
abs

,
t = (x, [000,111])

FPPP−→
abs

(
y,
[
000′′,111′′

]
⊇
[
000′,111′

])
∧[

000′,111′
]

= σR(G) ◦ σt ([000,111])

To ease notation, we use p]R (T) to denote the over-approximation of the
set of all parametrisations enabling all transitions in T while satisfying the
in�uence constraints in R,

p]R (T) = ©
t∈T

(σR ◦ σt) ([P (Gmmm)]) = σR ◦ ©
t∈T

σt ([P (Gmmm)])

60
CHAPTER 5. INFLUENCE CONSTRAINTS AS GLOBAL

CONSTRAINTS ON PARAMETRISATIONS

The constrained abstract semantics of parametric regulatory networks res-
ult in an over-approximation of the parametrisation sets, introducing false pos-
itives into reachable state space. We can show, however, that the false positives
cannot introduce spurious behaviour, i.e. no transition is included unless it is
supported by at least one true positive parametrisation. This is a natural
consequence of the tightness of the abstraction.

Theorem 5.1 (Abstraction Computed by In�uence Constraint Set Narrowing
is Tight). Let Gmmm be a parametric regulatory network and let R = R (G) be a
well-formed set of in�uence constraints.

Then for arbitrary set of transitions T ⊆ Gmmm−→
R·abs

, p]R (T) is the smallest convex

cover of pR (T), p]R (T) = [pR (T)].

Proof. Note that marking an in�uence of a variable v ∈ {1, . . . , n} as either
monotonic or observable does not in�uence other variables u 6= v. We therefore
conduct the proof for single variable only, allowing us to limit our attention to
regulator states ωωω ∈ Ωv while maintaining universal applicability.

We conduct the proof of p]R (T) = [pR (T)] by mathematical induction on
the transition set T . This corresponds to the actual application of the narrow-
ing operators, as transitions are generally explored one at a time.

Base step (T = ∅):
By de�nition, we have p]R (∅) = σR ([P (Gmmm)]). σr for either monotonicity or

observability constraints only restricts the parametrisation lattice in case r is
not satis�ed under 000 or 111. In the beginning, [000,111] = [P (Gmmm)] with 000v,ωωω = 0 and
111v,ωωω = mmmv for every ωωω ∈ Ωv. Thus, any monotonicity constraint on in�uence
of v is necessarily satis�ed under both 000 and 111.

Let us now consider there exists at least one observability constraint r =
(u, v, o) ∈ R on an in�uence of variable v. The in�uence (u, v) is not observable
under 000 and 111 and the parametrisation set may thus get restricted by σr.

The result of σr depends on the sets of regulator states open for observability
enforcement. All regulator states are assigned the value 0 in 000, O+

v ([000,111]) thus
contains exactly the �v-maximal regulator states. Surely, at least one such reg-
ulator state must exist, giving us σr ([000,111]) 6= ∅. Similarly, the O−v ([000,111]) con-
tains exactly the �v-minimal regulator states. By de�nition, σr ([000,111]) = [000,111],
if there are at least two �v-maximal and at least two �v-minimal regulator
states. Since the �v is always isomorphic to its dual, the reverse �v, the
number of �v-minimal and �v-maximal regulator states is always the same.
Moreover, regulator states are only incomparable with each other in the �v, if
they di�er on a value of a non-monotonic regulator. Both The number of �v-
maximal and �v-minimal regulator states is therefore exactly 2 to the power
of the number of non-monotonic in�uences of v. As such, σr ([000,111]) 6= [000,111] if
and only if all the in�uences of v are monotonic.

Assuming thus, there exists a non-monotonic in�uence (w, v) ∈ I, p] (∅) =
[P (Gmmm)] = [000,111]. Having two distinct �v-maximal elements ωωω,ωωω′ ∈ Ωv gives
us two parametrisations PPP = 000 [ωωω 7→ 1] and PPP

′
= 000 [ωωω′ 7→ 1]. Both PPP ,PPP

′ ∈

5.2. ABSTRACT CONSTRAINED SEMANTICS OF PARAMETRIC

REGULATORY NETWORKS 61

pR (∅) as the satisfaction of monotonicity constraints comes from ωωω,ωωω′ be-
ing �v-maximal and the satisfaction of observability constraints is thanks
to Lemma 5.1. The construction for �v-minimal regulator states and 000 is
symmetrical, thus [pR (∅)] = [000,111] = p] (∅).

Let us now consider the situation where the �v-maximal element ωωω ∈ Ωv
is unique. Then, ωωω is also the only regulator state open for value increase
for the purpose of the observability constraint narrowing, O+

v ([000,111]) = {ωωω}.
Symmetrically, the unique �v-minimal element ωωω is also the unique regulator
state open for value decrease, O−v ([000,111]) = {ωωω}. The in�uence constraint
narrowing therefore restricts both the minimal and maximal parametrisations,
σR ([000,111]) = [000 [v,ωωω 7→ 1] ,111 [v,ωωω 7→mmmv − 1]].

For the concrete set, we know 000,111 /∈ pR (∅) due to the observability in-
�uence constraint. Let now PPP ∈ pR (∅) be any parametrisation such that
PPP v,ωωω > 0 for some ωωω ∈ Ωv. We know ωωω �v ωωω thanks to all in�uences be-
ing monotonic giving us PPP v,ωωω ≥ PPP v,ωωω > 0. A symmetrical argument can be
made for ωωω always being smaller than the maximum mmmv. Thus, [pR (∅)] =

[000 [v,ωωω 7→ 1] ,111 [v,ωωω 7→mmmv − 1]] = p]R (∅).
Induction hypothesis: p]R (T) = [pR (T)] for any set of transitions T such

that |T | ≤ k where k ∈ N0.

We now show p]R (T ∪ {t}) = [pR (T ∪ {t})] for arbitrary transition t /∈ T .
We prove the lattice equality as the two lattices being mutual sublattices of
each other. Moreover, as both of the lattices use the same order and elements
from the same superset, the sublattice relation is equivalent to subset relation,
we thus liberally treat the lattices as sets throughout the proof.

First, we show [pR (T ∪ {t})] ⊆ p]R (T ∪ {t}) (soundness of the abstraction).
If pR (T ∪ {t}) = ∅, the resulting convex cover is also empty, [pR (T ∪ {t})] =

∅ ⊆ p]R (T ∪ {t}), which is in turn surely a sublattice of the abstract paramet-
risation set. We now assume pR (T ∪ {t}) 6= ∅.

By De�nition 5.10 and De�nition 5.11, the computation of p]R (T ∪ {t}) =

©
(u,v,o)∈R

σ{(u,v,o)} ◦ ©
v∈{1,...,n}

σv ◦ σt
(
p]R (T)

)
is divided into three iterations

of narrowing. Starting with the transition t and followed by monotonicity
in�uence constraints and �nally observability in�uence constraints. We follow
this separation in the soundness proof.

We �rst show [pR (T ∪ {t})] ⊆ σt

(
p]R (T)

)
. From Theorem 4.1 we have

[p (T ∪ {t})] = p] (T ∪ {t}) = σt
(
p] (T)

)
. We start by intersecting both sides

of the equation by p]R (T), thus obtaining [p (T ∪ {t})]∩ p]R (T) = σt
(
p] (T)

)
∩

p]R (T). Since both [pR (T ∪ {t})] ⊆ [p (T ∪ {t})] and by induction hypothesis
[pR (T ∪ {t})] ⊆ [pR (T)] = p]R (T), we replace the left hand side by [pR (T ∪ {t})]
changing the equality relation to a subset one, [pR (T ∪ {t})] ⊆ σt

(
p] (T)

)
∩

p]R (T). The restriction imposed by the narrowing operator σt does not de-
pend on the actual parametrisation set. σt

(
p] (T)

)
can thus be rewritten as

p] (T)∩ p (t). As p] (T) ⊆ p]R (T), the right hand side becomes p]R (T)∩ p (t) =

62
CHAPTER 5. INFLUENCE CONSTRAINTS AS GLOBAL

CONSTRAINTS ON PARAMETRISATIONS

σt

(
p]R (T)

)
, giving us the coveted [pR (T ∪ {t})] ⊆ σt

(
p]R (T)

)
.

What remains to be proven is that any restriction by σR on σt

(
p]R (T)

)
is re�ected in [pR (T ∪ {t})]. We continue with the monotonicity in�uence

constraint narrowing to �rst prove [pR (T ∪ {t})] ⊆ ©
v∈{1,...,n}

σv ◦ σt
(
p]R (T)

)
.

Monotonicity constraint narrowing only imposes restrictions if the con-
straint is not satis�ed by either of the limit parametrisations generating the
abstract parametrisation set. Since all parametrisations in p]R (T) satisfy the
monotonicity constraints, only prior restriction of a v = v (t) parameter Kv,ωωω

for some ωωω ∈ Ωv by σt may cause the necessary condition. It is therefore
enough to consider σv.

Let now [000,111] = σt

(
p]R (T)

)
and

[
000′,111′

]
= σv ([000,111]) = ©

v∈{1,...,n}
σv ◦

σt

(
p]R (T)

)
be the relevant parametrisation lattices and PPP ∈ pR (T ∪ {t}) ar-

bitrary. We now prove 000′w,ωωω′ ≤ PPPw,ωωω′ ≤ 111′w,ωωω′ for each (w,ωωω′) ∈ Ω.
Since pR (T ∪ {t}) ⊆ [000,111], we have ∀ (w,ωωω′) ∈ Ω, 000w,ωωω′ ≤ PPPw,ωωω′ ≤ 111w,ωωω′ .

By de�nition, 000w,ωωω′ = 000′w,ωωω′ and 111w,ωωω′ = 111′w,ωωω′ for any (w,ωωω′) with w 6= v.
Let thus ωωω′ ∈ Ωv be such that 000v,ωωω′ < 000′v,ωωω′ . Such restriction may only

be due to 000v,ωωω, giving us ωωω′ �v ωωω and 000′v,ωωω′ = 000v,ωωω. We know all in�uence
constraints are satis�ed under PPP . ωωω′ �v ωωω thus mandates PPP v,ωωω′ ≥ PPP v,ωωω ≥ 000v,ωωω.

Let us now consider ωωω′ ∈ Ωv to be such that 111v,ωωω′ > 111′v,ωωω′ . Again, the
restriction is due to 111v,ωωω, giving us ωωω′ ≺v ωωω and 111′v,ωωω′ = 111v,ωωω. And for PPP to
satisfy the in�uence constraints, PPP v,ωωω′ ≤ PPP v,ωωω ≤ 111v,ωωω.

All parametrisations in the concrete set pR (T ∪ {t}) therefore �t within
the con�nes of

[
000′,111′

]
. The construction of the convex cover preserves the

minimal and maximal values of the individual parameters, giving us the coveted
[pR (T ∪ {t})] ⊆

[
000′,111′

]
= ©
v∈{1,...,n}

σv ◦ σt
(
p]R (T)

)
.

We now conclude the soundness proof by showing that the observability
constraint based restrictions are also re�ected in the concrete parametrisation
set, [pR (T ∪ {t})] ⊆ ©

(u,v,o)∈R
σ{(u,v,o)} ◦ ©

v∈{1,...,n}
σv ◦ σt

(
p]R (T)

)
= p]R (T).

Keeping to the
[
000′,111′

]
notation, we use

[
000′′,111′′

]
= ©

(u,v,o)∈R
σ{(u,v,o)}

([
000′,111′

])
to denote the parametrisation lattice after applying observability constraint
restrictions. Similarly to monotonicity, observability narrowing also imposes
restriction only if the constraint is not satis�ed under one, or both, of the limit
parametrisations. Moreover, thanks to Lemma 5.1, observability narrowing
only changes the value of at most one parameter per limit parametrisation.

Let thus ωωω ∈ Ωv be the unique regulator state whose associated parameter
value gets changed in the minimum parametrisation, 000′′v,ωωω = 000′v,ωωω + 1. By
de�nition, ωωω is the only regulator state open to value increase, O+

v ([000,111]) =
{ωωω}. O+

v ([000,111]) being a singleton guarantees the equality 000′v,ωωω′ = 111′v,ωωω′ for a
number of regulator states ωωω′ ∈ Ωv. Namely, any ωωω′ ‖v ωωω or ωωω′ �v ωωω, as well as
any ωωω′ ≺v ωωω such that 000′v,ωωω′ < 000′v,ωωω.

5.2. ABSTRACT CONSTRAINED SEMANTICS OF PARAMETRIC

REGULATORY NETWORKS 63

Let now PPP ∈ pR (T ∪ {t}) be arbitrary. We prove 000′′v,ωωω ≤ PPP v,ωωω and thus
PPP ∈

[
000′′,111′′

]
. Unlike under 000′, all observability constraints are satis�ed under

PPP , thus namely there must exist at least one ωωω′ ∈ Ωv such that PPP v,ωωω′ > 000′v,ωωω′ .
Following from the previous part of the safety proof, PPP ∈ pR (T ∪ {t}) gives us
PPP v,ωωω′ ≤ 111′v,ωωω′ and thusωωω′�vωωω and 000′v,ωωω′ = 000′v,ωωω. Following from all monotonicity
contraints being satis�ed under PPP , we get PPP v,ωωω ≥ PPP v,ωωω′ > 000′v,ωωω′ = 000′v,ωωω and
therefore the coveted PPP v,ωωω ≥ 000′′v,ωωω.

The proof for the upper limit restriction of ωωω ∈ Ωv, 111′′v,ωωω = 111′v,ωωω − 1, is
analogous. O−v ([000,111]) = {ωωω} gives us 000′v,ωωω′ = 111′v,ωωω′ for ωωω′ ‖v ωωω, ωωω′≺v ωωω and any
ωωω′ �v ωωω such that 111′v,ωωω′ > 111′v,ωωω.

Then, for any PPP ∈ pR (T ∪ {t}), there must exist ωωω′ ∈ Ωv such that PPP v,ωωω′ <
111′v,ωωω′ . PPP ∈ pR (T ∪ {t}) gives us PPP v,ωωω′ ≥ 000′v,ωωω′ and thus ωωω′�vωωω and 111′v,ωωω′ = 111′v,ωωω.
Following again from monotonicity constraint satisfaction, PPP v,ωωω ≤ PPP v,ωωω′ <
111′v,ωωω′ = 111′v,ωωω and therefore the coveted PPP v,ωωω ≤ 111′′v,ωωω.

Same as for the monotonocity case, the concrete parametrisation set there-
fore �ts within the con�nes of

[
000′′,111′′

]
. The minimum and maximum values of

individual parameters being preserved by the construction of the convex cover,
we are done proving the safety of the abstraction, [pR (T ∪ {t})] ⊆

[
000′′,111′′

]
=

p]R (T ∪ {t}).
We now proceed with the proof of the minimality of the over-approximation

p]R (T ∪ {t}) ⊆ [pR (T ∪ {t})].
Adopting the generating lattice notation

[
000],111]

]
= p]R (T ∪ {t}) and

[
000′,111′

]
=

[pR (T ∪ {t})], allows us to express the sublattice relation in terms of the limit
parametrisations, 000]≥Gmmm000′ and 111]≤Gmmm111′. We prove the inequalities by showing
that inequalities on individual parameter values hold in the same direction.

Let us �rst establish a common starting point [000,111] = [pR (T)] ∩ p (t).
Surely, [pR (T ∪ {t})] ⊆ [pR (T)] ∩ p (t) and by the induction hypothesis also

p]R (T ∪ {t}) ⊆ σt

(
p]R (T)

)
= [pR (T)] ∩ p (t). Let further p]R (T ∪ {t}) 6= ∅ as

the sublattice relation is trivial for the empty lattice.
Let now ωωω ∈ Ωv be such that 000′v,ωωω > 000v,ωωω, respectively, 111′v,ωωω < 111v,ωωω. Any

such restriction on the value limits of the parameter Kv,ωωω has to be justi�ed
by one or more in�uence constraints. The monotonicity in�uence constraints
are the simple case, where ωωω�v ω (t) and 000′v,ωωω = 000v,ω(t), respectively, ωωω≺v ω (t)
and 111′v,ωωω = 111v,ω(t).

With [000,111] as the input, the minimum, respectively maximum, value of the
parameter Kv,ωωω gets restricted by σv, giving us the coveted: 000]v,ωωω ≥ 000v,ω(t) =

000′v,ωωω, respectively, 111]v,ωωω ≤ 111v,ω(t) = 111′v,ωωω.
Let us therefore assume ωωω to be such that 000′v,ωωω > 000′′v,ωωω, respectively 111′v,ωωω <

111′′v,ωωω, where
[
000′′,111′′

]
= σv ([000,111]). It is important to note that

[
000′′,111′′

]
can-

not be limited much further as both 000′′,111′′ ∈ p (T ∪ {t}) ∩
⋂

(u,v,s)∈R P(u,v,s)

by construction. As such any further restriction to Kv,ωωω values results from
observability. Thus by Lemma 5.1, such a ωωω is unique for 000, respectively 111.

We therefore know there exists an observability in�uence constraint r ∈
R which is not satis�ed under 000′′, respectively 111′′, giving us the �rst pre-

64
CHAPTER 5. INFLUENCE CONSTRAINTS AS GLOBAL

CONSTRAINTS ON PARAMETRISATIONS

requisite for the action of the observability constraint narrowing. Assum-
ing, [pR (T ∪ {t})] 6= ∅, we need to prove O+

v ([000,111]) = {ωωω}, respectively
O−v ([000,111]) = {ωωω}.

Let us further assume the observability constraint r is not satis�ed un-
der 000′′. For any parametrisation PPP ∈

[
000′′,111′′

]
with PPP v,ωωω = 000′′v,ωωω we know

PPP /∈ pR (T ∪ {t}). In other words, by Lemma 5.1, at least one monotonicity con-
straint is not satis�ed under any parametrisation PPP ′ ∈

[
000′′,111′′

]
di�ering from PPP

in the value of exactly one parameter other than Kv,ωωω. This can be translated
to all �v-maximal regulator states ωωω′ 6= ωωω having 000′′v,ωωω′ = 111′′v,ωωω′ . Moreover, this
applies separately for all levels of 000′′ values. We thus get 000′′v,ωωω′ = 111′′v,ωωω′ for each
�v-maximal ωωω′ 6= ωωω in

{
ωωω′′ ∈ Ωv

∣∣ 000′′v,ωωω′′ = k
}
for each k ∈ N.

The �v-maximal ωωω′ 6= ωωω being value locked, 000′′v,ωωω′ = 111′′v,ωωω′ , by de�nition
guarantees that any ωωω′′≺v ωωω′ such that 000′′v,ωωω′′ = 000′′v,ωωω′ is also value locked. This
thus, in particular, holds for any ωωω′′ �v ωωω, ωωω′′ ‖v ωωω and ωωω′′ ≺v ωωω such that
000′′v,ωωω′′ < 000′′v,ωωω, giving us the coveted O+

v ([000,111]) = {ωωω}.
The proof for the observability constraint r not being satis�ed under 111′′ is

symmetrical. For any parametrisation PPP ∈
[
000′′,111′′

]
with PPP v,ωωω = 111′′v,ωωω we know

PPP /∈ pR (T ∪ {t}). Again by Lemma 5.1, all �v-minimal regulator states ωωω′ 6= ωωω
must have 000′′v,ωωω′ = 111′′v,ωωω′ . This ultimately guarantees, the value is locked for any
ωωω′′ ≺v ωωω, ωωω′′ ‖v ωωω and ωωω′′ �v ωωω such that 111′′v,ωωω′′ > 111′′v,ωωω, giving us the coveted
O−v ([000,111]) = {ωωω}.

Finally, let us consider [pR (T ∪ {t})] = ∅. Following the same line of reas-
oning with the use of Lemma 5.1, we know the value is locked, 000′′v,ωωω′ = 111′′v,ωωω′ ,
for each �v-maximal ωωω′ ∈

{
ωωω′′ ∈ Ωv

∣∣ 000′′v,ωωω′′ = k
}
, respectively �v-minimal

ωωω′ ∈
{
ωωω′′ ∈ Ωv

∣∣ 111′′v,ωωω′′ = k
}
, for each k ∈ N. Again, this by de�nition guaran-

tees that any other regulator state is also value locked, giving us the coveted
O+
v ([000,111]) = ∅, respectively O−v ([000,111]) = ∅.
This concludes the proof of p]R (T ∪ {t}) ⊆ [pR (T ∪ {t})]. Combined with

the soundness proof, we obtain the coveted p]R (T ∪ {t}) = [pR (T ∪ {t})].

5.3 Examples

In this section, we give an example of a parametric regulatory network with in-
�uence constraints, Example 5.1, to showcase how in�uence constraints restrict
the set of possible parametrisations.

We further give several examples of how the narrowing operators for in�u-
ence constraints restrict the parametrisation lattices.

Example 5.1. Let G′ = G(FB) be the minimal in�uence graph of the Boolean
network FB from Example 2.2. Let further R (G′) be a well-formed set of in�u-
ence constraints containing (b, b,−1), (d, d,−1), (d, a,−1) and positive mono-
tonicity constraints on all other in�uences, as well as observability constraint
on all in�uences except (b, a). The in�uence graph G′ with in�uences annotated
by their constraints from R (G′) is depicted in Figure 5.1.

5.3. EXAMPLES 65

a

b

c

d

−1o

−1o

+1o

+1

−1o

+1o

Figure 5.1: In�uence graph G′ of the Boolean network FB . The in�uences are
labelled with +1, −1 and o for positive monotonicity, negative monotonicity or
observability constraints, respectively, that exists for the in�uence in R (G′).

Finally, let G′{1}4 be a parametric regulatory network de�ned on the in�u-

ence graph G′ with Boolean variable domains. Unconstrained, 28×22×22×22 =

16384 =
∣∣∣P(G′{1}4)∣∣∣ parametrisations are possible for the parametric regulat-

ory network G′{1}4 . By introducing R (G′), the number of compatible paramet-
risations decreases signi�cantly. In some instances, such as the monotonicity
minimal and maximal regulator states of a Boolean variable with all incoming
in�uences monotonic and at least one also observable, the values of some para-
meters are �xed by the in�uence constraint set R (G′). In our case, this applies
to the all four variables a, b, c, d. Indeed, for any parametrisation PPP ∈ PR(G′),
PPP a,001 = 0, PPP a,110 = 1, PPP b,0 = 1, PPP b,1 = 0, PPP c,0 = 0, PPP c,1 = 1, PPP d,0 = 1 and
PPP d,1 = 0. Example 5.4 describes in detail how these constraints can be obtained
by the means of the narrowing operator.

Observe that since the variables b, c and d only have one regulator, |R(b)| =
|R(c)| = |R(d)| = 1, they only have two parameters each. Thus, the values of
all the parameters of variables b, c and d are �xed by the in�uence constraint set
R (G′). The remaining parametrisations are then all the non-constant mono-
tonic Boolean functions on three variables which constitute the parameters of
variable a. While enumerating all monotonic Boolean functions is generally
not trivial [66], with only three variables we arrive at 18 di�erent non-constant
monotonic Boolean functions and thus, parametrisations

∣∣PR(G′)

∣∣ = 18.

The di�erent parametrisations in PR(G′) can also be represented as cuts of
the Hasse diagram [11] of the monotonicity order, or more precisely of the lat-
tice of all regulator states of a variable with the monotonicity order, into two
(in the Boolean case) or more convex sublattices. We give the Hasse diagram of
the lattice (Ωa,�a) in Figure 5.2. For simplicity, we use the value concatena-

66
CHAPTER 5. INFLUENCE CONSTRAINTS AS GLOBAL

CONSTRAINTS ON PARAMETRISATIONS

110

111 100 010

101 011 000

001

Figure 5.2: The Hasse diagram of the lattice (Ωa,�a). The regulator states are
labelled by the concatenation of the regulator values. The diagram speci�es the
values of the parameters of variable a in the parametrisation PPP by the means
of non-bold regulator states having value 0 and bold regulator states having
value 1.

Kc,00 Kc,01 Kc,10 Kc,11 Kc,20 Kc,21

000 0 1 0 0 0 0
111 1 1 1 1 1 1

Table 5.1: The values of variable c parameters in the minimum and maximum
parametrisations 000, 111.

tion shorthand for the regulator states in the Hasse diagram. To illustrate how
a parametrisation corresponds to a cut in the Hasse diagram, we mark some of
the regulator states in Figure 5.2 in bold. The cut is then the set of all edges
from a bold to non-bold vertex and the corresponding parametrisation assigns
the value 0 to all non-bold regulator states and the value 1 to all bold regulator
states. The parametrisation PPP in Figure 5.2 is thus such that the parametric
Boolean network G′{1}4 parametrised by PPP is exactly the Boolean network FB
from Example 2.2.

Of note is also the structure of the Hasse diagram in Figure 5.2. The Hasse
diagram of the monotonicity order of Boolean network variable always takes
the form of a hypercube, or several disjoint hypercubes in case not all incom-
ing in�uences are monotonic, of dimension given by the number of monotonic
regulations.

Example 5.2. Consider the parametric regulatory network Gmmm introduced
in Example 4.1 and a set of in�uence constraints R (G) = {(a, c,+1)}. Let
[000,111] be a parametrisation lattice such that the variable c parameter values in
minimum and maximum parametrisations correspond to the Table 5.1.

As the maximum parametrisation 111 assign the same value 1 to each regu-
lator state of variable c, the sole monotonicity constraint (a, c,+1) is trivially
satis�ed under 111. On the other hand, the monotonicity constraint (a, c,+1)
is not satis�ed under the minimum parametrisation 000, or any other paramet-

5.3. EXAMPLES 67

20 : 0 21 : 0

10 : 0 11 : 0

00 : 0 01 : 1

Figure 5.3: The Hasse diagram of the monotonicity order on the regulator
states of variable c. The regulator states are annotated by concatenation of
individual regulator values as well as their respective parameter value in the
minimum parametrisation 000. The regulator states whose values are inconsistent
with the in�uence constraint (a, b,+1) are labelled in bold.

Kc,00 Kc,01 Kc,10 Kc,11 Kc,20 Kc,21

000 0 0 1 1 1 1
111 1 0 1 1 1 1

Table 5.2: The values of variable c parameters in the minimum and maximum
parametrisations 000, 111.

risation PPP ′ ∈ [000,111] such that PPP ′c,11 = 0 or PPP ′c,21 = 0, due to (a = 0, b = 1) ≺c
(a = 1, b = 1)≺c (a = 2, b = 1).

The narrowing operator σ(a,c,+1) assigns each parameter in the minimum
parametrisation the maximum value across all monotonicity smaller regulator
states. To illustrate we give the monotonicity order �c in Figure 5.3 as the
Hasse diagram of the lattice (Ωc,�c). The regulator states in Figure 5.3 are
annotated by their value in the minimum parametrisation 000. In our case, the
value 000c,01 = 1 is the maximum for all three regulator states with b = 1.
The two regulator states (a = 1, b = 1) and (a = 2, b = 1), highlighted in bold,
thus have their minimum value increased by the narrowing operator. As such,
σ(a,c,+1) ([000,111]) = [000 [(c, 11) , (c, 21) 7→ 1] ,111]

Example 5.3. Similarly to Example 5.2, consider the parametric regulatory
network Gmmm from Example 4.1 and a set of in�uence constraints R (G) =
{(b, c, o)}. Let further [000,111] be a parametrisation lattice such that the variable
c parameter values in minimum and maximum parametrisations correspond to
the Table 5.2.

For any parametrisation PPP ′ ∈ [000,111] such that PPP ′c,00 = 0 we have PPP ′ /∈ P(b,c,o)

as the value of variable b has not direct impact on the target value of variable c
under any such PPP ′. In particular, the minimum parametrisation 000 is one such
parametrisation. We show in detail how σ(b,c,o) restricts the parametrisation
lattice, to eliminate the false positives in this case.

As there are no monotonicity constraints, all regulator states are �c-minimal
and �c-maximal at the same time. The regulator states open for increase or
decrease are thus exactly the regulator states with di�erent value in 000 and 111.

68
CHAPTER 5. INFLUENCE CONSTRAINTS AS GLOBAL

CONSTRAINTS ON PARAMETRISATIONS

Kc,00 Kc,01 Kc,10 Kc,11 Kc,20 Kc,21

000 0 0 0 0 0 0
111 1 1 1 1 1 1

Table 5.3: The values of variable c parameters in the minimum and maximum
parametrisations 000, 111.

In our case O+
v ([000,111]) = O−v ([000,111]) = {(a = 0, b = 0)}. The existence of a

single open regulator state is therefore satis�ed for both 000 and 111. The observ-
ability constraint (b, c, o) is, however, satis�ed under the maximum paramet-
risation 111 ∈ P(b,c,o) and 111 is not restricted. On the other hand, the min-
imum parametrisation 000 /∈ P(b,c,o) is restricted, obtaining a new parametrisa-

tion 000′ = 000 [c, 00 7→ 1] and σ(b,c,o) ([000,111]) =
[
000′,111

]
.

Example 5.4. Following from Example 5.2 and Example 5.3, consider again
the parametric regulatory network Gmmm from Example 4.1 and a di�erent set
of in�uence constraints R (G) = {(a, c,+1) , (b, c,+1) , (b, c, o)}. Let [000,111] be
again a parametrisation lattice whose variable c parameter values correspond
to the Table 5.3.

000c,ωωω < 111c,ωωω for every regulator state ωωω ∈ Ωc and every regulator state of
variable c is thus a candidate for being open for increase and decrease. How-
ever, due to the monotonicity constraints (a, c,+1) and (b, c,+1), there exists
a unique �c-minimal element (a = 0, b = 0) and a unique �c-maximal element
(a = 2, b = 1). We thus get the following open regulator states O−v ([000,111]) =
{(a = 0, b = 0)} and O+

v ([000,111]) = {(a = 2, b = 1)}.
The existence of unique regulator states open for increase and decrease,

respectively is thus satis�ed. Moreover the observability constraint (b, c, o) is not
satis�ed under either 000 and 111. Both minimum and maximum parametrisations
therefore get restricted by σ(b,c,o) ([000,111]) = [000 [c, 21 7→ 1] ,111 [c, 00 7→ 0]].

Chapter 6

Unfolding Semantics of Parametric

Regulatory Networks

In this chapter we introduce partial order semantics for parametric regulatory
networks. We achieve this by lifting the Petri net unfoldings introduced in
Chapter 3 to parametric regulatory networks. As the dynamics of parametric
regulatory networks are in essence transition systems, it follows that one can
represent parametric regulatory networks by the means of Petri nets. Rather
than unfolding a Petri net obtained by conversion of a parametric regulatory
network, however, we introduce a modi�ed version of the unfolding procedure
which acts on the parametric regulatory networks directly in spite of the output
staying a Petri net. Unfolding the parametric regulatory networks allows us
to keep the model concise and thus easier to process thanks to the ability to
represent the transitions symbolically.

Being a partial order semantics, the true bene�t of unfoldings shows es-
pecially in highly concurrent systems. While the relative sparsity of in�uence
graphs of most gene regulatory network models promises high degree of con-
currency, this is only true for asynchronous semantics. Allowing synchron-
ous transitions essentially introduces new interdependencies into the in�uence
graph, prohibiting concurrent execution of transitions. To harness the full bene-
�t of the partial order reduction, we assume all parametric regulatory network
use strictly asynchronous semantics throughout the chapter.

6.1 Parametric Regulatory Network Unfolding

In this section we discuss the modi�cations necessary to the Petri net unfolding
procedure to be applicable to parametric regulatory networks.

Before the de�nition of parametric regulatory network unfolding proced-
ure itself, using Petri nets to represent the unfoldings of parametric regulatory
networks requires a slight extension of the model. Namely, the unfolding is
dependant on the initial marking, however, parametric regulatory networks
provide no equivalent notion. We therefore annotate the parametric regulat-

69

70
CHAPTER 6. UNFOLDING SEMANTICS OF PARAMETRIC

REGULATORY NETWORKS

ory network model with initial condition consisting of initial state and initial
parametrisation set.1

De�nition 6.1 (Initialised Parametric Regulatory Network). An ini-

tialised parametric regulatory network
(
Gmmm,

(
x̊xxGmmm , P̊Gmmm

))
of dimension n is

a parametric regulatory network Gmmm of the same dimension n coupled with a
state

(
x̊xxGmmm , P̊Gmmm

)
∈ Xmmm × 2P(Gmmm).

When referring to unfolding semantics of parametric regulatory networkGmmm
we automatically assume Gmmm is initialised by an initial condition

(
x̊xxGmmm , P̊Gmmm

)
.

We then say the unfolding is conducted from the initial condition
(
x̊xxGmmm , P̊Gmmm

)
.

To simplify notation, we write
(
x̊xx, P̊

)
instead of

(
x̊xxGmmm , P̊Gmmm

)
where Gmmm is

obvious from context.

We proceed with the (initialised) parametric regulatory network unfolding
de�nition by reiterating the unfolding de�nition for petri nets in Chapter 3.

Just like for Petri nets, the parametric regulatory network unfolding consists
of the same core construction in the form of an occurrence net. Thanks to
the occurrence net de�nition, De�nition 3.5, being simpli�ed by omitting the
initial marking, no modi�cations are necessary for application to parametric
regulatory networks. Labelling of the occurrence nets by the β function is,
however, strongly dependant on the structure of the original model. We thus
rede�ne the branching process for parametric regulatory networks using a new
labelling function β] which relates to parametric regulatory networks rather
than Petri nets.

De�nition 6.2 (Branching Process of a Parametric Regulatory Net-
work). A branching process of a parametric regulatory network Gmmm of dimen-

sion n, is an occurrence netO labelled with function β] : B ∪ E →
⋃
v∈{1,...,n} ({v} × {0, . . . ,mmmv}) ∪

⋃
PPP∈P̊

FPPP−→
async

such that:

1. β] (B) ⊆
⋃
v∈{1,...,n} ({v} × {0, . . . ,mmmv}) and β] (E) ⊆

⋃
PPP∈P̊

FPPP−→
async

(β]

preserves the nature of nodes).

2. Given an arbitrary event e ∈ E with β] (e) = t = (xxx,yyy). ∀b ∈ •e there
exists a unique v ∈ {v (t)} ∪ R(v (t)) such that β] (b) = (v,xxxv) and vice
versa, ∀v ∈ {v (t)} ∪R(v (t)) there exists a unique b = β]

−1
((v,xxxv)) and

b ∈ •e. (β] restricted to •e is a bijection.)

1If unfoldings from several initial states are desired, one may bene�t from including an
"extra selection layer" in the unfolding. This layer would serve to allow the initial state to
be selected on the run during the unfolding procedure while avoiding duplicate exploration
of common behaviours. While a relatively standard practice for variable values [14, 16], if
parametrisation sets are also to be picked freely, the scope may quickly explode.

6.1. PARAMETRIC REGULATORY NETWORK UNFOLDING 71

Similarly, ∀b ∈ e• there exists a unique v ∈ {v (t)} ∪ R(v (t)) such that
β] (b) = (v,yyyv) and vice versa, ∀v ∈ {v (t)}∪R(v (t)) there exists a unique
b = β]

−1
((v,yyyv)) and b ∈ e•. (β] restricted to e• is a bijection.)

3. ∀b ∈ min((O)) there exists a unique v ∈ {1, . . . , n} such that β] (b) =

(v, x̊xxv). and ∀v ∈ {1, . . . , n} there exists a unique b = β]
−1

((v, x̊xxv)) and
b ∈ min((O)). (β] restricted to causality-minimal conditions is a bijection
with the initial state.)

4. ∀ e0, e1 ∈ E, •e0 = •e1 ∧ β] (e0) = β] (e1) =⇒ e0 = e1 (No duplicate trans-
itions).

The β] is constructed with conditions in the unfolding of parametric reg-
ulatory networks corresponding to a combination of variable and one of its
possible values, rather than the variable alone. This construction follows from
the restriction to safe Petri nets, which allows at most one token in any given
place. While this representation of variable values results in De�nition 6.2 be-
ing considerably technical, the requirements imposed on β] correspond exactly
to the requirements on β in De�nition 3.6.

The labelling function β] allows us to use the same occurrence nets for
parametric regulatory networks as for Petri nets. Thanks to the same primary
building structure being preserved, no additional changes are necessary to ad-
apt the unfolding de�nition to parametric regulatory networks. In the fol-
lowing, we reiterate De�nition 3.7 and De�nition 3.8 with respect to the new
labelling function β].

De�nition 6.3 (Parametric Regulatory Network Branching Process

Pre�x). Let
(
O, β]

)
and

(
O′, β]

′
)
be two branching processes of the same

parametric regulatory network Gmmm.
Then,

(
O, β]

)
is a pre�x of

(
O′, β]

′
)
if the following conditions are satis�ed:

1. B ⊆ B′, E ⊆ E′ and F ⊆ F ′ (O is a subnet of O′);

2. min((O′)) ⊆ B (The natural initial marking is the same for both branch-
ing processes);

3. For each condition b ∈ B and the single event e ∈ E′ such that e ∈ •b (if
it exists), e ∈ E;

4. Similarly, for each event e ∈ E and each condition b ∈ B′ such that
b ∈ •e ∪ e•, b ∈ B;

5. For each x ∈ B ∪ E, β] (x) = β]
′
(x) (β] is the restriction of β]

′
to O).

De�nition 6.4 (Parametric Regulatory Network Unfolding). Let Gmmm
be a parametric regulatory network.

The unfolding of Gmmm is a branching process
(
O, β]

)
of Gmmm such that any

other branching process
(
O′, β]

′
)
of Gmmm is a pre�x of (O, β).

72
CHAPTER 6. UNFOLDING SEMANTICS OF PARAMETRIC

REGULATORY NETWORKS

The unfolding of a Gmmm is unique up to isomorphism.

Unfoldings of parametric regulatory networks are in the general case in�nite,
as opposed to the parametric regulatory networks themselves. The in�niteness
of the model results from the same patterns as we discussed for the Petri net
unfoldings, namely due to the cyclic behaviour being unfolded into an acyclic
structure.

While parametric regulatory network unfolding inherits the in�nite struc-
ture of the Petri net unfolding, it also retains the safety conditions. Instead of
reachable markings, the unfolding of parametric regulatory networks is guaran-
teed to contain all reachable states of the original network. Thus, for any state
xxx reachable in the original model, there exists at least one reachable marking
M of the unfolding such that

⋃
v∈{1,...,n} (v,xxxv) = β] (M). To ease notation,

we write simply β] (M) = xxx by abuse of notation.
Similarly the traces of the original parametric regulatory network are cap-

tured within the unfolding. As such, given a marking M reachable in the
unfolding, another marking M ′ and a transition t ∈

⋃
PPP∈P̊

FPPP−→
async

, an event

e ∈ E such that M e−→M ′, β] (e) = t exists in the unfolding if and only if
t =

(
β] (M) , β] (M ′)

)
. Note that the traces as captured within the parametric

regulatory network unfolding are not explicitly parametrisation sensitive. The
parametrisation sets are handled on the level of con�gurations, as is illustrated
also in De�nition 6.5.

Thanks to the same underlying structure of the Petri net and parametric
regulatory network unfoldings, we can readily adopt the same tools, con�gura-
tions (De�nition 3.9) and cuts (De�nition 3.10), for expressing the behavioural
equivalence between parametric regulatory network unfolding and the original
network as well as between individual branches of the unfolding (up to iso-
morphism). While con�guration and cut only depend on the occurrence net
structure, we give a fresh de�nition for the complete branching process of para-
metric regulatory networks to properly re�ect the labelling function β] while
mirroring De�nition 3.11 of complete branching process of Petri nets.

De�nition 6.5 (Complete Branching Process of Parametric Regulat-
ory Networks). Let Gmmm be a parametric regulatory network.

We say that a branching process
(
O, β]

)
of Gmmm is complete, if for every

parametrisation PPP ∈ P̊ and for each state xxx reachable in Gmmm under PPP , there
exists a con�guration C in

(
O, β]

)
, satisfying:

1. β] (Cut (C)) = xxx and PPP ∈ pR(G)

(
β] (C)

)
∩ P̊ (xxx is represented in the

branching process with the parametrisation PPP);

2. For every transition t = (xxx,yyy) ∈ Gmmm−→
async

such that PPP ∈ pR(G) (t), there

exists an event e ∈ E \C such that β] (e) = t and C ∪ {e} is a con�gura-
tion of (O, β) (all transitions enabled under PPP can be reproduced in the
branching process).

6.2. COMPLETE FINITE PREFIX OF PARAMETRIC UNFOLDING 73

To ease notation, we write pR (C) instead of pR(G)

(
β] (C)

)
∩ P̊ to denote

the set of parametrisations allowing a con�guration C of the unfolding.

A branching process of parametric regulatory network is complete under
the same criteria as the branching process of a Petri net. All reachable states
and enabled transitions have to be represented. In the case of parametric reg-
ulatory networks, however, we additionally require the states to be represented
for any parametrisation witnessing the reachability in the original network.
Similarly, the transitions have to be represented for any parametrisation that
enables them. These conditions ensure that no parametrisations are lost in the
complete branching processes. Thus, namely, complete branching process fully
encompasses the behaviour of the parametric regulatory network parametrised
by any PPP ∈ P̊.

6.2 Complete Finite Pre�x of Parametric Unfolding

Parametric regulatory networks and their state transition graphs, which repres-
ent the behaviour of the networks, are �nite by de�nition unlike the generally
in�nite unfoldings. Addressing the discrepancy, this section presents eleva-
tion of the construction of complete �nite pre�xes of Petri net unfoldings to
parametric regulatory network unfoldings.

Similarly to the unfolding itself, complete �nite pre�xes of parametric reg-
ulatory network unfoldings are based on the same principles as complete �nite
pre�xes of Petri nets. In particular, we capitalise on the uniqueness of the un-
foldings up to isomorphism and the `self inclusion' of unfoldings from di�erent
initial condition. More precisely, given an unfolding (B,E, F,M0) of a para-
metric regulatory network Gmmm with a con�guration C ⊆ E, a branching process(
O′, β]

′
)
such that B′ ∪ E′ = {x ∈ (B ∪ E) \ (•C ∪ C) | ∀ e ∈ C, ¬ (e# x) }

is the unfolding of Gmmm with initial condition
(
β] (Cut (C)) , pR(G) (C)

)
. Then,

thanks to unfoldings being unique up to isomorphism, we know the branching
process constructed in the same fashion for any other con�guration C ′ ⊆ E such
that β] (Cut (C ′)) = β] (Cut (C)) and pR(G) (C ′) = pR(G) (C) is isomorphic to(
O′, β]

′
)
.

While the above highlighted isomorphism of unfolding branches is funda-
mentally su�cient, we can bene�t from the structure of initialised parametric
regulatory networks to obtain a more general inclusion relation for branches
of parametric regulatory network unfoldings. In particular, the initial state(
x̊xx, P̊

)
corresponds to the initial marking of Petri nets, the initialised para-

metric regulatory networks, however, also specify the initial parametrisation
set P̊. The parametric regulatory network unfolding are essentially a union
over unfoldings of the original network parametrised by any parametrisation
PPP ∈ P̊. It follows that the unfolding from initial condition (xxx,P) should
be fully included (up to isomorphism) in the unfolding from initial condition
(xxx,P ′) where P ⊆ P ′.

74
CHAPTER 6. UNFOLDING SEMANTICS OF PARAMETRIC

REGULATORY NETWORKS

Lemma 6.1 (Inclusion of Parametric Regulatory Network Unfoldings). Let
Gmmm be a parametric regulatory network and let (B,E, F,M0) and (B′, E′, F ′,M ′0)
be unfoldings of Gmmm from initial con�gurations (xxx,P) and (xxx,P ′) respectively,
such that P ⊆ P ′. Let further PPP ∈ P be an arbitrary parametrisation and
C ⊆ E a con�guration such that PPP ∈ pR (C).

Then there exists a con�guration C ′ ⊆ E′ satisfying β]
′
(C ′) = β] (C),

β]
′
(Cut (C ′)) = β] (Cut (C)) and PPP ∈ pR (C ′).

Proof. We conduct the proof as mathematical induction on the size of the
con�gurations of the unfolding (B,E, F,M0).

For the base step, C = ∅ = C ′. Cut (C) = M0 and Cut (C ′) = M ′0. By
de�nition β] (M0) = xxx = β]

′
(M ′0). β] (C) = ∅ = β]

′
(C ′) and PPP ∈ pR (C ′) = P ′

follow trivially.
Let now C ∈ E and C ′ ∈ E′ be such that β] (C) = β]

′
(C ′), β] (Cut (C)) =

β]
′
(Cut (C ′)) and PPP ∈ pR (C) ∩ pR (C ′). Let further e ∈ E be arbitrary such

that C ∪ {e} is a con�guration and PPP ∈ pR
(
β] (e)

)
.

Consider now an event e′ such that β]
′
(e′) = β] (e) and •e′ ⊆ Cut (C ′).

Such an event surely exists thanks to β] (Cut (C)) = β]
′
(Cut (C ′)). Further-

more PPP ∈ pR
(
β] (e′)

)
= pR

(
β] (e)

)
. Since the unfolding is the largest possible

branching process, we know e′ ∈ E′ (unless an isomorphic event exists in E′,
in which case we consider the isomorphic event to be e′). Finally, C ′ ∪ {e′} is
a con�guration of (B′, E′, F ′,M ′0) by de�nition.

As is the case for Petri net unfoldings, the complete �nite pre�x of para-
metric regulatory network unfoldings is constructed using cut-o� events. To
determine which events are safe to be marked as cut-o� events, we once again
use local con�gurations De�nition 3.12 to associate each event in the unfolding
with a unique con�guration. While the de�nitions of local con�guration and
possible extension (De�nition 3.13) carry over from Petri net unfoldings, we in-
troduce a new parametric cut-o� event for unfoldings of parametric regulatory
networks to be able to utilise the asymmetric inclusion from Lemma 6.1.

De�nition 6.6 (Parametric Cut-O� Event). Let
(
O, β]

)
be a �nite branch-

ing process of a parametric regulatory network Gmmm and let (O′, β′) be an-
other branching process of the same parametric regulatory network such that
B′ = B ∪ e• and E′ = E ∪ {e}, where e ∈ PE

((
O, β]

))
is a possible extension

of the branching process (O, β).
Then the event e is a cut-o� in (O′, β′), e ∈ cutoffs ((O′, β′)), if and only

if pR ([e]) = ∅ or there exists an event e′ ∈ E such that β] (Cut ([e])) =
β] (Cut ([e′])) and pR ([e]) ⊆ pR ([e′]).

The set of parametric cut-o� events cutoffs
((
O, β]

))
is similarly to the cut-

o� event set of Petri net unfoldings, De�nition 3.14, dependant on the order in
which the possible extensions are explored. To guarantee the obtained �nite
pre�x is complete, the use of adequate order as per De�nition 3.15 is once again
necessary. Additionally, we utilise the cut-o� events for the purpose of pruning

6.3. EXAMPLES 75

the branches that are not allowed by any parametrisation in P̊. This allows us
to keep the de�nition of the branching process itself parametrisation free, and
only annotate con�gurations with parametrisation sets.

Due to the added dependency on the parametrisation sets, however, use of
total adequate order does not guarantee the obtained unfolding to be smal-
ler than the state transition graph. Instead, parametric cut-o� events being
dependant on the parametrisation set inclusion introduces another optimality
criterion. In particular, it is desirable to explore the possible extensions in
the reverse subset order of the parametrisation sets. Unfortunately, the sub-
set order is orthogonal with the total adequate order of Esparza et al. [31].
As such, using the Esparza et al. [31] total adequate order, it is possible for
an event e to be explored after e′ while β] (Cut ([e])) = β] (Cut ([e′])) and
pR(G) (e′) ⊆ pR(G) (e). Such cases lead to what we refer to as `backwards cut-
o�' or `backwards merge' resulting in the chronologically older event e′ being
declared cut-o� and any further events e′′ > e′ being discarded or re-evaluated.
Nevertheless, the obtained complete �nite pre�xes of parametric regulatory net-
work unfoldings while using the Esparza et al. [31] total adequate order tend
to be considerably small in comparison to other methods, as highlighted by
results presented in the Chapter 9.

Finally, throughout this chapter, we use the concrete parametrisation set
notation p with the in�uence constraints R (G). However, it should be noted

that any parametrisation set computation p : 2

⋃
PPP∈P̊

FPPP−→
async → 2P(Gmmm) is applic-

able for the complete �nite pre�x construction, as long as, the following implic-
ation is preserved: T ⊆ T ′ =⇒ p (T ′) ⊆ p (T). Thus, in particular, the abstract
parametrisation sets used in the abstract semantics of parametric regulatory
networks, De�nition 5.11, are compatible. It is therefore possible to construct
unfoldings and complete �nite pre�xes of parametric regulatory networks us-
ing the abstract parametrisation sets. Such a combination results in heuristic
reduction of both the exponential size parametrisation space, thanks to the
abstract parametrisation sets, and the exponential size state space, thanks to
the partial order semantics.

6.3 Examples

In this section we give two examples of a unfolding pre�x for the parametric
regulatory network from Example 4.1. The �rst pre�x, in Example 6.1, is an
incomplete pre�x showcasing detection of a cut-o� event. The second pre�x,
in Example 6.2, is then a complete �nite pre�x of the unfolding.

Example 6.1. In this example we show the detection of a cut-o� event in
a pre�x of the unfolding of the parametric regulatory network Gmmm from Ex-
ample 4.1 with the monotonicity constraints from in�uence constraints set
R (G) = {(a, a,−1) , (b, b,−1) , (a, c,+1) , (b, c,+1)}. The pre�x shown in Fig-
ure 6.1 captures the status of the unfolding procedure after processing the �fth
event e5.

76
CHAPTER 6. UNFOLDING SEMANTICS OF PARAMETRIC

REGULATORY NETWORKS

c1

b1

a0

a1a0 a+

e5

a+

e1

b1

a1

c1

a1

c0

c+

e3

c+

e4

b+

e2

b0 b1

Figure 6.1: A pre�x of the unfolding of the parametric regulatory network
Gmmm with the in�uence constraint set R (G). The usual Petri net notation of
spherical and rectangular nodes is used to distinguish conditions and events,
respectively. The conditions are labelled by the variable and its value given
by the labelling function β]. Similarly, the events are labelled by the unique
variable changing value and the nature of the value change for transition given
by the labelling function β]. The events are additionally numbered in the order
of exploration by the unfolding process. The conditions belonging to the initial
marking are highlighted in blue. The dashed event is declared as cut-o� during
the complete �nite pre�x construction.

Before we discuss the cut-o� event e5, observe that events e1 and e2 are con-
current, irrespective of the �ring order they lead to the state (a = 1, b = 1, c = 0)
via the labelling function β]. In a classical state space graph computation,
transitions β] (e1) and β] (e2) would appear twice. β] (e1) followed by β] (e2)
in the intermediate state (a = 1, b = 0, c = 0) and vice versa, β] (e2) followed
by β] (e1) in the intermediate state (a = 0, b = 1, c = 0). The unfolding allows
the state (a = 1, b = 1, c = 0) to be used by including both posets of e1 and e2

in the preset, as is done by e3, while also maintaining both intermediate states
(a = 1, b = 0, c = 0) and (a = 0, b = 1, c = 0) (used by e4).

Let us now focus on the events e3 and e5. As β
] (Cut ([e3])) = β] (Cut ([e5])),

e5 would be declared cut-o� in a Petri net unfolding. To be declared cut-o� in
parametric regulatory network unfolding, however, p]R(G) ([e5]) ⊆ p]R(G) ([e3])

must also hold in order to capture all possible behaviours.

In the case of e3, [e3] = {e1, e2, e3}. The value of the minimum paramet-

risation in p]R(G) ([e3]) = [000,111] thus di�er from the minimal possible values in

6.3. EXAMPLES 77

a1

b1

b0

b0

c0

a0

b−

a−c+

b−

c−

a+

b1

c1

a0

c1

a2

b−

a0

b0b1a1

c0

c+

c+

b+

a2a+

b1

c1

b1

a1

a1

a+

a−

b0

a2

Figure 6.2: The complete �nite pre�x of the unfolding of the parametric regu-
latory network Gmmm with the in�uence constraint set R (G). The cut-o� events
are not represented.

the following:

000a,0 = 1 due to e1

000b,0 = 1 due to e2

000c,11 = 1 due to e3

000c,21 = 1 by σ(a,c,+1)

For e5, [e5] = {e2, e4, e5}. Following constraints are thus placed on the

minimum parametrisation in p]R(G) ([e5]) =
[
000′,111

]
:

000′b,0 = 1 due to e2

000′c,01 = 1 due to e4

000′a,0 = 1 due to e5

000′c,11 = 000c,21 = 1 by σ(a,c,+1)

The parametrisation 000′ has one extra restriction on the parameter Kc,01

compared to 000, giving us 000′ >Gmmm 000. Thus, p]R(G) ([e5]) ⊆ p]R(G) ([e3]) and e5 is

indeed a cut-o�.

Example 6.2. In this example we illustrate the complete �nite pre�x con-
structed for the unfolding of the parametric regulatory network Gmmm from Ex-
ample 4.1. The parametric regulatory network F is considered with in�u-
ence constraint set R (G) = {(a, a,−1) , (b, b,−1) , (a, c,+1) , (b, c,+1) , (a, a, o),
(b, b, o) , (a, c, o) , (b, c, o)}. The resulting complete �nite pre�x is given in Fig-
ure 6.2.

The conditions and events are labelled by the β] in the same fashion as
in Figure 6.1. The conditions representing the initial state (a = 0, b = 0, c = 0)

78
CHAPTER 6. UNFOLDING SEMANTICS OF PARAMETRIC

REGULATORY NETWORKS

are also coloured blue. The cut-o� events are omitted to improve readability of
the �gure.

Chapter 7

Goal-Driven Unfolding

Parametric regulatory networks encompass the behaviours of the parametrised
networks for any admissible parametrisation. As such, the sheer number of
di�erent behavioural patterns parametric regulatory networks exhibit leads to
very heavy branching in the parametric regulatory network unfoldings. Rather
than the entire reachable state space, however, the interest of many reachab-
ility questions is whether a particular reachability property can be satis�ed.
By focusing only on a single reachability property, it may become possible to
prune some branches of the unfolding early, knowing they may never lead to
the desired outcome. For this reason we extend the unfolding semantics of
parametric regulatory networks with a goal-driven application.

In this chapter, we adapt the goal-driven unfolding method for Petri nets [16]
to the unfoldings of parametric regulatory networks. The method is based on
static analysis method which reduces the input model by pruning transitions
that never lead to the given target property. We brie�y recall the model re-
duction method for automata networks as introduced in [62] and adapt it to
parametric regulatory networks in Section 7.1. Parametric regulatory networks
need to be processed for the reduction method to be applicable. To achieve this,
the information on transitions enabled by the parametrisation sets is compiled
into suitable structures (De�nition 7.9). Section 7.2 thus presents an example
algorithm for conducting the necessary conversion.

The application within the unfolding itself mirrors the application to Petri
net unfoldings [16]. In principle, the model reduction method is executed after
inclusion of an event e during the unfolding procedure. The possible extensions
e′ such that e < e′ are then considered based on the reduced model. Thus,
by adapting the model reduction method of [62] to the parametric regulatory
networks whose semantics rely on re�nement of parametrisation sets, we obtain
a combination of orthogonal on-the-run reduction and re�nement of the model.

79

80 CHAPTER 7. GOAL-DRIVEN UNFOLDING

7.1 Goal-Driven Reduction

In this section we introduce the automata network procedure of [62] adapted
to parametric regulatory networks.1 The original automata network reduction
procedure of [62] is based on causality analysis of transitions of individual
automata within the network. The method identi�es and prunes transitions
which are guaranteed not to lead to the target property while preserving all
minimal (in terms of included loops) traces which reach the goal. As such, if
the automata network allows several di�erent ways of reaching the goal, the
reduction preserves all of them.

As the concept of trace is heavily exploited in the de�ning principles of
the reduction method, we �rst formalise the trace of parametric regulatory
networks. A trace is generally understood as a sequence of compatible trans-
itions. Instead of using the global transitions as understood in the semantics,
we de�ne the trace using local transitions, or more literally value updates. The
local de�nition not only mirrors the use of local causality in the original reduc-
tion procedure for automata networks [62], but corresponds to the usual notion
of Mazurkiewicz traces used in both trace and concurrency theory [56].

De�nition 7.1 (Variable Value Update). Let Gmmm be a parametric regulat-
ory network of dimension n and let v ∈ {1, . . . , n} be an arbitrary variable of
Gmmm.

Then, a value update µ = vx → vy is couple of values (x, y) ∈ {0, . . . ,mmmv}2
of variable v such that |x− y| = 1.

To ease notation, we write simply x → y instead of vx → vy when the
variable v is obvious from context.

Given a state xxx ∈ Xmmm such that xxxv = x, we use µ (xxx) = xxx [v 7→ y] to denote
the state reached by executing the value update µ in state xxx. The notation
naturally extends to sequences of value changes:2

() (xxx) = xxx

µ · π (xxx) = π (µ (xxx))

Furthermore, given a parametrisation PPP ∈ P (Gmmm), we say that the value

update µ is enabled in xxx under PPP if (xxx,xxx [v 7→ y]) ∈ FPPP−→
async

.

Finally, given a transition t = (xxx,yyy) ∈ FPPP−→
async

for some PPP ∈ P (Gmmm), we say

µ (t) = xxxv → yyyv where v = v (t) is the value update of the transition t.

The motivation being application in conjunction with unfolding, we again
limit ourselves to traces of asynchronous semantics, either concrete of abstract,

1Note that while the original model reduction method is de�ned for automata networks,
as mentioned in Section 2.4, automata networks and discrete regulatory networks are ex-
pressivity equivalent. As such, the adaptation is essentially lifting from the parametrised to
the parametric regulatory networks.

2Note that this operation corresponds to the monoidal category action [53] of the trace
monoid on states of the network.

7.1. GOAL-DRIVEN REDUCTION 81

of the parametric regulatory networks. As such, we use value updates directly
in the trace de�nition. An extension to generalised asynchronous semantics can
be achieved by considering steps composed of value updates of several variables
akin to the construction in [62].

De�nition 7.2 (Parametric Regulatory Network Trace). Let Gmmm be a
parametric regulatory network of dimension n and let xxx ∈ Xmmm be an arbitrary
state of Gmmm.

Then a sequence of value updates π is a (local or Mazurkiewicz) trace of
Gmmm starting in xxx if there exists a parametrisation PPP ∈ P (Gmmm) such that for

every i ∈ {2, . . . , |π|}, ((π1, . . . , πi−1) (xxx) , (π1, . . . , πi) (xxx)) ∈ FPPP−→
async

.

To ease notation, we use π:i = (π1, . . . , πi), πi: = (πi, . . .) and πi:j =
(πi, . . . , πj) to denote pre�x, su�x and in�x sub-traces of trace π respectively,
and π · π′ to denote concatenation of two traces.

Finally, we write p (π,xxx) =
{
PPP ∈ P (Gmmm)

∣∣∣ ∀ i ∈ {2, . . . , |π|} , (π:i−1 (xxx) ,

π:i (xxx)) ∈ FPPP−→
async

}
to denote the set of all parametrisations that enable the trace

π from initial state xxx.

We introduce the reduction method for goal properties speci�ed as a target
value > for a particular variable g of the parametric regulatory network.

De�nition 7.3 (Goal Reachability). Let Gmmm be a parametric regulatory
network of dimension n, xxx ∈ Xmmm a state of Gmmm, g ∈ {1, . . . , n} a variable of
Gmmm and > ∈ {0, . . . ,mmmg} a value of the variable g.

We say that value > of variable g is reachable in Gmmm from state xxx if, either
xxxg = >, or there exists a trace π from the initial state xxx such that π (xxx)g = >.

To simplify to notation we refer to g> as goal.

While the goal is de�ned on a single variable, the extension to values for
several variables or even value sets as opposed to single value per variable is
straightforward.

A goal g> is commonly reachable by traces with in�x loops which, by them-
selves, do not a�ect the reachability of the goal. To maximise the e�ciency of
the reduction procedure, only minimal traces, devoid of such loops, are con-
sidered. Adapted from [62], a trace is minimal for reachability of a goal g> if
there exists no other realisable trace reaching g> with a subsequence of value
updates through the same regulator states.

De�nition 7.4 (Minimal Trace). Let Gmmm be a parametric regulatory net-
work, PPP ∈ P (Gmmm) an arbitrary parametrisation, xxx ∈ Xmmm a state of Gmmm and g>
a goal.

Then a trace π from state xxx of the parametrised network FPPP such that
π (xxx)g = > is minimal for the reachability of g> from xxx if and only if there
exists no other trace ρ from state xxx of FPPP satisfying all of the following:

1. ρ (xxx)g = >;

82 CHAPTER 7. GOAL-DRIVEN UNFOLDING

2. |ρ| < |π|;

3. there exists a monotonic injection Φ: {0, . . . , |π|} → {0, . . . , |ρ|} such that
Φ: 0 7→ 0 and ∀ i, j ∈ {0, . . . , |π|} , i ≤ j =⇒ Φ (i) ≤ Φ (j) ∧ πi = vx →
vy = ρΦ(i) ∧ ωv

(
π:i (xxx)

)
= ωv

(
ρ:Φ(i) (xxx)

)
.

Unlike transitions of automata networks in [62], value updates themselves
do not contain any information on the actual traversed states of the network.
An extra condition on regulator state equality, ωv

(
π:i (xxx)

)
= ωv

(
ρ:Φ(i) (xxx)

)
, is

therefore necessary to retain the dynamic information allowing us to distinguish
di�erent traces which are subsequences of value updates (See Example 7.1). An-
other important property of minimal traces safeguarded by the regulator state
equality is their independence on the exact parametrisation. More precisely, if
a trace is minimal for at least one parametrisation, then it is minimal for any
other parametrisation under which it is enabled.

Proposition 7.1. Let Gmmm be a parametric regulatory network of dimension n
and π a trace from xxx ∈ Xmmm minimal for reachability of goal g> in FPPP for some
PPP ∈ P (Gmmm). Then, π is minimal in the network parametrised by any other
parametrisation FPPP ′ where PPP ′ ∈ pR(G) (π).

Proof. PPP ′ ∈ pR(G) (π) guarantees π is a proper trace of FPPP ′ . We conduct the
rest of the proof by contradiction. Let thus ρ be a trace of FPPP ′ satisfying
the conditions in De�nition 7.4. From the existence of the injection Φ we
get ρ̃ ⊆ π̃. By de�nition of parametrisation sets T ⊆ T ′ =⇒ pR(G) (T ′) ⊆
pR(G) (T). Thus, thanks to ωv

(
π:i (xxx)

)
= ωv

(
ρ:Φ(i) (xxx)

)
for all i ∈ {0, . . . , |π|},

pR(G) (π̃) ⊆ pR(G) (ρ̃). ρ is therefore a trace of FPPP contradicting the minimality
of π.

Thanks to Proposition 7.1, it is su�cient to say that a trace of a para-
metric regulatory network is minimal without the need to explicitly list the
parametrisation bearing witness to the minimality.

The goal-driven reduction of automata networks is facilitated by pruning
transitions which are not part of any minimal trace reaching the goal [62].
The individual transitions are, however, not explicitly represented in paramet-
ric regulatory networks. While it is not a challenge to represent the removed
transitions explicitly, the reduction method is proposed for the general auto-
mata networks, which allow arbitrary transitions within the automata. On the
other hand, we have limited ourselves to multivalued networks that are only
allowed to change value of a variable by steps of size 1. As such, if a transition
increasing the value of a variable v to x ∈ {0, . . . ,mmmv} is to be pruned, all
transitions increasing the value of v to a value beyond, to y ≥ x, can surely be
pruned as well. A symmetrical reasoning applies to decreasing transitions.

Thus, instead of pruning individual transitions of parametric regulatory net-
works and representing the removed/preserved transitions explicitly, we adapt
the method to disable increasing, respectively decreasing, value of a variable
in a given regulator state beyond a certain value (or entirely). This is achieved

7.1. GOAL-DRIVEN REDUCTION 83

in a similar pattern to the parametrisation lattices. We extend the parametric
regulatory networks with a record of the activation (increase) and inhibition
(decrease) limits for each variable in vectors lllA and lllI respectively.

De�nition 7.5 (Directed Parametric Regulatory Network). A directed

parametric regulatory network G =
(
Gmmm, lll

A, lllI
)
is a parametric regulatory

network Gmmm coupled with a vector lllA ∈ (N ∪ {−∞})|Ω| of activation limits for
each regulator state ωωω ∈ Ω and a vector lllI ∈ (N ∪ {0,∞})|Ω| of inhibition limits
for each regulator state ωωω ∈ Ω.

The semantics of the directed parametric regulatory network G are the
semantics of the parametric regulatory network Gmmm restricted to the activation
and inhibition limits, lllA and lllI respectively. For any t = (xxx,P)

Gmmm−→
async

(yyy,P ′) of
the parametric regulatory network Gmmm:

t ∈ G−→
async

∆⇐⇒
sign (t) = +1 =⇒ xxxv(t) < lllAωv(t)(xxx)

∧
sign (t) = −1 =⇒ xxxv(t) > lllIωv(t)(xxx)

One may remark that the aforementioned parametrisation lattices used in
abstract parametric regulatory networks already allow restriction of the activ-
ation or inhibition of variables in individual regulator states. Indeed,

[
lllI , lllA

]
forms a parametrisation lattice itself as long as it contains no in�nity values.
The role of the parametrisation lattices as employed in the abstract parametric
network semantics and of the limit vectors lllA and lllI , however, di�ers on a
fundamental level.

The parametrisation lattices serve to keep track of parametrisations cap-
able of reproducing certain behaviour(s), and thus restrict the set of enabled
transitions based on their causal history. On the other hand, the lllA and lllI

of directed parametric regulatory networks mark components whose activation
or inhibition (beyond a certain value) is not necessary to reach a given goal
by the means of a minimal trace. A parametrisation that allows changing a
component value beyond the limit, thus allowing behaviour which does not
lead to the established goal may still allow a di�erent sequence of transitions
leading to the goal. We want to retain such parametrisations, thus the `useless'
behaviour which does not lead to the goal cannot be restricted by the means
of the parametrisation lattice of the abstract parametric regulatory network
semantics. While the independence from parametrisation lattices in abstract
parametric regulatory network semantics requires us to keep track of the extra
limit vectors lllA and lllI , it also guarantees that the goal-driven unfolding is ap-
plicable alongside both the concrete and the abstract semantics of parametric
regulatory networks.

With the minimal traces and the directed parametric regulatory networks
we have the necessary groundwork to introduce the reduction procedure itself.
As we have already mentioned, the reduction relies on causality analysis. In

84 CHAPTER 7. GOAL-DRIVEN UNFOLDING

particular, the reduction procedure identi�es sub-goals based on local causality
for individual components, called (local) objectives. The objectives represent a
change of variable value that necessarily has to occur before a certain transition
can achieve later objective or the goal itself. The objectives as de�ned for the
automata networks [62] keep the desired value evolution abstract and thus do
not specify how, i.e. by means of which transitions, the value change occurs.
While we do not explicitly include this information, the restriction we have
imposed on the multivalued networks allowing the variables to only change
value by steps of size 1, distinctly predetermines how the desired value change
may be achieved. Temporary value swings may still be necessary, however, to
facilitate regulation of a necessary variable.

De�nition 7.6 (Objective). Let G =
(
Gmmm, lll

A, lllI
)
be a directed parametric

regulatory network of dimension n.
Then an objective O = vx vy is a pair of values x, y ∈ {0, . . . ,mmmv} of a

variable v ∈ {1, . . . , n}.
We say an objective O is valid in an initial state xxx ∈ Xmmm if x = y or G has

a trace π from xxx such that π (xxx)v = y and there exists an index i ∈ {0, . . . , |π|}
such that π:i (xxx)v = x.

We use x y to denote vx vy where the variable v ∈ {1, . . . , n} is
obvious from the context.

Each objective vx vy represents either increase or decrease of the value of
the component. We use sign (vx vy) = sign (y − x) to denote the direction
of the prescribed value evolution.

We demand the traces of the parametric regulatory networks to be realisable
within at least one of the associated parametrised networks. The condition on
existence of a trace thus also guarantees that there exists a parametrisation
that enables said trace. A valid objective is therefore surely fully realisable
under at least one parametrisation.

The objective represents a change of value of only one variable v ∈ {1, . . . , n}.
The trace bearing witness to the validity of such an objective may, however,
require other variables to also change value, namely the regulators of v. The
automata network reduction procedure associates each objective with a set of
transitions which may be used to ful�l the objective [62]. Such a transition set
may then be used to obtain the objectives for regulators of v. In the paramet-
ric regulatory networks, however, transitions are not explicitly represented. A
particular transition, or more generally, the value update of a given variable is
possible if there exists a parametrisation enabling it in the associated paramet-
risation set. The transitions thus have to be drawn from parametrisation set,
which speci�es whether a variable value can increase or decrease within each
regulator state.

De�nition 7.7 (Value Update Enabled in a Regulator State). Let G
be a directed parametric regulatory network of dimension n, P ⊆ P (Gmmm) a
parametrisation set, andωωω ∈ Ωv be an arbitrary regulator state of some variable
some variable v ∈ {1, . . . , n} of G.

7.1. GOAL-DRIVEN REDUCTION 85

Then a value update µ = vx → vy, such that x = ωωωv in case v ∈ R(v), is
enabled in a regulator state ωωω ∈ Ωv under P if there exists a parametrisation
PPP ∈ P such that sign (x−PPP v,ωωω) = sign (x− y).

Given a value update µ, we refer to regulator states ωωω which do not enable
µ as bad regulator states.

Seeing as the reduction procedure constructs the objectives based on the
regulators of the variable in question, the transitions of parametric regulatory
networks as given by the semantics which depend on the entire states of the
network, are highly unsuitable. Instead, to maximise the e�ciency of the
reduction procedure, a minimalistic, with respect to the number of regulators,
representation of the value evolutions is desirable. One such obvious reduction
is the projection from the entire state to the regulators themselves in the form
of the regulator states, which we already employ within the parametrisations.
A particular change in the value of a given variable is possible if there exists a
parametrisation enabling it in the associated parametrisation set. The criterion
being existential with respect to parametrisations, it is a common occurrence
for a variable to be enabled to update value in a given direction within numerous
regulator states. Enumerating the transitions for each of the regulator states
individually could thus still lead to substantial redundancy. In particular, if the
value update is enabled within all regulator states that di�er only in the value of
a particular regulator u ∈ R(v), i.e. if the value update is possible regardless of
the value of u, the regulator u can be omitted as no trace that changes the value
of u for the express purpose of changing value of v is minimal. To minimise
the amount of regulators to be analysed within the model reduction procedure,
we introduce a partial regulator state as a union over several regulator states
characterised by only a subset of regulators being evaluated.

De�nition 7.8 (Partial Regulator State). Let Gmmm be a parametric regu-
latory network of dimension n and let v ∈ {1, . . . , n} be a variable of Gmmm.

Then a partial regulator state of v is a vector ℵℵℵ ∈
J≤
Π

u∈R(v)
{0, . . . ,mmmu} ∪ {?}

assigning a value or a wildcard ? to each regulator u of v.
By abuse of notation, a partial regulator state is also a set of regulator

states, ℵℵℵ = {ωωω ∈ Ωv | ∀u ∈ R(v), ωωωu = ℵℵℵu ∨ℵℵℵu = ? }.

Av =
J≤
Π

u∈R(v)
{0, . . . ,mmmu} ∪ {?} denotes the set of all partial regulator states

of a variable v ∈ {1, . . . , n}.

Partial regulator states can be utilised to abstract the parametric regulat-
ory network dynamics while minimising the number of repeated values for each
regulator. We capture these abstractions by the means of sets of partial reg-
ulator states, called regulation cover sets, representing the enabling condition
of a given value update. A regulation cover set of a value update vx → vy
is subject to two conditions. First, the set has to cover all regulator states
ωωω ∈ Ωv such that vx → vy is enabled in ωωω. I.e., for each such regulator state
there must exist one or more partial regulator states which specify the value

86 CHAPTER 7. GOAL-DRIVEN UNFOLDING

of each regulator in ωωω. Second, no bad regulator state ωωω, in which the vx → vy
is not enabled, is subsumed by any of the partial regulator states in the cover
set. The two conditions not only guarantee that the abstract dynamics enable
exactly the same value changes as the concrete dynamics, but also preserve
the regulator information, i.e. each value of each regulator that appears in
the enabling conditions. The regulator information is necessary to accurately
determine which regulator values are necessary to complete an objective.

De�nition 7.9 (Regulation Cover Set). Let G be a directed parametric
regulatory network of dimension n, P ⊆ P (Gmmm) a parametrisation set and let
µ = vx → vy a value update of variable v ∈ {1, . . . , n} from x to y.

A set of partial regulator states Aµ ⊆ Av is a cover set of µ if both of the
following conditions are satis�ed:

� For all regulator states ωωω ∈ Ωv such that µ is enabled in ωωω under P, and
for all regulators u ∈ R(v), there exists a partial regulator state ℵℵℵ ∈ Aµ,
such that ωωω ∈ ℵℵℵ ∧ωωωu = ℵℵℵu.

� For all bad regulator states ωωω ∈ Ωv such that µ in ωωω is not enabled under
P, ωωω /∈

⋃
ℵℵℵ∈Aµ ℵℵℵ.

Any regulation cover set, including the concrete regulation cover set con-
taining only fully speci�ed regulation states {ωωω ∈ Ωv | µ is enabled in ωωω }, may
be used for the express purposes of the reduction procedure. The aim of the
regulation cover set is to minimise the number of individual regulator values
which appear across all of the partial regulator states. In Section 7.2, we give
an example of an algorithm for computation of regulation cover sets with no
more regulator value speci�cations than the concrete regulation cover set.

Since parametric regulatory networks allow only unitary value changes, the
realisation of an objective vx vy involves a monotonic evolution of value of
variable v from x to y, where each update of value depends on speci�c (partial)
regulator state. This coupling of a value change with a corresponding partial
regulator state is referred to as a partial transition.

The reduction of directed parametric regulatory networks relies on associ-
ating to objectives the set of partial transitions which are necessary to realise
the objective. Starting from the �nal (goal) objective, the procedure then
recursively collects objectives related to the identi�ed partial transitions.

De�nition 7.10 (Objective Transition Set). Let G be an directed paramet-
ric regulatory network of dimension n, P ⊆ P (Gmmm) a set of parametrisations
and let O = vx vy be an objective for a variable v ∈ {1, . . . , n}.

Let �rst µ (O) be the set of all value updates covered by the objective O
de�ned as follows:

µ (O)
∆
=

 vz → va

∣∣∣∣∣∣
sign (vz → va) = sign (O)∧
max({z, a}) ≤ max({x, y})∧
min({z, a}) ≥ min({x, y})



7.1. GOAL-DRIVEN REDUCTION 87

Then the objective transition set τ (O) is a set of partial transitions com-
posed of a covered value update and a covered partial regulator state:

τ (O)
∆
= { (µ,ℵℵℵ) | µ ∈ µ (O) ∧ℵℵℵ ∈ Aµ }

Given an initial state xxx ∈ Xmmm, the valid objective transition set of an ob-
jective O in state xxx is the subset of the objective transition set τxxx (O) ⊆ τ (O)

such that (µ,ℵℵℵ) ∈ τxxx (O)
∆⇐⇒ ∀u ∈ R(v), ℵℵℵu 6= ? =⇒ xxxu ℵℵℵu is valid in the

initial state xxx.
The (valid) objective transition sets extend to sets of objectives in the

natural manner, τ (O) =
⋃
O∈O τ (O).

Remark that the de�nition of a valid objective transition set bene�ts from
the use of partial regulator states. Indeed, instead of having to check validity
of an objective for each regulator, only the minimal necessary subset of reg-
ulators is considered. Checking objective validity consists of �nding a trace
witness, which translates to �nding all possible extensions (enabled value up-
dates) of a trace. The parametrisation lattices used in the abstract semantics
of parametric regulatory networks allow searching for enabled value updates
without explicitly enumerating the parametrisations. The objective validity
computation is thus compatible with the abstraction of parametrisation sets.

The goal-oriented reduction of directed parametric regulatory networks can
then be de�ned by recursively collecting objectives from partial transitions into
an reduced objective set B, and re�ning the component activation and inhibition
limits accordingly.

De�nition 7.11 (Directed Parametric Regulatory Network Reduc-

tion Procedure). Let G =
(
Gmmm, lll

A, lllI
)
be a directed parametric regulatory

network of dimension n, xxx ∈ Xmmm an arbitrary initial state and g> a goal.
Then, the goal-driven reduction of G is again a directed network G′ =(

Gmmm, lll
A′, lllI

′)
of the same dimension n where the underlying parametric reg-

ulatory network is unchanged and the limit vectors lllA
′
and lllI

′
are de�ned as

follows for each regulator state (v,ωωω) ∈ Ω:

lllA
′
ωωω = max({x ∈ {0, . . . ,mmmv} | ∃ (vx−1 → vx,ℵℵℵ) ∈ τxxx (B), ωωω ∈ ℵℵℵ} ∪ {−∞})

lllI
′
ωωω = min({x ∈ {0, . . . ,mmmv} | ∃ (vx+1 → vx,ℵℵℵ) ∈ τxxx (B), ωωω ∈ ℵℵℵ} ∪ {∞})

where B is the smallest set of objectives satisfying all of the following conditions:

1. xxxg g> ∈ B;

2. For each O ∈ B, each (wx → wy,ℵℵℵ) ∈ τxxx (O), and each u ∈ R(w) \ {w},
ℵℵℵu 6= ? =⇒ xxxu ℵℵℵu ∈ B;

3. For each O ∈ B, each (wx → wy,ℵℵℵ) ∈ τxxx (O), and each wz wa 6= O ∈
B, wy wa ∈ B.

88 CHAPTER 7. GOAL-DRIVEN UNFOLDING

Following the interpretation of the reduction procedure a transition t =
(yyy,zzz) is preserved in the reduced network G′ if there exists a partial trans-
ition (µ (t) ,ℵℵℵ) ∈ τxxx (B) where ωv(t) (yyy) ∈ ℵℵℵ. In particular, such partial trans-
ition must exist in the valid objective transition set of some objective O ∈ B,
(µ (t) ,ℵℵℵ) ∈ τxxx (O) ⊆ τxxx (B). As the objectives are realised in monotonic fash-
ion in multivalued networks, we know such an O covers µ (t). The claim is
formalised in Lemma 7.1.

Lemma 7.1 (Transitions Covered by an Objective in the Reduced Objective
Set are Represented in the Valid Objective Transition Set). Let G be a directed
parametric regulatory network of dimension n and let π be a trace of G reaching
a goal g> from an initial state xxx ∈ Xmmm. Let further B be the objective set
constructed by the reduction procedure according to De�nition 7.11. Finally,
let O = vx vy ∈ B be an arbitrary objective in the reduced objective set.

Then, for any i ∈ {1, . . . , |π|} such that πi ∈ µ (O), there exists (πi,ℵℵℵ) ∈
τxxx (O) where ωv

(
π:i−1 (xxx)

)
∈ ℵℵℵ.

Proof. Since π is a trace of G, we know the value update πi is enabled in the
regulator state ωωω = ωv

(
π:i−1 (xxx)

)
. Thus, by De�nition 7.9 of the regulation

cover sets, we know there must exist at least one partial regulator state ℵℵℵ ∈ Aπi
such that ωωω ∈ ℵℵℵ.

Then, by De�nition 7.10 of objective transition sets, the corresponding
partial transition (πi,ℵℵℵ) ∈ τ (O). Finally, since π itself is a witness of the
validity of objectives for all regulators required by (πi,ℵℵℵ), (πi,ℵℵℵ) ∈ τxxx (O).

This leads us to formulate the soundness theorem of the reduction proced-
ure, guaranteeing that all transitions witnessing all of the minimal traces are
preserved and thus, in turn, all minimal traces are preserved. The proof of the
theorem relies on Lemma 7.1 to show that any value update whose associated
transition is not preserved is part of a cycle on any trace leading to the goal,
and as a consequence does not belong to any minimal trace.

Theorem 7.1. Let G be a directed parametric regulatory network of dimension
n and let π be a trace of G from the initial state xxx ∈ Xmmm minimal for a goal
g>. Let further B be set of objectives constructed for reachability of g> from xxx
according to De�nition 7.11.

Then, for any i ∈ {1, . . . , |π|} with πi = vx → vy, there exists at least one
partial transition (πi,ℵℵℵ) ∈ τ (B) such that ωv

(
π:i−1 (xxx)

)
∈ ℵℵℵ.

Proof. We conduct the proof by contradiction, showing that if a value change
vx → vy = πi for some i ∈ {0, . . . , |π|}, is not covered by any objective in B,
the trace π cannot be minimal.

Let now j < i be the largest such that v (πj) = v and for which there exists
O ∈ B, πj ∈ µ (O), if it exists, j = 0 otherwise. Furthermore, let k > i be the
smallest such that v (πk) = v and π:k−1 (xxx)v = π:j (xxx)v, if it exists, k = |π|+ 1
otherwise.

7.1. GOAL-DRIVEN REDUCTION 89

Let us now consider a value update sequence ρ obtained from π by removing
all the value updates of variable v in πj+1:k−1. The removed value updates
either form a loop on the value of v or, in case j = |π| + 1, have no causal
successors modifying the value of v. The evolution of v along ρ is therefore
valid with respect to evolving the value by steps of size 1. For ρ to satisfy the
minimality condition in De�nition 7.4 with respect to π, the regulator states
use by each value update have to be the same.

Let us therefore assume there exists l ∈ {1, . . . , |π|} with w = v (πl) such
that ωw

(
π:l−1 (xxx)

)
6= ωw

(
ρ:h−1 (xxx)

)
where h is the new index of πl in ρ, πl =

ρh. As ρ only di�ers from π by the evolution of variable v value between πj
and πk, πl must be a value change of a variable w 6= v, such that v ∈ R(w) and
j < l < k.

We now show ρl /∈ µ (O) for any O ∈ B by contradiction. Let thus O′ ∈ B
be such that ρl ∈ µ (O′). v ∈ R(w) and thus by rule (2) of the reduced objective
set construction in De�nition 7.11, xxxv z ∈ B where z = π:l (xxx)v. We now
conduct a discussion on the value of j.

� j = 0. p
(
ρ:h,xxx

)
= ∅ and p

(
π:l,xxx

)
6= ∅ implies that ρ:h (xxx)v 6= z. There

thus must exist a value change from xxxv towards z. Such value change is
however, covered by xxxv z contradicting j = 0.

� j > 0. By de�nition, πj ∈ µ (O) where O ∈ B. Let a be the target
value of O. Then, by rule (3) of the reduced objective set construction
in De�nition 7.11, va vz ∈ B. The objective va vz, respectively, O
itself in case π:j (xxx)v 6= a and sign

(
z − π:j (xxx)v

)
= sign (O), covers the

�rst value change of v after πi. This is a contradiction with j being the
largest index of a covered value change or, in case πi is the �rst change
of variable v value after πj , with πi not being covered.

As such, the value change ρh is not covered by any objective in B Therefore,
ρh can be removed from ρ in the same fashion as πi was removed from π. Re-
peating the whole procedure leads to an even shorter value update sequence. As
any minimal trace is �nite, all uncovered value updates are eventually purged,
leaving a valid trace.

Thanks to rule (1) of the reduced objective set construction in De�ni-
tion 7.11, the objective xxxg > ∈ B covers all value updates of variable g
from xxxg to >. However, even covered value updates may be removed if they
lie between πj and πk. We thus still have to show that for any covered value
update πl for j < l < k which gets removed in ρ, there exists h ≤ j such that
π:h (xxx)v = π:l (xxx)v.

Let thus O′ ∈ B be such that πl ∈ µ (O′) and let z be the target value of
the objective O′. By de�nition of the reduced objective set B, any target value
of an objective is �rst introduced by either rule (1) or (2) of De�nition 7.11,
giving us xxxv z ∈ B.

Let us �rst show j > 0 by contradiction. We can assume π:l−1 (xxx)v = xxxv,
otherwise the �rst value update of variable v towards π:l−1 (xxx)v is covered by
xxxv z contradicting j = 0. Furthermore, πl itself is covered, giving us i < l.

90 CHAPTER 7. GOAL-DRIVEN UNFOLDING

Finally, k is the smallest index beyond i of a value update changing the value
of variable v from xxxv. Therefore, k ≤ l, which is direct contradiction of l < k.

We thus know there exists a value update πj ∈ µ (O) covered by the ob-
jective O ∈ B. Let a be the target value of the objective O, thus xxxv a ∈ B.
Furthermore, by rule (3) of the reduced objective set construction in De�ni-
tion 7.11, vz va, va vz ∈ B.

Let us now conduct a discussion on the sign s ∈ {−1, 1} of the �rst removed
value update, i.e. the �rst value update of variable v after πj .

� s = sign (πj). Then, as no value update between πj and πi is covered,
a = π:j (xxx)v. By a similar argument with the objective va vz ∈ B, and
using the fact that k > l is the �rst value update of v starting from value
a, π:j (xxx)v = z = a = π:l (xxx)v.

� s = −sign (πj). We know O = xxxv a. Otherwise, O would have
to have been added to B by rule (3) of De�nition 7.11. The rule (3)
being symmetrical, the reverse objective of O, which covers the �rst value
update of variable v after πj , would therefore also have to belong to B.
A similar argument can be used to obtain O′ = xxxv z. The objective
from a to the initial value of O′, which again covers the �rst value update
of variable v after πj , would have belonged to B otherwise. Finally, since
j is the last index of a covered value update before πi, it is in particular
not covered by va vz, giving us sign (O′) = sign (O). Thanks to l < k,
we know π:l (xxx)v ≤ π:j (xxx)v and due to the value updates being of steps
of size 1, there must exist the coveted h ≤ j with π:l (xxx)v = π:h (xxx)v
facilitating the evolution of variable v value from xxxv to π:j (xxx)v.

As such, none of the variable values reached by a covered value update may
be lost during the removal procedure. The newly obtained trace is therefore
guaranteed to reach the goal, contradicting the minimality of π.

7.2 Computation of Regulation Cover Sets

This section introduces a sample algorithm for computation of the regulation
cover sets. The algorithm relies on a simple heuristic for choosing partial
regulators states to ensure each enabled regulator state is covered, while main-
taining the condition that no bad regulator state is covered, thus complying
with De�nition 7.9. The regulation cover set computed by the algorithm in
this section is guaranteed to not be larger than the concrete regulation cover
set, with respect to the number of regulator value speci�cations across all the
partial regulator states in the cover set (values other than the wildcard ?).

Throughout this section we limit ourselves to computation of a single reg-
ulation cover set, for a given parametric regulatory network G, value change
vx → vy and parametrisation set P. Let now Aena

∆
=
{
ℵℵℵ ∈ Av

∣∣ ∀ωωω ∈ ℵℵℵ, ∃PPP ∈
P, PPP v,ωωω = y

}
denote the set of all partial regulator states that subsume no

bad regulator state (contain only regulator states enabling vx → vy). Further,

7.2. COMPUTATION OF REGULATION COVER SETS 91

we use Ai
∆
= {ℵℵℵ ∈ Av | |{u ∈ R(v) | ℵℵℵu = ? }| = i } where i ∈ {0, . . . , |R(v)|}

to denote the sets of all partial regulator states ranked by the number of
wildcard values. A0 is thus isomorphic to the regulator state set Ωv while
ℵℵℵ|R(v)| =

{
{?}|R(v)|

}
is the singleton set containing the partial regulator state

which assigns wildcard value to each regulator.
The algorithm consists of choosing partial regulator state set, local cover set

Aωωω, to cover each (concrete) regulator state ωωω enabling the value change. The
extension setsAωωω are computed separately for each regulator state in increasing
order of a suitable weight function W. The weight function is constructed to
represent the �exibility of how the particular regulator state may be covered.
I.e. The more partial regulator states ℵℵℵ ∈ Aena such that ωωω ∈ ℵℵℵ exist, the larger
the result of the weight function for ωωω. By ensuring the regulator states ωωω with
few possible local cover sets Aωωω are covered �rst using the weight function, it
becomes possible to choose such cover setsAωωω for the remaining regulator states
that are most compatible with the already included partial regulator states,
minimising redundancy. To further amplify this bene�t, the algorithm keeps
track of partial regulator states that are removed from further computation,
denoted Armv . In particular, every time a local cover set Aωωω is picked for a
regulator state ωωω, all partial regulator states ℵℵℵ ∈ Aena \ ℵℵℵωωω such that ωωω ∈ ℵℵℵ
are removed, ℵℵℵ ∈ Armv . This ensures that no redundancy is introduced to the
covering of ωωω in further computation. Finally, to re�ect the possibility of many
local cover sets for a particular regulator state ωωω being disabled due to partial
regulator state being removed, the weight function takes the removed states
into consideration and depends on the size of {ℵℵℵ ∈ Aena \ Armv | ωωω ∈ ℵℵℵ}.

The local cover set Aωωω is chosen from subsets of Ai limited to partial regu-
lator states ℵℵℵ such that ωωω ∈ ℵℵℵ, in decreasing order of i. Such a local cover set
surely exists among the subsets of Ai as for i = 0, the relevant subset contains
only the singleton set containing the regulator state itself. Once a suitable local
cover set Aωωω is obtained, it is directly included in the �nal regulation cover set
Aµ. As aforementioned, the remaining relevant partial regulator states, which
do not belong to the selected local cover set, are removed at the same time.

As the weight function essentially counts partial regulator states, it in gen-
eral only gives a partial order on the regulator states. As such, the algorithm
is forced to make nondeterministic choices. Such a situation occurs, however,
only when the outcomes of the choice are isomorphic from the perspective of
further computation. Therefore, an arbitrary extension of the partial order
given by the weight function (e.g. lexicographic order) can be chosen to obtain
a fully deterministic algorithm. The pseudocode of the sample algorithm for
regulation cover set inference is given in Algorithm 1.

The correctness of the algorithm comes directly from the construction. No
bad states may be included as the algorithm works only with the set of partial
regulator states which include no bad states. On the other hand, all regulator
states which enable the value change are fully covered as the algorithm ensures
this for each of them individually.

The resulting cover set computed by Algorithm 1 contains no more explicit

92 CHAPTER 7. GOAL-DRIVEN UNFOLDING

Algorithm 1 Computation of Regulation Cover Set
function Weight(ωωω)

return |{ℵℵℵ ∈ (A1 ∩ Aena \ Armv) | ωωω ∈ ℵℵℵ}|+ |{ℵℵℵ∈A1∩Aena | ωωω∈ℵℵℵ}|
|R(v)|+1

end function

function ComputeRegulationCoverSet(vx → vy, P)
Aµ ← ∅
Aena ← {ℵℵℵ ∈ Av | ∀ωωω ∈ ℵℵℵ, ∃PPP ∈ P, PPP v,ωωω = y }
Armv ← ∅
for i = 0 to |R(v)| do
Ai ← {ℵℵℵ ∈ Av | |{u ∈ R(v) | ℵℵℵu = ? }| = i }

end for
while A0 \ Armv 6= ∅ do

ωωω ← min
ωωω′∈(A0∩Aena)\Armv

(Weight(ωωω′))

Aωωω ← ∅
i← |R(v)| − 1
while ωωω is not covered by Aµ ∪ Aωωω do
Aωωω ← (Ai ∩ Aena) \ Armv

i← i− 1
end while
Aµ ← Aµ ∪ Aωωω
Armv ← Armv ∪ {ℵℵℵ ∈ Av | ωωω ∈ ℵℵℵ}

end while
return Aµ

end function

regulator value speci�cations than the concrete regulation cover set. This is a
consequence of the order in which the individual regulator states are handled.
Suppose a regulator state ωωω is covered by several partial regulator states which
contain more regulator value speci�cations than ωωω itself. Each partial regulator
state ℵℵℵ ∈ A1 with ℵℵℵu = ? is shared with exactly max(u) − 1 other regulator
states. Thus, the partial regulator states included to cover ωωω can be utilised
while covering max(u)−1 other regulator states. Finally, sinceW (ωωω) ≥ 2 is the
smallest weight among all uncovered regulator states, all the other uncovered
regulator states are also sharing partial regulator states among themselves,
thus closing the loop and guaranteeing the regulator value speci�cation debt
eventually gets `payed o�'.

The fractional part of the weight function is included to introduce bias
towards states that have less partial regulator states in the beginning due to
sharing more partial regulator states with bad regulator states. If there are two
regulator states ωωω and ωωω′ such that bW (ωωω)c = bW (ωωω′)c but W (ωωω) < W (ωωω′),
we know that both regulator states have equally many partial regulator states
to choose from for their respective cover sets. However, more of the partial
regulator states containing ωωω′ have been removed and thus, quite possibly,

7.3. EXAMPLES 93

have also been included in the regulation cover set Aµ. ωωω′ is therefore in
all likelihood already covered to a higher degree than ωωω, and likely has more
covering options. The bias thus ensures ωωω is covered �rst in order to avoid
introducing potentially redundant partial regulator states into the regulation
cover set.

Algorithm 1 is quasilinear in the number of regulator states and quadratic
in the number of regulators. The main complexity comes from computing
the local cover sets Aωωω. Whether a regulator state ωωω ∈ Ωv is covered by some
partial regulator state set, in particular, Aµ∪Aωωω, can be decided in O (|R(v)|).
Only the relevant subsets of Ai for each i ∈ {0, . . . , |R(v)|} are considered for
the local cover sets. Thus, each ωωω ∈ Ωv tests at most |R(v)| local cover sets,
although usually much less. As such, the local cover set of a single regulator
state can be computed inO

(
|R(v)|2

)
. Given that local cover sets are computed

for each regulator state which enables the value change, computing all the local
cover sets takes asymptotically O

(
|Ωv| · |R(v)|2

)
.

Finally, one has to consider the complexity of keeping the regulator states
in a priority queue according to the weight function W. The asymptotic time
complexity of the complete Algorithm 1 is therefore quasilinear in the number
of regulator states O

(
|Ωv| ·

(
log (|Ωv|) + |R(v)|2

))
.

Algorithm 1 does not require explicit enumeration of parametrisations when
coupled with the abstract parametric regulator network semantics. The para-
metrisation set is only used to determine which regulator states enable the value
change (queries to Aena). This information is readily available using the para-
metrisation lattices in the form of parameter values for the relevant regulator
state in the minimum parametrisation and the maximum parametrisation.

7.3 Examples

In this section we present an example of directed parametric regulatory net-
work reduction by the means of the reduction procedure from De�nition 7.11,
including the computation of the regulation cover set by the algorithm Al-
gorithm 1.

Example 7.1. Consider the parametric regulatory network G′{1}4 from Ex-

ample 5.1 as a directed parametric regulatory network G =
(
G′{1}4 , lll

A, lllI
)
,

where lllA = {1}4 and lllI = {0}4 are unrestrictive. Let further P =
{
PPP ,PPP ′

}
be a parametrisation set containing only two parametrisations, PPP being the
parametrisation from Figure 5.2 de�ning the Boolean network FB from Ex-
ample 2.2. And PPP ′ = PPP [a, 100 7→ 0] be a parametrisation di�ering from PPP
only on the value of parameter Ka,100. Finally, let a1 be a goal and xxx =
(a = 0, b = 0, c = 0, d = 0) an initial state.

In Figure 7.1 we recall the dynamics of the Boolean network FB in the form
of the state space graph with asynchronous semantics. As opposed to Figure 2.6,
the behaviour enabled solely by parametrisation PPP ′ is also represented. The bold

94 CHAPTER 7. GOAL-DRIVEN UNFOLDING

0000 1000 0001 1001

0010 1010 0011 1011

0100 1100 0101 1101

0110 1110 0111 1111

b+ b− b+ b−

d+

d−

d+

d−

c+ c+ c+ c+

c− c− c− c−
a+

a+,PPP

a−,PPP ′

a+

a− a−

a−

a−

a−

Figure 7.1: The state space graph of the directed parametric regulatory network
G with parametrisation set

{
PPP ,PPP ′

}
. Transitions changing the value of b and

d are displayed schematically. Transitions only enabled by a single of the
parametrisations are labelled by the respective parametrisations. Bold font
and lines indicate states and transitions used by at least one minimal trace
from the initial state to the goal a1.

lines and text indicate transitions belonging to a minimal trace to the goal a1

and states visited by the minimal traces, respectively.
In our example, three distinct minimal traces from the initial state xxx to the

goal a1 exist. Here, we list the minimal traces including the traversed states
for clarity. The value updates are annotated by their variable, the nature of the
value change and the regulator state:

0000
b+,0−−−→ 0100

a+,100−−−−→ 1100

0000
b+,0−−−→ 0100

c+,1−−−→ 0110
a+,110−−−−→ 1110

0000
b+,0−−−→ 0100

c+,1−−−→ 0110
b−,1−−−→ 0010

a+,010−−−−→ 1010

Notice that all the listed traces share a common pre�x. In fact, if only the
value updates, without the regulator states were considered in De�nition 7.4,
only the �rst, shortest, trace would me considered minimal. All traces, how-
ever utilise a di�erent regulator state, thus e�ectively a di�erent transition to
increase the value of variable a and reach their �nal state. Observe also that
the �rst, shortest, minimal trace is only available under the parametrisation
PPP . Thanks to the regulator state equality condition, we thus preserve minimal
traces also for PPP ′ without the need to separate them.

Observe that variable d never changes value along any of the minimal traces.
This follows from the fact that variable a is never allowed to increase while
variable d value is 1. Thus, if variable d value increases, it has to decrease
again before the goal can be reached. Variable d is only regulator of itself and
variable a and has therefore no other e�ects on the network. Unlike the increase

7.3. EXAMPLES 95

and decrease loop of variable b value in the third, longest, minimal trace, which
is necessary for the increase of variable c value, the increase and decrease loop
of variable d can therefore always be stripped from the trace to obtain a shorter,
more minimal, trace. One might thus expect the value updates of variable d to
be pruned by the reduction procedure, which is, indeed the case:

We start with B := {a0 a1} according to rule (1) of De�nition 7.11.
Inference of the regulator cover set used in τa0 a1 (xxx) = {(a0 → a1,ℵℵℵ) |

ℵℵℵ ∈ Aa0→a1
} = {(a0 → a1, 100) , (a0 → a1, 010) , (a0 → a1, 110)} is illustrated

in Example 7.2. By rule (2) of De�nition 7.11: B := B ∪ {b0 b0, b0
b1, c0 c0, c0 c1, d0 d0}.

For arbitrary variable v, the objective v0 v0 has an empty valid transition
set τv0 v0 (xxx) = ∅ and thus neither of rules (2) or (3) are applicable.

For the remaining objective b0 b1 and c0 c1, rule (2) produces only
duplicate objectives b0 b0 and b0 b1, respectively. Rule (3), however, may
be applied to b0 b1 and b0 b0, as well as c0 c1 and c0 c0 to obtain
B := B ∪ {b1 b0, c1 c0}.

Only duplicate objectives are obtained by further application of either rule
(2) or (3). The construction of the B thus concludes with B = {a0 a1, b0
b0, b0 b1, c0 c0, c0 c1, d0 d0, b1 b0, c1 c0}, with the valid
partial transition set τB (xxx) = {(a0 → a1, 100),(a0 → a1, 010), (a0 → a1, 110),
(b0 → b1, 0), (b1 → b0, 1), (c0 → c1, 1), (c1 → c0, 0)}. One may observe that
the computed transition set indeed covers all the transitions used by any of the
minimal traces (thick edges in Figure 7.1).

Finally, the limit vectors for the new DPRN G′ =
(
G′{1}4 , lll

A′, lllI
′)

are as

follows:

lllA
′

= (a = 1, b = 1, c = 1, d = −∞)

lllI
′

= (a =∞, b = 0, c = 0, d =∞)

The variable d is indeed completely forbidden changing value in the reduced
model, considerably decreasing the reachable state space that has to be explored.
Notice also that decrease of variable a value is also disabled, however, in our
Boolean case this has no practical e�ect w.r.t. reachability of the goal a1.

Example 7.2. Let us consider the directed parametric regulatory network G =(
G′{1}4 , lll

A, lllI
)
from Example 7.1.

We now show the regulation cover set computation for value updates of
variable a. Let us start with a0 → a1. We visualise the computation directly
on the regulator states of variable a represented by the Hasse diagram of the
lattice (Ωa,�a). The initial con�guration and �rst two iterations, covering of
the �rst two regulator states, are depicted in Figure 7.2.

Bold font in Figure 7.2 indicates the three regulator states which enable the
increase of variable a value. The partial regulator states from A1 correspond to
edges in the Hasse diagram. E.g. the partial regulator state 11? is represented
by the edge connecting regulator states 111, 110 ∈ 11?. Thick edges indicate

96 CHAPTER 7. GOAL-DRIVEN UNFOLDING

110

111 100 010

101 011 000

001

11?

1?1

?01

(a) Initial con�guration

110

111 100 010

101 011 000

001

(b) Con�guration after
the �rst iteration cover-
ing 010.

110

111 100 010

101 011 000

001

(c) Con�guration after
the second iteration cov-
ering 100.

Figure 7.2: Regulator states of variable a during computation of regulation
cover set for value update a0 → a1 in the form of the Hasse diagram of the
monotonicity order �a. Only the leftmost edges in (a) are labelled by the cor-
responding partial regulator states 11?, 1?1 and ?01 for the sake of readability.
Bold text and lines indicate partial regulator states which enable the value
update, Aena . Underlined regulator state is the state covered in the respective
iteration and dashed lines represent removed partial regulator states, Armv .

partial regulator states which contain no bad regulator states. Partial regulator
states from A2 could in turn be viewed as squares in the diagram. In our case
all the partial regulator state in A2 contain at least one bad regulator state. As-
suming all in�uences are monotonic, a partial regulator state ℵℵℵ belonging to Ai
corresponds to a i-dimensional hypercube, in the Boolean case, or i-dimensional
hyper-rectangular cuboid, in the general case, in the Hasse diagram, with all
contained vertices representing regulator states ωωω ∈ ℵℵℵ.

The Hasse diagram representation in Figure 7.2 allows computing the weight
function at a glance. The weight corresponds to number of neighbouring thick,
non-dashed edges plus, the number of neighbouring thick edges divided by |R(a)|+
1, in our case 4. Consequently, in the initial con�guration, Figure 7.2 (a),
the regulator states 100 and 010 share an equal minimal weight W (010) =
W (100) = 1.25. The weight equality comes from the regulator states 100 and
010, being in a perfectly symmetrical position in the hypercube structure of the
Hasse diagram.

The run of the Algorithm 1 as illustrated in Figure 7.2 assumes lexicographic
order is used to distinguish between regulator states with equal weights. Thus,
010 is covered in the �rst iteration. Only one partial regulator state in A1,
?10 which does not cover b = 0, contains 010. The local cover set used for
010 is therefore taken from A0 and contains only 010 itself, A010 = {010}.
Figure 7.2 (b) depicts the con�guration after the �rst iteration, including the
removed partial regulator states, Armv represented by the dashed lines.

In the second iteration 100 is covered as 1.25 = W (100) < W (110) =
1.5. As hinted by the symmetric position with respect to 010, 100 is covered
in the same fashion, by local cover set A100 = {100}. The result is shown

7.3. EXAMPLES 97

110

111 100 010

101 011 000

001

(a) Initial con�guration

110

111 100 010

101 011 000

001

(b) Con�guration after
the �rst iteration cover-
ing 000.

110

111 100 010

101 011 000

001

(c) Con�guration after
the second iteration cov-
ering 100.

110

111 100 010

101 011 000

001

(d) Con�guration after
the third iteration cover-
ing 011.

110

111 100 010

101 011 000

001

(e) Con�guration after
the fourth iteration cov-
ering 111.

110

111 100 010

101 011 000

001

(f) Con�guration after
the �fth iteration cover-
ing 001.

Figure 7.3: Regulator states of variable a during computation of regulation
cover set for value update a1 → a0 in the form of the Hasse diagram of the
monotonicity order �a. Bold text, lines and shaded areas indicate partial reg-
ulator states which enable the value update, Aena . The underlined regulator
state is the regulator state covered in the respective iteration. Dashes repres-
ent removed partial regulator states, Armv , and double lines represent partial
regulator states included in the regulation cover set Aa1→a0 .

in Figure 7.2 (c).

The only partial regulation state remaining in Aena \ Armv is the regulator
state 110 itself. Thus, the local cover set for 110 is also explicit, A110 =
{110}. The algorithm therefore concludes with the concrete regulation cover
set Aa0→a1 = {010, 100, 110}, which is the optimal solution in our case.

Let us now also consider the decreasing case a1 → a0. Again we depict the
computation using the Hasse diagrams of the lattice (Ωa,�a). All iterations of
the Algorithm 1 using lexicographic order on regulator states of equal weight up
to the �nal one are given in Figure 7.3.

Four regulator states are symmetrical in the initial con�guration,W (000) =
W (011) = W (100) = W (111) = 2.5. The regulator state 000 is therefore
covered �rst. Unlike the case of a0 → a1, A2 = {?0?, ??1} is not empty.
However, only ?0? contains 000, which is not enough for a local cover set. The
local cover set is therefore chosen from A1, A000 = {00?, ?00}. The local cover

98 CHAPTER 7. GOAL-DRIVEN UNFOLDING

set is represented by the double lines in Figure 7.3 (b). Notice that in this case,
the regulator state 000 gets covered by two partial regulator states having one
more regulator value speci�cation (a total of 4 speci�cations against the explicit
3).

100 is covered next (W (100) = 1.5). ?0? is no longer available and only 10?
contains 100 in A1 \Armv . The local cover set A100 = {10?} is su�cient, how-
ever, as Aa1→a0 already contains ?00 which provides the missing d = 0. Thus,
100 is covered at an additional cost of only 2 regulator value speci�cations,
e�ectively paying o� the depth incurred while covering 000.

011 is covered next thanks to the fractional part of the weight function, 2.5 =
W (011) = W (111) < W (001) = W (101) = 2.75. Owing to the symmetry of
the hypercube diagram, 011 and 111 are covered by the partial regulator state
0?1, ?11 and 1?1 following the same reasoning (Figure 7.3 (d) and (e)).

The remaining regulator states 001 and 101 get covered by empty local cover
sets, A001 = A101 = ∅ as 001 and 101 are already covered by 00? and 0?1,
respectively 10? and 1?1 which are already in Aa1→a0

(dashed lines). The al-
gorithm therefore concludes with regulation cover set Aa0→a1

= {00?, ?00, 10?,
0?1, ?11, 1?1} using 12 regulator value speci�cations as opposed to the 18 of the
concrete regulation cover set.

The fractional part of the weight function is crucial to distinguish between
011 and 001 after the second iteration, Figure 7.3 (c)). Covering 001 before
011 would include ??1 in regulation cover set Aa0→a1

. As covering 011 and
111 would still require all three partial regulator states 0?1, ?11 and 1?1, the
inclusion of ??1 would be redundant.

Part III

Applications

99

Chapter 8

Related Work

Modelling of biological systems is a typical reverse engineering application, and
as usual, any further analysis is highly dependant on the quality of the model.
Considering additionally the complexity of the biological phenomena studied,
it is of no surprise that model inference and validation is a central topic of
discrete regulatory network studies since the �rst applications to biological
systems [44, 69].

Model inference of biological regulatory networks is traditionally conduc-
ted by hand with the aid of ad-hoc simulations to provide a trial-and-error
method [46, 70]. Introduction of simulation software [26, 39] facilitated the
use of systematic simulations which allows the model space to be uniformly
sampled, improving on the ad-hoc method.

However, simulation based approaches work with variable reliability, as it is
closely tied to the sampling density of the model space. With the model space
size of biological regulatory network growing fast (asymptotically double ex-
ponentially) in the number of biological species considered (variables), it may
easily become infeasible to obtain a su�ciently dense sampling due to the com-
putation cost of the individual simulations. Thus, in order to guarantee that all
relevant models are retrieved, formal methods, such as model checking, are ne-
cessary. Simulation based approaches to model inference and approaches based
on combination of simulation and formal methods, however, remain highly rel-
evant today, especially where the biological knowledge is abundant and allows
for su�cient restriction of the model space.

The inference of discrete regulatory networks can be generally split into
two phases. First, the in�uence graph is constructed, giving the topology of
the network. Second, the regulation function is speci�ed. As the regulation
function can be fully speci�ed using the parameters of a parametric regulatory
network, we refer to the second phase as parameter inference. Our methods
consider the in�uence graph as an input, thus we accordingly shift our focus
towards parameter inference for the remainder of the chapter.

Numerous methods have been applied to parameter inference of discrete reg-
ulatory networks, ranging from comprehensive formal methods, such as model

101

102 CHAPTER 8. RELATED WORK

checking, through analyses tailored to available dynamic data based on reach-
ability or attractor analysis, all the way to constraint programming and in
recent years, also machine learning [64]. In the following sections we explore
in detail some of the parameter inference approaches most comparable to our
work.

8.1 Model Checking

Model checking, in its various forms, is one of the most widespread methods of
mathematical model veri�cation across numerous �elds. It is therefore not sur-
prising that model checking was the �rst formal method introduced to discrete
regulatory networks, in particular for the purpose of parameter inference [10].

The work of Bernot et al. [10] relies on model checking of discrete regulat-
ory networks against temporal properties, given as formulae of CTL (Compu-
tational Tree Logic [18]). Many properties of interest in the biological setting
can be expressed in CTL, which being a branching-time temporal logic, is well
suited for properties of discrete regulatory networks with non-deterministic
semantics (e.g. asynchronous semantics). The method of Bernot et al. [10],
however, relies on explicitly enumerating the possible parametrisations and
model checking the parametrised networks individually. The sheer amount of
possible parametrisations thus imposes strict computational limits.

Several subsequent works aim to improve the scalability of model checking
based approaches to parameter inference. In [48], the authors aim to improve
the scalability by model checking the parametric network directly, rather than
the individual parametrised networks, as well as restrict the admissible para-
metrisation set by in�uence constraints (akin to the constraints in Chapter 5).
We utilise the same idea in unfolding the parametric regulatory network dir-
ectly, rather than unfolding the individual parametrised networks in Chapter 6.
As the di�erent parametrised networks tend to share large portions of the ex-
pressed behaviours, avoiding repeated analysis of the shared behaviour seg-
ments bene�ts the methods greatly.

The ability to model check the parametric regulatory network while dis-
criminating the inconsistent behaviour obtained by a simple union over the
semantics of the individual parametrised networks, the authors utilise a novel
model checking methods, called coloured model checking [7]. Although ori-
ginally introduced for properties expressed in LTL (Linear Temporal Logic),
coloured model checking has later been extended to also handle CTL proper-
ties [12].

In principle, coloured model checking operates similarly to the traditional
temporal model checking. For each state satisfying the given property (accept-
ing state), �rst, the set of all states that can reach the given accepting state is
computed (reverse reachability). Second, the accepting cycles on the given ac-
cepting state are computed. Instead of simply keeping the sets of initial states
and accepting cycles as in classical temporal model checking, coloured model
checking annotates each state with a Boolean vector, where each bit (colour)

8.2. REACHABILITY ANALYSIS 103

represents a single parametrisation. The colour vectors allow the algorithm
to determine exactly which parametrisations allow a particular initial state to
reach the accepting state, or which parametrisations enable the whole accept-
ing cycle. The colour vector thus essentially translates to the parametrisation
set we use to annotate states in the abstract parametric regulatory network
semantics in Section 4.2.

Having the initial states and accepting cycles annotated with parametrisa-
tions, it is easy to determine which parametrisations (respectively, parametrised
networks) satisfy the coveted property. The Boolean vector representation of
the parametrisation set is suitable for the model checking application, as it
allows for fast computation of intersections and unions, however, it relies on
explicit enumeration of all parametrisations. Even if �ltered by some initial
conditions, such as in�uence constraints, the number of admissible paramet-
risations remains in the general case exponential, making the coloured model
checking of larger networks or networks with high in-degrees in the in�uence
graph computationally intractable.

A di�erent approach appears in [35]. The authors aim to avoid explicit enu-
meration of parametrisations by omitting the classical, Kripke structure based,
temporal model checking procedure. Instead, the CTL property is translated
into constraints on the parameters, which exactly characterise all the para-
metrisations that satisfy the given property. The approach is shown to be
signi�cantly faster than traditional model checking of individual parametrised
networks on a small example. The nontrivial translation of the until operator
in CTL into constraints on parameters, however, introduces a new complexity
limitation.

While the exact scope of model checking applicability is dependant on the
expressivity of the associated logic, it is safe to assume that any model check-
ing application to discrete regulatory networks subsumes reachability, which is
easily expressible by a simple temporal formula. Indeed, to model check reach-
ability properties only the �rst step of the temporal model checking is required
as no accepting cycle is necessary to validate the formula. Our unfolding applic-
ation being limited to reachability properties, it is natural to ask if other types
of questions could be answered. While model checking using the unfolding
semantics of transition system products has been studied extensively [30], the
feasibility of conducting model checking on the parametric unfolding remains
largely unexplored.

8.2 Reachability Analysis

Many of the common regulatory network questions can be formulated as reach-
ability properties. Reachability can be easily expressed within temporal logic
using a single temporal operator, rendering much of the model checking ap-
paratus redundant. Several works on the regulatory networks therefore aim at
improving the scalability by foregoing model checking in favour of the simpler
reachability analysis.

104 CHAPTER 8. RELATED WORK

Similar to our abstract semantics, in [61], the authors also rely on com-
puting an over-approximation of the admissible parametrisation set. Unlike
with unfolding, where the state space is explored explicitly, the authors rely
on encoding the reachability problem into constraints on the parametrisation
set. Although technically similar to the approach in [35], which allowed trans-
lating CTL properties into constraints, Ostrowski et al. [61] limit themselves
to reachability properties, obtaining simpler constraints.

The constraints being on the parametrisations rather than the state space,
the method of Ostrowski et al. [61] computes an over-approximation of the
parametrisation set enabling given dynamical properties directly. By comput-
ing the over-approximation rather than the precise set of parametrisations,
the authors managed to obtain simpler constraints on the parametrisation set.
In turn, the constraints are solvable using e�cient methods, such as answer
set programming. Ostrowski et al. [61] propose using model checking on the
restricted parametrisation set to �lter out false positives or further analysis.
The tractability of the model checking is thus improved by restriction of the
input set of parametrised models. A similar approach is possible to �lter out
false positives within the parametrisation sets computed within our abstract
semantics. Additionally, we also allow computing complete �nite pre�xes to
represent the dynamics on the reachable state space, allowing it to be exploited
during the model checking.

Corblin et al. [21] also rely on constraints to over-approximate reachabil-
ity properties. The constraints for a given reachability problem are formulated
directly on the dynamics, essentially describing a trace. The method of Corblin
et al. [21] relies on translating the computed constraints to a Boolean formula,
allowing them to capitalise on the e�cient SAT implementations. The au-
thors also tackle the problem of a minimal in�uence graph able to express the
coveted dynamical property. This is done using in�uence properties akin to
our observability constraint. While we do not directly support such inference,
it is straightforward to obtain the in�uences which are not observable under a
parametrisation (or a set of parametrisations) enabling the dynamical property.

Another approach is tailored for time series data, i.e. sequence of measure-
ments over time during an experiment. Represented as sequence of (partially)
observed states, time series data are common for regulatory networks.

Cummins et al. [24] use pattern matching of graphs to determine whether a
model can reproduce the time series data. To achieve this, both the time series
data and the model dynamics are represented as directed graphs representing
the possible evolution of the variable values. Matching a path (trace) within
the pattern graph of the time series data with a path in the search graph
representing the regulatory network dynamics thus validates the model with
respect to the coveted behaviour.

The approach in [24] relies on modelling of regulatory networks as switching
systems [23]. Unlike our purely discrete representation, the switching systems
describe the dynamics by means of di�erential equations, however, the val-
ues of the variables are interpreted in discrete fashion, based on established
thresholds. Following the switching system semantics, the directed graphs

8.2. REACHABILITY ANALYSIS 105

used in [24] use nodes to represent monotonic evolution of a variable, e.g.
variable a is increasing, and edges to represent a variable reaching a local
extrema. Discretisation based on the piecewise linearity of the variable value
evolution can be more precise than classical Boolean discretisation, especially if
the local maxima or minima of a single variable di�er along the evolution, mak-
ing it impossible to di�erentiate every local extrema by a single threshold. The
most-permissive semantics of Boolean networks [63], discussed in Chapter 11,
represent states in a similar fashion.

Of particular interest is the work of Gallet et al. [36] due to the distinct
similarity with our approach. Much like the parametrisation sets we use in the
abstract parametric regulatory network semantics, constraints on the paramet-
risation set are computed on the run in [36]. The constraints on the paramet-
risation space take shape of a Boolean formulae and, while exact, the formulae
grow in size as new constraints are added during the computation. The para-
metrisation set representation using the Boolean formulae constraints can thus
easily exceed our parametrisation lattice in size and complexity.

Another similarity to our work spans from the representation of the state
space itself. In order to combat the combinatorial explosion of the state space,
Gallet et al. [36] use symbolic execution trees to represent the reachable state
space. The symbolic execution trees are similar to the unfoldings. As the
name suggests, the tree structure o�ers an acyclic representation of the reach-
able state space. Coupled with the constraint based parametrisation sets, rep-
resenting behaviour of multiple parametrisations collectively becomes possible.
The unfolding semantics, however, additionally allow us to exploit concurrency.
While the symbolic execution trees are model checking ready [36], the size of
the complete �nite pre�x is generally signi�cantly smaller than the symbolic
execution trees, as illustrated by experimental results in Chapter 9.

Finally, a very elegant related work is the modi�cation of Hoare logic for
the gene regulatory networks [9]. Hoare logic has been introduced for proves
of correctness of imperative programs. More precisely, a Hoare triple consists
of a pre-condition, the program itself and post-condition. The Hoare triple is
satis�ed (reducible by inference rules) if running the program under the pre-
condition, the program �nishes and the postcondition holds. The genetically
modi�ed Hoare logic of [9] uses time series data in place of the program, al-
lowing one to prove that under given pre-condition, the model can replicate
the speci�ed trace and the post-condition holds. Similar to the graph pattern
matching approach of [24] which is also tailored for time series data, the meas-
urement data is interpreted as a sequence of monotonic variable value evolutions
rather than the standard Boolean discretisation based on thresholds.

Constructing proves of Hoare triples allows one to prove that a given dy-
namical property is enabled under a chosen parametrisation or set of paramet-
risations. The true power of the approach in [9], however, lies in the ability
to compute the weakest pre-condition from the time series data and the post-
condition. The weakest pre-condition is then the speci�cation of all paramet-
risations which enable the coveted dynamical behaviour. The pre-condition
and post-conditions are arbitrary propositional formulae on the variable and

106 CHAPTER 8. RELATED WORK

parameter values, leading to considerable �exibility of the Hoare triple repres-
entation of the regulatory network validation against time series data. The
framework therefore allows for experiment interventions, such as disabling a
particular variable (knockouts), to be modelled accurately.

The weakest precondition computation of [9] is equivalent to computing
the branches of complete �nite pre�x which correspond to the given time series
data and collecting the associated parametrisation sets. Unlike our abstract
parametric regulatory network semantics, however, the weakest precondition
computation is precise. The parametrisation set being represented by the pre-
condition, i.e. a propositional formula on the parameters, the size of the formula
may grow signi�cantly larger than the parametrisation lattice, especially if
monotonicity in�uence constraints are represented explicitly.

8.3 Other Applications

In this section we introduce other works of interest, which do not directly
fall in line with one of the two main approaches pinpointed for the parameter
inference.

Streck et al. [67] propose a method for statistical labelling and ranking of
the admissible parametrisations. Several labels, both variable and in�uence
speci�c as well as spanning the entire parametrisation are proposed. Using
the labels, a partial order on the parametrisations is obtained, ranking them
in terms of cost, i.e. how many transitions does the associated parametrised
network require to satisfy the dynamical property, robustness, i.e. what is
the probability of a random trace of the parametrised network satisfying the
dynamical property, or impact of a particular in�uence, i.e. how often does
the value of a variable update to the one proposed by the sole action of the
given in�uence, etc. The ranking is then used to re�ne the model in line with
the best scoring parametrisations. As the parametrisations are labelled on
individual basis, the method relies on explicit representation of the paramet-
risations. While only the admissible parametrisations have to be enumerated,
such as the parametrisation lattice, the explicit enumeration still negatively
impacts tractability.

A commonly used characteristic of gene regulatory networks are the at-
tractors, i.e. sets of states from which the model cannot escape (terminal or
bottom strongly connected components of the state transition graph). While
closely related to reachability, attractor analysis, that is identi�cation of the
attractors, is a signi�cantly more challenging problem. While many methods
of attractor analysis have been proposed for discrete regulatory networks [2,
14, 17, 47, 3, 28, 40, 59], it is only recently that a method emerged for the
parametric regulatory networks [6].

The method of Barnat et al. [6] relies on a parallelisable algorithm searching
for terminal strongly connected components. To take parametrisations into ef-
fect, each reachability check is conditioned by the parametrisations that enable
said reachability, e�ectively annotating states with admissible parametrisation

8.3. OTHER APPLICATIONS 107

sets akin to our parametric regulatory network semantics. To avoid explicit
parametrisation enumeration, binary decision diagrams, e�ectively equivalent
to propositional formulae, are used to represent the parametrisation sets. In
case monotonicity in�uence constraints are used, the binary decision diagram
representation su�ers from the same explosion in complexity as propositional
formulae due to the di�culty in enumerating the monotonic Boolean functions.
Unlike the parametrisation lattices, however, binary decision diagrams support
unions which are necessary for the attractor analysis algorithm.

Chapter 9

Experimental Results

In this chapter we present experimental results for construction of the reach-
able state space using the parametric regulatory network unfolding semantics
coupled with the abstraction of the parametrisation sets. The unfolding proced-
ure and complete �nite pre�x construction for parametric regulatory networks
as per Chapter 6 have been implemented in a prototype tool Pawn written in
Python.1 The experiments make use of several well-known Boolean and gen-
eral multivalued parametric regulatory networks that have been studied in the
literature. These results have �rst been published in [50].

Several regulatory network models were selected for the experiments vary-
ing in size of the network, in average connectivity of the nodes in the in�uence
graph and in the network type (only Boolean versus general multivalued). Each
experiment consists of constructing the full representation of the reachable state
space as a complete �nite pre�x of the unfolding from a given initial state and
all possible parametrisations (P̊ = P (Gmmm)). All parametric regulatory net-
works considered are also equipped with a well-formed in�uence constraint set
according to which each in�uence is considered both monotonic and observable.
The number of events outside of cut-o�s corresponds to the number of reach-
able state and parametrisation set combinations. The number of non-cut-o�
events therefore gives a good notion of size of the computed complete �nite pre-
�x. We construct multiple complete �nite pre�xes from di�erent initial states
for some of the models, where the initial state signi�cantly impacts the size of
the reachable state space. By default, however, we consider the initial states
as introduced in the original model from the literature.

To illustrate the compaction achieved by the combination of unfolding se-
mantics and parametrisation set abstraction, we compare the size of the un-
foldings with the size of the complete symbolic execution tree computed from
the same initial state. To construct the symbolic execution trees, we employ
the tool SPuTNIk [36] which implements automata-based LTL model checking
of parametric regulatory networks by (�nite) symbolic execution of the product
automaton. SPuTNIk explicitly traverses the product states using a depth-�rst

1Pawn is available online: https://github.com/GeorgeKolcak/Pawn.

109

https://github.com/GeorgeKolcak/Pawn

110 CHAPTER 9. EXPERIMENTAL RESULTS

Coup_fti

Sp8

Fgf8

Pax6

Emx2

o−
o+

o+

o−

o+

o−

o−

o+

o−

o+

o−o−

o−

o−

Figure 9.1: The in�uence graph of the parametric regulatory network modelling
mammalian cortical area development. All variables are Boolean and initialised
to zero in the initial state, with the exception of Fgf8 (in blue) which has been
considered with both zero and one for the initial value. The in�uences are
labelled with the in�uence constraints considered in the experiments.

search approach while symbolically executing the transitions representing con-
straints on the parameters, such as the in�uence constraints or constraints
based on previously executed transitions. To achieve exactly the reachable
states of the state space graph of the regulatory network, we employ a Büchi
automaton with a single state looping over an atomic proposition satis�ed in
every state of the model.

In [36], the authors consider an additional constraint on the parametrisa-
tion sets called Min-Max, which is also implemented in the SPuTNIk tool. The
Min-Max constraint requires that in every state of the parametric regulatory
network where all the activators (respectively inhibitors) are at their maximum
values and all of the inhibitors (respectively activators) are zero at the same
time, the regulation function for the variable in question must point to the max-
imum (respectively minimum) possible value. Such states correspond to the
�v-maximal (respectively �v-minimal) regulator states of the relevant variable.
As such, Min-Max constraint translates to �xing the value of the �v-maximal
regulator state to maximum in 000 (respectively the �v-minimal regulator state
to minimum in 111) within the initial parametrisation lattice [000,111]. To this end,
we have also included the Min-Max constraint in Pawn.

As aforementioned, the in�uence constraint set of all the considered para-
metric regulatory networks contain both a monotonicity and an observability
constraint for each in�uence in the network. Application of the additional
Min-Max constraint is explicitly indicated.

First of the parametric regulatory networks we use is a Boolean model of the
gene regulatory network underlying mammalian cortical area development [38],
shown in Figure 9.1. We consider two di�erent initial conditions, or more

111

cI, [0..2] cro, [0..3]

cII, [0..1] N, [0..1]

o−,2

o−,2 o−,1

o+,2

o−,1

o−,2

o−,3

o−,3

o+,1

o+,1

Figure 9.2: The in�uence graph of the parametric Thomas network of bac-
teriophage λ life cycle. Variable domains as given by the maximum vector
mmm = (cI = 2, cII = 1, cro = 3,N = 1) are included in variable labels. The in-
�uences are labelled with the in�uence constraints considered in the experi-
ments as well as their respective threshold values.

precisely, initial states for the unfolding. First, with all the variables initialised
to zero and second, with all variable inactive (zero) with the exception of the
Fgf8, which is initialised to one.

The smallest of the multivalued parametric regulatory networks we con-
sider is the extensively studied regulatory network of the bacteriophage λ life
cycle [68] (known colloquially as λ-switch) shown in Figure 9.2 This model
has also been studied in other works aimed at analysis of parametric net-
works [36, 48]. We consider only one initial state for the λ-switch, which sets
all variables to zero. We do, however, utilise the model in two experiments,
one with and one without the Min-Max constraint.

As an example of a larger Boolean model, we consider a model of EGF-
TNFα signalling pathway [54, 61] shown in Figure 9.3. In the case of this
parametric regulatory network, the initial state of the unfolding sets the vari-
ables tnfa and egf to active (value one) whereas all other variables are con-
sidered inactive (value zero).

Finally, we consider a couple of larger multivalued networks (with more
than 10 variables). First, we analyse a parametric regulatory network adop-
ted from [57]. The model, illustrated in Figure 9.4, represents several key
signalling pathways of Drosophila, including in�uences between the pathways
(cross-talks).

Second, we analyse a model describing the control of the developmental pro-
cess in primary sex determination of placental mammals [65]. While slightly
smaller in terms of number of variables, 14, than the Drosophila network, the
primary sex determination model, depicted in Figure 9.5, is highly intercon-

112 CHAPTER 9. EXPERIMENTAL RESULTS

tnfa egf

ikb pi3k sos

nfkb gsk3 map3k1 raf1

p38 ap1 creb erk

o−

o+

o+ o+ o+

o− o+ o−
o+

o+
o+

o+

o+

o+
o+

o−

Figure 9.3: The in�uence graph of the parametric Boolean network of EGF-
TNFα signalling pathway. The variables shown in blue are set to value 1 in
the initial state. The in�uences are labelled with the in�uence constraints
considered in the experiments.

nected, leading to more possible parametrisations.
Computations conducted on all the de�ned models have led to results shown

in Table 9.1. Complete �nite pre�xes of the unfoldings constructed by Pawn
are characterised by their size given by both total number of events and events
without cut-o�s. A relatively large portion of cut-o� events indicates the large
number of di�erent behaviours spread among the di�erent parametrisations.
The number of symbolically executed states computed by SPuTNIk is given for
comparison.

Since both tools are implemented as prototypes without any optimisations,
we do not include computation times but rather focus on size of the reachable
state space representation. However, in all models with the only exception of
the Primary Sex Determination model, the computation by Pawn concluded
within a couple of minutes. In case of the Primary Sex Determination model,
Pawn constructed the complete �nite pre�x in 2 hours whereas SPuTNIk has
been stopped in 3 days without achieving results. In case of the Drosophila
model, SPuTNIk has been stopped after 2 days of computations whereas Pawn
needed a couple of minutes to compute the complete �nite pre�x. SPuTNIk

reached a symbolic execution tree of size at least 7, 000, 000 before being timed
out in all three relevant cases. As timing was not a concern, all experiments
have been conducted on a standard laptop computer.

Using the concurrency aware, partial order semantics shows a great improve-
ment in the compactness of the resulting structure. It is striking in the case of
models of signalling pathway cross-talks (Drosophila and EGF-TNFα) where
the amount of concurrency among the variables is high due to the sparsity of
the in�uence graph. The size of unfolding pre�xes remains very compact even
in cases with more interwoven topology. It is worth noting that the constructed

113

Dad

Punt Gbb Sog Dpp Tsg

Targets

TkvSax

Brk

Tld

Nej

Scw

MadMed Shn

Figure 9.4: The in�uence graph of the parametric multivalued network of sig-
nalling pathways of Drosophila. All variables with non-zero values in the initial
state are initialised with their maximum values, 1 for the variables shown in
blue and 2 for the variables shown in orange.

114 CHAPTER 9. EXPERIMENTAL RESULTS

Wt1

Dmrt1 AF

IWSf1

AS

Sox9

Foxl2

Fgf9

YGata4

Sry

b_cat

Wnt4

Figure 9.5: The in�uence graph of the parametric multivalued network of
primary sex determination of placental mammals. The variables with value
1 in the initial state are shown in blue.

115

Model (init. state) Type # nodes # events (incl. cut-o�s) Sym. exec. size

Cortical Dev. (Fgf8=0) BN 5 554 (1,939) 8,312
Cortical Dev. (Fgf8=1) BN 5 1,054 (3,530) 8,312
EGF-TNFα BN 13 1,057 (2,658) 534,498
λ-switch MN 4 170 (575) 68,011
λ-switch w/ Min-Max MN 4 157 (527) 15,139
Prim. Sex Det. w/ Min-Max MN 14 19,954 (88,994) >7,000,000
Drosophila Signalling MN 15 781 (2,698) >7,000,000
Drosophila w/ Min-Max MN 15 731 (2,507) >7,000,000

Table 9.1: Comparison of the size of the obtained structures between complete
�nite pre�xes of the unfolding and the symbolic representation for di�erent
models. The number of unfolding events is speci�ed as a total number of
non-cut-o� events. The number including cut-o� events is given in brackets.
Symbolic representation size is the number of states of the complete execution
tree constructed by SPuTNIk. The notation '>7,000,000' refers to the size being
over 7, 000, 000 by the time the particular experiment has been stopped after
2 or more days of computation.

complete �nite pre�xes preserve the set of reachable states and any process can
be reconstructed from the pre�x with an additional computation cost [32].

Another interesting observation can be made on the model of cortical devel-
opment in mammals, showing that the unfolding and consequently the complete
�nite pre�x is sensitive to the initial state. In this model, the considered initial
states give the same reachable state space. However, depending on the initial
state, the respective unfoldings have substantially di�erent size. This can be
attributed especially to the dependence on the parametrisation sets, and their
incompatibility with the total adequate order [31], which may result in higher
fragmentation of the parametrisation sets in some cases.

Theorem 5.1 ensures that the set of reachable states in the complete �nite
pre�x is exact despite the over-approximation of the parametrisation sets. I.e.
for each reachable state there exists at least one parametrisation which is a
true positive within the computed parametrisation set. The false positives can
be identi�ed by running model checking or other exact algorithm on the over-
approximated parametrisation set, thus obtaining a much smaller and much
more manageable set of initial parametrisations.

Part IV

Discussion

117

Chapter 10

Summary

This thesis explores in detail the parametric model of regulatory networks and
associated algorithms. The parametric regulatory network analysis is largely
hampered by combinatorial explosion in the number of states, same as dis-
crete regulatory networks, as well as the number valid combinations of para-
meter value assignments called parametrisations. We tackle those challenges
by specialised semantics, which allow exploration of the parametric regulatory
network behaviour without explicit enumeration of states or parametrisations.

To avoid explicit enumeration of parametrisations, we introduce an abstrac-
tion of parametrisation sets by the means of their convex cover. We show that
this abstraction is exact for the parametric regulatory networks without in-
�uence constraint and it leads to a sound and minimal over-approximation if
in�uence constraints are considered.

Rather than abstraction, we evade explicit state enumeration by the means
of partial order reduction. We elevate the unfolding semantics from Petri nets
to parametric regulatory networks, thus being able to capitalise on the concur-
rency abundant in biological systems.

Both of the introduced approaches are expressed as di�erent semantics of
parametric regulatory networks. Thanks to being orthogonal not only in their
purpose, but also in their design, the two semantics can be naturally com-
bined, allowing us to alleviate both sources of combinatorial explosion at once.
The resulting combined semantics have been implemented for the purposes of
reachable state space exploration and experimental results show the resulting
representation of the reachable state space is signi�cantly smaller compared to
other approaches.

We further investigate the possibility of using known target state to op-
timise the state space exploration of parametric regulatory networks. To this
end, we elevate a model reduction method based on pruning transitions which
cannot lead to a target state from automata networks to parametric regulatory
networks.

The thesis o�ers a thorough analysis of parametrisation set abstraction
and unfolding semantics for parametric regulatory networks. Many questions

119

120 CHAPTER 10. SUMMARY

related to parametric regulatory networks remain unanswered, however, open-
ing up multiple possibilities for future development, not only in the area of
parametric regulatory networks themselves, but also in exploration of related
concepts where parametric regulatory network might help in providing the ne-
cessary insight.

Chapter 11

Ongoing and Future Work

In this chapter we explore ongoing and future work building up on the analysis
of the parametric regulatory networks as well as related concepts. The work
conducted and potential future work contains several re�nements and extension
of the abstract and unfolding semantics of the parametric regulatory networks,
new application areas beyond reachability, as well as questions of expressiv-
ity and monotonicity of continuous models of regulatory networks and their
discrete counterpart.

The �rst potential area for future work is the abstraction of parametrisation
space. The parametrisation set abstraction as we introduce it uses very basic
algebraic structures. While this ensures many nice properties for the abstrac-
tion, including a small static size, it also makes the abstraction considerably
rigid. This opens up potential for introduction of a more complex as well as
more permissible structure which could help reduce the over-approximation,
optimise the restriction to in�uence constraints or even tackle fundamental
limitations of the convex sublattice approach which renders e�cient unions
impossible (unions are crucial for some applications, see Section 11.1).

On a related note, the abstract semantics of the parametric regulatory net-
works have the potential to be amended to account for more constraints than
the monotonicity and observability in�uence constraints we consider. This po-
tential is illustrated by the adaptation of the Min-Max constraint considered
in [36] in Chapter 9. While the Min-Max constraint is relatively simple, more
complex constraints could be considered on both the in�uences or the para-
meters directly.

Re�nement of the unfolding semantics also opens up many interesting av-
enues for future work. Due to the nature of the asynchronous multivalued
network semantics as we de�ne them, only one variable changes values with
each transition. However, the transition being enabled may be dependent on
the values of numerous other variables. As a result, each event in the para-
metric regulatory network unfolding has to consider such a variable among its
preconditions only to include a postcondition labelled by the same variable
and value. Instead, this dependency could be represented by an equivalent of

121

122 CHAPTER 11. ONGOING AND FUTURE WORK

a read arc used in contextual Petri nets. Petri net unfolding semantics have
been extended to contextual Petri nets relying on asymmetric con�ict relation,
which allows a condition to be read without producing a copy [5]. This not only
contributes to smaller pre�xes overall but also to overall improvement of the
running time. As the parametric regulatory network unfoldings are very similar
to Petri net unfoldings there is good reasoning to believe that the techniques
used in [5] could be adapted to parametric regulatory network unfolding almost
e�ortlessly and should certainly be considered for implementation of an e�-
cient tool for parametric regulatory network unfolding to replace the prototype
tool Pawn.

Another potential for improvement of the unfolding semantics lies in the
adequate order. Designing a total adequate order that could minimise the
required amount of backwards cut-o�s would be greatly bene�cial for reducing
the runtime of the unfolding algorithm. While �nding a suitable adequate order
is a highly nontrivial problem, there is a potential for obtaining insights into
other unfolding applications that rely on annotated events and su�er from a
similar di�culty during complete �nite pre�x construction.

Another signi�cant potential for expansion of the presented results is the
exploration of further application areas. In our work we have focused mostly on
reachability problems. As discussed in Chapter 8, however, other applications
are highly relevant for the study of biological regulatory networks.

One such application is model checking. Our results are already highly
compatible with model checking approaches for discrete regulatory networks.
In particular, by �rst utilising our abstract semantics to obtain a restricted
set of parametrisations, one could greatly reduce the number of models for
which model checking is necessary. Running model checking directly on the
parametric regulatory networks, however, is a far more attractive application.
While parametric regulatory networks with abstract semantics are in essence
model checking ready and model checking algorithms have also been proposed
for unfoldings [30], porting of model checking algorithms to parametric regu-
latory network unfoldings remains nontrivial and will likely result in the need
to compute unions of abstract parametrisation sets.

An alternative to full scale model checking may be e�cient algorithms for
another common problem on regulatory networks beside reachability, such as
attractor analysis brie�y discussed in Section 8.3 of Chapter 8. As the topic of
attractor analysis subsumes several nontrivial approaches, we explore it in the
detail it warrants in Section 11.1.

Very interesting work has also been done on models that might be em-
ployed to model biological regulatory networks from a perspective similar to
parametric regulatory networks. In particular, promising results have been ob-
tained for new symbolic semantics of Boolean networks called most-permissive
semantics [63]. While the most permissive semantics are fundamentally unre-
lated to parametric regulatory networks, both are essentially abstractions of
Boolean networks or more broadly discrete regulatory networks. We compare
the two approaches in Section 11.2.

Finally, work on relational properties of monotonic continuous systems [49]

11.1. ATTRACTOR ANALYSIS 123

shows promise for a further development of the notion of monotonicity across
the spectrum of biological regulation models using di�erent levels of abstrac-
tion, spanning from continuous and hybrid systems all the way to Boolean
networks.

11.1 Attractor Analysis

An attractor of a discrete regulatory network is a set of states corresponding to
a bottom strongly connected component in the state transition graph. In other
words, for any state in the attractor it is possible to reach any other state in the
same attractor, but no other state outside the attractor. Attractors of discrete
regulatory networks therefore represent the long-term, stable behaviours of the
system. The study of such behaviours is highly relevant in many high pro�le
areas such as cell di�erentiation, oncology and synthetic biology [42, 43, 55].

While attractor analysis approaches based on the unfolding semantics have
been successful [14], extension of such approaches to parametric regulatory
networks is highly nontrivial. The technique of Chatain et al. [14] relies on
identifying candidate markings as the markings of maximal con�gurations and
then checking each candidate marking by constructing another unfolding with
the candidate marking as initial marking. If a di�erent candidate marking
is discovered during the follow-up unfolding, the initial marking is removed
from the set of candidate markings because it either does not belong to an
attractor, in case it is not reachable from the other candidate marking, or the
same attractor will be discovered when unfolding from the other candidate
marking, owing to attractors being strongly connected.

Adapting the method of [14] to unfoldings of parametric regulatory net-
works, however, faces fundamental challenges. Parametric regulatory network
unfolding may contain several instances of the same candidate marking with
di�erent parametrisation sets. As unions of abstract parametrisation sets can-
not be e�ciently represented in the general case, each instance of a candidate
marking has to be unfolded separately, signi�cantly increasing the number
of unfoldings that have to be computed. Moreover, the unfoldings from the
candidate markings tend to lead to larger complete �nite pre�xes due to can-
didate markings being disquali�ed per parametrisation. With the two above
di�culties combined, the resulting algorithm has been found intractable for
practical application. While an optimisation of the method might be envi-
sioned to obtain practical algorithms for parametric regulatory networks, it is
unlikely to be possible without e�cient computation of abstract parametrisa-
tion set unions.

A promising future work on the attractor analysis of parametric regulatory
networks might instead built upon the results of [6]. The method of Barnat et
al. [6] relies on binary decision diagrams for encoding the admissible paramet-
risations. Computing unions for binary decision diagrams is simple, however,
the size of the diagram grows with the number of variables. Indeed, the size
of the binary decision diagram is exponential in the number of variables of a

124 CHAPTER 11. ONGOING AND FUTURE WORK

monotonic Boolean function. This is a challenge which does not apply to the
abstract parametrisation sets, whose encoding is of constant size.

A clever combination of the two approaches thus promises a fruitful collab-
oration. A modi�cation of the binary decision diagrams to accommodate the
bounded convex sublattices of parametrisations could thus help keep the size
of the binary decisions diagrams manageable even for variables with numerous
regulators. On the other hand, splitting the parametrisation lattices into a
well designed decision diagram structure might allow for e�cient unions. The
application of the successful combination of the two formalisms might even
extend beyond attractor analysis.

11.2 Most Permissive Semantics

The most permissive semantics of Boolean networks are symbolic semantics,
assigning two transitional values ↘,↗ to variables on top of the two Boolean
values. In simple terms, the transitional values represent a variable increasing
value (tending towards the maximum), respectively decreasing value (tending
towards the minimum). More precisely, any variable in a transitional value
may collapse to the respective Boolean value, i.e. 0 for ↘ and 1 for ↗ at any
time, while any variable in the role of a regulator with transitional value may
be read as either 0 or 1, irrespective of the direction. Thus, for the purposes of
regulation, a variable has to either be in the Boolean value prescribed by the
regulation function or in any of the transitional values ↘,↗.

Boolean networks with the most-permissive semantics exhibit more beha-
viours than the standard semantics we introduced in Chapter 2. While the
increase in expressivity may appear to be far too liberal, most permissive se-
mantics have been shown to successfully discriminate behaviours [63]. On the
other hand, Boolean networks with most permissive semantics can reproduce
any behaviour generated with generalised asynchronous semantics, or even any
behaviour generated by a multivalued or continuous re�nement1 of the Boolean
network. Moreover, analysis of Boolean networks with most permissive se-
mantics is computationally cheaper. Reachability properties in the most per-
missive semantics, for instance, can be translated to SAT problems, facilitating
the use of some of the fastest NP algorithms.

Albeit fundamentally di�erent, the most permissive semantics of Boolean
networks as well as parametric regulatory networks serve to lessen the math-
ematical rigidity of discrete regulatory networks with the standard semantics,
thus reducing the number of parameters required for modelling. In spite of
helping to achieve the same result, the approaches are di�erent not only in
nature but also by interpretation. Whereas parametric regulatory networks
abandon the standard regulation function, but by the means of parametrisa-
tions retain full speci�cation of the emergent behaviour, the most permissive
semantics are applied to Boolean networks speci�ed by the regulation function,
but abstract away the exact speci�cation of the resulting behaviour.

1Please refer to [63] for details.

11.2. MOST PERMISSIVE SEMANTICS 125

The duality between most permissive semantics and parametric regulat-
ory networks opens up several questions of interest. One such a question is
naturally the possibility to combine the two approaches while preserving their
respective strengths. While it might be possible to directly elevate the most
permissive semantics to Boolean parametric regulatory networks, the use of
symbolic states makes it unlikely that parametrisation sets could be e�ciently
restricted. A di�erent point of view, a translation between traces of a Boolean
network with most permissive semantics and parametrisation sets of a corres-
ponding parametric regulatory network and vice versa, shows promise for the
purposes of parameter inference and model re�nement.

Study of the connection between traces or behaviours and parameters is of
signi�cance even beyond a precise translation. Linking behavioural patterns
observable in Boolean networks with most permissive semantics to parameter
values and their relations has the potential to uncover new meaningful con-
straints for parametric regulatory networks that could help restrict or otherwise
shape the admissible parametrisation sets.

The development of most permissive semantics also stands to bene�t from
establishing relations to parametrisation. In particular, in regards to the
local monotonicity of the regulation function, which is often at least partially
known in the literature. The monotonicity constraints on in�uences form the
cornerstone of parametrisation set restriction, the most permissive semantics of
Boolean networks however, lack any means to discriminate between monotonic
and nonmonotonic behaviour. This is underlined by the capability of a variable
with increasing value, ↗ to be �rst used as if valued 1 and subsequently as
if valued 0 for regulation of another variable, thus violating the intuition of
increasing its value. A preliminary study of the monotonicity under the most
permissive semantics shows that while enforcing monotonic behaviour is pos-
sible, the usual notion of monotonicity in multivalued and continuous models
does not straightforwardly translate into the Boolean abstraction with trans-
itional values↘,↗. Classifying the behaviours generated by Boolean networks
with most permissive semantics based on local monotonicity inferred from para-
metric representation might thus lead to valuable insights into monotonicity
under most permissive semantics as such as well as relations of monotonicity
across various re�nements of Boolean networks.

Bibliography

[1] W. Abou-Jaoudé, P. T. Monteiro, A. Naldi, M. Grandclaudon, V. Sou-
melis, C. Chaouiya, and D. Thie�ry. Model checking to assess t-helper
cell plasticity. Frontiers in Bioengineering and Biotechnology, 2:86, 2015.

[2] W. Abou-Jaoudé, P. Traynard, P. T. Monteiro, J. Saez-Rodriguez, T. He-
likar, D. Thie�ry, and C. Chaouiya. Logical modeling and dynamical
analysis of cellular networks. Frontiers in Genetics, 7:94, 2016.

[3] T. Akutsu, M. Hayashida, and T. Tamura. Integer programming-based
methods for attractor detection and control of boolean networks. In Pro-
ceedings of the 48h IEEE Conference on Decision and Control (CDC) held
jointly with 2009 28th Chinese Control Conference, pages 5610�5617, 2009.

[4] R. Albert and H. G. Othmer. The topology of the regulatory interactions
predicts the expression pattern of the segment polarity genes in Drosophila
melanogaster. Journal of Theoretical Biology, 223(1):1 � 18, 2003.

[5] P. Baldan, A. Bruni, A. Corradini, B. König, C. Rodríguez, and
S. Schwoon. E�cient unfolding of contextual petri nets. Theoretical Com-
puter Science, 449:2 � 22, 2012. Descriptional Complexity of Formal Sys-
tems (DCFS 2011).

[6] J. Barnat, N. Bene², L. Brim, M. Demko, M. Hajnal, S. Pastva, and D. �a-
fránek. Detecting attractors in biological models with uncertain paramet-
ers. In J. Feret and H. Koeppl, editors, Computational Methods in Systems
Biology, pages 40�56, Cham, 2017. Springer International Publishing.

[7] J. Barnat, L. Brim, A. Krej£í, A. Streck, D. �afránek, M. Vejnár,
and T. Vejpustek. On parameter synthesis by parallel model checking.
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
9(3):693�705, May 2012.

[8] G. Bernot, F. Cassez, J.-P. Comet, F. Delaplace, C. Müller, and O. Roux.
Semantics of biological regulatory networks. Electronic Notes in Theoret-
ical Computer Science, 180(3):3 � 14, 2007.

[9] G. Bernot, J.-P. Comet, Z. Khalis, A. Richard, and O. Roux. A genetic-
ally modi�ed hoare logic. Theoretical Computer Science, 765:145 � 157,

127

128 BIBLIOGRAPHY

2019. Formal Veri�cation and Static Analysis of Molecular Devices and
Biological Systems.

[10] G. Bernot, J.-P. Comet, A. Richard, and J. Guespin. Application of formal
methods to biological regulatory networks: extending Thomas' asynchron-
ous logical approach with temporal logic. Journal of Theoretical Biology,
229(3):339 � 347, 2004.

[11] G. Birkho�. Lattice Theory. Number vb. 25,del 2 in American Mathem-
atical Society colloquium publications. American Mathematical Society,
1940.

[12] L. Brim, M. �e²ka, M. Demko, S. Pastva, and D. �afránek. Parameter syn-
thesis by parallel coloured CTL model checking. In O. Roux and J. Bour-
don, editors, Computational Methods in Systems Biology, volume 9308 of
Lecture Notes in Computer Science, pages 251�263. Springer International
Publishing, 2015.

[13] D. M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems
(Performance, Reliability, Digital). PhD thesis, Stanford, CA, USA, 1985.
AAI8506166.

[14] T. Chatain, S. Haar, L. Jezequel, L. Paulevé, and S. Schwoon. Character-
ization of reachable attractors using Petri net unfoldings. In P. Mendes,
J. Dada, and K. Smallbone, editors, Computational Methods in Systems
Biology, volume 8859 of Lecture Notes in Computer Science, pages 129�
142. Springer Berlin Heidelberg, Cham, 2014.

[15] T. Chatain, S. Haar, J. Kol£ák, L. Paulevé, and A. Thakkar. Concurrency
in boolean networks. Natural Computing, 19(1):91�109, Mar 2020.

[16] T. Chatain and L. Paulevé. Goal-Driven Unfolding of Petri Nets. In
R. Meyer and U. Nestmann, editors, 28th International Conference on
Concurrency Theory (CONCUR 2017), volume 85 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 18:1�18:16, Dagstuhl,
Germany, 2017. Schloss Dagstuhl�Leibniz-Zentrum fuer Informatik.

[17] S.-M. Choo and K.-H. Cho. An e�cient algorithm for identifying primary
phenotype attractors of a large-scale boolean network. BMC Systems Bio-
logy, 10(1):95, Oct 2016.

[18] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Logic of Programs, pages
52�71, London, UK, 1981. Springer-Verlag.

[19] D. P. A. Cohen, L. Martignetti, S. Robine, E. Barillot, A. Zinovyev, and
L. Calzone. Mathematical modelling of molecular pathways enabling tu-
mour cell invasion and migration. PLoS Comput. Biol., 11(11):e1004571,
2015.

BIBLIOGRAPHY 129

[20] S. Collombet, C. van Oevelen, J. L. Sardina Ortega, W. Abou-Jaoudé,
B. Di Stefano, M. Thomas-Chollier, T. Graf, and D. Thie�ry. Logical
modeling of lymphoid and myeloid cell speci�cation and transdi�erenti-
ation. Proc. Natl. Acad. Sci., 114(23):5792�5799, 2017.

[21] F. Corblin, E. Fanchon, and L. Trilling. Applications of a formal approach
to decipher discrete genetic networks. BMC Bioinformatics, 11(1):1�21,
2010.

[22] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of
Logic and Computation, 2(4):511�547, 1992.

[23] B. Cummins, T. Gedeon, S. Harker, and K. Mischaikow. Database of dy-
namic signatures generated by regulatory networks (dsgrn). In J. Feret
and H. Koeppl, editors, Computational Methods in Systems Biology -
15th International Conference, CMSB 2017, Proceedings, Lecture Notes
in Computer Science (including subseries Lecture Notes in Arti�cial Intel-
ligence and Lecture Notes in Bioinformatics), pages 300�308, Germany, jan
2017. Springer Verlag. 15th International Conference on Computational
Methods in Systems Biology, CMSB 2017 ; Conference date: 27-09-2017
Through 29-09-2017.

[24] B. Cummins, T. Gedeon, S. Harker, and K. Mischaikow. Model rejec-
tion and parameter reduction via time series. SIAM Journal on Applied
Dynamical Systems, 17(2):1589�1616, 2018.

[25] H. de Jong. Modeling and simulation of genetic regulatory systems: A
literature review. Journal of Computational Biology, 9(1):67�103, 2002.

[26] H. de Jong, J. Geiselmann, C. Hernandez, and M. Page. Genetic Network
Analyzer: qualitative simulation of genetic regulatory networks. Bioin-
formatics, 19(3):336�344, 02 2003.

[27] J. Demongeot, J. Aracena, F. Thuderoz, T.-P. Baum, and O. Cohen. Ge-
netic regulation networks: circuits, regulons and attractors. Comptes Ren-
dus Biologies, 326(2):171 � 188, 2003.

[28] V. Devloo, P. Hansen, and M. Labbé. Identi�cation of all steady states
in large networks by logical analysis. Bulletin of Mathematical Biology,
65(6):1025�1051, Nov 2003.

[29] J. Engelfriet. Branching processes of petri nets. Acta Inf., 28(6):575�591,
1991.

[30] J. Esparza and K. Heljanko. Unfoldings � A Partial-Order Approach to
Model Checking. EATCS Monographs in Theoretical Computer Science.
Springer-Verlag, March 2008.

130 BIBLIOGRAPHY

[31] J. Esparza, S. Römer, and W. Vogler. An Improvement of McMillan's
Unfolding Algorithm. Formal Methods in System Design, 20(3):285�310,
2002.

[32] J. Esparza and C. Schröter. Unfolding based algorithms for the reachab-
ility problem. Fundam. Inf., 47(3-4):231�245, 2001.

[33] J. Fisher, T. A. Henzinger, M. Mateescu, and N. Piterman. Bounded
asynchrony: Concurrency for modeling cell-cell interactions. In J. Fisher,
editor, Formal Methods in Systems Biology, pages 17�32, Berlin, Heidel-
berg, 2008. Springer Berlin Heidelberg.

[34] F. Fogelman-Soulie, M. Milgram, and G. Weisbuch. Automata networks
as models for biological systems: (a survey). In M. Cosnard, J. Demon-
geot, and A. Le Breton, editors, Rhythms in Biology and Other Fields
of Application, pages 144�172, Berlin, Heidelberg, 1983. Springer Berlin
Heidelberg.

[35] J. Fromentin, J. P. Comet, P. L. Gall, and O. Roux. Analysing gene
regulatory networks by both constraint programming and model-checking.
In 2007 29th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, pages 4595�4598, Aug 2007.

[36] E. Gallet, M. Manceny, P. Le Gall, and P. Ballarini. Formal Methods and
Software Engineering: 16th International Conference on Formal Engin-
eering Methods, ICFEM 2014, Luxembourg, Luxembourg, November 3-5,
2014. Proceedings, chapter An LTL Model Checking Approach for Biolo-
gical Parameter Inference, pages 155�170. Springer International Publish-
ing, Cham, 2014.

[37] A. Garg, L. Mendoza, I. Xenarios, and G. DeMicheli. Modeling of multiple
valued gene regulatory networks. In 2007 29th Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society, pages
1398�1404, 2007.

[38] C. E. Giacomantonio and G. J. Goodhill. A boolean model of the gene reg-
ulatory network underlying mammalian cortical area development. PLOS
Computational Biology, 6(9):1�13, 2010.

[39] A. G. Gonzalez, A. Naldi, L. Sánchez, D. Thie�ry, and C. Chaouiya. Gin-
sim: A software suite for the qualitative modelling, simulation and ana-
lysis of regulatory networks. Biosystems, 84(2):91 � 100, 2006. Dynamical
Modeling of Biological Regulatory Networks.

[40] W. Guo, G. Yang, W. Wu, L. He, and M. Sun. A parallel attractor �nding
algorithm based on boolean satis�ability for genetic regulatory networks.
PLOS ONE, 9(4):1�10, 04 2014.

BIBLIOGRAPHY 131

[41] S. Haar, J. Kol£ák, and L. Paulevé. Combining re�nement of paramet-
ric models with goal-oriented reduction of dynamics. In C. Enea and
R. Piskac, editors, Veri�cation, Model Checking, and Abstract Interpreta-
tion, pages 555�576, Cham, 2019. Springer International Publishing.

[42] S. Huang, G. Eichler, Y. Bar-Yam, and D. E. Ingber. Cell fates as high-
dimensional attractor states of a complex gene regulatory network. Phys.
Rev. Lett., 94:128701, Apr 2005.

[43] S. Huang, I. Ernberg, and S. Kau�man. Cancer attractors: A systems view
of tumors from a gene network dynamics and developmental perspective.
Seminars in Cell & Developmental Biology, 20(7):869 � 876, 2009. Struc-
ture and function of the Golgi apparatus and Systems Approaches to Cell
and Developmental Biology.

[44] S. Kau�man. Homeostasis and di�erentiation in random genetic control
networks. Nature, 224(5215):177�178, 1969.

[45] S. Kau�man, C. Peterson, B. Samuelsson, and C. Troein. Random Boolean
network models and the yeast transcriptional network. Proceedings of the
National Academy of Sciences, 100(25):14796�14799, 2003.

[46] M. Kaufman, J. Urbain, and R. Thomas. Towards a logical analysis of the
immune response. Journal of Theoretical Biology, 114(4):527 � 561, 1985.

[47] H. Klarner, A. Bockmayr, and H. Siebert. Computing maximal and min-
imal trap spaces of boolean networks. Natural Computing, 14(4):535�544,
Dec 2015.

[48] H. Klarner, A. Streck, D. �afránek, J. Kol£ák, and H. Siebert. Parameter
identi�cation and model ranking of thomas networks. In D. Gilbert and
M. Heiner, editors, Computational Methods in Systems Biology, pages 207�
226, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[49] J. Kol£ák, J. Dubut, I. Hasuo, S.-y. Katsumata, D. Sprunger, and A. Ya-
mada. Relational di�erential dynamic logic. In A. Biere and D. Parker,
editors, Tools and Algorithms for the Construction and Analysis of Sys-
tems, pages 191�208, Cham, 2020. Springer International Publishing.

[50] J. Kolcák, D. �afránek, S. Haar, and L. Paulevé. Parameter Space Ab-
straction and Unfolding Semantics of Discrete Regulatory Networks. The-
oretical Computer Science, 765:120�144, 2019.

[51] R. Laubenbacher and B. Stigler. A computational algebra approach to the
reverse engineering of gene regulatory networks. Journal of Theoretical
Biology, 229(4):523 � 537, 2004.

[52] N. Le Novère. Quantitative and logic modelling of molecular and gene
networks. Nature reviews. Genetics, 16:146�158, 2015.

132 BIBLIOGRAPHY

[53] S. MacLane. Categories for the Working Mathematician. Graduate Texts
in Mathematics. Springer-Verlag New York, 1978.

[54] A. MacNamara, C. Terfve, D. Henriques, B. P. Bernabé, and J. Saez-
Rodriguez. State�time spectrum of signal transduction logic models. Phys-
ical Biology, 9(4):045003, 2012.

[55] H. Mandon, C. Su, S. Haar, J. Pang, and L. Paulevé. Sequential re-
programming of boolean networks made practical. In L. Bortolussi and
G. Sanguinetti, editors, Computational Methods in Systems Biology, pages
3�19, Cham, 2019. Springer International Publishing.

[56] A. Mazurkiewicz. Concurrent program schemes and their interpretations.
DAIMI Report Series, 6(78), Jul. 1977.

[57] A. Mbodj, G. Junion, C. Brun, E. E. M. Furlong, and D. Thie�ry. Logical
modelling of drosophila signalling pathways. Mol. BioSyst., 9:2248�2258,
2013.

[58] K. L. McMillan and D. K. Probst. A technique of state space search based
on unfolding. Formal Methods in System Design, 6(1):45�65, Jan 1995.

[59] M. Mushthofa, S. Schockaert, and M. De Cock. Computing attractors of
multi-valued gene regulatory networks using fuzzy answer set program-
ming. In 2016 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE), pages 1955�1962, 2016.

[60] M. Noual and S. Sené. Synchronism versus asynchronism in monotonic
boolean automata networks. Natural Computing, 01 2017.

[61] M. Ostrowski, L. Paulevé, T. Schaub, A. Siegel, and C. Guziolowski.
Boolean network identi�cation from perturbation time series data com-
bining dynamics abstraction and logic programming. Biosystems, 149:139
� 153, 2016.

[62] L. Paulevé. Goal-Oriented Reduction of Automata Networks. In CMSB
2016 - 14th conference on Computational Methods for Systems Biology,
volume 9859 of Lecture Notes in Bioinformatics. Springer, 2016.

[63] L. Paulevé, J. Kol£ák, T. Chatain, and S. Haar. Reconciling qualitative,
abstract, and scalable modeling of biological networks. Nature Commu-
nications, 11(1), 2020.

[64] Z. Razaghi-Moghadam and Z. Nikoloski. Supervised learning of gene-
regulatory networks based on graph distance pro�les of transcriptomics
data. npj Systems Biology and Applications, 6(1):21, Jun 2020.

[65] L. Sánchez and C. Chaouiya. Primary sex determination of placental mam-
mals: a modelling study uncovers dynamical developmental constraints in
the formation of sertoli and granulosa cells. BMC systems biology, 10:37,
2016.

BIBLIOGRAPHY 133

[66] T. Stephen and T. Yusun. Counting inequivalent monotone boolean func-
tions. Discrete Applied Mathematics, 167:15 � 24, 2014.

[67] A. Streck, K. Thobe, and H. Siebert. Comparative statistical analysis of
qualitative parametrization sets. In A. Abate and D. �afránek, editors,
Hybrid Systems Biology, pages 20�34, Cham, 2015. Springer International
Publishing.

[68] D. Thie�ry and R. Thomas. Dynamical behaviour of biological regulat-
ory networks�ii. immunity control in bacteriophage lambda. Bulletin of
Mathematical Biology, 57:277�297, 1995.

[69] R. Thomas. Boolean formalization of genetic control circuits. Journal of
Theoretical Biology, 42(3):563 � 585, 1973.

[70] R. Thomas and M. Kaufman. Multistationarity, the basis of cell di�erenti-
ation and memory. i. structural conditions of multistationarity and other
nontrivial behavior. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 11(1):170�179, 2001.

[71] P. Traynard, A. Fauré, F. Fages, and D. Thie�ry. Logical model speci�c-
ation aided by model-checking techniques: application to the mammalian
cell cycle regulation. Bioinformatics, 32(17):i772�i780, 2016.

[72] R.-S. Wang, A. Saadatpour, and R. Albert. Boolean modeling in systems
biology: an overview of methodology and applications. Physical Biology,
9(5):055001, 2012.

[73] N. Weinstein and L. Mendoza. A network model for the speci�cation of
vulval precursor cells and cell fusion control in caenorhabditis elegans.
Frontiers in Genetics, 4:112, 2013.

Titre: Dépliages et interprétation abstraite pour réseaux de régulation biologiques para-

métrés

Mots clés: Concurrence, Biologie des systèmes, Interprétation abstraite

Résumé: L'analyse de la dynamique des

réseaux de régulation biologique est confrontée

à l'incertitude du modèle informatique exact.

Les connaissances disponibles concernent princi-

palement l'existence d'interactions entre espèces

biologiques. Les détails sur la façon dont les dif-

férents régulateurs coopèrent, et encore plus sur

les taux pour ces interactions, sont cependant

rarement disponibles. Les réseaux de régulation

discrets o�rent ainsi une abstraction appropriée

car ils nécessitent peu de paramètres par rapport

aux modèles quantitatifs. Néanmoins, la déter-

mination des paramètres discrets est un dé� bien

connu.

L'ensemble des a�ectations de valeurs de

paramètres admissibles (paramétrisations) est

représenté par des réseaux de régulation

paramétriques. L'analyse de la dynamique des

réseaux de régulation paramétriques est cepen-

dant entravée par la double explosion combi-

natoire, de l'espace d'état et de l'espace de

paramétrisation. Nous développons des méth-

odes visant à atténuer l'explosion combina-

toire. Premièrement, nous introduisons une

interprétation abstraite pour l'ensemble des

paramétrisations admissibles, en obtenant un

codage de taille constante, au prix d'une sur-

approximation conservatrice. Deuxièmement,

nous soulevons la sémantique des ordres partiels

sous la forme d'un déploiement des réseaux de

Petri aux réseaux de régulation paramétriques,

en exploitant la concurrence pour une représen-

tation e�cace de l'espace d'état.

Title: Unfoldings and Abstract Interpretation for Parametric Biological Regulatory Net-

works

Keywords: Concurrency, Systems Biology, Abstract Interpretation

Abstract: The analysis of dynamics of bio-

logical regulatory networks faces the uncertainty

of the exact computational model. The available

knowledge concerns predominantly the exis-

tence of interactions between biological species.

The details on how di�erent regulators coop-

erate, and even more so on rates for those in-

teractions, however, are rarely available. Dis-

crete regulatory networks thus o�er an appro-

prite abtraction as they require few parameters

compared to quantitative models. Nevertheless,

determining the discrete parameters is a well

known challenge.

The set of admissible parameter value as-

signements (parametrisations) is represented by

parametric regulatory networks. The analysis

of parametric regulatory network dynamics is,

however, hampered by dual combinatorial ex-

plosion, of the state space and of the parametri-

sation space. We develop methods aimed at al-

leviating the combinatorial explosion. First, we

introduce abstract interpretation for the set of

admissible parametrisations, achieving constant

size encoding, at the cost of a conservative over-

approximation. Second, we lift partial order se-

mantics in the form of unfolding from Petri nets

to parametric regulatory networks, harnessing

concurrency for e�cient state space representa-

tion.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Contents
	Introduction
	Background
	Discrete Regulatory Networks
	Semantics of Discrete Regulatory Networks
	Influence Graphs
	Multivalued Networks
	Discrete Regultory Networks as Automata Networks
	Examples

	Partial Order Semantics of Transition System Products
	Petri Nets
	Unfolding
	Behavioural Equivalence
	Complete Finite Prefix

	Theoretical Contributions
	Parametric Regulatory Networks
	Parametrisations
	Concrete Semantics of Parametric Regulatory Networks
	Abstract Semantics of Parametric Regulatory Networks

	Influence Constraints as Global Constraints on Parametrisations
	Concrete Constrained Semantics of Parametric Regulatory Networks
	Abstract Constrained Semantics of Parametric Regulatory Networks
	Examples

	Unfolding Semantics of Parametric Regulatory Networks
	Parametric Regulatory Network Unfolding
	Complete Finite Prefix of Parametric Unfolding
	Examples

	Goal-Driven Unfolding
	Goal-Driven Reduction
	Computation of Regulation Cover Sets
	Examples

	Applications
	Related Work
	Model Checking
	Reachability Analysis
	Other Applications

	Experimental Results

	Discussion
	Summary
	Ongoing and Future Work
	Attractor Analysis
	Most Permissive Semantics

	Bibliography

