Thèse De

Doctorat De Sorbonne

Université Spécialité

Sreeja Sasidharan Nair

M Marc

Shapiro Directeur De Thèse

M Carlos

Baquero Rapporteur

M Éric

Gressier-Soudan Rapporteur

Examinateur Mme Béatrice Bérard

Mme Carla Ferreira

Examinateur M Bradley

King Examinateur

M Martin

Kleppmann Examinateur

M Gustavo

Petri Examinateur

Gustavo Petri

Carla Ferreira

Mário Perreira

Filipe Meirim

Jonathan Lejeune

Julien Sopena

Antoine Miné

Julia Lawall

Dimitrios Vasilas

Paolo Viotti

Vinh Tao

Alejandro Tomsic

Vincent Vallade

Francis Laniel

Ilyas Toumlilt

Jonathan Sid-Otmane

Saalik Hatia

Sara Hamouda

Benoît Martin

Laurent Prosperi

Designing safe and highly available distributed applications

Keywords:

Distributed applications replicate data to ensure high availability and low latency. To provide high availability, they support concurrent updates to the replicas. Even if replicas eventually converge, they may diverge temporarily, for instance when the network fails. The developer needs to make sure that the application state remains safe despite the temporary divergence. As described by CAP theorem[1], designing distributed applications involves fundamental trade-offs between safety and performance. We focus on the cases where safety is the top requirement.

In the first part of this thesis, for the subclass of state-based distributed systems, we propose a proof methodology for establishing that a given application maintains a given invariant. Our approach allows reasoning about individual operations separately. We demonstrate that our rules are sound, and we illustrate their use with some representative examples. We provide a mechanized proof engine for the rule using Boogie, an SMT-based tool.

The developer can choose between two forms of concurrency control -conflict resolution or coordination. The second part of the thesis presents a case study of conflict resolution in a demanding data structure: the tree.

The tree is a basic data structure present in many applications. We present a novel replicated tree data structure that supports coordination-free concurrent atomic moves, and arguably maintains the tree invariant. Our analysis identifies cases where concurrent moves are inherently safe. For the remaining cases we devise a coordination-free, rollback-free algorithm. The trade-off is that in some cases a move operation "loses" (i.e., is interpreted as skip). We prove that the data structure is convergent and maintains the tree invariant.

The response time and availability of our design compares favourably with competing approaches in the literature.

The final part of the thesis develops a methodology for selecting a distributed lock configuration. Given the coordination required by an application for safety, it can be implemented in many different ways. Even restricting to locks, they can use various configurations, differing by lock granularity, type, and placement. The performance of each configuration depends on workload. We study the "coordination lattice", i.e., design space of lock configurations, and show by simulation how lock configuration impacts performance for a given workload. The lattice represents the dimensions of distributed lock configurations, and we show how to systematically navigate them.

who moved with me to France for this work. My greatest thanks to them for their love, care, and patience.

iii To my beloved husband Jayesh and my wonderful son Abhinav

Table of Contents

Chapter 1

Introduction

Many modern applications serve users accessing shared data in different geographical regions. Examples include social networks, online multi-player games, cooperative engineering, collaborative editors, source-control repositories, or distributed file systems. One approach would be to store the application's data in a single central location, accessed remotely. However, users far from the central location would suffer long delays and outages.

Instead, the data is replicated to several locations. A user accesses the closest available replica. To ensure availability, an update must not synchronize across replicas; otherwise, when a network partition occurs, the system would block. Thus, a replica executes both queries and updates locally, and propagates its updates to other replicas asynchronously.

Asynchronous replication improves availability at the expense of consistency. 1Updates at different locations are concurrent; this may cause replicas to diverge, at least temporarily. Replicas may diverge, but if the system ensures Strong Eventual Consistency (SEC), this ensures that replicas that have received the same set of updates have the same state [START_REF] Shapiro | Conflict-free replicated data types[END_REF], simplifying reasoning.

The replicated data may also require to maintain some (application-specific) invariant, i.e., an assertion about the object. We say a state is safe if the invariant is true in that state; the system is safe if every reachable state is safe. In a sequential system, this is straightforward (in principle): if the initial state is safe, and the final state of every update individually is safe, then the system is safe. However, these conditions are not sufficient in the replicated case, because concurrent updates at different replicas may interfere with one another, leading to unsafe states. This can be fixed by coordinating between some or all types of updates. To maximize availability and latency, such coordination should be minimized.

Identifying the pair of operations that conflict is the first step. The application can be either redesigned with conflict resolution policies for the conflicting operations or it can use some form of coordination to avoid conflicting updates from executing concurrently.

Conflict resolution avoids coordination at some cost such as "losing updates". A deterministic policy decides the winning operation among the pair of concurrent conflicting operations. A client that saw a successful operation might later find that the effect of the operation has been lost, and will have to retry. Hence this approach is advisable for applications that can afford having non-definitive operations, i.e., operations that might not generate any effect.

To ensure safety for the class of applications where the operations have to be definitive, the conflicting operations must coordinate. There are multiple ways to coordinate, the most common being the use of locks. The choice of configuration for the lock will have an impact on the performance of the distributed application. The performance impact depends on the workload characteristics.

In this thesis we propose a methodology for designing correct and highly available distributed applications. We investigate the following research questions:

• How to guarantee safety for highly available distributed applications despite concurrent updates?

• When and how can a distributed application execute safely without any coordination, even in the presence of conflicting operations?

• If coordination is unavoidable, what are the associated costs that can guide our choice?

Contributions

Proving invariant safety for highly-available distributed applications

Distributed applications propagate either operations or the state to remote replicas to ensure that the data is consistent. Propagating operations require higher guarantees from the delivery layer such as causality and exactly-once delivery. Hence state-based update propagation is widely used in the industry. To answer the first question, we propose a novel proof system specialized to proving the safety of available distributed applications that converge by propagating state. This specialization supports modular reasoning, and thus it enables automation. We demonstrate that this proof system is sound. We present Soteria, the first tool supporting the verification of program invariants for state-based replicated objects. When Soteria succeeds, it ensures that every execution is safe, whether replicas are disconnected or concurrent. Otherwise, Soteria provides the list of methods that conflict. We present a number of representative case studies, which we run through Soteria.

A safe, convergent and highly-available replicated tree

A tree is a complex data structure that has strong properties such as being acyclic and having a unique root. Tree data structure is used in several applications, for example a file system. Concurrent moves are known to cause cycles in a tree [START_REF] Najafzadeh | Co-design and verification of an available file system[END_REF]. To answer the second question, we present the design of a coordination-free, highly available and safe replicated tree data structure called Maram. We classify the move operation, into two types called upmove and down-move, prove that only concurrent down-moves causes a cycle, and design a conflict resolution with this information. We also compute the conditions under which the conflict resolution might cause safety issues for the dependent operations and augment the conflict resolution policy to address this. The conflict resolution is coordination-free. We prove the safety of Maram with the conflict resolution. Compared to the existing solutions with locks, Maram requires no coordination and results in a lower response time.

Trade-offs in distributed concurrency control

To answer the third question, we study the subclass of coordination, distributed locks. In particular, we study the impact of a coordination configuration, for a given workload, on the performance of a distributed application (assuming we get the list of conflicts). We study the effects of granularity, mode and placement of locks. We introduce the coordination lattice which is a lattice constructed with the three dimensions of concurrency control. We present a systematic creation and navigation of the coordination lattice for a given application and workload. We present a simulator that can provide insight into the performance impact of a given lock configuration; this helps guide the developer in choosing an appropriate trade-off. We propose a set of rules that guide the concurrency control selection by navigating the coordination lattice and illustrate the soundness of the rules with the help of the simulator. These rules guide the developer to choose a coordination configuration for the safety of the distributed application with minimal performance impact.

Part I

Verifying the design of distributed applications

Introduction to Part I

This part of the thesis presents a proof rule for verifying the safety of distributed applications.

A distributed application often replicates its data to several locations, and accesses some available replica. Examples include social networks, online multi-player games, cooperative engineering tools, collaborative editors, source control repositories, or distributed file systems. To ensure availability, an update must not synchronize across replicas; otherwise, when a network partition occurs, the system would block. The drawback is that asynchronous updates may cause replicas to diverge or to violate the data invariants.

To address the first problem, Conflict-free Replicated Data Types (CRDTs) [START_REF] Shapiro | Conflict-free replicated data types[END_REF] have mathematical properties to ensure that all replicas that received the same set of updates converge to the same state [START_REF] Shapiro | Conflict-free replicated data types[END_REF]. To ensure availability, a CRDT replica executes both queries and updates locally and immediately, without remote coordination. It propagates its updates to the other replicas asynchronously.

There are two basic approaches to update propagation: to propagate operations, or states. In the operation-based approach, an update is first applied to some origin replica, then sent as an operation to remote replicas, which in turn apply it to update their local state. Operation-based CRDTs require the the message delivery layer to deliver messages in causal order, exactly once; the set of replicas must be known.

In the state-based approach, an update is applied to some origin replica. Occasionally, an updated replica sends its full state to some other replica, which merges the received state into its own. In turn, this replica will later send its own state to yet another replica.

As long as every update eventually reaches every replica transitively, messages may be dropped, re-ordered or duplicated, and the set of replicas may be unknown. Replicas are guaranteed to converge if the set of states, as a result of updates and merge, forms a monotonic semi-lattice [START_REF] Shapiro | Conflict-free replicated data types[END_REF]. Due to these relaxed requirements, state-based CRDTs have better adoption [START_REF] Baquero | Composition in state-based replicated data types[END_REF]. They are the focus of this work.

As a running example, consider a simple auction system. For simplicity, we consider a single auction composed of the following parts:

• Its Status, which can move from initial state INVALID (under preparation) to ACTIVE (can receive bids) and then to CLOSED (no more bids accepted).

• The Winner of the auction, which is initially ⊥, and eventually becomes the bid taking the highest amount. In case of ties, the bid with the lowest id wins.

• The set of Bids placed, which is initially empty. A bid is a tuple composed of Initially, it is FALSE. Once placed, a bid cannot be withdrawn.

-The monetary Amount of the bid; this cannot be modified once the bid is placed.

Figure 1.1 illustrates how the auction state evolves over time. The state of the application is geo-replicated at data centers in Adelaide, Brussels, and Calgary. Users at different locations can start an auction, place bids, close the auction, declare a winner, inspect the local replica, and observe if a winner is declared and who it is. Update is propagated asynchronously to other replicas. All replicas should eventually agree on the same auction status, the same set of bids and the same winner.

Figure 1.1 shows the state-based approach with local operations and merges. Alternatives exist where only a delta of the state -that is, the portion of the state not known to be part of the other replicas-is sent as a message [START_REF] Almeida | Delta state replicated data types[END_REF]; since this is an optimisation, it is of no consequence to the results of this work.

Looking back to Figure 1.1, we can see that replicas diverge temporarily. This temporary divergence can lead to an unsafe state, in this case declaring a lower amount bid as the winner. This correctness problem has been addressed before; however, previous works mostly consider the operation-based propagation approach [START_REF] Gotsman | Cause I'm Strong Enough: Reasoning about consistency choices in distributed systems[END_REF][START_REF] Najafzadeh | The CISE tool: Proving weakly-consistent applications correct[END_REF][START_REF] Marcelino | Bringing hybrid consistency closer to programmers[END_REF][START_REF] Houshmand | Hamsaz: Replication coordination analysis and synthesis[END_REF].

In contrast to previous work, 2 we consider state-based distributed applications.We find that, the specific properties of state-based propagation enable simple modular reasoning despite concurrency, thanks to the concept of concurrency invariant. Our proof methodology derives the concurrency invariant automatically from the sequential specification. Now, if the initial state is safe, and every update maintains both the application invariant and the concurrency invariant, then every reachable state is safe, even in concurrent 2 Discussed in detail in Chapter 5

executions, regardless of network partitions.

We developed a tool named Soteria to automate our proof methodology. Soteria analyses the specification to detect concurrency bugs and either proves safety or provides counterexamples.

The contributions of this part are as follows:

• We propose a novel proof system, specialized in proving the safety of available applications that propagate state. This specialisation supports modular reasoning, and thus enables automation.

• We demonstrate that this proof system is sound. Moreover, we provide a simple semantics for state-propagating systems that allows us to ignore network messages altogether.

• We present Soteria, the first tool supporting the verification of program invariants for state-based distributed applications. When Soteria succeeds it ensures that every execution, whether replicas are partitioned or concurrent, is safe.

• We present a number of representative case studies, which we run through Soteria.

Gustavo Petri collaborated with us for this part of the thesis. Our contribution resulted in two publications, Nair et al. [START_REF] Sreeja | Invariant safety for distributed applications[END_REF][START_REF] Sreeja | Proving the safety of highlyavailable distributed objects[END_REF], and an open source tool, Nair et al. [START_REF] Sreeja S Nair | Soteria[END_REF].

Chapter 2

Proving invariant safety for highly-available distributed applications

In this chapter we present a proof methodology to ensure that a given state-based distributed application is system-safe, for a given invariant and a given amount of concurrency control.

System Model

General Principles

An application consists of a state, a set of operations, a merge function and an invariant.

As our running example, Figure 1.1 illustrates three replicas of an auction application, at three different locations, represented by the three horizontal lines. Each line depicts the evolution of the state of the corresponding replica; time flows from left to right.

State

A distributed system consists of a number of servers, with disjoint memory and processing capabilities. The servers might be distributed over geographical regions. A set of servers at a single location stores the state of the application. This is called a single replica.

We assume that a replica executes sequentially. The replicas are at different geographical locations, each one having a full copy of the state. In the simplest case (for instance at initialisation) the state at all replicas will be identical. The state of some replica is called its local state. The global view, comprising all local states, is called the global state.

Operations

Each replica may perform the operations defined for the application. To support availability, an operation modifies the local state at some arbitrary replica, the origin replica for that operation, without synchronising with other replicas (the cost of synchronisation being significant at geo-distributed scale). An operation might consist of several changes; these are applied to the replica as a single atomic unit.

Executing an operation on its origin replica takes effect immediately. However, the state of the other replicas, called remote replicas, remains unaffected at this point. The remote replicas get updated when the state is eventually propagated. An immediate consequence of this execution model is that, in the presence of concurrent operations, replicas can reach different states, i.e., they diverge.

Let us illustrate this with our example in Figure 1.1. Initially, the auction is yet to start, the winner is not declared and no bids are placed. By default, a replica can execute any operation, start_auction, place_bid, and close_auction, locally without synchronising with other replicas. We see that the local states of replicas occasionally diverge. For example at the point where operation close_auction completes at the Adelaide replica, the Adelaide replica is aware of a single $100 bid, whereas the Calgary replica observes another bid for $105, and the Brussels replica observes both the bids.

State Propagation

A replica occasionally propagates its state to other replicas in the system. A replica receiving a remote state merges it into its own.

In Figure 1.1, the arrows between replicas represent the delivery of a message containing the state of the source replica, to be merged into the target replica. A message is labelled with the state propagated. For instance, the first message delivery at the Brussels replica represents the result of updating the local state (setting auction status to ACTIVE), with the state originating in the replica at Adelaide (auction started).

Similarly to operations, a merge is atomic. In Figure 1.1, Alice closes the auction at the Adelaide replica. This atomically sets the status of the auction to CLOSED and declares a winner from the set of bids it is aware of. The updated auction state and winner are transmitted together. Merging is performed atomically at the Brussels replica. 1We now specify the merge operation for an auction. The receiving replica's local state is denoted σ = (status, winner, Bids), the received state is denoted σ = (status , winner , Bids) and the result of merge is denoted as σ new = (status new , winner new , Bids new).

merge ((status , winner , Bids) ,(status , winner , Bids)) : status new := max (status , status) winner new := winner = ⊥ ? winner : winner Bids new := {(id , placed ∨ placed , max (amount , amount)) | (id , placed , amount) ∈ Bids ∧ (id , placed , amount) ∈ Bids } Furthermore, we require the operations and merge to be defined in a way that ensures convergence. We discuss the relevant properties later, in Section 4.2.

Data Invariants

A data invariant is an assertion that must evaluate to true in every local state of every replica. Although evaluated locally at each replica, data invariant is in effect global, since it must be true at all replicas, and replicas eventually converge. For our running example, data invariant can be stated as follows:

• Only an active auction can receive bids, and

• the highest unique placed bid wins when the auction closes (breaking ties using bid identifiers).

This data invariant must hold true in all possible executions of the application.

Notations and Assumptions

Let us introduce some notations and assumptions:

• We assume a fixed set of replicas, ranged over with the meta-variable r ∈ R sampled from the domain of unique replica names R.

• We denote a local state with the meta-variable σ ∈ Σ ranged over the domain of states of the application Σ.

• The local semantic function takes an operation and a state, and returns the state after applying the operation. We write op (σ) = σ new for executing operation op on state σ resulting in a new state σ new .

• Ω denotes a partial function returning the current state of a replica. For instance • A message propagating states between replicas is denoted r σ -→ r . This represents the fact that replica r has sent a message (possibly not yet received) to replica r , with the state σ as its payload. The meta-variable M denotes the messages in transit in the network.

Ω(r) = σ
• In Subsection 2.1.3, we will utilise a set of states to record the history of the execution.

The set of past states will be ranged over with the variable S ∈ P(Σ), where P()

indicates the power set.

• All replicas are assumed to start in the same initial state σ i . Formally, for each replica r ∈ dom(Ω i) we have Ω i (r) = σ i .

Operational Semantics

In this subsection and Subsection 2.1.4 we will present two semantics for systems propagating states. Importantly, while the first semantics takes into account the effects of the network on the propagation of the states, and is hence an accurate representation of the

Operation Ω(r) = σ op (σ) = σ new Ω new = Ω[r ← σ new] (Ω, M) - → (Ω new , M) Send Ω(r) = σ r ∈ dom(Ω) \ {r} M new = M ∪ { r σ -→ r } (Ω, M) - → (Ω, M new) Merge Ω(r) = σ r σ -→ r ∈ M M new = M \ { r σ -→ r } merge (σ, σ) = σ new Ω new = Ω[r ← σ new] (Ω, M) - → (Ω new , M new) Op & Broadcast Ω(r) = σ op (σ) = σ new Ω new = Ω[r ← σ new] M new = M ∪ { r σnew ---→ r | r ∈ dom(Ω) \ {r} } (Ω, M) - → (Ω new , M new) Merge & Broadcast Ω(r) = σ r σ -→ r ∈ M M new = M \ { r σ -→ r } merge (σ, σ) = σ new Ω new = Ω[r ← σ new] M new = M new ∪ { r σnew ---→ r | r ∈ dom(Ω) \ {r} } (Ω, M) - → (Ω new , M new) Figure 2
.1: Precise Operational Semantics: Messages execution of systems with state propagation, we will show in the next subsection that reasoning about the network is unnecessary in this kind of system. We will demonstrate this claim by presenting a much simpler semantics in which the network is abstracted away.

The importance of this reduction is that the number of events to be considered, both when conducting proofs and when reasoning about applications, is greatly reduced. As informal evidence of this claim, we point at the difference in complexity between the semantic rules presented in We remark at this point that no assumptions are made about the duplication of messages or the order in which messages are delivered. This is in contrast to other works on the verification of properties of replicated applications [START_REF] Gotsman | Cause I'm Strong Enough: Reasoning about consistency choices in distributed systems[END_REF][START_REF] Houshmand | Hamsaz: Replication coordination analysis and synthesis[END_REF]. The reason why this assumption is not a problem in our case is that the least-upper-bound assumption of the merge function, as well as the inflation assumptions on the states considered in Subsection 4.2.2 (Section 4.2) mean that delayed messages have no effect when they are merged.

As customary we will denote with (Ω, M) * -→ (Ω new , M new) the repeated application of the semantic rules zero or more times, from the state (Ω, M) resulting in the state (Ω new , M new).

It is easy to see how the example in Figure 1.1 proceeds according to these rules for the auction.

For liveness, we require that an update is always broadcasted to other replicas and is eventually delivered. The following lemma, to be used later, establishes that whenever we use only the broadcast rules, for any intermediate state in the execution, and for any replica, when considering the final state of the trace, either the replica has already observed a fresher version of the state in the execution, or there is a message pending for it with that state. This is an obvious consequence of broadcasting.

(Ω i , ∅) * - → (Ω, M) * - → (Ω new , M new)
for any two replicas r and r and a state σ such that Ω(r) = σ, then either:

• Ω new (r) ≥ σ, or • r σ -→ r ∈ M new .

Operational Semantics with State History

We now turn our attention to a simpler semantics where we omit messages from configurations, but instead, we record in a separate set all the states occurring in any replica throughout the execution.

Operation between configurations of the form (Ω, S) as before, but where the set of messages is replaced by a set of states denoted with the meta-variable S ∈ P(Σ).

Ω(r) = σ op (σ) = σ new Ω new = Ω[r ← σ new] (Ω, S) - → (Ω new , S ∪ {σ new }) Merge Ω(r) = σ σ ∈ S merge (σ, σ) = σ new Ω new = Ω[r ← σ new] (Ω, σ) - → (Ω new , S ∪ {σ new })
The rules are simple. {Ω(r)} ⊆ S

Correspondence between the semantics

In this section, we show that removing the messages from the semantics, and choosing to record states instead renders the same executions. To that end, we will define the following relation between configurations of the two semantics which will be later shown to be a bisimulation.

(Ω, M) R Ω i (Ω, S)
when the following conditions are met:

1. (Ω i , ∅) * - → (Ω, M), and 2. (Ω i , {σ i }) * - → (Ω, S), and
3. { σ | r σ -→ r ∈ M } ⊆ S (Ω i , ∅) (Ω, M) (Ω new , M new) (Ω i , {σ i }) (Ω, S) (Ω new , S new) * RΩ i RΩ i *
(a) Precise to History-preserving Simulation

(Ω i , {σ i }) (Ω, S) (Ω new , S new) (Ω i , ∅) (Ω, M) (Ω new , M new) * RΩ i RΩ i * (b)
(Ω, M) - → (Ω new , M new)
and consider that there exists a state (Ω, S) of the history preserving semantics of Figure 2.2 such that they are related by the simulation relation

(Ω, M) R Ω i (Ω, S)
We can conclude that, as illustrated in Figure 2.3a, there exists a state

(Ω new , S new) such that (Ω, S) - → (Ω new , S new) and (Ω new , M new) R Ω i (Ω new , S new)
We will now consider the lemma showing the inverse relation. To that end we will consider a special case of the semantics of Figure 2.1 where instead of applying the Operation rule, we will always apply the Op & Broadcast rule, and instead of the Merge rule, we will apply Merge & Broadcast. As we mentioned before, this is equivalent to the application of the Operation/Merge rule, followed by a sequence of applications of Send. The reason we will do this is that we are interested in showing that for any execution of the semantics in Figure 2.2 there is an equivalent (simulated) execution of the semantics of Figure 2.1. Since all states can be merged in the semantics of Figure 2.2 we have to assume that in the semantics of Figure 2.1 the states have been sent with messages.

Fortunately, we can choose how to instantiate the existential send messages to apply the rules as necessary, and that justifies this choice.

(Ω, M) R Ω i (Ω, S)
We can conclude that there exists a state (Ω new , M new) such that

(Ω, M) - → (Ω new , M new) and (Ω new , M new) R Ω i (Ω new , S new)
As before, an illustration of this lemma is presented in Figure 2.3b.

We can now conclude that the two semantics are bisimilar: The theorem above justifies carrying out our proofs with respect to the semantics of Figure 2.2, which has fewer rules, and better aligns with our proof methodology. This also justifies that when reasoning semantically about state-propagating application systems we can generally ignore the effects of network delays and messages.

From the standpoint of concurrency, the system model allows the execution of asynchronous concurrent operations, where each operation is executed atomically in each replica, and the aggregation of results of different operations is performed lazily as replicas exchange their state. At this point, we assume the set of states, along with the operations and merge, forms a monotonic semi-lattice. This is a sufficient condition for Strong Eventual Consistency [START_REF] Shapiro | Conflict-free replicated data types[END_REF][START_REF] Baquero | Composition in state-based replicated data types[END_REF][START_REF] Baquero | Using structural characteristics for autonomous operation[END_REF].

We have seen that even though we achieve convergence later, there can be instances or even long periods of time during which replicas might diverge. We need to ensure that the concurrent executions are still safe. In the next section, we discuss how to ensure safety of distributed applications built on top of the system model we described. Let us now consider these conditions in turn:

Proving convergence: Strong Eventual Consistency

• The first condition Poset checks that the ordering relation of the state defines a partially ordered set(poset): reflexive, transitive, and anti-symmetric. We then find a number of conditions on the merge function.

(Σ,) is a poset (Poset) ∀ σ, σ , ∃σ new , merge (σ, σ) = σ new (Total) ∀ σ, σ new , merge (σ, σ) = σ new ⇒ σ = σ new (Idempotent) ∀ σ, σ , σ new0 , σ new1 , merge (σ, σ) = σ new0 ∧ merge (σ , σ) = σ new1 ⇒ σ new0 = σ new1 (Commutative) ∀ σ, σ , σ , σ new0 , σ new1 , merge (merge (σ, σ), σ) = σ new0 ∧ merge (σ, merge (σ , σ)) = σ new1 ⇒ σ new0 = σ new1 (Associative) ∀ op, σ, σ new , op (σ) = σ new ⇒ σ σ new (Inflation) ∀ σ, σ , σ new , merge (σ, σ) = σ new ⇒ σ σ new ∧σ σ new (UB) ∀ σ, σ , σ new , σ * , σ σ * ∧ σ σ * ∧ merge (σ, σ) = σ new ⇒ σ new σ * (LUB)
• The second condition, Total, says that the merge function is total.

• Conditions Idempotent, Commutative and Associative say that the merge function is idempotent, commutative and associative [START_REF] Baquero | Composition in state-based replicated data types[END_REF].

• Condition Inflation says that each operation op of the application is an inflation.

• Related to the condition above, condition UB ensures that the result of merge is an upper-bound of the input states. This, along with condition Inflation, is a sufficient condition for convergence, since it implies that there is a deterministic way to reconcile any two replicas that have diverged in their states through the leastupper-bound of the lattice implemented by the merge function, and also implies that the states of all replicas are progressing in the same direction (w.r.t. the ordering function) in the lattice (see Figure 2.8). It remains to see that there is a deterministic state to which all replicas will converge (assuming that no new operations arrive).

• The fourth and final condition, LUB, ensures that merge function is the least upper bound as per the given order. This condition guarantees that the state reached by merging multiple states is unique, making the merge function deterministic, and thus guaranteeing equality at the point where all replicas have exchanged their respective states.

All these conditions ensure that the distributed application guarantees strong eventual consistency in the case where all the replicas receive copies of states incorporating all prior updates.

Semilattice of auction object

Let us show that our running example of an auction application converges. Subsection 2.

Proving Invariants

In this section, we report our invariant verification strategy. Specifically, we consider the problem of verifying data invariants of highly-available distributed applications.

To support the verification of data invariants we will consider a syntactic-driven approach based on program logic. Bailis et al. [START_REF] Bailis | Coordination avoidance in database systems[END_REF] identify necessary and sufficient run-time conditions to establish the safety of application invariants for highly-available distributed databases in a criterion dubbed I-confluence. Moreover, they study the validity of a number of typical invariants and applications. Our work improves on the I-confluence criterion defined in [START_REF] Bailis | Coordination avoidance in database systems[END_REF] by providing a static, syntax-driven, and mostly-automatic mechanism to verify the correctness of an invariant for an application. We will address the specific differences in Chapter 5, related work.

An important consequence of our verification strategy is that while we are proving invariants about a concurrent highly-distributed system, our verification conditions are modular (on the number of API operations), and can be carried out using standard sequential Hoare-style reasoning. These verification conditions in turn entail stability of the assertions as one would have in a logic like Rely/Guarantee.

Let us start by assuming that a given initial state for the application is denoted σ i .

Initially, all replicas have σ i as their local state.

σ ∈ Pre u =⇒ u(σ) ∈ Inv data
Thus, a local update executes only when, at the origin replica, the current state is safe and its precondition currently holds.

Similarly, merge must also be safe. Since merge can happen at any time, it must be the case that its precondition is always true, i.e., it constitutes an additional invariant. We call this the concurrency invariant. Now our global invariant consists of two parts: first, the data invariant (Inv data), and second, the concurrency invariant(Inv conc).

To illustrate local preconditions, consider an operation close_auction(w:BidId), which sets auction status to CLOSED and the winner to w (of type BidId). The developer may have written a precondition such as status = ACTIVE because closing an auction doesn't make sense otherwise. In order to ensure the invariant that the winner has the highest amount, one needs to strengthen it with the clause is_highest(Bids, w), defined as4

∀ b ∈ Bids , b . placed =⇒ b . Amount ≤ w . Amount
To illustrate the precondition of merge, let us use our running example. We wish to maintain the invariant that the highest bid is the winner. Assume a scenario where the local replica declared a winner and closed the auction. An incoming state from a remote replica contains a bid with a higher amount. When the two states are merged, we see that the resulting state is unsafe. So we must strengthen the merge operation with a precondition. We require a predicate that is at least as strong as the weakest precondition that satisfies the data invariant, Inv data . The strengthened precondition looks like this: status = CLOSED =⇒ ∀ Bids ∈ P(B) , is_highest (Bids , w) ∧ status = CLOSED =⇒ ∀ Bids ∈ P(B) , is_highest (Bids , w)

σ i Inv data (SafeInit) ∀ op, σ, σ new ,   σ Pre op ∧ σ Inv data ∧ op (σ) = σ new   ⇒ σ new Inv data (SafeOp) ∀ σ, σ , σ new ,     (σ, σ) Pre merge ∧ σ Inv data ∧ σ Inv data ∧ merge (σ, σ) = σ new     ⇒ σ new
Inv data (SafeMerge)

(σ i , σ i) Inv conc (ConcInit) ∀ op, σ, σ , σ new ,   σ Pre op ∧ (σ, σ) Inv conc ∧ op (σ) = σ new   ⇒ (σ new , σ) Inv conc (ConcOp) ∀ σ, σ , σ new ,   (σ, σ) Pre merge ∧ (σ, σ) Inv conc ∧ merge (σ, σ) = σ new   ⇒ (σ new , σ) Inv conc (ConcMerge) Figure 2.6: Invariant Conditions
where B is the set of all possible bids. This means that if the status is CLOSED in either of the two states, the winner should be the highest bid in any state. This condition ensures that when a winner is declared, it is the highest bid among the set of bids in any state at any replica.

Invariance Conditions

The verification conditions in Figure 2.6 ensure that for any reachable local state of a replica, the global invariant Inv data ∧ Inv conc , is a valid assertion. We assume the invariant to be a Hoare-logic style assertion over the state of the application. In a nutshell, all of these conditions check (i) the precondition of each of the operations, and that of the merge operation uphold the global invariant, and (ii) the global invariant of the application consists of the invariant and the concurrency invariant (precondition of merge).

We will develop this intuition in what follows. Let us now consider each of the rules:

• Clearly, the initial state of the application must satisfy the global invariant, this is checked by conditions SafeInit and ConcInit.

The rest of the rules perform a kind of inductive reasoning. Assuming that we start in a state that satisfies the global invariant, we check that any state update preserves the validity of said invariant. Importantly, this reasoning is not circular, since the initial state is known by the rule above to be safe. 5• Condition SafeOp checks that each of the operations, when executed starting in a state satisfying its precondition and the invariant, is safe. Notice that we require that the precondition of the operation be satisfied in the starting state. This is the core of the inductive argument alluded to above, all operations -which as we mentioned in Section 2.1 execute atomically w.r.t. concurrency -preserve the data invariant

Inv data .
Other than the execution of operations, the other source of local state changes is the execution of the merge function in a replica. It is not true in general that for any two given states of an application, the merge should compute a safe state. In particular, it could be the case that the merge function needs a precondition that is stronger than the conjunction of the invariants in the two states to be merged. The following rules deal with these cases.

• We require the merge function to be annotated with a precondition strong enough to guarantee that merge will result in a safe state. Generally, this precondition can be obtained by calculating the weakest precondition [START_REF] Dijkstra | A discipline of programming[END_REF] of merge w.r.t. the desired invariant. Since merge requires two states as input, the precondition of merge has two states. We can then verify that merging two states is safe. This is the purpose of rule SafeMerge.

As per the program model of Section 2.1, any two replicas can exchange their states at any given point of time and trigger the execution of a merge operation. Thus, it must be the case that the precondition of the merge function is enabled at all times between any two replica local states. Since merge is the only point where a local replica can observe the result of concurrent operations in other replicas, we call this a concurrency invariant (Inv conc).

In other words: the concurrency invariant is part of the global invariant of the application. This is the main insight that allows us to reduce the proof of the distributed application to checking that both the invariant Inv data and the concurrency invariant Inv conv are global invariants. In particular, the latter implies the former, but for exposition purposes we shall preserve the invariant Inv data in the rules.

• Just as we did with the operations above, we now need to check that whenever we have a pair of states that satisfy the concurrency invariant, if one of these states changes, the resulting pair still satisfies the concurrency invariant. This is exactly the purpose of rule ConcOp in the case where the state change originates from an operation execution in one of the replicas of the pair. This rule is similar to rule SafeOp above, where the invariant Inv has been replaced by Inv conc , and consequently we have a pair of states.

• Finally, as we did with rule SafeMerge, we need to check the case where one of the We remark at this point that there are numerous program logic approaches to proving invariants of shared-memory concurrent programs, with Rely/Guarantee [START_REF] Jones | Specification and design of (parallel) programs[END_REF] and concurrent separation logic [START_REF] Brookes | Concurrent separation logic[END_REF] underlying many of them. While these approaches could be adapted to our use case (propagating-state distributed systems), this adaptation is not evident. As an indication of this complexity: one would have to predicate about the different states of the different replicas, restate the invariant to talk about these different versions of the state, encode the non-deterministic behaviour of the propagation layer, etc. Instead, we argue that our specialized rules are much simpler, allowing for a purely sequential and modular verification that we can mechanise and automate. This reduction in complexity is the main theoretical contribution of this work.

Applying the proof rule

Let us apply the proof methodology to the auction application. Its data invariant, Inv data , is the following conjunction:

1. Only an ACTIVE auction can receive bids, and 2. the highest placed bid wins when the auction is CLOSED.

Computing the weakest precondition of each update operation, for this invariant is obvious. that it is susceptible of being violated by merging. This is the case if Bob's $100 bid in Brussels wins, even though Charles concurrently placed a $105 bid in Calgary; this occurred because status became CLOSED in Brussels while still ACTIVE in Calgary. The weakest precondition of merge for safety expresses that, if status in either state is CLOSED, the winner should be the bid with the highest amount in both the states. This merge precondition, now called the concurrency invariant, strengthens the global invariant to be safe in concurrent executions. Specification 2.1 shows the concurrent invariant as the precondition of merge, P re merge .

Let us now consider how this strengthening impacts the local update operations. Since starting the auction doesn't modify any bids, the operation trivially preserves it. Placing a bid might violate Inv conc if the auction is concurrently closed in some other replica; conversely, closing the auction could also violate Inv conc , if a higher bid is concurrently placed in a remote replica. Thus, the auction application is safe when executed sequentially, but it is unsafe when updates are concurrent. This indicates the concurrent specification has a bug, which we now proceed to fix.

Coordination for Invariant Preservation

As we discussed earlier, the preconditions of operations and merge are strengthened in order to be sequentially safe. An application must also preserve the concurrency invariant in order to ensure concurrent safety. Violating this indicates the presence of a concurrency bug in the specification. In that case, the operations that fail to preserve the concurrency invariant might need to coordinate. The developer adds the required concurrency control mechanisms as part of the state in our model. The modified state is now composed of the Recall that in the auction example, placing bids and closing the auction did not preserve the precondition of merge. This requires strengthening the specification by adding a coordination mechanism to restrict these operations. We can enforce them to be strictly sequential, thereby avoiding any concurrency at all. But this will affect the availability of the application. In particular, it should be possible to place bids in parallel.

A concurrency control can be better designed with the workload characteristics in mind.

For this particular use case, we know that placing bids is a much more frequent operation than closing an auction. Concurrent placing of bids is safe, whereas concurrency between place bid and close auction is not. This situation is similar to a readers-writer lock. We distribute tokens to each replica. As long as a replica has a token, it can place bids.

Closing the auction requires recalling the tokens from all replicas. This ensures that there are no bids placed concurrently while closing auction and thus a winner can be declared, respecting the invariant. The addition of this concurrency control also updates the Inv conc .

Clearly, all operations must respect this modification for the specification to be considered safe.

Note that the token model described here restricts availability in order to ensure safety. Adding efficient coordination is not a problem to be solved only with application specification in hand, it rather requires the knowledge of the application dynamics such as the workload characteristics and is part of our work described in Part III.

Specification 2.2 Safe Distributed Auction

State: (status, winner, Bids , T okens)

INVALID < ACTIVE < CLOSED Invariant: ∀b ∈ Bids b.placed =⇒ status ≥ ACTIVE ∧ b.amount > 0 ∧status ≤ ACTIVE =⇒ winner = ⊥ ∧status = CLOSED =⇒ winner ∈ Bids ∧ winner.placed ∧is_highest(Bids, winner) ∧∀r ∈ Reps ¬T okens[r] Comparison function: status σ ≥ status σ ∧ (winner σ = ⊥ ∨ winner σ = ⊥) ∧ (∀b ∈ Bids σ b σ .placed ∨ ¬b σ .placed) ∧∀r ∈ Reps ¬T okens σ [r] ∨ T okens σ [r] Merge(σ, σ): {P re merge (winner σ = winner σ ∨ winner σ = ⊥ ∨ winner σ = ⊥) ∧∀b ∈ Bids σ b σ .amount = b σ .amount ∧status σ = CLOSED =⇒ is_highest(Bids σ , winner σ) ∧is_highest(Bids σ , winner σ) ∧status σ = CLOSED =⇒ is_highest(Bids σ , winner σ) ∧is_highest(Bids σ , winner σ) ∧T okens σ [me] =⇒ T okens σ [me] ∧∀b ∈ Bids σ ∀r ∈ Reps ¬T okens σ [r] ∧¬b σ .placed =⇒ ¬b σ .placed ∧(∀r ∈ Reps ¬T okens σ [r] ∧ b / ∈ Bids σ) =⇒ b / ∈ Bids σ ∀r ∈ Reps ¬T okens σ [r] =⇒ winner σ = winner σ ∨ winner σ = ⊥ ∃r ∈ Reps T okens σ [r] =⇒ winner σ = ⊥ ∧ winner σ = ⊥ } status σ = max(status σ , status σ) winner σ = (winner σ = ⊥) ? winner σ : winner σ ∀b ∈ Bids σ ∪ Bids σ (b σ .placed = b σ .placed ∨ b σ .placed) ∧(b σ .amount = (b σ .amount > 0) ? b σ .amount : b σ .amount) ∀r ∈ Reps T okens σ [r] = T okens σ [r] ∧ T okens σ [r] StartAuction(): {P re startauction status = INVALID ∧ winner = ⊥ ∧∀r ∈ Reps T okens[r] } status = ACTIVE PlaceBid(bid): {P re placebid bid / ∈ Bids ∧ status = ACTIVE ∧ winner = ⊥ ∧T okens[me] } Bids = Bids ∪ bid CloseAuction(w): {P re closeauction status = ACTIVE ∧ winner = ⊥ ∧ ∃b ∈ Bids b.placed ∧ b.amount > 0 ∧is_highest(Bids, w) ∧∀r ∈ Reps ¬T okens[r] } status = CLOSED winner = w Figure 2
.7 shows the evolution of the modified auction application with concurrency control. In the figure, a token is represented by the icon of a key. When a replica wants to close the auction, it can request tokens from other replicas. We indicate that a replica releases its token by a cross mark on its key. This coordination mechanism makes sure that the application is safe during concurrent executions as well. Figure 2.8 shows the semi-lattice formed by the updated specification.

The extended specification of the auction example including the concurrency control is listed in Specification 2.2 and proven correct. The shaded lines in blue indicate the effect of adding concurrency control to the state. Note that the keyword me indicates the current replica. We model the tokens as an array of boolean values, with one entry per replica. This addition to the state modifies the invariant and subsequently the preconditions of all operations and merge. The proof rule when applied on this modified specification verifies that the specification is safe from concurrency bugs.

To summarize, all updates (operations and merge) have to respect the global invariant (Inv data ∧ Inv conc). If an update violates Inv data , the developer must strengthen its precondition. If an update violates Inv conc , the developer must restrict concurrency through coordination mechanisms.

Chapter 3

Use cases

This chapter presents three representative examples of distributed applications with different consistency requirements. The consent object is an example of a coordination-free design, illustrating a safe object requiring only eventual consistency. The distributed lock shows a design that maintains a total order, illustrating strong consistency. The courseware example shows a mix of concurrent operations and operations with restricted concurrency. This example illustrates applications that might require some coordination to ensure safety.

For each case study, we give an overview of the operational semantics informally. We then discuss how the design preserves the safety conditions discussed in Section 2.3. We also provide pseudocode for better comprehension.

Distributed Barrier

In some distributed applications, all replicas must reach a single state for an operation to proceed. We consider the specification of a barrier object with a fixed number of replicas.

The specification of the consent object is shown in Specification 3.1. The state consists of a boolean flag, f lag, indicating that all replicas have voted, and a boolean array, V otes, indicating the votes from replicas. Each replica votes by setting its dedicated entry in the boolean array. A replica cannot withdraw its vote. A replica sets f lag when it sees all entries of the boolean array set. The merge function is the disjunction of the individual components.

The consistency between the values of f lag and V otes is ensured by the invariant. The invariant requires that if the flag is set, then all the replicas have voted.

We can observe that merge and vote operations maintain the invariant at all times whereas agree needs an extra precondition to ensure that all the replicas have voted before setting the consent flag.

Since merge ensures safety without any additional precondition, the object is trivially safe under concurrent executions.

Specification 3.1 Distributed Barrier

State: (V otes, f lag) Invariant: f lag =⇒ ∀r ∈ Reps V otes[r] Comparison function: f lag σ ∨ (¬f lag σ ∧ ∀r ∈ Reps V otes σ [r] ∨ ¬V otes σ [r]) Merge(σ, σ): {P re merge True} ∀r ∈ Reps V otes σ [r] = V otes σ [r] ∨ V otes σ [r] f lag σ = f lag σ ∨ f lag σ Vote(): {P re vote True} V otes[me] = True Agree(): {P re agree ∀r ∈ Reps V otes[r]} f lag = True Specification 3.2 Replicated Lock State: Lock × timestamp Invariant: ∃r ∈ Reps Lock[r] ∧ ∀r ∈ Reps (Lock[r] ∧ Lock[r]) =⇒ r = r Comparison function: timestamp σ > timestamp σ ∨ (timestamp σ = timestamp σ ∧ ∀r ∈ Reps Lock σ [r] = Lock σ [r]) Merge(σ, σ): {P re merge (timestamp σ = timestamp σ =⇒ ∀r ∈ Reps Lock σ [r] = Lock σ [r]) ∧ (Lock σ .me =⇒ timestamp σ ≥ timestamp σ)} timestamp σ = max(timestamp σ , timestamp σ) ∀r ∈ Reps Lock σ [r] = (timestamp σ > timestamp σ) ? Lock σ [r] : Lock σ [r] Transfer(to): {P re transf er Lock[me]} timestamp = timestamp + 1 Lock[me] = False Lock[to] = True

Replicated lock

We now discuss a replicated lock object that ensures mutual exclusion. We use an array of boolean values, one entry per replica, to model the lock. If a replica owns the lock, the corresponding array entry is set to true. The lock is transferred to any other replica by using the transf er function. The full specification is shown in Specification 3.2.

We need to ensure that the lock is owned by exactly one replica at any given point in time, the mutual exclusion property. This is the invariant. For simplicity, we are not considering failures. In order to preserve safety, we need to enforce a precondition on the transfer operation such that the operation can only transfer the ownership of its origin replica. For state inflation, a timestamp associated with the lock is incremented during each transfer.

A merge of two states of this distributed lock will preserve the state with the highest timestamp. Assuming timestamps are unique, if the timestamps of the two states are equal, their corresponding boolean arrays are also equal. Also, the state of the replica that owns the lock has the highest timestamp. The conjunction of these two restrictions which form the precondition of merge, Pre merge , which is by definition the concurrency invariant,

Inv conc .
Consider the case of three replicas r 1 , r 2 and r 3 sharing a distributed lock. Assume that initially replica r 1 owns the lock. Replicas r 2 and r 3 concurrently place a request for the lock. The current owner r 1 , has to make a decision on the priority of the requests based on some unspecified business logic. Assume that r 1 transfers the lock to r 3 . Since r 1 no longer has the lock, it cannot issue any further transfer operations. We see clearly that the transfer operation is safe due to the precondition that only the replica that owns the lock can transfer it. In the new state, r 3 is the only replica that can perform a transfer operation.

We also note that this prevents any concurrent transfer operations. This guarantees mutual exclusion, and hence ensures safety in a concurrent execution environment.

Observe that due to the precondition of the transf er operation, concurrent operations do not happen. The states progress through a total order, ordered by the timestamp. The transfer function increases the timestamp and the merge function preserves the highest timestamp.

Courseware

We now study an application that allows students to register and enrol in courses. The state consists of a set of students, a set of courses, and enrolments of students for different courses. Students can register and deregister, courses can be created and deleted, and a student can enrol for a course. The invariant requires enrolled students to be registered and courses to be created.

The set of students consists of a 2P-set [START_REF] Shapiro | Conflict-free Replicated Data Types[END_REF] -to track registrations and deregistrations.

Similarly, courses are also represented as 2P-set -tracking creations and deletions. Registration or creation monotonically adds the student or course respectively to the registered sets and deregistration or deletion monotonically adds them to the unregistered sets. The semantics currently doesn't support re-registration. Enrolment adds the (student, course) pair to the G-set [START_REF] Shapiro | Conflict-free Replicated Data Types[END_REF]. Currently, we do not consider cancelling an enrolment. Merging two states takes the union of the sets.

Let us consider safety. The operations to register a student and create a course are safe without any restrictions. Therefore they do not need any precondition. The remaining three operations might violate the invariant in some cases. This leads to strengthening their preconditions. The precondition of the operation for deregistering a student and deleting a course requires no existing enrolments for them. For enrolment, both the student and the course should be registered/created and not unregistered/deleted.

Merge also requires strengthening of its precondition. It requires the set of enrolled students and courses to be registered and not unregistered in all the remote states as well. This is the concurrent invariant (Inv conc) for this object.

Running this specification through our tool which we describe in Chapter 4 reveals concurrency issues for deregistering a student, deleting a course and enrolment. This means that we need to add concurrency control to the state.

For this use case, we know that enrolling will be more frequent than deregistering a student or deleting a course. So, we model a concurrency control mechanism as in the case of the auction object discussed earlier. We assign a token to each replica for each student and course, called a student token and course token respectively. A replica will have a set of student tokens indicating the registered students and course tokens indicating the created courses. In order to deregister a student or delete a course, all replicas must have released their tokens for that particular student/course. Enrol operations can progress as long as the student token and course token are available at the local replica for the student and course for that particular enrolment.

This concurrency control mechanism now forms part of the state. The preconditions of operations and merge are recomputed and the concurrency invariant is updated. The edited specification passes all checks and is deemed safe. Let us consider the safety of each operation. The operations deregister_student, delete_course and enrol, and merge have additional preconditions to be safe in sequential execution. The operations register_student and create_course are safe without any restrictions. The precondition of merge requires the set of enrolled students and courses to be registered and not unregistered in all the remote states as well. This is the concurrent invariant, Inv conc , for this object.

Pseudocode of courseware

As we discussed, our tool reports concurrency issues for deregister_student, delete_course and enrol operations, indicating the need of concurrency control.

For this use case, we know that enrolling will be more frequent than deregistering a student or deleting a course. So, we model a concurrency control mechanism as in the case of the auction object discussed earlier. As explained, we add student token, ST , and course token, CT , to the state. A replica will have a student token for each registered student and a course token for each created course. In order to deregister a student or delete a course, all replicas must release their tokens for that particular student/course. Enrol operations can progress as long as the student token and course token are available at the local replica for the student and course for that particular enrolment. Specification 3.3 presents the specification of a safe courseware application. For read-ability, we abstract the iteration over the elements of the set. For example, merging two 2P-sets of students actually has the following operations:

∀s ∈ Students σ [A] ∪ Students σ [A] Students σ [A][s] = Students σ [s][A] ∨ Students σ [s][A] ∧Students σ [R][s] = Students σ [s][R] ∨ Students σ [s][R]
We replace it in a compact form:

Students σ = Students σ ∨ Students σ
The shaded region indicate the added concurrency control. The precondition of merge is strengthened by a clause that says if there are no tokens available for a student or a course, that student and course won't be part of any new enrolment. This prevents enroling deregistered students to deleted courses.

σ = Students σ ∨ Students σ Courses σ = Courses σ ∨ Courses σ Rolls σ = Rolls σ ∨ Rolls σ ST σ = ST σ ∧ ST σ CT σ = CT σ ∧ CT σ RegisterStudent(

Automation

In this chapter, we present a tool to automate the approach discussed in the previous chapter. Our tool, called Soteria, is based on the Boogie [START_REF] Barnett | Boogie: A modular reusable verifier for object-oriented programs[END_REF] verification framework. The input to Soteria is a specification of the object written as Boogie procedures, augmented with some annotations, in order to check the properties described in Section 2.3.

Specifying a distributed application in Soteria

Let us now consider how a distributed object is specified in Soteria.

State

The user of the tool provides a declaration of the local state using the global variables in Boogie. The data types can be either built-in or user defined.

Comparison function

The user provides a comparison function to determine the partial order on states. The comparison function returns true when the first state is greater than or equal to the other state. It is encoded as a function in Boogie. The tool uses this comparison function as a basis to check the inflation and lattice conditions given in Figure 2.4. The keyword @gteq marks the comparison function.

Operations

The user provides the implementation of the operations of the object in Boogie along with its precondition Pre op . In general, operations are encoded as Boogie procedures. Alternatively, we could just require only a post-condition describing how the state transitions from the precondition to the post-condition. Notice that since in our program model operations are atomic, this is an unambiguous encoding of the operations.

A few things are important in this code. The specification declares operations that can modify the global variables using the modifies clause. A precondition is specified in a requires clause, and the postcondition in an ensures clause. The semantics of multiple requires and ensures clauses is conjunction.

Merge function

The tool requires the special merge operation to be distinguished from other operations, annotated @merge. As previously mentioned, the precondition of merge can be obtained by calculating the weakest precondition to ensure safety. The current version of Soteria does not perform this step automatically, but relies on the user to provide the preconditions.

Notice that Soteria will consider this as the concurrency invariant (Inv conc).

In Section 2.1 we mentioned that the merge procedure takes two states as arguments, in the specification input to Soteria, the procedure merge takes only one state as the argument. The state represented in the argument is the incoming state and it is merged with the local state (represented by the global variables in the specification).

Invariant

The user provides the invariant to be verified by the tool. This invariant is simply provided as a Boogie assertion over the state of the object annotated with the keyword @invariant.

Additional information

The components above are required for Soteria's safety checks. In addition, Boogie often requires additional annotations to help it with verification. These include:

• User-defined data types

• Constants, to declare special objects such as the origin replica "me", or to bound the quantifiers • We sometimes make recourse to inductively-defined functions over aggregate data structures, for instance, to obtain the maximum in a set of values. To enable the SMT solver to use them, we axiomatize their semantics. This is particularly important for list comprehensions and array operations. In this, we follow the approach of Leino et al. [START_REF] K. Rustan | Reasoning about comprehensions with first-order SMT solvers[END_REF].

• When iterating over lists, arrays or matrices, we must provide loop invariants in order to verify them by Boogie.

Verification passes

From the input specification Soteria generates a set of verification conditions, which it passes to Boogie, to be proved by leveraging SMT solvers. This verification process comprises multiple stages, as follows:

Syntax check

The first step validates that the specification provided respects Boogie syntax, ignoring the Soteria-specific annotations and calls Boogie to validate that the types are correct and that the pre/post conditions provided are sound.

Then it checks that the user has provided the required annotations. Specifically, it checks the function signatures marked by @gteq and @invariant and the procedure marked by @merge.

Convergence check

The convergence stage checks the convergence of the specification. Specifically, it checks whether the specification respects Strong Eventual Consistency, i.e., that any two replicas that received the same set of updates have the same state. To guarantee SEC, objects must have the following properties [START_REF] Shapiro | Conflict-free replicated data types[END_REF][START_REF] Baquero | Composition in state-based replicated data types[END_REF][START_REF] Baquero | Using structural characteristics for autonomous operation[END_REF]]:

• The state space is equipped with an ordering operator, comparing states.

• Each individual operation is an inflation in the order. In a nutshell, the tool asks Boogie to prove the following Hoare-logic triple for every operation:

assume σ Pre op call σ new := op(σ) assert σ new ≥ σ
• The ordering forms a join-semilattice, i.e., for any two states in the lattice, there exists a state in the lattice that is their least upper bound.

• The merge operation, composing states from two replicas, computes their least-upperbound. The verification condition discharged is shown below (the primed state indicates the incoming state from a remote replica):

assume (σ, σ) Pre merge call σ new := merge(σ, σ) assert σ new ≥ σ ∧ σ new ≥ σ assert ∀σ * , σ * ≥ σ ∧ σ * ≥ σ =⇒ σ * ≥ σ new
We present the conditions formally in Section 2.2.

An alternative is to make use of the CALM theorem [START_REF] Hellerstein | Keeping CALM: when distributed consistency is easy[END_REF]. This allows non-monotonic operations, but requires them to coordinate. However, our aim is to provide maximum possible availability with SEC. 1

Safety check

This stage verifies the safety of the specification, as discussed in Section 2.3. This is subdivided into two sub-stages:

1. Sequential safety: Soteria checks whether each individual operation is safe. This corresponds to the conditions (SafeOp) and (SafeMerge) in Figure 2.6. The verification condition discharged by the tool to ensure sequential safety of operations is:

1 Convergence of our running example is discussed in Subsection 2.2.1.

assume σ Pre op ∧ Inv call σ new := op(σ) assert σ new Inv
The special case of the merge function is verified with the following verification condition:

assume (σ, σ) Pre merge ∧ σ Inv ∧ σ Inv call σ new := merge(σ, σ) assert σ new Inv
In case of failure of the sequential safety check, the designer needs to strengthen the precondition of the operation (or merge) which was unsafe. Notice that while this check relates to the concurrent behaviour of the distributed object, the check itself is completely sequential; it does not require reasoning about operations performed by other processes. Soteria performs each check by generating verification conditions and using the Boogie verification engine, which in turn uses the Z3 SMT solver. There are three possible outcomes for each verification condition:

1. The verification condition is proven.

2. Unable to prove the verification condition.

Time out or memory overflow.

The first outcome is the desired one. For a user, the second and third outcome basically means the same -the verification condition is not proven. When all checks are validated, Soteria reports that the specification is safe. For the verification conditions that failed due Soteria uses an SMT solver, Z3, which is fully automated. As far as the proof system is concerned, no programmer involvement is required. We present the efficient generation of synchronization control considering the workload characteristics in Chapter 11. The tool and the specifications of the case studies discussed in Chapter 3 are available at Soteria [START_REF] Sreeja S Nair | Soteria[END_REF].

Tool evaluation

All the applications we discussed in Chapter 3 are verified using Soteria. Table 4.1 provides the analysis time taken for each example. The time reported is the average time from five runs, on a 2.5 GHz Intel Core i7 processor and 16 GB 1600 MHz DDR3 memory.

Chapter 5

Related work

This chapter discusses the literature related to the verification of available distributed applications.

Several works have concentrated on the formalisation and specification of eventually consistent systems such as Burckhardt et al. [START_REF] Burckhardt | Replicated data types: Specification, verification, optimality[END_REF], Burckhardt [START_REF] Burckhardt | Principles of eventual consistency[END_REF], Sivaramakrishnan et al.

[24], to mention but a few.

Kaki et al. [START_REF] Kaki | Safe replication through bounded concurrency verification[END_REF] present a programming framework equipped with a fully automated symbolic execution engine, named Q9, that detects invariant violations. They have specified a set of consistency levels and the tool suggests the consistency level required to maintain safety. The problem they are addressing is the same as Soteria, but consider a different system model wherein operations are propagated between replicas. Moreover, symbolic execution cannot provide the same level of guarantees as a full verification.

A number of works concentrate on the specification and correct implementation of replicated data types [START_REF] Victor | A framework for establishing strong eventual consistency for conflictfree replicated datatypes[END_REF][START_REF] Jagadeesan | Eventual consistency for CRDTs[END_REF]. Unlike these works, we assume the data type implementation is correct and focus on proving semantic properties that hold of a distributed object i.e., invariants of interest to the application.

Gotsman et al. [START_REF] Gotsman | Cause I'm Strong Enough: Reasoning about consistency choices in distributed systems[END_REF] present a proof methodology for proving invariants of distributed objects. That work is supported by a tool called the CISE tool [START_REF] Najafzadeh | The CISE tool: Proving weakly-consistent applications correct[END_REF]. Similar to Soteria, the CISE tool performs the safety checks using an SMT solver as a backend. A more user-friendly tool was developed by Marcelino et al. [START_REF] Marcelino | Bringing hybrid consistency closer to programmers[END_REF], named the Correct Eventual Consistency(CEC) Tool. CEC is based on Boogie verification framework and also proposes sets of tokens that the developer might use. A token represents an abstract notion of concurrency control. Nair and Shapiro [START_REF] Nair | Improving the "Correct Eventual Consistency" tool[END_REF] improved the token generation by using the counterexamples generated by Boogie.

Hamsaz [START_REF] Houshmand | Hamsaz: Replication coordination analysis and synthesis[END_REF] As mentioned in Section 2.3, Bailis et al. [START_REF] Bailis | Coordination avoidance in database systems[END_REF] introduced the concept of I-confluence based on a similar system model to ours. I-confluence states that for an invariant to hold in a lattice-based state-propagating distributed application, the set of reachable valid (i.e.

invariant preserving) states must be closed under operations and merge. This condition is similar to the ones presented in Figure 2.6. However, there is a fundamental difference:

while Bailis et al. [START_REF] Bailis | Coordination avoidance in database systems[END_REF] recognises that one needs to consider only reachable states when checking that the merge operation satisfies the invariant, they do not provide means to identify these reachable states.

In other words, I-confluence [START_REF] Bailis | Coordination avoidance in database systems[END_REF] does not provide a program logic, but rather a metatheoretical proof about lattice-based state-propagating systems. This is indeed a hard problem. In Soteria, we instead over-approximate the set of reachable states by ignoring whether the states are indeed reachable, but require that their merge satisfies the invariant.

Notice that this is a sound approximation since it guarantees the invariant is satisfied, and we also verify that every operation preserves this condition as shown in Corollary 2.3.2.1.

It is this abstraction step that makes the analysis performed by Soteria to be syntaxdriven, automated, and machine-checked. This is captured in the concurrency invariant, Inv conc , which is synthesized from the user provided invariant. How to obtain this invariant is understandably not addressed in Bailis et al. [START_REF] Bailis | Coordination avoidance in database systems[END_REF] since no proof technique is provided.

Whereas Soteria analyses a program, in contrast the I-confluence paper [START_REF] Bailis | Coordination avoidance in database systems[END_REF] gives no means to link the program text to the semantic model, let alone rules for verifying that the program implies invariant preservation.

A final interesting remark is that we can show how our methodology can aid in the verification of distributed objects mediated by concurrency control. Some works [START_REF] Kc Sivaramakrishnan | Declarative programming over eventually consistent data stores[END_REF][START_REF] Kaki | Safe replication through bounded concurrency verification[END_REF][START_REF] Kaki | Alone together: Compositional reasoning and inference for weak isolation[END_REF][START_REF] Shapiro | Consistency in 3D[END_REF] have considered this problem from the standpoint of synthesis, or from the point of view of which mechanisms can be used to check a certain property of the system.

Chapter 6

Conclusion of Part I and Future work

This part of the thesis presented a sound proof rule to verify invariants of state-based distributed objects. We presented the proof obligations guaranteeing that the implementation is safe in concurrent execution, by reducing the problem to checking that each operation of the object satisfies a precondition of the merge function.

We presented Soteria, a tool that proves concurrent correctness or identify the concurrent bugs in the design of a distributed object. We have shown several case-studies showing how to leverage Soteria to ensure correctness of distributed objects.

Future work

There are several directions for future work on both theoretical and practical aspects.

On the theoretical front, one future research direction is to leverage the modular proof rule of Soteria to develop a generic proof rule that can verify distributed objects regardless of the type of update propagation. The first step would be to support distributed objects that propagate deltas. 1 The proof rule can then be extended to include distributed objects that propagate operations. This would help verify distributed applications with transparent update propagation.

The proof rule helps in identifying the conflicting operations. The next step on this is a future research direction. The user can either opt for a coordination-free application with the help of conflict resolution policies or a lock-based solution. It would be useful to have formal guidance on the type of applications that could benefit from conflict resolution as opposed to introducing coordination.

Practically, the future work is to improve the usability of Soteria. Even though Soteria is fully automatic, the user is expected to provide a specification with pre and post conditions of operations and merge, along with the object invariants. Automating the generation of preconditions using weakest precondition calculus [START_REF] Edsger | Guarded commands, nondeterminacy and formal derivation of programs[END_REF] would be a first step.

The specification might also include loop invariants which are difficult to write. It would be helpful to integrate the works that focus on generating loop invariants [START_REF] Hamilton | Generating loop invariants for program verification by transformation[END_REF] that might help writing simpler specifications.

Part II

Designing conflict resolution policies

Introduction to Part II

In the previous part, we presented an approach for verifying the safety of a concurrent application. Our tool, Soteria, outputs the list of conflicting methods if any verification condition fails. These methods, when executed concurrently are unsafe. We say they conflict.

The next question we face is how do we use this information. There are two options:

to enhance the application with a conflict resolution, or with coordination. For highlyavailable distributed applications, it is preferable to avoid coordination, if we could still maintain safety. Hence, the preferred solution is to design a conflict resolution algorithm.

A conflict resolution algorithm must be deterministic and insensitive to order and duplication (i.e., idempotent, associative and commutative) to ensure that all replicas observe the same eventual outcome.

In this part of the thesis, we use the study of a coordination-free replicated tree data structure to illustrate the design of a distributed application, by developing an appropriate conflict resolution algorithm. A distributed tree supports three structural operations -add, remove and move. We further classify move operations into up-moves and down-moves. We identify the conditions under which they conflict and introduce conflict resolution policies to ensure a coordination-free, safe and available replicated tree.

Carla Ferreira, Mário Pereira and Filipe Meirim collaborated with us for this part of the thesis. A research report is available [START_REF] Sreeja S Nair | A coordination-free, convergent, and safe replicated tree[END_REF].

Chapter 7

Design of a safe, convergent and coordination free replicated tree

Concurrent data structures are an important programming abstraction; designing concurrent data structures with non-trivial properties is complex. The tree data structure is widely used, for instance in file systems and in graphical user interfaces. Trees have particularly strong requirements: each node is unique, there is a single root, a node has a single parent and has a path to the root, and the child-parent graph is acyclic.

Much current work in concurrent data structure design focuses on lock-free or wait-free coordination, using primitives such as compare-and-swap (CAS). However, in a distributed and replicated setting, even CAS is too strong. Consider for instance a file system replicated to several locations over the globe, or through a mobile network. Network round-trip-time between continents can be anywhere between 0.1 and 1.0 seconds; the mobile network may disconnect completely. To ensure availability, a user of the file system must be able to update a replica locally, and update without coordinating at all with the other replicas.

Replicas will converge eventually, by exchanging updates asynchronously.

It is a major challenge to maintain safety in this context; specifically, in this case, to maintain the tree structure. This is a widespread issue; indeed, many replicated file systems have serious anomalies, including incorrect or diverged states [40, Section 6 for some examples], violating the tree invariant [START_REF] Bjørner | Models and software model checking of a distributed file replication system[END_REF], non-atomic moves [START_REF] Tao | Merging semantics for conflict updates in geo-distributed file systems[END_REF], re-introducing coordination [START_REF] Najafzadeh | Co-design and verification of an available file system[END_REF], or requiring roll-backs [START_REF] Kleppmann | OpSets: Sequential specifications for replicated datatypes (extended version)[END_REF].

Concurrent atomic move operations are a crucial problem [START_REF] Bjørner | Models and software model checking of a distributed file replication system[END_REF]. Consider for instance a tree composed of the root and children a and b as shown in Figure 7.1. One replica moves a underneath b, while concurrently (without coordination) the other replica moves b under a. Naïvely replaying one replica's updates at the other produces an ab cycle disconnected from the root. There can be no coordination-free solution to this problem that is not somehow anomalous [START_REF] Najafzadeh | Co-design and verification of an available file system[END_REF].

Supporting low latency, high-availability and safety, this part introduces a new coordinationfree, safe, replicated CRDT [START_REF] Shapiro | Conflict-free replicated data types[END_REF] tree data structure, called Maram. Maram supports the usual operations to query the state, to add or to remove a node, and also supports an atomic move operation. The price to pay is that some move operations "lose", i.e., have no effect. Query and add are safe since the former does not change the state and the latter inflates the state monotonically [START_REF] Hellerstein | Keeping CALM: when distributed consistency is easy[END_REF]. Remove marks the corresponding node as a "tombstone," but leaves it in the data structure, as is common in replicated data structures [START_REF] Attiya | Specification and complexity of collaborative text editing[END_REF]. Moves can be divided into two cases: up-moves, where a node moves near to the root of the tree, and down-moves, where it moves farther away from the root. We devise a deterministic arbitration rule for the conflicts of both the moves:

• For up-move: against a concurrent up-move of the same node, we assign a total order between operations, whereby the up-move with the highest priority wins, and the other loses.

• For down-move: against a concurrent up-move, the up-move wins, and the downmove loses; against a concurrent down-move, we use the same strategy as for two concurrent up-moves on the same node.

Further, we examine the effect of "losing" a move operation. We identify the conditions under which another causally dependent move would be unsafe under a move that loses.

For each move, we preserve a causal history of the dependent operations and the move will lose if it was dependent on a causally preceding conflicting move that loses.

We provide arguments for the safety violations of a replicated tree, in the presence of concurrent updates (including moves), being coordination-free. To this effect, we apply the CISE proof methodology [START_REF] Gotsman | Cause I'm Strong Enough: Reasoning about consistency choices in distributed systems[END_REF]. It follows that every state reachable from the initial state -whether sequentially or concurrently-satisfies the tree invariant. 1 We also use an additional analysis to check the causal dependencies between move operations.

Maram satisfies an additional desirable property, monotonic reads [START_REF] Terry | Session guarantees for weakly consistent replicated data[END_REF]. This requires that a replica that has delivered some update will not roll it back.

Effect of a move remains tentative until all concurrent moves have been delivered. A concurrent move may "win" over it, i.e., the effect of the winning move supersedes the losing one, whose effect is skipped. We show the effect of skipping on causally dependent move operation; the skipping is safe with respect to the other operations since it is independent of any other operation.

We present the principles of Maram, provide arguments for its correctness, and compare the performance of Maram to competing solutions in a simulated geo-replicated environment. The response time of Maram is 1.35 times of the safe rollback-based design, and 1.36 times of the unsafe uncoordinated design (both due to overhead of computing the metadata required for conflict resolution), and up to 11 times faster than (safe) lock-based designs. Furthermore, Maram stabilizes (i.e., its updates become definitive) three times faster than a safe rollback-based design when almost one-third of the workload consist of move operations.

System Model

A distributed system is modelled as a set of processes, distributed over a (high-latency, failure-prone) communication network. The processes have disjoint memory and processing capabilities, and they communicate through message passing. A process does not fail.

Every message is eventually delivered to its destination. Message delivery is consistent with happens-before (causal consistency).

State and invariant:

The data structure (in this case, a tree) is replicated at a number of processes, called its replicas. The information managed by a replica on behalf of the data structure is called its local state. The union of local states is called the global state. 2A data structure is associated with an invariant, a predicate that must always be satisfied in every local state of a replica. Although evaluated locally, an invariant describes a global property, in the sense that it must be true at all replicas.

Operations:

An unspecified client application submits an operation at some replica of its choice, which we call the origin replica of that operation. For availability, the origin replica should carry out the operation without waiting to coordinate with other replicas.

An update operation has a postcondition that specifies the state after the operation executes, and a precondition that indicates the domain of the operation. As discussed in more detail later, when the operation executes with no concurrency, its precondition guarantees that the operation terminates with the postcondition satisfied.

Updates:

When a client submits an operation, the origin replica generates an effector (a side-effecting lambda), atomically applies the effector to the origin state, and sends the effector to all the other replicas. Every replica eventually receives and delivers the effector, atomically applying it to its own local state. 3 The effector eventually executes at every replica.

We assume that effectors are delivered in causal order. This means that, if some replica that observed an effector u later generates an effector v, then any replica that observes v has previously observed u. 4In what follows, we ignore queries, and identify an update operation with executing its effector at all replicas.

Properties and associated proof rules

Consider some data structure (in this case a tree) characterized by a safety invariant (in this case, the tree invariant). We say that a state is local-safe if it satisfies the data structure's invariant. An update is op-safe if, starting from a local-safe state, it leaves it a local-safe state. The distributed data structure is safe if every update is op-safe. According to the CISE logic [START_REF] Gotsman | Cause I'm Strong Enough: Reasoning about consistency choices in distributed systems[END_REF], a distributed data structure is safe if the following properties hold:

1. Sequential safety: Consider an environment restricted to sequential execution (operations execute one after another; there is no concurrency). If the initial state is local-safe at every replica, and each update is op-safe, it follows that the data structure is safe under sequential execution. Classically, sequential op-safety implies that each operation's precondition satisfies the weakest-precondition of the invariant with respect to the operation [START_REF] Edsger | Guarded commands, nondeterminacy and formal derivation of programs[END_REF].

2. Convergence: Strong Eventual Consistency (SEC) [START_REF] Shapiro | Conflict-free replicated data types[END_REF] states that two replicas that have delivered the same set of operations must be in the same state, i.e., the system converges. If operations commute (as defined later), then SEC is guaranteed [START_REF] Shapiro | Conflict-free replicated data types[END_REF].

Precondition stability:

In addition to sequential safety, updates must remain op-safe in the presence of concurrent (uncoordinated) updates. To ensure this, we apply the CISE precondition stability rule [START_REF] Gotsman | Cause I'm Strong Enough: Reasoning about consistency choices in distributed systems[END_REF]: consider two updates u and v; if the execution of u does not make the precondition of v false, nor vice-versa (precondition stability), then executing u and v concurrently is op-safe. This must be true for all concurrent pairs of operations.

CISE logic helps us identify the conditions under which concurrent operations conflict.

When conflicting, CISE requires the operations to acquire tokens, that bring in a global synchronization point. Hence all updates in CISE are assumed to be definitive.

In order to augment the CISE analysis for handling tentative updates, we add a condition for independence to check whether skipping a move affects a move that already observed the effect of the skipped one. The independency analysis is inspired from Houshmand and Lesani [START_REF] Houshmand | Hamsaz: Replication coordination analysis and synthesis[END_REF], even though they also, like CISE, do not consider tentative updates.

Independence analysis: Consider two updates u and v that are safe, u executed before v. If moving v before u still maintains the safety of v, v is said to be independent of u.

Otherwise, if v is unsafe before executing u, v is dependent on the effect of u.

Sequential safety

Let us refine the proof obligations of the first step, sequential safety, i.e., local-safety under sequential execution.

The set of reachable states comprises the initial state, and all states transitively reachable as a result of executing updates sequentially. The set of reachable states is a subset of the set of all possible states. Formally, we note the set of states Σ, a state σ, the initial state σ init , an update u, its precondition Pre u , and the set of updates U . When execution is sequential:

σ init ∈ Σ (7.1)
and

∀u ∈ U, σ ∈ Σ σ |= Pre u =⇒ u(σ) ∈ Σ (7.2)
Σ is the smallest set satisfying (7.1) and (7.2) through a sequence of legal updates from the initial state. The data structure must satisfy its invariant in every sequentially reachable state: this property is called sequential safety. Formally, if Inv denotes the invariant, then

∀σ ∈ Σ σ |= Inv (7.3)
If the initial state is safe and all sequential updates preserve the invariant, by induction, the data structure is sequentially safe. Formally, if the initial state, σ init , satisfies the invariant, Inv,

σ init |= Inv (7.4)
and each update u executing on a state σ preserves the invariant,

∀u ∈ U, σ, σ ∈ Σ σ |= (Inv ∧ Pre u) ∧ u(σ) = σ =⇒ σ |= Inv (7.5)
then the invariant holds true for all reachable states. P re u is the weakest precondition required to maintain the safety of update u. Weakest precondition for an update can be calculated by predicate transformer semantics as described by Dijkstra [START_REF] Edsger | Guarded commands, nondeterminacy and formal derivation of programs[END_REF].

Concurrency

Let us now turn to concurrent execution, and consider the proof obligations for convergence and safety.

Convergence

If a replica initiates an update u, while concurrently another replica initiates v, the first replica executes their effectors in the order u; v and the second one in the order v; u.

Without precaution, it is likely that their states diverge.

To prevent this, the Strong Eventual Consistency (SEC) property [START_REF] Shapiro | Conflict-free replicated data types[END_REF] requires that any two replicas that delivered the same updates are in equivalent states. To satisfy SEC, effector functions are designed to commute, i.e., both orders above leave the data in the same state. We define commutativity as follows:

∀u 1 , u 2 ∈ U, σ, σ 1 , σ 2 ∈ Σ u 1 (σ) = σ 1 ∧ u 2 (σ) = σ 2 =⇒ u 2 (σ 1) = u 1 (σ 2) (7.6)

Precondition stability

The main proof obligation for concurrent execution is that the precondition of any effector is stable against (i.e., not negated by) an effector that may execute concurrently [START_REF] Gotsman | Cause I'm Strong Enough: Reasoning about consistency choices in distributed systems[END_REF]. This CISE rule is a variant of rely-guarantee reasoning, adapted to a replicated system where effectors execute atomically and definitively. The precondition stability condition can be formally specified as follows:

∀u 1 , u 2 ∈ U, σ, σ ∈ Σ σ |= (Inv ∧ Pre u1 ∧ Pre u2) ∧ u 1 (σ) = σ =⇒ σ |= Pre u2 (7.7)
Gotsman et al. [START_REF] Gotsman | Cause I'm Strong Enough: Reasoning about consistency choices in distributed systems[END_REF] uses Tokens to formalize concurrency control. Two operations that share the same token do not execute concurrently. Since we are designing a coordinationfree data structure, we consider the set of tokens to be an empty set, and hence absent from the formalisation.

Independence

In order to ensure that the safety of an operation is not impacted by skipping any previous operations, we augment the precondition stability analysis with an independence analysis as presented by Houshmand and Lesani [START_REF] Houshmand | Hamsaz: Replication coordination analysis and synthesis[END_REF]. An operation u 2 is said to be independent of operation u 1 if the precondition of u 2 , Pre u 2 , is enabled even without executing u 1 . The condition for independency can be formally specified as follows:

∀u 1 , u 2 ∈ U, σ, σ , σ , σ ∈ Σ σ |= (Inv ∧ Pre u1) ∧ σ |= (Inv ∧ Pre u2) ∧σ |= Inv ∧ u 1 (σ) = σ ∧ u 2 (σ) = σ ∧ u 2 (σ) = σ =⇒ σ |= Pre u2 ∧ σ |= Inv (7.8)
In short, u 2 is independent of u 1 if, irrespective of whether u 1 executed before u 2 , the execution of u 2 is safe. This condition is required for safety only if the effect of u 1 is tentative, i.e., if u 1 has conflict resolution policies while applying the update on the state.

Mechanized verification

In order to mechanically discharge the proof obligations listed above, we the use Why3 system [START_REF] Filliâtre | Why3 -Where Programs Meet Provers[END_REF], augmented with the CISE3 plug-in [START_REF] Meirim | CISE3: Verifying weakly consistent applications with Why3[END_REF]. Why3 is a framework used for the deductive verification of programs, i.e., "the process of turning the correctness of a program into a mathematical statement and then proving it" [START_REF] Filliâtre | Deductive software verification[END_REF]. The CISE3 plug-in automates the CISE proof rules described above, and generates the required sequential-safety, com-mutativity and stability checks. Why3 then computes a set of proof obligations, that are discharged via external theorem provers.

Sequential specification of a tree

The specification of a data structure consists of its state, a set of operations, and an invariant. In this section, we will develop a sequentially-safe specification of a tree.

State

The state of a tree data structure consists of a set of nodes, Nodes, and a relation on nodes, mapping a child node to its parent. The parent relation is indicated by →. The ancestor relation, → * is defined as

∀a, n ∈ Nodes n → * a n → a ∨ ∃p ∈ Nodes n → p ∧ p → * a (7.9)
At initialization, the set of nodes consists of a single root node. The parent of the root is the root itself. The initial state of the tree is thus Nodes = {root} where root → root.

A crucial aspect of the abstract representation of the tree is how to express the relation between nodes. Three choices are possible, either maintain a child-to-parent mapping, a parent-to-child mapping, or both. In particular, when implementing a tree, traversal efficiency depends on keeping both up and down pointers [START_REF] Vinh | Ensuring Availability and Managing Consistency in Geo-Replicated File Systems[END_REF]. Considering that childto-parent and parent-to-child mappings describe dual views (i.e., node p is the parent of node n iff node n is a descendant of node p) we selected the one that leads to a simpler specification. An advantage of using a child-to-parent mapping is that it can be maintained as a function, ensuring that each node has a unique parent. The alternative parent-to-child mapping would require a more complex representation, e.g., a function that maps each node to its set of direct descendants, which would negatively impact both the simplicity of the specification and the proof effort.

Invariant

Formally, the invariant of the tree data structure is as follows:

root ∈ Nodes ∧ root → root ∧ ∀n ∈ Nodes n = root =⇒ root → n (Root) ∧ ∀n ∈ Nodes ∃p ∈ Nodes n → p (Parent) ∧ ∀n, p, p ∈ Nodes n → p ∧ n → p =⇒ p = p (Unique) ∧ ∀n ∈ Nodes n → * root (Reachable)
Clause Root lists the properties of the root node; present in Nodes, and is the only node to be its own parent. Clause Parent asserts that every node in the tree has a parent present in the tree. Clause Unique requires the parent for each node to be unique. Clause Reachable imposes that the root is an ancestor of all nodes.

We call this conjunction the tree invariant.

Inv Root ∧ Parent ∧ Unique ∧ Reachable (7.10)

A further invariant:

∀n ∈ Nodes n = root =⇒ n → * n (Acyclic)
which forbids cycles (no node is ancestor of itself, except root), can be derived from the previous invariants. Since the parent relation inductively defines the ancestor relation, by

Unique there is a unique path to a given ancestor of a node. By Reachable, the root node is an ancestor of every node in the tree. In this scenario, a cycle would require a node to have multiple parents, which is prevented by Unique.

Operations

We consider the following three structural operations: add, remove and move.

Add

An add operation has two arguments: the node to be added, n, and its prospective parent, p. The add effector adds node n to Nodes and the mapping n → p to the parent relation. The postcondition of the add effector indicates this: 5Post add(n,p) n ∈ Nodes ∧ n → p (7.11)

To ensure that the tree invariant is preserved, we derive, through the weakest precondition calculus, the precondition that n is a new node and p is already in the tree, i.e.,

Pre add(n,p) n / ∈ Nodes ∧ p ∈ Nodes (7.12)

Let us decompose the derivation of this precondition. If the add operation is updating a safe state, i.e., the starting state respects the invariant, and if the precondition is satisfied, then the update should maintain the invariant. Hereafter, we highlight the precondition clauses needed to ensure each part of the invariant. With the derived preconditions, the add operation can be specified as follows:

(Add-Operation)

Inv ∧ n / ∈ Nodes ∧ p ∈ Nodes add(n, p) Inv ∧ n ∈ Nodes ∧ n → p
If the add operation is issued on a state that does not contain n, and p is in the tree, then n is added to the tree with a pointer to p. If the operation is issued in a state that does not respect the precondition, it is skipped.

Remove operation:

Remove receives as argument a node n to be deleted. Its effector removes node n from the set of nodes. The postcondition of the remove operation indicates this effect:

Post remove(n) n / ∈ Nodes (7.13)
Similar to add, we list the predicates needed to preserve each clause of the invariant. In this case, we must ensure that n is not the root, and n is a leaf node, i.e., there are no child nodes for n.

Inv ∧ n = root remove(n) Post remove(n) ∧ Root Inv ∧ ∀n ∈ Nodes n → n remove(n) Post remove(n) ∧ Parent Inv ∧ true remove(n) Post remove(n) ∧ Unique Inv ∧ ∀n ∈ Nodes n → n remove(n) Post remove(n) ∧ Reachable
In summary, the remove operation can be specified as follows:

(Remove-Operation)

Inv ∧ n = root ∧ ∀ n ∈ Nodes n → n remove(n) Inv ∧ n / ∈ Nodes
If a remove operation is issued on a state where n is not root and has no children, then n is removed from the tree; otherwise it is skipped.

Move operation:

The move operation takes two arguments: the node to be moved n, and the new parent p . Its effector changes the parent of node n to p , with the following postcondition:

Post move(n,p) n → p (7.14)
Note that the postcondition does not state that the previous parent is no longer a parent of node n, i.e., n → p, because of the uniqueness of the child-to-parent relationship as discussed in Subsection 7.3.1.

To preserve the expected behaviour of the move operation we require the node to be moved to be present in the tree. Together with this precondition, we derive the additional Moving node a under node b will make both a and b unreachable from the root, and also form a cycle. This violates the invariant by invalidating the tree structure. To avoid this scenario, a precondition is needed that prevents moving a node underneath itself. When moving node n from its current parent to the new parent p , p should not be n (except when n = p = p = root) or a descendant of n, p = n ∧ p → * n. Combining all these conditions, the move operation can be specified as follows:

(Move-Operation) Inv ∧ n ∈ Nodes ∧ n = root ∧ p ∈ Nodes ∧ p = n ∧ p → * n move(n, p) Inv ∧ n → p
For the move operation to be safe, n is not the root, p must be in the tree, n and p are different, and p is not a descendant of n.

Mechanized verification of the sequential specification

Following the formalization of the tree data structure above, we use Why3 to mechanically prove its sequential safety. The mechanical proof requires some extra definitions and axioms.

We need a predicate for reachability. For this, we first define a path, a sequence of nodes related by the parent relation. We use s[n] to indicate the nth element in the sequence s. We denote the set of possible sequences of nodes by S. The path predicate determines the validity conditions for a path s between nodes x and y in state σ. If x = y, the path has length zero. Otherwise, the length of the path is greater than zero, where the first path element must be x, all contiguous path elements are related by the parent relation, and node y is the parent of the last path element. We say y is reachable from x if there exists a path from x to y. Formally, path(σ, x, y, s) length(s) = 0 ∧ x = y (7.15)

∨ (length(s) > 0 ∧ s[0] = x ∧ s[length(s) -1] → y ∧ ∀ 0 ≤ i < length(s) -1 s[i] → s[i + 1])
reachability(σ, x, y) ∃s ∈ S path(σ, x, y, s) (7.16)

To formalize the properties of the path predicate, we define a set of axioms as follows:

path_to_parent ∀σ ∈ Σ ∀x, y ∈ Nodes x → y =⇒ ∃s ∈ S path(σ, x, y, s) ∧ s = [x] (7
∧ path(σ, y, z, s 2) ∧ x = y ∧ x = z ∧ y = z =⇒ s 1 ∩ s 2 = ∅
Axiom path_to_parent defines the singleton path of a node to its parent. The recursive composition of paths is axiomatized in path_composition. The transitivity property is defined in path_transitivity. Axiom path_uniqueness asserts there is a single path between two nodes. The path_exclusion expresses the conditions for excluding nodes from a path. Lastly, path_separation defines a convergence criterion essential for Why3's SMT solvers, asserting that the direction of the path is converging towards the root. We also require extra axioms to express the properties of the unaffected nodes in the case of add and move operations. They are as follows:

σ add = add(n, p)(σ) σ move = move(n, p)(σ) remaining_nodes_add ∀σ ∈ Σ ∀n ∈ Nodes, s 1 , s 2 ∈ seq(Nodes) n = n (7.23) ∧ path(σ, n , root, s 1) ∧ path(σ add , n , root, s 2) =⇒ s 1 = s 2 descendants_move ∀σ ∈ Σ ∀n ∈ Nodes, s 1 , s 2 path(σ, n , c, s 1) (7.24) ∧ path(σ move , n , c, s 2) =⇒ s 1 = s 2 remaining_nodes_move σ ∈ Σ ∀n ∈ Nodes, s 1 , s 2 n → * n (7.25) ∧ path(σ, n , root, s 1) ∧ path(σ move , n , root, s 2) =⇒ s 1 = s 2
The state σ add is obtained by applying add(n, p) operation to σ. The axiom remaining_nodes_add asserts that the paths already present in the tree remain in the tree after executing the add operation. Given that the move operation updates σ to σ move , axiom descendants_move asserts that the descendants of the node being moved continue to be its descendants, and remaining_nodes_move asserts that other paths are not affected. These axioms are de-fined to ensure that the paths to the root, from nodes unaffected by move or add operations, remain unchanged. The specification proven using Why3 is available in Meirim et al. [START_REF] Meirim | Proofs of Maram[END_REF].

Concurrent tree specification

In this section, we discuss the convergence and concurrent safety of the tree. In a sequential execution environment, as seen in Section 7. • Ensuring that different replicas converge, despite effectors being executed concurrently in different orders.

• Ensuring that safety of an update is not violated by a concurrent update.

• Ensuring that a tentative update does not effect the safety of the dependent update.

For ease of exposition, first we discuss concurrent safety; convergence is deferred to Section 7.6, since the conflicts occurring in the latter can be addressed using the policies discussed in the former, and independence is discussed in Section 7.7.

Precondition stability

We use the precondition stability rule of CISE logic (Subsection 7.2.2.2) to analyze the concurrent safety of our tree data structure. For each operation, we analyze whether it violates the precondition of any other concurrent operation. Formally, operation op 1 is stable under operation op 2 if,

Inv ∧ Pre op1 ∧ Pre op2 op 2 Inv ∧ Post op2 ∧ Pre op1 (7.26)
We check the sequential specification for stability. If this fails, then it will be necessary to modify the specification, so that it does satisfy stability.

Stability of add operation

Concurrent adds: First we check the stability of the precondition of add against itself. Let us consider two operations add(n 1 , p 1) and add(n 2 , p 2). Using Equation (7.26), we get

Pre add(n1,p1) n 1 / ∈ Nodes ∧ p 1 ∈ Nodes Pre add(n2,p2) n 2 / ∈ Nodes ∧ p 2 ∈ Nodes Post add(n2,p2) n 2 ∈ Nodes ∧ n 2 → p 2 Inv ∧ Pre add(n1,p1) ∧ Pre add(n2,p2) ∧ n 1 = n 2 add(n 2 , p 2)
Inv ∧ Post add(n2,p2) ∧ Pre add(n1,p1) (7.27) The highlighted clause n 1 = n 2 is required for the stability condition. Indeed, the sequential specification does not disallow adding the same node at different replicas, and the clause n / ∈ Nodes is unstable therein. Thus the analysis highlights a subtlety.

Concurrent remove: Let us check the stability of the precondition of add(n 1 , p 1) against a concurrent remove(n 2). Using (7.26), we get:

Pre add(n1,p1) n 1 / ∈ Nodes ∧ p 1 ∈ Nodes Pre remove(n2) n 2 = root ∧ ∀ n ∈ Nodes n → n 2 Post remove(n2) n 2 / ∈ Nodes Inv ∧ Pre add(n1,p1) ∧ Pre remove(n2) ∧ n 2 = p 1 remove(n 2)
Inv ∧ Post remove(n2) ∧ Pre add(n1,p1) (7.28) In the sequential specification, clause p 1 ∈ Nodes in the precondition of add is unstable against a remove of its parent; performing those operations concurrently would be unsafe.

To fix this, we see two possible approaches. The classical way is to strengthen the precondition with coordination, for instance locking to avoid concurrency. We reject this, as it conflicts with our objective of availability under partition. Our alternative is to weaken the specification thanks to coordination-free conflict resolution. We apply a common approach, to mark a node as deleted, as a so-called tombstone, without actually removing it from the data structure. 7We now distinguish a concrete state and its abstract view. We modify the specification to include a set of tombstones, TS (initially empty), in the concrete state. The abstract state is the resolved state as seen by some application using Maram. An abstraction function maps the concrete state to the abstract state.

The concrete and abstract states of a tree are the same if either there are no nodes in the set of tombstones or for each node in the set of tombstones, all its descendants are also present in the set of tombstones. In other cases, the abstraction function need to provide guidance on the presence of the descendants of a node that appears in the set of tombstones.

We present two abstraction functions -skipping_abstraction and keeping_abstraction.

The skipping_abstraction skips the descendants of the node that is marked as a tombstone.

The keeping_abstraction, on the other hand, preserves the tombstoned node if it observes the node has a descendant not in the set of tombstones. Both the abstraction functions satisfy the required safety properties since they only change the view of the tree for an application. Therefore the choice is application-specific. Formally, if Nodes con and Nodes abs denote the set of nodes in the concrete and abstract To illustrate the difference, consider the tree consisting of the root and a single child, as shown in Figure 7.3. One replica performs a remove of node p, while concurrently another replica adds n under p. In the first replica, node p is marked as a tombstone in the concrete state (the shaded box). Thus, the abstract state shows node p removed. When the replicas exchange their updates, they converge to the concrete state (the state in the shaded box). Figure 7.3a and Figure 7.3b show the result of a skipping_abstraction and keeping_abstraction respectively. In both the cases, node p is marked as a tombstone. In the case of the skipping_abstraction, node p and the descendants are "skipped". Meanwhile for keeping_abstraction, since its descendant n is not a tombstone, p is "revived" in the abstract view.

Inv ∧ Pre remove(n1) ∧ Pre add(n2,p2) ∧ n 1 = p 2 add(n 2 , p 2)
Inv ∧ Post add(n2,p2) ∧ Pre remove(n1) (7.33) We see that the clause that node n 1 has to be a leaf node is not satisfied if n 1 = p 2 since add operation introduces a child node under p 2 . However, the refined specification of tombstones as described above does not require the node n 1 to be a leaf node. So that solution fixes this conflict as well.

Concurrent remove: Consider the sequential specification of two remove operations remove(n 1) and remove(n 2). Using (7.26), we get

Pre remove(n1) n 1 = root ∧ ∀ n ∈ Nodes n → n 1 Pre remove(n2) n 2 = root ∧ ∀ n ∈ Nodes n → n 2 Post remove(n2) n 2 / ∈ Nodes Inv ∧ Pre remove(n1) ∧ Pre remove(n2) ∧ true remove(n 2)
Inv ∧ Post remove(n2) ∧ Pre remove(n1) (7.34) We see that the remove operation is stable under a concurrent remove. Furthermore, the refined specification is also stable since it adds n 1 and n 2 to TS.

Concurrent move: Consider the sequential specification of two operations remove(n 1) and move(n 2 , p 2). Using (7.26), we get

Pre remove(n1) n 1 = root ∧ ∀ n ∈ Nodes n → n 1 Pre move(n2,p 2) n 2 ∈ Nodes ∧ n 2 = root ∧ p 2 ∈ Nodes ∧ p 2 = n 2 ∧ p 2 → * n 2 Post move(n2,p 2) n 2 → p 2 Inv ∧ Pre remove(n1) ∧ Pre move(n2,p 2) ∧ n 1 = p 2 move(n 2 , p 2)
Inv ∧ Post move(n2,p 2) ∧ Pre remove(n1) (7.35) We see that the clause for the remove operation that n 1 should be a leaf node is violated if a node is moved under it. Again, we can observe that the refined specification of remove eliminates this issue due to the absence of the violation-causing clause.

Stability of move operation

Concurrent add: Consider the sequential specification of two operations move(n 1 , p 1) and add(n 2 , p 2). Using (7.26), we get

Pre move(n1,p 1) n 1 ∈ Nodes ∧ n 1 = root ∧ p 1 ∈ Nodes ∧ p 1 = n 1 ∧ p 1 → * n 1 Pre add(n2,p2) n 2 / ∈ Nodes ∧ p 2 ∈ Nodes Post add(n2,p2) n 2 ∈ Nodes ∧ n 2 → p 2 Inv ∧
n 1 ∈ Nodes ∧ n 1 = root ∧ p 1 ∈ Nodes ∧ p 1 = n 1 ∧ p 1 → * n 1 Pre remove(n2) n 2 = root ∧ ∀ n ∈ Nodes n → n 2 Post remove(n2) n 2 / ∈ Nodes Inv ∧ Pre move(n1,p 1) ∧ Pre remove(n2) ∧ n 2 = p 1 remove(n 2) Inv ∧ Post remove(n2) ∧Pre move(n1,p 1) (7.37)
Observe here that removing n 2 violates the clause p 1 ∈ Nodes if n 2 and p 1 are the same.

However, in our refined specification, the postcondition of remove is n 2 ∈ TS, keeping the clause p 1 ∈ Nodes stable.

Concurrent move: Consider the sequential specification of two operations move(n 1 , p 1) and move(n 2 , p 2). Using (7.26), we get

Pre move(n1,p 1) n 1 ∈ Nodes ∧ n 1 = root ∧ p 1 ∈ Nodes ∧ p 1 = n 1 ∧ p 1 → * n 1 Pre move(n2,p 2) n 2 ∈ Nodes ∧ n 2 = root ∧ p 2 ∈ Nodes ∧ p 2 = n 2 ∧ p 2 → * n 2 Post move(n2,p 2) n 2 → p 2 Inv ∧ Pre move(n1,p 1) ∧ Pre move(n2,p 2) ∧ p 1 → * n 2 move(n 2 , p 2) Inv ∧ Post move(n2,p 2) ∧ Pre move(n1,p 1) (7.38)
We see here that a concurrent move of p 1 or an ancestor of p 1 invalidates the precondition clause p 1 → * n 1 that prevents a cycle from forming. This is a subtle condition missed in many previous works [START_REF] Najafzadeh | Co-design and verification of an available file system[END_REF][START_REF] Tao | Merging semantics for conflict updates in geo-distributed file systems[END_REF][START_REF] Kleppmann | OpSets: Sequential specifications for replicated datatypes (extended version)[END_REF]; hence it highlights the value of a formal analysis.

We discuss this condition in more detail in Section 7.5 and explain how we refine the specification for stability.

Safety of concurrent moves

We return to concurrent moves and study in more detail how a move operation on a remote replica might affect the precondition of a concurrent move in the local replica. Consider a local operation move(n, p). In a sequential execution, precondition clause p → * n forbids moving n under itself (which would cause a cycle). However a concurrent remote move of p or an ancestor of p under n will not preserve the precondition of the operation, p → * n, resulting in a cycle. We call this move as a cycle-causing-concurrent-move.

Observe that the precondition prevents an ancestor of n moving under itself in sequential execution, whereas a concurrent move of the ancestors of p may result in a cycle. Therefore, only the concurrent move of the ancestors of p that are not ancestors of n would lead to a cycle. We call this set of ancestors critical ancestors, and the set of n and its descendants critical descendants. Formally, To illustrate critical ancestors and critical descendants, consider two concurrent move operations move(n, p) and move(p , n).

Classifying moves

Let us take a step back and analyze the types of move operations. Some move operations result in a node moving farther away from the root, called down-moves, in contrast to those moving it nearer to the root, or to remain at the same distance, called up-moves.

We define rank as the distance of a node from the root node, as follows:

rank(root) = 0 (7.41) n → p ∧ n = root =⇒ rank(n) = rank(p) + 1 (7.42) up-move(n, p) rank(n) > rank(p) (7.43) down-move(n, p) rank(n) ≤ rank(p) (7.44)
Consider an up-move operation, move(n, p), i.e., rank(n) > rank(p). Since critical descendants are descendants of n or n, their rank will be at least the rank of n. Similarly, since critical ancestors are p or ancestors of p , their rank will be at most the rank of p . Hence, in the case of an up-move, the rank of a critical descendant will be always greater than the rank of a critical ancestor, i.e.,

∀n, p, p , d, a ∈ Nodes n → p ∧ rank(n) > rank(p) ∧ d n ∧ p a =⇒ rank(d) > rank(a) (7.45)
This implies that a cycle-causing-concurrent-move can only be a down-move. Hence, we have that concurrent up-moves are safe; stability issues can occur only between two concurrent down-moves, or between an up-move and a down-move.

Coordination-free conflict resolution for concurrent moves

Let us now design a coordination-free conflict resolution policy for the moves that conflict.

We have two possibilities, either avoid concurrent moves by avoiding concurrency using some coordination technique such as locking, or weaken the specification using a conflict resolution policy. In this work we prefer the later since our aim is to design a coordinationfree data structure.

A conflict resolution policy is required if both the concurrent move operations move a node in the set of critical ancestors of the other. The choice of conflict resolution policy is always somewhat arbitrary. We propose the following:

• If the concurrent moves are up-moves, apply both their effects.

• If there is a concurrent up-move and down-move, up-move wins and the down-move is skipped.

• If the concurrent moves are down-moves, deterministically resolve conflict, eg., the operation with the highest priority wins. The priority of a move operation can be set by the application, with a condition -priorities are unique [START_REF] Burckhardt | Eventually consistent transactions[END_REF].

Contrast our approach with the alternative that uses shared-exclusive locks for concurrent moves [START_REF] Najafzadeh | Co-design and verification of an available file system[END_REF]

Convergence

As discussed in Section 7.2, to ensure convergence concurrent updates should commute [START_REF] Shapiro | Conflict-free replicated data types[END_REF].

The results of the commutativity analysis is show in Table 7.2.

Add and remove operations result in adding the added and removed node to Nodes and TS respectively. Since set union is commutative, each of these two operations commutes with itself and with the other.

The move operation changes the parent pointer of a node. It commutes with add and remove, since it does not have an effect on set membership.

However, observe that in the sequential specification, two moves do not commute, if the same node is moved to two different places. In Subsection 7.5.2, we have explained a winning operation between a concurrent up-move and down-move and concurrent downmoves. Concurrent up-moves on the same node can be non-commutative though. This issue is fixed by the deciding the priority between the concurrent up-moves (like concurrent down-moves).

Independence

We use the independence conditions from Subsection 7.2.2.3 to check for safety violations due to tentative moves. We check whether each operation is independent of up-move and down-move since they are the only operations that have tentative effects. For the dependent operations, we compute the condition under which it is dependent and use it to devise dependency resolution policies. In order to compute dependency conditions, we use the dependency analysis proposed by Houshmand and Lesani [START_REF] Houshmand | Hamsaz: Replication coordination analysis and synthesis[END_REF]. An operation op 2 is dependent on op 1 if the execution of op 1 enabled Pre op 2 that was not enabled before its execution, i.e.,

Inv ∧ Pre op1 op 1 Inv ∧ Post op1 ∧ Pre op2 (7.46)
historical up-move, and p 2 → * n 2 ∧ rank(n 2) > rank(p 2), which is potentially effected by the second part of the postcondition of the historical up-move.

Note that Pre up-move(n 2 ,p 2) was not enabled before the execution of op 1 , i.e., the execution of op 1 enabled at least one predicate p 2 → * n 2 or rank(n 2) > rank(p 2). Let us consider them one at a time.

Let us derive the conditions under which moving a node to a different parent introduces an ancestor relation that enables the condition p 2 → * n 2 (it was previously disabled). This means that the historical up-move operation caused a disconnection between p 2 and n 2 .

This will happen only if the node being moved by the historical up-move was either n 2 or a descendant of n 2 and the new parent of the current move was either n 1 or a descendant of n 1 (the node moved by the historical up-move). Hence we have (n

1 = n 2 ∨ n 1 → * n 2) ∧ (p 2 = n 1 ∨ p 2 → * n 1).
The condition rank(n 2) > rank(p 2) will be enabled after an up-move only if rank(p 2)

decreased. 8 This will happen only if p 2 was the node moved or its descendant. Hence we

have that p 2 = n 1 ∨ p 2 → * n 1 .
The historical up-move either enabled one or both of the conditions. Combining them gives p 2 = n 1 ∨ p 2 → * n 1 , the condition under which an up-move, up-move(n 2 , p 2), is dependent on a historial up-move, up-move(n 1 , p 1).

Historical down-move:

To check for independence of an up-move with a historical down-move, we have the following condition:

Pre down-move(n1,p 1) n 1 ∈ Nodes ∧ n 1 = root ∧ p 1 ∈ Nodes ∧ n 1 = p 1 ∧ p 1 → * n 1 ∧ rank(n 1) ≤ rank(p 1) Post down-move(n1,p 1) skip ∨ n 1 → p 1 Pre up-move(n2,p 2) n 2 ∈ Nodes ∧ n 2 = root ∧ p 2 ∈ Nodes ∧ n 2 = p 2 ∧ p 2 → * n 2 ∧ rank(n 2) > rank(p 2)
We apply the same reasoning as in the previous case for the condition p 2 → * n 2 , obtaining

(n 1 = n 2 ∨ n 1 → * n 2) ∧ (p 2 = n 1 ∨ p 2 → * n 1)
as the condition under which an up-move is dependent under a historical down-move.

There is a difference in the second part though; the condition rank(n 2) > rank(p 2) will be enabled after a down-move only if rank(n 2) increases (not possible for a down-move to decrease the rank). This will happen only if n 2 was the node moved or its descendant, i.e.,

n 2 = n 1 ∨ n 2 → * n 1 .
Combining both the conditions, we have ((

n 1 = n 2 ∨ n 1 → * n 2) ∧ (p 2 = n 1 ∨ p 2 → * n 1)) ∨ (n 2 = n 1 ∨ n 2 → * n 1)
as the condition under which an up-move, upmove(n 2 , p 2), is dependent on a historial down-move, down-move(n 1 , p 1).

Specification 7.1 Concurrent specification of Maram

State: Nodes × TS Invariant:

root → root ∧ ∀n ∈ Nodes root → n ∧ root / ∈ TS (Root) ∧ ∀n ∈ Nodes n = root ∧ ∃p ∈ Nodes n → p (Parent) ∧ ∀n, p, p ∈ Nodes n → p ∧ n → p =⇒ p = p (Unique) ∧ ∀n ∈ Nodes n = root =⇒ n → * root (Reachable)
Add operation:

(Add-Operation) Inv ∧ p ∈ Nodes ∧ n / ∈ Nodes add(n, p) Inv ∧ n ∈ Nodes ∧ n → p
Remove operation:

(Remove-Operation) Inv ∧ n = root remove(n) Inv ∧ n ∈ TS Definitions:
operation (type, params, priority)

C set of concurrent operations H history of operations available at the origin replica crit-anc-overlap(op 1 , op 2) op 1 .params.n ∈ critical _ancestor (op 2) ∧ op 2 .params.n ∈ critical _ancestor (op 1)

self -or -under (n) {n |n = n ∨ (n ∈ Nodes ∧ n → * n)}
Move operation:

(Up-move-Operation) Inv ∧ n ∈ Nodes ∧ n = root ∧ p ∈ Nodes ∧ n = p ∧ p → * n ∧ rank(n) > rank(p) up-move(n, p) op ∈ C op.type = up-move ∧ op.params.n = n ∧ op.priority > priority op ∈ H (op.type = up-move ∧ p ∈ self -or -under (op.params.n)) ∨(op.type = down-move ∧ (n ∈ self -or -under (op.params.n) ∨ (op.params.n ∈ self -or -under (n) ∧ p ∈ self -or -under (op.params.n)))) =⇒ Inv ∧ n → p (Down-move-Operation) Inv ∧ n ∈ Nodes ∧ n = root ∧ p ∈ Nodes ∧ n = p ∧ p → * n ∧ rank(n) ≤ rank(p) down-move(n,
∨ (op.params.n ∈ self -or -under (n) ∧ p ∈ self -or -under (op.params.n)))) ∨(op.type = down-move ∧ p ∈ self -or -under (op.params.n)) =⇒ Inv ∧ n → p Independent Under add (n 2 , p 2) remove(n 2) move(n 2 , p 2) Operation add (n 1 , p 1) p 1 = n 2 true true remove(n 1) n 1 = n 2 true true move(n 1 , p 1) n 1 = n 2 ∨ p 1 = n 2 true n 2 / ∈ self -or-under(n 1) ∨p 1 / ∈ self -or-under(n 2)
Table 7.3: Result of dependency analysis. The cell shows the condition under which the operation in the row is independent of the operation in the column.

7.9 Discussion 7.9.1 Moving from causal consistency to eventual consistency Houshmand and Lesani [START_REF] Houshmand | Hamsaz: Replication coordination analysis and synthesis[END_REF] propose dependency analysis to help relax the requirement of causal delivery. We run this analysis for all operations, irrespective of whether the update is tentative or definitive.

Table 7.3 shows the results of the dependency analysis of Maram. We can observe that no operations are dependent on remove, and add and remove are not dependent on move. As there is no fully independent operation, relaxing causal delivery is not helpful to Maram.

Message overhead for conflict resolution

In order to use Maram in a real-world application, we need to understand the overhead of conflict resolution. Conflict resolution requires some meta information that is sent along with the update message from the origin replica. This may have an impact on the bandwidth lost, hence understanding the components is important.

The conflict resolution policy of Maram needs information to compute a set of concurrent operations. Assuming a replica works as a single threaded process, we use vector clocks. The size of vector clocks is linear with the number of replicas. This poses an additional overhead.

Conflict resolution also takes as input the set of critical ancestors, descendants, and the priority.The size of the set of critical ancestors depends on the depth of the subtree comprising the least common ancestor of the node being moved and the destination parent.

The size of the set of critical ancestors is linear to the difference in the rank of the new parent and the least common ancestor. The size of the set of descendants might be large for the nodes nearer to the root. This poses an overhead on the metadata. The priority can be a single number or a string and is independent of other factors. Hence using the conflict resolution of Maram will cause a considerable overhead on message delivery.

The time taken to compute this metadata is the difference between the response time of a naïve unsafe replicated tree and Maram in Figure 8.1c.

Chapter 8

Experimental study and Comparison

In this section, we conduct an evaluation to showcase the high availability of Maram.

We measure availability in two parts response time and stabilization time. The first metric, response time, is the time taken to log and acknowledge a client request. Recall that the effect of a move operation in our specification consists of either updating the state, or a skip. The update remains tentative until any conflict is resolved, i.e., until all concurrent updates have been delivered. In order to measure this, we introduce a metric called stabilization time. Stabilization time measures the duration for which an update is in a transient state.

We run the experiments with three replicas connected in a mesh with a FIFO connection. We simulate different network latencies, as shown in Table 8.1. We run the experiments on DELL PowerEdge R410 machine with 64 GB RAM, 24 cores @ 2.40GHz

Intel Xeon E5645 processor and Linux kernel version 3.16.0-4-amd64.

We use a warm-up workload to initialize the tree before each experiment. It consists of 1056 operations (1012 add, 15 remove, and 30 move operations) to create a tree with 997 nodes, including the root. We then run concurrent workloads on the three replicas, varying conflict rates at 0%, 2%, 10%, and 20%. The conflicting methods are a percentage of the total concurrent workload. For each run, we submit 250 concurrent operations to each replica (750 operations in total), broken into 60% add, 12% remove, and 28% move operations. Half of the moves are up-moves and the remaining half down-moves.

We compare Maram with three solutions from the literature: (i) UDR tree (short for Undo-Do-Redo tree) [START_REF] Kleppmann | OpSets: Sequential specifications for replicated datatypes (extended version)[END_REF] The average response time for each design for different conflict rates with latency configuration 2 (Table 8.1) are shown in Figure 8.1a. Observe that Maram and UDR tree have lower response times than the lock-based designs, owing to the coordination-free design. The slight increase in the response time of Maram compared to UDR tree is due to the calculation time for the meta data required for conflict resolution. The response time for Najafzadeh [START_REF] Najafzadeh | Co-design and verification of an available file system[END_REF] increases with conflict rate, due to lock contention, whereas that of Global is the same across all conflict rates since the proportion of lock-acquiring-moves remains the same.

Figure 8.1b shows the average stabilization time for our design and the UDR tree design [START_REF] Kleppmann | OpSets: Sequential specifications for replicated datatypes (extended version)[END_REF] on a logarithmic scale for different latency configurations. Our solution gives lower stabilization time, since only moves have transient state, whereas for a UDR tree [START_REF] Kleppmann | OpSets: Sequential specifications for replicated datatypes (extended version)[END_REF] all operations are in transient state until a local replica asserts that there are no more concurrent operations. Note here that Maram's stabilisation time does not depend on conflict rate, but only on the proportion of down-moves in the workload. As this proportion tends towards 100%, the stabilisation time of Maram tends to be the same as that of UDR.

Next, we run an experiment to measure the overhead introduced by the conflict resolution policy. As a lower bound, we compare the response time of Maram with a naïve unsafe implementation, that uses a simple eventual consistency approach, and thus is not safe. 1 The state of the replica is generated dynamically when a client issues a request.

Chapter 9

Related work

Several authors addressed the problem of designing a replicated tree minimizing coordination. Martin et al. [START_REF] Martin | Abstract unordered and ordered trees CRDT[END_REF] compare several possible designs. They use set CRDTs to construct replicated trees with different conflict semantics. Their design supports add and remove operations. However they do not consider move operations.

Kumar and Satyanarayanan [START_REF] Kumar | Log-based directory resolution in the coda file system[END_REF] discuss the issues with move operations in Coda file system. They have omitted transparent resolution of move operations; instead they mark them as conflicting operations. In contrast to our approach where we automatically resolve conflicts using conflict resolution, they require the user to intervene. Moreover, they haven't discussed about cycle-causing-concurrent-moves.

Bjørner [START_REF] Bjørner | Models and software model checking of a distributed file replication system[END_REF] discusses the development of Distributed File System Replication (DFS-R). The author identifies the issues with concurrent move using a model checker. Bjørner [START_REF] Bjørner | Models and software model checking of a distributed file replication system[END_REF] identifies several possible solutions including, moving the conflicting nodes to the root or the least common ancestor, or reverting the conflicting nodes parent back to its previous parent. The author noted that the model checker had state space explosion when trying to analyse the algorithm.

Dropbox [START_REF] Jayakar | Rewriting the heart of our sync engine[END_REF] identifies the issue with concurrent moves. They introduce a synchronisation service between client and server with strong consistency. This design allows atomic safe moves, at the expense of coordination.

Najafzadeh et al. [START_REF] Najafzadeh | Co-design and verification of an available file system[END_REF] provide a design of a replicated tree for a file system. Our concept of critical ancestors and least common ancestor are inspired by Najafzadeh et al. [START_REF] Najafzadeh | Co-design and verification of an available file system[END_REF]. The solution requires acquiring read locks on the critical ancestors and a write lock on the node being moved. They have verified their design using CISE principle [START_REF] Gotsman | Cause I'm Strong Enough: Reasoning about consistency choices in distributed systems[END_REF] similar to us.

Chapter 8 shows the performance impact on the response time for each client request.

Tao et al. [START_REF] Tao | Merging semantics for conflict updates in geo-distributed file systems[END_REF] propose a replicated tree with a coordination-free move operation. They achieve it by implementing each move as a non-atomic copy and delete. An atomic update provides all or no guarantee, i.e., either the update is applied or it is not. Ensuring atomicity avoids partial execution of updates. Being non-atomic, it might lead to having multiple copies of the same node.

Compared to the above solutions, our design supports an atomic move operation without coordination.

Kleppmann et al. [START_REF] Kleppmann | OpSets: Sequential specifications for replicated datatypes (extended version)[END_REF] propose the UDR tree that supports atomic move operations, based on the concept of opsets. Opsets eventually totally order all operations (in a log), this is more expensive than our solution based on partial order, taking more time for all operations to stabilize. When a replica receives an operation that has to be inserted into a log, the operations until the point of insertion from the end of the log are undone, the inserted operation is performed and all the undone operations are redone. For each concurrent operation received, this might be performed, resulting in undoing and redoing the same set of operations multiple times. They require a delivery layer that is only eventually consistent, whereas our solution requires causal delivery.

The main difference between the work of Kleppmann et al. [START_REF] Kleppmann | OpSets: Sequential specifications for replicated datatypes (extended version)[END_REF] with Maram is that we formalize the conditions under which a move might skip -both due to a concurrent move or due to a historic move.

Kaki et al. [START_REF] Kaki | Mergeable replicated data types[END_REF] define the concept of Mergeable Replicated Data Types (MRDTs), inspired from three-way-merge. The safety of an MRDT binary tree depends on the labeling of the child-parent relations (whether it belongs to the right or left of the ancestor). It also requires keeping track of all the ancestor relations apart from the parent-child relations. A generic MRDT tree can be considered as an extension to the MRDT binary tree, but requires tracking all ancestor relations and a complex lexicographical ordering when concretizing the merged result. This would increase the metadata overhead. Moreover, identifying the unsafe move operation would be helpful for the user to perform any compensation. This is not possible with MRDTs. In contrast to MRDTs, our approach is based on two-way merge. This saves us from preserving the last common history of two replicas that are broadcasting their updates.

Chapter 10

Conclusion of Part II and Future work

This part of the thesis presents the design of a coordination-free, safe, convergent and highly available replicated tree data structure, Maram. We study the cycle-causing-concurrentmoves, classify them into up-moves and down-moves, and present a conflict resolution for conflicting moves. We study the effect of the conflict resolution on the dependant operations. We provide arguments for safety and convergence of Maram, and experimentally demonstrate the efficiency of the design, by comparing with the existing solutions.

This illustrates the methodology of designing a distributed application without any coordination, thanks to conflict resolution policies and dependency conditions.

Future work

The future work of this part of the thesis has two main directions. The first direction concerns the design of a replicated tree. The second direction is more general, concerning the design of similar data structures or distributed applications. The next step is reducing the metadata due to the tombstones and keeping the historical move operations. Ideally, one will remove the tombstone (also truncate the set of historical moves) at some safe time in the future; this is non-trivial [START_REF] Baquero | Making operation-based CRDTs operation-based[END_REF] and is future work of this thesis.

Design of a replicated

Further future work is to study the effect of combining moves with conflict resolution policies with lock-based moves. This might be required to ensure that a move is definitive.

For example, if a program expects a particular directory structure during execution, a concurrent move might crash the program. To avoid this, we should be able to specify some move operations as definitive, thus acquiring locks.

Introduction to Part III

Part I studied a proof technique for verifying the safety of distributed applications. The proof tool returns a list of conflicting methods, which would result in an unsafe state if executed concurrently.

Accordingly, the developer has two choices to ensure concurrent safety -the optimistic approach, designing conflict resolution algorithms (as illustrated in Part II), and the pessimistic approach. The former implies that a user might see intermediate results

that might be conflicting with another concurrent operation, and would require conflict reconciliation. In short, a user could observe stale data and it would incur some costs.

In some applications, seeing stale data might be acceptable, whereas in others it might incur extremely high costs. When the cost of stale data is prohibitive, the developer needs to synchronize.

To illustrate divergence and compensation, consider for instance an online auction.

The auction platform guarantees that the highest bid wins. Alice from Adelaide puts up a painting for auction. Bob from Brussels and Charles from Calgary quote $100 and $105 respectively. Alice observes the bid from Bob, but not Charles's due to a communication delay. She closes the auction and the application declares Bob as the winner. When the connection is restored, Alice observes that the lower bid won. The optimistic approach corrects itself, apologizes and compensates the participants. The pessimistic approach prevents this from happening by coordinating bid placement and closing an auction.

Having identified the conflicts, e.g., by static analysis [START_REF] Gotsman | Cause I'm Strong Enough: Reasoning about consistency choices in distributed systems[END_REF][START_REF] Houshmand | Hamsaz: Replication coordination analysis and synthesis[END_REF][START_REF] Sreeja S Nair | Invariant safety for distributed applications[END_REF][START_REF] Li | Fine-grained consistency for georeplicated systems[END_REF][START_REF] Li | Automating the choice of consistency levels in replicated systems[END_REF], the required coordination can be implemented in many ways, trading overhead against parallelism. The design space is multi-dimensional: locks can have various levels of granularity; different types of lock can be used (for example, mutex vs. shared/exclusive locks); the placement of the lock object has a significant impact. 1Furthermore, the performance of an option depends on the workload and specifically on the frequency distribution and geolocation of the conflicting operations. For instance, in the auction example, placing bids is a frequent operation and can be concurrent, whereas closing an auction is infrequent; therefore the protocol should optimise for the former, even at the expense of the latter. An appropriate protocol would allow place-bid in parallel under a lock in shared mode, whereas close-auction uses exclusive mode. Coordinating multiple auctions with a single lock would disallow concurrent close-auctions, but may decrease overhead, depending on workload.

tion; furthermore, close-auction conflicts only with a concurrent place-bid with a higher bidder. The tool by Nair and Shapiro [START_REF] Sreeja | Improving the "Correct Eventual Consistency[END_REF] generates conflict conditions from the counterexamples provided by the underlying verification tool. Under these conditions, the operations should coordinate with each other. In this part of the thesis, we realise this coordination using distributed locks. We generate a lock for each conflict based on the parameters involved in the conflict condition. A lock is subscripted by the operations acquiring it and the corresponding coordination condition (after hyphen). This gives us a set of fine-grained locks for the conflict graph. For example, consider two operations op a and op b conflicting when the parameter x of both the operations are equal as shown in Figure 11.1. This means that the two operations need to coordinate when operating on the same value of parameter x. If op a is called with signature op a (x 1) we create the lock l ab-x 1 that is shared with op b (x 1).

We call service time as the time between lock acquire and release, i.e., the actual time taken by the operation to serve a client request if it didn't conflict with any other operation.

Service time is usually negligible compared to geo-scale network latencies, but there also exist long-running transactions. In our application model, we consider an operation's service time, measured as the time between lock acquire and release.

Network model

The application is deployed over a network of geographically-distant locations. Each location contains a copy of the data, called a replica. A user accesses an arbitrary replica; a single replica. We consider that a replica is sequential and that the network latency between the client and the replica is zero (i.e., the client is at the same location).

The main factor of interest is the transmission latency between locations, which typically runs in tens or hundreds of milliseconds. This influences in particular the delay to acquire a lock that is placed at a remote location.

Workload characteristics

We model an application workload by the frequency distribution by operation by location.

For instance, bids for a piece of furniture offered in France has more place bid operations than close auction and has high geo-locality in France.

Dimensions of Concurrency control

In this section, we take a closer look at the three dimensions and how they affect the overhead introduced due to locking.

Granularity

For a given conflict graph, we start with fine-grained locks, per operation per conflict, based on the coordination condition. Coarsening replaces several (fine-grained) locks with a single (coarse-grained) one; it also replaces the coordination condition of the coarsegrained lock to be the disjunction of the fine-grained locks. The granularity of a lock affects both components of the lock overhead -acquisition cost and contention. An operation that previously acquired and released multiple fine-grained locks, now uses the single coarse-grained replacement. Similarly, instead of coordinating on the smaller coordination conditions, the coarsened lock needs to coordinate on a stronger coordination condition. This decreases acquire/release overhead, at the expense of parallelism (higher contention). Let us consider how the dimension of coarsening is applicable here. The locks l ab-Px and l bc-Qy can be coarsened into a single lock l abc-PxQy . The coordination condition of the resulting lock is the disjunction of the coordination conditions of the fine-grained locks.

For example, assume P (x) x < 100 and Q(y) y > 20. The coarsened precondition for the joined combined lock, l abc-PxQy , will be P x Q y x < 100 ∨ y > 20. Now consider an operation call with signature op a [START_REF] Sreeja | Invariant safety for distributed applications[END_REF]. This means for this call, x = 10 and hence op a needs to acquire l abc-PxQy

Coarsening reduces lock acquisition costs for op b , since it only needs to acquire one lock instead of two. At the same time, it increases lock contention for op a and op c since they have to now wait for not only op b as in the previous case, but also for each other.

We can call this way of coarsening the operation coarsening since it decreases the number of locks to be acquired per operation. Another dimension of coarsening is to coarsen the coordination condition, called condition coarsening. Condition coarsening doesn't reduce the number of lock acquisitions, and instead increases the lock contention since multiple calls to the same operation with different parameter values synchronize unnecessarily. 1Hence in this work, we do not consider coarsening on this dimension.

As we discussed in Subsection 11.1.1, the conflict graph of an application contains one or more disjoint subgraphs. An operation in one subgraph can safely execute concurrently with any other operation outside of its subgraph. Hence we only coarsen until we reach a single lock for a subgraph; further coarsening will not reduce lock acquisition costs, but will only increase contention.

Mode

Among the many known locking techniques [START_REF] Bernstein | Concurrency control in distributed database systems[END_REF], we focus on the difference between mutex locks and shared/exclusive locks, which we call lock mode. Mutex locks totally order the conflicting operations whereas shared/exclusive locks maintain a partial order where the operations with shared mode run concurrently, and those with exclusive mode blocks all other operations that share the lock.

When operations conflict, they acquire lock either in shared mode or exclusive mode.

If an operation conflicts with itself, it has to acquire lock in exclusive mode.

Consider for example, operations op a and op b that share lock ab-<x> either in mutex mode or shared/exclusive mode. Acquiring the lock in mutex mode will totally order op a and op b , whereas acquiring the lock in shared mode by op a and in exclusive mode by op b , will maintain a total order for op b and between op a and op b , but allows concurrent executions of op a . This is safe if op a doesn't conflict with itself.

When coarsening, multiple operations might be sharing a single coarse-grained lock.

Allocating shared/exclusive mode for coarse-grained lock might violate safety if conflicting operations acquire the lock in shared mode. In order to maintain correctness, we require that at least one operation involved in each conflict of the conflict graph acquire exclusive mode. In terms of graph theory, we require at least the minimum vertex cover to acquire the exclusive mode.

A distributed lock can use several algorithms to provide shared/exclusive and mutual exclusive guarantees. Redlock [START_REF]Distributed locks with Redis[END_REF], FencedLock [START_REF] Basri | Distributed locks are dead; long live distributed locks![END_REF], the distributed transactional lock from NuoDB [START_REF] Kysel | Distributed transactional locks[END_REF], DynamoDB lock client [START_REF] Patrikalakis | Building distributed locks with the DynamoDB lock client[END_REF], the lock service of etcd [START_REF]etcd concurrency API reference[END_REF], and Zookeeper

Lock recipes [START_REF] Zookeeper | Zookeeper lock recipe[END_REF] are some commonly used distributed locks.

The underlying algorithms for mutual exclusive locks and shared exclusive locks differ between these popular lock providers. This reflects in the cost of lock acquisition for different lock providers. For example, consider the algorithm behind shared/exclusive lock.

The main difference in the different modes is the parallelism allowed, shared mode allows parallelism with other shared modes, whereas exclusive mode allows zero parallelism.

In NuoDB, acquiring a shared lock incurs zero overhead, whereas the exclusive mode pays a price of three times the network latency. In Zookeeper, the lock acquisitions for both modes have the same cost. We ran an experiment with 3 instances of Zookeeper Observe that the response time is the same at a given replica irrespective of the mode.

As a reasonable simplification, we assume that the cost of lock acquire/release does not depend on the mode. Hence mode selection only affects lock contention, not lock acquisition costs.

Lock Placement

Popular distributed lock services such as Zookeeper [START_REF] Zookeeper | Zookeeper lock recipe[END_REF] and etcd [START_REF]etcd concurrency API reference[END_REF] are based on consensus across their members. The number of members can vary and can be placed at The centrally placed lock can be co-located with any one of the replicas, or be at some other location. We consider the case where it is co-located with a replica. A client placed in a remote location will suffer additional network latency to access it. Thus, placement affects lock response time. This in turn affects contention, since the longer the delay, the higher the probability that a conflicting operation will have to wait.

The Coordination Lattice

Given a conflict graph and associated conditions, there always exists a safe coordination protocol: assign a fully distributed mutex lock to each conflict edge; an associated operation, for which the coordination condition is true,2 acquires the lock on call, and releases on return. This fine-grained approach serves as our initial solution, but it may be expensive.

We present a lattice representation of the three dimensions of concurrency control, called the coordination lattice. This representation helps a systematic traversal of the lock configuration dimensions. The coordination lattice is constructed from the static characteristics of the application namely, the conflict graph, along with the coordination conditions. Of the three lattice dimensions (granularity, mode and placement) we consider granularity to be the main "plane". This is because the mode and placement decisions depend on first knowing which locks to consider, i.e., on granularity. Therefore, it makes sense to construct the lattice by first varying granularity, and then varying mode and placement for a given granularity.

The structure of the coordination lattice is derived from the dimension of granularity.

The bottom element of the lattice is the finest grained locks and the top element is the coarsest grained locks. Each level of the lattice is formed by coarsening the locks in the previous level.

Each lattice element is a set of locks that are two-dimensional planes with mode and placement axes. Each lock in a granularity configuration may have multiple mode and placement configurations. A single combination of granularity, mode and placement is called a coordination configuration.

2. For a shared/exclusive lock, the mode that allows maximum parallelism possible should be selected. To explain this rule, we define some metrics. Call Lock Holding Time (LHT) the minimum time during which an operation holds the lock. LHT is the sum of lock acquisition time and service time. 4 LHT (op, l, r) for operation op for lock l at replica r is given by LHT (op, l, r) = service_time(op) + C(l, r)

where service_time(op) is the execution time of the operation, outside of lock acquisition and release, and C(l, r) is the cost of acquiring lock l at replica r. Note that LHT differs per operation and per replica. We will consider the impact of lock contention next. Now let us study the possible parallelism, based on LHT and locking mode.

The set of operations that gets the exclusive mode of a single lock, l, serialises all executions for that particular set of operations across all replicas. We call operation serialisation the estimate of the expected execution time at replica r as a result of this serialisation. This provides us the time during which the operations that acquire the exclusive mode of lock l at replica r have to wait due to the execution of operations acquiring the same mode of the same lock at other replicas. For a set of operations O acquiring a lock l at replica r, operation serialisation, OpSerial, can be defined Mode selection needs to minimise operation serialisation, along with operation parallelism across all replicas. 56 We use these metrics in order to define replica execution time, RepExecTime, that indicates the average time needed to execute all the replicas when all replicas start their execution at the same time. where L cc is the set of locks for a particular coordination configuration (granularity, mode and placement dimensions are assigned). We select the coordination configuration with minimal CcRepExecTime.

Relation to Amdahl's law: Amdahl's law [START_REF] Amdahl | Validity of the single processor approach to achieving large scale computing capabilities[END_REF] gives us the speed up possible by parallelising the execution on n number of processors.

Speedup = 1 r s + rp n
where r s + r p = 1 and r s represents the ratio of the sequential portion of one program. It can also be written as

Speedup = r s + r p r s + rp n
The speed up attainable due to parallelisation is the ratio of the execution time of the process if it were to run fully sequential to the execution time of the process parallelised on n processors.

Similar to the system model in Amdahl's law, we have a set of processors that can process operations in parallel. Instead of multiple processors, we have replicas and the number of replicas are fixed in our case. The numerator of the speed up ratio as per Amdahl's law is the execution time required if all the operations were sequential. In our case, it is similar to acquiring mutual exclusive lock for all operations. The denominator represents the execution time of the parallelised process, if any. The amount of parallelism permissible is determined by the mode of locking. If we use mutex, there is no extra parallelism possible, hence r s = 1 and r p = 0. This gives us the baseline for calculating speed up.

Let us discuss how our metrics relates to Amdahl's law at replica r. Let S be the total execution time at replica r when all the locks are mutual exclusive. This is essentially the sum of operation serialisation and replica serialisation at a single replica when all the locks are acquired in mutual exclusive mode. Since we are constrained by the workload characteristics, unlike in the case of Amdahl's law where the parallelisation can be manipulated, we cannot fairly "distribute" the execution of the parallel portion across all replicas. Hence, we can substitute the term To maximize speedup, we need to minimize the denominator, corresponding to our CcRepExecTime metrics.

Placement selection

The placement of the lock service affects the response time, as network latency affects both the cost of consensus between different instances of the lock service, and cost for the client to access the service, when it is remote.

Let us note C(l, p, r) the cost of acquiring lock l from replica r for placement p, and freq(l, r) the frequency of acquiring lock l from replica r, then expected cost of acquisition, T C, for a chosen placement p is given by

T C(l, p) = r freq(l, r) * C(l, p, r)
The selected placement, p, should minimise the acquisition cost over all placements, i.e., T C(l, p) = min p (T C(l, p))

In Chapter 12, we discuss on applying this metrics to some examples to determine the optimal coordination configuration for a given workload. The simulator uses this generated set of coordination configurations to run the application.

Latency (ms)

The Yahoo! Cloud Serving Benchmark (YCSB) [START_REF]Yahoo! cloud serving benchmark[END_REF] serves as the workload for the simulator. It issues client calls to the DisLockSim; there is a YCSB instance colocated with each replica. The workload requires trace files and workload configuration in the format for YCSB. WorkloadGen takes the list of operations along with their parameters and the workload characteristics (frequency of each operation per replica) to generate the configuration files.

DisLockSim -A simulation model for distributed lock

We present DisLockSim (abbreviation of Distributed Lock Simulator), a tool that allows us to observe the performance of different distributed lock configurations. It uses the userprovided inputs to instantiate the distributed application, the system on which it operates, and the expected workload.

The simulator is composed of three layers -the network layer, the application and the lock manager running on top of the network layer. The network layer specifies the number of replicas and the latency between each pair.

Each replica will have an instance of the distributed application and a lock manager running. The application layer provides APIs for client calls. Instead of actually executing the operation, it simulates the execution using the service time per operation provided by the user. To ensure safety, the application prepares the list of locks according to the coordination configuration chosen. It then issues acquire and release requests with the list of locks to the respective lock managers.

A lock manager receives lock acquisition requests from applications running on different replicas. The lock manager processes the request depending on the mode requested. Lock manager uses the lock service of etcd [START_REF] Sreeja | Read-write lock[END_REF] to maintain the guarantees of the locking modes.

Cost of locking

Our experiments consider the replicas located in Houston, Paris and Singapore respectively.

The latencies between these replicas are shown in Table 12.1.

Recall that the lock manager uses the lock service of etcd [START_REF] Sreeja | Read-write lock[END_REF] to maintain the lock guarantees. We run a benchmark to determine the cost of acquiring and releasing a lock for different modes and placements. The results of benchmarking the cost of locking using the etcd lock service is shown in Figure 12.2. Observe that the cost of locking from each replica is greater than four times the latency due to two calls -acquire and release. As we discussed in Section 11.2, the cost of locking depends on lock placement, but not on the type of lock. We then use this benchmark to calculate the metrics discussed in Section 11.4.

Analysing some conflict graphs

In this section, we consider some conflict graphs with some synthetic workloads.

We use the metrics discussed in Section 11.4 to predict the comparative performance of each coordination configuration. For each workload, we calculate the CcRepExecTime metrics for all coordination configurations. We then measure the total execution time taken for each configuration for a given workload; we take the average from 5 runs of the experiment. We compare the metrics with experimental values. We run all the experiments on DELL PowerEdge R440 machine with 384 GB RAM and 2 x Intel Xeon Silver 4216 32 cores / 64 threads @ 2.10GHz processor.

As discussed in Chapter 11, we can use CcRepExecTime to find the optimal distributed lock configuration. In this section, we experimentally illustrate the usage of the metrics. granularity dimension of the coordination lattice is trivial with a single element. The lock is two dimensional along mode and placement. The mode and placement dimensions of a lock are as shown in Table 12.2.

Conflict graph involving two operations

We consider some synthetic workloads as listed in Table 12.3. Figure 12.4 compares the metrics CcRepExecTime and the total time taken for all the operations for each workload for a given configuration.

The point of interest for us is the pattern of the plots. Observe that the coordination configuration with minimal CcRepExecTime is also the one with the lowest total execution time for each workload.

The metric CcRepExecTime gives the maximum execution time for a single replica in the system. For workloads B and E, the metrics and the experimental results overlap since all the operations happen at a single replica. For workloads C and F, we observe a slight deviation from the metrics because there are operations happening on two replicas.

The difference between the lines in the plot varies as the workload is being distributed We consider some synthetic workloads listed in All these experiments show the usefulness of our metrics to suggest a coordination configuration according to the workload of a distributed application.

the underlying lock provider.

Kulkarni et al. [START_REF] Kulkarni | Exploiting the commutativity lattice[END_REF] presents a lattice-based definition of commutativity specifications for a data structure. A commutativity specification gives a set of conditions that needs to be satisfied for each pair of operations in a data structure to commute. The commutativity lattice is constructed based on the amount of parallelism the commutativity specification permits. They discuss a trade-off between parallelism allowed and the overhead incurred.

This concept of a commutativity lattice described by Kulkarni et al. [START_REF] Kulkarni | Exploiting the commutativity lattice[END_REF] inspired us for creating a coordination lattice where the opposing forces are lock contention and cost of lock acquisition.

Diniz and Rinard [START_REF] Diniz | Lock coarsening: Eliminating lock overhead in automatically parallelized object-based programs[END_REF] presents a lock coarsening policy for parallel computing systems.

They explain the trade-off between the cost of lock acquisitions and lock contention. The basic insight is that lock coarsening decreases the cost of lock acquisitions, while increasing the lock contention. They propose two different coarsening methods -data coarsening, where the lock is coarsened when multiple objects are accessed together, and computational coarsening, when a single operation acquires a single lock multiple times. Our coordination lattice navigation is inspired by Diniz and Rinard [START_REF] Diniz | Lock coarsening: Eliminating lock overhead in automatically parallelized object-based programs[END_REF], especially the insight on using tradeoff as a metric to navigate through the lattice.

Chapter 14

Conclusion of Part III and Future work

Choosing a coordination configuration for a distributed application that minimizes the performance impact is far from trivial. It requires navigating different dimensions of the configuration and is dependant on the workload. We presented the concept of a coordination lattice, which helps systematically navigate the granularity, mode and placement dimensions of distributed locking.

We present a set of metrics that helps the user to choose a coordination configuration from the three dimensions.

We present a tool, DisLockGen, that suggests optimal distributed lock configuration for a given workload. To aid the study, we present a simulator named DisLockSim. The simulator helps to test the performance of different coordination configurations against a given workload.

With some sample conflict graphs, we show how our prediction pattern correlates with the actual measurement of the execution time for a given workload.

Future work

Given the exploratory nature of this work, this can be continued in many directions.

The first direction is regarding the system model. To resemble the real world more closely, we need to use probabilistic models for the workload. The probability of conflicting operations to happen concurrently will impact the prediction metrics. The probabilistic model of the workload would also help us understand if caching locks inside a replica would be beneficial, and if so, on parametrizing the time to cache. The performance of the lock configurations can be modelled using performance modeling techniques like the works of Agrawal et al. [START_REF] Agrawal | Concurrency control performance modeling: Alternatives and implications[END_REF], Aksenov et al. [START_REF] Vitalii Aksenov | Brief Announcement: Performance Prediction for Coarse-Grained Locking[END_REF], Witt et al. [START_REF] Witt | Predictive performance modeling for distributed batch processing using black box monitoring and machine learning[END_REF], and Nudd et al. [START_REF] Nudd | Pace-a toolset for the performance prediction of parallel and distributed systems[END_REF].

The second path is to extend the solution to include dynamic selection of coordination configuration according to the workload. In this case, the workload would be monitored dynamically and the configuration would be adjusted online similar to the works of Diniz and Rinard [START_REF] Diniz | Dynamic feedback: An effective technique for adaptive computing[END_REF], and Tang and Elmore [START_REF] Tang | Toward coordination-free and reconfigurable mixed concurrency control[END_REF].

Figure 1 . 1 :

 11 Figure 1.1: Evolution of state of an auction application

Figure 2 .1 and Figure 2 . 2 .

 222 We postpone the equivalence argument to Theorem 2.1.6.

Figure 2 .

 2 Figure 2.1 presents the semantic rules describing what we shall call the precise semantics (we will later present a more abstract version) defining the transition relations describing how the state of the application evolves. The figure defines a semantic judgement of the form (Ω, M) -→ (Ω new , M new) where (Ω, M) is a configuration where the replica states are given by Ω as shown above, and M is a set of messages that have been transmitted by different replicas and are pending to be received by their target replicas. Rule Operation presents the state transition resulting from a replica r executing an operation op. The operation queries the state of replica r, evaluates the semantic function for operation op and updates its state with the result. The set of messages M does not

Lemma 2 . 1 . 1

 211 If we consider a restriction to the semantics of Figure 2.1 where instead of applying the Operation rule of Figure 2.1 we apply the Op & Broadcast rule always, and instead of applying the Merge rule we apply Merge & Broadcast always, we can conclude that given an execution starting from an initial global state Ω i with

Figure 2 . 2 :

 22 Figure 2.2: Semantic Rules with a History of States

Definition 2 . 1 . 3 (

 213 figuration (Ω, M) of the semantics of Figure 2.1 and a configuration (Ω, S) of the semantics of Figure 2.2 parameterized by an initial global state Ω i and denoted by

Theorem 2 . 1 . 6 (

 216 Bisimulation) The semantics of Figure 2.1 and Figure 2.2 are bisimilar as established by the relation defined in Definition 2.1.3.

Figure 2 .

 2 Figure 2.4 lists the sufficient conditions for a highly-available distributed application to ensure Strong Eventual Consistency (SEC). To simplify the notation, we assume that when an operation executes, the local state respects the precondition of that operation.

Figure 2 . 4 :

 24 Figure 2.4: Monotonic semilattice conditions (implies Strong Eventual Consistency)

2 . 1 represent

 21 the ordering relation as a semilattice following Figure 1.1. It is not hard to see that each of our operations is an inflation, and that the merge operation computes the least-upper-bound.

Figure 2 . 5 :

 25 Figure 2.5: Semilattice of an auction object

) winner σnew = (winner σ = ⊥) ? winner σ : winner σ ∀b ∈ Bids σ ∪ Bids σ (b σnew .placed = b σ .placed ∨ b σ .placed) ∧(b σnew .amount = (b σ .amount > 0) ? b σ .amount : b σ .amount) StartAuction(): {P re startauction status = INVALID ∧ winner = ⊥} status = ACTIVE PlaceBid(bid): {P re placebid bid ∈ Bids ∧ status = ACTIVE ∧ winner = ⊥} Bids = Bids ∪ bid CloseAuction(w): {P re closeauction status = ACTIVE ∧ ∃b ∈ Bids b.placed ∧ b.amount > 0 ∧winner = ⊥ ∧ is_highest(Bids, w)} status = CLOSED winner = w

Figure 2 . 7 :

 27 Figure 2.7: Evolution of state in an auction application with concurrency control

Figure 2 . 8 :

 28 Figure 2.8: Safe in concurrent executions

 This section explains the pseudocode of the courseware application. The state consists of a set of students, Students, a set of courses, Courses, and enrolments of students for different courses, Rolls. Students can register and deregister, courses can be created and deleted, and a student can enrol for a course. The invariant requires enrolled students and courses to be registered and created respectively.The set of students and courses are 2P-sets, consisting two sets -A to track registrations or creations and another R to track deregistrations or deletions. Enrolment adds the student-course pair to the set Rolls. Merging two states takes the union of the sets. For simplicity, we abstract the specification of a 2P-set into an ordinary set with add and remove operations.

2 .

 2 Concurrent safety: Here we check the precondition of merge, Inv conc , is an invariant for every operation. This corresponds to the conditions (ConcOp) and (ConcMerge) in Figure 2.6. As shown in Section 2.3, this ensures safety during concurrent operation. The verification conditions are: assume σ Pre op ∧ Inv ∧ (σ, σ) Inv conc call σ new := op(σ) assert (σ new , σ) Inv conc to validate each operation op, and assume (σ, σ) Inv conc ∧ σ Inv ∧ σ Inv call σ new := merge(σ, σ) assert (σ new , σ) Inv conc to validate merge. If the concurrent safety check fails, the design of the distributed object needs a replicated concurrency control mechanism embedded as part of the state.

Figure 7 . 1 :

 71 Figure 7.1: Concurrent cycle causing moves

Figure 7 . 2 :

 72 Figure 7.2: Move update violating tree invariant

Figure 7 . 3 :

 73 Figure 7.3: Resolving conflict of concurrent remove and add

Figure 7 . 4 :

 74 Figure 7.4: Critical ancestors and critical descendants

 critical _ancestors(n, p) {a ∈ Nodes p → * a ∧ n → * a} (7.39) critical _descendants(n, p) {d ∈ Nodes d → * n} (7.40)

Figure 7 .

 7 [START_REF] Baquero | Composition in state-based replicated data types[END_REF] shows the critical ancestors and critical descendants of both move operations. The node l is the Least Common Ancestor (LCA) of n and p , i.e., their common ancestor farthest from the root. The dark gray region with a border represents the critical ancestors of move(n, p); the borderless dark gray region represents their critical descendants. The lighter gray region with and without borders represents the critical ancestors and critical descendants of move(p , n).A concurrent move operation moving a node from the set of critical ancestors under any critical descendant of a local move would result in a cycle. Note that the set of critical descendants of the local move overlaps with the set of critical ancestors of the remote cycle-causing-concurrent-move. Hence, we consider only the critical ancestors of move operations.

 p) op ∈ C op.type = up-move ∧ (crit-anc-overlap(down-move(n, p), op) ∨ op.params.n = n) ∧ op ∈ C op.type = down-move ∧ (crit-anc-overlap(down-move(n, p), op) ∨ op.params.n = n) ∧ op.priority > priority op ∈ H (op.type = up-move ∧ (n ∈ self -or -under (op.params.n)

 Overhead introduced by conflict resolution policy

Figure 8 . 1 :

 81 Figure 8.1: Experimental results. Each bar is the average of 15 runs. The error bars show standard deviation.

Figure 8 .

 8 Figure 8.1c shows the response time of both the designs. Maram has a slight overhead in exchange for safety.

 tree: There are different venues to improve the work in this direction. The current design is based on operation-based update propagation model. A useful next step would be a design that provides the same result as Maram supporting state-based and delta-based update propagation.

Figure 11 . 1 :

 111 Figure 11.1: Two conflicting operations.

Figure 11 . 2 :

 112 Figure 11.2: Three conflicting operations.

 to test the response times of different modes of locking from different replicas placed at geographically distant locations. The average response times are shown in Figure 11.3. Each bar represents the average of 100 calls.

Figure 11 . 4 :

 114 Figure 11.4: Conflict graphs

Figure 11 . 5 :

 115 Figure 11.5: Conflict graph of a sample application with four conflicting operations

Let us examine the construction of a coordination lattice for the two conflict graphs shown in Figure 11 . 4 .

 114 The conflict graph shown in Figure 11.4a (and Figure 11.4b) shows a conflict between three (four) operations on different coordination conditions.Figure 11.5a (and Figure 11.5b) shows the projection, along the granularity dimension, of the derived coordination lattice (arrows in the direction of more coarsening). An element in this projection is called a granularity configuration. The bottom element represents the initial fine-grained configuration. A successor configuration (by following an arrow) represents the coarsening of locks. Each two-dimensional lock in a granularity configuration is subscripted by the operations that acquire it, and by the corresponding coordination condition (after hyphen).

 as follows:OpSerial(l, r) = op∈O,r ∈R LHT (op, l, r) * freq(op, r) | r = r ∧ op.l.mode = exclusive where R is the set of replicas and freq(op, r) is the frequency of operation op in replica r . Operation serialization is the total execution time taken by the operations.Recollect that according to our system model, individual replicas are sequentialirrespective of mode, all operations on a given replica run sequentially. Metric replica serialisation captures this behaviour. For a set of operations O acquiring lock l, replica serialisation, RepSerial, on replica r can be defined asRepSerial(l, r) = op∈O LHT (op, l, r) * freq(op, r)Replica serialisation is the total execution time taken by all operations that acquire lock l at replica r.Let us now study the amount of parallelism allowed on other replicas by a given mode, operation parallelism. For each replica, this is the total time taken to execute all operations that acquires the lock in shared mode. For a set of operations O, acquiring a lock l, operation parallelism, OpParallel, for a replica r can be defined as OpParallel(l, r) = max r ∈R op∈O LHT (op, l, r) * freq(op, r) | r = r ∧ op.l.mode = shared Note that OpParallel represents the maximum time taken by a single replica to execute operations that has acquired the shared mode of lock. Other replicas that also have operations with shared mode of locking can run parallel to this.

 RepExecTime(l) = r∈R (OpSerial(l, r) + RepSerial(l, r) + OpParallel(l, r)) |R|A coordination configuration in the coordination lattice might include more than one lock. Since a lattice contains a single conflict graph, all locks essentially are related and they need to wait for others. We extend the metrics for a single lock for a set of locks belonging to a single coordination configuration. The enhanced set of metrics, with prefix Cc, is as follows:CcLHT(op, r) = service_time(op) + l∈Lcc C(l, r) CcOpSerial(r) = l∈Lcc,op∈O,r ∈R CcLHT(op, r) * freq(op, r) | r = r ∧ op.l.mode = exclusive CcRepSerial(r) = l∈Lcc,op∈O CcLHT(op, r) * freq(op, r) CcOpParallel(r) = max r ∈R l∈Lcc,op∈O CcLHT(op, r) * freq(op, r) | r = r ∧ op.l.mode = shared CcRepExecTime = r∈R (CcOpSerial(r) + CcRepSerial(r) + CcOpParallel(r)) |R|

7

 7

S

 (r) = CcOpSerial(r) + CcRepSerial(r) | ∀l ∈ L cc , op ∈ O op.l.mode = exclusive We now define two parameters s and p that gives the sequential part of the execution time and parallel part of the execution time respectively. s and p at replica r can be defined as follows: s(r) = CcOpSerial(r) + CcRepSerial(r) p(r) = r ∈R,l∈Lcc,op∈O CcLHT(op, r) * freq(op, r) | r = r ∧ op.l.mode = shared With these new terms, Amdahl's law can be rewritten as Speedup(r) = s + p s + p n Speedup = r∈R Speedup(r) |R| where s + p = S and Speedup indicates the average speed up. For mutex, s = S and p = 0, and Speedup = 1, which gives us the baseline.

pn=

 CcOpParallel(r). With our metrics, Amdahl's law becomes Speedup(r) = CcOpSerial(r) + CcRepSerial(r) | ∀l ∈ L cc , op ∈ O l.op.mode = exclusive CcOpSerial(r) + CcRepSerial(r) + CcOpParallel(r)

1 :

 1 Average latency between replicasDisLockGen uses the conflict graph to generate all possible coordination configurations.

Figure 12 . 2 :

 122 Figure 12.2: Cost of locking for different lock placements from different replicas. The Xaxis shows placement and mode configurations. The Y-axis represents response time in ms.

l

 ab-Px (b) Coordination lattice

Figure 12 . 3 :

 123 Figure 12.3: Conflict graph and coordination lattice for a single lock

Figure 12 . 4 :

 124 Figure 12.4: Plots of CcRepExecTime and total execution time obtained from the experiments for different workloads for the conflict graph in Figure 12.3.

Table 12 . 4 :

 124 Placement configuration for fine grained locksModel abc-PxQy op a op b op c 1 Coordination configurations for the coordination lattice in Figure12.5b across the replicas; but the pattern remains the same.

12. 2 . 2

 22 Conflict graph involving three operations op a op b op c P (x) Q(y) (a) Three conflicting operations l abc-PxQy l ab-Px , l bc-Qy (b) Coordination lattice

Figure 12 . 5 :

 125 Figure 12.5: Conflict graph and coordination lattice for two locks

Figure 12 . 6 :

 126 Figure 12.6: Plots of CcRepExecTime and total execution time obtained from the experiments for different workloads for Figure 12.5.

Figure 12 .

 12 Figure 12.6 shows the CcRepExecTime metrics and the experimentally obtained total time taken for all the operations for each workload for a given configuration. Workloads B and E follow the predictions since they are a single replica workload. As the workload gets distributed, the experimentally obtained total execution time across all replicas will be more than the CcRepExecTime metrics. Observe that the relative ordering of CcRepExecTime and the total execution time from the experiments are almost equivalent.

 Lemma 2.1.5 (Messages-semantics simulates State-semantics) Consider a reachable state (Ω, S) from the initial state Ω i in the semantics of Figure2.2. Consider moreover that according to that semantics there exists a transition of the form

	(Ω, S) -→ (Ω new , S new)
	and consider that there exists a state (Ω, M) of the state-preserving semantics of Figure 2.2
	such that they are related by the simulates relation

 Formally, an update u (an operation or a merge), mutates the local state σ, to a new state σ new = u(σ). To preserve the data invariant, Inv data , we require that the local state respects the precondition of the update, Pre u :

	As explained earlier, each replica executes
	a sequence of state transitions, due either to a local update or to a merge incorporating
	remote updates.
	Let us call safe state a replica state that satisfies the invariant. Assuming the current
	state is safe, any update (local or merge) must result in a safe state. To ensure this, every
	update is equipped with a precondition that disallows any unsafe execution. 3

 states of a pair of states satisfying Inv conc is updated because of yet another merge happening (w.r.t. yet another replica) in one of these states. This is the purpose of rule ConcMerge which is similar to rule SafeMerge, with Inv data replaced for ConcMerge hold for an implementation of a replicated application with initial state Ω i . For any state (Ω, S) reachable from (Ω i , {σ i }), that is (Ω i , {σ i }) *

	and it avoids the stability blow-up commonly found in concurrent program logics. The
	program model, and the verification conditions allow us to effectively reduce the problem
	of verifying safety of an asynchronous concurrent distributed system, to the modular verifi-
	cation of the global invariant (Inv data ∧ Inv conc) as pre and post conditions of all operations and merge.
	Proposition 2.3.1 (Soundness) The proof rules in equations SafeInit -ConcMerge
	guarantee that the implementation is safe.
	To conduct an inductive proof of this lemma we need to strengthen the argument to
	include the set of observed states as given by the semantics of Figure 2.2.
	Lemma 2.3.2 (Strengthening of Soundness) Assuming that the equations SafeInit
	--→ (Ω, S), we have that:
	1. for all states σ, σ ∈ S, (σ, σ)	Inv conc , and
	2. for any state σ ∈ S, σ Inv data .	
	Corollary 2.3.2.1 The soundness proposition (2.3.1) is a direct consequence of Lemma 2.3.2.
	Inv conc .	
	As anticipated at the beginning of this section, the reasoning about the concurrency is
	performed in a completely local manner, by carefully choosing the verification conditions,

 Comparison function:status σ ≥ status σ ∧ (winner σ = ⊥ ∨ winner σ = ⊥) ∧ (∀b ∈ Bids σ ∪ Bids σ b σ .placed ∨ ¬b σ .placed) INVALID < ACTIVE < CLOSED Merge(σ, σ): {P re merge (winner σ = winner σ ∨ winner σ = ⊥ ∨ winner σ = ⊥) ∧∀b ∈ Bids σ b σ .amount = b σ .amount ∧status σ = CLOSED =⇒ is_highest(Bids σ , winner σ) ∧is_highest(Bids σ , winner σ) ∧status σ = CLOSED =⇒ is_highest(Bids σ , winner σ)∧is_highest(Bids σ , winner σ) } status σnew = max(status σ , status σ

	Specification 2.1 Naïve Auction object	
	State: (status, winner, Bids)	INVALID < ACTIVE < CLOSED
	Invariant: ∀b ∈ Bids b.placed =⇒ status ≥ ACTIVE ∧ b.amount > 0 ∧status ≤ ACTIVE =⇒ winner = ⊥ ∧status = CLOSED =⇒ winner ∈ Bids ∧ winner.placed ∧is_highest(Bids, winner)
	For instance, as discussed earlier, close_auction(w) gets precondition is_highest(Bids,
	w), because of Invariant Item 2 above. The naïve specification of the auction object that
	satisfies the data invariant is shown in Specification 2.1.

 Specification 3.3 Concurrently safe Courseware object State: Students × Courses × Rolls ×ST × CT Invariant: ∀e ∈ Rolls e =⇒ e.student ∈ Students ∧ e.course ∈ Courses Comparison function: (Students σ ∨ Students σ) ∧ (Courses σ ∨ Courses σ) ∧(Rolls σ ∨ Rolls σ) ∧(ST σ ∨ ST σ) ∧ (CT σ ∨ CT σ) Merge(σ, σ): {P re merge ∀e ∈ Rolls σ e.student ∈ Students σ ∧ e.course ∈ Students σ ∧∀e ∈ Rolls σ e.student ∈ Students σ ∧ e.course ∈ Students σ ∧∀st ∈ ST σ st.student ∈ Students σ ∨ st.student / ∈ Students σ ∧(∃e ∈ Rolls σ e.student = st.student ∨ e ∈ Rolls σ e.student = st.student) ∧∀st ∈ ST σ st.student ∈ Students σ ∨ st.student / ∈ Students σ

∧(∃e ∈ Rolls σ e.student = st.student ∨ e ∈ Rolls σ e.student = st.student) ∧∀ct ∈ CT σ ct.course ∈ Courses σ ∨ ct.course / ∈ Courses σ ∧(∃e ∈ Rolls σ e.course = ct.course ∨ e ∈ Rolls σ e.course = ct.course) ∧∀ct ∈ CT σ ct.course ∈ Courses σ ∨ ct.course / ∈ Courses σ ∧(∃e ∈ Rolls σ e.course = ct.course ∨ e ∈ Rolls σ e.course = ct.course) ∧∀st ∈ ST σ st.replica = me ∧ st.student / ∈ Students σ =⇒ st.student / ∈ Students σ ∧∀ct ∈ CT σ ct.replica = me ∧ ct.course / ∈ Courses σ =⇒ ct.course / ∈ Courses σ } Students

Table 4 .

 4 1: Time taken for analysing specification using Soteria to incorrect or incomplete specification, Soteria produces counterexamples with the help of Boogie and Z3. This helps the developer identify issues with the specification and fix it.

	Application	Number of	Syntax	Time taken (s) Convergence Safety	Total
		methods	check	check	check	
	Consensus	2	2.594	5.847	11.693	20.141
	Distributed lock	1	2.635	4.004	8.034	14.680
	Courseware	5	2.803	12.161	24.213	39.184
	Auction	4	2.895	10.885	21.672	35.458

 extends CISE by lowering the causal consistency requirements and generating concurrency control protocols. Soteria only identifies the list of conflicting operations. reflected as stability conditions. Soteria doesn't require reasoning about concurrent behaviour, thanks to the concurrency invariant, Inv conc . This is due to a fundamental difference in operation-based and state-based update propagation model -in the former, a replica observes remote updates through a series of operations, in the latter, remote updates are observed only during a merge operation. CISE is not well adapted to reasoning about systems that propagate state. Conversely, Soteria is not well adapted to reason about objects that propagate operations. It is future work to combine use of both CISE and Soteria to prove properties depending on the implementation of the objects at hand and also to extend them to delta-based update propagation, where a delta of the state that changed is propagated, instead of the entire state.

Part III discusses the generation of concurrency control configurations based on distributed locks, and shows the impact of application workload on the choice of concurrency control configuration. It requires reasoning about concurrent behaviours. CISE, CEC (and more generally the work Gotsman et al.

[START_REF] Gotsman | Cause I'm Strong Enough: Reasoning about consistency choices in distributed systems[END_REF]

) and Hamsaz focus on the safety of operation-based objects. They assume that the underlying network ensures causal consistency. Importantly, their proof methodology requires reasoning about concur-rent behaviours,

 .17)path_composition ∀σ ∈ Σ ∀x, y, z ∈ Nodes ∃s 1 ∈ S path(σ, x, y, s 1) (7.18) ∧ y → z =⇒ ∃s 2 ∈ S path(σ, x, z, s 2) ∧ s 2 = s 1 + [y]

path_transitivity ∀σ ∈ Σ ∀x, y, z ∈ Nodes, s 1 , s 2 ∈ S path(σ, x, y, s 1) (7.19) ∧ path(σ, y, z, s 2) =⇒ ∃s 3 ∈ S path(σ, x, z, s 3) ∧ s 3 = s 1 + s 2 path_uniqueness ∀σ ∈ Σ ∀x, y ∈ Nodes, s 1 , s 2 ∈ S path(σ, x, y, s 1) (7.20) ∧ path(σ, x, y, s 2) =⇒ s 1 = s 2 path_exclusion ∀σ ∈ Σ ∀x, y, z ∈ Nodes, s ∈ S x → * y ∧ path(σ, z, y, s) =⇒ x / ∈ s (7.21)

path_separation ∀σ ∈ Σ ∀x, y, z ∈ Nodes, s 1 , s 2 ∈ S path(σ, x, y, s 1) (

7.22)

Table 7 .

 7 1: Stability analysis of sequential specificationThe precondition of move is stable against a concurrent add operation.Concurrent remove: Consider the sequential specification of two remove operations move(n 1 , p 1) and remove(n 2). Using (7.26), we get Pre move(n1,p 1)

		Stability	Stable against concurrent operation
			add (n 2 , p 2)	remove(n 2)	move(n 2 , p 2)
	Operations	add (n 1 , p 1) remove(n 1) move(n 1 , p 1)	n 1 = n 2 n 1 = p 2 true	p 1 = n 2 true p 1 = n 2	true n 1 = p 2 p 1 → * n 2

Pre move(n1,p 1) ∧ Pre add(n2,p2) ∧ true add(n 2 , p 2) Inv ∧ Post add(n2,p2) ∧ Pre move(n1,p 1)

(7.36)

Table 7 .

 7

				R			Set of nodes
					*	*	Transitive closure of parent relation
			l			* Ancestor relation
	p	*	*	*	a		Critical ancestors for move(n, p) Critical descendants
							for move(n, p)
	n				p'		Critical ancestors
	*				*		for move(p , n) Critical descendants
							for move(p , n)

[START_REF] Gilbert | Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services[END_REF]

shows the summary of the stability analysis on the sequential specification discussed in Section 7.3. A condition indicates that the precondition of the operation in that row is stable under the operation in the column under the condition.

Table 7 .

 7 2: Result of commutativity analysis succeeds first will apply its move, blocking the other. When it releases the lock, this releases the second one, but its precondition is no longer valid and it cannot execute. Thereby, safety is preserved, at the cost of aborting the second move. The present work essentially achieves the same end result, but without the overhead of locking. Our experiments in Chapter 8 show the performance difference.

		Commutativity	Operations add (n 2 , p 2) remove(n 2)	move(n 2 , p 2)
	Operations	add (n 1 , p 1) remove(n 1) move(n 1 , p 1)	true true true	true true true	true true ¬(n 1 = n 2 ∧ p 1 = p 2)

. Consider concurrent operations move(n, p), moving node n under p , and move(p , n), moving node p under n. These operations compete for a lock. The one that

Table 8 .

 8 ;(ii) all move operations acquiring a global lock (Global); and, (iii) move operations acquiring read locks on critical ancestors and write lock on the moving

							Replicas				
		Latency	Configuration 1	Configuration 2	Configuration 3
			P	B	NY	P	B	NY	P	B	NY
	Replicas	Paris (P) Bangalore (B) New York (NY)	0 0 0	0 0 0	0 0 0	0 144 75	144 0 215	75 215 0	0 1440 750	1440 0 2150	750 2150 0

1: Latency configurations in ms

 Average response time (in s) for lock acquisition requests to a 3-instance Zookeeper service. The subplots indicate different modes of locks and the groups indicate different placements. A centralised lock is placed in Paris; a clustered lock is clustered across Paris, Cape Town and New York; a distributed lock is distributed across all locations.various geographical regions. Following this model, lock placement involves both a placement type and the actual lock location. Types include centralised (the lock service is at a single location), clustered (the lock service is distributed across a subset of locations), or fully distributed (it is present in all the locations of the system). When the lock service is clustered or fully distributed, this increases response time since the replicas have to exe-

		Paris	Tokyo	Singapore	Cape Town	New York
	1.6				
	1.4				
	1.2				
	1.0				
	0.8				
	0.6				
	0.4				
	0.2				
	0.0	Centralised Clustered Distributed shared	Centralised Clustered Distributed exclusive	Centralised Clustered Distributed mutex
	Figure 11.3: cute a distributed agreement protocol. Figure 11.3 shows the increase in response time for
	clustered and distributed lock placements. Henceforth, we consider only the centralised
	placement.			

Table 12 .

 12 2: Coordination configurations for lock l ab-Px from Figure 12.3b

	Workload	Operations Houston Paris Singapore Description
	Workload A	op a op b	167 167	167 167	166 166	Frequency per operation per replica is the same.
	Workload B	op a op b	0 0	500 500	0 0	Frequency per operation is equal, located at a single
						replica.
	Workload C	op a op b	250 250	250 250	0 0	Equal frequency per operation at a replica cluster.
	Workload D	op a op b	333 0	334 0	333 0	A single operation equally distributed across all replicas.
	Workload E	op a op b	0 0	1000 0	0 0	A single operation located at a single replica.
	Workload F	op a op b	500 0	500 0	0 0	A single operation executing at a replica cluster.
	Workload G	op a op b	0 250	500 0	0 250	Equal frequency per operation, different frequency
						across replicas.
	Workload H	op a op b	0 167	500 167	0 166	Equal frequency per operation, different frequency
						across replicas.

Table 12 .

 12 3: Workloads for the conflict graph involving two operations.

 Mode l ab-Px l bc-Qy op a op b op b op c

	1	EX EX EX EX
	2	EX EX EX SH
	3	EX EX SH EX
	4	EX SH EX EX
	5	EX SH EX SH
	6	EX SH SH EX
	7	SH EX EX EX
	8	SH EX EX SH
	9	SH EX SH EX

Table 12 .

 12 Table12.5. The first three workloads 5: Different workloads for the conflict graph involving three operations.

	Workload	Operations Houston Paris Singapore Description
	Workload A	op a op b op c	111 111 111	111 111 111	111 111 111	Frequency per operation per replica is the same.
		op a	0	333	0	Frequency per operation is
	Workload B	op b	0	333	0	equal, located at a single
		op c	0	333	0	replica.
	Workload C	op a op b op c	167 167 167	167 167 167	0 0 0	Equal frequency per operation at a replica cluster.
		op a	303	303	303	Highest frequency operation
	Workload D	op b	25	25	25	acquires a single lock, equal
		op c	5	5	5	frequency across replicas.
		op a	0	909	0	Highest frequency operation
	Workload E	op b	0	75	0	acquires a single lock at a
		op c	0	15	0	single replica.
		op a	455	455	0	Highest frequency operation
	Workload F	op b	37	37	0	acquires a single lock at a
		op c	8	8	0	replica cluster.
	Workload G	op a op b op c	0 100 0	1 100 1	0 100 0	Operation acquiring multiple locks most frequent.
	Workload H	op a op b op c	100 0 0	100 0 0	0 0 50	Operation acquiring multiple locks least frequent.

There is also synchronous replication; it is consistent but not available in the event of a network partition.

Note that this leads to an unsafe state. We discuss this in detail in Subsection

2.3.2

This notation of a global state is used only pedagogically to explain our proof rule. The global state is not observable and formally, the rule is based only on the local state of each replica.

Technically, this is at least the weakest-precondition of the update for safety. It strengthens any a priori precondition that the developer may have set for the business logic.

Ideally, this is the weakest precondition to satisfy Inv data .

Indeed, the proof of soundness of program logics such as Rely/Guarantee are typically inductive arguments of this nature.

Deltas are state changes.

We furthermore claim (without proof) that Maram is live, in the sense that, if every message sent is eventually delivered to all replicas, then, given some update originating at some replica, its postcondition eventually takes effect at every replica.

Note that this global view cannot be observed by any single replica and is merely an explanatory device.

Note that, at this point, the system is committed to this operation, and the operation's precondition must be true at the remote replica.

In Section 7.9 we consider relaxing this requirement to eventual consistency, which states only that all updates are eventually delivered at all replicas.

For readability, we simplify the postcondition to express only the changes caused by the operation. The part of the state not mentioned remains unaffected.

Denoted in inference style, as in Kaki et al.[START_REF] Kaki | Safe replication through bounded concurrency verification[END_REF]. An update event is noted . .

Ideally, one will remove the tombstone at some safe time in the future; this is non-trivial[START_REF] Baquero | Making operation-based CRDTs operation-based[END_REF] and out of the scope of this paper.

Note that rank(n2) cannot increase since an up-move does not cause the rank of any move to increase.

We focus on locking as the coordination primitive. We believe that our reasoning can be extended with more dimensions to alternative primitives, such as leases, consensus, broadcast or multicast.

Coarser conditions may be easier to evaluate, hence widely used in practice; for example, coarsening the conflict condition of Figure11.2 P (x) = true or Q(y) = true. This work currently focusses on the performance impact of coordination configurations, not the ease of use.

A coordination condition is evaluated locally at the calling replica, and is not required to be protected by the lock[START_REF] Gotsman | Cause I'm Strong Enough: Reasoning about consistency choices in distributed systems[END_REF].

In this work, we are not considering the effect of caching a lock.

An operation acquiring multiple locks would hold the lock for more time (waiting for the acquisition of other locks) if the given lock was acquired first. For simplicity, we are not considering that case.

Note that replica serialisation cannot be modified since all operations in a single replica are sequential irrespective of the mode.

We add these components because the operations that acquire exclusive mode of locks need to wait for the replicas acquiring shared mode of locking.

The sum of operation serialisation and replica serialisation would be the same across all replicas in the case of a mutex.

Acknowledgements

reviewing this work. I would also like to thank Éric Gressier-Soudan and Béatrice Bérard for being part of my comité de suivi, giving me reassurance each year. I want to thank Lightkone European project, and RainbowFS French project for funding my thesis and providing opportunities for collaborations. The project meetings provided a venue to discuss my ideas and results. I would like to thank the collaborators of the project for their support. I also thank the jury members of the Séphora Bérrebi scholarships for granting me the award.

List of Figures

Boogie [START_REF] Boogie | [END_REF] and in turn Z3 SMT solver [START_REF] De | Z3: An efficient SMT solver[END_REF] to verify the proof rules. Instead of relying on a single theorem prover, Soteria can be rewritten in a different verification framework, for example Why3 [START_REF] Bobot | Why3: Shepherd your herd of provers[END_REF]. Why3 has a common specification language and serves as a front-end to different theorem solvers including Z3, Alt-Ergo [START_REF] Sylvain Conchon | Alt-Ergo 2.2[END_REF], CVC4 [START_REF] Barrett | CVC4[END_REF], Coq [START_REF][END_REF], etc.

Another direction of work could look at generating code and tests from the verified specification.

With tombstones, let us update the postcondition for remove:

Post remove(n) n ∈ TS (7.31) Let us now derive the predicates needed to preserve each clause of the invariant in this refined case.

To maintain sequential safety in the modified remove specification, the precondition forbids only removing the root node. As the remove operation does not alter the tree structure, reachability is not impacted. The refined specification of the remove operation is as follows:

(Remove-Operation)

The application could strengthen this precondition with an added clause to delete only the leaf nodes visible in the abstract view. This helps prevent accident loss of a sub-tree.

Since this is not necessary for safety, we are not considering that condition.

Concurrent move: Next we check the stability of the precondition of add under a concurrent move operation. Let us consider two operations add(n We see that the precondition of add is stable against a concurrent move operation.

Stability of remove operation

Concurrent add: Consider the sequential specification of two operations remove(n 1) and add(n 2 , p 2). Using (7.26), we get

If the dependency condition evaluates to true, then op 2 is independent of op 1 . We use this analysis to check the independence of add, remove, up-move and down-move with respect to a historical tentative operation, i.e., an up-move or down-move performed before the operation under observation.

Independence of add operation

Historical up-move: We use Equation 7.7 as follows:

Since the historical up-move doesn't change the membership of Nodes, we can see that add is independent of up-move.

Historical down-move: An add operation is independent of a historical down-move in the same manner because it does not change the membership of Nodes either.

Independence of remove operation

Historical up-move: For checking the independence of remove, Equation 7.7 becomes:

Since n 2 = root is unaffected by a historical up-move, remove is independent of up-move.

Historical down-move: Similarly to historical up-move, a historical down-move also has no impact of the precondition of a remove operation. Hence remove is independent of a historical down-move.

Independence of up-move operation

Historical up-move: Now we analyse whether an up-move is independent of a historical up-move.

We first divide the postcondition of the historical up-move into two parts: on the one hand, skip, which leaves the state as it was; and on the other hand, n 1 → p 1 , which changes the parent relation. Then we divide the precondition of the second up-move into two parts,

, which is unaffected by the

Independence of down-move operation

Historical up-move: The pre and postconditions required to analyse the dependence of a down-move operation under a historical up-move is as follows:

Note that the reasoning for the up-move operation also remains valid here since the effect of both moves are the same, only their preconditions differ, only the clause comparing the ranks of the node and the new parent differs. The first part of the dependency condition remains, (n

The condition rank(n 2) ≤ rank(p 2) will be effected only if the historical up-move decreased the rank of n 2 . Hence we have the condition

Combining the clauses, we have

, the condition under which a down-move is dependent on a historical up-move.

Historical down-move: We consider the following pre and postconditions:

We use the reasoning as in the previous cases on these ang get p 2 = n 1 ∨ p 2 → * n 1 , the condition under which a down-move, down-move(n 2 , p 2), is dependent on a historial down-move, down-move(n 1 , p 1).

We see that up-move and down-move operations are dependent on each other and add and remove are independent of up-move and down-move. We also derived the conditions under which up-moves and down-moves are dependent on each other. We use this information to design dependence resolution policies.

Safe specification of a replicated tree

We incorporate the stability, commutativity, and independence analysis results and the design refinements, resulting in the coordination-free, safe and convergent replicated tree data structure specified in Specification 7.1. The state now consists of a set of nodes, Nodes, and tombstones, TS. Since the tombstones also form part of the tree, they also have to maintain the tree structure. The invariants refer to the set of nodes which includes tombstones.

We also introduce some definitions to help define the coordination-free and conflict-free up-move and down-move operations. We define an operation as a tuple consisting of its type (add, remove, up-move or down-move), its parameters, and its priority. The priority is arbitrary (e.g. supplied by the application); the only condition being that priorities are totally ordered. We define C as the set of operations concurrent with the operation under consideration. H is the set of operations seen by the current operation. We also define operations on critical ancestors as crit-anc-overlap, where the node being moved is a member of the set of critical ancestors of the other operation. self -or -under indicates the node itself and its descendants.

With the help of these definitions, we define the up-move and down-move operations in three parts: the actual precondition needed to ensure sequential safety, the conflict resolution condition (highlighted in light blue), the dependency condition (highlighted in dark blue), and the update on the state. Note that the conflict resolution and dependency checks are performed while applying the effect of the operation on the local and remote replicas, while the precondition is checked only at the local replica.

Mechanized verification of the concurrent specification

We use the CISE3 plug-in, presented in Subsection 7.3.4, to identify conflicts as shown in Table 7.1 and Table 7.2. Given the sequential specification from Section 7.3, CISE3 generates proof obligations to check stability and commutativity of executing pairs of operations.

Provable concurrent execution

We update the sequential specification of Section 7.3 by adding the conflict resolution policies from Section 7.8. For example, we place the additional precondition that added nodes are unique onto the add operation:

We refine the definition of type state to include tombstones, as follows:

type state = { mutable nodes: fset elt; ...; mutable tombstones: fset elt; }

We update the specification of rem operation accordingly:

val rem (n : elt) (s : state) : unit ensures { s.tombstones = add n (old s).tombstones }

where add stands for the logical adding operation on sets.

Verifying the stability of move operation with itself need extra information on a set of concurrent operations. We also update the state type definition to include ranking and critical ancestors information.

Finally, 55 verification conditions are generated for the implementation and given specification of move_refined. All of these are automatically verified, using a combination of SMT solvers. The specification and the proof results are available at Meirim et al. [START_REF] Meirim | Proofs of Maram[END_REF].

Computing the set of concurrent moves

Maram requires a set of concurrent operations to apply the conflict resolution. For this, the Maram system layer does not busy-wait. Every replica makes progress locally, without waiting to receive remote logs (availability under partition). Conflict resolution applies only after a replica receives a concurrent conflicting operation.

To conclude, Maram is a safe, coordination-free replicated tree, designed using conflict resolution policies.

Design of coordination-free distributed applications: As we saw in Section 7.7, tentative operations might effect future operations that are dependent on it. In this part we formulated the notion of independence analysis, but we haven't provided soundness proof for the check. The proof rule should be sound for applications having tentative updates.

Once we have the soundness of the proof rule, we can automate the reasoning with the help of Why3 and prove the dependency conditions mechanically.

Furthermore, the independence analysis discussed in Section 7.7 is valid only when the effect of an update is either apply or skip, i.e., it either changes the state of the replica or leaves the replica state untouched. This proof rule is not adequate for the case where an effector might have two different state changes depending upon the state where the effect is applied. This is another possible line of research.

Part III

Selecting Distributed Concurrency Control

To systematize the dimensions of coordination, we construct a coordination lattice. It allows us to systematically navigate the concurrency control dimensions of granularity, mode, and placement. The lattice structure is derived from the granularity dimension.

Each element of the lattice consists of one or more two-dimensional planes -mode and placement. The choice of granularity affects the cost of both lock acquisition and of lock contention (the coarser the lock, the lesser the cost of acquisition, but the higher the contention). Placement affects only the lock acquisition costs, and mode affects lock contention. Therefore the major dimension of the coordination lattice is granularity with mode and placement as secondary dimensions. Navigating any dimension has an impact on the overhead of locking.

We propose a systematic approach to the design of correct coordination protocols, enabling the designer to select one according to performance metrics, with the following contributions:

• A formalisation of the design space of correct coordination configurations, as a coordination lattice. Based on the application's conflict graph, the lattice develops along three design dimensions: granularity, mode and placement.

• A set of metrics to navigate the cost of different coordination configurations with respect to a given workload.

• A tool for evaluating and comparing the performance of each point in the lattice with respect to the workload model.

• Illustration of the above using representative examples.

Chapter 11 studies the design space with the coordination lattice with a set of metrics.

Chapter 12 provides a set of experiments that illustrates the coordination lattice and the associated metrics, along with the experimental setup.

Chapter 11

Exploring the coordination lattice

In this chapter we explain the construction and navigation of a coordination lattice for selecting an optimal distributed lock.

System Model

In this section we discuss the semantics of a distributed application, the underlying system on which the application runs, and the characteristics of the expected workload. We then see how these factors effect the choice of concurrency control configurations.

Application model

A distributed application consists of a set of operations operating on shared data replicated over geo-distributed locations. The application is considered safe when it respects some given invariant on the shared data in all executions. We assume that every operation is safe when run in isolation, i.e., transitions from a safe state (one where the replica satisfies the invariant) to another safe state. A pair of operations conflicts if their concurrent execution might violate the invariant. For instance, in our auction example, operations include create-auction, place-bid or close-auction. Each such operation satisfies the invariant that an open auction has no winner, and that the winner of a closed auction is the highest bidder. Since close-auction designates the winner, and place-bid may change the highest bid, they conflict.

Verification methods are available to analyze the specification of a distributed application [START_REF] Gotsman | Cause I'm Strong Enough: Reasoning about consistency choices in distributed systems[END_REF][START_REF] Sreeja | Proving the safety of highlyavailable distributed objects[END_REF]. The tools that implement these proof rules gives us the pairs of conflicting methods [START_REF] Najafzadeh | The CISE tool: Proving weakly-consistent applications correct[END_REF][START_REF] Marcelino | Bringing hybrid consistency closer to programmers[END_REF][START_REF] Sreeja S Nair | Soteria[END_REF][START_REF] Sreeja | Improving the "Correct Eventual Consistency[END_REF].

Inspired by the work of Houshmand and Lesani [START_REF] Houshmand | Hamsaz: Replication coordination analysis and synthesis[END_REF], we represent the list of conflicts as a conflict graph. A vertex of the graph represents an operation and an edge represents a conflict between the corresponding operations. A conflict graph might contain disjoint subgraphs. All the operations that conflict with some operation are included in the same subgraph as that operation.

Whether two operations conflict or not may depend on a predicate, called the conflict condition. In our auction example, two updates conflict only if they involve the same auc-

Navigating the coordination lattice

Navigation of the coordination lattice is guided by the estimated dynamic characteristics of the application -its workload characteristics and service time per operation. We evaluate the performance of each point in the lattice, using the workload model. This enables the developer to select among safe coordination protocols, according to representative performance metrics.

As discussed in Subsection 11.2.3, the choice of placement determines the cost of lock acquisition at a given replica. 3 This information is needed to decide a mode configuration since we need to maximize parallelism. Once we have the placement and mode dimensions for each granularity configuration, we can navigate the lattice to select the optimal coordination configuration according to a given workload. Hence, for each granularity configuration, we use some metrics to determine the optimal configuration and then navigate the granularity dimension for selecting the optimal coordination configuration.

Granularity selection

Moving upwards in a coordination lattice through the granularity dimension means reducing the number of locks by coarsening. This has two effects -minimizing the number of locks to be acquired reduces lock acquisition costs, but at the same time increasing the lock contention since the operations that previously didn't require coordination for the fine-grained locks, now have to coordinate.

We define a metric Coordination configuration nonparallelism, CcNonParallel, (in Subsection 11.4.2) for each coordination configuration to help navigate the coordination lattice. Coordination configuration nonparallelism gives the estimate of the amount of parallelism disallowed by a given coordination configuration; it is obtained by varying mode and placement for a given granularity. The optimal coordination configuration will be the one with the minimum Coordination configuration nonparallelism.

Mode selection

A shared/exclusive lock enables multiple processes to hold the lock in shared mode, whereas exclusive mode blocks concurrent acquires (whether shared or exclusive) until it is released.

All mutex acquires are exclusive: only one process at a time may hold a mutex lock; all concurrent acquires are blocked.

The choice of locking mode should aim to minimise the time where locks are held in exclusive mode, as this is what creates lock contention. Mode selection follows the following rules:

1. Use shared/exclusive mode when it is safe, otherwise mutex. If some operation op a conflicts with another op b , and multiple instances of op a 's don't conflict with each other, then it is safe for op a to acquire lock lock ab-Px in shared mode. In this case, lock ab-Px can be a shared/exclusive lock. In all other cases, conservatively, it shall be a mutex.

Chapter 12

Experiments

This chapter describes some experiments that illustrate the coordination lattice. We consider two conflict graphs and the corresponding coordination lattices. We include several synthetic workloads, and show how our metrics vary, for each workload, with coordination configuration. We then compare our prediction and experimental values.

Experimental setup

The experimental setup consists of a set of configuration files provided as user input, a preprocessing stage that processes the inputs, and a simulator. Figure 12.1 shows the overall architecture of the experimental system.

Inputs

The inputs to the experiment are the following:

• The Conflict graph lists pairs of conflicting methods along with the corresponding coordination conditions.

• The Operation service time provides the time taken by each operation between its lock acquires and releases.

• The Latency matrix lists the replicas and the network latency between pairs.

• The Workload characteristics contains the frequency of operations per replica.

The simulator uses Operation service time to simulate the operation execution; the operation sleeps during the service time. The simulator uses Latency matrix to construct the network layer.

Intermediate processes

The preprocessing stage processes the configuration provided by the user to the format

Chapter 13

Related work

Several works have addressed the safety of distributed applications [START_REF] Gotsman | Cause I'm Strong Enough: Reasoning about consistency choices in distributed systems[END_REF][START_REF] Houshmand | Hamsaz: Replication coordination analysis and synthesis[END_REF][START_REF] Sreeja | Proving the safety of highlyavailable distributed objects[END_REF][START_REF] Bailis | Coordination avoidance in database systems[END_REF]. The tools based on these proof rules [START_REF] Najafzadeh | The CISE tool: Proving weakly-consistent applications correct[END_REF][START_REF] Marcelino | Bringing hybrid consistency closer to programmers[END_REF][START_REF] Sreeja S Nair | Soteria[END_REF] provide pairs of conflicting methods. Nair [START_REF] Sreeja | Evaluation of the CEC (Correct Eventual Consistency) Tool[END_REF] provides the conditions under which the methods conflict. The next step is to determine how to use the pairs of conflicting methods to design coordination policies that minimizes overhead. Gotsman et al. [START_REF] Gotsman | Cause I'm Strong Enough: Reasoning about consistency choices in distributed systems[END_REF] use the abstract notion of tokens for coordination control. Token is a point of global synchronization. In this work, we materialize this concept of tokens as distributed locks.

Houshmand and Lesani [START_REF] Houshmand | Hamsaz: Replication coordination analysis and synthesis[END_REF] present coordination protocols parameterized by the analysis results. Using the pairs of conflicting methods, they construct a conflict graph. The nodes represent the operations and the edges represent the conflict. Based on the conflict graph, they instantiate two protocols, a blocking one and a non-blocking one. The blocking protocol resembles a shared/exclusive lock and the non-blocking protocol resembles a mutual exclusive lock. We are inspired by the idea of conflict graph they generated and using the graph parameters to instantiate coordination protocols. However they do not consider the other dimensions of concurrency control such as, placement and granularity. They also neglect the impact of workload. As we have seen in Chapter 12, all three dimensions impact the overhead of locking.

Houshmand and Lesani [START_REF] Houshmand | Hamsaz: Replication coordination analysis and synthesis[END_REF] uses minimum vertex cover to parametrize their blocking protocol. We are inspired by this approach, which we use to assign the mode of a lock. Xie et al. [START_REF] Xie | High-performance acid via modular concurrency control[END_REF], Su et al. [START_REF] Su | Bringing modular concurrency control to the next level[END_REF] present federated concurrency control mechanisms, called Modular Concurrency Control (MCC), for maintaining the ACID properties of a transaction. MCC partitions transactions into small groups and each group applies the best concurrency control independently. We take inspiration from their work to select the best configuration for each lock in a modular fashion.

There are several lock services that do distributed locking [START_REF]Distributed locks with Redis[END_REF][START_REF] Basri | Distributed locks are dead; long live distributed locks![END_REF][START_REF] Kysel | Distributed transactional locks[END_REF][START_REF] Patrikalakis | Building distributed locks with the DynamoDB lock client[END_REF][START_REF]etcd concurrency API reference[END_REF][START_REF] Zookeeper | Zookeeper lock recipe[END_REF][START_REF] Burrows | The Chubby lock service for loosely-coupled distributed systems[END_REF][START_REF] Shedlock | [END_REF][START_REF]Locking functions in MySQL[END_REF]. We are interested in the lock configuration itself, which can be realized with these lock services. [START_REF] Grzesik | Evaluation of key-value stores for distributed locking purposes[END_REF] presents a comparative study of RedLock [START_REF]Distributed locks with Redis[END_REF], locks in Zookeeper [START_REF] Zookeeper | Zookeeper lock recipe[END_REF], etcd [START_REF]etcd concurrency API reference[END_REF], and Consul lock service [START_REF] Hashicorp | [END_REF]. They study the performance, safety, deadlockfree and fault tolerance properties. They conclude that for all lock services except RedLock, concurrent access to the same set of keys had little performance impact. We are interested in studying the performance of different configurations of a distributed lock, regardless of For fault tolerant design, we must take other coordination methods into consideration.

Grzesik and Mrozek

A distributed lock might be acquired by a process that then becomes dead. If the lock is held forever by the dead process, the system cannot progress. This can be overcome either by introducing leases (timed locks) or by using fault-tolerant consensus. In the case of leases, the lock expires after a certain amount of time, so even if the lock holder dies, the system can progress. This inclusion will add another non-trivial dimension to our coordination lattice -optimal time for lease. Yet another useful line of work is to have a lock service that uses different distributed locks according to the semantics and guarantees required by the application. This can be done by studying the trade-offs of different lock providers and choosing the lock provider with the optimal configuration for locking.

Instead of limiting ourselves to distributed locking as the coordination method, we can broaden the work to include other coordination strategies such as consensus, total order broadcast, etc.