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Abstract

Distributed applications replicate data to ensure high availability and low latency. To
provide high availability, they support concurrent updates to the replicas. Even if replicas
eventually converge, they may diverge temporarily, for instance when the network fails. The
developer needs to make sure that the application state remains safe despite the temporary
divergence. As described by CAP theorem[1], designing distributed applications involves
fundamental trade-offs between safety and performance. We focus on the cases where
safety is the top requirement.

In the first part of this thesis, for the subclass of state-based distributed systems, we
propose a proof methodology for establishing that a given application maintains a given
invariant. Our approach allows reasoning about individual operations separately. We
demonstrate that our rules are sound, and we illustrate their use with some representative
examples. We provide a mechanized proof engine for the rule using Boogie, an SMT-based
tool.

The developer can choose between two forms of concurrency control - conflict resolution
or coordination. The second part of the thesis presents a case study of conflict resolution
in a demanding data structure: the tree.

The tree is a basic data structure present in many applications. We present a novel
replicated tree data structure that supports coordination-free concurrent atomic moves, and
arguably maintains the tree invariant. Our analysis identifies cases where concurrent moves
are inherently safe. For the remaining cases we devise a coordination-free, rollback-free
algorithm. The trade-off is that in some cases a move operation “loses” (i.e., is interpreted
as skip). We prove that the data structure is convergent and maintains the tree invariant.
The response time and availability of our design compares favourably with competing
approaches in the literature.

The final part of the thesis develops a methodology for selecting a distributed lock
configuration. Given the coordination required by an application for safety, it can be
implemented in many different ways. Even restricting to locks, they can use various con-
figurations, differing by lock granularity, type, and placement. The performance of each
configuration depends on workload. We study the “coordination lattice”, i.e., design space
of lock configurations, and show by simulation how lock configuration impacts performance
for a given workload. The lattice represents the dimensions of distributed lock configura-
tions, and we show how to systematically navigate them.





Acknowledgements

First of all I would like to thank my advisor Marc Shapiro for his guidance and support
throughout these years. This work would not have been possible without his encouragement
and faith in me. Our weekly meetings and all his open-ended questions contributed a lot
to this work and my personal development.

I am grateful to have my knowledgeable and supportive collaborators: Gustavo Petri,
Carla Ferreira, Mário Perreira and Filipe Meirim. Thank you Gustavo, Carla, Mário and
Filipe for our weekly meetings and all the ideas that came out of it.

I would like to thank all my jury members for their time and effort in reading and
reviewing this work. I would also like to thank Éric Gressier-Soudan and Béatrice Bérard
for being part of my comité de suivi, giving me reassurance each year.

I want to thank Lightkone European project, and RainbowFS French project for funding
my thesis and providing opportunities for collaborations. The project meetings provided a
venue to discuss my ideas and results. I would like to thank the collaborators of the project
for their support. I also thank the jury members of the Séphora Bérrebi scholarships for
granting me the award.

I wish to thank Jonathan Lejeune, Julien Sopena, Antoine Miné, Julia Lawall, Martin
Kleppmann, the anonymous reviewers of ESOP 2019, PaPoC 2019, OOPSLA 2019, POPL
2020, ESOP 2020, ESOP 2021, ICDCS 2021, PODC 2021 for all the inputs and review
comments which contributed to improving this work.

I am indebted to all my colleagues at LIP6, especially the members of Delys, who sup-
ported me throughout these years with their constant support and encouragement. Special
thanks to Dimitrios Vasilas, Paolo Viotti, Vinh Tao, Alejandro Tomsic, Vincent Vallade,
Francis Laniel, Ilyas Toumlilt, Jonathan Sid-Otmane, Saalik Hatia, Sara Hamouda, Benoît
Martin, and Laurent Prosperi for making my time at the lab memorable. I want to thank
Saalik, Benoît, Francis and Ilyas for all the translations throughout the years.

I am fortunate to have cheerful neighbours who helped me remain positive during
the exceptional COVID-induced confinement period. My work during the confinement
wouldn’t have been pleasant without the nice weekend trips and picnics. My special thanks
to Marianne, who took time to check grammatical errors in this work, whatever remains
is mine.

Last, but not the least, I want to thank my family and friends for supporting me through
this journey. Thanks to my parents, Sasidharan and Sudha, parents-in-law, Velayudhan
and Prabhavathy, brother Sreehari, siblings-in-law Sandhya, Anjali, Sudheer, and niece
Parvathi for their love and support. I am grateful to have a supportive husband and son,

ii



who moved with me to France for this work. My greatest thanks to them for their love,
care, and patience.

iii





To my beloved husband Jayesh and my wonderful son Abhinav

iv





Table of Contents

Page

List of Tables ix

List of Figures xi

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Proving invariant safety for highly-available distributed applications 2
1.1.2 A safe, convergent and highly-available replicated tree . . . . . . . . 2
1.1.3 Trade-offs in distributed concurrency control . . . . . . . . . . . . . 3

I Verifying the design of distributed applications 4

Introduction to Part I 5

2 Proving invariant safety for highly-available distributed applications 8
2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 General Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Notations and Assumptions . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Operational Semantics with State History . . . . . . . . . . . . . . . 12
2.1.5 Correspondence between the semantics . . . . . . . . . . . . . . . . . 13

2.2 Proving convergence: Strong Eventual Consistency . . . . . . . . . . . . . . 15
2.2.1 Semilattice of auction object . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Proving Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Invariance Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Applying the proof rule . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Coordination for Invariant Preservation . . . . . . . . . . . . . . . . 23

3 Use cases 27
3.1 Distributed Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Replicated lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Courseware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Pseudocode of courseware . . . . . . . . . . . . . . . . . . . . . . . . 30

v



4 Automation 33
4.1 Specifying a distributed application in Soteria . . . . . . . . . . . . . . . . . 33
4.2 Verification passes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Syntax check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 Convergence check . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.3 Safety check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Tool evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Related work 38

6 Conclusion of Part I and Future work 40
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

II Designing conflict resolution policies 42

Introduction to Part II 43

7 Design of a safe, convergent and coordination free replicated tree 44
7.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 Properties and associated proof rules . . . . . . . . . . . . . . . . . . . . . . 47

7.2.1 Sequential safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.2.2 Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.2.2.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.2.2.2 Precondition stability . . . . . . . . . . . . . . . . . . . . . 49
7.2.2.3 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2.3 Mechanized verification . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.3 Sequential specification of a tree . . . . . . . . . . . . . . . . . . . . . . . . 50

7.3.1 State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.3.2 Invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.3.3 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.3.4 Mechanized verification of the sequential specification . . . . . . . . 53

7.4 Concurrent tree specification . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.4.1 Precondition stability . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.4.1.1 Stability of add operation . . . . . . . . . . . . . . . . . . . 55
7.4.1.2 Stability of remove operation . . . . . . . . . . . . . . . . . 58
7.4.1.3 Stability of move operation . . . . . . . . . . . . . . . . . . 59

7.5 Safety of concurrent moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.5.1 Classifying moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.5.2 Coordination-free conflict resolution for concurrent moves . . . . . . 62

7.6 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.7 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.7.1 Independence of add operation . . . . . . . . . . . . . . . . . . . . . 64
7.7.2 Independence of remove operation . . . . . . . . . . . . . . . . . . . 64

vi



7.7.3 Independence of up-move operation . . . . . . . . . . . . . . . . . . . 64
7.7.4 Independence of down-move operation . . . . . . . . . . . . . . . . . 66

7.8 Safe specification of a replicated tree . . . . . . . . . . . . . . . . . . . . . . 66
7.8.1 Mechanized verification of the concurrent specification . . . . . . . . 68

7.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.9.1 Moving from causal consistency to eventual consistency . . . . . . . 69
7.9.2 Message overhead for conflict resolution . . . . . . . . . . . . . . . . 69
7.9.3 Computing the set of concurrent moves . . . . . . . . . . . . . . . . 70

8 Experimental study and Comparison 71

9 Related work 74

10 Conclusion of Part II and Future work 76
10.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

III Selecting Distributed Concurrency Control 78

Introduction to Part III 79

11 Exploring the coordination lattice 81
11.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

11.1.1 Application model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
11.1.2 Network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
11.1.3 Workload characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 82

11.2 Dimensions of Concurrency control . . . . . . . . . . . . . . . . . . . . . . . 82
11.2.1 Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
11.2.2 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
11.2.3 Lock Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

11.3 The Coordination Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
11.4 Navigating the coordination lattice . . . . . . . . . . . . . . . . . . . . . . . 87

11.4.1 Granularity selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
11.4.2 Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
11.4.3 Placement selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

12 Experiments 92
12.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

12.1.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
12.1.2 Intermediate processes . . . . . . . . . . . . . . . . . . . . . . . . . . 92
12.1.3 DisLockSim - A simulation model for distributed lock . . . . . . . . 94
12.1.4 Cost of locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

12.2 Analysing some conflict graphs . . . . . . . . . . . . . . . . . . . . . . . . . 95
12.2.1 Conflict graph involving two operations . . . . . . . . . . . . . . . . 95
12.2.2 Conflict graph involving three operations . . . . . . . . . . . . . . . . 98

vii



13 Related work 105

14 Conclusion of Part III and Future work 107
14.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

viii



List of Tables

Table Page

4.1 Time taken for analysing specification using Soteria . . . . . . . . . . . . . . 37

7.1 Stability analysis of sequential specification . . . . . . . . . . . . . . . . . . 60
7.2 Result of commutativity analysis . . . . . . . . . . . . . . . . . . . . . . . . 63
7.3 Result of dependency analysis. The cell shows the condition under which

the operation in the row is independent of the operation in the column. . . 69

8.1 Latency configurations in ms . . . . . . . . . . . . . . . . . . . . . . . . . . 71

12.1 Average latency between replicas . . . . . . . . . . . . . . . . . . . . . . . . 94
12.2 Coordination configurations for lock lab−Px from Figure 12.3b . . . . . . . . 96
12.3 Workloads for the conflict graph involving two operations. . . . . . . . . . . 96
12.4 Coordination configurations for the coordination lattice in Figure 12.5b . . . 98
12.5 Different workloads for the conflict graph involving three operations. . . . . 99

ix





List of Figures

Figure Page

1.1 Evolution of state of an auction application . . . . . . . . . . . . . . . . . . 6

2.1 Precise Operational Semantics: Messages . . . . . . . . . . . . . . . . . . . . 11
2.2 Semantic Rules with a History of States . . . . . . . . . . . . . . . . . . . . 13
2.3 Simulation Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Monotonic semilattice conditions (implies Strong Eventual Consistency) . . 16
2.5 Semilattice of an auction object . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Invariant Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Evolution of state in an auction application with concurrency control . . . . 23
2.8 Safe in concurrent executions . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7.1 Concurrent cycle causing moves . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2 Move update violating tree invariant . . . . . . . . . . . . . . . . . . . . . . 53
7.3 Resolving conflict of concurrent remove and add . . . . . . . . . . . . . . . . 57
7.4 Critical ancestors and critical descendants . . . . . . . . . . . . . . . . . . . 61

8.1 Experimental results. Each bar is the average of 15 runs. The error bars
show standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

11.1 Two conflicting operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
11.2 Three conflicting operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
11.3 Average response time (in s) for lock acquisition requests to a 3-instance

Zookeeper service. The subplots indicate different modes of locks and the
groups indicate different placements. A centralised lock is placed in Paris;
a clustered lock is clustered across Paris, Cape Town and New York; a
distributed lock is distributed across all locations. . . . . . . . . . . . . . . . 85

11.4 Conflict graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
11.5 Conflict graph of a sample application with four conflicting operations . . . 86

12.1 The architecture of dislock experiment. The first row lists the inputs, and
the second row the preprocessing stage. The dotted box represents the
simulator. The yellow shaded regions represent the physical location. . . . . 93

x



12.2 Cost of locking for different lock placements from different replicas. The
X-axis shows placement and mode configurations. The Y-axis represents
response time in ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

12.3 Conflict graph and coordination lattice for a single lock . . . . . . . . . . . 95
12.4 Plots of CcRepExecTime and total execution time obtained from the ex-

periments for different workloads for the conflict graph in Figure 12.3. . . . 97
12.5 Conflict graph and coordination lattice for two locks . . . . . . . . . . . . . 98
12.6 Plots of CcRepExecTime and total execution time obtained from the ex-

periments for different workloads for Figure 12.5. . . . . . . . . . . . . . . . 103

xi







Chapter 1

Introduction

Many modern applications serve users accessing shared data in different geographical re-
gions. Examples include social networks, online multi-player games, cooperative engi-
neering, collaborative editors, source-control repositories, or distributed file systems. One
approach would be to store the application’s data in a single central location, accessed re-
motely. However, users far from the central location would suffer long delays and outages.

Instead, the data is replicated to several locations. A user accesses the closest available
replica. To ensure availability, an update must not synchronize across replicas; otherwise,
when a network partition occurs, the system would block. Thus, a replica executes both
queries and updates locally, and propagates its updates to other replicas asynchronously.
Asynchronous replication improves availability at the expense of consistency.1

Updates at different locations are concurrent; this may cause replicas to diverge, at least
temporarily. Replicas may diverge, but if the system ensures Strong Eventual Consistency
(SEC), this ensures that replicas that have received the same set of updates have the same
state [2], simplifying reasoning.

The replicated data may also require to maintain some (application-specific) invariant,
i.e., an assertion about the object. We say a state is safe if the invariant is true in that
state; the system is safe if every reachable state is safe. In a sequential system, this is
straightforward (in principle): if the initial state is safe, and the final state of every update
individually is safe, then the system is safe. However, these conditions are not sufficient
in the replicated case, because concurrent updates at different replicas may interfere with
one another, leading to unsafe states.

This can be fixed by coordinating between some or all types of updates. To maximize
availability and latency, such coordination should be minimized.

Identifying the pair of operations that conflict is the first step. The application can be
either redesigned with conflict resolution policies for the conflicting operations or it can
use some form of coordination to avoid conflicting updates from executing concurrently.

Conflict resolution avoids coordination at some cost such as “losing updates”. A de-
terministic policy decides the winning operation among the pair of concurrent conflicting
operations. A client that saw a successful operation might later find that the effect of

1There is also synchronous replication; it is consistent but not available in the event of a network
partition.
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the operation has been lost, and will have to retry. Hence this approach is advisable for
applications that can afford having non-definitive operations, i.e., operations that might
not generate any effect.

To ensure safety for the class of applications where the operations have to be definitive,
the conflicting operations must coordinate. There are multiple ways to coordinate, the
most common being the use of locks. The choice of configuration for the lock will have
an impact on the performance of the distributed application. The performance impact
depends on the workload characteristics.

In this thesis we propose a methodology for designing correct and highly available
distributed applications. We investigate the following research questions:

• How to guarantee safety for highly available distributed applications despite concur-
rent updates?

• When and how can a distributed application execute safely without any coordination,
even in the presence of conflicting operations?

• If coordination is unavoidable, what are the associated costs that can guide our choice?

1.1 Contributions

1.1.1 Proving invariant safety for highly-available distributed applica-
tions

Distributed applications propagate either operations or the state to remote replicas to
ensure that the data is consistent. Propagating operations require higher guarantees from
the delivery layer such as causality and exactly-once delivery. Hence state-based update
propagation is widely used in the industry. To answer the first question, we propose a
novel proof system specialized to proving the safety of available distributed applications
that converge by propagating state. This specialization supports modular reasoning, and
thus it enables automation. We demonstrate that this proof system is sound. We present
Soteria, the first tool supporting the verification of program invariants for state-based
replicated objects. When Soteria succeeds, it ensures that every execution is safe, whether
replicas are disconnected or concurrent. Otherwise, Soteria provides the list of methods
that conflict. We present a number of representative case studies, which we run through
Soteria.

1.1.2 A safe, convergent and highly-available replicated tree

A tree is a complex data structure that has strong properties such as being acyclic and
having a unique root. Tree data structure is used in several applications, for example a file
system. Concurrent moves are known to cause cycles in a tree [3]. To answer the second
question, we present the design of a coordination-free, highly available and safe replicated
tree data structure called Maram. We classify the move operation, into two types called up-
move and down-move, prove that only concurrent down-moves causes a cycle, and design a

2



conflict resolution with this information. We also compute the conditions under which the
conflict resolution might cause safety issues for the dependent operations and augment the
conflict resolution policy to address this. The conflict resolution is coordination-free. We
prove the safety of Maram with the conflict resolution. Compared to the existing solutions
with locks, Maram requires no coordination and results in a lower response time.

1.1.3 Trade-offs in distributed concurrency control

To answer the third question, we study the subclass of coordination, distributed locks. In
particular, we study the impact of a coordination configuration, for a given workload, on
the performance of a distributed application (assuming we get the list of conflicts). We
study the effects of granularity, mode and placement of locks. We introduce the coor-
dination lattice which is a lattice constructed with the three dimensions of concurrency
control. We present a systematic creation and navigation of the coordination lattice for
a given application and workload. We present a simulator that can provide insight into
the performance impact of a given lock configuration; this helps guide the developer in
choosing an appropriate trade-off. We propose a set of rules that guide the concurrency
control selection by navigating the coordination lattice and illustrate the soundness of the
rules with the help of the simulator. These rules guide the developer to choose a coordina-
tion configuration for the safety of the distributed application with minimal performance
impact.
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Part I

Verifying the design of distributed
applications
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Introduction to Part I

This part of the thesis presents a proof rule for verifying the safety of distributed applica-
tions.

A distributed application often replicates its data to several locations, and accesses
some available replica. Examples include social networks, online multi-player games, co-
operative engineering tools, collaborative editors, source control repositories, or distributed
file systems. To ensure availability, an update must not synchronize across replicas; oth-
erwise, when a network partition occurs, the system would block. The drawback is that
asynchronous updates may cause replicas to diverge or to violate the data invariants.

To address the first problem, Conflict-free Replicated Data Types (CRDTs)[2] have
mathematical properties to ensure that all replicas that received the same set of updates
converge to the same state [2]. To ensure availability, a CRDT replica executes both
queries and updates locally and immediately, without remote coordination. It propagates
its updates to the other replicas asynchronously.

There are two basic approaches to update propagation: to propagate operations, or
states. In the operation-based approach, an update is first applied to some origin replica,
then sent as an operation to remote replicas, which in turn apply it to update their local
state. Operation-based CRDTs require the the message delivery layer to deliver messages
in causal order, exactly once; the set of replicas must be known.

In the state-based approach, an update is applied to some origin replica. Occasionally,
an updated replica sends its full state to some other replica, which merges the received
state into its own. In turn, this replica will later send its own state to yet another replica.
As long as every update eventually reaches every replica transitively, messages may be
dropped, re-ordered or duplicated, and the set of replicas may be unknown. Replicas are
guaranteed to converge if the set of states, as a result of updates and merge, forms a
monotonic semi-lattice [2]. Due to these relaxed requirements, state-based CRDTs have
better adoption [4]. They are the focus of this work.

As a running example, consider a simple auction system. For simplicity, we consider a
single auction composed of the following parts:

• Its Status, which can move from initial state INVALID (under preparation) to ACTIVE
(can receive bids) and then to CLOSED (no more bids accepted).

• The Winner of the auction, which is initially ⊥, and eventually becomes the bid
taking the highest amount. In case of ties, the bid with the lowest id wins.

• The set of Bids placed, which is initially empty. A bid is a tuple composed of
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Figure 1.1: Evolution of state of an auction application

– BidId: A unique identifier

– Placed: A boolean flag to indicate whether the bid has been placed or not.
Initially, it is FALSE. Once placed, a bid cannot be withdrawn.

– The monetary Amount of the bid; this cannot be modified once the bid is placed.

Figure 1.1 illustrates how the auction state evolves over time. The state of the applica-
tion is geo-replicated at data centers in Adelaide, Brussels, and Calgary. Users at different
locations can start an auction, place bids, close the auction, declare a winner, inspect the
local replica, and observe if a winner is declared and who it is. Update is propagated
asynchronously to other replicas. All replicas should eventually agree on the same auction
status, the same set of bids and the same winner.

Figure 1.1 shows the state-based approach with local operations and merges. Alterna-
tives exist where only a delta of the state —that is, the portion of the state not known to
be part of the other replicas— is sent as a message [5]; since this is an optimisation, it is
of no consequence to the results of this work.

Looking back to Figure 1.1, we can see that replicas diverge temporarily. This tempo-
rary divergence can lead to an unsafe state, in this case declaring a lower amount bid as
the winner. This correctness problem has been addressed before; however, previous works
mostly consider the operation-based propagation approach [6–9].

In contrast to previous work,2 we consider state-based distributed applications.We find
that, the specific properties of state-based propagation enable simple modular reasoning
despite concurrency, thanks to the concept of concurrency invariant. Our proof method-
ology derives the concurrency invariant automatically from the sequential specification.
Now, if the initial state is safe, and every update maintains both the application invari-
ant and the concurrency invariant, then every reachable state is safe, even in concurrent

2Discussed in detail in Chapter 5
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executions, regardless of network partitions.
We developed a tool named Soteria to automate our proof methodology. Soteria anal-

yses the specification to detect concurrency bugs and either proves safety or provides
counterexamples.

The contributions of this part are as follows:

• We propose a novel proof system, specialized in proving the safety of available ap-
plications that propagate state. This specialisation supports modular reasoning, and
thus enables automation.

• We demonstrate that this proof system is sound. Moreover, we provide a simple
semantics for state-propagating systems that allows us to ignore network messages
altogether.

• We present Soteria, the first tool supporting the verification of program invariants
for state-based distributed applications. When Soteria succeeds it ensures that every
execution, whether replicas are partitioned or concurrent, is safe.

• We present a number of representative case studies, which we run through Soteria.

Gustavo Petri collaborated with us for this part of the thesis. Our contribution resulted
in two publications, Nair et al. [10, 11], and an open source tool, Nair et al. [12].
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Chapter 2

Proving invariant safety for
highly-available distributed
applications

In this chapter we present a proof methodology to ensure that a given state-based dis-
tributed application is system-safe, for a given invariant and a given amount of concurrency
control.

2.1 System Model

2.1.1 General Principles

An application consists of a state, a set of operations, a merge function and an invariant.
As our running example, Figure 1.1 illustrates three replicas of an auction application, at
three different locations, represented by the three horizontal lines. Each line depicts the
evolution of the state of the corresponding replica; time flows from left to right.

State

A distributed system consists of a number of servers, with disjoint memory and processing
capabilities. The servers might be distributed over geographical regions. A set of servers
at a single location stores the state of the application. This is called a single replica.
We assume that a replica executes sequentially. The replicas are at different geographical
locations, each one having a full copy of the state. In the simplest case (for instance at
initialisation) the state at all replicas will be identical. The state of some replica is called
its local state. The global view, comprising all local states, is called the global state.

Operations

Each replica may perform the operations defined for the application. To support avail-
ability, an operation modifies the local state at some arbitrary replica, the origin replica
for that operation, without synchronising with other replicas (the cost of synchronisation
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being significant at geo-distributed scale). An operation might consist of several changes;
these are applied to the replica as a single atomic unit.

Executing an operation on its origin replica takes effect immediately. However, the state
of the other replicas, called remote replicas, remains unaffected at this point. The remote
replicas get updated when the state is eventually propagated. An immediate consequence
of this execution model is that, in the presence of concurrent operations, replicas can reach
different states, i.e., they diverge.

Let us illustrate this with our example in Figure 1.1. Initially, the auction is yet to start,
the winner is not declared and no bids are placed. By default, a replica can execute any
operation, start_auction, place_bid, and close_auction, locally without synchronising
with other replicas. We see that the local states of replicas occasionally diverge. For
example at the point where operation close_auction completes at the Adelaide replica,
the Adelaide replica is aware of a single $100 bid, whereas the Calgary replica observes
another bid for $105, and the Brussels replica observes both the bids.

State Propagation

A replica occasionally propagates its state to other replicas in the system. A replica
receiving a remote state merges it into its own.

In Figure 1.1, the arrows between replicas represent the delivery of a message containing
the state of the source replica, to be merged into the target replica. A message is labelled
with the state propagated. For instance, the first message delivery at the Brussels replica
represents the result of updating the local state (setting auction status to ACTIVE), with
the state originating in the replica at Adelaide (auction started).

Similarly to operations, a merge is atomic. In Figure 1.1, Alice closes the auction at
the Adelaide replica. This atomically sets the status of the auction to CLOSED and declares
a winner from the set of bids it is aware of. The updated auction state and winner are
transmitted together. Merging is performed atomically at the Brussels replica.1

We now specify the merge operation for an auction. The receiving replica’s local state
is denoted σ = (status, winner, Bids), the received state is denoted σ′ = (status′, winner′,
Bids′) and the result of merge is denoted as σnew = (statusnew, winnernew, Bidsnew).

merge((status ,winner ,Bids),(status ′,winner ′,Bids ′)) :
statusnew := max(status ,status ′)
winnernew := winner ′ 6= ⊥ ? winner ′ : winner
Bidsnew := {(id, placed ∨ placed ′, max(amount , amount ′)) |

(id , placed , amount) ∈ Bids ∧ (id , placed ′, amount ′) ∈ Bids ′}

Furthermore, we require the operations and merge to be defined in a way that ensures
convergence. We discuss the relevant properties later, in Section 4.2.

Data Invariants

A data invariant is an assertion that must evaluate to true in every local state of every
replica. Although evaluated locally at each replica, data invariant is in effect global, since

1Note that this leads to an unsafe state. We discuss this in detail in Subsection 2.3.2
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it must be true at all replicas, and replicas eventually converge. For our running example,
data invariant can be stated as follows:

• Only an active auction can receive bids, and

• the highest unique placed bid wins when the auction closes (breaking ties using bid
identifiers).

This data invariant must hold true in all possible executions of the application.

2.1.2 Notations and Assumptions

Let us introduce some notations and assumptions:

• We assume a fixed set of replicas, ranged over with the meta-variable r ∈ R sampled
from the domain of unique replica names R.

• We denote a local state with the meta-variable σ ∈ Σ ranged over the domain of
states of the application Σ.

• The local semantic function JK takes an operation and a state, and returns the state
after applying the operation. We write JopK(σ) = σnew for executing operation op

on state σ resulting in a new state σnew.

• Ω denotes a partial function returning the current state of a replica. For instance
Ω(r) = σ means that in global state Ω, replica r is in local state σ. We will use the
notation Ω[r← σ] to denote the global state resulting from replacing the local state
of replica r with σ. The local state of all other replicas remains unchanged in the
resulting global state.2

• A message propagating states between replicas is denoted 〈 r σ−→ r′ 〉. This represents
the fact that replica r has sent a message (possibly not yet received) to replica r′,
with the state σ as its payload. The meta-variable M denotes the messages in transit
in the network.

• In Subsection 2.1.3, we will utilise a set of states to record the history of the execution.
The set of past states will be ranged over with the variable S ∈ P(Σ), where P()

indicates the power set.

• All replicas are assumed to start in the same initial state σi. Formally, for each
replica r ∈ dom(Ωi) we have Ωi(r) = σi.

2.1.3 Operational Semantics

In this subsection and Subsection 2.1.4 we will present two semantics for systems propa-
gating states. Importantly, while the first semantics takes into account the effects of the
network on the propagation of the states, and is hence an accurate representation of the

2This notation of a global state is used only pedagogically to explain our proof rule. The global state
is not observable and formally, the rule is based only on the local state of each replica.
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Operation
Ω(r) = σ JopK(σ) = σnew Ωnew = Ω[r← σnew]

(Ω, M) −→ (Ωnew, M)

Send
Ω(r) = σ r′ ∈ dom(Ω) \ {r} Mnew = M ∪ {〈 r σ−→ r′ 〉}

(Ω, M) −→ (Ω, Mnew)

Merge

Ω(r) = σ 〈 r′ σ
′
−→ r 〉 ∈ M

Mnew = M \ {〈 r′ σ
′
−→ r 〉} JmergeK(σ, σ′) = σnew Ωnew = Ω[r← σnew]

(Ω, M) −→ (Ωnew, Mnew)

Op & Broadcast
Ω(r) = σ JopK(σ) = σnew Ωnew = Ω[r← σnew]

Mnew = M ∪ { 〈 r σnew−−−→ r′ 〉 | r′ ∈ dom(Ω) \ {r} }
(Ω, M) −→ (Ωnew, Mnew)

Merge & Broadcast

Ω(r) = σ 〈 r′ σ
′
−→ r 〉 ∈ M

Mnew = M \ {〈 r′ σ
′
−→ r 〉} JmergeK(σ, σ′) = σnew Ωnew = Ω[r← σnew]

Mnew′ = Mnew ∪ { 〈 r σnew−−−→ r′
′ 〉 | r′′ ∈ dom(Ω) \ {r} }

(Ω, M) −→ (Ωnew, Mnew′)

Figure 2.1: Precise Operational Semantics: Messages

execution of systems with state propagation, we will show in the next subsection that rea-
soning about the network is unnecessary in this kind of system. We will demonstrate this
claim by presenting a much simpler semantics in which the network is abstracted away.
The importance of this reduction is that the number of events to be considered, both when
conducting proofs and when reasoning about applications, is greatly reduced. As infor-
mal evidence of this claim, we point at the difference in complexity between the semantic
rules presented in Figure 2.1 and Figure 2.2. We postpone the equivalence argument to
Theorem 2.1.6.

Figure 2.1 presents the semantic rules describing what we shall call the precise semantics
(we will later present a more abstract version) defining the transition relations describing
how the state of the application evolves.

The figure defines a semantic judgement of the form (Ω, M) −→ (Ωnew, Mnew) where (Ω, M)

is a configuration where the replica states are given by Ω as shown above, and M is a set of
messages that have been transmitted by different replicas and are pending to be received
by their target replicas.

Rule Operation presents the state transition resulting from a replica r executing an
operation op. The operation queries the state of replica r, evaluates the semantic function
for operation op and updates its state with the result. The set of messages M does not
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change. The second rule, Send, represents the non-deterministic sending of the state of
replica r to replica r′. The rule has no other effect than to add a message to the set of
pending messages M. The Merge rule picks any message, 〈 r′ σ

′
−→ r 〉, in the set of pending

messages M, and applies the merge function to the destination replica with the state in the
payload of the message, removing 〈 r′ σ

′
−→ r 〉 from M.

The final two rules, Op & Broadcast and Merge & Broadcast represent the
specific case when the states are immediately sent to all replicas. These rules are not
strictly necessary since they are subsumed by the application of either Operation or
Merge followed by one Send per replica. We will, however, use them to simplify a
simulation argument in what follows.

We remark at this point that no assumptions are made about the duplication of mes-
sages or the order in which messages are delivered. This is in contrast to other works on
the verification of properties of replicated applications [6, 9]. The reason why this assump-
tion is not a problem in our case is that the least-upper-bound assumption of the merge

function, as well as the inflation assumptions on the states considered in Subsection 4.2.2
(Section 4.2) mean that delayed messages have no effect when they are merged.

As customary we will denote with (Ω, M)
∗−→ (Ωnew, Mnew) the repeated application of the

semantic rules zero or more times, from the state (Ω, M) resulting in the state (Ωnew, Mnew).
It is easy to see how the example in Figure 1.1 proceeds according to these rules for

the auction.
For liveness, we require that an update is always broadcasted to other replicas and is

eventually delivered. The following lemma, to be used later, establishes that whenever
we use only the broadcast rules, for any intermediate state in the execution, and for any
replica, when considering the final state of the trace, either the replica has already observed
a fresher version of the state in the execution, or there is a message pending for it with
that state. This is an obvious consequence of broadcasting.

Lemma 2.1.1 If we consider a restriction to the semantics of Figure 2.1 where instead of
applying the Operation rule of Figure 2.1 we apply the Op & Broadcast rule always,
and instead of applying the Merge rule we apply Merge & Broadcast always, we can
conclude that given an execution starting from an initial global state Ωi with

(Ωi, ∅) ∗−→ (Ω, M)
∗−→ (Ωnew, Mnew)

for any two replicas r and r′ and a state σ such that Ω(r) = σ, then either:

• Ωnew(r′) ≥ σ, or

• 〈 r σ−→ r′ 〉 ∈ Mnew.

2.1.4 Operational Semantics with State History

We now turn our attention to a simpler semantics where we omit messages from config-
urations, but instead, we record in a separate set all the states occurring in any replica
throughout the execution.

12



Operation
Ω(r) = σ JopK(σ) = σnew Ωnew = Ω[r← σnew]

(Ω, S) −→ (Ωnew, S ∪ {σnew})

Merge
Ω(r) = σ σ′ ∈ S JmergeK(σ, σ′) = σnew Ωnew = Ω[r← σnew]

(Ω, σ) −→ (Ωnew, S ∪ {σnew})

Figure 2.2: Semantic Rules with a History of States

The semantics in Figure 2.2 presents a judgement of the form (Ω, S) −→ (Ωnew, Snew)

between configurations of the form (Ω, S) as before, but where the set of messages is
replaced by a set of states denoted with the meta-variable S ∈ P(Σ).

The rules are simple. Operation executes an operation as before, and it adds the
resulting new state to the set of observed states. The rule Merge non-deterministically
selects a state in the set of states and it merges a non-deterministically chosen replica with
it. The resulting state is also added to the set of observed states.

Lemma 2.1.2 Consider a state (Ω, S) reachable from an initial global state Ωi with the
semantics of Figure 2.2. Formally: (Ωi, {σi}) ∗−→ (Ω, S). We can conclude that the set of
recorded states in the final configuration S includes all of the states present in any of the
replicas ( ⋃

r∈dom(Ω)

{Ω(r)}
)
⊆ S

2.1.5 Correspondence between the semantics

In this section, we show that removing the messages from the semantics, and choosing
to record states instead renders the same executions. To that end, we will define the
following relation between configurations of the two semantics which will be later shown
to be a bisimulation.

Definition 2.1.3 (Bisimulation Relation) We define the relation RΩi between a con-
figuration (Ω, M) of the semantics of Figure 2.1 and a configuration (Ω, S) of the semantics
of Figure 2.2 parameterized by an initial global state Ωi and denoted by

(Ω, M) RΩi (Ω, S)

when the following conditions are met:

1. (Ωi, ∅) ∗−→ (Ω, M), and

2. (Ωi, {σi}) ∗−→ (Ω, S), and

3. { σ | 〈 r σ−→ r′ 〉 ∈ M } ⊆ S
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(Ωi, ∅) (Ω, M) (Ωnew, Mnew)

(Ωi, {σi}) (Ω, S) (Ωnew, Snew)

∗

RΩi
RΩi

∗

(a) Precise to History-preserving Simula-
tion

(Ωi, {σi}) (Ω, S) (Ωnew, Snew)

(Ωi, ∅) (Ω, M) (Ωnew, Mnew)

∗

RΩi
RΩi

∗

(b) History-preserving to Precise Simula-
tion

Figure 2.3: Simulation Schema

In other words, two states represented in the two configurations are related if both are
reachable from an initial global state and all the states transmitted by the messages (M) is
present in the history (S).

We can now show that this relation is indeed a bisimulation. We first show that the
semantics of Figure 2.2 simulates that of Figure 2.1. That is, all behaviours produced by
the precise semantics with messages can also be produced by the semantics with history
states. This is illustrated in the commutativity diagram of Figure 2.3a and Figure 2.3b,
where the dashed arrows represent existentially quantified components that are proven to
exist in the theorem.

Lemma 2.1.4 (State-semantics simulates Messages-semantics) Consider a reach-
able state (Ω, M) from the initial state Ωi in the semantics of Figure 2.1. Consider moreover
that according to that semantics there exists a transition of the form

(Ω, M) −→ (Ωnew, Mnew)

and consider that there exists a state (Ω, S) of the history preserving semantics of Figure 2.2
such that they are related by the simulation relation

(Ω, M) RΩi (Ω, S)

We can conclude that, as illustrated in Figure 2.3a, there exists a state (Ωnew, Snew) such
that

(Ω, S) −→ (Ωnew, Snew) and (Ωnew, Mnew) RΩi (Ωnew, Snew)

We will now consider the lemma showing the inverse relation. To that end we will
consider a special case of the semantics of Figure 2.1 where instead of applying the Oper-

ation rule, we will always apply the Op & Broadcast rule, and instead of the Merge

rule, we will apply Merge & Broadcast. As we mentioned before, this is equivalent
to the application of the Operation/Merge rule, followed by a sequence of applications
of Send. The reason we will do this is that we are interested in showing that for any
execution of the semantics in Figure 2.2 there is an equivalent (simulated) execution of the
semantics of Figure 2.1. Since all states can be merged in the semantics of Figure 2.2 we
have to assume that in the semantics of Figure 2.1 the states have been sent with messages.
Fortunately, we can choose how to instantiate the existential send messages to apply the
rules as necessary, and that justifies this choice.
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Lemma 2.1.5 (Messages-semantics simulates State-semantics) Consider a reach-
able state (Ω, S) from the initial state Ωi in the semantics of Figure 2.2. Consider moreover
that according to that semantics there exists a transition of the form

(Ω, S) −→ (Ωnew, Snew)

and consider that there exists a state (Ω, M) of the state-preserving semantics of Figure 2.2
such that they are related by the simulates relation

(Ω, M) RΩi (Ω, S)

We can conclude that there exists a state (Ωnew, Mnew) such that

(Ω, M) −→ (Ωnew, Mnew) and (Ωnew, Mnew) RΩi (Ωnew, Snew)

As before, an illustration of this lemma is presented in Figure 2.3b.
We can now conclude that the two semantics are bisimilar:

Theorem 2.1.6 (Bisimulation) The semantics of Figure 2.1 and Figure 2.2 are bisim-
ilar as established by the relation defined in Definition 2.1.3.

The theorem above justifies carrying out our proofs with respect to the semantics of
Figure 2.2, which has fewer rules, and better aligns with our proof methodology. This also
justifies that when reasoning semantically about state-propagating application systems we
can generally ignore the effects of network delays and messages.

From the standpoint of concurrency, the system model allows the execution of asyn-
chronous concurrent operations, where each operation is executed atomically in each replica,
and the aggregation of results of different operations is performed lazily as replicas exchange
their state. At this point, we assume the set of states, along with the operations and merge,
forms a monotonic semi-lattice. This is a sufficient condition for Strong Eventual Consis-
tency [2, 4, 13].

We have seen that even though we achieve convergence later, there can be instances or
even long periods of time during which replicas might diverge. We need to ensure that the
concurrent executions are still safe. In the next section, we discuss how to ensure safety of
distributed applications built on top of the system model we described.

2.2 Proving convergence: Strong Eventual Consistency

Figure 2.4 lists the sufficient conditions for a highly-available distributed application to
ensure Strong Eventual Consistency (SEC). To simplify the notation, we assume that
when an operation executes, the local state respects the precondition of that operation.

Let us now consider these conditions in turn:

• The first condition Poset checks that the ordering relation of the state defines a
partially ordered set(poset): reflexive, transitive, and anti-symmetric.
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(Σ,v) is a poset

(Poset)

∀ σ, σ′, ∃σnew, JmergeK(σ, σ′) = σnew
(Total)

∀ σ, σnew, JmergeK(σ, σ) = σnew ⇒ σ = σnew
(Idempotent)

∀ σ, σ′, σnew0, σnew1,

(
JmergeK(σ, σ′) = σnew0

∧ JmergeK(σ′, σ) = σnew1

)
⇒ σnew0 = σnew1

(Commutative)

∀ σ, σ′, σ′′, σnew0, σnew1,

(
JmergeK(JmergeK(σ, σ′), σ′′) = σnew0

∧ JmergeK(σ, JmergeK(σ′, σ′′)) = σnew1

)
⇒ σnew0 = σnew1

(Associative)

∀ op, σ, σnew, JopK(σ) = σnew ⇒ σ v σnew
(Inflation)

∀ σ, σ′, σnew, JmergeK(σ, σ′) = σnew ⇒
(

σ v σnew
∧σ′ v σnew

)
(UB)

∀ σ, σ′, σnew, σ∗, σ v σ∗ ∧ σ′ v σ∗ ∧ JmergeK(σ, σ′) = σnew ⇒ σnew v σ∗
(LUB)

Figure 2.4: Monotonic semilattice conditions (implies Strong Eventual Consistency)

We then find a number of conditions on the merge function.

• The second condition, Total, says that the merge function is total.

• Conditions Idempotent, Commutative and Associative say that the merge func-
tion is idempotent, commutative and associative [4].

• Condition Inflation says that each operation op of the application is an inflation.

• Related to the condition above, condition UB ensures that the result of merge is
an upper-bound of the input states. This, along with condition Inflation, is a
sufficient condition for convergence, since it implies that there is a deterministic way
to reconcile any two replicas that have diverged in their states through the least-
upper-bound of the lattice implemented by the merge function, and also implies that
the states of all replicas are progressing in the same direction (w.r.t. the ordering
function) in the lattice (see Figure 2.8). It remains to see that there is a deterministic
state to which all replicas will converge (assuming that no new operations arrive).

• The fourth and final condition, LUB, ensures that merge function is the least upper
bound as per the given order. This condition guarantees that the state reached by
merging multiple states is unique, making the merge function deterministic, and thus
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guaranteeing equality at the point where all replicas have exchanged their respective
states.

All these conditions ensure that the distributed application guarantees strong eventual
consistency in the case where all the replicas receive copies of states incorporating all prior
updates.

2.2.1 Semilattice of auction object

Let us show that our running example of an auction application converges. Subsection 2.2.1
represent the ordering relation as a semilattice following Figure 1.1. It is not hard to see
that each of our operations is an inflation, and that the merge operation computes the
least-upper-bound.

Figure 2.5: Semilattice of an auction object

2.3 Proving Invariants

In this section, we report our invariant verification strategy. Specifically, we consider the
problem of verifying data invariants of highly-available distributed applications.

To support the verification of data invariants we will consider a syntactic-driven ap-
proach based on program logic. Bailis et al.[14] identify necessary and sufficient run-time
conditions to establish the safety of application invariants for highly-available distributed
databases in a criterion dubbed I-confluence. Moreover, they study the validity of a num-
ber of typical invariants and applications. Our work improves on the I-confluence criterion
defined in [14] by providing a static, syntax-driven, and mostly-automatic mechanism to
verify the correctness of an invariant for an application. We will address the specific dif-
ferences in Chapter 5, related work.
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An important consequence of our verification strategy is that while we are proving
invariants about a concurrent highly-distributed system, our verification conditions are
modular (on the number of API operations), and can be carried out using standard se-
quential Hoare-style reasoning. These verification conditions in turn entail stability of the
assertions as one would have in a logic like Rely/Guarantee.

Let us start by assuming that a given initial state for the application is denoted σi.
Initially, all replicas have σi as their local state. As explained earlier, each replica executes
a sequence of state transitions, due either to a local update or to a merge incorporating
remote updates.

Let us call safe state a replica state that satisfies the invariant. Assuming the current
state is safe, any update (local or merge) must result in a safe state. To ensure this, every
update is equipped with a precondition that disallows any unsafe execution.3

Formally, an update u (an operation or a merge), mutates the local state σ, to a new
state σnew = u(σ). To preserve the data invariant, Invdata, we require that the local state
respects the precondition of the update, Preu:

σ ∈ Preu =⇒ u(σ) ∈ Invdata

Thus, a local update executes only when, at the origin replica, the current state is safe and
its precondition currently holds.

Similarly, merge must also be safe. Since merge can happen at any time, it must be
the case that its precondition is always true, i.e., it constitutes an additional invariant. We
call this the concurrency invariant. Now our global invariant consists of two parts: first,
the data invariant (Invdata), and second, the concurrency invariant(Invconc).

To illustrate local preconditions, consider an operation close_auction(w:BidId), which
sets auction status to CLOSED and the winner to w (of type BidId). The developer may
have written a precondition such as status = ACTIVE because closing an auction doesn’t
make sense otherwise. In order to ensure the invariant that the winner has the highest
amount, one needs to strengthen it with the clause is_highest(Bids, w), defined as4

∀ b ∈ Bids , b.placed =⇒ b.Amount ≤ w.Amount

To illustrate the precondition of merge, let us use our running example. We wish to
maintain the invariant that the highest bid is the winner. Assume a scenario where the
local replica declared a winner and closed the auction. An incoming state from a remote
replica contains a bid with a higher amount. When the two states are merged, we see
that the resulting state is unsafe. So we must strengthen the merge operation with a
precondition. We require a predicate that is at least as strong as the weakest precondition
that satisfies the data invariant, Invdata. The strengthened precondition looks like this:

status = CLOSED =⇒ ∀ Bids ∈ P(B), is_highest(Bids , w)
∧ status ′ = CLOSED =⇒ ∀ Bids ∈ P(B), is_highest(Bids , w′)

3 Technically, this is at least the weakest-precondition of the update for safety. It strengthens any a
priori precondition that the developer may have set for the business logic.

4Ideally, this is the weakest precondition to satisfy Invdata.
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σi � Invdata (SafeInit)

∀ op, σ, σnew,

 σ � Preop ∧
σ � Invdata ∧

JopK(σ) = σnew

⇒ σnew � Invdata (SafeOp)

∀ σ, σ′, σnew,


(σ, σ′) � Premerge ∧

σ � Invdata ∧
σ′ � Invdata ∧

JmergeK(σ, σ′) = σnew

⇒ σnew � Invdata (SafeMerge)

(σi, σi) � Invconc (ConcInit)

∀ op, σ, σ′, σnew,

 σ � Preop ∧
(σ, σ′) � Invconc ∧
JopK(σ) = σnew

⇒ (σnew, σ
′) � Invconc (ConcOp)

∀ σ, σ′, σnew,

 (σ, σ′) � Premerge ∧
(σ, σ′) � Invconc ∧

JmergeK(σ, σ′) = σnew

⇒ (σnew, σ
′) � Invconc (ConcMerge)

Figure 2.6: Invariant Conditions

where B is the set of all possible bids. This means that if the status is CLOSED in either of
the two states, the winner should be the highest bid in any state. This condition ensures
that when a winner is declared, it is the highest bid among the set of bids in any state at
any replica.

2.3.1 Invariance Conditions

The verification conditions in Figure 2.6 ensure that for any reachable local state of a
replica, the global invariant Invdata ∧ Invconc, is a valid assertion. We assume the invariant
to be a Hoare-logic style assertion over the state of the application. In a nutshell, all
of these conditions check (i) the precondition of each of the operations, and that of the
merge operation uphold the global invariant, and (ii) the global invariant of the application
consists of the invariant and the concurrency invariant (precondition of merge).

We will develop this intuition in what follows. Let us now consider each of the rules:

• Clearly, the initial state of the application must satisfy the global invariant, this is
checked by conditions SafeInit and ConcInit.

The rest of the rules perform a kind of inductive reasoning. Assuming that we start in
a state that satisfies the global invariant, we check that any state update preserves the
validity of said invariant. Importantly, this reasoning is not circular, since the initial state
is known by the rule above to be safe.5

• Condition SafeOp checks that each of the operations, when executed starting in a
state satisfying its precondition and the invariant, is safe. Notice that we require that

5Indeed, the proof of soundness of program logics such as Rely/Guarantee are typically inductive
arguments of this nature.
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the precondition of the operation be satisfied in the starting state. This is the core
of the inductive argument alluded to above, all operations – which as we mentioned
in Section 2.1 execute atomically w.r.t. concurrency – preserve the data invariant
Invdata.

Other than the execution of operations, the other source of local state changes is the
execution of the merge function in a replica. It is not true in general that for any two
given states of an application, the merge should compute a safe state. In particular, it
could be the case that the merge function needs a precondition that is stronger than the
conjunction of the invariants in the two states to be merged. The following rules deal with
these cases.

• We require the merge function to be annotated with a precondition strong enough
to guarantee that merge will result in a safe state. Generally, this precondition can
be obtained by calculating the weakest precondition [15] of merge w.r.t. the desired
invariant. Since merge requires two states as input, the precondition of merge has
two states. We can then verify that merging two states is safe. This is the purpose
of rule SafeMerge.

As per the program model of Section 2.1, any two replicas can exchange their states at any
given point of time and trigger the execution of a merge operation. Thus, it must be the
case that the precondition of the merge function is enabled at all times between any two
replica local states. Since merge is the only point where a local replica can observe the result
of concurrent operations in other replicas, we call this a concurrency invariant (Invconc).
In other words: the concurrency invariant is part of the global invariant of the application.
This is the main insight that allows us to reduce the proof of the distributed application to
checking that both the invariant Invdata and the concurrency invariant Invconv are global
invariants. In particular, the latter implies the former, but for exposition purposes we shall
preserve the invariant Invdata in the rules.

• Just as we did with the operations above, we now need to check that whenever we have
a pair of states that satisfy the concurrency invariant, if one of these states changes,
the resulting pair still satisfies the concurrency invariant. This is exactly the purpose
of rule ConcOp in the case where the state change originates from an operation
execution in one of the replicas of the pair. This rule is similar to rule SafeOp

above, where the invariant Inv has been replaced by Invconc, and consequently we
have a pair of states.

• Finally, as we did with rule SafeMerge, we need to check the case where one of the
states of a pair of states satisfying Invconc is updated because of yet another merge
happening (w.r.t. yet another replica) in one of these states. This is the purpose
of rule ConcMerge which is similar to rule SafeMerge, with Invdata replaced for
Invconc.

As anticipated at the beginning of this section, the reasoning about the concurrency is
performed in a completely local manner, by carefully choosing the verification conditions,
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and it avoids the stability blow-up commonly found in concurrent program logics. The
program model, and the verification conditions allow us to effectively reduce the problem
of verifying safety of an asynchronous concurrent distributed system, to the modular verifi-
cation of the global invariant (Invdata∧ Invconc) as pre and post conditions of all operations
and merge.

Proposition 2.3.1 (Soundness) The proof rules in equations SafeInit — ConcMerge

guarantee that the implementation is safe.

To conduct an inductive proof of this lemma we need to strengthen the argument to
include the set of observed states as given by the semantics of Figure 2.2.

Lemma 2.3.2 (Strengthening of Soundness) Assuming that the equations SafeInit

— ConcMerge hold for an implementation of a replicated application with initial state
Ωi. For any state (Ω, S) reachable from (Ωi, {σi}), that is (Ωi, {σi}) ∗−→ (Ω, S), we have
that:

1. for all states σ, σ′ ∈ S, (σ, σ′) � Invconc, and

2. for any state σ ∈ S, σ � Invdata.

Corollary 2.3.2.1 The soundness proposition (2.3.1) is a direct consequence of Lemma 2.3.2.

We remark at this point that there are numerous program logic approaches to proving
invariants of shared-memory concurrent programs, with Rely/Guarantee [16] and concur-
rent separation logic [17] underlying many of them. While these approaches could be
adapted to our use case (propagating-state distributed systems), this adaptation is not ev-
ident. As an indication of this complexity: one would have to predicate about the different
states of the different replicas, restate the invariant to talk about these different versions
of the state, encode the non-deterministic behaviour of the propagation layer, etc. Instead,
we argue that our specialized rules are much simpler, allowing for a purely sequential and
modular verification that we can mechanise and automate. This reduction in complexity
is the main theoretical contribution of this work.

2.3.2 Applying the proof rule

Let us apply the proof methodology to the auction application. Its data invariant, Invdata,
is the following conjunction:

1. Only an ACTIVE auction can receive bids, and

2. the highest placed bid wins when the auction is CLOSED.

Computing the weakest precondition of each update operation, for this invariant is obvious.
For instance, as discussed earlier, close_auction(w) gets precondition is_highest(Bids,

w), because of Invariant Item 2 above. The naïve specification of the auction object that
satisfies the data invariant is shown in Specification 2.1.
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Specification 2.1 Naïve Auction object
State: (status, winner,Bids) INVALID < ACTIVE < CLOSED

Invariant: ∀b ∈ Bids � b.placed =⇒ status ≥ ACTIVE ∧ b.amount > 0
∧status ≤ ACTIVE =⇒ winner = ⊥
∧status = CLOSED =⇒ winner ∈ Bids ∧ winner.placed

∧is_highest(Bids, winner)
Comparison function: statusσ ≥ statusσ′ ∧ (winnerσ 6= ⊥ ∨ winnerσ′ = ⊥)

∧ (∀b ∈ Bidsσ ∪Bidsσ′ � bσ.placed ∨ ¬bσ′ .placed)
INVALID < ACTIVE < CLOSED

Merge(σ, σ′):
{Premerge , (winnerσ = winnerσ′ ∨ winnerσ = ⊥ ∨ winnerσ′ = ⊥)

∧∀b ∈ Bidsσ � bσ.amount = bσ′ .amount
∧statusσ = CLOSED =⇒ is_highest(Bidsσ, winnerσ)

∧is_highest(Bidsσ′ , winnerσ)
∧statusσ′ = CLOSED =⇒ is_highest(Bidsσ, winnerσ′)

∧is_highest(Bidsσ′ , winnerσ′) }
statusσnew = max(statusσ, statusσ′)
winnerσnew = (winnerσ′ 6= ⊥) ? winnerσ′ : winnerσ
∀b ∈ Bidsσ ∪Bidsσ′ � (bσnew .placed = bσ.placed ∨ bσ′ .placed)

∧(bσnew .amount = (bσ′ .amount > 0) ? bσ′ .amount : bσ.amount)
StartAuction():

{Prestartauction , status = INVALID ∧ winner = ⊥}
status = ACTIVE

PlaceBid(bid):
{Preplacebid , bid 6∈ Bids ∧ status = ACTIVE ∧ winner = ⊥}

Bids = Bids ∪ bid
CloseAuction(w):

{Precloseauction , status = ACTIVE ∧ ∃b ∈ Bids � b.placed ∧ b.amount > 0
∧winner = ⊥ ∧ is_highest(Bids, w)}

status = CLOSED

winner = w
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Figure 2.7: Evolution of state in an auction application with concurrency control

Despite local updates to each replica respecting the invariant Invdata, Figure 1.1 showed
that it is susceptible of being violated by merging. This is the case if Bob’s $100 bid
in Brussels wins, even though Charles concurrently placed a $105 bid in Calgary; this
occurred because status became CLOSED in Brussels while still ACTIVE in Calgary. The
weakest precondition of merge for safety expresses that, if status in either state is CLOSED,
the winner should be the bid with the highest amount in both the states. This merge
precondition, now called the concurrency invariant, strengthens the global invariant to
be safe in concurrent executions. Specification 2.1 shows the concurrent invariant as the
precondition of merge, Premerge.

Let us now consider how this strengthening impacts the local update operations. Since
starting the auction doesn’t modify any bids, the operation trivially preserves it. Placing
a bid might violate Invconc if the auction is concurrently closed in some other replica;
conversely, closing the auction could also violate Invconc, if a higher bid is concurrently
placed in a remote replica. Thus, the auction application is safe when executed sequentially,
but it is unsafe when updates are concurrent. This indicates the concurrent specification
has a bug, which we now proceed to fix.

2.3.3 Coordination for Invariant Preservation

As we discussed earlier, the preconditions of operations and merge are strengthened in
order to be sequentially safe. An application must also preserve the concurrency invariant
in order to ensure concurrent safety. Violating this indicates the presence of a concurrency
bug in the specification. In that case, the operations that fail to preserve the concurrency
invariant might need to coordinate. The developer adds the required concurrency control
mechanisms as part of the state in our model. The modified state is now composed of the
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Figure 2.8: Safe in concurrent executions

state and the coordination mechanism.
Recall that in the auction example, placing bids and closing the auction did not pre-

serve the precondition of merge. This requires strengthening the specification by adding a
coordination mechanism to restrict these operations. We can enforce them to be strictly
sequential, thereby avoiding any concurrency at all. But this will affect the availability of
the application. In particular, it should be possible to place bids in parallel.

A concurrency control can be better designed with the workload characteristics in mind.
For this particular use case, we know that placing bids is a much more frequent operation
than closing an auction. Concurrent placing of bids is safe, whereas concurrency between
place bid and close auction is not. This situation is similar to a readers-writer lock. We
distribute tokens to each replica. As long as a replica has a token, it can place bids.
Closing the auction requires recalling the tokens from all replicas. This ensures that there
are no bids placed concurrently while closing auction and thus a winner can be declared,
respecting the invariant. The addition of this concurrency control also updates the Invconc.
Clearly, all operations must respect this modification for the specification to be considered
safe.

Note that the token model described here restricts availability in order to ensure safety.
Adding efficient coordination is not a problem to be solved only with application specifi-
cation in hand, it rather requires the knowledge of the application dynamics such as the
workload characteristics and is part of our work described in Part III.
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Specification 2.2 Safe Distributed Auction
State: (status, winner,Bids , Tokens ) INVALID < ACTIVE < CLOSED

Invariant: ∀b ∈ Bids � b.placed =⇒ status ≥ ACTIVE ∧ b.amount > 0
∧status ≤ ACTIVE =⇒ winner = ⊥
∧status = CLOSED =⇒ winner ∈ Bids ∧ winner.placed

∧is_highest(Bids, winner)
∧∀r ∈ Reps � ¬Tokens[r]

Comparison function: statusσ ≥ statusσ′ ∧ (winnerσ 6= ⊥ ∨ winnerσ′ = ⊥)
∧ (∀b ∈ Bidsσ � bσ.placed ∨ ¬bσ′ .placed)

∧∀r ∈ Reps � ¬Tokensσ[r] ∨ Tokensσ′ [r]

Merge(σ, σ′):
{Premerge , (winnerσ = winnerσ′ ∨ winnerσ = ⊥ ∨ winnerσ′ = ⊥)

∧∀b ∈ Bidsσ � bσ.amount = bσ′ .amount
∧statusσ = CLOSED =⇒ is_highest(Bidsσ, winnerσ)

∧is_highest(Bidsσ′ , winnerσ)
∧statusσ′ = CLOSED =⇒ is_highest(Bidsσ, winnerσ′)

∧is_highest(Bidsσ′ , winnerσ′)

∧Tokensσ[me] =⇒ Tokensσ′ [me]

∧∀b ∈ Bidsσ � ∀r ∈ Reps � ¬Tokensσ[r]

∧¬bσ.placed =⇒ ¬bσ′ .placed

∧(∀r ∈ Reps � ¬Tokensσ[r] ∧ b /∈ Bidsσ) =⇒ b /∈ Bidsσ′

∀r ∈ Reps � ¬Tokensσ[r] =⇒ winnerσ′ = winnerσ ∨ winnerσ′ = ⊥
∃r ∈ Reps � Tokensσ[r] =⇒ winnerσ′ = ⊥ ∧ winnerσ = ⊥ }

statusσ = max(statusσ, statusσ′)
winnerσ = (winnerσ′ 6= ⊥) ? winnerσ′ : winnerσ
∀b ∈ Bidsσ ∪Bidsσ′ � (bσ.placed = bσ.placed ∨ bσ′ .placed)

∧(bσ.amount = (bσ′ .amount > 0) ? bσ′ .amount : bσ.amount)

∀r ∈ Reps � Tokensσ[r] = Tokensσ[r] ∧ Tokensσ′ [r]

StartAuction():
{Prestartauction , status = INVALID ∧ winner = ⊥ ∧∀r ∈ Reps � Tokens[r] }

status = ACTIVE

PlaceBid(bid):
{Preplacebid , bid /∈ Bids ∧ status = ACTIVE ∧ winner = ⊥ ∧Tokens[me] }

Bids = Bids ∪ bid
CloseAuction(w):

{Precloseauction , status = ACTIVE ∧ winner = ⊥ ∧ ∃b ∈ Bids � b.placed ∧ b.amount > 0

∧is_highest(Bids, w) ∧∀r ∈ Reps � ¬Tokens[r] }
status = CLOSED

winner = w
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Figure 2.7 shows the evolution of the modified auction application with concurrency
control. In the figure, a token is represented by the icon of a key. When a replica wants
to close the auction, it can request tokens from other replicas. We indicate that a replica
releases its token by a cross mark on its key. This coordination mechanism makes sure
that the application is safe during concurrent executions as well. Figure 2.8 shows the
semi-lattice formed by the updated specification.

The extended specification of the auction example including the concurrency control is
listed in Specification 2.2 and proven correct. The shaded lines in blue indicate the effect
of adding concurrency control to the state. Note that the keywordme indicates the current
replica. We model the tokens as an array of boolean values, with one entry per replica.
This addition to the state modifies the invariant and subsequently the preconditions of all
operations and merge. The proof rule when applied on this modified specification verifies
that the specification is safe from concurrency bugs.

To summarize, all updates (operations and merge) have to respect the global invariant
(Invdata ∧ Invconc). If an update violates Invdata, the developer must strengthen its pre-
condition. If an update violates Invconc, the developer must restrict concurrency through
coordination mechanisms.
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Chapter 3

Use cases

This chapter presents three representative examples of distributed applications with dif-
ferent consistency requirements. The consent object is an example of a coordination-free
design, illustrating a safe object requiring only eventual consistency. The distributed lock
shows a design that maintains a total order, illustrating strong consistency. The courseware
example shows a mix of concurrent operations and operations with restricted concurrency.
This example illustrates applications that might require some coordination to ensure safety.

For each case study, we give an overview of the operational semantics informally. We
then discuss how the design preserves the safety conditions discussed in Section 2.3. We
also provide pseudocode for better comprehension.

3.1 Distributed Barrier

In some distributed applications, all replicas must reach a single state for an operation to
proceed. We consider the specification of a barrier object with a fixed number of replicas.

The specification of the consent object is shown in Specification 3.1. The state consists
of a boolean flag, flag, indicating that all replicas have voted, and a boolean array, V otes,
indicating the votes from replicas. Each replica votes by setting its dedicated entry in the
boolean array. A replica cannot withdraw its vote. A replica sets flag when it sees all
entries of the boolean array set. The merge function is the disjunction of the individual
components.

The consistency between the values of flag and V otes is ensured by the invariant. The
invariant requires that if the flag is set, then all the replicas have voted.

We can observe that merge and vote operations maintain the invariant at all times
whereas agree needs an extra precondition to ensure that all the replicas have voted before
setting the consent flag.

Since merge ensures safety without any additional precondition, the object is trivially
safe under concurrent executions.
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Specification 3.1 Distributed Barrier
State: (V otes, flag)
Invariant: flag =⇒ ∀r ∈ Reps � V otes[r]
Comparison function: flagσ ∨ (¬flagσ′ ∧ ∀r ∈ Reps � V otesσ[r] ∨ ¬V otesσ′ [r])
Merge(σ, σ′):

{Premerge , True}
∀r ∈ Reps � V otesσ[r] = V otesσ[r] ∨ V otesσ′ [r]
flagσ = flagσ ∨ flagσ′

Vote():
{Prevote , True}

V otes[me] = True

Agree():
{Preagree , ∀r ∈ Reps � V otes[r]}

flag = True

Specification 3.2 Replicated Lock
State: Lock × timestamp
Invariant: ∃r ∈ Reps � Lock[r] ∧ ∀r′ ∈ Reps � (Lock[r] ∧ Lock[r′]) =⇒ r = r′

Comparison function: timestampσ > timestampσ′ ∨ (timestampσ =
timestampσ′ ∧ ∀r ∈ Reps � Lockσ[r] = Lockσ′ [r])
Merge(σ, σ′):

{Premerge , (timestampσ = timestampσ′ =⇒ ∀r ∈ Reps � Lockσ[r] = Lockσ′ [r])
∧ (Lockσ.me =⇒ timestampσ ≥ timestampσ′)}

timestampσ = max(timestampσ, timestampσ′)
∀r ∈ Reps � Lockσ[r] = (timestampσ > timestampσ′) ? Lockσ[r] : Lockσ′ [r]

Transfer(to):
{Pretransfer , Lock[me]}

timestamp = timestamp+ 1
Lock[me] = False

Lock[to] = True

3.2 Replicated lock

We now discuss a replicated lock object that ensures mutual exclusion. We use an array
of boolean values, one entry per replica, to model the lock. If a replica owns the lock, the
corresponding array entry is set to true. The lock is transferred to any other replica by
using the transfer function. The full specification is shown in Specification 3.2.

We need to ensure that the lock is owned by exactly one replica at any given point
in time, the mutual exclusion property. This is the invariant. For simplicity, we are not
considering failures. In order to preserve safety, we need to enforce a precondition on the
transfer operation such that the operation can only transfer the ownership of its origin
replica. For state inflation, a timestamp associated with the lock is incremented during
each transfer.

A merge of two states of this distributed lock will preserve the state with the highest
timestamp. Assuming timestamps are unique, if the timestamps of the two states are
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equal, their corresponding boolean arrays are also equal. Also, the state of the replica that
owns the lock has the highest timestamp. The conjunction of these two restrictions which
form the precondition of merge, Premerge, which is by definition the concurrency invariant,
Invconc.

Consider the case of three replicas r1, r2 and r3 sharing a distributed lock. Assume
that initially replica r1 owns the lock. Replicas r2 and r3 concurrently place a request for
the lock. The current owner r1, has to make a decision on the priority of the requests based
on some unspecified business logic. Assume that r1 transfers the lock to r3. Since r1 no
longer has the lock, it cannot issue any further transfer operations. We see clearly that the
transfer operation is safe due to the precondition that only the replica that owns the lock
can transfer it. In the new state, r3 is the only replica that can perform a transfer operation.
We also note that this prevents any concurrent transfer operations. This guarantees mutual
exclusion, and hence ensures safety in a concurrent execution environment.

Observe that due to the precondition of the transfer operation, concurrent operations
do not happen. The states progress through a total order, ordered by the timestamp. The
transfer function increases the timestamp and the merge function preserves the highest
timestamp.

3.3 Courseware

We now study an application that allows students to register and enrol in courses. The
state consists of a set of students, a set of courses, and enrolments of students for different
courses. Students can register and deregister, courses can be created and deleted, and a
student can enrol for a course. The invariant requires enrolled students to be registered
and courses to be created.

The set of students consists of a 2P-set [18] - to track registrations and deregistrations.
Similarly, courses are also represented as 2P-set - tracking creations and deletions. Regis-
tration or creation monotonically adds the student or course respectively to the registered
sets and deregistration or deletion monotonically adds them to the unregistered sets. The
semantics currently doesn’t support re-registration. Enrolment adds the (student, course)
pair to the G-set [18]. Currently, we do not consider cancelling an enrolment. Merging two
states takes the union of the sets.

Let us consider safety. The operations to register a student and create a course are
safe without any restrictions. Therefore they do not need any precondition. The remaining
three operations might violate the invariant in some cases. This leads to strengthening their
preconditions. The precondition of the operation for deregistering a student and deleting
a course requires no existing enrolments for them. For enrolment, both the student and
the course should be registered/created and not unregistered/deleted.

Merge also requires strengthening of its precondition. It requires the set of enrolled
students and courses to be registered and not unregistered in all the remote states as well.
This is the concurrent invariant (Invconc) for this object.

Running this specification through our tool which we describe in Chapter 4 reveals
concurrency issues for deregistering a student, deleting a course and enrolment. This
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means that we need to add concurrency control to the state.
For this use case, we know that enrolling will be more frequent than deregistering a

student or deleting a course. So, we model a concurrency control mechanism as in the case
of the auction object discussed earlier. We assign a token to each replica for each student
and course, called a student token and course token respectively. A replica will have a
set of student tokens indicating the registered students and course tokens indicating the
created courses. In order to deregister a student or delete a course, all replicas must have
released their tokens for that particular student/course. Enrol operations can progress as
long as the student token and course token are available at the local replica for the student
and course for that particular enrolment.

This concurrency control mechanism now forms part of the state. The preconditions
of operations and merge are recomputed and the concurrency invariant is updated. The
edited specification passes all checks and is deemed safe.

3.3.1 Pseudocode of courseware

This section explains the pseudocode of the courseware application. The state consists
of a set of students, Students, a set of courses, Courses, and enrolments of students for
different courses, Rolls. Students can register and deregister, courses can be created and
deleted, and a student can enrol for a course. The invariant requires enrolled students and
courses to be registered and created respectively.

The set of students and courses are 2P-sets, consisting two sets - A to track registrations
or creations and another R to track deregistrations or deletions. Enrolment adds the
student-course pair to the set Rolls. Merging two states takes the union of the sets. For
simplicity, we abstract the specification of a 2P-set into an ordinary set with add and
remove operations.

Let us consider the safety of each operation. The operations deregister_student,
delete_course and enrol, and merge have additional preconditions to be safe in sequential
execution. The operations register_student and create_course are safe without any
restrictions. The precondition of merge requires the set of enrolled students and courses to
be registered and not unregistered in all the remote states as well. This is the concurrent
invariant, Invconc, for this object.

As we discussed, our tool reports concurrency issues for deregister_student, delete_course
and enrol operations, indicating the need of concurrency control.

For this use case, we know that enrolling will be more frequent than deregistering a
student or deleting a course. So, we model a concurrency control mechanism as in the
case of the auction object discussed earlier. As explained, we add student token, ST , and
course token, CT , to the state. A replica will have a student token for each registered
student and a course token for each created course. In order to deregister a student or
delete a course, all replicas must release their tokens for that particular student/course.
Enrol operations can progress as long as the student token and course token are available
at the local replica for the student and course for that particular enrolment.

Specification 3.3 presents the specification of a safe courseware application. For read-

30



ability, we abstract the iteration over the elements of the set. For example, merging two
2P-sets of students actually has the following operations:

∀s ∈ Studentsσ[A] ∪ Studentsσ′ [A] � Studentsσ[A][s] = Studentsσ[s][A] ∨ Studentsσ′ [s][A]

∧Studentsσ[R][s] = Studentsσ[s][R] ∨ Studentsσ′ [s][R]

We replace it in a compact form:

Studentsσ = Studentsσ ∨ Studentsσ′

The shaded region indicate the added concurrency control. The precondition of merge
is strengthened by a clause that says if there are no tokens available for a student or a
course, that student and course won’t be part of any new enrolment. This prevents enroling
deregistered students to deleted courses.
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Specification 3.3 Concurrently safe Courseware object
State: Students× Courses×Rolls ×ST × CT
Invariant: ∀e ∈ Rolls � e =⇒ e.student ∈ Students ∧ e.course ∈ Courses
Comparison function: (Studentsσ ∨ Studentsσ′) ∧ (Coursesσ ∨ Coursesσ′)

∧(Rollsσ ∨Rollsσ′) ∧(STσ ∨ STσ′) ∧ (CTσ ∨ CTσ′)

Merge(σ, σ′):
{Premerge , ∀e ∈ Rollsσ � e.student ∈ Studentsσ′ ∧ e.course ∈ Studentsσ′

∧∀e ∈ Rollsσ′ � e.student ∈ Studentsσ ∧ e.course ∈ Studentsσ
∧∀st ∈ STσ � st.student ∈ Studentsσ ∨ st.student /∈ Studentsσ′

∧(∃e ∈ Rollsσ � e.student = st.student

∨@e ∈ Rollsσ′ � e.student = st.student)

∧∀st ∈ STσ′ � st.student ∈ Studentsσ′ ∨ st.student /∈ Studentsσ
∧(∃e ∈ Rollsσ′ � e.student = st.student

∨@e ∈ Rollsσ � e.student = st.student)

∧∀ct ∈ CTσ � ct.course ∈ Coursesσ ∨ ct.course /∈ Coursesσ′

∧(∃e ∈ Rollsσ � e.course = ct.course

∨@e ∈ Rollsσ′ � e.course = ct.course)

∧∀ct ∈ CTσ′ � ct.course ∈ Coursesσ′ ∨ ct.course /∈ Coursesσ
∧(∃e ∈ Rollsσ′ � e.course = ct.course

∨@e ∈ Rollsσ � e.course = ct.course)

∧∀st ∈ STσ � st.replica = me ∧ st.student /∈ Studentsσ
=⇒ st.student /∈ Studentsσ′

∧∀ct ∈ CTσ � ct.replica = me ∧ ct.course /∈ Coursesσ
=⇒ ct.course /∈ Coursesσ′ }

Studentsσ = Studentsσ ∨ Studentsσ′

Coursesσ = Coursesσ ∨ Coursesσ′

Rollsσ = Rollsσ ∨Rollsσ′

STσ = STσ ∧ STσ′

CTσ = CTσ ∧ CTσ′

RegisterStudent(student):
{Preregisterstudent , True}

Students = Students ∪ {student}
DeregisterStudent(student):

{Prederegstudent , @e ∈ Rolls � e.student = student

∧@st ∈ ST � st.student = student }
Students = Students \ {student}

CreateCourse(course):
{Precreatecourse , True}

Courses = Courses ∪ {course}
DeleteCourse(course):

{Predeletecourse , @e ∈ Rolls � e.course = course ∧@ct ∈ CT � ct.course = course }
Courses = Courses \ {course}

Enrol(student, course):
{Preenrol , student ∈ Students ∧ course ∈ Courses

∧∃st ∈ ST � st.student = student ∧ ∃ct ∈ CT � ct.course = course }
Rolls = Rolls ∪ {(course, student)}
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Chapter 4

Automation

In this chapter, we present a tool to automate the approach discussed in the previous
chapter. Our tool, called Soteria, is based on the Boogie [19] verification framework. The
input to Soteria is a specification of the object written as Boogie procedures, augmented
with some annotations, in order to check the properties described in Section 2.3.

4.1 Specifying a distributed application in Soteria

Let us now consider how a distributed object is specified in Soteria.

State

The user of the tool provides a declaration of the local state using the global variables in
Boogie. The data types can be either built-in or user defined.

Comparison function

The user provides a comparison function to determine the partial order on states. The
comparison function returns true when the first state is greater than or equal to the other
state. It is encoded as a function in Boogie. The tool uses this comparison function as a
basis to check the inflation and lattice conditions given in Figure 2.4. The keyword @gteq

marks the comparison function.

Operations

The user provides the implementation of the operations of the object in Boogie along with
its precondition Preop. In general, operations are encoded as Boogie procedures. Alterna-
tively, we could just require only a post-condition describing how the state transitions from
the precondition to the post-condition. Notice that since in our program model operations
are atomic, this is an unambiguous encoding of the operations.

A few things are important in this code. The specification declares operations that can
modify the global variables using the modifies clause. A precondition is specified in a
requires clause, and the postcondition in an ensures clause. The semantics of multiple
requires and ensures clauses is conjunction.
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Merge function

The tool requires the special merge operation to be distinguished from other operations,
annotated @merge. As previously mentioned, the precondition of merge can be obtained by
calculating the weakest precondition to ensure safety. The current version of Soteria does
not perform this step automatically, but relies on the user to provide the preconditions.
Notice that Soteria will consider this as the concurrency invariant (Invconc).

In Section 2.1 we mentioned that the merge procedure takes two states as arguments,
in the specification input to Soteria, the procedure merge takes only one state as the
argument. The state represented in the argument is the incoming state and it is merged
with the local state (represented by the global variables in the specification).

Invariant

The user provides the invariant to be verified by the tool. This invariant is simply provided
as a Boogie assertion over the state of the object annotated with the keyword @invariant.

Additional information

The components above are required for Soteria’s safety checks. In addition, Boogie often
requires additional annotations to help it with verification. These include:

• User-defined data types

• Constants, to declare special objects such as the origin replica “me”, or to bound the
quantifiers

• We sometimes make recourse to inductively-defined functions over aggregate data
structures, for instance, to obtain the maximum in a set of values. To enable the SMT
solver to use them, we axiomatize their semantics. This is particularly important for
list comprehensions and array operations. In this, we follow the approach of Leino
et al.[20].

• When iterating over lists, arrays or matrices, we must provide loop invariants in order
to verify them by Boogie.

4.2 Verification passes

From the input specification Soteria generates a set of verification conditions, which it
passes to Boogie, to be proved by leveraging SMT solvers.

This verification process comprises multiple stages, as follows:

4.2.1 Syntax check

The first step validates that the specification provided respects Boogie syntax, ignoring
the Soteria-specific annotations and calls Boogie to validate that the types are correct and
that the pre/post conditions provided are sound.
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Then it checks that the user has provided the required annotations. Specifically, it
checks the function signatures marked by @gteq and @invariant and the procedure marked
by @merge.

4.2.2 Convergence check

The convergence stage checks the convergence of the specification. Specifically, it checks
whether the specification respects Strong Eventual Consistency, i.e., that any two replicas
that received the same set of updates have the same state. To guarantee SEC, objects
must have the following properties[2, 4, 13]:

• The state space is equipped with an ordering operator, comparing states.

• Each individual operation is an inflation in the order. In a nutshell, the tool asks
Boogie to prove the following Hoare-logic triple for every operation:

assume σ � Preop

call σnew := op(σ)

assert σnew ≥ σ

• The ordering forms a join-semilattice, i.e., for any two states in the lattice, there
exists a state in the lattice that is their least upper bound.

• The merge operation, composing states from two replicas, computes their least-upper-
bound. The verification condition discharged is shown below (the primed state indi-
cates the incoming state from a remote replica):

assume (σ, σ′) � Premerge

call σnew := merge(σ, σ′)

assert σnew ≥ σ ∧ σnew ≥ σ′
assert ∀σ∗, σ∗ ≥ σ ∧ σ∗ ≥ σ′ =⇒ σ∗ ≥ σnew

We present the conditions formally in Section 2.2.
An alternative is to make use of the CALM theorem [21]. This allows non-monotonic

operations, but requires them to coordinate. However, our aim is to provide maximum
possible availability with SEC. 1

4.2.3 Safety check

This stage verifies the safety of the specification, as discussed in Section 2.3. This is
subdivided into two sub-stages:

1. Sequential safety: Soteria checks whether each individual operation is safe. This
corresponds to the conditions (SafeOp) and (SafeMerge) in Figure 2.6. The
verification condition discharged by the tool to ensure sequential safety of operations
is:

1Convergence of our running example is discussed in Subsection 2.2.1.
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assume σ � Preop ∧ Inv

call σnew := op(σ)

assert σnew � Inv

The special case of the merge function is verified with the following verification
condition:

assume (σ, σ′) � Premerge ∧ σ � Inv ∧ σ′ � Inv

call σnew := merge(σ, σ′)

assert σnew � Inv

In case of failure of the sequential safety check, the designer needs to strengthen the
precondition of the operation (or merge) which was unsafe.

2. Concurrent safety: Here we check the precondition of merge, Invconc, is an in-
variant for every operation. This corresponds to the conditions (ConcOp) and
(ConcMerge) in Figure 2.6. As shown in Section 2.3, this ensures safety during
concurrent operation.

The verification conditions are:

assume σ � Preop ∧ Inv ∧ (σ, σ′) � Invconc

call σnew := op(σ)

assert (σnew, σ
′) � Invconc

to validate each operation op, and

assume (σ, σ′) � Invconc ∧ σ � Inv ∧ σ′ � Inv

call σnew := merge(σ, σ′)

assert (σnew, σ) � Invconc

to validate merge. If the concurrent safety check fails, the design of the distributed
object needs a replicated concurrency control mechanism embedded as part of the
state.

Notice that while this check relates to the concurrent behaviour of the distributed
object, the check itself is completely sequential; it does not require reasoning about
operations performed by other processes.

Soteria performs each check by generating verification conditions and using the Boo-
gie verification engine, which in turn uses the Z3 SMT solver. There are three possible
outcomes for each verification condition:

1. The verification condition is proven.

2. Unable to prove the verification condition.

3. Time out or memory overflow.

The first outcome is the desired one. For a user, the second and third outcome basically
means the same - the verification condition is not proven. When all checks are validated,
Soteria reports that the specification is safe. For the verification conditions that failed due
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Application
Number Time taken (s)

of
methods

Syntax
check

Convergence
check

Safety
check

Total

Consensus 2 2.594 5.847 11.693 20.141
Distributed lock 1 2.635 4.004 8.034 14.680
Courseware 5 2.803 12.161 24.213 39.184
Auction 4 2.895 10.885 21.672 35.458

Table 4.1: Time taken for analysing specification using Soteria

to incorrect or incomplete specification, Soteria produces counterexamples with the help
of Boogie and Z3. This helps the developer identify issues with the specification and fix it.

Soteria uses an SMT solver, Z3, which is fully automated. As far as the proof system is
concerned, no programmer involvement is required. We present the efficient generation of
synchronization control considering the workload characteristics in Chapter 11. The tool
and the specifications of the case studies discussed in Chapter 3 are available at Soteria [12].

4.3 Tool evaluation

All the applications we discussed in Chapter 3 are verified using Soteria. Table 4.1 provides
the analysis time taken for each example. The time reported is the average time from five
runs, on a 2.5 GHz Intel Core i7 processor and 16 GB 1600 MHz DDR3 memory.
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Chapter 5

Related work

This chapter discusses the literature related to the verification of available distributed
applications.

Several works have concentrated on the formalisation and specification of eventually
consistent systems such as Burckhardt et al. [22], Burckhardt [23], Sivaramakrishnan et al.
[24], to mention but a few.

Kaki et al. [25] present a programming framework equipped with a fully automated
symbolic execution engine, named Q9, that detects invariant violations. They have spec-
ified a set of consistency levels and the tool suggests the consistency level required to
maintain safety. The problem they are addressing is the same as Soteria, but consider
a different system model wherein operations are propagated between replicas. Moreover,
symbolic execution cannot provide the same level of guarantees as a full verification.

A number of works concentrate on the specification and correct implementation of
replicated data types [26, 27]. Unlike these works, we assume the data type implementation
is correct and focus on proving semantic properties that hold of a distributed object i.e.,
invariants of interest to the application.

Gotsman et al. [6] present a proof methodology for proving invariants of distributed
objects. That work is supported by a tool called the CISE tool [7]. Similar to Soteria,
the CISE tool performs the safety checks using an SMT solver as a backend. A more
user-friendly tool was developed by Marcelino et al. [8], named the Correct Eventual Con-
sistency(CEC) Tool. CEC is based on Boogie verification framework and also proposes
sets of tokens that the developer might use. A token represents an abstract notion of
concurrency control. Nair and Shapiro [28] improved the token generation by using the
counterexamples generated by Boogie.

Hamsaz[9] extends CISE by lowering the causal consistency requirements and generat-
ing concurrency control protocols. Soteria only identifies the list of conflicting operations.
Part III discusses the generation of concurrency control configurations based on distributed
locks, and shows the impact of application workload on the choice of concurrency control
configuration. It requires reasoning about concurrent behaviours.

CISE, CEC (and more generally the work Gotsman et al. [6]) and Hamsaz focus on
the safety of operation-based objects. They assume that the underlying network ensures
causal consistency. Importantly, their proof methodology requires reasoning about concur-
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rent behaviours, reflected as stability conditions. Soteria doesn’t require reasoning about
concurrent behaviour, thanks to the concurrency invariant, Invconc. This is due to a fun-
damental difference in operation-based and state-based update propagation model — in
the former, a replica observes remote updates through a series of operations, in the latter,
remote updates are observed only during a merge operation.

CISE is not well adapted to reasoning about systems that propagate state. Conversely,
Soteria is not well adapted to reason about objects that propagate operations. It is future
work to combine use of both CISE and Soteria to prove properties depending on the
implementation of the objects at hand and also to extend them to delta-based update
propagation, where a delta of the state that changed is propagated, instead of the entire
state.

As mentioned in Section 2.3, Bailis et al. [14] introduced the concept of I-confluence
based on a similar system model to ours. I-confluence states that for an invariant to hold
in a lattice-based state-propagating distributed application, the set of reachable valid (i.e.
invariant preserving) states must be closed under operations and merge. This condition
is similar to the ones presented in Figure 2.6. However, there is a fundamental difference:
while Bailis et al. [14] recognises that one needs to consider only reachable states when
checking that the merge operation satisfies the invariant, they do not provide means to
identify these reachable states.

In other words, I-confluence [14] does not provide a program logic, but rather a meta-
theoretical proof about lattice-based state-propagating systems. This is indeed a hard
problem. In Soteria, we instead over-approximate the set of reachable states by ignoring
whether the states are indeed reachable, but require that their merge satisfies the invariant.
Notice that this is a sound approximation since it guarantees the invariant is satisfied, and
we also verify that every operation preserves this condition as shown in Corollary 2.3.2.1.
It is this abstraction step that makes the analysis performed by Soteria to be syntax-
driven, automated, and machine-checked. This is captured in the concurrency invariant,
Invconc, which is synthesized from the user provided invariant. How to obtain this invariant
is understandably not addressed in Bailis et al. [14] since no proof technique is provided.
Whereas Soteria analyses a program, in contrast the I-confluence paper [14] gives no means
to link the program text to the semantic model, let alone rules for verifying that the
program implies invariant preservation.

A final interesting remark is that we can show how our methodology can aid in the
verification of distributed objects mediated by concurrency control. Some works [24, 25,
29, 30] have considered this problem from the standpoint of synthesis, or from the point
of view of which mechanisms can be used to check a certain property of the system.
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Chapter 6

Conclusion of Part I and Future work

This part of the thesis presented a sound proof rule to verify invariants of state-based dis-
tributed objects. We presented the proof obligations guaranteeing that the implementation
is safe in concurrent execution, by reducing the problem to checking that each operation
of the object satisfies a precondition of the merge function.

We presented Soteria, a tool that proves concurrent correctness or identify the concur-
rent bugs in the design of a distributed object. We have shown several case-studies showing
how to leverage Soteria to ensure correctness of distributed objects.

6.1 Future work

There are several directions for future work on both theoretical and practical aspects.
On the theoretical front, one future research direction is to leverage the modular proof

rule of Soteria to develop a generic proof rule that can verify distributed objects regardless
of the type of update propagation. The first step would be to support distributed objects
that propagate deltas.1 The proof rule can then be extended to include distributed objects
that propagate operations. This would help verify distributed applications with transparent
update propagation.

The proof rule helps in identifying the conflicting operations. The next step on this is a
future research direction. The user can either opt for a coordination-free application with
the help of conflict resolution policies or a lock-based solution. It would be useful to have
formal guidance on the type of applications that could benefit from conflict resolution as
opposed to introducing coordination.

Practically, the future work is to improve the usability of Soteria. Even though So-
teria is fully automatic, the user is expected to provide a specification with pre and post
conditions of operations and merge, along with the object invariants. Automating the
generation of preconditions using weakest precondition calculus [31] would be a first step.
The specification might also include loop invariants which are difficult to write. It would
be helpful to integrate the works that focus on generating loop invariants[32] that might
help writing simpler specifications.

1Deltas are state changes.
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Currently Soteria leverages Boogie[33] and in turn Z3 SMT solver [34] to verify the
proof rules. Instead of relying on a single theorem prover, Soteria can be rewritten in a
different verification framework, for example Why3 [35]. Why3 has a common specification
language and serves as a front-end to different theorem solvers including Z3, Alt-Ergo [36],
CVC4 [37], Coq[38], etc.

Another direction of work could look at generating code and tests from the verified
specification.
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Part II

Designing conflict resolution policies
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Introduction to Part II

In the previous part, we presented an approach for verifying the safety of a concurrent
application. Our tool, Soteria, outputs the list of conflicting methods if any verification
condition fails. These methods, when executed concurrently are unsafe. We say they
conflict.

The next question we face is how do we use this information. There are two options:
to enhance the application with a conflict resolution, or with coordination. For highly-
available distributed applications, it is preferable to avoid coordination, if we could still
maintain safety. Hence, the preferred solution is to design a conflict resolution algorithm.

A conflict resolution algorithm must be deterministic and insensitive to order and
duplication (i.e., idempotent, associative and commutative) to ensure that all replicas
observe the same eventual outcome.

In this part of the thesis, we use the study of a coordination-free replicated tree data
structure to illustrate the design of a distributed application, by developing an appro-
priate conflict resolution algorithm. A distributed tree supports three structural opera-
tions — add, remove and move. We further classify move operations into up-moves and
down-moves. We identify the conditions under which they conflict and introduce conflict
resolution policies to ensure a coordination-free, safe and available replicated tree.

Carla Ferreira, Mário Pereira and Filipe Meirim collaborated with us for this part of
the thesis. A research report is available [39].
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Chapter 7

Design of a safe, convergent and
coordination free replicated tree

Concurrent data structures are an important programming abstraction; designing concur-
rent data structures with non-trivial properties is complex. The tree data structure is
widely used, for instance in file systems and in graphical user interfaces. Trees have partic-
ularly strong requirements: each node is unique, there is a single root, a node has a single
parent and has a path to the root, and the child-parent graph is acyclic.

Much current work in concurrent data structure design focuses on lock-free or wait-free
coordination, using primitives such as compare-and-swap (CAS). However, in a distributed
and replicated setting, even CAS is too strong. Consider for instance a file system replicated
to several locations over the globe, or through a mobile network. Network round-trip-time
between continents can be anywhere between 0.1 and 1.0 seconds; the mobile network may
disconnect completely. To ensure availability, a user of the file system must be able to
update a replica locally, and update without coordinating at all with the other replicas.
Replicas will converge eventually, by exchanging updates asynchronously.

It is a major challenge to maintain safety in this context; specifically, in this case,
to maintain the tree structure. This is a widespread issue; indeed, many replicated file
systems have serious anomalies, including incorrect or diverged states [40, Section 6 for
some examples], violating the tree invariant [41], non-atomic moves [40], re-introducing
coordination [3], or requiring roll-backs [42].

Concurrent atomic move operations are a crucial problem [41]. Consider for instance
a tree composed of the root and children a and b as shown in Figure 7.1. One replica
moves a underneath b, while concurrently (without coordination) the other replica moves
b under a. Naïvely replaying one replica’s updates at the other produces an a − b cycle
disconnected from the root. There can be no coordination-free solution to this problem
that is not somehow anomalous [3].

Supporting low latency, high-availability and safety, this part introduces a new coordination-
free, safe, replicated CRDT [2] tree data structure, called Maram. Maram supports the
usual operations to query the state, to add or to remove a node, and also supports an
atomic move operation. The price to pay is that some move operations “lose”, i.e., have no
effect.
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Figure 7.1: Concurrent cycle causing moves

Query and add are safe since the former does not change the state and the latter inflates
the state monotonically [21]. Remove marks the corresponding node as a “tombstone,” but
leaves it in the data structure, as is common in replicated data structures [43]. Moves can
be divided into two cases: up-moves, where a node moves near to the root of the tree,
and down-moves, where it moves farther away from the root. We devise a deterministic
arbitration rule for the conflicts of both the moves:

• For up-move: against a concurrent up-move of the same node, we assign a total
order between operations, whereby the up-move with the highest priority wins, and
the other loses.

• For down-move: against a concurrent up-move, the up-move wins, and the down-
move loses; against a concurrent down-move, we use the same strategy as for two
concurrent up-moves on the same node.

Further, we examine the effect of “losing” a move operation. We identify the conditions
under which another causally dependent move would be unsafe under a move that loses.
For each move, we preserve a causal history of the dependent operations and the move will
lose if it was dependent on a causally preceding conflicting move that loses.

We provide arguments for the safety violations of a replicated tree, in the presence of
concurrent updates (including moves), being coordination-free. To this effect, we apply
the CISE proof methodology [6]. It follows that every state reachable from the initial
state —whether sequentially or concurrently— satisfies the tree invariant.1 We also use an
additional analysis to check the causal dependencies between move operations.

Maram satisfies an additional desirable property, monotonic reads [44]. This requires
that a replica that has delivered some update will not roll it back.

Effect of a move remains tentative until all concurrent moves have been delivered. A
concurrent move may “win” over it, i.e., the effect of the winning move supersedes the losing
one, whose effect is skipped. We show the effect of skipping on causally dependent move

1 We furthermore claim (without proof) that Maram is live, in the sense that, if every message sent is
eventually delivered to all replicas, then, given some update originating at some replica, its postcondition
eventually takes effect at every replica.
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operation; the skipping is safe with respect to the other operations since it is independent
of any other operation.

We present the principles of Maram, provide arguments for its correctness, and compare
the performance of Maram to competing solutions in a simulated geo-replicated environ-
ment. The response time of Maram is 1.35 times of the safe rollback-based design, and
1.36 times of the unsafe uncoordinated design (both due to overhead of computing the
metadata required for conflict resolution), and up to 11 times faster than (safe) lock-based
designs. Furthermore, Maram stabilizes (i.e., its updates become definitive) three times
faster than a safe rollback-based design when almost one-third of the workload consist of
move operations.

7.1 System Model

A distributed system is modelled as a set of processes, distributed over a (high-latency,
failure-prone) communication network. The processes have disjoint memory and processing
capabilities, and they communicate through message passing. A process does not fail.
Every message is eventually delivered to its destination. Message delivery is consistent
with happens-before (causal consistency).

State and invariant:

The data structure (in this case, a tree) is replicated at a number of processes, called its
replicas. The information managed by a replica on behalf of the data structure is called
its local state. The union of local states is called the global state.2

A data structure is associated with an invariant, a predicate that must always be
satisfied in every local state of a replica. Although evaluated locally, an invariant describes
a global property, in the sense that it must be true at all replicas.

Operations:

An unspecified client application submits an operation at some replica of its choice, which
we call the origin replica of that operation. For availability, the origin replica should carry
out the operation without waiting to coordinate with other replicas.

An update operation has a postcondition that specifies the state after the operation
executes, and a precondition that indicates the domain of the operation. As discussed
in more detail later, when the operation executes with no concurrency, its precondition
guarantees that the operation terminates with the postcondition satisfied.

Updates:

When a client submits an operation, the origin replica generates an effector (a side-effecting
lambda), atomically applies the effector to the origin state, and sends the effector to all

2 Note that this global view cannot be observed by any single replica and is merely an explanatory
device.
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the other replicas. Every replica eventually receives and delivers the effector, atomically
applying it to its own local state.3 The effector eventually executes at every replica.

We assume that effectors are delivered in causal order. This means that, if some replica
that observed an effector u later generates an effector v, then any replica that observes v
has previously observed u.4

In what follows, we ignore queries, and identify an update operation with executing its
effector at all replicas.

7.2 Properties and associated proof rules

Consider some data structure (in this case a tree) characterized by a safety invariant (in
this case, the tree invariant). We say that a state is local-safe if it satisfies the data
structure’s invariant. An update is op-safe if, starting from a local-safe state, it leaves it a
local-safe state. The distributed data structure is safe if every update is op-safe. According
to the CISE logic [6], a distributed data structure is safe if the following properties hold:

1. Sequential safety : Consider an environment restricted to sequential execution (op-
erations execute one after another; there is no concurrency). If the initial state is
local-safe at every replica, and each update is op-safe, it follows that the data struc-
ture is safe under sequential execution. Classically, sequential op-safety implies that
each operation’s precondition satisfies the weakest-precondition of the invariant with
respect to the operation [31].

2. Convergence: Strong Eventual Consistency (SEC) [2] states that two replicas that
have delivered the same set of operations must be in the same state, i.e., the system
converges. If operations commute (as defined later), then SEC is guaranteed [2].

3. Precondition stability: In addition to sequential safety, updates must remain op-safe
in the presence of concurrent (uncoordinated) updates. To ensure this, we apply the
CISE precondition stability rule [6]: consider two updates u and v; if the execution
of u does not make the precondition of v false, nor vice-versa (precondition stability),
then executing u and v concurrently is op-safe. This must be true for all concurrent
pairs of operations.

CISE logic helps us identify the conditions under which concurrent operations conflict.
When conflicting, CISE requires the operations to acquire tokens, that bring in a global
synchronization point. Hence all updates in CISE are assumed to be definitive.

In order to augment the CISE analysis for handling tentative updates, we add a con-
dition for independence to check whether skipping a move affects a move that already
observed the effect of the skipped one. The independency analysis is inspired from Housh-
mand and Lesani [9], even though they also, like CISE, do not consider tentative updates.

Independence analysis: Consider two updates u and v that are safe, u executed before
v. If moving v before u still maintains the safety of v, v is said to be independent of u.

3 Note that, at this point, the system is committed to this operation, and the operation’s precondition
must be true at the remote replica.

4 In Section 7.9 we consider relaxing this requirement to eventual consistency, which states only that
all updates are eventually delivered at all replicas.
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Otherwise, if v is unsafe before executing u, v is dependent on the effect of u.

7.2.1 Sequential safety

Let us refine the proof obligations of the first step, sequential safety, i.e., local-safety under
sequential execution.

The set of reachable states comprises the initial state, and all states transitively reach-
able as a result of executing updates sequentially. The set of reachable states is a subset
of the set of all possible states. Formally, we note the set of states Σ, a state σ, the initial
state σinit, an update u, its precondition Preu, and the set of updates U . When execution
is sequential:

σinit ∈ Σ (7.1)

and

∀u ∈ U, σ ∈ Σ � σ |= Preu =⇒ u(σ) ∈ Σ (7.2)

Σ is the smallest set satisfying (7.1) and (7.2) through a sequence of legal updates from
the initial state.

The data structure must satisfy its invariant in every sequentially reachable state: this
property is called sequential safety. Formally, if Inv denotes the invariant, then

∀σ ∈ Σ � σ |= Inv (7.3)

If the initial state is safe and all sequential updates preserve the invariant, by induction,
the data structure is sequentially safe. Formally, if the initial state, σinit, satisfies the
invariant, Inv,

σinit |= Inv (7.4)

and each update u executing on a state σ preserves the invariant,

∀u ∈ U, σ, σ′ ∈ Σ � σ |= (Inv ∧ Preu) ∧ u(σ) = σ′ =⇒ σ′ |= Inv (7.5)

then the invariant holds true for all reachable states. Preu is the weakest precondition
required to maintain the safety of update u. Weakest precondition for an update can be
calculated by predicate transformer semantics as described by Dijkstra [31].

7.2.2 Concurrency

Let us now turn to concurrent execution, and consider the proof obligations for convergence
and safety.

7.2.2.1 Convergence

If a replica initiates an update u, while concurrently another replica initiates v, the first
replica executes their effectors in the order u; v and the second one in the order v;u.
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Without precaution, it is likely that their states diverge.
To prevent this, the Strong Eventual Consistency (SEC) property [2] requires that any

two replicas that delivered the same updates are in equivalent states. To satisfy SEC,
effector functions are designed to commute, i.e., both orders above leave the data in the
same state. We define commutativity as follows:

∀u1, u2 ∈ U, σ, σ1, σ2 ∈ Σ � u1(σ) = σ1 ∧ u2(σ) = σ2 =⇒ u2(σ1) = u1(σ2) (7.6)

7.2.2.2 Precondition stability

The main proof obligation for concurrent execution is that the precondition of any effector
is stable against (i.e., not negated by) an effector that may execute concurrently [6]. This
CISE rule is a variant of rely-guarantee reasoning, adapted to a replicated system where
effectors execute atomically and definitively. The precondition stability condition can be
formally specified as follows:

∀u1, u2 ∈ U, σ, σ′ ∈ Σ � σ |= (Inv ∧ Preu1
∧ Preu2

) ∧ u1(σ) = σ′ =⇒ σ′ |= Preu2
(7.7)

Gotsman et al. [6] uses Tokens to formalize concurrency control. Two operations that
share the same token do not execute concurrently. Since we are designing a coordination-
free data structure, we consider the set of tokens to be an empty set, and hence absent
from the formalisation.

7.2.2.3 Independence

In order to ensure that the safety of an operation is not impacted by skipping any previous
operations, we augment the precondition stability analysis with an independence analysis
as presented by Houshmand and Lesani [9]. An operation u2 is said to be independent of
operation u1 if the precondition of u2, Preu2 , is enabled even without executing u1. The
condition for independency can be formally specified as follows:

∀u1, u2 ∈ U, σ, σ′, σ′′, σ′′′ ∈ Σ � σ |= (Inv ∧ Preu1) ∧ σ′ |= (Inv ∧ Preu2)

∧σ′′ |= Inv ∧ u1(σ) = σ′ ∧ u2(σ′) = σ′′ ∧ u2(σ) = σ′′′ =⇒ σ |= Preu2
∧ σ′′′ |= Inv

(7.8)

In short, u2 is independent of u1 if, irrespective of whether u1 executed before u2, the
execution of u2 is safe. This condition is required for safety only if the effect of u1 is
tentative, i.e., if u1 has conflict resolution policies while applying the update on the state.

7.2.3 Mechanized verification

In order to mechanically discharge the proof obligations listed above, we the use Why3
system [45], augmented with the CISE3 plug-in [46]. Why3 is a framework used for the
deductive verification of programs, i.e., “the process of turning the correctness of a program
into a mathematical statement and then proving it” [47]. The CISE3 plug-in automates
the CISE proof rules described above, and generates the required sequential-safety, com-
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mutativity and stability checks. Why3 then computes a set of proof obligations, that are
discharged via external theorem provers.

7.3 Sequential specification of a tree

The specification of a data structure consists of its state, a set of operations, and an
invariant. In this section, we will develop a sequentially-safe specification of a tree.

7.3.1 State

The state of a tree data structure consists of a set of nodes, Nodes, and a relation on nodes,
mapping a child node to its parent. The parent relation is indicated by →. The ancestor
relation, →∗ is defined as

∀a, n ∈ Nodes � n→∗ a , n→ a ∨ ∃p ∈ Nodes � n→ p ∧ p→∗ a (7.9)

At initialization, the set of nodes consists of a single root node. The parent of the root is
the root itself. The initial state of the tree is thus Nodes = {root} where root→ root.

A crucial aspect of the abstract representation of the tree is how to express the relation
between nodes. Three choices are possible, either maintain a child-to-parent mapping,
a parent-to-child mapping, or both. In particular, when implementing a tree, traversal
efficiency depends on keeping both up and down pointers [48]. Considering that child-
to-parent and parent-to-child mappings describe dual views (i.e., node p is the parent of
node n iff node n is a descendant of node p) we selected the one that leads to a simpler
specification. An advantage of using a child-to-parent mapping is that it can be maintained
as a function, ensuring that each node has a unique parent. The alternative parent-to-child
mapping would require a more complex representation, e.g., a function that maps each node
to its set of direct descendants, which would negatively impact both the simplicity of the
specification and the proof effort.

7.3.2 Invariant

Formally, the invariant of the tree data structure is as follows:

root ∈ Nodes ∧ root→ root ∧ ∀n ∈ Nodes � n 6= root =⇒ root 6→ n (Root)

∧ ∀n ∈ Nodes � ∃p ∈ Nodes � n→ p (Parent)

∧ ∀n, p, p′ ∈ Nodes � n→ p ∧ n→ p′ =⇒ p = p′ (Unique)

∧ ∀n ∈ Nodes � n→∗ root (Reachable)

Clause Root lists the properties of the root node; present in Nodes, and is the only node to
be its own parent. Clause Parent asserts that every node in the tree has a parent present in
the tree. Clause Unique requires the parent for each node to be unique. Clause Reachable
imposes that the root is an ancestor of all nodes.
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We call this conjunction the tree invariant.

Inv , Root ∧ Parent ∧Unique ∧ Reachable (7.10)

A further invariant:

∀n ∈ Nodes � n 6= root =⇒ n 6→∗ n (Acyclic)

which forbids cycles (no node is ancestor of itself, except root), can be derived from the
previous invariants. Since the parent relation inductively defines the ancestor relation, by
Unique there is a unique path to a given ancestor of a node. By Reachable, the root node
is an ancestor of every node in the tree. In this scenario, a cycle would require a node to
have multiple parents, which is prevented by Unique.

7.3.3 Operations

We consider the following three structural operations: add, remove and move.

Add

An add operation has two arguments: the node to be added, n, and its prospective parent,
p. The add effector adds node n to Nodes and the mapping n→ p to the parent relation.
The postcondition of the add effector indicates this:5

Postadd(n,p) , n ∈ Nodes ∧ n→ p (7.11)

To ensure that the tree invariant is preserved, we derive, through the weakest precondition
calculus, the precondition that n is a new node and p is already in the tree, i.e.,

Preadd(n,p) , n /∈ Nodes ∧ p ∈ Nodes (7.12)

Let us decompose the derivation of this precondition. If the add operation is updating a
safe state, i.e., the starting state respects the invariant, and if the precondition is satisfied,
then the update should maintain the invariant. Hereafter, we highlight the precondition
clauses needed to ensure each part of the invariant.6

Inv ∧ n /∈ Nodes Jadd(n, p)K

Postadd(n,p) ∧ Root

Inv ∧ p ∈ Nodes Jadd(n, p)K

Postadd(n,p) ∧ Parent

Inv ∧ n /∈ Nodes Jadd(n, p)K

Postadd(n,p) ∧Unique

Inv ∧ p ∈ Nodes Jadd(n, p)K

Postadd(n,p) ∧ Reachable

With the derived preconditions, the add operation can be specified as follows:

(Add-Operation)
Inv ∧ n /∈ Nodes ∧ p ∈ Nodes Jadd(n, p)K

Inv ∧ n ∈ Nodes ∧ n→ p

5 For readability, we simplify the postcondition to express only the changes caused by the operation.
The part of the state not mentioned remains unaffected.

6 Denoted in inference style, as in Kaki et al. [25]. An update event is noted J.K.
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If the add operation is issued on a state that does not contain n, and p is in the tree, then
n is added to the tree with a pointer to p. If the operation is issued in a state that does
not respect the precondition, it is skipped.

Remove operation:

Remove receives as argument a node n to be deleted. Its effector removes node n from the
set of nodes. The postcondition of the remove operation indicates this effect:

Postremove(n) , n /∈ Nodes (7.13)

Similar to add, we list the predicates needed to preserve each clause of the invariant. In
this case, we must ensure that n is not the root, and n is a leaf node, i.e., there are no
child nodes for n.

Inv ∧ n 6= root Jremove(n)K

Postremove(n) ∧ Root

Inv ∧ ∀n′ ∈ Nodes � n′ 6→ n Jremove(n)K

Postremove(n) ∧ Parent

Inv ∧ true Jremove(n)K

Postremove(n) ∧Unique

Inv ∧ ∀n′ ∈ Nodes � n′ 6→ n Jremove(n)K

Postremove(n) ∧ Reachable

In summary, the remove operation can be specified as follows:

(Remove-Operation)
Inv ∧ n 6= root ∧ ∀ n′ ∈ Nodes � n′ 6→ n Jremove(n)K

Inv ∧ n /∈ Nodes

If a remove operation is issued on a state where n is not root and has no children, then n
is removed from the tree; otherwise it is skipped.

Move operation:

The move operation takes two arguments: the node to be moved n, and the new parent
p′. Its effector changes the parent of node n to p′, with the following postcondition:

Postmove(n,p′) , n→ p′ (7.14)

Note that the postcondition does not state that the previous parent is no longer a parent
of node n, i.e., n 6→ p, because of the uniqueness of the child-to-parent relationship as
discussed in Subsection 7.3.1.

To preserve the expected behaviour of the move operation we require the node to be
moved to be present in the tree. Together with this precondition, we derive the additional
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clauses required for the safety of move.

Inv ∧ n 6= root Jmove(n, p′)K

Postmove(n,p′) ∧ Root

Inv ∧ p′ ∈ Nodes Jmove(n, p′)K

Postmove(n,p′) ∧ Parent

Inv ∧ true Jmove(n, p′)K

Postmove(n,p′) ∧Unique

Inv ∧
p′ ∈ Nodes ∧ p′ 6→∗ n∧
(n 6= root =⇒ p′ 6= n) Jmove(n, p′)K

Postmove(n,p′) ∧ Reachable

These last condition for ensuring Reachable is to prevent move from creating a cycle,
rendering some nodes unreachable, as we show with the following counterexample.

Consider nodes a and b in Figure 7.2. Root node R is the parent of node a, i.e., a→ R

and node a is the parent of node b, b → a, and hence R is the ancestor of b, b →∗ R.
Moving node a under node b will make both a and b unreachable from the root, and also
form a cycle. This violates the invariant by invalidating the tree structure. To avoid this
scenario, a precondition is needed that prevents moving a node underneath itself. When
moving node n from its current parent to the new parent p′, p′ should not be n (except
when n = p = p′ = root) or a descendant of n, p′ 6= n ∧ p′ 6→∗ n.

Combining all these conditions, the move operation can be specified as follows:

(Move-Operation)
Inv ∧ n ∈ Nodes ∧ n 6= root ∧ p′ ∈ Nodes ∧ p′ 6= n ∧ p′ 6→∗ n Jmove(n, p′)K

Inv ∧ n→ p′

For the move operation to be safe, n is not the root, p′ must be in the tree, n and p′ are
different, and p′ is not a descendant of n.

7.3.4 Mechanized verification of the sequential specification

Following the formalization of the tree data structure above, we use Why3 to mechanically
prove its sequential safety. The mechanical proof requires some extra definitions and
axioms.

We need a predicate for reachability. For this, we first define a path, a sequence of nodes
related by the parent relation. We use s[n] to indicate the nth element in the sequence s.
We denote the set of possible sequences of nodes by S. The path predicate determines the
validity conditions for a path s between nodes x and y in state σ. If x = y, the path has
length zero. Otherwise, the length of the path is greater than zero, where the first path
element must be x, all contiguous path elements are related by the parent relation, and
node y is the parent of the last path element. We say y is reachable from x if there exists
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a path from x to y. Formally,

path(σ, x, y, s) , length(s) = 0 ∧ x = y (7.15)

∨ (length(s) > 0 ∧ s[0] = x ∧ s[length(s)− 1]→ y ∧
∀ 0 ≤ i < length(s)− 1 � s[i]→ s[i+ 1])

reachability(σ, x, y) ,∃s ∈ S � path(σ, x, y, s) (7.16)

To formalize the properties of the path predicate, we define a set of axioms as follows:

path_to_parent , ∀σ ∈ Σ � ∀x, y ∈ Nodes � x→ y =⇒ ∃s ∈ S � path(σ, x, y, s) ∧ s = [x]

(7.17)

path_composition , ∀σ ∈ Σ � ∀x, y, z ∈ Nodes � ∃s1 ∈ S � path(σ, x, y, s1) (7.18)

∧ y → z =⇒ ∃s2 ∈ S � path(σ, x, z, s2) ∧ s2 = s1 + [y]

path_transitivity , ∀σ ∈ Σ � ∀x, y, z ∈ Nodes, s1, s2 ∈ S � path(σ, x, y, s1) (7.19)

∧ path(σ, y, z, s2) =⇒ ∃s3 ∈ S � path(σ, x, z, s3) ∧ s3 = s1 + s2

path_uniqueness , ∀σ ∈ Σ � ∀x, y ∈ Nodes, s1, s2 ∈ S � path(σ, x, y, s1) (7.20)

∧ path(σ, x, y, s2) =⇒ s1 = s2

path_exclusion , ∀σ ∈ Σ � ∀x, y, z ∈ Nodes, s ∈ S � x 6→∗ y ∧ path(σ, z, y, s) =⇒ x /∈ s (7.21)

path_separation , ∀σ ∈ Σ � ∀x, y, z ∈ Nodes, s1, s2 ∈ S � path(σ, x, y, s1) (7.22)

∧ path(σ, y, z, s2) ∧ x 6= y ∧ x 6= z ∧ y 6= z =⇒ s1 ∩ s2 = ∅

Axiom path_to_parent defines the singleton path of a node to its parent. The recursive
composition of paths is axiomatized in path_composition. The transitivity property is
defined in path_transitivity. Axiom path_uniqueness asserts there is a single path be-
tween two nodes. The path_exclusion expresses the conditions for excluding nodes from
a path. Lastly, path_separation defines a convergence criterion essential for Why3’s SMT
solvers, asserting that the direction of the path is converging towards the root.

We also require extra axioms to express the properties of the unaffected nodes in the
case of add and move operations. They are as follows:

σadd = add(n, p)(σ)

σmove = move(n, p)(σ)

remaining_nodes_add , ∀σ ∈ Σ � ∀n′ ∈ Nodes, s1, s2 ∈ seq(Nodes) � n′ 6= n (7.23)

∧ path(σ, n′, root, s1) ∧ path(σadd, n
′, root, s2) =⇒ s1 = s2

descendants_move , ∀σ ∈ Σ � ∀n′ ∈ Nodes, s1, s2 � path(σ, n′, c, s1) (7.24)

∧ path(σmove, n
′, c, s2) =⇒ s1 = s2

remaining_nodes_move , σ ∈ Σ � ∀n′ ∈ Nodes, s1, s2 � n
′ 6→∗ n (7.25)

∧ path(σ, n′, root, s1) ∧ path(σmove, n
′, root, s2) =⇒ s1 = s2

The state σadd is obtained by applying add(n, p) operation to σ. The axiom remaining_nodes_add
asserts that the paths already present in the tree remain in the tree after executing the add
operation. Given that the move operation updates σ to σmove, axiom descendants_move
asserts that the descendants of the node being moved continue to be its descendants, and
remaining_nodes_move asserts that other paths are not affected. These axioms are de-
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fined to ensure that the paths to the root, from nodes unaffected by move or add operations,
remain unchanged. The specification proven using Why3 is available in Meirim et al. [49].

7.4 Concurrent tree specification

In this section, we discuss the convergence and concurrent safety of the tree. In a sequential
execution environment, as seen in Section 7.3, if the initial state and each individual update
are safe, then all reachable states are safe. This is not true when executing concurrently on
multiple replicas. In this case, there are three extra proof obligations (Subsection 7.2.2.1,
Subsection 7.2.2.2, Subsection 7.2.2.3):

• Ensuring that different replicas converge, despite effectors being executed concur-
rently in different orders.

• Ensuring that safety of an update is not violated by a concurrent update.

• Ensuring that a tentative update does not effect the safety of the dependent update.

For ease of exposition, first we discuss concurrent safety; convergence is deferred to
Section 7.6, since the conflicts occurring in the latter can be addressed using the policies
discussed in the former, and independence is discussed in Section 7.7.

7.4.1 Precondition stability

We use the precondition stability rule of CISE logic (Subsection 7.2.2.2) to analyze the
concurrent safety of our tree data structure. For each operation, we analyze whether it
violates the precondition of any other concurrent operation. Formally, operation op1 is
stable under operation op2 if,

Inv ∧ Preop1 ∧ Preop2 Jop2K

Inv ∧ Postop2
∧ Preop1

(7.26)

We check the sequential specification for stability. If this fails, then it will be necessary
to modify the specification, so that it does satisfy stability.

7.4.1.1 Stability of add operation

Concurrent adds: First we check the stability of the precondition of add against itself.
Let us consider two operations add(n1, p1) and add(n2, p2). Using Equation (7.26), we get

Preadd(n1,p1) , n1 /∈ Nodes ∧ p1 ∈ Nodes

Preadd(n2,p2) , n2 /∈ Nodes ∧ p2 ∈ Nodes

Postadd(n2,p2) , n2 ∈ Nodes ∧ n2 → p2

Inv ∧ Preadd(n1,p1) ∧ Preadd(n2,p2) ∧ n1 6= n2 Jadd(n2, p2)K

Inv ∧ Postadd(n2,p2) ∧ Preadd(n1,p1)

(7.27)
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The highlighted clause n1 6= n2 is required for the stability condition. Indeed, the se-
quential specification does not disallow adding the same node at different replicas, and the
clause n /∈ Nodes is unstable therein. Thus the analysis highlights a subtlety.

Concurrent remove: Let us check the stability of the precondition of add(n1, p1) against
a concurrent remove(n2). Using (7.26), we get:

Preadd(n1,p1) , n1 /∈ Nodes ∧ p1 ∈ Nodes

Preremove(n2) , n2 6= root ∧ ∀ n′ ∈ Nodes � n′ 6→ n2

Postremove(n2) , n2 /∈ Nodes

Inv ∧ Preadd(n1,p1) ∧ Preremove(n2) ∧ n2 6= p1 Jremove(n2)K

Inv ∧ Postremove(n2) ∧ Preadd(n1,p1)

(7.28)

In the sequential specification, clause p1 ∈ Nodes in the precondition of add is unstable
against a remove of its parent; performing those operations concurrently would be unsafe.

To fix this, we see two possible approaches. The classical way is to strengthen the pre-
condition with coordination, for instance locking to avoid concurrency. We reject this, as
it conflicts with our objective of availability under partition. Our alternative is to weaken
the specification thanks to coordination-free conflict resolution. We apply a common ap-
proach, to mark a node as deleted, as a so-called tombstone, without actually removing it
from the data structure.7

We now distinguish a concrete state and its abstract view. We modify the specification
to include a set of tombstones, TS (initially empty), in the concrete state. The abstract
state is the resolved state as seen by some application using Maram. An abstraction
function maps the concrete state to the abstract state.

The concrete and abstract states of a tree are the same if either there are no nodes
in the set of tombstones or for each node in the set of tombstones, all its descendants are
also present in the set of tombstones. In other cases, the abstraction function need to
provide guidance on the presence of the descendants of a node that appears in the set of
tombstones.

We present two abstraction functions - skipping_abstraction and keeping_abstraction.
The skipping_abstraction skips the descendants of the node that is marked as a tombstone.
The keeping_abstraction, on the other hand, preserves the tombstoned node if it observes
the node has a descendant not in the set of tombstones. Both the abstraction functions
satisfy the required safety properties since they only change the view of the tree for an
application. Therefore the choice is application-specific.

Formally, if Nodescon and Nodesabs denote the set of nodes in the concrete and abstract
7 Ideally, one will remove the tombstone at some safe time in the future; this is non-trivial [50] and out

of the scope of this paper.
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Figure 7.3: Resolving conflict of concurrent remove and add

state respectively,

skipping_abstraction ,∀n ∈ Nodescon � n /∈ TS ∧ 6 ∃n′ ∈ Nodescon�

n′ ∈ TS ∧ n→∗ n′ ⇐⇒ n ∈ Nodesabs (7.29)

keeping_abstraction ,∀n ∈ Nodescon � n /∈ TS ∨ ∃n′ ∈ Nodescon�

n′ /∈ TS ∧ n′ →∗ n⇐⇒ n ∈ Nodesabs (7.30)

To illustrate the difference, consider the tree consisting of the root and a single child,
as shown in Figure 7.3. One replica performs a remove of node p, while concurrently
another replica adds n under p. In the first replica, node p is marked as a tombstone in the
concrete state (the shaded box). Thus, the abstract state shows node p removed. When
the replicas exchange their updates, they converge to the concrete state (the state in the
shaded box). Figure 7.3a and Figure 7.3b show the result of a skipping_abstraction and
keeping_abstraction respectively. In both the cases, node p is marked as a tombstone. In
the case of the skipping_abstraction, node p and the descendants are “skipped”. Meanwhile
for keeping_abstraction, since its descendant n is not a tombstone, p is “revived” in the
abstract view.
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With tombstones, let us update the postcondition for remove:

Postremove(n) , n ∈ TS (7.31)

Let us now derive the predicates needed to preserve each clause of the invariant in this
refined case.

Inv ∧ n 6= root Jremove(n)K

Postremove(n) ∧ Root

Inv ∧ true Jremove(n)K

Postremove(n) ∧ Parent

Inv ∧ true Jremove(n)K

Postremove(n) ∧Unique

Inv ∧ true Jremove(n)K

Postremove(n) ∧ Reachable

To maintain sequential safety in the modified remove specification, the precondition forbids
only removing the root node. As the remove operation does not alter the tree structure,
reachability is not impacted. The refined specification of the remove operation is as follows:

(Remove-Operation)
Inv ∧ n 6= root Jremove(n)K

Inv ∧ n ∈ TS

The application could strengthen this precondition with an added clause to delete only
the leaf nodes visible in the abstract view. This helps prevent accident loss of a sub-tree.
Since this is not necessary for safety, we are not considering that condition.

Concurrent move: Next we check the stability of the precondition of add under a
concurrent move operation. Let us consider two operations add(n1, p1) and move(n2, p

′
2).

Using (7.26), we get

Preadd(n1,p1) , n1 /∈ Nodes ∧ p1 ∈ Nodes

Premove(n2,p′
2)
, n2 ∈ Nodes ∧ n2 6= root ∧ p′2 ∈ Nodes ∧ p′2 6= n2 ∧ p′2 6→∗ n2

Postmove(n2,p′
2)
, n2 → p′2

Inv ∧ Preadd(n1,p1) ∧ Premove(n2,p′
2)
∧ true Jmove(n2, p′2)K

Inv ∧ Postmove(n2,p′
2)
∧ Preadd(n1,p1)

(7.32)

We see that the precondition of add is stable against a concurrent move operation.

7.4.1.2 Stability of remove operation

Concurrent add: Consider the sequential specification of two operations remove(n1)

and add(n2, p2). Using (7.26), we get

Preremove(n1) , n1 6= root ∧ ∀ n′ ∈ Nodes � n′ 6→ n1

Preadd(n2,p2) , n2 /∈ Nodes ∧ p2 ∈ Nodes

Postadd(n2,p2) , n2 ∈ Nodes ∧ n2 → p2
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Inv ∧ Preremove(n1) ∧ Preadd(n2,p2) ∧ n1 6= p2 Jadd(n2, p2)K

Inv ∧ Postadd(n2,p2) ∧ Preremove(n1)

(7.33)

We see that the clause that node n1 has to be a leaf node is not satisfied if n1 = p2

since add operation introduces a child node under p2. However, the refined specification
of tombstones as described above does not require the node n1 to be a leaf node. So that
solution fixes this conflict as well.

Concurrent remove: Consider the sequential specification of two remove operations
remove(n1) and remove(n2). Using (7.26), we get

Preremove(n1) , n1 6= root ∧ ∀ n′ ∈ Nodes � n′ 6→ n1

Preremove(n2) , n2 6= root ∧ ∀ n′ ∈ Nodes � n′ 6→ n2

Postremove(n2) , n2 /∈ Nodes

Inv ∧ Preremove(n1) ∧ Preremove(n2) ∧ true Jremove(n2)K

Inv ∧ Postremove(n2) ∧ Preremove(n1)

(7.34)

We see that the remove operation is stable under a concurrent remove. Furthermore, the
refined specification is also stable since it adds n1 and n2 to TS.

Concurrent move: Consider the sequential specification of two operations remove(n1)

and move(n2, p
′
2). Using (7.26), we get

Preremove(n1) , n1 6= root ∧ ∀ n′ ∈ Nodes � n′ 6→ n1

Premove(n2,p′
2)
, n2 ∈ Nodes ∧ n2 6= root ∧ p′2 ∈ Nodes ∧ p′2 6= n2 ∧ p′2 6→∗ n2

Postmove(n2,p′
2)
, n2 → p′2

Inv ∧ Preremove(n1) ∧ Premove(n2,p′
2)
∧ n1 6= p′2 Jmove(n2, p′2)K

Inv ∧ Postmove(n2,p′
2)
∧ Preremove(n1)

(7.35)

We see that the clause for the remove operation that n1 should be a leaf node is violated
if a node is moved under it. Again, we can observe that the refined specification of remove
eliminates this issue due to the absence of the violation-causing clause.

7.4.1.3 Stability of move operation

Concurrent add: Consider the sequential specification of two operations move(n1, p
′
1)

and add(n2, p2). Using (7.26), we get

Premove(n1,p′
1)
, n1 ∈ Nodes ∧ n1 6= root ∧ p′1 ∈ Nodes ∧ p′1 6= n1 ∧ p′1 6→∗ n1

Preadd(n2,p2) , n2 /∈ Nodes ∧ p2 ∈ Nodes

Postadd(n2,p2) , n2 ∈ Nodes ∧ n2 → p2

Inv ∧ Premove(n1,p′
1)
∧ Preadd(n2,p2) ∧ true Jadd(n2, p2)K

Inv ∧ Postadd(n2,p2) ∧ Premove(n1,p′
1)

(7.36)
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Stability
Stable against concurrent operation

add(n2, p2) remove(n2) move(n2, p
′
2)

O
pe

ra
ti
on

s add(n1, p1) n1 6= n2 p1 6= n2 true

remove(n1) n1 6= p2 true n1 6= p′2

move(n1, p
′
1) true p′1 6= n2 p′1 6→∗ n2

Table 7.1: Stability analysis of sequential specification

The precondition of move is stable against a concurrent add operation.

Concurrent remove: Consider the sequential specification of two remove operations
move(n1, p

′
1) and remove(n2). Using (7.26), we get

Premove(n1,p′
1)
, n1 ∈ Nodes ∧ n1 6= root ∧ p′1 ∈ Nodes ∧ p′1 6= n1 ∧ p′1 6→∗ n1

Preremove(n2) , n2 6= root ∧ ∀ n′ ∈ Nodes � n′ 6→ n2

Postremove(n2) , n2 /∈ Nodes

Inv ∧ Premove(n1,p′
1)
∧ Preremove(n2) ∧ n2 6= p′1 Jremove(n2)K

Inv ∧ Postremove(n2) ∧Premove(n1,p′
1)

(7.37)

Observe here that removing n2 violates the clause p′1 ∈ Nodes if n2 and p′1 are the same.
However, in our refined specification, the postcondition of remove is n2 ∈ TS, keeping the
clause p′1 ∈ Nodes stable.

Concurrent move: Consider the sequential specification of two operations move(n1, p
′
1)

and move(n2, p
′
2). Using (7.26), we get

Premove(n1,p′
1)
, n1 ∈ Nodes ∧ n1 6= root ∧ p′1 ∈ Nodes ∧ p′1 6= n1 ∧ p′1 6→∗ n1

Premove(n2,p′
2)
, n2 ∈ Nodes ∧ n2 6= root ∧ p′2 ∈ Nodes ∧ p′2 6= n2 ∧ p′2 6→∗ n2

Postmove(n2,p′
2)
, n2 → p′2

Inv ∧ Premove(n1,p′
1)
∧ Premove(n2,p′

2)
∧ p′1 6→∗ n2 Jmove(n2, p′2)K

Inv ∧ Postmove(n2,p′
2)
∧ Premove(n1,p′

1)

(7.38)

We see here that a concurrent move of p1 or an ancestor of p1 invalidates the precondition
clause p′1 6→∗ n1 that prevents a cycle from forming. This is a subtle condition missed
in many previous works [3, 40, 42]; hence it highlights the value of a formal analysis.
We discuss this condition in more detail in Section 7.5 and explain how we refine the
specification for stability.

Table 7.1 shows the summary of the stability analysis on the sequential specification
discussed in Section 7.3. A condition indicates that the precondition of the operation in
that row is stable under the operation in the column under the condition.
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Figure 7.4: Critical ancestors and critical descendants

7.5 Safety of concurrent moves

We return to concurrent moves and study in more detail how a move operation on a remote
replica might affect the precondition of a concurrent move in the local replica. Consider a
local operation move(n, p′). In a sequential execution, precondition clause p′ 6→∗ n forbids
moving n under itself (which would cause a cycle). However a concurrent remote move of
p′ or an ancestor of p′ under n will not preserve the precondition of the operation, p′ 6→∗ n,
resulting in a cycle. We call this move as a cycle-causing-concurrent-move.

Observe that the precondition prevents an ancestor of n moving under itself in sequen-
tial execution, whereas a concurrent move of the ancestors of p′ may result in a cycle.
Therefore, only the concurrent move of the ancestors of p′ that are not ancestors of n
would lead to a cycle. We call this set of ancestors critical ancestors, and the set of n and
its descendants critical descendants. Formally,

critical_ancestors(n, p′) , {a ∈ Nodes � p′ →∗ a ∧ n 6→∗ a} (7.39)

critical_descendants(n, p′) , {d ∈ Nodes � d→∗ n} (7.40)

To illustrate critical ancestors and critical descendants, consider two concurrent move
operations move(n, p′) and move(p′, n). Figure 7.4 shows the critical ancestors and critical
descendants of both move operations. The node l is the Least Common Ancestor (LCA)
of n and p′, i.e., their common ancestor farthest from the root. The dark gray region with
a border represents the critical ancestors of move(n, p′); the borderless dark gray region
represents their critical descendants. The lighter gray region with and without borders
represents the critical ancestors and critical descendants of move(p′, n).

A concurrent move operation moving a node from the set of critical ancestors under
any critical descendant of a local move would result in a cycle. Note that the set of critical
descendants of the local move overlaps with the set of critical ancestors of the remote
cycle-causing-concurrent-move. Hence, we consider only the critical ancestors of move
operations.
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7.5.1 Classifying moves

Let us take a step back and analyze the types of move operations. Some move operations
result in a node moving farther away from the root, called down-moves, in contrast to
those moving it nearer to the root, or to remain at the same distance, called up-moves.
We define rank as the distance of a node from the root node, as follows:

rank(root) = 0 (7.41)

n→ p ∧ n 6= root =⇒ rank(n) = rank(p) + 1 (7.42)

up-move(n, p′) , rank(n) > rank(p′) (7.43)

down-move(n, p′) , rank(n) ≤ rank(p′) (7.44)

Consider an up-move operation, move(n, p′), i.e., rank(n) > rank(p′). Since critical de-
scendants are descendants of n or n, their rank will be at least the rank of n. Similarly,
since critical ancestors are p′ or ancestors of p′, their rank will be at most the rank of p′.
Hence, in the case of an up-move, the rank of a critical descendant will be always greater
than the rank of a critical ancestor, i.e.,

∀n, p, p′, d, a ∈ Nodes � n→ p ∧ rank(n) > rank(p′) ∧ d� n ∧ p′ � a

=⇒ rank(d) > rank(a) (7.45)

This implies that a cycle-causing-concurrent-move can only be a down-move. Hence,
we have that concurrent up-moves are safe; stability issues can occur only between two
concurrent down-moves, or between an up-move and a down-move.

7.5.2 Coordination-free conflict resolution for concurrent moves

Let us now design a coordination-free conflict resolution policy for the moves that conflict.
We have two possibilities, either avoid concurrent moves by avoiding concurrency using
some coordination technique such as locking, or weaken the specification using a conflict
resolution policy. In this work we prefer the later since our aim is to design a coordination-
free data structure.

A conflict resolution policy is required if both the concurrent move operations move a
node in the set of critical ancestors of the other. The choice of conflict resolution policy is
always somewhat arbitrary. We propose the following:

• If the concurrent moves are up-moves, apply both their effects.

• If there is a concurrent up-move and down-move, up-move wins and the down-move
is skipped.

• If the concurrent moves are down-moves, deterministically resolve conflict, eg., the
operation with the highest priority wins. The priority of a move operation can be
set by the application, with a condition - priorities are unique [51].

Contrast our approach with the alternative that uses shared-exclusive locks for concur-
rent moves [3]. Consider concurrent operations move(n, p′), moving node n under p′, and
move(p′, n), moving node p′ under n. These operations compete for a lock. The one that
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Commutativity
Operations

add(n2, p2) remove(n2) move(n2, p
′
2)

O
pe

ra
ti
on

s
add(n1, p1) true true true

remove(n1) true true true

move(n1, p
′
1) true true ¬(n1 = n2 ∧ p′1 6= p′2)

Table 7.2: Result of commutativity analysis

succeeds first will apply its move, blocking the other. When it releases the lock, this releases
the second one, but its precondition is no longer valid and it cannot execute. Thereby,
safety is preserved, at the cost of aborting the second move. The present work essentially
achieves the same end result, but without the overhead of locking. Our experiments in
Chapter 8 show the performance difference.

7.6 Convergence

As discussed in Section 7.2, to ensure convergence concurrent updates should commute [2].
The results of the commutativity analysis is show in Table 7.2.

Add and remove operations result in adding the added and removed node to Nodes and
TS respectively. Since set union is commutative, each of these two operations commutes
with itself and with the other.

The move operation changes the parent pointer of a node. It commutes with add and
remove, since it does not have an effect on set membership.

However, observe that in the sequential specification, two moves do not commute, if
the same node is moved to two different places. In Subsection 7.5.2, we have explained a
winning operation between a concurrent up-move and down-move and concurrent down-
moves. Concurrent up-moves on the same node can be non-commutative though. This
issue is fixed by the deciding the priority between the concurrent up-moves (like concurrent
down-moves).

7.7 Independence

We use the independence conditions from Subsection 7.2.2.3 to check for safety violations
due to tentative moves. We check whether each operation is independent of up-move
and down-move since they are the only operations that have tentative effects. For the
dependent operations, we compute the condition under which it is dependent and use it
to devise dependency resolution policies. In order to compute dependency conditions, we
use the dependency analysis proposed by Houshmand and Lesani [9]. An operation op2 is
dependent on op1 if the execution of op1 enabled Preop2 that was not enabled before its
execution, i.e.,

Inv ∧ Preop1 Jop1K

Inv ∧ Postop1 ∧ Preop2

(7.46)
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If the dependency condition evaluates to true, then op2 is independent of op1. We use this
analysis to check the independence of add, remove, up-move and down-move with respect
to a historical tentative operation, i.e., an up-move or down-move performed before the
operation under observation.

7.7.1 Independence of add operation

Historical up-move: We use Equation 7.7 as follows:

Preup-move(n1,p′
1)
, n1 ∈ Nodes ∧ n1 6= root ∧ p′1 ∈ Nodes ∧ n1 6= p′1 ∧ p′1 6→∗ n1 ∧ rank(n1) > rank(p′1)

Postup-move(n1,p′
1)
, skip ∨ n1 → p′1

Preadd(n2,p2) , p2 ∈ Nodes ∧ n2 /∈ Nodes

Since the historical up-move doesn’t change the membership of Nodes, we can see that
add is independent of up-move.

Historical down-move: An add operation is independent of a historical down-move in
the same manner because it does not change the membership of Nodes either.

7.7.2 Independence of remove operation

Historical up-move: For checking the independence of remove, Equation 7.7 becomes:

Preup-move(n1,p′
1)
, n1 ∈ Nodes ∧ n1 6= root ∧ p′1 ∈ Nodes ∧ n1 6= p′1 ∧ p′1 6→∗ n1 ∧ rank(n1) > rank(p′1)

Postup-move(n1,p′
1)
, skip ∨ n1 → p′1

Preremove(n2) , n2 6= root

Since n2 6= root is unaffected by a historical up-move, remove is independent of up-move.

Historical down-move: Similarly to historical up-move, a historical down-move also
has no impact of the precondition of a remove operation. Hence remove is independent of
a historical down-move.

7.7.3 Independence of up-move operation

Historical up-move: Now we analyse whether an up-move is independent of a historical
up-move.

Preup-move(n1,p′
1)
, n1 ∈ Nodes ∧ n1 6= root ∧ p′1 ∈ Nodes ∧ n1 6= p′1 ∧ p′1 6→∗ n1 ∧ rank(n1) > rank(p′1)

Postup-move(n1,p′
1)
, skip ∨ n1 → p′1

Preup-move(n2,p′
2)
, n2 ∈ Nodes ∧ n2 6= root ∧ p′2 ∈ Nodes ∧ n2 6= p′2 ∧ p′2 6→∗ n2 ∧ rank(n2) > rank(p′2)

We first divide the postcondition of the historical up-move into two parts: on the one
hand, skip, which leaves the state as it was; and on the other hand, n1 → p′1, which
changes the parent relation. Then we divide the precondition of the second up-move into
two parts, n2 ∈ Nodes ∧ n2 6= root ∧ p′2 ∈ Nodes ∧ n2 6= p′2, which is unaffected by the
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historical up-move, and p′2 6→∗ n2 ∧ rank(n2) > rank(p′2), which is potentially effected by
the second part of the postcondition of the historical up-move.

Note that Preup-move(n2,p′2) was not enabled before the execution of op1, i.e., the execu-
tion of op1 enabled at least one predicate p′2 6→∗ n2 or rank(n2) > rank(p′2). Let us consider
them one at a time.

Let us derive the conditions under which moving a node to a different parent introduces
an ancestor relation that enables the condition p′2 6→∗ n2 (it was previously disabled). This
means that the historical up-move operation caused a disconnection between p′2 and n2.
This will happen only if the node being moved by the historical up-move was either n2 or
a descendant of n2 and the new parent of the current move was either n1 or a descendant
of n1 (the node moved by the historical up-move). Hence we have (n1 = n2 ∨ n1 →∗
n2) ∧ (p′2 = n1 ∨ p′2 →∗ n1).

The condition rank(n2) > rank(p′2) will be enabled after an up-move only if rank(p′2)

decreased.8 This will happen only if p′2 was the node moved or its descendant. Hence we
have that p′2 = n1 ∨ p′2 →∗ n1.

The historical up-move either enabled one or both of the conditions. Combining them
gives p′2 = n1 ∨ p′2 →∗ n1, the condition under which an up-move, up-move(n2, p

′
2), is

dependent on a historial up-move, up-move(n1, p
′
1).

Historical down-move: To check for independence of an up-move with a historical
down-move, we have the following condition:

Predown-move(n1,p′
1)
, n1 ∈ Nodes ∧ n1 6= root ∧ p′1 ∈ Nodes ∧ n1 6= p′1 ∧ p′1 6→∗ n1 ∧ rank(n1) ≤ rank(p′1)

Postdown-move(n1,p′
1)
, skip ∨ n1 → p′1

Preup-move(n2,p′
2)
, n2 ∈ Nodes ∧ n2 6= root ∧ p′2 ∈ Nodes ∧ n2 6= p′2 ∧ p′2 6→∗ n2 ∧ rank(n2) > rank(p′2)

We apply the same reasoning as in the previous case for the condition p′2 6→∗ n2, obtaining
(n1 = n2 ∨ n1 →∗ n2) ∧ (p′2 = n1 ∨ p′2 →∗ n1) as the condition under which an up-move is
dependent under a historical down-move.

There is a difference in the second part though; the condition rank(n2) > rank(p′2) will
be enabled after a down-move only if rank(n2) increases (not possible for a down-move to
decrease the rank). This will happen only if n2 was the node moved or its descendant, i.e.,
n2 = n1 ∨ n2 →∗ n1.

Combining both the conditions, we have ((n1 = n2 ∨ n1 →∗ n2) ∧ (p′2 = n1 ∨ p′2 →∗
n1))∨ (n2 = n1 ∨ n2 →∗ n1) as the condition under which an up-move, up−move(n2, p

′
2),

is dependent on a historial down-move, down-move(n1, p
′
1).

8Note that rank(n2) cannot increase since an up-move does not cause the rank of any move to increase.
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7.7.4 Independence of down-move operation

Historical up-move: The pre and postconditions required to analyse the dependence
of a down-move operation under a historical up-move is as follows:

Preup-move(n1,p′
1)
, n1 ∈ Nodes ∧ n1 6= root ∧ p′1 ∈ Nodes ∧ n1 6= p′1 ∧ p′1 6→∗ n1 ∧ rank(n1) > rank(p′1)

Postup-move(n1,p′
1)
, skip ∨ n1 → p′1

Predown-move(n2,p′
2)
, n2 ∈ Nodes ∧ n2 6= root ∧ p′2 ∈ Nodes ∧ n2 6= p′2 ∧ p′2 6→∗ n2 ∧ rank(n2) ≤ rank(p′2)

Note that the reasoning for the up-move operation also remains valid here since the effect
of both moves are the same, only their preconditions differ, only the clause comparing the
ranks of the node and the new parent differs. The first part of the dependency condition
remains, (n1 = n2 ∨ n1 →∗ n2) ∧ (p′2 = n1 ∨ p′2 →∗ n1).

The condition rank(n2) ≤ rank(p′2) will be effected only if the historical up-move de-
creased the rank of n2. Hence we have the condition n2 = n1 ∨ n2 →∗ n1.

Combining the clauses, we have ((n1 = n2 ∨n1 →∗ n2)∧ (p′2 = n1 ∨ p′2 →∗ n1))∨ (n2 =

n1 ∨ n2 →∗ n1), the condition under which a down-move is dependent on a historical
up-move.

Historical down-move: We consider the following pre and postconditions:

Predown-move(n1,p′
1)
, n1 ∈ Nodes ∧ n1 6= root ∧ p′1 ∈ Nodes ∧ n1 6= p′1 ∧ p′1 6→∗ n1 ∧ rank(n1) ≤ rank(p′1)

Postdown-move(n1,p′
1)
, skip ∨ n1 → p′1

Predown-move(n2,p′
2)
, n2 ∈ Nodes ∧ n2 6= root ∧ p′2 ∈ Nodes ∧ n2 6= p′2 ∧ p′2 6→∗ n2 ∧ rank(n2) ≤ rank(p′2)

We use the reasoning as in the previous cases on these ang get p′2 = n1 ∨ p′2 →∗ n1,
the condition under which a down-move, down-move(n2, p

′
2), is dependent on a historial

down-move, down-move(n1, p
′
1).

We see that up-move and down-move operations are dependent on each other and add
and remove are independent of up-move and down-move. We also derived the conditions
under which up-moves and down-moves are dependent on each other. We use this infor-
mation to design dependence resolution policies.

7.8 Safe specification of a replicated tree

We incorporate the stability, commutativity, and independence analysis results and the
design refinements, resulting in the coordination-free, safe and convergent replicated tree
data structure specified in Specification 7.1. The state now consists of a set of nodes,
Nodes, and tombstones, TS. Since the tombstones also form part of the tree, they also
have to maintain the tree structure. The invariants refer to the set of nodes which includes
tombstones.

We also introduce some definitions to help define the coordination-free and conflict-free
up-move and down-move operations. We define an operation as a tuple consisting of its
type (add, remove, up-move or down-move), its parameters, and its priority. The priority
is arbitrary (e.g. supplied by the application); the only condition being that priorities
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Specification 7.1 Concurrent specification of Maram
State: Nodes× TS
Invariant:

root→ root ∧ ∀n ∈ Nodes� root 6→ n ∧ root /∈ TS (Root)
∧ ∀n ∈ Nodes� n 6= root ∧ ∃p ∈ Nodes � n→ p (Parent)

∧ ∀n, p, p′ ∈ Nodes � n→ p ∧ n→ p′ =⇒ p = p′ (Unique)
∧ ∀n ∈ Nodes � n 6= root =⇒ n→∗ root (Reachable)

Add operation:

(Add-Operation)
Inv ∧ p ∈ Nodes ∧ n /∈ Nodes Jadd(n, p)K

Inv ∧ n ∈ Nodes ∧ n→ p

Remove operation:

(Remove-Operation)
Inv ∧ n 6= root Jremove(n)K

Inv ∧ n ∈ TS

Definitions:

operation , (type, params, priority)

C , set of concurrent operations

H , history of operations available at the origin replica

crit-anc-overlap(op1, op2) , op1.params.n ∈ critical_ancestor(op2) ∧
op2.params.n ∈ critical_ancestor(op1)

self -or -under(n) , {n′|n′ = n ∨ (n′ ∈ Nodes ∧ n′ →∗ n)}

Move operation:

(Up-move-Operation)
Inv ∧ n ∈ Nodes ∧ n 6= root ∧ p′ ∈ Nodes ∧ n 6= p′ ∧ p′ 6→∗ n ∧ rank(n) > rank(p′)

Jup-move(n, p′)K

@op ∈ C � op.type = up-move ∧ op.params.n = n ∧ op.priority > priority

@op ∈ H � (op.type = up-move ∧ p′ ∈ self -or -under(op.params.n))

∨(op.type = down-move ∧ (n ∈ self -or -under(op.params.n)

∨ (op.params.n ∈ self -or -under(n)

∧ p′ ∈ self -or -under(op.params.n)))) =⇒ Inv ∧ n→ p′

(Down-move-Operation)
Inv ∧ n ∈ Nodes ∧ n 6= root ∧ p′ ∈ Nodes ∧ n 6= p′ ∧ p′ 6→∗ n ∧ rank(n) ≤ rank(p′)

Jdown-move(n, p′)K

@op ∈ C � op.type = up-move

∧ (crit-anc-overlap(down-move(n, p′), op) ∨ op.params.n = n)

∧@op ∈ C � op.type = down-move

∧ (crit-anc-overlap(down-move(n, p′), op) ∨ op.params.n = n)

∧ op.priority > priority

@op ∈ H � (op.type = up-move ∧ (n ∈ self -or -under(op.params.n)

∨ (op.params.n ∈ self -or -under(n)

∧ p′ ∈ self -or -under(op.params.n))))

∨(op.type = down-move ∧ p′ ∈ self -or -under(op.params.n)) =⇒ Inv ∧ n→ p′
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are totally ordered. We define C as the set of operations concurrent with the operation
under consideration. H is the set of operations seen by the current operation. We also
define operations on critical ancestors as crit-anc-overlap, where the node being moved is
a member of the set of critical ancestors of the other operation. self -or -under indicates
the node itself and its descendants.

With the help of these definitions, we define the up-move and down-move operations
in three parts: the actual precondition needed to ensure sequential safety, the conflict
resolution condition (highlighted in light blue), the dependency condition (highlighted in
dark blue), and the update on the state. Note that the conflict resolution and dependency
checks are performed while applying the effect of the operation on the local and remote
replicas, while the precondition is checked only at the local replica.

7.8.1 Mechanized verification of the concurrent specification

We use the CISE3 plug-in, presented in Subsection 7.3.4, to identify conflicts as shown
in Table 7.1 and Table 7.2. Given the sequential specification from Section 7.3, CISE3
generates proof obligations to check stability and commutativity of executing pairs of
operations.

Provable concurrent execution

We update the sequential specification of Section 7.3 by adding the conflict resolution
policies from Section 7.8. For example, we place the additional precondition that added
nodes are unique onto the add operation:

assume { ... ∧ n1 6= n2 }

We refine the definition of type state to include tombstones, as follows:

type state = { mutable nodes: fset elt; ...;
mutable tombstones: fset elt; }

We update the specification of rem operation accordingly:

val rem (n : elt) (s : state) : unit
ensures { s.tombstones = add n (old s).tombstones }

where add stands for the logical adding operation on sets.
Verifying the stability of move operation with itself need extra information on a set of

concurrent operations. We also update the state type definition to include ranking and
critical ancestors information.

Finally, 55 verification conditions are generated for the implementation and given spec-
ification of move_refined. All of these are automatically verified, using a combination of
SMT solvers. The specification and the proof results are available at Meirim et al. [49].
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Independent
Under

add(n2, p2) remove(n2) move(n2, p
′
2)

O
pe

ra
ti
on add(n1, p1) p1 6= n2 true true

remove(n1) n1 6= n2 true true

move(n1, p
′
1) n1 6= n2 ∨ p′1 6= n2 true n2 /∈self -or-under(n1)

∨p′1 /∈ self -or-under(n2)

Table 7.3: Result of dependency analysis. The cell shows the condition under which the
operation in the row is independent of the operation in the column.

7.9 Discussion

7.9.1 Moving from causal consistency to eventual consistency

Houshmand and Lesani [9] propose dependency analysis to help relax the requirement of
causal delivery. We run this analysis for all operations, irrespective of whether the update
is tentative or definitive.

Table 7.3 shows the results of the dependency analysis of Maram. We can observe
that no operations are dependent on remove, and add and remove are not dependent on
move. As there is no fully independent operation, relaxing causal delivery is not helpful to
Maram.

7.9.2 Message overhead for conflict resolution

In order to use Maram in a real-world application, we need to understand the overhead
of conflict resolution. Conflict resolution requires some meta information that is sent
along with the update message from the origin replica. This may have an impact on the
bandwidth lost, hence understanding the components is important.

The conflict resolution policy of Maram needs information to compute a set of con-
current operations. Assuming a replica works as a single threaded process, we use vector
clocks. The size of vector clocks is linear with the number of replicas. This poses an
additional overhead.

Conflict resolution also takes as input the set of critical ancestors, descendants, and
the priority.The size of the set of critical ancestors depends on the depth of the subtree
comprising the least common ancestor of the node being moved and the destination parent.
The size of the set of critical ancestors is linear to the difference in the rank of the new
parent and the least common ancestor. The size of the set of descendants might be large
for the nodes nearer to the root. This poses an overhead on the metadata. The priority
can be a single number or a string and is independent of other factors. Hence using the
conflict resolution of Maram will cause a considerable overhead on message delivery.

The time taken to compute this metadata is the difference between the response time
of a naïve unsafe replicated tree and Maram in Figure 8.1c.
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7.9.3 Computing the set of concurrent moves

Maram requires a set of concurrent operations to apply the conflict resolution. For this,
the Maram system layer does not busy-wait. Every replica makes progress locally, without
waiting to receive remote logs (availability under partition). Conflict resolution applies
only after a replica receives a concurrent conflicting operation.

To conclude, Maram is a safe, coordination-free replicated tree, designed using conflict
resolution policies.
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Chapter 8

Experimental study and Comparison

In this section, we conduct an evaluation to showcase the high availability of Maram.
We measure availability in two parts response time and stabilization time. The first

metric, response time, is the time taken to log and acknowledge a client request. Recall
that the effect of a move operation in our specification consists of either updating the
state, or a skip. The update remains tentative until any conflict is resolved, i.e., until all
concurrent updates have been delivered. In order to measure this, we introduce a metric
called stabilization time. Stabilization time measures the duration for which an update is
in a transient state.

We run the experiments with three replicas connected in a mesh with a FIFO con-
nection. We simulate different network latencies, as shown in Table 8.1. We run the
experiments on DELL PowerEdge R410 machine with 64 GB RAM, 24 cores @ 2.40GHz
Intel Xeon E5645 processor and Linux kernel version 3.16.0-4-amd64.

We use a warm-up workload to initialize the tree before each experiment. It consists
of 1056 operations (1012 add, 15 remove, and 30 move operations) to create a tree with
997 nodes, including the root. We then run concurrent workloads on the three replicas,
varying conflict rates at 0%, 2%, 10%, and 20%. The conflicting methods are a percentage
of the total concurrent workload. For each run, we submit 250 concurrent operations to
each replica (750 operations in total), broken into 60% add, 12% remove, and 28% move
operations. Half of the moves are up-moves and the remaining half down-moves.

We compare Maram with three solutions from the literature: (i) UDR tree (short for
Undo-Do-Redo tree) [42]; (ii) all move operations acquiring a global lock (Global); and,
(iii) move operations acquiring read locks on critical ancestors and write lock on the moving

Latency
Replicas

Configuration 1 Configuration 2 Configuration 3
P B NY P B NY P B NY

R
ep

lic
as Paris (P) 0 0 0 0 144 75 0 1440 750

Bangalore (B) 0 0 0 144 0 215 1440 0 2150
New York (NY) 0 0 0 75 215 0 750 2150 0

Table 8.1: Latency configurations in ms
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Figure 8.1: Experimental results. Each bar is the average of 15 runs. The error bars show
standard deviation.
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node (Najafzadeh) [3].
We have implemented the operations of Maram as generator-effector pairs. The client

request is received by the replica. The replica computes the local state from the known
list of logs.1 If the local state satisfies the precondition, the generator function generates
an effector function. The effector function is essentially the predicate under the line for
each operation in our specification. The replica adds the effector function to the list of
logs in the local replica, broadcasts the effector function asynchronously to other replicas
and acknowledges the client.

The average response time for each design for different conflict rates with latency
configuration 2 (Table 8.1) are shown in Figure 8.1a. Observe that Maram and UDR
tree have lower response times than the lock-based designs, owing to the coordination-free
design. The slight increase in the response time of Maram compared to UDR tree is due
to the calculation time for the meta data required for conflict resolution. The response
time for Najafzadeh [3] increases with conflict rate, due to lock contention, whereas that
of Global is the same across all conflict rates since the proportion of lock-acquiring-moves
remains the same.

Figure 8.1b shows the average stabilization time for our design and the UDR tree
design [42] on a logarithmic scale for different latency configurations. Our solution gives
lower stabilization time, since only moves have transient state, whereas for a UDR tree
[42] all operations are in transient state until a local replica asserts that there are no
more concurrent operations. Note here that Maram’s stabilisation time does not depend
on conflict rate, but only on the proportion of down-moves in the workload. As this
proportion tends towards 100%, the stabilisation time of Maram tends to be the same as
that of UDR.

Next, we run an experiment to measure the overhead introduced by the conflict resolu-
tion policy. As a lower bound, we compare the response time of Maram with a naïve unsafe
implementation, that uses a simple eventual consistency approach, and thus is not safe.
Figure 8.1c shows the response time of both the designs. Maram has a slight overhead in
exchange for safety.

1The state of the replica is generated dynamically when a client issues a request.
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Chapter 9

Related work

Several authors addressed the problem of designing a replicated tree minimizing coordina-
tion. Martin et al. [52] compare several possible designs. They use set CRDTs to construct
replicated trees with different conflict semantics. Their design supports add and remove
operations. However they do not consider move operations.

Kumar and Satyanarayanan [53] discuss the issues with move operations in Coda file
system. They have omitted transparent resolution of move operations; instead they mark
them as conflicting operations. In contrast to our approach where we automatically resolve
conflicts using conflict resolution, they require the user to intervene. Moreover, they haven’t
discussed about cycle-causing-concurrent-moves.

Bjørner [41] discusses the development of Distributed File System Replication (DFS-
R). The author identifies the issues with concurrent move using a model checker. Bjørner
[41] identifies several possible solutions including, moving the conflicting nodes to the root
or the least common ancestor, or reverting the conflicting nodes parent back to its previous
parent. The author noted that the model checker had state space explosion when trying
to analyse the algorithm.

Dropbox[54] identifies the issue with concurrent moves. They introduce a synchronisa-
tion service between client and server with strong consistency. This design allows atomic
safe moves, at the expense of coordination.

Najafzadeh et al. [3] provide a design of a replicated tree for a file system. Our concept
of critical ancestors and least common ancestor are inspired by Najafzadeh et al. [3]. The
solution requires acquiring read locks on the critical ancestors and a write lock on the
node being moved. They have verified their design using CISE principle [6] similar to us.
Chapter 8 shows the performance impact on the response time for each client request.

Tao et al. [40] propose a replicated tree with a coordination-free move operation. They
achieve it by implementing each move as a non-atomic copy and delete. An atomic update
provides all or no guarantee, i.e., either the update is applied or it is not. Ensuring
atomicity avoids partial execution of updates. Being non-atomic, it might lead to having
multiple copies of the same node.

Compared to the above solutions, our design supports an atomic move operation with-
out coordination.

Kleppmann et al. [42] propose the UDR tree that supports atomic move operations,
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based on the concept of opsets. Opsets eventually totally order all operations (in a log),
this is more expensive than our solution based on partial order, taking more time for
all operations to stabilize. When a replica receives an operation that has to be inserted
into a log, the operations until the point of insertion from the end of the log are undone,
the inserted operation is performed and all the undone operations are redone. For each
concurrent operation received, this might be performed, resulting in undoing and redoing
the same set of operations multiple times. They require a delivery layer that is only
eventually consistent, whereas our solution requires causal delivery.

The main difference between the work of Kleppmann et al. [42] with Maram is that we
formalize the conditions under which a move might skip - both due to a concurrent move
or due to a historic move.

Kaki et al. [55] define the concept of Mergeable Replicated Data Types (MRDTs), in-
spired from three-way-merge. The safety of an MRDT binary tree depends on the labeling
of the child-parent relations (whether it belongs to the right or left of the ancestor). It
also requires keeping track of all the ancestor relations apart from the parent-child rela-
tions. A generic MRDT tree can be considered as an extension to the MRDT binary tree,
but requires tracking all ancestor relations and a complex lexicographical ordering when
concretizing the merged result. This would increase the metadata overhead. Moreover,
identifying the unsafe move operation would be helpful for the user to perform any com-
pensation. This is not possible with MRDTs. In contrast to MRDTs, our approach is
based on two-way merge. This saves us from preserving the last common history of two
replicas that are broadcasting their updates.
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Chapter 10

Conclusion of Part II and Future
work

This part of the thesis presents the design of a coordination-free, safe, convergent and highly
available replicated tree data structure, Maram. We study the cycle-causing-concurrent-
moves, classify them into up-moves and down-moves, and present a conflict resolution for
conflicting moves. We study the effect of the conflict resolution on the dependant oper-
ations. We provide arguments for safety and convergence of Maram, and experimentally
demonstrate the efficiency of the design, by comparing with the existing solutions.

This illustrates the methodology of designing a distributed application without any
coordination, thanks to conflict resolution policies and dependency conditions.

10.1 Future work

The future work of this part of the thesis has two main directions. The first direction
concerns the design of a replicated tree. The second direction is more general, concerning
the design of similar data structures or distributed applications.

Design of a replicated tree: There are different venues to improve the work in this
direction. The current design is based on operation-based update propagation model. A
useful next step would be a design that provides the same result as Maram supporting
state-based and delta-based update propagation.

The next step is reducing the metadata due to the tombstones and keeping the historical
move operations. Ideally, one will remove the tombstone (also truncate the set of historical
moves) at some safe time in the future; this is non-trivial [50] and is future work of this
thesis.

Further future work is to study the effect of combining moves with conflict resolution
policies with lock-based moves. This might be required to ensure that a move is definitive.
For example, if a program expects a particular directory structure during execution, a
concurrent move might crash the program. To avoid this, we should be able to specify
some move operations as definitive, thus acquiring locks.
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Design of coordination-free distributed applications: As we saw in Section 7.7,
tentative operations might effect future operations that are dependent on it. In this part
we formulated the notion of independence analysis, but we haven’t provided soundness
proof for the check. The proof rule should be sound for applications having tentative
updates.

Once we have the soundness of the proof rule, we can automate the reasoning with the
help of Why3 and prove the dependency conditions mechanically.

Furthermore, the independence analysis discussed in Section 7.7 is valid only when the
effect of an update is either apply or skip, i.e., it either changes the state of the replica or
leaves the replica state untouched. This proof rule is not adequate for the case where an
effector might have two different state changes depending upon the state where the effect
is applied. This is another possible line of research.
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Part III

Selecting Distributed Concurrency
Control
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Introduction to Part III

Part I studied a proof technique for verifying the safety of distributed applications. The
proof tool returns a list of conflicting methods, which would result in an unsafe state if
executed concurrently.

Accordingly, the developer has two choices to ensure concurrent safety — the opti-
mistic approach, designing conflict resolution algorithms (as illustrated in Part II), and
the pessimistic approach. The former implies that a user might see intermediate results
that might be conflicting with another concurrent operation, and would require conflict
reconciliation. In short, a user could observe stale data and it would incur some costs.

In some applications, seeing stale data might be acceptable, whereas in others it might
incur extremely high costs. When the cost of stale data is prohibitive, the developer needs
to synchronize.

To illustrate divergence and compensation, consider for instance an online auction.
The auction platform guarantees that the highest bid wins. Alice from Adelaide puts up
a painting for auction. Bob from Brussels and Charles from Calgary quote $100 and $105
respectively. Alice observes the bid from Bob, but not Charles’s due to a communication
delay. She closes the auction and the application declares Bob as the winner. When the
connection is restored, Alice observes that the lower bid won. The optimistic approach
corrects itself, apologizes and compensates the participants. The pessimistic approach
prevents this from happening by coordinating bid placement and closing an auction.

Having identified the conflicts, e.g., by static analysis [6, 56–59], the required coordina-
tion can be implemented in many ways, trading overhead against parallelism. The design
space is multi-dimensional: locks can have various levels of granularity; different types of
lock can be used (for example, mutex vs. shared/exclusive locks); the placement of the
lock object has a significant impact. 1

Furthermore, the performance of an option depends on the workload and specifically on
the frequency distribution and geolocation of the conflicting operations. For instance, in
the auction example, placing bids is a frequent operation and can be concurrent, whereas
closing an auction is infrequent; therefore the protocol should optimise for the former, even
at the expense of the latter. An appropriate protocol would allow place-bid in parallel under
a lock in shared mode, whereas close-auction uses exclusive mode. Coordinating multiple
auctions with a single lock would disallow concurrent close-auctions, but may decrease
overhead, depending on workload.

1 We focus on locking as the coordination primitive. We believe that our reasoning can be extended
with more dimensions to alternative primitives, such as leases, consensus, broadcast or multicast.
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To systematize the dimensions of coordination, we construct a coordination lattice. It
allows us to systematically navigate the concurrency control dimensions of granularity,
mode, and placement. The lattice structure is derived from the granularity dimension.
Each element of the lattice consists of one or more two-dimensional planes — mode and
placement. The choice of granularity affects the cost of both lock acquisition and of lock
contention (the coarser the lock, the lesser the cost of acquisition, but the higher the
contention). Placement affects only the lock acquisition costs, and mode affects lock con-
tention. Therefore the major dimension of the coordination lattice is granularity with
mode and placement as secondary dimensions. Navigating any dimension has an impact
on the overhead of locking.

We propose a systematic approach to the design of correct coordination protocols,
enabling the designer to select one according to performance metrics, with the following
contributions:

• A formalisation of the design space of correct coordination configurations, as a coor-
dination lattice. Based on the application’s conflict graph, the lattice develops along
three design dimensions: granularity, mode and placement.

• A set of metrics to navigate the cost of different coordination configurations with
respect to a given workload.

• A tool for evaluating and comparing the performance of each point in the lattice with
respect to the workload model.

• Illustration of the above using representative examples.

Chapter 11 studies the design space with the coordination lattice with a set of metrics.
Chapter 12 provides a set of experiments that illustrates the coordination lattice and the
associated metrics, along with the experimental setup.
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Chapter 11

Exploring the coordination lattice

In this chapter we explain the construction and navigation of a coordination lattice for
selecting an optimal distributed lock.

11.1 System Model

In this section we discuss the semantics of a distributed application, the underlying system
on which the application runs, and the characteristics of the expected workload. We then
see how these factors effect the choice of concurrency control configurations.

11.1.1 Application model

A distributed application consists of a set of operations operating on shared data replicated
over geo-distributed locations. The application is considered safe when it respects some
given invariant on the shared data in all executions. We assume that every operation is safe
when run in isolation, i.e., transitions from a safe state (one where the replica satisfies the
invariant) to another safe state. A pair of operations conflicts if their concurrent execution
might violate the invariant. For instance, in our auction example, operations include
create-auction, place-bid or close-auction. Each such operation satisfies the invariant that
an open auction has no winner, and that the winner of a closed auction is the highest
bidder. Since close-auction designates the winner, and place-bid may change the highest
bid, they conflict.

Verification methods are available to analyze the specification of a distributed appli-
cation [6, 11]. The tools that implement these proof rules gives us the pairs of conflicting
methods [7, 8, 12, 60].

Inspired by the work of Houshmand and Lesani [9], we represent the list of conflicts
as a conflict graph. A vertex of the graph represents an operation and an edge represents
a conflict between the corresponding operations. A conflict graph might contain disjoint
subgraphs. All the operations that conflict with some operation are included in the same
subgraph as that operation.

Whether two operations conflict or not may depend on a predicate, called the conflict
condition. In our auction example, two updates conflict only if they involve the same auc-
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tion; furthermore, close-auction conflicts only with a concurrent place-bid with a higher
bidder. The tool by Nair and Shapiro [60] generates conflict conditions from the counterex-
amples provided by the underlying verification tool. Under these conditions, the operations
should coordinate with each other. In this part of the thesis, we realise this coordination
using distributed locks. We generate a lock for each conflict based on the parameters in-
volved in the conflict condition. A lock is subscripted by the operations acquiring it and
the corresponding coordination condition (after hyphen). This gives us a set of fine-grained
locks for the conflict graph.

opa opb
Px

Figure 11.1: Two conflicting operations.

For example, consider two operations opa and opb conflicting when the parameter x of
both the operations are equal as shown in Figure 11.1. This means that the two operations
need to coordinate when operating on the same value of parameter x. If opa is called with
signature opa(x1) we create the lock lab−x1 that is shared with opb(x1).

We call service time as the time between lock acquire and release, i.e., the actual time
taken by the operation to serve a client request if it didn’t conflict with any other operation.
Service time is usually negligible compared to geo-scale network latencies, but there also
exist long-running transactions. In our application model, we consider an operation’s
service time, measured as the time between lock acquire and release.

11.1.2 Network model

The application is deployed over a network of geographically-distant locations. Each lo-
cation contains a copy of the data, called a replica. A user accesses an arbitrary replica;
a single replica. We consider that a replica is sequential and that the network latency
between the client and the replica is zero (i.e., the client is at the same location).

The main factor of interest is the transmission latency between locations, which typ-
ically runs in tens or hundreds of milliseconds. This influences in particular the delay to
acquire a lock that is placed at a remote location.

11.1.3 Workload characteristics

We model an application workload by the frequency distribution by operation by location.
For instance, bids for a piece of furniture offered in France has more place bid operations
than close auction and has high geo-locality in France.

11.2 Dimensions of Concurrency control

In this section, we take a closer look at the three dimensions and how they affect the
overhead introduced due to locking.
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11.2.1 Granularity

For a given conflict graph, we start with fine-grained locks, per operation per conflict,
based on the coordination condition. Coarsening replaces several (fine-grained) locks with
a single (coarse-grained) one; it also replaces the coordination condition of the coarse-
grained lock to be the disjunction of the fine-grained locks. The granularity of a lock
affects both components of the lock overhead - acquisition cost and contention. An opera-
tion that previously acquired and released multiple fine-grained locks, now uses the single
coarse-grained replacement. Similarly, instead of coordinating on the smaller coordination
conditions, the coarsened lock needs to coordinate on a stronger coordination condition.
This decreases acquire/release overhead, at the expense of parallelism (higher contention).

opa opb opc
P (x) Q(y)

Figure 11.2: Three conflicting operations.

For instance, consider the conflict graph in Figure 11.2. Operations opa and opb conflict
on the condition P (x), acquiring the lock lab−Px . Operations opb and opc need to coordinate
on condition Q(y) by acquiring lock lbc−Qy .

Let us consider how the dimension of coarsening is applicable here. The locks lab−Px

and lbc−Qy can be coarsened into a single lock labc−PxQy . The coordination condition of the
resulting lock is the disjunction of the coordination conditions of the fine-grained locks.

For example, assume P (x) , x < 100 and Q(y) , y > 20. The coarsened precondition
for the joined combined lock, labc−PxQy , will be PxQy , x < 100 ∨ y > 20. Now consider
an operation call with signature opa(10). This means for this call, x = 10 and hence opa
needs to acquire labc−PxQy

Coarsening reduces lock acquisition costs for opb, since it only needs to acquire one lock
instead of two. At the same time, it increases lock contention for opa and opc since they
have to now wait for not only opb as in the previous case, but also for each other.

We can call this way of coarsening the operation coarsening since it decreases the num-
ber of locks to be acquired per operation. Another dimension of coarsening is to coarsen the
coordination condition, called condition coarsening. Condition coarsening doesn’t reduce
the number of lock acquisitions, and instead increases the lock contention since multiple
calls to the same operation with different parameter values synchronize unnecessarily. 1

Hence in this work, we do not consider coarsening on this dimension.
As we discussed in Subsection 11.1.1, the conflict graph of an application contains one

or more disjoint subgraphs. An operation in one subgraph can safely execute concurrently
with any other operation outside of its subgraph. Hence we only coarsen until we reach
a single lock for a subgraph; further coarsening will not reduce lock acquisition costs, but
will only increase contention.

1Coarser conditions may be easier to evaluate, hence widely used in practice; for example, coarsening
the conflict condition of Figure 11.2 P (x) = true or Q(y) = true. This work currently focusses on the
performance impact of coordination configurations, not the ease of use.
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11.2.2 Mode

Among the many known locking techniques [61], we focus on the difference between mutex
locks and shared/exclusive locks, which we call lock mode. Mutex locks totally order the
conflicting operations whereas shared/exclusive locks maintain a partial order where the
operations with shared mode run concurrently, and those with exclusive mode blocks all
other operations that share the lock.

When operations conflict, they acquire lock either in shared mode or exclusive mode.
If an operation conflicts with itself, it has to acquire lock in exclusive mode.

Consider for example, operations opa and opb that share lockab−<x> either in mutex
mode or shared/exclusive mode. Acquiring the lock in mutex mode will totally order opa
and opb, whereas acquiring the lock in shared mode by opa and in exclusive mode by
opb, will maintain a total order for opb and between opa and opb, but allows concurrent
executions of opa. This is safe if opa doesn’t conflict with itself.

When coarsening, multiple operations might be sharing a single coarse-grained lock.
Allocating shared/exclusive mode for coarse-grained lock might violate safety if conflicting
operations acquire the lock in shared mode. In order to maintain correctness, we require
that at least one operation involved in each conflict of the conflict graph acquire exclusive
mode. In terms of graph theory, we require at least the minimum vertex cover to acquire
the exclusive mode.

A distributed lock can use several algorithms to provide shared/exclusive and mutual
exclusive guarantees. Redlock [62], FencedLock [63], the distributed transactional lock
from NuoDB [64], DynamoDB lock client [65], the lock service of etcd [66], and Zookeeper
Lock recipes [67] are some commonly used distributed locks.

The underlying algorithms for mutual exclusive locks and shared exclusive locks differ
between these popular lock providers. This reflects in the cost of lock acquisition for
different lock providers. For example, consider the algorithm behind shared/exclusive lock.
The main difference in the different modes is the parallelism allowed, shared mode allows
parallelism with other shared modes, whereas exclusive mode allows zero parallelism.

In NuoDB, acquiring a shared lock incurs zero overhead, whereas the exclusive mode
pays a price of three times the network latency. In Zookeeper, the lock acquisitions for
both modes have the same cost. We ran an experiment with 3 instances of Zookeeper
to test the response times of different modes of locking from different replicas placed at
geographically distant locations. The average response times are shown in Figure 11.3.
Each bar represents the average of 100 calls.

Observe that the response time is the same at a given replica irrespective of the mode.
As a reasonable simplification, we assume that the cost of lock acquire/release does not
depend on the mode. Hence mode selection only affects lock contention, not lock acquisition
costs.

11.2.3 Lock Placement

Popular distributed lock services such as Zookeeper [67] and etcd [66] are based on con-
sensus across their members. The number of members can vary and can be placed at
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Figure 11.3: Average response time (in s) for lock acquisition requests to a 3-instance
Zookeeper service. The subplots indicate different modes of locks and the groups indicate
different placements. A centralised lock is placed in Paris; a clustered lock is clustered
across Paris, Cape Town and New York; a distributed lock is distributed across all locations.

various geographical regions. Following this model, lock placement involves both a place-
ment type and the actual lock location. Types include centralised (the lock service is at a
single location), clustered (the lock service is distributed across a subset of locations), or
fully distributed (it is present in all the locations of the system). When the lock service is
clustered or fully distributed, this increases response time since the replicas have to exe-
cute a distributed agreement protocol. Figure 11.3 shows the increase in response time for
clustered and distributed lock placements. Henceforth, we consider only the centralised
placement.

The centrally placed lock can be co-located with any one of the replicas, or be at some
other location. We consider the case where it is co-located with a replica. A client placed
in a remote location will suffer additional network latency to access it. Thus, placement
affects lock response time. This in turn affects contention, since the longer the delay, the
higher the probability that a conflicting operation will have to wait.

11.3 The Coordination Lattice

Given a conflict graph and associated conditions, there always exists a safe coordination
protocol: assign a fully distributed mutex lock to each conflict edge; an associated opera-
tion, for which the coordination condition is true,2 acquires the lock on call, and releases on
return. This fine-grained approach serves as our initial solution, but it may be expensive.

We present a lattice representation of the three dimensions of concurrency control,
called the coordination lattice. This representation helps a systematic traversal of the
lock configuration dimensions. The coordination lattice is constructed from the static
characteristics of the application namely, the conflict graph, along with the coordination
conditions.

2 A coordination condition is evaluated locally at the calling replica, and is not required to be protected
by the lock [6].
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Figure 11.4: Conflict graphs
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the coordination lattice of Figure 11.4b

Figure 11.5: Conflict graph of a sample application with four conflicting operations

Of the three lattice dimensions (granularity, mode and placement) we consider granu-
larity to be the main “plane”. This is because the mode and placement decisions depend
on first knowing which locks to consider, i.e., on granularity. Therefore, it makes sense to
construct the lattice by first varying granularity, and then varying mode and placement
for a given granularity.

The structure of the coordination lattice is derived from the dimension of granularity.
The bottom element of the lattice is the finest grained locks and the top element is the
coarsest grained locks. Each level of the lattice is formed by coarsening the locks in the
previous level.

Each lattice element is a set of locks that are two-dimensional planes with mode and
placement axes.

Let us examine the construction of a coordination lattice for the two conflict graphs
shown in Figure 11.4. The conflict graph shown in Figure 11.4a (and Figure 11.4b) shows a
conflict between three (four) operations on different coordination conditions. Figure 11.5a
(and Figure 11.5b) shows the projection, along the granularity dimension, of the derived
coordination lattice (arrows in the direction of more coarsening). An element in this
projection is called a granularity configuration. The bottom element represents the initial
fine-grained configuration. A successor configuration (by following an arrow) represents the
coarsening of locks. Each two-dimensional lock in a granularity configuration is subscripted
by the operations that acquire it, and by the corresponding coordination condition (after
hyphen).

Each lock in a granularity configuration may have multiple mode and placement config-
urations. A single combination of granularity, mode and placement is called a coordination
configuration.
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11.4 Navigating the coordination lattice

Navigation of the coordination lattice is guided by the estimated dynamic characteristics of
the application - its workload characteristics and service time per operation. We evaluate
the performance of each point in the lattice, using the workload model. This enables
the developer to select among safe coordination protocols, according to representative
performance metrics.

As discussed in Subsection 11.2.3, the choice of placement determines the cost of lock
acquisition at a given replica.3 This information is needed to decide a mode configuration
since we need to maximize parallelism. Once we have the placement and mode dimen-
sions for each granularity configuration, we can navigate the lattice to select the optimal
coordination configuration according to a given workload. Hence, for each granularity con-
figuration, we use some metrics to determine the optimal configuration and then navigate
the granularity dimension for selecting the optimal coordination configuration.

11.4.1 Granularity selection

Moving upwards in a coordination lattice through the granularity dimension means reduc-
ing the number of locks by coarsening. This has two effects - minimizing the number of
locks to be acquired reduces lock acquisition costs, but at the same time increasing the
lock contention since the operations that previously didn’t require coordination for the
fine-grained locks, now have to coordinate.

We define a metric Coordination configuration nonparallelism, CcNonParallel, (in
Subsection 11.4.2) for each coordination configuration to help navigate the coordination
lattice. Coordination configuration nonparallelism gives the estimate of the amount of
parallelism disallowed by a given coordination configuration; it is obtained by varying
mode and placement for a given granularity. The optimal coordination configuration will
be the one with the minimum Coordination configuration nonparallelism.

11.4.2 Mode selection

A shared/exclusive lock enables multiple processes to hold the lock in shared mode, whereas
exclusive mode blocks concurrent acquires (whether shared or exclusive) until it is released.
All mutex acquires are exclusive: only one process at a time may hold a mutex lock; all
concurrent acquires are blocked.

The choice of locking mode should aim to minimise the time where locks are held in
exclusive mode, as this is what creates lock contention. Mode selection follows the following
rules:

1. Use shared/exclusive mode when it is safe, otherwise mutex. If some operation opa
conflicts with another opb, and multiple instances of opa’s don’t conflict with each
other, then it is safe for opa to acquire lock lockab−Px in shared mode. In this case,
lockab−Px can be a shared/exclusive lock. In all other cases, conservatively, it shall
be a mutex.

3In this work, we are not considering the effect of caching a lock.
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2. For a shared/exclusive lock, the mode that allows maximum parallelism possible should
be selected. To explain this rule, we define some metrics. Call Lock Holding Time
(LHT ) the minimum time during which an operation holds the lock. LHT is the
sum of lock acquisition time and service time.4 LHT (op, l, r) for operation op for
lock l at replica r is given by

LHT (op, l, r) = service_time(op) + C(l, r)

where service_time(op) is the execution time of the operation, outside of lock ac-
quisition and release, and C(l, r) is the cost of acquiring lock l at replica r. Note
that LHT differs per operation and per replica. We will consider the impact of lock
contention next.

Now let us study the possible parallelism, based on LHT and locking mode.

The set of operations that gets the exclusive mode of a single lock, l, serialises all
executions for that particular set of operations across all replicas. We call operation
serialisation the estimate of the expected execution time at replica r as a result of this
serialisation. This provides us the time during which the operations that acquire the
exclusive mode of lock l at replica r have to wait due to the execution of operations
acquiring the same mode of the same lock at other replicas. For a set of operations
O acquiring a lock l at replica r, operation serialisation, OpSerial, can be defined
as follows:

OpSerial(l, r) =
∑

op∈O,r′∈R
LHT (op, l, r′) ∗ freq(op, r′) | r′ 6= r ∧ op.l.mode = exclusive

where R is the set of replicas and freq(op, r′) is the frequency of operation op in replica
r′. Operation serialization is the total execution time taken by the operations.

Recollect that according to our system model, individual replicas are sequential —
irrespective of mode, all operations on a given replica run sequentially. Metric replica
serialisation captures this behaviour. For a set of operations O acquiring lock l,
replica serialisation, RepSerial, on replica r can be defined as

RepSerial(l, r) =
∑
op∈O

LHT (op, l, r) ∗ freq(op, r)

Replica serialisation is the total execution time taken by all operations that acquire
lock l at replica r.

Let us now study the amount of parallelism allowed on other replicas by a given
mode, operation parallelism. For each replica, this is the total time taken to execute
all operations that acquires the lock in shared mode. For a set of operations O,
acquiring a lock l, operation parallelism, OpParallel, for a replica r can be defined

4An operation acquiring multiple locks would hold the lock for more time (waiting for the acquisition
of other locks) if the given lock was acquired first. For simplicity, we are not considering that case.
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as

OpParallel(l, r) = max
r′∈R

∑
op∈O

LHT (op, l, r′) ∗ freq(op, r′) | r′ 6= r ∧ op.l.mode = shared

Note that OpParallel represents the maximum time taken by a single replica to
execute operations that has acquired the shared mode of lock. Other replicas that
also have operations with shared mode of locking can run parallel to this.

Mode selection needs to minimise operation serialisation, along with operation paral-
lelism across all replicas.56 We use these metrics in order to define replica execution
time, RepExecTime, that indicates the average time needed to execute all the repli-
cas when all replicas start their execution at the same time.

RepExecTime(l) =

∑
r∈R(OpSerial(l, r) + RepSerial(l, r) + OpParallel(l, r))

|R|

A coordination configuration in the coordination lattice might include more than one
lock. Since a lattice contains a single conflict graph, all locks essentially are related and
they need to wait for others. We extend the metrics for a single lock for a set of locks
belonging to a single coordination configuration. The enhanced set of metrics, with prefix
Cc, is as follows:

CcLHT(op, r) = service_time(op) +
∑
l∈Lcc

C(l, r)

CcOpSerial(r) =
∑

l∈Lcc,op∈O,r′∈R
CcLHT(op, r′) ∗ freq(op, r′) | r′ 6= r ∧ op.l.mode = exclusive

CcRepSerial(r) =
∑

l∈Lcc,op∈O
CcLHT(op, r) ∗ freq(op, r)

CcOpParallel(r) = max
r′∈R

∑
l∈Lcc,op∈O

CcLHT(op, r′) ∗ freq(op, r′) | r′ 6= r ∧ op.l.mode = shared

CcRepExecTime =

∑
r∈R(CcOpSerial(r) + CcRepSerial(r) + CcOpParallel(r))

|R|

where Lcc is the set of locks for a particular coordination configuration (granularity, mode
and placement dimensions are assigned). We select the coordination configuration with
minimal CcRepExecTime.

Relation to Amdahl’s law: Amdahl’s law [68] gives us the speed up possible by par-
allelising the execution on n number of processors.

Speedup =
1

rs +
rp
n

5Note that replica serialisation cannot be modified since all operations in a single replica are sequential
irrespective of the mode.

6We add these components because the operations that acquire exclusive mode of locks need to wait
for the replicas acquiring shared mode of locking.
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where rs + rp = 1 and rs represents the ratio of the sequential portion of one program. It
can also be written as

Speedup =
rs + rp
rs +

rp
n

The speed up attainable due to parallelisation is the ratio of the execution time of the
process if it were to run fully sequential to the execution time of the process parallelised
on n processors.

Similar to the system model in Amdahl’s law, we have a set of processors that can
process operations in parallel. Instead of multiple processors, we have replicas and the
number of replicas are fixed in our case. The numerator of the speed up ratio as per
Amdahl’s law is the execution time required if all the operations were sequential. In our
case, it is similar to acquiring mutual exclusive lock for all operations. The denominator
represents the execution time of the parallelised process, if any. The amount of parallelism
permissible is determined by the mode of locking. If we use mutex, there is no extra
parallelism possible, hence rs = 1 and rp = 0. This gives us the baseline for calculating
speed up.

Let us discuss how our metrics relates to Amdahl’s law at replica r. Let S be the total
execution time at replica r when all the locks are mutual exclusive. This is essentially the
sum of operation serialisation and replica serialisation at a single replica when all the locks
are acquired in mutual exclusive mode.7

S(r) = CcOpSerial(r) + CcRepSerial(r) | ∀l ∈ Lcc, op ∈ O � op.l.mode = exclusive

We now define two parameters s and p that gives the sequential part of the execution
time and parallel part of the execution time respectively. s and p at replica r can be defined
as follows:

s(r) = CcOpSerial(r) + CcRepSerial(r)

p(r) =
∑

r′∈R,l∈Lcc,op∈O
CcLHT(op, r′) ∗ freq(op, r′) | r′ 6= r ∧ op.l.mode = shared

With these new terms, Amdahl’s law can be rewritten as

Speedup(r) =
s+ p

s+ p
n

Speedup =

∑
r∈R Speedup(r)

|R|

where s+p = S and Speedup indicates the average speed up. For mutex, s = S and p = 0,
and Speedup = 1, which gives us the baseline.

Since we are constrained by the workload characteristics, unlike in the case of Am-
dahl’s law where the parallelisation can be manipulated, we cannot fairly “distribute” the

7The sum of operation serialisation and replica serialisation would be the same across all replicas in the
case of a mutex.
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execution of the parallel portion across all replicas. Hence, we can substitute the term
p
n = CcOpParallel(r).

With our metrics, Amdahl’s law becomes

Speedup(r) =
CcOpSerial(r) + CcRepSerial(r) | ∀l ∈ Lcc, op ∈ O � l.op.mode = exclusive

CcOpSerial(r) + CcRepSerial(r) + CcOpParallel(r)

To maximize speedup, we need to minimize the denominator, corresponding to our
CcRepExecTime metrics.

11.4.3 Placement selection

The placement of the lock service affects the response time, as network latency affects both
the cost of consensus between different instances of the lock service, and cost for the client
to access the service, when it is remote.

Let us note C(l, p, r) the cost of acquiring lock l from replica r for placement p, and
freq(l, r) the frequency of acquiring lock l from replica r, then expected cost of acquisition,
TC, for a chosen placement p is given by

TC(l, p) =
∑
r

freq(l, r) ∗ C(l, p, r)

The selected placement, p̂, should minimise the acquisition cost over all placements,
i.e.,

TC(l, p̂) = min
p

(TC(l, p))

In Chapter 12, we discuss on applying this metrics to some examples to determine the
optimal coordination configuration for a given workload.
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Chapter 12

Experiments

This chapter describes some experiments that illustrate the coordination lattice. We con-
sider two conflict graphs and the corresponding coordination lattices. We include several
synthetic workloads, and show how our metrics vary, for each workload, with coordination
configuration. We then compare our prediction and experimental values.

12.1 Experimental setup

The experimental setup consists of a set of configuration files provided as user input, a
preprocessing stage that processes the inputs, and a simulator. Figure 12.1 shows the
overall architecture of the experimental system.

12.1.1 Inputs

The inputs to the experiment are the following:

• The Conflict graph lists pairs of conflicting methods along with the corresponding
coordination conditions.

• The Operation service time provides the time taken by each operation between its
lock acquires and releases.

• The Latency matrix lists the replicas and the network latency between pairs.

• The Workload characteristics contains the frequency of operations per replica.

The simulator uses Operation service time to simulate the operation execution; the
operation sleeps during the service time. The simulator uses Latency matrix to construct
the network layer.

12.1.2 Intermediate processes

The preprocessing stage processes the configuration provided by the user to the format
required by the simulator. It has two components - DisLockGen (Distributed Lock Gener-
ator) and WorkloadGen (Workload generator).
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Figure 12.1: The architecture of dislock experiment. The first row lists the inputs, and the
second row the preprocessing stage. The dotted box represents the simulator. The yellow
shaded regions represent the physical location.
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Latency (ms) Houston Paris Singapore
Houston — 55 125
Paris 55 — 75

Singapore 125 75 —

Table 12.1: Average latency between replicas

DisLockGen uses the conflict graph to generate all possible coordination configurations.
The simulator uses this generated set of coordination configurations to run the application.

The Yahoo! Cloud Serving Benchmark (YCSB) [69] serves as the workload for the
simulator. It issues client calls to the DisLockSim; there is a YCSB instance colocated
with each replica. The workload requires trace files and workload configuration in the
format for YCSB. WorkloadGen takes the list of operations along with their parameters
and the workload characteristics (frequency of each operation per replica) to generate the
configuration files.

12.1.3 DisLockSim - A simulation model for distributed lock

We present DisLockSim (abbreviation of Distributed Lock Simulator), a tool that allows
us to observe the performance of different distributed lock configurations. It uses the user-
provided inputs to instantiate the distributed application, the system on which it operates,
and the expected workload.

The simulator is composed of three layers - the network layer, the application and the
lock manager running on top of the network layer. The network layer specifies the number
of replicas and the latency between each pair.

Each replica will have an instance of the distributed application and a lock manager
running. The application layer provides APIs for client calls. Instead of actually executing
the operation, it simulates the execution using the service time per operation provided
by the user. To ensure safety, the application prepares the list of locks according to the
coordination configuration chosen. It then issues acquire and release requests with the list
of locks to the respective lock managers.

A lock manager receives lock acquisition requests from applications running on different
replicas. The lock manager processes the request depending on the mode requested. Lock
manager uses the lock service of etcd [70] to maintain the guarantees of the locking modes.

12.1.4 Cost of locking

Our experiments consider the replicas located in Houston, Paris and Singapore respectively.
The latencies between these replicas are shown in Table 12.1.

Recall that the lock manager uses the lock service of etcd [70] to maintain the lock
guarantees. We run a benchmark to determine the cost of acquiring and releasing a lock
for different modes and placements. The results of benchmarking the cost of locking using
the etcd lock service is shown in Figure 12.2. Observe that the cost of locking from each
replica is greater than four times the latency due to two calls – acquire and release. As we
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Figure 12.2: Cost of locking for different lock placements from different replicas. The X-
axis shows placement and mode configurations. The Y-axis represents response time in
ms.

discussed in Section 11.2, the cost of locking depends on lock placement, but not on the type
of lock. We then use this benchmark to calculate the metrics discussed in Section 11.4.

12.2 Analysing some conflict graphs

In this section, we consider some conflict graphs with some synthetic workloads.
We use the metrics discussed in Section 11.4 to predict the comparative performance of

each coordination configuration. For each workload, we calculate the CcRepExecTime

metrics for all coordination configurations. We then measure the total execution time
taken for each configuration for a given workload; we take the average from 5 runs of the
experiment. We compare the metrics with experimental values. We run all the experiments
on DELL PowerEdge R440 machine with 384 GB RAM and 2 x Intel Xeon Silver 4216 32
cores / 64 threads @ 2.10GHz processor.

As discussed in Chapter 11, we can use CcRepExecTime to find the optimal dis-
tributed lock configuration. In this section, we experimentally illustrate the usage of the
metrics.

12.2.1 Conflict graph involving two operations

opa opb
P (x)

(a) Two conflicting operations

lab−Px

(b) Coordination lattice

Figure 12.3: Conflict graph and coordination lattice for a single lock

Consider a conflict graph containing two operations opa and opb conflicting on condition
P (x), as shown in Figure 12.3a. Since the conflict graph involves a single lock, lab−Px , the
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Mode opa opb
1 EX EX
2 EX SH
3 SH EX

(a) Mode configuration. EX and SH stands
for exclusive and shared modes respectively.

Placement lab−Px

1 Houston
2 Paris
3 Singapore

(b) Placement configuration. H, P, S stands
for Houston, Paris and Singapore respec-
tively.

Table 12.2: Coordination configurations for lock lab−Px from Figure 12.3b

Workload Operations Houston Paris Singapore Description

Workload A opa 167 167 166 Frequency per operation per
replica is the same.opb 167 167 166

Workload B opa 0 500 0 Frequency per operation is
equal, located at a single
replica.

opb 0 500 0

Workload C opa 250 250 0 Equal frequency per
operation at a replica cluster.opb 250 250 0

Workload D opa 333 334 333 A single operation equally
distributed across all replicas.opb 0 0 0

Workload E opa 0 1000 0 A single operation located at
a single replica.opb 0 0 0

Workload F opa 500 500 0 A single operation executing
at a replica cluster.opb 0 0 0

Workload G opa 0 500 0 Equal frequency per
operation, different frequency
across replicas.

opb 250 0 250

Workload H opa 0 500 0 Equal frequency per
operation, different frequency
across replicas.

opb 167 167 166

Table 12.3: Workloads for the conflict graph involving two operations.

granularity dimension of the coordination lattice is trivial with a single element. The lock
is two dimensional along mode and placement. The mode and placement dimensions of a
lock are as shown in Table 12.2.

We consider some synthetic workloads as listed in Table 12.3. Figure 12.4 compares
the metrics CcRepExecTime and the total time taken for all the operations for each
workload for a given configuration.

The point of interest for us is the pattern of the plots. Observe that the coordina-
tion configuration with minimal CcRepExecTime is also the one with the lowest total
execution time for each workload.

The metric CcRepExecTime gives the maximum execution time for a single replica
in the system. For workloads B and E, the metrics and the experimental results overlap
since all the operations happen at a single replica. For workloads C and F, we observe a
slight deviation from the metrics because there are operations happening on two replicas.
The difference between the lines in the plot varies as the workload is being distributed
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Total Execution Time - Experimental result
Replica Execution Time - Prediction
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(c) Workload C
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(d) Workload D
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(e) Workload E
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(f) Workload F
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(g) Workload G
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(h) Workload H

Figure 12.4: Plots of CcRepExecTime and total execution time obtained from the ex-
periments for different workloads for the conflict graph in Figure 12.3.
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Mode lab−Px lbc−Qy

opa opb opb opc
1 EX EX EX EX
2 EX EX EX SH
3 EX EX SH EX
4 EX SH EX EX
5 EX SH EX SH
6 EX SH SH EX
7 SH EX EX EX
8 SH EX EX SH
9 SH EX SH EX

(a) Mode configuration for fine grained
locks

Placement lab−Px lbc−Qy

1 Houston Houston
2 Paris Houston
3 Singapore Houston
4 Houston Paris
5 Paris Paris
6 Singapore Paris
7 Houston Singapore
8 Paris Singapore
9 Singapore Singapore

(b) Placement configuration for fine grained
locks

Mode labc−PxQy

opa opb opc
1 EX EX EX
2 EX SH EX
3 SH EX SH

(c) Mode configuration for coarse lock

Placement labc−PxQy

1 Houston
2 Paris
3 Singapore

(d) Placement configuration for coarse
lock

Table 12.4: Coordination configurations for the coordination lattice in Figure 12.5b

across the replicas; but the pattern remains the same.

12.2.2 Conflict graph involving three operations

opa opb opc
P (x) Q(y)

(a) Three conflicting operations

labc−PxQy

lab−Px , lbc−Qy

(b) Coordination lattice

Figure 12.5: Conflict graph and coordination lattice for two locks

Consider a conflict graph containing three operations opa, opb and opc conflicting on
condition P (x) and Q(y) respectively, as shown in Figure 12.5a. The coordination lattice
has two elements — fine locks, lab−Px and lbc−Qy , and coarse lock labc−PxQy . Each lock
is two dimensional along mode and placement. The mode and placement dimensions are
shown in Table 12.4.

Consider the example of online auction with operations start auction, place bid, remove
bid and close auction. The operation start auction is safe with other concurrent operations
whereas, close auction need to coordinate with both place bid and remove bid operations
to ensure that the highest bid wins. This resembles the conflict graph in Figure 12.5a
where place bid is opa, close auction is opb, and remove bid is opc.

We consider some synthetic workloads listed in Table 12.5. The first three workloads
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Workload Operations Houston Paris Singapore Description

Workload A
opa 111 111 111 Frequency per operation per

replica is the same.opb 111 111 111
opc 111 111 111

Workload B
opa 0 333 0 Frequency per operation is

equal, located at a single
replica.

opb 0 333 0
opc 0 333 0

Workload C
opa 167 167 0 Equal frequency per

operation at a replica cluster.opb 167 167 0
opc 167 167 0

Workload D
opa 303 303 303 Highest frequency operation

acquires a single lock, equal
frequency across replicas.

opb 25 25 25
opc 5 5 5

Workload E
opa 0 909 0 Highest frequency operation

acquires a single lock at a
single replica.

opb 0 75 0
opc 0 15 0

Workload F
opa 455 455 0 Highest frequency operation

acquires a single lock at a
replica cluster.

opb 37 37 0
opc 8 8 0

Workload G
opa 0 1 0 Operation acquiring multiple

locks most frequent.opb 100 100 100
opc 0 1 0

Workload H
opa 100 100 0 Operation acquiring multiple

locks least frequent.opb 0 0 0
opc 0 0 50

Table 12.5: Different workloads for the conflict graph involving three operations.
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Figure 12.6: Plots of CcRepExecTime and total execution time obtained from the ex-
periments for different workloads for Figure 12.5.
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is a hypothetical scenario where all operations have equal probability of execution. The
remaining workloads, except the last two, resemble the auction example we discussed, with
place bids as the most common operation. The last two workloads show a synthetic case
where coarsening of two locks helps or hinders the performance respectively.

Figure 12.6 shows the CcRepExecTime metrics and the experimentally obtained total
time taken for all the operations for each workload for a given configuration. Workloads
B and E follow the predictions since they are a single replica workload. As the work-
load gets distributed, the experimentally obtained total execution time across all replicas
will be more than the CcRepExecTime metrics. Observe that the relative ordering of
CcRepExecTime and the total execution time from the experiments are almost equiva-
lent.

All these experiments show the usefulness of our metrics to suggest a coordination
configuration according to the workload of a distributed application.
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Chapter 13

Related work

Several works have addressed the safety of distributed applications [6, 9, 11, 14]. The tools
based on these proof rules [7, 8, 12] provide pairs of conflicting methods. Nair [71] provides
the conditions under which the methods conflict.

The next step is to determine how to use the pairs of conflicting methods to design
coordination policies that minimizes overhead. Gotsman et al. [6] use the abstract notion
of tokens for coordination control. Token is a point of global synchronization. In this work,
we materialize this concept of tokens as distributed locks.

Houshmand and Lesani [9] present coordination protocols parameterized by the anal-
ysis results. Using the pairs of conflicting methods, they construct a conflict graph. The
nodes represent the operations and the edges represent the conflict. Based on the conflict
graph, they instantiate two protocols, a blocking one and a non-blocking one. The blocking
protocol resembles a shared/exclusive lock and the non-blocking protocol resembles a mu-
tual exclusive lock. We are inspired by the idea of conflict graph they generated and using
the graph parameters to instantiate coordination protocols. However they do not consider
the other dimensions of concurrency control such as, placement and granularity. They
also neglect the impact of workload. As we have seen in Chapter 12, all three dimensions
impact the overhead of locking.

Houshmand and Lesani [9] uses minimum vertex cover to parametrize their blocking
protocol. We are inspired by this approach, which we use to assign the mode of a lock.

Xie et al. [72], Su et al. [73] present federated concurrency control mechanisms, called
Modular Concurrency Control (MCC), for maintaining the ACID properties of a trans-
action. MCC partitions transactions into small groups and each group applies the best
concurrency control independently. We take inspiration from their work to select the best
configuration for each lock in a modular fashion.

There are several lock services that do distributed locking [62–67, 74–76]. We are
interested in the lock configuration itself, which can be realized with these lock services.

Grzesik and Mrozek [77] presents a comparative study of RedLock [62], locks in Zookeeper
[67], etcd [66], and Consul lock service [78]. They study the performance, safety, deadlock-
free and fault tolerance properties. They conclude that for all lock services except RedLock,
concurrent access to the same set of keys had little performance impact. We are interested
in studying the performance of different configurations of a distributed lock, regardless of
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the underlying lock provider.
Kulkarni et al. [79] presents a lattice-based definition of commutativity specifications

for a data structure. A commutativity specification gives a set of conditions that needs to
be satisfied for each pair of operations in a data structure to commute. The commutativity
lattice is constructed based on the amount of parallelism the commutativity specification
permits. They discuss a trade-off between parallelism allowed and the overhead incurred.
This concept of a commutativity lattice described by Kulkarni et al. [79] inspired us for
creating a coordination lattice where the opposing forces are lock contention and cost of
lock acquisition.

Diniz and Rinard [80] presents a lock coarsening policy for parallel computing systems.
They explain the trade-off between the cost of lock acquisitions and lock contention. The
basic insight is that lock coarsening decreases the cost of lock acquisitions, while increasing
the lock contention. They propose two different coarsening methods - data coarsening,
where the lock is coarsened when multiple objects are accessed together, and computational
coarsening, when a single operation acquires a single lock multiple times. Our coordination
lattice navigation is inspired by Diniz and Rinard [80], especially the insight on using trade-
off as a metric to navigate through the lattice.
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Chapter 14

Conclusion of Part III and Future
work

Choosing a coordination configuration for a distributed application that minimizes the
performance impact is far from trivial. It requires navigating different dimensions of the
configuration and is dependant on the workload. We presented the concept of a coordi-
nation lattice, which helps systematically navigate the granularity, mode and placement
dimensions of distributed locking.

We present a set of metrics that helps the user to choose a coordination configuration
from the three dimensions.

We present a tool, DisLockGen, that suggests optimal distributed lock configuration
for a given workload. To aid the study, we present a simulator named DisLockSim. The
simulator helps to test the performance of different coordination configurations against a
given workload.

With some sample conflict graphs, we show how our prediction pattern correlates with
the actual measurement of the execution time for a given workload.

14.1 Future work

Given the exploratory nature of this work, this can be continued in many directions.
The first direction is regarding the system model. To resemble the real world more

closely, we need to use probabilistic models for the workload. The probability of conflicting
operations to happen concurrently will impact the prediction metrics. The probabilistic
model of the workload would also help us understand if caching locks inside a replica would
be beneficial, and if so, on parametrizing the time to cache. The performance of the lock
configurations can be modelled using performance modeling techniques like the works of
Agrawal et al. [81], Aksenov et al. [82], Witt et al. [83], and Nudd et al. [84].

The second path is to extend the solution to include dynamic selection of coordination
configuration according to the workload. In this case, the workload would be monitored
dynamically and the configuration would be adjusted online similar to the works of Diniz
and Rinard [85], and Tang and Elmore [86].
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For fault tolerant design, we must take other coordination methods into consideration.
A distributed lock might be acquired by a process that then becomes dead. If the lock
is held forever by the dead process, the system cannot progress. This can be overcome
either by introducing leases (timed locks) or by using fault-tolerant consensus. In the case
of leases, the lock expires after a certain amount of time, so even if the lock holder dies,
the system can progress. This inclusion will add another non-trivial dimension to our
coordination lattice - optimal time for lease.

Yet another useful line of work is to have a lock service that uses different distributed
locks according to the semantics and guarantees required by the application. This can be
done by studying the trade-offs of different lock providers and choosing the lock provider
with the optimal configuration for locking.

Instead of limiting ourselves to distributed locking as the coordination method, we can
broaden the work to include other coordination strategies such as consensus, total order
broadcast, etc.
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