
HAL Id: tel-03340239
https://theses.hal.science/tel-03340239v1

Submitted on 10 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vérification parallèle de systémes concurrents en
utilisant le Graphe d’Observation Symbolique

Hiba Ouni

To cite this version:
Hiba Ouni. Vérification parallèle de systémes concurrents en utilisant le Graphe d’Observation Sym-
bolique. Modélisation et simulation. Université Paris-Nord - Paris XIII; Université de Tunis El Manar,
2019. Français. �NNT : 2019PA131092�. �tel-03340239�

https://theses.hal.science/tel-03340239v1
https://hal.archives-ouvertes.fr

Université Paris 13 Université de Tunis El Manar

Thèse

Présentée par

Hiba Ouni

pour obtenir le grade de Docteur d’université
Spécialité :

Informatique

Parallel verification of concurrent systems using

the Symbolic Observation Graph

Soutenue le 20 décembre 2019 devant un jury composé de:

Directeurs de thèse :

 Kais Klai

 Belhassen Zouari

Rapporteurs :

 Jaco van de Pol

 Alexendre Duret-lutz

Examinateurs :

 Hanna Klaudel

 Laure Petrucci

Co-encadrant :

 Chiheb Ameur Abid

LIPN, Université Paris 13

Mediatron, Sup’Com Tunis

Aarhus University

LRDE, l'Epita

IBISC, Université d'Evry

LIPN, Université Paris 13

Mediatron, Université de Tunis ElManar

i

Declaration of Authorship
I, Hiba Ouni, declare that this thesis titled, “ Parallel verification of concurrent sys-

tems using the Symbolic Observation Graph ” and the work presented in it are my

own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-

gree at this University.

• Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has been

clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed my-

self.

Signed:

Date:

ii

Abstract

An efficient way to cope with the combinatorial explosion problem induced by

the model checking process is to compute the Symbolic Observation Graph (SOG).

The SOG is defined as a condensed representation of the state space based on a sym-

bolic encoding of the nodes (sets of states). It has the advantage to be much reduced

comparing to the original state space graph while being equivalent with respect to

linear time properties. Aiming to go further in the process of tackling the state space

explosion problem, we present in this thesis three different approaches to parallelize

the construction of the SOG. A multi-threaded approach based on a dynamic load

balancing and a shared memory architecture, a distributed approach based on a dis-

tributed memory architecture and a hybrid approach that combines the two previous

approaches. Experiments show that parallel approaches can improve drastically the

performances of the SOG computation regarding a sequential construction.

We exploit the strengths of the parallel reachability to design an on-the-fly model

checker for LT L \ X logic based on the event-state based SOG. We implemented

the proposed model checking algorithms within a C++ prototype and compared our

preliminary results with the state of the art model checkers.

Keywords. Symbolic model checking, Parallel model checking, Symbolic Ob-

servation Graph, Shared memory, Distributed memory.

iii

Résumé

Un moyen efficace pour résoudre le problème d’explosion combinatoire induit

par le processus de vérification du modèles consiste à calculer le Graphe d’Observation

Symbolique (SOG). Le SOG est défini comme une représentation condensée de

l’espace d’états basée sur un codage symbolique des noeuds (ensembles d’états).

Il présente l’avantage d’être très réduit par rapport a l’espace d’état initial tout en

étant équivalent par rapport aux propriétés temporelles linéaires.

Dans le but d’aller plus loin dans le processus de résolution du problème de

l’explosion combinatoire de l’espace d’états, nous présentons dans cette thèse trois

approches différentes pour paralléliser la construction du SOG. Une approche multi-

thread basée sur un équilibrage dynamique de charge et une architecture à mémoire

partagée, une approche distribuée basée sur une architecture à mémoire distribuée et

une approche hybride combinant les deux approches précédentes. Les expériences

montrent que les approches parallèles peuvent améliorer considérablement les per-

formances de la construction du SOG par rapport à la construction séquentielle.

Nous proposons, par la suite, un modèle checker basé sur la construction par-

allèle du SOG, qui permet la vérification à la volée de propriétés de la logique

LT L setminusX . Nous avons implémenté les algorithmes de ’model checker’ pro-

posés dans un prototype C ++ et comparé nos résultats préliminaires aux ’model

checkers’ de l’état de l’art.

Mots clés : Model checking symbolique , Model checking paralléle, Graphe

d’Observation Symbolique, Mémoire partagée, Mémoire distribuée.

iv

v

Acknowledgements

First, I would like to express my sincere gratitude to my advisor Dr. Kais KLAI

for the continuous support of my Ph.D study and related research, for his patience,

motivation and immense knowledge. His supervision and crucial contribution made

him a backbone of this research.

Namely, i am deeply indebted to my supervisor Dr. Belhassen ZOUARI for his

guidance, advices and encouragement throughout the course of my doctoral program.

I would also wish to express my gratitude to my co-supervisor Chiheb Ameur

ABID. He has provided positive encouragement and a warm spirit to finish this thesis.

It has been a great pleasure and honor to have him as co-supervisor.

I am grateful to Jaime Arias. I want to acknowledge and appreciate his help and

transparency during my research. I am also so thankful to Sami Evangelista and

Camille Cotti for their valuable suggestions and comments on my research works. I

thank all members of LIPN laboratory for making it such a nice environment full of

interesting people.

I also thank the committee members for agreeing to participate in my PhD com-

mittee, and reviewing this work. Thank you Alexandre Duret-lutz and Jaco Van de

pol for investing time and providing interesting and valuable feedback.

Nobody has been more important to me in the pursuit of this project than the

members of my family. I would like to thank my parents, whose love and guidance

are with me in whatever I pursue. They are the ultimate role models. Most impor-

tantly, I wish to thank my loving and supportive husband and my three wonderful

sisters who provide unending inspiration. Last, I would like to thank my friends and

all the good people who helped me in keeping my sanity and focus, and made the

time generally enjoyable.

vi

Contents

Declaration of Authorship i

Acknowledgements v

1 Introduction 1

1.1 Model Checking . 2

1.2 Existing parallel and distributed model checking methods 4

1.3 Aims and contributions of this work 7

1.4 Overview and Reading Guide . 8

2 Background and Preliminaries 11

2.1 Labeled transition system . 11

2.2 Kripke structure . 12

2.3 Labeled Kripke Structure . 13

2.4 Decision Diagrams . 14

2.4.1 Binary Decision Diagrams 14

2.4.2 Multi-valued Decision Diagrams 15

2.4.3 List decision diagrams . 15

2.5 Linear Temporal Logic . 16

2.6 Symbolic Observation Graph . 17

2.6.1 Event-based SOG . 18

2.6.2 State-based SOG . 20

2.7 Event-state based SOGs for LTL model checking 21

2.7.1 Revisiting SOG for Hybrid LTL 22

2.7.2 Checking stuttering invariant properties on SOGs 25

3 Multi-threaded approach for the parallel generation of the SOG 30

3.1 Introduction . 30

3.2 Multi-threaded algorithm for constructing the SOG 31

3.2.1 Aims and Hypothesis . 31

3.2.2 Description of the algorithm 32

3.3 Technical aspects and Implementation 34

vii

3.3.1 Multi-core decision diagram packages 34

3.3.2 Symbolic encoding of the SOG 35

3.3.3 Adaptation of Sylvan to the parallel implementation of the

SOG . 35

3.4 Experimental results . 37

3.4.1 Comparison BuDDy - Sylvan 37

3.4.2 Results of the multi-threaded algorithm 37

3.5 Conclusion . 39

4 Distributed approach for the construction of the SOG 41

4.1 Introduction . 41

4.2 Distributed algorithm for constructing the SOG 42

4.2.1 Aims and Hypothesis . 42

4.2.2 Description of the algorithm 43

4.2.3 Termination Detection . 44

4.3 Technical aspects and implementation 45

4.4 Experiments . 45

4.5 Conclusion . 46

5 Hybrid approach for generating the SOG 48

5.1 Introduction . 48

5.2 A hybrid approach for constructing a SOG 49

5.2.1 Aims and hypothesis . 49

5.2.2 Description of the algorithms 50

5.2.3 Termination detection . 53

5.2.4 Correctness proof . 53

5.3 Experiments . 55

5.3.1 Results of the hybrid approach 55

5.3.2 Comparative analysis . 57

5.4 Conclusion . 59

6 Reducing time and/or memory consumption of the SOG construction 61

6.1 Introduction . 61

6.2 Canonicalization algorithm . 62

6.3 Experiments . 65

6.3.1 Results of the canonicalization algorithm 65

6.3.2 Comparative analysis . 69

6.4 Conclusion . 70

viii

7 PMC-SOG : Parallel Model checker based on the SOG 74

7.1 Introduction . 74

7.2 Multi-Core LTL Model Checking 77

7.2.1 Description of the multi-core approach 77

7.2.2 Parallelization at the level of aggregates 77

7.2.3 Parallelization at the level of decision diagrams operations . 79

7.2.4 Implementation . 80

7.2.5 Experiments . 81

7.3 A hybrid approach for parallel LTL Model Checking 84

7.3.1 Description of the algorithm 85

7.3.2 Implementation . 88

7.3.3 Experiments . 88

7.4 Conclusion . 89

8 Conclusion 91

Bibliography 97

1

Chapter 1

Introduction

In recent years, computer systems have played an important role in various areas,

such as health, transport, economy, communications, etc. With the technological

evolution, the complexity of these systems is undergoing considerable development,

and is set to make further progress in the future. Given the risks of their failures,

the issue of their safety and their proper functioning is of major importance. Espe-

cially for critical systems whose failures could cause serious problems. Indeed, the

consequences of a dysfunction or an abnormal behavior is sometimes irreparable.

For instance, the Intel Pentium bug in the division algorithm had led to devastating

economic consequences for the company [CKZ96]. On January 17, 1995, Intel an-

nounced a pre-tax charge of 475 million of dollars against earnings, ostensibly the

total cost associated with replacement of the flawed processors. Although the evalu-

ations carried out by independent organizations, they had shown the low importance

of the consequences of the bug and its negligible effect in most uses of Intel. In this

context, it is inevitable, when studying any system, to specify and precisely define

its behavior. It is therefore a real challenge to be answered by powerful verification

techniques: using them as early as possible in the design of a system avoids the costs

that would be involved in detecting a serious error of this system during the operation

phase.

It is necessary to provide designers with effective means of verification and val-

idation. Such means exist, but it is imperative that they can support very large

systems. Indeed, the major IT projects are measured today in millions of lines of

code and often involve interactions between hundreds of components. Thus, it is not

enough just to provide new verification techniques, but they should be usable for real

systems. We focus on concurrent systems that have multiple components interacting

and running in parallel. They are increasingly widespread architectures, but their

non-determinism makes them complex systems to check. The verification of such

systems can take several forms.

Chapter 1. Introduction 2

Testing is the simplest and most common verification mode. Testing is an op-

erational way to check the correctness of a system implementation by means of ex-

perimenting with it. Different aspects of system behavior can be tested. It is about

writing test sets that are designed to verify that a system meets a set of properties

by running it in a test environment. They describe the expected behaviors of the

components of the tested system. The major drawback of this technique is its non-

exhaustiveness. Indeed, tests rarely cover the entire system behaviors. This means

that even if the tests are running correctly, it is possible that it exists a behavior of

the system which is not covered by the tests, such that it does not respect the desired

properties. Also, testing is an expensive part in project budget.

Theorem proving is a technique by which both the system and its desired prop-

erties are expressed as formulas in some mathematical logic. It consists of describing

a computer system in the form of a set of axioms. The properties are expressed us-

ing theorems that must be proved in order to validate the architecture of the system.

Proofs can be constructed by hand or by machine-assisted theorem proving [Mar96].

This method makes possible to parametrically check a system: a verified property

remains true as long as the constraints between parameters are verified. Moreover,

it allows the verification of infinite systems. However, this is a difficult technique to

implement and requires strong skills, and therefore remains difficult to disseminate.

Model checking is a technique that relies on building a finite model of a system

and checking that a desired property holds in that model. In contrast to theorem

proving, Model checking is not a parametric verification technique. However, it is a

simpler to implement. The ease of use of model checking comes from the fact that it

is an automatic process.

1.1 Model Checking

Model checking, invented by Clarke and Emerson [CE81] and Queille and Sifakis

[QS82], is a powerful formal verification method that can be used to improve the

safety of concurrent systems. In fact, model checking techniques offer an automatic

solution to check whether a model of the system meets its requirements. Indeed,

the growing interest of such techniques is that they do not only help in the task of

finding errors early, but they can also provide counterexamples when the system

model violates any of its requirements.

Given a (usually finite-state) formal description of the system to be analyzed

and a number of properties, often expressed as formulas of temporal logic, that are

expected to be satisfied by the system, the model checker either confirms that the

Chapter 1. Introduction 3

properties hold or reports that they are violated. In the latter case, it provides coun-

terexamples: a sample run inducing to the violation of the property. Such a run gives

a valuable feedback and allows to point to design errors.

If we verify a system using a model checking procedure, we have to model the

system at first. Various formalism can be used to do so. In this work we are inter-

ested in both Labeled Transition System and Kripke structure. In general, such a

formalism should be used to model the system as faithfully as possible. Note that

unless the model is inaccurate, we can conclude the correctness of the system from

the correctness of the model.

The system properties have to be transformed into an appropriate formalism as

well. Various temporal logics are used for this purpose. The expression power of

most temporal logics is high enough to express all the interesting and generally im-

portant system properties such as deadlock, livelock, or reachability of a given good

or bad situation. The temporal logics may express even more complex and structural

properties like, for instance, whenever a situation A occurs then a situation B occurs

eventually. Temporal logics come in two variants, linear time and branching time.

Linear time properties are concerned with properties of paths. So a state in the model

is said to satisfy a linear time property if all the paths emanating from the state sat-

isfy the property. On the other hand, branching time logics describe properties that

depend on the branching structure of the model. Unfortunately, model checking pro-

cedures differ significantly for both kind of logics. This thesis deals only with the

linear time logic model checking problem.

It is important for efficiency of a model checking procedure that the model is

given implicitly. However, in such a case the procedure performs, in fact, two tasks

simultaneously. It does the verification of the model as well as it solves the state space

generation problem. This allows the algorithm to reveal an error in the model under

consideration before the explicit representation of the model is completely generated.

Model checking procedures that perform the model checking task simultaneously

with the state space generation are generally referred to on-the-fly model checking

procedures.

At the core of model checking are algorithms that implement state space explo-

ration. The reachable state space is explored to find error states that violate safety

properties, or to find cyclic paths on which no progress is made as counterexamples

for liveness properties. The main drawback of the model checking approach is the

well-known problem of combinatorial state space explosion [Cla+01]. Indeed, state

space size increases exponentially with the number of components of the concur-

rent system. During the last three decades, numerous techniques have been proposed

to cope with the state space explosion problem in order to get a manageable state

Chapter 1. Introduction 4

space and to improve scalability of model checking such as partial order techniques

or symbolic model checking.

Partial order approaches [GW91; Val90; VAM96] exploit the fact that interleav-

ing concurrent actions are equivalent, and only a representative interleaving needs

to be explored, leading to a significant reduction of the constructed state space. For

example, a system can go through a succession of states to invariably lead to the

same state. If the intermediate states are not relevant to the verification of the desired

properties, then they are not preserved and thus the place they would have taken in

memory is saved.

Symbolic techniques [Bur+94; GV01; HIK04], on the other hand, represent the

state space in a compressed manner. Indeed, transition relation and reachable states

are manipulated as boolean functions. These functions can be represented compactly

by decision diagrams such as BDD (Binary Decision Diagrams) [Ake78; Bry92].

The Symbolic Observation Graph (SOG) [HIK04; KP08a] is an other type of

approach aiming the same goal (reducing the state space explosion problem). It is an

abstraction of the reachability state graph of concurrent systems. A SOG is a graph

whose construction is guided by a set of observed actions (e.g. atomic propositions

involved in a linear time formula). The nodes of a SOG are aggregates hiding a set

of local states which are connected with non observed actions, and are compactly

encoded using Binary Decision Diagram techniques (BDDs). The arcs of a SOG

are exclusively labeled with observed actions which allows on-the-fly verification of

LT L\X (Linear-time Temporal Logic minus the next operator) formulas through the

synchronized product with the corresponding Büchi automaton. The verification of

these latter on the SOG is equivalent to that on the original systems.

Recently, there has also been increased interest in parallel and distributed verifi-

cation approaches [Bar+18]. A distributed approach does not alleviate the explosion

problem, however it offers more available memory for storage of the state space and

has the potential to speed-up the process of verification in time. Indeed, a distribution

of requirements on space and computational power can help with solving problems

that have demands which cannot be met by using a single computer.

1.2 Existing parallel and distributed model checking

methods

In this section, we give a non exhaustive presentation of some works in the literature

aiming to parallelize the model checking approach. Parallel and distributed state-

space exploration and model checking have been active areas of research for over a

Chapter 1. Introduction 5

decade and several attempts have been proposed. These attempts can be classified

into two main categories: parallel approaches using multiple processors in shared-

memory machines and distributed approaches where the state space construction is

distributed on multiple machines in some network (cluster, cloud). A number of

solutions target shared memory machines (e.g [Cas+94; AKH97; BBR09; Hol12;

DP16]).

Allmaier et al. [Cas+94; AKH97] were among the first to implement a paral-

lel state space construction algorithm for shared memory systems. They avoid the

consistency problem of shareable spaces by using locking variables to protect the

shared storage structure.In [IB02], an other parallel algorithm based on a work steal-

ing scheduling paradigm was proposed to provide dynamic load balancing without

a blocking phase. The data structure used to store already visited states is a global

hash table. The work resulted in reasonable speedups, but the method is inherently

unsuitable to support liveness algorithms, because the correctness of such algorithms

depends strongly on the precise state counting arguments.

In [BBR09; Bar+10] a parallel model checker DiVinE for multi-processor sys-

tems has been presented. The state space is partitioned into parts, each thread main-

tains its assigned part and its own hash table. Their results were promising, but the

algorithms exhibit limited scalability on multi-core systems. DiVinE recently also

implemented compression [Bar+13]. A difference in the DiVinE implementation of

tree compression is the choice for n-ary trees with resizing hash tables [Šti13].

Several efforts have been made to parallelize the Spin model checker [Hol04].

As described in [HB07; Hol08], Holzmann altered a parallel version of Spin with a

multi-core algorithm. It uses a shared hash table protected by a fine-grained locking

technique where only the parts that contain a newly generated state of the hash table

are locked. Later, this work has been extended [LPW10] with a lockless shared

hash table where locks are emulated with atomic primitives in a separated array. In

[Hol12], Holzman proposed another multicore version of SPIN takes off where a

previous version [HB07] left off by increasing the performance of parallel breadth-

first search, while decreasing the complexity of the algorithm.

In [Hol12], Holzmann extends the Spin model checker with a multi-core algo-

rithm. The states are statically partitioned over the worker threads, so the algorithm

can be improved with separate local hash tables, instead of one shared hash table.

Holzmann shows that the performance of the parallel breadth-first search algorithm

scales reasonably well with increasing the numbers of cpu-cores.

Several techniques for reductions are also used alongside parallelization such

as partial order methods or by using symbolic representation of state spaces such

as BDDs [VDLVDP13]. The latter approach is based on the parallelization of the

Chapter 1. Introduction 6

BDD operations [VG14; Dij12] while the construction of the whole graph is kept

sequential.

In [DP15; DP16], an efficient parallelization algorithms of BDDs operations as

well as MDDs operations [Kam98] are proposed. Sylvan [DP15; DP16] uses work-

stealing and scalable parallel data structures to provide parallelization of algorithms

on decision diagrams. It currently supports BDDs and a variation of MDDs called

List Decision Diagrams (LDDs). It has been designed as an extensible framework

with custom BDD operations in mind and features parallel garbage collection.

Moreover, a distributed memory state space generation algorithm was proposed

in [CGN98]. The authors presented a static partition function based on a state hashing

technique. It performs the breadth first traversal of the graph. If a new state is

generated, it is processed and its successors are generated locally, otherwise, it is

sent over network to the appropriate workstation and its local processing is omitted.

Similar approaches were presented in [CCM01; Rod+06].

Also, authors of [KP04] described an approach to conduct distributed state space

exploration for Colored Petri Nets. This distribution is based on the introduction of

a coordinator process and a number of worker processes. The coordinator process is

responsible for the distribution of states and the termination detection and the worker

processes are responsible for the storage of states and the computation of successor

states. The architecture used is based on a distributed system consisting of several

machines and a coordinator node whose role is to initiate treatment, to distribute

states, and to detect the end of exploration.

In [GMS01], a parallel construction of a state space for Model checking is per-

formed by partitioning it into several nodes. The partitioning is performed by adopt-

ing a static load balancing scheme in order to avoid the potential communication

overhead occurring in dynamic load balancing schemes through the use of an ade-

quate hash function. In [KP04], a coordinator process is introduced. This coordinator

is the responsible for the distribution of states construction and termination detection.

Furthermore, a distributed approach to tree logic formulas verification is described

[Bel+13]. This approach exploited a parametric state space builder, designed to ease

the adoption of big data platforms.

A multi-core state space exploration algorithm is proposed in [EKP13]. The

algorithm is based on state compression and state reconstruction to reduce memory

consumption. Also, it requires a little inter-thread synchronization making it highly

scalable.

BDD-based reachability algorithms targeting compute clusters are proposed in

[ODP17]. The proposed algorithms are based on a distributed hash table, cluster-

based work stealing algorithms, and several caching structures that all utilize the

Chapter 1. Introduction 7

newest networking technology. Also, this paper present the first BDD package that

targets both distributed and multi-core architectures. This approach is evaluated on

a collection of models, it has been shown that the larger models benefit from the

extra memory available on compute clusters and from all available computational

resources.

1.3 Aims and contributions of this work

This thesis contains several contributions related to the parallel and distributed state

space generation. This section summarizes these contributions:

As a first contribution, we exploit the efficiency of the SOG representation of

state space and its moderate size in order to cope with the state explosion problem.

At the same time, we adopt parallel algorithms to benefit from additional speedups

and performance improvement in execution time.

For this purpose, we investigate three approaches to parallelize the SOG con-

struction using three different algorithms. The key idea of our approaches is to build

simultaneously several nodes (aggregates) of the symbolic graph. The first proposed

algorithm targets shared memory architectures by using threads to build nodes of a

SOG. We adopt a dynamic load balancing scheme in order to balance the load on

threads sharing the SOG construction task. Further, MDDs are used instead of BDD

to reduce more the size of the SOG. Indeed, since MDDs [Kam98] are a generaliza-

tion of BDDs to the integer domain, a node in an MDD may represent several nodes

in an BDD. In general, graphs based on MDDs are more reduced than those based

on BDDs.

The second approach targets distributed memory architecture by using processes.

Each process has its own local memory, and communication between processes is

performed by using the Message Passing Interface MPI [Wal94]. This approach has

the advantage to provide more memory space to manage the built SOG. Distributing

aggregates is performed through the computation of a hash function in order to cope

with communication overhead.

Aiming to find the best way to parallelize the SOG construction, we propose

a hybrid technique which combines the two previous approaches. The SOG con-

struction is then shared among a number of processes, each creates a set of threads

that run on (typically) the same number of CPUs of a processor. Among these

threads of each process, one (the coordinator) is responsible of the communication

(including performing overlapped asynchronous message passing), while the oth-

ers (workers) are responsible for the construction of the SOG nodes. The hybrid

(shared and distributed) architectures provides significant performance benefits for

Chapter 1. Introduction 8

the enumerative model checking performed on clusters (currently the most common

high-performance computers).

The second contribution of this thesis is the canonicalization approach. Basic

idea behind is to reduce the size of states set associated with each aggregate that can

lead to important memory savings. For this reason, we propose a specific and sym-

bolic algorithm that allows to reduce the size of an aggregate. Then, we apply such

a reduction within the three previous parallel approaches and we measure the impact

of the use of the canonicalization on the construction of the SOG. The canonicaliza-

tion allows us not only to efficiently decrease the memory consumption, but also to

improve the scalability of both the distributed and the hybrid approaches (especially

the distributed one). As expected, the canonicalization decreases the communication

cost by reducing the size of the communicated aggregates (sets of states) between the

processes involved in the SOG construction. Indeed, instead of sending the set of all

states that forms an aggregate, we propose to use a reduced canonic representation

that is sufficient to rebuild it.

Finally, we exploit the strengths of the parallel reachability to create a parallel

model checking based on the parallel construction of the SOG, where both event-

based and state-based properties can be expressed, combined, and verified. Instead

of composing the whole system with the Buchi automaton representing the negation

of the formula to be checked, we make the synchronization of the automaton with an

abstraction of the original reachability graph of the system. Two different approaches

are proposed to design an on-the-fly model-checker for LT L \X logic based on the

event-state based SOG. The first one targets shared memory architectures. We have

proposed two versions using different techniques of parallelization. The second ap-

proach is dedicated to the cluster architectures. Thus, we create a set of processes

each uses a set of threads in order to build the SOG. One of these processes, called

model checker process, computes the synchronized product and then performs the

emptiness check between the automaton modeling the negation of the LTL formula

with the LKS corresponding to the SOG.

1.4 Overview and Reading Guide

This report is organized as follows:

Chapter 1 deals with the problem of the combinatorial explosion problem and its

content focuses on the parallel and distributed model checking as solution. Chapter

2 provides more general background information that is presented in its following

chapters.

Chapter 1. Introduction 9

Parts of this thesis consist of conference papers, that have been published in the

following publications:

Chapter 3 is mostly based on this paper: [Oun+17a], “A Parallel Construction of

the Symbolic Observation Graph: the Basis for Efficient Model Checking of Con-

current Systems”. In: The 8th International Symposium on Symbolic Computation

in Software Science 2017 this paper, presented at SCSS 2017, is about the multi-

threaded construction of the SOG. The basic idea is that each thread owns one part

of the SOG construction. Also, in this chapter, MDDs have been used instead of

BDDs for the aggregates (the nodes of the SOG) encoding.

Chapter 4 is based on the paper[Oun+17b] “Parallel Symbolic Observation Graph”

which was published at: the IEEE International Symposium on Parallel and Dis-

tributed Processing with Applications. This paper presents two parallel algorithms

to build the SOG. The first algorithm is dedicated for shared memory architectures,

and is based on the distribution of the SOG construction on several threads using a

dynamic load balancing scheme. The second algorithm is proposed for distributed

memory architectures, and distributes the SOG construction on processes using a

static load balancing scheme. These two algorithms are implemented and their per-

formances are studied and compared against each other as well as against the sequen-

tial construction of the SOG.

Chapter 5 is mostly based on the paper: “Towards parallel verification of con-

current systems using the Symbolic Observation Graph“ [Oun+19], which was pub-

lished at: the 19th International Conference on Application of Concurrency to Sys-

tem Design. We propose in this chapter to parallelize the construction of the SOG

using an hybrid (distributed-shared memory) approach. Doing so, we take advantage

of the recent advances in computer hardware, by distributing the construction process

over a large number of multi-core processors. We studied the performance of our new

approach comparing against both distributed and shared memory approaches.

Chapter 6 is based on the paper [Oun+18] “Reducing Time and/or Memory Con-

sumption of The SOG construction in a Parallel Context”. This paper presented at

2018 IEEE International Symposium on Parallel and Distributed Processing with Ap-

plications. In this chapter we go a step forward in improving the SOG construction

process by reducing, on the fly, the size of its aggregates. We proposed a Multi-

valued decision diagrams (MDDs) based algorithm to determine a single representa-

tive for each strongly connected component in every aggregate allowing to remove

from memory a consequent number of states which are no more necessary for the

construction process. Then, we present a study of the impact of such an optimization

in the parallel construction of the SOG using the three proposed approaches.

We present, in chapter 7, parallel and hybrid approach for checking linear time

Chapter 1. Introduction 10

temporal logic properties of finite systems combining on-the-fly and symbolic ap-

proaches. Based on previous algorithms for the parallel construction of the SOG, we

propose a parallel on-the-fly model checker targeting shared-memory architectures

by using two different techniques. One uses threads such that the parallelization is

performed at the level of nodes building of a SOG. The second technique performs

parallelization at the level of MDD operations by using a work-stealing framework.

Also, we propose a model checker that targets distributed memory architectures. The

latter uses processes and threads to parallelize the construction of the SOG while

performing model checking simultaneously. We have implemented the different pro-

posed approaches in a software tool and we have conducted experiments to com-

pare them against the parallel model checker LTSmin [Kan+15; VDBL13; LPW11;

BPW10].

Finally, Chapter 8 concludes the thesis with a reflection of what has been achieved,

and some promising directions for future work.

11

Chapter 2

Background and Preliminaries

In this chapter, we briefly establish some basic definitions and results that are needed

throughout the thesis. The technique presented in this thesis applies to different

kinds of models, that can map to Labeled Transition Systems (LTS) which are well

adapted to event-based logic, Kripke Structures (KS) which are adapted to a state-

based reasoning. Also, we present it for Labeled Kripke Structures (LKS), since this

formalism is suitable for both event and state based formalism.

2.1 Labeled transition system

Labeled Transition System (LTS) belong to a specific class of automata, called the

Finite State Automata (FSA). It is a graph-like structure that shows the different states

that a system can be in, and possible transitions between them. These transitions are

labeled by actions, one state is designated as the initial state and a (possibly empty)

subset of states represents the final states.

Definition 1 (labeled transition system) A labeled transition system is a 4-tuple

〈Γ,Act,→, I〉 where:

• Γ is a finite set of states;

• Act is a finite set of actions;

• →⊆ Γ×Act×Γ is a transition relation;

• I ⊆ Γ is a set of initial states;

We distinguish LTS observed actions, denoted by a subset Obs, from unobserved

actions, denoted by the subset UnObs with Obs∪UnObs = Act and Obs∩UnObs =

/0.

An example of LTS is given in Figure 2.1 where s0 is the initial state. The set of

observed actions contains two elements {a,b}, unlabeled edges are supposed to be

labeled by non observed actions.

Chapter 2. Background and Preliminaries 12

s0

s1

s2

s3

s4

s5

a

a

b

b

FIGURE 2.1: Example of LTS

2.2 Kripke structure

Definition 2 (Kripke structure)

Let AP be a finite set of atomic propositions. A Kripke structure (KS for short) over

AP is a 4-tuple 〈Γ,L,→,s0〉 where:

• Γ is a finite set of states ;

• L : Γ→ 2AP is a labeling (or interpretation) function ;

• →⊆ Γ×Γ is a transition relation ;

• s0 ∈ Γ is the initial state ;

Notations

• Let s,s′ ∈ Γ. We denote by s→ s′ that (s,s′) ∈→,

• Let s ∈ Γ. s 6→ denotes that s is a dead state (i.e. 6 ∃s′ ∈ Γ such that s→ s′),

• π = s1→ s2→ . . . is used to denote paths of a Kripke structure and π̄ denotes

the set of states occurring in π,

• A finite path π = s1→ . . .→ sn is said to be a circuit if sn→ s1. If π̄ is a subset

of a set of states S then π is said to be a circuit of S.

• Let π = s1 → . . .→ sn and π′ = sn+1 → . . .→ sn+m be two paths such that

sn→ sn+1. Then, ππ′ denotes the path s1→ . . .→ sn→ sn+1→ . . .→ sn+m.

• ∀s,s′ ∈ Γ,s
∗
−→ s′ denotes that s’ is reachable from s (i.e. ∃s1, . . . ,sn ∈ Γ such

that s1→ . . .→ sn∧ s = s1∧ s′ = sn). s
+
−→ s′ denotes the case where n > 1 and

s
∗
−→ Ss′ (resp. s

+
−→ Ss′) stands when the states s1→ . . .→ sn belong to some

subset of states S.

Chapter 2. Background and Preliminaries 13

s0

a.b

s1

a.b

s2

a.b

s3

a.b

s4

a.b

s5

a.b

FIGURE 2.2: Example of Kripke Structure

Figure 2.2 illustrates an example of Kripke Structure. The set of atomic proposi-

tions contains two elements {a,b} and each state of the KS is labeled with the values

of these propositions.

2.3 Labeled Kripke Structure

A Labeled Kripke Structure (LKS) is a mix of the two previous models which can be

used to represent the behavior of a system.

Definition 3 (Labeled Kripke structure)

Let AP be a finite set of atomic propositions and let Act be a set of actions. A Labeled

Kripke structure (LKS for short) over AP is a 5-tuple 〈Γ,Act,L,→,s0〉 where:

• 〈Γ,Act,→,s0〉 is an LTS;

• 〈Γ,L,→,s0〉 is a KS;

Figure 2.3 illustrates an example of LKS over AP = {a,b} .

An LTS (resp. KS and LKS) can be represented either, explicitly (each state/arc is

individually represented in memory), or symbolically (sets of states can share some

data in memory) using decision diagrams such as BDDs. A mixed approach (hybrid)

exists where states are encoded symbolically while edges are represented explicitly.

The SOG is an example of the latter representation.

Chapter 2. Background and Preliminaries 14

s0

a.b

s1a.b

s2

a.b

s3

a.b

s4

a.b

s5
a.b

s6 a.b

s7

a.b

τ

o1

τ
o2

τ

τ

τ

o1

o2

τ

τ

FIGURE 2.3: A Labeled Kripke Structure

2.4 Decision Diagrams

2.4.1 Binary Decision Diagrams

The nodes of the Symbolic Observation Graph (aggregates) are encoded symboli-

cally using Binary decision diagrams (BDDs) in [HIK04; KP08a], and Multi-valued

decision diagrams (MDDs) in [Oun+17a; Oun+17b].

A binary decision diagram (BDD) is a binary tree in the form of a directed acyclic

graph which represents one or more Boolean functions BN → B. Each level in this

binary tree represents an input variable of the Boolean function. The terminal nodes

in this tree represent true and false, respectively. We use 0 to denote false and 1 to

denote true, also, we use fx=v to denote a Boolean function f where the variable x is

given value v. When the BDD is ordered such that input variables occur in ascending

level order and is reduced so that no two nodes represent the same function, one

obtains a (reduced, ordered) binary decision diagram (ROBDD) [Bry86]. A ROBDD

is a rooted directed acyclic graph with leaves 0 and 1. Each internal node has a

variable label xi and two outgoing edges labeled 0 and 1, called the “low” and the

“high” edges.

Definition 4 (Binary decision diagram)

An (ordered) BDD is a directed acyclic graph with the following properties:

1. There is a single root node and two terminal nodes 0 and 1.

2. Each non-terminal node p has a variable label xi and two outgoing edges,labeled

0 and 1; we write lvl(p) = i and p[v] = q, where v ∈ {0,1}

3. For each edge from node p to non-terminal node q, lvl(p)< lvl(q).

Chapter 2. Background and Preliminaries 15

4. There are no duplicate nodes, i.e., ∀p∀q(lvl(p) = lvl(q)∧ p[0] = q[0]∧ p[1] =

q[1])→ p = q.

2.4.2 Multi-valued Decision Diagrams

Multi-valued decision diagrams (MDDs) are a generalization of BDDs to the integer

domain. Like BDDs, MDDs can be used to represent sets of states. BDDs represent

functions B
N → B, MDDs are typically used to represent functions on integer do-

mains (N<v)
N → B. Rather than two outgoing edges, each internal MDD node with

variable xi has ni labeled outgoing edges labeled from 0 to ni−1.

Definition 5 (Multi-valued decision diagram)

An (ordered) MDD is a directed acyclic graph with the following properties:

1. There is a single root node and two terminal nodes 0 and 1.

2. Each non-terminal node p has a variable label xi and ni outgoing edges, la-

beled from 0 to ni− 1; we write lvl(p) = i and p[v] = q, where 0 ≤ v < ni

.

3. For each edge from node p to non-terminal node q, lvl(p)< lvl(q).

4. There are no duplicate nodes, i.e., ∀p∀q(lvl(p) = lvl(q)∧∀v, p[v] = q[v])→

p = q.

2.4.3 List decision diagrams

List Decision Diagrams (LDDs) [BVDP08; DP15; DP17], are a form of MDDs.

They represent sets of integer vectors, such as sets of states in model checking. They

are called list decision diagrams because instead of having one node with many

edges, we have a linked list. Like MDDs, LDDs encode functions (N<v)
N → B.

Each internal node has a value v and two outgoing edges called the right and the

down edge. Along the right (resp. down) edge, values v are in ascending order. Also,

it is not possible to duplicate nodes. Figure 2.4 shows examples of MDD and LDD

representing the same set of integer pairs where we hide edges to 0 to improve the

readability. LDD nodes have a property called a level (and its dual, depth), which

is defined as follows: the root node is at the first level, the nodes along right edges

stay at the same level, while down edges lead to the next level. The depth of an LDD

node is the number of down edges leading to leaf 1. All maximal paths from an LDD

node have the same depth. Compared to MDDs, LDDs have numerous advantages

[BVDP08; DP15]. In fact, valuations that lead to 0 simply do not appear in the LDD.

Chapter 2. Background and Preliminaries 16

Definition 6 (List decision diagram)

A List decision diagram (LDD) is a directed acyclic graph with the following prop-

erties:

1. There is a single root node and two terminal nodes 0 and 1.

2. Each non-terminal node p is labeled with a value v, denoted by val(p) = v,

and has two outgoing edges labeled = and > that point to nodes denoted by

p[xi = v] and p[xi > v].

3. For all non-terminal nodes p, p[xi = v] 6= 0 and p[xi > v] 6= 1.

4. For all non-terminal nodes p, val(p[xi > v])> v.

5. There are no duplicate nodes.

x0start

x1 x1

1

1
0

3

1
2

1

0x0 : 1 3

1x1 : 2 1

FIGURE 2.4: MDD (left) and LDD (right) representing the set {〈0,1〉
, 〈0,2〉, 〈1,1〉, 〈1,2〉, 〈3,1〉} (For simplicity, we hide paths to 0 for

MDD and paths to 0 and 1 for LDD)

2.5 Linear Temporal Logic

Propositional linear time logic (LTL) is the basic prototypical logic used in formal

verification. LTL is widely used for verification of properties of several concurrent

systems (for example, safety and liveness), especially software systems.

Definition 7 (Hybrid LTL) Given a set of atomic propositions AP and a set of ac-

tions Act, an LTL formula is defined inductively as follows:

• each member of AP∪Act is a formula,

• if φ and ψ are LTL formulae, so are ¬φ, φ∨ψ, Xφ and φUψ.

Chapter 2. Background and Preliminaries 17

Other temporal operators e.g., F (eventually) and G (always) can be derived as fol-

lows: Fφ = true∪φ and Gφ = ¬F¬φ.

An interpretation of an LTL formula is an infinite run w = x1x2x3 . . . (of some

LKS), assigning to each state a set of atomic propositions and a set of actions that are

satisfied within that state. An atomic proposition is satisfied by a state s if it belongs

to its label (L(s)) while an action is said to be satisfied within a state if it occurs

from this state (in the current path). In our case (interleaving model of concurrency),

where a single action can occur at a time, at most one action can be assigned to a state

of a run. We write wi for the suffix of w starting from xi and p ∈ xi, for p ∈ AP∪Act,

when p is satisfied by xi. The hybrid LTL semantics is then defined inductively as

follows:

• w |= p iff p ∈ x0, for p ∈ AP∪Act,

• w |= φ∨ψ iff w |= φ or w |= ψ,

• w |= ¬φ iff not w |= φ,

• w |= Xφ iff w2 |= φ, and

• w |= φUψ iff ∃i≥ 1; wi |= ψ and ∀1≤ j < i, w j |= φ.

An LKS K satisfies an LTL formula ϕ, denoted by K |= ϕ iff all its runs satisfy ϕ.

It is well known that LTL formulae without the next operator (X) are invariant

under the so-called stuttering equivalence [CGP00]. We use this equivalence relation

to prove that event- and state-based SOGs preserves LT L \X properties. Stuttering

occurs when the same atomic propositions hold on two or more consecutive states of

a given path.

Checking an LTL formula over a KS is performed by analyzing its maximal paths.

Definition 8 (maximal paths)

Let T be Kripke structure and let π = s1→ s2→ . . .→ sn be a path of T . Then,

π is said to be a maximal path if one of the two following properties holds:

• sn 6→,

• π = s1→ . . .→ sm→ . . .→ sn and sm→ . . .→ sn is a circuit.

2.6 Symbolic Observation Graph

The Symbolic Observation Graph [KP08b; KTD11; HIK04] is an abstraction of the

reachability graph of concurrent systems. The construction of a SOG is guided by the

Chapter 2. Background and Preliminaries 18

set of atomic propositions (AP) occurring in the LTL formula to be checked. These

AP are called observed atomic propositions while the others are unobserved.

Nodes of the SOG are called aggregates, and each of them may represent a set

of states that are encoded efficiently using decision diagram techniques. Despite

the exponential theoretical complexity of the size of a SOG (a single state can be-

long to several aggregates). We recall, in the following the definition of the SOG

for both event- and state-based versions. The difference between the event- and the

state-based versions is the aggregation criterion. In event-based version, observed

atomic proposition corresponds to some actions of the system, so that an aggregate

contains states that are connected by unobserved actions. In state-based version,

observed atomic propositions are Boolean state-based ones, so that an aggregate re-

groups states with the same truth values of the observed atomic propositions.

The SOG has a very moderate size in practice. This is due to the small number of

actions in a typical formula on one hand, and to the efficiency of the BDDs/MDDs

structure for representing and manipulating sets of states, on the other hand.

It has been proven in [KP08b] that observation graphs can be used for model

checking using an equivalence relation called stuttering equivalence. It is well known

that LTL formulas without the next operator are invariant under the stuttering equiv-

alence. Stuttering occurs when the same atomic propositions (label) holds on two

or more consecutive states of a given path. We recall the definition of stuttering

equivalence between two paths.

Definition 9 (Stuttering equivalence)

Let T and T’ be two Kripke structures over an atomic proposition set AP and let

π = s0→ s1→ . . . and π′ = r0→ r1→ . . . be respectively paths of T and T’. π and π′

are said to be stuttering equivalent, written as π∼st π′, if there are two sequences of

integers i0 = 0 < i1 < i2 < .. . and j0 = 0 < j1 < j2 < .. . s.t. for every k≥ 0,L(sik) =

L(sik+1) = . . .= L(sik+1−1) = L′(r jk) = L′(r jk+1) = . . .= L′(r jk+1−1).

2.6.1 Event-based SOG

Considering an LTS T = 〈Γ,Act,→, I〉 and an LT L \X formula that represents the

property to check, actions of the LTS are partitioned into two subsets (Act = Obs ∪

UnObs). Subset Obs represents the actions that appear in the considered LT L \X

formula. These actions are called observed actions. Subset UnObs consists of the

other actions that are called unobserved ones. The building of a SOG is based on

the idea that hiding the identities of unobserved actions does not alter the verification

results [KP08a].

Chapter 2. Background and Preliminaries 19

In the following, we define formally what an aggregate is, before providing a

formal definition of a SOG associated with an LTS and a set of observed actions.

Intuitively, an aggregate regroups states that are linked by unobserved transitions.

Definition 10 (Event-based aggregate)

Let T = 〈Γ,Act,→, I〉 be a labeled transition system with Act = Obs ∪UnObs. An

aggregate is a tuple 〈S,d, l〉 defined as follows:

1. S is a nonempty subset of Γ satisfying: s ∈ S⇔ Sat(s)⊆ S;

(Sat(s) = {s′ ∈ Γ | s
∗
−→UnObs s′} i.e. the set of states that are reachable from s

by unobserved action sequences only)

2. d ∈ {true, f alse}; d = true iff ∃s ∈ S | s 9.

3. l ∈ {true, f alse}; l = true iff S contains an unobserved cycle (involving unob-

served actions only);

In the following, we provide a definition of the deterministic event-based SOG

which is easier to understand.

Definition 11 (Deterministic event-based SOG)

The deterministic symbolic observation graph dSOG(T) associated with an LTS

T = 〈Γ,Obs∪UnObs,→, I〉 is an LTS 〈A ,Act ′,→′, I′〉 where:

1. A is a finite set of aggregates such that:

(a) There is an aggregate a0 ∈ A s.t. a0.S = Sat(I),

(b) For each a ∈A and for each o ∈Obs, (∃s ∈ a.S,s′ ∈ Γ | s
o
−→ s′)⇔ (∃a′ ∈

A | a′.S = Sat({s′ ∈ Γ | ∃s ∈ a.S,s
o
−→ s′})∧ (a,o,a′) ∈→′),

2. Act ′ = Obs,

3. →′⊆ Γ′×Act ′×Γ′ is the transition relation, obtained by applying 1b,

4. I′ = {a0},

A deterministic SOG can be constructed by starting with the initial aggregate a0

and iteratively adding new aggregates as long as the condition of (1b) holds true (see

[HIK04] for a possible construction algorithm).

The following more general symbolic observation graph additionally supplies a

certain flexibility in the construction of aggregates. Now an aggregate can have two

outgoing arcs, leading two different successors, labeled by the same observed action.

Consequently, the set of 1b is replaced by disjoint subsets. Clearly, this construction

Chapter 2. Background and Preliminaries 20

is not unique. One can take advantage of such a flexibility to obtain smaller aggre-

gates. Even if the obtained SOG would have more aggregates, it would consume less

time and memory. This definition generalizes the one given in [KTD09]. The con-

struction algorithm given in [HIK04] is an implementation where the obtained graph

is deterministic.

s0

s1

a0

s2

s3

a1

s4

s5

a2

a b

FIGURE 2.5: An event-based SOG with Obs={a,b}

Figure 2.5 illustrates the SOG associated with the LTS of Figure 2.1. The ob-

tained SOG has a0 as initial aggregate. The set of observed actions contains two

elements {a,b}, unlabeled edges are supposed to be labeled by non observed actions.

2.6.2 State-based SOG

In the following, we give the definition of an aggregate and a state-based SOG struc-

ture according to a given KS.

Definition 12 (State-based aggregate)

Let T = 〈Γ,L,→,s0〉 be a KS over an atomic proposition set AP . An aggregate a

of T is a non empty subset of Γ satisfying ∀s,s′ ∈ a,L(s) = L(s′).

We introduce three particular sets of states and two predicates. Let a and a′ be

two aggregates of T .

• Out (a) = {s ∈ a|∃s′ ∈ Γ a,s→ s′}

• Ext(a) = {s′ ∈ Γ a|∃s ∈ a,s→ s′}

• In (a,a’) = {s′ ∈ a′ a|∃s ∈ a,s→ s′} (i.e. I(a,a′) = Ext(a)∩a′)

• Dead (a) = (∃s ∈ a s.t. s 6→)

• Live(a) = (∃π a circuit of a)

Chapter 2. Background and Preliminaries 21

Let us describe informally, for an aggregate a, the meaning of the above no-

tations: Out(a) denotes the set of output states of a i.e. any state of a having a

successor outside of a. Ext(a) contains any state, outside of a, having a predecessor

in a. Given an aggregate a′, In(a,a′) denotes the set of input states of a′ according to

the predecessor a, notice that In(a,a′) = Ext(a)∩a′. Finally the predicate Dead(a)

(resp. Live(a)) holds when there exists a dead state (resp. a circuit) in a.

Definition 13 (State-based SOG)

Let T =〈Γ,L,→,s0〉 be a KS over an atomic proposition set AP. A symbolic

observation graph of T is a 4-tuple G = 〈Γ′,L′,→′,a0〉 where :

1. Γ′ ⊆ 2Γ is a finite set of aggregates

2. L′ : Γ′→ 2AP is a labeling function satisfying ∀a ∈ Γ′, let s ∈ a,L′(a) = L(s).

3. →′⊆ Γ′×Γ′ is a transition relation satisfying:

(a) ∀a,a′ ∈ Γ′, such that a→′ a′,

i. a′ 6= a⇒ In(a,a′) 6= /0 and a is compatible with In(a,a′)

ii. a′ = a⇒ there exists a circuit π of a such that a is compatible with

π̄ and ∀E ∈ InG(a) there exists a circuit πE of a such that a is com-

patible with π̄E and ∃e ∈ E,c ∈ π̄E satisfying e
∗
−→ ac

Where InG(a)= {E ⊆ a|E = {S0}∨∃a
′ ∈ Γ′ {a} ,a′→′ a∧E = In(a,a′)}

(b) ∀a ∈ Γ′,Ext(a) =
⋃

a′∈Γ′,a→′a′ In(a,a′).

4. a0 ∈ Γ′ is the initial aggregate and is compatible with {s0}

Example:

Figure 2.6 illustrates the SOG associated with the KS of Figure 2.2. The ob-

tained SOG consists of 3 aggregates {a0,a1,a2} where a0 is the initial one. Each

aggregate is indexed with a triplet (d, l,L(a)). The states of the KS are partitioned

into aggregates but this is not necessary the case in general.

2.7 Event-state based SOGs for LTL model checking

We propose to adapt the symbolic observation graphs [HIK04] in order to abstract

systems’ behavior while preserving hybrid LTL formulae. The Symbolic Observa-

tion Graph [KP08b; KTD11; HIK04] is an abstraction of the reachability graph of

concurrent systems. The construction of a SOG is guided by the set of atomic propo-

sitions occurring in the LTL formula to be checked. Such atomic propositions are

Chapter 2. Background and Preliminaries 22

s0

s1

a0

d.l.a.b

s2

s3

a1

d.l.a.b

s4

s5

a2

d.l.a.b

FIGURE 2.6: A state-based SOG, with AP = {a,b}

called observed while the others are unobserved. Nodes of the SOG are called ag-

gregates, each of them is a set of states encoded efficiently using decision diagram

techniques. Despite the exponential theoretical complexity of the size of a SOG (a

single state can belong to several aggregates), its size is much more reduced than the

original reachability graph.

The difference between the event- and the state-based versions of the SOG ([HIK04]

and [KP08b; KTD11] respectively) is the aggregation criterion. In event-based ver-

sion, observed atomic proposition correspond to some actions of the system and an

aggregate contains states that are connected by unobserved actions. In state-based

version, observed atomic propositions are Boolean state-based conditions and an ag-

gregate regroups states with the same truth values of the observed atomic proposi-

tions.

In this section, we propose to define an event-state based SOG preserving hy-

brid LTL formulae (i.e., both state and action-based atomic propositions can be used

within a same formula). The modeling framework consists of Labeled Kripke struc-

tures (LKS). The construction of the SOG depends on a set of actions Act and state

variables appearing as atomic propositions AP involved by the formula to be checked.

2.7.1 Revisiting SOG for Hybrid LTL

The adaption of the SOG to hybrid LTL leads to a new aggregation criterium: (1)

two states belonging to a same aggregate have necessarily the same truth values of

the state-based atomic propositions of the formula, (2) For any state s in the aggre-

gate, any state s′, having the same truth values of the atomic propositions and being

reachable from s by the occurrence of an unobserved action, belongs necessarily to

the same aggregate, and (3) for any state s in the aggregate, any state s′ which is

Chapter 2. Background and Preliminaries 23

reachable from s by the occurrence of an observed action is necessarily not a mem-

ber of the same aggregate (even if it has the same label as s), unless it is reachable

from an other state s′′ of the aggregate by unobserved action.

Definition 14 (Event-state based aggregate) Let K = 〈Γ,Act,L,→,s0〉 be an LKS

over a set of atomic propositions AP and let Obs ⊆ Act be a set of observed actions

of K . An aggregate a of K w.r.t. Obs is a triplet 〈S,d, l〉 satisfying:

• S⊆ Γ where:

– ∀s,s′ ∈ S, L(s) = L(s′);

– ∀s ∈ S, (∃(s′,u) ∈ Γ× (Act \Obs) | L(s′) = L(s)∧ s
u
−→ s′)⇔ s′ ∈ S;

– ∀s∈ S, (∃(s′,o)∈ Γ×Obs | s
o
−→ s′)∧(6 ∃(s′′,u)∈ S×(Act \Obs) | L(s′′) =

L(s′)∧ s′′
u
−→ s′)⇔ s′ 6∈ S.

• d ∈ {true, f alse}; d = true iff S contains a dead state.

• l ∈ {true, f alse}; l = true iff S contains an unobserved cycle (i.e., with unob-

served actions).

Before defining the event- and state-based SOG, let us introduce the following

operations:

• SATAP(S): returns the set of states that are reachable from any state in S, by a

sequence of unobserved actions and which have the same value of the atomic

propositions as S. It is defined as follows:

SATAP(S)= {s
′′ ∈Γ | ∃s∈ S,∃σ∈UnObs∗,s

σ
−→ s′′∧∀s′ ∈Γ,∀β pre f ix o f σ,s

β
−→

s′⇒ L(s) = L(s′)}.

• Out(a, t): returns, for an aggregate a and a action t, the set of states outside of

a that are reachable from some state in a by firing t. It is defined as follows:

Out(a, t)

{

i f t ∈ Obs {s′ ∈ Γ | ∃s ∈ a.S,s
t
−→ s′}

i f t ∈UnObs {s′ ∈ Γ | ∃s ∈ a.S,s
t
−→ s′∧L(s) 6= L(s′)}

• Outτ(a): returns, for an aggregate a, the set of states whose label is different

from the label of any state of a, and which is reachable from some state in a by

firing unobserved actions. It is defined as follows:

Outτ(a) =
⋃

t∈UnObs Out(a, t).

• PartAP(S): returns, for a set of states S, the set of subsets of S that define the

smallest partition of S according to the labeling function L. It is defined as

follows:

Chapter 2. Background and Preliminaries 24

PartAP : 2Γ −→ 22Γ

PartAP(S)= {S1,S2, ...,Sn}⇔ S=
⋃n

i=1 Si∧∀i∈{1..n},∀s,s′ ∈ Si,L(s)=L(s′)∧

∀s ∈ Si,∀s
′ ∈ S j, j 6= i,L(s) 6= L(s′).

Definition 15 Let K = 〈Γ,Act,L,→,s0〉 be an LKS over a set of atomic propositions

AP and let Obs ⊆ Act be a set of observed actions of K . The SOG associated with

K , over AP and Obs, is an LKS G = 〈A,Obs∪{τ},L′,→′,a0,Ω〉 where:

1. A is a non empty finite set of aggregates satisfying :

• ∀a ∈ A, ∀t ∈ Obs,∀oi ∈ Part(Out(a, t)),∃a′ ∈ A s.t. a′ = SATAP(oi)

• ∀a ∈ A, ∀oi ∈ Part(Outτ(a)),∃a
′ ∈ A s.t. a′ = SATAP(oi)

2. L′ : A→ 2AP is a labeling (or interpretation) function s.t. L′(a) = L(s) for

s ∈ a.S;

3. →⊆ A×Act×A is the action relation where:

• ((a, t,a′)∈→′)⇔ ((t ∈Obs)∧(∃oi ∈Part(Out(a, t)) s.t. SATAP(oi) = a′)

• ((a,τ,a′) ∈→′)⇔ (∃oi ∈ Part(Outτ(a)) s.t. SATAP(oi) = a′)

4. a0 is the initial aggregate s.t. s0 ∈ a.S.

The finite set of aggregates A of the SOG is defined in a complete manner such

that the necessary aggregates are represented. The labeling function associated with

a SOG gives to any aggregate the same label as its states. Point (3) defines the action

relation: (1) there exists an arc, labeled with an observed action t (resp. τ), from a to

a′ iff a′ is obtained by saturation (using SATAP) on a set of equally labeled reached

states Out(a, t) (resp. Outτ(a)) by the firing of t (resp. any unobserved action) from

a.S. The last point of Definition 15 characterizes the initial aggregate.

Figure 2.7(b) illustrates an event-state based SOG corresponding to the LKS of

Figure 2.7(a). The presented SOG consists of 4 aggregates {a0,a1,a2,a3} and 4

edges. The initial aggregate a0 is obtained by adding any state reachable from the

initial state s0 of the LKS, by unobserved sequences of actions only, and labeled

similarly to s0. For this reason, the initial aggregate contains the state s4. State

s2, which is reachable from s0 by an observed action o1, is excluded from a0 and

belongs to a1. The same holds for s6 which is reachable from s4 by o1 and belongs

to the aggregate a2. s3 (resp. s7) is added to a1 (resp. a2) since it is reachable from

s2 (resp. s6) by an unobserved action and since it is labeled similarly. Note that one

can merge a1 and a2 since they have the same label.

According to Definition 15, the SOG associated with an LKS is unique. It can

also be non deterministic since, for instance, an aggregate can have several successors

with τ (when the reached states, by τ, have different labels).

Chapter 2. Background and Preliminaries 25

s0

a.b

s1a.b

s2

a.b

s3

a.b

s4

a.b

s5
a.b

s6 a.b

s7

a.b

τ

o1

τ
o2

τ

τ

τ

o1

o2

τ

τ

(a) Example of LKS

s0

s4

a0

a.b

s2

s3

a1

a.b

s6

s7

a2

a.b

s1

s5

a3

a.b
τ

τ τ

τ τ

o1

o1

τ

o2

(b) A corresponding SOG: AP = {a,b}
andObs = {o1,o2}

FIGURE 2.7: An LKS and its SOG

2.7.2 Checking stuttering invariant properties on SOGs

The equivalence between checking a given stuttering invariant formula (e.g., LT L\X

formula) on the new adapted SOG and checking it on the original reachability graph

is ensured by the preservation of maximal paths (finite paths leading to a dead state

and infinite paths). First, the SOG preserves the observed traces of the corresponding

model which allows to preserve infinite runs involving infinitely often observed tran-

sitions. Then, the truth value of the state-based atomic propositions occurring in the

formulae are visible on the SOG by labeling each aggregate with the atomic proposi-

tions labeling (all) its states. Finally, the d and l attributes of each aggregate allows to

detect deadlocks and livelocks (unobserved cycles) respectively. Note that the detec-

tion of the existing of dead states and cycles inside an aggregate is performed using

symbolic operations (decision diagram-based set operations) only.

In conclusion, the following result establishes that an LKS satisfies an LT L \X

formula iff the corresponding SOG does.

Theorem 16 Let K be an LKS and let G be the corresponding SOG over Obs and

AP. Let ϕ be an LT L\X formula on a subset of Obs∪AP. Then K |= ϕ⇔ G |= ϕ

Proof of Theorem 16

Chapter 2. Background and Preliminaries 26

To prove Theorem 16, we will prove that the SOG preserves the maximal paths

of the corresponding LKS. We recall that maximal paths (of finite systems) are any

path π satisfying one of the following requirements:

1. π = s0
t1−→s1

t2−→·· ·
tn−→sn such that sn is a dead marking

2. π = s0
t1−→·· ·

tl−→sl
tl+1
−→·· ·

tn−→sn such that sl
tl+1
−→·· ·

tn−→sn is a circuit.

Before giving the proof of the preservation of maximal paths, let us present two

lemmas about the correspondence between paths of K and those of G .

Lemma 17 Let π = s1
t2−→s2

t3−→·· ·
tn−→sn be a path of N and a1 be an aggregate

of G such that s1 ∈ a1. Then, there exists a path a1
t ′2−→a2

t ′3−→·· ·
t ′l−→al of G and a

strictly increasing sequence of integers i1 = 1 < i2 < · · · < il+1 = n+ 1 satisfying

{sik ,sik+1, · · · ,sik+1−1} ⊆ ak for all 1≤ k ≤ l.

Proof 18 We proceed by induction on the length of π. If n = 1, knowing that s1 ∈ a1

concludes the proof. Let n> 1 and assume that a1
t ′2−→a2

t ′3−→·· ·
t ′l−1
−→al−1 and i1, · · · , il

correspond to the terms of the lemma for the path s1
t2−→s2

t3−→·· ·
tn−1
−→sn−1. Then,

sn−1 ∈ al−1. Let us distinguish two cases.

(i) If tn ∈ UnObs∧L(sn−1) = L(sn) then, by definition of aggregates, sn ∈ al−1.

Thus both the path a1
t ′2−→a2

t ′3−→·· ·
t ′l−1
−→al−1 and the sequence i1, · · · , il for the path

of length n−1 stand for the path of length n as well.

(ii) If tn ∈Obs∨L(sn−1) 6= L(sn) then, since sn−1
tn−→sn, there exists (by definition

of the SOG) an aggregate al such that al−1
tn−→al and sn ∈ al . As a consequence,

the path a1
t ′2−→a2

t ′3−→·· ·
tl−1
−→al−1

t ′l=tn
−→al and the sequence i1, · · · , il, il + 1 satisfy the

proposition.

The next lemma shows that the inverse also holds.

Lemma 19 Let π = a1
t2−→a2

t3−→·· ·
tn−→an be a path of G . Then, there exists a path

s1
σ1−→s′1

t2−→s2
σ2−→s′2

t3−→·· ·
tn−→sn

σn−→s′n of N s.t., ∀i = 1 . . .n, σi ∈ UnObs∗, si, s′i

belong to ai.S and all the traversed states from si and s′i by firing σi have the same

label (the same truth value of state-based atomic propositions).

Proof 20 Let π = a1
t2−→a2

t3−→·· ·
tn−→an be a path of G . First, let us define the four

following functions related to π and any aggregate ai of π, for i = 1 . . .n.

• Inπ(ai) =

{

{s′ ∈ ai.S | ∃s ∈ ai−1 : s
ti−→s′} if i 6= 1;

Outπ(ai) otherwise.

• Outπ(ai) =

{

{s ∈ ai.S | s
ti−→} if i 6= n;

Inπ(ai) otherwise.

Chapter 2. Background and Preliminaries 27

• Candidateπ(ai)=

{

{s ∈ Inπ(ai) | ∃s
′ ∈Candidate′(ai), ∃σ ∈ UnObs∗ : s σ

−→s′} if i 6= 1;

Candidate′π(ai) otherwise.

• Candidate′π(ai)=

{

{s ∈ Outπ(ai) | ∃s
′ ∈Candidate(ai+1), s

ti+1
−→s′} if i 6= n;

Candidateπ(ai) otherwise.

Informally, Inπ(ai) (for i = 2 . . .n) represents the set of input states of aggregate

ai that are immediately reached by firing ti from states in ai−1. All the states of

ai are then obtained by adding the successors of this set of states by unobservable

sequences, while having the same truth values of the state-based atomic propositions.

For the first aggregate, Inπ(a1) is the set of output states Outπ(a1) i.e., the states in

a1.S enabling t2. The same holds for Outπ(ai), for any i = 1 . . .n−1 i.e., it contains

states enabling action ti+1. For an, Outπ(an) = Inπ(an).

Sets Candidateπ(ai) and Candidate′π(ai), for i = 1 . . .n represent sets of states

from which the states si and s′i could be chosen, respectively, in order to build the

path s1
σ1−→s′1

t2−→s2
σ2−→s′2

t3−→·· ·
tn−→sn

σn−→s′n in a reverse order (starting from the

end). In fact, s′n = sn can be first chosen from Candidateπ(an) = Inπ(an). Then

s′n−1 is obtained from Candidate′π(an−1) i.e. states in an−1.S enabling tn and thus

leading to Candidateπ(an). sn−1 can be chosen from Candidateπ(an−1) i.e. to reach

Candidate′π(an−1) by unobservable actions only (and without traversing a differently

labeled state), ... and so on.

We are now in position to study the correspondence between maximal paths to

prove Theorem 16 through two new lemmas.

Lemma 21 Let π = s0
t1−→·· ·

tn−→sn be a maximal path of K . Then, there exists a

maximal path π′ = a0
t ′1−→·· ·

t ′l−→al of G such that there exists a sequence of integers

i0 = 0 < i1 < · · ·< il+1 = n+1 satisfying {sik ,sik+1, · · · ,sik+1−1} ⊆ ak for all 0≤ k≤

l.

Proof 22 If sn is a dead marking then knowing that s0 ∈ a0 and using Lemma 17, we

can construct a path π′= a0
t ′1−→a1 · · ·

t ′l−→al and the associated integer sequence cor-

responding to π. Because the last visited state of π belongs to al , the dead attribute

of al is necessarily equal to true and π′ is then a maximal path of the SOG.

Now, if sn is not a dead marking then, one can decompose π as follows: π = π1π2

s.t. π1 = s0
t1−→s1 → ·· ·

tk−1
−→sk and π2 = sk

tk+1
−→·· ·

tn−→sk s.t., π2 is a circuit. Once

again, applying Lemma 17 from s0, one can construct a path π′1 = a0
t ′1−→a1

t ′2−→·· ·am

corresponding to π1. The path in G associated with π′2 can be also constructed

applying the same lemma. However, this path must be constructed from am to which

belongs sk. π1 and π2 can be chosen as follows:

Chapter 2. Background and Preliminaries 28

1. If π2 involves unobserved actions and all traversed states (by π2) have the

same truth value of state-based atomic propositions, then π2 is a cycle inside

aggregate am and the live attribute (cycle) of am is necessarily set to true.

2. otherwise (i.e. either π2 involves observed actions, or unobserved actions

that change the truth value of state-based atomic propositions), then we chose

the subpaths such that tk+1 as an observed action, or an unobserved one s.t.

(L)(sk) 6= (L)(sk+1). By definition of the SOG, since sk ∈ am, there exists an

aggregate ao1 successor of am by action tk+1. By using Lemma17, and the defi-

nition of the SOG, let π′1 = a0
t ′1−→a1

t ′2−→·· ·am and π′2 = ao1

tp1−→ . . . tl−→aq1 with

sk ∈ aq1 .S. If aq1

tk+1
−→ao1 , then π′2 is a circuit of G and π′1π′2 is a maximal path

of G satisfying the proposition. Otherwise, by construction of the SOG, there

exists an other successor of aq1 containing sk. Applying again Lemma 17 from

this aggregate, we can construct a new path in G corresponding to π2. Let

ao2

t ′p1−→ . . .aq2 be this path. If we can deduce a circuit of G from this path (if

aq2

tk+1
−→ao2), this concludes the proof. Otherwise, we can construct a new path

corresponding to π2 starting from a successor of aq2 . Because the number of

aggregates in G is finite, in particular the number of aggregates to which be-

longs sk is bounded by 2N (where N is the number of state in the original LKS),

a circuit will be necessarily obtained.

Notice that for all the previous cases above, a sequence of integers can be easily

constructed from the ones produced by Lemma 17.

Lemma 23 Let π′ = a0
t1−→·· ·

tn−→an be a maximal path of G . Then, there exists

a maximal path s0
σ1−→s′1

t2−→s2
σ2−→s′2

t3−→·· ·
tn−→sn

σn−→s′n of K s.t., ∀i = 1 . . .n, σi ∈

UnObs∗ and si, s′i belong to ai.S.

Proof 24 Let π′ be a maximal path reaching an aggregate an such that an.d = true∨

an.l (either the dead or the livelock attribute (cycle) is true). First, let us notice that

the proof is trivial if the path π′ is reduced to a single aggregate because dead state

(resp. a state containing a circuit of a0) is necessarily reachable from s0.

Otherwise, using the same principle of Lemma 19 proof, one can demonstrate the

existence of the maximal path in K . We have just to define Inπ(a0) as the singleton

{s0} and Outπ(an) as the dead state (if an.d = true) or the set of states forming a

cycle in an (if an.l = true).

Now, if neither an.d nor an.l is true, then by construction of the SOG, π′ =

a0
t1−→·· ·

tl−→al
tl+1
−→·· ·

tn−→an with al
tl+1
−→·· ·

tn−→an a circuit of G i.e., an = al . Here

also, we can use the same scheme as for the proof of Lemma 19 by defining Inπ(a0) as

the singleton {s0} and Outπ(an) as the set of states in an enabling tl+1. Thus, starting

Chapter 2. Background and Preliminaries 29

from these states, and using the functions Candidateπ() and Candidate′π() as defined

in Lemma 19, one can build by backtracking the maximal path in K satisfying the

terms of Lemma 23.

30

Chapter 3

Multi-threaded approach for the

parallel generation of the SOG

Contents

1.1 Model Checking . 2

1.2 Existing parallel and distributed model checking methods . . . 4

1.3 Aims and contributions of this work 7

1.4 Overview and Reading Guide 8

3.1 Introduction

A symbolic observation graph (SOG) provides the advantage to represent the state

space in a condensed representation based on the use of binary decision diagrams

(BDD). Indeed, a SOG represents an abstraction of the system on which the verifica-

tion of a considered LTL/X property is equivalent to the verification on the original

reachability graph. In practice, such a SOG has a very moderate size allowing to

tackle efficiently the explosion state problem. However, computing a SOG requires

an important time that is can be considered as a bottleneck. As a solution, we pro-

pose to a parallelize the computation of a SOG. For this purpose, we propose in this

chapter a multi-threaded approach that exploits multi-core machines [Oun+17a]. The

basic idea is to parallelize the building of a SOG by using several threads, such that

every thread builds a part of the graph. A dynamic load balancing scheme is used

in order to balance the load on threads sharing the SOG construction task. Further,

we propose to enhance the condensation of a SOG by using Multi-valued Decision

Diagrams (MDDs) instead of BDDs [MD98].

Chapter 3. Multi-threaded approach for the parallel generation of the SOG 31

3.2 Multi-threaded algorithm for constructing the SOG

3.2.1 Aims and Hypothesis

Shared Memory

Th Th Th Th Th

FIGURE 3.1: Shared memory multi-core

Considering an LTS and an LTL property to be checked, our aim is to build the

symbolic observation graph of the LTS with a multi-threaded approach. In such set-

ting, parallel treatments (threads) are assumed to be executed in the same machine

(see Figure 3.1). Thus, threads can share the same memory space ensuring no com-

munication overhead. The main advantage that shared memory architecture offers

over distributed memory is that it provides a shareable memory space for concurrent

manipulation, thus avoiding the need of passing messages among the processors. As

a consequence, there is no more need for a slicing function to partition the state space

because the storage structure is shared among the processors. However, it imposes

other difficulties related to data consistency and synchronization operations to ma-

nipulate the shared data. Data consistency is mandatory to ensure that any processor

is accessing the most recent update of the global data. Indeed, concurrent threads can

lead to unexpected behavior. In order to avoid concurrent writes on sensitive data,

mutual exclusions (mutexes) around critical sections must be used [CH91].

The basic idea of our proposed approach, for the construction of a SOG, is that

each thread takes charge of the construction of some aggregates that will be stored in

the shared memory space. The distribution of the aggregates on different threads

should be well balanced. In order to maximize the number of treatments to be

executed simultaneously by different threads, and consequently, obtaining a better

speedup.

The decision to allocate the construction of an aggregate to one thread is made

after comparing current loads (the number of aggregates to be processed) of individ-

ual threads. The number of threads is set at the beginning by the user and the same

Chapter 3. Multi-threaded approach for the parallel generation of the SOG 32

algorithm is executed by all threads.

3.2.2 Description of the algorithm

Data: LT S〈Γ,Obs∪UnObs,→, I〉
Result: SOG〈Γ′,Obs,→′, I′〉

1 Load : Table[1,..,M] integer;
2 Termination: Table[1,..,M] of boolean;
3 Waitingidthread;/∗ a stack associated with the thread having as id ′idthread′ ∗/
4 if idthread==1 then

5 A0=Aggregate(I);
6 Waitingidthread = {A0};
7 Load[idthread] = 1;
8 Termination[idthread] = false;
9 else

10 Waitingidthread = /0

11 Load[idthread] = 0;
12 Termination[idthread] = true;

13 while DetectTermination == false do

14 while Waitingidthread 6= /0 do

15 Termination[idthread] = false;
16 mutex lock[idthread];
17 Choose A ∈Waitingidthread;
18 Load[idthread] = Load[idthread]−1;
19 mutex unlock[idthread];
20 foreach a ∈ Obs do

21 if enabled(A,a) then

22 S′ = succ(A,a);
23 A′ = Aggregate(S′);
24 if ∃A′′ such that A′ == A′′ then

25 Insert the arc(A,a,A′) in the SOG;
26 else

27 Γ = Γ∪{A′};
28 Insert the arc(A,a,A′) in the SOG;
29 int j = minCharge();
30 mutex lock[j];
31 Waiting j =Waiting j∪{A

′};
32 Load[j] = Load[j]+1;
33 mutex unlock[j];

Algorithm 1: A Multi-Threaded algorithm for constructing the SOG

Algorithm 1 builds the symbolic observation graph in a multi-threaded setting

of a given LTS where its observable and unobservable actions are specified. The

Chapter 3. Multi-threaded approach for the parallel generation of the SOG 33

same algorithm is executed by all threads. Each thread is identified by its identifier

idthread. The table Load indexed by idthread allows to store the current loads of

threads. In order to distribute the work among the processes, the SOG is partitioned

into several parts, using a function that computes the loads. The load of a thread is

defined by the number of aggregates to be processed by the thread.

The table Termination, indexed by idthread, is used to detect when the construc-

tion of the SOG has been terminated. Indeed, when a thread id has no aggregate to

deal with, Termination[id] takes the value true, else it takes false. Further, we asso-

ciate with each thread id a stack Waitingid containing the aggregates to be processed.

In the beginning, the initial thread, computes the initial aggregate (lines 3-11) from

the initial states by executing unobservable actions and inserts it into the SOG. This

aggregate is also inserted into the stack of the initial thread in order to build its suc-

cessors. Thus, the load of the initial thread is incremented by one as its stack contains

one element to be processed.

Then, every thread operates as a loop until the whole SOG is built, i.e. when all

threads have no aggregate to deal with. In each iteration, a thread pops an aggregate

from its stack and decrements its loading. It builds the successors of the popped

aggregate by executing observable enabled actions. Each successor does not exist

in the SOG, it is inserted in the SOG and pushed into the stack associated with the

thread having minimum load. Else, only edges connecting the popped aggregate and

the existing aggregate labeled with the executed observable action, are inserted into

the SOG. It is worth noting that shared variables are locked with mutexes in order to

prevent concurrent threads to update the same shared variables at the same moment.

We now justify informally the correctness of Algorithm 1, assuming the sequen-

tial algorithm is correct [KP08a]. Algorithm 1 follows directly the same arguments

as in the case of sequential algorithm. Let G be a Symbolic Observation Graph asso-

ciated with a labeled transition system T and generated by Algorithm 1. G respects

definition 11. On the other hand, to avoid concurrent access on sensitive data, we use

mutual exclusions (mutexes) mechanisms.

Also, Algorithm 1 terminates only when the parallel computation is finished and

there are no more states to be explored, i.e. every stack associated with each thread

is empty. The function DetectTermination returns true if:
{

∀i ∈ [0,M],Termination[i] = true

∀i ∈ [0,M],Load[i] = 0

Chapter 3. Multi-threaded approach for the parallel generation of the SOG 34

3.3 Technical aspects and Implementation

The SOG has been implemented using the BDD package BuDDy1. According to the

documentation of this library, the BDDs share the common subgraphs to have more

reductions. So even for the creation of the BDD associated with an aggregate, it is

necessary to prevent the other threads from manipulating the BDDs.

It is worth noting that using sequential BDDs or MDDs implementation in dis-

tributed algorithms is not evident, since proposed packages use always a global hash

table to store all generated BDDs in order to provide a maximum reduction. Such

a table is not thread safe, i.e. it does not allow several threads or processes to use

it simultaneously. Since BuDDy is not based on a thread safe hash table we had to

either intervene at the library level and to protect the hash table or re implement the

SOG based on another multi-core package.

3.3.1 Multi-core decision diagram packages

There have been different initiatives to implement parallel BDDs on multi core ma-

chines. More recently, there are some works that have tried to propose parallel BDD

or thread safe implementations.

We were interested in the used hash table by each approach. The hash table in

BDD packages needs to support concurrently execution of one key operation, which

returns the key if it already exists and inserts the key otherwise.

In [He09], a parallel implementation of the BuDDy package is proposed but it

is limited to only some operations in order to demonstrate the applicability and ef-

ficiency of Cilk++ in this domain. Therefore, they do not provide public download

and evaluation because they did not develop a parallel version supporting full func-

tionality of BuDDy.

In a thesis on JINC [Oss10], a multi-threaded extension is described for BDDs by

using several hash tables to store BDDs but JINC does not parallelize the basic BDD

operations. JINC uses spin locks [And90] instead of using mutex to avoid concurrent

access by several threads for every unique-table. Spin locks is a lock which causes a

thread trying to acquire it to simply wait in a loop ("spin") while repeatedly checking

if the lock is available. Then, the thread remains active but without performing a

useful task. Indeed, searching for a node in the unique-table can be implemented

without any locking.

Sylvan2 [DP15] is a parallel (multi-core) MTBDD library. Sylvan implements

parallelized operations on BDDs, MTBDDs and LDDs by using a lockless one hash

1http://sourceforge.net/projects/buddy
2https://github.com/utwente-fmt/sylvan

Chapter 3. Multi-threaded approach for the parallel generation of the SOG 35

table. The hash table in Sylvan is based on the hash table, described in [LPW10], that

is designed to store visited states in model checking. The structure of this hash table

has been modified several times and new versions have adhered to it [VDLVDP13;

DP15; DP16]. The hash tables store fixed-size decision diagram nodes (16 bytes

for each node) and strictly separates lookup and insertion of nodes from a stop-the-

world garbage collection phase, during which the table may be resized. Garbage

collection is essential for manipulating decision diagrams. Most operations on a

subgraph of decision diagrams implies the modification of all ancestors in that struc-

ture and most operations on decision diagrams continuously create new nodes in the

nodes table. Therefore, unused nodes should be deleted to free space for new nodes.

The implementation of stop-the-world garbage collection in Sylvan is based on the

Work-stealing framework Lace.

Their results are promising. Compared to BuDDy, Sylvan have better perfor-

mance when using multiple workers and lower performance when using one worker

[VDLVDP13]. We have chosen to use Sylvan for the implementation of the parallel

version of SOG instead of BuDDy.

3.3.2 Symbolic encoding of the SOG

Since, the results in [DP15] show that the majority of models especially large mod-

els, were processed to several orders of magnitude faster using LDDs, we used and

adapted the LDD extension of Sylvan to implement our algorithm. An advantage of

the LDD is a reduction in memory accesses needed to evaluate it compared with the

BDD from which it was derived. Indeed, grouping n binary inputs together to form

a single LDD variable reduces computation time by a factor of n.

Assuming that we have a set of two states s1 and s2, identified by three variables

v1, v2 and v3 whose values are (2,2,3) and (2,2,0). Figure 3.2 illustrates the represen-

tation of s1 and s2 using BDDs and LDDs. Like MDDs, LDDs are a generalization

of BDDs to the integer domain. A node in a LDD may represent several nodes in a

BDD.

3.3.3 Adaptation of Sylvan to the parallel implementation of the

SOG

We have chosen to use Sylvan package to implement our approach, since this pack-

age allows to manipulate BDDs and LDDs while providing a thread safe hash table.

Therefore, the table can be shared between several concurrent threads. Indeed, Syl-

van package provides an implementation of multi-thread operations for manipulating

LDDs and BDDs.

Chapter 3. Multi-threaded approach for the parallel generation of the SOG 36

1

BDD

0

1

0

1

1

0

0

2

MDD

2

3 0

v1,v2,v3

s1 = (2, 2, 3)

s2 = (2, 2, 0)

FIGURE 3.2: Example of BDD and MDD

The level of parallelization in the implementation provided by Sylvan package is

lower than what we propose in our approach for the building of a SOG, i.e. in Sylvan

parallelization is done at the level of elementary operations manipulating BDD (or

LDD) structures, whereas, in our approach, the parallelization is to be performed at

the level of the building of nodes of a SOG. Then, in addition to the implementation

of specific functions in order to deal with Petri net models that are considered by our

experiments, it was necessary to rewrite some routines of Sylvan package in order to

take into account aforementioned aims.

We have experimentally tested the implementation and we have made a simple

comparison between the SOG based on Buddy (using BDD encoding) and the SOG

based on Sylvan (LDD encoding). Results are reported in the subsection 3.4.1.

Afterward, we have moved to the parallelization of the new version of SOG using

the proposed multi-threaded algorithm. The issue in this case is that we can not use

the garbage collector in the same way as used by Sylvan. In fact, to initiate garbage

collection, Sylvan use a feature in the Lace framework that suspends all current work

and starts a new task tree. This task suspension is a cooperative mechanism. Workers

regularly check whether the current task tree is being suspended, either explicitly

by calling a method from the parallel framework, or implicitly when creating or

synchronizing on tasks. Since threads created by Pthread library are not controlled

by Lace, then we have to trigger the garbage collection by one of the threads. During

garbage collection we have to prevent, by mutexes, other threads to insert nodes in

the hash table, and also to protect temporary results from being erased.

Chapter 3. Multi-threaded approach for the parallel generation of the SOG 37

3.4 Experimental results

In the current section, we present and evaluate the results of our experiments.

3.4.1 Comparison BuDDy - Sylvan

Table 3.1 presents the results of the construction of the SOG using two different

decision diagram packages BuDDy and Sylvan. All the tested examples are param-

eterized and the size of the reachable states space is exponential with respect to the

parameter value (e.g. the Dining Philosophers, a well known academic example; is

parameterized with the number of philosophers). The philosophers, ring and fms

examples are taken from [CLS00], while the RobotManipulation, CircularTrains and

ERK examples are taken from the Model Checking Contest benchmark3.

The RobotManipulation model can be given in several instances parameterized

by scaling parameters. It may not be very realistic in terms of modeling, but it scales

up well. In this model, processes manipulate robots following a simple protocol.

CircularTrains model was presented in [BRR06]. On a circular railroad divided in

S sections, S/3 trains circulate in the same direction. For security reasons, a segment

may never contains more than one train at a time. Traffic lights manage the access to

each sections.

ERK is a short name for “RKIP/MEK-ERK signalling pathway”. The RKIP

inhibited ERK pathway discussed as three related Petri net models in [HDG10].

For each model (column 1), we give the number of observed actions used for

the construction (2), its number of reachable markings (3) and the number of the

aggregates (4) and the arcs (5) of the SOG. We have measured the time in seconds

of the SOG construction on sequential way using Buddy (6) and Sylvan (7). Results

show that BuDDy is faster than Sylvan for some models and Sylvan is faster for

others. What was unexpected was the very important difference between the runtime

of the SOG construction based on BuDDy and Sylvan for the models robots and

trains. Sylvan in this case has a better performance compared to BuDDy.

3.4.2 Results of the multi-threaded algorithm

The implementation of the multi-threaded approach is available in the PMCSOG

project4.

3https://mcc.lip6.fr/models.php
4https://depot.lipn.univ-paris13.fr/PMC-SOG/thread-sog

Chapter 3. Multi-threaded approach for the parallel generation of the SOG 38

Model Obs Size Agg Arcs Buddy Sylvan

(1) (2) (3) (4) (5) (6) (7)

ring4 8 5136 304 1280 2.18 2.15

ring5 10 53856 1632 8320 85.8 43.46

ring6 12 575296 3805 20698 609.75 870.87

philo6 12 5778 64 384 0.21 0.47

philo8 16 103682 256 2048 4.42 11.94

philo10 20 1.86×106 1024 10240 73.98 311.10

fms4 4 438600 266 830 260.77 208.11

fms5 4 2.89×106 93280 519972 1622.89 2088.75

robot4 6 48620 2574 11649 40.37 7.10

robot5 6 184756 6006 28600 226.47 36.16

robot6 6 587860 12376 61061 1043.26 135.09

robot7 6 1.63×106 23256 117776 3995.65 505.90

train2 4 86515 81 188 468.43 42.49

train2 6 86515 178 448 323.18 29.64

train2 8 86515 1660 6696 1136.14 26.73

erk10 4 47047 550 1803 38.72 46.63

erk20 8 1.69×106 21230 15297 1223.68 957.68

TABLE 3.1: Comparison between the SOG construction based on
BuDDy and Sylvan

We have executed the multi-threaded algorithm 1 on various models, in order to

measure the performance of the parallel construction of the SOG. We have imple-

mented the algorithm 1 using C++. The implementation of the algorithm uses the

Pthread library, that provides a mutual exclusion mechanism to avoid critical runs on

shared variables between threads.

We made scaling experiments on the Magi cluster5 of Paris 13 university. This

cluster has 12 processors each with 12 cores (two Xeon X5670 at 2.93GHz), 24GB

of RAM and they are connected by an InfiniBand network.

Table 3.2 summarizes the results for different representative models. These ex-

periments are based on a parallel package Sylvan. First, we have measured the time

in seconds consumed by the construction of SOG in a sequential way using Sylvan

(4). Then, we have measured the runtime of our multi-threaded algorithm (algorithm

1) by progressively increasing the number of threads (5)-(10). Furthermore, we are

5http ://www.univ-paris13.fr/calcul/wiki/

Chapter 3. Multi-threaded approach for the parallel generation of the SOG 39

Model Obs Size Seq Th2 Th4 Th6 Th8 Th10 Th12 SpMax

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

ring4 8 5136 2.15 1.17 0.65 0.50 0.46 0.43 0.42 5.1

ring5 10 53856 43.46 22.20 11.28 8.54 6.80 6.04 5.71 7.6

ring6 12 575296 870.87 437.61 227.32 172.73 137.93 109.09 87.70 9.9

philo6 12 5778 0.47 0.29 0.19 0.15 0.12 0.11 0.11 4.3

philo8 16 103682 11.94 6.18 3.53 2.77 2.29 2.19 1.89 6.3

philo10 20 1.86×106 311.10 160.74 88.97 61.35 52.49 49.78 36.67 8.5

fms4 4 438600 208.11 90.15 58.75 28.18 24.66 22.03 21.85 10.5

fms5 4 2.89×106 2088.75 933.15 476.36 381.50 282.70 229.80 222.82 9.3

robot4 6 48620 7.10 3.21 1.77 1.35 1.23 1.01 0.92 7.7

robot5 6 184756 36.16 16.26 8.62 6.81 5.48 5.21 4.86 7.4

robot6 6 587860 135.09 66.94 35.72 26.63 22.46 19.64 17.75 7.61

robot7 6 1.63×106 505.90 229.06 118.81 91.27 76.42 67.69 61.97 8.1

train2 4 86515 42.49 26.31 14.87 14.29 13.10 13.08 12.58 3.5

train2 6 86515 29.64 18.22 9.90 7.78 6.37 6.28 5.83 5.1

train2 8 86515 26.73 13.75 7.15 5.35 4.11 3.48 2.96 9.0

erk10 4 47047 46.63 28.06 14.18 9.78 7.82 6.23 5.11 9.1

erk20 8 1.69×106 957.68 474.09 241.48 162.33 123.89 101.24 86.44 11.0

TABLE 3.2: Experimental results of the multi-threaded algorithm

interested in the speedup of the building of the SOG (11). The speedup is a measure

for the performance gain of parallelizing an algorithm and it is calculated relative to

one thread.

Figure 3.3 shows the obtained runtime . As it can be observed, for all the testes

examples, the runtime decreases by increasing the number of threads.

Figure 3.4 illustrates the obtained speedups for the examples ring4, ring5 and

ring6. It can be seen that the achieved speedups are largely dependent on the size of

the graph. This explains why the speedup obtained for the ring6 example is better

than for the ring4. Since, the speedup figures are closer to ideal for larger input sizes,

as well as for higher number of threads.

3.5 Conclusion

In this chapter, we have presented an efficient multi-threaded approach of the build-

ing of the symbolic observation graph. Our approach uses multi-threading with

shared memory to speed-up the computation. We have shown that the performance

of this algorithm of construction of the SOG scales reasonably well with increasing

the numbers of threads. The efficiency of our approach has been tested on various

Chapter 3. Multi-threaded approach for the parallel generation of the SOG 40

1 2 4 6 8 10 12
0

100

200

300

400

500

600

700

800

900

1,000

Threads

R
un

ti
m

e(
s)

fms5
erk20
ring6

robot7
philo10

1 2 4 6 8 10 12
0

20

40

60

80

100

120

140

160

180

200

Threads

R
un

ti
m

e(
s)

fms4
robot6
erk10
ring5

train2-4

1 2 4 6 8 10 12
0

5

10

15

20

25

30

35

40

Threads

R
un

ti
m

e(
s)

robot5
train2-6
train2-8
philo8

1 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Threads

R
un

ti
m

e(
s)

robot4
ring4
philo6

FIGURE 3.3: Runtime of the construction of the SOG

1 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

11

12

Threads

S
pe

ed
up

ring4
ring5
ring6

FIGURE 3.4: Speedup of the multi-thread algorithm

examples. Experimental results seem promising due to the obtained reduction in

runtime.

41

Chapter 4

Distributed approach for the

construction of the SOG

Contents

2.1 Labeled transition system . 11

2.2 Kripke structure . 12

2.3 Labeled Kripke Structure . 13

2.4 Decision Diagrams . 14

2.4.1 Binary Decision Diagrams 14

2.4.2 Multi-valued Decision Diagrams 15

2.4.3 List decision diagrams 15

2.5 Linear Temporal Logic . 16

2.6 Symbolic Observation Graph 17

2.6.1 Event-based SOG . 18

2.6.2 State-based SOG . 20

2.7 Event-state based SOGs for LTL model checking 21

2.7.1 Revisiting SOG for Hybrid LTL 22

2.7.2 Checking stuttering invariant properties on SOGs 25

4.1 Introduction

In the previous chapter, we have proposed a multi-threaded algorithm for comput-

ing SOG. Comparing to sequential algorithm, results show interesting performance

improvement in execution time. However, multi-threaded algorithms are based on

a shared memory platform. This is can be considered as a limitation, since pro-

ducing shared-memory machines with increasing number of processors is expensive

Chapter 4. Distributed approach for the construction of the SOG 42

and difficult, as they require complex hardware cache controllers [AB86]. In this

work, we propose a distributed algorithm that is based on distributed memory plat-

form [Oun+17b]. We compare and evaluate the three algorithms (sequential, multi-

threaded and distributed) by applying them on a set of well-known parameterized

problems.

4.2 Distributed algorithm for constructing the SOG

4.2.1 Aims and Hypothesis

Interconnection Network

P P P P P

M M M M M

Processors

Memory

FIGURE 4.1: Distributed memory multi-processor

We consider a distributed memory multi-processor with N processors numbered

from 0 to N− 1 and communicating via message passing interface (MPI) [Wal94;

Gro+96].

In a distributed-memory multiprocessor, each memory module is associated with

a processor as shown in fig. 4.1. Any processor can directly access its own memory.

A message passing (MP) mechanism is used in order to allow a processor to get

information from other memory modules associated with other processors. Message

passing interface (MPI) is a message-passing library specification, designed to ease

the use of message passing by end users, library writers, and tool developers.

The partitioning of the construction of the symbolic observation graph is per-

formed according to aggregates. In contrast, the load balancing is performed stat-

ically. Each process executes an instance of the algorithm 2 and constructs a part

of the SOG. The distribution and the storing of aggregates by each process are de-

termined using a static partition function h : S→ [0,N− 1] returning the identity of

Chapter 4. Distributed approach for the construction of the SOG 43

the process to which an aggregate is assigned, where S is the set of states associates

with the aggregate. We associate with each process i a stack waitingi containing the

aggregates to be processed. An advantage of distributed memory is that data locality

is fully exploited, since processes can only access local memory.

4.2.2 Description of the algorithm

In our proposed algorithm 2, the major faced problem is the determination of the

identity of process that must deal with an aggregate. For this purpose, we use a hash

function that associates a unique process identity number to each aggregate. The

initial process generates the initial aggregate and computes, using the hash function

h, the identity of the process that must store this aggregate. Eventually, the function

SendAggregate() is used to send the aggregate to another process. Each process i

executes an instance of Algorithm 2. In each iteration, it builds the successors of the

popped aggregate by executing observable enabled actions and associates with each

aggregate a key value. Then, for an aggregate A′, if h(A′) = i, the aggregate A′ and the

arc linking A to A′ are stored locally as well. Otherwise, A′ is sent to the process h(A′)

via calls to SendAggregate(). Thus, the process i stores only the key value associated

with A′ and the arc linking A to A′. When a worker i receives an aggregate A by

calling ReceiveAggregate() it stores it in its local memory, it pushes it into the local

stack and pursues the generation of successor aggregates. When process i finishes

constructing its local aggregates, it waits for more successors from other processes.

When all processes have finished their work the construction has completed.

Since an aggregate A can be generated by several predecessors, it must be en-

sured that all predecessors send A to the same process. To address this problem, the

key value of the aggregate A is exploited in the hash function h(A) to specify the

destination. The hash function has the form h(A) = key(A)mod[N].

The Partition function that takes a state and returns the identifier of the process

to which it belongs must depend exclusively on the aggregate itself. For this reason,

the hash function used in the algorithm (line 13) depends on the key value associated

with the aggregate to be processed. Indeed, the key value is computed by an internal

hash function that is applied to the aggregate (LDD) when it is stored in the hash

table.

The correctness of Algorithm 2 follows directly the same arguments as in the

case of sequential [KP08a]. Let G be a Symbolic Observation Graph associated with

a labeled transition system T and generated by Algorithm 2. G respects definition 11.

Further, Algorithm 2 terminates only when the parallel computation is finished and

there are no more states to be explored (see Termination Detection 4.2.3). Also, the

Chapter 4. Distributed approach for the construction of the SOG 44

hash function is globally known, agreed upon by all processes, and stable over time,

otherwise different processes would send the same aggregate to different processes,

leading to exploring aggregates more than once.

Data: LT S〈Γ,Obs∪UnObs,→, I〉
Result: SOG〈Γ′,Obs,→′, I′〉

1 if h(I) == i then

2 Waitingi = {I};
3 A0 = Aggregate(I);
4 else

5 Waitingi = /0

6 while DetectTermination==false do

7 while ∃A ∈Waitingi do

8 Waitingi =Waitingi \{A}
9 forall a ∈ Obs do

10 if enabled(A,a) then

11 S′← succ(A,a);
12 A′= Aggregate(S′);
13 if h(A′) 6= i then

14 SendAggregate(A′,h(A′));
15 else

16 if ∃A′′ tq A′ == A′′ then

17 arc(A,a,A′);
18 else

19 Γ = Γ∪{A′};
20 arc(A,a,A′);
21 Waitingi =Waitingi∪{A

′};

22 Waitingi =Waitingi∪ReceiveAggregate();

Algorithm 2: A distributed algorithm for constructing the SOG

4.2.3 Termination Detection

In order to detect the termination of the parallel generation of the SOG, we use a

virtual ring-based algorithm inspired by [Mat87]. The global termination is reached

when all local computations are finished (stacks of aggregates are empty)

The principle of the termination detection algorithm used is the following. [GMS01]

All processes are assumed to be on an unidirectional virtual ring that connects every

process i to its successor process (i+1)mod[N]. Every time the initiator process fin-

ishes its local computations, it checks whether global termination has been reached

by generating two successive waves of Receive and Send messages on the virtual ring

to collect the number of messages received and sent by all processes, respectively. In

Chapter 4. Distributed approach for the construction of the SOG 45

practice, to reduce the number of termination detection messages, each process prop-

agates the current wave only when its local computations are finished. The initiator

process checks whether the total number of messages sent is equal to the total number

of messages received. If this is the case, it will inform the other processes that termi-

nation has been reached by sending a termination message on the ring. Otherwise,

the initiator concludes that termination has not been reached yet and will generate a

new termination detection waves later. According to [GMS01], this distributed termi-

nation detection scheme seems to use less messages than the centralized termination

detection schemes used in the parallel versions of Spin [LS99] and Murϕ [SD97].

4.3 Technical aspects and implementation

We have implemented the algorithm using C++. As communication platform for the

implementation of algorithm 2, we used the MPI [Wal94; Gro+96]. Communications

can create a large overhead and the code granularity often has to be large to minimize

the latency. In this work, the granularity of the parallelization is an aggregate (set of

states). We encode the marking that allow to rebuild the aggregate. We send the

message that contains this encoding (of type String) to the ’owner’ process of this

aggregate. The owner must receive and decode the message to rebuild the aggregate.

Since each aggregate is identified by a key value, the sender keeps this key. This

can help us easily find the recipient and to avoid the re-send, in case of the multiple

construction of the aggregate.

4.4 Experiments

In the current section, we show an empirical evaluation of the distributed algorithm

(algorithm 2) by comparing its absolute performance and scalability with that of the

multi-threaded one. The presented benchmark setup is the same used in the previous

chapter.

All the results are taken for executions of the Algorithm 2. For each net, we have

measured the time in seconds consumed by the construction of SOG in a sequential

way. Then, we measured the runtime of our Distributed algorithm by progressively

increasing the number of process. Figure 4.2 shows the run times of only three

models (ring5, ring6, philo10) using respectively Algorithm 2. The speedups are

displayed in figure 4.3. The speedup is a measure for the performance gain of paral-

lelizing an algorithm and it is done by normalizing performance gain with regard to

the sequential run. We found in Figure 4.3) the speedups achieved by our examples.

Chapter 4. Distributed approach for the construction of the SOG 46

Model Seq 8 16 24 32 40 SpMax

ring4 2.15 0.92 0.84 0.87 0.65 0.95 3.3

ring5 43.46 15.14 13.60 14.57 11.39 16.29 3.8

ring6 870.87 490.64 323.76 452.14 347.36 463.04 3.6

philo6 0.47 0.29 0.34 0.29 0.30 0.25 2

philo8 11.94 8.00 5.63 7.12 6.69 9.23 2.1

philo10 311.10 219.53 209.75 149.07 176.83 238.44 1.85

fms4 208.11 181.01 164.13 171.55 172.36 179.85 1.3

fms5 2088.75 1699.14 1733.08 1633.87 1614.88 1779.79 1.3

robot4 7.10 4.26 3.70 4.60 3.93 4.91 2.3

robot5 36.16 22.67 18.26 19.64 16.94 24.75 2.1

robot6 135.09 105.8 88.41 90.05 79.53 99.85 1.9

train2-4 42.49 30.99 31.30 36.34 39.09 40.04 1.4

train2-6 29.64 18.89 18.11 19.21 18.69 20.26 1.8

train2-8 26.73 11.16 10.73 11.63 10.74 11.16 2.5

erk10 46.63 28.98 19.87 19.70 23.69 28.97 2.4

erk20 957.68 587.35 468.12 397.23 511.26 589.38 2.4

TABLE 4.1: Experimental results of the distributed-memory algo-
rithm

It can be seen that for all examples, the measured speedup is not so good, 40 pro-

cessor runs can achieve speedups of at best 4.5. We conclude from our experiments

that the shared memory is more efficient than the distributed memory architectures,

probably because the cost of the processes communication.

4.5 Conclusion

In this chapter, we have presented an approach for the parallel construction of the

SOG proposed for distributed memory architectures. It uses a static load balancing

scheme, since it allows to avoid supplementary communication between processes.

We have implemented this algorithm and studied their performances. We have com-

pared the results obtained by this approach against the multi-threaded approach and

a non parallel construction of the SOG. Experiments show that shared-memory algo-

rithm is more efficient than distributed-memory algorithm. This is can be explained

by the communication overhead between processes. Since, communication overhead

plays an important role in scalability of distributed-memory algorithms.

Chapter 4. Distributed approach for the construction of the SOG 47

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

Threads

R
un

ti
m

e(
s)

fms5
erk20
ring6

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

Threads

R
un

ti
m

e(
s)

philo10
fms4

robot6

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

5

10

15

20

25

30

35

40

45

50

Threads

R
un

ti
m

e(
s)

erk10
ring5

train2-4
robot5

train2-6
train2-8

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

1

2

3

4

5

6

7

8

9

10

11

12

Threads

R
un

ti
m

e(
s)

philo8
robot4
ring4
philo6

FIGURE 4.2: Runtime of distributed-memory algorithm

12 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

1

2

3

4

5

6

7

8

9

10

Cores

S
pe

ed
up

ring4
ring5
ring6

FIGURE 4.3: Speedup of the distributed-memory algorithm

48

Chapter 5

Hybrid approach for generating the

SOG

Contents

3.1 Introduction . 30

3.2 Multi-threaded algorithm for constructing the SOG 31

3.2.1 Aims and Hypothesis . 31

3.2.2 Description of the algorithm 32

3.3 Technical aspects and Implementation 34

3.3.1 Multi-core decision diagram packages 34

3.3.2 Symbolic encoding of the SOG 35

3.3.3 Adaptation of Sylvan to the parallel implementation of the

SOG . 35

3.4 Experimental results . 37

3.4.1 Comparison BuDDy - Sylvan 37

3.4.2 Results of the multi-threaded algorithm 37

3.5 Conclusion . 39

5.1 Introduction

In order to reduce the building time of a SOG, we have proposed a parallel (shared

memory) and distributed (message passing) construction algorithms in [Oun+17a;

Oun+17b]. The first one is a multi-threaded algorithm dedicated to shared memory

architectures (presented in chapter 3). Comparing to sequential algorithm, results

show interesting performance improvement in execution time. The second algorithm

is based on a distributed memory architecture (see chapter 4). Thus, each process

has its own local memory, and communication between processes is performed by

Chapter 5. Hybrid approach for generating the SOG 49

using the Message Passing Interface MPI [Wal94]. Experiments show that, in gen-

eral, shared-memory algorithm outperforms the distributed-memory algorithm (this

is mainly due to communication overhead).

In line with our previous work, and aiming to find the best way to parallelize the

SOG construction, we present in this chapter a hybrid technique which combines the

two previous approaches [Oun+19]. The SOG construction is then shared among a

number of processes, each creates a number of threads that run on (typically) the

same number of CPUs. Among the threads of each process, one (the coordinator) is

responsible of the communication (including performing overlapped asynchronous

message passing), while the others (workers) are responsible for the construction of

the SOG nodes. The hybrid Shared and Distributed architectures provides signifi-

cant performance benefits for the enumerative model checking performed on clusters

(currently the most common high-performance computers).

5.2 A hybrid approach for constructing a SOG

5.2.1 Aims and hypothesis

Our proposed approach considers an LTS where its observable and unobservable ac-

tions are specified, in order to build its SOG in a parallel and distributed setting. This

is performed by running several processes where each process consists of several

threads. Therefore, the partitioning of the building of a SOG is performed according

two levels. At the first level, the partitioning of the building of the SOG is performed

at the process level. The load balancing between processes is performed statically

through the use of a hash function. Note that this function should have a homoge-

neous distribution to ensure load balancing, therefore, we have chosen MD5 [Dob96]

as it is known to provide a good distribution for any kind of input. At the second level

the partitioning of each part of the graph associated with a process is performed at

the threads level. In order to increase the number of treatments to be executed si-

multaneously by different threads, and consequently, to obtain a better speed up, we

use a dynamic load balancing approach. The decision to allocate the construction

of an aggregate to one thread is made after comparing current loads. Threads are

executed on the same machine and can share the same space memory that can lead to

unexpected behavior. To avoid concurrent writes on sensitive data, mutual exclusions

(mutexes) around critical sections are used.

For this purpose, we propose to create communicating processes via Message

Passing Interface (MPI). As it is illustrated in Fig. 5.1, each process creates two

types of threads:

Chapter 5. Hybrid approach for generating the SOG 50

• The first type consists of one thread, called coordinator thread. The main pur-

pose of this thread is to manage communication between processes, and to

detect the termination of the construction.

• The second type of threads, called worker threads, allows to build jointly a part

of the SOG.

...

...

coordinator

worker 1

worker 2

worker M

coordinator

worker 1

worker 2

worker M

coordinator

worker 1

worker 2

worker M

Process 1 Process 2 Process N

Communication

Construction

FIGURE 5.1: Architecture of the hybrid approach

5.2.2 Description of the algorithms

We consider a distributed memory with N processes numbered from 0 to N−1 and

communicating via message passing interface (MPI). Process number 0 is called a

master process. It launches the construction of the SOG from the initial state of the

considered LTS, and it will launch the detection of the termination. Each process

constructs a part of the SOG using several threads. Each thread is identified by its

identifier stored in its local variable idthread. Threads having 0 as identifier in a

given process are the coordinator threads.

A process i can send a message m to process j by invoking function Send(j,m),

and can receive a message through the call of function Receive(m). The latter func-

tion returns a Boolean value indicating whether a message has been received or not.

Each process creates one coordinator thread and several worker threads. We associate

with the coordinator thread a stack to store the messages to be sent to other processes.

Further, we associate with each worker thread two stacks. The first one contains mes-

sages received by the coordinator from other processes through static load balancing

and followed by a dynamic load balancing performed by the coordinator thread. In-

deed, these messages correspond to aggregates that must be constructed and stored

by the thread. The second contains the aggregates to be built by the worker and they

are assigned through a dynamic load balancing within the parent process.

Chapter 5. Hybrid approach for generating the SOG 51

The array Load indexed by idthread allows to store the current loads of the

worker threads. The load of a thread is defined by the number of aggregates to be

processed by the thread.

Data: LT S〈Γ,Obs∪UnObs,→, I〉
Result: SOG〈Γ′,Obs,→′, I′〉

1 Load: Array[1,..,M] integer;
2 Waitmsgi: a stack to store the messages;
3 if idth == 0 then

4 A0 = Aggregate(I);
5 if (h(A0) == 0) then

6 Waitmsg1 = {A0};
7 else

8 SendAggregate(A0,h(A0));

9 while DetectTermination == f alse do

10 if (idth == 0) then

11 while TAG==Aggregate do

12 /* The message is tagged with the tag value Aggregate */

13 A=ReceiveAggregate();
14 j=minCharge();
15 Waitmsg j =Waitmsg j∪A;
16 mutex lock(Load j);

17 Load j←− Load j +1;
18 mutex unlock(Load j);

19 while ∃msg ∈Waitmsg0 do

20 Waitmsg0 =Waitmsg0 \msg;
21 SendMsg();

Algorithm 3: A hybrid algorithm for constructing the SOG (coordinator
thread)

Each process executes an instance of the algorithms 1 and 2 in order to construct

a part of the SOG. Algorithm 3 is executed by the coordinator thread during the dis-

tributed construction of the SOG. We distinguish the coordinator thread belonging to

the master process. This thread initiates the building of the SOG by generating the

initial aggregate. Then, it determines if the current process is responsible (owner)

of this aggregate. If not, it sends it to the process determined by the hash function

h : A→ {0,1, · · · ,N− 1} used to distribute aggregates between processes. Then, it

operates a loop, as any other worker thread, for receiving and sending messages. If

the received message is an aggregate (the message is tagged with the TAG value Ag-

gregate i.e. it is not a message for termination detection), the coordinator pushes this

message into the stack of messages Waitmsgi of the worker thread having minimum

load. While the stack of messages Waitmsg0 of the coordinator is not empty, in each

Chapter 5. Hybrid approach for generating the SOG 52

iteration, it pops a message and sends it to the appropriate process by calling the

SendAggregate() function.

Data: LT S〈Γ,Obs∪UnObs,→, I〉
Result: SOG〈Γ′,Obs,→′, I′〉

1 Load: Array[1,..,M] integer;
2 Waitmsgi: a stack to store the aggregates;
3 Waitingi: a stack to store the messages;
4 while DetectTermination == f alse do

5 while ∃A ∈Waitingi do

6 Waitingi =Waitingi \{A}
7 forall a ∈ Obs do

8 if enabled(A,a) then

9 S′← succ(A,a);
10 A′= Aggregate(S′);
11 if h(A′) 6= i then

12 Waitmsg0 =Waitmsg0∪msgto_send;
13 else

14 if ∃A′′ tq A′ == A′′ then

15 arc(A,a,A′);
16 else

17 Γ = Γ∪{A′};
18 arc(A,a,A′);
19 j=minCharge();
20 mutex lock(Waiting j);

21 Waiting j =Waiting j∪{A
′};

22 mutex unlock(Waiting j);

23 mutex lock(Load j);

24 Load j = Load j +1;
25 mutex unlock(Load j);

26 while ∃msg ∈Waitmsgi do

27 mutex lock(Waitmsgi);

28 Waitmsgi =Waitmsgi \msg;
29 mutex unlock(Waitmsgi);

30 S′=DecodingMsg(msg);
31 A′= Aggregate(S′);

Algorithm 4: A hybrid algorithm for constructing the SOG (worker i)

Algorithm 4 is executed by each of the workers. At each iteration, a worker

thread i pops an aggregate from its stack of aggregates Waitingi and decrements its

loading. It builds the successors of the popped aggregate by executing observable

enabled actions. It computes, using the hash function h, the identity of the processes

that must store the successors (aggregate). If a newly built successor must be stored

Chapter 5. Hybrid approach for generating the SOG 53

locally and does not exist in the SOG, it is inserted in the SOG and pushed into the

stack associated with the thread having the minimum load. Otherwise, it pushes this

aggregate into the stack of the coordinator thread that is responsible of sending an

aggregate to the "owner" process. Next, the workers runs in a loop exploring ag-

gregates received by the coordinator. In each iteration, it pops a message from its

stack of messages Waitmsgi and decrements its loading. It stores the received aggre-

gate in its local memory, pushes it into the local stack and pursues the generation of

successor aggregates.

5.2.3 Termination detection

The termination detection for the hybrid approach is done into two phases: a local

termination detection and a global termination detection.

Local termination detection: It is the responsibility of the coordinator thread

(within each process). At each process, the local termination occurs when all worker

threads have finished the construction of their local aggregates and when no load

balancing operations are in progress. In this case, the process moves towards a state

in which it expects global termination detection or more aggregates to process.

Global termination detection: It is detected through the use of a virtual ring-

based algorithm inspired by [Mat87] on which the termination probing message is

exchanged only between neighbors. The token message chain can be started only by

the master process when it finishes its local computation (when it detects local termi-

nation). Since every process updates the global sent and received message counting

on the token before forwarding it, if the master process finds the two counters to

match then the parallel computation is over. In fact, this implies that all the threads

are inactive and all messages that have been sent have also been received. It is worth

noting that the global detection is canceled if there is a process that does not detect

its local termination. In a such case, the master process has to re-initiate the global

termination when its local termination detection is still valid.

5.2.4 Correctness proof

In General, to prove the correctness of a parallel program, it is necessary in the

first place, to demonstrate the correctness of its components (tasks) that are sequen-

tial programs. Further, additional properties related to safety and liveness must be

proved [Lam77]. Safety properties stated by sufficient conditions on the assertions

to guarantee the coherence of the subroutine (mutual exclusion, deadlock-free), and

liveness properties stating conditions which guarantee termination. In addition, from

graph construction point of view, we prove that any maximal path in the SOG built

Chapter 5. Hybrid approach for generating the SOG 54

sequentially is a maximum path in the SOG built by our Algorithm (see the following

proofs).

In the following, we prove that each maximal path in the SOG built sequentially

is built by our hybrid parallel algorithm and vice versa.

Theorem 25 Let T be an LTS and Gs the corresponding sequential SOG [HIK04].

Let Gp the SOG Obtained by our Hybrid algorithm. Let π = a0
o1−→ a1

o1−→ ·· ·
on−→ an

be a path linking aggregates a0 . . .an then the following holds:

π is a maximal path in Gs⇔ π is a maximal path in Gp

Proof.

We proceed by induction on the length of π.

• If π = a0, then a0 contains either a dead state or a cycle. Note that the initial

aggregate is the same in Ga and Gp. In fact, for the parallel construction, a

given thread (belonging to a given process) is responsable of the construction

of this aggregate using a sequential construction and the same saturation algo-

rithm as given by the definition of an aggregate. The existence of dead states

and/or cycles within this aggregate is then determined similarly in sequential

and parallel construction algorithms.

• Assume that the theorem is correct for any path of length n, and let π = a0
o1−→

a1
o1−→ ·· ·

on−→ an be a path of length n+ 1. Let t be the identifier of the thread

that is responsible of the building of an−1. Since it is the same aggregate as

in the sequential version, thread t will compute its successor by action on,

before sending this successor aggregate to the owner process (using the hash

function). Lets consider the two following cases:

– an contains a deadlock (resp. a cycle): again, such a detection will be

done in both cases (sequential and parallel) in the same way, and the

maximum path belongs to both SOGs versions.

– an is identified an aggregate belonging to the current path (i.e. we are in

the case of a maximal path with an infinite number of observable actions’

occurrences). Let l ≤ n be the index of the aggregate al s.t., al = an. Once

the thread t has computed an, the owner process of an will be computed by

the hash function (proved to give unique value for identical aggregates).

Thus, the owner will be the same process that already computed al which

is saved in the local memory of that process. The current path is then

detected as a maximal one in Gp.

Chapter 5. Hybrid approach for generating the SOG 55

The proof of the other direction in the two previous cases is trivial.

In the following, we discuss correctness issues of our algorithm regarding the

satisfaction of safety and liveness properties (mutual exclusion, deadlock-freeness

and termination):

• There are no critical runs when the threads access the shared variables. We

avoid critical runs by using proper and correct mutual exclusion mechanisms

provided by the PThread library.

At the level of processes, the hash function is globally known, agreed upon

by all workers, and stable over time (otherwise different processes would add

the same state to different owners). We used the hash function MD5 (Message

Digest) [Dob96] designed by Ron Rivest as a strengthened version of MD4.

The surety of this function was widely studied by several authors [Dob96].

• The correctness about this issue comes directly from the fact that the threads

running in parallel have to synchronize only when there are no aggregates in

the stack, thus the worker thread has to wait for the communication thread to

receive some aggregates and push them in its associated stack. However, the

communication thread never waits for the worker thread as its main purpose is

to send some aggregates to processes or to receive aggregates from processes

that popped (resp. pushed) from (resp. into) dedicated stacks. When no aggre-

gates are received and there are no aggregates to send, there exist two cases.

If the communication thread belongs to a master process, it will initiate termi-

nation. Else, surely, it will receive a termination message. For the two cases,

termination has occur as aforementioned in the termination detection proof.

• We used the termination algorithm in [Mat87], which is known to be correct.

Termination is reached when all local computations are finished (i.e., each pro-

cess i has no remaining states to explore and all sent states have been received).

5.3 Experiments

5.3.1 Results of the hybrid approach

Extensive experiments with a variety of different models were performed to measure

the performance of the proposed hybrid algorithm.

Chapter 5. Hybrid approach for generating the SOG 56

Net Obs states Agg Arcs Seq 2 4 6 8 10 12 SpMax

ring4 8 5136 304 1280 2.15 0.57 0.68 0.70 0.70 0.77 0.71 3.7

ring5 10 53856 1632 8320 43.46 4.39 4.13 4.28 4.25 3.84 3.98 11.3

ring6 12 575296 3805 20698 870.87 71.34 37.16 28.51 23.44 21.05 18.66 46.6

philo6 12 5778 64 384 0.47 0.17 0.23 0.26 0.24 0.26 0.37 2.7

philo8 16 103682 256 2048 11.94 1.07 0.94 1.11 1.14 1.21 1.29 12.7

philo10 20 1.86×106 1024 10240 311.10 22.62 19.23 17.18 14.42 13.91 14.58 22.3

fms4 4 438600 266 830 208.11 22.84 23.15 23.88 26.89 26.14 31.34 9.1

fms5 4 2.89×106 93280 519972 2088.75 502.95 473.68 406.51 343.22 481.73 524.64 6.0

robot4 6 48620 2574 11649 7.10 1.14 1.19 2.31 3.08 3.42 3.37 6.2

robot5 6 184756 6006 28600 36.16 4.06 3.28 4.63 4.77 5.98 5.73 11.0

robot6 6 587860 12376 61061 135.09 36.47 34.72 23.66 21.12 17.52 20.45 7.7

robot7 6 1.63×106 23256 117776 505.90 48.87 32.89 37.52 43.27 49.66 53.15 15.4

train2 4 86515 81 188 42.49 8.45 7.99 8.39 9.41 9.97 10.86 5.3

train2 6 86515 178 448 29.64 4.12 4.23 4.51 4.26 5.17 4.55 7.2

train2 8 86515 1660 6696 26.73 3.23 3.51 3.50 3.45 3.35 3.47 8.2

erk10 4 47047 505 1803 46.63 3.95 3.48 3.16 3.08 3.64 4.00 15.1

erk20 8 1.69×106 21230 15297 957.68 62.15 58.33 51.71 53.67 57.32 60.84 18.5

TABLE 5.1: Scalability of the Hybrid approach of the construction of
the SOG

We made scaling experiments on the Magi cluster1 of Paris 13 university. This

cluster has 12 processors each with 12 cores (two Xeon X5670 at 2.93GHz), 24GB

of RAM and they are connected by an InfiniBand network.

In table 5.1, we provide some results of the Hybrid approach. For each model,

we have measured the time in seconds consumed by the building of the SOG in a

sequential way. Then,we set the number of threads for each process at 12 and we

increased the number of processes from 2 to 12. We analyzed the runtime efficiency

and we calculated the maximum obtained speedup. We can notice that the hybrid

approach scales well, but we can see that the increase in the number of processes

does not necessarily imply an increase in the efficiency of the algorithm.

In order to improve the performance of the parallel generation of the SOG, it

is essential to achieve a good load balancing between the processes. Meaning that

all processes should have an equal number of aggregates during the generation of

the SOG. As indicated in Section 4, for the hybrid approach, we adopted a static

partition scheme (we have chosen MD5) to ensure, at the first level, load balancing

among the involved processes. Fig. 5.2 shows the distribution of the aggregates on

12 processes for different examples. Overall, we interpret a good performance of the

partition function in the distribution of workload between processes. We can also

mention that the load balancing is well performed for models having more size and

1http ://www.univ-paris13.fr/calcul/wiki/

Chapter 5. Hybrid approach for generating the SOG 57

1 2 3 4 5 6 7 8 9 10 11 12
100

150

200

250

300

processes

ag
gr

eg
at

es
robot4
ideal

1 2 3 4 5 6 7 8 9 10 11 12
1,500

1,750

2,000

2,250

2,500

processes

ag
gr

eg
at

es

robot7
ideal

1 2 3 4 5 6 7 8 9 10 11 12
20

30

40

50

60

70

processes

ag
gr

eg
at

es

ERK10
ideal

1 2 3 4 5 6 7 8 9 10 11 12
1,400

1,600

1,800

2,000

processes

ag
gr

eg
at

es

ERK20
ideal

FIGURE 5.2: Distribution of the aggregates on 12 processes

more number of aggregates.

At the second level, for each process, we assigned the workload to the worker

threads using a dynamic load balancing scheme. The allocation of the construction of

an aggregate to one worker thread is made after comparing current loads (the number

of aggregates to be processed) of individual threads. Even this method shows that the

load is balanced evenly between threads (the number of aggregates is nearly equal

for the worker threads). We aim to make various optimizations like to make the

comparison between the current loads of the threads using the number of the LDD

nodes instead of the number of aggregates also the sum of message sizes to process

instead of the number of messages. Indeed, there is a difference in size from one

aggregate to another. Therefore, if we have the same number of aggregates, it does

not mean that we have the same load for each thread.

5.3.2 Comparative analysis

In the Table 5.2, we compare the proposed approach performances with those pre-

sented in chapters 3 and 4 (shared and distributed-memory algorithms to construct the

SOG). Table 5.2 illustrates the differences in terms of minimal runtime and maximal

speedup. We experimented the distributed approach with 40 processes. The maxi-

mum speedups for this approach are detected for at the most 30 processes. Then, we

Chapter 5. Hybrid approach for generating the SOG 58

Model Distributed Hybrid Multi-thread

Model Obs states Agg Arcs Seq runtime (s) SpMax runtime (s) SpMax runtime(s) SpMax

ring4 8 5136 304 1280 2.15 0.64 3.3 0.57 3.7 0.42 5.1

ring5 10 53856 1632 8320 43.46 11.39 3.8 3.98 11.3 5.71 7.6

ring6 12 575296 3805 20698 870.87 243.13 3.6 18.66 46.6 87.71 9.9

philo6 12 5778 64 384 0.47 0.28 1.6 0.17 2.7 0.12 3.9

philo8 16 103682 256 2048 11.94 5.63 2.1 0.94 12.7 1.89 6.3

philo10 20 1.86×106 1024 10240 311.10 168.03 1.8 13.91 22.3 36.67 8.5

fms4 4 438600 266 830 208.11 162.74 1.3 22.84 9.1 21.85 9.5

fms5 4 2.89×106 93280 519972 2088.75 1543.52 1.3 406.50 5.1 222.82 9.3

robot4 6 48620 2574 11649 7.10 3.03 2.3 1.14 6.2 0.92 7.7

robot5 6 184756 6006 28600 36.16 16.94 2.1 3.28 11.0 4.86 7.4

robot6 6 587860 12376 61061 135.09 70.67 1.9 17.52 7.7 17.75 7.6

robot7 6 1.63×106 23256 117776 505.90 311.78 1.6 32.89 15.4 61.97 8.1

train2 4 86515 81 188 42.49 28.88 1.4 7.99 5.3 12.58 3.3

train2 6 86515 178 448 29.64 16.10 1.8 4.12 7.2 5.83 5.0

train2 8 86515 1660 6696 26.73 10.73 2.5 3.23 8.2 2.86 9.0

erk10 4 47047 505 1803 46.63 18.84 2.4 3.08 15.1 5.11 9.1

erk20 8 1.69×106 21230 15297 957.68 397.23 2.4 51.71 18.5 86.44 11.0

TABLE 5.2: The best execution times using multi-threaded, dis-
tributed and hybrid approaches

stopped the evaluation at 40 processes because the speedups have been decreased for

all the tested models by increasing the number of processes more than 30 (mainly due

to the communication overhead). Moreover, because of material limitations (a clus-

ter containing 12 nodes with 12 cores for each node), the multi-threaded approach is

limited to 12 cores. Therefore, the hybrid approach will essentially allow to exploit

such architecture of clusters, leading for most examples (as shown in the table) to

better speedup.

We analyze the execution times in Figure 5.3 of our algorithms measured on

different architectures. It can be seen that the results of the hybrid and multi-threaded

approach are competitive, whereas the distributed approach is less efficient.

We illustrate the gain of our approaches in terms of speedup in Figure. 5.4. Com-

paring sequential runs against the hybrid approach, the speedup curves are moving

up as the number of cores increases indicating that this approach scales to some de-

gree. It achieves a maximum speedup of 46 when 144 cores CPU are used (for the

ring6 example). Up to 12 cores, we note that the multi-threaded approach scales

better than the hybrid and the distributed approach.

Chapter 5. Hybrid approach for generating the SOG 59

1 2 4 6 8 10 12 24 36 48 72 96 120144
0

80

160

240

320

400

480

560

640

720

800

880

ring6 example

Multithread
Distributed

Hybrid

1 2 4 6 8 10 12 24 36 48 72 96 120144
0

40

80

120

160

200

240

280

320

philo10 example

Multithread
Distributed

Hybrid

1 2 4 6 8 10 12 24 36 48 72 96 120144
0

20

40

60

80

100

120

140

robot6 example

Multithread
Distributed

Hybrid

1 2 4 6 8 10 12 24 36 48 72 96 120144
0

3

6

9

12

15

18

21

24

27

30

train2-8 example

Multithread
Distributed

Hybrid

FIGURE 5.3: Comparison between the multi-threaded, distributed and
hybrid approaches in term of the obtained runtime. On the X axis are
the numbers of cores and on the Y axis are execution times in seconds.

5.4 Conclusion

We have proposed in this chapter a hybrid MPI-thread approach for the construction

of the Symbolic Observation Graph. Then, we have analyzed the benefits of this

approach in terms of memory and runtime performances. To validate this approach,

we have performed experiments and we have evaluated the presented approach on

a benchmark of well-known parameterized problems. The experimental results are

encouraging, and confirm that the hybrid algorithm scales well while obtaining high

speedups and utilizing the available computational power to its full extent. We have

also compare the hybrid approach with the two previous approaches that we have

proposed in the previous chapters. In all test cases, we observe a better global scala-

bility of the parallel construction, although the maximization of the number of cores

Chapter 5. Hybrid approach for generating the SOG 60

1 2 4 6 8 10 12 24 36 48 72 96 120144
0

5

10

15

20

25

30

35

40

45

50

ring6 example

Multithread
Distributed

Hybrid

1 2 4 6 8 10 12 24 36 48 72 96 120144
0

5

10

15

20

25

philo10 example

Multithread
Distributed

Hybrid

1 2 4 6 8 10 12 24 36 48 72 96 120144
0

1

2

3

4

5

6

7

8

9

10

robot6 example

Multithread
Distributed

Hybrid

1 2 4 6 8 10 12 24 36 48 72 96 120144
0

1

2

3

4

5

6

7

8

9

10

train2-8 example

Multithread
Distributed

Hybrid

FIGURE 5.4: Comparison between the multi-threaded, distributed and
hybrid approaches in term of the achieved speedups. On the X axis are

the numbers of CPU cores and on the Y axis are the speedups

do not necessarily improve the scalability of the hybrid algorithm.

61

Chapter 6

Reducing time and/or memory

consumption of the SOG construction

Contents

4.1 Introduction . 41

4.2 Distributed algorithm for constructing the SOG 42

4.2.1 Aims and Hypothesis . 42

4.2.2 Description of the algorithm 43

4.2.3 Termination Detection 44

4.3 Technical aspects and implementation 45

4.4 Experiments . 45

4.5 Conclusion . 46

6.1 Introduction

In the previous chapters, we have proposed new algorithms to parallelize the con-

struction of the symbolic observation graph (SOG). Each node of a SOG, called an

aggregate, represents a set of explicit states that is encoded symbolically by a BDD,

or by any extension such as an MDD. We have proposed three different approaches,

in order to benefit from additional speedups and performance improvements in ex-

ecution time. A multi-threaded approach based on a dynamic load balancing and

a shared memory architecture , a distributed approach based on a distributed mem-

ory architecture and a hybrid (shared-distributed memory) approach that combines

the two previous approaches. Experiments in chapter 5 showed that the distributed-

memory approach is less efficient than the multi-threaded and the hybrid approaches.

This can be explained by the communication overhead between processes. In this

Chapter, we aim to improve the distributed algorithm proposed in chapter 4 by re-

ducing the size of the communicated aggregates (sets of states) between the processes

Chapter 6. Reducing time and/or memory consumption of the SOG construction 62

involved in the SOG construction. Indeed, instead of sending the set of all states that

forms an aggregate, we propose to use a reduced canonical representation that is

sufficient to rebuild it. Further, such a representation has to be unique in order to

identify the represented aggregate, and also to retrieve the process responsible for

its construction and storing. In order to obtain such a representation, we replace the

corresponding set of states by the subset consisting of one representative per strongly

connected component (SCC) of the subgraph spanned by this set. Since, the com-

putation of initial SCCs is a critical step with respect to the time complexity [XB00;

ZC10], we propose a specific and symbolic algorithm that allows to reduce the size

of an aggregate. Then, we apply such a reduction within the three previous parallel

approaches and we measure the impact of the use of the canonicalization on SOG

construction.

6.2 Canonicalization algorithm

Our aim is to reduce the size of the set of states associated with each aggregate. In

addition to reducing the size of aggregates that can lead to important memory sav-

ings, the canonicalization allows us to develop a more efficient distributed algorithm

by reducing the communication cost. This reduction is performed by determining a

canonic representative subset of states for each aggregate. Indeed, taking the unob-

served events as edges, an aggregate may be viewed as a graph and it is sufficient

to extract one representative per each initial strongly connected component (SCC)

of this graph in order to preserve the observed behavior starting from the aggregate.

The computation of SCCs is known to be a critical task with respect to the time com-

plexity. Indeed, a standard symbolic search algorithm of initial SCCs of a graph may

have a bad time complexity.

In [HIK04], a BDD-based approach has been developed which takes advantage

of the parallelism of the system under observation. For the parallel systems, this

approach outperforms the standard approaches [BGS06; XB00] and its efficiency

has been shown by standard examples. For this purpose, in this chapter, we propose

an LDD-based approach inspired by the BDD-based approach proposed in [HIK04].

Algorithm 5 determines a representative LDD (subset of states) for a specified

aggregate. It is a recursive function that considers the LDD representing all states of

the given aggregate, the set of the unobserved events and the level (depth) i in the

specified LDD, in order to compute the canonic representative of the given aggregate

(LDD).

In the first call, i is initialized to 0, in order to start the computation from the

root node of the LDD. This function divides the considered LDD S into two subsets

Chapter 6. Reducing time and/or memory consumption of the SOG construction 63

1 CANONIZER(LDD S, Events UnObs, int i)
2 LDD S1,S2,Front,Reach,Repr;
3 S1 = Ri∪Down(Ri);
4 /∗ Ri is the root node of the LDD S ∗/
5 /∗ Down(Ri) returns the down edges Ri ∗/
6 S2 = S\S1;
7 if S1 6= /0 and S2 6= /0 then

8 Front = S2;
9 Reach = S2;

10 repeat

11 Front = Img(Front,UnObs)\Reach;
12 /∗Img returns the set of immediate successors of the states of

Front by the occurrence of UnObs.∗/
13 Reach = Reach∪Front

14 S1 = S1\Front

15 until Front = /0 or S1 = /0;

16 if S1 6= /0 and S2 6= /0 then

17 Front = S1;
18 Reach = S1;
19 repeat

20 Front = Img(Front,UnObs)\Reach;
21 Reach = Reach∪Front;
22 S2 = S2\Front;
23 until Front = /0 or S2 = /0;

24 Repr = /0;
25 if size(S2)≤ 1 then

26 Repr = Repr∪S2;
27 else

28 Repr = Repr∪CANONIZER(S2,UnObs, i);

29 if size(S1)≤ 1 then

30 Repr = Repr∪S1;
31 else

32 Repr = Repr∪CANONIZER(S1,UnObs, i+1);

33 return Repr;

Algorithm 5: Canonizer algorithm

S1 and S2. The first one contains the root node of the LDD and the ‘down’ edges

of this node (line 3), while the second is the rest of the input LDD (line 6). If it

is not possible to partition S we pass to the next level. We remove from the first

subset S1 all the states which are in the forward closure of the second subset S2, i.e.

the elements of S1 that are reachable from some elements in S2 (lines 7-15). Such

deleted states either do not belong to an initial SCC or their representatives of their

SCCs are already present in the second subset (S2). Now, S1 contains states that are

Chapter 6. Reducing time and/or memory consumption of the SOG construction 64

not reachable from S2. We now eliminate the states of S2 that are reachable from S1,

since they do not belong to an initial SCC (lines 16-23). After this double reduction,

if S1 (resp. S2) is a singleton (one state), then S1 (resp. S2) contains a representative

state that must be added to set ‘Repr’, which is the eventual result. Otherwise, we

execute recursively the function Canonizer on S1 (resp. S2). Both subsets may be

independently analyzed in order to find the representatives of the initial SCCs. When

states can no longer be reduced by the Canonizer algorithm, the set of states ‘Repr’

is the canonic representation of the input set of states (line 33).

Input LDD: (A)

0x0 : 1 3

1x1 : 2

(S)

1

First iteration: (B) Result: (C)

0x0 :

1x1 :

(S1)

2 1

1

2

(S2)

1

3 0x0 :

1x1 :

(S)

2

Second iteration: (C) Result: (D)

0x0 :

1x1 :

(S1)

0

2

(S2)

0x0 :

1x1 :

(Repr)

FIGURE 6.1: Example of canonicalization

Let us detail the run of the Canonizer algorithm on an illustrative example. Figure

6.1 shows the LDD that represent the set of states S. We suppose:

〈0,1〉 −→ 〈0,2〉 (this means that 〈0,2〉 is reachable from 〈0,1〉)

〈0,1〉 −→ 〈1,1〉

〈0,2〉 −→ 〈1,2〉

〈0,1〉 −→ 〈3,1〉

Figure 6.1 (B), gives the obtained two subsets S1 and S2 by partitioning S accord-

ing to the level 0 (root level). By applying the reductions on S1 and S2, we obtain

the set S1 illustrated by fig. 6.1 (C). As we can see through this example, each step

of the algorithm simultaneously removes several states. Indeed, the canonicalization

is performed in two iterations.

At each step the current set of states is split into two subsets. The first iteration

reduces all the states that belong to S2 and are reachable from S1 (S1={〈0,1〉,〈0,2〉}

Chapter 6. Reducing time and/or memory consumption of the SOG construction 65

, S2= {〈1,0〉,〈1,2〉,〈3,1〉}). At the second iteration, the set of states is split into two

subsets by passing to the next level. Finally, {〈0,1〉} is the canonical representative

of S.

S = {〈0,1〉,〈0,2〉} is split into two subsets by passing to the next level. In this

case, S1 = {〈0,1〉} and {〈0,2〉}.

6.3 Experiments

6.3.1 Results of the canonicalization algorithm

Model Without canonicalization Using canonicalization

Net lddNodes Size (bytes) lddNodes Size (bytes)

ring4 29052 464832 9728 155648

ring5 200440 3207040 65280 1044480

ring6 773383 12374128 187320 2997120

philo6 5232 83712 2268 36288

philo8 28224 451584 12288 195840

philo10 142080 2273280 61440 983040

fms4 41983 671728 8904 142464

fms5 115633 1850128 19339 309424

robot4 615472 9847552 38610 617760

robot5 2457884 39326144 90090 1441456

robot6 8236228 131779648 185640 2970240

robot7 24110012 385760192 348840 5581440

train2-4 2860268 45764288 3888 62208

train2-6 2838971 45423536 8544 136704

train2-8 1849162 29586592 79680 1274880

erk10 307404 4918464 11555 184880

erk20 12936794 206988704 461929 7390864

TABLE 6.1: Size of the SOG before and after the Canonicalization

We report on the results of performance measurements for all approaches. We

have extensively tested all approaches with a variety of different models in order to

identify the achieved speedups. The machine used for these tests has 12 processors,

each with 12 cores. We have run the multi-threaded algorithm on 12 cores (one

thread per core). For the experiments of the distributed algorithm we used 40 cores.

We recall that all the tested examples are parametrized.

Chapter 6. Reducing time and/or memory consumption of the SOG construction 66

Model Without canonicalization Using canonicalization

Net TimeSeq TimeMin Sp TimeSeq TimeMin Sp

ring4 2.15 0.64 3.3 4.56 0.67 6.8

ring5 43.46 11.39 3.8 94.42 10.73 8.8

ring6 870.87 243.13 3.6 2100.41 226.06 9.3

philo6 0.47 0.28 1.6 0.95 0.21 4.5

philo8 11.94 5.63 2.1 23.32 3.92 5.9

philo10 311.10 168.03 1.8 586.03 75.82 7.7

fms3 11.08 7.12 1.5 29.37 6.89 4.2

fms4 208.11 162.74 1.3 559.83 103.10 5.4

fms5 2088.75 1543.52 1.3 7433.16 1168.79 6.3

robot4 7.10 3.03 2.3 14.60 2.72 5.3

robot5 36.16 16.94 2.1 80.80 12.53 6.4

robot6 135.09 70,67 1.9 312.74 49.05 6.3

robot7 505.90 311.78 1.6 1005.91 166,99 6.0

train2-4 42.49 28.88 1.4 101.28 26.33 3.8

train2-6 29.64 16.10 1.8 82.59 14.63 5.6

train2-8 26.73 10.73 2.5 41.64 7.18 5.8

erk10 46.63 18.84 2.4 264.80 34.02 7.7

erk20 957.68 397.23 2.4 5978.54 657,47 9.1

TABLE 6.2: Experimental results of the distributed-memory algo-
rithm with and without canonicalization

In Table 6.1, for each model, we have computed the number of the used LDD

nodes as well as the overall size of the SOG. We observe that the canonicalization

leads to important memory savings and reduces the number of LDD nodes. Notably,

by using the canonicalization, the memory consumption for the SOG construction is

consequently decreased.

In Table 6.2, we have measured the time (in seconds) consumed by the construc-

tion of the SOG in a sequential way. It can be seen that the canonicalization slow

down the computation time in this case. Then, we show the execution times of the

distributed algorithm by progressively increasing the number of cores. Finally, we

calculated the maximum speedup achieved by each model. We describe the same

measurements for the multi-threaded algorithm in Table 6.3 and for the hybrid ap-

proach in Table 6.4.

Compared to the non canonical version of the SOG, for the distributed approach,

the construction of the canonical SOG consumes less memory and less execution

Chapter 6. Reducing time and/or memory consumption of the SOG construction 67

Model Without canonicalization Using canonicalization

Net TimeSeq TimeMin Sp TimeSeq TimeMin Sp

ring4 2.15 0.42 5.1 4.56 0.84 5.4

ring5 43.46 5.71 7.6 94.42 15.49 6.1

ring6 870.87 87.71 9.9 2100.41 429.58 4.8

philo6 0.47 0.12 3.9 0.95 0.31 3.0

philo8 11.94 1.89 6.3 23.32 4.56 5.1

philo10 311.10 36.67 8.5 586.03 97.07 6.0

fms4 208.11 21.85 9.5 559.83 159.53 3.5

fms5 2088.75 222.82 9.3 7433.16 1270.56 5.8

robot4 7.10 0.92 7.7 14.60 2.00 7.3

robot5 36.16 4.86 7.4 80.80 9.66 8.3

robot6 135.09 17.75 7.6 312.74 38.97 8.0

robot7 505.90 61.97 8.1 1005.91 136,96 7.3

train2-4 42.49 12.58 3.3 101.28 26.21 3.8

train2-6 29.64 5.83 5.0 82.59 12.57 6.5

train2-8 26.73 2.86 9.0 41.64 5.53 7.5

erk10 46.63 5.11 9.1 264.80 27,43 9.6

erk20 957.68 86.44 11.0 5978.54 567,82 10.5

TABLE 6.3: Experimental results of the multi-threaded algorithm
with and without canonicalization

time. This is due to the reduction of the size of the set of states that represent the

aggregate to be sent/received by the involved processes, which allows to reduce the

communication overhead.

Results in Table 6.3 show that the canonicalization slowdowns the execution time

of the multi-threaded algorithm. Nevertheless, the multi-threaded algorithm achieves

a maximum speedup of 10 when 12 cores are used for the construction of the canon-

icalized SOG. It can be seen in Table 6.4 that the canonicalization improves the

scalability of the hybrid approach. We notice that it increases the speedup for the

tested examples (except ring6 example).

Table 6.5 illustrates the differences in terms of size of messages exchanged be-

fore and after the application of the canonicalization process. We can remark that

the size of the exchanged messages has been decreased drastically by using this ap-

proach. Doing that, we reduce the duration required by the communication between

the involved processes (sent and received messages).

In fig. 6.2, we display the time execution consumption of the philo10 example

in the case of the distributed memory. The green curve denotes the time required

Chapter 6. Reducing time and/or memory consumption of the SOG construction 68

Model Without canonicalization Using canonicalization

Net TimeSeq TimeMin Sp TimeSeq TimeMin Sp

ring4 2.15 0.57 3.7 4.56 0.38 12.0

ring5 43.46 3.98 11.3 94.42 2.96 35.6

ring6 870.87 18.66 46.6 2100.41 77.55 28.8

philo6 0.47 0.17 2.7 0.95 0.20 4.7

philo8 11.94 0.94 12.7 23.32 1.27 18.3

philo10 311.10 13.91 22.3 586.03 15.82 37.0

fms4 208.11 22.84 9.1 559.83 46.27 12.1

fms5 2088.75 406.50 6.0 7433.16 315.16 23.6

robot4 7.10 1.14 6.2 14.60 0.68 21.4

robot5 36.16 3.28 11.0 80.80 3.21 25.1

robot6 135.09 17.52 7.7 312.74 7.72 40.5

robot7 505.90 32.89 15.4 1005.91 22.4 45.4

train2-4 42.49 7.99 5.3 101.28 14.19 7.1

train2-6 29.64 4.12 7.2 82.59 6.64 12.4

train2-8 26.73 3.23 8.2 41.64 1.94 23.6

erk10 46.63 3.08 15.1 264.80 12.10 21.9

erk20 957.68 51.71 18.5 5978.54 94.86 63.0

TABLE 6.4: Experimental results of the hybrid algorithm with and
without canonicalization

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

10

20

30

40

50

60

70

80

90

100

110

120

Cores

R
un

ti
m

e(
s)

Canonicalization
Communication

FIGURE 6.2: Runtime of philo10 example using distributed-memory
algorithm

Chapter 6. Reducing time and/or memory consumption of the SOG construction 69

Model Size Of Messages Size Of Messages

without canonicalization using canonicalization

ring4 281022 16286

ring5 4961128 114408

ring6 63188686 217390

philo8 5076252 33900

philo10 118986364 176824

robot4 4694292 92457

robot5 22755426 221391

robot5 88153511 466106

robot6 155362177 835567

train2-4 6694448 5600

train2-6 6684946 12850

train2-8 4807590 75000

erk10 8676325 16773

erk20 181569699 1081666

TABLE 6.5: Size (in bytes) of the exchanged messages between 4
processes

by the communication between processes without using canonicalization algorithm,

whereas, the red curve denotes the time consumed by the canonicalization itself. As

it can be seen, when we include the use of the canonicalization in our process, the

time dedicated to the communication between processes decreases. That allows us

to obtain good results in the global runtime of the whole building process (the gray

area).

6.3.2 Comparative analysis

As we have explained in chapter 5, we have experimented the distributed approach

with 40 processes because the maximum speedups for this approach are detected

for at the most 30 processes. Then, we have stopped the evaluation at 40 processes

because the speedups have been decreased for all the tested models by increasing

the number of processes more than 30 (mainly due to the communication overhead).

Chapter 6. Reducing time and/or memory consumption of the SOG construction 70

Moreover, because of material limitations (a cluster containing 12 processors with

12 cores for each processor), the multi-threaded approach is limited to 12 cores.

In fig. 6.3 we analyze the execution times of our algorithms measured on different

architectures using the canonicalization algorithm. We notice that all approaches

bring an improvement in term of runtime performance. But, it can be seen that the

hybrid approach outperforms the other approaches and scales better. Indeed, the

runtime continues to decrease by increasing the number of cores.

Figure 6.4 shows the speedups of the parallel algorithms for different model sizes.

Compared hybrid approach against sequential runs, the speedup curves are moving

up as the number of cores increases indicating that this approach scales better than

the other approaches. For the ERK20 example, it achieves a maximum speedup

of 63 when 144 cores CPU are used. Comparing the hybrid approach against the

multi-threaded and the distributed approaches, using up to 12 cores, we note that the

difference between all approaches is relatively small. More than 12 cores, we com-

pare the hybrid approach against the distributed one, we can see that the distributed

approach is less efficient. Indeed, the curve of speedup slows down by increasing the

number of processes while it continue to increase for the hybrid approach.

We have achieved another way to improve the execution time of the hybrid ap-

proach: we applied the canonicalization only to the aggregates to be sent. In this case,

the computed maximum speedup is relative to the sequential construction of the SOG

without the use of the canonicalization. Compared to the parallel construction of the

SOG without canonicalization in Table I, the partial application of the canonicaliza-

tion allows to reduce the runtime for the majority of cases. Indeed, the impact of

the canonicalization appears mostly when the size of aggregates is considerable, and

then the size of the message to be sent is sizable. Also, we have noticed that, for

some examples having a larger size, the execution process often hangs without the

use of the canonicalization.

6.4 Conclusion

In this chapter, we have proposed a symbolic (LDD-based) algorithm to canonically

reduce the size of the SOG aggregates. The algorithm is implemented within the pre-

vious parallel approaches (proposed in chapters 3, 4 and 5) for the SOG construction.

The first one is dedicated to distributed memory multiprocessors using the message

passing paradigm, the second is a multi-threaded algorithm for shared memory ar-

chitecture and the third one is an algorithm dedicated to hybrid (shared-distributed

memory) architectures. Experiments show that canonicalization allows to efficiently

decrease memory consumption in all approaches. Also, it allows to improve the

Chapter 6. Reducing time and/or memory consumption of the SOG construction 71

1 2 4 6 8 10 12 24 36 48 72 96 120144
0

10

20

30

40

50

60

70

80

90

100

ring5 example

Multithread
Didtributed

Hybrid

1 2 4 6 8 10 12 24 36 48 72 96 120144
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

ring6 example

Multithread
Didtributed

Hybrid

1 2 4 6 8 10 12 24 36 48 72 96 120144
0

8

16

24

32

40

48

56

64

72

80

robot5 example

Multithread
Didtributed

Hybrid

1 2 4 6 8 10 12 24 36 48 72 96 120144
0

50

100

150

200

250

300

350

400

450

500

550

philo10 example

Multithread
Didtributed

Hybrid

1 2 4 6 8 10 12 24 36 48 72 96 120144
0

100

200

300

400

500

600

700

800

900

1,000
robot7 example

Multithread
Didtributed

Hybrid

1 2 4 6 8 10 12 24 36 48 72 96 120144
0

600

1,200

1,800

2,400

3,000

3,600

4,200

4,800

5,400

6,000
ERK20 example

Multithread
Didtributed

Hybrid

FIGURE 6.3: Comparison between the multi-threaded, distributed and
hybrid approaches in term of the obtained runtime using the canoni-

calization algorithm.

Chapter 6. Reducing time and/or memory consumption of the SOG construction 72

1 2 4 6 8 10 12 24 36 48 72 96 120144
0

5

10

15

20

25

30

35

ring5 example

Multithread
Didtributed

Hybrid

1 2 4 6 8 10 12 24 36 48 72 96 120144
0

5

10

15

20

25

30

35

ring6 example

Multithread
Didtributed

Hybrid

1 2 4 6 8 10 12 24 36 48 72 96 120144
0

5

10

15

20

25

30

35

robot5 example

Multithread
Didtributed

Hybrid

1 2 4 6 8 10 12 24 36 48 72 96 120144
0

5

10

15

20

25

30

35

40

philo10 example

Multithread
Didtributed

Hybrid

1 2 4 6 8 10 12 24 36 48 72 96 120144
0

5

10

15

20

25

30

35

40

45

50

robot7 example

Multithread
Didtributed

Hybrid

1 2 4 6 8 10 12 24 36 48 72 96 120144
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

ERK20 example

Multithread
Didtributed

Hybrid

FIGURE 6.4: Comparison between the multi-threaded, distributed and
hybrid approaches in term of the achieved speedup using the canoni-

calization algorithm

Chapter 6. Reducing time and/or memory consumption of the SOG construction 73

scalability for both distributed and hybrid approaches. This is due to the fact that

the communication time between processes has been drastically reduced. However,

in the case of the shared memory approach the construction process becomes a bit

slower although it consumes less memory.

74

Chapter 7

PMC-SOG : Parallel Model checker

based on the SOG

Contents

5.1 Introduction . 48

5.2 A hybrid approach for constructing a SOG 49

5.2.1 Aims and hypothesis . 49

5.2.2 Description of the algorithms 50

5.2.3 Termination detection 53

5.2.4 Correctness proof . 53

5.3 Experiments . 55

5.3.1 Results of the hybrid approach 55

5.3.2 Comparative analysis . 57

5.4 Conclusion . 59

7.1 Introduction

The use of distributed processing increases the speedup and scalability of model

checking by exploiting the cumulative computational power and memory of a cluster

of computers. Such approaches have been studied in various contexts leading to

different proposed solutions for both symbolic and explicit model checking (Chapter

1).

In the previous chapters, we have investigated three approaches to parallelize

the SOG construction using three different algorithms to benefit from additional

speedups and performance improvement in execution time. The key idea of our

approaches is to build simultaneously several nodes (aggregates) of the symbolic

graph.

Chapter 7. PMC-SOG : Parallel Model checker based on the SOG 75

The first proposed algorithm is based on a shared memory architecture. We adopt

a dynamic load balancing scheme in order to balance the load on threads sharing the

SOG construction task. [Oun+17a; Oun+17b]. The second approach is based on a

distributed memory architecture. Therefore, each process has its own local memory,

and communication between processes is performed by using the Message Passing

Interface (MPI). Distribution of aggregates is performed through the computation of

a hash function in order to cope with communication overhead. Finally, the third is a

hybrid technique which combines the two previous approaches. The SOG construc-

tion is shared among a set of processes, where each creates a number of threads that

run on (typically) the same number of CPUs of a processor.

In the current chapter, we exploit the strengths of the parallel generation of the

reachable state space to propose a parallel model checking based on the parallel

construction of the SOG, where both event-based and state-based properties can be

expressed, combined, and verified. Instead of composing the whole system with the

Büchi automaton representing the negation of the formula to be checked, we make

the synchronization of the automaton with an abstraction of the original reachability

graph of the system: an event/state-based SOG.

The event-based and state-based logics for properties expression are interchange-

able. An event-based logic can be encoded as a change in state variables. Also, it is

possible equip a state with different events to reflect different values of its internal

variables. However, converting from one representation to the other often leads to a

significant enlargement of the state space due to the increased size of the formula.

Typically, event-based semantic is adopted to compare systems according to some

equivalence or pre-order relation (e.g., [TBD95; KV92]), while state-based seman-

tics is more suitable to model-checking approaches [GV01]. Being able to use both

events and state-based atomic propositions within a same LTL formula allows to ex-

press properties in an intuitive and an easy way leading to short formulas. Also, the

design of an event-state based model checker allow to compare our approach with

both state- and event-based model checkers.

Aiming to improve the efficiency of the SOG-based model checking approach,

we propose in this chapter model checking algorithms built on our parallel construc-

tion of the SOG. Our proposed model checker is based on the automata theoretic

approach to LTL model checking (see Figure 7.1). It takes as input an LTL formula

ϕ and the description of the model. The model checking problem is reduced to an

on-the-fly emptiness check processed on the synchronized product of the Büchi au-

tomaton A¬ϕ corresponding to the negation of the formula, and the automaton ASOG

of the SOG (checking whether the language L(¬ϕ⊗ASOG) =∅ or not). If the empti-

ness check returns true, then the formula is proved to be satisfied by the Model.

Chapter 7. PMC-SOG : Parallel Model checker based on the SOG 76

Otherwise, a counterexample (a possible run that violates ϕ) is supplied to the user.

LTL Translation Generation of the SOG

Negation property
automaton A¬φ

Generation of the associated
automaton ASOG

On-the-fly synchronized product
Ƥ(A¬φ⊗ASOG)

Emptiness check

LTL Property φ Model of the system

Counter example M ╞ φ

Yes No

FIGURE 7.1: Our Model Checker process

The main contributions of this chapter are:

• The proposal of a parallel model checker based on a parallel construction of

the SOG. Such model checker aims to verify LTL properties on-the-fly using

different parallelization techniques. This allows in some cases to achieve the

model checking without a complete construction of the SOG.

• Both event-based and state-based properties can be expressed and verified.

• The implementation and the evaluation of an on-the-fly LT L\X parallel model-

checker.

We have implemented different proposed algorithms for model checking using

Spot [DL+16], an object-oriented model checking library written in C++. We have

then evaluated the performances of our approach according to experimental results

obtained on different benchmarks. Further, we have compared these results with

other solutions proposed in the literature.

Chapter 7. PMC-SOG : Parallel Model checker based on the SOG 77

7.2 Multi-Core LTL Model Checking

In this section, we present an on-the-fly multi-core LTL model checking approach

based on the Symbolic Observation Graph. Model checker thread allows to compute

the synchronized product of the automaton modeling the LTL formula to be checked

with the SOG of the model to be checked. Thus, the parallelization is basically in the

construction phase of the SOG (see algorithm 6) while the emptiness check process

is sequential.

7.2.1 Description of the multi-core approach

We propose two algorithms using different techniques depending on the granularity

of parallelization task. The first one splits the SOG construction over a number of

threads according to a dynamic load balancing by following the same method pre-

sented in Chapter 3. In the second algorithm, parallelization is performed at the level

of the decision diagrams operations by using lock-less data structures and a work-

stealing scheduling strategy.

Data: agg,dest : Aggregate;
s: Stack;
obs_tr : Set of actions;

1 obs_tr=getFirableObservablelactions(agg);
2 for every action t ∈ obs_tr do

3 s.push(t);
4 get_successor(agg, t);

5 /∗builder threads : parallel section∗/
6 while s is not empty do

7 t=s.pop();
8 dest=ComputeAggregate;
9 if dest does not exist in the SOG then

10 dest.div = isDiv(DEST);
11 dest.deadlock = isDeadlock(DEST);
12 Insert into the SOG the node dest;
13 Insert into the SOG the arc (agg, t,dest));

14 else

15 Insert into the SOG the arc (agg, t,dest)); ;

Algorithm 6: Computing an aggregate

7.2.2 Parallelization at the level of aggregates

We propose an LTL model checker approach that is based on a number of threads

using the same technique, described in chapter 3, for the construction of a SOG. In

Chapter 7. PMC-SOG : Parallel Model checker based on the SOG 78

addition to threads dedicated to the construction of the SOG (builder threads), we

use a supplementary thread, called model checker thread that is executed in parallel

with builder threads.

Steps of this approach are illustrated by the UML state-chart of fig.7.2.

As described in chapter 3, we recall that builder threads cooperate simultaneously

in order to build a SOG by adopting a dynamic load balancing. We associate with

each thread a stack to store the aggregates to be processed. A newly generated ag-

gregate is pushed into the stack of the builder thread having the minimum load. The

minimum load is determined from a table load that stores the number of aggregates

to be processed for every thread.

FIGURE 7.2: UML statechart diagram of the LTL model checker
based on POSIX threads

Since the computation of the synchronized product and the building of the SOG

are performed simultaneously, it is possible that the model checker thread tries to

reach nodes of the SOG that are not yet built. For this reason, we add a Boolean

attribute to every aggregate to indicate whether its successors are built, or not. By

checking the value of this attribute of an aggregate, the model checker thread can

check if it is possible to reach the successors of the aggregate, otherwise it has to

wait until the attribute of the considered aggregate is updated.

Chapter 7. PMC-SOG : Parallel Model checker based on the SOG 79

The termination of the model checking algorithm is determined by the model

checker thread. It is performed when the emptiness check process is finished. When

the construction of the SOG is not finished whereas the model checker thread termi-

nates, in this case threads are forcibly terminated by the model checker thread. The

property is then proved to be unsatisfied by the system. If threads finish the construc-

tion of the SOG before the computation of the synchronized product is finished, only

the builder threads terminate. In this cas, the conclusion is that the original property

is satisified by the system.

7.2.3 Parallelization at the level of decision diagrams operations

For this algorithm, a finer granularity level of parallelization is proposed for the

model checking. We exploit parallel LDD operations already implemented in the

Sylvan library[DP15; DP16] which is used in the implementation of the SOG con-

struction. The difference between the current and the previous algorithm is paral-

lelism granularity. Indeed, in the previous algorithm, parallelization concerns ag-

gregates construction, whereas the current algorithm performs parallelization at the

level of LDD operations through the use of recursive functions. In the previous al-

gorithm, only one thread is responsible of the construction of an aggregate while, in

the second, different threads can cooperate in the construction of a unique aggregate.

Sylvan is a multi-core decision diagrams library based on the work-stealing frame-

work Lace [DP14]. Like the majority of work-stealing frameworks, Lace implements

task-based parallelism by creating tasks (spawn) and waiting for their completion

(sync) to use the results. Parallelization of LDD operations is performed by us-

ing lock-less data structures and work-stealing scheduling strategy. The basic idea

behind Work-stealing [BL99] is to break down a calculation into small tasks. Inde-

pendent subtasks are stored in queues (work-pools) and idle processors steal tasks

from the queues of busy processors. This will allow a processor to always have tasks

to perform. The data structures used by Sylvan library are based on the lock-less

paradigm, which ensures mutual exclusion and depends on atomic operations.

Consider an LTL property and an LKS system. The synchronized product, be-

tween the automaton modeling the negation of the property with the SOG of the

considered LKS, is computed sequentially, however building an aggregate is per-

formed in parallel. When the model checker requests to get the successors of an

aggregate, we perform the construction of an aggregate successors using LDD par-

allel operations. Algorithm 7 describes the construction of an aggregate successors

using Sylvan library. We start by computing enabled observable actions from the

considered aggregate. Then, using SPAWN, for every enabled observable action t,

Chapter 7. PMC-SOG : Parallel Model checker based on the SOG 80

Data: agg,dest : Aggregate;
s: Stack;
obs_tr : Set of actions;

1 obs_tr=getFirableObservablelactions(agg);
2 for every action t ∈ obs_tr do

3 s.push(t);
4 SPAWN(ComputeAggregate,get_successor(agg,t));

5 while s is not empty do

6 t=s.pop();
7 dest=SYNC(ComputeAggregate);
8 if dest does not exist in the SOG then

9 dest.div = isDiv(DEST);
10 dest.deadlock = isDeadlock(DEST);
11 Insert into the SOG the node dest;
12 Insert into the SOG the arc (agg,t,dest));

13 else

14 Insert into the SOG the arc (agg,t,dest)); ;

Algorithm 7: Computing an aggregate successors using Lace

we create a task for the recursive function ComputeAggregate to compute the aggre-

gate obtained by firing t. Results are retrieved by calling SPAWN. It is worth noting

that ComputeAggregate is implemented recursively using basic LDD parallel opera-

tions. Further, since tasks are stored in queues with a LIFO (Last In First Out) order,

then last created task will be the first one to deliver its results. When a new aggregate

is inserted in the SOG, we compute whether it contains a divergence (unobserved

cycle)or deadlock state.

7.2.4 Implementation

The implementation of the multi-core model checker is based on Spot library [DL+16].

It is an object-oriented model checking library written in C++ that offers a set of

building blocks that allow to develop LT L model checkers based on the automata

theoretic approach.

The automaton class used by Spot to represent ω− automata is called action-

based ω−automaton (T ωA for short). As its name implies, the T ωA class supports

only action-based acceptance, but it can emulate state-based acceptance using action-

based acceptance by ensuring that all actions leaving an aggregate have the same

acceptance set membership. In addition, there is a class, named kripke that can be

used to represent an LKS. During model checking, we translate built parts of the

SOG to the LKS structure.

Chapter 7. PMC-SOG : Parallel Model checker based on the SOG 81

The checking algorithm visits the synchronized product of the ω− automaton

corresponding to the negation of the formula and the LKS corresponding to the SOG

(see figure 7.1). The translation of an LTL formula into an ω−automaton is proposed

by Spot and it is dedicated to different formalism for the representation of the system

to be checked.

Three abstract classes must be specialized to represent the ω− automata. The

first abstract class defines a state, the second allows to iterate on the successors of

a given state and the last one represents the whole ω− automaton. In our context,

we have derived these classes for implementing a multi-core model checker based

on the SOG. It is important to notice that the effective construction of the SOG is

driven by the emptiness check algorithm of Spot and it can be be managed on-the-fly.

The construction of aggregates depends on places and actions appearing as atomic

proposition in the checked formula. In our proposed approach, we distribute the

construction of the SOG on a number of threads. Two techniques of parallelization

are proposed:

• Using POSIX threads

We create using Pthread library a number of threads which are responsable of

the construction of the SOG (builder threads). Each aggregate will be con-

structed by a unique thread.

• Using Lace framework

We exploit the parallel decision diagrams operations already implemented in

Sylvan library for the construction of the SOG. Thus, several threads may

cooperate to construct one aggregate and the balancing of the load between

threads is controlled by Lace.

In a given state, an atomic proposition associated with a place is satisfied if the

place contains at least one token. In this case, the complete set of states correspond-

ing to an aggregate is obtained by applying, until saturation, the action relation lim-

ited to the actions which do not modify the truth value of atomic propositions. Instead

of checking this constraint explicitly, we statically restrict the set of Petri net actions

to be considered to the ones which do not modify the state of places used as atomic

propositions.

7.2.5 Experiments

We implemented our model checker using the C++ language with Pthreads, then, we

implemented it using Task-based parallelism. The experimental results presented in

Chapter 7. PMC-SOG : Parallel Model checker based on the SOG 82

this section were obtained on Magi cluster1 of Paris 13 university. This cluster has

12 processors each with 40 cores (two Xeon X5670 at 2.93GHz), 24GB of RAM and

they are connected by an InfiniBand network. A total of 20 models from the Model

Checking Contest benchmark2 have been used in the experiments, which are shown

in Table 7.1 (we filtered out models which were too small to be interesting, or too

big to fit into the available memory). In this chapter, we have added three examples

from Model Checking Contest: CloudObsManagement, Swimming Pool and Token

Rings examples.

We exploit for these experiments a shared memory architecture with 40 cores.

We have measured the time in seconds consumed by the verification of 10 formulas

(a selection of random LTL formulas) by progressively increasing the number of

cores (10, 20 and 40). Every run was repeated at least three times, to exclude any

accidental fluctuation in the measurements. For each number of thread, we calculated

the average of the obtained runtime. Then we collect the minimum time reached by

each technique.

The results of our experiments are reported in 7.1. We perform a simple com-

parison between our multi-core model checker (Lace version and Pthread version)

with the LTSmin model checker [Kan+15]. Since LTSmin is a state based model

checker, we considered only the atomic propositions based on the states. LTSmin

is an LT L/CT L/µ− calculus model checker, it started out as a generic toolset for

manipulating (LTS)s. It connects a sizeable number of existing verification tools as

language modules, enabling the use of their modeling formalisms. For sake of sim-

plicity, we choose the ordinary place/transition Petri nets in PNML format. We adopt

the DFS algorithm for all approaches. We keep all the parameters across the different

model checkers the same. Using these parameters on a per-model basis could give

faster results than presented here. It would, however, say little about the scalability

of the core algorithms. Therefore, we decided to leave all parameters the same for

all the models. We avoid resizing of the state storage in all cases by increasing the

initial hash table size enough for all benchmarked input models.

We observe that the version with parallel LDD operations outperforms the one

based on POSIX threads in most cases. We note that the minimum runtime is not

necessarily achieved when using 40 cores for the two versions. A first remark con-

cerning the obtained results in terms of time (minimum obtained runtime for the

verification of 10 formulas) is that no model checker has an absolute advantage on

the other for all the experiments: our Model checker is the faster for some models

1http ://www.univ-paris13.fr/calcul/wiki/
2https://mcc.lip6.fr/models.php

Chapter 7. PMC-SOG : Parallel Model checker based on the SOG 83

Net States PMC-SOG Pthread PMC-SOG Sylvan LTSmin
Cloud5by2 1.61×106 4,94 4,12 3,54
Cloud10by5 1.07×1010 527,65 238,18 1376,23

Cloud20by10 – 2429,88 1014,69 13073,75
philo10 59049 5,23 3,82 0,28
philo20 3.48×109 1011,91 852,56 108,42
robot5 184756 0,26 0,14 0,49
robot10 2.00×107 3,72 2,03 50,79
robot20 4.10×109 10,77 10,83 35,17
robot50 – 29,19 30,72 –
SPool2 89621 2,87 3,45 7,07
SPool3 3408031 34,87 19,07 21,26
SPool4 3.22×107 105,77 91,7 152,13
Spool5 5.91×108 267,95 103,21 336,36

TRing10 58905 112,59 42,13 0,18
TRing15 3.53×107 1015,66 924,87 206,17
train24 86515 2,82 2,23 0,34
train48 2.39×1010 18,23 18,55 267,62

kanban5 2.54×106 9,19 10,43 7,52
kanban10 1.00×109 1055,27 845,65 370,09

TABLE 7.1: Comparison in terms of minimum runtime between the
multi-core PMC-SOG using POSIX threads, the multi-core PMC-

SOG using Sylvan and LTSmin

while the LTSmin performs better for other examples. We notice that the robot50 ex-

ample have no results for the LTSmin approach. The execution of this example was

interrupted, displaying the message "tree leafs table full!". This can be explained by

the fact that size of a SOG is smaller than the explicit representation of state space

used by LTSmin, which makes the available memory space sufficient for our model

checker while insufficient for LTSmin.

Figure 7.3 shows a selection of our experimental results. The performances are

presented using a logarithmic scale. Each point represents an experiment, a model

and formula pair. Roughly speaking, for the speedup figure, our approach performs

better than LTSmin for all the experiment appearing below the diagonal while the

opposite stands for the experiment above the diagonal (and it is the reverse for the

runtime figure). We did not represent the robot50 example since we did not have

a result when using LTSmin. We represented a total of 72 formulas including 36

verified formulas and 36 violated formulas. We put in blue the verified formulas and

in red the violated formulas. The formulas considered include a selection of random

LTL formulas with different sizes, which were filtered to be able to compare with a

state based model checker. As shown by the figure, the two methods often have very

similar performances in terms of minimum obtained runtime (right) and maximum

achieved speedup (left).

Chapter 7. PMC-SOG : Parallel Model checker based on the SOG 84

10−1 100 101 102 103 104

10−1

100

101

102

103

104

PMCSOG

LT
S

m
in

1 2 4 6 8 10 12 14 16 18 20 22 24
1
2

4

6

8

10
12

14

16

18

20
22

24

PMCSOG

LT
S

m
in

FIGURE 7.3: Comparison of the PMCSOG-Sylvan against LTSmin in
minimum runtime (above) and maximum speedup (below) for verified

formulas (blue) and violated formulas (red)

7.3 A hybrid approach for parallel LTL Model Check-

ing

We present in this section a distributed LTL model checker for a distributed memory

platform. Such a model checker allows to check event-based and state based LT L\X

formulas on a SOG following the same hybrid technique, for the construction of a

SOG, described in chapter 5. Indeed, we create a set of processes such that every

Chapter 7. PMC-SOG : Parallel Model checker based on the SOG 85

process uses a set of threads in order to build the SOG.

7.3.1 Description of the algorithm

The basic idea of our algorithm is to propose an LTL parallel model checker for a

distributed memory setting. As it is described in chapter 5, the building of the SOG

is performed by running several processes where each process consists of several

threads. Our aim is to compute the synchronized product (the model checking) si-

multaneously with the construction of the SOG. For this purpose, we add a process,

called model checker process, to compute the synchronized product and then per-

forms the emptiness check between the automaton modeling the negation of the LTL

formula with the LKS corresponding to the SOG.

Since every process has its own memory, the model checker process will then,

during the computation of the synchronized product, request from the builder pro-

cesses for an aggregate whether it contains the divergence (unobserved cycle) or a

deadlock state, and in the memory of which process its successors are stored. Model

checker process does not need to receive the LDD structure from the builders pro-

cesses, it requires only a unique identifier for every aggregate. This allows to reduce

the size of exchanged messages between the model checker process and the builder

ones, as the size of an aggregate can be huge. For this purpose, we use the hash

function MD5 [Dob96]. It is the same one used to decide where an aggregate will

be stored during construction of the SOG, i.e. the same function used to statically

balance the load of aggregates construction on builder processes.

qastart

qb

qd

qc

t1

t2

t2

t1

FIGURE 7.4: A sample example of the SOG

In order to illustrate how the model checker process retrieves information about a

SOG from builder processes, we consider the SOG sample described in fig. 7.4. Let

us assume that we have three builder processes. Assume that the static load balancing

produces three graphs illustrated in fig. 7.5. In this figure, a dotted node of a graph in

a process i indicates an aggregate such that its LDD structure is not stored by process

Chapter 7. PMC-SOG : Parallel Model checker based on the SOG 86

i. Process i stores only its MD5 value (its unique identifier) and the identity of the

process that should store it. For instance, in the graph built by process 1, there is

only one aggregate that is stored with its LDD structure by process 1 which is qa.

For the two others aggregates qb and qd only their MD5 values are stored. Indeed, qb

is stored in memory of process 2, while qd and qc are stored in memory of process 3.

qastart

qb

qd

(a). Process 1

t1

t2

qb

qc

(b). Process 2

t2

qd

qc

(c). Process 3

t1

FIGURE 7.5: A distributed SOG

When performing model checking, model checker process starts by asking pro-

cess 1 the initial aggregate. The builder process gets as an answer its MD5 value.

When the model checker asks the successors of an aggregate, it sends its request

to the process storing the aggregate. For example, for the SOG of fig.7.5, when

the builder process wants to explore successors of the initial aggregate, its sends a

request to the builder process 1. As an answer to this request, the model checker

should get the MD5 values of aggregates qb and qd and the identities of processors

storing these successors. By this way, in order to get the successors of qb, the model

checker process will send its request to process 2.

The termination is managed totally by the model checker process. Indeed, the

builder process must exist even they terminate the SOG construction, as the model

checker process may request information from them about SOG parts that are not yet

being explored.

Algorithm 8 illustrates different messages that can be received by a builder pro-

cess from the model checker process. We use function Receive(TAG,message,0) to

receive a message from process with ranking 0 such that the parameter TAG indicates

the type of message. Function Send(TAG,message,0) allows to send a message to

process with ranking 0 and TAG indicates the type of message. A builder process

can receive the following types of messages from a model checker process:

Chapter 7. PMC-SOG : Parallel Model checker based on the SOG 87

Data: agg : Aggregate ;
message,md5 : string;
TAG : integer;
list_succ : array of Aggregate;

1 Receive(TAG,message,0);
2 switch TAG do

3 case ASK_INITIAL do

4 agg=getInitialAggregate();
5 /*Build a string representing the message to send containing the

MD5 value of the initial aggregate and the process storing it */
6 message=BuildMessage(agg.md5,agg.storingProcess);
7 Send(ACK_INTIAL,message,0);

8 case ASK_SUCCESSORS do

9 /* Extract the MD5 value that identifies the aggregate to get its
successors list*/

10 md5=decodeMessage(message);
11 agg=findAggregate(md5);
12 list_succ=getSuccessors(agg);
13 /* The message to send consists of the list of the successors of agg,

and Boolean attributes that indicate whether agg contains a
divergence or a deadlock state */

14 message=BuildMessage(list_succ,agg.isDiv(),agg.isDeadlock());
15 Send(ACK_SUCESSORS,message,0);

16 case TERMINATE do

17 Terminate this process;

Algorithm 8: Messages received by a builder process from a model checker
process

• Message ASK_INIT IAL corresponds to a request from the model checker pro-

cess to get the MD5 value and the identity of the process storing the aggregate.

This message is only received by the master builder process.

• Message ASK_SUCCESSORS corresponds to a request from the model checker

process to get the list of successors of the aggregate having the MD5 value

specified in the message. Also, information about divergence and deadlocks

related to the same aggregate are concerned.

• Message T ERMINAT E is sent by the model checker process in order to termi-

nate builder processes. This message is sent when the model checker process

had already performed the emptiness check.

Chapter 7. PMC-SOG : Parallel Model checker based on the SOG 88

7.3.2 Implementation

We consider, for the hybrid approach, a cluster architecture (cluster of CPUs). We

create a number of processes communicating via message passing interface (MPI).

The master process is dedicated to the model checking while the others are dedicated

to the construction of the SOG.

The main goal of this approach is to improve the scalability of the implementa-

tion. In a distributed computation, every process has simply its own memory which it

fully manages. However, the main drawback of this approach is the communication

overhead between processes which causes a delay in the execution time.

Like the previous section, the implementation of the hybrid algorithm is based on

Spot library. Our parallel implementation of the SOG-based model checker using all

approaches is available on line at PMC-SOG3 project (open source).

7.3.3 Experiments

Net States PMCSOG Sylvan LTSmin PMCSOG hybrid
Cloud5by2 1.61×106 4,12 3,54 4,36
Cloud10by5 1.07×1010 238,18 1376,23 344,15

Cloud20by10 – 1014,69 13073,75 1457,62
Cloud40by20 – – – 16921,48

philo10 59049 3,82 0,28 13,47
philo20 3.48×109 852,56 108,42 923,56
robot5 184756 0,14 0,49 0,15

robot10 2,00×107 2,03 50,79 1,62
robot20 4.10×109 10,83 35,17 4,23
robot50 – 30,72 – 12,7
SPool2 89621 3,45 7,07 3,54
SPool3 3408031 19,07 21,26 24,62
SPool4 3.22×107 91,7 152,13 110,56
Spool5 5.91×108 103,21 336,36 176,98

TRing10 58905 42,13 0,18 32,80
TRing15 3.53×107 924,87 206,17 653,36
TRing20 2.44E×1010 – – 1384,07
train24 86515 2,23 0,34 2,19
train48 2.39×1010 18,55 267,62 25,43
train96 2,59×1021 – – 1178,65

kanban5 2.54×106 10,43 7,52 8,87
kanban10 1.00×109 845,65 370,09 614,77
kanban50 8.05×1011 – – 3694,42

TABLE 7.2: Experimental results of the PMC-SOG and LTSmin

3https://depot.lipn.univ-paris13.fr/PMC-SOG/mc-sog

Chapter 7. PMC-SOG : Parallel Model checker based on the SOG 89

The distributed memory computation is performed on a cluster using several pro-

cesses that communicate via MPI. Each process runs several threads sharing the same

memory space. As noticed in chapter 5, the cluster architecture allowed us to reduce

the runtime of a SOG building for the majority of our examples.

The experimental results are given in Table 7.2. The reported table describes

experimental data related to different parameterized models.

For each tested problem, we have executed the hybrid algorithm. We set the

number of threads for each process at 12 and we increased the number of processes

from 3 to 6 then to 12. We analyzed the runtime efficiency, and we kept the minimum

obtained runtime. Then, we compare it against the multi-core approach based on the

SOG and the LTSmin model checker. We can notice that the results of the hybrid

approach is close to the multi-core one. The increase in the number of machines does

not necessarily imply an increase in the efficiency of the algorithm, the performance

drops when we increase the number of the used machines.

It is worth noting that we have the possibility to execute larger examples using

the cluster environment, while the execution stops due the lack of available memory

for both the multi-core model checking based on the SOG and the LTSmin model

checker. This is because a distributed approach provides a total memory space that is

equal to the sum of memory spaces allocated to each created process by the operating

system. Thus, for the hybrid approach, we have performed the execution of larger

examples that generate up to 2.5E+21 states. However, a major drawback, of the dis-

tributed model checker approach, is the number of messages exchanged through the

network. Indeed, communication increases the execution time of the model checker.

The main reason for the development of a distributed model checking algorithm

is typically to increase the available memory space, although this can impact the

runtime negatively due to communication cost.

7.4 Conclusion

In this chapter, we have proposed two on-the-fly parallel model-checker approaches

for LT L\X logic based on event-based and state-based symbolic observation graphs.

First approach targets shared memory architecture. We have proposed two versions

using different techniques of parallelization. One is based on the POSIX threads,

and the other is based on the work-stealing framework LACE. Second approach is

dedicated to a distributed-shared memory architecture by creating several processes

including threads.

The emptiness check is performed on-the-fly during the construction of the SOG

allowing to reduce the runtime of the model checking process. Moreover, when the

Chapter 7. PMC-SOG : Parallel Model checker based on the SOG 90

SOG is visited entirely during the model checking (i.e. the property holds), it can be

reused for the verification of another formula (at the condition that the set of atomic

propositions is included in the one used by the SOG). Experiments show that our

approach is competitive in comparison with the LTSmin parallel model checker even

we have used a DFS approach for the exploration of the SOG during the computa-

tion of a synchronized product. Indeed, DFS exploration is not well suited with our

approaches for the construction of a SOG. For this reason, we expect better results

by using BFS (Breadth-First Search).

Further, the distributed-shared approach show the ability to manage larger exam-

ples than any multi-core approach despite a performance loss. The loss is primarily

induced by the communication between processes.

91

Chapter 8

Conclusion

In this thesis, we have dealt with model checking of concurrent systems. Model

checking is a powerful formal verification method that can be used to improve the

safety of concurrent systems. Given a formal specification, model checking algo-

rithms analyze the system behavior by exhaustively searching all reachable state

space. The reachable state space is traversed to find error states that violate safety

properties, or to find cyclic paths on which no progress is made as counterexamples

for liveness properties. The main limitation of the model checking approach is the

well-known problem of combinatorial state space explosion.

As a solution to cope with the explosion state problem, the symbolic observa-

tion graphs (SOG) provide a compressed version of state space. A SOG is a graph

whose construction is guided by a set of observable atomic propositions involved

in a linear time formula. Such atomic propositions can represent events or actions

(event-based SOG) or state-based properties (state-based SOG). The nodes of a SOG

are aggregates hiding a set of local states which are equivalent with respect to the

observable atomic propositions, and are compactly encoded using Binary Decision

Diagram techniques (BDDs). The arcs of an event-based SOG are exclusively la-

beled with observable actions. It has been proven that both event and state-based

SOGs preserve stutter-invariant LT L formulas.

The use of SOG requires more computations and consequently the runtime of

the construction of a SOG can become a bottleneck in order to complete the model

checking process. In order to overcome the latter drawback while keeping an efficient

approach to tackle the state space explosion, we have investigated the parallelization

of model checking based on SOGs. Our work is performed mainly in two steps.

In a first step, we have investigated the parallelization of the construction of a

SOG. For this purpose, we have proposed three approaches. First one targets multi-

core architectures. Its key idea is to build simultaneously several nodes (aggregates)

of the symbolic graph through the use of several threads and by adopting a dynamic

Chapter 8. Conclusion 92

load balancing scheme in order to balance the load on threads sharing the SOG con-

struction task. The second approach targets distributed memory architectures. Paral-

lelization is performed through the creation of processes that communicate by using

the Message Passing Interface MPI. Load balancing is ensured statically through the

use of a hash function. Third approach is hybrid one that combines multi-threading

and multi-processing. Indeed, we create several processes such that every process

creates a set of threads. Then, load balancing is performed in two levels: statically

at processes level and dynamically at threads level. In addition to parallelization, we

have improved the reduction of the SOG. Since MDDs are a generalization of BDDs

to the integer domain, a node in MDD may represent several nodes in BDDs. For

this reason, we have used LDDs instead of BDDs to represent aggregates of a SOG.

Also, we have proposed algorithm to determine a single (canonical) representative

for each strongly connected component in every aggregate allowing to remove from

memory a consequent number of states which are no more necessary for the con-

struction process. Experiments for the three approaches have shown a more reduced

runtime comparing to a sequential construction. The better speed-up was obtained

with the multi-core approach. However, the canonical representation of aggregates

have drastically improved the hybrid approach due reduction in communication cost.

In second step, we have proposed an on-the-fly parallel model-checker based

on two approaches for LTL \ X logic using event-based and state-based symbolic

observation graphs. First one, called multi-core approach, is mainly dedicated for

shared memory architectures. We have performed parallelization using two differ-

ent techniques. One is based on the POSIX threads, and the other is based on a

work-stealing framework. Second approach, called hybrid approach, is dedicated

for distributed-shared memory architectures by using processes such that every one

creates a set of threads. For these two approaches, model checking (the emptiness

check) is performed simultaneously with the construction of a SOG. Experiments

show competitive results for multi-core approach comparing it to the LTSmin parallel

model checker. However, the hybrid approach compensates its runtime by allowing

to perform model checking on larger models for which the other approaches fail.

Our approaches for the parallel construction of the SOG and the proposed model

checker have been implemented within prototypes and have been validated through

different examples. Our implementations are available in the PMCSOG open source

project (https://depot.lipn.univ-paris13.fr/PMC-SOG). The obtained results are en-

couraging and open several improvement issues.

As perspectives, we think that runtime for model checking can be more reduced

by using graphical processing units (GPUs). Indeed, such units provide thousands

of processing cores allowing intensive parallelism related to the processing of large

Chapter 8. Conclusion 93

blocks of data like vectors and matrix. Then, the time of computation of an aggregate

can be reduced as it is based on operations using vectors (states). Another direction is

related to the model checking of large systems. We think that the hybrid approach can

be extended to support cloud computing and to benefit from huge provided storage

capacity by such technology.

94

List of Figures

2.1 Example of LTS . 12

2.2 Example of Kripke Structure . 13

2.3 A Labeled Kripke Structure . 14

2.4 MDD (left) and LDD (right) representing the set {〈0,1〉 , 〈0,2〉,

〈1,1〉, 〈1,2〉, 〈3,1〉} (For simplicity, we hide paths to 0 for MDD

and paths to 0 and 1 for LDD) . 16

2.5 An event-based SOG with Obs={a,b} 20

2.6 A state-based SOG, with AP = {a,b} 22

2.7 An LKS and its SOG . 25

3.1 Shared memory multi-core . 31

3.2 Example of BDD and MDD . 36

3.3 Runtime of the construction of the SOG 40

3.4 Speedup of the multi-thread algorithm 40

4.1 Distributed memory multi-processor 42

4.2 Runtime of distributed-memory algorithm 47

4.3 Speedup of the distributed-memory algorithm 47

5.1 Architecture of the hybrid approach 50

5.2 Distribution of the aggregates on 12 processes 57

5.3 Comparison between the multi-threaded, distributed and hybrid ap-

proaches in term of the obtained runtime. On the X axis are the

numbers of cores and on the Y axis are execution times in seconds. . 59

5.4 Comparison between the multi-threaded, distributed and hybrid ap-

proaches in term of the achieved speedups. On the X axis are the

numbers of CPU cores and on the Y axis are the speedups 60

6.1 Example of canonicalization . 64

6.2 Runtime of philo10 example using distributed-memory algorithm . . 68

6.3 Comparison between the multi-threaded, distributed and hybrid ap-

proaches in term of the obtained runtime using the canonicalization

algorithm. 71

List of Figures 95

6.4 Comparison between the multi-threaded, distributed and hybrid ap-

proaches in term of the achieved speedup using the canonicalization

algorithm . 72

7.1 Our Model Checker process . 76

7.2 UML statechart diagram of the LTL model checker based on POSIX

threads . 78

7.3 Comparison of the PMCSOG-Sylvan against LTSmin in minimum

runtime (above) and maximum speedup (below) for verified formulas

(blue) and violated formulas (red) 84

7.4 A sample example of the SOG . 85

7.5 A distributed SOG . 86

96

List of Tables

3.1 Comparison between the SOG construction based on BuDDy and

Sylvan . 38

3.2 Experimental results of the multi-threaded algorithm 39

4.1 Experimental results of the distributed-memory algorithm 46

5.1 Scalability of the Hybrid approach of the construction of the SOG . 56

5.2 The best execution times using multi-threaded, distributed and hy-

brid approaches . 58

6.1 Size of the SOG before and after the Canonicalization 65

6.2 Experimental results of the distributed-memory algorithm with and

without canonicalization . 66

6.3 Experimental results of the multi-threaded algorithm with and with-

out canonicalization . 67

6.4 Experimental results of the hybrid algorithm with and without canon-

icalization . 68

6.5 Size (in bytes) of the exchanged messages between 4 processes . . . 69

7.1 Comparison in terms of minimum runtime between the multi-core

PMC-SOG using POSIX threads, the multi-core PMC-SOG using

Sylvan and LTSmin . 83

7.2 Experimental results of the PMC-SOG and LTSmin 88

97

Bibliography

[AB86] James Archibald and Jean-Loup Baer. “Cache coherence protocols:

Evaluation using a multiprocessor simulation model”. In: ACM Trans-

actions on Computer Systems (TOCS) 4.4 (1986), pp. 273–298.

[Ake78] Sheldon B. Akers. “Binary decision diagrams”. In: IEEE Transac-

tions on computers 100.6 (1978), pp. 509–516.

[AKH97] Susann C Allmaier, Markus Kowarschik, and Graham Horton. “State

space construction and steady-state solution of GSPNs on a shared-

memory multiprocessor”. In: Petri Nets and Performance Models,

1997., Proceedings of the Seventh International Workshop on. IEEE.

1997, pp. 112–121.

[And90] Thomas E. Anderson. “The performance of spin lock alternatives for

shared-money multiprocessors”. In: IEEE Transactions on Parallel

and Distributed Systems 1.1 (1990), pp. 6–16.

[Bar+10] Jiri Barnat et al. “Divine: Parallel distributed model checker”. In:

Parallel and Distributed Methods in Verification, 2010 Ninth Inter-

national Workshop on, and High Performance Computational Sys-

tems Biology, Second International Workshop on. IEEE. 2010, pp. 4–

7.

[Bar+13] Jiří Barnat et al. “DiVinE 3.0–an explicit-state model checker for

multithreaded C & C++ programs”. In: International Conference on

Computer Aided Verification. Springer. 2013, pp. 863–868.

[Bar+18] Jiri Barnat et al. “Parallel Model Checking Algorithms for Linear-

Time Temporal Logic”. In: Handbook of Parallel Constraint Rea-

soning. Springer, 2018, pp. 457–507.

[BBR09] Jirı Barnat, Luboš Brim, and Petr Rockai. “DiVinE 2.0: High-performance

model checking”. In: 2009 International Workshop on High Perfor-

mance Computational Systems Biology (HiBi 2009). 2009, pp. 31–

32.

[Bel+13] Carlo Bellettini et al. “Distributed CTL model checking in the cloud”.

In: arXiv preprint arXiv:1310.6670 (2013).

BIBLIOGRAPHY 98

[BGS06] Roderick Bloem, Harold N Gabow, and Fabio Somenzi. “An algo-

rithm for strongly connected component analysis in n log n symbolic

steps”. In: Formal Methods in System Design 28.1 (2006), pp. 37–

56.

[BL99] Robert D Blumofe and Charles E Leiserson. “Scheduling multi-

threaded computations by work stealing”. In: Journal of the ACM

(JACM) 46.5 (1999), pp. 720–748.

[BPW10] Stefan Blom, Jaco van de Pol, and Michael Weber. “LTSmin: Dis-

tributed and symbolic reachability”. In: International Conference on

Computer Aided Verification. Springer. 2010, pp. 354–359.

[BRR06] Wilfried Brauer, Wolfgang Reisig, and Grzegorz Rozenberg. Petri

nets: central models and their properties: advances in petri nets

1986, part I proceedings of an advanced course bad honnef, 8.–19.

September 1986. Vol. 254. Springer, 2006.

[Bry86] Randal E Bryant. “Graph-based algorithms for boolean function ma-

nipulation”. In: Computers, IEEE Transactions on 100.8 (1986), pp. 677–

691.

[Bry92] Randal E Bryant. “Symbolic Boolean manipulation with ordered

binary-decision diagrams”. In: ACM Computing Surveys (CSUR)

24.3 (1992), pp. 293–318.

[Bur+94] Jerry R Burch et al. “Symbolic model checking for sequential circuit

verification”. In: IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 13.4 (1994), pp. 401–424.

[BVDP08] Stefan Blom and Jaco Van De Pol. “Symbolic reachability for pro-

cess algebras with recursive data types”. In: International Collo-

quium on Theoretical Aspects of Computing. Springer. 2008, pp. 81–

95.

[Cas+94] Stefano Caselli et al. “Experiences on SIMD massively parallel GSPN

analysis”. In: International Conference on Modelling Techniques

and Tools for Computer Performance Evaluation. Springer. 1994,

pp. 266–283.

[CCM01] Stefano Caselli, Gianni Conte, and Paolo Marenzoni. “A distributed

algorithm for GSPN reachability graph generation”. In: Journal of

Parallel and Distributed Computing 61.1 (2001), pp. 79–95.

BIBLIOGRAPHY 99

[CE81] Edmund M Clarke and E Allen Emerson. “Design and synthesis of

synchronization skeletons using branching time temporal logic”. In:

Workshop on Logic of Programs. Springer. 1981, pp. 52–71.

[CGN98] Gianfranco Ciardo, Joshua Gluckman, and David Nicol. “Distributed

state space generation of discrete-state stochastic models”. In: IN-

FORMS Journal on Computing 10.1 (1998), pp. 82–93.

[CGP00] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model

Checking. The MIT Press, 2000.

[CH91] Armin B Cremers and Thomas N Hibbard. “Axioms for concurrent

processes”. In: New Results and New Trends in Computer Science.

Springer, 1991, pp. 54–68.

[CKZ96] Edmund M Clarke, Manpreet Khaira, and Xudong Zhao. “Word

level model checking—avoiding the Pentium FDIV error”. In: Pro-

ceedings of the 33rd annual Design Automation Conference. ACM.

1996, pp. 645–648.

[Cla+01] Edmund Clarke et al. “Progress on the state explosion problem in

model checking”. In: Informatics. Springer. 2001, pp. 176–194.

[CLS00] Gianfranco Ciardo, Gerald Lüttgen, and Radu Siminiceanu. “Effi-

cient symbolic state-space construction for asynchronous systems”.

In: International Conference on Application and Theory of Petri

Nets. Springer. 2000, pp. 103–122.

[Dij12] Tom Dijk. “The Parallelization of Binary Decision Diagram opera-

tions for model checking”. In: (2012).

[DL+16] Alexandre Duret-Lutz et al. “Spot 2.0—A Framework for LTL and

\ω-Automata Manipulation”. In: International Symposium on Au-

tomated Technology for Verification and Analysis. Springer. 2016,

pp. 122–129.

[Dob96] Hans Dobbertin. “Cryptanalysis of MD5 compress”. In: rump ses-

sion of Eurocrypt 96 (1996), pp. 71–82.

[DP14] Tom van Dijk and Jaco C van de Pol. “Lace: non-blocking split

deque for work-stealing”. In: European Conference on Parallel Pro-

cessing. Springer. 2014, pp. 206–217.

[DP15] Tom van Dijk and Jaco van de Pol. “Sylvan: Multi-core decision di-

agrams”. In: International Conference on Tools and Algorithms for

the Construction and Analysis of Systems. Springer. 2015, pp. 677–

691.

BIBLIOGRAPHY 100

[DP16] Tom van Dijk and Jaco van de Pol. “Sylvan: multi-core framework

for decision diagrams”. In: International Journal on Software Tools

for Technology Transfer (2016), pp. 1–22.

[DP17] Tom van Dijk and Jaco van de Pol. “Sylvan: multi-core framework

for decision diagrams”. In: International Journal on Software Tools

for Technology Transfer 19.6 (2017), pp. 675–696.

[EKP13] Sami Evangelista, Lars Michael Kristensen, and Laure Petrucci. “Multi-

threaded explicit state space exploration with state reconstruction”.

In: International Symposium on Automated Technology for Verifica-

tion and Analysis. Springer. 2013, pp. 208–223.

[GMS01] Hubert Garavel, Radu Mateescu, and Irina Smarandache. “Paral-

lel state space construction for model-checking”. In: International

SPIN Workshop on Model Checking of Software. Springer. 2001,

pp. 217–234.

[Gro+96] William Gropp et al. “A high-performance, portable implementa-

tion of the MPI message passing interface standard”. In: Parallel

computing 22.6 (1996), pp. 789–828.

[GV01] Jaco Geldenhuys and Antti Valmari. “Techniques for smaller inter-

mediary BDDs”. In: International Conference on Concurrency The-

ory. Springer. 2001, pp. 233–247.

[GW91] Patrice Godefroid and Pierre Wolper. “A partial approach to model

checking”. In: Logic in Computer Science, 1991. LICS’91., Proceed-

ings of Sixth Annual IEEE Symposium on. IEEE. 1991, pp. 406–415.

[HB07] Gerard J Holzmann and Dragan Bosnacki. “The design of a multi-

core extension of the SPIN model checker”. In: IEEE Transactions

on Software Engineering 33.10 (2007).

[HDG10] Monika Heiner, Robin Donaldson, and David Gilbert. “Petri nets

for systems biology”. In: Symbolic Systems Biology: Theory and

Methods. Jones and Bartlett Publishers, Inc., USA (in Press, 2010)

(2010).

[He09] Y He. Multicore-enabling a Binary Decision Diagram algorithm.

2009.

[HIK04] Serge Haddad, Jean-Michel Ilié, and Kais Klai. “Design and evalua-

tion of a symbolic and abstraction-based model checker”. In: Inter-

national Symposium on Automated Technology for Verification and

Analysis. Springer. 2004, pp. 196–210.

BIBLIOGRAPHY 101

[Hol04] Gerard J Holzmann. The SPIN model checker: Primer and reference

manual. Vol. 1003. Addison-Wesley Reading, 2004.

[Hol08] Gerard J Holzmann. “A stack-slicing algorithm for multi-core model

checking”. In: Electronic Notes in Theoretical Computer Science

198.1 (2008), pp. 3–16.

[Hol12] Gerard J Holzmann. “Parallelizing the spin model checker”. In: In-

ternational SPIN Workshop on Model Checking of Software. Springer.

2012, pp. 155–171.

[IB02] Cornelia P Inggs and Howard Barringer. “Effective state exploration

for model checking on a shared memory architecture”. In: Electronic

Notes in Theoretical Computer Science 68.4 (2002), pp. 605–620.

[Kam98] Timothy Kam. “Multi-valued decision diagrams: Theory and appli-

cations”. In: J. Multiple-Valued Logic 4.1 (1998), pp. 9–62.

[Kan+15] Gijs Kant et al. “LTSmin: high-performance language-independent

model checking”. In: International Conference on Tools and Algo-

rithms for the Construction and Analysis of Systems. Springer. 2015,

pp. 692–707.

[KP04] Lars M Kristensen and Laure Petrucci. “An approach to distributed

state space exploration for coloured petri nets”. In: International

Conference on Application and Theory of Petri Nets. Springer. 2004,

pp. 474–483.

[KP08a] Kais Klai and Laure Petrucci. “Modular construction of the sym-

bolic observation graph”. In: ACSD. IEEE, 2008, pp. 88–97.

[KP08b] Kais Klai and Denis Poitrenaud. “MC-SOG: An LTL model checker

based on symbolic observation graphs”. In: International Confer-

ence on Applications and Theory of Petri Nets. Springer. 2008, pp. 288–

306.

[KTD09] Kais Klai, Samir Tata, and Jörg Desel. “Symbolic abstraction and

deadlock-freeness verification of inter-enterprise processes”. In: In-

ternational Conference on Business Process Management. Springer.

2009, pp. 294–309.

[KTD11] Kais Klai, Samir Tata, and Jörg Desel. “Symbolic abstraction and

deadlock-freeness verification of inter-enterprise processes”. In: Data

& Knowledge Engineering 70.5 (2011), pp. 467–482.

BIBLIOGRAPHY 102

[KV92] Roope Kaivola and Antti Valmari. “The weakest compositional se-

mantic equivalence preserving nexttime-less linear temporal logic”.

In: International Conference on Concurrency Theory. Springer. 1992,

pp. 207–221.

[Lam77] Leslie Lamport. “Proving the correctness of multiprocess programs”.

In: IEEE transactions on software engineering 2 (1977), pp. 125–

143.

[LPW10] Alfons Laarman, Jaco van de Pol, and Michael Weber. “Boosting

multi-core reachability performance with shared hash tables”. In:

Proceedings of the 2010 Conference on Formal Methods in Computer-

Aided Design. FMCAD Inc. 2010, pp. 247–256.

[LPW11] Alfons Laarman, Jaco van de Pol, and Michael Weber. “Multi-core

LTS min: marrying modularity and scalability”. In: NASA Formal

Methods Symposium. Springer. 2011, pp. 506–511.

[LS99] Flavio Lerda and Riccardo Sisto. “Distributed-memory model check-

ing with SPIN”. In: International SPIN Workshop on Model Check-

ing of Software. Springer. 1999, pp. 22–39.

[Mar96] Andrew Martin. Machine-Assisted Theorem-Proving for Software

Engineering. Oxford University Computing Laboratory, Program-

ming Research Group, 1996.

[Mat87] Friedemann Mattern. “Algorithms for distributed termination detec-

tion”. In: Distributed computing 2.3 (1987), pp. 161–175.

[MD98] D Michael Miller and Rolf Drechsler. “Implementing a multiple-

valued decision diagram package”. In: Multiple-Valued Logic, 1998.

Proceedings. 1998 28th IEEE International Symposium on. IEEE.

1998, pp. 52–57.

[ODP17] Wytse Oortwijn, Tom van Dijk, and Jaco van de Pol. “Distributed

binary decision diagrams for symbolic reachability”. In: Proceed-

ings of the 24th ACM SIGSOFT International SPIN Symposium on

Model Checking of Software. ACM. 2017, pp. 21–30.

[Oss10] Jörn Ossowski. “JINC: a multi-threaded library for higher-order weighted

decision diagram manipulation.” PhD thesis. University of Bonn,

2010.

BIBLIOGRAPHY 103

[Oun+17a] Hiba Ouni et al. “A Parallel Construction of the Symbolic Obser-

vation Graph: the Basis for Efficient Model Checking of Concur-

rent Systems”. In: SCSS 2017. The 8th International Symposium on

Symbolic Computation in Software Science 2017. Ed. by Mohamed

Mosbah and Michael Rusinowitch. Vol. 45. EPiC Series in Comput-

ing. EasyChair, 2017, pp. 107–119.

[Oun+17b] Hiba Ouni et al. “Parallel Symbolic Observation Graph”. In: Ubiqui-

tous Computing and Communications (ISPA/IUCC), 2017 IEEE In-

ternational Symposium on Parallel and Distributed Processing with

Applications and 2017 IEEE International Conference on. IEEE.

2017, pp. 770–777.

[Oun+18] Hiba Ouni et al. “Reducing Time and/or Memory Consumption of

The SOG construction in a Parallel Context”. In: Ubiquitous Com-

puting and Communications (ISPA/IUCC), 2018 IEEE International

Symposium on Parallel and Distributed Processing with Applica-

tions. IEEE. 2018.

[Oun+19] Hiba Ouni et al. “Towards parallel verification of concurrent sys-

tems using the Symbolic Observation Graph”. In: 2019 19th Inter-

national Conference on Application of Concurrency to System De-

sign (ACSD). IEEE. 2019, pp. 23–32.

[QS82] Jean-Pierre Queille and Joseph Sifakis. “Specification and verifica-

tion of concurrent systems in CESAR”. In: International Symposium

on programming. Springer. 1982, pp. 337–351.

[Rod+06] Cássio L Rodrigues et al. “A bag-of-tasks approach for state space

exploration using computational grids”. In: Software Engineering

and Formal Methods, 2006. SEFM 2006. Fourth IEEE International

Conference on. IEEE. 2006, pp. 226–235.

[SD97] Ulrich Stern and David L Dill. “Parallelizing the Murφ verifier”. In:

International Conference on Computer Aided Verification. Springer.

1997, pp. 256–267.

[TBD95] ZP Tao, Gregor von Bochmann, and Rachida Dssouli. “Verification

and diagnosis of testing equivalence and reduction relation”. In: Pro-

ceedings of International Conference on Network Protocols. IEEE.

1995, pp. 14–21.

BIBLIOGRAPHY 104

[Val90] Antti Valmari. “A stubborn attack on state explosion”. In: Interna-

tional Conference on Computer Aided Verification. Springer. 1990,

pp. 156–165.

[VAM96] François Vernadat, Pierre Azéma, and François Michel. “Covering

step graph”. In: International Conference on Application and Theory

of Petri Nets. Springer. 1996, pp. 516–535.

[VDBL13] Freark Van Der Berg and Alfons Laarman. “SpinS: Extending LTSmin

with Promela through SpinJa”. In: Electronic Notes in Theoretical

Computer Science 296 (2013), pp. 95–105.

[VDLVDP13] Tom Van Dijk, Alfons Laarman, and Jaco Van De Pol. “Multi-core

BDD operations for symbolic reachability”. In: Electronic Notes in

Theoretical Computer Science 296 (2013), pp. 127–143.

[VG14] Miroslav N Velev and Ping Gao. “Efficient parallel GPU algorithms

for BDD manipulation”. In: 2014 19th Asia and South Pacific De-

sign Automation Conference (ASP-DAC). 2014.

[Wal94] David W Walker. “The design of a standard message passing in-

terface for distributed memory concurrent computers”. In: Parallel

Computing 20.4 (1994), pp. 657–673.

[XB00] Aiguo Xie and Peter A Beerel. “Implicit enumeration of strongly

connected components and an application to formal verification”.

In: IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems 19.10 (2000), pp. 1225–1230.

[ZC10] Yang Zhao and Gianfranco Ciardo. “Symbolic computation of strongly

connected components using saturation”. In: (2010).

[Šti13] Vladimír Štill. “State space compression for the DiVinE model checker”.

PhD thesis. Bachelor’s thesis. Masaryk University, Faculty of Infor-

matics, 2013. Available at< http://is. muni. cz/th/373979/fi_b, 2013.

