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Abstract

Prickle is an undesirable trait in many crops as it makes crops difficult to handle, harvest, and can injure

workers. Roses are among the most important ornamental plants, and most roses present prickles on their

stems. There is a strong demand from producers and breeders for glabrous rose cultivars, particularly in

cut roses. The genetic and molecular mechanisms underlying prickle initiation and development remain still

largely unknown. Our objectives are to decipher the genetic and molecular control of prickle initiation and

development in rose using anatomic, genetic and genomic approaches. By a survey of the different types

of prickle within the genus Rosa, we classified them in two types : non-glandular (NGP) and glandular

prickles (GP), with the NGP being the most common. We demonstrated that NGP are originated from a cell

layer below the protoderm contrary to what was previously described. Using a F1 progeny, we detected four

QTLs controlling the presence and density of stem prickle.We characterized rose gene homologues known in

Arabidopsis that involved in trichome initiation. Minor different expression of the homologues in prickle (P)

and prickless (NP) samples, suggesting different gene pathway between prickles and trichomes. Molecular

bases of prickle initiation and development were explored using an RNA-Seq strategy by comparing the

transcriptome i) of glabrous and prickle shoots and ii) during prickle development. We have identified key

genes and regulatory networks controlling prickle initiation and development, with interesting genes below

the QTLs. Through this project, we have built a genetic model system for studying prickles and open new

research areas in the plant sciences.

Keywords : Glandular and non-glandular structure ; Trichome ; Prickle anatomy ;QTL; RNA sequencing ;

Transcriptomics
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Glossaries list

Bark

(botany) It refers to all tissues exterior to the vascular cambium, including a

number of tissue types that are periderm (composed of the cork, cork cambium,

and the phelloderm), cortex (comprised of ground tissues), and phloem, and

epidermis

Biseriate (botany) Arranged in two whorls, cycles, rows, or series

Chimera
(genetics) A single organism composed of cells with more than one distinct

genotype

Downy plant (botany) The plants that organ(s) covered with fine, soft hair

Emergences
(botany) Any of various superficial outgrowths of plant tissue usually formed

from both epidermis and immediately underlying tissues

Epidermis (botany) A single layer of cells that covers the organs of plants.

Genetic

redundancy

(genetics) Two or more genes are performing the same function and inactivation

of one of these genes has little or no effect on the phenotype

Ground meristem

(botany) The primary meristematic tissue from where the ground tissues (i.e.

non-dermal or non-vascular tissues) develop from. It directly come from the

apical meristem.

Hair (botany) Hair like structure, they refers to trichomes

Hypomorphic

mutation

A type of mutation wherein the change in gene leads to the partial loss of the

normal (wild-type) gene function, such as by reduced expression of the RNA or

reduced activity of the protein
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Meristem

(botany) A meristem (meristematic tissue) is a plant tissue that is made up of

undifferentiated, actively dividing cells. Its fundamental function is growth. Some

of the cells continue to give rise to new cells by cell division while others develop

into differentiated cells comprising a particular permanent tissue.

Multiseriate (botany) Arranged in rows or composed of more than one cell layer

Prickles

(botany) Sharp appendages of plant that originate from ground meristem (just

under protoderm), they do not have vascular bundles and generally easy to be

removed at mature stage due to the formation of abscission layer structure-like.

Prickle meristem
(botany) Derive from the ground meristem, associate with the growth of prickle

in early stage

Protoderm (botany) The primary meristem fromwhere the epidermis of the plant are derived

Pubescent (botany) Covered with short soft hair

Uniseriate (botany) Arranged in a single row, layer, or serie

Thorns (botany) Thorns are modified from stem or shoot, have vascular bundles

Trichomes

(botany) Trichomes from the Greek τριχωµα (trichôma) meaning "hair", are

epidermal appendages of diverse form, structures, and functions. They originate

from the protoderm (or epidermis) only.

Spines
(botany) Spines are modified from leaves or part of leaves (leaflet, stipules,

petiolars), have vascular bundles

Spinescence
(botany) A general designation for the sharp appendages, such as prickle, thorn

and spine
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1 Introduction and literature review

1.1 Trichomes, prickles, thorns and spines

1.1.1 Distinctions and definitions based on anatomical studies

The basic terminology describe appendages on plants (trichomes, prickles, thorns and spines) is frequen-

tly inaccurately cited in scientific reports, making it even more difficult for most researchers to understand

how to distinguish between the different terms. For example, commonly confused words include trichomes,

emergences and prickles, since their definitions are not consistent in the literature. Some authors have

described emergences as prickles, e.g., prickles on the stems or leaves of plants such as Solatium torvium,

Aiphanes acanthophylla, roses, etc. (Bell, 1991), and and some have referred to trichomes as emergences,

e.g. grape emergences (Ma et al., 2016b). Another common confusion is between prickles, thorns and spines.

Many plants described as having thorns or spines (McPheeters and Skirvin, 1983; Hall et al., 1986; Canli,

2003; Coyner et al., 2005; Castro et al., 2013; Kariyat et al., 2017), actually have prickles. For instance, Rosa

and Rubus have the most representative prickles. Thus, before conducting any molecular research on this

subject, an essential step is to clearly describe their anatomy and to understand their origin. In this paper,

we have reviewed the anatomical structure and development of those tissues in order to guide subsequent

research by more effectively understanding the difference and connection between them. In this Chapter, the

sharp appendages (prickles, thorns and spines) are collectively referred to as ‘spinescences’.

Generally, depending on the presence or absence of vascular bundles, we can divide these structures into

two categories: (i) trichomes (Figure 1a and b) and prickles (Figure 1c and d) ), which are not vascularized

and are generally easy to remove; and (ii) thorns (Figure 1e and f) and spines (Figure 1g) ), which have

vascular bundles and cannot be easily separated from the organs that have vascular tissues (spines, usually

from leaves, and thorns from stems or shoots) (Figure 1h).
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Figure 1: General methods to distinguish trichomes, prickles, thorns and spines. (a) trichomes on Arabidopsis leaves; (b) the anatomy of an Arabidopsis trichome; (c) prickles
on a rose stem; (d) an anatomical illustration of prickles; (e) a shoot thorn of Pyrus cordata; (f) a citrus thorn; and (g) an anatomical illustration of thorns and spines. Produced
by NN ZHOU and XW DOU.
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Chapter 1 Introduction and literature review

1.1.1.1 Trichomes

Esau (1953) has defined trichomes as “epidermal appendages of diverse form, structure and functions

...... represented by protective, supporting, and glandular hair, by scales, by various papillae, and by absorbing

hairs of roots.” The major feature that indicates that these structures are trichomes is that trichomes are

epidermal appendages that originate in the protoderm (or epidermis) only. Thus, they are usually distinguished

from emergences, which are formed from both epidermal cells and sub-epidermal tissues (Werker et al.,

1985). However, the boundary between trichomes and emergences is not always clear due to some intermediate

forms. In some cases, no sub-epidermal cells take part in the development of a trichome but they are

locally differentiated below the trichome (Werker, 2000). Coupled with a lack of understanding of anatomy,

some authors use "trichome" as a general term for both trichomes and emergences. For instance, Payne

(1978) created hundreds of terminology glossaries and described their morphological characteristics in

order to distinguish different types of trichomes. This extraordinary undertaking was expected to serve as

a reference for researchers concerning the description of trichomes. However, a precise definition of a type

of terminology is impossible without ontogenetic studies. Many definitions on his list should be revised

according to their anatomical structure. Thus, researchers need to be careful to cite these terms in their

reports in order to prevent inappropriate references from creating more confusion. A developmental study

is necessary to determine whether some outgrowths are solely epidermal in origin or both epidermal and

sub-epidermal in origin. However, such studies are often ignored before assigning a classification.

Trichome diversity

Trichomes varywidely in their final forms and structures, locations, functions, etc. Although no classific-

ation method is totally satisfactory, some categories are remarkably uniform in a given taxon and have been

used for a long time (Metcalfe and Chalk, 1957; Netolitzky and Uphof, 1962; Leelavathi and Ramayya,

1983; Wagner, 1991; Werker, 2000; Evert and Eichhorn, 2006; Osman, 2012).

Depending on their morphology and secretion ability, trichomes are mainly divided into two general

categories: “non-glandular” and “glandular”. Non-glandular trichomes (NGT) are diverse in theirmorpholo-

gy, anatomy and microstructure. They may be unicellular (Figure 2 a and b) or multicellular (Figure 2 c, d

and e), and both types can be branched or unbranched. Unbranched multicellular trichomes and the stalk of

branched multicellular trichomes can be uniseriate (Figure 2 c), biseriate or multiseriate (Figure 2 d). Within

these categories, they may differ in size, shape, length, and may be jagged or smooth. They may also be soft,

sinuous or stiff because of variations in cell wall thickness and substances in the cell. Branched multicellular

trichomes may have unicellular or multicellular branches, constituting a variety of tufted appearances. Gla-

ndular trichomes (GTs) are defined by the presence of cells that have the ability to secrete or store large

quantities of secretions (Fahn, 1979; Fahn and Shimony, 1996; Huchelmann et al., 2017). They also can be

unicellular (rarely, Figure 2 f) or multicellular (commonly, Figure 2 g, h, i, j and k), branched or unbranched,

and have various shapes. Depending on the location of the gland cell or “collecting cell” and the morphology

3



1.1 Trichomes, prickles, thorns and spines

Figure 2: Diversity in trichomes. Non-glandular trichomes: unicellular (a) unbranched and (b) branched
trichomes; multicellular (c) uniseriate unbranched, (d) multiseriate unbranched, and (e) uniseriate branched
trichomes. Glandular trichomes: (f) unicellular unbranched; multicellular (g, h, i, and k) unbranched and (j)
branched. (m) Trichome with non-glandular and glandular branches. Reproduced by NN ZHOU and XW
DOU.

properties, some GTs have been classified as capitate (Figure 2 i and j) and peltate (Figure 2 h) (Ascensão

et al., 1995; Corsi and S., 1999; Turner et al., 2000), or as stinging hairs (MacFarlane, 1963; Thurston and

Lersten, 1969) (Figure 2 k ). Some exceptional cases cannot be simply classified in GT or NGT. For example,

some trichomes have both non-glandular and glandular branches (Figure 2 m).

Origin and development of the different trichomes

Trichome development starts at a very early stage of leaf development, often prior to stomatal developm-

ent, and sometimes even before the leaf primordium can be distinguished. Werker (2000) extensively studied

and distinguished the seven different types of trichome development: “(1) One protoderm cell that gives rise

to a unicellular (Figure 3 a) or multicellular trichome (Figure 3 b and 3 c); (2) One protoderm cell that gives

rise to a uniseriate or multiseriate trichome, but neighboring epidermal cells give rise to the pedestal of the

trichome; (3) "Twin hairs" that were classified by Metcalfe and Chalk (1965) as two armed hairs; (4) More

than one epidermal cell that gives rise to a multiseriate trichome; (5) Hair development by splitting of cells;

(6) Subepidermal cells, in which one to all the local tissues subtending the epidermis may take part in the

formation of a trichome/emergence; (7)"False hairs" that develop by partial disintegration of cell walls.”
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1)

2)

3)

Figure 3: The origin and development of different types of trichomes. (a1) non-glandular trichome
(unicellular and branched) development in wild type of Arabidopsis (Hülskamp 2004). (a2) non-glandular
unbranched and branched; (a3) trichome development in Origanum vulgare (Kintzios, 2002). Glandular
trichome development on leaves in (b) Origanum dictamnus L (Bosabalidis and Tsekos, 1982). and (c)
Sideritis syriaca (Karousou et al., 1992). Reproduced by NN ZHOU and XW DOU.
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1.1 Trichomes, prickles, thorns and spines

1.1.1.2 Prickles

In a glossary of plant hair terminology list, Payne (1978) defined a prickle as “a sharp, rigid, epidermal

outgrowth, often relatively massive, as for Rosa; frequently and erroneously termed spine.”. In blackberries

and raspberries, prickles were described as a stiffer structure, morphologically similar to glandular trichomes

and originnating frommultiple cellular divisions of the epidermis and a lack of internal vascular material that

later became cutinized as hard sharp appendages (Peitersen, 1921; Esau, 1960; Coyner et al., 2005), whereas

there was no evidence to support the fact that the origin of prickles is from epidermal cells. Later, a few

reports described the prickle’s anatomical structure (Asano et al., 2008; Kellogg et al., 2011; Li et al., 2012;

Angyalossy et al., 2016) and suggested that prickles may develop from sub-epidermal or/and epidermal cell

layers (regularly confused with trichomes). The conclusion based on microscopic pictures of young prickles

is regularly subject to controversy and confusion.

Concerning rose, Asano et al. (2008) described prickles as sharply pointed spines, lacking vascular

tissue and growig from tissue under the outer layer of the plant. By analyzing the sections of a tender-soft

prickle and a mature-hard one, he observed a cell layer in the young and mature prickles but not in the very

early stages of development. This cell layer resembles the abscission layer of deciduous leaves. Considering

that the mature prickles are easy to peel off with the fingers, and based on previous observations, the authors

suggested that the rose prickles were spines or modified leaves (see section of spines and thorns). This

conclusion is not supported by strong evidence. Later, Li et al. (2012) suggested that cells in the prickle

abscission region were different from cells in the petiole abscission zone by studying the anatomical structure

and chemical composition of tender prickles. Then, based on examination of the longitudinal sections of

immature prickles and microscopic observations of prickle development, Kellogg et al. (2011) defined rose

and raspberry prickles as “epidermal tissue, and modified from glandular trichomes by continuing to grow

and hardening into the prickle structure”. This conclusion is based on the observation of the glandular head

on the tip of a prickle, that falls off during prickle development. They added: “if these glandular structures

were absent or reduced in size, the resulting cultivars were prickless or almost prickless, respectively”.

Based on this, they further hypothesized that secondary metabolites produced in the glandular trichome

may play a role in prickle development. Although this argument was supported by other researchers (Ma

et al., 2016b; Pandey et al., 2018; Khadgi and Weber, 2020a), the questions remain: firstly, do prickles

originate from epidermal tissues like trichomes? Secondly, why is the origin of prickles is closer to that of

glandular trichomes but not non-glandular trichomes? Later, Angyalossy et al. (2016) defined prickles as

“sharp outgrowths from the bark, without vascular tissue”, based on examination of longitudinal sections of

the young prickles of Polyscias mollis, Piptadenia gonoacantha and Oplopanax horridus. However, there

is still no anatomical evidence to support the prickle origin. Moreover, “bark” is an imprecise term that

refers to all tissues exterior to the vascular cambium including a number of tissue types that are periderm

(composed of the cork, cork cambium, and the phelloderm), cortex (comprised of ground tissues), phloem

and epidermis (Dickison, 2000; Evert and Eichhorn, 2006). These tissues are formed at a relatively later

stage of stem development, while prickle formation normally takes place earlier (almost simultaneously

with leaf primordia) (Asano et al., 2008). Therefore, the definition of prickles needs to be defined in relation
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to their origin.

Do prickles originate fromwhich tissue(s) or cell layer(s)? Are epidermal cells involved in the differenti-

ation of parts? To answer these questions, we need to provide anatomical evidence of prickle development,

including initiation and later developmental stages, which are still absent.

1.1.1.3 Thorns and spines

Thorns and spines are usually distinguished based on the modified organ from which they come. Thorns

are defined as a sharp-pointed stems or shoots (Delbrouck, 1875; Blaser, 1956; Michael G., 2010). They can

sometimes bear leaves (Figure 1 e, Prunus spinosa, Crataegus laevigata L.), flowers (Ulex europaeus), or

be bare (Figure 1 f), and can be unbranched (Crataegus monogyna, Ccrataegus crus-galli) or branched

(Gleditsia triacanthos). By comparing the non-thorny and thorny branches of Crataegus laevigata L.,

Prunus spinosaL. andPyrus communisL,PyrusMatusL,Mespilus germanicaL, Aubertot (1910) described

the thorny branches as being shorter than the ordinary ones, growing in all directions (Prunus spinosa), with

smaller leaves(Pyrus, Prunus), and more indented lobes (Crataegus). The stipules were often reduced in

Crataegus. Based on anatomical study, one remarkable trait of thorny was the woody conductive tissue

(Aubertot, 1910), which consist of a considerable reduction in the vascular network, a reduction that may

affect the number of vessels only (Pynus) or their diameter ( which decreased from an average of 50% in

Crataegus,).

Delbrouck (1875) classified numerous spinescences and noted that thorns may be produced from normal

axillary buds, from supernumerary buds, or from terminal buds. In Gleditsia, thorns are usually branched

and bare, represented by the typical three-parted thorn that arises from one axillary meristem. This meristem

gives a shoot that will become a thorn. This shoot also bears two additional axillary meristems that can grow

later and give rise to two new thorns, leading to the branched thorn (Blaser, 1956).

Spines are variously described as leaves or leaflet spines (as in Cactaceae, Ulex europaeus, Phoenix),

stipule spines (as in Vachellia xanthophloea), petiolar spines (as in Fouquieria), or parts of leaves (as in

Ilex aquifolium) (Michael G., 2010). Some authors prefer not to distinguish between thorns and spines

because, unlike prickles, they are both usually vascularized (Bell, 1991). For instance, Cacti have evolved

succulent stems (in order to store water) with specialized buds called areoles. Areoles produce a cluster of

spines where the spines are vestigial leaves, sometimes with no vascular tissue visible. Most cacti spines

are diverse in terms of form: ‘long or short’, ‘hairlike, papery, hooked, corrugated, or flattened’, ‘heavy or

thin’, ‘barbed, smooth, or glandular’. Even though some have none as adults (e.g. Ariocarpus, Lophophora,

Rhipsalis), they usually have them at the juvenile stage (Boke, 1980). In Bartschella or Opuntia, spine

primordia arose in the same manner as leaf primordia, but they both lack lamina and vascular tissue. The

spine appears in the spine-leaf transition forms that usually occur on expanding areoles (Boke, 1944, 1956).

Apical maturation of spine primordia is both precocious and covers the entire structure. Further growth is

restricted to a well-defined basal intercalary meristem in which continuation of growth activity and planes of

cell division determine the length, breadth and cross-sectional configuration of the mature structure (Boke,
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1980). In non-cacti plants, spines are mostly described at the macroscopic level, and anatomical evidences is

rarely. Gallenmüller et al. (2015) examined the cross and longitudinal sections of young spines in Asparagus

setaceus and Asparagus falcatus. They are both composed of different types of tissues, including leaf,

stem, axillary bud or lateral shoot. The scale of the different tissues differs between species, with a higher

contribution of leaf and lateral shoot tissue in A. setaceus, where a cork layer is formed between leaf and

stem tissues of the spines. The cork layer was not observed in spines of A. falcatus.

Many structures cannot clearly be classified in these categories (thorns, prickles or spines). The most

important point for biologists is to understand the initiation and development of this structure (origin). The

same or similar developmental patterns of organs and tissues may be controlled by similar genetics pathways.

Good knowledge of its structure and development patterns will be an assist for reverse genetics research.

1.1.2 An efficient adaptive strategy to response to biotic and abiotic stress

Superficial tissues (epidermis) and appendages structures (trichomes, spinescences) of plant organs are

the first line of plant defense. They play a crucial role against multiple abiotic and biotic stresses. Since

they comprise the outermost boundary between the plant and its environment, they mediate a plethora of

plant-environment interactions, plant-pathogen interactions and plant-herbivorous interactions, as well as

plant-plant interactions. In this section, I will review the protective and defensive role of these appendage

structures in plant-environment and plant-herbivorous interactions.

1.1.2.1 Adaptation to extreme environments

A wide range of hypotheses concerning trichome functions in plant-environment interactions have

been reported, but have not always been experimentally tested. Hundreds of different forms of trichomes

are found on different organs in different plants and may have a great variety of functions, whereas a

number of trichome functions have only been either hypothesized or are totally unknown (Werker, 2000).

Investigation of the morphological characteristics of plants in extreme environments shows how trichomes

play an important role in protecting plants against increasing solar radiation, extreme temperatures, drought

and windy environments. The most typical representative examples are alpine plants (Körner, 2003) and

cacti (Nobel, 1988, 2002), whose younger organs are always coveredwith high-density trichomes or spinesce-

nces, which may remain over the lifetime of the plant.

Plant adaptation to the light environment

In plants, radiation absorptance is a major driver of both carbon and energy balance, two important

aspects of plant survival and reproduction in any ecosystem. Regulating the absorptance and reflection of

radiation is important for plants living in a variety of light environments (Shull, 1929; Billings and Morris,

1951; Ehleringer, 1981; Körner, 2003). Apine plants, in particular, are under heightened selective pressure to
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structurally and physiologically adapt to their unusual light environment. Trichomes are one of the essential

adaptation structures to control absorptance and reflection radiation (Johnson, 1975). In desert and subalpine

plants, Billings and Morris (1951) observed consistently higher reflectance in the pubescent leaf exposed to

visible spectrum radiation, whereas in soybean lines (varying from glabrous to pubescent), leaf trichomes

increase their absorptance and decrease their reflectance through diffuse radiation, and entrap incoming

near-IR light (Gausman and Cardenas, 1973). The optical properties of trichomes in plants vary greatly in

response to visible spectrum radiation. For dynamic lights adaptation, the variation in trichomes response

is explained by trichome density (Ehleringer et al., 1976; Ehleringer, 1981), and as well as their forms and

structures (Pierce, 2007;Mershon et al., 2015). Ultraviolet (UV)-mediated induction of trichome density has

been demonstrated using genetic approaches. In A. thaliana, using wild type and several trichome-related

mutants (gl1, gis, gis2, zfp8, try82, and gl3), and overexpressing trichome positive regulator lines (35S::GIS

and 35S::GIS2), Yan et al. (2012) demonstrated that trichome density significantly increased under UV-B

enhanced radiation conditions, suggesting a clear induction of trichome formation by UV-B.

Considering that trichomes absorbUV-B radiation, some authors have suggested that trichomes covering

different organs play a protective role against damage from UV radiation (Karabourniotis and Fasseas, 1996;

Karabourniotis et al., 2020; Skaltsa et al., 1994; Ntefidou and Manetas, 1996; Liakoura et al., 1997; Agati

et al., 2012), although no direct evidence has shown that genotypes that lack trichome protection suffer from

increased injury by UV-B. Plants have very effective systems of UV-protection and repair because plants

in the natural environment rarely show any signs of UV damage (Jenkins, 2009). The benefits of UV-B to

plants may far outweigh the damage. UV-B makes up just a small fraction of the total solar radiation, but it

represents a crucial signal that initiates several responses in plants that affect metabolism, development, and

viability (Jenkins, 2009). It has been shown that UV-B-mediated induced morphological and physiological

changes in plants as a reinforcement of plant defense in some cases (reviewed by Robson et al. (2015) and

Escobar-Bravo et al. (2017)). For example, in an experiment, where no pesticides were applied, Mazza et al.

(1999, 2013) found that solar UV-B significantly indirectly reduced insect herbivory. This indirect benefit

of UV-absorbtance by plants is mainly due to increased phenolic compounds and trichome density (Mewis

et al., 2012; Ðinh et al., 2013; Jeschke et al., 2015; Zavala et al., 2015; Escobar-Bravo et al., 2017). Use of

the UV-B light component of solar radiation to enhance crop defense against pests and pathogens, as well

as crop production, has aroused increasing interest (Wargent and Jordan, 2013).

Trichome may protect plants from extreme temperatures

Alpine plants that grow in the high alpine zone at high altitudes, always have a high density of trichomes.

This may indicate that these hairs play a certain role in adaptation to extreme conditions and particularly low

temperatures. For example, Himalayan snowball plants (Figure 4) are considered to be an extreme form of

downy plants. Tsukaya et al. (2002) examined the downy inflorescences of Saussurea medusa and analyzed

the temperature within inflorescences after the absorbance of light energy. They found that the downy bracts

of S. medusa have two major functions thermal insulation to protect the inside of flowers against cold and
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Figure 4: Himalayan snowball plants. (a) Saussurea medusa. (b) Saussurea gnaphalodes. (c) Saussurea
aster. (d) Saussurea glacialis. Credits: CGIN nature film crew (a); iNaturalist (Kulbhushansingh
Suryawanshi (b); Harry Jans (c); Ruslan (d)).

the accumulation of heat on the upper surfaces of the inflorescence.

Some trichomes and spinescences may be adapted to drought conditions

Plants growing in arid habitats had higher-density trichomes than similar plants inmesic habitats (Ehleringer

et al., 1976; Ehleringer, 1981; Fahn, 1986; Nobel, 1988, 2002). Evert and Eichhorn (2006) reviewed the

studies on plants growing in aird regions and concluded that “an increase in leaf pubescence (hairiness)

reduces the transpiration rate by (1) increasing the reflection of solar radiation, which lowers leaf temperatures;

and (2) increasing the boundary layer (the layer of still air through which water vapor must diffuse).”. In

addition, naturally arid conditions always corresponded to a higher frequency of spinescent plants distribution,

indicating that spinescence may be adapted to arid conditions (Shmida, 1981; Nobel, 1988).

1.1.2.2 Adaptive defense responses to herbivores

The defense system against herbivores is a large and changeable network andmay involve the cooperation

among of multiple strategies. To ward off an attack by different types of organisms, plants possess a

surveillance system to perceive who attacked them and to thus introduce specific defenses (Crawley, 1983;

Van loon et al., 2009; Futuyma and Agrawal, 2009; Kant et al., 2015; Lev-Yadun, 2016). For instance,

wounding can be chemically identified (Van loon et al., 2009; Karban, 2015), plants can then recognize
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herbivore attacks for a long time (Gagliano et al., 2014; Karban, 2015). Plants can employ bodyguards such

as ants (Jolivet, 1998) and use volatiles to attract the natural enemies of invertebrates to attack herbivores

(Kessler and Baldwin, 2001; LoPresti and Karban, 2016). Different strategies include the production of

large and strong fruits, reducing damage to other vital organs of herbivores (Janzen, 1976), visual or chemical

intimidation of herbivores (Lev-Yadun, 2009), use of colors to pretend to be inedible (Givnish, 1990; Lev-Yadun,

2009), ect. Plants have many types of mechanical defenses (Lucas et al., 2000), even anisotropic structural

defense arrangements, which may cause invertebrate herbivores to leave the plant (Vermeij, 2015). Spinous

plants can inject pathogens into the herbivores, causing injury or death (Halpern et al., 2007, 2011). Of

course, no single species can possess all of these defenses at the same time. However, the plant kingdom

as a whole has a large weapon arsenal. In the following section, I briefly review the role of trichomes and

spinescence as a defense against herbivores, including insects and large mammals.

Trichomes

From an evolutionary perspective, trichomes may have appeared much earlier than herbivores. This

hypothesis is supported by evolutionary genealogy studies. Thus, non-glandular trichomes (NGTs) are

normally thought to have evolved primarily as physiological barriers against extreme environmental conditions,

as we discussed in a previous section. However, many types of trichomes may also have co-evolved with

herbivores (especially insects), and perhaps the most widespread function of plant trichomes (especially

GTs) today is to protect plants from herbivores (Levin, 1973; Johnson, 1975; Fahn, 1979; Howe andWestley,

1988). The earliest evidence for the occurrence of modified trichomes comes from fossils of the late Carboni-

ferous (Stephanian stage,∼ 290Mya) and these modified multicellular hairs were glandular trichomes (GTs)

(Krings et al., 2003; Lange, 2015). Krings et al. (2003) proposed that these GTs possessed a touch-sensitive

mechanism that opened the secretory cell when touched. Compared to the plant trichomes of today, they

further support the implications of GTs in plant-insect interactions in the Late Carboniferous. Indeed, many

insect herbivores, including leaf beetles, leafhoppers, and caterpillars, have been shown to be physically-dete-

rred or incapacitated by trichomes (Levin, 1973; Johnson, 1975; Ribeiro et al., 1994; Webster et al., 1994;

Eisner et al., 1998; Smith, 1999; Andres and Connor, 2003). NGTs may form physical barriers that can

reduce or prevent insects from moving on the plant or from feeding, whereas GTs may release various forms

of chemical repellents or traps. Numerous studies have reported the negative relationship between trichome

density and the rates of herbivore damage (Pullin and Gilbert, 1989; Valverde et al., 2001; Handley et al.,

2005), and an induced resistance has been widely observed in plants following damage by insect herbivores

(Gibson, 1971; Harvell, 1990; Karban and Baldwin, 1997; Traw and Dawson, 2002; Tian et al., 2012). In

Brassica nigra (L.), for instance, leaf trichomes are induced differently in response to different herbivores

attacks(Traw and Dawson, 2002). Leaves of plants damaged by Pieris rapae had 76% more trichomes per

unit area than control plants, and leaves of plants damaged by Trichoplusia ni had 113% more trichomes. It

has been suggested that specialized defense mechanisms in response to herbivores usually involve glandular

trichomes (Tingey, 1991), and some GTs secret antibiotic compounds that directly intoxicate arthropod
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herbivores (Wang et al., 2004; Ranger et al., 2004; Hare, 2005). Molecular engineering of GT biochemistry

has been successfully targeted as a measure to promote pest resistance (Haudenschild and Croteau, 1998;

Wang et al., 2004; Calo et al., 2006), and some plant genes responsible for the antibiotic compounds have

been used to engineer microbes that produce specific compounds (Ro et al., 2006). In some cases, very small

insects such as spider mites and aphids use trichomes to protect themselves against their natural enemies

like coccinellid beetles (Eisner et al., 1998), which means that some insects may be specifically adapted to

glandular trichomes (Dam and Hare, 1998; Hare and Elle, 2002). Some insects may utilize specific terpenes

to locate their host (Roda et al., 2003). Based on this hypothesis, there has been increasing interest in

incorporating trichome-based resistance in plant breeding programs (Simmons et al., 2004, 2006; Glas et al.,

2012; Simmons and Gurr, 2006). Except for their well-recognized roles in entrapping or impeding small

insects, Peiffer et al. (2009) supposed that GTs also function as an early detection system against herbivores.

Following insect movement, GTs release plant defense signals that quickly activate the expression of defense

genes’ in response to insect movement. Other studies have reported that herbivore feeding induces local and

systemic changes in gene expression. For example, van de Wilhelmina et al. (2000) identified squash genes

(SLW1 and SLW3) that were systemically induced after silverleaf whitefly feeding. Yoshida et al. (2009)

suggested GL3 is a key transcription factor of wound-induced trichome formation acting downstream of JA

signaling in Arabidopsis.

Spinescence

Spinescence has been proposed as a defense against herbivory. It has been the working assumption of

scientists who study ecological interactions between plants and animals (Cooper and Owen-Smith, 1986;

Belovsky et al., 1991; Burns, 2014; Wilcox, 2017). A study of paleontological fossils offered evidence that

spinescent structures may have appeared in the late Silurian (∼ 400 million years ago), which is before

the advent of large herbivores (Chaloner, 1970). This evidence assumed that the evolution of prickles may

be a response to the pressure of herbivorous insects. Kariyat et al. (2017) later reported that prickles may

play a role in deterring insects by restricting caterpillar movement. In the process of co-evolution with

herbivores (especially mammals), plants have evolved an impressive diversity of defenses. Many types

of spinescence have been produced (or modified) from the shoots, leaves, fruits, pedicels and even roots.

They specifically react against vertebrates rather than against invertebrates or insects, especially thorn and

spines (?). After secondary compounds, spinescence has been proposed as the most successful defense

strategy against herbivory (Belovsky et al., 1991). Those spinescent structures frequently team up with

predatory pathogenic bacteria, fungi, toxic chemicals, volatiles, and coloration, to enhance their attack or

defense ability (Lev-Yadun, 2003; Halpern et al., 2007; Hartmann, 2008; Halpern et al., 2011). A number

of diseases caused by injecting pathogenic bacteria and fungi into predators have been reported. Halpern

et al. (2007) identified 58 bacterial isolates from the thorns of Phoenix dactylifera and Crataegus aronia,

belonging to 22 different bacterial species, 13 of them known to be pathogenic for animals or humans, such

as Bacillus anthracis, Clostridium perfringens and Clostridium tetani. Bacillus anthracis is the causative
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agent of anthrax, primarily a disease in mammals, including humans (Jensen et al., 2003). Clostridium

perfringens is a ubiquitous pathogen that produces many toxins and hydrolytic enzymes (Petit et al., 1999).

Clostridium tetani is the causative agent of tetanus, and injuries caused by spinescences have been reported

to cause tetanus in humans in several countries (Hodes and B., 1990; Pascual et al., 2003; Ergonul et al.,

2003; Campbell et al., 2009; Tadele, 2017). Mycetoma caused by Eumycetoma (fungi) or Actinomycetoma

(filamentous bacteria), and sporotrichosis diseases caused by Sporothrix schenckii (fungi) are also referred

to as “plant thorn synovitis” and “rose-thorn or rose-gardeners’ disease” , respectively. The most common

route of infection is the introduction of spores to the subcutaneous cellular tissue through a skin wound

(Fahal, 2004; Barros et al., 2011; Vásquez-del-Mercado et al., 2012; Mahajan, 2014; Kieselova et al., 2017).

Dermatophytes that cause subcutaneousmycoses are unable to penetrate the skin andmust be introduced into

the subcutaneous tissue by a puncture wound (Willey et al., 2008). Thus, the physical defense provided by

thorns, spines and prickles against herbivoresmight be only the tip of the iceberg in amuchmore complicated

story (Halpern et al., 2007, 2011). These sharp plant structures inject bacteria into herbivores by wounding

them, enabling the microorganisms to pass the animal’s first line of defense (the skin), and in so doing,

may cause severe infections that are much more dangerous and painful than the mechanical wounding itself

(Lev-Yadun, 2016).

Understanding the evolutionary process of these defense strategies and their potential joint relationship

will help biological scientists to better understand the genetic collaboration network hidden behind them.

1.2 The genetic andmolecular bases of trichome and prickle initiation

and development

Concerning the genetic basis of trichome and prickle development, the main results were obtained on

trichomes in model plants such as Arabidopsis. In this section, I will review what is known about molecular

networks that control trichome initiation and development.

1.2.1 Trichomes have been one of the models for studying plant differentiation and

cell factories

As mentioned in the first section, trichomes are mainly divided into two general categories, glandular

(GT) and non-glandular (NGT), depending on their morphology and secretion ability. Among all the append-

ages structures, the studies of NGT are the most systematic and comprehensive, and are mainly done on the

unicellular branched trichome of A. thaliana, which has been considered as a model system to study the

structure initiation and development at the single-cell level (Hülskamp, 2004). Over 30 genes involved in

the initiation and development of NGTs have been identified and have been used to generate a developmental

framework, whereas GTs have been chiefly studied to reveal the biochemical pathways of the compounds

they secrete and to advance our understanding of secondary metabolism in plants (Champagne and Boutry,
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2013; Lange and Turner, 2013; Huchelmann et al., 2017; Hao et al., 2019; Pradhan and Maradi, 2020).

1.2.1.1 Non-glandular trichomes

Depending on the cell’s position, each cell perceives different signaling, responds to signaling pathways,

and adopts a specific cell fate (Larkin et al., 2003; Schiefelbein, 2003). The subsequent differentiation of the

cell often involves complex changes, e.g., cells may exit the mitotic cycle or enter an endoreplication cycle.

Cellular architecture is modified to meet the functional requirements of the respective cell type, and cell

metabolism changes according to its function (Hülskamp, 2004). A branched unicellular NGT originates

from one cell of the protodermal epideris (Hülskamp et al., 1994; Werker, 2000; Hülskamp, 2004). This

cell only initiates endoreduplication cycles but no mitotic cell division, which causes the cell to increase

in size and to branch to form the mature structure (Melaragno et al., 1993; Hülskamp et al., 1994; Folkers

et al., 1997). In A. thaliana, leaf trichome nuclei have elevated ploidy levels, reaching 4C, 8C, 16C, 32C,

and 64C (1C is the nuclear DNA content of the unreplicated haploid genome) (Melaragno et al., 1993). The

molecular networkwas deciphered usingmutants impaired in NGT initiation and development (Marks, 1997;

Hülskamp et al., 1998). The genetic of NGT in A. thaliana is well understood as this time and numerous

genes have been identified. Hülskamp (2004) assumed that only very few genes are trichome-specific and

that most genes are related to many cell types and are involved in more general cellular processes.

Gene network controlling unicellular NGT initiation and differentiation

A development framework for unicellular NGT formation has been extensively studied (Folkers et al.,

1997; Hülskamp, 2004; Balkunde et al., 2010; Yang and Ye, 2013; Pattanaik et al., 2014). We will recall

here the main transcription factors that control unicellular NGT initiation in A. thaliana, and show how they

work together (Figure 5). They generally belong to MYB, bHLH, WD40, WRKY and C2H2 zinc finger

proteins families.

A trimeric activator complex (MBW) consisting of MYB (GLABRA1, GL1)-bHLH (GLABROUS3/

ENHANCER OF GL3, GL3/EGL3)-WDR (TRANSPARENT TESTA GL1, TTG1) plays a key role in

trichome initiation (Schiefelbein, 2003; Zhang, 2003; Hülskamp, 2004; Kirik et al., 2005; Pattanaik et al.,

2014). Mutations in both theGL1 and TTG1 genes both lead to the complete absence of trichomes (Koornneeff,

1981; Koornneeff et al., 1982), while the gl3 mutant still exhibits fewer trichomes compared to wild-type

plants, probably caused by a close homologue, EGL3, that may be able to rescue the failed function of GL3.

In fact, gl3 egl3 double mutants are devoid of trichomes (Zhang, 2003). Downstream, the MBW trimeric

complex finely regulates the temporal and spatial expression of GLABRA2 (GL2) and TRANSPARENT

TESTA GL2 (TTG2), determining the fate and pattern of trichome precursor cells (Rerie et al., 1994; Ishida

et al., 2007, 2008). The MBW complex is a hub that integrates different signals that controls trichome

initiation. TheR3MYB subfamily genes, TRY, CPC, TCL1, ECT1, ETC2 andETC3, act as negative regulators

by competing with GL1 for binding to GL3 (Schnittger et al., 1999; Scheres, 2002; Esch et al., 2003; Wang
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Figure 5: Summary the genes network of non-glandular trichome initiation.

et al., 2008; Wester et al., 2009; Wang and Chen, 2014). try mutants produce trichome clusters whereas

all other inhibitors are involved in trichome density regulation (Pesch and Hülskamp, 2011). The active

TTG1 complex, in interaction with TTG2, regulates the expression of the R3 MYB inhibitors that move to

the neighboring cells where they repress trichome initiation (Pesch and Hülskamp, 2004; Hülskamp, 2004).

Upstream, plant growth regulators, such as gibberellin (GA), iasmonic acid (JA) and cytokinin (CK) regulate

trichome initiation by regulating transcription upstream of the MBW complex. Different C2H2 zinc finger

proteins such as GLABROUS INFLORESCENCE STEM (GIS), GIS2, GIS3, ZINC FINGER PROTEIN5,

6 and 8 (Gan et al., 2006, 2007) include GA and cytokinin signaling pathways (Zhou et al., 2013). The

novel transcription factor TRP interacts with ZFP5 and negatively regulates trichome initiation through the

gibberellic acid pathway (Kim et al., 2018). In addition, Ultraviolet-B-mediated induction can increase

trichome density and GL3 expression in the zfp8 and gis mutants (Yan et al., 2012). JASMONATE ZIM

DOMAIN1 (JAZ1) protein, an important repressor in the JA signalling pathway is degraded by JA. This

degradation releases MBW activity and promotes trichome initiation (Qi et al., 2011).

Cell-cycle control during unicellular NGT development

The cell cycle is the indispensable process required for organ or tissue development. It consists of

four phases: Gap 1 (G1), DNA synthesis (S) and Gap 2 (G2) and Mitosis (M) (Figure 6). Endoreplication

(or endoreduplication), is a common cell cycle variant in which cells increase their genomic DNA content

without dividing (Edgar and Orr-Weaver, 2001). A survey of Arabidopsis revealed polyploidy in unicellular

NGT (uNGT) (Melaragno et al., 1993), and the number of endoreplication cycles determines the ploidy level
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and trichome growth; mutants with reduced endoreplication cycles result in smaller trichomes with fewer

branches, while increased endoreplication cycles have larger trichomes with more branches (Hülskamp et al.,

1994). As in other eukaryotic organisms, cyclin-dependent kinases (CDKs) control progression of the plant

cell cycles (Morgan, 1997). Different CDK-cyclin complexes phosphorylate a plethora of substrates at the

key ‘G1 to S’ and ‘G2 to M’ transitions, triggering the onset of DNA replication and mitosis, respectively.

All eukaryotic organisms studied to date possess at least one CDK with the PSTAIRE hallmark in their

cyclin-binding domain. In plants as well, a bona fide PSTAIRE CDK, designated CDKA plays a pivotal

role at both the ‘G1 to S’ and ‘G2 to M’ transitions. Plants possess a unique class of CDKs, the so-called

B-type CDKs (CDKB) that have not been described for any other organism (Joubès et al., 2000; Boudolf

et al., 2001). Arabidopsis harbors two CDKB1 (CDKB1;1 and CDKB1;2) and two CDKB2 (CDKB2;1

and CDKB2;2) family members. CDKB1 transcripts are accumulatef during the S, G2 and M phases,

whereas CDKB2 expression is specific to the G2 and M phases (Segers et al., 1996; Porceddu et al., 2001;

Breyne et al., 2002; Corellou et al., 2005). CDK activity is regulated by phosphorylation and associated with

their binding activators and inhibitors (Inzé and Veylder, 2006). Cyclins, as the activators of CDKs, exist

extensively in plants and are classified into many distinct types, regulating the transition between different

phases of the cell cycle. B-type cyclins mainly control the transition of G2 to M (reviewed by Ishida et al.

(2008);Yang and Ye (2013)). Ectopic expression of B-Type Cyclin CYCB1;2 and D-Type Cyclin CYCD3:1

in the uNGT genotype induces normal cell divisions resulting in multicellular trichomes (Schnittger et al.,

2002a,b), and the latter also increase the DNA content in trichomes. Interestingly, CYCB1;2 is not expressed

during wild-type unicellular trichome development whereas it was detected in pGL2::CYCD3;1 and sim

mutant trichomes (multicellular type) (Schnittger et al., 2002b), suggesting that the expression of CYCB1;2

is inhibited by SIM. The SIAMESE (SIM) gene encodes a putative CDK inhibitor with a key function in the

switch from mitosis cycle to endoreplication cycles (Churchman et al., 2006). The CCS52A1 gene, which

encodes a CDH1/FZR-like protein, is a genetic modifier of the multicellular trichome phenotype of sim

mutants. Overexpression of CCS52A1 completely suppresses the sim mutant phenotype, while the ccs52A1

mutation enhances the multicellularity of sim mutant trichomes, supporting the hypothesis that CCS52A1

and SIM cooperate in repressing the accumulation of B-type cyclins to switch the trichome cell from mitotic

to endoreplication (no M phase) (Kasili et al., 2010).

Two of the cell fate genes described above, GL3 and TRY, also act as positive and negative regulators

of endoreplication cycles. Different gl3 mutant alleles showed an astonishingly contrasting function in

endoreplication, one that reduced DNA content (smaller NGTs with fewer branches) (Koornneeff et al.,

1982; Hülskamp et al., 1994) and another one that increased it (oddly shaped NGT with a striking nuclear

morphology) (Esch et al., 2003). The try mutants have NGTs with more branches and increased DNA

contents (64C). These pleiotropic effects raise the hypothesis that trichome cell-fate choice is functionally

linked to cell-cycle regulation (Hülskamp, 2004). Cell-cycle control is usually thought to act downstream

of the regulatory complex of trichome cell fate. Strikingly, a reduction of endoreplication leads to fewer

trichomes, whereas promoting endoreplication in glabrous patterning mutants could restore the initiation of

trichomes. Therefore, the endoreplication cycle plays a role in trichome cell fate (Bramsiepe et al., 2010).
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Figure 6: Regulation of the cell cycle during trichome development (Evert and Eichhorn, 2006). G1 phase
refers to cell size increases and cellular contents duplicated, S phase to DNA and chromosomes replication,
G2 refers to cell enlargement and organelles development and proteins synthesis in preparation for cell
division. M phase refers to mitosis followed by cytokinesis (cell separation). Reproduced by NN ZHOU.

SIM is most probably a direct target for GL3 for controlling endoreplication during the maintenance of

trichome cell fate (Morohashi and Grotewold, 2009).

In addition, gibberellin (GA) signaling may also control endoreplication cycles by regulation of GL1

or its homolog (Ishida et al., 2008). In spindly (spy) mutants, which exhibit a constitutive GA response,

trichomes have eight branches and a high level of endoreplication (64C). In kaktus (kak), rastafari (rfi),

polychome (poc) and hirsute (hir) mutants, trichomes all show a very similar phenotype and ploidy level,

like in the spy mutant (reviewed by Hülskamp (2004)). The KAK gene encodes a member of the HECT

ubiquitin-protein ligase family, suggesting that ubiquitin-regulated protein degradation negatively controls

the progression of endoreplication and thereby reduces trichome branching (Downes et al., 2003; El Refy

et al., 2004).

A regulatory link exists between the progression of endoreplication cycles (or cell proliferation), progra-

med cell death, and resistance to pathogens. The cpr5 mutant was reported to be constitutively resistant to

virulent pathogens. (Bowling et al., 1997). In cpr5 mutant trichomes, endoreplication cycles stop after

two rounds instead of four, and the trichomes then die, the nucleus disintegrates, and the cell collapses.

It is therefore suggested that CPR5 is also involved in programmed cell death control and endoreplication

cycles (Kirik et al., 2001). A similar relationship between cell death and endoreplication cycles is found in

transgenic plants that misexpress CDK inhibitor (ICK1/KRP1). ICK1/KRP1 expression in uNGTs reduces

endoreplications and induces cell death (Schnittger et al., 2003).
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1.2.1.2 Glandular trichomes

A key and unique characteristic of GTs is their ability to synthesize and secrete large compounds, mainly

terpenoids, but also phenylpropanoids, flavonoids, methylketones and acyl sugars (Huchelmann et al., 2017).

Since no GTs are found in A. thaliana, research on GT has been carried out on various other plant species,

but most researchers are committed to elucidating the biosynthetic pathway of the compounds, and the

molecular genetic aspects of GTs development are still unclear (see Huchelmann et al. (2017) and Chalvin

et al. (2020)). In Nicotiana tabacum, GL1 homologue overexpression did not alter the glandular trichome

phenotype of the tobacco plants (Payne et al., 1999), perhaps indicating a different pathway between GT and

NGT. Several studies have recently reported genes and protein complexes that regulate glandular trichome

development in A. annua (Yan et al., 2017, 2018; Shi et al., 2018; Hao et al., 2019) and tomato (Yang et al.,

2011; Nadakuduti et al., 2012; Ewas et al., 2016; Vendemiatti et al., 2017; Gao et al., 2017; Chang et al.,

2018; Xu et al., 2018). The majority of regulators belong to the R2R3-MYB and HD-ZIP IV transcription

factor subfamilies, and may play essential roles in glandular trichome initiation (Chalvin et al., 2020). In A.

annua, for example, two members of the R2R3-MYB factors have been characterized as positive regulators

of glandular trichome initiation: AaMYB1 (Matías-Hernández et al., 2017) and AaMIXTA1 (Shi et al., 2018).

A homeodomain-leucine zipper (HD-ZIP) IV transcription factor, AaHD8, interactes with a MIXTA-like

protein AaMIXTA1 forming a regulatory complex. This complex activates AaHD1 to induce glandular

trichome initiation (Yan et al., 2018).

1.2.2 Genetic and molecular studies in prickles

A few studies on the quantitative trait locus (QTL) of prickles have been reported, mainly in the genus

Rosa and a few inRubus (Table 1). In the diploid rose population (with a predominance of theRosamultiflora

genotype), the presence of prickles on the stem was assumed to be controlled by a single dominant gene

(Debener, 1999; Shupert et al., 2007) located on linkage group 3 (LG3) (Linde et al., 2006), whereas two

QTLs were detected on LG3 with the scoring of prickle density (Crespel et al., 2002) using an F1 population

from a cross with a hybrid of Rosa wichurana as the paternal parent. Using two F1 progenies (including

a genetic background of Rosa wichurana), we also identified a large QTL (or two neighboring QTLs) on

LG3 (between positions 31 Mb and 46.5 Mb, corresponding to the end of chromosome 3) which was further

supported by a GWAS analysis on a diversity panel showing a significant association in positions 31 and

32.4 Mb (Hibrand-Saint Oyant et al., 2018). In a tetraploid F1 roses population (referred to as K5), three

QTLs were identified in relation to the number of prickles on the stem: two located on LG2 and one on

LG3 (Koning-Boucoiran et al., 2009). Using the same K5 population with the same phenotype data but a

new SNP dense genetic map, different QTLs were detected on LG3, 4 and 6 and on LG2 (one year) (Bourke

et al., 2018a). In Rubus idaeus, two QTLs were detected on LG4 and 6 (Molina-Bravo et al., 2014).

In roses, the gene network of prickle initiation and development are still largely unknown. No gene has

been identified to control prickle formation. Only a WRKY transcription factor (RcTTG2), homologous

to Arabidopsis TTG2, was found to be located close to the major QTL of the prickle trait in rose and
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Table 1: Overview of previous genetic studies for prickle in rose and Rubus

Population
Species Parents Ploidy Size Counting method Genetic determinism Reference
Rose 93\1-117 ×

93\1-119
2n 60 \ Prickles are controlled

by a single dominant
gene

Debener (1999)

Rose OW 2n 563 \ Prickles dominant to no
prickle

Shupert et al.
(2007)

Rose HW 2n 91 5th-7th nodes A major and a minor
QTL located on
the same linkage
group of the single
seasonal-blooming
gene

Crespel et al.
(2002)

Rose OW, YW 2n 151,
174

Over 4 internodes in
the middle of the floral
stem

a major QTL on LG3 Hibrand-Saint
Oyant et al.
(2018)

Rose K5 4n 184 4th-6th nodes on the
main stem

A2-2@Rh91-135,
A2-3@P11M55-237,
A3-1@H3-16

(Koning-Boucoiran
et al., 2012)

Rose K5 4n 151 4th-6th nodes on the
main stem

LG3@K7826_576,
LG4@K5629_995,
LG6

Bourke et al.
(2018a)

Rubus
idaeus

NC497 2n \ Scored visually on a
scale of 0-5, where 0
is no prickle and 5
is densely covered in
prickles

LG4@Rub116a,
LG6@Rub103a

Molina-Bravo
et al. (2014)

the gene transcripts are differentially accumulated between roses with prickles and roses without prickles

(Hibrand-Saint Oyant et al., 2018).

1.3 Rose as a model to study the genetic mechanism of prickles

1.3.1 Rose: a complex genus

Wild roses belong to the genus Rosa in the family Rosaceae, a medium-sized family of flowering plants,

including 2825∼ 4900 species in 95∼ 125 genera, although these numbers should be seen as estimates since

much taxonomic work remains to be done (Yu, 1974; Gu et al., 2003; Royal Botanic Gardens and Kew and

Missouri Botanic Garden, 2013; Christenhusz and Byng, 2016). The name Rosaceae is derived from the

genus type Rosa. Up to 90 species of the Rosaceae family are of economic importance and include the

following fruit trees (e.g. apple, pear, plum, cherry, peach, apricot, hawthorn, strawberry, raspberryand

blackberry) and ornamental plants (e.g., rose) (Longhi et al., 2014).

Several fossils of wild roses have been found in the North America (Becker, 1963), Europe (Edelman,
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Figure 7: Morphology and anatomy of wild rose. (a) Terms used for the position of the flower (cross-section
of a flower), (b) bud, (c) leaves and fruit, (d) fruit and pedicel prickles. Produced by NN ZHOU and XW
DOU.

1975) and China (Su et al., 2016). Using time calibration based on fossil records, Fougère-Danezan et al.

(2015) estimated that an early lineage of wild roses evolved during the Eocene-Oligocene 24 MY ago (54

Mya - 30 Mya). Today, the genus Rosa is composed of ∼ 200 species (or variants), widely distributed from

cold temperate to subtropical regions (Rehder, 1940). A total of 95 species (65 endemic) are distributed in

China (Gu and Robertson, 2003).

1.3.1.1 Rose characteristics and classification

As a member of the genus Rosa, roses have their own characteristics that distinguish them from other

genera of the family Rosaceae. In particular, carpels are usually numerous (Figure 7 a), rarely few; the

fruit is an achene, rarely drupaceous (Figure 7 b); sepals are persistent (Figure 7 c); leaves are alternate,

odd-pinnate (Figure 7 d), and very rarely simple (except in R. persica) (Yu, 1974; Gu and Robertson, 2003).

Based on the phenotypic variations, several attempts to classify wild roses have been reported, and

20



Chapter 1 Introduction and literature review

taxonomy needs to be updated. In Europe (led by France), Rehder (1940) divided the genus into four

subgenera (Eurosa, 69 species; Platyrhodon, one species;Hulthemia, one species;Hesperhodos, one species),

and the subgenus Eurosa contains ten sections (Banksianae, Bracteatae, Caninae, Carolinae, Cinnamomae,

Gallicanae, Indicae, Pimpinellifoliae, Laevigatae, and Synstylae). Later on, Wissemann (2003) further

divided the section Caninae into six subsections (Caninae, Vestitae, Rubrifoliae, Rubiginae, Trachyphyllae,

Tomentellae) based on the works of Christ (1873) and Crépin (1889).

In China, Yu (1974) divided the genus into two subgenera (Hulthemia (Dumort.) Focke, one species;

Rosa, other species) based on the leaves (simple or compound) and stipule (with or without); the subgenera

Rosawas divided into nine sections (PimpinellifoliaeDC., Rosa, CinnamomeaeDC., ChinensesDC. ex Ser.,

Synstylae, BanksianaeDC., LaevigataeDC., Braeteatae Lindl.,MierophyllaeCrép); the section Pimpinellif-

oliae was divided into two Series (Spinosissimae Yu et Ku, Sericeae (Crép) Yu et Ku) based on the number

of petals (five or four); and the section Cinnamomeae was divided into three series (Beggerianae Yu et Ku,

Cinnamomeae Yu et Ku, Webbianae Yu et Ku) based on the sepal, carpel and leaflet size; and the section

Synstylaewas divided into two series (MultifloraeYu et Ku, BrunoaianaeYu et Ku) based on stipule (dentate,

irregularly serrate or smooth at margin).

On the basis of previous researches, Masure (2013) reported on 500 roses (including species, varieties

and modern hybrid) and classified them into four subgenera Hulthemia (Dumort.) Focke, Platyrhodon

(Hurst) Rehd., Hesperhodos Cockerell, Rosa (Yu et Ku); subgenera Rosa includes nearly 150 species and is

subdivided into ten sections, including Banksianae Lindl, Bracteatae Thory, CaninaeDC., CarolinaeCrép.,

Chinenses DC. (syn. Indicae Thory), Rosa (syn. Cinnamomeae DC). Gallicanae DC, Laevigatae Thory,

PimpinellifoliaeDC., SynstylaeDC. For a more in-depth description and a recent review on Rosa taxonomy,

please refer to Tomljenovic and Pejić (2018); Debray (2020).

Based on molecular and genomic data, it was confirmed that R. subg. Rosa is not monophyletic and that

other subgenera do not branch at the base of the phylogeny, suggesting that the subgenera of Platyrhodon,

Hulthemia andHesperhodos can be considered as the sectional level (Fougère-Danezan et al., 2015; Debray,

2020). In the subgenera Rosa, the section Carolinae can be merged with the section Rosa, and the section

Chinenses can be merged with the section Synstylae (Fougère-Danezan et al., 2015; Debray, 2020). R.

praelucens is mostly derived from a cross between section Rosa lineages and no relationship between R.

praelucens andR. roxburghiiwas detected. This supported the hypothesis thatR. praelucens is a full member

of the section Rosa, making it possible for R. roxburghii to be the representative species of the subgenera

Platyrhodon (Debray, 2020).

1.3.1.2 Prickle and other trait diversity in rose

Rose growth habits
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Figure 8: Rose growth habits: (a) Erect type of roses in a variety of crown widths and heights; (b) Semi-erect rose; (c) Trailing rose; (d) Climbing rose. Reproduced by NN
ZHOU and XW DOU.
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Rose species as woody perennial shrubs can be climbing, erect or diffuse (Yu, 1974; Gu and Robertson,

2003) (Figure 8). They are distinguished from trees by their multiple stems without clear trunks and their

shorter height, usually less than 10 m tall (Allaby, 1999). Roses grow in all different shapes and sizes, from

tiny miniatures only 30 cm high to climbers that can sprawl over a house. A few climbing species can exceed

10 m if they find a support nearby. For example, Rosa banksiae ‘Albo Plena’ (Lady Banksia Rose) is a native

species in China. Unlike most roses, it is prickless or almost prickless. This species can climb to the top of

the tree and occupy the entire canopy.

Stems and stem prickles

Rose stems are terete and usually green or red during the first years of growth, and then turn gray/brown

when older. Many young stems secrete a thin waxy film that disappears on older stems. Stems are mostly

prickly, glabrous or puberulous, and the prickles and bark in some cases peel off from old stems, which can

be frequently observed in the platyrhodon subgenus, represented by R. roxburghii and R. minutifolia. Here,

we selected some representative genotypes in four subgenera and a few of the sections under subgenus Rosa

to show the prickle diversity on stems (Figure 9). Their distribution can be paired at leaf bases (Figure 9 p,

q, s and t), unpaired but regularly distributed (Figure 9 g, h and i), randomly scattered (Figure 9 e, l and o

), or densely bristly (Figure 9 b, c, d, j and m). Their shapes present a large diversity; they can be straight,

slightly curved or curved, thin-soft or thick-hard, acicular (soft or hard), gradually tapering off to an elliptic

base or abruptly flaring into a broad base, glabrous or hairy. These prickle shapes are also varied in size

and color. Young prickle colors are normally green, sometimes slight red, bright red, ruby red, and some

may even be white (Figure 9 i and j), and the colors usually change to rust, gray, or white when the prickles

mature and dry. Some species can be reliably recognized by their prickles’ characteristics.

Leaves

The alternating leaves are generally odd pinnate (Figure 9 p, s and t), 5∼ 15cm long (except for extreme

cases), and the stipules are adnate or inserted at the petiole (Figure 7 c), except for the leaves of R. persica

that are simple, sessile and lack stipules (Figure 9 r). They are composed of 5 ∼ 9 leaflets on average with

a range that varies from 3 ∼ 17 between species, which is considered as an important character for rose

classification. A variation of serrated patterns can often be observed on the leaflet and stipule margins.

Leaflets can be glabrous, or bear pubescence on both surfaces or only on the abaxial surface, and some

have glandular emergences. Glandular emergences can often be observed on both sides of the rachis, while

prickles are normally only present underneath.

Inflorescences and flowers
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Figure 9: Continued on the next page
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Figure 9: Prickle diversity on rose stem. Subg. Rosa: section Cinnamomeae. (a) R. rugosa scabrosa, (b)
‘Marie Bugnet’ ( Hybrid Rugosa.), (c) R. acicularis, (d) R. Rubella, (e) R. laxa retzius, (f) R. fraxinifolia;
section Pimpinellifoliae (g) R. ecae, (h) R. omeiensis, (i) Rosa primula (Les racines du vent), (g) R.
pimpinellifolia King of the Scots, (k) R. pimpinellifolia aïcha, (l) R. foetida. section Bracteate Theory
(m) R. sherardi, (n) R. horrida, (o) R. scabriuscula, (p) R. bracteate; Subg. Hesperhodos: (q) R. roxburghii
hirtula. Subg. Hulthemia (r) R. hultemia persica. Subg. Platyrhodon : (s) R. stellata, (t)R. minutifolia.
Credits: NN ZHOU, except r (Yuriy Danilevsky), s (Dave’s Garden), t (Stan Shebs).

25



1.3 Rose as a model to study the genetic mechanism of prickles

a b c

d e f

m

g h i

k l

n

j

o

Figure 10: Diversity of Inflorescences and flowers in roses. (a) R. pimpinellifolia ‘King of the Scots’; (b)
R. roxburghii hirtula; (c) R.praelucens Byhouwer (d) R. pimpinellifolia lutea; (e) R. laxaMicrocarpa; (f) R.
sherardi; (g) R. iwara; (h) R. × ‘Grootendorst Supreme’; (i) R. rugosa scabrosa; (j) R. macrantha; (k) R.
chinensis ‘Old blush’; (l) R. chinensis f. viridiflora’; (m) R. longicuspis; (n) R. banksiae ‘alba plena‘; (o) R.
filipes ‘kiftsgate’. Credits: NN ZHOU, except o (floraekspres).
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Flowers are generally solitary (Figure 10 a-f) or in a corymb (commonly consisting of flowers 2 ∼ 3

flowers (Figure 10 g-i and j), a few contain more than 10, e.g., R. banksiae ‘Alba Piena’ (Figure 10 j)), and

a few in form a compound corymb (Figure 10 k-n) or panicle inflorescence (Figure 10 o). Wild rose flowers

usually have five petals and five sepals, are imbricate, except for R. mairei, R. morrisonensis, R. omeiensis,

R. sericea, R. sikangensis and R. taronensis, that only has four (Yu, 1974). Some wild variants have multiple

petals, such as R. praeluceus and R. banksiae. Petal colors may be white, pink, red, yellow, and rarely green

(eg. R. chinensis f.viridiflora, Figure 10 l), and the frequently observed gradient varies from white to pink

or white to yellow, depending on the species. Sepals are arranged into two outer, two inner, and one middle

sepal, with a themargin that is entirely or variously pinnately lobed, and they sepals usually bear high-density

hairs and glandular trichomes or emergences. The understructure that carries petals and sepals is called the

hypanthium (Figure 7 a and b), and may be globose, urceolate, or cupular and constricted at the neck. A

disc is inserted at mouth of the hypanthium, and there are numerous stamens in several whorls inserted in

the disc (Figure 7 a). The numerous carpels (there are rarely few) are free (i.e., not fused together in a single

ovary), inserted at the margin or base of the hypanthium. Styles are terminal or lateral, exserted or not, free

or connate in the upper part (Figure 7 a) (Yu, 1974; Gu and Robertson, 2003).

1.3.2 The history of rose breeding and application in human society

Roses have always been greatly appreciated at different periods of history and in many different civiliza-

tions. Rose domestication is usually related to the most prosperous periods of history. As of this time, more

than 33,000 roses have been created (Young et al., 2007) and roses have been the most economic important

ornamental plant in the world.

1.3.2.1 Ancient rose domestication and human selection

Little archaeological evidence of rose cultivation has been found. Rose seeds along with other fruits

and nuts, including Corylus, Pyrus, Crataegus, and Rubus were found at a formally inhabited site of the

early Neolithic (5000 B.P.) near Swifterbant in the Netherlands (Zeist and Palfenier-Vegter, 1981). Humans

may have intentionally gathered rose fruit for food. Possible rose seeds have also been described at sites in

Switzerland (3500 B.P) and in Britain (Renfrew, 1973; Widrlechner, 1981).

The origin and domestication of rose are always topics of debate for scientists (Hurst, 1941;Widrlechner,

1981; Tucker, 2004; Wang, 2005; Chwalkowski, 2016; Bombarely, 2018; Debray, 2020). Although it is

reported that the oldest known historical evidence of rose dates back to the Minoan civilization (Hurst, 1941;

Widrlechner, 1981; Tucker, 2004; Ministry of Culture and Sports, 2007; Debray, 2020), this assumption is

extremely weak if we carefully analyze the evidence, the restoration of “The Bluebird Fresco” (∼ 1450 B.C.)

by Émile Gilliéron (Figure 11). In the photo, the flower, described as a rose, has six petals, whereas roses

have usually five and rarely four petals. Even if there is a debate concerning the number of petals since Tucker

(2004) mentioned that the 6th petal was added during the restoration, we can still deny that hypothesis on

the basis of the characteristics of the bud or fruit (not clear from the photo), the plant posture and the leaves.
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Figure 11: The blue bird fresco (detail from a modern reproduction by Émile Gilliéron fils) from the House
of Frescoes at Knossos, Late Bronze Age (∼ 1450 B.C.); Paintings on wet lime plaster, H. 60cm, Heraklion
Museum of Crete, Greece.

As we described in the previous section, rose flower buds have a hypanthium structure that holds the petals

and sepals during the flowering period and from which the fruit develops at the end (Figure 7), but it is clear

that the flower in the photo does not have a hypanthium like roses. The number of leaflets of the compound

rose leaf is rarely three and the leaves are usually alternating (Figure 9), not opposite (Figure 11). Taking

a step back, five-petals is not a specific characteristic for the genus Rosa, since many other plants have five

petals, including roses. Hurst (1941) suggested that the painted flower is a natural R. × richardii hybrid

between R. phoenicia Boiss and R. gallica L., whereas these species are much too different compared to the

painted flowers. Tucker (2004) argues that it is more similar to R. pulverulenta (syn. R. glutinosa) based on

the 3-leaflets leaves on flowering shoots and the distribution of its current cultivation, but this species also

has five-leaflets and major differences with the flower in the photo. In conclusion, the nature of this painted

flower is still a source of debate.

In China, roses were bred for ornamental purposes, with a history that goes back more than 1500 years.

According to the records, there are three names for roses in Chinese, ‘Qiángwēi’, ‘Méigui’, and ‘Yuèjì’, and

these names are still used today. ‘Qiángwēi’ generally refers to wild roses; except for R. rugosa, rugosa

varieties and hybrids, which referred to as ‘Méigui’. ‘Yuèjì’ refers to the roses that can bloom every month.

Many poems have highly praised the roses because of their scent, different colors, beautiful posture, and

blooming in four seasons. A rose with bright-red petals and a light fragrance was described in the poem

‘Yǒng Qiángwēi shı̄’ by Xiè Tiǎo (464 - 499). He described the gradient of colors from purple-red to bright

red from bud and bloom, with new flowers that bloom at the same time as the old ones (may fruit) on the
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Figure 12: Continued on the next page
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Figure 12: Chinese old garden rose paintings throughout history. (a) ‘Bái qiángwéi tú’, Chinese Silk
Painting; Painter: Mǎ Yuǎn ( 1160-1225 BC), Song Dynasty; Texture: Silk; Size: 26.2cm x 25.8cm;
Collecting of the Palace Museum in Bejing, China. (b) Qiángwēi shān niǎo zhóu, Chinese Handscrolls;
Painter: huá yán (1682-1756 BC), Qing Dynasty, Kangxi mark; Size: 127.1cm x 55.5cm; Texture: paper;
Collection of the Palace Museum in Bejing, China. (c) Yùfú túzhóu and Shuāngzhì Túzhóu (d) Chinese Silk
Painting; Painter: Lü Jì (1477-unknown), Ming Dynasty; Size: 153.4 cm x 98.3 cm (c); 128.4 cm x 84.9
cm (d); Texture: Silk; Collection of the Shanghai Museum. (e,f,g) Falangcai (‘foreign color’) vase, Chinese
porcelain, Qing Dynasty, Qian long enamel mark and period (1736-1795 BC); Collecting in the Shanghai
Museum. (h) Wucai shieryue huā huì wenbēi - Yuèjì, Chinese porcelain, Qing Dynasty Kangxi mark and
period (662-1722 BC); Size: 4.9 cm x 6.7 cm; Collection of the Shanghai Museum. Description: Twelve
flowers correspond to twelve months, and the Rose cup to November: ‘Unlike a thousand other species that
die out, this one alone blazes in red throughout the year.’
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same plant. The habit of continuous flowering in rose (wirh red petals and prickles) was clearly described in

the poem ‘Yuèjì huā’ by the poet Liú Huì (458-502). A number of poems about roses were written during the

Tang Dynasty (618 - 907) and Song Dynasty (960 - 1279) and were passed on to later generations. To capture

the fragrance, we know that people in the SongDynastymade sachets from roses and carried to cover up body

odors, based on the description in the poem ‘YùMéigui’, by the poet SòngQí (998 - 1061). In the poem ‘Yı̌ng

zhōu dào zhōng xiàn cì Méigui huā’, Xiàng An-shí (1129 - 1208) described an fragrance that belonged to a

prickly rose that accompanied him passing the Yı̌ng-zhōu road on a snowy day in early spring. TheYı̌ngzhōu

road may be in the Yı̌ngzhōu county of the Song Dynasty since the Xiàng An-shi lived nearby, and Yı̌ngzhōu

is currently located in Zhongxiang county in Hubei province. The above poems were obtained by searching

for the keyword ‘Qiángwēi’, ‘Méigui’, or ‘Yuèjì’ in the ancient Chinese poems included in the online "Han

Dian" (http://sc.zdic.net/) and "Gu shi wen wang" (https://so.gushiwen.org/) sites. There are

still many records describing roses in ancient Chinese books. The ‘earliest records’ and ‘impact of human

participation on the rose domestication’ questions need to be studied with the participation of historians,

linguists and botanists. The Ming (1368 – 1644) and Qing (1636-1912) dynasties was a heyday for porcelain

development, and many flowers were painted on brightly colored porcelain, including roses (Figure 12). The

paintings will help botanists, as a source for classification and tracing of the origin of rose traits based on

ancient records. These records are useful information to speculate about the genetic background of ancient

Chinese roses which are one of the most important ancestors of modern roses. From the late Qing Dynasty

(1840) to Chairman Mao Zedong proclaiming the foundation of the People’s Republic of China (1949),

invasion and civil war never ceased in China, and rose breeding entered a period of stagnation. It was in this

period that rose breeding in Europe was entering in the golden age (Liorzou et al., 2016). In Europe, roses

were once integrated into the religious culture, and the prosperity and decline of rose planting are always

associated with different religious cultures in different periods (Joret, 1892; Touw, 1982; Debray, 2020). A

recent review of the history of rose culture in Europe was recently published by Debray (2020).

1.3.2.2 Modern rose selection

In the 18th century, the introduction of Chinese cultivars into Europe was a major landmark in rose

breeding history. It changed the history of ancient European roses that can only bloom once or occasionally

twice (Hurst, 1941; Joyaux, 2015). According to Joyaux (2015), R. chinensis may be the first Chinese rose

brought into Europe. The evidence is based on a specimen under the name “Chineeshe Eglantier Roosen”,

which was grown by the Dutch botanist Gronovius in 1733, and probably brought back to Europe through the

Dutch East India Company. This specimen looks like the R. chinensis var. spontanea (Rehd. Wils.) Yu Ku.

Another Chinese cultivar probably originating from a nursery in Guangdong (Canton), was introduced into

England in the late 18th century. This cultivar is called ‘Yuè yuè fěn’ in Chinese (which means ‘blooming

monthlywith pink petals’), renamedR. chinensis ‘Old Blush’ or ‘Parson’s Pink China’ in 1793 by the Colville

Nursery. Concurrently, a red cultivar, called ‘Yuè yuè hóng’, meaning ‘blooming monthly with red petals’ in

Chinese, was planted in Calcutta in 1789, and renamed Rosa chinensis var. semperflorens Koehne in Europe

(Joyaux, 2015).
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At the beginning of the 19th century, these Chinese roses were crossed with old European cultivated

roses, and led to the creation of thousands of hybrids (1st generation of hybrids like the Bourbon or Noisette

roses and 2nd generation like the recurrent blooming hybrid). In 1867, Jean-Baptiste André Guillot created

the first hybrid tea rose, named Rosa ‘La France’, by crossing Chinese tea-type roses with a hybrid of

unknown parentage, but ‘Madame Falcot’ is considered as a possible parent (Beales, 2002). The ‘La France’

ushered in a new era of modern roses. From that year on, several thousand of rose cultivars were created

and the industry flourished worldwide (Joyaux, 2015). Genetic analysis reveals that during this important

breeding period in Europe, the genetic background of cultivated roses has shifted from an old European

genetic background to a Chinese genetic background (Liorzou et al., 2016).

Rose breeding objectives depending on the markets

Currently, roses are major ornamental plants with an important economic value, a wide diversity and

diverse application forms, including cut roses, garden roses, roses for urban beautification, house roses in

small pots, roses for essential oil, rose teas and roses for culinary purposes. The breeding target of roses

is different depending on their application form, and breeding requires different environments for varietal

testing.

Cut roses The global market for cut flowers was estimated at 29.2 billion USD in the year 2020, and is

projected to reach a revised size of 41.1 billion USD by 2027, growing at a CAGR of 5% over the analysis

period 2020-2027. The rose industry is projected to reach 14.3 billion USD by the end of the analysis

period (5.8% growth annually) (ReportLinker, 2020). The cut rose industry involves multiple processes,

including rose breeding, variety field testing, propagation, promotion, efficient cultivation, post-harvest

processing, transportation logistics, wholesale and retail marketing, etc. For breeding, the main companies

are historically located in European countries, especially in France and the Netherlands, and still occupy

an important share of the market today. From planting to sales, the Netherlands currently has the most

complete production system and the world’s largest action market. However, due to costly labor and energy

requirements in Europe, European companies are gradually shifting their production bases to areas with

low-cost labor and favorable climates (temperature and photoperiod) such as Africa (Kenya), South America

(Ecuador, Colombia) and Asia (China, India) (Leus et al., 2018). Production centers are far away from the

trading centers and the products earmarked for the consumer require more transfer and packaging, which

greatly promotes the development of cold chain transportation. The tolerance of cut roses to storage and

transportation is one of the most important factors to assess the market recognition of cut rose cultivars.

Tolerance of rose to transportation helps the product maintain freshness and avoid premature withering

during the marketing process. Therefore, vase life has become an important trait to assess the quality

of cultivars and for breeding, and many factors affect vase life, such as genetic factors, pre-harvest and

post-harvest conditions, storage and transportation, etc. (Mortensen and Fjeld, 1998;Marissen, 1999; Dahal,

2013). The number of prickles will undoubtedly largely affect transportation capacity and vase life since
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removing prickles is an essential step before packaging. This process will inevitably cause branch injuries,

with an impact on vase life. Moreover, the injured branches will decrease the ornamental value. Therefore,

even if themarket requires roseswith exceptional ornamental characteristics (form, color, scent), and producers

require roses with disease resistance, good yield and long vase life, the presence of too many prickles is not

acceptable for cut roses (personal communicationArnaudDelbard, “Société nouvelle des Pépinières Georges

Delbard”).

Changes in the production area also promote the development of local breeding. For instance, the

rapid development of cut flower production in Yunnan province (China) in recent years is remarkable.

Benefiting from favorable climatic conditions and cheap labor, China’s Yunnan is now one of the largest

production areas for cut roses, and has developed the world’s second largest flower auction market (Kunming

International Flower Auction Exchange Center) (Xu and Wu, 2019). With the improvement of the laws

protecting Plant Variety Rights (PVR), more and more companies and applied research institutes have begun

to focus on cultivating new varieties of independent intellectual property rights and strive to carry out market

promotion. The promotion and planting of new cultivars in Yunnan are mainly through the “company +

production base + farmers” model. Using the radiation effect of the business management model, it was

possible to convince growers in the region to adjust the product structure, thereby improving agricultural

production efficiency and ensuring increased income for rose farmers. The new cultivars rapidly reach

the market and provide substantial economic benefits for enterprises and farmers. The opinion of growers

concerning the planting new cultivars has changed from passive acceptance to active demand. The gradual

regulation of the payment of PVR fees has attracted international breeders to contribute new outstanding

roses to China’s market. The production of cut roses in Yunnan has developed from traditional, classic

cultivars (single-head and cup-shaped flower buds) to more diverse ones (single or multiple-head buds, rich

colors and diversity shaped flower buds). For rose breeders, the market is full of challenges and opportunities

and constitutes new area for rose breeding in China (personal communication with Prof. Qi-Gang Wang

(FRI, Yunnan Academy of Agricultural Sciences, Kunming, China)).

Garden roses Garden roses have the most abundant application form, but their market is much smaller than

that of cut roses. The garden rose market still has much room in which to expand. Floribundas and flowers

(color, type, perfume) are important selection traits. However, disease resistance and the absence of prickles

are definitely the most important traits that require improvement. Black spot disease (BSD), caused by the

hemibiotrophic fungus, D. rosae, is responsible for the presence of round dark spots on leaves, followed

by chlorosis and premature defoliation of the host, thus reducing the aesthetics of the host (Blechert and

Debener, 2005; Gachomo et al., 2006). Prickles and other spinescent structures make the plants difficult to

plant in gardens or urban greening areas because of their safety risks. Indeed, prickles may cause diseases

by infection resulting from stabbing injuries, (Vincent and Szabo, 1988; Fahal, 2004; Halpern et al., 2007;

Cruz et al., 2007; Barros et al., 2011; Vásquez-del-Mercado et al., 2012; Kieselova et al., 2017; Frothingham,

2019). Thus, for cultivars with the same ornamental value, those with no or only very few prickles may be

more popular for using in public urban greening areas. Garden roses with no prickles will provide growers

33



1.3 Rose as a model to study the genetic mechanism of prickles

with more choices.

Indoor roses Roses used as houseplants are mainly miniature type of roses. Miniature roses have become

more and more popular in recent years especially in cities, since people have progressively less room (or

even room at all) to cultivate plants. Thus, the first breeding target of indoor roses is to change them

into smaller than usual species by selecting miniature plants or plants that respond to regularly used plant

growth retardants (such as paclobutrazol and chlorocholine chloride). The producers require rose varieties

with many flowering branches and a good level of resistance to diseases. Due to insufficient sunlight and

ventilation in the room, and because the root system is trapped in the flowerpot, the maintenance of indoor

roses is much more difficult than that of garden roses. Spider mites and powdery mildew are always the

biggest problems for growers. Benefiting from the high productivity of automated modern greenhouses, a

new form of miniature rose was created for consumption in recent years. As for cut flowers, these miniature

roses are produced quickly, 4 ∼ 6 cuttings that are assembled into a plastic flowerpot and sold after buds

growth. These products are usually eliminated by the consumer after their first blooming.

Oils roses The cultivation of essential oil roses has a long history with applications that include cultural

rituals, aromatherapy, perfumery, body care, ayurveda, flavoring and spiritual traditions (Apothecary, 2020).

Rose oil is extracted from petals. It is an expensive, labor-intensive procedure that takes more than 4000

kg (around 1,600,000 rose blossoms) of rose petals to produce 1kg of 100% pure distilled rose essential

oil (Lubbe and Verpoorte, 2011). Consequently, rose oil is one of the most expensive essential oils, and

a kilo of good quality oil will fetch around 5000-7000 USD. Only a few species (mainly R.damascena

and R. centifolia) are used to produce rose oil and rose absolute. R. rugosa, R. alba, R. bourbonia and R.

moschata are also used to produce rose otto and rose absolute, but in limited quantities. The aroma of R.

damascena is very rich, deep, sweet-floral, slightly spicy and honey-like. These roses are mainly grown in

Bulgaria’s Rose Valley and in Turkey. On the other hand, R. centifolia has an aroma that is rich, sweet, deeply

floral, spicy, slightly honey, intensely rosy and somewhat woody, and is mainly grown in Morocco. The

chemical compounds present in rose oils are different (Apothecary, 2020). The key fragrance compounds

that contribute to the distinctive scent of rose oil, are beta-damascenone, beta-damascone, beta-ionone, and

rose oxide, and the presence of a proportion of beta-damascenone is an important criterion for the quality

of rose oil (Leffingwell, 1999; Khan and Abourashed, 2011). Even though these compounds make up less

than 1% of rose oil, they contribute to more than 90% of the odor due to their low odor detection thresholds

(Leffingwell, 1999). What should be mentioned here is that beta-damascenone does not naturally exists in

roses. It is formed during distillation from precursors present in the petals. Therefore, the breeding targets

for the rose oil industry are the scent components and the increase in plant productivity (number of petals,

rose blossoms per plant, compound content, ability to emit scents etc.).
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1.3.3 The high quality of rose genome sequences supports the study of roses at the

omics level

1.3.3.1 Roses have a complex genome with different levels of ploidy and high heterozygosity

The genus Rosa (Rosaceae) has a base chromosome number of 7 (x = 7) (Täckholm, 1920; Hurst, 1925;

Roberts et al., 2009; Jian et al., 2010b). The ploidy level of wild rose species ranges from diploid (2n =2x

= 14) to decaploid (2n = 10x = 70) with almost all levels of even and odd ploidy with around half of the

species being diploid. The highest level of ploidy (decaploid) were only found in R. praelucens , a critically

endangered alpine rose with an extremely narrow geographic distribution in Northwestern Yunnan, China

(Jian et al., 2010a, 2018). Its high level of ploidy may be due to inter-specific hybridization, but not directly

to auto polyploidization (Jian et al., 2010a). Several intersectional hybridizations reveal the need to consider

the genus Rosa as a hybrid system (Debray, 2020). For instance, the hybrid origin of R. spinosissima (syn.

R. pimpinellifolia) is derived from a cross between R. sect. Rosa and R. sect. Pimpinellifoliae. Some

individuals of the Caninae section are derived from R. sect. Synstylae and R. sect. Rosa. R. marginata is an

intersectional hybrid between R. sect. Rosa and R.sect. Caninae (Debray, 2020).

1.3.3.2 Genetic resources: development of genetic maps from F1 crosses

Molecular markers are useful tools for assessing genetic diversity and for mapping studies. In roses,

several geneticmaps have been built withmicrosatellites or simple sequence repeats (SSR), amplified fragment

length polymorphism (AFLP)markers, restriction fragment length polymorphism (RFLP)markers, sequence

specific amplified region (SCAR) markers and nucleotide binding site (NBS) markers, mostly in diploid

crosses (Debener and Mattiesch, 1999; Crespel et al., 2002; Yan et al., 2005; Dugo et al., 2005; Linde

et al., 2006; Hibrand-Saint Oyant et al., 2008; Terefe and Debener, 2011). Genetic maps from four different

populations (Yan et al., 2005; Linde et al., 2006; Shupert et al., 2007; Remay et al., 2009) were firstly

integrated into a consensus map by Spiller et al. (2011), based on four diploid populations and more than

1000 initial markers. This integrated consensus map comprises 597markers that are distributed over a length

of 530 cM on seven linkage groups (LGs). Then later, high-density SNP (single-nucleotide polymorphism)

maps were developed and used for anchoring and ordering the rose genome sequences (Hibrand-Saint Oyant

et al., 2018). These genetic maps were used for genetic mapping and QTL studies in rose stem prickles (Zhou

et al., 2020) and black spot disease (Lopez-Arias et al., 2020).

Next-generation sequencing facilitated the creation of transcriptomes and large numbers of SNPmarkers.

Using the 68K WagRhSNP array, ultra-dense genetic maps have been produced in diploid (Hibrand-Saint

Oyant et al., 2018) and tetraploid rose (Vukosavljev et al., 2016; Bourke et al., 2017) populations. In diploid

rose, two genetic maps, female and male, were built using 151 hybrids obtained from a cross between R.

chinensis ‘Old Blush’ and a hybrid of R. wichurana (OW). There were 5635 and 2331 SNPs for seven LGs of

the female and male genetic maps, respectively, which contained 556 and 427 unique loci with a map density

of 0.87 and 0.9 markers/cM, respectively (Hibrand-Saint Oyant et al., 2018). In tetraploids, SNP array data
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currently provides the clearest information on the allele dose of markers. Using the dosage of SNP markers,

tetraploid SNP genotypes can be used for linkage analysis with dedicated polyploid mapping software such

as TetraploidSNPMap (Hackett et al., 2017) or polyMapR (Bourke et al., 2018c,b). One genetic map was

developed using 151 hybrids of the K5 rose population (a cross between the cut roses cultivars ‘P540’ and

‘P867’) (Bourke et al., 2018b), including 25,695 SNP markers (not unique positions). Another map was

built using 177 hybrids obtained from a cross between garden rose cultivars ‘Red New Dawn’ and ‘Morden

Centennial’ (Hackett et al., 2017). In addition, 96 diverse tetraploid garden rose genotypes were using for the

genome-wide association study (GWAS) of certain traits in roses, such as of the anthocyanin and carotenoid

contents of rose petals (Schulz et al., 2016), the number of rose petals and prickle density (Hibrand-Saint

Oyant et al., 2018), root formation in vivo and in vitro (Nguyen et al., 2020a) and callus formation (Nguyen

et al., 2020b).

1.3.3.3 Rose has now entered the area of genomics studies

The first rose genome was released fromwild and heterozygous Rosa multiflora (Nakamura et al., 2018).

However, the quality of the genome was low, with 83,189 scaffolds. Soon afterward, two high-quality

genome sequences were published both by sequencing a doubled haploid line from R. chinensis ‘Old Blush’

(Hibrand-Saint Oyant et al., 2018; Raymond et al., 2018) .

Hibrand-Saint Oyant et al. (2018) used PacBio long-read sequencing, and obtained a total genome length

of 512 Mb haploids. These sequences were corrected with Illumine short-read sequencing technologies

and anchoring to a high-density genetic female and male maps, which was developed from a diploid OW

population, as mentioned in the previous sub-section. Finally, the doubled haploid rose genome assembly

was anchored to seven pseudo-chromosomes containing 512 Mb with N50 of 3.4 Mb and 551 contigs (the

N50 is defined as the sequence length of the shortest contig at 50% of the total genome length). A total of

95% of the sequence is contained in only 196 contigs. The length of 512 Mb represents 90.1 ∼ 96.1% of

the estimated haploid genome size of rose. The genome includes 39,669 protein-coding genes and 4,812

non-coding genes. Evidence of transcription was found for 87.8% of a total 44,481 predicted genes. The

predicted non-coding genes included 99microRNA, 170 small nuclear RNA, 186 ribosomal RNA, 384 small

nuclear RNA, 751 transfer RNA, and 3,222 unclassified genes (annotated as non-coding RNA)with evidence

of transcription but no consistent coding sequence.

Raymond et al. (2018) also used PacBio long-read sequencing and assembled a total length of 515 Mb

with 82 contigs for an N50 of 24 Mb. The seven pseudo chromosomes were built by integrating 86.4%

of the 25,695 markers (not all unique positions) of a tetraploid K5 high-density SNP genetic map (Bourke

et al., 2017), which was developed from a cross between the cut roses cultivars (Koning-Boucoiran et al.,

2012). From an evolutionary point of view, rose is a very interesting model species as it includes species at

several ploidy levels as well as having a rich phenotype and a broad genetic diversity. However, owing to

the highly heterozygous character, the assembly of a rose genome is always a challenging task, which has

greatly limited the progress of related research in rose. The completion of these two high-quality genomes
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is a starting point that has propelled rose into the area of genomic (Smulders et al., 2019). Both are publicly

available at the GDR (Jung et al., 2019) website.

1.4 Rationale/issues and thesis objectives

Economic issues

In the agricultural production process, prickles are an undesirable trait, not only in rose but in most crops

in general. Roses are among the most popular and economically important horticultural crops, especially

cut rose cultivars. Cut roses with prickles are more difficult to handle, harvest and transport, and also

constitute safety hazards for consumers and workers. In addition, the tolerance of rose cultivars to storage

and transportation is one of the most important factors to assess the market recognition of cut rose cultivars

since they are important factors that affect vase life. Prickles on the stem will undoubtedly considerably

affect transportation capacity and vase life since removing them is an essential step before packaging. This

process will inevitably cause branch injuries, with an impact on vase life and a decrease in ornamental value.

Thus, cultivars with no or very few prickles are in high demand from producers and breeders. Further studies

are necessary to develop markers for breeding selection and to identify the molecular bases. In the General

Discussion, I will elaborate on how the availability of markers can be used in rose breeding in general and

to obtain dedicated roses without prickles.

Scientific issues

Prickles are sharp appendages of plants that was thought to be a defense against insect and mammalian

herbivores. Many studies have been carried out concerning on their ecological, evolutionary and biogeographic

implications, but the histological origin, genetic and molecular mechanisms underlying prickle initiation

and development remain largely unknown. A wide diversity of prickles is present in roses. With the

recent development of genetic and genomic resources, rose can be a good model to study the molecular

and genetic bases of prickle initiation and development. Our objectives are to decipher the genetic and

molecular control of prickle initiation by studying the morphology, genetic determinism, and gene network

(at the transcriptomic level) of stem prickles in roses. Through this project, we expect to build a genetic

model system for studying prickles and to open new research areas in the plant sciences. We have developed

histological, genetic and genomic approaches.

In Chapter 2, we investigated prickle types in wild species and ‘Old Blush’ ×R. × wichurana F1 progeny,

and carried out a comprehensive anatomical study for two representative types of prickles. We hope to

answer the following questions: What types of prickles exist in roses? Where do the prickles originate

from? How do they develop? Which stage leads to prickle absence in glabrous plants?
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In Chapter 3, we performed QTL analysis and anchored the SNP markers on the reference genome to

determine the credible interval of prickle loci that control the presence and density of prickle on the ‘Old

Blush’ genome. We studied the interaction of the QTL alleles to further discover the genetic background of

prickles in the OW population. We used a candidate-gene approach to characterize rose gene homologues

known in Arabidopsis, involved in trichome initiation to test the relationship between prickles and trichomes.

Through those studies, we expect to address the following issues: Which loci control the absence/presence

of prickles on the rose stem? Which loci impact the prickle density? Do rose prickles share a similar gene

network with trichomes?

In Chapter 4, we used a transcriptomic approach to decipher the gene network that controls prickle

initiation and later development. We compare the transcriptome of glabrous and prickle shoots at different

stages (from initiation and late developmental stages). We explore potential good candidate-genes that

are involved in cell fate, cell proliferation, cell differentiation, cell division and cell cycle that are highly

associatedwith prickle initiation. We highlight the best potential regulators of prickle formation by combining

the transcriptomic results with genetic studies (Chapter 3). Through these studies, we hope to answer the

following questions: Which genes are involved in prickle initiation? and which genes are involved in prickle

development?
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The materials, methods, experimental design, and results will be displayed in details in each article of

this thesis. The results part is divided in 3 Chapters corresponding to 3 articles. The second one has been

accepted for publication in Theoritical and Applied Genetics.
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It gave inmajority non-glandular prickles (NGP) and some glandular prickles (GP). ForGP, the glands

come from the epidermis (or protoderm).

2.1 Introduction

Prickles are common in plants (Bagella et al., 2019), with mainly knowledge of their function in defense

against insects and large mammalian herbivores. The morphogenetic and molecular mechanisms underlying

prickle formation and development remain still largely unknown. Although a few reports have described

prickle’s anatomical structure (Asano et al., 2008; Kellogg et al., 2011; Li et al., 2012; Angyalossy et al.,

2016), their conclusions based on microscopic analysis of prickles in late developmental stages are regularly

controversial and confused. The most common assumption is that prickles are originated from multiple

cellular division of the epidermis (Peitersen, 1921; Esau, 1960; Canli and Skirvin, 2003). Prickles were

considered as modified glandular trichomes, with lignification leading to a hard-sharp appendage (Coyner

et al., 2005; Kellogg et al., 2011; Ma et al., 2016b; Khadgi and Weber, 2020a), because glandular and

non-glandular prickles were considered as different developmental stages of the same prickle. Based on

this hypothesis, in rose F1 genotypes with no-, low- and high-density of prickles, (Hibrand-Saint Oyant
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et al., 2018) identified and studied the expression of candidate-genes presenting homology with genes from

Regulatory Genes Networks, described for the initiation and development of trichomes in Arabidopsis.

In addition, in Rubus, using a transcriptomic approach, a genetic mechanisms of prickles initiation was

proposed with similarity with the one described for trichome initiation in Arabidopsis (Zhou et al., 2020).

However, the origin tissues of prickle are not clearly identified in these studies, no anatomical evidence

was provided to support the ‘epidermis’ origin. In a rose F1 progeny, glandular and non-glandular prickles

were demonstrated to have their own developmental processes (Zhou et al., 2020). Therefore, in the absence

of strong evidence concerning the relationship between prickles and trichomes, cautions should be taken

regarding the conclusions.

Another hypothesis was that the rose prickles are spines, defined as modified leaves and lack internal

vascular tissues (Asano et al., 2008). The authors proposed that the abscission cell layer of prickle resembles

the abscission layer of deciduous leaves, with mature prickles easy to peel off with fingers. This conclusion

was not supported by strong evidences. Li et al. (2012) suggested that cells in the prickle abscission region

were different from cells of the petiole abscission zone by studying the anatomical structure and chemical

composition of tender prickles.

Later, Angyalossy et al. (2016) defined prickles as “sharp outgrowths from the bark, without vascular

tissue”, based on longitudinal sections through the developed prickle of Polyscias mollis, Piptadenia gonoa-

cantha and Oplopanax horridus. However, the “bark” term is unprecise as it refers to all tissues exterior

to the vascular cambium, including a number of tissue types like periderm (composed of the cork, cork

cambium, and the phelloderm), cortex (comprised of ground tissues), phloem and epidermis (Dickison,

2000; Evert and Eichhorn, 2006). In vascular plants, the apical meristem give rise to the protoderm, the

ground meristem, and the procambium. The protoderm differentiates into the epidermis. Beneath it, the

ground meristem and procambium differentiates into the ground tissue (the pith and cortex) and the vascular

tissues (the xylem, phloem, and vascular cambium), respectively (Evert and Eichhorn, 2006). Therefore, the

origin of prickles requires further investigations.

Wild roses belong to the genus Rosa in the family Rosaceae. The genus Rosa is composed of ∼ 200

species, widely distributed in cold temperate to subtropical regions (Rehder, 1940). Roses were always

popular at different periods and in many civilizations. Today, rose is one of the most economically important

ornamental plant in the world. Most roses have prickles on their stems. For cut roses production, removing

prickle is an essential step before packaging. This process causes wounding on the stem, largely affect

transportation tolerance and vase life, and also reduces the ornamental value. Rose cultivars with a lot of

prickles are not accepted for cut roses even if they have other outstanding ornamental traits.

Roses will become a good model plant to study the molecular and genetic bases of prickle initiation

and development. Prickles in rose are very diverse with different types, shapes, sizes, density, and colors.

Several high-density SNP-based genetic maps from rose F1 populations (Vukosavljev et al., 2016; Bourke

et al., 2017; Lopez-Arias et al., 2020; Zhou et al., 2020) and GWAS panels (Schulz et al., 2016; Nguyen et

al., 2017; Hibrand-Saint Oyant et al., 2018; unpublished data from GDO team) have been used for genetic
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studies. The recent production of two high-quality genome sequences (Hibrand-Saint Oyant et al., 2018;

Raymond et al., 2018) allows genomics approaches.

For precise genetic and genomic studies, histological approaches are necessary to clearly differentiate

the rose shoot structures and identify the tissue of origin of the rose prickle. In this study, our main

objectives were to characterize histologically in detail the initiation and development of prickles in roses and

to investigate their diversity in terms of form. The major questions are: (i) which types of prickles do exist

in roses? (ii) which tissue do prickles originate from? and (iii) how do the prickles develop? A thorough

understanding of prickle morphology and anatomical histology in roses will help us to well organize the

experiment design for subsequent genetic and genomic studies, and will help to complete the limited data

on prickles in roses.

2.2 Materials and methods

2.2.1 Plant materials

A diploid OW population, obtained from a cross between the female Rosa chinensis ‘Old Blush’ (OB)

and the male Rosa × wichurana (RW), was grown in a field and managed by the Horticulture Experimental

Unit (INRAE, Angers, France). We have selected three once-flowering individuals, OW9068, OW9137 and

OW9106, to have vegetative branches. Those genotypes were cut and managed in IRHS greenhouses in

November 2017.

Rosa resources were planted in Loubert Rose Gardens (Rosiers sur Loire, France), INRAE (Angers,

France) and Flower Research Institute (FRI, Kunming, China). We have selected twelve representative

genotypes to perform details analyses of the type and developmental stages of prickles: Rosa ecae, Rosa

laxa, Rosa sherardi, Rosa moschata, Rosa omeiensis, Rosa damascena, Rosa rugosa scabrosa, Rosa iwara,

‘Grootendorst Supreme’, Rosa rubella, ‘General Kleber’ and ‘Parkzauber’. For 110 genotypes (Table 2), we

scored the type of prickles on the stems.

2.2.2 Macroscopy and microscopy

The experiments were performed at Plateform IMAC (SFR QuaSav, Angers). Fresh rose stems were

photographed with STEREO-MICROSCOPE M205FA-LEICA.

2.2.3 Histology study

Sample dissection was done under microscope to remove the leaves. Various steps were performed:

• Fixation at 4°C: The samples were immersed in the 4% (v/v) glutaraldehyde solution mixed with 0.2

mol/L phosphate buffer at pH 7.2. The volume of the solution must be equal to 50 times the volume of the
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sample. The sample were put under vacuum to remove air. The vacuum was broken every 4 minutes. After

2h of vacuum, the glutaraldehyde solution (4% v/v) is changed, the tubes are left 12h at 4 °C, then rinsed

twice with phosphate buffer pH 7.2 and stored at 4 °C.

• Dehydration at room temperature: Samples are rinsed 3 times with distilled water, immersed in

50% (v/v) alcohol 10min, 70% (v/v) alcohol 10min, 90% (v/v) alcohol 10min, and 100% alcohol 15min,

successively.

• Pre-infiltration: Sample are transferred in pre-infiltration solution (100° alcohol

/Technovit® 7100 resin ((Heraeus Kulzer, Wehrhrim, Germany) (v/v)) at 4°C and under vacuum for 2h, then

samples are stored for 12h at 4 °C.

• Infiltration: Samples are transferred to infiltration solution (dissolve 1 sachet of hardener I in 100 mL

(Heraeus Kulzer, Wehrhrim, Germany) of Technovit® 7100 resin) under vacuum for 20 minutes minimum

at 4 °C, and the tubes are placed for 12h at 4 °C.

• Inclusion: The samples are included using an inclusion solution (1ml of hardener II® (Heraeus Kulzer,

Wehrhrim, Germany) and 15 ml of infiltration solution) and stored at 37 °C. The sections can be made after

a week at 37 °C.

The samples were cut in 3 µm sections for anatomical observation using LEICA RM2165 Rotary

Microtome. After stainingwith toluidine blue 1% (O’Brien et al., 1964), they are observed and photographed

using an ergonomic system microscope LEICA DM1000.

2.2.4 Score the type of prickle on the 110 roses

Taxonomical nomenclature followed the one described in Yu (1974), Gu and Robertson (2003) and

Masure (2013). Each species or hybrids was associated with the types of prickles that were previously

determinate on the OW population and on the twelve representative roses

To characterize the prickle types on each species were collected based on photographs which are mainly

taken from Loubert Rose Gardens (Rosiers sur Loire, France) and Flower Research Institute (FRI, Kunming,

China). For some species, the conclusion is based on professional knowledge and experience, and the

photographs online. All the roses and their origin are presented in Table 2.

2.3 Results

For the anatomical study, first, we performed a detailed analysis on individuals of the OW progeny

(photography and histological studies) as the OW progeny will be studied in details in subsequent genetic

and transcriptomic studies. Then, based on these observations, we performed a survey of prickle diversity

on the genus Rosa, with a more precise observation on twelve representative genotypes.
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2.3.1 Prickles types determination and anatomical study in OW population

2.3.1.1 Prickle types determination

In the OW population, both parents present prickles on their stems. A very clear separation of prickle

traits (type and density) on stemwas observed in the F1 hybrids. Based on the macroscopic analysis, we have

previously determined three types of prickle on the stems of the OW progeny: (i) the “prickless” referred

to the glabrous stems, (ii) the “non-glandular prickle (NGP)” without glands and (iii) the “glandular prickle

(GP)” referred to the prickles with glandular head (Figure 13).

We selected three representative genotypes of each type of prickle for the morphological and anatomical

studies (Figure 13):

* OW9068 is a genotype with glabrous stems.

* OW9137 has the most common type of prickles which are non-glandular, unbranched, slightly curved,

gradually tapering to a broad base.

* OW9106 bears a mixture of prickles, NGPs and GPs.

Based on the macroscopic analysis, we determined three types of prickle on stem for the OW progeny:

(i) the “prickless” referred to the glabrous stems, (ii) the “non-glandular prickle (NGP)” with non-glandular

head and (iii) the “glandular prickle (GP)” referred to the prickles with glandular head (Figure 13).

2.3.1.2 Prickles development and anatomy

In OW9137 and OW9106, we observed that the prickle development is associated with the stem develop-

ment, it means that the prickle appears early during stem development and prickles develop in parallel with

the stem. No new prickle appears on developed stems. According to the specific morphogenetic events

during its development, we defined different stages for the development of NGP and GP on rose stem (Figure

13).

Stage I is defined as the prickle initiation and the first outgrowth. The initiation appeares at the very early

stage of internode development (probably simultaneously with the first internode, under the petiole (Figure

14 a, white dotted frame)). It appears later than the formation of leaf primordium. The first visible sign of

NGP is the cell proliferation of multiple cells of the ground meristem (Figure 14 d). The rapid division of

those cells causes an oblique rise to triangular (100∼ 500 µm)which can be observed bymacroscope (Figure

13a - stage PI and Figure 14 a). This process was absent in stems of the prickless genotype OW9068: no

appendage was observed (Figure 13 c and Figure 15). For GP, 2∼4 cells located at the first (and/or second)

layers of the ground meristem firstly appeared to differentiate and to divide (Figure 14 m), they gave rise

to a cylindrical bump (around 50 µm) (Figure 14 n; Figure 13 b - stage PI). Subsequently, on the upper

part of this new structure, multiple cells of the protoderm (meristem that will give the epidermis) gave
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the precursor gland cells (Figure 14 o). This is the main feature to distinguish GP from NGP: in GP, the

protoderm (or maybe the epidermis) differentiated into glands cells; this differentiation is absent in NGP,

where the protoderm (or the epidermis) only continues to grow by cell division.

In Stage II, both NGP and GP are continuously growing, coloring, and shaping, but the tissue remains

juvenile (Figure 13 a and 13 b - Stage PII). The difference between GP and NGP is that the precursor gland

cells of GP formed a new structure - glandular head, whereas no such a structure was observed at the tip of

the NGP. We have divided stage II into three sub-stages:

For NGP, epidermal cells maintain normal cell proliferation during prickle development (Figure 14

g-l). In stage IIa, prickles are keeping upwards growth (Figure 13 a) due to covered under the unopened

leaves. The anatomical analysis showed that the upper part cells (from up to down) of the prickle begin to

enlarge (elongation process), suggesting that the cells gradually lose their division ability, while the cells of

the lower part may still keep division (small cells) (Figure 14 g). These cell proliferation ability and cell

division orientation may determine the prickle shape and the width of the prickle base in the later stages. In

stage IIb, as the leaves open, the prickles are growing outwards (Figure 13 a - stage PIIb). The cells (from

up to down) of the lower part of the prickle are gradually stopping proliferation and begin to enlarge and

elongate, except the bottom part (Figure 14 h and i). In stage IIc, after the leaves are fully opened, prickles

are almost fully developed and forming downward curved hooks (only for curved prickle) (Figure 13 a -

stage PIIc). All the cells continue to elongate, and most cells gradually stop dividing at the end (Figure 14

j-l).

For GPs, their developmental stages are similar to NGP, except the development of the gland head (Figure

13 b; Figure 14 p and 14 r). The gland is usually surrounding by one cell layer and occasionally two cell

layers (Figure 13), and occasionally two cell layers (Figure 14 o and 14 p). The division stopped at early

stage IIa and then the cells only enlarge, thereby forming a glandular head (Figure 14 p and 14 r). The size

of the glandular head only slightly increases during GP development (100 ∼ 150 µm).

The NGP and GP enter stage III when they begin to lignify and gradually hardening (Figure 13 a and

13 b - stage PIII). An abscission layer structure-like is also formed (Figure 14 q). Thus, they are easy to be

separate from the stem. At the end of this stage, the cells are full-enlarged and lignified. Stage IV is defined

as death stage, the NGP and GP completely hardened, lose moisture and cell might die gradually (Figure 13

a - Stage PIV).
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Figure 14: Anatomy of Non-glandular and glandular prickles in OW9106. (a-c) Macroscopic pictures of the different stages of GP and NGP on the stem; Anatomy of stage I
(d-f), IIa (g), IIb (h and i) and IIc (j-l) of non-glandular prickle; Anatomy of stage I (m-o), IIa (p) and III (q and r) of glandular prickle. White dotted frame: the first internode;
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below the apical meristems, respectively. GM: ground meristem; Pro: protoderm; E: epidermis.
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2.3.2 Discover different types of prickles in rose resources

To identify and describe the different types of prickles present in the Rosa genus, we conducted a

statistical survey of prickle types in 110 wild rose species, varieties or ancient hybrids (Table 2, Figure

16). Twelve representative individuals (highlighted in pink in Table 2), which represent different sections of

Rosa classification, were selected for morphological studies. According to the macroscopic observations,

we classified the prickles into two general categories: glandular prickles (GP) and non-glandular prickles

(NGP), as we previously did for OW individuals. The majority of roses present NGPs (98 out of 110), and all

theseNGPs are unbranched (Figure 16). Few unbranchedNGPs are coveringwith hairs (“hairy”) whereas the

majority (91 out of 98) do not have (“naked”). Among the 98 wild roses with NGPs, 17 present unbranched

GPs simultaneously which includes 13 naked and 4 hairy. 5 genotypes present only GPs which are branched

and naked. 7 roses are glabrous but can sometimes be described with rare NGP (as we mentioned above

in NGP categories). Now, I will describe the developmental process of different types of prickles through

examples in rose resources.

2.3.2.1 Unbranched NGPs

For all the 98 wild roses that present NGPs, all these NGPs are unbranched.

Naked

No other appendage grows on the surface of the unbranched NGPs. They are the most common type

which were observed in 91 roses out of 110. In the five representative genotypes (R. ecae, R. sherardii, R.

moschata synstylae, and R. omeiensis, Figure 17, 18 and 19), the mature prickles have a large diversity in

shapes, colors, sizes, and densities. We found that the early stage of development of the prickles in those

species (except the bristles prickle, Figure 19 i-n) are similar to the one previous described for NGP (Figure

13 a - stage I and IIa). The primordial cells give rise to an oblique triangular structure (100 ∼ 500 µm)

that keeps upwards growth. Then a large difference in shapes appears at the later stages. The size of the

triangular structure in stage I is one of the important factors that decides the size of mature prickle. Prickle

density is determined by the number of prickle initiation at early stage of shoot development and normally

no prickle initiates at later stages (stage IIb and later). But there are slightly differences for prickle initiation

in different genotypes. In R. ecae (Figure 17 a-e), R. laxa (Figure 17 f-i) and R. omeiensis (large winglike

prickle, Figure 19 a-h), prickle initiation only happened at shoot tip; therefore, all the prickles are at the same

stage on the same location of the stem. Their developmental stages are quite similar to the one previously

described for the prickle of OW9137 (previous section). While in R. sherardi and R. moschata, prickle

initiation happened not only at the shoot tip, but also appears on stages PIIa or PIIb in different parts of stem

(Figure 18 b and 18 i). Prickle initiation can take place during a longer period, and the prickles that initiate

later are relatively smaller at maturity (Figure 18 a-f, 18 h-k). Thus, location of initiation is other important

factors that impact the density and the size of prickles present on the mature stem.
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Figure 16: Different types of prickles in rose resources. The number of roses is presented in the brackets. The ‘4’ in red means that 4 genotypes were sometimes prickless or
sometimes have a few NGPs (R. banksiae var.normalis , R. banksiae ‘alba plena’, R. banksiae ‘lutea’, R. pimpinellifolia ‘lutea’). OW individuals (showed in blue) didn’t count in
the number.
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Hairy

Some unbranched NGPs are covered with hairs (non-glandular trichomes). Among the 110 genotypes,

only seven have this type of prickles (Figure 16). These are R. minutifolia Engelm, R. cymosa, R. bracteata,

R. rugosa scabrosa (Figure 20 a-g) and three hybrids of R. rugosa (R. iwara (Figure 20 h-q), ‘Grootendorst

Supreme’ (Figure 20 r-v), ‘Marie bugnet’). In R. rugosa scabrosa, hairs are present on the stem and on the

prickles. On stem, a great density of hairs is present from shoot tip to developed part of the stem. The hair

initiation is earlier than prickle’s one, and they only appear on stems and not on the stage I of prickles (Figure

20 a). Later, during the prickle development, the lower part of the prickle present hairs, and the upper part

is naked during all the stages. In R. iwara, the hairs appeared latter and at relatively lower density. Prickles

and stems during stage I to IIb have no hair (Figure 20 h, 20 i and 20m) and clearly hairs appear at stages

IIc (Figure 20 k and l).

2.3.2.2 Unbranched GPs

22 of 110 roses present GPs. 17 have unbranched with 13 “naked” and 4 “hairy” GPs. Five roses have

branched and “naked” GPs (Figure 16).

Naked

No other appendage grows outside of the unbranched GPs surface. The developmental process and

the origin of these prickles have been described in the previous section. We found that these prickles are

generally not present alone in roses but always appear with NGPs (Table 2), as in the following species or

varieties: R. iwara (Figure 20 n and 20 o), R. stellate, R. caninae ‘freya’, R. horrida, R. rubella (Figure

21 a-f), R. damascena (Figure 21 g-j), R. gallica officinalis, R. prattii, R. willmottiae, R. tsinglingensis, R.

marmorata, R. pimpinellifolia ‘king of the scots’, R. pimpinellifolia ‘aïcha’ and R. anemoniflora.

Hairy

Unbranched GPs are covering with hairs (or trichomes). Very rare species (4) have this type of prickles.

They are R. bracteata, R. rugosa ‘scabrosa’, ‘Marie Bugnet’ and ‘Grootendorst Supreme’ (two hybrids of R.

rugosa) (Figure 20 t and 20 u).

2.3.2.3 Branched GPs

Branched GPs were only found only in five roses, R. centifolia ‘chou’, R. centifolia ‘muscosa’, R.

× damascena ‘Quatre Saisons Blanc Mousseux’, and two hybrids ‘Général Kléber’ (Figure 22 a-f) and
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Figure 22: Branched and naked glandular prickles development in (a-f) ‘General Kleber’ and (g-l)
‘Parkzauber’.

‘Parkzauber’ (Figure 22 g-l). The prickles are naked, no hairy typewas found in this sub-category. Interestingly

these roses are belonging to a particular type of roses, the moss roses (see discussion).

The development of branched GPs is more complicated than unbranched ones at stage I. Thus, we

divided three sub-stages for the stage I. In stage Ia, multiple divisions give rise to a near round protuberance

(Figure 22 a). Appearing branch bumps is a sign of entering the stage Ib (Figure 22 a). In stage Ic, the bumps

continue to grow and to differentiate into glands and stalk (Figure 22b). The following stages are similar to

the unbranched GPs (Figure 22 c-f).

2.3.2.4 Others

Other cases that are not easy to be classified in the previous categories: One or several small GP(s) can

develop on a large NGP (Figure 22 l); A prickle has a similar size of non-glandular and glandular branches
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(Figure 20 s).

All types of prickle formation will go through the process of initiation, development, and senescence.

Most of prickle do not fall off from stem, but few does (Figure 18 g).

2.4 Discussion

2.4.1 New insight in the type of prickles and their origin

The major objectives of this project were to understand prickle morphology, anatomy, and define the

developmental stages to serve as the foundation for genetic and molecular studies.

We have found several types of prickles in roses, they can be glandular or non-glandular, branched

or unbranched, naked or covering with hairs. We suggested to classify them into two general categories:

glandular prickles (GPs) and non-glandular prickles (NGPs), depending on their morphology that presence

and absence of glandular structures, respectively. TheGPswhich are observed in roses, have a glandular head

or several glands positioned along the prickle that accompanies them throughout their lifetime, in contrast,

NGP have no glandular structures at all. This conclusion is different from previous studies in raspberry and

roses: prickles were extensions or modifications of glandular trichomes since the cell mass of glandular fall

off the stalk when they reached a certain height in Rubus and Rosa habrid (Kellogg et al., 2011), and in other

species (Ma et al., 2016b).

We also provide anatomical evidence for the very early stages. We revealed that the NGPs and GP

are initiated from the ground meristem below the protoderm. For GPs, the main structure (stalk) of prickle

originates from the groundmeristem, the glandular head originates the protoderm (or epidermis) cells. These

conclusions are also different from previous studies, which reported that prickles were origin from epidermal

cells (Peitersen, 1921; Esau, 1960; Coyner et al., 2005) and modified from glandular trichomes (Kellogg

et al., 2011; Khadgi and Weber, 2020a), or including from glandular trichomes (Pandey et al., 2018), or

from bark tissue (Angyalossy et al., 2016).

Furthermore, the glandular head was not produced at the prickle initiation but during the prickle’s

development (Figure 14m-r), whichmay suggest that GPsmight bemodified fromNGPs. A similar situation

is present in the trichome: the earliest glandular trichomes are modified from the non-glandular trichome.

The earliest evidence for the occurrence of modified trichomes (glandular) comes from fossils of the late

Carboniferous (Stephanian stage,∼ 290Mya) (Krings et al., 2003; Lange, 2015). GTs possessed a touch-sen-

sitive mechanism that opened the secretory cell when touched. This mechanism of GT may be important for

plant-insect interactions in the late Carboniferous (Krings et al., 2003). The glands of prickle may also play

an important role for plant-insect interactions. The GTs on the stem are relatively fewer in rose and found in

different species presented large divergence time suggesting that GTs on stem appear several times during

rose speciation (data not shown).
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2.4.2 Suggestions for the genetic and genomic studies in rose prickles

The difference betweenGPs andNGPs is also related to their segregation in theOWpopulation, demonstrating

that different genetic determinisms are involved (Zhou et al., 2020). Therefore, we suggested that they should

be studied separately in genetic and molecular studies. Here we focused only on prickle present on the

stem. Prickle on petiole, pedicel, and fruit may have different patterns, especially at the initiation stage (see

discussion for moss roses).

For reverse genetics and RNAseq approach

According to the specificmorphogenetic events during itsmaturity, we dividedNGP andGP development

into four stages, and three sub-stages for the stage II. These stages of NGPs have been used for reverse genetics

(Zhou et al., 2020) and RNAseq approach (Chapter 4) to discovery the genes involved in prickle initiation

and development.

For forward genetics approach

Quantitative trait locus (QTL) analysis and genome-wide association study (GWAS) are themost popular

methods used to reveal the genetic base of quantitative traits. Both methods are achieved by looking for

correlation between the phenotype and the genotype. Therefore, how to evaluate the phenotype is an important

question for starting these two forward genetic approaches. Here we proposed a rapid way to phenotype the

different prickles in rose according to few characteristics (Figure 16). First the presence of glandular head

(GP vs NGP), then the presence of branched (unbranched vs branched trichomes) and the presence of hairs

on the trichome (‘naked’ vs ‘hairy’).

In OW population, both parents only have NGPs, but a few individuals present NGPs and GPs. Coupled

with the segregation of GP and NGP showed in different genetic determinisms, suggesting that they should

be studied separately (see Zhou et al., 2020, Chapter 3).

Wild rose species or varieties have more diversity of phenotypes than the F1 hybrids such as OW

population. This made it more complicated for this trait phenotyping in genome-wide association study

(GWAS). Presently, we do not know whether the different types of prickles have the same genetic pathway

for initiation or not, or perhaps they are sharing part of the pathway. Thus, the methods of phenotyping must

be used by paying attention to the different types of prickles and their anatomy.

2.4.3 Prickless may be more adapted from human selection

We notice that glabrous roses are rare, in our 110 samples, we found only 7 glabrous roses (no GP

or NGP). Among them, four were sometimes observed with few prickles, one (R. fraxinifolia Lindl) was

described with few prickles occasionally (even by our scoring, no prickle was observed) (Masure, 2013).

61



2.4 Discussion

The majority of glabrous roses are in fact cultivars selected from wild species: R. multiflora ‘inermis’, R.

wichurana ‘Bayses’ Thornless’, R. pimpinellifolia ‘lutea’, R. banksiae ‘alba plena’ and R. banksiae ‘lutea’.

Only two wild species (R. banksiae var. normalis, R. fraxinifolia Lindl) were glabrous. It suggests that the

glabrous is not adapted for roses in wild, and again highlight that prickle is a beneficial and important trait

in rose domestication. Perhaps the absence of prickle is due to a mutation like the selection for the recurrent

blooming. So, the hypothesis is that the mutant has been selected and rescue by humans. It could explain the

rare genotypes without prickles found in the wild. Those glabrous roses are interesting material for genetic

and genomic studies.

2.4.4 Branched GPs in moss roses

The branched GPs are also rare, only presented in 5 roses among the 110: R. centifolia (Rosa Chou)

(Inconnu, < 1595), R. centifolia ‘muscosa’ (< 1700), R. × damascena ‘Quatre Saisons Blanc Mousseux’,

‘Général Kléber’ and ‘Parkzauber’ (1956) (Nédelec, 2018). Interestingly these roses are all moss roses.

Moss roses are covered with a mossy growth on flower pedicel and calyx. They are old garden roses

belonging to the subgenus Rosa sect. Caninae DC (Masure, 2013). R. × centifolia ‘muscosa’ may be

obtained by bud-mutation. R. × damascena ‘Quatre Saisons BlancMousseux’may be a sport or bud-mutation

ofR. × damascena ‘bifera’ which is a repeat-blooming hybrid ofR. × damascene (Caissard et al., 2006). R. ×

damascena ‘Quatre Saisons Blanc Mousseux’ was the first repeat-blooming cultivar in moss roses (Caissard

et al., 2006). The exact genetic relationship between R. × damascena and R. centifolia are still unclear. The

origin of the moss roses is also unknown. R. × damascena (< 1245) only presented unbranched GPs and

NGPs on stem and leaves, suggesting that the branched GPs on the stem may obtain from R. × centifolia but

not R. × damascena.

Table 2: Types of stem prickle in the list of rose resources.

Stem prickles
Subgen Section Species NGP GP Branched Unbranched Hairy Naked Plant in

Hulthemia R. hultemia persica (R.

berberifolia)

+ - - + - + LRG

Platyrhodon R. roxburghii var hirtula + - - + - + LRG
R. praelucens + - - + - + FRI
R. kweichowensis + - - + - + FRI

Hesperhodos R. minutifolia Engelm + - - + + - WS1
R. stellata + + - + - + LRG

Rosa Banksianae R. banksiae var.normalis -/+ - - -/+ - -/+ FRI
Lindl. R. banksiae ‘alba plena’ -/+ - - -/+ - -/+ FRI

R. banksiae ‘lutea’ -/+ - - -/+ - -/+ FRI
R. cymosa + - - + + - LRG

Carolinae R. palustris + - - + - + LRG
Crép. R. carolina + - - + - + LRG

Continued......

62



Chapter 2 Morphological studies for rose prickles provided new insights

Table 2–Continued from previous page..

Stem prickles
Subgen Section Species NGP GP Branched Unbranched Hairy Naked Plant in

Bracteate

Theory

R. bracteata + + - + + - FRI

Caninae R. caninae freya + + - + - + LRG
DC. R. corymbifera + - - + - + LRG

R. horrida + + - + - + LRG
R. foliolosa + - - + - + LRG
R. sherardi + - - + - + LRG
R. scabriuscula + - - + - + LRG
R. centifolia ‘Chou’ - + + - - + LRG
R. centifolia ‘muscosa’ - + + - - + LRG
R. damascena + + - + - + LRG
R. × damascena ‘Quatre

Saisons Blanc Mousseux’

- + + - - + LRG

R. gallica officinalis + + - + - + LRG
Cinnamomeae R. acicularis + - - + - + INRAE
DC. R. albertii + - - + - + FRI

R. beggeriana + - - + - + FRI
R. bella + - - + - + FRI
R. caudata + - - + - + FRI
R. chengkouensis + - - + - + FRI
R. corymbulosa + - - + - + FRI
R. davidii + - - + - + FRI
R. davurica + - - + - + FRI
R. fedtschenkoana + - - + - + FRI
R. forrestiana + - - + - + FRI
R. fraxinifolia lindl - - - - - - LRG
R. giraldii + - - + - + LRG
R. laxa retzius + - - + - + LRG
R. macrophylla + - - + - + FRI
R. majalis plena + - - + - + LRG
R. marretii + - - + - + LRG
R. moyesii + - - + - + LRG
R. multibracteata + - - + - + FRI
R. murielae + - - + - + FRI
R. oxyacantha + - - + - + FRI
R. pendulina +F - - +F - +F LRG
R. pinetorum + - - + - + WS2
R. prattii + + - + - + FOC
R. pseudobanksiae + - - + - + FRI
R. rubella + - - + - + LRG
R. rugosa ‘scabrosa’ + + - + + - LRG
R. sertata + - - + - + FRI
R. sweginzowii + - - + - + LRG

Continued......
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Table 2–Continued from previous page..

Stem prickles
Subgen Section Species NGP GP Branched Unbranched Hairy Naked Plant in

R. tibetica + - - + - + FOC
R. webbiana + - - + - + FOC
R. willmottiae + +F - + - + FRI

Chinenses R. chinensis ‘old blush’ + - - + - + INRAE
DC. R. lucidissima + - - + - + FRI

R. odorata var. gigantea + - - + - + FRI
R. chinensis var.

spontanea

+ - - + - + FRI

Pimpinellif- R. mairei + - - + - + FRI
oliae DC. R. omeiensis + - - + - + LRG

R. sericea + - - + - + FRI
R. sikangensis + - - + - + FRI
R. taronensis + - - + - + FRI
R. farreri + - - + - + FOC
R. foetida + - - + - + LRG
R. graciliflora + - - + - + FRI
R. hugonis + - - + - + LRG
R. kokanica + - - + - + FRI
R. koreana + - - + - + FOC
R. platyacantha + - - + - + FRI
R. primula + - - + - + LRG
R. spinosissima + - - + - + FRI
R. transmorrisonensis + - - + - + FRI
R. tsinglingensis + + - + - + FOC
R. xanthina + - - + - + LRG
R. ecae + - - + - + LRG
R. marmorata + + - + - + LRG
R. pimpinellifolia (R.

oxyacantha)

+ - - + - + WS3

R. pimpinellifolia ‘king of

the scots’

+ + - + - + LRG

"R. pimpinellifolia ‘aïcha’

(R. spinulifolia aïcha)"

+ + - + - + LRG

R. pimpinellifolia ‘lutea’ -/+ - - -/+ - -/+ LRG
Laevigatae R. laevigata + - - + - + FRI
Thory R. cooperi burmese + - - + - + LRG
Synstylae R. anemoniflora + + - + - + FRI
DC. R. arvensis + - - + - + LRG

R. brunonii + - - + - + FRI
R. filipes + - - + - + LRG
R. glomerata + - - + - + FRI
R. helenae + - - + - + FRI
R. henryi + - - + - + FRI

Continued......
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Table 2–Continued from previous page..

Stem prickles
Subgen Section Species NGP GP Branched Unbranched Hairy Naked Plant in

R. kwangtungensis + - - + - + FOC
R. lichiangensis + - - + - + FRI
R. longicuspis + - - + - + FRI
R. maximowicziana + - - + - + FRI
R. moschata + - - + - + LRG
R. multiflora + - - + - + FRI
R. multiflora ‘Inermis’ - - - - - - FRI
R. rubus + - - + - + FRI
R. soulieana + - - + - + FRI
R. wichuraiana + - - + - + INRAE
R. wichuraiana ‘Basyes’

Thornless’

- - - - - - FRI

Hybrids R. iwara (Hybrid Rugosa) + + - + +(NGP) +(GP) LRG
Marie Bugnet (Hybrid

Rugosa)

+ + - + + - LRG

Général Kléber - + + - - + LRG
Parkzauber - + + - - + LRG
Grootendorst Supreme (

Hybrid Rugosa)

+ + - + + - LRG

Werner dirks + - - + - + LRG
La France + - - + - + INRAE

-/+ means the genotype is prickless or almost and if have few prickles, it’s NGPs.
+F means the genotype have this type of prickle, but only few.
Pink shows the twelve representative species we used in the macroscopy study.
Green shows the glabours or almost glabours genotypes.
LRG Loubert Rose Gardens (Rosiers sur Loire, France).
INRAE Institut de Recherche en Horticulture Et Semences, Angers, France.
FRI Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.
FOC Flora of China (http://www.iplant.cn/foc).
WS1 web sources - https://fr.wikipedia.org/wiki/Rosa_minutifolia.
WS2 web sources - http://www.elkhornsloughctp.org/factsheet/factsheet.php?SPECIES_ID=97.
WS3 web sources - https://www.wikiwand.com/en/Rosa_pimpinellifolia.
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Key message: The genetic determinism of prickle in rose is complex, with a major locus on LG3 that

controls the absence/presence of prickles on the rose stem.

Abstract Rose is one of the major ornamental plants. The selection of glabrous cultivars is an important

breeding target but remains a difficult task due to our limited genetic knowledge. Our objective was to

understand the genetic andmolecular determinism of prickles. Using a segregating diploid rose F1 population,

we detected two types of prickles (glandular and non-glandular) in the progeny. We scored the number of

non-glandular prickles on the floral andmain stems for three years. We performedQTL analysis and detected

four prickle loci on LG1, 3, 4 and 6. We determined the credible interval on the reference genome. The

QTL on LG3 is a major locus that controls the presence of prickles, and three QTLs (LG3, 4 and 1) may be

responsible for prickle density. We further revealed that glabrous hybrids are caused by the combination

of the two recessive alleles from both parents. In order to test if rose prickles could originate from a

‘trichome-like structure’, we used a candidate approach to characterize rose gene homologues known in

Arabidopsis, involved in trichome initiation. Four of these homologues were located within the overlapping

67



3.1 Introduction

credible interval of the detected QTLs. Transcript accumulation analysis weakly supports the involvement

of trichome homologous genes, in the molecular control of prickle initiation. Our studies provide strong

evidence for a complex genetic determinism of stem prickle and could help to establish guidelines for

glabrous rose breeding. New insights into the relationship between prickles and trichomes constitute valuable

information for reverse genetic research on prickles.

Keywords Trichome, QTL, ZFP5, GIS2, MYB61, MYC1

3.1 Introduction

Rose is the major ornamental plant worldwide with a wide diversity, diverse application forms and an

extensive cultivated area. Roses are sold as cut flowers, garden plants, in pots, for essential oil, flower tea

and culinary purposes. In past centuries, with the continuous efforts of breeders, more than 33,000 varieties

of roses were created (Young et al., 2007). However, most of these varieties have persistent prickles on the

stem. Prickles can protect against herbivores by deterring them from eating the stem (Ronel and Lev-Yadun,

2012; Burns, 2014). Furthermore, prickles can be desirable in roses when they are used in hedges to protect

properties (as was the case in Reunion Island during the 19th century). However, garden roses without

prickles are often desirable. Cut roses with prickles are more difficult to handle, harvest and transport and

also constitute safety hazards for consumers and workers. Retailers commonly remove prickles from stems

prior to sale. Removing the prickles increases labor costs and causes mechanical damage to the stems, which

affects vase life and ornamental value. Although a strong market demand to develop roses without prickles

exists (Nobbs, 1984; Debener, 1999; Canli, 2003; Canli and Skirvin, 2003, 2008), relatively little is known

about the genetic and molecular bases of prickle initiation and development.

In plants, prickles are described as outgrowths of the epidermis and subjacent layers that lack vasculature,

and mainly consist of lignin, suberin, cellulose and hemicellulose (Asano et al., 2008; Li et al., 2012). In

rose and raspberry, it was thought that prickles were modified glandular trichomes that differentiate at the

time of lignification into their final prickle morphologies (Kellogg et al., 2011).

Until recently, only a few studies had been published about the molecular regulation of prickle develop-

ment, but great progress has been made in trichome initiation and development, especially in Arabidopsis.

Several transcription factors (TFs) such as MYB, bHLH, WD40, WRKY and C2H2 zinc finger families’

proteins have been identified as being involved in trichome initiation and development (reviewed in Balkunde

et al. (2010); Pattanaik et al. (2014); Ma et al. (2016a); Huchelmann et al. (2017); Chopra et al. (2019)).

A trimeric activator complex consisting of MYB (GLABRA1) - bHLH (GLABROUS3/ENHANCER OF

GL3) -WDR (TRANSPARENTTESTAGL1) plays a key role in trichome development (Zhang, 2003; Kirik

et al., 2005; Patra et al., 2013). This trimeric complex finely regulates the temporal and spatial expression of

GLABRA2 (GL2) and TRANSPARENT TESTAGL2 (TTG2), determining the fate and pattern of trichome

precursor cells (Rerie et al., 1994; Ishida et al., 2008). The bHLH family genes, MYC1 and TT8, belong to the
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same clade as GL3. AtMYC1 acts as a positive regulator of trichome initiation (Symonds et al., 2011; Zhao

et al., 2012), and AtTT8 controls trichome development on leaf margins (Maes et al., 2008). AaMYB1 and

its orthologue AtMYB61, belonging to the R2R3MYB subfamily, were thought to affect terpene metabolism

and trichome development in A. annua and A. thaliana, respectively (Matías-Hernández et al., 2017).

The active TTG1 trimeric complex can be repressed by R3 MYB subfamily genes: TRY/CPC/TCL1

act as negative regulars by competing with GL1 for binding to GL3 (Wang et al., 2008; Wester et al., 2009;

Wang and Chen, 2014). The active TTG1 complex, in interaction with TTG2, regulates the expression of

the R3 MYB inhibitors that move to the neighboring cells where they repress trichome initiation (Pesch and

Hülskamp, 2004; Pesch et al., 2014).

Different growth regulators positively affect trichome initiation, such as GA3, cytokinin and jasmonic

acid (Traw andBergelson, 2003), through the activation ofGL1 (Gan et al., 2006). Different C2H2 zinc-finger

proteins such as GLABROUS INFLORESCENCE STEM (GIS), GIS2, GIS3, ZINC FINGER PROTEIN5,

6 and 8 (Gan et al., 2006, 2007) include GA and cytokinin signaling pathways (Zhou et al., 2013). The

novel transcription factor TRP interacts with ZFP5 and negatively regulates trichome initiation through the

gibberellic acid pathway (Kim et al., 2018).

In diploid rose, the presence of prickles on the stem was assumed to be controlled by a single dominant

gene (Debener, 1999; Shupert et al., 2007) located on linkage group 3, LG3 (Linde et al., 2006). Furthermore,

two QTLs were detected on LG3 with the scoring of prickle density (Crespel et al., 2002). Using two F1

progenies,Hibrand-Saint Oyant et al. (2018) also identified a large QTL (or two neighboring QTLs) on

LG3 (between position 31 Mb - 46.5 MB corresponding to the end of the chromosome 3) and a significant

association between position 31 and 32.4 Mb using a GWAS approach. In tetraploid roses, three QTLs

were identified in relation to the number of prickles on the stem: two located on LG2 and one on LG3

(Koning-Boucoiran et al., 2009). Using the same K5 population with the same phenotype data but a new

genetic map, different QTLs were detected on LG3, 4 and 6 and on LG2 (one year) (Bourke et al., 2018a).

Recently, a WRKY transcription factor, homologous to Arabidopsis TTG2, was located close to a QTL

controlling prickle density, and the gene transcripts are differentially accumulated between prickle and

prickless roses (Hibrand-Saint Oyant et al., 2018).

In this study, our objectives were to decipher the genetic determinism of stem prickles in rose and to

characterize candidate genes involved in prickle initiation and development. First, we defined the different

types of prickles on the stem and studied them separately. Using an F1 progeny, we detected QTLs and

their position in the rose genome sequence. We further analyzed how the alleles of the major QTLs affect

the presence of prickles. We identified putative candidate genes (homologues of genes involved in trichome

initiation and development inArabidopsis) and studied their transcript accumulation. That study suggested

that prickles and trichomesmay carry two different genetic pathways, providing new insights into the relation-

ship between prickles and trichomes.
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3.2 Materials and methods

3.2.1 Plant materials

A progeny of 151 diploid F1 hybrids obtained from a cross between the female Rosa chinensis ‘Old

Blush’ (OB) × the male R. × wichurana (RW) was used for map construction (described in (Hibrand-Saint

Oyant et al., 2018) and QTL analysis. The plants were grown in a field and managed by the Horticulture

Experimental Unit (INRAE, Angers, France). The plants were pruned each December. In the following

spring, new stems developed from the axillary buds from the old pruned stems, and are referred to as “floral

stems” since they develop flowers. Later, new stems arise from the base of the plant and are referred to as

“main stems”. They remain vegetative in once-flowering individuals andmay become floral in continuous-fl-

owering individuals.

3.2.2 Phenotypic data collection and analyses

To score prickle density, we selected three independent floral and main stems for each F1 progeny and

the two parents. The prickle numbers were counted for each selected stem on four internodes (located in the

middle of the stem) for three years (2016, 2017 and 2018).

Statistical analysis and visualization were performed using R version 3.2.3. We visualized the frequency

distribution and Q-Q plot using the ‘hist’, ‘legend’, ‘qqnorm’ and ‘qqline’ functions. We performed mixed-

-factorial ANOVA analysis with ‘aov’. A ‘shapiro.test’was used to test the normality of the original data and

the ANOVA residuals. When the null hypothesis was negated, ‘kruskal.test’was used to test if there was any

significant difference between the replicate shoots, years and the type of stem variance. ‘pairwise.wilcox.test’

with ‘p.adjust.method =BH’ was used to calculate pairwise comparisons between group levels with correcti-

ons for multiple testing. We displayed the distribution of prickle density with a boxplot to compare the

difference between the variance using the ggplot2 and ggpubr packages.

Variance components were estimated with the restricted maximum likelihood (REML) method using

the sommer package. Phenotype variance components of prickle density were obtained using the following

model:

Pijlr = µ+Gi + Sl + Y(l)j +GSil +GYij + εijlr (3.1)

Where Pijlr is the phenotypic value of a trait counted on a triplicate stem r of the stem type l of the

individual i in the year j, µ is the overall mean, Gi is the random effect of genotype i, SI is the random

effect of stem type l, Y(l)j is the random effect of year j nested in stem type l,GSil is the random interaction

between genotype i and stem type l,GYij is the random interaction between genotype i and year j, and εijlr

is the random residual error.
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The phenotypic variance (σ2
P ) of stem prickles was divided into the variance of genotypic effect (σ2

G)

genotype × year interaction (σ2
GY ), genotype × stem type interaction (σ2

GS), and the residual error variance

(σ2
E).

Narrow-sense heritability (h2) was calculated as follows:

h2 = σ2
G/(σ2

G + σ2
GY /y + σ2

GS/s+ σ2
E/ysr) (3.2)

Where y is the number of years, r is the number of replication shoots per individual, and s is the number

of stem types (PF and PM).

3.2.3 Genotypic data

The genetic determinism was conducted using the genetic map previously obtained by Hibrand-Saint

Oyant et al. (2018) and modified by Lopez-Arias et al. (2020).

3.2.4 QTL Analysis

In this study, we performed QTL detection for prickles on the floral (PF) and main (PM) stems from

data scored in 2016, 2017, 2018 (referred to as PF2016, PF2017, PF2018, PM2016, PM2017 and PM2018,

respectively). QTL analyses were carried out using the R/qtl in R version 3.2.3. Based on the non-normal

phenotype distribution data, single QTL analysis and LOD scores were calculated using the ‘scanone’

function with non-parametric model (model=‘np’, ties.random = FALSE, method = ‘em’) and the two-part

model (model=‘2part’, upper = FALSE) (Boyartchuk et al., 2001).

In the non-parametric model, the genome-wide and chromosome-wide significance thresholds of LOD

scores were estimated by permutations tests (n.perm = 1000, n.cluster = 20). The Bayesian credible interval

was computed with 0.95 and 0.99 coverage probabilities. When QTLs for different traits had overlapping

0.95 credible intervals, they were declared to be a potentially “common QTL (cQTL)” (Kawamura et al.,

2011). The percent of variance explained by each QTL was calculated by ‘makeqtl’ and ‘fitqtl’ with a

‘normal’ model.

In the two-part model, the phenotype was separated into two parts: first, the trait value was considered

as without (0) or with (1) prickles; if it had prickles, the trait value above zero was assumed to be normally

distributed. Three LOD scores for each genomic position were calculated: LOD(p) and LOD(µ) were

calculated for binary traits (0 or 1) and non-zero phenotype quantitative traits (> 0), respectively; LOD(p,µ)

is simply the sum of the LOD scores from the two separate analyses (Broman, 2003). The genome-wide

significance thresholds of three LOD hypotheses were also estimated by 1000 permutation tests and summar-

ized by a 0.05 alpha threshold. The percent of variance explained was calculated by ‘makeqtl’ and ‘fitqtl’

with ‘binary’ and ‘normal’ models for binary(p) and quantitative(µ) traits.
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3.2.5 Selection of rose candidate genes involved in prickle density

Proteins involved in trichome initiation and development were selected in A. thaliana from the TAIR

database (https://www.arabidopsis.org) with searching termsGL1, MYB82, MYB61, CPC, TRY, GL3,

TT8, MYC1, TTG1, TTG2, ZFP5, ZFP1, GIS2, GIS3, GL2. Rose homologues were searched using BLASTp

in the Rosa chinensis Genome v1.0 (Hibrand-Saint Oyant et al., 2018). In addition, we also searched the

transcription factors (TF) belonging to the bHLH, WD40, R2R3MYB, C2H2 and WRKY families in rose

and which were located on the major cQTL interval of LG3. Using Geneious 9.1.7, ‘Multiple Align’ was

performed for the family gene sequences. Conserved domains were used to build phylogenetic trees using

the ‘Geneious Tree Builder’ tool with the Jukes-Cantor genetic distance model and the UPGMA tree build

method. The rose candidate genes were named according to the following nomenclature corresponding to

Rc (for Rosa chinensis) added to the corresponding gene name in Arabidopsis, e.g., RcTTG2 for the rose

TTG2 homologue.

3.2.6 Gene expression analysis

Primers were designed using Primer Premier 5.0 software. To ensure the specificity of the primers,

forward and reverse primers were designed in the last exon and in the beginning (first 100 bp) of the 3’UTR.

Primer length was between 18 and 25 bp, product length was between 70 and 200 bp, GC content was

between 40% and 60%, and the annealing temperature was 58∼ 65 ℃. Primers are listed in Supplementary

Table A.1. For the qPCR experimental design, we selected four contrasting once-flowering individuals from

the OW progeny for prickle density: two with no prickle (OW9067 and OW9068) and two with prickles

(OW9137 and OW9071 with means of 2.5 and 4 prickles per internode on the main stem, respectively). The

materials were sampled in April 2018 in a greenhouse (three biological replicates). Stems were harvested at

different stages of prickle development for roses with prickles, and stems at the same stages for roses without

prickles (Chapter 2, Figure 13). Total RNA was extracted using the NucleoSpin RNA Plus-XS kit for early

stages (I and IIa) and using the NucleoSpin RNA Plus-kit for later stages (IIb, IIc and III) according to the

manufacturer’s instructions, with minus modifications (2% PVP40 in lysis buffet). The purity of the RNA

was checked on 1% agarose gel, and the concentration was measured by an UV spectrophotometer. cDNA

was obtained from 500 ng of total RNA using iScriptTM Reverse Transcription Supermix for RT-qPCR

(Bio-Rad, Hercules) accordant to the manufacturer’s instructions. The purity and quality of the cDNA were

checked by performing PCR amplificationwith a blank andRW’sDNA sample control, and the concentration

was measured with a UV spectrophotometer. RT-qPCR reactions were performed using the SsoAdvancedTM

Universal SYBR® Green Supermix (Bio-Rad) on the CFX Connect Real-time PCR system (Bio-Rad). The

gene efficiency was evaluated with a serial dilution of the thirty cDNAs pooling (1: 10, 25, 50, 100, 250,

500, 1000). A 1: 25 dilution of each cDNA was used to analyse the expression pattern of ten candidate

genes and two reference genesUBC and TCTP (Randoux et al., 2012). Data collection was performed using

the Bio-Rad CFX Maestro1.1. Amplification efficiency of the ten genes ranged from 90.5 ∼ 104.1%. The

reference genes UBC and TCTP presented high expression stability in all the samples.
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For the technical replicates, potential outliers were excluded from the analysis when the standard deviation

(SD) of samples is higher than 0.5. Only seven technical replicates (seven out of 390) were excluded: CPC

in PIIb (biological group A, C) and in NPIIc (group A), GIS2 in NPIIc (group C), NPIII (group B) and PIII

(group B).

Normalized expression (44Cq) was calculated using Bio-Rad Maestro1.1 software by applying the

‘gene study’ tool. The cluster analysis for sample and target genes with the mean value of normalized

expression was performed using R software with the ‘pheatmap’ package. NP samples were used as controls

to compare the normalized expression of genes between P and NP samples in the different stages. | Fold

change (FC) | > 2 and the Wilcoxon signed rank test (p-value < 0.05) as cut-off values in scatter plots were

used to demonstrate the significant difference of normalized expression between P and NP samples. NPI

was used as a control to visualize the relative normalized expression during stem development in prickle and

glabrous stems.

3.3 Results

3.3.1 Type, distribution and genetic variability of stem prickles in OW progeny

Both parents of the F1 progeny (‘Old Blush’ and R. x wichurana) present prickles on their stems (Figure

23 a) (a mean of around ten prickles on four internodes). In the F1 progeny, hybrids without prickle can be

observed (14 out of 151; no prickle on the three stems scored over three years). These hybrids with glabrous

stems (Figure 23 b) are referred to as ‘prickless’ individuals (Figure 23 c). Out of the 137 F1 individuals with

prickles (Figure 23 b), nine hybrids were nearly prickless (prickle number on four internodes < 1 for three

scored years and two types of stems (Figure 23 d)), and numerous stems were glabrous for some individuals,

whereas other stems presented a few prickles (variable between the genotypes with unstable states between

years and types of stems). Macroscopic analysis shows that parents that present prickles originated from

a ‘non-glandular’ structure. These prickles are referred to as Non-Glandular Prickles (NGP). All the F1

prickly individuals (137 out of 151) have NGP. However, some individuals with NGP prickles also present

another type of prickle (27 out of 137). These prickles present a ‘glandular head’ structure and are referred

to as Glandular Prickles (GP) (Figure 23 b and 23 c, Supplementary Figure A.1). Since the presence of GP

in the OW progeny is rare (27 and 12 out of 151 on flowers and main stems, respectively; Figure 23 d) and

very irregular, we decided to consider only NGPs in this study.

The Shapiro-Wilk normality test and the Q-Q plot of original data (W = 0.692 ∼ 0.936, p -value < 2.96

× 10−8) (Supplementary Figure A.1) and variance residuals (W = 0.88591, p -value < 2.2e−16) showed

that the NGP densities on stems in the F1 population were not normally distributed. We tried to transform

data (log10, SQRT, box-cox) to make them normal but without success. The Kruskal-Wallis test reveals a

genotype effect, a year effect and a stem effect (Table 3). The high heritability (h2 ' 0.97) demonstrated

that the genetic analyses of stem prickle of this population were reliable (Table 3).
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Figure 23: Different types of prickles on the OW progeny stem and their distribution. (a) Stem prickles
in the female ‘Old Blush’ (OB) and the male R. x wichurana (RW); NGPs: non-glandular prickles. (b)
Stem prickles in F1 progeny. Glabrous: no prickle whatsoever on the recorded stems in the three years. (c)
Macroscopic photos of the terminal part of the stems with different types of prickles (number of offspring);
GPs: glandular prickles. (d) The distribution and Q-Q plot of NGPs and GPs in the F1 progeny in 2018; PF:
prickles on the floral stem; PM: prickles on the main stem.
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3.3 Results

3.3.2 QTL analysis

3.3.2.1 Non-parametric QTL analysis

For the female and male maps, strong QTLs were detected on LG3 for the two types of stems and for the

three years (Figure 24 and Table 4). The LOD scores are higher for the male map (between 8 and 11.5) and

relatively lower for the female map (between 2.3 and 6.2). These QTLs explained between 6.65 to 37.4% of

the phenotypic variance. The locations of these QTLs are very close. Indeed, on the female map, the marker

at the peak of the QTLs is the same for both types of stems (Rh12GR_16570_782, 51.1 cM, located on the

chr3 at 44,459,262 bp according to the Rosa chinensis Genome v1.0 (Hibrand-Saint Oyant et al., 2018)),

except for PM2018 (Rh12GR_34665_95, 45.7 cM, located on chr3 at 41,401,120 bp). On the male map,

for the two types of stems and for the three years, the marker with the highest LOD for the QTLs detected

on LG3 is the same, Rh12GR_52506_1218 (42.6 cM on the LG3, 42,317,122 bp on Chr3), which is the

terminal marker on the genetic map but not on the physical map.

Furthermore, if we consider the common 0.95 Bayesian credible interval of these QTLs on LG3 on the

female and male maps, all intervals are overlapping (Table 4 and 26). For the female map, the interval on

LG3 was 40.38∼ 53.75 cM, which corresponds to the interval 36,517,224∼ 46,440,369 bp on the physical

map of chr3 (Figure 26 a), and for the male map, the interval on LG3 was 37.69∼ 42.55 cM, corresponding

to the interval 41,648,024 ∼ 42,317,122 bp on the physical map (Table 4, Figure 26 b).

On LG4, QTLs were only detected on the female map for the main stem for the three years (Figure 24,

Table 4). The peak marker Rh12GR_60129_183 located at 30.6 cM, which is located on chr4 at 52,239,028

bp, explained 10.35 to 13.18% of the observed variance depending on the year of the phenotypic variance

in the single QTL model. The common 0.95 credible interval on LG4 was 20.53 ∼ 48.59 cM (Figure 26 a),

which covered from 46,189,407 ∼ 56,107,784 bp on the physical map (Table 4).

On LG6, QTLs were only detected on the male map for three years for PM and for two years (2017 and

2018) for PF (Figure 24 and Table 4). For PM (2016, 2017 and 2018) and PF (2017), the peak marker is the

same, Rh12GR_56601_1304 (29.7 cM, located on chr6 at 31,814,891 bp). For PF2018, the peak marker

is Rh88_37299_454 (11.5 cM, located on chr6 at 5,410,244 bp). These QTLs explained between 5.28 and

8.45% of the observed variance. The common 0.95 credible interval was from 15.59 to 42.49 cM, which

covered from 8,578,645 to 44,264,630 bp on the physical map (Figure 26 b, Table 4).

On LG1, QTLs were only detected on the male map for PF for two years (2016 and 2018), and explained

6.52 and 6.99% of phenotypic variance, respectively. The common 0.95 credible interval was at 12.78 ∼

44.11 cM, which covered from 20,231,658-62,553,371 bp on the physical map (Figure 26 b, Table 4).

We checked the interaction between OB3@Rh12GR_16570_782 and OB4@Rh12GR_ 60129_183, and

between RW3@Rh12GR_52506_1218 and RW6@Rh12GR_56601_1304, and no significant interaction

was detected.
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Figure 24: LOD curves of the QTL scan for the NGPs on the floral (FM) and main (PM) stems in (a) female
(OB) and (b) male map (RW) calculated with a non-parametric model for the three years (2016, 2017 and
2018, with red, blue and green lines, respectively). The LOD threshold value is represented by a dotted line
in red, blue and green for 2016, 2017 and 2018, respectively.
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3.3.2.2 Two-part QTL analysis

In order to extend the analysis even further, we performed a two-part QTL analysis to test the penetrance

(presence/absence of prickles, LOD(p)were calculatedwith binary traits) and the severity (density of prickles

on stems with prickles, LOD(µ) were calculated with non-zero quantitative phenotype) of these QTLs.

For the hypothesis LOD(p) on the female and male maps, we obtained a significant LOD(p) on the LG3

for the two types of stem (PF and PM) and the three years (Figure 25, Supplementary Table A.2). The marker

with the highest LOD score on the OB map is the same: Rw35C24 (SSR marker) located at 44.4cM (Chr03:

40,215,502 bp). This QTL explained 13.38% to 16.72% of the variation. The peak marker on the RW map

is also the same for PF and PM for the three years: Rh12GR_52506_1218 located at 42.6 cM (42,317,122

bp). This QTL explained 20.69 to 33.21% of the variation. These data suggested that the QTL detected on

LG3 mainly controls the presence/absence of prickles. Moreover, the LOD(p) on LG2 and LG6 for the male

map were only significant in PF2016 and PM2016, respectively (Figure 25), and they showed a weak effect

with an explanation of 1.80% and 2.70% of the variance, respectively (Supplementary Table A.2).

For the LOD(µ) hypothesis, we detected a significant QTL on the female map on LG4 for PM (2016 and

2017) and PF (2016) (Figure 25, Supplementary Table A.2). The QTLs explained 9.02% to 9.88% of the

observed phenotypic variances. Therefore, this QTL might be involved in the control of prickle density. On

LG3, a significant QTL was detected on the male map for PM (2016, 2017, 2018) and PF (2016), suggesting

that a QTL on LG3 might also control prickle density. This QTL is in the same region of the QTL detected

for penetrance (Figure 25, Supplementary Table A.2). On LG1, the LOD(µ) peaks in OB (PM2018) and

in RW (PF2018) were higher than the genome-wild threshold (µ); these QTLs explained 6.66% and 7.80%,

respectively, of prickle density variation.

3.3.2.3 The interaction of the LG3-QTL allele between OB and RW

Based on non-parametric and two-part methods, we identified QTLs for the presence of prickles on LG3

for the OB and RW maps in the same region. To further investigate how the alleles on these QTLs affect

the presence of prickles, we visualized the number of prickles for each genotype in the hybrid population

depending of the Mendelian distribution of the SNP markers at the LOD peak (Figure 27). The female and

male alleles are referred to as a,b and c,d, respectively. The separation ratio ac: ad: bc: cd in offspring is

33: 54: 16: 48, and was significantly different from the expected segregation of 1: 1: 1: 1 (37.5 for each)

with a p-value = 0.004 estimated by a chi-squared test (Figure 27).

For PF and PM in all three years, we clearly see that the bd allele combination in hybrids is correlated

with no-prickle individuals or individuals with only a few prickles (less than two on four internodes), whereas

ac, ad and bc genotypes present prickles (Figure 27). These results suggest a dominant/recessive model for

this QTL with the b and d alleles linked to the null or recessive alleles (prickless mutant) and the a and

c alleles linked to the dominant alleles (prickles). For PM, a co-dominant effect can be detected since the

phenotype for ac is significantly different from the one for ad and bc (ac > ad and ac > bc, p-value < 0.05,
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Figure 25: LOD curves of the QTL scan for the NGPs on the floral (FM) and main (PM) stems in (a) female
(OB) and (b) male (RW) maps calculated using the two-part approach. The LOD (p) value (penetrance) is in
red, the LOD (µ) value (severity) is in blue, and the LOD (p, µ) value is in black. The dotted line represents
the LOD threshold. QTLs above threshold value are indicated by stars: red for penetrance, blue for severity.
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Figure 26: Common QTLs (cQTLs) and candidate genes in (a) the female linkage groups 3 and 4, and (b) the
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Figure 27: The interaction of the different alleles of the LG3QTL betweenOB andRW.Genotype: ac, ad, bc,
bd (number of individuals), a/b and c/d alleles belong to females and males, respectively. For the phenotype,
the mean values of prickle density for PF and PM for the three years are presented. Some individuals are
highlighted with green dots (OW9106 and OW9107), blue dots (OW9062, OW9021, OW9052 and OW9109)
and red dots (OW9067 and OW9068). The asterisk indicates that the difference is significant with a p-value
of less than 0.05
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except for PM2016 between ac and ab; Figure 27), even if the effect is weak (no large difference between

the mean for ac and ad/bc). For PF, no co-dominant effect was detected.

We also observed some odd phenotypes. For instance, OW9067 and OW9068 (red dots) had no prickle

and were grouped in the ad genotype, perhaps due to recombination between the marker and the prickle

locus (Figure 27). For individuals with the bd genotype, six individuals (blue and green dots) always have

prickles: OW9062, OW9021, OW9052 and OW9109 (blue dots) look like the usual prickle genotypes and

are probably caused by recombination, but the two extreme exceptions, OW9106 and OW9107 (green dots)

with the highest prickle density are not that easy to clarify. Moreover, some individuals exist with both

prickly and glabrous stems in the same plant.

3.3.3 Candidate genes in the QTL interval region and gene expression analysis

3.3.3.1 Candidate gene characterization and location in rose

Since it was proposed that prickles originate from a deformation of glandular trichomes in rose (Kellogg

et al., 2011), we looked for rose homologues of transcription factors (TF) known to be involved in the

molecular control of trichome initiation and development in Arabidopsis. The information from 15 TFs

such as the bHLH (basic helix-loop-helix), C2H2 Zinc-Finger, MYB,WD40 repeat andWRKY families are

presented in Supplementary Table A.3. For a more detailed annotation, we performed phylogenetic analyses

on these protein families (Supplementary Figure A.2).

Concerning the bHLH family (Supplementary FigureA.2 a), RC7G0190300, RC1G0342400 andRC6G-

0407800 showed strong similarity with GLABROUS3, MYC1 and TT8, respectively, where all of the

proteins are in the same clade. They are referred to as RcGL3, RcMYC1 and RcTT8, respectively.

For the C2H2 family, RC3G0150000, RC4G0390900 and RC4G0476500 are closely related to GLABR-

OUS INFLORESCENCE STEMS proteins (GIS, GIS2 and GIS3) and ZINC FINGER PROTEIN (ZFP5, 6

and 8). RC3G0150000 seems to bemore closely related to GIS2, RC4G0390900 to GIS3 and RC4G0476500

to ZFP5. RC2G0415300 and RC6G0454700 are related to ZFP1 and ZFP3 and AT5G10970. They are

referred to as RcZFP1-like1 and RcZFP1-like2, considering that they are closer to ZFP1 (Supplementary

Figure A.2 b).

R2R3MYB and R3MYB belong to the MYB family (Supplementary Figure A.2 c). In the R2R3MYB

sub-family (blue sub-tree), RC7G0156100 is in the same clade as GLABROUS1, whereas RC2G0033100

and RC7G0261400 are more closely related to MYB82 and TT2, respectively. RC3G0322900 is in the

same clade as MYB61, MYB50 and MYB86. In the R3 MYB sub-family (red sub-tree), RC2G0548400,

RC1G0560100 and Chr1g0359121 (Raymond et al., 2018) are in the same clade of CPC, TRY, ETC1 and

ETC3. RC1G0560100 and Chr1g0359121 are more closely related to TRY and CPC, and are referred to as

RcTRY and RcCPC, respectively. (Supplementary Figure A.2 d).
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In the WD40 family, RC1G0586100 showed a strong similarity to TRANSPARENT TESTA GLABRA

1(TTG1), andRC3G0186600 andRC2G0693200 also belong to this clade. In theWRKY family, as previously

shown by (Hibrand-Saint Oyant et al., 2018), RC3G0244800 shows a strong similaritywithAtTTG2 (TESTA-

TRANSPARENT GLABRA2), whereas RC3G0309600 and RC3G0309700 seem to be more closely related

to WRKY54 and WRKY70, RC3G0392200 to WRKY74, and RC3G0414600 appears to be related to

WRKY34 and WRKY2. We then located these rose homologue genes on the rose genome and looked

for co-location between these genes and the QTLs previously described (Figure 26 a and b). Concerning

the QTLs on LG3 (male and female map, Figure 26 a and b), the most interesting TF among the detected

genes was RcMYB61 (RC3G0322900, at Chr03: 39,896,892 - 39,899,077bp) located in the cQTL interval

(36.517-46.440 Mb) for the female map (Figure 26 a). As previously described (Hibrand-Saint Oyant et al.

2018), a homologue of TTG2, a WRKY transcription factor (RC3G0244800), is also located in the credible

interval. RcGIS2 (RC3G015000), a GIS2 homologue is also located on LG3 but not in the cQTL interval.

In addition to the candidate TFs, we also scanned the other TFs co-located in the cQTL interval on LG3 of

the female map. There are four bHLH, two C2H2, three R2R3MYB and seven WD40 transcription factors

(Supplementary Figure A.2, in blue) located under the cQTL.

Concerning the cQTL interval on LG4, RcGIS3 is positioned at Chr04: 50,315,805 - 50,317,009 (1.21

Kb), and near the peak marker Rh12GR_55601_1304 (52,239,028 kb) on the female map (Figure 26 a).

RC4G0476500, a ZFP5 homologue, is also located on the female LG4 but not in the QTL interval.

Concerning theQTL on themale LG1, RcMYC1, RcTRY andRcCPC,which are positioned at 44,468,298

- 44,473,643 bp, 47,708,966- 47,709,896 bp and 62,070,383 -62,072,848 bp, respectively, are located in

the cQTL region (20.232Mb-62.553Mb) of PF (2016, 2018) on the male LG1. The gene RC1G0586100

(RcTTG1) is also located on LG1 but outside this interval. For the male LG6, RC6G0407800, a homologue

of TT8, is not located in the cQTL credible interval, and no studied gene was detected below this QTL.

3.3.3.2 Candidate gene expression in glabrous and prickle roses

Based on the positional approach, we identified ten interesting candidate genes, six within the QTL

interval and the other four outside of QTL but near the credible interval (Figure 26). In order to obtain more

information about these genes, we studied their transcript accumulation by RT-qPCR in tissues from prickle

(P) and prickless (NP) stems at different developmental stages: I, IIa, IIb, IIc, III (Chapter 2, Figure 13).

The cluster analysis of gene expression clearly showed that all the samples can be divided into two main

groups: PI, NPI, PIIa, NPIIa, PIIb, NPIIb were gathered into one group, and PIIc, NPIIc, PIII, NPIII into

another group (Figure 28 a). At the sup-group level, PI and NPI, PIIa and NPIIa, PIIb and NPIIb, PIIc and

NPIIc were clustered together, respectively. At the same stem developmental stage, prickle and glabrous

samples (P and NP) behave similarly, suggesting no major difference of transcript accumulation between

prickle and glabrous samples; the observed differences are more closely related to stem development.

To extend the analysis even further, we used NP as a control to compare the normalized expression of
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Figure 28: Transcript accumulation of candidate genes followed by qPCR during prickle development. (a)
A heatmap of samples and genes. (b) The scatter plot of the candidate genes’ normalized expression in
prickle and glabrous individuals in different stages (as defined in Chapter 2, Figure 13). The red and
green lines represent a two-fold change in the accumulation with an increase or a decrease, respectively.
Gene transcripts differentially accumulated (p-value < 0.05) are represented by red or green dots for up-
or down-accumulation, respectively. (c) Transcript accumulation in the different stages of prickle (P) and
glabrous (NP) stems with NPI as a control.
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genes between P and NP samples in the different stages (Figure 28 b). In stage I, two genes are differentially

expressed: RcMYB61 andRcGIS2were down-regulated in prickly stems, with a significant p-value = 4.1e−5

and 2.9e−4 (Figure 28 b), respectively. In stage IIa, only RcZFP5 was significantly differentially expressed

between P and NP, with a p-value = 0.0056 and FC = -5.7606 (Figure 28 b). A different pattern is observed

in stage IIb where RcZFP5 expression was up-regulated with FC = 8.2240 and a p-value = 0.0025. In

addition, the transcripts of RcMYC1, RcCPC and RcGIS2 were also significantly accumulated (p-value =

4.1e−5, 0.0048, 0.0012, respectively) in stage IIb. In stage IIc, no significant change in gene expression was

detected. In stage III, the RcGIS2 transcript is differentially accumulated with FC = -4.908 and a p-value =

0.043. The same pattern is observed for RcMYB61 with a p-value = 4.9e−4.

We followed the transcript accumulation during stem development in prickly and glabrous stems (NPI

as a control; Figure 28 c). All the studied genes are regulated between the different samples. For instance,

RcMYB61 is up-regulated and RcMYC1 is down-regulated between the different stages. For RcZFP5, we

observed a delay in the decrease of transcript accumulation, with a decrease in stage IIa for glabrous stems

and in stage IIb for stems with prickles (Figure 28 c).

3.4 Discussion

3.4.1 Two types of prickles are present in theOWprogeny, originating fromdifferent

structures

A good understanding of prickle morphology is required to serve as the foundation for genetic and

molecular studies. We identified two different types of prickles in our population: it appears that GP and

NGP originate from glandular and non-glandular structures, respectively. This conclusion is different from

previous studies in rose, which reported that prickles were extensions ormodifications of glandular trichomes

(Kellogg et al., 2011), and in other species (Ma et al., 2016b; Pandey et al., 2018). Asano et al. (2008)

observed two types of prickles in the cultivated rose ‘Laura’, described as large size and small size prickles.

The large size prickles look similar to NGPs in our study. The small size prickles, referred to as acicles

(Asano et al., 2008), are more closely related to the glandular prickles (GP) we observed since they have a

glandular head that accompanies them throughout their lifetime. The difference between these two types of

prickles is also related to their segregation in the OW population (Figure 23 d), demonstrating that different

genetic determinisms are involved. In this study, since only a fewF1 individuals had GPs, we cannot perform

a genetic analysis on GPs, we concentrated our analysis on NGPs.

3.4.2 A complex genetic determinism for prickles in rose

Prickles on stems exhibited transgressive segregation in diploid OW, the same as for the tetraploid

K5 population (Koning-Boucoiran et al., 2012; Gitonga et al., 2014; Bourke et al., 2018a), supporting the

hypothesis that multiple loci may be responsible for this trait.
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3.4 Discussion

Using the ‘non- parametric’ QTL approach, we detected a stable QTL on LG3 in the three different years

for both types of stems (PM and PF) on both the male and female genetic maps. We also demonstrated that

this QTL mainly controls the presence/absence of prickles (Figure 24) using the ‘two-part’ QTL method.

Interestingly, for PM inmales, the QTL on LG3may also be involved in regulating prickle density (severity in

the two-part QTL analysis; Figure 24). A similar phenomenonwas observed for the petal numberwith a locus

on LG3 that controls the difference between simple and double petals, and a variance of the petal number

that exists within the double petal flower is controlled by another locus (Roman et al., 2015; Hibrand-Saint

Oyant et al., 2018).

We further enhanced the description of QTLs on LG3 that affect the presence/absence of prickles. A

significantly distorted segregation was observed at the peak marker position. That unusual segregation ratio

might be explained by the presence of a self-incompatibility locus (Hibrand-Saint Oyant et al., 2018) near

the peak marker for this QTL. On the basis of the phenotype-genotype relationship (Figure 27), we proposed

that the PRICKLE alleles on this QTL are both heterozygous (np/P) in OB and RW, and that the presence of

prickles is controlled by a dominant allele (np/P or P/P), and that the glabrous stem in the progeny is due to

the combination of the two recessive alleles coming from both parents (np/np). These results are important

for breeders who need to combine recessive alleles to obtain glabrous roses, an allelic combination that

can be difficult in tetraploid roses. Development of specific molecular markers of the recessive allele may

by useful for breeders. However, it should be noted that the actual markers used (peak of the QTL) are

only closely linked to the PRICKLE locus and few recombinants are observed in the progeny. Furthermore,

the phenotype of the individuals with the two recessive alleles (bd phenotype; Figure 27) are not stable

and some of the hybrids were regularly seen to develop some prickles on parts of the stems. Indeed, this

phenomenon is widespread in roses. Rose breeders have reported that glabrous mutants have either been

unstable for the prickless trait (Nobbs, 1984; Rosu et al., 1995), or reverted to the prickly character after a

freezing winter or other environmental stresses (Nobbs, 1984; Oliver, 1986; Druitt and Shoup, 1991; Canli,

2003). Taken together, we assumed that a single major locus on LG3 controlled the absence/presence of stem

prickles. Further investigations are necessary to more closely identify molecular markers (for molecular

assisted breeding) and the mechanisms behind the instability.

In the ac, ad and bc genotypes, each genotype has a continuous quantitative trait, indicating that there are

other loci responsible for prickle density variance. Other QTLs affecting quantitative traits were detected on

LG4 in OB and on LG1 and 3 in RW (Two-part QTL analysis; Figure 24). The LG4 QTL has a strong effect

on PM but a weak effect on PF. For the QTL on LG1, it only had a weak effect on PF and on PM in 2018.

Those three loci are related to the density of prickles, indicating that there are multiple genes responsible

for the density trait, and that those genes have a different effect on the different stems.

3.4.3 Detected QTLs are conserved in the Rosa genus and the Rosideae subfamily

Thanks to the link between genetic maps and reference genome sequences (Hibrand-Saint Oyant et al.,

2018), we were able to compare our results with previous genetic studies by associating genetic mapmarkers.
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A QTL was previously detected on LG3 in different diploid and tetraploid populations (Crespel et al.,

2002; Linde et al., 2006; Koning-Boucoiran et al., 2012; Hibrand-Saint Oyant et al., 2018; Bourke et al.,

2018a), which is consistent with our results: a strong QTL on Chr3 with a high LOD value was detected in

all of the environments (across and between years and types of stems). This demonstrated that Chr3 QTL

is a robust QTL detected independently of ploidy and the environment, and is present in various genetic

backgrounds.

Recently, three QTLs on LG3, 4 and 6 were detected in the tetraploid K5 population with a high density

of SNPs genetic map (Bourke et al., 2018a). Interestingly, the QTLs identified from the diploid (OW) were

almost identical to tetraploid (K5) populations (LG3, 4 and 6), with the slight difference that we also detected

a weak QTL on LG1, which was only significant in males for two of the years. This slight difference might be

due to the genetic background of the parents of the K5 and OW populations. In fact, in K5 populations, one

parent is prickly and the other glabrous, whereas in OWpopulations, both parents have prickles. Bourke et al.

(2018a) reported that two SNP markers, K7826_576 (located on the Chr3: 37,706,920 pb) and K5629_995

(located on the Chr4: 57,791,999 bp) are linked to the stem prickle trait. When compared with our results,

K7826_576 is located within our Chr3 cQTL interval region (36,517,224 - 46,440,369 bp; Figure 26), and

K5629_995 is very close to our Chr4 QTL interval (46,189,407 - 56,107,784 bp). These results suggest that

QTLs detected on LG3 and 4 could be similar between OW and K5 progenies.

In Rosaceae, the genetic determinism of prickle was studied in raspberry (Rubus idaeus), where two

QTLs were detected on LG4 and 6 (Molina-Bravo et al., 2014). Using synteny viewer tools (https://www.

rosaceae.org/synview/search; Jung et al. (2014)), we checked the synteny. The region where the QTL

is located on LG6 in R. occidentalis (position 6.028Mb) is syntenic with a region on rose chromosome 2

(position 42.330 Mb), where no QTL for prickle density was detected in our study. The region where the

QTL 4 is located (position 0.101 Mb) is syntenic with the region on rose chromosome 4 (position 58.768

Mb), very close to the main QTL we detected on this chromosome (Table 4). These results could suggest

that the two QTLs in rose and raspberry might be syntenic and share a common evolutionary history. In

another publication, Graham et al. (2006) identified the gene H that controls cane pubescence. The locus is

mapped on LG2, which is syntenic with the rose LG6 where one of the QTLs is located, detected in R. x

wichurana. However, no precise location is available to allow us to assume a possible common origin.

3.4.4 Candidate gene below the QTL interval region

Prickles are assumed to originate from a ‘trichome-like structure’. In order to find a putative candidate

gene for the identified QTLs, we looked for homologue genes known to be involved in trichome initiation and

development in Arabidopsis. We annotated 15 rose TFs that, based on similarity, can be involved in trichome

development in rose: RcGL1, RcMYB82, RcMYB61, RcCPC, RcTRY,RcGL3, RcTT8, RcMYC1, RcTTG1,

RcTTG2, RcZFP5, RcGIS3, RcGIS2, RcZFP1 and RcGL2 (Supplementary Table A.3). Among them, a few

were below the detected QTLs: RcMYB61 and RcTTG2 below the QTL on LG3; RcGIS3 below the QTL

on LG4; and RcCPC, RcTRY and RcMYC1 below the QTL on LG1. ZFP5 (Chr04: 57,125,905 bp) is out of
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the QTL interval on LG4 in OW, but close to the peak LODmarker K5629_995 of QTL in the K5 population

(Chr04: 57,791,999 bp) (Bourke et al., 2018a). These genes are good candidates for the detected QTLs.

3.4.5 Candidate genes transcript expression in glabrous and prickle F1 individuals

We quantified ten TF gene transcripts in glabrous and prickle F1 individuals in different developmental

stages using RT-qPCR. Surprisingly, minor differences were observed between glabrous and prickle samples,

with themain differences occurring between developmental stages (as demonstrated by the heatmap analysis,

Figure 28 a). Based on transcript accumulation, this suggests that these homologues, known to be involved

in trichome initiation and development in Arabidopsis, are not implicated in prickle initiation in rose, leading

to the hypothesis that the two processes (trichome initiation and prickle initiation) might involve different

gene pathways. The candidate gene approach may not be appropriate and a non-a priori approach such as

a transcriptomic analysis could be done between individuals with and without prickles. Nevertheless, some

differences in transcript accumulation are observed between candidate genes. In the early stage (stage I),

only RcMYB61 and RcGIS2 are slightly more highly accumulated in glabrous stems. However, GIS2 and

MYB61 are positive regulators of trichome initiation (Gan et al., 2006), which is difficult to reconcile with

an increase in transcript accumulation in glabrous stems (Figure 28). Negative feedback regulation during

prickle initiation can explain this point, as regularly observed in trichome initiation (Pattanaik et al., 2014)

or, perhaps, differences are not at the transcriptional level. It could be interesting to sequence the genes in

the two parents to see if a mutation can explain the phenotype.

RcZFP5 may also be an interesting candidate gene. This gene showed a different regulation between

glabrous and prickly stems. At stage IIa, RcZFP5 shows a strong down-regulation in glabrous tissue, whereas

this down-regulation is observed later at stage IIc in tissues with prickles (Figure 28 c). Furthermore, this

gene is close to the QTL on LG4. Its early repression in glabrous stems might explain why no prickle

developed. In A. thaliana, ZFP5 controls trichome initiation through GA signaling (Zhou et al., 2011).

These data (concerning ZFP5 and MYB61) might suggest an implication of GA in prickle development.

However, this hypothesis needs to be functionally validated in rose.

Conclusions

Prickle structure is an undesirable trait, not only in rose but in most crops in general. We identified a

complex genetic determinism with a major locus on LG3 that controls the presence of prickles and a few

QTLs that control prickle density. Further studies are necessary to develop markers for breeding selection

and to identify the molecular bases. Using a candidate gene approach, we proposed different hypotheses

concerning the gene involved in prickle initiation in rose. Approaches such as transcriptomics may help to

identify new key regulators of prickle initiation and development in rose.
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4.1 Introduction

Prickles are non-vascular sharp appendages and can be easily distinguished from thorns and spines

which are modified stems and leaves respectively (and therefore they are usually vascularized). Many studies

have been reported on their ecological, evolutionary, and biogeographic implications. From a functional

perspective, spinescences (prickles, thorns, and spines) have been proposed as an effective defensive strategy

against herbivores (Janzen, 1976; Cooper and Owen-Smith, 1986; Belovsky et al., 1991; Gowda, 1996;

Burns, 2014; Wilcox, 2017).

A piece of paleontological works offered evidence that spinescence structure may appear in the late

Silurian (∼ 400 million years ago) which is before the mammal herbivores’ appearance (Chaloner, 1970).

Thus, the evolution of spinescences may not be a response to the pressure of large herbivores (like mammals)

but rather to other biotic or abiotic pressures (such as small herbivores like insects, reviewed by (Wilcox,

2017). While this is still a controversial topic since most researchers supported that spinescence evolved

against mammalian herbivores (Cooper and Owen-Smith, 1986; Burns, 2014). Nevertheless, in the process

of co-evolution with herbivores, plants have evolved an impressive defense system where spinescences play

a key role. Many types of spinescence have been produced (or modified) from the shoot, leaves, fruits,

pedicels, and even roots. Besides providing mechanical protection, the spinescence structures are frequently

cooperating with predatory pathogenic bacteria, fungi and toxic chemicals, enhancing their attack or defense
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ability (Halpern et al., 2007; Lev-Yadun, 2016). On thorns of Phoenix dactylifera and Crataegus aronia,

fifty-eight bacterial isolates were found and they are belonging to 22 different bacterial species: 13 of them

are known to be pathogenic for animals or humans, such as Clostridium tetani, a etiological agent of tetanus

(Halpern et al., 2007). Spinescence injuries have been reported to cause tetanus on humans and others

predators in several countries (Hodes and B., 1990; Pascual et al., 2003; Ergonul et al., 2003; Campbell et al.,

2009; Tadele, 2017). Thus, rose bush prickles can cause puncture wounds that resulted in tetanus (Pascual

et al., 2003). Important human diseases are caused by prickle wounding: mycetoma caused by Eumycetoma

(fungi) or Actinomycetoma (filamentous bacteria) and sporotrichosis diseases caused by Sporothrix schenckii

(fungi), are called “plant thorn synovitis” and “rose-thorn or rose-gardeners’ disease” respectively. The

most common route of infection is the introduction of spores to the subcutaneous cellular tissues through

a wound of the skin (Fahal, 2004; Barros et al., 2011; Vásquez-del-Mercado et al., 2012; Mahajan, 2014;

Kieselova et al., 2017). Dermatophytes that cause subcutaneous mycoses are unable to penetrate the body

and must be introduced into the subcutaneous tissue by a puncture wound (Willey et al., 2008). These

spinescence structures inject bacteria into herbivores (or other mammals as human) by wounding, they

may cause severe infections that are much more dangerous than the mechanical wounding itself (Halpern

et al., 2007; Lev-Yadun, 2016). Some bacteria species probably are adapted to live and multiply on the

spinescences (hence they are present in large numbers) and not just landed on the spinescence accidentally

(Halpern et al., 2007). Spinescence color is also an important aspect of the protective property. The

bright color prickles and other types of sharp appendages are frequently observed, especially in the juvenile

phases of development. This special character confers a selective advantage as herbivores learn to associate

conspicuous coloration with unpleasant qualities (Cott, 1940; Edmunds, 1974; Ruxton et al., 2004; Speed

and Ruxton, 2005).

In addition, the role of spinescences against insects is often neglected nowadays. Some species (such

as Acacia collinsii) developed large hollow spines as a habitat for ants, which protect the plants against

herbivory insects (Janzen, 1976). Prickles, such as those on roses, may play a role in reducing caterpillar

feeding by restricting their movement (Kariyat et al., 2017).

In the agricultural production process, prickle is an undesirable trait in many crops as roses because it

can injure workers and also damage crops (especially for cutting roses). Rose is a typical representative

of prickly plants with the most important economic value in ornamental plants. In roses, prickles are

distributed wildly on stems, pedicel, peduncles, leaves, or fruits, and their distribution on the organs is a

source of a large diversity within the Rosa genus. Two major categories of prickles on stem have been

described in roses: ‘non-glandular (NGP)’ and ‘glandular (GP)’ prickles (see Zhou et al., 2020, Chapter 2).

NGPs are normally unbranded and can be naked on the surface or covering with hairs (hairy). GPs can be

branched or unbranched, and the unbranched GPs also present the naked and hairy types (see Chapter 2,

unpublished yet). Unbranched and naked NGP is the most common type of stem prickle found in wild (see

Chapter 2). The genetic and molecular mechanisms underlying prickle initiation and development remain

still largely unknown. Four loci on linkage group 1, 3, 4, 6 have been detected to control stem NGPs in

OW population (Rosa chinensis ‘Old Blush’ × R. × wichurana) (see Zhou et al., 2020, Chapter 3). The
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major locus on LG3 was shown to control the absence/presence of NGPs. Another major locus on LG4

was associated with prickle density (Zhou et al., 2020). NGP are described as modified glandular trichomes

(Peitersen, 1921; Coyner et al., 2005; Kellogg et al., 2011; Ma et al., 2016b; Khadgi and Weber, 2020a).

However, this hypothesis was not supported by histological study and molecular data, as prickle does not

come from protoderm (or epidermis) but from groundmeristem under protoderm (see Chapter 2) and the rose

homologue of genes involved in Arabidopsis trichome initiation and development might not be controlling

prickle initiation and development in rose (see Zhou et al., 2020, Chapter 3). Further studies are necessary

to identify new key regulators of prickle initiation and development in rose.

Here our objectives are to decipher the gene network that controls prickle initiation and development

in rose using a transcriptomic approach. Using four F1 individuals of OW population, we present the first

profile of the transcriptomic changes during prickle initiation and development by comparing the transcripto-

me of rose stems with and without prickles and a detailed time-course transcriptomic analysis of prickle

development. This detailed analysis allows us to detect important regulators of prickle initiation and develop-

ment. By combine with previous genetic data (Zhou et al., 2020), we spotlight the best potential regulators

of prickle initiation. We provided pieces of evidence to support our new insight of non-glandular prickles

and trichomes have different gene pathways.

4.2 Materials and methods

4.2.1 Plant materials

A diploid OW population obtained from the female Rosa chinensis ‘Old Blush’ (OB) × the male Rosa

x wichurana (RW), were grown in a field and managed by the Horticulture Experimental Unit (INRAE,

Angers, France). We selected four once-flowering individuals: two presented non-glandular prickles (NGP)

(OW9071 and OW9137) and two are glabrous (OW9067 and OW9068). Those genotypes were vegetatively

propagated and grown in a greenhouse in November 2017. Harvesting was done in the morning fromMarch

27th to April 5th, 2018. We mixed OW9067 and OW9068 materials as prickless samples, and OW9071

and OW9137 as prickle samples. We randomly divided 18 cuttings per genotype into three groups as three

biological replicates. Under a microscope, unexpanded leaves and buds were removed, and we took samples

of stages I, IIa, IIb, IIc and III strictly according to previously described stages of prickle (P) and glabrous

stem (NP, stems at the same stages for P) (see Zhou et al., 2020, Chapter 2).

4.2.2 RNA isolation and experimental design

RNA was isolated according to Zhou et al. (2020). Total RNA concentration, RIN value, 28S/18S and

fragment size were measured using Agilent 2100 Bioanalyzer (Agilent RNA 6000 Nano Kit). Purity of RNA

was determined by agarose gel electrophoresis and ultraviolet spectrophotometer NanoDropTM.
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Experiment design depending on the morphological studies of developing rose prickle (see Chapter 2).

We designed two experiments to study genes involved in prickle initiation and development. 1) For prickle

development, stage I, IIa, IIb, IIc, III of P samples (refers to PI, PIIa, PIIb, PIIc, PIII respectively) and I and IIa

of NP samples (refers to NPI and NPIIa) were selected to search for gene expression patterns throughout the

prickle initiation and development. Compare the differentially expressed genes in PIIavsPI and NPIIavsNPI

to understand the specific and common genes that expressed in glabrous and prickle samples’ development.

We expected to answer what genes may be involved in prickle development. 2) Focus on prickle initiation,

stages I and IIa of prickless (NP, control) and prickle (P, treatment) samples were selected to research genes’

differential expressed in prickle and prickless. We expected to answer what genes may be involved in prickle

initiation. In total, 21 samples were sent for RNA sequencing, they are NPI, NPIIa, PI, PIIa, PIIb, PIIc, PIII,

each sample has three biological replications to verify the repeatability of the gene expression.

4.2.3 Generation of RNA-seq data

Library preparation and cDNA sequencing were performed at the Laboratory of the Beijing Genomics

Institute (BGI), Hongkong, China. All the samples were sequenced by BGISEQ-500 platform in a Pair-End

(PE)100 base pair run.

4.2.4 Bioinformatics analysis approach

We developed an RNA-seq analysis workflow that suitable for our data situation and for our project

purpose (Supplementary Figure B.1). We provide details of the parameters used in each step as follows:

4.2.4.1 Quality control of data processing and genome alignment

FastQC version 0.11.2 (Andrews et al., 2010) was used to assess the quality of the raw and clean

reads. RSeQC version 2.6.4 (Wang et al., 2012) was used to evaluate sequencing saturation, mapped reads

distribution, coverage uniformity, strand specificity and transcript level RNA integrity. IGV (Robinson et al.,

2011; Thorvaldsdóttir et al., 2013) tool was used to visualize the bam format file to check the distribution

of reads alignment on the reference genome. MultiQC (Ewels et al., 2016) was used to have an overview of

the results from FastQC, RSeQC, and STAR mapping.

4.2.4.2 Raw data filtering

Trimmomatic (Bolger et al., 2014) was used to trim low-quality bases and remove the shorter reads with

the following parameters: TruSeq3-PE.fa:2:30:10, LEADING:3, TRAILING:3, SLIDINGWINDO- W:4:15

and MINLEN:50. We kept the paired files as clean data for the next step analysis.
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4.2.4.3 Reference genome alignment and expression analysis

Rose reference genome sequence (Hibrand-Saint Oyant et al., 2018) and annotation fileswere downloaded

from the Genome Database for Rosaceae (GDR, (Jung et al., 2019)). STAR source code (Dobin et al., 2013)

and binaries were used to generate genome indexes and to run mapping jobs. Parameters ‘sjdbOverhang 99’

and ‘genomeSAindexNbases 13’ were used to build rose reference genome indexes. For reference genome

alignment, non-default parameters were set as follows: ‘outFilterType BySJout’, ‘outFilterMultimapNmax

10’, ‘outFilterMismatchNmax 6’, ‘alignIntronMin 20’, ‘alignIntronMax 20000’, ‘alignMatesGapMax 20000’,

‘outFilterIntronMotifs RemoveNoncanonicalUnannotated’, ‘outSAMprimaryFlag AllBestScore’, ‘outFilter-

-MultimapScoreRange 0’, ‘outSAMtype BAM SortedByCoordinate’, ‘outSAM-unmapped Within’.

FeatureCount source code (Liao et al., 2019) was used to count the number of sequence fragments that

have been assigned to each gene and summary the assigned information of unique mapped reads. StringTie

version 1.3.6 (Pertea et al., 2015) was used to calculate the normalized expression value, transcripts per

million (TPM), of each gene.

4.2.4.4 Identification of differential expression genes

DESeq2 package (Love et al., 2014) was used to test for differential expression. Reads per genes

calculated from FeatureCount were used for the input value. Condition formula was designed as multiple

groups, then used ‘coef’ argument of ‘lfcshrink’ function to extract comparisons of interest after fitting

the model. ‘lfcShink’ function (with lfcThreshold = 1 and type=‘apeglm’ (Zhu et al., 2019)) was used to

improve the previous estimator and to wrap up the result table. ‘subset’ function was used to export the result

table. When the svalue < 0.05 and |log2FoldChange| >1, we considered that the genes were significantly

differentially expressed (SDE).

4.2.4.5 Principal Component Analysis (PCA) analysis

PCA plot was carried out in R using the calibrate package. The input value (log transformation) is

calculated by DEseq2 with DESeqDataSetFromMatrix and rlogTransformation function.

4.2.4.6 Clustering expression pattern in the prickle development stage

TCseq package was used to do clustering analysis and visualization of prickle development sequencing

data (Wu et al., 2008). ‘DBanalysis’ function was used to perform differential binding analysis with setting

filter.type = ‘cpm’, filter.value = 1, samplePassfilter = 2. ‘timecourseTable’ function was used to constructs

time course table for clustering analysis with setting value= ‘expression’, norm.method = ‘cpm’, filter =

TURE. ‘timeclust’ function performed clustering analysis with setting algo = ‘cm’, k=9, standardize = ture.

‘timeclustplot’ function plot clustering results.
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4.2.4.7 Gene ontology and enrichment analysis

The similarity of the 44,481 annotated genes of Rosa chinensis ‘Old Blush’ was determined by pairwise

sequence comparison using the blastx algorithm against various protein databases (GDR, https://www.

rosaceae.org/species/rosa/chinensis/genome_v1.0) with an expectation value cutoff less than

1e−9 for the NCBI nr (Release 2017-07) and 1e−6 for the Arabidopsis proteins (TAIR10) (Hibrand-Saint

Oyant et al., 2018). 28,760 genes that have matched uniport SwissProt ID which was set as a reference

background for GO enrichment analysis. WithA. thaliana as the organism database andOver-Representation

Analysis (ORA) as themethod of interest, gene ontology (Biological process nonredundant, cellular compon-

entnonredundant, and molecular function nonredundant) functional database and Uniprot-SwissPort gene

ID were used for performing functional enrichment analysis, on the webGestalt 2019 platform (Liao et al.,

2019). For the SDE genes of PIvsNPI, we reported enrichment of biological process nonredundant when

the false discovery rate (FDR) was≤ 0.1. For the nine clusters of genes expressed in different patterns of the

prickle developmental stages, we reported the enriched category with the FDR≤ 0.05. With log10 of FDR,

we visualized the enriched GO in the different patterns of genes. When FDR = 0, we convert to -log10 (0)

as 10.

4.2.4.8 Protein-Protein Interaction Networks

We used STRING tool (https://string-db.org/) to search protein-protein interaction networks

between the candidate genes by searching SwissProt ID in A. thaliana dataset. The network type is full

network (the edges indicate both functional and physical protein associations). Active interaction sources

including textmining, experiments, databases, co-expression, neighborhood, gene fusion, and co-occurrence.

Minimum required interaction score is medium confidence (0.4). Clustering method is kmeans clustering

(number of clusters: 3).

4.2.4.9 Functional prediction for best candidate-genes

We first summarized the function information from the TAIR (https://www.arabidopsis.org/)

by using the A. thaliana (AT) homologs name. Then we used the UNIPROT (https://www.uniprot.

org/) to replenish the function information by searching SwissProt ID. AT homologs and SwissProt ID

were obtained from automatic annotation of ‘Rosa chinensis Genome v1.0’ (Hibrand-Saint Oyant et al.,

2018). For the most interesting genes, we performed gene family phylogenetic trees to represent evolutionary

relationships among family genes as previously described in Zhou et al. (2020). Using Geneious 9.1.7,

the family genes were searched in genome protein databases: A. thaliana (https://www.arabidopsis.

org), Rosa species (R. chinensis ‘Old Blush’ (Hibrand-Saint Oyant et al., 2018; Raymond et al., 2018), R.

multiflora (Nakamura et al., 2018), R. xanthina, R. rugosa, R. persica (Hibrand-Saint Oyant et al., 2018)), and

the other woody Rosaceae species (R. occidentalis genome (Van Labeke and Dambre, 1998), M. domestica

Borkh genome (Daccord et al., 2017), P. communis genome (Linsmith et al., 2019), P. armeniaca genome
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(Jiang et al., 2019), P. avium ‘Tieton’ (Wang et al., 2020), P. persica genome (Verde et al., 2017). The

genome protein databases of Rosaceae recourses were downloaded from the GDR databases.

4.3 Results

4.3.1 Quality control of RNA sequencing, data processing and genome alignment

All samples’ raw data have robust quality (Supplementary Figure B.2 a and b), as only a few reads were

trimmed and quality is equivalent between all samples. The average raw and clean database of the 21 samples

is 6.65 Gb and 6.46 Gb, respectively. In clean data, the Q20 and Q30 reads account for 98.87∼ 99.01% and

93.23∼ 93.88% respectively (Supplementary Table B.1). Using ‘Rosa chinensisGenome v1.0’ as reference

genome (Hibrand-Saint Oyant et al., 2018), we got 91.89∼ 94.45% uniquely mapped reads, and the average

of all was 93.34% (Supplementary table B.2). In addition, there are 2.11 ∼ 2.74% (average: 2.41%) reads

mapped on multiple loci. We noticed that the percentage of unmapped reads is higher for P stages than

for NP ones (4.37% versus 3.56%) (Supplementary Table B.2) and in P stage the percentage is higher for

later stages (IIb, IIc and III, more than 4%). Inner Distance distribution analysis showed that most of the

paired-reads in each dataset actually present high frequency overlapping each other (Supplementary Figure

B.2 d); this is a desirable outcome as the consensus of the overlapping sections of R1 and R2 provides extra

confidence for the bases. Junction Saturation analysis showed that the number of “known junction” reached

a plateau at 40% of total reads (Supplementary Figure B.2 e), indicating that we have enough coverage

depth to do downstream analyses. In addition, we found 64,578 - 73,566 novel junctions in the different

datasets (Supplementary Figure B.2 f), compared with the number of annotated splice junctions (99,155 ∼

103,557). The novel junction will greatly supplement the known junction’s database which can be used in the

alternative splicing studies. For the total of uniquely mapped reads, there are 91.39 ∼ 95.2% were assigned

to 44,481 genes features in the annotation file, 4.52 ∼ 8.37% were mapped to regions of reference genome

that were not annotated, and 0.23 ∼ 0.28% were ambiguously assigned (Supplementary table B.1). For

the differential analysis, we used only the reads mapped to sequences with ‘assigned feature’ to analyze the

differentially expressed genes. The database of ‘reads per gene’ of 44,481 genes in 21 samples is presented

in Supplementary Datasets 1 / sheet 1.

4.3.2 RNA-Seq data highly correlate with RT-qPCR data

Using a principal component analysis (PCA), each biological triplicates of a sample were clustered

together with a high correlation (Figure 29 a), indicate that they are highly reproducible. For the overall

expression patterns, first principal component (PC1) has large associations with the developmental stages

from I to III (from the left to right) with 72.8% variability. The second component (PC2) is more linked

with the different between NP and P at the early stages (NP at the bottom and P at the top for stages I and

IIa) with 18.6% variability. To evaluate the quality of the expression analysis by RNASeq (this study), we
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have selected nine trichomes-candidate genes whose expression has been studied by RT-qPCR on the same

samples at the same stages in a previous study to identify if the trichomes genes are controlling prickle

initiation (Zhou et al., 2020). Here, we have compared the nine genes’ normalized expression (TMP) by

RNA sequencing and relative transcript accumulation obtained by RT-qPCR. We found similar expression

pattern, indicating those two data were reliable and can support subsequent results (Figure 29 b). Since the

biological triplicates are highly reproducible, we used the sum of transcripts per million (TPM) values of

the triplicates as the expression level of the gene in the corresponding sample. The normalized expression

value (TPM) of all genes in all the samples are presented in the Supplementary Datasets 1 / sheet 2.

4.3.3 Which genes may be involved in prickle development?

4.3.3.1 Discover SDE genes from comparing prickle developmental stages

To decipher the gene network controlling prickle development, we selected stages I, IIa, IIb, IIc, and III

of prickle samples and stages I and IIa of glabrous samples. Condition design set as PIIavsPI, PIIbvsPIIa,

PIIcvsPIIb, PIIIvsPIIc (as ‘Treat’vs‘Control’). 914 (650 up- and 264 down-regulation), 580 (509 up and

71 down), 3444 (2434 up and 1010 down), 3837 (1929 up and 1908 down) SDE genes (svalue < 0.05,

|LFC| ≥1) were detected from those comparisons, respectively (Supplementary Figure B.3, Supplementary

Datasets 2 / sheet 1-4). The SDE genes between early stages (PI and PIIa, PIIa and PIIb) are fewer in number

comparing to those differentially expressed between later stages (PIIb and PIIc, PIIc and III). There are 329,

84, 1820 and 2259 unique SDE genes between PIIa and PI, PIIb and PIIa, PIIc and PIIb, PIII and PIIc

respectively; only 38 are in common between the 4 comparisons (Figure 30 a, Supplementary Figure B.3,

Supplementary Datasets 2 / sheets 6-17).

As previously described (Chapter 2, Figure 13), prickles develop in parallel with stem: stage I correspond

to early developmental stages of the stem after bud-outgrowth (prickle initiate just below the shoot apical

meristem) and stage III corresponds to a stage where internode are fully developed (Chapter 2, Figure 13).

For glabrous individuals, we have selected stages corresponding to the same stage of stem development as

stages I and IIa for prickle samples (Chapter 2, Figure 13). In order to obtain more useful information, we

investigated the SDE genes that were shared or not shared with prickle and stem development. We discovered

1484 (894 up and 590 down) SDE genes involved in NPIIavsNPI (Supplementary Datasets 2 / sheet 5), these

genes are supposed to be involved in stem development. By comparing with the SDE genes of PIIavsPI, we

discovered 363 (282 up and 81 down) SDE genes specifically involved in PIIavsPI, and 933 specifically in

NPIIavsNPI (Supplementary Datasets 2 / sheets 18-19); and 551 in common (362 and 183 SDE genes were

both up- and down-regulation between stage I and IIa of prickle and glabrous cultivates; 6 SDE genes were

up-regulated in PIIavsPI but down in NPIIavsNPI) (Figure 30 b , Supplementary Datasets 2 / sheet 9). For

those ‘specific’ and ‘common’ SDE genes, we performed the Gene Ontology (GO) and enrichment analyses

to hunt their functional characteristics (Supplementary Figure B.4).

The 363 unique genes of PIIavsPI were supposed to be specifically involved in the early stage of prickle
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development, not in stem. Among these genes, we found that many genes are enriched involved in ‘cell

recognition’ and ‘secondarymetabolic process’. Furthermore, we observed enriched genes were for respond-

ing to gibberellin and karrikin (Supplementary Figure B.4 a).

Of the ‘common’ SDE genes, we noticed many genes involved in organ development, such as the top

5 enriched GO biological processes ‘anatomical structure formation involved in morphogenesis (ASFIM)’,

‘post-embryonic plant morphogenesis’, ‘pattern specification process’, ‘floral whorl development’ and ‘shoot

system development’. We also gained ‘common’ genes response to auxin, cytokinin, and nitrogen compo-

und. We even discovered common genes that are involved in the phosphorelay signal transduction system

and tropism (Supplementary Figure B.4 b). These functions are expected as these genes are supposed to be

involved in the early stages of stem or/and prickle development.

Of the ‘specific’ SDE genes only involved in glabrous stem development from stage I to IIa (Supplement-

ary Figure B.4 c): organ development processes were also discovered as enrichment, represented by ‘plant

organ morphogenesis’, ‘leaf development’, and ‘ASFIM’; We found the top significant enriched GO process

involved in response to auxin, and then in ‘monovalent inorganic cation transport’, ‘protein autophosphoryla-

tion’, ‘fatty acid derivative metabolic process’ and ‘secondary metabolic process’. These 933 SDE genes are

supposed to be specifically involved in the early stages of glabrous stem development.

4.3.3.2 DE genes expression pattern in developmental stages

Towell understand the genes expression patterns in the prickle developmental stages, we performed time

course sequencing (Tcseq) analysis for all stages of prickle samples. A total of 6958 differential expression

(DE) genes were detected and clustered in nine groups, showing different expression patterns during the

prickle and stem development (Figure 30 c). The gene list and annotation information for the genes of each

cluster are presented in Supplementary Datasets 3 / sheets 1-9. We exported the DE genes that ‘membership

value’ > 0.5 of each cluster, and obtained 523, 1018, 291, 195, 424, 458, 619, 1097, 1157 DE genes involved

in clusters 1, 2, 3, 4, 5, 6, 7, 8 and 9 respectively. For those DE genes of each pattern, we performed the

Gene Ontology (GO) and enrichment analyses to hunt their functional characteristics. We then checked the

GO enrichment biological process and cellular component process. Statistically significance enriched (SSE)

categories (FDR < 0.05 set as cut-off value) were presented in Figure 30 d.

Cluster 1 genes mainly expressed in stage I (Figure 30 c). We observed several SSE-GO processes

highly associated with organ formation, represented by ASFIM, cell proliferation, cell fate commitment,

post-embryonic plant morphogenesis, anatomical structure arrangement, floral whorl/organ development,

shoot system development, phloem or xylem histogenesis, peptidyl-amino acid modification, meristem and

leaf development (Figure 30 d).

Cluster 2 genes mainly expressed in stages I and IIa, and their expression decreases as the prickle

and stem develop (Figure 30 c). In this cluster, we clearly observed a large number of SSE-GO (FDR <

0.05) processes associated with cell proliferation, cell cycle, cell division, organelle fission/assembly, RNA
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Figure 30: DE gene expression patterns in the development stages and their function enrichment. Venn
diagrams (a, b) show the number of SDE genes across compared conditions. Total: total number of
SDE genes; Up: up-regulated genes; Down: down-regulated genes; DR: differently-regulated genes in two
comparison groups. Comparison group referred to as ‘Treat’vs‘Control’. (c) Time course sequencing (Tcseq)
analysis showed the DE gene expression patterns in all the stages of prickle tissues. (d) A heatmap presented
the enriched GO processes of genes in each pattern.

modification, chromosome segregation, DNA conformation change/replication/recombination, ribonucleop-

rotein complex biogenesis, movement of cell or subcellular component, microtubule-based process, regulation

of DNA metabolic process, protein-DNA complex subunit organization, regulation of cellular component

organization, cytoplasmic translation (Figure 30 d). SSE-GO cellular component process located in chromos-

ome, cytosolic part, ribosome, nucleolus, supramolecular complex, phragmoplast, polysome, cytoskeleton,

DNApackaging complex, protein-DNAcomplex, pre-ribosome, small nucleolar ribonucleoprotein complex,

transferase complex, anchored component of membrane (Figure 30 d). Those processes are all important

and highly associated with the anatomical features of prickle development from stage I to stage IIa (14d-f).

Cluster 3 genes mainly expressed in stages IIa and IIb. Cluster 4 genes are mainly expressed in stages

IIa, IIb and IIc (with highest expression in stage IIb) (Figure 30 c). No SSE-GO biological process was found

in these two patterns, but we can observe some genes of cluster 3 that are involved in plant epidermis and

embryo development (not shown in Figure 30 d since they are not significant), and several genes of cluster 4

that are involved in cell wall modification and different types of metabolic processes (not shown in Figure 30

d). The SSE-GO cellular component located in cytosolic part, ribosome, anchored component of membrane

and plant-type cell wall.

Cluster 5 genes mainly expressed in stage IIc (Figure 30 c). In this cluster, we observed a large change

of the SSE-GO terms (Figure 30 d). This cluster gathers mainly genes involved in response to different

stimuli (nitrogen compound, wounding, ethylene, jasmonic acid, auxin, drug catabolic process, organic

cyclic compound), defense response to insect, and phosphorelay signal transduction system. GO Cellular

Component process mainly located in anchored component of membrane, plant-type cell wall and plasma

membrane part.

Clusters 6 and 7 genes mainly expressed in stages IIc and III with different patterns. The transcript

accumulation in stage IIc of cluster 6 is obviously higher than in stage III, but relatively higher in stage III

of cluster 7 (Figure 30 c). Enriched genes are responding to bacterium were still observed in these clusters.

In Cluster 6 genes, new SSE-GO processes were observed that involved in the cell wall (modification,

organization, biogenesis), protein autophosphorylation and polysaccharide metabolic processes. The cell

wall (biogenesis, organization) and protein autophosphorylation were also enriched in cluster 7. Except

that, we observed new SSE-GO biological processes involved in cell wall macromolecule metabolic, and

cellular component macromolecule biosynthetic process. GO cellular component process mainly located in

the anchored component of membrane and plant-type cell wall also observed in cluster 5 (Figure 30 d).

Clusters 8 and 9 genes mainly expressed in stage III. A slight difference between the two clusters
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is that the genes of cluster 8 are also relatively low expressed in stage IIc and cluster 9 genes are not

(Figure 30 c). For the biological process, we still can observe cell wall (biogenesis, organization), defense

genes response to bacterium and protein autophosphorylation processes in cluster 8 pattern. New and

specific enriched processes appear in cluster 8 including cell surface receptor signaling pathway, cation

transmembrane transport, and response to oomycetes and virus. ‘cell recognition and inorganic ion transme-

mbrane transport’ as the new processes are both enriched in cluster 8 and 9. The ‘anion transport, secondary

metabolic process and cell death’ processes were specifically enriched in cluster 9 (Figure 30 d).

4.3.4 Which genes may be involved in prickle initiation?

4.3.4.1 Genes significant differential expressed between prickle and glabrous cultivars in the early

stage of prickle initiation

To decipher the gene network controlling prickle initiation, we compared the early stage of prickle

development (Stage I) with the non-prickle plant at the same developmental stage (PIvsNPI). Using the

DEseq2, we detected 2939 genes (1159 up- and 1780 down-regulars) are significantly differential expression

(SDE, svalue < 0.05 and |LFC| ≥ 1) between the stages I of prickle and glabrous samples (Supplementary

Figure B.3 PIvsNPI, SupplementaryDatasets 4 / sheet 1). Then 356 geneswith low expression (corresponding

to a gene whose sum TPM was below 1.5) both in PI and NPI were removed (Figure 31). Using a heatmap,

we visualized the co-expression pattern of the 2583 SDE genes (z-score transformed TPM value) in all the

samples (Figure 31 b, Supplementary Datasets 4 / sheet 2). A large set of genes are specifically highly

expressed in NPI, or both in NPI and NPIIa (Figure 31 b). Interestingly, these kinds of genes are rarely

expressed in prickle samples. We suggested those genes can be considered as a candidate gene pool which are

negative regulators for prickle initiation or positive regulators for glabrous phenotype. Another set of genes

are mainly expressed in prickle samples, and rarely expressed in glabrous samples, they were considered as

a candidate pool of positive regulators that control prickles initiation and development.

In addition, we found that numerous genes specifically highly expressed in PIIb, PIIc, or PIII, but with

relative lowly expression in PI, are also generally low expression in NPI (Figure 31 b). The expression

patterns of these genes are similar to the expression pattern of genes from clusters 4, 5, 6, 7, 8 and 9 (Figure

30 c). Coupled that we have revealed those clusters’ genes are mainly involved in the later stage of the cell

wall (modification, organization, biogenesis) and response to different stimuli, etc (see the previous section,

Figure 30 d). Hence, to identify the genes specifically involved in the prickle initiation, we removed 465 SDE

genes that already presented in cluster 4, 5, 6, 7, 8 and 9 to gain insights into the function of the remained

SDE genes (Figure 31 c). On the remaining 2118 SDE genes Supplementary Datasets 4 / sheet 3, 1075

genes have functional annotations (based homology search (Supplementary Datasets 4 / sheet 4)). Used their

homology’s UniProt-SwissProt ID, we performed gene ontology (GO) and enrichment analyses (Figure 31

h). Interestingly, the top of enriched biological process (non-redundant) is involved in post-embryonic plant

morphogenesis (FDR = 0.005), then is fatty acid metabolic process (FDR = 0.01) and cell fate commitment

(FDR = 0.05). In addition, we found several SSE-GO biological processes with FDR value higher than 0.05
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Figure 31: Data-mining workflow to identify the best candidate-genes for prickle initiation. Significant
differential expression (SDE) genes identified from stages I and IIa between prickle and prickless samples
using DEseq2 (step1). Low expressed SDE genes (corresponding to whose sum TPM was less than 1.5)
were removed (a, d). The relative expression of the remaining SDE genes were visualized (b, e) in order to
check their expression patterns in all the samples (step 2). The genes that are mainly expressed in the later
stages were removed (c and f): for SDE genes of stage I and IIa, we first filtered the genes with a relatively
low expression in stage PI (c) and PIIa (f). We then filtered the genes presented in clusters 4, 5, 6, 7, 8 and 9
(c) and 5, 6, 7, 8 and 9 (f), respectively (step 3). Two methods to narrow the range of the best candidate genes
(promoters or inhibitors) for prickle initiation were used (step 4): (1) The two groups of SDE genes (g) are
compared to each other to retrieve the specific and common SDE genes involved in stages I and IIa; (2) The
genetic and transcriptomic approaches were combined to reveal the SDE genes (PIvsNPI) that are located
under the confidence interval of the prickle loci on chromosome 3 (OB3) and 4 (OB4) (i), ‘29’ and ‘14’ refer
to the number of SDE genes under the intervals. Venn diagram (g) of the number of SDE genes between
the different conditions. Total: total number of SDE genes; Up: up-regulated genes; Down: down-regulated
genes; DR: differentially-regulated genes between the two comparison groups. Comparison group named
as ‘Treat’vs‘Control’. Gene Ontogeny enrichment function analyses were used to check the function of the
SDE genes in each step. (h) A graph showing the GO terms enriched (FDR < 0.1) for the unique, common,
and total SDE genes of stages I and IIa.

but less than 0.1 are also highly associated with the morphological characters. Such as, ‘cell death’, ‘cellular

component morphogenesis’, ‘multi-multicellular organism process’, ‘ASFIM’ are all important for the organ

formation. ‘Protein phosphorylation’ is the most basic, common and important mechanism for regulating

and controlling protein vitality and function. Thus, we suggested this relatively narrow range of SDE genes

(2118) can be used as the candidate genes pool for further step analysis. The co-expression pattern of the

genes involved in those SSE-GO biological processes were visualized in Supplementary Figure B.5 and the

supporting databases presented in Supplementary Datasets 4 / sheet 5.

4.3.4.2 Narrow the range of good candidate genes for prickle initiation

Stage I of the prickle sample included initiation and the beginning of development (grow out). Consider-

ing the development of prickle in stage I is a result of the prickle cell division (or cell proliferation) process,

and this process is also observed in stage IIa (see Chapter 2, Figure 14). Therefore, we investigated the

‘unique’ and ‘common’ SDE genes for stage I and IIa between the comparisons of PIvsNPI and PIIavsNPIIa

(Figure 31 g) to mine the more interesting genes which specially involved in prickle initiation. We expected

to concentrate on the genes who mainly involved in initiation. First, we discovered 2369 genes (987 up-

and 1382 down-regulars, Supplementary Datasets 4 / sheet 6) were significantly differential expression in

PIIavsNPIIa (Supplementary Figure B.3 PIIavsNPIIa, Figure 31). Using the similar filtering methods as

previously done for PIvsNPI, we first removed 324 low expression genes (Figure 31 d) and then filtered

out the genes (300) that are present in clusters 5, 6, 7, 8, 9 (Figure 30 c), and 1745 SDE genes passed the

filter (Figure 31 f). The normalized expression (TPM) and the functional annotation of these SED genes are

presented in Supplementary Datasets 4 / sheet 7. We then compared these 1745 genes with the 2118 SDE

genes of PIvsNPI (Figure 31 g, Supplementary Datasets 4 / sheet 8-15), and found that a large number of

genes (1458) are in common between the two-stages comparison: 536 are up- and 921 are down-regulated

and only 1 present an opposite pattern of expression (Figure 31 g). However, for genes of that large group,

we only found ‘cell recognition’ enriched biological process (Figure 31 h), but we noticed that among the
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Figure 32: Detailed analysis of the 660 specific SDE genes of stage I between P and NP samples. (a)
GO tree view showing the enriched GO terms involved. The dark blue background with white font and
the light blue background with blank font indicate that the GO terms are enriched at a significant level
FDR < 0.05 and 0.05 < FDR < 0.1, respectively. (b) Heatmap showing the co-expression pattern of the
SDE genes (involved in the seven enriched biological process Figure 32 a) in all the samples. Arabidopsis
protein inside brackets refers to the homologue of rose protein, rose proteins are obtained from automatic
annotation. (c) Protein-protein network between the SDE genes which are presented in Figure 32 b. Network
nodes represent proteins. The network is clustered to three clusters using kmeans clustering method, and
same color of node refers to one cluster. Filled and empty nodes indicate some 3D structure is known (or
predicted) and unknown respectively. Edges represent protein-protein associations (associations are meant
to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily
mean they are physically binding each other.). Different colors of line refer to the different types of data
support, the detail have been showed on the Figure 32 c.

other enriched GO terms involved in both ‘total’ of PIvsNPI and PIIavsNPIIa, some genes belong to the

‘common’, some to the ‘unique’. 660 SDE genes are unique in stage I with 308 up- and 352 down-regulated

genes (Figure 31 g). Interestingly, we observed many unique SDE genes were especially involved in seven

enriched (FDR>0.1) biological process which contents ‘post-embryonic plant morphogenesis (PEPM)’,

‘fatty acid metabolic process (FAMP)’, ‘cell fate commitment (CFC)’, ‘monocarboxylic acid biosynthetic

process (MABP)’, ‘ASFIM’, ‘secondary metabolic process (SMP)’ and ‘pattern specification process (PSP)’

(Figure 31 h). 287 SDE genes are unique in stages IIa with 137 up- and 160 down-regulated genes (Figure 31

g), and no enriched biological process was identified in this group (Figure 31 h). Those results of function

prediction are highly consistent with the morphological characteristics: PI stage corresponds to initiation

and first development processes (see Chapter 2), and the 2118 SDE genes of PIvsNPI contain the genes

special involved in prickle initiation, development or in both processes.

The 660 unique SDE genes of PIvsNPI contents the most interesting of the SSE-GO biological processes

associated with prickle initiation, we suggest that they can be as the priority candidate genes for studying

prickle initiation. We visualized a Gene Ontology Tree using the weighted set cover of the WebGestalt tool

to intuitively display the relationship network of SSE-GO processes of these 660 unique SDE genes (Figure

32 a, Supplementary Datasets 5 / sheets 1). The FMP, MABP and SMP processes are the sub-processes of

metabolic process; the PEPM, CFC, PSP and ASFIM are the sub-processes of developmental and cellular

process. A heatmap (Figure 32 b) showed the co-expression pattern of the genes which belong to the seven

SSE-GO terms display in Figure 32 a. Most SDE genes are highly co-expressed in prickless samples, and

only a few genes in prickle samples. Different GO terms sometimes shared common genes, such as the

homology of AFO, JAG, ROXY1, DOT5, YBA5 (Supplementary Figure B.5). Some genes may be duplicated

genes or genes from multifamily (same functional annotation). This is the case for the homologues of

MYB106 (Four homologue genes are co-expressed in NPI), AFO and FAD5 (two homologues genes are

co-expressed in NPI) (Figure 32 b). We also studied the protein-protein network between these genes

(Figure 32 c, Supplementary Datasets 5 / sheet 2-3). A protein interaction networks between 25 (out of

37 in total) protein was detected with setting a minimum required interaction score (0.4 confidence). This

network is clustered to three clusters using kmeans clustering method, and same color of node refers to one

cluster. The green groups are associated with metabolic process. The blue and red groups are associated with
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developmental and cellular process and these genes have been reported to be involved in the different organs

or tissues development, the best known were: petal, floral or inflorescence development process, represented

by JAG, AFO, ROXY1, BOP2, SDD1; leaf development process, represented by AS2, JAG, KNAT1, BOP2,

WOX1 andWOX3; embryonic shoot apical meristem development, represented by AFO, YAB5, YAB2, TCP4,

KNAT1; the initial decision of protodermal cells, represented by ERL1, ERL2; the ovary transmitting tract

cells and pollen tube growth, represented by NTT ; cutin or cuticular wax formation, represented by CER2,

CER4, KSC6, ABCG11, LACS2. Our studies supported that those gene homologue in rose (Figure 32 b)

probably have function involved in promoting or inhibiting prickle initiation.

4.3.4.3 Highlight the best candidates by combining transcriptomics and genetic approaches

Using a genetic approach, we have identified twomajorQTLs on Linkage group (LG) 3 and 4, controlling

the presence and the density of prickles on stem (Zhou et al., 2020). By linked SNP markers with the

reference Rosa chinensis Genome v1.0 (Hibrand-Saint Oyant et al., 2018), we obtained 95% overlapping

confidence interval of cQTLs (cQTLoci): LG3 (Chr03: 36.52Mb∼ 46.44Mb), LG4 (46.18Mb∼ 56.11Mb)

(see Zhou et al., 2020, Chapter 3). Here, we combined the genetic and transcriptomic data: among the 2118

candidate genes discovered from PIvsNPI SDE genes, 29 and 14 SDE genes were located within cQTLoci

of Chr03 and Chr04 respectively (Supplementary Table 4, Figure 31 i).

With TPM normalized expression value, we studied the co-expression patterns of those 43 SDE genes

in all the samples. Two main expression patterns are observed with genes mainly co-expressed in prickle

and prickless samples respectively at stage I (Figure 33 a). To gain information on the potential function

of those 43 genes, we summarized the functional annotation based on their homologs in A. thaliana (AT)

(Supplementary Table B.4). 13 out of 43 genes have no similarity (E-value < 1e−6) in AT, our transcriptomic

study supported that they might be involved in prickle initiation (and development). For others, we presented

the nomlized expression (TPM) in all the samples (Figure 33 b), and we selected the ten most promising

genes based on their putative function (from AT similarity) (Figure 33 b in red) and discussed in details:

RC3G0389900 and RC4G0448500 belong toWUSCHEL-related homeobox (WOX) gene family (Supp-

lementary Figure B.6 a). WOX members are known to be involved in different organ development, for

example, in shoot meristem of Petunia and Antirrhinum majus (Stuurman et al., 2002; Kieffer et al., 2006),

in root apical meristem of A. thaliana (Sarkar et al., 2007), in ovule development of Arabidopsis (Park

and Luger, 2006), in petal and carpel fusion of Petunia and Arabidopsis (Vandenbussche et al., 2009), in

adaxial/abaxial patterning of leaves (Nakata et al., 2012) in Arabidopsis, in lateral root development and root

hair formation in rice (Yoo et al., 2013; Sun et al., 2017), in conferring glabrousness of rice leaves and glumes

(Angeles-Shim et al., 2012). In rose, WOX genes is a large family, we found 209/381 WUSCHEL-like

annotated genes in the twoRosa chinensis ‘Old Blush’ Genomes (Hibrand-Saint Oyant et al., 2018; Raymond

et al., 2018). Interestingly by phylogenetic analysis, RC3G0389900 and RC4G0448500 belong to a clade

with no Arabidopsis representatives (Supplementary Figure B.6 a), we named them as RcWOX-g1 and

RcWOX-g2 respectively. We found that these two genes have a few duplicates (Supplementary Figure B.6
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Figure 33: Best candidate-genes were selected by combining genetic and transcriptomic approaches. (a)
A heatmap shows the co-expression pattern of the candidate-genes (forty-three SDE genes between PI and
NPI stages) that located under the confidence intervals of prickle loci on LG 3 and 4. (b) The normalized
expression (TPM) of candidate genes in the different stages of prickle (P) and glabrous (NP) samples. The
best ten candidate-genes based on their potential function in prickle initiation were highlighted in the red.
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a). Using the synteny tool of the GDR (https://www.rosaceae.org/synview/search), we confirmed

RchiOBHm_Chr3g0450921 and RchiOBHm_Chr4g0441541 are the alleles of RC3G0389900 andRC4G04-

48500, respectively. Protein alignment showed they are highly heterozygous in OB genotype. TheWUS-box

motif ‘T-L-X-L-F-P-X-X’ (van der Graaff et al., 2009) was not conserved in RC3G0389900 and deleted

in RC4G0448500 (Supplementary Figure B.6 a), and lost in all the orthologs duplication in the haploid

chromosome (Hibrand-Saint Oyant et al., 2018). In addition, their orthologs were only found in rose species

and R. occidentals (prickle plants), suggesting a recent duplication in the Rosoideae plants. These two genes

are highly expressed in stage I of prickless sample and near no expression in all the stage of prickle samples

(33b), suggesting they are up-regulated in glabrous stem or down regulated in prickless genotypes and should

be involved in repressing prickle initiation.

RC4G0393200 (RcJAG) encodes a putative C2H2 andC2HC zinc fingers superfamily protein (Supplem-

entary Figure B.6 b). Its ortholog, AT1G68480(JAG), together with NUB/JGL function to define stamen

and carpel shape, together with AS1 and AS2 define sepal and petal from their boundaries (Xu et al.,

2008). RC4G0398800’s ortholog, AT1g13290 (DOT5), also belong to C2H2 zinc finger protein family

(Supplementary Figure B.6 b). In AT, DOT5 is required for normal shoot and root development (Petricka

et al., 2008). Both rose genes have a specific high expression in the early stage of glabrous stems, suggested

that they may function as prickle initiation repressors (33b).

RC3G0419900 (RcAS2) encodes ASYMMETRIC LEAVES 2 (AS2) like protein and belongs to LATE-

RALORGANBOUNDARIES (LOB) domain family (Supplementary Figure B.6 c). AS2 controls proximal-

distal patterning in Arabidopsis petals (Chalfun-Junior et al., 2005) and leaves (Ueno et al., 2007), adaxial/

abaxial axis specification of leaves (Wu et al., 2008). The as2mutant presents leaves with defect phenotype.

scal-l as2 double mutant develops spines on the edge of the leaf (Mateo-Bonmatí et al., 2015). In rose,

RC3G0419900 is especially highly expressed in NPI stage, and its expression is very low in stage PI, and

no expression is detected in other stages (33b). Thus, AS2 homolog is a good negative candidate gene for

prickle initiation.

RC3G0386900 (RcAKR1) belongs to NAD(P)-linked oxidoreductase superfamily protein. In OB, this

gene has five duplicates with highly-similar (> 85%) sequence and, the five genes are present in cluster

under the QTLs of chromosome 3 (Supplementary Figure B.6 d). Its orthologs, GmAKR1 inhibits nodule

development in soybean (Hur et al., 2009). Interestingly, the sequences of RC3G0386900 and GmAKR1

are highly conserved in different species. RC3G0386900 were relatively highly expressed in early stage of

glabrous stems. Therefore, it is a good candidate for repressing prickle initiation.

RC3G0394400 (RcMMD1) encodes a PHD-domain containing protein, itsA. thaliana ortholog isMALE

MEIOCYTE DEATH 1 (MMD1, AT1G66170) (Supplementary Figure B.6 e) which is required for male

meiosis (Yang et al., 2003). RC3G0394400’s expression is highest in PI and significantly decreases as

prickles develop (it may be linked with the gradual pattern ability of cell to divide), its expression in PI is

fourteen times more than in NPI (33a). These supported that RcMMD1 is a good candidate gene for prickle

initiation and may promote the mitotic process of prickle cell differentiation and proliferation.
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RC3G0416400 (RcNAP1-like1) encodes a nucleosome assembly homolog protein (Supplementary Figure

B.6 f). Its homolog, NAP1, is involved in cell differentiation and cell population proliferation (Galichet

and Gruissem, 2006), DNA repair and somatic homologous recombination (Zhou et al., 2016), as positive

regulators in ABA signaling pathways (Liu et al., 2009). RcNAP1-like1 is expressed in both prickle and

non-prickle samples. The expression is higher in prickle samples than in glabrous ones, its expression

decreases progressively as prickles develop. In early stages (stages I and IIa), its transcript accumulation is

three times higher in prickle stems than in glabrous ones (33b). Therefore, RcNAP1-like1 is a good candidate

for the cell differentiation or proliferation required for prickle formation.

RC3G0350900 (RcPKL) encodes Chromodomain helicase DNA-binding (CHD) homolog protein (Sup-

plementary Figure B.6 g). Its ortholog, AT2G25170 (PKL, CHD3, SSL2, SLR2, PICKLE, LWR1) negatively

regulates auxin-mediated later root formation in Arabidopsis by chromatin remodeling (Fukaki et al., 2006).

PKL also plays an important role in other organ development such as hypocotyl, leaf, and inflorescence stem

elongation (Park et al., 2017), and activation of FLOWERING LOCUS T (FT) to promote flowering (Jing

et al., 2019). Interestingly, in rose three RcPKL homologue genes were found in cluster on chromosome

3 and a fourth one located on chromosome 6. The transcript accumulation of RC3G0350900 in NP is two

times higher than in P at stages I and IIa (Figure 31 b), suggested it may be a good negative candidate for

prickle initiation.

RC3G0359600 (RcAMI1) encodes an amidase signature homolog protein (Supplementary Figure B.6 h).

Its homolog, AT1G08980 (AMI1), is involved in auxin and indoleacetic acid biosynthetic process (Pollmann

et al., 2003). RC3G0359600 relatively highly expressed in all the stages of prickle samples and lowly

expresses in glabrous samples, this may indicate that auxin is positively regulating prickle initiation and

development. Interestingly, in rose this gene is also duplicated with four genes in cluster on the chromosome

3.

4.4 Discussion

Just like other organs, the development of prickles undergoes a process of initiation, growth, maturation,

and death. Prickle formation involves many cellular processes, including cell fate, cell proliferation, cell

differentiation, cell cycle control, cell polarity, cell-cell communication, etc. To our knowledge, themolecular

study in each process for prickle is still largely unknown. In this study, we reported the first transcriptomic

analysis for prickle initiation by comparing glabrous and prickle sample at early stage of initiation and

development (stage I and IIa, Figure 14 d-g). We also reported the first transcriptomic analysis for prickle

development at the stage I, IIa, IIb, IIc and III (Figure 13 a, 14 d-l).
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4.4.1 Material and sampling limitations and improvement solution

In this project, one of the challenges was the material limitations for RT-qPCR and RNA-seq: to our

knowledge, no single line of prickless mutant in roses resources was found. Thus, we selected sisters in the

OW population and used a mixing pool for prickless and prickles samples to reduces the variance of genetic

background. Since there are only two individuals completely prickless and once-time flowering (to obtained

vegetative branch), we chose the individuals for the prickle pool following the principle of being as close

as possible to the prickless progeny on the other traits. Although we have tried to limit the differences as

much as possible, it is impossible to completely avoid that a few genes’ differential expression in prickle and

prickless may cause by the slight difference of genetic background.

Another challenge is the technical limitation for sampling: the prickle initiation happened at a very

early stage of stem development (just below the shoot apical meristem) (Figure 14), and it is impossible

to isolate the prickle from the stem tip during sampling (a perspective can be to used microdissection).

Therefore, in order to be consistent, we decide not to separate prickle from stem (leaves and buds were

removed) as the strategy for the sampling of all the stages. This led to the stem development genes were

mixed in the candidates of prickle development which bringsmore challenges for data analysis. We displayed

a model method to obtain the ‘specific’ SDE genes involved in prickles development by comparing group

NPIIavsNPI and PIIavsPI. We proposed that the specific SDE genes of PIIavsPI are more interesting for

prickle development and the common SDE genes are more associated with stem development. It still needs

to be reminded that the development of prickles and stems are probably sharing some genes. That means

the ‘common’ SDE genes may also contain a number of genes that function in prickle development.

Due to the technical limitations for sampling the early stage of prickle initiation, we were unable to

have the earliest stage (as initiation). Stage I samples included prickles initiation and development (grow

out by cell proliferation) (see Chapter 2, Figure 14). In order to remove potential noise and obtain the most

interesting candidates, I designed two unconventional processes in the analysis: 1) We removed the SDE

genes of stage I that have been studied in the clusters 4, 5, 6, 7 and 8 (in the time-course study (Figure 30

c)). The reason is that these genes mainly expressed in the later stages (IIb, IIc, III (Figure 13 a)) of prickle

development but expressed quite lowly in stage I. We have revealed the potential functions of these genes are

not related to prickle initiation, and mainly involved in the cell wall modification, organization, biogenesis,

macromolecule metabolic process, cell death and response to the different stimuli (Figure 30 d); 2) We

compared the SDE genes involved in stage I and IIa between prickle and glabrous sample. This analysis is

based on the histological study in Chapter 2, we proposed that the stages PI (Figure 14 d-f) and PIIa (Figure

14 g) are both including cell proliferation and cell division required for prickle growth. Fortunately, the 660

‘specific’ SDE genes of stage I included the most interesting GO enrichment processes for prickle initiation,

thereby, they were considered as priority gene for further function prediction and the protein-protein network

studies.

The best candidates for prickle initiation were selected by combining transcriptome with the genetic
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approaches. Since some genes may be simultaneously involved in initiation and development, we used the

total 2118 candidate genes discovered between PI and NPI in this analysis step.

4.4.2 Mechanisms underlying prickle development

For the first time, we present a detailed analysis of processes that may control prickle development in

rose. By clustering the different expressed genes (DE) in different developmental stages (I, IIa, IIb, IIc, III)

of prickle sample (Figure 30), we revealed these DE genes’ expression pattern in development stages. Using

GO enrichment for the genes of each cluster, we observed many interesting biological processes that are

highly associated with the different stages of prickle morphogenesis. (Figure 30 d).

For the genes mainly expressed in early stages I or/and IIa (Figure 30 c, clusters 1 and 2) of prickle

samples, we discovered genes that are enriched in biological processes such as cell fate commitment, differen-

tiation, proliferation and cell division. Those genes were described to be involved in organ or tissue develop-

ment (floral, shoot, leaf, meristem, post-embryonic plant morphogenesis). These early steps correspond to

the prickle initiation with acquisition of a new fate for some cells from the ground meristem (below the

protoderm, see Chapter 2). Then, through cell proliferation, the prickle develops. TheDE genes are therefore

good candidate to be involved in prickle initiation and first steps of prickle development.

For the genesmainly expressed in later stages: (1) in cluster 4 (mainly in PIIa, PIIb, PIIc) and 5 (mainly in

IIc), we discovered genes have potential function involved in cell wall modification. These genes associated

with cell wall modifications might be required for cell elongation that are observed in the stage IIa ,IIb and

IIc of prickle development (Chapter 2, Figure 14); (2) in clusters 6 (mainly in PIIc), 7 (mainly in PIIc and

PIII), and 8 (mainly in PIII), we observed genes have potential function involved in cell wall organization,

biogenesis andmacromolecule metabolic processes. These processes might be related to cell wall thickening

and lignification in developing and maturing of prickle. In addition, among the genes specifically highly

expressed in stage IIc (cluster 5), we also observed genes involved in ethylene, jasmonic acid and auxin

response. It may be related to the prickle (or/and stem) growth. ‘Cell death’, ‘secondary metabolic’ and

‘anion transport’ processes were also enriched among the genes that are a specifically highly expression in

stage III, that may be associated with the prickles maturing.

Future more, in stages IIc and III (corresponding mainly to cluster 5, 6, 7 and 8), we found many

genes that present GO enrichment in responding to different stimuli (wounding, insect, bacterium, virus,

oomycetes), organic cyclic compound and drug catabolic process. These results are quite interesting from

the perspective of defense function. Prickles are usually covered with a lot of bacteria, viruses or fungus

(microorganisms). Some microorganisms species may randomly scatter on prickles. Some species probably

are inhabitants that multiply on the spinescences (hence they are present in large numbers) and not just

landed on the spinescence accidentally (Halpern et al., 2007). Prickle as a defense structure plays an

important role against insects and mammal herbivores and the aggregated bacteria strengthen the defense of

its physical structure (as we introduced in Chapter 1). Our results showed that the microorganisms may start
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to aggregating in stage IIc of prickle development. These results are highly consistent with the environment

of prickles growth, because the prickles completely expose to the external environment when they are get in

stage IIc.

4.4.3 Mechanisms underlying prickle initiation

We investigated in detail the genetic network that is controlling prickle initiation by comparing the

transcriptome between prickle (P) and sample glabrous (NP) samples at the early stages of prickle initiation

and development (or the corresponding stages in NP tissues). We provide a candidate gene pool contains

2118 genes (inhibitors and promoters) for prickle initiation and we recommended 660 priority genes by

comparing the SDE gene in stage I and IIa. We explored these 660 specific genes of stage I included the most

interesting GO enrichment processes for organ initiation, such as ‘cell fate commitment’, ‘post-embryonic

plantmorphogenesis’, ‘anatomical structure formation involved inmorphogenesis’. Among the genes involved

in these seven SSE-GO terms, a large interaction network between these genes (25 out of 37 Arabidopsis

protein) were detected. Whilemost of these genes are highly co-expressed in stage I of prickless samples, and

only few genes in prickle samples. This majority of genes are therefore putative inhibitors of prickle initiation

that control cell fate, anatomical structure or post-embryonic plant morphogenesis (26 a). Moreover, many

SDE genes expressed in PI (but not in NP) also highly expressed in other stages of P (Figure 31 b, d). That

means some promotor genes may both involved in prickle initiation and development, and these genes are

mostly presented in the ‘common’ SDE genes list of stage I and IIa (Figure 31 g). Therefore, there are

probably a few interesting activators that exist in the common list.

Our final objective was to obtain the best candidate genes (inhibitors or promoters) for prickle initiation.

We combined the transcriptomics and genetic approach with a functional prediction. It allows us to obtain

more confidence and a limited number of candidate genes (Figure 27). We exported the SDE genes located

under the confidence interval of the major prickle loci (QTL on LG3 and LG4, (see Zhou et al., 2020,

Chapter 3)), and only 43 (out of 2118) genes meet these conditions.

Among them, we explored seven (RcAS2, RcJAG, RcWOX-g1, RcWOX-g2, RcDOT5, RcAKR1) that

may positively regulate glabrous stem development (or inhibitor for prickle initiation). AS2 is a later organ

boundaries protein as known to control proximal-distal patterning in Arabidopsis petals (Chalfun-Junior

et al., 2005) and leaves (Ueno et al., 2007), adaxial/abaxial axis specification of leaves (Wu et al., 2008).

as2mutant presents leaves with defect phenotype (Bumpy). scal-l as2 double mutant develops spines on the

edge of the leaf (Mateo-Bonmatí et al., 2015).

JAG is a C2H2 and C2HC zinc fingers superfamily protein, controls the morphogenesis of lateral organs.

Functions with AS1 and AS2 in the sepal and petal primordia to repress boundary-specifying genes, thereby,

define these organs from their boundaries(Xu et al., 2008). Loss JAG function causes organs to have serrated

margins (Dinneny et al., 2004; Ohno et al., 2004).

WUSCHEL-related homeobox (WOX) family genes are known to be involved in different organ development.

116



Chapter 4 In-depth RNA sequencing analysis provides molecular mechanism insight into prickle initiation
and development in rose

WOX1 and WOX3 (or PRS) are important for lateral-specific blade outgrowth and margin-specific cell

fate in Arabidopsis,nakata2012. A WUSCHEL-WOX 3B gene, dep, conditions the glabrous phenotype

of rice leaves and glumes (Angeles-Shim et al., 2012). WUSHEL is known to maintain the identity of the

undifferentiated cells in the shoot apical meristem(Laux et al., 1996; Ma et al., 2019). In roses, RcWOX-g1

and RcWOX-g2 are co-expressed with AS2 and JAG that may function in deciding the stem boundaries.

Interestingly, RcJAG, RcAS2, RcWOX-g1 and RcWOX-g2 were detected to be central in the protein-

-protein network (26c). They are co-regulating glabrous stem phenotype in roses with other important

genes (as AFO, YAB2, YAB5, KNAT1, TCP4, NTT, ROXY1 homologue), indicating that lost function

of these genes may cause out control of stem boundary, thereby, caused prickle initiation. Therefore, they

are considered inhibitors for prickle formation. The expressed dose of these inhibitors may regulate the

prickle density. That means more inhibitors lost function may cause more ground meristem cells to get the

ability to out of stem boundary fate and driven into the first step of prickle (grow out).

We also explored two genes (RcMMD1, RcNAP1-like1) may be involved in the cell differentiation and

division for prickle initiation and development, and an auxin gene (RcAMI1) may regulate prickle initiation

and development.

RcMMD1 encodes a PHD (plant homeodomain) zinc finger protein. PHD fingers are Zn-coordinating

domains that generally recognize unmodified or methylated lysines(Jain et al., 2020). They are central

“readers” of histone post-translational modifications (PTMs) (Jain et al., 2020), and canmodify chromatin as

well as mediate molecular interactions in gene transcription (Sanchez and Zhou, 2011). 14 times expression

of RcMMD1 in PI more than NPI, suggesting that RcMMD1 play an important role in prickle initiation.

RcAMI1 encodes an amidase signature homolog protein. In AT, AMI1 involves in auxin and indoleacetic

acid biosynthetic process (Pollmann et al., 2003). Auxin signaling regulates lateral root (LR) initiation and

subsequent LR primordium formation in Arabidopsis(Laskowski et al., 1995); mutants defective in auxin

biosynthesis, homeostasis, transport and signaling caused increased or decreased numbers of LRs (Casimiro

et al., 2003; Fukaki et al., 2007). Interestingly, RcPKL encodes a CHD homolog protein, and its ortholog

AtPKL negatively regulates auxin-mediated LR formation by chromatin remodeling (Fukaki et al., 2006).

In roses, RcAMI1 relatively highly expressed in all the stages of prickle (P) samples and lowly expressed

in glabrous (NP) samples, while RcPKLis highly expressed in NP and lowly in P. These may suggest that:

prickle formation is also regulated by auxin signaling; RcAMI1 is a positive regulator for prickle formation

and RcPKL is a repressor.

Nucleosome assembly protein 1 (NAP-1) shuttles histones into the nucleus, assembles nucleosomes,

and promotes chromatin fluidity, thereby affecting the transcription of many genes (Park and Luger, 2006).

AtNAP1 is involved in cell differentiation and cell population proliferation (Galichet and Gruissem, 2006).

RcNAP1-like1 is highly expressed in both prickles and non-prickle samples, and more than two times higher

in stage I of the prickle sample than in the glabrous sample. This supported RcNAP-1 may play an important

role in cell proliferation both in the meristem tissue of prickle.
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4.4 Discussion

In the gene pathway, AS2 was detected to be a center that linked with JAG, WOX1, WOX3 and MMD1.

RcJAG and RcMMD1 are both zinc fingers genes and their expression are totally opposite expression,

indicating that RcMMD1 may inhibit RcJAG expression, and there by, repress RcAS2 expression as well

as RcWOX1-g1 and RcWOX-g2 expression. Therefore, we propose that RcMMD1 may activate prickle

initiation by repressing the activity of the ‘JAG-AS2-WOX’ gene pathway.
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5 General Discussion and Perspectives

This thesis focused on filling the gaps in prickle knowledge using morphological, genetics, and genomic

approaches. Our objectivewas to decipher themolecular and genetic control of the initiation and development

of prickles on rose stems. Since the basic botanical terminologies (trichomes, prickles, thorns and spines)

were frequently inaccurately cited in scientific reports, and these words were confusing for most researchers,

we first described and compared them in the Introduction in Chapter 1. One of the most confusing points

is the relationship between trichomes and prickles, which is important for the experimental design in our

study. The current mainstream hypothesis is that prickles originate from the epidermis (Peitersen, 1921;

Canli, 2003) and are considered to be modified glandular trichomes. In the late developmental stage, the

prickles become cutinized as a hard-sharp appendage, like in roses (Kellogg et al., 2011), Rubus (Peitersen,

1921; Coyner et al., 2005; Kellogg et al., 2011; Khadgi and Weber, 2020a) and grapes (Ma et al., 2016b). In

fact, the tissues from which the prickles originated are not clearly defined, since no anatomical evidence was

ever provided to support the ‘epidermis’ hypothesis. To well understand the origin of prickles, their types,

and their development, we investigated the prickle types in rose wild species, in parents and progeny of a F1

population (OW). We carried out a comprehensive anatomical study for two representative types of prickles

(Chapter 2). In the OWprogeny, we classified rose prickles into twomajor categories: non-glandular (NGPs)

and glandular (GPs) prickles. We also discovered other types of prickles in wild roses and classified them

into the sub-categories of NGPs and GPs. We found that NGPs and the major structure (stalk) of GPs come

from the ground meristem (the underlayers of protoderm). GP and NGP initiation take place at an early stage

of shoot development (just below the shoot apical meristem). The first layers of gland cells of GP originate

from epidermal cells (or protoderm) of the bump (the first stage of GPs). These new insights constitute

valuable information for further study. We adjusted the experimental design in the middle of the project and

decided to study the NGPs and GPs separately.

For the genetic approach (Chapter 3), we performed QTL analysis for these two types of prickles.

However, for the GPs, we were unable to detect any significant QTLs since the individuals presenting GPs

were not numerous enough in the OW population. Thus, we focused on exploring genetic determinism and

the gene network for the NGPs, the most common type of prickles on rose stems. We detected a major locus

on LG3 that controls the absence/presence of prickles on rose stems and several other loci controlling prickle

density. In addition, to identify the relationship between prickles and trichomes at the molecular level, we
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5.1 Two types of prickles in roses, glandular and non-glandular, and two different gene networks

used a candidate-gene approach to characterize rose gene homologues known in Arabidopsis to be involved

in trichome initiation. Almost no difference of transcript accumulation for these candidate genes between

prickle and prickless roses were detected, suggesting that prickle and trichome initiation is controlled by two

different genetic pathways. This conclusion was also supported by results from the transcriptomic approach

(Chapter 4).

In Chapter 4, by transcriptomic approach (RNA-Seq), using a mixed pool of F1 individuals with or

without NGPs, respectively, we discovered many genes involved in prickle initiation and development. We

developed unconventional methods to optimize the candidate gene discovery. By combining a genetic

approach and gene function prediction, we mined the ten best candidate genes for prickle initiation. By

combining the results obtained by the anatomical/histological (Chapter 2), genetic (Chapter 3) and transcript-

omic (Chapter 4) approaches, we proposed a genetic and molecular mechanism for prickle initiation and

development (see Discussion below).

During this project, we provided a general framework to study the genetics and genomics of prickles in

woody plants. Our study significantly improved the knowledge of the genetic determinism and molecular

mechanisms underlying prickle formation in rose. Here, we discuss the implication of such approaches for

rose breeding.

5.1 Two types of prickles in roses, glandular and non-glandular, and

two different gene networks

In Chapters 2 and 3, by studying the morphology and anatomy of prickles, from their initiation to their

complete development, and their distribution in the OW population, we proposed that non-glandular prickles

(NGPs) and glandular prickles (GPs) are different types of prickles with different genetic determinism.

The most common prickles observed in the OW population are the NGPs. They have no glandular

structure at any point in their development. Another type of prickles appears in some F1 individuals (17.9%)

but not in parents: these prickles have a gland head and were denominated by glandular prickles (GPs). So

our results did not support the previous hypothesis that ‘GP and NGP are the early and later stages of same

prickle (Coyner et al., 2005; Kellogg et al., 2011; Ma et al., 2016b; Khadgi and Weber, 2020a).

For the first time, NGP and GP initiation and development were histologically characterized in-depth

from the early to later stages. NGPs are initiated from the ground meristem below the protoderm.At the

initiation stage, no essential difference was observed between GPs and NGPs. Both are initiated from the

ground meristem below the protoderm. In GPs, the gland at the head of the prickle originates from the

protoderm (or epidermis) cells of the newly formed prickle at the early stages of development. So our

results did not support the previous hypothesis that ‘Prickles originate from the epidermis’ (Peitersen, 1921;

Esau, 1960; Canli and Skirvin, 2003; Kellogg et al., 2011).
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Chapter 5 General Discussion and Perspectives

In Chapter 2, at the morphological level, we reported more different types of prickles in the Rosa genus.

There are ‘naked’ and ‘hairy’ forms in NGPs and GPs. GPs can be unbranched and branched. Some GPs

are present with a gland head, whereas some have several glands randomly distributed on their surface.

As in OW population, the most common type found in wild rose species or cultivars are the ‘unbranched

and naked’NGPs. The unbranched (naked or hairy) GPs are generally not present alone but always associated

with NGPs. Moreover, the gland (a specific structure of GPs) was not produced at the prickle initiation but

during the prickle’s development (Chapter 2, Figure 14 m-r). Therefore, we supposed that GPs may be

modified from NGPs.

A similar hypothesis was proposed for the trichomes: in an evolutionary perspective, the earliest glandular

trichomes (GTs) are modified from the non-glandular trichomes (NGTs) (Krings et al., 2003; Lange, 2015).

The NGTs and GTs evolve from protoderm (or epidermis) only, and different gene networks (Chapter 1) have

been reported to control the initiation of NGTs (Folkers et al., 1997; Hülskamp, 2004; Balkunde et al., 2010)

and GTs (Payne et al., 1999; Huchelmann et al., 2017; Chalvin et al., 2020). This difference can be explained

by morphogenetic evidences: mother protoderm cell(s) produced different structures, NGTs and GTs, which

are probably controlled by different regulators. However, we do not know if the developmental program is

different at the first mother cell initiation (cell fate) or later in the developmental process. In Chapter 1, I gave

examples to show the developmental stages of GTs and NGTs (Figure 3). They look similar in the beginning:

one mother protoderm cell starts to enlarge. This enlarged cell continues to grow without cell cycle division

and begins endoreplication (unicellular NGT, Figure 3 a1) (Hülskamp, 2004), or divides into two cells. The

two cells then continue normal division (multicellular NGT, Figure 3 a2 and a3) (Kintzios, 2002), or one of

the two cells becomes a clear gland cell (multicellular GT, Figure 3 b and c) (Bosabalidis and Tsekos, 1982;

Karousou et al., 1992). In Arabidopsis, it has been shown that interruption of endoreplication can modify

unicellular NGTs into multicellular NGTs (Schnittger et al., 2002b,a). Since the molecular mechanism of

GT initiation is still unclear, we do not know how the genetic pathways interact between NGTs and GTs.

For glandular and non-glandular prickles on rose stems, the major difference is the presence/absence of

a gland. This difference appears the early developmental stage of GPs and NGPs. In GP initiation, ground

meristem cells first rise and become a bump. At this stage, GP initiation is similar to that of NGP. Then,

gland cells evolve from the protoderm (or epidermis) cells of the newly initiated prickle (Chapter 2). We can

hypothesize that two genetic pathways control the GP and gland initiation. One controls the cell fate of the

ground meristem cells (a process that may be shared with NGPs), and another pathway controls the cell fate

of the protoderm (or epidermis) cells (only in glandular trichomes andmay be similar to the gland initiation in

glandular trichomes). Another possibility is that GPs and NGPs have different genetic pathways that control

the cell fate of the first mother cell. Further studies are necessary to clarify these hypotheses. However, as

demonstrated by the genetic approach (Chapter 3), GP and NGP genetic determinism is different, suggesting

that the genetic network controlling GP and NGP development is different in rose. Since GPs were rare in

the OW progeny and we were unable to study their genetic determinism in OW progeny, our further analyses

focus on NGPs, the most common prickles in rose.

123



5.2 Genetic determinism and molecular mechanisms underlying NGP formation

These conclusions are different from the current mainstream hypothesis: prickles evolve from multiple

cellular divisions of the epidermis (Peitersen, 1921; Canli, 2003) and prickles aremodified glandular trichomes

that later become cutinized as a hard-sharp appendage (Peitersen, 1921; Coyner et al., 2005; Kellogg et al.,

2011; Ma et al., 2016b; Khadgi and Weber, 2020a), or induced by glandular trichome (Pandey et al., 2018).

In the next section, we will compare the studies in Rosa and Rubus in detail.

5.2 Genetic determinism andmolecularmechanisms underlyingNGP

formation

5.2.1 Prickle formation from initiation to late stages

For the first time, we present a detailed transcriptomic analysis of processes that may control prickle

formation from initiation to late developmental stages, in rose (Chapter 4). We have combined anatomical

and transcriptomic approaches to propose molecular mechanisms underlying prickle formation (Figure 34).

Just like other organs, prickle formation involves many cellular processes, including cell fate, cell

differentiation, cell-to-cell communication, cell proliferation, cell cycle division, cell polarity, etc. For

the genes mainly expressed in stages I or/and IIa (cluster 1 and 2), we discovered genes that are enriched

in these processes. Stage I corresponds to prickle initiation with several cells from the ground meristem

(below the protoderm) that acquire a new fate. These cells then grow to give the first stage of prickles

(Figure 34, Chapter 2, Figure 14 a). Cluster 1 genes are specifically highly expressed in stage I, with genes

described to be involved in organ or tissue development (floral, shoot, leaf, meristem, post-embryonic plant

morphogenesis (Chapter 4, Figure 30)). This suggests that many genes in this cluster may be related to

the cell fat and differentiation required for prickle initiation. Then, through cell proliferation, the prickle

develops. Genes from cluster 2 are highly expressed in stages I and IIa, and their expression decreases as

the prickle and stem develop. Numerous genes in this cluster are involved in cell proliferation and in the

processes of cell cycle division. These results are highly consistent with the development of the prickle, i.e.,

prickle meristem cells gradually lose their meristematic activity as the prickle develops (Chapter 2, Figure

14 d-l ). We therefore propose that cluster 2 genes may be highly associated with cell proliferation required

for prickle and/or stem growth at the early stage. In stage II, some cells still maintain their cell division

ability (IIa an IIb), some (from top to bottom) lose this ability and start to elongate and to gradually enlarge

(Chapter 2, 14g-i). Many genes in Clusters 4 (mainly in stages PIIa, PIIb and PIIc) and 5 (mainly in stage IIc)

are potentially involved in the cell wall modification process, which might be related to the cell elongation

in stage II of prickle development (Figure14 g-l, Chapter 2). From stages IIc to III, prickles begin to lignify

and gradually harden, forming a structure-like abscission layer. Genes of clusters 6, 7 (mainly in stages IIc

and III) and 8 (mainly in stage III) are involved in cell wall organization, biogenesis and macromolecule

metabolic processes. These processes may be related to cell wall thickening and lignification observed in

late developmental stages of prickle (maturation). The cell death pro- cess is observed in cluster 9, whose
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Prickle initiation
(cell differentiation) 

prickle growth 
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insect, 
bacterium, virus, 
oomycetes)

prickle mature 
(Cell death)

Figure 34: The molecular mechanisms of prickle formation from initiation to the developed stages

genes are specifically highly expressed in stage III. The genes in this cluster may be associated with the

formation of the structure-like abscission layer.

Furthermore, in stages IIc and III (corresponding mainly to clusters 5, 6, 7 and 8), we found many

genes that present GO enrichment in response to different stimuli (wounding, insects, bac- teria, viruses,

oomycetes), organic cyclic compounds and drug catabolic processes. These results are quite interesting

in terms of defense functions. Prickles are usually covered with many bacteria, viruses or fungi (Halpern

et al., 2007, 2011; Lev-Yadun, 2016). Some microorganisms (bacteria, viruses or fungi) may randomly

scatter on prickles, such as Sporothrix, a fungus taht causes sporotrichosis (also known as ‘rose gardener’s

disease’). This fungus lives throughout the world in soil and on plant matter. The infection occurs when

the fungus enters the skin through a small injury. The ‘organic cyclic compound’ and ‘drug catabolic’

processes may also be related to the defense function against certain microorganisms. Some species are

probably to spinescences (hence, they are present and can multiply to reach large numbers) and not just

present accidentally (Halpern et al., 2007). Prickle as a defense structure plays an important role against

insects and mammal herbivores, and the aggregated microorganisms strengthen the defense of its physical

structure (as reported in Chapter 1). Our results suggest that the microorganisms may start to aggregate in

stage IIc of prickle development. These results are highly consistent with the prickles environment at this

stage, since the prickle is completely exposed to the external environment (no longer protected by leaves).

Based on our knowledge, the genomic studies on prickle formation are rare. In Solanum vivarium, a

prickle (wild type, WT) and prickless (mutant) individuals were used in a transcriptomic study. Pandey et al.

(2018) sequenced the total RNA of the ‘skin’ that they peeled off from the later stage of stem development.

Although the samples were described as epidermis in the article (the epidermis is the first cell layer of the

organ), the ‘skin’ might be more complex and may correspond to the term ‘bark’ in woody plants. Both the

WT andmutant (prickle and prickless) present many glandular trichomes. The larger prickles in theWTwere

considered to have induced from those glandular trichomes, but no prickle is induced in the mutant. Based

on this hypothesis, they proposed a pathway that would govern prickle initiation from GTs, and that would
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5.2 Genetic determinism and molecular mechanisms underlying NGP formation

enhance secondary metabolism. However, this hypothesis is not supported by strong evidence: the larger

prickles in S. vivarium look like glandular prickles, with or without branches (see from the macroscope

graph, Pandey et al. (2018)). Thus, the wild type and mutant of S. vivarium are good materials to study

glandular prickles. However, the sample (stem skin) was harvested when the stem and prickle were well

developed. By comparing them with rose prickles, we consider that these samples may correspond to stages

IIc and III (Chapter 2, Figure 14) in our study. To study prickle initiation, it is necessary to do so at the time

of their initiation. Furthermore, the presence of trichomes and prickles at the same time (mix of structures)

may complexify the interpretation of the results. By comparing the prickle and prickless samples, they

found a higher percentage of DE genes that were enriched to responses to stimulus (both biotic and abiotic),

responses to stress and responses to defense. If we consider that their material corresponds to stages IIc and

III of the GPs, these processes were also found in stages IIc to III of the NGPs in our study. This may suggest

that NGPs and GPs in the later stages both aggregate many microorganisms.

5.2.2 Zoon in prickle initiation

Through an anatomical study, we confirmed that prickle initiation does not happen in prickless individuals

(Chapter 2, Figure 13 c and 15). That means: (1) prickless phenotype is caused by the absence of prickle

initiation and not by an interruption during prickle development; (2) prickle density is related to prickle

initiation that takes place in the ground meristem. Those facts allowed us to combine the genetic and

transcriptomic approaches to raise the question of prickle initiation. We thus combined these two approaches

to be discussed and, furthermore, proposed a detailed hypothesis for the genetic determinism and molecular

mechanisms underlying prickle initiation (Figure 35).

5.2.2.1 A complex genetic determinism for prickles in rose

In Chapter 3, we revealed a complex genetic determinism of NGPs in rose stems with a major locus on

LG3 that controls the absence/presence of prickles and several other loci controlling prickle density. We

detected three QTLs on LG4, 3 and 1 which are involved in prickle density in the OW population.

We extended the description of the QTLs on LG3 that affect the presence/absence of prickles. We

designated this locus as PRICKLE. On the basis of the phenotype-genotype relationship, we proposed that

at this locus, the female OB and the male RW parents are both heterozygous (np/P), and that the presence

of prickles is controlled by a dominant allele (P), and that the glabrous stem in the progeny is due to the

combination of the two recessive alleles from both parents (np/np). Based on the genetic data, the presence

of prickles seems to be controlled by activator(s) that is (are) present in prickle genotypes (P) and absent

in glabrous genotypes (np/np). This np allele might be explained by a loss of function of the activator P

(Figure 35 a). In addition, the PRICKLE locus is in the vicinity of other important loci for ornamental traits

(continuous flowering, double flower and self-incompatibility (Hibrand-Saint Oyant et al., 2018)).

These results are important for breeders who need to combine recessive alleles to obtain glabrous roses.
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However, since modern roses are tetraploid, a recessive allelic combination could be difficult to abtain in a

tetraploid background. Furthermore, we do not know how the np and P alleles would behave in a tetraploid

background. Development of specific molecular markers of the recessive allele may by useful for breeders.

However, it should be mentioned that the two markers actually used (peak of the QTL) are not closely linked

with the PRICKLE locus, and few recombinants are observed in the progeny.

Moreover, the phenotype of the individuals with the two recessive alleles is not stable and some of the

hybrids regularly developed some prickles on parts of the stems, suggesting a leaky mutation. Indeed, this

phenomenon is widespread in roses. Rose breeders have reported that glabrous mutants have either been

unstable for the prickless trait (Nobbs, 1984; Rosu et al., 1995), or have reverted to the prickly character after

a freezing winter or other environmental stresses (Nobbs, 1984; Oliver, 1986; Druitt and Shoup, 1991; Canli,

2003). These reversions may be explained by the chimeric nature of the prickless mutation in roses (Rosu

et al., 1995; Canli, 2003). In our case, this hypothesis is unlikely as the mutation (np) is heritable. Another

explanation is that the ‘prickle state reversion’ ability in rose could possibly be caused by unstable mutations

involving transposable elements (Canli and Skirvin, 2008). Such an unstable and reverted phenotype has

been already observed in rose for the continuous-flowering phenotype. This phenotype is due to the insertion

of a retrotransposon in a floral repressor (Iwata et al., 2012). Recombination of the retrotransposon can occur

and can restore a hypomorphic allele. Another explanation could be genetic redundancy or a phenotypic

compensation mechanism. Previous studies have reported that many engineered mutants do not exhibit

an obvious phenotype, and several studies have provided evidence on how the compensatory network is

activated to buffer against deleterious mutations, such as in Caenorhabditis (Burga et al., 2011), zebrafish

(Rossi et al., 2015) andmouse (El-Brolosy et al., 2019). This evidence supports the hypothesis that phenotypic

outcome does not depend on the intrinsic properties of amutation but on a range of compensatorymechanisms

within the individual (Casci, 2012) instead and, of course, on the plant environment. Prickles, as a beneficial

structure, have gone through a long evolutionary history to protect plants against herbivores. Consequently,

prickles in roses may carry a second genetic compensation to pathway to maintain their genetic robustness,

which can be triggered when the major function gene of prickle initiation is mutated and loses its function.

This importance of prickle in rose co-evolution is also highlighted by the rareness of wild glabrous roses

(see Chapter 2), suggesting an important role of prickles in rose adaptation.

5.2.2.2 The mechanisms underlying prickle initiation

Our final objective was to reveal genetic determinism of prickle and to obtain the best candidate genes

(inhibitors or promoters) for prickle initiation. In the Chapter 3, and as discussed in the previous section,

we detected a major locus on LG3 (PRICKLE) that controls the presence / absence of prickles (Zhou et al.,

2020). We have proposed that PRICKLE(P) is an activator of prickle initiation. We also detected three QTLs

on LG4, 3 and 1 (Y) that regulate prickle density in the OW population (Figure 36 a). By combining the

transcriptomic and genetic approaches with a functional prediction, we mined ten best candidate-genes for

prickle initiation. Seven are negatively associated with prickle initiation and three are positively associated:

they were proposed as inhibitors and activators, respectively.
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Concerning the PRICKLE locus on LG3, the best candidates are potential activators. We detected

three activators (RcMMD1, RcAMI1, RcNAP1-like1), whicha re located in the confident interval of the

main QTL on LG3(Chapter 3). Among them, the most interesting gene is RcMMD1, which encodes a PHD

(plant homeodomain) zinc finger protein. PHD fingers are Zn-coordinating domains that generally recognize

unmodified or methylated lysines (Jain et al., 2020). They are central “readers” of histone post-translational

modifications (PTMs) and can modify chromatin and mediate molecular interactions in gene transcription

(Sanchez and Zhou, 2011). RcMMD1 transcripts are accumulated fourteen times more in stage I of P

than in NP tissues, supporting the hypothesis that RcMMD1 plays an important role in prickle initiation.

Interestingly, protein-protein network analysis showed thatMMD1was linked to an inhibitor protein network

by interacting with AS2, JAG andWOX (Figure 35 b). RcMMD1 and RcJAG are both zinc finger genes with

an opposite pattern of expression in stage I of P and NP tissues (Figure 35 c). They both interact with AS2

in the protein network (Figure 35 b). RcMMD1 might inhibit the expression of repressors such as RcJAG,

RcAS2, RcWOX1-g1, or RcWOX-g2 (see below). Thus, we propose that RcMMD1 may activate prickle

initiation by repressing the activity of the ‘JAG-AS2-WOX’ gene pathway.

RcAMI1 encodes an amidase signature homolog protein. In A. thaliana, AMI1 is involved in auxin and

biosynthesis (Pollmann et al., 2003). Auxin signaling regulates lateral root (LR) initiation and subsequent

LR primordium formation in Arabidopsis(Laskowski et al., 1995). Mutants, defective in auxin biosynthesis,

homeostasis, transport or signaling, caused an increase or decrease in the numbers of LRs (Casimiro et al.,

2003; Fukaki et al., 2007). Interestingly, RcPKL encodes a CHD homolog protein, and its ortholog ATPKL

negatively regulates auxin-mediated LR formation by chromatin remodeling (Fukaki et al., 2006). In roses,

RcAMI1 is relatively highly expressed in all the stages of prickle (P) samples and weakly expressed in

glabrous (NP) samples, while RcPKL is highly expressed inNPs and poorly in P samples. We can hypothesize

that: prickle formation might also be regulated by auxin signaling with; RcAMI1 as a positive regulator of

prickle initiation and RcPKL as a repressor.

AtNAP1 is involved in cell differentiation and cell population proliferation (Galichet and Gruissem,

2006). RcNAP1-like1 is highly expressed in both prickle and non-prickle samples, and its expression is

twice as high in stage I of the prickle samples than in the glabrous ones. We can imagine that the speed

of cell proliferation of the prickle precursor is faster than that of the surrounding meristem cells, and the

mechanical force of the precursor cell proliferation pushes the formation of the early prickles. This supported

the hypothesis that RcNAP-1 may play an important role in cell proliferation both in the meristem tissue

of prickles and stems, and the dose of this gene expression may impact the speed or ability of the cell

proliferation.

Surprisingly, we detected many SDE genes highly expressed in the glabrous samples, suggesting the

importance of inhibitors that may block prickle initiation (Figure 31 d, 32 b and 33 a). Among the seven best

inhibitors (RcAS2, RcJAG, RcWOX-g1, RcWOX-g2, RcDOT5, RcAKR1 and RcPKL), AS2, JAG andWOX

are known to be positive regulators of the organ boundary in Arabidopsis. Indeed, AS2 is the LATERAL

ORGAN BOUNDARIES (LOB) protein that are positively regulates lateral organ boundaries within the
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shoot apex (Xu et al., 2016). Interestingly, the accurate regulation of AS2 expression may involve epigenetic 

regulation (Chen et al., 2013). As a putative repressor of AS2, RcMMD1 protein (see above) encodes a PHD 

zinc finger, which was proposed as a versatile epigenome reader (Sanchez and Zhou, 2011). In Arabidopsis, 

the as2 mutant presents leaves with a defective phenotype (Bumpy). The scal-l as2 double mutant develops 

spines on the edge of the leaf (Mateo-Bonmatí et al., 2015). JAG is a member of the C2H2 and C2HC 

zinc fingers superfamily protein, and controls the morphogenesis of lateral organs. In Arabidopsis, JAG, in 

interaction functions with AS1 and AS2, defines the boundaries between sepal and petal (Xu et al., 2008). 

Loss of JAG function causes organs to have serrated margins (Dinneny et al., 2004; Ohno et al., 2004).

WUSCHEL-related homeobox (WOX) family genes are known to be involved in different organ develop-

ment. WUS, as an integrator of multiple signals plays a central role in the maintenance of the cell population 

in the shoot apical meristem. This maintenance is intimately balanced with cell recruitment into differentiating 

tissues through intercellular communication (Dodsworth, 2009). WOX1 and WOX3 (or PRS) are important 

for lateral-specific blade outgrowth and margin-specific cell fa te in  Arabidopsis (Nakata et  al ., 20 12). A 

WUSCHEL-WOX 3B gene, dep, conditions the glabrous phenotype of rice leaves and glumes (Angeles-Shim 

et al., 2012). In roses, RcWOX-g1 and RcWOX-g2 are co-expressed with AS2 and JAG. They may play a role 

in determining te boundaries of the stem.

Interestingly, RcJAG, RcAS2, RcWOX-g1 and RcWOX-g2 were detected to be central in the protein -

protein network (Figure 32 c). They might be co-regulators of glabrous stems in roses with other important 

genes (as AFO, YAB2, YAB5, KNAT1, TCP4, NTT, ROXY1 homologues), indicating that a loss of function 

of these genes may cause a defect in cell fate, and thereby, may cause prickle initiation. As previously, 

RcMMD1 can be a negative regulator of this gene network. We proposed that RcMMD1 is expressed at the 

early stage of prickle initiation and may control (by transcriptional repression) the inhibitory network. In 

the glabrous stems, where RcMMD1 is not expressed, and the repressive network is active and no prickle 

can be initiated.

In the OW population, we found that prickle density is controlled by QTLs on LG3, 4 and 1 (Chapter 

3, Figure 25). As for trichomes in Arabidopsis, the density of prickles can be explained by a complex 

regulation with negative feedback loops and communication between neighboring cells. In Arabidopsis, 

trichome formation is promoted by a trimeric activator complex (MBW, see Figure 5 in Chapter 1). This 

complex is activated by R3MYB proteins such as TRY, which can move to neighboring cells and repress 

the formation of trichomes (Hülskamp, 2004). try mutants present a higher density of trichomes (nested 

trichome, Hülskamp et al. (1994)). A similar process can be suggested for prickles in rose. The negative 

regulators present below the QTL3 and 4 can be part of this negative regulatory network. A precise spatial 

and temporal expression analysis of these genes and their interaction is necessary to test this hypothesis. 

Combination of the different alleles at these different loci may contribute to the diversity of prickle density.
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5.3 Prickles in Rosa and Rubus: comparison of the different studies

Prickles have been little studied in roses and Rubus. However, some publications so exist. We compared

our results with the results of these publications (Figure 36).

Prickle morphology

Prickle types

In a previous study on Rubus and roses (Kellogg et al., 2011), glandular trichomes (GTs), non- glandular

and glandular prickles (NGPs and GPs) were described as the different developmental stages for the same

type of prickle. Their conclusions were based on the observations of late developmental stages on the stem.

In the rose cultivar ‘Radtko’, NGPs and GPs were present at the same time and at the same location of

the developed stem. NGPs were proposed for the later stage of GPs (or GTs) with the fall of the glandular

head from the stalk. Then, following growth, the GPs (or GTs) are converted into NGPs. However, no

morphological evidence was provided for the early stage since prickle initiation begins at the shoot tip. In

our study, we carried out a comprehensive morphological study. We found that GPs had a glandular head or

several glands positioned along the prickle. These glands are present throughout their lifetime. In contrast,

NGPs did not present any glandular structure. NGPs andGPs have their own developmental process (Chapter

2, Figure 13 and 14), and clearly represent different types of prickles but not different stages of the same

prickle. Thus, we classified them into two categories: NGPs and GPs. We also found several types of

prickles in wild roses that were classified into the sub-categories of NGPs and GPs, depending on if the

prickles are branched or unbranched and if their surface is naked or covered with hairs (hairy).

Prickle origin

In the previous studies, prickles were described as epidermal appendages that evolved from epidermis

and modified glandular trichomes in raspberry and rose (Kellogg et al., 2011), in blackberry (Coyner et al.,

2005) and in grapes (Ma et al., 2016b). However, this result was not supported by any anatomical evidence.

In our study, we found that NGPs evolve frommultiple cells of the groundmeristem under the protoderm. For

GPs, multiple cells of the ground meristem first give rise to a bump, and then the protoderm (or epidermis)

of the bump differentiates into gland cells (Chapter 2, Figure 14m-r).

QTL analysis

We compared our results with previous genetic studies by associating genetic markers and the reference

genome sequences. In the tetraploid K5 population, three QTLs on LG3, 4 and 6 were detected (Bourke

et al., 2018a). Two SNP peak markers, K7826_576 and K5629_995 were reported. The first one is located

within our Chr3 cQTL interval region (36,517,224 - 46,440,369 bp), and the second is very close to our Chr4
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Prickle morphology (see Chapter 2):
• NGPs and GPs are different types of prickle and have 

their own developing process.

• Origin of prickles
NGP: Ground meristem under protoderm. 
GP: multiple cells of the ground meristem first give rise to a bump, and 
then the protoderm (or epidermis) of the bump is differentiated into 
gland cells.

QTL (see Chapter 3)
The genetic determinism of prickle in rose is complex, with a major locus
on LG3 that controls the absence/presence of prickles on the rose stem
and several loci that control the prickle density. One major QTL on LG4
and two minor QTLs on LG1 and 3 were detected in the OW population
(Zhou et al. 2020).
Limitation: Genetical study was conducted in a restricted genetic
materials (a F1 population)

RNA sequencing (see Chapter 4):
Materials: Individuals of the F1 OW progenies (rose). 
Sampling: Samples of stages I, IIa, IIb, IIc and III strictly according to the 
described stages of prickle (P) and glabrous stem (NP, stems at the same 
stages as P) (see Chapter 2; Zhou et al. 2020). 
Workflow:

Results from previous studies
Prickle morphology:
• NGP and GP are the same type but present different

development stages.

• Origin of prickles
Originated from epidermis (Peiterson 1921; Esau 1977; Coyner et al.
2005) and modified from GT (Kellogg et al. 2011; Ma et al. 2016;
Khadgi, 2020a) or induced from GT (Pandey et al. 2018).

Prickles types in roses

NGP

unbranched

GP

branched

naked hairy naked

unbranched

naked hairy

Limitation: no anatomical studies on the origin stages.

NGP

GP

Developing process of NGP 
and GP in OW9106

GM(ground meristem), P(protoderm), E(epidermis), PG( precursor gland), G(gland) 

NPI

NPIIa

PI

PIIa

PIIb

PIIc

PIII

SDE genes QTL interval

Best candidate genes 
for prickle initiation

1) SDE genes in prickle development

2) Time cluster reveal genes’
expression patterns in different
stages of prickle samples

Question: prickle initiation

NP vs NGP

Question: prickle development

RNA sequencing (Khadgi, 2020b):
Materials: Prickly ‘Caroline’, Prickless ‘Joan J.’ and their offspring.
(Rubus ideaus). Morphology of three prickly and three prickless
offspring are not clear.
Sampling: Sampled ‘epidermal’ tissues (the sampling method was not
described).
Basic hypothesis:
NGPs, GTs or/and GPs on the stem of prickly ‘Caroline’ were
considered as different stages of prickle. They were mixed in the
sampling.
Workflow:

The limits of conclusions:
1) Used later stages of prickle development to answer the question of
prickle initiation.
2) Based on an incorrect ‘basic hypothesis’ to propose the gene
pathway is controversial.
3) The materials correspond to different stages of initiation and
development of several structures (trichomes and prickles) making the
results are difficult and distorted conclusions.

Detect SDE genes

Selected 75 genes belongs to 15 
TF families as the key genes

Later stages of 
‘NGP+GT or/and GP + NGT’ vs NGT

Materials and technical limitations :
1) Some differential expressed genes can be due to the different genetic
background, even if we try to limit the differences by using individuals
from the F1 progeny (brother/sister).
2) Due to technical limitations, the early stages of prickle initiation and
development could not be separated from the stem. We, thus, took the
prickle and stem together for all the stages (leaves and buds were
removed). We could also not obtain the prickle initiation stage only;
stage I represents initiation and the first growth of the prickle.
More details and Improvement solutions are presented in Chapter 4

NGP GP

Raspberry (A) and blackberry (B) 
(Kellogg et al. 2011). 

Results from our study

QTL
In raspberry (Rubus idaeus), a major QTL on LG4 and a minor QTL on
LG6 were detected (Molina-Bravo et al. 2014). The QTL region on LG4
(position 0.101 Mb) is syntenic with the region on rose Chr4 (position
58,768 Mb), very close to the major QTL we detected on this
chromosome. In another publication, Graham et al. (2006) detected a
major QTL on LG2 (locus H) that controls cane pubescence. The locus
is mapped on LG2, which is syntenic with the rose LG6 where one of
the QTLs is detected in R. x wichurana.
Limitation:
1) Genetical study was conducted in a restricted genetic background.
2) Low density of genetic maps with SSR and AFLP makers
3) Prickle types was not considered as a factor in these studies.

1)

2)

Developing prickles in Rosa hybrid (Kellogg et al. 2011).
Limitation: Lack of morphological evidence from early stage.

Figure 36: Comparison of the different studies of prickles in Rosa and Rubus. NGP: non-glandular prickle,
GP: glandular prickle, NGT: non-glandular trichome, GT: Glandular trichome, NP: no prickle
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QTL interval region (46,189,407 - 56,107,784 bp). Thus we proposed that the QTLs on LG3 and 4 were

detected in diploid OW (Zhou et al., 2020) and tetraploid K5 populations (Bourke et al., 2018) are probably

the same QTL. A minor QTL was detected on LG1 in OW but not in K5. This is perhaps due to the different

genetic background of the parents. In fact, one parent of K5 is prickly and the other one is glabrous, whereas

both parents of OW have prickles.

In Rosaceae, a major QTL on LG4 and a minor QTL on LG6 were detected in raspberry (Rubus idaeus)

(Molina-Bravo et al., 2014). We checked the synteny using synteny viewer tools (https://www.rosaceae.

org/synview/search;Jungetal.2014). TheQTL region, located on LG6 inRubus occidentalis (position

6,028 Mb), is syntenic with a region on rose Chr2 (position 42,330 Mb), where no QTL was detected in our

study. The major QTL region on LG4 (position 0.101 Mb) is syntenic with the region on rose Chr4 (position

58,768Mb), that is very close to themajorQTLswe detected on this chromosome (Table 2, Chapter 3). These

results suggest that the two QTLs on LG4 in rose and raspberry might be syntenic and share a common

evolutionary history. In another publication, Graham et al. (2006) identified the gene H that controls cane

pubescence. The locus is mapped on LG2, which is syntenic with the rose LG6 where one QTL is detected

in R. x wichurana. However, no precise location is available in Rubus, and no clear comparison can be made

with rose, making it difficult to draw any conclusions concerning a possible common origin.

RNA sequencing

Only a few pieces of transcriptomic studies have been published. Unfortunately, as previouslymentioned,

these studies are based on potentially incorrect assumptions: GP and NGP are the different developmental

stages of same type pf prickle, and prickles either develop directly from GTs (e.g., raspberry) or the signal

coming from GTs induces the prickle development (Kellogg et al., 2011; Pandey et al., 2018; Khadgi and

Weber, 2020a).

Khadgi andWeber (2020b) used two cultivars of red raspberry (Rubus idaeus L) to identify differentially

expressed genes in the ‘skin’ tissue of ‘Caroline’ (a cultivar with prickle) and ‘Joan J.’ (a glabrous cultivar),

and three prickly and prickless offspring. They sampled the ‘epidermis’ (the sampling method was not

described) (Khadgi and Weber, 2020b), as prickles previously described as having originated from the

epidermis (Khadgi and Weber, 2020a). As in Pandey et al. (2018), an imprecise term, epidermis, was used

to describe the tissues. A more accurate description of the materials is needed. Another issue in this study

the sampling of later stages of prickle development to decipher prickle initiation. Indeed, GP or GT were

considered as the early stage of prickle development. It should also be mentioned that the prickly cultivar

‘Caroline’ presents NGPs, GPs or/and GTs and NGTs, while the prickless cutivar ‘Joan J.’ presented only

NGTs. This means that in this study, the experimental design does not consider all the variable factors (NGP,

GP, or/and GT). The six offspring were only described as prickly and prickless. Do they have NGPs, GPs,

GTs or NGTs? This point is not clear. Furthermore, we do not know if the genetic background of the two

cultivars is close or not. All these elements make it very difficult to interpret the results and to compare them

with our results.
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5.4 Old questions and new insight: prickles and trichomes

5.4 Old questions and new insight: prickles and trichomes

5.4.1 Homology

Several homologies and resemblances exist between prickles and trichomes. First, concerning their

morphology, both trichomes and prickles are non-glandular or glandular, can be branched or unbranched, and

neither have any vascular bundle. Second, considering their function and their co-evolution with herbivores,

prickles and trichomes may have a certain homology. Non-glandular trichomes (NGTs) are normally thought

to have evolved primarily as physiological barriers against extreme environmental conditions and herbivores

(insects) (Kariyat et al., 2017). The earliest evidence of glandular trichomes (GTs) comes from the fossils

of the late carboniferous (Stephanian stage, 290 Mya) where they are modified from NGTs in the process

of their co-evolution with insects (Krings et al., 2003; Lange, 2015). Similarly, prickles are assumed to be

an adaptation of rose against herbivores (insects and mammals) (Chaloner, 1970; Kariyat et al., 2017). A

question therefore arises: are prickles or certain features of prickles inherited from trichomes? Combining

morphological, ultrastructural, chemical and molecular evidence could help to answer this question. For

example, from the morphology, NGPs and GPs are more closely related to NGTs and GTs, respectively.

5.4.2 Distinction

Trichomes, glandular or non-glandular, are epidermal appendages that originate from one or more

protoderm (or epidermis) cell(s) only (Esau, 1953;Werker, 2000). Non-glandular prickles originate from the

tissue under the protoderm, that we refer to as the ground meristem here (Figure 14). Glandular prickles also

originate from the ground meristem, but their glands evolve from the protoderm of the stalk (or epidermis)

during prickle development (Chapter 2). Usually, cells on the different positions perceive different signals,

respond through intracellular signaling pathways and eventually adopt a specific cell fate, followed by the

production of different organs or tissues. Thus, for trichomes and prickles, the tissue they evolve from

is different (epidermis vs. sub-epidermis). Different gene networks may control prickle and trichome

initiation and development. This hypothesis is supported by the results we obtained in the candidate genes

(Chapter 3) and transcriptomic (Chapter 4) approaches. Since we proposed that the NGP may be more

homologous to NGT than to GT, we identified in rose the homologues of genes involved in NGT initiation

and development in Arabidopsis. In Chapter 3, we annotated 15 rose TFs that, based on similarity, can be

involved in trichome development in rose: RcGL1, RcMYB82, RcMYB61, RcCPC, RcTRY, RcGL3, RcTT8,

RcMYC1, RcTTG1, RcTTG2, RcZFP5, RcGIS3, RcGIS2, RcZFP1 and RcGL2 (Supplementary Table A.3).

Among them, several were located in the confidence interval of the detected QTLs: RcMYB61 and RcTTG2

for the QTL on LG3; RcGIS3 for the QTL on LG4; and RcCPC, RcTRY and RcMYC1 for the QTL on LG1.

RcZFP5 (Chr04: 57,125,905 bp) is out of the QTL interval on LG4 in the OW progeny, but close to the

LOD peak marker K5629_995 of a prickle QTL in the K5 population (Chr04: 57,791,999 bp) (Bourke

et al., 2018a). These genes were considered as good candidates for the detected QTLs, but we cannot

rule out the fact that these co-localizations may be just a coincidence. This coincidence is magnified,
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especially when the morphological characteristics of trichomes and prickles are different, and when almost

every chromosome has one or more candidate genes. Therefore, it is particularly important to gain further

information by studying the transcript accumulation of these candidate-genes during prickle initiation and

development. Consequently, we quantified the transcripts accumulation of 10 TF genes in glabrous and

prickle F1 individuals at different developmental stages by RT-qPCR. Unfortunately, only minor differences

were observed between glabrous and prickle samples. The main differences are between developmental

stages but not between the type of stems (as demonstrated by the heatmap analysis). In Chapter 4, we

compared the nine genes’ whose expression was normalized by RNA sequencing and obtained quite similar

expression patterns to those previously found by the RT-qPCR in Chapter 3. In addition, through Gene

Ontology enrichment studies, we observed that some candidates for prickle initiation and development might

be involved in organ development, including flowers, leaves, shoot, but not trichomes.

In conclusion, we suggest that NGPs andNGTs have different genetic pathways that control their initiation

and development. This conclusion is different from the previous hypothesis: rose prickles and trichomes

share a common genetic pathway (Khadgi and Weber, 2020b).

5.5 Beyond this study, what we can do next?

The genus Rosa is a very interesting model as it includes species at different ploidy levels, as well as rich

phenotypes and a large genetic diversity. However, due to the highly heterozygosity character, the assembly

of a rose genome is always a challenging task, which greatly limits the progress of related research in rose.

The completion of two high-quality genomes is a starting point of genomic research in rose (Hibrand-Saint

Oyant et al., 2018; Raymond et al., 2018). For genetic studies on prickles, we compared different genetic

studies thanks to the positioning of the genetic markers on the sequence of the reference genomes. We easily

combined genetics, candidate gene approaches and transcriptomic approaches. This integrative analysis

has greatly enhanced our understanding of the genetic mechanism of prickle initiation and development.

In this study, we provide a framework for studying the genetics and genomics of quantitative traits in a

heterozygous woody species. Further studies that will combine GWAS, genomics (DNA sequencing) and

functional validation can be done to go deeper into the analysis of the molecular mechanisms underlying the

complexity of prickles in rose and to develop markers for breeding prickless roses.

5.5.1 Using genetic diversity to decipher prickle regulation and to develop markers

for assisted breeding selection of prickless roses

5.5.1.1 GWAS study of different types of prickles (as a complex trait)

As a complement to QTLs analyses in F1 progeny, a genome-wide association study (GWAS) could be

used on a rose core collection to study genetic determinism. QTL mapping is an efficient approach to study

the genetic determinism in a target population and for a given trait. It provides high statistical power for
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detecting QTLs. Despite the fact that QTL mapping has proved and remains a powerful method, it suffers

from two fundamental limitations: the genetic basis is narrow in biparental approaches and the number

of recombinations present in the F1 individuals limits the mapping resolution (especially if the population

size is low). Consequently, we need larger populations to increase the resolution (Korte and Farlow, 2013).

GWAS overcomes the limitations of QTL mapping but introduces other issues (Korte and Farlow, 2013).

One of the main advantages of GWAS is to work on a larger genetic diversity, while the disadvantage is that

the method is sensitive to the population structure that may lead to many false positives. GWAS can offer

a very fine resolution (based on the LD decay). However, the power of QTL detection will be determined

by the allele frequency. For instance, effects of rare alleles are difficult to detect. In GWAS, the genetic

interaction between loci (epistasis), or the interaction between loci and the environment are not considered.

Therefore, GWAS is often complementary to QTL mapping and, when performed together, they alleviate

each other’s limitations (Zhao et al., 2007; Brachi et al., 2010).

Since QTLmapping and GWAS are both based on the detection of correlations between phenotypes and

molecular markers, the evaluation of the phenotype is an important issue when initiating genetic approaches.

For example, as we discussed in the first section, we suggested that GPs and NGPs should be studied

separately in F1 population ((Zhou et al., 2020), Chapter 3). Wild rose species or cultivated varieties have

more diversified phenotypes than the F1 hybrids from the OW population. The scoring of the trait is then

more complicated in GWAS. In Chapter 2, we proposed a rapid method to phenotype the different prickles

in rose according to several characteristics. First, the presence of a glandular head (GPs vs. NGPs), then the

presence of branched (unbranched vs. branched prickles) and, finally, the presence of hairs on the prickles

(‘naked’ vs. ‘hairy’). This method of phenotyping can be used by focusing on the different types of prickles

and their anatomy. Different GWAS panels have recently been developed in roses (Schulz et al., 2016;

Nguyen et al., 2017; Hibrand-Saint Oyant et al., 2018), and unpublished data from the GDO team) with

a high-density genotyping using an AXIOM-ARRAY. These panels can be studied for different types of

rose prickles (with the proposed method). It can help to identify new loci and to then validate other good

candidates identified by the transcriptomic approach (Chapter 4).

5.5.1.2 Develpment of genetic markers for assisted breeding of prickless roses

Molecular markers remain essential for genomic research and for molecular breeding of any crop. The

latest developments in rose genomics have led to the generation of a wide range of genomic tools and

technologies for application in ornamental trait improvement. In Chapter 3, the peak markers of QTLs

on LG3 are highly associated with the absence and present of prickles. However, few recombinants are

observed in the progeny between the peak marker and the PRICKLE locus. Further studies are necessary

to develop specific markers for assisted selection of prickleless roses. Combining QTL and GWAS results

may help to develop markers that will be closer to the PRICKLE locus.

Single-nucleotide polymorphism (SNP) markers have now become the most popular markers due to

advances in sequencing technologies. DNA sequencing (orwhole genome sequencing) by Illumina technology
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is now becoming cheaper and easier and could be used for genotyping inGWAS (Genotyping by Sequencing).

Through mapping on the reference genome (Hibrand-Saint Oyant et al., 2018; Raymond et al., 2018), it was

possible to detect SNPs and Indels everywhere on the genome. SNP and Indel effects can then be annotated

as frameshift variants, new stop codons, splicing variants (splice donor or splice acceptor variant) or intron

variants. Combined with the genetic knowledge fromChapter 3, a strategy can be developed to mine the SNP

markers and associated SNP with prickless or prickle alleles. The preferred materials for DNA sequencing

are the prickle and prickless genotype in another population, which was obtained in China from a cross

between R. chinensis ‘Old Blush’ (OB) and R. wichuraiana ‘Basyes’ Thornless’ (which may be a mutant

or offspring of RW) (Zhou et al., 2017). The genetic information for prickle trait in this population will

facilitate the data analysis in subsequent studies, and the sister genotype can reduce the uncertain genetic

background factors.

5.5.1.3 Detecting the genetic diversity of the candidate genes discover in Chapter 4

Through the whole genome sequencing we mentioned above, a large number of genes can be assembled

and annotated based on the reference genome. Presently, around 20 roses (prickly) genomes (short reads)

have been released (Hibrand-Saint Oyant et al., 2018; Raymond et al., 2018). Rose comparative genomic

strategies in prickle and prickless samples can be used to detect the genetic diversity of the candidate genes

discovered in Chapter 4. However, the genome of prickless genotypes should be re-sequenced. The seven

glabrous genotypes we presented in Chapter 2 are a material of choice to be re-sequenced. They are R.

multiflora ‘inermis’, R. wichurana ‘Bayses’ Thornless’, R. pimpinellifolia ‘lutea’, R. banksiae ‘alba plena’

and R. banksiae ‘lutea’, R. banksiae var. normalis, R. fraxinifolia Lindl.

5.5.2 RT-pPCR to identify if the inhibitors can impact NGP density

In Chapter 4, we mentioned many good candidate genes related to prickle initiation. Most of them

are mainly expressed in prickless samples, and are considered to be inhibitors of prickle formation. We

proposed that the inhibitors may be involved in a complex regulatory network that could impact prickle

density. To test this hypothesis, we can use a RT-qPCR method to test if the transcript accumulation of those

genes can be correlated with the density of NGPs. Different F1 individuals from the OW progenies with

different density can be used. Materials should be sampled at an early developmental stage such as Stage I.

We can expect to detect a correlation between the transcript level and prickle density. These inhibitors

are RC3GO350900 (RcPKL), R3G0389900 (RcWOX-g1), RC4G0448500 (RcWOX-g2), RC3G0419900

(RcAS2), RC4G0393200 (RcJAG), RC4G0398800 (RcDOT5), RC3G0386900 (RcAKR1), RC1G0289800

(AFO), RC70233600 (AFO), RC4G0428600 (MYB16), RC1G0527600 (KCS6), RC7G0011600 (KNAT1),

RC7G0049900 (MYB106), RC3G0071300 (MYB106), RC2G03132700 (BOP2), RC2G0036100 (YAB5),

RC5G0428600 (YAB2) etc. The first seven can be studied in priority.
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5.5.3 Functional validation

Through this project, we have explored ten good candidate genes for prickle initiation. Seven (RcWOX-g1,

RcWOX-g2, RcAS2, RcJAG, RcDOT5, RcAKR1) were proposed to be positive regulators of glabrous stem

development (or repressors of prickle initiation). Three (RcMMD1, RcAMI1, RcNAP1-like1) were suggested

to be activators of prickle initiation and development. The candidate genes described in this study are highly

associated with prickle formation since we combined transcriptomic and genetic approaches. However, it is

still too early to say that they are the key regulators. Further research is necessary and, especially, functional

validation.

For the seven potential repressors, we have suggested that using a RT-qPCR method to identify their

relationship with prickle density as in the previous section. Another hypothesis is that they are the important

regulators for the boundaries of glabrous stem development. To validate this argument, we can knock-down

or silence these genes in individuals with glabrous stems to check if it will give a prickle phenotype or a

defect stem (compare with glabrous).

For the three potential promotors (RcMMD1, RcAMI1, RcNAP1-like1), two approaches can be proposed

for a functional validation: (1) An ectopic expression of these genes in glabrous individuals to check if the

transgenic roses will have prickles; (2) A knock-down or silencing of the genes in individuals with prickles

to check if transgenic roses will be prickless or will have a lower prickle density.

Since prickle and trichome development might not share a similar regulatory network (see previous

discussion), functional validation in A. thaliana is not essential. Functional validation has to be done in rose

where transient and stable transformation protocols exist (Firoozabady et al., 1994; Randoux et al., 2012).

A recent review (Smulders et al., 2019) summarized rose genetic transformation. It should be observed

that some candidates (RcWOX-g1, RcWOX-g1, RcAKR1, RcMMD1, RcNPI1) are duplicated and present

paralogs. This may affect functional validation of single genes and may complicate the analysis. We should

therefore pay more attention to this point for the experimental design and for the interpretation of the results.
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Supplementary Figure A.1: Frequency distribution and Q-Q plot of non-glandular prickles on four internodes in the OW population for floral stems (PF) and the main stem (PM)
for the three years (2016, 2017 and 2018).
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bHLH family C2H2 family

MYB family WD40 family

a.

c.

b.

d.

Supplementary Figure A.2: Phylogenetic analysis of the transcription factor family involved in trichome
initiation and development: (a) bHLH, (b) C2H2 Zinc-Finger, (c) MYB: R3MYB (red sub-tree) and
R2R3MYB (blue sub-tree), and (d) WD40. The rose genes homologues of genes involved in trichome
initiation and development are in red. For A. thaliana, the protein name corresponds to the TAIR
database (https://www.arabidopsis.org/), and for rose, to the reference genome of the haploid of ‘Old Blush’
(Hibrand-Saint Oyant et al. (2018)), except for Chr1g0359121 and Chr2g0138951 (Raymond et al. 2018)
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Supplementary Table A.1: Primer sequences of candidate genes for qPCR.

Primer name Sequence of primers

RcMYC1-1-F 5’ CCACCCTCAATGATGTTCTC 3’

RcMYC1-1-R 5’ TTCTGGCGTCTCAACACTTAC 3’

RcTT8-1-F 5’ AGAGAGCGATGGATTGTTGG 3’

RcTT8-1-R 5’ GCCCTCTTCACTTCTGTAATGG 3’

RcGIS2-1-F 5’ CTGGTGACTCCGTTGTTCG 3’

RcGIS2-1-R 5’ TCCCTAAGATGGATGGATTGA 3’

RcGIS3-1-F 5’ GGCCATCGTTGAGTAGGTTC 3’

RcGIS3-1-R 5’ GGAGTCAGAGGCTGAGTTGC 3’

RcTRY-1-F 5’ GGAAAGCAGAAGAAATAGAGAGG 3’

RcTRY-1-R 5’ CTACTACTGACAAGGAAAACCAATG 3’

RcTTG1-1-F 5’ TCCAATGTCAATGTACTCGGC 3’

RcTTG1-1-R 5’ CCTCCTCAAACCTTCAACAGC 3’

RcTTG2-1-F 5’ CCTCAAACCCAGGAGCATC 3’

RcTTG2-1-R 5’ CAACAGCTTGATCCCTGAGAG 3’

RcCPC-F 5’ GACATTGTGAGGTGTTTGCTGAG 3’

RcCPC-R 5’ AATCCGCTGAAAGTTCGACG 3’

RcMYB61-F 5’ GGATCTTCAGAGACTCGCTGTAGC 3’

RcMYB61-R 5’ CAAGCCCTCCTCTCACATTCAT 3’

RcZFP5-F 5’ CAGGAGAAAGCAGACCAGTGAT 3’

RcZFP5-R 5’ GGCAAGCCAATCCCTAACTG 3’
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Supplementary Table A.2: Summary of QTLs for NGP with two-part QTL model in OW progeny.

QTL Characteristics

Trait Phenotyping PTa LG@positonb MMc bdd r(%)e

Binary(p) PF2016 2.57 OB3@44.4 Rw35C24 40,215,502 15.93

PF2017 2.53 OB3@44.4 Rw35C24 40,215,502 15.18

PF2018 2.6 OB3@44.4 Rw35C24 40,215,502 16.12

PM2016 2.47 OB3@44.4 Rw35C24 40,215,502 14.76

PM2017 2.58 OB3@44.4 Rw35C24 40,215,502 13.38

PM2018 2.51 OB3@44.4 Rw35C24 40,215,502 16.72

PF2016 2.67 RW3@42.6 Rh12GR_52506_1218 42,317,122 29.31

PF2017 2.59 RW3@42.6 Rh12GR_52506_1218 42,317,122 30.33

PF2018 2.57 RW3@42.6 Rh12GR_52506_1218 42,317,122 28.72

PM2016 2.54 RW3@42.6 Rh12GR_52506_1218 42,317,122 20.69

PM2017 2.56 RW3@42.6 Rh12GR_52506_1218 42,317,122 26.84

PM2018 2.59 RW3@42.6 Rh12GR_52506_1218 42,317,122 33.21

PF2016 2.67 RW2@16.2 CTG356 1,674,220 1.80

PM2016 2.47 RW6@22.3 RhMCRND_12897_444 17,698,816 2.70

Quntitative(µ) PF2016 2.42 OB4@30.6 Rh12GR_60129_183 52,239,028 9.02

PM2016 2.36 OB4@30.6 Rh12GR_60129_183 52,239,028 9.26

PM2017 1.92 OB4@30.6 Rh12GR_60129_183 52,239,028 9.88

PM2018 2.8 OB1@67.7 Rh12GR_62822_144 7,388,536

7,633,108

6.66

PF2016 2.39 RW3@42.6 Rh12GR_52506_1218 42,317,122 20.98

PM2016 2.26 RW3@28.3 Rh12GR_78941_279 36,727,828 14.23

PM2017 1.88 RW3@32.3 Rh88_36897_190 38,554,327 12.61

PM2018 2.52 RW3@42.6 Rh12GR_52506_1218 42,317,122 38.64

PF2018 2.57 RW1@24.1 Rh88_6034_211 45,638,457 7.80

aPT Genome-wild LOD significance threshold was defined by a permutation test.
bLG@positon Chromosomal linkage group, using the separate map (OB and RW) numbering of
(Hibrand-Saint Oyant et al., 2018) @ peak location in cM.

cMM Closest molecular marker (MM) associated.
dbp Location in base pair (bp) on the Rosa chinensis Genome v1.0 (Hibrand-Saint Oyant et al.,
2018).

er(%) Percentage of explanation.
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Supplementary Table A.4: Prickle number on four internodes of two types of stems for three years in OW progeny.

Indiciduals PF2016 PF2017 PF2018 PM2016 PM2017 PM2018
Ow9001 0.67 5 2.67 10 12.67 10.33
Ow9003 0 0 0 14 12.33 8.33
Ow9004 2 3 0.33 3 3 0
Ow9005 10.67 12 11.67 10.67 12.33 11
Ow9006 3.67 4 9 3.67 4 0
Ow9007 3.67 4.67 8.33 10 4.67 5.67
Ow9008 6 0.67 0 6 2.67 1.33
Ow9009 7 4.33 2 7 5.33 12.33
Ow9010 11.67 11 7.67 11.67 15.67 12.67
Ow9011 11 11.67 9 11 11.67 11.67
Ow9012 11.67 14.67 11.67 15 17 14.33
Ow9013 1 2.67 4 2.67 2.67 4
Ow9014 2.33 10 0.67 9.67 10 2
Ow9016 NA NA NA 8.33 NA NA
Ow9017 15.67 17 14.33 15.67 18.33 14.67
Ow9018 9.67 8.67 11.33 9.67 8.67 10
Ow9019 0 0 0 0 0 0
Ow9021 13.67 15.33 14.67 13.67 15.33 14.33
Ow9022 9.67 10 7.67 11.33 9.67 9.33
Ow9023 15.33 15.67 13.67 15.33 15.67 14.33
Ow9024 16 13 11.33 16 16.67 16.33
Ow9025 14 13 11.67 14 13 13.67
Ow9027 13 8.67 8.33 13 8.67 9
Ow9029 10 10 7.67 10 10 8.33
Ow9030 10.67 10.67 11.67 12 11 11.33
Ow9031 12.33 12.33 8.33 12.33 12.33 15.33
Ow9032 9.33 6.67 3.33 14.33 2 0.33
Ow9033 12.33 11 9 12.33 12 13.33
Ow9034 15.67 17.33 13.33 15.67 17.33 15
Ow9035 14 15 16.67 14 15 5
Ow9036 0 0 0 0 0 0
Ow9037 0 0.67 2 0.33 0.67 1
Ow9038 0 0 0 7.67 2.33 5.33
Ow9039 10.33 13 10.33 13.67 12 14.33
Ow9040 11.67 11.67 9 11.67 12 10.33
Ow9041 5.67 6.67 8.67 5.67 6.67 10.33
Ow9042 11.67 9.67 13 11.67 12.67 13.67
Ow9044 0.67 1 0.67 3.33 1 0
Ow9045 3.33 4.33 4.33 3.33 2.67 3.67
Ow9046 0 0.33 4 12.67 0.33 0.33
Ow9047 4.33 2 6 4.33 2 0
Ow9049 1 0 4 1 0 0
Ow9050 14 15.33 16 14 15.33 13.33
Ow9051 0.67 0.33 0 0.67 0.33 0.33
Ow9052 13.67 14.33 12.33 16.33 14.33 12.33
Ow9054 0 0 0 0 0 0
Ow9055 6.67 6.67 9.33 6.67 11 11.67
Ow9056 NA 0 0 0 0 0

Continued......

147



Supplementary Table A.4–Continued from previous page..

Indiciduals PF2016 PF2017 PF2018 PM2016 PM2017 PM2018
Ow9057 0 0 0 0 0 0
Ow9058 NA 0 0 0 0 0
Ow9059 0.33 1.33 0.33 0.33 1.33 0.67
Ow9060 1 1.33 2.67 1 1.33 1
Ow9061 12.67 12 9.33 11.33 12 12.33
Ow9062 12.67 9.67 7.67 14.67 14.33 14.67
Ow9065 2 1.67 0 3.67 8.67 4
Ow9066 2.33 6.33 3.67 10.67 10 11
Ow9067 0 0 0 0 0 0
Ow9068 0 0 0 0 0 0
Ow9069 14.33 14.67 11 14.33 14.67 13
Ow9071 14 21.33 12.67 18.67 16 13.67
Ow9072 16.67 16.67 13 16.67 16.67 12.33
Ow9074 11.67 11 10.33 11.67 11 5.67
Ow9075 11.67 14 9.33 11.67 14 12.67
Ow9076 2.67 3 1.67 11.67 3 0
Ow9077 10.67 9.67 10.33 10.67 15 14.33
Ow9078 0.67 0 0 0.67 0 0
Ow9079 11.67 8.67 7.67 11.67 12 12
Ow9080 12.67 10.33 9.67 13.33 16.33 12.33
Ow9081 13 13 12.33 13 15 15.33
Ow9082 9.33 12 11.33 9.33 12 11.33
Ow9083 12 9 9 12 9 12
Ow9084 14.33 14 13.67 15.67 20.33 17
Ow9085 12 3 10 12 12 13
Ow9087 14.33 15 12.67 14.33 15.33 14.67
Ow9088 10.33 11.33 10.33 12.33 11.33 11
Ow9089 13.33 13.67 13 13.33 15 15.33
Ow9091 0.67 1 0.67 0.67 1 0
Ow9092 8 7.33 8.33 15.67 12 6
Ow9095 11 11.33 7.33 11 11.33 12.33
Ow9096 5.67 10.67 9.33 9.67 10.67 11
Ow9098 2.67 10.67 9.33 9.33 11 11.33
Ow9099 13.33 12 14.67 13.33 12.67 9.33
Ow9100 6.67 8 8.33 6.67 8 9.33
Ow9101 15 16 11.33 15 15 17.33
Ow9103 15 8.67 11 15 15 14.33
Ow9104 10.67 12.33 9 13 11.67 13
Ow9105 12.67 12 8 12.67 12.33 12
Ow9106 43 45.67 38 48.67 48 30
Ow9107 38 52 35 32.33 42.33 29
Ow9109 12 10.67 9.67 12 10.67 11.33
Ow9111 6 2.67 0.33 16.33 2 10.33
Ow9113 15.67 14.33 13.33 15.67 18.33 13.33
Ow9115 6.67 0.33 0.33 6.67 6 1.33
Ow9116 12 12.67 12 12 12.67 11.33
Ow9117 13.33 14 15 15 16 14.33
Ow9119 0 0 0 0 0 0
Ow9120 8 10 9.33 8 10 7
Ow9121 4.67 5.33 5.67 11.67 10.33 9.67

Continued......
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Supplementary Table A.4–Continued from previous page..

Indiciduals PF2016 PF2017 PF2018 PM2016 PM2017 PM2018
Ow9122 9 9.67 10.67 9 9.67 7.33
Ow9123 11.67 7.67 7.67 10 9 9
Ow9124 5 10 9.67 12.67 12.67 12.67
Ow9125 7.67 9 7 11.33 11.67 9.33
Ow9126 9.67 15 10 24 20.33 12.33
Ow9127 13.33 11.67 8.67 13.33 11.33 11
Ow9128 0 1.33 0 0 1.33 1.33
Ow9129 5 10.67 11.33 12 11 11.33
Ow9132 0 0 0 0 0 0
Ow9133 0.67 1.67 0 0.67 1.67 0
Ow9134 18 13.67 16.67 18 13.67 18.67
Ow9137 5 7.67 3.67 8.33 11 8
Ow9138 10.67 10 8 15 15.67 12.33
Ow9139 18.67 20 20 17.33 17.33 15
Ow9140 6.67 9 9 6.67 11.67 10.67
Ow9142 10.67 10.33 9.67 10.67 10.67 12.67
Ow9143 16.67 12 9.33 13 12.33 9.33
Ow9144 21.33 15 16 16 14.33 14.67
Ow9147 16.33 18 13.67 16.33 18 11.33
Ow9148 NA 16 16 NA 16 8
Ow9149 0 0 0 0 0 0
Ow9150 0 0 0 0 0 0
Ow9151 NA 12.33 12 NA 12.33 13.33
Ow9152 13.33 13.33 16.33 13.33 15 20
Ow9153 0 2.33 2.33 3.67 2.33 3
Ow9154 16.33 15.33 15.33 16.33 15 12.33
Ow9155 8 9 9 11.67 11.67 10.33
Ow9156 8.33 8 7.67 11.67 11.67 10.67
Ow9158 NA 9 3 NA 8.67 4
Ow9159 9.67 10 10.67 11 12.33 11.33
Ow9160 17 15.33 10 12 12.33 14.33
Ow9161 10.33 9.67 10 10.33 12 7.33
Ow9163 0.67 2.33 0 0.67 2.33 0.67
Ow9166 0 0 0 2 0 0
Ow9167 11 9.67 10 11 9.67 10
Ow9168 6.33 9 7 6.33 9 6
Ow9169 10.67 10.67 11 10.67 10.67 11.33
Ow9171 0 0.67 0 0 0.67 0
Ow9172 13.33 16.33 17 13.33 16.33 15.33
Ow9173 NA 16.67 16.67 NA 16.67 16.67
Ow9174 NA 8 8 13.33 8 5.33
Ow9175 11.67 9 8.33 13.33 14 12.33
Ow9178 0 0 0 0 0 0
Ow9179 12.67 13 12.33 12.67 12.67 16.33
Ow9180 11 10.33 10.67 11 11.33 12.33
Ow9181 0 0 0 0 0 0
Ow9182 7.67 NA 7.67 9.67 NA 3.67
Ow9185 12.67 11.33 11.67 12.67 11.33 11.67
Ow9186 0 NA 2.67 4.67 NA 2
Ow9190 11.67 16.33 10.67 11.67 13 13

Continued......
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Supplementary Table A.4–Continued from previous page..

Indiciduals PF2016 PF2017 PF2018 PM2016 PM2017 PM2018
Ow9191 2.67 7.33 7.67 9.67 9 8.67
Ow9192 8.33 10.33 9 12.67 11.33 11.33
Ow9197 19 19 18.33 19 16.33 17
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Supplementary Figure B.1: An overview of the pipeline for RNAseq Bioinformatics analysis. TPM:
Transcripts Per Kilobase Million. CPM: Counts per million.
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Supplementary Figure B.2: Quality control of clean reads in each dataset. (a) The mean quality value across
each base position in the read. (b) The number of reads with average quality scores. Shows if a subset of reads
has poor quality. (c) a histogram of read GC content. (d) Inner distance between two paired RNA reads.(e)
The number of known splicing junctions that was observed. (f) the number of novel splicing junctions that
was observed.

153



Supplementary Figure B.3: MA plot visualized the differences between expression taken in two compared samples, by transforming the data onto M (log fold changes) and A
(mean of normalized counts) scales. Title names indicate ‘treatment’ vs ‘control’; LFC indicates shrunken log2 fold changes; ‘up:number’ and ‘down:number’ indicates the SDE
genes number of up- and down-regulation expression respectively.
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a.

b.

c.

Supplementary Figure B.4: GO biological process tree for the specific, common SDE genes of each
compared groups PIIavsPI and NPIIavsNPI. (a) ‘specific’ SDE genes of PIIavsPI, (b) ‘common’ SDE genes
of PIIavsPI and NPIIavsNPI, (c) ‘specific’ SDE genes of NPIIavsNPI. The depth of blue indicates the level
of significance, darker means more siginificant.
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Supplementary Figure B.5: Heatmaps showed the 2118 SDE genes of PIvsNPI involved in the interesting
GO enrichment and their co-expression pattern. Arabidopsis proteins inside brackets refers to the homologue
of rose proteins, obtained from automatic annotation. A more precise annotation is needed to study by the
phylogenetic family analysis.
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Supplementary Figure B.6: Continued on the next page....
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Supplementary Figure B.6: Continued on the next page....
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e. f.

Supplementary Figure B.6: Continued on the next page....
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g.

h.

Supplementary Figure B.6: Phylogenetic family analysis for the best candidate genes based on their potential
function in prickle initiation. (a) A phylogenetic tree for WOX protein family. (b) C2H2 zinc finger proteins.
(c) LATERAL ORGANBOUNDARIES (LOB) domain family proteins. (d) NAD(P)-linked oxidoreductase
superfamily proteins. (e) PHD finger (C4HC3-type zinc finger -like) proteins. (f) Nucleosome assembly
protein (NAP) family. (g) Chromodomain helicase DNA-binding (CHD) subfamily proteins. (h) Amidase
signature family proteins. The ‘Old Blush’ candidate genes are in bold-red and their duplications are in
bold-black. The A. thaliana homologs are in blue, the protein name corresponds to the TAIR database
(https://www.arabidopsis.org/). For rose, ‘RCxxxxxxxxx’ protein corresponds to the reference genome of
the haploid of ‘Old blush’ (Hibrand-Saint Oyant et al., 2018), ‘RchiOBHm_Chrxxxxxxxxx’ protein to the
haploid genome of ‘Old blush’ (Raymond et al., 2018). The other rose genomes: R. multiflora (Nakamura
et al., 2018), R. xanthina, R. rugosa, R. persica (Hibrand-Saint Oyant et al., 2018). The other Rosaceae
species protein obtained from R. occidentalis genome (VanBuren et al., 2018),M. domestica Borkh genome
(Daccord et al., 2017), P. communis genome (Linsmith et al., 2019), P. armeniaca genome (Jiang et al.,
2019), P. avium ‘Tieton’ (Wang et al., 2020), P. persica genome (Verde et al., 2017).
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Supplementary Table B.3: Expression quantification statistics observed per sample

SamplesUniquely aAssigned_Features bUnassigned_NoFeature cUnassigned_Ambiguity

mapped reads Reads
numbers

Ratio Reads
numbers

Ratio Reads
numbers

Ratio

NPI1 30792701 28953499 94.03% 1766548 5.74% 72653 0.24%

NPI2 30562520 28828692 94.33% 1661280 5.44% 72547 0.24%

NPI3 30774465 28941266 94.04% 1755029 5.70% 78169 0.25%

NPIIa1 30387941 28795262 94.76% 1522746 5.01% 69932 0.23%

NPIIa2 30171359 28494354 94.44% 1600052 5.30% 76952 0.26%

NPIIa3 30515461 28965769 94.92% 1473432 4.83% 76259 0.25%

PI1 30700095 28984939 94.41% 1641525 5.35% 73630 0.24%

PI2 30692655 28864523 94.04% 1748055 5.70% 80076 0.26%

PI3 30237205 28477838 94.18% 1685968 5.58% 73398 0.24%

PIIa1 30355124 28898519 95.20% 1380258 4.55% 76346 0.25%

PIIa2 30180124 28731063 95.20% 1363787 4.52% 85273 0.28%

PIIa3 30112682 28607136 95.00% 1427779 4.74% 77766 0.26%

PIIb1 30435425 28606734 93.99% 1746760 5.74% 81930 0.27%

PIIb2 30092435 28379088 94.31% 1634617 5.43% 78729 0.26%

PIIb3 30020580 28368243 94.50% 1579577 5.26% 72759 0.24%

PIIc1 29676062 27479562 92.60% 2120734 7.15% 75765 0.26%

PIIc2 29927383 27680212 92.49% 2169301 7.25% 77869 0.26%

PIIc3 29953780 27943061 93.29% 1935212 6.46% 75506 0.25%

PIII1 29995614 27575633 91.93% 2344783 7.82% 75197 0.25%

PIII2 29948419 27558971 92.02% 2315803 7.73% 73644 0.25%

PIII3 30054819 27465884 91.39% 2514763 8.37% 74171 0.25%

Average 30266040 28409536 93.86% 1780381 5.89% 76122 0.25%
aAssigned_Features The read (or fragment) was assigned to a gene feature in the annotation file.
bUnassigned_NoFeature The fragment mapped to a region that is not annotated in the annotation file.
cUnassigned_Ambiguity The fragment might originate from gene A or gene B, and it is not clear which gene it originated
from.
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Supplementary Table B.4: Summary of the annotated information for 43 SDE genes located on QTL-LG3,4.

Gene_ID Gene_Position TAIR UNIPROT Annotation Annotation Potential function
AT Gene e-value SwissProt ID e-value name

RC3G0350900 42174997..42181428 AT2G25170 0 Q9S775 0 PKL CHD3-type chromatin-remodeling factor PICKLE cell division: response to "auxin, gibberellin, water

deprivation"
RC3G0373700 43671059..43678116 AT1G29320 4E-41 Q6RFH5 1E-10 WDR74 WD repeat-containing protein 74 cell fate: preimplantation development
RC3G0398600 45359094..45359645 AT5G28850 2E-25 Q5QIT3 4E-24 BETA Serine/threonine protein phosphatase 2A regulatory

subunit B”beta

others: Required for organ development

RC3G0408700 46043054..46044287 AT2G02230 2E-64 Q6NPT8 3E-63 PP2B1 F-box phloem protein PP2-B1 others: phloem protein
RC3G0380200 44011688..44014786 AT3G14470 1E-111 Q9LRR4 2E-110 RPPL1 Putative disease resistance RPP13-like protein 1 defense response: bacterial
RC3G0397000 45215053..45216638 na na na na na na na
RC3G0322100 39819975..39821329 na na na na na na na
RC3G0321700 39748324..39749807 na na na na na na na
RC3G0307000 38567684..38568951 AT2G40610 1E-136 O22874 2E-135 EXPA8 Expansin-A8 cell division: plant-type cell wall loosening,

plant-type cell wall organization
RC3G0389900 44624768..44626218 AT3G18010 1E-29 Q6X7K0 2E-28 WOX1 WUSCHEL-related homeobox 1 cell fate: organ development
RC3G0351100 42192172..42192742 AT1G35910 2E-15 Q67XC9 3E-14 TPPD Probable trehalose-phosphate phosphatase D defense response: abiotix stess tolerance
RC3G0419900 46667066..46669290 AT1G65620 1E-79 O04479 2E-78 AS2 Lateral organ boundaries (LOB) domain family

protein

cell fate: organ development

RC3G0285500 36789437..36792822 AT3G47570 0 C0LGP4 0 AT3G47570 Probable LRR receptor-like serine/threonine-protein

kinase

others: Required for organ development

RC3G0307300 38580886..38581780 AT2G38530 1E-29 P83434 6E-33 AT2G38530 Non-specific lipid-transfer protein 1 cell development: cuticle-cell wall interface integrity
RC3G0390600 44685108..44688663 na na na na na na na
RC3G0386900 44426300..44430239 AT1G10810 4E-127 C6TBN2 8E-173 AKR1 Probable aldo-keto reductase 1 cell fate: organ development
RC3G0407300 45947848..45949114 na na na na na na na
RC3G0394400 45041606..45044025 AT1G66170 2E-134 Q7X6Y7 3E-133 MMD1 PHD finger protein MALE MEIOCYTE DEATH 1 cell division: mitosis
RC3G0416400 46439606..46443677 AT4G26110 7E-31 Q9SZI2 1E-29 NAP1 Nucleosome assembly protein 1;1 cell differentiation and proliferation
RC3G0379900 43996353..44002099 na na na na na na na
RC3G0297000 37583666..37587460 na na na na na na na
RC3G0399800 45435579..45437570 AT5G62970 7E-18 Q9FM55 1E-16 AT5G62970 Putative F-box/FBD/LRR-repeat protein na
RC3G0385500 44348086..44348695 na na na na na na na
RC3G0359600 42723887..42724684 AT1G08980 2E-29 Q9FR37 4E-28 AMI1 Amidase 1 Auxin biosynthesis
RC3G0353900 42370775..42371639 AT1G55020 4E-41 Q43191 2E-43 LOX1 Probable linoleate 9S-lipoxygenase 5 defense response: bacterial

Continued......

166



Annexe
B

Supplem
entary

tablesand
figuresassociated

with
Chapter4

Supplementary Table B.4 –Continued from previous page..

Gene_ID Gene_Position TAIR UNIPROT Annotation Annotation Potential function
AT Gene e-value SwissProt ID e-value name

RC3G0384500 44273324..44274796 AT5G45060 1E-36 Q9XGM3 2E-34 RPS4 Disease resistance protein RPS4 defense response: guarding the plant against

pathogens
RC3G0356400 42523016..42526787 AT3G47570 0 C0LGP4 0 AT3G47570 Probable LRR receptor-like serine/threonine-protein

kinase

others: Required for organ development

RC3G0385400 44343641..44345479 AT4G19510 4E-40 Q9XGM3 4E-30 RPS4 Disease resistance protein RPS4 defense response: guarding the plant against

pathogens
RC3G0402100 45588629..45590604 AT5G38260 1E-103 P93604 1E-137 LRK10 Rust resistance kinase Lr10 defense response: bacterial
RC4G0343600 46347068..46347836 AT4G15900 5E-74 Q42384 9E-73 PRL1 pleiotropic regulatory locus 1 cell development: cell elongation and stess responses
RC4G0344200 46402314..46404541 na na na na na na na
RC4G0347100 46567791..46573060 na na na na na na na
RC4G0359000 47552702..47553360 na na na na na na na
RC4G0365800 48216896..48219183 AT1G67730 5E-105 Q8L9C4 1.064E-147 KCR1 BETA-KETOACYL REDUCTASE 1 cell fate: embryo development
RC4G0366900 48308508..48309066 AT2G18980 2E-26 Q96518 4E-25 PER16
RC4G0393200 50528968..50532271 AT1G68480 6E-35 Q6S591 1.45187E-51JAG C2HC zinc fingers superfamily protein cell fate:Controls the morphogenesis of lateral organs
RC4G0398700 51013336..51015521 na na na na na na na
RC4G0398800 51048761..51050484 AT1G13290 4E-116 Q9FX68 4.6623E-126WIP6,

DOT5

C2HC zinc fingers superfamily protein cell fate: organ development

RC4G0400600 51242442..51246144 na na na na na na na
RC4G0401600 51299705..51303048 AT3G25670 2E-158 Q5PP26 0 PII-2 Leucine-rich repeat (LRR) family protein response to symbiotic fungus
RC4G0418500 52778042..52781021 AT1G13740 3E-43 Q9LMX5 5E-42 AFP2 ABI five binding protein 2 signal transduction: response to abscisic acid, water

deprivation
RC4G0428600 53515878..53518069 AT5G15310 5E-110 Q9LXF1 9E-109 MYB16 R2R3 factor gene family others: cell morphogenesis, cuticle pattern formation
RC4G0448500 55069906..55071397 AT2G28610 7E-24 Q9SIB4 6.52049E-18WOX3 WUSCHEL-related homeobox 3 cell fate: Required to initiate organ founder cells in a

lateral domain of shoot meristems
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Titre : Génétique et génomique des aiguillons de la tige du rosier 

Mots clés :  Structure glandulaire et non glandulaire, Trichome, Anatomie de l'aiguillon, QTL,  
Séquençage d'ARN, Transcriptomique 
 
Résumé :   Les aiguillons sont un caractère 
indésirable. Leur présence rend difficile la 
culture et la récolte et provoque des blessures 
sur les producteurs. Le rosier est la plante 
ornementale la plus importante 
économiquement. Du fait de la présence 
d’aiguillons chez de nombreuses roses, la 
demande des obtenteurs et producteurs est 
forte pour des rosiers inermes. Les mécanismes 
génétiques et moléculaires de l’initiation et du 
développement des aiguillons sont peu connus. 
Les objectifs sont d’identifier les réseaux 
génétiques et moléculaires de l’initiation et du 
développement des aiguillons par des 
approches anatomique, génétique et 
génomique. Une analyse anatomique au sein 
du genre Rosa a mis en évidence 2 types 
d’aiguillons : glandulaires et non-glandulaires. 
Ces derniers sont les plus courants et ont une 
origine sous-épidermique. 

Par une approche génétique, nous avons 
identifié 4 QTLs responsables de la présence 
et de la densité des aiguillons sur la tige. 
L’analyse d’homologues, connus pour 
contrôler les trichomes chez Arabidopsis, n’a 
pas montré de différence d’expression entre 
rosiers épineux et glabres, suggérant peu de 
lien entre trichomes et aiguillons. Les bases 
moléculaires de l’initiation et du 
développement des aiguillons ont été étudiées 
par RNA-Seq en comparant le transcriptome 
de tiges (i) avec et sans aiguillons et (ii) à 
différents stades de développement des 
aiguillons. Nous avons identifié des réseaux de 
régulation contrôlant l'initiation et le 
développement des aiguillons, avec des gènes 
intéressants sous les QTLs. Par cette étude, 
nous avons construit un modèle génétique 
pour l’étude des aiguillons et ouvert des 
perspectives de recherche de ces structures.  

 

Title : Genetics and genomics of prickles on rose stem 

Keywords :  Glandular and non-glandular structure,  Trichome,  Prickle anatomy, QTL,  
RNA sequencing, Transcriptomics 
 
Abstract :  Prickle is an undesirable trait in 
many crops as it makes crops difficult to handle, 
harvest, and can injure workers. Roses are 
among the most important ornamental plants, 
and most roses present prickles on their stems. 
There is a strong demand from producers and 
breeders for glabrous rose cultivars, particularly 
in cut roses. The genetic and molecular 
mechanisms underlying prickle initiation and 
development remain still largely unknown. Our 
objectives are to decipher the genetic and 
molecular control of prickle initiation and 
development in rose using anatomic, genetic 
and genomic approaches. By a survey of the 
different types of prickle within the genus Rosa, 
we classified them in two types: non-glandular 
(NGP) and glandular prickles (GP), with the 
NGP being the most common. We 
demonstrated that NGP are originated from a  
cell layer below the protoderm contrary to what 

was previously described. Using a F1 progeny, 
we detected four QTLs controlling the 
presence and density of stem prickle. We 
characterized rose gene homologues known in 
Arabidopsis that involved in trichome initiation.  
Minor different expression of the homologues 
in P and NP, suggesting different gene 
pathway between prickles and trichomes. 
Molecular bases of prickle initiation and 
development were explored using an RNA-Seq 
strategy by comparing the transcriptome (i) of 
glabrous and prickle shoots and (ii) during 
prickle development. We have identified key 
genes and regulatory networks controlling 
prickle initiation and development, with 
interesting genes below the QTLs. Through 
this project, we have built a genetic model 
system for studying prickles and open new 
research areas in the plant sciences. 
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