
HAL Id: tel-03340381
https://theses.hal.science/tel-03340381

Submitted on 10 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning-driven optimization approaches for
combinatorial search problems

Yangming Zhou

To cite this version:
Yangming Zhou. Learning-driven optimization approaches for combinatorial search problems. Com-
putation and Language [cs.CL]. Université d’Angers, 2017. English. �NNT : 2017ANGE0100�. �tel-
03340381�

https://theses.hal.science/tel-03340381
https://hal.archives-ouvertes.fr


Thèse de Doctorat

Yangming ZHOU
Mémoire présenté en vue de l’obtention du
grade de Docteur de l’Université d’Angers

Label europen
sous le sceau de l’Université Bretagne Loire

École doctorale : 503 (STIM)

Discipline : Informatique, section CNU 27
Unité de recherche : Laboratoire d’Études et de Recherches en Informatique d’Angers (LERIA)

Soutenue le 15 decembre 2017
Thèse n° : 1

Learning-Driven Optimization Approaches for
Combinatorial Search Problems

JURY

Rapporteurs : Mme Clarisse DHAENENS, Professeur, Université Lille 1
Mme Christel VRAIN, Professeur, Université d’Orléans

Examinateur : M. Jean-Charles BILLAUT, Professeur, Université de Tours
Directeur de thèse : M. Jin-Kao HAO, Professeur, Université d’Angers
Co-directrice de thèse : Mme Béatrice DUVAL, Professeur, Université d’Angers





Acknowledgement

I would like to thank many people who have helped me during my PhD study. Without them, I could
not have completed this thesis.

First of all, I would like to express my greatest gratitude to my advisor Prof. Jin-Kao Hao. He has been
a constant source of support, encouragement and inspiration throughout my four years PhD study. With his
warm personality and character, he has been an invaluable friend for me. It was an honor and pleasure to
be one of his PhD students.

My sincere gratitude also goes to Prof. Bréatrice Duval for being the second advisor of my thesis.
Thank for her enthusiasm, support and scientific guidance she gave me in the past four years. Not only has
she been there to discuss work-related topics, but more importantly, she has been there as a friend.

I have been also very fortunate to have professor Jean-Charles Billaut in my thesis committee.
I would like to thank professors Clarisse Dhaenens and Christel Vrain. They read the whole thesis

and made important comments on its content. This dissertation benefited greatly from their comments and
suggestions.

Many of my research papers during the PhD study are results of cooperation. I would like to thank all
co-authors of my papers. Specially, I also would like to appreciate Prof. Fred Glover for the ever fruitful
and constructive discussion with him. The discussion with him always makes scientific research full of
sunlight.

I am grateful to Dr. Yuning Chen, Dr. Yan Jin, Dr Ines Sghir and Dr. Xavier Schepler for the many
discussions about my research work. They were always ready to share their knowledge and experience, and
give suggestions towards my research project.

I offer my special thanks to Catherine Pawlonski, Christine Bardaine, Eric Girardeau and Marie-Christine
Welsch. They not only taught me the necessary rules and technical skills in the lab, but also gave me so
many helpful suggestions.

I would like to acknowledge, whether named or not, I thank all my colleagues and friends at the LERIA
with whom I have spent a great time in the past four years.

I wish to thank the China Scholarship Council (CSC) for providing me with financial support throughout
the four years in France.

Finally, I want to express my deepest appreciation to my parents and two elder sisters for always sup-
porting me in my efforts. But most of all I would like to thank my wife Man Li for her love, devotion and
understanding and for constantly believing in me.

3





Contents

General Introduction 1

1 Background 5
1.1 Combinatorial optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Basic notations and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Studied problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Solution approaches for COPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Hybrid metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Learning-Driven Heuristic Optimization 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Machine learning and data mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 A brief overview of common learning tasks in machine learning . . . . . . . . . . 20

2.3 Related surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Machine learning driven heuristic search . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Improving the quality of the obtained results . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Speeding up the heuristic search . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.3 Optimizing the algorithm parameters . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.4 Selecting heuristic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Probability Learning based Local Search for GCP 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Probability learning based local search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Main scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Group selection procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Optimization procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.4 Probability updating procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.5 Probability smoothing procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 PLS applied to graph coloring problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 PLSCOL for GCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.1 Benchmark instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.2 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.3 Comparison with its simple version PLS . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.4 Comparison with other state-of-the-art algorithms . . . . . . . . . . . . . . . . . . 44

3.5 Experimental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5



6 CONTENTS

3.5.1 Benefit of the probability smoothing technique . . . . . . . . . . . . . . . . . . . 48
3.5.2 Comparison of different group selection strategies . . . . . . . . . . . . . . . . . 49
3.5.3 Benefit of the probability learning scheme . . . . . . . . . . . . . . . . . . . . . . 49
3.5.4 Benefit of group matching procedure . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.5 Effect of the penalization factor β . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Opposition-based Memetic Search for MDP 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Opposition-based Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 Memetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Opposition-based memetic search for MDP . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.1 Solution representation and search space . . . . . . . . . . . . . . . . . . . . . . 57
4.3.2 Main scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.3 Opposition-based population initialization . . . . . . . . . . . . . . . . . . . . . . 58
4.3.4 Opposition-based double trajectory search procedure . . . . . . . . . . . . . . . . 60
4.3.5 Backbone-based crossover operator . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.6 Rank-based pool updating strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.7 Computational complexity of OBMA . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.1 Benchmark instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.2 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.3 Benefit of OBL for memetic search . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.4 Comparison with state-of-the-art algorithms . . . . . . . . . . . . . . . . . . . . . 69

4.5 Experimental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5.1 Study of the parametric constrained neighborhood . . . . . . . . . . . . . . . . . 71
4.5.2 Effectiveness of the pool updating strategy . . . . . . . . . . . . . . . . . . . . . 72
4.5.3 Opposition-based learning over population diversity . . . . . . . . . . . . . . . . 74

4.6 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Frequent Pattern-based Search for QAP 77
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Frequent pattern mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Basic concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.2 Representation of the frequent patterns . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.3 Mining and heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Frequent pattern-based search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.1 General scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.2 Elite set initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.3 Frequent pattern mining procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.4 Optimization procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.5 Construction based on mined pattern . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.6 Elite set management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 FPBS applied to the quadratic assignment problem . . . . . . . . . . . . . . . . . . . . . 85
5.4.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.2 FPBS for QAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5.1 Benchmark instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5.2 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



CONTENTS 7

5.5.3 Comparison of FPBS-QAP with BLS and BMA . . . . . . . . . . . . . . . . . . . 92
5.5.4 Comparison with state-of-the-art algorithms . . . . . . . . . . . . . . . . . . . . . 93

5.6 Experimental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.6.1 Rationale behind the solution construction based on mined patterns . . . . . . . . 95
5.6.2 Effectiveness of the solution construction based on frequent pattern . . . . . . . . 96
5.6.3 Impact of the number of the largest patterns m . . . . . . . . . . . . . . . . . . . 97

5.7 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

General Conclusion 99

List of Figures 104

List of Tables 106

List of Publications 107

References 109





General Introduction

Motivation

Combinatorial search problems are ubiquitous in many areas of science and engineering. Prominent
examples include finding shortest or cheapest round trips in graphs or finding models of propositional
formula. Other well-known combinatorial examples are encountered in scheduling, timetabling, resource
allocation, production planning and computer-aided design. Most of these problems are computationally
difficult and require considerable expertise and computational time.

To handle these problems, modern heuristic approaches such as evolutionary algorithms and stochastic
local search algorithms are among the most relevant solution approaches. During the last two decades,
these methods have been successfully applied to a wide variety of hard combinatorial search problems in
practical applications. With the continual increase of the problem scale and complexity of the available data,
it becomes increasingly urgent to study new solution methods capable of exploring very large scale space
in an informed and intelligent way. These new search methods will be able to find high quality solutions
to large-scale problems with reasonable computing time and handle problems of very high complexity that
can hardly be tackled by the existing methods.

One increasing popular way is to incorporate knowledge into heuristic search approaches. It has been
shown that machine learning techniques could be helpful during all the phases of the heuristic search al-
gorithms, such as to evaluate the objective function, to build the starting solution or initial population, to
manage the population, to incorporate knowledge in the operators, to set the suitable parameter values, and
even to perform algorithm configuration and algorithm selection based on features extracted from instances.
In this thesis, we are interested in designing learning-driven heuristic optimization approaches to solve hard
combinatorial optimization problems. Each proposed approach will be thoroughly evaluated with extensive
computational experiments.

Objectives

The main objective of this thesis will be the design, implementation and validation of new intelligent
search methods based on learning techniques. In this thesis, we will investigate the benefit offered by
different machine learning techniques when machine learning is hybridized with heuristic approaches. The
main objective can be further divided into several specific objectives:

— Investigate and classify heuristic optimization methods using machine learning techniques.

— Design single trajectory search methods incorporating machine learning techniques (e.g., probability
learning) to guide the search process, resulting in high performance metaheuristic algorithms.

— Develop evolutionary search methods integrating machine learning techniques (e.g., opposition-based
learning) to enhance the population diversity and improve evolutionary search.

— Devise data mining driven heuristic search approaches, which use association analysis techniques
(e.g., frequent patter mining) to mine useful information from high-quality solutions collected from
the previous search, thus guiding the search to promising search region.

1



2 CONTENTS

— Evaluate the proposed methods based on some significant combinatorial search problems from differ-
ent families, including grouping problems such as Graph Coloring Problem (GCP); subset selection
problems such as Maximum Diversity Problem (MDP); and permutation problems such as Quadratic
Assignment Problem (QAP).

— Improve the proposed learning-driven heuristic search approaches and apply them to solve some
relevant and challenging combinatorial search problems.

Contributions
In this thesis, we have proposed three learning-driven heuristic optimization approaches. Our proposed

approaches combined different learning techniques with heuristic algorithms for solving three important
categories of combinatorial optimization problems, respectively. The main contributions of this thesis are
summarized as follows:

— We make a brief survey on researches which use machine learning techniques to help heuristic al-
gorithms. We unify and organize the related literature according to the different purposes of using
machine learning techniques, such as to improve the quality of solutions, to speed up the search
process, to optimize heuristic algorithms parameters, and to conduct algorithm selection.

— For the grouping problems such as GCP, we propose a Probability learning based Local Search (PLS).
The basic idea of PLS approach is to iterate through a group selection phase (to generate a starting
solution S according to a probability matrix P that indicates for each item its chance to belong to
each group), an optimization phase (to obtain an improved solution S ′ from S), and a probability
learning phase. During the probability learning phase, by comparing the starting solution S and the
improved solution S ′, we try to know whether each item moved from its original group to a new group
in S ′ or stayed in its original group of S. The viability of the proposed PLS approach is verified on a
well-known representative grouping problem, i.e., graph coloring, and the corresponding algorithm is
denoted as PLSCOL. Compared with the general PLS approach, the PLSCOL algorithm introduces
two improvements. Considering the specific feature of GCP where color groups are interchangeable,
we introduce the group matching procedure to find a group-to-group correspondence between a start-
ing solution and its improved solution. Also, instead of using the descent-based local search to search
for a legal coloring, we adopt a more elaborated coloring algorithm (i.e., the well-known tabu search
procedure). Experimental studies on popular DIMACS benchmark graphs indicate that PLSCOL
achieves competitive performances compared to a number of well-known coloring algorithms. This
work has published in Expert Systems and Applications [Zhou et al., 2016]. A further work of an
improved probability learning based local search for graph coloring [Zhou et al., 2017a] is submitted
to Applied Soft Computing in April 2016 and was revised in September 2017.

— For the subset selection problems such as MDP, we present an Opposition-Based Memetic Algo-
rithm (OBMA, published in IEEE Transactions on Evolutionary Computation [Zhou et al., 2017c]),
which integrates the concept of Opposition-Based Learning (OBL) into the well-known memetic
search framework. OBMA explores both candidate solutions and their opposite solutions during its
initialization and evolution processes. Combined with a powerful local optimization procedure and
a rank-based quality-and-distance pool updating strategy, OBMA establishes a suitable balance be-
tween exploration and exploitation of its search process. Computational results on 80 popular MDP
benchmark instances show that the proposed algorithm matches the best-known solutions for most of
instances, and finds improved best solutions (new lower bounds) for 22 instances. We provide exper-
imental evidences to highlight the beneficial effect of opposition-based learning for solving MDP.

— For the permutation problems such as QAP, we develop a hybrid approach called Frequent Pattern
Based Search (FPBS) [Zhou et al., 2017d] that combines frequent pattern mining and optimization.
The proposed method uses a data mining procedure to mine frequent patterns from a set of high-
quality solutions collected from previous search, and the mined frequent patterns are then employed



CONTENTS 3

to build starting solutions that are improved by an optimization procedure. After presenting the
general approach and its composing ingredients, we illustrate its application to solve the well-known
and challenging quadratic assignment problem. Computational results on the 21 hardest benchmark
instances show that the proposed FPBS approach competes favorably with state-of-the-art algorithms
both in terms of solution quality and computing time.

We would like to mention that during the preparation of this thesis, we also investigated the well-known
minimum different dispersion problem and the critical node problems. An effective iterated local search
has been proposed for solving the minimum different dispersion problem, and this work has been published
in Knowledge-Based Systems [Zhou and Hao, 2017b]. While for the critical node problems, preliminary
experimental results are reported in GECOO 2017 as a conference article [Zhou and Hao, 2017a], and
improved studies are summarized in a submitted but still unpublished article [Zhou et al., 2017e] which is
available in arXiv. Since these two pieces of works are not within the family of "learning driven heuristic
optimization", they will not be detailed in this thesis.

Organization
The organization of the whole thesis is displayed in Figure 1. Specifically, this thesis is organized as

follows:

Chapter 1: Background

Chapter 2: Learning-Driven
Heuristic Optimization

Chapter 3: Probability 
Learning Based Local 

Search for GCP

Chapter 4: Opposition
-Based Memetic 
Search for MDP 

Chapter 5: Frequent
Pattern Based Search 

for QAP 

General IntroductionGeneral Introduction

General ConclusionGeneral Conclusion

Figure 1: The structure of the whole thesis.

— Chapter 1 starts with the discussion of combinatorial optimization problems (COPs) and then for-
mally introduces three well-known examples considered in this thesis, i.e., graph coloring problem,
maximum diversity problem, and quadratic assignment problem. Finally, we discuss the general
solution approaches for solving COPs, including metaheuristics and hybrid metaheuristics.

— Chapter 2 introduces the concept of learning-driven heuristic optimization. Then, we give a short
introduction of machine learning and data mining. It is followed by a summary of related surveys



4 CONTENTS

on using machine learning to help heuristic algorithms. Finally, we conduct a brief literature review
of learning-driven heuristic optimization approaches by organizing them according to four different
objectives of using machine learning techniques.

— Chapter 3 applies the probability learning technique to solve grouping problems, specifically for the
graph coloring problem. We present a Probability learning based Local Search (PLS) approach for
grouping problems. We first describe in detail the main components of the proposed PLS including
group selection procedure, optimization procedure, probability updating and probability smoothing
procedure. Then, a case study of PLS is made on the well-known graph coloring problem (denoted as
PLSCOL), which is a typical grouping problem. The viability of the proposed PLSCOL algorithm is
verified by comparing our computational results with state-of-the-art results. Finally, we investigate
the key ingredients of the proposed approach to gain a deep understanding of their impacts on the
performance of the algorithm.

— Chapter 4 integrates the concept of the opposition-based learning technique into the well-known
memetic algorithm framework for solving the maximum diversity problem. We first give a brief intro-
duction of opposition-based learning and memetic search, and then present our proposed Opposition-
Based Memetic Algorithm (OBMA). After a detailed description of each component of the proposed
OBMA algorithm, we present experimental results and comparisons with the state-of-the-art algo-
rithms in the literature to show the benefit of the opposition-based learning and discuss the effective-
ness of some key components.

— Chapter 5 combines the frequent pattern mining technique with heuristic algorithm for solving the
quadratic assignment problem. We first provide some background about mining and heuristic. Then,
we present a detailed description of the proposed Frequent Pattern-Based Search (FPBS) which aims
to use a data mining procedure to mine frequent patterns from a set of high-quality solutions collected
from previous search, and the mined frequent patterns are then employed to build starting solutions
that are improved by an optimization procedure. Computational studies of the proposed FPBS are
conducted on 21 hardest benchmark instances. Finally, some experimental analysis are made to
investigate the effectiveness of some key algorithm components.



1
Background

This introductory chapter provides the background for designing heuristic algorithms for Combinatorial
Optimization Problems (COPs). We start with a discussion of combinatorial optimization and introduce
three well-known COPs as studied examples in the whole thesis, including the graph coloring problem,
maximum diversity problem and quadratic assignment problem. Following this, we give a brief overview
of metaheuristics and hybrid metaheuristics in the literature.

Contents
1.1 Combinatorial optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Basic notations and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Studied problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Solution approaches for COPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Hybrid metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5



6 CHAPTER 1. BACKGROUND

1.1 Combinatorial optimization

1.1.1 Basic notations and definitions

Combinatorial problems arise in many areas of computer science and other disciplines in which compu-
tational methods are applied, such as artificial intelligence, operations research, and bioinformatics. Combi-
natorial problems typically involve finding groupings, orderings, or assignments of a discrete set of objects
which satisfy certain constraints and optimize an objective function. These elements are generally mod-
elled by means of a combinatorial structure and represented through a vector of decision variables which
can assume values within a finite set. The potential solution of a combinatorial problem is usually a value
assignment to the variables that meets some specified constraints. Combinatorial optimization is an im-
portant branch of optimization. Its domain is optimization problems where the set of feasible solutions is
discrete or can be reduced to a discrete one, and the goal is to find the best possible solution.

We now give a formal definition of Combinatorial Optimization Problems (COPs). In general, a COP
can be either a minimization or a maximization problem. Without loss of generality, we consider a mini-
mization problem. However, the adaptation for handling maximization problems is straightforward.

Definition 1. [Blum and Roli, 2003] A COP instance I = (Ω, f) is defined by a set of variables X =
{x1, . . . , xn} and corresponding domains D1, . . . , Dn, a set of constraints among variables, and an objec-
tive function f to be minimized, where f : D1 × . . .×Dn → R+.

A feasible solution of instance I is S = {(x1, v1), . . . , (xn, vn)}|vi ∈ Di, S satisfies all the constraints},
and the set of all feasible solutions is denoted as Ω. Ω is usually called a search space and each element
S ∈ Ω is a candidate solution of I . To solve the optimization problem associated with instance I , one has
to find a solution S∗ ∈ Ω with minimum objective function value, i.e., f(S∗) ⩽ f(S), ∀S ∈ Ω. S∗ is called
a global optimum of I .

1.1.2 Studied problems

This thesis considers three important categories of combinatorial optimization problems:

— Grouping problems aim to partition a set of objects into a collection of mutually disjoint subsets
according to some specific criterion and constraints. Some representative examples include the graph
coloring problem, capacitated clustering problem, maximally diverse grouping problem and bin pack-
ing problem.

— Subset selection problems try to find a subset of a given set so that a given set of constraints is
satisfied. Many combinatorial search problems can be naturally solved as subset selection problems,
such as the critical node problems, winner determination problem, maximum diversity problem and
other diversity and dispersion problems.

— Permutation problems represent a category of COPs whose solutions are based on permutations,
the true meaning of these permutations can be different in different cases. Well-known permutation
problems include, for instance, the traveling salesman problem, flow shop scheduling problem, linear
ordering problem and quadratic assignment problem.

In the following, we introduce three example problems which will be used throughout this thesis to illustrate
specific issues concerning the solution of COPs using learning-based heuristic approaches. These problems
are classic NP-hard problems, including the graph coloring problem, maximum diversity problem and
quadratic assignment problem. They fall into three representative categories of COPs: grouping problems,
subset selection problems and permutation problems, respectively. We begin our introduction with the
graph coloring problem.



1.1. COMBINATORIAL OPTIMIZATION 7

Example of a grouping problem: Graph coloring problem

The Graph Coloring Problem (GCP) is one of the most studied COPs [Garey and Johnson, 1979]. Given
an undirected graph G = (V,E), where V is the set of |V | = n vertices and E is the set of |E| = m edges,
a k-coloring of G is a partition of V into k mutually disjoint color classes such that two vertices linked by
an edge must belong to two different color classes. The decision version of the GCP attempts to answer
whether for a given graph G and an integer k, a k-coloring exists (k-GCP for short), while the optimization
version of the GCP tries to find the minimum number k such that a k-coloring exists. This minimum value
of k required for a legal coloring is called the chromatic number χ(G) of G.

v 6 v5

v1

v 2 v 3

v 4v 4

v 6 v5

v1

v 2 v 3

v 4v 4

(a) (b)

Figure 1.1: A GCP example. (a) An undirected graph G with six vertices. (b) The 3-coloring for the G.

The leftmost of Figure 1.1 shows an undirected graph G with six vertices v1, . . . , v6. A graph coloring
configuration is to assign each vertex one color, and a legal 3-coloring is shown in the rightmost of Figure
1.1. In this example, vertices v1 and v3 are colored by red color, v2 and v4 are colored by green color, and
v5 and v6 are colored by blue color. This 3-coloring is the optimal coloring of G because the chromatic
number for this graph is also 3. We can clearly observe that there are two cliques (i.e., a fully connected
sub-graph) of three vertices, i.e., clique {v1, v2, v6} and clique {v3, v4, v5}. It means that 3 is a lower bound
of of G because any valid coloring of a clique of size k requires at least k different colors.

Note that a solution of a given GCP instance usually does not depend on the the particular numbering
of the colors, because all permutations of a legal k-coloring are isomorphic solutions. Alternatively to the
formulation as an assignment problem, the GCP can be represented as a grouping problem, in which a k-
coloring corresponds to a grouping of the set of vertices into k groups such that no two adjacent vertices u
and v belong to the same group. For example, the 3-coloring shown in the rightmost of Figure 1.1 can also
be represented as a grouping, i.e., {v1, v3}, {v2, v4} and {v5, v6}

In general, the GCP can be approximated by solving a series of k-GCP (with decreasing k) as follows
[Galinier et al., 2013]. For a given G and a given k, graph coloring algorithms usually try to solve k-GCP
by seeking a legal k-coloring. If such a coloring is successfully found, k decreases to k − 1 and solves
the new k-GCP again. The process repeats until no legal k-coloring can be reached. In this case, the
smallest k for which a legal k-coloring has been found represents an approximation (upper bound) of the
chromatic number of G. This general solution approach has been used in many coloring algorithms, and is
also adopted in our work.

k-GCP is a very popular NP-complete COP in graph theory [Garey and Johnson, 1979] and has at-
tracted much attention in the literature. GCP arises naturally in a wide variety of real-world applications,
such as register allocation [Chaitin, 1982], timetabling [Burke et al., 1994; de Werra, 1985], frequency
assignment [Gamst, 1986; Hale, 1980; Hao et al., 1998], and scheduling [Leighton, 1979; Zufferey et al.,
2008]. It was one of the three target problems of several international competitions including the well-
known Second DIMACS Implementation Challenge on Maximum Clique, Graph Coloring, and Satisfiabil-
ity.



8 CHAPTER 1. BACKGROUND

Example of a subset selection problem: Maximum diversity problem

Given a set N of n elements where any pair of elements are separated by a distance, and an integer
number m with m < n, the Maximum Diversity Problem (MDP) aims to select a subset S of m elements
from N in such a way that the sum of pairwise distances between any two elements in S is maximized. Let
N = {e1, e2, . . . , en} be the given set of elements and dij be the distance between element ei and element
ej (dij = dji). Formally, MDP can be formulated as the following quadratic binary problem [Kuo et al.,
1993]:

max f(x) =
1

2

n∑
i=1

n∑
j=1

dijxixj (1.1)

s.t.
n∑

i=1

xi = m (1.2)

xi ∈ {0, 1}; i = 1, . . . , n (1.3)

where the binary variable xi = 1 if element ei is selected; and xi = 0 otherwise. Equation (1.2) ensures
that a solution S exactly contains m elements.

v5

v 4

v1

v 2

v 3

      

       0.2

  0.3          

          0.7                   

    0.6

      0.7 

    

                

  0.8

(a)

     0.4

0.5

 0.9    

   0.4    

v5

v 4

v1

v 2

v 3

      

       0.2

  0.3          

          0.7                   

    0.6

      0.7 

    

                

  0.8

(b)

     0.4

0.5

 0.9    

   0.4    

Figure 1.2: A MDP example. (a) A MDP instance of size 5 and m = 3. (b) An optimal solution for the
instance (i.e., a subset S = {v1, v2, v4}) and its cost can be computed as d12+d14+d24 = 0.7+0.9+0.8 =
2.4.

Figure 1.2 shows a MDP example. There are in total five elements N = {v1, v2, v3, v4, v5}, and each
pair of elements are separated by a distance, as shown in the leftmost of Figure 1.2. The rightmost of Figure
1.2 shows a selected subset S = {v1, v2, v4}, and we color all selected elements with red color. This subset
is also an optimal solution of maximum cost 2.4.

MDP is known to be NP-hard and has a high computational complexity [Ghosh, 1996]. Besides the
theoretical significance as a difficult combinatorial problem, MDP also proves to be useful model to formu-
late a variety of practical applications including location of undesirable or mutually completing facilities
[Erkut and Neuman, 1991], genetic engineering [Martí et al., 2013], decision analysis with multiple objec-
tives [Palubeckis, 2007], composing jury panels [Lozano et al., 2011], product design [Glover et al., 1998],
medical and social sciences [Kuo et al., 1993]. More details on the applications of MDP can be found in
[Martí et al., 2013].



1.1. COMBINATORIAL OPTIMIZATION 9

Example of a permutation problem: Quadratic assignment problem

The Quadratic Assignment Problem (QAP) is a well-known NP-hard COP. It has been subject of a
great number of research efforts. QAP was originally introduced by Koopmans and Beckman [Koopmans
and Beckmann, 1957] in 1957 to model the locations of indivisible economic activities such as capital
equipment. QAP aims to determine a minimal cost assignment of n facilities to n locations, given a flow
aij from facility i to facility j for all i, j ∈ {1, . . . , n} and a distance buv between locations u and v for all
u, v ∈ {1, . . . , n}. Let Ω denotes the set of all possible permutations π : {1, . . . , n} → {1, . . . , n}, then
QAP can mathematically be formulated as follows.

min
π∈Ω

f(π) =
n∑

i=1

n∑
j=1

aijbπ(i)π(j) (1.4)

where a and b are the flow and distance matrices respectively, and π ∈ Ω is a solution and π(i) represents
the location chosen for facility i. The optimization objective is to find a permutation π∗ in Ω such that the
sum of the products of the flow and distance matrices is minimized, i.e., f(π∗) ⩽ f(π),∀π ∈ Ω.

y wzx 0 4

1

0

2

3

Y WZX 40 5522

62

53

53

locations

facilities y wzx 0 4

1

0

2

3

Y WZX 40 5522

62

53

53

(a) (b)

flow between facilities

distance between locations

Figure 1.3: A QAP example. (a) A QAP instance of size 4. (b) An optimal assignment for the instance
(x → Z, y → W, z → X,w → Y ) and its assignment cost can be computed as a12 · b34 + a13 · b31 + a14 ·
b32 + a23 · b41 + a24 · b42 + a34 · b12 = 3 · 55 + 0 · 53 + 2 · 40 + 0 · 53 + 1 · 62 + 4 · 22 = 395.

As a typical example of QAP, consider a facility location problem given in Figure 1.3. There are four
available locations {X, Y, Z,W} and four facilities {x, y, z, w} to locate, the line between two facilities
indicates that there is a required flow, while the line between two locations means the distance between
them, as shown in leftmost of Figure 1.3. The objective of the problem is to assign four facilities to four
locations in such a way as to minimize the total sum of the pair assignment costs. The assignment cost for
a pair of facilities is the product of the flow between the facilities and the distance between the locations
of the facilities. One possible assignment is shown in the rightmost of Figure 1.3: facility z is assigned to
location X , facility w is assigned to location Y , facility x is assigned to location Z, and facility y is assigned
to location W . This assignment can be written as a permutation {z, w, x, y}. In fact, the assignment shown
in the rightmost of Figure 1.3 is an optimal assignment.

Besides the facility location problem, QAP can model a number of other real-world problems [Drezner
et al., 2005; Loiola et al., 2007; Duman and Or, 2007] such as electrical circuit wiring/routing, transportation
engineering, parallel and distributed computing, image processing and analysis of chemical reactions for



10 CHAPTER 1. BACKGROUND

organic compounds. Reviews on some significant applications of QAP can be found in [Pardalos et al.,
1994; Duman and Or, 2007]. In addition, many classicNP-hard COPs, such as traveling salesman problem,
maximum clique problem, bin packing problem and graph partitioning problems, can also be formulated as
QAPs [Loiola et al., 2007].

1.2 Solution approaches for COPs
It is well-known that the great majority of complex real-world problems, when modeled as optimization

problem, belongs to the category of NP-hard problems. These NP-hard problems arise in many areas
of industrial applications, such as telecommunication, computational biology, transportation and logistics,
engineering design, scheduling and planning.

Due to the practical importance of COPs, many algorithms have been proposed in the literature to
tackle them. These algorithms can be roughly classified as either exact or approximate methods (see Figure
1.4). Exact algorithms are guaranteed to find the optimal solution of a COP. A survey on exact algorithms
for NP-hard problems is provided in [Woeginger, 2003]. Unfortunately, most of combinatorial search
problems areNP-hard, and exact algorithms need an exponential worst-case run time to explore the search
space. Moreover, in many practical applications, it is often enough to obtain a high-quality (or sub-optimal)
solution. Therefore, researchers often prefer to use approximate algorithms, especially heuristic algorithms.
Heuristic algorithms usually sacrifice the guarantee of finding optimal solutions for the sake of getting high-
quality solutions in polynomial-time.

Solution
approaches

Heuristics
algorithms

Problem-specific
heuristics

Single-solution based 
metaheuristics

Approximation
algorithms

Metaheuristics

Population based 
metaheuristics

Dynamic
programming

Constraint
programming

A*, IDA* Branch and X

Figure 1.4: A brief taxonomy of solution approaches for COPs.

1.2.1 Metaheuristics
As opposed to exact algorithms, which guarantee to find an optimal solution of the problem, heuristic

algorithms only attempt to yield a good, but not necessarily optimal solution. The field of heuristic opti-
mization is a rapidly growing research area. A great number of heuristic algorithms have been proposed
in the literature [Blum and Roli, 2003; Blum et al., 2011; Sörensen and Glover, 2013]. Many heuristic al-
gorithms are specific and problem-dependent. In contrast to problem-specific heuristics, metaheuristics are
problem-independent algorithms [Glover, 1986]. Metaheuristics may be considered as upper level general
methodologies that can be used as a guiding strategy in designing underlying heuristics to solve specific



1.2. SOLUTION APPROACHES FOR COPS 11

optimization problems. In the literature, a clear definition of metaheuristic is still lacking, or it could be
argued that it is still disputed. In our case, we adopt the following definition:

“A metaheuristic is an iterative master process that guides and modifies the operations of
subordinate heuristics to efficiently produce high quality solutions. It may manipulate a com-
plete (or incomplete) single solution or a collection of solutions at each iteration. The sub-
ordinate heuristics may be high (or low) level procedures, or a simple local search, or just a
construction method. The family of metaheuristics includes, but is not limited to, adaptive
memory procedures, tabu search, ant systems, greedy randomized adaptive search, variable
neighborhood search, neural networks, simulated annealing, and their hybrids.” [Voß et al.,
2012].

A large number of metaheuristics have been proposed in the literature [Blum and Roli, 2003; Blum
et al., 2011; Sörensen and Glover, 2013]. They can be categorized according to different classification
criteria [Blum and Roli, 2003], such as nature inspired versus non-nature inspired, memory usage versus
memory-less, dynamic versus static objective function, one versus various neighborhood structures, and
single-solution based search and population-based search. In the following, we focus on conducting a brief
overview of metaheuristics by organizing them into two categories: single-solution based metaheuristics
and population-based metaheuristics.

Single-solution based metaheuristics

The main characteristic of single-solution based metaheuristics is that a single solution (and search
trajectory) is considered at a time. Local Search (LS) approaches fall into the category of single-solution
based metaheuristics. Local search metaheuristics usually start from an initial solution and try to improve
the current solution by iteratively performing local changes (called moves) [Hoos and Stützle, 2004]. The
set of solutions that can be obtained by applying a single move to a given solution is called the neighborhood
of that candidate solution. At each iteration, a potential solution from the neighborhood of the current
solution is selected to work as the new candidate solution. The simplest local search algorithm is the greedy
Hill-Climbing (HC). HC accepts only neighboring solutions with the same or better cost than the current
solution. This method can quickly find a local optimum, but the obtained local optimum is often of poor
quality. A solution whose neighborhood does not contain any better solutions is called a local optimum
(as opposed to a global optimum). When the search walks into a local optimum, the heuristic needs a
perturbation strategy to escape to other regions of the search space.

The simplest strategy to escape to other regions is either to start the search again from a new starting
solution or to make a relatively large change (called perturbation) to the current solution. These two strate-
gies respectively result in two metaheuristics known as Multi-start Local Search (MLS) [Martí, 2003] and
Iterated Local Search (ILS) [Lourenço et al., 2003]. Recently, two improved ILS approaches are proposed,
i.e., Breakout Local Search (BLS) [Benlic and Hao, 2012; Benlic and Hao, 2013; Benlic et al., 2017] and
Three-Phase Search (TPS) [Lai and Hao, 2016; Zhou and Hao, 2017b]. BLS distinguishes itself from the
conventional ILS approach by the following two aspects. First, multiple types of perturbations are used in
BLS, which are triggered according to the search states, achieving variable levels of diversification. Sec-
ond, the local optimal solution returned by the local search procedure is always accepted as the new starting
solution in BLS regardless of its quality, which completely eliminates the acceptance criterion component
of ILS [Benlic and Hao, 2012]. TPS follows and generalizes the basic ILS scheme. It iterates through three
distinctive and sequential search phases. Starting from an initial solution, a descent-based neighborhood
search procedure is first employed to find a local optimal solution. Then, a local optima exploring phase is
triggered with the purpose of discovering nearby local optima of better quality. When the search stagnates
in the current search zone, TPS turns into a diversified perturbation phase, which strongly modifies the cur-
rent solution to jump into a new search region. The process iteratively runs the above three phases until a
given stopping condition is met. Compared to BLS, TPS further divides the perturbation phase into a local
optima exploring phase (to discover more local optima within a given region) and a diversified perturbation



12 CHAPTER 1. BACKGROUND

phase (to displace the search to a new and distant search region). Both BLS and TPS have been successfully
applied to solve several hard COPs. A detailed comparison and discussion among algorithms ILS, BLS and
TPS is provided in our paper [Zhou and Hao, 2017b].

Changing the type of neighborhood is also a widely-used strategy to escape from the local optimum.
Metaheuristics that use this strategy are commonly called Variable Neighborhood Search (VNS) [Mladen-
ović and Hansen, 1997]. VNS systematically exploits the idea of neighborhood change, both in descent to
local minima and in escape from the valleys which contain them. The rationale behinds this strategy is that
a local optimum relative to a specific neighborhood can often be improved by performing local search with
a different neighborhood. The success of VNS depends on three facts: (i). a local optimum with respect
to one neighborhood structure is not necessarily a local optimum for another one; (ii). a global optimum
is a local optimum with respect to all possible neighborhood structures; (iii). for many problems local
optima with respect to one or several neighborhoods are relatively close to each other. Besides the basic
VNS, many extensions have also been proposed in the literature, such as Skewed VNS (SVNS) and Variable
Neighborhood Decomposition Search (VNDS) [Hansen and Mladenović, 2005].

Besides two kinds of strategies mentioned above, some algorithms use memory structures to guide the
search to find good solutions more quickly. Different memory structures may be used to explicitly remember
different aspects about the trajectory that the algorithm has previously experienced through the search and
different strategies may be devised to use this information to drive the search to promising search areas
[Glover and Laguna, 1993]. A well-known example is Tabu Search (TS) [Glover, 1990; Glover and Laguna,
1993; Glover and Laguna, 1997]. Widely-used memory structures include the tabu list that records the last
encountered solutions (or some attributes of them) and forbids these solutions (or attributes) from being
visited again as long as they are on the list. The length of the tabu list is called the tabu tenure. Frequency
memory records how often certain attributes have been encountered in solutions on the search trajectory,
which allows the search to avoid visiting solutions that display the most often encountered attributes or to
visit solutions with attributes seldom encountered. Such memory can also include an evaluative component
that allows moves to be influenced by the quality of solutions previously encountered. Other memory
structures such as an elite set of the best solutions encountered so far are also common [Sörensen and
Glover, 2013]. Another example of the use of memory can be found in a metaheuristic called Guided Local
Search (GLS) [Voudouris and Tsang, 1999]. GLS introduces an augmented objective function that includes
a penalty factor for each potential element. When trapped in a local optimum, GLS increases the penalty
factor for all elements of the current solution, making other elements (and therefore other moves) more
attractive and allowing the search to escape from the local optimum [Voudouris and Tsang, 1999].

Unlike most other local search approaches, Simulated Annealing (SA) uses a random move strategy,
emulating the annealing process of a crystalline solid [Kirkpatrick et al., 1983]. The fundamental idea of
SA is to probabilistically allow moves resulting in solutions of worse quality than the current solution in
order to escape from local optima. The probability to perform such a move is continuously decreased during
the search. SA is commonly recognized as the oldest among the metaheuristics and surely one of the first
algorithms that had an explicit strategy to escape from local optima. In addition to simulated annealing,
a number of other similar search methods have also been proposed in the literature, such as Threshold
Accepting (TA) [Dueck and Scheuer, 1990] and Great Deluge Algorithm (GDA) [Dueck, 1993].

Greedy Random Adaptive Search Procedure (GRASP) [Feo and Resende, 1995] is a single-solution
based metaheuristic, which combines constructive heuristics and local search. GRASP uses randomization
to overcome the drawback of purely greedy algorithms by introducing some randomness to the selection
process. Specifically, GRASP is composed of two phases: solution construction and solution improvement.
The construction phase builds a feasible solution, whose neighborhood is investigated until a local optima
is found during the local search phase. These two phases are repeated until a termination condition is met.



1.2. SOLUTION APPROACHES FOR COPS 13

Population-based metaheuristics

Unlike single-solution based metaheuristics, at each generation, population-based metaheuristics handle
a set of solutions rather than a single solution. The idea behind this category of metaheuristics is that good
solutions can be found by exchanging solution features between two or more (usually high-quality) solu-
tions. The most widely-studied population based methods in combinatorial optimization are evolutionary
computation methods and swarm intelligence methods.

Genetic Algorithm (GA) was originally proposed in [Holland, 1975] and was inspired by Darwin’s
theory about evolution [Davis, 1991]. The driving force behind most GAs is selection and recombination
(or crossover). Selection guarantees that, in most cases, high-quality solutions in the population are selected
for recombination, usually by biasing the probability of each solution to be selected towards its objective
function value. Recombination aims to use specialized operators to recombine the features of two or more
solutions into new offspring solutions. The new offspring solutions are then inserted into the population or
discarded according to a specific criterion. In many cases, mutation operator is also applied which causes
local changes of offspring solution produced by recombination operator. Starting from an initial population
of individuals (generated randomly or with a constructive algorithm), GAs try to improve the quality of
the individuals by making the population evolve. Specifically, GAs iterate the selection, recombination,
mutation, and reinsertion phases until a stopping condition is met, and return the best solution ever met in
the population [Calégari et al., 1999].

Unlike GA, Path Relinking (PR) [Glover et al., 2004] operates on a small set of solutions and employs
diversification strategies of the form proposed in tabu search, which gives precedence to strategies learning
based on adaptive memory, with limited recourse to randomization. PR tries to create combinations of
solutions by a process of generating paths between selected high-quality solutions. The approach was
originally suggested in [Glover, 1989] and then formalized and named as path relinking in [Glover and
Laguna, 1993]. Paths consist of elementary moves such as the ones used in local search metaheuristics.
The moves on a path transform one solution (called the initiating solution) to a second solution (called the
guiding solution) in the search space. Contrary to local search approaches, PR employs a move strategy that
chooses the move to execute based on the fact that this move will bring the solution closer to the guiding
solution. Besides the classic between-form of PR, a beyond-form of PR (called exterior path relinking)
is also proposed in recent years [Glover, 2014]. The exterior path relinking shares a similar idea with the
opposition-based memetic search proposed in [Zhou et al., 2017c].

Ant Colony Optimization (ACO) [Dorigo et al., 1996] is another category of population-based meta-
heuristics. ACO was introduced in the early 1990s as a novel technique for solving hard COPs [Dorigo et
al., 1996; Dorigo and Blum, 2005]. The inspiring source of ACO is the foraging behavior of real ants. The
central component of an ACO algorithm is a parametrized probabilistic model, which is called pheromone
model. Artificial ants incrementally construct solutions by adding opportunely defined solution components
to a partial solution under consideration. In general, the ACO algorithm attempts to solve an optimization
problem by repeating the following two steps: (i) candidate solutions are constructed using a pheromone
model, that is, a parametrized probability distribution over the solution space; (ii) the candidate solutions are
used to modify the pheromone values in a way that is deemed to bias future sampling toward high-quality
solutions [Dorigo and Blum, 2005].

1.2.2 Hybrid metaheuristics

Besides the aforementioned two categories of metaheuristics, hybrid metaheuristic is also very popular
in combinatorial optimization [Blum et al., 2011]. Hybrid metaheuristics are algorithms for combinatorial
optimization that result from a combination of algorithmic components originating from different optimiza-
tion methods, such as metaheuristics, mathematical programming, constraint programming and machine
learning [Talbi, 2016]. The hybridizations in the literature can be roughly divided into the following four
categories:



14 CHAPTER 1. BACKGROUND

— Combining metaheuristics with complementary metaheuristics;

— Combining metaheuristics with constraint programming;

— Combining metaheuristics with mathematical programming;

— Combining metaheuristics with machine learning 1.

Each kind of combination represents a category of hybrid metaheuristics. These hybrid optimization
algorithms have been applied to find the best solutions of many COPs in science and industry. In the
following, we will discuss these categories of hybrid metaheuristics, respectively.

Combining metaheuristics with complementary metaheuristics

Single-solution based metaheuristics (e.g., SA and TS) manipulate and transform a single solution dur-
ing the search, whereas population-based metaheuristics operate on a set of candidate solutions in a popu-
lation. These two kinds of metaheuristics have complementary characteristics. i.e., the former is good at
intensifying the search in local regions, while the later allows a better diversification in the whole search
space. The combination of the single-solution based metaheuristic and the population-based metaheuristic
makes use of advantages of each metaheuristic and results in a new hybrid metaheuristic that is more pow-
erful than any of its composing metaheuristic. That is, the resulting hybrid metaheuristic could offer a good
balance between exploitation and exploration, thus assuring a high search performance.

Memetic Algorithm (MA) [Moscato and others, 1989] is a representative example, and it is widely rec-
ognized as the most successful class of hybrid metaheuristics. MA combines the population-based meta-
heuristic with local search metaheuristic. Indeed, it is generally believed that the population-based search
framework offers more facilities for exploration while neighborhood search provides more capabilities for
exploitation [Hao, 2012]. The effectiveness of MAs have been verified on many classic NP-hard prob-
lems, such as graph coloring, graph partitioning and quadratic knapsack problem [Hao, 2012]. We also
apply memetic algorithm framework in our work. For example, we propose an opposition-based memetic
search for the maximum diversity problem [Zhou et al., 2017c], and a memetic search algorithm for identi-
fying critical nodes in sparse graphs [Zhou et al., 2017e].

In contrast to the use of local search algorithms within population-based algorithms (e.g., MA), re-
cent years have also witnessed the development of some algorithms that result from the enhancement of
metaheuristics based on local search with concept from population-based approaches. An example is the
Population-based Iterated Local Search (PILS) algorithm introduced in [Thierens, 2004]. PILS is a popu-
lation extension of the ILS metaheuristic. The goal of the PILS is to improve a single solution by running
an ILS algorithm. In addition to ILS, PILS also keeps a small population of neighboring solutions. These
solutions are employed to focus the ILS process to the common search region between the current solution
and of the individual in the population.

PR is a major enhancement to the basic GRASP procedure, leading to significant improvements both
in terms of solution quality and time. The use of PR within a GRASP algorithm (named GRASP-PR), as
an intensification strategy applied to each local optimum, was first proposed in [Laguna and Marti, 1999].
Some extensions of the GRASP-PR have been also proposed in recent years. The hybridization of PR and
GRASP has successfully applied to many applications, such as 2-path network design problem, p-median
problem, the Steiner problem, the job-shop scheduling problem, quadratic assignment problem and max-
cut problem. A detailed review of applications and advances of GRASP-PR is provided in [Resendel and
Ribeiro, 2005].

Combining metaheuristics with constraint programming

Metaheuristics and Constraint Programming (CP) are two different problem solving techniques. CP is
based on feasibility (finding a feasible solution) rather than optimization (finding an optimal solution) and

1. All the three hybrid metaheuristics proposed in this thesis belong to this category



1.2. SOLUTION APPROACHES FOR COPS 15

focuses on the constraints and variables instead on the objective function, while the metaheuristics are good
at optimizing objective functions instead of finding feasible solutions. Since they are two complementary
techniques, it is natural to design a hybrid metaheuristic which makes use of the power of strong constraint
propagation techniques and the explorative power and performance of metaheuristic.

The hybridizations between metaheuristics and CP techniques have been applied to successfully solve
many optimization problems [Focacci et al., 2004]. On the one hand, CP can be integrated into meta-
heuristic as a sub-procedure. For example, CP-based Large Neighborhood Search (LNS) which repre-
sents a class of problem solving techniques in which local search uses CP for exploring a very large
neighborhood. LNS aims to combine the advantage of a large neighborhood, that usually enhances the
explorative capabilities of local search, with an exhaustive CP exploration that is faster than enumera-
tion, especially when most problem variables are already assigned [Shaw, 1998]. On the other hand,
metaheuristic can also be used in CP algorithms. For instance, ACO-driven CP is a CP solver driven
by a learning branching heuristic [Di Gaspero et al., 2013]. The literature on hybrid methods which
combine metaheuristics with CP is quite rich ranging from theory of algorithms to applications. De-
tailed surveys of hybrid algorithms combing metaheuristics and CP is provided in [Focacci et al., 2004;
Di Gaspero, 2015].

Combining metaheuristics with mathematical programming

The hybridization of metaheuristics and Mathematical Programming (MP) is known as matheuristic
[Maniezzo et al., 2009]. Metaheuristics and MP are also two complementary solution techniques. MP
techniques are known to be time and memory consuming, and they are not applicable to large instances of
difficult optimization problems. For these large instances, researchers often prefer heuristic and metaheuris-
tic algorithms that are able to efficiently find a good or sub-optimal solution. The hybridization between
metaheuristic and MP is able to make use of their individual benefits. On the one hand, MP techniques can
be applied to improve the effectiveness of heuristic algorithms (i.e., finding better solutions). On the other
hand, metaheuristics can also be employed to design more efficient exact algorithms by finding optimal
solutions in shorter computational time.

The main MP techniques can be roughly classified as follows: (i) enumerative methods, such as Branch
and Bound (B&B) and Dynamic Programming (DP); (ii) relaxation techniques, such as Lagrangian relax-
ation; (iii) decomposition methods, such as the Bender’s decomposition; and (iv) cutting plan and pricing
algorithms. The combinations of MP techniques and metaheuristics have applied to successfully solve
many hard optimization problems. For example, Fu and Hao [Fu and Hao, 2015] proposed a highly
effective dynamic programming driven memetic algorithm for the Steiner tree problem with revenues,
budget and hop constraints. Based on DP technique, an estimation criterion is designed to identify and
discard a large number of useless neighboring solutions, which significantly speeds up the local opti-
mization procedure. Detailed surveys and classification on combining metaheuristics with mathematical
programming can be found in [Puchinger and Raidl, 2005; Jourdan et al., 2009; Maniezzo et al., 2009;
Talbi, 2016].

Combining metaheuristics with machine learning

Using Machine Learning (ML) techniques to help metaheuristics is becoming increasingly popular in
combinatorial optimization. From Chapter 3 to Chapter 5, we propose three hybrid metaheuristics based
on different learning techniques. These three hybrid metaheuristics belong to this category. Since the hy-
bridization between metaheuristics and machine learning techniques falls into the topic of learning-driven
heuristic optimization, we will discuss it in more detail in the next chapter.



16 CHAPTER 1. BACKGROUND

1.3 Chapter conclusion
In this chapter, we first introduced some basic concepts of combinatorial optimization problems (COPs).

Then, we presented three representative NP-hard problems, namely graph coloring problem, maximum
diversity problem and quadratic assignment problem. These problems are case studies for verifying our
proposed approaches in this thesis. Due to the practical importance of COPs, a great number of efforts
have been made to design effective solution approaches. These algorithms can be roughly classified as
exact algorithms and heuristic algorithms. For small instances, exact algorithms are usually applied to
find optimal solutions in bounded computational time, while for large large instances, researchers prefer to
solve them approximately by heuristic algorithms in polynomial-time. Many heuristic algorithms have been
proposed in the literature. We summarized them as two categories: single-solution based metaheuristics and
population-based metaheuristics, and discussed the main characteristics and some representative algorithms
of each category. Besides these traditional metaheuristics, combinations of metaheuristics algorithms and
other problem solving techniques have attracted increasing attention from the research community. We also
conducted a brief overview of hybrid metaheuristics, such as combining metaheuristics with complementary
metaheuristics, constraint programming, mathematical programming and machine learning techniques.



2
Learning-Driven Heuristic Optimization

This chapter serves mainly as an introduction into the topic of learning-driven heuristic optimization.
We start with the background of learning-driven heuristic optimization. Then, we briefly overview the
machine learning and data mining techniques. Related surveys on the learning-driven optimization are
also discussed in detail. Finally, we systematically survey the literature on using machine learning to help
heuristic algorithms, classifying them into four categories according to the purposes of applying machine
learning techniques.

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Machine learning and data mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 A brief overview of common learning tasks in machine learning . . . . . . . . . . 20

2.3 Related surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Machine learning driven heuristic search . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Improving the quality of the obtained results . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Speeding up the heuristic search . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.3 Optimizing the algorithm parameters . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.4 Selecting heuristic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

17



18 CHAPTER 2. LEARNING-DRIVEN HEURISTIC OPTIMIZATION

2.1 Introduction
The rapid increase of dimensions and complexity of real-world problems makes it more difficult to find

optimal solutions by traditional optimization algorithms. To deal with the challenge, many intelligent and
sophisticated heuristic algorithms have been proposed in the literature. One interesting direction is to an-
alyze and enhance the heuristic algorithms by means of machine learning. Machine learning techniques,
working from the data collected from the heuristic search process, can help to discover interesting relation-
ships between the search space and the objective function, thus the following heuristic search may benefit
from these uncovered relationships.

In the literature, machine learning techniques have been successfully applied to analyse and improve
optimization algorithms. Learning lies at the core of artificial intelligence. Based on learning mechanism,
many new concepts have been proposed in optimization, such as learning from failures, conflict-directed
clause learning, conflict-directed constraint learning, nogood learning, learning while optimization, learn-
ing from opposite and learning from problem solving. Specifically for combinatorial optimization, related
works have been studied under the umbrella of reactive search optimization, hyper-heuristics, automated
algorithm configuration and algorithm selection.

— Reactive Search Optimization (RSO) [Battiti et al., 2008] advocates the integration of machine
learning techniques into search heuristics for solving complex optimization problems. The machine
learning components act on the top of the search heuristic, thus the algorithm is able to self-tune its
parameter values during the search process.

— Hyper-heuristic [Burke et al., 2010] is a high-level heuristic search method that seeks to automate,
often by incorporation of machine learning techniques, the process of selecting, combining, gener-
ating or adapting several low-level heuristics (or components of such heuristics) to efficiently solve
computational search problems.

— Algorithm Configuration (AC) [Hutter et al., 2009] aims to determine a well-performing parameter
configuration of a given algorithm across a given set of instances. Algorithm configuration is also
known as parameter tuning. It has been shown that the problem of tuning a metaheuristic can be
described and solved as a machine learning problem [Birattari, 2009].

— Algorithm Selection (AS) [Kotthoff, 2014] is concerned with selecting the best algorithm to solve
a given problem instance on a case-by-case basis. Almost all contemporary algorithm selection ap-
proaches employ machine learning to learn the performance mapping from problem instances to
algorithms using features extracted from the instances. It is worth noting that the task of algorithm
selection is also known as meta-learning [Lemke et al., 2015] in the field of machine learning. The
meta-learning focuses on selecting the base-learning method that is most likely to perform well for a
specific problem.

In this chapter, we concentrate on investigating the literature which uses machine learning techniques
to help heuristic search for COPs, especially for single-objective optimization problems. In order to present
the literature review, we collected and selected the representative references which are closely related to
this research field, by considering their quality, popularity, and the cover of different aspects of the topic
surveyed.

The rest of the chapter is organized as follows. In the next section, we present a brief overview of
machine learning and data mining. Section 2.3 summarizes the main surveys on learning-driven heuristic
optimization in the literature. Section 2.4 is devoted to reviewing learning-driven heuristic algorithms in
combinatorial optimization. Finally, conclusions are provided in Section 2.5.

2.2 Machine learning and data mining
In this section, we first introduce machine learning and data mining followed by a brief overview of

common learning tasks and their corresponding algorithms.



2.2. MACHINE LEARNING AND DATA MINING 19

2.2.1 Basic concepts

Machine learning and data mining are methods for extracting useful information from data. Given a set
of examples, for instance, they try to discover what patterns appear frequently in the data or what function
can discriminate positive from negative examples.

Data mining

Data Mining (DM), also popularly referred to as Knowledge Discovery from Data (KDD), is defined as
the process of discovering patterns in data [Witten et al., 2016]. DM is a critical step of the KDD process,
as shown in Figure 2.1. The process may be automatic or semi-automatic. The patterns discovered must
be meaningful in that they lead to some advantage, such as economic advantage. The applied intelligent
methods can be machine learning and statistic methods.

Data

Target 
Data

Processed 
Data

Transformed 
Data

Patterns

Knowledge

Transformation

Data Mining

Evaluation

Processing

Selection

Figure 2.1: The general process of knowledge discovery.

Machine learning

Machine Learning (ML) is one of the important means for automatic knowledge acquisition. ML can
be roughly defined as computational methods using experience to improve performance or to make accu-
rate predictions. The “experience” refers to the past information available to the learner, which typically
takes the form of electronic data collected and made available for analysis. Since the success of a learn-
ing algorithm greatly depends on the data used, ML is inherently related to DM and statistics methods.
More generally, learning techniques are data-driven methods combining fundamental concepts in computer
science with ideas from statistics learning, probability and optimization.



20 CHAPTER 2. LEARNING-DRIVEN HEURISTIC OPTIMIZATION

2.2.2 A brief overview of common learning tasks in machine learning
Learning tasks

There are a lot of tasks that machine learning tries to address. Correspondingly, a large number of
algorithms have been proposed for solving each task, as shown in Figure 2.2. The reader interested in
machine learning and data mining can refer to [Han et al., 2011; Mohri et al., 2012; Witten et al., 2016]. In
the following, only several representative learning tasks are briefly described.

Machine
Learning

Classification

Regression

Ranking

Clustering

Figure 2.2: An overview of main learning tasks in machine learning.

— Classification aims to assign an instance to one of the predetermined classes. The number of classes
in such tasks is often relatively small, but can be very large in some difficult tasks and even unbounded
as in text classification and speech recognition. The well-known classification algorithms include
Support Vector Machine (SVM), Naive Bayes (NB), Bayesian Network (NB), Decision Tree (DT), k-
Nearest Neighbor (KNN), Multilayer Perceptron (MLP), and ensemble algorithms such as Adaboost
and Random Forest (RF) [Han et al., 2011].

— Regression is used to determine the relation between a set of input continuous variables and a con-
tinuous output variable. The common regression tasks mainly include linear regression, and more
complex regression such as generalized linear regression, kernel ridge regression, support vector re-
gression, and Bayesian regression. Both regression and classification are related to prediction, where
regression predicts a real-value, whereas classification tries to predict a possible class. This is the key
difference between regression and classification. Indeed, regression is a supervised learning task as
well as classification [Han et al., 2011].

— Clustering is the process of grouping a set of items into multiple groups or clusters so that items
within a cluster have high similarity, but are very dissimilar to items in other cluster. The similar-
ity and dissimilarity are usually defined based on the feature values of the items, and the number of



2.2. MACHINE LEARNING AND DATA MINING 21

clusters is usually not known in advance. Clustering as an important learning task has its application
in many areas such as business intelligence, Web search and biology. Clustering is the most rep-
resentative unsupervised learning task. The well-known clustering algorithms include k-means and
hierarchical clustering [Xu and Wunsch, 2005].

— Ranking is a learning task that tries to order items according to some criterion. A widely studied
ranking problem is the ranking of retrieval results of a search engine, i.e., learning to rank [Cao et
al., 2007]. Given a query x and a set of documents D, learning to rank tries to find a ranking of the
documents in D that corresponds to their relevance with respect to x. So far, a number of different
ranking problems have been introduced in the literature, though a commonly accepted terminology
has not yet been established. Fürnkranz and Hüllermeier [Fürnkranz and Hüllermeier, 2010] proposed
a categorization of ranking problems into object ranking, instance ranking and label ranking. The
learning task of ranking naturally arises in many real-world applications, including recommendation
systems, search engine design, natural language processing and bioinformatics. Not surprisingly,
a large number of ranking algorithms have been proposed in the literature, where the well-known
ranking algorithms include PageRank, ranking with SVMs, RankBoost, bipartite ranking [Mohri et
al., 2012].

Besides the above learning tasks, there is a widely-studied learning task known as Association analy-
sis. Association analysis aims to discover interesting relationships hidden in large data sets. The uncovered
relationships can be represented in the forms of association rules or sets of frequent patterns (e.g., itemsets,
subsequences or substructure). Association analysis was originally applied to the market basket analysis
[Agrawal et al., 1993]. More specifically, it is used to analyze customer buying habits by discovering
associations between the different items that customers place in their shopping baskets. The mined as-
sociations can further help retailers develop marketing strategies and plan their shelf space. The Apriori
algorithm [Agrawal and Srikant, 1994] is the first association rule mining algorithm that uses the support-
based pruning to systematically control the exponential growth of candidate itemsets. Other well-known
mining algorithms include FP-growth and FPmax* algorithm. In addition, many variants of frequent pat-
tern mining have been designed for advanced data types. A detailed survey on frequent pattern mining can
be found in [Aggarwal et al., 2014]. It worth noting that association analysis has been used to solve many
learning tasks, including classification, clustering and ranking [Tan and others, 2006].

The field of machine learning studies learning algorithms, which specify how the changes in the learner’s
behavior depend on the input signals received and on feedback signals from the environment. Machine
learning can be roughly divided into three main categories based on the feedback available during the
learning:

— Supervised learning, where the algorithm receives a set of labeled examples as training data and
makes predictions for all unseen examples. This is the most widely-studied learning scenarios asso-
ciated with classification, regression and ranking problems.

— Unsupervised learning, where the algorithm exclusively receives unlabeled training data. Usually,
there is no labeled example available in the training data, so it is difficult to quantitatively assess
the performance of an algorithm. Clustering is a representative example of unsupervised learning
problems.

— Reinforcement learning is concerned with how an agent learns while interacting with an unknown
environment in order to maximize its reward. The objective of the agent is to maximize its rewards
and thus to determine the best course of actions to achieve that objective. There is no long-term
reward signal provided by the environment, and the agent has to keep the balance between exploring
unknown states and actions to gain more information about the environment and the rewards, and
exploiting the information already collected to optimize its reward.



22 CHAPTER 2. LEARNING-DRIVEN HEURISTIC OPTIMIZATION

2.3 Related surveys

Machine learning and heuristic search are two different topics in artificial intelligence and operation
research, respectively. They have been developed relatively independently. However, in last decade, re-
searchers had an increasing interest in the interaction of these two domains. Several surveys on the syn-
ergies between data mining and operations research have been made in the literature (see Table 2.1). This
section is devoted to summarizing and comparing these related surveys.

Table 2.1: Related surveys on using machine learning and data mining for heuristic optimization.

Survey comment on the context ⋆

[Baluja et al., 2000] ML helps large-scale optimization
[Jourdan et al., 2006] DM helps metaheuristic
[Santos et al., 2008] DM helps metaheuristic
[Olafsson et al., 2008] OR helps DM, and DM helps OR
[Osei-Bryson and Rayward-Smith, 2009] OR helps DM, and DM helps OR
[Meisel and Mattfeld, 2010] OR helps DM, and DM helps OR
[Corne et al., 2012] OR helps DM, and DM helps OR (multi-objective optimization)
[Talbi, 2016] MP helps metaheuristic, CP helps metaheuristic, and ML helps metaheuristic
[Martins et al., 2016] DM helps metaheuristic
[Calvet et al., 2017] ML helps metaheuristic, and metaheuristic helps ML

⋆ Operations Research (OR), Mathematical Programming (MP), Constraint Programming (CP), Machine Learning (ML) and
Data Mining (DM).

The first survey on applying machine learning to large-scale optimization is made in [Baluja et al.,
2000]. This survey summarized 14 studies, and categorized them according to the different goals of the
used learning technique, including (i) understanding search spaces; (ii) algorithm selection and tuning; (iii)
learning generative models of solutions; and (iv) learning evaluation functions. This survey provides a
coherent overview of some of the first steps in applying machine learning to large-scale optimization.

Jourdan et al. [Jourdan et al., 2006] conducted a short survey on using data mining techniques to help
metaheuristics in combinatorial optimization. The survey classified the references according to the localiza-
tion of the knowledge integration, including (i) speeding-up metaheuristics during the evaluation; (ii) setting
parameter values of the metaheuristics; (iii) generating initial solution or initial population; (iv) managing
the population; (v) managing the operators and so on. This survey provides a quick comprehensive picture
of the interest of combining data mining techniques and metaheuristics.

More specifically, a survey on the applications of the hybridization of the Greedy Random Adaptive
Search Procedure (GRASP) with Data Mining (DM-GRASP) was made in [Santos et al., 2008]. DM-
GRASP is hybrid metaheuristic which combines the GRASP with a data mining process. This survey
summarized three specific applications of the DM-GRASP heuristic, including set packing problem and
maximum diversity problem, server replication for reliable multicast. The survey shows that the incor-
poration of a data-mining process into the original GRASP could improve the search process through the
exploration of most promising search region. Furthermore, a detailed and recent survey of DM-GRASP is
provided in [Martins et al., 2016]. Besides the GRASP, in this survey several other metaheuristics, such
as path relinking, iterated local search, variable neighborhood search, are successfully hybridized with a
data mining procedure for solving NP-hard problems. An interesting extension of DM-GRASP is also
proposed and denoted as MDM-GRASP. Compared to the original DM-GRASP, MDM-GRASP tries data
mining procedure multiple times instead of only once. This survey shows that both memoryless heuristics
and memory-based heuristics can benefit from the use of data mining by obtaining better solutions in shorter
computational time.

Also, four surveys [Olafsson et al., 2008; Osei-Bryson and Rayward-Smith, 2009; Meisel and Mattfeld,
2010; Corne et al., 2012] that aim to study the synergies of Operations Research (OR) and Data Mining
(DM) are conducted in the literature. That is, the integration of optimization techniques into data mining,
and the application of data mining techniques to help the optimization algorithms. These four surveys are
summarized as follows:



2.4. MACHINE LEARNING DRIVEN HEURISTIC SEARCH 23

— The survey [Olafsson et al., 2008] provided an overview of the intersection of OR and DM. This
survey aims to illustrate the range of interactions between the aforementioned two fields, and gives
some detailed examples to explain the synergies.

— The survey [Osei-Bryson and Rayward-Smith, 2009] summarized nine papers of a special issue in
Journal of the Operation Research Society. The papers in this issue can also be divided into two
major categories: (i) OR to DM (six papers): the use of insights and techniques from OR to design
effective DM algorithms; (ii) DM to OR (three papers): the use of insights or techniques from DM to
more effectively address decision-making problems in OR.

— The survey [Meisel and Mattfeld, 2010] identified the synergies of OR and DM. More specifically, in
this survey, authors defined three categories of synergies: (i) OR to increase DM efficiency; (ii) DM
to increase OR effectiveness by replacement; (iii) DM to increase OR effectiveness by refinement,
and illustrated each of them by examples.

— The survey [Corne et al., 2012] studied the synergies between OR and DM. That is how OR and DM
can benefit each other. However, a particular emphasis is placed on the field of the multi-objective
optimization.

Recently, Talbi [Talbi, 2016] conducted a survey on hybrid metaheuristics. This survey summarized
four different hybridizations: (i) combining metaheuristics with complementary metaheuristics; (ii) com-
bining metaheuristics with mathematical programming approaches; (iii) combining metaheuristics with
constraint programming approaches; and (iv) combining metaheuristics with machine learning and data
mining techniques. Specially, we are interested in the hybridization between metaheuristics and machine
learning techniques (see Section 5 of [Talbi, 2016]). The hybridization schemes between metaheuristics
and machine learning techniques can be further divided into four categories:

— Lower-level relay hybrid scheme in which the knowledge extracted during the search may serve to
change dynamically at run time the values of some parameters in the traditional single-solution based
metaheuristics, greedy or multi-start metaheuristics.

— Low-level teamwork hybrid scheme in which the knowledge extracted during the search is incorpo-
rated into the recombination operators for the generation of new solutions.

— High-level relay hybrid scheme in which a priori knowledge is first extracted from the target op-
timization problem. Then, this knowledge is integrated into the metaheuristic for a more efficient
search.

— High-level teamwork hybrid scheme in which a dynamically acquired knowledge is extracted in par-
allel during the search in cooperation with a metaheuristic.

Calvet et al. [Calvet et al., 2017] also investigated the existing literature on the combination of meta-
heurisics with machine learning. The combinations of using machine learning to enhance metaheuristics
and using metaheuristics to improve machine learning are investigated, respectively. Specially for the first
combination, authors further divided the existing works into specifically-located hybridizations (where ma-
chine learning is applied in a specific procedure) and global hybridizations (i.e., machine learning has a
higher effect on the metaheuristic design). In addition, a novel hybrid approach named learnheuristic is also
proposed for solving dynamic combinatorial optimization problems.

During the last two decades, in the literature, many related works are devoted to completely or partially
studying the synergies between operation research and data mining. However, there is still a lack of survey
that focuses on using machine learning techniques to help heuristic search. Therefore, we conduct a brief
literature review on using machine learning techniques to help heuristic search in the next section.

2.4 Machine learning driven heuristic search
The hybridization of machine learning techniques with heuristic algorithms is an emerging research

field in the artificial intelligence and operation research communities. In the literature, a great number of



24 CHAPTER 2. LEARNING-DRIVEN HEURISTIC OPTIMIZATION

efforts have been made to hybridize heuristics with machine learning techniques. In contrast with the view
of using heuristic algorithms to enhance machine learning techniques, this work focuses on making a survey
of researches that use machine learning techniques to help heuristic search.

The combinations of machine learning techniques and heuristic algorithms have been applied to suc-
cessfully solve many COPs. Machine learning techniques can be hybridized with heuristic algorithms in
following two directions:

— Online methods are trained using information collected during the current execution of the search
procedure. For example, to find patterns useful in enhancing the construction phase of GRASP [San-
tos et al., 2008].

— Off-line methods aims to identify interesting structures and patterns shared by the entire class of
problems. For example, to recommend the best metaheuristic for a new TSP instance by using a
meta-learning approach based on label ranking algorithms. [Kanda et al., 2016].

Also, learning-driven heuristic optimization algorithms can be categorized according to the purpose of
introducing learning techniques. In general, heuristic search can benefit from the applications of machine
learning techniques in four aspects:

— improve the quality of the obtained solutions,

— speed up the search to find the best solution,

— optimize the algorithm parameters,

— select heuristic algorithms.

In fact, some of the above-categories have been studied under different terms. For example, the study of
using machine learning techniques to optimize the parameters of heuristic algorithm is directly related to the
Reactive Search Optimization and Algorithm Configuration. Also, the category of using machine learning
techniques to select the best heuristic algorithm has been widely studied under the umbrella of Algorithm
Selection and Hyper-heuristics. Compared to hyper-heuristics, algorithm selection aims to select the best
heuristic algorithm according to instance-specific features instead of depending upon the current problem
state or search stage. A great deal of effort has been made for reactive search optimization, algorithm
configuration, algorithm selection and hyper-heuristic respectively. The corresponding surveys of each
term are also available in the literature [Battiti et al., 2008; Burke et al., 2013; Kotthoff, 2014]. Therefore,
our following investigation will focus on the categories of using machine learning techniques to improve
the quality of the obtained solutions and to speed up the search to find the best solution.

2.4.1 Improving the quality of the obtained results
The quality of solutions obtained by heuristic algorithm can be improved by incorporating knowledge

into the search. Various machine learning techniques have successfully combined with heuristic algorithms
for improving the quality of the obtained solutions. A brief summary of these works is provided in Table
2.2. From this table, we observe that there is an increasing research effort made on using machine learning
techniques to improve the solution quality. Many different machine learning techniques have successfully
enhanced different optimization algorithms. In what follows, we review and organize them according to the
applied machine learning techniques.

— Classification: Cadenas et al. [Cadenas et al., 2009] proposed a centralized hybrid metaheuristic
cooperative strategy to solve optimization problems, in which knowledge is incorporated through
a set of fuzzy rules and models obtained from a fuzzy decision tree applied to the records of the
results returned by individual metaheuristics. Samorani and Laguna [Samorani and Laguna, 2012]
developed a general purpose data mining driven neighborhood search approach that attempts to learn
the guiding constraints to lead the search to escape from local optima. Computational results on
the constrained task allocation problem and the matrix bandwidth minimization problem show that
adding these guiding constraints to a simple tabu search improves the quality of the solutions found.



2.4. MACHINE LEARNING DRIVEN HEURISTIC SEARCH 25

Table 2.2: A summary of works on using machine learning to improve the quality of the obtained solutions.

Reference metaheuristic ⋆ machine learning technique combinatorial search problem

[Boyan and Moore, 1998] LS reinforcement learning bin-packing, channel routing, satisfiability and etc
[Telelis and Stamatopoulos, 2001] constructive heuristic instance-based learning and kernel regression knapsack and set partitioning problems
[Gersmann and Hammer, 2005] simple greedy strategy support vector machine and reinforcement learning resource constraint project scheduling problem
[de Lima Júnior et al., 2007] GRASP and GA reinforcement learning symmetrical traveling salesman problem
[Barreto et al., 2007] sequential heuristic hierarchical and non-hierarchical clustering capacitated location-routing problem
[Ventresca and Tizhoosh, 2008] PBIL opposition-based learning traveling salesman problem
[Cadenas et al., 2009] TS, SA and GA fuzzy decision tree and fuzzy rules 0-1 knapsack problem
[Ergezer and Simon, 2011] biogeography-based optimization opposition-based learning graph coloring and traveling salesman problems
[Wang et al., 2012] TS and EDA clustering maximum diversity problem
[Samorani and Laguna, 2012] TS hyperplan-based classification constrained task allocation and bandwidth minimization problems
[Jędrzejowicz and Ratajczak-Ropel, 2014] multi-agents optimization reinforcement learning resource constrained project scheduling problem
[Pinto et al., 2015] PSO and SA regression model space allocation in the retail industry
[Rojas-Morales et al., 2016] ant based algorithm opposition-based learning multidimensional knapsack problem
[Arin and Rabadi, 2016] Meta-RaPS and EDA reinforcement learning 0-1 multidimensional knapsack problem
[García et al., 2017] Cuckoo search and Black hole metaheuristic k-means multidimensional knapsack problem
[Toffolo et al., 2018] LS learning automaton swap-body vehicle routing problem

⋆ Meta-heuristic for Randomized Priority Search (Meta-RaPS), Greedy Random Adaptive Search Procedure (GRASP), Local Search (LS), Tabu Search (TS), Simulated Annealing (SA), Genetic Algorithm (GA), Memetic
Algorithm (MA), Population-Based Incremental Learning (PBIL), Particle Swarm Optimization (PSO), Estimation of Distribution Algorithm (EDA)

— Regression: Telelis et al. [Telelis and Stamatopoulos, 2001] proposed a heuristic methodology for
solving the knapsack and the set partitioning problems, which employs instance-based learning and
function approximation through kernel regression, for guiding any constructive search to promising
regions of the search space, as far as optimality is concerned. Pinto et al. [Pinto et al., 2015] com-
bined regression models and metaheuristics to optimize space allocation in the retail industry. A
metaheuristic is used to search different hypothesis of space allocations for multiple product cate-
gories, guided by the predictions made by regression models that estimate the sales for each category
based on the assigned space.

— Clustering: Barreto et al. [Barreto et al., 2007] integrated several hierarchical and non-hierarchical
clustering techniques (with several proximity functions) into a sequential heuristic algorithm for solv-
ing the capacitated location routing problem. Wang et al. [Wang et al., 2012] proposed a learning-
based heuristic LTS_EDA for the maximum diversity problem, which applies k-means clustering
and estimation of distribution algorithm to extract useful information from the search history of tabu
search in order to drive the search to promising search region. García et al. [García et al., 2017] pre-
sented a k-means transition ranking framework to solve the multidimensional knapsack problem. The
proposed framework binaries two different continuous population-based metaheuristics (i.e., Cuckoo
search and Black hole) by a k-means technique.

— Reinforcement learning: Boyan and Moore [Boyan and Moore, 1998] applied reinforcement learn-
ing techniques to learn an evaluation functions which predicts the outcome of a local search algorithm,
such as hill-climbing or WALKSAT, as a function of state features along its search trajectories. The
learning evaluation function is then used to bias future search trajectories toward better solutions.
Gersmann and Hammer [Gersmann and Hammer, 2005] investigated the capability of reinforcement
learning to improve a simple greedy strategy for solving the resource constraint project scheduling
problem. de Lima Júnior et al. [de Lima Júnior et al., 2007] applied Q-learning to the constructive
phase of GRASP and to generate the initial population of a genetic algorithm for the symmetrical
traveling salesman problem. Jedrzejowicz and Ratajczak-Ropel [Jędrzejowicz and Ratajczak-Ropel,
2014] proposed the A-Team with reinforcement learning for solving the resource constrained project
scheduling problem. Instead of a static strategy, reinforcement learning is used to supervise the inter-
actions between optimization agents and the common memory. Arin and Rabadi [Arin and Rabadi,
2016] integrated Estimation of Distribution Algorithm (EDA) and Q-learning into the Metaheuristic
for Randomized Priority Search (Meta-RaPS) for the 0-1 multidimensional knapsack problem, and
respectively denoted as Meta-RaPS EDA and Meta-RaPS Q-Learning. Experimental results show
that they are very competitive compared to the state-of-the-art algorithms, and especially that Meta-
RaPS EDA appears to perform better than Meta-RaPS Q-Learning. Toffolo et al. [Toffolo et al.,
2018] proposed a stochastic local search with both general and dedicated heuristic components, i.e.,
a subproblem optimization scheme and a learning automation. The incorporated learning automation
is used to determine the probabilities of selecting each of the available neighborhoods.



26 CHAPTER 2. LEARNING-DRIVEN HEURISTIC OPTIMIZATION

— Opposition-based learning: Ventresca and Tizhoosh [Ventresca and Tizhoosh, 2008] proposed a di-
versity maintaining population-based incremental learning algorithm for solving the traveling sales-
man problem, where the concept of opposition was used to control the amount of diversity within
a given sample population. Ergezer and Simon [Ergezer and Simon, 2011] hybridized open-path
opposition and circular opposition with biogeography-based opposition for solving the graph col-
oring problem and traveling salesman problem. Rojas-Morales et al. [Rojas-Morales et al., 2016]
incorporated an opposite learning phase to Ant Knapsack that is an ant based algorithm for the multi-
dimensional knapsack problem, for discarding regions of the search space. This opposite knowledge
is then used by Ant Knapsack for solving the original problem.

2.4.2 Speeding up the heuristic search

To speed up the search, machine learning techniques can help heuristic algorithm from two different
levels, i.e., reducing the cost of evaluating the objective function and reducing the size of search space.

In some cases, the objective function can be very expensive to compute, thus reducing the cost of eval-
uating the objective function will be able to speed up the whole search. To achieve it, heuristic algorithms
could benefit from machine learning in two aspects. On the one hand, machine learning techniques can be
used to build approximate models of the objective function. For example, Guo et al. [Guo et al., 2017]
proposed a Hybrid Evolutionary Algorithm (HEA) for two-stage capacitated facility location problems,
which incorporates an approximating fitness evaluation approach based on the extreme learning machine
to alleviate the computational burden of HEA. On the other hand, machine learning technique can also be
employed to reduce the number of complete evaluations during the search. For example, Rasheed and Hirsh
[Rasheed and Hirsh, 2000] proposed an improving genetic-algorithm based optimization using informed ge-
netic operators. The idea is to generate several purely random candidates at every step of initial population
generation or crossover or mutation, then rank these random candidates using some reduced models. Only
the best random candidate is taken as the final outcome for initialization, crossover or mutation. Empirical
results demonstrate that the proposed method can significantly speed up the genetic algorithm.

Besides the effort to reduce the cost of evaluating the objective function, heuristic algorithms can also
benefit from machine learning techniques by reducing the search space. Specifically, machine learning
techniques can be used to find interesting and useful properties of the candidate solutions. Uncovering
information can be used to construct a promising candidate solution which is close to the optimal solution,
thus reducing the size of the search space. Association analysis technique is the most widely-used machine
learn technique, and has achieved great success on many combinatorial optimization problems. Ribeiro et
al. [Ribeiro et al., 2004; Ribeiro et al., 2006] first hybridized GRASP with data mining techniques (DM-
GRASP) for solving the set packing problem. DM-GRASP organizes its search process into two sequential
phases, and incorporates an association rule mining at the second phase. That is, after executing a pre-
defined number of GRASP iterations in the first phase, the data mining process extracts patterns from an
elite set of solution (collected from the first phase) which will guide the following iterations.

DM-GRASP has been applied to solve several problems including the maximum diversity problem
[Santos et al., 2005], the server replication for reliable multicast problem [Santos et al., 2006b], and the
p-median problem [Plastino et al., 2011]. A survey on some significant applications of DM-GRASP can
be found in [Santos et al., 2008]. An interesting extension of DM-GRASP is to execute the data mining
procedure multiple times instead of only once [Plastino et al., 2014; Guerine et al., 2016; Martins et al.,
2016]. Compared to DM-GRASP where the data mining call occurs once at the midway of the whole search
process, the multi-mining version performs the mining task when the elite set stagnates. The same idea has
been explored recently by hybridizing data mining and GRASP enhanced with path-relinking [Barbalho et
al., 2013] or variable neighborhood descent [Guerine et al., 2016].

In addition to GRASP, data mining has also been hybridized with other metaheuristics like evolutionary
algorithms. To improve the performance of an evolutionary algorithm applied to an oil collecting vehicle
routing problem, a hybrid algorithm (GADMLS) combining genetic algorithm, local search and data mining



2.4. MACHINE LEARNING DRIVEN HEURISTIC SEARCH 27

was proposed in [Santos et al., 2006a]. Another hybrid approach (GAAR) that uses a data mining module
to guide an evolutionary algorithm was presented in [Raschip et al., 2015b; Raschip et al., 2015a] to solve
the constraint satisfaction problem. Besides the standard components of a genetic algorithm, a data mining
module is added to find association rules (between variables and values) from an archive of best individuals
found in the previous generations.

Apart from GRASP and evolutionary algorithms, it has been shown that other heuristics can also benefit
from the incorporation of a data mining procedure. For example, a data mining approach was used to
reduce the search space of local search algorithms, i.e., extracting variable associations from the instance to
be solved in order to identify promising pairs of flipping variables in the neighborhood search, and verified
it on the set covering and set partitioning problems [Umetani, 2017]. A preliminary experimental results of
this paper was presented in [Umetani, 2015]. Another example is the hybridization of neighborhood search
with data mining techniques for solving the p-median problem [Reddy et al., 2012]. Also for the p-median
problem, a data mining procedure was integrated into a multistart hybrid heuristic [Martins et al., 2014],
which combines elements of different traditional metaheuristics (e.g., local search) and uses path-relinking
as a memory-based intensification mechanism. Finally, the widely-used iterated local search method was
also hybridized with data mining for solving the set covering with pairs problem [Martins et al., 2016].

2.4.3 Optimizing the algorithm parameters

The optimization of an algorithm’s performance by setting its (typically few and numerical) parameters
is known as parameter tuning. Parameter tuning is a crucial issue both in the scientific research and in the
practical use of heuristics. The study showed that, to solve an optimization problem, only 10% of the total
time is spent on heuristic algorithm design and test, and the remaining 90% is consumed by the parameter
configurations [Adenso-Diaz and Laguna, 2006]. This is particularly true when designing heuristics algo-
rithms for solving combinatorial optimization problems. Given a heuristic algorithm for solving a problem
instance, we usually have following two observations. On the one hand, for an instance, the performance
of a heuristic algorithm greatly depends on its parameter configurations. For example, tabu search often
performs differently with different tabu tenures. On the other hand, different problem instances usually
require different parameter configurations for a heuristic algorithm to find good solutions. The importance
of fine-tuning heuristic algorithms has also been emphasized in the literature.

“The selection of parameter values that drive heuristics is itself a scientific endeavor and de-
serves more attention than it has received in the operations research literature. This is an area
where the scientific method and statistical analysis could and should be employed”. [Barr et
al., 1995]

Control and tuning of heuristic algorithms parameters have been widely studied during the last decades
especially in the field of combinatorial optimization. Machine learning techniques can be applied to accel-
erate the optimization performance by tuning the parameters of heuristic algorithms automatically [Baluja
et al., 2000]. The possible parameters include domain-specific terms, such as the coefficients of extra
objective function; generic parameters of the heuristics, such as the cooling-rate coefficient in simulated
annealing; and even high-level parameters, such as the which heuristic is selected in hyper-heuristics.

The parameter tuning of metaheuristics allows greater flexibility and robustness but requires a careful
initialization, since different parameter values have a great influence on the efficiency and effectiveness of
the search. Talbi [Talbi, 2009] classified the approaches for the parameter tuning of metaheuristics into two
categories:

— Offline tuning: the parameter values are defined before the execution of heuristic algorithms. For
example, Al-Duoli and Rabadi [Al-Duoli and Rabadi, 2014] hybridized an Inductive Decision Tree
(IDT) with the Meta-RaPS for solving the capacitated vehicle routing problem. This hybridization
tries to use an IDT to perform on-line tuning of the parameters in Meta-RaPS. The integrated IDT
is used to find a favorable parameter by using the information collected during the construction and



28 CHAPTER 2. LEARNING-DRIVEN HEURISTIC OPTIMIZATION

improvement phases of Meta-RaPS, this uncovering parameter is then used in future Meta-RaPS
iterations.

— Online tuning: the parameter values are controlled and updated in a dynamic or adaptive way through
the execution of heuristic algorithms. For instance, Lessmann et al. [Lessmann et al., 2011] designed
a data mining based approach to tune the parameters of a particle swarm optimization algorithm. This
hybrid approach employs regression models to learn suitable regression parameter values from past
moves of the metaheuristic in an online fashion.

As we mentioned above, the application of machine learning to parameter tuning of a heuristic algorithm
has been studied under the umbrella of Reactive Search Optimization (RSO) [Zhang, 2010]. RSO advocates
the integration of subsymbolic machine learning techniques into heuristics for tuning control parameters
in an online way. For example, dos Santos et al. [dos Santos et al., 2014] proposed a reactive search
approach using reinforcement learning, more specifically the Q-learning algorithm for the self-tuning of
the implemented algorithm, applied to the symmetric traveling salesman problem. Benlic et al. [Benlic
et al., 2017] proposed an improved Breakout local search for solving the vertex separator problem by
incorporating a parameter control mechanism that draws upon ideas from reinforcement learning theory to
reach an interdependent decision on the number and on the type of perturbation moves.

Besides RSO, the problem of parameter tuning is also studied as an Algorithm Configuration (AC)
[Hutter et al., 2009] problem. AC aims to choose the best parameter configuration for solving a problem
with an algorithm. Given a parameterized algorithm A with possible parameter settings C, a set of training
problem instances T , and a performance metric f : T × C → R, the algorithm configuration problem is
to find a parameter configuration c ∈ C that minimizes f across the instances in T [Hutter et al., 2009].
A comprehensive literature summary of algorithm configuration is available at website http://aclib.
net/acbib/. Also, a survey on algorithm configuration and parameter tuning procedures is provided in
[Hoos, 2012].

2.4.4 Selecting heuristic algorithms
The task of selecting heuristic algorithm based on instance features is known as Algorithm Selection

(AS). The algorithm selection problem was initially proposed in [Rice, 1976]. It aims to learn a mapping
from instance space X to algorithm space P . Figure 2.3 shows the general process of algorithm selection.
The selection model is often implemented with machine learning methods. Based on gathered training data
(i.e., instance features and corresponding performance data), AS learns a machine learning model that maps
from instance features to a well-performing algorithm. The philosophy behind the algorithm selection is
that no single algorithm could achieve the best performance on all instances, and each algorithm performs
well only on a particular instance or a class of instances. Therefore, selecting the most suitable algorithm
for each particular problem instance has the potential to significantly boost the performance in practice.

The algorithm selection has received a lot of attention in area of combinatorial optimization that deal
with solving hard combinatorial problems. Researchers have recognised that using algorithm selection tech-
niques can provide significant performance improvements with relatively little effort. An established ap-
proach to solve the algorithm selection problem is to use machine learning techniques [Fink, 1998]. Almost
all contemporary algorithm selection approaches employ machine learning to learn the performance map-
ping from problem instances to algorithms using features extracted from instances [Kotthoff, 2014]. During
the last decades, a number of machine learning techniques have been used to perform algorithm selection,
including classification (such as Bayesian network, decision tree, random forest, k-nearest neighbors, sup-
port vector machine, decision tree, multilayer perceptrons, naive Bayes), clustering, regression, ranking
and case-based reasoning. A systematic comparison and evaluation of the different machine learning tech-
niques in algorithm selection for combinatorial search problems is available in [Kotthoff et al., 2012]. A
detailed survey on algorithm selection for combinatorial search problems is available in [Kotthoff, 2014;
Kotthoff, 2016], and a comprehensive literature summary of algorithm selection is also available at website
https://larskotthoff.github.io/assurvey/.

http://aclib.net/acbib/
http://aclib.net/acbib/
https://larskotthoff.github.io/assurvey/


2.4. MACHINE LEARNING DRIVEN HEURISTIC SEARCH 29

���������	
����

���

���������	
����

�

	������������� �������	������

�������
�������	
�

� � ���

�����	 
���
��� � � � �� ���� � ��	�
����	�� 


Figure 2.3: A general description of algorithm selection.

The selection of the best algorithm for a given task has been studied in a sub-area of machine learning
known as meta-learning [Lemke et al., 2015]. Meta-learning aims to deal with selecting/generating algo-
rithms tailored to the problem in machine learning. The area does that by benefiting from previous runs of
each algorithm on different datasets. Hence, while a base learner accumulates experience over a specific
problem, meta-learners accumulate experience from the performance of the learner in different applications.
The meta-learning approaches have also been successfully applied to select the best meta-heuristics for the
combinatorial optimization problems. For example, Kanda et al. [Kanda et al., 2016] used label ranking
algorithms like k-nearest neighbor, decision tree and multilayer perceptron to induce a meta-learning model
able to associate properties of the traveling salesman problem instances with the optimization performance
of metaheuristics.

Besides meta-learning, algorithm selection is also highly related to hyper-heuristics. The term hyper-
heuristics is relatively new, and it was originally used in [Cowling et al., 2001] to describe heuristics to
choose heuristics in the area of combinatorial optimization. In this case, a hyper-heuristic was defined as
a high-level approach that, given a problem instance and a number of heuristics, selects and applies an ap-
propriate heuristic at each decision point. The definition of hyper-heuristics has been recently extended to
refer to a search method or learning mechanism for selecting or generating heuristics to solve computational
search problem. Hyper-heuristics can be divided into two categories: heuristic selection and heuristic gen-
eration. Compared to problem-specific heuristics and metaheuristics, hyper-heuristics operate on a search
space of heuristics rather than directly on the search space of solutions. A great number of machine learning
techniques have been successfully used as the high-level strategy in hyper-heuristics, such as reinforcement
learning, case-based reasoning and learning classifier systems. A detailed survey of hyper-heuristics can be
found in [Burke et al., 2013]. For example, Burke et al. [Burke et al., 2002] proposed a hyper-heuristic
method using Case-Based Reasoning (CBR) for solving course timetabling problem. The basic idea behind
this method is that we maintain a case base of information about the most successful heuristics for a range
of previous timetabling problems to predict the best heuristic for the new problem in hand using the previ-
ous knowledge. Knowledge discovery techniques are used to carry out the training on the CBR system to
improve the system performance on the prediction.

The algorithm selection problems can be solved by meta-learning and hyper-heuristic approaches. An
investigation on meta-learning and hyper-heuristics approaches used for solve algorithm selection problems
is provided in [Cruz-Reyes et al., 2012].



30 CHAPTER 2. LEARNING-DRIVEN HEURISTIC OPTIMIZATION

2.5 Chapter conclusion
In this chapter, we presented a brief overview of machine learning-driven heuristic optimization. Based

on the purposes of applying machine learning techniques, we divide the existing learning-driven heuristic
optimization algorithms into four categories: using machine learning to improve the solution quality, using
machine learning to speed up the heuristic search, using machine learning to optimize algorithm parameters,
and using machine learning to select heuristics.



3
Probability Learning based Local Search for
Graph Coloring Problem 1

Grouping problems aim to partition a set of items into multiple mutually disjoint subsets according to
some specific criterion and constraints. Grouping problems cover a large class of important combinatorial
optimization problems that are computationally difficult in general. In this chapter, we propose a general
solution approach for grouping problems, i.e., Probability learning based Local Search (PLS), which com-
bines a probability learning scheme with an optimization procedure. The viability of the proposed approach
is verified on a well-known representative grouping problem (i.e., Graph Coloring Problem (GCP)), and
the corresponding algorithm is denoted as PLSCOL. Experimental studies on popular DIMACS benchmark
graphs indicate that PLSCOL achieves competitive performances compared to a number of well-known
coloring algorithms. This chapter is based on three articles [Zhou et al., 2016], [Zhou et al., 2017b] and
[Zhou et al., 2017a].

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Probability learning based local search . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Main scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Group selection procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Optimization procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.4 Probability updating procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.5 Probability smoothing procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 PLS applied to graph coloring problem . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 PLSCOL for GCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.1 Benchmark instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.2 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.3 Comparison with its simple version PLS . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.4 Comparison with other state-of-the-art algorithms . . . . . . . . . . . . . . . . . . 44

3.5 Experimental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1. Instead of the term “reinforcement learning” originally used in [Zhou et al., 2016], in this thesis, we adopt the more
explicit and appropriate term “probability learning” lately used in [Zhou et al., 2017a].

31



32 CHAPTER 3. PROBABILITY LEARNING BASED LOCAL SEARCH FOR GCP

3.5.1 Benefit of the probability smoothing technique . . . . . . . . . . . . . . . . . . . 48
3.5.2 Comparison of different group selection strategies . . . . . . . . . . . . . . . . . 49
3.5.3 Benefit of the probability learning scheme . . . . . . . . . . . . . . . . . . . . . . 49
3.5.4 Benefit of group matching procedure . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.5 Effect of the penalization factor β . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



3.1. INTRODUCTION 33

3.1 Introduction

Grouping Problems (GPs) aim to partition a set of items into a collection of mutually disjoint subsets ac-
cording to some specific criterion and constraints. Grouping problems naturally arise in numerous domains.
Well-known grouping problems include, for instance, Graph Coloring Problem (GCP) [Garey and John-
son, 1979; Galinier and Hao, 1999; Lewis, 2009; Elhag and Özcan, 2015], timetabling [Lewis and Paechter,
2007; Elhag and Özcan, 2015], bin packing [Falkenauer, 1998; Quiroz-Castellanos et al., 2015], scheduling
[Kashan et al., 2013] and clustering [Agustı et al., 2012]. Formally, given a set V of n distinct items, the
task of a grouping problem is to partition the items of set V into k different groups gi (i = 1, . . . , k) (k can
be fixed or variable), such that ∪k

i=1gi = V and gi ∩ gj = ∅, i ̸= j while taking into account some specific
constraints and optimization objective. For instance, the graph coloring problem is to partition the vertices
of a given graph into a minimum number of k color classes such that adjacent vertices must be put into
different color classes.

According to whether the number of groups k is fixed in advance, grouping problems can be divided into
constant grouping problems or variable grouping problems [Kashan et al., 2013]. The number of groups k
is a fixed value in problems such as identical or non-identical parallel-machines scheduling problem, while
in other settings, k is variable and the goal is to find a feasible grouping with a minimum number of groups,
such as the bin packing problem and graph coloring problem. Grouping problems can also be classified
according to the types of the groups. A grouping problem with identical groups means that all groups have
similar characteristics, thus naming of the groups is irrelevant. Aforementioned examples such as identical
parallel-machines scheduling, bin-packing and graph coloring belong to this category. In other grouping
problems where the groups have different characteristics, hence, swapping items between two groups will
result in a new grouping. This is the case for the non-identical parallel-machines scheduling problem.

Many grouping problems, including the examples mentioned above are NP-hard, thus computation-
ally challenging. A number of heuristic approaches for grouping problems, in particular based on ge-
netic algorithms, have been proposed in the literature with varying degrees of success [Falkenauer, 1998;
Galinier and Hao, 1999; Quiroz-Castellanos et al., 2015]. These approaches are rather complex since they
are population-based and often hybridized with other search methods like local optimization.

In this chapter, we present the Probability learning based Local Search (PLS) approach for grouping
problems, which combines the probability learning scheme with an optimization procedure. Our proposed
PLS approach tries to learn a generative model of solutions. For a grouping problem with its k groups,
we associate to an item a probability vector with respect to each possible group and determine the group
of the item according to the probability vector. Once all items are assigned to their groups, a grouping
solution is generated. Then, the optimization procedure is invoked to improve this solution until a local
optimum is attained. Afterwards, the probability vector of each item is updated by comparing the group
of the item in the starting solution and in the attained local optimum solution. If an item stays in its
original group, then we reward the selected group of the item, otherwise we penalize the original group
and compensate the new group (i.e., expected group). There are two key issues that need to be considered,
i.e., how do we select a suitable group for each item according to the probability vector, and how do we
smooth the probabilities to avoid potential search traps. To handle these issues, we design two strategies: a
hybrid group selection strategy that uses a noise probability to switch between random selection and greedy
selection; and a probability smoothing mechanism able to forget old decisions.

To evaluate the viability of the proposed PLS method, we use the well-known GCP as a case study. We
show computational experiments on DIMACS benchmark graphs. Computational results demonstrate that
the proposed PLSCOL approach, despite its simplicity, achieves competitive performances on most tested
instances compared to many existing algorithms. With an analysis of three important issues of PLSCOL,
we show the effectiveness of combining probability learning and descent-based local search. We also assess
the contribution of the probability smoothing technique to the performance of PLSCOL.

The rest of the chapter is organized as follows. In the next section, we present the proposed probability
learning based local search approach. Section 3.3 demonstrates a specific application of the general PLS



34 CHAPTER 3. PROBABILITY LEARNING BASED LOCAL SEARCH FOR GCP

approach to solve the graph coloring problem. Section 3.4 shows extensive computational results and
comparisons on the DIMACS challenge benchmark instances. Section 3.5 is devoted to conducting some
interesting experimental investigations of the proposed approach. Finally, conclusions and some potential
research directions are provided in Section 3.6.

3.2 Probability learning based local search
Grouping problems aim to partition a set of items into k disjoint groups according to some imperative

constraints and an optimization criterion. For our PLS approach, we suppose that the number of groups
k is given in advance. Note that such an assumption is not necessarily restrictive. In fact, to handle a
grouping problem with variable k, one can repetitively run PLS with different k values. We will illustrate
this approach on the graph coloring problem in Section 3.3.

3.2.1 Main scheme
The proposed Probability learning based Local Search (PLS) is a general framework designed for solv-

ing grouping problems. Generally, a grouping problem aims to group a set of given items into a fixed or
variable number of groups while respecting some specific requirements. The basic idea of PLS is to iterate
through a group selection phase (to generate a starting solution S according to a probability matrix P (see
Figure 3.2) that indicates for each item its chance to belong to each group), an optimization phase (to obtain
an improved solution S ′ from S), and a probability learning phase.

start

Probability Probability 
MatrixMatrix

Group Group 
SelectionSelection

OptimizationOptimization
ProcedureProcedure

SolutionSolution
ComparingComparing

Probability 
Updating

Probability Probability 
SmoothingSmoothing

end

       

    
          feedback  signal            

          

P

S '

S

P

P

P

Figure 3.1: A schematic diagram of PLS for grouping problems. From a starting solution generated ac-
cording to the probability matrix P , PLS iteratively runs until its meets its stop condition (see Sections
3.2.2-3.2.5 for more details).

The schematic diagram of PLS for grouping problems is depicted in Figure 3.1 while its algorithmic
pseudo-code is provided in Algorithm 1. To apply PLS to a grouping problem, several procedures need
to be specified. The GroupSelection procedure (line 5) generates a starting solution S. The Optimization
procedure (line 6) aims to obtain a local optimum S ′ from the starting solution S. During the probability



3.2. PROBABILITY LEARNING BASED LOCAL SEARCH 35

learning phase (lines 10-11), ProbabilityUpdating updates the probability matrix P by comparing the start-
ing solution S and its improved solution S ′, while ProbabilitySmoothing erases old decisions that become
useless and may even mislead the search. The modifications of the probability matrix rely on information
about group changes of the items. Using the updated probability matrix, a new starting solution is built for
the next round of the Optimization procedure (this is also called an iteration).

Algorithm 1: Pseudo-code of our PLS for grouping problems.
Input: Grouping problem instance I and the number of groups k
Output: The best solution S∗ found so far

1 // I is supposed to be a minimization problem
2 begin
3 P = [pij = 1/k]i=1,2,...,n,j=1,2,...,k

4 while stopping condition not reached do
5 S ← GroupSelection(P ); /∗ Section 3.2.2 ∗/
6 S′ ← Optimization(S); /∗ Section 3.2.3 ∗/
7 // update the best solution found so far
8 if f(S′) < f(S∗) then
9 S∗ ← S′

10 P ← ProbabilityUpdating(P, S, S′); /∗ Section 3.2.4 ∗/
11 P ← ProbabilitySmoothing(P ); /∗ Section 3.2.5 ∗/

We first define a probability matrix P of size n × k (n is the number of items and k is the number of
groups, see Figure 3.2 for an example). An element pij denotes the probability that the i-th item vi selects
the j-th group gj as its group. Therefore, the i-th row of the probability matrix defines the probability vector
of the i-th item and is denoted by pi. At the beginning, all the probability values in the probability matrix
are set as 1/k. It means that all items select a group from the available k groups with equal probability.

Sheet1

Page 1

g1 g2 ... gk

v1

v2

vn

p11 p12 ... p1k

p21 p22 ... p2k

pn1 pn2 ... pnk

⋮ ⋮ ⋮ ⋮⋱

Figure 3.2: Probability matrix P for n items and k groups.

At each iteration, each item vi, i ∈ {1, 2, ..., n} selects one suitable group gj , j ∈ {1, 2, ..., k} by
applying a group selection strategy (Section 3.2.2) based on its probability vector pi. Once all the items
are assigned to their groups, a grouping solution S is obtained. Then, this solution is improved by a local
optimization procedure to attain a local optimum denoted by S ′ (Section 3.2.3). During the probability
learning phase, we try to determine that whether each item moves from its original group to a new group in
S ′ or it still stays in its original group of S by comparing the starting solution S and the improved solution



36 CHAPTER 3. PROBABILITY LEARNING BASED LOCAL SEARCH FOR GCP

S ′. Then PLS adjusts the probability matrix accordingly by the following rule. If an item stayed in its
original group, the selected group (called correct group) is rewarded for the item; if the item moved to
a new group in S ′, the discarded group (called incorrect group) is penalized and the new group (called
expected group) for the item is compensated (Section 3.2.4).

Next, we apply a probability smoothing technique to smooth each item’s probability vector (Section
3.2.5). Hereafter, PLS iteratively runs until a predefined stop condition is reached (e.g., a legal solution
is found or the number of iterations without improvement exceeds a maximum allowable value). In the
following subsections, the four key components of our PLS approach are presented in detail.

3.2.2 Group selection procedure

At each iteration of PLS, each item vi needs to select a group gj from the k available groups according
to its probability vector pi. We consider four possible group selection strategies:

— Random selection: the item selects its group at random (regardless of its probability vector). As this
selection strategy does not use any useful information collected from the search history, it is expected
that this strategy would not perform well.

— Greedy selection: the item always selects the group gj such that the associated probability pij has the
maximum value. This strategy is intuitively reasonable, but may cause the algorithm to be trapped
rapidly.

— Roulette wheel selection: the item selects its group based on its probability vector and the chance for
the item to select group gj is proportional to the probability pij . Thus a group with a large (small)
probability has more (less) chance to be selected.

— Hybrid selection: this strategy combines the random selection and greedy selection strategies in a
probabilistic way; with a noise probability ω, random selection is applied; with probability 1 − ω,
greedy selection is applied.

As we show in Section 3.5.2, the group selection strategy greatly affects the performance of the PLS
approach. After experimenting the above strategies, we adopted the hybrid selection strategy which com-
bines randomness and greediness which are controlled by the noise probability ω. The purpose of selecting
a group with maximum probability (greedy selection) is to make an attempt to correctly select the group for
an item that is most often falsified at a local optimum. Selecting such a group for this item may help the
search to escape from the current trap. On the other hand, using the noise probability has the advantage of
flexibility by switching back and forth between greediness and randomness. Also, this allows the algorithm
to occasionally move away from being too greedy. This hybrid group selection strategy proves to be better
than the roulette wheel selection strategy, as confirmed by the experiments of Section 3.5.2.

3.2.3 Optimization procedure

Even if any optimization procedure can be used to improve a given starting grouping solution, for the
reason of simplicity, we employ a simple and fast Descent-Based Local Search (DB-LS) procedure in this
chapter. To explore the search space, DB-LS iteratively makes transitions from the incumbent solution
to a neighboring solution according to a given neighborhood relation such that each transition leads to
a better solution. This iterative improvement process continues until no improved solution exists in the
neighborhood in which case the incumbent solution corresponds to a local optimum with respect to the
neighborhood.

Let Ω denote the search space of the given grouping problem. Let N : Ω → 2Ω be the neighborhood
relation which associates to each solution S ∈ Ω a subset of solutions N(S) ⊂ Ω (i.e., N(S) is the set
of neighboring solutions of S). Typically, given a solution S, a neighboring solution can be obtained by
moving an item of S from its current group to another group. Let f : Ω → R be the evaluation (or cost)



3.2. PROBABILITY LEARNING BASED LOCAL SEARCH 37

function which measures the quality or cost of each grouping solution. The pseudo code of Algorithm 2
displays the general DB-LS procedure.

Algorithm 2: Pseudo-code of DB-LS procedure
Input: An initial candidate solution S
Output: The local optimum solution attained S∗

1 begin
2 S∗ ← S
3 while S is not a local optimum do
4 choose a neighbor S′ of S such that f(S′) < f(S)
5 S ← S′

6 S∗ ← S

DB-LS can find a local optimum quickly. However, the local optimal solution discovered is generally
of poor quality. It is fully possible to improve the performance of PLS by replacing the DB-LS with a more
powerful improvement algorithm, such as tabu search.

3.2.4 Probability updating procedure
In PLS, we make the assumption that, if the item stays in its original group after the DB-LS, then the

item has selected the right group in the original solution, otherwise its new group in the improved solution
would be the right group. This assumption can be considered to be reasonable because the DB-LS procedure
is driven by its cost function and each transition from the current solution to a new (neighboring) solution is
performed only when the transition leads to an improvement. The problem of selecting the most appropriate
group for each item is a dynamic process. Through the interactions with the unknown environment, PLS
evolves and gradually finds the optimal or a suboptimal solution of the problem.

At iteration t, we firstly generate a grouping solution S based on the current probability matrix P (see
Section 3.2.1). In other words, each item selects one suitable group from the k available groups based on
its probability vector (with the group selection strategy of Section 3.2.2). Then solution S is improved by
the DB-LS procedure, leading to an improved solution S ′. Now, for each item vi, we compare its groups
in S and S ′. If the item stays in its original group (say gu), we reward the selected group gu (called correct
group) and update its probability vector pi at next iteration t+ 1 according to Equation (3.1):

pij(t+ 1) =

{
α + (1− α)pij(t) j = u

(1− α)pij(t) otherwise.
(3.1)

where α (0 < α < 1) is a reward factor. When item vi moves from its original group gu of solution S to a
new group (say gv, v ̸= u) of the improved solution S ′, we penalize the discarded group gu (called incorrect
group), compensate the new group gv (called expected group) and finally update its probability vector pi at
next iteration t+ 1 according to Equation (3.2):

pij(t+ 1) =


(1− γ)(1− β)pij(t) j = u

γ + (1− γ) β
k−1

+ (1− γ)(1− β)pij(t) j = v

(1− γ) β
k−1

+ (1− γ)(1− β)pij(t) otherwise.
(3.2)

where β (0 < β < 1) and γ (0 < γ < 1) are a penalization factor and compensation factor respectively.
The update of the complete probability matrix P is bounded by O(n× k) in terms of time complexity.

It is necessary to note that our learning scheme is different from general reinforcement learning schemes
such as linear reward-penalty, linear reward-inaction and linear reward-ϵ-penalty [Sutton and Barto, 1998].
The philosophy of these schemes is to increase the probability of selecting an action in the event of success
and decrease it when receiving a failed signal. Unlike these general schemes, our learning scheme not only
rewards the correct group and penalizes the incorrect group, but also compensates the expected group.



38 CHAPTER 3. PROBABILITY LEARNING BASED LOCAL SEARCH FOR GCP

3.2.5 Probability smoothing procedure
The intuition behind the probability smoothing technique is that old decisions that were made long time

ago are no longer helpful and may mislead the current search. Therefore, these aged decisions should be
considered less important than the recent ones. In addition, all items are required to correctly select their
suitable groups in order to produce a legal grouping solution. It is not enough that only a part of items can
correctly select their groups. Based on these two reasons, we introduce a probability smoothing technique
to reduce the group probabilities periodically.

Our probability smoothing strategy is inspired by forgetting mechanisms in smoothing techniques in
clause weighting local search algorithms for Satisfiability (SAT) [Hutter et al., 2002; Ishtaiwi et al., 2005].
Based on the way that weights are smoothed or forgotten, there are four available forgetting or smoothing
techniques for the Minimum Vertex Cover (MVC) and SAT:

— Decrease one from all clause weights which are greater than one such as PAWS [Thornton et al.,
2004].

— Pull all clause weights to their mean value using the formula wi = ρ · wi + (1 − ρ) · wi like ESG
[Schuurmans et al., 2001] and SAPS [Hutter et al., 2002].

— Transfer weights from neighboring satisfied clauses to unsatisfied ones like DDWF [Ishtaiwi et al.,
2005].

— Reduce all edge weights using the formula wi = ⌊ρ·wi⌋when the average weight achieves a threshold
like NuMVC [Cai et al., 2013].

The probability smoothing strategy adopted in our PLS approach works as follows (see Algorithm 3).
For an item, each possible group is associated with a value between 0 and 1 as its probability, and each
group probability is initialized as 1/k. At each iteration, we adjust the probability vector based on the
obtained feedback information (i.e., reward, penalize or compensate a group). Once the probability of a
group in a probability vector achieves a given threshold (i.e., p0), it is reduced by multiplying a smoothing
coefficient (i.e., ρ < 1) to forget some earlier decisions. It is obvious that the smoothing technique used in
PLS is different from the above-mentioned four techniques. To the best of our knowledge, this is the first
time a smoothing technique is introduced into local search algorithms for grouping problems.

Algorithm 3: Pseudo-code of the probability smoothing procedure
Input: Probability matrix P at iteration t, smoothing probability p0 and smoothing coefficient ρ
Output: Probability matrix P at iteration t+ 1

1 begin
2 for i = 1 to n do
3 piw ← max{pij , j = 1, 2, ..., k}
4 if piw > p0 then
5 for j = 1 to k do
6 if j = w then
7 pij(t+ 1)← ρ · pij(t)
8 else
9 pij(t+ 1)← 1−ρ

k−1 · piw(t) + pij(t)

3.3 PLS applied to graph coloring problem
This section presents an application of the proposed PLS method to the well-known Graph Coloring

Problem (GCP) which is a typical grouping problem. Following many coloring algorithms [Galinier et al.,



3.3. PLS APPLIED TO GRAPH COLORING PROBLEM 39

2013; Galinier and Hao, 1999; Galinier and Hertz, 2006; Hertz and de Werra, 1987; Lü and Hao, 2010;
Malaguti et al., 2008; Porumbel et al., 2010a], we approximate GCP by solving a series of k-coloring
problems. For a given graph and a fixed number of k colors, we try to find a legal k-coloring. If a legal
k-coloring is found, we set k = k − 1 and try to solve the new k-coloring problem. We repeat this process
until no legal k-coloring can be found, in which case we return k + 1 (for which a legal coloring has been
found) as an approximation (upper bound) of the chromatic number of the given graph.

3.3.1 Related work
Given the NP-hardness of GCP, exact algorithms are usually effective only for solving small or easy

graphs. In fact, some graphs with as few as 150 vertices cannot be solved optimally by any exact algorithm
[Malaguti et al., 2011; Zhou et al., 2014]. To deal with large and difficult graphs, heuristic algorithms are
preferred to solve the problem approximately. Comprehensive reviews of the graph coloring algorithms can
be found in [Galinier et al., 2013; Galinier and Hertz, 2006; Malaguti and Toth, 2010]. In what follows, we
focus on some representative heuristic-based coloring algorithms.

— Constructive approaches generally construct the color groups by iteratively adding a vertex at one
time to a color group until a complete coloring is reached. At each iteration, there are two steps: the
next vertex to be colored is chosen at first, and then this vertex is assigned to a color group. DSATUR
[Brélaz, 1979] and RLF [Leighton, 1979] are two well-known greedy algorithms which employ re-
fined rules to dynamically determine the next vertex to color. These greedy heuristic algorithms are
usually fast, but they tend to need much more colors than the chromatic number to color a graph.
Consequently, they are often used as initialization procedures in hybrid algorithms.

— Local search approaches start from an initial solution and try to improve the coloring by performing
local changes. In particular, tabu search is known as one of the most popular local search method
for GCP [Hertz and de Werra, 1987]. It is often used as a subroutine in hybrid algorithms, such
as the hybrid evolutionary algorithm [Fleurent and Ferland, 1996; Galinier and Hao, 1999; Lü and
Hao, 2010; Moalic and Gondran, 2015; Porumbel et al., 2010a]. However, local search algorithms are
often substantially limited by the fact that they do not exploit enough global information (e.g., solution
symmetry), and cannot compete with hybrid population-based algorithms. A thorough survey of local
search algorithms for graph coloring can be found in [Galinier and Hertz, 2006].

— Population-based hybrid approaches work with multiple solutions that can be manipulated by some
selection and recombination operators. To maintain the population diversity which is critical to avoid
a premature convergence, population-based algorithms usually integrate dedicated diversity preserva-
tion mechanisms which require the computation of a suitable distance metric between solutions [Hao
and Wu, 2012]. For example, hybrid algorithms [Lü and Hao, 2010; Moalic and Gondran, 2015;
Porumbel et al., 2010a; Titiloye and Crispin, 2011] are among the most effective approaches for
graph coloring, which have reported the best solutions on most of the difficult DIMACS instances.
Nevertheless, population-based hybrid algorithms have the disadvantage of being much more com-
plex in design and more sophisticated in implementation. Moreover, their success greatly depends
on the use of a meaningful recombination operator, an effective local optimization procedure and a
mechanism for maintaining population diversity.

— “Reduce and solve” approaches combines a preprocessing phase and a coloring phase. The pre-
processing phase identifies and extracts some vertices (typically independent sets) from the original
graph to obtain a reduced graph, while the subsequent coloring phase determines a proper coloring
for the reduced graph. Empirical results showed that “reduce-and-solve” approaches achieve a re-
markable performance on some large and very large graphs [Hao and Wu, 2012; Wu and Hao, 2013].
“Reduce and solve” approaches are designed for solving large graphs and are less suitable for small
and medium-scale graphs. Moreover, their success depends on the vertices extraction procedure and
the underlying coloring algorithm.



40 CHAPTER 3. PROBABILITY LEARNING BASED LOCAL SEARCH FOR GCP

— Other approaches which cannot be classified into the previous categories include for instance a
method that encodes GCP as a boolean satisfiability problem [Bouhmala and Granmo, 2008], a mod-
ified cuckoo algorithm [Mahmoudi and Lotfi, 2015], a grouping hyper-heuristic algorithm [Elhag and
Özcan, 2015] and a multi-agent based distributed algorithm [Sghir et al., 2015].

3.3.2 PLSCOL for GCP
We first define the search space and the evaluation function used by the PLSCOL algorithm. For a given

graph G = (V,E) with k available colors, the search space Ω contains all possible (both legal or illegal)
k-colorings (candidate solutions). A candidate solution in Ω can be represented by S = {g1, g2, . . . , gk}
such that gi is the group of vertices receiving color i. The evaluation function f(S) is used to count the
conflicting edges induced by S.

f(S) =
∑

{u,v}∈E

δ(u, v) (3.3)

where δ(u, v) = 1, if u ∈ gi, v ∈ gj and i = j, and otherwise δ(u, v) = 0. Thus, a candidate solution
S is a legal k-coloring when f(S) = 0. The objective of PLSCOL is to minimize f , i.e., the number of
conflicting edges to find a legal k-coloring in the search space.

Algorithm 4 presents the PLSCOL algorithm. Initially, by setting the probability pij = 1/k, i ∈
{1, . . . , n}, j ∈ {1, . . . , k}, each group is selected uniformly by each item (line 3). A starting solution S is
produced by the hybrid selection strategy based on the current probability matrix P (line 5). The tabu search
procedure is used to improve the starting solution S to a new solution S ′ (line 6). The GroupMatching pro-
cedure is then applied to find a maximum weight matching between the starting solution S and its improved
solution S ′ (line 10), followed by the ProbabilityUpdating procedure (to update the probability matrix P
according to the matching results, line 11), and the ProbabilitySmoothing procedure (to forget some earlier
decisions, line 12).

Algorithm 4: Pseudo-code of PLSCOL for k-coloring
Input: Instance G = (V, E) and number of available colors k.
Output: the best k-coloring S∗ found so far

1 begin
2 // initialize the probability matrix P
3 P = [pij = 1/k]i=1,2,...,n,j=1,2,...,k

4 while stopping condition not reached do
5 S ← GroupSelection(P ); /∗ generate a starting solution ∗/
6 S′ ← TabuSearch(S); /∗ find a local optimal solution ∗/
7 // update the best solution found
8 if f(S′) < f(S∗) then
9 S∗ ← S′

10 feedback ← GroupMatching(S, S′) /∗ make a maximum matching ∗/
11 P ← ProbabilityUpdating(feedback, P ); /∗ learn a new probability matrix ∗/
12 P ← ProbabilitySmoothing(P ); /∗ conduct a probability smoothing ∗/

Compared with the general PLS method (see Algorithm 1), the PLSCOL algorithm introduces two
improvements. Considering the specific feature of GCP where color groups are interchangeable, we call
the group matching procedure to find a group-to-group correspondence between a starting solution and its
improved solution. Also, instead of using the descent-based local search to search for a legal coloring, we
adopt a more elaborated coloring algorithm (i.e., the well-known tabu search procedure). In the following,
we will explain these two improvements respectively.



3.3. PLS APPLIED TO GRAPH COLORING PROBLEM 41

Tabu Search Procedure

The used optimization procedure is an improved version of the tabu search coloring procedure originally
proposed in [Hertz and de Werra, 1987]. As described in [Dorne and Hao, 1998; Galinier and Hao, 1999],
the improved tabu coloring procedure (TabuCol) integrates three enhancements.

1. Instead of considering a sample of neighboring colorings, it considers all neighboring colorings in-
duced by the set of conflicting vertices.

2. It adopts a dynamic tabu tenure which is defined as a function of the number of conflicting vertices
and a random number.

3. It employs dedicated data structures to ensure a fast and incremental evaluation of neighboring solu-
tions.

Given a conflicting k-coloring S, the “one-move” neighborhood N(S) consists of all solutions produced
by moving a conflicting vertex vi from its original group gu to a new group gv (u ̸= v). TabuCol picks at
each iteration a best neighbor Ŝ ∈ N(S) according to the evaluation function f given by Equation (3.3)
such that either Ŝ is a best solution not forbidden by the tabu list or is better than the best solution found
so far S∗ (i.e., f(Ŝ) < f(S∗)). Ties are broken at random. Once a move is made, e.g., a conflicting
vertex vi is moved from group gu to group gv, the vertex vi is forbidden to go back to group gu in the
following l iterations (l is called tabu tenure). The tabu tenure l is dynamically determined by l = µ ×
f(S) + Random(A), where Random(A) returns a random integer in {0, . . . , A− 1} [Dorne and Hao, 1998;
Galinier and Hao, 1999]. In our algorithm, we set µ = 1.2 and A = 10. The TabuCol process stops when
the number of iterations without improving S∗ reaches a predefined value Imax, which is set to be 105.

For an efficient implementation of the TabuCol procedure, we use an incremental technique [Fleurent
and Ferland, 1996; Galinier and Hao, 1999] to maintain and update the move gains ∆f = γi,u − γi,v for
each possible candidate move (i.e., displacing vertex vi from group gv to group gu).

Group Matching Procedure

As a particular grouping problem, GCP is characterized by the fact that the numberings of the groups
in a solution are irrelevant. For instance, for a graph with five vertices {a,b,c,d,e}, suppose that we are
given a solution (coloring) that assigns a color to {a,b,c} and another color to {d,e}. It should be clear that
what really characterizes this coloring is not the naming/numbering of the colors used, but is the fact that
some vertices belong to the same group and some other vertices cannot belong to the same group due to the
coloring constraints. As such, we can name {a,b,c} by ‘group 1’ and {d,e} by ‘group 2’ or reversely name
{a,b,c} by ‘group 2’ and {d,e} by ‘group 1’, these two different group namings represent the same coloring.
This symmetric feature of colorings is known to represent a real difficulty for many coloring algorithms
[Galinier and Hao, 1999; Porumbel et al., 2010b].

In the generic PLS approach, the learning phase was based on a direct comparison of the groups between
the starting solution and its improved solution, by checking for each vertex its starting group number and
the new group number. This approach has the advantage of easy implementation and remains meaningful
within the PLS method. Indeed, PLS does not assume any particular feature (e.g., symmetry of solutions
in the case of GCP) of the given grouping problem. Moreover, when a strict descent-based local search
is used to obtain an improved solution (i.e., local optimum), only a small portion of the vertices change
their groups. It suffices to compare the groups of the two solutions to identify the vertices that changed
their group. However, the situation is considerably different when tabu search (or another optimization
algorithm) is used to obtain an improved coloring, since many vertices can change their groups during the
search process. This difficulty is further accentuated for GCP due to its symmetric feature of colorings,
making it irrelevant to compare the group numbers between the starting and improved solutions.

To illustrate this point, consider the example of Figure 3.3. From the same starting 8-coloring S =
{g1, g2, g3, g4, g5, g6, g7, g8} with f(S) = 568, the descent-based local search ends with an improved (but
always illegal) 8-coloring S ′

ds with f(S ′
ds) = 10, while the tabu search procedure successfully obtains an



42 CHAPTER 3. PROBABILITY LEARNING BASED LOCAL SEARCH FOR GCP

improved 8-coloring S ′
ts with f(S ′

ts) = 0. In this figure, the new groups in the two improved solutions are
marked by red color and underlined.

� 
 � 
 � � � � �� � � � � � � � � �  � � � � 

� � � � � � �  � � � � � � � � � � � � � � � �

 � � � � � � � � � �� � � � � � � � � � � � � �

� �  � 
 � � � � � � �� � � � � � � � �� �   �

� 
  � � � �  � � � � �� � � � � �  
 � � � �

 �  � � �  � � � � � � �� � � � 
  � 
 �� 
 �

� 
 
 � 	 � 	 � � � � � � � �
 � � � 
 � � � �� 


�� �� �� �� 
 � � � � � � � � � � �	 � �� �� � � � � ��

��� ��� ���

���� �����	 
������ �����	

� �

Figure 3.3: Distribution of vertices of solutions on instance DSJC250.1. The value on i-th row and j-th
column represents the number of vertices whose color have changed from color i to color j. (a) An improved
solution S ′

ts (with f(S ′
ts) = 0) obtained by tabu search. (b) A starting solution S (with f(S) = 568). (c) An

improved solution S ′
ds with f(S ′

ds) = 10 obtained by descent-based local search.

By comparing the distributions of vertices of the two improved solutions from descent-based search and
tabu search, we observe a clear one-to-one correspondence between the starting solution S and its improved
solution S ′

ds obtained by descent-based search, i.e., g1 ↔ g′1, g2 ↔ g′2, g3 ↔ g′3, g4 ↔ g′4, g5 ↔ g′5, g6 ↔
g′6, g7 ↔ g′7, g8 ↔ g′8. However, it is difficult to find such a relationship between S and S ′

ts obtained by
tabu search. Indeed, from the same starting solution, much more changes have been made by tabu search.
For example, there are |g1| = 21 vertices colored by color 1 (g1) in the starting solution S; after improving
to S ′

ds by descent-based search, |g′1| = 7 vertices keep their original color, the remaining 2, 3, 1, 1, 2, 2,
3 vertices respectively changed to new colors g′2, g

′
3, g

′
4, g′5, g

′
6, g

′
7, g

′
8. When S is improved to S ′

ts by tabu
search, only |g′1| = 1 vertex of these 21 vertices keeps its original color, the remaining 4, 1, 4, 2, 1, 6, 2
vertices have moved to color groups g′2, g

′
3, g

′
4, g

′
5, g

′
6, g

′
7, g

′
8.

Now if we examine the groups of vertices in S and S ′
ts regardless of the numbering of the groups, we

can identify the following group-to-group correspondence between S and S ′
ts: g1 ↔ g′7, g2 ↔ g′3, g3 ↔

g′8, g4 ↔ g′6, g5 ↔ g′1, g6 ↔ g′4, g7 ↔ g′5, g8 ↔ g′2. Indeed, this correspondence can be achieved by finding
a maximum weight matching between the two compared solutions as follows.

{v2 , v4 , v5 }

{v6 , v 9 }

{v2 , v3 , v7 , v8 }

{v1 , v4 }

{v5 , v6 , v9 }

S S '

{v1 , v3 , v7 , v8 }

g3

g2 '

g3 '

g1 '

S S '

g1

g 2

(a). a starting solution S and its improved solution S' (b). a complete bipartite graph

3

1

1

1

1

2

0

0

0

     After
 modeling

     After
 matching

g3

g2 '

g3 '

g1 '

S S '

g1

g 2

(c). a maximum weight matching

3

1

1

1

1

2

0

0

0

Figure 3.4: (a) A starting solutions S and its improved solution S ′. (b) A complete bipartite graph with the
weights between two groups ωgi,g′j

= |gi ∩ g′j|. (c) The corresponding maximum weight complete matching
with the maximum weight of 6.

Specifically, to identify such a relationship between a starting solution S and its improved solution S ′,



3.4. COMPUTATIONAL RESULTS 43

we sequentially match each group of S with each group of S ′. Then we build a complete bipartite graph G =
(V1, V2, E), where V1 and V2 represent respectively the k groups of solution S and S ′. Each edge (gi, g

′
j) ∈

E is associated with a weight wgi,g′j
= |gi∩g′j|, which is defined as the number of common vertices in group

gi of S and g′j of S ′. Based on the bipartite graph, we can find a maximum weight matching with the well-
known Hungarian algorithm [Kuhn, 1955] in O(k3). Figure 3.4 shows an illustrative example of matching
two solutions S = {(v1, v3, v7, v8), (v2, v4, v5), (v6, v9)} and S ′ = {(v5, v6, v9), (v2, v3, v7, v8), (v1, v4)}.
The group matching procedure finds the following one-to-one group relation between these two solutions:
g1 ↔ g′2, g2 ↔ g′3 and g3 ↔ g′1.

3.4 Computational results

3.4.1 Benchmark instances
This section is dedicated to an extensive experimental evaluation of the PLSCOL algorithm using the

well-known DIMACS challenge benchmark instances 2. These instances have been widely used in the
literature for assessing the performances of graph coloring algorithms. They belong to the following six
types:

1. Standard random graphs denoted as “DSJCn.x”, where n is the number of vertices and 0.x is the
density. They are generated in such a way that the probability of an edge being present between two
given vertices equals the density.

2. Geometric random graphs named as “DSJRn.x ” and “Rn.x”. They are produced by choosing
randomly n points in the unit square, which define the vertices of the graph, by joining two vertices
with an edge, if the two related points at a distance less than x from each other. Graphs with letter c
denotes the complement of a geometric random graph.

3. Leighton graphs named as “len_χx”, are of density below 0.25, where n is the number of vertices,
χ is the chromatic number, and x ∈ {a, b, c, d} is a letter to indicate different graphs with the similar
parameter settings.

4. “Quasi-random” flat graphs denoted as “flatn_χ_δ”, where n is the number of vertices, χ is the
chromatic number, and δ is a flatness parameter giving the maximal allowed difference between the
degrees of two vertices.

5. Scheduling graphs include two scheduling graphs school1 and school1_nsh.

6. Latin square graph represents a latin square graph latin_square_10.

These instances can be roughly divided into two categories: easy graphs and difficult graphs according
to the classification in [Galinier et al., 2013; Galinier et al., 2008]. Let k∗ be χ(G) (if known) or the smallest
number of colors for which a legal coloring has been found by at least one coloring algorithm. Then easy
graphs G are those that can be colored with k∗ colors by a basic coloring algorithm like DSATUR [Brélaz,
1979] (thus by numerous algorithms). Otherwise, if a k∗-coloring can only be achieved by a few advanced
coloring algorithms, the graph will be qualified as difficult. Since easy graphs do not represent any challenge
for PLSCOL (and many reference algorithms), we mainly focus our tests on difficult graphs.

3.4.2 Experimental settings
The PLSCOL algorithm 3 was implemented in C++, and complied using GNU g++ on an Intel E5-2760

with 2.8 GHz and 2GB RAM under Linux operating system. For our experiments, each instance was solved
10 times independently. Each execution was terminated when the maximum allowable running time of 5

2. ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/
3. The code of the PLSCOL algorithm is available upon request.

ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/


44 CHAPTER 3. PROBABILITY LEARNING BASED LOCAL SEARCH FOR GCP

CPU hour is reached or a legal k-coloring is found. We used the same parameters setting to solve all tested
instances except for the penalization factor β. Parameter β is sensitive to the structures of GCP instances,
and it mainly affects the running time to find the best k-coloring (see Section 3.5.5 for an analysis of this
parameter). Accordingly, we adopted values for β from [0.05, 0.45] to obtain the reported results on the set
of 20 difficult instances. Table 3.1 gives the description and setting of each parameter.

Table 3.1: Parameter settings of PLSCOL algorithm.

Parameter description value

ω noise probability 0.200
α reward factor for correct group 0.100
β penalization factor for incorrect group [0.05, 0.45]
γ compensation factor for expected group 0.300
ρ smoothing coefficient 0.500
p0 smoothing threshold 0.995

3.4.3 Comparison with its simple version PLS
We first assess the performance of the proposed PLSCOL algorithm with the generic PLS (i.e., descent-

based search and no group matching procedure). This experiment aims to demonstrate the usefulness of the
two enhancements, i.e., the group matching procedure and the tabu coloring procedure. Both algorithms
were run 10 times on each instance, each run being given a CPU time of 5 hours.

The comparative results between PLSCOL and PLS are summarized in Table 3.2. Columns 1-2 indicate
the instance name, its chromatic number χ when it is known or the best-known result reported in the litera-
ture (k∗). For each algorithm, we report the smallest number of colors (k) used by the algorithm, the rate of
successful runs out of 10 runs (#succ), the average number of moves (#iter) and the average running time
in seconds (time(s)). Better results (with a smaller k) between the two algorithms are indicated in bold.
When both algorithms achieve the same result in terms of number of colors used, we underline the better
results in terms of number of iterations.

From Table 3.2, we observe that PLSCOL significantly outperforms PLS, achieving better solutions for
13 out of 20 instances and equal solutions on the remaining instances. Among the 7 instances where both
algorithms reach the same results, PLSCOL performs better in terms of success rate and average running
time in 5 cases. In summary, this study indicates that the group matching procedure and the tabu coloring
procedure of PLSCOL significantly boosts the performance of the generic PLS approach for solving the
graph coloring problem.

3.4.4 Comparison with other state-of-the-art algorithms
This section shows a comparison of PLSCOL with 10 state-of-the-art coloring algorithms in the liter-

ature. For this comparison, we focus on the criterion of solution quality in terms of the smallest number
of colors used to find a legal coloring. In fact, despite the extremely vast literature on graph coloring,
there is no uniform experimental condition to assess a coloring algorithm. This is mainly because the
difficult DIMACS instances are really challenging. Indeed, the best-known solutions for these instances
can be found only by few most powerful algorithms which were implemented with different programming
languages and executed under various computing platforms and different stopping conditions (maximum
allowed generations, maximum allowed fitness evaluations, maximum allowed iterations or still maximum
allowed cut off time). In any case, a run time of several hours or even several days was typically applied
(see e.g., [Lü and Hao, 2010; Malaguti et al., 2008; Moalic and Gondran, 2015; Porumbel et al., 2010a;
Titiloye and Crispin, 2011; Titiloye and Crispin, 2012]). For this reason, it would be quite difficult to
compare CPU times of the compared algorithms. Following the common practice of reporting comparative



3.4. COMPUTATIONAL RESULTS 45

Table 3.2: Comparative results of PLSCOL and PLS on the difficult DIMACS graphs.

PLSCOL PLS

Instance χ/k∗ k #succ #iter time(s) k #succ #iter time(s)

DSJC250.5 ?/28 28 10/10 4.0× 105 4 29 10/10 2.8× 106 91
DSJC500.1 ?/12 12 07/10 7.5× 106 43 13 10/10 5.6× 105 17
DSJC500.5 ?/47 48 03/10 7.9× 107 1786 50 05/10 1.9× 107 1714
DSJC500.9 ?/126 126 10/10 2.4× 107 747 129 03/10 5.0× 108 9859
DSJC1000.1 ?/20 20 01/10 2.9× 108 3694 21 10/10 1.4× 107 1223
DSJC1000.5 ?/83 87 10/10 2.7× 107 1419 94 07/10 3.8× 108 9455
DSJC1000.9 ?/222 223 05/10 3.1× 108 12094 233 03/10 2.5× 108 12602
DSJR500.1c ?/85 85 10/10 3.2× 107 386 85 01/10 4.6× 106 700
DSJR500.5 ?/122 126 08/10 7.3× 107 1860 126 01/10 1.8× 108 3428
le450_15c 15/15 15 07/10 2.8× 108 1718 15 07/10 9.5× 106 308
le450_15d 15/15 15 03/10 2.8× 108 2499 15 04/10 5.8× 108 211
le450_25c 25/25 25 10/10 2.0× 108 1296 26 07/10 4.7× 106 181
le450_25d 25/25 25 10/10 2.2× 108 1704 26 04/10 1.1× 107 438
flat300_26_0 26/26 26 10/10 4.9× 106 195 26 09/10 9.4× 106 450
flat300_28_0 28/28 30 10/10 1.5× 107 233 32 09/10 4.4× 106 173
flat1000_76_0 76/81 86 01/10 1.1× 108 5301 89 01/10 4.5× 107 11609
R250.5 ?/65 66 10/10 1.1× 108 705 66 04/10 7.0× 108 6603
R1000.1c ?/98 98 10/10 9.1× 106 256 100 02/10 5.3× 108 16139
R1000.5 ?/234 254 04/10 3.7× 107 7818 261 02/10 3.7× 107 9015
latin_square_10 ?/97 99 08/10 6.7× 107 2005 99 02/10 3.3× 107 12947

results in the coloring literature, we use the best solution (i.e., the smallest number of used colors) for this
comparative study. Since the experimental conditions of the compared algorithms are not equivalent, the
comparison is just intended to show the relative performance of the proposed algorithm, which should be
interpreted with caution.

The reference algorithms and their corresponding experimental environment are displayed as follows:

1. Iterated local search algorithm (IGrAl) [Caramia and Dell’Olmo, 2008] (a 2.8 GHz Pentium 4 pro-
cessor and a cut off time of 1 hour).

2. Variable space search algorithm (VSS) [Hertz et al., 2008] (a 2.0 GHz Pentium 4 processor and a cut
off time of 10 hours).

3. Local search algorithm using partial solutions (Partial) [Blöchliger and Zufferey, 2008] (a 2.0 GHz
Pentium 4 and a time limit of 10 hours together with a limit of 2∗109 iterations without improvement).

4. Hybrid evolutionary algorithm (HEA) [Galinier and Hao, 1999] (the processor used is not available
for this oldest algorithm and the results were obtained with different parameter settings).

5. Adaptive memory algorithm (AMA) [Galinier et al., 2008] (the processor applied is not available and
the results were obtained with different parameter settings).

6. Two-phase evolutionary algorithm (MMT) [Malaguti et al., 2008] (a 2.4 GHz Pentium processor and
a cut off time of 6000 or 40000 seconds).

7. Evolutionary algorithm with diversity guarantee (Evo-Div) [Porumbel et al., 2010a] (a 2.8 GHz Xeon
processor and a cut off time of 12 hours).

8. Memetic algorithm (MACOL or MA) [Lü and Hao, 2010] (a 3.4 GHz processor and a cut off time of
5 hours).

9. Quantum annealing algorithm (QACOL or QA) [Titiloye and Crispin, 2011; Titiloye and Crispin,
2012] (a 3.0 GHz Intel processor and a cut off time of 5 hours).

10. The newest memetic algorithm (HEAD) [Moalic and Gondran, 2015] (a 3.1 GHz Intel Xeon processor
with 4 cores and a cut off time of 0.5 hour).



46 CHAPTER 3. PROBABILITY LEARNING BASED LOCAL SEARCH FOR GCP

These reference algorithms belong to two categories: local search algorithms and population-based
algorithms. Table 3.3 presents the comparative results of PLSCOL with these state-of-the-art algorithms.
In this table, column 2 recalls the chromatic number or best-known value χ/k∗ in the literature. Column
3 shows the best results of PLSCOL (kbest). The following columns are the best results obtained by the
reference algorithms, which are extracted from the literature.

Table 3.3: Comparative results of PLSCOL and 10 state-of-the-art algorithms on the difficult DIMACS
graphs.

local search algorithms population-based algorithms

Instance χ/k∗
PLSCOL IGrAl VSS Partial HEA AMA MMT Evo-Div MA QA HEAD

k 2008 2008 2008 1999 2008 2008 2010 2010 2011 2015

DSJC250.5 ?/28 28 29 * * * 28 28 * 28 28 28
DSJC500.1 ?/12 12 12 12 12 12 12 12 12 12 12 12
DSJC500.5 ?/47 48 50 48 48 48 48 48 48 48 48 47
DSJC500.9 ?/126 126 129 126 127 126 126 127 126 126 126 126
DSJC1000.1 ?/20 20 22 20 20 20 20 20 20 20 20 20
DSJC1000.5 ?/82 87 94 86 89 83 84 84 83 83 83 82
DSJC1000.9 ?/222 223 239 224 226 224 224 225 223 223 222 222
DSJR500.1c ?/85 85 85 85 85 * 86 85 85 85 85 85
DSJR500.5 ?/122 126 126 125 125 * 127 122 122 122 122 *
le450_15c 15/15 15 16 15 15 15 15 15 * 15 15 *
le450_15d 15/15 15 16 15 15 15 15 15 * 15 15 *
le450_25c 25/25 25 27 25 25 26 26 25 25 25 25 25
le450_25d 25/25 25 27 25 25 26 26 25 25 25 25 25
flat300_26_0 26/26 26 * * * * 26 26 * 26 * *
flat300_28_0 28/28 30 * 28 28 31 31 31 31 29 31 31
flat1000_76_0 76/81 86 * 85 87 83 84 83 82 82 82 81
R250.5 ?/65 66 * * 66 * * 65 65 65 65 65
R1000.1c ?/98 98 * * * * * 98 98 98 98 98
R1000.5 ?/234 254 * * 248 * * 234 238 245 238 245
latin_square_10 ?/97 99 100 * * * 104 101 100 99 98 *

Table 3.4: Comparative results of PLSCOL and other local search algorithms to find optimal 25-coloring
on instance le450_25c and le450_25d.

le450_25c le450_25d

Instance #succ #iter time(h) #succ #iter time(h)

PLSCOL 10/10 2.0× 108 < 1 10/10 2.2× 108 < 1
VSS 9/10 1.6× 109 5 6/10 2.2× 109 6
Partial 2/5 2.0× 109 10 3/5 2.0× 109 10
TS-Div 4/10 7.7× 108 11 2/10 1.2× 109 19
TS-Int 10/10 3.4× 109 10 10/10 6.5× 109 25

As we observe from Table 3.3, PLSCOL competes very favorably with the three reference local search
algorithms except for instance flat300_28_0. The best result for this instance was reached only by one
algorithm [Blöchliger and Zufferey, 2008]. To the best of our knowledge, for difficult instances le450_25c
and le450_25d, PLSCOL is the first local search algorithm which achieves the optimal 25-coloring within
1 hour. A more detailed comparison on these two instances is shown in Table 3.4, including two additional
advanced tabu search algorithms (TS-Div and TS-Int [Porumbel et al., 2010b]). Although these three local
search algorithms can also obtain the optimal 25-coloring, they need much more running times and more
iterations with a lower success rate. It is important to mention that no other local search method was able
to find the optimal solution of le450_25c and le450_25d more efficiently than PLSCOL.



3.4. COMPUTATIONAL RESULTS 47

When comparing with the seven complex population-based hybrid algorithms, we observe that PLSCOL
also remains competitive, and even obtains better results in some cases. In order to facilitate comparisons,
we divide these seven reference algorithms into two groups. PLSCOL achieves at least three better solutions
compared with the first three algorithms (HEA, AMA and MMT). For example, PLSCOL saves at least one
color for DSJC1000.9, flat300_28_0 and latin_square_10. If we compare PLSCOL with the last four algo-
rithms (Evo-Div, MACOL, QACOL and HEA), one finds that PLSCOL is also competitive. For example,
though PLSCOL and the last four algorithms reach the same 126-coloring for DSJC500.9, PLSCOL uses
less time and iterations to achieve this result (even if timing information was not shown in the table). The
same observation applies for other instances, such as DSJR500.1c and R1000.1c. Moreover, compared with
Evo-Div and QACOL, PLSCOL also saves one color and finds the 30-coloring for instance flat300_28_0
even if MACOL achieves a better performance for this instance.

On the other hand, PLSCOL performs worse than the population-based algorithms for several instances,
such as DSJC1000.5, flat1000_76_0 and R1000.5. However, this is not a real surprise given that the
coloring procedure of PLSCOL (i.e., TabuCol) is extremely simple compared to these highly complex
population-based algorithms which integrate various search strategies (solution recombination, advanced
population management, local optimization). In this sense, the results achieved by PLSCOL are remarkable
and demonstrates that its probability learning scheme greatly boosts the performance of the rather simple
tabu coloring algorithm.

Table 3.5: Comparative results of PLSCOL and MACOL on easy DIMACS graphs.

MACOL PLSCOL

Instance χ/k∗ k #succ #iter time(m) k #succ #iter time(m)

DSJC125.1 ?/5 5 10/10 1.4× 105 1 5 10/10 4.8× 103 < 1
DSJC125.5 ?/17 17 10/10 4.8× 104 3 17 10/10 6.3× 104 < 1
DSJC125.9 ?/44 44 10/10 2.4× 106 4 44 10/10 3.0× 103 < 1
DSJC250.1 ?/8 8 10/10 6.9× 105 2 8 10/10 6.4× 105 < 1
DSJC250.9 ?/72 72 10/10 5.5× 106 3 72 10/10 2.6× 105 < 1
R125.1 ?/5 5 10/10 3.7× 105 2 5 10/10 3.6× 101 < 1
R125.1c ?/46 46 10/10 2.8× 106 5 46 10/10 1.6× 106 < 1
R125.5 ?/36 36 10/10 3.2× 104 1 36 10/10 8.0× 105 < 1
R250.1 ?/8 8 10/10 1.5× 106 5 8 10/10 1.7× 103 < 1
R250.1c ?/64 64 10/10 2.8× 106 4 64 10/10 8.9× 106 1
DSJR500.1 ?/12 12 10/10 3.3× 105 4 12 10/10 1.6× 103 < 1
R1000.1 ?/20 20 10/10 2.9× 105 2 20 10/10 1.9× 103 < 1
le450_15a 15/15 15 10/10 2.7× 105 2 15 10/10 1.3× 105 < 1
le450_15b 15/15 15 10/10 3.5× 105 2 15 10/10 7.4× 104 < 1
le450_25a 25/25 25 10/10 1.8× 105 4 25 10/10 4.4× 102 < 1
le450_25b 25/25 25 10/10 2.8× 106 3 25 10/10 3.5× 102 < 1
school1 ?/14 14 10/10 8.8× 105 6 14 10/10 9.3× 102 < 1
school1_nsh ?/14 14 10/10 7.3× 105 1 14 10/10 5.6× 103 < 1
flat300_20_0 20/20 20 10/10 1.7× 106 4 20 10/10 1.6× 103 < 1

Finally, we show that for easy instances, PLSCOL can attain the best-known solution more quickly. We
illustrate this by comparing PLSCOL with MACOL [Lü and Hao, 2010] which is one of the most powerful
population-based coloring algorithms in the literature on 19 easy DIMACS instances (see Table 3.5). The
results of MACOL were obtained on a PC with 3.4 GHz CPU and 2G RAM (which is slightly faster than
our PC with 2.8 GHz and 2G RAM). Table 3.5 indicates that both PLSCOL and MACOL can easily find
the best-known results k∗ with a 100% success rate. However, PLSCOL uses less time (at most 1 minute)
to find its best results while MACOL needs 1 to 5 minutes to achieve the same results. Moreoevr, PLSCOL
needs much less iterations (as underlined) compared to MACOL on all instances except DSJC125.5, R125.5
and R250.1c for which PLSCOL still requires a shorter run time.



48 CHAPTER 3. PROBABILITY LEARNING BASED LOCAL SEARCH FOR GCP

3.5 Experimental analysis

In this section, we perform additional experiments to gain some understanding of the proposed PLS
approach including the benefit of probability smoothing technique, comparisons among different group
selection strategies, and the benefits of the probability learning scheme and group matching procedure. We
also analyze the impact of the penalization factor β over the performance of PLSCOL.

3.5.1 Benefit of the probability smoothing technique

To study the effectiveness of the probability smoothing technique used in PLS (with descent-based local
search and no group matching procedure), we compare PLS with its alternative algorithm PLS1, which is
obtained from PLS by adjusting the probability updating scheme. More specifically, PLS1 works in the
same way as PLS, but it does not use the probability smoothing strategy, that is, line 11 in Algorithm 1 is
removed. For this experiment, by following [Galinier and Hao, 1999], we use running profiles to observe
the change of evaluation function f over the number of iterations. Running profiles provide interesting
information about the convergence of the studied algorithms.

 0

 5

 10

 15

 20

 25

 30

 0

 1
00

00

 2
00

00

 3
00

00

 4
00

00

 5
00

00

 6
00

00

 7
00

00

 8
00

00

 9
00

00

ob
je

ct
iv

e 
va

lu
e 

f

number of iterations

(a) flat300_28_0

with smoothing
without smoothing

 0

 5

 10

 15

 20

 25

 30
 0

 4
00

00

 8
00

00

 1
20

00
0

 1
60

00
0

 2
00

00
0

 2
40

00
0

 2
80

00
0

 3
20

00
0

ob
je

ct
iv

e 
va

lu
e 

f

number of iterations

(b) latin_square_10

with smoothing
without smoothing

Figure 3.5: Running profile of PLS (with smoothing) and PLS1 (without smoothing) on instances
flat300_28_0 and latin_square_10.

The running profiles of PLS and PLS1 are shown in Figure 3.5 on two selected instances: Figure 3.5(a)
for flat300_28_0 (k = 32), and Figure 3.5(b) for latin_square_10 (k = 101). We observe that though both
algorithms successfully obtain a legal k-coloring, PLS converges to the best solution more quickly than
PLS1, i.e., the objective value f of PLS decreases more quickly than that of PLS1. Consequently, PLS
needs less iterations to attain a legal solution. This experiment illustrated the benefit of using probability
smoothing technique in PLS.



3.5. EXPERIMENTAL ANALYSIS 49

3.5.2 Comparison of different group selection strategies
The group selection strategy plays an important role in PLS. At each iteration, each vertex selects a

suitable group based on the group selection strategy to produce a new solution for the next round of the
descent-based local search optimization. In this section, we show an analysis of the group selection strate-
gies to confirm the interest of the adopted hybrid strategy which combines random and greedy strategies.

The investigation was carried out between PLS and its variant PLS2, which is obtained from PLS by
means of replacing the hybrid group selection strategy with the roulette wheel selection strategy. In the
experiment, each instance was tested 20 times independently with different random seeds. The number
of successful runs, the average number of iterations and the average running time of successful runs are
reported.

Table 3.6: Comparative performance of PLS and PLS2.

PLS2 PLS

Instance k1(#hit) #iter time(s) k2(#hit) #iter time(s)

le450_25c 26(0/20) - - 26(13/20) 4.7× 106 181.39
27(20/20) 7.0× 105 26.86 27(20/20) 1.5× 106 61.13

DSJR500.1 12(0/20) - - 12(20/20) 7.8× 104 1.91
13(20/20) 2.0× 106 50.42 13(20/20) 3.0× 103 0.10

DSJR500.1c 85(0/20) - - 85(02/20) 4.6× 106 699.63
86(0/20) - - 86(20/20) 3.6× 106 529.47

87(20/20) 3.2× 106 361.97 87(20/20) 6.9× 105 108.12
DSJC1000.1 21(09/20) 2.0× 107 1508.48 21(20/20) 1.4× 107 1223.18

22(20/20) 6.0× 105 41.82 22(20/20) 8.0× 105 64.77

Table 3.6 show comparative results of PLS (with its hybrid group selection strategy) with PLS2 (with
the roulette wheel selection strategy) for the chosen instances. The results indicate that PLS significantly
outperforms PLS2 in terms of the best k value and the number of successful running times. For example, on
instance DSJR500.1c, PLS colors this graph with 85 colors, while PLS2 needs more colors (k = 87) to color
it. A similar observation can be found on instance le450_25c, for which PLS obtains a legal 26-coloring,
while PLS2 only obtains a 27-coloring. Furthermore, when they need the same number of colors to color a
graph DSJC1000.1, PLS achieves it with a higher success rate compared to PLS2. This experiment confirms
the interest of the adopted hybrid selection strategy.

3.5.3 Benefit of the probability learning scheme
We compared the performance of the PLSCOL (with tabu search and group matching procedure) algo-

rithm with a variant (denoted by PLSCOL1) where the probability learning component is disabled. At each
iteration, instead of generating a new initial solution with the probability matrix, PLSCOL1 generates a new
solution at random (i.e., line 5 of Algorithm 4 is replaced by the random generation procedure) and then
uses the tabu search procedure to improve the initial solution. In other words, PLSCOL1 repetitively restarts
the TabuCol procedure. We ran PLSCOL1 under the same stopping condition as before – PLSCOL1 stops
if a legal k-coloring is found or the maximum allowed run time of 5 CPU hours is reached. Each instance
was solved 10 times.

Table 3.7 summarizes the computational statistics of PLSCOL and PLSCOL1. Columns 1-2 indicates
the name of each instance, its chromatic number χ when it is known or the best-known result reported in
the literature (k∗). For each algorithm, we report the following information: the smallest number of colors
(k) used by the algorithm, the frequency of successful runs out of 10 runs (#succ), the average number
of generations (#gen), the average number of tabu search iterations (or moves) (#iter) and the average
running time in seconds. The lowest k values between the two algorithms are in bold (a smaller value
indicates a better performance in terms of solution quality). When the two algorithms achieve the same



50 CHAPTER 3. PROBABILITY LEARNING BASED LOCAL SEARCH FOR GCP

Table 3.7: Comparative results of PLSCOL and PLSCOL1 on the difficult DIMACS graphs.

PLSCOL PLSCOL1

Instance χ/k∗ k #succ #gen #iter time(s) k #succ #gen #iter time(s)

DSJC250.5 ?/28 28 10/10 3 4.0× 105 4 28 10/10 58 1.1× 107 102
DSJC500.1 ?/12 12 07/10 69 7.5× 106 43 12 10/10 8936 1.9× 109 12808
DSJC500.5 ?/47 48 03/10 761 7.9× 107 1786 49 06/10 1122 2.5× 108 5543
DSJC500.9 ?/126 126 10/10 187 2.4× 107 747 127 10/10 362 9.2× 107 2704
DSJC1000.1 ?/20 20 01/10 369 2.9× 108 3694 21 10/10 2 3.7× 105 4
DSJC1000.5 ?/83 87 10/10 203 2.7× 107 1419 89 02/10 492 1.4× 108 7031
DSJC1000.9 ?/222 223 05/10 2886 3.1× 108 12094 229 05/10 270 1.0× 108 9237
DSJR500.1c ?/85 85 10/10 317 3.2× 107 386 85 10/10 554 8.3× 107 1825
DSJR500.5 ?/122 126 08/10 464 7.3× 107 1860 127 01/10 2,701 4.3× 108 8592
le450_15c 15/15 15 07/10 2883 2.8× 108 1718 15 10/10 155 2.1× 107 238
le450_15d 15/15 15 03/10 2787 2.8× 108 2499 15 10/10 766 1.1× 108 1314
le450_25c 25/25 25 10/10 1968 2.0× 108 1296 26 10/10 1 8.1× 104 1
le450_25d 25/25 25 10/10 2110 2.2× 108 1704 26 10/10 1 1.1× 105 2
flat300_26_0 26/26 26 10/10 49 4.9× 106 195 26 10/10 31 5.1× 106 254
flat300_28_0 28/28 30 10/10 147 1.5× 107 233 31 10/10 95 1.9× 107 242
flat1000_76_0 76/81 86 01/10 908 1.1× 108 5301 89 02/10 339 9.1× 107 3709
R250.5 ?/65 66 10/10 865 1.1× 108 705 66 01/10 1793 2.3× 108 2038
R1000.1c ?/98 98 10/10 88 9.1× 106 256 98 10/10 110 2.0× 107 702
R1000.5 ?/234 254 04/10 189 3.7× 107 7818 260 10/10 1 3.1× 105 124
latin_square_10 ?/97 99 08/10 666 6.7× 107 2005 103 10/10 444 9.7× 107 7769

result in terms of number of colors used, we underlined the smallest number of iterations iterations (which
indicates a better performance in terms of computational efficiency).

From Table 3.7, it can be seen that for the 20 instances, PLSCOL obtains a better solution for 12
instances and an equal solution for the 8 remaining instances. With the help of the learning scheme,
the improvement of PLSCOL over PLSCOL1 is quite significant for several very difficult graphs 4 like
DSJC1000.9 (-6 colors), at flat1000_76_0 (-3 colors), R1000.5 (-6 colors) and latin_square_10 (-4 colors).
Finally, we observe that for the 8 instances where both algorithms achieve an equal result in terms of colors
used, PLSCOL requires less iterations and less computing time than PLSCOL1 in 6 cases.

This comparative study between PLSCOL and PLSCOL1 demonstrates the effectiveness of the proba-
bility learning scheme used in our PLSCOL algorithm.

3.5.4 Benefit of group matching procedure

We now investigate the usefulness of the group matching procedure, which is used to provide feedback
information to the probability learning component. For this purpose, we create PLSCOL2, which is a
PLSCOL variant where we replace line 10 of Algorithm 4 with the simple group identifying procedure. We
ran PLSCOL2 under the same stopping condition as before – PLSCOL2 stops if a legal k-coloring is found
or the maximum allowed run time of 5 CPU hours is reached. Each tested instance was solved 10 times.

Table 3.8 displays the comparative performance between our PLSCOL and PLSCOL2. In the table, we
compare these two algorithms based on same indicators adopted in Table 3.7. From this table, we clearly
observe that PLSCOL significantly outperforms PLSCOL2, achieving the better objective values on 11 out
of 20 instances and the equal objective values on the remaining 9 instances. Moreover, for these 9 instances
where both algorithms achieve same best objective value, PLSCOL needs less iterations and less computing
time than PLSCOL2 on 7 instances (as indicated by underline in Table 3.8). These observations confirm the
benefit of group matching procedure applied in our PLSCOL algorithm.

4. For these instances, even gaining one color could be difficult, since when k is close to χ, finding a legal coloring is usually
much harder for k than for k + 1.



3.5. EXPERIMENTAL ANALYSIS 51

Table 3.8: Comparative results of PLSCOL and PLSCOL2 on the difficult DIMACS graphs.

PLSCOL PLSCOL2

Instance χ/k∗ k #succ #gen #iter time(s) k #succ #gen #iter time(s)

DSJC250.5 ?/28 28 10/10 3 4.0× 105 4 28 10/10 103 6.7× 107 1026
DSJC500.1 ?/12 12 07/10 69 7.5× 106 43 12 10/10 5 5.5× 106 59
DSJC500.5 ?/47 48 03/10 761 7.9× 107 1786 50 10/10 15 6.2× 106 154
DSJC500.9 ?/126 126 10/10 187 2.4× 107 747 126 06/10 931 2.7× 108 9314
DSJC1000.1 ?/20 20 01/10 369 2.9× 108 3694 21 10/10 0 8.9× 104 1
DSJC1000.5 ?/83 87 10/10 203 2.7× 107 1419 89 09/10 407 6.9× 107 4070
DSJC1000.9 ?/222 223 05/10 2886 3.1× 108 12094 224 02/10 826 1.0× 108 8265
DSJR500.1c ?/85 85 10/10 317 3.2× 107 386 85 10/10 60 5.5× 107 600
DSJR500.5 ?/122 126 08/10 464 7.3× 107 1860 126 07/10 753 3.9× 108 7534
le450_15c 15/15 15 07/10 2883 2.8× 108 1718 15 02/10 874 1.5× 109 8744
le450_15d 15/15 15 03/10 2787 2.8× 108 2499 16 10/10 0 3.3× 105 3
le450_25c 25/25 25 10/10 1968 2.0× 108 1296 26 10/10 0 1.2× 105 1
le450_25d 25/25 25 10/10 2110 2.2× 108 1704 26 10/10 1 1.3× 105 2
flat300_26_0 26/26 26 10/10 49 4.9× 106 195 26 07/10 603 1.4× 108 6034
flat300_28_0 28/28 30 10/10 147 1.5× 107 233 31 10/10 410 2.4× 108 4101
flat1000_76_0 76/81 86 01/10 908 1.1× 108 5301 87 01/10 321 3.9× 107 3212
R250.5 ?/65 66 10/10 865 1.1× 108 705 66 10/10 151 2.0× 108 1516
R1000.1c ?/98 98 10/10 88 9.1× 106 256 98 10/10 18 3.8× 106 181
R1000.5 ?/234 254 04/10 189 3.7× 107 7818 255 05/10 241 1.6× 107 2425
latin_square_10 ?/97 99 08/10 666 6.7× 107 2005 100 06/10 648 2.4× 108 6480

3.5.5 Effect of the penalization factor β

The penalization factor β is used to determine the new probability vector when an item selects an
incorrect group. Preliminary results suggest that the performance of PLSCOL is more sensitive to β than the
other two parameters α and γ. In the following, we report a detailed analysis of β on six selected instances.
To avoid the influence caused by random numbers, we set the random seed to 1 in the experiments. For
each parameter setting and each instance, we conduct an independent experiment with a maximum allowed
time limit of 5 CPU hours. We set other parameters to their default values (as shown in Table 3.1) and only
vary the parameter β.

Table 3.9: Effect of penalization factor β on the running time (s) of PLSCOL.

β DSJC250.5 DSJC500.9 DSJR500.1c R1000.1c DSJC1000.9 flat1000_76_0

0.45 13.10 2055.03 128.40 88.50 * *
0.40 17.65 367.57 139.73 229.88 5884.32 7474.21
0.35 13.10 1096.23 471.30 34.25 1158.67 3154.03
0.30 17.57 2467.98 242.40 2644.97 6133.87 7519.52
0.25 13.28 903.89 6120.46 8383.67 7122.16 1035.84
0.20 13.26 10149.23 1412.54 164.01 3008.86 *
0.15 17.66 8765.75 1519.88 55.96 4015.04 7163.64
0.10 11.48 316.26 1232.88 113.23 2815.88 1244.57
0.05 17.14 * 5753.18 181.73 4349.16 995.73

∆max 6.18 9832.97 5992.06 8349.42 4975.20 6523.79

Table 3.9 shows the impact of β on the performance of PLSCOL with nine different values for β,
β ∈ {0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45}. In this table, we report the running time (the best
values are in bold and the worst values are in italic) needed to find the given best k-coloring for each
parameter value and each instance. “∗” indicates that PLSCOL cannot find a k-coloring with this parameter
setting. At the last row of the table, we also give the maximum running time difference of PLSCOL under



52 CHAPTER 3. PROBABILITY LEARNING BASED LOCAL SEARCH FOR GCP

two different β values. Table 3.9 indicates that PLSCOL can find a legal coloring with the given best k in
the majority of cases except for DSJC500.9 with β = 0.05, DSJC1000.9 with β = 0.45 and flat1000_76_0
with β = 0.45 and β = 0.20 respectively. This parameter mainly affects the running time of PLSCOL to
find the given k-coloring. Taking the instance DSJC500.9 as an example, with β = 0.10, PLSCOL finds
the best 126-coloring within 316.26 seconds while it needs much more time (10149.23 seconds) to find the
126-coloring when β = 0.20. The maximum difference of running time with different β values is 9832.97
seconds. We also observe that the optimal setting of β depends to a large extent on the structures of the
instances which greatly vary for different graphs. Although the time of PLSCOL is sensitive to the β values,
PLSCOL can successfully find the k-coloring with many β values. This explains why we used a fixed β
value (β = 0.10) for most of the 20 tested difficult instances and varied this parameter for the remaining
instances.

3.6 Chapter conclusion
In this chapter, we presented a Probability learning based Local Search (PLS) approach for solving

the class of grouping problems. The proposed PLS approach combines probability learning technique with
optimization procedure. Probability learning is used to maintain and update a set of probability vectors, each
probability vector specifying the probability that an item belongs to a particular group. At each iteration,
PLS builds a starting grouping solution according to the probability vectors and with the help of a group
selection strategy. PLS then applies a optimization procedure to improve the given grouping solution until
a local optimum is reached. At this point, a solution comparison is made between the starting solution and
the ending local optimum solution. The probability vector of each item is updated according to the situation
of the item. Specifically, PLS rewards the selected group of the item if the item stays in the original group,
otherwise PLS penalizes the selected group and compensates the new group. A case study of PLS has
been made on the well-known Graph Coloring Problem (GCP), and the corresponding PLS algorithm is
denoted as PLSCOL. PLSCOL further enhances the generic PLS approach designed for solving grouping
problems from two aspects. The first enhancement improves the probability learning scheme of the generic
PLS approach by using a group matching procedure to find the group-to-group relation between a starting
solution and its improved solution. This matching procedure copes with the difficulty raised by symmetric
solutions of GCP and allows to as a specific grouping problem. The second enhancement concerns the
coloring algorithm based on tabu search, which is both more powerful than the descent-based coloring
algorithm used in PLS, and still remains simple compared to more complex hybrid algorithms.

Experimental evaluations on popular DIMACS challenge benchmark graphs showed that PLSCOL com-
petes favorably with all existing local search based coloring algorithms. Compared with the most effective
hybrid evolutionary algorithms which are much more sophisticated in their design, PLSCOL remains com-
petitive. Furthermore, we provided an analysis to show the impact of some key ingredients of PLSCOL
over their performance.



4
Opposition-based Memetic Search for
Maximum Diversity Problem

As a usual model for a variety of practical applications, the maximum diversity problem is compu-
tational challenging. In this chapter, we present an Opposition-Based Memetic Algorithm (OBMA) for
solving Maximum Diversity Problem (MDP), which integrates the concept of Opposition-Based Learning
(OBL) into the well-known memetic search framework. OBMA explores both candidate solutions and their
opposite solutions during its initialization and evolution processes. Combined with a powerful local op-
timization procedure and a rank-based quality-and-distance pool updating strategy, OBMA establishes a
suitable balance between exploration and exploitation of its search process. Computational results on 80
popular MDP benchmark instances show that the proposed algorithm matches the best-known solutions
for most of instances, and finds improved best solutions (new lower bounds) for 22 instances. We provide
experimental evidences to highlight the beneficial effect of opposition-based learning for solving MDP. The
main content reported in this chapter is based on an article published in IEEE Transactions on Evolutionary
Computation [Zhou et al., 2017c].

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Opposition-based Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 Memetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Opposition-based memetic search for MDP . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.1 Solution representation and search space . . . . . . . . . . . . . . . . . . . . . . 57
4.3.2 Main scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.3 Opposition-based population initialization . . . . . . . . . . . . . . . . . . . . . . 58
4.3.4 Opposition-based double trajectory search procedure . . . . . . . . . . . . . . . . 60
4.3.5 Backbone-based crossover operator . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.6 Rank-based pool updating strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.7 Computational complexity of OBMA . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.1 Benchmark instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.2 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.3 Benefit of OBL for memetic search . . . . . . . . . . . . . . . . . . . . . . . . . 67

53



54 CHAPTER 4. OPPOSITION-BASED MEMETIC SEARCH FOR MDP

4.4.4 Comparison with state-of-the-art algorithms . . . . . . . . . . . . . . . . . . . . . 69
4.5 Experimental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.1 Study of the parametric constrained neighborhood . . . . . . . . . . . . . . . . . 71
4.5.2 Effectiveness of the pool updating strategy . . . . . . . . . . . . . . . . . . . . . 72
4.5.3 Opposition-based learning over population diversity . . . . . . . . . . . . . . . . 74

4.6 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



4.1. INTRODUCTION 55

4.1 Introduction
MDP belongs to a large family of diversity or dispersion problems whose purpose is to identify a subset

S from a set N of elements while optimizing an objective function defined over the distances between the
elements in S [Prokopyev et al., 2009]. Over the past three decades, MDP has been widely studied under
different names, such as max-avg dispersion [Ravi et al., 1994], edge-weighted clique [Macambira and
De Souza, 2000], dense k-subgraph [Feige et al., 2001], maximum edge-weighted subgraph [Macambira,
2002] and equitable dispersion [Prokopyev et al., 2009]. In addition, MDP also proves to be a useful
model to formulate a variety of practical applications including facility location, molecular structure design,
agricultural breeding stocks, composing jury panels and product design [Glover et al., 1998; Martí et al.,
2013]. In terms of computational complexity, MDP is known to be NP-hard [Ghosh, 1996].

Given the interest of MDP, a large number of solution methods for MDP have been investigated. These
methods can be divided into two main categories: exact algorithms and heuristic algorithms. In particular,
exact algorithms like [Aringhieri et al., 2009; Martí et al., 2010] are usually effective on small instances
with n < 150. To handle larger instances, heuristic algorithms are often preferred to find sub-optimal
solutions in an acceptable time frame. Existing heuristic algorithms for MDP include construction methods
[Ghosh, 1996; Glover et al., 1998], greedy randomized adaptive search procedure (GRASP)[Aringhieri
et al., 2008; Duarte and Martí, 2007; Santos et al., 2005], iterative tabu search (ITS) [Palubeckis, 2007],
variable neighborhood search (VNS) [Aringhieri and Cordone, 2011; Brimberg et al., 2009], fine-tuning
iterated greedy algorithm (TIG) [Lozano et al., 2011], memetic and hybrid evolutionary algorithms (MSES
[de Freitas et al., 2014], G_SS [Gallego et al., 2009], MAMDP [Wu and Hao, 2013] and TS/MA [Wang et
al., 2014]). Comprehensive surveys and comparisons of some important heuristic algorithms prior to 2012
for MDP can be found in [Aringhieri and Cordone, 2011; Martí et al., 2013].

Among the existing heuristics for MDP, two methods involve hybridization of heuristics and machine
learning techniques. In [Santos et al., 2005], the proposed GRASP_DM algorithm combines GRASP with
a data mining technique (i.e., frequent itemset mining). After each GRASP phase, the data mining process
extracts useful patterns from recorded elite solutions to guide the following GRASP iterations. These
patterns correspond to items that are shared by a significant number of elite solutions. Another learning-
based heuristic is LTS_EDA [Wang et al., 2012], which uses data mining techniques (k-means clustering
and estimation of distribution algorithms) to extract useful information from the search history of tabu
search in order to guide the search procedure to promising search regions. These learning-based methods
have reported competitive results when they were published.

In this chapter, we propose a new learning-based optimization method for solving MDP. The proposed
Opposition-Based Memetic Algorithm (OBMA) integrates the concept of Opposition-Based Learning (OBL)
into the popular Memetic Algorithm (MA) framework. OBMA brings several improvements into the original
MA framework. First, we employ OBL to reinforce population initialization as well as the evolutionary
search process, by simultaneously considering a candidate solution and its corresponding opposite solution.
Second, we apply a tabu search procedure for local optimization which relies on an improved parametric
constrained neighborhood. Third, we propose a rank-based quality-and-distance pool updating strategy to
maintain a healthy population diversity. We identify the main contributions of this work as follows.

— From an algorithmic perspective, we explore for the first time the usefulness of opposition-based
learning to enhance a popular method (i.e., MA) for combinatorial optimization. We investigate
how OBL can be beneficially integrated into the MA framework and show the effectiveness of the
approach within the context of solving the maximum diversity problem.

— From a computational perspective, we compare the proposed OBMA algorithm with state-of-the-art
results on several sets of 80 large size MDP benchmark instances with 2, 000 to 5, 000 elements. Our
results indicate that OBMA matches most of the best-known results and in particular finds improved
best solutions (new lower bounds) for 22 instances. These new bounds are valuable for the assessment
of new MDP algorithms. These computational results demonstrate the competitiveness of OBMA and
the benefit of using OBL to enhance a memetic algorithm.



56 CHAPTER 4. OPPOSITION-BASED MEMETIC SEARCH FOR MDP

The remainder of the chapter is organized as follows. After a brief introduction of opposition-based
learning and memetic search in Section 4.2, we present in Section 4.3 the proposed opposition-based
memetic algorithm. Sections 4.4 and 4.5 show computational results and comparisons as well as an ex-
perimental study of key issues of the proposed algorithm. Conclusions and perspective are provided in
Section 4.6.

4.2 Background

This section introduces the concept of opposition-based learning and the general memetic search frame-
work, which are then combined in the proposed approach.

4.2.1 Opposition-based Learning

Opposition-Based Learning (OBL) was originally proposed as a machine intelligence scheme for rein-
forcement learning [Tizhoosh, 2005]. The main idea behind OBL is the simultaneous consideration of a
candidate solution and its corresponding opposite solution. To explain the concept of opposition, we con-
sider a real number x ∈ [a, b], then the opposite number x is defined as x = a+ b−x. For the case of MDP,
we define the concept of opposite solution in Section 4.3. OBL is a fast growing research field in which
a variety of new theoretical models and technical methods have been studied to deal with complex and
significant problems [Al-Qunaieer et al., 2010; Rahnamayan et al., 2008a; Ventresca and Tizhoosh, 2008;
Xu et al., 2014]. Recently, the idea of OBL has also been used to reinforce several global optimization
methods such as differential evolution, particle swarm optimization, biogeography-based optimization, ar-
tificial neural network, bee and ant colony optimization [Xu et al., 2014; Aziz and Tayarani-N., 2016].

To apply OBL to solve an optimization problem, one needs to answer a fundamental question: given a
solution from the search space, why is it more advantageous to consider an opposite solution of the current
solution than a second pure random solution? For one dimensional search space, a proof and an empirical
evidence confirmed how much an opposite solution is better than a uniformly generated random solution
[Rahnamayan et al., 2008b]. This result was further generalized to the N-dimensional search spaces for
black-box (continuous) problems in [Rahnamayan et al., 2012].

We observe that existing studies on OBL-based optimization concern only global optimization with
two exceptions. In 2008, Ventresca and Tizhoosh [Ventresca and Tizhoosh, 2008] proposed a diversity
maintaining population-based incremental learning algorithm for solving the Traveling Salesman Problem
(TSP), where the concept of opposition was used to control the amount of diversity within a given sample
population. In 2011, Ergezer and Simon [Ergezer and Simon, 2011] hybridized open-path opposition and
circular opposition with biogeography-based optimization for solving the graph coloring problem and TSP.
The main difficulty of these applications is how to define and evaluate opposite solutions in a discrete
space. OBL being a generally applicable technique, its efficiency depends on the matching degree between
the definition of OBL and the solution space of the considered problem, as well as the rationality justifying
a combination of OBL with a search algorithm [Xu et al., 2014].

4.2.2 Memetic algorithm

The Memetic Algorithm (MA) framework [Moscato, 1999; Krasnogor and Smith, 2005] is a well-known
hybrid search approach combining population-based search and local optimization. MA has been success-
fully applied to tackle numerous classicalNP-hard problems [Chen et al., 2011; Hao, 2012], such as graph
coloring [Lü and Hao, 2010], graph partitioning [Benlic and Hao, 2011; Galinier et al., 2011] and gener-
alized quadratic multiple knapsack [Chen and Hao, 2016] as well as the maximum diversity problem [de
Freitas et al., 2014; Wu and Hao, 2013].



4.3. OPPOSITION-BASED MEMETIC SEARCH FOR MDP 57

Algorithm 5: The general memetic algorithm framework
Input: Problem instance I and population size p
Output: The best solution S∗ found

1 // we suppose I is a maximization problem
2 begin
3 // build an initial population
4 P = {S1, S2, . . . , Sp} ← PoolInitialization();
5 // record the best solution found so far
6 S∗ = argmax{f(Si)|i = 1, 2, . . . , p};
7 while a stopping condition is not reached do
8 (Si, . . . , Sj)← ParentsSelection(P );
9 // generate an offspring solution

10 So ← CrossoverOperator(Si, . . . , Sj);
11 // improve the offspring solution
12 So ← LocalImprovement(So);
13 // accept or discard the improved solution
14 P ← UpdatePopulation(P, So);
15 // update the best solution found
16 if f(So) > f(S∗) then
17 S∗ ← So;

A typical MA algorithm (Algorithm 5) begins with a set of random or constructed solutions (initial
population). At each generation, MA selects two or more parent solutions from the population, and per-
forms a recombination or crossover operation to generate one or more offspring solutions. Then a local
optimization procedure is invoked to improve the offspring solution(s). Finally, a population management
strategy is applied to decide if each improved offspring solution is accepted to join the population. The
process repeats until a stopping condition is satisfied. We show below how OBL and MA can be combined
to obtain a powerful search algorithm for the highly combinatorial maximum diversity problem.

4.3 Opposition-based memetic search for MDP
We describe in this section the proposed opposition-based memetic algorithm for MDP. We start with

the issues of solution representation and search space, followed by a detailed presentation of the ingredients
of the proposed approach.

4.3.1 Solution representation and search space
Given a MDP instance with set N = {e1, e2, . . . , en} and integer m, any subset S ⊂ N of size m is a

feasible solution. A candidate solution S can then be represented by S = {eS(1), eS(2), . . . , eS(m)} such that
S(i) is the index of element i in N or equivalently by a binary vector of size n such that exactly m variables
receive the value of 1 and the other n − m variables receive the value of 0. The quality of a candidate
solution S is assessed by the objective function f of Equation (1.1).

Given a MDP instance, the search space Ω is composed of all the m-element subsets of N , i.e., Ω =
{S ⊂ N : |S| = m}. The size of Ω is given by

(
n
m

)
= n!

m!(n−m)!
and increases extremely fast with n and m.

4.3.2 Main scheme
The proposed OBMA algorithm for MDP is based on opposition learning, which relies on the key

concept of opposite solution in the context of MDP, which is defined as follows.



58 CHAPTER 4. OPPOSITION-BASED MEMETIC SEARCH FOR MDP

v5

v 4

v1

v 2

v 3

      

       0.2

  0.3          

          0.7                   

    0.6

      0.7 

    

                

  0.8

(a)

     0.4

0.5

 0.9    

   0.4    

v5

v 4

v1

v 2

v 3

      

       0.2

  0.3          

          0.7                   

    0.6

      0.7 

    

                

  0.8

(b)

     0.4

0.5

 0.9    

   0.4    

Figure 4.1: (a) A candidate solution S = {v2, v3, v5} and (b) its an opposite solution S ′ = {v1, v2, v4}.

Definition 2 (Opposite solution). Given a MDP instance with set N and integer m, let S be a feasible
solution of Ω represented by its binary n-vector x, an opposite solution S corresponds to a feasible binary
vector x whose components match the complement 1 of x as closely as possible.

According to this definition, if m < n
2
, S corresponds to any subset of elements of size of m from N \S.

If m = n
2
, the unique opposite solution is given by S = N \S. If m > n

2
, S is any subset of n−m elements

from N \ S, completed by other 2m− n elements from S. An illustrative example is shown in Figure 4.1.
We observe that a diversification framework introduced in [Glover, 1997] also yields the type of opposite

solution provided by our definition and applies to constraints more general than the constraint defined by
Equation (1.2). We make two related comments. First, as we observe in Section 5.5, the MDP benchmark
instances in the literature correspond to the case m ⩽ n

2
. Second, in practice, when an opposite solution is

required while there are multiple opposite solutions, we can just select one solution at random among the
candidate opposite solutions.

The proposed OBMA algorithm consists of four key components: an opposition-based population ini-
tialization procedure, a backbone-based crossover operator, an opposition-based double trajectory search
procedure and a rank-based quality-and-distance pool updating strategy. OBMA starts from a collection of
diverse elite solutions which are obtained by the opposition-based initialization procedure (Section 4.3.3).
At each generation, two parent solutions are selected at random from the population, and then the backbone-
based crossover operator (Section 4.3.5) is applied to the selected parents to generate an offspring solution
and a corresponding opposite solution. Subsequently, the opposition-based double trajectory search pro-
cedure (Section 4.3.4) is invoked to search simultaneously from the offspring solution and its opposite so-
lution. Finally, the rank-based pool updating strategy (Section 4.3.6) decides whether these two improved
offspring solutions should be inserted into the population. This process repeats until a stopping condition
(e.g., a time limit) is satisfied. The general framework and pseudo-code of the OBMA algorithm are shown
in Figure 4.2 and Algorithm 6 respectively, while its components are described in the following sections.

4.3.3 Opposition-based population initialization
The initial population P is composed of p diverse and high quality solutions. Unlike traditional pop-

ulation initialization, our population initialization procedure integrates the concept of OBL. As shown in

1. Let x ∈ {0, 1}n, its complement x is an n-vector such that x[i] = 1 if x[i] = 0; x[i] = 0 if x[i] = 1.



4.3. OPPOSITION-BASED MEMETIC SEARCH FOR MDP 59

Build an initial 
population P with OBL; 

Select randomly two 
parent solutions from P

Crossover 

Improve S by an 
optimization procedure

Update the population P based 
on pool updating strategy; 
update the best solution S*

 
yes

Output S*

no

t < tmax ?

Improve S' by an 
optimization procedure

solution S 
          

                   opposite solution S'

Figure 4.2: A general framework of OBMA algorithm.



60 CHAPTER 4. OPPOSITION-BASED MEMETIC SEARCH FOR MDP

Algorithm 6: Opposition-based memetic algorithm for MDP
Input: An instance of n× n distance matrix (dij), and an integer m < n.
Output: The best solution S∗ found

1 begin
2 // build an initial population, Section 4.3.3
3 P = {S1, S2, . . . , Sp} ← OppositionBasedPoolInitialize()
4 S∗ ← argmax{f(Si) : i = 1, 2, . . . , p}
5 while stopping condition not reached do
6 randomly select two parent solutions Si and Sj from P
7 // generate an offspring solution and its opposite solution by crossover, Section 4.3.5
8 So, So ← BackboneBasedCrossover(Si, Sj)
9 // perform a double trajectory search, Section 4.3.4

10 So ← TabuSearch(So) /∗trajectory 1: search around So ∗/
11 // update the best solution found
12 if f(So) > f(S∗) then
13 S∗ ← So

14 // insert or discard the improved solution, Section 4.3.6
15 P ← RankBasedPoolUpdating(P, So)

16 So ← TabuSearch(So) /∗trajectory 2: search around So ∗/
17 // update the best solution found
18 if f(So) > f(S∗) then
19 S∗ = So

20 // insert or discard the improved solution, Section 4.3.6
21 P ← RankBasedPoolUpdating(P, So)

Algorithm 7, the OBL-based initialization procedure considers not only a random candidate solution but
also a corresponding opposite solution. Specifically, we first generate a pair of solutions, i.e., a random
solution Sr ∈ Ω and a corresponding opposite solution Sr according to Definition (2) of Section 4.3.2 (if
multiple opposite solutions exist, one of them is taken at random). These two solutions are then improved
by the tabu search procedure described in Section 4.3.4. Finally, the better one of the two improved solu-
tions S ′ is inserted into the population if S ′ is not the same as any existing individual of the population.
Otherwise, we modify S ′ with the swap operation (see Section 4.3.4) until S ′ becomes different from all
individuals in P before inserting it into the population. This procedure is repeated until the population is
filled up with p solutions. With the help of this initialization procedure, the initial solutions of P are not
only of good quality, but also of high diversity.

4.3.4 Opposition-based double trajectory search procedure
In the proposed OBMA algorithm, we use an Opposition-based Double Trajectory Search (ODTS)

procedure for local optimization. ODTS simultaneously searches around an offspring solution So and one
opposite solution So. The local optimization procedure used here is an improved constrained neighborhood
tabu search. Tabu search is a well-known metaheuristic that guides a local search heuristic to explore the
solution space beyond local optimality [Glover and Laguna, 1997]. The original constrained neighborhood
tabu search algorithm was proposed in [Wu and Hao, 2013], which is specifically designed for MDP by
using a constrained neighborhood and a dynamic tabu tenure management mechanism. Compared with
this tabu search algorithm, our improved tabu search procedure (see Algorithm 8) distinguishes itself by its
parametric constrained neighborhood which allows the search process to explore more promising candidate
solutions. In the following, we present the key ingredients of this local optimization procedure including
the parametric constrained neighborhood, the fast neighborhood evaluation technique and the dynamic tabu



4.3. OPPOSITION-BASED MEMETIC SEARCH FOR MDP 61

Algorithm 7: Opposition-based population initialization
Input: Population size p.
Output: An initial population P = {S1, S2, . . . , Sp}

1 begin
2 count← 0
3 while count < p do
4 generate a random solution Sr and its opposite solution Sr

5 Sr ← TabuSearch(Sr)

6 Sr ← TabuSearch(Sr)

7 // identify the better solution between Sr and Sr

8 S′ ← argmax{f(Sr), f(Sr)}
9 // insert S′ into the population P or modify it

10 if S′ is different from any solutions in the P then
11 add S′ into the population P directly

12 else
13 modify S′ and add it into the population P

14 count← count+ 1

tenure management scheme.

Algorithm 8: Parametric constrained neighborhood tabu search
Input: A starting solution S, the maximum allowed iterations MaxIter.
Output: The best solution S∗ found

1 begin
2 S∗ ← S
3 iter ← 0
4 initialize the tabu list
5 calculate the gain(ei) for each element ei ∈ N according to Equation (4.1)
6 while iter < MaxIter do
7 minGain← min{gain(ei) : ei ∈ S}
8 determine subset U c

S according to Equation (4.7)
9 maxGain← max{gain(ei) : ei ∈ N \ S}

10 determine subset U c
N\S according to Equation (4.8)

11 choose a best eligible swap(eu, ev)
12 S ← S \ {eu} ∪ {ev}
13 update the tabu list and gain(ei) for each element ei ∈ N according to Equation (4.9)
14 if f(S) > f(S∗) then
15 S∗ ← S

16 iter ← iter + 1

Parametric constrained neighborhood

In general, local search for MDP starts from an initial solution S and subsequently swaps an element of
S and an element of N \ S according to some specific transition rule (e.g., accepting the first or the best
improving transition). Clearly, the size of this neighborhood is bound by O(m(n −m)) and an exhaustive
exploration of all the possible swap moves is too time-consuming for the large values of n. To reduce the
size of the swap neighborhood, we employ an extension of a candidate list strategy sometimes called a



62 CHAPTER 4. OPPOSITION-BASED MEMETIC SEARCH FOR MDP

neighborhood decomposition strategy [Glover et al., 1993] or a successive filtration strategy [Rangaswamy
et al., 1998], and which we refer to as a constrained swap strategy [Wu and Hao, 2013]. As it is shown in
the experimental analysis of Section 4.5.1, although this constrained swap strategy accelerates the search
process, it imposes a too strong restriction and may exclude some promising swap moves for the tabu search
procedure. In this work, we introduce the parametric constrained neighborhood which adopts the idea of
the constrained neighborhood, but weakens the imposed constraint by introducing a parameter ρ (ρ ⩾ 1) to
control the size of the explored neighborhood. Both constrained neighborhoods rely on the notion of move
gain of each element ei with respect to the objective value of the current solution S defined as follows.

gain(ei) =
∑
ej∈S

dij, i = 1, 2, . . . ,m (4.1)

Let swap(eu, ev) denote the swap operation which exchanges an element eu ∈ S against an element

ev ∈ N \S. Once a swap S
swap(eu,ev)−−−−−−→ S ′ is made, it provides a new solution S ′ = S \ {eu}∪ {ev} and the

move gain ∆uv of this swap can be calculated according to the following formula.

∆uv = f(S ′)− f(S) = gain(ev)− gain(eu)− duv (4.2)

Equation (4.2) suggests that in order to maximize the move gain, it is a good strategy to consider swap
moves that replaces in the current solution S an element eu with a small gain by an element ev out of
S with a large gain. In other words, the search process can only consider swap moves that involve an
element eu∗ from S with the minimal gain value and an element ev∗ in N \ S with a maximal gain value.
However the move gain also depends on the distance du∗v∗ between eu∗ and ev∗ . Specifically, we suppose
swap(eu∗ , ev∗) is the best swap, and for a current solution S, let minGain = min{gain(ei) : ei ∈ S} and
maxGain = max{gain(ei) : ei ∈ N \ S} so we have

(eu∗ , ev∗)← argmaxeu∈S,ev∈N\S∆u,v (4.3)

we suppose
ev′ ← argmaxGainei∈N\S and eu′ ← argminGainei∈S (4.4)

so, we have

∆u∗,v∗ ⩾ ∆u′,v′ = maxGain−minGain− du′,v′ ⩾ maxGain−minGain− dmax (4.5)

where dmax = max{dij, 1 ⩽ i < j ⩽ n}, and we set (ρ ⩾ 1), then we have

∆u∗,v∗ ⩾ maxGain−minGain− ρ ∗ dmax = (maxGain− ρ

2
∗ dmax)− (minGain+

ρ

2
∗ dmax) (4.6)

Therefore, we have the parametric constrained neighborhood which relies on the two following sets.

U c
S = {ei ∈ S : gain(ei) ⩽ minGain+

ρ

2
dmax} (4.7)

and
U c
N\S = {ei ∈ N \ S : gain(ei) ⩾ maxGain− ρ

2
dmax} (4.8)

Therefore, a constrained neighbor solution S ′ can be obtained from S by swapping one element eu ∈ U c
S

and another element ev ∈ U c
N\S . Clearly, the evaluation of all constrained neighboring solutions can be

achieved in O(|U c
S|×|U c

N\S|). Figure 4.3 demonstrates a simple diagram between the original neighborhood
(|S| ∗ |N \ S|) and its constrained neighborhood (|U c

S| ∗ |U c
N\S|). Conveniently, we can adjust the value of

parameter ρ (ρ ⩾ 1) to control the size of the constrained neighborhood.
One notices that the neighborhood of [Wu and Hao, 2013] is a special case of the above neighborhood

when ρ = 2. In general, a larger ρ value leads to a less constrained neighborhood compared to the neigh-
borhood of [Wu and Hao, 2013], allowing thus additional promising candidate solutions to be considered
by the tabu search procedure. The experimental analysis of Section 4.5.1 confirms the effectiveness of this
parametric constrained neighborhood.



4.3. OPPOSITION-BASED MEMETIC SEARCH FOR MDP 63

�

�
�

�

�
�

���������	
������� ��������
��	
�������

Figure 4.3: A simple diagram of the original neighborhood (|S| ∗ |N \S|) and its constrained neighborhood
(|U c

S| ∗ |U c
N\S|).

Fast neighborhood evaluation technique

Once a swap(eu, ev) move is performed, we need to update the gains gain(ei) affected by the move. To
rapidly determine the gain of each element ei, we resort to the fast neighborhood evaluation technique used
in [Aringhieri et al., 2008; Aringhieri and Cordone, 2011; Wu and Hao, 2013].

gain(ei) =


gain(ei) + div if ei = eu

gain(ei)− diu if ei = ev

gain(ei) + div − diu if ei ̸= eu and ei ̸= ev.

(4.9)

Updating the gains of n elements requires O(n) time. Therefore, the time to update the parametric
constrained neighborhood at each iteration is bounded by O(n) +O(|U c

S| × |U c
N\S|).

Dynamic tabu tenure management scheme

Starting with a solution S, tabu search iteratively visits a series of neighboring solutions generated by the
swap operator. At each iteration, a best swap (i.e., with the maximum move gain ∆uv) is chosen among the
eligible swap moves to transform the current solution even if the resulting solution is worse than the current
solution. To prevent the search from cycling among visited solutions, tabu search typically incorporates a
short-term history memory H , known as the tabu list [Glover and Laguna, 1997].

Initially, all elements are eligible for a swap operation. Once a swap(eu, ev) is performed, we record it
in the tabu list H to mark element eu as tabu, meaning that element eu is forbidden to join again solution S
during the next Tu iterations (Tu is called the tabu tenure). Similarly, element ev is also marked as tabu for
the next Tv iterations and thus cannot be removed from S during this period. The tabu status of an element
is disabled if the swap operation with this element leads to a solution better than any already visited solution
(this rule is called the aspiration criterion in tabu search). An eligible swap move involves only elements
that are not forbidden by the tabu list or satisfy the aspiration criterion.

It is important to determine a suitable tabu tenure for the elements of a swap. Yet, there does not exist
a universally applicable tabu tenure management scheme. In our algorithm, we adopt a dynamic tabu list
management technique which was proposed in [Galinier et al., 2011] and proved to work well for MDP
[Wu and Hao, 2013]. The tabu tenure Tx of an element ex taking part in a swap operation is determined
according to a periodic step function T (iter), where iter is the number of iterations. Specifically, T (iter)
takes the value of α (a parameter set to 15 in this work), 2 × α, 4 × α and 8 × α according to the value of



64 CHAPTER 4. OPPOSITION-BASED MEMETIC SEARCH FOR MDP

iter, and each T (iter) value is kept for 100 consecutive iterations (see [Galinier et al., 2011; Wu and Hao,
2013] for more details). Following [Wu and Hao, 2013], we set Tu = T (iter) for the element eu dropped
from the solution and Tv = 0.7 ∗ T (iter) for the element ev added to the solution.

To implement the tabu list, we use an integer vector H of size n whose components are initially set to 0
(i.e., H[i] = 0, ∀i ∈ [1, . . . , n]). After each swap(eu, ev) operation, we set H[u] (resp. H[v]) to iter + Tu

(resp. iter+Tv), where iter is the current number of iterations and Tu (resp. Tv) is the tabu tenure explained
above. With this implementation, it is very easy to know whether an element ei is forbidden by the tabu list
as follows. If iter ≤ H[i], then ei is forbidden by the tabu list; otherwise, ei is not forbidden by the tabu
list.

4.3.5 Backbone-based crossover operator
The crossover operator plays a critical role in memetic search and defines the way information is trans-

mitted from parents to offspring [Hao, 2012]. A meaningful crossover operator should preserve good prop-
erties of parent solutions through the recombination process. In our case, we adopt a backbone-based
crossover operator which generates an offspring solution in the same way as in [Wu and Hao, 2013] while
introducing additionally an opposite solution. For MDP, the backbone is a good property that is to be
transmitted from parents to offspring, as shown in Definition 3. Specially, the backbone-based crossover
operator not only produces an offspring solution, but also creates a corresponding opposite solution.

Definition 3 (backbone [Wu and Hao, 2013]). Let Su and Sv be two solutions of MDP, the backbone of Su

and Sv is defined as the set of common elements shared by these two solutions, i.e., Su ∩ Sv.

Given a population P = {S1, S2, . . . , Sp} of p individuals, an offspring solution is constructed in two
phases. The first phase randomly selects two parents Su and Sv in P and identifies the backbone which is
used to form the partial offspring So, i.e., So = Su ∩ Sv. If |So| < m, then the second phase successively
extends So with m−|So| other elements in a greedy way. Specifically, we alternatively consider each parent
and select an unassigned element with maximum gain with respect to So until So reaches the size of m.
Once the offspring solution So is obtained, we generate its corresponding opposite solution So according
to Definition 2. Consequently, we obtain two different and distant offspring solutions So and So which are
further improved by the tabu search procedure of Section 4.3.4.

4.3.6 Rank-based pool updating strategy
To maintain a healthy diversity of the population, we use a rank-based pool updating strategy to decide

whether the improved solutions (So and So) should be inserted into the population or discarded. This pool
updating strategy simultaneously considers the solution quality and the distance between individuals in the
population to guarantee the population diversity. Similar quality-and-distance pool updating strategies have
been used in memetic algorithms in [Chen and Hao, 2016; Lü and Hao, 2010; Sörensen and Sevaux, 2006;
Wu and Hao, 2013].

For two solutions Su and Sv, we use the well-known set-theoretic partition distance [Gusfield, 2002] to
measure their distance.

D(Su, Sv) = m− Sim(Su, Sv) (4.10)

where Sim(Su, Sv) = |Su ∩ Sv| denotes the number of common elements shared by Su and Sv.
Given a population P = {S1, S2, . . . , Sp} and one solution Si in P , the average distance between Si

and the remaining individuals in P is computed by [Chen and Hao, 2016].

AD(Si, P ) =
1

p

∑
Sj∈P,j ̸=i

D(Si, Sj) (4.11)



4.4. COMPUTATIONAL RESULTS 65

To update the population with an improved offspring solution (So or So), let us consider the case of
So (the same procedure is applied to So). We first tentatively insert So into the population P , i.e., P ′ ←
P ∪ {So}. Then all individuals in P ′ are assessed based on the following function.

Score(Si, P ′) = β ∗RF (f(Si)) + (1− β) ∗RF (AD(Si, P ′)) (4.12)

where RF (f(Si)) and RF (AD(Si, P ′)) represent respectively the rank of solution Si with respect to its
objective value and the average distance to the population. Specifically, RF (·) ranks the solutions of P in
decreasing order according to their objective values or their average distances to the population. In case of
ties, the solution with the smallest index is preferred. β is the weighting coefficient between the objective
value of the solution and its average distance to the population, which is empirically set to β = 0.6.

Based on this scoring function, we identify the worst solution Sw with the largest score value from the
population P ′. If the worst solution Sw is not the improved offspring So, then the population is updated by
replacing Sw by So; otherwise, So is simply discarded.

4.3.7 Computational complexity of OBMA

To analyze the computational complexity of the proposed OBMA algorithm, we consider the main steps
in one generation in the main loop of Algorithm 6.

As shown in Algorithm 6, each generation of the OBMA algorithm is composed of four components:
parents selection, backbone-based crossover, tabu search and rank-based pool updating strategy. The step
of parents selection is bounded by O(1). The backbone-based crossover operation can be achieved in
O(nm2). The computational complexity of the parametric constrained neighborhood search procedure is
O((n + |U c

S| × |U c
N\S|)MaxIter), where |U c

S| is the number of elements that can be swapped out from
S, |U c

N\S| is the number of elements in N \ S that can be swapped into S, and MaxIter is the allowable
maximum number of iterations in tabu search. The computational complexity for the pool updating strategy
is O(p(m2 + p)), where p is the population size. To summarize, the total computational complexity of the
proposed OBMA within one generation is O(nm2 + (n+ |U c

S| × |U c
N\S|)MaxIter).

4.4 Computational results

This section presents computational experiments to test the efficiency of our OBMA algorithm. We
aim to 1) demonstrate the added value of OBMA (with OBL) compared to the memetic search framework
(without OBL), and 2) evaluate the performance of OBMA with respect to the best-known results ever
reported by state-of-the-art algorithms in the literature.

4.4.1 Benchmark instances

Our computational assessment were based on 80 large instances with 2000 to 5000 elements which are
classified into the following sets.

Set I contains three data sets: MDG-a (also known as Type1_22), MDG-b and MDG-c. They are
available at http://www.optsicom.es/mdp/.

— MDG-a: This data set consists of 20 instances with n = 2000, m = 200. The distance dij between
any two elements i and j is an integer number which is randomly selected between 0 and 10 from a
uniform distribution.

— MDG-b: This data set includes 20 instances with n = 2000, m = 200. The distance dij between any
two elements i and j is a real number which is randomly selected between 0 and 1000 from a uniform
distribution.

http://www.optsicom.es/mdp/


66 CHAPTER 4. OPPOSITION-BASED MEMETIC SEARCH FOR MDP

— MDG-c: This data set is composed of 20 instances with n = 2000, m = 300, 400, 500, 600. The
distance dij between any two elements i and j is an integer number which is randomly selected
between 0 and 1000 from a uniform distribution.

Set II (b2500) contains 10 instances with n = 2500, m = 1000, where the distance dij between any two
elements ei and ej is an integer randomly generated from [−100, 100]. This data set was originally derived
from the unconstrained binary quadratic programming problem by ignoring the diagonal elements and is
part of ORLIB: http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/.

Set III (p3000 and p5000) contains 5 very large instances with n = 3000 and m = 1500, and 5 instances
with n = 5000 and m = 2500, where dij are integers generated from a [0, 100] uniform distribution. The
sources of the generator and input files to replicate this data set can be found at: http://www.proin.
ktu.lt/~gintaras/mdgp.html.

4.4.2 Experimental settings

Table 4.1: 80 large MDP benchmark instances used in the experiments.

Data set n m #instance time limit (s) #run

MDG-a 2000 200 20 20 30
MDG-b 2000 200 20 600 15
MDG-c 2000 300-600 20 600 15

b2500 2500 1000 10 300 30

p3000 3000 1500 5 600 15
p5000 5000 2500 5 1800 15

Our algorithm 2 was implemented in C++, and complied using GNU gcc 4.1.2 with ‘-O3’ option on
an Intel E5-2670 with 2.5GHz and 2GB RAM under Linux. Without using any compiler flag, running
the DIMACS machine benchmark program dfmax 3 on our machine requires 0.19, 1.17 and 4.54 seconds
to solve graphs r300.5, r400.5 and r500.5 respectively. To obtain our experimental results, each instance
was solved according to the settings (including time limit and number of runs) provided in Tables 4.1 and
4.2. Notice that, like most reference algorithms of Section 4.4.4, we used a cutoff time limit (instead of
fitness evaluations) as the stopping condition. This choice is suitable in the context of MDP given that its
fitness evaluation is computationally cheap enough, contrary to expensive-to-evaluate problems like many
engineering optimization problems where using fitness evaluations is a standard practice [Jin, 2011].

Table 4.2: Parameter settings of OBMA algorithm.

Parameter description value section

p population size 10 4.3.3
MaxIter allowable number of iterations of TS 50,000 4.3.4
α tabu tenure management factor 15 4.3.4
ρ scale coefficient 4 4.3.4
β weighting coefficient 0.6 4.3.6

2. The best solution certificates and our program will be made available at http://www.info.univ-angers.fr/
pub/hao/OBMA.html.

3. dfmax: ftp://dimacs.rutgers.edu/pub/dsj/clique

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/
http://www.proin.ktu.lt/~gintaras/mdgp.html
http://www.proin.ktu.lt/~gintaras/mdgp.html
http://www.info.univ-angers.fr/pub/hao/OBMA.html
http://www.info.univ-angers.fr/pub/hao/OBMA.html
ftp://dimacs.rutgers.edu/pub/dsj/clique


4.4. COMPUTATIONAL RESULTS 67

4.4.3 Benefit of OBL for memetic search
To verify the benefit of OBL for memetic search, we compare OBMA with its alternative algorithm

OBMA0 without OBL. To obtain OBMA0, two modifications have been made on OBMA: 1) for the popu-
lation initialization phase, we randomly generate two initial solutions at a time (instead of a random solution
and an opposite solution); 2) for the crossover phase, we perform twice the crossover operation to generate
two offspring solutions (instead of one offspring solution and an opposite solution). To make a fair compar-
ison between OBMA and OBMA0, we ran both algorithms under the same conditions, as shown in Tables
4.1 and 4.2. The comparative results for the five data sets are summarized in Tables 4.3-4.7.

In these tables, columns 1 and 2 respectively show for each instance its name (Instance) and the current
best objective value (fprev) jointly reported in recent studies [Martí et al., 2013; Gallego et al., 2009; Wu
and Hao, 2013; Wang et al., 2012]. Columns 3-7 report the results of the OBMA0 algorithm: the difference
between fprev and the best objective value fbest (i.e., ∆fbest = fprev − fbest), the difference between fprev
and average objective value favg (i.e., ∆favg = fprev− favg), the standard deviation of objective values (σ),
the average CPU time to attain the best objective values (tbest) and the success rate (#succ) over 30 or 15
independent runs. Columns 8-12 present the same information of the OBMA algorithm. The best values
among the results of the two compared algorithms are indicated in bold. At the last row, we also provide
the average number of instances for which one algorithm outperforms the other algorithm. 0.5 is assigned
to each compared algorithm in case of ties.

To analyze these results, we resort to a widely-used statistical methodology known as two-tailed sign
test [Demšar, 2006]. This test is a popular way to compare the overall performance of algorithms by
counting the number of winning instances of each compared algorithm and thus to identify the overall
winner algorithm. The test makes the null hypothesis that the compared algorithms are equivalent. The null
hypothesis is accepted if each algorithm wins on approximately X/2 out of X instances. Otherwise, the test
rejects the null hypothesis, suggesting a difference between the compared algorithms. The Critical Values
(CV ) for the two-tailed sign test at a significance level of 0.05 are respectively CV 20

0.05 = 15 for X = 20
instances and CV 10

0.05 = 9 for X = 10 instances. In other words, algorithm A is significantly better than
algorithm B if A performs better than B for at least CV X

0.05 instances for a data set of X instances.
From Table 4.3 which shows the results of OBMA0 and OBMA for the 20 MDG-a instances, we first

observe that both algorithms attain the best-known results reported in the literature. However, OBMA per-
forms better than OBMA0 in terms of the average objective value and success rate, and wins 14.5 instances
and 13.5 instances respectively. We also observe that the standard deviation of the best objective values is
significantly smaller for OBMA, and OBMA wins 14.5 instances, which is very close to the critical value
(CV 20

0.05 = 15). Finally, compared to OBMA0, OBMA needs less average CPU time to find the best-known
solutions for all instances except MDG-a_26 and wins 13.5 instances in terms of the success rate.

Table 4.4 shows the results of OBMA0 and OBMA for the 20 MDG-b instances. The best-known
objective values (fprev) of this data set were obtained by a scatter search algorithm (G_SS) [Gallego et
al., 2009] with a time limit of 2h on an Intel Core 2 Quad CPU 8300 with 6GB of RAM running Ubuntu
9.04 [Martí et al., 2013]. This table indicates that both OBMA and OBMA0 find improved best-known
solutions for 14 out of 20 instances and attain the best objective values for the remaining 6 instances. On
the other hand, compared to the OBMA0 algorithm, OBMA obtains a better average objective value and
higher success rate for 13.5 and 13 instances. It is worth noting that OBMA has a steady performance, and
achieves these results with a 100% success rate on almost all instances except for MDG-b_24, MDG-b_32
and MDG-b_33. To summarize, OBMA performs better than OBMA0 for this data set, but the differences
are not very significant at a significance level of 0.05.

Table 4.5 presents the results of OBMA0 and OBMA for the 20 instances of the MDG-c instances.
All best-known results (fprev) were achieved by iterative tabu search (ITS) [Palubeckis, 2007] or variable
neighborhood search (VNS) [Brimberg et al., 2009] under a time limit of 2 hours on an Intel Core 2 Quad
CPU 8300 with 6GB of RAM running Ubuntu 9.04 [Martí et al., 2013]. We observe that both OBMA
and OBMA0 obtain improved best-known solutions for 8 instances and match the best-known solutions for
4 instances. In fact, OBMA improves all best-known solutions obtained by VNS, but it fails to attain 8



68 CHAPTER 4. OPPOSITION-BASED MEMETIC SEARCH FOR MDP

Table 4.3: Comparison of the results obtained by OBMA0 and OBMA on the data set MDG-a.

OBMA0 OBMA

Instance fprev ∆fbest ∆favg σ tbest #succ ∆fbest ∆favg σ tbest #succ

MDG-a_21 114271 0 4.5 10.6 9.3 22/30 0 5.2 10.8 7.4 20/30
MDG-a_22 114327 0 4.2 22.6 9.2 29/30 0 0.1 0.5 7.2 29/30
MDG-a_23 114195 0 10.9 15.2 11.5 15/30 0 15.2 15.1 7.0 11/30
MDG-a_24 114093 0 25.3 21.0 11.3 4/30 0 11.2 12.1 8.2 7/30
MDG-a_25 114196 0 55.9 32.7 13.3 1/30 0 41.5 30.7 8.8 5/30
MDG-a_26 114265 0 7.3 10.2 9.9 17/30 0 10.2 11.5 11.6 14/30
MDG-a_27 114361 0 0.0 0.0 4.8 30/30 0 0.2 0.9 4.1 29/30
MDG-a_28 114327 0 57.1 53.8 15.2 12/30 0 18.9 39.2 7.9 23/30
MDG-a_29 114199 0 11.2 16.0 14.6 8/30 0 4.4 8.4 9.0 14/30
MDG-a_30 114229 0 12.8 16.3 10.5 14/30 0 8.1 10.5 7.2 14/30
MDG-a_31 114214 0 30.4 22.7 16.2 5/30 0 16.7 13.6 11.9 9/30
MDG-a_32 114214 0 28.5 19.9 10.4 4/30 0 23.7 17.1 6.0 3/30
MDG-a_33 114233 0 6.1 10.5 12.8 15/30 0 2.0 5.6 8.8 23/30
MDG-a_34 114216 0 25.4 43.8 11.6 15/30 0 2.4 7.0 6.6 26/30
MDG-a_35 114240 0 1.6 2.2 12.2 9/30 0 1.6 2.4 10.7 11/30
MDG-a_36 114335 0 7.5 11.7 12.4 19/30 0 5.7 9.5 10.5 21/30
MDG-a_37 114255 0 4.2 8.2 12.2 18/30 0 5.2 8.6 7.8 18/30
MDG-a_38 114408 0 1.2 3.1 10.6 19/30 0 0.5 1.1 7.6 25/30
MDG-a_39 114201 0 2.2 6.0 9.7 26/30 0 2.0 6.0 4.9 27/30
MDG-a_40 114349 0 28.1 37.7 9.9 18/30 0 23.0 31.5 9.1 19/30

wins 10 5.5 5.5 1 6.5 10 14.5 14.5 19 13.5

The fprev values were obtained by several algorithms including LTS-EDA [Wang et al., 2012] and MAMDP
[Wu and Hao, 2013].

best-known solutions found by ITS. Compared to OBMA0, OBMA obtains 2 improved best solutions for
MDG-c_17 and MDG-c_19. Moreover, OBMA performs significantly better than OBMA0 in terms of the
average best solution (19 > CV 20

0.05 = 15), success rate (15 >= CV 20
0.05 = 15) and standard deviation

(19 > CV 20
0.05 = 15) at a significance level of 0.05.

Table 4.6 reports the results of OBMA0 and OBMA for the 10 instances of the b2500 data set. From
this table, we observe that both algorithms reach the best-known values for all the instances. Meanwhile,
the average value of best objective values of OBMA is better than that of OBMA0, and the difference of this
measure between these two algorithms is weakly significant (8.5 < CV 10

0.05 = 9). Even though there is no
significant difference on the success rate, OBMA obtains a higher success rate for 8.5 instances, while the
reverse is true only for 1.5 instances. In addition, OBMA achieves these results more steadily than OBMA0,
wining 8.5 out of 10 instances in terms of the standard deviation.

Table 4.7 displays the results of OBMA0 and OBMA for the 10 largest instances (p3000 and p5000
instances). For these very large instances, OBMA matches all the best-known objective values without
exception while OBMA0 fails to do so for 4 instances. In addition, OBMA performs significantly better
than OBMA0, and wins 10, 9.5 instances in terms of the average best objective value and success rate,
respectively. The performance of OBMA is also more stable than OBMA0 by wining 8 out of 10 instances
in term of the standard deviation.

Finally, Table 4.8 provides a summary of the comparative results for the five data sets between OBMA
(OBL enhanced memetic algorithm) and OBMA0 (memetic algorithm without OBL). As we observe from
the table, OBMA achieves a better performance than OBMA0, i.e., achieving improved solutions for 6 in-
stances and matching the best solutions on the remaining 75 instances. In addition, OBMA also achieves
a better performance in terms of the average best value, the success rate and the standard deviation, win-
ing OBMA0 on most benchmark instances. Therefore, we conclude that opposition-based learning can
beneficially enhance the popular memetic search framework to achieve an improved performance.



4.4. COMPUTATIONAL RESULTS 69

Table 4.4: Comparison of the results obtained by OBMA0 and OBMA on the data set MDG-b.

OBMA0 OBMA

Instance fprev ∆fbest ∆favg σ tbest #succ ∆fbest ∆favg σ tbest #succ

MDG-b_21 11299895 0 0.2 0.0 378.6 15/15 0 0.2 0.0 325.1 15/15
MDG-b_22 11286776 -5622 -5622.2 0.0 336.5 15/15 -5622 -5622.2 0.0 380.8 15/15
MDG-b_23 11299941 0 0.5 0.0 300.5 15/15 0 0.5 0.0 283.4 15/15
MDG-b_24 11290874 -245 -229.1 61.2 345.5 14/15 -245 -220.5 67.2 323.4 13/15
MDG-b_25 11296067 -1960 -1959.9 0.0 271.2 15/15 -1960 -1959.9 0.0 313.9 15/15
MDG-b_26 11292296 -6134 -5216.0 1836.9 276.8 12/15 -6134 -6134.4 0.0 336.0 15/15
MDG-b_27 11305677 0 0.2 0.0 330.0 15/15 0 0.2 0.0 256.0 15/15
MDG-b_28 11279916 -2995 -2994.6 0.5 329.5 10/15 -2995 -2994.7 0.4 351.1 12/15
MDG-b_29 11297188 -151 -151.5 0.0 323.0 15/15 -151 -151.5 0.0 288.3 15/15
MDG-b_30 11296415 -1650 -1649.6 0.0 311.2 15/15 -1650 -1649.6 0.0 274.9 15/15
MDG-b_31 11288901 0 -0.2 0.0 313.9 15/15 0 -0.2 0.0 308.0 15/15
MDG-b_32 11279820 -3719 -3669.3 25.0 177.5 3/15 -3719 -3694.3 30.6 283.0 9/15
MDG-b_33 11296298 -1740 -1381.7 216.1 112.2 4/15 -1740 -1675.0 166.1 277.5 13/15
MDG-b_34 11281245 -9238 -8881.8 435.8 325.7 9/15 -9238 -9237.6 0.0 355.4 15/15
MDG-b_35 11307424 0 -0.1 0.0 343.6 15/15 0 -0.1 0.0 331.0 15/15
MDG-b_36 11289469 -13423 -13174.5 929.8 251.7 14/15 -13423 -13423.0 0.0 329.4 15/15
MDG-b_37 11290545 -5229 -5099.5 329.7 217.5 13/15 -5229 -5228.8 0.0 291.2 15/15
MDG-b_38 11288571 -7965 -7964.5 0.0 242.5 15/15 -7965 -7964.5 0.0 297.6 15/15
MDG-b_39 11295054 0 -0.2 0.0 374.5 15/15 0 -0.2 0.0 289.7 15/15
MDG-b_40 11307105 -2058 -2057.6 0.0 301.1 15/15 -2058 -2057.6 0.0 266.5 15/15

wins 10 6.5 8 10 7 10 13.5 12 10 13

The best-known values fprev were obtained by a scatter search algorithm (G_SS) [Gallego et al., 2009] with a time limit of
2 hours, which are available at http://www.optsicom.es/mdp/.

4.4.4 Comparison with state-of-the-art algorithms

We turn now our attention to a comparison of our OBMA algorithm with state-of-the-art algorithms, in-
cluding iterated tabu search (ITS) [Palubeckis, 2007], scatter search (G_SS) [Gallego et al., 2009], variable
neighborhood search (VNS) [Brimberg et al., 2009], fine-tuning iterated greedy algorithm (TIG) [Lozano
et al., 2011], tabu search with estimation of distribution algorithm (LTS-EDA) [Wang et al., 2012] and
memetic algorithm (MAMDP) [Wu and Hao, 2013]. We omit the tabu search/memetic algorithm (TS/MA)
[Wang et al., 2014] and the memetic self-adaptive evolution strategies (MSES) [de Freitas et al., 2014] since
TS/MA performs quite similar to MAMDP of [Wu and Hao, 2013] while MSES does not report detailed
results. Among these reference algorithm, only the program of the memetic algorithm (MAMDP) [Wu and
Hao, 2013] is available. For our comparative study, we report the results of the MAMDP algorithm by
running its code on our platform with its default parameter values reported in [Wu and Hao, 2013]. For
the other reference algorithms, we use their results presented in the corresponding references. The detailed
comparative results in terms of ∆fbest and ∆favg are reported in Tables 4.9 and 4.10.

Table 4.9 presents the comparative results on the 40 instances of the data sets MDG-a, b2500, p3000-
p5000 for which the detailed results of reference algorithms are available. At the last row of the table, we
also indicate the number of wining instances relative to our OBMA algorithm both in terms of the best
objective value and average objective value (recall that a tied result counts 0.5 for each algorithm). From
this table, we observe that OBMA dominates all the reference algorithms. Importantly, OBMA is the only
algorithm which obtains the best-known values and the largest average objective values for all 40 instances.

Table 4.10 displays the comparative results on the data sets MDG-b and MDG-c. The best-known ob-
jective values fprev for the MDG-b instances are obtained by G_SS [Gallego et al., 2009] while the fprev
values of the MDG-c instances are obtained by ITS and VNS [Martí et al., 2013], both with a time limit
of 2 hours. No result is available for the TIG and LTS-EDA algorithms for these data sets. The results of
our OBMA algorithm (and MAMDP) are obtained with a time limit of 10 minutes. Table 4.10 indicates

http://www.optsicom.es/mdp/


70 CHAPTER 4. OPPOSITION-BASED MEMETIC SEARCH FOR MDP

Table 4.5: Comparison of the results obtained by OBMA0 and OBMA on the data set MDG-c.

OBMA0 OBMA

Instance fprev ∆fbest ∆favg σ tbest #succ ∆fbest ∆favg σ tbest #succ

MDG-c_1 24924685⋆ -1659 -493.5 852.7 165.5 5/15 -1659 -1262.4 749.0 251.3 11/15
MDG-c_2 24909199⋆ -3347 140.3 2514.6 94.6 4/15 -3347 -3346.3 2.5 286.6 14/15
MDG-c_3 24900820∗ -4398 -299.2 4040.7 22.5 7/15 -4398 -2805.2 2717.9 239.4 11/15
MDG-c_4 24904964⋆ -4746 -1890.5 1999.4 106.5 4/15 -4746 -3917.2 1657.6 276.2 12/15
MDG-c_5 24899703∗ 3999 4767.8 1025.0 8.7 9/15 3999 4047.3 180.6 212.5 14/15
MDG-c_6 43465087∗ 20139 22534.4 2512.3 77.4 6/15 20139 21054.5 1190.4 290.8 6/15
MDG-c_7 43477267⋆ 0 277.5 1038.2 6.1 14/15 0 126.9 314.7 111.7 12/15
MDG-c_8 43458007⋆ -7565 -4644.3 1833.2 58.9 3/15 -7565 -7546.7 68.6 163.6 14/15
MDG-c_9 43448137⋆ 0 142.2 116.1 82.1 6/15 0 0.0 0.0 72.5 15/15
MDG-c_10 43476251∗ 10690 10690.0 0.0 27.1 15/15 10690 10690.0 0.0 115.1 15/15
MDG-c_11 67009114⋆ -12018 -11345.3 2110.0 90.8 13/15 -12018 -11776.3 522.3 335.0 10/15
MDG-c_12 67021888∗ 7718 12209.1 5502.4 9.3 7/15 7718 10179.7 3250.5 302.8 9/15
MDG-c_13 67024373⋆ 0 2082.0 2944.8 106.4 10/15 0 839.4 2140.1 380.1 13/15
MDG-c_14 67024804⋆ -5386 -4667.9 1830.9 11.3 13/15 -5386 -5118.7 1000.3 276.3 14/15
MDG-c_15 67056334⋆ 0 1846.5 1353.5 31.0 5/15 0 1021.2 1122.0 269.0 5/15
MDG-c_16 95637733⋆ -1196 5861.5 8193.7 318.8 2/15 -1196 -1116.3 298.3 270.8 14/15
MDG-c_17 95645826∗ 75241 86848.9 8727.7 291.8 2/15 74713 74981.7 373.3 312.8 8/15
MDG-c_18 95629207∗ 97066 100609.9 3526.8 90.5 7/15 97066 99767.0 2972.8 292.1 8/15
MDG-c_19 95633549∗ 35131 39027.5 5420.3 236.5 7/15 34385 35121.3 816.2 343.7 4/15
MDG-c_20 95643586∗ 59104 59133.2 109.3 111.0 14/15 59104 59133.2 109.3 299.9 14/15

wins 9 1 1 18 5 11 19 19 2 15
∗ Results are obtained by ITS with 2 hours CPU time [Martí et al., 2013].
⋆ Results are obtained by VNS with 2 hours CPU time [Martí et al., 2013].

Table 4.6: Comparison of the results obtained by OBMA0 and OBMA on the data set b2500.

OBMA0 OBMA

Instance fprev ∆fbest ∆favg σ tbest #succ ∆fbest ∆favg σ tbest #succ

b2500-1 1153068 0 193.1 429.2 154.1 23/30 0 0.0 0.0 100.3 30/30
b2500-2 1129310 0 106.0 163.1 149.2 21/30 0 37.9 73.2 147.4 22/30
b2500-3 1115538 0 303.2 347.2 105.5 17/30 0 0.4 2.2 95.3 29/30
b2500-4 1147840 0 549.7 461.9 191.2 8/30 0 65.8 118.5 98.9 20/30
b2500-5 1144756 0 50.9 129.3 117.6 24/30 0 5.3 28.4 86.3 29/30
b2500-6 1133572 0 88.9 210.9 89.4 22/30 0 0.0 0.0 66.8 30/30
b2500-7 1149064 0 106.2 111.9 114.8 13/30 0 14.1 31.0 128.3 23/30
b2500-8 1142762 0 113.7 349.0 98.4 22/30 0 1.5 5.5 105.4 28/30
b2500-9 1138866 0 0.2 1.1 135.7 29/30 0 1.3 2.9 139.8 25/30
b2500-10 1153936 0 0.0 0.0 81.4 30/30 0 0.0 0.0 107.5 30/30

wins 5 1.5 1.5 4 1.5 5 8.5 8.5 6 8.5

The fprev values were compiled from the results reported by ITS [Palubeckis, 2007], LTS-EDA [Wang et al., 2012]
and MAMDP [Wu and Hao, 2013].

that both OBMA and MAMDP improve the best-known results for the majority of the 40 instances. More-
over, compared to MAMDP, our OBMA algorithm obtains an improved best objective value for 1 MDG-b
instance and 3 MDG-c instances, while matching the best objective values for the remaining instances. Fi-
nally, OBMA dominates MAMDP in terms of the average objective value, wining 18 out of the 20 MDG-b
instances and all 20 MDG-c instances.

To summarize, compared to the state-of-the-art results, our OBMA algorithm finds improved best-
known solutions (new lower bounds) for 22 out of the 80 benchmark instances, matches the best-known
solutions for 50 instances, but fails to attain the best-known results for 8 instances. Such a performance in-



4.5. EXPERIMENTAL ANALYSIS 71

Table 4.7: Comparison of the results obtained by OBMA0 and OBMA on the data sets p3000 and p5000.

OBMA0 OBMA

Instance fprev ∆fbest ∆favg σ tbest #succ ∆fbest ∆favg σ tbest #succ

p3000_1 6502330 0 84.1 28.0 172.6 1/15 0 24.4 35.8 275.6 9/15
p3000_2 18272568 0 152.8 151.1 151.5 7/15 0 0.0 0.0 89.3 15/15
p3000_3 29867138 0 544.5 344.2 244.0 4/15 0 0.0 0.0 26.2 15/15
p3000_4 46915044 0 715.0 531.0 250.1 2/15 0 1.2 19.3 336.9 14/15
p3000_5 58095467 0 209.9 198.2 180.0 6/15 0 0.0 0.0 65.4 15/15
p5000_1 17509369 0 168.9 176.5 518.7 7/15 0 128.2 181.8 1053.9 13/15
p5000_2 50103092 70 819.1 494.3 242.5 1/15 0 22.8 8.0 370.8 1/15
p5000_3 82040316 176 3450.3 1671.3 333.1 1/15 0 209.3 141.3 217.1 2/15
p5000_4 129413710 598 1460.1 661.6 1019.1 1/15 0 97.8 122.1 625.7 7/15
p5000_5 160598156 344 669.6 323.6 1348.7 1/15 0 102.9 52.3 843.2 5/15

wins 3 0 2 4 0.5 7 10 8 6 9.5

The best-known values fprev were extracted from [Wu and Hao, 2013].

Table 4.8: A summary of win statistical results (OBMA0 | OBMA) on all data sets.

Data set ∆fbest ∆favg σ tbest #succ

MDG-a 10 | 10 5.5 | 14.5 5.5 | 14.5 1 | 19 6.5 | 13.5
MDG-b 10 | 10 6.5 | 13.5 8 | 12 10 | 10 7 | 13
MDG-c 9 | 11 1 | 19 1 | 19 18 | 2 5 | 15
b2500 5 | 5 1.5 | 8.5 1.5 | 8.5 4 | 6 1.5 | 8.5
p3000-5000 3 | 7 0 | 10 2 | 8 4 | 6 0.5 | 9.5

dicates that the proposed algorithm competes favorably with state-of-the-art MDP algorithms and enriches
the existing solution arsenal for solving MDP.

4.5 Experimental analysis

In this section, we perform additional experiments to gain some understanding of the proposed algorithm
including the parametric constrained neighborhood, the rank-based quality-and-distance pool management
and the benefit of OBL for population diversity.

4.5.1 Study of the parametric constrained neighborhood

Our tabu search procedure relies on the parametric constrained neighborhood whose size is controlled
by the parameter ρ. To highlight the effect of this parameter and determine a proper value, we ran the tabu
search procedure to solve the first 10 instances of MDG-a (i.e., MDG-a_21- MDG-a_30) with ρ ∈ [1, 10].
Each instance was independently solved until the number of iterations reached MaxIter. Figure 4.4 shows
the average objective values achieved (left) and the average CPU times consumed (right) by tabu search on
these 10 instances.

As we see from Figure 4.4 (left), the average objective value has a drastic rise when we increase ρ from
1 to 3. Then, it slowly increases if we continue to increase ρ to 10. On Figure 4.4 (right), the average CPU
time of tabu search needed to finish MaxIter iterations continuously increases when ρ increases from 1 to
10. As ρ increases, the size of the constrained neighborhood also increases, thus the algorithm needs more
time to examine the candidate solutions. To make a compromise between neighborhood size and solution
quality, we set the scale coefficient ρ to 4 in our experiments.



72 CHAPTER 4. OPPOSITION-BASED MEMETIC SEARCH FOR MDP

Table 4.9: Comparison of OBMA with other algorithms on the data sets MDG-a, b2500, p3000 and p5000.

ITS VNS TIG LTS-EDA MAMDP OBMA

Instance fprev ∆fbest ∆favg ∆fbest ∆favg ∆fbest ∆favg ∆fbest ∆favg ∆fbest ∆favg ∆fbest ∆favg

MDG-a_21 114271 65 209.9 48 150.6 48 101.6 5 60.7 0 8.1 0 5.2
MDG-a_22 114327 29 262.3 0 168.9 0 69.9 0 89.9 0 8.8 0 0.1
MDG-a_23 114195 69 201.4 19 110.8 5 117.8 0 99.0 0 15.2 0 15.2
MDG-a_24 114093 22 200.5 70 188.1 58 141.9 0 79.9 0 15.7 0 11.2
MDG-a_25 114196 95 273.3 87 184.1 99 194.7 51 134.5 0 42.1 0 41.5
MDG-a_26 114265 41 168.2 30 99.3 9 96.2 0 40.2 0 10.8 0 10.2
MDG-a_27 114361 12 167.5 0 56.3 0 71.3 0 18.2 0 0.0 0 0.2
MDG-a_28 114327 25 256.4 0 163.3 0 193.6 0 159.1 0 20.9 0 18.9
MDG-a_29 114199 9 139.8 16 78.5 16 80.4 0 71.0 0 7.6 0 4.4
MDG-a_30 114229 24 204.9 7 139.3 35 121.4 0 56.2 0 9.3 0 8.1
MDG-a_31 114214 74 237.8 42 145.1 59 139.6 3 69.9 0 17.8 0 16.7
MDG-a_32 114214 55 249.5 95 143.3 88 156.0 15 84.9 0 26.8 0 23.7
MDG-a_33 114233 93 279.9 22 168.1 42 167.4 6 85.3 0 3.6 0 2.0
MDG-a_34 114216 92 248.5 117 194.3 64 202.8 0 81.0 0 3.4 0 2.4
MDG-a_35 114240 11 117.5 1 62.9 6 80.5 0 22.0 0 1.2 0 1.6
MDG-a_36 114335 11 225.4 42 215.4 35 167.9 0 36.5 0 8.6 0 5.7
MDG-a_37 114255 56 217.5 0 170.0 18 144.5 6 57.1 0 6.5 0 5.2
MDG-a_38 114408 46 170.0 0 57.1 2 117.4 2 22.8 0 0.7 0 0.5
MDG-a_39 114201 34 243.2 0 124.6 0 144.4 0 35.9 0 3.4 0 2.0
MDG-a_40 114349 151 270.7 65 159.4 45 187.2 0 95.4 0 24.1 0 23.0
b2500-1 1153068 624 3677.3 96 1911.9 42 1960.3 0 369.2 0 72.1 0 0.0
b2500-2 1129310 128 1855.3 88 1034.3 1096 1958.5 154 454.5 0 143.7 0 37.9
b2500-3 1115538 316 3281.9 332 1503.7 34 2647.9 0 290.4 0 184.5 0 0.4
b2500-4 1147840 870 2547.9 436 1521.1 910 1937.1 0 461.7 0 152.3 0 65.8
b2500-5 1144756 356 1800.3 0 749.4 674 1655.9 0 286.1 0 10.5 0 5.3
b2500-6 1133572 250 2173.5 0 1283.5 964 1807.6 80 218.0 0 80.5 0 0.0
b2500-7 1149064 306 1512.6 116 775.5 76 1338.7 44 264.6 0 45.0 0 14.1
b2500-8 1142762 0 2467.7 96 862.5 588 1421.5 22 146.5 0 1.7 0 1.5
b2500-9 1138866 642 2944.7 54 837.1 658 1020.6 6 206.3 0 3.7 0 1.3
b2500-10 1153936 598 2024.6 278 1069.4 448 1808.7 94 305.3 0 0.0 0 0.0
p3000-1 6502330 466 1487.5 273 909.8 136 714.7 96 294.1 0 76.7 0 24.4
p3000-2 18272568 0 1321.6 0 924.2 0 991.1 140 387.0 0 146.1 0 0.0
p3000-3 29867138 1442 2214.7 328 963.5 820 1166.1 0 304.3 0 527.9 0 0.0
p3000-4 46915044 1311 2243.9 254 1068.5 426 2482.2 130 317.1 0 399.5 0 1.2
p3000-5 58095467 423 1521.6 0 663.0 278 1353.3 0 370.4 0 210.7 0 0.0
p5000-1 17509369 2200 3564.9 1002 1971.3 1154 2545.8 191 571.0 0 165.1 0 128.2
p5000-2 50103092 2931 4807.8 1499 2640.0 549 2532.7 547 913.8 21 475.5 0 22.8
p5000-3 82040316 5452 8242.3 1914 3694.4 2156 6007.1 704 1458.5 176 1419.0 0 209.3
p5000-4 129413710 1630 5076.9 1513 2965.9 1696 3874.8 858 1275.2 279 800.9 0 97.8
p5000-5 160598156 2057 4433.9 1191 2278.3 1289 2128.9 579 1017.9 136 411.9 0 102.9

wins 1 0 5 0 2.5 0 9.5 0 18 2

The fprev values were compiled from the results reported by the reference methods [Palubeckis, 2007; Brimberg et al., 2009; Lozano et al., 2011; Wang et al., 2012;
Wu and Hao, 2013]. The results of MAMDP are those we obtained by running its program on our computer, which are slightly different from the results reported
in [Wu and Hao, 2013] due to the stochastic nature of the algorithm.

4.5.2 Effectiveness of the pool updating strategy
To validate the effectiveness of the Rank-Based Quality-and-Distance (RBQD) pool updating strategy,

we compare it with the General Quality-and-Distance (GQD) pool updating strategy used in [Wu and
Hao, 2013]. GQD evaluates each individual by a weighted sum of the quality and the distance to the
population. In this experiment, we compared the performance of the OBMA algorithm under these two pool
updating strategies (the two OBMA variants are called OBMARBQD and OBMAGQD). The experiment was
performed on the largest data set, i.e., p3000 and p5000. We performed 20 runs of each algorithm to solve
each instance, and recorded the best objective value (fbest), the difference between the average objective
value and the best objective value (∆favg), the standard deviation of objective value over each run (σ), the
average time of one run (tavg), the average time over the runs which attained fbest (tbest), and the success
rate (#succ).

Table 4.11 shows the comparison of the results obtained by OBMA under the rank-based quality-and-
distance strategy (OBMARBQD) and the general quality-and-distance strategy (OBMAGQD). From the
table, we observe that OBMARBQD achieves the same best objective values for all tested instances compared
with OBMAGQD. However, for the five metrics, OBMARBQD performs better than OBMAGQD for much



4.5. EXPERIMENTAL ANALYSIS 73

Table 4.10: Comparison of OBMA with MAMDP on the data sets MDG-b and MDG-c, the best-known
results are obtained by G_SS, ITS and VNS.

MAMDP OBMA MAMDP OBMA

Instance fprev ∆fbest ∆favg ∆fbest ∆favg Instance fprev ∆fbest ∆favg ∆fbest ∆favg

MDG-b_21 11299895 0 225.8 0 0.2 MDG-c_1 24924685 -1659 3481.7 -1659 -1262.4
MDG-b_22 11286776 -5622 -3472.1 -5622 -5622.2 MDG-c_2 24909199 0 4938.7 -3347 -3346.3
MDG-b_23 11299941 0 0.5 0 0.5 MDG-c_3 24900820 -4398 5206.1 -4398 -2805.2
MDG-b_24 11290874 -245 226.0 -245 -220.5 MDG-c_4 24904964 -4746 -411.2 -4746 -3917.2
MDG-b_25 11296067 -1960 -1888.9 -1960 -1959.9 MDG-c_5 24899703 3999 7500.3 3999 4047.3
MDG-b_26 11292296 -6134 -2530.6 -6134 -6134.4 MDG-c_6 43465087 20139 25023.7 20139 21054.5
MDG-b_27 11305677 0 0.2 0 0.2 MDG-c_7 43477267 0 1020.8 0 126.9
MDG-b_28 11279916 -2994 -2634.6 -2995 -2994.7 MDG-c_8 43458007 -4568 -1329.9 -7565 -7546.7
MDG-b_29 11297188 -151 451.8 -151 -151.5 MDG-c_9 43448137 237 1207.3 0 0.0
MDG-b_30 11296415 -1650 -1649.6 -1650 -1649.6 MDG-c_10 43476251 10690 11060.9 10690 10690.0
MDG-b_31 11288901 0 375.7 0 -0.2 MDG-c_11 67009114 -12018 -6942.7 -12018 -11776.3
MDG-b_32 11279820 -3719 -3632.3 -3719 -3694.3 MDG-c_12 67021888 7718 17470.0 7718 10179.7
MDG-b_33 11296298 -1740 -878.7 -1740 -1675.0 MDG-c_13 67024373 0 6673.1 0 839.4
MDG-b_34 11281245 -9238 -8191.3 -9238 -9237.6 MDG-c_14 67024804 -5386 -1050.9 -5386 -5118.7
MDG-b_35 11307424 0 -0.1 0 -0.1 MDG-c_15 67056334 0 3716.2 0 1021.2
MDG-b_36 11289469 -13423 -10792.5 -13423 -13423.0 MDG-c_16 95637733 -1196 1495.2 -1196 -1116.3
MDG-b_37 11290545 -5229 -4372.1 -5229 -5228.8 MDG-c_17 95645826 74713 79061.1 74713 74981.7
MDG-b_38 11288571 -7965 -5896.0 -7965 -7964.5 MDG-c_18 95629207 97066 106806.6 97066 99767.0
MDG-b_39 11295054 0 472.4 0 -0.2 MDG-c_19 95633549 34385 36189.1 34385 35121.3
MDG-b_40 11307105 -2058 -517.5 -2058 -2057.6 MDG-c_20 95643586 59104 61961.2 59104 59133.2

wins 9.5 2 10.5 18 wins 8.5 0 11.5 20

The fprev values for the MDG-b instances are reported by G_SS [Gallego et al., 2009], while the fprev values for the MDG-c instances are from [Martí
et al., 2013] with a time limit of 2 hours, all available at http://www.optsicom.es/mdp/. The results of MAMDP were obtained by running the
program on our computer (results of MAMDP for these instances are not reported in [Wu and Hao, 2013]).

 113250

 113450

 113650

 113850

 114050

 114250

 1  2  3  4  5  6  7  8  9  10

av
er

ag
e 

ob
je

ct
iv

e 
on

 1
0 

in
st

an
ce

s

scale coefficient

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1  2  3  4  5  6  7  8  9  10

av
er

ag
e 

cp
u 

tim
e 

on
 1

0 
in

st
an

ce
s 

(in
 s

ec
on

ds
)

scale coefficient

Figure 4.4: Average objective values and average CPU times spent on 10 MDG-a instances obtained by
executing TS with different values of the scale coefficient ρ.

more instances, and respectively winning 8, 8, 6, 6 and 8 out of 10 tested instances. These results confirm
the effectiveness of our proposed rank-based quality-and-distance pool updating strategy.

http://www.optsicom.es/mdp/


74 CHAPTER 4. OPPOSITION-BASED MEMETIC SEARCH FOR MDP

Table 4.11: Comparison of the results obtained by OBMA under the rank-based quality-and-distance
pool updating strategy (OBMARBQD) and the general quality-and-distance (GQD) pool updating strategy
(OBMAGQD).

OBMARBQD OBMAGQD

Instance fbest ∆favg σ tavg tbest #succ fbest ∆favg σ tavg tbest #succ

p3000_1 6502330 -23.0 35.3 176.9 118.8 14/20 6502330 -27.3 37.4 158.3 81.4 13/20
p3000_2 18272568 0.0 0.0 75.8 75.8 20/20 18272568 -10.5 45.8 54.7 57.1 19/20
p3000_3 29867138 0.0 0.0 37.7 37.7 20/20 29867138 0.0 0.0 55.4 55.4 20/20
p3000_4 46915044 0.0 0.0 113.7 113.7 20/20 46915044 -0.9 3.9 147.5 146.4 19/20
p3000_5 58095467 0.0 0.0 22.9 22.9 20/20 58095467 0.0 0.0 92.8 92.8 20/20
p5000_1 17509369 -13.8 60.4 621.9 624.3 19/20 17509369 -27.8 83.1 674.3 646.1 17/20
p5000_2 50103071 -23.4 4.8 561.1 594.3 16/20 50103071 -26.4 6.0 584.3 464.0 11/20
p5000_3 82040316 -305.8 304.2 791.1 527.5 01/20 82040316 -241.0 176.8 642.2 718.4 01/20
p5000_4 129413710 -116.4 143.9 756.5 802.8 12/20 129413710 -174.3 176.2 662.5 705.2 09/20
p5000_5 160598156 -161.8 99.4 511.7 471.6 02/20 160598156 -182.6 112.7 745.5 1081.3 02/20

wins 5 8 8 6 6 8 5 2 2 4 4 2

4.5.3 Opposition-based learning over population diversity

In this section, we further verify the benefit brought by OBL in maintaining the population diversity
of the OBMA algorithm. To assess the diversity of a population, a suitable metric is necessary. In this
experiment, we resort to minimum distance and average distance of individuals in the population to measure
the population diversity. The minimum distance is defined as the minimum distance between any two
individuals in the population, i.e., MD = mini̸=j∈{1,2,...,p}D(Si, Sj). Correspondingly, the AD is the
average distance between all individuals in the population, as defined by Equation (4.11).

Using the data sets MDG-a and b2500, we compared the diversity of the population with or without
OBL. The population initialization (PI0) procedure without OBL first generates two random solutions,
which are then respectively improved by the tabu search procedure. The best of two improved solutions
is inserted into the population if it does not duplicate any existing individual in the population. We re-
peat this process until p different solutions are generated. In contrast, the population initialization with
OBL (PIOBL) is the procedure described in Section 4.3.3, which considers both a random solution and its
corresponding opposite solution. We solved each instance 20 times and recorded the minimum distance
and average distance of each population initialization procedure on each instance. The comparative results
of the population constructed with or without OBL are shown in Figure 4.5, where the X-axis shows the
instances in each benchmark and Y-axis indicates the average distance and minimum distance.

From Figure 4.5, we observe that the population built by PIOBL has a relatively larger average distance
and minimum distance. This is particularly true for all instances of the MDG-a data set except for MDG-
a_31. Also, the population produced by PIOBL has a larger minimum distance than that of PI0 for 18 out
of 20 instances of the MDG-a data set. Equal or better results are found for the b2500 data set, since the
population generated by PIOBL dominates the population produced by PI0 in terms of the average and
minimum distances. This experiment shows that OBL helps the OBMA algorithm to start its search with
a population of high diversity, which is maintained by the rank-based quality-and-distance strategy during
the search.

4.6 Chapter conclusion

In this chapter, we proposed an Opposition-Based Memetic Algorithm (OBMA) which uses opposition-
based learning to improve a memetic algorithm for solving Maximum Diversity Problem (MDP). The
OBMA algorithm employs Opposition-Based Learning (OBL) to reinforce population diversity and im-



4.6. CHAPTER CONCLUSION 75

 0.4

 0.5

 0.6

 0.7

 0.8

 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20

av
er

ag
e 

di
st

an
ce

MDG-a

with OBL
without OBL

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20

m
in

im
um

 d
is

ta
nc

e

MDG-a

with OBL
without OBL

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 1  2  3  4  5  6  7  8  9  10

av
er

ag
e 

di
st

an
ce

b2500

with OBL
without OBL

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 1  2  3  4  5  6  7  8  9  10

m
in

im
um

 d
is

ta
nc

e

b2500

with OBL
without OBL

Figure 4.5: Comparative results of the populations built by population initialization with OBL (PIOBL) or
without OBL (PI0).

prove evolutionary search. OBMA distinguishes itself from existing memetic algorithms by three aspects:
a double trajectory search procedure which simultaneously both a candidate solution and a corresponding
opposite solution, a parametric constrained neighborhood for effective local optimization, and a rank-based
quality-and-distance pool updating strategy.

Extensive comparative experiments on 80 large benchmark instances (with 2000 to 5000 items) from
the literature have demonstrated the competitiveness of the OBMA algorithm. OBMA matches the best-
known results for most of instances and in particular finds improved best results (new lower bounds) for 22
instances which are useful for the assessment of other MDP algorithms. Our experimental analysis has also
confirmed that integrating OBL into the memetic search framework does improve the search efficiency of
the classical memetic search.





5
Frequent Pattern-based Search for Quadratic
Assignment Problem

In this chapter, we present a hybrid approach called frequent pattern based search that combines data
mining and optimization. The proposed method uses a data mining procedure to mine frequent patterns
from a set of high-quality solutions collected from previous search, and the mined frequent patterns are
then employed to build starting solutions that are improved by an optimization procedure. After presenting
the general approach and its composing ingredients, we illustrate its application to solve the well-known and
challenging quadratic assignment problem. Computational results on the 21 hardest benchmark instances
show that the proposed approach competes favorably with state-of-the-art algorithms both in terms of solu-
tion quality and computing time. The context of this chapter is based on a article submitted for publication
[Zhou et al., 2017d].

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Frequent pattern mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Basic concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.2 Representation of the frequent patterns . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.3 Mining and heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Frequent pattern-based search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.1 General scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.2 Elite set initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.3 Frequent pattern mining procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.4 Optimization procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.5 Construction based on mined pattern . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.6 Elite set management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 FPBS applied to the quadratic assignment problem . . . . . . . . . . . . . . . . . . . 85
5.4.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.2 FPBS for QAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5.1 Benchmark instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5.2 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5.3 Comparison of FPBS-QAP with BLS and BMA . . . . . . . . . . . . . . . . . . . 92

77



78 CHAPTER 5. FREQUENT PATTERN-BASED SEARCH FOR QAP

5.5.4 Comparison with state-of-the-art algorithms . . . . . . . . . . . . . . . . . . . . . 93
5.6 Experimental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.6.1 Rationale behind the solution construction based on mined patterns . . . . . . . . 95
5.6.2 Effectiveness of the solution construction based on frequent pattern . . . . . . . . 96
5.6.3 Impact of the number of the largest patterns m . . . . . . . . . . . . . . . . . . . 97

5.7 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



5.1. INTRODUCTION 79

5.1 Introduction

Much effort has been made to use machine learning techniques to enhance the performance of heuristic
optimization for solving hard combinatorial optimization problems [Samorani and Laguna, 2012; Wauters
et al., 2013; Wauters et al., 2015; Zhou et al., 2016; Zhou and Hao, 2017b; Benlic et al., 2017]. Heuristic
search algorithms can greatly benefit from machine learning techniques. Patterns extracted by machine
learning techniques can be employed to refine the operations of the heuristic algorithm and improve its
performance.

In this chapter, we investigate a hybrid approach called Frequent Pattern Based Search (FPBS) that
combines data mining techniques and optimization methods. Basically, FPBS employs a data mining pro-
cedure to mine frequent patterns that frequently occur in high-quality (or elite) solutions collected from
previous search and then uses the mined frequent patterns to construct new starting solutions that are fur-
ther improved by an optimization method. FPBS also integrates a procedure to manage the discovered elite
solutions. The key intuition behind the proposed approach is that a good pattern extracted from high-quality
solutions identifies a particularly promising region in the search space that is worthy of an intensive exam-
ination, the latter being ensured by a dedicated optimization procedure. By using multiple mined patterns
combined with an effective optimization procedure, FPBS can achieve a suitable balance between search
exploration and exploitation that is critical for a high performance of the whole search process.

To verify the viability of the proposed FPBS approach, we consider the well-known and highly chal-
lenging Quadratic Assignment Problem (QAP) as a case study. Besides its popularity as one of the most
studied NP-hard combinatorial optimization problem, the QAP is also a relevant representative of many
permutation problems. To apply the general FPBS approach to solve the QAP, we specify the meanings of
patterns and frequent patterns, the frequent pattern mining algorithm and the dedicated optimization proce-
dure. We then assess the resulting algorithm on the set of the most difficult QAP benchmark instances from
QAPLIB. Our experimental results show that the proposed algorithm is highly competitive compared to the
state-of-the-art algorithms both in terms of solution quality and computing time.

The rest of the chapter is organized as follows. In the next section, we introduce the frequent pattern
mining technique. In Section 5.3, we present the proposed frequent pattern based search approach. Section
5.4 describe the QAP and an application of FPBS to QAP. Sections 5.5 and 5.6 are dedicated to show
computational results and some interesting experimental analysis, respectively. Finally, conclusions and
further work are provided in Section 5.7.

5.2 Frequent pattern mining

5.2.1 Basic concept

Frequent pattern mining was originally introduced for market basket analysis in the form of association
rules mining [Agrawal et al., 1993] . Frequent pattern mining is used to analyze customer buying habits by
identifying associations between different items that customers place in their “shopping baskets”. Also, the
concept of frequent itemset was first introduced for mining transaction database. LetD = {T1, T2, . . . , TN}
be a transaction database defined over a set of items I = {x1, x2, x3, . . . , xM}. A frequent itemset typically
refers to a set of items that often appear together in a transactional dataset [Han et al., 2011], e.g., milk
and bread, which are frequently bought together in grocery stores by many customers. We call X ⊆ I an
itemset. An itemset with l items is called a l-itemset. X is frequent if X occurs in the transaction databaseD
no lower than θ times, where θ is a user-defined minimum support threshold. X is called a frequent itemset.
Let FI denote the set of all frequent itemsets. X is called a maximal frequent itemset if it has no proper
superset that is frequent. The set of all maximal frequent itemsets is denoted by MFI . Apparently, all
subsets of a maximal frequent itemset are also frequent itemsets. Thus we have the following relationship:
MFI ⊆ FI .



80 CHAPTER 5. FREQUENT PATTERN-BASED SEARCH FOR QAP

In the original model of frequent pattern mining [Agrawal et al., 1993], the problem of finding associa-
tion rules has also been proposed. Association rules are closely related to frequent patterns in the sense that
association rules can be considered as a “second-stage” output, which are derived from the mined frequent
patterns. Given two itemsets U ⊆ I and V ⊆ I , the rule U ⇒ V is considered to be an association rule at
minimum support θ and minimum confidence η, when the following two conditions are satisfied simultane-
ously: the set U ∪ V is a frequent pattern for the minimum support θ and the ratio of the support of U ∪ V
over U is at least η.

5.2.2 Representation of the frequent patterns

The mined knowledge or useful information can be represented in the form of frequent patterns or
association rules. There are various types of patterns, such as itemsets, subsequences, and substructures.

To apply frequent pattern mining for solving combinatorial optimization problems, one of the main
challenges is to define a suitable pattern for the problem under consideration. In the following, we intro-
duce the definitions of frequent patterns (in terms of frequent itemsets) for two categories of representative
optimization problems.

— Frequent pattern for subset selection problems. Subset selection is basically to determine a subset
of specific elements among a set of given elements while optimizing an objective function defined
over the selected elements or unselected elements. Subset selection is encountered in many combina-
torial optimization problems, such as knapsack problems, clique problems, diversity problems (e.g.,
maximum diversity problem studied in chapter 4), maximum stable problems and critical node prob-
lems. A candidate solution to a subset selection problem is usually represented by a set of selected
elements. Since it is naturally to treat each element as an item, frequent pattern mining techniques
can be directly applied to subset selection problems. In this setting, a transaction corresponds to a
solution of the subset selection problem and a pattern can be conveniently defined as a set of elements
that frequently appear in some specific (e.g., high-quality) solutions. Thus, given a database D (i.e.,
a set of visited solutions), a frequent pattern p mined from D with support θ corresponds to a set of
elements that occur at least θ times in the database.

— Frequent pattern for permutation problems. Permutation problems cover another large range of
important combinatorial problems. Many classic NP-hard problems, such as the traveling sales-
man problem, the quadratic assignment problem, graph labeling problems and flow shop scheduling
problems, are typical permutation problems. Solutions of this category of problems are usually repre-
sented as permutations, while the practical meaning of a permutation depends on the problem under
consideration. To apply frequent pattern mining techniques to a permutation problem, a transfor-
mation between a permutation and an itemset is necessary. For instance, in the context of a vehicle
routing problem, a transformation was proposed to map a permutation (a sequence of visited cities)
into a set of pairs between any two consecutive elements (cities) in the permutation [Guerine et al.,
2016]. This transformation emphasizes the order between two consecutive elements. In Section 5.4.2,
we introduce a new transformation for QAP whose main idea is to decompose a permutation into a
set of element-position pairs, which focuses not only on the order between elements but also on the
relation between an element and its location. In these settings, a frequent pattern can be considered
as a set of pairs that frequently appear in some specific solutions.

5.2.3 Mining and heuristics

In this section, we present a brief literature review on hybridizing association rule mining (or frequent
pattern mining) techniques with metaheuristics. The reviewed studies are summarized in Table 5.1.

Greedy Randomized Adaptive Search Procedure (GRASP) was the first metaheuristic to be hybridized
with data mining techniques (i.e., association rule mining) [Ribeiro et al., 2004; Ribeiro et al., 2006].



5.2. FREQUENT PATTERN MINING 81

Table 5.1: Main work on hybridizing association rules mining techniques with metaheuristics for solving
combinatorial optimization problems.

Algorithm metaheuristic⋆ combinatorial optimization problem year

DM-GRASP [Ribeiro et al., 2004; Ribeiro et al., 2006] GRASP set packing problem 2004,2006
DM-GRASP [Santos et al., 2005] GRASP maximum diversity problem 2005
DM-GRASP [Santos et al., 2006b] GRASP server replication for reliable multicast problem 2006
GADMLS [Santos et al., 2006a] GA+LS single-vehicle routing problem 2006
DM-GRASP [Plastino et al., 2011] GRASP p-median problem 2011
HDMNS [Reddy et al., 2012] NS p-median problem 2012
DM-GRASP-PR [Barbalho et al., 2013] GRASP+PR 2-path network design problem 2013
MDM-GRASP [Plastino et al., 2014] GRASP server replication for reliable multicast problem 2014
DM-HH [Martins et al., 2014] PR+LS p-median problem 2014
VALS [Umetani, 2015] LS set partitioning problem 2015
GAAR [Raschip et al., 2015b] GA constrain satisfaction problem 2015
GAAR [Raschip et al., 2015a] GA weighted constrain satisfaction problem 2015
MDM-GRASP/VND [Guerine et al., 2016] GRASP+VND one-commodity pickup-and-delivery traveling salesman problem 2016
DM-ILS [Martins et al., 2016] ILS set covering with pairs problem 2016

⋆ Greedy Randomized Adaptive Search Procedure (GRASP), Genetic Algorithm (GA), Local Search (LS), Neighborhood Search (NS), Path-Relinking (PR),
Variable Neighborhood Descent (VND), and Iterated Local Search (ILS).

Denoted as DM-GRASP, this approach was originally designed to solve the set packing problem. DM-
GRASP organizes its search process into two sequential phases, and incorporates an association rule mining
procedure at the second phase. Specifically, high-quality solutions found in the first phase (GRASP) were
stored in an elite set, and then a data mining procedure is invoked to extract some patterns from the elite
set. At the second phase, a new solution is constructed based on a mined pattern instead of using the
greedy randomized construction procedure of GRASP. This approach has been applied to solve several
problems including the maximum diversity problem [Santos et al., 2005], the server replication for reliable
multicast problem [Santos et al., 2006b], and the p-median problem [Plastino et al., 2011]. A survey on
some significant applications of DM-GRASP can be found in [Santos et al., 2008]. An interesting extension
of DM-GRASP is to execute the data mining procedure multiple times instead of only once [Plastino et al.,
2014; Guerine et al., 2016; Martins et al., 2016]. Compared to DM-GRASP where the data mining call
occurs once at the midway of the whole search process, the multi-mining version performs the mining task
when the elite set stagnates. The same idea has been explored recently by hybridizing data mining and
GRASP enhanced with path-relinking [Barbalho et al., 2013] or variable neighborhood descent [Guerine et
al., 2016].

In addition to GRASP, data mining has also been hybridized with other metaheuristics like evolutionary
algorithms. To improve the performance of an evolutionary algorithm applied to an oil collecting vehicle
routing problem, a hybrid algorithm (GADMLS) combining genetic algorithm, local search and data mining
was proposed in [Santos et al., 2006a]. Another hybrid approach (GAAR) that uses a data mining module
to guide an evolutionary algorithm was presented in [Raschip et al., 2015b; Raschip et al., 2015a] to solve
the constraint satisfaction problem. Besides the standard components of a genetic algorithm, a data mining
module is added to find association rules (between variables and values) from an archive of best individuals
found in the previous generations.

Apart from GRASP and evolutionary algorithms, it has been shown that other heuristics can also benefit
from the incorporation of a data mining procedure. For example, a data mining approach was applied
to extract variable associations from previously solved instances for identifying promising pairs of flipping
variables in the large neighborhood search method, thus reducing the search space of local search algorithms
for the set partitioning problem [Umetani, 2015]. Another example is the hybridization of neighborhood
search with data mining techniques for solving the p-median problem [Reddy et al., 2012]. Also for the
p-median problem, a data mining procedure was integrated into a multistart hybrid heuristic [Martins et
al., 2014], which combines elements of different traditional metaheuristics (e.g., local search) and uses
path-relinking as a memory-based intensification mechanism. Finally, the widely-used iterated local search
method was also hybridized with data mining for solving the set covering with pairs problem [Martins et
al., 2016].



82 CHAPTER 5. FREQUENT PATTERN-BASED SEARCH FOR QAP

5.3 Frequent pattern-based search

In this section, we present Frequent Pattern Based Search (FPBS), a general-purpose search approach
that integrates frequent pattern mining into a metaheuristic. Below, we first show the general scheme of the
proposed FPBS approach, and then present its composing ingredients.

5.3.1 General scheme

The FPBS approach uses relevant frequent patterns extracted from high-quality solutions to build promis-
ing starting solutions which are further improved by a metaheuristic optimization procedure. The improved
solutions are in turn used to help mine additional patterns. By iterating the mining procedure and the op-
timization procedure, FPBS is expected to examine the search space effectively and efficiently. As a case
study, we illustrate in Section 5.4 its application to solve the well-known QAP.

From a perspective of system architecture, apart from an archive of high-quality solutions (called elite
set) that is maintained for the purpose of pattern mining, FPBS is composed of five critical components: an
initialization procedure (Section 5.3.2), a local optimization search procedure (Section 5.3.4), a data mining
procedure (Section 5.3.3), a frequent pattern based solution construct procedure (Section 5.3.5) and an elite
solution management procedure (Section 5.3.6).

Algorithm 9: A general framework of the proposed FPBS approach
Input: Problem instance I , elite set size k and number of patterns to be mined m
Output: The best solution S∗

1 begin
2 // I is supposed to be a minimization problem
3 ES ← EliteSetInitialize();
4 // record the best solution found so far
5 S∗ ← argmin{f(Si) : i = 1, 2, . . . , k};
6 P ← FrequentPatternMine(ES,m);
7 while a stopping condition is not reached do
8 p← PatternSelect(P);
9 // construct a new solution based mined frequent pattern

10 S ← PatternBasedConstruct(p);
11 // improve the constructed solution
12 S′ ← Optimize(S);
13 // update the best solution found so far
14 if f(S′) < f(S∗) then
15 S∗ ← S′

16 // update the elite set
17 ES ← EliteSetUpdate(ES, S′);
18 // restart the mining procedure when the elite set stagnates
19 if elite set stagnates then
20 P ← FrequentPatternMine(ES,m);

The general framework of the proposed FPBS approach is presented in Algorithm 9. FPBS starts from
a set of high-quality solutions that are obtained by the initialization procedure. From these high-quality
solutions, a data mining procedure is invoked to mine a number of frequent patterns. A new solution is then
constructed based on a mined pattern and further improved by the optimization procedure. The improved
solution is finally inserted to the elite set according to the elite solution management policy. The process
is repeated until a stopping condition (e.g., a time limit) is satisfied. In addition to its invocation just after



5.3. FREQUENT PATTERN-BASED SEARCH 83

the initialization procedure, the data mining procedure is also called each time the elite set is judged to be
stagnating, i.e., it has not been updated during a predefined number of iterations.

5.3.2 Elite set initialization
FPBS starts its search with an Elite Set (ES) composed of k distinct high-quality solutions. To build

such an elite set, we first generate, by any means (e.g., with a random or greedy construction method), an
initial solution that is improved by an optimization procedure (see Section 5.3.4). The improved solution
is then inserted into the elite set according to the elite set management strategy (see Section 5.3.6). We
repeat this process until an elite set of k different solutions is built. Note that similar ideas have been
successfully applied to build a high-quality initial population for memetic algorithms [Lü and Hao, 2010;
Benlic and Hao, 2015; Zhou et al., 2017c; Zhou et al., 2017e].

5.3.3 Frequent pattern mining procedure
In our approach, the frequent pattern mining procedure is used to discover some patterns that frequently

occurs in high-quality solutions stored in elite set. Besides the itemsets (see Section 5.2.2), mined patterns
can also be represented as subsequences or substructures [Aggarwal et al., 2014]. A subsequence is an
order of items, such as buying a mobile phone first, then a power bank, and finally a memory card. If a sub-
sequence occurs frequently in a transaction database, then it is a frequent sequential pattern. A substructure
can refer to different structural forms, such as subgraphs, subtrees, or sublattices, which may be combined
with itemset or subsequences. If a substructure occurs frequently in a graph database, it is called a frequent
structural pattern. A schematic diagram of the frequent pattern mining is given in Figure 5.1.

Frequent Pattern 
Mining Procedure

Elite Set:
A set of high

quality solutions

Pattern Set:
A set of chosen

patterns

Pattern
Selection
Procedure

Transformation
Procedure

extract

Figure 5.1: A schematic diagram of the frequent pattern mining.

Table 5.2: A simple summary of frequent pattern mining algorithms [Aggarwal et al., 2014].

algorithm

Task pattern apriori-based pattern-growth

frequent itemset mining itemsets e.g., Apriori e.g., FP-growth, FPmax
sequential pattern mining subsequences e.g., GSP, SPADE e.g., PrefixSpan
structural pattern mining substructures e.g., AGM, FSG e.g., gSpan, FFSM



84 CHAPTER 5. FREQUENT PATTERN-BASED SEARCH FOR QAP

To handle a wide diversity of data types, numerous mining tasks and algorithms have been proposed
in the literature [Han et al., 2007; Aggarwal et al., 2014]. A simple summary of frequent pattern min-
ing algorithms is provided in Table 5.2. For a specific application, the patterns of high-quality solu-
tions collected in the elite set can be expressed as itemsets, subsequences, or substructures. Once the
form of patterns is determined, a suitable mining algorithm can be selected accordingly. Consequently,
we adopt the FPmax* algorithm (see Section 5.4.2 for more details) to mine only the maximal frequent
itemsets. Detailed reviews of frequent pattern mining algorithms can be found in [Han et al., 2007;
Aggarwal et al., 2014].

5.3.4 Optimization procedure

For the purpose of solution improvement (to built the initial elite set and to improve each new solution
built from a mine pattern), any optimization procedure dedicated to the given problem can be applied in
principle. On the other hand, since the optimization component ensures the key role of search intensifica-
tion, it is desirable to call for a powerful search algorithm. Basically, the optimization procedure can be
considered to be a black box optimizer that is called to improve the input solution. In practice, the optimiza-
tion procedure can be based on local search, population-based search or even hybrid memetic search. In any
case, the search procedure must be carefully designed with respect to the problem under consideration and
should ideally be effective both in terms of search capacity and time efficiency. As we show in Section 5.4,
for the QAP considered in this work, we will adopt the powerful breakout local search procedure [Benlic
and Hao, 2013] as our optimization procedure.

5.3.5 Construction based on mined pattern

Once a set of frequent patterns P is extracted from the elite set, new solutions are constructed based
on these mined patterns. For this purpose, we first select a mined frequent pattern by the tournament
selection strategy as follows. Let λ be the size of the tournament pool. We randomly choose λ (1 ⩽ λ ⩽
|P|) individuals with replacement from the mined pattern set P , and then pick the best one (i.e., with the
largest size), where λ is a parameter. The computational complexity of this selection strategy is O(|P|).
The advantage of the tournament selection strategy is that the selection pressure can be easily adjusted by
changing the size of the tournament pool λ. The larger the tournament pool is, the smaller the chance for
shorter patterns to be selected.

Since frequent patterns usually corresponds to a set of common elements shared by the high-quality
solutions examined by the mining procedure, each mined pattern directly defines a partial solution. To
obtain a complete solution, we can apply a greedy or random procedure to the partial solution. The way
to build such a solution shares similarity with the general backbone-based crossover procedure [Benlic and
Hao, 2011; Zhou et al., 2017c; Zhou et al., 2017e]. Compared to the notion of backbones that are typically
shared by two parent solutions, our frequent patterns are naturally shared by two or more high-quality
solutions. In this sense, backbones can be considered as a special case of more general frequent patterns.

Finally, it is possible to construct a new solution for each mined pattern instead of using a long pattern
selected by the tournament selection strategy, as explained above. Also, an elite solution can be selected to
guide the construction of a new solution. In particular, the way to use frequent patterns should be determined
according to the studied problem.

5.3.6 Elite set management

As explained above, each new solution constructed using a mined frequent pattern is improved by the
optimization procedure. Then, we decide whether the improved solution should be inserted into the Elite
Set (ES).



5.4. FPBS APPLIED TO THE QUADRATIC ASSIGNMENT PROBLEM 85

There are a number of updating strategies in the literature [Sörensen and Sevaux, 2006]. For example,
the classic quality-based replacement strategy simply inserts the solution into ES to replace the worst
solution if it is better than the worst solution in ES. In addition, more elaborated updating strategies
consider other criteria than the quality of solutions. For example, the quality-and-distance updating strategy
not only considers the quality of the solution, but also its distance to other solutions in the population
[Lü and Hao, 2010]. An improved quality-and-distance updating strategy, called the rank-based updating
strategy, was recently proposed in [Zhou and Hao, 2017b]. A suitable elite set management strategy can be
determined according to the practical problem.

5.4 FPBS applied to the quadratic assignment problem
In this section, we present a case study of applying the general FPBS approach to the well-known

Quadratic Assignment Problem (QAP) and show its competitiveness compared to state-of-the-art QAP al-
gorithms.

5.4.1 Related work

In this section, we provide a brief literature review of the most popular heuristic algorithms for QAP in
the literature.

Due to its practical and theoretical significance, QAP has attracted much research effort since its first
formulation [James et al., 2009; Benlic and Hao, 2013; Benlic and Hao, 2015; Tosun, 2015; Acan and
Ünveren, 2015]. In fact, QAP is among the most studied and the most competitive combinatorial optimiza-
tion problems. Since exact algorithms are unpractical for instances of size larger than 36 [Anstreicher et
al., 2002], a large number of heuristic methods have been proposed for QAP, which could provide a near-
optimal solution in reasonable computation times. Roughly, these heuristic algorithms can be divided into
two categories:

— Local search metaheuristics, such as simulated annealing [Wilhelm and Ward, 1987; Connolly, 1990;
Peng et al., 1996; Misevičius, 2003], tabu search [Skorin-Kapov, 1990; Taillard, 1991; Skorin-Kapov,
1994; Misevicius, 2005; James et al., 2009; Acan and Ünveren, 2015], iterated local search [Stützle,
2006; Benlic and Hao, 2013; Aksan et al., 2017].

— Population-based metaheuristics, such as ant colony optimization [Stützle and Dorigo, 1999; Gam-
bardella et al., 1999; Demirel and Toksarı, 2006], genetic algorithm [Ahmed, 2015; Tosun, 2015;
Benlic and Hao, 2015].

Besides the translational heuristic algorithms, many high performance computation techniques are in-
troduced to accelerate the exiting heuristic algorithms in recent years.

— CPU computation with Compute Unified Device Architecture (CUDA) combined with tabu search
and ant colony optimization is proposed for the QAP in [Tsutsui and Fujimoto, 2009].

— A high-performance multistart hyper-heuristic algorithm on the grid (using parallel processing) for
the solution of the QAP is proposed in [Dokeroglu and Cosar, 2016].

— A parallel multistart tabu search is proposed in [Czapiński, 2013], and it is implemented on a highly
powerful GPU hardware intended for high-performance computing with the CUDA platform.

— A parallel hybrid algorithm with three phases was proposed in [Tosun, 2015].

— An enhanced Breakout local search algorithm incorporating the multi-threaded computation using
OpenMP is proposed in [Aksan et al., 2017].

Detailed reviews of heuristic and metaheuristic algorithms developed till 2007 for QAP are available in
[Drezner et al., 2005; Loiola et al., 2007].



86 CHAPTER 5. FREQUENT PATTERN-BASED SEARCH FOR QAP

5.4.2 FPBS for QAP
Algorithm 10 shows the FPBS algorithm for QAP (denoted as FPBS-QAP), which is an instantiation

of the general scheme of Algorithm 9. Since FPBS-QAP inherits the main components of FPBS, hereafter
we only present the specific features related to QAP: solution representation and evaluation, optimization
procedure, frequent pattern mining for QAP, solution construction using QAP patterns, and elite set update
strategy.

Algorithm 10: The FPBS algorithm for QAP
Input: Instance G, elite set size k, the number of patterns m, time limit tmax and the maximum number of

iterations without updating max_no_update
Output: The best solution π∗ found so far

1 begin
2 ES ← EliteSetInitialize();
3 π∗ ← argmin{f(πi) : i = 1, 2, . . . , k};
4 P ← FrequentPatternMine(ES,m);
5 no_update← 0;
6 t← 0;
7 while t < tmax do
8 pi ← PatternSelection(P);
9 // construct a new solution based selected pattern

10 π ← PatternBasedConstruct(pi);
11 // improve the constructed solution
12 π′ ← BreakoutLocalSearch(π);
13 // update the best solution found so far
14 if f(π′) < f(π∗) then
15 π∗ ← π′;

16 // update the elite set
17 if EliteSetUpdate(ES, π′) = True then
18 no_update← 0;

19 else
20 no_update← no_update+ 1;

21 // restart the mining procedure when the elite set is steady
22 if no_update > max_no_update then
23 P ← FrequentPatternMine(ES,m);
24 no_update← 0;

Solution representation, neighborhood and evaluation

Given a QAP instance with n facilities (or locations), a candidate solution is naturally represented by a
permutation π of {1, 2, . . . , n}, such that π(i) is the location assigned to facility i. The search space Ω is
thus composed of all possible n! permutations.

To examine the search space, we adopt an iterated local search algorithm called BLS (see Section 5.4.2).
For this purpose, we introduce the neighborhood used by BLS. Give a solution, i.e., a permutation π, its
neighborhood N(π) is defined as the set of all possible permutations that can be obtained by exchanging
the values of any two different positions π(u) and π(v) in π, i.e., N(π) = {π′ | π′(u) = π(v), π′(v) =
π(u), u ̸= v and π′(i) = π(i),∀i ̸= u, v}, which has a size of n(n− 1)/2.

As indicated in [Taillard, 1991], given a permutation π and its objective value f(π), the objective value
of any neighnoring permutation π′ can be effectively calculated according to an incremental evaluation
technique.



5.4. FPBS APPLIED TO THE QUADRATIC ASSIGNMENT PROBLEM 87

Breakout local search

To ensure an effective optimization of a given solution, we adopt the Breakout Local Search (BLS)
algorithm [Benlic and Hao, 2013], which is one of the most powerful algorithms for QAP currently available
in the literature.

BLS is a variant of Iterated Local Search (ILS) [Lourenço et al., 2003], which alternates iteratively
between a descent search phase (to find local optima) and a dedicated perturbation phase (to discover new
promising regions). BLS starts from an initial random permutation, and then improves the initial solution to
a local optimum by a best improvement descent search with the above exchange-based neighborhood. Af-
terwards, BLS triggers a perturbation based diversification mechanism. The perturbation mechanism adap-
tively selects a tabu-based perturbation (called directed perturbation) or a random perturbation (called undi-
rected perturbation). BLS also determines the number of perturbation steps (called perturbation strength)
in an adaptive way [Benlic and Hao, 2013].

The tabu-based perturbation and random perturbation provide two complementary means for search
diversification. The former applies a selection rule that favors neighboring solutions that minimize the ob-
jective degradation, under the constraint that the neighboring solutions have not been visited during the last
γ iterations (where γ is the pre-defined tabu tenure), while the latter performs moves selected uniformly at
random. To keep a good balance between an intensified and a diversified search, BLS alternates probabilis-
tically between these two perturbations. The probability to select a particular perturbation is determined
dynamically according to the current number of times to visit local optima without any improvement on the
best solution found. The probability of applying the tabu-based perturbation over the random perturbation
is empirically limited to be at least as Q. The perturbation strength L is determined based on a simple
reactive strategy. One increases L by one if the local search procedure returned to the immediate previous
local optimum, and otherwise resets L to a given initial value L0. Once the type and the strength L of the
perturbation are determined, the selected perturbation with strength L is applied to the current solution. The
resulting solution is then used as the starting solution of the next round of the descent search procedure (see
[Benlic and Hao, 2013] for more details).

FPmax* for QAP

The quadratic assignment problem is a typical permutation problem whose solutions are naturally rep-
resented by permutations. For QAP, we define a frequent pattern to be a set of identical location-facility
assignments shared by high-quality solutions, and represent a frequent pattern by an itemset. To apply a
frequent itemset mining algorithm, we need to transform a permutation into a set of items. A transformation
is recently proposed in [Guerine et al., 2016]. The transformation works as follows. For each pair of ele-
ments (π(i) and π(j)) of a given permutation π, an arc (π(i), π(j)) is generated, which maps a permutation
π to a set S ′ of |π| − 1 arcs. For example, considering a permutation π = (5, 4, 7, 2, 1, 6, 3) represented by
a sequence of these elements, π can be mapped as S ′ = {(5, 4), (4, 7), (7, 2), (2, 1), (1, 6), (6, 3)}. By this
transformation, a permutation is divided into a set of arcs, which conserves the order of elements. However,
this transformation loses the information between the elements and their locations. In practice, we can not
identify the true location of an element when only a part of pairs are available.

To overcome this difficulty, we propose a new transformation. Our transformation decompose a permu-
tation into a set of ordered pairs, each pair being formed by an element (facility) i and its position (loca-
tion) π(i). Specifically, let π be a candidate solution of QAP, for each element (facility) i, a corresponding
element-position pair (i, π(i)) is generated, which transforms permutation π into a set of n element-position
pairs. For example, given π = (5, 4, 7, 2, 1, 6, 3), {(1, 5), (2, 4), (3, 7), (4, 2), (5, 1), (6, 6), (7, 3)} is the cor-
responding set of element-position pairs.

Once a permutation is transformed into a set of pairs, we will treat each pair (i, π(i)) as an item (i −
1) ∗ |π| + π(i), where |π| is the length of the permutation. An illustrative example is given in Figure 5.2.
Now, the task of mining frequent patterns from multiple permutations can be conveniently transformed into
the task of mining frequent itemsets. The main drawback of mining all frequent itemsets is that if there is



88 CHAPTER 5. FREQUENT PATTERN-BASED SEARCH FOR QAPSheet1

Page 1

permutations itemsets

1 2 3 4 5 6 7

5 4 7 2 1 6 3 5 11 21 23 29 41 45

1 2 3 4 5 6 7

* 4 7 * 1 * 3 11 21 29 45

⇔

⇔

Figure 5.2: An illustrative example of transformation procedure.

a large frequent itemset, then almost all subsets of the itemset might be examined. However, it is usually
sufficient to find only the maximal frequent itemsets (a maximal frequent itemset is such that if it has no
superset that is frequent). Thus mining frequent itemsets can be reduced to mine only the maximal frequent
itemsets. For this purpose, we adopt the popular FPmax* 1 algorithm [Grahne and Zhu, 2003a].

FPmax is an algorithm to mine maximal frequent itemsets using the FP-tree (frequent pattern tree)
structure, while the FPmax* is an improved version of FPmax. Compared to FPmax, in addition to the FP-
array technique, the improved method FPmax* also has a more efficient maximality checking approach, as
well as several other optimizations. Experimental results show that FPmax* outperforms FPmax [Grahne
and Zhu, 2003b].

FP-tree and FP-growth method: FP-tree is a compact data structure used by FP-growth method to
store the information about frequent itemsets in a database. The frequent items of each transactions are
inserted into the tree in their frequency descending order. Compression is achieved by building the tree
in such a way that overlapping itemsets share prefixes of the corresponding branches. An FP-tree T has a
header table, T.header, associated with it. Single items and their counts are stored in the header table in
decreasing order of their frequency. The entry for an item also contains the head of a list that links all the
corresponding nodes in the tree.

Compared with Apriori-like algorithms which may need as many database scans as the length of the
longest pattern, the FP-growth method needs only two database scans. The first scan collects all frequent
itemsets, while the second scan constructs the initial FP-tree. Figure 5.3 (a) shows an example of a database
and Figure 5.3 (b) is the FP-tree for this database. The constructed FP-tree records all frequency information
of the database.

In FPmax, a global data structure, the maximal frequent itemsets tree (MFI-tree) is introduced to keep
the track of MFIs. Each MFI-tree is associated with a particular FP-tree. An MFI-tree resembles an FP-
tree. There are two main differences between MFI-trees and FP-trees. In an FP-tree, each node in the
subtree has three fields: item-name, count, and node-link. In an MFI-tree, the count is replaced by the
level of the node. Another difference is that the header table in an FP-tree is constructed from traversing
the previous FP-tree or using the associated FP-array, while the header table of an MFI-tree is constructed
based on the item order in the table of the FP-tree it is associated with. For more information about the
FP-tree, FP-growth algorithm, FP-array and MFI-tree, readers are referred to [Grahne and Zhu, 2003a;
Grahne and Zhu, 2005].

Algorithm 11 shows the pseudo code of the FPmax* algorithm. Here we only provide a brief presenta-
tion of its general procedure. In the initial call, a FP-tree is constructed from the first scan of the database,
together with with an initial empty MFI-tree. During the recursion, if there is only one single path in FP-tree
T , this single path together with T.base is a MFI of the dataset. The MFI is then inserted into M (line 3).
Otherwise, for each item i in the header table, Y = T.base ∪ {i}, and we start preparing for the recursive
call FPmax*(TY ,MY ). The items in the header table are processed in increasing order of frequency, so
that maximal frequent itemsets will be found before any of their frequent subsets (line 11). Lines 7-10 use
the array technique, and line 12 invokes the subset_checking() function to check if Y together with all fre-

1. The source code of the FPmax* algorithm is publicly available at http://fimi.ua.ac.be/src/

http://fimi.ua.ac.be/src/


5.4. FPBS APPLIED TO THE QUADRATIC ASSIGNMENT PROBLEM 89

Item head of 
node-links

b:5

a:4

d:4

g:3

e:2

c:2

b:5 a:1

d:2 a:3 d:1

g:2 c:1 d:1 e:1

c:1 e:1

g:1

root:6

(a) (b)

TID itemset

1 a,d,e

2 b,d,g,c,i

3 b,a,c

4 b,a,d,f

5 b,a,g,h

6 b,d,g,e,j

Figure 5.3: An FP-tree example. (a) A database. (b) The FP-tree for the database (minimum support = 2).

Algorithm 11: Pseudo code of the FPmax* Algorithm [Grahne and Zhu, 2003]
Input: T : an FP-tree

M : the MFI-tree for T.base.
Output: Updated M

1 begin
2 if T only contains a single path P then
3 insert P into M

4 else
5 for each i in T .header do
6 set Y = T.base ∪ {i};
7 if T.array is not Null then
8 Tail={frequent items for i in T.array}
9 else

10 Tail={frequent items in i’s conditional pattern base}
11 sort Tail in decreasing order of the items’ counts;
12 if subset_checking(Y ∪ Tail,M) = False then
13 construct Y’s conditional FP-tree TY and its array AY ;
14 initialize Y’s conditional MFI-tree MY ;
15 call FPmax*(TY ,MY );
16 merge MY with M ;

quent items in Y ’s conditional pattern base is a subset of any existing MFI in M , thus we perform superset
pruning. If function subset_checking() returns False, FPmax* will be called recursively, with (TY ,MY )
(lines 13-16). For a detailed description of the FPmax* algorithm, please refer to [Grahne and Zhu, 2003a;
Grahne and Zhu, 2005]. An example to illustrate the whole process of the frequent pattern mining is pro-
vided in Figure 5.4.



90 CHAPTER 5. FREQUENT PATTERN-BASED SEARCH FOR QAP
Sheet1

Page 1

1 2 3 4 5 6 7

5 4 7 2 1 6 3 5 11 21 23 29 41 45
7 4 5 3 1 6 2 7 11 19 24 29 41 44
7 4 5 2 3 6 1 7 11 19 23 31 41 43

7 11 19 41
11 23 41
11 29 41

1 2 3 4 5 6 7

7 4 5 * * 6 * 7 11 19 41
* 4 * 2 * 6 * 11 23 41

→

↓

←

↓

↓

Figure 5.4: An FP-tree example.

Solution construction based on mined pattern

Algorithm 12 describes the main steps to construct a new solution based on a mined frequent pattern.
Initially, a pattern is first selected from the set of mined frequent patterns P according to the tournament
selection strategy (line 2). Then, we re-map this chosen pattern into a partial solution π (line 3). If the length
of the partial solution |π| is less than a given threshold (i.e., β ∗ n, β is a length threshold), we introduce
an elite solution to guide the construction (lines 4-6). Specifically, we first select a good elite solution π0

(called guiding solution) from the elite set (line 5), and then we continue to complete π based on the guiding
solution π0 (i.e., directly copies the elements of all unassigned positions of π0 to π if the elements have not
been assigned in π). Finally, if π is still an illegal solution, we randomly assign the remaining elements to
the unassigned positions until a legal solution is obtained (line 7).

Algorithm 12: Solution construction based on mined frequent pattern
Input: Instance G, a set of mined patterns P and an elite set ES of size k and length threshold β
Output: A new solution π

1 begin
2 p← PatternSelection(P); /∗ select a mined pattern ∗/
3 π ← re-map(p); /∗ generate a partial solution based on selected pattern ∗/
4 if |π| < β ∗ n then
5 π0 ← GuidedSolutionSelection(ES); /∗ select a guided solution ∗/
6 π ← GuidedComplete(π, π0); /∗ complete based on guided solution ∗/
7 π ← RandomComplete(π); /∗ complete at random ∗/

Our solution construction method shares similar idea with the backbone-based crossovers [Benlic and
Hao, 2011; Zhou and Hao, 2017b; Zhou et al., 2017c], i.e., directly inheriting some common elements
from the high-quality solutions. However, our solution construction method distinguishes itself from these
backbone-based crossovers by adopting the concept of frequent patterns, which are the common parts shared
by two or more high-quality solutions instead of only two parent solutions.

Elite set update strategy

Once a new improved solution π′ is obtained by the breakout local search, then we need to decide
whether π′ should be inserted into the elite set ES. In our case, we adopt the classic quality-based update
strategy. Specifically, we insert π′ into the elite set ES when the following two conditions are satisfied
simultaneously. That is, (i) π′ is different from any individual in the elite set and (ii) the quality of π′ is not



5.5. COMPUTATIONAL RESULTS 91

worse than the worst individual in the elite set, i.e., f(π′) ⩽ f(πw), where πw ← argmaxπ∈ES f(π) is the
worst individual in the ES. The solution of QAP is usually represented as a permutation. Therefore, two
solutions πu and πv of QAP are the same if and only if their assignments at all positions are the same. That
is, the hamming distance between πu and πv is zero.

5.5 Computational results
Our computational studies aim to evaluate the efficiency of the FPBS-QAP algorithm. For this pur-

pose, we first perform a detailed performance comparisons between FPBS-QAP and two state-of-the-art
algorithms, i.e., BLS [Benlic and Hao, 2013] and BMA [Benlic and Hao, 2015], whose source codes are
available to us. Furthermore, we compare FPBS-QAP with four additional state-of-the-art algorithms in the
literature.

5.5.1 Benchmark instances

The experimental evaluations of QAP algorithms are usually performed on 135 popular benchmark
instances from QAPLIB 2, with n ranging from 12 to 150. These instances can be classified into four
categories:

— Type I. 114 real-life instances are obtained from practical QAP applications;

— Type II. 5 unstructured, randomly generated instances whose distance and flow matrices are ran-
domly generated based on a uniform distribution;

— Type III. 5 real-like-life instances are generated instances that are similar to the real-life QAP in-
stances;

— Type IV. 11 instances with grid-based distances in which the distances are the Manhattan distance
between points on a grid.

Like [Benlic and Hao, 2013; Benlic and Hao, 2015], we do not consider the 114 real-life instances from
Type I because they can be solved optimally with a high success rate and a short computation time (often
less than one second). Our experiments will focus on the remaining 21 hard instances from Type II, Type III
and Type IV. Notice that for these 21 challenging instances, no single algorithm can attain the best-known
results for all the 21 instances. Indeed, even the best performing algorithm misses at least two best-known
results.

5.5.2 Experimental settings

The proposed FPBS-QAP algorithm 3 is implemented in the C++ programming language and complied
with gcc 4.1.2 and flag ‘-O3’. All the experiments were carried out on a computer equipped with an Intel
E5-2670 processor with 2.5 GHz and 2 GB RAM operating under the Linux system. Without using any
compiler flag, running the well-known DIMACS machine benchmark program dfmax 4 on our machine
requires 0.19, 1.17 and 4.54 seconds to solve graphs r300.5, r400.5 and r500.5 respectively. Our compu-
tational results were obtained by running the FPBS-QAP algorithm with the parameter settings provided
in Table 5.3. To identify an appropriate value for a given parameter, we compare the performance of the
algorithm with different parameter values, while fixing other parameter values. An example to select an
appropriate m value is provided in Section 5.6.3.

2. https://www.opt.math.tugraz.at/qaplib/
3. The source code of our FPBS-QAP algorithm will be made available at http://www.info.univ-angers.fr/

~hao/fpbs.html
4. dfmax: ftp://dimacs.rutgers.edu/pub/dsj/clique

https://www.opt.math.tugraz.at/qaplib/
http://www.info.univ-angers.fr/~hao/fpbs.html
http://www.info.univ-angers.fr/~hao/fpbs.html
ftp://dimacs.rutgers.edu/pub/dsj/clique


92 CHAPTER 5. FREQUENT PATTERN-BASED SEARCH FOR QAP

Table 5.3: Parameter settings of FPBS-QAP algorithm.

Parameter description value

tmax time limit (hours) 0.5 or 2.0
k elite set size 15
max_no_update number of times without updating 15
θ minimum support 2
m frequent pattern set size 11
λ tournament pool size 3
β length threshold 0.75
max_iter number of iterations for BLS⋆ 10000
⋆ Other parameters of BLS adopt the default values provided in

[Benlic and Hao, 2013].

Given its stochastic nature, the proposed FPBS-QAP algorithm was independently ran 10 times on each
test instance, which is a standard practice for solving QAP [Benlic and Hao, 2013; Benlic and Hao, 2015;
Tosun, 2015; Acan and Ünveren, 2015]. Performance assessment is based on the Percentage Deviation
(PD) metrics that are widely used in the literature. The PD metrics measure the percentage deviation from
the Best-Known Value (BKV). The PD metrics, such as the Best Percentage Deviation (BAD), Average
Percentage Deviation (APD) and the Worst Percentage Deviation (WPD), which are respectively calculated
according to:

XPD = 100 ∗ X −BKV

BKV
[%] (5.1)

where X is the best objective value, average objective value and worst objective value. The smaller the
XPD value, the better the evaluated algorithm.

5.5.3 Comparison of FPBS-QAP with BLS and BMA

To demonstrate the effectiveness of the FPBS-QAP algorithm, we first show a detailed comparison
between FPBS-QAP and two reference algorithms BLS [Benlic and Hao, 2013] and BMA [Benlic and Hao,
2015]. This experiment was based on two motivations. First, BLS and BMA are among the best performing
QAP algorithms in the literature. Second, the source codes of BLS and BMA are available to us, making it
possible to make a fair comparision (using the same computing platform and stopping conditions). Third,
both FPBS-QAP and BMA use BLS as their underlying optimization procedure, this comparison allows us
to assess the added value of the data mining component of FPBS-QAP. For this experiment, we run FPBS-
QAP and the two reference algorithms under two stopping conditions, i.e., a limit of tmax = 30 minutes (0.5
hour) and a limit of tmax = 120 minutes (2 hours). This allows us to study the behavior of the compared
algorithms under short and long conditions.

The comparative performances of FPBS-QAP with BLS and BMA under tmax = 30 minutes and tmax =
120 minutes are presented in Table 5.4 and Table 5.5, respectively. In these two tables, we report the BPD,
APD, WPD values of each algorithm, and the average time (T) to achieve the results. At the end of each
table, we also give the average value of each indicator. The smaller the value, the better the performance of
an algorithm.

From Table 5.4, we observe that FPBS-QAP achieves the best performance compared to the algorithms
BLS and BMA under tmax = 30 minutes. Specifically, FPBS-QAP is able to reach the best-known values
of two largest instances, i.e., tai150b and tho150 within the given computing time. To the best of our
knowledge, it is the first heuristic algorithm that achieves these two best-known values within only 30
minutes. For the BLS and BMA algorithms, they achieve the best-known values of tai150b and tho150 with
a low success rate only under a very long time limit of tmax = 10 hours. The BPD value of FPBS-QAP for
the 21 benchmark instances is only 0.043%, which is smaller than 0.059% of BLS, and 0.051% of BMA



5.5. COMPUTATIONAL RESULTS 93

Table 5.4: Comparative performance of the proposed FPBS-QAP algorithm with BLS and BMA on 21 hard
instances under tmax = 30 minutes. The success rate of reaching the best-known value over 10 runs is
indicated in parentheses.

BLS BMA FPBS-QAP

Instance BKV BPD APD WPD T (m) BPD APD WPD T (m) BPD APD WPD T (m)

tai40a 3139370 0.000(1) 0.067 0.074 5.5 0.000(1) 0.067 0.074 7.0 0.000(1) 0.067 0.074 6.4
tai50a 4938796 0.000(1) 0.181 0.364 14.5 0.053(0) 0.216 0.317 12.8 0.000(1) 0.279 0.415 17.3
tai60a 7205962 0.273(0) 0.371 0.442 17.7 0.165(0) 0.285 0.381 17.6 0.165(0) 0.377 0.469 8.7
tai80a 13499184 0.474(0) 0.571 0.647 13.5 0.468(0) 0.553 0.621 14.5 0.430(0) 0.516 0.614 18.2
tai100a 21052466 0.467(0) 0.566 0.630 16.4 0.389(0) 0.510 0.623 19.0 0.311(0) 0.402 0.553 13.4
tai50b 458821517 0.000(10) 0.000 0.000 0.2 0.000(10) 0.000 0.000 0.2 0.000(10) 0.000 0.000 0.1
tai60b 608215054 0.000(10) 0.000 0.000 0.6 0.000(10) 0.000 0.000 0.3 0.000(10) 0.000 0.000 0.5
tai80b 818415043 0.000(10) 0.000 0.000 3.3 0.000(10) 0.000 0.000 1.8 0.000(10) 0.000 0.000 1.2
tai100b 1185996137 0.000(9) 0.005 0.045 10.3 0.000(6) 0.044 0.143 2.4 0.000(6) 0.040 0.100 4.0
tai150b 498896643 0.014(0) 0.219 0.390 14.5 0.000(1) 0.137 0.316 21.5 0.000(1) 0.191 0.321 20.5
sko72 66256 0.000(10) 0.000 0.000 4.4 0.000(9) 0.006 0.063 0.7 0.000(10) 0.000 0.000 1.4
sko81 90998 0.000(9) 0.001 0.011 8.0 0.000(10) 0.000 0.000 3.5 0.000(10) 0.000 0.000 2.7
sko90 115534 0.000(4) 0.023 0.095 9.5 0.000(9) 0.004 0.038 5.9 0.000(6) 0.015 0.038 4.2
sko100a 152002 0.000(4) 0.006 0.018 12.4 0.000(8) 0.003 0.016 5.2 0.000(10) 0.000 0.000 7.7
sko100b 153890 0.000(8) 0.001 0.004 4.6 0.000(10) 0.000 0.000 8.5 0.000(10) 0.000 0.000 7.7
sko100c 147862 0.000(7) 0.001 0.004 10.2 0.000(10) 0.000 0.000 6.9 0.000(10) 0.000 0.000 8.7
sko100d 149576 0.000(3) 0.004 0.009 13.5 0.000(9) 0.007 0.066 6.6 0.000(10) 0.000 0.000 9.0
sko100e 149150 0.000(5) 0.002 0.005 13.7 0.000(10) 0.000 0.000 6.5 0.000(7) 0.001 0.004 10.3
sko100f 149036 0.000(5) 0.006 0.032 11.5 0.000(6) 0.005 0.021 6.3 0.000(7) 0.003 0.021 4.4
wil100 273038 0.000(6) 0.001 0.003 11.4 0.000(10) 0.000 0.000 6.4 0.000(10) 0.000 0.000 9.5
tho150 8133398 0.013(0) 0.091 0.128 11.9 0.003(0) 0.021 0.067 19.9 0.000(1) 0.051 0.123 24.2

avg. 0.059 0.101 0.138 9.8 0.051 0.095 0.139 8.2 0.043 0.092 0.130 8.6

respectively. Similar observations can also be found for the APD and WPD indicators. It is worth noting
that FPBS-QAP needs less time to achieve these results than BLS, but consumes nearly the same computing
time as BMA.

When a long time limit tmax = 120 minutes is allowed, our FPBS-QAP algorithm is able to achieve even
better results. As we can see from Table 5.5, the best-known values are obtained with a higher success rate
compared to the results under tmax = 30 minutes in Table 5.4. The BPD value of FPBS-QAP is 0.028%,
which is the smallest compared to 0.037% of BMA, and 0.038% of BLS. FPBS-QAP also achieves the
smallest average APD value and average WPD value. As to the computing times, FPBS-QAP requires on
average 22.0 minutes to reach its best solution, which is the shortest time among the compared algorithms
(32.2 minutes for BLS, and 23.1 minutes for BMA).

In summary, our FPBS-QAP algorithm competes favorably with the two best-performing QAP algo-
rithms (i.e., BLS and BMA) in terms of both solution quality and computing time. The computational
results demonstrate the effectiveness of our proposed FPBS-QAP algorithm, and further shows the use-
fulness of using frequent patterns mined from high-quality solutions to guide the search for an effective
exploration of the solution space.

5.5.4 Comparison with state-of-the-art algorithms
We now extend our experimental study by comparing FPBS-QAP with four other very recent state-of-

the-art QAP algorithms in the literature.

— Parallel hybrid algorithm (PHA) [Tosun, 2015] (2015) used the MPI libraries and was implemented
on a high-performance cluster computer which has 46 nodes, each with 2 CPUs giving 92 CPUs.
Each CPU has 4 cores giving a total of 368 cores. Each node has 16 GB if RAM giving 736 GB of
total memory, and a total disk capacity of 6.5 TB configured in a high performance RAID.

— Two-stage memory powered great deluge algorithm (TMSGD) [Acan and Ünveren, 2015] (2015) was
implemented on a personal computer with 2.1 GHz and 8 GB RAM. The algorithm was stopped when
the number of fitness evaluations reaches 20000 ∗ n (n is the instance size).



94 CHAPTER 5. FREQUENT PATTERN-BASED SEARCH FOR QAP

Table 5.5: Comparative performance of FPBS-QAP with BLS and BMA on 21 hard instances under tmax =
120 minutes. The success rate of reaching the best-known value over 10 runs is indicated in parentheses.

BLS BMA FPBS-QAP

Instance BKV BPD APD WPD T (m) BPD APD WPD T (m) BPD APD WPD T (m)

tai40a 3139370 0.000(7) 0.022 0.074 40.7 0.000(5) 0.037 0.074 28.9 0.000(7) 0.022 0.074 52.5
tai50a 4938796 0.000(1) 0.100 0.245 47.0 0.000(3) 0.098 0.291 38.8 0.000(2) 0.107 0.231 67.8
tai60a 7205962 0.036(0) 0.233 0.331 73.9 0.165(0) 0.221 0.352 34.7 0.000(1) 0.216 0.300 60.0
tai80a 13499184 0.416(0) 0.502 0.587 58.0 0.332(0) 0.428 0.505 69.9 0.313(0) 0.451 0.618 55.2
tai100a 21052466 0.335(0) 0.460 0.560 58.4 0.223(0) 0.370 0.511 59.9 0.280(0) 0.378 0.466 36.1
tai50b 458821517 0.000(10) 0.000 0.000 0.2 0.000(10) 0.000 0.000 0.1 0.000(10) 0.000 0.000 0.2
tai60b 608215054 0.000(10) 0.000 0.000 0.3 0.000(10) 0.000 0.000 0.4 0.000(10) 0.000 0.000 0.4
tai80b 818415043 0.000(10) 0.000 0.000 3.9 0.000(10) 0.000 0.000 2.0 0.000(10) 0.000 0.000 1.4
tai100b 1185996137 0.000(10) 0.000 0.000 6.1 0.000(6) 0.040 0.100 8.1 0.000(10) 0.000 0.000 2.9
tai150b 498896643 0.001(0) 0.040 0.183 42.7 0.055(0) 0.213 0.414 56.0 0.000(5) 0.099 0.313 46.4
sko72 66256 0.000(10) 0.000 0.000 3.0 0.000(10) 0.000 0.000 0.7 0.000(10) 0.000 0.000 4.8
sko81 90998 0.000(10) 0.000 0.000 10.3 0.000(10) 0.000 0.000 3.2 0.000(10) 0.000 0.000 3.3
sko90 115534 0.000(10) 0.000 0.000 19.6 0.000(9) 0.004 0.038 3.6 0.000(9) 0.004 0.038 2.4
sko100a 152002 0.000(10) 0.000 0.000 51.0 0.000(8) 0.003 0.016 28.6 0.000(10) 0.000 0.000 8.5
sko100b 153890 0.000(10) 0.000 0.000 21.6 0.000(10) 0.000 0.000 11.0 0.000(10) 0.000 0.000 5.8
sko100c 147862 0.000(10) 0.000 0.000 22.4 0.000(10) 0.000 0.000 7.1 0.000(10) 0.000 0.000 8.7
sko100d 149576 0.000(6) 0.001 0.005 38.5 0.000(10) 0.000 0.000 12.6 0.000(10) 0.000 0.000 16.2
sko100e 149150 0.000(10) 0.000 0.000 44.2 0.000(10) 0.000 0.000 5.3 0.000(10) 0.000 0.000 12.2
sko100f 149036 0.000(7) 0.002 0.005 40.2 0.000(8) 0.001 0.005 23.7 0.000(6) 0.002 0.005 4.0
wil100 273038 0.000(9) 0.000 0.002 28.9 0.000(10) 0.000 0.000 6.9 0.000(10) 0.000 0.000 16.4
tho150 8133398 0.009(0) 0.056 0.116 64.2 0.000(1) 0.036 0.065 83.9 0.000(3) 0.008 0.064 57.4

avg. 0.038 0.067 0.100 32.2 0.037 0.069 0.113 23.1 0.028 0.061 0.100 22.0

— Parallel multi-start hyper-heuristic algorithm (MSH) [Dokeroglu and Cosar, 2016] (2016) was imple-
mented on a high performance cluster computer as well as the above PHA algorithm.

— Breakout local search using OpenMP (BLS-OpenMP) [Aksan et al., 2017] (2017) was implemented
based on OpenMP (i.e., an API for shared-memory parallel computations and works on multi-core
computers.) and was executed on a personal computer with an Intel Core i7-6700 CPU 3.4 GHZ with
4 cores, 16 GB RAM. It is possible to execute 8 logical processors on this computer.

One notices that three of these four recent QAP algorithms are implemented and evaluated on parallel
machines. Moreover, their results have been obtained under different computing platforms, with different
stopping conditions. For example, TMSGD terminates when the number of fitness evaluations reaches a
fixed value, while BLS-OpenMP terminates after a fixed number of iterations.

Table 5.6 presents the comparative results between the proposed FPBS-QAP algorithm and the four
reference algorithms. Like [Acan and Ünveren, 2015; Dokeroglu and Cosar, 2016; Aksan et al., 2017],
we adopt the APD indicator (defined in Section 5.5.2) for this comparative study. In the table, we also
include the running time (T (m)), which is presented only for indicative purposes. For completeness, we
also include the results of BLS and BMA from the Table 5.6. At the end of the table, we again indicate the
average value of each indicator.

From Table 5.6, we observe that our FPBS-QAP algorithm achieves a highly competitive performance
compared to the state-of-the-art algorithms. The average APD value of FPBS-QAP is 0.061%, which is only
slightly worse than 0.058% of PHA and better than all remaining reference algorithms. Moreover, PHA is
a parallel algorithm, and its average computing time (≥ 177.4 minutes) is significantly than that of FPBS-
QAP (≤ 67.8 minutes). Note that the results of three instances, including two hardest and largest instances
tai150b and tho150, are not reported for BLS-OpenMP. The APD value of BLS-OpenMP is computed for
the remaining 18 instances. Importantly, our algorithm requires the least time to achieve the best results,
and its average time is only 22.0 minutes. These observations show that our FPBS-QAP algorithm is highly
competitive compared to the state-of-the-art algorithms in terms of solution quality and computing time.



5.6. EXPERIMENTAL ANALYSIS 95

Table 5.6: Comparative performance between our FPBS-QAP and the state-of-the-art algorithms on hard
instances in terms of the APD value. Computational time are given in minutes for indicative purposes.

BLS⋆ PHA◦ BMA⋆ TMSGD MSH◦ BLS-OpenMP◦ FPBS-QAP

Instance BKV APD T (m) APD T (m) APD T (m) APD T (m) APD T (m) APD T (m) APD T (m)

tai40a 3139370 0.022 40.7 0.000 10.6 0.037 28.9 0.261 27.8 0.261 30.0 0.000 32.2 0.022 52.5
tai50a 4938796 0.100 47.0 0.000 12.7 0.098 38.8 0.276 41.1 0.165 37.5 0.000 68.2 0.107 67.8
tai60a 7205962 0.233 73.9 0.000 19.6 0.221 34.7 0.448 78.9 0.270 45.0 0.000 107.9 0.216 60.0
tai80a 13499184 0.502 58.0 0.644 40.0 0.428 69.9 0.832 111.3 0.530 60.0 0.504 236.0 0.451 55.2
tai100a 21052466 0.460 58.4 0.537 71.9 0.370 59.9 0.874 138.3 0.338 75.0 0.617 448.5 0.378 36.1
tai50b 458821517 0.000 0.2 0.000 5.8 0.000 0.1 0.005 10.2 0.000 3.0 0.000 0.7 0.000 0.2
tai60b 608215054 0.000 0.3 0.000 9.5 0.000 0.4 0.000 33.6 0.000 3.2 0.000 18.6 0.000 0.4
tai80b 818415043 0.000 3.9 0.000 27.7 0.000 2.0 0.025 0.0 0.000 4.0 0.000 218.1 0.000 1.4
tai100b 1185996137 0.000 6.1 0.000 42.5 0.040 8.1 0.028 72.6 0.000 5.0 0.000 160.8 0.000 2.9
tai150b 498896643 0.040 42.7 0.026 177.4 0.213 56.0 0.051 258.0 * * * * 0.099 46.4
sko72 66256 0.000 3.0 0.000 33.6 0.000 0.7 0.007 38.0 0.000 3.6 0.000 1.8 0.000 4.8
sko81 90998 0.000 10.3 0.000 39.9 0.000 3.2 0.019 57.1 0.000 4.1 0.000 2.4 0.000 3.3
sko90 115534 0.000 19.6 0.000 40.5 0.004 3.6 0.031 93.8 0.000 4.5 0.000 3.3 0.004 2.4
sko100a 152002 0.000 51.0 0.000 41.7 0.003 28.6 0.029 153.2 0.003 75.0 0.000 29.8 0.000 8.5
sko100b 153890 0.000 21.6 0.000 42.3 0.000 11.0 0.015 164.3 0.004 75.0 0.000 8.5 0.000 5.8
sko100c 147862 0.000 22.4 0.000 42.2 0.000 7.1 0.013 154.5 0.003 75.0 0.000 4.3 0.000 8.7
sko100d 149576 0.001 38.5 0.000 41.9 0.000 12.6 0.017 148.9 0.004 75.0 0.000 12.9 0.000 16.2
sko100e 149150 0.000 44.2 0.000 42.5 0.000 5.3 0.016 146.1 0.000 75.0 0.000 4.3 0.000 12.2
sko100f 149036 0.002 40.2 0.000 42.0 0.001 23.7 0.013 153.4 0.000 75.0 0.000 17.1 0.002 4.0
wil100 273038 0.000 28.9 0.000 42.0 0.000 6.9 0.008 155.1 * * * * 0.000 16.4
tho150 8133398 0.056 64.2 0.009 177.4 0.036 83.9 0.039 512.8 * * * * 0.008 57.4

avg. 0.067 32.2 0.058 47.8 0.069 23.1 0.143 121.4 0.088 40.3 0.062 76.4 0.061 22.0
⋆ The results of BLS and BMA are obtained by re-running the programs on our platform with tmax = 120 minutes, which are slightly different from the results

reported in [Benlic and Hao, 2013; Benlic and Hao, 2015].
◦ PHA, MSH and BLS-OpenMP are parallel algorithms.

5.6 Experimental analysis
This section is devoted to performing additional experiments to gain some understanding of the proposed

FPBS algorithm including the rationale behind the solution construction based on frequent patterns, the
effectiveness of the solution construction based on mined frequent patterns, and the impact of the number
of largest patterns m on the performance of the proposed FPBS algorithm.

5.6.1 Rationale behind the solution construction based on mined patterns
To explain the rationale behind the solution construct based on mined frequent patterns, we analyze the

structural similarity between high-quality solutions in the elite set, and the length distribution of the frequent
patterns mined from the elite set. Given two high-quality solutions πs and πt, we define their similarity as
follows:

sim(πs, πt) =
|πs ∩ πt|

n
(5.2)

where πs∩πt is the set of common elements shared by πs and πt. The larger the similarity between two
solutions, the more common elements they share.

As we mentioned above, a mined frequent pattern represents a set of same elements shared by two or
more solutions under a given minimum support θ. A frequent pattern can be directly converted to a partial
solution, thus we define the length of a pattern p as follows.

len(p) =
|p|
n

(5.3)

where the length of a pattern is the number of same elements. The larger the length of the pattern, the
more common elements they share. The solution similarity defined in Equation (5.2) can be considered
as a special case of the pattern length defined in Equation (5.3). Specifically, when the support value of



96 CHAPTER 5. FREQUENT PATTERN-BASED SEARCH FOR QAP

a mined pattern equals to 2, the pattern is simplified as the set of common elements shared by only two
solutions. It can be further confirmed according to the results reported in Figure 5.5, where the curve of the
maximum solution similarity (left sub-figure) is exactly the same as the curve of the maximum length (right
sub-figure).

In the experiments, we solve each benchmark instance one time with a time limit of tmax = 30 minutes.
Once the time limit is reached, we analyze the solution similarity of PS high-quality solutions stored in the
elite set according to Equation (5.2), and calculate the length distribution of a set of frequent patterns mined
from the elite set according to Equation (5.3). The computational results of the solution similarity between
high-quality solutions and the length distribution of the mined frequent patterns are presented in Figure 5.5.

 0

 0.2

 0.4

 0.6

 0.8

 1

tai40a
tai50a

tai60a
tai80a
tai100a
tai50b

tai60b
tai80b
tai100b
tai150b

sko72
sko81
sko90
sko100a
sko100b

sko100c
sko100d
sko100e
sko100f

w
il100

tho150

solution similarity

max_sim
avg_sim
min_sim

 0

 0.2

 0.4

 0.6

 0.8

 1

tai40a
tai50a

tai60a
tai80a
tai100a
tai50b

tai60b
tai80b
tai100b
tai150b

sko72
sko81
sko90
sko100a
sko100b

sko100c
sko100d
sko100e
sko100f

w
il100

tho150

pattern length

max_len
avg_len
min_len

Figure 5.5: Solution similarity between high-quality solutions (left sub-figure) and the length distribution
of the mined pattern (right sub-figure).

In Figure 5.5, we report the maximum value, average value, and minimum value of the solution similar-
ity and the pattern length, respectively. We can clearly observe that there is a high similarity between these
high-quality solutions. Specifically, it is true for all instances that the maximum solution similarity is larger
than 0.9. Also, the average solution similarities between any two high-quality solutions are larger than 0.5
except for sko72. While for instance sko72, its average solution similarity is about 0.4. A more significant
observation can be derived based on the lengths of the mined patterns showed in the right side of Figure 5.5.
The high structural similarities between the high-quality solutions provide the rationale behind our solution
construction based on mined pattern.

5.6.2 Effectiveness of the solution construction based on frequent pattern
The frequent pattern based solution construction method is a good alternative to the general crossover

operator in evolutionary algorithms and memetic algorithms. To demonstrate the effectiveness of the solu-
tion construction based on frequent pattern, we compare it with the general crossover operator within the
framework of our FPBS-QAP algorithm. In the experiments, we compare FPBS-QAP with its alternative
version FPBS-QAP0. FPBS-QAP0 is obtained from FPBS-QAP by replacing the frequent pattern based
solution construction by the standard uniform crossover operator used in [Benlic and Hao, 2015]. For each



5.6. EXPERIMENTAL ANALYSIS 97

algorithm, we run it on each benchmark instance 10 times with a time limit tmax = 30 minutes. The
comparative results between FPBS-QAP and FPBS-QAP0 are summarized in Table 5.7.

Table 5.7: Comparisons between FPBS-QAP0 and FPBS-QAP on hard instances under tmax = 30 minutes.
The success rate of reaching the best known value over 10 runs is indicated in parentheses.

FPBS-QAP0
⋆ FPBS-QAP

Instance BKV BPD APD WPD T (m) BPD APD WPD T (m)

tai40a 3139370 0.000(2) 0.059 0.074 7.4 0.000(1) 0.067 0.074 6.4
tai50a 4938796 0.241(0) 0.318 0.392 11.8 0.000(1) 0.279 0.415 17.3
tai60a 7205962 0.164(0) 0.334 0.486 13.1 0.165(0) 0.377 0.469 8.7
tai80a 13499184 0.446(0) 0.533 0.622 15.7 0.430(0) 0.516 0.614 18.2
tai100a 21052466 0.316(0) 0.466 0.615 16.8 0.311(0) 0.402 0.553 13.4
tai50b 458821517 0.000(10) 0.000 0.000 0.1 0.000(10) 0.000 0.000 0.1
tai60b 608215054 0.000(10) 0.000 0.000 0.3 0.000(10) 0.000 0.000 0.5
tai80b 818415043 0.000(10) 0.000 0.000 1.5 0.000(10) 0.000 0.000 1.2
tai100b 1185996137 0.000(8) 0.018 0.100 3.1 0.000(6) 0.040 0.100 4.0
tai150b 498896643 0.000(1) 0.204 0.358 20.2 0.000(1) 0.191 0.321 20.5
sko72 66256 0.000(9) 0.006 0.063 2.2 0.000(10) 0.000 0.000 1.4
sko81 90998 0.000(10) 0.000 0.000 5.1 0.000(10) 0.000 0.000 2.7
sko90 115534 0.000(9) 0.004 0.038 4.1 0.000(6) 0.015 0.038 4.2
sko100a 152002 0.000(9) 0.002 0.016 7.0 0.000(10) 0.000 0.000 7.7
sko100b 153890 0.000(8) 0.001 0.004 6.0 0.000(10) 0.000 0.000 7.7
sko100c 147862 0.000(10) 0.000 0.000 6.0 0.000(10) 0.000 0.000 8.7
sko100d 149576 0.000(10) 0.000 0.000 9.5 0.000(10) 0.000 0.000 9.0
sko100e 149150 0.000(10) 0.000 0.000 7.6 0.000(7) 0.001 0.004 10.3
sko100f 149036 0.000(7) 0.002 0.005 3.6 0.000(7) 0.003 0.021 4.4
wil100 273038 0.000(9) 0.000 0.002 6.0 0.000(10) 0.000 0.000 9.5
tho150 8133398 0.002(0) 0.022 0.080 19.1 0.000(1) 0.051 0.123 24.2

avg. 0.056 0.094 0.136 7.9 0.043 0.092 0.130 8.6
⋆ FPBS-QAP0 can also be considered as an alternative version of the BMA [Benlic and Hao, 2015] by

removing the mutation procedure.

From Table 5.7, we can clearly observe that FPBS-QAP performs better than FPBS-QAP0. FPBS-QAP
is able to achieve the better or the same BPD value on all instances except tai60a. While for instance tai60a,
the BPD value of FPBS-QAP is 0.165%, which is only slightly worse than 0.164% achieved by FPBS-
QAP0. We can also observe that the average BPD value of our FPBS-QAP algorithm is smaller than that
of FPBS-QAP0, i.e., 0.043% < 0.056%. Our FPBS-QAP algorithm also achieves better results in terms
of the average APD value and the average WPD value. To achieve these results, the average running time
of FPBS-QAP0 is slightly shorter than that of FPBS-QAP (i.e., 7.9 < 8.6 minutes). It seems reasonable
because FPBS-QAP needs to conditionally execute a frequent pattern mining procedure during the search.
These observations conforms the effectiveness of the solution construction based on mined frequent pattern.

5.6.3 Impact of the number of the largest patterns m

The number of the largest frequent patterns m(m ⩾ 1) is an important parameter of the proposed
FPBS-QAP algorithm. The m value decides the diversity of the new solutions constructed by our solution
construction method based on frequent patterns. To investigate the impact of different m values, we varied
the values of m within a reasonable range and compared their performances. The box and whisker plots
showed in Figure 5.6 are obtained by considering ten different values m ∈ {1, 3, . . . , 21}. The experiments
were conducted on four representative instances selected from different families (tai100a, tai150b, sko100f
and tho150). For each algorithm variant, we ran it on each instance 10 times with the stopping condition
tmax = 30 minutes.



98 CHAPTER 5. FREQUENT PATTERN-BASED SEARCH FOR QAP

number of patterns
1 3 5 7 9 11 13 15 17 19 21P

D
 to

 th
e 

be
st

 k
no

w
n 

va
lu

e(
%

)

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.6
tai100a

number of patterns
1 3 5 7 9 11 13 15 17 19 21P

D
 to

 th
e 

be
st

 k
no

w
n 

va
lu

e(
%

)

0

0.1

0.2

0.3

0.4

0.5

0.6
tai150b

number of patterns
1 3 5 7 9 11 13 15 17 19 21P

D
 to

 th
e 

be
st

 k
no

w
n 

va
lu

e(
%

)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
sko100f

number of patterns
1 3 5 7 9 11 13 15 17 19 21P

D
 to

 th
e 

be
st

 k
no

w
n 

va
lu

e(
%

)

0

0.05

0.1

0.15

tho150

Figure 5.6: Box and whisker plots corresponding to different values of m ∈ {1, 3, . . . , 21} in terms of the
percentage deviation (PD) to the best known value.

In Figure 5.6, X-axis indicates the different values for the largest pattern m and Y-axis shows the per-
formance (i.e., the percentage deviation to the best known value). We observe that the performance of the
FPBS-QAP algorithm strongly depends on the m value except for sko100f. FPBS-QAP has a good perfor-
mance when the number of the largest pattern m is fixed to 11. This justifies the default value for m shown
in Table 5.3.

To tune parameters β and max_no_update, we used the same approach and chosen β = 0.75, max _no_
update = 15 as their default values. It is possible that FPBS-QAP improves its performance when its
parameters are tuned for each specific problem instance.

5.7 Chapter conclusion
In this chapter, we proposed a general-purpose optimization approach called Frequent Pattern Based

Search (FPBS). The proposed approach relies on a data mining procedure to mine frequent patterns from
high-quality solutions collected during the search. The mined patterns are then used to create new starting
solutions for further improvements. By iterating the pattern mining phase and the optimization phase, FPBS
is designed to ensure an effective exploration of the combinatorial search space.

The viability of the proposed approach was verified on the well-known Quadratic Assignment Problem
(QAP). Extensive computational results on popular QAPLIB benchmarks showed that FPBS performs re-
markably well compared to very recent and state-of-the-art algorithms both in terms of solution quality and
computational efficiency. Specifically, our approach is able to find the best-known objective values for all
the benchmark instances except tai80a and tai100a within a time limit of 0.5 hour or 2 hours. To the best
of our knowledge, very few QAP algorithms can achieve such a performance. Furthermore, we performed
additional experiments to investigate three key issues of the proposed FPBS algorithm.



General Conclusion

Conclusions

This thesis investigated combinations of machine learning techniques and meta-heuristics for solving
three categories of Combinatorial Optimization Problems (COPs), including grouping problems such as
Graph Coloring Problem (GCP), subset selection problems such as Maximum Diversity Problem (MDP),
and permutation problems such as Quadratic Assignment Problem (QAP). Our proposed hybrid meta-
heuristics belong to the family of learning-driven heuristic optimization approaches. Recently, the topic
of learning-driven heuristic optimization has attracted increasing attention in combinatorial optimization.
Based on three different machine learning techniques, i.e., probability learning, opposition-based learn-
ing and frequent pattern mining, we proposed three learning-driven heuristic optimization approaches for
solving each category of COPs respectively. That is, a probability learning based local search for group-
ing problems, specially for GCP; an opposition-based memetic algorithm for MDP; and a frequent pattern
based search approach for QAP.

In Chapter 2, we briefly introduced the learning-driven heuristic optimization which uses machine
learning to help heuristic optimization. We broadly divided the learning-driven optimization algorithms
into four categories according to the purpose of introducing machine learning techniques: using machine
learning to improve the solution quality, speeding up the heuristic search, optimizing algorithm parameters,
and conducting algorithm selection.

In Chapter 3, we developed a Probability learning based Local Search (PLS) approach for solving
the class of grouping problems. The proposed PLS approach combines a probability learning technique
with an optimization procedure. Probability learning is used to maintain and update a set of probability
vectors, each probability vector specifying the probability that an item belongs to a particular group. At
each iteration, PLS builds a starting grouping solution according to the probability vectors and with the help
of a group selection strategy. PLS then applies a descent-based local search procedure to improve the given
grouping solution until a local optimum is reached. At this point, the starting solution and the ending local
optimum solution are compared to update the probability vector of each item according to the situation
of the item. Experimental analyses and performance assessments of the PLS approach were carried out
on GCP (denoted as PLSCOL) which is a well-known grouping problem. Compared to PLS, PLSCOL
has two enhancements. The first enhancement improves the probability learning scheme of the original
PLS approach by using a group matching procedure to find the group-to-group relation between a starting
solution and its improved solution. This matching procedure copes with the difficulty raised by symmetric
solutions of GCP. The second enhancement concerns the coloring algorithm based on tabu search, which is
more powerful than the descent-based coloring algorithm used in PLS. Experimental evaluations on popular
DIMACS challenge benchmark instances showed that PLSCOL competes favorably with all existing local
search based coloring algorithms. Compared with the most effective hybrid evolutionary algorithms which
are much more sophisticated in their design, PLSCOL remains competitive in spite of the simplicity of its
underlying coloring algorithm. Our additional experimental investigations also showed that 1) probability
learning scheme is highly valuable to increase the performance of the proposed PLSCOL; 2) the probability
smoothing technique which forgets old decisions is very useful to avoid search traps; 3) group matching
procedure is able to provide correct feedback information to the probability learning component; and 4) the

99



100 CHAPTER 5. FREQUENT PATTERN-BASED SEARCH FOR QAP

hybrid group selection strategy combining randomness and greediness is more suitable than other selection
strategies.

In Chapter 4, we presented an Opposition-Based Memetic Algorithm (OBMA) which uses Opposition-
Based Learning (OBL) to improve a memetic algorithm for solving MDP. The OBMA algorithm employs
OBL to reinforce population diversity and improve evolutionary search. OBMA distinguishes itself from
existing memetic algorithms by three aspects: a double trajectory search procedure which simultaneously
considers both a candidate solution and a corresponding opposite solution, a parametric constrained neigh-
borhood for effective local optimization, and a rank-based quality-and-distance pool updating strategy. Ex-
tensive comparative experiments on 80 large benchmark instances (with 2000 to 5000 items) from the
literature have demonstrated the competitiveness of the proposed OBMA algorithm. OBMA matches the
best-known results for most of instances and in particular finds improved best results (new lower bounds)
for 22 instances which are useful for the assessment of other MDP algorithms. Our experimental analy-
sis has also confirmed that integrating OBL into the memetic search framework does improve the search
efficiency of the classical memetic search.

In Chapter 5, we proposed a general-purpose optimization approach called Frequent Pattern Based
Search (FPBS). The proposed approach relies on a data mining procedure to mine frequent patterns from
high-quality solutions collected during the search. The mined patterns are then used to create new starting
solutions for further improvements. By iterating the pattern mining phase and the optimization phase,
FPBS is designed to ensure an effective exploration of the combinatorial search space. The viability of
the proposed approach was verified on the well-known QAP. Extensive computational results on popular
QAPLIB benchmarks showed that FPBS performs remarkably well compared to very recent and state-of-
the-art algorithms both in terms of solution quality and computational efficiency. Specifically, our approach
is able to find the best-known objective values for all the benchmark instances except tai80a and tai100a
within a time limit of 0.5 hour or 2 hours. To the best of our knowledge, very few QAP algorithms can
achieve such a performance. Furthermore, we performed experiments to investigate some key issues of the
proposed FPBS algorithm.

Perspectives
The main objective of this thesis is to design learning-driven heuristic optimization approaches for

solving hard combinatorial search problems. We have proposed three learning-driven heuristic optimization
algorithms to solve classic NP-hard problems. Our contributions and the observations made in this thesis
also pose a number of interesting open questions for future work.

— Extend to solve other COPs: Our proposed learning-driven heuristic optimization methods are
general-purpose methods, which can be applied to solve a wide family of COPs. For example, we
introduce the concept of opposition-based learning into the Maximum Diversity Problem (MDP), and
propose an effective Opposition-Based Memetic Algorithm (OBMA) in chapter 4. MDP is a repre-
sentative subset selection problem, and there are many similar problems in the field of combinatorial
optimization. It would be very reasonable to apply OBMA to solve other subset selection problems,
such as critical node problems [Zhou and Hao, 2017a; Zhou et al., 2017e], and other dispersion or
diversity problems [Prokopyev et al., 2009].

— Improve with parallel computing and big data: Sequential heuristic algorithms have achieved sig-
nificant progress in combinatorial optimization and they can find very high-quality solutions. How-
ever, the complexity and computational requirements of COPs are becoming increasingly high. Par-
allel techniques appear to be an attractive and effective means to solve hard problems. They should be
able to provide better solutions and reduce the computational time required and allow new powerful
algorithms to be designed and tested. Moreover, high performance computers as well as computing
platforms such as CUDA and OpenMPC (Open MP extended for CUDA) become widely available,
exploring the performance of parallel meta-heuristics has become an important research direction



5.7. CHAPTER CONCLUSION 101

[Alba et al., 2013]. It would be very interesting to implement our learning-driven heuristic optimiza-
tion algorithms in a parallel way. For our Frequent Pattern Based Search (FPBS) approach proposed
in Chapter 5, the frequent patterns are mined from only a small size of high-quality solutions. With
the help of big data platform, we are able to investigate the frequent patterns mined from a large size
of high-quality solutions. Moreover, FPBS can be implemented in a parallel way because it has a
highly parallel-able computational architecture. That it, for each mined frequent pattern, the corre-
sponding solution construction and the optimization procedure can be executed in parallel on a high
performance computing platform.

— Deal with stochastic COPs: In this thesis, we only considered the deterministic versions of the
corresponding COPs. They frequently assume that the problem inputs, the objective function, and
the set of optimization constraints are deterministic. However, uncertainty is ubiquitous in real-
world applications. Importantly, machine learning techniques can be helpful to discover potential
relationships between the search space and the objective function that the traditional methods ignore.
For example, reinforcement learning is the study of planning and learning in a scenario, where a
learner (i.e., an agent) actively interacts with an unknown environment to achieve a certain goal
[Sutton and Barto, 1998]. It would be very interesting to combine machine learning techniques with
heuristic algorithms to solve stochastic COPs.





List of Figures

1 The structure of the whole thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 A GCP example. (a) An undirected graph G with six vertices. (b) The 3-coloring for the G. 7
1.2 A MDP example. (a) A MDP instance of size 5 and m = 3. (b) An optimal solution for the

instance (i.e., a subset S = {v1, v2, v4}) and its cost can be computed as d12 + d14 + d24 =
0.7 + 0.9 + 0.8 = 2.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 A QAP example. (a) A QAP instance of size 4. (b) An optimal assignment for the instance
(x → Z, y → W, z → X,w → Y ) and its assignment cost can be computed as a12 · b34 +
a13 ·b31+a14 ·b32+a23 ·b41+a24 ·b42+a34 ·b12 = 3·55+0·53+2·40+0·53+1·62+4·22 = 395. 9

1.4 A brief taxonomy of solution approaches for COPs. . . . . . . . . . . . . . . . . . . . . . 10

2.1 The general process of knowledge discovery. . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 An overview of main learning tasks in machine learning. . . . . . . . . . . . . . . . . . . 20
2.3 A general description of algorithm selection. . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 A schematic diagram of PLS for grouping problems. From a starting solution generated
according to the probability matrix P , PLS iteratively runs until its meets its stop condition
(see Sections 3.2.2-3.2.5 for more details). . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Probability matrix P for n items and k groups. . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Distribution of vertices of solutions on instance DSJC250.1. The value on i-th row and j-th

column represents the number of vertices whose color have changed from color i to color
j. (a) An improved solution S ′

ts (with f(S ′
ts) = 0) obtained by tabu search. (b) A starting

solution S (with f(S) = 568). (c) An improved solution S ′
ds with f(S ′

ds) = 10 obtained by
descent-based local search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 (a) A starting solutions S and its improved solution S ′. (b) A complete bipartite graph with
the weights between two groups ωgi,g′j

= |gi ∩ g′j|. (c) The corresponding maximum weight
complete matching with the maximum weight of 6. . . . . . . . . . . . . . . . . . . . . . 42

3.5 Running profile of PLS (with smoothing) and PLS1 (without smoothing) on instances flat300_28_0
and latin_square_10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 (a) A candidate solution S = {v2, v3, v5} and (b) its an opposite solution S ′ = {v1, v2, v4}. 58
4.2 A general framework of OBMA algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 A simple diagram of the original neighborhood (|S| ∗ |N \S|) and its constrained neighbor-

hood (|U c
S| ∗ |U c

N\S|). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4 Average objective values and average CPU times spent on 10 MDG-a instances obtained by

executing TS with different values of the scale coefficient ρ. . . . . . . . . . . . . . . . . 73
4.5 Comparative results of the populations built by population initialization with OBL (PIOBL)

or without OBL (PI0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 A schematic diagram of the frequent pattern mining. . . . . . . . . . . . . . . . . . . . . 83
5.2 An illustrative example of transformation procedure. . . . . . . . . . . . . . . . . . . . . 88
5.3 An FP-tree example. (a) A database. (b) The FP-tree for the database (minimum support = 2). 89

103



104 LIST OF FIGURES

5.4 An FP-tree example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.5 Solution similarity between high-quality solutions (left sub-figure) and the length distribu-

tion of the mined pattern (right sub-figure). . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6 Box and whisker plots corresponding to different values of m ∈ {1, 3, . . . , 21} in terms of

the percentage deviation (PD) to the best known value. . . . . . . . . . . . . . . . . . . . 98



List of Tables

2.1 Related surveys on using machine learning and data mining for heuristic optimization. . . 22
2.2 A summary of works on using machine learning to improve the quality of the obtained

solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Parameter settings of PLSCOL algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Comparative results of PLSCOL and PLS on the difficult DIMACS graphs. . . . . . . . . 45
3.3 Comparative results of PLSCOL and 10 state-of-the-art algorithms on the difficult DIMACS

graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Comparative results of PLSCOL and other local search algorithms to find optimal 25-

coloring on instance le450_25c and le450_25d. . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Comparative results of PLSCOL and MACOL on easy DIMACS graphs. . . . . . . . . . . 47
3.6 Comparative performance of PLS and PLS2. . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.7 Comparative results of PLSCOL and PLSCOL1 on the difficult DIMACS graphs. . . . . . 50
3.8 Comparative results of PLSCOL and PLSCOL2 on the difficult DIMACS graphs. . . . . . 51
3.9 Effect of penalization factor β on the running time (s) of PLSCOL. . . . . . . . . . . . . . 51

4.1 80 large MDP benchmark instances used in the experiments. . . . . . . . . . . . . . . . . 66
4.2 Parameter settings of OBMA algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Comparison of the results obtained by OBMA0 and OBMA on the data set MDG-a. . . . . 68
4.4 Comparison of the results obtained by OBMA0 and OBMA on the data set MDG-b. . . . . 69
4.5 Comparison of the results obtained by OBMA0 and OBMA on the data set MDG-c. . . . . 70
4.6 Comparison of the results obtained by OBMA0 and OBMA on the data set b2500. . . . . . 70
4.7 Comparison of the results obtained by OBMA0 and OBMA on the data sets p3000 and p5000. 71
4.8 A summary of win statistical results (OBMA0 | OBMA) on all data sets. . . . . . . . . . . 71
4.9 Comparison of OBMA with other algorithms on the data sets MDG-a, b2500, p3000 and

p5000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.10 Comparison of OBMA with MAMDP on the data sets MDG-b and MDG-c, the best-known

results are obtained by G_SS, ITS and VNS. . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.11 Comparison of the results obtained by OBMA under the rank-based quality-and-distance

pool updating strategy (OBMARBQD) and the general quality-and-distance (GQD) pool
updating strategy (OBMAGQD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 Main work on hybridizing association rules mining techniques with metaheuristics for solv-
ing combinatorial optimization problems. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 A simple summary of frequent pattern mining algorithms [Aggarwal et al., 2014]. . . . . . 83
5.3 Parameter settings of FPBS-QAP algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4 Comparative performance of the proposed FPBS-QAP algorithm with BLS and BMA on

21 hard instances under tmax = 30 minutes. The success rate of reaching the best-known
value over 10 runs is indicated in parentheses. . . . . . . . . . . . . . . . . . . . . . . . . 93

105



106 LIST OF TABLES

5.5 Comparative performance of FPBS-QAP with BLS and BMA on 21 hard instances under
tmax = 120 minutes. The success rate of reaching the best-known value over 10 runs is
indicated in parentheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 Comparative performance between our FPBS-QAP and the state-of-the-art algorithms on
hard instances in terms of the APD value. Computational time are given in minutes for
indicative purposes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.7 Comparisons between FPBS-QAP0 and FPBS-QAP on hard instances under tmax = 30
minutes. The success rate of reaching the best known value over 10 runs is indicated in
parentheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



List of Publications

Published/accepted journal papers

1. Yangming Zhou, Jin-Kao Hao and Béatrice Duval. Reinforcement learning based local search for
grouping problems: A case study on graph coloring. Expert Systems with Applications 64:412-422, 2016.

2. Yangming Zhou and Jin-Kao Hao. An iterated local search for minimum differential dispersion
probelm. Knowledge-Based Systems 125:26-38, 2017.

3. Yangming Zhou, Jin-Kao Hao and Béatrice Duval. Opposition-based memetic search for the maxi-
mum diversity problem. IEEE Transactions on Evolutionary Computation, 21(5):731-745, 2017.

Published/accepted conference papers

1. Yangming Zhou and Jin-Kao Hao. A fast heuristic algorithm for the critical node problem. in Pro-
ceedings of the Genetic and Evolutionary Computation Conference Companion, ACM, Berlin, Germany,
July 15-19, 2017, 121-122.

Revised/submitted journal papers

1. Yangming Zhou, Béatrice Duval and Jin-Kao Hao. Improving probability learning based local search
for graph coloring. Applied Soft Computing, Revised, September, 2017.

2. Yangming Zhou, Jin-Kao Hao and Fred Glover. Memetic search for identifying critical nodes in
sparse graphs. arXiv:1705.04119, Submitted, May, 2017.

3. Yangming Zhou, Jin-Kao Hao and Béatrice Duval. When data mining meets optimization: A case
study on the quadratic assignment problem. arXiv:1708.05214, Submitted, August, 2017.

107





References

[Acan and Ünveren, 2015] Adnan Acan and Ahmet Ünveren. A great deluge and tabu search hybrid with
two-stage memory support for quadratic assignment problem. Applied Soft Computing, 36:185–203,
2015. 85, 92, 93, 94

[Adenso-Diaz and Laguna, 2006] Belarmino Adenso-Diaz and Manuel Laguna. Fine-tuning of algorithms
using fractional experimental designs and local search. Operations Research, 54(1):99–114, 2006. 27

[Aggarwal et al., 2014] Charu C Aggarwal, Mansurul A Bhuiyan, and Mohammad Al Hasan. Frequent
pattern mining algorithms: A survey. In Frequent Pattern Mining, pages 19–64. Springer, 2014. 21, 83,
84

[Agrawal and Srikant, 1994] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining as-
sociation rules in large databases. In Proceedings of the 20th International Conference on Very Large
Data Bases, VLDB ’94, pages 487–499, San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers
Inc. 21

[Agrawal et al., 1993] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules
between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’93, pages 207–216, New York, NY, USA, 1993. ACM.
21, 79, 80

[Agustı et al., 2012] LE Agustı, Sancho Salcedo-Sanz, Silvia Jiménez-Fernández, Leopoldo Carro-Calvo,
Javier Del Ser, José Antonio Portilla-Figueras, et al. A new grouping genetic algorithm for clustering
problems. Expert Systems with Applications, 39(10):9695–9703, 2012. 33

[Ahmed, 2015] Zakir Hussain Ahmed. A multi-parent genetic algorithm for the quadratic assignment
problem. Opsearch, 52(4):714–732, 2015. 85

[Aksan et al., 2017] Yagmur Aksan, Tansel Dokeroglu, and Ahmet Cosar. A stagnation-aware cooperative
parallel breakout local search algorithm for the quadratic assignment problem. Computers & Industrial
Engineering, 103:105–115, 2017. 85, 94

[Al-Duoli and Rabadi, 2014] Fatemah Al-Duoli and Ghaith Rabadi. Data mining based hybridization of
meta-RaPS. Procedia Computer Science, 36:301–307, 2014. 27

[Al-Qunaieer et al., 2010] Fares S. Al-Qunaieer, Hamid R. Tizhoosh, and Shahryar Rahnamayan. Opposi-
tion based computing - A survey. In International Joint Conference on Neural Networks, IJCNN 2010,
Barcelona, Spain, 18-23 July, 2010, pages 1–7, 2010. 56

[Alba et al., 2013] Enrique Alba, Gabriel Luque, and Sergio Nesmachnow. Parallel metaheuristics: Recent
advances and new trends. International Transactions in Operational Research, 20(1):1–48, 2013. 101

[Anstreicher et al., 2002] Kurt Anstreicher, Nathan Brixius, Jean-Pierre Goux, and Jeff Linderoth. Solving
large quadratic assignment problems on computational grids. Mathematical Programming, 91(3):563–
588, 2002. 85

[Arin and Rabadi, 2016] Arif Arin and Ghaith Rabadi. Integrating estimation of distribution algorithms
versus Q-learning into Meta-RaPS for solving the 0-1 multidimensional knapsack problem. Computers
& Industrial Engineering, 2016. 25

109



110 REFERENCES

[Aringhieri and Cordone, 2011] Roberto Aringhieri and Roberto Cordone. Comparing local search meta-
heuristics for the maximum diversity problem. Journal of the Operational Research Society, 62(2):266–
280, 2011. 55, 63

[Aringhieri et al., 2008] Roberto Aringhieri, Roberto Cordone, and Yari Melzani. Tabu search versus
GRASP for the maximum diversity problem. 4OR: A Quarterly Journal of Operations Research,
6(1):45–60, 2008. 55, 63

[Aringhieri et al., 2009] Roberto Aringhieri, Maurizio Bruglieri, and Roberto Cordone. Optimal results
and tight bounds for the maximum diversity problem. Foundation of Computing and Decision Sciences,
34(2):73–85, 2009. 55

[Aziz and Tayarani-N., 2016] Mahdi Aziz and Mohammad-H. Tayarani-N. Opposition-based magnetic op-
timization algorithm with parameter adaptation strategy. Swarm and Evolutionary Computation, 26:97–
119, 2016. 56

[Baluja et al., 2000] S Baluja, A Barto, KD Boese, J Boyan, W Buntine, T Carson, R Caruana, D Cook,
S Davies, T Dean, et al. Statistical machine learning for large-scale optimization. Neural Computing
Surveys (CSUR), 3:1–58, 2000. 22, 27

[Barbalho et al., 2013] Hugo Barbalho, Isabel Rosseti, Simone L Martins, and Alexandre Plastino. A hy-
brid data mining GRASP with path-relinking. Computers & Operations Research, 40(12):3159–3173,
2013. 26, 81

[Barr et al., 1995] Richard S Barr, Bruce L Golden, James P Kelly, Mauricio GC Resende, and William R
Stewart. Designing and reporting on computational experiments with heuristic methods. Journal of
Heuristics, 1(1):9–32, 1995. 27

[Barreto et al., 2007] Sérgio Barreto, Carlos Ferreira, Jose Paixao, and Beatriz Sousa Santos. Using clus-
tering analysis in a capacitated location-routing problem. European Journal of Operational Research,
179(3):968–977, 2007. 25

[Battiti et al., 2008] Roberto Battiti, Mauro Brunato, and Franco Mascia. Reactive Search and Intelligent
Optimization, volume 45. Springer Science & Business Media, 2008. 18, 24

[Bellio et al., 2012] Ruggero Bellio, Luca Di Gaspero, and Andrea Schaerf. Design and statistical analysis
of a hybrid local search algorithm for course timetabling. Journal of Scheduling, 15(1):49–61, 2012.

[Benlic and Hao, 2011] Una Benlic and Jin-Kao Hao. A multilevel memetic approach for improving graph
k-partitions. IEEE Transactions on Evolutionary Computation, 15(5):624–642, 2011. 56, 84, 90

[Benlic and Hao, 2012] Una Benlic and Jin-Kao Hao. A study of breakout local search for the minimum
sum coloring problem. In Proceedings of the 9th International Conference on Simulated Evolution and
Learning, SEAL’12, pages 128–137, Berlin, Heidelberg, 2012. Springer-Verlag. 11

[Benlic and Hao, 2013] Una Benlic and Jin-Kao Hao. Breakout local search for the quadratic assignment
problem. Applied Mathematics and Computation, 219(9):4800–4815, 2013. 11, 84, 85, 87, 91, 92, 95

[Benlic and Hao, 2015] Una Benlic and Jin-Kao Hao. Memetic search for the quadratic assignment prob-
lem. Expert Systems with Applications, 42(1):584–595, 2015. 83, 85, 91, 92, 95, 96, 97

[Benlic et al., 2017] Una Benlic, Michael G. Epitropakis, and Edmund K. Burke. A hybrid breakout lo-
cal search and reinforcement learning approach to the vertex separator problem. European Journal of
Operational Research, 261(3):803–818, 2017. 11, 28, 79

[Birattari, 2009] Mauro Birattari. Tuning Metaheuristics: A Machine Learning Perspective. Springer Pub-
lishing Company, Incorporated, 1st ed. 2005. 2nd printing edition, 2009. 18

[Blöchliger and Zufferey, 2008] Ivo Blöchliger and Nicolas Zufferey. A graph coloring heuristic using
partial solutions and a reactive tabu scheme. Computers & Operation Research, 35(3):960–975, 2008.
45, 46



REFERENCES 111

[Blum and Roli, 2003] Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Computing Surveys (CSUR), 35(3):268–308, 2003. 6, 10,
11

[Blum et al., 2011] Christian Blum, Jakob Puchinger, Günther R Raidl, and Andrea Roli. Hybrid meta-
heuristics in combinatorial optimization: A survey. Applied Soft Computing, 11(6):4135–4151, 2011.
10, 11, 13

[Bouhmala and Granmo, 2008] Noureddine Bouhmala and Ole-Christoffer Granmo. Solving graph col-
oring problems using learning automata. In Evolutionary Computation in Combinatorial Optimization
(EvoCOP 2008), pages 277–288, 2008. 40

[Boyan and Moore, 1998] Justin A. Boyan and Andrew W. Moore. Learning evaluation functions for global
optimization and boolean satisfiability. In Proceedings of the Fifteenth National/Tenth Conference on
Artificial Intelligence/Innovative Applications of Artificial Intelligence, AAAI ’98/IAAI ’98, pages 3–
10, Menlo Park, CA, USA, 1998. American Association for Artificial Intelligence. 25

[Brélaz, 1979] Daniel Brélaz. New methods to color vertices of a graph. Commumications of the ACM,
22(4):251–256, 1979. 39, 43

[Brimberg et al., 2009] Jack Brimberg, Nenad Mladenović, Dragan Urošević, and Eric Ngai. Variable
neighborhood search for the heaviest k-subgraph. Computers & Operations Research, 36(11):2885–
2891, 2009. 55, 67, 69, 72

[Burke et al., 1994] EK Burke, DG Elliman, and R Weare. A university timetabling system based on graph
colouring and constraint manipulation. Journal of Research on Computing in Education, 27(1):1–18,
1994. 7

[Burke et al., 2002] Edmund K Burke, Bart L MacCarthy, Sanja Petrovic, and Rong Qu. Knowledge dis-
covery in a hyper-heuristic for course timetabling using case-based reasoning. In International Confer-
ence on the Practice and Theory of Automated Timetabling, pages 276–287. Springer, 2002. 29

[Burke et al., 2010] Edmund K Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Özcan,
and John R Woodward. A classification of hyper-heuristic approaches. In Handbook of Metaheuristics,
pages 449–468. Springer, 2010. 18

[Burke et al., 2013] Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela
Ochoa, Ender Özcan, and Rong Qu. Hyper-heuristics: a survey of the state of the art. Journal of
the Operational Research Society, 64(12):1695–1724, Dec 2013. 24, 29

[Cadenas et al., 2009] José Manuel Cadenas, M Carmen Garrido, and E Muñoz. Using machine learning
in a cooperative hybrid parallel strategy of metaheuristics. Information Sciences, 179(19):3255–3267,
2009. 24, 25

[Cai et al., 2013] Shaowei Cai, Kaile Su, Chuan Luo, and Abdul Sattar. NuMVC: An efficient local search
algorithm for minimum vertex cover. Journal of Artificial Intelligence Research, 46:687–716, 2013. 38

[Calégari et al., 1999] Patrice Calégari, Giovanni Coray, Alain Hertz, Daniel Kobler, and Pierre Kuonen.
A taxonomy of evolutionary algorithms in combinatorial optimization. Journal of Heuristics, 5(2):145–
158, 1999. 13

[Calvet et al., 2017] Laura Calvet, Jésica de Armas, David Masip, and Angel A Juan. Learnheuristics:
hybridizing metaheuristics with machine learning for optimization with dynamic inputs. Open Mathe-
matics, 15(1):261–280, 2017. 22, 23

[Cao et al., 2007] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from
pairwise approach to listwise approach. In Proceedings of the 24th International Conference on Machine
Learning, pages 129–136. ACM, 2007. 21

[Caramia and Dell’Olmo, 2008] Massimiliano Caramia and Paolo Dell’Olmo. Coloring graphs by iterated
local search traversing feasible and infeasible solutions. Discrete Applied Mathematics, 156(2):201–217,
2008. 45



112 REFERENCES

[Chaitin, 1982] Gregory J Chaitin. Register allocation & spilling via graph coloring. ACM Sigplan Notices,
17(6):98–101, 1982. 7

[Chen and Hao, 2016] Yuning Chen and Jin-Kao Hao. Memetic search for the generalized quadratic mul-
tiple knapsack problem. IEEE Transactions on Evolutionary Computation, 20(6):908–923, 2016. 56,
64

[Chen et al., 2011] Xianshun Chen, Yew-Soon Ong, Men-Hiot Lim, and Key Chen Tan. A multi-facet
survey on memetic computation. IEEE Transactions on Evolutionary Computation, 15(5):591–607,
2011. 56

[Connolly, 1990] David T Connolly. An improved annealing scheme for the QAP. European Journal of
Operational Research, 46(1):93–100, 1990. 85

[Corne et al., 2012] David Corne, Clarisse Dhaenens, and Laetitia Jourdan. Synergies between operations
research and data mining: The emerging use of multi-objective approaches. European Journal of Oper-
ational Research, 221(3):469 – 479, 2012. 22, 23

[Cowling et al., 2001] Peter I. Cowling, Graham Kendall, and Eric Soubeiga. A hyperheuristic approach to
scheduling a sales summit. In Selected Papers from the Third International Conference on Practice and
Theory of Automated Timetabling III, PATAT ’00, pages 176–190, London, UK, UK, 2001. Springer-
Verlag. 29

[Cruz-Reyes et al., 2012] Laura Cruz-Reyes, Claudia Gómez-Santillán, Joaquín Pérez-Ortega, Vanesa
Landero, Marcela Quiroz, and Alberto Ochoa. Algorithm selection: From meta-learning to hyper-
heuristics. In Intelligent Systems. InTech, 2012. 29

[Czapiński, 2013] Michał Czapiński. An effective parallel multistart tabu search for quadratic assignment
problem on CUDA platform. Journal of Parallel and Distributed Computing, 73(11):1461–1468, 2013.
85

[Davis, 1991] Lawrence Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York,
1991. 13

[de Freitas et al., 2014] Alan R. R. de Freitas, Frederico Gadelha Guimarães, Rodrigo César Pedrosa Silva,
and Marcone Jamilson Freitas Souza. Memetic self-adaptive evolution strategies applied to the maximum
diversity problem. Optimization Letters, 8(2):705–714, 2014. 55, 56, 69

[de Lima Júnior et al., 2007] Francisco Chagas de Lima Júnior, Jorge Dantas de Melo, and Adriao
Duarte Doria Neto. Using Q-learning algorithm for initialization of the GRASP metaheuristic and
genetic algorithm. In 2007 International Joint Conference on Neural Networks (IJCNN 2007), pages
1243–1248. IEEE, 2007. 25

[de Werra, 1985] Dominique de Werra. An introduction to timetabling. European Journal of Operational
Research, 19(2):151–162, 1985. 7

[Demirel and Toksarı, 2006] Nihan Çetin Demirel and M Duran Toksarı. Optimization of the quadratic
assignment problem using an ant colony algorithm. Applied Mathematics and Computation, 183(1):427–
435, 2006. 85

[Demšar, 2006] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research, 7:1–30, 2006. 67

[Di Gaspero et al., 2013] Luca Di Gaspero, Andrea Rendl, and Tommaso Urli. A hybrid ACO + CP for
balancing bicycle sharing systems. In International Workshop on Hybrid Metaheuristics, pages 198–212.
Springer, 2013. 15

[Di Gaspero, 2015] Luca Di Gaspero. Integration of metaheuristics and constraint programming, pages
1225–1237. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015. 15

[Dokeroglu and Cosar, 2016] Tansel Dokeroglu and Ahmet Cosar. A novel multistart hyper-heuristic algo-
rithm on the grid for the quadratic assignment problem. Engineering Applications of Artificial Intelli-
gence, 52:10–25, 2016. 85, 94



REFERENCES 113

[Dorigo and Blum, 2005] Marco Dorigo and Christian Blum. Ant colony optimization theory: A survey.
Theoretical Computer Science, 344(2-3):243–278, 2005. 13

[Dorigo et al., 1996] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
26(1):29–41, February 1996. 13

[Dorne and Hao, 1998] Raphaël Dorne and Jin-Kao Hao. A new genetic local search algorithm for graph
coloring. In Proceedings of the 5th International Conference on Parallel Problem Solving from Nature,
PPSN V, pages 745–754. Springer, 1998. 41

[dos Santos et al., 2014] João Paulo Queiroz dos Santos, Jorge Dantas de Melo, Adrião Dória Duarte Neto,
and Daniel Aloise. Reactive search strategies using reinforcement learning, local search algorithms and
variable neighborhood search. Expert Systems with Applications, 41(10):4939–4949, 2014. 28

[Drezner et al., 2005] Zvi Drezner, Peter M Hahn, and Éeric D Taillard. Recent advances for the quadratic
assignment problem with special emphasis on instances that are difficult for meta-heuristic methods.
Annals of Operations Research, 139(1):65–94, 2005. 9, 85

[Duarte and Martí, 2007] Abraham Duarte and Rafael Martí. Tabu search and GRASP for the maximum
diversity problem. European Journal of Operational Research, 178(1):71–84, 2007. 55

[Dueck and Scheuer, 1990] Gunter Dueck and Tobias Scheuer. Threshold accepting: A general purpose
optimization algorithm appearing superior to simulated annealing. Journal of Computational Physics,
90(1):161–175, 1990. 12

[Dueck, 1993] Gunter Dueck. New optimization heuristics: The great deluge algorithm and the record-to-
record travel. Journal of Computational Physics, 104(1):86–92, 1993. 12

[Duman and Or, 2007] Ekrem Duman and Ilhan Or. The quadratic assignment problem in the context of
the printed circuit board assembly process. Computers & Operations Research, 34(1):163–179, 2007. 9,
10

[Elhag and Özcan, 2015] Anas Elhag and Ender Özcan. A grouping hyper-heuristic framework: Applica-
tion on graph colouring. Expert Systems with Applications, 42(13):5491–5507, 2015. 33, 40

[Ergezer and Simon, 2011] Mehmet Ergezer and Dan Simon. Oppositional biogeography-based optimiza-
tion for combinatorial problems. In Evolutionary Computation (CEC), 2011 IEEE Congress on, pages
1496–1503. IEEE, 2011. 25, 26, 56

[Erkut and Neuman, 1991] Erhan Erkut and Susan Neuman. Comparison of four models for dispersing
facilities. INFOR: Information Systems and Operational Research, 29(2):68–86, 1991. 8

[Falkenauer, 1998] Emanuel Falkenauer. Genetic Algorithms and Grouping Problems. John Wiley & Sons,
Inc., 1998. 33

[Feige et al., 2001] Uriel Feige, David Peleg, and Guy Kortsarz. The dense k-subgraph problem. Algorith-
mica, 29(3):410–421, 2001. 55

[Feo and Resende, 1995] Thomas A Feo and Mauricio GC Resende. Greedy randomized adaptive search
procedures. Journal of Global Optimization, 6(2):109–133, 1995. 12

[Fink, 1998] Eugene Fink. How to solve it automatically: Selection among problem solving methods.
In Proceedings of the Fourth International Conference on Artificial Intelligence Planning Systems,
AIPS’98, pages 128–136, 1998. 28

[Fleurent and Ferland, 1996] Charles Fleurent and Jacques A Ferland. Genetic and hybrid algorithms for
graph coloring. Annals of Operations Research, 63(3):437–461, 1996. 39, 41

[Focacci et al., 2004] Filippo Focacci, Francois Laburthe, and Andrea Lodi. Local search and constraint
programming, pages 293–329. Springer US, Boston, MA, 2004. 15



114 REFERENCES

[Fu and Hao, 2015] Zhang-Hua Fu and Jin-Kao Hao. Dynamic programming driven memetic search for
the steiner tree problem with revenues, budget, and hop constraints. INFORMS Journal on Computing,
27(2):221–237, 2015. 15

[Fürnkranz and Hüllermeier, 2010] Johannes Fürnkranz and Eyke Hüllermeier. Preference learning: An
introduction. In Preference Learning, pages 1–17. Springer, 2010. 21

[Galinier and Hao, 1999] Philippe Galinier and Jin-Kao Hao. Hybrid evolutionary algorithms for graph
coloring. Journal of Combinatorial Optimization, 3(4):379–397, 1999. 33, 39, 41, 45, 48

[Galinier and Hertz, 2006] Philippe Galinier and Alain Hertz. A survey of local search methods for graph
coloring. Computers & Operation Research, 33:2547–2562, 2006. 39

[Galinier et al., 2008] Philippe Galinier, Alain Hertz, and Nicolas Zufferey. An adaptive memory algorithm
for the k-coloring problem. Discrete Applied Mathematics, 156(2):267–279, 2008. 43, 45

[Galinier et al., 2011] Philippe Galinier, Zied Boujbel, and Michael Coutinho Fernandes. An efficient
memetic algorithm for the graph partitioning problem. Annals of Operations Research, 191(1):1–22,
2011. 56, 63, 64

[Galinier et al., 2013] Philippe Galinier, Jean-Philippe Hamiez, Jin-Kao Hao, and Daniel Porumbel. Re-
cent advances in graph vertex coloring. Handbook of Optimization, pages 505–528, 2013. 7, 39, 43

[Gallego et al., 2009] Micael Gallego, Abraham Duarte, Manuel Laguna, and Rafael Martí. Hybrid heuris-
tics for the maximum diversity problem. Computational Optimization and Applications, 44(3):411–426,
2009. 55, 67, 69, 73

[Gambardella et al., 1999] Luca Maria Gambardella, É D Taillard, and Marco Dorigo. Ant colonies for the
quadratic assignment problem. Journal of the Operational Research Society, 50(2):167–176, 1999. 85

[Gamst, 1986] Andreas Gamst. Some lower bounds for a class of frequency assignment problems. IEEE
Transactions on Vehicular Technology, 35(1):8–14, 1986. 7

[García et al., 2017] José García, Broderick Crawford, Ricardo Soto, Carlos Castro, and Fernando Paredes.
A k-means binarization framework applied to multidimensional knapsack problem. Applied Intelligence,
Jul 2017. 25

[Garey and Johnson, 1979] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979. 7, 33

[Gersmann and Hammer, 2005] Kai Gersmann and Barbara Hammer. Improving iterative repair strategies
for scheduling with the SVM. Neurocomputing, 63:271–292, 2005. 25

[Ghosh, 1996] Jay B Ghosh. Computational aspects of the maximum diversity problem. Operations Re-
search Letters, 19(4):175–181, 1996. 8, 55

[Glover and Laguna, 1993] Fred Glover and Manuel Laguna. Modern heuristic techniques for combinato-
rial problems. chapter Tabu Search, pages 70–150. John Wiley & Sons, Inc., New York, NY, USA, 1993.
12, 13

[Glover and Laguna, 1997] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers,
Norwell, MA, USA, 1997. 12, 60, 63

[Glover et al., 1993] Fred Glover, Eric Taillard, and Dominique de Werra. A user’s guide to tabu search.
Annals of Operations Research, 41(1-4):3–28, May 1993. 62

[Glover et al., 1998] Fred Glover, Ching-Chung Kuo, and Krishna S Dhir. Heuristic algorithms for the
maximum diversity problem. Journal of Information and Optimization Sciences, 19(1):109–132, 1998.
8, 55

[Glover et al., 2004] Fred Glover, Manuel Laguna, and Rafael Martí. New ideas and applications of scatter
search and path relinking. In New Optimization Techniques in Engineering, pages 367–383. Springer,
2004. 13



REFERENCES 115

[Glover, 1986] Fred Glover. Future paths for integer programming and links to artificial intelligence. Com-
puters & Operations Research, 13(5):533–549, May 1986. 10

[Glover, 1989] Fred Glover. Tabu searchpart I. ORSA Journal on Computing, 1(3):190–206, 1989. 13
[Glover, 1990] Fred Glover. Tabu searchpart II. ORSA Journal on Computing, 2(1):4–32, 1990. 12
[Glover, 1997] Fred Glover. A template for scatter search and path relinking. In Selected Papers from the

Third European Conference on Artificial Evolution, AE ’97, pages 1–51. Springer, 1997. 58
[Glover, 2014] Fred Glover. Exterior path relinking for zero-one optimization. International Journal of

Applied Metaheuristic Computing (IJAMC), 5(3):1–8, 2014. 13
[Grahne and Zhu, 2003a] Gösta Grahne and Jianfei Zhu. Efficiently using prefix-trees in mining frequent

itemsets. In FIMI’03 Workshop on Frequent Itemset Mining Implementations: 2003, volume 90, 2003.
88, 89

[Grahne and Zhu, 2003b] Gösta Grahne and Jianfei Zhu. High performance mining of maximal frequent
itemsets. In 6th International Workshop on High Performance Data Mining, 2003. 88

[Grahne and Zhu, 2005] Gösta Grahne and Jianfei Zhu. Fast algorithms for frequent itemset mining using
fp-trees. IEEE Transactions on Knowledge and Data Engineering, 17(10):1347–1362, 2005. 88, 89

[Guerine et al., 2016] Marcos Guerine, Isabel Rosseti, and Alexandre Plastino. Extending the hybridiza-
tion of metaheuristics with data mining: Dealing with sequences. Intelligent Data Analysis, 20(5):1133–
1156, 2016. 26, 80, 81, 87

[Guo et al., 2017] Peng Guo, Wenming Cheng, and Yi Wang. Hybrid evolutionary algorithm with extreme
machine learning fitness function evaluation for two-stage capacitated facility location problems. Expert
Systems with Applications, 71:57–68, 2017. 26

[Gusfield, 2002] Dan Gusfield. Partition-distance: A problem and class of perfect graphs arising in clus-
tering. Information Processing Letters, 82(3):159–164, 2002. 64

[Hale, 1980] William K Hale. Frequency assignment: Theory and applications. Proceedings of the IEEE,
68(12):1497–1514, 1980. 7

[Han et al., 2007] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent pattern mining: Current
status and future directions. Data Mining and Knowledge Discovery, 15(1):55–86, 2007. 84

[Han et al., 2011] Jiawei Han, Jian Pei, and Micheline Kamber. Data Mining: Concepts and Techniques.
Elsevier, 2011. 20, 79

[Hansen and Mladenović, 2005] Pierre Hansen and Nenad Mladenović. Variable neighborhood search,
pages 211–238. Springer US, Boston, MA, 2005. 12

[Hao and Wu, 2012] Jin-Kao Hao and Qinghua Wu. Improving the extraction and expansion method for
large graph coloring. Discrete Applied Mathematics, 160(16-17):2397–2407, 2012. 39

[Hao et al., 1998] Jin-Kao Hao, Raphaël Dorne, and Philippe Galinier. Tabu search for frequency assign-
ment in mobile radio networks. Journal of Heuristics, 4(1):47–62, 1998. 7

[Hao, 2012] Jin-Kao Hao. Memetic algorithms in discrete optimization. In Handbook of Memetic Algo-
rithms, pages 73–94. Springer, 2012. 14, 56, 64

[Hertz and de Werra, 1987] Alain Hertz and Dominique de Werra. Using tabu search techniques for graph
coloring. Computing, 39(4):345–351, 1987. 39, 41

[Hertz et al., 2008] Alain Hertz, Matthieu Plumettaz, and Nicolas Zufferey. Variable space search for graph
coloring. Discrete Applied Mathematics, 156(13):2551–2560, 2008. 45

[Holland, 1975] J. H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan
Press, 1975. 13

[Hoos and Stützle, 2004] Holger H Hoos and Thomas Stützle. Stochastic Local Search: Foundations and
Applications. Elsevier, 2004. 11



116 REFERENCES

[Hoos, 2012] Holger H. Hoos. Automated algorithm configuration and parameter tuning, pages 37–71.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. 28

[Hutter et al., 2002] Frank Hutter, Dave A. D. Tompkins, and Holger H. Hoos. Scaling and probabilistic
smoothing: Efficient dynamic local search for SAT. In Proceedings of the 8th International Conference
on Principles and Practice of Constraint Programming, CP ’02, pages 233–248, London, UK, UK, 2002.
Springer-Verlag. 38

[Hutter et al., 2009] Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stützle. Paramils:
an automatic algorithm configuration framework. Journal of Artificial Intelligence Research, 36(1):267–
306, 2009. 18, 28

[Ishtaiwi et al., 2005] Abdelraouf Ishtaiwi, John Thornton, Abdul Sattar, and Duc Nghia Pham. Neigh-
bourhood clause weight redistribution in local search for SAT. In Proceedings of the 11th International
Conference on Principles and Practice of Constraint Programming, CP’05, pages 772–776, Berlin, Hei-
delberg, 2005. Springer-Verlag. 38

[James et al., 2009] T. James, C. Rego, Tabitha Fred, Glover James, CÉsar Rego, and Fred Glover. Multi-
start tabu search and diversification strategies for the quadratic assignment problem. IEEE Transactions
on Systems, Man, and Cybernetics - Part A: Systems and Humans, 39(3):579–596, May 2009. 85

[Jędrzejowicz and Ratajczak-Ropel, 2014] Piotr Jędrzejowicz and Ewa Ratajczak-Ropel. Reinforcement
learning strategies for a-team solving the resource-constrained project scheduling problem. Neurocom-
puting, 146:301–307, 2014. 25

[Jin, 2011] Yaochu Jin. Surrogate-assisted evolutionary computation: Recent advances and future chal-
lenges. Swarm and Evolutionary Computation, 1(2):61–70, 2011. 66

[Jourdan et al., 2006] Laetitia Jourdan, Clarisse Dhaenens, and El-Ghazali Talbi. Using datamining tech-
niques to help metaheuristics: A short survey, pages 57–69. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2006. 22

[Jourdan et al., 2009] Laetitia Jourdan, Matthieu Basseur, and El-Ghazali Talbi. Hybridizing exact methods
and metaheuristics: A taxonomy. European Journal of Operational Research, 199(3):620–629, 2009.
15

[Kanda et al., 2016] Jorge Kanda, Andre de Carvalho, Eduardo Hruschka, Carlos Soares, and Pavel
Brazdil. Meta-learning to select the best meta-heuristic for the traveling salesman problem: A com-
parison of meta-features. Neurocomputing, 205:393–406, 2016. 24, 29

[Kashan et al., 2013] Ali Husseinzadeh Kashan, Mina Husseinzadeh Kashan, and Somayyeh Karimiyan.
A particle swarm optimizer for grouping problems. Information Sciences, 252:81–95, 2013. 33

[Kirkpatrick et al., 1983] Scott Kirkpatrick, C Daniel Gelatt, Mario P Vecchi, et al. Optimization by simu-
lated annealing. Science, 220(4598):671–680, 1983. 12

[Koopmans and Beckmann, 1957] Tjalling C Koopmans and Martin Beckmann. Assignment problems and
the location of economic activities. Econometrica: Journal of the Econometric Society, pages 53–76,
1957. 9

[Kotthoff et al., 2012] Lars Kotthoff, Ian P Gent, and Ian Miguel. An evaluation of machine learning in
algorithm selection for search problems. AI Communications, 25(3):257–270, 2012. 28

[Kotthoff, 2014] Lars Kotthoff. Algorithm selection for combinatorial search problems: A survey. AI
Magazine, 35(3):48–60, 2014. 18, 24, 28

[Kotthoff, 2016] Lars Kotthoff. Algorithm selection for combinatorial search problems: A survey, pages
149–190. Springer International Publishing, Cham, 2016. 28

[Krasnogor and Smith, 2005] Natalio Krasnogor and James Smith. A tutorial for competent memetic
algorithms: model, taxonomy, and design issues. IEEE Transactions on Evolutionary Computation,
9(5):474–488, 2005. 56



REFERENCES 117

[Kuhn, 1955] Harold W Kuhn. The hungarian method for the assignment problem. Naval Research Logis-
tics (NRL), 2(1-2):83–97, 1955. 43

[Kuo et al., 1993] Ching-Chung Kuo, Fred Glover, and Krishna S Dhir. Analyzing and modeling the max-
imum diversity problem by zero-one programming. Decision Sciences, 24(6):1171–1185, 1993. 8

[Laguna and Marti, 1999] Manuel Laguna and Rafael Marti. GRASP and path relinking for 2-layer straight
line crossing minimization. INFORMS Journal on Computing, 11(1):44–52, 1999. 14

[Lai and Hao, 2016] Xiangjing Lai and Jin-Kao Hao. Iterated maxima search for the maximally diverse
grouping problem. European Journal of Operational Research, 254(3):780–800, 2016. 11

[Leighton, 1979] Frank Thomson Leighton. A graph coloring algorithm for large scheduling problems.
Journal of Research of the National Bureau of Standards, 84(6):489–506, 1979. 7, 39

[Lemke et al., 2015] Christiane Lemke, Marcin Budka, and Bogdan Gabrys. Metalearning: A survey of
trends and technologies. Artificial Intelligence Review, 44(1):117–130, June 2015. 18, 29

[Lessmann et al., 2011] Stefan Lessmann, Marco Caserta, and Idel Montalvo Arango. Tuning metaheuris-
tics: A data mining based approach for particle swarm optimization. Expert Systems with Applications,
38(10):12826–12838, 2011. 28

[Lewis and Paechter, 2007] Rhydian Lewis and Ben Paechter. Finding feasible timetables using group-
based operators. IEEE Transactions on Evolutionary Computation, 11(3):397–413, 2007. 33

[Lewis, 2009] Rhyd Lewis. A general-purpose hill-climbing method for order independent minimum
grouping problems: A case study in graph colouring and bin packing. Computers & Operations Re-
search, 36(7):2295–2310, 2009. 33

[Leyton-Brown et al., 2014] Kevin Leyton-Brown, Holger H Hoos, Frank Hutter, and Lin Xu. Under-
standing the empirical hardness of NP-complete problems. Communications of the ACM, 57(5):98–107,
2014.

[Loiola et al., 2007] Eliane Maria Loiola, Nair Maria Maia de Abreu, Paulo Oswaldo Boaventura-Netto,
Peter Hahn, and Tania Querido. A survey for the quadratic assignment problem. European Journal of
Operational Research, 176(2):657–690, 2007. 9, 10, 85

[Lourenço et al., 2003] Helena R Lourenço, Olivier C Martin, and Thomas Stützle. Iterated local search.
In Handbook of Metaheuristics, pages 320–353. Springer, 2003. 11, 87

[Lozano et al., 2011] Manuel Lozano, Daniel Molina, and Carlos García-Martínez. Iterated greedy for the
maximum diversity problem. European Journal of Operational Research, 214(1):31–38, 2011. 8, 55,
69, 72

[Lü and Hao, 2010] Zhipeng Lü and Jin-Kao Hao. A memetic algorithm for graph coloring. European
Journal of Operational Research, 203(1):241–250, 2010. 39, 44, 45, 47, 56, 64, 83, 85

[Macambira and De Souza, 2000] Elder Magalhães Macambira and Cid Carvalho De Souza. The edge-
weighted clique problem: valid inequalities, facets and polyhedral computations. European Journal of
Operational Research, 123(2):346–371, 2000. 55

[Macambira, 2002] Elder Magalhães Macambira. An application of tabu search heuristic for the maximum
edge-weighted subgraph problem. Annals of Operations Research, 117(1-4):175–190, 2002. 55

[Mahmoudi and Lotfi, 2015] Shadi Mahmoudi and Shahriar Lotfi. Modified cuckoo optimization algorithm
(MCOA) to solve graph coloring problem. Applied Soft Computing, 33:48–64, 2015. 40

[Malaguti and Toth, 2010] Enrico Malaguti and Paolo Toth. A survey on vertex coloring problems. Inter-
national Transactions in Operational Research, 17(1):1–34, 2010. 39

[Malaguti et al., 2008] Enrico Malaguti, Michele Monaci, and Paolo Toth. A metaheuristic approach for
the vertex coloring problem. INFORMS Journal on Computing, 20(2):302–316, 2008. 39, 44, 45

[Malaguti et al., 2011] Enrico Malaguti, Michele Monaci, and Paolo Toth. An exact approach for the vertex
coloring problem. Discrete Optimization, 8(2):174–190, 2011. 39



118 REFERENCES

[Maniezzo et al., 2009] Vittorio Maniezzo, Thomas Sttzle, and Stefan Vo. Matheuristics: Hybridizing
Metaheuristics and Mathematical Programming. Springer Publishing Company, Incorporated, 1st edi-
tion, 2009. 15

[Martí et al., 2010] Rafael Martí, Micael Gallego, and Abraham Duarte. A branch and bound algorithm for
the maximum diversity problem. European Journal of Operational Research, 200(1):36–44, 2010. 55

[Martí et al., 2013] Rafael Martí, Micael Gallego, Abraham Duarte, and Eduardo G Pardo. Heuristics and
metaheuristics for the maximum diversity problem. Journal of Heuristics, 19(4):591–615, 2013. 8, 55,
67, 69, 70, 73

[Martí, 2003] Rafael Martí. Multi-start methods. International Series in Operations Research and Man-
agement Science, pages 355–368, 2003. 11

[Martins et al., 2014] Daniel Martins, Gabriel M. Vianna, Isabel Rosseti, Simone L. Martins, and Alexan-
dre Plastino. Making a state-of-the-art heuristic faster with data mining. Annals of Operations Research,
pages 1–22, 2014. 27, 81

[Martins et al., 2016] Simone de Lima Martins, Isabel Rosseti, and Alexandre Plastino. Data mining in
stochastic local search, pages 1–49. Springer International Publishing, Cham, 2016. 22, 26, 27, 81

[Meisel and Mattfeld, 2010] Stephan Meisel and Dirk Mattfeld. Synergies of operations research and data
mining. European Journal of Operational Research, 206(1):1–10, 2010. 22, 23

[Misevičius, 2003] Alfonsas Misevičius. A modified simulated annealing algorithm for the quadratic as-
signment problem. Informatica, 14(4):497–514, 2003. 85

[Misevicius, 2005] Alfonsas Misevicius. A tabu search algorithm for the quadratic assignment problem.
Computational Optimization and Applications, 30(1):95–111, 2005. 85

[Mladenović and Hansen, 1997] N. Mladenović and P. Hansen. Variable neighborhood search. Computers
& Operations Research, 24(11):1097–1100, November 1997. 12

[Moalic and Gondran, 2015] Laurent Moalic and Alexandre Gondran. The new memetic algorithm HEAD
for graph coloring: An easy way for managing diversity. In Evolutionary Computation in Combinatorial
Optimization (EvoCOP 2015), pages 173–183. Springer, 2015. 39, 44, 45

[Mohri et al., 2012] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine
Learning. The MIT Press, 2012. 20, 21

[Moscato and others, 1989] Pablo Moscato et al. On evolution, search, optimization, genetic algorithms
and martial arts: Towards memetic algorithms. Caltech Concurrent Computation Program, C3P Report,
826:1989, 1989. 14

[Moscato, 1999] Pablo Moscato. Memetic algorithms: A short introduction. In New Ideas in Optimization,
pages 219–234. McGraw-Hill Ltd., UK, 1999. 56

[Olafsson et al., 2008] Sigurdur Olafsson, Xiaonan Li, and Shuning Wu. Operations research and data
mining. European Journal of Operational Research, 187(3):1429–1448, 2008. 22, 23

[Osei-Bryson and Rayward-Smith, 2009] Kweku-Muata Osei-Bryson and Vic J Rayward-Smith. Data
mining and operational research: techniques and applications. Journal of the Operational Research
Society, 60(8):1043–1044, Aug 2009. 22, 23

[Palubeckis, 2007] Gintaras Palubeckis. Iterated tabu search for the maximum diversity problem. Applied
Mathematics and Computation, 189(1):371–383, 2007. 8, 55, 67, 69, 70, 72

[Pardalos et al., 1994] Panos M. Pardalos, Franz Rendl, and Henry Wolkowicz. The quadratic assignment
problem: A survey and recent developments. In In Proceedings of the DIMACS Workshop on Quadratic
Assignment Problems, volume 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 1–42. American Mathematical Society, 1994. 10

[Peng et al., 1996] Tian Peng, Wang Huanchen, and Zhang Dongme. Simulated annealing for the quadratic
assignment problem: A further study. Computers & Industrial Engineering, 31(3-4):925–928, 1996. 85



REFERENCES 119

[Pinto et al., 2015] Fábio Pinto, Carlos Soares, and Pavel Brazdil. Combining regression models and meta-
heuristics to optimize space allocation in the retail industry. Intelligent Data Analysis, 19(s1):S149–
S162, 2015. 25

[Plastino et al., 2011] Alexandre Plastino, Richard Fuchshuber, Simone de L. Martins, Alex A. Freitas, and
Said Salhi. A hybrid data mining metaheuristic for the p-median problem. Statistical Analysis and Data
Mining, 4(3):313–335, 2011. 26, 81

[Plastino et al., 2014] Alexandre Plastino, Hugo Barbalho, Luis Filipe M. Santos, Richard Fuchshuber,
and Simone L. Martins. Adaptive and multi-mining versions of the DM-GRASP hybrid metaheuristic.
Journal of Heuristics, 20(1):39–74, 2014. 26, 81

[Porumbel et al., 2010a] Daniel Cosmin Porumbel, Jin-Kao Hao, and Pascale Kuntz. An evolutionary
approach with diversity guarantee and well-informed grouping recombination for graph coloring. Com-
puters & Operations Research, 37(10):1822–1832, 2010. 39, 44, 45

[Porumbel et al., 2010b] Daniel Cosmin Porumbel, Jin-Kao Hao, and Pascale Kuntz. A search space car-
tography for guiding graph coloring heuristics. Computers & Operations Research, 37(4):769–778,
2010. 41, 46

[Prokopyev et al., 2009] Oleg A Prokopyev, Nan Kong, and Dayna L Martinez-Torres. The equitable dis-
persion problem. European Journal of Operational Research, 197(1):59–67, 2009. 55, 100

[Puchinger and Raidl, 2005] Jakob Puchinger and Günther R Raidl. Combining metaheuristics and exact
algorithms in combinatorial optimization: A survey and classification. In International Work-Conference
on the Interplay Between Natural and Artificial Computation, pages 41–53. Springer, 2005. 15

[Quiroz-Castellanos et al., 2015] Marcela Quiroz-Castellanos, Laura Cruz-Reyes, Jose Torres-Jimenez,
Claudia Gómez, Héctor J Fraire Huacuja, and Adriana CF Alvim. A grouping genetic algorithm with
controlled gene transmission for the bin packing problem. Computers & Operations Research, 55:52–64,
2015. 33

[Rahnamayan et al., 2008a] Shahryar Rahnamayan, Hamid R Tizhoosh, and Magdy Salama. Opposition-
based differential evolution. IEEE Transactions on Evolutionary Computation, 12(1):64–79, 2008. 56

[Rahnamayan et al., 2008b] Shahryar Rahnamayan, Hamid R Tizhoosh, and Magdy MA Salama. Oppo-
sition versus randomness in soft computing techniques. Applied Soft Computing, 8(2):906–918, 2008.
56

[Rahnamayan et al., 2012] Shahryar Rahnamayan, G Gary Wang, and Mario Ventresca. An intuitive
distance-based explanation of opposition-based sampling. Applied Soft Computing, 12(9):2828–2839,
2012. 56

[Rangaswamy et al., 1998] Balasubramanian Rangaswamy, Anant Singh Jain, and Fred Glover. Tabu
search candidate list strategies in scheduling. In Advances in Computational and Stochastic Optimiza-
tion, Logic Programming, and Heuristic Search, pages 215–233. Springer, 1998. 62

[Raschip et al., 2015a] Madalina Raschip, Cornelius Croitoru, and Kilian Stoffel. Guiding evolutionary
search with association rules for solving weighted CSPs. In Proceedings of the 2015 Annual Conference
on Genetic and Evolutionary Computation, pages 481–488. ACM, 2015. 27, 81

[Raschip et al., 2015b] Madalina Raschip, Cornelius Croitoru, and Kilian Stoffel. Using association rules
to guide evolutionary search in solving constraint satisfaction. In Evolutionary Computation (CEC),
2015 IEEE Congress on, pages 744–750. IEEE, 2015. 27, 81

[Rasheed and Hirsh, 2000] Khaled Rasheed and Haym Hirsh. Informed operators: Speeding up genetic-
algorithm-based design optimization using reduced models. In Proceedings of the 2nd Annual Con-
ference on Genetic and Evolutionary Computation, pages 628–635. Morgan Kaufmann Publishers Inc.,
2000. 26

[Ravi et al., 1994] Sekharipuram S Ravi, Daniel J Rosenkrantz, and Giri K Tayi. Heuristic and special case
algorithms for dispersion problems. Operations Research, 42(2):299–310, 1994. 55



120 REFERENCES

[Reddy et al., 2012] D Srinivas Reddy, A Govardhan, and Ssvn Sarma. Hybridization of neighbourhood
search metaheuristic with data mining technique to solve p-median problem. International Journal of
Computational Engineering Research (IJCER), 2(7), 2012. 27, 81

[Resendel and Ribeiro, 2005] Mauricio GC Resendel and Celso C Ribeiro. GRASP with path-relinking:
Recent advances and applications. In Metaheuristics: Progress as Real Problem Solvers, pages 29–63.
Springer, 2005. 14

[Ribeiro et al., 2004] Marcos Henrique Ribeiro, Viviane de Aragao Trindade, Alexandre Plastino, and Si-
mone L. Martins. Hybridization of GRASP metaheuristics with data mining techniques. In Hybrid
Metaheuristics, First International Workshop, HM 2004, Valencia, Spain, August 22-23, 2004, Proceed-
ings, pages 69–78, 2004. 26, 80, 81

[Ribeiro et al., 2006] Marcos Henrique Ribeiro, Alexandre Plastino, and Simone L. Martins. Hybridiza-
tion of GRASP metaheuristic with data mining techniques. Journal of Mathematical Modelling and
Algorithms, 5(1):23–41, 2006. 26, 80, 81

[Rice, 1976] John R Rice. The algorithm selection problem. Advances in Computers, 15:65–118, 1976. 28
[Rojas-Morales et al., 2016] Nicolas Rojas-Morales, R María-Cristina Riff, and U Elizabeth Montero.

Learning from the opposite: Strategies for ants that solve multidimensional knapsack problem. In Evo-
lutionary Computation (CEC), 2016 IEEE Congress on, pages 193–200. IEEE, 2016. 25, 26

[Samorani and Laguna, 2012] Michele Samorani and Manuel Laguna. Data-mining-driven neighborhood
search. INFORMS Journal on Computing, 24(2):210–227, 2012. 24, 25, 79

[Santos et al., 2005] Luis Filipe M. Santos, Marcos Henrique Ribeiro, Alexandre Plastino, and Simone L.
Martins. A hybrid GRASP with data mining for the maximum diversity problem. In Hybrid Metaheuris-
tics, Second International Workshop, HM 2005, Barcelona, Spain, August 29-30, 2005, Proceedings,
pages 116–127, 2005. 26, 55, 81

[Santos et al., 2006a] Haroldo G Santos, Luiz Satoru Ochi, Euler Horta Marinho, and Lúcia Maria de A
Drummond. Combining an evolutionary algorithm with data mining to solve a single-vehicle routing
problem. Neurocomputing, 70(1):70–77, 2006. 27, 81

[Santos et al., 2006b] R Santos, L. F.and Milagres, C.V. Albuquerque, S. Martins, and Alexandre Plastino.
NGL01-4: A hybrid GRASP with data mining for efficient server replication for reliable multicast. In
Global Telecommunications Conference, 2006. GLOBECOM’06. IEEE, pages 1–6. IEEE, 2006. 26, 81

[Santos et al., 2008] Luis F. Santos, Simone L. Martins, and Alexandre Plastino. Applications of the DM-
GRASP heuristic: A survey. International Transactions in Operational Research, 15(4):387–416, 2008.
22, 24, 26, 81

[Schuurmans et al., 2001] Dale Schuurmans, Finnegan Southey, and Robert C Holte. The exponentiated
subgradient algorithm for heuristic boolean programming. In Proceedings of the 17th International Joint
Conference on Artificial Intelligence, pages 334–341, 2001. 38

[Sghir et al., 2015] Ines Sghir, Jin-Kao Hao, Ines Ben Jaafar, and Khaled Ghédira. A multi-agent based
optimization method applied to the quadratic assignment problem. Expert Systems with Applications,
42(23):9252–9262, 2015. 40

[Shaw, 1998] Paul Shaw. Using constraint programming and local search methods to solve vehicle routing
problems. In Proceedings of the 4th International Conference on Principles and Practice of Constraint
Programming, pages 417–431. Springer, 1998. 15

[Skorin-Kapov, 1990] Jadranka Skorin-Kapov. Tabu search applied to the quadratic assignment problem.
ORSA Journal on Computing, 2(1):33–45, 1990. 85

[Skorin-Kapov, 1994] Jadranka Skorin-Kapov. Extensions of a tabu search adaptation to the quadratic
assignment problem. Computers & Operations Research, 21(8):855–865, 1994. 85

[Sörensen and Glover, 2013] Kenneth Sörensen and Fred W. Glover. Metaheuristics, pages 960–970.
Springer US, Boston, MA, 2013. 10, 11, 12



REFERENCES 121

[Sörensen and Sevaux, 2006] Kenneth Sörensen and Marc Sevaux. MA|PM: memetic algorithms with pop-
ulation management. Computers & Operations Research, 33(5):1214–1225, 2006. 64, 85

[Stützle and Dorigo, 1999] Thomas Stützle and Marco Dorigo. ACO algorithms for the quadratic assign-
ment problem. New Ideas in Optimization, (C50):33, 1999. 85

[Stützle, 2006] Thomas Stützle. Iterated local search for the quadratic assignment problem. European
Journal of Operational Research, 174(3):1519–1539, 2006. 85

[Sutton and Barto, 1998] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An introduc-
tion, volume 1. MIT press Cambridge, 1998. 37, 101

[Taillard, 1991] Éric Taillard. Robust taboo search for the quadratic assignment problem. Parallel Com-
puting, 17(4-5):443–455, 1991. 85, 86

[Talbi, 2009] El-Ghazali Talbi. Metaheuristics: from Design to Implementation, volume 74. John Wiley &
Sons, 2009. 27

[Talbi, 2016] El-Ghazali Talbi. Combining metaheuristics with mathematical programming, constraint pro-
gramming and machine learning. Annals of Operations Research, 240(1):171–215, 2016. 13, 15, 22,
23

[Tan and others, 2006] Pang-Ning Tan et al. Introduction to Data Mining. Pearson Education India, 2006.
21

[Telelis and Stamatopoulos, 2001] Orestis Telelis and Panagiotis Stamatopoulos. Combinatorial optimiza-
tion through statistical instance-based learning. In Tools with Artificial Intelligence, Proceedings of the
13th International Conference on, pages 203–209. IEEE, 2001. 25

[Thierens, 2004] Dirk Thierens. Population-based iterated local search: Restricting neighborhood search
by crossover. In Genetic and Evolutionary Computation–GECCO 2004, pages 234–245. Springer, 2004.
14

[Thornton et al., 2004] John Thornton, Duc Nghia Pham, Stuart Bain, and Valnir Ferreira Jr. Additive
versus multiplicative clause weighting for SAT. In Proceedings of the 19th National Conference on
Artifical Intelligence, volume 4 of AAAI’04, pages 191–196, 2004. 38

[Titiloye and Crispin, 2011] Olawale Titiloye and Alan Crispin. Quantum annealing of the graph coloring
problem. Discrete Optimization, 8(2):376–384, 2011. 39, 44, 45

[Titiloye and Crispin, 2012] Olawale Titiloye and Alan Crispin. Parameter tuning patterns for random
graph coloring with quantum annealing. PloS one, 7(11):e50060, 2012. 44, 45

[Tizhoosh, 2005] Hamid R. Tizhoosh. Opposition-based learning: A new scheme for machine intelligence.
In Proceedings of the International Conference on Computational Intelligence for Modelling, Control
and Automation and International Conference on Intelligent Agents, Web Technologies and Internet
Commerce Vol-1 (CIMCA-IAWTIC’06) - Volume 01, CIMCA ’05, pages 695–701, Washington, DC,
USA, 2005. IEEE Computer Society. 56

[Toffolo et al., 2018] Túlio A.M. Toffolo, Jan Christiaens, Sam Van Malderen, Tony Wauters, and
Greet Vanden Berghe. Stochastic local search with learning automaton for the swap-body vehicle routing
problem. Computers & Operations Research, 89:68–81, 2018. 25

[Tosun, 2015] Umut Tosun. On the performance of parallel hybrid algorithms for the solution of the
quadratic assignment problem. Engineering Applications of Artificial Intelligence, 39:267–278, 2015.
85, 92, 93

[Tsutsui and Fujimoto, 2009] Shigeyoshi Tsutsui and Noriyuki Fujimoto. Solving quadratic assignment
problems by genetic algorithms with GPU computation: A case study. In Proceedings of the 11th Annual
Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers,
GECCO ’09, pages 2523–2530, New York, NY, USA, 2009. ACM. 85



122 REFERENCES

[Umetani, 2015] Shunji Umetani. Exploiting variable associations to configure efficient local search in
large-scale set partitioning problems. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, AAAI’15, pages 1226–1232. AAAI Press, 2015. 27, 81

[Umetani, 2017] Shunji Umetani. Exploiting variable associations to configure efficient local search algo-
rithms in large-scale binary integer programs. European Journal of Operational Research, 263(1):72–81,
2017. 27

[Ventresca and Tizhoosh, 2008] Mario Ventresca and Hamid R Tizhoosh. A diversity maintaining
population-based incremental learning algorithm. Information Sciences, 178(21):4038–4056, 2008. 25,
26, 56

[Voß et al., 2012] Stefan Voß, Silvano Martello, Ibrahim H Osman, and Catherine Roucairol. Meta-
heuristics: Advances and Trends in Local Search Paradigms for Optimization. Springer Science &
Business Media, 2012. 11

[Voudouris and Tsang, 1999] Christos Voudouris and Edward Tsang. Guided local search and its applica-
tion to the traveling salesman problem. European Journal of Operational Research, 113(2):469–499,
1999. 12

[Wang et al., 2012] Jiahai Wang, Ying Zhou, Yiqiao Cai, and Jian Yin. Learnable tabu search guided by
estimation of distribution for maximum diversity problems. Soft Computing, 16(4):711–728, 2012. 25,
55, 67, 68, 69, 70, 72

[Wang et al., 2014] Yang Wang, Jin-Kao Hao, Fred Glover, and Zhipeng Lü. A tabu search based memetic
algorithm for the maximum diversity problem. Engineering Applications of Artificial Intelligence,
27:103–114, 2014. 55, 69

[Wauters et al., 2013] Tony Wauters, Katja Verbeeck, Patrick De Causmaecker, and Greet Vanden Berghe.
Boosting metaheuristic search using reinforcement learning, pages 433–452. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2013. 79

[Wauters et al., 2015] Tony Wauters, Katja Verbeeck, Patrick De Causmaecker, and Greet Vanden Berghe.
A learning-based optimization approach to multi-project scheduling. Journal of Scheduling, 18(1):61–
74, 2015. 79

[Wilhelm and Ward, 1987] Mickey R Wilhelm and Thomas L Ward. Solving quadratic assignment prob-
lems by simulated annealing. IIE Transactions, 19(1):107–119, 1987. 85

[Witten et al., 2016] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan Kaufmann, 2016. 19, 20

[Woeginger, 2003] Gerhard J Woeginger. Exact algorithms for NP-hard problems: A survey. Lecture Notes
in Computer Science, 2570(2003):185–207, 2003. 10

[Wu and Hao, 2013] Qinghua Wu and Jin-Kao Hao. A hybrid metaheuristic method for the maximum
diversity problem. European Journal of Operational Research, 231(2):452–464, 2013. 39, 55, 56, 60,
62, 63, 64, 67, 68, 69, 70, 71, 72, 73

[Xu and Wunsch, 2005] Rui Xu and Donald Wunsch. Survey of clustering algorithms. IEEE Transactions
on Neural Networks, 16(3):645–678, 2005. 21

[Xu et al., 2014] Qingzheng Xu, Lei Wang, Na Wang, Xinhong Hei, and Li Zhao. A review of opposition-
based learning from 2005 to 2012. Engineering Applications of Artificial Intelligence, 29:1–12, 2014.
56

[Zhang, 2010] Qingfu Zhang. Reactive search and intelligent optimization (Battiti, R., et al.; 2008) [book
review]. IEEE Computational Intelligence Magazine, 5(1):59–60, Feb 2010. 28

[Zhou and Hao, 2017a] Yangming Zhou and Jin-Kao Hao. A fast heuristic algorithm for the critical node
problem. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO
’17, pages 121–122, New York, NY, USA, 2017. ACM. 3, 100



REFERENCES 123

[Zhou and Hao, 2017b] Yangming Zhou and Jin-Kao Hao. An iterated local search algorithm for the min-
imum differential dispersion problem. Knowledge-Based Systems, 125:26–38, 2017. 3, 11, 12, 79, 85,
90

[Zhou et al., 2014] Zhaoyang Zhou, Chu-Min Li, Chong Huang, and Ruchu Xu. An exact algorithm with
learning for the graph coloring problem. Computers & Operations Research, 51:282–301, 2014. 39

[Zhou et al., 2016] Yangming Zhou, Jin-Kao Hao, and Béatrice Duval. Reinforcement learning based lo-
cal search for grouping problems: A case study on graph coloring. Expert Systems with Applications,
64:412–422, 2016. 2, 31, 79

[Zhou et al., 2017a] Yangming Zhou, Béatrice Duval, and Jin-Kao Hao. Improving probability learning
based local search for graph coloring. Submitted to Applied Soft Computing, revised in September 2017,
2017. 2, 31

[Zhou et al., 2017b] Yangming Zhou, Béatrice Duval, and Jin-Kao Hao. Recherche locale avec apprentis-
sage par reinforcement pour le problème de coloration de graphe. In Proceedings of the 18ème congrès
de la société Française de Recherche Opérationnelle et dAide à la Décision (ROADEF 2017), 2017. 31

[Zhou et al., 2017c] Yangming Zhou, Jin-Kao Hao, and Béatrice Duval. Opposition-based memetic search
for the maximum diversity problem. IEEE Transactions on Evolutionary Computation, 21(5):731–745,
Oct 2017. 2, 13, 14, 53, 83, 84, 90

[Zhou et al., 2017d] Yangming Zhou, Jin-Kao Hao, and Béatrice Duval. When data mining meets optimi-
ation: A case study on the quadratic assignment problem. arXiv preprint arXiv:1708.05214, 2017. 2,
77

[Zhou et al., 2017e] Yangming Zhou, Jin-Kao Hao, and Fred Glover. Memetic search for identifying criti-
cal nodes in sparse graphs. arXiv preprint arXiv:1705.04119, 2017. 3, 14, 83, 84, 100

[Zufferey et al., 2008] Nicolas Zufferey, Patrick Amstutz, and Philippe Giaccari. Graph colouring ap-
proaches for a satellite range scheduling problem. Journal of Scheduling, 11(4):263–277, 2008. 7







Thèse de Doctorat

Yangming ZHOU

Approches de Résolution Renforcées par des Méthodes d’Apprentissage en
Optimisation Combinatoire

Learning-Driven Optimization Approaches for Combinatorial Search Problems

Résumé
Cette thèse vise à développer des approches de
résolution heuristique renforcées par des méthodes
dapprentissage pour résoudre des problèmes
doptimisation combinatoire difficiles (COPs). Nous
considèrons notamment trois types importants de
COPs, les problèmes de groupement comme la
coloration de graphe (GCP), les problèmes de
sélection de sous-ensembles comme la diversité
maximum (MDP) et les problèmes de permutation
comme lassignation quadratique (QAP). Ces trois
classes de problèmes ont de nombreuses applications
pratiques, mais ils sont dans le cas général
NP-difficiles. Cette thèse sattache à proposer des
méthodes heuristiques renforcées par des méthodes
dapprentissage. Les méthodes dapprentissage
permettent dexploiter les traces des explorations déjà
effectuées afin de découvrir des régions prometteuses
et des motifs intéressants conduisant à des meilleures
solutions. Nous proposons trois approches de
résolution combinées à des stratégies dapprentissage
adaptées pour les trois classes de COPs considérés.
Nous développons une recherche locale combinée à
un apprentissage de probabilités pour les problèmes
de goupement comme GCP, une recherche
mémétique avec apprentissage par opposition pour
MDP et une recherche exploitant des motifs fréquents
pour QAP. Toutes les approches proposées ont été
validées expérimentalement sur des instances
benchmark, et les résultats obtenus montrent quelles
sont compétitives par rapport aux méthodes de l’état
de l’art.

Abstract
This thesis is devoted to developing learning-driven
optimization approaches for solving hard
Combinatorial Optimization Problems (COPs). We
particularly consider three important categories of
COPs, including grouping problems such as Graph
Coloring Problem (GCP), subset selection problems
such as Maximum Diversity Problem (MDP), and
permutation problems such as Quadratic Assignment
Problem (QAP). These three classes of problems are
of important theoretical significance, and have a wide
range of practical applications. Given that they usually
belong to the NP-hard problems, it is computationally
difficult to solve them in the general case. This thesis
concentrates on designing learning-driven heuristic
optimization approaches for solving these problems.
With the help of machine learning techniques,
heuristic approaches will be able to benefit from their
past search history such as discovering promising
regions and useful patterns to find better solutions. In
this thesis, we propose three learning-driven heuristic
approaches for the three categories of considered
COPs. We develop a probability learning based local
search for grouping problems, especially for GCP; an
opposition-based memetic search for MDP; and a
frequent pattern based search for QAP. All the
proposed approaches were experimentally assessed
based on benchmarks, and experimental results show
that they compete favorably with state-of-the-art
methods. Also, the beneficial effects of the introduced
learning techniques are confirmed by experimental
evidences.

Mots clés
Apprentissage automatique, Métaheuristique,
Optimisation axée sur l’apprentissage, Problème
de coloration de graphe, Problème de diversité
maximum, Problème d’assignation quadratique.

Key Words
Machine learning, Meta-heuristics,
Learning-based optimization, Graph coloring
problem, Maximum diversity problem, Quadratic
assignment problem.

L’UNIVERSITÉ NANTES ANGERS LE MANS


	General Introduction
	Background
	Combinatorial optimization
	Basic notations and definitions
	Studied problems

	Solution approaches for COPs
	Metaheuristics
	Hybrid metaheuristics

	Chapter conclusion

	Learning-Driven Heuristic Optimization
	Introduction
	Machine learning and data mining
	Basic concepts
	A brief overview of common learning tasks in machine learning

	Related surveys
	Machine learning driven heuristic search
	Improving the quality of the obtained results
	Speeding up the heuristic search
	Optimizing the algorithm parameters
	Selecting heuristic algorithms

	Chapter conclusion

	Probability Learning based Local Search for GCP
	Introduction
	Probability learning based local search
	Main scheme
	Group selection procedure
	Optimization procedure
	Probability updating procedure
	Probability smoothing procedure

	PLS applied to graph coloring problem
	Related work
	PLSCOL for GCP

	Computational results
	Benchmark instances
	Experimental settings
	Comparison with its simple version PLS
	Comparison with other state-of-the-art algorithms

	Experimental analysis
	Benefit of the probability smoothing technique
	Comparison of different group selection strategies
	Benefit of the probability learning scheme
	Benefit of group matching procedure
	Effect of the penalization factor 

	Chapter conclusion

	Opposition-based Memetic Search for MDP
	Introduction
	Background
	Opposition-based Learning
	Memetic algorithm

	Opposition-based memetic search for MDP
	Solution representation and search space
	Main scheme
	Opposition-based population initialization
	Opposition-based double trajectory search procedure
	Backbone-based crossover operator
	Rank-based pool updating strategy
	Computational complexity of OBMA

	Computational results
	Benchmark instances
	Experimental settings
	Benefit of OBL for memetic search
	Comparison with state-of-the-art algorithms

	Experimental analysis
	Study of the parametric constrained neighborhood
	Effectiveness of the pool updating strategy
	Opposition-based learning over population diversity

	Chapter conclusion

	Frequent Pattern-based Search for QAP
	Introduction
	Frequent pattern mining
	Basic concept
	Representation of the frequent patterns
	Mining and heuristics

	Frequent pattern-based search
	General scheme
	Elite set initialization
	Frequent pattern mining procedure
	Optimization procedure
	Construction based on mined pattern
	Elite set management

	FPBS applied to the quadratic assignment problem
	Related work
	FPBS for QAP

	Computational results
	Benchmark instances
	Experimental settings
	Comparison of FPBS-QAP with BLS and BMA
	Comparison with state-of-the-art algorithms

	Experimental analysis
	Rationale behind the solution construction based on mined patterns
	Effectiveness of the solution construction based on frequent pattern
	Impact of the number of the largest patterns m

	Chapter conclusion

	General Conclusion
	List of Figures
	List of Tables
	List of Publications
	References

