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French summary 
 
Contexte scientifique 
 

Le cancer du sein est le cancer le plus mortel chez les femmes, dans le monde, et la 

France est le 4ème pays présentant l’incidence la plus élevée (Globocan). Afin de limiter le taux 

de mortalité lié à ce cancer dans la population générale, le « plan cancer » a été mis en place en 

France à partir de 2004. Il consiste en un dépistage gratuit proposé tous les 2 ans aux femmes 

âgées de 50 à 74 ans, les plus à risque. Cette stratégie permet d’identifier le cancer au stade le 

plus précoce afin d’augmenter l’efficacité du traitement thérapeutique. Ceci a déjà permis de 

réduire la mortalité du cancer du sein de 21% à 15% (Haute Autorité de Santé). 

Cependant, 5 à 10% des cancers du sein sont attribués à un cancer héréditaire, c’est-à-

dire qu’une mutation augmentant le risque de développer le cancer du sein est transmise à 

travers les générations. L’âge d’apparition des cancers du sein héréditaires est plus précoce (40 

ans en moyenne). Les stratégies proposées par le «plan cancer» sont donc souvent inadaptées. 

Dans ce cas, la stratégie proposée consiste à identifier la mutation cancérigène transmise au 

sein d’une famille. Ceci permet ensuite de proposer un dépistage génétique ciblé à l’ensemble 

des membres de la famille et de proposer aux personnes à risque un suivi médical adapté.  

 

Dans les années 1990, deux gènes ont été identifiés comme très fréquemment mutés 

dans les cancers du sein héréditaires : BRCA1 et BRCA2 (Hall et al. 1990 ; Wooster et al. 1994). 

Depuis, plusieurs bases de données répertorient les variations géniques (ou variants) observées 

sur ces gènes lors du séquençage de patientes atteintes de cancer du sein (Szabo et al. 2000, 

Caputo et al. 2012, https://www.ncbi.nlm.nih.gov/clinvar/). Ainsi, de longues listes de 

variations géniques de BRCA1 et BRCA2 sont disponibles. Cependant, tous les variants 

observés ne favorisent pas le développement du cancer. Les variants ont donc commencé à être 

classés soit comme variant causal (qui augmente le risque de cancer du sein), soit comme 

variant neutre (qui n’influence pas le risque de cancer) grâce à des études épidémiologiques et 

moléculaires (Plon et al. 2008, Guidugli et al. 2014). Cependant, de nombreux variants faux 

sens rares sont encore non classés.  

 

Au cours de ma thèse, je me suis intéressée à la protéine BRCA2. Les variants classés 

de cette protéine, composée de 3 418 résidus, sont principalement localisés dans sa région 

repliée C-terminale. Cette région ainsi que les 8 motifs répétés BRC dans la région 

intermédiaire de la protéine sont les plus caractérisées de BRCA2. Ces régions lui permettent 



de contribuer à la réparation de l’ADN, la stabilité des télomères et la stabilité de la fourche de 

réplication en condition de stress.  

Cependant, la protéine se compose également d’une région N-terminale de 1000 résidus 

impliqués en partie dans les fonctions mitotiques de BRCA2. Cette région est prédite comme 

désordonnée, c’est à dire ne possédant pas de structure tertiaire ou secondaire stable, et est 

hautement phosphorylée au cours de la mitose par la kinase régulatrice du cycle cellulaire Plk1 

(Lin et al., 2003, Takaoka et al., 2014). Les régions désordonnées sujettes aux modifications 

post-traductionnelles sont connues pour servir de site de recrutement protéique, en particulier 

suite à des cascades d’évènements de signalisation. Cependant, les sites de phosphorylation par 

Plk1 n’ont pas pu être tous identifiés par les techniques classiques de spectrométrie de masse 

ou d’alanine-screening couplé à l’autoradiographie (Lin et al., 2003). En effet ces techniques 

sont rapidement limitées pour l’identification de modifications multiples dans les régions 

désordonnées. Ceci a donc largement limité la caractérisation de ces évènements de 

phosphorylation, seules 2 études ont pu proposer un lien entre ces phosphorylations et les 

fonctions mitotiques de BRCA2 (Lin et al., 2003, Takaoka et al., 2014).  

 

Objectif de la thèse 
 

Mon projet de thèse a donc eu pour objectif de caractériser à l’échelle du résidu ces 

évènements de phosphorylation afin d’apporter une meilleure compréhension du rôle de 

BRCA2 au cours de la mitose. Ces données serviront par la suite à tester l’impact de variants 

non classés retrouvés dans cette région. 

Mes objectifs de thèse se focalisent sur l’étude in vitro de la phosphorylation de la région 

N-terminale de BRCA2 par Plk1, et se scindent en plusieurs sous-objectifs :  

(1) Identification des résidus phosphorylés par Plk1, quantification de la cinétique de 

phosphorylation et caractérisation du mécanisme de phosphorylation,  

(2) Identification des interactions moléculaires médiées par ces phosphorylations,  

(3) Tests de l’impact de variants rares de signification clinique inconnue.  

 

Résultats  

 

J’ai débuté ma thèse par la production en bactérie du fragment BRCA248-284 contenant 

l’ensemble des sites de phosphorylation potentiels de Plk1 (Lin et al., 2003), ainsi que plusieurs 

fragments plus petits, nécessaires pour faciliter les analyses ultérieures. Puis, j’ai utilisé la 



Résonance Magnétique Nucléaire en phase liquide (RMN) pour confirmer expérimentalement 

le caractère intrinsèquement désordonné de la région. Ces données m’ont permis de publier un 

premier article sur l’attribution des signaux RMN et l’analyse structurale de BRCA248-284 

(Julien M et al., 2020, Biomol NMR Assign). Ensuite, j’ai tiré parti de la résolution à l’échelle 

du résidu que fournie la RMN pour identifier 4 sites de phosphorylations par Plk1 (produite par 

la plateforme de l’Institut Curie) sur BRCA248- 284: S193, T207, T219 et T226, les sites S193 et 

T207 étant très conservés de l’homme jusqu’au poisson.  

Pour caractériser le mécanisme de phosphorylation de Plk1 sur BRCA2, je me suis 

ensuite intéressée à la caractérisation des vitesses de phosphorylation des 4 phosphorésidus en 

utilisant une statégie de quantification par RMN en temps réel. L’optimisation des conditions 

de phosphorylation ainsi que la méthode d’analyse des cinétiques sont présentées dans la revue 

Julien M et al., 2020, Methods Mol Biol. J’ai également participé au développement d’une 

méthodologie RMN permettant de suivre des cinétiques de phosphorylations à des pH 

supérieurs ou égaux à 7.5 et des températures excédant 25°C (Julien* et al., 2020, Angew. 

Chem. Int. Ed.), ce qui était inenvisageable précédemment.  

 

Ensuite, j’ai caractérisé l’impact de variants sur les cinétiques de phosphorylation de la 

région N-terminale de BRCA2. J’ai produit les variants M192T, T200K et T207A, ainsi qu’un 

mutant contrôle publié comme défectueux pour la phosphorylation par Plk1, S193A (Takaoka 

et al., 2014), mais non observé dans les bases de données. L’analyse par RMN des cinétiques 

de phosphorylation de ces fragments montre que toutes les mutations testées diminuent 

globalement la phosphorylation de BRCA2, et que cet effet est particulièrement important dans 

le cas du variant T207A. La quantification de l’impact des variants à l’échelle du résidu permet 

de mieux estimer les conséquences moléculaires des mutations associées, afin, par la suite, de 

proposer quelles fonctions de BRCA2 pourraient être défectueuses.  

A ce stade, j’ai observé que le motif centré sur T207 phosphorylé (pT207) était similaire 

au motif consensus reconnu par le domaine régulateur de Plk1 : le domaine PBD qui permet de 

recruter Plk1 à proximité de ses cibles (Elia et al., 2003). J’ai alors vérifié, par titrage 

calorimétrique isotherme (ITC), qu’un fragment de BRCA2 centré sur pT207 était capable 

d’interagir avec le domaine PDB de Plk1, alors que le même fragment non phosphorylé n’en 

était pas capable. Ces données m’ont permis de mettre en lumière l’importance de la 

phosphorylation du résidu T207 par Plk1 pour la création d’un site d’interaction pour la kinase. 

Par ailleurs, la structure cristallographique du complexe BRCA2200-209/PBD a été résolue par 

l’équipe et nous a permis d’identifier que deux résidus sont importants pour l’interaction entre 



BRCA2 et Plk1 : S206 et pT207 puisque leur chaîne latérale interagissent directement avec 

PBD. Ceci nous a permis de conclure que Plk1 est capable de phosphoryler BRCA2(T207) et 

de s’en servir de site de recrutement pour phosphoryler plus efficacement les autres sites de 

BRCA2. De plus, les travaux de nos collaborateurs, l’équipe d’Aura Carreira (Insitut Curie), 

ont permis de mettre en évidence que la phosphorylation de T207 est essentielle pour déclencher 

la formation d’un complexe impliquant BRCA2/Plk1/BubR1/PP2A en mitose. Nos 

collaborateurs ont pu montrer, en cellules, que ce complexe joue un rôle dans l’alignement des 

chromosomes, et que des variants de BRCA2 qui présentent un défaut de phosphorylation de 

T207 (tel que T207A et S206C) causent aussi un défaut mitotique caractérisé par des 

chromosomes mal alignés, une ségrégation défectueuse et une aneuploïdie. Ces résultats ont été 

publié récemment (Ehlen A, Julien M* et al, 2020 Nat. Commun).  

 

La description de ce nouveau site d’interaction pour Plk1 sur BRCA2 permet de mieux 

comprendre son rôle au cours de la mitose. Cependant, un autre site d’interaction Plk1/BRCA2 

avait précédemment été identifié : BRCA2pT77 (Takaoka et al., 2014, Yata et al., 2014). BRCA2 

T77 est phosphorylé en début de mitose par les kinases Cdks et créé un site d’interaction pour 

le domaine PBD de Plk1. Il a également été montré que pT77 régule en cellule la 

phosphorylation de S193 (Takaoka et al., 2014). Dans une autre partie de ma thèse, je me suis 

intéressée à caractériser plus précisément le rôle de pT77 sur la phosphorylation ultérieure de 

BRCA2 par Plk1.  

Pour cela, j’ai d’abord utilisé une stratégie de phosphomimétique (mutation d’un résidu 

phosphorylé en aspartate ou glutamate pour mimer la présence d’une charge négative). 

Cependant, le PBD ne reconnait pas T77D et T77E comme mime de phosphate. J’ai donc 

ensuite directement préphosphorylé BRCA2 par des kinases Cdk commerciales. J’ai pu 

identifier que Cdk1/B1 (présente en mitose) phosphoryle efficacement BRCA2 T77 ainsi que 

d’autre site. Cependant, cette kinase était trop peu active et chère pour envisager de mener une 

étude complète avec ce système. J’ai donc utilisé la kinase commerciale Cdk1/A2 mais j’ai 

identifié qu’elle ne phosphoryle pas efficacement T77 (site tardif de phosphorylation). 

Finalement, nous avons opté pour l’utilisation de la MAPK p38, produite au laboratoire et 

connue pour phosphoryler des sites similaires à Cdk1. p38 phosphoryle efficacement BRCA2 

T77 ainsi que d’autres sites également phosphorylés par Cdk1/B1. L’analyse de la cinétique de 

phosphorylation ultérieur par Plk1 a pu montrer qu’en présence d’une faible préphosphorylation 

par p38 (3 sites incluant pT77), la vitesse de phosphorylation de BRCA2 par Plk1 est accélérée 

au niveau des sites S193 et T207. Cependant, en présence d’une forte préphosphorylation par 



p38 (7 sites), cet effet est perdu. La complexité d’un système à multiples préphosphorylations 

nous a empêcher de caractériser précisément le rôle de BRCA2 pT77.  

Pour revenir à un système plus simple contenant un seul site préphosphorylé (pT77), 

nous avons initié une collaboration avec le groupe de Vincent Aucagne (CBM, Orléans) afin 

de produire un fragment de BRCA2 préphosphorylé en utilisant le principe de ligation 

chimique. La stratégie consiste à produire séparément un peptide N-terminal de BRCA2 

préphosphorylé en position T77 par synthèse chimique (groupe de Vincent Aucagne) et un 

peptide C-terminal 15N contenant les sites de phosphorylation par Plk1 en bactérie (production 

au laboratoire). Le protocole de ligation chimique mis au point par nos collaborateurs permet 

ensuite de liguer ces deux peptides. La ligation des peptides, suivi d’une désulfurisation de la 

cystéine laissée pour cicatrice, a déjà montré un bon rendement (70%). Ce projet se poursuivra 

avec la comparaison des cinétiques de phosphorylation par Plk1 en présence d’un peptide N-

ter contenant T77 ou pT77, d’après la méthodologie RMN décrite précédemment. 

 

Enfin, pour continuer à comprendre le rôle de la région conservée et phosphorylée par 

Plk1, j’ai mis en place des expériences de pull-down analysés par protéomique afin d’identifier 

de nouveaux partenaires mitotiques dépendant de l’état de phosphorylation de BRCA2 

(collaboration avec la plateforme de spectrométrie de masse de l’Institut Curie). L’analyse des 

résultats de spectrométrie de masse a permis de retrouver Plk1, de manière cohérente avec mes 

résultats précédents ainsi que d’autres partenaires que j’ai commencé à caractériser. 

 

Finalement, dans une dernière partie de ma thèse, je me suis intéressée à deux projets 

annexes : 

- la production de la kinase Plk1 au laboratoire afin d’en étudier sa dynamique 

moléculaire, 

- la production et la caractérisation in vitro de la région 250-500 de BRCA2, identifié 

comme site de liaison à l’ADN (Von Nicolai et al., 2016).  

Ces deux projets sont également brièvement décrits dans mon manuscrit. 

 

Conclusion  

 

Mon projet de thèse a finalement permis de fournir les bases de production recombinante 

de la région N-terminale de BRCA2 ainsi que la méthodologie RMN nécessaire à l’étude de ses 

évènements de phosphorylation par Plk1. Il nous a également permis d’étudier le rôle de 



BRCA2 pT207 dans le contrôle de l’alignement des chromosomes au cours de la mitose. Ceci 

a servi également de base à l’identification des résidus clés de ce processus et donc à la 

prédiction de variants néfastes pour l’alignement des chromosomes.  

La suite du projet nécessite d’identifier si d’autres partenaires mitotiques de BRCA2 

sont reconnus par cette région. La stratégie de pull-down analysé par protéomique reste à 

vérifier et les partenaires identifiés à caractériser.  

Enfin, cette même stratégie pourra être utilisée pour caractériser d’autres régions de 

BRCA2 afin d’identifier l’ensemble des résidus important pour les fonctions de BRCA2 et donc 

permettre la prédiction de variants causaux et le test de variants non classés. 
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Initially, cancers were thought as a single disease with common physical characteristics: 

veins stretched on all sides as the crab has its feet. The name of cancer is derived from the greek 

“karkinos” (crab) proposed by Hippocrates around 400 BC. Actually, the term “cancer” is a 

generic name that refers to a large number of diseases, all characterized by an abnormal 

proliferation of cells, out of control of the usual regulatory systems. This anarchic multiplication 

often builds up as a mass, named as the tumor. This can grow and invade nearby tissues or 

release migrating cells traveling through the vascular system and creating secondary tumors. 

The term cancer designates all malignant tumors that destroy their physiological environment 

and jeopardize the organism survival.  

 

 In 2018, 18,078,957 of new cancer cases were diagnosed and 9,555,027 deaths were 

associated to malignant tumors, worldwide (Globocan 2018). Hence, understanding cancers’ 

development constitutes naturally a central challenge for biology research. The predominant 

cancers are lung cancers (Figure 1A), which mainly concerns men (65% of incidence in 2018). 

Breast cancers are those with the highest incidence among women (2,088,849 new cases in 

2018), also being the first cause of their death by cancers (Figure 1B). This calls evidently for 

important research efforts to understand breast cancer(s). 

My PhD project is part of the global efforts in breast cancers research. I focused my 

work on the characterization of a protein often mutated in hereditary breast cancers: the BRCA2 

protein. My project aims at describing structurally the molecular function of a conserved yet 

poorly studied region of BRCA2. The characterization of this region will then make it possible 

to predict consequences of mutations in BRCA2. This aims at providing information for 

improving the diagnosis and medical monitoring of hereditary breast cancer patients. 

 

  

Figure 1. (A) Estimated numbers of new cancer cases in 2018 in the world and (B) estimated 

women incidence and mortality per cancer in the world (Globocan 2018). 

A. B. 
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Through my Introduction, I first present the current medical care strategies for limiting 

breast cancer mortality, emphasizing the particularities of hereditary breast cancer (Chapter 

1). Then, I focus on the description of the current knowledge on the structure and functions of 

the BRCA2 protein (Chapter 2 & 3), introducing notably the regions where only poor  

information is available. Finally, I present the kinase Plk1, which phosphorylates BRCA2 in 

the region that I studied (Chapter 4), and the experimental approach to study BRCA2 

phosphorylation by Plk1 (Chapter 5) . 
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Chapter 1. Breast Cancer 

________________________________________________________ 

 

 

Breast cancers are particularly frequent in industrial regions, i.e. North America, 

Western Europe and Australia (Globocan 2018). These regions are indeed more exposed to 

breast cancer risk factors i.e. advanced age, late pregnancy or late menopause, lipid-rich and 

flesh-eating diets, smocking and exposition to specific chemical compounds or hormones 

(Anjum F et al., 2017, Kaminska et al., 2015, Chajès et al., 2013, Anothaisintawee et al., 2013). 

Europe presents the highest breast cancer incidence rate, with France in the top 4 of the most 

impacted countries (Figure 2).  

Current evaluations report that 1 French woman over 9 will develop a breast cancer in 

her life (INCa 2017). However, the survival rate is not hopeless:  0.87 survival, 5 years after 

treatment and 0.76, 10 years after treatment (INCa 2017). This can be explained by the 

efficiency of current breast cancer treatments i.e. surgery, radiotherapy, chemotherapy and 

hormonotherapy (Les traitements des cancers du sein, 2013). Nevertheless, breast cancer is still 

the first cause of women cancer mortality in France. New strategies are thus needed for 

decreasing breast cancer mortality. 

 

 

 

 

Figure 2. Estimated incidence and mortality of breast cancers in the 10 more impacted countries 

in the world, in 2018 (Globocan 2018). 
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1. The French national program for decreasing the breast cancers 
mortality rate 

 

As breast cancer treatments show currently acceptable efficiencies, the strategy for 

reducing the mortality rate is focusing on diagnosis improvement. Indeed, detecting the cancer 

at its first stages of development permits an early treatment of the tumor, which greatly 

increases the survival probability. With this objective, the French government has set up a 

national screening program in 2005. Because 85% of breast cancers appear after 50 years old, 

the program proposes a mammography every 2 years accompanied by a clinical examination 

of breasts for women from 50 to 74 yo (1999, Anaes). These exams are free for women and 

supported by the national health insurance. The participation of the population yielded 40% 

high at the beginning, and levels off at 50% since 2007 (Santé publique 2019). Implementing 

this screening has been highly beneficial: according to the national HAS (Haute Autorité de 

Santé), the mortality rate linked to breast cancer has decreased from 21% to 15% (for women 

from 50 to 69 yo). 

 

 Beyond its success in the general population, two subpopulations do not take advantage 

of this tracking program.  

The first subpopulation is men. About 500 men are diagnosed with breast cancer every 

year in France; this represents 0.5% of men cancers (Fondation pour la Rercherche Médicale). 

The monitoring of male patients has to be highly specific (Midding et al., 2018) and 

psychological aspects are important to consider during medical care (Midding et al. 2019; Skop 

et al., 2018). However, only scarce data about male breast cancers are available in the literature 

and published data are restrained to epidemiological studies containing only few cases per 

country. 

The second subpopulation corresponds to patients with a hereditary breast cancer. 

Certain mutations or group of mutations are transmitted through the generations that increase 

the risk of developing a breast cancer. Hereditary breast cancers represent about 10 % of breast 

cancer cases, i.e. 5000 women per year (Anglian Breast Cancer Study Group 2000; Ghoussaini 

et al., 2009). Hereditary breast cancer patients are affected by the disease earlier than sporadic 

cancers, starting from 20’s yo (Ottman et al., 1986). Thus, the general screening program is 

proposed too late for these patients. To improve their diagnosis, the best strategy would be to 

propose early genetic screening to families with a breast cancer risk. In turn, this would require 

an exhaustive identification of all the genetic mutations that increase the breast cancer risk. This 
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would permit to propose personalized medical care focused on family members carrying risk-

enhancing mutations and thus having a real risk of early breast cancer. Several epidemiologic 

studies are ongoing to localize the frequent breast cancer mutations in patient families. 

 

2. Hereditary breast cancers: mutations in BRCA1 and BRCA2 genes 
 

In the 90’s, medical centers started to report several examples of families with a high 

risk of breast cancers. Genetic studies of these families allowed to identify a first gene highly 

mutated in hereditary breast cancer (Hall et al., 1990). This gene was named BRCA1 for BReast 

CAncer susceptibility gene 1. Four years later, another study of 15 families suffering early-

onset breast cancers revealed that another gene was responsible for high breast cancer risk 

(Wooster et al., 1994). This second gene was named BRCA2. It is now estimated that mutations 

in BRCA1 lead to a woman breast cancer risk of 35-40% at 50 yo and 65-70% at 70 yo, whereas 

mutations in BRCA2 lead to a risk of 15-35 % at 50 yo and 45-75 % at 70 yo (Stoppa-Lyonnet 

et al., 2004). Men also carry hereditary breast cancer mutations (Thorlacius et al., 1995, Ottman 

et al., 1986). However, their identification mainly aims at studying the transmission history of 

the mutation in the family, due to the weak men hereditary cancer risk (Ravi et al., 2012). 

Other genes were also associated with an increased risk of developing breast cancer 

such as TP53, STK11, CD1 and PTEN (Wendt et al., 2019). However, their impacts are 

negligible compared to BRCA1 and BRCA2.  

 

 Proteins encoded by the genes BRCA1 and BRCA2 have been extensively studied and 

mechanisms leading to increased cancer risks have been progressively discovered (Figure 3). 

To explain the role of BRCA1 and BRCA2 proteins in cancer risk, we have to briefly present 

the physiological context.  

Breasts are composed of two epithelial tissues (Ellis et al., 2013): the lobules responsible 

for milk production and the ducts ensuring milk transport to the nipple during lactation (Figure 

3.A). These tissues grow during puberty under the action of estrogens and progesterone 

hormones, produced mainly by ovaries. After menopause, ovaries stop their hormone 

production and secondary sources increase theirs. Breasts, liver, adrenal gland and adipose 

tissues are among these secondary hormone production organs. Most of breast cancers take 

their origins in estrogen level increases after menopause.  

The synthesis of estrogen releases reactive oxygen species (ROS) in cells. These highly 

reactive species are responsible for DNA base oxidation. This kind of DNA damage is normally 
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fixed by the Base Excision Repair (BER) system, a Single Strand Break DNA repair system 

that cleaves and replaces damaged bases on the DNA. BRCA1 is known to stimulate BER (Le 

page et al., 2000). However, when the number of SSBs rises too high, these are converted to 

double strand breaks (DSBs) (Fridlich et al., 2015). DSB can be repaired by the Homologous 

Recombination system (HR) (late S, G2 and M phases). BRCA1 and BRCA2 are both involved 

in the HR pathway. Defect in one of these proteins is thus deleterious for the correct DNA repair 

upon oxidative stress (Figure 3.B) and can create genome instability, especially after 

menopause. This scheme gives an explaining frame for connecting breast cancers and defect in 

BRCA1 or BRCA2. However, the link between BRCA1 and BRCA2 and breast cancer is still 

under investigation, the ROS rationale being probably insufficient. 

 

 
Figure 3. Origins of breast cancer. (A) Sagittal plan of a human breast. (B) Breasts produce 

estrogen after puberty and increase their production level after menopause. The metabolism of 

estrogen induces the release of Reactive Oxygen Species (ROS) in cells, causing oxidation of 

DNA bases such as 8-oxo-guanine. This damage is usually converted into Single Strand Break 

(SSB) and repaired by the Base Excision Repair (BER) system, which is stimulated by BRCA1. 

SSBs are converted into Double Strand Breaks (DSBs) if their number is too high for the BER. 

DSBs are repaired by homologous recombination through the actions of several proteins 

including BRCA1 and BRCA2 during late S, G2 and M phases of the cell cycle. 

 

BRCA1 and BRCA2 are also associated with cancer in ovaries, the primary source of 

estrogen before menopause. Hereditary mutations in BRCA1 increase the ovary cancer risk of 

13-29 % at 50 yo and 39-46 % at 70 yo (Stoppa-Lyonnet et al., 2004, Mersch et al., 2015). 

BRCA2 has less influence than BRCA1 on ovary cancer development (Stoppa-Lyonnet et al., 

2004, King et al., 2003). In addition, BRCA1 mutations increase the risk of prostate cancer 
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(Castro et al., 2012) and mutations in BRCA2 favor pancreatic (Martinez-Useros et al., 2016), 

colorectal (Sopik et al., 2015), prostate (Castro et al.,
 
2012) and melanoma cancer development 

(Moran et al., 2012, Mersch et al., 2014) or Fanconi Anemia (Meyer et al., 2014). However, 

the link between BRCA1/2 and these cancers is not yet understood. This underlines that the 

hormone metabolism releasing ROS is probably not the only cancer cause. 

 

3. Identification of breast cancer pathogenic variants of BRCA1 and 

BRCA2  
 

Early after the identification of BRCA1 and BRCA2 genes, researchers focused their 

attention on the identification of key mutations responsible for the increased risk of breast 

cancer (Li et al., 1999, Nathanson et al., 2001, Wooster et al., 1994, Tavtigian et al., 1996). 

Several databases regrouping BRCA genetic variations observed in breast cancer patients 

(hereditary or sporadic) emerged in the 2000s. These databases aim at spanning all BRCAs’ 

genetic modifications in order to identify causal mutations, i.e. mutations that increase the risk 

to develop breast cancer. “Genetic variations” or “genetic variants” is a term that corresponds 

to both the non-pathogenic allelic variations and the causal mutations. 

Most of the available databases bring together data of patients from one country: Leiden 

Open Variation Database for the Netherlands (LOVD-IARC: 

http://priors.hci.utah.edu/docs/index.php), Kathleen Cuningham Foundation Consortium for 

Research into Familial Breast Cancer for Australia and New Zealand (kConFab: 

http://www.kconfab.org/Index.shtml), The Singapore Human Mutation and Polymorphism 

Database for Singapore (http://shmpd.bii.a-star.edu.sg/)... These national databases are 

important for the analysis of specific populations, which may present a specific mutation 

distribution. France also designed a well-documented database named the Universal Mutation 

Database (UMD) BRCA1/2 (http://www.umd.be/BRCA2/brca2/ and 

http://www.umd.be/BRCA2/brca1). Since 1995, UMD-BRCA1/2 collects data from 16 

licensed laboratories belonging to the French “Groupe Génétique et Cancer” consortium. The 

16 licensed laboratories automatically send all the BRCA1/2 variants detected in French 

families. Presently, the database contains 15,955 records and 3,454 different variations 

identified for BRCA1 and BRCA2, 95% of variants being observed only once. A description 

of the UMD-BRCA1/2 content was published in 2012 (Caputo et al., 2012): the database 

compiled 1,391 distinct BRCA1 variants from 3,743 French families and 1,704 distinct BRCA2 
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variants from 3,650 families. In 2016, the UMD-BRCA1/2 evolved into a larger project named 

BRCA2 Share, which aimed at increasing the collection of BRCA variants (Béroud et al., 

2016). This new database combines data from the UMD-BRCA1/2 with testing results from 

two large commercial laboratories, Quest Diagnostics and Laboratory Corporation of America. 

Now, BRCA Share assembles one of the largest publicly accessible collections of BRCA 

variants currently available. 

International databases have also been built. The most cited one is the Breast Cancer 

Information Core (BIC: http://research.nhgri.nih.gov/projects/bic/index.shtml:BIC). The BIC 

is a voluntary international collection of variants identified worldwide. BIC data are derived 

from both the published literature and direct online entries contributed by researchers 

throughout the world (Szabo et al., 2000). Moreover, BIC aims at facilitating the detection and 

characterization of these genes by providing technical supports, such as mutation detection 

protocols, primer sequences, and list of reagents used. However, the database is no longer 

curated since 2019, but is still the most cited by the community. 

 

Variants are then classified following the 5 classes system proposed by Plon. et al (Plon 

et al., 2008). Class 1 contains neutral variants, also called non-pathogenic variants, which do 

not favor the development of breast cancer. Class 5 brings together causal mutants, which 

significantly increase the risk of developing a breast cancer. Classification in classes 1 or 5 is 

based on significant evidences, in general coming from epidemiological studies. Intermediate 

classes 2 and 4 have also been created, named likely neutral and likely causal, respectively. 

These classes contain variants for which too little information is available to make clinical 

recommendation. Finally, class 3 is reserved for variants with an unknown clinical significance 

(VUS).  

The classification of these variants aims at associating mutations to phenotypes and 

providing clear information to clinicians. This represents a decisive help in the decision to 

screen / follow family members or to establish medical protocols adapted to the mutation (age 

and degree of cancer development). A better understanding of the variant impact on cancer 

development also aims at preventing useless prophylactic mastectomy, which were 

recommended in the past to reduce the cancer risk (90 to 95% risk reduction in BRCA mutation 

carriers, Ludwig et al., 2016). Furthermore, the characterization of pathological BRCA variants 

can also improve our knowledge on sporadic breast cancers presenting a “BRCAness” 

phenotype, i.e. tumors with a deficiency in BRCA functions (Byrum et al., 2019).  
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The variants resulting in a premature termination codon are directly classified in class 5 

(Caputo et al., 2012). However, most of the variants are missense, intronic variants or small 

insertions/deletions (56.5 % in BRCA1 and 69 % in BRCA2). Their impact on protein function 

and therefore their clinical significance is most often unknown (Caputo et al., 2012). 

Epidemiologic studies were initially used for classifying some of these variants. However, the 

small amount of repetition in variants (95 % are found only once in the UMD-BRCA1/2) forced 

the community to explore other strategies. Functional assays have notably been developed to 

investigate the consequences of these variants on the cellular activities of the BRCA1/2 proteins 

(Guidugli et al., 2014). These assays are homologous recombination assay in human cells, 

centrosome-amplification assay, mitomycin C survival assay and nuclear localization assay. 

Biomolecular experiments have also been used to test specific aspects of BRCA properties, 

such as RNA splicing analysis and protein-protein interaction-based assays. Several studies 

have already exploited these strategies to screen variants from the databases (Wu et al., 2005, 

Mesman et al., 2018, Petitalot et al., 2019). 

Analysis of the UMD-BRCA1/2 database revealed that most of the identified variants 

still belong to class 3 (Béroud et al., 2016, Figure 4). To develop molecular assays for the 

characterization of BRCA variants, in particular BRCA2 variants in the context of my PhD, it 

would be beneficial to identify all the regions responsible for BRCA functions. My PhD aims 

at deciphering the function of conserved, yet poorly characterized, regions of BRCA2 

corresponding to segments predicted to be disordered. This will further help to design molecular 

assays for VUS characterization. In addition, the molecular characterization of BRCA2 (partner 

interactions) may also contribute to identify new therapeutic targets for treating breast cancers 

(Helleday et al., 2014).  

 

 

Figure 4. Composition of the BRCA ShareTM French database in 2016 according to the variant 

classification (Béroud et al., 2016). 
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Chapter 2. BRCA2 structure 
________________________________________________________ 

 

 

In the last two decades, BRCA structure and functions were investigated by a number 

of laboratories.  

Initially, BRCA1 and BRCA2 were both characterized as DNA repair proteins (Bertistle 

et al., 1998). In the last years, they have been shown to be involved in a larger range of cellular 

pathways. BRCA1 has also a role in the homologous recombination, mismatch repair pathways, 

in the regulation of DNA damage checkpoints, centrosome number, chromatin remodeling, 

gene transcription and apoptosis (Ohta et al., 2011, Savage et al., 2015, Yi et al., 2014, Densham 

et al., 2017, Sharma et al., 2018, Takaoka et al., 2018). BRCA2 is involved in genomic stability 

pathways including DNA repair, stalled replication fork stability, telomere homeostasis and 

also in mitotic progression, meiosis and centrosome duplication (Thorlsund et al., 2007, Choi 

et al., 2012, Mondal et al., 2012, Fradet-Turcotte et al., 2016, Malik et al., 2016). This ability 

to play roles in so many pathways is probably linked to their large size, their amino acid 

sequence (more than 1,000 residues) encompassing a number of different functional domains.  

While BRCA1 and BRCA2 share a common name and are involved in common 

pathways, they have no homology in amino acid sequence and structure (Figure 5). On one 

side, BRCA1 is a 1,863 amino acids long protein, which contains three folded domains binding 

to protein partners. On the other side, the 3,418 amino acids BRCA2 contains only one 

characterized globular domain that interacts with proteins and ssDNA.  
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Figure 5. Comparison between BRCA1 and BRCA2 structures reveals no homology. 

BRCA1 (top) is a 1,863 amino acids protein containing a cysteine-rich RING domain that forms 

a zinc-binding domain (aquamarine and zinc atom in grey, PDB: 1JM7). The N-terminus RING 

domain interacts with the RING domain of BARD1 (grey) to generate a E3 ubiquitin ligase 

activity. BRCA1 also contains two BRCT domains (BRCT1 in teal and BRCT2 in aquamarine, 

PDB: 1JNX). The two BRCTs can interact with phosphopeptides, a classical mechanism used 

to regulate protein-protein interaction through phosphorylation. BRCA2 (bottom) is a 3,418 

amino acids protein constituted of a large N-terminal region with a PALB2 interaction site 

(PDB: 3EU7), PALB2 in grey and BRCA2 in pink) followed by the repetition of 8 BRC motifs. 

Only one of the BRC repeat structures (pink) was elucidated in interaction with the recombinase 

Rad51 (grey) (BRC4, PDB: 1N0W). However, due to the similarity in sequence, all the BRCs 

are expected to share this structure upon Rad51 binding. Interactions with PALB2 and Rad51 

are essential for the BRCA2 function in DNA repair. BRCA2 also contains a DBD close to the 

C-terminal extremity. The mouse BRCA2 DBD structure (pink, PDB: 1MJE) was obtained in 

interaction with a ssDNA (black) and the protein DSS1 (grey). 

 

The UMD-BRCA1/2 database allows an analysis of variant localization along the 

protein sequence (Figure 6). Interestingly, BRCA1 variants are mostly found in exons 2, 3, 5, 

17, 18, 19 and 21, the exons that correspond to the characterized globular domains of BRCA1. 

However, for BRCA2, the most frequently mutated exons of BRCA2 are not systematically 

associated with its globular domain (exons 13 to 23). Structural biology and biochemistry 

studies were initially focused on the characterization of the folded domains. Hence, BRCA2 

needs a deeper characterization for improving its variants classification.  
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Figure 6. Ratio between observed and theoretical numbers of variants according to exon length 

for BRCA1 and BRCA2 (Caputo et al., 2012) 

 

In this chapter, I report the current knowledge on BRCA2 structure and I provide 

information about pecularities of regions lacking a stable fold. This aims at explaining how the 

unfolded BRCA2 regions can contribute to its molecular functions.   

 

1. BRCA2 contains a single folded domain  
 

 

Figure 7. BRCA2 contains only one folded domain. 

BRCA2 contains a single folded domain (PDB: 1MJE, murine BRCA2): the DBD-CTD 

consisting of a helical domain (H), 3 OB-fold domains (OB) and a tower between OB2 and 

OB3. Other regions of BRCA2 are predicted to be unfolded/disordered. Prediction was 

calculated using the server SPOT-disorder (http://sparks-lab.org/server/SPOT-

disorder/index.php, 1: fully disordered; 0: fully ordered). 

 

The C-terminal globular domain of BRCA2 is the best-known region of the protein 

(Figure 7). It is the largest conserved region of BRCA2 from mammals to fishes and its three-
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dimensional structure has been resolved by Xray-crystallography in 2002 (Yang et al., 2002).  

This region corresponds to a DNA binding domain (DBD) that helps to recruit BRCA2 on 

single-strand DNA (ssDNA) and to achieve BRCA2 functions in genome stability maintenance. 

The structure revealed four domains arranged in a linear fashion following this order: a N-

terminal helical domain and three oligonucleotide/oligosaccharide-binding (OB) folds. A tower 

domain, consisting in a helix-turn-helix motif, comes out of the OB2 and supports a three-helix 

bundle at its top. ssDNA interacts directly with BRCA2 DBD-CTD. More precisely, it binds to 

the OB2 and OB3 at the base of the tower.  

While only rat and mouse BRCA2 DBD-CTD structures have been resolved (Yang et 

al., 2002), their structure helped to characterize several human breast cancers variants (Caputo 

et al., 2012, Mesman et al., 2018). In our hands, the human BRCA2 DBD-CTD shows a poor 

stability. The sequence identity between rat, mouse and human is about 68% (compared with 

42% for the entire protein, Yang et al. 2002), which suggests a similar structure. Therefore, our 

team built a homology model of the human BRCA2 DBD-CTD structure (Philippe Cuniasse, 

unpublished). 

 

 

2. BRCA2 contains 80% of disorder: what is protein disorder?  
 

The rest of the BRCA2 sequence is predicted to be disordered (Figure 7), i.e. unable to 

adopt stable secondary and tertiary structures by itself. Such objects are named Intrinsically 

Disordered Proteins/Regions (IDPs/IDRs) since 1986 (Hernandez et al., 1986). The absence of 

stable, ordered fold, hence called “disorder” is associated with a lack of deep minimum in their 

conformational energy landscape, unlike that of a folded globular protein (Fisher et al., 2011, 

Dunker et al., 2011). In fact, the IDPs/IDRs rather populate broad ensembles of diverse, 

interconverting conformations in dynamic equilibrium (Forman-Kay et al., 2013), with 

interconversion times spanning the nanoscale to the millisecond timescale. Full random coils 

are rare in non-denaturing media: conformation ensembles adopted by IDP/IDRs often show 

local structural propensities, like transient secondary structures, or long-range organization 

resulting from electrostatic clusters or repeated amino acids backbone torsion angle 

propensities, especially for prolines. Hence, IDPs/IDRs have a high diversity of degrees of 

compactness (Dyson et al., 2002).  

IDP/IDRs are often composed of low complexity sequences and show amino acid 

compositional biases: they are enriched in charged and polar residues, glycine and proline, and 
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have low content in bulky hydrophobic residues (Val, Leu, Ile, Met, Phe, Trp and Tyr) (Uversky 

et al., 2000, Williams et al.,  2001, Dyson et al., 2005, Theillet et al., 2013, Uversky et al., 

2013). The low proportion of hydrophobic residues explains why no hydrophobic core can form 

in these proteins, leading to high solvent-exposure and peptide conformational behaviors 

resembling to random coil. In addition, IDP/IDRs can present a high net electrostatic charge, 

either positive or negative, a mixture of charges or alternating clusters of the same charge.   

Disorder can be predicted from the protein sequence. Several servers use the amino acid 

composition to scan protein sequences and estimated their disorder propensity. Among the early 

and best-known servers, I can cite PONDR (Romero et al., 1997), DISOPRED (Jones et al., 

2003), IUPRED (Dosztanyi et al., 2005), DISpro (Cheng et al., 2005). Progressively, disorder 

prediction softwares started to use neural networks trained using structural biology data and to 

incorporate evolutionary profiles and meta-methods servers. In 2019, Nielsen et al. (Nielsen et 

al., 2019) tested most of the disorder predictors and established that SPOT-disorder (Sequence-

based Prediction Online Tools for disorder) (Hanson et al., 2016) was currently the most 

reliable method. It delivers an efficient prediction of both long and short disordered regions 

without separated training, although disordered regions of different sizes have different amino 

acids compositions. We used SPOT-disorder for disorder prediction of BRCA2 in Figure 7. 

 

It is estimated that 40% of the eukaryotic proteins content is disordered, 35% of proteins 

containing disordered regions larger than 20 residues (Ward et al., 2004, Oates et al., 2013, 

Peng et al., 2015). Looking at the human proteome, more than 30% is estimated to be disordered 

(Uversky et al., 2000, Dunker et al., 2001, Dunker et al., 2008, Uversky et al., 2010). Since the 

publication of the first protein 3D structures by Kendrew and Perutz (Kendrew et al., 1960, 

Perutz et al., 1960), the structure-function dogma focused the attention of structural biologists 

on folded domains. Protein structures carry indeed dense informative capacities and predictive 

power. Resolving folded protein structures have had and will have tremendous importance in 

science. Neglecting the unfolded part of eukaryotic proteomes would however limit our 

understanding of central biological questions, like cell signaling or cell fate regulation. 

 

 

3. Roles of IDRs/IDPs 
 

Because of their high solvent accessibility and pliable conformations, IDRs/IDPs are 

very useful objects for organisms: i) they are exquisite targets for enzymatic post-translational 
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modifications, and ii) they permit establishing transient protein-protein interactions with high 

specificity but low affinity. In the last 20 years, an increasing number of examples revealed the 

importance of disordered proteins and regions of proteins in biological processes. To give an 

idea about the diversity of the associated functions, we can cite p21, an essential cyclin-

dependent kinase inhibitor regulating cell cycle progression at the G1/S transition (Kriwacki et 

al., 1996), alpha-synuclein, involved in synaptic activity (Weinreb et al., 1996), the helicase 

subunit Mcm2, which chaperones histones (Richet el al. 2015), and several transcription factors 

such as p53 and c-myc (Oldfield et al., 2008, Andresen et al., 2012). Hence, IDRs/IDPs are 

notably carriers of intracellular information. 

While folded proteins are usually more strictly positionally conserved than disordered 

proteins, IDRs can demonstrate high conservation of overall composition (Moesa et al., 2012, 

Forman-Kay et al., 2013) with an amino acid sequence evolutionarily variable (Tompa et al., 

2014, Zarin et al., 2019). The robustness of disordered proteins to sequence variability has been 

suggested to facilitate rapid evolution of regulatory complexity (Forman-Kay et al., 2013). This 

could explain the widespread presence of IDP/IDRs in eukaryotes signaling networks (Xue et 

al., 2012). Disorder is even presented by some authors as an evolutionary tool permitting the 

emergence of complex eukaryotes (Schlessinger et al., 2011). However, high protein disorder 

content is also observed in bacteria living in environments requiring fast adaptation such as acid 

media, low temperature or bacteria exposed to radiations or fast evolution viruses (Tokuriki et 

al., 2009, Xue et al., 2012). 

It is now clear that IDPs are involved in various biological functions through 2 main 

processes:  protein interactions and formation of liquid-liquid phase-separation droplets (LLPS, 

Dyson et al., 2005, Forman-Kay et al., 2013, Zarin et al., 2019). These aspects of IDP/IDRs are 

detailed below. 

 

a. Protein and nucleic acid interaction 

 

 The first major characteristic of IDP/IDRs is their involvement in low affinity and 

transient protein-protein interactions with folded domains (Borgia et al., 2018, Tang et al., 2012, 

Tompa et al., 2015). IDRs act as organizing scaffolds recruiting folded domains of proteins to 

facilitate signal integration. For example, they can serve as protein platforms that bring closer 

an enzyme and its substrate (Mittag et al., 2010) or be used in the context of chaperones to 

mediate the interaction between chaperones and clients (Kovacs et al., 2012, Foit et al., 2013). 

Albeit specific, IDRs interactions are often of low-affinity, usually in the micromolar range 

(Dyson et al., 2005, Wright et al., 2009, Shammas et al., 2012, Tompa et al., 2014). This enables 
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ultra-sensitive switch-like (Tang et al., 2012) or rheostat-like (Lee et al., 2010, Mittag et al., 

2010) responses depending on the nature of the interaction. Given the significant number of 

charged residues and the specific charge distribution in IDRs, electrostatic interactions, 

including cation-pi interactions, play prominent roles (Gallivan et al., 1999, Mao et al., 2010, 

Marsh et al., 2010, Muller-Spath et al., 2010). Many IDRs also contain short amphipathic 

motifs. These motifs can include large hydrophobic residues, which are often involved in the 

recognition by the folded binding partner (Fuxreiter et al., 2007, Brown et al., 2010).  

Upon binding, IDR can either remain disordered (fuzziness) (Tompa et al., 2008, Mittag 

et al., 2010), adopt a stabilized structure without secondary structural element (Richet et al. 

2015) or adopt a secondary structure such as α-helix or β-strand (Davey et al., 2012, Galea et 

al., 2008, Wright et al., 2009, Dyson et al., 2002, Schneider et al., 2019). The disorder-to-order 

transition (sometimes called “folding upon binding”) contributes to the high specificity and low 

affinity of the interaction (Dunker et al., 1998). Furthermore, the same IDR binding motif can 

interact with different folded domains by adopting distinct conformations, enabling multi-

specificity due to the conformational plasticity of the IDR chain (Oldfield et al., 2008). In other 

examples, IDRs serve as supplementary docking sites in a protein to enhance an interaction 

(Wang et al., 2020).  

Few cases have shown that IDRs can interact not only with proteins, but also with 

nucleic acids (Vuzman et al., 2011, Qi et al., 2015). In fact, IDRs are abundant in DNA binding-

proteins and they often interact with DNA following a disorder-to-order mechanism. In this 

situation, IDRs increase the overall protein-DNA interface and increase the affinity and 

specificity of the neighboring folded domain for DNA. Several examples have also shown that 

IDRs (including phosphorylated IDRs) can compete with ssDNA to bind to a protein partner 

(Fuxreiter et al., 2011). 

 

The presence of interaction sites in IDRs is often revealed by the charge and polarity 

conservation of the interaction motif. Evolution patterns revealed that IDRs involved in protein 

interactions contain molecular features conserved in amino acid composition (Zarin et al., 2019) 

and in length (Schlessinger et al., 2011). These experimentally characterized binding motifs, 

referred as short/eukaryotic linear motifs (ELMs/SLiMs) (Tompa et al., 2014), are listed in the 

ELM database (http://elm.eu.org) in order to facilitate their identification in protein sequences 

(Davey et al., 2012, Tompa et al., 2014). ELMs are on average 6-7 amino acids long with only 

3-4 core positions conferring the interaction specificity (Tompa et al., 2014). On the other side, 

the number of folded domains involved in ELM recognition has rapidly increased (Stein et al., 
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2011). I must here acknowledge the contributions of Norman Davey, Peter Tompa, Toby 

Gibson and Madan Badu to this field (Tompa et al., 2014, Davey et al., 2017).  

 

b. Post-translational modifications regulate IDR-protein interactions 

 

I have evoked the fact that IDRs often bind to folded domains with affinities lying in 

the micromolecular range. In the cellular environment, these interactions can be dynamically 

switched on or off by post-translational modifications (PTMs) on the IDR side (Mittag et al., 

2010). This mechanism is very common in eukaryotic cell signaling (Iakoucheva et al., 2004, 

Tompa et al., 2014): it enables fast and reversible regulation of interactions upon the addition 

or removal of PTMs (Van Roey et al., 2012 & 2013). I present the most common eukaryotic 

PTMs in Figure 8. 

 

Figure 8. Common enzymatic post-translational modifications observed in eukaryotes (in 

green). Phosphorylation, acetylation, methylation and glycosylation consist in the addition of 

small chemical compounds, while ubiquitination and sumoylation lead to the addition of a small 

protein. 

 

While IDRs and folded domains are both subject to PTMs, the high solvent accessibility 

of IDR favors their modifications by enzymes (Forman-Kay et al., 2013). Thus, IDR sequences 

are enriched in PTM sites and act as hub proteins in cell signalization networks (Dunker 2005, 

Higurashi et al., 2008). In 2014, Tompa et al. presented several examples to highlight this 

phenomenon: p53 (62 PTMs/393 residues in length), the tau protein (123/758), a-synuclein 

(22/140), Hdm2 (68/491) (Tompa et al., 2014). Their analysis suggested that the human 

proteome contains up to a million of PTMs, that is to say one modification every ten residues. 

These modifications are carried out by more than 300 distinct types of enzymes (Jensen et al., 

2004).  
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PTMs can drastically change the net charge and physicochemical properties of a binding 

motif (Seet et al., 2006, Arif et al., 2010, Deribe et al., 2010, Bicker and Thompson, 2013) and 

thus, tune its binding/recognition capacities either positively or negatively. For example, the 

addition of a phosphate group can enhance the helical propensity of an IDR if a phosphoserine 

and a lysine are found at positions i and i+4, respectively (Errington et al., 2005). It has also 

been proposed that phosphoserines close to the helix N-terminal extremity can stabilize this 

helix by interfering with the helix dipole, while a phosphoserine at the helix C-terminus would 

have the opposite destabilization effect (Andrew et al., 2002). If the IDR binding conformation 

is helical, phosphorylation can thus favor or disturb the corresponding interaction.  

Phosphorylation accounts for about half of PTMs detected in humans, whose genomes 

encodes 518 kinases, the enzymes executing this modification (Manning et al., 2002). A great 

number of interactions regulated by IDR phosphorylation are described in the literature. They 

engage in majority folded domains specialized in phosphorylation site recognition, such as 

WW, BRCT, 14-3-3, FHA or SH2 domains (Reinhardt & Yaffe 2013). One of the most cited 

examples in the field is however an exception: the phosphorylation of the disordered 4E-binding 

protein 2 provokes its folding in a conformation incompatible with its recognition by the 

eukaryotic translation initiation factor 4E, hence preventing the interaction inhibiting RNA 

translation (Bah et al., 2014). Phosphorylation can also regulate complex binding processes, 

either initiated by a priming phosphorylation event that triggers phosphorylation of later sites 

(Kosten et al., 2014, Gebel et al., 2020), or feedback mechanisms depending on the number of 

phosphorylated sites (Mylona et al., 2016).  

Apart from phosphorylation, other modifications regulate IDR functions in various 

ways: methylation of the FUS protein, involved in neurodegeneration, modulates its nuclear 

import (Dormann et al., 2012); acetylation of Tau proteins, implicated in Alzheimer disease,  

has been shown to promote its aggregation (Luo et al., 2014); O-mannosylation can protect IDP 

from proteolysis (Prates et al., 2018). PTMs of histone tails are also prominent examples of the 

importance of PTMs on cell fate: at least 12 of the 35 disordered amino acids of Histone H3 

have been detected in modified forms for example, PTMs triggering either gene activation or 

repression (Musselman et al., 2012, Huang et al., 2015).  

 

Ancient PTMs sites are often functional PTMs sites (Studer RA et al. Science 2016), 

and thus conserved (Nguyen Ba et al., 2012). PTMs sites are also listed in the ELM database 

(when predicted) and in the Phosphosite database (http://phosphosite.com; when 
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experimentally identified). Most of the PTMs have been detected and identified via high-

throughput mass spectrometry proteomic studies, which comes with important limitations as 

we will see in the next chapters.   

 

c. Phase transition 

 

The last characteristic of IDRs is their ability to form membraneless organelles through 

phase separation in vitro and in cells (Nott et al., 2015, Patel et al., 2015, Riback et al., 2017, 

Banani et al., 2017, Franzmann et al., 2018, Guseva et al., 2020, Figure 9). This role of 

IDP/IDRs has been fully acknowledged and extensively studied only recently. The 

membraneless organelles are driven by protein or nucleic acids multi-valent contacts, which 

IDRs can exquisitely establish via transient interactions of loose specificity (Fujioka et al., 

2020). This leads to the formation of micron-sized liquid droplets (Li et al., 2012) that can 

emulate the co-localization functions of organelles (Malinovska et al., 2013). In the case of IDR 

intermolecular self-association, the phenomenon is favored by the amino acid composition in 

polar region, notably by the presence of glutamines or asparagines and of arginines and 

aromatics (Bergeron-Sandoval et al., 2016, Pak et al., 2016). Protocols for assembling LLPS in 

vitro or in cells have been established (Alberti et al., 2018). Interestingly, these LLPS can also 

be regulated by PTMs. For example, methylation of arginines or serine/threonine 

phosphorylation disrupt FUS LLPS (Hofweber et al., 2018, Monahan et al., 2017), and 

phosphorylation of the translation regulators FMRP and CAPRIN1 control their co-phase 

separation with RNA (Wong et al., 2020). This new role of IDPs/IDRs opens a field of research 

that will help to understand the cellular function of LLPS in the next years. 
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Figure 9. LLPS are observed in vitro and in cells and can be regulated by PTMs. (A) The FUS 

protein forms LLPS in vitro and in cells as observed by fluorescence microscopy (from 

Hofweber et al., 2018). This formation is downregulated by the overexpression of the 

transportin TNPO1 that transfers FUS to the nucleus. However, methylation of FUS via the 

PRMT1 promotes LLPS formation. (B) Arabidopsis Vernalization 1 (VRN1) forms LLPS in 
vitro and in cells as seen by contrast and fluorescence microscopies. Bleaching experiments of 

VRN1-EGFP reveal the fluidity of forming droplets (from Zhou et al., 2019). (C) Zonula 
occludens protein 1 LLPS are favored by phosphatase treatment and inhibited by CK2 

phosphorylation as seen by confocal imagery (from Beutel et al., 2019). 

 

Over the last years, the essential role of IDPs/IDRs has been revealed for many cellular 

processes, in particular in eukaryotic signalization pathways. Furthermore, mutations in 

disordered regions are more and more associated to human diseases (Forman-Kay et al., 2013), 

via changes in disorder-to-order transitions and binding surfaces (Vacic et al., 2012). The 

scientific community has been progressively focusing its attention on IDPs/IDRs in order to 

establish links between their mutations and diseases. This would provide new therapeutic 

targets (Metallo et al., 2010, Uversky et al., 2010, Rezaei-Ghaleh et al., 2012, Stevers et al., 

2017). However, common biochemistry and biophysics protocols, as well as widespread 

knowledge on proteins, have been established in the past for studying folded domains and high 

affinity complexes. The relatively recent interest in IDPs/IDRs requires often novel approaches 

and stimulates new perspectives.  
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4.  BRCA2 disordered regions contain PTM and interaction sites 
 

 
Figure 10. BRCA2 conservation, PTM and interaction sites. (A) Conservation of the BRCA2 

sequence. Human BRCA2 sequence was aligned with 24 homologous sequences from 

mammals to fishes: Mus musculus, Rattus norvegicus, Felis catus, Cavia porcellus, Bos taurus, 
Myotis brandtii, Heterocephalus glaber, Oryctolagus cuniculus, Otolemur garnettii, Equus 
caballus, Propithecus coquereli, Cebus capucinus, Rhinopithecus roxellana, Nomascus 
leucogenys, Erinateus europaeus, Xenopus laevis, Sarcophilus harrisii, Ornithorhynchus 
anatinus, Danio rerio, Gallus gallus, Chelonia mydas, Alligator sinensis and Oreochromis 
niloticus. The conservation score was calculated using Jalview 1.0 (Clamp et al., 2004). A score 

of 11 corresponds to a position identical in 100% of the sequences, while a score of 1 indicates 

that only one chemical criteria (size, hydrophobicity, global charge) is common to all variants. 

(B) Phosphorylation and interaction sites. BRCA2 contains several characterized 

phosphorylation sites by Cdk, (Esashi et al., 2005, Takaoka et al., 2014), Plk1 (Lin et al. 2003, 

Lee et al., 2004), ATM/ATR (Matsuoka et al., 2007) and Chk1/2 (Bahassi et al., 2008). 3D 

structures containing BRCA2 regions are displayed below: DBD-CTD with DNA and DSS1 

(PDB: 1MJE, murine BRCA2), BRCA221-39 in interaction with PALB2 (PDB: 3EU7) and 

BRCA2BRC4 in interaction with Rad51 (PDB: 1N0W). 

 

We estimate from disorder predictions that 80% of the BRCA2 protein is disordered 

(Figure 7). Interestingly, several of these disordered regions are conserved (Figure 10.A), 

which may reveal possible roles in BRCA2 functions.  

Two interactions between BRCA2 conserved IDRs and protein partners have been 

described structurally (Figure 10.B). A BRCA2 N-terminal peptide (aa 21 to 39) binds to 

PALB2 (Oliver et al., 2009), and a central BRCA2 segment (aa 1519 to 1548) binds to Rad51 
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(Pellegrini et al., 2002). Both structures show BRCA2 peptides binding in helical 

conformations. The BRCA2 region interacting with Rad51 is called BRC. 8 BRC repeats are 

found in the BRCA2 sequence. The only published BRC structure has been obtained with the 

BRC4 fused to the Rad51 ATPase domain (Pellegrini et al., 2002). Interaction sites for 

BRCA2/PALB2 and BRCA2/Rad51 are conserved through the animal kingdom (Figure 10.A). 

Other conserved patches are observed, in particular in the BRCA2 N-terminal region, but no 

structural information on their binding properties are described in the literature. 

 BRCA2 also contains several experimentally detected PTM sites. These sites are 

represented in Figure 10.B. They are mainly phosphorylated by mitotic kinases such as Cdk1, 

Chk1/2 and Plk1, and by DNA damage response kinases including ATM and ATR. In addition 

to phosphorylation, another PTM has been identified in BRCA2: asparagine 272 has been 

shown to be N-glycosylated by the CRB protein (Siddique et al., 2009). However, no functional 

study has been carried out to understand the role of this glycosylation.  

While BRCA2 may be observed as forming foci in cell, especially during DNA repair, 

no formation of LLPS involving BRCA2 has been described in the literature yet.  

In addition, we can mention electron-microscopy studies, which observed BRCA2 

multimerization (Shadid et al., 2014, Le et al., 2020). Electron microscopy data of purified 

BRCA2 from HeLa or HEK cells show a wide range of particle sizes and structural 

heterogeneity (Le et al., 2020). An early 3-dimensional reconstruction revealed two-fold 

symmetric particles, interpreted as dimeric BRCA2 particles (Shadid et al., 2014) (Figure 11) 

but the low-resolution model could not help to precisely reconstruct the BRCA2 structure. 

These results and their significance have been recently questioned by another group, which 

proposed that DSS1 and DNA binding disrupt BRCA2 multimerization. Shadid et al., 2014 and 

Le et al., 2020 i) used weak reducing conditions (0.25-1mM DiThioThreitol DTT or tris(2-

carboxyethyl)phosphine TCEP at pH7.5, Thorslund et al., 2010) to achieve self-association 

assays of BRCA2 IDRs showing high cysteine content, and ii) Le et al., 2020 generated EM 

maps and models from complexes stabilized using cross-linking agents, although these 

complexes supposedly contain highly flexible regions. These simple remarks may raise 

concerns and call for cautious consideration. While BRCA2 is predicted to be mostly 

disordered, the models have globular, donut shapes, which might be an artefact due to sample 

heterogeneity. In fact, according to our expertise in the field, purification of the entire BRCA2 

protein is a challenging task: i) the ~60 IDR solvent-exposed cysteines along BRCA2 sequence 

are difficult to maintain in their reduced state during the purification process (especially when 

using only 1 mM DTT at pH7.5 like the evoked studies); ii) the solubility of purified IDRs is 
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far from being common, their hydrophobic patches requiring chaperones or cognate partner 

interactions to avoid precipitation. In addition, because BRCA2 is produced in human cells, 

PTMs and ligands may be present and favor BRCA2 dimerization. Further studies will be 

necessary to understand whether and how BRCA2 self-organize.  

 

  

Figure 11. Dimer particles of BRCA2 as reported by Shadid et al., 2014 and Le et al., 2020. 

(A) The 3D model obtained by Shadid et al., 2014 was reconstructed from EM data is seen as 

a top (left) and a side (right) view. Particles dimensions are 25nmx12nmx13.5nm (in a dimer, 

folded structure, a 3,418 residues long protein would occupy a 9-10 nm sphere volume) Blue 

and pink spots respectively revealed the localization of the C-term FLAG tag and BRC repeats.  

(B) SDS-PAGE of purified BRCA2 used for EM images. The protocol did not include any gel 

filtration step, which generally prevents contamination by aggregates or other proteins before 

EM analysis. (C) 3D reconstruction of the monomeric BRCA2-DSS1-ssDNA complex from 

Le et al., 2020. Comparison of the crosslinked BRCA2 complex (EMD-21998, blue) versus 

uncrosslinked complex (EMD-20348, yellow). Mapped MBP tag from D is shown in orange, 

and N-terminus is labeled. 

 

 To conclude, in this Chapter we have seen that BRCA2 is a protein mostly constituted 

of disordered regions, which are associated with interactions and PTM sites. In the next 

Chapter, we will explore the current knowledge about the cellular roles of BRCA2 IDRs. 

  

A 
B C 

C 
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Chapter 3. Functions of BRCA2  
________________________________________________________ 

 

To be able to put my study and its results into their biological context, I felt I needed 

have a broad view of the known roles of BRCA2 disordered regions. Hence, I initiated a review 

of the literature focusing on BRCA2 interactions experimentally observed (mainly from pull-

downs) and their associated functions. This bibliographic knowledge was necessary to 

understand the signaling crosstalks occuring on BRCA2 and to draw hypothesis on BRCA2 

direct or indirect interactions upon PTMs. This chapter corresponds to the summary of this 

work and was written in the perspective to publish a review about it.  

 

BRCA2 is expressed in every cell of the human body with tissue-dependent expression 

levels (https://www.proteinatlas.org). Beyond being ubiquitous, BRCA2 is also an essential 

protein that impairs organism development when depleted at the embryogenic stage (Sharan et 

al., 1997). After organism development, depletion of BRCA2 by siRNA reveals a wide range 

of genomic instabilities including defects in DNA repair (Lee et al., 2007), mis-regulation of 

telomere length (Kwon et al., 2016, Kwon et al., 2019), or meiotic impairment and infertility 

(Sharan et al., 2004). BRCA2 mutations have been associated with aberrations in both 

chromosome segregation and cell division (Daniels et al., 2004). Consistently, BRCA2 is 

involved in several functions related to genome stability such as DNA repair, telomere 

homeostasis, replication stalled fork stability, and also in mitotic and meiosis progression and 

centrosome duplication. However, the molecular aspects of its mitotic and meiotic functions 

are poorly described. 

To execute all these functions, BRCA2 is expressed at every stage of the cell cycle, 

except the G0 phase (Wang et al., 1997, Figure 12.A). When overexpressed, it is located in the 

nucleus and the cytoplasm (Figure 12.B). However, endogenous BRCA2 localization revealed 

that its localization is cell-cycle dependent. In fact, BRCA2 contains 2 Nuclear Leading 

Sequences (NLS) (Yano et al., 2000), which allow its nuclear localization at every steps of the 

cell cycle, and one Nuclear Export Sequence (NES), which promotes its transport to the 

cytoplasm especially during interphase (Jeyasekharan et al., 2013) (Figure 12.C and 12.D) 
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Figure 12. Expression and localization of BRCA2 through the cell cycle. (A) Northern blot of 

BRCA2 mRNA from MCF-10F cell extracts synchronized at different stages of the cell cycle 

(from Wang et al., 1997). (B) EGFP-BRCA2 expressed in HeLa cells under the control of a 

CMV promoter is localized in the nucleus and the cytoplasm during interphase (from Yano et 

al., 2000). (C) BRCA2 contains one NES between the helical and the OB1 domain of its C-

terminal DBD (aa 2681-2700), which is masked by the protein DSS1 (red, Jeyasekharan et al., 

2013), and two NLS after the DBD (aa 3266-3269 and aa 3311-3315) (Yano et al., 2000). (D) 

BRCA2 localization during the cell cycle in fixed cells stained for BRCA2 (fluorescent 

antibody) and DNA (Hoechst 33258 stain), scale bar 5 um (from Takaoka et al., 2014). 

 
 

Throughout this Chapter, I present the molecular functions of BRCA2 and especially 

how IDRs and PTMs contribute to these functions through the cell cycle. Published direct 

interactions and their associated molecular function are listed in Table 1 and Annexe 1. The 

mitotic functions of BRCA2 and their associated PTMs are most extensively described in this 

chapter, because they correspond to the core context of my PhD project. 
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Table 1. Interaction between disordered regions of BRCA2, proteins, DNA, through BRCA2 

cell cycle function. 

Partner of 

BRCA2 

Interacting 

BRCA2 region 
Function Reference 

PALB2 21-39 DNA repair Oliver et al., 2009 

EMSY 25-36 DNA repair 
Hughes-Davies et al., 

2003 

DNA 250-500 DNA repair 
Von Nicolai et al., 

2016 

PLK1 885-2115 DNA repair Lee et al., 2004 

Rad51 monomers BRC1-4 DNA repair Carreira et al., 2011 

FANCD2 2350-2545 DNA repair Siddiqui et al., 2017 

Rad51 filaments BRC 5-8 DNA repair Carreira et al., 2011 

PLK1 3189-3418 DNA repair Yata et al., 2014 

Rad51 filaments 3270-3305 DNA repair Esashi et al., 2005 

Poln 1338-1781 Replication forks Buisson et al., 2014 

Cytoplasmic  

dynein 1 
2884-2903 Centrome localization Malik et al., 2016 

HSF2BP 2117-2339 
Localization to DSB during 

meiosis 
Zhang et al., 2019 

DMC1 2382-2411 Meiosis recombination Thorslund et al., 2007 

Plk1 pT77 
Chromosome segregation and 

cytokinesis 
Yata et al., 2014 

PLK1 pT207 (200-209) Chromosome segregation Ehlen et al., 2020 

PCAF 290-453 Chromosome segregation Fuks et al., 1998 

BubR1 2861-3176 Chromosome segregation Futamura et al., 2000 

BubR1  3189-3418 Chromosome segregation Choi et al., 2012 

Alix and CEP55 271-836 Cytokinesis Mondal et al., 2012 

HMG20b BRC5 Cytokinesis Lee et al., 2014 

Filamin A  2973-3001 Cytokinesis Yuan et al., 2001 

CBP 1-188 Unknown Siddique et al., 2009 

BCCIPa 2973-3032 Unknown Liu et al., 2001 

 

 

1. Homologous recombination 
 

a. System description 

The first identified function of BRCA2 is its role in the Homologous Recombination 

(HR) DNA repair pathway (Patel et al., 1998). Homologous recombination consists in the repair 

of double-strand breaks (DSBs) via the search for the lost DNA information on the sister 
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chromatid (Figure 13). HR takes place during S and G2 phases, when two copies of the genome 

are available in cells. Defects in this process generate unrepaired DNA DSBs, which are highly 

toxic for the cell, increasing the risk of genome instability, and thus of cancers.  

 

Figure 13. Role of BRCA2 during Homologous Recombination. 

Upon DSB breaks (red stars), the MRN complex resects 5’ extremities of the broken DNA. It 

creates 3’ single-strand extremities that are protected from nucleases by the small protein RPA. 

DSB break stimulates the formation of the BRCA1/PALB2/BRCA2 complex, and its 

localization at the DNA break. Then, BRCA2 loads Rad51 on single-strand DNA and favors 

its polymerization. Once Rad51 is polymerized, the recombinase invades the sister chromatid 

and drives homologous recombination. The DNA complex is finally solved by endonucleases 

and ligases (red arrow) leading to several resolution possibilities, only one is presented here. 

 

The recruitment of BRCA2 to DNA damage sites is mediated by the protein PALB2, 

that interacts with BRCA2(21-39) (Oliver et al., 2009). PALB2 recognizes DNA breaks via 

BRCA1, which is bound to resected DNA. A trimeric complex is then formed via the direct 

interaction between PALB2-BRCA2 and PALB2-BRCA1 (Sy et al., 2009, Oliver et al., 2009), 

which is responsible for the recruitment of BRCA2 on the lesion. However, until now, only an 

indirect interaction has been observed between BRCA1 and BRCA2. The localization of 

BRCA2 via PALB2 is essential for an efficient homologous recombination. In fact, PALB2 

mutants with impaired BRCA2 binding decrease the capacity for DNA DSB-induced HR and 

increase cellular sensitivity to ionizing radiations (Park et al., 2014). 
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 BRCA2 weakly interacts with the broken DNA through its DBD-CTD (Yang et al., 

2002), as described in Chapter 2.1. The protein DSS1 binds the OB1 domain of BRCA2 DBD-

CTD via electrostatic interactions, in presence or absence of DNA (Yang et al., 2002). This 

interaction hides the BRCA2 NES, which may favor BRCA2 nuclear localization. Furthermore, 

cell biology and biochemical studies showed that DSS1 stabilizes monomeric BRCA2 and 

promotes BRCA2-mediated recruitment of Rad51 and thus HR (Gudmundsdottir et al., 2004, 

Li et al., 2006, Kristensen et al., 2010, Liu et al., 2010). 

Another DBD has been identified in the N-terminal region of BRCA2 (250-500) by our 

collaborators (Carreira and colleagues) (Von Nicolai et al., 2016). While this region is predicted 

to be disordered, they have established its capacity to interact with a large panel of DNA 

structures (ssDNA, dsDNA, gapped DNA and 3’/5’-overang). In addition, DBD-NTD promotes 

Rad51-mediated HR. In the literature, IDRs interacting with DNA are often located next to a 

DNA-binding globular domain and tune its DNA affinity (Vuzman et al., 2011). In BRCA2, 

the contribution of the DBD-NTD region to the BRCA2 DNA binding properties and to the HR 

process needs further investigations. 

 

After its recruitment to the DNA damage locus, BRCA2 loads the recombinase Rad51 

on DNA (Fradet-Turcotte et al., 2016). The recombinase is then polymerized along the broken 

DNA, further invades the sister chromatid and drives the homologous recombination. BRCA2 

interaction with Rad51 is driven by its 8 BRC repeats. Only one of these interactions has been 

solved by X-Ray-crystallography, namely the BRCA2-BRC4:Rad51 complex (Figure 10). 

BRCs load monomeric Rad51 on ssDNA and favor Rad51 polymerization along the DNA 

extremity. Nevertheless, all the repeats do not have the same affinity for Rad51. The first 4 

repeats have high affinity for monomeric Rad51. They trigger the nucleation of Rad51 

polymerization along the ssDNA. They act by reducing the ATPase activity of Rad51 (Carreira 

et al., 2009) and by enhancing the DNA strand exchange by Rad51 (Carreira et al., 2011). On 

the other side, BRC5-8 stabilize Rad51 filaments to ensure their growth along DNA (Carreira 

et al., 2011). This permits the creation of a fiber of Rad51 molecules ready for the chromatid 

sister invasion and the search of homology.  

BRCA2 contains also a Rad51 binding region located in its CTD: the TR2 region. 

Because its binding interface engages two adjacent Rad51s, this TR2 region shows a high 

affinity for Rad51 filaments but not for monomers (Esashi et al., 2007). Bahassi et al. (Bahassi 

et al., 2008) proposed that Rad51 is bound in an inactive form to BRCs in normal cells, and can 

be transferred to the TR2 to activate Rad51 when needed.  
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 In addition to its role in somatic cells, BRCA2 also contributes to the recombination 

process during meiosis. Here, BRCA2 interacts with the meiosis-specific recombinase DMC1. 

This interaction is mediated by several regions of BRCA2. The region comprised between 

BRC8 and the DBD (between aa 2382 and aa 2411) was initially identified as responsible for 

binding to DMC1 (Thorslund et al., 2007). The TR2 region is also able to bind DMC1 but with 

an affinity that is much weaker than for Rad51. The authors suggested that both DMC1 and 

Rad51 recombinases may act during meiosis. Finally, a more recent study showed that DMC1 

interacts with the BRC repeats, especially BRC 6-8, which present a higher affinity for DMC1 

than for Rad51, strengthening the idea of a cooperation between both recombinases (Martinez 

et al., 2016). 

The meiotic localizer HSF2BP (also named MEILB2) is proposed to be responsible for 

the localization of BRCA2, Rad51 and DMC1 during meiotic recombination (Zhang et al., 

2019; Brandsma et al., 2019). In fact, disruption of HSF2BP abolishes the localization of Rad51 

and DMC1 in spermatocytes and leads to sterility. HSF2BP was shown once to interact directly 

with BRCA2 and to regulate its association with DSBs during meiosis (Zhang et al., 2019). 

Interestingly, while HSF2BP is needed during meiosis, its overexpression in somatic cell lines 

(as observed in some cancer cell lines) triggers BRCA2 degradation and prevents RAD51 

loading on DNA inter-strand crosslinks, thus compromising homologous recombination (Sato 

et al., 2020). 

 

Other proteins such as FANCD2, FANCI and XPG bind BRCA2 and are involved in 

the regulation of BRCA2 localization to chromatin. Upon DNA damage, BRCA2 forms a 

complex with the CUE domain of FANCD2 and the ARM repeat in FANCI (Siddiqui et al., 

2017). FAND2 is then monoubiquitylated in its interaction region with BRCA2, favoring the 

loading of BRCA2 onto chromatin (Wang et al., 2004, Siddiqui et al., 2017). Concerning XPG, 

the protein interacts directly with BRCA2, Rad51 and PALB2 to favor chromatin binding and 

Rad51 foci formation (Trego et al., 2016). Further results are needed to understand deeply this 

mechanism. Finally, the NTD (25-36) region of BRCA2 interacts with EMSY, a transcriptional 

repressor suggested to interact with chromatin remodelers. However, its role in BRCA2 genome 

stability functions remains unclear (Hughes-Davies et al., 2003). 

 

b. Regulation of HR by PTMs 

Several HR interactions are regulated by PTMs upon DNA damage.  
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First, in normal cells, the ubiquitin-specific protease 21 (USP21) has been shown to 

contribute to BRCA2 cellular stability by deubiquitinating it (Liu et al., 2016). The authors 

showed that BRCA2 deubiquitinylation favored the localization of Rad51 to DSB, ensuring the 

correct repair of DSB.  

Second, upon DNA damage the interaction between TR2 and Rad51 is abolished by 

phosphorylation. When cells are exposed to DNA damaging agents, kinases Chk1/2 

phosphorylate T3387, close to TR2. This leads to the dissociation of Rad51 from TR2 (Bahassi 

et al., 2008) and triggers the release of active polymerized Rad51 and its re-localization to new 

DNA damage foci. 

Third, at the end of the S-phase, when HR has to be completed before mitosis entry, 

BRCA2 is phosphorylated by Cdks on residue T77 during late S-phase (Figure 14 Yata et al., 

2014). pT77 has been shown to create a docking site that recruit efficiently the kinase Plk1, 

expressed at early-mitosis. BRCA2 acts as a landing platform bringing Plk1 close to Rad51 

during the transition. This favors Rad51 phosphorylation at position S14 by Plk1 and also the 

phosphorylation of pT13 by CK2 (Yata et al., 2012 & 2014). Phosphorylation of Rad51 by Plk1 

and CK2 enhances the interaction between Rad51 and the MNR component Nbs1 involved in 

the DSB resection (Yata et al., 2012). Hence, these phosphorylation events promote efficient 

HR repair of DSBs before mitosis. 

 

  

Figure 14. Phosphorylation events by Cdks and Plk1 Cdks enable completion of homologous 

recombination. 
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2. During interphase, BRCA2 interacts with other proteins to ensure 

genome stability and centrosome duplication. 

 
a. Pathways 

 BRCA2 ability to preserve genome stability through DNA binding and Rad51 

polymerization is useful in others pathways.  

First, the loading of Rad51 by BRCA2 is essential for preserving telomere stability 

(Badie et al., 2010). This comes from the observation that BRCA2 depletion leads to shorten 

telomere extremities and accumulation of fragmented telomeric signals, indicating replication 

defects at telomeres (Badie et al., 2010). However, the exact mechanism by which BRCA2 

helps to protect telomere stability is not yet completely elucidated (Fradet-Turcotte et al., 2016).  

BRCA2 is also involved in centrosome duplication. BRCA2 contains a centrosomal 

localization signal (2884-2903) (Nakanishi et al., 2007), recognized by the cytoplasmic dynein 

1, which drives BRCA2 positioning at centrosomes during S-phase (Malik et al., 2016). 

Finally, polymerized Rad51 also protects exposed ssDNA upon replication stress 

(Fradet-Turcotte et al., 2016). Protection of nascent DNA is essential for the replication fork to 

correctly restart, while preserving at the same time genome integrity. Interaction between the 

TR2 region of BRCA2 and Rad51 filaments is essential for fork protection: it prevents 

chromosomal aberrations due to Mre11 upon fork stalling (Schlacher et al. 2011). This was 

demonstrated using two separation of function mutants, S3291A and S3291E, that abrogate 

RAD51 binding by the C-terminus; cells bearing the mutations are defective in replication fork 

protection but their DSB repair by HR remains essentially intact. Furthermore, PALB2 and 

BRCA2 facilitate the recruitment of Polη by interacting directly with the polymerase (Buisson 

et al., 2014). The BRCA2 binding region of PALB2 and BRCA2 region from aa 1338 to aa 

1781 (BRC3/4) are responsible for binding to the polymerase. The trimeric complex stimulates 

the initiation of recombination-associated DNA synthesis by Polη.  

 

b. Regulation by PTMs 

Yata et al., 2014 showed that BRCA2 T77 phosphorylation levels were reduced in 

BRCA2 bearing a TR2 mutation or C-terminal truncation. TR2 would therefore indirectly alter 

the Plk1 interaction with the N-terminal region of BRCA2, leading to a reduced level of Rad51 

phosphorylation at S14. 
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BRCA2 is also phosphorylated at the entry into mitosis at S3291 by Cdks (Figure 14.B 

Esashi et al., 2005) and between BRC repeats by Plk1 (Lee et al., 2004). Phosphorylation of 

S3291 of BRCA2 by Cdks increases through G2/M (Esashi et al., 2005). S3291 is localized 

close to the TR2 region of BRCA2 and its phosphorylation negatively regulates the interaction 

between BRCA2 and Rad51 filaments. This event is dispensable for HR, but promotes Rad51 

filament disassembly, which, in turn, promotes entry into mitosis (Ayoub et al., 2009). In 

addition, Plk1 phosphorylates BRCA2 between repeats BRC1 and BRC2, BRC2 and BRC3, 

BRC5 and BRC6 of BRCA2 at the entry of mitosis (Lee et al., 2004). These phosphorylation 

events are inhibited upon DNA damage; however, their consequences still remain unclear. 

 

 All these interactions between BRCA2 and partners, either protein or DNA, suggested 

that BRCA2 plays the role of a scaffold protein for genome stability during interphase. 

However, while BRCA2 was initially highly scrutinized for its DNA repair and protection of 

replication fork functions, it also has functions during mitosis.  

 

3. Role of BRCA2 during mitosis 

 

a. Role during chromosome segregation 

BRCA2 interacts with the mitotic checkpoint kinase BubR1 (Futamura et al., 2000, Choi 

et al., 2012).  BubR1 is a critical component of the mitotic checkpoint that delays the onset of 

anaphase until all chromosomes have established bipolar attachment to the microtubules. 

Mutations of the BUB1B gene (encoding BubR1) causes premature chromatid separation 

syndrome, a condition characterized by constitutional aneuploidy and a high risk of childhood 

cancer (Hanks et al., 2004).  BubR1 is phosphorylated by Plk1 on its two tension-sensitive 

phosphosites S676 and T680 at the kinetochore (Elowe et al., 2007, Suijkerbuijk et al., 2012). 

These phosphorylation events are required for establishing stable kinetochore-microtubule 

attachments. When the proper tension is achieved at the kinetochore, BubR1 is no longer 

phosphorylated by Plk1 (Elowe et al., 2007).  

BubR1 is also acetylated by the transcriptional co-activator protein p300/CBP-

associated factor (P/CAF). BRCA2 interacts with the lysine acetyl-transferase P/CAF via the 

BRCA2 region 290-453 (Fuks et al., 1998). This interaction may bring P/CAF and its substrate 

BubR1 closer to each other during pro-metaphase, thus favoring BubR1 acetylation (Choi et 

al., 2012). However, the contribution of BRCA2 to BubR1 acetylation is still unclear. 

Furthermore, the interaction sites between BRCA2 and BubR1 are discussed in the literature 
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(Futamura et al., 2000, Choi et al., 2012). Once the chromosomes are aligned, acetylated BubR1 

is recognized by HDAC2/3, polyubiquitinylated, becomes a substrate of Anaphase Promoting 

Complex (APC/C)-Cdc20 and is then degraded (Choi et al., 2009, Yekezare and Pines 2009, 

Park et al., 2017), leading to the inactivation of the spindle assembly checkpoint (Santaguida et 

al., 2015), and initiating chromosome segregation. 

 

b. Phosphorylation by Plk1 regulates BRCA2 function in chromosome segregation 

Plk1 (Polo-like kinase 1) phosphorylates N-terminal BRCA2 substantially during 

mitosis (Figure 15.A). Plk1 mitotic phosphorylation sites are located in the region 1-284 of 

BRCA2 (BRCA21-284) (Figure 15.B) (Lin et al., 2003) and deletion of the BRCA2 region 193-

207 abolishes BRCA21-284 phosphorylation by Plk1 in vitro (Figure 15.C). Alanine-mutation 

of S193, as well as combined alanine-mutation of four residues of this motif (S205A, S206A, 

T203A, T207A) cause a significant decrease of BRCA2 phosphorylation by Plk1, revealing 

that Plk1 phosphorylates at least S193 in the 193-207 region of BRCA2 (Lin et al., 2003).  

 

Figure 15. BRCA2 is phosphorylated by Plk1 at the entry into mitosis (from Lin et al., 2003) 

(A) T24 cells were synchronized, released and analyzed at several time points of the cell cycle 

(Gxx indicates the number of hours between release and analysis). Cell lysates were 

immunoblotted with antibodies against BRCA2. In M phase, the smear profile of BRCA2 

suggests several phosphorylation states. (B) Two phosphopeptides (PP-A and PP-B) were 

identified by mass spectrometry. (C) In vitro kinase assays were performed to measure 

phosphorylation of BRCA21-284 mutants by Plk1.  

 

These phosphorylation events are not linked to DNA damage (Lin et al., 2003). 

However, they have been shown to release P/CAF from BRCA2 through an unknown 

mechanism (Figure 16.A, Lin et al., 2003). In addition, while both BRCA2 and BubR1 have 

been shown to interact and to be phosphorylated by Plk1 during mitosis (Figure 16.B), it is not 

clear how all these proteins work together in cell. The two main and non-exclusive hypotheses 

are summarized in Figure 16.  

 

A. B. C. 



 48 

 

Figure 16. BRCA2 is a central component of the spindle assembly checkpoint.  

(A) BRCA2 exhibits binding sites for the kinase BubR1 and P/CAF. This favors acetylation of 

BubR1 by P/CAF (Futamura et al., 2000, Choi et al., 2012). Upon BRCA2 phosphorylation by 

Plk1, P/CAF is released, which contributes to a decrease in BubR1 acetylation and favors 

anaphase entry. (B) BubR1 is phosphorylated by Plk1 at two positions: S676 and T680. 

Dephosphorylation of these sites triggers exit from the spindle assembly checkpoint and 

chromosome segregation (Elowe et al., 2007). 

 

c. BRCA2 phosphorylation by Cdks and Plk1 ensure its localization at the midbody 

While all BRCA2 sites phosphorylated by Plk1 are probably not yet fully identified, one 

phosphoresidue is clearly associated to BRCA2 function during mitosis: phosphorylation of 

S193 by Plk1 is essential for the localization of BRCA2 at the midbody during cytokinesis, and 

more precisely at the Flemming body (Figure 17, Takaoka et al., 2014). The mutant S193A 

fails to localize to the midbody, while the phosphomimic S193E is sufficient to restore BRCA2 

localization. This suggests an important role for this phosphoresidue in BRCA2 localization to 

the midbody.  

In addition, an N-terminal region of BRCA2 centered around T77 (aa1-157) competes 

with full-length BRCA2 for its localization to the midbody (Takaoka et al., 2014). In cells, T77 

is phosphorylated from late S-phase to mitosis by Cdks (Cyclin-dependant kinase, Yata et al., 

2014, Takaoka et al., 2014). This phosphoresidue creates a docking site that efficiently recruits 

Plk1. Mislocalization of BRCA2 in presence of ectopic expression of BRCA21-157 suggests that 

pT77 is essential for S193 phosphorylation and midbody localization of BRCA2. However, the 

relationship between pT77 and pS193 and the role of pS193 in BRCA2 localization at the 

midbody still need to be clarified.  
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Figure 17. BRCA2 phosphorylated on S193 by Plk1 is localized at the Flemming body (from 

Takaoka et al., 2014) 

Cells transfected with BRCA2-FLAG, BRCA2-FLAG (S193E) or BRCA2-FLAG (S193A) 

expression plasmid vector were fixed and stained with anti-FLAG (green) and anti-

MgcRacGAP (red) antibodies. DNA was stained with DAPI (blue). Midbody localization of 

BRCA2-FLAG was observed. BRCA2-FLAG (WT) and S193E mutant co-localized with 

MgcRacGAP, but S193A mutant did not co-localize with MgcRacGAP. Scale bar: 5 μm  

 

Another region of BRCA2 has been shown to play a role in localizing BRCA2 to the 

midbody. The actomyosine protein Filamin A interacts directly with BRCA2 aa2973-3001 

(Yuan et al., 2001) and mediates BRCA2 localization to the midbody (Mondal et al., 2012). 

Several BRCA2 breast cancer mutants in the BRCA2 Filamin A binding domain disrupt this 

interaction and lead to BRCA2 mislocalisation and cytokinesis failure (Mondal et al., 2012). 

Interestingly, Mondal et al. didn’t find that the S193 region was important for directing the 

BRCA2 localization to the midbody. Thus, further investigations are needed to understand how 

these two mechanisms contribute to the correct localization of BRCA2 at the end of mitosis.  

 

 

d. Several BRCA2 interactions take place in the context of cytokinesis 

BRCA2 is essential for the localization at the midbody of important cytokinesis 

regulators such as PRC1, MKLP1 and MKLP2 (Mondal et al., 2012). This suggests that 

BRCA2 could act as a platform protein essential for the progression of the end of mitosis.  

A direct interaction between the N-terminal region of BRCA2 and the protein 

responsible for the central ring formation, CEP55, was also identified (Mondal et al., 2012). 

CEP55 is involved in the recruitment of the ESCRT complex that drives the abscission of 

membranes via an interaction with Alix and Tsg101 (Morita et al., 2007). BRCA2 acts here as 

a central component by regulating the recruitment of Alix and Tsg101 to the midbody, creating 
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independent docking sites for CEP55, Alix and Tsg101 and favoring their assembly (Mondal 

et al., 2012).  

BRCA2 interacts with NMH-IIC (Takaoka et al., 2014), the myosin involved in the 

formation of the cleavage furrow. NHM-IIC forms a 1.5 µm diameter ring needed for the 

abscission. Interaction with BRCA2 increases the NHM-IIC ATPase activity and thus, favors 

ring formation by NHM-IIC. It is another essential interaction between BRCA2 and a midbody 

factor because silencing of BRCA2 prevents the ring formation.  

BRCA2 interact with HMG20b (Marmorstein et al., 2001), the kinesin-like coiled-coil 

protein implicated in G2/M transition, and colocalized at the midbody (Lee et al., 2014). While 

the function of HMG20b during cytokinesis is not elucidated, it seems to be involved in 

abscission. Depletion of HMG20b leads to cytokinesis failure (Lee et al., 2011), but the C-

terminal region of the protein (173-317) is sufficient to restore the phenotype (Lee et al., 2014).  

Lastly, it has been suggested that BRCA2 binds to the Aurora B kinase, an important 

regulator of midbody function, during cytokinesis (Ryser et al., 2009). 

 

4. Region of interest 

 

 

Figure 18. Exon 6 (aa 172 to aa 210) is conserved.  

The disorder propensity and conservation of the BRCA2 region from amino acid 48 to amino 

acid 284. The disorder propensity was calculated using SPOT-Disorder (Hanson et al., 2016). 

A score of 1 corresponds to a predicted disorder propensity of 100%. The conservation score 

was calculated using Jalview 1.0 (Clamp et al., 2004). A score of 11 corresponds to a position 

identical in 100% of the sequences, while a score of 1 indicates that only one chemical criteria 

(size, hydrophobicity, global charge). 

 

During my PhD, I was interested in the regions encompassing Cdks (T77) and Plk1 (at 

least S193) phosphosites of BRCA2. As shown in Figure 18, these two regions are well 

conserved among the animal kingdom. Mitotic Plk1 phosphorylations (193-210) are comprised 

in a large conserved region from aa 180 to aa 217. This suggests that this region may contain 

BRCA2 Plk1-dependant interactions sites not yet described. In addition, mainly variants of 

unknown clinical significance are found in exon 6, coding for aa 172 to aa 210, (Caputo et al. 
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2012). A deeper molecular characterization of this region may thus allow to better understand 

how PTMs contribute to BRCA2 mitotic functions and characterize a set of VUS to identify 

new causal variants disrupting BRCA2 functions.   

In order to describe thoroughly the role of Plk1 phosphorylation in BRCA2 mitotic 

functions, I focused on the following questions: which residues of BRCA2 are phosphorylated 

by Plk1? Which interactions do they regulate? What are the molecular mechanisms triggering 

and triggered by pT77 and pS193? How does pS193 mediate the BRCA2 localization at the 

midbody? To answer these questions, I had to understand how Plk1 generally works on its 

substrates and choose an experimental strategy to monitor the BRCA2 phosphorylation events. 

Chapter 4 is thus dedicated to Plk1 and Chapter 5 describes the technical approaches available 

for studying phosphorylation. 
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Chapter 4. How does Plk1 work? 
________________________________________________________ 

 

 

 Plk1 is a member of the Polo-like kinases (Plks) family, a serine/threonine kinase family 

initially identified in Drosophila melanogaster (Sunkel & Glover, 1988). Several Plks 

homologs exist through the animal kingdom including budding and fission yeast (Kitada et al., 

1993, Ohkura et al., 1995), Danio rerio, Xenopus laevis (Duncan et al., 2001), Caenorhabditis 

elegans (Ouyang et al., 1999, Chase et al., 2000), and mammals (Barr et al., 2004).  

Plks have been shown to be essential to cell life since their discovery: depletion of Plk 

in Drosophila melanogaster leads to chromosomal aberrations, including abnormal circular 

chromosomes, multipolar and connected poles during chromosome segregation, defects in 

chromosome segregation and polyploid cells (Sunkel and Glover, 1988). Through the last 30 

years, studies have progressively revealed that Plks are involved in several steps of the cellular 

division including mitotic entry and exit, spindle formation, cytokinesis and meiosis. All these 

functions are executed by only one isoform of Plk in yeast, named Cdc5. In contrast, mammals 

possess 5 isoforms associated with specialized functions (Barr et al., 2004, Figure 19).  

 

 
Figure 19. Polo-like kinase family members and their functions (from Barr et al., 2004) 

 

 

In the context of my PhD, I focused on the Plk1 protein. This Chapter is dedicated to 

the presentation of the human Plk1 kinase and the emerging questions we had to tackle in the 

context of its interplay with BRCA2. 
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1. Plk1, a central kinase for mitosis  
 

Plk1 is an abundant kinase that is activated at the entry of mitosis. It is localized either 

in the nucleus or the cytoplasm. Plk1 contains 2 Nuclear Localization Signals (NLS) in a 

conserved region of the N-terminal kinase domain : aa 134 to 146 (Taniguchi et al., 2002). 

Deletion of these two NLS prevents the correct nuclear localization of Plk1 and stop cells in 

G2 phase (Taniguchi et al., 2002). Depletion of Plk1 in embryonic mice leads to a lethal 

phenotype at the 8 steps of development (Lu et al., 2008), and its depletion in cultured human 

cells leads to a pro-metaphase arrest (Brukard et al., 2007). These results underline the 

importance of Plk1 in cell cycle progression. It is now clear that Plk1functions correspond to 

an impressive list linked to essential events for the cell-cycle, including DNA replication (S-

phase), recovery after DNA damage (G2 phase), centrosome maturation (G2/M transition), 

mitosis entry through the control of Cdk1 activation (G2/M transition), activation and 

regulation of the APC/C complex (prophase to metaphase), formation of the kinetochore, 

attachment and nucleation of microtubules, alignment in the metaphase plate and spindle 

assembly checkpoint inactivation (prophase to anaphase), Golgi fragmentation (prometaphase) 

and cytokinesis. All these functions are represented in Figure 20. For more details, several 

reviews on Plk1 functions are available (Liu et al., 2010, Strebhardt et al., 2010, Schmucker et 

al., 2014, Colicino et al., 2018).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Plk1 functions through the cell cycle (adapted from Barr et al., 2004, Van der Weerdt 

et al., 2006, Archambault et al., 2009, Liu et al., 2010, Strebhardt et al., 2010, Schmucker et al., 

2014, Colicino et al., 2018).  Microscopy images highlight Plk1 (green), DNA (blue) and 

tubuline (red) localizations in HeLa cells at different steps of the cell cycle. 
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2. Plk1 contains a kinase domain and a Polo-Box domain interacting with 

specific phosphorylated motifs 
 

Plks share a common architecture composed of two globular domains: a N-terminal 

catalytic S/T kinase domain and a C-terminal regulatory domain containing one or two Polo-

Box (PB) motifs (Polo-Box Domain, PBD) (Figure 21). In mammals, the PBD of Plk1-3 and 

Plk4 exhibit two and one PB motifs, respectively (Barr et al., 2004). Plk5 misses the N-terminal 

catalytic domain and establishes protein interactions only via the PBD region. The functional 

selectivity of Plks can be partially explained by the structural variations between isoforms.  

 

  

 
Figure 21. The common architecture shared by Plks. Plks are composed of a N-terminal 

catalytic domain (kinase domain) that is activated through phosphorylation of its T-loop, a 

Destruction bod motif (D-box) and a docking region composed of a PBD domain recognizing 

well-defined phosphorylated motifs (from Barr et al., 2004). 

 

 

 Plk1 contains one N-terminal kinase domain (KD) and a C-terminal domain composed 

of 2 PB motifs. The kinase domain of Plk1 executes the catalytic function of the kinase, i.e. the 

transfer of a phosphate group from ATP to the side chain of the target residue. Plk1 is a S/T 

kinase, that is to say it only phosphorylates serine and threonine residues on the target protein.  

The optimal phosphorylation sequence recognized by the kinase domain of Plk1 has been 

identified from the analysis of variants of Cdc25C, a target of Plk1 phosphorylated at position 

S198 (Nakajima et al., 2003). Mutating residues at positions -6 to +5 around the phosphoresidue 

revealed that residues at positions -2 to +3 were essential for phosphorylation by Plk1. 

Furthermore, a glycine at position -1 inhibited the phosphorylation reaction. The authors 

concluded that the optimal target sequence for Plk1 is: D/E-X-pS/pT-Φ, with X for any amino 

acid and Φ for a hydrophobic amino acid. Other contributions allowed to refine the consensus 
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sequence to to [S/D/E/N]-X-p[S/T]-φ, with φ for hydrophobic residue at position i+1 or i+2 

(Alexander et al., 2011 Kettenbach et al. 2012). From this consensus motif, favored 

phosphosites can be predicted in Plk1 targets (see Results). 

 

 
Figure 22. 3D structure of the kinase domain of human Plk1 (PDB: 2OU7, adapted from Kothe 

et al., 2007) 

The kinase domain of Plk1 is represented in dark grey cartoon (left) or surface (right) mode. 

The activation loop is highlighted in orange (left) or red (right) (zoom in left square), and the 

two residues involved in Plk1 activation, S137 and T210, are colored in red. The non-

hydrolysable ATP (adenylyl-imidodiphosphate, AMP-PNP, zoom in right square) is displayed 

in grey sticks.  

 

Several 3D structures of human Plk1 KD have been solved by X-ray crystallography. 

The kinase domain is composed of the top and bottom regions separated by an activation loop 

(Figure 22). The activation loop is responsible for a common regulatory mechanism in kinases 

(Scheeff et al., 2009). Among others, it partially hides the ATP binding site of the catalytic 

domain in the inactive kinase.  

Activation of the catalytic domain is mediated by the phosphorylation of one threonine 

in the loop (Jang et al., 2002). Autoinhibited Plk1 is activated by phosphorylation of the 

conserved T210 (Qian et al., 1999, Jang et al., 2002) by the kinase Slk (Johnson et al., 2008) or 

a cooperation between Bora and Aurora A kinases (Macurek et al., 2008, Seki et al., 2008) at 

the entry of mitosis. A study on Xenopus laevis Plk1 also proposed that the PKA kinase may 

activate Plk1, but no equivalent reaction has been demonstrated in mammalians, to the best of 

our knowledge (Barr et al., 2004). Phosphorylation of T210 leads to a change in the 

conformation of the activation loop that results in global structural changes in the kinase, 

leading to the adoption of the adequate conformation for ATP binding and substrate 

T210
S137

Activation loop T210

S137
180°
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recognition. Upon this activation, the kinase can catalyze with its highest cognate efficiency the 

transfer of a phosphate group from ATP to its protein target. Activity tests were been carried 

out on the kinase domain of Plk1 in order to confirm the importance of T210: the WT Plk1 

kinase domain has a kcat of 4.1 ms-1 on Cdc25 (Kothe et al., 2007); a phosphomimetic mutation 

T210D improved this kcat up to 19 ms-1, while a mutation T210V inhibiting T210 

phosphorylation decreased the kcat down to 1.9 ms-1, with little change in the Km(ATP): 3.2,  4.0,  

and  3.0 uM  for  Plk1 WT,  T210D,  and  T210V respectively. These results are consistent with 

an important role of T210 in the activation of Plk1. 

 Interestingly, another phosphorylated residue was identified as improving the activity 

of Plk1: S137 (Figure 22). A phosphomimetic mutant S137D led to an increased activity of 

both Plk1-WT and Plk1-T210D in cells (Jang et a., 2002). These results showed a non-additive 

effect of the two mutations suggesting a different role for pS137. In fact, while the mutation 

T210D leads to a spindle assembly checkpoint-dependent delay and delayed M-phase, the 

mutant S137D results in untimely activation of the anaphase-promoting complex and early S-

phase with separated centrosomes (Jang et al., 2002, Van der Weerdt et al., 2005). Both 

phosphosites contribute to proper mitotic progression, with specialized functions for each 

phosphoresidue. In cell, these two phosphorylations appear during M-phase, T210 

phosphorylation preceding S137 phosphorylation and the latter occurring in late mitosis (Van 

der Weerdt et al., 2005). S137 is located at the transition of the hinge region between the top 

and bottom region of the KD and a helix of the bottom region (Figure 22). The accessibility of 

this residue for its phosphorylation by a kinase is not obvious and is probably mediated by a 

first conformational rearrangement (Xu et al., 2013). This phosphorylation may modulate Plk1 

substrate specificity (Xu et al., 2013). Plk2, an isoform of the human Plks proteins, has been 

shown to be able to phosphorylate Plk1 S137 (Matsumoto et al., 2009). However, no further 

study explored the mechanism by which S137 phosphorylation would regulate Plk1 activity. 

 

 The second domain of Plk1 is the C-terminal Polo Box Domain (PBD). Its 3D structure 

elucidation revealed an arrangement of 2 conserved PB folds (Elia et al., 2003, Figure 23). The 

two PBs are packed together and form a 12-stranded b-sandwich flanked by helical segments. 

The domain structure was solved in complex with phosphopeptides: the PBD recognizes 

selectively peptides containing either a phosphoserine or a phosphothreonine (Figure 24). The 

target consensus sequence is S-pS/pT-P/X with X for any amino acid (Elia et al., 2003, Elia et 

al., 2003). Phosphopeptides comprising such a motif have an affinity of about 300 nM for the 

PBD (Elia et al., 2003, Zhu et al., 2016). The interaction leads to an equimolar complex 



 57 

engaging one phosphopeptide for one PBD. The phosphopeptide interacts with the two PB 

folds: the phosphate of the pT interacts with H538 and K540 of PB2 through hydrogen bonds, 

the side chain of the serine -1 creates H-bonds with W414 and L491 of PB1 (Figure 24). This 

explains the selectivity for the phosphoresidue and the serine at position -1. A proteomic screen 

identified that 600 proteins have a phospho-dependent interaction with Plk1, through its PBD, 

showing that this kinase is a central component of the cell (Lowery et al., 2007). 

 

 

 

Figure 23. Model of human Plk1 from X-Ray structures.  

Plk1 is composed of a kinase domain (blue, PDB: 2OWB), containing an activation loop (red) 

and an ATP binding site, and a PBD (grey, PDB: 1UMW) made of two PB folds (light and dark 

grey) binding phosphopeptides. The KD and PBD domains are linked by a 40 amino acids loop. 

   

By interacting with proteins previously phosphorylated by other kinases, the PBD drives 

the cellular localization of Plk1. The PBD substrates are also genuine targets of Cyclin 

dependent kinases (Cdk) and MAPKs (Mitogen-activated protein kinases): Cdks and MAPKs 

phosphorylate S/T-P motifs (Nash et al., 2001). This creates a priming phosphorylation event 

on targets, triggering their recognition by Plk1 PBD (Neef et al., 2007, Zhu et al., 2016). It 

permits a temporal and spatial regulation of Plk1 recruitment by its targets (Elia et al., 2003, 

Barr et al., 2004, Elowe et al., 2007, Wong & Fang, 2007, Yamaguchi et al., 2005, Yamashiro 

et al., 2008, Zhu et al., 2016). Importantly, the priming phosphoevent can also be created by 

Plk1 itself (Neef et al., 2003, Kang et al., 2006, Lee et al., 2008). This mechanism is named 

“self-priming” and, in cells, it appears that it can also contribute to Plk1 target recognition.  
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Figure 24. Interaction between Plk1(PBD) and a phosphopeptide (from Elia et al., 2003) 

The phosphopeptide (blue) interacts with PB1 and PB2:  its side- and main-chain atoms 

established H-bonds with the two PBs, forming a zipper-like structure at the edge of the 

PB1/PB2 interface. The phosphate group participates in eight hydrogen-bonding interactions, 

explaining why binding is strictly phosphorylation dependent. The only residues that contact 

the phosphate group directly are His-538 and Lys-540 from PB2. In contrast, the Ser–1 side-

chain is directed toward the PB1 surface, and forms two hydrogen bonding interactions with 

the Trp-414 main-chain atoms, and one with the Leu-491 carbonyl via a water molecule. 

 
3. Dynamics between the two domains of Plk1 
 

The interplay between the KD and the PBD domains of Plk1 is poorly characterized. 

This is mainly due to the difficulty to crystallize the full-length kinase. A stable complex 

KD:PBD has been crystallized though: the complex was generated by co-expression in E. coli 

of the KD and the PBD from Danio rerio together with a PBD binding motif of a microtubule 

associated protein Map205 from Drosophila that stabilizes the PBD (Xu et al., 2013). Mutations 

were introduced in the KD and PBD to eliminate auto-phosphorylation and facilitate crystal 

packing. In the crystal structure of the complex (Figure 25, PBD: 4J7B), the PBD coordinates 

the overall architecture by interacting with the KD and the Map205 domain. 

The structure revealed how the PBD acts as a negative regulator of the kinase domain. 

Several intramolecular interactions mediate this autoinhibition. A surface of 2,240 Å2 is buried 

between the two domains, the linkers L1 (between the polo-cap Pc and PB1) and L2 (between 

PB1 and PB2) of the PBD being mainly responsible for binding to the KD (Figure 25). First, 

L1 is anchored in the concave surface of the KD (Figure 25.B). This decreases the flexibility 

of the ATP binding pocket in the KD, as revealed by the B factors (Xu et al., 2013). Second, 

the disordered L2, between PB1 and PB2, shows a large conformational change upon 

phosphopeptide binding (Figure 25.C). Because phosphopeptide binding increases the activity 

of the kinase, L2 appears to play a role in Plk1 activation.  
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Figure 25. The interaction between the KD and PBD of Plk1 explained its autoinhibition (from 

Xu et al., 2013). 

(A) Architecture of the Plk1 zebrafish kinase. S/T kinase, serine/threonine kinase; Pc, Polo cap; 

L1, linker region 1; PB1, polo box 1; L2, linker region 2; PB2, polo box 2 (B) Cartoon 

representation of the interaction between the 2 domains. (C) Conformational change of L2-

PBD crystal structures in a KD-bound state and a phosphopeptide-bound state (from blue to 

pink). 

 

 This structure may also explain the activation role of human S137, zebrafish S123. 

Indeed, S123 is involved in H-bonds, notably with E126, that maintain a local structure and a 

H-bonds network bridging the KD with L1 (Figure 26). S123 phosphorylation may provoke a 

repulsion of E126, triggering local structural rearrangements and a release of L1. Pulldowns of 

PBD with KD-WT or KD-S123D confirmed the loss of interaction in presence of a negative 

charge in position 123. T210 (zebrafish T196) is not involved in the KD/PBD interaction, but 

its phosphorylation is, nevertheless, indispensable for the ATP pocket activation. 

Another interesting point is the role of the 40 amino acids interdomain linker (IDL, 

Figure 26). The KD with the linker but without the PBD display a 10-fold increased activity 

compared to the full kinase. Furthermore, the KD without the linker shows a five-fold increased 

activity compared to that of KDs with the linker. This suggests an inhibitory effect of this 

interdomain linker on the Plk1 activation and activity. However, further studies are needed to 

understand this effect. 
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Figure 26. Model of multilevel regulation of zebrafish Plk1 (from Xu et al., 2013). 

Autoinhibited Plk1 can be activated through phosphorylation of the conserved human T210 in 

the activation loop, or of S137 at the end of the KD hinge region by upstream kinases. Plk1 can 

also be activated by phosphopeptide binding with the PBD.  

  

The great structural similarity between zebrafish and human structures of Plk1 suggests 

similar mechanisms of action (Figure 27). Nevertheless, further studies on human Plk1, in 

particular on the role of the interdomain linker, would permit to better understand this kinase 

and to provide useful information in the context of new therapeutic strategies. 

 

 

Figure 27. Comparison between zebrafish and human Plk1 structure. 

Superimposition of Danio rerio Plk1 (black) and human KD (blue) and PBD (pink) structures 
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Chapter 5. Analytical methods for studying phosphorylation 
 

 

 In order to identify Plk1 phosphorylation sites in BRCA2, several techniques are 

available. Most studies used Western Blotting (WB), and Mass Spectrometry (MS) (Lin et al., 

2003, Yata et al., 2014, Takaoka et al., 2014). However, their authors could not identify the 

phosphorylation sites at the residue level. These methods are the most popular methods to detect 

protein phosphorylation. Their limitations are explored in this Chapter. 

 

1. Western Blot necessitates antibodies directed against previously 

identified phosphosites to monitor phosphorylation processes 
 

A protein can be detected and quantified in a complex environment, using specific 

antibodies. Concerning phosphoproteins, antibodies directed against a specific phosphosite are 

required. A great number of antibodies directed against phosphoserine, phosphothreonine, 

phosphotyrosine or specific phosphosites of well-known proteins are commercially available 

(e.g.  pT185 and pY187 of Erk1/Erk2, pY419 or pY529 of Src, pS473 of Akt1, pY1022 and 

pY1023 of JAK1, pT180 and pY182 of p38).  

For identifying new phosphosites by WB, alanine screening can be combined with the 

detection of phosphorylation using antibodies directed against phosphoserine, 

phosphothreonine or phosphotyrosine, as performed in the studies on BRCA2 phosphorylation 

by Plk1 (Lin et al., 2003). Alanine screening is actually more convenient to carry out using 

radio-labeling using 32P ATP, especially for in vitro studies. However, the alanine screening 

method is time-consuming, especially for IDRs that contain many possible phosphosites. 

Moreover, alanine mutations can modify consensus motifs around the actual phosphosite, or 

remove priming phosphosites affecting other phosphosites. Hence, they can provide confusing 

results. WB is thus not the best method to easily identify new phosphosites in a protein. 

Moreover, monitoring a phosphorylation process requires a precise quantification of the 

different phosphoevents. Absolute quantification in WB is notoriously difficult, and 

necessitates high quality antibodies. Although progressive technical improvements permit 

better linear correlations between the WB bands intensities and the amount of phosphoresidues 

(Prabakaran et al., 2011, Mazet et al., 2015, Pillai-Kastoori et al., 2020), a proper quantification 

requires a number of controls and techniques that are not straightforward to perform (Ghosh et 

al., 2014, Gorr & Vogel, 2015). Thus, WB is generally used in a semi-quantitative way. 
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 In the case of IDRs, we can highlight two more limitations. First, IDRs often present 

multiple neighboring phosphorylation sites, which might impair recognition of the phosphosites 

by specific antibodies, as observed in the case of histones for example (Egelhofer et al., 2011; 

Fuchs et al., 2011, Bock et al., 2011). Secondly, degenerated (e.g. the S/T-P consensus site of 

Cdks and MAPKs) or repeated motifs are common in IDRs. The site-specific immuno-

recognition of a phosphosite in such motifs is logically hindered, ambiguous or even 

misleading. WB is still very commonly and fruitfully used in cell-biology investigations to 

assess functional roles of individual phosphorylation sites. However, as far as identification is 

concerned, most of the community moved to another approach: mass spectrometry. 

 

2. Mass spectrometry is a powerful technique for studying isolated 

phosphosites 
 

MS is a very powerful technique adapted to the identification and quantification of proteins in 

simple or complex media. It requires very low amount of sample (about few ng), which favored 

its use in the two last decades. In the context of phosphoproteins analysis, the protocol often 

starts with a phospho-affinity chromatography (e.g. using a titanium dioxide TiO2-coated resin) 

for enriching the initial sample in phosphoproteins (Riley et al., 2016). Then, two strategies 

exist for the MS analysis: peptide-based MS and protein-MS (Prabakaran et al., 2011).  

Peptide-based MS analysis starts with the digestion of the sample by various proteases 

(Riley et al., 2015), in order to generate small peptides that can be identified by their weight. In 

the case of phosphoproteins, MS/MS fragmentation or combining the analysis from different 

proteases treatments can allow the localization of phosphosites. However, in the context of 

IDRs, the close proximity between the phosphosites (Schweiger et al., 2010) can make them 

hardly separable by proteases. MS analysis relies on the possibility to generate peptides having 

good “flyability” (see below) and that can be identified by their weight. IDRs biased 

composition make them difficult objects in this regard: i) IDRs can contain long stretches 

showing high density of Lys/Arg or Glu/Asp, which are the classical targets of common MS-

analysis proteases like trypsin or Glu-C, and ii) IDRs show generally low-content of 

hydrophobic amino acids, targets of other common MS-proteases like pepsin of chymotrypsin.  

Furthermore, repeated motifs are very complicated to manage with this strategy. After 

digestion, the sample is analyzed by Matrix Assisted Lazer Desorption-Ionization-Time Of 

Flight (MALDI-TOF) or electrospray (ESI). These two strategies necessitate the ionization of 
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the sample in order to propel it in the analyzing tube of the MS device. Unfortunately, peptide 

ionization is amino acid composition-dependent, leading to heterogenous detection of peptides. 

The final result is thus not always representative of the initial sample, and often contain invisible 

regions. To fix this problem, new matrices for MALDI-TOF analysis (Fenyo et al., 2007, Patil 

et al., 2018) and the use of an internal standard have been proposed (Riley et al., 2016, Prus et 

al., 2019). All these developments largely increased the power of quantitative MS in the last 

years.  

In the case of protein-MS, the full-length protein is analyzed. Recent improvements 

increased its quantification accuracy (Prabakaran et al., 2011). However, the method by itself 

does not allow the identification of phosphosites in a protein. The localization of phosphosite(s) 

requires tandem-MS with the introduction of a collision cell to fragmentate the protein in 

peptides, which can generate loss or transfer of the phosphate group from one residue to another 

(Bailey et al., 2019). This strategy is thus not optimal, especially in the context of IDRs that 

contains several phosphosites. 

 

Even if MS has some limitations, in particular for the analysis of phosphoIDRs, it is the 

most common method to detect and quantify phosphosites in proteins. The most notorious 

dataset containing experimentally detected PTMs gathers mostly MS-detected PTMs from 

phosphoproteomics analysis (https://www.phosphosite.org/). This database constitutes a very 

good starting point in many cases. Nevertheless, sites are identified using different experimental 

approaches: different MS protocols, cell types, cell culture conditions… Thereby, experimental 

verification is needed before starting any functional characterization. 

To conclude, WB and MS are used for phosphoprotein quantification. Nevertheless, in 

the context of IDRs, WB and MS present several limitations. Thereby, technical innovation or 

complementary approaches are welcome for identifying and monitoring IDRs phosphorylation. 

 

3. NMR for site-specific identification and monitoring of 

phosphorylation 

 
 In the last 15 years, an innovative method emerged, based on the use of liquid-state 

Nuclear Magnetic Resonance (NMR). This technique gives information on the local chemical 

environment of atom nuclei in a protein (Jensen et al., 2013), which can be very powerful for 

identifying and quantifying phosphorylation events at an atomic level (Milles et al., 2018). 
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Every nucleus is characterized by its resonance frequency in the high magnetic field of the 

NMR spectrometer. This frequency (in Hz) is converted to a chemical shift (in ppm) 

independent of the spectrometer magnetic field.  

  

 The first strategy for monitoring protein phosphorylation is 31P-NMR. This strategy 

consists in a simple 1D-NMR spectrum.  Each peak corresponds to a phosphorus present in a 

specific chemical environment. 31P NMR was not initially developed for monitoring protein 

phosphorylation but for the analysis of phosphates in biological contexts. In fact, its first uses 

were described in the 1970’s when a dozen of phosphometabolites were characterized in several 

mammalian cell types and bacteria (Navon et al., 1977, Hoult et al., 1974, Moon et al., 1973). 

Notably because 31P occurs at 100% natural abundance, 31P-NMR offers a good sensitivity. 

Hence, 31P NMR spectroscopy was soon applied to other fields such as enzyme structure (Segall 

et al., 1993), protein dynamics (Feldmann et al., 1977), reaction analysis (Vogel and Bridger, 

1983) and protein phosphorylation (Gassner et al., 1977, Shimidzu et al., 1987, Takahashi et 

al., 1987). 31P NMR was also developed for clinical applications (Zandt et al., 1999, Gabellieri 

et al., 2008, van Houtum et al., 2019) and alimentary controls (Belloque et al., 2000).  

31P NMR for protein phosphorylation studies was explored in the 1990’s. In theory, one 

single 31P peak can be detected for each phosphoresidue, because every phosphoresidue present 

a specific local chemical environment. In addition, 31P peak intensities reports quantitatively 

the advancement of the corresponding phosphorylation reactions. Several studies reported the 

31P chemical shifts of phosphorylated amino acids (Mattheis et al., 1984, Hoffmann et al., 1993, 

Hirai et al., 2000). These chemical shifts are comprised between 1 and 6 ppm and largely 

depend on temperature and pH. Protocols were then published to identify phosphorylated 

residues (Hirai et al., 2000).  

While this strategy is performed with unlabeled proteins, an NMR probe directly 

detecting 31P is needed for sensitive detection. Unfortunately, in the era of protein NMR, 31P 

probes are not that much widespread. Furthermore, it requires the assignment of phosphopeaks, 

which push us back to the alanine-screening strategy. In principle, HMBC (Heteronucelar 

Multiple Bond Correlation)-based two- or three-dimensional (2D or 3D) NMR techniques 

could solve the 31P assignment problem, by establishing correlations between 31P phosphate 

resonances and backbone 1H, 13C or 15N resonances. These latter ones should themselves be 

assigned using the classical protein NMR assignment strategies (HNCO, HNCAO, HNCACB, 

HN(CA)N, ...). However, multi-dimensional techniques using magnetization transfer from 31P 
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are extremely time consuming due to sensitivity problems arising from fast transversal 31P 

relaxation. For all these reasons, other NMR strategies were developed.  

Nowadays, the most common approach is the use of 1H-15N correlation 2D NMR 

experiments (Heteronuclear Single Quantum Correlation HSQC or Heteronuclear Multiple 

Quantum Correlation HMQC). This has been used for the characterization of the 

phosphorylation of globular proteins (Van Nuland et al., 1993, Smith et al., 2013, Wauer et al., 

2015), several IDRs/IDPs (Landrieu et al., 2006, Cordier et al., 2015, Mylona et al., 2016, 

Noguiera et al., 2017) or even in the case of other PTMs like lysine acetylation or N-terminal 

acetylation (Theillet et al., 2012). Protocols have also been proposed for monitoring 

phosphorylation in vitro (Theillet et al., 2013, Smith et al., 2015, Danis et al., 2016, Huang et 

al., 2020), in cell extracts (Selenko et al., 2008, Thongwichian et al., 2015, Theillet et al., 2013) 

or in cells (Selenko et al., 2008, Milles et al., 2018) using this strategy. In the context of IDRs, 

this method was optimized using the 1H-15N SOFAST-HMQC sequence developed by Schanda 

et al. for folded proteins (Schanda et al., 2005), but which is also highly beneficial for NMR 

detection of amino acids showing fast water-amide proton exchange (Theillet et al., 2011).  

Before phosphorylation, the 1H resonances of IDRs are typically found in a specific 

spectral region, between 7.5 and 8.5 ppm (at 283K-303K, Figure 28.A). Upon phosphorylation, 

the 1H-15N HMQC of the protein shows a new fingerprint. First, the new phosphoresidues have 

new NMR resonances, which are characterized by a 1H chemical shift comprised between 8.5 

and 9.5 ppm (Figure 28.A, Bienkiewicz et al., 1999, Hendus-Altenburger et al., 2019). This 

chemical shift is due to the new chemical environement probed by the backbone amide 1H-15N 

nuclei. The neighbor residues of the phosphosite can also be affected enough to show new peaks 

upon phosphorylation (Figure 28.C). Because NMR peak intensities are proportionnal to the 

molecular species concentrations, they can report the progressive appearance and disappearance 

of phospho- and unphospho-residues, respectively. These peak intensities can be measured in 

series of spectra recorded during the phosphorylation reaction. Hence, one can monitor 

phosphorylation advancement by tracking intensities of NMR peaks of phosphosites and their 

neighbors. 

Monitoring the peak intensities from non-phosphorylated species in every spectra is the 

easiest way to get a quantitative estimation of the phosphorylation kinetics: at time 0, the 

intensity corresponds to 100% of the non-phosphorylated species, hence providing a direct 

normalization. The normalization of phosphopeak intensities is indeed less evident, because 

100% phosphorylation is rarely obtained. It is achievable by anticorrelation with the non-

phosphopeak intensities. 
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Figure 28. Protein phosphorylation observed by 1H-15N HMQC-SOFAST NMR at 700 MHz 

(A and C) Example of superimposition of 1H-15N HMQC-SOFAST of BRCA248-218 at pH 7.0 

and 283K before (black) and after phosphorylation by Plk1 (red). Phosphoregion is displayed 

in (A) and (C) showed the impact of pS193 on its neighbor S195. (B) Intensity of S193 and 

pS193 peaks before and after complete phosphorylation. 

 

Even if this strategy permits to identify phosphoresidues and monitor their kinetics in 

one experiment, it presents several drawbacks. First, it necessitates relatively large quantities 

of protein, at least 2.5 nmol, i.e. 100 uL at 25 uM. Then, it requires protein samples enriched in 

15N for being NMR-visible in 2D 1H-15N correlation experiments. This is commonly achieved 

by recombinant production of proteins in a minimum media supplemented with a 15N-nutrient 

as the unique source of nitrogen, or using culture media supplemented with 15N amino acids. 

This strategy is more expensive due to the isotope-labeling of proteins. However, the 1H-15N 

spectrum of the protein of interest has first to be assigned in order to associate every peak to its 

corresponding residue in the protein sequence. This assignment requires the production of a 

15N/13C-labeled NMR sample for recording of a series of 3D NMR spectra necessary for the 

NMR chemical shift assignment. It is the most time-consuming part of the protocol. Finally, 

due to their high flexibility, disordered proteins present a narrow 1H-15N spectrum, with 

possible superimposition. In order to prevent superimposition, deleterious for the precise 

quantification, the size of the construct might be adapted, commonly to 100-200 amino acids. 

The size is usually a problem for protein solution NMR: large folded proteins tumble slower, 

which has deleterious consequences on NMR signal. This is less a problem in the case of IDRs, 

which conserve their fast motion at any size. IDRs larger than 200 amino acids are thus still 

amenable by solution NMR. 
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NMR can look time-consuming in comparison to MS. However, it offers several 

appealing advantages:  

(1) an atomic resolution characterization of the protein of interest, which identifies the 

phosphoresidues without protease treatment or ionization,  

(2) a very accurate monitoring of the phosphorylation kinetics based on the 

measurement of the peak intensity decay, 

(3) no need for an internal standard when quantifying the phosphorylation events,  

(4) the NMR analysis gives access to the structural impact of phosphorylations,  

(5) experiments can also be performed in cellular extracts or even in cells, using the 15N-

isotope filter that comes for free, because natural abundance of 15N is only 0.4%. 

 

In conclusion, no technique is perfect for studying IDRs phosphorylation. NMR is 

complementary to other techniques, notably in its capacity to deliver clear and comprehensive 

data for biochemical characterization in vitro. I used this strategy during my PhD to monitor 

BRCA2 phosphorylation.  
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Purpose of the thesis 
 

 

 My PhD project aimed at establishing structural and biochemical knowledge on 

conserved BRCA2 regions that were previously poorly characterized. More precisely, I focused 

my work on the BRCA2 N-terminal region, which was predicted to be disordered. This region 

is hyperphosphorylated by Plk1 during mitosis. Several studies have shown that mutations in 

this BRCA2 N-terminal region can create mitotic defects, including disrupted interaction with 

chromosome segregation proteins and late cytokinesis, which is highly carcinogenic. However, 

most of the detected BRCA2 phosphorylation sites targeted by Plk1 during mitosis were not 

identified previously. This limited the molecular characterization of this region. Among others, 

characterizing this BRCA2 region may help to identify new BRCA2 mutations causing breast 

cancers and the mechanisms behind their deleterious effects.  

As the “BRCA2 project” started only few years before my arrival at the laboratory, I 

had two main objectives:   

- to set up a methodology to study BRCA2 phosphorylation and to use it to dissect 

BRCA2 phosphorylation reactions, 

- to test hypotheses at the molecular level for understanding the role of these mitotic 

phosphorylations, either based on the literature or cell biology data from our collaborators. 

 

First, I produced several BRCA2 fragments spanning the N-terminal region (Chapter 

1) and I used NMR for identifying and monitoring the BRCA2 residues phosphorylated by Plk1 

(Chapter 2). Then, using a combination of biophysics techniques, I characterized new protein 

interactions that include this phosphoBRCA2 region (Chapter 3 and 4). This strategy also gave 

me the opportunity to measure the impact of BRCA2 variants of unknown significance on 

BRCA2 phosphorylation and interaction. My results have been integrated with those of Dr. 

Aura Carreira team (Institut Curie, Orsay) to describe the role of phosphoBRCA2 during 

chromosome segregation (Chapter 4). I also used a proteomics strategy to identify new 

phospho-dependent BRCA2 partners. With these results, I initiated the characterization of two 

newly identified BRCA2 partner: the kinesin Kif2C and the kinase Chk2 (Chapter 5).  

To better understand the phosphorylation mechanism of BRCA2 by Plk1, I also studied 

the impact of BRCA2 pre-phosphorylation by Cdks at position T77, which creates a Plk1 

docking site (Chapter 6). To achieve this goal, I used a new technology based on Native 

Chemical Ligation, in collaboration with Dr. Vincent Aucagne team (CBM, Orléans).  
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Because these investigations required to manipulate and use important amounts of Plk1, 

I first beneficiated from large amounts of Plk1 produced by the Institut Curie protein production 

facility, but then I also spent time to optimize its recombinant production. I initiated the 

production of full-length Plk1 in insect cells and of its separated domains in bacteria. The yields 

are good enough for future NMR studies (Chapter 7).  

Finally, I report at the end of the results section my initial main PhD project: I attempted 

to characterize the molecular bases of the DNA binding properties of the N-terminal region of 

BRCA2 (Chapter 8).  
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Material & methods 
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1. Commercial products 
 

PBS 10X was purchased from Sigma Aldrich (D1408-500ML), HEPES 1M from Sigma 

Aldrich (H0887), EDTA 0.5 M from Sigma Aldrich (E7889-100ML), PMSF 0.1 M from Sigma 

Aldrich (93482-250ML-F), benzonase from Sigma Aldrich (E1014-25KU), EDTA-free 

protease inhibitors (PI) from Roche (05056489001), PhoSTOP from Roche (04906837001), 

affinity and gel filtration column from GE Healthcare (Histrap FF: 17-5255-01, HisTrap excel: 

17-3712-05, Heparine: 71-7004-00AU, HiTrap desalting: 17-1408-01; gel filtration columns: 

HiLoad™ 16/600 Superdex™ 75 PG: 28-9893-33, HiLoad™ 16/600 Superdex™ 200 PG:28-

9893-35, Superdex™ 200 Increase 10/300 GL: 28-9909-44), centrifugal units later named 

concentrators from Amicon (UFC901024). 

 

2. Plasmids 
 
All plasmids used in these studies are summarized in Table 2 and Table 3. 

 
 

Table 2. Plasmids for expression of BRCA2 constructs 

Plasmid name Protein construct BRCA2 mutations available Vector Antibiotic 
resistance 

BRCA2190-284 GST-PreScision site-
BRCA2190-284 WT, M192T, T200K, T207A 

pGEW-6P-1 
(from Dr. 
Carreira) 

Amp 

BRCA253-228 GST-TEV site-BRCA253-228 WT pET-41 b Kana 
BRCA253-131 GST-TEV site-BRCA253-131 WT pET-41 b Kana 

BRCA248-218(C4A) 

or BRCA248-218 8His-TEV site-BRCA248-218 

C132A/C138A/C148A/C161A, 
C132A/C138A/C148A/C161A/T77A, 

C132A/C138A/C148A/C161A/M192T, 
C132A/C138A/C148A/C161A/T207A 

pETM-13 Kana 

BRCA248-284 8His-TEV site-BRCA248-284 C132A/C138A/C148A/C161A pETM-13 Kana 
BRCA2167-260 6His-AviTag-BRCA2167-260 WT, M192T, S193A, T207A pETM-13 Kana 
BRCA285-220 8His-TEV site-BRCA285-220 G85C pETM-13 Kana 
BRCA2T2.2 8His-TEV site-BRCA2250-500 WT pET-M13 Kana 
BRCA2T2.3 8His-TEV site-BRCA2250-350 WT pET-M13 Kana 
BRCA2D1 8His-TEV site-BRCA2250-500 C279A/C393S/C419S/C480S pET-M13 Kana 
BRCA2D1A 8His-TEV site-BRCA2250-350 C279A pET-M13 Kana 

BRCA2D2 8His-TEV site-BRCA2250-500 C279A/C311S/C315A/C341A/C393S/
C419S/C480S pET-M13 Kana 

BRCA2D2A 8His-TEV site-BRCA2250-350 C279A/C311S/C315A/C341A pET-M13 Kana 

BRCA2F2 8His_GB1-TEV site-
BRCA21093-1158 WT pET-M13 Kana 
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Table 3. Plasmids for expression of other constructs including Plk1, Kif2C, PARP1, Chk2 and 

Aurora A-TPX2 

Plasmid name Protein construct Mutations available Vector Antibiotic 
resistance 

GST-Plk1-PBD GST-TEV-Plk1365-603 WT Given by Dr. Anne 
Houdusse 

His6-SUMO-PBD His6-SUMO-PBD326-603 WT 
pT7-
His6-

SUMO 
Amp 

Plk1FL 6His-TEV site-PLK11-603 

C164L/C212S/C255S/C372S/C405S/C428
S/C572S/C573S/L162C 

C164L/C255S/C372S/C405S/C428S/C572
S/C573S 

C164L/C212S/C255S/C372S/C405S/C428
S/C572S/C573 

pET-28a Kana 

Plk137-603 6His-TEV site-PLK137-

603 

C164L/C212S/C255S/C372S/C405S/C428
S/C572S/C573S/L162C 

 
pET-28a Kana 

Plk11-328 6His-TEV site-PLK11-328 C164L/C212S/C255S/L162C 
 pET-28a Kana 

Plk11-366 6His-TEV site-PLK11-366 C164L/C212S/C255S/L162C 
 pET-28a Kana 

Plk1366-603 6His-TEV site-PLK1366-

603 
C372S/C405S/C428S/C572S/C573S 

 pET-28a Kana 

AurA-TPX2 
6His-Thrombine site-
TEV site-AurA122-403-

PKAlinker-TPX21-45 
C393A pET-28a Kana 

Kif2Cmotordomain(md) 6His-Kif2C216-598 R330A/R379A 
pET-28a 
(from Dr. 
Gigant) 

Kana 
(+Cam for 

pKg3) 

Kif2CFL(MCAK) Kif2C-6His WT pFastBac (from Dr. 
Friel) 

Kif2CFL(46) HisTAG-Kif2C S715E pSKT46 (from Dr. 
Welburn) 

Chk21-209 6His-thioreduxin-TEV-
Chk21-209 WT pET-32a Amp 

PARP11-366 HisTAG-PARP11-366 WT From Dr. 
Carreira 

Kana+Ca
m 

 

Most of the genes of interest were synthetized by Genscript with a codon optimization 

for expression in E.coli.  
 

3. Site-directed mutagenesis 
 

BRCA248-218(C4A) M192T, BRCA248-218(C4A) T207A, BRCA248-218(C4A) T77D and BRCA248-

218(C4A) T77E were obtained by site-directed mutagenesis using BRCA248-218(C4A) as a template. 

A first PCR step was realized using either M192T, T207A, T77D or T77E primers 

(Table 4) for the introduction of the corresponding mutation in the BRCA248-218(C4A) sequence. 

PCR was conducted with the QuickChange II XL Site-directed mutagenesis kit from Agilent 

Technologies with the following cycle steps: 2 min at 95°C, (30 s at 95°C, 30 s at 60°C, 14 min 



 75 

at 68°C)x 18 times, 5 min at 68°C. DNP1 enzyme was then added to the PCR sample and 

incubated 1 h at 37°C to linearize the amplified plasmid. Samples were then migrated on 1X 

agarose gel to check the quality of amplification (Figure 29 and Figure 30).  When amplified, 

new plasmids were transformed into E. coli DH5a and plate on LB agar. Three colonies of each 

mutant were grown overnight in 5 mL LB containing kanamycin, spun down 10 min at 3,000 

xg and a plasmid miniprep was performed using the Plasmid Miniprep kit from New England 

Biolabs Inc. Plasmids were then sequenced by Eurofins using BRCA248-218(C4A) primers. 

 

Table 4. Primers for BRCA248-218(C4A) site-directed mutagenesis. 

 

 Forward primer (5’-3’) Reverse primer (5’-3’) 
M192T AGTTGACCCGGATACGAGCTGGAGCAGC GCTGCTCCAGCTCGTATCCGGGTCAACT 
T207A ACCCTGAGCAGCGCCGTTCTGATTGTTC GAACAATCAGAACGGCGCTGCTCAGGGT 
T77D CAACTGGCGAGCGACCCGATCATTTTTAAG CTTAAAAATGATCGGGTCGCTCGCCAGTTG 
T77E CAACTGGCGAGCGAGCCGATCATTTTTAAG CTTAAAAATGATCGGcTCGCTCGCCAGTTG 

BRCA248-

218(C4A) AGGCCATGGGTCATCATCATCATCATCATC AATGGATCCGCTAGCTTACTCGCTCGCTTCCT 

 
 

 
Figure 29. 1X agarose gel of amplification of BRCA248-218 M192T and T207A mutations using 

site-directed mutagenesis.  

 

 

Figure 30. 1X agarose gel of BRCA248-218(C4A) PCR site-directed mutagenesis for mutations 

T77D and T77E. Several hybridation temperatures were tested during PCR (left) and 

hybridations at 68°C and 50°C were selected for T77D and T77E, respectively (right). 
 

 

Mutations M192T and T207A were obtained during the first mutagenesis experiment. 

Despite several trials (Figure 30), T77D and T77E mutagenesis were unsuccessful, no colony 

after transformation into DH5a were obtained. 
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4. Plasmid transformation in E.coli strains 
 

Plasmids were transformed in E. coli (BL21(DE3)Star or Rosetta 2) using a heat-shock 

protocol. About 100 ng of plasmid were incubated with competent bacteria (see protocol below) 

and incubated for 20 min on ice. The sample was then heat-shocked for 45 s at 42°C, and then 

incubated 3 min on ice. 400 uL of LB were added to the bacteria and the sample was incubated 

for 45 min at 37°C before antibiotic selection. This was achieved by spreading the bacteria on 

LB-agar plates supplemented with the appropriate concentrations of antibiotics, and incubation 

overnight at 37°C. 

Competent bacteria were obtained by spinning down a bacterial culture in LB at an 

OD600nm of 0.5. The centrifugation step was realized at 3,000 xg for 10 min at 4°C and bacteria 

were resuspended in 30 mL cold 100 mM CaCl2 solution. They were incubated on ice for 10 

min and spun-down again. Then, bacteria were resuspended in 8 mL cold 100 mM CaCl2 10% 

glycerol solution, and aliquots of 50-100 uL were flash-frozen in liquid-nitrogen and stored at 

-80°C.  

 
5. Protein expression 

 
Two culture media were used in this study: Luria Broth (LB) and M9 minimum media 

(Table 5). As described in Azatian et al., 2019, the use of 2X M9 salts improve the protein yield 

in minimum media. Thus, since 2019, 2X M9 was used for protein production. Antibiotics were 

used at concentrations of 100 ug/mL for ampicillin, 30 ug/mL for kanamycin, 30 ug/mL for 

chloramphenicol.  

 
Table 5. Composition of LB and M9 media 

Culture 
media LB 1X M9 medium 2X M9 medium 

Composition 
for 750 mL 

7.5 g tryptone 
3.75 g yeast extract 
7.5 g NaCl 

6.37 g Na2HPO4, 2H2O 
2.5 g KH2PO4 
0.35 g NaCl 
1X Trace Elements 
1.5 g 12C or 13C D-glucose 
750uL MgSO4 1 M 
250 uL CaCl2 1M 
750 ug biotine 
750 ug thiamine 
0.35 g 14N or 15N NH4Cl 

12.74 g Na2HPO4, 2H2O 
5 g KH2PO4 
0.35 g NaCl 
1X Trace Elements 
1.5 g 12C or 13C D-glucose 
750uL MgSO4 1 M 
250 uL CaCl2 1M 
750 ug biotine 
750 ug thiamine 
0.35 g 14N or 15N NH4Cl 

100X Trace elements are composed of 13.4 mM EDTA, 3.1 mM FeCl3, 0.62 mM ZnCl2, 76 

uM CuCl2, 42 uM CoCl2, 162 uM H3BO3, 8.1 uM MnCl2. 
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A single colony taken from LB-Agar plates was resuspended into 35 mL LB and 

incubated at 30°C overnight to perform a pre-culture. For a final 750 mL culture, a maximum 

of 20 mL LB preculture was diluted into the larger LB culture erlenmeyer and 5 mL for M9 

cultures. When needed (especially for BRCA285-220 expression in 15N M9 medium), a 35 mL 

preculture was spun down and resuspended in fresh minimal media in order to diminish the 

final 12C/14N content or the culture medium. 

 

Two protocols were used for the optimization of protein expression conditions: 

• In the case of disordered proteins (BRCA2 constructs), 3*50 mL culture of bacteria in 

LB containing antibiotics were incubated at 37°C. Upon OD600nm=0.6-0.8, 1 mM IPTG 

was added in each culture. Cultures were then separated for incubation either at 20°C, 

30°C or 37°C. OD600nm was measured and 100 uL aliquots was collected after i) 2, 3, 4, 

5 and 6 hrs of induction at 37°C, ii) 3, 4, 5, 6 hrs and overnight induction at 30°C and 

iii) 5, 6 hrs and overnight induction at 20°C. The sample were then mixed with Laemmli 

buffer, boiled 10 min at 95°C and analysed using SDS-PAGE. 

• In the case of folded proteins or domains, the protein solubility was checked during the 

expression optimization step. 2*50 mL cultures of bacteria in LB medium supplemented 

with antibiotics were incubated at 37°C. After the cultures reached an OD600nm of 0.6-

0.8, 1 mM IPTG was supplemented to the media. Cultures were then splitted in 3 flasks, 

which were incubated either at 20°C, 30°C or 37°C. Cultures at 37°C and 30°C were 

stopped after 3 hrs of induction, and culture at 20°C was stopped after an overnight 

(ON) induction. Culture were then spun down 10 min at 3,000 xg, resuspended in 1 mL 

of a water solution containing Tris-HCl at 50 mM, NaCl at 150 mM, 2 mM DTT, at pH 

8.0, supplemented with lysozyme and benzonase. Samples were then sonicated on ice 

for 2 min and spun down 5 min at 16,000 xg and 4°C. The total, supernatant and pellet 

fractions were analyzed using SDS-PAGE. 

 

Optimal protein expression conditions are summarized in Table 6. In this study, only 

Kif2Cmd and PARP11-366 expressions were not optimized in the lab. 
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Table 6. Optimal protein expression conditions in bacteria for BRCA2, Plk1, AurA-TPX2, 

PARP1, Chk2 and Kif2C constructs. 

 

Construct Bacterial strain 
for expression 

OD600nm 
inductio

n 
[IPTG] Other Induction 

time 
Induction 

temp. 

BRCA2190-284 BL21(DE3)Star 0.6-0.8 1 mM  4 hrs 37°C 
BRCA253-228 BL21(DE3)Star 0.6-0.8 1 mM  4 hrs 37°C 
BRCA253-131 BL21(DE3)Star 0.6-0.8 1 mM  4 hrs 30°C 
BRCA248-

218(C4A) BL21(DE3)Star 0.6-0.8 1 mM  4 hrs 37°C 
BRCA248-

284(C4A) BL21(DE3)Star 0.6-0.8 1 mM  4 hrs 37°C 
BRCA2167-260 BL21(DE3)Star 0.6-0.8 1 mM  4 hrs 37°C 

BRCA285-220 BL21(DE3)Star 0.6-0.8 1 mM  4hrs or ON 37°C or 
20°C 

BRCA2T2.2 BL21(DE3)Star 0.6-0.8 1 mM 100 uM 
ZnCl2 6 hrs or ON 20°C 

BRCA2T2.3 BL21(DE3)Star 0.6-0.8 1 mM 100 uM 
ZnCl2 

6 hrs or ON 20°C 

BRCA2D1 BL21(DE3)Star 0.6-0.8 1 mM 100 uM 
ZnCl2 ON 20 °C 

BRCA2D1A BL21(DE3)Star 0.6-0.8 1 mM 100 uM 
ZnCl2 

ON 20°C 

BRCA2D2 BL21(DE3)Star 0.6-0.8 1 mM 100 uM 
ZnCl2 ON 20 °C 

BRCA2D2A BL21(DE3)Star 0.6-0.8 1 mM 100 uM 
ZnCl2 

ON 20°C 

BRCA2F2 BL21(DE3)Star 0.6-0.8 1 mM  4 hrs 30°C 
GST-Plk1-

PBD BL21(DE3)Star 0.6-0.8 1 mM  4 hrs 30°C 
His6-SUMO-

PBD BL21(DE3)Star 0.6-0.8 1 mM  ON 20°C 
Plk1FL BL21(DE3)Star 0.4-0.6 1 mM  60 hrs 15°C 

Plk137-603 BL21(DE3)Star 0.4-0.6 1 mM  60 hrs 15°C 
Plk11-328 BL21(DE3)Star 0.4-0.6 1 mM  60 hrs 14°C 
Plk11-366 BL21(DE3)Star 0.4-0.6 1 mM  60 hrs 15°C 

Plk1366-603 BL21(DE3)Star 0.4-0.6 1 mM  60 hrs 15°C 
AurA-TPX2 BL21(DE3)Star 0.6-0.8 1 mM  ON 20°C 

Kif2Cmotordomain 

Or Kif2Cmd 
Rosetta e- 

containing pKg3 0.4-0.5 1.5 g D(-)arabinose/L culture, 30 min at RT, add 
0.5 mM IPTG, incubation ON at 20°C 

Chk21-209 BL21(DE3)Star 0.6-0.8 1 mM  ON 20°C 

PARP11-366 Rosetta 2 0.6-0.8 200 uM 100 uM 
ZnSO4 

ON 20°C 

 
 

Because we presumed that a zing finger domain was present in BRCA2250-350, ZnCl2 at 

a final concentration of 100 uM was added in BRCA2T2.2, BRCA2T2.3, BRCA2D1, BRCA2D1A, 

BRCAD2, BRCA2D2A culture media. ZnSO4 at 100 uM was also present for PARP11-366 

expression because it folds into zinc-finger domain. Kif2C production was performed using 

Benoît Gigant’s conditions and PARP11-366 using Aura Carreira’s conditions. Addition of D-(-
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)-arabinose was used for triggering the expression of protein chaperones (in pKg3) before the 

Kif2Cmd expression in order to favor Kif2Cmd folding.  

 

6. Protein purification 
 

Table 7 summarizes molecular weights and molecular extinction coefficients at 280 nm 

of the proteins produced in this study. All molecular extinction coefficients at 280 nm were 

calculated using the ProtParam webserver (https://web.expasy.org/protparam/). Purification 

steps that correspond to column chromatographies were performed at 4°C, with the exception 

of those performed with urea buffers, which were carried out at room temperature (RT). 

Samples were stored at -80°C and -20°C for long and short durations, respectively. Protocols 

correspond to the purification of a 750 mL culture pellet. 

 

Table 7. Molecular weights and molecular extinction coefficients after cleavage (TEV or 

PreScission) of proteins produced in this study 

Proteins MW (g/mol) e280nm (cm-1.M-1) pI 
BRCA2190-284 10,363 6,990 5.73 
BRCA253-228 20,108 10,220 7.85 
BRCA253-131 9,547 4,470 9.65 

BRCA248-218(C4A) 19,047 9970 8.13 
BRCA2167-260 13,586 12,490 5.74 
BRCA285-220 14,961 7,240 7.82 
BRCA2T2.2 27,879 8,855 5.30 
BRCA2T2.3 11,351 1,740 7.00 
BRCA2D1  27,799 8605 5.30 
BRCA2D2  28,194 8480 5,16 
BRCA2D1A  11,319 1,615 7.01 
BRCA2D2A  11,239 1,490 7.04 
BRCA2F2 7,671 1,490 4 .78 

GST-Plk1-PBD 28,214 36,245 6.35 
Plk1FL  68,195 56,520 9.31 

Plk137-603 65,038 56,645 9.20 
Plk11-328 36,742 20,650 9.54 
Plk11-366 41,047 20,650 9.50 

Plk1366-603 27,212 35,870 8.97 
Kif2Cmotordomain 43,789 21,150 8.96 
AurA-TPX2 41,711 49,975 6.26 

Chk21-209 23,397 26930 4.95 
PARP11-366  41,263 51,910 9,05 

 
 
BRCA2190-284 

 

Initial protocol (Dr. Simona Miron): 
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 The bacterial pellet is resuspended in 40 mL of 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 

2 mM DTT, 1 mM EDTA, 5% glycerol, 1 mM PMSF, 1X protease inhibitors (Roche 

diagnostics), 1 mM ATP, 5 mM MgSO4, 2 uL benzonase. Cells are sonicated on ice 2.5 min 

with 1s ON/1s OFF cycle of sonication (60 % amplitude), and the lysate is clarified by 

centrifugation during 30 min at 48,000 xg at 4°C. The soluble fraction is incubated with 10 mL 

Glutathione-coated Sepharose beads (GE Healthcare) during 2 hrs at 4°C on a rotating wheel, 

washed with 100 mL 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 2 mM DTT, 1 mM EDTA and 

eluted with 30 mL 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 2 mM DTT, 1 mM EDTA, 20 mM 

reduced glutathione. 80 uL of PreScission protease (Sigma Aldrich) are added to the sample, 

which is dialyzed ON against 50 mM HEPES pH 7.0, 1 mM EDTA, 2 mM DTT, 150 mM NaCl 

using 3.5 kDa cut off dialysis system from Spectrum laboratories. After dialysis, the sample is 

boiled 10 min at 90°C and spun down 10 min at 16,000 xg. The sample is concentrated using 

Novagen concentrators with 3 kDa cut off membranes, diluted 10 times with 50 mM HEPES 

pH7.0, 1 mM EDTA, 2 mM DTT and reconcentrated at 1,500 xg. 

 

Optimized protocol: 

 The bacterial pellet is resuspended in 35 mL of a solution containing 50 mM Tris-HCl 

at pH 8.0, 150 mM NaCl, 5 mM DTT, 2 mM EDTA, 1 mM PMSF, 1 mM ATP, 5 mM MgSO4, 

500 ug lysozyme, 0.5 uL benzonase. Cells are sonicated on ice 2.5 min in total with 1s ON/1s 

OFF cycle of sonication (60 % amplitude), and the lysate is clarified by centrifugation during 

15 min at 15,000 xg at 4°C. The soluble fraction is incubated with 10 mL Glutathione-coated 

Sepharose beads (GE Healthcare) during 1.5 hr at 4°C on a rotating wheel, washed with 100 

mL of a solution containing 20 mM Tris-HCl at pH 8.0, 150 mM NaCl, 1 mM DTT, 1 mM 

EDTA and eluted with 40 mL of a solution containing 20 mM Tris-HCl at pH 8.0, 150 mM 

NaCl, 1 mM DTT, 1 mM EDTA, 20 mM reduced glutathione. Eluted sample is concentrated to 

5 mL using 10 kDa cut off concentrators (Novagen). 30 uL of PreScission protease (Sigma 

Aldrich) and fresh 1 mM DTT are added to the sample and the sample is incubated 1 h at RT. 

The sample is boiled 10 min at 95°C and spun down 5 min at 16,000 xg at 4°C. The sample is 

concentrated at 5,000 xg using Novagen concentrators with 3 kDa cut off membranes and 

injected on a gel filtration column (Superdex 16/60 HiLoad 75 pg) equilibrated with a solution 

containing 50 mM HEPES at pH 7.0, 75 mM NaCl, 1 mM EDTA. Fractions are pooled and 

concentrated using 3 kDa cut off concentrators and a centrifugation at 5,000 xg. 1X protease 

inhibitors and 2 mM DTT are added and the sample is flash frozen using liquid nitrogen. 
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BRCA253-228 

The bacterial pellet is resuspended in 35 mL of a solution containing 50 mM Tris-HCl 

at pH 8.0, 150 mM NaCl, 5 mM DTT, 2 mM EDTA, 1 mM PMSF, 1 mM ATP, 5 mM MgSO4, 

500 ug lysozyme, 0.5 uL benzonase. Cells are sonicated on ice 2.5 min in total with 1s ON/1s 

OFF cycle of sonication (60 % amplitude), and the lysate is clarified by centrifugation during 

15 min at 15,000 xg at 4°C. The soluble fraction is incubated with 10 mL glutathione-coated 

Sepharose beads (GE Healthcare) during 1.5 hr at 4°C on a rotating wheel, washed with 100 

mL of a solution containing 20 mM Tris-HCl at pH 8.0, 150 mM NaCl, 1 mM DTT, 1 mM 

EDTA and eluted with 40 mL of a solution containing 20 mM Tris-HCl at pH 8.0, 150 mM 

NaCl, 1 mM DTT, 1 mM EDTA, 20 mM reduced glutathione. The eluted sample is 

concentrated to 5 mL using 10 kDa cut off concentrators (Novagen) centrifuged at 5,000 xg. 

0.4 mg of TEV protease and 2 mM of fresh DTT are added to the sample, which is incubated 1 

h at RT. After cleavage, BRCA253-228 precipitates and therefore is pelleted by centrifugation for 

10 min at 16,000 xg, and resuspended in a solution containing 20 mM Tris-HCl, 150 mM NaCl, 

1 mM EDTA, 5 mM DTT, 1 mM PMSF, at pH 8 supplemented with 8 M urea. It is finally 

diluted 10 times in a solution containing 20 mM Tris-HCl, 75 mM NaCl, 1 mM EDTA, 5 mM 

DTT, 1 mM PMSF, at pH 8 supplemented with 10 mM β-mercaptoethanol. The sample was 

then injected on a gel filtration column (Highload 16/60 Superdex 75 pg) equilibrated with 50 

mM HEPES, 1 mM EDTA, 5 mM tris(2-carboxyethyl)phosphine (TCEP), at pH 7.0. Fractions 

are pooled and concentrated using 3 kDa cut off concentrators centrifuged at 5,000 xg. 1X 

protease inhibitors is added and sample is flash frozen using liquid nitrogen. 

 

BRCA253-131 

The bacterial pellet is resuspended in 35 mL of a solution containing 50 mM Tris-HCl 

at pH 8.0, 150 mM NaCl, 5 mM DTT, 2 mM EDTA, 1 mM PMSF, 1 mM ATP, 5 mM MgSO4, 

500 ug lysozyme, 0.5 uL benzonase. Cells are sonicated on ice 2.5 min in total with 1s ON/1s 

OFF cycle of sonication (50% amplitude), and the lysate is clarified by centrifugation during 

15 min at 15,000 xg at 4°C. The soluble fraction is incubated with 10 mL glutathione-coated 

Sepharose beads (GE Healthcare) during 1.5 hr at 4°C on a rotating wheel, washed with 100 

mL of a solution containing 20 mM Tris-HCl at pH 8.0, 150 mM NaCl, 1 mM DTT, 1 mM 

EDTA and eluted with 40 mL of a solution containing 20 mM Tris-HCl at pH 8.0, 150 mM 

NaCl, 1 mM DTT, 1 mM EDTA, 20 mM reduced glutathione. The eluted sample is 

concentrated to 5 mL using 10 kDa cut off concentrators (Novagen). 0.4 mg of TEV protease 

and 2 mM of fresh DTT are added to the sample, which is incubated 1 h at RT. The sample is 
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boiled 10 min at 95°C and spun down 5 min at 16,000 xg at 4°C. The sample is concentrated 

using Novagen concentrators with 3.5 kDa cut off membranes centrifuged at 5,000 xg, and then 

injected on a gel filtration column (Superdex 16/60 HiLoad 75 pg) equilibrated with a solution 

containing 50 mM HEPES at pH 7.0, 75 mM NaCl, 1 mM EDTA, 0.5 mM DTT. Fractions are 

pooled and concentrated using 3 kDa cut off concentrators centrifuged at 5,000 xg. EDTA-free 

protease inhibitors (cOmplete EDTA-free) are added at a final 1x concentration and the sample 

is flash frozen using liquid nitrogen.  

 

BRCA248-284(C4A) and BRCA248-218(C4A) 

The bacterial pellet is resuspended in 35 mL of a solution containing 50 mM Tris-HCl 

at pH 8.0, 50 mM NaCl, 5 mM DTT, 2 mM EDTA, 1 mM PMSF, 1 mM ATP, 5 mM MgSO4, 

500 ug lysozyme, 0.5 uL benzonase. Cells are sonicated on ice 2.5 min in total with 1s ON/1s 

OFF cycle of sonication (50% amplitude), and the lysate is clarified by centrifugation during 

15 min at 15,000 xg at 4°C. The soluble fraction is loaded on a Ni-NTA histidine-affinity 

column (5 mL HisTrap FF, GE Healthcare) using a 2 mL/min flow rate. The column is washed 

with a solution containing 50 mM Tris HCl, 50 mM NaCl, 1 mM DTT at pH 8.0. Then, the 

sample is eluted using an imidazole gradient over 45 mL, the final buffer containing 50 mM 

Tris HCl, 50 mM NaCl, 1 M imidazole, 1 mM DTT at pH 8.0. Fractions of interest are pooled 

and 0.4 mg of TEV protease and 2 mM of fresh DTT are added to the sample, which is incubated 

1 h at RT. The sample is boiled 10 min at 95°C and spun down 5 min at 16,000 xg at 4°C. The 

sample is concentrated using Novagen concentrators with 3.5 kDa cut off membranes 

centrifuged at 5,000 xg, and injected on a gel filtration column (Superdex 16/60 HiLoad 75 pg) 

equilibrated with a solution containing 50 mM HEPES at pH 7.0, 75 mM NaCl, 1 mM EDTA. 

Fractions are pooled, supplemented with 1 mM fresh DTT and the sample is concentrated using 

3 kDa cut off concentrators centrifuged at 5,000 xg. EDTA-free protease inhibitors (cOmplete 

EDTA-free) are added at a final 1x concentration and the sample is flash frozen using liquid 

nitrogen. 

 

BRCA2167-260 

The bacterial pellet is resuspended in 35 mL of a solution containing 50 mM Tris-HCl 

at pH 8.0, 50 mM NaCl, 5 mM DTT, 2 mM EDTA, 1 mM PMSF, 1 mM ATP, 5 mM MgSO4, 

500 ug lysozyme, 0.5 uL benzonase. Cells are sonicated on ice 2.5 min in total with 1s ON/1s 

OFF cycle of sonication (50% amplitude), and the lysate is clarified by centrifugation during 

15 min at 15,000 xg at 4°C. The soluble fraction is loaded on a Ni-NTA poly-histidine-affinity 
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column (5 mL HisTrap FF, GE Healthcare) at a 2 mL/min flow rate. The column is washed 

with a solution containing 50 mM Tris-HCl, 50 mM NaCl, 1 mM DTTat pH 8.0. The sample is 

then eluted with an imidazole gradient over 45 mL, the buffer containing 50 mM Tris-HCl, 50 

mM NaCl, 1 M imidazole, 1 mM DTT at pH 8.0. The sample is boiled 10 min at 95°C and spun 

down 5 min at 16,000 xg at 4°C. The sample is concentrated using Novagen concentrators with 

3.5 kDa cut off membranes centrifuged at 5,000 xg and later injected on a gel filtration column 

(Superdex 16/60 HiLoad 75 pg) equilibrated a solution containing 50 mM HEPES at pH 7.0, 

75 mM NaCl, 1 mM EDTA. Fractions are pooled, 1 mM of fresh DTT is added and the sample 

is concentrated using 3 kDa cut off concentrators centrifuged at 5,000 xg. EDTA-free protease 

inhibitors (cOmplete EDTA-free) are added at a final 1x concentration and the sample is flash 

frozen using liquid nitrogen. 

 

BRCA285-220-G85C 

 The bacterial pellet is resuspended in 35 mL of a solution containing 50 mM Tris-HCl 

at pH 8.0, 50 mM NaCl, 5 mM DTT, 2 mM EDTA, 1 mM PMSF, 1 mM ATP, 5 mM MgSO4, 

500 ug lysozyme, 0.5 uL benzonase. Cells are sonicated on ice 2.5 min in total with 1s ON/1s 

OFF cycle of sonication (50% amplitude), and the lysate is clarified by centrifugation during 

15 min at 15,000 xg at 4°C. The unsoluble fraction is resuspended in 30 mL of a solution 

containing 20 mM Tris-HCl, 50 mM NaCl, 8 M Urea, 5 mM DTT, 1 mM PMSF, at pH 8.0 and 

incubated 20 min at RT. The solubilized fraction is clarified by centrifugation (10 min, 10,000 

xg, RT) and loaded on a Ni-NTA poly-histidine-affinity column (5 mL HisTrap FF) at a 2 

mL/min flow rate. The column is washed with a solution containing 50 mM Tris-HCl, 50 mM 

NaCl, 8 M Urea,1 mM DTT at pH 8.0. The sample is then eluted with an imidazole gradient 

over 45 mL, the final buffer containing 50 mM Tris-HCl, 50 mM NaCl, 8 M Urea, 1 M 

imidazole 1 mM DTT at pH 8.0. Fractions are pooled, concentrated using 10 kDa cut off 

concentrators (Novagen) centrifuged at 5,000 xg, and diluted to reach 0.5 M Urea with 20 mM 

Tris-HCl, 50 mM NaCl, 10 mM DTT, 1 mM EDTA, at pH 8.0. 0.8 mg of TEV protease are 

added to the sample, which is incubated 1 h at RT. The sample is concentrated using Novagen 

concentrators with 3.5 kDa cut off membranes centrifuged at 5,000 xg, and then injected on a 

gel filtration column (Superdex 16/60 HiLoad 75 pg) equilibrated with a solution containing 50 

mM HEPES at pH 7.0, 75 mM NaCl, 1 mM EDTA. Fractions are pooled and supplemented 

with 1 mM fresh DTT. The sample is concentrated using 3 kDa cut off concentrators centrifuged 

at 5,000 xg and diluted 1000 times with 1% acetic acid pH 2.4. Finally, the sample is 

lyophilized. 
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BRCA2T2.2 and BRCA2T2.3 

The bacterial pellet is resuspended in 35 mL of a solution containing 50 mM Tris-HCl 

at pH 8.0, 50 mM NaCl, 5 mM DTT, 2 mM EDTA, 1 mM PMSF, 1 mM ATP, 5 mM MgSO4, 

500 ug lysozyme, 0.5 uL benzonase. Cells are sonicated on ice 2.5 min in total with 1s ON/1s 

OFF cycle of sonication (50% amplitude), and the lysate is clarified by centrifugation during 

15 min at 15,000 xg at 4°C. The unsoluble fraction is resuspended in 30 mL of a solution 

containing 20 mM Tris-HCl 50 mM NaCl, 8 M Urea, 5 mM DTT, 1 mM PMSF, at pH 8.0 and 

incubated 20 min at RT. The solubilized fraction is clarified by centrifugation (10 min, 15,000 

xg, RT) and loaded on a Ni-NTA poly-histidine- affinity column (5 mL HisTrap FF) at a 2 

mL/min flow rate. The column is washed with a solution containing 50 mM Tris-HCl, 50 mM 

NaCl, 8 M Urea, 1 mM DTT, at pH 8.0 and eluted with an imidazole gradient over 45 mL, the 

final buffer containing 50 mM Tris-HCl, 50 mM NaCl, 8 M Urea, 1 M imidazole 1 mM DTT 

at pH 8.0. Fractions are pooled, concentrated using 10 kDa cut off concentrators (Novagen) 

centrifuged at 5,000 xg, and diluted to reach 0.5 M Urea in 20 mM Tris-HCl, 50 mM NaCl, 10 

mM DTT, 1 mM EDTA, at pH 8.0. 0.4 of TEV protease are added to the sample, which is 

incubated 1 h at RT. After concentration, the sample was very viscous and difficult to 

manipulate. Thus, I stopped the purification here and focused my attention on BRCA2D1 and 

BRCA2D1A. 

 

BRCA2D1, BRCA2D1A, BRCA2D2 and BRCA2D2A 

The bacterial pellet is resuspended in 35 mL of a solution containing 50 mM Tris-HCl 

at pH 8.0, 50 mM NaCl, 5 mM DTT, 2 mM EDTA, 1 mM PMSF, 1 mM ATP, 5 mM MgSO4, 

500 ug lysozyme, 0.5 uL benzonase. Cells are sonicated on ice 2.5 min in total with 1s ON/1s 

OFF cycle of sonication (50% amplitude), and the lysate is clarified by centrifugation during 

15 min at 15,000 xg at 4°C. The unsoluble fraction is resuspended in 30 mL of a solution 

containing 20 mM Tris-HCl 50 mM NaCl, 8 M Urea, 5 mM DTT ,1 mM PMSF, at pH 8.0 and 

incubated 20 min at RT. The solubilized fraction is clarified by centrifugation (10 min, 15,000 

xg, RT) and loaded on a Ni-NTA poly-histidine-affinity column (5 mL HisTrap FF) at a 2 

mL/min flow rate. The column is washed with a solution containing 50 mM Tris-HCl, 50 mM 

NaCl, 8 M Urea,1 mM DTT at pH 8.0 and eluted with an imidazole gradient over 45 mL, the 

final buffer containing 50 mM Tris-HCl, 50 mM NaCl, 8 M Urea, 1 M imidazole 1 mM DTT 

at pH 8.0. Fractions are pooled, concentrated using 10 kDa cut off concentrators (Novagen) 

centrifuged at 5,000 xg. 
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For BRCA2D1, BRCA2D1A, samples were diluted into buffers containing 0.5 (NMR 

experiments) or 2 M Urea (phase separation experiments before dilution) with 20 mM Tris-

HCl, 50 mM NaCl, 1 mM EDTA, 10 mM DTT, at pH 8.0, incubated at room temperature for 

10 min and injected on a gel filtration column (Superdex 10/300 GL 200 pg Increase) 

equilibrated with a solution containing 50 mM HEPES at pH 7.0, 150 mM NaCl 1 mM EDTA 

2 mM DTT and 0 or 2 M Urea buffer.  

For BRCA2D2, BRCA2D2A, samples were diluted into a buffer 0.5 M Urea with 20 mM 

Tris-HCl, 50 mM NaCl, 1 mM EDTA, pH 8.0. and injected on a gel filtration column (Superdex 

10/300 GL 200 pg Increase) equilibrated with a solution containing 50 mM HEPES, 150 mM 

NaCl, 1 mM EDTA at pH 7.0.  

After gel filtration, fractions are pooled and supplemented with 2 mM fresh DTT (for 

BRCA2D1 and BRCA2D1A). Sample are concentrated using 3 kDa cut off concentrators 

centrifuged at 5,000 xg and flash frozen using liquid nitrogen.  

 

BRCA2F2 

This protocol was optimized in collaboration with Rania Ghouil. 

The bacterial pellet is resuspended in 35 mL of a solution containing 50 mM Tris-HCl 

at pH 8.0, 50 mM NaCl, 2 mM DTT, 1 mM PMSF, 1 mM ATP, 10 mM MgSO4, 500 ug 

lysozyme, 0.5 uL benzonase. Cells are sonicated on ice 2.5 min in total with 1s ON/1s OFF 

cycle of sonication (50% amplitude), and the lysate is clarified by centrifugation during 15 min 

at 15,000 xg at 4°C. The unsoluble fraction is resuspended in 30 mL of a solution containing 

20 mM Tris-HCl, 50 mM NaCl, 8 M Urea, 1 mM PMSF, at pH 8.0 and incubated 20 min at 

RT. The solubilized fraction is clarified by centrifugation (10 min, 15,000 xg, RT) and loaded 

on a Ni-NTA poly-histidine-affinity column (5 mL HisTrap FF) at a 2 mL/min flow rate. The 

column is washed with a solution containing 50 mM Tris-HCl, 50 mM NaCl, 8 M Urea, 1 mM 

DTT, at pH 8.0 and eluted with an imidazole gradient over 45 mL, the final buffer containing 

50 mM Tris-HCl, 50 mM NaCl, 8 M Urea, 1 M imidazole 1 mM DTT, at pH 8.0. Fractions are 

pooled, concentrated using 10 kDa cut off concentrators (Novagen) centrifuged at 5,000 xg, 

and diluted intoa buffer containing 0.5 M Urea with 20 mM Tris-HCl, 50 mM NaCl, 10 mM 

DTT, 1 mM EDTA, at pH 8.0. 0.4 mg of TEV protease and 2 mM DTT are added to the sample 

which is incubated 1 h at RT. The sample is concentrated using Novagen concentrators with 3 

kDa cut off membranes centrifuged at 5,000 xg and injected on a gel filtration column 

(Superdex 16/60 HiLoad 75 pg) equilibrated with a solution containing 50 mM HEPES pH 7.0, 
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75 mM NaCl, 1 mM EDTA. The fractions of interest are pooled and the sample is concentrated 

using 3 kDa cut off concentrators centrifuged at 5,000 xg and flash frozen using liquid nitrogen. 

 

GST-Plk1PBD 

I optimized this protocol in collaboration with Dr. Simona Miron. The PBD (365-603) 

was purified by GST-affinity chromatography. After GST cleavage by the TEV protease, the 

tag and the protease were retained using GST-affinity chromatography, while the PBD was 

collected in the flow-through and further purified by gel filtration chromatography. The protein 

was dialyzed against a buffer containing 50 mM Tris-HCl at pH 8, NaCl 150 mM, and 5 mM 

β-ME (see Ehlen et al., (2020)) 

 

His-SUMO-Plk1PBD 

 The purification protocol of His-SUMO-PBD is described in Ehlen et al., (2020). 

 

Plk1FL and Plk1366-603 

The bacterial pellet is resuspended in 35 mL of a solution containing 50 mM Tris-HCl 

at pH 7.5, 50 mM NaCl, 5 mM DTT, 1 mM PMSF, 1 mM ATP, 5 mM MgSO4, 500 ug 

lysozyme, 0.5 uL benzonase. Cells are sonicated on ice 2 min in total with 1s ON/5s OFF cycle 

of sonication (60% amplitude), 15 °C maximum. The lysate is incubated 20 min at RT and then 

clarified by centrifugation during 10 min at 15,000 xg at 4°C. The soluble fraction is loaded on 

a Ni-NTA poly-histidine-affinity column (5 mL HisTrap excel) at a 2 mL/min flow rate. The 

column is washed with a solution containing 50 mM Tris-HCl, 50 mM NaCl, 1 mM DTT at pH 

7.5. The sample is eluted with an imidazole gradient over 30 mL, the final buffer containing 50 

mM Tris-HCl, 50 mM NaCl, 500 mM imidazole at pH 7.5. The elution fractions are collected 

and the sample is diluted 100 times with a solution containing 50 mM Tris-HCl at pH 7.5, 50 

mM NaCl, 2 mM DTT, 1 mM EDTA. The sample is loaded on a Heparin column (5 mL Heparin 

Hitrap) at a 2 mL/min flow rate. The column is washed with a solution containing 50 mM Tris-

HCl, 50 mM NaCl, 1 mM DTT, at pH 7.5 and the sample is eluted with a NaCl gradient over 

30 mL, the final buffer containing 50 mM Tris-HCl, 1 M NaCl, pH 7.5. The elution fractions 

are collected and 1 mM EDTA and 2 mM DTT are added. The sample is concentrated to 2 mL 

using  10 kDa cut off concentrators (Novagen) centrifuged at 5,000 xg and injected on a gel 

filtration column (Superdex 16/60 HiLoad 75 pg for Plk1366-603 and 200 pg for Plk1FL) 

equilibrated with PBS, 1 mM EDTA. Fractions are pooled, 1 mM of fresh DTT is added. The 
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sample is concentrated using 10 kDa cut off concentrators centrifuged at 5,000 xg and flash 

frozen using liquid nitrogen. 

 

Plk11-328 and Plk11-366 

The bacterial pellet is resuspended in 35 mL of a solution containing 50 mM Tris-HCl 

at pH 8.0, 50 mM NaCl, 5 mM DTT, 1 mM PMSF, 1mM EDTA, 1 mM ATP, 5 mM MgSO4, 

500 ug lysozyme, 0.5 uL benzonase. Cells are sonicated on ice 2 min in total with 1s ON/5s 

OFF cycle of sonication (60% amplitude), 15 °C maximum. The lysate is incubated 20 min at 

RT and then clarified by centrifugation during 10 min at 15,000 xg at 4°C. The soluble fraction 

is loaded on a Ni-NTA poly-histidine-affinity column (5 mL HisTrap excel) at a 2 mL/min flow 

rate. The column is washed with a solution containing 50 mM Tris-HCl, 500 mM NaCl, 1 mM 

DTT at pH 8.0. The sample was then eluted with an imidazole gradient over 30 mL, the final 

buffer containing 50 mM Tris-HCl, 50 mM NaCl, 1M imidazole at pH 8.0. The elution fractions 

are collected and are supplemented with 1 mM EDTA, 2 mM DTT and 1 mM PMSF. The 

sample is concentrated to 2 mL using 10 kDa cut off concentrators centrifuged at 5,000 xg, and 

injected on a gel filtration column (Superdex 16/60 HiLoad 75 pg) equilibrated with PBS, 1 

mM EDTA. The fractions of interest are pooled, 1 mM of fresh DTT and 1 mM EDTA are 

added. The sample is concentrated using 10 kDa cut off concentrators centrifuged at 5,000 xg 

and flash frozen using liquid nitrogen. 

 

AurA-TPX2 

The bacterial pellet is resuspended in 35 mL of a solution containing 50 mM Tris-HCl 

at pH 8.0, 50 mM NaCl, 5 mM DTT, 1 mM PMSF, 1mM EDTA, 1 mM ATP, 5 mM MgSO4, 

500 ug lysozyme, 0.5 uL benzonase. Cells are sonicated on ice 2 min in total with 1s ON/5s 

OFF cycle of sonication (60 % amplitude), 15 °C maximum. The soluble lysate is then purified 

by centrifugation during 10 min at 15,000 xg at 4°C. The soluble fraction is loaded on a Ni-

NTA poly-histidine-affinity column (5 mL HisTrap excel) at a 2 mL/min flow rate. The column 

is washed with a solution containing 50 mM Tris-HCl, 50 mM NaCl at pH 8.0. The sample was 

then eluted with an imidazole gradient over 30 mL, the final buffer containing 50 mM Tris-

HCl, 50 mM NaCl, 1 M imidazole at pH 8.0. The elution fractions of interest are collected and 

concentrated to 2 mL using 30 kDa cut off concentrators centrifuged at 5,000 xg, and injected 

on a gel filtration column (Superdex 16/60 HiLoad 200 pg) equilibrated with PBS. Fractions 

are pooled, 1 mM of fresh DTT is added. The sample is concentrated using 30 kDa cut off 

concentrators centrifuged at 5,000 xg and flash frozen using liquid nitrogen. 
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Kif2Cmd 

This protocol was kindly communicated to us by Dr. Benoît Gigant’s team and 

reoptimized in the lab by Rania Ghouil. 

The bacterial pellet is resuspended in 35 mL of a solution containing 25 mM Tris-HCl 

at pH 8.0, 1 M NaCl, 5 mM MgCl2, 5 mM b-mercaptoethanol, 0.1 mM ATP, 500 ug lysozyme, 

0.5 uL benzonase. Cells are sonicated 2 min with 1s ON/9s OFF cycle of sonication (60 % 

amplitude), with a temperature probe set at 10 °C and the soluble lysate is purified by 

centrifugation during 15 min at 15,000 xg at 4 °C. The soluble fraction is loaded on a Ni-NTA 

poly-histidine-affinity column (5 mL HisTrap FF) at a 2 mL/min flow rate. The column is 

washed with a solution containing 25 mM Tris-HCl, 500 mM NaCl, 10 mM imidazole, at pH 

7.5. The sample was then eluted with an imidazole gradient over 40 mL, the final buffer 

containing 25 mM Tris-HCl, 500 mM NaCl, 1 M imidazole, at pH 7.5. The fractions of interest 

are pooled, concentrated using Novagen concentrators with 10 kDa cut off membranes 

centrifuged at 5,000 xg, and injected on a gel filtration column (Superdex 16/60 HiLoad 75 pg) 

equilibrated with a solution containing 50 mM HEPES pH 7.0, 250 mM NaCl, 5 mM b-

mercaptoethanol (for ITC study) or 2 mM DTT (for NMR study), 5 mM MgCl2, at pH 7.0. The 

fractions are pooled and the sample is concentrated using 10 kDa cut off concentrators 

centrifuged at 5,000 xg. EDTA-free protease inhibitors (cOmplete EDTA-free) are added at a 

final 1x concentration and the sample is flash frozen using liquid nitrogen. 

 

Kif2CFL(MCAK) and Kif2CFL(46) 

The bacterial pellet is resuspended in 30 mL of a solution containing 20 mM Tris-HCl 

at pH 8.0, 50 mM NaCl, 5 mM MgCl2, 5 mM b-mercaptoethanol, 0.1 mM ATP, 500 ug 

lysozyme, 0.5 uL benzonase. Cells are sonicated for 2 min in total with 1s ON/9s OFF cycle of 

sonication (60% amplitude) with a temperature probe set up at 10 °C and the soluble lysate is 

purified by centrifugation during 15 min at 15,000 xg at 4°C. The soluble fraction is loaded on 

a Ni-NTA poly-histidine-affinity column (5 mL HisTrap excel). The column is washed with a 

solution containing 20 mM Tris-HCl, 50 mM NaCl, at pH 8.0. The sample was then eluted with 

an imidazole gradient over 40 mL, the final buffer containing 20 mM Tris-HCl, 50 mM NaCl, 

1 M imidazole, at pH 8.0. The fractions of interest are pooled, concentrated using Novagen 

concentrators with 10 kDa cut off membranes centrifuged at 5,000 xg, and injected on a gel 

filtration column (Superdex 16/60 HiLoad 200 pg) equilibrated with phosphate at 20 mM and 

200 mM NaCl at pH 7.4. The fractions of interest are pooled and the sample is concentrated 
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using 10 kDa cut off concentrators centrifuged at 5,000 xg. The final sample is supplemented 

with DTT at a final concentration of 2 mM and flash frozen using liquid nitrogen. 

 

Chk21-209 

The bacterial pellet is resuspended in 35 mL of a solution containing 50 mM Tris-HCl 

at pH 8.0, 50 mM NaCl, 5 mM DTT, 1 mM PMSF, 1mM EDTA, 1 mM ATP, 5 mM MgSO4, 

500 ug lysozyme, 0.5 uL benzonase. Cells are sonicated on ice 2 min in total with 1s ON/5s 

OFF cycle of sonication (60% amplitude), 15 °C maximum. The soluble lysate is purified by 

centrifugation during 10 min at 15,000 xg at 4°C. The soluble fraction is loaded on a Ni-NTA 

poly-histidine-affinity column (5 mL HisTrap excel) at a 2 mL/min flow rate. The column is 

washed with a solution containing 50 mM Tris-HCl, 500 mM NaCl, 1 mM DTT, at pH 8.0. The 

sample is then eluted with an aimidazole gradient over 30 mL, the final buffer containing 50 

mM Tris-HCl, 50 mM NaCl, 1 M imidazole, at pH 8.0. The elution fractions of interest are 

collected, 2 mM DTT and 0.4 mg of TEV protease are added. The sample is incubated 1 h at 

RT. The sample is then concentrated to 2 mL using 10 kDa cut off concentrators centrifuged at 

5,000 xg, and injected on a gel filtration column (Superdex 16/60 HiLoad 200 pg) equilibrated 

with PBS. Fractions are pooled, 1 mM of fresh DTT and 1 mM EDTA are added. The sample 

is concentrated using 10 kDa cut off concentrators centrifuged at 5,000 xg, and flash frozen 

using liquid nitrogen. 

 

PARP11-366 

The bacterial pellet is resuspended in 35 mL of a solution containing 25 mM HEPES at pH 

8.0, 500 mM NaCl, 0.5 mM DTT, 1X protease inhibitors (cOmplete EDTA-free Roche), 1 mM 

PMSF. Cells are sonicated on ice 2.5 min in total with 1s ON/1s OFF cycle of sonication (50% 

amplitude, 10°C maximum). The soluble lysate is clarified by centrifugation during 10 min at 

15,000 xg at 4°C. The soluble fraction is loaded on a Ni-NTA poly-histidine-affinity column 

(5 mL HisTrap FF) at a 2 mL/min flow rate. The column is washed with a solution containing 

25 mM HEPES at pH 8.0, 1 M NaCl, 20 mM imidazole, 0.5 mM DTT. The sample is then 

eluted with an imidazole gradient over 35 mL, the final buffer containing 50 mM HEPES at pH 

8.0, 500 mM NaCl, 400 mM imidazole, 0.5 mM DTT. The elution fractions of interest are 

collected and the sample is loaded on HiTrap desalting (5 mL) column, at a 2 mL/min flow rate, 

equilibrated with a solution containing 50 mM HEPES at pH8.0, 150 mM NaCl, 1 mM EDTA, 

0.5 mM DTT. The elutions fractions of interest are pooled and loaded on a Heparin column (5 

mL Heparin Hitrap) at a 2 mL/min flow. The column is washed with a solution containing 50 
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mM HEPES at pH 8.0, 150 mM NaCl, 1 mM EDTA, 0.5 mM DTT. The sample is then eluted 

with a NaCl gradient over 50 mL, the final buffer containing 50 mM HEPES at pH 8.0, 1 M 

NaCl, 1 mM EDTA, 0.5 mM DTT. The elution fractions are collected, concentrated to 2 mL 

using 10 kDa cut off concentrators centrifuged at 5,000 xg, and injected on a gel filtration 

column (Superdex 16/60 HiLoad 75 pg) priorily equilibrated with a solution containing 50 mM 

HEPES at pH 8.0, 150 mM NaCl, 1 mM EDTA, 2 mM DTT. The fractions of interest are 

pooled, concentrated using 10 kDa cut off concentrators centrifuged at 5,000 xg, and flash 

frozen using liquid nitrogen. 

 
7. Production of Plk1 in insect cells  

 

The plasmid hPlk1 (pTK24 vector) given by Dr Amhed El Marjou (Institut Curie, Paris) 

(see Ehlen et al., 2020) was used as a template for human Plk1 cDNA sequence amplification. 

Primers listed in Table 8 were used for the PCR amplification of hPlk1 and the pKL vector.  

 

Table 8. Primers for hPlk1 and pKL amplification by PCR. 

 Forward primer (5’-3’) Reverse primer (5’-3’) 
hPlk1 CTGTATTTTCAGGGCATGAGTGCTGCAGTGACTG GGCTCTAGACTATTAGGAGGCCTTGAGACGGTTG 
pKL TAATAGTCTAGAGCCTGCAGTCTCG GCCCTGAAAATACAGGTTTTCG 

 
The PCR mix was composed of 100 ng DNA template, 2 uM of each primer, 200 uM 

dNTPs, 1X HF Buffer and 1 uL of e-phusion Q5 polymerase (Phusion High-fidelity DNA 

polymerase kit form New England BioLabs). PCR was conducted with the following cycle 

steps: 3 min at 98°C, (20 s at 98°C, 30 s at 64°C, 2.5 min at 72°C)x 35 times, 5 min at 72°C for 

pKL amplification and 3 min at 98°C, (20 s at 98°C, 30 s at 70°C, 1 min at 72°C)x 35 times, 5 

min at 72°C for hPlk1 amplification. PCR products were migrated on 1X agarose gel and 

purified using the DNA clean and concentrator kit from Zymo Research (D4014). For ligation, 

150 ng of purified pKL PCR product was mixed to 115 ng of hPlk1 purified PCR product and 

to 1X in fusion enzyme premix (TaKaRa) and incubated 1 h at 50°C. Ligation mix was then 

used to transform Stellar cells (TaKaRa) by heat shock and transformed bacteria were plated 

on LB-agar containing kanamycin for antibiotic selection. 4 colonies were cultured in 5 mL LB 

and treated for plasmid extraction using the Plasmid Miniprep kit from New England Biolabs 

Inc. Plasmids were then sequenced by Eurofins using hPlk1 primers.  

After plasmid sequencing, hPlk1-pKL plasmid was used to transform DH10EMBacY 

cells using heat shock (20 min 4°C, 30 s 42°C, 3 min 4°C, 950 uL of SOC medium, 5 hrs at 

37°C) and transformed bacteria were selected on a LB-agar plate containing 30 ug/mL 

kanamycin, 10 ug/mL tretracyclin, 10 ug/mL gentamycin, 1 mM IPTG, 80 ug/mL X-Gal. This 
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step permits to achieve the recombination of the hPlk1 sequence from the hPlk1-pKL plasmid 

into the baculovirus genome sequence contained in the EMBacY bacteria. The hPlk1 sequence 

is recombinated into the b-galactosidase cDNA sequence contained into the EMBaCY bacmid. 

This recombination results in the disruption of the lacZ gene encoding for the b -galactosidase. 

Hence, the introduction of Plk1 into the bacmid is screened by growing transformed 

DH10EMBacY on medium containing IPTG and X-gal. Bacterial clones that contain bacmid 

carrying the Plk1 cDNA do not express the b -galactosidase, do not digest X-gal and remain 

uncolored/white, while other clones blue colonies. Two white colonies were incubated in 2 mL 

LB supplemented with 30 ug/mL kanamycin, 10 ug/mL gentamycin for ON at 37°C. The 

Plasmid Miniprep kit from New England Biolabs Inc was used until protein precipitation. The 

supernatant was then supplemented with 44% isopropanol and spun down 10 min at 16,000 xg. 

EtOH 70% was then used to wash two times the pellet containing the baculovirus genome with 

hPlk1 and the pellets were dried at RT.  Each pellet was then dissolved into 20 uL sterile water, 

200 uL of Sf9 medium is added and the transfection mix was completed with 100 uL of sf9 

medium and 10 uL of X-TremeGENE (Roche). The mix was then added to a 1.106 cell/mL 

culture of 1 mL. Plates were incubated at 27°C. About 60 hrs later, the supernatant containing 

the V0 generation of virus was collected and stored at 4°C.  

For larger cultures, V0 virus particles were used to infect sf9 cells. Here, I conducted 

2 productions of 300 mL. After infection, fluorescence of YFP (contained in the baculovirus 

genome under the control of the promoter of the polymerase p10, different from the polH 

promoter used for hPlk1) was monitored to quantify the level of baculovirus-related protein 

production and cell population. When the fluorescence reached a plateau, cells were collected 

by centrifugation. 

For evaluating the hPlk1 production, I pooled the 2 pellets and resuspended them is 40 

mL of a solution containing 20 mM Tris-HCl at pH 8.0, 50 mM NaCl, 1X protease inhibitors 

(cOmplete EDTA-free Roche), 2 mM DTT, 1 mM EDTA, 1 mM PMSF, 5 mM MgSO4, 

benzonase. Suspension was sonicated on ice (1s ON/ 1s OFF cycle for 2 min) with a 10°C 

maximum temperature allowed. The supernatant was clarified by 15 minutes centrifugation at 

10,000 xg and 4°C. Supernatant was loaded on a Ni-NTA poly-histidine-affinity column 

(HisTrap FF 5 mL), the column was washed with a solution containing 20 mM Tris-HCl at pH 

8.0, 50 mM NaCl, 0.5 mM DTT. The sample was eluted through an imidazole gradieng of 40 

mL, the final buffer containing 50 mM Tris-HCl at pH 8.0, 150 mM NaCl, 500 mM imidazole.  
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8. Proteomics 
  

This protocol was optimized following the advices of Florent Dingli (MS platform at 

Institut Curie). All wash steps were performed with beads resuspension unless it is specified. 

Recombinant BRCA2 constructs were designed to integrate a 15 amino acid long 

sequence GLNDIFEAQKIEWHE, so-called Avi-Tag (Fairhead et al., 2015), in the N-terminal 

end. This permits a specific biotinylation ot the lysine contained in the Avi- by the enzyme 

BirA. 

Biotinylation of BRCA2167-260 was performed by incubating 100 uM BRCA2167-260 in a 

solution containing 2 mM ATP, 600 uM biotine, 5 mM MgCl2, 1 mM DTT, 1X protease 

inhibitors, at pH 7.0 together with 0.7 uM of BirA enzyme (produced by FX Theillet and 

Chafiaa Bouguechtouli) in a buffer containing 50 mM HEPES, 150 mM NaCl, 1 mM EDTA. 

The sample was incubated 1h30 at RT and injected on a gel filtration column (Superdex 16/60 

HiLoad 75 pg) priorily equilibrated with a solution containing 50 mM HEPES pH 7.0, 75 mM 

NaCl, 1 mM EDTA. The fractions of interest were pooled, supplemented with 1 mM fresh DTT 

and the sample ws concentrated using 3 kDa cut off concentrators centrifuged at 5,000 xg. 

EDTA-free protease inhibitors (cOmplete EDTA-free) are added at a final 1x concentration and 

the sample was flash frozen using liquid nitrogen. 

Either 50 uL or 100 uL of Streptavidine-coated magnetic beads (Streptavidine Mag-

Beads, Genscript) were used per sample and loaded with 2 ng or 10 ng of BRCA2 peptide 

constructs, respectively. All conditions were performed with 5 replicates. Beads were first 

washed 3 times using 500 uL PBS. 2 ng or 10 ng of recombinant biotinylated Avi-tag-

BRCA2167-260 in PBS at pH 7.5, 1 mM DTT, 1X protease inhibitors were added to the beads in 

a 100 uL final volume. The samples and the beads were incubated for 1 h at RT on a rotating 

wheel, washed 2 times with 500 uL of a solution containing 50 mM HEPES at pH 7.2, 150 mM 

NaCl, 2 mM EDTA, 10 mM NaF, 0.5 mM PMSF, 1 X protease inhibitors, 1 mM DTT, 1X 

PhosphoSTOP mixed with 800 ug of lysed cells extracts (HEK cells synchronized or not with 

nocodazole) in 20 mM HEPES at pH 7.6, 150 mM NaCl, 0.1% NP40, 2 mM EGTA, 1.5 mM 

MgCl2, 50 mM NaF, 10% glycerol, 20 mM b-glycerophosphate, 1 mM DTT, 1X protease 

inhibitors produced by Dr. Aura Carreira’s team. 

In the experimental conditions using 10 ng of BRCA2 peptides, HEK 293 synchronyzed 

(G2/M phase, nocodazole) cell extracts were incubated 30 min at RT on a rotating wheel. In 

the next steps, the 5 replicates were treated at the same time in order to favor the reproducibility 

of the experiment. The samples were washed 3 times with 100 uL of a solution containing 50 
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mM HEPES at pH 7.2 150 mM NaCl, 2 mM EDTA, 10 mM NaF, 0.5 mM PMSF, 1 mM DTT, 

and washed 3 times with 100 uL of a solution containing 50 mM ammonium bicarbonate at pH 

8.25. The beads were resuspended at every step. The beads in 100 uL of 50 mM ammonium 

bicarbonate pH 8.25 are kept on ice and given to the MS Institut Curie platform (Paris) for MS 

analysis. 

In the experimental conditions using 2 ng of BRCA2 peptides, cell extracts were 

incubated for 2 hrs at RT on a rotating wheel. In the next steps, the 5 replicates were treated at 

the same time in order to favor the reproducibility of the experiment. The samples were washed 

3 times with 100 uL of a solution containing 50 mM HEPES at pH 7.2, 150 mM NaCl, 2 mM 

EDTA, 10 mM NaF, 0.5 mM PMSF, 1 mM DTT, and washed twice without resuspension of 

the beads with 500 uL of a solution containing 50 mM ammonium bicarbonate at pH 8.25. The 

beads were the kept on ice in 500 uL of the buffer containing 50 mM ammonium bicarbonate 

at pH 8.25  and given to the MS Institut Curie platform (Paris) for MS analysis. 

The analysis of the results was later achieved on the website of the plateform using 

MYPROMS. 

 
9. Peptides and DNA 

 
Synthetic peptides used for ITC measurements in this study are listed in Table 9 and 

short DNA oligomers used for interaction assays with BRCA2 are listed in Table 10. DNA 

sequences correspond to synthetic nucleotidic sequences from yeast telomeric DNA, previously 

designed for another project in the lab. 

 

 

Table 9. List of peptides used, their solubilization buffer and their corresponding supplier. 

Name Peptide Solubilization buffer Supplier 
T207 Ac-WSSSLATPPTLSSTVLI-CONH2 H2O ProteoGenix 
pT207 A-WSSSLATPPTLSSpTVLI-CONH2 H2O ProteoGenix 
T207A Ac-WSSSLATPPTLSSAVLI-CONH2 H2O ProteoGenix 
T207D Ac-WSSSLATPPTLSSDVLI-CONH2 H2O ProteoGenix 

T77 Ac-YNQLASTPII-CONH2 H2O ProteoGenix 
pT77 Ac-YNQLASpTPII-CONH2 H2O ProteoGenix 
T77D Ac-YNQLASDPII-CONH2 H2O ProteoGenix 
T77E Ac-YNQLASEPII-CONH2 H2O ProteoGenix 

 
Table 10. List of DNA used their sequence and their solubilization  

Name Sequence Solubilization buffer 
R9 5’   -TCCTGGTGTGTGGGTGTGCGG H2O 

R9R10 5’   -TCCTGGTGTGTGGGTGTGCGG – 3’ 
3’ -CCAGGACCACACACCCACACG– 5’ H2O 

 
 



 94 

10.  ITC 
 

All ITC titrations were performed on a VP-ITC instrument (Malvern) and data were 

analyzed using the Origin 7.0 software (OriginLab). 

The ITC titrations for BRCA2/Plk1PBD interactions were performed with 500 uL of 

BRCA2 peptides at 100 uM in the syringe and 2.4 mL of Plk1PBD_Curie 10 uM in the cell, both 

in a solution containing 50 mM Tris HCl at pH 8.0, 150 mM NaCl, 5 mM b-mercaptoethanol. 

Measurements were performed at 20°C with a first injection of 2 uL during 4 s, and then 

injections of 10 uL in 20 s separated of 240 s intervals.  

The ITC titration for BRCA2/Kif2Cmd interaction was performed with 500 uL of 

pBRCA2167-260 at env. 100 uM in the syringe and 2.4 mL of Kif2Cmd at env. 10 uM in the cell 

or 500 uL of Kif2Cmd at env. 100 uM in the syringe and 2.4 mL of pBRCA2167-260 at env. 10 

uM in the cell, both in a solution containing 50 mM HEPES at pH7.0, 250 mM NaCl, 5 mM b-

mercaptoethanol, 5 mM MgCl2 buffer. The measurements were performed at 10°C with a first 

injection of 2 uL during 4 s, and then injections of 10 uL in 20 s separated of 210 s intervals.  

 
11.  Phosphorylation kinetics 
 

The following kinases were used in this study: 

• Plk1 active but not activated, produced by the protein production platform of the Institut 

Curie (Dr. Ahmed El Marjou, Paris) in insect cells and purified as described in Ehlen et 

al., 2020 

• Commercial Cdk1/B1 from Sigma Aldrich 

• Commercial Cdk1/A2 from Sigma Aldrich 

• Commercial p38β from Sigma Aldrich 

• Home-produced p38a by Dr. François-Xavier Theillet 

• Commercial PKA from NE Biolabs 

 

The general phosphorylation protocol is described in Julien et al., 2020. Briefly, two 

sorts of protocols can be used: the quenched reaction (pH>7.5) and the continuous readout 

(pH<7.0).  
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• Plk1 phosphorylation 

BRCA2190-284 phosphorylation by Plk1 was initially set up at pH 7.8 using the quenched 

reaction protocol. BRCA2 peptides at 200 uM were mixed to Plk1 at a final concentration of 

1.1 uM in a reaction buffer containing 50 mM HEPES, 1 mM EDTA, 2 mM ATP, 20 mM 

MgCl2, 2 mM DTT, 1X protease inhibitors, at pH 7.8. For NMR analysis, 150 uL aliquots of 

the reaction samples * number of time points were prepared. The samples were incubated at 

30°C and boiled for 5 min at 95°C to stop the reaction. 

The BRCA248-218 phosphorylation by Plk1 using the quenched reaction was performed 

in the same conditions but at a substrate concentration of 50 uM and a Plk1 concentration of 

100 nM (different Plk1 stock than for BRCA2190-284, with higher activity). 

Continuous readout monitoring of BRCA2 phosphorylation by Plk1 was performed with 

substrate concentrations between 45 and 200 uM and Plk1 concentrations between 150 and 250 

nM. Reactions were performed in a buffer containing 50 mM HEPES, 75 mM NaCl, 1 mM 

EDTA, 5 mM MgCl2, 2 mM ATP, 2 mM DTT, 1X protease inhibitors, 3-5 % D2O, 50 uM DSS, 

at pH 7.0. 300 uL of mix were prepared per reaction. In the case of monitoring using 13C-direct 

detection (1H-flip)-CaCO NMR spectroscopy, 3 mM V-NOTA were added to the sample. 

 

• Phosphorylation in cell extracts 

The continuous NMR readout was performed to monitor this reaction. BRCA248-218 at 

130 uM was mixed to 350 uL of fresh mitotic synchronized cell extracts (DLD1 BRCA2-/- cells) 

at a final concentration of 2.65 ug/uL in a lysis buffer containing 45 mM HEPES at pH 7.2, 0.5 

mM EDTA, 10 mM MgCl2, 50 mM KCl, 3% NP40, 10% glycerol, 1X PI, 1X antiphosphatase, 

3 mM DTT.  2 mM ATP, 2 mM fresh DTT and 10% D2O were added to a final volume of 500 

uL.  

  

• PKA phosphorylation 

The continuous NMR readout was carried out to monitor this reaction. BRCA248-218 was 

mixed to 1 uL of PKA, 1X NEB buffer supplemented with 1 mM ATP, 1X PI and 5% D2O in 

a 150 uL final volume.  

 

• Cdk1/B1 and Cdk1/A2 phosphorylation 

The continuous NMR readout was carried out to monitor this reaction. BRCA248-218 at 

50 uM was mixed to 40 uL of Cdk1/B1 or 10 uL of Cdk1/A2 in a reaction buffer containing 50 
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mM HEPES at pH 7.0, 1 mM EDTA, 10 mM MgCl2, 2 mM ATP, 4 uM TCEP, 5% D2O, 1X 

protease inhibitors in a final volume of 150 uL for 15 hrs.  

• p38β and p38a phosphorylation 

The continuous NMR readout was performed to monitor this reaction. BRCA248-218 at 

50 uM was mixed to a reaction buffer containing 50 mM HEPES at pH 7.0, 1 mM EDTA, 20 

mM MgCl2, 2 mM ATP, 2 mM DTT, 5% D2O, 1X protease inhibitors in a final volume of 150 

uL (or 150 uL * time point for further Plk1 quenched reaction). 15 uL of commercial p38β or 

1-2 uM of home-produced p38a. 

 

 For sequential phosphorylation (Cdk1/B1 and Plk1 or p38 and Plk1), samples were 

boiled 5 min at 95°C after the first phosphorylation reaction for inactivating the first kinase. 

Buffer was then exchange either by successive steps of concentrations/dilutions or by gel 

filtration (Superdex 10/300 GL 75). 

 

• Plk11-328 phosphorylation by AurA-TPX2 

Plk11-328 was mixed to AurA-TPX2 in conditions described in Figure 77. The mix was 

incubated at 25°C. 10 uL aliquots were taken at several time points and mixed to 10 uL 2X 

Laemmli buffer.  

Phos-tag gel preparation were prepared as described in Kinoshita et al. 2003: 

Stacking gel: 0.22 mL bis-acrylamide 40%, 1.2 mL H2O, 0.5 mL 0.5 M Tris-HCl pH 6.8, 25 

uL APS 10%, 25 uL SDS 10%, 5 uL TEMED. 

Running gel: 1.75 mL bis-acrylamide 40%, 3.1 mL H2O, 1.75 mL 0.5 MTris-HCl pH 8.8, 75 

uL Phos-tag (alphalabs) 5 mM dissolved in 3% MeOH, 75 uL MnCl2 10 mM, 40 uL APS 10%, 

70 uL SDS 10%, 4 uL TEMED. 

 

 

12.  NMR spectroscopy 
 

31P-NMR spectroscopy expermiments were carried out on a 600 MHz Bruker 

spectrometer equipped with a broadband room-termperature probe at the ICSN spectrometry 

plateform, under the supervision of François Giraud. The acquisition was performed using a 5 

mm tube containing 15N-labeled BRCA2167-260 at 300 uM phosphorylated by Plk1 in a obuffer 

containing 50 mM HEPES, 75 mM NaCl, 1 mM EDTA, 5% D2O, at pH 7.0. The spectra were 

recorded at 283 K (1024 or 2048 scans) and 300 K (1024 scans).  
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All the other experiments were recorded either on a 600 MHz Bruker Advance II spectrometer 

or a 700 MHz Bruker Advance Neo spectrometer, both equipped with a triple resonance 

cryogenically cooled probe optimized for 1H-detection (TXI or TCI, Bruker). 

The backbone 1H-15N assignment of BRCA2(48-284) is described in Julien et al. (2020) 

NMR Biomol. Assign. The assignment of BRCA2167-260 was performed with a sample 

containing BRCA2167-260 at 200 uM in 50 mM HEPES, 75 mM NaCl, 1 mM EDTA, 1 mM 

DTT, at pH 7.0, 3% D2O, 50 uM DSS in a 3mm tube. The assignment of pBRCA2167-260 was 

performed using a sample containing BRCA2167-260 at 100 uM in the same conditions. 1H-15N 

SOFAST-HMQC, 1H-15N HSQC and CBCA(CO)NH spectra were recorded on a 600 MHz 

Bruker spectrometer. 

 1H-15N SOFAST-HMQC spectra acquisitions for phosphorylation studies are 

extensively described in Julien et al. (2020) Methods in Mol. Biol. The (1H-flip)13Ca-13CO-

LOWBASHD experiments are detailed in Alik et al. (2020) Angew. Chem. Int. Eng. 

 The samples from quenched reactions were analyzed in 3 mm NMR tubes (Norell) and 

the samples used for continuous reading in 5mm Shigemi tubes. 

 For sample analysis or interaction tests, the samples were analyzed in3 mm tubes in 

buffer conditions described in the corresponding figures. 1H-15N SOFAST-HMCQ spectra were 

reorded using 1024 or 1536 points in the direct 1H dimension and 128 or 256 points in the 

indirect 15N dimension. 

 For relaxation measurements, R1 values were derived from peak intensities measured in 

1H-15N HSQC spectra recorded using 2048 points in the direct dimension, 256 points in the 

indirect dimension and 12 delays (20, 60, 100, 900, 400, 1300, 60, 2000, 600, 200, 1600 and 

600 ms; ns=8). R2 were obtained from 1H-15N HSQC spectra with 2048 points in the direct 

dimension, 200 points in the indirect dimension and 10 delays (16.96, 33.92, 67.84, 101.76, 

135.68, 203.52, 271.36, 339.2, 135.68 and 407.04 ms; ns=8). 1H-15N heteronuclear NOEs were 

measured in 2D spectra recorded with 2048 points in the direct dimension and 512 points in the 

indirect dimension (ns=24, interscan delay = 5s). 

 Data were analyzed using Topspin 4.0.6 (Bruker) and CcpNMR Analysis 2.4, R1 and 

R2 fits were performed using CcpNMR Analysis 2.4. 
 

13. Observation of phase separation by microscopy 
 

For the first analysis of phase transition, a l50 Zeiss microscope available at the lab was 

used with a x50 magnification. For later studies, we used a TCS SP8-X inversed FALCON 
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(Leica) available on the I2BC microscopy platform. We used a 63x PLAN oil immersion 

implemented with DIC (NA: 1.4) (Leica). These experiments were performed under the 

supervision of Romain Le Bars and François-Xavier Theillet. The protein samples were mixed 

with various concentrations of salts and Ficoll 70 immediately before DIC microscopy 

observation.  
 For microscopy experiments, we trapped a sample drop between 2 glass plates with a 2 

mm space as shown in Figure 31. 

 

 
Figure 31. Device for microscopy observation of liquid-liquid phase transition. 

 

 
14. Peptide synthesis and Native Chemical Ligation 
 

The N-terminal peptide has the same N-terminal extremity as BRCA248-218. The C-

terminal extremity of this synthetic peptide is the residue 84, a glycine, which is usually a 

favorable C-terminal residue for an efficient NCL. The BRCA248-84 peptide was synthesized by 

Jean-Baptiste Madinier and Dr. Vincent Aucagne using Fmoc-based solid phase synthesis, with 

and without T77 phosphorylation. A thioester was introduced at the C-terminal extremity for 

the NCL according to their published protocol (Terrier et al., 2016). 

The C-terminal peptide BRCA285-220-G85C was produced recombinantly in a 15N-labeled 

fashion, according to the protocol reported above. The two BRCA2 fragments were purified 

and analyzed by inverse-phase HPLC and then lyophilized by Jean-Baptiste Madinier. Then, 

they were weighted, redissolved at 0,5-1 mM concentrations and added to the NCL reaction 

mix containing 50 mM TCEP (reduction of thiols), 25 mM 4-mercaptophenylacetic acid 

(MPAA) (serves as a catalyzer by increasing the reactivity of the cryptothioester), 1.5 M NaOH 

(to adjust the pH to 7.0), 6 M Guanidinium chloride (for removing any potential secondary 

structure and for increasing the NCL yields) and 20 mM phosphate to buffer the solution. In 

order to prevent thiol oxidation, the system was submitted to gaseous argon and then incubated 

at 37°C under agitation for a night. The reaction was monitored overtime by taking 3 uL of the 

reaction sample mixed to 100 uL of acetonitrile 80:20 H2O, 0.1 % TFA to quench the reaction. 

The sample was then loaded on a hydrophobic column linked to a HPLC system and eluted 
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with a H2O/acetonitrile gradient (Figure 76). The reaction was completed after 24 hrs of 

incubation. 

 

15. Figures 
 

Figures were prepared using either Microsoft Powerpoint version 16.42 or Affinity Designer 

1.7.2. 
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Chapter 1. Sample production 
 

 

During my PhD, I produced several BRCA2 fragments spanning the N-terminal region 

either for the “phosphorylation by Plk1” project (Figure 32.A) or for the “NTD-DNA-Binding 

Domain” (NTD-DBD) project (Figure 32.B). 

 

 

 

 
Figure 32. The BRCA2 constructs used for my PhD project  

(A) The BRCA2 constructs used for the analysis of BRCA2 phosphorylation by Plk1 and (B) 

the BRCA2 constructs for the DNA-Binding Domain investigations. 

 

Optimizing their production and purification took a large part of my PhD time. 

However, this work cannot be published per se. In this Chapter, I would like to describe 

experimental principles that I established after purifying several IDRs: 

• In most cases, the optimal conditions for their recombinant expression in E. coli BL21 

(DE3) Star were as follows: induction at 37 °C for 4 hrs for IDRs expressed in the 

soluble fraction, or at 20 °C overnight for IDRs found in the insoluble fraction (Figure 

33). At 37 °C, overexpression longer than 4 hrs generates degraded IDR fragments, 

observable from the first purification step and difficult to remove from the final purified 

sample.  

A. 

B. 
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Figure 33. Example of overexpression tests in E. coli BL21 (DE3) Star for a IDR expressed in 

the soluble fraction (left) and an IDR found in the insoluble fraction (right). Total bacteria lysed 

in 3X Laemmli buffer were loaded on gels, without careful normalization by the OD600 of each 

sample. The best overexpression conditions, without high level of proteolysis, were at 37°C 

and 4 hrs of induction for the soluble IDR and at 20 °C overnight for the insoluble fragment. 

 

• It is necessary to purify the IDR quickly, in presence of good quantities of protease 

inhibitors, in order to diminish proteolysis. A protocol containing an affinity 

chromatography, a cleavage of the tag and a gel filtration chromatography can be 

performed in one day, which prevents important protein degradation. Also, purification 

steps should be realized at 4 °C, unless urea is used in the case of His-tag purification 

of IDRs found in the insoluble fraction upon cell lysis. Furthermore, the addition of 

adapted protease inhibitors is important. In protocols that I optimized, I use PMSF and 

EDTA during the sonication step and the first affinity purification, EDTA in all the other 

steps and finally add to the sample coming out of the last gel filtration a commercial 

mix of inhibitors (here “EDTA free tablets of protease inhibitors” from Roche), 

targeting a large set of proteases. 

• I also continuously used a freshly prepared disulfide reducer. DTT presents a lifetime 

of about 20 hrs at 4°C at pH<7. The exposed cysteines present in IDRs are very 

accessible to oxidation. In most cases, I supplemented the lysis extract with 5 millimolar 

DTT, and spiked the samples eluted from every column with 2 mM DTT before 

proceeding with concentration.  

• The protocol should include a gel filtration (GF) step in order i) to validate the solubility 

of the IDR, ii) to remove maximal amounts of as much proteases, nucleic acids and 

cellular debris, iii) to transfer the IDR in the exact chosen buffer, which is mandatory 

for conducting reliable NMR spectroscopy (dialysis is too much time consuming for 
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IDR integrity purposes). GF separates the constituents of samples according to their 

hydrodynamic radii. Due to the disordered character of IDRs, their elution volume is 

not comparable to that of classical globular proteins used for column calibration. An 

IDR elutes commonly at a volume corresponding to a globular protein of about 3-4-fold 

its molecular weight. 

• During my PhD time, several projects about IDRs/IDPs were developed in the lab. I 

could observe that their biased amino acid composition of these disordered 

regions/proteins can modify their migration on SDS-PAGE. For example IDRs/IDPs 

showing high content in acidic amino acids can migrate much slower than standard 

proteins of the same weight. During the purification analysis, it may be useful to keep 

it in mind. 

• Finally, several IDRs/IDPs purification protocols include a boiling step, at 90-95 °C for 

10 min. Most of the contaminants are folded proteins (the E. coli proteome is very poor 

in IDPs) and precipitate at a high temperature, while IDRs/IDPs are commonly still 

soluble. I initially used this strategy. Nevertheless, thanks to our collaboration with 

chemists from the Centre de Biophysique Moléculaire (Dr. Vincent Aucagne team), 

HPLC analysis clearly revealed that this step creates a large chemical heterogeneity in 

the sample (Figure 34). Thus, in the last 2.5 years of my PhD, I removed this step from 

my protocols.  

 
Figure 34. 15N BRCA285-220 sample boiled during purification and analyzed by inverse-phase 

C18 chromatography. The BRCA285-220 fragment was correctly eluted after 18.5 min of a 

H2O:acetonitrile gradient, however a larger peak is also eluted later (20-25 min). Its analysis by 

ESI MS revealed that this larger peak also contains BRCA285-220 suggesting heterogeneity of 

the sample. 
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Using these observations, I conducted the re-optimization of BRCA2190-284 purification, 

initially set up by Dr. Simona Miron: 

- induction at 37 °C for 4 hrs instead of 3 hrs, 

- substitution of the 30 kDa cut off concentrating step for removing the chaperone 

contaminant by a gel filtration chromatography, 

- purification in 1 day instead of 2.5 days: I shorten the Precission cleavage step to 1h 

at RT instead of ON at 4°C, I added a gel filtration step for buffer exchange instead 

of dialysis and I changed the initial concentration at 2,000 xg using 3kDa cut off 

concentrator devices for centrifugation with 10 kDa cut off (for IDP: minimum 2-

folds the MW) at 5,000 xg.  

This new protocol decreased proteolysis, thereby increasing sample homogeneity and yields 

(by ~30%). 

 These observations also helped me to conduct the production optimization of all the 

other IDRs used in this study. Further details are provided in the Material and Methods section. 
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Chapter 2. Identification of BRCA2 residues phosphorylated by 

Plk1 
 
 
 In order to study the phosphorylation of the N-terminal region of BRCA2 by Plk1, my 

first objective was to define the construct boundaries and to design protein constructs allowing 

the production and purification of this region of interest.  

 

1. Delimiting the region of interest: BRCA248-284 
 

Lin et al., 2003 identified that BRCA21-284 is phosphorylated by Plk1 during mitosis at 

S193 and at least at one other position. I started by predicting the Plk1 phosphosite(s) on 

BRCA2 based on the Plk1 phosphorylation consensus sequence described in Nakajima et al., 

2003, Alexander et al., 2011 and Kettenbach et al., 2012. (Figure 35). Three phosphosites are 

predicted, at positions S158, S193, and S239. Moreover, analysis of MS data 

(https://www.phosphosite.org/) reveals two conserved phosphorylation clusters in this region 

(Figure 36). The first cluster contains the residue T77, which is phosphorylated by Cdks and 

creates a Plk1 docking site (Takaoka et al., 2014). As this cluster may be involved in the 

regulation of BRCA2 phosphorylation by Plk1, I included it in the region of interest. The second 

cluster contains the Plk1 phosphoregion including S193 (Lin et al., 2003, Takaoka et al., 2014). 

Thus, I defined my region of interest from BRCA2 residue 48 to residue 284 (BRCA248-284). 

 
Figure 35. Prediction of Plk1 phosphosites among the N-terminal BRCA2 sequence using the 

consensus sequence [S/D/E/N]-X-p[S/T]-φ, with φ for hydrophobic residue at position i+1 or 

i+2 (Nakajima et al., 2003, Alexander et al., 2011, Kettenbach et al., 2012) and localization of 

the known Plk1 docking site in this region (Takaoka et al., 2014, Yata et al., 2014).  
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Figure 36. The N-terminal BRCA2 fragment includes 2 phosphoclusters well-conserved from 

mammals to fishes (https://www.phosphosite.org/). Residues identified as phosphorylation 

sites in more than one mass spectrometry study are displayed. The conservation of these 

residues was deduced from the analysis of an alignment of 30 BRCA2 sequences from fishes 

to mammals. The phosphosites are indicated in red if conserved in all 30 sequences, in orange 

if conserved in more than 80% and yellow if conserved in less than 80% of the sequences. Four 

phosphosites are 100% conserved: Ser76, Thr77, Ser193 and Thr207.  

 

 

2. The NMR analysis of BRCA248-284 reveals that it is disordered 
 

After obtaining good yields and stable samples of BRCA248-284, my second objective 

was to assign the NMR signals of BRCA248-284. To achieve this goal, I analyzed several 

complementary BRCA2 fragments: BRCA248-218, BRCA253-131, BRCA2190-284. This diminished 

the number of peak overlaps in the corresponding NMR spectra, which greatly facilitated the 

assignment of the NMR signals of BRCA248-284. Of course, such a strategy relies on the 

hypothesis that residues did experience the same chemical environment in every truncated 

construct and in the larger construct. This was demonstrated by the perfect overlap of the NMR 

resonances generated by every residue in the different constructs, as usually observed for IDRs. 

The NMR chemical shift assignment and structural characterization of BRCA248-284 are 

reported in a publication that I wrote as a first author for the Biomolecular NMR Assignment 

Journal.  
In this study, I experimentally confirmed that BRCA248-284 is a disordered peptide. 

Furthermore, I assigned the 1H-15N backbone signals of the protein, a necessary step for 

monitoring phosphorylation using 1H-15N 2D SOFAST-HMQC NMR. 
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Abstract
The Breast Cancer susceptibility protein 2 (BRCA2) is involved in mechanisms that maintain genome stability, including 
DNA repair, replication and cell division. These functions are ensured by the folded C-terminal DNA binding domain of 
BRCA2 but also by its large regions predicted to be disordered. Several studies have shown that disordered regions of BRCA2 
are subjected to phosphorylation, thus regulating BRCA2 interactions through the cell cycle. The N-terminal region of 
BRCA2 contains two highly conserved clusters of phosphorylation sites between amino acids 75 and 210. Upon phospho-
rylation by CDK, the cluster 1 is known to become a docking site for the kinase PLK1. The cluster 2 is phosphorylated by 
PLK1 at least at two positions. Both of these phosphorylation clusters are important for mitosis progression, in particular for 
chromosome segregation and cytokinesis. In order to identify the phosphorylated residues and to characterize the phospho-
rylation sites preferences and their functional consequences within BRCA2 N-terminus, we have produced and analyzed the 
BRCA2 fragment from amino acid 48 to amino acid 284  (BRCA248–284). Here, we report the assignment of 1H, 15N, 13CO, 
13Cα and 13Cβ NMR chemical shifts of this region. Analysis of these chemical shifts confirmed that  BRCA248–284 shows no 
stable fold: it is intrinsically disordered, with only short, transient α-helices.

Keywords BRCA2 · Mitosis · Breast cancer · Intrinsically disordered protein · Phosphorylation · NMR

Biological context

BReast CAncer susceptibility 2 (BRCA2) is a tumor suppres-
sor gene identified in 1994, commonly mutated in hereditary 
breast and ovarian cancers (Wooster et al. 1994). BRCA2 
was initially characterized as a DNA repair protein involved 
in the recruitment and loading of the recombinase RAD51, 
which, in turn, drives the homologous recombination process 
at DNA double-strand breaks (DSB) (Thorslund and West 
2007; Moynahan and Jasin 2010; Jensen et al. 2010). Two 
decades later, BRCA2 is mainly described as a key platform 

protein for genome stability contributing to DNA repair, 
telomere maintenance, stressed replication fork stabiliza-
tion (Fradet-Turcotte et al. 2016) and mitosis (Daniels et al. 
2004; Mondal et al. 2012; Choi et al. 2012; Venkitaraman 
2014). These functions are ensured by the folded C-terminal 
DNA binding domain of BRCA2 (Yang et al. 2002) and the 
large regions predicted to be disordered that contain several 
protein binding motifs. Among them, two short fragments 
were already structurally characterized in complex with 
their partner: one of the repeated BRC motifs BRC4 bound 
to RAD51 (Pellegrini et al. 2002) and BRCA2 fragment 
between amino acid 21 and amino acid 39 interacting with 
PALB2 (Oliver et al. 2009). Both of these BRCA2 segments 
form α-helices upon binding to their partner. Here, we focus 
on the N-terminal region of BRCA2, which contains 1000 
amino acids with a structure that remains elusive. It is pre-
dicted to be disordered (Fig. 1b) and contains two clusters 
of phosphorylation (Fig. 1a) identified by mass spectrom-
etry (https ://www.phosp hosit e.org/) between amino acid 75 
and amino acid 80 for cluster 1, and amino acid 190 and aa 
210 for cluster 2. These two clusters are very well conserved 
from mammals to fishes and their biological relevance is still 
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unclear. The cluster 1 was reported to be phosphorylated by 
Cyclin-Dependant Kinases (CDK) at position T77 during late 
S-phase to mitosis (Yata et al. 2014). This phosphorylation 
generates a genuine Polo-Like Kinase 1 (PLK1) docking site 
(Takaoka et al. 2014; Yata et al. 2014) suggested to promote 
further phosphorylation by PLK1 both on BRCA2 itself (Lin 
et al. 2003; Takaoka et al. 2014) and on BRCA2 partners such 
as RAD51 (Yata et al. 2014). However, biochemical data are 
missing to describe to which extent this BRCA2 phospho-
rylation by CDKs influences later phosphorylation kinetics 
by PLK1. The cluster 2 is phosphorylated by PLK1 during 
mitosis (Lin et al. 2003). This regulates BRCA2 interaction 

Fig. 1  The N-terminal BRCA2 fragment includes 2 phosphoclusters 
well-conserved from mammals to fishes. a BRCA2 is composed of (i) 
a 1000 residues long N-terminal region containing the PALB2 bind-
ing site (from amino acid 21 to amino acid 39) and a DNA binding 
domain (DBD) (from amino acid 250 to amino acid 500) (von Nicolai 
et  al. 2016), (ii) an intermediate region made of 8 successive BRC 
repeats (from amino acid 1002 to amino acid 2085 and (iii) a folded 
C-terminal DBD (from amino acid 2500 to amino acid 3200. The 
N-terminal region of the protein contains several phosphorylation 
sites (https ://www.phosp hosit e.org/) organized in two phosphoryla-
tion clusters. Alignment of 30 BRCA2 sequences from fishes to mam-
mals revealed that 4 of these positions are 100% conserved: Ser76, 
Thr77, Ser193 and Thr207. We focused on the BRCA2 region from 
amino acid 48 to amino acid 284, which includes these 4 phospho-

sites. In this region, residues identified as phosphorylation sites in 
more than one mass spectrometry study are indicated in red if con-
served in all 30 sequences, in orange if conserved in more than 80% 
and yellow if conserved in less than 80% of the sequences. b The dis-
order propensity and conservation of the BRCA2 region from amino 
acid 48 to amino acid 284 are displayed as a function of the sequence. 
The disorder propensity was calculated using SPOT-Disorder (Han-
son et al. 2016). A score of 1 corresponds to a predicted disorder pro-
pensity of 100%. The conservation score was calculated using Jalview 
1.0 (Clamp et al. 2004). A score of 11 corresponds to a position iden-
tical in 100% of the sequences, while a score of 1 indicates that only 
one chemical criteria (size, hydrophobicity, global charge) is common 
to all the variants

Fig. 2  Overlapping BRCA2 constructs were used to analyze the two 
phosphorylation clusters. a Five constructs were designed for this 
study, containing either phosphorylation cluster 1  (BRCA253–131) or 
cluster 2  (BRCA2190–284) or both  (BRCA253–228,  BRCA248–218(C4A) 
and  BRCA248–284(C4A)).  BRCA253–228 comprises 4 cysteines 
(C132, C138, C148, C161). In construct  BRCA248–218(C4A) and 
 BRCA248–284(C4A), the four cysteines are mutated into alanines. b The 
1H–15 N SOFAST-HMQC spectra of  BRCA253–228 (pink) at 50 μM in 
buffer A containing TCEP and  BRCA248–218 (C4A) (green) at 50 μM in 
buffer A containing DTT are superimposable, peaks overlap for resi-
dues spanning the whole sequence except around the mutated posi-
tions (labelled in black) and close to the N-terminal or C-terminal 
ends (labelled in grey). These spectra were recorded at 283 K and pH 
7.0 on a Bruker 700 MHz spectrometer

▸
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with the P300/CBP-associated factor (P/CAF) (Lin et al. 
2003). It also creates a supplementary PLK1 docking site 
that ensures chromosome segregation (Ehlen et al. 2019). 
Furthermore, phosphorylation of S193 by PLK1 leads to the 
recruitment of BRCA2 at the Flemming body, an important 
step that warrants a complete cytokinesis (Daniels et al. 2004; 
Takaoka et al. 2014). While these phosphorylation events 
have been observed to dynamically regulate these BRCA2 
functions throughout the cell cycle, little is known about the 
structure of the BRCA2 N-terminal region and the phospho-
rylated residues are only partially identified. Here, we report 
the assignment of the 1H, 15N, 13Cα 13Cβ and 13CO NMR 
chemical shifts of the WT  BRCA248–284 fragment.

Methods and experiments

Protein expression and purification

Five fragments spanning the human WT BRCA2 N-ter-
minal phosphorylation clusters were designed: a fragment 

from amino acid 53 to amino acid 131  (BRCA253–131), 
a fragment from amino acid 53 to amino acid 228 
 (BRCA253–228), a fragment from amino acid 48 to amino 
acid 218 in which all cysteines are mutated into ala-
nines  (BRCA248–218(C4A)) a fragment from amino acid 
190 to amino acid 284  (BRCA2190–284) and a fragment 
from amino acid 48 to amino acid 284 with the first 
four cysteines mutated into alanines  (BRCA248–284(C4A)) 
(Fig. 2a). All fragments were expressed in Escherichia coli 
BL21 (DE3) Star using a pETM13 vector  (BRCA253–228, 
 BRCA248–218(C4A) and  BRCA248–284(C4A)), a pGEX-6P-1 
vector (GE Healthcare,  BRCA2190–284) or a pET-41b vec-
tor  (BRCA253–131). cDNA of  BRCA253–131,  BRCA253–228, 
 BRCA248–218(C4A) and  BRCA248–284(C4A) were optimized 
for expression in E. coli (Genscript). Bacteria were grown 
in M9 medium supplemented with 15NH4Cl (0.5  g/L) 
and 13C-glucose (2 g/L) as sole sources of nitrogen and 
carbon. Recombinant expression was induced at an 
optical density of 0.6–0.8 using 1 mM isopropyl β-D-1-
thiogalactopyranoside during 4 h at 37 °C. Cells were 
harvested by centrifugation, resuspendend in lysis buffer 

Fig. 3  Superimposition of the constructs spanning the BRCA2 region 
from amino acid 48 to amino acid 284 confirms the intrinsically dis-
ordered behavior of this region. The 1H–15 N SOFAST-HMQC spec-
tra of a  BRCA253–131 (orange), b BRCA2 48–218(C4A) (green) and c 
 BRCA2190–284 (blue) are superimposed over  BRCA248–284(C4A) in the 
different panels. All peptides are at 50  μM in buffer A and spectra 

were recorded at 283 K and pH 7.0 on a Bruker 700 MHz spectrom-
eter. Only chemical shifts of residues close to the extremities vary 
between shorter constructs and  BRCA248–284(C4A). In order to simplify 
the figure, peaks corresponding to these residues are not labelled, 
however, they can easily be highlighted by comparison of chemical 
shift values available on the BMRB
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(20 mM Tris, 150 mM NaCl, 1 mM EDTA, 5 mM DTT, 
1 mM PMSF, pH 8) and lysed by sonication. The soluble 
fraction was obtained upon centrifugation of the whole cell 
lysate at 20,000×g  during 15 min at 4 °C.  BRCA253–131, 
 BRCA253–228 and  BRCA2190–284 were produced with a 
N-terminal GST tag followed by either a TEV cleavage 
site (ENLYFQG) or a PreScission cleavage site (LEV-
LFQGP) and purified by Gluthatione Sepharose affinity 
chromatography. The tag was cleaved by the TEV protease 
 (BRCA253–131 and  BRCA253–228) or the PreScission pro-
tease  (BRCA2190–284). The  BRCA253–131 and  BRCA2190–284 
samples were then boiled at 95  °C during 10  min to 
remove the GST tag, centrifuged 10 min at 16,000×g , and 
the supernatant was later injected on a gel filtration col-
umn (Highload 16/60 Superdex 75 pg; GE Healthcare) 
equilibrated with buffer A (50 mM HEPES, 1 mM EDTA, 
2 mM dithiothreitol, pH 7.0). The influence of boiling 
on structure was verified by 1H–15 N HSQC NMR (data 
not shown).  BRCA253–228 precipitates after cleavage, 

and therefore was pelleted by centrifugation (10 min, 
16,000×g), then resuspended into buffer A supplemented 
with 8 M urea and finally diluted 10 times with buffer A 
containing 10 mM β-mercaptoethanol before injection on 
a gel filtration column (Highload 16/60 Superdex 75 pg; 
GE Healthcare) equilibrated with 50 mM HEPES, 1 mM 
EDTA, 5  mM tris(2-carboxyethyl)phosphine (TCEP), 
pH 7.0.  BRCA248–218(C4A) and  BRCA248–284(C4A) were 
expressed with a N-terminal octa-histidine tag and purified 
by Ni–NTA affinity chromatography. The tag was cleaved 
using the TEV protease and the sample was injected on a 
gel filtration column (Highload 16/60 Superdex 75 pg; GE 
Healthcare) equilibrated with buffer A at pH 7.0 or buffer 
A at pH 6.4 for assignment of  BRCA248–218(C4A). Samples 
were concentrated to 200–400 μM for assignment experi-
ments  (BRCA253–131,  BRCA248–218(C4A) and  BRCA2190–284) 
and to 50  μM for  BRCA253–228 and  BRCA248–284(C4A) 
characterization.

Fig. 4  Analysis of the secondary propensity  BRCA253–131 (orange), 
BRCA2 48–218(C4A) (green) and  BRCA2190–284 (blue) based on the Cα 
and Cβ chemical shifts. a Analysis of experimental Cα and Cβ chemi-
cal shifts compared to predicted values for a disordered region (https 

://nmr.chem.rug.nl/ncIDP ) (Tamiola et al. 2010). b Analysis based on 
the calculator available on the website https ://linux nmr02 .chem.rug.
nl/ncSPC / (Tamiola and Mulder 2012) and the library of Tamiola 
et al. (2010), with an average window of 5 residues
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NMR spectroscopy

NMR experiments were performed on uniformly 15N and 13C 
labelled fragments in buffer A at pH 7.0 for  BRCA253–131, 
 BRCA248–218(C4A),  BRCA2190–284 and  BRCA248–284(C4A) 
 (H2O:D2O ratio 90:10), in buffer A at pH 6.4  (H2O:D2O 
ratio 95:5) for  BRCA248–218(C4A) and in 50 mM HEPES, 
1 mM EDTA, 5 mM TCEP, pH 7.0  (H2O:D2O ratio 95:5) 
for  BRCA253–228. All samples were supplemented with 
50 μM Sodium trimethylsilylpropanesulfonate (DSS). NMR 
experiments were recorded at 283 K on a 600 MHz Bruker 
Advance II spectrometer and a 700 MHz Bruker Advance 
Neo spectrometer, both equipped with a triple resonance 
cryogenically cooled probe. Spectra were referenced using 
DSS 1H chemical shifts (Wishart et al. 1995) and 1H, 13C 
and 15N resonance frequencies were assigned using 2D 
1H–15N SOFAST-HMQC, 3D BEST-HNCACB, CBCA(CO)
NH, BEST-HNCO, BEST-HN(CA)CO and HN(CO)(CA)
NH experiments. The data were processed using Topspin 3.6 
(Bruker) and analyzed with CCPNMR Analysis (Vranken 
et al. 2005). The assignments were deposited in the Bio-
MagResBank (https ://www.bmrb.wisc.edu/) under the 
following codes: 50077 for  BRCA248–218(C4A), 50078 for 
 BRCA253–131 and 50079 for  BRCA2190–284.

Assignments and data deposition

To facilitate the assignment of the human BRCA2 region 
from amino acid 48 to amino acid 284, we designed and 
produced three overlapping fragments:  BRCA253–131 cen-
tered on the phosphorylation cluster 1,  BRCA253–228 con-
taining the two phosphorylation clusters and  BRCA2190–284 
that contains only the cluster 2 (Fig. 2a).  BRCA253–131 and 
 BRCA2190–284 were purified in sufficient amounts and were 
stable enough for NMR analysis. However,  BRCA253–228 
was prone to aggregation due to the oxidation of its four 
solvent-exposed cysteines. These cysteines are not con-
served within BRCA2 from fishes to human. Therefore, we 
designed the construct  BRCA248–218(C4A), which corresponds 
to the fragment from amino acid 48 to amino acid 218 with 
all cysteines mutated into alanines (C132A, C138A, C148A 
and C161A; see Fig. 2a). The 1H–15N HSQC spectra of 
 BRCA253–228 and  BRCA248–218(C4A) overlap to a large extent: 
we observed differences only in the vicinity of the mutated 
residues and N-ter or C-ter ends (Fig. 2b). This shows that 
the alanine mutations did not modify the average struc-
tural ensemble of the peptide. Then, we assigned the 1H, 
15N, 13Cα, 13Cβ and 13CO chemical shifts of the fragments 
 BRCA253–131,  BRCA248–218(C4A) and  BRCA2190–284 using a 
series of 3D heteronuclear NMR experiments. We obtained 

high assignment coverages along the sequences of fragments 
 BRCA253–131,  BRCA248–218(C4A) and  BRCA2190–284: 94%, 
97% and 96% of 1H–15N pairs, 87%, 98% and 95% of 13Cα, 
99%, 96% and 97% of 13Cβ and 96%, 98%, 95% of 13CO 
resonances were assigned, respectively. Figure 3 shows a 
very good crosspeak superimposition between the 1H–15N 
spectra of every fragment and that of  BRCA248–284(C4A). 
The narrow range of backbone amide 1H chemical shifts 
(between 7.5 and 8.5 ppm) for all BRCA2 fragments reveals 
their disordered behavior. Furthermore, only the crosspeaks 
corresponding to the N-terminal or C-terminal residues of 
each fragment differ from those of the largest construct of 
BRCA2, i.e.  BRCA248–284(C4A). The secondary structure 
analysis, based on 13Cα and 13Cβ chemical shifts and the 
neighbor corrected structural propensity method (Tamiola 
et al. 2010; Tamiola and Mulder 2012), confirms the absence 
of a stable fold for  BRCA253–131,  BRCA248–218(C4A) and 
 BRCA2190–284 (Fig. 4). We observed α-helical propensities 
of about 25% around residues 100–110 and 255–260. We 
concluded that the fragment of BRCA2 from amino acid 
48 to amino acid 284 is disordered and that its shorter seg-
ments  BRCA253–131,  BRCA248–218(C4A) and  BRCA2190–284 
have the same structural properties when isolated or within 
 BRCA248–284(C4A). From this set of data, it is now possible 
to monitor phosphorylation reactions within the two con-
served BRCA2 clusters of phosphorylation using 1H–15N 
and 1H–13C NMR spectroscopy.
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3. Plk1 efficiently phosphorylates 4 residues in the BRCA248-284 
region. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 37. Plk1 phosphosites in BRCA248-218 and BRCA2190-284. 

Overlay of 1H-15N SOFAST-HMQC spectra of BRCA248-218 (50 uM) before and after 

phosphorylation by Plk1 (100 nM) (left). Overlay of 1H-15N SOFAST-HMQC spectra of 

BRCA2190-284 (200 uM) before and after phosphorylation by Plk1 (1.1 uM) (right). All spectra 

were recorded at 283 K, pH 7.0 and 600 MHz. 

 

Finally, I recorded 2D 1H-15N SOFAST-HMQC experiments to identify the Plk1 

phosphorylation sites in BRCA248-284, following the phosphorylation protocol designed by Dr. 

Simona Miron. The two fragments BRCA248-218 and BRCA2190-284 were mixed to Plk1 and 

NMR spectra were recorded after phosphorylation (Figure 37.A.B.). I assigned the 

phosphoresidues based on the comparison between the NMR spectra before and after 

phosphorylation, and I confirmed this assignment using 3D heteronuclear NMR experiments.  

This led me to identify 4 early phosphoresidues: pS193, pT207, pT219, pT226 (Figure 

37) and 5 late phosphoresidues: pS158, pS197, pS231, pS239, pS273. The late sites could be 

either slow phosphosites as it has been observed for other kinase/substrate pairs (Mylona et al., 

2016, Gebel et al., 2020) or they could be functionally irrelevant phosphorylation events that 

are due to our in vitro conditions. To discriminate between these two possibilities, one would 

need at least to quantify their phosphorylation stoichiometries in cells and/or to test the impact 

of mutating the slow phosphosites on different cellular phenotypes.  

Among the 4 identified early phosphosites, 2 are located in a conserved disordered 

region of BRCA2 (Figure 11A): S193 and T207 are 100% conserved from mammals to fishes, 

suggesting an essential functional role for these two phosphoevents. At the opposite, T219 and 

T226 are less conserved (Figure 38.B). Within the late phosphosites, only S197 is 100% 

conserved through evolution. 



 111 

  
Figure 38. Sequence analysis and conservation of Plk1 phosphosites  

(A) Comparison of BRCA2 Plk1 early (black) and late (grey) phosphosites identified in this 

study with the known consensus phosphosite (Nakajima et al., 2003, Alexander et al., 2011 

Kettenbach et al., 2012), φ = hydrophobic residue at position i+1 or i+2 (B) Conservation 

scoring obtained with Jalview 2.10.1 reflecting the conservation of the physico-chemical 

properties at each phosphosite in an alignment of 40 BRCA2 sequences from fishes to 

mammals (Livingstone & Barton 1993, 0: no conservation; 11: 100% conserved residue). 

 

 
Finally, in both BRCA248-218 and BRCA2190-284, the 1H-15N resonances remain very 

similar before and after phosphorylation. Only peaks corresponding to the phosphoresidues and 

their neighbors show different chemical shifts upon phosphorylation. This indicates that no 

secondary / tertiary structure is stabilized upon phosphorylation, as usually observed. Only  one 

IDR, to the best of our knowledge, xas reported as folding upon phosphorylation (Bah et al., 

2015)).  
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Chapter 3. Monitoring BRCA2 phosphorylation using NMR 
 

 

1. Using 1H-15N 2D NMR 
 

Then, I optimized the conditions for monitoring BRCA2 phosphorylation kinetics by 

Plk1 using the 1H-15N 2D NMR strategy. This led us to propose an updated version of the 

protocol published by Dr. François-Xavier Theillet in 2013 (Theillet et al., 2013) in Methods in 

Molecular Biology. In this article, we describe the optimized protocol for monitoring IDRs 

phosphorylation using liquid-state NMR. This protocol is based on our team expertise, i.e. the 

NMR analysis of the phosphorylation of several proteins in vitro and in cell extracts. For this 

review, I performed and analysed the experiments, prepared the figures and wrote the 

manuscript with and under the supervision of Dr. François-Xavier Theillet. 
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Multiple Site-Specific Phosphorylation of IDPs Monitored
by NMR
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Abstract

In line with their high accessibility, disordered proteins are exquisite targets of kinases. Eukaryotic organ-
isms use the so-called intrinsically disordered proteins (IDPs) or intrinsically disordered regions of proteins
(IDRs) as molecular switches carrying intracellular information tuned by reversible phosphorylation
schemes. Solvent-exposed serines and threonines are abundant in IDPs, and, consistently, kinases often
modify disordered regions of proteins at multiple sites. In this context, nuclear magnetic resonance (NMR)
spectroscopy provides quantitative, residue-specific information that permits mapping of phosphosites and
monitoring of their individual kinetics. Hence, NMR monitoring emerges as an in vitro approach,
complementary to mass-spectrometry or immuno-blotting, to characterize IDP phosphorylation compre-
hensively. Here, we describe in detail generic protocols for carrying out NMR monitoring of IDP phos-
phorylation, and we provide a number of practical insights that improve handiness and reproducibility of
this method.

Key words NMR spectroscopy, Intrinsically disordered proteins, IDP, Post-translational modifica-
tions, Phosphorylation, Cell signaling, Kinases, Multiple phosphosites, Quantitative NMR, Time-
resolved NMR

1 Introduction

Living organisms use post-translational modifications (PTMs) as a
convenient mechanism to transmit information in a fast and revers-
ible fashion. PTMs can provoke changes in protein conformation or
create/abolish binding sites, therefore regulating the activity of
proteins. In eukaryotes, serine/threonine phosphorylation repre-
sents about 60% of the detected PTMs [1, 2]. Intrinsically disor-
dered regions (IDRs) of proteins carry ~60% of the ~200,000
phosphosites found in the 13,000 human phosphoproteins [3, 4],
in line with their importance in cell signaling [5]. Interestingly,
phosphosites tend to cluster: about half of them are at a distance
of four residues or less [6], while more than 50% of

Birthe B. Kragelund and Karen Skriver (eds.), Intrinsically Disordered Proteins: Methods and Protocols,
Methods in Molecular Biology, vol. 2141, https://doi.org/10.1007/978-1-0716-0524-0_41,
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phosphoproteins have six phosphosites or more [7]. This generates
potential crosstalks, collective effects, and improved robustness of
signaling [5, 8–10]. A large number of detected phosphorylation
sites may also reveal loose specificities that result from the promis-
cuous access of kinases to IDP residues [11]: a majority of the
detected phosphosites in cultured cells shows a fractional occu-
pancy of 25% or less, the functional role of such events being
unclear [7, 12].

The most popular methods to detect phosphorylation are
mass-spectrometry (MS) and western-blotting because of their
ability to detect phosphosites in biological material with high sen-
sitivity. However, multiple neighboring phosphorylation sites ham-
per immuno-recognition and prevent standard peptide isolation/
enrichment/ionization/identification steps in the course of MS
analysis, although technical advances have been achieved in this
field [13]. Degenerate motifs are also problematic in western-
blotting because they hinder site-specific immuno-recognition.
Finally, improving phosphoproteome coverage is a perpetual battle:
even though novel buffers, enrichment methods, chromatography,
and digestion protocols progressively enhance sampling depth
[14, 15], accessible data from immunoblots and MS can probably
not provide a comprehensive view of the PTM schemes established
on your protein of interest.

NMR spectroscopy is a complementary method because of its
intrinsic ability to provide quantitative, residue-specific information
on IDPs in solution [16]. Using the “NMR isotope-filter,”
15N-labeled proteins are the only observable species in the presence
of natural abundance 14N-containing material, which makes it
possible to monitor phosphorylation reactions of a 15N-labeled
IDP in vitro and in cell extracts [17, 18]. For example, it has been
instrumental in solving complex phosphorylation cascades on
PTEN [19], or to elucidate the respective kinetics and roles of
degenerate Erk phosphosites on Elk1 [20].

NMR spectroscopy provides residue-specific information
because nuclei resonance frequencies depend on their chemical
environment. Upon phosphorylation, the chemical environment
changes in the vicinity of the phosphorylated residues, provoking
new chemical shifts for residues neighboring the phosphosites. We
illustrate it here with the example of a BRCA2 fragment
(aa48–218), phosphorylated at S193 and T207, which generates
large chemical shift perturbations for S193 and T207, but also weak
but discernable NMR signal displacements of their neighboring
residues D189, S195, L198, A199, T203, and V211 (Fig. 1a)
[16, 21]. Hence, by recording time series of NMR spectra during
the phosphorylation reactions, we can obtain time-resolved quan-
tification or reaction advancement at every phosphosite: new cross-
peaks appear while some peaks progressively disappear,
corresponding to phosphorylated and non-modified populations,
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Fig. 1 NMR analysis of BRCA2(aa48–218) phosphorylation by Plk1 ([BRCA2] ¼ 50 μM, [Plk1] ¼ 200 nM,
spectra recorded at 700 MHz). (a) Overlay of 1H-15N 2D HSQC spectra recorded at 283 K before (reference,
black) and after the phosphorylation reaction (tfinal, red). Arrows highlight NMR chemical shift perturbations
upon phosphorylation. The two phosphosites S193 and T207 crosspeaks show large perturbation; their
neighbor residues D189, S193, S195 and L198, T203 and V211 also shift and can be used as phosphorylation
reporters. Measuring the crosspeak intensities of the non-modified species (called later “non-phosphopeaks”)
in the two 283 K spectra provides Ifinal/Iref ratios, which later permit normalization of the phosphorylation build-
up curves. (b) Depiction of three time-points in the time series of 2D 1H-15N SOFAST-HMQC spectra recorded
at 298 K during the reaction (grey spectra). We superimposed them on the reference spectrum at t¼0 (black
spectrum). Close-up views show the evolution of three couples of “non-phosphopeaks” and “phosphopeaks”:
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respectively (Fig. 1b). More complex situations can emerge when
close residues are concomitantly phosphorylated: two neighboring
sites S1 and S2 (separated by ~4–6 amino acids or less) will generate
a set of four peaks upon phosphorylation, corresponding to S1–S2,
pS1–S2, S1–pS2, and pS1–pS2, where pS1–S2 and S1–pS2 peaks
may increase and later decrease (see for example [19, 22, 23]).

In the past years, we have successfully monitored phosphoryla-
tion reactions using NMR on a large variety of IDPs and kinases.
Here, we provide a generic protocol integrating a sum of technical
solutions focusing on sample preparation, control of the reaction
conditions, and instrument parameters for generating reliable data.
We also provide some explanations for the rationale and warnings
to avoid misinterpretation (see Note 1). We illustrate the protocol
with results obtained on a BRCA2 fragment (aa48–218) phos-
phorylated by Plk1.

2 Materials

2.1 Stock Solutions
Preparation
and Storage

Prepare all solutions using milli-Q water (resistivity of 18.2 MΩ cm
at 25 "C). Buffers, reagents stocks, and proteins can be kept at
#20 "C for months, but fresh dithiothreitol (DTT) or tris(2-car-
boxyethyl)phosphine (TCEP) should be added to the samples
before performing experiments. DTT half-life in solution is indeed
about 1 day at pH ~ 7 and even decreases in presence of metal ions
[24], so buffers containing DTT should not be stored. Other
reducing agents may be used with profit but also with careful
attention (see Note 2).

We describe standard buffers using Hepes at 50 mM, pH 7.0.
Any good buffering molecule in this range of pH would also be
acceptable, for example, phosphate, PIPES, and MOPS, whose
pKas also have low temperature coefficients (see Note 3).

!

Fig. 1 (continued) A199 crosspeaks (orange) report on S193 phosphorylation, while T207 (magenta) and V211
(blue) crosspeaks report on T207 phosphorylation. The non-phosphoT207 peak partially overlaps with other
resonances, and is thus a reporter of poor quality. (c) Treatment of peak intensities from raw data, to
normalized intensities and interpretation in %phosphorylation. The value Intt¼0 of a non-phosphopeak is
obtained from the tangent at t¼0 of a non-phosphopeak evolution curve, and can then be used for normalizing
this evolution. Build-up curves of phosphopeaks are normalized by intensity ratios measured at 283 K Ifinal/Iref
(see Subheading 3.5). To make the graphs clearer, we show only A199 crosspeaks evolution as a reporter of
S193 phosphorylation; S193, S195 and L198 crosspeaks can also be used, see (a). Similarly, T203 cross-
peaks can be used as reporters of T207 phosphorylation. Phosphorylation build-up curves are preferably
obtained from non-phosphopeaks decay analysis. They can be normalized easily using the reference
intensities at 0% phosphorylation; at the opposite, because a phosphorylation reaction rarely goes to
completion, the reference intensities of phosphopeaks at 100% phosphorylation can be difficult to determine
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1. Standard IDP Size-Exclusion Chromatography (SEC) buffer
(SEC-B): 50 mM Hepes, 100 mM NaCl, pH 7.0.

2. Standard IDP frozen storage buffer (Stor-B): 50 mM Hepes,
100 mM NaCl, pH 7.0, 2 mM DTT, 1$ ethylenediaminete-
traacetic acid (EDTA)-free protease inhibitors.

3. Standard phosphorylation buffer (Phos-B): 50 mM Hepes,
100 mM NaCl, pH 7.0, 4 mM DTT, 1$ EDTA-free protease
inhibitors, 4 mM adenosine triphosphate (ATP), 10 mM
MgCl2.

4. Urea buffer (UB): 50 mM Hepes, 100 mM NaCl, pH 6.5,
4 mM DTT, 10 M urea. High urea concentration buffers tend
to progressively diverge toward higher pH when stored at
room temperature for days.

5. ATP stock solution: 0.1 M ATP, pH 7.0 in water (10 mM
Hepes can be added for convenient pH adjustment); store
aliquots at #20 "C.

6. DTT stock solution: 1 M DTT in water; store aliquots at
#20 "C.

7. MgCl2 stock solution: 1 MMgCl2, pH 7.0 (10 mMHepes can
be added for convenient pH adjustment); store aliquots at
#20 "C.

8. EDTA-free proteases inhibitors (PI): prepare a 25$ stock solu-
tion (cOmplete EDTA-free tablets, or any other cocktail of
inhibitors that does not contain EDTA). Store aliquots at
#20 "C.

9. 15N-labeled IDP stock solution at a concentration greater than
or equal to 200–250 μM is stored at #80 "C. Aliquoting
prevents eventual aggregation that often appears upon multiple
freeze-thaw cycles.

10. Kinase stock solution: active kinase is obtained either commer-
cially or produced in-house. Prepare low-volume aliquots on
ice (2–10 μL, providing a phosphate transfer activity in the
range of 50–500 pmol/min) and flash-freeze them before
storage at #80 "C. Aliquoting preserves kinase activity which
may be lost upon freeze-thaw cycles, and will thus favor experi-
mental reproducibility. Addition of 20% glycerol promotes
activity conservation.

11. EDTA or trans-1,2-Diaminocyclohexane-N,N,N0,N-
0-tetraacetic acid monohydrate (CyDTA) stock solution:
0.5 M EDTA or CyDTA solution, pH 7.0; store aliquots at
#20 "C.

12. D2O at 99% deuterium enrichment.

13. 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) stock solu-
tion: 100 mM DSS in water; store at room temperature (RT).
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14. Laemmli buffer 4$: 10 mL Tris (1 M, pH 6.8), 4 g sodium
dodecyl sulfate (SDS), 20 mL glycerol, 10 mL
β-mercaptoethanol, 0.1 g bromophenol blue, 6 mL H2O.

15. Polyacrylamide gels for SDS-PAGE analysis.

2.2 Sample
Preparation

1. SEC column: preparative 16/600 Superdex column containing
75 pg or 200 pg resin depending on protein size.

2. Fast protein liquid chromatography (FPLC) system at 4 "C
able to carry out SEC, that is, applying constant flow rates of
0.3–1.5 mL/min at a pressure of 0.15–0.5 MPa.

3. 0.22 μm pore-size membrane filter system.

4. Centrifugal concentrators with a pore size adapted to the IDP
molecular weight.

5. Precise pH-meter combined with a pH microelectrode able to
measure pH in ~100 μL samples.

2.3 NMR Spectra
Acquisition
and Analysis

1. High-field NMR spectrometer (larger or equal to 600 MHz)
equipped with a triple-resonance cryoprobe.

2. A 1H-15N SOFAST-HMQC pulse sequence program. This can
be found in most of the standard pulse sequence libraries. Be
careful with the default pulses used in libraries: the central
band-selective 180" pulse should be an REBURP and not an
r-SNOB to get maximal S/N, as shown by Schanda et al.
[25]. Set interscan delays to ~100 ms and use a high number
of dummy scans (>64). Set offset frequencies of shaped pulses
to 8.5 ppm and use large pulse lengths (>2.4 ms) to avoid
saturation of water protons magnetization. Because of fast
amide-water proton exchange in IDPs, water protons represent
a magnetization reservoir enhancing the apparent amide inter-
scan T1-recovery [26]. For this reason, great S/N enhance-
ment is obtained for IDPs using long shaped pulses at fields
higher than 600–700 MHz, since amide and water proton
frequencies become distant enough.

3. A 1H-15N HSQC pulse sequence program. Sensitivity-
enhanced versions of this pulse sequence provide better S/N
for most IDPs. This can be found in most of the standard pulse
sequence libraries.

4. NMR tubes. These can be 3 or 5 mm diameter regular tubes,
which must be filled with minimal volumes of 150 or 475 μL,
respectively. In standard phosphorylation buffer conditions,
5 mm tubes offer about twice S/N than 3 mm tubes. Using
3 or 5 mm diameter Shigemi tubes optimizes sample efficiency
by reducing sample volumes to 90 or 270 μL, respectively.
4 mm Shigemi tubes (efficient volume: 180 μL) also exist.
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5. NMR data processing and analysis software (e.g., Topspin,
NMRPipe, CcpNmr Analysis, Sparky, etc.).

6. Plotting and fitting software (e.g., Prism, Kaleidagraph, Gnu-
plot, etc.).

3 Methods

The following protocol describes a generic strategy to monitor IDP
phosphorylation using NMR spectroscopy. This requires the prior
production and purification of the protein of interest uniformly 15N
or 15N/13C labeled. Such labeling is usually obtained by recombi-
nant protein expression in bacteria (see Note 4). Bacterial expres-
sion is preferred for this protocol because it generates recombinant,
non-phosphorylated proteins in most cases (see Note 5). We will
not detail the corresponding tasks, but we must stress a few points
that should be considered with great care for later success in phos-
phorylation characterization. The IDP of interest can be purified
using standard strategies adapted to the presence or absence of
affinity tags. First, to avoid any artifactual influence of such tags,
their cleavage and removal is generally preferred before executing
PTMs’ kinetics experiments. Second, because of their high accessi-
bility, IDP’s cysteines are prone to establish non-native disulfide
bonds in vitro. The complete reduction of cysteine thiols at every
step of the purification is mandatory (see Note 2). Third, IDPs’
susceptibility to proteolysis must be addressed by adding protease
inhibitors in lysis buffer and after every purification step.

The protocol starts with the last preparation steps of the IDP
sample, then describes a method to optimize the phosphorylation
conditions, and later a method to assign the NMR spectra in the
phosphorylation conditions. The two final subsections detail the
NMR data acquisition and analysis. We have introduced two possi-
ble methods to record NMR spectra, either by a continuous read-
out of a single sample during the phosphorylation reaction
(Subheading 3.4.1 NMR continuous readout) or by successive
measurements of aliquots quenched at various time points (Sub-
heading 3.4.2 The “Quenched reaction” approach). The first
approach is more convenient in many aspects, but it provides too
weak S/N for a number of IDPs (seeNote 6). All other paragraphs
are common to all IDPs.

3.1 Preparation
of the IDP Stock

We start the protocol with the last preparation step of the IDP,
which consists of an SEC. This permits (1) to polish the protein
purification, and (2) to transfer the IDP into the exact salt and
buffer conditions used for the phosphorylation reaction.

1. Equilibrate the SEC column with two column-volumes of
SEC-B, previously filtered on a 0.22 μm pore-size membrane.
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Using an FPLC system at 4 "C will lower the risks of IDP
proteolysis.

2. Concentrate the purified IDP to a final volume of 2 mL in the
presence of 2 mMDTTand PIs (final concentration 1$), using
concentrators with centrifugation steps at 10 "C (4000 $ g for
swinging buckets, 5000 $ g for fixed angle rotors).

3. Add DTT to a final concentration of 10 mM DTT to the
concentrated sample and incubate it for 30 min at RT to ensure
that all thiols are reduced.

4. Centrifuge the sample for 5 min at 16,000 $ g and 4 "C to
remove aggregates and inject the supernatant on the equili-
brated SEC column.

5. Run the SEC with parameters recommended by manufacturers
and check the purity of the eluted fractions by SDS-PAGE.

6. Pool the fractions of interest, supplement them with 2 mM
DTT (final concentration) and PIs (final concentration 1$),
and concentrate the protein to 250 μM by centrifugation at
10 "C (4000$ g for swinging buckets, 5000$ g for fixed angle
rotors).

7. Flash freeze the sample in liquid nitrogen and store it at
#80 "C.

3.2 Optimization
of Phosphorylation
Conditions

For every IDP:kinase pair, phosphorylation kinetics can be first
evaluated by SDS-PAGE in order to identify the appropriate con-
centration of kinase and, eventually, the best buffer conditions. This
relies on the fact that phosphorylated amino acids tend to slow
down protein migration during SDS-PAGE (Fig. 2). SDS-binding
to phosphoproteins is thought to be weaker, which provokes
decreased electrophoretic mobility [27]. However, this effect can
be negligible for proteins carrying large excess (~15 or more) of
negative charges due to a biased composition between Glu/Asp
and Arg/Lys; this situation calls for directly moving on to NMR
monitoring. Here, we describe the procedure for the SDS-PAGE
evaluation of phosphorylation efficiency.

1. Thaw the IDP sample, and prepare three samples of 25 μL
containing the IDP at 25 μM in Phos-B.

2. Calculate the amount of kinase to add. As a first estimation, this
quantity should correspond to a theoretical capacity to phos-
phorylate all predicted phosphosites in 1 h, with no consider-
ation for the Km.

Commercial kinase activity has normally been evaluated,
and this information is often presented in nmol/min of phos-
phate transfer per mg of kinase (together with the kinase
concentration). The quantity of kinase to use is thus obtained
using the equation:
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M kinase ¼ N sites‐predicted $ CIDP $ V reaction= Kinactivity $ t reaction
! "

With Nsites-predicted the number of phosphorylation sites
predicted from the known kinase consensus site (see Note 7),
CIDP is the IDP concentration in molar, Vreaction the reaction
volume in liters, Kinactivity the activity of the kinase in mol/-
min/mg, and treaction the incubation time in minutes.Mkinase is
thus in mg.

Hence, our rough evaluation gives Mkinase ¼ Nsites-predicted

$ 10#11/Kinactivity, which often translates into volumes lower
than 1 μL of kinase stock solution. Prepare a diluted kinase
stock to make it convenient to pipet.

For in-house produced kinase, whose activity has not yet
been characterized, (1) if the kinase is activated (phosphory-
lated or in complex with activators), useMkinase ~ 10 ng (kinase:
IDP molar ratio of 1:2500); (2) if the kinase is not activated,
use Mkinase ~ 100 ng (kinase:IDP molar ratio of 1:250).

For phosphorylation of IDP by cell extract, see Note 8.

3. Spike Vkinase ¼Mkinase $ [kinase], 3 $ Vkinase and 9 $ Vkinase in
the three pre-phospho mixes prepared in step 1. Incubate at
298 K.

4. Take 4 μL of the samples at 0 min, 10 min, 30 min, 1 h, and
2 h, mix them to 4 μL of 2$ Laemmli buffer and heat them
immediately for 5 min at 95 "C.

5. Load the samples on a polyacrylamide gel.

6. Run the SDS-PAGE, stain with Coomassie Blue or any other
better suited staining method. Pick the kinase concentration
that will permit to distinguish phosphorylation events using
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MW (kDa)

WT Mutant

BRCA2
unmodified

BRCA2
100% phos

kinase

Time (min) 0 10 30 120 0 10 30 120
X

Fig. 2 SDS-PAGE analysis of the phosphorylation kinetics of a BRCA2 fragment
presenting five phosphosites. Phosphorylation of the wild-type fragment and a
mutant fragment were evaluated at t0, t10min, t30min, and t2h. This gel exemplifies
the typical phosphorylation shifts provoked by successive phosphorylation
events. Although it is no fully characterized, it appears that SDS binds less to
phosphoproteins, which slows down electrophoretic migration [27]. Peptides
carrying a high net negative charge (~15 or more) do not shift as well upon
phosphorylation (15% polyacrylamide gel stained with Coomassie blue, lane X
shows a default in gel loading)
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the NMR time resolution, that is, 15–30 min per time point
over 3–5 h (most kinases lose their activity after a few hours at
25 "C).

7. Buffer conditions can also be evaluated. To this purpose, pre-
pare stock solutions of the various conditions to test. One may
test a range of pH values (pH 7–7.5–8) and of salt concentra-
tions (50–100–150 mM NaCl). Repeat steps 1–6. If the reac-
tion is much faster at high pH, adopting the “quenched
reaction approach” may be the method of choice to monitor
phosphorylation by NMR. However, if the activity of your
kinase is acceptable at pH 7.0, we recommend running the
phosphorylation reaction at this pH. For most kinases, pH 7
corresponds to an acceptable compromise between kinase
activity and decent quality of IDPs’ NMR spectra.

3.3 Assignment
of NMR Spectra
in the Conditions Used
for Phosphorylation
Reactions

To extract residue-specific information, assignment of the IDP’s
NMR spectra is a prerequisite. While phosphorylation reactions will
typically be executed at 298 K and pH ~7, assignment is usually
performed at conditions favorable for NMR analysis of IDPs, that
is, low temperature (~283 K) and pH (~6.5), which decrease
water/amide proton exchange and consequently maximize
S/N. We will not detail this primary assignment strategy relying
on the use of 3-dimensional spectra establishing connections
between spins of backbone nuclei (the most useful ones in the
case of IDPs being HNCO, HN(CA)CO, HNCACB, and (H)N
(CA)NH).

We describe below the next step that aims at inferring the
1H-15N crosspeaks assignment in the conditions used for phos-
phorylation. It relies on a temperature and pH gradient from the
assignment conditions to the phosphorylation conditions, using
DSS as an internal reference. 2D 1H-15N HSQC or SOFAST-
HMQC pulse sequences can be used. SOFAST-HMQC will be
better suited at higher pH and temperature because of its higher
S/N efficiency.

1. Record a 2D 1H-15N HSQC spectrum of the IDP at ~100 μM
in the pH (pHassign) and temperature (Tassign) conditions used
for prior assignment.

2. Record 2D 1H-15N HSQC or SOFAST-HMQC spectra at the
intermediate temperature (298 K – Tassign)/2 and at 298 K.

3. DSS-reference your spectra in both 1H and 15N dimensions
(or apply a 10.5 ppb/K shift if you center the water signal at
4.7 ppm). Then, apply a temperature correction of #7.5 ppb/
K in the proton dimension and #6.5 ppb/K in the nitrogen
dimension—do no forget that γ(15N) is negative. This will
account for the average temperature shifts of random coil
amino acids [28] and make tracking of peaks easier.
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4. Assign crosspeaks at 298 K by tracing lines through every set of
three resonances across the temperature range (see Fig. 3).

5. Apply the same logic for shifting pH progressively from
pHassign to pHphosphorylation. Record 2D 1H-15N HSQC or
SOFAST-HMQC spectra at 3 pH values, DSS-reference your
spectra (or apply a 20 ppb/pH unit correction if you center the
water peak at 4.7 ppm). In the range of the pH values consid-
ered here, that is, pH ~6.5–7.5, crosspeak frequencies should
not shift significantly except histidine residues and their close
neighbors.

125

8.08.5

115

120

¹⁵N(ppm)

¹H(ppm)

283 K

291 K

298 K

Fig. 3 Temperature gradient from assignment conditions (283 K) to
phosphorylation conditions (298 K) allows fast 1HN and 15N assignment at
298 K. 2D 1H-15N SOFAST-HMQC spectra of BRCA2(aa48–218) were recorded
at 283 K, 290 K and 298 K, and spectral referencing were temperature-corrected
according to the rule presented in Subheading 3.3, step 3. All spectra are shown
at the same contour level. A number of crosspeaks fade away at higher
temperature. This is typical of IDPs NMR spectra. The spectra were acquired
at pH 7.0 and 700 MHz
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3.4 Phosphorylation
Monitoring by NMR

A number of IDPs provide poor S/N at pH 7 or higher due to their
high content in hydrophilic amino acids that show fast water:amide
proton exchange (Gly, His, Lys, Arg, Ser, Thr). Continuous read-
out at 298 K can thus be greatly hampered by the absence of reliable
reporter crosspeaks. In such situations, it may be more adapted to
perform the phosphorylation reaction on the bench, to remove
aliquots and quench the reaction at regular intervals, and to record
NMR spectra of these aliquots later. This “quenched reactions”
strategy has an advantage: low pH and large NMR acquisition times
can be used to enhance S/N and resolution. However, the limited
number of time points can hinder the robust fitting and interpreta-
tion of phosphorylation kinetics.

In the following, we describe protocols for the continuous
readout NMR approach (Subheading 3.4.1) and for the discontin-
uous “quench reaction” approach (Subheading 3.4.2). To choose
between these two strategies, you must evaluate the quality of the
2D 1H-15N SOFAST-HMQC spectra recorded at pHphosphorylation

and 298 K (see Subheading 3.3). If a number of reporter crosspeaks
provide S/N ratios above 10, the continuous readout is probably
feasible. S/N will depend of course on the IDP concentration and
the tube diameter/volume.

3.4.1 Phosphorylation

Monitoring Using

Continuous NMR Readout

1. Define the final volume of your sample. This ranges from 90 to
475 μL depending on the NMR tube you want to use (see
Subheading 2.3, item 4). Pipetting losses are difficult to
avoid, so start with initial volumes 10–20% higher than the
measured ones.

2. Calculate the amount of kinase to add according to Subheading
3.2, that is, the amount leading to measurable levels of phos-
phorylation within 2–5 h. The reaction should not be too fast
because the NMR timeframe is in the order of magnitude of
15–30 min in the described phosphorylation conditions. If you
skipped Subheading 3.2 and did not test the kinase activity, you
may try an IDP concentration of 50 μM, and a kinase:IDP
molar ratio of 1:2500 for an activated kinase, or 1:250 for a
non-activated kinase.

3. Prepare the pre-phospho mix containing the IDP at 50 μM in
Phos-B, supplemented with 3% D2O and 50 μM DSS. Check
the pH at room temperature using a micro-pH meter and
adjust it to 7.0 if necessary.

4. Transfer the pre-phospho mix into the NMR tube, insert the
tube in an appropriate spinner and then into the NMR spec-
trometer equilibrated at 283 K.

5. Tune and match the 1H circuit of the probehead, lock the
HOD signal, and shim the sample tube. Determine the 1H
90" pulse.
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6. Record 283 K reference 1D 1H spectra and 2D 1H-15N 2D
SOFAST-HMQC spectra using an FID resolution of ~15Hz in
both 1H and 15N dimensions. This step is recommended to
check the quality of your sample (pH control, ATP/ADP con-
centrations, IDP degradation) and serves to measure IDP ref-
erence peak intensities. The acquisition time of the 2D
spectrum should be between 30 min and 2 h. Ideally, the
S/N of peaks of interest should be 20:1 or more for an accurate
quantification of later phosphorylation advancement.

7. Equilibrate the spectrometer sample temperature at 298 K and
re-perform wobbling, shimming, and pulse calibration.

8. Record a 298 K reference 1D 1H-spectrum, record two 2D
1H-15N SOFAST-HMQC reference spectra using FID resolu-
tions of 15 Hz in 1H dimension, and (a) 15 Hz and (b) 30 Hz
in 15N dimension. The final acquisition times of the 2D spectra
should be about 15 or 30 min. Evaluate the quality of these
spectra, try different apodization functions, and pick the para-
meters that provide the best compromise between resolution
and S/N. These will be used for time-resolved NMR monitor-
ing of the phosphorylation reaction.

9. Extract the sample from the tube and add the kinase in quan-
tities defined in Subheading 3.4.1, step 2. Mix well by pipet-
ting and load the phosphorylation sample into the same
NMR tube.

10. Insert the sample in the magnet, wait for 1 min for temperature
equilibration, lock, and shim. Tuning, matching, and pulse
calibration should not change after the addition of the kinase,
unless the kinase stock is very diluted in a very peculiar buffer.

11. Record a 1D 1H-spectrum at 298 K and, then, a series of
1H-15N 2D SOFAST-HMQC spectra over 4–12 h, using the
parameters defined in Subheading 3.4, step 8.

12. At the end of the series, shim again and record a 1D 1H
spectrum to evaluate the ADP/ATP ratio (see Note 9).

13. Take back the sample from the tube. At this stage, phosphory-
lation should not progress significantly because of the progres-
sive loss of kinase activity. In the case of a heat-resistant IDP, to
definitely stop any enzymatic activity, boil the sample at 90 "C
for 5 min, centrifuge 5 min at 16,000 $ g, and recover the
supernatant. Avoid boiling IDPs containing Asn-Gly motifs
that may suffer from deamidation. You can alternatively spike
EDTA or CyDTA at a final concentration of 15 mM to chelate
Mg2+ ions, which will not prevent potential interactions
between the IDP and the kinase and their consequences on
IDPs NMR peak intensities.
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14. Measure pH and adjust it to the initial value if necessary. ATP,
DTT, and PI hydrolysis usually acidify the solution.

15. Fill the NMR tube with the pH-readjusted sample. Insert it in
the magnet, set the sample temperature to 283 K, tune/match,
lock, and shim. Record 1D 1H spectrum and a 2D SOFAST-
HMQC spectra at 283 K using the same parameters than in
Subheading 3.4, step 6. These spectra constitute the endpoint
references.

3.4.2 Phosphorylation

Monitoring Using Quenched

Reactions

1. Quenching can be performed using heat inactivation or urea
denaturation. Verify that the studied IDP is resistant to 5 min
heating at 90 "C. Test it on an aliquot at the concentration and
in the buffer conditions used for the phosphorylation reaction.
After 5 min, centrifuge 5 min at 16,000 $ g, separate the
supernatant and the eventual aggregated material and analyze
it using SDS-PAGE and NMR. Pay particular attention to the
NMR crosspeaks of Asn and Gln, whose decreased intensities
may reveal deamidation occurring upon heating.

2. If your protein is not heat resistant, you can quench the phos-
phorylation reaction by adding phosphorylation reaction
buffer supplemented with 10 M urea buffer to the aliquots.
The final urea concentration should be over 4 M. This will
require a novel NMR assignment at the final urea concentra-
tion, which can be performed using a urea gradient with the
same logic than for temperature in Subheading 3.3. Record-
ing 2D 1H-15N SOFAST-HMQC experiments of IDPs in urea
at pH 7 and 283 K provides high quality spectra: IDPs do not
adopt any “molten globule” behaviors in these conditions, and
urea slows down water-amide proton exchange; hence, favor-
able relaxation effects generate spectra exploitable for residue-
specific analysis.

3. Define the experimental time points (i.e., the number of
quenched aliquots) you want to have, and the final volume
and concentration of the measured samples. The
corresponding aliquots can be diluted after being quenched.
Such dilution permits a better control of the later pH
adjustment.

4. Calculate the amount of kinase to add according to Subheading
3.2 and the time frame you choose. If you skipped Subheading
3.2 and did not test the kinase activity, you may try an IDP
concentration of 50 μM, a total reaction time of 5 h, and a
kinase:IDP molar ratio of 1:2500 for an activated kinase, or
1:250 for a non-activated kinase.

5. Prepare the pre-phospho mix containing the IDP at 50 μM in
Phos-B supplemented with 3% D2O and 50 μM DSS. Check
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the pH at room temperature using a micro-pH meter and
adjust it to pHphosphorylation if necessary.

6. Remove an aliquot and heat it 5 min at 90 "C or dilute it in a
urea buffer, according to Subheading 3.4.2 step 1. Then, flash-
freeze the samples and keep them at #80 "C.

7. Add the kinase in quantities defined in Subheading 3.4.2 step
4. Mix well and place it at 298 K in a dry bath.

8. Remove aliquots at the defined time points, and heat them
5 min at 90 "C or dilute them in a urea buffer. Then, flash-
freeze the samples and keep them at #80 "C.

9. After thawing the samples, centrifuge the samples 5 min at
16,000 $ g if you heated them. Take the supernatant and
complete with the volume of phosphorylation buffer PhosB
to reach the final volume that will be measured by NMR.

10. Adjust the pH to 6.5. Flash freeze the aliquots that you will not
measure in the next hours; keep the other ones on ice.

11. Transfer the sample into the NMR tube, insert the tube in an
appropriate spinner and then into the NMR spectrometer
equilibrated at 283 K.

12. Tune and match the 1H circuit of the probehead, lock the
HOD signal, and shim the sample tube. Determine the 1H
90" pulse.

13. Record 283 K spectra of every aliquot: a 1D 1H-spectrum and a
1H-15N 2D SOFAST-HMQC spectrum using an FID resolu-
tion of ~15Hz in both 1H and 15N dimensions. 1D 1H-spectra
are useful to compare the eventual differences of IDP concen-
tration in the aliquots. They should thus be recorded with a
high S/N. They also permit to check the pH and the
ATP/ADP concentrations. The acquisition time of the 2D
spectrum should be between 30 min and 2 h. Ideally, the
S/N of peaks of interest should be 20:1 or more for an accurate
quantification of the phosphorylation advancement.

3.5 Analysis
of NMR Data

Although a novel assignment of the phosphorylated IDP spectra is
not always necessary (see Note 10), it can be very useful in the case
where too many phosphosites generate a large number of spectral
changes. We will not detail the assignment method relying on the
prior phosphorylation of a 13C-15N labeled IDP and the use of
3-dimensional pulse sequences to establish sequential connections
(see Subheading 3.3). A single 3D HNCACB spectrum is often
sufficient to assign the phosphorylated population. We will not
elaborate extensively on curve fitting: because of the progressive
kinase loss of activity, the potential IDP degradation, or the com-
petition between phosphosites, fitting models may often become
too complicate to provide consistent fitted values. In most cases, it
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is safer to only consider the order of phosphorylation events and
their initial rates. Crosspeaks whose intensities vary during the
phosphorylation reaction reveal phosphorylation advancement,
and will be called “reporters.” In the following, we describe how
to monitor and quantify the reaction advancement in a residue-
specific fashion. We will name “non-phosphopeaks” all crosspeaks
found in the reference spectra before phosphorylation, and “phos-
phopeaks” those appearing in spectra upon phosphorylation.

1. Fourier transform the spectra recorded at 283 K before and
after the phosphorylation reaction (see Subheading 3.4.1 steps
6 and 15 or Subheading 3.4.2 step 13) using Topspin or any
equivalent NMR-data processing software. Process these data
with an adapted apodization function, and perform baseline
corrections if necessary. The 2D SOFAST-HMQC pulse
sequence often generates distorted baselines in the 15N-dimen-
sion, which alters absolute peak intensities.

2. Load these 2D 283 K-spectra in an NMR data analysis software
(i.e., Ccpnmr or Sparky). Measure intensities of every isolated
peak in the reference spectrum (Iref) and after the phosphory-
lation reaction (Ifinal).

3. Identify the peaks that faded. Because the corresponding resi-
dues are either phosphorylated or close to phosphorylated
residues, these peaks permit identification of the residues or
the segments where phosphorylation reactions occurred. The
intensity ratios Ifinal/Iref of these peaks reveal the final degrees
of advancement of these reactions.

4. If you used the “continuous readout approach,” Fourier trans-
form the spectra recorded at 298 K during the phosphorylation
reaction and apply baseline corrections if necessary (see Sub-
heading 3.5, step 1). Load these 298 K-spectra in an NMR
data analysis software.

5. Measure intensities of every isolated peak in every spectrum,
including novel peaks appearing upon phosphorylation. Pay
attention to eventual peak displacements due to pH shifts in
the time series (see Note 11).

6. Plot the evolution curves of every peak using a plot/fit software
(Kaleidagraph, Prism, Gnuplot, ...). If you used the “continu-
ous readout approach,” set the time of the first spectrum
to (tset-up + tacq-spectrum/2), and the later time points to
(tset-up + tacq-spectrum $ (n # 1/2)). tset-up should be about
5 min. Decay of connected non-phosphopeaks, either of phos-
phosites or of neighboring residues, should show similar
trends.

7. Pay attention to the fact that a given residue can sense more
than one phosphorylation reaction, and the decay of its
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non-phosphopeak may report on more than one phosphoryla-
tion event in its vicinity. Such a situation can be recognized by
the appearance of more phosphopeaks than there were
non-phosphopeaks.

8. After identifying non-phosphopeaks that report the same phos-
phorylation reaction, add their individual peak intensities at
every timepoint (Fig. 1c). This will increase the S/N of the
phosphorylation build-up curves. For every phosphorylation
site, evaluate the total intensity It¼0 at time ¼ 0 according to
the initial slopes of the decay curves. Plot the phosphorylation
build-up curve %phospho(t) ¼ 1 # I(t)/It¼0.

9. You may try to assign the phosphopeaks. The peaks
corresponding to phosphorylated residues should shift down-
field according to the published reference chemical shifts; the
neighboring residues should show weaker peak displacements
and remain close to the non-phosphopeaks. In both cases, peak
intensities of phospho- and non-phospho-populations evolve
in a complementary fashion.

10. If no reliable non-phosphopeak reporter can be isolated in the
298 K-spectra, plot the intensities of the assigned phospho-
peaks. Evaluate their intensity Iendpoint at the end of the time
series, according to the last 298 K-spectra (Fig. 1c). Normalize
their build-up curve according to the ratio Ifinal/Iref of
non-phosphopeaks measured at 283 K.

11. You can also add build-up curves from related phosphopeak
and non-phosphopeaks to increase S/N. Perform it before
intensity normalization and normalize the final build-up
curves. Depending on the shape of the build-up curves, there
are four possible scenarios:

12. If the curve looks like a mono-exponential (Fig. 4a), fit it using
%phospho(t) ¼ %phosphot ¼ 1(1 # exp(# Rphos $ t)).

13. If the initial IDP concentration is above the Km of a phospho-
site, the corresponding decay curve may look more linear than
exponential (Fig. 4b); in this case, fit it using %phospho(t) ¼ %
phosphot¼1(1 # (ln(1 + (eK # 1) $ exp(#Rphos # t)))/K),
with K ¼ [IDP]/Km.

14. If the curve has an S shape, it may reveal a conditional phos-
phosite P2 that requires a prior phosphorylation of a
neighboring site P1 (Fig. 4c), which may be fitted using
%phosphoP2(t) ¼ 1 – [RphosP1 $ exp(#RphosP2 $ t)
# RphosP2 $ exp(#RphosP1 $ t)]/[RphosP1 # RphosP2]. In
such situation, a set of two P1 phosphopeaks should appear,
corresponding to P1-noP2 and P1-P2. You can fit %phos-
phoP1-noP2(t) ¼ RphosP1/[RphosP1 # RphosP2] $ [exp
(#RphosP2$ t)# exp(#RphosP1$ t)], and%phosphoP1P2(t)¼%
phosphoP2(t).
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15. An S shape can also reveal the late phosphorylation of a poorKm,
slow phosphosite Pslow after the early phosphorylation of a
faster site, Pfast (Fig. 4d). This situation does not provoke
necessarily the apparition of multiple peaks like in 14. Such
a build-up curve is fitted approximately by %phospho-

Pslow(t) ¼ 1 # [1 # %phosphoPfast]
δ, with δ ¼ (Vmax-

Pslow $ KMPfast)/(VMaxPFast $ KMPslow) < 1. Do not pay too
much attention to the individual values obtained upon fitting,
but consider only the initial rates calculated from fitted para-
meters (see Note 12).
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Fig. 4 Theoretical phosphorylation build-up curves. (a) Build-up curves in the situation where the phosphory-
lation target is at a concentration well below its Km. (b) Build-up curves in the situation where the
phosphorylation target is at concentrations above its Km (black: [substrate]% Km; brown: [substrate]¼ 2$ Km;
orange: [substrate] ¼ 5 $ Km; red: [substrate] ¼ 10 $ Km). (c) Build-up curves in the situation where the
substrate carries 2 phosphorylation sites and the second phosphosites (in blue) is phosphorylated only once
the first phosphosite (in red) has been modified. (d) Build-up curves in the situation where the substrate carries
two phosphorylation sites with Km(P1) ¼ 10 $ Km(P2) (P1 is in red, P2 in blue)
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4 Notes

1. The lowest IDP concentration to obtain sufficient S/N is
about 12.5 μM in most cases. Phosphorylation monitoring by
NMR is, however, often performed at much higher concentra-
tions in the literature, sometimes at several hundreds of micro-
molar. Importantly, at high IDP concentrations, kinases are
likely to steadily phosphorylate non-specific sites with very
highKm. NMR concentrations may thus generate questionable
results if this aspect is neglected. Kms of kinases for their
cognate targets span a wide range of values, from 1 to
100 μM, while kcat values can vary between 0.01 and 100 s#1

(we did not find an article providing statistics; these are num-
bers based on long-term experience; you can try https://www.
brenda-enzymes.org/). We highly recommend to measure
kinetics at a given concentration and at either half or twice
this concentration. The measured initial rates (in mol/s) will
reveal whether the used concentrations are below or above the
Km of every detected phosphosite, and whether some sites
emerge only because of high concentrations. There are three
possibilities: (a) if the molar phosphorylation rate is propor-
tional to the substrate concentration, we are well below the
phosphosite Km, which may be odd at concentrations above
100 μM, for example; (b) if it is the same at both concentra-
tions, we are an order of magnitude above the Km, which may
call for running the phosphorylation reaction at lower concen-
tration; (c) intermediate situations mean that we are at a con-
centration in the order of magnitude of the Km. Of course, it is
ideally preferable to determine kcat and Km more precisely by
measuring initial rates at multiple concentrations following the
Michaelis-Menten approach.

2. Cysteine reduction can usually be obtained by supplementing
the lysis buffer with 10 mM DTT (final concentration), and by
spiking 5 mM DTT (final concentration) in protein samples
after every purification step. Avoid β-mercaptoethanol: it is a
poor reducing agent and it easily forms mixed disulfides with
cysteines. TCEP is advantageous in many regards, but its noto-
rious stability is affected by the presence of phosphate and
EGTA [24, 31], it requires pH adjustment after solubilization,
and it may cleave progressively the protein backbone near
cysteines [32].

3. IDPs are generally very well expressed in E. coli strains opti-
mized for protein production. Bacteria are grown in minimum
media containing 15NH4Cl and

13C-glucose as sole sources
of nitrogen and carbon, respectively. Recipes can be found
at https://www.embl.de/pepcore/pepcore_services/protein_
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expression/ecoli/n15/ or in [29]. IDPs can sometimes be
obtained in inclusion bodies: in such situation, they can be
first purified in urea using a Histidine tag, before being trans-
ferred in a non-denaturant buffer using SEC.

4. High buffering capacity is important because ATP and DTT
hydrolysis release protons and can provoke deleterious pH
variations. A careful control of the pH is indeed essential to
generate NMR data of high quality: crosspeak intensities of
IDPs amide functions can vary up to ~10% for a pH shift of
0.1 at pH 7 and 298 K (This is due to the pH-dependency of
water/amide proton exchange [37], hence to the residence
time of the detected amide protons). Because we calculate
phospho and non-phospho populations based on NMR cross-
peak intensities, pH variations can thus bias this quantification.

5. Recombinant expression in insect or mammalian cells may
produce prephosphorylated protein samples. This may be
detected using the Pro-Q Diamond Phosphoprotein Gel
Stain kit, Phos-Tag SDS-PAGE [30], Mass Spectrometry, or
Western blot with an antibody directed against phosphoSer/
Thr. It can also be detected using 2D 1H-15N NMR spectros-
copy, given the recognizable chemical shifts adopted by phos-
phoSer/Thr residues [16, 21]. Tyrosine phosphorylation can
be nailed using 1H-13C NMR spectroscopy because of the Cε
chemical shifts perturbation [21]. If prephosphorylation is
ascertained, a phosphatase treatment may be carried out during
the purification.

6. Adding 10% glycerol to the reaction mix often improves S/N
and decreases the pH-dependency of NMR crosspeak intensi-
ties. It provokes chemical shift perturbations, which may be
large enough to force a supplementary assignment step. This
can be carried out similarly to what has been described for
temperature-dependent assignment in Subheading 3.3.

7. Kinases achieve substrate specificity in many ways [33]. Several
servers exist predicting phosphorylation sites and their asso-
ciated kinases. They rely mostly on kinase consensus site analy-
sis, reported detection, and existing annotation or interaction
networks in databases [34, 35]. An extensive list of methods is
available in [36]. A simple consensus site analysis can be
obtained using http://www.cbs.dtu.dk/services/NetPhos/.
Lists of detected phosphorylation sites are available on
https://www.phosphosite.org/.

8. Monitoring IDP phosphorylation in cell extracts is a challeng-
ing task. Which cell line? Which lysis conditions? In exponential
growth phase, or after cell-cycle arrest and at which stage?
Whole cell extract or separation of specific cell compartment?
These parameters will generate very different extracts with

812 Manon Julien et al.

https://www.embl.de/pepcore/pepcore_services/protein_expression/ecoli/n15/
http://www.cbs.dtu.dk/services/NetPhos/
https://www.phosphosite.org/


highly variable phosphorylation activities. For this reason, we
thought it was difficult to provide a generic protocol, and we
prefer to refer to guidelines published previously [17]. Produc-
ing active extracts requires fast manipulation of the cellular
material. Lysis buffers should of course be non-denaturing
and contain large concentrations of protease and phosphatase
inhibitors. ATP hydrolysis is usually intense because of the
combined activity of several cellular kinases. Extract concentra-
tion should be high (1–10 mg/mL). The experimental time-
frame is usually about 1 h, although it can be difficult to
establish: early phosphorylation can be rapidly compensated
by dephosphorylation activity of cellular phosphatases, which
often take over anyway after ATP exhaustion. We finally warn
the reader that interpretation of phosphorylation kinetics in
cell extracts should be cautious: native cellular organization
and colocalization is essential in cell signaling, and is lost in
cell extracts; the IDP of interest may interact with enzymes that
it would not meet in a real cell, and kinase or phosphatase
activity regulation may quickly degenerate.

9. Kinases affinity for ATP is in the range of 10–100 μM, and up
to the millimolar range in a minority of cases [38]. Affinity for
ADP is in the same range and very well correlated to that of
ATP [38]. Hence, a large excess of ATP is recommended for
monitoring phosphorylation reactions in vitro to avoid strong
inhibition by growing concentrations of ADP. Moreover, we
observed in most cases that kinases hydrolyze more ATP mole-
cules than they transfer phosphate moieties to their substrate.
We recommend to measure 1D 1H spectra before and after the
reaction to evaluate the ratio ATP/ADP (Fig. 5), which may
help in interpreting the progressive loss of kinase activity.

10. The most prominent chemical shift changes occur for phos-
phorylated residues. Their crosspeaks show strong downfield-
shifts in 1H-15N 2D spectra upon phosphorylation: due to a
hydrogen bond between the new side-chain phosphate and the
backbone amide function, their 1H resonances move to
8.5–9.5 ppm, which is out of the regular spectral window
(7.5–8.5 ppm) for disordered peptides [16, 21]. However,
the corresponding peaks move upfield when pH acidifies, and
their absolute intensities are also pH dependent. In surprising
cases, crosspeaks in this “phospho-region” of 8.5–9.5 ppm can
reveal a H-bond between the side-chain phosphate of a phos-
phorylated residue and the amide proton of a
non-phosphorylated residue [39]. 13Cα and 13Cβ chemical
shifts provide unambiguous information on the nature of
these 1H-15N crosspeaks (phosphoSer/Thr, or neighboring
non-modified residue establishing a H-bond with a phos-
phate). Recording a 3D HNCACB spectrum is thus often of
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good help in the analysis of the NMR data, which requires a
13C/15N-labeled IDP.

11. Because phosphoSer and phosphoThr have pKa values of about
6 and 6.5, respectively [21, 40], their protonation state varies
with the potential pH evolution during the phosphorylation
reaction, as evoked in Note 3. This provokes chemical shift
perturbations of the phosphorylated residues and of their
neighbors. Hence, it is important to verify that intensities are
measured at the peak centers in every spectrum.

12. Complex mechanisms emerging from multiple phosphoryla-
tion sites can take place. Assigning all peaks when multiple
neighbor phosphosites evolve concomitantly can be tedious.
Fitting evolution curves in such situations, or in the case of
large Km differences between phosphosites, is always possible.
Equations that can be used to fit complex phosphorylation
schemes have been described extensively earlier [17]. However,
the fitted parameters should be used cautiously: little differ-
ences in the range of the S/N (and thus inside the error bars)

8.58.6

8.58.6

ATP

ATP

ADP

ADP

7.58.5 ¹H(ppm)

BRCA2(aa48-218)+Plk1
aft. phospho.

283K

Fig. 5 NMR analysis of the ATP/ADP concentrations. Upper panel: Overlay of 1D
1H spectra of pure ATP (blue) and ADP (red) showing the purine 1H35 resonances.
Lower panel: 1D 1H spectrum of BRCA2(aa48–218) at 50 μM at the end of the
phosphorylation reaction by Plk1. The close-up view shows the ATP and ADP
1H35 signals allowing their quantification. All spectra were recorded in the
phosphorylation buffer (50 mM Hepes, 100 mM NaCl, pH 7.0, 4 mM DTT, 1$
EDTA-free protease inhibitors, 4 mM ATP, 10 mM MgCl2) at 283 K and at
700 MHz. ATP and ADP 1H35 chemical shifts depend on pH and on the
presence of Mg2+ (~0.03 ppm)
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for a couple of early points can provoke large differences in the
fitted values; moreover, the progressive loss of kinase activity
during the hours-long reaction is very difficult to evaluate.
Hence, we argue that one should limit the interpretation of
the recorded kinetics to (a) the ranking between phosphoryla-
tion sites and (b) the initial rates of phosphorylation.
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Two strategies are described in this review: i) the continuous readout of the 

phosphorylation reaction, which can be performed by NMR at pH<7.5, and ii) the delayed NMR 

analysis of aliquots, whose phosphorylation reaction has been quenched at different time points. 

The second strategy makes it possible to monitor phosphorylation kinetics at any pH, provided 

that the quenched samples are readjusted at pH<7.5 for the NMR analysis performed later. It is 

however more demanding in terms of sample quantities and more labor intensive, because it 

requires to prepare as many tubes and to set up as many NMR acquisitions as the number of 

time points (and to walk 1km about 100 times to the spectrometer :-) ).  

For Plk1, an initial optimization of phosphorylation conditions had been set up by Dr. 

Simona Miron with a first batch of Plk1 produced by Institut Curie. The results of this prior 

tests suggested to monitor the phosphorylation reaction at pH 7.8 to benefit of the full activity 

of Plk1. Thus, I initially used quenched reactions for monitoring BRCA2 phosphorylation by 

Plk1. Although time-consuming and inconvenient because of the number of Plk1 mutants 

multiplied by the number of time points, it allowed us to report the first phosphorylation kinetics 

of multiple sites of BRCA2 and its variants by Plk1. 

 

2. Recording 2D 13Ca-13CO NMR spectra 

 
In order to continuously monitor phosphorylation at pH ³7.5 and on large temperature 

range, we designed a new method based on the acquisition of 2D 13Ca-13CO spectra. All the 

details of this new method are described in a recent article published in Angewandte Chemie. 

In this article, I produced the BRCA248-218 and BRCA2190-284 samples, I assigned their 13Ca-

13CO resonances and those of their phosphorylated versions (Figure 39), and I finally acquired 

and analyzed BRCA2 phosphorylation kinetics using this new strategy, under the supervision 

of Dr. François-Xavier Theillet.  
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Figure 39. 13Ca-13CO spectrum assignment of BRCA2190-284 and BRCA248-218 in 50 mM 

HEPES, 75 mM NaCl, 1mM EDTA, pH 6.8. Spectra were recorded on a 700 MHz spectrometer 

at 283 K (CEA Saclay). 
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Abstract: Abundant phosphorylation events rule the activity of 
nuclear proteins involved in gene regulation and DNA repair. These 
occur mostly on disordered regions of proteins, which often contain 
multiple phosphosites. Comprehensive and quantitative monitoring of 
phosphorylation reactions is theoretically achievable at a residue-
specific level using 1H-15N NMR spectroscopy, but is often limited by 
low signal-to-noise at pH>7 and T>293K. We developed an improved 
13Ca-13CO correlation NMR experiment that works equally at any pH 
or temperature, i.e. also at those where genuine kinase activities 
occur. This permits to obtain atomic-resolution information in 
physiological conditions down to 25 µM. We exemplified the interest 
of this approach by monitoring phosphorylation reactions, in presence 
of purified kinases or in cell extracts, on a range of previously 
problematic targets, namely Mdm2, BRCA2 and Oct4. 

In eukaryotes, intracellular signal transduction largely relies on 
phosphorylation of intrinsically disordered regions of proteins 
(IDRs)[1]. More than 200,000 phosphosites have been detected 
on the ~13,000 human phosphoproteins[2,3]. Many of these 
phosphosites are clustered in unfolded regions of proteins, which 
conveniently permits to establish crosstalks or robustness in 
signaling[4,5]. Most of them have been detected by mass-
spectrometry (MS) or western-blotting (WB). These popular 
methods are sensitive, but hardly provide a comprehensive 
characterization in common cases of multiple neighboring or 
degenerate phosphosites. High-resolution NMR spectroscopy 
has emerged as a complementary approach to decipher complex 
phosphorylation schemes: using the classical detection of 1H-15N 
amide resonances, residue-specific information is obtained in 2D 
1H-15N correlation spectra, even on multiple phosphorylation sites 
that were not solved by MS/WB[6-8]. In frequent cases where 2D 
NMR peaks of IDRs overlap, 3D BT-HNCO combined with non-
uniform sampling (NUS) shows superior capacities[9,10]. However, 
these approaches rely on amide protons detection, which is 
efficient for unfolded peptides at pH<7 and T<293K: because 
water-amide proton exchange rate is proportional to [OH-] at pH~7 
and gets faster at high temperature[11], 1H-15N signals become 
weaker in physiological conditions where phosphorylation 
reactions are carried out, especially for fast-exchanging residues 
like Ser/Thr (Figure1a; Figure S1). Moreover, pH changes of ~0.1 
can generate ~25% variations in the H-N crosspeak intensities, 
making them delicate to use when a quantitative analysis of 
phosphorylation reaction advancement is needed. 

Indeed, to obtain individual phosphorylation rates, time-series of 
1H-15N NMR spectra are recorded during the reaction in 
conditions where kinases are active, i.e. at pH=7 and 298K. 
Residue-specific peak intensities are then quantified in every 
spectrum to monitor disappearance or appearance of unphospho- 
or phospho-species, respectively[6-8]. The non-phosphopeaks 
(either from the phosphosites themselves or from neighboring 
residues) provide the most reliable information: reference 
intensities at 0% phosphorylation are known and permit a 
straightforward normalization. However, at physiological pH and 
temperature, disordered proteins generate overlapping and weak 
1H-15N signals, as mentioned earlier. The counterpart 
phosphopeaks display generally more favorable intensities 
because phosphate groups on the side chain slow down water- 

 

Scheme 1. Figure 1. (a) 1H-15N 2D HSQC and (b) 13Ca-13CO 2D (1H-
flip*)13Ca13CO-LB spectra of Mdm2(aa284-434) at pH7/283K and pH7.5/303K. 
Spectral areas of Gly, Ser, Thr resonances are highlighted in blue, those of Pro 
in black. The same contour levels are applied in all conditions. 
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amide proton exchange, but exploiting them in a quantitative 
manner is often problematic: it requires normalization by peak 
intensities at 100% phosphorylation, a stoichiometry that is often 
impossible to reach using in vitro phosphorylation by purified 
kinases, especially when these are purchased commercially – 
commonly at high cost. (Schemes illustrating these normalization 
issues are shown in Figure S2). 
To circumvent these drawbacks, we thought to switch to the 
observation of proton-less, 13C-detected NMR correlations. This 
approach became appealing over the last years to characterize 
unfolded regions of proteins[12-14]. Still, notably because of the 
lower 13C gyromagnetic ratio, it suffers from lower S/N than 
conventional 1H-NMR. The 13CO-15N correlation experiments are 
used to study IDRs because they offer the best crosspeaks 
dispersion, but necessitate high protein quantities to provide 
quality spectra (~500 µM in ~300 µL), which is not very adapted 
to phosphorylation studies: a whole batch of commercial kinase is 
usually necessary to phosphorylate ~100-1000 nmol of high-
preference phosphosites. To reach a more favorable NMR 
sensitivity, we decided to build on the (1H-flip)13Ca-13CO 
correlation experiment, the most sensitive 2D 13C-detected pulse 
sequence[12]. This type of experiment is not spoiled by water-
amide proton exchange, at the opposite of the 13CO-15N 
experiments (Figure S3). 13Ca-13CO experiments are usually 
thought to generate unresolved spectra showing abundant 
crosspeaks overlaps for unfolded peptides. However, using 
prolonged constant-time 13Ca-evolutions, 13Ca-13CO spectra can 
provide residue-specific information with high coverage along the 
peptide sequence, as we will see below. 
Hence, we thought to improve the (1H-flip)13Ca-13CO sensitivity 
and adapt the sequence to our application. We first tuned the 
magnetization transfer delays (we named this first step 1H-flip*, 
see Figure S4), sacrificing glycine resonances but generating a 
15% increase for the rest of the amino acids. On average, this 
pays off in terms of phospho- and unphosphopeak intensities 
monitoring. Then, we replaced the final IPAP scheme by a 
homonuclear decoupling scheme LOW-BASHD applied during 
the acquisition (Figure S4)[15]. We also implemented a 120 µs 
triply compensated pulse G5 [16] to invert both carbonyl and alkyl 
13C nuclei in the final INEPT block. This yielded on average a 40% 
increase in S/N without any side-effects on peak line-width (Figure 
2a, 2b), as demonstrated by Bax and colleagues[15]. It left the door 
open for implementing the preservation of equivalent pathways 
(PEP) routinely applied to 1H-15N HSQC[17]. Despite multiple trials 
using various pulses and transfer delays (Figure S3), the best 
combination provided only a ~40% enhancement in signal, while 
also increasing the noise by Ö2 because the PEP protocol 
requires the acquisition of two independent datasets later 
recombined before processing. 
Finally, we thought to use chelated transition metals like Ni-DO2A 
for paramagnetic T1 relaxation enhancement, which is a potent 
way for NMR sensitivity improvement[18,19]. However, to preserve 
kinase activity, phosphorylation reactions require i) the presence 
of Mg2+, which can compete with DO2A-chelated divalent metal 
ions, and ii) reducing agents, which react with Ni-DO2A and most 
of the transition metals complexes that we tried. Among the 
commercial DOTA derivates available, NOTA is attractive 
because it is tailored to chelate trivalent transition metals, and 
thus not Mg2+. We found that the vanadium ion complex 
[V3+(NOTA3-)] (Figure 2c) was the only one to remain stable in 
presence of Mg2+ and DTT, as well as at high pH and temperature.  

  

Figure 2. Performances of the (1H-flip*)13Ca13CO-LB sequence, as 
evaluated on the model protein a-synuclein. (a) S/N of well-separated peaks in 
2D (1H-flip*)13Ca13CO-LB with 0mM (blue) or 5mM (red) V-NOTA compared to 
(1H-flip)13Ca13CO-IPAP (0mM V-NOTA); (b) Linewidths of isolated peaks in 2D 
(1H-flip*)13Ca13CO-LB with 0mM (blue) or 5mM (red) V-NOTA compared to (1H-
flip)13Ca13CO-IPAP (0mM V-NOTA). (c) Chemical structure of V3+ chelated by 
NOTA3-; (d) Sensitivity and time efficiency: average S/N per Ötscan as measured 
in 1D (1H-flip)13Ca13CO-IPAP (black) and (1H-flip*)13Ca13CO-LB with 0mM (blue), 
1.5mM (violet), 3mM (purple) and 5mM (ping) V-NOTA. 

It provided up to a 25% increase in S/N for the (1H-flip*)13Ca-
linewidths (Figure 2). Fast pulsing with low interscan delays 
(~0.1s) provides the best S/N per experimental time (Figure 2d).  
Altogether, using a classical cryoprobe optimized for “indirect” 1H-
detection, a 13Ca constant-time evolution of 27 ms and 50% NUS 
[20,21], we can record in 30 minutes high-resolution 2D 13Ca-13CO 
correlation spectra providing residue-specific information on IDRs 
at 50 µM and at any pH or temperature. This can be translated 
into 25 µM for 13C-direct detection probes. The resulting resolution 
is often sufficient to get residue-specific information along most of 
the disordered peptide sequences. To cancel CaCb coupling in 
13Ca dimension, a 13Ca constant-time evolution of 27, 54 or 81 
ms must be used. In case of important peak overlaps, an 
increased resolution is achievable using a 13Ca evolution time of 
54 ms, which provides an average 12 Hz linewidth in 13Ca-
dimension but provokes about 30% losses in S/N (8 Hz linewidth 
using an evolution time of 81 ms, Figure S5).  
With this dedicated analysis tool in hands, we then attempted to 
characterize challenging phosphorylation reactions that we failed 
to monitor accurately using only 1H-15N experiments. This was the 
case for human Mdm2, an E3-ubiquitin ligase controlling the 
abundance of the tumor suppressor p53[22,23]. Mdm2 activity is 
regulated by DNA-damage response (DDR) kinases DNA-PK, 
ATM or ATR [24,25]. According to the literature, they phosphorylate 
Mdm2 on 6 sites of its C-terminal region (aa334-434)[24-26], among 
which mouse S394 (human S395) phosphorylation has 
consequences on p53 stabilization and DNA-damage 
signaling.[26-28] To investigate the structural mechanism behind 
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Figure 3. Phosphorylation of human Mdm2(aa284-434) by DNA-PK observed by NMR. (a) Overlay of 2D 1H-15N HSQC spectra at 283K before (black) and after 
(red) the phosphorylation reaction. (b) Overlay of 2D (1H-flip*)13Ca13CO-LB at 303K before (black), in the course (light blue) and at the end (red) of the 
phosphorylation reaction. At the right: Close-up views of Gln, Ile, and Thr regions. Arrows show peak displacements upon 2 neighbor phosphorylation events: certain 
sets of peaks report for the 4 phosphostates, e.g. Q384(S386-S388)/Q384(pS386-S388)/Q384(S386-pS388)/Q384(pS386-pS388); in contrast I382(pS388) and 
T383(pS388) report the appearance of Mdm2(S386-pS388), while I382(pS386) and T383(pS386) both report Mdm2(pS386-S388)+Mdm2(pS386-pS388) (see 
Experimental Procedures in Supp. Info. for the assignment strategy). 

  

Figure 4. Site-specific phosphorylation kinetics of Mdm2(aa284-434). 
Build-up curves of phosphorylation reactions as executed (a) by purified DNA-
PK or (b) in HeLa cells Nuclear Extract; The phosphosite labels are in line with 
their corresponding curves. Non-conserved sites are in black, conserved S/T-Q 
sites in red, non-S/T-Q sites in orange.  

this functional switch, we had first to map comprehensively the 
phosphorylation scheme established by the DDR kinases. We 
used the segment Mdm2(aa284-434) comprising the region 
Mdm2(aa334-434) that we characterized as intrinsically 
disordered (Figure S6). After a prolonged reaction at 298K in the 
presence of purified DNA-PK, 2D 1H-15N spectra of Mdm2(aa284-
434) recorded at 283K revealed the phosphorylation endpoint 
(Figure 3): we identified 8 phosphosites T351, S386, S388, S395, 
S402, S407, T419 and S429. Initially, we could determine T351, 
S395 and S429 phosphorylation rates by recording time series of 
1H-15N SOFAST-HMQC NMR experiments during the reaction at 
298K [29]. In the cases of S386, S388, S402, S407 and T419, we 
were unable to quantify accurately their kinetics because of 1H-
15N non-phosphopeaks overlapping or being even non-detectable 

for S402 and S407. Together with their uncomplete 
phosphorylation, these prevented the determination of reference 
1H-detected peak intensities at 0% and 100% phosphorylation. 
Here, previously published 1H-detection methods [6-10] found their 
limits. Then, we recorded times series of alternated 1H-15N 
SOFAST-HMQC and (1H-flip*)13Ca13CO-LB experiments during 
the reaction at 298K. These provided complementary information: 
1H-15N SOFAST-HMQC spectra reported phosphopeaks build-up 
curves at high S/N, which we normalized using (1H-
flip*)13Ca13CO-LB non-phosphopeaks intensities and their decay 
curves. We found exploitable non-phosphopeak reporters for 
S386, S388, S402, S407 and T419 in 13Ca-13CO spectra at 298K 
(Figure 3, see the Material & Methods for a detailed list, a scheme 
of the rationale is presented in Figure S2). Using these peaks, we 
quantified and ranked DNA-PK’s site preferences on Mdm2 
(Figure 4a). Then, we tested our ability to monitor phosphorylation 
in cell extracts. Our approach mixing 1H-15N SOFAST-HMQC and 
(1H-flip*)13Ca13CO-LB spectra worked in cell extracts containing 
from 0.2 to 5 mg/mL of cellular proteins: the phosphorylation order 
observed with purified DNA-PK was very similar in HeLa cells 
Nuclear Extract that were DNA-damaged by short sonication 
pulses. Thus, our site-specific absolute quantification revealed i) 
that S388 is a high-preference novel phosphosite, and T351 and 
S402 are two new lower preference sites, ii) that S429 and S402, 
which do not correspond to the DDR kinases S-T/Q consensus 
motif, were steadily modified, iii) that T383 and T419, two S-T/Q 
consensus sites, were not or slowly phosphorylated, respectively. 
Similarly, we monitored site-specific phosphorylation on two other 
disordered segments of nuclear proteins involved in genome 
maintenance and expression, namely the Breast Cancer type 2 
susceptibility protein (BRCA2 aa190-284, see [30]) and the 
pluripotency transcription factor Oct4 (aa1-145) (Figure S7). Our 
characterization of BRCA2 phosphorylation by Plk1 (pH7.8, 
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T=303K), an important mitotic event, permitted to quantify 
properly two novel phosphosites T219 and T226, which were 
modified with rates comparable to the already known S193 and 
T207 (Figure 5a,c). We also wanted to examine Oct4 
phosphorylation by MAP kinases, which regulates Oct4 
transcriptional activity[31]. In presence of p38a (pH7.4, T298K), we 
noticed that the classical MAPK target motifs Ser/Thr-Pro S12, 
S111 and T118 were modified slower than the non-Ser/Thr-Pro 
T92 (Figure 5b,d). Here, we bring attention to the fact that 
13Ca13CO correlation are very adapted to the study of proline-rich 
peptides, the residues in N-terminal of Pro showing strong upfield 
shifts and interesting chemical shift dispersion (see also Figure 
S8). This is of interest, since the abundant Ser/Thr-Pro motifs are 
targets of the essential activities of MAP-Kinases and Cyclin-
dependent kinases[32]. Because this method is not limited by 
temperature conditions, it may also help in studies focusing on 
temperature-sensitive activities of kinases involved in circadian 
rhythm or hyperthermia consequences[33,34]. Hence, our improved 
13C-detected NMR approach expands the range of peptides and 
conditions accessible to NMR phospho-mapping and -monitoring. 
NMR methods previously published for PTM characterization are 
based on amide 1H-detection, which often provides the best 
sensitivity and possibly higher dimensionality/resolution, using 
fast acquisition and time-resolved NUS [6-10]. The proposed 13C-
detection scheme makes it possible to obtain residue-specific 
information with high sequence coverage on disordered proteins 
by NMR in all conditions of pH and temperature.  

 

Figure 5. Phosphorylation as observed by 2D (1H-flip*)13Ca13CO-LB NMR. 
Overlays of (1H-flip*)13Ca13CO-LB spectra of (a) BRCA2(aa190-284) and (b) 
Oct4(aa1-145) before (black) and after (red) phosphorylation by Plk1 and p38a, 
respectively. Spectral area corresponding to crosspeaks of Ser/Thr/Gly-Pro 
motifs are in blue. Kinetics were derived from time-series of (1H-flip*)13Ca13CO-
LB spectra of (c) BRCA2(aa190-284) at 100 µM, pH7.8, T=303K (d) Oct4(aa1-
145) at 100 µM, pH7.4, T=298K at 700MHz using a Bruker-TCI probe. 

Experimental section 

The Supporting Information contains detailed Material and 
Methods, HN/CaCO/CON NMR spectra of a-Synuclein, Elk1 and 
BRCA2 fragments at various pH, temperature and resolution, 
pulse sequence schemes, proteins’ primary sequences 
presentations. 
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We present an NMR method to monitor site-specific phosphorylation at high pH/T, which are necessary for kinases activity but 
prevented thorough characterization of disordered proteins. Our approach uses sensitivity-enhanced 13Ca-13CO experiments. We 
detail their improvements and efficiency on Mdm2, BRCA2, Oct4. Much more phosphorylation cases are now investigable by NMR. 
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at those where genuine kinase activities occur. This permits to obtain atomic-resolution information in physiological conditions down to 25 µM. 
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Experimental Procedures 

Peptide constructs 
Codon-optimized genes coding for human Mdm2(aa284-434), Mdm2(aa284-333), Mdm2(aa284-380), Mdm2(aa284-393), 
Mdm2(aa284-415), and mouse Mdm2(aa282-432) were synthesized by Genscript and cloned into pET41(a+) vector between SacII 
and BamHI restriction sites. Cys362 and Cys374 (mouse Cys372) were Ala-mutated. Codon-optimized Oct4(aa1-145) was 
synthesized by Genscript and cloned into pET41(a+) vector between SacII and HindIII restriction sites. Codon optimized gene coding 
for human alpha-synuclein was synthesized by Genscript and cloned into pET22(a+) vector between NdeI and NotI restriction sites. 
The plasmid encoding the NatB acetyltransferase was obtained from Addgene. Codon-optimized gene coding for mouse Elk1(aa309-
429) was synthesized by Genscript, Ala-mutated by Genscript on positions 325, 337, 418 and 423 and cloned into pET45(b+) vector 
between KpnI and PacI restriction sites. Codon-optimized gene coding for human BRCA2(aa48-218) Ala-mutated on positions 
Cys132, Cys138, Cys148 and Cys161 was synthesized by Genscript and cloned in pETM-13 between NcoI and BamHI restriction 
sites. Codon-optimized human p38a (aa1-360, full-length) was synthesized by Genscript and cloned into pET41(a+) between NdeI 
and AvrII restriction sites. Codon-optimized human Erk2(aa8-360) was synthesized by Genscript and cloned into pET45(b+) vector 
between KpnI and HindIII restriction sites. The plasmid coding for constitutively active MKK6 (GST-MEKR4V) was a generous gift 
from Isabelle Landrieu. It was used to activate both Erk2 and p38a. All genes contained a coding sequence for the Tobacco Etch 
Virus Protease (Tev) cleavage site ENLYFQG on the N-terminal side of the peptide of interest. Oct4(aa1-145) was also followed on 
the C-terminal side by a Tev cleavage site and a GB1 tag to stabilize the construct during recombinant expression. The Tev construct 
contained a hexahistidine tag (His6), and was produced in-house recombinantly in Escherichia coli. 
 
Recombinant protein production 
All peptides were produced in BL21(DE3)Star E. coli transformed with the plasmids presented above. BRCA2(aa190-284) was 
produced as previously described [1]. Alpha-synuclein was produced in cells co-transformed with the plasmid encoding NatB following 
protocols published earlier.[2] Cells were grown in M9 medium containing 13C-glucose (2 g/L) and 15NH4

+ (0.5 g/L) as sole sources of 
carbon and nitrogen, or in LB for kinases. Media were supplemented with 100 µg/mL ampicillin or 50 µg/mL kanamycine depending 
on the plasmids, and in 30 µg/mL ampicillin and 15 µg/mL chloramphenicol for alpha-synuclein. Overexpression was induced at an 
optical density OD600=0.8 by supplementing the medium with 1 mM ITPG at 37°C for all peptides except kinases, which were 
expressed at 30°C. Cells were harvested by centrifugation 4 hours later and cell pellets stored at -80°C. Cell lysis was performed 
using sonication in Tris 20 mM, NaCl 150 mM, pH 7.5 (TBS), in presence of benzonase (Sigma-Aldrich), lysozyme, protease 
inhibitors 1x (EDTA-free cOmplete, Roche) and 10 mM DTT. Soluble and insoluble fractions were separated by 15 min centrifugation 
at 15,000g. All peptides were purified from the soluble fraction except Elk1(aa309-429), which was resolubilized in TBS 
supplemented with 8 M urea. Alpha-synuclein was purified using protocols published earlier. [2]  For the other peptides, the cell 
extracts were loaded on a His-Trap FF column (5 mL, GE Healthcare) and eluted using a gradient of imidazole. The eluted fractions 
were later concentrated, submitted to Tev treatment for 1 hour (after transfer in TBS for Elk1) in TBS supplemented with 10 mM DTT, 
and then re-loaded on His-Trap column. Fractions containing the peptide of interest were finally submitted to a final size-exclusion 
chromatography using a Superdex 16/60 75 pg (GE healthcare) previously equilibrated with Hepes 40 mM, NaCl 75 mM or 150 mM, 
pH 7.0 or 7.4 or 7.8. 
 
Vanadium-NOTA production 
VCl3 was purchased from AlfaAesar–Fisher Scientific. NOTA was purchased from Chematech (Dijon, France). NOTA and VCl3 were 
solubilized in water at 0.1 M and 1 M, respectively. They were mixed in a 1:1.1 ratio, and pH was progressively shifted from acidic 
values (about 2-3) to 7. When isolated, NOTA saturation concentration is lower than 0.1 M; it becomes soluble upon V3+ 
complexation, which requires to elevate pH and reach the anion form NOTA3-. V(OH)3 precipitate was sedimented using 14,000 g 
centrifugation during 10 minutes. 2 mL of the supernatant was applied on a Source 15 RPC column (GE-Healthcare) previously 
equilibrated with Hepes 1 mM and NaCl 5 mM, pH 7. Salts are eluted first, before the purple-brownish V-NOTA fractions (about 5 
mL). These were lyophilized over night before being re-solubilized in water and re-injected on the same Source 15 RPC column and 
re-lyophilized. The obtained powder was solubilized in ~100-200 µL water. The most accurate method for weighting the final amount 
of V-NOTA is the following one: we weight the final microtube filled with the chosen volume of water before and after V-NOTA 
solubilization. Hepes and NaCl weights from the lyophilized 5 mL must not be forbidden. About 20-30 mg V-NOTA are typically 
obtained from a starting amount of 30 mg NOTA. 
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HeLa Nuclear Extract production 
HeLa S3 cells were grown in DMEM (4.5 g/L glucose, Sigma) supplemented with 10 % FBS. 100 million cells were harvested by 
trypsinization and lysed using the Qproteome Mitochondria isolation kit (Qiagen). We kept the nuclear fraction and resuspended it in 
500 µL of Hepes 50 mM, NaCl 400 mM, glycerol 10%, protease inhibitors 1x (EDTA-free cOmplete, Roche), 2 mM DTT and 
phosphatase inhibitors 1x (PhoSTOP, Roche), pH7. We submitted it to three 5s pulses of sonication using a microtip and a 30% 
output power (VibraCell, Sonics & Material In. Danbury, Connecticut, USA). The extract was aliquoted and stored at -80°C. This 
protocol yields extracts at 5 to 10 mg/mL protein concentration. The final working concentration used for the presented figures is 0.5 
mg/mL. 
 
NMR spectroscopy 
All NMR spectra were recorded on a 700 MHz Bruker Avance Neo spectrometer, equipped with a cryogenically cooled triple 
resonance 1H[13C/15N] probe optimized for 1H detection (TCI Bruker from 2006: 13C ASTM S/N=850, 1H 0.1% ethylbenzene S/N=7260 
when delivered; actual 13C-optimized probes ASTM S/N specifications are about 2500). All spectra were processed in Topspin 4.0.4. 
3D spectra analysis was carried out using CccpNmr 2.4.2, and 2D spectra were analyzed using NMRFAM-SPARKY.[3] DSS at 100 
µM and 3% D2O were added in all samples. 
NMR assignments of backbone amide resonances of uniformly-labeled peptides (13C/15N) was achieved via BEST-HNCO, -
HN(CA)CO, -HNCACB,[4] (H)N(CA)NH and HNCA 3D experiments, at pH 6.8 and 283K, and at peptide concentrations ranging from 
200 to 500 µM in 5 mm diameter Shigemi tubes. HNCO and HN(CA)CO were carried out with 1536 (1H) x 92 (13C) x 80 (15N) complex 
points and sweep widths of 16.23 ppm (1H), 10 ppm (13C) and 30 ppm (15N), HNCACB 1536 (1H) x 92 (13C) x 80 (15N) complex points 
and sweep widths of 16.23 ppm (1H), 70 ppm (13C) and 30 ppm (15N), (H)N(CA)NH with 1536 (1H) x 64 (13C) x 64 (15N) complex 
points and sweep widths of 16.23 ppm (1H), and 30 ppm (15N), and HNCA 1536 (1H) x 192 (13C) x 80 (15N) complex points and sweep 
widths of 16.23 ppm (1H), 26 ppm (13C) and 30 ppm (15N). Non-uniform sampling was applied (35 to 50%) and processing was 
achieved using RMDD algorithm implemented in Topspin4.0.4. [5] [6] Spectra were processed with linear prediction of 16 complex 
points in both 13C, and 15N dimensions, cosine apodization in every dimensions, and zero filling to 2048, 512 and 256 complex points 
in 1H, 13C, and 15N dimensions, respectively. Assignment 2D 1H-15N HSQC spectra were recorded using 1536 (1H) x 256 (15N) 
complex points and sweep widths of 16.23 ppm (1H) and 30 ppm (15N), and processed with zero filling to 4K and 1K in the proton and 
nitrogen dimensions, respectively. 
We used this assignment strategy for backbone amide resonances (BEST-HNCO, -HN(CA)CO, -HNCACB, (H)N(CA)NH and HNCA 
3D experiments, at 283K) both for non-modified and phosphorylated species. The assignments at 303K in 2D spectra were 
transferred from those at 283K by recording spectra at 283K, 293K and 303K: this is sufficient to characterize peak-specific 
temperature shifts. The spectra and the assignment of “DNA-PK intermediate” phosphorylated Mdm2(aa284-434) were obtained 
using samples whose phosphorylation was stopped by heating at 323K for 10 minutes (provoking DNA-PK inactivation). 
Assignments of unmodified and phosphorylated human Mdm2(aa284-434, C362A-C374A), as well as details of NMR experiments 
used to derive them have been deposited in the Biological Magnetic Resonance Data Bank (BMRB, accession numbers 28011, 
28019, respectively). As reported in the literature by Bycroft et al. [7], we observed two stable conformations of the Zn-finger that 
correspond to trans- and cis-prolines (PDB: 2C6A and 2C6B). The relative NMR peak intensities of the two species were the same in 
the isolated Zn-finger and in Mdm2(aa284-434) (trans:cis~2:1).  Secondary structure propensities of unmodified and phosphorylated 
Mdm2(aa284-434, C362A-C374A) were obtained with the neighbor-corrected structural propensity calculator ncSCP [8,9] 
(http://www.protein-nmr.org/ , https://st-protein02.chem.au.dk/ncSPC/) using experimentally determined, DSS referenced Ca and Cb 
chemical shifts as input. 
We set up 2D spectra during phosphorylation kinetics as follows: 2D 1H-15N SOFAST-HMQC experiments were recorded using 1536 
(1H) x 92 (15N) complex points and sweep widths of 16.23 ppm (1H) and 30 ppm (15N), 16 scans (128 dummy scans) and interscan 
delays of 0.12 s, resulting in 7 minutes long spectra; 2D (1H-flip*)13Ca13CO-LB experiments were recorded using 1024 (13CO) x 128 
(13Ca) complex points and sweep widths of 20.28 ppm (13CO) and 14 ppm (13Ca), 80 scans (96 dummy scans) and interscan delays 
of 0.15 s, and 50% non-uniform sampling optimized for a 35 Hz J-coupling (i.e. low sampling around 14 ms Ca evolution time) and 60 
ms relaxation, resulting in 31 minutes long spectra. All spectra were processed zero filling to 4K and 1K in the direct and indirect 
dimensions, respectively. Cosine apodization was applied in 13CO dimension for (1H-flip*)13Ca13CO-LB spectra, no apodization was 
applied for 1H-15N SOFAST-HMQC spectra. 2D (1H-flip*)13Ca13CO-LB experiments processing was achieved using the CS algorithm 
implemented in Topspin4.0.4 [10], parameters were set as follows: Mdd_mode=cs, MddCEXP=false, MddCT_SP=true, 
Mdd_CsALG=IST, Mdd_CsVE=false, Mdd_CsNITER=0. Two 2D 1H-15N SOFAST-HMQC spectra were initially acquired, before 
recording alternately 2D (1H-flip*)13Ca13CO-LB and 2D 1H-15N SOFAST-HMQC spectra. We used 5 mm diameter Shigemi advanced 
tubes for phosphorylation kinetics, which increases NMR active volume to 330 µL, and yields ~13 % higher 13C-direct detection 
sensitivity, and no 1H-dectection gains or losses. 
 
Phosphorylation reactions 
Phosphorylation reactions were carried out using 15N-labeled target peptides concentrations between 12.5 and 100 µM, in Hepes 40 
mM, NaCl 75 mM, DTT 2 mM, ATP 5 mM, MgCl2 20 mM, protease inhibitors (Roche), 3% D2O, pH 7.2 to pH 7.8 at 25°C or 30°C in 
330 µL. The spectra and kinetics shown in all figures are from kinetics run with 100 µM Mdm2, Oct4, Elk1 or BRCA2 fragments. No 
changes in phosphorylation preferences were observed with concentration changes. Mdm2 phosphorylation by purified DNA-PK was 
achieved using commercial DNA-PK (ThermoFisher Scientific / Invitrogen): 2.5 µg of DNA-PK and 35 µg of DNA-PK activator 
(ThermoFisher Scientific / Invitrogen), i.e. calf thymus DNA, were spiked in the sample immediately before inserting it in the NMR 
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spectrometer. Regular calf thymus DNA concentrations of 2.5 µg/mL were not reliable enough: initial phosphorylation rates were 
decreasing with Mdm2 concentration increasing, which goes against kinetics theory and probably reveals an interaction between 
DNA and Mdm2. We saturated the system with 100 µg/mL of Calf thymus DNA to have constant DNA-PK activation. Moreover, we 
observed that satisfying reproducibility of DNA-PK phosphokinetics is achievable at 298K, but that this kinase complex appears less 
stable at 303K, resulting in variable phosphorylation results. BRCA2 kinetics were run at 50 and 100 µM, in hepes 50 mM, NaCl 
50mM, pH 7.8 in presence of 250 nM of recombinant Plk1, 2 mM ATP, 1 mM EDTA, 20 mM MgCl2, 2 mM DTT, 1x protease inhibitors 
cocktail cOmplete (Roche), and 3 mM V-NOTA (Plk1 aliquots gently provided by the protein production platform of the Institut Curie, 
Paris, France). Oct4 kinetics were run at 50 and 100 µM, in hepes 20 mM, NaCl 50mM, pH 7.4 in presence of 500 nM of recombinant 
p38a, 2 mM ATP, 5 mM MgCl2, 2 mM DTT 1x protease inhibitors cocktail cOmplete (Roche) using recombinant p38a produced and 
activated in-house (see the paragraph “Peptide constructs“). Elk1 phosphorylation was performed using recombinant human Erk2 
produced and activated in-house (see the paragraph “Peptide constructs“). 
 
Phosphorylation kinetics analysis 
After processing spectra as detailed in the paragraph “NMR spectroscopy”, we measured peak intensities in NMRFAM-SPARKY.[3] 
Peaks were centered in every spectra to follow peak shifting because of pH drifts. Progress curves were plotted and fitted in 
Kaleidagraph 4.5. We used only decay curves to normalize phosphorylation build-up curves. We describe the set of disappearing 
peaks that we used in the following paragraph.  
About Mdm2(aa284-434), we could determine pT351, pS395 and pS429 phosphorylation rates using peaks from 2D 1H-15N 
SOFAST-HMQC NMR spectra. Indeed, we monitored peak intensities of neighboring residues A345+L347 for pT351, Y394+S395 for 
pS395, L430 for pS429, which all disappear proportionally to the phosphorylation advancement of their closest phosphosite. The 
other phosphosites (S386, S388, S402, S407, T419) were monitored using 2D (1H-flip*)13Ca13CO-LB spectra as follows. D380, K381, 
I382 and T383 peaks are good reporters of the concomitant disappearance of non-modified S386 and S388. Even more valuable, a 
second set of intermediate I382 and T383 peaks appear corresponding to S386/pS388, while a third one report the progressive 
buildup of pS386/S388+pS386/pS388. In the case of I382 and T383, pS388 does not provoke any further peaks shifting after S386 
phosphorylation. At the opposite, (1H-flip*)13Ca13CO-LB peaks of Q384, Q387 and Q387 split in 4 different forms corresponding to the 
4 combinations of S386-pS386-S388-pS388, but their interpretation is more tedious because of peak overlaps (Figure 3). Peaks of 
S402, I403, I404, Y405, S406 and Q408 are good reporters of S407 disappearance, i.e. pS407 appearance, and S398, T399, S402 
and I404 of the later appearance of pS402. Finally, E415, R416 and T419 are good reporters of the pT419 reaction advancement. 
Intensities of peaks that are reporter of a phosphorylation reaction were added to increase the experimental S/N. Decay curves were 
fitted according to the following equations: y(t)=I0*exp(-k*t)+Ifinal with I0 and k the fitted values. Normalization was performed using (I0+ 
Ifinal), and phosphorylation build-up curves are thus %phospho(t)=1-y(t)/ (I0+ Ifinal). We also used phosphopeaks of pS386, pS388, 
pS402, pS407 and pT419 observed in 2D 1H-15N SOFAST-HMQC NMR spectra, which are well-separated and identifiable in 2D 1H-
15N spectra. We normalized them according to the final levels reached at the end of the kinetics, as determined from (1H-
flip*)13Ca13CO-LB decay curves. Proton-detected SOFAST-HMQC experiments still provide higher S/N and permit to generate higher 
quality build-up curves. 
BRCA2(aa190-284) phosphokinetics were derived from (1H-flip*)13Ca13CO-LB peak intensities of M192, M192(pS193), S193, W194 
and S196 for pS193, T207, pT207, V208, V208(pT207), I210, I210(pT207) and V211 for pT207, A216, T219, pT219 and V220 for 
pT219, and from H223, A226 and V229 for pT226. Oct4(aa1-145) phosphokinetics were derived from (1H-flip*)13Ca13CO-LB peak 
intensities of D8, D8(pS12), F9, F9(pS12), A10, A10(pS12), and S12 for pS12, L90, T92 and S93 for pS93, D108, A110, S111 and 
E113 for pS111, T116, T116(pT118), V117, T118, A121 and V122 for pT118. 
 
Pulse program 
We provide two versions of the (1H-flip*)13Ca13CO-LB Bruker pulse program: one for Neo consoles and Topspin4 
(c_hcaco_ctre.lowbash.top4), one for earlier systems and Topspin 3 (c_hcaco_ctre.lowbash.top3). They are straightforward to 
parameterized: only the proton pulse length (p3) has to be determined for each sample, while carbon pulse lengths can be set up 
only once. The carbon homo-decoupling LOW-BASH pulse is the only pulse that is delicate to parameterize: one should follow 
carefully the indications provided by Bax and coworkers [11]. The Shapetool in Topspin4 permits to generate the necessary shape 
pulse: a center lobe of a sinc function of duration 22,600/nc in µs (nc is the 13C frequency in MHz) should be amplitude modulated by 
a cosine function at a frequency of 118 x nc. Hence, it applies pulses of equivalent power on both sides of the 13CO carrier frequency, 
centered at 55 and 191 ppm, which efficiently vanishes Bloch-Siegert shift effects[11]. This decoupling pulse is automatically applied 
every 5 ms by the pulse program, as well as the MLEV16 RF phases. We provide the shape pulse Bruker file for a 700 MHz 
spectrometer as an example in Supplementary data. 
Phosphorylated residues generally provide lower peak intensities than their non-phospho counterparts, due to the difficulties to excite 
and decouple selectively Ca and Cb of pSer and pThr. 
It is important to use a low D2O concentration to avoid high amounts of deuterated amides, which generate significant changes in 
chemical environment for the neighboring Ca and CO, hence provoking peak splitting or measurable exchange relaxation. We use 
3% D2O. 
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Results and Discussion 

Figure S1. 1H-15N 2D HSQC and 13Ca-13CO 2D (1H-flip*)13Ca13CO-LB spectra of alpha-synuclein, Elk1(aa308-428) and Brca2(aa48-218) in low pH and low 
temperature or high pH and high temperature conditions. The same acquisition parameters and contour levels were applied in both conditions. Positive and negative 
crosspeaks are in black and red, respectively. Negative peaks in red correspond to Gly residues. 
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Figure S2. Analysis pipeline for data fitting using non-phosphopeaks or phosphopeaks from NMR spectra of Mdm2(aa284-434). a. In the case where non-
phosphopeaks (from a phosphosite or its neighboring residues) are well-resolved and provide sufficient S/N, intensities measured in every spectrum of the time 
series can be plotted. They are then fitted using an exponential function I(t)=I(t=0)*exp(-t/k)+I(tfinal), the fitted parameters being I(t=0), k and I(tfinal). Curves are then 
normalized by I(t=0)+I(tfinal) and %phosphorylation(t)=1-Inormalized(t). b. In the case where only phosphopeaks are well-resolved and provide sufficient S/N, intensities 
from phosphopeaks can be plotted, but not normalized, unless 100% phosphorylation is reached. c. Intensities from non-phosphopeaks can be measured in (1H-
flip*)13Ca13CO-LB spectra and the resulting curves can be fitted and used for normalization of both phosphopeaks and non-phosphopeaks build-up curves. 
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Figure S3. 15N-13CO 2D (1H-flip*)CON-IPAP [12] spectra of Mdm2(aa284-434) and alpha-synuclein at low pH and low temperature or high pH and high temperature 
conditions. The same acquisition parameters and contour levels were applied in both conditions. Negative peaks in red correspond to Gly residues. 
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Figure S4. Schemes of the (a) (1H-flip*)13Ca13CO-LB_1, (b) (1H-flip*)13Ca13CO-LB_2 and (c) (1H-flip*)13Ca13CO-LB_3 pulse sequences. Pulse lengths are adapted 
to a spectrometer field of 700 MHz. Delays are: d=2.9 ms,  D=9 ms,  D’= 8.4 ms,  D 1=27*n ms with n=1, 2 or 3. Phase cycle: f1=x,x,x,x,-x,-x,-x,-x;  f 2=x, -x; f 3=x, x, 
-x, -x; f rec=x,-x,-x,x; fn=x,x,-x,-x,-x,x,x,-x,-x,-x,x,x,x,-x,-x,x. Filled and open rectangles represent hard 90° and 180° pulses, respectively. Narrow and wide black 
semi-ellipses are Q5-sebop/Q5tr-sebop 90° (231 µs) and Q3-surbop 180° (300 µs) pulses, respectively. 13CO and 13Ca/b and 13Cali carrier frequencies are 173, 55.5 
and 41 ppm, respectively. White semi-ellipses are 13Ca centered Q3-surbop 180° (634 µs) pulses applied at 41 ppm. The striped semi-ellipse is a 120 µs triply 
compensated pulse G5 [13,14] applied at 114.25 ppm. The shaded semi-ellipse is a Q3-surbop 180° (900 µs) pulse applied at 114.25 ppm, amplitude modulated by 
a cosine function at a frequency of 58.75*nc (nc is the 13C frequency in MHz), which inverts selectively both 13CO and 13Ca/b at the same time. The grey semi-ellipse 
is a center lobe of a sinc function of duration 22,600/nc in µs (nc is the 13C frequency in MHz), amplitude modulated by a cosine function at a frequency of 118*nc 
applied n times every 5 ms, with n=tacq/5ms. Quadrature detection is obtained by incrementing phase f2 in a States-TPPI manner. The original (1H-flip*)13Ca13CO-
IPAP sequence uses a pulse field gradient just before the carrier frequency change to 13CO before the final INEPT transfer. We chose not to apply any pulsed field 
gradients (Gz), because we did not observe any improvement related to it. 
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Figure S5. (1H-flip*)13Ca13CO-LB spectra of alpha-synuclein using growing constant-time (CT) evolution periods of 27, 54 or 81 ms. These correspond to n/1J(CaCb) 
with n=1, 2 or 3. This allows the removal of 1J(CaCb) =35 Hz coupling effects during Ca chemical shift evolution. Increasing the constant time by 27 ms provokes 
on average a 30% loss in S/N for IDPs. It generates at the same time an improved resolution: we measured an average 12 Hz linewidth in Ca-dimension at 54 ms 
and 8 Hz at 81 ms. In these spectra, the signs of NMR signals oscillate according to J-coupling evolution: they are negative for cos(pJ*CT)=-1, i.e. CT=27 or 81 ms, 
and positive for cos(pJ*CT)=1, i.e. CT=54 ms. Gly residues are an exception, because they do not contain any Ca and their signal is always positive. We have 
changed the phase by 180° so that most of the peaks appear to be positive (black), and those of Gly residues appear negative at CT=27 or 81 ms. 
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Figure S6. (a) Primary structure of human Mdm2 and Mdm2(aa284-434). Folded domains (p53-BindingDomain: p53-BD; Zinc-finger: Zn-fg; RING-ubiquitin ligase 
domain: RING) are in deep blue and domains predicted to be disordered are in light-blue. DNA-PK/ATM/ATR (DDR kinases) were reported to phosphorylate sites 
depicted in solid red or orange circles, representing consensus S/T-Q motifs or non-S/T-Q motifs, respectively. S/T-Q motifs not yet detected to be DDR kinases 
targets are in light red circles.[15] (b) Secondary structure propensity as calculated from 13Ca/13Cb chemical shifts using ncSCP.[8,9] (c) Low 1H-15N heteronuclear 
nOes (700 MHz) reveal ps-ns timescale motion typical of unfolded peptides outside of the Zn-fg domain. 
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Figure S7. (a) Primary structure of human Oct4 and Oct4(aa1-145). Folded domains (DNA-BindingDomain: DNA-BD or DBD) are in deep blue and domains 
predicted to be disordered are in light-blue. (b) 2D 1H-15N HSQC spectrum of Oct4(aa1-145) showing that most crosspeaks are in the region (in grey) where 
resonances of unfolded amino acids are found. (c) Secondary structure propensity as calculated from 13Ca/13Cb chemical shifts using ncSCP.[8,9] Gly and Pro 
positions along the primary sequence are indicated by red and blue sticks, respectively. 
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Figure S8. Overlay of (1H-flip*)13Ca13CO-LB spectra of Elk1(aa308-428) before (black) and after (red) phosphorylation by the MAPKinase Erk2. 
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3. Can we obtain complementary data from 31P 1D NMR? 
 

I also had the opportunity to record some 1D 31P NMR spectra thanks to a collaboration 

with François Giraud (ICSN, Gif-sur-Yvette). We used an indirect broadband probe detecting 

31P on a 600 MHz spectrometer (probe: TBI 600SB 1H-13C-BB-D 5mm gradients xyz). This 

probe offers a moderate sensitivity for 31P acquisition. Recent quadruple cryoprobes optimized 

for 31P-NMR (QCI probes, Bruker) may provide about 4-5-fold better signal-to-noise 

performances. 

In Figure 40, we can observe the 31P spectrum of the phosphorylated BRCA2167-260, a 

new BRCA2 fragment that we will describe later in the Chapter. The sample was 

phosphorylated at 80-100%, giving rise to the appearance of pS193, pT207, pT219 and pT226, 

as shown earlier using 1H-15N NMR. We observe at least 5 peaks instead of the expected 4. The 

non-stoichiometric phosphorylation of the neighboring T219 and T226 may generate 4 peaks 

(T219-T226, pT219-T226, T219-pT226, pT219-pT226). We did not assign 31P resonances. 

These experiments required about 10 hours to reach a sufficient S/N ratio from a 300 

uM-500 uL sample. A rough calculation indicates that using a 31P-dedicated cryoprobe would 

probably permit to record similar spectra in 2-4 hours at 25-30°C with a 100 uM-100 uL sample. 

31P has unfavorable NMR properties, notably a large CSA of about 80 to 120 ppm for 

phosphoresidues (Potrzebowski et al. JACS 2003). This provokes fast signal relaxation, hence 

low signal. We measured peak linewidths of about 20 Hz in our spectra, but, unfortunately, this 

also corresponds to the used FID resolution (FID res= 18.8 Hz, acquisition time of 53.3 ms). 

Thus, we estimate a maximal transversal relaxation R2~65 Hz (minimal T2~15 ms).  

Phosphorylation kinetics should not be performed at too high concentrations: favored 

phosphosites may have Km values in the 1 to 100 uM range and may be confounded with 

poorer, unsignificant phosphosites, which can have Km above 500 uM. Hence, 31P NMR 

continuous readout is probably not a first-choice method for monitoring protein 

phosphorylation. To finish our evaluation, we must add that 31P peaks may be delicate to use in 

the course of phosphorylation reactions that release protons and commonly provoke 0.1-0.2 pH 

shifts, hence changes in pSer or pThr protonation states (pKa between 6 and 6.5, respectively) 

and thus site-specific 31P chemical shift changes in the range of 0.2-0.4 ppm (Bienkiewicz et 

al. 1999). Supplementary peak overlaps may appear upon pH changes, and assignment would 

probably require alanine-screening mutations. Altogether, in the case of BRCA2167-260, using 

31P 1D-NMR has several drawbacks for monitoring protein phosphorylation. 
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Figure 40. 1D NMR 31P spectra of BRCA2167-260 phosphorylated by Plk1 at 283 K (left, 1024 

or 20480 scans) and comparison with the same spectrum acquired at 300 K (right, 1024 scans). 

All these spectra were measured at 300 uM in 50 mM HEPES, 75 mM NaCl 1mM EDTA 5% 

D2O pH 7.0 using a 5mm tube and a 600 MHz spectrometer (ICSN, Gif-sur-Yvette). Four 

residues are phosphorylated by Plk1 in this peptide: S193, T207, T219 and T226. 
 

 

4. Finding the optimal pH for Plk1 phosphorylation 
 

We were now able to obtain a continuous readout of BRCA2 phosphorylation by Plk1 at 

any pH. Therefore, I monitored the phosphorylation reaction on BRCA248-218 at pH 7.0, 7.5 and 

8.0 in order to define optimal pH conditions. Here, I used a large new Plk1 bacth of Plk1 from 

the Institut Curie facility that was more active than previsouly and sufficient for the rest of my 

thesis. I first performed an SDS-PAGE analysis, which revealed that Plk1 was active on a 

broader range of pH than previously found (Figure 41.A).  

To precisely compare the phosphokinetics at different pHs, I monitored them on 

BRCA248-218 between pH 7.0 and 8.0 using the 13Ca-13CO method (Figure 41.B). The 

phosphorylation of BRCA2 by Plk1 progressed with the same kinetics at pH 7.0 and pH 8.0.   

 

 

 

 

 

 

 

 

 

 



 118 

0%

100%

0 5 10

Ph
os

ph
or

yl
at

io
n

Time (h)

pH 7.0
pH 8.0

pS193
pT207

pS193

pT207

 

 
 

 
 
 
 
 

 
Figure 41. Plk1 presents the same activity profile from pH 7.0 to pH 8.0. 

(A) BRCA2 phosphorylation monitored by Coomassie-stained 15% SDS-PAGE gel. 

Conditions: BRCA2 at 100 uM in 50 mM HEPES, 75 mM NaCl, 10 mM MgCl2, 2 mM DTT, 

2mM ATP, 1.5X PI, pH 7.0 (green), 7.5 (dark green) or 8.0 (blue), incubated at 30°C. (B)
 

BRCA2 phospho-kinetics of S193 and T207 monitored by 13C-NMR in the same conditions 

than in (A). 
 
 

 Thus, during my PhD, I initially monitored BRCA2 phosphorylation by Plk1 using the 

quenched reaction at pH 7.8 and 30°C, then I used the 13Ca-CO approach at pH 7.8 and 30°C 

and finally I adopted a more practical approach by using a continuous 1H-15N SOFAST-HMQC 

readout at pH 7.0 and 25°C.  

As reported in our article in Methods in Molecular Biology, I also changed the MgCl2 

concentration to 10 mM instead of 20 mM and I added 75 mM of NaCl to the reaction buffer 

in order to favor kinase stability and specificity. In our initial conditions, we used substrate 

concentrations of 200 uM, to ensure high NMR S/N. However, the Km of pS193 and pT207 

have values of about 100-200 uM (Figure 42). According to Johnson et al., 2008, these Km 

values look common for sites phosphorylated by Plk1 that is not phosphorylated at T210 (see 

later Chapters). They indicate that we should not work with a substrate concentration 

exceeding 100 uM? Indeed, following the Michealis-Menten model, initial rates depends on the 

substrate concentration. In extreme cases, at millimolar concentrations, phosphorylation 

kinetics of poor, unsignificant sites having high Km could be faster than those of cognate sites. 

It is thus important to carefully choose the substrate concentration. We are often focused on the 

choice of the best conditions according to the technique that we use (high protein concentrations 

in the context of NMR analysis), and we tend to forget the constraints required for a meaningful 

interpretation. We performed the following experiments at concentrations between 45-90 uM.  

A. B. 
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Figure 42. Plk1 Vmax and Km determination for BRCA2S193 and BRCA2T207 

Several kinetics experiments were carried out with 13C-labeled BRCA248-218 at 50 uM (Plk1 100 

nM), 90 uM (Plk1 320 nM), and 200 uM (Plk1 161 nM) in HEPES 50 mM, NaCl 75 mM, 10 

mM MgCl2, EDTA 1 mM, DTT 2 mM, ATP 2 mM at pH7.0 and recorded at 303 K, 700 MHz 

CEA Saclay, using CaCO spectra. V0 were determined for each condition and used for Km and 

Vmax determination using either Lineweaver-Burk (left) or Michaelis-Menten (right) models. 

 

5. Impact of the fragment design on phosphorylation kinetics 
  

Once the phosphoresidues and the optimal phosphorylation conditions were identified, 

I designed a new BRCA2 fragment (BRCA167-260), centered around the 4 fast Plk1 phosphosites 

and which comprises the conserved region of BRCA2 (Figure 33). I used this fragment to 

characterize the factors influencing the kinetics of phosphorylation of each phosphoresidue.  

Interestingly, comparing the kinetics observed with the different BRCA2 fragments 

highlighted an evident fact: the limits of the protein fragment can influence the kinetics, as 

illustrated in Figure 43. BRCA2167-260 and BRCA2190-284 both contain the 4 fast phosphosites. 

In the case of BRCA2167-260, pS193 is the fastest phosphorylated residue followed by pT226 

and pT207 and finally pT219. Concerning BRCA2190-284, all sites are phosphorylated at slower 

rates, and, remarkably, S193 now exhibits now the slowest build-up kinetics. S193 proximity 

to the extremity of BRCA2190-284 may impair its correct recognition by Plk1. Nevertheless, the 

phosphorylation scheme is conserved (pT226>pT207>pT219) if we do not consider pS193.  

BRCA248-218 contains only two phosphosites, S193 and T207 instead of 4. This 

increased the phosphorylation rates of both sites: the kinase has less substrates to phosphorylate. 

Here too, the preference of phosphorylation is maintained (pS193>pT207).  
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In conclusion, these results highlight the necessity to design a fragment centered on the 

phosphosites for monitoring accurate phosphorylation kinetics. 

 
Figure 43. Comparison of S193, T207, T219 and T226 phosphorylation kinetics in BRCA248-

218, BRCA2167-260 and BRCA2190-284. All these phosphorylation reactions were monitored using 
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a 1H-15N SOFAST-HMQC continuous readout at 298K. BRCA2 fragments at 90 uM were 

mixed to PLK1 at 200 nM in buffer containing 50 mM HEPES at pH 7.0, 75 mM NaCl,1 mM 

EDTA 2 mM DTT, 1X protease inhibitors (Roche), 2 mM ATP, 10 mM MgCl2, 50 uM DSS 

and 5 % D2O. All experiments were performed in triplicate, corresponding error bars are 

presented. Fitting the kinetics finally gave access to the apparent rate of phosphorylation kobs 

(min-1) at each phosphosite, as described in Julien et al., 2020. 

 

In summary, I confirmed experimentally the intrinsically disordered character of 

BRCA248-284 and I identified 4 fast BRCA2 residues phosphorylated by Plk1 (S193, T207, T219 

and T226). I also designed an optimized fragment for studying BRCA2 phosphorylation 

kinetics: BRCA2167-260, and characterized the phosphorylation rates of Plk1 phosphosites on 

BRCA2 (pS193>pT226>pT207>pT207). These results constitute a starting point for the 

elucidation of the functional role of these phosphoresidues in BRCA2. Furthermore, the 

quantification of phosphorylation kinetics will be useful for characterizing the impact of VUS 

on BRCA2 phosphorylation by Plk1, as reported in Chapter 4. 
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Chapter 4. BRCA2pT207 is involved in the spindle assembly 

checkpoint 

 
 

Within the BRCA2 residues phosphorylated by Plk1 (S193, T207, T219 and T226) in 

BRCA248-218 and BRCA2190-284, the phosphosite S-pT207-P corresponds to a potential Plk1 

docking site. Indeed, as exposed in the Introduction, the PBD of Plk1 preferentially binds S-

pS/pT-P motifs (Elia et al., 2003). The phosphoserine or phosphothreonine of the consensus 

motif can be either phosphorylated by cyclin-dependent kinases (Cdk, Nash et al., 2001) or by 

Plk1 itself (Neef et al., 2003, Kang et al., 2006, Lee et al., 2008). Based on our results, we 

hypothesized that Plk1 may phosphorylate T207 to create its own docking site on BRCA2. 

 
 

1. BRCA2pT207 interacts with Plk1PBD and triggers the formation of a 
quaternary complex 

 

This hypothesis was confirmed in an article inserted bellow. I contributed to the article 

as follows: I showed that BRCA2pT207 is a Plk1PBD docking site in vitro, I quantified the site-

specific phosphorylation rates executed by Plk1 on different BRCA2 variants found in breast 

cancer, and thus identified those that impair BRCA2 phosphorylation at position T207 and 

BRCA2 binding to Plk1. In the same article, the team of Aura Carreira revealed that the 

complex BRCA2pT207/Plk1 is at the center of a quaternary complex involving BRCA2pT207, 

Plk1, BubR1 and PP2A, regulating chromosome segregation during mitosis. 

In this study, I was involved in the site-directed mutagenesis of BRCA248-218(T207A) under 

the supervision of Ambre Petitalot, the BRCA248-218 and BRCA2190-284 (WT and T207A) 

production for NMR analysis, I conducted BRCA2 phosphorylation experiments and their 

analysis by NMR under the supervision of Dr. François-Xavier Theillet and Dr. Sophie Zinn-

Justin, I initiated the optimization of Plk1PBD production in the lab and I performed half of the 

ITC measurements under the supervision of Dr. Simona Miron. 
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Proper chromosome alignment depends on
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The BRCA2 tumor suppressor protein is involved in the maintenance of genome integrity

through its role in homologous recombination. In mitosis, BRCA2 is phosphorylated by Polo-

like kinase 1 (PLK1). Here we describe how this phosphorylation contributes to the control of

mitosis. We identify a conserved phosphorylation site at T207 of BRCA2 that constitutes a

bona fide docking site for PLK1 and is phosphorylated in mitotic cells. We show that BRCA2

bound to PLK1 forms a complex with the phosphatase PP2A and phosphorylated-BUBR1.

Reducing BRCA2 binding to PLK1, as observed in BRCA2 breast cancer variants S206C and

T207A, alters the tetrameric complex resulting in unstable kinetochore-microtubule inter-

actions, misaligned chromosomes, faulty chromosome segregation and aneuploidy. We thus

reveal a role of BRCA2 in the alignment of chromosomes, distinct from its DNA repair

function, with important consequences on chromosome stability. These findings may explain

in part the aneuploidy observed in BRCA2-mutated tumors.
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The BRCA2 tumor suppressor protein plays an important
role in DNA repair by homologous recombination (HR)1,2
that takes place preferentially during S/G2 phases of the

cell cycle3. BRCA2 has also emerging functions in mitosis, for
example, at the kinetochore, it forms a complex with BUBR14,5, a
protein required for kinetochore–microtubule attachment and a
component of the spindle assembly checkpoint (SAC)6,7. These
two activities of BUBR1 involve different partners and are func-
tionally distinct8,9. BRCA2 has been proposed to contribute to
BUBR1 SAC activity4,10, although due to confounding results in
the BUBR1 interaction site in BRCA2, it is unclear if this inter-
action is direct4,5. At the end of mitosis, BRCA2 localizes to the
midbody and assists cell division by serving as a scaffold protein
for the central spindle components11–13. In mitosis, BRCA2 is a
target of phosphorylation by PLK1 both in its N-terminal
region14,15 and in its central region15, although the functional role
of these phosphorylation events remains unclear.

PLK1 is a master regulator of the cell cycle that is upregulated in
mitosis16,17. Among other functions, PLK1 directly binds and
phosphorylates BUBR1 at several residues including the two
tension-sensitive sites S67618 and T68019 in prometaphase allowing
the formation of stable kinetochore–microtubule attachments.
This activity needs to be tightly regulated to ensure proper
alignment of the chromosomes at the metaphase plate8,9,18. The
kinase activity of Aurora B is essential to destabilize erroneous
kinetochore–microtubule interactions20 whereas the phosphatase
PP2A protects initial kinetochore–microtubule interactions from
excessive destabilization by Aurora B21. This function is achieved
through the interaction of PP2A-B56 subunit with BUBR1 phos-
phorylated at the Kinetochore Attachment and Regulatory Domain
(KARD) motif (including residues S670, S676, and T680)19. Thus,
the interplay between PLK1, BUBR1, Aurora B, and PP2A is
necessary for the formation of stable kinetochore–microtubule
attachments.

PLK1 is recruited to specific targets via its Polo-box domain
(PBD)22. PBD interacts with phosphosites characterized by the
consensus motif S-[pS/pT]-P/X23. These phosphosites are pro-
vided by a priming phosphorylation event, usually mediated by
CDK1 or other proline-directed kinases17; however, there is also
evidence that PLK1 itself might create docking sites (“self-prim-
ing”) during cytokinesis24,25.

Several BRCA2 sites have been suggested as phosphorylated by
PLK1 in mitosis, some of which belong to a cluster of serines and
threonines located in BRCA2 N-terminus around residue S19314.
We set out to investigate which of these sites are phosphorylated
by PLK1, and to reveal whether these phosphorylation events play
a role in the regulation of mitotic progression. Here, we
demonstrate that the two conserved residues S193 and T207 are
phosphorylated by PLK1, and that phosphorylated BRCA2-T207
is a bona fide docking site for PLK1. By investigating the phe-
notype of BRCA2 missense variants that limit the phosphoryla-
tion of BRCA2-T207, we reveal an unexpected role for BRCA2 in
the alignment of chromosomes at the metaphase plate. We
demonstrate that phosphorylation of BRCA2-T207 by PLK1
facilitates the formation of a complex between BRCA2-PLK1-
pBUBR1 and the phosphatase PP2A. A defect in this function of
BRCA2 is manifested in chromosome misalignment, chromo-
some segregation errors, mitotic delay and aneuploidy, leading to
chromosomal instability.

Results
Breast cancer variants alter PLK1 phosphorylation of BRCA2.
Several missense variants of uncertain significance (VUS)
identified in BRCA2 in breast cancer patients are located in the
N-terminal region predicted to be phosphorylated by PLK1

(around S193) (Breast information core (BIC)26 and BRCA-
Share27), summarized in Supplementary Table 1. To find out if
any of these variants affected PLK1 phosphorylation in this
region, we purified fragments comprising amino acids 1 to 250
of BRCA2 (hereafter BRCA21–250) from human embryonic
kidney cells (HEK293T) and used an in vitro kinase assay to
assess the phosphorylation by PLK1 of the fragments containing
either the WT sequence, the different BRCA2 variants M192T,
S196N, S206C, and T207A, or the mutant S193A, previously
reported to reduce the phosphorylation of BRCA2 by PLK114.
As expected, S193A reduced the phosphorylation of BRCA21-250
by PLK1 (Fig. 1a, b). Interestingly, variants T207A and S206C
also led to a 2-fold decrease in PLK1 phosphorylation of
BRCA21–250 (Fig. 1a, b). In contrast, M192T and S196N did not
significantly modify the phosphorylation of BRCA21–250 by
PLK1 (Fig. 1a, b). The phosphorylation observed in the BRCA2
fragments is specific of the recombinant PLK1 kinase as it is
PLK1 concentration dependent (Supplementary Fig. 1a, b) and
when replacing the PLK1-WT by a kinase-dead (PLK1-KD)
version of the protein (K82R)28, purified using the same pro-
tocol, or adding a PLK1 inhibitor (BI2536) to the reaction, the
phosphorylation of BRCA21-250 decreased significantly (Fig. 1c,
lanes 4 and 5 compared to lane 3; Fig. 1d).

Together, these results show that VUS T207A and S206C
identified in breast cancer patients impair phosphorylation of
BRCA21–250 by PLK1 in vitro.

BRCA2-T207 is a target of phosphorylation by PLK1. The
reduction of BRCA2 phosphorylation in BRCA21-250 containing
T207A and S206C variants suggested that these residues could be
targets for PLK1 phosphorylation. We investigated this possibility
by following the PLK1 phosphorylation kinetics of two over-
lapping fragments of BRCA2 N-terminus comprising S206 and
T207 (hereafter BRCA248–218 and BRCA2190–284) using Nuclear
Magnetic Resonance (NMR) spectroscopy (Fig. 2a). Together,
these fragments cover a large N-terminal region of BRCA2
including the cluster of conserved residues around S193 (from
amino acid 180 to amino acid 210; Supplementary Fig. 1c). NMR
analysis allows residue-specific quantification of 15N-labeled
peptide phosphorylation. Figure 2b shows superimposed 1H-
15N HSQC spectra of BRCA248–218 and BRCA2190–284 before
(black) and after (red) phosphorylation with recombinant PLK1.
Analysis of these experiments revealed phosphorylation of S193
and of three other phosphosites, including T207, by PLK1 in the
BRCA2 region from amino acid 48 to amino acid 284. Interest-
ingly, while T219 and T226 conservation is poor, T207 and S193
are conserved from mammals to fishes (Supplementary Fig. 1c)
suggesting that both residues are important for BRCA2 function.

BRCA2 variant T207A alters PLK1 phosphorylation kinetics.
Having identified T207 as a target of phosphorylation of PLK1,
we next compared the residue-specific phosphorylation kinetics
in the polypeptide WT BRCA248–218 containing the variant
T207A that displayed reduced overall phosphorylation (Fig. 1a,
b). (The production of a 15N-labeled recombinant fragment
comprising S206C yielded an insoluble protein precluding NMR
analysis). Time-resolved NMR experiments revealed that PLK1
phosphorylates significantly less BRCA248–218 containing the
variant T207A than the WT peptide (Fig. 2c). The initial phos-
phorylation rate of S193 was decreased by a factor of 2 (Fig. 2d),
and T207 was, as expected, not phosphorylated, being mutated
into an alanine. Similar results were obtained using BRCA2190–284
(Supplementary Fig. 2). This NMR analysis is consistent with the
in vitro kinase assay performed using the BRCA21–250 fragment
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purified from human cells (Fig. 1), in which T207A reduces the
phosphorylation of BRCA21–250 fragment by PLK1.

Variants T207A and S206C reduce the interaction of BRCA2
with PLK1. The finding that T207 is efficiently phosphorylated
by PLK1 in BRCA248–218 and BRCA2190–284 (Fig. 2b) together
with the observation that T207A mutation causes a global
decrease in the phosphorylation of these fragments (Fig. 2c;
Supplementary Fig. 2) and the prediction that T207 is a docking
site for PLK1PBD binding23 made us hypothesize that T207 might
be a “self-priming” phosphorylation event required for the
interaction of PLK1 with BRCA2 at this site. If so, the variants
that reduce phosphorylation of T207 by PLK1 would be predicted

to alter PLK1PBD binding. To test this hypothesis, we examined
the interaction of PLK1 with the VUS-containing polypeptides.
We overexpressed 2xMBP-BRCA21–250 constructs carrying these
variants in U2OS cells to detect the endogenous PLK1 that co-
immunoprecipitates with 2xMBP-BRCA21–250 using amylose
pull-down. As expected, overexpressed BRCA21–250 was able to
interact with endogenous PLK1 from mitotic cells but not from
asynchronous cells (predominantly in G1/S) where the levels of
PLK1 are reduced (Fig. 3a, lane 2 compared to lane 1). Further-
more, the variants T207A and S206C showed a weaker interac-
tion with PLK1 than the WT protein (Fig. 3a, pull-down lanes 4,
6 compared to lane 2, Fig. 3b) despite the protein levels of PLK1
remaining unchanged (Fig. 3a, compare PLK1 input lanes 4 and 6
to lane 2). In contrast, the effect of M192T and S196N on the
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Fig. 1 BRCA2 VUS alter PLK1 phosphorylation of BRCA21-250. a PLK1 in vitro kinase assay with BRCA21–250. Top: The polypeptides encompassing 2×-
MBP-BRCA21–250 WT or S193A, M192T, S196N, S206C, T207A mutations or the 2XMBP tag were incubated with recombinant PLK1 in the presence of
γ32P-ATP. The samples were resolved on 7.5% SDS-PAGE and the 32P-labeled products were detected by autoradiography. Bottom: 7.5% SDS-PAGE
showing the input of purified 2xMBP-BRCA21–250 WT and mutated proteins (0.5 μg) used in the reaction as indicated. Mr; molecular weight markers.
b Quantification of the relative phosphorylation in (a). Data in (b) are represented as mean ± SD from four independent experiments. c PLK1 in vitro kinase
assay performed as in (a) with recombinant PLK1 or the PLK1 kinase dead K82R mutant (PLK1-KD) together with BRCA21-250 WT as substrate, in the
presence or absence of the PLK1 inhibitor BI2536 (50 nM) in the kinase reaction buffer. Mr; molecular weight markers. d Quantification of the relative
phosphorylation in (c). Data in (d) are represented as mean ± SD from three independent experiments. b, d One-way ANOVA test with Dunnett’s multiple
comparisons test was used to calculate statistical significance of differences (the p-values show differences compared to WT (b) or PLK1 (d); ns (non-
significant)). Source data are available as a Source Data file.
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interaction was mild (Fig. 3a, compare pull-down lanes 10 and 12
to lane 8, Fig. 3b). These results suggest a self-priming phos-
phorylation by PLK1 on T207.

To provide further evidence that the PLK1-mediated phos-
phorylation of BRCA2 favors BRCA2 binding, we performed an
in vitro kinase assay with recombinant proteins followed by an
amylose pull-down and eluted the bound proteins with maltose.
PLK1 was found in the maltose elution with BRCA21–250-WT

demonstrating that PLK1-phosphorylated BRCA21–250 binds to
PLK1 (Fig. 3c lane 4, Fig. 3d). In contrast, the fraction of PLK1 in
the eluate of BRCA21–250-T207A was substantially reduced
(Fig. 3c, lane 8 compared to lane 4, Fig. 3d) indicating that the
phosphorylation of T207 is required for efficient binding to PLK1
and confirming our results with cell lysates (Fig. 3a, b). Strikingly,
we observed no difference in PLK1 binding between BRCA21–250-
WT phosphorylated by PLK1 or its kinase dead mutant (PLK1-
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KD; Fig. 3c, lane 6 compared to lane 4, Fig. 3e) or in the absence
of ATP (Fig. 3f, lane 6 compared to lane 4, Fig. 3g). However, pre-
incubating BRCA21-250-WT with phosphatase before the addition
of PLK1 resulted in a 2-fold decrease in the binding to PLK1
indicating that the phosphorylation of BRCA2 is required for the
interaction with PLK1 (Fig. 3f lane 12 compared to 10, Fig. 3g).

T207 is a bona fide docking site for PLK1. To demonstrate the
recognition of pT207 by PLK1, we measured the affinity of
recombinant PLK1PBD (the target recognition domain of PLK1)
for a synthetic 17 aa peptide comprising phosphorylated T207.
Using isothermal titration calorimetry (ITC), we found that
recombinant PLK1PBD bound to the pT207 peptide with an
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affinity of Kd= 0.09 ± 0.01 µM (Fig. 3h), similar to the optimal
affinity reported for an interaction between PLK1PBD and its
phosphorylated target23. Consistently, PLK1PBD bound to the
fragment BRCA2190-284 with nanomolar affinity upon phos-
phorylation by PLK1 (Kd= 0.14 ± 0.02 µM; Supplementary
Fig. 3a), whereas it did not bind to the corresponding non-
phosphorylated polypeptides (Fig. 3i, Supplementary Fig. 3b).
Mutation T207A also abolished the interaction (Fig. 3j), in
agreement with the pull-down experiments (Fig. 3a–d). More
surprisingly, the phosphomimetic substitution T207D was not
sufficient to create a binding site for PLKPDB (Supplementary
Fig. 2c). A peptide comprising pT207 and the mutation S206C
could not bind to PLK1PBD (Fig. 3k), as predicted from the
consensus sequence requirement for PLK1PBD interaction23.
Last, a peptide containing pS197, a predicted docking site
for PLK1, bound with much less affinity to PLK1PBD than pT207
(Kd= 17 ± 2 µM; Supplementary Fig. 2d).

Finally, we determined the crystal structure of PLK1PBD bound
to the T207 phosphorylated peptide at 3.1 Å resolution
(Supplementary Table 2). Analysis of this 3D structure showed
that, as expected, the 17 aa BRCA2 phosphopeptide binds in the
cleft formed between the two Polo boxes (Fig. 3l). Twelve residues
of the peptide (from A199 to I210) are well structured upon
binding, burying about 694 Å2 in the interface with PLK1PBD. The
interface between BRCA2 and PLK1PBD is stabilized by 12
hydrogen bonds: the backbone of residues T200 to L209 as well as
the side chain of S206 are bonded to residues from Polo Box 1,
whereas the side chain of phosphorylated T207 is bonded to
residues from Polo Box 2 (see the zoom view in Fig. 3l). The side
chain of S206 participates in two hydrogen-bonding interactions
with the backbone of W414, which explains the strict requirement
for this amino acid at this position23. Moreover, the phosphate
group of pT207 participates in three hydrogen-bonding interac-
tions with the side chains of residues H538, K540, and R557 in
Polo Box 2 (see the zoom view in Fig. 3l). This explains the
critical dependence on phosphorylation for binding observed by
ITC (Fig. 3h, i).

Thus, our biochemical and structural analyses demonstrate
that the BRCA2-T207 phosphopeptide interacts with PLK1PBD as
an optimal and specific PLK1PBD ligand. It supports a mechanism
in which phosphorylation of T207 by PLK1 promotes the
interaction of PLK1 with BRCA2 through a bona fide docking
site for PLK1 and favors a cascade of phosphorylation events. In
variant T207A, the absence of T207 phosphorylation impairs

PLK1 docking explaining the reduction of binding to PLK1 and
the global loss of phosphorylation by PLK1. S206C eliminates the
serine residue at −1 position required for PLK1PBD interaction
resulting as well in a strong reduction of BRCA2 binding.

Impairing T207 phosphorylation prolongs mitosis. PLK1 is a
master regulator of mitosis17. To find out whether the interaction
between BRCA2 and PLK1 was involved in the control of mitotic
progression we examined the functional impact of the variants
that reduce PLK1 phosphorylation at T207 (S206C and T207A)
in the context of the full-length BRCA2 protein in cells. We
generated stable cell lines expressing the BRCA2 cDNA coding
for either the GFPMBP-BRCA2 WT or the variants to comple-
ment DLD1 BRCA2 deficient human cells (hereafter BRCA2−/−)
(Supplementary Fig. 4a). First, to confirm that the phosphoryla-
tion of T207 by PLK1 takes place in cells we raised a phospho-
specific polyclonal antibody against a peptide encompassing
pT207. Using an antibody against BRCA2 we detected a band that
corresponds to the size of BRCA2 in cell extracts from BRCA2
WT cells, both in mitotic (nocodazole treated) and asynchronous
cells, by Western blotting (Fig. 4a). When the same membrane
was re-probed with the pT207-BRCA2 antibody a band corre-
sponding to BRCA2 was detected only in the mitotic cells and not
in the asynchronous cells (Fig. 4a, lane 1 and 2). In addition,
mitotic cell extracts treated with phosphatase lost the signal
indicating that the band corresponds to a phosphorylation event
(Fig. 4a, lane 3). Finally, cells bearing BRCA2-T207A were
detected with the BRCA2 antibody but showed reduced signal for
the pT207 antibody (Fig. 4a, lane 4) providing evidence of the
specificity of the antibody. We then tested the interaction of full-
length BRCA2 with PLK1 in these stable clones by GFP pull-
down assay. As expected, PLK1 readily co-purified with full-
length BRCA2 WT from mitotic cells. Importantly, in cells
expressing the variants S206C and T207A, the level of co-purified
PLK1 was greatly reduced (Fig. 4ba, c), confirming the results
obtained with the overexpressed BRCA21–250 fragments (Fig. 3a)
now in the context of cells stably expressing the full-length
BRCA2 protein. Thus, BRCA2 interaction with endogenous PLK1
is impaired in cells bearing variants S206C and T207A.

Also, the binding of BRCA2 to PLK1 in cells stably expressing
full-length BRCA2 WT was not reduced by incubating the cells
with a PLK inhibitor (BTO) (Supplementary Fig. 4b), consistently
with results obtained in vitro (Fig. 3c). Altogether, these data

Fig. 3 BRCA2 variants showing reduced phosphorylation by PLK1 impair PLK1 binding. a Amylose pull-down of U2OS transiently expressing 2xMBP-BRCA21-
250 (WT), the variants (M192T, S196N, S206C, and T207A) or the 2XMBP-tag treated with nocodazole as indicated. 4–15% SDS-PAGE followed by WB using
anti-PLK1 and anti-MBP antibodies. StainFree images are used as loading control (cropped image is shown). b Quantification of co-immunoprecipitated PLK1
withWT in (a), relative to the input levels of PLK1. Results are presented as the fold change compared toWT. The data represent the mean ± SD of three to four
independent experiments (WT (n= 4), M192T (n= 4), S196N (n= 4), S206C (n= 4), T207A (n= 3)). One-way ANOVA test with Dunnett’s multiple
comparisons test was used to calculate statistical significance of differences (p-values compared to WT). c PLK1 (or PLK1-KD) as indicated in vitro kinase assay
followed by amylose pull-down of BRCA21-250-WT or T207A. 10% SDS-PAGE followed by WB using anti-PLK1 and anti-MBP antibodies. d, e Quantification of
the PLK1 pull-down in (c) relative to the PLK1 levels in the input. Results are presented as the fold change compared to BRCA21-250-WT in (d) and PLK1-WT in
(e). The data represent the mean ± SD of three independent experiments, two-tailed unpaired t-test was used to calculate significance of differences (ns (non-
significant)). f PLK1 in vitro kinase assay followed by amylose pull-down assay as in (c) Left panel: with or without ATP as indicated. Right panel: The 2×-MBP-
BRCA21-250-WT polypeptide was pre-treated with phosphatase (FastAP) for 1 h before the amylose pull-down (c). In (c) and (f): UB: unbound, E: eluted.
g Quantification of the PLK1 pull-down in (f) relative to the PLK1 levels in the input. Results are presented as the fold change compared to kinase assay
performed with non-phosphatase treated BRCA21–250-WT in the presence of ATP. The data represent the mean ± SD of three to five independent experiments
(+ATP (n= 5), −ATP (n= 5), +PPAse (n= 3)), one-way ANOVA test with Dunnett’s multiple comparisons test was used to calculate statistical significance
of differences (p-values compared to +ATP; ns (non-significant)). h–k Isothermal Titration Calorimetry (ITC) thermograms showing binding of PLK1PBD to a 17
aa BRCA2 peptide containing (h) pT207, (i) T207, (j) A207, (k) C206pT207. Residues S206 and pT207 are highlighted in pink (S206) and magenta (pT207)
in the peptide sequences. l Left panel: 3D cartoon representation of the crystal structure of PLK1PBD (Polo-box 1 in green and Polo-box 2 in blue) bound to the
BRCA2 peptide containing pT207 (in red except for S206 (pink, sticks) and pT207 (magenta, sticks)). Right panel: zoom in on the interface between PLK1PBD
and the BRCA2 peptide (from A199 to I210). The amino acids of PLK1PBD and BRCA2 involved in the interaction are highlighted in sticks representation with
hydrogen bonds depicted as dark gray dots. Source data are available as a Source Data file.
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suggest that another binding site primed by a different kinase
(presumably T77 phosphorylated by CDK129) contributes to
BRCA2 binding to PLK1. Consistent with this idea, the binding
of overexpressed 2xMBP-BRCA21-250 to the endogenous PLK1 in
U2OS cells was completely abolished in the presence of the CDK
inhibitor (RO3306) (Supplementary Fig. 4c, lane 4 compared to
lane 2).

Having confirmed that T207 was a docking site for PLK1 in
cells, we next examined the impact of BRCA2 variants on mitosis.
Therefore, we monitored the time taken for individual cells from

mitotic entry (defined as nuclear envelope break down) to mitotic
exit using live cell imaging. Cells expressing the endogenous
BRCA2 (hereafter BRCA2+/+) and the BRCA2 WT cells showed
similar kinetics, they completed mitosis, on average, in 47 and 44
min, respectively (Fig. 4d, e) and the majority of the cells (80% for
BRCA2+/+ and 82% for BRCA2 WT) completed mitosis within
60 min (Fig. 4f). In contrast, cells expressing variants S206C and
T207A augmented the time spent in mitosis (average time of 56
and 66 min, respectively, Fig. 4e). This trend was also observed in
the frequency of cells dividing within 60 min (~49–51%),
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compared to 82% in BRCA2 WT cells (Fig. 4f). Representative
videos of the still images shown in Fig. 4d are included in
Supplementary movies 1–3.

Taken together, the phosphorylation of T207 takes place in
cells in mitosis. Cells altering this phosphorylation (bearing
S206C and T207A variants) display a significant delay in mitotic
progression compared to BRCA2 WT cells.

Docking of PLK1 at T207-BRCA2 favors a complex with PP2A
and pBUBR1. BRCA2 forms a complex with BUBR14,5. BUBR1
facilitates kinetochore–microtubule attachments via its interac-
tion with the phosphatase PP2A. Phosphorylation of BUBR1 by
PLK1 at the KARD motif comprising the tension-sensitive sites
S676 and T680 promotes interaction with PP2A19. A defect in the
phosphorylation of BUBR1 weakens its interaction with PP2A
leading to mitotic delay20,30. The mitotic delay phenotype we
observed in BRCA2 mutated cell lines led us to ask whether
BRCA2 and PLK1 formed a tetrameric complex with pBUBR1
and PP2A. Using a GFP pull-down to capture GFP-MBP-BRCA2
from mitotic BRCA2 WT cells, we observed that PLK1, pT680-
BUBR1 and PP2A were pull-down together with GFP-MBP-
BRCA2, indicating the formation of a tetrameric complex
(Fig. 5a). As described for pBUBR118,19, PLK131 and PP2A21, we
found BRCA2 at the kinetochore in mitotic cells (Supplementary
Fig. 5a) as previously reported4 supporting the idea that this
complex takes place at the kinetochore.

Importantly, cells expressing the variants S206C or T207A
showed a strong reduction in the interaction of BRCA2 with
PLK1, PP2A, BUBR1 and pT680-BUBR1 in the context of the
tetrameric complex (Fig. 5a, b). Moreover, the overall levels of
BUBR1 and pBUBR1 were also reduced in cells bearing S206C
and T207A variants compared to the WT cells, as detected by
specific antibodies against BUBR1, pT680-BUBR1 (Fig. 5e–i)
and pS676-BUBR1 (Supplementary Fig. 5d), and this was also
the case in BRCA2 deficient cells (DLD1 BRCA2−/− cells) or
U2OS cells depleted of BRCA2 by siRNA (Fig. 5f, g).
Furthermore, we observed an overall reduction in the levels
of pBUBR1 at the kinetochore (Fig. 5h, i) in cells expressing
T207A compared to WT cells. Consistently, when we
immunoprecipitated BUBR1 from mitotic cells and detected
the levels of co-immunoprecipitated PP2A (PP2AC antibody),
we observed that, although PP2A was readily copurified with
BUBR1 in the BRCA2 WT cells, expressing BRCA2 variant
T207A reduced the levels of PP2A by ~30% (Fig. 5c, d)
suggesting that BRCA2 facilitates the formation of a complex
between BUBR1-and PP2A.

Impaired phosphorylation of T207 leads to chromosome mis-
alignment. The association of PLK1-phosphorylated BUBR1 with
PP2A is required for the formation of stable kinetochore–
microtubule attachments18,19, a defect in this interaction resulting
in chromosome misalignment. Therefore, we next examined
whether cells expressing the BRCA2 variants S206C and T207A
altered chromosome alignment. Following thymidine synchro-
nization, the cells were treated with the Eg5 inhibitor Monastrol
(100 μM) for 14 h followed by Monastrol washout and release for
1 h in normal media supplemented with the proteasome inhibitor
MG132 to avoid exit from mitosis18. Chromosome alignment was
then analyzed by immunofluorescence. Importantly, the analysis
of cells expressing S206C and T207A variants showed high fre-
quency of faulty chromosome congression compared to the
BRCA2 WT clone (47% in S206C and 38% in T207 versus 24% in
the BRCA2 WT clone), which was exacerbated in BRCA2−/−

cells (63%) (Fig. 6a, b), as detected by signals of the centromere
marker (CREST) outside the metaphase plate (Fig. 6b). Next, to
find out if this defect in alignment was due to impaired stability of
kinetochore–microtubule interactions as previously reported6,18,
we examined the presence of cold stable microtubules in cells
bearing T207A mutation compared to BRCA2 WT cells. Fol-
lowing the same synchronization procedure as before (Fig. 6a),
the cells were kept on ice for 15 min before fixation. Under these
conditions, BRCA2 WT metaphase cells exhibited relatively intact
bipolar spindles with most CREST-stained kinetochores attached
to the microtubules (α-tubulin) (Fig. 6c). In stark contrast, almost
all the kinetochore–microtubules attachments were lost in T207A
mutated cells upon cold treatment (Fig. 6c) as measured by the
relative intensity of α-tubulin in these cells with respect to BRCA2
WT cells (~6-fold reduction of the median) (Fig. 6d).

To better understand the mechanism behind the phenotype
observed in our clones, we overexpressed a phosphomimic
version of BUBR1 RFP-BUBR1-3D (S670D, S676D, T680D) in
T207A mutated cells to test whether this form of BUBR1 could
restore the misalignment phenotype as previously shown for
BUBR1 depleted cells19. Surprisingly, T207A bearing cells
overexpressing RFP-BUBR1-3D exhibited a similar misalignment
phenotype (~38% of cells with misalignment) compared to the
non-transfected cells (33%) (Fig. 7a, b). Moreover, BUBR1-3D,
previously shown to be sufficient to restore PP2A binding in
BUBR1 deficient cells19, could not rescue the interaction of
BUBR1 with PP2A in cells bearing BRCA2 S206C variant
(Fig. 7c). This effect was not due to an increased localization of
PLK1 at the kinetochore in the mutated cells, as the levels of
PLK1 at the kinetochores remained unchanged (Supplementary

Fig. 4 Cells bearing BRCA2 variants S206C and T207A prolong mitosis. a Protein levels of BRCA2 and pT207-BRCA2 in cells bearing BRCA2 WT or the
T207A variant from whole cell lysates of nocodazole-arrested (100 ng/µl for 14 h) or asynchronous cells. 4–15% SDS-PAGE followed by WB using anti-
BRCA2. The same blot was stripped and re-probed with anti-pT207-BRCA2 antibody. Lane 3 protein extracts were pre-treated with phosphatase (FastAP)
for 1 h before loading onto the gel. Asterisk indicates a non-specific band. (b) GFP-trap pull-down of EGFPMBP-BRCA2 from cells bearing BRCA2 WT,
S206C or T207A. 4–15% SDS-PAGE followed by WB using anti-BRCA2 and -PLK1 antibodies. Asynchronous DLD1 cells with endogenous BRCA2
(BRCA2+/+) were used as control for the pull-down and StainFree images of the gels before transfer as loading control (cropped image is shown).
c Quantification of co-immunoprecipitated PLK1 with EGFP-MBP-BRCA2 in (b) relative to the PLK1 protein levels in the input and the amount of pull-down
EGFP-MBP-BRCA2 ((PLK1IP /PLK1input)/EGFP-MBP-BRCA2IP) Results are presented as the fold change compared to the BRCA2 WT clone. The data
represent the mean ± SD of three independent experiments. One-way ANOVA test with Dunnett’s multiple comparisons test was used to calculate
statistical significance of differences (p-values compared to WT). d Top: Synchronization scheme. Bottom: Representative still images of the time-lapse
videos. Numbers represent time (min) after nuclear envelope break down (NEBD). Scale bar represents 10 µm. e Quantification of the time the cells spent
in mitosis in (d). The red line indicates the median (95% CI). Each dot represents a single cell, n is the total number of cells from two to four independent
experiments (45–60 cells per experiment) (BRCA2+/+ (n= 2), WT C1 (n= 5), BRCA2−/− (n= 4), S206C A7 (n= 3), T207A B1 (n= 3)). Kruskal–Wallis
one-way analysis followed by Dunn’s multiple comparison test was used to calculate statistical significance of differences. f Frequency distribution of the
time spent in mitosis in (d), including cells that fail to divide (DEAD). The error bars represent mean ± SD of two to four independent experiments
(BRCA2+/+ (n= 2), WT C1 (n= 5), BRCA2−/− (n= 4), S206C A7 (n= 3), T207A B1 (n= 3)). Two-way ANOVA test with Tukey’s multiple comparisons
test was used to calculate statistical significance of differences. Source data are available as a Source Data file.
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Fig. 6a, b), nor to an increased interaction of PLK1 with BUBR1
in the mutated cells (Supplementary Fig. 6c, d).

Together, these results strongly suggest that docking of PLK1
onto BRCA2 T207 facilitates the formation of a complex
between phosphorylated BUBR1 and PP2A at the kinetochore
that is essential for the stability of microtubule–kinetochore
attachments with direct consequences in chromosome align-
ment. The fact that BUBR1-3D cannot rescue the phenotype

favors the hypothesis that BRCA2 is required for PP2A-BUBR1
interaction.

Reduced T207 phosphorylation lead to defects in chromosome
segregation. Unresolved chromosome misalignment as observed
in cells altering BRCA2 phosphorylation by PLK1 is expected to
drive chromosome missegregation. To find out if this was the case
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in cells expressing BRCA2 variants S206C and T207A, we
examined chromosome segregation by immunofluorescence in
cells synchronized by double-thymidine block and released for 15
h to enrich the cell population at anaphase/telophase stage
(Fig. 7d). BRCA2−/− cells displayed, as expected, an increased
proportion of chromosome bridges (39% vs 16% in cells
expressing BRCA2 WT), whereas the fraction of lagging chro-
mosomes was only mildly increased (7% vs 4% in BRCA2 WT).
The percentage of chromosome bridges in cells expressing S206C
and T207A was moderately increased (23% and 29%, respectively,
compared to 16% in BRCA2 WT). However, the biggest differ-
ence was observed in the percentage of lagging chromosomes
increasing between 3- and 5-fold in the cells bearing the variants
compared to the BRCA2 WT cells (Fig. 7d, e).

Erroneous chromosome segregation generates aneuploid cells
during cell division30. Given the strong chromosome segregation
defects observed in cells expressing S206C and T207A we next
analyzed the number of chromosomes in these cells. Total
chromosome counts carried out on metaphase spreads revealed
that 37.1% of BRCA2 WT cells exhibited aneuploidy with
chromosome losses or gains. In the case of S206C and T207A, this
number was elevated to 52.2% and 61.8% of the cells, respectively
(Fig. 8a). An example of the images analyzed can be found in
Fig. 8b. As the number of chromosomes was difficult to assess for
cells with high content of chromosome gains we arbitrarily
discarded cells that contained more than 65 chromosomes. Thus,
tetraploid cells were not included in this measurement. Therefore,
we determined the frequency of tetraploid cells by assessing the
incorporation of BrdU and measuring the frequency of S-phase
cells with >4 N DNA content (Fig. 8c). The frequency of
tetraploidy in cells bearing the variants was <1% of the total
population as in the BRCA2 WT cells (Fig. 8d), and the number
of BrdU positive cells was also equivalent (Supplementary Fig. 7).

Together, these results indicate that, in addition to the severe
chromosome misalignment phenotype, cells expressing S206C
and T207A display high frequency of chromosome missegrega-
tion, including a strong induction of lagging chromosomes and a
mild increase in chromosome bridges. As a consequence, the
incidence of aneuploidy, but not tetraploidy, is greatly exacer-
bated in these cells.

The variants reducing PLK1 phosphorylation of BRCA2 do not
alter HR. Since BRCA2 has a major role in DNA repair by HR,

the prolonged mitosis observed in the VUS-expressing stable cell
lines (Fig. 4) could result from checkpoint activation through
unrepaired DNA. Thus, we performed a clonogenic survival assay
in the stable clones after treatment with mitomycin C (MMC), an
inter-strand crosslinking agent to which BRCA2 deficient cells are
highly sensitive32–35. As expected, BRCA2 deficient cells
(BRCA2−/−) showed hypersensitivity to MMC treatment whereas
BRCA2 WT cells complemented this phenotype almost to the
same levels as the cells expressing the endogenous BRCA2
(BRCA2+/+). Cells bearing variants S206C and T207A also
complemented the hypersensitive phenotype of BRCA2−/− cells,
although there was a mild effect compared to the BRCA2 WT cells
(Fig. 9a). These results suggest that the delay in mitosis is not a
consequence of checkpoint activation via unrepaired DNA.

Cells expressing VUS S206C and T207A showed a growth defect
manifested in a reduced number of colonies (Supplementary
Fig. 8a). To exclude a possible bias arising from the different ability
to form colonies we used MTT assay. As shown in Fig. 9b, cells
expressing S206C and T207A showed similar relative viability upon
MMC treatment compared to BRCA2 WT cells or BRCA2+/+,
confirming our results. Similarly, the viability upon treatment with
the poly (ADP-ribose) polymerase inhibitor (PARPi) Olaparib was
not affected in cells bearing the variants (Fig. 9c).

To determine directly the levels of spontaneous DNA damage
in these cells and their ability to form DNA repair foci, we
measured the number of nuclear foci of the DSB marker γH2AX
and RAD51 protein, in cells unchallenged (−IR) or 2 h after
exposure to ionizing radiation (6 Gy, (+IR)). Our results show
that in the absence of DNA damage, the number of γH2AX foci
or RAD51 foci is comparable in all cell lines including in cells
depleted of BRCA2 (Fig. 9d and Supplementary Fig. 8b); this is
probably due to the high genome instability intrinsic to these
cancer cells. In contrast, the number of RAD51 foci upon
irradiation increased 5-fold in BRCA2+/+ and BRCA2 WT cells
and 3-fold in T207A bearing cells while it remained low in
BRCA2 depleted cells, as expected (Fig. 9e). We conclude that the
DNA repair foci are only mildly altered in cells expressing T207A.
Representative images of these experiments are shown in
Supplementary Fig. 8b.

A typical feature of replication stress is the appearance of
micronuclei in daughter cells which generally contain DNA
fragments. In contrast, micronuclei with centromeres suggest an
event arising from lagging chromosomes involving whole
chromosomes or chromatids. BRCA2 deficient cells displayed

Fig. 5 S206C and T207A impair the complex of BRCA2 with PLK1-BUBR1-PP2A and reduce the levels of pBUBR1 at the kinetochore. a Pull-down of
BRCA2 using GFP-trap beads from mitotic cell extracts of cells bearing BRCA2 WT cells or the variant S206C and T207A. Complexes containing BRCA2-
BUBR1/pBUBR1-PP2A-PLK1 were detected by 4–15% SDS-PAGE followed by WB using anti-BRCA2, -BUBR1, -pT680-BUBR1, -PLK1 and -PP2AC (PP2A
catalytic subunit) antibodies. Mitotic BRCA2+/+ cells were used as control pull-down. b Quantification of co-immunoprecipitated BUBR1, pBUBR1, PLK1 and
PP2A with EGFPMBP-BRCA2 in (a), relative to the input levels of each protein and the amount of pull-down EGFP-MBP-BRCA2. Results are presented as the
fold change compared to the BRCA2WT clone. The data represent the mean ± SD of three independent experiments. Two-way ANOVA test with Dunnett’s
multiple comparisons test was used to calculate statistical significance of differences. c IP of endogenous BUBR1 from mitotic cell extracts of BRCA2
WT cells or BRCA2-T207A using mouse anti-BUBR1 antibody. Mouse IgG was used as control. 4–15% SDS-PAGE followed by WB using rabbit anti-BUBR1
and anti-mouse PP2AC antibodies. d Quantification of co-IPed PP2A in (c), relative to the input levels and the amount of IPed BUBR1. Results are presented
as the fold change compared to the BRCA2 WT clone. The data represent the mean ± SD of three independent experiments. Unpaired two-tailed t-test was
used to calculate statistical significance of differences. e–g WB showing the protein levels of endogenous BUBR1 and pT680-BUBR1 in nocodazole treated
cells bearing BRCA2 WT or the variants, as indicated (e) BRCA2−/− or BRCA2+/+ (f). g WB showing the protein levels of endogenous BUBR1 and pT680-
BUBR1 in U2OS after depletion of endogenous BRCA2 by siRNA. e–g The mean BUBR1TOT and pBUBR1 signal relative to the stain free signal is shown for the
nocadozole treated samples below the blots, results are presented as percentage compared to BRCA2WT clone. The data represent the mean ± SD of three
(e) and two (f and g) independent experiments. The protein levels of PLK1 in (a, e–g) are shown as a G2/M marker. h Representative images of the
localization of pT680-BUBR1 in cells bearing BRCA2WT or the variant T207A as indicated. CREST is used as centromere marker and DNA is counterstained
with DAPI. Scale bar represents 1 µm. i Quantification of the co-localization of pT680-BUBR1 and CREST in (h). The data represent the intensity ratio
(pT680-BUBR1:CREST) relative to the mean ratio of pT680-BUBR1:CREST for the GFP-MBP-BRCA2WT calculated from two independent experiments (252
pairs of chromosomes analyzed). The red line in the plot indicates the median (95% CI) ratio, each dot represents a pair of chromosomes. Mann–Whitney
two-tailed analysis was used to calculate statistical significance of differences. Source data are available as a Source Data file.
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an increased number of both types of micronuclei compared to
BRCA2 WT cells. In contrast, cells bearing S206C or T207A
variant did not change the number of micronuclei (Supplemen-
tary Fig. 8d, e) excluding strong replication stress-induced DNA
damage in these cells.

Finally, to directly assess the HR proficiency, we performed a
cell-based HR assay by DSB-mediated gene targeting using a site-
specific transcription-activator like effector nuclease (TALEN) and a
promoter-less mCherry donor flanked by homology sequence to the
targeted locus36. DSB-meditated gene targeting results in mCherry
expression from the endogenous promoter (Fig. 9f) which can be
measured by flow cytometry (Supplementary Fig. 9). Using this
system, BRCA2+/+ and BRCA2 WT cells showed ~5% of mCherry
positive TALEN-transfected cells (mean of 5.6% for BRCA2+/+ and
4.9% for WT) whereas BRCA2−/− exhibited reduced mCherry
expressing cells (1.8%), as expected. Importantly, TALEN-
transfected cells expressing BRCA2 variants S206C and T207A
showed no significant difference with the BRCA2 WT.

In summary, these results indicate that the role of BRCA2 in
conjunction with PLK1 in mitosis is likely independent of the HR
function of BRCA2 as the variants S206C and T207A affecting
PLK1 phosphorylation of BRCA2 are only mildly sensitive to
DNA damage, do not show an increased number of micronuclei,
are able to recruit RAD51 to DNA damage sites (as shown for
T207A) and are efficient at DSB-mediated gene targeting.

Discussion
Our results demonstrate that residues S193 and T207 of BRCA2
can be efficiently phosphorylated by PLK1 (Fig. 2), thus extending
the consensus sequence for phosphorylation by this kinase:
position 205 is a serine and not a negatively charged residue, as
generally observed at PLK1 phosphorylation sites23. Moreover,
pT207 constitutes a bona fide docking site for PLK1PBD
(Fig. 3h–l) that is phosphorylated in mitotic cells (Fig. 4a).
Accordingly, BRCA2missense VUS reducing the phosphorylation
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status of T207 (T207A, S206C) result in a decrease in BRCA2-
PLK1 interaction (Fig. 3a–k, 4b). Cells expressing these two breast
cancer variants in a BRCA2 deficient background display defec-
tive chromosome congression (Fig. 6a, b) to the metaphase plate
due to a reduced microtubule–kinetochore stability (Fig. 6c, d),
causing a substantial delay in mitosis progression (Fig. 4d–f).

Proper kinetochore–microtubule attachments require the
interaction of BUBR1 with the phosphatase PP2A-B56 to balance

Aurora B kinase activity19,21. This interaction is mediated
through the phosphorylation of the KARD motif of BUBR1 by
PLK1. BRCA2 does not alter PLK1 interaction with BUBR1
(Supplementary Fig. 6c, d). However, we found that BRCA2
forms a tetrameric complex with PLK1-pBUBR1-PP2A, and that
this complex is strongly reduced in cells bearing BRCA2 variants
S206C and T207A (Fig. 5a, b). Furthermore, cells bearing BRCA2
variants S206C and T207A show reduced overall levels of BUBR1
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including pBUBR1(pT680) at the kinetochore (Fig. 5i). Importantly,
the fact that in the BRCA2 mutated cells the interaction of PP2A
with total BUBR1 is reduced (Fig. 5c, d) and that neither this
interaction (Fig. 7c) nor the chromosome alignment defect can be
rescued by BUBR1-3D overexpression (Fig. 7a, b) strongly suggests
that PP2A needs to be in complex with PLK1-bound BRCA2 to
bind BUBR1 and facilitate stable kinetochore–microtubules
attachment for proper chromosome alignment.

Cells bearing T207A and S206C variants display chromosome
segregation errors including lagging chromosomes and chromo-
some bridges (Fig. 7d, e). Importantly, these accumulated errors
ultimately led to a broad spectrum of chromosome gains and
losses (aneuploidy) compared to the wild type counterpart
(Fig. 8a), but not to tetraploid cells (Fig. 8c, d), suggesting that
cytokinesis per se, in which BRCA2 is also involved11–13, is not
affected.

a

c

1
2

3 4
5

1 2 3 4 5

b

CREST

MERGE

CREST DAPI MERGE

10 µm

d

DNA (7-AAD-A)

B
rd

U
-A

P
C

-A

DNA (7-AAD-A)

B
rd

U
-A

P
C

-A

DNA (7-AAD-A)

B
rd

U
-A

P
C

-A

BRCA2 WT

105 BrdU+
27,7

BrdU+
21,2

BrdU+
32,0

>4n
0,67

>4n
0,67

>4n
0,86

104

103

–103

0

105

104

103

–103

0

105

104

103

–103

0

50k0 100k 150k 200k 250k 50k0 100k 150k 200k 250k 50k0 100k 150k 200k 250k

S206C A7 T207A B1

BRCA2-
W

T

S20
6C

 A
7

T20
7A

 B
1

0

1

2

3

4

5

T
et

ra
pl

oi
d 

ce
lls

 (
%

)

ns

ns

<4
0 40 42 44 46 48 50

51
–6

5
<4

0 40 42 44 46 48 50

51
–6

5
<4

0 40 42 44 46 48 50

51
–6

5
0

10

20

30

40

50

60

70

Number of chromosomes

C
el

ls
 (

%
)

BRCA2 WT
46(37.1)

S206C A7
46(52.2)

T207A B1
46(61.8)

p = 0.0066

Mode
(% deviating)

p < 0.0001

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15689-9 ARTICLE

NATURE COMMUNICATIONS | ��������(2020)�11:1819� | https://doi.org/10.1038/s41467-020-15689-9 | www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Finally, the function of BRCA2-PLK1 interaction in mitosis
seems to be independent of the HR function of BRCA2 as cells
expressing these variants display mild sensitivity to DNA damage
(MMC) and PARP inhibitors (Fig. 9a–c), normal recruitment of
RAD51 to DNA damage sites (Fig. 9e, Supplementary Fig. 8b),
absence of micronuclei (Supplementary Fig. 8d, e), rescue the
chromosome bridges phenotype of BRCA2 deficient cells
(Fig. 7d) and their HR activity, as measured by a DSB-mediated
gene targeting assay (Fig. 9f, Supplementary Fig. 9). Nevertheless,
we cannot rule out that the mild phenotype observed in cells
bearing S206C and T207A may arise from a disrupted interaction
with an unknown DNA repair factor that would bind to the
region of BRCA2 where these variants localize.

Putting our results together we reveal an unexpected chro-
mosome stability control mechanism that depends on the phos-
phorylation of BRCA2 by PLK1 at T207. We show that BRCA2
pT207 is a docking platform for PLK1 that ensures the efficient
interaction of BUBR1 with PP2A phosphatase required for
chromosome alignment. We propose the following working
model (Fig. 9g): in cells expressing BRCA2 WT, PLK1 phos-
phorylates BRCA2 on T207 leading to the docking of PLK1 at this
site. This step promotes the formation of a complex between
BRCA2-PLK1-pBUBR1-PP2A in prometaphase at the kine-
tochore, leading to an enrichment of phosphorylated BUBR1 and
the phosphatase PP2A to balance Aurora B activity (Fig. 9g, panel
1). Why is BRCA2 required for PP2A interaction with pBUBR1
and, is this regulated by PLK1? It has been reported that BRCA2
fragment from aa 1001 to aa 1255 (BRCA21001-1255) comprising a
PP2A-B56 binding motif, binds to the B56 subunit of PP2A; in
addition, the phosphorylation of positions 2 and 8 of this motif
enhances the binding to B5637. In BRCA2, these positions are
occupied by serines that are targets for PLK1. Therefore, it is
likely that the recruitment of PLK1 by BRCA2 T207 would favor
phosphorylation of BRCA21001-1255 and binding of the complex
between BRCA2 and PLK1 to PP2A-B56. Non-exclusively,
BUBR1 has been reported to bind directly BRCA2 although there
are inconsistencies regarding the site of interaction4,5. Thus,
either the direct interaction of BRCA2 with PP2A or with BUBR1
or both could be favoring the formation of a complex between
PP2A and pBUBR1.

In cells expressing the variants that impair T207 phosphor-
ylation (S206C, T207A), PLK1 cannot be recruited to pT207-
BRCA2, impairing the formation of the complex with PLK1,
PP2A and BUBR1 (Fig. 9g, panel 1′), which in turn reduces the
amount of pBUBR1 and its binding to PP2A for stable
kinetochore–microtubule interactions. This leads to chromosome
misalignment defects that prolong mitosis (Fig. 9g, panel 2′); as a
consequence, these cells exhibit increased chromosome segrega-
tion errors (Fig. 9g, panel 3′) and aneuploidy.

Although the individual BRCA2 variants analyzed here are rare
(Supplementary table 1), the majority of pathogenic mutations
recorded to date lead to a truncated protein either not expressed

or mislocalized38 which would be predicted to affect this function.
Consistent with this idea, the BRCA2 deficient cells or cells
transiently depleted of BRCA2 used in this study exhibit low
levels of phosphorylated BUBR1 (Fig. 5f, g). Thus, the chromo-
some alignment function described here could be responsible, at
least in part, for the numerical chromosomal aberrations
observed in BRCA2-associated tumors39.

Finally, the lack of sensitivity to the PARP inhibitor Olaparib
observed in our cell lines (Fig. 9c) has important clinical impli-
cations as breast cancer patients carrying these variants are not
predicted to respond to PARP inhibitor treatment (unlike
BRCA2-mutated tumors that are HR-deficient).

Methods
Cell lines, cell culture, and synchronizations. The human cell lines HEK293T
and U2OS cells (kind gift from Dr. Mounira Amor-Gueret) were cultured in
DMEM (Eurobio Abcys, Courtaboeuf, France) media containing 25 mM sodium
bicarbonate and 2 mM L-Glutamine supplemented with 10% heat inactive FCS
(EuroBio Abcys). The BRCA2 deficient colorectal adenocarcinoma cell line DLD1
BRCA2−/− (Hucl, T. et al 2008) (HD 105-007) and the parental cell line DLD1
BRCA2+/+ (HD-PAR-008) was purchased from Horizon Discovery (Cambridge,
England). In DLD1 BRCA2−/− cell line, both alleles of BRCA2 contain a deletion
in exon 11 causing a premature stop codon after BRC5 and cytoplasmic localiza-
tion of a truncated form of the protein40. The cells were cultured in RPMI media
containing 25 mM sodium bicarbonate and 2 mM L-Glutamine (EuroBio Abcys)
supplemented with 10% heat inactive FCS (EuroBio Abcys). The DLD1 BRCA2−/−

cells were maintained in growth media containing 0.1 mg/ml hygromycin B
(Thermo Fisher Scientific). The stable cell lines of DLD1−/− BRCA2 deficient cells
expressing BRCA2 WT or variants of interest generated in this study were cultured
in growth media containing 0.1 mg/ml hygromycin B and 1mg/ml G418 (Sigma-
Aldrich). All cells were cultured at 37 °C with 5% CO2 in a humidified incubator
and all cell lines used in this study have been regularly tested negatively for
mycoplasma contamination.

For synchronization of cells in mitosis, nocodazole (100–300 ng/ml, Sigma-
Aldrich) was added to the growth media and the cells were cultured for 14 h before
harvesting. For synchronization by double thymidine block, the cells were treated
with thymidine (2.5 mM, Sigma-Aldrich) for 17 h, released for 8 h followed by a
second thymidine (2.5 mM) treatment for 15 h.

Plasmids. 2XMBP-, human 2XMBP-BRCA21–250 and EGFP-MBP-BRCA2 sub-
cloning in phCMV1 expression vector were generated as described41–48. In the case
of 2XMBP and 2XMBP-BRCA21–250, a tandem of 2 nuclear localization signals
from RAD51 sequence was added downstream the MBP-tag.

Point mutations (M192T, S193A, S196N, S206C, and T207A) were introduced
in the 2xMBP-BRCA21–250, EGFP-MBP-BRCA2 vector using QuikChange II and
QuikChange XL site-directed mutagenesis kit (Agilent Technologies), respectively
(see Supplementary Tables 3, 4 for primer sequences).

For expression of BRCA248–218 in bacteria, an optimized gene coding for human
His-tagged BRCA248–218 (WT and T207A) was synthetized by Genscript and
cloned in a pETM13 vector (a TEV site being present between the tag and the
BRCA2 fragment). For expression of BRCA2190–284 in bacteria, the human
BRCA2190–284 was amplified by PCR using full-length BRCA2 as template
(phCMV1-2xMBP-BRCA2, see Supplementary Table 5 for primer sequences). The
PCR product was purified and digested with BamH1 and SalI and cloned into in
the pGEX-6P-1 vector (GE Healthcare) to generate GST-BRCA2190–284. The point
mutation T207A was introduced in the same way in BRCA2190–284 as in 2xMBP-
BRCA21–250 and the EGFP-MBP-BRCA2. The introduction of the point mutation
was verified by sequencing (see Supplementary Tables 3, 4 for primer sequences).

The PLK1 cDNA (Addgene pTK24) was cloned into the pFast-Bac HT vector
using Gibson assembly (NEB) (see Supplementary Table 6 for primer sequences).

Fig. 8 Cells expressing BRCA2 variants S206C and T207A exhibit aneuploidy. a Distribution of the number of chromosomes observed in metaphase
spreads of stable clones expressing BRCA2 WT, S206C A7 or T207 B1, total number of cells counted; BRCA2 WT (n= 105), S206C A7 (n= 111) and
T207A B1 (n= 110) from two independent experiments. Modal number of chromosomes and percentage deviating from the mode are shown at the top.
Kruskal-Wallis one-way analysis followed by Dunn’s multiple comparison test was used to calculate statistical significance of differences. The cell passage
was between 5 and 9 (BRCA2 WT (p.6 and p.9), S206C A7 (p.5 and p.9) and T207A B1 (p.6 and p.9). b Representative image of two independent
experiments of metaphase spreads of the DLD1 BRCA2 deficient stable cells bearing the S206C BRCA2 variant stained with CREST and counterstained
with DAPI. In this example, the cell contains 45 chromosomes. c–d Analysis of S-phase tetraploid cells in cells bearing BRCA2 WT or the VUS S206C and
T207A measured by flow cytometry after 20min of BrdU incorporation. c Representative flow cytometry plots of cells stained with anti-BrdU-APC
antibodies and 7-AAD (DNA). d Frequency of S-phase tetraploid cells in stable clones expressing BRCA2 WT or the VUS S206C and T207A. The data
represents the mean ± SD of three independent experiments (cell passage: 6–10). One-way ANOVA test with Tukey’s multiple comparisons test was used
to calculate statistical significance of differences (the p-values show the difference compared to WT, ns: non-significant). Source data are available as a
Source Data file.
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Fig. 9 The DNA repair proficiency is not affected in cells bearing BRCA2 variants S206C and T207A. a Quantification of the surviving fraction of
BRCA2+/+ or stable clones expressing BRCA2 WT or the variants S206C or T207A assessed by clonogenic survival upon exposure to MMC at
concentrations: 0, 0.5, 1.0, and 2.5 µM. Data are represented as mean ± SD: BRCA2+/+ (red) (n= 3), BRCA2−/− (gray) (n= 6), WT C1 (black) (n= 6),
S206C A7 (blue) (n= 3), T207A B1 (green) (n= 4). b–c Quantification of the relative cell viability monitored by MTT assay upon treatment with
increasing doses of MMC (b) or the PARP inhibitor Olaparib (c), as indicated. The data represent the mean ± SD of four (b) and three (c) independent
experiments. a–c Two-way ANOVA test with Tukey’s multiple comparisons test was used to calculate statistical significance of differences (the p-values
show the significant differences compared to the BRCA2 WT clone). d–e Quantification of the number of γH2AX foci (d) or RAD51 foci per nucleus (e) 2 h
after 6 Gy of γ-irradiation (+IR) versus non-irradiated conditions (−IR), in DLD1 BRCA2+/+ cells depleted of BRCA2 (siBRCA2) or control cells (siCTRL) or
cells bearing BRCA2 WT or the variant T207A. n indicates the total number of cells counted from two independent experiments. Kruskal-Wallis one-way
analysis followed by Dunn’s multiple comparison test was used to calculate statistical significance of differences. The red line in the plot indicates the
mean ± SD, each dot represents a single focus. f Top: Scheme of the DSB-mediated gene targeting HR assay. Bottom: Frequency of mCherry positive cells
in cells transfected with the promoter-less donor plasmid (AAVS1-2A-mCherry) without (−TALEN) or with (+TALEN) nucleases. The error bars represent
mean ± SD of three to four independent experiments (BRCA2+/+ (n= 4), WT (n= 4), BRCA2−/− (n= 3), S206C A9 (n= 3), T207A B1 (n= 4)). Two-
way ANOVA test with Tukey’s multiple comparisons test. g Model for the role of PLK1 phosphorylation of BRCA2 T207A by PLK1 in mitosis (see text for
details). In panel 1 and 1′ the two-sided arrows represent a complex between the two proteins as indicated either favored by BRCA2 WT (green) or
impaired in the BRCA2 mutated form (red); in panels 2, 2′, 3 and 3′ blue blobs represent chromosomes, red circles represent the kinetochores, red
cylinders represent the centrioles and orange lanes represent the spindle microtubules. Source data are available as a Source Data file.
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To produce PLK1-KD, the point mutation K82R was introduced in the pFast-Bac
HT-PLK1 vector using QuikChange XL site-directed mutagenesis kit (see
Supplementary Table 7 for primer sequences).

The Polo-like binding domain (PBD) of PLK1 (amino acid 326 to amino acid
603) was amplified from the pTK24 plasmid (Addgene) and cloned into a pT7-
His6-SUMO expression vector using NEB Gibson assembly (Gibson Assembly
Master Mix, New England BioLabs, Cat. #E2611S) (see Supplementary Table 7 for
primer sequences). A plasmid containing a smaller PLK1 PBD fragment (amino
acid 365 to amino acid 603) with a N-terminal GST tag was a kind gift from Dr.
Anne Houdusse (Institute Curie, Paris).

To produce the phosphomimic BUBR1 mutant, we introduced the S670D,
S676D and T680D point mutations in the pcDNA3-3xFLAG-BUBR1-RFP
construct (kind gift from Dr. Geert JPL Kops) using QuikChange XL site-directed
mutagenesis kit (see Supplementary Table 8 for primer sequences).

For the DSB-gene targeting assay, we replaced the GFP tag in the promoter-less
AAVS1-2A-GFP-pA plasmid (kind gift from Dr. Carine Giovannangeli) with the
mCherry tag from the pET28 mCherry plasmid using NEB Gibson Assembly
(Gibson Assembly Master Mix, New England BioLabs, Cat. #E2611S). See
Supplementary Table 11 for primer sequences.

Expression and purification of 2xMBP-BRCA21-250. The 2xMBP-BRCA21-250
was purified as previously described49. Briefly, ten 150 mm plates of HEK293T
were transient transfected with the 2xMBP-BRCA21-250 using TurboFect (Thermo
Fisher Scientific). The cells were harvested 30 h post-transfection, lysed in lysis
buffer H (50 mM HEPES (pH 7.5), 250 mM NaCl, 1% NP-40, 5 mM EDTA, 1 mM
DTT, 1 mM PMSF and EDTA-free Protease Inhibitor Cocktail (Roche)) and
incubated with amylose resin (NEB) for 3 h at 4 °C. The 2xMBP-BRCA21-250 was
eluted with 10 mM maltose. The eluate was further purified with Bio-Rex 70
cation-exchange resin (Bio-Rad) by NaCl step elution. The size and purity of the
final fractions were analyzed by SDS-PAGE and western blotting using anti-MBP
antibody. The 2xMBP-BRCA21–250 fragments containing the BRCA2 variants
(M192T, S193A, S196N, S206C, and T207A) were purified following the same
protocol as for WT 2xMBP-BRCA21-250.

Expression and purification of BRCA248-218 and BRCA2190-284 for NMR.
Recombinant 15N-labeled (WT, T207A) and 15N/13C-labeled (WT) BRCA248-
218were produced by transforming Escherichia coli BL21 (DE3) Star cells with the
pETM13 vector containing human BRCA248–218 (WT and T207A). Recombinant
15N-labeled (WT, T207A) and 15N/13C-labeled (WT, T207A) BRCA2190–284 were
produced by transforming Escherichia coli BL21 (DE3) Star cells with the pGEX-
6P-1 vector containing human BRCA2190–284 (WT and T207). Cells were grown in
a M9 medium containing 0.5 g/l 15NH4Cl and 2 g/l 13C-glucose when 13C labeling
was needed. The bacterial culture was induced with 1 mM IPTG at an OD600 of 0.8,
and it was further incubated for 3 h at 37 °C. Harvested cells were resuspended in
buffer A (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 2 mM DTT, 1 mM EDTA) with
1 mM PMSF and 1X protease inhibitors cocktail (Roche) and disrupted by soni-
cation. For BRCA248-218, clarified cell lysate was loaded onto Ni-NTA beads
(Thermo Scientific) equilibrated with buffer A. After 1 h of incubation at 4 °C,
beads were washed with buffer A containing 20 mM imidazole and eluted with
buffer A containing 500 mM imidazole. The tag was cleaved by the TEV protease
during a 2 hrs dialysis at 4 °C against 50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1
mM EDTA 2mM DTT. The sample was then boiled 10 min at 95 °C, spun down 5
min at 16,000 xg to remove thermosensitive contaminants and injected on
Superdex 75 pg (GE Healthcare) equilibrated with 50 mM HEPES 1 mM EDTA pH
7.0. Sample concentration was calculated using its estimated molecular extinction
coefficient of 9970M−1 cm−1 at 280 nm. The protein sample was characterized for
folding using NMR HSQC spectra, before and after the heating at 95 °C.

For BRCA2190–284, clarified cell lysate was loaded onto Glutathione (GSH)
Sepharose beads (GE Healthcare) equilibrated with buffer A. After 2 h of
incubation at 4 °C, beads were washed with buffer A and eluted with buffer A
containing 20 mM reduced glutathione. The tag was cleaved by the precision
protease during an overnight dialysis at 4 °C against buffer B (50 mM HEPES pH
7.0, 1 mM EDTA) with 2 mM DTT and 150 mM NaCl. The cleaved GST-tag was
removed by heating the sample for 15 min at 95 °C and spun it down for 10 min at
16,000g. Sample concentration was calculated using its estimated molecular
extinction coefficient of 10,363 M−1 cm−1 at 280 nm. The protein sample was
characterized for folding using NMR HSQC spectra, before and after the heating at
95 °C. BRCA2190–284 was dialyzed overnight at 4 °C against buffer B with 2
mM DTT.

Expression and purification of PLK1 and PLK1-kinase dead (PLK1-KD). The
recombinant 6xHis-PLK1 and 6xHis-PLK1-K82R mutant (PLK1-KD) were pro-
duced in sf9 insect cells by infection for 48 h (28 °C, 110 rpm shaking) with the
recombinant baculovirus (PLK1-pFast-Bac HT vector). Infected cells were collected
by centrifugation (1300 rpm, 10 min, 4 °C), washed with 1xPBS, resuspended in
lysis buffer (1xPBS, 350 mM NaCl, 1% Triton X-100, 10% glycerol, EDTA-free
Protease Inhibitor Cocktail (Roche), 30 mM imidazole). After 1 h rotation at 4 °C
the lysate was centrifuged (25,000 rpm, 1 h, 4 °C) and the supernatant was col-
lected, filtered (0.4 µm) and loaded immediately onto a Ni-NTA column (Macherey

Nagel) equilibrated with Buffer A1 (1xPBS with 350 mM NaCl, 10% glycerol and
30 mM imidazole, the column was washed with buffer A2 (1xPBS with 10% gly-
cerol) and the protein was eluted with Buffer B1 (1x PBS with 10% glycerol and
250 mM imidazole). The eluted protein was diluted to 50 mM NaCl with Buffer A
before being loaded onto a cationic exchange Capto S column (GE Healthcare)
equilibrated with Buffer A1cex (50 mM HEPES (pH 7.4), 50 mM NaCl and 10%
glycerol), the column was washed with Buffer A1cex before elution with Buffer
B1cex (50 mM HEPES (pH 7.4), 2 M NaCl and 10% glycerol). The quality of the
purified protein was analyzed by SDS-PAGE and the proteins concentration was
determined using Bradford protocol with BSA as standard. The purest fractions
were pooled and dialyzed against storage buffer (50 mM Tris-HCl (pH7.5), 150
mM NaCl, 0.25 mM DTT, 0.1 mM EDTA, 0.1 mM EGTA, 0.1 mM PMSF and 25%
Glycerol) and stored in -80 °C. The purified proteins can be seen in Supplementary
Fig. 10.

Expression and purification of PLK1PBD. The pT7-6His-Sumo-PLK1 PBD (326-
603) plasmid was expressed in Tuner pLacI pRare cells (Protein Expression and
Purification Core Facility, Institut Curie), 2 L of TB medium with Kanamycin and
Chloramphenicol antibiotics were inoculated with cells from the pre-culture. The
cells were grown at 37 °C until an OD600 of ~0.85. The temperature was decreased
to 20 °C and the expression was induced by 1 mM IPTG overnight. The cells were
harvested by 15 min of centrifugation at 4690g, at 4 °C. The cell pellets were sus-
pended in 80 ml of 1 x PBS, pH 7.4, 150 mM NaCl, 10% glycerol, EDTA-free
Protease Inhibitor Cocktail (Roche), 5 mM β-mercapto-ethanol (β-ME). The sus-
pension was treated with benzonase nuclease and MgCl2 at 1 mM final con-
centration for 20 min at 4 °C. The suspension was lysed by disintegration at 2 kbar
(Cell distruptor T75, Cell D) followed by centrifugation at 43,000g, for 45 min, at 4
°C. The supernatant was loaded at 1 ml/min on a His-Trap FF-crude 5 mL column
(GE Healthcare) equilibrated with PBS buffer, pH 7.4, 150 mM NaCl, 10% glycerol,
5 mM β-ME (A) and 20 mM imidazole. The proteins were eluted in a linear gra-
dient from 0 to 100% with the same buffer (A) containing 200 mM imidazole, over
10 column volumes (CV). The purest fractions were pooled and dialyzed (8 kDa
cut-off) against 20 mM Tris-HCl buffer, pH 8.0, 100 mM NaCl, 0.5 mM EDTA, 5
mM β-ME, 10% glycerol at 4 °C. 6xHis-SUMO Protease (Protein Expression and
Purification Core Facility, Institut Curie) was added at 1/100 (w/w) and incubated
overnight at 4 °C to cleave the 6His-SUMO tag. The cleaved PBD-PLK1 was
purified using Ni-NTA agarose resin (Macherey Nagel), washed with the following
buffer: 20 mM Tris-HCl pH 8.0, 100 mM NaCl, 0.5 mM EDTA, 5 mM β-ME and
10% glycerol. The sample was incubated with the resin for 1 h at 4 °C and the flow-
through was collected. The sample was concentrated on an Amicon Ultra Cen-
trifugal Filter Unit (10 kDa cut-off) and injected at 0.5 ml/min on a Hi-Load 16/60
Superdex column (GE healthcare), equilibrated with 20 mM Tris-HCl buffer, pH
8.0, 100 mM NaCl, 0.5 mM EDTA, 5 mM β-ME. The protein concentration was
estimated by spectrophotometric measurement of absorbance at 280 nm. The
purified protein is shown in Supplementary Fig. 10.

The GST-tagged PLK1PBD (365–603) was expressed in E. coli BL21 (DE3) STAR
cells, induced with 0.5 mM IPTG at an OD600 of 0.6, and grown at 37 °C for 3 h.
The PBD (365-603) was purified by glutathione affinity chromatography. After
GST cleavage (using a 6His-TEV protease), the tag and the protease were retained
using GST- and NiNTA-agarose affinity chromatography, and the PBD collected in
the flow-through was further purified by gel filtration chromatography. The protein
was dialyzed against a buffer containing 50 mM Tris-HCl pH 8, NaCl 150 mM, and
5 mM β-ME.

In vitro PLK1 kinase assay. 0.5 µg purified 2xMBP-BRCA21-250 or 25 ng RAD51
protein, was incubated with recombinant active PLK1 (0, 50 or 100 ng) or PLK1-
kinase dead (100 ng) (purchased from Abcam or purified from sf9 insect cells as
detailed above, see Figure EV11B for the comparison of the kinase activity of both
PLK1 preparations) in kinase buffer (25 mM HEPES, pH 7.6, 25 mM ß-glycer-
ophosphate, 10 mM MgCl2, 2 mM EDTA, 2 mM EGTA, 1 mM DTT, 1 mM
Na3VO4, 10 µM ATP and 1 µCi [γ32P] ATP (Perkin Elmer)) in a 25 µl total
reaction volume. After 30 min incubation at 30 °C the reaction was stopped by
heating at 95 °C for 5 min in SDS-PAGE sample loading buffer. The samples were
resolved by 7.5% SDS-PAGE and [γ32P] ATP labeled bands were analyzed with
PhosphorImager (Amersham Bioscience) using the ImageQuantTM TL software
(GE Healthcare Life Science). To control for the amount of substrate in the kinase
reaction, before adding [γ32P] ATP, half of the reaction was loaded on a 7.5% stain
free SDS-PAGE gel (BioRad), the protein bands were visualized with ChemiDoc
XRS+ System (BioRad) and quantified by the Image LabTM 5.2.1 Software
(BioRad). The relative phosphorylation of 2xMBP-BRCA21-250 was quantified as
32P-labeled 2xMBP-BRCA21-250 (ImageQuantTM TL software) divided by the
intensity of the 2xMBP-BRCA21-250 band in the SDS-PAGE gel (Image LabTM 5.2.1
Software). In the control experiment where PLK1 inhibitor was used, 50 nM
BI2536 (Selleck Chemicals) was added to the kinase buffer.

In vitro protein binding assay. To assess the interaction between recombinant
PLK1 and BRCA21-250 after phosphorylation by PLK1, a kinase assay was per-
formed with 0.2 µg recombinant PLK1 or PLK1-kinase dead (PLK1-KD) and 0.5 µg
purified 2xMBP-BRCA21-250 (WT or the VUS T207) in kinase buffer supplemented

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15689-9

16 NATURE COMMUNICATIONS | ��������(2020)�11:1819� | https://doi.org/10.1038/s41467-020-15689-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


with 250 µM ATP (no [γ32P] ATP) in a total reaction volume of 20 µl, one control
reaction without ATP was performed with PLK1 and 2xMBP-BRCA21-250 WT.
After 30 min incubation at 30 °C, 15 µl amylose beads was added to the reaction
and incubated for 1 h at 4 °C. The beads were centrifuged at 2000g for 2 min at 4 °C
and the unbound fraction was collected before the beads were washed three time in
kinase buffer (no ATP) containing 0.5% NP-40 and 0.1% Triton X-100. Bound
proteins were eluted from the beads with 10 mM maltose, protein complexes were
separated by SDS-PAGE and analyzed by western blotting. To control for the
amount of proteins in the reaction, 2 µl of the kinase reaction (before adding the
amylose beads) was loaded as input. The protein bands were visualized with
ChemiDoc XRS+ System (BioRad) and quantified by the Image LabTM 5.2.1
Software (BioRad). The relative pull-down of PLK1 was quantified as the intensity
of the PLK1 band in the pull-down divided by the intensity of the PLK1 band in the
input (ImageQuantTM TL software).

To discard possible remaining phosphorylation of the 2xMBP-BRCA21-250
fragment coming from the purification of the protein from HEK293T cells, the
2xMBP-BRCA21-250 fragment (WT or the variant T207) was incubated with kinase
buffer (no added ATP) supplemented with FastAP Thermosensitive Alkaline
Phosphatase (Thermo Fisher Scientific Cat. #EF0654) for 1 h at 37 °C before
addition of recombinant PLK1 followed by 30 min incubation at 30 °C and 1 h
incubation with amylose beads as described above.

NMR spectroscopy. NMR experiments were carried out at 283 K on 600 and 700
MHz Bruker spectrometers equipped with a triple resonance cryoprobe. For NMR
signal assignments, standard 3D triple resonance NMR experiments were recorded
on 15N and 13C labeled samples of BRCA248-218 WT and BRCA2190-284 WT and
T207A. Analyses of these experiments provided backbone resonance assignment
for the non-phosphorylated and phosphorylated forms of these BRCA2 fragments.
To follow the PLK1 phosphorylation kinetics, the 15N labeled fragment
BRCA248–218 (50 µM) was mixed to a first PLK1 sample at 0.1 µM and the 15N
labeled fragment BRCA2190-284 (200 µM) was mixed to another PLK1 sample at
1.1 µM. The mixes were incubated at pH 7.8 and 298 K. For each time point, a
140 µl sample was heated during 10 min at 368 K to inactivate PLK1, D2O was
added, the pH was adjusted to 7.0 and a 1H-15N SOFAST-HSQC experiment 51

was recorded. The HSQC experiments were performed using 2048 ×256 time-
points, 64 scans and an interscan delay of 80 ms. Data processing and analysis were
carried out using the Topspin and CcpNmr Analysis 2.4.2 softwares.

Analysis of phosphorylation assays followed by NMR. In the HSQC spectra, the
intensity of peaks of the phosphorylated residues pS193 and pT207, as well as the
intensity of peaks corresponding to their non-phosphorylated form was retrieved at
each time point of the kinetics. In order to estimate the fraction of phosphorylation
for each residue at each point, the function Intensity(phospho) = f[Intensity(non-phospho)]
was drawn for each residue, the trendline was extrapolated to determine the intensity
corresponding to the 100% phosphorylated residue and then the percentage of
phosphorylation could be calculated at each time point by dividing peak intensities
corresponding to the phosphorylated residue by the calculated intensity at 100%
phosphorylation. Peaks corresponding to residues closed to a phosphorylated residue
(L209 and V211 for pT207; D191, S197, and S195 for pS193) and thus affected by this
phosphorylation were also treated using the same protocol and they were used to
obtain a final averaged curve of the evolution of the percentage of phosphorylation at
positions 193, 207 with time.

Isothermal titration calorimetry. ITC measurements were performed with the
PLK1 PBD protein (amino acid 326 to amino acid 603) and BRCA2 peptides in 50
mM Tris-HCl buffer, pH 8.0 containing 150 mM NaCl and 5 mM β-ME, using a
VP-ITC instrument (Malvern), at 293 K. We used automatic injections of 8 or 10
µl. The titration data were analyzed using the program Origin 7.0 (OriginLab) and
fitted to a one-site binding model. To evaluate the heat of dilution, control
experiments were done with peptide or protein solutions injected into the buffer.
The peptides used for the ITC experiments were synthesized by GeneCust (Ellange,
LU) or Genscript (Piscataway, NY). The peptides were acetylated and amidated at
the N-terminal and C-terminal ends, respectively (see Supplementary Table 9 for
peptide sequences). Only peptide BRCA2190-284 was expressed in bacteria and
purified as detailed above (see “Expression and purification of BRCA2190-284 for
NMR” section).

Crystallization and structure determination. The purified PBD protein (amino
acid 365 to amino acid 603) was concentrated to 6 mg/ml, and mixed to the
194WSSSLATPPTLSS{pT}VLI210 (pT207) BRCA2 peptide at a 3:1 molar ratio. The
crystals were obtained by hanging drop vapor diffusion method at room tem-
perature (293 K), by mixing 1 µl of complex with 1 µl of solution containing 10%
PEG 3350, 100 mM BisTris pH 6.5, and 5 mM DTT. Diffraction data were collected
at the Proxima 1 beamline (SOLEIL synchrotron, Gif-sur-Yvette, France). The
dataset was indexed and integrated using XDS through the autoPROC package52.
The software performs an anisotropic cut-off (Tickle et al., STARANISO (2018)
Global Phasing Ltd.) of merged intensity data, a Bayesian estimation of the
structure amplitudes, and applies an anisotropic correction to the data. The
structure was solved by molecular replacement using PHENIX (Phaser) software53.

Two molecules of PBD were consecutively positioned. Electron density for the
peptide was clearly visible in the position previously reported in other PBD
structures in complex with phosphorylated peptides (PDB 4O56 or 3P35).
Refinement was performed using BUSTER54 and PHENIX55. The model was built
with Coot56. A summary of crystallographic statistics is shown in Supplementary
Table 2. The figures were prepared using Pymol v.1.7.4.0 (Schrödinger, LLC).

Generation of stable DLD1 clones. For generation of DLD1 BRCA2−/− cell lines
stably expressing human BRCA2 variants of interest, we transfected one 100 mm
plate of DLD1 BRCA2−/− cells at 70% of confluence with 10 µg of a plasmid
containing human EGFP-MBP-tagged BRCA2 cDNA (corresponding to accession
number NM_000059) using TurboFect (Thermo Fisher Scientific), 48 h post-
transfection the cells were serial diluted and cultured in media containing 1 mg/ml
G418 (Sigma-Aldrich) for selection. Single cells were isolated and expanded. To
verify and select the clones, cells were resuspended in cold lysis buffer H (50 mM
HEPES (pH 7.5), 250 mM NaCl, 1% NP-40, 5 mM EDTA, 1 mM DTT, 1 mM
PMSF and EDTA-free Protease Inhibitor Cocktail (Roche)), incubated on ice for
30 min, sonicated and centrifuged at 10,000g for 15 min, 100 µg total protein lysate
was run on a 4–15% SDS-PAGE followed by immunoblotting using BRCA2 and
GFP antibodies to detect EGFP-MBP-BRCA2. Clones with similar expression levels
were selected for functional studies.

The presence of the point mutations in the genome of the clones was confirmed
by extraction of genomic DNA using Quick-DNATM Universal Kit (ZYMO
Research) followed by amplification of the N-terminal of BRCA2 (aa 1-267) by
PCR using a forward primers that binds to the end of MBP and a reverse primer
that binds to amino acid 267 in BRCA2, the presence of the point mutations was
confirmed by sequencing of the PCR product (see Supplementary Table 4 and 10
for primer sequences).

Cell extracts, immunoprecipitation and western blotting. For the interaction
between BRCA21-250 and endogenous PLK1, U2OS cells were transfected with
2xMBP-BRCA21-250 construct (WT, M192T, S193A, S196N, T200K, S206C, and
T207A) using TurboFect (Thermo Fisher Scientific), 30 h post-transfection cells
were synchronized by nocodazole (300 ng/ml), harvested and lysed in extraction
buffer A (20 mM HEPES (pH 7.5), 150 mM NaCl, 0.1% NP40, 2 mM EGTA,
1.5 mM MgCl2, 50 mM NaF, 10% glycerol, 1 mM Na3VO4, 20 mM ß-glyceropho-
sphate, 1 mM DTT and EDTA-free Protease Inhibitor Cocktail (Roche)). After
centrifugation at 18,000g for 15 min, the supernatant was incubated with amylose
resin (NEB) for 1.5 h at 4 °C. The beads were washed five times in extraction buffer
before elution with 10 mM maltose. Bound proteins were separated by SDS-PAGE
and analyzed by western blotting. Where PLK1 and CDK1 inhibitor was used, the
cells were synchronized in mitosis by nocodazole (14 h) followed by 2 h treatment
with PLK1 inhibitor (50–100 nM BI2536 (Selleck Chemicals) or 50 µM BTO-1
(Sigma-Aldrich)) or the CDK1 inhibitor (10 µM, Ro-3306, (Selleck Chemicals))
before being harvested. The cells were lysed in extraction buffer A, pre-cleared by
centrifugation and total protein lysate was separated by SDS-PAGE and analyzed
by western blotting. Where proteasome inhibitor was used during the mitotic
block, the cells were synchronized by nocodazole for 14 h before the MG-132
(50 µM, Sigma-Aldrich) was added to the media and the cells were cultured for
additional 2 h before harvesting.

For analysis of pBUBR1, BUBR1, pT207-BRCA2 and BRCA2 levels in mitosis,
nocodazole (100 ng/ml) treated DLD1 BRCA2−/− clones were lysed in extraction
buffer A, pre-cleared by centrifugation and total protein lysate was separated by
SDS-PAGE and analyzed by western blotting.

For analysis of the interaction between BRCA2-PLK1, BRCA2-BUBR1 and for
the protein complex BRCA2-pBUBR1/BUBR1-PP2A(C)-PLK1 in mitosis, DLD1
BRCA2−/− stable clones expressing EGFP-MBP-BRCA2 (WT or the VUS S206C
or T207A) were synchronized with nocodazole, harvested and lysed in extraction
buffer A. The lysate were pre-cleared by centrifugation before incubation with
GFP-TRAP beads (Chromotek) for 2 h at 4 °C to pull-down EGFP-MBP-BRCA2.
Around 3 mg total protein lysate was used per pull-down. The beads were washed 5
times in extraction buffer A and 2 times in extraction buffer A with 500 mM NaCl.
Bound proteins were eluted by boiling the samples for 4 min in 3x SDS-PAGE
sample loading buffer (SB), eluted proteins were separated by SDS-PAGE and
analyzed by western blotting using anti-mouse PLK1, anti-mouse BUBR1, anti-
rabbit pT680-BUBR1, anti-mouse PP2A-C and anti-mouse BRCA2 (OP95)
antibodies.

For immunoprecipitation of endogenous BUBR1, nocodazole treated DLD1
BRCA2−/− stable clones expressing BRCA2 WT or the variants (S206C or T207A)
were lysed in extraction buffer A. After centrifugation, 2000–3000 µg total protein
lysate was pre-cleared by incubation with 20 µl Protein G PLUS-Agarose (Santa
Cruz, sc-2002) for 30 min at 4 °C. The pre-cleared lysate was incubated with 1.25
µg BUBR1 mouse antibody or control mouse IgG overnight at 4 °C before addition
of 40 µl Protein G PLUS-Agarose, the lysate was incubated for additional 30 min
before immunoprecipitates were collected by centrifugation. After four washes in
extraction buffer A and two washes in extraction buffer A with 500 mM NaCl, the
beads were re-suspended in SB, boiled and the immunocomplexes were analyzed
by western blotting using anti-rabbit BUBR1, anti-mouse PLK1 and anti-mouse
PP2A-C antibodies.
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For the interaction between the phosphomimic BUBR1-3D mutant (S670D,
S676D and T680D) and endogenous PP2A, the DLD1 BRCA2−/− stable clones
expressing BRCA2 WT or the S206C variant was transient transfected with the
pcDNA3-3xFLAG-BUBR1-3D-RFP construct. The transfection media was
replaced 30 h post-transfection with fresh growth media containing 0.1 µg/ml
nocadozole and the cells were incubated additional 14 h before harvesting. The cells
were lysed and an immunoprecipitation was performed as described above for the
BUBR1 immunoprecipitation using rabbit anti-tRFP antibody (Cat.#AB233,
Evrogen) to pull-down the 3xFLAG-BUBR1-3D-RFP protein. Immunocomplexes
were analyzed by western blotting using anti-mouse BUBR1 and anti-mouse
PP2A-C antibodies.

For all Western blots, the protein bands were visualized with ChemiDoc XRS+
System (BioRad) and quantified by the Image LabTM 5.2.1 Software (BioRad). For
the relative expression levels (Fig. 5g-i, Supplementary Fig. 5d), the intensity of the
band of interest was divided by the intensity of the signal from the stain free gel.
The results are presented as percentage compared to BRCA2 WT clone. To
calculate the relative co-immunoprecipitation (co-IP)/co-pull-down of a protein of
interest, the intensity of the band in the co-IP was divided by the intensity of the
band in the input (ImageQuantTM TL software), the ratio co-IP:input of the
protein of interest was then divided by the intensity of the band of the
immunoprecipitated protein. StainFree images of the gels before transfer were used
as loading control for the input and cropped image is shown in the figures.

Antibodies used for western blotting. mouse anti-MBP (1:5000, R29, Cat.
#MA5-14122, Thermo Fisher Scientific), mouse anti-BRCA2 (1:1000, OP95, EMD
Millipore), rabbit anti-pT207-BRCA2 (raised for this study using the peptide
203TLSS-pT-VLIVRNEEAC as antigen, Genscript) (1:1000), anti-GFP (1:5000,
Protein Expression and Purification Core Facility, Institut Curie), mouse anti-PLK1
(1:5000, clone 35-206, Cat. #05-844, EMD Millipore), mouse anti-BUBR1 (1:1000,
Cat. #612502, BD Transduction Laboratories), rabbit anti-BUBR1 (1:2000, Cat.
#A300-386A, Bethyl Laboratories), mouse anti-PP2A C subunit (1:1000, clone 1D6,
Cat. #05-421, EMD Millipore), rabbit anti-pT680-BUBR1 (1:1000, EPR 19958, Cat.
#ab200061, Abcam), and rabbit anti-pS676-BUBR1 (1:1000, R193, kind gift from
Dr. Erich A. Nigg). Horseradish peroxidase (HRP) conjugated 2nd antibodies used:
mouse-IgGκ BP-HRP (IB: 1:10 000, Cat. #sc-516102, Santa Cruz), goat anti-rabbit
IgG-HRP (IB: 1:5000, Cat. #sc-2054, Santa Cruz), goat anti-mouse IgG-HRP (1:10
000, Cat.#115-035-003, Interchim), goat anti-rabbit IgG-HRP (1:10 000, Interchim,
Cat.#111-035-003).

siRNA transfection. For analysis of the pT680-BUBR1 levels in U2OS cells after
transient depletion of endogenous BRCA2 with RNAi, U2OS cells were transfected
with 200 nM siRNA targeting the 3′UTR of BRCA2 (siBRCA2 #1: SI00000966,
Qiagen) using jetPRIME (Polyplus Transfection, Cat.#114-07). As control, the cells
were transfected with the 200 nM of the si-control RNA (siRNA control ON-
TARGETplus Non-targeting Pool. D-001810-10-05, Thermo Scientific) The
transfection media was replaced 30 h post-transfection with fresh growth media
containing 0.1 µg/ml nocadozole and the cells were incubated additional 14 h
before harvesting. Total protein lysate was extracted as described above and 30–50
µg total protein lysate was resolved on a 4–15% SDS-PAGE and analyzed by
western blotting using anti-mouse BRCA2 (OP95), anti-mouse BUBR1, anti-rabbit
pT680-BUBR1 and anti-mouse PLK1 antibodies (see above for reference number).

For depletion of endogenous BRCA2 in DLD1 BRCA2+/+ cells for analysis of
γH2AX and RAD51 foci, the cells were transfected with a combination of the
BRCA2 5′UTR siRNA (SI00000966, Qiagen) and IAC204 (Dharmacon D-003462-
04) (100 nM each) or the ON-TARGET plus Non-targeting oligonucleotide D-
001810-04-20, Thermo Scientific 100 nM) and fixed and expose to IR 30 h post-
transfection (see Supplementary Fig. 8c for the Western blot showing BRCA2
depletion) for analysis of DNA repair foci (see Supplementary Fig. 8c for the
Western blot showing BRCA2 depletion).

Phosphatase treatment. DLD1 BRCA2−/− cells stably expressing EGFP-MBP-
BRCA2 WT were synchronized in mitosis by nocodazole (14 h), harvested, lysed in
extraction buffer A without phosphatase inhibitors (NaF, Na3VO4 and ß-glycer-
ophosphate), and pre-cleared by centrifugation. For detection of pT207-BRCA2
and BRCA2, 20 U FastAP Thermosensitive Alkaline Phosphatase (Thermo Fisher
Scientific Cat. #EF0654) was added to 200 µg of total protein lysate in FastAP
Buffer in a total reaction volume of 60 µl. After 1 h incubation at 37 °C the reaction
was stopped by heating at 95 °C for 5 min in SDS-PAGE sample loading buffer, 30
µl of the reaction was loaded on a 4–15% SDS-PAGE gel, the gel was transferred
onto nitrocellulose membrane and the levels of pT207-BRCA2 were analyzed by
western blotting using anti-pT207-BRCA2 antibody. For detection of pBUBR1 and
BUBR1, increased amount (0-20U) of FastAP Thermosensitive Alkaline Phos-
phatase was added to 15 µg of total protein lysate in FastAP Buffer in a total
reaction volume of 60 µl followed by same protocol as described for pT207-BRCA2,
the levels of pS676/pT680-BUBR1 were analyzed by western blotting using anti-
pS676/pT680-BUBR1 antibodies.

Cell survival and viability assays. For clonogenic survival assay, DLD1 BRCA2
−/− cells stably expressing full-length EGFP-MBP-BRCA2 and the variants (S206C

and T207A) were treated at 70% of confluence with Mitomycin C (Sigma-Aldrich)
at concentrations: 0, 0.5, 1.0, and 2.5 µM. After 1 h drug treatment the cells were
serial diluted in normal growth media containing penicillin/streptomycin (Euro-
bio) and seeded in triplicates into 6-well plates. The media was changed every third
day, after 10–12 days in culture the plates were stained with crystal violet, colonies
were counted and the surviving fraction was determined for each drug
concentration.

Cell viability was assessed with 3-[4,5-Dimethylthiazol-2-yl]-2,5-
diphenyltetrazolium bromide (MTT, #M5655, Sigma Aldrich) after treatment with
MMC and the PARP inhibitor Olaparib (AZD2281, Ku-0059436, #S1060, Selleck
Chemicals). For MMC, the cells were plated in triplicates in 96-well microplates
(3000–5000 cells/well) the day before treatment. The cells were washed once in PBS
before addition of serum-free media containing MMC at the concentrations: 0, 1.0
and 2.5 µM. After 1 h treatment the cells were washed once in PBS and incubated
for 72 h in normal growth media before the viability was measured by MTT assay.
For PARP inhibition, the cells were seeded 4 h before 4 days treatment in normal
growth media with Olaparib at concentrations: 0, 2.5 and 5.0 µM.

HR assays. We applied a DSB-mediated gene targeting strategy using site-specific
TALEN nucleases to quantify HR in cells. DLD1 BRCA2−/− cells stably expressing
full-length GFPMBP-BRCA2 and the variants (S206C and T207A) were transfected
using AMAXA technology (Lonza) nucleofector kit V (Cat. #VCA-1003) with 3 µg
of the promoter-less donor plasmid (AAVS1-2A-mCherry) with or without 1 µg of
each AAVS1-TALEN encoding plasmids (TALEN-AAVS1-5′ and TALEN-
AAVS1-3′, see Supplementary Table 12 for sequences, kind gift from Dr. Carine
Giovannangeli). For each transfection, 1 ×106 cells were transfected using program
L-024, the cells were seeded in 6-well plate in culture media without selection
antibiotics. The day after transfection the media was changed to media with
selection and 48 h post-transfection the cells were trypsinized and reseeded on a
10-cm culture dish and cultured for additional 5 days. The percentage of mCherry
positive cells was analyzed on a BD FACSAria III (BD Bioscience) using the
FACSDiva software and data were analyzed with the FlowJo 10.4.2 software (Tree
Star Inc.).

Analysis of tetraploid cells. For the analysis of S-phase tetraploid cells in the
DLD1 BRCA2–/− stable clones, the cells were incubated with 10 µM BrdU for 20
min before they were harvest, fixed and stained for cell cycle analysis using a APC-
BrdU flow kit (BD Bioscience, Cat. #552598) following the manufacturer’s
instructions.

Labeled cells were analyzed on a BD FACSCanto II (BD Bioscience) using the
FACSDiva software and data were analyzed with the FlowJo 10.4.2 software (Tree
Star Inc.).

Immunofluorescence. Kinetochore localization: For staining of pT680-BUBR1
and PLK1 at the kinetochore, DLD1 BRCA2−/− stable clones expressing EGFP-
MBP-BRCA2-WT or the variant T207A were seeded on coverslips and treated with
nocodazole (0.25 µg/ml) for 4 h, fixed with 4% PFA in PBS containing 0.5% Triton
X-100 for 20 min at room temperature. The coverslips were rinsed three times in
PBS-T and blocked for 30 min with 4% BSA in PBS before incubation with primary
antibodies (human anti-CREST (1:100, Cat. #15-234-0001, Antibodies Online)
together with either rabbit anti-pT680-BUBR1 (1:500, clone EPR 19958, Abcam,
Cat. #ab200061) or mouse anti-PLK1 (1:500, clone F-8, Santa Cruz Biotechnology,
Cat. #sc-17783), diluted in PBS-T with 5% BSA overnight at 4 °C. After three
washes of 5 min in PBS-T the coverslips were incubated for 2 h incubation at room
temperature with respective Alexa Fluor conjugated secondary antibody (for
pBUBR1; goat anti-human Alexa-488 (1:1000, Cat. #A11013, Life Technologies)
and donkey anti-rabbit Alexa-488 (1:1000, Cat. #A-21206, Thermo Fisher Scien-
tific), for PLK1; goat anti-human Alexa-633 (1:500, Cat. #A21091, Life Technol-
ogies) together with either donkey anti-rabbit Alexa-488 (1:1000, Cat. #A-21206,
Thermo Fisher Scientific) or donkey anti-mouse Alexa-488 (1:1000, Cat. #A-21202,
Thermo Fisher Scientific) diluted in PBS-T with 5% BSA. After two washes of 5
min in PBS-T and one rinse in PBS the coverslips were mounted on microscope
slides.

For staining of BRCA2 at the kinetochore, U2OS was transient transfected with
GFPMBP-BRCA2 construct using TurboFect (Thermo Fisher Scientific). The cells
were seeded on coverslips 24 h post-transfection and incubated for another 24 h
before nocadozole (0.25 µg/ml) was added. The cells were treated for 4 h followed
by fixation as described above for kinetochore localization of pBUBR1, pAuroraB
and PLK1. BRCA2 was detected by rabbit anti-BRCA2 (1:500, CA1033, EMD
Millipore) and Alexa-488 secondary antibody (donkey anti-rabbit Alexa-488
(1:1000, Cat. #A-21206, Thermo Fisher Scientific), CREST was detected by human
anti-CREST (1:100, Cat. #15-234-0001, Antibodies Online) and Alexa-633
secondary antibody (1:500, Cat. #A21091, Life Technologies)), diluted in PBS-T
with 5% BSA.

Phosphatase inhibitors (50 mM NaF, 1 mM Na3VO4, and 20 mM ß-
glycerophosphate) were added to all buffers.

Cold stable kinetochore–microtubules, chromosome alignment and segregation:
DLD1 BRCA2−/− cells and the stable clones expressing EGFP-MBP-BRCA2 WT
or the variants (S206C and T207A) were seeded on coverslips in 6-well tissue
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culture plates and synchronized in mitosis. For analysis of chromosome alignment,
the cells were synchronized by double thymidine (2.5 mM, Sigma-Aldrich) block,
released for 9 h followed by treatment with Monastrol (100 µM, Sigma-Aldrich) for
16 h. After incubation with Monastrol the cells were washed twice in PBS before 1 h
incubation in media containing the proteasome inhibitor MG-132 (10 µM, Sigma-
Aldrich). To detect cold-stable microtubules cells were synchronized using the
same protocol as for the chromosome alignment followed by 15 min of cold
treatment on ice before fixation. For chromosome segregation analysis, the cells
were synchronized by double thymidine block and released in normal growth
media for 11 h.

After synchronization, the cells were fixed with 100% methanol for 15 min at
-20 °C, rinsed once in PBS before permeabilization with PBS containing 0.1%
Triton-X for 15 min at room temperature. Nonspecific epitope binding was blocked
with 4% BSA (Sigma-Aldrich) in PBS. The coverslips were rinsed in PBS, incubated
with primary antibody (mouse anti-α-tubulin (1:5000, GT114, Cat. #GTX628802,
Euromedex) and human anti-CREST (1:100, Cat. #15-234-0001, Antibodies
Online)) diluted in PBS containing 0.1% Tween-20 (PBS-T) and 5% BSA for 1 h at
room temperature. After incubation, the coverslips were washed three times of 5
min in PBS-T before being incubated for 1 h at room temperature with Alexa Fluor
conjugated secondary antibody (donkey anti-mouse Alexa-594 (1:1000, Cat. #A-
21203, Thermo Fisher Scientific) and goat anti-human Alexa-488 (1:1000, Cat.
#A11013, Life Technologies)) diluted in PBS-T with 5% BSA. The coverslips were
washed two times of 5 min each in PBS-T followed by one rinse in PBS before
being mounted on microscope slides.

For the analysis of chromosome alignment in cells expressing the
phosphomimic BUBR1-3D mutant (S670D, S676D and T680D), the DLD1
BRCA2−/− stable clones expressing the T207A variant was transient transfected
with the pcDNA3-3xFLAG-BUBR1-3D-RFP construct using TurboFect. The day
after transfection the cells were seeded on coverslips in 6-well tissue culture plates,
synchronized in mitosis and prepared for immunofluorescence.

Aneuploidy: For aneuploidy analysis the cells were treated with nocodazole for
14 h (0.1 µg/ml) to enable chromosome spread; the cells were rinsed in PBS,
incubated for 10 min with KCl (50 mM) at room temperature before they were
spread on coverslips at 900 rpm for 5 min in a Cytospin 4 (Thermo Scientific). The
cells were fixed with 3% paraformaldehyde (PFA) in PBS for 20 min followed by 15
min permeabilization in PBS containing 0.1% Triton X-100. The coverslips were
rinsed three times in PBS, blocked with 5% BSA in PBS before incubation with
human anti-CREST primary antibody (1:100, Cat. #15-234-0001, Antibodies
Online) diluted in PBS overnight at 4 °C. After incubation the coverslips were
washed three times of 5 min in PBS before 1 h incubation at room temperature
with Alexa Fluor conjugated secondary antibody (goat anti-human Alexa-555
(1:1000, Cat. #A-21433, Thermo Fisher Scientific)) diluted in PBS. After three
washes of 5 min in PBS the coverslips were mounted on microscope slides.

γH2AX and RAD51 foci: For the detection of γH2AX and RAD51 foci, the cells
were seeded on coverslips the day before 6 Gy γ-irradiation (GSR D1, Cs-137
irradiator). Two hours after irradiation, the coverslips were washed twice in PBS
followed by one wash in CSK Buffer (10 mM PIPES, pH 6.8, 0.1 M NaCl, 0.3 M
sucrose, 3 mM MgCl2, EDTA-free Protease Inhibitor Cocktail (Roche)). The cells
were permeabilized for 5 min at room temperature in CSK buffer containing 0.5%
Triton X-100 (CSK-T) followed by one rinse in CSK buffer and one rinse in PBS
before fixation for 20 min at room temperature with 2% PFA in PBS. After one
rinse in PBS and one in PBS-T, the cells were blocked for 5 min at room
temperature with 5% BSA in PBS-T before incubation for 2 h at room temperature
with primary antibodies diluted in PBS-T with 5% BSA. After primary antibody
incubation, the coverslips were rinsed in PBS-T followed by two washes of 10 min
in PBS-T and blocked for 5 min at room temperature with 5% BSA in PBS-T before
incubation for 1 h at room temperature with respective Alexa Fluor conjugated
secondary antibody diluted in PBS-T with 5% BSA. After one rinse in PBS-T and
two washes of 10 min in PBS-T the coverslips were rinsed in PBS before being
mounted on microscope slides. γH2AX foci were detected by mouse anti-pSer139-
γH2AX (1:1000, clone JBW301, EMD-Millipore, Cat. #05-636) and secondary
antibody donkey anti-mouse Alexa-594 (1:1000, Cat. #A-21203, Thermo Fisher
Scientific). RAD51 foci were detected by rabbit anti-RAD51 (1:100, clone H-92,
Santa Cruz Biotechnology, Cat. #sc-8349), followed by secondary antibody donkey
anti-rabbit Alexa-488 (1:1000, Cat. #A-21206, Thermo Fisher Scientific).

For the analysis of γH2AX and RAD51 foci in DLD1 BRCA2+/+ cells depleted
of BRCA2 by siRNA, the DLD1 BRCA2+/+ cells were transient transfected with
siRNA targeting BRCA2 (see section siRNA transfection above). The day after
transfection the cells were seeded on coverslips in 6-well tissue culture plates and
radiated as described above.

Micronuclei: For analysis of micronuclei, DLD1 BRCA2−/− cells and the stable
clones expressing EGFP-MBP-BRCA2 WT or the variants (S206C and T207A)
were seeded on coverslips in 6-well tissue culture plates the day before fixation.
Centromeres were detected by human anti-CREST primary antibody (1:100, Cat.
#15-234-0001, Antibodies Online) and Alexa Fluor conjugated secondary antibody
(goat anti-human Alexa-555 (1:1000, Cat. #A-21433, Thermo Fisher Scientific)).

All coverslips were mounted on microscope slides with ProLong Diamond
Antifade Mountant with DAPI (Cat. #P36966, Thermo Fisher Scientific).

Image acquisition and analysis: For analysis of DNA repair foci, chromosome
alignment and segregation, images were acquired in an upright Leica DM6000B
wide-field microscope equipped with a Leica Plan Apo 63x NA 1.4 oil immersion

objective. The camera used is a Hamamatsu Flash 4.0 sCMOS controlled with the
MetaMorph2.1 software (Molecular Devices). For Fig. 6a and 7a, 7 to 20 Z-stacks
were taken at 0.2 μm intervals to generate a maximal intensity projection image
using ImageJ. For the analysis of γH2AX and RAD51 foci, 26 Z-stacks were taken
at 0.2 μm intervals to generate a maximal intensity projection using the Image J
software (1.51 s, NIH). For the BUBR1-3D-RFP chromosome alignment
experiment, RFP negative cells on the same coverslips were used as control.

The number of γH2AX foci per nucleus were counted by a customized macro
using a semi-automated procedure; the nucleus was defined by an auto-threshold
(Otsu, Image J) on DAPI, a mask was generated and applied onto the Z-projection
to count foci within the nucleus. For the definition of foci we applied the threshold
plugin IsoData (ImageJ software (1.51 s, NIH)) and for the quantification of foci we
used the tool Analyze Particles (ImageJ software (1.51 s, NIH)) setting a range of 5-
100 pixels2 to select only particles that correspond to the size of a focus. RAD51
foci were quantified using the plugin Find Maxima onto the Z-projection with a
prominence of 1000.

For analysis of cold stable microtubules images were acquired in an upright
Leica DM6000B wide-field microscope equipped with a Leica Plan Apo 100x NA
1.4 oil immersion objective. The camera used is a Hamamatsu Flash 4.0 sCMOS
controlled with the MetaMorph2.1 software (Molecular Devices), 20 Z-stacks were
taken on metaphase cells at 0.5 μm intervals to generate a maximal intensity
projection image using the ImageJ software (1.51 s, NIH). The quantification of the
intensity of α-tubulin in metaphase cells was performed in the area of the spindle
subtracting the background of α-tubulin signal from a different area in the same
cell. The data were then normalized to the mean intensity of the BRCA2 WT cells.

For analysis of aneuploidy, kinetochore localization and micronuclei images
were acquired in an inverted confocal Leica SP5 microscope with a plan Apo 63x
NA 1.4 oil immersion objective with the lasers 405, 488, 561 and 633 nm. For
Fig. 8b (aneuploidy), Z-stacks were taken at 0.13 μm intervals to generate a
maximal intensity projection image using the ImageJ software (1.51 s, NIH). For
the counting of chromosomes in the aneuploidy experiment, the quantification was
performed in zoomed areas counting the CREST signal in separated stacks to
ensure the counting of all chromosomes. We were able to count up to 65
chromosomes with certainty, thus >65 CREST signals were discarded and not
included in the analysis.

For the analysis of kinetochore localization, Z-stacks were taken at 0.21 μm
intervals to generate a sum slice projection image using ImageJ, six pairs of
chromosomes per cell were analyzed in 15-21 cells per experiment from two
individual experiment. The results from the quantifications (Fig. 5i, Supplementary
Fig. 6b) is represented as the ratio between the intensities for pBUBR1/PLK1 and
the CREST signal relative to the mean ratio observed for the BRCA2 WT
complemented cells. For the images in Fig. 5h (pBUBR1:CREST), Supplementary
Fig. 6a (PLK1:CREST) and Supplementary Fig. 8e (micronuclei), Z-stacks were
taken to generate a maximal intensity projection image using the ImageJ software
(1.51 s, NIH), except for DAPI where the image is from one Z-stack.

Time-lapse video microscopy of mitotic cells. For phase-contrast video-micro-
scopy DLD1 BRCA2−/− cells stably expressing full-length EGFP-MBP-BRCA2 and
the variants (S206C and T207A) were seeded in 35 mm Ibidi µ-Dishes (Ibidi, Cat.
#81156), synchronized by double thymidine block, released and cultured for 4 h in
normal growth media before the filming was started. The cells were imaged for 16 h
every 5 min, at oil-40X using an inverted video-microscope (Leica DMI6000)
equipped with electron multiplying charge coupled device (EMCCD) camera
controlled by the MetaMorph2.1 software (Molecular Devices). Images were
mounted using the Image J software (1.51 s, NIH).

Statistical analysis. In all graphs error bars represent the standard deviation (SD)
from at least three independent experiments unless otherwise stated, scatter dot
plots show median with 95% CI. Statistical significance of differences was calcu-
lated with unpaired two-tailed t-test, one/two-way ANOVA with Dunnett’s or
Tukey’s multiple comparisons test, Mann–Whitney two-tailed or Kruskal–Wallis
one-way analysis followed by Dunn’s multiple comparisons test as indicated in the
figure legends. All analyses were conducted using GraphPad Prism version Mac OS
X 8.3.0 (328).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request. The source data for Fig. 1a–d; Fig. 2; Fig. 3a–k;
Fig. 4a–f; Fig. 5a–i; Figs. 6a, 6d; Fig. 7a, c, d; Fig. 8a, d; Fig. 9a–f; Supplementary Fig. 1a, b;
Supplementary Figu. 2b, c; Supplementary Fig. 3a–d; Supplementary Fig. 4a, c;
Supplementary Fig. 5b–d; Supplementary Fig. 6b–d; Supplementary Fig. 7d;
Supplementary Fig. 8c–d; Supplementary Fig. 10a, b; are available as a Source Data file.

The PDB files used during structure analysis can be retrieved using the PDB codes
4O56 and 3P35 on the PDB website: https://www.rcsb.org. The final X-ray structure of
the PLK1 PBD bound to the phosphorylated BRCA2 peptide is also available on this
website, under the code 6GY2.
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Supplementary Figure 1. Related to Figure 1. PLK1 phosphorylation of the N-terminal 

region of BRCA2 and conservation of PLK1 phosphosites 

(a) PLK1 in vitro kinase assay with BRCA21-250. Top: The polypeptide 2x-MBP-BRCA21-250 

WT was incubated with increased concentrations (0, 50 and 100 ng) of recombinant PLK1 in 

the presence of g32P-ATP. The samples were resolved on 4-15% SDS-PAGE and the 32P-

labeled products were detected by autoradiography. Bottom: 4-15% SDS-PAGE showing the 

input of 2xMBP-BRCA21-250 WT (0.5 µg) used in the reaction. (b) Quantification of the 

relative phosphorylation in (a). Data are represented as mean ± SD from two independent 

experiments. (c) Alignment of the region 2-284 of human BRCA2 with the N-terminal 

regions of BRCA2 from 40 different species. Amino acids conserved in more than 30 % of 

the species are highlighted with coloured background. A dashed line box identifies the highly 

conserved cluster around S193 (amino acid 180 to amino acid 210). Arrows show the amino 

acids cited in this manuscript (including the PLK1 phosphosites).  Source data is available as 

a Source Data file. 
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Supplementary Figure 2. Related to Figure 2. PLK1 phosphorylation kinetics of 

BRCA2190-284 WT vs T207A 

(a) Superimposition of the 1H-15N HSQC spectra recorded on the 15N labelled fragments 

BRCA2190-284 WT (red) and T207A (green) after 5h of incubation with PLK1. The conditions 

are the same as in Figure 1. (b,c) Comparison of the phosphorylation kinetics of BRCA2190-284 

WT and T207A performed with two different PLK1 samples. The percentage of 

phosphorylation deduced from the intensities of the peaks corresponding to the non-

phosphorylated and phosphorylated residues is plotted as a function of time. WT S193 and 

T207 time points are represented by red circles and squares, respectively, while T207A S193 

timepoints are represented by green circles. Source data is available as a Source Data file. 
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Supplementary Figure 3. Related to Figure 3. Isothermal Titration Calorimetry (ITC) 

thermogram showing binding of PLK1PBD to the fragment BRCA2190-284 or a 10 aa 

BRCA2 peptide containing pS197 

Thermogram showing the binding affinity of PLK1PBD to the (a) phosphorylated or (b) non-

phosphorylated BRCA2190-284 fragment, purified from bacteria as explained in the Methods 

section and also used in the NMR experiments. (c) Thermogram showing the binding affinity 

of PLK1PBD to a 17 aa BRCA2 synthetic peptide comprising T207D 

(WSSSLATPPTLSSD207VLI). (d) Thermogram showing the binding affinity of PLK1PBD to a 

10 aa BRCA2 synthetic peptide comprising pS197. Source data is available as a Source Data 

file. 
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Supplementary Figure 4. Related to Figures 3-8. BRCA2 protein levels in DLD1 BRCA2-/- 

stable clones bearing BRCA2 WT and variants utilized in this study and effect of PLK1 

and CDK1 inhibitors on the interaction between BRCA2 and PLK1  

(a) BRCA2 protein levels in total cell extracts from DLD1 cells stably expressing EGFP-

MBP-BRCA2 WT (BRCA2 WT C1) or the variants S206C (clones A7 and A9) and T207A 

(clones B1 and E4) as detected by western blot using anti-BRCA2 (OP95) antibody. (b) The 

effect of PLK1 inhibitors on the interaction between BRCA2 WT and PLK1. BRCA2 WT 

cells were treated with nocodazole (100 ng/ml, 14h), then treated with the PLK1 inhibitor 

BTO (50 µM, 2h) before harvesting. BRCA2 was pull-down with GFP-trap beads, 

immunocomplexes were resolved on 4-15% SDS-PAGE followed by WB using anti-PLK1 

and -MBP antibodies. Unsynchronized BRCA2+/+ were used as control of pull-down and 

StainFree images of the gels before transfer were used as loading control (cropped image is 

shown). The amount of PLK1 co-IPed with BRCA2 relative to the input levels of PLK1 and 

the amount of pull-down BRCA2 is presented below the blot, relative to non-treated BRCA2 

WT. (c) The effect of CDK1 inhibitors on the interaction between 2xMBP-BRCA21-250 and 

PLK1. U2OS cells transiently transfected with the 2xMBP-BRCA21-250 WT, were arrested in 

mitosis with nocodazole (300 ng/ml, 14h) and then treated with CDK1 inhibitor (Ro-3306 

50nM, 2h) before amylse pull-down. Complexes were resolved on 4-15% SDS-PAGE 

followed by WB using anti-PLK1 and anti-MBP antibodies. The amount of PLK1 co-

immunoprecipitated with 2xMBP-BRCA21-250  relative to the input levels of PLK1 and the 

amount of pull-down 2xMBP-BRCA21-250  is presented below the blot as mean ± SD from 

three independent experiments. The data is presented relative to the non-treated BRCA2 WT. 

Imunoblots in (a) and (c) are representative of three independent experiments. Source data is 

available as a Source Data file. 
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Supplementary Figure 5. Related to Figure 5. BRCA2 at the kinetochores and effect of 

PLK1 inhibitors and phosphatase treatment on pT680-BUBR1.   

(a) Representative images of the localization of BRCA2 in nocodazole-arrested U2OS 

transient expressing GFP-MBP-BRCA2 WT. BRCA2 is detected by anti-BRCA2 rabbit 

antibody (CA1033), CREST is used as centromere marker and DNA is counterstained with 

DAPI. Scale bar represents 1 µm. The figures are representative of three independent 

experiments. (b) Protein levels of pT680-BUBR1 in BRCA2 WT stable clone after treatment 

with PLK1 inhibitors. After 14h culture with media containing nocodazole (100 ng/µl), PLK1 

inhibitors (Bi2536 (50 nM) or BTO (50 µM)) were added to the media and the cells were 

cultured for additional 2h before harvesting. The level of pT680-BUBR1 was analyzed in the 

total protein extract by western blot. (c) Phosphatase (Fast AP) treatment of total protein 

lysate extracted from DLD1 BRCA2 WT cells treated with nocodazole (100 ng/µl) for 14h. 

(d) Western blot showing the expression levels of endogenous BUBR1 and pS676-BUBR1 in 

nocodazole treated stable clones of DLD1 BRCA2 deficient cells (BRCA2-/-) expressing 

GFPMBP-BRCA2 WT (BRCA2 WT) or T207A variant. The levels of pS676-BUBR1 was 

analyzed in the total protein extract by western blot. The mean pBUBR1 signal relative to the 

stain free signal is shown for the nocadozole treated samples below the blots. Results are 

presented normalized to the protein levels for BRCA2 WT. The data represents the mean ± 

SD of two independent experiments. Imunoblots in (b-d) are representative of two (b, d) and 

three (c) independent experiments. Source data is available as a Source Data file.  
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Supplementary Figure 6. Related to Figure 5. Localization of BRCA2 and PLK1 at the 

kinetochores and PLK1-BUBR1 complex in cells bearing variant T207A compared to 

WT   

(a) Representative images of the localization of PLK1 in nocodazole-arrested DLD1 BRCA2-

/- cells stably expressing GFP-MBP-BRCA2 WT or the variant T207A as indicated. CREST is 

used as centromere marker and DNA is counterstained with DAPI. Scale bar represents 1 µm. 

(b) Quantification of the co-localization of PLK1 and CREST in (a). The data represents the 

intensity ratio (PLK1:CREST) relative to the mean ratio of PLK1:CREST for the GFP-MBP-

BRCA2 WT calculated from a total of 180 pairs of chromosomes analysed from two 

independent experiments (6 pairs of chromosomes/cell from 15 cells).  The red line in the plot 

indicates the median (95% CI) ratio, each dot represents a pair of chromosomes. For statistical 

comparison of the differences between the samples we applied a Mann-Whitney two-tailed 

analysis, the p-values show significant difference.  (c) Co-immunoprecipitation of 

endogenous PLK1 with endogenous BUBR1 from mitotic cell extracts of BRCA2 WT cells 

or cells expressing the variants S206C or T207A using mouse anti-BUBR1 antibody. Mouse 

IgG was used as control for the BUBR1 immunoprecipitation. The immuno-complexes were 

resolved on 4-15% SDS-PAGE followed by western blotting, the interactions were revealed 

by rabbit anti-BUBR1 and mouse anti-PLK1 antibodies. (d) Quantification of co-

immunoprecipitated PLK1 in (c), relative to the input levels and the amount of 

immunoprecipitated BUBR1. Results are presented as the fold change compared to the 

BRCA2 WT clone. The data represents the mean ± SD of three to four independent 

experiments (WT (n=4), S206C A9 (n=4) and T207A B1 (n=3)). Statistical significance of the 

difference was calculated with one-way ANOVA test with Dunnett’s multiple comparisons 

test, the p-values show the significant difference, ns: non-significant. Source data is available 

as a Source Data file. 
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Supplementary Figure 7. Related to Figure 7. BrdU incorporation measured by flow 

cytometry of DLD1 BRCA2-/- stable cell lines expressing BRCA2 WT or BRCA2 

variants S206C and T207A. 

(a-c) Representative flow cytometry plots for the analysis of S-phase tetraploid cells 

(quantified in Figure 7c, d) in the stable DLD1 BRCA2 deficient cells expressing BRCA2 

WT (a) or the VUS S206C (b) and T207A (c). Viable cells were gated from the Forward 

Scatter (FSC-A) versus Side Scatter (SSC-A) plots and displayed in a 7-AAD-W versus 7-

AAD-A plot to exclude doublets. The gated singlet population was displayed in a APC-A 

(BrdU) versus 7-AAD-A (DNA) plot. The S-phase tetraploid population was gated as BrdU+ 

cells with DNA content >4N. 20,000 singlet events were collected for each experiment. (d) 

Frequency of BrdU+ cells in the stable clones expressing BRCA2 WT or the VUS as 

indicated. The data represents the mean ± SD of three independent experiments. Statistical 

significance of the difference was calculated with one-way ANOVA test with Tukey’s 

multiple comparisons test (the p value show the difference compared to WT, ns: non-

significant). Source data is available as a Source Data file. 
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Supplementary Figure 8. Related to Figure 8. Plating efficiency of unchallenged DLD1 

BRCA2-/- stable clones expressing EGFP-MBP-BRCA2 WT or the variants. and 

representative images of DNA damage foci in these cells. Micronuclei in BRCA2-/- stable 

cell lines and BRCA2-/- expressing BRCA2 WT or BRCA2 variants S206C and T207A.   

(a) Representative plates showing the number of colonies in unchallenged conditions of the 

cells assessed for MMC-clonogenic survival assay quantified in Fig. 9a (500 cells seeded per 

6-well plate). (b) Representative immunofluorescence images of two independent 

experiments of nuclear gH2AX and RAD51 foci in DLD1 BRCA2+/+ cells depleted of 

BRCA2 (siBRCA2), BRCA2+/+control cells (siCTRL), DLD1 BRCA2 deficient cells 

(BRCA2-/-) stably expressing BRCA2 WT or the variant T207A, in non-treated (-IR) or two 

hours after exposure to 6 Gy of g-irradiation (+IR), as indicated in the images and as 

quantified in Fig. 9d, 9e. Scale bar represents 10 µm.  (c) Representative Western blot of two 

independent experiments showing the levels of endogenous BRCA2 in the siRNA transfected 

cells imaged in (b) and analysed in Fig. 9d, 9e,  at the time for radiation.  (d) Frequency of 

micronuclei with and without centromeres in DLD1 BRCA2 deficient cells (BRCA2-/-) and 

BRCA2-/- clones stably expressing BRCA2 WT or the variants S206C and T207A. n indicates 

the total number of cells counted for each clone from two independent experiments. Statistical 

significance of the difference was calculated with two-way ANOVA test with Tukey’s 

multiple comparisons test, the p-values show the significant difference, ns: non-significant. 

(e) Representative images of micronuclei with and without centromeres observed in cells 

quantified in (d), scale bar represents 10 µm. Source data is available as a Source Data file. 
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Supplementary Figure 9. Related to Figure 8f. Frequency of mCherry positive cells 

measured by flow cytometry of DLD1 BRCA2-/- stable cell lines expressing BRCA2 WT 

or BRCA2 variants S206C and T207A.  

(a-e) Representative flow cytometry plots for the analysis of mCherry positive cells in the HR 

assay (quantified in Fig. 9f) in DLD1 cells with endogenous BRCA2 (BRCA2+/+) (a), DLD1 

BRCA2 deficient cells (BRCA2-/-) (b), BRCA2 deficient cells expressing BRCA2 WT (c) or 

the VUS S206C (d) and T207A (e). Viable cells were gated from the Forward Scatter (FSC-

A) versus Side Scatter (SSC-A) plots and displayed in a SSC-H versus SSC-A plot to exclude 

doublets. The gated singlet population was displayed in a mCherry-A versus FSC-A plot. The 

mCherry positive population was gated from non-transfected cells. 10 000 singlet events were 

collected for each experiment. Source data is available as a Source Data file. 
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Supplementary Figure 10. SDS-PAGE of the PLK1, PLK1-KD and PLK1-PBD 

recombinant proteins utilized in this study and comparison of the kinase activity of each 

batch of PLK1 

(a) SDS-PAGE showing purified PLK1, PLK1-K82R mutant (PLK1-KD) and PLK1PBD. 

Human PLK1 was expressed and purified from sf9 insect cells using Ni-NTA column 

followed by a second purification step with a cationic exchange Capto S column. Purified 

PLK1 and PLK1-K82R protein (3 µg) were loaded on a 4-15% SDS-PAGE Stain-Free gel. 

For purification of PLK1PBD, 6His-Sumo-PLK1PBD was expressed and purified from bacteria 

using a His-TRAP column, the His-tag was cleaved with 6xHis-SUMO Protease and the 

cleaved PLK1PBD was further purified using Ni-NTA agarose resin. The purified protein was 

loaded on a 4-20% SDS-PAGE (1.4 µg) and detected by Coomassie staining. Mr; molecular 

weight markers. (b) In vitro kinase assay with the purified PLK1 (0.1 µg) from (a) or PLK1 

purchased from Abcam, 0.1 µg PLK1 was used in the kinase reaction with either RAD51 (25 

ng) or purified 2xMBP-BRCA21-250 WT (0.5 µg) as substrate in the presence of [g32P]-ATP. 

The samples were resolved by 7.5 % SDS-PAGE and 32P-labeled products were detected by 

autoradiography. Source data is available as a Source Data file. 
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Supplementary Table 1: Number of records in ClinVar and BRCAShare data bases of the 

variants identified in breast cancer patients altering the amino acids investigated in this work. 

The specific VUS utilized in this study are highlighted in bold. 

VUS ClinVar BRCAShare 

M192T 2 0 

S196I 4 0 

S196N 4 3 

S196T 1 0 

S206C 1 1 

S206Y 1 0 

T207A 3 0 

T207I 4 0 

 

Supplementary Table 2: Statistics table for the crystal structure of PBD_pT207, a complex 

between the Polo-Box Domain of human PLK1 (aa 365 to aa 603) and the 17aa peptide 

pT207 of BRCA2 (aa 194 to aa 210, threonine 207 being phosphorylated). 

 
 PBD_T207 phosphorylated 

(PDB 6GY2) 
Data collection  
Space group P1 
Cell dimensions :  
             a, b, c (Å) 50.000   56.040   61.030 
             α, β, γ (°) 80.79  79.23  65.05 
Molecules per a.u 
Resolution (Å) 

2 
59.70 – 3.106 (3.106 – 3.16) 

Rmerge  0.056 (0.346)  
Rmeas 0.076 (0.466) 
Rpim 0.051 (0.31) 
I/σ (I) 10.1 (2.3) 
CC1/2

 0.997 (0.821) 
Completeness (spherical, %) 93.7 (96.9) 
Redundancy 1.94 (1.977) 
B Wilson (Å²) 
Multiplicity 

76.9 (78.86) 
1.9 (2.0) 
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Refinement  
Resolution (Å) 22.57  - 3.11 (3.11 – 3.15) 
No. reflections 9911 
Rwork / Rfree 0.189/0.215 
No. Atoms   
     Protein 3788 
     Heterogen atoms 28 
     Water  22 
R.m.s. deviations   
     Bond lengths (Å) 0.007 
     Bond angles (°) 0.97 

*Values in parentheses are for highest-resolution shell.  
 

Supplementary Table 3: Primers used to introduce point mutations in EGFPMBP-BRCA2, 

2xMBP-BRCA21-250, GST-BRCA2190-284 constructs 

Mutation Oligo name Sequence (5’-3’) 

S193A Fw : oAC543 CCC ACC CTT AGT TCT GCT GTG CTC ATA GTC 

Rv : oAC544 GAC TAT GAG CAC AGC AGA ACT AAG GGT 

GGG 

M192T Fw : oAC283 GTGGATCCTGATACGTCTTGGTCAAGTTC 

Rv : oAC284 GA ACT TGA CCA AGA CGT ATC AGG ATC CAC 

S196N Fw : oAC026 CCTGATATGTCTTGGTCAAATTCTTTAGCTACA

CCACC 

Rv : oAC027 GGTGGTGTAGCTAAAGAATTTGACCAAGACAT

ATCAGG 

S206C Fw : oAC028 CCACCCACCCTTAGTTGTACTGTGCTCATAGTC

AG 

Rv : oAC029 CTGACTATGAGCACAGTACAACTAAGGGTGGG

TGG 

T207A Fw : oAC545 GGA TCC TGA TAT GGC TTG GTC AAG TTC TTT 

AGC 
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Rv : oAC546 GCT AAA GAA CTT GAC CAA GCC ATA TCA 

GGA TCC 

 

Supplementary Table 4: Sequencing primers  

Construct  Oligo name Binding 

site 

Sequence (5’-3’) 

GFPMBP-

BRCA2, 

GST-

BRCA2190-

284 

Rv : 

oAC131  

aa 273 

BRCA2 

TTAGTTCGACTTATCCAATGTGGTCTTT 

2xMBP-

BRCA21-250 

Fw : 

oAC149 

aa 1-6  

BRCA2 

TTATTTGCTAGCCCTATTGGATCCAAAGAG 

PLK1  Fw : 

oAC907 

aa 38 

PLK1 

AAAGAGATCCCGGAGGTCCTAGTG 

 

Supplementary Table 5: Primers used to subclone BRCA2190-284 into the pGEX-6P-1 vector 

Construct  Oligo name Sequence (5’-3’) 

BRCA2190-284  Fw: oAC130 TTAGGATCCATGTCTTGGTCAAGTTCT 

Rv: oAC131 TTAGTTCGACTTATCCAATGTGGTCTTT 

 

Supplementary Table 6: Primers used to subclone PLK1 cDNA into pFastBac HT 

Primer name Sequence (5’-3’) 

GA_pFBtev_R GCCCTGAAAATACAGGTTTTCGGTCGTTGGGAT 
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GA_pFB_UTR

_F 

TTGTCGAGAAGTACTAGAGGATCATAATCA 

GA_hPLK_F ATCCCAACGACCGAAAACCTGTATTTTCAGGGCATGAGT

GCTGCAGTGACTGCA 

GA_hPLK_R TGATTATGATCCTCTAGTACTTCTCGACAATTAGGAGGC

CTTGAGACGGTT 

 

Supplementary Table 7: Primers used to introduce K82R point mutation in pFastBAC-PLK1 

vector to produce PLK1-KD and to subclone PLK1PBD (aa 326-603) into pT7-His6-SUMO 

Product Oligo name Sequence (5’-3’) 

K82R-PLK1 Fw : 

oAC905 

GCG GGCAGGATTGTGCCTAAG 

Rv : 

oAC906 

CTTAGGCACAATCCTGCCCGC 

PLK1PBD GA_PLKP
DBwt_F 

 

ATTGAGGCTCACCGCGAACAGATTGGTGGCTC

GATTGCTCCCAGCAGCCT  

GA_PLKPDB
wt_R 

 

TTCCTTTCGGGCTTTGTTAGCAGCCGGTCATTA

GGAGGCCTTGAGACGGT 

 

Supplementary Table 8: Primers used to introduce S670D, S676D and T680D point 

mutations in pcDNA3-3xFlagBUBR1-RFP construct 

Name Sequence (5’-3’) 

oAC884 CAA GAA GCT GGA CCC AAT TAT TGA AGA CGA TCG 
TGA AGC CGA CCA CTC CTC 

oAC885 GAG GAG TGG TCG GCT TCA CGA TCG TCT TCA ATA 
ATT GGG TCC AGC TTC TTG 
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Supplementary Table 9: Synthetic peptide sequences for Isothermal Titration Calorimetry 

(ITC) and X-ray crystallography 

Peptide Sequence 

pS197 DMSWSS{pS}LAT 
 

T207  WSSSLATPPTLSSTVLI 
 

pT207 WSSSLATPPTLSS{pT}VLI 
 

T207A WSSSLATPPTLSSAVLI 
 

T207D WSSSLATPPTLSSDVLI 
 

CpT207 WSSSLATPPTLSC{pT}VLI 
 

 

Supplementary Table 10: Primers for amplifying BRCA2 (aa 1-267) from genomic DNA 

Primer name Sequence (5’-3’) 

Fw : oAC035 GGTCGTCAGACTGTCGATGAAGCC 
 

Rv : oAC056 CAAAGAGAAGCTGCAAGTCATGGATTTGAAAAAACATC

AGGG 

 

Supplementary Table 11: Oligos used for replacing GFP in AAVS1-2A-GFP to mCherry 

using Gibson Assembly strategy 

Construct  Oligo name Sequence (5’-3’) 

AAVS1-2A Fw: oAC537 TAAAGCGGCCGCGTCGAGTCTAGAGGG 

Rv: oAC538 CATCTCGAGCCTAGGGCCGGG 

AAVS1-2A-
mCherry  

Fw: oAC539 cccggccctaggctcgagatgGTGAGCAAGGGCGA
GGAGGATAAC 
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Rv: oAC540 ctctagactcgacgcggccgctttaCTTGTACAGCTCGT
CCATGCCGC 

 

Supplementary Table 12: TALEN sequences used in DSB-mediated gene targeting assay 

Name Sequence (5’-3’) 

TALEN AAVS 

5' 

TCCCCTCCACCCCACAGT  

TALEN AAVS 

3' 

AGGATTGGTGACAGAAAA 
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In addition to the experiments of the article, I tried to phosphorylate BRCA248-218 in cell 

extracts (Figure 44.A). Although I have tried a number of conditions (amount of cell extracts, 

temperature, time of incubation), I observed only one event of phosphorylation after 1.5 h of 

incubation. Using 2D NMR experiments, I assigned this peak to the phosphorylated version of 

S70. Because S70 corresponds to a PKA phosphosite, I incubated BRCA248-218 with purified 

commercial PKA in vitro (NE BioLabs). The first event of phosphorylation was S70 and 2 other 

phosphoevents appeared after long incubation times in presence of high quantities of kinase 

conditions (2500 units, i.e. 2500 pmol/min of phosphate transfer on a model peptide). PKA may 

thus phosphorylate BRCA2S70 in cell extracts. Unfortunately, we did not observe any 

phosphorylation corresponding to the Plk1 activity described above. 

  

 

Figure 44. Phosphorylation of BRCA248-218 in cell extracts reveals the phosphorylation of S70 

that may be executed by PKA. 

(A) Overlay of 1H-15N SOFAST-HMQC spectra of 15N BRCA248-218 at 130 uM before (black) 

and after 1.5 h incubation in mitotic cell extracts (green) in 50 mM HEPES, 150 mM NaCl, 2 

mM ATP, 20 mM MgCl2, 1X PI, 1X Phospho-STOP, 2 mM DTT, 10% D2O, at pH 7.0, 283 K 

(600 MHz). (B) Superimposition of 1H-15N SOFAST-HMQC spectra of 15N BRCA248-218 at 50 

uM before (black) and after 30 min (green) or 8 hrs (red) of incubation in presence of 2500 

units of PKA in NEB Buffer (NE BioLabs), supplemented with 200 uM ATP, 1X PI, 5% D2O, 

pH 7.5, 298 K (600 MHz). The peak of pS70 is highlighted by an arrow. 
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I also performed an NMR analysis of the interaction between phosphorylated 

BRCA2167-260 and Plk1PBD (Figure 45). Interestingly, the addition of Plk1PBD decreased the 1H-

15N peak intensities of almost every BRCA2167-260 residue. Residues around T207 show the 

largest intensity decrease upon addition of Plk1PBD. Here, NMR did not provide a precise 

delimitation of the binding site within this IDR. We can hypothesize that pBRCA2167-260 is 

anchored to Plk1PBD at the position pT207, and that its positively and negatively charged 

stretches interact in a very loose fashion with the electrostatic patches present on the surface of 

Plk1PBD. Such fuzzy interactions are a common theme in the IDP community. We did not go 

further in the biophysical characterization of this interaction though. 

 

    

 

 

Figure 45. Interaction between pBRCA2167-260 and Plk1PBD, as observed by NMR 

(A) Overlay of the 1H-15N SOFAST-HMQC spectra and (B) 1H 1D spectra of 25 uM 15N labeled 

pBRCA167-260 either free (black) or in the presence of 12.5 uM unlabeled Plk1PBD (green), in 

Dulbecco’s PBS (Sigma) pH 7.0, 283K (600 MHz). (C) Coomassie-stained 15% SDS-PAGE 

analysis of the NMR sample containing pBRCA2 and PBD. (D) Peak intensity ratio as a 

function of the residue number and averaged over 3 residues, calculated from the analysis of 

the NMR experiments displayed in (A). 

 

Dr Simona Miron and Dr. Virginie Ropars solved the structure of a complex between a 

peptide from BRCA2pT207 (W194 to I210) and Plk1PBD (PDB code: 6GY2). Combined with ITC 

experiments, it showed that the motif S206-pT207 is the main determinant of BRCA2pT207 

recognition by Plk1PBD.  
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While the BRCA2/Plk1 interaction is new, several other interactions contributing to the 

formation of the quaternary complex between BRCA2pT207, Plk1, BubR1 and PP2A have 

already been reported in the literature (Figure 46). 

 

 
Figure 46. Scheme of the BRCA2/Plk1/BubR1/PP2A quaternary complex, necessary for 

chromosome segregation. 

BRCA2 (in gray) has a C-terminal folded domain (BRCA2DBD; PDB:1IYJ) and a long N-

terminal IDR, which interacts with Plk1PBD (PDB:6GY2) upon BRCA2T207 phosphorylation by 

Plk1. No human Plk1 structure has yet been elucidated: my model (in green) is built using the 

Danio rerio Plk1 structure (4J7B). BRCA2 interacts with BubR1 through a controversial 

interface (Futamura et al., 2000, Choi et al., 2012). The interaction between BRCA2 and Plk1 

favors the phosphorylation of the BubR1 catalytic domain (BubR1KD, PDB: 6JKK, in yellow) 

at its two tension-sensitive sites (S676 and T680). BRCA2 and BubR1 phosphorylated by Plk1 

interact with the B56 subunit of the phosphatase PP2A (Hertz et al., 2016, PDB: 5SW9, 5K6S, 

5SWF, in red). 

 

2. Interaction between BRCA21093-1158 and PP2AB56 
 

To better understand the structure and regulation of this quaternary complex 

BRCA2pT207:Plk1:BubR1:PP2A, we initiated a study on the BRCA2/PP2A interaction. PP2A 

is a very common phosphatase accounting for >50% of total Ser/Thr phosphatase activities in 

many cell types (Virshup & Shenolikar 2009, Sangodkar et al., 2016). It regulates the 

chromosome segregation and more generally contributes to genome stability (Wurzenberger 

and Gerlich, 2011, Funabiki and Wynne, 2013). The PP2A phosphatase is an heterotrimer 

composed of a scaffolding subunit A and a catalytic unit C (Xu et al., 2006, Cho and Xu, 2007, 
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Xu et al., 2008), plus a variable subunit B. There are four known families of B subunits, B55, 

B56, PR72, and PR93, which differ in both their primary sequences and tertiary structures. The 

B subunit determinates the PP2A substrate specificity (Eichhorn et al., 2009). Here, we chose 

to focus on the B56 subunit, which has already been show to interact with BRCA2(aa1001-

1255) by cellular pull-downs (Hertz et al., 2016). B56 presents 2 conserved binding sites: the 

major one is responsible for target recognition through an interaction with the consensus motif 

L-X-X-I-X-E, with X for any amino acid (Hertz et al., 2016, Wang et al., 2016), whereas its 

secondary binding site modulates this interaction through electrostatic interactions (Wang et 

al., 2020).  

We decided to confirm the BRCA2/PP2A interaction and to elucidate if BRCA2 

phosphorylation by Plk1 regulates the BRCA2/PP2A interaction. In this project, I was involved 

in the NMR characterization of this other conserved BRCA2 region (Figure 10), in identifying 

BRCA2 residues phosphorylated by Plk1 and in optimizing the phosphorylation conditions for 

NMR monitoring. 

 

 Rania Ghouil optimized the expression and purification conditions of a BRCA21093-1158 

fragment, which contains the L-X-X-I-X-E motif at the position aa1114-1119. Then, I recorded 

3D heteronuclear NMR experiments on a 15N-13C BRCA21093-1158 sample, in order to assign the 

NMR resonances of this fragment (Figure 47.A). Analysis of its NMR chemical shifts 

experimentally confirmed the disorder propensity of this region, which shows two transient a-

helices at positions 1104-1108 and 1123-1128 (Figure 47.B). I also conducted T1, T2 and 1H-

15N-NOE NMR analysis under the supervision of Dr. Sophie Zinn-Justin, Dr. Philippe Cuniasse 

and Dr. François-Xavier Theillet (Figure 47.C.D.E). The low values of R1, R2 and NOEs 

confirmed the unfolded character of BRCA21093-1158. The T2 analysis may also reveal us-ms 

time scale motion around the residues 1009 and 1126 corresponding to the transient a-helices 

evoked above. Such an advanced interpretation would require to integrate the residue-specific 

water-amide proton exchange in the T2 fitting, which would necessitate the measurement of 

these exchange rates (Kim et al., 2013). 
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Figure 47. NMR analysis of BRCA21093-1158 

(A) Assignment of the 1H-15N SOFAST-HMQC spectrum of 15N-13C BRCA21093-1158 at 200 uM 

in 50 mM HEPES, 50 mM NaCl, 1 mM EDTA at pH7.0, 283K (600 MHz). (B)  Secondary 

structure propensity, deduced from the 1HN, 15NH, Ca and Cb chemical shifts of BRCA1093-1158, 

using: http://linuxnmr02.chem.rug.nl/ncSPC (C) R1, (D) R2 and (E) 1H-15N-NOEs measured 

on 15N-13C BRCA21093-1158 at 500 uM in 50 mM HEPES, 50 mM NaCl, 1 mM EDTA at pH7.0, 

283K (950 MHz Gif-sur-Yvette). R1 and R2 were monitored with 2 sets of experiments (green 

and red). 

 

 

Then, I tried to characterize the BRCA2/PP2AB56 interaction by NMR (Figure 48). The 

sample preparation was performed by Rania Ghouil. Adding PP2AB56 decreased all BRCA21093-

1158 peak intensities in 1H-15N 2D spectra, which is consistent with an interaction between the 

two proteins. However, this does not help to localize precisely localize the BRCA2 motif 

binding to PP2AB56, as also observed for the interaction between pBRCA2 and Plk1 (Chapter 

4). 
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Figure 48. Interaction between BRCA21093-1158 and PP2AB56 

(A) Overlay of the 1H-15N SOFAST-HMQC spectra and (B) 
1H 1D spectra of 15N-labeled 

BRCA1093-1158 at 40 uM either free (black) or bound (red) to PP2AB56 at 40 uM in PBS 1X pH 

7.0, 283K (600 MHz). (C) Peak intensity ratio as a function of the residue number, deduced 

from the analysis of the NMR experiments displayed in (A). 

 

 
Figure 49. Transfer of the BRCA21093-1158 assignment from 283 K to 298 K. (A) Overlay of the 
1H-15N SOFAST-HMQC spectra acquired at 283 K, 290 K and 298 K using 15N-13C 

BRCA21093-1158 at 200 uM in 50 mM HEPES, 50 mM NaCl, 1 mM EDTA at pH7.0 (600MHz). 

(B) The assigned1H-15N SOFAST-HMQC spectrum of BRCA21093-1158 at 298 K (600 MHz). 
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Then, I studied the phosphorylation of BRCA21093-1158 by Plk1 and took the opportunity to teach 

Rania Ghouil the protocols related to this approach. I transferred the assignment from 283 K to 

298 K (Figure 49), as described in Julien et al. (MiMB) and we tried to phosphorylate 

BRCA1093-1158 by Plk1, applying the conditions used for BRCA167-260 (Figure 50). We did not 

observe any phosphorylation of BRCA1093-1158 by Plk1 in the course of our NMR measurements 

(Figure 50.A).  

The aliquot of Plk1 that we used to carry out the reaction was produced by the insect 

cells facility of Institut Curie, the same that we used previously on the N-terminal fragments of 

BRCA2 presented in the chapter above. It is known that production of Plk1 in insect cells 

generates an unactivated version of Plk1 (i.e. non-phosphorylated at T210) (Kothe et al., 2007). 

We must insist on the fact that we used it successfully earlier on BRCA2167-270, BRCA248-218 

and BRCA2190-284, although unactivated Plk1 is not supposed to phosphorylate efficiently its 

substrate. Plk1 activation depends on two complementary events i) a major mechanism (activity 

multiplied by 100) is the phosphorylation of T210 in its activation loop, ii) a secondary 

mechanism (activity multiplied by 10) consists in the release of the inhibitory interaction 

between the PBD and KD domains (Xu et al., 2013). This secondary activation can be triggered 

by an interaction between the PBD and a peptide containing its consensus docking motif S-

pS/pT-Pro/X (Johnson et al., 2008, Zhu et al., 2016). Hence, we thought to add a Plk1 

“activator” peptide to the reaction mix. We used the BRCA2194-210(pT207) peptide (later named 

APB207) previously designed for the ITC measurements and X-ray crystallography assays. 

Rania Ghouil optimized the concentration of APB207 necessary for activating Plk1 (10 uM of 

APB207 for 280 nM of Plk1) and we monitored the phosphorylation of BRCA21093-1158 in these 

new conditions (Figure 50.B). With this strategy, BRCA21093-1158 was efficiently 

phosphorylated by Plk1.  

Incidentally, this result led us to consider that, in the case of BRCA2167-270, BRCA248-

218 and BRCA2190-284, we may have benefitted of a fortuitous (and providential) activation of 

Plk1 by the little amounts of pT207 produced in the very early moments of the reaction. Because 

the first molecules of BRCA2167-270, BRCA248-218 and BRCA2190-284 phosphorylated on pT207 

behave as Plk1 “activator” peptides, they may have ensured the success of the kinetics presented 

in the precedent chapters. Addition of APB207 to the BRCA2167-260 phosphorylation mix led to 

decrease the phosphorylation kinetics of all residues, except T207 (Figure 51). These results 

underline the role of BRCA2T207 either for Plk1 activation but also the importance of a Plk1 

docking site for the phosphorylation. However, in the case of BRCA21093-1158, no Plk1 binding 

site is available, even after BRCA21093-1158 phosphorylation (Figure 50.A). 
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Figure 50. Phosphorylation of BRCA1093-1158 at 50 uM by Plk1 at 280 nM in 50 mM HEPES, 

75 mM, NaCl 2 mM, ATP 10 mM, MgCl2, 2 mM DTT, 1X PI at pH7.0, 298K, (600 MHz). 

(A) without activator peptide (B) in presence of the activator peptide at 10 uM. 

 

 

Figure 51. Comparison of S193, T207, T219 and T226 phosphorylation kinetics between 

BRCA2167-260 WT +/- APB207. All these phosphorylation reactions were monitored using 1H-
15N SOFAST-HMQC spectra for a continuous readout at 298K. BRCA2 fragments at 50 uM 

were mixed to Plk1 at 150 nM +/- ABP207 at 10 uM in 50 mM HEPES at pH 7.0, 75 mM NaCl, 

1 mM EDTA, 2 mM DTT, 1X protease inhibitors (Roche), 2 mM ATP, 10 mM MgCl2, 50 uM 

DSS and 5 % D2O.  

 

To identify the numerous phosphoresidues of BRCA21093-1158, I performed 3D NMR 

experiments. My preliminary analysis led to the conclusion that Plk1 phosphorylates 

BRCA21093-1158 in its PP2A binding site (S1115). This phosphorylation by Plk1 may modulate 

the BRCA2/PP2A interaction. The next steps will include i) the full identification of Plk1 

phosphosites on BRCA21093-1158 and ii) the characterization of their impact on the 
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BRCA2/PP2A interaction. This will serve as a basis for testing the consequences of the 

identified VUS on BRCA21093-1158 phosphorylation by Plk1 and on the BRCA2/PP2A 

interaction. This work will be carried out in the context of another PhD project. 
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Chapter 5. Does phosphoBRCA2 recruit other partners? 

 
 

1. Impact of other VUS on Plk1 phosphorylation of BRCA2 
 

 I reported the analysis of the phosphorylation kinetics of BRCA2 WT and of the VUS 

T207A. In parallel, I also assayed the impact on BRCA2(pT207) phosphorylation of two other 

VUS: T200K and M192T (Figure 52). 

 
Figure 52. Impact of T200K and M192T VUS on BRCA2190-284 phosphorylation by Plk1. 

(A) Overlay of 1H-15N SOFAST-HMQC spectra of BRCA2WT, BRCA2T207A, BRCA2T200K and 

BRCA2M192T. Spectra were recorded using BRCA2 fragments at 200 uM in 50 mM HEPES, 1 

mM EDTA, 2 mM DTT at pH7.0, 283K. (B), (C) and (D) Phosphorylation quantification of 

S193 (round), T207 (square), T219 (diamond) and T226 (triangle) for BRCA2WT (black), 

BRCA2M192T (blue) and BRCA2T200K (pink) using the quenched reaction protocol. 

 

 Both of these VUS slow down the phosphorylation kinetics in the BRCA2190-284 

construct (Figure 52.B.C.). Interestingly, T200K is not in close proximity from a 

phosphorylation site but has an impact on all the 4 phosphosites. M192T slows down 

phosphorylation kinetics of T207, T219 and T226 but not S193. Because M192T is close to the 
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BRCA2190-284 N-terminal extremity, we decided to also test the impact of M192T on the 

phospho-centered BRCA2167-260 fragment (Figure 53). 

 

Figure 53. Comparison of S193, T207, T219 and T226 phosphorylation kinetics between 

BRCA2167-260 WT, M192T, S193A and T207A. All these phosphorylation reactions were 

monitored using 1H-15N SOFAST-HMQC spectra for a continuous readout at 298K. BRCA2 

fragments at 50 uM were mixed to Plk1 at 150 nM in 50 mM HEPES at pH 7.0, 75 mM NaCl, 

1 mM EDTA, 2 mM DTT, 1X protease inhibitors (Roche), 2 mM ATP, 10 mM MgCl2, 50 uM 

DSS and 5 % D2O. All experiments were performed in triplicate, the corresponding error bars 

are presented. The analysis of the kinetics provided the initial phosphorylation rates of every 

phosphosite, as described in Julien et al., 2020. 

 

The M192T VUS slows down the phosphorylation rates of all BRCA2167-260 

phosphosites by a factor of 3. In addition, the phosphorylation rates of S193 and T226 are 

similar in BRCA2M192T and BRCA2T207A. However, the phosphorylation preference is globally 

conserved compared to the WT (Figure 53). I also tested the mutant S193A, which is not a 

VUS, but was previously used as a “non-phosphorylable” control in cell biology experiments 

(Lin et al., 2003, Takaoka et al., 2014). Here again, all phosphosites’ kinetics are slowed down 

(Figure 53).  

In all these BRCA2 mutants, we have seen that one mutation impacts the overall Plk1 

phosphorylation of BRCA2. In the case of M192T, the mutation modifies the motif containing 

the phosphosite S193. The mutation M192T sufficiently modifies the environment of S193 to 

impair its preferred recognition by Plk1. The consensus phosphorylation target motif of Plk1 is 

known to be D/E/S-X-pS/T-Φ, with X for any amino acid in position i-1 and Φ for a 
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hydrophobic amino acid in position i+1. We observe here that Met may be preferred than Thr 

in position i-1. Concerning T200K, none of the phosphosites are close to the mutation point. 

The phosphorylation mechanism of BRCA2 by Plk1 may be more complex than what we 

thought initially.  

All these experiments have been carried out using unphosphorylated Plk1. The observed 

rates are in the range of those published in the literature: unphosphoPlk1 phosphorylated a 

substrate called TCTP with a kcat=1 min-1 (Km=170 uM), and a kcat of about 14 min-1 in 

presence of an activating peptide MQSpTPL, while Plk1(pT210) phosphorylated the same 

substrate with a kcat of 90 min-1 (Km=80 uM) and of 720 min-1 in presence of the activating 

peptide (Johnson et al., 2008). 

 

2. The VUS M192T impairs cytokinesis 

 

 Because the impact of M192T on Plk1 phosphorylation kinetics was similar to that of 

T207A, the team of Dr. Aura Carreira tested its impact in cells. They observed that BRCA2M192T 

shows no defect in chromosome segregation. However, in collaboration with Dr. Yoshio Miki, 

they observed a failure and a mislocalization of BRCA2(M192T) to the midbody as well as 

cytokinesis delays (data not shown). 

Previous studies already showed that S193A impairs BRCA2 localization to the 

midbody and cytokinesis. However, this is the first report of an impact of M192T. Until now, 

several partners of BRCA2 such as CEP55 (Morita et al., 2007), Alix (Mondal et al., 2012), 

NMH-IIC (Takaoka et al., 2014), HMG20b (Marmorstein et al., 2001), Filamin A (Yuan et al., 

2001, Mondal et al., 2012) were identified at the midbody and were shown to contribute to 

BRCA2 midbody functions. However, none of these interactions involves the BRCA248-284 

region. Thus, another partner of BRCA2 may recognize the BRCA2pS193 region and drive it to 

the midbody. 
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3. Isolating new pBRCA2167-260 partners using proteomics 
 

The intriguing consequences of M192T in cells cannot be explained by a molecular 

mechanism based on the known interactions of BRCA2. They may reveal the existence of 

BRCA2 partners binding in the vicinity of M192-S193, which may be phospho-dependent. 

Alternatively, because BRCA2 phosphorylation kinetics by Plk1 are slower in mutants M192T 

and S193A, these cellular phenotypes may result from impaired phosphodependent interactions 

at T207, T219 or T226. Following this rationale, we initiated a study for searching new 

BRCA2167-260 partners that would bind specifically to its Plk1-phosphorylated form. For this 

purpose, I performed pull-down experiments from cell extracts using BRCA2167-260 +/- Plk1-

phosphorylated as baits, whose results were analyzed by mass-spectrometry proteomics. 

 

To carry out this study, I used a construct based on the BRCA2167-260 fragment, which 

contains the extended conserved region of BRCA2 including the 4 Plk1 phosphosites (Figure 

18). The new construct was designed to integrate a N-terminal peptide GLNDIFEAQKIEWHE, 

named Avi-Tag, which can be efficiently biotinylated on its lysine by the enzyme BirA 

(Fairhead et al., 2015). Hence, the final construct of interest can be tagged with a biotin, which 

permits a convenient attachment to streptavidin-coated beads for pull-down assays. I performed 

the biotinylation reaction of AviTag-BRCA2167-260 following the protocol set up for Sox2 by 

Chafiaa Bouguechtouli and Dr. François-Xavier Theillet in the lab (unpublished). Then, I 

phosphorylated Biotin-Avi-Tag-BRCA2167-260 (phosphorylated or not phosphorylated as a 

control) was then attached to streptavidin-coated magnetic beads and incubated with cell 

extracts in order to identify new BRCA2 partners by MS analysis.  

For the pull-downs, I adapted the protocol of Asa Ehlen (Aura Carreira team) with 

advices from Dr. Theillet and from Florent Dingli, member of the Institut Curie proteomics 

platform, where the MS analysis was performed. BRCA2 was incubated with cells extracts 

freshly prepared by our collaborators in the team of Dr. Aura Carreira. After washes, the 

remaining proteins attached to the beads were analyzed by the Institut Curie proteomics 

platform, under the supervision of Dr. Damarys Loew. Two experimental procedures were 

utilized with different quantities of BRCA2 fragments on beads (Figure 55). 

 

In unsynchronized cell conditions, no partner enrichment was found for BRCA2 +/- 

phosphorylated by Plk1 (Figure 55.B). Upon incubation with G2/M cell extracts, the 

phosphoBRCA2167-260 sample is enriched in several partners compared to that of BRCA2167-260 
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(Figure 55.A.B), using 2 or 10 ng of BRCA2 fragments as bait. These results may indicate that 

this region of BRCA2 interacts with partners in a phospho-dependent manner only during 

mitosis. Within the identified partners, we found the kinase Plk1, which presents the combined 

highest enrichment with the strongest p-value. We already knew that Plk1 interacts with 

BRCA2167-260 in a phospho-dependent manner, which reassured us on the validity of our 

approach. Six others partners were also identified: the kinesin-like protein 2C (Kif2C), the 

alpha-actinin 1 (ACTN1), the kinesin-like protein 2A (Kif2A), the glyoxalase domain-

containing protein 4 (GLOD4), the histone-binding protein RBBP4 and the Chk2 kinase. These 

partners display a similar enrichment in the second phosphoBRCA2167-260 conditions (Figure 

5.B.C), while Chk2 is found only in the pBRCA2 sample of the first experiment (infinite 

enrichment). Kif2C and Kif2A are present in both results (2 and 10 ng of BRCA2) and Kif2C 

presents the second highest p-value after Plk1 and a medium protein abundancy in cell (Figure 

55.C, Wang et al., 2012). Thus, I initiated a study to characterize the BRCA2/Kif2C interaction. 

 

A.   B. 

C.  

Figure 55. 6 mitotic partners were identified by MS for phosphorylated BRCA2167-260. 

Volcano plots obtained from pull-down and proteomics MS analysis using 2 ng (A) or 10 ng 

(B) of phosphoBRCA2167-260 versus BRCA2167-260 as bait (on 50 uL (A) or 100 uL (B) of 

resuspended magnetic beads) after incubation with cell extracts from unsynchronized 

DLD1BRCA2-/- cells (left) or G2/M synchronized cells (right). Five replicates were analyzed for 

each condition by Institut Curie platform. Partners with an enrichment in one of the two 

conditions are written. Log2 fold consists in the row enrichment while the p-value is a 

combination of the number of different peptides identified for a same protein in the sample and 

the intensity of each peptide. (C) Protein abundancy, from Wang 2012 (https://pax-db.org/) 
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4. Study of the BRCA2/Kif2C interaction 
 

Kinesin Kif2C, also known as the Mitotic Centromere Associated Kinesin (MCAK), is 

a microtubule-associated protein that produces mechanical work upon ATP hydrolysis. It is 

involved in microtubule disassembly via its depolymerase activity (Hunter et al., 2003) and in 

chromosome positioning at the kinetochore (Domnitz et al., 2012). Interestingly, dysfunction 

of Kif2C has been linked to malignance progression of breast cancers (Li et al., 2020). 

However, no common pathways between Kif2C and BRCA2 were reported yet. Nevertheless, 

these 2 proteins are simultaneously localized at the kinetochore and at the Flemming body 

during mitosis, and very interestingly, this localization is also shared by Plk1 (Zhang et al., 

2011). The identification of a direct interaction between Kif2C and BRCA2 could thus reveal 

a new pathway at the kinetochore or midbody during mitosis. 

As IDRs commonly interact with globular domains, I first wanted to test the interaction 

between pBRCA2167-260 and the globular region of Kif2C. Only one structure of Kif2C is 

available, which describes its large globular motor domain Kif2C232-586 (Figure 56). Dr. Benoît 

Gigant kindly gave us a plasmid coding for Kif2C216-598, which I used to produce this construct. 

Then, I tested the interaction between pBRCA2167-260 and Kif2C216-598. 

 
Figure 56. Prediction of Kif2C disorder reveals one large globular domain corresponding to its 

motor domain (Kif2C232-586). Predictions were calculated using the SPOT-dis server 

(http://sparks-lab.org/server/SPOT-disorder/index.php) and the structure of the Kif2C motor 

domain (grey) is presented in interaction with a dimer of tubulin (monomer: red and blue) (PDB 

code: 5MIO). 
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The Kif2Cneck+motor domain (Kif2C216-598, containing mutations R330A and R379A; Tan et 

al., 2008) was produced in bacteria according to the protocol from the team of Dr B. Gigant 

(Wang et al., 2012). Its purification was implemented in the lab by Rania Ghouil and I used her 

protocol to produce large amounts of Kif2C216-598 for the interaction tests with pBRCA2167-260 

(Figure 57). First, I tested this interaction using Size Exclusion Chromatography (SEC). The 

two proteins have similar elution volumes and I did not observe any shift of their elution 

volumes when I injected their stoichiometric mix in the SEC column. However, this result is 

ambiguous: we can imagine an interaction mode where pBRCA2167-260 would enwrap Kif2C216-

598, which would generate a similar result. Hence, I decided to test this interaction using ITC. 

  

Figure 57. Gel filtration elution profile of pBRCA2167-260 and Kif2C216-598. BRCA2167-260 was 

previously phosphorylated by Plk1. 500 uL of pBRCA2167-260 (red), Kif2C216-598 (blue) and  

pBRCA2167-260 +Kif2C216-598  both at 50 uM were injected on a Superdex 75 10/300 column (GE 

Healthcare). Buffer: 50 mM HEPES, 150 mM NaCl, 5 mM MgCl2, 2 mM DTT, at pH7.0 and 

277 K. 

 

I performed the first ITC trials at 20°C, where we observed a null heat exchange signal. 

Then I decided to perform further ITC experiments at 10°C. We observed no heat exchange 

when titrating BRCA2167-260 unphosphorylated and Kif2C216-598 (Figure 58.A). Concerning 
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pBRCA2167-260, we observed an high heat exchange for the first test (Figure 58.B). However, 

further tests showed a weak heat exchange that was poorly reproducible (Figure 58.C.D.E.). 

Thinking about possible aggregation events that can occur at such high concentrations, I 

reversed the injection scheme: when Kif2C was loaded in the syringe and pBRCA2 in the cell, 

no more convincing results were obtained. My dilution controls showed signals of similar 

magnitudes than those obtained during the previous titration assays (Figure 58.F.G). The first 

observation (Figure 58.B) was thus probably due to a buffer variation in the syringe and cell 

which led to observe the dilution of buffer constituents.  

We can think of different hypotheses: the affinity between pBRCA2167-270 may be above 

50 uM, the heat exchange of the possible interaction may be very weak, the observed heat 

exchange may be the result of a pBRCA2:Kif2C aggregation at high concentration, the buffers 

in the syringe and the cell may have been slightly different, or Kif2C may interact only with a 

phospho-form of BRCA2167-260 present in low, sub-stoichiometric proportions. 

 

 

Figure 58. ITC experiments titrating BRCA2167-260 and Kif2C216-598 (A), BRCA2167-260 

phosphorylated by Plk1 and Kif2C216-598 (B to F) and Kif2C216-598 and buffer. All experiments 

were performed at 283K using injections of 12 uL in a 2,4 mL cell in a buffer containing 50 

mM HEPES, 150 mM NaCl, 5 mM MgCl2, 5 mM b-mercaptoethanol, pH 7.0. (H and I) Close-

up views of 1H-15N SOFAST-HMQC NMR spectra of 15N phosphoBRCA2167-260 are displayed 

and present the phosphoregion (15N BRCA2167-260 at 100 uM in ITC buffer, 283K, 600MHz). 

(H) corresponds to the BRCA2 sample used for experiments (C and D). and (I) corresponds to 

the BRCA2 sample used for experiments (E and F).  

 

We have seen previously in a number of SDS-PAGE analysis that it was difficult to 

produce homogeneous, 100% phosphorylated BRCA2167-260. The Plk1 kinase that we use is not 
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extremely active, and it starts to phosphorylate unspecific sites after a prolonged incubation 

(see Chapter 2). Hence, we hypothesized that Kif2C may interact with a phospho-form of 

BRCA2167-260 that represent only a minor fraction of the population. This would greatly hamper 

the former analysis relying on SEC and ITC observables. In such an eventuality, NMR 

spectroscopy would be a better approach to reveal the interaction-ready subpopulation of 

phospho-BRCA2167-260, whose resonances would vanish selectively. Hence, I also recorded 1H-

15N 2D NMR spectra of 15N-labeled pBRCA2167-260 in presence or absence of Kif2C216-298 

(Figure 59). Here again, I did not observe any peak disappearance or chemical shift 

perturbations that would reveal an interaction, as shown by the homogeneous bar graph 

representing the peak intensities along the amino acid sequence (Figure 59). 

 

 

 

Figure 59. Interaction between pBRCA2167-260 and Kif2C216-598 

(A) Overlay of 1H-15N SOFAST-HMQC and (B) 1H 1D spectra of 15N-labeled pBRCA167-260 at 

50 uM free and in presence of 100 uM Kif2C216-598 in 50 mM HEPES, 150 mM NaCl, 5 mM 

MgCl2, 2 mM DTT at pH 7.1, 283K (600 MHz). (C) Coomassie-stained 15% SDS-PAGE 

analysis of the NMR sample containing pBRCA2 alone (left) or in presence of Kif2C (right) 

(D) Peak intensity ratios as measured in the spectra shown in (A). 

 Interestingly, Kif2C was shown to interact directly with the kinase domain of Plk1 via 

its neck and motor domain by GST pull-down (Zhang et al., 2011). As shown earlier, Plk1 was 

clearly identified among the BRCA2 partners in the proteomics study. I hypothesized that the 

BRCA2/Kif2C interaction may be mediated by Plk1. Thus, I produced the kinase domain of 

Plk1 (Plk1-328) and Kif2C216-598 and tested their interaction by size-exclusion chromatography 

A. 
B. C. 

D. 
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(Figure 60). I did not observe any shift of the elution volume that would reveal an interaction 

between these two protein domains. 

 

Figure 60. Size exclusion chromatography profiles of Plk11-328 (pink), Kif2C216-598 (green) and 

Plk11-328+Kif2C216-598 (violet), using a Superdex 200 10/300 Increase GL column (GE 

Healthcare). Buffer: 50 mM HEPES, 150 mM NaCl, 5 mM MgCl2, 2 mM DTT at pH7.0, 277K. 

As the isolated motor domain of Kif2C does apparently not interact with pBRCA2167-

260, we thought to produce full-length constructs of Kif2C. Two plasmids were generously given 

by Dr. Claire Friel (WT Kif2C) and by Dr Julie Welburn (mutation S715E, which limits Kif2C 

dimerization) and used for recombinant productions in insect cells by Rania Ghouil. I purified 

the obtained proteins according to the protocols published by our colleagues (Helenius et al., 

2006, Talapatra et al., 2015). Our first purification tests provided sufficient amounts of proteins 

for interactions assays only in the case of Kif2C FL WT (Figure 61). It was however clear that 

the homogeneity of the sample was poor, because of low starting quantities from a weak over-

expression profile, and because of the poor stability of the constructs resulting in a number of 

degradation bands as revealed by the SDS-PAGE. 
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Figure 61. Purification of Kif2C FL WT and S715E 

(A and C) Coomassie-stained 15% SDS-PAGE gels of affinity-chromatography elution of 

Kif2C WT and S715E respectively. (B and D) Coomassie-stained 15% SDS-PAGE gels of 

size-exclusion chromatographies of Kif2C WT and S715E respectively. 

 

I tested the interaction between pBRCA2167-260 and FL Kif2C by size-exclusion 

chromatography (Figure 62). However, Kif2C FL was further degraded very quickly during 

the concentration step, between its purification and the interaction test. In these conditions, I 

did not observe any interaction with pBRCA2167-260. To conclude on this interaction, I will 

optimize Kif2C FL WT purification and test its interaction with pBRCA2167-260 by size-

exclusion chromatography and NMR. 

 

  

Figure 62. Interaction test between pBRCA2167-260 and Kif2CFL. 

(A) BRCA2167-260 was previously phosphorylated by Plk1. pBRCA2167-260 was injected in 

presence (orange) or absence (black) of Kif2C WT on a Superdex 200 10/300 GL Increase 

column (GE Healthcare). Buffer: Dulbecco’s PBS (Sigma) adjusted to 200 mM NaCl, 5 mM 

MgCl2, 2 mM DTT pH7.2. (B) Coomassie-stained 15% SDS-PAGE gel of the elution. 

 

A. B. 
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5. Study of the BRCA2/Chk2 interaction 
 

I also tested the interaction between pBRCA2 and the kinase Chk2, which was enriched 

only in the 10 ng pBRCA2 sample in the proteomics experiments (Figure 55).  

The kinase Chk2 is a critical mediator of the DNA damage response. Upon damage, 

Chk2 acts as activator of the checkpoint and can provoke cell cycle arrest if DNA damage is 

not repaired (Zannini et al., 2014, Li et al., 2002, Mustofa et al., 2020). Interestingly, mutations 

in Chk2 are associated to an increased risk of sporadic and hereditary breast cancer (Wendt et 

al., 2019, Badgujar et al., 2019). However, no mechanism linking BRCA2 and Chk2 has yet 

been described in the literature.  

Chk2 is constituted of i) a N-terminal region enriched in SQ/TQ motifs that are essential 

for Chk2 activation by the ATM/ATR/DNA-PK kinases upon DNA damage, ii) a central FHA 

domain and iii) the kinase domain (Figure 63). Interestingly, the FHA domain of Chk2 is 

known to recognize phosphorylated peptides with a preference for phosphothreonines having 

an aspartic acid at position -1 and a leucine at position +3, with an optimal affinity of 0.9 uM 

(Li et al., 2002). One structure of the human FHA domain of Chk2 in complex with a model 

phosphopeptide is available (Li et al., 2002, PDB code: 1GXC). Furthermore, the Chk2 FHA 

domain presents many mutations associated to cancers, including breast cancer (Figure 63).  

 

We decided to first test the interaction between Chk2FHA and pBRCA2167-260. I produced 

a construct that we already had in the lab, which contained aa 1 to aa 209 of Chk2 (Figure 

64.A), that is to say its N-terminal region and the FHA domain. I examined the possible 

interaction between pBRCA2167-260 and Chk21-209 by NMR (Figure 64.B.C.D). 

 

 
Figure 63. Scheme of the primary structure and domains of Chk2, and the identified mutations 

in breast, colon, lung, bladder and ovary cancers (from Bartek et al., 2003). Red boxes highlight 

three mutations associated with familial cancer. 
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Figure 64. Interaction between pBRCA2167-260 and Chk21-209 

(A) Coomassie-stained 15% SDS-PAGE gel of the thioredoxin-Chk21-209 construct after Histrap 

elution, and TEV cleavage. A gel-filtration was later performed to polish the purification (B) 

Overlay of 1H-15N SOFAST-HMQC and (C) 
1H 1D spectra of 15N-labeled pBRCA167-260 at 25 

uM free (black) and in presence of Chk21-209 at 12.5 uM in Dulbecco’s PBS (Sigma), 2 mM 

DTT at pH 7.0, 283K (600 MHz). (D) Peak intensity ratios extracted from the spectra in (B). 

 

After addition, of Chk21-209, I observed decreased peak intensities in 1H-15N 2D 

correlation spectra for peaks corresponding to the region spanning residues 214-232. This result 

should be further confirmed in presence of higher concentrations of the isolated Chk2FHA 

domain (in progress). 

 

 

6. Other interactions tested  
 

 

During my PhD, I also briefly tested interactions between the BRCA2 fragments that I 

produced and proteins from collaborators. In this context, I tested interaction between BRCA2 

and DDX5 (from Dr. Aura Carreira, Figure 65) and BRCA2 and PARP1 (from Dr. Aura 

Carreira) using NMR (Figure 66). However, in both cases, I could not observe any significant 

peaks disappearance or chemical shift perturbations in 1H-15N 2D spectra of 15N-labeled 

BRCA2190-284 or BRCA248-218 at 50 uM upon addition of DDX5 and PARP1 at high 

A. B. C. 

D. 
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concentrations up to 100 uM. We thus failed to obtain any evidence of a direct interaction 

between BRCA2 and DDX5 or PARP1 in these conditions. 

Because the amounts of PARP1 provided from our collaborators were not sufficient to 

carry out supplementary experiments, I also produced unlabeled PARP11-366 (Figure 67.C) to 

record NMR spectra in presence of 15N-labeled BRCA21-284 produced by Rania Ghouil. 

However, I could not observe any consistent peak intensity variations (Figure 67.A). Only 

minor chemical shift perturbations were visible and well-dispersed along the sequence, 

corresponding to pH variations. To cross-validate our results on the opposite side, I also 

produced 15N PARP11-366 samples (Figure 67.B.D) in order to test its interaction with non-

labeled BRCA21-500 produced by Dr. Aura Carreira’s team. However, this later PARP1 

construct was highly prone to agregation (loss of 1H-15N NMR peak intensities after 1h at 20 

°C, Figure 67.D). I observed a large and homogeneous peak disappearance upon addition of 

BRCA21-500, except for Asn/Gln side chains and the flexible residues, whose peaks are at the 

center of the spectrum. It was thus not possible to conclude whether it was due to agregation or 

an interaction or both. 

 

 
 
 

 
Figure 65. Interaction test between BRCA2 and DDX5. 

(A) Overlay of  1H-15N SOFAST-HMQC spectra of 15N-labeled BRCA2190-284 at 50 uM free 

(black) or in presence of DDX5 at 100 uM in its “native buffer” (PBS 1.5X, Mg-acetate 1 mM, 

glycerol 10%, DTT 1 mM, EDTA 1 mM at pH 7.0) (red) or in presence of DDX5 at 100 uM in 

“dialyzed buffer” (HEPES 50 mM, NaCl 150 mM, EDTA 1 mM, DTT 2 mM at pH7.0) (green).  

(B) Overlay of 1H-15N SOFAST-HMQC spectra of 15N-labeled BRCA248-218 at 50 uM free 

(black) or in presence of DDX5 at 100 uM in HEPES 50 mM, NaCl 150 mM, EDTA 1 mM, 

DTT 2 mM at pH7.0 (blue).  All spectra were recordered at 283 K, 700 MHz (CEA Saclay) (C) 

Coomassie-stained 15% SDS-PAGE gel of 15N BRCA2190-284, 
15N BRCA248-218 and DDX5 

(from collab.)  
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Figure 66. Interaction tests between BRCA2 and PARP1 

(A) Overlay of  1H-15N SOFAST-HMQC spectra of 15N-labeled BRCA2190-284 at 50 uM free 

(black) or in presence of PARP1 at 100 uM in 25 mM HEPES, 150 mM NaCl, 0.1 mM TCEP, 

1 mM EDTA pH 7.0 (blue) (B) Overlay of 1H-15N SOFAST-HMQC spectra of 15N-labeled 

BRCA248-218 at 50 uM free (black) or in presence of PARP1 at 100 uM in 25 mM HEPES 150 

mM NaCl, 0.1 mM TCEP, 1 mM EDTA, pH 7.0  (red).  All spectra were recordered at 283 K 

and 700 MHz (CEA Saclay) (C) Coomassie-stained 15% SDS-PAGE gel of 15N BRCA2190-284, 
15N BRCA248-218 and PARP1 (from collab.)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A. B. C. 
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Figure 67. Interaction test between BRCA2 and PARP11-366 

(A) Overlay of 1H-15N SOFAST-HMQC spectra of 15N-labeled BRCA21-284 at 25 uM free 

(black) or in presence of PARP1 at 25 uM in 25 mM HEPES, 150 mM NaCl, 0.1 mM TCEP, 1 

mM EDTA at pH 7.0 (blue) (B) Overlay of 1H-15N SOFAST-HMQC spectra of 15N-labeled 

PARP11-366 at 40 uM free (black) or in presence of BRCA21-500 (BRCA21-500 provided by Dr. 

Aura Carreira) in BRCA21-500 elution buffer, pH 7.0  (violet).  All spectra were recorded at 283 

K, 700 MHz (CEA Saclay) (C) Coomassie-stained 15% SDS-PAGE gel of 15N PARP11-366 

(produced in-house) (C) Coomassie-stained 15% SDS-PAGE analysis of the 15N PARP1 NMR 

sample. 
 
  

A. 

C. D. 

B. 
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Chapter 6.  Interplay between BRCA2 phosphorylation by Cdk and 

Plk1  
 
 
 In Chapter 3, I illustrated the discovery of a new Plk1 binding site on BRCA2 

(BRCA2pT207). Another Plk1 docking site was previously described in the literature: pT77, 

which has been reported to be phosphorylated by Cdk1 (Yata et al., 2014, Takaoka et al., 2014).  

Here, I was interested in understanding how the two Plk1 docking sites of the N-terminal 

region BRCA2 (BRCA2pT77 and BRCA2pT207) can exert synergistic functions. After 

demonstrating the affinity of Plk1PBD for a short BRCA2pT77 peptide, such a study required to 

produce phosphorylated constructs BRCA2pT77. Different strategies have been used, which we 

report in subchapters 2 and 3. Our recent success in producing BRCA2pT77-aa48-220 will permit 

to quantify and understand the influence of the phosphorylation of BRCA2(T77) by Cdk on the 

later phosphorylation by Plk1. 

 

1. The phosphomimetics approach 
 
 The first approach to test the impact of BRCA2pT77 on Plk1 phosphorylation was to 

generate a so-called phosphomimetic of the position T77. This popular method consists in the 

mutation of a serine or threonine into an aspartate or glutamate. The negative charge and the 

chain length of these two amino acids mimic, even imperfectly, the presence of a phosphate on 

a serine or threonine. Thus, the targeted site is so-to-say natively 100% modified. 

Phosphomimetics are largely used in cell biology for testing the impact of a phosphoresidue on 

protein functions or interactions.  

 

 First, BRCA2pT77 interacts with Plk1PBD with a KD=240 nM, which is in the range of 

PBD affinities for its targets (Elia et al., 2003). In addition, the interaction is phosphodependent 

because the Plk1PBD does not interact with BRCA2T77. Then, I tested the ability of Plk1PBD to 

recognize BRCA2T77D and BRCA2T77E by ITC (Figure 68). The titrations revealed that BRCA2 

fragments carrying T77D or T77E mutations did not interact with Plk1PBD. Hence, Plk1PBD does 

not recognize phosphomimetics, which is consistent with the prior structural knowledge derived 

from X-ray crystallography: the phosphate on the threonine side-chain is at the core of the 

interaction with Plk1PBD and appears to be essential for the binding event. Thus, the 

phosphomimetic strategy cannot work here.  
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Figure 68. ITC titration of Plk1PBD (100 uM in the syringe) with BRCA2 peptides (10 uM in 

the cell). Experiments were performed at 20°C, with injections of 10 uL, in a buffer containing 

50 mM Tris-HCl, at pH 8.0, 150 mM NaCl, 5 mM b-mercaptoethanol. 
 

2. Pre-phosphorylation of BRCA2 by Cdks 
 

 Then, we sought to produce longer BRCA2 constructs pre-phosphorylated by Cdk 

kinases to analyse their phosphorylation by Plk1. Our strategy was to use a Cdk kinase to 

phosphorylate BRCA248-218. The first kinase that we tested was Cdk1/cyclinB1 because it is the 

most abundant Cdk during mitosis (Ord et al., 2018). After BRCA248-218 phosphorylation by 

commercial Cdk1/B1, seven phosphopeaks appeared, including pT77 (Figure 69). This 

confirmed that Cdk1/B1directly phosphorylates BRCA2T77. Then I boiled the sample 10 min at 

90°C for inactivating Cdk1/B1 and I added Plk1 to the sample with fresh ATP and DTT and 

monitored Plk1 kinesis (Figure 69). After phosphorylation by Plk1, peaks corresponding to 

pS193 and pT207 were more intense in the case of pre-Cdk1 phosphorylation. This suggested 

that pT77 increases BRCA2 phosphorylation by Plk1. Because of the high cost of commercial 

Cdk1/B1 (the amount of kinase necessary for one experiment costs 360€), we limited our 

analysis to this early, qualitative observation. 

Cdk1/B1 was indeed purchased to Sigma-Aldrich and possesses an activity of 12-

16 nmol/min/mg, which is rather low for our approach using NMR spectroscopy. I performed 

this experiment before the reoptimization of Plk1 phosphorylation that finally allowed a 

continous readout. Hence, at that time, I used the quenched reaction strategy for analyzing 

BRCA2 phosphorylation by Plk1, which was even more demanding in terms of protein 
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quantities. The recent recombinant production of Cdk1 and Cyclin B1 in-house by FX Theillet 

at milligram scales (~20 mg per liter of culture) should permit to reproduce these data in more 

controlled conditions.  

 

 
Figure 69. Pre-phosphorylation of BRCA248-218 by Cdk1/B1 qualitatively increases its 

phosphorylation by Plk1. Comparison of the 1H-15N SOFAST-HMQC spectra of 15N BRCA248-

218 at 25 uM before phosphorylation (black) and after phosphorylation either by Plk1 (24h, red) 

or Cdk1/B1 and then Plk1 (5h, green). The spectra were recorded at 283 K and 600 MHz CEA 

Saclay. Samples were priorily incubated at 25°C, pH 7.0 in the presence of Cdk1/B1 and then 

at 30°C, pH 7.8 in presence of Plk1, in a buffer containing 50 mM HEPES, 2 mM ATP, 1 mM 

DTT, 1 mM EDTA, 20 mM MgCl2. The phosphorylation reactions were stopped by heating the 

samples during 10 min at 90°C and the pH was readjusted at pH 7.0 before NMR analysis. 

 

 In order to carry out a quantitative analysis of the influence of pT77, I tried to 

phosphorylate T77 with a more affordable kinase: Cdk1/cyclinA2. However, while Cdk1/A2 

phosphorylates several BRCA2 sites in common with those modified by Cdk1/B1 (peak 

superimposition), we observed only a very weak phosphorylation level of T77 in these 

conditions (Figure 70). Perhaps not surprisingly in the absence of a high pT77 stoichiometry, 

the quantitative analysis of BRCA248-218 phosphorylation by Plk1 after pre-phosphorylation by 

Cdk1/A2 revealed no changes in kinetics as compared to those observed on non-modified 

BRCA248-218. 
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Figure 70. Phosphorylation of BRCA248-218 by Cdk1/A2 compared to Cdk1/B1.  

(A) Comparison of the 1H-15N SOFAST-HMQC spectra of 15N BRCA248-218 before 

phosphorylation (black) and after phosphorylation either by Cdk1/A2 (pink) or Cdk1/B1 + Plk1 

(green). The spectra were recorded at 283 K, 600 MHz CEA Saclay. The phosphopeaks due to 

Plk1 activity are circled in grey. Samples were incubated at 25°C, pH 7.0 in the presence of 

Cdk1/A2 or Cdk1/B1, in a buffer containing 50 mM HEPES, 2 mM ATP, 1 mM DTT, 1 mM 

EDTA 20 mM MgCl2, pH 7.0. The phosphorylation reactions were stopped by heating the 

samples during 10 min at 90°C and the pH was readjusted at pH 7.0 before NMR analysis. (B) 

Quantification of S193 (circle) and T207 (square) phosphorylation with (pink) or without 

(black) Cdk1/A2 prephosphorylation. 

 

 

 In order to efficiently phosphorylate efficiently BRCA2T77, I thought to use the p38a 

kinase. The MAP kinase p38a has a minimal S/T-P consensus phosphorylation site, similarly 

to Cdk1/B1. The fine preferences and the distant secondary docking sites are of course not the 

same, but we expected to obtain T77 phosphorylation in stoichiometric amounts. This kinase is 

indeed produced in the lab in high quantities and possesses a good activity. Thus, I tested the 

phosphorylation of BRCA248-218 by p38a.  

As illustrated in Figure 71, BRCA248-218 phosphorylation by p38a led to similar 

phosphopeaks than Cdk1/B1. In addition, the analysis of the spectra generated by the mutant 

BRCA2T77A phosphorylated by p38a permitted to identify the 1H-15N crosspeak corresponding 

to pT77 (Figure 72). However, p38a appeared to be able to phosphorylated a more extended 

set of peaks on BRCA2 upon prolonged incubation. While T77 phosphorylation required 2 

hours to reach ~100% levels, supplementary phosphopeaks already emerged with high 

intensities. We observed up to 7 phosphopeaks after 4 hours of incubation, although many of 

them represented minor populations (Figure 73). 

A. B. 
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Figure 71. Phosphorylation of BRCA248-218 by p38a compared to Cdk1/B1. 

Superimposition of the 15N BRCA248-218 
1H-15N SOFAST-HMQC spectra before 

phosphorylation (black), after p38a phosphorylation (red) and after Cdk1/B1 phosphorylation 

and Plk1 phosphorylation (green). The spectra were recorded at 283 K, 600 MHz CEA Saclay. 

The phosphopeaks due to Plk1 activity are circled in grey. Samples were incubated at 25°C, pH 

7.0 in the presence of p38a or Cdk1/B1, in a buffer containing 50 mM HEPES, 2 mM ATP, 1 

mM DTT, 1 mM EDTA 20 mM MgCl2, pH 7.0. The phosphorylation reactions were stopped 

by heating the samples during 10 min at 90°C and the pH was readjusted at pH 7.0 before NMR 

analysis. 

 

 

Because the observed activity of p38a on BRCA2 appeared to mimic decently that of 

Cdk1/B1, I thought it would permit to test quantitatively the impact of BRCA2pT77 on Plk1 

phosphorylation (Figure 73). Similarly to the experiments carried out previously with 

Cdk1/B1, my strategy was to phosphorylate BRCA248-218 by p38a  first, boil the sample 10 min 

at 90°C for inactivating p38a and then to add Plk1 to the sample with fresh ATP and DTT. 
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Figure 72. Phosphorylation of WT and T77A BRCA248-218 by p38a. 

Overlay of the 15N WT (red) and T77A (violet) BRCA248-218 
1H-15N SOFAST-HMQC spectra 

after phosphorylation by p38a. The spectra were recorded at 283 K, 600 MHz CEA Saclay. 

The samples were incubated at 25°C, pH 7.0 in the presence of p38a, in a buffer containing 50 

mM HEPES, 2 mM ATP, 1 mM DTT, 1 mM EDTA 20 mM MgCl2, at pH 7.0. The 

phosphorylation reactions were stopped by heating the samples during 10 min at 90°C and the 

pH was readjusted at pH 7.0 before NMR analysis. 

 

Figure 73. p38a phosphorylates BRCA2T77 and can favor the later phosphorylation of 

BRCA2S193 by Plk1 when the phosphorylation of BRCA2 by p38a was stopped at an early 

stage. Overlay of the 15N BRCA248-218 
1H-15N SOFAST-HMQC spectra before (black) and after 

2 hrs (green) or 4 hrs (red) of phosphorylation by p38a. The spectra were recorded at 283 K, 

600 MHz CEA Saclay. The insets show the quantitative phosphorylation kinetics on S193 and 

T207 by Plk1. The samples were incubated at 25°C, pH 7.0 in the presence of p38a, in a buffer 

containing 50 mM HEPES, 2 mM ATP, 1 mM DTT, 1 mM EDTA 20 mM MgCl2, pH 7.0. The 

phosphorylation reactions were stopped by heating the samples during 10 min at 90°C and the 

pH was readjusted at pH 7.0 before NMR analysis. Quantification of Plk1-dependent 

BRCA2pS193 (rounds) and BRCA2pT207 (squares) events are displayed in the NMR spectra.  
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We performed such experiments using BRCA248-218 incubated with p38a during either 

2 or 4 hours. Interestingly, the phosphorylation reactions executed by Plk1 did not produce the 

same results on these 2 samples, although they both carry stoichiometric phosphorylation on 

T77 (Figure 73). When pre-phosphorylation by p38a is stopped after immediately after the full 

modification of T77, we observed an increased phosphorylation rate on S193 by Plk1, but not 

on T207. At the opposite, a more extended pre-phosphorylation by p38a (7 phosphopeaks) does 

not increase phosphorylation rates by Plk1, neither on S193 nor on T207. Hence, the degree of 

BRCA248-218 pre-phosphorylation on secondary sites has clear consequences This result 

illustrates the complexity of a multi-phosphosite system. Moreover, we observed that the 

hyperphosphorylated BRCA248-218 incubated 4 hours with p38a was extremely prone to 

degradation. 

 In order to characterize the role of BRCA2pT77 on Plk1 phosphorylation, we thought that 

a better defined experimental approach had to be adopted.  

 

3. Native Chemical Ligation (NCL) 
 

Thereby, I used a semi-synthetic strategy: a short BRCA2 peptide precisely 

phosphorylated at the position T77 is chemically synthesized, and is later covalently linked to 

a recombinantly produced 15N labeled peptide, which contains the BRCA2193-220 phospho-

region or interest (Figure 74).  

 

 

Figure 74. The NCL strategy for studying the effect of pT77 on BRCA2 phosphorylation by 

Plk1.  

A chemically synthetized peptide fragment of BRCA2, containing a phosphothreonine at the 

position 77, is linked to a 15N labeled recombinantly produced fragment of BRCA2 containing 

the 193-220 region of interest. The constructs are discussed in the main text. 

 

Several ligation methods already exist and are extensively reviewed in Baumann & 

Hackenberger, 2018 and Berrade & Camarero, 2008. These methods can be sorted into two 

categories: enzymatic and chemical ligation.  

BRCA2 
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Native Chemical Ligation generally designates chemical ligation methods aiming at 

obtaining native peptide backbones. This is an intense field of research that has greatly 

progressed in the last years. NCL consists in a transthioesterification via a nucleophilic attack 

of a thioesther (at the C-terminal end of the initial N-terminal fragment) by a cystiolate group 

(at the N-terminal end of the initial C-terminal fragment). Then, under native conditions, the 

activated thioester undergoes an intramolecular S->N acyl shift. This reaction generates a 

peptide bond at the conjugation junction. Finally, post-ligation desulfurization can be used to 

reduce cysteine and selenocysteine into alanine. 

 

I initiated a collaboration under the supervision of Dr. François-Xavier Theillet with Dr. 

Vincent Aucagne and Jean-Baptiste Madinier (CBM, Orléans), who are experts in peptide 

chemical synthesis and NCL. Obtaining a reactive C-terminal peptide thioester function is often 

considered to be the limiting part of NCL. The group of Dr. Aucagne has designed interesting 

solutions to this problem (Terrier et al., 2016). Here, the strategy was to produce a synthetic N-

terminal peptide containing BRCA2pT77 and to link it to a C-terminal 15N labeled BRCA2 

fragment containing the Plk1 phospho-region (Figure 74). 

The N-terminal peptide has the same N-terminal extremity as BRCA248-218. The C-

terminal extremity of this synthetic peptide is the residue 84, a glycine, which is usually a 

favorable C-terminal residue for an efficient NCL. The BRCA248-84 N-terminal peptide with a 

phosphothreonine at position 77 was produced using the Fmoc-based solid phase synthesis. A 

thioester was introduced at the C-terminal extremity for the NCL. This synthesis was performed 

by Jean-Baptiste Madinier and Dr. Vincent Aucagne according to their published protocol 

(Terrier et al., 2016). They obtained 14 mg of the BRCA248-84 peptide per synthesis, a common 

yield obtained using this strategy. Then, the peptide was linked to a BRCA285-220 C-terminal 

15N labeled fragment. I was in charge of the bacterial expression and purification of this 

fragment. A G85C mutation was introduced in a BRCA285-220 construct to permit the NCL. 

 The BRCA2 fragments were purified and analyzed by inverse-phase HPLC, lyophilized 

by Jean-Baptiste Madinier and redissolved at 0.5-1 mM concentrations. The NCL reactions was 

carried out according to the published protocol (See Material and Methods) under gaseous 

argon (Figure 75.B and C) at 37°C under agitation over night. The reported pictures were taken 

when I went to the CBM to attend the experiment and understand how the NCL protocol works. 

The reaction was monitored using HPLC analysis (Figure 76). The reaction was completed 

after 24 hrs of incubation.  
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Figure 75. NCL protocol for linking BRCA248-84 to BRCA285-220. 

(A) NCL reaction (image from Melnik lab, http://olegmelnyk.cnrs.fr). BRCA248-84 (peptide 1) 

is synthesized with a C-terminal thioester. NCL is then performed at RT in the presence of 

BRCA285-220-G85C (peptide 2), TCEP and MPAA, which improves the reactivity of the 

cryptothioester, at pH 7.0. The reaction generates a covalent peptide bond between peptide 1 

and peptide 2. (B) The NCL sample after addition of cryptothioester, C-terminal fragment, 

TCEP, NaOH and MPAA. The yellow color indicates that MPAA is at a pH higher than 6.5. 

(C) Installation for placing the sample under argon atmosphere. These photos were taken at the 

CBM when I accompanied Jean-Baptiste Madinier for a day for discovering the NCL protocol. 

 

 

Figure 76. NCL reaction to obtain BRCA248-220-G85C-pT77 and its monitorin. The cryptothioester 

BRCA248-84 is linked to 15N BRCA285-220-G85C by NCL in order to generate BRCA248-220-G85C. 

HPLC elution on a C18 column (gradient H20/acetonitrile 20->40%) permits to separate the 

initial cryptothioester peptide (t=0, red peak) from the final product (t=24h, blue peak). ESI MS 

analysis of the blue peak reveals a deconvoluted mass corresponding to the BRCA248-220 ligated 

fragment (MS plateform CBM, Orléans). 

 

A. 

 

 

G85C 
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The next step of the protocol is the reduction of the Cys85 into alanine. By achieving 

this final modification, we thought to minimize the impact of the Gly85 mutation and to avoid 

the usual dimerization troubles that a solvent-exposed cysteine can generate. This step is 

currently under optimization. Until now the protocol of desulfurization led to a yield of 70% 

and it generated oxidation of the methionine. In order to obtain higher yields (more than 90%) 

and better sample quality, the alkylation of this cysteine is now considered.  

Hence, I will soon purify the reconstituted BRCA248-220 by size-exclusion 

chromatography in the phosphorylation buffer. The sample will be used to study the influence 

of pT77 phosphorylation on the phosphorylation by Plk1, using the continuous readout that we 

already achieved with 1H-15N SOFAST-HMQC experiments. 

 

  



 159 

Chapter 7. Plk1 production and structural characterization 

 
 

In parallel to the BRCA2 studies, I was also interested in characterizing the Plk1 kinase. 

I felt indeed that a number of ambiguous results from BRCA2 phosphorylation experiments 

may come from a lack of understanding on how Plk1 functions. The intriguing “activation” of 

Plk1 by peptides binding the PBD had to be elucidated to fully solve the phosphorylation 

regulation of BRCA2.  

Previously, full length Plk1 was produced in insect cells by the Institut Curie protein 

production platform (Dr. Ahmed El Marjou and Patricia Duchambon, Paris). It permitted to 

carry out all the experiments reported above. However, the aliquots that we used were clearly 

containing truncated/proteolyzed versions of Plk1, i.e. separated PBD and kinase domain (KD). 

Moreover, we could not obtain any information on Plk1 activation state, i.e. its phosphorylation 

on S137 or T210 (see below), even though it has been reported in the literature that Plk1 is not 

phosphorylated when produced in insect cells (Kothe et al., 2007). Because Plk1 truncation and 

phosphorylation have an impact on its activity (Johnson et al., 2008), we thought we would 

have to produce well-defined versions of Plk1 if we wanted to characterize its activity and its 

regulation in an accurate fashion. Thus, the first goal was to produce Plk1 in house. The second 

goal was to obtain activated Plk1, phosphorylation either at S137 or T210. 

 Then, because we would produce various activated or unactivated versions of Plk1, we 

thought to carry out structural investigations on them in a synergistic manner. Our goal is to 

obtain information about the conformations and the interdomain interactions of Plk1 upon 

activation using NMR. Indeed, a study by Xu et al. on Plk1 from Danio rerio (Xu et al., 2013) 

reported that Plk1PBD binding to Plk1KD regulates Plk1 activity. The authors also showed how 

the phosphorylation of S123 (human S137) contributes to the dissociation of the KD and the 

PBD. Finally, they showed that the large linker (about 40 residues) between Plk1KD and Plk1PBD 

modulates negatively modulates the activity of the kinase (enzymatic tests). Hence, we aimed 

at collecting information on Plk1 structure and dynamics and the impact of i) the interaction 

between Plk1KD and Plk1PBD , ii) the long linker between human Plk1KD and Plk1PBD, iii) the 

peptides binding to Plk1PBD (including BRCA2pT77 or BRCA2pT207), iv) the phosphorylation 

of Plk1KD. 
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In order to confirm the phosphorlation state of Plk1 obtained from insect cells 

production, I asked the MS facility of the CEA Saclay (Steven Dubois) to analyze the Plk1Curie. 

It was digested by trypsin and analyzed using MALDI-TOF spectroscopy. Unfortunately, the 

peptides containing S137 and T210 were not detected (Figure 77), probably because they were 

not enough ionizable. According to the literature, FL Plk1 produced in insect cells is not 

phosphorylated. I hypothesized that Plk1Curie was also not phosphorylated. This would be 

consistent with the phosphorylation rate values obtained from BRCA248-284 and BRCA21093-1158 

kinetic studies (Chapter 2 and 3). Thus, we needed to also produce the Plk1 activating kinase: 

Aurora A which phosphorylates Plk1T210 (Macurek et al., 2008, Seki et al., 2008). 

  

Figure 77. Mass spectrometry identified trypsinization products of Plk1Curie but could not 

determine the phosphorylation state of Plk1S137 and Plk1T210. 

(A) SDS-PAGE of the Plk1Curie revealed supplementary bands smaller than the molecular 

weight of FL-Plk1 (69 kDa). (B) MALDI-TOF analysis of the SDS-PAGE bands digested by 

trypsin revealed that lower bands correspond to truncated fragments of Plk1. No peptides 

containing either Plk1S137 or Plk1T210 could be detected (CEA MS facility, Steven Dubois).  

 

 

1. Plk1 production in insect cells 
 

 I tried to produced Plk1 in insect cells, in order to be able to carry out supplementary 

purification steps yielding better purity levels. The recombinant expression platform of the 

Institut Curie was using a vector pFast-Bac HT for producing Plk1 in insect cells using the Bac-

to-Bac baculovirus system. Our local platform preferred to use the vector that it classically uses, 

called pKL, which encodes also for a YFP-reporter of the baculovirus expression (under the 

promoter of the late infection stage gene polH). Hence, we sought to clone the Plk1 cDNA in 

pKL. We obtained the Plk1 cDNA cloned in a mammalian expression vector pTK24 (Addgene, 
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Kiyomitsu et al., 2012) from Dr. Ahmed El Marjou (Institut Curie, Paris). This plasmid encodes 

for mCherry-Stag-TEV-(cDNA)Plk1FL. With the help of Dr. Virginie Ropars, I first amplified 

the Plk1 sequence by PCR and cloned it into pKL (Figure 78.A). We designed the amplification 

and the cloning in such a manner that we inserted a sequence encoding for a 6-His tag followed 

by a TEV cleavage site at the N-terminal extremity of the Plk1 sequence.  

After ligation, the plasmid was used to transform DH10-EMBacY bacteria and generate 

bacmids carrying the Plk1 cDNA. This step relies on colonies screening on LB-agar plates 

containing IPTG and X-gal (Figure 78.B). Bacterial clones containing Plk1 encoding bacmids 

do not express b-galactosidase do not digest X-gal and remain uncolored/white, while the others 

generate blue colonies (see Material and Methods for more details) (Figure 78.B).  

After purification, we used the bacmid to produce virions by infection of Sf9 cells. The 

baculovirus genome contains two recombinant production systems: one for the gene of interest 

and the other one for YFP reporting the expression of the bacmid proteins. After infection, the 

YFP fluorescence level in Sf9 cells is monitored as it reports for the efficiency of infection and 

protein expression (Figure 79.A). All the production was realized with the help of Audrey 

Coëns. 

Then, I tried to purify the recombinant Plk1 expressed in Sf9 insect cells. Unfortunately, 

the SDS-PAGE analysis of Plk1 expression revealed a weak production equally distributed in 

the soluble and unsoluble fractions (Figure 79.B). After Ni-NTA 6His-affinity chromatography 

of the soluble fraction, no Plk1 was found in the elution. It became clear that the protocol would 

require further optimization for producing large amounts of Plk1. A codon-optimized gene for 

insect cell expression has been synthesized by Genscript and inserted in pKL. We should obtain 

the first results from this approach in January 2021. 

 

 
Figure 78. Cloning the Plk1 cDNA sequence into the pKL plasmid for bacmid recombination 

into DM10EMBacY cells. 

(A) Agarose gel of the pKL plasmid and the Plk1 cDNA sequence PCR amplified from pTK24. 

(B) Transformation of the ligated pKL-Plk1 plasmid into DH10EMBacY chimio-competent 
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cells grown on LB+antibiotic (left) and LB+antibiotic+IPTG+X-gal medium (right) after 24 

and 48 hrs respectively. 

 

 
Figure 79. Production of Plk1 in Sf9 cells. 

(A) Sf9 cells infected with a bacmid encoding for FL Plk1 and a YFP-reporter sequence, 

observed with an epifluorescence microscope. (B) SDS-PAGE analysis of the cells sonicated 

before (tot1 and tot2) and after (supernatant SN, pellet) centrifugation of the cell lysate. The 

bands supposedly corresponding to Plk1 are circled in red. 

 

2. Design of protein constructs for bacterial expression 
 

To carry out a structural characterization of Plk1, we thought to use NMR spectroscopy, 

which requires 13C/15N isotope labeling. Isotope labeling in insect cells is only at its beginnings 

in the lab. Thus, we designed Plk1 constructs for bacterial expression and ordered their codon-

optimized synthesis (Figure 80.A). Constructs were designed for in house production of the 

full-length human kinase and of separated domains for the study of Plk1 dynamics.  

We designed one PBD construct (Plk1366-603) and two kinase domain (KD) constructs: 

one with the interdomain linker (Plk11-366) and one without (Plk11-328), which may permit to 

characterize its potential role on the interdomain interaction.  

We also thought to design constructs ready for lanthanide chelating tag attachment. FX 

Theillet has already used such an approach to derive structural information on GB1 in frog 

oocytes (Müntener et al., 2016) in collaboration with Pr. Daniel Haüssinger (Univ. Basel, 

Suisse). This strategy is very convenient, because it can provide tridimensional information 

from pseudo-contact shifts observed in 2D NMR spectra (Joss et al., 2019). Thus, we designed 

Plk1 constructs that show only one solvent-accesible cysteine to permit in site-selective 

attachement of the lanthanid tag. We mutated all exposed cysteines in the KD and in the PBD 

(Figure 80.A). Unfortunately, this require the mutation of Cys212, located in the KD activation 

loop close to the activating T210. Then, we selected the position L162C for the tag graft. L162 
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is at the surface of the kinase domain and at an intermediate distance from both the PBD, the 

linker and the KF activation loop.  

For the FL Plk1, we design three constructs: FLL162C (Plk11-603), FLC212C (to validate the 

innocuity of Cys212 mutation on Plk1 activity) and (Plk137-603), which does not contain the 

repetitive Pro/Ala rich N-terminal extremity of the kinase. 

 

Figure 80. Construct design for the Plk1 study 

(A) Plk1 contains 2 domains: the kinase domain (KD) and the Polo-Box Domain (PBD). 

Solvent-exposed cysteines and the chosen mutations are displayed in grey and non-exposed 

cysteines in black. Residue L162 was mutated into cysteine in order to create an attachment site 

for a lanthanide tag. Constructs used for the studies are displayed under the Plk1 schematic 

sequence. (B) Structure and surface of the human Plk1 KD (green, PDB: 5TA8) and the human 

Plk1 PBD (blue, PBD:1UMW) and orientation of the two domains according to the Danio rerio 

Plk1 structure (PDB: 4J7B). Position of the lanthanide tag (pink) and the phosphopeptide 

substrate of PBD (black) are displayed in the Figure. 
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Because Aurora A is the kinase that is considered to phosphorylate the activation loop 

of Plk1 at position T210 (Macurek et al., 2008, Seki et al., 2008), we also designed a plasmid 

encoding for a AuroraA-TPX21-43 chimera, according to the plasmid construct described in 

Zorba et al., 2014. TPX21-43 allosterically activates Aurora A by interacting with a hydrophobic 

pocket in the N-terminal lobe of the Aurora A catalytic domain. This chimera has been shown 

to activate Aurora A. Activated Plk1 would be useful for phosphorylation kinetics studies, but 

also for for studying the impact of T210 phosphorylation on Plk1 structure and dynamics. 

 

The bacterial production tests of all constructs revealed that expression at 20°C was the 

most favorable because it provides soluble populations (Figure 81). In the optimized protocol, 

I finally used induction at 15°C, which yielded increased amounts of soluble proteins. 

 

 

Figure 81. Expression tests of Plk1FL, Plk11-328 and Plk1367-603 constructs in E.coli BL21 (DE3). 

The conditions tested were: induction at 37°C for 3hrs, 30°C for 4°C and 20°C over night. Total 

lyzed bacteria, soluble and insoluble fractions in 3X Laemmli buffer were loaded on SDS-

PAGE 15% gel and revealed by Coomassie-staining. 

 

3. Production of the kinase domain 
 

I started with the production of the kinase domain Plk11-328. This domain is prone to 

degradation (Figure 82.A). The lower band observed on the SDS-PAGE gel after gel filtration 

was confirmed to be a Plk1 degradation product by MS (CEA MS facility, Steven Dubois). This 

degradation product is very stable over time even at room temperature. Then, I tested the same 

purification protocol with a systematic addition of 1 mM EDTA. This strategy limited the rate 

of degradation and was chosen for further Plk11-328 production (Figure 82.B). For the Plk11-366 

(kinase+linker) production, a similar degradation pattern was observed (Figure 83) and the 

systematic addition of 1 mM EDTA also limited the degradation of Plk1-366.  

These conditions are not perfect because the degradation products cannot be fully 

removed after gel filtration, however it allowed me to first test the activity of the Plk1 kinase 

domain. We suspect that the N-terminal Ala-Pro rich disordered region of Plk1 is responsible 
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for the observed degradation and we designed truncated mutants that will be tested in January 

2021. 

 

Figure 82. Coomassie-stained 15% SDS-PAGE analysis of the GF purification of Plk11-328. 

(A) Purification without EDTA, (B) Purification with 1 mM EDTA at each steps. It is worth 

mentioning here that bacterial DNA/RNA degradation must be carried out more thouroughly 

than usual to efficiently load this construct on a His-Trap column, before performing the GF. 

 

 

Figure 83. Coomassie-stained 15 % SDS-PAGE analysis of Plk11-366 affinity (left) and GF 

(right) chromatography purifications. Details of the protocol are provided in the Material and 

Methods section. 

 

After purification optimization, I tested the Plk11-328 activity on BRCA2167-260. As 

revealed by SDS-PAGE analysis, Plk11-328 phosphorylates its target (Figure 84.A). Then, I 

compared the phosphorylation of BRCA2167-260 by Plk1FL, Plk11-328 and Plk11-366 using NMR 

monitoring. The NMR spectra revealed that S193, T207, T219 and T226 were phosphorylated 

in every case, although not with the same rates and preferences (Figure 84.B). Hence, the 

isolated kinase domain is able to correctly recognize its targets. The same profile was observed 

for Plk11-328 and Plk11-366, but the corresponding phosphorylation kinetics were about 3 times 

slower than those obtained with Plk1Curie (Figure 84.C). It may be due to the absence of the 

PBD in Plk11-328 and Plk11-366 and thus to the absence of binding to pT207. To conclude, the 

isolated kinase domain can be used to mimic the phosphorylation by Plk1FL. It will be 

interesting to test whether Plk1-328 can phosphorylate BRCA21093-1158, with the same rates as 

those observed with Plk1Curie in the presence of an “activating” peptide. 

 

A. 
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Figure 84. Plk11-328 phosphorylates BRCA2167-260 at 4 positions: S193, T207, T219 and T226. 

(A) Coomassie-stained 15% SDS-PAGE analysis of BRCA2167-260 at 50 uM incubated with 

Plk11-328 at 500 nM for 30 min, 1 h, 3 h or 5 h in HEPES 50 mM, NaCl 75 mM, DTT 2 mM, 

EDTA 1 mM, ATP 4 mM, MgCl2 10 mM, pH 7.0 (B) Overlay of 1H-15N SOFAST-HMQC 

spectra of 15N BRCA2167-260 at 50 uM incubated with Plk11-328 at 450 nM for 30 min (black) or 

12 hrs (red) in HEPES 50 mM, NaCl 75 mM, DTT 2 mM, EDTA 1 mM, ATP 4 mM, MgCl2 

10 mM, pH 7.0. Spectra were recorded at 298 K, 600 MHz (CEA Saclay). (C) Comparaison of 

BRCA2 pS193, pT207 and pT226 phosphokinetics executed by Plk1Curie, Plk11-328 or Plk11-366. 

pT219 kinetics were not reported because pT219 phosphopeak showed very weak intensities. 

 

 
4. Production of Aurora A and phosphorylation of Plk1 

 

To activate the kinase domain of Plk1 by phosphorylation of T210, I produced a AurA-

TPX21-43 chimera in bacteria and purified it using Ni-NTA His-affinity chormatography and a 

gel filtration chromatography (Figure 85). Then, I used it to initiate phosphorylation tests on 

Plk11-328. As the kinase was described to phosphorylate Plk1T210 (Macurek et al., 2008, Seki et 

al., 2008), we expected at least one phosphorylation event on Plk11-328. 

To better observe the phosphorylation of Plk11-328 by the Aurora kinase A, I used the 

Phos-tagTM  technology (Kinoshita et al., 2006). It consists in a SDS-PAGE gel polymerized in 

presence of an acrylamide-attached Phos-tagTM (Figure 86.A) chelating Mn2+. The Phos-tagTM 

B. 

C. 
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Figure 85. Coomassie-stained 15% SDS-PAGE analysis of AurA-TPX21-43 affinity (left) and 

GF (right) chromatography purifications. Details of the protocol are in the Material & methods. 

 

has the ability to bind phosphate groups and thus to slow down the migration of phosphorylated 

protein (Figure 86.B). This strategy allows to better distinguish the phosphorylation states of a 

protein. It is very useful for large, globular proteins, whose migration is poorly affected by one 

or two phosphorylation events in conventional SDS-PAGE gels. 

 I mixed Plk11-328 to several concentrations of Aurora A (Figure 86.C.D.). While I used 

similar buffer conditions than the one previously used for testing Aurora A activity (Zorba et 

al., 2014, Zorba et al., 2019), I did not observe any phosphorylation of Plk1 upon incubation 

with AurA-TPX21-43 (and even observed more degradation of Plk1, probably because of 

remaining contaminants in the AurA-TPX21-43 samples) (Figure 86.D). A better defined Plk137-

328 may permit to obtain more satisfying results. We will also test the activity of AurA-TPX21-

43 on Plk1 constructs that carry the wild-type Cys212, whose mutation may affect the 

phosphorylation of T210. We will also test the activity of another kinase, Slk, which has been 

reported to phosphorylate Plk1 in vitro (Johnson et al., 2008). 

 

 

 

 

 



 168 

 

Figure 86. Phosphorylation of Plk1-328 by AurA-TPX21-43. 

(A) Chemical structure of the Phos-tagTM (from Wako Chemicals labs) (B) Scheme of Pho-

tagTM SDS-PAGE principle (from Wako Chemicals labs) (C) Conventional SDS-PAGE and 

Phos-tagTM-SDS-PAGE (15% acrylamide) of Plk11-328 at 45 uM incubated with AurA-TPX21-

43 at 1 uM, in PBS, supplemented with 2 mM DTT, 2 mM ATP, 5 mM MgCl2 at pH 7.5 after 0, 

15 min or 2.5 h of incubation at 25°C. (D) Conventional SDS-PAGE and Phos-tagTM-SDS-

PAGE (15% acrylamide) of Plk11-328 at 25 uM incubated with AurA-TPX2 at 2 uM, 5 uM, 10 

uM or 20 uM in 20 mM TrisHCl, 150 mM NaCl, 5mM DTT, 1 mM PMSF, 20 mM MgCl2, 2 

mM ATP at pH 7.3 during 1 h at 25°C. 

 

5. Production of the PBD 
 

Then, I produced Plk1PBD. After Ni-NTA His-affinity and heparin chromatographies, 

Plk1366-603 (Plk1PBD) was pure enough for structural studies (Figure 87). We performed a gel 

filtration to check the sample quality. The first gel filtration profile showed multiple elution 

peaks, revealing a high heterogeneity in the sample probably due to oligomerization. This 

heterogeneity disappeared in the next purification when we removed a concentration step 

between the Histrap and Heparin purification steps (Figure 88).  

 

Figure 87. SDS-PAGE analysis of Plk1366-603 His-trap (left) and heparine (right) 

chromatographies. Details of the protocol are provided in the Material and Methods. 
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Figure 88. Gel filtration profile of Plk1366-603 on a Superdex 200 Increase 10/300 GL (GE 

Healthcare) and Coomassie-stained 15% SDS-PAGE of the eluted fractions. The monomeric 

Plk1366-603 was eluted at 17 mL. 

  

To test if Plk11-328 was able to interact with the PBD, I recorded NMR spectra of Plk1-

328 in absence or presence of Plk1PBD (Figure 89). Upon addition of Plk1PBD, most of the 1H-

15N NMR signals Plk11-328 disappeared, except those from Asn/Gln side chains and from 

disordered/flexible residues appearing (in the center of the spectra). Importantly, Plk11-328 and 

Plk1PBD were still soluble after NMR acquisition (Figure 89.B), as shown by SDS-PAGE 

analysis. This suggested an interaction between the two domains, even though the sample 

suffered important degradation, as seen earlier with Plk11-328. This result needs to be confirmed 

by gel filtration and ITC analysis. 

 

Figure 89. Interaction between Plk11-328 and Plk1PBD. 

(A) Overlay of 1H-15N HSQC spectra of 15N Plk11-328 at 50 uM and Plk1366-603 at 25 uM in PBS, 

1 mM DTT at pH 7.0. The spectra were recorded at 293 K and 700 MHz CEA Saclay. (B) SDS-

PAGE 15% analysis of the soluble fraction of the NMR sample after acquisition. 
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6. Production of Plk1FL 
 

Finally, I initiated the purification of Plk1 FL produced in bacteria (Figure 90). I 

performed a Ni-NTA His-affinity chromatography. Even though it showed lower yields than 

those obtained with the isolated domains, this early result is relatively promising. The next steps 

of the protocol will be carried out in the next months. 

 

Figure 90. SDS-PAGE 15% analysis of the Plk11-603-L162C (i.e. Plk1FL) His-trap affinity 

purification. 
Details of the protocol are available in the Material and Methods. 

  



 171 

Chapter 7.  The initial PhD project: characterizing the interaction 

between DNA and the N-terminal region of BRCA2 

 
 
 
 Initially, my PhD project was meant to focus on the characterization of a DNA-Binding 

Ddomain (DBD) recently identified in the BRCA2 N-terminal region. In 2016, the team of Dr. 

Aura Carreira discovered that the region 250 to 500 of BRCA2 interacts with several DNA 

structures (ssDNA, dsDNA, 3’ and 5’ overhang, Figure 91) by EMSA (Electrophoretic 

Mobility Shift Assay).  Quantification of the results revealed an affinity around 0.5-1 uM for 

all these DNA structures. This result was of  high interest because the C-terminal DBD (aa2378-

3114) of BRCA2 only interacts with ssDNA. The N-terminal DBD was proposed to cooperate 

with the C-terminal DBD to promote genome stability. 

 

 

Figure 91. Interaction between BRCA2250-500 and ssDNA or dsDNA (from von Nicolai et al., 

2016) 

(A) Quantification of EMSA assays between BRCA2250-500 (WT and mutated) and ssDNA, (B) 

Quantification of EMSA assays between BRCA2250-500 (WT and mutated) and dsDNA, (C) 

Quantification of EMSA assays between BRCA2250-500 (WT and mutated) and dsDNA. 

 

While this N-terminal DBD region is not well conserved and predicted to be disordered 

(Figure 92), the authors identified a potential zinc-finger involving cysteines in this region 

using the Webserver SMART, although with a low probability score. Therefore, they tested the 

impact of cysteines on the interaction between BRCA2250-500 and different DNA structures. 

They revealed that, indeed, a loss of dsDNA interaction is observed when C315, C341 or C279 

are doubly mutated (Figure 91.C). The authors concluded by suggesting that the region may 

form a zinc-finger domain involving C315, C341 and/or C279. Moreover, the mutations of the 

cysteines do not strongly impact the interaction with ssDNA. Two different regions may be 

involved in DNA recognition. 

A. B. C. 
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Figure 92. Disordered propensity and conservation analysis of BRCA2250-500. 

Conservation of the BRCA2 sequence. Human BRCA2 was aligned with 24 sequences from 

mammals to fishes: Mus musculus, Ratus norvegicus, Felis catus, Cavia porcellus, Bos taurus, 
Myotis brandtii, Heterocephalus glaber, Oryctolagus cuniculus, Otolemur garnettii, Equus 
caballus, Propithecus coquereli, Cebus capucinus, Rhinopithecus roxellana, Nomascus 
leucogenys, Erinateus europaeus, Xenopus laevis, Sarcophilus harrisii, Ornithorhynchus 
anatinus, Danio rerio, Gallus gallus, Chelonia mydas, Alligator sinensis and Oreochromis 
niloticus. The conservation score was calculated using Jalview 1.0 (Clamp et al., 2004). A score 

of 11 corresponds to a position identical in 100% of the sequences, while a score of 1 indicates 

that only one chemical criteria (size, hydrophobicity, global charge) is common to all the 

variants. The disorder prediction was performed using the server SPOT-disorder (http://sparks-

lab.org/server/SPOT-disorder/index.php), 1: fully disordered; 0: fully ordered). 

 

I started to investigate the structural aspects of the interaction between BRCA2DBD-NTD 

and DNA. To characterize the BRCA2250-500 region and its interaction with DNA, I produced 

first the WT fragment of BRCA2250-500 and a shorter region predicted to form the zinc-finger 

domain (BRCA2250-350) (Figure 93). However, both fragments were insoluble even in a buffer 

containing urea at 2 M. I hypothetized that it was due to the large number of cysteines in these 

fragments, which creates large aggregates upon oxidation. As a second approach, we designed 

alternative fragments including mutations of the non-conserved cysteines (Figure 93), in order 

to favor the solubility of this BRCA2 region. The conservation of BRCA2 was quantified from 

the alignment of BRCA2 sequences from mammals to fishes (Figure 92). Non-conserved 

cysteines were either mutated into serines when the mouse BRCA2 presented a serine instead 

of a cysteine, or into alanine in other cases. 
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Figure 93. BRCA2 fragments used in the N-terminal DBD study. All cysteines are displayed, 

mutated cysteines are highlighted in bolded green. 

 

 

 I focused my attention on the larger version of BRCA2250-500 mutated at positions C279, 

C393, C419 and C480 (BRCA2D1). It was impossible to purify it in the standard waterous 

buffers that we tried: the peptide construct was aggregating. After affinity purification in an 8 

M urea buffer, I diluted the sample to obtain a urea concentration of 0.05 M and recorded a 1H-

15N HMQC spectrum immediately after this dilution (Figure 94.A). Surprisingly, the spectrum 

presented broad peaks and I could not enumerate a reasonable number of peaks in comparison 

to the number of residues, and I observed a great heterogeneity among peak intensities. This 

result suggested that the BRCA2D1 fragment shows either heterogeneous agregates, or loose 

interactions with itself, or microsecond-millisecond time scale conformational exchange. In 

order to test if potential intermolecular interactions or conformational dynamics could be 

cancelled, I recorded 1H-15N HMQC spectra at increasing urea concentrations in the presence 

of DTT (Figure 94.B). Although urea improved the spectral quality, it did not permit to record 

high quality 1H-15N for BRCA2D1. Also, addition of ZnCl2 did not change the poor quality of 

the NMR spectra (and ZnCl2 concentrations higher than 20 uM led to protein precipitation) 

(Figure 95). 

 

 

A. B. 
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Figure 94. 1H-15N SOFAST-HMQC NMR spectra of BRCA2D1 

(A) BRCA2D1 at 100uM in 50 mM HEPES, 150 mM NaCl, 1mM DTT, 0.05 M urea at pH7.0. 

The spectrum was recorded at 283K, 700 MHz CEA Saclay (ns=16) (B) Urea titration of 

BRCA2D1 at 100 uM in 50 mM HEPES, 150 mM NaCl, 1 mM DTT at pH 7.0 with 6 M (red), 

2 M (green), 1 M (light blue), 0.5 M (dark blue) or 0.05 M (black) Urea, 700 MHz CEA Saclay, 

(ns=16). 

 

Figure 95. 1H-15N SOFAST-HMQC NMR spectrum of 15N BRCA2D1 at 50uM in 50 mM Tris 

at pH 6.1, 2 mM DTT, 20 uM ZnCl2, recorded at 283K, 600 MHz CEA Saclay (ns=256). 
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Earlier experiments in the lab suggested that chimeric constructs including GB1 may 

have improved solubility (cf. pre-laminA-GB1, thèse F. Celli). S. Zinn-Justin designed a GB1-

BRCA2D1 fragment, which corresponds to the N-terminal addition of the GB1 protein to the 

BRCA2D1 fragment. However, the 1H-15N NMR spectrum of GB1-BRCA2D1 after urea dilution 

also contains a weak number of peaks (Figure 96). In addition, 1H-15N GB1 NMR peaks are 

also scarcely observed on the spectrum recorded in the presence of 0.05 M Urea. This could be 

due to aggregation of the whole constructs, or heterogeneous, transient interactions between 

GB1 and BRCA2D1. 

 

 
Figure 96. 1H-15N SOFAST-HMQC NMR spectrum of GB1-BRCA2D1 

GB1-BRCA2D1 at 100uM in 50 mM HEPES, 150 mM NaCl, 1mM DTT, in presence of 0.05 

M urea (blue) or 6 M Urea (red) at pH7.0, recorded at 283K, 700 MHz (CEA Saclay). 

 

 Then, I focused my attention on the smaller fragment BRCA2D1A (i.e. BRCA2-aa250-

350-C279A), which contains the predicted zinc-finger domain and is in average more conserved 

than BRCA2D1 (Figure 92). Although the spectra looked better than those observed with 

BRCA2D1, we obtained only NMR spectra of poor quality after urea dilution, with a great peak 

intensity heterogeneity observed in a buffer containing 0.05 M urea (Figure 97). 
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Figure 97. 1H-15N SOFAST-HMQC NMR spectra of BRCA2D1A. Urea titration of 

BRCA2D1A at 100 uM in 50 mM HEPES, 150 mM NaCl, 1 mM DTT at pH 7.0 in presence of 

6 M (red), 2 M (green), 1 M (light blue), 0.5 M (dark blue) or 0.05M (black) urea. Spectra were 

recorded at 283K and 700 MHz (CEA Saclay). 

 

 In order to test whether the addition of DNA would improve the BRCA2DBD-NTD 

behavior, I recorded NMR spectra of BRCA2GB1-D1 and BRCA2D1A in the presence of short 

ssDNA and dsDNA (Figure 98). For all constructs, weak intensity peaks disappeared. For 

BRCA2D1, intense peaks show faint chemical shift perturbations upon addition of dsDNA. 

However, I did not observe any progressive effect depending on DNA concentration on the 

BRCA2D1 spectrum. The observed effects seem to be the consequence of sample dilution or pH 

or redox changes upon DNA addition, or eventually of mild aggregation.  

In conclusion, the poor quality of the NMR spectra could be interpreted in multiple ways 

that are difficult to deconvolute. Our efforts to improve the sample quality, to reduce the 

oxidation or the aggregation appeared to be ineffective. In these conditions, it was difficult to 

confirm any DNA interaction with these BRCA2 constructs. 
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Figure 98. 1H-15N SOFAST-HMQC spectra of BRCA2D1, BRCA2GB1-D1 and BRCA2D1A in 

presence of dsDNA or ssDNA. 

(A) BRCA2D1 at 100uM in 50 mM Tris-HCl at pH6.1, 150 mM NaCl, 1 mM PMSF, 1mM 

DTT, 2 uM ZnCl2, 1 M Urea in absence (black) or presence of 78 uM (orange) or 233uM (red) 

R9R10 dsDNA. (B) BRCA2GB1D1 at 50 uM in 50 mM HEPES, 150mM NaCl, 2 mM DTT at 

pH 7.0 in absence (black) or presence of R9R10 dsDNA at 50 uM (red) or of R9 ssDNA at 50 

uM (green). (C) BRCA2D1A at 100uM in HEPES 50 mM, 150 mM NaCl, 0.05M urea at pH 7.0 

in the absence (black) or presence of R9R10 dsDNA at 50 uM (red). All spectra were recorded 

at 283 K and 700 MHz (CEA Saclay) 

 

Because of BRCA2DBD-NTD tendancy to aggregate, we thought that this region may 

interact with DNA through liquid-liquid phase separation and membraneless droplet formation. 

I tested this hypothesis by observing BRCA2DBD-NTD under a microscope (Figure 99). I 

observed large droplets of BRCA2D1 after 36h incubation at 4°C. These early observations did 

not allow to distinguish aggregation from phase transition advanced droplets. However, it 

confirmed that BRCA2D1 forms large objects in presence or absence of DTT and Urea. Together 

with the NMR results, this raises concerns about the feasibility of any in vitro biochemical study 

using this region of BRCA2. 

 

 

A. B. C. 
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Figure 99. Light microscopy observation of BRCA2D1 after 36 hrs at 4°C. 

A l50 Zeiss microscope was used for these obervations, x63. (A) Buffer (B) Aggregates of 

BAF at 5 uM prepared by Agathe Marcelot (C) BRCA2D1 at 10 uM in 20 mM HEPES, 1 mM 

EDTA, 50 mM NaCl at pH7.0 (D) BRCA2D1 at 10 uM in 20 mM HEPES, 1 mM EDTA, 50 

mM NaCl, 2mM DTT at pH7.0 (E) BRCA2D1 at 10uM in 20 mM HEPES, 1 mM EDTA, 150 

mM NaCl, 2M Urea at pH7.0. 

 

 To continue the investigation, we benefited from the equipment and the expertise of the 

microscopy platform of the I2BC, notably the help of Romain Le Bars. Their Differencial 

Interference Contrast (DIC) microscope permitted to test the phase transition hypothesis of 

BRCA2D1. While the control Sox2115-317, prepared by Chafiaa Bouguechtouli, presents small 

droplets characteristic of phase transition, no similar objects were found for BRCA2D1 (Figure 

100). Even upon varying buffer conditions (1-3X PBS, 100-200mg/mL Ficoll, longer 

incubation, on ice or at room temperature), we did not observe any signs of phase separation 

events with BRCA2D1. BRCA2D1 primary structure does not correspond to a low-complexity 

region, and is not enriched in amino-acids (Arg, Tyr, Phe, Gly...) or features (alternated 

electrostatic patches) that favor transient, multivalent interchain interaction, and thus phase 

separation (Martin & Mittag, Biochemistry 2018, Wang.. Hyman Cell 2018).  Such a 

description is difficult to render, we attempted to show it below with a color code used by Tanja 

Mittag (polar, glycine, positive, negative, aromatic, hydrophobic, cysteines are highlighted 

in yellow): 

260        270        280        290        300 
TDSENTNQRE AASHGFGKTS GNSFKVNSCK DHIGKSMPNV LEDEVYETVV  
       310        320        330        340        350 
DTSEEDSFSL CFSKCRTKNL QKVRTSKTRK KIFHEANADE CEKSKNQVKE  
       360        370        380        390        400 
KYSFVSEVEP NDTDPLDSNV ANQKPFESGS DKISKEVVPS LACEWSQLTL  
       410        420        430        440        450 
SGLNGAQMEK IPLLHISSCD QNISEKDLLD TENKRKKDFL TSENSLPRIS  
       460        470        480        490        500 
SLPKSEKPLN EETVVNKRDE EQHLESHTDC ILAVKQAISG TSPVASSFQG 

 

Altogether, it is probable that the previously observed large objects result from cysteines 

oxidation leading to the the generation of soft protein aggregates. 
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Figure 100. DIC microscopy of Sox2115-317 and BRCA2D1 

(A) PBS supplemented with 100 mg/mL Ficoll (B) Sox2115-317 at 4 uM in PBS supplemented 

with 100 mg/mL Ficoll; (C) Sox2115-317 at 20 uM in PBS supplemented with 100 mg/mL Ficoll; 

(D) BRCA2D1 at 20 uM in PBS supplemented with 200 mg/mL Ficoll. 

 

 Because these BRCA2 fragments were extremely difficult to manipulate and to study, 

we decided to refocus my PhD project on the phosphorylation of BRCA2 by Plk1, which was 

a project that I started during my Master 2 internship. 
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BRCA2 is often mutated in hereditary cancers. In order to improve the diagnosis and 

treatment of these cancers, it is important to identify the causal mutations. Since the 90’s, 

several databases have listed the observed genetic variations on BRCA2. Molecular studies are 

now necessary to progress in the classication of these variants.  

BRCA2 is a large protein that contains a long N-terminal region (about 2,500 residues) 

predicted to be disordered. The function(s) of this region is (are) not very clear in the literature, 

although it contains conserved fragments. Among them, I was interested in two N-terminal 

conserved regions: residue 72 to 84 and 175 to 218. During my PhD, I carried out a molecular 

characterization of the BRCA248-284 region, which contains these two conserved patches. I also 

attempted to look at a poorly conserved N-terminal region, described as binding to ssDNA and 

dsDNA: residue 250 to 500. However, its weak affinity for short DNA fragments (20 to 48 nt) 

made it difficult to further characterize its binding mechanisms. 

 

 

1. BRCA248-284 phosphorylations 
 

Previous studies identified the fragment BRCA2(1-284) as a region phosphorylated by 

the kinase Plk1 at the entry into mitosis (Lin et al., 2003). Because the mutation of the S193 

residue decreased the phosphorylation signal observed by radiography, the authors of these 

early studies concluded that S193 is phosphorylated by Plk1. However, they could not precisely 

identify the phosphoresidues of BRCA2, which thus limited the functional characterization of 

the N-terminal region.  

In the course of my thesis, we proposed to use NMR spectroscopy for monitoring and 

studying phosphorylation events on BRCA2. I have implemented and updated protocols, based 

on previously published ones in 2013 (Theillet et al., 2013), for IDR/IDP phosphorylation 

monitoring using 1H-15N SOFAST-HMQC experiments. This pipeline of protocols -from the 

15N labeled peptide production, sample preparation, NMR monitoring to the data analysis- is 

based on the experimental procedures that we had to optimize to monitor BRCA2 fragments 

phosphorylation in the lab. We are now able to monitor phosphorylation reactions occurring on 

the N-terminal domain of BRCA2 in acceptable conditions of pH (7.0), buffer concentrations 

(PBS or equivalent) and temperature (298 K), in regards to physiological conditions. This set 

of protocols can be applied to a large number of IDPs. 
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However, as phosphorylation reactions occur in cells at pH 7.5 and 310 K, and these 

parameters are likely to affect the site preferences of kinases, as shown for p38a (Deredge et 

al.,  2019) or CK1d (Shinohara et al., 2017), we also developed a new NMR experiment to 

monitor phosphorylation using the 13C signals. 1H-15N NMR spectroscopy of IDPs is difficult 

at high pH and temperature, because of the fast water-amide proton exchange, whereas 13Ca-

13CO NMR signals are not pH dependent. I participated to the implementation and tests of this 

novel approach, which will further expand the range of proteins and conditions accessible to 

NMR characterization. 

In the following subchapters, I summarized, put into context, and draw interpretations 

and hypotheses on the individual results obtained on BRCA2. 

 

a. BRCA2 phosphorylation by Plk1 

Using NMR spectroscopy, I identified and monitored the phosphorylation of four 

BRCA2 residues by Plk1: S193, T207, T219 and T226. These favored phosphorylation events 

are followed by late phosphorylation of several additional residues. As the late phosphorylation 

events were markedly slow and concern residues showing poor conservation, we focused our 

analysis on the 4 first phosphoresidues. I performed phosphorylation kinetics studies of mutant 

versions of BRCA2 found in breast cancer patients, focusing on mutations neighboring S193 

and T207, like M192T, T200K and T207A. Not only these mutations affected the 

phosphorylation rates, but our collaborators (team of Dr. Aura Carreira) showed that they were 

also affecting the recruitment of BRCA2 partners and the localization of BRCA2, leading to 

mitotic defects in the case of M192T and T207A. 

To test the phosphorylation kinetics in a more physiological environment, I tried to 

phosphorylate BRCA2 by endogenous kinases from a cell extract: first with cell lysate from 

G2/M synchronized HEK cells, second with HeLa nuclear extracts (data not shown). However, 

only one phosphoresidue appeared from the total cell lysate experiment: pS70, probably 

phosphorylated by PKA. It may be useful to optimize such an experimental procedure in order 

to know whether the order of phosphorylation by Plk1 remains the same in an environment 

close to cellular conditions. Furthermore, it may permit to identify if the late BRCA2 

phosphoresidues observed in in vitro experiments correspond to artefacts due to the simplified 

experimental conditions (notably missing phosphatases) or if they may be biologically relevant. 

I also showed that a short BRCA2 synthesized peptide containing pT207A could 

function as an “activator” of Plk1 for the phosphorylation of a fragment of BRCA2aa1093-1158. This 

is consistent with published works on Plk1 activation, which show that: i) the interdomain 
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interactions between Plk1KD and Plk1PBD regulate Plk1KD activity (Xu et al., 2013), and ii) 

Plk1PBD binding to phosphopeptides containing its consensus recognition motif SpTP activates 

Plk1KD (Johnson et al., 2008, Zhu et al., 2016). This is also consistent with our prior results 

showing the diminished phosphorylation rates in BRCA2T207A fragments. However, it is still 

unclear whether pT207 plays only the role of “activator” by binding to Plk1PBD, or whether this 

binding also helps to favor further phosphorylation of the neighboring acids, hence playing the 

role of priming event. We also observed using NMR that the interaction region between 

pBRCA2167-260 and Plk1PBD is larger than the BRCA2 peptide used for X-Ray crystallography 

study. This suggest that S193 may play a similar role, although it does not correspond to a PBD 

binding motifs. The exact molecular scenography is not yet fully resolved. 

Altogether, we have shown that among the 4 phosphosites, S193 and T207 are important 

phosphorylation sites of BRCA2.  

 
b. Role of BRCA2pT77 for Plk1 phosphorylation 

Then, I investigated the role of priming BRCA2 phosphorylation by Cdks on subsequent 

Plk1 phosphorylation. Indeed, in 2014, Takaoka et al., showed that Cdks phosphorylate 

BRCA2T77 in cells during mitosis (Takaoka et al., 2014). BRCA2pT77 has been shown to be a 

Plk1PBD docking site (Takaoka et al., 2014, Yata et al., 2014), which suggested a role for 

BRCA2T77 in pS193 phosphorylation. Such priming events scenarii appear ever more to be a 

common theme, according to recent publications in the field (Ord et al., 2020, Singh et al.,  

2020). 

Here, I could obtain early results suggesting that the prior phosphorylation of BRCA248-

218 by Cdk1/B1 could speed up the subsequent phosphorylation of BRCA2S193 and BRCA2T207 

by Plk1. However, I could not pursue this characterization and perform a quantitative analysis 

because it would have been too costly (the commercial Cdk1/B1 is poorly active, yet very 

expensive). Then, I tried to phosphorylate BRCA2T77 by Cdk1/A2. Interestingly, the exchange 

of B1 cyclin for A2 cyclin modified the BRCA2 phosphorylation profile and did not yield high 

levels of pT77 phosphorylation.  

Cyclin A2 and B1 have been shown to affect Cdk2 substrate preferences (Brown et al., 

2007): i) the RxL consensus binding motif of Cyclin A2 shows poor affinity for Cyclin B1, 

which does affect the target recruitment to Cdk2; ii) the two cyclins generate different 

conformations and environments of the activation loop, and thus different binding surfaces for 

the substrate, i.e. different preferences for the phosphorylation motif. Such a comparative 

structural knowledge does not yet exist for Cdk1, to the best of our knowledge (Wood & 



 186 

Endicott, 2018). However, the structure of Cdk1/CyclinB1 shows a greater flexibility of the 

activation loop, which correlates with the fact that Cdk1 appears to accommodate better sub-

optimal substrate sequences than Cdk2 (Brown et al., 2015). Waiting for a structure of 

Cdk1/CyclinA2, we may also hypothesize that supplementary docking sites on CyclinB1 exist. 

Recently, a LxF motif and a PxxPxF motif have been shown to favor substrate recruitment by 

yeast homologs of CyclinB1 (Ord et al., 2018, Ord et al., 2020). We did not find such motifs in 

the N-terminal region of BRCA2. Anyway, in the context of this study, Cdk1/A2 was not of 

great help. 

I also tried to use the p38a kinase to pre-phosphorylate BRCA2 because it 

phosphorylates S/T-P motifs, similarly to Cdk1/B1. The first p38a phosphorylation events 

looked similar to those observed with Cdk1/B1. In the chosen conditions, we observed after 2 

hours almost stoichiometric phosphorylation of 2 sites on BRCA2, among which T77, and 

weaker stroichiometry but existing phosphorylation on 5 other sites. A more prolonged 

incubation led to more populated phosphorylation on these secondary sites. We tested the 

influence of these phosphosites on subsequent Plk1 phosphorylation. It revealed that: 

- BRCA2 incubated with p38a during 2 hours was phosphorylated by Plk1 faster on S193 

but not on T207; 

- BRCA2 incubated 4 hours and hyperphosphorylated by p38a was phosphorylated by 

Plk1 with the same rates than non-modified BRCA2. 

The first observation may confirm the data obtained by Takaoka et al., (2014): 

BRCA2pT77 seems to be linked to BRCA2S193 phosphorylation. It is intriguing to observe that a 

more complete phosphorylation suppresses the BRCA2pT77 effect on BRCA2pS193 kinetics. It 

would be interesting to test whether pre-phosphorylation by Cdk1/B1 has the same 

consequences. The recent production of Cdk1/B1 in the lab may permit such investigations. 

Would multiple phosphorylation of BRCA2 by Cdk1 or MAP kinases like p38a be 

biologically relevant? Multiple phosphorylation processes have been seen as tunable 

components for the signaling circuits, permitting either graded responses or signaling 

thresholds (Valk et al., 2014). Most examples of multisite phosphorylation correspond to 

phosphorylations by a single kinase that either activates or inhibits an interaction or an activity. 

Opposite functions are usually obtained by an equilibrium between kinases and phosphatases. 

An intriguing mechanism was also shown for the regulation of the transcription factor Elk1 by 

the MAP kinase ERK2: early phosphorylation sites of Elk1 favor the recruitment of the 

Mediator complex and the transcription of Elk1 target genes, while later phosphorylation sites 
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have the opposite effect (Mylona et al., 2016). This example shows that multisite 

phosphorylation by a single kinase can trigger subsequent, opposite functions. However, it is 

yet unknown if ERK2 is the only kinase possessing this particularity or if it is a more common 

mechanism (Whitmarsh et al., 2016). p38a is also a MAP kinase, but there is no information 

about any interplay between BRCA2 and p38a in the literature. In the case of 

BRCA2:Cdk1/B1, we can not exclude the possibility of a similar mechanism. We observed at 

least that Cdk1/B1 executes more than a single T77 phosphorylation event on BRCA2. In my 

opinion, it would be very interesting to investigate whether such a multiple phosphorylation 

scheme is part of a regulation process in cells. 

 
c. Generating single site phosphorylation on IDRs 

As described just above, we observed multiple phosphorylation sites on BRCA2 by 

Cdk1 and p38a, which showed varying kinetics, hence varying stoichiometries. This resulted 

in poorly defined samples and an increased complexity, which hampered the study of the impact 

of priming phosphorylation events on the subsequent phosphorylation by Plk1. We thought to 

switch to a chemical synthesis approach and initiated a collaboration with Dr. Vincent Aucagne. 

Using Native Chemical Ligation, they linked a N-terminal synthesized BRCA2 peptide, 

precisely phosphorylated at the position T77, to a recombinantly produced, 15N-labeled C-

terminal peptide containing the BRCA2 phosphotargets of Plk1, which I expressed and purified.  

We are now able to monitor Plk1 phosphorylation kinetics on BRCA2 and quantify the exact 

impact of pT77. 

Another strategy based on the recoding of bacterial amber stop codons would also 

permit to produce IDRs phosphorylated at chosen sites (Figure 101). This approach is 

apparently better adapted for the incorporation of phosphoserines, although a method has been 

published to introduce phosphothreonines (Rogerson et al., 2015, Zhang et al., 2017). Currently, 

Dr. François-Xavier Theillet attempts to implement this method in the lab using the strain 

described in Phillip Zhu et al. (2019). The authors improved the E.coli strain for increasing 

production yields and enhancing the production of multiphosphorylated proteins. Dr. Richard 

Cooley gave us the corresponding strain containing the tRNA optimized by the team of Pr. 

Jason W. Chin (Rogerson et al., 2015, Zhang et al., 2017). This perspective may be a long-term 

tool in the lab. It will be interesting to compare the efficiency of NCL versus the recombinant 

production of phosphoproteins. 
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2. Interactions and functions mediated by phosphoBRCA2 

 
The studies on phosphorylation kinetics of BRCA2 find notably their interest in the 

regulation of protein:protein interaction by the revealed phosphosites. Since the beginning, we 

had the feeling that a large part of the functionality of the N-terminal region of BRCA2 would 

lie in phospho-regulated interactions. This would provide clear explanations for the possible 

oncogenic role of mutations detected in breast cancer patients. 

The interaction between BRCA2pT207 and Plk1 emerged soon during my thesis and was 

shown to have important consequences on mitosis regulation. Some advanced details of this 

interaction are still missing to really understand the BRCA2pT207:Plk1 interaction and its 

consequences on Plk1 activity, which we discuss in the next first subchapter. The quaternary 

complex that BRCA2pT207 promotes with BubR1 and PP2A is not fully described yet and we 

discuss it in the second subchapter.  

Then, we had to face a common challenge in the field on IDPs: how to find novel protein 

partners, which, moreover, are often interacting with the phosphoforms of the IDP of interest. 

This situation is well exemplified for pS193, the only phosphoresidue among pS193-pT207-

pT219-pT226 that was previously characterized in the litterature. This phosphorylation has 

been shown to be essential for the localization of BRCA2 at the midbody (Takaoka et al., 2014): 

the mutant S193A fails to localize at the midbody but the phosphomimic S193E restores the 

BRCA2 localization. The team of Dr. Aura Carreira in collaboration with Dr. Yoshio Miki 

showed that the breast cancer variant M192T also presents cytokinesis defects. We have shown 

that the cancer patient M192T mutant does not strongly affect the phosphorylation of the 

BRCA2 phosphosites by Plk1. Thus, although the region around pS193 (including M192) is 

probably recognized by a partner that drives BRCA2 to the midbody (Mondal et al., 2012), this 

partner is yet to be identified. Concerning pT219 and pT226, their potential functions remain 

unclear. 

In this purpose, we used a pull-down/MS-proteomics approach, which revealed a few 

potential protein partners of BRCA2 that we started to test in vitro. This is discussed in the three 

next subchapters.  

Altogether, I explored several hypotheses for understanding the role of BRCA2 mitotic 

phosphorylations. In the meantime, this required to produce the many protein constructs 

necessary to characterize the corresponding interactions, including phosphorylated BRCA2 

constructs. I will not discuss the yet-to-be-proven interactions with DDX5 and PARP1 (see 
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Results 5.6.). Still, I would like here to stress the fact that finding new protein partners of IDPs 

is a labor-intensive task with the current approaches, notably because it ends often with 

disappointing in vitro titrations. This illustrates probably that the common pull-down methods 

used for folded proteins are not adapted to IDPs. These difficulties underline also the 

unpractical aspects of IDPs for in vitro characterization, i.e. their tendancy to form soluble 

aggregates (which is greatly facilitated by solvent accessible cysteines), their capacity to 

establish weak interactions either specific or unspecific, or to serve as interactions hubs. When 

I started my PhD, the lab was starting to work in the IDP field and to establish efficient protocols 

for their study. Since then, our lab tries to tackle the problem of identifying novel IDP partners, 

but exquisite methods remain to be found.  

 

a. BRCA2/Plk1 interactions 

First, I focused my attention on BRCA2pT207 as it corresponded to a potential Plk1PBD 

docking site, according to the known consensus Plk1PBD target motif (Elia et al., 2003, Elia et 

al., 2003). I confirmed the interaction between BRCA2pT207 and Plk1PBD by ITC. ITC data 

showed an interaction in the range of 200 nM, a classical affinity for Plk1PDB interactions with 

its known protein partners (Elia et al., 2003, Zhu et al., 2016). Dr. Simona Miron and Dr. 

Virginie Ropars resolved the X-ray structure of the complex. This structure revealed the 

importance of pT207 and S206 side chains for the interaction with Plk1PBD. In addition, we 

have seen that the mutation T207A slows down the phosphorylation profile of all the other 

residues (S193, T219 and T226). It is clear that BRCA2pT207 is important for the Plk1 

phosphorylation mechanism of BRCA2, as discussed in the previous section on 

phosphorylation kinetics. 

Further NMR analysis of the interaction suggested that the binding interface of 

BRCA2pT207 on Plk1PBD may be more extended than the core binding motif described by the X-

ray structure centered on the pT207 phosphosite. This could be due to the extended cryptic 

pocket that can arrange a hydrophobic motif at the N-terminus of the core PBD-binding motif 

(Liu et al., 2011, Sharma et al., 2019). There is a tryptophane at the corresponding position in 

BRCA2, but it is not observed in our X-ray structure. Tryptophane is a rare residue in IDRs and 

often reveals the position of an interaction site. The PBD has been also shown to interact with 

a variety of other non-phosphorylated partners (Archambault et al., 2015).  It has a very charged 

surface that may interact with the N-terminal and C-terminal regions surrounding pT207. My 

results demonstrated that mutations M192T, S193A and T200K reduce the Plk1 

phosphorylation of all the BRCA2 phosphosites, without any clear explanation. If the 
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BRCA2T207 N-terminal region including these residues was to interact with Plk1PBD, it would 

provide some hints about the impact of these three mutations.  

In parallel, we observed that multiple phosphorylation surrounding BRCA2pT77 may 

reduce the impact of its pre-phosphorylation on the subsequent phosphorylation by Plk1. 

BRCA2pT77 is clearly a docking site Plk1PBD, whose recognition may be affected by abundant 

phosphorylation events in its the vicinity. This could explain the contradicting results obtained 

with two different levels of priming phosphorylation by p38a on the subsequent 

phosphorylation by Plk1.  

Altogether, these data underline the role of Plk1 docking sites displayed by BRCA2 on 

Plk1 activity. Further studies will be necessary to fully decipher the interactions between 

BRCA2 and Plk1.  

 

b. The role of BRCA2pT207 in chromosome segregation: interactions with PP2A and 

BubR1 

The team of Dr. Aura Carreira has shown that BRCA2pT207/Plk1 is part of a quaternary 

complex also involving BubR1 and PP2A.  

The interaction between BRCA2 and BubR1 appears to be a key cellular event. It has 

been reported to be involved in two essential pathways: the kinetochore-microtubule attachment 

and the spindle assembly checkpoint (Lampson et al., 2005, Lara-Gonzalez et al., 2012, Elowe 

et al., 2010, Zhang et al., 2016). On one hand, the regulation of BubR1 by BRCA2, PP2A, Plk1 

and Aurora B regulates the kinetochore-microtubule attachment: BubR1 is phosphorylated by 

Plk1 (Matsumura et al., 2007) at two tension sensitive sites S676 (Elowe et al., 2007) and T680 

(Suijkerbuijk et al., 2012) and by Cdk1 at the attachment-sensitive-site S670 (Huang et al., 

2008), which controls the chromosome segregation. On the other hand, the BRCA2:BubR1 

(Futamura et al., 2000, Choi et al., 2012) and BRCA2:PCAF (Fuks et al., 1998, Lin et al., 2003) 

interactions promote BubR1 acetylation by PCAF (Choi et al., 2012, Park et al., 2017), 

activating the SAC. The literature reports two different interaction interfaces between BRCA2 

and BubR1: Futamura et al. (Futamura et al., 2000) showed an interaction between BubR1786-

1050 with BRCA22861-3176 , while Choi et al. (Choi et al., 2012) proposed an interaction between 

BRCA23189-3418 and BubR11-322. In the lab, Dr. Simona Miron initiated a study to better define 

which BRCA2 region interacts with BubR1. 

In this context, our collaborators showed that the formation of the 

BRCA2pT207/Plk1/pBUBR1/PP2A complex at the kinetochore leads to an enrichment in 

phosphorylated BUBR1 (by Plk1) and in phosphatase PP2A. Hence, BRCA2 serves as a 
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platform to bring together BubR1 and Plk1, which favors BubR1 phosphorylation by Plk1. 

Furthermore, in cells, the BubR1 phosphorylation is targeted by the kinase Aurora B, which 

destabilizes erroneous kinetochore-microtubule attachment (Hauf et al., 2003), and by the 

phosphatase PP2A, which protects the initial kinetochore-microtubule interaction form 

excessive destabilization by Aurora B (Foley et al., 2011).  

While the BRCA2pT207:Plk1 interaction is a new piece of information, several 

interactions of this quaternary complex were already elucidated. First, it has been reported that 

BRCA2 directly interacts with PP2A. PP2A-B56 presents 2 consensus binding sites: one 

mediated by electrostatic interactions (Wang et al., 2020) and the second one that recognizes 

the core target consensus motif L-X-X-I-X-E, with X for any amino acid (Hertz et al., 2016, 

Wang et al., 2017). The second one interacts favorably with the fragment 1114-1119 (LSTILE) 

of BRCA2 (Hertz et al., 2016). During my PhD, I have described the disorder propensity of the 

BRCA21093-1158 region and analyzed the interaction between BRCA21093-1158 and PP2A-B56 by 

NMR. The NMR results showed a global peak intensity decrease for BRCA21093-1158 upon 

addition of PP2A-B56, which is consistent with an interaction. This interaction was further 

confirmed using ITC by Rania Ghouil. However, we did not yet restrict the exact binding region 

to the short fragment BRCA21114-1119 containing the L-X-X-I-X-E motif. I also identified that 

Plk1 can phosphorylate BRCA21093-1158 at several positions including S1115, comprised in the 

L-X-X-I-X-E motif. This phosphorylation by Plk1 may favor the formation of the 

BRCA2/PP2A complex, as reported below for BubR1.  

 Indeed, BRCA2 and BubR1 bind PP2A through similar sequences: the L-X-X-I-X-E 

motifs of both BRCA21114-1119  and the KARD domain of BubR1. This interaction is promoted 

by the phosphorylation of the BubR1 KARD domain by Plk1 (Suijkerbuijk et al., 2012, Wu et 

al., 2017). Thus, there might be a competition between BRCA2 and BubR1 for binding to 

PP2A. Because Plk1 phosphorylates both BRCA2 and BubR1, a regulation of the PP2A 

partners may be mediated by Plk1 phosphorylations, which would permit a tight regulation of 

the Spindle Assembly Checkpoint. All these informations are summarized in Figure 101. 
Hence, we have shown that N-terminal phosphorylation of BRCA2 by Plk1 promotes 

BubR1 phosphorylation and a correct kinetochore-microtubule attachment. Phosphorylation of 

N-terminal BRCA2 by Plk1 was also shown to release PCAF from BRCA2 (Lin et al., 2003), 

which is suggested to favor the decrease of BubR1 acetylation (Choi et al., 2012) and inhibits 

the SAC. These two pathways seem to be regulated in time by Plk1-dependent 

phosphorylations. It may be interesting to explore in cells how these two pathways work 

together to ensure mitotic progression, i.e.: i) the role of BRCA21093-1158 phosphorylation in the 
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regulation of BRCA2:PP2A binding and ii) the competition between BRCA2 and BubR1 for 

binding to PP2A before and after phosphprylation by Plk1 during mitosis. These questions will 

be investigated in the context of a new PhD project. 

 

Figure 101. BRCA2/Plk1/BubR1/PP2A quaternary complex upon phosphorylation by Plk1. 
When Plk1 is not active (left), BRCA2T207 does not interact with Plk1PBD. As a result, the 
phosphorylation of BubR1 by Plk1 is low. BubR1 and BRCA2 interact with the same PP2A 
docking site. This favors the dephosphorylation of BubR1, which, in turn, disfavors 
chromosome segregation. Upon Plk1 activation (right), Plk1 phosphorylates BRCA2pT207 and 
interacts directly with BRCA2. This promotes BubR1 phosphorylation by Plk1 on its kinase 
domain and its LXXIXE motif, which strengthens the BubR1:PP2A interaction. PDB codes 
used for the Figure: 3D folded domain of BRCA2 (1IYJ), Plk1PBD (6GY2), the kinase domain 
of BubR1 (6JKK), PP2A (2NPP), PP2A-B56 (5SWF). No human Plk1 structure was yet 
elucidated, thus the kinase domain (3D5U) was docked onto the PBD domain using the Danio 
rerio Plk1 structure (4J7B). 
 

 
c. Use of proteomics for searching IDRs partners  

In order to identify new phosphoBRCA2 partners, I performed pull-down experiments 

followed by semi-quantitative mass-spectrometry proteomics analysis, in collaboration with the 

Institut Curie proteomic platform. François-Xavier Theillet had explored this approach 

previously and set up the use of AviTag-directed biotinylation by BirA, together with the 

feasibility of detecting new IDP partners by MS analysis of pull-downs. In attempting to find 

appropriate experimental conditions, I used two protocols: 

- 2 ng of non-phospho- and phospho-BRCA2167-260 on 25 uL of dry beads, 2 hrs of 

incubation with cell extracts and gentle washes; 

- 10 ng of non-phospho- or phospho-BRCA2167-260 on 50 uL of dry beads, 30 min of 

incubation with cell extracts and several washes with beads resuspension. 

The first condition led to the identification of 6 partners with a low p-value, while the 

second condition led to identify 4 partners but with a higher p-value. We found that Kif2C, 

Kif2A and Plk1 were pulled-down in both conditions (2 and 10 ng bait protein), which gave 
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good hopes that they might be real binding partners. I am currently testing the interactions 

between phosphoBRCA2 and two of the partners identified, Kif2C and Chk2, in order to 

validate their direct binding. 

Because IDRs interacts with their partners often with affinities in the micromolar range 

and in transient fashions, it is not straightforward to define optimal conditions for pulling-down 

new partners. The scarcity of the differentially pulled-down proteins is not very satisfying nor 

encouraging. Cross-linking methods are likely to lead to a great number of false identifiations, 

because of the great accessibility and unspecifc interactions that IDPs experience in the cellular 

milieu. Identifying IDP partners keeps hampering the field. 

 

d. Kif2C/phosphoBRCA2 interaction 

I decided to focus my attention on the interaction between the kinesin Kif2C and 

BRCA2. Indeed, Kif2C is localized at the kinetochore and the Flemming body, like BRCA2 

and Plk1 (Zhang et al., 2011, Takaoka et al., 2014). IDRs establish most often specific 

interactions with folded domains. Hence, I tested first the interaction between the neck+motor 

domain of Kif2C and pBRCA2167-260. Up to now, I could unfortunately not nail any direct 

interaction between these two constructs, using ITC, NMR or size-exclusion chromatography 

assays. In the next months, I will investigate the possible interactions with the full length Kif2C.  

It is known from the literature that the kinase domain of Plk1 interacts directly with the 

motor domain of Kif2C (Zhang et al., 2011). As Plk1 was found in the proteomics result with 

a high p-value, I proposed the hypothesis that the BRCA2/Kif2C interaction is mediated by 

Plk1. However, I did not confirm the interaction between Kif2Cmotordomain and Plk1KD using gel 

filtration analysis. We should probably test the interaction between Plk1KD and full length 

Kif2C. We could also hypothesize that the concomitant presence of Plk1, pBRCA2 and Kif2C 

is necessary to establish a ternary complex (Figure 102). These hypotheses will be tested using 

gel filtration and NMR. 
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Figure 102. Known interactions between BRCA2, Plk1 and Kif2C. 
BRCA2pT207 interacts with Plk1PBD (6GY2) and Plk1KD with Kif2Cmotor domain (Zhang et al., 
2011) 
 

The question of the functional relevance of such a complex remains. To the best of our 

knowledge, BRCA2 and Kif2C have not been shown to exert functions in a common pathway. 

However, they present similar functions, in particular for the kinetochore formation: Kif2C, 

which is able to depolymerase microtubules, is involved in the centromere-microtubule 

attachment and in microtubule catastrophes (Tanenbaum et al., 2011), while BRCA2 serves as 

a platform for sensing the correct alignment of chromosomes along the metaphase plate (Elhen 

et al., 2020). BRCA2 and Kif2C both interact and are phosphorylated by the kinase Plk1. Plk1 

was indeed shown to phosphorylate Kif2C and positively regulate its depolymerase activity 

during metaphase and anaphase (Zhang et al., 2011, Sanhaji et al., 2011). As Plk1 is known to 

protect the kinetochore-centromere architecture against tension (Lera et al., 2019), the 

formation of a BRCA2/Kif2C(+/- Plk1) complex phosphorylated by Plk1 may have a function 

in the preparation of chromosome segregation.  

BRCA2 and Kif2C also both localize at the midbody during cytokinesis (Zhang et al., 

2011, Takaoka et al., 2014). During cytokinesis, BRCA2 has been shown to interact with 

several partners to ensure a correct cytoplasm division at the end of mitosis (Morita et al., 2007, 

Mondal et al., 2012, Takaoka et al., 2014, Marmorstein et al., 2001, Yuan et al., 2001). While 

other kinesins are involved in the last step of cell division, a cytokinetic function of Kif2C is 

absent from the literature (Zhu et al., 2005, Gigant et al., 2017). The BRCA2/Kif2C complex 

may be involved in the process of cytokinesis but it would be a very new function for Kif2C. 

Kif2C may also drive the BRCA2 localization to the midbody, for which no protein recognizing 

the BRCA2pS193 region was yet identified. 
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In addition, Kif2C was recently shown to be involved in the regulation of DSBs DNA 

repair (Zhu et al., 2020). The microtubule depolymerase activity of Kif2C is linked to the 

formation of DNA damage foci that are essential for the resolution of DSBs. A function of the 

BRCA2/Kif2C complex in DSBs repair can not be excluded, but it is doubtful because the two 

proteins are involved in very different steps of DSBs repair. Furthermore, the mitotic 

phosphorylation of BRCA2 by Plk1 is needed for the complex formation, which indicates that 

the complex formation should possess mitotic function. 

Finally, Kif2C is highly expressed in testis, where its role in microtubule 

depolymerization is essential for the first steps of spermatogenesis. During mitosic steps of 

spermatogenesis, Kif2C acts as in somatic cells by creating microtubule catastrophes for spindle 

organization (Ma et al., 2017). BRCA2 is also involved in spermatogenesis, however, it 

functions mainly in the meiosis part of the process.  

To conclude, the interaction between BRCA2 and Kif2C would be a new information. 

However, this hypothesis must be confirmed by in vitro experiments. Furthermore, establishing 

the biological role of this complex would require cell biology experiments, e.g. the comparison 

of phenotypes of cells expressing either WT BRCA2 or VUS BRCA2 impairing the formation 

of the complex. 

 

e. Chk2/phosphoBRCA2 interaction 

Chk2 was found to interact with phospho-BRCA2 in our pull-down assays analyzed by 

MS-proteomics. Hence, I tested the interaction between the kinase Chk2 and pBRCA2167-260, 

starting with the FHA domain of Chk2, which is known to interact with phosphopeptides (Li et 

al., 2002). The comparison between our recent NMR spectra of pBRCA2167-260 free and in 

presence of Chk2-FHA provided an uncertain answer: we observed weaker NMR signals in the 

region surrounding pBRCA2167-260(aa220). We are currently waiting for the FHA alone to 

confirmed this interaction.  

We know that Chk2 phosphorylates BRCA2 at the position 3387 upon DNA damage 

(Bahassi et al., 2008). This phosphorylation is important for the dissociation of Rad51 from 

TR2 (Bahassi et al., 2008) and its re-localization to new DNA damage foci. However, no direct 

interaction between Chk2 and BRCA2 has yet been described. The confirmation of this 

interaction would be a novel piece of information and may be important for the signalling of 

DNA repair pathways. Chk2 was also shown to be involved in the mitotic exit upon 

unattachment of kinetochores (Petsalki & Zachos, 2014). Thus, a BRCA2/Chk2 interaction may 

also be a part of the chromosome segregation regulation. 
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f. Is the NTD-DBD of BRCA2 functional? 

Initially, I investigated the interaction between another region of BRCA2 (BRCA2250-

500) and DNA. This project was my initial PhD project and was funded by the ANR 

FUNBRCA2. Hence, I dedicated quite some time to test this interaction. 

In 2016, our collaborators showed by EMSA that BRCA2250-500 is able to bind several 

forms of DNA (dsDNA, ssDNA, 3’ overhang and gapped DNA) with better affinity than the 

well-known C-terminal CTD-DBD (Von Nicolai et al., 2016). They also showed that 

BRCA2250-500 was sufficient to promote Rad51 recombination, suggesting a role of this region 

in Homologous Recombination. In addition, double mutations including C279, C315 or C341 

impacted the formation of BRCA2 complex with dsDNA but not with ssDNA. This led them 

to suspect the existence of a Zinc-finger folding in the BRCA2265-349 region.  

In the course of our study, we had great difficulties to obtain soluble WT BRCA2250-500 

and BRCA2250-350. Even upon mutations of non-conserved cysteines, BRCA2250-500 and 

BRCA2250-350 remained poorly soluble. In addition, no folding or secondary structure 

propensities could be perceived for BRCA2250-500 in NMR spectra, even upon addition of ZnCl2. 

We observed by microscopy that BRCA2250-500 forms large, soluble aggregates upon overnight 

incubation at 277 K, but we did not detect any droplets that would reveal liquid-liquid phase 

separation. Finally, we could not observe any clear interaction between this BRCA2 region and 

ssDNA or dsDNA using NMR spectroscopy.  

We did not manage to find an appropriate peptide construct to work with, which pushed 

us to stop the structural characterization of this region. 

In the team of Dr A. Carreira, BRCA2250-500 was produced in mammalian cells and then 

purified (Von Nicolai et al., 2016). Thus, two hypotheses may be drawn: 

- This region needs to be expressed in mammalian cells to get its DBD characteristics. It may 

require post-translational modifications or a specific environment to be soluble and bind DNA, 

- The aggregation propensity of this region, which is correlated with the number of cysteines in 

our hands, generates artefacts during the EMSA analysis of its DNA binding. The loss of DNA 

interaction upon cysteine mutation is consistent with this hypothesis. Soluble aggregates of the 

studied BRCA2 constructs would slow down DNA migration in the polyacrylamide gels. In our 

hands, the DTT concentrations (about 1 mM) in EMSA gels were not enough to maintain 

cysteines of cysteine-rich IDPs in their reduced states in solution, according to NMR 

characterization.  In order to exclude this hypothesis, it may be relevant to use another technique 

such as ITC or NMR with a sample non-prone to aggregation. 



 197 

Interestingly, Brh2, the BRCA2 homolog from the fungus Ustilago maydis, possesses 2 

DBD: one in its N-terminus and one in its C-terminus (Zhou et al., 2009). Sequence alignment 

between BRCA2 and Brh2 indicated that the C-terminal DBD of Brh2 contains the OB1 and 

OB2 folds but not OB3 (Zhou et al., 2009) and interacts with DNA. The NTD-DBD of Brh2 

collaborate with the single BRC motif of Brh2 to assemble Rad51 on protruding ssDNA (Zhou 

et al., 2009), independently from the CTD-DBD. Further studies have shown that NTD-DBD 

is the priming DNA docking site and these two DBDs contribute in different ways to repair 

processes (Zhou et al., 2014). 

The NTD-DBD of Brh2 was shown to interact with several forms of DNA, as the NTD-

DBD of BRCA2. However, alignment between BRCA2 and Brh2 sequences did not reveal 

evident homology between the 2 DBDs (Zhou et al., 2009). Furthermore, if a zinc-finger 

domain is formed in BRCA2-NTD, it is not conserved among species as the cysteines are not 

conserved beyond mammals (Zhou et al., 2009). Similarities in structure/mechanism are thus 

complicated to imagine. The conservation of some basic residues among mammals (human 

BRCA2310-350) suggests that this region may recognize a negatively charge partner, such as 

DNA. However, mini-BRCA2 constructs that contains only few BRCA repeats and the CTD-

DBD are enough to ensure HR in cell (Siaud et al., 2011). Thus, if a N-terminal DBD is present 

on BRCA2, it is probably not essential for DNA repair involving BRCA2.  

 
3. Plk1, a cancer target with non-elucidated regulation and dynamics 

 
To fully understand the interactions between BRCA2 and Plk1, I needed to obtain high 

amounts of well-defined and homogeneous samples of Plk1. Hence, I tried to produce it in-

house. I thought that it would also permit to obtain structural information on the regulation of 

Plk1 activity. To achieve these goals, I produced several constructs of Plk1. 

We carried out initial trials using human cDNA cloned into the local bacmid systems 

for production in insect cells. The results were not satisfying. We will try again with codon-

optimized genes in 2021. In the meantime, I tried to produce Plk1 constructs in E. coli. We 

found conditions to achieve this recombinant production and the subsequent purification for the 

separated Plk1PBD and Plk1KD. Hence, we are now capable to produce the kinase domain of 

Plk1 without the PBD. I have shown that this isolated KD can be used for phosphorylation 

assays without any severe drawbacks on phosphosite recognition. This will be a useful tool for 

studying Plk1 targets in the absence of the neighboring Plk1PBD docking site, e.g. in the case of 

BRCA21093-1158. 
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I also initiated the production of the FL Plk1 kinase. The purification protocol of Plk1FL 

is still to be optimized. However, the obtained amounts of Plk1FL from bacterial expression are 

quite low. 

In parallel, I attempted to activate Plk1 by the phosphorylation of T210 using the kinase 

Aurora A. This part of the project is still in progress. Previous tests did not permit to observe a 

clear phosphorylation of Plk1T210 by Aurora A. Because the construct of AurA-TPX2 was 

previously shown to phosphorylate efficiently its targets (Zorba et al., 2014) and Aurora A-

TPX2 and Plk11-328 are eluted at a relevant gel filtration elution volume, I do not suspect that 

the construct design or the protein quality are the limiting factors in this experiment. Thus, four 

strategies may be considered: 

- Optimize buffer conditions for Aurora A phosphorylation. Even if I used conditions close to 

the previously described ones (Zorba et al., 2014), it may be possible that phosphorylation of 

Plk1 has to be performed in other conditions (pH, salts); 

- Remove the Plk1-C212S mutation that we used in the Plk11-328 construct, which may be 

deleterious for the phosphorylation of Plk1T210 by Aurora A; 

- Aurora A may not be the kinase that directly phosphorylates Plk1 but only a part of the 

mechanism. In this case, the use of the Slk kinase may be a solution, as shown 15 years ago in 

the literature (Johnson et al., 2008); 

- Add the mutation T210D in the construct: T210D has been shown to mimic the 

phosphorylated state of T210 (Macurek et al., 2008). 

 

In the meantime, I started to draw plans for studying structural dynamics between the 

two Plk1 domains. The study of Plk1 from Danio rerio showed that the long linker between 

Plk1KD and Plk1PBD negatively regulates the activity of Plk1KD (Xu et al., 2013). Our strategy is 

to use NMR to investigate the dynamics between the two domains in presence or absence of 

the long linker and in presence or absence of the activating phosphorylation (pT210). 

I observed that the linker length does not have any consequence on the phosphorylation 

activity of the isolated Plk1KD. I also showed that it seems to be possible to reconstitute a 

Plk1KD/Plk1PBD complex, according to NMR data. This will have to be further confirmed using 

other techniques (ITC, GF). As the human Plk1 structure is not avaible yet, we will initiate 

crystallogenesis assays by reconstituting the Plk1KD/Plk1PBD complex using separated domains 

or by varying the linker length.  

Then, in the short-term, in collaboration with the group of Dr. Daniel Haussinger, we 

will attach a lanthanide tag to the kinase domain for structural characterization purposes (Joss 
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et al., 2019). Because the ~70 kDa full-length Plk1 is certainly a challenge for NMR 

investigations, we have to think of efficient isotope labeling strategies that may provide 

sufficient NMR signal. Selective 13C-labeling of methionines may be an attractive and 

affordable solution. Plk1KD contains 4 Met, Plk1PBD 5. We can reasonably expect that a couple 

of residues in each domain show resolved resonances. The assignment of their 1H-13C methyl 

resonances should be feasible using an Ala-mutation strategy. In Plk1PBD, methionines are well-

spread and present mainly at the surface (Figure 103). Hence, we propose a strategy consisting 

in comparing the 1H-13C spectrum of Plk1PBD with the 1H-13C spectrum Plk1FL and 

Plk1PBD+Plk11-328 labeled with the lanthanide-tag at the L162 position. Pseudo-contact shifts 

will allow to confirm the orientation between PBD and KD of human Plk1. Then, the same 

experiments may be carried out with the truncated Plk1PBD and Plk11-366 to test the influence of 

the.linker. Finally, the same experiments can be carried out with the T210-phosphorylated 

kinase domain (Plk11-328 and Plk11-366) using the T210D mutation. The inverse labeling 

(lanthanide tag on the Plk1PBD and specific amino acid labeling of Plk1KD) may be considered 

to complete the information. This study would permit to obtain further information about the 

cooperation between the 2 domains of human Plk1. Alternative labeling schemes may be more 

appropriate. The resulting NMR spectral quality can unfortunately not be predicted. 

 

Figure 103. A proposed labeling strategy for studying Plk1KD/Plk1PBD interface 
Plk1PBD (grey, PDB code: IUMW) contains 4 exposed methionines (red) and one methionine 
in the protein core. Interestingly one of them is at the interface with the Plk1KD (PBD: 5TA8 
align to the PBD with Danio rerio Plk1:4J7B) 
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In the long-term, such information may be useful for designing Plk1 inhibitors in the 

context of cancer therapy. Overexpression of Plk1 has been observed in a wide variety of 

cancers (Strebhardt et al., 2010) including non-small cell lung (Wolf et al., 1997), breast (Wolf 

et al., 2000), ovarian (Weichert et al., 2004) and head and neck squamous carcinomas (Knecht 

et al., 2000), as well as melanoma (Strebhardt et al., 2000) and diffuse large B cell lymphoma 

(Liu et al., 2007). These cancers with an overexpression of Plk1 are often correlated with a poor 

patient prognosis (Eckerdt et al., 2005). Furthermore, downregulation of Plk1 expression causes 

reduced proliferation in a variety of cancer cell lines and tumor xenografts but not in normal 

cells (Lane et al., 1996, Spankuch et al., 2002, Liu et al., 2003, Guan et al., 2005, Elez et al., 

2003), suggesting that inhibition of Plk1 as an attractive target for cancer therapy (Liu et al., 

2015). 

Several Plk1 inhibitors were developed as anti-cancer candidates for tumors 

overexpressing Plk1. Several were tested in clinical studies, and are listed in the 

clinicaltrials.gov website, but none of them obtained an authorization for large clinical use 

(O’Neil et al., 2015). In 2015, a review listed the current Plk1 inhibitors under clinical test (9 

in phase I or II, 2 in phase 3, Brandwein et al., 2015). Among them, we can identify some 

specific inhibitors of Plk1, however, most of the inhibitors also have an inhibitory impact on 

the other Plks (Strebah et al., 2010, Liu et al., 2015). The most promising molecules are the 

following (Figure 107):  

- GSK461363 inhibits Plk1 with a Ki of 2.2 nM, and is more than 1,000-fold selective against 

Plk2/3 (Gilmartin et al., 2009),  

- TAK-960 has an IC50 of 0.8 nM against Plk1 but presents also inhibitory activities against 

Plk2 (IC50: 16.9 nM) and Plk3 (IC50: 50.2 nM) (Hikichi et al., 2012),  

- Rigosertib has an IC50 of 9 nM for Plk1, it shows 30-fold greater selectivity against Plk2 

(Gumireddy et al., 2005),  

- BI2536 has an IC50 of 0.83 nM for Plk1 and shows a 4- and 11- fold greater selectivity against 

Plk2 and Plk3 (Steegmaier et al., 2007),  

- Volasertib has an IC50 of 0.87 nM against Plk1and a 6- and 65- fold greater selectivity against 

Plk1 and Plk3 (Rudolph et al., 2009).  

 

The chemical differences between the most promising inhibitors (number of cycles, 

presence of sulphur, fluor...) show that the optimization of new Plk1 inhibitors offers a large 

panel of possibilities. Furthermore, not all the molecules have the same inhibition process on 
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Plk1: some of them target the kinase domain while the others target the PBD. The intrinsic 

limits of targeting only one of the two Plk1 domains may be an explanation for the non-

conclusive clinical tests. Interestingly, in 2018, one compound has been shown to inhibit the 

interaction between the KD and the PBD of Plk1: AW00551 (Raab et al., 2018). This new class 

of inhibitors, targeting the interface between the KD and the PBD may be more efficient for the 

modulation of Plk1 activity and functions. 

Hence, it will be interesting to provide further structural details about the 

Plk1KD/Plk1PBD interaction and to describe their modification upon kinase activation. 

Hopefully, this will help to design Plk1 inhibitors for treating a large panel of cancers.  

 
4. Conclusion 

 
Throughout my PhD, I characterized the disorder propensity of BRCA248-284, set up 

methodologies for the identification and the monitoring of its phosphorylation by Plk1, 

explored the role of BRCA2 pT77 as a priming event for the phosphorylation by Plk1, and 

tested several potential interactions for understanding the role of phosphoBRCA248-284. This led 

us notably to characterize the interaction between the BRCA2pT207 region and Plk1PBD. 

Hopefully, the identification of Kif2C and Chk2 binding regions in BRCA2 will allow us to 

extend our knowledge on the regions of high importance for BRCA2 functions. 

In conclusion, throught the methodology set up and the exploration of several 

hypothetical BRCA2 interactions, this work probably help to orient future research on BRCA2 

in the team. In addition, the identification of functional regions of BRCA2 constitutes a basis 

for the prediction of causal breast cancer variants in this region. It will also permit to design 

protein-protein interaction tests for contributing to classify variants of the region.  
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Annexe 1. Relationships between PTMs or 

interactions and BRCA2 functions are 

displayed with the following color code: red 

for DNA repair, yellow for centrosome 

localization, green for chromosome 

segregation, blue for cytokinesis, purple for 

meiosis, grey for unknown function. BRCA2 

directly interacts with a large panel of proteins 

and contains several phosphorylation sites: 

T77 (Cdk, Takaoka et al., 2014), S193, (Plk1, 

Ehlen et al., 2020), S683 and S755 

(ATM/ATR, Matsuoka et al., 2007), between 

the BRC repeats (Plk1, Lee et al., 2004) S3291 

(Cdk, Esashi et al., 2005) and T3387 (Chk, 

Bahassi et al., 2008). 
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Résumé : BRCA2 est une oncoprotéine fréquemment mutée 
dans les cancers du sein héréditaires. Pour améliorer le diagnostic 
de ces cancers, plusieurs études moléculaires ont localisées des 
régions clés de BRCA2 et ont caractérisées l’impact de mutations 
sur les fonctions portées par ces régions.  
Ici, je m’intéresse à la région aa 48 à aa 284 (BRCA248-284) de la 
protéine. Cette région conservée est désordonnée (Julien et al. 
2020 Biomol. NMR Assign), c.à.d. qu’elle ne contient pas de 
structure secondaire stable. Cette région est également phospho-
rylée par la kinase Plk1 à l’entrée en mitose Cependant, des 
études précédentes utilisant la spectrométrie de masse n’ont pas 
permis d’identifier précisément les sites phosphorylés, limitant 
ainsi leur caractérisation fonctionnelle. Pour contourner ce pro-
blème, nous avons utilisé la RMN en temps réel pour identifier 
et caractériser les phosphorylations de BRCA248-284, à l’échelle 
du résidu. Nous avons développé deux protocoles permettant 
d’étudier la phosphorylation de régions désordonnées pour une 
grande gamme de pH et températures (Julien et al. 2020 Methods 
Mol. Biol; Alik et al. 2020 Angew. Chem.). Ainsi, nous avons 
identifié que Plk1 phosphoryle BRCA248-284 sur deux sites con-
servés : pS193 et pT207. Ceci. Nous a servi de base pour la ca-
ractérisation de ces sites. 

D’abord, nous avons identifié grâce à des méthodes biophy-
siques que BRCA2pT207 est un site d’interaction pour le do-
maine régulateur de Plk1. En collaboration avec l’équipe de 
Dr. Aura Carreira, nous avons montré que cette interaction est 
à la base d’un complexe quaternaire (BRCA2, Plk1, BubR1 et 
PP2A) qui régule l’alignement des chromosomes en méta-
phase (Ehlen et al. 2020. Nat Commun.). Nous avons aussi dé-
montré que des mutations de BRCA2 issues de patientes ont 
un impact sur la phosphorylation de BRCA2 et la formation du 
complexe. Puis, nous avons réalisé des expériences de protéo-
mique pour identifier de nouveau partenaires mitotiques re-
connaissant pBRCA248-284. Nous avons identifié Plk1 et 
d’autres protéines impliquées dans la mitose. J’ai débuté l’ana-
lyse structurale de deux nouveaux partenaires prometteurs : 
Kif2C et Chk2. 
Nous avons aussi étudié le rôle de la préphosphorylation de 
BRCA2T77 par Cdk sur la phosphorylation par Plk1. Nous 
avons trouvé que BRCA2pT77 favorisait la phosphorylation de 
BRCA2S193 par Plk1. 
Enfin, nous avons initié une étude structurale sur la kinase 
Plk1, surexprimée dans de nombreux cancers dont le cancer du 
sein. Ici, j’ai produit plusieurs constructions de la kinase qui 
serviront à sa caractérisation structurale. 

  
 

Title : Plk1 mitotic phosphorylation in the N-terminal region of the BRCA2 protein: identification, characterization and role in protein 
interactions 
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Abstract :  BRCA2 is an oncoprotein frequently mutated in he-
reditary breast cancers. To improve the diagnosis of these can-
cers, several molecular studies have identified BRCA2 key posi-
tions and characterized mutations in these regions causing a 
BRCA2 loss of function. However, these studies mainly focused 
on the C-terminal globular domain of BRCA2. 
Here, we characterized the N-terminal region of BRCA2 from aa 
48 to aa 284 (BRCA248-284). This well-conserved region is disor-
dered, i.e. it lacks stable secondary structure (Julien et al. 2020 
Biomol. NMR Assign). It is also highly phosphorylated by the 
kinase Plk1 at the entry into mitosis. However, previous studies 
using mass spectrometry didn’t allow to precisely identify all the 
phosphorylation sites, limiting their characterization. To circum-
vent this problem, we used real-time NMR to monitor phosphor-
ylations of the N-terminal region of BRCA2, at the residue level. 
We developed 2 protocols for disordered regions allowing phos-
phorylation in a large range of temperatures and pHs (Julien et al. 
2020 Methods Mol. Biol; Alik et al. 2020 Angew. Chem.). Then, 
we identified that Plk1 phosphorylates BRCA2 at 2 conserved 
positions: pS193 and pT207. We further searched for the function 
of these phosphoresidues. 

First, we identified by biophysical methods that BRCA2pT207 
creates a docking site for the regulatory domain of Plk1. In col-
laboration with the group of Dr. Aura Carreira, we showed that 
this interaction contributes to the assembly of a quaternary 
complex involving BRCA2, Plk1, BubR1 and PP2A that regu-
lates chromosome alignment in mitosis (Ehlen et al. 2020. Nat 
Commun.). We also demonstrated that breast cancer variants 
impact the phosphorylation of BRCA2 and the formation of the 
complex in vitro and in cell. Then, we performed proteomics 
experiments to identify new mitotic partners specific to phos-
pho-BRCA2, and found Plk1 as well as other proteins involved 
in mitosis. I started the characterization of two new BRCA2 
partners: Ki2C and Chk2. 
We also explored the role of Cdk1 phosphorylation of 
BRCA2T77 on further Plk1 phosphorylation. We found that 
early BRCA2T77 phosphorylation increases the phosphoryla-
tion rate of BRCA2S193 by Plk1. 
Finally, we initiated a project about the Plk1 kinase, an inter-
esting cancer-target as it is often overexpressed in several can-
cers, including breast cancers. Here, I produced several con-
structs of the kinase for further structural characterization. 

 


