In this thesis, we shall investigate on the unification problem in ordinary modal logics, fusions of two modal logics and multi-modal epistemic logics. With respect to a propositional logic L, given a formula A, we have to find substitutions s such that s(A) is in L. When they exist, these substitutions are called unifiers of A in L. We study different methods for the construction of minimal complete sets of unifiers of a given formula A and according to the cardinality of these minimal complete sets, we shall discuss on the unification type of A. Then, we determine the unification types of several propositional logics.

Résumé

Dans cette thèse, nous étudierons le problème de l'unification dans les logiques modales ordinaires, les fusions de deux logiques modales et les logiques épistémiques multi-modales. Relativement à une logique propositionnelle L, étant donnée une formule A, nous devons trouver des substitutions s telles que s(A) est dans L. Lorsqu'elles existent, ces substitutions sont appelées unifieurs de A dans L. Nous étudions différentes méthodes pour construire des ensembles minimaux complets d'unifieurs d'une formule donnée A et, en fonction de la cardinalité des ces ensembles minimaux complets, nous discutons du type de l'unification de A. Enfin, nous déterminons les types de l'unification de plusieurs logiques propositionnelles.

Introduction

In many research area of computer science and artificial intelligence, non-classical logics are considered: temporal logics, epistemic logics, etc. The main task to be solved for the applicability of these logics is their mechanization. In Propositional logic, there exists an important problem which is called admissibility of rules. A rule of inference is admissible in a given logic L if the set of theorems in L does not change when that rule is added to the existing rules in L. In other words, every formula that can be derived using that rule is already derivable without that rule. Decision problem in admissibility of rules is the most problem. In Classical Propositional Logic, each admissible rule is derivable but in general, the opposite of this phrase is not true. For example, In Intuitionistic logic there are some rules which are admissible but are not derivable. Admissible rules were studied by Lorenzen [START_REF] Lorenzen | Ein fuhrung in die operative Logik und Mathematik[END_REF], Harrop [START_REF] Harrop | Concerning formulas of the types a → b ∨ c, a → ∃xb(x) in intuitionistic formal system[END_REF] and Mints [START_REF] Mints | Derivability of admissible rules[END_REF] who has found interesting examples of admissible rules that are not derivable in Intuitionistic logic, in S4, etc. The question whether algorithms exist for recognising whether rules in Intuitionistic Propositional Logic IPC are admissible was asked by Friedman [START_REF] Friedman | One hundred and two problems in mathematical logic[END_REF]. This problem was solved by V. Rybakov [START_REF] Rybakov | A criterion for admissibility of rules in modal system S4 and the intuitionistic logic[END_REF] and [START_REF] Rybakov | Semantic admissibility criteria for deduction rules in S4 and Int[END_REF] for IPC and for modal logic S4. He also proved the same approach can be used for a broad range of propositional modal logics, for example K 4, S4, GL [START_REF] Rybakov | Admissibility of logical inference rules[END_REF]. Unification theory provides a systematic approach to some important logical problems, in particular, to the admissibility problem of inference rules. Whenever the unification type of a logic is unitary or finitary there exists an algorithm to recognize if a given inference rule is admissible in that logic. Two relation between admissibility of rules and unification problem is defined as follows:

• Let L is a consistent logic. The following are equivalent:

1. The formula A is unifiable,

The rule r =

A ⊥ is non-admissible.

• If L is finitary then the following are equivalent:

1. The rule r = A 1 , ..., A n B is admissible 2. The formula σ(B ) ∈ L for every maximal unifier σ for formulas A 1 , ..., A n .

As you see, To reduce admissibility to unification problem we need to know about unification type of logic L.

Unification which is the problem of making terms syntactically equal by replacing their variables by some new terms was introduced in automated deduction by Robinson [START_REF] Robinson | A machine oriented logic based on the resolution principle[END_REF]. He showed that unifiable terms have a most one general unifier. A unification problem is usually solved by substitution, which is the mapping of a symbolic value to every variable involved in the problem. In other words, the unification problem essentially focus to look for a substitution in order to unify two given terms. At the next step it is expected to provide a minimal and complete set of substitutions for a given problem. The unification in logic also is related to find a substitution that makes a formula into theorem or tautology. In general, the unification problem in a normal modal logic is to determine, given a formula ϕ whether there exists a substitution σ such that σ(ϕ) is in that logic. In that case, σ is a unifier of ϕ. We shall say that a set of unifiers of a unifiable formula ϕ is complete if for all unifiers σ of ϕ, there exists a unifier τ of ϕ in that set such that τ is more general than σ. Now, an important question is to determine whether a given unifiable formula has minimal complete sets of unifiers [START_REF] Baader | Unification in modal and description logics[END_REF], [START_REF] Dzik | Unification Types in Logics[END_REF]. When such sets exist, they all have the same cardinality. In that case, a unifiable formula is either infinitary, or finitary, or unitary, depending whether its complete sets of unifiers are either infinite, or finite, or with cardinality 1. Otherwise, the formula is nullary. F. Baader, W. Snyder studied E -unification theory [START_REF] Baader | Unification theory[END_REF] where the terms are no longer required to become syntactically equal, but only equivalent modulo the equational theory.

For example, if we consider the theory C = { f (x, y) = f (y, x)}, which says that the binary function symbol f is commutative, then the unification problem f (x, y) = ? f (a, b) (for constants a, b) has the syntactic unifier σ = {x → a, y → b}, which is also a C -unifier, but the substitution σ = {x → b, y → a} is another Cunifier, which is not a syntactic one. F. Wolter and M. Zakharyaschev in [START_REF] Wolter | Undecidability of the unification and admissibility problems for modal and description logics[END_REF] proved that unification problem is undecidable for modal logics K u and K 4 u which are modal logic K and K 4 extended with the universal modality. They also proved that the admissibility problem for inference rules is undecidable for these logics. In fact, these logics were the first simple examples showing that the decidability of modal logics does not guarantee decidability of unification and admissibility problems. V. Rybakov in [START_REF] Rybakov | Logics with universal modality and admissible consecutions[END_REF] answered to the question whether admissibility in the logic S4 u is decidable. Also, admissibility rules in S4 have been studied in [START_REF] Babenyshev | A tableau method for checking rule admissibility in S4[END_REF] by S. Babenyshev et al. They made a sound, complete and terminating tableau calculus deciding both admissibility and derivability of a given rule in modal logic S4. Ç. Gencer proved that a modal logic λ such that λ ⊇ K 4 and λ possesses finite model property inherits all admissible rules in K 4 iff λ satisfies the so-called co-cover property which is a semantic property about K 4-models [START_REF] Gencer | Description of modal logic inheriting admissible rules for K 4[END_REF].

For first time, S. Ghilardi introduced the notion of projectivity in [START_REF] Ghilardi | Best solving modal equations[END_REF] to determine that the unification type is finitary in S4 and K 4 (Also see [START_REF] Iemhoff | A syntactic approach to unification in transitive reflexive modal logics[END_REF]). Jěrábek in [START_REF] Jeřábek | Blending margins: The modal logic K has nullary unification type[END_REF] showed that the unification type is nullary in basic modal logic K . P. Balbiani et al. proved that unification type of modal logic K + ⊥ is finitary, or unitary [START_REF] Balbiani | About the unification type of K + ⊥[END_REF]. S. Babenyshev, V. Rybakov proved that unification type of a propositional Linear Temporal Logic is unitary. Moreover, they presented an algorithm for constructing a most general unifier for unifiable formulas in Linear Temporal Logic (see [START_REF] Babenyshev | Unification in linear temporal logic[END_REF]). W. Dzik in [START_REF] Dzik | Remarks on projective unifiers[END_REF] proved that if a logic has projective unifiers then it is almost structurally complete. W. Dzik in [START_REF] Dzik | Projective unification in modal logic[END_REF] proved that every unifiable formula has a projective unifier in L iff L contains S4. [START_REF] Babenyshev | Unification in linear temporal logic[END_REF] where L is a normal modal logic containing S4. S. Kost [START_REF] Kost | Projective unification in transitive modal logics[END_REF] showed that a transitive normal modal logic L have projective unification iff L contains K 4D1. P. Balbiani and Ç. Gencer in [START_REF] Balbiani | KD is nullary[END_REF] proved that unification type of modal logics K D is nullary. They used the similar arguments of Jěrábek in [START_REF] Jeřábek | Blending margins: The modal logic K has nullary unification type[END_REF]. In addition, P. Balbiani and Ç. Gencer in [START_REF] Balbiani | About the unification type of modal logics between K B and K T B[END_REF] proved that unification type of Modal Logics Between K B and K T B are nullary. And they also proved that unification type of several non-symmetric non-transitive modal logics are nullary [START_REF] Balbiani | Remarks about the unification type of several non-symmetric non-transitive modal logics[END_REF].

The thesis presents results on unification and unification types in modal logics K D5, K 5 and Al t 1 + ⊥, in fusions of modal logics and in Dynamic Epistemic logic.

Chapter 2 contains necessary basic notions of modal logic. In Chapter 3, the admissibility of rules in modal logic S4 is investigated. In this chapter we define a general reduced normal form. Then we transform an inference rule to a general reduced normal form. we present an algorithm inspired by [START_REF] Rybakov | Admissibility of logical inference rules[END_REF] for recognizing non-admissibility rules in logic S4. In this chapter, we also consider sets of admissible rules and investigate about some properties of them. Chapter 4 contains the basic notion of unification. In this chapter, we review some of previous works and show that the unification type of modal logics K D5 and K 5 is unitary or nullary. In Chapter 5, we prove that unification type of the logic Al t 1 + ⊥ is unitary. The proof follows from two statements. On the one hand, we prove that the logic Al t 1 + ⊥ is filtering hence it is nullary or unitary. On the other hand, we prove that the logic Al t 1 + ⊥ is reasonable then it is finitary or unitary. Therefore, the logic Al t 1 + ⊥ is unitary. In general, P. Balbiani et al. proved that unification types of the modal logics determined by classes of deterministic frames is unitary (see [START_REF] Balbiani | About the unification types of the modal logics determined by classes of deterministic frames[END_REF]). These results partly answer to an open problem of S. Ghilardi (private communication, 2018). they will be presented during the workshop UNIF [START_REF] Balbiani | About the unification type of K + ⊥[END_REF]. Chapter 6 contains unification problem in fusion of two modal logics. Fusion of modal logics are everywhere in computer science and artificial intelligence. K. Fine and G. Schurz proved that some properties such as completeness and decidability of modal logics L 1 and L 2 are inherited to the fusion L 1 ⊗ L 2 [START_REF] Fine | Transfer theorems for multimodal logics. Logic and Reality. Essays on the Legacy of Arthur Prior[END_REF]. See further about combining modal logics in [START_REF] Kurucz | Combining modal logics[END_REF]. In this chapter, we consider fusion L 1 ⊗ L 2 and prove that if L 1 is nullary and L 2 is a consistent modal logic then the unification type of fusion L 1 ⊗ L 2 is neither unitary nor finitary. For instance, we prove that the unification type of fusion K 1 ⊗K 2 is nullary. As well, in this chapter we prove that the unification type of multi-epistemic logic (fusion of S5 1 ⊗ S5 2 ) is nullary. (see [START_REF] Balbiani | About the unification type of fusions of modal logics[END_REF]). This last result about S5 1 ⊗ S5 2 is an answer to an open problem of W. Dzik [START_REF] Dzik | Unification Types in Logics[END_REF]. Chapter 7 contains unification in simple epistemic planning problem. In this chapter, we solve the simple epistemic planning problem with unification technique. In this respect, we consider the associated formula A → 〈x〉B where A and B are epistemic formula and x is a variable, we find a public announcement ψ by unification technique such that A → 〈ψ〉B is valid in public announcement logic. Then, we have to find a most general unifier for the associated formula A → 〈x〉B . Modal logic is a type of formal logic primarily developed in the beginning of the 20th century [START_REF] Lewis | A survey of symbolic logic[END_REF] and in the 1960 by [START_REF] Hintikka | Knowledge and Belief[END_REF]. It extended Classical Propositional Logic by operators expressing modalities. The most well-known modal propositions are propositions about what is a necessary case and what is a possible case. For example, the following sentences are modal propositions:

Basic Modal Logic

• It is possible that it will rain tomorrow.

• A proposition p is not possible if and only if the negation of p is necessary.

The operators "it is possible that" and "it is necessary that" are called "modal" operators.

Syntax

The language of Basic Modal Logic is an extension of the classical propositional syntax. The two unary connectives and ♦ are added to the language of classical propositional logic. Let P is a countable set of atoms and we use the notation p, q, r, ... for elements of P . The elements of P are also called atomic formulas or propositional letters.

Definition 1 Formulas of basic modal logic are given by the following rule

ϕ ::= p | ⊥ | ¬ϕ | (ϕ ∧ ψ) | ϕ 11
where p is any atomic formula. We will also write formulas with lower case Greek letter α, β, etc or with upper case Latin letter A, B, etc. We will write ϕ(p 1 , ..., p n ) (or α(p 1 , ..., p n ), A(p 1 , ..., p n )) to insist on the fact that a formula only contains the atomic formulas p 1 , ..., p n . We will also write ϕ(p) (or αp, A(p)) where p denotes a tuple of atomic formulas. For all tuples x of atomic formulas, let F (x) be the set of all formulas of the form ϕ(x).

The Boolean connective , ∨, → and ↔ are defined as usual. In this case, the diamond ("possible") connective is ♦ϕ ::= ¬ ¬ϕ. The new connectives and ♦ are read "box" and "diamond" respectively and are dual of each other.

Substitution: Throughout this thesis we will use the notion of substitution. A substitution is a function σ from P to the set of all formulas. By induction on the formula ϕ, we can define the formula σ(ϕ) as follows:

• σ(p) = p, • σ(⊥) = ⊥, • σ(¬ϕ) = ¬σ(ϕ), • σ(ϕ ∧ ψ) = σ(ϕ) ∧ σ(ψ),
• σ( ϕ) = σ(ϕ).

Definition 2 (Degree)

We define the degree of modal formulas as follows.

• d eg (p) = 0,

• d eg (⊥) = 0, • d eg (¬ϕ) = d eg (ϕ), • d eg (ϕ ∧ ψ) = max{d eg (ϕ), d eg (ψ)},
• d eg ( (ϕ)) = 1 + d eg (ϕ).

An axiomatic system for a modal logic L consists of axioms and inference rules. Axioms contain at least the Boolean tautologies and the axiom K :

• (ϕ → ψ) → ( ϕ → ψ).
The rules contain at least modus ponens and necessitation:

• ϕ, ϕ → ψ ψ • ϕ ϕ .
The theorems of a logic are all the formulas which can be derived from the axioms by the inference rules. To make a new axiomatic system we need to add axioms and inference rules to the above minimal axiomatic system. Let us define inference rules and we will investigate about admissible rules in chapter 3.

Definition 3 An inference rule is usually given as a finite set of premise and a conclusion. The rule is denoted as follows: r = α 1 (x 1 , ..., x n ), ..., α k (x 1 , ..., x n ) β(x 1 , ..., x n )

Where α 1 , ..., α k , β are formulas. We often use r = α β briefly.

Definition 4 For a formula ϕ, we denote by sub(ϕ) the set of all sub-formulas of ϕ. For a rule r = α β , we denote by sub(α, β) the set of all sub-formulas of α and β.

Definition 5 A rule r = α β is admissible for the modal logic L, if for every substitution from σ(α) ∈ L it follows σ(β) ∈ L.

Semantics

In this section, we introduce frames and models and we explain how to determine whether a given formula is true or false in a given model.

Definition 6 A frame F in basic modal logic is a pair 〈W, R〉 such that 1. W is a non-empty set.

R is a binary relation on W .

That is, a frame for the basic modal language is simply a relational structure bearing a single binary relation. The elements of W are called "possible worlds" or "states". The binary relation R is called "accessibility relation".

Definition 7 A model for the basic modal language is a pair M = (F , ν), where F = (W, R) is a frame for the basic modal language and ν is a function assigning to each proposition letter p in P a subset ν(p) of W . Formally ν : P → P (W ), where P (W ) denotes the power set of W .

Definition 8 Suppose w is a state in a model M = 〈W, R, ν〉. Then we inductively define the notion of a formula ϕ being satisfied (or true) in M at state w as follows:

• M , w p iff w ∈ ν(p), where p ∈ P ,

• M , w ⊥,

• M , w ¬ϕ iff M , w ϕ,

• M , w ϕ ∧ ψ iff M , w ϕ and M , w ψ,

• M , w ϕ if and only if for all v ∈ W , wR v and M , v ϕ.

It follows from this definition that M , w ♦ϕ iff for some v ∈ W we have wR v and M , v ϕ.

If M does not satisfy ϕ at w we often write M , w ϕ, and say that ϕ is false or refuted in w. For all formulas ϕ, let ν(ϕ) = {w ∈ W : M , w ϕ}.

Definition 9 A formula ϕ is valid at a state w in a frame F (notation: F , w ϕ) if ϕ is true at w in every model (F , ν) based on F ; ϕ is valid in a frame F (notation F ϕ) if it is valid at every state in F . A formula ϕ is valid in a class of frames F (notation: F ϕ) if it is valid in every frame F in F ; and it is valid (notation: ϕ) if it is valid in the class of all frame. The set of all formulas that are valid in a class of frames F is called the logic of F (notation: Λ F ).

Definition 10

The inference rule r

= α β is valid in model M iff M α implies M β.
In this thesis we will consider the modal logics K , K D, S4, S5, etc. For example, accessibility relation in logic S5 is transitive, reflexive and Euclidean.

Proposition 1 Let F = (W, R) be a frame, then Proof 1 refer to [START_REF] Blackburn | Modal Logic[END_REF], Example 3.6.

Definition 11

We first define "disjoint unions" for the basic modal language. We say that two models are disjoint if their domains contain no common elements.

For disjoint models M i = (W i , R i , ν i )(i ∈ I ), their disjoint union is the structure i M i = (W, R, ν), where W is the union of the sets W i , R i s the union of the relations R i , and for each proposition letter p, ν(p) = i ∈I ν i (p).

Proposition 2 For each modal formula ϕ, for each i ∈ I , and each element w of M i , we have M i , w ϕ iff i ∈I M i , w ϕ.

Proof 2 Refer to [START_REF] Blackburn | Modal Logic[END_REF], proposition 2.3.

Definition 12 (Generated Submodels)We define generated submodels for the basic modal language. Let

M = (W, R, ν) and M = (W , R , ν ) be two mod- els; we say that M is a sub-model of M if W ⊆ W , R is the restriction of R to W (that is: R = R ∩ (W × W ))
, and ν is the restriction of ν to W (that is: for each p, ν (p) = ν(p) ∩ W ). We say that M is a generated submodel of M (notation:M M ) if M is a submodel of M and for all points w the following condition holds: if w is in M and wR v, then v is in M .

Proposition 3

Let M and M be models such that M is a generated submodel of M . Then, for each modal formula ϕ and each element w of M we have that M , w ϕ iff M , w ϕ.

Proof 3 Refer to [START_REF] Blackburn | Modal Logic[END_REF], proposition 2.6.

Definition 13 (Bounded Morphisms) Let M = (W, R, ν) and M = (W , R , ν ) be models. for the basic modal language. A mapping f : M → M is a bounded morphism if it satisfies the following conditions:

1. w and f (w) satisfy the same proposition letters.

(The forth condition) f is a homomorphism with respect to the relation R

(that is, if wR v then f (w)R f (v).

(The back condition) if f (w)R v then there exists v such that wR v and f

(v) = v .
If there is a surjective bounded morphism from M to M , then we say that M is a bounded morphic image of M , and write M M .

Proposition 4

Let M and M be models such that f : M → M is a bounded morphism. Then, for each modal formula ϕ, and each element w ∈ M , we have

M , w ϕ iff M , f (w) ϕ.
Proof 4 Refer to [START_REF] Blackburn | Modal Logic[END_REF], proposition 2.14.

Definition 14 Let M = (W, R,V ) be a model. A subset X of W is called definable (or expressible) iff there exists a formula α such that X = V (α).
An element x ∈ W is definable (or expressible) if the set {x} is definable. Let S be a new valuation of certain propositional variables on the frame (W, R). The valuation S is called definable (or expressible) if and only if for any letter p i from the domain of S, there exists a formula α i such that S(p i ) = V (α i ).

Normal Modal Logic

A normal modal logic is simply a set of formulas satisfying certain syntactic closure conditions. Which conditions? We will define a Hilbert-style axiom system called K . K is the "minimal" (or weakest) system for reasoning about frames; stronger systems are obtained by adding extra axioms. We discuss K in some detail, and then, at the end of the section, define normal modal logics. A formula ϕ is K -provable if it occurs as the last item of some K -proof, and if this is the case we write K ϕ. K is the minimal modal Hilbert system in the following sense. As we have seen, its axioms are all valid, and all three rules of inference preserve validity, hence all K -provable formulas are valid. (K is sound with respect to the class of all frames.) Moreover, the converse is also true: if a basic modal formula is valid, then it is K -provable. (That is, K is complete with respect to the class of all frames.) In short, K generates precisely the valid formulas.

Definition 15 (Normal Modal Logics)

A normal modal logic Λ is a set of formulas that contains all Boolean tautologies, all formula of the form (ϕ → ψ) → ( ϕ → ψ), modus ponens ϕ, ϕ → ψ ψ and necessitation ϕ ϕ . We call the smallest normal modal logic K .

Definition 16

A proof is a finite sequence of formulas, each of which is an axiom, or follows from one or more earlier items in the sequence by applying a rule of proof . The axioms of K are all instances of propositional tautologies plus:

(K ) (ϕ → ψ) → ( ϕ → ψ).
Its rules of proof are modus ponens and necessitation.

Example 1

1. ( p ∧ ♦q) → ♦(p ∧ q) is K -provable. 2. ♦(p ∨ q) ↔ (♦p ∨ ♦q) is K -provable.
In this thesis, we will consider the following modal logics:

K 4 K ⊕ p → p S4 K 4 ⊕ p → p S5 S4 ⊕ ♦p → ♦p K D K ⊕ p → ♦p K D5 K D ⊕ ♦p → ♦p K 45 K 4 ⊕ ♦p → ♦p Definition 17 Let n 0. A Kripke model K n = (W, R,V ) is called n-characterizing
for a modal logic L (any normal modal logic)if the domain of the valuation V from K n is the set P which consists of n different propositional variables, and if the following holds: for any formula α which is build up of variables from P

α ∈ L ⇔ K n α
Let L be a logic. Let Γ be a set of formulas and A be a formula. A derivation of A from Γ in L is a finite sequence A 1 , ..., A n of formulas such that A n = A and every formula in the sequence either is in L, or is in Γ, or is obtained by means of modus ponens rule from previous formulas in the sequence, or is obtained by means of necessitation rule from a previous formula in the sequence. We will write Γ L A if there exists a derivation of A from Γ in L. If Γ = {B 1 , ..., B m } is finite that we will write B 1 , ..., B m L A.

Definition 18 An inference rule r

= α β is called derivable in logic L if α L β.
We say that a frame F is a frame for modal logic L (or is an L-frame) if F L.

Definition 19

A rule r 1 is semantically equivalent to a rule r 2 in modal logic L iff F r 1 iff F r 2 for any L-frame F .

3 Admissibility in the logic S4 The concept of an admissible rule was introduced by Paul Lorenzen (1955). The admissible rules of a logic are the rules that can be added to the logic as inference rules without producing any new theorems. Equivalently, they are rules such that if the premises are made into theorems by any substitution then this substitution also makes the conclusion into a theorem. Admissible rules have been studied by many authors in particular, V. Rybakov. One important question about admissible rules of a given logic is whether the set of all admissible rules is decidable. Note that the problem is non-trivial even if the logic itself is decidable. For instance, the basic modal logic K is decidable and the decidability of the problem of admissibility in K is a major open problem. Modal Logic S4 is decidable and the problem of admissibility in S4 is decidable as proved by V. Rybakov (1985). In fact, admissibility of rules is known to be decidable in many modal and superintuitionistic logics. The first algorithm or decision procedures to recognize admissibility of rules was introduced by V. [START_REF] Rybakov | A criterion for admissibility of rules in modal system S4 and the intuitionistic logic[END_REF]Rybakov ( , 1985)).

Example 2 The rule x

x is admissible in logic S4 since if S4 σ(x) then σ(x) for arbitrary substitution σ.

There is a strong relation between admissibility and unification. Suppose L is a modal logic (K 4, S4, et c). Let A B be an inference rule. So, A B is non-admissible iff there exists a substitution σ such that σ(A) ∈ L and σ(B ) ∉ L. When L is unitary or finitary, unifiable formulas possess finite minimal complete sets of unifiers. As a result, when L is decidable and when minimal complete sets of 19 unifiers can be computed for any arbitrary given unifiable formula, then the non-admissibility problem in L can be decided as follows:

• given a rule A B ,

• check whether A in L-unifiable,

• if A is no L-unifiable then answer "rule A B is L-admissible"
• otherwise, compute a minimal complete set Σ = {σ 1 , ..., σ n } of L-unifiers of A and for all i = 1, ..., n check whether σ i (B ) ∈ L,

• if for all i = 1, ..., n, σ i (B ) ∈ L then answer "rule A B is L-admissible", • otherwise answer "rule A B is non-L-admissible".
As can be seen from this algorithm, when L is decidable, when L-unification is decidable, when L is either unitary or finitary and when one can compute the minimal complete sets of L-unifiers for any given unifiable formula than the above algorithm decides L-admissibility.

Conversely, L-unification can be reduced to non-L-admissibility seeing that for all consistent modal logic L (it does not matter what is the unification type of

L), a given formula A is unifiable in L iff the inference rule A ⊥ is non-admissible in L.

Syntactic criteria for admissibility in S4

In this section first we introduce the notion of admissibility for inference rules and also some properties in the logic S4. Then we provide some theorems and an algorithm introduced by V. Rybakov [START_REF] Rybakov | Admissibility of logical inference rules[END_REF] which are used for recognizing the admissibility of inference rules in modal logic S4. Historically this algorithm is the first algorithm for recognising admissible rules of modal logic S4. In this respect, we need to define the notion of reduced normal form.

Definition 20 A rule r is said to be in reduced normal form if it has the form r =

1 j s φ j x 0
where each disjunct φ j has the form 5. α 0 = ¬α and α 1 = α for any formula α.

φ j = 0 i n x t (i , j ,0) i ∧ 0 i n (♦x i ) t (i ,

Example 3

The rule r =

(x 2 ∧ ♦x 2 ) ∨ (¬x 3 ∧ ♦x 3 )
x 1 is a rule in reduced normal form.

We usually use the notation rf(r) when a rule in reduced normal form obtained from r . Let us see, how to convert an inference rule to its reduced normal form. Also this method has been introduced by V. Rybakov.

Proposition 5

If an inference rule is derivable in L then the rule is admissible for L.

Proof 5 Suppose that α 1 (x 1 , ..., x n ), ..., α m (x 1 , ..., x n ) L β(x 1 , ..., x n ). Consider a substitution ν, ν(x i ) = γ i (γ i is a L-formula
) such that for every j , the inclusion α j (x 1 , ..., x n ) ∈ L holds. We take an arbitrary derivation S of β from α 1 , ..., α m in L. Furthermore, we choose the substitution ω which coincides with ν on the domain Dom(ν) of ν and maps any letter lying not in Dom(ν) onto β, say. The sequence S ω , obtained from S by applying ω to each their members, will be a derivation in L from the empty set of hypothesis. Indeed, under substitution ω all hypothesis will turn into theorems of L, the set of theorems of is closed with respect to substitutions, and all inference rules are structural (consistent with substitutions). Thus L β ν , that is β(γ 1 , ..., γ n ) ∈ L.

Lemma 1 Any valid inference rule r = α β in modal logic S4 is admissible for S4.

Proof 6

Refer to [START_REF] Rybakov | Admissibility of logical inference rules[END_REF], Lemma 3.1.5.

Example 4 Let x be a propositional variable

• The rule r = x x is derivable and admissible in S4. Be more concise: since S4

x → x then the rule r is derivable. Thus the rule r is admissible by Lemma 1.

• The rule r = ♦x ♦ x is not admissible and not derivable in S4. A substitution which can be used to show that the rule non-admissible is σ(x) = x → x.

Hence, S4 ♦σ(x) and S4 ♦ σ(x). 

Let us see why

S4 ♦(x → x) and S4 ♦ (x → x). Since, ♦(x → x) is equivalent to x → ♦ x and -S4 x → ♦ x. Then, -S4 ♦(x → x). By necessitation, -S4 ♦(x → x). But -S4 ♦ (x → x). Let
-The rule r = ♦x ∧ ♦¬x ⊥ is admissible in S4 but it is not derivable in S4 [27].
Lemma 2 There exists an algorithm which for any given inference rule r in the language of modal propositional logic, constructs a suitable reduced normal form rf(r).

Proof 7 Let r = α β be a rule. We need a set of new variables {z γ | γ ∈ sub(α, β)}. Let us consider the following steps:

• Step 1: replace r = α β with r 1 = α∧(z β ↔β) z β .
• Inductive step: suppose the rule r i = γ i z β was obtained in the i -th step. Find δ ∈ sub(γ i ) ∩ sub(α, β) when δ is not a variable and not a proper subformula of any other formula in sub(γ i ) ∩ sub(α, β). δ is called final. At the end, replace the rule r i with a new one r i +1 =

γ i +1 z β
, namely

γ i +1 = z α ∧ γ∈Sub(α,β)\V ar (r ) (z γ ↔ γ )
where 

γ = z δ ∨ z , when γ = δ ∨ * δ, when γ = * δfor * ∈ {¬, ♦}

Lemma 3

For any inference rule r , r is semantically equivalent to rf(r) in S4.

Proof 8

Refer to [START_REF] Rybakov | Admissibility of logical inference rules[END_REF], Lemma 3.1.8.

Corollary 1 A rule r is valid in modal logic S4 iff the rule rf(r) is valid in S4.

Proof 9 Refer to [START_REF] Rybakov | Admissibility of logical inference rules[END_REF], corollary 3.1.9.

Suppose r =

1 j s φ j
x 0 is a rule as defined in 20. Let Θ(r ) = {φ 1 , ..., φ s } be the set of all disjuncts of premise of r . Notice that if φ i and φ j are distinct elements of Θ(r ) then φ i ∧ φ j is logically equivalent to ⊥. For every φ j ∈ Θ(r ), let

θ(φ j ) = {x i | t (i , j , 0) = 1} and θ ♦ (φ j ) = {x i | t (i , j , 1) = 1}
In fact, θ(φ j ) is the set of variables of r with positive occurrence in φ j , and θ ♦ (φ j ) is the set of variables x i of r with the positive occurrence of ♦x i in φ j .

To express the main theorem, we need to define a new model that is associated to r and to an arbitrary non-empty subset W of Θ(r ). We construct M (Θ(r )) = (W, R, ν) for every non-empty subset W of Θ(r ) as follows:

• W ⊆ Θ(r ), • φ i Rφ j ⇔ θ ♦ (φ j ) ⊆ θ ♦ (φ i ) for any φ i , φ j ∈ W , • p i ∈ ν(φ j ) ⇔ x i ∈ θ(φ j ) for any φ i ∈ W .
Now, we have all required tools to express main theorem which says a rule is admissible or non-admissible in logic S4.

Theorem 1 A rule r = 1 j s φ j x 0
in reduced normal form is admissible for modal logic S4 iff for any non-empty set W ⊆ Θ(r ), the model M (Θ(r )) fails to have at least one of the following properties.

1. There is φ j ∈ W such that M (Θ(r )), φ j x 0 .

2. M (Θ(r )), φ j φ j for all φ j ∈ W .

For any subset D of W there exists φ

j ∈ W such that θ ♦ (φ j ) = θ(φ j ) ∪ φ∈D θ ♦ (φ).
Proof 10 refer to [START_REF] Rybakov | Admissibility of logical inference rules[END_REF], Theorem 3.9.6.

Thanks to Theorem 1 it is possible to construct an algorithm for deciding admissibility in S4. Let us use an example to illustrate Theorem 1:

Example 5 Consider the rule r = ♦x ∧ ♦¬x ⊥ .
We show that this rule is admissible. In order to use 1, we should transform the rule r to a rule in reduced normal form. Hence, we use Lemma 2 to find rf(r). Then, we have r f

(r ) = ¬x ∧ ¬y 0 ∧ y 1 ∧ y 2 ∧ ♦x ∧ ♦y 2 y 0 . Let φ 1 = ¬x ∧ ¬y 0 ∧ y 1 ∧ y 2 ∧ ♦x ∧ ♦y 2 and W = {¬x ∧ ¬y 0 ∧ y 1 ∧ y 2 ∧ ♦x ∧ ♦y 2 }.
Let us check the conditions of Theorem 1.

1. As you see, y 0 is as conclusion of the rule rf(r) and M (Θ(r )), φ 1 y 0 .

let us prove that

M (Θ(r )), φ 1 φ 1 . Suppose M (Θ(r )), φ 1 ♦x then, we must have M (Θ(r )), φ 1 x. This is in contradiction to M (Θ(r )), φ 1 ¬x.
3. Let D = . We have θ ♦ (φ 1 ) = {x, y 2 } and θ(φ 1 ) = {y 1 , y 2 } then, θ ♦ (φ 1 ) = θ(φ 1 ). Thus, θ ♦ (φ 1 ) = θ(φ 1 ) i.e the third condition of Theorem 1 failed.

First condition of Theorem 1 holds but second and third conditions of Theorem 1 do not hold. Therefore, the rule r is admissible.

Let us consider a general form when we transform a given rule r to reduced normal form rf(r) and rf(r) has only two variables. In this case, the premise of rule rf(r) will be subset of the following 16 formulas. Let the rule rf(r) be as

r f (r ) = i ∈I φ i x 1
where I ⊆ {1, ..., 16} and φ 1 to φ 16 are as follows:

φ 1 = x 1 ∧ x 2 ∧ ♦x 1 ∧ ♦x 2 φ 2 = x 1 ∧ ¬x 2 ∧ ♦x 1 ∧ ♦x 2 φ 3 = ¬x 1 ∧ x 2 ∧ ♦x 1 ∧ ♦x 2 φ 4 = ¬x 1 ∧ ¬x 2 ∧ ♦x 1 ∧ ♦x 2 φ 5 = x 1 ∧ x 2 ∧ ♦x 1 ∧ ¬♦x 2 φ 6 = x 1 ∧ ¬x 2 ∧ ♦x 1 ∧ ¬♦x 2 φ 7 = ¬x 1 ∧ x 2 ∧ ♦x 1 ∧ ¬♦x 2 φ 8 = ¬x 1 ∧ ¬x 2 ∧ ♦x 1 ∧ ¬♦x 2 φ 9 = x 1 ∧ x 2 ∧ ¬♦x 1 ∧ ♦x 2 φ = x 1 ∧ ¬x 2 ∧ ¬♦x 1 ∧ ♦x 2 φ = ¬x 1 ∧ x 2 ∧ ¬♦x 1 ∧ ♦x 2 φ = ¬x 1 ∧ ¬x 2 ∧ ¬♦x 1 ∧ ♦x 2 φ = x 1 ∧ x 2 ∧ ¬♦x 1 ∧ ¬♦x 2 φ = x 1 ∧ ¬x 2 ∧ ¬♦x 1 ∧ ¬♦x 2 φ = ¬x 1 ∧ x 2 ∧ ¬♦x 1 ∧ ¬♦x 2 φ = ¬x 1 ∧ ¬x 2 ∧ ¬♦x 1 ∧ ¬♦x 2
According to the definition of model M (Θ(r )), we have

φ 1 φ 2 φ 3 φ 4 φ 5 φ 6 φ 7 φ 8 φ 9 φ 10 φ 11 φ 12 φ 13 φ 14 φ 15 φ 16 x 1 , x 2 x 2 x 1 x 1 , x 2 x 1 , x 2 x 1 x 2 x 2 x 1 x 1 , x 2 x 1 x 2
This model is the model M (Θ(r )) associated to the rule r = 

(r ) = φ j ∨ φ 1 ∨ φ 3 x 1 where φ 1 = x 1 ∧ x 2 ∧ ♦x 1 ∧ ♦x 2 and φ 3 = ¬x 1 ∧ x 2 ∧ ♦x 1 ∧ ♦x 2 . Let us check all conditions of Theorem 1. Let W = {φ 1 , φ 3 }. Since θ ♦ (φ 1 ) = θ ♦ (φ 3 ) then,
φ 1 φ 3 x 1 , x 2 ¬x 1 , x 2
• First condition holds. Since, p 1 ∉ ν(φ 3 ) then by definition of model M (Θ(r )) we have, M (Θ(r )), φ 3 x 1 .

• Second condition holds. Since, x 1 , x 2 ∈ ν(φ 1 ) then, M (Θ(r )), φ 1

x 1 ∧ x 2 and M (Θ(r )), φ 1 ♦x 1 ∧ ♦x 2 . Then M (Θ(r )), φ 1 x 1 ∧ x 2 ∧ ♦x 1 ∧ ♦x 2 . Thus,M (Θ(r )), φ 1 φ 1 . Also since ¬x 1 , x 2 ∈ ν(φ 3 ) then, M (Θ(r )), φ 3 ¬x 1 ∧x 2 . Since, φ 3 Rφ 1 and M (Θ(r )), φ 1 x 1 , M (Θ(r )), φ 1 x 2 thus,M (Θ(r )), φ 3 φ 3 .
• Third condition holds. We only check the case D = . Since,

θ ♦ (φ 1 ) = {x 1 , x 2 }, θ(φ 1 ) = {x 1 , x 2 } then θ ♦ (φ 1 ) = θ(φ 1 )
. As the reader can see, for all other D ⊆ W , the third condition holds.

This means that the rule is not admissible in S4. So, now, it is time to find an appropriate substitution showing that the rule is not S4-admissible.

Obviously, φ 1 ∨ φ 3 is S4-equivalent to x 2 ∧ ♦x 1 . Hence, we need a substitution σ such that σ(x 1 ) and σ(x 2 ) ∧ ♦σ(x 1 ). It is possible to consider CHAPTER 3. ADMISSIBILITY IN THE LOGIC S4 σ(x 2 ) = and also the following tablet lists some substitutions σ which satisfy the conditions σ(x 1 ), ♦σ(x 1 ).

For example, if σ is a substitution such that σ(x 2 ) = and σ(x 1 ) = x → x, then, σ(x 2 ), ♦σ(x 1 ) and σ(x 1 ) in S4. So, σ is a substitution showing the rule

φ j ∨ φ 1 ∨ φ 3 x 1 is not S4-admissible. x → x ♦x → ♦ ♦x (♦x → ♦x) x → ♦x ♦ x → ♦ x (♦x → ♦ ♦x) x → ♦ x ♦ ♦x → ♦x (♦ x → ♦ x) x → ♦ x (x → ♦x) (♦ ♦x → ♦x) x → ♦ ♦x (x → ♦ ♦x) ♦(x → ♦ x) ♦x → ♦x ( x → ♦ x) ♦(♦x → ♦x) 2. Let r f (r ) = φ i x 1 such that φ i contains φ 1 ∨ φ 4 .
The rule rf(r) is nonadmissible and satisfies the condition 1 to 3 of Theorem 1. But which substitution is appropriate for this rule?

Obviously, φ 1 ∨ φ 4 is S4-equivalent to (♦x 1 ∧ ♦x 2 ) ∧ (x 1 ↔ x 2 )
. We need a substitution σ such that σ(x 1 ), ♦σ(x 1 ) and ♦σ(x 2 ). For this case, we can use the above table as well.

3. Let r f (r ) = φ i x 1 such that φ i contains φ 3 ∨ φ 6 . The rule rf(r) is nonadmissible and satisfies the condition 1 to 3 of Theorem 1. But which substitution is appropriate for this rule?

Obviously, φ 3 ∨ φ 6 is S4-equivalent to ♦x 1 ∧ (¬x 1 ↔ x 2 ) ∧ (¬x 1 ↔ ♦x 2 ) ∧ x 1 ↔ x 1 )
. Hence we need a substitution σ which has the properties σ(x 1 ), ♦σ(x 1 ), ¬σ(x 1 ) ↔ σ(x 2 ) and σ(x 1 ) ↔ σ(x 1 ) and ¬σ(x 1 ) ↔ ♦σ(x 2 ). Obviously, φ 16 is S4-equivalent to ¬♦x 1 ∧ ¬♦x 2 . We need a substitution σ such that σ(x 1 ), ¬♦σ(x 1 ) and ¬♦σ(x 2 ). For this case, we can consider σ(x 1 ) = σ(x 2 ) = ⊥.

4. Let r f (r ) = φ i x 1 such that φ i contains φ 6 ∨ φ 8 .

Generalized reduced normal form

At the previous section, we discussed Rybakov's results on the admissibility condition of any given rule in reduced normal form as r f (r ) = i ∈I φ i x 0 . In this section, we generalize the definition of reduced normal form. Also, in this section, we express some criteria that a set of rules in this general reduced normal form may have and see how these criteria can help to decide S4-admissibility.

In this respect, we define general reduced normal form as follows:

Definition 22 A rule r is in general reduced normal form if it has the form r = j ∈I φ j j ∈J φ j
where each disjunct φ j has the form 5. α 0 = ¬α and α 1 = α for any formula α.

φ j = 0 i n x t (i , j ,0) i ∧ 0 i n (♦x i ) t (i ,
6. Θ(r ) = {φ j : j ∈ I }.

Lemma 4 There exists an algorithm which for any given inference rule r in the language of modal propositional logic, constructs a suitable general reduced normal form rf(r).

Proof 11 Let r = α β be a rule. We need a set of new variables {z γ | γ ∈ Sub(α)} and {z γ | γ ∈ Sub(β)}. Let us consider the following steps:

• Step 1: replace r = α β with r 1 = α∧(z α ↔α) β∧(z β ↔β) .
• Suppose the rule r i =

γ i χ i
was obtained in the i th step. Find δ ∈ sub(γ i ) ∩ sub(α) and δ ∈ sub(χ i ) ∩ sub(β) when δ and δ are not a variable and not a proper sub-formula of any other formula in Sub(γ i ) ∩ sub(α) and Sub(χ i ) ∩ sub(β). δ and δ are called final. At the end, replace the rule r i with the new one r i +1 =

γ i +1 χ i +1
, namely

γ i +1 = z α ∧ γ∈Sub(α)\V ar (r ) (z γ ↔ γ ) and χ i +1 = z β ∧ γ∈Sub(β)\V ar (r ) (z γ ↔ γ ⊕ ) where γ = z δ ∨ z , when γ = δ ∨ * δ, when γ = * δfor * ∈ {¬, ♦} and γ ⊕ = z δ ∨ z , when γ = δ ∨ * δ , when γ = * δ for * ∈ {¬, ♦}
Therefore after a finite number of steps we get a premise γ k and a conclusion χ k , which is a Boolean combination of literals of the form x or ♦x, where x is propositional variable.

• Final step: we transform the premise and conclusion of the obtained rule r N = γ k q β into an equivalent disjunctive normal form over literals.

We have seen in Theorem 1 that V. Rybakov gave a simple criterion for the admissibility of inference rules. We want to extend Theorem 1 to inference rules in general reduced normal form.

Definition 23 Let M = (W, R,V ) be an S4-model. Let S be a valuation on W . We say that S is a definable valuation if there exists a substitution σ such that for all propositional variable x, for all w ∈ W , w ∈ S(x) iff M , w σ(x).

Lemma 5 Let M = (M , R,V ) be a S4-model. Let S be a valuation on M .

1. If σ is a substitution and S(x i ) = V (σ(x i )), then S is a definable valuation such that S(α) = V (σ(α)) for each formula α, that is (M , R, S), w α iff (M , R,V ), w σ(α) for each w ∈ M .

2. If for each variable x i there is a formula φ i such that for all w ∈ M , (M , R, S), w x i iff (M , R,V ), w φ i , and if σ is the substitution such that for each x i ,

σ(x i ) = φ i then for each formula α, S(α) = V (σ(α)), that is to say (M , R, S), w α iff (M , R,V ), w σ(α) for each w ∈ M .
3. If σ is a substitution, S is a definable valuation for which S(α) = V (σ(α)) for each formula α, r := α 1 ,...,α m β is a rule and σ(r ) := σ(α 1 ),...,σ(α m )

σ(β) then r is valid in (M , R, S) iff σ(r ) is valid in (M , R,V ).

Proof 12

1. By induction on α:

• (⇒) Let α = x i . Let (M , R, S), w x i . Since, S(x i ) = V (σ(x i )) then, (M , R,V ), w σ(x i ). (⇐) Let (M , R,V ), w σ(x i ).Since, S(x i ) = V (σ(x i )) then, (M , R, S), w x i .
• (⇒) Let α = (ϕ∧ψ). Let (M , R, S), w (ϕ∧ψ). Hence, (M , R, S), w ϕ and (M , R, S), w ψ. By induction hypothesis, (M , R,V ), w σ(ϕ) and (M , R,V ), w σ(ψ). Then, (M , R,V ), w (ϕ ∧ ψ).

(⇐) Let (M , R,V ), w σ(ϕ∧ψ). Then, (M , R,V ), w σ(ϕ) and (M , R,V ), w σ(ψ). By induction hypothesis, (M , R, S), w ϕ and (M , R, S), w ψ.

Hence, (M , R, S), w (ϕ ∧ ψ).

• (⇒) Let α = ♦ϕ. Let (M , R, S), w ♦ϕ. Let w ∈ M such that wR w
and, (M , R, S), w ϕ. By induction hypothesis, (M , R,V ), w σ(ϕ).

Then, (M , R,V ), w ♦σ(ϕ).

(⇐) Let (M , R,V ), w ♦σ(ϕ). Let w ∈ M such that wR w and, (M , R,V ), w σ(ϕ). By induction hypothesis, (M , R, S), w ϕ. Then, (M , R, S), w ♦ϕ.

The proof of (2) can be done by induction on α and the proof of (3) by using (1) and (2).

Theorem 2 Let (K n , R n ,V n ) n∈N be a sequence of n-characterizing models for S4 (see Definition 17). Inference rules r 1 := are inadmissible in S4 with the same substitution σ iff r 1 , ..., r k are invalid in (K n , R n , S) for some n ∈ N and some definable valuation S of variables from r 1 , ..., r k in K n (that is, If S(α i j ) = K n and S(β i ) = K n for i = 1, ..., k and j = 1, ..., m i ).

Proof 13 (⇒) Suppose r 1 , ..., r k are not admissible in S4 with the same substitution σ. Let σ be a substitution such that S4 σ(α i j ) and S4 σ(β i ) for i = 1, ..., k and j = 1, ..., m i . Let the number of propositional variable occurring in σ(α i j ) and σ(β i ) be n. Hence we have for i = 1, ..., k and j = 1, ..., m i ,

(K n , R n ,V n ) S4 σ(α i j ) and (K n , R n ,V n ) S4 σ(β i
) by definition of n-characterizing models. Let S be a valuation on K n such that S(x i ) = V (σ(x i )) for i = 1, ..., n. Hence, since S is definable and

(K n , R n ,V n ) S4 σ(α i j ) and (K n , R n ,V n ) S4 σ(β i )
, then, S invalidate r i . Therefore, r 1 , ..., r k are invalid in (K n , R n , S). (⇐) Suppose r 1 , ..., r k are invalid in (K n , R n , S) with the definable valuation S for some n ∈ N. Then by the part 2 of Lemma 5, there is a substitution σ for each variable x i in r 1 , ..., r k such that S(x i ) = V n (σ(x i )). Hence by definition of the truth of formulas in Kripke models we obtain, S(α i j ) = V n (σ(α i j )) and S(β i ) = V n (σ(β i )) for i = 1, ..., k and j = 1, ..., m i . Thus,

(K n , R n ,V n ) S4 σ(α i j ) and (K n , R n ,V n ) S4 σ(β i ).
Since, K n is n-characterizing model then, S4 σ(α i j ) and S4 σ(β i ). Therefore r 1 , ..., r k are not admissible in S4 with the same substitution σ.

Before presenting our main theorems that gives a characterisation of admissible rules in reduced normal form, we need the following technical important lemma.

In Lemma 6, we consider the rule

i ∈I φ i j ∈J φ j
in general reduced normal form.

Lemma 6 Let N = (N , R,V ) be a S4-model. Let I ⊆ {1, ..., s}. Assume N i ∈I φ i and let W = {φ i ∈ Θ(r ) | i ∈ I , ∃a ∈ N s.t N , a |= φ i }. Notice that W = . Let M (Θ(r ))
be the S4-model associated to r and W . Then

1. If N , a |= φ i then N , a |= φ iff M (Θ(r )), φ i |= φ for each formula φ ∈ Θ(r ). 2. W ⊆ {φ i ∈ Θ(r ) | i ∈ I , M (Θ(r )), φ i |= φ i }. 3. Let I ⊆ I . Then, M (Θ(r )) |= i ∈I φ i iff W ⊆ {φ i ∈ Θ(r ) | i ∈ I }. 4. Let I ⊆ I . Then, N i ∈I φ i iff W ⊆ {φ i ∈ Θ(r ) | i ∈ I }. 5. N x k iff M (Θ(r )) x k for k = 1, ..., n.
6. If for each subset D of N there exists a ∈ N such that

θ (a) = θ(a) ∪ d ∈D θ (d )
then for each subset D of W there exists φ j ∈ W such that

θ (φ j ) = θ(φ j ) ∪ φ∈D θ (φ)
where for all a ∈ N , Θ(a)

= {x i | N , a x i } and Θ (a) = {x i | N , a x i }.
Proof 14 Remind that if φ i and φ j are distinct elements in Θ(r ) then φ i ∧ φ j is logically equivalent to ⊥. Since N i ∈I φ i then for all a ∈ N , there exists exactly one i ∈ I such that N , a φ i . We define a surjective function f : N -→ W such that for all a ∈ N , f (a) = φ i where i ∈ I and N , a φ i . We claim that f is a homomorphism. Let b, a ∈ N such that bRa. Let i

, j ∈ N such that f (b) = φ i and f (a) = φ j . Let x k ∈ θ (φ j ). Then N , a x k and N , b x k . Therefore, x k ∈ θ (φ i ). As a result, f (b) can see f (a) in M (Θ(r )). 1. Let N , b |= φ i .
We prove by induction on φ.

• (⇒) Let φ = x k . Let N , b x k . Since N , b φ i then, x k ∈ θ(φ i ). Then, x k ∈ V n (φ i ). Therefore, M (Θ(r )), φ i x k . (⇐) Let M (Θ(r )), φ i x k . Then, x k ∈ V n (φ i ). Thus, x k ∈ θ(φ i ). Since N , b φ i then, N , b x k . • (⇒) Let φ = ¬x k . Let N , b ¬x k . Since N , b φ i then, ¬x k ∈ θ(φ i ). Then, ¬x k ∈ V n (φ i ). Therefore, M (Θ(r )), φ i ¬x k . (⇐) Let M (Θ(r )), φ i ¬x k . Then, ¬x k ∈ V n (φ i ). Thus, ¬x k ∈ θ(φ i ). Since N , b φ i then, N , b ¬x k . • Let φ = ϕ∧ψ. N , b ϕ∧ψ iff N , b ϕ and N , b ψ iff M (Θ(r )), φ i ϕ and M (Θ(r )), φ i ψ (by induction hypothesis) iff M (Θ(r )), φ i ϕ ∧ ψ. • (⇒) Let φ = ♦p k . Let N , b ♦x k . Let a ∈ N and bRa such that N , a x k . Let f (b) = φ i and f (a) = φ j . Since, N , a φ j then, x k ∈ θ(φ j ).
Then, M (Θ(r )), φ j x k . Since, bRa and the function f is a homomorphism then, φ i Rφ j . Therefore, M (Θ(r )),

φ i ♦x k . (⇐) Let M (Θ(r )), φ i ♦x k . Then, ♦x k ∈ V n (φ i ). By our assumption, N , b φ i then, N , b ♦x k .
2. By item 1.

(⇒) Suppose M (Θ(r ))

i ∈I

φ i . Let φ j ∈ W . Let b ∈ N such that N , b φ j .
We have M (Θ(r )), φ j |= φ j by 1. By our assumption M (Θ(r ))

i ∈I φ i then there exists i ∈ I such that M (Θ(r )), φ j φ i . Then, φ j = φ i . Then, j ∈ I . Therefore,

φ j ∈ {φ i ∈ Θ n | i ∈ I }. (⇐) Suppose W ⊆ {φ i ∈ Θ(r ) | i ∈ I }. For all φ j ∈ W we have to show that M (Θ(r )), φ i i ∈I φ i . Let b ∈ N such that N , b φ j . Then, M (Θ(r )), φ j φ j by part 1. Since, φ j ∈ W ⊆ {φ i ∈ Θ n | i ∈ I } and M (Θ(r )), φ j φ j then, M (Θ(r )), φ j i ∈I φ i . Therefore, M (Θ(r )) i ∈I φ i . 4. Suppose (⇒) N i ∈I φ i . Let φ j ∈ W . Let b ∈ N be such that N , b φ j . Since N i ∈I φ i then N , b i ∈I φ i . Thus there is i ∈ I such that N , b φ i . Let i ∈ I and N , b φ i . Since N , b φ j then φ i = φ j and j ∈ I . So we have proved that W ⊆ {φ i : i ∈ I }. (⇐) Suppose W ⊆ {φ i : i ∈ I }. We have to prove that N i ∈I φ i . Let b ∈ N and let us prove N , b i ∈I φ i . Since N i ∈I φ i then let i ∈ I be such that N , b φ i . Then φ i ∈ W . Since W ⊆ {φ i : i ∈ I } then i ∈ I . Hence, N , b i ∈I φ i . 5. (⇒) Suppose N x k . Let b ∈ N such that N , b ¬x k . Since N i ∈I φ i then let φ i ∈ Θ(r ) such that N , b φ i . Consequently, x k ∉ θ(φ i ). Moreover, M (Θ(r )), φ i φ i by part 1. Since, M (Θ(r )), φ i φ i and x k ∉ θ(φ i ) then, M (Θ(r )), φ i x k . Therefore, M (Θ(r )) x k . (⇐) Suppose M (Θ(r )) x k . Let φ i ∈ W such that M (Θ(r )), φ i x k . Hence, x k ∉ θ(φ i ). Since φ i ∈ W then there is b ∈ N such that N , b φ i . Since, N , b φ i and x k ∉ θ(φ i ) then, N , b x k . Therefore, N x k . 6. Let D = {φ 1 , ..., φ k } ⊆ W . Since f : N → W is surjective then there are b 1 , ..., b k ∈ N such that, f (b i ) = φ i for 1 i k. Then we have N , b i φ i for 1 i k by definition of f . Let D = {b 1 , ..., b k }. Let a ∈ N be such that θ (a) = θ(a) ∪ a k ∈D θ (a k ) by our assumption. Claim 1 Let b i ∈ N . We have (a) θ(b i ) = θ(φ i ) (b) θ (b i ) = θ (φ i ) Proof 15 (a) Suppose x k ∈ θ(b i ). Then, N , b i x k . Since f (b i ) = φ i then N , b i φ i . Since N , b i x k such that x k ∈ φ i . Reciprocally, suppose p k ∈ φ i . Since N , b i φ i then N , b i x k . Hence, x k ∈ θ(b i ). (b) Suppose x k ∈ θ ♦ (x i ). Then, N , b i ♦x k . Let a ∈ N be such that b i Ra and N , a x k . Then f (b i )R f (a i ). Then x k ∈ θ(a) and x k ∈ θ( f (a)). Since f (b i )R f (a i ) then ♦x k ∈ θ( f (b i )). Since f (b i ) = φ i then x k ∈ θ ♦ (φ i ). Reciprocally, suppose x k ∈ θ ♦ (φ i ). Then M (Θ(r )), φ i ♦x k . Let φ j ∈ W be such that φ i Rφ j and M (Θ(r )), φ i p k . Since f is surjective, let a ∈ N be such that f (a) = φ i . We have M (Θ(r )), f (a) x k , therefore x k ∈ φ j and x k ∈ θ(a). Since,θ(b) = θ(φ i ) and θ (b) = θ (φ i ) then, θ (φ j ) = θ(φ j ) ∪ φ∈D θ (φ).
This ends the proof of Lemma 6. Now, we are prepared to express our results as follows. We firstly determine under which conditions a rule in general reduced normal form is invalid and then, we discuss about admissibility of such rules.

Theorem 3 A rule r = i ∈I φ i ∨ j ∈J φ j j ∈J φ j is invalid for S4-models iff there is a non- empty set W ⊆ {φ i ∈ Θ(r ) | i ∈ I ∪ J } such that the model M (Θ(r )
) associated to r and W satisfies the following conditions:

1. M (Θ(r )), φ j φ j for all φ j ∈ W .

M (Θ(r ))

i ∈I

φ i ∨ j ∈J φ j .
3. There exists i ∈ I such that

φ i ∈ W and M (Θ(r )), φ i j ∈J φ j . Proof 16 (⇒) Suppose r is invalid in N = (N , R,V ). Then N i ∈I φ i ∨ j ∈J φ j and N j ∈J φ j . Let W = {φ i ∈ Θ(r ) | i ∈ I , ∃w ∈ N s.t N , w |= φ i }. Obviously, W
is non-empty. Let M (Θ(r )) be the model associated to r and W .

1. Let φ j ∈ W . Hence there is w ∈ N such that we have N , w |= φ j by definition of W . Then M (Θ(r )), φ j φ j by Lemma 6.

Let φ

k ∈ W . We have to show that M (Θ(r )), φ k i ∈I φ i ∨ j ∈J φ j . Since φ k ∈ W then let w ∈ N be such that N , w φ k . Then, by part 2 of Lemma 6, M (Θ(r )), φ k φ k . Moreover, since N , w i ∈I φ i ∨ j ∈J φ j then M (Θ(r )), φ k i ∈I φ i ∨ j ∈J φ j .

By our assumption,

N j ∈J φ j . Then W {φ i ∈ Θ(r ) | i ∈ J } by part (4) of Lemma 6. Since W ⊆ {φ i ∈ Θ(r ) | i ∈ I ∪ J } then there exists an i ∈ I -J such that φ i ∈ W . By φ i → ¬ j ∈J φ j and M (Θ(r )), φ i φ i then we obtain M (Θ(r )), φ i ¬ j ∈J φ j . Therefore, M (Θ(r )), φ i j ∈J φ j .
Therefore, r is invalid in M (Θ(r )).

(⇐) The model M (Θ(r )) has all properties of Lemma 3.4.9 of [START_REF] Rybakov | Admissibility of logical inference rules[END_REF] then by Lemma 3.4.10 of [START_REF] Rybakov | Admissibility of logical inference rules[END_REF] there exists a definable valuation S of the rule r such that r is not provable in C h S4 (n). Therefore the rule r is invalid in C h S4 (n).

Theorem 4 A rule r = i ∈I φ i ∨ j ∈J φ j j ∈J φ j is inadmissible for S4 iff there is a set W ⊆ {φ i ∈ Θ(r ) | i ∈ I ∪ J } such that 1. φ i ∈ W for some i ∈ I .
2. M (Θ(r )), φ j φ j for all φ j ∈ W .

3. For each subset (D) of M there exists φ j ∈ W such that In logic and computer science, unification means solving logical equations. Unification in logic is the problem of finding a substitution that transform a given formula into a theorem (or a tautology). For instance consider, (

θ (φ j ) = θ(φ j ) ∪ φ∈D θ (φ).

Types in modal Logic

ϕ 1 ↔ ψ 1 ) ∧ ... ∧ (ϕ n ↔ ψ n ). If we can find a substitution σ such that L (σ(ϕ 1 ) ↔ σ(ψ 1 )) ∧ ... ∧ (σ(ϕ n ) ↔ σ(ψ n ))
then we can say that this formula is unifiable in the considered logic L. Chapter 4 presents already existing results on unification in propositional logic and modal logic.

• Classical Propositional Logic has projective unification (Proposition 9, p.

45) and thus is unitary (see Proposition 8).

• Jerábek proved that modal logic K is nullary.

• P. Balbiani and Ç. Gencer adapted Jeřábek's argument to K D and proved that K D is nullary too.

• Ghilardi proved that K 4 and its extensions are finitary and given a formula, its finite complete sets of unifiers can be computed.

• W. Dzik showed that S5 is unitary.

• P. Balbiani and T. Tinchev showed that K D45 is unitary.

• K D5 and K 5 are both filtering hence either unitary or nullary. The exact type is open.

Fundamental Notions of Unification

To discuss about unification type of modal logics, first we give some basic definitions and then we consider unification type of modal logics.

Definition 24

We define some features of substitution:

• A substitution σ is a mapping from variables to a formulas. It is denoted by σ : x → F (y). Substitutions will generally be represented by σ, θ, λ, τ and so on.

• Composition of two substitutions σ : x → F (y) and τ :

y → F (z) is the sub- stitution τ • σ : x → F (z) defined by τ • σ(x) = τ(σ(x)).
for each x ∈ x.

• A substitution σ :

x → F (y) is equivalent in a logic L to a substitution τ : x → F (z) if σ(x) ↔ τ(x) ∈ L
for each x ∈ x. We will denote it by σ L τ Definition 25 Let A(x 1 , ..., x n ) is a formula built up from variables x 1 , ..., x n and denoted by A(x). Let L be a logic.

• a substitution σ is an L-unifier of

A if A(σ(x 1 ), ..., σ(x n )) ∈ L.
• A is unifiable in L if there exists a substitution σ such that A(σ(x 1 ), ..., σ(x n )) ∈ L. In this case, A is called unifiable in L.

• A substitution σ : x → F (y) is more general (or less specific) than a substitution τ : x → F (z) in L iff there exist a substitution λ : y → F (z) such that λ(σ(x)) ↔ τ(x) ∈ L for all variable x ∈ x. We will denote it by σ L τ.

• A substitution σ of the form σ : x → F ( ) is called ground unifier or closed unifier.

• Let U L (A) be the set of all unifiers for the formula A in a logic L. A set U ⊆ U L (A) is said to be complete set of unifier for A, if for every unifier τ for A there is a unifier from the set U which is more general than τ.

• A complete set of unifiers for A in L is a minimal complete set if its members are pairwise incomparable with respect to L .

• A unifier σ for A in logic L is called a most general unifier (mgu) in L for a formula A, if {σ} is a complete set of unifiers for A.

Example 7

The formula x ∨ ¬x is unifiable in K . The ground substitutions σ and σ ⊥ defined by σ = and σ ⊥ = ⊥ are K -unifiers of x ∨ ¬x.

Note that a most general unifier is not unique. There are always more than 1 most general unifiers. Nevertheless, of course, if τ 1 and τ 2 are two most general unifiers, then there exists substitutions λ 1 and λ 2 such that

λ 1 • τ 1 L τ 2 and λ 2 • τ 2 L τ 1 hence, τ 1 L τ 2 and τ 2 L τ 1 .
This means they are equivalent instances of each other.

Lemma 7 If a given formula L has two minimal complete sets Σ and Σ in logic L then c ar d (Σ) = c ar d (Σ )

.

Proof 18 Let f : Σ → Σ and g : Σ → Σ such that • For all σ ∈ Σ, f (σ) L σ, • For all σ ∈ Σ , g (σ ) L σ .
The functions f and g exist because Σ and Σ are complete. We show that f is injective

. Let σ, τ ∈ Σ such that f (σ) = f (τ). Notice that g ( f (σ)) L f (σ) L σ and g ( f (τ)) L f (τ) L τ. Since f (σ) = f (τ) then g ( f (σ)) = g ( f (τ)). But g ( f (σ)) ∈ Σ, σ, τ ∈ Σ. Since g ( f (σ)) L σ then g ( f (σ)) = σ by minimality of Σ. Since g ( f (τ)) L τ then similarly g ( f (τ)) = τ. Since g ( f (σ)) = g ( f (τ)) then σ = τ.
By the same way we can prove g is injective. Consequently, c ar d (Σ) = c ar d (Σ ).

Definition 26

Let A(x) be a unifiable formula in logic L.

• The formula A has unification type unitary if it has a minimal complete set of unifiers of cardinality 1.

• The formula A has unification type finitary if it has a finite minimal complete set of unifiers for formula A and cardinality fo this minimal complete

set is strictly greater than 1.

• The formula A has unification type infinitary if it has a infinite minimal complete set of unifiers. • The formula A has unification type nullary if it does not have any minimal complete set of unifiers.

Definition 27 Let L be a logic

• L is unitary if every L-unifiable formula is of type unitary.

• L is finitary if there exists a L-unifiable formula of type finitary and every L-unifiable formula is either of type unitary, or of type finitary.

• L is infinitary if there exists a L-unifiable formula of type infinitary and every L-unifiable formula is either of type unitary, or of type finitary, or of type infinitary,

• L is nullary if there exists a L-unifiable formula of type nullary.

Let us see these definitions at the following example:

Example 8 Let A = x ∨ y. Consider the substitutions σ 1 defined by σ 1 (x) = x and σ 1 (y) = ¬x. After applying σ 1 , we have:

σ 1 (A) = σ 1 (x) ∨ σ 1 (y) = x ∨ ¬x.
Therefore, σ 1 (A) is a tautology. In this case, A is unifiable and σ 1 is unifier of A in Classical Propositional Logic. Consider the substitution σ 2 defined by σ 2 (x) = and σ 2 (y) = . Hence, σ 2 (A) is a tautology and σ 2 is also a unifier of A.

Lemma 8

Let A be a unifiable formula in logic L. Then the formula A possesses a ground unifier in logic L.

Proof 19

Let A be a unifiable formula in logic L. Let σ be a unifier of A such that σ(A) ∈ L. Let τ be a ground substitution. Since σ(A) ∈ L then τ(σ(A)) ∈ L. Since τ is ground substitution thus, τ • σ is a ground unifiers of A.

Definition 28 A unifier σ for a formula A is said to be projective in logic L if for each x ∈ x A L σ(x) ↔ x
A formula is projective in logic L iff there exists a projective unifier for the formula. If each unifiable formula is projective in logic L, then we say that L has projective unification.

Lemma 9 Each projective unifier for A is a most general unifier for A.

Proof 20 Let σ is a projective unifier of unifiable formula A. Then A L σ(x) ↔ x. Let τ be a unifier of A then, L τ(A). By applying

τ on A L σ(x) ↔ x, we ob- tain τ(A) L τ(σ(x)) ↔ τ(x). Since L τ(A) then, L (τ(σ(x)) ↔ τ(x))
. Therefore, σ L τ (since τ was arbitrary) and σ is a most general unifier of A.

Proposition 6 If L has projective unification then, unification type L is unitary.

Unification in Classical Propositional Logic

In this section, we are going to review unification problem and unification type of Classical Propositional Logic [START_REF] Martin | Boolean unification-The story so far[END_REF]. It has been proved that all unifiable formulas in Classical Propositional Logic have a most general unifier. To prove that Classical Propositional Logic has unitary unification, we will use Löwenheim formula.

Let us prove that unification type of Classical Propositional Logic is unitary. Syntax and semantic of Classical Propositional Logic are as usual. Consider a formula A and a substitution γ. Let λ be the substitution defined by λ(x) = (A ∧ x) ∨ (¬A ∧ γ(x)). The substitution λ is the so-called Löwenheim substitution associated to A and γ. Variant of it in modal logics have been used by [START_REF] Dzik | Unification Types in Logics[END_REF] and [START_REF] Ghilardi | Best solving modal equations[END_REF].

Lemma 10 Le ν be a valuation. For any formula B

1. If ν(A) = then, ν(B ) = ν(λ(B )).

If ν(

A) = ⊥ then, ν(γ(B )) = ν(λ(B )).

Proof 21

1. Suppose ν(A) = . We prove by induction on B :

• Let B = x. We have to prove ν(x) = ν(λ(x)). Since ν(A) = and ν(λ(x)) = (ν(A) ∧ ν(x)) ∨ (¬ν(A) ∧ ν(γ(x))) then, ν(x) = ν(λ(x)). • Let B = ⊥. We have to prove ν(⊥) = ν(λ(⊥)). Since ⊥ is Boolean con- stant and λ is substitution hence, λ(⊥) = ⊥. Then ν(λ(⊥)) = ⊥ hence, ν(⊥) = ν(λ(⊥)).
• Let B = ¬B . We have to prove ν(¬B

) = ν(λ(¬B )). By induction hy- pothesis, ν(B ) = ν(λ(B )). Therefore, ν(¬B ) = ν(λ(¬B )). • Let B = B ∧B . We have to prove ν(B ∧B ) = ν(λ(B ∧B )). By induc- tion hypothesis, ν(B ) = ν(λ(B )) and ν(B ) = ν(λ(B )). Therefore, ν(B ∧ B ) = ν(λ(B ∧ B )).

Let ν(A) = ⊥. We prove by induction on B :

• Let A = x. We have to prove ν(γ(x)

) = ν(λ(x)). Since ν(A) = ⊥ and ν(λ(x)) = (ν(A) ∧ ν(x)) ∨ (¬ν(A) ∧ ν(γ(x))) then, ν(γ(x)) = ν(λ(x)). • Let B = ⊥. We have to prove ν(γ(⊥)) = ⊥ = ν(λ(⊥)). Since λ(⊥) = ⊥ and γ(⊥) = ⊥ hence ν(λ(⊥)) = ν(γ(⊥)). • Let B = ¬B . We have to prove ν(γ(¬B )) = ν(λ(¬B )). By induc- tion hypothesis, ν(γ(B )) = ν(λ(B )). Hence, ¬ν(γ(B )) = ¬ν(λ(B )). Therefore, ν(γ(¬B )) = ν(λ(B )). • Let B = B ∧ B . We have to prove ν(γ(B ∧ B )) = ν(λ(B ∧ B )). By induction hypothesis, ν(γ(B )) = ν(λ(B )) and ν(γ(B )) = ν(λ(B )). Therefore, ν(γ(B ∧ B )) = ν(λ(B ∧ B )).
Theorem 5 Let A be a unifiable formula and γ unifier of A. The substitution λ defined above is a most general unifier of A.

Proof 22 First, we prove that λ is a unifier for A. Suppose λ is not a unifier of A. Then λ(A). Hence, there exists a ν such that ν(λ(A)) = ⊥. Hence we have two cases:

1. If ν(A) = : then by Lemma 10, ν(λ(A)) = ν(A). Then ⊥ = . This is a contradiction.

If ν(

A) = ⊥: then by Lemma 10, ν(λ(A)) = ν(γ(A)). Then ⊥ = ν(γ(A)). Then γ(A):
this is a contradiction with the fact that γ is a unifier of A. Therefore λ is a unifier of A.

Second, we prove that λ is most general: Let τ be a unifier of A. Then, τ(A). Let x be an arbitrary variable. By part (1) of Lemma 10 we have A → (λ(x) ↔ x). Then by applying τ on

A → (λ(x) ↔ x) we get, τ(A) → (τ(λ(x)) ↔ τ(x)). Since τ(A) and τ(A) → (τ(λ(x)) ↔ τ(x)) then, τ(λ(x)) ↔ τ(x). Therefore λ is most general than τ (λ τ) in Classical Propositional Logic.

Lemma 11

The substitution λ defined above is a projective unifier for A.

Proof 23 Firstly, λ(A) by Theorem 5.

Secondly, A → (λ(x) ↔ x) by part 1 of Lemma 10. Therefore, λ is projective unifier.

From the above results, it follows:

Proposition 7 Classical Propositional Logic has projective unification.

Proposition 8 Every unifiable formula in Classical Propositional Logic has a most general unifier.

Example 9 Consider the formula A = x ∨ y. The substitution σ such that σ(x) = x and σ(y) = ¬x is one of the unifiers of A. Let λ be the substitution defined by

λ(x) = (A ∧ x) ∨ (¬A ∧ σ(x)) and λ(y) = (A ∧ y) ∨ (¬A ∧ σ(y)). Hence we have λ(x) = (A ∧ x) ∨ (¬A ∧ x) = x and λ(y) = (A ∧ y) ∨ (¬A ∧ ¬x) = y ∨ ¬x. By Lemma 5, we know that λ is a most general unifier of A.

Unification in Modal Logic

In this section, we consider some modal logic such as K , S4, S5 and so on and we explain their unification type; Unification type of these modal logics respectively, are nullary, finitary and unitary.

Unification in Modal Logic K

Emil Jeřábek in [START_REF] Jeřábek | Blending margins: The modal logic K has nullary unification type[END_REF] has proved that unification type in normal modal logic K is nullary. In this respect he considered a formula and introduced some substitutions. First, he proved that these substitutions are K -unifiers of that formula. Then, he proved that these unifiers are not more general than each other. Let us see which formula and substitutions he considered and how he proved that modal logic K is nullary. In Chapter 6, we will adapt the argument of Jeřábek show that the fusion S5 ⊗ S5 is nullary. Jeřábek considered the formula ϕ = x → x. He introduced the substitutions σ n (x) = <n x ∧ n ⊥ (for each n 0) and σ (x) = and then proved that Lemma 12 For each n ∈ N 1. The substitution σ n is a K -unifier of the formula ϕ.

The substitution σ is a K -unifier of the formula ϕ.

Proof 24

1. By the inference rule ϕ → ψ ϕ → ψ which is derivable in K , and by the distributivity of over ∧, we have

<n x ∧ n ⊥ → <n x ∈ K and n ⊥ → n+1 ⊥ ∈ K thus, <n x ∧ n ⊥ → ( <n x ∧ n ⊥) ∈ K 2. Clearly, → ∈ K .
The Lemmas 13 and 14 show that

σ n K σ n-1 K ... K σ 0 and σ 0 K σ 1 K ... K σ n . Lemma 13 Let k, l ∈ N. If k l then σ l K σ k .
Proof 25 Suppose k l . Let ν be the substitution defined by ν

(x) = x ∧ k ⊥. It is easy to check that ν • σ l K σ k . Hence, σ l K σ k . Lemma 14 Let k, l ∈ N. If k < l then σ k K σ l . Proof 26 Suppose k < l and σ k K σ l . Let ν be a substitution such that ν • σ k K σ l . Hence, K ν(σ k (x)) ↔ σ l (x). Thus, K <l x ∧ l ⊥ → <k ν(x)∧ k ⊥.
Consequently, after replacing x by , K l ⊥ → k ⊥: a contradiction.

Then Jeřábek [START_REF] Jeřábek | Blending margins: The modal logic K has nullary unification type[END_REF] showed that some σ n or σ are more general in some cases than a given unifier σ of ϕ as follows:

Lemma 15 If σ is a unifier of ϕ = x → x and n ∈ N, the following are equivalent:

1. σ • σ n K σ, 2. σ n K σ, 3. K σ(x) → n ⊥. Proof 27 1. (1 ⇒ 2) By definition of K . 2. 2 ⇒ 3 Suppose σ n K σ. Let ν be a substitution such that ν • σ n K σ. Hence, K ν(σ n (x)) ↔ σ(x). Then, K σ(x) → n ⊥. 3. (3 ⇒ 1) Suppose K σ(x) → n ⊥. Since σ is a unifier of ϕ then, K σ(x) → σ(x). Hence, K σ(x) → <n σ(x). Since K σ(x) → n ⊥ and K σ(x) → <n σ(x) then K σ(x) → <n σ(x) ∧ n ⊥. Thus, K σ(x) → σ(σ n (x)).
Now, we consider two following cases:

• If n = 0 then K n ⊥ → σ(x) and • If n 1 then K <n σ(x) → σ(x). Therefore, K <n σ(x) ∧ n ⊥ → σ(x). Hence, K σ(σ n (x)) → σ(x). Since, K σ(x) → σ(σ n (x)) and K σ(σ n (x)) → σ(x) therefore, σ • σ n K σ.
Lemma 16 If σ is a substitution, the following are equivalent:

1. σ K σ, 2. σ • σ K σ, 3. K σ(x).
Proof [START_REF] Friedman | One hundred and two problems in mathematical logic[END_REF] The proof is similar to the proof of Lemma 15.

At the next step, Jeřábek stated that the unifiers σ n or σ are more general than any unifier σ of ϕ.

Theorem 6 Let σ be a K -unifier of ϕ = x → x then one of the following conditions holds:

1. σ K σ.
2. There exist n ∈ N such that σ n K σ.

Proof 29 Let n d eg (σ(x)). Suppose none of the above conditions holds. Hence, σ n K σ and σ K σ. By Lemmas 15 and 16 we have that K σ(x) and K σ(x) → n ⊥. Then, there are models 

M 1 = (W 1 , R , ν 1 ) and M 2 = (W 2 , R , ν 2 ) and there are s 1 ∈ W 1 , s 2 ∈ W 2 such that, M 1 , s 1 σ(x), M 2 , s 2 σ(x)
• W = W 1 ∪ W 2 , • R = R ∪ R ∪ {(s n+1 , s 1 )}, • ν = ν 1 ∪ ν 2 that is to say for all proposition letters y, ν(y) = ν 1 (y) ∪ ν 2 (y). Since M 1 , s 1 σ(x), then M , s 1 σ(x). Since M 2 , s 2 σ(x) and n d eg (σ(x)), then M , s 2 σ(x). Since K σ(x) → σ(x) then M , s 2 σ(x), ..., M , s n+1 σ(x). Then M , s 1 σ(x): a contradiction.
The main result about unification type of modal logic K has been proved as follows.

Lemma 17

The set of substitutions

Σ = {σ n : n ∈ ω} ∪ {σ } is a complete set of K -unifiers of ϕ = x → x.
Proof 30 By Theorem 6, Σ constitutes a complete set of unifiers of the formula ϕ = x → x.

Lemma 18

The formula ϕ = x → x does not possess a minimal complete set of K -unifiers.

Proof 31 Suppose ϕ possesses a minimal complete set Σ of K -unifiers. Since Σ is complete, let σ ∈ Σ be such that σ K σ 0 . Since σ is a K -unifier of ϕ, then σ (x) → σ (x) ∈ K .
Hence, by the rule of margin [START_REF] Jeřábek | Blending margins: The modal logic K has nullary unification type[END_REF] 

either σ (x) ∈ K or σ (x) → d eg (σ (x)) ⊥ ∈ K .
In the former case, by Lemma 16, σ K σ . Since σ K σ 0 , then σ K σ 0 .

Thus, ↔ ⊥ ∈ K : a contradiction. In the latter case, by Lemma 15 since Σ is a set of unifiers of ϕ, then We shall adapt this method in Chapter 5 to investigate on unification type of modal logic K 1 ⊗ K 2 and S5 1 ⊗ S5 2 for instance

σ d eg (σ (x)) K σ . Since Σ is complete, let σ ∈ Σ be such that σ K σ d eg (σ (x))+1 . Since σ d eg (σ (x))+1 K σ d eg (σ (x)) K σ , then σ K σ . Since Σ is minimal, then σ = σ . Since σ d eg (σ (x)) K σ and σ K σ d eg (σ (x))+1 , then σ d eg (σ (x)) K σ d eg (σ (x)

Unification in Modal Logic K D

P. Balbiani and Ç. Gencer have adapted Jeřábek argument to K D. They proved that unification type of modal logic K D is nullary [START_REF] Balbiani | KD is nullary[END_REF] too. In this respect, they used a special kind of atomic formulas called parameters and they considered the formula ϕ = (x → p) ∧ (x → [p]x). Parameters are atomic formulas that are not replaced by formulas when a substitution is applied. For all parameters p, the modal connective [p] is defined as follows:

• [p]x ::= (p → x).
For all parameters p, the modal connective [p] k is inductively defined as follows for each n ∈ N:

• [p] 0 ϕ ::= ϕ, • [p] k+1 ::= [p][p] k ϕ.
A parameter is a propositional letter that is not moved by substitutions. Parameters will be denoted by p, q, et c. A parameter is like a constant proposition letter. For instance, if σ is the substitution defined by σ(x) = p ∨ y and σ(y) = y, then σ( (x → p ∨ y)) = ( p ∨ y → p ∨ y).Parametrized unification (as well as parametrized admissibility) have been considered by several authors, but mainly considered by V. Rybakov [START_REF] Rybakov | Admissibility of logical inference rules[END_REF]. For all parameters p, the modal connective [p] <k is inductively defined as follows for each n ∈ N:

• [p] <0 ϕ ::= . • [p] <k+1 ϕ ::= [p] <k ϕ ∧ [p] k ϕ.
Consider the formula ϕ = (x → p) ∧ (x → [p]x) and substitutions σ p (x) = p and σ n (x) = p ∧ [p] <n x ∧ [p] n ⊥ where n ∈ N. P. Balbiani and Ç. Gencer proved that In order to adapt Jeřábek argument, it is needed to prove that the sequence of substitutions σ n for n ∈ N satisfies the property

Lemma 19 For all n ∈ N 1. σ n (x) = p ∧ [p] <n x ∧ [p] n ⊥ is a K D-unifier of ϕ. 2. σ p (x) = p is a K D-unifier of ϕ. Proof 33 1. It is clear that p ∧ [p] <n x ∧ [p] n ⊥ → p. Since K D p → [p]p. Hence, K D p ∧ [p] <n x ∧ [p] n ⊥ → [p]p. Since K D [p] <n x ∧ [p] n ⊥ → [p][p] <n x and K D [p] n ⊥ → [p] n+1 ⊥ then, K D p ∧ [p] <n x ∧ [p] n ⊥ → [p]p ∧ [p][p] <n x ∧ [p] n+1 ⊥. Therefore, σ n is a K D-unifier of ϕ.
σ n K D ... K D σ 0 and σ 0 K D ... K D σ n Lemma 20 Let k, l ∈ N. If k l then σ l K D σ k . Proof 34 Suppose k l . Let ν(x) = x ∧ [p] k ⊥. Since, K D [p] <l x → [p] <k x and K D [p] <l [p] k ⊥ → [p] k ⊥. Therefore, K D p ∧ [p] <l (x ∧ [p] k ⊥) ∧ [p] l ⊥ → p ∧ [p] <k x ∧ [p] k ⊥. Since, K D [p] k ⊥ → [p] l ⊥ and K D [p] <k x ∧ [p] k ⊥ → [p] <l x and, K D [p] k ⊥ → [p] <l [p] k ⊥ therefore, K D (p ∧ [p] <k x ∧ [p] k ⊥) → p ∧ [p] <l (x ∧ [p] k ⊥) ∧ [p] l ⊥. Hence, K D p ∧ [p] <l (x ∧ [p] k ) ∧ [p] l ⊥ ↔ p ∧ [p] <k x ∧ [p] k ⊥. Consequently, σ l K D σ k . Lemma 21 Let k, l ∈ N. If k < l then σ k K D σ l . Proof 35 Suppose k < l and σ k K D σ l . Let ν be a substitution such that K D ν(σ k (x)) ↔ σ l (x). Then, K D p ∧ [p] <k ν(x) ∧ [p] k ⊥ ↔ p ∧ [p] <l x ∧ [p] l ⊥. Then, K D [p] l ⊥ → [p] k ⊥
. This is contradiction. P. Balbiani and Ç. Gencer proved that if there exists a unifier σ of the formula ϕ = (x → P ) ∧ (x → [p]x) then either σ p K D σ or there exists n ∈ N such that σ n K D σ. In this respect, they proved that Lemma 22 Let σ be a K D-unifier of ϕ. The following conditions are equivalent:

1. σ p • σ K D σ. 2. σ p K D σ. 3. K D σ(x) ↔ p. Proof 36 (1 ⇒ 2): By definition of K D . (2 ⇒ 3): Suppose σ p K D σ. Let ν be a substitution such that K D ν(σ p (x)) ↔ σ(x). Then, K D p ↔ σ(x). (3 ⇒ 1): Suppose K D σ(x) ↔ p. Then, K D σ(x) ↔ σ(σ p (x)). Hence, σ p • σ K D σ. Lemma 23 Let σ be a K D-unifier of ϕ = (x → p) ∧ (x → [p]x). Let k ∈ N.
The following conditions are equivalent:

1. σ k • σ K D σ 2. σ k K D σ 3. K D σ(x) → [p] k ⊥. Proof 37 (1 ⇒ 2): By definition of K D . (2 ⇒ 3): Suppose σ n K D σ. Let ν be a substitution such that K D ν(σ n (x)) ↔ σ(x). Then K D σ(x) → [p] k ⊥. (3 ⇒ 1): Suppose K D σ(x) → [p] k ⊥. Since σ is a unifier of ϕ then, K D σ(x) → p ∧[p] <k σ(x). Hence, K D σ(x) → p ∧[p] <k σ(x)∧[p] k ⊥. Consider two following case: If n = 0 then K D [p] k ⊥ → σ(x) and If n 1 then, K D p ∧ [p] <k σ(x) ∧ [p] k ⊥ → σ(x). Therefore, K D p ∧ [p] <k σ(x) ∧ [p] k ⊥ ↔ σ(x). Thus, σ n • σ K D σ.
Lemma 24 Let σ is a unifier of ϕ. Let n d eg (σ(x)). Then one of the following conditions holds:

• σ p K D σ or • σ n K D σ.
Proof 38 Suppose none of the above conditions hold. Hence by Lemma 22 and

23, K D σ(x) ↔ p and K D σ(x) → [p] n ⊥. Since, σ is a unifier of ϕ then, K D σ(x) → p. Hence, K D p → σ(x). Consider two models M 1 = (W 1 , R , ν 1 ) and M 2 = (W 2 , R , ν 2 ) and s 1 ∈ W 1 , s 2 ∈ W 2 such that M 1 , s 1 p → σ(x) and M 2 , s 2 σ(x) → [p] n ⊥. Thus M 1 , s 1 p, M 1 , s 1 σ(x), M 2 , s 2 σ(x) and M 2 , s 2 [p] n ⊥.
Hence, there exists t 3 , ..., t n+2 ∈ W 2 such that s 2 R t 3 R t 4 ...R t n+2 . By the treemodel property of K D, we can assume that s 2 , t 3 , ..., t n+2 are pairwise distinct. Notice that t 3 , ..., t n+2 ∈ ν(p). Let model M = 〈W, R, ν〉 be an extension of the disjoint union of M 1 and M 2 and defined as follows:

• W = W 1 ∪ W 2 , • R = R ∪ R ∪ {(t n+2 , s 1 )}, • ν = ν 1 ∪ ν 2 .
By our assumption σ is a unifier of ϕ and K D σ(x) → [p]σ(x). By proposition 2, M , s 1 p and M , s 1 σ(x). Moreover, since n d eg (σ(x)), then M , s 2 σ(x). Since σ is a unifier of (x → p) ∧ (x → [p]x), then M , t 2 σ(x), ..., M , t n+2 σ(x). Then, M , t n+2 [p]σ(x). Since M , s 1 p and t n+2 R s 1 , then M , s 1 σ(x): a contradiction.

At the end step, P. Balbiani and Ç. Gencer showed that Lemma [START_REF] Dzik | Projective unification in modal logic[END_REF] The set of substitutions

Σ = {σ p } ∪ {σ n | n ∈ N} is a complete set of K D-unifiers of ϕ.
Proof 39 By Lemmas 19 to 24.

Lemma 26 The formula ϕ does not possess a minimal complete set of K D-unifiers.

Proof 40 Refer to [START_REF] Balbiani | KD is nullary[END_REF], Lemma 7. The proof of this Lemma is similar to the proof of lemma 18.

Proposition 10 Unification type is nullary in modal logic K D.

Proof 41 By Lemma 26.

We shall use the same method in chapter 6 to discuss on unification type of the fusion K 4 S. Ghilardi showed that some modal logics extending K 4 (like K 4 itself, S4, GL, Gr z, etc.) are finitary and that finite complete sets of unifiers can be effectively computed [START_REF] Ghilardi | Best solving modal equations[END_REF]. As we already said the most important role of most general unifiers in unification theory is generating all unifiers of a formula. In classical propositional logic every unifiable formula has a most general unifier. S. Ghilardi investigated whether every unifiable formula in modal logic L has a most general unifier. The answer was negative for many modal logics L enjoying disjunction property. For example, consider the formula x ∨ ¬x. This formula has unifiers in K 4, S4 and GL:

K D 1 ⊗ K D 2 .

Unification in Modal Logics Extending

• σ 1 (x) = , • σ 2 (x) = ⊥.
and there is no unifier more general than both of them because if L σ(x) ∨ ¬σ(x) then by the modal disjunction property, we have: either L σ(x) (so that σ is equivalent to σ 1 ) or L ¬σ(x) (so that σ is equivalent to σ 2 ). Thus this formula has no most general unifier. Moreover, Σ = {σ 1 , σ 2 } is a minimal complete set of unifiers for x ∨ ¬x in K 4, S4 and GL. Hence, Ghilardi in [START_REF] Ghilardi | Best solving modal equations[END_REF] proved many transitive modal logics have finitary unification type and that finite complete set of unifiers can be effectively computed. S. Ghilardi investigated which modal logics are unitary in [START_REF] Ghilardi | Filtering unification and most general unifiers in modal logic[END_REF]. Hence he introduced a significant characterisation of modal logic that called filtering unification. See [START_REF] Jeřábek | Logics with directed unification. Algebra and Coalgebra meet Proof Theory[END_REF] for further discussion about filtering unification. Definition 29 A given logic L is filtering iff for all L-unifiable formulas φ and for all L-unifiers σ, τ of φ there exists a L-unifier µ of φ such that µ L σ and µ L τ. S.Ghilardi proved that filtering unification in modal logic is characterized by the fact that finitely presented projective algebras are closed under binary products. Then he used this characterization to the case of normal extensions L of the modal system K 4 and showed that a normal modal logic K 4 ⊆ L has filtering unification iff L extends K 4.2 + . The logic K 4.2 + is the logic obtained from K 4 by adding the axiom ♦ + + A → + ♦ + A where + and ♦ + are defined by 

+ = B ∧ B and ♦ + = ♦B ∨ B .

Unification In the modal logic S5

W. Dzik in [START_REF] Dzik | Unitary unification of S5 modal logics and its extensions[END_REF] showed that the modal logic S5 and all extensions of the modal logic S5 have unitary unification type. Dzik discussed on unification and unification types in four areas of logic: non-Fregean logics, intermediate logics (extensions of intuitionistic logic), modal and multimodal logics, including Tense Logics and Epistemic Logics (Logics of Knowledge) in [START_REF] Dzik | Unification Types in Logics[END_REF]. Let us see how Dzik proved that the unification type of Epistemic logic S5 is unitary. Consider an S5-unifiable formula A and a substitution σ. Suppose σ is an S5unifier of A. Let λ be the substitution defined as follows for all variables x occurring in A:

λ(x) = ( A ∧ x) ∨ (¬ A ∧ σ(x))
Notice how λ is similar to the Löwenheim substitution used in Section 4.2.

Lemma 28 For any formula B 1. S5 A → (λ(B ) ↔ B ).

2. S5 ¬ A → (λ(B ) ↔ σ(B )).

Proof 43 1. By induction on B

• Let B = x. We have to prove A → (λ(x) ↔ x). Since

-A → (( A ∧ x) ∨ (¬ A ∧ σ(x)) → x) is equivalent to ( A ∧ x → x)
. Thus,

-S5 A → (λ(x) → x). Since, -S5 ( A ∧ x) → λ(x) hence, -S5 A → (x → λ(x)). Since, -S5 A → (λ(x) → x)
and

-S5 A → (x → λ(x)) therefore, -S5 A → (λ(x) ↔ x). • Let B = ⊥. We have to prove S5 A → (λ(⊥) ↔ ⊥). Since, λ(⊥) = ⊥ hence, S5 A → (λ(⊥) ↔ ⊥).
• Let B = ¬B . We have to prove S5 A → (λ(¬B ) ↔ ¬B ). By induction hypothesis,

-S5 A → (λ(B ) ↔ B ). Since, -S5 (λ(B ) ↔ B ) → (¬λ(B ) ↔ ¬B ). Then, -S5 A → (λ(¬B ) ↔ ¬B ).
• Let B = B ∧B . We have to prove S5 A → (λ(B ∧B ) ↔ ((B ∧B ))).

By induction hypothesises,

-S5 A → (λ(B ) ↔ B )
and

-S5 A → (λ(B ) ↔ B ). Therefore, -S5 A → (λ(B ∧ B ) ↔ ((B ∧ B ))). • Let B = B . We have to prove S5 A → (λ( B ) ↔ B ). By induc- tion hypothesis, -S5 A → (λ(B ) ↔ B )
. By necessitation and axiom K ,

-S5 A → (λ( B ) ↔ B ). Since, -S5 A → A then, -S5 A → (λ( B ) ↔ B ).

By induction on B

• Let B = x. We have to prove, ¬ A → (λ(x) ↔ σ(x)). Since,

-¬ A → (( A∧x)∨(¬ A∧σ(x)) → σ(x)) is equivalent to ¬ A∧ σ(x) → σ(x) then, -S5 ¬ A → (λ(x) → σ(x)). Since, -S5 (¬ A ∧ σ(x)) → λ(x) hence, -S5 ¬ A → (σ(x) → λ(x)). Since, -S5 ¬ A → (λ(x) → σ(x))
and

-S5 ¬ A → (σ(x) → λ(x)) therefore, -S5 ¬ A → (λ(x) ↔ σ(x)). • Let B = ⊥. We have to prove, S5 ¬ A → (λ(⊥) ↔ σ(⊥)). Since, λ(⊥) = σ(⊥) = ⊥. Therefore, S5 ¬ A → (λ(⊥) ↔ σ(⊥)).
• Let B = ¬B . We have to prove, S5 ¬ A → (λ(¬B ) ↔ σ(¬B )). By induction hypothesis,

-S5 ¬ A → (λ(B ) ↔ σ(B )). Since, -(λ(B ) ↔ σ(B )) → (¬λ(B ) ↔ ¬σ(B )) then, -S5 ¬ A → (λ(¬B ) ↔ σ(¬B )). • Let B = B ∧ B . We have to prove S5 A → (λ(B ∧ B ) ↔ (σ(B ) ∧ σ(B ))
. By induction hypothesises,

-S5 ¬ A → (λ(B ) ↔ σ(B ))
and

-S5 ¬ A → (λ(B ) ↔ σ(B )). Therefore, -S5 ¬ A → (λ(B ∧ B ) ↔ ¬(σ(B ) ∧ σ(B ))). • Let B = B . We have to prove S5 ¬ A → (λ( B ) ↔ B ). By in- duction hypothesis, -S5 ¬ A → (λ(B ) ↔ σ(B ))
. By necessitation and axiom K ,

-S5 ¬♦ A → (λ( B ) ↔ σ( B ))
. By axiom 5,

-S5 ¬ A → ¬♦ A then, -S5 ¬ A → (λ( B ) ↔ σ( B )).
Lemma 29 λ is a most general unifier.

Proof 44 First, we prove that λ is a unifier. By part (1) of Lemma 28,

1. S5 A → (λ(A) ↔ A). Since, 2. S5 A → A then, 3. S5 A → λ(A). By part (2) of Lemma 28, 4. S5 ¬ A → (λ(A) ↔ σ(A)). Since, σ is a unifier of A then, 5. S5 ¬ A → λ(A)
. By lines 3 and 5,

S5 λ(A).

Therefore, λ is a unifier of A. Second, we have to prove that λ is a most general unifier.

Let τ be a unifier of A. Then, S5 τ( A). Let x is an arbitrary variable. We have 

S5 A → (λ(x) ↔ x) by part (1) of Lemma 28. Then, S5 τ( A) → (τ(λ(x)) ↔ τ(x)). Since S5 τ( A) and S5 τ( A) → (τ(λ(x)) ↔ τ(x)) then, S5 τ(λ(x)) ↔ τ(x). Therefore λ is a most general unifier of A (λ S5 τ).

Unification in Modal Logics K D5 and K 5

In this section, we interest in the logics K D5 and K 5. Notice that K 4 K D5 and K 4 K 5. P. Balbiani and T. Tinchev showed that unification type of modal logic K D45 is unitary [START_REF] Balbiani | Elementary unification in modal logic K D45[END_REF]. Hence we need to express some Lemmas as follows:

Lemma 30 Every variable-free formula in K D5, is K D5-equivalent to ⊥ or K D5- equivalent to .
Proof 45 Let ϕ be a variable-free formula. We have to prove ϕ ↔ ⊥ or ϕ ↔

. We prove by induction on ϕ. We only consider the case ϕ := ϕ . We remind that K D5 ⊥ ↔ ⊥ and K D5

↔ .

By induction hypothesis we have that

K D5 ϕ ↔ ⊥ or K D5 ϕ ↔ . Then K D5 ϕ ↔ ⊥ or K D5 ϕ ↔ . Therefore, K D5 ϕ ↔ ⊥ or K D5 ϕ ↔ .
Lemma 31 Every closed substitution in K D5 is K D5-equivalent to a substitution σ such that for every variable x, either σ(x) = or σ(x) = ⊥.

Proof 46 Let σ be a closed substitution. Then for all variables x, σ(x) is variablefree formula hence, by Lemma 30, σ(x) is K D5-equivalent to or K D5-equivalent to ⊥.

Lemma 32

Let φ be a formula, then the following conditions are equivalent in K D5:

1. φ is K D5-unifiable, 2.
There exists a K D5-unifier σ of φ such that for all variable x, either σ(x) = or σ(x) = ⊥.

Proof 47 1. (1 ⇒ 2) Suppose φ is K D5-unifiable.
Let the substitution σ such that K D5 σ(φ), by Lemma 8, φ possesses a closed K D5-unifier σ and for all variables x, σ (x) is variable-free formula hence, by Lemma 31, σ (x) is K D5-equivalent to or ⊥.

(2 ⇐ 1) It is easy.

Lemma 33 Every variable-free formula in K 5 is either K 5-equivalent to or K 5-equivalent to ⊥ or K 5-equivalent to ⊥ or K 5-equivalent to ♦ .

Proof 48

Let ϕ be a variable-free formula. We have to prove K 5 ϕ ↔ ⊥ or K 5 ϕ ↔ or K 5 ϕ ↔ ⊥ or K 5 ϕ ↔ ♦ . We prove by induction on ϕ. We only consider the case ϕ := ϕ . By induction hypothesis we have that K 5 ϕ ↔ ⊥ or K 5 ϕ ↔ or K 5 ϕ ↔ ⊥ or K 5 ϕ ↔ ♦ . Hence,

If K 5 ϕ ↔ ⊥ then K 5 ϕ ↔ ⊥. If K 5 ϕ ↔ then K 5 ϕ ↔ . If K 5 ϕ ↔ ⊥ then K 5 ϕ ↔ ⊥. Thus, K 5 ϕ ↔ ⊥. If K 5 ϕ ↔ ♦ then K 5 ϕ ↔ ♦ . Hence, K 5 ϕ ↔ .
Lemma 34 Every closed substitution in K 5 is K 5-equivalent to a substitution σ such that for every variable x, either σ

(x) = or σ(x) = ⊥ or σ(x) = ⊥ or σ(x) = ♦ .
Proof 49 Let σ be a closed substitution. Then for all variables x, σ(x) is variablefree formula hence, by Lemma 33, σ(x) is either K 5-equivalent to or K 5-equivalent to ⊥ or K 5-equivalent to ♦ or K 5-equivalent to ⊥.

Lemma 35

Let φ be a formula, then the following conditions are equivalent in K 5:

1. φ is K 5-unifiable,
2. There exists a K 5-unifier σ of φ such that for all variable x, either σ(x) =

or σ(x) = ⊥ or σ(x) = ⊥ or σ(x) = ♦ . Proof 50 1. (1 ⇒ 2) Suppose φ is K 5-unifiable.
Let the substitution σ be such that K 5 σ(φ). By Lemma 8, φ possesses a closed K 5-unifier σ . Then for all variables x, σ (x) is variable-free formula hence, by Lemma 31, σ (x) is K 5-equivalent to either or ⊥ or ⊥ or ♦ .

(2 ⇒ 1) It is easy.

With Lemma 32 and 35, we can only conclude that given a modal formula φ, it is relatively simple to determine whether φ is K D5-unifiable or K 5-unifiable. For instance, given φ, to determine if φ is K D5-unifiable it suffices to nondeterministically replace in φ each variable either by ⊥, or by and then to see if the resulting closed formula is in K D5. In K 5, it suffices to non-deterministically replace variables in φ either by ⊥, or by ⊥, or by ⊥, or by ♦ . Now, let us try to determine the unification type of K D5 and K 5 which is still unknown. Notice that the result of Ghilardi mentioned after Definition 29 cannot be used for K D5 and K 5 because K 4 K D5 and K 4 K D5. Let φ be a modal formula and σ, τ be substitutions. Let y be a new variable. This means that y does not occur in φ. Moreover, for all variables x occurring in φ, y does not occur in σ(x) for variables x in φ. Let α σ,τ K D5 be substitution defined by

α σ,τ K D5 (x) = ( y ∧ σ(x)) ∨ ( ¬y ∧ τ(x)).
Lemma 36 Let σ be a substitution of a given formula φ.

1. α σ,τ K D5 K D5 σ. 2. α σ,τ K D5 K D5 τ.
Proof 51 1. Let ν be the substitution defined by ν(y) = and for all other variable x, ν(x) = x. Since the variable y is new hence, ν • α σ,τ K D5 (x) K D5 σ(x). Then, α σ,τ K D5 K D5 σ.

2. Let ν be the substitution defined by ν(y) = ⊥ and for all other variable x, ν(x) = x. Since the variable y is new hence, ν • α σ,τ K D5 (x) K D5 τ(x). Then, α σ,τ K D5 K D5 τ.

Lemma 37 Let ψ be a formula not containing y.

1. K D5 y → (α σ,τ K D5 (ψ) ↔ σ(ψ)). 2. K D5 ♦♦¬y → (α σ,τ K D5 (ψ) ↔ τ(ψ)).
Proof 52 We will do the proof by using the semantics of K D5. Remind that K D5models are of the form (W, R,V ) where R is serial and Euclidean.Notice that if w ∈ W is such that M , w y then for all v in the sub-model of M generated from w, we have M , v y. Similarly, if w ∈ W is such that M , w ♦♦¬y then for all v in the sub-model of M generated from w, we have M , v ♦♦¬y. Suppose M = (W, R,V ) is K D5-model. Then for all formulas ψ we prove by induction on ψ that:

1. If M , w y then M , w α σ,τ K D5 (ψ) iff M , w σ(ψ).
2. If M , w ♦♦¬y then M , w α σ,τ K D5 (ψ) iff M , w τ(ψ).

1. Suppose M , w y we want to show that M , w α σ,τ K D5 (ψ) iff M , w σ(ψ). The proof is done by induction on ψ.

• ψ = x. Hence, M , w α σ,τ K D5 (x) iff M , w ( y ∧σ(x))∨( ¬y ∧τ(x)) iff M , w σ(x) since M , w y.

• ψ = ¬ψ . By our assumption, (1)M , w y. By induction hypothesis

(2)M , w (α σ,τ K D5 (ψ ) ↔ σ(ψ )). By 2 (3)M , w ¬α σ,τ K D5 (ψ ) ↔ ¬σ(ψ ). Then (4)M , w α σ,τ K D5 (¬ψ ) ↔ σ(¬ψ ).
• The case when ψ = ψ ∧ ψ . By our assumption,

(1)M , w y. By induction hypothesis,

(2)M , w (α σ,τ K D5 (ψ ) ↔ σ(ψ )) and (3)M , w (α σ,τ K D5 (ψ ) ↔ σ(ψ )). Then, (4)M , w α σ,τ K D5 (ψ ∧ ψ ) → σ(ψ ∧ ψ ).
• ψ = ψ . By induction hypothesis, we know that for all v in the submodel of M generated from w,

(1)M , v (α σ,τ K D5 (ψ ) ↔ σ(ψ )). Then (2)M , w α σ,τ K D5 ( ψ ) ↔ σ( ψ ).
2. if we suppose that M , w ♦♦¬y then the argument is similar.

Lemma 38 Let φ be a formula. If σ and τ are K D5-unifiers of φ then α σ,τ K D5 is a K D5-unifier of φ.

Proof 53 Suppose σ and τ are K D5-unifiers of φ. Then, (1) K D5 σ(φ) and

(2) K D5 τ(φ). By Lemma 37 (3) K D5 y → (α σ,τ K D5 (φ) ↔ σ(φ)) and (4) K D5 ♦♦¬φ → (α σ,τ K D5 (φ) ↔ τ(φ))
. By 1 and 3, (5) K D5 y → α σ,τ K D5 (φ). By 2 and 4 (6) 

K D5 ♦♦¬φ → α σ,τ K D5 (φ)
. By 5 and 6, (7) K D5 α σ,τ K D5 (φ).

Proposition 11 Unification in K D5 is filtering.

Proof 54 Let φ be a K D5-unifiable formula. Let σ, τ be K D5-unifiers of φ. By Lemmas 36 and 38, α σ,τ K D5 is a K D5-unifier of φ such that α σ,τ K D5 (φ) K D5 σ and α σ,τ K D5 (φ) K D5 τ. As φ is an arbitrary K D5-unifiable formula, K D5 is filtering.

As a consequence, K D5 is either of type unitary or of type nullary (see Lemma 27). We conjecture that, like K 5, K D5 is unitary. Now, let us adapt our line or reasoning to the case of modal logic K 5. Consider a modal formula φ and substitutions σ, τ. Let y be a new variable. Let α σ,τ K 5 be the substitution defined for all variable x occurring in φ,

α σ,τ K 5 (x) = (( y ∧ (y ∨ ♦ )) ∧ σ(x)) ∨ ((♦♦¬y ∨ (¬y ∧ ⊥)) ∧ τ(x))
Lemma 39 Let σ be a substitution of a given formula φ.

• α σ,τ K 5 K 5 σ.

• α σ,τ K 5 K 5 τ.

Al t 1 + ⊥ In chapter 4, we have seen that the unification in modal logics K D5 and K 5 are either unitary or nullary, the exact unification type of these logics are still unknown. This is quite surprising, considering the fact that K D5 and K 5 are relatively simple logics. Another simple modal logic is Al t

1 = K ⊕ ♦A → A.
Balbiani and Tinchev [START_REF] Balbiani | Unification in modal logic Al t 1[END_REF] have proved that Al t 1 is nullary. Models of Al t 1 are of the form (W, R, ν) where R is deterministic relation (every possible world has at most one successor). In this section, after a suggestion of Silvio Ghilardi, we investigate the unification type of logics Al t 1 + ⊥. Models of Al t 1 + ⊥ are very simple. They are structures of the form (W, R, ν) where W contains exactly 1 world and R = , or W contains exactly two worlds w and v and R = {(w, v)} (that is to say w can see v and w, v are irreflexive). In this Chapter, we show that unification type of Al t 1 + ⊥ is unitary. It is obvious that some results have to be proven. Now, we introduce a result which will prove to be very useful in Section 5.6. For all set S, notation ∥ S ∥ will be used as the cardinality of the set S. For all non-empty sets S, for all equivalence relations ∼ on S and for all α ∈ S, notation [α] will denote the equivalence class modulo ∼ with α as its representative. For all non-empty sets S, for all equivalence relations ∼ on S and for all T ⊆ S, T / ∼ will denote the quotient set of T modulo ∼. Notice that for all non-empty sets S, for all equivalence relations ∼ on S and for all α, β ∈ S, α ∼ β iff α ∈ [β] iff [α] ∩ [β] = . Now, we introduce a result which will be very useful in Section 5.6.

Proposition 14

Let S, T be finite non-empty sets. Let ∼ be an equivalence relation on S. The following conditions are equivalent:

1. ∥ S/ ∼∥ ∥ T ∥ ∥ S ∥,

there exists a surjective function f from S to T such that for all

α, β ∈ S, if f (α) = f (β) then α ∼ β. Proof 60 (1 ⇒ 2) Suppose∥ S/ ∼∥ ∥ T ∥ ∥ S ∥. Let h be a function from S/ ∼ to S such that for all α ∈ S, h[α] ∈ [α]. h is injective. Let S 0 = {h[α] : α ∈ S}. Since h is injective, therefore∥ S/ ∼∥=∥ S 0 ∥. Since ∥ S/ ∼∥ ∥ T ∥, therefore ∥ S 0 ∥ ∥ T ∥.
Let T 0 be a subset of T such that ∥ T 0 ∥=∥ S 0 ∥. Let f 0 be a one-to-one correspondence between S 0 and T 0 . Let T 1 = T \T 0 . Notice that T 0 and T 1 make a partition of T . Since ∥ T ∥ ∥ S ∥ and 

∥ T 0 ∥=∥ S 0 ∥, therefore ∥ T 1 ∥ ∥ S \ S 0 ∥. Let S 1 be a subset of S \ S 0 such that ∥ T 1 ∥=∥ S 1 ∥. Let f
(α) = f (β) then α ∼ β. S 0 S 1 S 2 T 0 T 1 S T * * * * • • • . . . • • • * * * * (2 ⇒ 1)
Suppose f is a surjective function from S to T such that for all α, β ∈ S, if f (α) = f (β) then α ∼ β. For the sake of the contradiction, suppose either ∥ S/ ∼∥>∥ T ∥, or ∥ T ∥>∥ S ∥. Since f is surjective, therefore ∥ T ∥ ∥ S ∥. Since either ∥ S/ ∼∥>∥ T ∥, or ∥ T ∥>∥ S ∥, therefore ∥ S/ ∼∥>∥ T ∥. Let p ∈ N and β 1 , ..., β p ∈ S be such that p >∥ T ∥ and for all q, r ∈ N, if 1 q, r p and q = r then β q β r . Hence, for all q, r ∈ N, if if 1 q, r p and q = r then f (β q ) = f (β r ). Thus, p ∥ T ∥: a contradiction.

We remind that P is a countably infinite set of propositional variables (with typical members denoted x, y, etc). Let (x 1 , x 2 , ...) be an enumeration of P without repetitions. For all n ∈ N, let FOR n be the set of all formulas based on the variables x 1 , ..., x n . We shall say that a frame (W, R) is deterministic if for all s, t , u ∈ W , if sR t and sRu then t = u. We shall say that a frame (W, R) is bounded if for all s 0 , s 1 , In this chapter, when we write "frame F = (W, R)" we mean "frame

s 2 ∈ W either s 0 R s 1 or s 1 Rs 2 . Let C b d et
F = (W, R) in C b d et ".

Semantics

Instead of considering models giving truth values to any kind of formulas, we will use models giving values to formulas based on a restricted (finite) set of variables. Let n 1. An n-model based on a frame (W, R) is a triple (W, R, v) where v is a function assigning for all i ∈ 1, ..., n, a subset v(x i ) of W to the variable x i . Given an n-model (W, R,V ), the n-satisfiability of ϕ ∈ FOR n at s ∈ W (in symbols s n ϕ ) is inductively defined as follows:

• s n x i iff s ∈ V (x i ),
• s n ⊥,

• s n ¬ϕ iff s n ϕ,

• s ϕ ∧ ψ iff s n ϕ and s n ψ,

• s n ϕ iff for all t ∈ W if sR t then t n ϕ.

We shall say that ϕ

∈ FOR n is n-true in a n-model (W, R, v) if ϕ is n-satisfied at all s ∈ W . We shall say that ϕ ∈ FOR n is n-valid in a frame (W, R) if ϕ is n-true in all n- models based on (W, R). We shall say that ϕ ∈ FOR n is n-valid (in symbol ϕ) if ϕ is n-valid in all frames.
Remind that, in this Chapter, all frames are bounded deterministic. Let ≡ n be the equivalence relation on FOR n defined by

• ϕ ≡ n ψ iff ϕ ↔ ψ,
where ϕ and ψ range over FOR n . The next result follows from the fact that in the logic Al t 1 + ⊥ for all ϕ ∈ FOR n , there exists ψ ∈ FOR n such that d eg (ψ) 1 and ϕ ↔ ψ. 

Unification

In order to show that Al t 1 + ⊥ is unitary, we will use a special notation for substitution. We remind from Chapter 4 that a substitution is a mapping σ : x → F (y) where x, y are finite tuples of variables and F (y) is the set of formulas based on the variables in y. In this chapter, we will use a different notation for substitutions. Let n 1. An n-substitution is a pair (k, σ) where k 1 and σ is a homomorphism from FOR n to FOR k , i.e. σ :

FOR n → FOR k is such that • σ(⊥) = ⊥, • σ(¬ϕ) = ¬σ(ϕ), • σ(ϕ ∧ ψ) = σ(ϕ) ∧ σ(ψ), • σ( ϕ) = σ(ϕ).
Let SUB n be the set of all n-substitutions. The equivalence relation n on SUB n is defined by

• (k, σ) n (l , τ) iff for all i ∈ {1, ..., n}, σ(x i ) ↔ τ(x i ),
where (k, σ), (l , τ) range over SUB n . The pre-order n on SUB n is defined by • (k, σ) n (l , τ) iff there exists a k-substitution (m, ν) such that for all i ∈ {1, ..., n}, ν(σ

(x i )) ↔ τ(x i ),
where (k, σ), (l , τ) range over SUB n . Obviously, n is contained in n . An nunifier of ϕ ∈ FOR n is an n-substitution (k, σ) such that σ(ϕ). We say that ϕ ∈ FOR n is n-unifiable if there exists a n-unifier of ϕ. We say that a set Σ of n-unifiers of a n-unifiable ϕ ∈ FOR n is n-complete if for all n-unifiers (k, σ) of ϕ, there exists (l , τ) ∈ Σ such that (l , τ) n (k, σ).

Definition 30 For all n-unifiable ϕ ∈ FOR n , we shall say that

• ϕ is n-filtering if for all n-unifiers (k, σ), (l , τ) of ϕ, there exists a n-unifier (m, ν) such that (m, ν) n (k, σ) and (m, ν) n (l , τ).

The next result is standard and Lemma 27 rephrases itself as the following Lemma.

Lemma 42 Let ϕ ∈ FOR n be n-unifiable. If ϕ is n-filtering then either ϕ is nnullary, or ϕ is n-unitary.

Proof 62 The proof is similar to the proof of Lemma 27.

Definition 31 For all n-unifiable ϕ ∈ FOR n and for all π 1, we shall say that

• ϕ is n-π-reasonable if for all n-unifiers (k, σ) of ϕ, if k > π then there exists a n-unifier (l , τ) of ϕ such that (l , τ) n (k, σ) and l π.

In other words, an n-unifiable ϕ ∈ FOR n will be n-π-reasonable where every n-unifier of ϕ is an instance of an n-unifier (l , τ) such that l π, that is to say the variables occurring in τ(x 1 ), ..., τ(x n ) belong to the set {x 1 , . 

About bounded deterministic frames

Let n 1. The next result implies that in Al t 1 + ⊥, unifiable n-formulas are either nullary, or unitary.

Proposition 18 For all ϕ ∈ FOR n , if ϕ is n-unifiable then ϕ is n-filtering.

Proof 64 Let ϕ ∈ FOR n . Suppose ϕ is n-unifiable. Let (k, σ), (l , τ) be n-unifiers of ϕ. Let m = max{k, l } + 1. Notice that x m does not occur in ϕ, σ and τ. Let (m, µ) be the n-substitution defined by

• µ(x i ) = (♦x m ∨ (x m ∧ ⊥)) ∧ σ(x i ) ∨ ( ¬x m ∧ (¬x m ∨ ♦ )) ∧ τ(x i ) ,
where i ranges over {1, ..., n}. Let (m, λ ) and (m, λ ⊥ ) be the m-substitutions defined by

• if i < m then λ (x i ) = x i else λ (x i ) = , • if i < m then λ ⊥ (x i ) = x i else λ ⊥ (x i ) = ⊥,
where i ranges over {1, ..., m}. Notice that for all i ∈ {1, ..., n}, λ (µ(x i )) ↔ σ(x i ) and λ ⊥ (µ(x i )) ↔ τ(x i ). Hence, (m, µ) n (k, σ) and (m, µ) n (l , τ). Moreover, by induction on ψ ∈ FOR n the reader may show that ♦x m ∨ (x m ∧ ⊥) → (µ(ψ) ↔ σ(ψ)) and

¬x m ∧(¬x m ∨♦ ) → (µ(ψ) ↔ τ(ψ)). Thus ♦x m ∨(x m ∧ ⊥) → µ(ϕ) and ¬x m ∧(¬x m ∨♦ ) → µ(ϕ). Consequently, µ(ϕ) and (m, µ) is a n-unifier of ϕ. Since (m, µ) n (k, σ) and (m, µ) n (l , τ), therefore ϕ is n- filtering.
In order to show that in Al t 1 + ⊥, unifiable n-formulas are reasonable (Proposition 25), we introduce an alternative semantics as follows.

A n-model is a structure of the form (α, A) where α is an n-tuple of bits and A is a set of n-tuples of bits of cardinality 0 or 1. Let MOD = n be the set of all n-models (α, A)

such that A = hence MOD = n = {(α, A) : α ∈ BIT n , A = } and MOD = n be the set of all n-models (α, A) such that A = hence, MOD = n = {(α, A) : α ∈ BIT n , ∥ A ∥= 1}. Let MOD n be the set of all n-models hence, MOD n = MOD = n ∪ MOD = n .
The binary relation n of satisfiability between MOD n and FOR n is defined in two following cases.

If (α, A) ∈ MOD = n then, • (α, A) n x i iff α i = 1, • (α, A) n ⊥, • (α, A) n ¬ϕ iff (α, A) n ϕ, • (α, A) ϕ ∧ ψ iff (α, A) n ϕ and (α, A) n ψ,
• (α, A) n ϕ iff for the unique α ∈ A, (α , ) n ϕ.

If (α, A) ∈ MOD = n then, • (α, A) n x i iff α i = 1, • (α, A) n ⊥, • (α, A) n ¬ϕ iff (α, A) n ϕ, • (α, A) ϕ ∧ ψ iff (α, A) n ϕ and (α, A) n ψ, • (α, A) n ϕ.
The next result shows that G C b d et and n-models determine the same modal logic. Its proof is standard.

Proposition 19 For all ϕ ∈ FOR n , G C b d et n ϕ iff for all (α, A) ∈ MOD n , (α, A) n ϕ.
We remind that for all formulas ψ, ψ 0 denotes ¬ψ and ψ 1 denotes ψ.

Definition 32

The function for n from MOD n to FOR n is inductively defined as follows: 

• if A = then for n ((α, A)) = x α 1 1 ∧ ... ∧ x α n n ∧ ♦for n ((α , )), where A = {α }, • if A = then for n ((α, A)) = x α 1 1 ∧ ... ∧ x α n n ∧ ⊥ where (α, A) ranges over MOD n . Proposition 20 Let (k, σ) ∈ SUB n . Let (α, A) ∈ MOD k and (β, B ) ∈ MOD n . If (α, A) k σ(for n ((β, B ))) then ∥ A ∥=∥ B ∥.

(α, A) n for n ((β, B )).

Proof 66 (1 ⇒ 2) Let (α, A) = (β, B ). Hence, α = β and A = B . We consider two following cases: i for each i = 1, ..., n. Then α i = β i for each i = 1, ..., n. Thus, α = β. Proof 67 We consider two following cases:

• Let A = and B = . By definition (α, A) n x α 1 1 ∧ ... ∧ x α n n . Since α = β then, α i = β i for each i = 1, ..., n, hence, (α, A) n x β 1 1 ∧ ... ∧ x β n n . Since, A = hence, (α, A) n ⊥. Hence, (α, A) n x β 1 1 ∧ ... ∧ x β n n ∧ ⊥. Since A = B = then, (α, A) n for n ((β, B )). • Let A = = B . By definition (α, A) n x α 1 1 ∧ ... ∧ x α n n . Since α = β then, α i = β i for each i = 1, ..., n, hence, (α, A) n x β 1 1 ∧ ... ∧ x β n n . Since, A = let α ∈ A and (α , ) n x α 1 1 ∧ ... ∧ x
β 1 1 ∧ ... ∧ x β n n . Then, (α, A) n ♦(x β 1 1 ∧ ... ∧ x β n n ). Since (α, A) n ♦(x β 1 1 ∧ ... ∧ x β n n ) and (α, A) n x β 1 1 ∧ ... ∧ x β n n therefore, (α, A) n for n ((β, B )). (2 ⇒ 1) Let (α, A) n for n ((β, B )). Hence, (α, A) n x β 1 1 ∧...∧x β n n ∧ ⊥ where B = and (α, A) n x β 1 1 ∧...∧x β n n ∧♦(x β 1 1 ∧...∧x
• Let A = and B = . Let β ∈ BIT n such that B = {β }. Let α ∈ BIT n such that A = {α }. Since (α, A) n x β 1 1 ∧...∧x β n n then (α, A) n x β i i for i ∈ {1, ..., n} hence, α = β. Since (α, A) n ♦(x β 1 1 ∧ ... ∧ x β n n ) then (α , ) n x β 1 1 ∧ ... ∧ x
• Case A = . Let β ∈ BIT n be such that for all i ∈ {1, ..., n}, if (α, A) k σ(x i )

then β i = 1 else β i = 0. Consequently, (α, A) k σ(x 1 ) β 1 ∧ ... ∧ σ(x n ) β n . Since A = then, (α, A) k ⊥. Thus (α, A) k σ(x 1 ) β 1 ∧...∧σ(x n ) β n ∧ ⊥.
Therefore, (α, A) k σ(for n ((β, ))).

• Case A = . Let α ∈ BIT n be such that A = {α }. Let β ∈ BIT n be such that for all i ∈ {1, ..., n}, if (α, A) k σ(x i ) then β i = 1 else β i = 0. Consequently, (α, A) k σ(x 1 ) β 1 ∧... ∧σ(x n ) β n . Moreover, since A = let β ∈ BIT n be such that (α , ) k σ(x 1 ) β 1 ∧ ... ∧ σ(x n ) β n . Since (α, A) k σ(x 1 ) β 1 ∧ ... ∧ σ(x n ) β n then (α, A) k σ(for n ((β, {β }))). Proposition 23 Let (k, σ) ∈ SUB n . Let (α, A) ∈ MOD k . For all (β, B ), (γ,C ) ∈ MOD n , if (α, A) k σ(for n ((β, B ))) and (α, A) k σ(for n ((γ,C ))) then (β, B ) = (γ,C ).
Proof 68 We consider two following cases.

• Case A = . Let (β, B ), (γ,C ) ∈ MOD n be such that (α, A) k σ(for n ((β, B ))) and (α, A) k σ(for n ((γ,C ))). Hence, if B = then (α, A) k σ(x 1 )

β 1 ∧ ... ∧ σ(x n ) β n ∧ ♦(σ(x 1 ) β 1 ∧ ... ∧ σ(x n ) β n ) where B = {β } else (α, A) k σ(x 1 ) β 1 ∧ ...∧σ(x n ) β n ∧ ⊥. If C = then (α, A) k σ(x 1 ) γ 1 ∧...∧σ(x n ) γ n ∧♦(σ(x 1 ) γ 1 ∧ ...∧σ(x n ) γ n ) where C = {γ } else (α, A) k σ(x 1 ) γ 1 ∧...∧σ(x n ) γ n ∧ ⊥. Since, A = , therefore B = , C = and for all i ∈ {1, ..., n}, (α, A) k σ(x i ) β i and (α, A) k σ(x i ) γ i . Thus β = γ. Since B = C = and β = γ therefore (β, B ) = (γ,C ). • Case A = . Let (β, B ), (γ,C ) ∈ MOD n be such that (α, A) k σ(for n ((β, B ))) and (α, A) k σ(for n ((γ,C ))). Hence, if B = then (α, A) k σ(x 1 ) β 1 ∧ ... ∧ σ(x n ) β n ∧♦(σ(x 1 ) β 1 ∧...∧σ(x n ) β n ) where B = {β } else (α, A) k σ(x 1 ) β 1 ∧...∧ σ(x n ) β n ∧ ⊥ and if C = then (α, A) k σ(x 1 ) γ 1 ∧...∧σ(x n ) γ n ∧♦(σ(x 1 ) γ 1 ∧ ...∧σ(x n ) γ n ) where C = {γ } else (α, A) k σ(x 1 ) γ 1 ∧...∧σ(x n ) γ n ∧ ⊥. Since A = therefore B = and C = and for all i ∈ {1, ..., n}, (α, A) k σ(x i ) β i and (α, A) k σ(x i ) γ i . Hence, β = γ. Moreover (α , ) k σ(x 1 ) β 1 ∧ ... ∧ σ(x n ) β n and (α , ) k σ(x 1 ) γ 1 ∧ ... ∧ σ(x n ) γ n . Hence, β = γ . Since β = γ and β = γ consequently, (β, B ) = (γ,C ).
From proposition 22 and 23, we conclude that for all (k, σ) ∈ SUB n and for all (α, A) ∈ MOD k , there exists exactly one (β, B ) ∈ MOD n such that (α, A) k σ(for n ((β, B ))). For all k 1, a (k, n)-morphism is a function f from MOD k to MOD n such that for all (α, A) ∈ MOD k and for all (β, B ) ∈ MOD n , if f ((α, A)) = (β, B ) then • Forward condition: if A = then B = and there exists α ∈ BIT k , β ∈ BIT n such that A = {α }, B = {β } and f ((α , )) = (β , ).

• backward condition: if B = then A = and there exists α

∈ BIT k , β ∈ BIT n such that A = {α }, B = {β } and f ((α , )) = (β , ).
This kind of morphisms is different from the bounded morphisms usually considered in modal logic (see [START_REF] Blackburn | Modal Logic[END_REF], definition 2.10). In particular, in the above definition, there is no condition related to the valuation of variables. The next result is a good example of what the properties of morphism are like. 

Main Results

Let π = n. The next result implies that in Al t 1 + ⊥, unifiable n-formulas are either finitary or unitary.

Proposition 25 For all ϕ ∈ FOR n , if ϕ is n-unifiable then ϕ is n-π-reasonable.

Proof 70 Let ϕ ∈ FOR n . Suppose ϕ is n-unifiable. Let (k, σ) be a n-unifier of ϕ such that k > π. Hence, σ(ϕ). Moreover, since n π, therefore k n. Let g be a (k, n)-morphism such that for all (α, A), (β, B ) ∈ MOD k , if g ((α, A)) = g ((β, B )) then for all i ∈ {1, ..., n}, (α, A) k σ(x i ) iff (β, B ) k σ(x i ). The proof of the existence of g is presented in Section 5.5. Let f be a surjective (k, n)-morphism such that for all (α, A),

(β, B ) ∈ MOD k , if f ((α, A)) = f ((β, B )) then g ((α, A)) = g ((β, B )).
The proof of the existence of f is presented in Section 5.6. Let (n, τ), (k, ν) be the n-substitution defined by

• τ(x i ) = {for n ( f ((α, A))) : (α, A) ∈ MOD k is such that (α, A) k σ(x i )}, • ν(x i ) = {for k ((α, A)) : (α, A) ∈ MOD k is such that f ((α, A)) n x i },
where i ranges over {1, ..., n}. Now, we show that ϕ is n -π-reasonable. In this respect, we have to prove Lemmas 43,[START_REF] Rybakov | Admissibility of logical inference rules[END_REF]45 and 46. In actual fact, the purpose of Lemmas 43, 44, 45 and 46 is to show that (n, τ) is an n-unifier of ϕ such that (n, τ) n (k, σ).

Lemma 43 Let ψ ∈ FOR n . For all (β, B ) ∈ MOD n , the following conditions are equivalent:

1. there exists (α, A) ∈ MOD k such that f ((α, A)) = (β, B ) and (α, A) k σ(ψ),

for all (α, A) ∈ MOD

k if f ((α, A)) = (β, B ) then (α, A) k σ(ψ),

(β, B ) n τ(ψ).

Proof 71 By induction on ψ ∈ FOR n . We consider the following cases ψ = x i and ψ = x. andf ((γ,C )) = (β, B ), therefore C = and f ((γ , )) = (β , ) for γ ∈ BIT k such that C = {γ }. Since (β , ) n τ(χ), therefore by induction hypothesis, (γ , ) k σ(χ). Thus, (γ,C ) k σ( χ): a contradiction.

• Let ψ = x i . Let (β, B ) ∈ MOD n . (1 ⇒ 2) Suppose (α, A) ∈ MOD k is such that f ((α, A)) = (β, B ) ∈ MOD n and (α, A) k σ(x i ). Let (γ,C ) ∈ MOD k be such that f ((γ,C )) = (β, B ). Since f ((α, A)) = (β, B ), therefore f ((α, A)) = f ((γ,C )). Hence, g ((α, A)) = g ((γ,C )). Thus, (α, A) k σ(x i ) iff (γ,C ) k σ(x i ). Since (α, A) k σ(x i ) therefore (γ,C ) k σ(x i ). (2 ⇒ 3) Suppose for all (α, A) ∈ MOD k if f ((α, A)) = (β, B ) then (α, A) k σ(x i ). Since f is surjective therefore let (γ,C ) ∈ MOD k be such that f ((γ,C )) = (β, B ). Since for all (α, A) ∈ MOD k , if f ((α, A)) = (β, B ) then (α, A) k σ(x i ), therefore (γ,C ) k σ(x i ). Consequently (β, B ) n for n ( f ((γ,C ))) → τ(x i ). Since f ((γ,C )) = (β, B ), therefore (β, B ) n for n ((β, B )) → τ(x i ).
• ψ = χ. Let (β, B ) ∈ MOD n . (1 ⇒ 2) Suppose (α, A) ∈ MOD k is such that f ((α, A)) = (β, B ) ∈ MOD n and (α, A) k σ( χ). Let (γ,C ) ∈ MOD k be such that f ((γ,C )) = (β, B ). Suppose (γ,C ) k σ( χ). Thus, C = and (γ , ) k σ(χ) for γ ∈ BIT k such that C = {γ }. Since f is a (k, n)-morphism and f ((γ,C )) = (β, B ), therefore B = and f ((γ , )) = (β , ) for some β ∈ BIT n such that B = {β }. Since f is a (k, n)-morphism and f ((α, A)) = (β, B ), therefore A = and f ((α , )) = (β , ) for some α ∈ BIT k such that A = {α }. Since (γ , ) k σ(χ) and f ((γ , )) = (β , ), therefore, (α , ) k σ(χ). Hence, (α, A) k σ( χ): a contradiction. (2 ⇒ 3) Suppose for all (α, A) ∈ MOD k , if f ((α, A)) = (β, B ) then (α, A) k σ( χ). Suppose (β, B ) k τ( χ). Consequently, B = and (β , ) n τ(χ). Since f is surjective, therefore let (γ,C ) ∈ MOD k be such that f ((γ,C )) = (β, B ). Since for all (α, A) ∈ MOD k , if f ((α, A)) = (β, B ) then (β, B ) k σ( χ), therefore (γ,C ) kσ( χ) . Since f is a (k, n)-morphism, B =
(3 ⇒ 1) Suppose (β, B ) n τ( χ). Since f is surjective, therefore let (α, A)MOD k be such that f ((α, A)) = (β, B ). Suppose (α, A) k σ( χ). Consequently, A = and (α , ) k σ(χ) for some α ∈ BIT k such that A = {α }. Since f is a (k, n)-morphism and f ((α, A)) = (β, B ), therefore B = and f ((α , )) = (β , ) for some β ∈ BIT n such that B = {β }. Since (α , ) k σ(χ), therefore by induction hypothesis, (β , ) n τ(χ). Hence, (β, B ) n τ( χ): a contra- diction.
Lemma 44 For all (β, B ) ∈ MOD k and for all i ∈ {1, ..., n}, the following conditions are equivalent: 

1. (β, B ) k ν(x i ), 2. f ((β, B )) n x i . Proof 72 Let (β, B ) ∈ MOD k and i ∈ {1, ..., n}. (1 ⇒ 2) Suppose (β, B ) k ν(x i ). Let (α, A) ∈ MOD k be such that f ((α, A)) n x i
1. f ((β, B )) = (γ,C ), 2. (β, B ) k ν(for n ((γ,C ))). Proof 73 Obviously, if f ((β, B )) = (γ,C ) then B = iff C = . Similarly, if (β, B ) k ν(for n ((γ,C ))) then B = iff C = .
For this reason we consider two following cases.

• Case B = and C = .

(1 ⇒ 2) Suppose f ((β, )) = (γ, ). Since for all i ∈ {1, ..., n}, (γ, ) n x γ i i , therefore for all i ∈ {1, ..., n}, f ((β, )) n x γ i i . Thus, for all i ∈ {1, ..., n}, by Lemma 44,(β,) 

k ν(x i ) γ i . Hence, (β, ) k ν(x 1 ) γ 1 ∧ ... ∧ ν(x n ) γ n . Since B = and C = , therefore (β, B ) k ν(for n ((γ,C ))). (2 ⇒ 1) Suppose (β, ) k ν(for n ((γ, ))). Consequently, (β, ) k ν(x 1 ) γ 1 ∧ ... ∧ ν(x n ) γ n .
Hence for all i ∈ {1, ..., n}, (β, ) k ν(x i ) γ i . Thus for all i ∈ {1, ..., n}, by Lemma 44, f ((β, )) n x γ i i . Since B = and C = , therefore by Proposition 24, f ((β, )) = (γ, ).

• Case B = and C = .

(1 ⇒ 2) Suppose f ((β, B )) = (γ,C ). Since for all i ∈ {1, ..., n}, (γ,C ) n x

γ i i , therefore for all i ∈ {1, ..., n}, f ((β, B )) n x γ i i . Moreover, since f is a (k, n)- morphism B = and C = , therefore f ((β , )) = (γ , ) for β ∈ BIT k , γ ∈ BIT n such that B = {β }, C = {γ }.
Hence for all i ∈ {1, ..., n}, by Lemma 44, (β, B ) k ν(x i ) γ i . Moreover, by the first case above, since f

((β , )) = (γ , ), (β , ) k ν(for n ((γ , ))). Consequently, (β, B ) k ν(x 1 ) γ 1 ∧ ... ∧ ν(x n ) γ n . Moreover, (β, B ) k ♦ν(for n ((γ , ))). Thus, (β, B ) k ν(for n ((γ,C ))). (2 ⇒ 1) Suppose (β, B ) k ♦ν(for n ((γ,C ))). since C = then (β, B ) k ν(x 1 ) γ 1 ∧ ... ∧ ν(x n ) γ n ∧ ♦ν(for n ((γ , ))) thus, for all i ∈ {1, ..., n}, (β, B ) k ν(x i ) γ i . Moreover, (β , ) k ν(for n ((γ , ))) for β ∈ BIT k , γ ∈ BIT n such that B = {β }, C = {γ }.
Thus for all i ∈ {1, ..., n}, by Lemma 44, f ((β, B )) n x γ i i . Moreover, by the first case above since (β , ) k ν(for n ((γ , ))) then, f ((β , )) = (γ , ). Consequently, by Proposition 24, f ((β, B )) = (γ,C ).

Lemma 46 For all (β, B ) ∈ MOD k and for all i ∈ {1, ..., n}, The following conditions are equivalent: Proposition 26 For all ϕ ∈ FOR n , if n-unifiable then ϕ is n-unitary. Now, our main result can be state as follows.

1. (β, B ) k ν(τ(x i )), 2. (β, B ) k σ(x i ). Proof 74 Let (β, B ) ∈ MOD k and i ∈ {1, ..., n}. (1 ⇒ 2) Suppose (β, B ) k ν(τ(x i )). Let (α, A) ∈ MOD k be such that (α, A) k σ(x i ) and (β, B ) k ν(for n ( f ((α, A)))). Such (α, A) exists by the definition of τ. Hence, by Lemma 45, f ((β, B )) = f ((α, A)). Thus, g ((β, B )) = g ((α, A)). Since (α, A) k σ(x i ), therefore (β, B ) k σ(x i ). (2 ⇒ 1) Suppose (β, B ) k σ(x i ).

Proposition 27 Unification in Al t 1 +

⊥ is unitary.

Proof 75 By Proposition 26 and 18.

Definition of the function g used in section 5.4

Let n 1. Let (k, σ) ∈ SUB n . Now, we define the function g used in Section 5.4

Let g be the function from MOD k to MOD n such that

• g ((α, A)) is the unique (β, B ) ∈ MOD n such that (α, A) k σ(for n ((β, B ))),
where (α, A) ranges over MOD k . Notice that by Propositions 22 and 23, g is welldefined. Propositions 28 and 29 show that g possesses the properties required in Section 5.4.

Proposition 28 g is a (k, n)-morphism. Proof 76 Let (α, A) ∈ MOD k and (β, B ) ∈ MOD n be such that g ((α, A)) = (β, B ). Hence, (α, A) k σ(for n ((β, B ))). Thus, if B = then (α, A) k σ(x 1 ) β 1 ∧ ... ∧ σ(x n ) β n ∧ ♦σ(for n ((β , ))) where β ∈ BIT n is such that B = {β } else (α, A) k σ(x 1 ) β 1 ∧ ... ∧ σ(x n ) β n ∧ ⊥. Consequently, if A = then B = and (α , ) k σ(for n ((β , ))), (where α ∈ BIT k is such that A = {α }) and g ((α , )) = (β , ). Moreover, if B = then A = and (α , ) k σ(for n ((β , ))), i.e. g ((α , )) = (β , ).
Proposition 29 For all (α, A), (β, B ) ∈ MOD k , if g ((α, A)) = g ((β, B )) then for all i ∈ {1, ..., n}, (α,

A) k σ(x i ) iff (β, B ) k σ(x i ).
Proof 77 Let (α, A), (β, B ) ∈ MOD k . Suppose g ((α, A)) = g ((β, B )). Hence, let (γ,C ) ∈ MOD n be such that g ((α, A)) = (γ,C ) and g ((β, B )) = (γ,C ). Thus, (α, A) k σ(for n ((γ,C ))) and (β,

B ) k σ(for n ((γ , C ))). Consequently, (α, A) k σ(x 1 ) γ 1 ∧...∧ σ(x n ) γ n and (β, B ) k σ(x 1 ) γ 1 ∧ ... ∧ σ(x n ) γ n . Hence, for all i ∈ {1, ..., n}, (α, A) k σ(x i ) γ i and (β, B ) k σ(x i ) γ i . Thus, for all i ∈ {1, ..., n}, (α, A) k σ(x i ) iff (β, B ) k σ(x i ).

Definition of the function f used in section 5.4

Let n 1. Let (k, σ) ∈ SUB n be such that k n. Let g be a (k, n)-morphism such that for all (α, A),

(β, B ) ∈ MOD k , if g ((α, A)) = g ((β, B )) then for all i ∈ {1, ..., n}, (α, A) k σ(x i ) iff (β, B ) k σ(x i ).
The proof of existence of g has been presented in Section 5. k such that g (h(g ((α, )))) = g ((α, )). Obviously, h is injective. Hence we have, ∥ U ∥=∥ {h(g ((α, ))) :

α ∈ BIT k } ∥. Since k n, therefore, ∥ MOD = n \U ∥ ∥ MOD = k \{h(g ((α, ))) : α, ∈ BIT k } ∥. Let S be a subset of MOD = k \{h(g ((α, ))) : α ∈ BIT k } such that ∥ S ∥=∥ MOD = n \U ∥.
Let f * 0 be a one-to-one correspondence between S and MOD = n \U . Now, we define the function f 0 . Let f 0 be the function from

MOD = k to MOD = n such that • if (α, ) ∈ S then f 0 ((α, )) = f * 0 ((α, )) else f 0 ((α, )) = g ((α, )),
where (α, ) ranges over MOD = k . Lemma 47 and 48 show that f 0 possesses interesting properties as follows.

Lemma 47 f 0 is surjective Proof 78 Let (β, ) ∈ MOD = n .
We consider the following two cases:

• (β, ) ∈ MOD = n \U . Since f * 0 is one-to-one, therefore let (α, ) ∈ MOD = k be such that (α, ) ∈ S and f * 0 ((α, )) = (β, ). Consequently, f 0 ((α, )) = f * 0 ((α, )). Since f * 0 ((α, )) = (β, ), therefore f 0 ((α, )) = (β, ).

• (β, ) ∉ MOD = n \U . Thus, (β, ) ∈ U . Consequently, let (α, ) ∈ MOD = k be such that g ((α, )) = (β, ) and (α, ) = h((β, )). Hence, f 0 ((α, )) = g ((α, )). Since g ((α, )) = (β, ), therefore f 0 ((α, )) = (β, ).

Lemma 48 For all (α, ), (β, )

∈ MOD = k , if f 0 ((α, )) = f 0 ((β, )) then g ((α, )) = g ((β, )). Proof 79 Let (α, ), (β, ) ∈ MOD = k . Suppose f 0 ((α, )) = f 0 ((β, )
). We consider the following three cases.

• (α, ) ∈ S and (β, ) ∈ S. Hence, f 0 ((α, )) = f * 0 ((α, )) and f 0 ((β, )) = f * 0 ((β, )). Since f 0 ((α, )) = f 0 ((β, )), therefore f * 0 ((α, )) = f * 0 ((β, )). Since f * 0 is one-to-one, therefore (α, ) = (β, ). Consequently, g ((α, )) = g ((β, )).

• (α, ) ∈ S and (β, ) ∉ S. Hence, f 0 ((α, )) = f * 0 ((α, )) and f 0 ((β, )) = g ((β, )). Since f 0 ((α, )) = f 0 ((β, )), therefore f * 0 ((α, )) = g ((β, )). Since f * 0 ((α, )) ∈ MOD = n \U and g ((β, )) ∈ U , therefore MOD = n \U and U do not make a partition of MOD = n : a contradiction.

• (α, ) ∉ S and (β, ) ∉ S. Hence, f 0 ((α, )) = g ((α, )) and f 0 ((β, )) = g ((β, )). Since f 0 ((α, )) = f 0 ((β, )), therefore g ((α, )) = g ((β, )).

The surjective function f 0 from MOD = k to MOD = n has been defined such that for all (α , ), (β , )

∈ MOD = n , if f 0 ((α , )) = f 0 ((β , )) then g ((α , )) = g ((β , )). For δ ∈ BIT n , let S((δ , )) = {(β, {β }) : β, β ∈ BIT k , and f 0 ((β , )) = (δ , )} and T ((δ , )) = {( , { }) : , ∈ BIT n , = δ }. Notice that For δ ∈ BIT n , S((δ , )) ⊆ MOD = k and T ((δ , )) ⊆ MOD = n . Also notice that ∥ T ((δ , )) ∥= 2 n . For δ ∈ BIT n let ∼ (δ , ) be the equivalence relation on S((δ , )) such that • (β, B ) ∼ (δ , ) (γ,C ) iff g ((β, B )) = g ((γ,C )),
where (β, B ), (γ,C ) range over S((δ , )). The next result will allow us to use Proposition 14.

Proposition 30 For all

δ ∈ BIT n , 1. ∥ S((δ , ))/ ∼ (δ , ) ∥ ∥ T ((δ , )) ∥, 2. ∥ T ((δ , )) ∥ ∥ S((δ , )) ∥. Proof 80 Let δ ∈ BIT n . Obviously, ∥ T ((δ , )) ∥= 2 n .
1. For the sake of contradiction, suppose ∥ S((δ , ))/ ∼ (δ , ) ∥>∥ T ((δ , )) ∥.

Let p ∈ N and (β 1 , β 1 ), ..., (β p , β p ) ∈ S((δ , )) be such that p >∥ T ((δ , )) ∥ and for all q, r ∈ N, if 1 q, r p and q = r then (β q , β q ) (δ , ) (β r , β r ). Thus, f 0 ((β 1 , )) = (δ , ), ..., f 0 ((β p , )) = (δ , ). Consequently, let ∈ BIT n be such that g ((β 1 , )) = ( , ), ..., g ((β p , )) = ( , ). Since g is a (k, n)-morphism, therefore let 1 , ..., p ∈ BIT n be such that g ((β 1 , β 1 )) = ( 1 , ), ..., g ((β p , β p )) = ( p , ). Since for all q, r ∈ N, if 1 q, r p and p = r then (β q , β p ) (δ , ) (β r , β r ), thus for all q, r N, if 1 q, r p and q = r then g ((β q , β q )) = g ((β r , β r )). Since g ((β 1 , β 1 )) = ( 1 , ), ..., g ((β p , β p )) = ( p , ), thus for all q, r ∈ N, if 1 q, r p and q = r then p = r . Hence p 2 n . Since ∥ T ((δ , )) ∥= 2 n , therefore p ∥ T ((δ , )) ∥: a contradiction.

2. Since f 0 is surjective, therefore obviously, ∥ S((δ , )) ∥ 2 k . Since k n and ∥ T ((δ , )) ∥= 2 n , therefore ∥ T ((δ , )) ∥ ∥ S((δ , )) ∥.

Hence, for all δ ∈ BIT n , by Proposition 14 and 30, let f (δ , ) 1 be a surjective function from S((δ , )) to T ((δ , )) such that for all (β, B ), (γ,C )

∈ S((δ , )), if f (δ , ) 1 ((β, B )) = f (δ , ) 1 ((γ,C )) then (β, B ) ∼ (δ , ) (γ,C ). Now, we define the function f 1 . Let f 1 be the function from MOD = k to MOD = n such that • f 1 ((β, B )) = f f 0 (β , ) 1 ((β, B )),
where (β, B ) ranges overMOD = k and β ∈ BIT k is such that B = {β }. Lemma 49 and 50 show that f 1 possesses interesting properties.

Lemma 49 f 1 is surjective. Proof 81 Let (δ, D) ∈ MOD = n . Let δ ∈ BIT n is such that D = {δ }. Hence, (δ, D) ∈ T ((δ , )). Since f (δ , ) 1 is surjective, therefore let (β, B ) ∈ S((δ , )) be such that f (δ , ) 1 ((β, B )) = (δ, D). Let β ∈ BIT k is such that B = {β }. Thus, f 0 ((β , )) = (δ , ). Moreover, f 1 ((β, B )) = f f 0 ((β , )) 1 ((β, B )). Consequently, f 1 ((β, B )) = f (δ , ) 1 ((β, B )). Since f (δ , ) 1 ((β, B )) = (δ, D), Therefore f 1 ((β, B )) = (δ, D). Lemma 50 For all (α, A), (β, B ) ∈ MOD = k , if f 1 ((α, A)) = f 1 ((β, B )) then g ((α, A)) = g ((β, B )). Proof 82 Let (α, A), (β, B ) ∈ MOD = k . Suppose f 1 ((α, A)) = f 1 ((β, B )). Let α ∈ BIT k be such that A = {α }. Let β ∈ BIT k be such that B = {β }. Hence f 1 ((α, A)) = f f 0 ((α , )) 1 ((α, A)) and f 1 ((β, B )) = f f 0 ((β , )) 1 ((β, B )). Since f 1 ((α, A)) = f 1 ((β, B )) therefore f f 0 ((α , )) 1 ((α, A)) = f f 0 ((β , )) 1 ((β, B )). Let (γ , ), (δ , ) ∈ MOD = n be such that f 0 ((α , )) = (γ , ) and f 0 ((β , )) = (δ , ). Since f f 0 ((α , )) 1 ((α, A)) = f f 0 ((β , ) 1 ((β, B )), therefore f (γ , ) 1 ((α, A)) = f (δ , ) 1 ((β, B )). Since f (γ , ) 1 ((α, A)) ∈ T ((γ , )) and f (δ , ) 1 ((β, B )) ∈ T ((δ , )), therefore (γ , ) = (δ , ). Since f (γ , ) 1 ((α, A)) = f (δ , ) 1 ((β, B )), therefore (α, A) ∼ (γ , ) (β, B ) and (α, A) ∼ (δ , ) (β, B ). Consequently, g ((α, A)) = g ((β, B )).
Now, we define the function f used in Section 5.4 Let f be the function from

MOD k to MOD n such that • f ((β, B )) = f 0 ((β, )) when B = , • f ((β, B )) = f 1 ((β, B )) when B = .
where (β, B ) ranges over MOD k . Propositions 31-33 show that f possesses the properties required in Section ...

Proposition 31 f is a (k, n)-morphism. Proof 83 Suppose f is not a (k, n)-morphism. let (α, A) ∈ MOD k and (β, B ) ∈ MOD n be such that f ((α, A)) = (β, B
) and either forward condition does not hold, or backward condition does not hold. In the former case, A = and B = , or there exists

α ∈ BIT k , β ∈ BIT n such that A = {α }, B = {β } and f ((α , )) = (β , ). Since A = and f ((α, A)) = (β, B ), then B = . Thus let α ∈ BIT k , β ∈ BIT n such that A = {α }, B = {β } and f 0 ((α , )) = (β , ). Since f ((α , A)) = (β , B ) then f f 0 ((α , )) 1 ((α, {α })) = (β, {β }). Then (β, {β }) ∈ T ( f 0 ((α , ))), then f 0 ((α , )) = (β , ): a contradiction.
In the latter case, B = and A = or there exists α ∈ BIT k , β ∈ BIT n such that A = {α }, B = {β } and f ((α , )) = (β , ). Since B = and f ((α, A)) = (β, B ) then A = . And the rest of the argument is similar to the one used in the former case. The fusion L 1 ⊗ L 2 of two normal modal logics L 1 and L 2 formulated in languages L 1 and L 2 with disjoint sets of modal operators is the smallest normal modal logic containing L 1 ∪L 2 . It is easy to see that if each L i is axiomatized by a set i of axioms (written in the respective language) then L 1 ⊗L 2 is axiomatized by the union 1 ∪ 2 . Fusion of modal logics are everywhere in computer science and artificial intelligence. For instance Public Announcement Logic is like a fusion of finitary many S5 logics. In this chapter we consider some fusions of two modal logics and discuss about their unification type.

Proposition 32 For all (α, A), (β, B ) ∈ MOD k , if f ((α, A)) = f ((β, B )) then g ((α, A)) = g ((β, B )).

Syntax

Let V AR be a countable set of atomic formulas called variables (denoted x, y, ...). Formula of modal languages L 1 and L 2 are respectively defined as follows

ϕ ::= x |⊥ | ¬ϕ | (ϕ ∨ ψ) | 1 ϕ, ϕ ::= x |⊥ | ¬ϕ | (ϕ ∨ ψ) | 2 ϕ.
85 Definition 33 Formulas of the fusion L of L 1 and L 2 are given by the following rule

ϕ ::= x | ⊥ | ¬ϕ | (ϕ ∨ ψ) | 1 ϕ | 2 ϕ.
As usual, the rest of the connectives are defined from the ones given. In this case, we have ♦ 1 ϕ ::= ¬ 1 ¬ϕ and ♦ 2 ϕ ::= ¬ 2 ¬ϕ.

Definition 34

Let L 1 be a normal modal logic in L 1 and L 2 be a normal modal logic in L 2 . The fusion of L 1 and L 2 ( denoted L 1 ⊗ L 2 ) is the least normal modal logic in L containing L 1 and L 2 .

A number of transfer results have been obtained. For instance, if L 1 is decidable and L 2 is decidable then L 1 ⊗L 2 is decidable [START_REF] Kracht | Properties of independently axiomatizable bimodal logics[END_REF] and [START_REF] Wolter | Fusions of Modal Logics Revisited[END_REF]. For us, in this chapter, it will be important to remember that when L 1 is consistent and L 2 is consistent, the fusion L 1 ⊗L 2 is a conservative extension of L 1 and L 2 respectively, that is to say: for all i ∈ {1, 2} and for all formulas

ϕ in L i , ϕ ∈ L 1 ⊗ L 2 iff ϕ ∈ L i .

Semantic

In this Section, we will see Semantics of fusion of two modal logic L 1 ⊗ L 2 .

Definition 35 A Frame F for L is a triple 〈W, R 1 , R 2 〉
where W is a non-empty set of possible worlds and R 1 and R 2 are binary relations on W .

Definition 36 A model M is a structure (W, R 1 , R 2 , ν), where • W is a set of possible worlds,
• R 1 and R 2 are binary relations on W to evaluate 1 and 2 respectively and

• ν is a function ν : W → P (V ar ).
We define the notion of a formula ϕ being true in model

M = (W, R 1 , R 2 , ν) at a world w ∈ W (in symbols M , w ϕ) as follows: • M , w x iff w ∈ V (x), • M , w ⊥, • M , w ¬ϕ iff M , w ϕ, • M , w ϕ ∨ ψ iff either M , w ϕ or M , w ψ, • M , w 1 ϕ iff for all w ∈ W , if wR 1 w then, M , w ϕ,
• M , w 2 ϕ iff for all w ∈ W , if wR 2 w then, M , w ϕ.

As a result,

• M , w ♦ 1 ϕ iff there exists w ∈ W such that wR 1 w and M , w ϕ,

• M , w ♦ 2 ϕ iff there exists w ∈ W such that wR 2 w and M , w ϕ.

Example 11 Consider the formula ϕ = ♦ 1 (x ∧ 2 y). Let M = 〈W, R 1 , R 2 , ν〉 be a model of K ⊗K . M satisfies ♦ 1 (x ∧ 2 y
) at a world w 0 ∈ W iff there exists w 1 ∈ W such that w 0 R 1 w 1 and M satisfies x ∧ 2 y at w 1 . But this means w 1 ∈ ν(x) and w 1 ∈ ν( 2 y). M satisfies 2 ν(y) at w 1 iff for every w 2 ∈ W such that w 1 R 2 w 2 we have M satisfies ν(y) at w 2 .

Unification Type in fusion

K 1 ⊗ K 2
Dzik proved that the fusion K 1 ⊗ K 2 of K with itself provides the rule of disjunction [START_REF] Dzik | Unification Types in Logics[END_REF]. In this section, we mention shortly about the rule of disjunction in the fusion

K 1 ⊗ K 2 .
Definition 37 Let L 1 , L 2 be normal modal logics in L 1 and L 2 respectively. The fusion L = L 1 ⊗ L 2 provides the rule of disjunction if the following condition hold for any A 1 , A 2 ∈ L :

• 1 A 1 ∨ 2 A 2 then, A i for some i ∈ {1, 2}.
At the below Lemma, we claim that fusions K 1 ⊗ K 2 satisfies the rule of disjunction.

Theorem 7

The fusion K 1 ⊗ K 2 provides the rule of disjunction.

• K 1 ⊗K 2 1 A ∨ 2 B ⇒ K 1 ⊗K 2 A or K 1 ⊗K 2 B Proof 86 Suppose K 1 ⊗K 2 A and K 1 ⊗K 2 B . We have to show that K 1 ⊗K 2 1 A 1 ∨ 2 B . Let M 1 = 〈W 1 , R 1 , R 2 , ν 1 〉 and M 2 = 〈W 2 , R 1 , R 2 , ν 2 〉 be K 1 ⊗ K 2 -models. Let t 1 ∈ W 1 and s 1 ∈ W 2 such that M 1 , t 1 A and M 2 , s 1 B . Let us construct the model M = 〈W, R 1 , R 2 ,
ν〉 which is the disjoint union of M 1 and M 2 together with a new state w 0 . We define the model as follows:

• W = W 1 ∪ W 2 ∪ {w 0 }, • R 1 = R 1 ∪ R 1 ∪ {(w 0 , t 1 )}, • R 2 = R 2 ∪ R 2 ∪ {(w 0 , s 1 )} and • ν = ν 1 ∪ ν 2 .
Obviously, the sub-model of M generated from t 1 is equal to the sub-model of M 1 generated from t 1 and the sub-model of M generated from s 1 is equal to the sub-model of M 2 generated from s 1 . Since, M 1 ,

t 1 A then, M , t 1 A. Since, M 2 , s 1 B then, M , s 1 B . Since w 0 R 1 t 1 and M , t 1 A then, M , t 1 1 A. Since w 0 R 2 s 1 and M , s 1 B then, M , s 1 2 B . Then, M , w 0 1 A ∨ 2 B . Therefore, K 1 ⊗K 2 1 A ∨ 2 B .
Since we know that some logics providing the rule of disjunction (for example K and K 4) does not possess a unitary unification type. For example consider the formula 1 x ∨ 2 ¬x. This formula has unifiers

• σ 1 (x) = , • σ 2 (x) = ⊥.
and there is no unifier more general than both of them because if

K 1 ⊗K 2 1 σ(x) ∨ 2 ¬σ(x)
then either K 1 ⊗K 2 σ(x) (so that σ is equivalent to σ 1 ) or K 1 ⊗K 2 ¬σ(x) (so that σ is equivalent to σ 2 ). Thus this formula has no most general unifier.

Theorem 8 Unification type of the fusion K

1 ⊗ K 2 is not unitary.
Before discussing on unification type of fusion K 1 ⊗K 2 we consider a general form of logic L 1 ⊗ L 2 when L 1 has nullary unification type and L 2 is a consistent modal logic. Then we show unification type of fusion L 1 ⊗ L 2 is not finitary and not unitary. Consider two unimodal logics Triv = K + { p ↔ p} and Ver = K + { p}. D. Makinson proved a property of consistent unimodal logics [START_REF] Makinson | Some embedding theorems for modal logic[END_REF]. This well-known property is as follows:

• If unimodal logic L is consistent then L ⊆ Triv or L ⊆ Ver.
For instance, S5 ⊆ Triv, S5 Ver, K 4 ⊆ Triv and K 4 ⊆ Ver. We define a translation t from the language L to the language L 1 as: Definition 38 Since L 2 is consistent, we have L 2 ⊆ Triv 2 or L 2 ⊆ Ver 2 . Let t : L → L 1 be a function defined as follows:

• t (x) = x, • t (p) = p, • t (⊥) = ⊥, • t (¬ϕ) = ¬t (ϕ), • t (ϕ ∨ ψ) = t (ϕ) ∨ t (ψ), • t ( 1 ϕ) = 1 t (ϕ), • t ( 2 ϕ) = t (ϕ), when L 2 ⊆ Triv 2 . • t ( 2 ϕ) = when L 2 ⊆ Ver 2 .
The below lemmas show that if L 1 is nullary and L 2 is consistent then L 1 ⊗ L 2 is not unitary and not finitary.

Lemma 51 Let L 1 ⊆ L 1 and L 2 ⊆ L 2 be normal modal logics. if L 1 is nullary and L 2 is consistent then L 1 ⊗ L 2 is not unitary. Proof 87 Suppose L 1 is nullary and L 2 is consistent. Suppose L 1 ⊗ L 2 is unitary. Since, L 1 is nullary, therefore let ϕ ∈ L 1 be such that ϕ is L 1 -unifiable and ϕ has no minimal complete set of L 1 -unifiers. Let σ be an L 1 -substitution such that σ(ϕ) ∈ L 1 . Since the fusion L 1 ⊗L 2 contains both L 1 and L 2 hence, σ(ϕ) ∈ L 1 ⊗L 2 . Thus, ϕ is (L 1 ⊗L 2 )-unifiable. Since L 1 ⊗L 2 is unitary, Let τ be an L -substitution such that τ is an (L 1 ⊗ L 2 )-unifier of ϕ and for all L -substitution σ , if σ is an (L 1 ⊗ L 2 )-unifier of ϕ then τ L 1 ⊗L 2 σ . Since L 2 is consistent therefore either L 2 ⊆ Triv 2 or L 2 ⊆ Ver 2 .
Let t : L → L 1 be the function defined in Definition 38. For all L -substitutions θ, let θ t be the L 1 -substitution such that for all variable x, θ t (x) = t (θ(x)).

Claim 2 For all

ψ ∈ L 1 , θ t (ψ) = t (θ(ψ)) for all L -substitutions θ.
Proof 88 By induction on ψ ∈ L 1 :

• Let ψ = x. We have, θ t (x) = t (θ(x)).

• Let ψ = ⊥. We have, θ t (⊥) = ⊥.

• Let ψ = ϕ∨ϕ . By induction hypothesis θ t (ϕ) = t (θ(ϕ)) and θ t (ϕ ) = t (θ(ϕ )).

Hence, θ t (ϕ ∨ ϕ ) = t (θ(ϕ ∨ ϕ )).

• Let ψ = 1 ϕ . By induction hypothesis θ t (ϕ ) = t (θ(ϕ )). Then, 1 θ t (ϕ ) = 1 t (θ(ϕ )) = t ( 1 θ(ϕ )) = t (θ( 1 ϕ )). Claim 3 For all ψ ∈ L 1. If L 2 ⊆ Triv 2 then (ψ ↔ t (ψ)) ∈ L 1 ⊗ Triv 2 . 2. If L 2 ⊆ Ver 2 then (ψ ↔ t (ψ)) ∈ L 1 ⊗ Ver 2 .
Proof 89 by induction on ψ.

1. Suppose L 2 ⊆ Triv 2 . We only explain the cases ψ = 1 ψ and ψ = 2 ψ .

• Let ψ = 1 ψ . By induction hypothesis ψ ↔ t (ψ ) ∈ L 1 ⊗ Triv 2 . By necessitation 1 ψ ↔ 1 t (ψ ) ∈ L 1 ⊗ Triv 2 . Thus, 1 ψ ↔ t ( 1 ψ ) ∈ L 1 ⊗ Triv 2 . • Let ψ = 2 ψ . By induction hypothesis ψ ↔ t (ψ ) ∈ L 1 ⊗ Triv 2 . By necessitation 2 ψ ↔ 2 t (ψ ) ∈ L 1 ⊗ Triv 2 . Consequently, 2 ψ ↔ t (ψ ) ∈ L 1 ⊗ Triv 2 . Since t ( 2 ψ ) = t (ψ ) thus, 2 ψ ↔ t ( 2 ψ ) ∈ L 1 ⊗ Triv 2 .
2. The proof of this item is similar to the proof of item 1.

Claim 4 For all

ψ ∈ L , if ψ ∈ L 1 ⊗ L 2 then t (ψ) ∈ L 1 .
Proof 90 We consider the two following cases:

1. Suppose L 2 ⊆ Triv 2 . Let ψ ∈ L 1 ⊗ L 2 . Then by Claim 3, (ψ ↔ t (ψ)) ∈ L 1 ⊗ Triv 2 . Since, ψ ∈ L 1 ⊗L 2 and L 1 ⊗L 2 ⊆ L 1 ⊗Triv 2 then, ψ ∈ L 1 ⊗Triv 2 . Since, ψ ∈ L 1 ⊗Triv 2 and (ψ ↔ t (ψ)) ∈ L 1 ⊗Triv 2 then, t (ψ) ∈ L 1 ⊗Triv 2 . Therefore, knowing that L 1 ⊗ Triv 2 is a conservative extension of L 1 , t (ψ) ∈ L 1 . 2. Suppose L 2 ⊆ Ver 2 . Let ψ ∈ L 1 ⊗L 2 . Then by Claim 3, (ψ ↔ t (ψ)) ∈ L 1 ⊗Ver 2 . Since, ψ ∈ L 1 ⊗ L 2 and L 1 ⊗ L 2 ⊆ L 1 ⊗ Ver 2 then, ψ ∈ L 1 ⊗ Ver 2 . Since, ψ ∈ L 1 ⊗ Ver 2 and (ψ ↔ t (ψ)) ∈ L 1 ⊗ Ver 2 then, t (ψ) ∈ L 1 ⊗ Ver 2 . Therefore, knowing that L 1 ⊗ Ver 2 is a conservative extension of L 1 , t (ψ) ∈ L 1 . Since, τ is an (L 1 ⊗ L 2 )-unifier of ϕ, therefore τ(ϕ) ∈ L 1 ⊗ L 2 . Hence, by Claim 4, t (τ(ϕ)) ∈ L 1 . Thus by Claim 2, τ t (ϕ) ∈ L 1 . Consequently, τ t is an L 1 -unifier of ϕ.
Claim 5 For all ψ ∈ L and for all L -substitution λ, t (λ(ψ)) = λ t (t (ψ)).

Proof 91 By induction on ψ.

Let θ be an

L 1 -substitution such that θ is an L 1 -unifier of ϕ. Hence, θ(ϕ) ∈ L 1 . Hence, θ(ϕ) ∈ L 1 ⊗ L 2 . Thus, knowing that the τ defined before Claim 2 is a most general unifier of ϕ in L 1 ⊗ L 2 , τ L 1 ⊗L 2 θ. Let λ be an L -substitution such that for all variables x, λ(τ(x)) ↔ θ(x) ∈ L 1 ⊗ L 2 .
Hence, by Claim 4, for all variable x, t (λ(τ(x))) ↔ t (θ(x)) ∈ L 1 . Thus by Claim 5, for all variables x, λ t (τ t (x)) ↔ θ(x) ∈ L 1 . Consequently, τ t L 1 θ. As a result, τ t is an L 1 -unifier of ϕ (by the remark preceding Claim 5) and for all L 1 -substitutions θ, if θ is an L 1 -unifier of ϕ then τ t L 1 θ. Thus, {τ t } is a minimal complete set of L 1 -unifiers of ϕ and this is contradiction with assumption that ϕ has no minimal complete set of L 1 -unifiers. This ends the proof of Lemma 51.

Lemma 52 Let L 1 ⊆ L 1 and L 2 ⊆ L 2 be normal modal logics. if L 1 is nullary and L 2 is consistent then L 1 ⊗ L 2 is not finitary.
Proof 92 Suppose L 1 is nullary and L 2 is consistent. Suppose L 1 ⊗ L 2 is finitary. Since, L 1 is nullary, therefore let ϕ ∈ L 1 be such that ϕ is L 1 -unifiable and ϕ has no minimal complete set of L 1 -unifiers. Let σ be an

L 1 -substitusion such that σ(ϕ) ∈ L 1 . Hence, σ(ϕ) ∈ L 1 ⊗ L 2 . Thus, ϕ is (L 1 ⊗ L 2 )-unifiable. Since, L 1 ⊗L 2 is finitary, let τ 1 , ..., τ n be L -substitutions such that τ 1 , ..., τ n are (L 1 ⊗L 2 )- unifiers of ϕ and for all L -substitutions σ , if σ is an (L 1 ⊗ L 2 )-unifier of ϕ then τ i L 1 ⊗L 2 σ for some i ∈ {1, ..., n}. Since L 2 is consistent therefore either L 2 ⊆ Triv 2 or L 2 ⊆ Ver 2 . Let t : L → L 1 be a function defined as in Definition 38. Since, τ i for i ∈ {1, ..., n} is an (L 1 ⊗ L 2 )-unifier of ϕ, therefore τ i (ϕ) ∈ L 1 ⊗ L 2 for i ∈ {1, ..., n}. Hence, t (τ i (ϕ)) ∈ L 1 . Thus τ t i (ϕ) ∈ L 1 for i ∈ {1, ..., n}. Consequently, τ t i is an L 1 -unifier of ϕ. Let θ be an L 1 -substitution such that θ is an L 1 -unifier of ϕ. Hence, θ(ϕ) ∈ L 1 . Hence, θ(ϕ) ∈ L 1 ⊗L 2 . Thus, remembering that {τ 1 , ..., τ n } is a complete set of uni- fiers of ϕ in L 1 ⊗ L 2 , τ i L 1 ⊗L 2 θ
for some i ∈ {1, ..., n}. Let λ be an L -substitution such that for all variables x, λ(τ i (x)) ↔ θ(x) ∈ L 1 ⊗ L 2 . Hence, by Claim 4 for all variable x, t (λ(τ i (x))) ↔ t (θ(x)) ∈ L 1 . Thus, by Claim 5, for all variables x,

λ t (τ t i (x)) ↔ θ(x) ∈ L 1 . Consequently, τ t i L 1 θ
for some i ∈ {1, ..., n}. As a result, {τ t 1 , ..., τ t n } in a complete set of L 1 -unifiers of ϕ and this is contradiction with our assumption.

Since K 1 is nullary and K 2 is consistent hence fusion K 1 ⊗ K 2 is not unitary by Theorem 51 and not finitary by Theorem 52. At the following, we shall show that there exists a (K 1 ⊗ K 2 )-unifiable formula which has no minimal complete set. Hence K 1 ⊗ K 2 is nullary. In this respect, we shall use Jeřábek's method in [START_REF] Jeřábek | Blending margins: The modal logic K has nullary unification type[END_REF] in order to show that the unification type of the fusion (K 1 ⊗ K 2 ) is nullary. We need to define

• ( 1 2 ) 0 ϕ ::= ϕ • ( 1 2 ) n+1 ϕ ::= ( 1 2 )( 1 2 ) n ϕ • ( 1 2 ) <0 ϕ ::= • ( 1 2 ) <n+1 ϕ ::= ( 1 2 ) <n ϕ ∧ ( 1 2 ) n ϕ
where n is a non-negative integer. The next Lemma expresses some required facts that we will use to prove K 1 ⊗K 2 is nullary.

Lemma 53 Let k, l ∈ N and ϕ, ψ be L -formula. 1. If ϕ → ψ then 1 2 ϕ → 1 2 ψ. 2. If k l then ( 1 2 ) k ⊥ → ( 1 2 ) l ⊥. 3. If k < l then ( 1 2 ) <l ϕ → ( 1 2 ) k ϕ. 4. If k l then ( 1 2 ) <k ϕ ∧ ( 1 2 ) k ⊥ → ( 1 2 ) <l ϕ. 5. If k < l then, ( 1 2 ) l ⊥ → ( 1 2 ) k ⊥. 6. If k l then ( 1 2 ) k ⊥ → ( 1 2 ) <l ( 1 2 ) k ⊥. Proof 93 Let k, l ∈ N. 1. Suppose ϕ → ψ. Then, 2 (ϕ → ψ) by necessitation. Hence we obtain 2 ϕ → 2 ψ by axiom K 2 . Since 2 ϕ → 2 ψ hence, 1 ( 2 ϕ → 2 ψ) by necessitation. Thus, 1 2 ϕ → 1 2 ψ by axiom K 1 . 2. Suppose k l . Since, ⊥ → ( 1 2 ) l -k ⊥ then 2 ⊥ → 2 ( 1 2
) l -k ⊥ by necessitation and axiom K 2 . Then we obtain, 1 2 ⊥ → 1 2 ( 1 2 ) l -k ⊥ by necessitation and axiom K 1 . We can use k-times axiom K 1 and K 2 . Thus,

( 1 2 ) k ⊥ → ( 1 2 ) k ( 1 2 ) l -k ⊥. Therefore, ( 1 2 ) k ⊥ → ( 1 2 ) l ⊥.

Suppose, k < l . By definition we have,

(

) <l ϕ = ϕ ∧ ( 1 2 )ϕ ∧ ... ∧ ( 1 2 ) k ϕ ∧ ... ∧ ( 1 2 ) l -1 ϕ Then, ( 1 2 ) <l ϕ → ( 1 2 ) k ϕ. 1 2 
4. We have,

• ( 1 2 ) k ⊥ → ( 1 2 ) k ϕ ∧ ... ∧ ( 1 2 ) l -1 ϕ (since k l ) and • ( 1 2 ) <k ϕ → ϕ ∧ ... ∧ ( 1 2 ) k-1 ϕ. Hence, • ( 1 2 ) <k ϕ∧( 1 2 ) k ⊥ → ( 1 2 ) k ϕ∧...∧( 1 2 ) l -1 ϕ ∧ ϕ∧...∧ ( 1 2 ) k-1 ϕ . Therefore, • ( 1 2 ) <k ϕ ∧ ( 1 2 ) k ⊥ → ( 1 2 ) <l ϕ. 5. Consider a K 1 ⊗ K 2 -model M = (W, R 1 , R 2 , ν) such that W = {w 1 , ...., w 2k+1 } and w 1 R 1 w 2 R 2 ...R 2 w 2k+1 . Hence, M , w 1 ( 1 2 ) l ⊥ (since k < l ) and M , w 1 ( 1 2 ) k ⊥. Thus, M , w 1 ( 1 2 ) l ⊥ → ( 1 2 ) k ⊥. 6. Suppose k l . Since, ( 1 2 ) <l ( 1 2 ) k ⊥ = ( 1 2 ) k ⊥∧...∧( 1 2 ) l +k-1 ⊥ hence by part (2), ( 1 2 ) k ⊥ → ( 1 2 ) k ⊥∧...∧( 1 2 ) l +k-1 ⊥. Therefore, ( 1 2 
) k ⊥ → ( 1 2 ) <l ( 1 2 ) k ⊥.
Consider the formula ϕ = x → 1 2 x and the substitutions σ (x) = and σ n (x) = ( 1 2 ) <n x ∧ ( 1 2 ) n ⊥. We will show that ϕ is unifiable in K 1 ⊗ K 2 and nullary.

Lemma 54 For all n ∈ N,

1. σ n (x) = ( 1 2 ) <n x ∧ ( 1 2 ) n ⊥ is a K 1 ⊗ K 2 -unifier of ϕ. 2. σ (x) = is a K 1 ⊗ K 2 -unifier of ϕ.
Proof 94 Let n ∈ N.

Unification in Fusion S5 ⊗ S5

In this section we will discuss on unification type of the fusion S5 1 ⊗ S5 2 and we will show that unification type of fusion S5 1 ⊗ S5 2 is nullary. By doing so, we are answering an open question of Dzik [START_REF] Dzik | Unification Types in Logics[END_REF] (2007) who conjectures that S5 1 ⊗ S5 2 is nullary or infinitary. In this respect, we consider the formula ϕ 0 = (x → x) ∧ (¬x → ¬x) where,

• ψ = 1 (pqr → 2 (pqr → 1 (pqr → 2 (pqr → 1 (pqr → 2 (pqr → ψ)))))) and • ψ = (pqr → 2 (pqr → 1 (pqr → 2 (pqr → 1 (pqr → 2 (pqr → 1 ψ)))))).
We will show that ϕ 0 is nullary for S5 1 ⊗ S5 2 . In order to prove the unification type of the fusion S5 1 ⊗ S5 2 is nullary we need to define the modal connective k and k inductively as follows for each k ∈ N:

• 0 ϕ ::= ϕ,
• k+1 ϕ ::= k ϕ.

• 0 ϕ ::= ϕ,

• k+1 ϕ ::= k ϕ.
As a result, we define also:

• 0 ϕ ::= ϕ • k+1 ϕ ::= k ϕ.
The modal connective <k and <k are inductively defined as follows for each k ∈ N:

• <0 ϕ ::= .

• <k+1 ϕ ::= <k ϕ ∧ k ϕ.

• <0 ϕ ::= .

• <k+1 ϕ ::= <k ϕ ∧ k ϕ.

As a result, we define also:

• 0 ϕ ::= ⊥. • <k+1 ϕ ::= <k ϕ ∨ k ϕ.
Initially, we need to prove the following Lemma:

Lemma 72 For all formulas ϕ,

1. If ϕ then, ϕ. 2. (ϕ → ψ) → ( ϕ → ψ).

3.

<k+1 ϕ ↔ ϕ ∧ <k ϕ.

4.

<k ϕ → ϕ where k 1.

If k l then,

<k ⊥ → <l ⊥. 

We have by tautology

(1) (ϕ → ψ) → (ϕ → ψ) hence, ( 2 
) (pqr → (ϕ → ψ)) → (pqr → (ϕ → ψ)). By 2 and CP (3) (pqr → (ϕ → ψ)) → ((pqr → ϕ) → (pqr → ψ)). By 3, necessitation and axiom k (4) 2 (pqr → (ϕ → ψ)) → ( 2 (pqr → ϕ) → 2 (pqr → ψ))
. By 4 and CP

(5)

pqr → 2 (pqr → (ϕ → ψ)) → pqr → 2 (pqr → ϕ) → pqr → 2 (pqr → ψ)
. By 5, necessitation and axiom k.

(6) 1 pqr → 2 (pqr → (ϕ → ψ)) → 1 pqr → 2 (pqr → ϕ) → 1 pqr → 2 (pqr → ψ)
. By 6, CP, necessitation and axiom k

(7) 2 pqr → 1 pqr → 2 (pqr → (ϕ → ψ)) → 2 pqr → 1 pqr → 2 (pqr → ϕ) → 2 pqr → 1 pqr → 2 (pqr → ψ)
. By 7, CP, necessitation and axiom k

(8) 1 pqr → 2 pqr → 1 pqr → 2 (pqr → (ϕ → ψ)) → 1 pqr → 2 pqr → 1 pqr → 2 (pqr → ϕ) → 1 pqr → 2 pqr → 1 pqr → 2 (pqr → ψ)
. By 8, CP, necessitation and axiom k

(9) 2 pqr → 1 pqr → 2 pqr → 1 pqr → 2 (pqr → (ϕ → ψ)) → 2 pqr → 1 pqr → 2 pqr → 1 pqr → 2 (pqr → ϕ) → 2 pqr → 1 pqr → 2 pqr → 1 pqr → 2 (pqr → ψ)
. By 9, CP, necessitation and axiom k

(10) 1 pqr → 2 pqr → 1 pqr → 2 pqr → 1 pqr → 2 (pqr → (ϕ → ψ)) → 1 pqr → 2 pqr → 1 pqr → 2 pqr → 1 pqr → 2 (pqr → ϕ) → 1 pqr → 2 pqr → 1 pqr → 2 pqr → 1 pqr → 2 (pqr → ψ) .
Therefore, (ϕ → ψ) → ( ϕ → ψ).

Since,

<k+1 ϕ ↔ ϕ∧ ϕ∧...∧ k ϕ and ϕ∧ ϕ∧...∧ k ϕ ↔ ϕ∧ (ϕ∧ ... ∧ k-1 ϕ) then, <k+1 ϕ ↔ ϕ ∧ <k ϕ. 4. Soppose k 1. Since <k ϕ ↔ ϕ ∧ ϕ ∧ ... ∧ k-1 ϕ and ϕ ∧ ϕ ∧ ... ∧ k-1 ϕ → ϕ thus, <k ϕ → ϕ.
5. Let k l . Since, ⊥ → l -k ⊥ then we have k (⊥ → l -k ⊥) by part [START_REF] Ågotnes | Group announcement logic[END_REF].

Since, k (⊥ → l -k ⊥) thus we have k ⊥ → l ⊥ by part [START_REF] Babenyshev | Unification in linear temporal logic[END_REF].

Lemma 73 Let k, l ∈ N. For all formulas ϕ, ψ,

1. If ϕ then, ϕ.

2.

(ϕ → ψ) → ( ϕ → ψ).

3.

<k+1 ϕ ↔ ϕ ∧ <k ϕ.

4.

<k ϕ → ϕ where k 1.

If k l then,

<k ⊥ → <l ⊥. → l +1 ⊥. Thus by Lemma 72, k -1 times, we obtain → l +1 ⊥. Here, l +1 ⊥. Thus, k+l +1 ⊥ → k+l ⊥: a contradiction with item [START_REF] Balbiani | KD is nullary[END_REF].

6. If k l then, l → k . 7. If k < l then l ⊥ → k ⊥. 8. If k < l then k → l . 9. l → k ⊥.
Consider substitutions σ k (x) = <k x ∧ k ⊥ and τ k (x) = ¬( <k ¬x ∧ k ⊥). We will show that σ k (x) and τ k (x) are (S5 1 ⊗ S5 2 )-unifiers of ϕ 0 . Notice that σ k (x) and τ k (x) can be written as follows:

σ 0 (x) = ⊥ and, σ k+1 (x) = <k+1 x ∧ k+1 ⊥ = x ∧ <k x ∧ k+1 ⊥ = x ∧ ( <k x ∧ k ⊥) = x ∧ σ k (x). τ 0 (x) = and, τ k+1 (x) = ¬( <k+1 ¬x∧ k+1 ⊥) = ¬(¬x∧ <k ¬x∧ k+1 ⊥) = ¬(¬x∧ ( <k ¬x∧ k ⊥)) = x ∨ τ k (x).
It is well-known that in S5 1 ⊗ S5 2 , we have for all formula ϕ, ψ

• ϕ → 1 ψ iff ♦ 1 ϕ → ψ and • ϕ → 2 ψ iff ♦ 2 ϕ → ψ. Moreover,
Lemma 74 For all formulas ψ, the following conditions are equivalent:

1. ϕ → ψ. 2. ¬ψ → ¬ϕ. Proof 116 Suppose L ϕ → ψ. Then, L ϕ → 1 (pqr → 2 (pqr → 1 (pqr → 2 (pqr → 1 (pqr → 2 (pqr → ψ)))))) L ♦ 1 ϕ → (pqr → 2 (pqr → 1 (pqr → 2 (pqr → 1 (pqr → 2 (pqr → ψ)))))) L (pqr ∧ ♦ 1 ϕ) → 2 (pqr → 1 (pqr → 2 (pqr → 1 (pqr → 2 (pqr → ψ))))) L ♦ 2 (pqr ∧ ♦ 1 ϕ) → (pqr → 1 (pqr → 2 (pqr → 1 (pqr → 2 (pqr → ψ))))) L pqr ∧ ♦ 2 (pqr ∧ ♦ 1 ϕ) → 1 (pqr → 2 (pqr → 1 (pqr → 2 (pqr → ψ)))) L ♦ 1 (pqr ∧ ♦ 2 (pqr ∧ ♦ 1 ϕ)) → (pqr → 2 (pqr → 1 (pqr → 2 (pqr → ψ)))) L pqr ∧ ♦ 1 (pqr ∧ ♦ 2 (pqr ∧ ♦ 1 ϕ)) → 2 (pqr → 1 (pqr → 2 (pqr → ψ))) L ♦ 2 (pqr ∧ ♦ 1 (pqr ∧ ♦ 2 (pqr ∧ ♦ 1 ϕ))) → (pqr → 1 (pqr → 2 (pqr → ψ))) L pqr ∧ ♦ 2 (pqr ∧ ♦ 1 (pqr ∧ ♦ 2 (pqr ∧ ♦ 1 ϕ))) → 1 (pqr → 2 (pqr → ψ)) L ♦ 1 (pqr ∧ ♦ 2 (pqr ∧ ♦ 1 (pqr ∧ ♦ 2 (pqr ∧ ♦ 1 ϕ)))) → (pqr → 2 (pqr → ψ)) L pqr ∧ ♦ 1 (pqr ∧ ♦ 2 (pqr ∧ ♦ 1 (pqr ∧ ♦ 2 (pqr ∧ ♦ 1 ϕ)))) → 2 (pqr → ψ) L ♦ 2 (pqr ∧ ♦ 1 (pqr ∧ ♦ 2 (pqr ∧ ♦ 1 (pqr ∧ ♦ 2 (pqr ∧ ♦ 1 ϕ))))) → (pqr → ψ) L (pqr ∧ ♦ 2 (pqr ∧ ♦ 1 (pqr ∧ ♦ 2 (pqr ∧ ♦ 1 (pqr ∧ ♦ 2 (pqr ∧ ♦ 1 ϕ)))))) → ψ L ¬ψ → ¬(pqr ∧ ♦ 2 (pqr ∧ ♦ 1 (pqr ∧ ♦ 2 (pqr ∧ ♦ 1 (pqr ∧ ♦ 2 (pqr ∧ ♦ 1 ϕ)))))) L ¬ψ → (pqr → 2 (pqr → 1 (pqr → 2 (pqr → 1 (pqr → 2 (pqr → 1 ψ))))))
L ¬ψ → ¬ϕ. The proof of the converse direction is similar.

Lemma 75 For all k ∈ N,

1. σ k is an (S5 1 ⊗ S5 2 )-unifier of ϕ 0 . 2. τ k is an (S5 1 ⊗ S5 2 )-unifier of ϕ 0 . Proof 117 Let k ∈ N.
1. By Lemma 74, it suffices to prove σ k (x) → σ k (x). In fact, we have to prove

( <k x ∧ k ⊥) → ( <k x ∧ k ⊥) or equivalently ( <k x ∧ k ⊥) → <k x ∧ k ⊥. We know that <k x = (x ∧ x ∧ ... ∧ (k-1) x) = x ∧ x ∧ ... ∧ k x and <k x = (x ∧ x ∧ x ∧ ... ∧ (k-1) x). Since, (x ∧ x ∧ x ∧ ... ∧ (k-1) x) → ( x ∧ x ∧ ... ∧ (k-1)
x) and k ⊥ → k x then we have, 1) x ∧ k x). Thus, ( <k x ∧ k ⊥) → <k x. By part (5) of Lemma 72, k ⊥ → k+1 ⊥. Since,

( <k x ∧ k ⊥) → ( x ∧ x ∧ ... ∧ (k-
( <k x ∧ k ⊥) → <k x therefore, ( <k x ∧ k ⊥) → ( <k x ∧ k+1 ⊥) or equivalently ( <k x ∧ k ⊥) → ( <k x ∧ k ⊥). Therefore, σ k (x) → σ k (x).
2. By Lemma 74, it suffices to prove ¬τ k (x) → ¬τ k (x). In fact, we have to prove ( <k ¬x ∧ k ⊥) → ( <k ¬x ∧ k ⊥). We know that <k ¬x = (¬x ∧ ¬x ∧...∧ (k-1) ¬x) = ¬x ∧ ¬x ∧...∧ k ¬x and <k ¬x = (¬x ∧ ¬x ∧ ¬x ∧ ... ∧ (k-1) ¬x). Since,

(¬x ∧ ¬x ∧ ¬x ∧ ... ∧ (k-1) ¬x) → ( ¬x ∧ ¬x ∧ ... ∧ (k-1) ¬x) and k ) ∨ l ) ↔ ( <k x ∨ k ). Let us prove ( <l (x ∨ k ) ∨ l ) → ( <k x ∨ k ) or equivalently ( <l x ∨ <l k ∨ l ) → ( <k x ∨ k ). By part (6) of Lemma 73, l → k .Since, <l k = k ∨ ... ∨ l -1 k hence by part (6) of Lemma 73 <l k → k . Since, <l x = x ∨ ... ∨ l -1 x and <k x = x ∨ ... ∨ k-1 x hence x ∨ ... ∨ k-1 x ∨ k x ∨ ... ∨ l -1 x → x ∨ ... ∨ k-1 x ∨ k then, <l x → <k x ∨ k . Since, l → k and <l k → k and <l x → <k x ∨ k thus, ( <l x ∨ <l k ∨ l ) → ( <k x ∨ k ). Therefore, ( <l (x ∨ k ) ∨ l ) → ( <k x ∨ k ).
For the other direction we have to prove

<k x ∨ k → <l x ∨ <l k ∨ l . Since <k x → <l x and <l k = k ∨ ... ∨ l -1 k then, k → <l k . Therefore, <k x ∨ k → <l x ∨ <l k ∨ l . Since, ( <l (x ∨ k ) ∨ l ) → ( <k x ∨ k ) and ( <k x ∨ k ) → <l (x ∨ k ) ∨ l then, ( <l (x ∨ k )∨ l ) ↔ ( <k x ∨ k ). Hence, τ l •ν S5 1 ⊗S5 2 τ k . Therefore, τ l S5 1 ⊗S5 2 τ k .
Lemma 77 For all k, l ∈ N, if k < l then σ k S5 1 ⊗S5 2 σ l and τ k S5 1 ⊗S5 2 τ l .

Proof 119 Suppose k < l and σ k S5 1 ⊗S5 2 σ l . Let υ be a substitution such that

σ k • υ S5 1 ⊗S5 2 σ l . Hence, υ(σ k (x)) ↔ σ l (x). Thus, ( <k υ(x) ∧ k ⊥) ↔ ( <l x ∧ l ⊥). Hence, ( <l x ∧ l ⊥) → k ⊥.
Thus by replacing x by , l ⊥ → k ⊥. This is a contradiction with the part (7) of Lemma 73.

Suppose k < l and τ k S5 2 ⊗S5 2 τ l . Let υ be a substitution such that Lemma 78 For all k, l ∈ N, if k < l then σ k S5 1 ⊗S5 2 τ l and τ k S5 1 ⊗S5 2 σ l .

τ k •υ S5 1 ⊗S5 2 τ l . Hence, υ(τ k (x)) ↔ τ l (x). Thus, ( <k υ(x) ∨ k ) ↔ ( <l x ∨ l ).
• S 2 is the binary relation on X 1 such that (u 0 , a 1 , u 1 , ...,

a k , u k )S 2 (v 0 , b 1 , v 1 , ..., b l , v l ) iff there is m ∈ N such that m k, m l , (u 0 , a 1 , u 1 , ..., a m , u m ) = (v 0 , b 1 , v 1 , ..., b m , v m )
and for all i m, if i < k then a i +1 = 2 and if i < l then b i +1 = 2.

• ν 1 is the valuation on X 1 such that for all propositional variables or parameters α, ν 1 (α) = {(u 0 , a 1 , u 1 , ..., a k , u k ) ∈ X 1 :

u k ∈ ν 1 (α)}.
The unravelling M 2 = (X 2 , S 1 , S 2 , ν 2 ) of M 2 around s 2 can be defined in a similar way. Notice that (t 1 ) ∈ X 1 and (s 2 ) ∈ X 2 . Moreover, notice that S 1 and S 2 are equivalence relations on X 1 whereas S 1 and S 2 are equivalence relations on X 2 . Let f 1 : X 1 → W 1 and f 2 : X 2 → W 2 be defined as follows:

• For all (u 0 , a 1 , u 1 , ...,

a k , u k ) ∈ X 1 , let f 1 (u 0 , a 1 , u 1 , ..., a k , u k ) = u k ,
• For all (u 0 , a 1 , u 1 , ...,

a k , u k ) ∈ X 2 , let f 2 (u 0 , a 1 , u 1 , ..., a k , u k ) = u k .
Obviously, f 1 is a bounded morphism from M 1 to M 1 and f 

• s 2 R 2 s 2,1 R 1 s 2,2 R 2 s 2,3 R 1 s 2,4 R 2 s 2,5 R 1 s 2,6 ...R 2 s k,1 R 1 s k,2 R 2 s k,3 R 1 s k,4 R 2 s k,5 R 1 s k,6 .
Let M 0 = (W 0 , R 0 1 , R 0 2 , ν 0 ) be the disjoint union of M 1 and M 2 . By Theorem 3.14 in [START_REF] Blackburn | Modal Logic[END_REF], we have:

2. σ n σ. 3. σ(x) → ( 1 2 ) n ⊥.
Proof 131 The proof is similar to the proof of Lemma 58.

Theorem 11 Let σ be a unifier of ϕ = x → 1 2 x then either K 4⊗K 4 σ(x) or ν 2 ) be a model and t 2 ∈ W 2 be such that M 2 , t 2 σ(x) → ( 1 2 ) n ⊥. We will define the unravelling M 1 of M 1 around t 1 and the unravelling M 2 of M 2 around t 2 . Let M 1 = (X 1 , S 1 , S 2 , ν 1 ) where • X 1 is the set of all finite sequences of the form (u 0 , a 1 , u 1 , ...,

K 4 1 ⊗K 4 2 σ(x) → ( 1 2 ) n ⊥ where n d eg (σ(x)). Proof 132 Suppose neither σ(x) nor σ(x) → ( 1 2 ) n ⊥. Let M 1 = 〈W 1 , R 1 , R 2 , ν 1 〉 be a model and t 1 ∈ W 1 such that M 1 , t 1 σ(x). Let M 2 = (W 2 , R 1 , R 2 ,
a k , u k ) where k ∈ N, u 0 , u 1 , ..., u k ∈ W 1 , a 1 , ..., a k ∈ {1, 2}, u 0 = t 1 and for all i ∈ N, if i < k then u i R a i +1 u i +1 , • S 1 is the binary relation on X 1 such that (u 0 , a 1 , u 1 , ..., a k , u k )S 1 (v 0 , b 1 , v 1 , ..., b l , v l ) iff k < l , (u 0 , a 1 , u 1 , ..., a k , u k ) = (v 0 , b 1 , v 1 , ..., b k , v k ) and for all i k, if i < k then b i +1 = 1,
• S 2 is the binary relation on X 1 such that (u 0 , a 1 , u 1 , ...,

a k , u k )S 2 (v 0 , b 1 , v 1 , ..., b l , v l ) iff k < l , (u 0 , a 1 , u 1 , ..., a k , u k ) = (v 0 , b 1 , v 1 , ..., b k , v k ) and for all i k, if i < k then b i +1 = 2,
• ν 1 is the valuation on X 1 such that for all propositional variable or parameters α, ν 1 (α) = {(u 0 , a 1 , u 1 , ..., a k , u k ) ∈ X 1 :

u k ∈ ν 1 (α)}.
The unravelling M 2 = (X 2 , S 1 , S 2 , ν 2 ) of M 2 around t 2 is described in a similar way. Notice that (t 1 ) ∈ X 1 and (t 2 ) ∈ X 2 . Notice also that S 1 and S 2 are transitive relations on X 1 and S 1 and S 2 are transitive relations on X 2 . In other respect, let f 1 : X 1 → W 1 and f 2 : X 2 → W 2 be defined as in the proof of Theorem 10.

The functions f 1 and f 2 being bounded morphism, it follows from [START_REF] Blackburn | Modal Logic[END_REF] (Theorem 3.14) that M 1 , (t 1 ) σ(x) and M 2 , (t 2 ) σ(x) and M 2 , (t 2 ) ( 1 2 ) n ⊥.

Consequently, there exists u 1 , v 1 , ...,

u n , v n ∈ W 2 such that t 2 R 1 u 1 R 2 v 1 ...R 1 u n R 2 v n . Notice that therefore (t 2 , 1, u 1 , 2, v 1 , ..., 1, u n , 2, v n ) ∈ X 2 . Let M 0 = (W 0 , R 0 1 , R 0 2
, ν 0 ) be the disjoint union of M 1 and M 2 . By theorem 3.14 in [START_REF] Blackburn | Modal Logic[END_REF], we have M 0 , (t 1 ) σ(x) and M 0 , (t 2 ) σ(x). Moreover, In general, epistemic planning extends automated planning with epistemic notions such as knowledge and belief. When the number of agents is one, it is called epistemic planning for single agent and this kind of epistemic planning consider the following problem: An agent's current state of knowledge, a desirable state of knowledge, how does it get from one to the other by executing a finite sequence of action? But in the case of epistemic planning for multi-agents, the current and desirable states of knowledge might also refer to the states of knowledge of other agents.

(t 2 )(R 1 • R 2 ) n (t 2 , 1, u 1 , 2, v 1 , ..., 1, u n , 2, v n ).

Epistemic Planning problem

In this chapter, we define a kind of simple epistemic planning problem where atomic actions are public announcements and then, we struggle to find some appropriate announcements by unification technique.

Simple epistemic planning problem with public announcement logic

We are going to solve some simple epistemic planning problems with unification technique. In this section, actions are public announcements. In this respect we need to know syntax and semantic of public announcement logic. Dynamic Epistemic Logic (DEL) considers information change and the information change is modeled by transforming Kripke models. In fact, in Dynamic Epistemic Logic an agent's information change during communication. In terms of Kripke models, that means that the accessibility relations of the agents have to change (and consequently the set of states of the model might change as well). Language of Dynamic Epistemic Logic is an extension of the language of Epistemic Logic by announcements. The first extension of the language of Epistemic Logic was called public announcement logic and was introduced by Plaza [START_REF] Plaza | Logics of public communications[END_REF](1989).

At the following, we consider syntax and semantic of public announcement logic based on [START_REF] Van Ditmarsch | Dynamic epistemic logic[END_REF].

Syntax of the public announcement logic

Let A be a finite set of agents and P be a countable set of atoms.

Definition 39

The language L k[] is inductively defined by

ϕ ::= p | ¬ϕ | (ϕ ∧ ψ) | a ϕ | [ψ]ϕ
Besides the usual propositional language, a ϕ is read as agent a knows that ϕ, and [ψ]ϕ is read as after announcement of ψ, it holds that ϕ. We will use the following abbreviation:

• ♦ a ϕ = ¬ a ¬ϕ, • 〈ψ〉ϕ = ¬[ψ]¬ϕ.
We will also write A, B , etc for formula.

Semantics of the logic of announcements

The public announcement of ψ restricts the epistemic state to all (factual) states where ϕ holds, including access between states.

Definition 40 An epistemic model is a triple M = (W, ∼,V ) where W = , for each a ∈ A, ∼ a is an equivalence relation on W and for each p ∈ P , V (p) ⊆ W .

Definition 41 Let an epistemic model M = 〈W, ∼, ν〉 for set of agents A and set of atoms P be given, the truth conditions for the formulas in L k[] are defined as follows:

• M , w p iff w ∈ ν(p) • M , w ¬ϕ iff M , w ϕ • M , w ϕ ∧ ψ iff M , w ϕ and M , w ψ • M , w a ϕ iff for all v such that w ∼ a v, M , v ϕ • M , w [ψ]ϕ iff M , w ψ implies M | ψ , w ϕ where M | ψ = 〈W , ∼ , ν 〉 is defined as follows (where [ψ] M is the set of all states v ∈ W such that M , v ψ W = [ψ] M ∼ a =∼ a ∩([ψ] M × [ψ] M ) ν p = ν p ∩ [ψ] M
As a result:

M , w ♦ a ϕ if there exists v such that w ∼ a v and M , w ϕ.

M , w 〈ψ〉ϕ iff M , w ψ and M | ψ , w ϕ.

Since a and ♦ a are interpreted by equivalence relation, the formulas like

• a (A ∨ ♦ a B ) ↔ a A ∨ ♦ a B and • a (A ∧ ♦ a B ) ↔ a A ∧ ♦ a B
are valid.

Axiomatisation of Public Announcement Logic

The axiomatisation PAL of Public Announcement Logic has been introduced in [START_REF] Van Ditmarsch | Dynamic epistemic logic[END_REF] and it consists of the following axioms and rules:

• all instantiations of propositional tautologies

• a (ϕ → ψ) → ( a ϕ → a ψ) (distribution of a over →) • a ϕ → ϕ (truth) • a ϕ → a a ϕ (positive introspection) • ¬ a ϕ → a ¬ a ϕ (negative introspection) • [ϕ]p ↔ (ϕ → p) (atomic permanence) • [ϕ]¬ψ ↔ (ϕ → ¬[ϕ]ψ) (announcement and negation) • [ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ) (announcement and conjunction) • [ϕ] a ψ ↔ (ϕ → a [ϕ]ψ) (announcement and knowledge) • [ϕ][ψ]χ ↔ [ϕ ∧ [ϕ]ψ]χ (announcement composition)
• From ϕ and ϕ → ψ, infer ψ (modus ponens)

• From ϕ, infer a ϕ (necessitation of a )

Now, we present a simple epistemic planning problem then we will solve it by unification technique. Bolander and Anderson have introduced different epistemic planning problem [START_REF] Bolander | Epistemic planning for single and multi-agent systems[END_REF]. Let us define our main problem. Our problem is a special kind of epistemic planning problem. Let us define our problem and see how it will be solved by unification technique as follows: • Question: is there a public announcement ψ such that each time A holds, ψ can be announced and, after announcing ψ, B becomes true.

In this chapter, we will also consider the other following problems:

• Input: formulas A, B in L k[] , an agent i ,

• Question: is there a public announcement ψ such that A → 〈ψ〉 i B is valid?

• Input: formulas A,C in L k[] , an agent j ,

• Question: is there a public announcement ψ such that A → 〈ψ〉♦ j C is valid?

•

Input: formulas A, B 1 , ..., B m in L k[] , agents i 1 , ..., i m ,
• Question: is there a public announcement ψ such that A → 〈ψ〉

( i 1 B 1 ∧ ... ∧ i m B m ) is valid? • Input: formulas A,C 1 , ...,C n in L k[] , agents j 1 , ..., j n ,
• Question: is there a public announcement ψ such that A → 〈ψ〉(♦

j 1 C 1 ∧ ... ∧ ♦ j n C n ) is valid? • Input: formulas A, B 1 , ..., B m ,C 1 , ...,C n in L k[] , agents i 1 , ..., i m , j 1 , ..., j n ,
• Question: is there a public announcement ψ such that A → 〈ψ〉

( i 1 B 1 ∧ ... ∧ i m B m ∧ ♦ j 1 C 1 ∧ ... ∧ ♦ j n C n ) is valid?
We propose to use unification tools for solving such problems. How? For instance, for a given input (A, B, i ) of the first problem, we will consider the PAL-formula P = A → 〈x〉 i B . Here we assume A, B do not contain the variable x. In fact, we suppose A, B only contain parameters. Then, we will use the reduction axiom of PAL to obtain a PAL-formula P 1 which has the same unifiers as P and for which it seems easier to compute a most general unifier. In this respect, we will also use the fact that the modalities 1 , 2 , ... are interpreted in models by equivalence relations and, consequently, the following inference rules are admissible:

ϕ → i ψ ♦ i ϕ → ψ ♦ i ϕ → ψ ϕ → i ψ
Then, considering P 1 , we will find a necessary and sufficient condition for the unifiability of P 1 and then of P . Finally, assuming this necessary and sufficient condition holds, we will construct a most general unifier of P 1 and then of P . Let the agent 1 knows that p is true. Is there any announcement ψ such that after announcing ψ, the agent 2 knows p? Our answer to this question is positive.

Since we can announce agent 1 knows p or 1 p. In this case, after announcing 1 p then the agent 2 knows that p is true that is to say 2 p becomes true.

To solve such problems by unification technique, we consider the associated formula A → 〈x〉B . Hence, we apply the following steps to solve the associated formula A → 〈x〉B .

1. Use axiomatisation of public announcement logics in order to simplify the formula A → 〈x〉B .

2. Determine a necessary and sufficient condition in order to be able to unify to the formula A → 〈x〉B .

3. When condition of item 2 holds, compute or find one unifier or solution of the formula A → 〈x〉B .

4. If there exists a unifier, can we find a most general unifier?

Simple epistemic planning problem A → 〈x〉B

In this part, we consider all possible cases as A → 〈x〉B and we have to find an appropriate public announcement ψ such that the formula A → 〈ψ〉B is valid.

Lemma 92 Let P = A → 〈x〉B where B is Boolean formula. Then, A → B iff P possesses a unifier.

Proof 136

We have to do the steps 1 to 4.

Use axiomatisation of public announcement to simplify P .

• A → 〈x〉B 

• A → x ∧ [x]B • (A → x) ∧ (A → [x]B ) • (A → x) ∧ (A → (x → B )) • (A → x) ∧ (A → B ) 7 
(x) = (P 1 ∧ x) ∨ (¬P 1 ∧ σ(x)). Since, σ(x) = B hence we have ε(x) = (P 1 ∧ x) ∨ (¬P 1 ∧ B ) or equivalently ε(x) = (P 1 ∨ B ) ∧ (x ∨ ¬P 1 ) ∧ (x ∨ B ).
In order to check, ε(x) is a most general unifier of P 1 , we have to prove first, ε is a unifier of P 1 and second ε is a most general of P 1 . First, let us prove ε is a unifier of P 1 . Hence, we have to prove A → ε(x). Since,

1. ¬(A → x) → ¬P 1 then, 2. (A ∧ ¬x) ∨ x → (¬P 1 ∨ x). Hence, 3. (A ∨ x) → (¬P 1 ∨ x) thus, 4. A → (¬P 1 ∨ x).
Since by our assumption, A → B then, 5. A → (P 1 ∨ B ) ∧ (x ∨ B ). By steps (4) and (5) we have,

6. A → (¬P 1 ∨ x) ∧ (P 1 ∨ B ) ∧ (x ∨ B ). Therefore 7. A → ε(x).
Therefore, ε is a unifier of P 1 . Second, let σ be a unifier of P 1 . We have to prove ε σ . Since σ is a unifier of P 1 then σ (P 1 ). Hence, σ (ε(x)) = (σ (P 1 ) ∧ σ (x)) ∨ (¬σ (P 1 ) ∧ B ) is logically equivalent to σ (x). Thus, ε σ . Consequently, ε is a most general unifier of P 1 . Since P 1 and P are equivalent and P and P 1 have the same unifiers then, ε is a most general unifier of P .

Lemma 93 Let P = A → 〈x〉 B where B is Boolean formula. Then, P possesses a unifier iff A → B .

Proof 137

We have to do the steps 1 -4 described in the proof of Lemma 92.

1. Use axiomatisation of public announcement to simplify P . by the reduction axioms of PAL, P is logically equivalent to P = (A → x) ∧ (A → (x → B )).Since is interpreted by an equivalence relation, then P has the same unifiers as P = (A → x) ∧ (♦A → (x → B )) which has itself the same unifiers as We remind that A → ♦A.

P 1 = (A → x) ∧ (x → (♦A → B )). Hence, let P 1 = (A → x) ∧ (x → (♦A → B )).

Now, let us prove

Suppose

A → B . Since A → B , it is clear that σ(x) = B is a unifier of P 1 .
4. Let us find a most general unifier of P 1 .

Notice that in P 1 , all occurrences of x are at the level 0. Consider Löwenheim's formula ε

(x) = (P 1 ∧ x) ∨ (¬P 1 ∧ σ(x)). Since, σ(x) = B hence we have ε(x) = (P 1 ∧ x) ∨ (¬P 1 ∧ B ) or equivalently ε(x) = (P 1 ∨ B ) ∧ (x ∨ ¬P 1 ) ∧ (x ∨ B ).
In order to check, ε(x) is a most general unifier of P 1 , we have to prove first, ε is a unifier of P 1 and second ε is a most general unifier of P 1 . First, let us prove ε is a unifier of P 1 . Hence, we have to prove

1. A → ε(x) and 2. ε(x) → (♦A → B ).

We have to prove

A → ε(x). Since, (a) ¬(A → x) → ¬P 1 then, (b) (A ∧ ¬x) ∨ x → (¬P 1 ∨ x). Hence, (c) (A ∨ x) → (¬P 1 ∨ x) thus, (d) A → (¬P 1 ∨ x).
Since by our assumption, A → B then, (e) A → (P 1 ∨ B ) ∧ (x ∨ B ). By steps (c) and (e) we have,

(f ) A → (¬P 1 ∨ x) ∧ (P 1 ∨ B ) ∧ (x ∨ B ). Therefore (g) A → ε(x). 2. To prove ε(x) → (♦A → B ) we have to prove (¬P 1 ∧ B ) → (♦A → B ) and (P 1 ∧ x) → (♦A → B ). It is clear that (¬P 1 ∧B ) → (♦A → B ). Since P 1 → (x → (♦A → B )) then, (P 1 ∧ x) → (♦A → B ).
Therefore, ε is a unifier of P 

= (A → x) ∧ (x → (♦ 1 A → B 1 )) ∧ ... ∧ (x → (♦ n A → B n ))
. By an argument similar to the argument used in the proof of Lemma 93, we know that P and P 1 have the same unifiers.

As well, one can show that P

1 is unifiable iff A → (B 1 ∧ ... ∧ B n ). 3. Suppose A → (B 1 ∧ ... ∧ B n ). Since A → (B 1 ∧ ... ∧ B n ), it is clear that σ(x) = A is a unifier of P 1 .
4. Now, let us find a most general unifier of P 1 .

Notice that all occurrences of x in P 1 are at the level 0. Consider Löwenheim's formula ε

(x) = (P 1 ∧ x) ∨ (¬P 1 ∧ σ(x)). Since, σ(x) = A hence we have ε(x) = (P 1 ∧ x) ∨ (¬P 1 ∧ A).
In order to check, ε(x) is a most general unifier of P 1 , we have to prove first, ε is a unifier of P 1 and second ε is a most general unifier of P 1 . First, let us prove ε is a unifier of P 1 . Hence, we have to prove

1. A → ε(x) and 2. ε(x) → ((♦ 1 A → B 1 ) ∧ ... ∧ (♦ n A → B n )).
1. to prove A → ε(x), we use similar method as in the proof of Lemma 93.

126CHAPTER 7. UNIFICATION IN SIMPLE EPISTEMIC PLANNING PROBLEM 2. To prove ε(x) → (♦ i A → B i ) for 1 i n, we have to prove (¬P 1 ∧ A) → (♦ i A → B i ) and (P 1 ∧ x) → (♦ i A → B i ) for 1 i n. Since, A → (B 1 ∧ ... ∧ B n ) then, (¬P 1 ∧ A) → (♦ i A → B i ) for 1 i n. Since, P 1 → (x → (♦ i A → B i )) then, (P 1 ∧ x) → (♦ i A → B i ) for all 1 i n. Thus, ε(x) → (♦ 1 A → B 1 ) ∧ ... ∧ (♦ n A → B n ).
Therefore, ε is a unifier of P 1 . Second, let σ be a unifier of P 1 . Since σ is a unifier of P 1 then σ (P 1 ). Hence, σ (ε(x)) = (σ (P 1 ) ∧ σ (x)) ∨ (¬σ (P 1 ) ∧ A) is logically equivalent to σ (x). We remind that A contains only parameters. Thus, ε σ . Consequently, ε is a most general unifier of P 1 . Since P 1 and P are equivalent and P and P 1 have the same unifiers then, ε is a most general unifier of P .

Lemma 95 Let P = A → 〈x〉♦C where C is Boolean formula. Then, A → ♦C iff P possesses a unifier.

Proof 139

We have to do the steps 1 -4 as before.

1. Use axiomatisation of public announcement to simplify P .

• (A → 〈x〉♦C ) • (A → x ∧ [x]¬ ¬C ) • (A → x) ∧ (A → [x]¬ ¬C ) • (A → x) ∧ (A → (x → ¬[x] ¬C )) • (A → x) ∧ (A → ¬[x] ¬C ) • (A → x) ∧ (A → ¬(x → [x]¬C )) • (A → x) ∧ (A → ¬ [x]¬C ) • (A → x) ∧ (A → ¬ (x → ¬C )) • (A → x) ∧ (A → ♦(x ∧C )) .
Hence, let P 1 = (A → x)∧(A → ♦(x ∧C )). P and P 1 are logically equivalent.

More importantly, they have the same unifiers.

Now, let us show that P

1 is unifiable iff A → ♦C . Suppose A → ♦C .
then, obviously σ(x) = is a unifier of P 1 . Reciprocally if some substitution τ are unifiers of P 1 then, A → ♦(τ(x) ∧C ). Thus, A → ♦C .

Suppose

A → ♦C . Since, A → ♦C it is clear that σ(x) = is a unifier of P 1 .
4. Now, let us find a most general unifier of P 1 .

Notice that, contrary to the cases of Lemmas 92, 93 and 94, in P 1 there is one occurrence of x at the level 0 and one occurrence of x in the scope of ♦. So, in Löwenheim's formula we will replace P 1 by P 1 as in modal logic S5 in Chapter 4. Consider Löwenheim's formula ε(x) = ( P 1 ∧x)∨(¬ P 1 ∧σ(x)). Since, σ(x) = hence we have ε(x) = ( P 1 ∧ x) ∨ (¬ P 1 ∧ ) or equivalently ε(x) = ¬ P 1 ∨ x which is equivalent to ε(x) = ( P 1 → x). In order to check, ε(x) is a most general unifier of P 1 , we have to prove first, ε is a unifier of P 1 and second ε is a most general unifier of P 1 . First, let us prove ε is a unifier of P 1 . Hence, we have to prove 1. A → ε(x) and 2. A → ♦(ε(x) ∧C ).

We have to prove

A → ε(x). Since, P 1 → (A → x) then, ( P 1 ∧ A) → x hence, A → ( P 1 → x).

We have to prove that

A → ♦(ε(x)∧C ). Since ε(x) = P 1 → x, it is equiv- alent to prove that A ∧ (C → P 1 ) → ♦(x ∧ C ).
we remind that and ♦ are interpreted in models by equivalence relations. Since,

• A ∧ (C → P 1 ) → A ∧ (♦C → P 1 ) and by our assumption,

• A → ♦C then, • A ∧ (C → P 1 ) → P 1 ∧ A. Since, • P 1 → (A → ♦(x ∧C )) hence, • P 1 ∧ A → ♦(x ∧C )). Since,
• A ∧ (C → P 1 ) → P ∧ A, and

128CHAPTER 7. UNIFICATION IN SIMPLE EPISTEMIC PLANNING PROBLEM • P 1 ∧ A → ♦(x ∧C )) thus, • A ∧ (C → P 1 ) → ♦(x ∧C ).
Therefore, ε is a unifier of P 1 .

Second, let σ be a unifier of P 1 . Since σ is a unifier of P 1 then σ (P 1 ). Hence, σ (ε(x)) = σ (x) ∨ ¬ σ (P 1 ) is logically equivalent to σ (x). Thus, ε σ . Consequently, ε is a most general unifier of P 1 . Since P 1 and P are equivalent and P and P 1 have the same unifiers then, ε is a most general unifier of P .

Lemma 96 Let

P = A → 〈x〉(♦ 1 C 1 ∧...∧♦ n C n ) where C i is a Boolean formula for all i = 1, ..., n. Then A → (♦ 1 C 1 ∧ ... ∧ ♦ n C n ) iff P possesses a unifier.
Proof 140 We have to do the steps 1 -4 as for the proof of the previous Lemma.

Simplification of P in this lemma is similar to simplification of P In Lemma

Hence, let P

1 = (A → x) ∧ (A → ♦ 1 (x ∧ C 1 )) ∧ ... ∧ (A → ♦ n (x ∧ C n ))
. By the reduction axioms of PAL, P and P 1 are logically equivalent.

Obviously, as well, P 1 is unifiable iff

A → (♦ 1 C 1 ∧ ... ∧ ♦ n C n ).

Moreover, if we assume

A → ♦ 1 C 1 ∧ ... ∧ ♦ n C n it is clear that σ(x) = is a unifier of P 1 .
4. Now, let us find a most general unifier of P 1 .

Notice that in P 1 , there is one occurrence of x at the level 0 and for all i = 1, ..., n, there is one occurrence of x in the scope of ♦ i . For this reason, we adapt Löwenheim's formula to the context of P 1 . Consider Löwenheim's formula ε

(x) = ( 1 P 1 ∧ ... ∧ n P 1 ∧ x) ∨ (¬( 1 P 1 ∧ ... ∧ n P 1 ) ∧ σ(x)). Since, σ(x) = hence ε(x) is logi- cally equivalent to 1 P 1 ∧...∧ n P 1 → x.
In order to check, ε(x) is a most general unifier of P 1 , we have to prove first, ε is a unifier of P 1 and second ε is a most general unifier of P 1 . First, let us prove ε is a unifier of P 1 . Hence, we have to prove

1. A → ε(x) and 2. A → ♦ i (ε(x) ∧C i ) for 1 i n.
1. The proof of this part is similar to the proof of Lemma 95.

We have to prove that

A → ♦ i (ε(x) ∧ C i ) for 1 i n or equivalently A ∧ i (C i → 1 P 1 ∧ ... ∧ n P 1 ) → ♦ i (x ∧C i ). Since, • A ∧ i (C i → 1 P 1 ∧ ... ∧ n P 1 ) → A ∧ (♦ i C i → ♦ i i P 1 )
and by assumption

• A → ♦ i C i then, • A ∧ i (C i → 1 P 1 ∧ ... ∧ n P 1 ) → A ∧ i P 1 . Since, • i P 1 → ((A → ♦ 1 (x∧C 1 ))∧...∧(A → ♦ n (x∧C n ))) then for 1 i n, • i P 1 ∧ A → ♦ i (x ∧C i ). Since, • A ∧ i (C i → 1 P 1 ∧ ... ∧ n P 1 ) → A ∧ i P 1 and • i P 1 ∧ A → ♦ i (x ∧C i ) thus, • A ∧ i (C i → 1 P 1 ∧ ... ∧ n P 1 ) → ♦ i (x ∧C i ).
Therefore, ε is a unifier of P 1 .

Second, let σ be a unifier of P 1 . Since σ is a unifier of P 1 then 1 σ (P 1 ), ..., n σ (P 1 ). Hence, σ (ε(x)) = 1 σ (P 1 ) ∧ ... ∧ 1 σ (P 1 ) → σ (x) is logically equivalent to σ (x). Thus, ε σ . Consequently, ε is a most general unifier of P 1 . Since P 1 and P are equivalent and P and P 1 have the same unifiers then, ε is a most general unifier of P . Notice that there are two occurrences of x in P 1 at level 0 and n occurrences in the scopes of ♦ l 1 , ..., ♦ l n . Consider Löwenheim's formula ε(x) = ( l 1 P 1 ∧ ... ∧ l n P 1 ∧

x)∨(¬( l 1 P 1 ∧...∧ l n P 1 )∧σ(x)). Since, σ(x) = B hence we have ε(x) = ( l 1 P 1 ∧ ... ∧ l n P 1 ∧ x) ∨ (¬( 1. To prove A → ε(x) we consider the following steps: Since,

• ¬(A → x) → ¬( l 1 P 1 ∧ ... ∧ l n P 1 ) then,

• A → ¬( l 1 P 1 ∧ ... ∧ l n P 1 ) ∨ x. Since,

• A → B then,

• A → (( l 1 P 1 ∧ ... ∧ l n P 1 ) ∨ B ) ∧ (x ∨ B ). Since,

• A → ¬( l 1 P 1 ∧ ... ∧ l n P 1 ) ∨ x then,

• A → (( l 1 P 1 ∧...∧ l n P 1 )∨B )∧(x ∨B )∧(¬( l 1 P 1 ∧...∧ l n P 1 )∨x). Thus,

• A → ε(x). 3. We have to prove that (A → ♦ l 1 (ε(x) ∧ C 1 ) ∧ ... ∧ (A → ♦ l n (ε(x) ∧ C n )). In this respect, we will only prove, A → ♦ l 1 (ε(x) ∧ C 1 ). Let us prove A → ♦ l 1 ( l 1 P 1 ∧ ... ∧ l n P 1 ∧ x ∧ C 1 ) ∨ ♦ l 1 (¬( l 1 P 1 ∧ ... ∧ l n P 1 ) ∧ B ∧ C 1 ) or equivalently A ∧ l 1 (B ∧ C 1 → ( l 1 P 1 ∧ ... ∧ l n P 1 )) → ♦ l 1 ( l 1 P 1 ∧ ... ∧ l n P 1 ∧ x ∧C 1 ). Since, A → ♦ l 1 (B ∧C 1 ), then

• A ∧ l 1 (B ∧C 1 → ( l 1 P 1 ∧ ... ∧ l n P 1 )) → l 1 P 1 and

• A ∧ l 1 (B ∧C 1 → ( l 1 P 1 ∧ ... ∧ l n P 1 )) → ♦ l 1 (x ∧C 1 ). Then,

• A∧ l 1 (B ∧C 1 → ( l 1 P 1 ∧...∧ l n P 1 )) → ♦ l 1 (x ∧C 1 )∧ l 1 P 1 . Hence,

• A ∧ l 1 (B ∧C 1 → ( l 1 P 1 ∧ ... ∧ l n P 1 )) → ♦ l 1 (x ∧C 1 ∧ P 1 ). Since,

• P 1 ∧ x → B hence,

• A∧ l 1 (B ∧C 1 → ( l 1 P 1 ∧...∧ l n P 1 )) → ♦ l 1 (x ∧B ∧C 1 ∧P 1 ). Since,

• A ∧ l 1 (B ∧ C 1 → ( l 1 P 1 ∧ ... ∧ l n P 1 )) → l 1 (B ∧ C 1 → ( l 1 P 1 ∧ ... ∧ l n P 1 )) and • A ∧ l 1 (B ∧C 1 → ( l 1 P 1 ∧...∧ l n P 1 )) → ♦ l 1 (x ∧B ∧C 1 ∧P 1 ) then,

• A ∧ l 1 (B ∧ C 1 → ( l 1 P 1 ∧ ... ∧ l n P 1 )) → ♦ l 1 ( l 1 P 1 ∧ ... ∧ l n P 1 ∧

x ∧C 1 ).

Therefore, ε is a unifier of P 1 .

Second, let σ be a unifier of P 1 . Since σ is a unifier of P 1 then l 1 σ (P 1 ), ..., l n σ (P 1 ). Hence, σ (ε(x)) = ( l 1 σ (P 1 ) ∧ ... ∧ l n σ (P 1 ) ∧ σ (x)) ∨ (¬( l 1 σ (P 1 ) ∧ ... ∧ l n σ (P 1 )) ∧ B ) is logically equivalent to σ (x). Thus, ε σ . Consequently, ε is a most general unifier of P 1 . Since P 1 and P have the same unifiers then, ε is a most general unifier of P too.

The last Lemma contains simple epistemic planning problem of the form A → 〈x〉 ( k 1 B 1 ∧ ... ∧ k m B m ) ∧ (♦ l 1 C 1 ∧ ... ∧ ♦ l n C n ) where B 1 , ..., B m and C j 1, ...,C n are Boolean formulas. The solutions of these problem are formulas ψ such that if A holds then ψ can be announced and after ψ is announced, agent k i knows B i hold (1 i m) and agent l j considers it is possible that C j holds (1 j n). 

A → B ε(x) = (P 1 ∧ x) ∨ (¬P 1 ∧ σ(x)) A → 〈x〉 B A → B ε(x) = (P 1 ∧ x) ∨ (¬P 1 ∧ σ(x)) A → 〈x〉( 1 B 1 ∧ ... ∧ n B n ) A → (B 1 ∧ ... ∧ B n ) B 1 ∧ ... ∧ B n ε(x) = (P 1 ∧ x) ∨ (¬P 1 ∧ σ(x)) A → 〈x〉♦C A → ♦C ε(x) = ( P 1 ∧ x) ∨ (¬ P 1 ∧ σ(x)) A → 〈x〉(♦ 1 C 1 ∧ ... ∧ ♦ n C n ) A → (♦ 1 C 1 ∧ ... ∧ ♦ n C n ) ε(x) = ( n i =1 i P 1 ∧ x) ∨ (¬ n i =1 i P 1 ∧ σ(x)) A → 〈x〉( m i =1 k i B i ∧ n j =1 ♦ l j C j ) A → B ∧ n j =1 ♦ l j (C j ∧ B ) B ε(x) = ( n j =1 l j P 1 ∧ x) ∨ (¬( n j =1 l j P 1 ) ∧ σ(x))

Simple epistemic planning problem A → 〈 x〉B

In this section, the solution of the simple epistemic planning problems that we will consider should be of the form ψ. 3. Now, let us find a unifier of P 1 . Since A → B , it is clear that σ(x) = is a unifier of P 1 .

4. Now, let us find a most general unifier of P 1 .

Consider Löwenheim's formula ε(x) = ( P 1 ∧ x)∨(¬ P 1 ∧σ(x)). Since, σ(x) = hence we have ε(x) = ( P 1 ∧ x) ∨ (¬ P 1 ∧ ) or equivalently ε(x) = ( P 1 → x). In order to check, ε(x) is a most general unifier of P 1 , we have to prove first, ε is a unifier of P 1 and second ε is a most general general unifier of P 1 . First, let us prove ε is a unifier of P 1 . Hence, we have to prove ♦A → ε(x). Since, 1. P 1 → (♦A → x) then, 2.

P 1 ∧ ♦A → x. Since, 3.

x → x hence, 4.

P 1 ∧ ♦A → x. Then, 5. ♦A → ( P 1 → x).
Therefore, ε is a unifier of P 1 . Second, let σ be a unifier of P 1 . Since σ is a unifier of P 1 then σ (P 1 ). Hence, σ (ε(x)) = ( σ (P 1 ) → σ (x)) is logically equivalent to σ (x). Thus, ε σ . Consequently, ε is a most general unifier of P 1 . Since P 1 and P are equivalent and P and P 1 have the same unifiers then, ε is a most general unifier of P . Consider Löwenheim's formula ε(x) = ( P 1 ∧ x)∨(¬ P 1 ∧σ(x)). Since, σ(x) = hence we have ε(x) = ( P 1 → x). In order to check, ε(x) is a most general unifier of P 1 , we have to prove first, ε is a unifier of P 1 and second ε is a most general unifier of P 1 . First, let us prove ε is a unifier of P 1 . Hence, we have to prove ♦A → ε(x). Since, Since ♦A → B , we obtain that ε is a unifier of P 1 .

Second, let σ be a unifier of P 1 . Since σ is a unifier of P 1 then σ (P 1 ). Hence, σ (ε(x)) = ( σ (P 1 ) → σ (x)) is logically equivalent to σ (x). Thus, ε σ . Consequently, ε is a most general unifier of P 1 . Since P 1 and P are equivalent and P and P 1 have the same unifiers then, ε is a most general unifier of P . 2. Assume, ♦ 1 A → (♦ 2 A → B ). Hence, σ(x) = ♦ 1 A is a unifier of P 1 . Reciprocally, it is obvious that if τ is a unifier of P 1 then ♦ 1 A → (♦ 2 A → B ).

3. Let us find a most general unifier of P 1 . We claim Löwenheim's formula ε(x) = ( 1 P 1 ∧ x) ∨ (¬ 1 P 1 ∧ σ(x)) is a most genearl unifier of P 1 .

(a) Let us prove ε is a unifier of P 1 . We need to make sure that ε is a unifier of P 1 hence, we have to prove ♦ 1 A → 1 ε(x) and

1 ε(x) → (♦ 2 A → B ).
To prove first part: Since i.

1 P 1 → (♦ 1 A → 1 x) ii.

1 P 1 ∧ ♦ 1 A → 1 x
iii.

1 x → x iv.

1 P 1 ∧ ♦ 1 A → x v. ♦ 1 A → ( 1 P 1 → x) vi. ♦ 1 A → 1 ( 1 P 1 → x) vii. ♦ 1 A → 1 ( 1 P 1 ∧ x) ∨ (¬ 1 P 1 ∧ ♦ 1 A) .
To prove second part: Let us prove ( 1 P 1 ∧ 1 x)∨(¬ 1 P 1 ∧♦ 1 A) → (♦ 2 A → B ). Since, i. 

( 1 P 1 ∧ 1 x) ∨ (¬ 1 P 1 ∧ ♦ 1 A) → (♦ 2 A → B ).
Therefore, ε is a unifier of P 1 .

(b) Second, let σ be a unifier of P 1 . Since σ is a unifier of P 1 then 1 σ (P 1 ). Hence, σ (ε(x)) = ( 1 σ (P 1 )∧σ (x))∨(¬ 1 σ (P 1 )∧♦ 1 A) is logically equivalent to σ (x). Thus, ε σ . Consequently, ε is a most general unifier of P 1 . Since P and P 1 have the same unifiers then, ε is a most general unifier of P . Proof 145 Simplify P by axiomatisation of public announcement logic. We proceed as in Lemma 100. Hence, let P

1 = (♦ 1 A → 1 x) ∧ ( 1 x → (♦ 2 A → B 2 )) ∧ ... ∧ ( 1 x → (♦ n A → B n )). Suppose ♦ 1 A → (♦ 2 A → B 2 ) ∧ ... ∧ (♦ n A → B n ). Since ♦ 1 A → (♦ 2 A → B 2 ) ∧ ... ∧ (♦ n A → B n ), it is clear that σ(x) = ♦ 1
A is a unifier of P 1 . Reciprocally, when P 1 has a unifier, then ♦ 1 A → (♦ 2 A → B 2 ) ∧ ... ∧ (♦ n A → B n ). Let us find a most general unifier of P 1 . We claim that Löwenheim's formula ε(x) = ( 1 P 1 ∧ x) ∨ (¬ 1 P 1 ∧ σ(x)) is a most general unifier. Since, σ(x) = ♦ 1 A hence, ε(x) = ( 1 P 1 ∧ x) ∨ (¬ 1 P 1 ∧ ♦ 1 A).

• Let us prove ε is a unifier of P 1 . We need to make sure that ε is a unifier of P 1 hence, we have to prove ♦ 1 A → 1 ε(x) and

1 ε(x) → (♦ 2 A → B 2 ) ∧ ... ∧ (♦ n A → B n ).
Notice that 1 ε(x) is logically equivalent to ( 1 P 1 ∧ 1 x)∨(¬ 1 P 1 ∧♦ 1 A). To prove first part: Since 1.

1 P 1 → (♦ 1 A → 1 x) then, 2. ♦ 1 A → ( 1 P 1 → 1 x). Therefore,

3. ♦ 1 A → ( 1 P 1 ∧ 1 x) ∨ (¬ 1 P 1 ∧ ♦ 1 A)
To prove second part: Let us prove In chapter 7, we have considered simple epistemic planning problem with associated formula A → 〈x〉B , A → 〈 x〉B , A → 〈♦x〉B and found necessary and sufficient condition for existence of unifier when announcements are public announcements. Here also there are some open problems concerning what is necessary and sufficient condition for existence of unifier when announcement ψ is a group announcements [START_REF] Ågotnes | Group announcement logic[END_REF], semi-private announcement [START_REF] Van | Ditmarsch. Descriptions of Game Actions[END_REF], complete private announcement [START_REF] Baltag | Epistemic Logic and Information Update[END_REF][17] etc. For example, one may ask, given epistemic variable-free formulas A, B and C whether there exists a semi-private announcement ψ to agent 1 such that the following formula is valid in the logic of semi-private announcement [START_REF] Baltag | Epistemic Logic and Information Update[END_REF]: A → 〈 1 2

( 1 P 1 ∧ 1 x) ∨ (¬ 1 P 1 ∧ ♦ 1 A) → (♦ 2 A → B 2 ) ∧ ... ∧ (♦ n A → B n ) .
(1, ψ)〉( j B ∧ ♦ k C ).

In natural language, such planning problem consists in computing a formula ψ in the language of semi-privately announced to agent 1 and, after announcement, agent j knows B holds and agent k considers that C is possible. Can we adapt the approach developed in Chapter 7 when announcements are lies [START_REF] Ågotnes | True Lies[END_REF] 
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Proposition 9

 9 )+1 : a contradiction with Lemma 14. Unification type is nullary in modal logic K . Proof 32 By Lemma 18.

2 .

 2 Since, (p → p) and p → [p]p then, (p → p) ∧ (p → [p]p). Therefore, σ p is a K D-unifier of ϕ.

Example 10

 10 Consider the formula A = ¬x ∨ y. The substitution σ such that σ(x) = x and σ(y) = ♦x is one of the S5-unifiers of A. Let λ be the substitution defined by λ(x) = ( A ∧ x) ∨ (¬ A ∧ σ(x)) and λ(y) = ( A ∧ y) ∨ (¬ A ∧ σ(y)). Hence we have λ(x) = ( A ∧ x) ∨ (¬ A ∧ x) = x and λ(y) = ( A ∧ y) ∨ (¬ A ∧ ♦x) = y ∨ ♦x. By Lemmas 29, this means that λ is a most general unifier of A.
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1

 1 be a one-to-one correspondence between S 1 and T 1 . Let S 2 = (S \ S 0 ) \ S 1 . Let f 2 be the function from S 2 to T such that for all α ∈ S 2 , f 2 (α) = f 0 (h([α])). Let f be the function from S to T defined by f | S 0 = f 0 , f | S 1 = f 1 and f | S 2 = f 2 . By construction of f , it is easy to show that f is surjective and for all α, β ∈ S, if f

  be the class of all deterministic bounded frame. Let L be the logic characterized by C b d et . As is well-known, L = Al t 1 + ⊥. For all n 1, an n-tuple of bits (denoted α, β, etc) is a function from {1, ..., n} to {0, 1}. For all n 1, let BIT n be the set of all n-tuples of bits. For all α ∈ BIT n , we will write α = (α 1 , ..., α n ). Obviously, frames in C b d et are disjoint unions of the following structures where circles represent irreflexive possible worlds. . . . . . . . . .

Proposition 15 C

 15 b d et is locally tabular. That is to say for all n 1, the equivalence relation ≡ n possesses finitely many equivalence classes. Proof 61 Refer to [18], Proposition 2.29. Let G C b d et be the class consisting of all frames of the form (W, R) where W = {s 0 , s 1 } and s 0 = s 1 and R = {(s 0 , s 1 )}. Notice that G C b d et ⊆ C b d et . The next result shows that G C b d et and C b d et determine the same modal logic: Al t 1 + ⊥. Its proof is standard. Proposition 16 For all ϕ ∈ FOR n , ϕ ∈ Al t 1 + ⊥ iff ϕ is n-valid in all frames of C b d et iff φ is valid in all frames of G C b d et .

Proof 65

 65 Let ∥ A ∥ =∥ B ∥. Hence either ∥ A ∥<∥ B ∥ or ∥ B ∥<∥ A ∥. Assume ∥ A ∥= and ∥ B ∥ = . By our assumption we have (α, ) k σ(for n ((β, B ))). Hence, (α, ) k ♦ because B ∉ and this is contradiction. Let ∥ B ∥<∥ A ∥. In this case, we can do similar to the case ∥ A ∥<∥ B ∥. Therefore ∥ A ∥=∥ B ∥. Proposition 21 Let (α, A), (β, B ) ∈ MOD n . The following conditions are equivalent: 1. (α, A) = (β, B ),

  our assumption, A = B and B = . Let β ∈ BIT n such that B = {β }. Hence α = β and (α , ) n x

1 1

 1 β n n ) where B = {β }. It follows that A = where B = and A = where B = . We consider two following cases: • Let A = and B = . Hence A = B . It is enough to show α = β. Since (α, A) n x β ∧ ... ∧ x β n n then, (α, A) n x β i

  α = β . Since α = β and α = β therefore, (α, A) = (β, B ). Proposition 22 Let (k, σ) ∈ SUB n . Let (α, A) ∈ MOD k . There exists (β, B ) ∈ MOD n such that (α, A) k σ(for n ((β, B ))).

Proposition 24 Let k 1 .

 1 Let f be a (k, n)-morphism. Let (β, B ) ∈ MOD k and (γ,C ) ∈ MOD n . If the following conditions hold then f ((β, B )) = (γ,C ): • for all i ∈ {1, ..., n}, f ((β, B )) n x γ i i , • if B = then C = and there exists β ∈ BIT k and γ ∈ BIT n such that B = {β }, C = {γ } and f ((β , )) = (γ , ), • if C = then B = and there exists β ∈ BIT k and γ ∈ BIT n such that B = {β }, C = {γ } and f ((β , )) = (γ , ). Proof 69 Suppose for all i ∈ {1, ..., n}, f ((β, B )) n x γ i i . Moreover, suppose if B = then C = and there exists β ∈ BIT k and γ ∈ BIT n such that B = {β }, C = {γ } and f ((β , )) = (γ , ) and if C = then B = and there exists β ∈ BIT k and γ ∈ BIT n such that B = {β }, C = {γ } and f ((β , )) = (γ , ). For the sake of the contradiction, suppose f ((β, B )) = (γ,C ). Let (δ, D) ∈ MOD n be such that f ((β, B )) = (δ, D). Consequently, (γ,C ) = (δ, D). Since for all i ∈ {1, ..., n}, f ((β, B )) n x γ i i , therefore for all i ∈ {1, ..., n}, (δ, D) n x γ i i . Since for all i ∈ {1, ..., n}, (δ, D) n x δ i i therefore γ = δ. Since f ((β, B )) = (γ,C ) and f ((β, B )) = (δ, D), therefore (γ,C ) = (δ, D). Since γ = δ, therefore C = D. It follows that either C = or D = . We consider the following two cases: • C = . Hence B = and there exists β ∈ BIT k and γ ∈ BIT n such that B = {β }, C = {γ } and f ((β , )) = (γ , ). Since f is a (k, n)-morphism and f ((β, B )) = (δ, D), therefore D = and f ((β , )) = (δ , ) for some δ ∈ BIT n such that D = {δ }. Since γ = δ and f ((β , )) = (δ , ), therefore (γ,C ) = (δ, D): a contradiction. • D = . Since f is a (k, n)-morphism and f ((β, B )) = (δ, D), therefore B = and f ((β , )) = (δ , ) for some β ∈ BIT k such that B = {β } and some δ ∈ BIT n such that D = {δ }. Thus, C = and f ((β , )) = (γ , ) for some γ ∈ BIT n such that C = {γ }. Since γ = δ and f ((β , )) = (δ , ), therefore (γ,C ) = (δ, D): a contradiction.

2 ⇒ 1 )

 21 and (β, B ) k for k ((α, A)). Such (α, A) exists by the definition of ν. Thus, by proposition 21, (β, B ) = (α, A). Since f ((α, A)) n x i , therefore, f ((β, B )) n x i . (Suppose f ((β, B )) n x i . Consequently, by the definition of ν, (β, B ) k for k ((β, B )) → ν(x i ). Since by Proposition 21 , (β, B ) k for k ((β, B )), therefore (β, B ) k ν(x i ). Lemma 45 Let (β, B ) ∈ MOD k and (γ,C ) ∈ MOD n . The following conditions are equivalent:

  Consequently, by the definition of τ, (β, B ) k ν(for n ( f ((β, B )))) → ν(τ(x i )). Since by Lemma 45, (β, B ) k ν(for n ( f ((β, B )))), therefore, (β, B ) k ν(τ(x i )). Since σ(ϕ), therefore by Proposition 19, for all (α, A) ∈ MOD k , (α, A) k σ(ϕ). Thus by Lemma 43, for all (β, B ) ∈ MOD n , (β, B ) n τ(ϕ). Consequently, by Proposition 19, τ(ϕ). Hence, (n, τ) is a n-unifier of ϕ. Moreover, by Lemma 46, (n, τ) n (k, σ). Since n π, therefore ϕ is n -π-reasonable. This is the end of the proof of Proposition 25. The next result follows from Propositions 15, 17, 19 and 25.

4 .

 4 In order to define the function f used in Section 5.4, we need define the function f 0 and f 1 such that f 0 is a function from MOD = k to MOD = n and f 1 is a function from MOD = k to MOD = n . Firstly, we define the function f 0 and then we define the function f 1 based on f 0 . Let U = {g ((α, )) : (α, ) ∈ MOD = k }. By Proposition 20, U ⊆ MOD = n . Let h be a function from U to MOD =

Proof 84 6 . 4 6 . 5 6 . 6

 84646566 By Lemmas 48 and 50. Proposition 33 f is surjective. Proof 85 By Lemmas 47 and 49. In this Chapter, we have shown that Al t 1 + ⊥ is unitary (Proposition 27). The adaptation of this proof to K + ⊥ (showing K + ⊥) will be presented during the workshop UNIF 2020. 6 Unification in Fusion of Two Modal Logics Contents 6.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.2 Semantic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.3 Unification Type in fusion K 1 ⊗ K 2 . . . . . . . . . . . . . . . . 87 Unification in Fusion K D 1 ⊗ K D 2 . . . . . . . . . . . . . . . . . 97 Unification in Fusion S5 ⊗ S5 . . . . . . . . . . . . . . . . . . . 102 Unification in fusion K 4 1 ⊗ K 4 2 . . . . . . . . . . . . . . . . . . 114

1 -

 1 ψ hence, 2-(pqr → ψ) by 1 and CP 3-2 (pqr → ψ) by 2 and necessitation 4pqr → 2 (pqr → ψ) by 3 and CP 5-1 (pqr → 2 (pqr → ψ)) by 4 and necessitation 6pqr → 1 (pqr → 2 (pqr → ψ)) by 5 and Cp 7-2 (pqr → 1 (pqr → 2 (pqr → ψ))) by 6 and necessitation 8pqr → 2 (pqr → 1 (pqr → 2 (pqr → 1 (pqr → 2 (pqr → ψ))))) by 7 and CP 9-1 (pqr →→ 2 (pqr → 1 (pqr → 2 (pqr → 1 (pqr → 2 (pqr → ψ)))))) by 8 and necessitation 10pqr → 1 (pqr → 2 (pqr → 1 (pqr → 2 (pqr → ψ)))) by 9 and CP 11-2 (pqr → 1 (pqr → 2 (pqr → 1 (pqr → 2 (pqr → ψ))))) by 10 and necessitation 12pqr → 2 (pqr → 1 (pqr → 2 (pqr → 1 (pqr → 2 (pqr → ψ))))) by 11 and CP 13-1 (pqr → 2 (pqr → 1 (pqr → 2 (pqr → 1 (pqr → 2 (pqr → ψ)))))) by 12 and necessitation. Therefore, ψ.
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Definition 42 A

 42 simple epistemic planning problem is a pair (A, B ) where • Input: A and B are formulas in L k[] .

122CHAPTER 7 .

 7 UNIFICATION IN SIMPLE EPISTEMIC PLANNING PROBLEM Example 12 Consider the case A = 1 p and B = 2 p the planning problem is a unification problem. It is the problem of unifying the formula 1 p → 〈x〉 2 p.

Lemma 97 2 .

 972 Let P = A → 〈x〉 ( k 1 B 1 ∧ ... ∧ k m B m ) ∧ (♦ l 1 C 1 ∧ ... ∧ ♦ l n C n )where B i and C j are Boolean formula for 1 i m and1 j n. Let B = (♦ k 1 A → B 1 ) ∧ ... ∧ (♦ k m A → B m ). Then, A → B ∧ ♦ l 1 (C 1 ∧ B ) ∧ ... ∧ ♦ l n (C n ∧ B ) iff P possesses a unifier.Proof 141 We have to do the steps 1 -4 as for the previous Lemmas.1. Simplification of P in this Lemma is similar to simplification of Lemmas94 and 96. Hence, let Let P1 = (A → x) ∧ (x → (♦ k 1 A → B 1 ) ∧ ... ∧ (♦ k m A → B m )) ∧ (A → ♦ l 1 (x ∧C 1 ) ∧ ... ∧ (A → ♦ l n (x ∧C n )). P 1 and P are not logically equivalent. Nevertheless, they have exactly the same unifiers. As before, it happens that P1 is unifiable iff A → B ∧ ♦ l 1 (C 1 ∧ B ) ∧ ... ∧ ♦ l n (C n ∧ B ) where B = (♦ k 1 A → B 1 ) ∧ ... ∧ (♦ k m A → B m ).

3 .

 3 Assuming A → B ∧ ♦ l 1 (C 1 ∧ B ) ∧ ... ∧ ♦ l n (C n ∧ B ) where B = (♦ k 1 A → B 1 ) ∧ ... ∧ (♦ k m A → B m ) it is clear that σ(x) = B is a unifier of P 1 .130CHAPTER 7. UNIFICATION IN SIMPLE EPISTEMIC PLANNING PROBLEM 4. Now, let us find a most general unifier of P 1 .

3 .

 3 (A → ♦ l 1 (ε(x) ∧C 1 ) ∧ ... ∧ (A → ♦ l n (ε(x) ∧C n )).

2 .

 2 Obviously, (¬( l1 P 1 ∧...∧ l n P 1 )∧B ) → (♦ k 1 A → B 1 )∧...∧(♦ k m A → B m ). Since, l 1 P 1 ∧ ... ∧ l n P 1 → (x → (♦ k 1 A → B 1 ) ∧ ... ∧ (♦ k m A → B m )) then, l 1 P 1 ∧ ... ∧ l n P 1 ∧ x → (♦ k 1 A → B 1 ) ∧ ... ∧ (♦ k m A → B m ). Since, l 1 P 1 ∧ ... ∧ l n P 1 ∧ x → (♦ k 1 A → B 1 ) ∧ ... ∧ (♦ k m A → B m ) and (¬( l 1 P 1 ∧ ... ∧ l n P 1 ) ∧ B ) → (♦ k 1 A → B 1 ) ∧ ... ∧ (♦ k m A → B m ) then, ( l 1 P 1 ∧ ... ∧ l n P 1 ∧ x) ∨ (¬( l 1 P 1 ∧ ... ∧ l n P 1 ) ∧ B ) → (♦ k 1 A → B 1 ) ∧ ... ∧ (♦ k m A → B m ). Therefore, ε(x) → (♦ k 1 A → B 1 ) ∧ ... ∧ (♦ k m A → B m ).

132CHAPTER 7 .

 7 UNIFICATION IN SIMPLE EPISTEMIC PLANNING PROBLEM

Lemma 98

 98 Let P = A → 〈 x〉B Where B is Boolean formula. Then, A → B iff P possesses a unifier. Proof 142 We have to do the steps 1 to 4.1. We use axiomatisation of public announcement to simplify P . Hence, letP 1 = (♦A → x) ∧ (A → B ).By the reduction oxioms pf PAL and by the fact that and ♦ are interpreted in models by equivalence relations, we obtain that P and P 1 have the same unifiers. 2. If P 1 is unifiable then A → B . we remind that A, B contain only parameters. Reciprocally, suppose A → B . Then σ(x) = is a unifier of P 1 .

Lemma 99

 99 Let P = A → 〈 x〉 B where B is a Boolean formula. then, A → B iff P has a unifier. Proof 143 We have to do the steps 1 -4.

1 .

 1 Use axiomatisation of public announcement to simplify P . By the reduction axioms of PAL, P is logically equivalent to P = (A → x) ∧ (A → [ x]B ) . Since is interpreted by an equivalence relation, then P has the same unifiers as P = (♦A → x)∧(♦A → ( x → B )) which has itself the same unifiers as P 1 = (♦A → x) ∧ (♦A → B ).

2 .

 2 Obviously, P 1 is unifiable iff ♦A → B . We remind that A, B contain only parameters.3. Suppose♦A → B . It is clear that σ(x) = is a unifier of P 1 .4. Let us find a most general unifier of P 1 .

P 1 ∧

 1 ♦A → x. Then, 5. ♦A → ( P 1 → x). Then, 6. ♦A → ( P 1 → x)

Lemma 100

 100 Let P = A → 〈 1 x〉 2 B where B is Boolean formula. Then, ♦ 1 A → (♦ 2 A → B ) iff P possesses a unifier. Proof 144 We have to do at the following steps: 1. Simplify P by axiomatisation of public announcement logic. By the reduction axioms of PAL, P is logically equivalent to P = (A → 1 x) ∧ (A → 2 [ 1 x]B ) . Since 1 and 2 are interpreted by equivalence relations, then P has the same unifiers as P = (A → 1 x)∧(♦ 2 A → [ 1 x]B ) which has itself the same unifiers as P 1 = (♦ 1 A → 1 x) ∧ ( 1 x → (♦ 2 A → B )).

1 P 1 →

 11 ( 1 x → (♦ 2 A → B )) then ii. ( 1 P 1 ∧ 1 x 1 ) → (♦ 2 A → B ). Since iii. ♦ 1 A → (♦ 2 A → B ) Then, iv. (¬ 1 P 1 ∧ ♦ 1 A) → (♦ 2 A → B ). Thus, 136CHAPTER 7. UNIFICATION IN SIMPLE EPISTEMIC PLANNING PROBLEM v.

Lemma 101

 101 Let P = A → 〈 1 x〉( 2 B 2 ∧...∧ n B n ) where B i are Boolean formulas for 2 i n. Then, ♦ 1 A → (♦ 2 A → B 2 ) ∧ ... ∧ (♦ n A → B n ) iff P possesses a unifier.

  

  Definition 21 A rule r 1 is equivalent by admissibility to a rule r 2 in a logic S4 if r 1 is admissible in S4 iff r 2 is admissible in S4.

	tional variable.		
	• Final step: we transform the premise of the obtained rule r N =	γ k z β	into an
	equivalent disjunctive normal form over literals		
	It is easy to show that the reduced normal form of inference rule is equivalent
	to the original rule.		

Therefore after a finite number of steps we get a premise γ k , which is a Boolean combination of literals of the form x or ♦x, where x is proposi-

  = {φ 1 , φ 2 , φ 3 , φ 4 , φ 6 , φ 8 , φ 11 , φ 12 , φ 16 }.

	φ i	φ i			
	Remark 2 The rule r = 1. Let r f (r ) = i ∈I x 1 be a rule in reduced normal form such that its premise i ∈I x 1 when I = {1, ..., 16} is non-admissible.	
	contains {φ 1 , φ 3 }. Hence the rule r f			
			φ 16		
	φ 8	φ 6	φ 3	φ 11	φ 12
		φ 4	φ 2		
			φ 1		
			φ i		
	i ∈I This model is the model M (Θ(r )) associated to the rule r = φ i when I = {1, ..., 16} and i ∈I when x 1 I = {1, 2, 3, 4, 6, 8, 11, 12, 16} and W Remark 3 Notice that any rule in reduced normal form as r f (r ) = i ∈I x 1 φ i that {φ i : i ∈ I } contains at least one of sets {φ 1 , φ 3 }, {φ 1 , φ 4 }, {φ 3 , φ 6 }, {φ 6 , φ 8 }, such x 1 W = {φ 1 , ..., φ 16 }. {φ 11 } and {φ 16 } is non-admissible. Since these rules satisfy all conditions of The-	
	orem 1. Let us see an example.			
	Remark 1 In the model of the rule r = when M (Θ(r )), φ i φ i , we show φ i like a reflexive point, otherwise it is irreflex-i ∈I φ i x 1 when I = {1, ..., 16}, notice that Example 6 Consider a rule in reduced normal form as r f (r ) = φ i which con-x 1 tains one of the above sets. Let us find which substitutions are appropriate to	
	ive point. make this rule non-admissible.			

  φ 1 and φ 3 can see each other. Also, x 1 , x 2 ∈ ν(φ 1 ) and ¬x 1 , x 2 ∈ ν(φ 3 ).

	Hence, we have the model M (Θ(r )) associated
	to the rule and W ia as follows:

  and M 2 , s 2 n ⊥. Let s 2 , ..., s n+1 ∈ W 2 be such that s 2 R s 2 ...R s n+1 . By the tree-model property of K , we can assume without loss of generality that s 2 , s 2 , ..., s

n+1 are pairwise different. Let us construct the model M = (W, R, ν) which is an extension of the disjoint union of models M 1 and M 2 and we define the model M as follows:

  At the next step, he proved that unification is unitary in K 4.2 + . Hence, S. Ghilardi proved that Lemma 27 If L is filtering then either L is unitary, or L is nullary.

Proof 42 Suppose L is filtering and neither L is unitary, nor L is nullary. Hence, either L is finitary, or L is infinitary. Let φ be a L-unifiable formula either of type finitary, or of type infinitary. Since unification type of φ is either finitary or infinitary then let Σ be a minimal complete set of L-unifiers of φ such that C ar d (Σ) ≥ 2. Since C ar d (Σ) ≥ 2, we can suppose that there exist σ, τ ∈ Σ such that σ = τ. Let µ be a L-unifier of φ such that µ σ and µ τ. Such L-unifier of φ exists because L is filtering. Since Σ is a complete set of L-unifier of φ then there exists a ν ∈ Σ such that ν µ. Since µ σ and µ τ therefore, ν σ and ν τ. Since Σ is a minimal set therefore, ν = σ and ν = τ then σ = τ and this is a contradiction.

  .., x l } ⊆ {x 1 , ..., x π }. The next result is new. Combined with Proposition 42, it will be very useful in Section 5.4 for showing that unifiable n-formulas are unitary in Al t 1 + ⊥,

	Proposition

[START_REF] Baltag | Learning what others know[END_REF] 

Let ϕ ∈ FOR n be n-unifiable and π 1. If ϕ is n-π-reasonable then either ϕ is n-finitary, or ϕ is n-unitary.

Proof 63 Suppose ϕ is n-π-reasonable. Let Σ be the set of all n-unifiers of ϕ. Notice that Σ is n-complete. Let Σ be the set of n-substitutions obtained from Σ by keeping only the n-substitutions (k, σ) such that k π. Since Σ is n-complete and ϕ is n-π-reasonable, therefore Σ is n-complete. Let Σ be the set of n-substitutions obtained from Σ by keeping only one representative of each equivalence class modulo n . Since Σ is n-complete, therefore Σ is n-complete. Moreover, since C b d et is locally π-tabular, therefore Σ is finite. Hence, either ϕ is n-finitary, or ϕ is n-unitary.

  Proof 115We prove items 7 to 10. 7. Let M = (W, R 1 , R 2 , ν) be the modal defined as follows: W = {s 0 , s 1,1 , s 1,2 , s 1,3 , s 1,4 , s 1,5 , s 1,6 ...s k,1 , s k,2 , s k,3 , s k,4 , s k,5 , s k,6 }, R 1 is the least equivalence relation on W such that s 0 R 1 s 1,1 , s 1,2 R 1 s 1,3 , s 1,4 R 1 s 1,5 , s 1,6 R 1 s 2,1 , ..., s k-1,6 R 1 s k,1 , s k,2 R 1 s k,3 , s k,4 R 1 s k,5 , R 2 is the least equivalence relation on W such that s 1,1 R 2 s 1,2 , s 1,3 R 2 s 1,4 , s 1,5 R 2 s 1,6 , ..., s k,1 R 2 s k,2 , s k,3 R 2 s k,4 , s k,5 R 2 s k,6 , ν(p) = {s 1,5 , s 1,6 , ..., s k,5 , s k,6 }, ν(q) = {s 1,3 , s 1,6 , ..., s k,5 , s k,6 }, ν(r ) = {s 1,2 , s 1,4 , s 1,6 , ..., s k,2 , s k,4 , s k,6 }. Let M = (W, R 1 , R 2 , ν) be the modal defined as follows: W = {s 0 , s 1,1 , s 1,2 , s 1,3 , s 1,4 , s 1,5 , s 1,6 , ...s k,1 , s k,2 , s k,3 , s k,4 , s k,5 , s k,6 }, R 1 is the least equivalence relation on W such that s 1,1 R 1 s 1,2 , s 1,3 R 1 s 1,4 , s 1,5 R 1 s 1,6 , ..., s k,1 R 1 s k,2 , s k,3 R 1 s k,4 , s k,5 R 1 s k,6 , R 2 is the least equivalence relation on W such that s 0 R 2 s 1,1 , s 1,2 R 2 s 1,3 , s 1,4 R 2 s 1,5 , s 1,6 R 2 s 2,1 , ..., s k-1,6 R 2 s k,1 , s k,2 R 2 s k,3 , s k,4 R 2 s k,[START_REF] Baader | Unification in modal and description logics[END_REF] , ν(p) = {s 0 , s 1,1 , ..., s 2,1 , s 2,6 }, ν(q) = {s 1,2 , s 1,3 , ..., s k,2 , s k,3 }, ν(r ) = {s 0 , s 1,2 , s 1,4 , ..., s k,2 , s k,4 , s k,6 }.

	Obviously, M , s 0 9. Suppose by using Lemma ext r al emmas, l -1 times, we obtain l ⊥ but M , s 0 k ⊥. Thus, l ⊥ → k ⊥. k but M , s 0 l . Thus, k → l → k ⊥. Hence, by Lemma 72, l -i 8. Obviously, M , s 0 k+1 ⊥. Thus, k+l +1 ⊥ → k+l ⊥: a contradiction with item (7). l . → k+1 ⊥. Thus, → k+1 ⊥. Hence, 10. Suppose k → l ⊥. Hence, by using Lemma 72, k-1

10.

k → l ⊥.

  2 is a bounded morphism from M 2 to M 2 . By the bounded morphism Lemma ([START_REF] Blackburn | Modal Logic[END_REF],Theorem 3.14), since M 1 , t 1 µ(x) → k ⊥ and M 2 , s 2 ¬µ(x) → k ⊥, we have M 1 , (t 1 ) µ(x), M 1 , (t 1 )k ⊥, M 2 , (s 2 ) µ(x) and M 2 , (s 2 )Consequently, there exists t 2,1 , t 2,2 , t 2,3 , t 2,4 , t 2,5 , t 2,6 , ..., t k,1 , t k,2 , t k,3 , t k,4 , t k,5 , t k,6 ∈ W 1 such that• t 1 R 1 t 2,1 R 2 t 2,2 R 1 t 2,3 R 2 t 2,4 R 1 t 2,5 R 2 t 2,6 ...R 1 t k,1 R 2 t k,2 R 1 t k,3 R 2 t k,4 R 1 t k,5 R 2 t k,6 ,• M 1 , t 2,1 pqr , M 1 , t 2,2 pqr , M 1 , t 2,3 pqr , M 1 , t 2,4 pqr , M 1 , t 2,5 pqr , M 1 , t 2,6 pqr , ..., M 1 , t k,1 pqr , M 1 , t k,2 pqr , M 1 , t k,3 pqr , M 1 , t k,4 pqr , M 1 , t k,5 pqr , M 1 , t k,6 pqr . Similarly, there exists s 2,1 , s 2,2 , s 2,3 , s 2,4 , s 2,5 , s 2,6 , ..., s k,1 , s k,2 , s k,3 , s k,4 , s k,5 , s k,6 ∈ W 2 such that • M 2 , s 2 pqr , M 2 , s 2,1 pqr , M 2 , s 2,2 pqr , M 2 , s 2,3 pqr , M 2 , s 2,4 pqr , M 2 , s 2,5 pqr , M 2 , s 2,6 pqr , ..., M 2 , s k,1 pqr , M 2 , s k,2 pqr , M 2 , s k,3 pqr , M 2 , s k,4 pqr , M 2 , s k,5 pqr ,

k ⊥.

  .2. SIMPLE EPISTEMIC PLANNING PROBLEM A → 〈X 〉B 123 Hence, let P 1 = (A → x) ∧ (A → B ). Notice that P and P 1 are equivalent in PAL. Hence, they have the same unifiers.

	2. Now, let us show that P 1 is unifiable iff A → B . If A → B then σ(x) =
	is a unifier of P 1 . Reciprocally, if τ is a unifier of P 1 then A → B . We
	remind that A, B contain only parameters.
	3. Now, assuming that A → B , let us find a unifier of P 1 . Since A → B , it
	is clear that σ(x) = B is a unifier of P 1 .
	4. Now, assuming that A → B , let us find a most general unifier of P 1 if it
	exists.
	Notice that in P

1 , all occurrences of x are at the level 0. Consider Löwenheim substitution ε associated to P 1 and σ as follows: ε

  [START_REF] Ågotnes | Group announcement logic[END_REF] . Second, let σ be a unifier of P 1 . Since σ is a unifier of P 1 then σ (P 1 ). Hence, σ (ε(x)) = (σ (P 1 ) ∧ σ (x)) ∨ (¬σ (P 1 ) ∧ B ) is logically equivalent to σ (x). We remind that B contains only parameters; B contains no occurrence of x. Thus, ε σ . Consequently, ε is a most general unifier of P 1 . Since P 1 and P are equivalent and P and P 1 have the same unifiers then, ε is a most general unifier of P .

Lemma 94 Let

P = A → 〈x〉( 1 B 1 ∧ ... ∧ n B n ) where B 1 , ..., B n are Boolean formulas. Then, A → (B 1 ∧ ... ∧ B n ) iff P possesses a unifier.

Proof 138

We have to do the steps 1 -4 as before.

1. Simplification of P in this Lemma is similar to simplification of P in 93.

Hence, let P 1

  l 1 P 1 ∧ ... ∧ l n P 1 ) ∧ B ). Notice that ε(x) is equivalent with(( l 1 P 1 ∧ ... ∧ l n P 1 ) ∨ B ) ∧ (x ∨ B ) ∧ (¬( l 1 P 1 ∧ ... ∧ l n P 1 ) ∨ x) .In order to check, ε(x) is a most general unifier of P 1 , we have to prove first, ε is a unifier of P 1 and second ε is a most general unifiers of P 1 . First, let us prove ε is a unifier of P 1 . Hence, we have to prove1. A → ε(x) and 2. ( l 1 P 1 ∧ ... ∧ l n P 1 ∧ x) ∨ (¬( l 1 P 1 ∧ ... ∧ l n P 1 ) ∧ B ) → (♦ k 1 A → B 1 ) ∧ ... ∧ (♦ k m A → B m ).

Table 7 .

 7 1: Simple epistemic planning problem A → 〈x〉B

  Since, 1.1P 1 → 1 x → (♦ 2 A → B 2 ) ∧ ... ∧ (♦ n A → B n ) then 2. ( 1 P 1 ∧ 1 x) → (♦ 2 A → B 2 ) ∧ ... ∧ (♦ n A → B n ). Since ¬(A → 2 x) → ¬ 2 P 1 then, A → ¬ 2 P 1 ∨ 2 x. Since, A → ( 2 P 1 ∨ 2 B ) ∧ ( 2 x ∨ 2 B ) and A → ¬ 2 P 1 ∨ 2 x thus, A → ( 2 P 1 ∨ 2 B ) ∧ ( 2 x ∨ ¬ 2 P 1 ) ∧ ( 2 x ∨ 2 B ). Therefore, A → ε(x). Let us prove 2 ε(x) → (♦ 1 A → 2 B ). It is enough to show that ( 2 P 1 ∧ 2 x) → (♦ 1 A → 2 B ). Since, 2 P 1 → ( 2 x → (♦ 1 A → 2 B )) then, ( 2 P 1 ∧ 2 x) → (♦ 1 A → 2 B ). Thus, 2 ε(x) → (♦ 1 A → 2 B ). Therefore, ε(x) is a unifier of P 1 .2. Let us prove that ε is more general than any unifier of P 1 . Let σ be a unifier of P 1 . Since σ is a unifier of P 1 then σ (P 1 ). Hence, σ (ε(x)) = ( 2 σ (P 1 )∧Lemma 107 LetP = A → 〈 2 x〉( 1 2 B 1 ∧ ... ∧ n 2 B n ) where B i are Boolean formula for 1 i n. Then, A → 2 B 1 ∧ ... ∧ 2 B n iff P possesses a unifier.Proof 151 Let use axiomatisation of public announcement logic in order to simplify P . Hence, letP 1 = (A → 2 x) ∧ ( 2 x → (♦ 1 A → 2 B 1 )) ∧ ... ∧ ( 2 x → (♦ n A → 2 B n )).Clearly, P and P 1 have exactly the same set of unifiers. Suppose A → 2 B 1 ∧ ... ∧ 2 B n . Since, A → 2 B 1 ∧ ... ∧ 2 B n then, σ(x) = B 1 ∧ ... ∧ B n is a unifier of P 1 . And of course, reciprocally, when P 1 has a unifier then A → CHAPTER 8. CONCLUSION • What is the unification type of the fusion K D 1 ⊗ K D 2 without constants?

σ (x)) ∨ (¬ 2 σ (P 1 ) ∧ B ) is logically equivalent to σ (x). Therefore, ε σ.

Consequently, ε is a most general unifier of P 1 . Since P 1 and P have the same unifiers then, ε is a most general unifier of P .

(⇐) Let σ be a unifier of P 1 . Then,

1. A → 2 σ(x) and 2. 2 σ(x) → (♦ 1 A → 2 B ). Hence, 3. A → (♦ 1 A → 2 B ). Therefore, 4. A → 2 B .

B 1 ∧...∧ 2 B n . We claim that ε(x) = ( 2 P 1 ∧x)∨(¬ 2 P 1 ∧σ(x)) is a most general unifier of P 1 . Since, σ(x) = B 1 ∧ ... ∧ B n then, ε(x) = ( 2 P 1 ∧ x) ∨ (¬ 2 P 1 ∧ (B 1 ∧ ... ∧ B n )). We can use the method of 106 to prove ε is a most general unifier.
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Proof 17 (⇒) Proof of this direction is similar to Theorem 1. (⇐) The rule r is invalid in M (Θ(r )) by Theorem 3. By Lemma 3.4.10 of [START_REF] Rybakov | Admissibility of logical inference rules[END_REF] there exists a definable valuation S of the rule r such that invalidate r in C h S4 (n). Therefore the rule r is inadmissible in S4 by Lemma 2. Proof 55 The proof is similar to the proof of Lemma 36 Lemma 40 Let ψ be a formula

(1) K 5 ( y ∧ (y ∨ ♦ )) → (α σ,τ K 5 (ψ) ↔ σ(ψ)). (2) K 5 (♦♦¬y ∨ (¬y ∧ ⊥)) → (α σ,τ K 5 (ψ) ↔ τ(ψ)).

Proof 56 The proof can be done by using the semantics of K 5. We remind that models of K 5 are of the form (W, R,V ) where R is Euclidean. Notice that if w ∈ W is such that M , w y ∧(y ∨♦ ) then for all v in the sub-model of M generated from w, we have M , v y ∧ (y ∨ ♦ ). Similarly, if w ∈ W is such that M , w ♦♦¬y ∨ (¬y ∧ ⊥) then for all v in the sub-model of M generated from w, we have M , v ♦♦¬y ∨ (¬y ∧ ⊥).

Lemma [START_REF] Lewis | A survey of symbolic logic[END_REF] If σ and τ are K 5-unifiers of φ then α σ,τ K 5 is a K 5-unifier of φ.

Proof 57 The proof is similar to the proof of Lemma 38 Proposition 12 Unification in K 5 is filtering.

Proof 58 The proof is similar to the proof of Proposition 11

Proposition 13 (1) Either K 5 is unitary, or K 5 is nullary.

(2) Either K D5 is unitary, or K D5 is nullary.

Proof 59 By Lemma 27 and Lemmas 11 and 12.

The exact unification type of K D5 and K 5 is still unknown. The main difficulty in determining this type is that neither K D5 nor K 5 contain K 4. Hence, the techniques developed by Ghilardi [START_REF] Ghilardi | Best solving modal equations[END_REF] for showing that K 4 and some of its extension like S4 and GL are finitary cannot be used. In other respect, Ghilardi's results [START_REF] Ghilardi | Filtering unification and most general unifiers in modal logic[END_REF] saying that an extension L of K 4 has filtering unification iff L contains K 4.2 + cannot be applied in the case of K D5 and K 5 for the same reason (neither K D5 nor K 5 contains K 4).

1. We have to prove σ n is a unifier of ϕ. By part [START_REF] Babenyshev | A tableau method for checking rule admissibility in S4[END_REF] of Lemma 53 we have ( 1 2 ) <n x ∧ ( 1 2 ) n ⊥ → ( 1 2 )( 1 2 ) <n x. By part [START_REF] Ågotnes | True Lies[END_REF] of Lemma 53 ( 1 2 ) n ⊥ → ( 1 2 ) n+1 ⊥ then, ( 1 2 ) <n x ∧ ( 1 2 ) n ⊥ → ( 1 2 )( 1 2 ) <n x ∧ ( 1 2 )( 1 2 ) n ⊥.Thus, ( 1 2 ) <n x ∧ ( 1 2 ) n ⊥ → ( 1 2 )(( 1 2 ) <n x ∧ ( 1 2 ) n ⊥). Therefore, σ n (x) → 1 2 σ n (x). Consequently, σ n is a unifier of ϕ.

Since,

→ 1 2 it is clear that σ is a unifier of ϕ.

Lemma 55 Let k, l ∈ N. If k l then σ l σ k .

Proof 95 Suppose k l . We have to prove σ l σ k . Let ν(x) = x ∧ ( 1 2 ) k ⊥. Since, ( 1 2 ) <l x → ( 1 2 ) <k x (since k l ) and

For the other direction we shall prove as follows. By part 6 of Lemma 53 we have, (

) k ⊥ → ( 1 2 ) <l ( 1 2 ) k ⊥ and by part [START_REF] Baader | Unification in modal and description logics[END_REF] of Lemma 53 ( 1 2 ) <k x ∧ ( 1 2 ) k ⊥ → ( 1 2 ) <l x and by part (2) of Lemma 53, ( 1 2 ) k ⊥ → ( 1 2 ) l ⊥. Thus, ( 1 2 ) <k x ∧ ( 1 2 ) k ⊥ → ( 1 2 ) <l (x ∧ ( 1 2 ) k ⊥) ∧ ( 1 2 ) <l ⊥. Since, ( 1 2 ) <l (x ∧ ( 1 2 ) k ⊥) ∧ ( 1 2 ) l ⊥ → ( 1 2 ) <k x ∧ ( 1 2 ) k ⊥ and

) <l (x ∧ ( 1 2 ) k ⊥) ∧ ( 1 2 ) l ⊥ ↔ ( 1 2 ) <k x ∧ ( 1 2 ) k ⊥. Thus, ν • σ l σ k . Consequently, σ l σ k .

Lemma 56 Let k, l ∈ N. If k < l then σ k σ l Proof 96 Suppose k < l . Suppose σ k σ l . Let ν be a substitution such that ν(σ k (x)) ↔ σ l (x). Then,

Then by replacing x by , ( 1 2 ) l ⊥ → ( 1 2 ) k ⊥. This is a contradiction with part (5) of Lemma 53.

Lemma 57 Let σ be a substitution. The following conditions are equivalent:

1. σ • σ σ.

2. σ σ.

σ(x).

Proof 97 (1 ⇒ 2): By definition of .

(2 ⇒ 3): Suppose σ σ. Let ν be a substitution such that ν(σ (x)) ↔ σ(x). Then, ↔ σ(x). Therefore, σ(x). (3 ⇒ 1): Suppose σ(x). Then ↔ σ(x). Hence, σ(x) ↔ σ(σ (x)). Therefore, σ • σ σ.

Lemma 58 Let k ∈ N. Let σ be a unifier of ϕ. The following conditions are equivalent:

Proof 98 (1 ⇒ 2) By definition of .

(2 ⇒ 3) Suppose σ n σ. Let ν be a substitution such that ν(σ n (x)) ↔ σ(x). Then, ( 1 2 ) <n ν(x) ∧ ( 1 2 ) n ⊥ ↔ σ(x). Hence, σ(x) → ( 1 2 ) <n ν(x) ∧ ( 1 2 ) n ⊥. Therefore, σ(x) → ( 1 2 ) n ⊥.

(3 ⇒ 1) Suppose σ(x) → ( 1 2 ) n ⊥. Since σ is a unifier of ϕ then, σ(x) → ( 1 2 )σ(x). Hence by necessitation and axiom K 1 and K 2 ,

) n ⊥. We consider two cases:

By the tree-model property of K 1 ⊗ K 2 , we can assume that w 1 , w 2 , w 3 , ..., w 2n+1 are pairwise distinct and that the path

Since M is a disjoint union of M 1 , M 2 and the state t 0 and M 1 , t 1 σ(x) then, M , t 1 σ(x). Since n d eg (σ(x)), M is a disjoint union of M 1 , M 2 and the state t 0 and M 2 , w 1 σ(x) then M , w 1 σ(x). By our assumption σ is a unifier of ϕ then σ(x) → 1 2 σ(x). Since M , w 1 σ(x) therefore M , w 2i +1 σ(x) for all i = 1, ..., n. Thus, M , w 2n+1 1 2 σ(x). Since, w 2n+1 R 1 t 0 R 2 t 1 therefore M , t 1 σ(x). This is contradiction .

Lemma 59 The set of substitutions

Proof 100 By Lemmas 54, 55, 56, 57 and 58 and Theorem 9.

Lemma 60 The formula

Proof 101 Let Γ be a minimal complete set of unifiers of ϕ and σ ∈ Γ. Since Γ is complete, then let σ ∈ Γ be such that σ σ 0 . Since σ is a unifier of ϕ hence

Since Γ is minimal complete set and its members are pairwise incomparable then σ = σ. Since σ n σ and σ σ n+1 then, σ n σ n+1 . Since n < n + 1 by lemma 56, σ n σ n+1 and this is a contradiction. Suppose σ K 1 ⊗K 2 σ. Since σ σ 0 then, σ σ 0 . Therefore ↔ ⊥. This is contradiction.

Lemma 61 Unification type is nullary in fusion K ⊗ K Proof 102 By Lemma 60.

Unification in Fusion

In this section we will discuss on unification type of the fusion K D 1 ⊗ K D 2 . In order to show the unification type of the fusion K D 1 ⊗ K D 2 is nullary we use the method mentioned in [START_REF] Balbiani | KD is nullary[END_REF]. In this respect, we need to define the following abbreviation where p is a parameter:

For all parameters p, the modal connective [p] k is inductively defined as follows for each k ∈ N:

For all parameters p, the modal connective [p] <k is inductively defined as follows for each k ∈ N:

The proof of this Lemma is similar to the proof of Lemma 53.

Lemma 63 For all n

Proof 104

1. We have to prove

). Hence we have to prove σ n (x) → p and 

Since, (p → p) and p →

Proof 105 Suppose k l . We have to prove 

For the other direction, we shall do as follows:By part [START_REF] Balbiani | KD is nullary[END_REF] 

Proof 106 Suppose k < l and σ k σ l . Let ν be a substitution such that ν(σ k (x)) ↔ σ l (x). Then, p ∧

This is contradiction with part (7) of Lemma 62.

Lemma 66 Let σ be a K D 1 ⊗ K D 2 -unifier of ϕ. The following conditions are equivalent:

Proof 107 (1 ⇒ 2): By definition of .

(2 ⇒ 3): Suppose σ p σ. Let ν be a substitution such that ν(σ p (x)) ↔ σ(x). Then, p ↔ σ(x).

(3 ⇒ 1): Suppose σ(x) ↔ p. Then, σ(x) ↔ σ(σ p (x)). Hence, σ p • σ σ.

Lemma 67 Let σ be a (K D 1 ⊗ K D 2 )-unifier of ϕ. Let n 0. The following conditions are equivalent:

For the converse implication, we consider two cases:

Hence in both cases

Lemma 68 Let σ is a unifier of ϕ. Let n d eg (σ(x)). Then one of the following conditions holds

Proof 109 Suppose none of the above conditions holds. Then, neither σ p σ nor σ n σ. Hence by Lemma 66 and 67, σ(x) ↔ p and σ(x)

and M 2 , t 2i +1 p for 0 i n. Again, as in the proof of Theorem 11, by the tree-model property of K D 1 ⊗ K D 2 , we can assume that t 1 , ..., t 2n+1 are pairwise distinct and that the path t 1 R 1 t 2 R 2 t 3 R 1 ...R 2 t 2n+1 is the shortest path in M 2 between t 1 and t 2n+1 . Let M = 〈W, R 1 , R 2 , ν〉 be the model defined as follows:

Since M is a disjoint union of M 1 , M 2 and s 0 and M 1 , s σ(x) and M 1 , s p then, M , s σ(x) and M , s p. Since n d eg (σ(x)), M is a disjoint union of M 1 , M 2 and s 0 and M 2 , t 1 σ(x) and M 2 , t 2i +1 p for 0 i n then M , t 1 σ(x) and M , t 2i +1 p for 0 i n. By our assumption σ is a unifier of ϕ then 

Since Γ is minimal complete set and its members are pairwise incomparable then σ = σ. Since σ n σ and σ σ n+1 then, σ n σ n+1 . Since n < n + 1 by lemma 65, σ n σ n+1 and this is a contradiction. Suppose σ p K D 1 ⊗K D 2 σ. Since σ σ 0 then, σ p σ 0 . Therefore ¬p. This is contradiction.

Lemma 71 Unification type is nullary in fusion

Proof 113 By Lemma 70.

k ⊥ → k ¬x then we have,

<k ¬x therefore,

Hence we have to prove

For the other direction we have to prove

We have to prove τ l S5 1 ⊗S5 2 τ k . Let the substitution υ be defined by υ

This is a contradiction with the part (9) of Lemma 73. Suppose k < l and τ k L σ l . Let υ be a substitution such that

Hence,

This is a contradiction with the part (10) of Lemma 73.

Lemma 79 Let µ be an (S5 1 ⊗S5 2 )-unifier of ϕ 0 . For all k ∈ N, the following conditions are equivalent:

In this respect, we consider two cases, Case k = 0:

Lemma 80 Let µ be an S5 1 ⊗ S5 2 -unifier of ϕ 0 . For all k ∈ N, the following conditions are equivalent:

Theorem 10 Let µ be an (S5 1 ⊗ S5 2 )-unifier of ϕ. Then there exists k ∈ N such that either

We will define now the unravelling M 1 of M 1 around t 1 and the unravelling M 2 of M 2 around s 2 as follows:

The unravelling of M 1 around t 1 is the model

where

and for all i m, if i < k then a i +1 = 1 and if i < l then b i +1 = 1.

) be the model obtained from M 0 by adding new possible worlds w 1 , w 2 , w 3 , w 4 , w 5 and such that 

Proof 124 By Lemmas 75 to 78 and Theorem 10.

Lemma 82 ϕ 0 does not possess a minimal complete set of (S5 1 ⊗ S5 2 )unifiers.

Proof 125 Let Γ be a minimal complete set of unifiers of ϕ 0 . Let µ ∈ Γ be such that µ σ 0 . Then by Theorem 10, there exists k

Since Γ is minimal complete set and its members are pairwise incomparable then µ = µ. Since σ k µ and µ σ k+1 then, σ k σ k+1 . Since k < k + 1 by lemma 77, σ k σ k+1 and this is a contradiction with lemma 77. Consider the second case τ k (S5 1 ⊗S5 2 ) µ. Since µ σ 0 then τ k σ 0 , a contradiction with Lemma 78.

Lemma 83 Unification type is nullary in fusion S5 ⊗ S5

Proof 126 By Lemma 82.

Unification in fusion

Dzik in Chapter 6 of [START_REF] Dzik | Unification Types in Logics[END_REF] proved that the fusion K 4 ⊗ K 4 has the rule of disjunction. Hence, unification type of the fusion K 4 ⊗ K 4 is not unitary. In this section, we shall prove that unification type of the fusion K 4 ⊗ K 4 nullary. Consider the formula ϕ = x → 1 2 x and substitutions σ (x) = and σ n (x) = ( 1 2 ) <n x ∧ ( 1 2 ) n ⊥ where n ∈ N.

Lemma 84 For all n ∈ N,

Proof 127 The proof is similar to the proof of Lemma 54.

Proof 128 The proof is similar to the proof of Lemma 55.

Proof 129 The proof is similar to the proof of Lemma 56. Since we consider K 4⊗ K 4, we will use the fact that if k < l then K 4⊗K 4 ( 1 2 ) l ⊥ → ( 1 2 ) k ⊥. The proof of this fact is similar to the proof of item 5 in Lemma 53.

Lemma 87 Let σ be a substitution. The following conditions are equivalent:

2. σ σ.

σ(x).

Proof 130 The proof is similar to the proof of Lemma 57.

Lemma 88 Let n ∈ N. Let σ be a unifier of ϕ. The following conditions are equivalent:

Notice that the shortest path between (t 2 ) and (t 2 , 1,

. Since n d eg (σ(x)), M 0 , (t 1 ) σ(x) and M 0 , (t 2 ) σ(x), then M ⊕ , (t 1 ) σ(x) and M ⊕ , (t 2 ) σ(x). Since σ is a unifier of x → 1 2 x, then σ(x) → 1 2 σ(x). Hence,

, it follows that M ⊕ , (t 1 ) σ(x). This is a contradiction.

Lemma 89 The set of substitutions

Proof 133 By Lemmas 84, 85, 86, 87 and 88 and Theorem 11.

Lemma 90

The formula ϕ = x → 1 2 x does not possess a minimal complete set of K 4 1 ⊗ K 4 2 -unifiers.

Proof 134

The proof is similar to the proof of Lemma 60.

Lemma 91 Unification type is nullary in fusion

Proof 135 By Lemma 90.

(

Therefore, ε is a unifier of P 1 .

• Second, let σ be a unifier of P 1 . Since σ is a unifier of P 1 then 1 σ (P 1 ). Hence, σ (ε(x)) = ( 1 σ (P 1 )∧σ (x))∨(¬ 1 σ (P 1 )∧♦ 1 A) is logically equivalent to σ (x). Thus, ε σ . Consequently, ε is a most general unifier of P 1 . Since P 1 and P are equivalent and P and P 1 have the same unifiers then, ε is a most general unifier of P . 

. Then P and P 1 have exactly the same unifiers. If, A → ♦C hence, σ(x) = is a unifier of P 1 . Reciprocally, obviously, if P 1 is unifiable then A → ♦C . Let us find a most general unifier of P 1 . We claim that ε(x) = ( P 1 ∧ x)∨(¬ P 1 ∧σ(x)) is a most general unifier of P 1 . Since, σ(x) = hence, ε(x) = ¬ P 1 ∨ x is equivalent to ( P 1 → x). In this respect,:

1. We prove ε is a unifier of P 1 . In this respect, we need to prove A → ε(x)

Let us prove prove that

. UNIFICATION IN SIMPLE EPISTEMIC PLANNING PROBLEM

A ∧ (C → P 1 ) → A ∧ (♦C → P 1 ) and by our assumption, A → ♦C Hence, A ∧ (C → P 1 ) → P 1 ∧ A.We know that

Therefore, ε is a unifier of P 1 .

2. Second, let σ be a unifier of P 1 . Since σ is a unifier of P 1 then 1 σ (P 1 ). Hence, σ (ε(x)) = ¬ σ (P 1 ) ∨ σ (x) is logically equivalent to σ (x). Thus, ε σ . Consequently, ε is a most general unifier of P 1 . Since P and P 1 have the same unifiers then, ε is a most general unifier of P . We claim that ε(x) = ( 1 2 P 1 ∧ x) ∨ (¬ 1 2 P 1 ∧ σ(x)) is a most general unifier of P 1 . Since, σ(x) = hence, ε(x) = ¬ 1 2 P 1 ∨ x. In this respect, we consider the following steps:

Lemma 103 Let

1. We prove ε is a unifier of P 1 . In this respect, we need to prove A → 1 ε(x) and A → ♦ 2 ( 1 ε(x) ∧C ). Let us prove first one: Since,

Second, we have to prove that

Therefore, ε is a unifier of P 1 .

2. Let us prove that ε is more general than any unifier of P 1 . Let σ be a unifier of P 1 . Since σ is a unifier of P 1 then 1 2 σ (P 1 ). Hence, σ (ε(x)) = ¬ 1 2 σ (P 1 ) ∨ σ (x) is logically equivalent to σ (x). Thus, ε σ (x). Consequently, ε is a most general unifier of P 1 . Since validity of P 1 and P are equivalent then, ε is a most general unifier of P .

Lemma 104 Let

Proof 148 (⇒) Simplify P by axiomatisation of public announcement logic. Hence,

Let us find a most general unifier of P 1 . We claim

In this respect, we will do the following steps:

1. We prove that ε is a unifier. In this respect, we have to prove A → 1 ε(x)

Let us prove the second one: Since

) and by assumption

We know that for all 2 i n,

2. Let us prove that ε is more general than any unifier of P 1 . Let σ be a unifier of P 1 . Since σ is a unifier of P 1 then σ (P 1 ) and

Consequently, ε is a most general unifier of P 1 . Since P 1 and P have the same unifiers then, ε is a most general unifier of P .

Lemma 105 Let

where B i and C j are Boolean formulas for 1 i m and

Proof 149 Simplify P by axiomatisation of public announcement logic. Hence, let P

Clearly, P and P 1 have exactly the same

In this respect, we have to do the following steps:

1. We should prove that ε is a unifier of P 1 . Then we should prove

Let us prove first one: Since,

Second one: we have to prove that

In this respect, we need to prove

Third one: we have to prove

In this respect, we will prove, A → ♦ l 1 ( 1 ε(x) ∧ C 1 ) and the proof of rest of parenthesis are similar. Let us prove A → ♦ l 1 ( 1

2. Let us prove that ε is more general than any unifier of P 1 . Let σ be a unifier of P 1 . Since σ is a unifier of P 1 then σ (P 1 ) and

Consequently, ε is a most general unifier of P 1 . Since P 1 and P have the same unifiers then, ε is a most general unifier of P .

Lemma 106 Let P = A → 〈 2 x〉 1 2 B where B is a Boolean formula. Then, A → 2 B iff P possesses a unifier.

Proof 150 We simplify P by axiomatisation of public announcement logic. Hence,

Let us find a most general unifier of P 1 . We claim that Löwenheim's formula ε

In this respect, we will do the following steps:

1. We have to prove ε is a unifier of P 1 . Let us prove A → 2 ε(x) and

where B is a Boolean formula. Then, ♦ 1 A → B iff P possesses a unifier.

Proof 152

We have to do the following steps:

1. We can simplify P by axiomatisation of public announcement logic as be-

Clearly, P and P 1 have exactly the same set of unifiers. Assume,

2. Let us find a most general unifier of P 1 . We claim Löwenheim's formula

(a) Let us prove ε is a unifier of P 1 . We need to make sure that ε(x)

is a unifier of P 1 hence, we have to prove

To prove first part: Since i.

To prove second part: Let us prove ((

Therefore, ε is a unifier of P 1 .

(b) Let us prove that ε is more general than any unifier of P 1 . Let σ be a unifier of P 1 . Since σ is a unifier of P 1 then 1 σ (P 1 ). Hence,

Consequently, ε is a most general unifier of P 1 . Since P 1 and P have the same unifiers then, ε is a most general unifier of P .

Lemma 109 Let

Proof 153 We simplify P by axiomatisation of public announcement logic as before. Hence, let

. Clearly P and P 1 have exactly the same unifiers. Now, suppose

) is a most general unifier of P 1 . The method of proving ε is a most general unifier is similar to 108.

Lemma 110 Let

Proof 154 We use axiomatisation of public announcement logic. Hence let P 1 = 

Simple epistemic planning problem A → 〈♦x〉B

In this section, the solution of the simple epistemic planning problem that we will consider should be of the form A → 〈♦x〉B .

Lemma 112 Let P = A → 〈♦x〉B where B is a Boolean formula. Then, A → B iff P possesses a unifier.

Proof 156 We use axiomatisation of public announcement logic to simplify P .

By the reduction axiom of PAL, P nd P 1 have the same unifiers. Suppose A → B . Since A → B then σ(x) = is a unifier of P 1 . Reciprocally, we have A → B if P 1 has a unifier. Let us find a most general unifier of P 1 . We claim that Löwenheim's formula ε(x) = ( P 1 ∧ x) ∨ (¬ P 1 ∧ σ(x)) is a most general unifier. Notice that since σ(x) = then ε(x) is equivalent to P 1 → x. In order to prove ε is a most general unifier, we proceed the following steps:

1. We prove ε is a unifier of P 1 . In this respect, we have to prove A → ♦ε(x).

Since,

2. Let us prove that ε is more general than any unifier of P 1 . Let σ be a unifier of P 1 . Since σ is a unifier of P 1 then σ (P 1 ). Hence, σ (ε(x)) = σ (x) ∨ ¬ σ (P 1 ) is logically equivalent to σ (x). Therefore, ε σ . Consequently, ε is a most general unifier of P 1 . Since P 1 and P has the same unifier then, ε is a most general unifier of P .

Lemma 113 Let

Proof 157 We use axiomatisation of public announcement logic. Let P

Let us find a most general unifier of P 1 . We use Löwen-

To check ε is a most general unifier, we will do the following steps:

1. We prove that ε is a unifier of P 1 . In this respect, we have to prove ♦

Therefore, ε is a unifier of P 1 .

2. Let us prove that ε is more general than any unifier of P 1 . Let σ be a unifier of P 1 . Since σ is a unifier of P 1 then 1 σ (P 1 ). Hence, σ (ε(x)) = ( 1 σ (P 1 )∧σ (x))∨(¬ 1 σ (P 1 )∧ A) is logically equivalent to σ (x). Therefore, ε σ . Consequently, ε is a most general unifier of P 1 . Since P 1 and P have the same unifiers then, ε is a most general unifier of P .

Lemma 114 Let

Proof 158 We use axiomatisation of public announcement logic to simplify P as before. Hence, let P

Let us find a most general unifier of P 1 . We claim that Löwenheim's formula ε

To check ε is a most general unifier, we use the similar method of the proof of Lemma 113.

Lemma 115 Let

Proof 159 We use axiomatisation of public announcement logic to simplify P .

) is a most general unifier. To check ε is a most general unifier, we use the similar method of the proof of Lemma 103.

Lemma 116 Let

Proof 160 Use axiomatisation of public announcement logic. Let P

Let us find a most general unifier of P 1 . we claim Löwenheim's ε(x) = ( 1 2 P 1 ∧ ... ∧ 1 n P 1 ∧ x)∨(¬( 1 2 P 1 ∧...∧ 1 n P 1 )∧σ(x)) is a most general unifier. Since, σ(x) = hence, ε(x) = 1 2 P 1 ∧ ... ∧ 1 n P 1 → x is a most general unifier of P 1 . To check ε is a most general unifier, we use the similar method of the proof of Lemma 104.

Lemma 117 Let

where B i and C j are Boolean formulas for 1 i m and

Proof 161 We use axiomatisation of public announcement logic in order to simplify P . Let P

Let us find a most general unifier of P 1 . In this respect, we claim Löwenheim's formula ε(x) = ( 1 l 1 P 1 ∧...∧ 1 l n P 1 ∧x)∨ (¬( 1 l 1 P 1 ∧ ... ∧ 1 l n P 1 ) ∧ ♦ 1 B ) is a most general unifier of P 1 . To check ε is a most general unifier, we use the similar method of Lemmas 97 and 104. 

Let us find a most general unifier of P 1 . We claim Löwenheim's formula ε(x) = ( 1 P 1 ∧ x)∨(¬ 1 P 1 ∧σ(x)) is a most general unifier. To check ε is a most general unifier, we use the similar method of the proof of Lemma 106. 

it is clear that σ(x) = A is a unifier of P 1 . Let us find a most general unifier of P 1 . We use Löwenheim's formula ε(x) = ( 1 P 1 ∧ x) ∨ (¬ 1 P 1 ∧ σ(x)) as a most general unifier. To check ε is a most general unifier, we use the similar method of Lemma 107. 

A → 〈ψ〉B

Necessary condition σ(x)

Conclusion

The unification problem and the admissibility problems are strongly related, as explained at the beginning of the thesis. As seen in Chapters 4 to 7, there are many different ways to study the unification types of modal logics. There are still many open problem about unification types of modal logics. In Chapter 4 of this Thesis, we have proved that unification type of modal logics K D5 and K 5 are unitary or nullary. Here, there are some open question as follows:

• What is exact unification type of logics K D5 and K 5?

• What is unification type of logics K D5 and K 5 with constant?

• What is unification type of every logic extending K 5?

In Chapter 5, we have proved that unification type of Al t 1 + ⊥ is unitary. We have in [START_REF] Balbiani | About the unification type of K + ⊥[END_REF] that K + ⊥ is finitary. Here also there are open questions as follows:

• What is unification type of Al t 1 + d ⊥ and K + d ⊥ when d 3?

• What is unification type of Al t 1 + ♦ ?

• What is unification type of Al t 1 + d ⊥ and K + d ⊥ when d 2 for unification with constant?

In chapter 6, we have proved that if L 1 is nullary and L 2 is consistent modal logic then unification type of the fusion L 1 ⊗ L 2 is not unitary and not finitary. Also we have proved that unification type of fusion S5 1 ⊗ S5 2 with constants is nullary. Now, there are open questions as follows:

• is unification type of the fusion of two consistent modal logics always nullary when these logics are different from Triv and Ver?

• What is the unification type of the fusion S5 1 ⊗ S5 2 without constants? 153