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Abstract

In this thesis, we shall investigate on the unification problem in ordinary modal
logics, fusions of two modal logics and multi-modal epistemic logics. With respect to a
propositional logic L, given a formula A, we have to find substitutions s such that s(A) is
in L. When they exist, these substitutions are called unifiers of A in L. We study different
methods for the construction of minimal complete sets of unifiers of a given formula A
and according to the cardinality of these minimal complete sets, we shall discuss on the
unification type of A. Then, we determine the unification types of several propositional
logics.

Résumé

Dans cette thèse, nous étudierons le problème de l’unification dans les logiques
modales ordinaires, les fusions de deux logiques modales et les logiques épistémiques
multi-modales. Relativement à une logique propositionnelle L, étant donnée une for-
mule A, nous devons trouver des substitutions s telles que s(A) est dans L. Lorsqu’elles
existent, ces substitutions sont appelées unifieurs de A dans L. Nous étudions dif-
férentes méthodes pour construire des ensembles minimaux complets d’unifieurs d’une
formule donnée A et, en fonction de la cardinalité des ces ensembles minimaux com-
plets, nous discutons du type de l’unification de A. Enfin, nous déterminons les types
de l’unification de plusieurs logiques propositionnelles.
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1 Introduction
In many research area of computer science and artificial intelligence, non-classical
logics are considered: temporal logics, epistemic logics, etc. The main task to
be solved for the applicability of these logics is their mechanization. In Propo-
sitional logic, there exists an important problem which is called admissibility of
rules. A rule of inference is admissible in a given logic L if the set of theorems
in L does not change when that rule is added to the existing rules in L. In other
words, every formula that can be derived using that rule is already derivable
without that rule. Decision problem in admissibility of rules is the most prob-
lem. In Classical Propositional Logic, each admissible rule is derivable but in
general, the opposite of this phrase is not true. For example, In Intuitionistic
logic there are some rules which are admissible but are not derivable. Admis-
sible rules were studied by Lorenzen [42], Harrop [32] and Mints [50] who has
found interesting examples of admissible rules that are not derivable in Intu-
itionistic logic, in S4, etc. The question whether algorithms exist for recognis-
ing whether rules in Intuitionistic Propositional Logic IPC are admissible was
asked by Friedman [28]. This problem was solved by V. Rybakov [45] and [46]
for IPC and for modal logic S4. He also proved the same approach can be used
for a broad range of propositional modal logics, for example K 4, S4, GL [44].
Unification theory provides a systematic approach to some important logical
problems, in particular, to the admissibility problem of inference rules. When-
ever the unification type of a logic is unitary or finitary there exists an algorithm
to recognize if a given inference rule is admissible in that logic. Two relation be-
tween admissibility of rules and unification problem is defined as follows:

• Let L is a consistent logic. The following are equivalent:

1. The formula A is unifiable,

2. The rule r = A

⊥ is non-admissible.

• If L is finitary then the following are equivalent:

7



8 CHAPTER 1. INTRODUCTION

1. The rule r = A1, ..., An

B
is admissible

2. The formulaσ(B) ∈ L for every maximal unifierσ for formulas A1, ..., An .

As you see, To reduce admissibility to unification problem we need to know
about unification type of logic L.
Unification which is the problem of making terms syntactically equal by replac-
ing their variables by some new terms was introduced in automated deduction
by Robinson [51]. He showed that unifiable terms have a most one general uni-
fier. A unification problem is usually solved by substitution, which is the map-
ping of a symbolic value to every variable involved in the problem. In other
words, the unification problem essentially focus to look for a substitution in
order to unify two given terms. At the next step it is expected to provide a min-
imal and complete set of substitutions for a given problem. The unification in
logic also is related to find a substitution that makes a formula into theorem
or tautology. In general, the unification problem in a normal modal logic is to
determine, given a formula ϕ whether there exists a substitution σ such that
σ(ϕ) is in that logic. In that case, σ is a unifier of ϕ. We shall say that a set of
unifiers of a unifiable formulaϕ is complete if for all unifiersσ ofϕ, there exists
a unifier τ of ϕ in that set such that τ is more general than σ. Now, an impor-
tant question is to determine whether a given unifiable formula has minimal
complete sets of unifiers [5], [22]. When such sets exist, they all have the same
cardinality. In that case, a unifiable formula is either infinitary, or finitary, or
unitary, depending whether its complete sets of unifiers are either infinite, or
finite, or with cardinality 1. Otherwise, the formula is nullary. F. Baader, W. Sny-
der studied E-unification theory [6] where the terms are no longer required to
become syntactically equal, but only equivalent modulo the equational theory.
For example, if we consider the theory C = { f (x, y) = f (y, x)}, which says that
the binary function symbol f is commutative, then the unification problem
f (x, y) =? f (a,b) (for constants a,b) has the syntactic unifierσ= {x 7→ a, y 7→ b},
which is also a C -unifier, but the substitution σ = {x 7→ b, y 7→ a} is another C -
unifier, which is not a syntactic one.
F. Wolter and M. Zakharyaschev in [52] proved that unification problem is unde-
cidable for modal logics K u and K 4u which are modal logic K and K 4 extended
with the universal modality. They also proved that the admissibility problem
for inference rules is undecidable for these logics. In fact, these logics were the
first simple examples showing that the decidability of modal logics does not
guarantee decidability of unification and admissibility problems. V. Rybakov in
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[47] answered to the question whether admissibility in the logic S4u is decid-
able. Also, admissibility rules in S4 have been studied in [4] by S. Babenyshev
et al. They made a sound, complete and terminating tableau calculus deciding
both admissibility and derivability of a given rule in modal logic S4. Ç. Gencer
proved that a modal logicλ such thatλ⊇ K 4 andλpossesses finite model prop-
erty inherits all admissible rules in K 4 iffλ satisfies the so-called co-cover prop-
erty which is a semantic property about K 4-models [29].
For first time, S. Ghilardi introduced the notion of projectivity in [31] to deter-
mine that the unification type is finitary in S4 and K 4 (Also see [36]). Jěrábek in
[34] showed that the unification type is nullary in basic modal logic K . P. Bal-
biani et al. proved that unification type of modal logic K +��⊥ is finitary, or
unitary [12].
S. Babenyshev, V. Rybakov proved that unification type of a propositional Lin-
ear Temporal Logic is unitary. Moreover, they presented an algorithm for con-
structing a most general unifier for unifiable formulas in Linear Temporal Logic
(see [3]).
W. Dzik in [24] proved that if a logic has projective unifiers then it is almost
structurally complete. W. Dzik in [25] proved that every unifiable formula has
a projective unifier in L iff L contains S4.3 where L is a normal modal logic
containing S4. S. Kost [37] showed that a transitive normal modal logic L have
projective unification iff L contains K 4D1.
P. Balbiani and Ç. Gencer in [7] proved that unification type of modal logics K D
is nullary. They used the similar arguments of Jěrábek in [34]. In addition, P.
Balbiani and Ç. Gencer in [10] proved that unification type of Modal Logics Be-
tween K B and K T B are nullary. And they also proved that unification type of
several non-symmetric non-transitive modal logics are nullary [9].

The thesis presents results on unification and unification types in modal
logics K D5, K 5 and Al t1 +��⊥, in fusions of modal logics and in Dynamic
Epistemic logic.

Chapter 2 contains necessary basic notions of modal logic.
In Chapter 3, the admissibility of rules in modal logic S4 is investigated. In this
chapter we define a general reduced normal form. Then we transform an infer-
ence rule to a general reduced normal form. we present an algorithm inspired
by [44] for recognizing non-admissibility rules in logic S4. In this chapter, we
also consider sets of admissible rules and investigate about some properties of
them.
Chapter 4 contains the basic notion of unification. In this chapter, we review
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some of previous works and show that the unification type of modal logics K D5
and K 5 is unitary or nullary.
In Chapter 5, we prove that unification type of the logic Al t1 +��⊥ is unitary.
The proof follows from two statements. On the one hand, we prove that the
logic Al t1 +��⊥ is filtering hence it is nullary or unitary. On the other hand,
we prove that the logic Al t1 +��⊥ is reasonable then it is finitary or unitary.
Therefore, the logic Al t1 +��⊥ is unitary. In general, P. Balbiani et al. proved
that unification types of the modal logics determined by classes of determinis-
tic frames is unitary (see [11]). These results partly answer to an open problem
of S. Ghilardi (private communication, 2018). they will be presented during the
workshop UNIF [12].
Chapter 6 contains unification problem in fusion of two modal logics. Fusion
of modal logics are everywhere in computer science and artificial intelligence.
K. Fine and G. Schurz proved that some properties such as completeness and
decidability of modal logics L1 and L2 are inherited to the fusion L1 ⊗L2 [26].
See further about combining modal logics in [40]. In this chapter, we consider
fusion L1 ⊗L2 and prove that if L1 is nullary and L2 is a consistent modal logic
then the unification type of fusion L1⊗L2 is neither unitary nor finitary. For in-
stance, we prove that the unification type of fusion K1⊗K2 is nullary. As well, in
this chapter we prove that the unification type of multi-epistemic logic (fusion
of S51 ⊗S52) is nullary. (see [13]). This last result about S51 ⊗S52 is an answer
to an open problem of W. Dzik [22].
Chapter 7 contains unification in simple epistemic planning problem. In this
chapter, we solve the simple epistemic planning problem with unification tech-
nique. In this respect, we consider the associated formula A → 〈x〉B where A
and B are epistemic formula and x is a variable, we find a public announcement
ψ by unification technique such that A → 〈ψ〉B is valid in public announce-
ment logic. Then, we have to find a most general unifier for the associated for-
mula A →〈x〉B .



2 Basic Modal Logic

Contents
2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Normal Modal Logic . . . . . . . . . . . . . . . . . . . . . . . . 16

Modal logic is a type of formal logic primarily developed in the beginning of
the 20th century [41] and in the 1960 by [33]. It extended Classical Propositional
Logic by operators expressing modalities. The most well-known modal propo-
sitions are propositions about what is a necessary case and what is a possible
case. For example, the following sentences are modal propositions:

• It is possible that it will rain tomorrow.

• A proposition p is not possible if and only if the negation of p is necessary.

The operators "it is possible that" and "it is necessary that" are called "modal"
operators.

2.1 Syntax

The language of Basic Modal Logic is an extension of the classical propositional
syntax. The two unary connectives� and ♦ are added to the language of clas-
sical propositional logic. Let P is a countable set of atoms and we use the no-
tation p, q,r, ... for elements of P . The elements of P are also called atomic for-
mulas or propositional letters.

Definition 1 Formulas of basic modal logic are given by the following rule

ϕ ::= p | ⊥ | ¬ϕ | (ϕ∧ψ) |�ϕ

11
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where p is any atomic formula. We will also write formulas with lower case Greek
letter α,β, etc or with upper case Latin letter A,B , etc. We will write ϕ(p1, ..., pn)
(or α(p1, ..., pn), A(p1, ..., pn)) to insist on the fact that a formula only contains
the atomic formulas p1, ..., pn . We will also write ϕ(p) (or αp, A(p)) where p
denotes a tuple of atomic formulas. For all tuples x of atomic formulas, let F (x)
be the set of all formulas of the form ϕ(x).

The Boolean connective >,∨,→ and ↔ are defined as usual. In this case, the
diamond ("possible") connective is ♦ϕ ::=¬�¬ϕ. The new connectives� and
♦ are read "box" and "diamond" respectively and are dual of each other.
Substitution: Throughout this thesis we will use the notion of substitution. A
substitution is a function σ from P to the set of all formulas. By induction on
the formula ϕ, we can define the formula σ(ϕ) as follows:

• σ(p) = p,

• σ(⊥) =⊥,

• σ(¬ϕ) =¬σ(ϕ),

• σ(ϕ∧ψ) =σ(ϕ)∧σ(ψ),

• σ(�ϕ) =�σ(ϕ).

Definition 2 (Degree) We define the degree of modal formulas as follows.

• deg (p) = 0,

• deg (⊥) = 0,

• deg (¬ϕ) = deg (ϕ),

• deg (ϕ∧ψ) = max{deg (ϕ),deg (ψ)},

• deg (�(ϕ)) = 1+deg (ϕ).

An axiomatic system for a modal logic L consists of axioms and inference rules.
Axioms contain at least the Boolean tautologies and the axiom K :

• �(ϕ→ψ) → (�ϕ→�ψ).

The rules contain at least modus ponens and necessitation:
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•
ϕ,ϕ→ψ

ψ

•
ϕ

�ϕ
.

The theorems of a logic are all the formulas which can be derived from the ax-
ioms by the inference rules. To make a new axiomatic system we need to add
axioms and inference rules to the above minimal axiomatic system. Let us de-
fine inference rules and we will investigate about admissible rules in chapter
3.

Definition 3 An inference rule is usually given as a finite set of premise and a
conclusion. The rule is denoted as follows:

r = α1(x1, ..., xn), ...,αk (x1, ..., xn)

β(x1, ..., xn)

Where α1, ...,αk ,β are formulas. We often use r = α

β
briefly.

Definition 4 For a formulaϕ, we denote by sub(ϕ) the set of all sub-formulas of

ϕ. For a rule r = α

β
, we denote by sub(α,β) the set of all sub-formulas of α and

β.

Definition 5 A rule r = α

β
is admissible for the modal logic L, if for every substi-

tution from σ(α) ∈ L it follows σ(β) ∈ L.

2.2 Semantics

In this section, we introduce frames and models and we explain how to deter-
mine whether a given formula is true or false in a given model.

Definition 6 A frame F in basic modal logic is a pair 〈W,R〉 such that

1. W is a non-empty set.

2. R is a binary relation on W .

That is, a frame for the basic modal language is simply a relational structure
bearing a single binary relation. The elements of W are called "possible worlds"
or "states". The binary relation R is called "accessibility relation".
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Definition 7 A model for the basic modal language is a pair M = (F ,ν), where
F = (W,R) is a frame for the basic modal language and ν is a function assigning
to each proposition letter p in P a subset ν(p) of W . Formally ν : P → P (W ),
where P (W ) denotes the power set of W .

Definition 8 Suppose w is a state in a model M = 〈W,R,ν〉. Then we induc-
tively define the notion of a formulaϕ being satisfied (or true) in M at state w as
follows:

• M , w � p iff w ∈ ν(p), where p ∈ P,

• M , w 2⊥,

• M , w �¬ϕ iff M , w 2ϕ,

• M , w �ϕ∧ψ iff M , w �ϕ and M , w �ψ,

• M , w ��ϕ if and only if for all v ∈W , wRv and M , v �ϕ.

It follows from this definition that M , w � ♦ϕ iff for some v ∈ W we have wRv
and M , v �ϕ.

If M does not satisfy ϕ at w we often write M , w 2ϕ, and say that ϕ is false or
refuted in w . For all formulas ϕ, let ν(ϕ) = {w ∈W : M , w �ϕ}.

Definition 9 A formula ϕ is valid at a state w in a frame F (notation: F , w �
ϕ) if ϕ is true at w in every model (F ,ν) based on F ; ϕ is valid in a frame F

(notation F �ϕ) if it is valid at every state in F . A formula ϕ is valid in a class
of frames F (notation: F � ϕ) if it is valid in every frame F in F ; and it is valid
(notation: �ϕ) if it is valid in the class of all frame. The set of all formulas that
are valid in a class of frames F is called the logic of F (notation: ΛF ).

Definition 10 The inference rule r = α

β
is valid in model M iff M � α implies

M �β.

In this thesis we will consider the modal logics K ,K D,S4,S5, etc. For example,
accessibility relation in logic S5 is transitive, reflexive and Euclidean.

Proposition 1 Let F = (W,R) be a frame, then

1. R is reflexive if and only if F ��p → p,
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2. R is transitive if and only if F ��p →��p,

3. R is Euclidean if and only if F �♦p →�♦p

Proof 1 refer to [18], Example 3.6.

Definition 11 We first define "disjoint unions" for the basic modal language. We
say that two models are disjoint if their domains contain no common elements.
For disjoint models Mi = (Wi ,Ri ,νi )(i ∈ I ), their disjoint union is the structure⊎

i Mi = (W,R,ν), where W is the union of the sets Wi , Ri s the union of the rela-
tions Ri , and for each proposition letter p, ν(p) =⊎

i∈I νi (p).

Proposition 2 For each modal formula ϕ, for each i ∈ I , and each element w of
Mi , we have Mi , w �ϕ iff

⊎
i∈I Mi , w �ϕ.

Proof 2 Refer to [18], proposition 2.3.

Definition 12 (Generated Submodels)We define generated submodels for the
basic modal language. Let M = (W,R,ν) and M ′ = (W ′,R ′,ν′) be two mod-
els; we say that M ′ is a sub-model of M if W ′ ⊆ W , R ′ is the restriction of R
to W ′ (that is: R ′ = R ∩ (W ′×W ′)), and ν′ is the restriction of ν to W ′ (that is:
for each p, ν′(p) = ν(p)∩W ′). We say that M ′ is a generated submodel of M

(notation:M ′�M ) if M ′ is a submodel of M and for all points w the follow-
ing condition holds:

if w is in M ′ and wRv, then v is in M ′.

Proposition 3 Let M and M ′ be models such that M ′ is a generated submodel
of M . Then, for each modal formula ϕ and each element w of M ′ we have that
M , w �ϕ iff M ′, w �ϕ.

Proof 3 Refer to [18], proposition 2.6.

Definition 13 (Bounded Morphisms) Let M = (W,R,ν) and M ′ = (W ′,R ′,ν′)
be models. for the basic modal language. A mapping f : M →M ′ is a bounded
morphism if it satisfies the following conditions:

1. w and f (w) satisfy the same proposition letters.

2. (The forth condition) f is a homomorphism with respect to the relation R
(that is, if wRv then f (w)R ′ f (v).
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3. (The back condition) if f (w)R ′v ′ then there exists v such that wRv and
f (v) = v ′.

If there is a surjective bounded morphism from M to M ′, then we say that M ′ is
a bounded morphic image of M , and write M�M ′.

Proposition 4 Let M and M ′ be models such that f : M → M ′ is a bounded
morphism. Then, for each modal formula ϕ, and each element w ∈M , we have
M , w �ϕ iff M ′, f (w)�ϕ.

Proof 4 Refer to [18], proposition 2.14.

Definition 14 Let M = (W,R,V ) be a model. A subset X of W is called definable
(or expressible) iff there exists a formula α such that

X =V (α).

An element x ∈ W is definable (or expressible) if the set {x} is definable. Let S
be a new valuation of certain propositional variables on the frame (W,R). The
valuation S is called definable (or expressible) if and only if for any letter pi from
the domain of S, there exists a formula αi such that S(pi ) =V (αi ).

2.3 Normal Modal Logic

A normal modal logic is simply a set of formulas satisfying certain syntactic clo-
sure conditions. Which conditions? We will define a Hilbert-style axiom system
called K . K is the "minimal" (or weakest) system for reasoning about frames;
stronger systems are obtained by adding extra axioms. We discuss K in some
detail, and then, at the end of the section, define normal modal logics.

A formula ϕ is K -provable if it occurs as the last item of some K -proof, and
if this is the case we write `K ϕ. K is the minimal modal Hilbert system in the
following sense. As we have seen, its axioms are all valid, and all three rules of
inference preserve validity, hence all K -provable formulas are valid. (K is sound
with respect to the class of all frames.) Moreover, the converse is also true: if
a basic modal formula is valid, then it is K -provable. (That is, K is complete
with respect to the class of all frames.) In short, K generates precisely the valid
formulas.
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Definition 15 (Normal Modal Logics) A normal modal logicΛ is a set of formu-
las that contains all Boolean tautologies, all formula of the form �(ϕ→ ψ) →
(�ϕ→�ψ), modus ponens

ϕ,ϕ→ψ

ψ
and necessitation

ϕ

�ϕ
. We call the small-

est normal modal logic K .

Definition 16 A proof is a finite sequence of formulas, each of which is an ax-
iom, or follows from one or more earlier items in the sequence by applying a rule
of proof . The axioms of K are all instances of propositional tautologies plus:
(K )�(ϕ→ψ) → (�ϕ→�ψ). Its rules of proof are modus ponens and necessita-
tion.

Example 1 1. (�p ∧♦q) →♦(p ∧q) is K -provable.

2. ♦(p ∨q) ↔ (♦p ∨♦q) is K -provable.

In this thesis, we will consider the following modal logics:

K 4 K ⊕�p →��p
S4 K 4⊕�p → p
S5 S4⊕♦p →�♦p

K D K ⊕�p →♦p
K D5 K D ⊕♦p →�♦p
K 45 K 4⊕♦p →�♦p

Definition 17 Let n> 0. A Kripke model Kn = (W,R,V ) is called n-characterizing
for a modal logic L (any normal modal logic)if the domain of the valuation V
from Kn is the set P which consists of n different propositional variables, and if
the following holds: for any formula α which is build up of variables from P

α ∈ L ⇔ Kn �α

Let L be a logic. Let Γ be a set of formulas and A be a formula. A derivation of
A from Γ in L is a finite sequence A1, ..., An of formulas such that An = A and
every formula in the sequence either is in L, or is in Γ, or is obtained by means
of modus ponens rule from previous formulas in the sequence, or is obtained
by means of necessitation rule from a previous formula in the sequence. We
will write Γ`L A if there exists a derivation of A from Γ in L.
If Γ= {B1, ...,Bm} is finite that we will write B1, ...,Bm `L A.
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Definition 18 An inference rule r = α

β
is called derivable in logic L if α`L β.

We say that a frame F is a frame for modal logic L (or is an L-frame) if F � L.

Definition 19 A rule r1 is semantically equivalent to a rule r2 in modal logic L
iff F � r1 iff F � r2 for any L-frame F .
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The concept of an admissible rule was introduced by Paul Lorenzen (1955).
The admissible rules of a logic are the rules that can be added to the logic as in-
ference rules without producing any new theorems. Equivalently, they are rules
such that if the premises are made into theorems by any substitution then this
substitution also makes the conclusion into a theorem. Admissible rules have
been studied by many authors in particular, V. Rybakov. One important ques-
tion about admissible rules of a given logic is whether the set of all admissible
rules is decidable. Note that the problem is non-trivial even if the logic itself is
decidable. For instance, the basic modal logic K is decidable and the decidabil-
ity of the problem of admissibility in K is a major open problem. Modal Logic
S4 is decidable and the problem of admissibility in S4 is decidable as proved
by V. Rybakov (1985). In fact, admissibility of rules is known to be decidable
in many modal and superintuitionistic logics. The first algorithm or decision
procedures to recognize admissibility of rules was introduced by V. Rybakov
(1984,1985).

Example 2 The rule �x
x is admissible in logic S4 since if `S4 �σ(x) then ` σ(x)

for arbitrary substitution σ.

There is a strong relation between admissibility and unification. Suppose L is a

modal logic (K 4,S4,etc). Let
A

B
be an inference rule. So,

A

B
is non-admissible

iff there exists a substitution σ such that σ(A) ∈ L and σ(B) ∉ L. When L is
unitary or finitary, unifiable formulas possess finite minimal complete sets of
unifiers. As a result, when L is decidable and when minimal complete sets of

19
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unifiers can be computed for any arbitrary given unifiable formula, then the
non-admissibility problem in L can be decided as follows:

• given a rule
A

B
,

• check whether A in L-unifiable,

• if A is no L-unifiable then answer "rule
A

B
is L-admissible"

• otherwise, compute a minimal complete set Σ = {σ1, ...,σn} of L-unifiers
of A and for all i = 1, ...,n check whether σi (B) ∈ L,

• if for all i = 1, ...,n, σi (B) ∈ L then answer "rule
A

B
is L-admissible",

• otherwise answer "rule
A

B
is non-L-admissible".

As can be seen from this algorithm, when L is decidable, when L-unification is
decidable, when L is either unitary or finitary and when one can compute the
minimal complete sets of L-unifiers for any given unifiable formula than the
above algorithm decides L-admissibility.
Conversely, L-unification can be reduced to non-L-admissibility seeing that for
all consistent modal logic L (it does not matter what is the unification type of

L), a given formula A is unifiable in L iff the inference rule
A

⊥ is non-admissible

in L.

3.1 Syntactic criteria for admissibility in S4

In this section first we introduce the notion of admissibility for inference rules
and also some properties in the logic S4. Then we provide some theorems and
an algorithm introduced by V. Rybakov [44] which are used for recognizing the
admissibility of inference rules in modal logic S4. Historically this algorithm is
the first algorithm for recognising admissible rules of modal logic S4. In this
respect, we need to define the notion of reduced normal form.

Definition 20 A rule r is said to be in reduced normal form if it has the form
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r =

∨
16 j6s

φ j

x0

where each disjunct φ j has the form

φ j =
∧

06i6n
x t (i , j ,0)

i ∧ ∧
06i6n

(♦xi )t (i , j ,1)

and

1. s and t are integers,

2. All φ j are different,

3. x0, ..., xn are propositional variables,

4. t is a Boolean function t : {0, ...,n}× {1, ..., s}× {0,1} → {0,1},

5. α0 =¬α and α1 =α for any formula α.

Example 3 The rule r = (x2 ∧♦x2)∨ (¬x3 ∧♦x3)

x1
is a rule in reduced normal

form.

We usually use the notation rf(r) when a rule in reduced normal form obtained
from r . Let us see, how to convert an inference rule to its reduced normal form.
Also this method has been introduced by V. Rybakov.

Proposition 5 If an inference rule is derivable in L then the rule is admissible for
L.

Proof 5 Suppose that α1(x1, ..., xn), ...,αm(x1, ..., xn) `L β(x1, ..., xn). Consider a
substitution ν, ν(xi ) = γi (γi is a L-formula) such that for every j , the inclusion
α j (x1, ..., xn) ∈ L holds. We take an arbitrary derivation S of β from α1, ...,αm

in L. Furthermore, we choose the substitution ω which coincides with ν on the
domain Dom(ν) of ν and maps any letter lying not in Dom(ν) onto β, say. The
sequence S ω, obtained from S by applying ω to each their members, will be a
derivation in L from the empty set of hypothesis. Indeed, under substitution ω

all hypothesis will turn into theorems of L, the set of theorems of is closed with
respect to substitutions, and all inference rules are structural (consistent with
substitutions). Thus `L β

ν, that is β(γ1, ...,γn) ∈ L.
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Lemma 1 Any valid inference rule r = α

β
in modal logic S4 is admissible for S4.

Proof 6 Refer to [44], Lemma 3.1.5.

Example 4 Let x be a propositional variable

• The rule r = �x

x
is derivable and admissible in S4. Be more concise: since

`S4 �x → x then the rule r is derivable. Thus the rule r is admissible by
Lemma 1.

• The rule r = �♦x

♦�x
is not admissible and not derivable in S4. A substitution

which can be used to show that the rule non-admissible is σ(x) = x →�x.
Hence, `S4�♦σ(x) and 0S4 ♦�σ(x).
Let us see why `S4�♦(x →�x) and 0S4 ♦�(x →�x). Since, ♦(x →�x) is
equivalent to�x →♦�x and

– `S4�x →♦�x. Then,

– `S4 ♦(x →�x). By necessitation,

– `S4�♦(x →�x). But

– 0S4 ♦�(x →�x). Let us see why 0S4 ♦�(x →�x). Consider the fol-
lowing model M where the accessibility relation is the reflexive and
transitive closure of the one shown by the arrows. Hence, M ,12♦�(x →
�x).

1

23

x¬x

Therefore, the rule r = �♦x

♦�x
is not admissible and by Lemma 1 is not

derivable.
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– The rule r = ♦x ∧♦¬x

⊥ is admissible in S4 but it is not derivable in

S4 [27].

Lemma 2 There exists an algorithm which for any given inference rule r in the
language of modal propositional logic, constructs a suitable reduced normal
form rf(r).

Proof 7 Let r = α
β

be a rule. We need a set of new variables {zγ | γ ∈ sub(α,β)}.
Let us consider the following steps:

• Step 1: replace r = α
β with r1 = α∧(zβ↔β)

zβ
.

• Inductive step: suppose the rule ri = γi

zβ
was obtained in the i -th step. Find

δ ∈ sub(γi ) ∩ sub(α,β) when δ is not a variable and not a proper sub-
formula of any other formula in sub(γi )∩ sub(α,β). δ is called final. At
the end, replace the rule ri with a new one ri+1 = γi+1

zβ
, namely

γi+1 = zα∧
∧

γ∈Sub(α,β)\V ar (r )
(zγ↔ γ~)

where

γ~ =
{

zδ∨ zε, when γ= δ∨ε
∗δ, when γ=∗δfor ∗ ∈ {¬,♦}

Therefore after a finite number of steps we get a premise γk , which is a
Boolean combination of literals of the form x or ♦x, where x is proposi-
tional variable.

• Final step: we transform the premise of the obtained rule rN = γk

zβ
into an

equivalent disjunctive normal form over literals

It is easy to show that the reduced normal form of inference rule is equivalent
to the original rule.
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Definition 21 A rule r1 is equivalent by admissibility to a rule r2 in a logic S4 if
r1 is admissible in S4 iff r2 is admissible in S4.

Lemma 3 For any inference rule r , r is semantically equivalent to rf(r) in S4.

Proof 8 Refer to [44], Lemma 3.1.8.

Corollary 1 A rule r is valid in modal logic S4 iff the rule rf(r) is valid in S4.

Proof 9 Refer to [44], corollary 3.1.9.

Suppose r =

∨
16 j6s

φ j

x0
is a rule as defined in 20. Let Θ(r ) = {φ1, ...,φs} be the set

of all disjuncts of premise of r . Notice that if φi and φ j are distinct elements of
Θ(r ) then φi ∧φ j is logically equivalent to ⊥. For every φ j ∈Θ(r ), let

θ(φ j ) = {xi | t (i , j ,0) = 1} and θ♦(φ j ) = {xi | t (i , j ,1) = 1}

In fact, θ(φ j ) is the set of variables of r with positive occurrence in φ j , and
θ♦(φ j ) is the set of variables xi of r with the positive occurrence of ♦xi in φ j .

To express the main theorem, we need to define a new model that is as-
sociated to r and to an arbitrary non-empty subset W of Θ(r ). We construct
M (Θ(r )) = (W,R,ν) for every non-empty subset W ofΘ(r ) as follows:

• W ⊆Θ(r ),

• φi Rφ j ⇔ θ♦(φ j ) ⊆ θ♦(φi ) for any φi ,φ j ∈W ,

• pi ∈ ν(φ j ) ⇔ xi ∈ θ(φ j ) for any φi ∈W .

Now, we have all required tools to express main theorem which says a rule is
admissible or non-admissible in logic S4.

Theorem 1 A rule r =

∨
16 j6s

φ j

x0
in reduced normal form is admissible for modal

logic S4 iff for any non-empty set W ⊆Θ(r ), the model M (Θ(r )) fails to have at
least one of the following properties.

1. There is φ j ∈W such that M (Θ(r )),φ j 2 x0.

2. M (Θ(r )),φ j �φ j for all φ j ∈W .
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3. For any subset D of W there exists φ j ∈W such that

θ♦(φ j ) = θ(φ j )∪ ⋃
φ∈D

θ♦(φ).

Proof 10 refer to [44], Theorem 3.9.6.

Thanks to Theorem 1 it is possible to construct an algorithm for deciding ad-
missibility in S4. Let us use an example to illustrate Theorem 1:

Example 5 Consider the rule r = ♦x ∧♦¬x

⊥ . We show that this rule is admis-

sible. In order to use 1, we should transform the rule r to a rule in reduced
normal form. Hence, we use Lemma 2 to find rf(r). Then, we have r f (r ) =
¬x ∧¬y0 ∧ y1 ∧ y2 ∧♦x ∧♦y2

y0
. Let φ1 =¬x ∧¬y0 ∧ y1 ∧ y2 ∧♦x ∧♦y2 and W =

{¬x ∧¬y0 ∧ y1 ∧ y2 ∧♦x ∧♦y2}. Let us check the conditions of Theorem 1.

1. As you see, y0 is as conclusion of the rule rf(r) and M (Θ(r )),φ1 2 y0.

2. let us prove that M (Θ(r )),φ1 2 φ1. Suppose M (Θ(r )),φ1 � ♦x then, we
must have M (Θ(r )),φ1 � x. This is in contradiction to M (Θ(r )),φ1 �¬x.

3. Let D = ;. We have θ♦(φ1) = {x, y2} and θ(φ1) = {y1, y2} then, θ♦(φ1) 6=
θ(φ1). Thus, θ♦(φ1) 6= θ(φ1) i.e the third condition of Theorem 1 failed.

First condition of Theorem 1 holds but second and third conditions of Theorem
1 do not hold. Therefore, the rule r is admissible.

Let us consider a general form when we transform a given rule r to reduced
normal form rf(r) and rf(r) has only two variables. In this case, the premise of
rule rf(r) will be subset of the following 16 formulas. Let the rule rf(r) be as

r f (r ) =

∨
i∈I
φi

x1
where I ⊆ {1, ...,16} and φ1 to φ16 are as follows:

φ1 = x1 ∧x2 ∧♦x1 ∧♦x2

φ2 = x1 ∧¬x2 ∧♦x1 ∧♦x2

φ3 =¬x1 ∧x2 ∧♦x1 ∧♦x2

φ4 =¬x1 ∧¬x2 ∧♦x1 ∧♦x2

φ5 = x1 ∧x2 ∧♦x1 ∧¬♦x2

φ6 = x1 ∧¬x2 ∧♦x1 ∧¬♦x2

φ7 =¬x1 ∧x2 ∧♦x1 ∧¬♦x2
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φ8 =¬x1 ∧¬x2 ∧♦x1 ∧¬♦x2

φ9 = x1 ∧x2 ∧¬♦x1 ∧♦x2

φ10 = x1 ∧¬x2 ∧¬♦x1 ∧♦x2

φ11 =¬x1 ∧x2 ∧¬♦x1 ∧♦x2

φ12 =¬x1 ∧¬x2 ∧¬♦x1 ∧♦x2

φ13 = x1 ∧x2 ∧¬♦x1 ∧¬♦x2

φ14 = x1 ∧¬x2 ∧¬♦x1 ∧¬♦x2

φ15 =¬x1 ∧x2 ∧¬♦x1 ∧¬♦x2

φ16 =¬x1 ∧¬x2 ∧¬♦x1 ∧¬♦x2

According to the definition of model M (Θ(r )), we have
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φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8

φ9

φ10

φ11

φ12

φ13

φ14

φ15

φ16

x1, x2

x2

x1

x1, x2

x1, x2

x1

x2

x2

x1

x1, x2

x1

x2

This model is the model M (Θ(r )) associated to the rule r =

∨
i∈I
φi

x1
when I = {1, ...,16} and

W = {φ1, ...,φ16}.

Remark 1 In the model of the rule r =

∨
i∈I
φi

x1
when I = {1, ...,16}, notice that

when M (Θ(r )),φi �φi , we show φi like a reflexive point, otherwise it is irreflex-
ive point.
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Remark 2 The rule r =

∨
i∈I
φi

x1
when I = {1, ...,16} is non-admissible.

φ1

φ2

φ3

φ4

φ6φ8 φ11 φ12

φ16

This model is the model M (Θ(r )) associated to the rule r =

∨
i∈I
φi

x1
when

I = {1,2,3,4,6,8,11,12,16} and W = {φ1,φ2,φ3,φ4,φ6,φ8,φ11,φ12,φ16}.

Remark 3 Notice that any rule in reduced normal form as r f (r ) =

∨
i∈I
φi

x1
such

that {φi : i ∈ I } contains at least one of sets {φ1,φ3}, {φ1,φ4}, {φ3,φ6}, {φ6,φ8},
{φ11} and {φ16} is non-admissible. Since these rules satisfy all conditions of The-
orem 1. Let us see an example.

Example 6 Consider a rule in reduced normal form as r f (r ) =
∨
φi

x1
which con-

tains one of the above sets. Let us find which substitutions are appropriate to
make this rule non-admissible.
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1. Let r f (r ) =

∨
i∈I
φi

x1
be a rule in reduced normal form such that its premise

contains {φ1,φ3}. Hence the rule r f (r ) =
∨
φ j ∨φ1 ∨φ3

x1
where φ1 = x1 ∧

x2 ∧♦x1 ∧♦x2 and φ3 =¬x1 ∧ x2 ∧♦x1 ∧♦x2. Let us check all conditions
of Theorem 1. Let W = {φ1,φ3}.
Since θ♦(φ1) = θ♦(φ3) then, φ1 and φ3 can see each other. Also, x1, x2 ∈
ν(φ1) and ¬x1, x2 ∈ ν(φ3). Hence, we have the model M (Θ(r )) associated
to the rule and W ia as follows:

φ1

φ3

x1, x2

¬x1, x2

• First condition holds. Since, p1 ∉ ν(φ3) then by definition of model
M (Θ(r )) we have, M (Θ(r )),φ3 2 x1.

• Second condition holds. Since, x1, x2 ∈ ν(φ1) then, M (Θ(r )),φ1 �
x1 ∧ x2 and M (Θ(r )),φ1 � ♦x1 ∧♦x2. Then M (Θ(r )),φ1 � x1 ∧ x2 ∧
♦x1 ∧♦x2. Thus,M (Θ(r )),φ1 � φ1. Also since ¬x1, x2 ∈ ν(φ3) then,
M (Θ(r )),φ3 �¬x1∧x2. Since,φ3Rφ1 and M (Θ(r )),φ1 � x1, M (Θ(r )),φ1 �
x2 thus,M (Θ(r )),φ3 �φ3.

• Third condition holds. We only check the case D =;. Since, θ♦(φ1) =
{x1, x2}, θ(φ1) = {x1, x2} then θ♦(φ1) = θ(φ1). As the reader can see, for
all other D ⊆W , the third condition holds.

This means that the rule is not admissible in S4. So, now, it is time to find
an appropriate substitution showing that the rule is not S4-admissible.
Obviously, φ1 ∨φ3 is S4-equivalent to x2 ∧♦x1. Hence, we need a substi-
tution σ such that 0 σ(x1) and ` σ(x2)∧♦σ(x1). It is possible to consider
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σ(x2) = > and also the following tablet lists some substitutions σ which
satisfy the conditions 0σ(x1), `♦σ(x1).
For example, ifσ is a substitution such thatσ(x2) => andσ(x1) = x →�x,
then, `σ(x2), `♦σ(x1) and 0σ(x1) in S4. So, σ is a substitution showing

the rule

∨
φ j ∨φ1 ∨φ3

x1
is not S4-admissible.

x →�x ♦x →♦�♦x �(♦x →�♦x)
x →�♦x ♦�x →�♦�x �(♦x →♦�♦x)
x →♦�x ♦�♦x →�♦x �(♦�x →�♦�x)

x →�♦�x �(x →�♦x) �(♦�♦x →�♦x)
x →♦�♦x �(x →♦�♦x) �♦(x →�♦�x)
♦x →�♦x �(�x →�♦�x) �♦(♦x →�♦x)

2. Let r f (r ) =
∨
φi

x1
such that

∨
φi contains φ1 ∨φ4. The rule rf(r) is non-

admissible and satisfies the condition 1 to 3 of Theorem 1. But which sub-
stitution is appropriate for this rule?

Obviously, φ1 ∨φ4 is S4-equivalent to (♦x1 ∧♦x2)∧ (x1 ↔ x2). We need a
substitution σ such that 0σ(x1), `♦σ(x1) and `♦σ(x2). For this case, we
can use the above table as well.

3. Let r f (r ) =
∨
φi

x1
such that

∨
φi contains φ3 ∨φ6. The rule rf(r) is non-

admissible and satisfies the condition 1 to 3 of Theorem 1. But which sub-
stitution is appropriate for this rule?

Obviously, φ3 ∨φ6 is S4-equivalent to ♦x1 ∧ (¬x1 ↔ x2)∧ (¬x1 ↔ ♦x2)∧
x1 ↔ �x1). Hence we need a substitution σ which has the properties 0
σ(x1), `♦σ(x1), `¬σ(x1) ↔σ(x2) and `σ(x1) ↔�σ(x1) and `¬σ(x1) ↔
♦σ(x2).

4. Let r f (r ) =
∨
φi

x1
such that

∨
φi contains φ6 ∨φ8. The rule rf(r) is non-

admissible and satisfies the condition 1 to 3 of Theorem 1. But which sub-
stitution is appropriate for this rule?

Obviously,φ6∨φ8 is S4-equivalent to♦x1∧¬♦x2. Hence we need a substi-
tution σ which has the properties 0σ(x1), `♦σ(x1) and `¬♦σ(x2). σ(x1)
can be any member of the above table and σ(x2) =⊥.



3.2. GENERALIZED REDUCED NORMAL FORM 31

5. Let r f (r ) =
∨
φi

x1
such that

∨
φi containsφ11. The rule rf(r) is non-admissible

and satisfies the condition 1 to 3 of Theorem 1. But which substitution is
appropriate for this rule?

Obviously, φ11 is S4-equivalent to ¬♦x1 ∧ x2. We need a substitution σ

such that 2 σ(x1), ` ¬♦σ(x1) and ` σ(x2). For this case, we can consider
σ(x1) =⊥ and σ(x2) =>.

6. Let r f (r ) =
∨
φi

x1
such that

∨
φi containsφ16. The rule rf(r) is non-admissible

and satisfies the condition 1 to 3 of Theorem 1. But which substitution is
appropriate for this rule?

Obviously, φ16 is S4-equivalent to ¬♦x1 ∧¬♦x2. We need a substitution σ
such that 2 σ(x1), ` ¬♦σ(x1) and ` ¬♦σ(x2). For this case, we can con-
sider σ(x1) =σ(x2) =⊥.

3.2 Generalized reduced normal form

At the previous section, we discussed Rybakov’s results on the admissibility

condition of any given rule in reduced normal form as r f (r ) =

∨
i∈I
φi

x0
. In this

section, we generalize the definition of reduced normal form. Also, in this sec-
tion, we express some criteria that a set of rules in this general reduced normal
form may have and see how these criteria can help to decide S4-admissibility.
In this respect, we define general reduced normal form as follows:

Definition 22 A rule r is in general reduced normal form if it has the form

r =

∨
j∈I
φ j∨

j∈J
φ j

where each disjunct φ j has the form

φ j =
∧

06i6n
x t (i , j ,0)

i ∧ ∧
06i6n

(♦xi )t (i , j ,1)

and
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1. J ⊂ I

2. All φ j are different,

3. x0, ..., xn are propositional variable,

4. t is a Boolean function t : {0, ...,n}× {1, ..., s}× {0,1} → {0,1},

5. α0 =¬α and α1 =α for any formula α.

6. Θ(r ) = {φ j : j ∈ I }.

Lemma 4 There exists an algorithm which for any given inference rule r in the
language of modal propositional logic, constructs a suitable general reduced nor-
mal form rf(r).

Proof 11 Let r = α
β be a rule. We need a set of new variables {zγ | γ ∈ Sub(α)} and

{z ′
γ | γ ∈ Sub(β)}. Let us consider the following steps:

• Step 1: replace r = α
β

with r1 = α∧(zα↔α)
β∧(z ′

β
↔β) .

• Suppose the rule ri = γi
χi

was obtained in the i th step. Find δ ∈ sub(γi )∩
sub(α) and δ′ ∈ sub(χi )∩ sub(β) when δ and δ′ are not a variable and
not a proper sub-formula of any other formula in Sub(γi )∩ sub(α) and
Sub(χi )∩ sub(β). δ and δ′ are called final. At the end, replace the rule ri

with the new one ri+1 = γi+1
χi+1

, namely

γi+1 = zα∧
∧

γ∈Sub(α)\V ar (r )
(zγ↔ γ~) and

χi+1 = z ′
β
∧ ∧
γ∈Sub(β)\V ar (r )

(zγ↔ γ⊕)

where

γ~ =
{

zδ∨ zε, when γ= δ∨ε
∗δ, when γ=∗δfor ∗ ∈ {¬,♦}

and
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γ⊕ =
{

z ′
δ
∨ z ′

ε, when γ= δ′∨ε′
∗δ′, when γ=∗δ′for ∗ ∈ {¬,♦}

Therefore after a finite number of steps we get a premise γk and a conclu-
sion χk , which is a Boolean combination of literals of the form x or ♦x,
where x is propositional variable.

• Final step: we transform the premise and conclusion of the obtained rule

rN = γk

qβ
into an equivalent disjunctive normal form over literals.

We have seen in Theorem 1 that V. Rybakov gave a simple criterion for the ad-
missibility of inference rules. We want to extend Theorem 1 to inference rules
in general reduced normal form.

Definition 23 Let M = (W,R,V ) be an S4-model. Let S be a valuation on W . We
say that S is a definable valuation if there exists a substitution σ such that for all
propositional variable x, for all w ∈W , w ∈ S(x) iff M , w �σ(x).

Lemma 5 Let M = (M ,R,V ) be a S4-model. Let S be a valuation on M.

1. If σ is a substitution and S(xi ) = V (σ(xi )), then S is a definable valuation
such that S(α) = V (σ(α)) for each formula α, that is (M ,R,S), w � α iff
(M ,R,V ), w �σ(α) for each w ∈ M.

2. If for each variable xi there is a formulaφi such that for all w ∈ M, (M ,R,S), w �
xi iff (M ,R,V ), w � φi , and if σ is the substitution such that for each xi ,
σ(xi ) =φi then for each formulaα, S(α) =V (σ(α)), that is to say (M ,R,S), w �
α iff (M ,R,V ), w �σ(α) for each w ∈ M.

3. If σ is a substitution, S is a definable valuation for which S(α) = V (σ(α))
for each formula α, r := α1,...,αm

β
is a rule and σ(r ) := σ(α1),...,σ(αm )

σ(β) then r is
valid in (M ,R,S) iff σ(r ) is valid in (M ,R,V ).

Proof 12 1. By induction on α:
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• (⇒) Let α = xi . Let (M ,R,S), w � xi . Since, S(xi ) = V (σ(xi )) then,
(M ,R,V ), w �σ(xi ).

(⇐) Let (M ,R,V ), w �σ(xi ).Since, S(xi ) =V (σ(xi )) then, (M ,R,S), w �
xi .

• (⇒) Let α= (ϕ∧ψ). Let (M ,R,S), w � (ϕ∧ψ). Hence, (M ,R,S), w �ϕ
and (M ,R,S), w � ψ. By induction hypothesis, (M ,R,V ), w � σ(ϕ)
and (M ,R,V ), w �σ(ψ). Then, (M ,R,V ), w � (ϕ∧ψ).

(⇐) Let (M ,R,V ), w �σ(ϕ∧ψ). Then, (M ,R,V ), w �σ(ϕ) and (M ,R,V ), w �
σ(ψ). By induction hypothesis, (M ,R,S), w �ϕ and (M ,R,S), w �ψ.
Hence, (M ,R,S), w � (ϕ∧ψ).

• (⇒) Let α = ♦ϕ. Let (M ,R,S), w � ♦ϕ. Let w ′ ∈ M such that wRw ′

and, (M ,R,S), w ′ �ϕ. By induction hypothesis, (M ,R,V ), w ′ � σ(ϕ).
Then, (M ,R,V ), w �♦σ(ϕ).

(⇐) Let (M ,R,V ), w �♦σ(ϕ). Let w ′ ∈ M such that wRw ′ and, (M ,R,V ), w ′ �
σ(ϕ). By induction hypothesis, (M ,R,S), w ′ �ϕ. Then, (M ,R,S), w �
♦ϕ.

The proof of (2) can be done by induction on α and the proof of (3) by using (1)
and (2).

Theorem 2 Let (Kn ,Rn ,Vn)n∈N be a sequence of n-characterizing models for S4

(see Definition 17). Inference rules r1 := α11,...,α1m1
β1

, ...,rk := αk1,...,αkmk
βk

are inad-
missible in S4 with the same substitution σ iff r1, ...,rk are invalid in (Kn ,Rn ,S)
for some n ∈ N and some definable valuation S of variables from r1, ...,rk in Kn

(that is, If S(αi j ) = Kn and S(βi ) 6= Kn for i = 1, ...,k and j = 1, ...,mi ).

Proof 13 (⇒) Suppose r1, ...,rk are not admissible in S4 with the same substitu-
tion σ. Let σ be a substitution such that `S4 σ(αi j ) and 0S4 σ(βi ) for i = 1, ...,k
and j = 1, ...,mi . Let the number of propositional variable occurring in σ(αi j )
and σ(βi ) be n. Hence we have for i = 1, ...,k and j = 1, ...,mi , (Kn ,Rn ,Vn) �S4

σ(αi j ) and (Kn ,Rn ,Vn)2S4 σ(βi ) by definition of n-characterizing models. Let S
be a valuation on Kn such that S(xi ) = V (σ(xi )) for i = 1, ...,n. Hence, since S is
definable and (Kn ,Rn ,Vn) �S4 σ(αi j ) and (Kn ,Rn ,Vn) 2S4 σ(βi ), then, S invali-
date ri . Therefore, r1, ...,rk are invalid in (Kn ,Rn ,S).
(⇐) Suppose r1, ...,rk are invalid in (Kn ,Rn ,S) with the definable valuation S
for some n ∈ N. Then by the part 2 of Lemma 5, there is a substitution σ for
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each variable xi in r1, ...,rk such that S(xi ) = Vn(σ(xi )). Hence by definition
of the truth of formulas in Kripke models we obtain, S(αi j ) = Vn(σ(αi j )) and
S(βi ) = Vn(σ(βi )) for i = 1, ...,k and j = 1, ...,mi . Thus, (Kn ,Rn ,Vn) �S4 σ(αi j )
and (Kn ,Rn ,Vn) 2S4 σ(βi ). Since, Kn is n-characterizing model then, `S4 σ(αi j )
and 0S4 σ(βi ). Therefore r1, ...,rk are not admissible in S4 with the same substi-
tution σ.

Before presenting our main theorems that gives a characterisation of admissi-
ble rules in reduced normal form, we need the following technical important
lemma.

In Lemma 6, we consider the rule

∨
i∈I
φi∨

j∈J
φ j

in general reduced normal form.

Lemma 6 Let N = (N ,R,V ) be a S4-model. Let I ⊆ {1, ..., s}. Assume N �
∨
i∈I
φi

and let W = {φi ∈ Θ(r ) | i ∈ I , ∃a ∈ N s.t N , a |= φi }. Notice that W 6= ;. Let
M (Θ(r )) be the S4-model associated to r and W . Then

1. If N , a |=φi then N , a |=φ iff M (Θ(r )),φi |=φ for each formula φ ∈Θ(r ).

2. W ⊆ {φi ∈Θ(r ) | i ∈ I ,M (Θ(r )),φi |=φi }.

3. Let I ′ ⊆ I . Then, M (Θ(r )) |= ∨
i∈I ′

φi iff W ⊆ {φi ∈Θ(r ) | i ∈ I ′}.

4. Let I ′ ⊆ I . Then, N �
∨
i∈I ′

φi iff W ⊆ {φi ∈Θ(r ) | i ∈ I ′}.

5. N 2 xk iff M (Θ(r ))2 xk for k = 1, ...,n.

6. If for each subset D of N there exists a ∈ N such that

θ¦(a) = θ(a)∪ ⋃
d∈D

θ¦(d)

then for each subset D of W there exists φ j ∈W such that

θ¦(φ j ) = θ(φ j )∪ ⋃
φ∈D

θ¦(φ)
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where for all a ∈ N ,Θ(a) = {xi |N , a � xi } andΘ¦(a) = {xi |N , a � ¦xi }.

Proof 14 Remind that if φi and φ j are distinct elements in Θ(r ) then φi ∧φ j is
logically equivalent to ⊥. Since N �

∨
i∈I
φi then for all a ∈ N , there exists exactly

one i ∈ I such that N , a � φi . We define a surjective function f : N −→ W such
that for all a ∈ N , f (a) = φi where i ∈ I and N , a � φi . We claim that f is a
homomorphism. Let b, a ∈ N such that bRa. Let i , j ∈ N such that f (b) = φi

and f (a) = φ j . Let xk ∈ θ¦(φ j ). Then N , a � ¦xk and N ,b � ¦xk . Therefore,
xk ∈ θ¦(φi ). As a result, f (b) can see f (a) in M (Θ(r )).

1. Let N ,b |=φi . We prove by induction on φ.

• (⇒) Letφ= xk . Let N ,b � xk . Since N ,b �φi then, xk ∈ θ(φi ). Then,
xk ∈Vn(φi ). Therefore, M (Θ(r )),φi � xk .

(⇐) Let M (Θ(r )),φi � xk . Then, xk ∈ Vn(φi ). Thus, xk ∈ θ(φi ). Since
N ,b �φi then, N ,b � xk .

• (⇒) Let φ=¬xk . Let N ,b �¬xk . Since N ,b � φi then, ¬xk ∈ θ(φi ).
Then, ¬xk ∈Vn(φi ). Therefore, M (Θ(r )),φi �¬xk .

(⇐) Let M (Θ(r )),φi � ¬xk . Then, ¬xk ∈ Vn(φi ). Thus, ¬xk ∈ θ(φi ).
Since N ,b �φi then, N ,b �¬xk .

• Letφ=ϕ∧ψ. N ,b �ϕ∧ψ iff N ,b �ϕ and N ,b �ψ iff M (Θ(r )),φi �
ϕ and M (Θ(r )),φi � ψ (by induction hypothesis) iff M (Θ(r )),φi �
ϕ∧ψ.

• (⇒) Let φ = ♦pk . Let N ,b � ♦xk . Let a ∈ N and bRa such that
N , a � xk . Let f (b) = φi and f (a) = φ j . Since, N , a � φ j then,
xk ∈ θ(φ j ). Then, M (Θ(r )),φ j � xk . Since, bRa and the function
f is a homomorphism then, φi Rφ j . Therefore, M (Θ(r )),φi �♦xk .

(⇐) Let M (Θ(r )),φi � ♦xk . Then, ♦xk ∈ Vn(φi ). By our assumption,
N ,b �φi then, N ,b �♦xk .

2. By item 1.
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3. (⇒) Suppose M (Θ(r ))�
∨
i∈I ′

φi . Let φ j ∈W . Let b ∈ N such that N ,b �φ j .

We have M (Θ(r )),φ j |=φ j by 1. By our assumption M (Θ(r ))�
∨
i∈I ′

φi then

there exists i ∈ I ′ such that M (Θ(r )),φ j � φi . Then, φ j = φi . Then, j ∈ I ′.
Therefore, φ j ∈ {φi ∈Θn | i ∈ I ′}.
(⇐) Suppose W ⊆ {φi ∈Θ(r ) | i ∈ I ′}. For all φ j ∈ W we have to show that
M (Θ(r )),φi �

∨
i∈I ′

φi . Let b ∈ N such that N ,b � φ j . Then, M (Θ(r )),φ j �

φ j by part 1. Since, φ j ∈ W ⊆ {φi ∈Θn | i ∈ I ′} and M (Θ(r )),φ j �φ j then,
M (Θ(r )),φ j �

∨
i∈I ′

φi . Therefore, M (Θ(r ))�
∨
i∈I ′

φi .

4. Suppose (⇒) N �
∨
i∈I ′

φi . Let φ j ∈ W . Let b ∈ N be such that N ,b � φ j .

Since N �
∨
i∈I ′

φi then N ,b �
∨
i∈I ′

φi . Thus there is i ∈ I ′ such that N ,b �

φi . Let i ∈ I ′ and N ,b �φi . Since N ,b �φ j then φi =φ j and j ∈ I ′. So we
have proved that W ⊆ {φi : i ∈ I ′}.
(⇐) Suppose W ⊆ {φi : i ∈ I ′}. We have to prove that N �

∨
i∈I ′

φi . Let b ∈N

and let us prove N ,b �
∨
i∈I ′

φi . Since N �
∨
i∈I
φi then let i ∈ I be such that

N ,b � φi . Then φi ∈ W . Since W ⊆ {φi : i ∈ I ′} then i ∈ I ′. Hence, N ,b �∨
i∈I ′

φi .

5. (⇒) Suppose N 2 xk . Let b ∈ N such that N ,b � ¬xk . Since N �
∨
i∈I
φi

then let φi ∈Θ(r ) such that N ,b �φi . Consequently, xk ∉ θ(φi ). Moreover,
M (Θ(r )),φi � φi by part 1. Since, M (Θ(r )),φi � φi and xk ∉ θ(φi ) then,
M (Θ(r )),φi 2 xk . Therefore, M (Θ(r ))2 xk .

(⇐) Suppose M (Θ(r ))2 xk . Letφi ∈W such that M (Θ(r )),φi 2 xk . Hence,
xk ∉ θ(φi ). Since φi ∈ W then there is b ∈ N such that N ,b � φi . Since,
N ,b �φi and xk ∉ θ(φi ) then, N ,b 2 xk . Therefore, N 2 xk .

6. Let D ′ = {φ1, ...,φk } ⊆ W . Since f : N → W is surjective then there are
b1, ...,bk ∈ N such that, f (bi ) = φi for 16 i 6 k. Then we have N ,bi � φi

for 16 i 6 k by definition of f . Let D = {b1, ...,bk }. Let a ∈ N be such that
θ¦(a) = θ(a)∪ ⋃

ak∈D
θ¦(ak ) by our assumption.

Claim 1 Let bi ∈ N . We have
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(a) θ(bi ) = θ(φi )

(b) θ¦(bi ) = θ¦(φi )

Proof 15 (a) Suppose xk ∈ θ(bi ). Then, N ,bi � xk . Since f (bi ) =φi then
N ,bi �φi . Since N ,bi � xk such that xk ∈φi .

Reciprocally, suppose pk ∈ φi . Since N ,bi � φi then N ,bi � xk .
Hence, xk ∈ θ(bi ).

(b) Suppose xk ∈ θ♦(xi ). Then, N ,bi � ♦xk . Let a ∈ N be such that
bi Ra and N , a � xk . Then f (bi )R f (ai ). Then xk ∈ θ(a) and xk ∈
θ( f (a)). Sincef (bi )R f (ai ) then ♦xk ∈ θ( f (bi )). Since f (bi ) =φi then
xk ∈ θ♦(φi ).

Reciprocally, suppose xk ∈ θ♦(φi ). Then M (Θ(r )),φi � ♦xk . Let φ j ∈
W be such that φi Rφ j and M (Θ(r )),φi � pk . Since f is surjective, let
a ∈ N be such that f (a) = φi . We have M (Θ(r )), f (a) � xk , therefore
xk ∈φ j and xk ∈ θ(a).

Since,θ(b) = θ(φi ) and θ¦(b) = θ¦(φi ) then, θ¦(φ j ) = θ(φ j )∪ ⋃
φ∈D

θ¦(φ).

This ends the proof of Lemma 6.

Now, we are prepared to express our results as follows. We firstly determine
under which conditions a rule in general reduced normal form is invalid and
then, we discuss about admissibility of such rules.

Theorem 3 A rule r =

∨
i∈I
φi ∨

∨
j∈J
φ j∨

j∈J
φ j

is invalid for S4-models iff there is a non-

empty set W ⊆ {φi ∈Θ(r ) | i ∈ I ∪ J } such that the model M (Θ(r )) associated to r
and W satisfies the following conditions:

1. M (Θ(r )),φ j �φ j for all φ j ∈W .

2. M (Θ(r ))�
∨
i∈I
φi ∨

∨
j∈J
φ j .

3. There exists i ∈ I such that φi ∈W and M (Θ(r )),φi 2
∨
j∈J
φ j .
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Proof 16 (⇒) Suppose r is invalid in N = (N ,R,V ). Then N �
∨
i∈I
φi ∨

∨
j∈J
φ j

and N 2
∨
j∈J
φ j . Let W = {φi ∈Θ(r ) | i ∈ I ,∃w ∈ N s.t N , w |=φi }. Obviously, W

is non-empty. Let M (Θ(r )) be the model associated to r and W .

1. Let φ j ∈ W . Hence there is w ∈ N such that we have N , w |= φ j by defini-
tion of W . Then M (Θ(r )),φ j �φ j by Lemma 6.

2. Let φk ∈ W . We have to show that M (Θ(r )),φk �
∨
i∈I
φi ∨

∨
j∈J
φ j . Since

φk ∈W then let w ∈ N be such that N , w �φk . Then, by part 2 of Lemma 6,
M (Θ(r )),φk �φk . Moreover, since N , w �

∨
i∈I
φi∨

∨
j∈J
φ j then M (Θ(r )),φk �∨

i∈I
φi ∨

∨
j∈J
φ j .

3. By our assumption, N 2
∨
j∈J
φ j . Then W * {φi ∈ Θ(r ) | i ∈ J } by part (4)

of Lemma 6. Since W ⊆ {φi ∈ Θ(r ) | i ∈ I ∪ J } then there exists an i ∈ I − J
such that φi ∈W . By �φi →¬ ∨

j∈J
φ j and M (Θ(r )),φi �φi then we obtain

M (Θ(r )),φi �¬
∨
j∈J
φ j . Therefore, M (Θ(r )),φi 2

∨
j∈J
φ j .

Therefore, r is invalid in M (Θ(r )).
(⇐) The model M (Θ(r )) has all properties of Lemma 3.4.9 of [44] then by
Lemma 3.4.10 of [44] there exists a definable valuation S of the rule r such
that r is not provable in C hS4(n). Therefore the rule r is invalid in C hS4(n).

Theorem 4 A rule r =

∨
i∈I
φi ∨

∨
j∈J
φ j∨

j∈J
φ j

is inadmissible for S4 iff there is a set W ⊆

{φi ∈Θ(r ) | i ∈ I ∪ J } such that

1. φi ∈W for some i ∈ I .

2. M (Θ(r )),φ j �φ j for all φ j ∈W .

3. For each subset (D) of M there exists φ j ∈W such that

θ¦(φ j ) = θ(φ j )∪ ⋃
φ∈D

θ¦(φ).
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Proof 17 (⇒) Proof of this direction is similar to Theorem 1.
(⇐) The rule r is invalid in M (Θ(r )) by Theorem 3. By Lemma 3.4.10 of [44] there
exists a definable valuation S of the rule r such that invalidate r in C hS4(n).
Therefore the rule r is inadmissible in S4 by Lemma 2.
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In logic and computer science, unification means solving logical equations.
Unification in logic is the problem of finding a substitution that transform a
given formula into a theorem (or a tautology). For instance consider, (ϕ1 ↔
ψ1) ∧ ... ∧ (ϕn ↔ ψn). If we can find a substitution σ such that `L (σ(ϕ1) ↔
σ(ψ1))∧ ...∧ (σ(ϕn) ↔ σ(ψn)) then we can say that this formula is unifiable in
the considered logic L.
Chapter 4 presents already existing results on unification in propositional logic
and modal logic.

• Classical Propositional Logic has projective unification (Proposition 9, p.
45) and thus is unitary (see Proposition 8).

• Jerábek proved that modal logic K is nullary.

• P. Balbiani and Ç. Gencer adapted Jeřábek’s argument to K D and proved
that K D is nullary too.

41
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• Ghilardi proved that K 4 and its extensions are finitary and given a for-
mula, its finite complete sets of unifiers can be computed.

• W. Dzik showed that S5 is unitary.

• P. Balbiani and T. Tinchev showed that K D45 is unitary.

• K D5 and K 5 are both filtering hence either unitary or nullary. The exact
type is open.

4.1 Fundamental Notions of Unification

To discuss about unification type of modal logics, first we give some basic defi-
nitions and then we consider unification type of modal logics.

Definition 24 We define some features of substitution:

• A substitution σ is a mapping from variables to a formulas. It is denoted
by σ : x → F (y). Substitutions will generally be represented by σ, θ, λ, τ
and so on.

• Composition of two substitutions σ : x → F (y) and τ : y → F (z) is the sub-
stitution τ◦σ : x → F (z) defined by

τ◦σ(x) = τ(σ(x)).

for each x ∈ x.

• A substitution σ : x → F (y) is equivalent in a logic L to a substitution τ :
x → F (z) if

σ(x) ↔ τ(x) ∈ L

for each x ∈ x. We will denote it by σ'L τ

Definition 25 Let A(x1, ..., xn) is a formula built up from variables x1, ..., xn and
denoted by A(x). Let L be a logic.

• a substitution σ is an L-unifier of A if A(σ(x1), ...,σ(xn)) ∈ L.
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• A is unifiable in L if there exists a substitutionσ such that A(σ(x1), ...,σ(xn)) ∈
L. In this case, A is called unifiable in L.

• A substitution σ : x → F (y) is more general (or less specific) than a substi-
tution τ : x → F (z) in L iff there exist a substitution λ : y → F (z) such that
λ(σ(x)) ↔ τ(x) ∈ L for all variable x ∈ x. We will denote it by σ4L τ.

• A substitution σ of the form σ : x → F (;) is called ground unifier or closed
unifier.

• Let UL(A) be the set of all unifiers for the formula A in a logic L. A set
U ⊆UL(A) is said to be complete set of unifier for A, if for every unifier τ for
A there is a unifier from the set U which is more general than τ.

• A complete set of unifiers for A in L is a minimal complete set if its members
are pairwise incomparable with respect to6L .

• A unifier σ for A in logic L is called a most general unifier (mgu) in L for a
formula A, if {σ} is a complete set of unifiers for A.

Example 7 The formula �x ∨�¬x is unifiable in K . The ground substitutions
σ> and σ⊥ defined by σ> => and σ⊥ =⊥ are K -unifiers of �x ∨�¬x.

Note that a most general unifier is not unique. There are always more than 1
most general unifiers. Nevertheless, of course, if τ1 and τ2 are two most general
unifiers, then there exists substitutions λ1 and λ2 such that λ1 ◦ τ1 'L τ2 and
λ2 ◦ τ2 'L τ1 hence, τ1 4L τ2 and τ2 4L τ1. This means they are equivalent
instances of each other.

Lemma 7 If a given formula L has two minimal complete sets Σ and Σ′ in logic
L then car d(Σ) = car d(Σ′).

Proof 18 Let f :Σ→Σ′ and g :Σ′ →Σ such that

• For all σ ∈Σ, f (σ)4L σ,

• For all σ′ ∈Σ′, g (σ′)4L σ
′.

The functions f and g exist because Σ and Σ′ are complete. We show that f is
injective. Let σ,τ ∈ Σ such that f (σ) = f (τ). Notice that g ( f (σ)) 4L f (σ) 4L

σ and g ( f (τ)) 4L f (τ) 4L τ. Since f (σ) = f (τ) then g ( f (σ)) = g ( f (τ)). But
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g ( f (σ)) ∈ Σ, σ,τ ∈ Σ. Since g ( f (σ)) 4L σ then g ( f (σ)) = σ by minimality of
Σ. Since g ( f (τ)) 4L τ then similarly g ( f (τ)) = τ. Since g ( f (σ)) = g ( f (τ)) then
σ= τ.
By the same way we can prove g is injective. Consequently, car d(Σ) = car d(Σ′).

Definition 26 Let A(x) be a unifiable formula in logic L.

• The formula A has unification type unitary if it has a minimal complete
set of unifiers of cardinality 1.

• The formula A has unification type finitary if it has a finite minimal com-
plete set of unifiers for formula A and cardinality fo this minimal complete
set is strictly greater than 1.

• The formula A has unification type infinitary if it has a infinite minimal
complete set of unifiers.

• The formula A has unification type nullary if it does not have any minimal
complete set of unifiers.

Definition 27 Let L be a logic

• L is unitary if every L-unifiable formula is of type unitary.

• L is finitary if there exists a L-unifiable formula of type finitary and every
L-unifiable formula is either of type unitary, or of type finitary.

• L is infinitary if there exists a L-unifiable formula of type infinitary and
every L-unifiable formula is either of type unitary, or of type finitary, or of
type infinitary,

• L is nullary if there exists a L-unifiable formula of type nullary.

Let us see these definitions at the following example:

Example 8 Let A = x ∨ y. Consider the substitutions σ1 defined by σ1(x) = x
and σ1(y) = ¬x. After applying σ1, we have: σ1(A) = σ1(x)∨σ1(y) = x ∨¬x.
Therefore, σ1(A) is a tautology. In this case, A is unifiable and σ1 is unifier of A
in Classical Propositional Logic.
Consider the substitution σ2 defined by σ2(x) => and σ2(y) =>. Hence, σ2(A)
is a tautology and σ2 is also a unifier of A.
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Lemma 8 Let A be a unifiable formula in logic L. Then the formula A possesses
a ground unifier in logic L.

Proof 19 Let A be a unifiable formula in logic L. Letσ be a unifier of A such that
σ(A) ∈ L. Let τ be a ground substitution. Since σ(A) ∈ L then τ(σ(A)) ∈ L. Since τ
is ground substitution thus, τ◦σ is a ground unifiers of A.

Definition 28 A unifier σ for a formula A is said to be projective in logic L if for
each x ∈ x

A `L σ(x) ↔ x

A formula is projective in logic L iff there exists a projective unifier for the for-
mula. If each unifiable formula is projective in logic L, then we say that L has
projective unification.

Lemma 9 Each projective unifier for A is a most general unifier for A.

Proof 20 Let σ is a projective unifier of unifiable formula A. Then A `L σ(x) ↔
x. Let τ be a unifier of A then, `L τ(A). By applying τ on A `L σ(x) ↔ x, we ob-
tain τ(A) `L τ(σ(x)) ↔ τ(x). Since `L τ(A) then, `L (τ(σ(x)) ↔ τ(x)). Therefore,
σ4L τ (since τ was arbitrary) and σ is a most general unifier of A.

Proposition 6 If L has projective unification then, unification type L is unitary.

4.2 Unification in Classical Propositional Logic

In this section, we are going to review unification problem and unification type
of Classical Propositional Logic [49]. It has been proved that all unifiable for-
mulas in Classical Propositional Logic have a most general unifier. To prove
that Classical Propositional Logic has unitary unification, we will use Löwen-
heim formula.
Let us prove that unification type of Classical Propositional Logic is unitary.

Syntax and semantic of Classical Propositional Logic are as usual.
Consider a formula A and a substitution γ. Let λ be the substitution defined
by λ(x) = (A ∧ x)∨ (¬A ∧γ(x)). The substitution λ is the so-called Löwenheim
substitution associated to A and γ. Variant of it in modal logics have been used
by [22] and [31].
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Lemma 10 Le ν be a valuation. For any formula B

1. If ν(A) => then, ν(B) = ν(λ(B)).

2. If ν(A) =⊥ then, ν(γ(B)) = ν(λ(B)).

Proof 21 1. Suppose ν(A) =>. We prove by induction on B:

• Let B = x. We have to prove ν(x) = ν(λ(x)). Since ν(A) = > and
ν(λ(x)) = (ν(A)∧ν(x))∨ (¬ν(A)∧ν(γ(x))) then, ν(x) = ν(λ(x)).

• Let B =⊥. We have to prove ν(⊥) = ν(λ(⊥)). Since ⊥ is Boolean con-
stant and λ is substitution hence, λ(⊥) =⊥. Then ν(λ(⊥)) =⊥ hence,
ν(⊥) = ν(λ(⊥)).

• Let B = ¬B ′. We have to prove ν(¬B ′) = ν(λ(¬B ′)). By induction hy-
pothesis, ν(B ′) = ν(λ(B ′)). Therefore, ν(¬B ′) = ν(λ(¬B ′)).

• Let B = B ′∧B ′′. We have to prove ν(B ′∧B ′′) = ν(λ(B ′∧B ′)). By induc-
tion hypothesis, ν(B ′) = ν(λ(B ′)) and ν(B ′′) = ν(λ(B ′′)). Therefore,
ν(B ′∧B ′′) = ν(λ(B ′∧B ′′)).

2. Let ν(A) =⊥. We prove by induction on B:

• Let A = x. We have to prove ν(γ(x)) = ν(λ(x)). Since ν(A) = ⊥ and
ν(λ(x)) = (ν(A)∧ν(x))∨ (¬ν(A)∧ν(γ(x))) then, ν(γ(x)) = ν(λ(x)).

• Let B = ⊥. We have to prove ν(γ(⊥)) = ⊥ = ν(λ(⊥)). Since λ(⊥) = ⊥
and γ(⊥) =⊥ hence ν(λ(⊥)) = ν(γ(⊥)).

• Let B = ¬B ′. We have to prove ν(γ(¬B ′)) = ν(λ(¬B ′)). By induc-
tion hypothesis, ν(γ(B ′)) = ν(λ(B ′)). Hence, ¬ν(γ(B ′)) = ¬ν(λ(B ′)).
Therefore, ν(γ(¬B ′)) = ν(λ(B ′)).

• Let B = B ′∧B ′′. We have to prove ν(γ(B ′∧B ′′)) = ν(λ(B ′∧B ′)). By
induction hypothesis, ν(γ(B ′)) = ν(λ(B ′)) and ν(γ(B ′′)) = ν(λ(B ′′)).
Therefore, ν(γ(B ′∧B ′′)) = ν(λ(B ′∧B ′′)).

Theorem 5 Let A be a unifiable formula and γ unifier of A. The substitution λ

defined above is a most general unifier of A.

Proof 22 First, we prove that λ is a unifier for A. Suppose λ is not a unifier of A.
Then 0 λ(A). Hence, there exists a ν such that ν(λ(A)) = ⊥. Hence we have two
cases:
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1. If ν(A) = >: then by Lemma 10, ν(λ(A)) = ν(A). Then ⊥ = >. This is a
contradiction.

2. If ν(A) =⊥: then by Lemma 10, ν(λ(A)) = ν(γ(A)). Then ⊥= ν(γ(A)). Then
0 γ(A): this is a contradiction with the fact that γ is a unifier of A. There-
fore λ is a unifier of A.

Second, we prove that λ is most general:
Let τ be a unifier of A. Then, ` τ(A). Let x be an arbitrary variable. By part (1) of
Lemma 10 we have ` A → (λ(x) ↔ x). Then by applying τ on ` A → (λ(x) ↔ x)
we get, ` τ(A) → (τ(λ(x)) ↔ τ(x)). Since ` τ(A) and ` τ(A) → (τ(λ(x)) ↔ τ(x))
then, ` τ(λ(x)) ↔ τ(x). Therefore λ is most general than τ (λ 4 τ) in Classical
Propositional Logic.

Lemma 11 The substitution λ defined above is a projective unifier for A.

Proof 23 Firstly, `λ(A) by Theorem 5.
Secondly, ` A → (λ(x) ↔ x) by part 1 of Lemma 10.
Therefore, λ is projective unifier.

From the above results, it follows:

Proposition 7 Classical Propositional Logic has projective unification.

Proposition 8 Every unifiable formula in Classical Propositional Logic has a
most general unifier.

Example 9 Consider the formula A = x ∨ y. The substitution σ such that σ(x) =
x and σ(y) = ¬x is one of the unifiers of A. Let λ be the substitution defined by
λ(x) = (A ∧ x)∨ (¬A ∧σ(x)) and λ(y) = (A ∧ y)∨ (¬A ∧σ(y)). Hence we have
λ(x) = (A∧x)∨ (¬A∧x) = x and λ(y) = (A∧ y)∨ (¬A∧¬x) = y ∨¬x. By Lemma
5, we know that λ is a most general unifier of A.

4.3 Unification in Modal Logic

In this section, we consider some modal logic such as K , S4, S5 and so on and
we explain their unification type; Unification type of these modal logics respec-
tively, are nullary, finitary and unitary.
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4.3.1 Unification in Modal Logic K

Emil Jeřábek in [34] has proved that unification type in normal modal logic
K is nullary. In this respect he considered a formula and introduced some
substitutions. First, he proved that these substitutions are K -unifiers of that
formula. Then, he proved that these unifiers are not more general than each
other. Let us see which formula and substitutions he considered and how he
proved that modal logic K is nullary. In Chapter 6, we will adapt the argument
of Jeřábek show that the fusion S5⊗S5 is nullary. Jeřábek considered the for-
mula ϕ = x → �x. He introduced the substitutions σn(x) = �<n x ∧�n⊥ (for
each n> 0) and σ>(x) => and then proved that

Lemma 12 For each n ∈N
1. The substitution σn is a K -unifier of the formula ϕ.

2. The substitution σ> is a K -unifier of the formula ϕ.

Proof 24 1. By the inference rule
ϕ→ψ

�ϕ→�ψ which is derivable in K , and by

the distributivity of� over ∧, we have

�<n x ∧�n⊥→��<n x ∈ K and
�n⊥→�n+1⊥∈ K thus,

�<n x ∧�n⊥→�(�<n x ∧�n⊥) ∈ K

2. Clearly, >→�>∈ K .

The Lemmas 13 and 14 show that σn 4K σn−1 4K ...4K σ0 and σ0 �K σ1 �K

...�K σn .

Lemma 13 Let k, l ∈N. If k 6 l then σl 4K σk .

Proof 25 Suppose k 6 l . Let ν be the substitution defined by ν(x) = x ∧�k⊥. It
is easy to check that ν◦σl 'K σk . Hence, σl 4K σk .

Lemma 14 Let k, l ∈N. If k < l then σk �K σl .

Proof 26 Suppose k < l and σk 4K σl . Let ν be a substitution such that ν ◦
σk 'K σl . Hence, `K ν(σk (x)) ↔σl (x). Thus, `K �<l x∧�l⊥→�<kν(x)∧�k⊥.
Consequently, after replacing x by >, `K �l⊥→�k⊥: a contradiction.
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Then Jeřábek [34] showed that some σn or σ> are more general in some cases
than a given unifier σ of ϕ as follows:

Lemma 15 If σ is a unifier of ϕ = x →�x and n ∈N, the following are equiva-
lent:

1. σ◦σn 'K σ,

2. σn 4K σ,

3. `K σ(x) →�n⊥.

Proof 27 1. (1 ⇒ 2) By definition of4K .

2. 2 ⇒ 3 Suppose σn 4K σ. Let ν be a substitution such that ν ◦σn 'K σ.
Hence, `K ν(σn(x)) ↔σ(x). Then, `K σ(x) →�n⊥.

3. (3 ⇒ 1) Suppose `K σ(x) →�n⊥. Since σ is a unifier of ϕ then, `K σ(x) →
�σ(x). Hence, `K σ(x) →�<nσ(x). Since `K σ(x) →�n⊥ and `K σ(x) →
�<nσ(x) then `K σ(x) → �<nσ(x) ∧�n⊥. Thus, `K σ(x) → σ(σn(x)).
Now, we consider two following cases:

• If n = 0 then `K �n⊥→σ(x) and

• If n> 1 then `K �<nσ(x) →σ(x).

Therefore, `K �<nσ(x)∧�n⊥→σ(x). Hence, `K σ(σn(x)) →σ(x). Since,
`K σ(x) →σ(σn(x)) and `K σ(σn(x)) →σ(x) therefore, σ◦σn 'K σ.

Lemma 16 If σ is a substitution, the following are equivalent:

1. σ>4K σ,

2. σ◦σ> 'K σ,

3. `K σ(x).

Proof 28 The proof is similar to the proof of Lemma 15.

At the next step, Jeřábek stated that the unifiers σn or σ> are more general than
any unifier σ of ϕ.

Theorem 6 Let σ be a K -unifier of ϕ= x →�x then one of the following condi-
tions holds:
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1. σ>4K σ.

2. There exist n ∈N such that σn 4K σ.

Proof 29 Let n> deg (σ(x)). Suppose none of the above conditions holds. Hence,
σn �K σ and σ> �K σ. By Lemmas 15 and 16 we have that 0K σ(x) and 0K

σ(x) →�n⊥. Then, there are models M1 = (W1,R ′,ν1) and M2 = (W2,R ′′,ν2) and
there are s1 ∈ W1, s2 ∈ W2 such that, M1, s1 2 σ(x), M2, s2 � σ(x) and M2, s2 2
�n⊥. Let s′′2 , ..., s′′n+1 ∈ W2 be such that s2R ′′s′′2 ...R ′′s′′n+1. By the tree-model prop-
erty of K , we can assume without loss of generality that s2, s′′2 , ..., s′′n+1 are pairwise
different. Let us construct the model M = (W,R,ν) which is an extension of the
disjoint union of models M1 and M2 and we define the model M as follows:

• W =W1 ∪W2,

• R = R ′∪R ′′∪ {(s′′n+1, s1)},

• ν= ν1 ∪ν2 that is to say for all proposition letters y, ν(y) = ν1(y)∪ν2(y).

Since M1, s1 2 σ(x), then M , s1 2 σ(x). Since M2, s2 � σ(x) and n > deg (σ(x)),
then M , s2 � σ(x). Since `K σ(x) →�σ(x) then M , s′′2 � σ(x), ..., M , s′′n+1 � σ(x).
Then M , s1 �σ(x): a contradiction.

The main result about unification type of modal logic K has been proved as
follows.

Lemma 17 The set of substitutions Σ = {σn : n ∈ ω}∪ {σ>} is a complete set of
K -unifiers of ϕ= x →�x.

Proof 30 By Theorem 6, Σ constitutes a complete set of unifiers of the formula
ϕ= x →�x.

Lemma 18 The formula ϕ= x →�x does not possess a minimal complete set of
K -unifiers.

Proof 31 Suppose ϕ possesses a minimal complete set Σ′ of K -unifiers. Since
Σ′ is complete, let σ′ ∈ Σ′ be such that σ′ 4K σ0. Since σ′ is a K -unifier of ϕ,
then σ′(x) → �σ′(x) ∈ K . Hence, by the rule of margin [34] either σ′(x) ∈ K or
σ′(x) →�deg (σ′(x))⊥∈ K .
In the former case, by Lemma 16, σ> 4K σ′. Since σ′ 4K σ0, then σ> 4K σ0.
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Thus, >↔⊥∈ K : a contradiction.
In the latter case, by Lemma 15 sinceΣ′ is a set of unifiers ofϕ, thenσdeg (σ′(x))4K

σ′. Since Σ′ is complete, let σ′′ ∈ Σ′ be such that σ′′ 4K σdeg (σ′(x))+1. Since
σdeg (σ′(x))+1 4K σdeg (σ′(x)) 4K σ′, then σ′′ 4K σ′. Since Σ′ is minimal, then
σ′′ = σ′. Since σdeg (σ′(x)) 4K σ′ and σ′′ 4K σdeg (σ′(x))+1, then σdeg (σ′(x)) 4K

σdeg (σ′(x))+1: a contradiction with Lemma 14.

Proposition 9 Unification type is nullary in modal logic K .

Proof 32 By Lemma 18.

We shall adapt this method in Chapter 5 to investigate on unification type of
modal logic K1 ⊗K2 and S51 ⊗S52 for instance

4.3.2 Unification in Modal Logic K D

P. Balbiani and Ç. Gencer have adapted Jeřábek argument to K D . They proved
that unification type of modal logic K D is nullary [7] too. In this respect, they
used a special kind of atomic formulas called parameters and they considered
the formula ϕ= (x → p)∧ (x → [p]x). Parameters are atomic formulas that are
not replaced by formulas when a substitution is applied. For all parameters p,
the modal connective [p] is defined as follows:

• [p]x ::=�(p → x).

For all parameters p, the modal connective [p]k is inductively defined as fol-
lows for each n ∈N:

• [p]0ϕ ::=ϕ,

• [p]k+1 ::= [p][p]kϕ.

A parameter is a propositional letter that is not moved by substitutions. Pa-
rameters will be denoted by p, q,etc. A parameter is like a constant proposi-
tion letter. For instance, if σ is the substitution defined by σ(x) =�p ∨�y and
σ(y) =�y , thenσ(�(x →�p∨y)) =�(�p∨�y →�p∨�y).Parametrized uni-
fication (as well as parametrized admissibility) have been considered by several
authors, but mainly considered by V. Rybakov [44].
For all parameters p, the modal connective [p]<k is inductively defined as fol-
lows for each n ∈N:
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• [p]<0ϕ ::=>.

• [p]<k+1ϕ ::= [p]<kϕ∧ [p]kϕ.

Consider the formula ϕ= (x → p)∧ (x → [p]x) and substitutions σp (x) = p and
σn(x) = p ∧ [p]<n x ∧ [p]n⊥ where n ∈N. P. Balbiani and Ç. Gencer proved that

Lemma 19 For all n ∈N

1. σn(x) = p ∧ [p]<n x ∧ [p]n⊥ is a K D-unifier of ϕ.

2. σp (x) = p is a K D-unifier of ϕ.

Proof 33 1. It is clear that ` p ∧ [p]<n x ∧ [p]n⊥→ p. Since
`K D p → [p]p. Hence,
`K D p ∧ [p]<n x ∧ [p]n⊥→ [p]p. Since
`K D [p]<n x ∧ [p]n⊥→ [p][p]<n x and
`K D [p]n⊥→ [p]n+1⊥ then,
`K D p ∧ [p]<n x ∧ [p]n⊥→ [p]p ∧ [p][p]<n x ∧ [p]n+1⊥.
Therefore, σn is a K D-unifier of ϕ.

2. Since, ` (p → p) and ` p → [p]p then, ` (p → p)∧ (p → [p]p). Therefore,
σp is a K D-unifier of ϕ.

In order to adapt Jeřábek argument, it is needed to prove that the sequence of
substitutions σn for n ∈N satisfies the property σn 4K D ...4K D σ0 and σ0�K D

...�K D σn

Lemma 20 Let k, l ∈N. If k 6 l then σl 4K D σk .

Proof 34 Suppose k 6 l . Let ν(x) = x ∧ [p]k⊥. Since,
`K D [p]<l x → [p]<k x and
`K D [p]<l [p]k⊥→ [p]k⊥. Therefore,
`K D p ∧ [p]<l (x ∧ [p]k⊥)∧ [p]l⊥→ p ∧ [p]<k x ∧ [p]k⊥. Since,
`K D [p]k⊥→ [p]l⊥ and
`K D [p]<k x ∧ [p]k⊥→ [p]<l x and,
`K D [p]k⊥→ [p]<l [p]k⊥ therefore,
`K D (p ∧ [p]<k x ∧ [p]k⊥) → p ∧ [p]<l (x ∧ [p]k⊥)∧ [p]l⊥. Hence,
`K D p ∧ [p]<l (x ∧ [p]k )∧ [p]l⊥↔ p ∧ [p]<k x ∧ [p]k⊥.
Consequently, σl 4K D σk .
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Lemma 21 Let k, l ∈N. If k < l then σk �K D σl .

Proof 35 Suppose k < l and σk ¹K D σl . Let ν be a substitution such that `K D

ν(σk (x)) ↔σl (x). Then, `K D p ∧ [p]<kν(x)∧ [p]k⊥↔ p ∧ [p]<l x ∧ [p]l⊥. Then,
`K D [p]l⊥→ [p]k⊥. This is contradiction.

P. Balbiani and Ç. Gencer proved that if there exists a unifier σ of the formula
ϕ = (x → P )∧ (x → [p]x) then either σp 4K D σ or there exists n ∈ N such that
σn 4K D σ. In this respect, they proved that

Lemma 22 Let σ be a K D-unifier of ϕ. The following conditions are equivalent:

1. σp ◦σ'K D σ.

2. σp 4K D σ.

3. `K D σ(x) ↔ p.

Proof 36 (1 ⇒ 2): By definition of4K D .
(2 ⇒ 3): Suppose σp 4K D σ. Let ν be a substitution such that `K D ν(σp (x)) ↔
σ(x). Then, `K D p ↔σ(x).
(3 ⇒ 1): Suppose `K D σ(x) ↔ p. Then, `K D σ(x) ↔σ(σp (x)). Hence, σp ◦σ'K D

σ.

Lemma 23 Let σ be a K D-unifier of ϕ = (x → p)∧ (x → [p]x). Let k ∈ N. The
following conditions are equivalent:

1. σk ◦σ'K D σ

2. σk 4K D σ

3. `K D σ(x) → [p]k⊥.

Proof 37 (1 ⇒ 2): By definition of4K D .
(2 ⇒ 3): Suppose σn 4K D σ. Let ν be a substitution such that `K D ν(σn(x)) ↔
σ(x). Then `K D σ(x) → [p]k⊥.
(3 ⇒ 1): Suppose `K D σ(x) → [p]k⊥. Since σ is a unifier of ϕ then, `K D σ(x) →
p∧[p]<kσ(x). Hence, `K D σ(x) → p∧[p]<kσ(x)∧[p]k⊥. Consider two following
case:
If n = 0 then `K D [p]k⊥→σ(x) and
If n> 1 then, `K D p ∧ [p]<kσ(x)∧ [p]k⊥→σ(x).
Therefore, `K D p ∧ [p]<kσ(x)∧ [p]k⊥↔σ(x). Thus, σn ◦σ'K D σ.
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Lemma 24 Let σ is a unifier of ϕ. Let n > deg (σ(x)). Then one of the following
conditions holds:

• σp 4K D σ or

• σn 4K D σ.

Proof 38 Suppose none of the above conditions hold. Hence by Lemma 22 and
23, 0K D σ(x) ↔ p and 0K D σ(x) → [p]n⊥. Since, σ is a unifier of ϕ then, `K D

σ(x) → p. Hence, 0K D p → σ(x). Consider two models M1 = (W1,R ′,ν1) and
M2 = (W2,R ′′,ν2) and s1 ∈ W1, s2 ∈ W2 such that M1, s1 2 p → σ(x) and M2, s2 2
σ(x) → [p]n⊥. Thus M1, s1 � p, M1, s1 2 σ(x), M2, s2 � σ(x) and M2, s2 2 [p]n⊥.
Hence, there exists t3, ..., tn+2 ∈ W2 such that s2R ′′t3R ′′t4...R ′′tn+2. By the tree-
model property of K D, we can assume that s2, t3, ..., tn+2 are pairwise distinct.
Notice that t3, ..., tn+2 ∈ ν(p). Let model M = 〈W,R,ν〉 be an extension of the
disjoint union of M1 and M2 and defined as follows:

• W =W1 ∪W2,

• R = R ′∪R ′′∪ {(tn+2, s1)},

• ν= ν1 ∪ν2.

By our assumption σ is a unifier of ϕ and `K D σ(x) → [p]σ(x). By proposition
2, M , s1 � p and M , s1 2 σ(x). Moreover, since n > deg (σ(x)), then M , s2 � σ(x).
Since σ is a unifier of (x → p)∧ (x → [p]x), then M , t2 �σ(x), ..., M , tn+2 �σ(x).
Then, M , tn+2 � [p]σ(x). Since M , s1 � p and tn+2Rs1, then M , s1 � σ(x): a con-
tradiction.

At the end step, P. Balbiani and Ç. Gencer showed that

Lemma 25 The set of substitutions Σ = {σp }∪ {σn | n ∈ N} is a complete set of
K D-unifiers of ϕ.

Proof 39 By Lemmas 19 to 24.

Lemma 26 The formulaϕdoes not possess a minimal complete set of K D-unifiers.

Proof 40 Refer to [7], Lemma 7. The proof of this Lemma is similar to the proof
of lemma 18.
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Proposition 10 Unification type is nullary in modal logic K D.

Proof 41 By Lemma 26.

We shall use the same method in chapter 6 to discuss on unification type of the
fusion K D1 ⊗K D2.

4.3.3 Unification in Modal Logics Extending K 4

S. Ghilardi showed that some modal logics extending K 4 (like K 4 itself, S4, GL,
Gr z, etc.) are finitary and that finite complete sets of unifiers can be effectively
computed [31].
As we already said the most important role of most general unifiers in unifi-
cation theory is generating all unifiers of a formula. In classical propositional
logic every unifiable formula has a most general unifier. S. Ghilardi investigated
whether every unifiable formula in modal logic L has a most general unifier.
The answer was negative for many modal logics L enjoying disjunction prop-
erty. For example, consider the formula�x∨�¬x. This formula has unifiers in
K 4, S4 and GL:

• σ1(x) =>,

• σ2(x) =⊥.

and there is no unifier more general than both of them because if
`L �σ(x)∨�¬σ(x)
then by the modal disjunction property, we have: either `L σ(x) (so that σ is
equivalent to σ1) or `L ¬σ(x) (so that σ is equivalent to σ2). Thus this formula
has no most general unifier. Moreover, Σ= {σ1,σ2} is a minimal complete set of
unifiers for �x ∨�¬x in K 4, S4 and GL. Hence, Ghilardi in [31] proved many
transitive modal logics have finitary unification type and that finite complete
set of unifiers can be effectively computed.
S. Ghilardi investigated which modal logics are unitary in [30]. Hence he intro-
duced a significant characterisation of modal logic that called filtering unifica-
tion. See [35] for further discussion about filtering unification.

Definition 29 A given logic L is filtering iff for all L-unifiable formulasφ and for
all L-unifiers σ,τ of φ there exists a L-unifier µ of φ such that µ¹L σ and µ¹L τ.
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S.Ghilardi proved that filtering unification in modal logic is characterized by the
fact that finitely presented projective algebras are closed under binary prod-
ucts. Then he used this characterization to the case of normal extensions L of
the modal system K 4 and showed that a normal modal logic K 4 ⊆ L has filter-
ing unification iff L extends K 4.2+. The logic K 4.2+ is the logic obtained from
K 4 by adding the axiom ♦+�+A → �+♦+A where �+ and ♦+ are defined by
�+ =�B ∧B and ♦+ = ♦B ∨B . At the next step, he proved that unification is
unitary in K 4.2+. Hence, S. Ghilardi proved that

Lemma 27 If L is filtering then either L is unitary, or L is nullary.

Proof 42 Suppose L is filtering and neither L is unitary, nor L is nullary. Hence,
either L is finitary, or L is infinitary. Let φ be a L-unifiable formula either of
type finitary, or of type infinitary. Since unification type of φ is either finitary
or infinitary then let Σ be a minimal complete set of L-unifiers of φ such that
C ar d(Σ) ≥ 2. Since C ar d(Σ) ≥ 2, we can suppose that there exist σ,τ ∈ Σ such
that σ 6= τ. Let µ be a L-unifier of φ such that µ4 σ and µ4 τ. Such L-unifier
of φ exists because L is filtering. Since Σ is a complete set of L-unifier of φ then
there exists a ν ∈ Σ such that ν4 µ. Since µ4 σ and µ4 τ therefore, ν4 σ and
ν4 τ. Since Σ is a minimal set therefore, ν=σ and ν= τ then σ= τ and this is a
contradiction.

4.3.4 Unification In the modal logic S5

W. Dzik in [23] showed that the modal logic S5 and all extensions of the modal
logic S5 have unitary unification type. Dzik discussed on unification and unifi-
cation types in four areas of logic: non-Fregean logics, intermediate logics (ex-
tensions of intuitionistic logic), modal and multimodal logics, including Tense
Logics and Epistemic Logics (Logics of Knowledge) in [22]. Let us see how Dzik
proved that the unification type of Epistemic logic S5 is unitary.
Consider an S5-unifiable formula A and a substitution σ. Suppose σ is an S5-
unifier of A. Let λ be the substitution defined as follows for all variables x oc-
curring in A:

λ(x) = (�A∧x)∨ (¬�A∧σ(x))

Notice how λ is similar to the Löwenheim substitution used in Section 4.2.

Lemma 28 For any formula B
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1. `S5�A → (λ(B) ↔ B).

2. `S5 ¬�A → (λ(B) ↔σ(B)).

Proof 43 1. By induction on B

• Let B = x. We have to prove `�A → (λ(x) ↔ x). Since

– �A → ((�A∧x)∨ (¬�A∧σ(x)) → x) is equivalent to (�A∧x →
x). Thus,

– `S5�A → (λ(x) → x). Since,

– `S5 (�A∧x) →λ(x) hence,

– `S5�A → (x →λ(x)). Since,

– `S5�A → (λ(x) → x) and

– `S5�A → (x →λ(x)) therefore,

– `S5�A → (λ(x) ↔ x).

• Let B =⊥. We have to prove `S5 �A → (λ(⊥) ↔⊥). Since, λ(⊥) =⊥
hence, `S5�A → (λ(⊥) ↔⊥).

• Let B =¬B ′. We have to prove `S5 �A → (λ(¬B ′) ↔¬B ′). By induc-
tion hypothesis,

– `S5�A → (λ(B ′) ↔ B ′). Since,

– `S5 (λ(B ′) ↔ B ′) → (¬λ(B ′) ↔¬B ′). Then,

– `S5�A → (λ(¬B ′) ↔¬B ′).

• Let B = B ′∧B ′′. We have to prove `S5�A → (λ(B ′∧B ′′) ↔ ((B ′∧B ′′))).
By induction hypothesises,

– `S5�A → (λ(B ′) ↔ B ′) and

– `S5�A → (λ(B ′′) ↔ B ′′). Therefore,

– `S5�A → (λ(B ′∧B ′′) ↔ ((B ′∧B ′′))).

• Let B =�B ′. We have to prove `S5�A → (λ(�B ′) ↔�B ′). By induc-
tion hypothesis,

– `S5�A → (λ(B ′) ↔ B ′). By necessitation and axiom K ,

– `S5��A → (λ(�B ′) ↔�B ′). Since,

– `S5�A →��A then,

– `S5�A → (λ(�B ′) ↔�B ′).
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2. By induction on B

• Let B = x. We have to prove, `¬�A → (λ(x) ↔σ(x)). Since,

– ¬�A → ((�A∧x)∨(¬�A∧σ(x)) →σ(x)) is equivalent to ¬�A∧
σ(x) →σ(x) then,

– `S5 ¬�A → (λ(x) →σ(x)). Since,

– `S5 (¬�A∧σ(x)) →λ(x) hence,

– `S5 ¬�A → (σ(x) →λ(x)). Since,

– `S5 ¬�A → (λ(x) →σ(x)) and

– `S5 ¬�A → (σ(x) →λ(x)) therefore,

– `S5 ¬�A → (λ(x) ↔σ(x)).

• Let B = ⊥. We have to prove, `S5 ¬�A → (λ(⊥) ↔ σ(⊥)). Since,
λ(⊥) =σ(⊥) =⊥. Therefore, `S5 ¬�A → (λ(⊥) ↔σ(⊥)).

• Let B = ¬B ′. We have to prove, `S5 ¬�A → (λ(¬B ′) ↔ σ(¬B ′)). By
induction hypothesis,

– `S5 ¬�A → (λ(B ′) ↔σ(B ′)). Since,

– (λ(B ′) ↔σ(B ′)) → (¬λ(B ′) ↔¬σ(B ′)) then,

– `S5 ¬�A → (λ(¬B ′) ↔σ(¬B ′)).

• Let B = B ′∧B ′′. We have to prove `S5 �A → (λ(B ′∧B ′′) ↔ (σ(B ′)∧
σ(B ′′)). By induction hypothesises,

– `S5 ¬�A → (λ(B ′) ↔σ(B ′)) and

– `S5 ¬�A → (λ(B ′′) ↔σ(B ′′)). Therefore,

– `S5 ¬�A → (λ(B ′∧B ′′) ↔¬(σ(B ′)∧σ(B ′′))).

• Let B =�B ′. We have to prove `S5 ¬�A → (λ(�B ′) ↔�B ′). By in-
duction hypothesis,

– `S5 ¬�A → (λ(B ′) ↔σ(B ′)). By necessitation and axiom K ,

– `S5 ¬♦�A → (λ(�B ′) ↔σ(�B ′)). By axiom 5,

– `S5 ¬�A →¬♦�A then,

– `S5 ¬�A → (λ(�B ′) ↔σ(�B ′)).

Lemma 29 λ is a most general unifier.

Proof 44 First, we prove that λ is a unifier. By part (1) of Lemma 28,
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1. `S5�A → (λ(A) ↔ A). Since,

2. `S5�A → A then,

3. `S5�A →λ(A). By part (2) of Lemma 28,

4. `S5 ¬�A → (λ(A) ↔σ(A)). Since, σ is a unifier of A then,

5. `S5 ¬�A →λ(A). By lines 3 and 5,

6. `S5 λ(A).

Therefore, λ is a unifier of A. Second, we have to prove that λ is a most general
unifier.
Let τ be a unifier of A. Then, `S5 τ(�A). Let x is an arbitrary variable. We have
`S5 �A → (λ(x) ↔ x) by part (1) of Lemma 28. Then, `S5 τ(�A) → (τ(λ(x)) ↔
τ(x)). Since `S5 τ(�A) and `S5 τ(�A) → (τ(λ(x)) ↔ τ(x)) then, `S5 τ(λ(x)) ↔
τ(x). Therefore λ is a most general unifier of A (λ4S5 τ).

Example 10 Consider the formula A =�¬x ∨�y. The substitution σ such that
σ(x) = x and σ(y) = ♦x is one of the S5-unifiers of A. Let λ be the substitution
defined by λ(x) = (�A ∧ x)∨ (¬�A ∧σ(x)) and λ(y) = (�A ∧ y)∨ (¬�A ∧σ(y)).
Hence we have λ(x) = (�A ∧ x)∨ (¬�A ∧ x) = x and λ(y) = (�A ∧ y)∨ (¬�A ∧
♦x) = y ∨♦x. By Lemmas 29, this means that λ is a most general unifier of A.

4.3.5 Unification in Modal Logics K D5 and K 5

In this section, we interest in the logics K D5 and K 5. Notice that K 4 * K D5
and K 4*K 5. P. Balbiani and T. Tinchev showed that unification type of modal
logic K D45 is unitary [15]. Hence we need to express some Lemmas as follows:

Lemma 30 Every variable-free formula in K D5, is K D5-equivalent to⊥ or K D5-
equivalent to >.

Proof 45 Let ϕ be a variable-free formula. We have to prove ` ϕ↔⊥ or ` ϕ↔
>. We prove by induction on ϕ. We only consider the case ϕ :=�ϕ′. We remind
that `K D5�⊥↔⊥ and `K D5�>↔>.
By induction hypothesis we have that `K D5 ϕ

′ ↔⊥ or `K D5 ϕ
′ ↔>. Then `K D5

�ϕ′ ↔⊥ or `K D5�ϕ′ ↔>. Therefore, `K D5 ϕ↔⊥ or `K D5 ϕ↔>.
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Lemma 31 Every closed substitution in K D5 is K D5-equivalent to a substitu-
tion σ such that for every variable x, either σ(x) => or σ(x) =⊥.

Proof 46 Letσ be a closed substitution. Then for all variables x,σ(x) is variable-
free formula hence, by Lemma 30,σ(x) is K D5-equivalent to> or K D5-equivalent
to ⊥.

Lemma 32 Let φ be a formula, then the following conditions are equivalent in
K D5:

1. φ is K D5-unifiable,

2. There exists a K D5-unifier σ of φ such that for all variable x, either σ(x) =
> or σ(x) =⊥.

Proof 47 1. (1 ⇒ 2) Suppose φ is K D5-unifiable. Let the substitution σ such
that `K D5 σ(φ), by Lemma 8, φ possesses a closed K D5-unifier σ′ and for
all variables x, σ′(x) is variable-free formula hence, by Lemma 31, σ′(x) is
K D5-equivalent to > or ⊥.

2. (2 ⇐ 1) It is easy.

Lemma 33 Every variable-free formula in K 5 is either K 5-equivalent to > or
K 5-equivalent to ⊥ or K 5-equivalent to�⊥ or K 5-equivalent to ♦>.

Proof 48 Let ϕ be a variable-free formula. We have to prove `K 5 ϕ↔⊥ or `K 5

ϕ↔ > or `K 5 ϕ↔ �⊥ or `K 5 ϕ↔ ♦>. We prove by induction on ϕ. We only
consider the case ϕ :=�ϕ′.
By induction hypothesis we have that `K 5 ϕ

′ ↔⊥ or `K 5 ϕ
′ ↔> or `K 5 ϕ

′ ↔�⊥
or `K 5 ϕ

′ ↔♦>. Hence,
If `K 5 ϕ

′ ↔ ⊥ then `K 5 �ϕ′ ↔ �⊥. If `K 5 ϕ
′ ↔ > then `K 5 �ϕ′ ↔ >. If `K 5

ϕ′ ↔ �⊥ then `K 5 �ϕ′ ↔ ��⊥. Thus, `K 5 �ϕ′ ↔ �⊥. If `K 5 ϕ
′ ↔ ♦> then

`K 5�ϕ′ ↔�♦>. Hence, `K 5�ϕ′ ↔>.

Lemma 34 Every closed substitution in K 5 is K 5-equivalent to a substitution
σ such that for every variable x, either σ(x) = > or σ(x) = ⊥ or σ(x) = �⊥ or
σ(x) =♦>.

Proof 49 Letσ be a closed substitution. Then for all variables x,σ(x) is variable-
free formula hence, by Lemma 33,σ(x) is either K 5-equivalent to> or K 5-equivalent
to ⊥ or K 5-equivalent to ♦> or K 5-equivalent to�⊥.
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Lemma 35 Let φ be a formula, then the following conditions are equivalent in
K 5:

1. φ is K 5-unifiable,

2. There exists a K 5-unifierσ ofφ such that for all variable x, eitherσ(x) =>
or σ(x) =⊥ or σ(x) =�⊥ or σ(x) =♦>.

Proof 50 1. (1 ⇒ 2) Supposeφ is K 5-unifiable. Let the substitutionσ be such
that `K 5 σ(φ). By Lemma 8, φ possesses a closed K 5-unifier σ′. Then for
all variables x, σ′(x) is variable-free formula hence, by Lemma 31, σ′(x) is
K 5-equivalent to either > or ⊥ or�⊥ or ♦>.

2. (2 ⇒ 1) It is easy.

With Lemma 32 and 35, we can only conclude that given a modal formula φ, it
is relatively simple to determine whether φ is K D5-unifiable or K 5-unifiable.
For instance, given φ, to determine if φ is K D5-unifiable it suffices to non-
deterministically replace in φ each variable either by ⊥, or by > and then to see
if the resulting closed formula is in K D5. In K 5, it suffices to non-deterministically
replace variables in φ either by ⊥, or by ⊥, or by �⊥, or by ♦>. Now, let us try
to determine the unification type of K D5 and K 5 which is still unknown. No-
tice that the result of Ghilardi mentioned after Definition 29 cannot be used for
K D5 and K 5 because K 4*K D5 and K 4*K D5.
Let φ be a modal formula and σ,τ be substitutions. Let y be a new variable.
This means that y does not occur in φ. Moreover, for all variables x occurring
in φ, y does not occur in σ(x) for variables x in φ. Let ασ,τ

K D5 be substitution
defined by

ασ,τ
K D5(x) = (��y ∧σ(x))∨ (¦¦¬y ∧τ(x)).

Lemma 36 Let σ be a substitution of a given formula φ.

1. ασ,τ
K D5 ¹K D5 σ.

2. ασ,τ
K D5 ¹K D5 τ.

Proof 51 1. Let ν be the substitution defined by ν(y) = > and for all other
variable x, ν(x) = x. Since the variable y is new hence, ν ◦ασ,τ

K D5(x) 'K D5

σ(x). Then, ασ,τ
K D5 ¹K D5 σ.
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2. Let ν be the substitution defined by ν(y) = ⊥ and for all other variable x,
ν(x) = x. Since the variable y is new hence, ν◦ασ,τ

K D5(x) 'K D5 τ(x). Then,
ασ,τ

K D5 ¹K D5 τ.

Lemma 37 Let ψ be a formula not containing y.

1. `K D5��y → (ασ,τ
K D5(ψ) ↔σ(ψ)).

2. `K D5 ♦♦¬y → (ασ,τ
K D5(ψ) ↔ τ(ψ)).

Proof 52 We will do the proof by using the semantics of K D5. Remind that K D5-
models are of the form (W,R,V ) where R is serial and Euclidean.Notice that if
w ∈ W is such that M , w ���y then for all v in the sub-model of M generated
from w, we have M , v ���y. Similarly, if w ∈W is such that M , w �♦♦¬y then
for all v in the sub-model of M generated from w, we have M , v � ♦♦¬y. Sup-
pose M = (W,R,V ) is K D5-model. Then for all formulasψwe prove by induction
on ψ that:

1. If M , w ���y then M , w �ασ,τ
K D5(ψ) iff M , w �σ(ψ).

2. If M , w �♦♦¬y then M , w �ασ,τ
K D5(ψ) iff M , w � τ(ψ).

1. Suppose M , w � ��y we want to show that M , w � ασ,τ
K D5(ψ) iff M , w �

σ(ψ). The proof is done by induction on ψ.

• ψ= x. Hence, M , w �ασ,τ
K D5(x) iff M , w � (��y∧σ(x))∨(¦¦¬y∧τ(x))

iff M , w �σ(x) since M , w ���y.

• ψ=¬ψ′. By our assumption,
(1)M , w ���y. By induction hypothesis
(2)M , w � (ασ,τ

K D5(ψ′) ↔σ(ψ′)). By 2
(3)M , w �¬ασ,τ

K D5(ψ′) ↔¬σ(ψ′). Then
(4)M , w �ασ,τ

K D5(¬ψ′) ↔σ(¬ψ′).

• The case when ψ=ψ′∧ψ′′. By our assumption,
(1)M , w ���y. By induction hypothesis,
(2)M , w � (ασ,τ

K D5(ψ′) ↔σ(ψ′)) and
(3)M , w � (ασ,τ

K D5(ψ′′) ↔σ(ψ′′)). Then,
(4)M , w �ασ,τ

K D5(ψ′∧ψ′′) →σ(ψ′∧ψ′′).
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• ψ=�ψ′. By induction hypothesis, we know that for all v in the sub-
model of M generated from w,
(1)M , v � (ασ,τ

K D5(ψ′) ↔σ(ψ′)). Then
(2)M , w �ασ,τ

K D5(�ψ′) ↔σ(�ψ′).

2. if we suppose that M , w �♦♦¬y then the argument is similar.

Lemma 38 Let φ be a formula. If σ and τ are K D5-unifiers of φ then ασ,τ
K D5 is a

K D5-unifier of φ.

Proof 53 Suppose σ and τ are K D5-unifiers of φ. Then,
(1)�K D5 σ(φ) and
(2)�K D5 τ(φ). By Lemma 37
(3)�K D5��y → (ασ,τ

K D5(φ) ↔σ(φ)) and
(4)�K D5 ♦♦¬φ→ (ασ,τ

K D5(φ) ↔ τ(φ)). By 1 and 3,
(5)�K D5��y →ασ,τ

K D5(φ). By 2 and 4
(6)�K D5 ♦♦¬φ→ασ,τ

K D5(φ). By 5 and 6,
(7)�K D5 α

σ,τ
K D5(φ).

Proposition 11 Unification in K D5 is filtering.

Proof 54 Let φ be a K D5-unifiable formula. Let σ,τ be K D5-unifiers of φ. By
Lemmas 36 and 38, ασ,τ

K D5 is a K D5-unifier of φ such that ασ,τ
K D5(φ) ¹K D5 σ and

ασ,τ
K D5(φ) ¹K D5 τ. As φ is an arbitrary K D5-unifiable formula, K D5 is filtering.

As a consequence, K D5 is either of type unitary or of type nullary (see Lemma
27). We conjecture that, like K 5, K D5 is unitary. Now, let us adapt our line or
reasoning to the case of modal logic K 5.
Consider a modal formula φ and substitutions σ,τ. Let y be a new variable. Let
ασ,τ

K 5 be the substitution defined for all variable x occurring in φ,

ασ,τ
K 5 (x) = ((��y ∧ (y ∨♦>))∧σ(x))∨ ((♦♦¬y ∨ (¬y ∧�⊥))∧τ(x))

Lemma 39 Let σ be a substitution of a given formula φ.

• ασ,τ
K 5 ¹K 5 σ.

• ασ,τ
K 5 ¹K 5 τ.
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Proof 55 The proof is similar to the proof of Lemma 36

Lemma 40 Let ψ be a formula
(1) `K 5 (��y ∧ (y ∨♦>)) → (ασ,τ

K 5 (ψ) ↔σ(ψ)).
(2) `K 5 (♦♦¬y ∨ (¬y ∧�⊥)) → (ασ,τ

K 5 (ψ) ↔ τ(ψ)).

Proof 56 The proof can be done by using the semantics of K 5. We remind that
models of K 5 are of the form (W,R,V ) where R is Euclidean. Notice that if w ∈W
is such that M , w ���y∧(y∨♦>) then for all v in the sub-model of M generated
from w, we have M , v ���y ∧ (y ∨♦>). Similarly, if w ∈W is such that M , w �
♦♦¬y ∨ (¬y ∧�⊥) then for all v in the sub-model of M generated from w, we
have M , v �♦♦¬y ∨ (¬y ∧�⊥).

Lemma 41 If σ and τ are K 5-unifiers of φ then ασ,τ
K 5 is a K 5-unifier of φ.

Proof 57 The proof is similar to the proof of Lemma 38

Proposition 12 Unification in K 5 is filtering.

Proof 58 The proof is similar to the proof of Proposition 11

Proposition 13 (1) Either K 5 is unitary, or K 5 is nullary.
(2) Either K D5 is unitary, or K D5 is nullary.

Proof 59 By Lemma 27 and Lemmas 11 and 12.

The exact unification type of K D5 and K 5 is still unknown. The main difficulty
in determining this type is that neither K D5 nor K 5 contain K 4. Hence, the
techniques developed by Ghilardi [31] for showing that K 4 and some of its ex-
tension like S4 and GL are finitary cannot be used. In other respect, Ghilardi’s
results [30] saying that an extension L of K 4 has filtering unification iff L con-
tains K 4.2+ cannot be applied in the case of K D5 and K 5 for the same reason
(neither K D5 nor K 5 contains K 4).
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In chapter 4, we have seen that the unification in modal logics K D5 and K 5
are either unitary or nullary, the exact unification type of these logics are still
unknown. This is quite surprising, considering the fact that K D5 and K 5 are
relatively simple logics. Another simple modal logic is Al t1 = K ⊕♦A → �A.
Balbiani and Tinchev [14] have proved that Al t1 is nullary. Models of Al t1 are
of the form (W,R,ν) where R is deterministic relation (every possible world has
at most one successor). In this section, after a suggestion of Silvio Ghilardi, we
investigate the unification type of logics Al t1+��⊥. Models of Al t1+��⊥ are
very simple. They are structures of the form (W,R,ν) where W contains exactly
1 world and R =;, or W contains exactly two worlds w and v and R = {(w, v)}
(that is to say w can see v and w, v are irreflexive). In this Chapter, we show that
unification type of Al t1 +��⊥ is unitary. It is obvious that some results have
to be proven. Now, we introduce a result which will prove to be very useful in
Section 5.6. For all set S, notation ∥ S ∥ will be used as the cardinality of the
set S. For all non-empty sets S, for all equivalence relations ∼ on S and for
all α ∈ S, notation [α] will denote the equivalence class modulo ∼ with α as its
representative. For all non-empty sets S, for all equivalence relations∼on S and

65
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for all T ⊆ S,T / ∼ will denote the quotient set of T modulo ∼. Notice that for all
non-empty sets S, for all equivalence relations ∼ on S and for all α,β ∈ S,α∼ β
iff α ∈ [β] iff [α]∩ [β] 6= ;. Now, we introduce a result which will be very useful
in Section 5.6.

Proposition 14 Let S, T be finite non-empty sets. Let ∼ be an equivalence rela-
tion on S. The following conditions are equivalent:

1. ∥ S/ ∼∥6∥ T ∥6∥ S ∥,

2. there exists a surjective function f from S to T such that for all α,β ∈ S, if
f (α) = f (β) then α∼β.

Proof 60 (1 ⇒ 2) Suppose∥ S/ ∼∥6∥ T ∥6∥ S ∥. Let h be a function from S/ ∼ to
S such that for all α ∈ S, h[α] ∈ [α]. h is injective. Let S0 = {h[α] :α ∈ S}. Since h
is injective, therefore∥ S/ ∼∥=∥ S0 ∥. Since ∥ S/ ∼∥6∥ T ∥, therefore ∥ S0 ∥6∥ T ∥.
Let T0 be a subset of T such that ∥ T0 ∥=∥ S0 ∥. Let f0 be a one-to-one correspon-
dence between S0 and T0. Let T1 = T \T0. Notice that T0 and T1 make a partition
of T . Since ∥ T ∥6∥ S ∥ and ∥ T0 ∥=∥ S0 ∥, therefore ∥ T1 ∥6∥ S \ S0 ∥. Let S1 be
a subset of S \ S0 such that ∥ T1 ∥=∥ S1 ∥. Let f1 be a one-to-one correspondence
between S1 and T1. Let S2 = (S \ S0) \ S1. Let f2 be the function from S2 to T such
that for all α ∈ S2, f2(α) = f0(h([α])). Let f be the function from S to T defined
by f | S0 = f0, f | S1 = f1 and f | S2 = f2. By construction of f , it is easy to show
that f is surjective and for all α,β ∈ S, if f (α) = f (β) then α∼β.

S0 S1 S2 T0 T1

S T

∗

∗

∗

∗

◦ ◦ ◦ . . . ◦ ◦ ◦

∗

∗

∗

∗
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(2 ⇒ 1) Suppose f is a surjective function from S to T such that for all α,β ∈
S, if f (α) = f (β) then α ∼ β. For the sake of the contradiction, suppose either
∥ S/ ∼∥>∥ T ∥, or ∥ T ∥>∥ S ∥. Since f is surjective, therefore ∥ T ∥6∥ S ∥. Since
either ∥ S/ ∼∥>∥ T ∥, or ∥ T ∥>∥ S ∥, therefore ∥ S/ ∼∥>∥ T ∥. Let p ∈ N and
β1, ...,βp ∈ S be such that p >∥ T ∥ and for all q,r ∈N, if 16 q, r 6 p and q 6= r
then βq � βr . Hence, for all q,r ∈ N, if if 16 q, r 6 p and q 6= r then f (βq ) 6=
f (βr ). Thus, p 6∥ T ∥: a contradiction.

We remind that P is a countably infinite set of propositional variables (with typ-
ical members denoted x, y , etc). Let (x1, x2, ...) be an enumeration of P without
repetitions. For all n ∈N, let FORn be the set of all formulas based on the vari-
ables x1, ..., xn .
We shall say that a frame (W,R) is deterministic if for all s, t ,u ∈ W , if sRt and
sRu then t = u.
We shall say that a frame (W,R) is bounded if for all s0, s1, s2 ∈ W either s0 6 Rs1

or s1 6 Rs2.
Let C b

det be the class of all deterministic bounded frame. Let L be the logic char-

acterized by C b
det . As is well-known, L = Al t1+��⊥. For all n> 1, an n-tuple of

bits (denotedα,β, etc) is a function from {1, ...,n} to {0,1}. For all n> 1, let BITn

be the set of all n-tuples of bits. For all α ∈ BITn , we will write α= (α1, ...,αn).
Obviously, frames in C b

det are disjoint unions of the following structures where
circles represent irreflexive possible worlds.

. . . . .....

In this chapter, when we write "frame F = (W,R)" we mean "frame F = (W,R)
in C b

det ".

5.1 Semantics

Instead of considering models giving truth values to any kind of formulas, we
will use models giving values to formulas based on a restricted (finite) set of
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variables. Let n > 1. An n-model based on a frame (W,R) is a triple (W,R, v)
where v is a function assigning for all i ∈ 1, ...,n, a subset v(xi ) of W to the
variable xi . Given an n-model (W,R,V ), the n-satisfiability of ϕ ∈ FORn at s ∈
W (in symbols s �n ϕ ) is inductively defined as follows:

• s �n xi iff s ∈V (xi ),

• s 2n ⊥,

• s �n ¬ϕ iff s 2n ϕ,

• s �ϕ∧ψ iff s �n ϕ and s �n ψ,

• s �n �ϕ iff for all t ∈W if sRt then t �n ϕ.

We shall say that ϕ ∈ FORn is n-true in a n-model (W,R, v) if ϕ is n-satisfied at
all s ∈W .
We shall say that ϕ ∈ FORn is n-valid in a frame (W,R) if ϕ is n-true in all n-
models based on (W,R).
We shall say thatϕ ∈ FORn is n-valid (in symbol�ϕ) ifϕ is n-valid in all frames.
Remind that, in this Chapter, all frames are bounded deterministic.
Let ≡n be the equivalence relation on FORn defined by

• ϕ≡n ψ iff �ϕ↔ψ,

whereϕ andψ range over FORn . The next result follows from the fact that in the
logic Al t1 +��⊥ for all ϕ ∈ FORn , there exists ψ ∈ FORn such that deg (ψ)6 1
and �ϕ↔ψ.

Proposition 15 C b
det is locally tabular. That is to say for all n > 1, the equiva-

lence relation ≡n possesses finitely many equivalence classes.

Proof 61 Refer to [18], Proposition 2.29.

Let GC b
det be the class consisting of all frames of the form (W,R) where W =

{s0, s1} and s0 6= s1 and R = {(s0, s1)}. Notice that GC b
det ⊆ C b

det . The next result

shows that GC b
det and C b

det determine the same modal logic: Al t1+��⊥. Its
proof is standard.

Proposition 16 For all ϕ ∈ FORn , ϕ ∈ Al t1 +��⊥ iff ϕ is n-valid in all frames
of C b

det iff φ is valid in all frames of GC b
det .
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5.2 Unification

In order to show that Al t1 +��⊥ is unitary, we will use a special notation for
substitution. We remind from Chapter 4 that a substitution is a mapping σ :
x → F (y) where x, y are finite tuples of variables and F (y) is the set of formulas
based on the variables in y . In this chapter, we will use a different notation for
substitutions. Let n > 1. An n-substitution is a pair (k,σ) where k > 1 and σ is
a homomorphism from FORn to FORk , i.e. σ : FORn → FORk is such that

• σ(⊥) =⊥,

• σ(¬ϕ) =¬σ(ϕ),

• σ(ϕ∧ψ) =σ(ϕ)∧σ(ψ),

• σ(�ϕ) =�σ(ϕ).

Let SUBn be the set of all n-substitutions. The equivalence relation 'n on SUBn

is defined by

• (k,σ) 'n (l ,τ) iff for all i ∈ {1, ...,n},�σ(xi ) ↔ τ(xi ),

where (k,σ), (l ,τ) range over SUBn . The pre-order4n on SUBn is defined by

• (k,σ) 4n (l ,τ) iff there exists a k-substitution (m,ν) such that for all i ∈
{1, ...,n}, � ν(σ(xi )) ↔ τ(xi ),

where (k,σ), (l ,τ) range over SUBn . Obviously, 'n is contained in 4n . An n-
unifier of ϕ ∈ FORn is an n-substitution (k,σ) such that � σ(ϕ). We say that
ϕ ∈ FORn is n-unifiable if there exists a n-unifier of ϕ. We say that a set Σ of
n-unifiers of a n-unifiable ϕ ∈ FORn is n-complete if for all n-unifiers (k,σ) of
ϕ, there exists (l ,τ) ∈Σ such that (l ,τ)4n (k,σ).

Definition 30 For all n-unifiable ϕ ∈ FORn , we shall say that

• ϕ is n-filtering if for all n-unifiers (k,σ), (l ,τ) of ϕ, there exists a n-unifier
(m,ν) such that (m,ν)4n (k,σ) and (m,ν)4n (l ,τ).

The next result is standard and Lemma 27 rephrases itself as the following Lemma.

Lemma 42 Let ϕ ∈ FORn be n-unifiable. If ϕ is n-filtering then either ϕ is n-
nullary, or ϕ is n-unitary.
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Proof 62 The proof is similar to the proof of Lemma 27.

Definition 31 For all n-unifiable ϕ ∈ FORn and for all π> 1, we shall say that

• ϕ is n-π-reasonable if for all n-unifiers (k,σ) ofϕ, if k >π then there exists
a n-unifier (l ,τ) of ϕ such that (l ,τ)4n (k,σ) and l 6π.

In other words, an n-unifiable ϕ ∈ FORn will be n-π-reasonable where every
n-unifier of ϕ is an instance of an n-unifier (l ,τ) such that l 6 π, that is to say
the variables occurring in τ(x1), ...,τ(xn) belong to the set {x1, ..., xl } ⊆ {x1, ..., xπ}.
The next result is new. Combined with Proposition 42, it will be very useful in
Section 5.4 for showing that unifiable n-formulas are unitary in Al t1 +��⊥,

Proposition 17 Let ϕ ∈ FORn be n-unifiable and π> 1. If ϕ is n-π-reasonable
then either ϕ is n-finitary, or ϕ is n-unitary.

Proof 63 Suppose ϕ is n-π-reasonable. Let Σ be the set of all n-unifiers of ϕ.
Notice that Σ is n-complete. Let Σ′ be the set of n-substitutions obtained from Σ

by keeping only the n-substitutions (k,σ) such that k 6π. Since Σ is n-complete
andϕ is n-π-reasonable, thereforeΣ′ is n-complete. LetΣ′′ be the set of n-substitutions
obtained from Σ′ by keeping only one representative of each equivalence class
modulo 'n . Since Σ′ is n-complete, therefore Σ′′ is n-complete. Moreover, since
C b

det is locally π-tabular, therefore Σ′′ is finite. Hence, either ϕ is n-finitary, or ϕ
is n-unitary.

5.3 About bounded deterministic frames

Let n> 1. The next result implies that in Al t1 +��⊥, unifiable n-formulas are
either nullary, or unitary.

Proposition 18 For all ϕ ∈ FORn , if ϕ is n-unifiable then ϕ is n-filtering.

Proof 64 Let ϕ ∈ FORn . Suppose ϕ is n-unifiable. Let (k,σ), (l ,τ) be n-unifiers
of ϕ. Let m = max{k, l }+ 1. Notice that xm does not occur in ϕ,σ and τ. Let
(m,µ) be the n-substitution defined by

• µ(xi ) =
(
(♦xm ∨ (xm ∧�⊥))∧σ(xi )

)
∨

(
(�¬xm ∧ (¬xm ∨♦>))∧τ(xi )

)
,

where i ranges over {1, ...,n}. Let (m,λ>) and (m,λ⊥) be the m-substitutions de-
fined by
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• if i < m then λ>(xi ) = xi else λ>(xi ) =>,

• if i < m then λ⊥(xi ) = xi else λ⊥(xi ) =⊥,

where i ranges over {1, ...,m}. Notice that for all i ∈ {1, ...,n}, � λ>(µ(xi )) ↔σ(xi )
and � λ⊥(µ(xi )) ↔ τ(xi ). Hence, (m,µ) 4n (k,σ) and (m,µ) 4n (l ,τ). More-
over, by induction on ψ ∈ FORn the reader may show that �♦xm ∨ (xm ∧�⊥) →
(µ(ψ) ↔σ(ψ)) and ��¬xm ∧(¬xm ∨♦>) → (µ(ψ) ↔ τ(ψ)). Thus �♦xm ∨(xm ∧
�⊥) →µ(ϕ) and��¬xm∧(¬xm∨♦>) →µ(ϕ). Consequently,�µ(ϕ) and (m,µ)
is a n-unifier of ϕ. Since (m,µ) 4n (k,σ) and (m,µ) 4n (l ,τ), therefore ϕ is n-
filtering.

In order to show that in Al t1+��⊥, unifiable n-formulas are reasonable (Propo-
sition 25), we introduce an alternative semantics as follows.
A n-model is a structure of the form (α, A) where α is an n-tuple of bits and A
is a set of n-tuples of bits of cardinality 0 or 1.
Let MOD=;

n be the set of all n-models (α, A) such that A = ; hence MOD=;
n =

{(α, A) :α ∈ BITn , A =;} and MOD 6=;
n be the set of all n-models (α, A) such that

A 6= ; hence, MOD 6=;
n = {(α, A) : α ∈ BITn ,∥ A ∥= 1}. Let MODn be the set of all

n-models hence, MODn = MOD=;
n ∪MOD 6=;

n . The binary relation �n of satisfi-
ability between MODn and FORn is defined in two following cases.
If (α, A) ∈ MOD 6=;

n then,

• (α, A)�n xi iff αi = 1,

• (α, A)2n ⊥,

• (α, A)�n ¬ϕ iff (α, A)2n ϕ,

• (α, A)�ϕ∧ψ iff (α, A)�n ϕ and (α, A)�n ψ,

• (α, A)�n �ϕ iff for the unique α′ ∈ A, (α′,;)�n ϕ.

If (α, A) ∈ MOD=;
n then,

• (α, A)�n xi iff αi = 1,

• (α, A)2n ⊥,

• (α, A)�n ¬ϕ iff (α, A)2n ϕ,
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• (α, A)�ϕ∧ψ iff (α, A)�n ϕ and (α, A)�n ψ,

• (α, A)�n �ϕ.

The next result shows that GC b
det and n-models determine the same modal

logic. Its proof is standard.

Proposition 19 For allϕ ∈ FORn , GC b
det �n ϕ iff for all (α, A) ∈ MODn , (α, A)�n

ϕ.

We remind that for all formulas ψ, ψ0 denotes ¬ψ and ψ1 denotes ψ.

Definition 32 The function forn from MODn to FORn is inductively defined as
follows:

• if A 6= ; then forn((α, A)) = xα1
1 ∧ ...∧xαn

n ∧♦forn((α′,;)), where A = {α′},

• if A =; then forn((α, A)) = xα1
1 ∧ ...∧xαn

n ∧�⊥
where (α, A) ranges over MODn .

Proposition 20 Let (k,σ) ∈ SUBn . Let (α, A) ∈ MODk and (β,B) ∈ MODn . If
(α, A)�k σ(forn((β,B))) then ∥ A ∥=∥ B ∥.

Proof 65 Let ∥ A ∥6=∥ B ∥. Hence either ∥ A ∥<∥ B ∥ or ∥ B ∥<∥ A ∥. Assume
∥ A ∥= ; and ∥ B ∥6= ;. By our assumption we have (α,;) �k σ(forn((β,B))).
Hence, (α,;)�k ♦> because B ∉; and this is contradiction.
Let ∥ B ∥<∥ A ∥. In this case, we can do similar to the case ∥ A ∥<∥ B ∥.
Therefore ∥ A ∥=∥ B ∥.

Proposition 21 Let (α, A), (β,B) ∈ MODn . The following conditions are equiva-
lent:

1. (α, A) = (β,B),

2. (α, A)�n forn((β,B)).

Proof 66 (1 ⇒ 2) Let (α, A) = (β,B). Hence, α = β and A = B. We consider two
following cases:

• Let A = ; and B = ;. By definition (α, A) �n xα1
1 ∧ ...∧ xαn

n . Since α = β

then, αi = βi for each i = 1, ...,n, hence, (α, A) �n xβ1
1 ∧ ...∧ xβn

n . Since,

A = ; hence, (α, A) �n �⊥. Hence, (α, A) �n xβ1
1 ∧ ...∧ xβn

n ∧�⊥. Since
A = B =; then, (α, A)�n forn((β,B)).
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• Let A 6= ; 6= B. By definition (α, A) �n xα1
1 ∧ ...∧ xαn

n . Since α = β then,

αi = βi for each i = 1, ...,n, hence, (α, A) �n xβ1
1 ∧ ...∧ xβn

n . Since, A 6= ; let

α′ ∈ A and (α′,;) �n x
α′

1
1 ∧ ...∧ x

α′
n

n . By our assumption, A = B and B 6= ;.

Let β′ ∈ BITn such that B = {β′}. Hence α′ = β′ and (α′,;) �n x
β′

1
1 ∧ ...∧

x
β′

n
n . Then, (α, A)�n ♦(x

β′
1

1 ∧ ...∧x
β′

n
n ). Since (α, A)�n ♦(x

β′
1

1 ∧ ...∧x
β′

n
n ) and

(α, A)�n xβ1
1 ∧ ...∧xβn

n therefore, (α, A)�n forn((β,B)).

(2 ⇒ 1) Let (α, A)�n forn((β,B)). Hence, (α, A)�n xβ1
1 ∧...∧xβn

n ∧�⊥ where B =;
and (α, A)�n xβ1

1 ∧...∧xβn
n ∧♦(x

β′
1

1 ∧...∧x
β′

n
n ) where B = {β′}. It follows that A =;

where B =; and A 6= ; where B 6= ;. We consider two following cases:

• Let A = ; and B = ;. Hence A = B. It is enough to show α = β. Since

(α, A)�n xβ1
1 ∧ ...∧xβn

n then, (α, A)�n xβi
i for each i = 1, ...,n. Then αi =βi

for each i = 1, ...,n. Thus, α=β.

• Let A 6= ; and B 6= ;. Let β′ ∈ BITn such that B = {β′}. Let α′ ∈ BITn such

that A = {α′}. Since (α, A)�n xβ1
1 ∧...∧xβn

n then (α, A)�n xβi
i for i ∈ {1, ...,n}

hence, α=β. Since (α, A)�n ♦(x
β′

1
1 ∧ ...∧x

β′
n

n ) then (α′,;)�n x
β′

1
1 ∧ ...∧x

β′
n

n

and α′ =β′. Since α=β and α′ =β′ therefore, (α, A) = (β,B).

Proposition 22 Let (k,σ) ∈ SUBn . Let (α, A) ∈ MODk . There exists (β,B) ∈ MODn

such that (α, A)�k σ(forn((β,B))).

Proof 67 We consider two following cases:

• Case A =;. Let β ∈ BITn be such that for all i ∈ {1, ...,n}, if (α, A) �k σ(xi )
then βi = 1 else βi = 0. Consequently, (α, A) �k σ(x1)β1 ∧ ... ∧σ(xn)βn .
Since A =; then, (α, A)�k �⊥. Thus (α, A)�k σ(x1)β1 ∧ ...∧σ(xn)βn ∧�⊥.
Therefore, (α, A)�k σ(forn((β,;))).

• Case A 6= ;. Let α′ ∈ BITn be such that A = {α′}. Let β ∈ BITn be such that
for all i ∈ {1, ...,n}, if (α, A) �k σ(xi ) then βi = 1 else βi = 0. Consequently,
(α, A)�k σ(x1)β1 ∧ ...∧σ(xn)βn . Moreover, since A 6= ; let β′ ∈ BITn be such
that (α′,;)�k σ(x1)β

′
1 ∧ ...∧σ(xn)β

′
n . Since (α, A)�k σ(x1)β1 ∧ ...∧σ(xn)βn

then (α, A)�k σ(forn((β, {β′}))).

Proposition 23 Let (k,σ) ∈ SUBn . Let (α, A) ∈ MODk . For all (β,B), (γ,C ) ∈
MODn , if (α, A)�k σ(forn((β,B))) and (α, A)�k σ(forn((γ,C ))) then (β,B) = (γ,C ).
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Proof 68 We consider two following cases.

• Case A =;. Let (β,B), (γ,C ) ∈ MODn be such that (α, A)�k σ(forn((β,B)))
and (α, A) �k σ(forn((γ,C ))). Hence, if B 6= ; then (α, A) �k σ(x1)β1 ∧ ...∧
σ(xn)βn ∧♦(σ(x1)β

′
1 ∧ ...∧σ(xn)β

′
n ) where B = {β′} else (α, A) �k σ(x1)β1 ∧

...∧σ(xn)βn∧�⊥. If C 6= ; then (α, A)�k σ(x1)γ1∧...∧σ(xn)γn∧♦(σ(x1)γ
′
1∧

...∧σ(xn)γ
′
n ) where C = {γ′} else (α, A)�k σ(x1)γ1∧...∧σ(xn)γn ∧�⊥. Since,

A = ;, therefore B = ;, C = ; and for all i ∈ {1, ...,n}, (α, A) �k σ(xi )βi

and (α, A) �k σ(xi )γi . Thus β = γ. Since B = C = ; and β = γ therefore
(β,B) = (γ,C ).

• Case A 6= ;. Let (β,B), (γ,C ) ∈ MODn be such that (α, A)�k σ(forn((β,B)))
and (α, A) �k σ(forn((γ,C ))). Hence, if B 6= ; then (α, A) �k σ(x1)β1 ∧ ...∧
σ(xn)βn∧♦(σ(x1)β

′
1∧...∧σ(xn)β

′
n ) where B = {β′} else (α, A)�k σ(x1)β1∧...∧

σ(xn)βn∧�⊥ and if C 6= ; then (α, A)�k σ(x1)γ1∧...∧σ(xn)γn∧♦(σ(x1)γ
′
1∧

...∧σ(xn)γ
′
n ) where C = {γ′} else (α, A)�k σ(x1)γ1 ∧ ...∧σ(xn)γn ∧�⊥. Since

A 6= ; therefore B 6= ; and C 6= ; and for all i ∈ {1, ...,n}, (α, A) �k σ(xi )βi

and (α, A) �k σ(xi )γi . Hence, β = γ. Moreover (α′,;) �k σ(x1)β
′
1 ∧ ... ∧

σ(xn)β
′
n and (α′,;) �k σ(x1)γ

′
1 ∧ ...∧σ(xn)γ

′
n . Hence, β′ = γ′. Since β = γ

and β′ = γ′ consequently, (β,B) = (γ,C ).

From proposition 22 and 23, we conclude that for all (k,σ) ∈ SUBn and for
all (α, A) ∈ MODk , there exists exactly one (β,B) ∈ MODn such that (α, A) �k

σ(forn((β,B))).
For all k > 1, a (k,n)-morphism is a function f from MODk to MODn such that
for all (α, A) ∈ MODk and for all (β,B) ∈ MODn , if f ((α, A)) = (β,B) then

• Forward condition: if A 6= ; then B 6= ; and there exists α′ ∈ BITk , β′ ∈
BITn such that A = {α′}, B = {β′} and f ((α′,;)) = (β′,;).

• backward condition: if B 6= ; then A 6= ; and there exists α′ ∈ BITk , β′ ∈
BITn such that A = {α′}, B = {β′} and f ((α′,;)) = (β′,;).

This kind of morphisms is different from the bounded morphisms usually con-
sidered in modal logic (see [18], definition 2.10). In particular, in the above
definition, there is no condition related to the valuation of variables. The next
result is a good example of what the properties of morphism are like.

Proposition 24 Let k > 1. Let f be a (k,n)-morphism. Let (β,B) ∈ MODk and
(γ,C ) ∈ MODn . If the following conditions hold then f ((β,B)) = (γ,C ):
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• for all i ∈ {1, ...,n}, f ((β,B))�n xγi
i ,

• if B 6= ; then C 6= ; and there exists β′ ∈ BITk and γ′ ∈ BITn such that
B = {β′}, C = {γ′} and f ((β′,;)) = (γ′,;),

• if C 6= ; then B 6= ; and there exists β′ ∈ BITk and γ′ ∈ BITn such that
B = {β′}, C = {γ′} and f ((β′,;)) = (γ′,;).

Proof 69 Suppose for all i ∈ {1, ...,n}, f ((β,B))�n xγi
i . Moreover, suppose if B 6= ;

then C 6= ; and there exists β′ ∈ BITk and γ′ ∈ BITn such that B = {β′}, C = {γ′}
and f ((β′,;)) = (γ′,;) and if C 6= ; then B 6= ; and there existsβ′ ∈ BITk and γ′ ∈
BITn such that B = {β′}, C = {γ′} and f ((β′,;)) = (γ′,;). For the sake of the con-
tradiction, suppose f ((β,B)) 6= (γ,C ). Let (δ,D) ∈ MODn be such that f ((β,B)) =
(δ,D). Consequently, (γ,C ) 6= (δ,D). Since for all i ∈ {1, ...,n}, f ((β,B)) �n xγi

i ,

therefore for all i ∈ {1, ...,n}, (δ,D) �n xγi
i . Since for all i ∈ {1, ...,n}, (δ,D) �n xδi

i
therefore γ = δ. Since f ((β,B)) 6= (γ,C ) and f ((β,B)) = (δ,D), therefore (γ,C ) 6=
(δ,D). Since γ = δ, therefore C 6= D. It follows that either C 6= ; or D 6= ;. We
consider the following two cases:

• C 6= ;. Hence B 6= ; and there exists β′ ∈ BITk and γ′ ∈ BITn such that
B = {β′}, C = {γ′} and f ((β′,;)) = (γ′,;). Since f is a (k,n)−morphism
and f ((β,B)) = (δ,D), therefore D 6= ; and f ((β′,;)) = (δ′,;) for some
δ′ ∈ BITn such that D = {δ′}. Since γ = δ and f ((β′,;)) = (δ′,;), therefore
(γ,C ) = (δ,D): a contradiction.

• D 6= ;. Since f is a (k,n)−morphism and f ((β,B)) = (δ,D), therefore B 6= ;
and f ((β′,;)) = (δ′,;) for some β′ ∈ BITk such that B = {β′} and some
δ′ ∈ BITn such that D = {δ′}. Thus, C 6= ; and f ((β′,;)) = (γ′,;) for some
γ′ ∈ BITn such that C = {γ′}. Since γ = δ and f ((β′,;)) = (δ′,;), therefore
(γ,C ) = (δ,D): a contradiction.

5.4 Main Results

Let π= n. The next result implies that in Al t1 +��⊥, unifiable n-formulas are
either finitary or unitary.

Proposition 25 For all ϕ ∈ FORn , if ϕ is n-unifiable then ϕ is n-π-reasonable.
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Proof 70 Let ϕ ∈ FORn . Suppose ϕ is n-unifiable. Let (k,σ) be a n-unifier of ϕ
such that k > π. Hence, � σ(ϕ). Moreover, since n 6 π, therefore k > n. Let g be
a (k,n)-morphism such that for all (α, A), (β,B) ∈ MODk , if g ((α, A)) = g ((β,B))
then for all i ∈ {1, ...,n}, (α, A) �k σ(xi ) iff (β,B) �k σ(xi ). The proof of the exis-
tence of g is presented in Section 5.5.
Let f be a surjective (k,n)-morphism such that for all (α, A), (β,B) ∈ MODk , if
f ((α, A)) = f ((β,B)) then g ((α, A)) = g ((β,B)). The proof of the existence of f is
presented in Section 5.6.
Let (n,τ), (k,ν) be the n-substitution defined by

• τ(xi ) =∨
{forn( f ((α, A))) : (α, A) ∈ MODk is such that (α, A)�k σ(xi )},

• ν(xi ) =∨
{fork ((α, A)) : (α, A) ∈ MODk is such that f ((α, A))�n xi },

where i ranges over {1, ...,n}. Now, we show that ϕ is n −π-reasonable. In this
respect, we have to prove Lemmas 43, 44, 45 and 46.

In actual fact, the purpose of Lemmas 43, 44, 45 and 46 is to show that (n,τ) is
an n-unifier of ϕ such that (n,τ)4n (k,σ).

Lemma 43 Let ψ ∈ FORn . For all (β,B) ∈ MODn , the following conditions are
equivalent:

1. there exists (α, A) ∈ MODk such that f ((α, A)) = (β,B) and (α, A)�k σ(ψ),

2. for all (α, A) ∈ MODk if f ((α, A)) = (β,B) then (α, A)�k σ(ψ),

3. (β,B)�n τ(ψ).

Proof 71 By induction onψ ∈ FORn . We consider the following casesψ= xi and
ψ=�x.

• Let ψ= xi . Let (β,B) ∈ MODn .
(1 ⇒ 2) Suppose (α, A) ∈ MODk is such that f ((α, A)) = (β,B) ∈ MODn

and (α, A) �k σ(xi ). Let (γ,C ) ∈ MODk be such that f ((γ,C )) = (β,B).
Since f ((α, A)) = (β,B), therefore f ((α, A)) = f ((γ,C )). Hence, g ((α, A)) =
g ((γ,C )). Thus, (α, A) �k σ(xi ) iff (γ,C ) �k σ(xi ). Since (α, A) �k σ(xi )
therefore (γ,C )�k σ(xi ).
(2 ⇒ 3) Suppose for all (α, A) ∈ MODk if f ((α, A)) = (β,B) then (α, A) �k

σ(xi ). Since f is surjective therefore let (γ,C ) ∈ MODk be such that f ((γ,C )) =
(β,B). Since for all (α, A) ∈ MODk , if f ((α, A)) = (β,B) then (α, A)�k σ(xi ),
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therefore (γ,C ) �k σ(xi ). Consequently (β,B) �n forn( f ((γ,C ))) → τ(xi ).
Since f ((γ,C )) = (β,B), therefore (β,B) �n forn((β,B)) → τ(xi ). Since by
Proposition 22, (β,B)�n forn((β,B)), therefore (β,B)�n τ(xi ).
(3 ⇒ 1) Suppose (β,B) �n τ(xi ). Let (α, A) ∈ MODk be such that (α, A) �k

σ(xi ) and (β,B)�n forn( f ((α, A))). Such (α, A) exists by the definition of τ.
Hence, by Proposition 21, f ((α, A)) = (β,B).

• ψ=�χ. Let (β,B) ∈ MODn .
(1 ⇒ 2) Suppose (α, A) ∈ MODk is such that f ((α, A)) = (β,B) ∈ MODn and
(α, A)�k σ(�χ). Let (γ,C ) ∈ MODk be such that f ((γ,C )) = (β,B). Suppose
(γ,C ) 2k σ(�χ). Thus, C 6= ; and (γ′,;) 2k σ(χ) for γ′ ∈ BITk such that
C = {γ′}. Since f is a (k,n)-morphism and f ((γ,C )) = (β,B), therefore B 6=
; and f ((γ′,;)) = (β′,;) for some β′ ∈ BITn such that B = {β′}. Since f is
a (k,n)-morphism and f ((α, A)) = (β,B), therefore A 6= ; and f ((α′,;)) =
(β′,;) for some α′ ∈ BITk such that A = {α′}. Since (γ′,;) 2k σ(χ) and
f ((γ′,;)) = (β′,;), therefore, (α′,;) 2k σ(χ). Hence, (α, A) 2k σ(�χ): a
contradiction.
(2 ⇒ 3) Suppose for all (α, A) ∈ MODk , if f ((α, A)) = (β,B) then (α, A) �k

σ(�χ). Suppose (β,B) 2k τ(�χ). Consequently, B 6= ; and (β′,;) 2n τ(χ).
Since f is surjective, therefore let (γ,C ) ∈ MODk be such that f ((γ,C )) =
(β,B). Since for all (α, A) ∈ MODk , if f ((α, A)) = (β,B) then (β,B)�k σ(�χ),
therefore (γ,C )�kσ(�χ). Since f is a (k,n)-morphism, B 6= ; and f ((γ,C )) =
(β,B), therefore C 6= ; and f ((γ′,;)) = (β′,;) for γ′ ∈ BITk such that C =
{γ′}. Since (β′,;) 2n τ(χ), therefore by induction hypothesis, (γ′,;) 2k

σ(χ). Thus, (γ,C )2k σ(�χ): a contradiction.
(3 ⇒ 1) Suppose (β,B)�n τ(�χ). Since f is surjective, therefore let (α, A)MODk

be such that f ((α, A)) = (β,B). Suppose (α, A) 2k σ(�χ). Consequently,
A 6= ; and (α′,;) 2k σ(χ) for some α′ ∈ BITk such that A = {α′}. Since f is
a (k,n)-morphism and f ((α, A)) = (β,B), therefore B 6= ; and f ((α′,;)) =
(β′,;) for someβ′ ∈ BITn such that B = {β′}. Since (α′,;)2k σ(χ), therefore
by induction hypothesis, (β′,;) 2n τ(χ). Hence, (β,B) 2n τ(�χ): a contra-
diction.

Lemma 44 For all (β,B) ∈ MODk and for all i ∈ {1, ...,n}, the following condi-
tions are equivalent:

1. (β,B)�k ν(xi ),

2. f ((β,B))�n xi .
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Proof 72 Let (β,B) ∈ MODk and i ∈ {1, ...,n}.
(1 ⇒ 2) Suppose (β,B) �k ν(xi ). Let (α, A) ∈ MODk be such that f ((α, A)) �n

xi and (β,B) �k fork ((α, A)). Such (α, A) exists by the definition of ν. Thus, by
proposition 21, (β,B) = (α, A). Since f ((α, A))�n xi , therefore, f ((β,B))�n xi .
(2 ⇒ 1) Suppose f ((β,B)) �n xi . Consequently, by the definition of ν, (β,B) �k

fork ((β,B)) → ν(xi ). Since by Proposition 21 , (β,B) �k fork ((β,B)), therefore
(β,B)�k ν(xi ).

Lemma 45 Let (β,B) ∈ MODk and (γ,C ) ∈ MODn . The following conditions are
equivalent:

1. f ((β,B)) = (γ,C ),

2. (β,B)�k ν(forn((γ,C ))).

Proof 73 Obviously, if f ((β,B)) = (γ,C ) then B =; iff C =;. Similarly, if (β,B)�k

ν(forn((γ,C ))) then B = ; iff C = ;. For this reason we consider two following
cases.

• Case B =; and C =;.
(1 ⇒ 2) Suppose f ((β,;)) = (γ,;). Since for all i ∈ {1, ...,n}, (γ,;) �n xγi

i ,

therefore for all i ∈ {1, ...,n}, f ((β,;)) �n xγi
i . Thus, for all i ∈ {1, ...,n}, by

Lemma 44, (β,;) �k ν(xi )γi . Hence, (β,;) �k ν(x1)γ1 ∧ ...∧ν(xn)γn . Since
B =; and C =;, therefore (β,B)�k ν(forn((γ,C ))).
(2 ⇒ 1) Suppose (β,;)�k ν(forn((γ,;))). Consequently, (β,;)�k ν(x1)γ1 ∧
...∧ν(xn)γn . Hence for all i ∈ {1, ...,n}, (β,;) �k ν(xi )γi . Thus for all i ∈
{1, ...,n}, by Lemma 44, f ((β,;)) �n xγi

i . Since B =; and C =;, therefore
by Proposition 24, f ((β,;)) = (γ,;).

• Case B 6= ; and C 6= ;.
(1 ⇒ 2) Suppose f ((β,B)) = (γ,C ). Since for all i ∈ {1, ...,n}, (γ,C ) �n xγi

i ,

therefore for all i ∈ {1, ...,n}, f ((β,B)) �n xγi
i . Moreover, since f is a (k,n)-

morphism B 6= ; and C 6= ;, therefore f ((β′,;)) = (γ′,;) for β′ ∈ BITk , γ′ ∈
BITn such that B = {β′}, C = {γ′}. Hence for all i ∈ {1, ...,n}, by Lemma 44,
(β,B)�k ν(xi )γi . Moreover, by the first case above, since f ((β′,;)) = (γ′,;),
(β′,;) �k ν(forn((γ′,;))). Consequently, (β,B) �k ν(x1)γ1 ∧ ... ∧ ν(xn)γn .
Moreover, (β,B)�k ♦ν(forn((γ′,;))). Thus, (β,B)�k ν(forn((γ,C ))).
(2 ⇒ 1) Suppose (β,B) �k ♦ν(forn((γ,C ))). since C 6= ; then (β,B) �k

ν(x1)γ1 ∧ ...∧ν(xn)γn ∧♦ν(forn((γ′,;))) thus, for all i ∈ {1, ...,n}, (β,B) �k
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ν(xi )γi . Moreover, (β′,;) �k ν(forn((γ′,;))) for β′ ∈ BITk , γ′ ∈ BITn such
that B = {β′}, C = {γ′}. Thus for all i ∈ {1, ...,n}, by Lemma 44, f ((β,B)) �n

xγi
i . Moreover, by the first case above since (β′,;) �k ν(forn((γ′,;))) then,

f ((β′,;)) = (γ′,;). Consequently, by Proposition 24, f ((β,B)) = (γ,C ).

Lemma 46 For all (β,B) ∈ MODk and for all i ∈ {1, ...,n}, The following condi-
tions are equivalent:

1. (β,B)�k ν(τ(xi )),

2. (β,B)�k σ(xi ).

Proof 74 Let (β,B) ∈ MODk and i ∈ {1, ...,n}.
(1 ⇒ 2) Suppose (β,B)�k ν(τ(xi )). Let (α, A) ∈ MODk be such that (α, A)�k σ(xi )
and (β,B) �k ν(forn( f ((α, A)))). Such (α, A) exists by the definition of τ. Hence,
by Lemma 45, f ((β,B)) = f ((α, A)). Thus, g ((β,B)) = g ((α, A)). Since (α, A) �k

σ(xi ), therefore (β,B)�k σ(xi ).
(2 ⇒ 1) Suppose (β,B) �k σ(xi ). Consequently, by the definition of τ, (β,B) �k

ν(forn( f ((β,B)))) → ν(τ(xi )). Since by Lemma 45, (β,B) �k ν(forn( f ((β,B)))),
therefore, (β,B)�k ν(τ(xi )).

Since �σ(ϕ), therefore by Proposition 19, for all (α, A) ∈ MODk , (α, A) �k σ(ϕ).
Thus by Lemma 43, for all (β,B) ∈ MODn , (β,B) �n τ(ϕ). Consequently, by
Proposition 19, � τ(ϕ). Hence, (n,τ) is a n-unifier of ϕ. Moreover, by Lemma
46, (n,τ)4n (k,σ). Since n6π, therefore ϕ is n −π-reasonable. This is the end
of the proof of Proposition 25.
The next result follows from Propositions 15,17,19 and 25.

Proposition 26 For all ϕ ∈ FORn , if n-unifiable then ϕ is n-unitary.

Now, our main result can be state as follows.

Proposition 27 Unification in Al t1 +��⊥ is unitary.

Proof 75 By Proposition 26 and 18.
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5.5 Definition of the function g used in section 5.4

Let n > 1. Let (k,σ) ∈ SUBn . Now, we define the function g used in Section 5.4
Let g be the function from MODk to MODn such that

• g ((α, A)) is the unique (β,B) ∈ MODn such that (α, A)�k σ(forn((β,B))),

where (α, A) ranges over MODk . Notice that by Propositions 22 and 23, g is well-
defined. Propositions 28 and 29 show that g possesses the properties required
in Section 5.4.

Proposition 28 g is a (k,n)−morphism.

Proof 76 Let (α, A) ∈ MODk and (β,B) ∈ MODn be such that g ((α, A)) = (β,B).
Hence, (α, A) �k σ(forn((β,B))). Thus, if B 6= ; then (α, A) �k σ(x1)β1 ∧ ... ∧
σ(xn)βn ∧♦σ(forn((β′,;))) where β′ ∈ BITn is such that B = {β′} else (α, A) �k

σ(x1)β1 ∧ ...∧σ(xn)βn ∧�⊥. Consequently, if A 6= ; then B 6= ; and (α′,;) �k

σ(forn((β′,;))), (where α′ ∈ BITk is such that A = {α′}) and g ((α′,;)) = (β′,;).
Moreover, if B 6= ; then A 6= ; and (α′,;) �k σ(forn((β′,;))), i.e. g ((α′,;)) =
(β′,;).

Proposition 29 For all (α, A), (β,B) ∈ MODk , if g ((α, A)) = g ((β,B)) then for all
i ∈ {1, ...,n}, (α, A)�k σ(xi ) iff (β,B)�k σ(xi ).

Proof 77 Let (α, A), (β,B) ∈ MODk . Suppose g ((α, A)) = g ((β,B)). Hence, let
(γ,C ) ∈ MODn be such that g ((α, A)) = (γ,C ) and g ((β,B)) = (γ,C ). Thus, (α, A)�k

σ(forn((γ,C ))) and (β,B)�k σ(forn((γ,C ))). Consequently, (α, A)�k σ(x1)γ1∧...∧
σ(xn)γn and (β,B) �k σ(x1)γ1 ∧ ...∧σ(xn)γn . Hence, for all i ∈ {1, ...,n}, (α, A) �k

σ(xi )γi and (β,B)�k σ(xi )γi . Thus, for all i ∈ {1, ...,n}, (α, A)�k σ(xi ) iff (β,B)�k

σ(xi ).

5.6 Definition of the function f used in section 5.4

Let n> 1. Let (k,σ) ∈ SUBn be such that k > n. Let g be a (k,n)-morphism such
that for all (α, A), (β,B) ∈ MODk , if g ((α, A)) = g ((β,B)) then for all i ∈ {1, ...,n},
(α, A) �k σ(xi ) iff (β,B) �k σ(xi ). The proof of existence of g has been pre-
sented in Section 5.4. In order to define the function f used in Section 5.4,
we need define the function f0 and f1 such that f0 is a function from MOD=;

k
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to MOD=;
n and f1 is a function from MOD 6=;

k to MOD 6=;
n . Firstly, we define the

function f0 and then we define the function f1 based on f0. Let U = {g ((α,;)) :
(α,;) ∈ MOD=;

k }. By Proposition 20, U ⊆ MOD=;
n . Let h be a function from

U to MOD=;
k such that g (h(g ((α,;)))) = g ((α,;)). Obviously, h is injective.

Hence we have, ∥ U ∥=∥ {h(g ((α,;))) : α ∈ BITk } ∥. Since k > n, therefore,
∥ MOD=;

n \U ∥6∥ MOD=;
k \{h(g ((α,;))) :α,∈ BITk } ∥. Let S be a subset of

MOD=;
k \{h(g ((α,;))) : α ∈ BITk } such that ∥ S ∥=∥ MOD=;

n \U ∥. Let f ∗
0 be a

one-to-one correspondence between S and MOD=;
n \U .

Now, we define the function f0. Let f0 be the function from MOD=;
k to MOD=;

n

such that

• if (α,;) ∈ S then f0((α,;)) = f ∗
0 ((α,;)) else f0((α,;)) = g ((α,;)),

where (α,;) ranges over MOD=;
k . Lemma 47 and 48 show that f0 possesses

interesting properties as follows.

Lemma 47 f0 is surjective

Proof 78 Let (β,;) ∈ MOD=;
n . We consider the following two cases:

• (β,;) ∈ MOD=;
n \U . Since f ∗

0 is one-to-one, therefore let (α,;) ∈ MOD=;
k

be such that (α,;) ∈ S and f ∗
0 ((α,;)) = (β,;). Consequently, f0((α,;)) =

f ∗
0 ((α,;)). Since f ∗

0 ((α,;)) = (β,;), therefore f0((α,;)) = (β,;).

• (β,;) ∉ MOD=;
n \U . Thus, (β,;) ∈ U . Consequently, let (α,;) ∈ MOD=;

k
be such that g ((α,;)) = (β,;) and (α,;) = h((β,;)). Hence, f0((α,;)) =
g ((α,;)). Since g ((α,;)) = (β,;), therefore f0((α,;)) = (β,;).

Lemma 48 For all (α,;), (β,;) ∈ MOD=;
k , if f0((α,;)) = f0((β,;)) then g ((α,;)) =

g ((β,;)).

Proof 79 Let (α,;), (β,;) ∈ MOD=;
k . Suppose f0((α,;)) = f0((β,;)). We con-

sider the following three cases.

• (α,;) ∈ S and (β,;) ∈ S. Hence, f0((α,;)) = f ∗
0 ((α,;)) and f0((β,;)) =

f ∗
0 ((β,;)). Since f0((α,;)) = f0((β,;)), therefore f ∗

0 ((α,;)) = f ∗
0 ((β,;)).

Since f ∗
0 is one-to-one, therefore (α,;) = (β,;). Consequently, g ((α,;)) =

g ((β,;)).
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• (α,;) ∈ S and (β,;) ∉ S. Hence, f0((α,;)) = f ∗
0 ((α,;)) and f0((β,;)) =

g ((β,;)). Since f0((α,;)) = f0((β,;)), therefore f ∗
0 ((α,;)) = g ((β,;)). Since

f ∗
0 ((α,;)) ∈ MOD=;

n \U and g ((β,;)) ∈U , therefore MOD=;
n \U and U do

not make a partition of MOD=;
n : a contradiction.

• (α,;) ∉ S and (β,;) ∉ S. Hence, f0((α,;)) = g ((α,;)) and f0((β,;)) =
g ((β,;)). Since f0((α,;)) = f0((β,;)), therefore g ((α,;)) = g ((β,;)).

The surjective function f0 from MOD=;
k to MOD=;

n has been defined such that

for all (α′,;), (β′,;) ∈ MOD=;
n , if f0((α′,;)) = f0((β′,;)) then g ((α′,;)) = g ((β′,;)).

For δ′ ∈ BITn , let S((δ′,;)) = {(β, {β′}) : β,β′ ∈ BITk ,and f0((β′,;)) = (δ′,;)} and
T ((δ′,;)) = {(ε, {ε′}) : ε,ε′ ∈ BITn ,ε′ = δ′}. Notice that For δ′ ∈ BITn , S((δ′,;)) ⊆
MOD 6=;

k and T ((δ′,;)) ⊆ MOD 6=;
n . Also notice that ∥ T ((δ′,;)) ∥= 2n . For δ′ ∈

BITn let ∼(δ′,;) be the equivalence relation on S((δ′,;)) such that

• (β,B) ∼(δ′,;) (γ,C ) iff g ((β,B)) = g ((γ,C )),

where (β,B), (γ,C ) range over S((δ′,;)). The next result will allow us to use
Proposition 14.

Proposition 30 For all δ′ ∈ BITn ,

1. ∥ S((δ′,;))/ ∼(δ′,;)∥6∥ T ((δ′,;)) ∥,

2. ∥ T ((δ′,;)) ∥6∥ S((δ′,;)) ∥.

Proof 80 Let δ′ ∈ BITn . Obviously, ∥ T ((δ′,;)) ∥= 2n .

1. For the sake of contradiction, suppose ∥ S((δ′,;))/ ∼(δ′,;)∥>∥ T ((δ′,;)) ∥.
Let p ∈N and (β1,β′1), ..., (βp ,β′p ) ∈ S((δ′,;)) be such that p >∥ T ((δ′,;)) ∥
and for all q,r ∈N, if 16 q, r 6 p and q 6= r then (βq ,β′q )�(δ′,;) (βr ,β′r ).
Thus, f0((β′1,;)) = (δ′,;), ..., f0((β′p ,;)) = (δ′,;). Consequently, let ε′ ∈
BITn be such that g ((β′1,;)) = (ε′,;), ..., g ((β′p ,;)) = (ε′,;). Since g is a
(k,n)-morphism, therefore let ε1, ...,εp ∈ BITn be such that g ((β1,β′1)) =
(ε1,ε′), ..., g ((βp ,β′p )) = (εp ,ε′). Since for all q,r ∈N, if 16 q, r 6 p and p 6=
r then (βq ,β′p )�(δ′,;) (βr ,β′r ), thus for all q,rN, if 16 q, r 6 p and q 6= r
then g ((βq ,β′q )) 6= g ((βr ,β′r )). Since g ((β1,β′1)) = (ε1,ε′), ..., g ((βp ,β′p )) =
(εp ,ε′), thus for all q,r ∈N, if 16 q, r 6 p and q 6= r then εp 6= εr . Hence
p 6 2n . Since ∥ T ((δ′,;)) ∥= 2n , therefore p 6∥ T ((δ′,;)) ∥: a contradic-
tion.
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2. Since f0 is surjective, therefore obviously, ∥ S((δ′,;)) ∥> 2k . Since k > n
and ∥ T ((δ′,;)) ∥= 2n , therefore ∥ T ((δ′,;)) ∥6∥ S((δ′,;)) ∥.

Hence, for all δ′ ∈ BITn , by Proposition 14 and 30, let f (δ′,;)
1 be a surjective

function from S((δ′,;)) to T ((δ′,;)) such that for all (β,B), (γ,C ) ∈ S((δ′,;)),

if f (δ′,;)
1 ((β,B)) = f (δ′,;)

1 ((γ,C )) then (β,B) ∼(δ′,;) (γ,C ).

Now, we define the function f1. Let f1 be the function from MOD 6=;
k to

MOD 6=;
n such that

• f1((β,B)) = f f0(β′,;)
1 ((β,B)),

where (β,B) ranges overMOD 6=;
k and β′ ∈ BITk is such that B = {β′}. Lemma 49

and 50 show that f1 possesses interesting properties.

Lemma 49 f1 is surjective.

Proof 81 Let (δ,D) ∈ MOD6=;
n . Let δ′ ∈ BITn is such that D = {δ′}. Hence, (δ,D) ∈

T ((δ′,;)). Since f (δ′,;)
1 is surjective, therefore let (β,B) ∈ S((δ′,;)) be such that

f (δ′,;)
1 ((β,B)) = (δ,D). Let β′ ∈ BITk is such that B = {β′}. Thus, f0((β′,;)) =

(δ′,;). Moreover, f1((β,B)) = f f0((β′,;))
1 ((β,B)). Consequently, f1((β,B)) = f (δ′,;)

1 ((β,B)).

Since f (δ′,;)
1 ((β,B)) = (δ,D), Therefore f1((β,B)) = (δ,D).

Lemma 50 For all (α, A), (β,B) ∈ MOD6=;
k , if f1((α, A)) = f1((β,B)) then g ((α, A)) =

g ((β,B)).

Proof 82 Let (α, A), (β,B) ∈ MOD6=;
k . Suppose f1((α, A)) = f1((β,B)). Let α′ ∈

BITk be such that A = {α′}. Let β′ ∈ BITk be such that B = {β′}. Hence f1((α, A)) =
f f0((α′,;))

1 ((α, A)) and f1((β,B)) = f f0((β′,;))
1 ((β,B)). Since f1((α, A)) = f1((β,B))

therefore f f0((α′,;))
1 ((α, A)) = f f0((β′,;))

1 ((β,B)). Let (γ′,;), (δ′,;) ∈ MOD=;
n be such

that f0((α′,;)) = (γ′,;) and f0((β′,;)) = (δ′,;). Since f f0((α′,;))
1 ((α, A)) = f f0((β′,;)

1 ((β,B)),

therefore f (γ′,;)
1 ((α, A)) = f (δ′,;)

1 ((β,B)). Since f (γ′,;)
1 ((α, A)) ∈ T ((γ′,;)) and f (δ′,;)

1 ((β,B)) ∈
T ((δ′,;)), therefore (γ′,;) = (δ′,;). Since f (γ′,;)

1 ((α, A)) = f (δ′,;)
1 ((β,B)), therefore

(α, A) ∼(γ′,;) (β,B) and (α, A) ∼(δ′,;) (β,B). Consequently, g ((α, A)) = g ((β,B)).

Now, we define the function f used in Section 5.4 Let f be the function from
MODk to MODn such that

• f ((β,B)) = f0((β,;)) when B =;,
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• f ((β,B)) = f1((β,B)) when B 6= ;.

where (β,B) ranges over MODk . Propositions 31-33 show that f possesses the
properties required in Section ...

Proposition 31 f is a (k,n)−morphism.

Proof 83 Suppose f is not a (k,n)−morphism. let (α, A) ∈ MODk and (β,B) ∈
MODn be such that f ((α, A)) = (β,B) and either forward condition does not hold,
or backward condition does not hold. In the former case, A 6= ; and B = ;, or
there exists α′ ∈ BITk , β′ ∈ BITn such that A = {α′}, B = {β′} and f ((α′,;)) 6=
(β′,;). Since A 6= ; and f ((α, A)) = (β,B), then B 6= ;. Thus let α′ ∈ BITk ,
β′ ∈ BITn such that A = {α′}, B = {β′} and f0((α′,;)) 6= (β′,;). Since f ((α′, A)) =
(β′,B) then f f0((α′,;))

1 ((α, {α′})) = (β, {β′}). Then (β, {β′}) ∈ T ( f0((α′,;))), then
f0((α′,;)) = (β′,;): a contradiction.
In the latter case, B 6= ; and A =; or there exists α′ ∈ BITk , β′ ∈ BITn such that
A = {α′}, B = {β′} and f ((α′,;)) 6= (β′,;). Since B 6= ; and f ((α, A)) 6= (β,B) then
A 6= ;. And the rest of the argument is similar to the one used in the former case.

Proposition 32 For all (α, A), (β,B) ∈ MODk , if f ((α, A)) = f ((β,B)) then g ((α, A)) =
g ((β,B)).

Proof 84 By Lemmas 48 and 50.

Proposition 33 f is surjective.

Proof 85 By Lemmas 47 and 49.

In this Chapter, we have shown that Al t1 +��⊥ is unitary (Proposition 27).
The adaptation of this proof to K +��⊥ (showing K +��⊥) will be presented
during the workshop UNIF 2020.
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The fusion L1 ⊗L2 of two normal modal logics L1 and L2 formulated in lan-
guages L1 and L2 with disjoint sets of modal operators is the smallest normal
modal logic containing L1∪L2. It is easy to see that if each Li is axiomatized by a
set

∑
i of axioms (written in the respective language) then L1⊗L2 is axiomatized

by the union
∑

1∪
∑

2. Fusion of modal logics are everywhere in computer sci-
ence and artificial intelligence. For instance Public Announcement Logic is like
a fusion of finitary many S5 logics. In this chapter we consider some fusions of
two modal logics and discuss about their unification type.

6.1 Syntax

Let V AR be a countable set of atomic formulas called variables (denoted x, y ,
...). Formula of modal languages L1 and L2 are respectively defined as follows

ϕ ::= x |⊥ | ¬ϕ | (ϕ∨ψ) |�1ϕ,
ϕ ::= x |⊥ | ¬ϕ | (ϕ∨ψ) |�2ϕ.

85
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Definition 33 Formulas of the fusion L of L1 and L2 are given by the following
rule

ϕ ::= x | ⊥ | ¬ϕ | (ϕ∨ψ) |�1ϕ |�2ϕ.

As usual, the rest of the connectives are defined from the ones given. In this
case, we have ♦1ϕ ::=¬�1¬ϕ and ♦2ϕ ::=¬�2¬ϕ.

Definition 34 Let L1 be a normal modal logic in L1 and L2 be a normal modal
logic in L2. The fusion of L1 and L2 ( denoted L1⊗L2 ) is the least normal modal
logic in L containing L1 and L2.

A number of transfer results have been obtained. For instance, if L1 is decidable
and L2 is decidable then L1⊗L2 is decidable [38] and [53]. For us, in this chapter,
it will be important to remember that when L1 is consistent and L2 is consistent,
the fusion L1⊗L2 is a conservative extension of L1 and L2 respectively, that is to
say: for all i ∈ {1,2} and for all formulas ϕ in Li , ϕ ∈ L1 ⊗L2 iff ϕ ∈ Li .

6.2 Semantic

In this Section, we will see Semantics of fusion of two modal logic L1 ⊗L2.

Definition 35 A Frame F for L is a triple 〈W,R1,R2〉 where W is a non-empty
set of possible worlds and R1 and R2 are binary relations on W .

Definition 36 A model M is a structure (W,R1,R2,ν), where
• W is a set of possible worlds,
• R1 and R2 are binary relations on W to evaluate�1 and�2 respectively and
• ν is a function ν : W →P (V ar ).

We define the notion of a formula ϕ being true in model M = (W,R1,R2,ν) at a
world w ∈W (in symbols M , w �ϕ) as follows:

• M , w � x iff w ∈V (x),

• M , w 2⊥,

• M , w �¬ϕ iff M , w 2ϕ,
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• M , w �ϕ∨ψ iff either M , w �ϕ or M , w �ψ,

• M , w ��1ϕ iff for all w ′ ∈W , if wR1w ′ then, M , w ′ �ϕ,

• M , w ��2ϕ iff for all w ′ ∈W , if wR2w ′ then, M , w ′ �ϕ.

As a result,

• M , w �♦1ϕ iff there exists w ′ ∈W such that wR1w ′ and M , w ′ �ϕ,

• M , w �♦2ϕ iff there exists w ′ ∈W such that wR2w ′ and M , w ′ �ϕ.

Example 11 Consider the formula ϕ=♦1(x ∧�2 y). Let M = 〈W,R1,R2,ν〉 be a
model of K ⊗K . M satisfies♦1(x∧�2 y) at a world w0 ∈W iff there exists w1 ∈W
such that w0R1w1 and M satisfies x ∧�2 y at w1. But this means w1 ∈ ν(x) and
w1 ∈ ν(�2 y). M satisfies�2ν(y) at w1 iff for every w2 ∈W such that w1R2w2 we
have M satisfies ν(y) at w2.

6.3 Unification Type in fusion K1 ⊗K2

Dzik proved that the fusion K1⊗K2 of K with itself provides the rule of disjunc-
tion [22]. In this section, we mention shortly about the rule of disjunction in
the fusion K1 ⊗K2.

Definition 37 Let L1,L2 be normal modal logics in L1 and L2 respectively. The
fusion L = L1⊗L2 provides the rule of disjunction if the following condition hold
for any A1, A2 ∈L :

• `�1 A1 ∨�2 A2 then, ` Ai for some i ∈ {1,2}.

At the below Lemma, we claim that fusions K1⊗K2 satisfies the rule of disjunc-
tion.

Theorem 7 The fusion K1 ⊗K2 provides the rule of disjunction.

• `K1⊗K2 �1 A∨�2B ⇒`K1⊗K2 A or `K1⊗K2 B

Proof 86 Suppose 0K1⊗K2 A and 0K1⊗K2 B. We have to show that 0K1⊗K2 �1 A1 ∨
�2B. Let M1 = 〈W1,R ′

1,R ′
2,ν1〉 and M2 = 〈W2,R ′′

1 ,R ′′
2 ,ν2〉 be K1 ⊗K2-models. Let

t1 ∈ W1 and s1 ∈ W2 such that M1, t1 2 A and M2, s1 2 B. Let us construct the
model M = 〈W,R1,R2,ν〉 which is the disjoint union of M1 and M2 together
with a new state w0. We define the model as follows:
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• W =W1 ∪W2 ∪ {w0},

• R1 = R ′
1 ∪R ′′

1 ∪ {(w0, t1)},

• R2 = R ′
2 ∪R ′′

2 ∪ {(w0, s1)} and

• ν= ν1 ∪ν2.

Obviously, the sub-model of M generated from t1 is equal to the sub-model of
M1 generated from t1 and the sub-model of M generated from s1 is equal to
the sub-model of M2 generated from s1. Since, M1, t1 2 A then, M , t1 2 A. Since,
M2, s1 2B then, M , s1 2B. Since w0R1t1 and M , t1 2 A then, M , t1 2�1 A. Since
w0R2s1 and M , s1 2B then, M , s1 2�2B. Then, M , w0 2�1 A∨�2B. Therefore,
0K1⊗K2 �1 A∨�2B.

Since we know that some logics providing the rule of disjunction (for example
K and K 4) does not possess a unitary unification type. For example consider
the formula�1x ∨�2¬x. This formula has unifiers

• σ1(x) =>,

• σ2(x) =⊥.

and there is no unifier more general than both of them because if
`K1⊗K2 �1σ(x)∨�2¬σ(x)
then either `K1⊗K2 σ(x) (so that σ is equivalent to σ1) or `K1⊗K2 ¬σ(x) (so that
σ is equivalent to σ2). Thus this formula has no most general unifier.

Theorem 8 Unification type of the fusion K1 ⊗K2 is not unitary.

Before discussing on unification type of fusion K1⊗K2 we consider a general
form of logic L1⊗L2 when L1 has nullary unification type and L2 is a consistent
modal logic. Then we show unification type of fusion L1 ⊗L2 is not finitary and
not unitary.
Consider two unimodal logics Triv = K + {�p ↔ p} and Ver = K + {�p}. D.
Makinson proved a property of consistent unimodal logics[48]. This well-known
property is as follows:

• If unimodal logic L is consistent then L ⊆ Triv or L ⊆ Ver.

For instance, S5 ⊆ Triv,S5 Ver,K 4 ⊆ Triv and K 4 ⊆ Ver. We define a transla-
tion t from the language L to the language L1 as:
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Definition 38 Since L2 is consistent, we have L2 ⊆ Triv2 or L2 ⊆ Ver2. Let t : L →
L1 be a function defined as follows:

• t (x) = x,

• t (p) = p,

• t (⊥) =⊥,

• t (¬ϕ) =¬t (ϕ),

• t (ϕ∨ψ) = t (ϕ)∨ t (ψ),

• t (�1ϕ) =�1t (ϕ),

• t (�2ϕ) = t (ϕ), when L2 ⊆ Triv2.

• t (�2ϕ) => when L2 ⊆ Ver2.

The below lemmas show that if L1 is nullary and L2 is consistent then L1 ⊗L2 is
not unitary and not finitary.

Lemma 51 Let L1 ⊆ L1 and L2 ⊆ L2 be normal modal logics. if L1 is nullary
and L2 is consistent then L1 ⊗L2 is not unitary.

Proof 87 Suppose L1 is nullary and L2 is consistent. Suppose L1 ⊗L2 is unitary.
Since, L1 is nullary, therefore let ϕ ∈L1 be such that ϕ is L1-unifiable and ϕ has
no minimal complete set of L1-unifiers. Let σ be an L1-substitution such that
σ(ϕ) ∈ L1. Since the fusion L1⊗L2 contains both L1 and L2 hence, σ(ϕ) ∈ L1⊗L2.
Thus,ϕ is (L1⊗L2)-unifiable. Since L1⊗L2 is unitary, Let τ be an L -substitution
such that τ is an (L1 ⊗L2)-unifier of ϕ and for all L -substitution σ′, if σ′ is an
(L1 ⊗ L2)-unifier of ϕ then τ 4L1⊗L2 σ

′. Since L2 is consistent therefore either
L2 ⊆ Triv2 or L2 ⊆ Ver2.
Let t : L →L1 be the function defined in Definition 38. For all L -substitutions
θ, let θt be the L1-substitution such that for all variable x, θt (x) = t (θ(x)).

Claim 2 For all ψ ∈L1, θt (ψ) = t (θ(ψ)) for all L -substitutions θ.

Proof 88 By induction on ψ ∈L1:
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• Let ψ= x. We have, θt (x) = t (θ(x)).

• Let ψ=⊥. We have, θt (⊥) =⊥.

• Letψ=ϕ∨ϕ′. By induction hypothesis θt (ϕ) = t (θ(ϕ)) and θt (ϕ′) = t (θ(ϕ′)).
Hence, θt (ϕ∨ϕ′) = t (θ(ϕ∨ϕ′)).

• Let ψ=�1ϕ
′. By induction hypothesis θt (ϕ′) = t (θ(ϕ′)). Then,�1θ

t (ϕ′) =
�1t (θ(ϕ′)) = t (�1θ(ϕ′)) = t (θ(�1ϕ

′)).

Claim 3 For all ψ ∈L

1. If L2 ⊆ Triv2 then (ψ↔ t (ψ)) ∈ L1 ⊗Triv2.

2. If L2 ⊆ Ver2 then (ψ↔ t (ψ)) ∈ L1 ⊗Ver2.

Proof 89 by induction on ψ.

1. Suppose L2 ⊆ Triv2. We only explain the cases ψ=�1ψ
′ and ψ=�2ψ

′.

• Let ψ = �1ψ
′. By induction hypothesis ψ′ ↔ t (ψ′) ∈ L1 ⊗Triv2. By

necessitation �1ψ
′ ↔�1t (ψ′) ∈ L1 ⊗Triv2. Thus, �1ψ

′ ↔ t (�1ψ
′) ∈

L1 ⊗Triv2.

• Let ψ = �2ψ
′. By induction hypothesis ψ′ ↔ t (ψ′) ∈ L1 ⊗Triv2. By

necessitation �2ψ
′ ↔ �2t (ψ′) ∈ L1 ⊗Triv2. Consequently, �2ψ

′ ↔
t (ψ′) ∈ L1 ⊗Triv2. Since t (�2ψ

′) = t (ψ′) thus,�2ψ
′ ↔ t (�2ψ

′) ∈ L1 ⊗
Triv2.

2. The proof of this item is similar to the proof of item 1.

Claim 4 For all ψ ∈L , if ψ ∈ L1 ⊗L2 then t (ψ) ∈ L1.

Proof 90 We consider the two following cases:

1. Suppose L2 ⊆ Triv2. Let ψ ∈ L1 ⊗L2. Then by Claim 3, (ψ↔ t (ψ)) ∈ L1 ⊗
Triv2. Since,ψ ∈ L1⊗L2 and L1⊗L2 ⊆ L1⊗Triv2 then,ψ ∈ L1⊗Triv2. Since,
ψ ∈ L1⊗Triv2 and (ψ↔ t (ψ)) ∈ L1⊗Triv2 then, t (ψ) ∈ L1⊗Triv2. Therefore,
knowing that L1 ⊗Triv2 is a conservative extension of L1, t (ψ) ∈ L1.

2. Suppose L2 ⊆ Ver2. Letψ ∈ L1⊗L2. Then by Claim 3, (ψ↔ t (ψ)) ∈ L1⊗Ver2.
Since, ψ ∈ L1 ⊗L2 and L1 ⊗L2 ⊆ L1 ⊗Ver2 then, ψ ∈ L1 ⊗Ver2. Since, ψ ∈
L1 ⊗ Ver2 and (ψ ↔ t (ψ)) ∈ L1 ⊗ Ver2 then, t (ψ) ∈ L1 ⊗ Ver2. Therefore,
knowing that L1 ⊗Ver2 is a conservative extension of L1, t (ψ) ∈ L1.
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Since, τ is an (L1 ⊗L2)-unifier of ϕ, therefore τ(ϕ) ∈ L1 ⊗L2. Hence, by Claim 4,
t (τ(ϕ)) ∈ L1. Thus by Claim 2, τt (ϕ) ∈ L1. Consequently, τt is an L1-unifier of ϕ.

Claim 5 For all ψ ∈L and for all L -substitution λ, t (λ(ψ)) =λt (t (ψ)).

Proof 91 By induction on ψ.

Let θ be an L1-substitution such that θ is an L1-unifier of ϕ. Hence, θ(ϕ) ∈ L1.
Hence, θ(ϕ) ∈ L1 ⊗ L2. Thus, knowing that the τ defined before Claim 2 is a
most general unifier of ϕ in L1 ⊗ L2, τ 4L1⊗L2 θ. Let λ be an L -substitution
such that for all variables x, λ(τ(x)) ↔ θ(x) ∈ L1 ⊗ L2. Hence, by Claim 4, for
all variable x, t (λ(τ(x))) ↔ t (θ(x)) ∈ L1. Thus by Claim 5, for all variables x,
λt (τt (x)) ↔ θ(x) ∈ L1. Consequently, τt 4L1 θ.
As a result, τt is an L1-unifier of ϕ (by the remark preceding Claim 5) and for all
L1-substitutions θ, if θ is an L1-unifier of ϕ then τt 4L1 θ. Thus, {τt } is a min-
imal complete set of L1-unifiers of ϕ and this is contradiction with assumption
thatϕ has no minimal complete set of L1-unifiers. This ends the proof of Lemma
51.

Lemma 52 Let L1 ⊆ L1 and L2 ⊆ L2 be normal modal logics. if L1 is nullary
and L2 is consistent then L1 ⊗L2 is not finitary.

Proof 92 Suppose L1 is nullary and L2 is consistent. Suppose L1 ⊗L2 is finitary.
Since, L1 is nullary, therefore let ϕ ∈ L1 be such that ϕ is L1-unifiable and ϕ

has no minimal complete set of L1-unifiers. Let σ be an L1-substitusion such
that σ(ϕ) ∈ L1. Hence, σ(ϕ) ∈ L1 ⊗ L2. Thus, ϕ is (L1 ⊗ L2)-unifiable. Since,
L1⊗L2 is finitary, let τ1, ...,τn be L -substitutions such that τ1, ...,τn are (L1⊗L2)-
unifiers of ϕ and for all L -substitutions σ′, if σ′ is an (L1 ⊗L2)-unifier of ϕ then
τi 4L1⊗L2 σ

′ for some i ∈ {1, ...,n}. Since L2 is consistent therefore either L2 ⊆ Triv2

or L2 ⊆ Ver2.
Let t : L →L1 be a function defined as in Definition 38.
Since, τi for i ∈ {1, ...,n} is an (L1 ⊗L2)-unifier of ϕ, therefore τi (ϕ) ∈ L1 ⊗L2 for
i ∈ {1, ...,n}. Hence, t (τi (ϕ)) ∈ L1. Thus τt

i (ϕ) ∈ L1 for i ∈ {1, ...,n}. Consequently,
τt

i is an L1-unifier of ϕ.
Let θ be an L1-substitution such that θ is an L1-unifier of ϕ. Hence, θ(ϕ) ∈ L1.
Hence, θ(ϕ) ∈ L1⊗L2. Thus, remembering that {τ1, ...,τn} is a complete set of uni-
fiers of ϕ in L1 ⊗L2, τi 4L1⊗L2 θ for some i ∈ {1, ...,n}. Let λ be an L -substitution
such that for all variables x, λ(τi (x)) ↔ θ(x) ∈ L1 ⊗ L2. Hence, by Claim 4 for
all variable x, t (λ(τi (x))) ↔ t (θ(x)) ∈ L1. Thus, by Claim 5, for all variables x,
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λt (τt
i (x)) ↔ θ(x) ∈ L1. Consequently, τt

i 4L1 θ for some i ∈ {1, ...,n}.
As a result, {τt

1, ...,τt
n} in a complete set of L1-unifiers of ϕ and this is contradic-

tion with our assumption.

Since K1 is nullary and K2 is consistent hence fusion K1 ⊗K2 is not unitary by
Theorem 51 and not finitary by Theorem 52. At the following, we shall show
that there exists a (K1 ⊗K2)-unifiable formula which has no minimal complete
set. Hence K1 ⊗K2 is nullary. In this respect, we shall use Jeřábek’s method in
[34] in order to show that the unification type of the fusion (K1 ⊗K2) is nullary.
We need to define

• (�1�2)0ϕ ::=ϕ
• (�1�2)n+1ϕ ::= (�1�2)(�1�2)nϕ

• (�1�2)<0ϕ ::=>
• (�1�2)<n+1ϕ ::= (�1�2)<nϕ∧ (�1�2)nϕ

where n is a non-negative integer.
The next Lemma expresses some required facts that we will use to prove K1⊗K2

is nullary.

Lemma 53 Let k, l ∈N and ϕ,ψ be L -formula.

1. If `ϕ→ψ then ��1�2ϕ→�1�2ψ.

2. If k 6 l then ` (�1�2)k⊥→ (�1�2)l⊥.

3. If k < l then ` (�1�2)<lϕ→ (�1�2)kϕ.

4. If k 6 l then ` (�1�2)<kϕ∧ (�1�2)k⊥→ (�1�2)<lϕ.

5. If k < l then, 0 (�1�2)l⊥→ (�1�2)k⊥.

6. If k 6 l then ` (�1�2)k⊥→ (�1�2)<l (�1�2)k⊥.

Proof 93 Let k, l ∈N.

1. Suppose `ϕ→ψ. Then, `�2(ϕ→ψ) by necessitation. Hence we obtain `
�2ϕ→�2ψ by axiom K2. Since `�2ϕ→�2ψ hence, `�1(�2ϕ→�2ψ)
by necessitation. Thus, `�1�2ϕ→�1�2ψ by axiom K1.
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2. Suppose k 6 l . Since, `⊥→ (�1�2)l−k⊥ then `�2⊥→�2(�1�2)l−k⊥ by
necessitation and axiom K2. Then we obtain, `�1�2⊥→�1�2(�1�2)l−k⊥
by necessitation and axiom K1. We can use k-times axiom K1 and K2.
Thus, ` (�1�2)k⊥→ (�1�2)k (�1�2)l−k⊥. Therefore, ` (�1�2)k⊥→ (�1�2)l⊥.

3. Suppose, k < l . By definition we have,
(�1�2)<lϕ=ϕ∧ (�1�2)ϕ∧ ...∧ (�1�2)kϕ∧ ...∧ (�1�2)l−1ϕ Then,
` (�1�2)<lϕ→ (�1�2)kϕ.

4. We have,

• ` (�1�2)k⊥→ (�1�2)kϕ∧ ...∧ (�1�2)l−1ϕ (since k 6 l ) and

• ` (�1�2)<kϕ→ϕ∧ ...∧ (�1�2)k−1ϕ. Hence,

• ` (�1�2)<kϕ∧(�1�2)k⊥→
(
(�1�2)kϕ∧...∧(�1�2)l−1ϕ

)
∧

(
ϕ∧...∧

(�1�2)k−1ϕ
)
. Therefore,

• ` (�1�2)<kϕ∧ (�1�2)k⊥→ (�1�2)<lϕ.

5. Consider a K1⊗K2-model M = (W,R1,R2,ν) such that W = {w1, ...., w2k+1}
and w1R1w2R2...R2w2k+1. Hence, M , w1 � (�1�2)l⊥ (since k < l ) and
M , w1 2 (�1�2)k⊥. Thus, M , w1 2 (�1�2)l⊥→ (�1�2)k⊥.

6. Suppose k 6 l . Since, (�1�2)<l (�1�2)k⊥= (�1�2)k⊥∧...∧(�1�2)l+k−1⊥
hence by part (2), ` (�1�2)k⊥→ (�1�2)k⊥∧...∧(�1�2)l+k−1⊥. Therefore,
` (�1�2)k⊥→ (�1�2)<l (�1�2)k⊥.

Consider the formula ϕ = x → �1�2x and the substitutions σ>(x) = > and
σn(x) = (�1�2)<n x ∧ (�1�2)n⊥. We will show that ϕ is unifiable in K1 ⊗K2 and
nullary.

Lemma 54 For all n ∈N,

1. σn(x) = (�1�2)<n x ∧ (�1�2)n⊥ is a K1 ⊗K2-unifier of ϕ.

2. σ>(x) => is a K1 ⊗K2-unifier of ϕ.

Proof 94 Let n ∈N.
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1. We have to prove σn is a unifier of ϕ. By part (4) of Lemma 53 we have
` (�1�2)<n x ∧ (�1�2)n⊥→ (�1�2)(�1�2)<n x. By part (2) of Lemma 53
` (�1�2)n⊥→ (�1�2)n+1⊥ then,
` (�1�2)<n x ∧ (�1�2)n⊥→ (�1�2)(�1�2)<n x ∧ (�1�2)(�1�2)n⊥.Thus,
` (�1�2)<n x ∧ (�1�2)n⊥→ (�1�2)((�1�2)<n x ∧ (�1�2)n⊥).
Therefore, `σn(x) →�1�2σn(x). Consequently, σn is a unifier of ϕ.

2. Since, `>→�1�2> it is clear that σ> is a unifier of ϕ.

Lemma 55 Let k, l ∈N. If k 6 l then σl 4σk .

Proof 95 Suppose k 6 l . We have to prove σl 4 σk . Let ν(x) = x ∧ (�1�2)k⊥.
Since, ` (�1�2)<l x → (�1�2)<k x (since k 6 l ) and
` (�1�2)<l (�1�2)k⊥→ (�1�2)k⊥ then,
` (�1�2)<l x∧(�1�2)<l (�1�2)k⊥∧(�1�2)l⊥→ (�1�2)<k x∧(�1�2)k⊥. Hence,
` (�1�2)<l (x ∧ (�1�2)k⊥)∧ (�1�2)l⊥→ (�1�2)k x ∧ (�1�2)k⊥.
For the other direction we shall prove as follows. By part 6 of Lemma 53 we have,
` (�1�2)k⊥→ (�1�2)<l (�1�2)k⊥ and by part (5) of Lemma 53
` (�1�2)<k x ∧ (�1�2)k⊥→ (�1�2)<l x and by part (2) of Lemma 53,
` (�1�2)k⊥→ (�1�2)l⊥. Thus,
` (�1�2)<k x ∧ (�1�2)k⊥→ (�1�2)<l (x ∧ (�1�2)k⊥)∧ (�1�2)<l⊥. Since,
` (�1�2)<l (x ∧ (�1�2)k⊥)∧ (�1�2)l⊥→ (�1�2)<k x ∧ (�1�2)k⊥ and
` (�1�2)<k x ∧ (�1�2)k⊥→ (�1�2)<l (x ∧ (�1�2)k⊥)∧ (�1�2)l⊥ therefore,
` (�1�2)<l (x ∧ (�1�2)k⊥)∧ (�1�2)l⊥↔ (�1�2)<k x ∧ (�1�2)k⊥.

Thus, ν◦σl 'σk . Consequently, σl 4σk .

Lemma 56 Let k, l ∈N. If k < l then σk �σl

Proof 96 Suppose k < l . Suppose σk ¹ σl . Let ν be a substitution such that `
ν(σk (x)) ↔σl (x). Then, ` (�1�2)6kν(x)∧(�1�2)k⊥↔ (�1�2)6l x∧(�1�2)l⊥.
Hence, ` (�1�2)<l x∧(�1�2)l⊥→ (�1�2)<kν(x)∧(�1�2)k⊥. Then by replacing
x by >, ` (�1�2)l⊥→ (�1�2)k⊥. This is a contradiction with part (5) of Lemma
53.

Lemma 57 Let σ be a substitution. The following conditions are equivalent:

1. σ> ◦σ'σ.

2. σ>4σ.
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3. `σ(x).

Proof 97 (1 ⇒ 2): By definition of4.
(2 ⇒ 3): Suppose σ> 4 σ. Let ν be a substitution such that ` ν(σ>(x)) ↔ σ(x).
Then, `>↔σ(x). Therefore, `σ(x).
(3 ⇒ 1): Suppose ` σ(x). Then ` >↔ σ(x). Hence, ` σ(x) ↔ σ(σ>(x)). There-
fore, σ> ◦σ'σ.

Lemma 58 Let k ∈N. Letσ be a unifier ofϕ. The following conditions are equiv-
alent:

1. σn ◦σ'σ.

2. σn 4σ.

3. `σ(x) → (�1�2)n⊥.

Proof 98 (1 ⇒ 2) By definition of4.
(2 ⇒ 3) Suppose σn 4 σ. Let ν be a substitution such that ` ν(σn(x)) ↔ σ(x).
Then, ` (�1�2)<nν(x)∧ (�1�2)n⊥ ↔ σ(x). Hence, ` σ(x) → (�1�2)<nν(x)∧
(�1�2)n⊥. Therefore, `σ(x) → (�1�2)n⊥.
(3 ⇒ 1) Suppose `σ(x) → (�1�2)n⊥. Since σ is a unifier of ϕ then,
`σ(x) → (�1�2)σ(x). Hence by necessitation and axiom K1 and K2,
` (�1�2)σ(x) → (�1�2)(�1�2)σ(x). Hence,
`σ(x) → (�1�2)(�1�2)σ(x). By necessitation, axiom K1 and K2 (n−times),
`σ(x) → (�1�2)<nσ(x). By our assumption,
`σ(x) → (�1�2)n⊥ and
`σ(x) → (�1�2)<nσ(x) then,
`σ(x) → (�1�2)<nσ(x)∧ (�1�2)n⊥.
We consider two cases:

• If n = 0 then � (�1�2)n⊥→σ(x).

• Ifn6 1 then ` (�1�2)<nσ(x) →σ(x).

Therefore in both cases, ` (�1�2)<nσ(x)∧ (�1�2)n⊥→σ(x). Since,
`σ(x) → (�1�2)<nσ(x)∧ (�1�2)n⊥ and
` (�1�2)<nσ(x)∧ (�1�2)n⊥→σ(x) thus,
` (�1�2)<nσ(x)∧ (�1�2)n⊥↔σ(x). Thus,
`σ(σn(x)) ↔σ(x). Therefore,
σn ◦σ'σ.
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Theorem 9 Let σ be a unifier of ϕ= x →�1�2x then either `σ(x) or `σ(x) →
(�1�2)n⊥ where n> deg (σ(x)).

Proof 99 Suppose neither 0σ(x) nor 0σ(x) → (�1�2)n⊥. Let
M1 = 〈W1,R ′

1,R ′
2,ν1〉 be a model and t1 ∈ W1 such that M1, t1 2 σ(x). Let M2 =

〈W2,R ′′
1 ,R ′′

2 ,ν2〉 be a model and w1 ∈ W2 such that M2, w1 � σ(x)∧ (♦1♦2)n>.
Since, M2, w1 � (♦1♦2)n> then there exists a sequence w1, ..., w2n+1 ∈ W2 such
that w1R ′′

1 w2R ′′
2 w3R ′′

1 ...R ′′
2 w2n+1. By the tree-model property of K1 ⊗K2, we can

assume that w1, w2, w3, ..., w2n+1 are pairwise distinct and that the path
w1R ′′

1 w2R ′′
2 w3R ′′

1 ...R ′′
2 w2n+1 is the shortest path in M2 between w1 and w2n+1.

Let M = (W,R1,R2,ν) where:

• W =W1 ∪W2 ∪ {t0} where t0 is a new possible worlds,

• R1 = R ′
1 ∪R ′′

1 ∪ {(w2n+1, t0)},

• R2 = R ′
2 ∪R ′′

2 ∪ {(t0, t1)},

• ν= ν1 ∪ν2.

Since M is a disjoint union of M1, M2 and the state t0 and M1, t1 2 σ(x) then,
M , t1 2 σ(x). Since n > deg (σ(x)), M is a disjoint union of M1, M2 and the
state t0 and M2, w1 � σ(x) then M , w1 � σ(x). By our assumption σ is a unifier
of ϕ then ` σ(x) → �1�2σ(x). Since M , w1 � σ(x) therefore M , w2i+1 � σ(x)
for all i = 1, ...,n. Thus, M , w2n+1 � �1�2σ(x). Since, w2n+1R1t0R2t1 therefore
M , t1 �σ(x). This is contradiction .

Lemma 59 The set of substitutions Σ = {σ>}∪ {σn | n ∈N} forms a complete set
of K1 ⊗K2-unifiers of ϕ= x →�1�2x.

Proof 100 By Lemmas 54, 55, 56, 57 and 58 and Theorem 9.

Lemma 60 The formula ϕ = x →�1�2x does not possess a minimal complete
set of K1 ⊗K2-unifiers.

Proof 101 Let Γ be a minimal complete set of unifiers of ϕ and σ ∈ Γ. Since Γ
is complete, then let σ ∈ Γ be such that σ 4 σ0. Since σ is a unifier of ϕ hence
σ>4K1⊗K2 σ or for some n ∈N, σn 4K1⊗K2 σ by Theorem 9.
Supposeσn 4k1⊗k2 σ. By definition ofΣ,σn+1 ∈Σ. Letσ′ ∈ Γ such thatσ′4σn+1.
Since σ′ 4 σn+1 4 σn 4 σ then σ′ 4 σ. Since Γ is minimal complete set and
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its members are pairwise incomparable then σ′ = σ. Since σn 4 σ and σ′ 4
σn+1 then, σn 4 σn+1. Since n < n + 1 by lemma 56, σn � σn+1 and this is a
contradiction.
Suppose σ> 4K1⊗K2 σ. Since σ4 σ0 then, σ> 4 σ0. Therefore ` >↔⊥. This is
contradiction.

Lemma 61 Unification type is nullary in fusion K ⊗K

Proof 102 By Lemma 60.

6.4 Unification in Fusion K D1 ⊗K D2

In this section we will discuss on unification type of the fusion K D1 ⊗K D2. In
order to show the unification type of the fusion K D1 ⊗K D2 is nullary we use
the method mentioned in [7]. In this respect, we need to define the following
abbreviation where p is a parameter:

• [p]x ::=�1�2(p → x).

For all parameters p, the modal connective [p]k is inductively defined as fol-
lows for each k ∈N:

• [p]0ϕ ::=ϕ,

• [p]k+1ϕ ::= [p][p]kϕ.

For all parameters p, the modal connective [p]<k is inductively defined as fol-
lows for each k ∈N:

• [p]<0ϕ ::=>.

• [p]<k+1ϕ ::= [p]<kϕ∧ [p]kϕ.

Consider the formula ϕ= (x → p)∧ (x → [p]x) and substitutions σp (x) = p
and σn(x) = p ∧ [p]<n x ∧ [p]n⊥ where n ∈N.

Lemma 62

1. ` p → [p]p.

2. ` [p](ϕ∧ψ) ↔ [p]ϕ∧ [p]ψ.
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3. If k 6 l then, ` [p]<l [p]k⊥→ [p]k⊥.

4. If k 6 l then, ` [p]<k x ∧ [p]k⊥→ [p]<l x.

5. If k 6 l then, ` [p]k⊥→ [p]<l [p]k⊥.

6. If k 6 l then, ` [p]k⊥→ [p]l⊥.

7. If k < l then, 0 p ∧ [p]l⊥→ [p]k⊥

Proof 103 The proof of this Lemma is similar to the proof of Lemma 53.

Lemma 63 For all n ∈N

1. σn(x) = p ∧ [p]<n x ∧ [p]n⊥ is a K D1 ⊗K D2-unifier of ϕ.

2. σp (x) = p is a K D1 ⊗K D2-unifier of ϕ.

Proof 104 1. We have to prove ` (σn(x) → p)∧ (σn(x) → [p]σn(x)). Hence
we have to prove `σn(x) → p and `σn(x) → [p]σn(x). Since,
` p ∧ [p]<n x ∧ [p]n⊥→ p thus,
`σn(x) → p.
Let us prove ` (p ∧ [p]<n x ∧ [p]n⊥) → [p](p ∧ [p]<n x ∧ [p]n⊥). Hence, By
part (2) of Lemma 62 we have to prove
` p∧[p]<n x∧[p]n⊥→ [p]p∧[p][p]<n x∧[p][p]n⊥. By part (1) of Lemma
62 we have
` p → [p]p. Hence,
` p ∧ [p]<n x ∧ [p]n⊥→ [p]p.By part (5) of Lemma 62 we have
` [p]<n x ∧ [p]n⊥→ [p][p]<n x. By part (7) of Lemma 62 we have
` [p]n⊥→ [p]n+1⊥. Then,
` p ∧ [p]<n x ∧ [p]n⊥→ [p]p ∧ [p][p]<n x ∧ [p]n+1⊥. Thus,
` p ∧ [p]<n x ∧ [p]n⊥→ [p](p ∧ [p]<n x ∧ [p]n⊥).
Therefore, σn is an K D1 ⊗K D2-unifier of ϕ.

2. Since, ` (p → p) and ` p → [p]p then, ` (p → p)∧ (p → [p]p). Therefore,
σp is a K D1 ⊗K D2-unifier of ϕ.

Lemma 64 Let k, l ∈N. If k 6 l then σl 4K D1⊗K D2 σk .
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Proof 105 Suppose k 6 l . We have to prove σl 4K D1⊗K D2 σk . Let ν(x) = x ∧
[p]k⊥. Hence we have to show that ` p∧[p]<l (x∧[p]k⊥)∧[p]l⊥↔ p∧[p]<k x∧
[p]k⊥. To prove ` p ∧ [p]<l x ∧ [p]<l [p]k⊥∧ [p]l⊥→ p ∧ [p]<k x ∧ [p]k⊥ we shall
do as follows. By part (3) of Lemma 62 we have
` [p]<l x → [p]<k x. By part (4) of Lemma 62
` [p]<l [p]k⊥→ [p]k⊥. Thus,
` p ∧ [p]<l x ∧ [p]<l [p]k⊥∧ [p]l⊥→ p ∧ [p]<k x ∧ [p]k⊥. Therefore,
` p ∧ [p]<l (x ∧ [p]k⊥)∧ [p]l⊥→ p ∧ [p]<k x ∧ [p]k⊥. For the other direction, we
shall do as follows:By part (7) of Lemma 62,
` [p]k⊥→ [p]l⊥. By part (5) of Lemma 62,
` [p]<k x ∧ [p]k⊥→ [p]<l x. By part (6) of Lemma 62,
` [p]k⊥→ [p]<l [p]k⊥. Then,
` (p ∧ [p]<k x ∧ [p]k⊥) → (p ∧ [p]<l x ∧ [p]<l [p]k⊥∧ [p]l⊥). Therefore,
` (p ∧ [p]<k x ∧ [p]k⊥) → p ∧ [p]<l (x ∧ [p]k⊥)∧ [p]l⊥. Since,
` p ∧ [p]<l (x ∧ [p]k⊥)∧ [p]l⊥→ p ∧ [p]<k x ∧ [p]k⊥ and
` p ∧ [p]<k x ∧ [p]<k⊥→ p ∧ [p]<l (x ∧ [p]k⊥)∧ [p]<l⊥ therefore,
` p ∧ [p]<l (x ∧ [p]k )∧ [p]l⊥↔ p ∧ [p]<k x ∧ [p]k⊥.
Thus, ` ν(σl (x)) ↔σk (x). Consequently, σl 4K D1⊗K D2 σk .

Lemma 65 Let k, l ∈N. If k < l then σk �K D1⊗K D2 σl .

Proof 106 Suppose k < l andσk ¹σl . Letν be a substitution such that` ν(σk (x)) ↔
σl (x). Then, ` p ∧ [p]<kν(x)∧ [p]k⊥↔ p ∧ [p]<l x∧ [p]l⊥. Hence, ` p ∧ [p]<l x∧
[p]l⊥→ p ∧ [p]<kν(x)∧ [p]k⊥. Then by replacing x by >, ` p ∧ [p]l⊥→ [p]k⊥.
This is contradiction with part (7) of Lemma 62.

Lemma 66 Let σ be a K D1 ⊗ K D2-unifier of ϕ. The following conditions are
equivalent:

1. σp ◦σ'σ.

2. σp 4σ.

3. `σ(x) ↔ p.

Proof 107 (1 ⇒ 2): By definition of4.
(2 ⇒ 3): Suppose σp 4 σ. Let ν be a substitution such that ` ν(σp (x)) ↔ σ(x).
Then, ` p ↔σ(x).
(3 ⇒ 1): Suppose `σ(x) ↔ p. Then, `σ(x) ↔σ(σp (x)). Hence, σp ◦σ'σ.
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Lemma 67 Let σ be a (K D1⊗K D2)-unifier ofϕ. Let n> 0. The following condi-
tions are equivalent:

1. σn ◦σ'σ
2. σn 4σ

3. `σ(x) → [p]n⊥.

Proof 108 (1 ⇒ 2): By definition of4.
(2 ⇒ 3): Suppose σn 4 σ. Let ν be a substitution such that ` ν(σn(x)) ↔ σ(x).
Then, ` p ∧ [p]<nν(x)∧ [p]n⊥↔ σ(x). Hence, ` σ(x) → p ∧ [p]<nν(x)∧ [p]n⊥.
Therefore we have, `σ(x) → [p]n⊥.
(3 ⇒ 1): Suppose `σ(x) → [p]n⊥. Since σ is a unifier of ϕ then, `σ(x) → p and
` σ(x) → [p]σ(x). Since, ` σ(x) → [p]σ(x) hence by necessitation and axiom K
we have ` σ(x) → [p]<nσ(x). Since, ` σ(x) → [p]n⊥, ` σ(x) → p and ` σ(x) →
[p]<nσ(x) then, `σ(x) → p ∧ [p]<nσ(x)∧ [p]n⊥.
For the converse implication, we consider two cases:

• If n = 0 then ` [p]n⊥→σ(x) and

• If n> 1 then, ` [p]<nσ(x) →σ(x).

Hence in both cases, ` p∧[p]<nσ(x)∧[p]n⊥→σ(x). Therefore, ` p∧[p]<nσ(x)∧
[p]n⊥↔σ(x). Thus, σn ◦σ'σ.

Lemma 68 Let σ is a unifier of ϕ. Let n > deg (σ(x)). Then one of the following
conditions holds

• `σp 4σ or

• `σn 4σ.

Proof 109 Suppose none of the above conditions holds. Then, neither `σp 4σ
nor ` σn 4 σ. Hence by Lemma 66 and 67, 0 σ(x) ↔ p and 0 σ(x) → [p]n⊥.
Since, σ is a unifier of ϕ then, ` σ(x) → p. Hence, 0 p → σ(x). Let M1 =
〈W1,R ′

1,R ′
2,ν1〉 and M2 = 〈W2,R ′′

1 ,R ′′
2 ,ν2〉 be K D1 ⊗K D2-models and s ∈W1 and

t1 ∈ W2 such that M1, s 2 p → σ(x) and M2, t1 2 σ(x) → [p]n⊥. Since, M2, t1 2
[p]n⊥ then there exists a sequence of t1, ..., t2n+1 ∈W2 such that t1R ′′

1 t2R ′′
2 t3R ′′

1 ...R ′′
2 t2n+1

and M2, t2i+1 � p for 0 6 i 6 n. Again, as in the proof of Theorem 11, by the
tree-model property of K D1 ⊗K D2, we can assume that t1, ..., t2n+1 are pairwise
distinct and that the path t1R ′′

1 t2R ′′
2 t3R ′′

1 ...R ′′
2 t2n+1 is the shortest path in M2 be-

tween t1 and t2n+1. Let M = 〈W,R1,R2,ν〉 be the model defined as follows:
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• W =W1 ∪W2 ∪ s0 where s0 is a new possible world,

• R1 = R ′
1 ∪R ′′

1 ∪ {(t2n+1, s0)},

• R2 = R ′
2 ∪R ′′

2 ∪ {(s0, s)},

• ν= ν1 ∪ν2.

Since M is a disjoint union of M1, M2 and s0 and M1, s 2 σ(x) and M1, s � p
then, M , s 2 σ(x) and M , s � p. Since n > deg (σ(x)), M is a disjoint union of
M1, M2 and s0 and M2, t1 � σ(x) and M2, t2i+1 � p for 0 6 i 6 n then M , t1 �
σ(x) and M , t2i+1 � p for 06 i 6 n. By our assumption σ is a unifier of ϕ then
` σ(x) → [p]σ(x). Since M , t1 � σ(x) therefore M , t2i+1 � σ(x) for 0 6 i 6 n.
Then, M , t2n+1 � [p]σ(x). Since, t2n+1R1s0R2s therefore M , s � (p →σ(x)). Since,
M , s � p thus M , s �σ(x). This is contradiction .

Lemma 69 The set of substitutions Σ = {σp }∪ {σn | n ∈ N} is a complete set of
K D1 ⊗K D2-unifiers of ϕ.

Proof 110 By Lemmas 63, 64, 65, 66 and 67 and Theorem 68.

Lemma 70 The formula ϕ does not possess a minimal complete set of K D1 ⊗
K D2-unifiers.

Proof 111 Proof 112 Let Γ be a minimal complete set of unifiers ofϕ and σ ∈ Γ.
Since Γ is complete then let σ ∈ Γ be such that σ4σ0. Let n = deg (σ(x)) Since σ
is a unifier of ϕ hence σ>4K D1⊗K D2 σ or σn 4K D1⊗K D2 σ by Theorem 68.
Suppose σn 4K D1⊗K D2 σ. By definition of Σ, σn+1 ∈ Σ. Let σ′ ∈ Γ such that σ′ 4
σn+1. Since σ′ 4 σn+1 4 σn 4 σ then σ′ 4 σ. Since Γ is minimal complete set
and its members are pairwise incomparable then σ′ =σ. Since σn 4σ and σ′4
σn+1 then, σn 4 σn+1. Since n < n + 1 by lemma 65, σn � σn+1 and this is a
contradiction.
Suppose σp 4K D1⊗K D2 σ. Since σ4 σ0 then, σp 4 σ0. Therefore ` ¬p. This is
contradiction.

Lemma 71 Unification type is nullary in fusion K D1 ⊗K D2

Proof 113 By Lemma 70.
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6.5 Unification in Fusion S5⊗S5

In this section we will discuss on unification type of the fusion S51 ⊗ S52 and
we will show that unification type of fusion S51 ⊗ S52 is nullary. By doing so,
we are answering an open question of Dzik [22] (2007) who conjectures that
S51 ⊗S52 is nullary or infinitary. In this respect, we consider the formula ϕ0 =
(x →�x)∧ (¬x →�¬x) where,

• �ψ =�1(pqr →�2(pqr →�1(pqr →�2(pqr →�1(pqr →�2(pqr →
ψ)))))) and

• �ψ = (pqr → �2(pqr → �1(pqr → �2(pqr → �1(pqr → �2(pqr →
�1ψ)))))).

We will show that ϕ0 is nullary for S51 ⊗S52. In order to prove the unification
type of the fusion S51 ⊗S52 is nullary we need to define the modal connective
�k and �k inductively as follows for each k ∈N:

• �0ϕ ::=ϕ,

• �k+1ϕ ::=��k ϕ.

• �0ϕ ::=ϕ,

• �k+1ϕ ::=��k ϕ.

As a result, we define also:

• �
0
ϕ ::=ϕ

• �
k+1

ϕ ::= � � k
ϕ.

The modal connective �<k and �<k are inductively defined as follows for each
k ∈N:

• �<0ϕ ::=>.

• �<k+1ϕ ::=�<kϕ∧�kϕ.

• �<0ϕ ::=>.

• �<k+1ϕ ::=�<kϕ∧�kϕ.



6.5. UNIFICATION IN FUSION S5⊗S5 103

As a result, we define also:

• �
0
ϕ ::=⊥.

• �
<k+1

ϕ ::= � <k
ϕ∨� k

ϕ.

Initially, we need to prove the following Lemma:

Lemma 72 For all formulas ϕ,

1. If `ϕ then, `�ϕ.

2. `�(ϕ→ψ) → (�ϕ→�ψ).

3. `�<k+1ϕ↔ϕ∧��<k ϕ.

4. `�<kϕ→ϕ where k > 1.

5. If k 6 l then, `�<k⊥→�<l⊥.

Proof 114 1. Suppose,
1−`ψ hence,
2−` (pqr →ψ) by 1 and CP
3−`�2(pqr →ψ) by 2 and necessitation
4−` pqr →�2(pqr →ψ) by 3 and CP
5−`�1(pqr →�2(pqr →ψ)) by 4 and necessitation
6−` pqr →�1(pqr →�2(pqr →ψ)) by 5 and Cp
7−`�2(pqr →�1(pqr →�2(pqr →ψ))) by 6 and necessitation
8−` pqr →�2(pqr →�1(pqr →�2(pqr →�1(pqr →�2(pqr →ψ)))))
by 7 and CP
9−`�1(pqr →→�2(pqr →�1(pqr →�2(pqr →�1(pqr →�2(pqr →
ψ)))))) by 8 and necessitation
10− ` pqr →�1(pqr →�2(pqr →�1(pqr →�2(pqr →ψ)))) by 9 and
CP
11−`�2(pqr →�1(pqr →�2(pqr →�1(pqr →�2(pqr →ψ))))) by 10
and necessitation
12− ` pqr → �2(pqr → �1(pqr → �2(pqr → �1(pqr → �2(pqr →
ψ))))) by 11 and CP
13− `�1(pqr →�2(pqr →�1(pqr →�2(pqr →�1(pqr →�2(pqr →
ψ)))))) by 12 and necessitation.
Therefore, `�ψ.
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2. We have by tautology
(1) ` (ϕ→ψ) → (ϕ→ψ) hence,
(2) ` (pqr → (ϕ→ψ)) → (pqr → (ϕ→ψ)). By 2 and CP
(3) ` (pqr → (ϕ→ ψ)) → ((pqr → ϕ) → (pqr → ψ)). By 3, necessitation
and axiom k
(4) `�2(pqr → (ϕ→ψ)) → (�2(pqr →ϕ) →�2(pqr →ψ)). By 4 and CP
(5) ` (

pqr →�2(pqr → (ϕ→ψ))
)→ ((

pqr →�2(pqr →ϕ)
)→ (

pqr →�2(pqr →ψ)
))

. By 5, ne-
cessitation and axiom k.
(6) `�1

(
pqr →�2(pqr → (ϕ→ψ))

)→ (
�1

(
pqr →�2(pqr →ϕ)

)→�1
(
pqr →�2(pqr →ψ)

))
. By

6, CP, necessitation and axiom k
(7) `�2

(
pqr →�1

(
pqr →�2(pqr → (ϕ→ψ))

))→(
�2

(
pqr →�1

(
pqr →�2(pqr →ϕ)

))→�2
(
pqr →�1

(
pqr →�2(pqr →ψ)

)))
. By 7, CP, ne-

cessitation and axiom k
(8) `�1

(
pqr →�2

(
pqr →�1

(
pqr →�2(pqr → (ϕ→ψ))

)))→(
�1

(
pqr →�2

(
pqr →�1

(
pqr →�2(pqr →ϕ)

)))→�1

(
pqr →�2

(
pqr →�1

(
pqr →�2(pqr →ψ)

))))
.

By 8, CP, necessitation and axiom k

(9) `�2

(
pqr →�1

(
pqr →�2

(
pqr →�1

(
pqr →�2(pqr → (ϕ→ψ))

))))→(
�2

(
pqr →�1

(
pqr →�2

(
pqr →�1

(
pqr →�2(pqr →ϕ)

))))→
�2

(
pqr →�1

(
pqr →�2

(
pqr →�1

(
pqr →�2(pqr →ψ)

)))))
. By 9, CP, necessitation and

axiom k
(10) `�1

(
pqr →�2

(
pqr →�1

(
pqr →�2

(
pqr →�1

(
pqr →�2(pqr → (ϕ→ψ))

)))))→(
�1

(
pqr →�2

(
pqr →�1

(
pqr →�2

(
pqr →�1

(
pqr →�2(pqr →ϕ)

)))))→
�1

(
pqr →�2

(
pqr →�1

(
pqr →�2

(
pqr →�1

(
pqr →�2(pqr →ψ)

))))))
.

Therefore, `�(ϕ→ψ) → (�ϕ→�ψ).

3. Since, `�<k+1ϕ↔ϕ∧�ϕ∧...∧�kϕ and `ϕ∧�ϕ∧...∧�kϕ↔ϕ∧�(ϕ∧
...∧�k−1ϕ) then, `�<k+1ϕ↔ϕ∧��<k ϕ.

4. Soppose k > 1. Since `�<kϕ↔ϕ∧�ϕ∧ ...∧�k−1ϕ and `ϕ∧�ϕ∧ ...∧
�k−1ϕ→ϕ thus, `�<kϕ→ϕ.

5. Let k 6 l . Since, `⊥→�l−k⊥ then we have `�k (⊥→�l−k⊥) by part (1).
Since, `�k (⊥→�l−k⊥) thus we have `�k⊥→�l⊥ by part (3).
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Lemma 73 Let k, l ∈N. For all formulas ϕ,ψ,

1. If `ϕ then, `�ϕ.

2. `�(ϕ→ψ) → (�ϕ→�ψ).

3. `�<k+1ϕ↔ϕ∧��<k ϕ.

4. `�<kϕ→ϕ where k > 1.

5. If k 6 l then, `�<k⊥→�<l⊥.

6. If k 6 l then, ` � l>→ � k>.

7. If k < l then 0�l⊥→�k⊥.

8. If k < l then 0 � k>→ � l>.

9. 0 � l>→�k⊥.

10. 0 � k>→�l⊥.

Proof 115 We prove items 7 to 10.
7. Let M = (W,R1,R2,ν) be the modal defined as follows:
W = {s0, s1,1, s1,2, s1,3, s1,4, s1,5, s1,6...sk,1, sk,2, sk,3, sk,4, sk,5, sk,6},
R1 is the least equivalence relation on W such that s0R1s1,1, s1,2R1s1,3, s1,4R1s1,5,
s1,6R1s2,1, ..., sk−1,6R1sk,1, sk,2R1sk,3, sk,4R1sk,5,
R2 is the least equivalence relation on W such that s1,1R2s1,2, s1,3R2s1,4, s1,5R2s1,6,
..., sk,1R2sk,2, sk,3R2sk,4, sk,5R2sk,6,
ν(p) = {s1,5, s1,6, ..., sk,5, sk,6},
ν(q) = {s1,3, s1,6, ..., sk,5, sk,6},
ν(r ) = {s1,2, s1,4, s1,6, ..., sk,2, sk,4, sk,6}.
Obviously, M , s0 ��l⊥ but M , s0 2�k⊥. Thus, 0�l⊥→�k⊥.
8. Let M = (W,R1,R2,ν) be the modal defined as follows:
W = {s0, s1,1, s1,2, s1,3, s1,4, s1,5, s1,6, ...sk,1, sk,2, sk,3, sk,4, sk,5, sk,6},
R1 is the least equivalence relation on W such that s1,1R1s1,2, s1,3R1s1,4, s1,5R1s1,6,
..., sk,1R1sk,2, sk,3R1sk,4, sk,5R1sk,6,
R2 is the least equivalence relation on W such that s0R2s1,1, s1,2R2s1,3, s1,4R2s1,5,
s1,6R2s2,1, ..., sk−1,6R2sk,1, sk,2R2sk,3, sk,4R2sk,5,
ν(p) = {s0, s1,1, ..., s2,1, s2,6},
ν(q) = {s1,2, s1,3, ..., sk,2, sk,3},
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ν(r ) = {s0, s1,2, s1,4, ..., sk,2, sk,4, sk,6}.

Obviously, M , s0 ��
k> but M , s0 2 �

l>. Thus, 0 � k>→ � l>.

9. Suppose ` � l> → �k⊥. Hence, by Lemma 72, ` � l−i> → �k+1⊥. Thus,
by using Lemma extr al emmas, l − 1 times, we obtain ` > → �k+1⊥. Hence,
`�k+1⊥. Thus, `�k+l+1⊥→�k+l⊥: a contradiction with item (7).
10. Suppose ` � k> → �l⊥. Hence, by using Lemma 72, �

k−1> → �l+1⊥.
Thus by Lemma 72, k −1 times, we obtain `>→ �l+1⊥. Here, ` �l+1⊥. Thus,
`�k+l+1⊥→�k+l⊥: a contradiction with item (7).

Consider substitutions σk (x) =�<k x ∧�k⊥ and τk (x) =¬(�<k¬x ∧�k⊥). We
will show that σk (x) and τk (x) are (S51 ⊗S52)-unifiers of ϕ0. Notice that σk (x)
and τk (x) can be written as follows:
σ0(x) =⊥ and,
σk+1(x) = �<k+1x ∧�k+1⊥ = x ∧��<k x ∧�k+1⊥ = x ∧�(�<k x ∧�k⊥) = x ∧
�σk (x).
τ0(x) => and,
τk+1(x) =¬(�<k+1¬x∧�k+1⊥) =¬(¬x∧��<k¬x∧�k+1⊥) =¬(¬x∧�(�<k¬x∧
�k⊥)) = x ∨� τk (x).
It is well-known that in S51 ⊗S52, we have for all formula ϕ,ψ

• `ϕ→�1ψ iff `♦1ϕ→ψ and

• `ϕ→�2ψ iff `♦2ϕ→ψ. Moreover,

Lemma 74 For all formulas ψ, the following conditions are equivalent:

1. `ϕ→�ψ.

2. `¬ψ→�¬ϕ.

Proof 116 Suppose `L ϕ→�ψ. Then,
`L ϕ→�1(pqr →�2(pqr →�1(pqr →�2(pqr →�1(pqr →�2(pqr →ψ))))))
`L ♦1ϕ→ (pqr →�2(pqr →�1(pqr →�2(pqr →�1(pqr →�2(pqr →ψ))))))
`L (pqr ∧♦1ϕ) →�2(pqr →�1(pqr →�2(pqr →�1(pqr →�2(pqr →ψ)))))
`L ♦2(pqr ∧♦1ϕ) → (pqr →�1(pqr →�2(pqr →�1(pqr →�2(pqr →ψ)))))
`L pqr ∧♦2(pqr ∧♦1ϕ) →�1(pqr →�2(pqr →�1(pqr →�2(pqr →ψ))))
`L ♦1(pqr ∧♦2(pqr ∧♦1ϕ)) → (pqr →�2(pqr →�1(pqr →�2(pqr →ψ))))
`L pqr ∧♦1(pqr ∧♦2(pqr ∧♦1ϕ)) →�2(pqr →�1(pqr →�2(pqr →ψ)))
`L ♦2(pqr ∧♦1(pqr ∧♦2(pqr ∧♦1ϕ))) → (pqr →�1(pqr →�2(pqr →ψ)))
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`L pqr ∧♦2(pqr ∧♦1(pqr ∧♦2(pqr ∧♦1ϕ))) →�1(pqr →�2(pqr →ψ))
`L ♦1(pqr ∧♦2(pqr ∧♦1(pqr ∧♦2(pqr ∧♦1ϕ)))) → (pqr →�2(pqr →ψ))
`L pqr ∧♦1(pqr ∧♦2(pqr ∧♦1(pqr ∧♦2(pqr ∧♦1ϕ)))) →�2(pqr →ψ)
`L ♦2(pqr ∧♦1(pqr ∧♦2(pqr ∧♦1(pqr ∧♦2(pqr ∧♦1ϕ))))) → (pqr →ψ)
`L (pqr ∧♦2(pqr ∧♦1(pqr ∧♦2(pqr ∧♦1(pqr ∧♦2(pqr ∧♦1ϕ)))))) →ψ

`L ¬ψ→¬(pqr ∧♦2(pqr ∧♦1(pqr ∧♦2(pqr ∧♦1(pqr ∧♦2(pqr ∧♦1ϕ))))))
`L ¬ψ→ (pqr →�2(pqr →�1(pqr →�2(pqr →�1(pqr →�2(pqr →�1ψ))))))
`L ¬ψ→�¬ϕ. The proof of the converse direction is similar.

Lemma 75 For all k ∈N,

1. σk is an (S51 ⊗S52)-unifier of ϕ0.

2. τk is an (S51 ⊗S52)-unifier of ϕ0.

Proof 117 Let k ∈N.

1. By Lemma 74, it suffices to prove ` σk (x) → �σk (x). In fact, we have to
prove
` (�<k x ∧�k⊥) →�(�<k x ∧�k⊥) or equivalently
` (�<k x ∧�k⊥) →��<k x ∧��k ⊥. We know that
��<k x =�(x ∧�x ∧ ...∧�(k−1)x) =�x ∧�� x ∧ ...∧�k x and
�<k x = (x ∧�x ∧�� x ∧ ...∧�(k−1)x). Since,
` (x ∧�x ∧�� x ∧ ...∧�(k−1)x) → (�x ∧�� x ∧ ...∧�(k−1)x) and
`�k⊥→�k x then we have,
` (�<k x ∧�k⊥) → (�x ∧�� x ∧ ...∧�(k−1)x ∧�k x). Thus,
` (�<k x ∧�k⊥) →��<k x. By part (5) of Lemma 72,
`�k⊥→�k+1⊥. Since,
` (�<k x ∧�k⊥) →��<k x therefore,
` (�<k x ∧�k⊥) → (��<k x ∧�k+1⊥) or equivalently
` (�<k x ∧�k⊥) →�(�<k x ∧�k⊥). Therefore,
`σk (x) →�σk (x).

2. By Lemma 74, it suffices to prove `¬τk (x) →�¬τk (x). In fact, we have to
prove ` (�<k¬x ∧�k⊥) →�(�<k¬x ∧�k⊥). We know that
��<k ¬x =�(¬x∧�¬x∧ ...∧�(k−1)¬x) =�¬x∧��¬x∧ ...∧�k¬x and
�<k¬x = (¬x ∧�¬x ∧��¬x ∧ ...∧�(k−1)¬x). Since,
` (¬x ∧�¬x ∧��¬x ∧ ...∧�(k−1)¬x) → (�¬x ∧��¬x ∧ ...∧�(k−1)¬x)
and
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`�k⊥→�k¬x then we have,
` (�<k¬x ∧�k⊥) → (�¬x ∧��¬x ∧ ...∧�(k−1)¬x ∧�k¬x). Thus,
` (�<k¬x ∧�k⊥) →��<k ¬x. By part (5) of Lemma 73,
`�k⊥→�k+1⊥. Since
` (�<k¬x ∧�k⊥) →��<k ¬x therefore,
` (�<k¬x ∧�k⊥) → (��<k ¬x ∧�k+1⊥) or equivalently
` (�<k¬x ∧�k⊥) →�(�<k¬x ∧�k⊥). Then,
`¬τk (x) →�¬τk (x).

Lemma 76 For all k, l ∈N, if k 6 l then σl 4S51⊗S52 σk and τl 4S51⊗S52 τk .

Proof 118 Let k, l ∈N. Suppose k 6 l . We have to prove σl 4S51⊗S52 σk . Let the
substitution υ be defined by υ(x) = x∧�k⊥. We want to show thatσl ◦ν'S51⊗S52

σk . Hence we have to prove
` (�<l (x ∧�k⊥)∧�l⊥) ↔ (�<k x ∧�k⊥). Let us prove
` (�<l x ∧�<l �k ⊥)∧�l⊥→ (�<k x ∧�k⊥). Since
�<l x = x ∧�x ∧ ...∧�l−1x and �<k x = x ∧�x ∧ ...∧�k−1x hence,
`�<l x →�<k x. Thus
` (�<l x ∧�<l �k ⊥) →�<k x. Since
`�<l �k ⊥=�k⊥∧��k ⊥...∧�l−1 �k ⊥ then
`�<l �k ⊥→�k⊥. Hence,
` (�<l x ∧�<l �k ⊥) →�k⊥. Since,
` (�<l x ∧�<l �k ⊥) →�<k x therefore
` (�<l x ∧�<l �k ⊥)∧�l⊥→ (�<k x ∧�k⊥).

For the other direction we have to prove
` (�<k x ∧�k⊥) → (�<l x ∧�<l �k ⊥∧�l⊥). Since
�<l x = x ∧�x ∧ ...∧�l−1x and �<k x = x ∧�x ∧ ...∧�k−1x hence,
` (�<k x ∧�k⊥) →�<l x. By part (5) of Lemma 72,
` �k⊥ → �l⊥. Since, �<l �k ⊥ = �k⊥∧ ...∧�l−1 �k ⊥ hence, by part (5) of
Lemma 72,
`�k⊥→�<l �k ⊥. Since
` (�<k x ∧�k⊥) →�<l x and
`�k⊥→�l⊥ and
`�k⊥→�<l �k ⊥ therefore,
` (�<k x ∧�k⊥) → (�<l x ∧�<l �k ⊥∧�l⊥).
Consequently, ` (�<l (x∧�k⊥)∧�l⊥) ↔ (�<k x∧�k⊥). Thus,σl ◦ν'S51⊗S52 σk .
Therefore, σl 4S51⊗S52 σk .

We have to prove τl 4S51⊗S52 τk . Let the substitution υ be defined by υ(x) =
x ∨� k>. Let us show τl ◦ν 'S51⊗S52 τk . Hence we have to show ` (�

<l
(x ∨
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� k>)∨� l>) ↔ (�
<k

x ∨� k>). Let us prove

` (�
<l

(x ∨� k>)∨� l>) → (�
<k

x ∨� k>) or equivalently

` (�
<l

x ∨� <l� k>∨� l>) → (�
<k

x ∨� k>). By part (6) of Lemma 73,

` � l> → � k>.Since, �
<l� k> = � k>∨ ...∨� l−1� k> hence by part (6) of

Lemma 73
` � <l� k>→ � k>. Since, �

<l
x = x ∨ ...∨� l−1

x and �
<k

x = x ∨ ...∨� k−1
x

hence
` x ∨ ...∨� k−1

x ∨� k
x ∨ ...∨� l−1

x → x ∨ ...∨� k−1
x ∨� k> then,

` � <l
x → � <k

x ∨� k>. Since,

` � l>→ � k> and

` � <l� k>→ � k> and

` � <l
x → � <k

x ∨� k> thus,

` (�
<l

x ∨� <l� k>∨� l>) → (�
<k

x ∨� k>). Therefore,

` (�
<l

(x ∨� k>)∨� l>) → (�
<k

x ∨� k>).
For the other direction we have to prove

` � <k
x ∨� k>→ � <l

x ∨� <l� k>∨� l>. Since

` � <k
x → � <l

x and �
<l� k>= � k>∨ ...∨� l−1� k> then,

` � k>→ � <l� k>. Therefore,

` � <k
x ∨� k>→ � <l

x ∨� <l� k>∨� l>. Since,

` (�
<l

(x ∨� k>)∨� l>) → (�
<k

x ∨� k>) and

` (�
<k

x ∨� k>) → � <l
(x ∨� k>)∨� l> then,

` (�
<l

(x∨� k>)∨� l>) ↔ (�
<k

x∨� k>). Hence, τl ◦ν'S51⊗S52 τk . Therefore,
τl 4S51⊗S52 τk .

Lemma 77 For all k, l ∈N, if k < l then σk �S51⊗S52 σl and τk �S51⊗S52 τl .

Proof 119 Suppose k < l and σk 4S51⊗S52 σl . Let υ be a substitution such that
σk ◦ υ 'S51⊗S52 σl . Hence, ` υ(σk (x)) ↔ σl (x). Thus, ` (�<kυ(x) ∧�k⊥) ↔
(�<l x ∧�l⊥). Hence, ` (�<l x ∧�l⊥) → �k⊥. Thus by replacing x by >, `
�l⊥→�k⊥. This is a contradiction with the part (7) of Lemma 73.
Suppose k < l and τk 4S52⊗S52 τl . Let υ be a substitution such that τk ◦υ'S51⊗S52

τl . Hence, ` υ(τk (x)) ↔ τl (x). Thus, ` (�
<k
υ(x) ∨ � k>) ↔ (�

<l
x ∨ � l>).

Hence, ` � <k
υ(x)∨� k>→ � <l

x∨� l>. Then, ` � k>→ � <l
x∨� l>. Hence,

by replacing x by ⊥, ` � k>→ � l>. This is a contradiction with the part (8) of
Lemma 73.

Lemma 78 For all k, l ∈N, if k < l then σk �S51⊗S52 τl and τk �S51⊗S52 σl .
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Proof 120 Suppose k < l and σk 4S51⊗S52 τl . Let υ be a substitution such that
σk ◦υ'S51⊗S52 τl . Hence, ` υ(σk (x)) ↔ τl (x). Then, ` (�<kυ(x)∧�k⊥) ↔ (¬�<l

¬x ∨¬�l ⊥). Hence, ` (�
<l

x ∨� l>) →�<kυ(x)∧�k⊥. Thus, ` � l>→�k⊥.
This is a contradiction with the part (9) of Lemma 73.
Suppose k < l and τk 4L σl . Let υ be a substitution such that τk ◦ υ 'L σl .

Hence, ` υ(τk (x)) ↔ σl (x). Then, ` (�
<k
υ(x)∨� k>) ↔ (�<l x ∧�l⊥). Hence,

` (�
<k
υ(x)∨� k>) → (�<l x ∧�l⊥). Thus, ��

k>→�l⊥. This is a contradic-
tion with the part (10) of Lemma 73.

Lemma 79 Let µ be an (S51⊗S52)-unifier ofϕ0. For all k ∈N, the following con-
ditions are equivalent:

1. σk ◦µ'S51⊗S52 µ,

2. σk 4S51⊗S52 µ,

3. `S51⊗S52 µ(x) →�k⊥.

Proof 121 (1 ⇒ 2) By definition of4S51⊗S52 .
(2 ⇒ 3) Supposeσk 4S51⊗S52 µ. Let ν be a substitution such thatσk ◦υ'S51⊗S52 µ.
Hence, ` ν(σk (x)) ↔ µ(x). By definition of σk we have, ` (�<kυ(x)∧�k⊥) ↔
µ(x). therefore, `µ(x) →�k⊥.
(3 ⇒ 1) Suppose ` µ(x) → �k⊥. Since µ is a unifier of ϕ0 then ` µ(x) → �µ(x).
Since, ` µ(x) →�µ(x) then we have, ` µ(x) → µ(x)∧�µ(x)∧ ...∧�<k−1µ(x) by
part (2) and (3) of Lemma 72. Thus, ` µ(x) → �<kµ(x). Since ` µ(x) → �k⊥
then ` µ(x) → �k⊥∧�<kµ(x). Therefore ` µ(x) → µ(σk (x)). Now, it is enough
to prove `µ(σk (x)) →µ(x). In this respect, we consider two cases,
Case k = 0: Since σ0(x) =⊥ then, µ(σ0(x)) =⊥.
Case k > 1: Since, ` �µ<k (x) → µ(x) then, ` �µ<k (x)∧�k⊥ → µ(x). Thus in
both cases we have,
` µ(σk (x)) → µ(x). Since ` µ(x) → µ(σk (x)) and ` µ(σk (x)) → µ(x) therefore,
`µ(σk (x)) ↔µ(x). Consequently, µ◦σk 'S51⊗S52 µ.

Lemma 80 Let µ be an S51 ⊗S52-unifier of ϕ0. For all k ∈N, the following con-
ditions are equivalent:

1. τk ◦µ'S51⊗S52 µ,
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2. τk 4S51⊗S52 µ,

3. `S51⊗S52 ¬µ(x) →�k⊥.

Proof 122 (1 ⇒ 2) By definition of4S51⊗S52 .
(2 ⇒ 3) Suppose τk 4S51⊗S52 µ. Let ν be a substitution such that τk ◦υ'S51⊗S52 µ.
Hence, ` ν(τk (x)) ↔ µ(x). By definition of τk we have, `¬(�<k¬υ(x)∧�k⊥) ↔
µ(x). Then, `¬�<k ¬υ(x)∨¬�k ⊥→ µ(x). Hence, `¬�k ⊥→ µ(x). Therefore,
`¬µ(x) →�k⊥.
(3 ⇒ 1) Suppose ` ¬µ(x) → �k⊥. Then, ` ¬�k ⊥ → µ(x). Since µ is a unifier
of ϕ0 then ` ¬µ(x) → �¬µ(x). Hence, ` ¬µ(x) → �<k¬µ(x) by part (2) and
(3)o f Lemma 73. Thus, ` ¬�<k ¬µ(x) → µ(x). Since, ` ¬�k ⊥ → µ(x) hence,
` ¬(�k⊥∧�<k¬µ(x)) → µ(x). Therefore, ` µ(τk (x)) → µ(x). Now, it is enough
to prove `µ(x) →µ(τk (x)), in this respect, we consider two cases,
Case k = 0: Since, τ0(x) => thus, `µ(x) →µ(τ0(x)).
Case k > 1: Since, ` µ(x) → ¬�<k ¬µ(x) then, ` µ(x) → ¬�¬µ(x)∨¬�k ⊥.
Thus, `µ(x) →µ(τk (x)).
Since, `µ(τ(x)) →µ(x) and `µ(x) →µ(τk (x)) therefore, `µ(τ(x)) ↔µ(x). Con-
sequently µ◦τk 'S51⊗S52 µ.

Theorem 10 Let µ be an (S51 ⊗ S52)-unifier of ϕ. Then there exists k ∈ N such
that either σk 4S51⊗S52 µ or τk 4S51⊗S52 µ.

Proof 123 Let k > deg (µ(x)). Suppose neither σk 4S51⊗S52 µ nor τk 4S51⊗S52 µ

for all k ∈ N. Let k > deg (µ(x)). Then by Lemmas 79 and 80, 0S51⊗S52 µ(x) →
�k⊥ and0S51⊗S52 ¬µ(x) →�k⊥. Let M1 = 〈W1,R ′

1,R ′
2,ν1〉 and M2 = 〈W2,R ′′

1 ,R ′′
2 ,ν2〉

be (S51 ⊗S52)-models such that t1 ∈ W1, s2 ∈ W2 and M1, t1 2 µ(x) → �k⊥ and
M2, s1 2¬µ(x) →�k⊥. We will define now the unravelling M ′

1 of M1 around t1

and the unravelling M ′
2 of M2 around s2 as follows:

The unravelling of M1 around t1 is the model M ′
1 = (X1,S′

1,S′
2,ν1) where

• X1 is the set of all finite sequences of the form (m0, a1,m1, ..., ak ,mk ) where
k ∈ N, m0,m1, ...,mk ∈ W1, a1, ..., ak ∈ {1,2}, m0 = t1 and for all i ∈ N, if
i < k then mi R ′

ai+1
mi+1.

• S′
1 is the binary relation on X1 such that (u0, a1,u1, ..., ak ,uk )S′

1(v0,b1, v1, ...,bl , vl )
iff there is m ∈N such that m6 k,m6 l , (u0, a1,u1, ..., am ,um) = (v0,b1, v1, ...,bm , vm)
and for all i >m, if i < k then ai+1 = 1 and if i < l then bi+1 = 1.
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• S′
2 is the binary relation on X1 such that (u0, a1,u1, ..., ak ,uk )S′

2(v0,b1, v1, ...,bl , vl )
iff there is m ∈N such that m6 k,m6 l , (u0, a1,u1, ..., am ,um) = (v0,b1, v1, ...,bm , vm)
and for all i >m, if i < k then ai+1 = 2 and if i < l then bi+1 = 2.

• ν′1 is the valuation on X1 such that for all propositional variables or pa-
rameters α, ν′1(α) = {(u0, a1,u1, ..., ak ,uk ) ∈ X1 : uk ∈ ν1(α)}.

The unravelling M ′
2 = (X2,S′′

1 ,S′′
2 ,ν2) of M2 around s2 can be defined in a similar

way. Notice that (t1) ∈ X1 and (s2) ∈ X2. Moreover, notice that S′
1 and S′

2 are
equivalence relations on X1 whereas S′′

1 and S′′
2 are equivalence relations on X2.

Let f1 : X1 →W1 and f2 : X2 →W2 be defined as follows:

• For all (u0, a1,u1, ..., ak ,uk ) ∈ X1, let f1(u0, a1,u1, ..., ak ,uk ) = uk ,

• For all (u0, a1,u1, ..., ak ,uk ) ∈ X2, let f2(u0, a1,u1, ..., ak ,uk ) = uk .

Obviously, f1 is a bounded morphism from M ′
1 to M1 and f2 is a bounded mor-

phism from M ′
2 to M2. By the bounded morphism Lemma ([18], Theorem 3.14),

since M1, t1 2 µ(x) →�k⊥ and M2, s2 2¬µ(x) →�k⊥, we have M ′
1, (t1) � µ(x),

M ′
1, (t1)2�k⊥, M ′

2, (s2)2µ(x) and M ′
2, (s2)2�k⊥.

Consequently, there exists t2,1, t2,2, t2,3, t2,4, t2,5, t2,6, ..., tk,1, tk,2, tk,3, tk,4, tk,5, tk,6 ∈
W1 such that

• t1R ′
1t2,1R ′

2t2,2R ′
1t2,3R ′

2t2,4R ′
1t2,5R ′

2t2,6...R ′
1tk,1R ′

2tk,2R ′
1tk,3R ′

2tk,4R ′
1tk,5R ′

2tk,6,

• M1, t2,1 � pqr , M1, t2,2 � pqr , M1, t2,3 � pqr , M1, t2,4 � pqr , M1, t2,5 �
pqr , M1, t2,6 � pqr , ..., M1, tk,1 � pqr , M1, tk,2 � pqr , M1, tk,3 � pqr ,
M1, tk,4 � pqr , M1, tk,5 � pqr , M1, tk,6 � pqr .

Similarly, there exists s2,1, s2,2, s2,3, s2,4, s2,5, s2,6, ..., sk,1, sk,2, sk,3, sk,4, sk,5, sk,6 ∈W2

such that

• M2, s2 � pqr , M2, s2,1 � pqr , M2, s2,2 � pqr , M2, s2,3 � pqr , M2, s2,4 �
pqr , M2, s2,5 � pqr , M2, s2,6 � pqr , ..., M2, sk,1 � pqr , M2, sk,2 � pqr ,
M2, sk,3 � pqr , M2, sk,4 � pqr , M2, sk,5 � pqr ,

• s2R ′′
2 s2,1R ′′

1 s2,2R ′′
2 s2,3R ′′

1 s2,4R ′′
2 s2,5R ′′

1 s2,6...R ′′
2 sk,1R ′′

1 sk,2R ′′
2 sk,3R ′′

1 sk,4R ′′
2 sk,5R ′′

1 sk,6.

Let M 0 = (W 0,R0
1 ,R0

2 ,ν0) be the disjoint union of M ′
1 and M ′

2. By Theorem 3.14
in [18], we have:
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M 0, (t1) � µ(x), M 0, (s2) 2 µ(x). Let M⊕ = (W ⊕,R⊕
1 ,R⊕

2 ,ν⊕) be the model ob-
tained from M 0 by adding new possible worlds w1, w2, w3, w4, w5 and such that

(t1,1, t2,1,2, t2,2,1, t2,3,2, t2,4,1, t2,5,2, t2,6, ...,1, tk,1,2, tk,2,1, tk,3,2, tk,4,1, tk,5,2, tk,6)

R⊕
1 w1R⊕

2 w2R⊕
1 w3R⊕

2 w4R⊕
1 w5R⊕

2

(s2,2, s2,1,1, s2,2,2, s2,3,1, s2,4,2, s2,5,1, s2,6, ...,2, sk,1,1, sk,2,2, sk,3,1, sk,4,2, sk,5,1, sk,6)

and M⊕, w1 � pqr , M⊕, w2 � pqr , M⊕, w3 � pqr , M⊕, w4 � pqr and M⊕, w5 �
pqr .
Since the shortest path from (t1) and
(t1,1, t2,1,2, t2,2,1, t2,3,2, t2,4,1, t2,5,2, t2,6, ...,1, tk,1,2, tk,2,1, tk,3,2, tk,4,1, tk,5,2, tk,6)
is of length 6.k and the shortest path from (s2) and
(s2,2, s2,1,1, s2,2,2, s2,3,1, s2,4,2, s2,5,1, s2,6, ...,2, sk,1,1, sk,2,2, sk,3,1, sk,4,2, sk,5,1, sk,6)
is of length 6.K that (knowing that k > deg (µ(x))), we have M⊕, (t1)�µ(x) and
M⊕, (s2) 2 µ(x). Now, ` µ(x) → �µ(x), because µ is a unifier of ϕ0. It follows
that ` µ(x) →�k+1µ(x). Since M⊕, (t1) � µ(x) then, M⊕, (t1) ��k+1µ(x). Con-
sequently, M⊕, (s2)�µ(x). This is contradiction.

Lemma 81 The set of substitutionsΣ= {σn | n ∈N}∪{τn | n ∈N} form a complete
set of S51 ⊗S52-unifiers of ϕ0.

Proof 124 By Lemmas 75 to 78 and Theorem 10.

Lemma 82 ϕ0 does not possess a minimal complete set of (S51 ⊗S52)- unifiers.

Proof 125 Let Γ be a minimal complete set of unifiers of ϕ0. Let µ ∈ Γ be such
that µ 4 σ0. Then by Theorem 10, there exists k ∈ N such that σk 4S51⊗S52 µ

or τk 4S51⊗S52 µ. Consider firstly the case σk 4S51⊗S52 µ. By definition of Σ,
σk+1 ∈ Σ. Let µ′ ∈ Γ such that µ′ 4 σk+1. Since µ′ 4 σk+1 4 σk 4 µ then µ′ 4 µ.
SinceΓ is minimal complete set and its members are pairwise incomparable then
µ′ = µ. Since σk 4 µ and µ′ 4 σk+1 then, σk 4 σk+1. Since k < k +1 by lemma
77, σk �σk+1 and this is a contradiction with lemma 77.
Consider the second case τk 4(S51⊗S52) µ. Since µ4σ0 then τk 4σ0, a contradic-
tion with Lemma 78.

Lemma 83 Unification type is nullary in fusion S5⊗S5

Proof 126 By Lemma 82.
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6.6 Unification in fusion K 41 ⊗K 42

Dzik in Chapter 6 of [22] proved that the fusion K 4⊗K 4 has the rule of dis-
junction. Hence, unification type of the fusion K 4⊗K 4 is not unitary. In this
section, we shall prove that unification type of the fusion K 4⊗K 4 nullary. Con-
sider the formula ϕ = x → �1�2x and substitutions σ>(x) = > and σn(x) =
(�1�2)<n x ∧ (�1�2)n⊥ where n ∈N.

Lemma 84 For all n ∈N,

1. σn(x) = (�1�2)<n x ∧ (�1�2)n⊥ is a K 41 ⊗K 42-unifier of ϕ.

2. σ>(x) => is a K 41 ⊗K 42-unifier of ϕ.

Proof 127 The proof is similar to the proof of Lemma 54.

Lemma 85 Let k, l ∈N. If k 6 l then σl 4σk .

Proof 128 The proof is similar to the proof of Lemma 55.

Lemma 86 Let k, l ∈N. If k < l then σk �σl

Proof 129 The proof is similar to the proof of Lemma 56. Since we consider K 4⊗
K 4, we will use the fact that if k < l then 0K 4⊗K 4 (�1�2)l⊥ → (�1�2)k⊥. The
proof of this fact is similar to the proof of item 5 in Lemma 53.

Lemma 87 Let σ be a substitution. The following conditions are equivalent:

1. σ> ◦σ'σ.

2. σ>4σ.

3. `σ(x).

Proof 130 The proof is similar to the proof of Lemma 57.

Lemma 88 Let n ∈N. Letσ be a unifier ofϕ. The following conditions are equiv-
alent:

1. σn ◦σ'σ.
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2. σn 4σ.

3. `σ(x) → (�1�2)n⊥.

Proof 131 The proof is similar to the proof of Lemma 58.

Theorem 11 Let σ be a unifier of ϕ = x → �1�2x then either `K 4⊗K 4 σ(x) or
`K 41⊗K 42 σ(x) → (�1�2)n⊥ where n> deg (σ(x)).

Proof 132 Suppose neither0σ(x) nor0σ(x) → (�1�2)n⊥. Let M1 = 〈W1,R ′
1,R ′

2,ν1〉
be a model and t1 ∈ W1 such that M1, t1 2 σ(x). Let M2 = (W2,R ′′

1 ,R ′′
2 ,ν2) be a

model and t2 ∈ W2 be such that M2, t2 2 σ(x) → (�1�2)n⊥. We will define the
unravelling M ′

1 of M1 around t1 and the unravelling M ′
2 of M2 around t2. Let

M ′
1 = (X1,S′

1,S′
2,ν′1) where

• X1 is the set of all finite sequences of the form (u0, a1,u1, ..., ak ,uk ) where
k ∈ N,u0,u1, ...,uk ∈ W1, a1, ..., ak ∈ {1,2},u0 = t1 and for all i ∈ N, if i < k
then ui R ′

ai+1
ui+1,

• S′
1 is the binary relation on X1 such that (u0, a1,u1, ..., ak ,uk )S′

1(v0,b1, v1, ...,bl , vl )
iff k < l , (u0, a1,u1, ..., ak ,uk ) = (v0,b1, v1, ...,bk , vk ) and for all i > k, if
i < k then bi+1 = 1,

• S′
2 is the binary relation on X1 such that (u0, a1,u1, ..., ak ,uk )S′

2(v0,b1, v1, ...,bl , vl )
iff k < l , (u0, a1,u1, ..., ak ,uk ) = (v0,b1, v1, ...,bk , vk ) and for all i > k, if
i < k then bi+1 = 2,

• ν′1 is the valuation on X1 such that for all propositional variable or param-
eters α, ν′1(α) = {(u0, a1,u1, ..., ak ,uk ) ∈ X1 : uk ∈ ν1(α)}.

The unravelling M ′
2 = (X2,S′′

1 ,S′′
2 ,ν′2) of M2 around t2 is described in a similar

way. Notice that (t1) ∈ X1 and (t2) ∈ X2. Notice also that S′
1 and S′

2 are transitive
relations on X1 and S′′

1 and S′′
2 are transitive relations on X2. In other respect,

let f1 : X1 → W1 and f2 : X2 → W2 be defined as in the proof of Theorem 10.
The functions f1 and f2 being bounded morphism, it follows from [18] (Theorem
3.14) that M ′

1, (t1)�σ(x) and M ′
2, (t2)�σ(x) and M ′

2, (t2)2 (�1�2)n⊥.
Consequently, there exists u1, v1, ...,un , vn ∈W2 such that t2R1u1R2v1...R1unR2vn .
Notice that therefore (t2,1,u1,2, v1, ...,1,un ,2, vn) ∈ X2. Let M 0 = (W 0,R0

1 ,R0
2 ,ν0)

be the disjoint union of M ′
1 and M ′

2. By theorem 3.14 in [18], we have M 0, (t1) 2
σ(x) and M 0, (t2) � σ(x). Moreover, (t2)(R1 ◦ R2)n(t2,1,u1,2, v1, ...,1,un ,2, vn).
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Notice that the shortest path between (t2) and (t2,1,u1,2, v1, ...,1,un ,2, vn) is of
length 2n. Let M⊕ = (W ⊕,R⊕

1 ,R⊕
2 ,ν⊕) be obtained from M 0 by adding a new

possible world w such that (t2,1,u1,2, v1, ...,1,un ,2, vn)R⊕
1 wR⊕

2 (t1). Since n >
deg (σ(x)), M 0, (t1)2σ(x) and M 0, (t2)�σ(x), then M⊕, (t1)2σ(x) and M⊕, (t2)�
σ(x). Since σ is a unifier of x → �1�2x, then ` σ(x) → �1�2σ(x). Hence,
`σ(x) → (�1�2)n+1σ(x). It follows from M⊕, (t2)�σ(x) that
M⊕, (t2,1,u1,2, v1, ...,1,un ,2, vn)��1�2σ(x). Since
(t2,1,u1,2, v1, ...,1,un ,2, vn)R⊕

1 wR⊕
2 (t1), it follows that M⊕, (t1) � σ(x). This is a

contradiction.

Lemma 89 The set of substitutions Σ = {σ>}∪ {σn | n ∈N} forms a complete set
of K1 ⊗K2-unifiers of ϕ= x →�1�2x.

Proof 133 By Lemmas 84, 85, 86, 87 and 88 and Theorem 11.

Lemma 90 The formula ϕ = x →�1�2x does not possess a minimal complete
set of K 41 ⊗K 42-unifiers.

Proof 134 The proof is similar to the proof of Lemma 60.

Lemma 91 Unification type is nullary in fusion K 41 ⊗K 42.

Proof 135 By Lemma 90.
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In general, epistemic planning extends automated planning with epistemic
notions such as knowledge and belief. When the number of agents is one, it is
called epistemic planning for single agent and this kind of epistemic planning
consider the following problem:

An agent’s current state of knowledge,
a desirable state of knowledge,
how does it get from one to the other by executing a finite sequence of ac-

tion?
But in the case of epistemic planning for multi-agents, the current and desir-
able states of knowledge might also refer to the states of knowledge of other
agents.

In this chapter, we define a kind of simple epistemic planning problem where
atomic actions are public announcements and then, we struggle to find some
appropriate announcements by unification technique.
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7.1 Simple epistemic planning problem with public
announcement logic

We are going to solve some simple epistemic planning problems with unifi-
cation technique. In this section, actions are public announcements. In this
respect we need to know syntax and semantic of public announcement logic.
Dynamic Epistemic Logic (DEL) considers information change and the infor-
mation change is modeled by transforming Kripke models. In fact, in Dynamic
Epistemic Logic an agent’s information change during communication. In terms
of Kripke models, that means that the accessibility relations of the agents have
to change (and consequently the set of states of the model might change as
well). Language of Dynamic Epistemic Logic is an extension of the language
of Epistemic Logic by announcements. The first extension of the language of
Epistemic Logic was called public announcement logic and was introduced by
Plaza [43](1989).

At the following, we consider syntax and semantic of public announcement
logic based on [20].

7.1.1 Syntax of the public announcement logic

Let A be a finite set of agents and P be a countable set of atoms.

Definition 39 The language Lk[] is inductively defined by

ϕ ::= p | ¬ϕ | (ϕ∧ψ) |�aϕ | [ψ]ϕ

Besides the usual propositional language, �aϕ is read as agent a knows that ϕ,
and [ψ]ϕ is read as after announcement of ψ, it holds that ϕ. We will use the
following abbreviation:

• ♦aϕ=¬�a¬ϕ,

• 〈ψ〉ϕ=¬[ψ]¬ϕ.

We will also write A,B, etc for formula.
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7.1.2 Semantics of the logic of announcements

The public announcement ofψ restricts the epistemic state to all (factual) states
where ϕ holds, including access between states.

Definition 40 An epistemic model is a triple M = (W,∼,V ) where W 6= ;, for
each a ∈ A, ∼a is an equivalence relation on W and for each p ∈ P, V (p) ⊆W .

Definition 41 Let an epistemic model M = 〈W,∼,ν〉 for set of agents A and set
of atoms P be given, the truth conditions for the formulas in Lk[] are defined as
follows:

• M , w � p iff w ∈ ν(p)

• M , w �¬ϕ iff M , w 2ϕ

• M , w �ϕ∧ψ iff M , w �ϕ and M , w �ψ

• M , w ��aϕ iff for all v such that w ∼a v, M , v �ϕ

• M , w � [ψ]ϕ iff M , w �ψ implies M |ψ, w �ϕ

where M |ψ= 〈W ′,∼′,ν′〉 is defined as follows (where [ψ]M is the set of all states
v ∈W such that M , v �ψ

W ′ = [ψ]M
∼′

a=∼a ∩([ψ]M × [ψ]M )
ν′p = νp ∩ [ψ]M

As a result:

M , w �♦aϕ if there exists v such that w ∼a v and M , w �ϕ.
M , w � 〈ψ〉ϕ iff M , w �ψ and M |ψ, w �ϕ.

Since�a and ♦a are interpreted by equivalence relation, the formulas like

• �a(A∨♦aB) ↔�a A∨♦aB and

• �a(A∧♦aB) ↔�a A∧♦aB

are valid.
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7.1.3 Axiomatisation of Public Announcement Logic

The axiomatisation PAL of Public Announcement Logic has been introduced in
[20] and it consists of the following axioms and rules:

• all instantiations of propositional tautologies

• �a(ϕ→ψ) → (�aϕ→�aψ) (distribution of�a over →)

• �aϕ→ϕ (truth)

• �aϕ→�a�aϕ (positive introspection)

• ¬�aϕ→�a¬�aϕ (negative introspection)

• [ϕ]p ↔ (ϕ→ p) (atomic permanence)

• [ϕ]¬ψ↔ (ϕ→¬[ϕ]ψ) (announcement and negation)

• [ϕ](ψ∧χ) ↔ ([ϕ]ψ∧ [ϕ]χ) (announcement and conjunction)

• [ϕ]�aψ↔ (ϕ→�a[ϕ]ψ) (announcement and knowledge)

• [ϕ][ψ]χ↔ [ϕ∧ [ϕ]ψ]χ (announcement composition)

• From ϕ and ϕ→ψ, infer ψ (modus ponens)

• From ϕ, infer�aϕ (necessitation of�a )

Now, we present a simple epistemic planning problem then we will solve
it by unification technique. Bolander and Anderson have introduced different
epistemic planning problem [19].
Let us define our main problem. Our problem is a special kind of epistemic
planning problem. Let us define our problem and see how it will be solved by
unification technique as follows:

Definition 42 A simple epistemic planning problem is a pair (A,B) where

• Input: A and B are formulas in Lk[].

• Question: is there a public announcement ψ such that each time A holds,
ψ can be announced and, after announcing ψ, B becomes true.

In this chapter, we will also consider the other following problems:
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• Input: formulas A,B in Lk[], an agent i ,

• Question: is there a public announcement ψ such that A → 〈ψ〉�i B is
valid?

• Input: formulas A,C in Lk[], an agent j ,

• Question: is there a public announcement ψ such that A → 〈ψ〉♦ j C is
valid?

• Input: formulas A,B1, ...,Bm in Lk[], agents i1, ..., im ,

• Question: is there a public announcement ψ such that A → 〈ψ〉(�i1 B1 ∧
...∧�im Bm) is valid?

• Input: formulas A,C1, ...,Cn in Lk[], agents j1, ..., jn ,

• Question: is there a public announcement ψ such that A → 〈ψ〉(♦ j1C1 ∧
...∧♦ jn Cn) is valid?

• Input: formulas A,B1, ...,Bm ,C1, ...,Cn in Lk[], agents i1, ..., im , j1, ..., jn ,

• Question: is there a public announcement ψ such that A → 〈ψ〉(�i1 B1 ∧
...∧�im Bm ∧♦ j1C1 ∧ ...∧♦ jn Cn) is valid?

We propose to use unification tools for solving such problems. How?
For instance, for a given input (A,B , i ) of the first problem, we will consider the
PAL-formula P = A →〈x〉�i B . Here we assume A,B do not contain the variable
x. In fact, we suppose A,B only contain parameters. Then, we will use the
reduction axiom of PAL to obtain a PAL- formula P1 which has the same unifiers
as P and for which it seems easier to compute a most general unifier. In this
respect, we will also use the fact that the modalities �1,�2, ... are interpreted
in models by equivalence relations and, consequently, the following inference
rules are admissible:

ϕ→�iψ

♦iϕ→ψ

♦iϕ→ψ

ϕ→�iψ

Then, considering P1, we will find a necessary and sufficient condition for the
unifiability of P1 and then of P .
Finally, assuming this necessary and sufficient condition holds, we will con-
struct a most general unifier of P1 and then of P .
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Example 12 Consider the case A =�1p and B =�2p the planning problem is a
unification problem. It is the problem of unifying the formula �1p → 〈x〉�2p.
Let the agent 1 knows that p is true. Is there any announcementψ such that after
announcing ψ, the agent 2 knows p? Our answer to this question is positive.
Since we can announce agent 1 knows p or �1p. In this case, after announcing
�1p then the agent 2 knows that p is true that is to say�2p becomes true.

To solve such problems by unification technique, we consider the associated
formula A →〈x〉B . Hence, we apply the following steps to solve the associated
formula A →〈x〉B .

1. Use axiomatisation of public announcement logics in order to simplify
the formula A →〈x〉B .

2. Determine a necessary and sufficient condition in order to be able to
unify to the formula A →〈x〉B .

3. When condition of item 2 holds, compute or find one unifier or solution
of the formula A →〈x〉B .

4. If there exists a unifier, can we find a most general unifier?

7.2 Simple epistemic planning problem A →〈x〉B
In this part, we consider all possible cases as A → 〈x〉B and we have to find an
appropriate public announcement ψ such that the formula A →〈ψ〉B is valid.

Lemma 92 Let P = A → 〈x〉B where B is Boolean formula. Then, � A → B iff P
possesses a unifier.

Proof 136 We have to do the steps 1 to 4.

1. Use axiomatisation of public announcement to simplify P .

• A →〈x〉B
• A → x ∧ [x]B

• (A → x)∧ (A → [x]B)

• (A → x)∧ (A → (x → B))

• (A → x)∧ (A → B)
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Hence, let P1 = (A → x)∧ (A → B). Notice that P and P1 are equivalent in
PAL. Hence, they have the same unifiers.

2. Now, let us show that P1 is unifiable iff � A → B. If � A → B then σ(x) =>
is a unifier of P1. Reciprocally, if τ is a unifier of P1 then � A → B. We
remind that A,B contain only parameters.

3. Now, assuming that � A → B, let us find a unifier of P1. Since � A → B, it
is clear that σ(x) = B is a unifier of P1.

4. Now, assuming that � A → B, let us find a most general unifier of P1 if it
exists.

Notice that in P1, all occurrences of x are at the level 0. Consider Löwenheim
substitution ε associated to P1 and σ as follows: ε(x) = (P1 ∧ x)∨ (¬P1 ∧σ(x)).
Since, σ(x) = B hence we have ε(x) = (P1 ∧ x)∨ (¬P1 ∧B) or equivalently ε(x) =
(P1 ∨B)∧ (x ∨¬P1)∧ (x ∨B). In order to check, ε(x) is a most general unifier of
P1, we have to prove first, ε is a unifier of P1 and second ε is a most general of P1.
First, let us prove ε is a unifier of P1. Hence, we have to prove � A → ε(x). Since,

1. �¬(A → x) →¬P1 then,

2. � (A∧¬x)∨x → (¬P1 ∨x). Hence,

3. � (A∨x) → (¬P1 ∨x) thus,

4. � A → (¬P1 ∨x). Since by our assumption, � A → B then,

5. � A → (P1 ∨B)∧ (x ∨B). By steps (4) and (5) we have,

6. � A → (¬P1 ∨x)∧ (P1 ∨B)∧ (x ∨B). Therefore

7. � A → ε(x).

Therefore, ε is a unifier of P1.
Second, let σ′ be a unifier of P1. We have to prove ε 4 σ′. Since σ′ is a unifier
of P1 then `σ′(P1). Hence, σ′(ε(x)) = (σ′(P1)∧σ′(x))∨ (¬σ′(P1)∧B) is logically
equivalent to σ′(x). Thus, ε4σ′.
Consequently, ε is a most general unifier of P1. Since P1 and P are equivalent
and P and P1 have the same unifiers then, ε is a most general unifier of P.

Lemma 93 Let P = A →〈x〉�B where B is Boolean formula. Then, P possesses a
unifier iff � A → B.
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Proof 137 We have to do the steps 1−4 described in the proof of Lemma 92.

1. Use axiomatisation of public announcement to simplify P. by the reduc-
tion axioms of PAL, P is logically equivalent to P ′ = (A → x)∧ (A →�(x →
B)).Since� is interpreted by an equivalence relation, then P ′ has the same
unifiers as P ′′ = (A → x)∧ (♦A → (x → B)) which has itself the same uni-
fiers as P1 = (A → x)∧ (x → (♦A → B)). Hence, let P1 = (A → x)∧ (x →
(♦A → B)).

2. Now, let us prove that P1 is unifiable iff � A → B. Suppose � A → B. Hence,
obviouslyσ(x) = B is a unifier of P1. Now, suppose P1 has a unifier τ. Thus,
� A → τ(x) and � τ(x) → (♦A → B). Hence, � A → (♦A → B) and � A → B.
We remind that � A →♦A.

3. Suppose � A → B. Since � A → B, it is clear that σ(x) = B is a unifier of P1.

4. Let us find a most general unifier of P1.

Notice that in P1, all occurrences of x are at the level 0. Consider Löwenheim’s
formula ε(x) = (P1 ∧ x)∨ (¬P1 ∧σ(x)). Since, σ(x) = B hence we have ε(x) =
(P1 ∧x)∨ (¬P1 ∧B) or equivalently ε(x) = (P1 ∨B)∧ (x ∨¬P1)∧ (x ∨B). In order
to check, ε(x) is a most general unifier of P1, we have to prove first, ε is a unifier
of P1 and second ε is a most general unifier of P1. First, let us prove ε is a unifier
of P1. Hence, we have to prove

1. � A → ε(x) and

2. � ε(x) → (♦A → B).

1. We have to prove � A → ε(x). Since,

(a) �¬(A → x) →¬P1 then,

(b) � (A∧¬x)∨x → (¬P1 ∨x). Hence,

(c) � (A∨x) → (¬P1 ∨x) thus,

(d) � A → (¬P1 ∨x). Since by our assumption, � A → B then,

(e) � A → (P1 ∨B)∧ (x ∨B). By steps (c) and (e) we have,

(f) � A → (¬P1 ∨x)∧ (P1 ∨B)∧ (x ∨B). Therefore

(g) � A → ε(x).
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2. To prove � ε(x) → (♦A → B) we have to prove � (¬P1∧B) → (♦A → B) and
� (P1 ∧x) → (♦A → B).

It is clear that � (¬P1∧B) → (♦A → B). Since � P1 → (x → (♦A → B)) then,
� (P1 ∧x) → (♦A → B).

Therefore, ε is a unifier of P1.
Second, let σ′ be a unifier of P1. Since σ′ is a unifier of P1 then ` σ′(P1). Hence,
σ′(ε(x)) = (σ′(P1)∧σ′(x))∨ (¬σ′(P1)∧B) is logically equivalent to σ′(x). We re-
mind that B contains only parameters; B contains no occurrence of x. Thus,
ε4σ′.
Consequently, ε is a most general unifier of P1. Since P1 and P are equivalent
and P and P1 have the same unifiers then, ε is a most general unifier of P.

Lemma 94 Let P = A →〈x〉(�1B1 ∧ ...∧�nBn) where B1, ...,Bn are Boolean for-
mulas. Then, � A → (B1 ∧ ...∧Bn) iff P possesses a unifier.

Proof 138 We have to do the steps 1−4 as before.

1. Simplification of P in this Lemma is similar to simplification of P in 93.
Hence, let P1 = (A → x)∧ (x → (♦1 A → B1))∧ ...∧ (x → (♦n A → Bn)). By
an argument similar to the argument used in the proof of Lemma 93, we
know that P and P1 have the same unifiers.

2. As well, one can show that P1 is unifiable iff � A → (B1 ∧ ...∧Bn).

3. Suppose � A → (B1 ∧ ...∧Bn). Since � A → (B1 ∧ ...∧Bn), it is clear that
σ(x) = A is a unifier of P1.

4. Now, let us find a most general unifier of P1.

Notice that all occurrences of x in P1 are at the level 0. Consider Löwenheim’s
formula ε(x) = (P1 ∧ x)∨ (¬P1 ∧σ(x)). Since, σ(x) = A hence we have ε(x) =
(P1 ∧ x)∨ (¬P1 ∧ A). In order to check, ε(x) is a most general unifier of P1, we
have to prove first, ε is a unifier of P1 and second ε is a most general unifier of P1.
First, let us prove ε is a unifier of P1. Hence, we have to prove

1. � A → ε(x) and

2. � ε(x) → ((♦1 A → B1)∧ ...∧ (♦n A → Bn)).

1. to prove � A → ε(x), we use similar method as in the proof of Lemma 93.
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2. To prove� ε(x) → (♦i A → Bi ) for 16 i 6 n, we have to prove� (¬P1∧A) →
(♦i A → Bi ) and � (P1 ∧x) → (♦i A → Bi ) for 16 i 6 n.
Since, ` A → (B1 ∧ ...∧Bn) then, � (¬P1 ∧ A) → (♦i A → Bi ) for 16 i 6 n.
Since,
� P1 → (x → (♦i A → Bi )) then,
� (P1 ∧x) → (♦i A → Bi ) for all 16 i 6 n.
Thus, � ε(x) → (♦1 A → B1)∧ ...∧ (♦n A → Bn).

Therefore, ε is a unifier of P1.
Second, let σ′ be a unifier of P1. Since σ′ is a unifier of P1 then ` σ′(P1). Hence,
σ′(ε(x)) = (σ′(P1)∧σ′(x))∨ (¬σ′(P1)∧ A) is logically equivalent to σ′(x). We re-
mind that A contains only parameters. Thus, ε4σ′.
Consequently, ε is a most general unifier of P1. Since P1 and P are equivalent
and P and P1 have the same unifiers then, ε is a most general unifier of P.

Lemma 95 Let P = A →〈x〉♦C where C is Boolean formula. Then, � A →♦C iff
P possesses a unifier.

Proof 139 We have to do the steps 1−4 as before.

1. Use axiomatisation of public announcement to simplify P.

• (A →〈x〉♦C )

• (A → x ∧ [x]¬�¬C )

•
(
(A → x)∧ (A → [x]¬�¬C )

)
•

(
(A → x)∧ (A → (x →¬[x]�¬C ))

)
•

(
(A → x)∧ (A →¬[x]�¬C )

)
•

(
(A → x)∧ (A →¬(x →�[x]¬C ))

)
•

(
(A → x)∧ (A →¬�[x]¬C )

)
•

(
(A → x)∧ (A →¬�(x →¬C ))

)
•

(
(A → x)∧ (A →♦(x ∧C ))

)
.

Hence, let P1 = (A → x)∧(A →♦(x∧C )). P and P1 are logically equivalent.
More importantly, they have the same unifiers.
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2. Now, let us show that P1 is unifiable iff � A → ♦C . Suppose � A → ♦C .
then, obviouslyσ(x) => is a unifier of P1. Reciprocally if some substitution
τ are unifiers of P1 then, � A →♦(τ(x)∧C ). Thus, � A →♦C .

3. Suppose � A →♦C . Since, � A →♦C it is clear that σ(x) => is a unifier of
P1.

4. Now, let us find a most general unifier of P1.

Notice that, contrary to the cases of Lemmas 92, 93 and 94, in P1 there is one
occurrence of x at the level 0 and one occurrence of x in the scope of ♦. So, in
Löwenheim’s formula we will replace P1 by�P1 as in modal logic S5 in Chapter
4. Consider Löwenheim’s formula ε(x) = (�P1∧x)∨(¬�P1∧σ(x)). Since,σ(x) =
> hence we have ε(x) = (�P1 ∧ x)∨ (¬�P1 ∧>) or equivalently ε(x) =¬�P1 ∨ x
which is equivalent to ε(x) = (�P1 → x). In order to check, ε(x) is a most general
unifier of P1, we have to prove first, ε is a unifier of P1 and second ε is a most
general unifier of P1. First, let us prove ε is a unifier of P1. Hence, we have to
prove

1. � A → ε(x) and

2. � A →♦(ε(x)∧C ).

1. We have to prove � A → ε(x). Since,
��P1 → (A → x) then,
� (�P1 ∧ A) → x hence,
� A → (�P1 → x).

2. We have to prove that � A →♦(ε(x)∧C ). Since ε(x) =�P1 → x, it is equiv-
alent to prove that � A ∧�(C →�P1) → ♦(x ∧C ). we remind that � and
♦ are interpreted in models by equivalence relations. Since,

• � A∧�(C →�P1) → A∧ (♦C →�P1) and by our assumption,

• � A →♦C then,

• � A∧�(C →�P1) →�P1 ∧ A. Since,

• ��P1 → (A →♦(x ∧C )) hence,

• ��P1 ∧ A →♦(x ∧C )). Since,

• � A∧�(C →�P1) →�P ∧ A, and
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• ��P1 ∧ A →♦(x ∧C )) thus,

• � A∧�(C →�P1) →♦(x ∧C ).

Therefore, ε is a unifier of P1.

Second, let σ′ be a unifier of P1. Since σ′ is a unifier of P1 then `�σ′(P1). Hence,
σ′(ε(x)) =σ′(x)∨¬�σ′(P1) is logically equivalent to σ′(x). Thus, ε4σ′.
Consequently, ε is a most general unifier of P1. Since P1 and P are equivalent
and P and P1 have the same unifiers then, ε is a most general unifier of P.

Lemma 96 Let P = A →〈x〉(♦1C1∧ ...∧♦nCn) where Ci is a Boolean formula for
all i = 1, ...,n. Then � A → (♦1C1 ∧ ...∧♦nCn) iff P possesses a unifier.

Proof 140 We have to do the steps 1−4 as for the proof of the previous Lemma.

1. Simplification of P in this lemma is similar to simplification of P In Lemma
95. Hence, let P1 = (A → x)∧ (A →♦1(x ∧C1))∧ ...∧ (A →♦n(x ∧Cn)). By
the reduction axioms of PAL, P and P1 are logically equivalent.

2. Obviously, as well, P1 is unifiable iff � A → (♦1C1 ∧ ...∧♦nCn).

3. Moreover, if we assume � A →♦1C1 ∧ ...∧♦nCn it is clear that σ(x) => is
a unifier of P1.

4. Now, let us find a most general unifier of P1.

Notice that in P1, there is one occurrence of x at the level 0 and for all i = 1, ...,n,
there is one occurrence of x in the scope of ♦i . For this reason, we adapt Löwen-
heim’s formula to the context of P1. Consider Löwenheim’s formula ε(x) = (�1P1∧
...∧�nP1 ∧ x)∨ (¬(�1P1 ∧ ...∧�nP1)∧σ(x)). Since, σ(x) => hence ε(x) is logi-
cally equivalent to�1P1∧...∧�nP1 → x. In order to check, ε(x) is a most general
unifier of P1, we have to prove first, ε is a unifier of P1 and second ε is a most
general unifier of P1. First, let us prove ε is a unifier of P1. Hence, we have to
prove

1. � A → ε(x) and

2. � A →♦i (ε(x)∧Ci ) for 16 i 6 n.

1. The proof of this part is similar to the proof of Lemma 95.
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2. We have to prove that � A → ♦i (ε(x)∧Ci ) for 1 6 i 6 n or equivalently
� A∧�i (Ci →�1P1 ∧ ...∧�nP1) →♦i (x ∧Ci ). Since,

• � A ∧�i (Ci →�1P1 ∧ ...∧�nP1) → A ∧ (♦i Ci →♦i�i P1) and by as-
sumption

• � A →♦i Ci then,

• � A∧�i (Ci →�1P1 ∧ ...∧�nP1) → A∧�i P1. Since,

• ��i P1 → ((A →♦1(x∧C1))∧...∧(A →♦n(x∧Cn))) then for 16 i 6 n,

• ��i P1 ∧ A →♦i (x ∧Ci ). Since,

• � A∧�i (Ci →�1P1 ∧ ...∧�nP1) → A∧�i P1 and

• ��i P1 ∧ A →♦i (x ∧Ci ) thus,

• � A∧�i (Ci →�1P1 ∧ ...∧�nP1) →♦i (x ∧Ci ).

Therefore, ε is a unifier of P1.

Second, let σ′ be a unifier of P1. Since σ′ is a unifier of P1 then `�1σ
′(P1), ...,`

�nσ
′(P1). Hence, σ′(ε(x)) =�1σ

′(P1)∧ ...∧�1σ
′(P1) → σ′(x) is logically equiv-

alent to σ′(x). Thus, ε4σ′.
Consequently, ε is a most general unifier of P1. Since P1 and P are equivalent
and P and P1 have the same unifiers then, ε is a most general unifier of P.

Lemma 97 Let P = A →〈x〉
(
(�k1 B1 ∧ ...∧�km Bm)∧ (♦l1C1 ∧ ...∧♦ln Cn)

)
where

Bi and C j are Boolean formula for 16 i 6m and 16 j 6 n. Let B ′ = (♦k1 A →
B1)∧ ...∧ (♦km A → Bm). Then, � A → B ′∧♦l1 (C1 ∧B ′)∧ ...∧♦ln (Cn ∧B ′) iff P
possesses a unifier.

Proof 141 We have to do the steps 1−4 as for the previous Lemmas.

1. Simplification of P in this Lemma is similar to simplification of Lemmas
94 and 96. Hence, let Let P1 = (A → x)∧ (x → (♦k1 A → B1)∧ ...∧ (♦km A →
Bm))∧ (A →♦l1 (x ∧C1)∧ ...∧ (A →♦ln (x ∧Cn)). P1 and P are not logically
equivalent. Nevertheless, they have exactly the same unifiers.

2. As before, it happens that P1 is unifiable iff � A → B ′∧♦l1 (C1 ∧B ′)∧ ...∧
♦ln (Cn ∧B ′) where B ′ = (♦k1 A → B1)∧ ...∧ (♦km A → Bm).

3. Assuming � A → B ′∧♦l1 (C1 ∧B ′)∧ ...∧♦ln (Cn ∧B ′) where B ′ = (♦k1 A →
B1)∧ ...∧ (♦km A → Bm) it is clear that σ(x) = B ′ is a unifier of P1.
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4. Now, let us find a most general unifier of P1.

Notice that there are two occurrences of x in P1 at level 0 and n occurrences in the
scopes of ♦l1 , ...,♦ln . Consider Löwenheim’s formula ε(x) = (�l1 P1 ∧ ...∧�ln P1 ∧
x)∨(¬(�l1 P1∧...∧�ln P1)∧σ(x)). Since,σ(x) = B ′ hence we have ε(x) = (�l1 P1∧
...∧�ln P1 ∧ x)∨ (¬(�l1 P1 ∧ ...∧�ln P1)∧B ′). Notice that ε(x) is equivalent with(
((�l1 P1 ∧ ...∧�ln P1)∨B ′)∧ (x ∨B ′)∧ (¬(�l1 P1 ∧ ...∧�ln P1)∨ x)

)
. In order to

check, ε(x) is a most general unifier of P1, we have to prove first, ε is a unifier of
P1 and second ε is a most general unifiers of P1. First, let us prove ε is a unifier of
P1. Hence, we have to prove

1. � A → ε(x) and

2. � (�l1 P1 ∧ ...∧�ln P1 ∧ x)∨ (¬(�l1 P1 ∧ ...∧�ln P1)∧B ′) → (♦k1 A → B1)∧
...∧ (♦km A → Bm).

3. � (A →♦l1 (ε(x)∧C1)∧ ...∧ (A →♦ln (ε(x)∧Cn)).

1. To prove � A → ε(x) we consider the following steps: Since,

• �¬(A → x) →¬(�l1 P1 ∧ ...∧�ln P1) then,

• � A →¬(�l1 P1 ∧ ...∧�ln P1)∨x. Since,

• � A → B ′ then,

• � A → ((�l1 P1 ∧ ...∧�ln P1)∨B ′)∧ (x ∨B ′). Since,

• � A →¬(�l1 P1 ∧ ...∧�ln P1)∨x then,

• � A → ((�l1 P1∧...∧�ln P1)∨B ′)∧(x∨B ′)∧(¬(�l1 P1∧...∧�ln P1)∨x).
Thus,

• � A → ε(x).

2. Obviously,� (¬(�l1 P1∧...∧�ln P1)∧B ′) → (♦k1 A → B1)∧...∧(♦km A → Bm).
Since,
��l1 P1 ∧ ...∧�ln P1 → (x → (♦k1 A → B1)∧ ...∧ (♦km A → Bm)) then,
��l1 P1 ∧ ...∧�ln P1 ∧x → (♦k1 A → B1)∧ ...∧ (♦km A → Bm). Since,
��l1 P1 ∧ ...∧�ln P1 ∧x → (♦k1 A → B1)∧ ...∧ (♦km A → Bm) and
� (¬(�l1 P1 ∧ ...∧�ln P1)∧B ′) → (♦k1 A → B1)∧ ...∧ (♦km A → Bm) then,
� (�l1 P1 ∧ ...∧�ln P1 ∧ x)∨ (¬(�l1 P1 ∧ ...∧�ln P1)∧B ′) → (♦k1 A → B1)∧
...∧ (♦km A → Bm). Therefore,
� ε(x) → (♦k1 A → B1)∧ ...∧ (♦km A → Bm).



3. We have to prove that � (A →♦l1 (ε(x)∧C1)∧ ...∧ (A →♦ln (ε(x)∧Cn)). In
this respect, we will only prove, � A → ♦l1 (ε(x)∧C1). Let us prove � A →
♦l1 (�l1 P1 ∧ ...∧�ln P1 ∧ x ∧C1)∨♦l1 (¬(�l1 P1 ∧ ...∧�ln P1)∧B ′ ∧C1) or
equivalently � A ∧�l1 (B ′∧C1 → (�l1 P1 ∧ ...∧�ln P1)) → ♦l1 (�l1 P1 ∧ ...∧
�ln P1 ∧x ∧C1). Since, � A →♦l1 (B ′∧C1), then

• � A∧�l1 (B ′∧C1 → (�l1 P1 ∧ ...∧�ln P1)) →�l1 P1 and

• � A∧�l1 (B ′∧C1 → (�l1 P1 ∧ ...∧�ln P1)) →♦l1 (x ∧C1). Then,

• � A∧�l1 (B ′∧C1 → (�l1 P1∧...∧�ln P1)) →♦l1 (x∧C1)∧�l1 P1. Hence,

• � A∧�l1 (B ′∧C1 → (�l1 P1 ∧ ...∧�ln P1)) →♦l1 (x ∧C1 ∧P1). Since,

• � P1 ∧x → B ′ hence,

• � A∧�l1 (B ′∧C1 → (�l1 P1∧...∧�ln P1)) →♦l1 (x∧B ′∧C1∧P1). Since,

• � A ∧�l1 (B ′∧C1 → (�l1 P1 ∧ ...∧�ln P1)) →�l1 (B ′∧C1 → (�l1 P1 ∧
...∧�ln P1)) and

• � A∧�l1 (B ′∧C1 → (�l1 P1∧ ...∧�ln P1)) →♦l1 (x∧B ′∧C1∧P1) then,

• � A ∧�l1 (B ′∧C1 → (�l1 P1 ∧ ...∧�ln P1)) →♦l1 (�l1 P1 ∧ ...∧�ln P1 ∧
x ∧C1).

Therefore, ε is a unifier of P1.

Second, let σ′ be a unifier of P1. Since σ′ is a unifier of P1 then `�l1σ
′(P1), ...,`

�lnσ
′(P1). Hence, σ′(ε(x)) = (�l1σ

′(P1)∧ ...∧�lnσ
′(P1)∧σ′(x))∨(¬(�l1σ

′(P1)∧
...∧�lnσ

′(P1))∧B ′) is logically equivalent to σ′(x). Thus, ε4σ′.
Consequently, ε is a most general unifier of P1. Since P1 and P have the same
unifiers then, ε is a most general unifier of P too.

The last Lemma contains simple epistemic planning problem of the form A →
〈x〉

(
(�k1 B1∧ ...∧�km Bm)∧ (♦l1C1∧ ...∧♦ln Cn)

)
where B1, ...,Bm and C j 1, ...,Cn

are Boolean formulas. The solutions of these problem are formulasψ such that
if A holds then ψ can be announced and after ψ is announced, agent ki knows
Bi hold (16 i 6m) and agent l j considers it is possible that C j holds (16 j 6
n).
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7.3 Simple epistemic planning problem A →〈�x〉B
In this section, the solution of the simple epistemic planning problems that we
will consider should be of the form�ψ.

Lemma 98 Let P = A → 〈�x〉B Where B is Boolean formula. Then, � A → B iff
P possesses a unifier.

Proof 142 We have to do the steps 1 to 4.

1. We use axiomatisation of public announcement to simplify P. Hence, let
P1 = (♦A →�x)∧ (A → B). By the reduction oxioms pf PAL and by the fact
that� and♦ are interpreted in models by equivalence relations, we obtain
that P and P1 have the same unifiers.

2. If P1 is unifiable then � A → B. we remind that A,B contain only parame-
ters. Reciprocally, suppose � A → B. Then σ(x) => is a unifier of P1.

3. Now, let us find a unifier of P1. Since � A → B, it is clear that σ(x) => is a
unifier of P1.

4. Now, let us find a most general unifier of P1.

Consider Löwenheim’s formula ε(x) = (�P1∧x)∨(¬�P1∧σ(x)). Since,σ(x) =>
hence we have ε(x) = (�P1 ∧ x)∨ (¬�P1 ∧>) or equivalently ε(x) = (�P1 → x).
In order to check, ε(x) is a most general unifier of P1, we have to prove first, ε is
a unifier of P1 and second ε is a most general general unifier of P1. First, let us
prove ε is a unifier of P1. Hence, we have to prove �♦A →�ε(x). Since,

1. ��P1 → (♦A →�x) then,

2. ��P1 ∧♦A →�x. Since,

3. ��x → x hence,

4. ��P1 ∧♦A → x. Then,

5. �♦A → (�P1 → x).

Therefore, ε is a unifier of P1.
Second, let σ′ be a unifier of P1. Since σ′ is a unifier of P1 then `�σ′(P1). Hence,
σ′(ε(x)) = (�σ′(P1) →σ′(x)) is logically equivalent to σ′(x). Thus, ε4σ′.
Consequently, ε is a most general unifier of P1. Since P1 and P are equivalent
and P and P1 have the same unifiers then, ε is a most general unifier of P.
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Lemma 99 Let P = A →〈�x〉�B where B is a Boolean formula. then,� A →�B
iff P has a unifier.

Proof 143 We have to do the steps 1−4.

1. Use axiomatisation of public announcement to simplify P. By the reduc-

tion axioms of PAL, P is logically equivalent to P ′ =
(
(A → �x) ∧ (A →

�[�x]B)
)
. Since � is interpreted by an equivalence relation, then P ′ has

the same unifiers as P ′′ =
(
(♦A →�x)∧(♦A → (�x → B))

)
which has itself

the same unifiers as P1 = (♦A →�x)∧ (♦A → B).

2. Obviously, P1 is unifiable iff �♦A → B. We remind that A,B contain only
parameters.

3. Suppose �♦A → B. It is clear that σ(x) => is a unifier of P1.

4. Let us find a most general unifier of P1.

Consider Löwenheim’s formula ε(x) = (�P1∧x)∨(¬�P1∧σ(x)). Since,σ(x) =>
hence we have ε(x) = (�P1 → x). In order to check, ε(x) is a most general unifier
of P1, we have to prove first, ε is a unifier of P1 and second ε is a most general
unifier of P1. First, let us prove ε is a unifier of P1. Hence, we have to prove
�♦A →�ε(x). Since,

1. ��P1 → (♦A →�x) then,

2. ��P1 ∧♦A →�x. Since,

3. ��x → x hence,

4. ��P1 ∧♦A → x. Then,

5. �♦A → (�P1 → x). Then,

6. �♦A →�(�P1 → x)

Since �♦A → B, we obtain that ε is a unifier of P1.
Second, let σ′ be a unifier of P1. Since σ′ is a unifier of P1 then `�σ′(P1). Hence,
σ′(ε(x)) = (�σ′(P1) →σ′(x)) is logically equivalent to σ′(x). Thus, ε4σ′.
Consequently, ε is a most general unifier of P1. Since P1 and P are equivalent
and P and P1 have the same unifiers then, ε is a most general unifier of P.



7.3. SIMPLE EPISTEMIC PLANNING PROBLEM A →〈�X 〉B 135

Lemma 100 Let P = A →〈�1x〉�2B where B is Boolean formula. Then,�♦1 A →
(♦2 A → B) iff P possesses a unifier.

Proof 144 We have to do at the following steps:

1. Simplify P by axiomatisation of public announcement logic. By the reduc-

tion axioms of PAL, P is logically equivalent to P ′ =
(
(A → �1x)∧ (A →

�2[�1x]B)
)
. Since �1 and �2 are interpreted by equivalence relations,

then P ′ has the same unifiers as P ′′ =
(
(A →�1x)∧(♦2 A → [�1x]B)

)
which

has itself the same unifiers as P1 = (♦1 A →�1x)∧ (�1x → (♦2 A → B)).

2. Assume, �♦1 A → (♦2 A → B). Hence, σ(x) =♦1 A is a unifier of P1. Recip-
rocally, it is obvious that if τ is a unifier of P1 then �♦1 A → (♦2 A → B).

3. Let us find a most general unifier of P1. We claim Löwenheim’s formula
ε(x) = (�1P1 ∧x)∨ (¬�1P1 ∧σ(x)) is a most genearl unifier of P1.

(a) Let us prove ε is a unifier of P1. We need to make sure that ε is a uni-
fier of P1 hence, we have to prove � ♦1 A →�1ε(x) and � �1ε(x) →
(♦2 A → B).
To prove first part: Since

i. ��1P1 → (♦1 A →�1x)

ii. ��1P1 ∧♦1 A →�1x

iii. ��1x → x

iv. ��1P1 ∧♦1 A → x

v. �♦1 A → (�1P1 → x)

vi. �♦1 A →�1(�1P1 → x)

vii. �♦1 A →�1

(
(�1P1 ∧x)∨ (¬�1P1 ∧♦1 A)

)
.

To prove second part: Let us prove�
(
(�1P1∧�1x)∨(¬�1P1∧♦1 A)

)
→

(♦2 A → B). Since,

i. ��1P1 → (�1x → (♦2 A → B)) then

ii. � (�1P1 ∧�1x1) → (♦2 A → B). Since

iii. �♦1 A → (♦2 A → B) Then,

iv. � (¬�1P1 ∧♦1 A) → (♦2 A → B). Thus,
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v. �
(
(�1P1 ∧�1x)∨ (¬�1P1 ∧♦1 A)

)
→ (♦2 A → B).

Therefore, ε is a unifier of P1.

(b) Second, let σ′ be a unifier of P1. Since σ′ is a unifier of P1 then `
�1σ

′(P1). Hence,σ′(ε(x)) = (�1σ
′(P1)∧σ′(x))∨(¬�1σ

′(P1)∧♦1 A) is
logically equivalent to σ′(x). Thus, ε4σ′.
Consequently, ε is a most general unifier of P1. Since P and P1 have
the same unifiers then, ε is a most general unifier of P.

Lemma 101 Let P = A →〈�1x〉(�2B2∧...∧�nBn) where Bi are Boolean formu-
las for 26 i 6 n. Then, � ♦1 A → (♦2 A → B2)∧ ...∧ (♦n A → Bn) iff P possesses a
unifier.

Proof 145 Simplify P by axiomatisation of public announcement logic. We pro-
ceed as in Lemma 100. Hence, let P1 = (♦1 A →�1x)∧(�1x → (♦2 A → B2))∧ ...∧
(�1x → (♦n A → Bn)). Suppose � ♦1 A → (♦2 A → B2)∧ ...∧ (♦n A → Bn). Since
�♦1 A → (♦2 A → B2)∧ ...∧ (♦n A → Bn), it is clear that σ(x) =♦1 A is a unifier of
P1. Reciprocally, when P1 has a unifier, then �♦1 A → (♦2 A → B2)∧ ...∧ (♦n A →
Bn). Let us find a most general unifier of P1. We claim that Löwenheim’s formula
ε(x) = (�1P1 ∧ x)∨ (¬�1P1 ∧σ(x)) is a most general unifier. Since, σ(x) = ♦1 A
hence, ε(x) = (�1P1 ∧x)∨ (¬�1P1 ∧♦1 A).

• Let us prove ε is a unifier of P1. We need to make sure that ε is a unifier
of P1 hence, we have to prove � ♦1 A → �1ε(x) and � �1ε(x) → (♦2 A →
B2)∧ ...∧ (♦n A → Bn).
Notice that�1ε(x) is logically equivalent to (�1P1∧�1x)∨(¬�1P1∧♦1 A).
To prove first part: Since

1. ��1P1 → (♦1 A →�1x) then,

2. �♦1 A → (�1P1 →�1x). Therefore,

3. �♦1 A →
(
(�1P1 ∧�1x)∨ (¬�1P1 ∧♦1 A)

)
To prove second part: Let us prove �

(
(�1P1 ∧�1x)∨ (¬�1P1 ∧♦1 A)

)
→(

(♦2 A → B2)∧ ...∧ (♦n A → Bn)
)
. Since,

1. ��1P1 →
(
�1x → (♦2 A → B2)∧ ...∧ (♦n A → Bn)

)
then

2. � (�1P1 ∧�1x) → (♦2 A → B2)∧ ...∧ (♦n A → Bn). Since
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3. �♦1 A → (♦2 A → B2)∧ ...∧ (♦n A → Bn) Then,

4. � (¬�1P1 ∧♦1 A) → (♦2 A → B2)∧ ...∧ (♦n A → Bn). Thus,

5. �
(
(�1P1∧�1x)∨(¬�1P1∧♦1 A)

)
→

(
(♦2 A → B2)∧...∧(♦n A → Bn)

)
.

Therefore, ε is a unifier of P1.

• Second, let σ′ be a unifier of P1. Since σ′ is a unifier of P1 then `�1σ
′(P1).

Hence,σ′(ε(x)) = (�1σ
′(P1)∧σ′(x))∨(¬�1σ

′(P1)∧♦1 A) is logically equiv-
alent to σ′(x). Thus, ε4σ′.
Consequently, ε is a most general unifier of P1. Since P1 and P are equiva-
lent and P and P1 have the same unifiers then, ε is a most general unifier
of P.

Lemma 102 Let P = A → 〈�x〉♦C where C is a Boolean formula. Then, � A →
♦C iff P possesses a unifier.

Proof 146 Simplify P by axiomatisation of public announcement logic. Hence

1. (A →〈�x〉♦C )

2.
(
(A →�x)∧ (A → [�x]¬�¬C )

)
3. (A →�x)∧ (A →♦(�x ∧C )).

Let P1 = (A → �x)∧ (A → ♦(�x ∧C )). Then P and P1 have exactly the same
unifiers. If, � A →♦C hence, σ(x) => is a unifier of P1. Reciprocally, obviously,
if P1 is unifiable then � A → ♦C . Let us find a most general unifier of P1. We
claim that ε(x) = (�P1∧x)∨(¬�P1∧σ(x)) is a most general unifier of P1. Since,
σ(x) => hence, ε(x) =¬�P1 ∨x is equivalent to (�P1 → x). In this respect,:

1. We prove ε is a unifier of P1. In this respect, we need to prove � A →�ε(x)
and A →♦(�ε(x)∧C ). Let us prove � A →�(�P1 → x): Since,
��P1 → (A →�x) then,
� (�P1 ∧ A) →�x. Hence,
� A → (�P1 → x). Therefore,
� A →�ε(x).
Let us prove prove that � A → ♦(�(�P1 → x)∧C ) or equivalently � A →
♦(¬�P1 ∧C )∨♦(�x ∧C ). In this respect, it is enough to show that � A ∧
�(C →�P1) →♦(�x ∧C ). Since,
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� A∧�(C →�P1) → A∧ (♦C →�P1) and by our assumption,
� A →♦C Hence,
� A∧�(C →�P1) →�P1 ∧ A.We know that
��P1 → (A →♦(�x ∧C )) then,
��P1 ∧ A →♦(�x ∧C ). Since,
� A∧�(C →�P1) →�P1 ∧ A and
��P1 ∧ A →♦(�x ∧C ) then,
� A∧�(C →�P1) →♦(�x ∧C ). Thus,
� A →♦(�ε(x)∧C ).

Therefore, ε is a unifier of P1.

2. Second, let σ′ be a unifier of P1. Since σ′ is a unifier of P1 then `�1σ
′(P1).

Hence, σ′(ε(x)) = ¬�σ′(P1)∨σ′(x) is logically equivalent to σ′(x). Thus,
ε4σ′.
Consequently, ε is a most general unifier of P1. Since P and P1 have the
same unifiers then, ε is a most general unifier of P.

Lemma 103 Let P = A →〈�1x〉♦2C where C is a Boolean formula. Then, � A →
♦2C iff P possesses a unifier.

Proof 147 Use axiomatisation of public announcement logic. Hence, let P1 =
(A →�1x)∧ (A → ♦2(�1x ∧C )). P and P1 have exactly the same unifiers. Sup-
pose � A → ♦2C . Since, � A → ♦2C hence, σ(x) = > is a unifier of P1. Recipro-
cally, if P1 has a unifier then � A →♦2C . Let us find a most general unifier of P1.
We claim that ε(x) = (�1�2P1 ∧ x)∨ (¬�1�2P1 ∧σ(x)) is a most general unifier
of P1. Since, σ(x) => hence, ε(x) =¬�1�2P1∨x. In this respect, we consider the
following steps:

1. We prove ε is a unifier of P1. In this respect, we need to prove � A →�1ε(x)
and � A →♦2(�1ε(x)∧C ). Let us prove first one: Since,
��1�2P1 → (A →�1x) then,
� (�1�2P1 ∧ A) →�1x hence,
� A → (�1�2P1 →�1x). Therefore
� A →�1ε(x).
Second, we have to prove that � A →♦2(�1ε(x)∧C ) or equivalently � A∧
�2(C →�1�2P1) →♦2(�1x ∧C ). Since,
� A∧�2(C →�1�2P1) → A∧ (♦2C →♦2�1�2P1) and by assumption
� A →♦2C then,
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� A∧�2(C →�1�2P1) →♦2�1�2P1 ∧ A. We know that,
�♦2�1�2P1 ∧ A →�2P1 ∧ A. Since,
��2P1 → (A →♦2(�1x ∧C )) hence,
��2P1 ∧ A →♦2(�1x ∧C ). Since,
� A∧�2(C →�1�2P1) →♦2�1�2P1 ∧ A and
�♦2�1�2P1 ∧ A →�2P1 ∧ A and
��2P1 ∧ A →♦2(�1x ∧C ) thus,
� A∧�2(C →�1�2P1)) →♦2(�1x ∧C ).

Therefore, ε is a unifier of P1.

2. Let us prove that ε is more general than any unifier of P1. Letσ′ be a unifier
of P1. Since σ′ is a unifier of P1 then ` �1�2σ

′(P1). Hence, σ′(ε(x)) =
¬�1�2σ

′(P1)∨σ′(x) is logically equivalent to σ′(x). Thus, ε4σ′(x).
Consequently, ε is a most general unifier of P1. Since validity of P1 and P
are equivalent then, ε is a most general unifier of P.

Lemma 104 Let P = A →〈�1x〉(♦2C2∧ ...∧♦nCn) where Ci are Boolean formu-
las for 26 i 6 n. Then, � A →♦2C2 ∧ ...∧♦nCn iff P possesses a unifier.

Proof 148 (⇒) Simplify P by axiomatisation of public announcement logic. Hence,
let P1 = (A →�1x)∧(A →♦2(�1x∧C2))∧...∧(A →♦n(�1x∧Cn)). P and P1 have
the same unifiers. Suppose� A →♦2C2∧...∧♦nCn . Since,� A →♦2C2∧...∧♦nCn

hence, σ(x) => is a unifier of P1. Reciprocally, if P1 has a unifier then it is clear
that � A →♦2C2 ∧ ...∧♦nCn . Let us find a most general unifier of P1. We claim
that ε(x) = (�1�2P1∧ ...∧�1�nP1∧x)∨ (¬(�1�2P1∧ ...∧�1�nP1)∧σ(x)) is a
most general unifier of P1. Notice that ε(x) = ¬(�1�2P1 ∧ ...∧�1�nP1)∨ x. In
this respect, we will do the following steps:

1. We prove that ε is a unifier. In this respect, we have to prove � A →�1ε(x)
and � A →♦i (�1ε(x)∧Ci ) for all 26 i 6 n or equivalently � A∧�i (Ci →
�1�2P1 ∧ ...∧�1�nP1) →♦i (�1x ∧Ci ).Since,
��1�2P1 ∧ ...∧�1�nP1 → (A →�1x) then,
� (�1�2P1 ∧ ...∧�1�nP1 ∧ A) →�1x hence,
� A → (�1�2P1 ∧ ...∧�1�nP1 →�1x). Therefore,
� A →�1ε(x).

Let us prove the second one: Since,
� A ∧�i (Ci → �1�2P1 ∧ ...∧�1�nP1) → A ∧ (♦i Ci → ♦i (�1�2P1 ∧ ...∧
�1�nP1)) and by assumption
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� A →♦i Ci then,
� A∧�i (Ci →�1�2P1 ∧ ...∧�1�nP1) → A∧♦i (�1�2P1 ∧ ...∧�1�nP1).
We know that for all 26 i 6 n,
�♦i (�1�2P1 ∧ ...∧�1�nP1)∧ A →�i P1 ∧ A. Since for all 26 i 6 n,
��i P1 → ((A →♦2(�1x ∧C1))∧ ...∧ (A →♦n(�1x ∧Cn))) then,
��i P1 ∧ A →♦i (�1x ∧Ci ). Since,
� A∧�i (Ci →�1�2P1 ∧ ...∧�1�nP1) → A∧♦i (�1�2P1 ∧ ...∧�1�nP1),
�♦i (�1�2P1 ∧ ...∧�1�nP1)∧ A →�i P1 ∧ A and
��i P1 ∧ A →♦i (�1x ∧Ci ) thus,
� A∧�i (Ci →�1�2P1 ∧ ...∧�1�nP1) →♦i (�1x ∧Ci ).

2. Let us prove that ε is more general than any unifier of P1. Letσ′ be a unifier
of P1. Since σ′ is a unifier of P1 then ` σ′(P1) and � �1�iσ

′(P1) for each
i = 2, ...,n. Thus, σ′(ε(x)) = ¬(�1�2σ

′(P1)∧ ... ∧�1�nσ
′(P1))∨σ′(x) is

logically equivalent to σ′(x). Therefore, ε4σ′(x).

Consequently, ε is a most general unifier of P1. Since P1 and P have the
same unifiers then, ε is a most general unifier of P.

Lemma 105 Let P = A → 〈�1x〉
(
(�k1 B1 ∧ ...∧�km Bm)∧ (♦l1C1 ∧ ...∧♦ln Cn)

)
where Bi and C j are Boolean formulas for 1 6 i 6m and 1 6 j 6 n. Let B ′ =
(♦k1 A → B1)∧...∧(♦km A → Bm). Then,� A →�1B ′∧♦l1 (C1∧�1B ′)∧...∧♦ln (Cn∧
�1B ′) iff P possesses a unifier.

Proof 149 Simplify P by axiomatisation of public announcement logic. Hence,
let P1 = (♦1 A → �1x)∧ (�1x → �1((♦k1 A → B1)∧ ...∧ (♦km A → Bm))∧ (A →
♦l1 (�1x∧C1))∧...∧(A →♦ln (�1x∧Cn)). Clearly, P and P1 have exactly the same
set of unifiers. Suppose,� A →�1B ′∧♦l1 (C1∧�1B ′)∧...∧♦ln (Cn∧�1B ′). Hence,
σ(x) =�1B ′ is a unifier of P1. Let us find a most general unifier of P1. We claim
that Löwenheim’s formula ε(x) = (�1�l1 P1 ∧ ...∧�1�ln P1 ∧ x)∨ (¬(�1�l1 P1 ∧
...∧�1�ln P1)∧σ(x)) is a most general unifier. Since, σ(x) =�1B ′ then, ε(x) =
(�1�l1 P1∧...∧�1�ln P1∧x)∨(¬(�1�l1 P1∧...∧�1�ln P1)∧�1B ′). In this respect,
we have to do the following steps:

1. We should prove that ε is a unifier of P1. Then we should prove � ♦1 A →
�1ε(x) and ��1ε(x) →�1((♦k1 A → B1)∧ ...∧ (♦km A → Bm)) and � (A →
♦l1 (�1ε(x)∧C1)∧ ...∧ (A →♦ln (�1ε(x)∧Cn)). Let us prove
first one: Since,
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�¬(♦1 A →�1x) →¬(�1�l1 P1 ∧ ...∧�1�ln P1) then,
�♦1 A →¬(�1�l1 P1 ∧ ...∧�1�ln P1)∨�1x. Since,
� A →�1B ′ then,
�♦1 A →�1B ′ hence,
�♦1 A → ((�1�l1 P1 ∧ ...∧�1�ln P1)∨�1B ′)∧ (�1x ∨�1B ′). Since,
�♦1 A →¬(�1�l1 P1 ∧ ...∧�1�ln P1)∨�1x then,
�♦1 A → ((�1�l1 P1∧...∧�1�ln P1)∨�1B ′)∧(�1x∨�1B ′)∧(¬(�1�l1 P1∧
...∧�1�ln P1)∨�1x). Therefore,
�♦1 A →�1ε(x).
Second one: we have to prove that � �1ε(x) → �1((♦k1 A → B1) ∧ ... ∧
(♦km A → Bm)). In this respect, we need to prove
� (�1�l1 P1∧...∧�1�ln P1∧�1x)∨(¬(�1�l1 P1∧...∧�1�ln P1)∧�1�1B ′) →
�1((♦k1 A → B1)∧ ...∧ (♦km A → Bm)). It is obvious,
� (¬(�1�l1 P1∧ ...∧�1�ln P1)∧�1B ′) → (♦k1 A → B1)∧ ...∧ (♦km A → Bm).
Since,
��1�l1 P1∧...∧�1�ln P1 → (�1x → (♦k1 A → B1)∧...∧(♦km A → Bm)) then,
��1�l1 P1∧...∧�1�ln P1∧�1x → (♦k1 A → B1)∧...∧(♦km A → Bm). Since,
��1�l1 P1 ∧ ...∧�1�ln P1 ∧�1x → (♦k1 A → B1)∧ ...∧ (♦km A → Bm) and
� (¬(�1�l1 P1 ∧ ...∧�1�ln P1)∧�1B ′) → (♦k1 A → B1)∧ ...∧ (♦km A → Bm)
then,
� (�1�l1 P1 ∧ ...∧�1�ln P1 ∧ x)∨ (¬(�1�l1 P1 ∧ ...∧�1�ln P1)∧�1B ′) →
(♦k1 A → B1)∧ ...∧ (♦km A → Bm). Since,
� (�1�l1 P1 ∧ ...∧�1�ln P1 ∧ x)∨ (¬(�1�l1 P1 ∧ ...∧�1�ln P1)∧�1B ′) →
(♦k1 A → B1)∧ ...∧ (♦km A → Bm) hence,
��1((�1�l1 P1∧...∧�1�ln P1∧x)∨(¬(�1�l1 P1∧...∧�1�ln P1)∧�1B ′)) →
�1((♦k1 A → B1)∧ ...∧ (♦km A → Bm)) then,
� (�1�l1 P1 ∧ ...∧�1�ln P1 ∧ x)∨ (¬(�1�l1 P1 ∧ ...∧�1�ln P1)∧�1B ′) →
�1((♦k1 A → B1)∧ ...∧ (♦km A → Bm)). Therefore,
��1ε(x) →�1((♦k1 A → B1)∧ ...∧ (♦km A → Bm)).
Third one: we have to prove� (A →♦l1 (�1ε(x)∧C1)∧...∧(A →♦ln (�1ε(x)∧
Cn)). In this respect, we will prove, � A → ♦l1 (�1ε(x)∧C1) and the proof
of rest of parenthesis are similar. Let us prove � A → ♦l1 (�1�l1 P1 ∧ ...∧
�1�ln P1∧�1x∧C1)∨♦l1 (¬(�1�l1 P1∧...∧�1�ln P1)∧�1B ′∧C1) or equiv-
alently � A∧�l1 (�1B ′∧C1 → (�1�l1 P1∧ ...∧�1�ln P1)) →♦l1 (�1�l1 P1∧
...∧�1�ln P1 ∧�1x ∧C1). Since,
� A∧�l1 (�1B ′∧C1 → (�1�l1 P1∧...∧�1�ln P1)) →�l1 P1 and� A∧�l1 (�1B ′∧
C1 → (�1�l1 P1 ∧ ...∧�1�ln P1)) →♦l1 (�1x ∧C1) then,
� A∧�l1 (�1B ′∧C1 → (�1�l1 P1∧ ...∧�1�ln P1)) →♦l1 (�1x∧C1)∧�l1 P1
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hence,
� A ∧�l1 (�1B ′∧C1 → (�1�l1 P1 ∧ ...∧�1�ln P1)) → ♦l1 (�1x ∧C1 ∧P1).
Since,
� P1 ∧�1x →�1B ′ hence,
� A∧�l1 (�1B ′∧C1 → (�1�l1 P1∧ ...∧�1�ln P1)) →♦l1 (�1x∧�1B ′∧C1∧
P1). Since,
� A∧�l1 (�1B ′∧C1 → (�1�l1 P1∧...∧�1�ln P1)) →�l1 (�1B ′∧C1 → (�1�l1 P1∧
...∧�1�ln P1)) and
� A∧�l1 (�1B ′∧C1 → (�1�l1 P1∧ ...∧�1�ln P1)) →♦l1 (�1x∧�1B ′∧C1∧
P1) then,
� A ∧�l1 (�1B ′ ∧C1 → (�1�l1 P1 ∧ ...∧�1�ln P1)) → ♦l1 (�1�l1 P1 ∧ ...∧
�1�ln P1 ∧�1x ∧C1). Therefore,
ε is a unifier of P1.

2. Let us prove that ε is more general than any unifier of P1. Letσ′ be a unifier
of P1. Since σ′ is a unifier of P1 then ` σ′(P1) and ` �1�l1σ

′(P1)∧ ...∧
�1�lnσ

′(P1). Hence, σ′(ε(x)) = (�1�l1σ
′(P1)∧ ...∧�1�lnσ

′(P1)∧σ′(x))∨
(¬(�1�l1σ

′(P1)∧...∧�1�lnσ
′(P1))∧�1B ′) is logically equivalent toσ′(x).

Therefore, ε4σ′.

Consequently, ε is a most general unifier of P1. Since P1 and P have the
same unifiers then, ε is a most general unifier of P.

Lemma 106 Let P = A → 〈�2x〉�1�2B where B is a Boolean formula. Then,
� A →�2B iff P possesses a unifier.

Proof 150 We simplify P by axiomatisation of public announcement logic. Hence,
Let P1 = (A → �2x) ∧ (�2x → (♦1 A → �2B)). Suppose � A → �2B. Since,
� A →�2B then, σ(x) = B is a unifier of P1. Let us find a most general unifier of
P1. We claim that Löwenheim’s formula ε(x) = (�2P1 ∧ x)∨ (¬�2P1 ∧σ(x)) is a
most general unifier of P1. Since,σ(x) = B hence, ε(x) = (�2P1∧x)∨(¬�2P1∧B).
In this respect, we will do the following steps:

1. We have to prove ε is a unifier of P1. Let us prove � A → �2ε(x) and �
�2ε(x) → (♦1 A →�2B).

The proof of first one: it is equivalent to prove� A → (�2P1∨�2B)∧(�2x∨
¬�2P1)∧ (�2x ∨�2B). By our assumption,
� A →�2B. Then,
� A → (�2P1 ∨�2B)∧ (�2x ∨�2B). Since,
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�¬(A →�2x) →¬�2P1 then,
� A →¬�2P1 ∨�2x. Since,
� A → (�2P1 ∨�2B)∧ (�2x ∨�2B) and
� A →¬�2P1 ∨�2x thus,
` A → (�2P1 ∨�2B)∧ (�2x ∨¬�2P1)∧ (�2x ∨�2B). Therefore,
� A →�ε(x).
Let us prove ��2ε(x) → (♦1 A →�2B). It is enough to show that � (�2P1∧
�2x) → (♦1 A →�2B). Since,
��2P1 → (�2x → (♦1 A →�2B)) then,
� (�2P1 ∧�2x) → (♦1 A →�2B). Thus,
��2ε(x) → (♦1 A →�2B).
Therefore, ε(x) is a unifier of P1.

2. Let us prove that ε is more general than any unifier of P1. Letσ′ be a unifier
of P1. Sinceσ′ is a unifier of P1 then`σ′(P1). Hence,σ′(ε(x)) = (�2σ

′(P1)∧
σ′(x))∨ (¬�2σ

′(P1)∧B) is logically equivalent to σ′(x). Therefore, ε4σ.

Consequently, ε is a most general unifier of P1. Since P1 and P have the
same unifiers then, ε is a most general unifier of P.

(⇐) Let σ be a unifier of P1. Then,

1. � A →�2σ(x) and

2. ��2σ(x) → (♦1 A →�2B). Hence,

3. � A → (♦1 A →�2B). Therefore,

4. � A →�2B.

Lemma 107 Let P = A → 〈�2x〉(�1�2B1 ∧ ...∧�n�2Bn) where Bi are Boolean
formula for 16 i 6 n. Then, � A →�2B1 ∧ ...∧�2Bn iff P possesses a unifier.

Proof 151 Let use axiomatisation of public announcement logic in order to sim-
plify P. Hence, let P1 = (A → �2x) ∧ (�2x → (♦1 A → �2B1)) ∧ ... ∧ (�2x →
(♦n A →�2Bn)). Clearly, P and P1 have exactly the same set of unifiers. Suppose
� A →�2B1∧ ...∧�2Bn . Since, � A →�2B1∧ ...∧�2Bn then, σ(x) = B1∧ ...∧Bn

is a unifier of P1. And of course, reciprocally, when P1 has a unifier then � A →
�2B1∧...∧�2Bn . We claim that ε(x) = (�2P1∧x)∨(¬�2P1∧σ(x)) is a most gen-
eral unifier of P1. Since, σ(x) = B1 ∧ ...∧Bn then, ε(x) = (�2P1 ∧ x)∨ (¬�2P1 ∧
(B1 ∧ ...∧Bn)). We can use the method of 106 to prove ε is a most general unifier.
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Lemma 108 Let P = A → 〈�1x〉�1�2B where B is a Boolean formula. Then,
�♦1 A → B iff P possesses a unifier.

Proof 152 We have to do the following steps:

1. We can simplify P by axiomatisation of public announcement logic as be-
fore. Let P1 = (♦1 A →�1x)∧(�1x → (♦2♦1 A → B)). Clearly, P and P1 have
exactly the same set of unifiers. Assume, �♦1 A → B. Hence, σ(x) =♦1 A is
a unifier of P1. Reciprocally, if P1 is unifiable then �♦1 A → B.

2. Let us find a most general unifier of P1. We claim Löwenheim’s formula
ε(x) = (�1P1 ∧x)∨ (¬�1P1 ∧♦1 A) is a most general unifier of P1.

(a) Let us prove ε is a unifier of P1. We need to make sure that ε(x)
is a unifier of P1 hence, we have to prove � ♦1 A → �1ε(x) and �
�1ε(x) → (♦2♦1 A → B).
To prove first part: Since

i. ��1P1 → (♦1 A →�1x)

ii. ��1P1 ∧♦1 A →�1x

iii. �♦1 A → (�1P1 →�1x). Therefore,

iv. �♦1 A → (�1P1 ∧�1x)∨ (¬�1P1 ∧♦1 A)

To prove second part: Let us prove� ((�1P1∧�1x)∨(¬�1P1∧♦1 A)) →
(♦2♦1 A → B). Since,

i. ��1P1 → (�1x1 → (♦2♦1 A → B)) then

ii. � (�1P1 ∧�1x1) → (♦2♦1 A → B). Since

iii. �♦1 A →→ B then,

iv. � (¬�1P1 ∧♦1 A) → (♦2♦1 A → B). Thus,

v. � ((�1P1 ∧�1x)∨ (¬�1P1 ∧♦1 A)) → (♦2♦1 A → B).
Therefore, ε is a unifier of P1.

(b) Let us prove that ε is more general than any unifier of P1. Let σ′ be
a unifier of P1. Since σ′ is a unifier of P1 then ` �1σ

′(P1). Hence,
σ′(ε(x)) = (�1σ

′(P1)∧σ′(x))∨ (¬�1σ
′(P1)∧♦1 A) is logically equiva-

lent to σ′(x). Therefore, ε4σ′.
Consequently, ε is a most general unifier of P1. Since P1 and P have
the same unifiers then, ε is a most general unifier of P.



Lemma 109 Let P = A → 〈�1x〉(�1�2B2 ∧ ...∧�1�nBn) where Bi are Boolean
formulas for 26 i 6 n. Then, �♦1 A → (B2 ∧ ...∧Bn) iff P possesses a unifier.

Proof 153 We simplify P by axiomatisation of public announcement logic as
before. Hence, let P1 = (♦1 A → �1x) ∧ (�1x → (♦2♦1 A → B2)) ∧ ... ∧ (�1x →
(♦n♦1 A → Bn)). Clearly P and P1 have exactly the same unifiers. Now, suppose
�♦1 A → (B2∧...∧Bn) hence,σ(x) =♦1 A is a unifier of P1. Reciprocally, if P1 has
a unifier then obviously �♦1 A → (B2 ∧ ...∧Bn). We claim Löwenheim’s formula
ε(x) = (�1P1∧x)∨ (¬�1P1∧σ(x)) is a most general unifier of P1. The method of
proving ε is a most general unifier is similar to 108.

Lemma 110 Let P = A → 〈�1x〉�1♦2B where B is a Boolean formula. Then,
� A →�1♦2B iff P possesses a unifier.

Proof 154 We use axiomatisation of public announcement logic. Hence let P1 =
(A →�1x)∧ (♦1 A →♦2(�1x ∧B)). Suppose � A →�1♦2B. Since � A →�1♦2B
then, σ(x) = > is a unifier of P1. Reciprocally if P1 has a unifier then it is clear
that � A →�1♦2B. Let us find a most general unifier of P1. We claim Löwen-
heim’s formula ε(x) = (�1�2P1∧x)∨(¬�1�2P1∧σ(x)) is a most general unifier
of P1. We can use the similar method of Lemma 103 to check ε is a most general
unifier.

Lemma 111 Let P = A → 〈�1x〉(�1♦2B2 ∧ ...∧�1♦nBn) where Bi are Boolean
formulas for 2 6 i 6 n. Then, � A → �1♦2B2 ∧ ...∧�1♦nBn iff P possesses a
unifier.

Proof 155 We use axiomatisation of public announcement logic as before. Hence
we assume P1 = (A →�1x)∧(♦1 A →♦2(�1x∧B2))∧ ...∧(♦1 A →♦n(�1x∧Bn)).
Suppose � A → �1♦2B2 ∧ ... ∧�1♦nBn . Since � A → �1♦2B2 ∧ ... ∧�1♦nBn

then, σ(x) = > is a unifier of P1. Let us find a most general unifier of P1. We
claim Löwenheim’s formula ε(x) = (�1�2P1 ∧ ...∧�1�nP1 ∧ x)∨ (¬(�1�2P1 ∧
...∧�1�nP1)∧σ(x)) is a most general unifier. To check ε is a most general unifier,
we use the similar method of Lemma 104.

The last Lemma contains simple epistemic planning problem of the form A →
〈�1x〉(�1♦2B2 ∧ ...∧�1♦nBn). The solutions of these problems are formula ψ
such that if A holds then agent 1 can announceψ and after this announcement,
agent ki knows Bi (16 i 6m) and agent l j consider it is possible that C j holds
(16 j 6 n).
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7.4 Simple epistemic planning problem A →〈♦x〉B
In this section, the solution of the simple epistemic planning problem that we
will consider should be of the form A →〈♦x〉B .

Lemma 112 Let P = A → 〈♦x〉B where B is a Boolean formula. Then, � A → B
iff P possesses a unifier.

Proof 156 We use axiomatisation of public announcement logic to simplify P.
Let P1 = (A → ♦x)∧ (A → B). By the reduction axiom of PAL, P nd P1 have the
same unifiers. Suppose � A → B. Since � A → B then σ(x) = > is a unifier of
P1. Reciprocally, we have � A → B if P1 has a unifier. Let us find a most general
unifier of P1. We claim that Löwenheim’s formula ε(x) = (�P1 ∧ x)∨ (¬�P1 ∧
σ(x)) is a most general unifier. Notice that since σ(x) => then ε(x) is equivalent
to�P1 → x. In order to prove ε is a most general unifier, we proceed the following
steps:

1. We prove ε is a unifier of P1. In this respect, we have to prove � A →♦ε(x).
Since,
��P1 → (A →♦x) then,
��P1 ∧ A →♦x hence,
� A → (�P1 →♦x). Therefore,
� A →♦(�P1 → x).

2. Let us prove that ε is more general than any unifier of P1. Letσ′ be a unifier
of P1. Since σ′ is a unifier of P1 then `�σ′(P1). Hence, σ′(ε(x)) = σ′(x)∨
¬�σ′(P1) is logically equivalent to σ′(x). Therefore, ε4σ′.

Consequently, ε is a most general unifier of P1. Since P1 and P has the same
unifier then, ε is a most general unifier of P.

Lemma 113 Let P = A → 〈♦1x〉�2B where B is a Boolean formula. Then, �
♦1 A → (♦2 A → B) iff P possesses a unifier.

Proof 157 We use axiomatisation of public announcement logic. Let P1 = (♦1 A →
♦1x)∧ (♦1x → (♦2 A → B). Suppose �♦1 A → (♦2 A → B). Since �♦1 A → (♦2 A →
B) then, σ(x) = A is a unifier of P1. Moreover, if P1 has unifiers then obviously,
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� ♦1 A → (♦2 A → B). Let us find a most general unifier of P1. We use Löwen-
heim’s formula ε(x) = (�1P1∧x)∨ (¬�1P1∧σ(x)). Since, σ(x) = A is a unifier of
P1 then ε(x) = (�1P1 ∧ x)∨ (¬�1P1 ∧ A). To check ε is a most general unifier, we
will do the following steps:

1. We prove that ε is a unifier of P1. In this respect, we have to prove �♦1 A →
♦1ε(x) and � ♦1ε(x) → (♦2 A → B). Let us prove first one. Notice that
♦1ε(x) is logically equivalent to (�1P1 ∨♦1 A)∧ (¬�1P1 ∨♦1x)∧ (♦1x ∨
♦1 A). Since�♦1 A →♦1 A then�♦1 A → (�1P1∨♦1 A)∧(♦1x∨♦1 A). Since
��1P1 → (♦1 A →♦1x) then,
�♦1 A → (�1P1 →♦1x). Therefore,

�♦1 A →♦1

(
(�1P1 ∧x)∨ (¬�1P1 ∧ A)

)
.

Let us prove �♦1ε(x) → (♦2 A → B). Since, �♦1 A → (♦2 A → B) then,
� (¬�1P1 ∧♦1 A) → (♦2 A → B). Since,
��1P1 → (♦1x → (♦2 A → B)) then,
��1P1 ∧♦1x → (♦2 A → B). Since,
� (¬�1P1 ∧♦1 A) → (♦2 A → B) then,
� (�1P1 ∧♦1x)∨ (¬�1P1 ∧♦1 A) → (♦2 A → B).
Therefore, ε is a unifier of P1.

2. Let us prove that ε is more general than any unifier of P1. Let σ′ be a uni-
fier of P1. Since σ′ is a unifier of P1 then ` �1σ

′(P1). Hence, σ′(ε(x)) =
(�1σ

′(P1)∧σ′(x))∨(¬�1σ
′(P1)∧A) is logically equivalent toσ′(x). There-

fore, ε4σ′.

Consequently, ε is a most general unifier of P1. Since P1 and P have the
same unifiers then, ε is a most general unifier of P.

Lemma 114 Let P = A →〈♦1x〉(�2B2∧ ...∧�nBn) where Bi are Boolean formu-
las for 26 i 6 n. Then, � ♦1 A → (♦2 A → B2)∧ ...∧ (♦n A → Bn) iff P possesses a
unifier.

Proof 158 We use axiomatisation of public announcement logic to simplify P
as before. Hence, let P1 = (♦1 A → ♦1x) ∧ (♦x1 → (♦2 A → B2)) ∧ ... ∧ (♦x1 →
(♦n A → Bn)). Suppose � ♦1 A → (♦2 A → B2)∧ ...∧ (♦n A → Bn). Since � ♦1 A →
(♦2 A → B2)∧ ...∧ (♦n A → Bn) then, σ(x) = A is a unifier of P1. Let us find a
most general unifier of P1. We claim that Löwenheim’s formula ε(x) = (�1P1 ∧
x) ∨ (¬�1P1 ∧σ(x)) is a most general unifier. Since, σ(x) = A hence, ε(x) =
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(�1P1∧x)∨ (¬�1P1∧ A). To check ε is a most general unifier, we use the similar
method of the proof of Lemma 113.

Lemma 115 Let P = A → 〈♦1x〉♦2C . Then, � A → ♦2C iff P possesses a most
general unifier.

Proof 159 We use axiomatisation of public announcement logic to simplify P.
Let P1 = (A →♦1x)∧ (A →♦2(♦1x ∧C )). Suppose � A →♦2C . Since, � A →♦2C
hence, σ(x) = > is a unifier of P1. Let us find a most general unifier of P1. We
claim Löwenheim’s formula ε(x) = (�1�2P1 ∧ x)∨ (¬�1�2P1 ∧σ(x)) is a most
general unifier. To check ε is a most general unifier, we use the similar method of
the proof of Lemma 103.

Lemma 116 Let P = A →〈♦1x〉(♦2C2 ∧ ...∧♦nCn) where Ci are Boolean formu-
las. Then, � A → (♦2C2 ∧ ...∧♦nCn) iff P possesses a most general unifier.

Proof 160 Use axiomatisation of public announcement logic. Let P1 = (A →
♦1x)∧(A →♦2(♦1x∧C2))∧ ...∧(A →♦n(♦1x∧Cn)). Suppose � A → (♦2C2∧ ...∧
♦nCn). Since, � A → (♦2C2 ∧ ...∧♦nCn) hence, σ(x) => is a unifier of P1. Let us
find a most general unifier of P1. we claim Löwenheim’s ε(x) = (�1�2P1 ∧ ...∧
�1�nP1∧x)∨(¬(�1�2P1∧ ...∧�1�nP1)∧σ(x)) is a most general unifier. Since,
σ(x) = > hence, ε(x) = �1�2P1 ∧ ...∧�1�nP1 → x is a most general unifier of
P1. To check ε is a most general unifier, we use the similar method of the proof of
Lemma 104.

Lemma 117 Let P = A → 〈♦1x〉
(
(�k1 B1 ∧ ... ∧�km Bm) ∧ (♦l1C1 ∧ ... ∧♦ln Cn)

)
where Bi and C j are Boolean formulas for 1 6 i 6m and 1 6 j 6 n. Let B ′ =
(♦k1 A → B1)∧...∧(♦km A → Bm). Then,� A →♦1B ′∧♦l1 (C1∧♦1B ′)∧...∧♦ln (Cn∧
♦1B ′) iff P possesses a unifier.

Proof 161 We use axiomatisation of public announcement logic in order to sim-
plify P. Let P1 = (♦1 A → ♦1x)∧ (♦1x → ♦1((♦k1 A → B1)∧ ...∧ (♦km A → Bm))∧
(A →♦l1 (♦1x ∧C1))∧ ...∧ (A →♦ln (♦1x ∧Cn)). Suppose � A →♦1B ′∧♦l1 (C1 ∧
♦1B ′)∧...∧♦ln (Cn∧♦1B ′). Since,� A →♦1B ′∧♦l1 (C1∧♦1B ′)∧...∧♦ln (Cn∧♦1B ′)
hence, σ(x) =♦1B ′ is a unifier of P1. Let us find a most general unifier of P1. In
this respect, we claim Löwenheim’s formula ε(x) = (�1�l1 P1∧...∧�1�ln P1∧x)∨
(¬(�1�l1 P1 ∧ ...∧�1�ln P1)∧♦1B ′) is a most general unifier of P1. To check ε is
a most general unifier, we use the similar method of Lemmas 97 and 104.
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Lemma 118 Let P = A → 〈♦1x〉�2�1B where B is a Boolean formula. Then,
�♦1 A → (♦2 A →�1B) iff P possesses a unifier.

Proof 162 Let us use axiomatisation of public announcement logic in order to
simplify P. Hence let P1 = (A →♦1x)∧ (♦1x → (♦2 A →�1B)). Suppose �♦1 A →
(♦2 A → �1B). Since ♦1 A → (♦2 A → �1B) hence, σ(x) = A is a unifier of P1.
Let us find a most general unifier of P1. We claim Löwenheim’s formula ε(x) =
(�1P1∧x)∨(¬�1P1∧σ(x)) is a most general unifier. To check ε is a most general
unifier, we use the similar method of the proof of Lemma 106.

Lemma 119 Let P = A → 〈♦1x〉(�2�1B2 ∧ ...∧�n�1Bn) where Bi are Boolean
formulas for 26 i 6 n. Then, �♦1 A → (♦2 A →�1B1)∧ ...∧ (♦n A →�1Bn) iff P
possesses a unifier.

Proof 163 Let us simplify P by using axiomatisation of public announcement
logic. Let, P1 = (A →♦1x)∧(♦x1 → (♦2 A →�1B1))∧...∧(♦x1 → (♦n A →�1Bn)).
Suppose � ♦1 A → (♦2 A →�1B1)∧ ...∧ (♦n A →�1Bn). Since � ♦1 A → (♦2 A →
�1B1)∧ ...∧ (♦n A →�1Bn), it is clear that σ(x) = A is a unifier of P1. Let us find
a most general unifier of P1. We use Löwenheim’s formula ε(x) = (�1P1 ∧ x)∨
(¬�1P1 ∧σ(x)) as a most general unifier. To check ε is a most general unifier, we
use the similar method of Lemma 107.



A
→

〈ψ
〉B

N
ec

es
sa

ry
co

n
d

it
io

n
σ

(x
)

m
gu

A
→

〈♦
x
〉B

�
A
→

B
>

ε
(x

)=
(�

P
1
∧x

)∨
(¬
�

P
1
∧σ

(x
))

A
→

〈♦
1

x
〉�

2
B

�
♦

1
A
→

(♦
2

A
→
�

B
)

A
ε

(x
)=

(�
1

P
1
∧x

)∨
(¬
�

1
P

1
∧σ

(x
))

A
→

〈♦
1

x
〉(�

2
B

2
∧.

..
∧�

n
B

n
)

�
♦

1
A
→

n ∧ i=
2(♦

i
A
→

B
i)

A
ε

(x
)=

(�
1

P
1
∧x

)∨
(¬
�

1
P

1
∧σ

(x
))

A
→

〈♦
1

x
〉♦

2C
�

A
→
♦

2C
>

ε
(x

)=
(�

1
�

2
P

1
∧x

)∨
(¬
�

1
�

2
P

1
∧σ

(x
))

A
→

〈♦
1

x
〉(♦

2C
2
∧.

..
∧♦

n
C

n
)

�
A
→

(♦
2C

2
∧.

..
∧♦

n
C

n
)

>
ε

(x
)=

(
n ∧ i=

2
�

1
�

iP
1
∧x

)∨
(¬

(
n ∧ i=

2
�

1
�

iP
1

)∧
σ

(x
))

A
→

〈♦
1

x
〉m ∧ i=

1
�

k
i
B

i
∧

n ∧ j=
1
♦

l j
C

j
�

A
→
♦

1
B
′ ∧

n ∧ j=
1
♦

l j
(C

j
∧�

1
B
′ )�

1
B
′ ε

(x
)=

(
n ∧ j=

1
�

1
�

l j
P

1
∧x

)∨
(¬

(
n ∧ j=

1
�

1
�

l j
P

1
)∧

σ
(x

))

A
→

〈♦
1

x
〉�

2
�

1
B

�
♦

1
A
→

(♦
2

A
→
�

1
B

)
A

ε
(x

)=
(�

1
P

1
∧x

)∨
(¬
�

1
P

1
∧σ

(x
))

A
→

〈♦
1

x
〉(�

2
�

1
B

2
∧.

..
∧�

n
�

1
B

n
)
�
♦

1
A
→

n ∧ i=
2(♦

i
A
→
�

1
B

i)
A

ε
(x

)=
(�

1
P

1
∧x

)∨
(¬
�

1
P

1
∧σ

(x
))

Ta
b

le
7.

3:
Si

m
p

le
ep

is
te

m
ic

p
la

n
n

in
g

p
ro

b
le

m
A
→

〈♦
x
〉B



152CHAPTER 7. UNIFICATION IN SIMPLE EPISTEMIC PLANNING PROBLEM



8 Conclusion
The unification problem and the admissibility problems are strongly related, as
explained at the beginning of the thesis. As seen in Chapters 4 to 7, there are
many different ways to study the unification types of modal logics. There are
still many open problem about unification types of modal logics. In Chapter 4
of this Thesis, we have proved that unification type of modal logics K D5 and
K 5 are unitary or nullary. Here, there are some open question as follows:

• What is exact unification type of logics K D5 and K 5?

• What is unification type of logics K D5 and K 5 with constant?

• What is unification type of every logic extending K 5?

In Chapter 5, we have proved that unification type of Al t1 +��⊥ is unitary.
We have in [12] that K +��⊥ is finitary. Here also there are open questions as
follows:

• What is unification type of Al t1 +�d⊥ and K +�d⊥ when d > 3?

• What is unification type of Al t1 +♦>?

• What is unification type of Al t1 +�d⊥ and K +�d⊥ when d > 2 for uni-
fication with constant?

In chapter 6, we have proved that if L1 is nullary and L2 is consistent modal
logic then unification type of the fusion L1 ⊗L2 is not unitary and not finitary.
Also we have proved that unification type of fusion S51 ⊗S52 with constants is
nullary. Now, there are open questions as follows:

• is unification type of the fusion of two consistent modal logics always
nullary when these logics are different from Triv and Ver?

• What is the unification type of the fusion S51 ⊗S52 without constants?
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• What is the unification type of the fusion K D1 ⊗K D2 without constants?

In chapter 7, we have considered simple epistemic planning problem with as-
sociated formula A → 〈x〉B , A → 〈�x〉B , A → 〈♦x〉B and found necessary and
sufficient condition for existence of unifier when announcements are public
announcements. Here also there are some open problems concerning what
is necessary and sufficient condition for existence of unifier when announce-
ment ψ is a group announcements [1], semi-private announcement [21], com-
plete private announcement [16][17] etc. For example, one may ask, given epis-
temic variable-free formulas A,B and C whether there exists a semi-private an-
nouncementψ to agent 1 such that the following formula is valid in the logic of

semi-private announcement [16]: A →〈1

2
(1,ψ)〉(� j B ∧♦kC ).

In natural language, such planning problem consists in computing a formula
ψ in the language of semi-privately announced to agent 1 and, after announce-
ment, agent j knows B holds and agent k considers that C is possible.
Can we adapt the approach developed in Chapter 7 when announcements are
lies [2]?
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