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Abstract

Word embedding representations generated by neural languagemodels encode rich information
about language and the world. In this thesis, we investigate the knowledge about wordmeaning
encoded in embedding representations and propose methods to automatically enhance their
quality. Our main focus is on contextual models which generate representations that capture
the meaning of word usages in new contexts. These models have dominated the NLP and
Computational Linguistics �elds and open exciting new possibilities for lexical semantics
research.

The central axis of our research is the exploration of the knowledge about lexical polysemy
encoded in word embedding models. We access this knowledge through usage similarity
experiments and automatic substitute annotations assigned by the models to words in context.
We study the representations produced by the models in their raw form, and explore the
impact that their enrichment with external semantic knowledge has on their quality. We
evaluate the representations intrinsically on the tasks of usage similarity estimation, word
sense clusterability and polysemy level prediction. Additionally, we employ contextualised
representations for detecting words’ semantic relationships, speci�cally addressing the relative
intensity of scalar adjectives. Adopting an interpretation stance, we investigate the knowledge
that the models encode about noun properties as expressed in their adjectival modi�ers, and
the entailment properties of adjective-noun constructions.

Our experiments involve a wide range of contextualised models which we compare to mod-
els that produce static word representations. The majority of our analyses address English but
we also test our assumptions andmethodology in amultilingual settingwhich involvesmonolin-
gual and multilingual models in other languages. Our results demonstrate that contextualised
representations encode rich knowledge about word meaning and semantic relationships ac-
quired during model training and further enriched with information from new contexts of use.
We also �nd that the constructed semantic space encodes abstract semantic notions, such as
the notion of adjective intensity, which can be useful for intrinsic lexical semantic analysis
and in downstream applications. Our proposed methodology can be useful for exploring other
intrinsic semantic properties of words and their semantic relationships in di�erent languages,
leading to a better understanding of the knowledge about language encoded in neural language
models.
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Résumé

Les modèles de langue neuronaux sont entraînés sur de vastes quantités de données et génèrent
des plongements lexicaux encodant des informations riches sur la langue et le monde. Dans
cette thèse, nous étudions les connaissances sémantiques encodées dans ces plongements et
proposons des méthodes automatiques pour en améliorer la qualité. Nous nous concentrons
principalement sur des modèles contextuels récents qui génèrent des représentations décrivant
le sens de mots en contexte. Nous comparons ces représentations à celles générées par des mod-
èles de plongement antérieurs, qui ne sont pas contextualisées et qui se situent au niveau des
mots. Les modèles contextuels se sont imposés dans les domaines du Traitement Automatique
des Langues (TAL) et de la linguistique computationnelle, et ouvrent de nouvelles possibilités
extrêmement intéressantes pour la recherche en sémantique lexicale.

L’axe central de notre recherche est l’exploration des connaissances sur la polysémie lexicale
encodées dans les modèles de langue neuronaux. Nous accédons à ces connaissances par le
biais d’expériences qui mesurent la similarité entre usages de mots, et en s’appuyant sur des
annotations de substituts automatiquement attribuées par les modèles à des occurrences de
mots en contexte. Ces annotations décrivent le sens des di�érentes occurrences et re�ètent leur
similarité sémantique. Nous étudions les représentations produites par les modèles sous leur
forme brute et explorons, dans un cadre de « �ne-tuning », l’impact de leur enrichissement avec
des connaissances sémantiques externes sur leur qualité. Nous évaluons les représentations
intrinsèquement sur les tâches d’estimation de la similarité d’usages, de prédiction de la facilité
de partitionnement de l’espace sémantique des mots dans des sens di�érents, et de prédiction
de leur niveau de polysémie. De plus, nous utilisons des représentations contextualisées
pour détecter des relations sémantiques entre les mots, plus spéci�quement en abordant
l’intensité relative des adjectifs scalaires. Dans une perspective d’interprétation, et en utilisant
des questions de type Cloze, nous étudions les connaissances que les modèles encodent sur
les propriétés des substantifs telles qu’elles sont exprimées dans leurs modi�eurs adjectivaux,
ainsi que les propriétés d’implication caractérisant les constructions adjectif-substantif.

Nos expériences explorent un large éventail de modèles contextualisés, comprenant ELMo
et BERT, que nous comparons à des modèles qui génèrent des représentations statiques (non
contextualisées) des mots, comme Word2Vec et GloVe. La majorité de nos analyses portent
sur l’anglais mais nous testons également nos hypothèses et notre méthodologie dans d’autres
langues (�nlandais, français, espagnol et grec) en utilisant des modèles aussi bien monolingues
que multilingues. Nous explorons aussi la localisation des connaissances sémantiques au sein
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des modèles. Nos résultats démontrent que les représentations contextualisées encodent des
connaissances riches sur le sens des mots et leurs relations sémantiques qui sont acquises
lors de l’entraînement des modèles et qui sont, par la suite, enrichies par des informations
provenant de nouveaux contextes d’utilisation. Nous constatons également que l’espace séman-
tique construit par ces modèles encode des notions sémantiques abstraites, comme la notion
d’intensité des adjectifs, qui peuvent être utiles aussi bien pour l’analyse de la sémantique
lexicale que dans des applications réelles. En outre, nos résultats mettent en évidence des
di�érences entre les modèles monolingues et multilingues. Par rapport aux modèles de type
BERT, précisément, nous observons qu’ils encodent des connaissances sémantiques moins
précises dans des langues autres que l’anglais, et que la localisation de ces informations varie
entre les di�érents modèles étudiés. La méthodologie proposée peut être utile pour explorer
d’autres propriétés sémantiques intrinsèques des mots ainsi que leurs relations sémantiques
dans di�érentes langues, conduisant à une meilleure compréhension des connaissances sur le
langage encodées dans les modèles de langue neuronaux.
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Chapter 1

Introduction

1.1 Motivation

Neural Language Models (LMs) are able to generate vector representations of words that
encode rich information about language and the world, which they learn from being exposed to
large amounts of unannotated text. These models evolved from classical Vector Space Models
(VSMs), where word representations were derived from co-occurrencematrices. Neural models
rely on the same underlying principle as VSMs, the Distributional Hypothesis (Harris, 1954),
which states that semantically similar words appear in similar contexts. However, instead of
explicitly counting word co-occurrences, the models are trained to predict words in context
(Baroni et al., 2014b). This results in word embeddings that re�ect distributional similarity:
words that occur in similar contexts have representations that are close to each other in the
vector space. The �rst neural language models (Mikolov et al., 2013a) produced representations
for word types. The limitation of this approach, known as the meaning con�ation de�ciency,
is the inability to model the di�erent senses of ambiguous or polysemous words, which are
merged in a single vector. The only way to represent di�erent senses of a word is through the
combination of these embeddings (for example, combining the vector of turn with that of fan
in “turn on the fan” to represent its ventilator sense) (Erk and Padó, 2008). Multi-prototype
and sense embeddings (Reisinger and Mooney, 2010; Iacobacci et al., 2015) overcome this
limitation by proposing vectors corresponding to word senses. These approaches, however, are
still limited in their capacity to represent meaning nuances that arise from contextual variation.
Additionally, their integration into NLP models is not straightforward. During the course of
this thesis, a new generation of deep contextual neural LMs emerged, including ELMo (Peters
et al., 2018a) and BERT (Devlin et al., 2019). Relying on deep recurrent networks or attention
mechanisms, these models generate embeddings for word usages in new contexts, which are
referred to as contextualised representations. They have obtained state-of-the-art performance
in numerous Natural Language Processing (NLP) tasks, and now constitute the predominant
paradigm in the Computational Linguistics and NLP �elds.

An important strand of work is focused on understanding what these new models actually
learn about language and the world (Rogers et al., 2020). This thesis falls in this line of research,
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and speci�cally explores di�erent aspects of lexical semantics. Our goal is to understand
what contextual models learn about the meaning of words. Capturing word meaning and the
semantic relationships between words is crucial for language understanding, both for humans
and machines. Lexical ambiguity is ubiquitous in language, and words can be related to each
other in multiple ways. Knowing what meanings words can express, understanding their
meaning when used in each context, and capturing relationships and similarities between
words is important in virtually any application involving natural language.

The nature of contextualised embeddings, which represent word instances or tokens, opens
up exciting possibilities and challenges in terms of methodology. The �rst question we address
is: how well do these models represent word meaning in context? When a word is used in a
sentence, its context helps determine the intended meaning. The contextualised representation
of a word is precisely a function of the other words in the context, and as such it has some kind
information from the context. In this thesis, we explore whether this contextual information
allows models to determine words’ meaning. We do so by evaluating the models’ ability to
identify meaning-preserving substitutes for words in context, and to determine the semantic
proximity of word usages. Lexical substitutes can serve as a proxy for word meaning in context:
in the sentence “My boss �redme”, �re can be substituted by sacked but not by shot, which
would conversely be a good substitute in “Soldiers �red at the enemy”. Representations that
properly model lexical meaning should be able to predict which substitutes are adequate in
each case. Ideally, representations should also re�ect the fact that the two usages of �re are
very di�erent from each other in terms of meaning. Importantly, these two tasks allow us to
answer our question without the need of resorting to a sense inventory. Lists of senses are
highly subjective and are de�ned by a number of non-linguistic factors (Kilgarri�, 1997). There
is no unique way to establish boundaries between word senses, and di�erent resources vary in
the granularity of the senses proposed. For example, whether the usages of cover described by
the sentences “Cover the meat with a lot of gravy” and “Cover the child with a blanket” are
assigned the same or two di�erent senses depends on the resource where we look them up.1

Throughout this thesis, we avoid using lists of word senses for disambiguation, and instead
evaluate models on semantic tasks where meaning is described in di�erent ways.

Token-level contextualised representations also o�er an exciting opportunity to investigate
the semantic space made up of word instances. Thus, another question we want to answer is:
do the semantic spaces built by contextual models re�ect the ambiguity of words? Words can
express one or multiple senses, which are more or less distinguishable from each other. For
example, the two instances of �re described above are very di�erent from each other, but the
musical and computer senses of keyboard share some common traits. Through an analysis
based on usage similarity estimations, we investigate how monosemous words and words at
di�erent polysemy levels are represented in the semantic space. When a word has multiple
senses, we use the models to predict how easy it is to partition this semantic space into distinct
senses (McCarthy et al., 2016).

1These examples come from the WordNet lexical database (Fellbaum, 1998) and illustrate two di�erent senses
of cover in this resource.
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Apart from investigating the knowledge that contextualised representations encode about
individual words, we also study how they capture semantic relationships between words. We
focus on two speci�c relationships: the relative intensity of scalar adjectives and the rela-
tion between nouns and adjectives describing their properties. Scalar adjectives may have
similar meaning but di�er in intensity (e.g. good and fantastic). Modelling this relation is
important, especially because of its entailment properties: models should be able to tell that
a fantastic restaurant is good, but a good restaurant is not necessarily fantastic. It can also
serve to determine the subjectivity of a text, and can help language learners to distinguish be-
tween near-synonyms. The relationship between nouns and adjectives in adjective-noun (AN)
constructions also has interesting entailment properties. Adjectives describing prototypical
properties of a noun do not add new information, and hence entailment between the noun (N)
and the AN holds bidirectionally in these cases (a strawberry and a red strawberry denote the
same concept). This is not the case with most adjectives, however, which often restrain the
scope of the noun to a subset of the entities it denotes (e.g. white rabbit).

Another important goal of our work is to improve the quality of the semantic information in
contextualised representations. Throughout the thesis, we explore di�erent ways of enriching
representations with external semantic knowledge, for example, using automatic substitute
annotations. We evaluate the representations on speci�c tasks which re�ect whether these
strategies increase their sensitivity to lexical meaning. Furthermore, we propose methodology
for exploiting the information encoded in the representations for performing speci�c tasks.
For example, we present an e�cient method for ranking scalar adjectives by intensity using
contextualised representations.

Our experiments are centered on English, but we also test our assumptions using multi-
lingual and monolingual models in French, Spanish, Greek and Finnish. Additionally, we
compare contextualised to word type representations in our experiments to highlight the ad-
vantages of models that encode contextual information. We demonstrate that contextualised
representations, especially the ones derived from the BERT model, encode rich knowledge
about word meaning and semantic relationships acquired during model pre-training, which is
combined with information from new contexts of use. The constructed semantic space re�ects
semantic properties of words (e.g. their polysemy), and encodes abstract semantic notions, such
as adjective intensity. Our work, hence, leads to a better understanding of the knowledge learnt
by neural language models about words and their meaning. Our methodology can be useful
for exploring other semantic properties of words and enhancing the quality of contextualised
representations from di�erent models and in di�erent languages.

1.2 Outline

We hereby provide a summary of each chapter of the thesis.

Chapter 2: Background and Related Work We start by introducing notions related to
word meaning that are central to our work, and present ways of describing the meaning of a
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word in context. We also introduce the main datasets that will be used in this thesis. After
that, we present the Distributional Hypothesis of meaning, on which all word representation
models we use are based. Our description of word vector representation approaches begins with
traditional distributional models, and we then present more recent neural language models
with a focus on those that generate contextualised representations. Finally, we review recent
studies on the interpretability of contextual language models, which aim at understanding the
kinds of information they contain. We describe common interpretability methodologies and
recent �ndings about the semantic knowledge encoded in contextualised representations.

Chapter 3: In-context Lexical Substitution The lexical substitution task initially served
as a means to evaluate word sense disambiguation (WSD) models without the need to resort to
a pre-de�ned sense inventory as in traditional WSD settings. A model that understands the
meaning of word instances should be able to predict, for example, that the instance of fan in
the expression “turn on the fan” can be replaced with ventilator without a big shift in meaning
but not with admirer, which is a synonym of a di�erent sense of the word. In Chapter 3, we
compare the performance of several context-sensitive models (such as context2vec (Melamud
et al., 2016), ELMo (Peters et al., 2018a) and BERT (Devlin et al., 2019)) on the task of in-context
lexical substitution. The task consists in ranking substitute candidates for a word according
to how appropriate they are in a given context. We employ di�erent methods proposed in
past work to combine the representations, and propose an approach to enrich them using
substitute-speci�c information. We �nd that BERT representations work better than others for
lexical substitution.

Chapter 4: Word Usage Similarity Estimation Another way of testing the ability of the
models to represent the contextualised meaning of words is through word usage similarity
estimation. Ideally, wewould expect the representations for these two instances of fan: “turn on
the fan” and “the fan is not working” to be highly similar, and dissimilar from its representation
in “I’m your biggest fan”. We evaluate several contextual and sentence embedding models on
this task, using similarity scores assigned by their representations. Additionally, we propose to
combine contextualised word embedding similarities with automatic substitute annotations
for better word usage similarity prediction. This approach relies on the idea that the substitute
overlap between two word instances re�ects their semantic similarity. For example, the �rst
two instances of fan in the examples above can be substituted by ventilator, and this indicates
their semantic proximity. Although substitute annotations help in this task, their quality is
key for a good performance. We show that when substitute quality cannot be assured, BERT
representations are on their own a good predictor of word usage similarity.

Chapter 5: Word Sense Clusterability Estimation This chapter focuses on word sense
clusterability (McCarthy et al., 2016), a lexical semantic property that refers to the ease of
partitioning a word into senses. Although the ventilator and admirer senses of fan are very
distinct from each other, distinctions are not so clear for other words: the husband, soldier
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and human senses ofman, for example, are all related. We would thus say that fan is easier to
partition into senses and, consequently, more clusterable thanman. Knowing the clusterability
of a word can be useful in order to determine its optimal computational representation: a per-
sense approach could be preferable for clusterable words, while contextualised representations
might be more adequate for less clusterable words, where meaning is more subtly modulated
by context variation. We extend McCarthy et al.’s (2016) approach for word sense clusterability
estimation using contextualised representations and automatic substitute annotations, and
experiment with new clusterability metrics. We also carry out a �rst attempt at scaling up
clusterability prediction on a large corpus using BERT representations, and uncover BERT’s
sensitivity to collocational and contextual di�erences in the usage of words. Finally, we propose
to modify BERT representations of clusterable words by turning them into multi-prototype
representations, and investigate the impact of this modi�cation on a word usage similarity
task.

Chapter 6: Fine-tuning BERT for Lexical Meaning In this chapter, we focus on the
BERT model. First, we perform a systematic exploration of how context variation that does
not modify the meaning of a sentence nor that of its individual words a�ects representations.
We do this by observing the changes in usage similarity across pairs of sentences that di�er
in a speci�c linguistic phenomenon. For example, in a model that accurately re�ects words’
meaning, we would expect the representations of fan in “I bought a fan yesterday” and “A
fan was bought yesterday” to be highly similar. Then, we experiment with di�erent ways of
increasing BERT’s sensitivity to lexical meaning. We do so by �ne-tuning BERT models on
di�erent semantic tasks which involve deciding whether two word instances, or two sentences,
have the same meaning. Results obtained in an in-context word similarity task show that
our approach is bene�cial for English models, even when the data for �ne-tuning has been
automatically created.

Chapter 7: PolysemyLevel Prediction Theword fan can express a lower number of senses
than the noun shot, which can refer to the �ring of a projectile, an injection or a small drink,
among others. The monosemous word hotel, instead, only has one sense. Do pre-trained LMs
encode information about the number of senses of a word, and, if this is the case, where does
this knowledge come from? In Chapter 7 we answer these questions based on an exploration of
words’ semantic space in di�erent languages. In our experiments, we use monolingual BERT
models in English, French, Spanish and Greek and multilingual BERT. By using datasets with
controlled sense distributions, we �nd that BERT representations –especially from the English
model– re�ect whether a word is monosemous or polysemous, and its degree of polysemy. This
knowledge is present regardless of the contexts used to extract them, meaning it is acquired
during pre-training. We additionally account for the correlation between word frequency and
number of senses (Zipf, 1945) and for the relation of grammatical category and polysemy, by
balancing the frequency and part of speech (PoS) distributions in our datasets.
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Chapter 8: Scalar Adjective Identi�cation and Ranking Scalar adjectives can have sim-
ilar meanings, but express them at di�erent degrees of intensity. For example, interested and
passionate describe similar characteristics of a fan, but the latter is more intense. The di�erence
in intensity between the two adjectives a�ects their entailment relation (passionate⇒ inter-
ested, but interested⇏ passionate). This notion of intensity, however, characterises speci�cally
scalar adjectives. Relational adjectives, such as electric or English, serve to classify (McNally
and Boleda, 2004) a noun and do not express intensity. In this chapter, we �rst explore the
knowledge that BERT representations encode about the intensity of scalar adjectives. We
propose a resource-lean method for scalar adjective ranking inspired from gender bias work
(Bolukbasi et al., 2016) which involves comparing adjectives in a scale to a vector expressing
intensity. Given the good performance of this method in English, we extend it to other lan-
guages. We translate existing datasets to French, Spanish and Greek to promote research on
these languages. Finally, we build a dataset to evaluate BERT’s capability to distinguish scalar
from relational adjectives which do not contribute to the emotional tone of a text.

Chapter 9: Nouns’ Semantic Properties and their Prototypicality In this chapter, we
explore the knowledge that the BERT model encodes about noun properties and their pro-
totypicality, as expressed in their adjectival modi�ers. For example, when referring to the
ventilator sense of fan, we can say that nowadays most fans are electric, but only some of
them aremetallic. Electric andmetallic are adjectives denoting properties of fans that di�er
in their prototypicality. We also investigate the entailment properties of adjective-noun (AN)
constructions. Adjectives often restrict the reference scope of the noun they modify, leading
to AN phrases where the forward entailment between AN and the head noun N holds (AN
⊧ N, e.g. metallic fan ⊧ fan), but backward entailment does not (N ̸⊧ AN, e.g. fan ⊧ metallic
fan). However, when an adjective denotes a prototypical property of a noun, entailment holds
in both directions (AN ⊧ N and N ⊧ AN, e.g. electric fan ⊧ fan and fan ⊧ electric fan). This is
explained by the fact that these adjectives do not add new information about the noun, but
rather emphasise one of its inherent properties. We carry out an extensive investigation of
the knowledge the BERT model has of noun properties and their prevalence. Our �ndings
suggest that BERT has marginal knowledge about the prototypicality of noun properties as
re�ected in the dataset used for evaluation, but it can learn to distinguish prototypical from
other properties and predict entailment in supervised settings.

1.3 Publications related to this thesis

• Aina Garí Soler, Anne Cocos, Marianna Apidianaki and Chris Callison-Burch (2019).
A Comparison of Context-sensitive Models for Lexical Substitution. In Proceedings of
the 13th International Conference on Computational Semantics (IWCS 2019), 23-27 May,
Gothenburg, Sweden. (Garí Soler et al., 2019c) (Chapter 3).

• Aina Garí Soler, Marianna Apidianaki and Alexandre Allauzen (2019). Word Usage Sim-
ilarity Estimation with Sentence Representations and Automatic Substitutes. In Proceed-
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ings of the 8th Joint Conference on Lexical and Computational Semantics (STARSEM2019),
Jun 6-7, Minneapolis, USA. (Garí Soler et al., 2019b) (Chapter 4).

• Aina Garí Soler, Marianna Apidianaki and Alexandre Allauzen (2019). LIMSI-MultiSem
at the IJCAI SemDeep-5 WiC Challenge: Context Representations for Word Usage Simi-
larity Estimation. In 5th Workshop on Semantic Deep Learning (SemDeep-5). (Garí Soler
et al., 2019a) (Chapter 4).

• Aina Garí Soler and Marianna Apidianaki (2020). MULTISEM at SemEval-2020 Task 3:
Fine-tuning BERT for LexicalMeaning. In Proceedings of the 14th InternationalWorkshop
on Semantic Evaluation, Dec 12-13, Barcelona, Spain. (Garí Soler and Apidianaki, 2020b)
(Chapter 6).

• Aina Garí Soler and Marianna Apidianaki (2020). BERT Knows Punta Cana is not
just beautiful, it’s gorgeous: Ranking Scalar Adjectives with Contextualised Representa-
tions. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), Nov 16-20. (Garí Soler and Apidianaki, 2020a) (Chapter 8).

• Aina Garí Soler and Marianna Apidianaki (2021). Scalar Adjective Identi�cation and
Multilingual Ranking. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), Nov 6-11. (Garí Soler and Apidianaki, 2021b)
(Chapter 8).

• Aina Garí Soler and Marianna Apidianaki (2021). Let’s Play Mono-Poly: BERT Can
Reveal Words’ Polysemy Level and Partitionability into Senses. To appear in Transactions
of the Association for Computational Linguistics (TACL). (Garí Soler and Apidianaki,
2021a) (Chapters 5 and 7).
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Chapter 2

Background and RelatedWork

In this chapter, we provide relevant theoretical background about word meaning and present
di�erent approaches to representing it computationally. We start by introducing several notions
related to lexical ambiguity and discussing ways of describing the senses of a word. We also
present the datasets and lexical databases used in this thesis (Section 2.1). We then describe
several approaches to representing words with vectors, from traditional distributional models
to current contextualised Transformer-based models (Section 2.2). Finally, we provide an
overview of recent interpretability work, which aims at unraveling the knowledge contained
in contextual language models and the representations derived from them (Section 2.3).

2.1 Lexical Ambiguity

2.1.1 Ambiguity, Polysemy and Vagueness Continuum

Words often have multiple senses. For example, coach can be used to refer to a trainer, but
also to a bus. The interpretation of words may change from context to context: soft voice
and soft breeze evoke di�erent senses of the word soft. This variation is ubiquitous in human
language (Cruse, 1986), and new usages of words keep naturally appearing through meaning
extension mechanisms such as metaphor and metonymy. In fact, although most lemmas in the
vocabulary aremonosemous (i.e. they have only one sense), lemmas with multiple senses
are used with higher frequency (Zipf, 1945).

These di�erences in word usage can be of a discrete, clear-cut nature, as in the coach
examples above, which denote distinct referents. However, the di�erences can also be quite
subtle, as with the word thing, whose interpretation varies with each context of use. The
concrete meaning of the word may be left underspeci�ed: for example, in “All the things she
said”, thing could refer to a speech, a joke, an apology, a confession, etc.

We say that coach is an ambiguous word, because its senses are unrelated to each other.
Thing, instead, is a word with vague semantics because its interpretation varies subtly with
every context of use. For these words, it is particularly di�cult to establish a list of senses.

Ambiguity and vagueness are extremes in a continuum, in the middle of which we �nd
polysemy (Tuggy, 1993) (Figure 2.1). Polysemous words have senses that are distinct, but
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Figure 2.1: The continuum between ambiguity and vagueness, with polysemy in the middle.

have something in commonwith each other. One example are the usages of the word soft above.
In this case, the context evokes di�erent but related qualities: a soft voice is quiet and gentle,
a soft breeze is also gentle, not strong. It is important to distinguish between polysemy and
homonymy, which are two strongly related, and sometimes confused, phenomena. A word
(or a lexeme) is said to be polysemous if it has multiple senses, and two words (or lexemes) are
homonyms if they have the same form but di�erent meaning. To distinguish a polysemous
word from homonyms, linguists use etymological and sense-relatedness criteria – homonyms
have di�erent origins and their meanings are less related than those of a polysemous word
(Lyons, 1995). Throughout this thesis, we simply use the term “polysemous” to refer to a
word that has multiple meanings, regardless of their potential di�erent origin. When those are
highly distinct, we will refer to this word as ambiguous.

It is also worth noting that a word may have senses that are highly distinct from each other,
and at the same time others that are closely related. For example, consider the verb run. The
usages “I had to run to catch the bus” and “The script is running” describe completely di�erent
actions. The sense used in “I ran in a marathon” is very similar to that in the �rst sentence,
but evokes a di�erent way of moving one’s feet: a controlled, stable pace vs. a rushed sprint.
The last sentence can also be interpreted in the competing sense of run.

2.1.2 Sense Enumeration and Delimitation

One way of accounting for di�erences in word meaning is proposing a list of senses for
each word, as is traditionally done by lexicographers in dictionaries or lexical databases. The
resultingmeaning descriptions are useful as a reference for speakers of the language or language
learners. One clear limitation of this approach, however, is its high subjectivity: whether the
sense nuances of the word soft presented above are assigned two separate senses in a resource
depends on the lexicographer, the intended audience or the purpose of the sense inventory
that is being built (Kilgarri�, 1997). For polysemous and vague words, there is no unique
correct way of establishing boundaries between senses. Di�erent partitionings of words exist
in di�erent resources and are equally valid, despite varying greatly in terms of the number and
granularity of the senses described.

A prominent example of a lexical database widely used in NLP isWordNet (Miller, 1995;
Fellbaum, 1998). WordNet is amanually-built semantic network for English. Senses inWordNet
are representedwith synsets:1 sets of (near-)synonyms, that is, wordswith the same (or highly

1WordNet synsets allow us to quickly verify the observation made in the previous Section (2.1) that words
with multiple senses are used more frequently. 79% of lemmas in WordNet have a single synset, but their average
frequency –as calculated on Google Ngrams (Brants and Franz, 2006)– is much lower (241.000) than that of words
with more than one sense (7M).
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similar) meaning. Words with multiple senses (ambiguous or polysemous) are thus found in
multiple synsets. Synsets are linked to other synsets in the WordNet hierarchy with which they
stand in a particular semantic relation, such as hypernymy/hyponymy, troponymy, meronymy
or antonymy. Additionally, synsets are often described with a short de�nition and sometimes
contain usage examples for one or more of the words in it. Figure 2.2 shows the WordNet
lexical entry for the word novel.

One of the commonly raised issues of WordNet is its granularity. As explained above, there
is no unique solution to determining sense boundaries, and distinctions in WordNet tend to be
very �ne-grained for most NLP applications (Dolan, 1994; Palmer et al., 2004). For instance,
we �nd 40 senses for the verb run in WordNet, whereas the online Cambridge Dictionary2 lists
9 senses for it, with a few intra-sense distinctions. Other criticisms have made reference to
its incomplete vocabulary, as it lacks specialised terms, named entities or neologisms (Smith
and Fellbaum, 2004; McCrae et al., 2017). Despite this, WordNet is the de facto default sense
inventory used inNLP for English. The biggest corpuswithmanual sense annotations, SemCor
(Miller et al., 1993), with over 234,000 annotated word instances, uses the WordNet inventory.

The fact that it was manually created makes of WordNet a high-quality resource. It is
however hard to create such high quality resources in other languages, or to extend existing
ones in order to include new word senses and usages. WordNet-like resources have been
proposed for other languages. Since building a separate resource (almost) from scratch is
expensive in terms of time and e�ort, one common approach is to translate English WordNet
into a target language. This was done in the EuroWordNet project (Vossen, 1998), which
contains seven languages. The resulting resources can be directly compared to any other
WordNet that preserves the English WordNet structure. At the same time, however, these
resources are biased towards the English structure of the lexicon, which is rarely –if ever–
fully compatible with that of other languages (Derwojedowa et al., 2008). Additionally, these
databases tend to have a small coverage (Bond and Paik, 2012) and are in their majority
automatically created, therefore they contain noise. BabelNet (Navigli and Ponzetto, 2012) is
the biggest and highest-coverage WordNet-like resource. It is a semantic network where words
in over 250 languages are organised into multilingual synsets. It was created automatically
by joining the information present in WordNet and also Wikipedia, which served to include
encyclopedic knowledge into the resource. It has later been extended with additional sources,
such as WordNets in other languages.

In this thesis, we do not use senses to disambiguate word instances; we instead choose
other ways of describing word meaning in a graded fashion (Section 2.1.3.1). We only use
WordNet and BabelNet to retrieve the number of senses of words as an indication of their level
of polysemy (Chapters 7 and 8). We also use SemCor in order to obtain data with controlled
sense distributions (Chapter 7).

2https://dictionary.cambridge.org/dictionary/english/run
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Figure 2.2: Example of a WordNet entry (using WordNet’s 3.1 online interface) for the word novel. It
displays four synsets with their de�nition and, sometimes, example sentences. For one of its noun
senses, we can see a hypernym synset (�ction). The picture also shows the antonym of one of its adjective
senses (unoriginal).

2.1.3 Word Sense Disambiguation and Annotation

In this section, we describe three approaches for the semantic annotation of words: the use of
word senses (Section 2.1.3.1), lexical substitutes (Section 2.1.3.2), and usage similarity (Section
2.1.3.3). We also describe resources and datasets used in this thesis for the last two approaches.

2.1.3.1 Word Sense Annotation

In the sense enumeration approach described in the previous section, the meaning of a word
is often presented as a plain list of mutually exclusive word senses, which does not account
for inter-sense relations. When a list of senses is used for word sense annotation, humans
tend to show a low agreement (Krishnamurthy and Nicholls, 2000; Véronis, 1998; Murray and
Green, 2004). This seems to improve with coarser-grained sense inventories (Palmer et al.,
2007); and other factors like sense concreteness and speci�city of the context also have an
impact on annotator agreement (Passonneau et al., 2009); but some words are inherently
di�cult to disambiguate regardless of the inventory used, like pull (Palmer et al., 2007). Higher
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WordNet senses
Word instance Annotator 1 2 3 4 5 6 7 8 9 10
Snow covered areas appear bright blue in the
image which was taken in early spring and
shows deep snow cover.

Annotator 1 3 1 1 4 1 1 1 4 3 4
Annotator 2 4 1 1 5 1 1 1 3 1 1

Table 2.1: Example of graded word sense annotation from the WSim dataset (Erk et al., 2009, 2013) for
an instance of the word bright. The senses correspond to: 1-emitting light, 2-undimmed, 3-hopeful,
4-having a striking colour, 5-splendid, 6-happy, 7-intelligent, 8-having lots of light, 9-burnished, 10-
reverberant. An annotation of 1 means the sense does not describe this instance of bright at all, and 5
that it perfectly corresponds to this instance.

polysemy (i.e. more senses), higher frequency, and a uniform sense distribution are also factors
that contribute to a lower agreement (Martínez Alonso et al., 2015). Allowing the annotation
of only one sense per word instance makes agreement even harder, especially in cases of
underconstrained or sylleptic contexts, where multiple senses could apply (Jurgens, 2014).

These problems led to the development of graded annotation protocols, allowing annotators
to proposemultiple senses per usage (Véronis, 1998; Passonneau et al., 2012; Jurgens, 2013). Erk
et al. (2009) propose a relaxation of the single-best-sense approach which consists in accepting
multiple senses for a word instance, each to a di�erent degree in a continuous scale. Given a
word instance, they asked annotators to provide a graded judgment from 1 to 5 for each of its
senses inWordNet indicating how well the sense describes its meaning. 1 means the sense does
not apply, and 5 indicates that the sense describes themeaning perfectly. This annotation results
in a distribution over possible senses for every word instance, instead of a single annotated
sense, allowing for more subtle distinctions to be detected across usages of a word. Table 2.1
shows an example of this kind of annotation. The authors make three important remarks:
�rst, that annotators made use of the full range of scores, which highlights the need for graded
disambiguation, and the limitations of the single-best-sense approach. Second, they emphasise
the higher agreement achieved on this task compared to previous annotation e�orts. And third,
that no consistent sense grouping could explain the obtained ratings, showing that this kind of
graded annotation provides advantages that cannot be obtained with a coarser-grained sense
inventory.

There are, however, other ways of describing the contextual variation of word meaning that
can also re�ect its continuous nature, without requiring a pre-de�ned inventory of discrete
senses. An important advantage of not relying on a sense inventory is that it becomes easier to
work with languages where such expensive resources might not be available.

2.1.3.2 Lexical substitutes as a proxy for meaning

One of the �rst alternatives proposed was to describe the meaning of speci�c word instances
using in-context lexical substitutes (McCarthy, 2002), either in the same language (McCarthy
and Navigli, 2007) or cross-lingually (Resnik and Yarowsky, 1999; Apidianaki, 2009; Mihalcea
et al., 2010), with translations. When available, synonyms or near-synonyms of a word can be
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used to describe the meaning of its instances in context. In the following example from the
LexSub dataset (McCarthy and Navigli, 2007), the meaning of the two instances of the verb
think is described by the available substitute annotations, which illustrate their di�erence in
meaning (having an opinion vs cogitate):

(1) I think we should be allowed to pray for the grace to be victorious.
Substitutes: believe, feel, be of the opinion, recommend

(2) In the process of searching for the right combination to bring out that �avor, we think,
we fail, we re�ect, and hopefully, we succeed.
Substitutes: consider, analyse, reason, contemplate

Substitutes provide a graded representation of word meaning. The overlap of the sets of
substitutes assigned to two instances re�ects how similar the meaning of these instances is
(Erk et al., 2009). See, for example, this other meaning of think:

(3) Shafer thinks we’re going to cry.
Substitutes: believe, feel, assume, reckon, suspect

Themeaning of the instance of think in (3) is similar to that expressed in example (1), which
explains the partial overlap between their substitutes (feel, believe). Some substitutes di�er
because of the speci�c nuances expressed by the two instances: be of the opinion/recommend
vs assume/suspect/reckon. The meaning expressed by think in (3) could be described as an
opinion, like that in (1), but it also expresses a hypothesis, a guess. In contrast, (1) and (2) do
not share any substitute because the senses expressed are clearly distinct. In what follows, we
describe the lexical substitution datasets and related resources used in our experiments.

The �rst dataset with lexical substitute annotations was proposed in SemEval 2007, task 10
(McCarthy and Navigli, 2007). Data for this LexSub task were collected for 201 speci�c target
words with balanced part of speech, and 10 sentences were selected from the Internet Corpus
of English (Sharo�, 2006) for each of the words. Target words were chosen carefully so that
words with di�erent numbers of senses be represented. To alleviate the skewness often present
in the frequency distribution of word senses,3 the organisers manually selected the sentences
for 79 of the words, forcing a more even sense distribution.

Concepts-in-Context (CoInCo) is another resource with substitute annotations. As
opposed to LexSub, CoInCo contains substitute annotations for all words in a sentence. This
results in a more natural frequency distribution of senses than in the LexSub dataset. CoInCo
contains 2,474 sentences from the MASC corpus (Ide et al., 2008). It consists of 15,629 target
instances for 3,874 unique target lemmas across di�erent parts of speech. Instances were
annotated with substitutes by crowd workers.

Table 2.2 contains examples from these two datasets. Other datasets with in-context substi-
tutes exist (Sinha and Mihalcea, 2014; Biemann, 2013). We use LexSub because a subset of its
sentences has additional semantic annotations (Section 2.1.3.3), and CoInCo for its bigger size

3The senses of a polysemous word tend to be unevenly distributed, with one or a few senses being much more
commonly used than the rest (Kilgarri�, 2004). This is especially the case with frequently used words.
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Sentence Substitutes
LexSub

We recommend that you check with us beforehand. verify (3), con�rm (2), report (1), make sure (1)
I have checked multiple times with my order and
that is not the case.

verify (4), investigate (1), con�rm (1), make sure (1)

The romance is uninspiring... and dry.
boring (2), uninteresting (2), dull (1), unsympathetic
(1)

If the mixture is too dry, add some water; if it is too
soft, add some �our

parched (2), unmoistened (1), desiccated (1), stodgy
(1)

CoInCo

Amission to end awar

mission: goal (2), plan (2), task (2), calling (1), cam-
paign (1), dedication (1), devotion (1), duty (1), e�ort
(1), initiative (1), intention (1), movement (1), pur-
suit (1), quest (1), step (1)
end: stop (5), �nish (4), conclude (2), halt (2), termi-
nate (2), abolish (1), cease (1),
war: �ght (5), battle (3), con�ict (3), combat (2), cru-
sade (1), struggle (1)

Table 2.2: Example instances from two Lexical Substitution datasets: LexSub (McCarthy and Navigli,
2007) and CoInCo (Kremer et al., 2014)

and more natural distribution.

One resource particularly relevant for lexical substitution is the Paraphrase Database
(PPDB) (Ganitkevitch et al., 2013; Pavlick et al., 2015),4 a large collection of paraphrase pairs
available in multiple languages (Ganitkevitch and Callison-Burch, 2014). It was automatically
built using the pivot method (Bannard and Callison-Burch, 2005), which discovers paraphrases
by �nding expressions that share a translation in bilingual parallel corpora. For instance, the
fact that aim and goal share the French translations objectif and but is taken as an indication
that aim and goal share some meaning and are, therefore, paraphrases of each other. PPDB
contains paraphrases at the word as well as the phrase level. The paraphrases in English
PPDB were later automatically ranked by quality based on human judgments (Pavlick et al.,
2015), creating PPDB 2.0. The English PPDB was also automatically enriched with entailment
relations (e.g. equivalence – the relation holding between airport and aerodrome; forward
entailment – as in airport⇒ facility) and stylistic information in the form of formality and
complexity scores (for example, the di�erence in formality between father and daddy is bigger
than that between kids and children). The English PPDB contains over 80 million paraphrase
pairs and 140 paraphrase patterns. Their ranking by quality has served as a criterion to split
the database into multiple paraphrase packages of di�erent sizes (from S to XXXL), ranging
from highest precision (smallest size) to highest recall (biggest size). Figure 2.3 contains the
�rst 30 paraphrases for the word novel in PPDB 2.0 XXL. Most of them re�ect its noun and
adjective senses, but there are also a few incorrect entries.

In our work, we use substitutes as a way to approximate word meaning. We evaluate the
ability of contextualised representations to propose lexical substitutes in context using the

4http://paraphrase.org
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Figure 2.3: 30 �rst paraphrases for the word novel in the Paraphrase Database 2.0 XXL. A stronger
colour indicates the paraphrases that are contained in smaller packages (L and XL).

LexSub dataset (Chapter 3) and we then use automatic substitute annotations to complement,
and in some cases enrich, the representations (Chapters 4, 5 and 6). We use CoInCo as
additional training data for usage similarity estimation (Chapters 4 and 6). Finally, we also use
paraphrases at the word level from the PPDB as candidate substitutes when performing lexical
substitution (Chapters 4, 5 and 6).

2.1.3.3 Usage similarity

Erk et al. (2009) also consider the notion of usage similarity, or similarity between two
instances of the same word, to account for the graded distinctions between word instances.
For example, the similarity between the instances of think in the sentences (1) and (3) above
would be higher than the similarity between the instances in sentences (1) and (2).

In this section we introduce several datasets that address in-context word similarity, both
between di�erent words and between usages of the same word. Table 2.3 contains examples
extracted from these datasets.

Usim (Erk et al., 2009, 2013)5 is a dataset which contains 10 instances for each of 56 lemmas
manually annotated with graded pairwise usage similarity judgments. Each sentence pair
received a rating (on a scale of 1-5, from less to more similar) by multiple annotators, and the
average judgment for each pair was retained. Word instances are taken from the LexSub dataset
(McCarthy and Navigli (2007), Section 2.1.3.2), adding an extra layer of semantic annotation.
This kind of data allows to study the organisation of the semantic space of individual words
without comparing them to other words.

Word-in-Context (WiC) (Pilehvar and Camacho-Collados, 2019) consists of 7,466 pairs
of contextualised instances for the same target word. In this case, the task is framed as a binary
classi�cation, where instances describe either the same or a di�erent sense, instead of being
in a similarity continuum. WiC sentences were extracted from example usages in WordNet
(Fellbaum, 1998), VerbNet (Schuler, 2006) and Wiktionary6 and were automatically labelled
using information available in these resources. Meanings represented in the WiC dataset are
generally coarser-grained than WordNet senses, which was ensured by excluding WordNet
synsets describing highly similar meanings. The human-level performance upper-bound on
this binary task is 80.5%. It was calculated as the average accuracy of four annotators on 100-
instance samples of WiC. Inter-annotator agreement is also high, at 79%. This dataset has been

5http://www.dianamccarthy.co.uk/downloads/WordMeaningAnno2012/
6https://www.wiktionary.org/
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Label/
Score Sentence 1 Sentence 2

Stanford Contextual Word Similarity (SCWS)

8/10

world ’s heroes �ght them o� . Most of the X-Men die , but

Iceman ( alongside Rogue , Storm , Colossus , and Jean Grey

) is able to survive Magneto ’s attack . He is last seen de-
molishing the X-Mansion alongside Rogue and
Jean Grey and burying the deceased X-Men in
its place . He �nds it hard to destroy their home , but he

feels it to be the right thing to do now that Professor Xavier is

dead . In the �rst story arc of Ultimate Comics Spider-Man ,

the Post-Ultimatum version of Ultimate Spider-Man ,

which may act as a safeguard against rising waters or preda-

tors , or as a method of regulating humidity and temperature

) . The male takes no part in caring for its young , and retreats

to its year-long burrow . The female softens the ground
in the burrow with dead , folded , wet leaves and
she �lls the nest at the end of the tunnel with
fallen leaves and reeds for bedding material . This
material is dragged to the nest by tucking it underneath her

curled tail . The female Platypus has a pair of ovaries but

WiC
T Laws limit the sale of handguns . They tried to boost sales.
F She didn’t want to answer. This may answer her needs.

CoSimLex

6.96
(9.50-
2.54)

The intercoastal trip took about 17 days eachway
and the ships called at either LosAngeles or SanDiego on east-

bound and westbound trips. With two ships on the route, one

ship departed from either New York or San Francisco about

every three weeks. The service was marketed as the
idealmanner to visit the Panama-California Ex-
position in San Diego and the Panama-Paci�c Interna-

tional Exposition in San Francisco.

Similarity: 2.54

However, the true burden of the tax cannot be properly as-

sessed without knowing the use of the tax revenues. If the
tax proceeds are employed in amanner that bene-
�ts owners more than producers and consumers then

the burden of the tax will fall on producers and consumers. If
the proceeds of the tax are used in away that ben-
e�ts producers and consumers then owners su�er the

tax burden..

Similarity: 9.50
Usim

4.3/5
We recommend that you check with us before-
hand.

I have checkedmultiple times with my order and
that is not the case.

1.3/5 The romance is uninspiring... and dry.
If the mixture is too dry, add some water; if it is
too soft, add some �our.

Table 2.3: Example instances from each dataset addressing word similarity in context.

used on a shared task (Espinosa-Anke et al., 2019), in which we participated (Chapter 4), which
addresses the similarity estimates that can be derived from contextualised representations.
It has also been included in the SuperGLUE Benchmark (Wang et al., 2019a), a battery of
challenging tasks that aim to measure a model’s overall level of language understanding.7

The current best model,8 T5 (Ra�el et al., 2020), obtains a 76.9 score, approaching the human
upper-bound. There is also a multilingual version of the WiC dataset, XL-WiC, which was
created in a similar way to WiC using Multilingual Wordnet and Wiktionary, and is available
in 12 languages (Raganato et al., 2020).

A similar dataset, but more focused on the similarity between instances of di�erent words,
is the Stanford Contextual Word Similarity (SCWS) dataset (Huang et al., 2012). It was
initially designed to evaluate sense embeddings (Section 2.2.3.2). It contains 2,003 sentence
pairs manually annotated by 10 crowdworkers with similarity scores from 0 to 10. Most

7https://super.gluebenchmark.com/
8As of September 14th, 2020
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sentence pairs in SCWS compare di�erent words, but some instances compare di�erent senses
of the same target word. Sentences were extracted fromWikipedia and automatically selected
to trigger speci�c senses of a word. Pilehvar and Camacho-Collados (2019) note, however, that
the inter-rater agreement on this dataset is very low (average pairwise Spearman’s � = 0.35).

Another recently created dataset that addresses word similarity in context is CoSimLex
(Armendariz et al., 2020a). CoSimLex di�ers fromWiC in several aspects: it contains graded,
not binary, judgments; it compares instances of di�erent words, not of the same word; and it is
available in several languages: English, Croatian, Finnish and Slovene. In contrast with Usim,
WiC and SCWS, an instance consists of a single short text snippet containing the two target
words to compare. Annotators had to provide similarity judgments for the two words in their
shared context. Every target word pair is present in two contexts, allowing to assess the e�ect
of context on the perceived similarity between the two words. Word pairs were extracted from
Simlex-999 (Hill et al., 2015) and its translations, and the sentences come from each language’s
Wikipedia. Contexts with di�erent degrees of similarity were pre-selected using two contextual
models, ELMo (Peters et al., 2018a) and BERT (Devlin et al., 2019) (Section 2.2.3.3). An expert
annotator made the �nal context selection to be included in the dataset.

Along with lexical substitutes, usage similarity has a central role in this tesis as a way of
accounting for word meaning. Speci�cally, in order to evaluate the lexical semantic quality of
contextualised representations, we investigate how well they re�ect words’ usage similarity
(Chapter 4). With the same goal, we also use the similarity between usages of di�erent words
(Chapter 6). Additionally, we explore whether usage similarity estimations from the repre-
sentations re�ect whether they are ambiguous, polysemous, or vague (Chapter 5, (McCarthy
et al., 2016)); and their level of polysemy (i.e, their number of senses (Chapter 7)). In our
experiments, we use the Usim, WiC and CoSimLex datasets, for their higher quality.

2.2 Vector Space Models of Word Meaning

We have seen that many words are polysemous, and their meaning varies across contexts. We
have presented di�erent ways of accounting for this variation: using lists of senses, lexical
substitutes and usage similarity annotations. In this section we focus on computational ap-
proaches to word meaning which create vector representations for words. We �rst present
the underlying principle of all these approaches, the Distributional Hypothesis (Section 2.2.1).
Then, we introduce traditional Vector Space Models which build representations relying on
co-occurrence counts from corpora (Section 2.2.2). Finally, we describe several models that
learn representations with language model (LM) objectives (Section 2.2.3). We describe models
that represent words at di�erent levels (at the type-, sense- or token- level), and also present
ways in which these representations can be evaluated.

2.2.1 The Distributional Hypothesis

Lexical semantics is the area of linguistics that studies the meaning of words. There is no
single way to de�ne the notion of word meaning: multiple theories from disciplines such as
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philosophy, linguistics or cognitive science characterise it in di�erent ways; for example as
an abstract mental representation (Rosch, 1975; Lako� and Johnson, 2008), or through the
use of minimal conceptual building blocks or “semantic primitives” (Katz and Fodor, 1963;
Wierzbicka, 1972). In this thesis, we adopt a distributional point of view. The Distributional
Hypothesis (Harris, 1954), often illustrated with Firth’s (1957) famous quote “You shall know a
word by the company it keeps”, states that “di�erence of meaning correlates with di�erence of
distribution”. In other terms, two words with di�erent meanings appear in di�erent contexts,
while two semantically similar words tend to occur in the same contexts.

It is important to distinguish the notion of semantic similarity between words from syn-
onymy and relatedness. Two words are synonyms if they are equivalent in meaning, i.e. if
they mutually entail each other (Kreidler, 1998). Absolute synonyms are interchangeable: one
word can be replaced by the other without a�ecting the truth conditions of a sentence (Cruse,
1986).9 Two words are said to be semantically related if they are associated in some way, for
example by means of meronymy, a part-whole relation (as leg and person) or by a function
relation (e.g. teeth and toothpaste, or vet and dog) (Budanitsky and Hirst, 2006).

An example of similar words would be cat and dog, whose meanings share common traits.
According to the Distributional Hypothesis, their similarity is re�ected in the fact that they are
very often used in the same contexts:

(4) I just fed the [cat|dog].

(5) I took my [cat|dog] to the vet.

However, we know cat and dog do not have exactly the samemeaning (i.e. are not synonyms)
because there are also contexts that they do not share:

(6) His [dog] barks when it’s hungry.

From a distributional point of view, the meaning of a word is determined by its similarity
to other words. Similarity between words is, in turn, de�ned by the number of contexts shared
between them.

Cat and dog are said to be in a paradigmatic relation, because they can often occupy the
same position in sentences (i.e. they often co-occur with the same words), whereas vet and
dog stand in a syntagmatic relation, as they often co-occur with each other (i.e. they are used
in the same sentence) (Schütze and Pedersen, 1993). This distinction is useful in order to tell
apart the notions of similarity and relatedness. Related words are not necessarily semantically
similar, and often stand in a syntagmatic relation (Turney, 2008).

The link between the Distributional Hypothesis of meaning and textual data has allowed for
its empirical corroboration in studies of human perception of semantic similarity (Rubenstein
and Goodenough, 1965; Miller and Charles, 1991), where it was found that distributional
similarity correlates with human judgments. With the increasing computational power and text
digitalisation of the last two decades, this idea has greatly in�uenced the �eld of computational

9As opposed to absolute synonyms, “partial” synonyms or near-synonyms are highly similar in meaning, but
di�er in some aspects, typically connotational, such as style (dad and father), emotion or intensity (good and great).
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Figure 2.4: Two-dimensional example of distributional vectors. Taxi and car often co-occur with drive
and with park, whereas bicycle rarely co-occurs with drive (one rides, but doesn’t drive, a bicycle). The
cosine similarities between the vectors (which rely on the angle between them) re�ect that taxi and car
are more similar to each other than either of them is to bicycle.

semantics and is the underlying principle behind many word representation approaches. In
the following sections, we describe models that build vector representations based on the
distributional hypothesis.

2.2.2 Distributional Approaches to WordMeaning

Distributional approaches seek to obtain word representations (in the form of vectors) re�ecting
the semantic similarity between words. These vectors are created from co-occurrence data, and
encode di�erent kinds of information obtained from the di�erent contexts in which a word
occurs in a corpus. The de�nition of context is highly parametrizable: it can be a �xed-size
window surrounding the word, the sentence containing it, or even a document where the
word appears. It can simply take into consideration other words that occur in the context
(the bag-of-words approach) or it can use additional linguistic information from syntactic
annotations (Padó and Lapata, 2007; Baroni and Lenci, 2010; Levy and Goldberg, 2014a). Note
that with the term “context” (of a word), we refer to linguistic information surrounding, but
not including, the target word instance that is to be represented.

The obtained vectors con�gure a semantic space. Distributionally similar words (which
share co-occurrence patterns) have vectors that are close in the space. The semantic similarity
of words (which correlates with distributional similarity) can thus be calculated with di�erent
measures of vector distance (or similarity), such as the Euclidean distance or the widely used
cosine similarity. Using these measures, one way of characterising the meaning of a word is
observing the words that are closest to it in the space, in other words, retrieving its nearest
neighbours. Figure 2.4 shows a simpli�ed example of word vectors in the space created by
these models.

The �rst distributional word vectors were based on Vector Space Models (VSMs) (Salton
et al., 1975; Turney and Pantel, 2010; Baroni and Lenci, 2010). The features (dimensions) of
these vectors correspond to meaningful units, such as other words or documents. Their values
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indicate, for example, the frequency of co-occurrence of words in a corpus, or the presence of
words in documents. These “explicit” (Levy and Goldberg, 2014b) representations are high-
dimensional and sparse, but can be compressed with dimensionality reduction techniques
(Landauer and Dumais, 1997), at the cost of interpretability.

What most VSM approaches have in common (Lund and Burgess, 1996; Bullinaria and
Levy, 2007; Padó and Lapata, 2007) is the representation of word types, i.e. every word is
represented with a single vector, regardless of whether it is polysemous or monosemous. There
have been, however, di�erent proposals to account for polysemy. One of the solutions proposed
is to create multiple vectors per word, corresponding to their di�erent senses (Schütze, 1998;
Pantel and Lin, 2002; Reisinger and Mooney, 2010; Van de Cruys and Apidianaki, 2011). The
�rst work in this direction was by Schütze (1998), who proposed a method for Word Sense
Induction (Manandhar et al., 2010; Jurgens and Klapaftis, 2013), i.e. for discovering word
senses from text in an unsupervised way. The approach consists in representing the context of
a word instance using the centroid of the vectors of the words in it. These context vectors are
then clustered based on their proximity in the semantic space, and the resulting clusters are
assumed to represent di�erent word senses.

Another solution to account for polysemy is using vectors that represent words in con-
text. The �rst approaches of this type were focused on semantic composition, and typically
consisted in combining type-level vectors of words in a phrase. Semantic composition is very
relevant for capturing word meaning in context, since the meaning of a word instance strongly
relies on its neighbouring words. For example, the phrases football match and perfect match
evoke distinct meanings ofmatch. The goal of these approaches was to represent a complex
expression (e.g., a multi-word phrase or a sentence). The simplest model of composition rep-
resented a sentence as the average of the vectors of the words in it (Landauer and Dumais,
1997). Kintsch (2001) and Mitchell and Lapata (2008) studied other composition operations to
combine the meanings of two words, such as addition and multiplication. Erk and Padó (2008)
and Thater et al. (2009, 2010, 2011) built upon this work, enriching phrase representations with
syntactic information such as selectional preferences and dependency relations. These works
are focused on building representations of phrases taking word-type vectors as the point of
departure. Erk and Padó (2010) and Reddy et al. (2011a) instead represented word tokens by
proposing an exemplar-basedmodel that does not rely on sense or word type vectors in any
stage of the process. In this case, the goal was to represent word instances in context (or the
context surrounding these instances).10 A word type is represented as a set of instance vectors,
some of which are activated to form an instance representation adapted to the new context
of use. In contrast to models of composition, these exemplar-based models are not limited to
combining two words, and take information from the whole sentence into account to represent
a word instance. These �rst studies typically evaluated representations on tasks such as lexical
substitution (McCarthy and Navigli, 2007), in- and out-of-context word similarity estimation,

10While models of composition aim at representing a complex expression (for example, the phrase football
match), exemplar-based approaches obtain a representation of an instance ofmatch in its sentential context (Baroni
et al., 2014a).
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Figure 2.5: Arti�cial examples of a highly clusterable dataset (left) and a dataset with no cluster structure,
i.e. non-clusterable (right).

word sense disambiguation (Thater et al., 2011) and compositionality detection (Reddy et al.,
2011b), where they showed improvements over previous word type representations.

Representations at the token level o�er a way not only to represent the contextual variation
of word meaning, but also to explore the ambiguity-vagueness spectrum of words in the
semantic space. A �rst e�ort in this direction was that of McCarthy et al. (2016). They propose
the notion of the partitionability of a word into senses; that is, the ease with which the senses
of a word can be distinguished. A word with clearly distinct senses (e.g. coach, or bank with
its financial institution and river bank senses) is easier to partition into senses than
a word with vague semantics (e.g., thing, whose meaning can subtly vary in every context
of use). They use word usage similarity annotations from the Usim dataset (Erk et al. (2009,
2013), Section 2.1.3.3) to determine the actual partitionability of a word: if the instances of a
word received many mid-range similarity scores (between 2 and 4 in a scale from 1 to 5), or
if a word presented a low inter-annotator agreement, they assume that its semantic space is
harder to partition into senses. McCarthy et al. (2016) propose a computational method to
create vectorial representations of word usages from substitute and translation annotations,
and estimate partitionability in terms of the clusterability of the obtained representations.
Clusterability is a notion from the machine learning literature that measures the extent to
which a set of data points have an inherent cluster structure (Ackerman and Ben-David, 2009;
Adolfsson et al., 2019). If a dataset is not clusterable or has low clusterability, one should
not proceed with clustering, as results could be misleading. Figure 2.5 shows examples of a
clusterable and a non-clusterable dataset. In this thesis, we build upon their work and try
to predict the partitionability of words using token-level word representations from modern
contextual language models (Section 2.2.3.3) as a way of evaluating their lexical semantic
knowledge (Chapter 5).
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2.2.3 Distributed Approaches to WordMeaning (Word Embeddings)

Vectorial word representations have evolved and improved inmany respects in the last few years,
becoming an essential part of virtually any NLP system. Work by Bengio et al. (2003), Collobert
andWeston (2008) and later Mikolov et al. (2013b,a) constituted a big leap forward, introducing
predictive models (Baroni et al., 2014b). Instead of gathering co-occurrence counts from
corpora (as in the count-based approaches introduced in the previous section), these models
essentially merge the tasks of language modelling and representation, or embedding, learning.
The language modelling (LM) task typically consists in predicting a word given a context.
The de�nition of context is, again, not �xed: in traditional language models (statistical LMs
and unidirectional recurrent neural networks), the context consists of the words occurring
only before the target word to be predicted. In other models, the context is made of the
words in a window surrounding the target word, or the whole sentential context of the word.
The distributional knowledge required to solve this task is learned and at the same time
encoded in the dense representations built for the words, and these seem to be better than
count-based models at re�ecting word meaning and human judgments of semantic similarity
(Baroni et al., 2014b), despite depending more heavily on the right hyper-parameter choice
(Levy and Goldberg, 2014b). These language models rely on di�erent types of neural network
architectures and the speci�c training objective used varies for each model. In this section,
we focus on the progression from predictive approaches that assign a single vector to a word
type (Mikolov et al., 2013a; Pennington et al., 2014), or static, type-level approaches, to models
that propose multiple representations for a word. Of the latter, one can distinguish between
those that propose a representation for every sense of a word (multi-prototype or sense
representations (Neelakantan et al., 2014; Iacobacci et al., 2015)), and the recently developed
contextualmodels of word representation (Peters et al., 2018a; Devlin et al., 2019), which are
able to assign a di�erent vector to every new usage of a word. These token-level, contextualised
representations are the focus of our work. For a thorough survey of word embedding methods
we refer the reader to Camacho-Collados and Pilehvar (2018).

2.2.3.1 Static Embeddings

Mikolov et al. (2013a)’s word2vec is probably the most well-known word embedding approach.
It is a neural model which e�ciently learns dense representations of words from large amounts
of data with a language model objective. Vectors can be built using two architectures: con-
tinuous bag of words (CBOW) and Skip-gram. In CBOW, the model is shown an averaged
representation of context words and has to predict a target word that appeared in this context.
In the Skip-gram architecture, the task is the inverse: the model receives a target word as input
and must predict the words that appear in its context. Table 2.4 shows an example illustrating
the di�erence in the two tasks.

These two approaches are proposed alongside two strategies that contribute to the model’s
training speed and to the quality of the resulting representations: “subsampling of frequent
words” and “negative sampling”. Subsampling frequent words consists in assigning words a

45



Chapter 2. Background and Related Work

Sentence Approach Training samples (input / desired output)

She reads a book
CBOW (she, a, book / reads)
Skip-gram (reads / she), (reads / a), (reads / book)

Table 2.4: Example of training instances used by the CBOW and Skip-gram word2vec models (Mikolov
et al., 2013b).

probability of being deleted from the training corpus depending on their frequency. Speci�cally,
the higher the frequency of a word, the higher the probability of deleting it. Highly frequent
words (especially stop words like the or a) often contribute very little to the meaning of other
words in the sentence, and they would constitute a big portion of the training examples without
subsampling. Negative sampling is crucial to the model’s speed. For each training instance,
a limited number of negative (incorrect) words are selected, and only the weights for these
words are updated, instead of weights for all words in the vocabulary.

Many subsequent approaches build on, or are inspired by, word2vec, such as FastText
(Bojanowski et al., 2017), which incorporates character information for more morphology-
aware representations that can better encode rare words. The model is based on Skip-gram,
but words are represented as a sum of character n-gram embeddings. GloVe embeddings
(Pennington et al., 2014) combine the advantages of count-based and predictivemodels, arguing
that the latter do not make use of global co-occurrence statistics from a corpus. The model
mixes local context information (as used in word2vec) with global co-occurrence data. Levy
and Goldberg (2014a) adapt Skip-gram to make use of syntactic contexts with dependency
parsing. Doc2vec (Le and Mikolov, 2014) is also based on word2vec, but extends it to create
representations of sentences and documents.

Despite their success and good performance on many NLP-related tasks (Zou et al., 2013;
Baroni et al., 2014b; Passos et al., 2014), these static word embeddings are, by de�nition,
incapable of accounting for the di�erent meanings of ambiguous or polysemous words. Just
as in type-level representations from VSMs, polysemous and monosemous words are equally
represented with a single embedding, meaning that all senses of a polysemous word are
con�ated into a single representation. This has inevitable consequences on the resulting
semantic space, where the vectors of semantically dissimilar words like pollen and re�nery are
found close to each other because they are both related to (di�erent senses of) the word plant
(Neelakantan et al., 2014).

2.2.3.2 Multi-prototype and Sense Embeddings

The meaning con�ation problem of type-level embeddings motivated research on representa-
tions of lexical meaning that could account for polysemy. Among the proposed solutions are
multi-prototype and sense embeddings, which correspond to di�erent word senses. In this
case, a given word type has a �nite number of representations available, one of which can be
chosen to represent a word instance in context. Sense embeddings are linked to an external
sense inventory, such as WordNet or Wikipedia (Iacobacci et al., 2015; Camacho-Collados
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et al., 2015; Rothe and Schütze, 2015; Pilehvar and Collier, 2016). These embeddings can be
learnt by using sense de�nitions (Chen et al., 2014) or sense-annotated corpora (Iacobacci et al.,
2015). Multi-prototype embeddings induce senses from corpora evidence alone, directly
or through static word embeddings (Pelevina et al., 2016). This can be carried out in a “two-
stage” process (Camacho-Collados and Pilehvar, 2018): an initial sense induction step followed
by the creation of embeddings for each of the induced senses (Huang et al., 2012; Liu et al.,
2015). In other neural-based methods, sense induction and embedding learning are performed
simultaneously (Neelakantan et al., 2014; Tian et al., 2014; Li and Jurafsky, 2015). Sense
and multi-prototype embeddings generally improve results on out-of-context word similarity
tasks, and they are more suitable to estimating in-context word similarity or usage similarity
(Huang et al., 2012) than static representations.With sense and multi-prototype embeddings,
this can be done by �rst assigning an embedding to the speci�c instances (Li and Jurafsky,
2015), or by weighting the similarity according to the probability of each sense (Reisinger and
Mooney, 2010; Huang et al., 2012; Chen et al., 2014). Li and Jurafsky (2015) evaluate sense
embeddings on several NLP tasks, and identify a few tasks where they provide an advantage
over static embeddings (word and sentence similarity, semantic relation identi�cation and part
of speech tagging), and others where they do not help (e.g. sentiment analysis). At the same
time, however, they �nd that simply increasing the dimensionality of static embeddings can
provide similar gains on these tasks.

This type of embeddings constitute an important advancement towards a more realistic
way of representing word meaning which accounts for polysemy. However, as discussed in
Sections 2.1.2 and 2.1.3.1, a list of discrete senses –and the corresponding sense embeddings–
falls short to represent the meaning nuances between instances of words with vague semantics.
Additionally, given the di�culty to determine the number of senses for a word, the initial
models which were not based on external lexical resources made the strongly simplifying
assumption that all words have the same number of senses (Huang et al., 2012; Tian et al.,
2014). Some alternatives were proposed later (Neelakantan et al., 2014; Bartunov et al., 2016)
which induce the number of senses from corpus data. Finally, an important downside of sense
embeddings is that their integration into NLP models is not as straightforward as that of static
word embeddings, since it requires an additional, preliminary disambiguation step.

2.2.3.3 Contextualised Embeddings

The next breakthrough came with contextualised word embeddings, such as ELMo (Peters
et al., 2018a) and BERT (Devlin et al., 2019). Instead of representing word types or word
senses, contextualised embeddings represent word tokens (instances). They di�er from multi-
prototype embeddings and sense embeddings in that they assign to every word instance an
embedding that is speci�c to its context of use, and which does not come from a �nite list
of (sense-)embeddings. They thus have potential to describe the subtle meaning nuances
expressed by di�erent word instances. These models have given unprecedented performance
in multiple NLP tasks such as Question Answering and Natural Language Inference.

In Section 2.2.2, we have introduced the �rst distributional token-level representations and
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Figure 2.6: Diagram of the context2vec architecture. The context of a word (reads) is encoded with
a left-to-right LSTM and a right-to-left LSTM, followed by a non-linear layer (Multilayer Perceptron,
MLP). The Figure is inspired by Melamud et al. (2016)’s Figure 1 (b).

models of composition. Recent contextualised approaches rely instead on neural language
models. One of the �rst and very in�uential neural contextualised models is context2vec
(Melamud et al., 2016). This model does not produce word instance representations, but it
generates embeddings for sentential contexts in the same space as static word embeddings, and
is optimised to re�ect inter-dependencies between them. context2vec uses a neural network
architecture based on word2vec’s CBOW (Mikolov et al., 2013a). It replaces CBOW’s represen-
tation of a word’s surrounding context (consisting of a simple average of the embeddings of the
context words in a �xed window) with a neural representation of the context obtained using a
bidirectional Long Short-Term Memory (biLSTM). Figure 2.6 illustrates the architecture of this
model.

Peters et al. (2018a)’s ELMo (Embeddings from Language Models) relies on a bidirectional
LSTM (biLSTM) (Hochreiter and Schmidhuber, 1997; Graves and Schmidhuber, 2005). that is
trained with a language model objective on a large corpus to obtain deep contextualised word
representations. ELMo representations are deep in the sense that they are a linear combination
of all the internal layers of the model. ELMo can be integrated into task-speci�c architectures,
where the task and the linear combination of di�erent layers are simultaneously learned in
a supervised way. Alternatively, representations can be extracted from the model and used
separately. The ELMo model is illustrated in Figure 2.7 (left). The original model consists of
three layers: a �rst, character n-gram convolutional layer followed by two biLSTM layers.

BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al., 2019) is
also a language model, which uses a Transformer architecture (Vaswani et al., 2017). Instead
of using a forward and a backward language model separately like in ELMo, BERT jointly
conditions on the left and right context in all layers. It is trained with a double pre-training
objective: Masked Language Modelling (MLM) and Next Sentence Prediction (NSP). MLM is
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Figure 2.7: Simpli�ed diagrams representing the architectures of the ELMo and BERT models. ELMo
has a non-contextualised character-based input layer followed by two layers of left-to-right and right-to-
left LSTMs. The �nal embedding of a word in context is a linear combination of the representations in
the three layers. BERT uses a deep (12- or 24-layer) Transformer (Trm) architecture and directly outputs
contextualised word embeddings, although it is also possible to use word embeddings from the hidden
layers. The Figure is inspired on Devlin et al. (2019)’s Figure 3.

equivalent to a Cloze task (Taylor, 1953) that consists in predicting, given the whole (left and
right) context, a random word that has been masked. During pre-training, 15% of words have
to be predicted: 80% of them are replaced with a special [MASK] token, 10% with a random
token, and another 10% are left unchanged. BERT is trained with a speci�c kind of tokenisation
based on sub-word units, called “wordpieces” (Schuster and Nakajima, 2012; Wu et al., 2016).
A wordpiece vocabulary V with a pre-speci�ed size |V| is generated from a training corpus
minimising the number of word splits done. This generally results in dedicated vocabulary
items (tokens) for the most common words in the training corpus, while less frequent words
are split into multiple wordpieces, which do not necessarily correspond to morphemes.

Another distinctive feature of BERT is the use of the special tokens [CLS] and [SEP]. [CLS]
marks the beginning of the input sequence and serves as a classi�cation token aggregating
information from the whole sequence. Classi�ers for tasks at the sequence level take this
token as input. [SEP]marks the end of a segment, and separates two sentences for the NSP
pre-training task. For example, an input sequence could be “[CLS] She [MASK] a book . [SEP]
It is a novel . [SEP]”. The input embedding to BERT for a given wordpiece is the sum of its
corresponding token embedding, an embedding marking the position it occupies in the input
sequence, and a segment embedding indicating whether it belongs to the �rst or the second
sequence (up to or after the �rst [SEP] token). In the example above, the input embedding for
She would be a sum of the embedding for the she wordpiece, an embedding for tokens at the
2nd position, and an embedding common to all words in the �rst segment ([CLS], she, [MASK],
a, book, [SEP]).

BERT provides a uni�ed architecture that can be �ne-tuned on data for di�erent tasks
with the simple addition of a classi�cation or regression head, without the need of having a
task-speci�c architecture as in ELMo. The BERT architecture is illustrated in Figure 2.7 (right).

BERT has inspired a whole generation of Transformer-based language models. Lighter
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versions of BERT (with fewer parameters) have been proposed, such as DistilBert (Sanh et al.,
2019) or Albert (Lan et al., 2020). Other models change the training objectives: RoBERTa (Liu
et al., 2019b) is an optimised version of BERT that is not trained with the NSP task, and XLNet
(Yang et al., 2019) replaces the MLM objective with a permutation-based LM objective. In
T5 (Ra�el et al., 2020), all tasks are turned into a text-to-text format, and the tokens at the
beginning of the sequence indicate the task that the model has to perform (i.e. “summarize :
...”). There also exist multilingual models trained on text in di�erent languages, such as XLM
(Conneau and Lample, 2019) and the multilingual version of BERT (Devlin et al., 2019). Many
monolingual versions of BERT for languages other than English have also been proposed (e.g.
Flaubert (Le et al., 2020) and CamemBERT (Martin et al., 2020) for French, BETO for Spanish
(Cañete et al., 2020) or GreekBERT (Koutsikakis et al., 2020)). Our experiments with context-
sensitive representations involve mainly context2vec, ELMo and di�erent BERT models. We
compare their performance to that of static embeddings.

These models have motivated a large body of research work on identifying the knowledge
that is encoded in them and the representations they generate. This interpretability work
aims at �nding information in the models and investigating the reasons behind their high
performance across benchmarks. We expand on the topic of interpretability and probing of
contextualised models in Section 2.3.

2.2.3.4 Word Embedding Evaluation

The quality of a type of word meaning representation can be determined by evaluating them ex-
trinsically or intrinsically. An extrinsic evaluation consists in incorporating them into a pipeline
to solve an NLP task and assessing their contribution to the results obtained. Embeddings
have been used for various tasks such as Part of Speech tagging, Named Entity Recognition
(Ghannay et al., 2016; Ma and Hovy, 2016; Lample et al., 2016), Sentiment Analysis (Kim,
2014) and Neural Machine Translation (Qi et al., 2018; Artetxe et al., 2018). In this thesis we
focus on intrinsic evaluation, which is often done with word similarity tasks. In this case,
what is evaluated is whether the similarity between word embeddings in the semantic space
correlates with human judgments of word (type) similarity. Ideally, if representations encode
distributional knowledge, they should re�ect the semantic similarity between words. We
distinguish two kinds of intrinsic evaluation: out-of-context and in-context.

Out-of-context intrinsic evaluation Numerous datasets exist for out-of-context (word
type) similarity, which contain human judgments of semantic similarity (and/or relatedness)
for word pairs: RG-65 (Rubenstein and Goodenough, 1965), MC-30 (Miller and Charles, 1991),
WS-353 (Finkelstein et al., 2001) and its split into similarity and relatedness pairs (Agirre et al.,
2009), Mturk-287 (Radinsky et al., 2011), Mturk-771 (Halawi et al., 2012), RW (Luong et al.,
2013), SimLex-999 (Hill et al., 2015), and more. This kind of evaluation has been criticised,
among others, for the subjectivity of the judgments and the low correlation with extrinsic
evaluation results (Faruqui et al., 2016; Chiu et al., 2016). Crucially, these datasets are unable
to account for polysemy due to their lack of context. They can serve for the evaluation of
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static embeddings, but they are not enough for testing the more �ne-grained lexical semantic
knowledge of sense embeddings and contextualised embeddings.11

Other tasks proposed for the out-of-context intrinsic evaluation of word embeddings also
focus on word similarity, but re-frame the question. Some examples are synonymy detection
(Baroni et al., 2014b), where the model has to choose the best synonym for a target word among
a limited number of options; word analogy solving (Mikolov et al., 2013b), consisting in �nding
the 4th term of a semantic- or syntactic-based analogy (dog is to puppy what cat is to _____ )
or outlier word detection, that is, identifying a word that deviates from the rest of words in a
speci�c set (Camacho-Collados and Navigli, 2016).

In-context intrinsic evaluation In-context tasks are more adequate for the evaluation of
multi-prototype, sense and contextualised embeddings, as the model needs to make use of the
context to generate the representation for a word instance. Static embeddings can also be eval-
uated on in-context tasks, but in a less straightforward way –for example, a representation for a
word instance can be obtained by averaging its embedding and those of the words surrounding
it. The simplest way of performing this kind of evaluation is through an in-context similarity
task, which can involve usages of the same word or instances of di�erent words. The datasets
introduced in Section 2.1.3.3 can serve to this end: Usim (Erk et al., 2009, 2013) for graded usage
similarity, WiC (Pilehvar and Camacho-Collados, 2019) for binary usage similarity, SCWS
(Huang et al., 2012) for graded usage and word instance similarity, and CoSimLex (Armendariz
et al., 2020a) for graded word instance similarity in multiple languages. Datasets annotated
with lexical substitutes (Section 2.1.3.2) can also be used for evaluation. The lexical substitution
task, which consists in selecting meaning-preserving substitutes for words in context, was
initially proposed as a testbed for Word Sense Disambiguation systems (McCarthy and Navigli,
2007), but in recent work it is mainly seen as a way of evaluating the in-context lexical inference
ability of vector-space models without explicitly accounting for sense (Kremer et al., 2014;
Melamud et al., 2015, 2016). Models can be evaluated for their ability to propose and/or rank
substitutes for a word in context. In this thesis, we precisely evaluate several context-sensitive
representations on lexical substitution and in-context word similarity tasks, using the LexSub
(McCarthy and Navigli, 2007), CoInCo (Kremer et al., 2014), Usim,WiC and CoSimLex datasets
(Chapters 3, 4, 6).

Finally, another kind of intrinsic evaluation, which we do not explore in this thesis, is
Word Sense Disambiguation (WSD). The quality of the representation of meaning in word
embeddings can be evaluated by including them in a WSD system and assessing their ability to
correctly assign senses to words in context. Di�erent kinds of embeddings have been applied
to this task: static (Iacobacci et al., 2016; Taghipour and Ng, 2015), sense embeddings (Chen
et al., 2014; Rothe and Schütze, 2015) and contextualised representations (Reif et al., 2019;

11In fact, with sense embeddings, the similarity of two polysemous words out of context is typically de�ned as
the similarity between their two most similar senses (Camacho-Collados et al., 2015; Mancini et al., 2017). Thus,
coach and bus would be considered to be very similar, but a static embedding model may assign them a lower
similarity because it con�ates the two main senses of coach (bus and trainer) in the same representation (Faruqui
et al., 2016).
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Wiedemann et al., 2019; Loureiro et al., 2020).

2.3 Interpretability Studies

We present an overview of the recent body of work on the interpretability of contextual word
embedding models. These studies aim at unraveling the knowledge contextual models acquire
during pre-training. In Section 2.3.1 we introduce the methodology used in these studies, and
in Section 2.3.2 we describe the main �ndings about the (lexical) semantic knowledge encoded
in these models.

2.3.1 Interpretability Methods

The recent developments in deep language models like BERT (Devlin et al., 2019), ELMo
(Peters et al., 2018a) or GPT-2 (Radford et al., 2019) brought about an interest in understanding
the kind of linguistic and world knowledge that they learn during pre-training. Importantly, in
multi-layer models of this type, the question that is investigated is not only what information
the models encode, but also where this information is located. This �eld has come to be
known as interpretability or BERTology, because most of these studies are focused on the
BERT model. While contextual pre-trained LMs obtain outstanding results in numerous NLP
tasks, their complexity makes it hard to understand what their good performance is due to.
Analysing these “black boxes” promotes a better understanding of their inner workings and
of the information that they encode, and can provide important insights as to how they can
be improved. Examining the predictions of these models can also be useful for identifying
weaknesses in evaluation datasets, and promoting the design of challenging tasks that cannot
be solved with simple heuristics (McCoy et al., 2019).

In what follows, we present an overview of this line of work. This is a recent and rapidly
evolving �eld. We refer the reader to Rogers et al.’s (2020) “primer on BERTology” for a
thorough review of the main outcomes from studies focused on the BERT model.

Interest in the interpretability of NLP models started with the transition from traditional
VSMs to deep, neural network models (Belinkov and Glass, 2019). Early studies would focus
on discovering information encoded in static word embeddings such as word2vec (Mikolov
et al., 2013a) and GloVe (Pennington et al., 2014) (Köhn, 2015; Gupta et al., 2015; Ettinger
et al., 2016); in neural sentence representations (Adi et al., 2017; Conneau et al., 2018) or in the
hidden representations of recurrent neural networks (Karpathy et al., 2015; Shi et al., 2016; Li
et al., 2016; Hupkes et al., 2018). We focus on the latest developments in this �eld, aimed at
analysing contextualword embedding models like BERT and ELMo and other models relying
on the Transformer architecture (Vaswani et al., 2017).

One of the most common approaches for analysing deep language models is the use of
probing classi�ers. A probe (also called a “diagnostic classi�er” (Hupkes et al., 2018)) is
typically a classi�er that uses representations from the model that is being studied as input.
The probe is trained on a task of interest, for example part of speech (PoS) tagging, and its
performance on this task is taken as an estimation of howmuch information themodel encodes
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about the kind of knowledge necessary to solve the task. For example, Tenney et al. (2019b)
develop a set of probes on multiple linguistic tasks (PoS tagging, dependency labeling, semantic
role labeling (SRL) and coreference, among others) using the same kind of classi�er for all tasks:
a 2-layer binary multi-layer perceptron (MLP) that takes as input span-based representations of
CoVe (McCann et al., 2017), OpenAI (Radford et al., 2018), ELMo and BERT. They �nd that all
models tend to perform better than non-contextualised baselines, especially on syntactic tasks.
Hewitt and Manning (2019) learn a linear transformation of ELMo and BERT representations
at di�erent layers where the L2 distance between two words re�ects their distance in a parse
tree, and �nd an impressive amount of syntactic knowledge in the representations which
varies across layers. Liu et al. (2019a) also probe the representations of three models (ELMo,
BERT and OpenAI) at di�erent layers. They test them on 17 di�erent linguistic tasks, such
as Named Entity Recognition (NER), Grammatical Error Detection, or syntactic dependency
arc prediction. Their focus is on the transferability of representations; i.e. how general (as
opposed to task-speci�c) representations at di�erent layers of a model are, as re�ected in their
performance on linguistic tasks di�erent than the pre-training task. They conclude that the �rst
layer of LSTMs is the most transferable, as layers are increasingly task-speci�c. Transformers
do not exhibit the same trend: their most transferable representations are located in the middle
layers.

Importantly, Liu et al. (2019a) raise the question of how complex a probe should be. The
more complex it is, the we rely on representations from the original model that is being
evaluated. Precisely, they obtain better performance in some tasks when simply increasing the
classi�er complexity (from a linear model to a MLP). This is one of the criticisms that have
been raised about probing: the fact that a probe cannot uncover a certain type of linguistic
knowledge does notmean the knowledge is not present (Tenney et al., 2019b). At the same time,
Tenney et al. (2019b) and Hewitt and Liang (2019) note that the fact that a probing classi�er
obtains good performance does not reveal how, or if, the models use the linguistic knowledge
that they are probed for. To solve this problem, Hewitt and Liang (2019) advocate for the use of
“control tasks”, where each word type is assigned a random label. This type of tasks can help
identify reliable probing classi�ers: a probe that learns the underlying word-label mapping
in a control task is not insightful, as its performance on a real task could simply be due to its
ability to memorise such patterns. On the other hand, a probe that makes use of the linguistic
information encoded in representations is expected to perform better in a real task than in a
comparable control task. Alternatively, Voita and Titov (2020) propose to quantify, from an
information-theoretic perspective, the “amount of e�ort” needed to learn a certain task. The
intuition behind their approach is that if representations encode a speci�c kind of information,
they can be trained to transmit it using fewer bits.

Another popular interpretability approach, concretely for models trained with an MLM
objective, relies on �ll-in-the-gap or cloze-style tasks (Petroni et al., 2019; Ettinger, 2020).
These tasks evaluate the language model capabilities of an MLM and require no additional
training. They consist in querying the MLM for a missing token in a set of cloze statements
designed to target a speci�c kind of information. For example, to probe BERT for world or
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encyclopedic knowledge, and concretely for birthplaces, we can create the statement “Shake-
speare was born in [MASK]”. The MLM produces a ranking of the words that could �ll this
slot ordered by probability. The position of the correct word in the ranking by probability is
used for evaluation. The higher the correct word is in the ranking, the better the information is
considered to be encoded in the model. Goldberg (2019) uses this kind of probing to investigate
BERT’s syntactic knowledge. The author investigates subject-verb agreement by checking, for
instance, the relative probabilities of is and are in sentences like “the game that the guard hates
[MASK] bad”. Talmor et al. (2020) test BERT and RoBERTa (Liu et al., 2019b) in a number
of multiple-choice tasks that involve symbolic reasoning, such as the comparison of two nu-
meric values, or that of the size of di�erent objects. To account for answers that are made of
multiple wordpieces, they propose a supervised approach using QA statements (Talmor et al.,
2019), where the �rst segment of the input is a question (“What is usually located at hand
and used for writing?”) which is concatenated with each of the possible answers as a second
segment (after the �rst [SEP] token), one at a time. They �nd that, overall, the models are
strongly context-dependent and incapable of abstract reasoning. Petroni et al. (2019) propose
to use �ll-in-the-blank statements to probe BERT for factual and common-sense knowledge.
They compile the LAMA (LAnguage Model Analysis) benchmark, a set of cloze-style prompts
built from knowledge triples (bailey peninsula, located in, Antarctica) or question answer
pairs.12 LAMA contains an extensive number of relations including birthplaces, locations, con-
sequences (“Sometimes virus causes [MASK]”), company products (“iPOD Touch is produced
by [MASK]”), or prerequisites (“Typing requires [MASK]”). They �nd that for some types of
relation, an o�-the-shelf BERT model pre-trained with the MLM objective is comparable to
other dedicated methods relying on oracle knowledge.

One downside of the �ll-in-the-gaps approach is the model’s sensitivity to slight changes in
the prompts used. Ravichander et al. (2020) probe BERT for the hypernymy relation and �nd
BERT’s predictions to be inconsistent across prompts using singular and plural (e.g. “a car is a
[MASK]” vs “cars are [MASK]”). Similarly, Jiang et al. (2020) propose modi�cations to cloze
statements in LAMA and demonstrate their impact on the results.

There has also been extensive work on analysing self-attention weights in the Trans-
former network (Raganato and Tiedemann, 2018; Voita et al., 2019b). These studies analyse
the attention heads in all layers of the model, looking for patterns in the tokens they attend to.
Clark et al. (2019) examine BERT and localise a number of attention heads that seem to be
specialised in certain linguistic notions related to syntax and coreference, such as the object
of verbs or co-referent mentions. They also �nd that numerous attention heads exhibit the
same behaviour, with many of them focusing on the [SEP] token. Similarly, Kovaleva et al.
(2019) identify a small number of attention patterns that are repeated in multiple attention
heads. Using di�erent methodology, Kovaleva et al. (2019), Voita et al. (2019b) and Michel et al.
(2019) show that it is posible to prune or disable several attention heads at test time in di�erent

12The dataset contains statements illustrating relations between entities stored in Wikidata, common sense
relations between concepts from ConceptNet (Speer and Havasi, 2012), and knowledge aimed at answering natural
language questions in SQuAD (Rajpurkar et al., 2016).
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Transformer-based models without causing a big loss in performance, which is a symptom of
the over-parametrisation of these models.

2.3.2 Semantic Knowledge in Pre-trained Language Models

Most of the early interpretability studies on contextualised representations addressed gram-
matical and syntactic aspects of language, such as part of speech (Hewitt and Manning, 2019;
Hewitt and Liang, 2019), subject-verb agreement (Goldberg, 2019) and function words (Kim
et al., 2019). The �rst studies addressing semantics explore phenomena in the syntax-semantics
interface, such as semantic role labelling and coreference (Kovaleva et al., 2019; Tenney et al.,
2019a; Liu et al., 2019a; Clark et al., 2019; Peters et al., 2018b). Tenney et al. (2019a) observe
that, for BERT, the best layers for these two tasks are located in the upper half of the Trans-
former model, while syntactic tasks are better solved in earlier layers. For other semantic tasks
(semantic relations and proto-roles) information seems to be spread quite evenly across layers.

Lexical meaning has recently started attracting increasing attention, and has been the
object of several interpretability studies. Some of these focus on word meaning at the type
level, while other works explore how these models handle word sense distinctions. We also
include in our overview studies which, without directly addressing lexical meaning, provide
some interesting insights about the type-level information inside the model.

The fact that contextualised embeddings representword instances o�ers a convenientway to
explore how they deal with aspects of wordmeaning that are related to contextual variation, but
there is no straightforward way to investigate the type-level knowledge they contain. To explore
the knowledge thesemodels have about lexicalmeaning at theword type level, Vulić et al. (2020)
and Bommasani et al. (2020) propose di�erent ways of obtaining a static (type-level) embedding
from contextualised word representations, for example by aggregating the representations of a
word across multiple contexts or by feeding a word in isolation into BERT. This complements a
strand of work that investigates how contextualised and static representations can bene�t from
each other. In these works, contextualised embeddings are used to train a static embedding
model (Wang et al., 2019b) or are combined with static embeddings (Akbik et al., 2019; Liu
et al., 2020). Bommasani et al. (2020) evaluate the lexical semantic knowledge in di�erent
Transformer-based models (BERT, RoBERTa, GPT-2, XLNet (Yang et al., 2019) and Distilbert
(Sanh et al., 2019)) using tasks such as out-of-context word similarity and word analogies, and
report consistent improvements over purely static representations like word2vec (Mikolov
et al., 2013a) and GloVe (Pennington et al., 2014). Vulić et al. (2020) compare monolingual and
multilingual BERT models on these and other out-of-context tasks, such as Bilingual Lexicon
Induction (BLI). One of their �ndings is that monolingual models encode lexical information
of higher quality thanmultilingual models. Importantly, they carry out an analysis by layer and
conclude that lexical knowledge is spread throughout multiple layers of BERT models, but is
particularly present in the lower layers. This contrasts with Tenney et al. (2019a)’s observation,
highlighting the di�erences between the semantic tasks addressed.

Another study that sheds light on the location of lexical information in contextual LMs,
albeit not directly addressing word meaning, is that of Ethayarajh (2019). This work explores
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precisely the degree of contextualisation in token-level representations extracted from BERT,
ELMo and GPT-2 at di�erent layers. The author investigates the similarity estimates that can
be drawn from these representations, which serve as an indication of how context-speci�c they
are and provide useful observations regarding the impact of context on the representations.
One of the most remarkable �ndings are the highly distorted similarities obtained. They are
due to the anisotropy of the vector representations, which occupy only a narrow cone in the
space. This issue a�ects all tested models but seems to be extreme in the last layers of GPT-2,
resulting in highly similar representations even for random words. The author also observes
that representations are more contextualised in the top layers, although contextualisation is
not monotonic. This is consistent with Voita et al. (2019a)’s �ndings, who investigate how
di�erent pre-training tasks (Masked Language Modelling (MLM), traditional LM, andMachine
Translation (MT)) in�uence the �ow of information in the Transformer architecture. Adopting
an information-theoretic point of view, they estimate the mutual information between a token
representation at a certain layer and the input token. An interesting observation is that while
with the LM andMT pre-training objectives information about the input token is monotonically
lost across layers, with anMLM objective this information is initially lost, but is recovered at the
last layer just before prediction. They call these di�erent phases in MLMs “context encoding”
and “token reconstruction”. The fact that the higher layers are the most contextualised, and
contain less information about the input token, could explain why lower layers are better at
type-level lexical tasks.

Someworks use cloze-style queries to probe BERT for type-level lexical semantic knowledge.
Ravichander et al. (2020) report that BERT encodes knowledge about hypernymy better than
static methods, but its performance strongly depends on the prompt used. In a supervised
setup, Bouraoui et al. (2020) �ne-tune BERT for several relations, including lexical ones (e.g.,
meronymy, synonymy, antonymy, collective nouns and light verb constructions) and �nd that
BERT performs better on tasks requiring encyclopedic knowledge than on lexical semantics
tasks, where they obtain mixed results.

Other work studying the lexical knowledge in BERT looks at how word instance representa-
tions re�ect the di�erent senses of words. Wiedemann et al. (2019) and Reif et al. (2019) propose
experiments using representations built from Wikipedia and the SemCor corpus (Miller et al.,
1993), and observe that BERT can organise word usages in the semantic space in such a way
that re�ects the meaning distinctions present in the data. They further demonstrate BERT’s dis-
ambiguation capacity by means of supervised experiments on the word sense disambiguation
(WSD) task. Reif et al. (2019) additionally explore how word meaning in BERT representations
is a�ected by context. They observe that when a sentence c1 containing a word w used in
a speci�c sense s is concatenated (through the conjunction and) with another sentence c2
containing w used in a di�erent sense s′, the embedding of w in c1 moves towards the centroid
of s′. This results in a decrease in WSD performance, and highlights BERT’s high sensitivity to
context.

The interplay between lexical and contextual information in the hidden representations of
LSTM LMs has also been explored. Aina et al. (2019) propose to train diagnostic classi�ers on
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the tasks of retrieving the input embedding of a word and a representation of its contextual
meaning (as re�ected in its lexical substitutes). Their results show that both types of knowledge
(lexical and contextual) seem to be present to varying degrees at di�erent layers and hidden
states. Other works address usage similarity in contextual LMs by evaluating them on WiC
(Pilehvar and Camacho-Collados, 2019) and on CoSimLex (Armendariz et al., 2020b), or
investigate how “distributional” a model is, i.e. whether the similarities derived from its
representations re�ect the expected semantic distributional similarities (Mickus et al., 2020).

The work carried out in this thesis contributes to our understanding of the information en-
coded in contextual language models. Our experiments, and particularly our analyses by layer,
provide valuable insights as to how well the models encode knowledge about di�erent lexical
semantic aspects, and where this knowledge is located. We believe that a better understanding
of what models like BERT are capable of, and of their limitations, can help to trace directions
for improvement.
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In-context Lexical Substitution

3.1 Introduction

As explained in Chapter 2, in-context lexical substitutes are a way of describing a word’s
meaning without recurring to word senses. The lexical substitution task consists in selecting
candidates to substitute a word instance, and ranking them according to their appropriateness
in a given context. For example, virus, insect and error are all possible substitutes of the word
bug. However, when used in a speci�c context (e.g. “I’m sick with the stomach bug”), only
some substitutes are acceptable (i.e. virus). Amodel that is able to use the semantic information
provided by the context should thus rank virus over insect and error in this speci�c sentence.

The importance of context in de�ning the meaning of word instances and selecting the
substitutes that best �t speci�c sentences makes of this task an ideal testbed for contextualised
representations. These representations model complex characteristics of word usage, and
give state-of-the-art performance in a variety of NLP tasks involving syntactic and semantic
processing (Peters et al., 2018a; Devlin et al., 2019).

In this chapter, we present our work investigating the lexical substitution capability of
di�erent context-sensitive word and context representations, including context2vec, ELMo and
BERT. Each model accounts for context in a di�erent way. We want to learn how well di�erent
types of representations, with various underlying architectures and training objectives, are
able to encode word meaning in context. The quality of the substitute ranking proposed by a
speci�c type of representations is taken as an indication of the model’s ability to capture the
semantic information necessary for the lexical substitution task.

We compare these representations on the SemEval 2007 Lexical Substitution task dataset
(McCarthy and Navigli, 2007), LexSub, using existing similarity-based unsupervised methods.
Additionally, we experiment with a way to tune these context-sensitive representations to
sense-speci�c contexts of use (Cocos and Callison-Burch, 2019) and explore the impact of this
tuning on the lexical substitution task. We also compare the performance of contextual models
to baseline models that exploit static word embedding representations for measuring semantic
similarity without directly accounting for context, such as GloVe (Pennington et al., 2014) and
FastText (Mikolov et al., 2018).
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Sentences Substitutes
The panther �red at the bridge and hit a truck. shoot (5)
While both he and the White House deny he was �red, Frum is so
insistent on the fact that he quit on his own that it really makes you
wonder.

sack (5), dismiss (1)

As a coach, we speak and listen with the intent of helping people surface,
question and reframe assumptions.

trainer (3), teacher (2),
instructor (1), tutor (1)

We hopped back onto the coach - now for the boulangerie! bus (5), carriage (1)

Table 3.1: Examples of manually proposed substitutes for the verb �re and the noun coach in the
SemEval-2007 Lexical Substitution dataset (McCarthy and Navigli, 2007). Numbers in brackets indicate
the number of annotators who proposed each substitute.

Our results shed light on the semantic quality of di�erent contextualised representations,
and highlight the importance of the architecture and objectives used for model training in
capturing information relevant for the lexical substitution task.

3.2 The Task

The Lexical Substitution task can be decomposed into two steps: (1) collecting candidate
substitutes, and (2) ranking the candidates according to how well they �t in a given context.
In our experiments, as in previous work (Erk and Padó, 2008; Thater et al., 2010; Apidianaki,
2016), we focus solely on the ranking task: systems are not expected to identify substitutes
from the whole vocabulary, but rather to estimate the suitability of items in a speci�c pool of
substitutes and rank them accordingly. The set of candidate substitutes St = {s1, s2, ..., sn} for a
target word t used in our experiments consists of all the paraphrases proposed for t across all its
instances in the LexSub dataset. In Table 3.1, we present examples of substitutes for words in
context proposed by annotators in the SemEval-2007 Lexical Substitution dataset. Substitutes
are ranked by the number of annotators who proposed them.

Early approaches to solve this task used type-level representations and consisted in adapting
the representation of a word to each speci�c context of use. This was done by combining the
basic vector of the word with the vectors of words found in its immediate context, or standing
in some syntactic relation with it (Erk and Padó, 2008; Thater et al., 2010, 2011). Substitutes
were considered to be appropriate if their representations were similar to this contextualised
representation.

3.3 Data

In this section we describe the dataset used to evaluate the models, LexSub (McCarthy and
Navigli, 2007) and a resource used to tune the representations to speci�c target-substitute (t,
si) pairs, PSTS (Cocos and Callison-Burch, 2019).
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Substitutes PSTS sentences

sack
Yet what are proclamations on employment rights worth, when company bosses
have a ‘divine right’ to hire and �re?

dismiss They chose to �re a lot of people; to throw people out who weren’t needed.

shoot
We hope that the generals and civilian oligarchs will not �re on the honduran
people.

launch
A security source said electrical wiring found at the site suggested plans to �re
the rockets by remote control.

Table 3.2: Examples of PSTS sentences for the verb �re corresponding to each one of its candidate
substitutes (sack, dismiss, shoot and launch).

The LexSub Dataset As explained in Section 2.1.3.2, the LexSub dataset was proposed in
SemEval 2007, task 10 (McCarthy and Navigli, 2007). It contains 2100 sentences, ten for each
of 210 target words. Five annotators were asked to provide at most three substitutes per word
instance, avoiding multi-word expressions when possible. The number of annotators that
proposed a speci�c substitute determines the gold substitute ranking. We evaluate di�erent
lexical substitution methods on the LexSub test set. This subset contains 1710 sentences for
171 target words. To ensure all methods are evaluated in the same conditions, we use a �ltered
version of the test set including 168 target words and 1,584 sentences. More details about the
�ltering procedure are given in Section 3.5.

Paraphrase-Sense-Tagged Sentences (PSTS) As we have seen with the bug example in
the Introduction (Section 3.1), di�erent synonyms or paraphrases might re�ect di�erent senses
of a target word. The PSTS dataset (Cocos and Callison-Burch, 2019) provides sentences
corresponding to di�erent paraphrases of words, and thus to their di�erent senses. Speci�cally,
PSTS contains 10,000 example sentences for each of 3 million target-substitute pairs (t, si),
where the target word is used in the sense described by the substitute si. This dataset was
automatically compiled based on paraphrase pairs from the Paraphrase Database (PPDB,
(Ganitkevitch et al., 2013; Pavlick et al., 2015), Section 2.1.3.2). Sentences come from the same
English-to-foreign bitext corpora used to generate English PPDB. Examples for a (t, si) pair
are sentences where the aligned translation t′ of the target t (e.g. the French term ver for the
English word bug) is also a possible translation of si (e.g. worm). Sentences are ranked by
quality based on how characteristic the translation t′ is of t. In Table 3.2, we give examples of
PSTS sentences for the target word �re used in the senses described by its candidate substitutes
(sack, dismiss, shoot, launch). This resource can be useful for lexical substitution, as it groups
sentences where a target word appears with the meaning of one of its paraphrases. One of our
experiments aims to see whether incorporating this �ne-grained substitute information into
our models can improve performance. For this purpose, we build representations based on the
sentences provided in the resource (Section 3.4.1).
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Figure 3.1: Skip-gram architecture. Mtarget is the embedding matrix typically used to represent words.
Mcontext contains embeddings of words as context elements. |V| is the vocabulary size and N is the size
of the hidden layer.

3.4 Experimental Setup

3.4.1 Context-sensitive Representations

In our experiments, we use context-sensitive word and context representations generated
by di�erent models. Each model accounts for context in a di�erent way depending on the
underlying architecture and training objective.

• Skip-gram (Mikolov et al., 2013a; Melamud et al., 2015). word2vec’s Skip-gram model
learns two distinct representations for every word type, one as a target and another
as a context, both embedded in the same space. This is illustrated in Figure 3.1. The
word-as-context representations are considered internal to the model and are generally
discarded after training, and the output word embeddings represent context-insensitive
target word types. Melamud et al. (2015) proposed to explicitly leverage the word-as-
context embeddings generated within skip-gram in conjunction with the word-as-target
embeddings to model word instances in context. The vectors used by Melamud et al.
(2015) are syntax-based embeddings created with word2vecf (Levy and Goldberg, 2014a).
We use the lighter adaptation proposed by Apidianaki et al. (2018) which circumvents
the need for syntactic analysis, and use 300-dimensional skip-gram word-as-target and
word-as-context embeddings trained on the 4B words of the Annotated Gigaword corpus
(Napoles et al., 2012).

• ELMo (Peters et al., 2018a). In ELMo, word vectors are learned functions of the internal
states of a deep bidirectional language model (biLM). The model contains three layers,
so each token in text has three di�erent representations, one per layer. It is important
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to note that we do not train or �ne-tune the ELMo model for lexical substitution, so
we do not learn a linear combination of the biLM layers in the way ELMo is typically
used. Instead, we experiment with the top layer (ELMo-top) and an average of the three
layers (ELMo-avg) of the biLM (5.5B) trained on 5.5B tokens fromWikipedia and news
crawl data, released by Peters et al. (2018a).1 The representations from this model are
1024-dimensional.

• context2vec (Melamud et al., 2016) learns a generic context embedding function using
a biLSTM network. We use 600-dimensional embeddings from a context2vec model
trained on the ukWaC corpus (Baroni et al., 2009).2

• BERT (Devlin et al., 2019) is a deep Transformer languagemodel trainedwith a cloze task
objective. we use the bert-base-uncased (Devlin et al., 2019) model, trained on 3.3B
tokens from BooksCorpus (Zhu et al., 2015) and Wikipedia, and extract representations
from the top layer (BERT-top) and the average of the last four layers (BERT-avg (4)).3

When a word is split into multiple word pieces, we average the representations of all its
pieces.

We also use the sets of sentences available for each target-substitute pair in PSTS to create
ELMo and context2vec representations for candidate substitutes. For ELMo, we use the
approach proposed by Peters et al. (2018a) for applying the biLM representations to a supervised
word sense disambiguation (WSD) task. More precisely, a representation for a substitute
si ∈ St of a target word t is the average of the ELMo vectors obtained from PSTS sentences
corresponding to this (t, si) pair. For each substitute, we use the top-ranked 100 sentences,
avoiding sentences with a high overlap in words.4 We again use the top layer (PSTS-ELMo-top)
and an average of the three layers (PSTS-ELMo-avg) of the 5.5B ELMo model.

For context2vec (PSTS-c2v), we create context representations from the sentences retained
for a target-substitute (t, si) pair by replacing the target word with a blank slot. A representation
for the substitute si is then created by taking the average of all generated context representations.

Figure 3.2 illustrates how we obtain substitute embeddings from PSTS sentences with
ELMo and context2vec. The obtained candidate vectors are used in the lexical substitution
methods described in Section 3.4.2.

3.4.2 Lexical Substitution Methods

Given an instance of a target word t in a context C and a set of candidate substitutes St =
{s1, s2, ..., sn}, each model provides a ranking of the substitutes depending on how well they

1https://allennlp.org/elmo
2https://github.com/orenmel/context2vec
3When the experiments described in this chapter were carried out, the BERTmodel had only recently appeared.

We later applied it to the Lexical Substitution task using one of the best-performing methods (tTs, Section 3.4.2)
and report the obtained results here.

4We use an overlap threshold of 60%. This cleaning serves to discard highly similar sentences and ensure a
varied vocabulary in the retained dataset. If for some substitutes less than 100 sentences are available after this
�ltering, we retain them all.
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Figure 3.2: Depiction of the embeddings derived from PSTS for the target word bug used in its virus sense.
We use word instance embeddings for ELMo (PSTS-ELMo-top/avg) and context vectors for context2vec
(PSTS-c2v).

describe the meaning of t in C. Higher ranked substitutes should be (a) good paraphrases of
the target, and (b) a good �t in the context.

In what follows, we describe how the di�erent methods represent words and contexts, and
how they use these representations to perform substitute ranking for every word instance. An
illustration of the di�erent methods can be found in Figure 3.3.

3.4.2.1 Target-to-substitute similarity (tTs)

ELMo and BERT representations are contextualised, meaning that the embedding that is
generated for a token is a function of the full sentence in which it appears, and therefore it
already contains information from the surrounding context. We propose a substitute ranking
method that uses solely target-to-substitute (tTs) similarity, as measured by the cosine similarity
of the corresponding ELMo/BERT representations.

Given a new context C of an instance of the target word t to be substituted, we �rst obtain
an ELMo/BERT representation corresponding to t in C. Then, we replace t with all its potential
substitutes in St, one at a time, as shown in Table 3.3, and obtain the vector for each substitute
si in the context C by feeding the new sentence as input to the model. Substitutes are then
ranked by the cosine similarity of the target word’s vector in C with that of the vector of each
substitute si in the same context.

They chose to �re a lot of people; to throw people out who weren’t needed.
They chose to sack a lot of people; to throw people out who weren’t needed.

They chose to dismiss a lot of people; to throw people out who weren’t needed.
They chose to shoot a lot of people; to throw people out who weren’t needed.
They chose to launch a lot of people; to throw people out who weren’t needed.

Table 3.3: Substitution procedure to obtain contextualised candidate substitute representations from
ELMo and BERT. In the tTs method, the vector of �re in this sentence is compared to those of sack,
dismiss, shoot and launch in the same context.

We use this method with PSTS-ELMo as well. For each context C, possible substitutes in St
are ranked according to the similarity of their PSTS-ELMo embedding (obtained from PSTS) to
the ELMo embedding of the target word t in C.
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Figure 3.3: Illustration of the type of context information the di�erent methods use: a) tTs uses target to
substitute similarity only (Section 3.4.2.1); b) AddCos also uses similarities between a candidate and
each of the words in the surrounding context (Section 3.4.2.2); c) c2vf makes use instead of a unique
embedding representing the whole sentential context (Section 3.4.2.3).

3.4.2.2 AddCos: skip-gram target word and context word embeddings

Melamud et al. (2015)’s method for lexical substitution is based on the word2vec skip-gram
word embedding model (Mikolov et al., 2013a). The novelty of Melamud et al.’s approach
is that it leverages the word-as-context embeddings in combination with the word-as-target
embeddings for the lexical substitution task. The method ranks substitutes based on a measure
that combines two types of similarity: a) target-to-substitute, showing how similar a potential
substitute is to the target word, and b) target-to-context, re�ecting the substitute’s compatibility
with a given sentential context. Similarities are estimated using the vector cosine distance
between the respective skip-gram embeddings. Themeasures di�er in theway they combine the
similarities together, using either an arithmetic or a geometrical mean. Following Apidianaki
et al. (2018), we choose themore �exible additive approachwhich, contrary to themultiplicative
variants, does not require high similarities in all elements of the product to highly rank a
substitute, but can yield a high score even if one of the elements in the sum is zero. The
Addmeasure (Equation 3.4.2.2, hereafter called AddCos because of the cosine function used)
estimates the substitutability of a candidate substitute si of the target word t in context C,
where C corresponds to the set of the target word’s context elements in the sentence, and c
corresponds to an individual context element. In Equation 3.4.2.2, we abuse notation and use t
and si to refer to the word-as-target embeddings of the target word and a possible substitute. c
denotes the word-as-context embedding of a context word. The amount of context words to
be used can be limited to a �xed-size window around the target word. We experiment with
|C| = 2 and |C| = 8 (one and four words at each side of the target, respectively). cos refers to
the cosine similarity between two vectors.

AddCos(t, si, C) =
cos(si, t) +

∑

c∈C
cos(si, c)

|C| + 1
(3.1)

With this method, we use the 300-dimensional skip-gram word-as-target and word-as-
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context embeddings described in Section 3.4.1. We also apply the AddCosmethod to ELMo and
BERT, as well as to PSTS-ELMo embeddings. When using standard ELMo/BERT embeddings,
the target and context word representations of a sentence (t and c) are their corresponding
ELMo/BERT vector in that sentence, and the vector of a candidate substitute si is obtained by
substituting the target word by the candidate si in the same context, as described in Section
3.4.2.1 and Table 3.3. To adapt this to PSTS-ELMo embeddings, substitute representations are
replaced by their corresponding PSTS-ELMo vectors.

3.4.2.3 The context2vec-based model (c2vf )

In the context2vec model, words and contexts are embedded in the same space, which allows
for calculating target-to-context, context-to-context and target-to-target similarities. A score
for a candidate substitute is computed using the following formula:

c2vf (t, si,C) =
cos(si, t) + 1

2
×
cos(si, C) + 1

2
(3.2)

where t and si are the word embeddings of the target and a substitute, and C is the context2vec
context vector of the sentence with an empty slot at the target’s position.

We also use Equation 3.2 (hereafter called c2vf ) with standard ELMo and PSTS-ELMo
vectors. As with the AddCosmethod, we represent the target word t in context by its ELMo
embedding, and the substitute vectors are obtained with the in-place substitution approach
described above (cf. Sections 3.4.2.1 and Table 3.3). The context vector (C) is the average of the
ELMo embeddings of all words in the context. To test PSTS-ELMo embeddings in this setting,
each substitute is represented by its PSTS-ELMo embedding.

We also experiment with PSTS-c2v embeddings, i.e. standard context2vec embeddings
tuned on the PSTS dataset. In this con�guration, target and context are represented with
standard context2vec embeddings, and substitutes are represented with PSTS-c2v embeddings.

Finally, we use context2vec embeddings removing the target-to-substitute component of
this formula, leaving only substitute-to-context similarity (s2C). As explained in Section 3.2,
the pool of candidate substitutes we use is of high quality, as it contains true paraphrases of
target words. We expect target-to-substitute similarity to be less crucial in such conditions.

3.4.2.4 Baselines

We compare our models to a context-insensitive baseline that solely relies on the target-to-
substitute similarity of standard pre-trained word embeddings: we use 300-dimensional GloVe
vectors (Pennington et al., 2014)5 and 300-dimensional FastText vectors, both trained on
Common Crawl (Mikolov et al., 2018).6 Similar to tTs (Section 3.4.2.1), this approach only
considers target-to-substitute similarity, but these static representations do not have any access
to context information, and therefore the ranking proposed for a target word is always the same
regardless of context.

5https://nlp.stanford.edu/projects/glove
6https://fasttext.cc/docs/en/english-vectors.html
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We also propose an enriched version of the baseline model by creating a simple representa-
tion of context: the average of the static embeddings of words in a sentence. We then compare
target and substitute vectors to the generated context vector using the context2vec formula
(Equation 3.2) We call these models GloVe + context and FastText + context.

3.5 Evaluation

We compare the performance of the proposed lexical substitution models on the substitute
ranking task, where models assign scores to all candidate substitutes in St for a target word
t according to their suitability in new contexts. For evaluation, we use the test set from the
SemEval-2007 Lexical Substitution task. We �lter the test set to preserve only target words
and substitutes present in PPDB 2.0 (XXL) which have a vector available in all tested models,
to ensure all methods use exactly the same substitute pool per target word. Target words for
which none or only one substitute was left were removed. The �ltered test set used in our
experiments includes 168 target words and 1,584 sentences.

The ranking performed by each model is compared to the gold ranking by means of Gen-
eralised Average Precision (GAP) (Kishida, 2005). GAP measures the quality of a ranking
by comparing the resulting ranked list with the gold standard annotation, using substitution
frequency as weights (that is, the number of annotators that suggested each substitute). GAP
scores range between 0 and 1. A score of 1 indicates a perfect ranking where all correct substi-
tutes precede all incorrect ones, and high-weight substitutes precede low-weight ones (Thater
et al., 2010). We use the GAP implementation from Melamud et al. (2015).7

The main formula for GAP is in Equation 3.3. Having n candidate substitutes ranked by a
model frommost to least suitable, xi denotes the gold weight (annotation frequency) associated
with the ith substitute. yi refers to the gold weight of the ith substitute in the gold ranking R.
I(xi) (Equation 3.4) is 0 if the ith substitute in the predicted ranking is not present in the gold
ranking (i.e. has 0 frequency), and 1 otherwise. xi (Equation 3.5) is the average of the gold
weight values up to the ith substitute in the predicted ranking. Analogously, y

i
is the average

of the gold weight values up to the ith substitute in the gold ranking.

GAP =

∑n

i=1
I(xi)xi

∑|R|

i=1
I(yi)yi

(3.3)

I(xi) =

⎧

⎨

⎩

0 xi = 0

1 xi > 0
(3.4)

xi =

∑i

k=1
xk

i
(3.5)

For a clearer picture of the scores assigned by this metric to rankings of di�erent quality,
we provide in Table 3.4 a few made-up toy rankings with their corresponding GAP scores. Note

7https://github.com/orenmel/lexsub
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Gold ranking
sack (5) dismiss (1) shoot (0) launch (0)

Example rankings GAP
sack dismiss shoot launch 1.000
sack shoot dismiss launch 0.875

dismiss sack shoot launch 0.500
shoot dismiss launch sack 0.250
launch shoot dismiss sack 0.229

Table 3.4: Examples of GAP scores that would be assigned to made-up example rankings of di�erent
quality.

that a GAP score of 0 is obtained when none of the substitutes proposed by the model is present
in the gold ranking. This is not possible with our models, as they rank all candidates available,
and these come from the LexSub dataset itself. We calculate and report, along with the results,
a lower bound of the GAP score in these conditions, corresponding to the GAP of a model that
has access to the same pool of substitutes as all our models, but systematically predicts the
reverse of the gold ranking.

3.6 Results

The results obtained by the proposed methods in the substitute ranking task are given in Table
3.5. Results show that BERT (tTs) outperforms other methods, and context2vec performs better
than ELMo in this task. BERT’s singularity lies in its training task. Instead of predicting the
immediate next word based on the previous (left-to-right) or posterior (right-to-left) token,
BERT is trained with a cloze task where words in di�erent parts of the sentence are masked
and they have to be predicted using information from the whole sentence. In addition, it has
a deeper, Transformer architecture. We think the superiority of context2vec with respect to
ELMo is due to its training objective as well: context2vec is explicitly trained with pairs of
target words and sentential contexts, optimizing the similarity of context vectors and potential
�llers. In contrast, ELMo representations are trained as a general language model that predicts
the immediate next tokens, while the target-to-substitute and substitute-to-context similarities
used by the lexical substitution methods are not explicitly accounted for. The underlying
assumption of the AddCos and c2vf methods that these similarities need to be high for good
substitutes, does not thus apply in the case of ELMo embeddings.

The average and top layer con�gurations give comparable results both with ELMo and
BERT, with the average performing slightly better in all settings. Peters et al. (2018b) present
a thorough analysis of the performance of di�erent layers of the biLM models in di�erent
tasks, which shows that top layers are better suited for semantic-related tasks or long-distance
phenomena than lower layers. In the supervised word sense disambiguation (WSD) evaluation
presented in Peters et al. (2018a), results obtained using the top layer were slightly better than
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Method Vectors GAP PSTS-Vectors GAP

AddCos (|C|=2)
Skip-gram (Apidianaki et al., 2018) 0.527
ELMo-avg 0.527 PSTS-ELMo-avg 0.494
ELMo-top 0.513 PSTS-ELMo-top 0.491

AddCos (|C|=8)
Skip-gram (Apidianaki et al., 2018) 0.520
ELMo-avg 0.498 PSTS-ELMo-avg 0.481
ELMo-top 0.476 PSTS-ELMo-top 0.478

c2vf
UkWac c2v (Melamud et al., 2016) 0.587 PSTS-c2v 0.492
ELMo-avg 0.529 PSTS-ELMo-avg 0.490
ELMo-top 0.516 PSTS-ELMo-top 0.480

tTs

ELMo-avg (Peters et al., 2018a) 0.534 PSTS-ELMo-avg 0.493
ELMo-top (Peters et al., 2018a) 0.531 PSTS-ELMo-top 0.488
BERT-avg (4) (Devlin et al., 2019) 0.634
BERT-top (Devlin et al., 2019) 0.627

s2C c2v (Melamud et al., 2016) 0.597
Baseline + context GloVe (Pennington et al., 2014) 0.467
(c2vf) Fasttext (Mikolov et al., 2018) 0.491

Baseline (tTs)
GloVe (Pennington et al., 2014) 0.465
Fasttext (Mikolov et al., 2018) 0.485

GAP lower bound - 0.156

Table 3.5: Results of the substitute ranking experiment with all methods and embedding types. For
AddCos models, |C| refers to the size of the window: |C|=2 uses one context word at each side of the
target.

those of the middle layer. We believe the slight advantage of the avg models, compared to
top, in this task, highlights an important di�erence between Lexical Substitution and WSD.
In Lexical Substitution, the selected substitute needs to correctly describe the meaning of the
target word instance and to be a good �t in the context, whereas selection in WSDmainly relies
on semantic adequacy. For example, when selecting one among available senses of a word
in a resource like WordNet, the synonyms found in the selected synset might not all be good
in-context substitutes. We believe the ELMo representation obtained by averaging the three
layers to contain information regarding the semantic, syntactic and collocational adequacy
of a word. This does not contradict previous �ndings, since the semantic tasks where the top
ELMo layer was found to perform best were tasks that involve longer range dependencies and
a more general notion of semantic similarity (e.g. coreference resolution).

Aina et al. (2019)’s analysis of word and context information in the hidden representations
of a biLSTM language model provides another possible explanation for this outcome with the
ELMomodel. The representations corresponding to a word t seem to contain more information
about t and possible substitutes si in the early layers, as the last layers would be more focused
on next word prediction.

The results obtained for PSTS-ELMo-* and PSTS-c2v con�gurations show that ELMo and
context2vec representations do not bene�t from the addition of substitute-speci�c data in
the form of PSTS sentences, rather the contrary. Whereas it looks like PSTS is introducing
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Sentence on theway out of the parking lot johnny felt a thump
Candidate substitutes for
way.n

sense, means, aspect, technique, passage, respect, direc-
tion, characteristic, journey, method, route, practice, fash-
ion, manner

Gold ranking route (3), passage (1), journey (1)

Table 3.6: An instance of the target noun way (way.n) from the SemEval-2007 test set, its candidate
substitutes, and the gold substitute ranking used for evaluation.

Method Vectors Ranked substitutes

c2vf c2v (Melamud et al., 2016)
route, journey, manner, passage, direction,
means, sense, aspect, method, fashion, respect,
technique, characteristic, practice

tTs BERT-avg (4)
journey, route, manner, passage, sense,
aspect, direction, method, respect, means,
fashion, characteristic, technique, practice

Baseline
GloVe (Pennington et al.,
2014)

sense, means, manner, journey, route, direction,
respect, aspect, practice, method, technique,
fashion, passage, characteristic

Baseline + ctxt
GloVe (Pennington et al.,
2014)

sense, means, manner, direction, respect,
journey, aspect, route, practice, method,
passage, technique, fashion, characteristic

Table 3.7: Examples of substitute rankings for the instance of the noun “way” given in Table 3.6 produced
by the two best-performing methods (c2vf with standard c2v embeddings and tTs with BERT-avg (4)
embeddings) and the two methods with lowest GAP (baseline and baseline + context with GloVe
embeddings). Correct substitutes are marked in boldface to highlight their position in the ranking
proposed by each model.

confusion to an already good model, we believe this could be due to the small amount of PSTS
sentences used for tuning (100), which biases the model towards those sentences. Another
reason could be that the top-ranked sentences in PSTS are not always high quality, i.e. they
might not contain, or not be representative enough of, the sense being expressed.

The baseline methods, which slightly bene�t from the addition of context, are not very far
behind most PSTS-ELMo-* models. FastText vectors are trained with word2vec’s CBOW archi-
tecture using position-dependent weighting, which results in richer context representations
and is, we believe, the main reason of its advantage over GloVe on this task.

The fact that themodel which only relies on substitute-to-context similarity (s2C) is superior
to its counterpart that also uses target-to-substitute similarity (c2vf, UkWaC c2v) is probably due
to the high quality of the selected pool of substitutes, which come from manual annotations
and are therefore correct paraphrases of target words.

Finally, we observe that, for the AddCos method, a smaller context window around the
target word (|C|=2) is consistently slightly more e�ective than a bigger one (|C|=8). This
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suggests that the most relevant context clues for lexical substitution are found in the close
vicinity of a target word.

In Tables 3.6 and 3.7, we give an example of an instance of the target word way and the
substitute ranking proposed by some of the models. In Table 3.6, we also provide the candidate
substitutes considered for the target word. Numbers in parentheses denote the number of
annotators that proposed each substitute. We observe that the stronger models which use the
c2v formula with the standard context2vec vectors (trained on UkWac), and the tTs method
with BERT-avg (4), rank substitutes better than the baseline models.

To sum up, we have compared di�erent types of representations on the lexical substitution
task as a way of evaluating their ability to model word meaning in context. BERT representa-
tions, followed by context2vec, are the best representations in this respect.

3.7 Conclusion

We analysed the behavior of di�erent word and context representations in an in-context sub-
stitute ranking task. The compared methods di�er as to the type of similarity they consider
between words (target-to-substitute) and contexts (substitute-to-context). We experimented
with the standard representations from each embedding model, and tuning them to the lex-
ical substitution task using an automatically compiled collection of sentences representing
target-substitute pairs. Our results show that models trained with a slot-�lling objective that
optimises the inter-dependencies between candidate substitutes and context, like context2vec
and BERT, are a better �t for the Lexical Substitution task than models with more traditional
language model objectives focused on next word prediction, like ELMo. This is because they
encode target and local context information appropriately for this task, which ensures the
semantic and syntactic adequacy of the selected substitutes. BERT and context2vec are thus
more suited to representing word meaning in context.

Tuning ELMo and context2vec on the sentences of the PSTS dataset, which represent a
speci�c sense described by a substitute, did not help themodels. Still, the resource has potential
to be used for lexical substitution in other ways, for example for training supervised neural
models for this task.

Recently, a few interesting approaches for Lexical Substitution with BERT and other contex-
tual models were proposed. Zhou et al. (2019) introduced amodi�cation to BERT’s architecture
which consists in an embedding dropout mechanism that partially masks the target word by
setting some of its embedding dimensions to 0. With this procedure, when used as a language
model, BERT receives only vague information about the target word and predicts similar –but
not identical– words that could replace it. They also propose to rank candidates based on the
similarity of the sentence before and after substitution, with the goal of rewarding substitutes
that cause a minimal meaning change in the sentence. Arefyev et al. (2020) present an exten-
sive comparison of (masked) language models on the lexical substitution and the Word Sense
Induction (WSI) tasks. Similar to Zhou et al. (2019) and contrary to our work where we extract

71



Chapter 3. In-context Lexical Substitution

representations from themodels, they exploit the word probabilities assigned by these language
models, and experiment with several ways of injecting target word information. They �nd
XLNet (Yang et al., 2019) to perform best on lexical substitution, and obtain state-of-the-art
results on a WSI task using the substitutes predicted by this model.

In the upcoming chapter, we continue investigating the quality of word meaning represen-
tation in contextual models. We use a task that is highly related to lexical substitution: word
usage similarity estimation, and exploit the similarity between the two tasks to improve the
models’ word usage similarity predictions.

72



Chapter 4

Word Usage Similarity Estimation

4.1 Introduction

In the previous chapter, we used the lexical substitution task to investigate the ability of di�erent
context-sensitive representations to represent word meaning in context. In this chapter, we
further explore this question using another task: word usage similarity estimation. This task
involves estimating the semantic proximity of word instances in di�erent contexts (Erk et al.,
2009). A model that makes good use of the semantic information in a word’s context should
be able to generate representations that re�ect the semantic similarity of word instances. For
example, we want the representations of fan in the sentences “turn on the fan” and “the fan is
not working” to be similar to each other, and dissimilar from that in “I’m your biggest fan”.

This task is strongly related to lexical substitution. The set of substitutes proposed by
annotators for a word in a sentence represent its meaning. The overlap of substitutes of two
instances of the word is an estimate of their semantic proximity: in the �rst two sentences,
ventilator would be acceptable, but not admirer; whereas admirer would be the correct choice
in the third sentence.

We present our experiments using word and sentence representations for usage similarity
prediction. First, we experiment with an unsupervised approach which relies on the cosine
similarity of di�erent kinds of representations. In order to improve the quality of the predictions,
we exploit the similarity between word usage similarity and lexical substitution in supervised
models. These models combine embedding similarity with features based on substitute overlap.

Usage similarity can be viewed as a classical Semantic Textual Similarity task (Agirre et al.,
2012, 2016) with a focus on a particular word in the sentence. This connection motivated
us to apply models initially proposed for sentence similarity to usage similarity prediction.
We perform an extensive comparison of existing word, context and sentence representation
methods on this task, including context2vec, BERT, and the Universal Sentence Encoder (Cer
et al., 2018).

Past work (Erk et al., 2009; McCarthy et al., 2016) has used manually proposed substitutes
in context as a proxy for measuring the usage similarity of words. We propose to use automati-
cally obtained substitutes, bypassing the need for manual substitute annotations. Automatic
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substitutes have proven to be useful for the related task of Word Sense Induction (Alagić et al.,
2018). We apply a lexical substitution method from the previous chapter, and use di�erent
measures of substitute overlap. We also propose a methodology for collecting new training data
for supervised usage similarity estimation from a dataset annotated with lexical substitutes.

We test our models on benchmark datasets containing gold graded and binary word usage
similarity judgments: Usim (Erk et al., 2009, 2013) and WiC (Pilehvar and Camacho-Collados,
2019).

A previous attempt at automatic and unsupervised usage similarity prediction involved
obtaining vectors encoding a distribution of topics for every target word in context (Lui et al.,
2012). Usage similarity was approximated by the cosine similarity of the resulting topic vectors.
We showhow contextualised representations, and a supervisedmodel that uses themas features,
outperform topic-based methods on this task.

We also describe our participation in the SemDeep-5 WiC shared task (Espinosa-Anke
et al., 2019), where we applied this methodology to the latest version of the WiC dataset, and
present an analysis of BERT’s usage similarity estimation capability through all its layers.

Our experiments reveal to what extent the organisation of word instances in the space of
di�erent representations re�ects their semantics. They also help to determine the utility of
substitute-based features for improving word usage similarity predictions.

4.2 Data

The datasets described in this Section have been introduced in more detail in Sections 2.1.3.2
and 2.1.3.3.

LexSub and Usim The SemEval-2007 Lexical Substitution dataset (LexSub) contains in-
stances of words hand-labelled with meaning-preserving substitutes. A subset of LexSub has
also beenmanually annotated with graded pairwise usage similarity judgments (Erk et al., 2009,
2013). The scores range from 1 to 5 (dissimilar/similar word instances). In our experiments,
we use 2,4661 sentence pairs from the Usim dataset for training, development and testing of
automatic usage similarity prediction methods.

Table 4.1 shows examples of sentence pairs from the Usim dataset alongside the gold
substitutes and usage similarity scores assigned by the annotators. For comparison, we also
include in the Table the substitutes selected for these instances by the automatic context2vec
substitution method used in our experiments (more details in Section 4.3.2). We also use
the gold substitutes in LexSub to train the models, in order to assess the impact of automatic
substitutes compared to manual ones on this task.

Concepts-in-Context (CoInCo) Given the small size of the Usim dataset, we extract addi-
tional training data for our models from the Concepts in Context (CoInCo) corpus (Kremer

1This is the number of pairs that have been assigned a score inUsim for whichmanual and automatic substitutes
are available.
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Sentences Substitutes

The local papers took photographs
of the footprint.

gold: newspaper, journal
auto-lscnc: press, newspaper, news, report, picture
auto-ppdb: newspaper, newsprint

Now Ari Fleischer, in a pitiful letter
to the paper, tries to cast Milbank as
the one getting his facts wrong.

gold: newspaper, publication
auto-lscnc: press, newspaper, news, article, journal, thesis, peri-
odical, manuscript, document
auto-ppdb: newspaper

This is also at the very essence or
heart of being a coach.

gold: trainer, tutor, teacher
auto-lscnc: teacher, counsellor, trainer, tutor, instructor
auto-ppdb: trainer, teacher, mentor, coaching

We hopped back onto the coach –
now for the boulangerie!

gold: coach, bus, carriage
auto-lscnc: bus, car, carriage, transport
auto-ppdb: bus, train, wagon, lorry, car, truck, carriage, vehicle

Table 4.1: Examples of highly similar and dissimilar usages from the Usim dataset for the nouns paper
(Usim score = 4.34) and coach.n (Usim score = 1.5), with the substitutes assigned by the annotators
(gold). For comparison, we include the substitutes that were selected for these instances by the
automatic substitution method used in our experiments (based on context2vec embeddings) from two
di�erent pools of substitutes (auto-lscnc and auto-ppdb). More details on the automatic substitution
con�gurations are given in Section 4.3.2.

et al., 2014), which contains manually selected substitutes for all content words in a sentence.
CoInCo provides no usage similarity scores that could be used for training. We construct
additional training data as follows: we gather all instances of a target word with at least four
substitutes, and keep pairs with (1) no overlap in substitutes, and (2) minimum 75% substitute
overlap.2 We view the �rst set of pairs as examples of completely di�erent usages of a word
(diff), and the second set as examples of identical usages (same). The two sets are unbalanced
in terms of number of instance pairs (19,060 vs. 2,556). We balance them by keeping in diff
the 2,556 pairs with the highest number of substitutes.

We also annotate the data with substitutes using context2vec (Melamud et al., 2016) (cf.
Section 4.3.2). We apply an additional �ltering to the sentence pairs extracted from CoInCo,
discarding instances of words that are not in the context2vec vocabulary and have no embed-
dings. We are left with 2,513 pairs in each class (5,026 in total). We use 80% of these pairs
(4,018) together with the Usim data to train our supervised Usim models described in Section
4.3.3.3

Word-in-Context (WiC) The third dataset we use in our experiments is WiC (Pilehvar and
Camacho-Collados, 2019), version 0.1.4 WiC provides pairs of contextualised target word

2Full overlap is rare since annotators propose somewhat di�erent sets of substitutes, even for instances with
the same meaning. Full overlap is observed for only 437 of all considered CoInCo pairs (0.3%).

3The dataset is available at https://github.com/ainagari/coinco_usim_data/. We kept aside 20% of the
extracted examples for development and testing purposes.

4More details about this version are found in Pilehvar and Camacho-Collados (2018) and https://pilehvar.
github.io/wic/.
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instances describing the same or di�erent meaning, framing in-context sense identi�cation
as a binary classi�cation task. WiC 0.1 comes with an o�cial train/dev/test split containing
7,618, 702 and 1,366 sentence pairs, respectively.

4.3 Methodology

We experiment with two ways of predicting usage similarity. In Section 4.3.1, we present an
unsupervised approach that provides direct usage similarity assessments based on the cosine
similarity of di�erent kinds of word and sentence representations. We also design a supervised
approach that combines embedding similarity with features based on substitute overlap. In
Section 4.3.2, we describe how substitute-based features were extracted, and in Section 4.3.3,
we introduce the supervised models.

4.3.1 Direct Usage Similarity Prediction

In the unsupervised prediction setting, we apply di�erent types of pre-trained word and sen-
tence embeddings as follows: we compute an embedding for every sentence in the Usim
dataset, and calculate the pairwise cosine similarity between the sentences available for a
target word. Then, for every embedding type, we measure the correlation between sentence
pair similarities and gold usage similarity judgments in the Usim dataset, using Spearman’s �
correlation coe�cient. We report the results in Section 4.4. We experiment with the following
embedding types:

• GloVe embeddings (Pennington et al., 2014): non-contextualised word representations
which merge all senses of a word in one vector. We use 300-dimensional GloVe embed-
dings pre-trained on Common Crawl (840B tokens).5 The representation of a sentence is
obtained by averaging the GloVe embeddings of all words in the sentence.

• SIF (Smooth Inverse Frequency) embeddings are sentence representations built by ap-
plying dimensionality reduction to a weighted average of static embeddings of words in
a sentence (Arora et al., 2017). We use SIF in combination with GloVe vectors.

• Context2vec embeddings (Melamud et al., 2016). We use a context2vec model pre-
trained on the ukWaC corpus (Baroni et al., 2009)6 to compute embeddings for sentences
with a blank at the target word’s position.

• ELMo (Peters et al., 2018a). We use a 512-dimensional biLM pre-trained on approxi-
mately 800M tokens of news crawl data.7 We use out-of-the-box embeddings (without
tuning) and experiment with the top layer, and with the average of the three hidden
layers. We represent a sentence in two ways: with the contextualised ELMo embedding

5https://nlp.stanford.edu/projects/glove/
6https://github.com/orenmel/context2vec
7https://allennlp.org/elmo
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obtained for the target word, and with the average of ELMo embeddings for all words in
a sentence.

• BERT (Devlin et al., 2019). Weuse the average of the last 4 layers of the bert-base-uncased8

model and create target word and sentence representations in the same way as for ELMo:
using either the BERT embedding of the target word,9 or the average of the BERT em-
beddings for all tokens in a sentence.

• Universal Sentence Encoder (USE) (Cer et al., 2018) makes use of a Deep Averaging
Network (DAN) encoder that averages word and bigram embeddings and passes them
to a feedforward network to create sentence representations. The model is trained in a
multitask setting and has been shown to improve performance on di�erent NLP tasks
through transfer learning.10

• doc2vec is an extension of word2vec to the sentence, paragraph or document level (Le
and Mikolov, 2014). One of its forms, dbow (distributed bag of words), is based on the
skip-gram model, where it adds a new feature vector representing a document. We use a
dbow model trained on English Wikipedia released by Lau and Baldwin (2016).11

4.3.2 Substitute-based Feature Extraction

In this Section we present our methodology for ranking substitutes for word instances (Section
4.3.2.1), and for selecting the higher-ranked substitutes, which best describe the meaning of
each instance (Section 4.3.2.2). We use these substitutes to extract features for our supervised
word usage similarity models (Section 4.3.2.3).

4.3.2.1 Automatic Lexical Substitution

We generate rankings of substitutes for words in context using the context2vec-based method
with context2vec embeddings (Melamud et al., 2016). This method has been described in the
Lexical Substitution Chapter (Section 3.4.2.3). It performs well and is not as computationally
expensive as the BERT-based lexical substitution model (Section 3.4.2.1). We use two pools of
candidates: (a) paraphrases of the word in the Paraphrase Database (PPDB) 2.0 XXL package
(Ganitkevitch et al., 2013; Pavlick et al., 2015) (auto-ppdb), and (b) substitutes that were
proposed for each word in LexSub and CoInCo (auto-lscnc). In our experiments on the WiC
dataset, where no substitute annotations are available, we only use auto-ppdb as our candidate
pool. We use the s2Cmethod described in Section 3.4.2.3 (which relies on substitute-to-context
similarity only) for auto-lscnc, because substitutes have been manually selected and are,
therefore, of high quality. Substitutes are semantically similar to the target, consequently
context2vec just needs to rank them according to how well they �t the new context. For

8https://github.com/google-research/bert
9When a word is split into multiple word pieces (Wu et al., 2016), we average them to obtain its representation.
10https://tfhub.dev/google/universal-sentence-encoder/2
11https://github.com/jhlau/doc2vec
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Figure 4.1: The PPDB �ltering strategy �nds a cut-o� point in a substitute ranking by checking what
adjacent substitutes are not a paraphrase pair in PPDB. The absence of a pair in PPDB is seen as a
change in meaning in the ranking.

auto-ppdb, we instead use the full c2vf formula. We do this because PPDB can contain noisy
candidates that are not good paraphrases, due to it being built automatically, and target-to-
substitute similarity can help rank them lower.

Following this procedure, we obtain a ranking of the candidate substitutes for each word
instance in the Usim, CoInCo and WiC datasets.

4.3.2.2 Substitute Filtering

For every target word instance, all candidate substitutes available for the target in each pool are
ranked. Consequently, the automatic annotations produced for di�erent instances of the target
all include the same set of substitutes, but in di�erent order. This does not allow for the use of
measures based on substitute overlap. In order to use this type of measures, we propose ways
to �lter the generated rankings, and keep for each instance only substitutes that are a good
�t in context. We test di�erent �lters to discard low quality substitutes from the annotations
proposed by context2vec for each instance:

• PPDB: Given a ranking R of n substitutes R = [s1, s2, ..., sn] proposed by context2vec,
we form pairs of substitutes in adjacent positions {si ↔ si+1}, and check whether they
exist as paraphrase pairs in PPDB 2.0 XXL. We expect substitutes that are paraphrases of
each other to be similarly ranked. If si and si+1 are not paraphrases in PPDB, we keep all
substitutes up to si and use this as a cut-o� point, discarding substitutes present from
position si+1 onwards in the ranking. The idea is that good quality substitutes should be
both high-ranked and semantically related. Figure 4.1 illustrates the process followed in
this �ltering strategy along with an example from the Usim dataset.

• GloVe word embeddings: We measure the cosine similarity (cos) between GloVe em-
beddings of adjacent substitutes {si ↔ si+1} in the ranking R obtained for a new instance.
We �rst compare the similarity of the �rst pair of substitutes (cos(s1, s2)) to a lower bound
similarity threshold T. If cos(s1, s2) exceeds T, we assume that s1 and s2 have the same
meaning, and use cos(s1, s2) as a reference similarity value, S, for this instance. The
middle point between the two values, M = (T + S)∕2, is then used as a threshold to
determine whether there is a shift in meaning in subsequent pairs. If cos(si, si+1) < M,
for i > 1, then only the higher ranked substitute (si) is retained and all subsequent
substitutes in the ranking are discarded. The intuition behind this calculation is that if
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cos is much lower than the reference S (even if it exceeds T), substitutes possibly have
di�erent senses.

• Highest-ranked X substitutes. We also test two simple baselines, which consist in
keeping the 5 and 10 highest-ranked substitutes for each instance.

We test the e�ciency of each �lter on the portion of the LexSub dataset that was not
annotated for Usage Similarity. We compare the substitutes retained for each instance after
�ltering to its gold LexSub substitutes. Filtering results are reported in Appendix A.1.1.

The best �lters were GloVe word embeddings (T = 0.2) for auto-lscnc, and the PPDB
�lter for auto-ppdb.

4.3.2.3 Feature Extraction

After annotating the Usim sentences with substitutes and �ltering, we extract features related
to the extent of substitute overlap. For each sentence pair with rankings R1 and R2, we obtain
the following features.

• Common substitutes. The proportion of shared substitutes between the two instances
of a target word, as shown in equation 4.1

common substitutes = |R1 ∩ R2|

|R1 ∪ R2|
(4.1)

• GAP score. The average of the Generalised Average Precision (GAP) score (Kishida,
2005) taken in both directions (GAP(R1, R2) andGAP(R2, R1)). GAP (introduced in detail
in Section 3.5) is a measure that compares two rankings considering not only the order of
the ranked elements but also their weights. We use the frequency in the manual LexSub
annotations (i.e. the number of annotators who proposed each substitute) as the weight
for gold substitutes, and the context2vec score for automatic substitutes.

• Substitute cosine similarity. We form substitute pairs (R1 ↔ R2) and calculate the
average of their GloVe cosine similarities. This feature shows the semantic similarity of
substitutes, even when overlap is low.

4.3.3 Supervised Usim Prediction

We train linear regressionmodels to predict Usim scores for word instances in di�erent contexts
using as features the cosine similarity of the di�erent representations (from Section 4.3.1), and
the substitute-based features described in 4.3.2.

In order to be able to evaluate the performance of our models separately for each of the 56
target words in the Usim dataset, we train a separate linear regression model for each word in a
leave-one-out setting. Each time, we use 2,196 pairs for training, 225 for development and 4512

for testing. Each model is evaluated on the sentences corresponding to the target word that was
12With the exception of four lemmas which had 36 pairs, and one which had 44.
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Embeddings Correlation

Full sentence
embedding

GloVe 0.142
SIF 0.274
c2v 0.290
USE 0.272
doc2vec 0.124
ELMo avg 0.254
ELMo top 0.248
BERT avg (4) 0.289

Target word
embedding

ELMo avg 0.166
ELMo top 0.177
BERT top 0.514
BERT avg (4) 0.518

Table 4.2: Direct usage similarity prediction results: Spearman’s � correlations of sentence and
word instance embeddings on the Usim dataset. For BERT and ELMo, top refers to the top layer, and
avg denotes the average of layers (3 for ELMo and the last 4 for BERT).

left out. We report results of these experiments in Section 4.4. We compare the performance of
the model with context2vec substitutes from the two substitute pools to that of the model with
gold substitute annotations. We repeat the experiments by adding CoInCo data to the Usim
training data and observing the e�ect of this additional training data on the results.

To test the contribution of each feature, we perform an ablation study on the 225 Usim
sentence pairs in the development set, which cover the full spectrum of Usim scores (from 1 to
5). We report results of the feature ablation in Appendix A.1.2.

We also build a model for the binary Usage Similarity task on the WiC 0.1 dataset, using
the o�cial train/dev/test split. We train a logistic regression classi�er on the training set, and
use the development set to select the best among several feature combinations. We report
results of the best performing models on the WiC test set in Section 4.4. For word instances in
WiC where no PPDB substitutes are available,13we back o� to a model that only relies on the
embedding features.

4.4 Results

Direct Usim Prediction Correlation results between Usim judgments and the cosine simi-
larity of the embedding representations described in Section 4.3.1 are found in Table 4.2. We
observe that target word BERT embeddings give the best performance in this task (� = 0.518).
Context2vec sentence representations are the next best performing representation after BERT,
but their correlation is much lower (� = 0.290). The simple GloVe-based SIF approach for
sentence representation, which consists in applying dimensionality reduction to a weighted

132.4%, 2.8% and 9.7% of instances in the training, development and test sets, respectively.
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Training set Features Gold auto-lscnc auto-ppdb

Usim
Substitute-based 0.563 0.273 0.148
Embedding-based 0.494 0.494 0.494
Combined 0.626 0.501 0.493

Usim + CoInCo
Substitute-based - 0.262 0.129
Embedding-based - 0.495 0.495
Combined - 0.501 0.491

Table 4.3: Graded usage similarity results: Spearman’s � correlation results between supervised
model predictions and graded annotations, averaged by target word. The �rst column reports results
obtained using gold substitute annotations for each target word instance. The last two columns give
results with automatic substitutes selected among all substitutes proposed for a word in the LexSub
and CoInCo datasets (auto-lscnc), or paraphrases in the PPDB 2.0 XXL package (auto-ppdb). The
Embedding-based con�guration uses cosine similarities from BERT and context2vec, and the Combined
con�guration includes both kinds of features.

average of GloVe vectors of the words in a sentence, is much superior to the simple average of
GloVe vectors and even better than doc2vec sentence representations (which obtain the worst
results), and are on par with the more complex USE model. ELMo embeddings work better at
the sentence level than at the target level, while the opposite is true for BERT.

Graded Usage Similarity To evaluate the performance of our supervised models, we again
measure the correlation of the predictions with human similarity judgments on the Usim
dataset using Spearman’s �. Results reported in Table 4.3 are the average of the correlations
obtained for each target word with gold and automatic substitutes from the two substitute pools.
It also contains results for each type of features, substitute-based and embedding-based (cosine
similarities from BERT and context2vec, the two best performing types of embedding). We also
report results with the additional CoInCo training data (Usim + CoInCo). Unsurprisingly, the
best results are obtained by the methods that use the gold substitutes. This is consistent with
previous analyses by Erk et al. (2009) who found overlap in manually-proposed substitutes to
correlate with Usim judgments. The lower performance of features that rely on automatically
selected substitutes (auto-lscnc and auto-ppdb) demonstrates the impact of substitute
quality on the contribution of this type of features. Performance is lowest when candidate
substitutes come from an automatic resource (auto-ppdb). The addition of CoInCo data does
not seem to help the models, especially when substitute-based features are used. This could be
due to the fact that CoInCo data contains only extreme cases of similarity (same/diff) and no
intermediate ratings. The slight improvement in the combined settings over embedding-based
models is not signi�cant in auto-lscnc substitutes, contrary to when gold substitutes are
used (p < 0.001).14

For comparison to the topic-modelling approach of Lui et al. (2012), we also evaluate on the
34 lemmas used in their experiments. They report a correlation calculated over all instances.
With the exception of the substitute-only setting with PPDB candidates, all of our Usim models

14As determined by paired t-tests, after verifying the normality of the di�erences with the Shapiro-Wilk test.
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Training set Features Accuracy

WiC

Embedding-based 63.62
Combined 64.86
DeConf embeddings (Pilehvar and Camacho-Collados, 2018) 59.4
Random baseline (Pilehvar and Camacho-Collados, 2018) 50.0

WiC + CoInCo
Embedding-based 63.69
Combined 64.42

Table 4.4: Binary usage similarity results: Accuracy of models on the WiC 0.1 test set. The
Embedding-based con�guration includes cosine similarities of BERT avg (4) and USE. The Combined
setting uses, in addition, substitute overlap features (auto-ppdb).

get higher correlation than their model (� = 0.202), with � = 0.512 for the combination of
auto-lscnc substitutes and embeddings. The average of the per target word correlation in
Lui et al. (2012) (� = 0.388) is lower than that of our auto-lscnc model in the combined
setting (� = 0.500).

Binary Usage SimilarityWe evaluate the predictions of our binary classi�ers by measuring
accuracy on the test portion of the WiC dataset. Results for the best con�gurations for each
training set (WiC and WiC + CoInCo) are reported in Table 4.4. Experiments on the develop-
ment set showed that target word BERT representations and USE sentence embeddings are
the best-suited for WiC. Therefore, ‘embedding-based features’ here refers to these two repre-
sentations. Results on the development set can be found in Appendix A.1.3. All con�gurations
obtain higher accuracy than the previous best reported result on this dataset (59.4), obtained
using DeConf vectors, which are multi-prototype embeddings based on WordNet knowledge
(Pilehvar and Collier, 2016). Adding substitute-based features to embedding features (the Com-
bined setting), despite using the lower-quality auto-ppdb substitute pool, slightly improves
the accuracy of the model. Also, combining the CoInCo and WiC data for training does not
have a clear impact on results, even in this binary classi�cation setting.

4.5 Discussion

We have reported results for the whole Usim dataset, but the strength of the correlation varies
greatly for di�erent words in all models and settings. For example, in the case of direct usage
similarity predictions with embeddings using BERT, Spearman’s � ranges from 0.805 (for the
verb �re) to -0.111 (for the verb su�er). This variation in performance is not surprising, since
annotators themselves found some lemmas harder to annotate than others, as re�ected in
the Usim inter-annotator agreement measure (Uiaa) (McCarthy et al., 2016). We �nd that
BERT embedding results correlate with Uiaa per target word (� = 0.59, p < 0.05), showing
that the performance of this model depends to a certain extent on the ease of annotation for
each lemma. Uiaa also correlates with the standard deviation of average Usim scores by target
word (� = 0.66, p < 0.001). For example, average Usim values for the word su�er do not
exhibit high variance as they only range from 3.6 to 4.9. Within a smaller range of scores,
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Figure 4.2: Spearman’s � coe�cient obtained with target word instance representations from every
layer of the bert-base-uncasedmodel.

it is harder to obtain a strong correlation. We also �nd a negative correlation between Uiaa
and the proportion of mid-range judgments for a lemma, a measure called Umid (McCarthy
et al., 2016) (−0.46, p < 0.001). This also suggests that words with higher disagreement tend
to exhibit a higher proportion of mid-range judgments, and fewer extreme (1 or 5) judgments.
This analysis highlights the di�erence between usage similarity across target words.

Interpretability work (Rogers et al., 2020) explores the knowledge that is encoded in deep
language models, often trying to pinpoint speci�c layers or attention heads that contain certain
kinds of linguistic information (Tenney et al., 2019a; Voita et al., 2019b). Inspired by this line
of work, we evaluated the representations at each layer of the bert-base-uncasedmodel on
the usage similarity task. Figure 4.2 shows the correlation obtained with each layer on the
Usim dataset. We observe an almost steady increase in performance through layers, with a
peak at the 10th layer. This layer reaches a � = 0.518, the same result as the average of the last
4 layers used in our experiments (cf. Table 4.2).

4.6 Exploring Di�erent Context Windows

We also tested the representation types that were used for direct usage similarity prediction
using a smaller context window (cw) around the target word. Sentences in the WiC dataset are
quite short (7.9 ± 3.9 words), but the length of sentences in the Usim and CoInCo datasets
varies a lot (27.4 ± 13.2 and 18.8 ± 10.2, respectively). We want to check whether information
surrounding the target word in a sentence is more relevant and su�cient for usage similarity
estimation. We hypothesise that in long sentences, words situated at a longer distance of the
target word may tend to introduce information that is not relevant to the task. We focus on the
words in a context window of± 2, 3, 4 or 5 words at each side of a target word. Then, we average
the word embeddings in this window (for GloVe, ELMo and BERT). We also experiment with
excluding the target word instance representation.
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Figure 4.3: Correlation between Usim annotations and cosines of representations obtained from context
windows of di�erent sizes. Blue columns indicate contexts excluding the representation of the target
word, and green columns show results including the target word. A darker colour indicates more context
words used in the window, from 2 to 5. The red column for each embedding type represents the best
result reported earlier (in Table 4.2).

Results of these experiments are found in Figure 4.3. Selecting a context window around
(or including) the target word results in worse performance for BERT, for which the target
representations gave the best results. It is, however, bene�cial for ELMo and GloVe. For
these models, using words in a context window is more e�ective than using words from the
whole sentence. The number of words that yields best performance is di�erent depending
on the model. For ELMo, the smallest window (|cw|=2) works best, probably because during
bidirectional language model training, the words immediately preceding and following the
target are used for target word prediction. ELMo is the only model where excluding the target
word is better than including it. With GloVe, the best results are obtained with |cw|= 3.

4.7 Participation in the SemDeep-5 WiC Shared Task

Shortly after developing the models described in this chapter, the SemDeep-5 WiC shared task
(Espinosa-Anke et al., 2019) was announced. Seven teams proposed models for binary usage
similarity in context which were evaluated on WiC version 1.0. This version of WiC contains
7,466 sentence pairs. We participated in the task with the supervised model (Section 4.3.3) for
an additional evaluation.

4.7.1 Model Development

We train logistic regression classi�ers on the WiC training set and experiment with di�erent
feature combinations on the development set. We use cosine similarities from di�erent em-
bedding representations. We exclude GloVe and doc2vec representations from this evaluation
because of their low performance on the Usim dataset. For ELMo, we apply a context window
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Target Sentences Substitutes

T way Do you know theway to the airport?
ways, route, path, road {connection, means, journey,
move, direction, gateway, passage, place, ...}

He said he was looking for the way
out.

ways, path, road, route, walk {day, right, passage,
move, means, time, doorway, ...}

F drink Can I buy you a drink? beer {bottle, beverage, pint, vodka, booze, whisky,
wine, liquor, drunk, cocktail, restaurant, ...}

He took a drink of his beer and
smacked his lips.

swig {bottle, pint, sip, drinking, beverage, drank, beer,
drunk, cup, booze, liquor, ...}

Table 4.5: Sentence pairs from the WiC training set for the noun way (gold label: T) and the verb drink
(gold label: F) with automatic substitute annotations assigned by context2vec. Substitutes in italics
were discarded after �ltering.

of size 2 (not including the target word), since this was the con�guration that obtained the best
results with ELMo in the Usim experiments (with the top layer, cf. Section 4.6). For BERT,
we used the target word representation, averaged across the last four layers. We annotated
the dataset with automatic substitutes from the auto-ppdb pool. Table 4.5 contains examples
of WiC 1.0 instances with substitutes proposed by context2vec and �ltered with the PPDB
�ltering strategy (Section 4.3.2.2). We combine up to four of the best embedding features and
train models with the substitute-based features only, backing o� to the best embedding-based
model for words not present in PPDB.15 We combine the best embedding- and substitute-based
features in the Combined setting. We repeat the experiments with the additional CoInCo
training data.

Results on the WiC development set are given in Table 4.6. The best result is obtained
by the model trained only on WiC that uses cosine similarities from BERT, USE and ELMo.
In the WiC+CoInCo setting, the Combined model gets the same performance as the model
that uses the four best embedding types (BERT, USE, ELMo and c2v). We apply the simpler
embedding-based model to the WiC test set.

4.7.2 Results and Analysis

Results of the two best-performing models (in boldface in Table 4.6) on the WiC test set are
given in Table 4.7. Our best model is the one trained only on WiC, which uses BERT, USE
and ELMo cosine similarities. It was ranked third at the competition with an accuracy of
66.71, which is higher than all results reported in the WiC description paper (Pilehvar and
Camacho-Collados, 2019).

The additional training data extracted from CoInCo do not help the models. We believe this
to be due to the di�erent kind of sense distinctions present in the dataset extracted fromCoInCo,
and in WiC. To explore this hypothesis, we take a closer look at the predictions of the two best
models on the development set and carry out a qualitative analysis of the sense distinctions in

15In this version of WiC, 5% of sentence pairs contain target words that are not present in the PPDB XXL
package.
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Features WiC WiC+CoInCo
BERT avg 4 tw 66.46 65.99
USE 63.64 63.48
ELMo top |cw| = 2 62.38 61.76
SIF 60.66 59.56
c2v 60.34 61.13
BERT, USE 67.87 68.03
BERT, USE, ELMo 68.65 68.18
BERT, USE, ELMo, SIF 68.03 -
BERT, USE, ELMo, c2v - 68.34
Substitute-based 60.34 57.84
Combined 66.77 68.34

Table 4.6: Accuracy of the models with embedding-based and substitute-based features on the WiC de-
velopment set. We report results of themodels trained only onWiC, and on the extended (WiC+CoInCo)
dataset. We apply the best con�gurations (marked in boldface) to the WiC test set.

Approach Accuracy
WiC: BERT, USE, ELMo 66.71
WiC+CoInCo: BERT, USE, ELMo, c2v 65.64
BERTlarge Threshold (Pilehvar and Camacho-Collados, 2019) 63.8

Table 4.7: Accuracy of our two best models on the WiC 1.0 test set, compared to the best result from
previous work.

the two datasets. The confusion matrices of the two best models on the development set show
that wrong predictions most often concern dissimilar (F) sentence pairs. This type of error
occurs more often with the model trained on WiC+CoInCo (67% of total errors compared to
59% when training only on WiC). A quick observation of WiC data reveals that dissimilar (F)
pairs sometimes describe related senses, in spite of the pruning that aimed at excluding these
from the dataset (Pilehvar and Camacho-Collados, 2019).

We extract a random sample of 120 sentence pairs, 60 from the CoInCo training data and
60 from the WiC development set to explore whether they di�er in this respect. We manually
annotate all pairs for graded usage similarity, using a scale of 1 (completely di�erent) to 5 (the
same), as in Erk et al. (2009). Our assumption is that F pairs that describe related senses will
be assigned higher similarity scores. A comparison of the graded usage similarity values of
gold F instances reveals that these values di�er signi�cantly in CoInCo and WiC (p = 0.048),
as determined by a Mann-Whitney test, with WiC F pairs having a higher average similarity
score (3.19 ± 1.52) than CoInCo F pairs (2.53 ± 0.19). The following F sentence pair from
WiC is an example where the target word (construction) expresses di�erent but closely related
meanings (as a process and as a result):

(1) Construction is underway on the new bridge
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(2) The engineer marvelled at his construction.

The CoInCo sentence pairs that we use for training describe more clear-cut sense distinc-
tions due to the process used for their extraction, which is based on the overlap of manually
annotated substitutes.

4.8 Conclusion

We explored the ability of word and context representations to encode the meaning of words
in context through the usage similarity estimation task. The task consists in comparing the
meaning of two word instances without using word senses from external inventories. We
applied awide range of existing representations to graded and binary usage similarity prediction.
In order to improve predictions, we also proposed supervised models that combine similarities
from embeddings with features based on lexical substitutes, which describe the meaning of
words in context.

Our results show that BERT’s semantic space re�ects human similarity judgments more
accurately than the other representations tested. We also found that the upper layers of the
model contain the information most relevant to the task. Another important takeaway is that
although substitute annotations are helpful for prediction in supervised models, their quality
has a strong impact on performance.

We also observed that usage similarity prediction is much harder for some lemmas than
others. This is because of di�erences in the type of ambiguity: it is generally easier to make
predictions for lemmas with clear-cut sense distinctions (like �re) than for others with fuzzy
distinctions (such as su�er). McCarthy et al. (2016) propose methodology for usage similarity
estimation with the goal of estimating the ease of partitioning a word into senses. In the
following chapter, we also focus on usage similarity on a per lemma basis, trying to identify
ambiguous and vague lemmas using contextualised representations.
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Chapter 5

Word Sense Clusterability
Estimation

5.1 Introduction

In Chapter 2, we described the challenging question of how to establish boundaries between
word senses. Polysemous words can have distinct or inter-related meanings, determined to
di�erent extent by the context of use (Tuggy, 1993). For example, it is easy to distinguish the
music and stone senses of the ambiguous noun rock, but the meanings of the word thing
are harder to tell apart; it can refer to di�erent objects in the world or the discourse, and its
usages might be more or less related. A polysemous word likeman would lie somewhere in
the middle in the continuum between ambiguity and vagueness, as its di�erent senses (adult
male person, human, soldier, etc.) are highly related.

McCarthy et al. (2016) propose a method for automatically situating lemmas on a spectrum
from ambiguity to vagueness according to their partitionability, that is, “the ease with which
their usages can be grouped into senses”. For example, the instances of the ambiguous word
rock are easier to group into senses than those of the noun thing which has vague semantics.
They estimate the partitionability of a lemma in terms of the clusterability of its instance
representations.

Clusterability measures the extent to which a dataset has a clustered structure, or how easy
it is to obtain a meaningful partition of the data (Ackerman and Ben-David, 2009), and thus
helps decide whether it is appropriate to proceed with a clustering analysis for a given dataset.
McCarthy et al. (2016) create vector representations for word instances from manual substitute
and translation annotations, as these approximate the meaning of words in context, and use
existing clusterability metrics on these representations to determine the partitionability of a
lemma. The need for manual annotations, however, constrains the method’s applicability to
speci�c datasets.

In this chapter, we continue our investigation of the quality of the semantic space built
by di�erent contextualised representations by evaluating their ability to estimate words’ clus-
terability level. We propose to extend and scale up McCarthy et al.’s work representing word
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instances with contextualised representations (Melamud et al., 2016; Peters et al., 2018a; Devlin
et al., 2019) and automatically obtained substitutes. Following McCarthy et al. (2016), we
cluster word instances using the proposed representations, and apply a set of clusterability
metrics to test their partitionability into senses. We also propose to use automatic usage simi-
larity estimations directly (as in Section 4.3.1) for clusterability prediction. These re�ect the
proximity between word instances in the vector space (Chapter 4), and this information can
be used to calculate their clusterability. As in past work, we use partitionability estimates
derived from the Usim dataset (Erk et al., 2009, 2013) for evaluation. In concurrent work
exploring BERT’s semantic space, Yenicelik et al. (2020) also calculate the clusterability of the
representations of polysemous words, but do not investigate whether the estimations correlate
with partitionability.

Knowing the clusterability of a lemma has several possible applications. Clusterability
estimations can help lexicographers determine the number of entries for a word to be present
in a resource, and plan the time and e�ort needed in semantic annotation tasks (McCarthy
et al., 2016). They could also guide cross-lingual transfer, serving to identify less clusterable
words for which transfer may be harder.

Importantly, clusterability information can help determine whether explicitly modelling
the di�erent senses of a lemma would result in meaningful representations, or if it is preferable
to process individual instances of a word in context. In other words, it can help select the
optimal computational representation for di�erent words. We have presented di�erent types
of word representations (Section 2.2), at the type level (static representations (Mikolov et al.,
2013a)), sense and multi-prototype embeddings (Reisinger and Mooney, 2010; Neelakantan
et al., 2014; Iacobacci et al., 2015) and contextualised vectors (Peters et al., 2018a; Devlin et al.,
2019). A per-sense approach might be preferable for words with clear-cut sense distinctions,
whereas an instance-per-instance approach, where meaning is dynamically de�ned by the
context of use, could be a better solution for words with vague semantics. Previous studies
exploring the question of sense representation adopt a uniform approach (either clustering
contexts, or modelling individual instances) without accounting for the properties of a word’s
semantic space. In this chapter, we explore this idea further. We investigate whether having
di�erent types of representations for clusterable and non-clusterable words is bene�cial for
semantic tasks. Speci�cally, we propose to modify BERT instance representations of clusterable
words, converting them into multi-prototype representations. In another concurrent study,
Chronis and Erk (2020) also turn contextualised representations into multi-prototype ones,
but they do it for all words in their experiments, regardless of their clusterability level. They
�nd this approach bene�cial on out-of-context similarity and relatedness tasks. We, instead,
evaluate this approach on the WiC dataset, where models must determine whether two word
instances are used in the same sense. For this experiment, we use clusterability estimations
that we obtain automatically for a large vocabulary.

Our experiments allow us to learn more about the quality of di�erent types of contextu-
alised representations, and provide interesting insight regarding the feasibility of scaling up
clusterability predictions to unrestricted text.
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5.2 Methodology

In this section we describe the methodology that we propose for word sense clusterability
estimation and how it di�ers from the approach of McCarthy et al. (2016). In Section 5.2.1, we
present the kinds of embeddings that we use to represent Usim word instances in context. In
Section 5.2.2 we discuss clusterability estimation in detail, including the initial clustering step
(Section 5.2.2.1) and the clusterability metrics used (Section 5.2.2.2).

5.2.1 Word Usage Representations

We represent target word instances in the Usim dataset (Erk et al., 2009, 2013) in two ways:
using contextualised representations and substitute-based representations with auto-
matically generated substitutes. The substitute-based approach allows for a direct comparison
with the method of McCarthy et al. (2016).

Contextualised representations We use BERT (Devlin et al., 2019), ELMo (Peters et al.,
2018a) and context2vec (Melamud et al., 2016) to generate representations for word instances
in Usim. We obtain contextualised ELMo embeddings for instances of a target wordw using the
second and third layer1 from the ELMo 1024-d 5.5B model. We generate BERT representations
from every layer of the bert-base-uncased 768-dmodel. When a word is split into multiple
word pieces, we average them to obtain its representation. We also generate an embedding
for the context of each instance using a 600-d context2vec model pre-trained on the UkWac
corpus (Baroni et al., 2009).

As shown in Chapter 4, BERT representations give promising results in the related task of
usage similarity, showing they successfully capture word meaning in context. For this reason,
we also experiment with clustering based on the cosine distance matrix obtained with BERT
representations. More details about the di�erent clustering approaches used in our experiments
are found in Section 5.2.2.1.

Substitute-based representations Additionally, we represent instances using a substitute-
based method, similar to that of McCarthy et al. (2016), but using automatic substitutes in-
stead of manual annotations. We use two di�erent methods for automatic substitution: the
context2vec-based method (c2vf, introduced in Section 3.4.2.3) using context2vec embeddings,
and the tTsmethod (Section 3.4.2.1) with the average of the last four layers in BERT.

We generate our substitutes for each instance i of a target word t in Usim using as candidates
St the paraphrases of t in the Paraphrase Database (PPDB) XXL package (Ganitkevitch et al.,
2013; Pavlick et al., 2015) . For each instance i of t, we obtain a ranking R of all substitutes in St.
We remove low-quality substitutes (i.e. noisy paraphrases or substitutes referring to a di�erent
sense of t) by using the PPDB �ltering approach proposed in Section 4.3.2.2. Speci�cally, we
check for each pair of substitutes in subsequent positions in R, starting from the top, whether

1We do not use the �rst layer of ELMo individually. It is character-based, so most representations of a lemma
are identical and we cannot obtain meaningful clusters.

91



Chapter 5. Word Sense Clusterability Estimation

Figure 5.1: Illustration of Manual-sub representations for instances of the adjective strong in the LexSub
dataset (McCarthy and Navigli, 2007).

they are paraphrases of each other. If a pair is unrelated in PPDB, all substitutes from that
position onwards are discarded.

McCarthy et al. (2016) represent each instance i of a word t in Usim as a vector i⃗, where
each substitute s assigned to t over all its instances i ∈ It becomes a dimension (ds). For a given
i, the value for each ds in i⃗ is the number of annotators who proposed substitute s. ds contains
a zero entry if s was not proposed for i. We refer to this type of representation as Manual-sub,
and provide an illustration of how -sub vectors are built in Figure 5.1.

We build vectors as in McCarthy et al. (2016), using the scores assigned by the lexical
substitution methods as a value for each dimension ds. We call these representations c2v-sub
and BERT-sub. We also propose an alternative type of representation (c2v-subvecs and BERT-
subvecs) where we average the c2v/BERT (avg (4)) embeddings of the substitutes retained
after �ltering for each instance i ∈ It.

5.2.2 Clustering and Clusterability

Ackerman and Ben-David (2009) and McCarthy et al. (2016) use clusterability metrics initially
proposed for estimating the quality of the optimal clustering that can be obtained from a dataset;
the better the quality of this clustering, the higher the clusterability of the dataset it is derived
from (Ackerman and Ben-David, 2009). We use the same metrics as McCarthy et al. (2016),
which require a preliminary clustering step, described in Section 5.2.2.1. We additionally try
a clusterability metric that is independent of any clustering algorithm, the Dip’s test. Our
clusterability metrics are described in detail in Section 5.2.2.2.

5.2.2.1 Determining the number of clusters

We group the word instance representations using k-means, as in McCarthy et al. (2016). This
clustering algorithm requires the number of clusters (or senses) for a lemma to be speci�ed
in advance. In our work this is determined separately for every lemma, without recourse
to external resources. McCarthy et al. (2016) use a graph-based approach for determining
the number of senses, where word instances are linked by an edge (and belong to the same
cluster) based on the overlap of their substitutes. We do not use this method in our experiments,
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because it is not compatible with contextualised representations, and it also requires de�ning
a distance threshold.

To de�ne the optimal number of senses (k) for a speci�c lemma, we instead perform
k-means clustering for a range of k values (2 ≤ k ≤ 10) and retain the optimal clustering2

according to the silhouette coe�cient (Rousseeuw, 1987). This metric has been previously
used for sense induction (Cocos and Callison-Burch, 2016). For a data point p, the silhouette
coe�cient (sil) measures the intra-cluster distance w(p) (i.e. the average distance from p to
every other data point in the same cluster), and compares it with the inter-cluster distance
(b(p)), i.e. the average distance of p to all points in its nearest cluster. Equation 5.1 contains
the formulas for w(p) and b(p), where d corresponds to the Euclidean distance between p and
another data point q. cp denotes the cluster containing p. Equation 5.2 gives the Silhouette
coe�cient of a data point p.

w(i) =

∑

q�cpp≠q
d(p, q)

|cp| − 1
b(p) = min

cq≠cp

∑

q�cq
d(p, q)

|cq|
(5.1)

sil(p) =
b(p) − w(p)

max(w(p), b(p))
(5.2)

The sil value for a clustering C ranges from -1 to 1 and is obtained by averaging the sil
values calculated for all data points p ∈ P (Equation 5.3). We retain the k of the clustering
with the highest mean sil.

sil(C) =
∑

p�P
sil(p)

|P|
(5.3)

Since BERT representations’ cosine similarity correlates well with usage similarity (as seen
in Chapter 4), we also use pairwise cosine distances obtained from BERT representations for
clustering. We perform clustering directly on the cosine distance matrix for a lemma. Since
the k-means algorithm needs data points with their coordinates to calculate centroids, we
cannot use it on this type of data. Instead, we use agglomerative clustering with average
linkage (BERT-Agg). For comparison, we also use agglomerative clustering on the gold usage
similarity scores from the Usim dataset, transformed into distances (Gold-Agg).

5.2.2.2 Clusterability metrics

We predict the clusterability of a target word by measuring the quality of its clustering, using
the Separability (sep) and Variance Ratio (vr) metrics (Ackerman and Ben-David, 2009), the
two best-performing metrics in McCarthy et al. (2016). We also apply two more measures for
clusterability estimation: the silhouette coe�cient (which provides estimates of clustering
quality) and Dip’s test.

2The scikit-learn implementation of k-means that we use in our experiments runs 10 iterations of each
clustering with di�erent seeds by default, and returns the best clustering according to the loss (the sum of squared
distances of data points to their closest cluster center).
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• Variance Ratio (vr) (Zhang, 2001). vr calculates the ratio of the within- and between-
cluster variance for a given clustering solution. First, the variance of a cluster y is
calculated:

�2(Y) =
1

|y|

∑

p�y

(yp − ȳ)2 (5.4)

where ȳ denotes the centroid of cluster y. Then the within-cluster varianceW and the
between-cluster variance B of a clustering solution C are calculated in the following way:

W(C) =

k∑

j=1

pj�
2(xj) (5.5)

B(C) =

k∑

j=1

rj(x̄j − x̄)2 (5.6)

where k is the number of clusters, x is the set of all data points and rj =
|xj|

|x|
. xj are the

data points in cluster j. Finally, the vr of a clustering C is obtained as the ratio between
B(C) andW(C):

VR =
B(C)

W(C)
(5.7)

• Separability (sep) (Ostrovsky et al., 2012). sepmeasures the di�erence in loss between
clustering with k − 1 and k clusters. We use k-means’ sum of squared distances (SS) of
data points to their closest cluster center as the loss. In an optimal clustering Ck of the
dataset x with k clusters, sep is de�ned as follows:

SEP(x, k) =
loss(Ck)

loss(Ck−1)
(5.8)

• Dip’s test (dip). Dip’s test is a statistical test which is used to determine if a distribution is
multimodal, i.e. whether it has multiple peaks or modes. In a highly clusterable dataset,
pairwise distances are very short for similar datapoints and very long if they belong to
di�erent groups (Adolfsson et al., 2019). Therefore, their distribution is expected to be
at least bimodal. On the contrary, in less clusterable data distances are more evenly
distributed. dip determines whether a distribution is multimodal or not by comparing it
to a unimodal distribution (Hartigan et al., 1985). We use the p-value given by this test,
which indicates the probability of observing the given distance distribution based on the
null hypothesis that it comes from a unimodal distribution. The smaller the p-value, the
more multimodal (and clusterable) the dataset is. This measure di�ers from the previous
ones in that no preliminary clustering step is required.
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For vr and sil, a higher value indicates higher clusterability. The opposite holds for sep
and dip, where a higher value indicates lower clusterability. vr and sep require calculating
cluster centroids. When we perform agglomerative clustering (BERT-Agg), which does not rely
on the BERT vectors themselves but on the cosine distance matrix, we use the corresponding
BERT representations to calculate the cluster centroids for these two metrics.

5.3 Evaluation

We measure the clusterability of words in the same dataset that was used in the work of
McCarthy et al. (2016). This is the Usim dataset (Erk et al., 2009, 2013), which contains
pairwise manual usage similarity annotations for 56 words. McCarthy et al. (2016) derive two
gold standard clusterability metrics from Usim:

• Uiaa is the inter-annotator agreement for a lemma in terms of average pairwise Spear-
man’s correlation between annotators’ judgments. Higher Uiaa values indicate higher
clusterability, meaning that sense partitions are clearer and easier to agree upon.

• Umid is the proportion ofmid-range judgments (between 2 and 4) assigned by annotators
to all sentences of a target word. It indicates how often usages do not have identical (5) or
completely di�erent (1) meaning. Therefore, higher values indicate lower clusterability.

We calculate Spearman’s � correlation between the predictions of each clusterability metric
and the Uiaa and Umid measures. We also compare to results obtained using McCarthy et al.
(2016)’s manual substitute-based representations. Their study included only 45 lemmas in
Usim for which both substitute (McCarthy and Navigli, 2007) and translation annotations
(Mihalcea et al., 2010) were available. To ease comparison, we re-implemented their model
with manual substitutes (Manual-sub with the graph-partitioning k-selection method) and
applied it to all 56 words in Usim, as substitutes are available for all target words in the dataset.
We also report results obtained by Manual-sub representations using our k-selection and
clusterability metrics.

5.4 Results

Table 5.1 contains the correlation scores obtained between clusterability values and the gold
partitionability estimates. The top part of the table shows results using contextualised repre-
sentations (-rep) and and distance matrices (-agg). The best layers for BERT and ELMo are
indicated as subscripts. In the lower part of the table we provide results with substitute-based
representations.

Agglomerative clustering on the gold Usim similarity scores (Gold-Agg) gives the best
results on the Uiaa evaluation in combination with the sil clusterability metric (� = 0.80).
This is unsurprising, since Umid and Uiaa are derived from the same Usim scores. From
our automatically generated representations, the strongest correlation with Uiaa (0.69) is
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Gold Metric BERT-rep c2v-rep ELMo-rep BERT-Agg Gold-Agg

Uiaa

sil↗ 0.61*11 0.06 0.212 0.69*10 0.80*
vr↗ 0.1712 0.14 0.192 0.33*12 –
sep↘ -0.48*10 -0.12 -0.242 -0.48*11 –
dip↘ -0.1412 0.13 -0.013 -0.2111 -0.14

Umid

sil↘ -0.46*10 0.05 -0.062 -0.44*8 -0.48*
vr↘ -0.249 -0.08 -0.153 -0.32*5 –
sep↗ 0.43*9 -0.01 0.083 0.43*9 –
dip↗ 0.267 -0.18 0.163 0.1911 0.27

Gold Metric c2v-sub BERT-sub Manual-sub c2v-subvecs BERT-subvecs

Uiaa

sil↗ -0.06 0.12 0.32* -0.09 0.43*
vr↗ -0.10 0.14 0.34* -0.12 0.27*
sep↘ 0.06 -0.11 -0.20 0.08 -0.47*
dip↘ 0.15 0.17 -0.29 -0.01 0.11

Umid

sil↘ -0.21 -0.07 -0.38* -0.10 -0.36*
vr↘ -0.12 -0.04 -0.24 -0.01 -0.19
sep↗ 0.16 0.06 0.16 0.14 0.43*
dip↗ -0.09 -0.03 0.32 0.03 -0.12

Table 5.1: Spearman’s � correlation between automatic clusterability metrics and the gold standard
partitionability estimates, Uiaa and Umid. Signi�cant correlations (where the null hypothesis � = 0 is
rejected with � < 0.05) are marked with *. The arrows indicate the expected direction of correlation for
each metric. Subscripts for BERT and ELMo indicate the layer of the representations that achieved best
performance. The top part of the table contains results with contextualised representations and cosine
distances, and the lower part shows results of substitute-based representations.

obtained with BERT-Agg and the sil clusterability metric. The sil metric also works well
with BERT-rep achieving the strongest correlation with Umid (-0.46). sil constitutes, thus,
a good alternative to the sep and vrmetrics used in previous studies when combined with
BERT-based representations.

Metric Umid Uiaa
sep 0.31* -0.27*
vr -0.22 0.27*

Table 5.2: Spearman’s � correlations be-
tween gold standard estimates for the
56 Usim words and clusterability met-
rics, using Manual-sub representations
and the (McCarthy et al., 2016)’s graph-
partitioning method to select the number
of clusters.

Interestingly, the correlations obtained using raw
BERT contextualised representations are much higher
than the ones observed with representations relying on
manual substitutes (Manual-sub). These were in the
range of 0.20-0.34 for Uiaa and 0.16-0.38 for Umid (in
absolute value). Table 5.2 contains the results obtained
with the re-implementation of McCarthy et al. (2016)’s
method (using graph-partitioning to select k) on the 56
target words in Usim. These results show that BERT
representations o�er good estimates of the partition-
ability of words into senses, improving over manual
substitute annotations. On the other hand, ELMo and
especially context2vec representations obtain much
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Figure 5.2: Spearman’s � correlations between the gold standard Umid and Uiaa measures, and clus-
terability estimates obtained using agglomerative clustering on a cosine distance matrix of BERT
representations at di�erent layers.

poorer results on this task. The strongest correlations they achieve are -0.24 and 0.14.
As expected, the substitution-based approach performs better with cleanmanual substitutes

(Manual-sub) than with automatically generated ones (BERT-sub, c2v-sub). Representations
based on automatic substitutes do not perform well, even when using BERT-based substitution.
This is probably due to the lower quality and bigger size of the PPDB substitute pool. Despite
this, taking the average of BERT (avg (4)) representations for substitutes proposed by BERT
at each instance (BERT-subvecs) proves to be useful for word clusterability estimation, and
leads to better results than Manual-sub. sub vectors are sparse; they rely solely on substitute
overlap and contain no distributional semantic information. This result shows the bene�t
of including distributional knowledge, which compensates the poorer quality of automatic
substitute annotations compared to manual annotations.

Among all clusterability metrics, sil gives best results overall. The other proposed metric,
Dip’s test (dip), obtains the worst overall results, which are sometimes in the opposite direction
than expected (for example, with c2v-rep).

We present a per layer analysis of the correlations obtained with the best performing BERT
representations (BERT-Agg) and the silmetric in Figure 5.2. We report the absolute values of
the correlation coe�cient for a more straightforward comparison. For Uiaa, the higher layers
of the model make the best predictions. Similarly to what we observed in our usage similarity
prediction experiments (cf. Section 4.5), correlations increase monotonically up to layer 10,
and then they slightly decrease. Umid prediction shows a more irregular pattern: it peaks at
layers 3 and 8, and decreases again in the last layers. We also report the individual clusterability
values obtained for each lemma with the best method (BERT-agg), along with their Uiaa and
Umid scores, in Appendix A.2.1.

Figure 5.3 shows a PCA visualisation of BERT representations for two non-clusterable
words (work.v and new.a) and two highly clusterable words (charge.v and �re.v), according to

97



Chapter 5. Word Sense Clusterability Estimation

Figure 5.3: PCA visualisation of BERT representations from the 10th layer of Usim instances of (a)
charge.v, �re.v, work.v and new.a; and (b) instances of the clusterable word charge.v, with their sentential
context.

Uiaa. We observe that new.a presents no clearly clusterable structure, whereas charge.v and
�re.v have some distinguishable clusters. Work.v has a low clusterability value, but higher than
that of new.a.

5.5 Modifying Representations of Clusterable Words

We want to explore whether we can distinguish lemmas for which di�erent types of represen-
tations would be preferable, e.g. at the token- or sense-level. We hypothesise that clusterable
words, with clear sense boundaries, do not need to be assigned �ne-grained instance-level
representations and may bene�t from a higher level of abstraction. Concretely, our goal is to
investigate whether using a multi-prototype approach for clusterable words (keeping instance
representations of non-clusterable words unchanged) would result in better semantic repre-
sentations. Importantly, we want to see if automatic clusterability estimations, obtained from
unrestricted text, can be used to determine what words should undergo this modi�cation.

We propose a way to modify representations of clusterable words according to automatic
clusterability estimations and evaluate the modi�ed representations on the WiC dataset, where
a model has to determine, for two instances of a word, whether they are used in the same
sense. We expect the notion of clusterability to be relevant for this task; and if multi-prototype
representations are more adequate for clusterable words, we expect to see an improvement on
WiC.We begin with an experiment to verify the importance of clusterability for solving theWiC
task. Speci�cally, we compare the performance of BERT onWiC instances involving clusterable
and non-clusterable words, according to gold clusterability judgments (Section 5.5.1). Then,
we describe how we scale up clusterability estimation, clustering BERT representations of
instances of new words in a bigger corpus. We also present our observations on the clusters
obtained (Section 5.5.2). Finally, we propose a simpleway of turning token-level representations
of clusterable words (according to automatic predictions) into multi-prototype representations,
and evaluate this approach on WiC (Section 5.5.3).
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5.5.1 Impact of Words’ Clusterability on Usage Similarity Predictions

We carry out an initial analysis of the performance of BERT on the WiC 1.0 dataset comparing
the results on clusterable vs non-clusterable words according to gold clusterability estimates
(Uiaa and Umid) from Usim. This analysis allows us to assess the impact that the clusterability
level of words has on BERT’s performance on this task. We expect performance to be lower on
instance pairs involving less clusterable words because it is harder to determine whether they
belong to the same sense. We analyse the results obtained by BERT for di�erent words in WiC
in the light of their gold clusterability values.

Note that Usim only contains 10 sentences per target word, whichmay not always constitute
a representative sample of its possible contexts. However, sentences were selected manually
for 26 out of the 56 words in Usim to ensure a variety of senses, and the usage similarity scores
(on which Uiaa and Umid are based) come from manual annotations. Therefore, we consider
the gold partitionability judgments to be good enough for the analysis described in this section.

We train a logistic regression classi�er on all training instances inWiC 1.0 that do not involve
Usim target words (5,125 sentence pairs), using cosine similarity from BERT representations
at the 10th layer as the only feature. We evaluate the model on instances from the training and
development sets that involve one of the target words in Usim (308 pairs). We de�ne a threshold
T of clusterability values which serves to separate words into clusterable and non-clusterable.
For example, for Uiaa, a word is considered to be clusterable if its Uiaa value is equal or above a
thresholdT, andwords with aUiaa score< T are considered to be non-clusterable. We compare
BERT’s performance on clusterable vs non-clusterable words across di�erent thresholds T
based on Uiaa and Umid.

Results of this experiment are shown in Figure 5.4. We see that BERT systematically
performs better on clusterable words (according to these gold clusterability estimates) than
on non-clusterable words. This is not surprising, as clusterable words have, by de�nition,
clearer boundaries between senses and it is therefore easier to decide whether two instances
belong to the same sense or not. This result is in line with what we observed in the previous
chapter (Section 4.5), where BERT performance on the Usim dataset correlated with the
Uiaa and Umid measures. This result con�rms that clusterability has an impact on model
performance on usage similarity estimation, and thus justi�es using WiC for evaluating our
modi�ed representations (Section 5.5.3). It, however, also highlights the fact that there’s more
room for improvement in representations of words with �ne-grained distinctions than of clearly
ambiguous words.3

3An important reason why words with �ne-grained distinctions present a bigger challenge is that there are
multiple valid ways of partitioning them into senses, and the partitions present in WiC (based on WordNet (Miller
et al., 1993) and other resources) may or may not be relevant in another task (Kilgarri�, 1997).
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Figure 5.4: Accuracy obtained with BERT representations on WiC instances involving Usim words. We
show results separately for clusterable and non-clusterable words across clusterability thresholds (x
axis). The clusterability values used are Uiaa (top) and Umid (bottom). cl and ncl refer to the number of
clusterable and non-clusterable words with each threshold.

5.5.2 Scaling up Clusterability Estimation

BERT representations have given good results on clusterability estimation (Section 5.4) on
the Usim dataset. The approach is not restricted to manual annotations and can therefore be
used to obtain predictions from unrestricted text and for more words in the vocabulary. In
order to modify representations of clusterable words and evaluate them on the WiC dataset, we
want to obtain clusterability estimations for words in WiC. The obtained values will serve, in
Section 5.5.3, to determine what words should be represented with a multi-prototype approach.
In this section, we describe how we obtain clusterability estimations for WiC words from a
bigger corpus. Speci�cally, we cluster instances of WiC words in a corpus and calculate their
clusterability values. We also present a qualitative analysis of the clusters proposed by BERT
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on this data.
We choose the 20 Newsgroups dataset4 for its variety of topics and its moderate size. This

corpus contains 18,846 newsgroups posts on 20 di�erent subjects, including sports, politics,
electronics, and others, with around 6M words in total. We pre-process the corpus removing
headers, footers and quotation blocks. We split it into sentences and perform lemmatisation
and pos-tagging.5 We extract sentences from this corpus for 1,519 target words in WiC 1.0. We
only consider words for which at least 10 sentences are available in 20 Newsgroups, and use at
most 1,000 sentences per target word for clustering. The average of sentences available per
word is 160.

We use the best clusterability method for obtaining a clusterability estimate for every word
from these sentences: we apply agglomerative clustering to the cosine distance matrix obtained
from representations in the 10th layer of BERT, and use the silhouette score as a clusterability
metric. We observe that the clusterability values estimated from these sentences are overall
higher than those obtained in the experiment on Usim. Those ranged between 0.12 (for the
least clusterable word, new.a) and 0.44 (for the most clusterable word, �re.v), with a mean of
0.23. The new values range from 0.11 (for describe.v) to 0.70 (for void.n), with a mean of 0.32.

An exploration of the sentences in the proposed clusters, and of the new clusterability
estimations, reveals some interesting properties and behaviour of BERT representations. We
provide examples that illustrate the meaning expressed in several clusters.

BERT embeddings seem to be quite sensitive to collocational phenomena. Consider the
following examples with the words speak.v and load.v. In the case of speak.v, the expression
“so to speak” and similar expressions containing the word “speaking” are clustered together:

With load.v, we �nd a very distinct sense of the word expressed with a collocation (the
baseball term “bases loaded”). This instance forms a cluster on its own, and other senses of
load all fall into a single cluster:

A similar situation occurs with function.n, where sentences that contain the expression “a
function of" form one cluster, but other semantic distinctions (for example, a programming
function and a bodily function) are not captured:

4http://qwone.com/~jason/20Newsgroups/, available on scikit-learn.
5We use the nltk and spacy libraries.
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It is also worth looking at the sil values obtained. Contradicting our expectations, the word
with vague semantics thing.n obtains a higher clusterability value (sil = 0.32) than a word
with distinct senses and semantically-motivated clusters like charge.v (sil = 0.28). For thing.n,
BERT proposes two clusters, one with the expressions “next thing you know” and “�rst thing
on the morning” and another one with all other instances of thing. This, together with the
examples shown, could indicate that such collocational phenomena sometimes have a stronger
impact on BERT representations than semantic distinctions.

We also note that BERT representations are sometimes clustered according to morphology.
In the case of formula.n, which is split into 9 clusters, one cluster groups all instances of the
plural form formulae. This particular case can be explained by the fact that BERT has dedicated
wordpieces for formula and formulas, but not for formulae. The approach of averaging all
wordpieces of a word probably results in distinct representations in this case, which are assigned
their own separate cluster.

The quality of the sentences used also plays a role and may cause some words to have a
higher clusterability value than they should. For example, one of the clusters of the word
heart.n is in fact a misspelling of heard; and for the word die.v, one of the clusters corresponds
to sentences in German containing the German article die. It is also important to note that, as
mentioned in Section 5.5.1, Usim sentences for 26 out of 56 words were carefully selected to
ensure a balance in senses. In 20 Newsgroups, sentences are probably skewed towards the most
frequent sense of a word (Kilgarri�, 2004) and they may not contain instances of all senses
of a word. This probably contributes to the lower quality of the clusters and clusterability
estimations from this corpus.

Not all clusters proposed by BERT present the problems described in this section; we also
�nd cases where word clusterings align very well with our intuitions. However, we believe
these cases highlight BERT’s sensitivity to certain kinds of contextual information, sometimes
to the detriment of semantic information; and they re�ect the impact of the quality of the data
on the obtained clusters.

5.5.3 Evaluation

Having obtained clusterability estimates for words in WiC (Section 5.5.2), we carry out a
simple experiment on the WiC 1.0 dataset to test the bene�t that could be derived from mod-
ifying word representations based on clusterability information. We consider words with a
silhouette coe�cient above or equal a certain threshold T to be clusterable. We replace the
BERT representations of clusterable words with the centroid of their closest cluster, from those
obtained from 20 Newsgroups sentences. This is a typical way of disambiguating a word in
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Figure 5.5: Accuracy on the WiC development set when using cluster centroids to represent clusterable
words (blue line) according to a silhouette coe�cient threshold (x axis). The green line shows the
number of WiC training sentence pairs that were modi�ed with each threshold. The reference accuracy
(red line) corresponds to a model where no representations are modi�ed.

multi-prototype embedding approaches (Huang et al., 2012). The closest cluster is determined
based on the cosine similarity of the word instance representation to each cluster centroid.
Representations of words that are not considered to be clusterable (with a silhouette score < T)
are not modi�ed. We use representations from the 10th layer of the BERT model, as we did
for clustering. We train a logistic regression classi�er on the WiC training set using as single
feature the cosine similarity between the two word instance representations in each sentence
pair. We test di�erent values for the threshold T and compare the model’s performance to that
of a reference model where the representations are not modi�ed. We evaluate the models on
the development set.

Results for this experiment are found in Figure 5.5. We observe a slight improvement over
the reference accuracy (0.658) when using a threshold T of 0.40, 0.45 or 0.50. The highest
accuracy obtained is 0.671 with T = 0.45 when modifying 152 out of 6066 WiC instances.6 For
all other clusterability thresholds, the performance is much lower than that of the reference
model. This approach requires extracting, storing and clustering BERT representations for a
large number of word instances. The performance gain is very limited, considering this high
pre-processing cost.

5.6 Discussion and Conclusion

We proposed fully automatic methods for estimating the clusterability of words into senses. We
experimented with di�erent types of representations from pre-trained LMs and with substitute-

6The WiC training and development sets contain a total of 6066 sentence pairs, with 1791 unique target words
(with their part of speech). We have clusters for 937 of these target words, which amount to 5212 instances in the
two subsets.
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based representations based on automatic substitutes, and also proposed two new clusterability
metrics. We found that the best method, based on BERT cosine similarities, correlates better
with human clusterability estimates than previous approaches based on manual annotations.

Using the best-performing approach, we clustered word instances and obtained automatic
clusterability estimates from a larger corpus. We used these predictions to inform a method
that modi�es BERT representations of clusterable words, turning them into multi-prototype
representations.

The qualitative analysis of the clusters and clusterability estimates obtained on the bigger
corpus made apparent the di�culty of scaling clusterability estimation to an open vocabulary
and free text. The clusters proposed by BERT representations are not always driven by semantic
criteria, and are very sensitive to collocational or contextual di�erences in the usage of words.
Our �rst attempt at modifying representations of clusterable words based on these estimates
showed a slight improvement over standard BERT representations, at a high pre-processing
cost.

While we see several directions for potential improvement (for instance, obtaining cleaner
sentences to improve clusterability estimates, experimenting with other clustering algorithms,
or trying methods other than the centroid for modifying representations), we decided to focus
on improving BERT’s sensitivity to semantic distinctions in general. We believe this is a
more promising direction to improving representations than modifying them according to the
clusterability level of words, where we observed small gains. Doing this could potentially be
bene�cial for the representation of more �ne-grained distinctions, which are inherently harder
to capture, as re�ected in our analysis on the WiC dataset using gold clusterability estimations
and BERT representations. It could also improve the semantic quality of the clusters obtained
with BERT representations.

Inspired by a recent strand of work on injecting di�erent kinds of linguistic information
into the BERT model (Arase and Tsujii, 2019; Lauscher et al., 2019), in the next chapter we
shift our focus to �ne-tuning for making BERT more sensitive to lexical meaning.
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Chapter 6

Fine-tuning BERT for Lexical
Meaning

6.1 Introduction

In Chapter 4, we have seen that the similarities derived from BERT representations provide
quality estimations of word usage similarity. At the same time, however, these representations
seem to be highly sensitive to speci�c contexts of use and to factors other than word meaning,
as we observed in the quality of the clusterings of BERT representations in Chapter 5. These
observations motivated us to explore this behaviour further, in order to understand the kinds
of knowledge BERT is sensitive to; and to focus on improving the model’s sensitivity to lexical
meaning speci�cally.

In this chapter, we �rst analyse the similarities of BERT representations in sentence pairs
that di�er in speci�c linguistic phenomena. Recent studies have proposed injecting di�er-
ent kinds of knowledge into deep LMs to make them more sensitive to speci�c phenomena
(Lauscher et al., 2019; Arase and Tsujii, 2019; Shi et al., 2019). This line of work follows from
early approaches for improving the semantic quality of static word representations by incorpo-
rating knowledge from external lexical resources (Faruqui et al., 2015; Vulić and Mrkšić, 2018).
There is also evidence on the superiority of �ne-tuning BERT over using its extracted, so-called
“frozen” representations for downstream tasks (Peters et al., 2019b). Inspired by this work, we
propose to inject lexical semantic knowledge into BERT. We do so by �ne-tuning the model
on existing semantically annotated datasets and using automatically generated substitutes in
context. We �ne-tune BERT models for English and Finnish, and evaluate the quality of the
resulting representations on the CoSimLex dataset (Armendariz et al., 2020a). This dataset
addresses in-context word similarity in multiple languages, and is designed for exploring the
e�ect of context on word meaning in a continuous, or graded, fashion.

Our experiments allow us to learn more about the di�erent kinds of information re�ected
in BERT representations. We can also gauge the impact of model �ne-tuning on the similarity
estimates derived from the representations. Importantly, we compare the utility of di�erent
�ne-tuning tasks, built with manual and automatic semantic annotations.
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6.2 Impact of Linguistic Phenomena on BERTRepresentations

In this section, we explore the impact of di�erent linguistic transformations on the usage
similarity estimates that can be drawn from BERT representations. We carry out a comparison
of the BERT similarity values obtained between sentences that di�er in a speci�c, controlled
linguistic phenomenon. We want to investigate if, and to what extent, transformations that do
not change the meaning of a sentence can a�ect usage similarity values (which would be 1 in
two identical sentences). This analysis will provide a clearer picture of the kinds of linguistic
phenomena that in�uence the representations.

We use the SICK dataset (Marelli et al., 2014), a collection of 9,840 English sentence pairs
(c1, c2) that illustrate di�erent types of transformations. In a sentence pair, c2 is a transformed
version of c1. This dataset was originally developed to test for compositionality in distributional
models, and contains pairwise similarity scores and entailment judgments. However, in our
analysis we will only be using the transformation label, which determines whether themeaning
of the sentence is preserved. There are threemajor kinds of transformations in SICK, depending
on the e�ect that they have on sentence meaning: those that create a sentence c2 with (a) a
meaning similar to that of c1; (b) a meaning that contradicts c1; and (c) a meaning di�erent
from that of c1, but preserving a high lexical overlap. Table 6.1 contains examples of the nine
(out of 12) most represented transformations in the dataset. These include, for example, the
transformation of an active sentence to passive voice, the substitution of a word in the sentence
by its antonym, or “word scrambling”. “Scrambling” involves rearranging words in a sentence,
possibly changing their part of speech or the sense used, causing a change in sentence meaning.
In our analysis, we use the nine transformations included in the Table.1

For each sentence pair (c1, c2), containing the sets of wordsWc1
andWc2

, we collect the
BERT representation of thewords that are common in c1 and c2 (Wc1−2

∶ {∀w ∈Wc1
;w ∈Wc2

}),
excluding stop words.2 For example, in the �rst sentence in Table 6.1, the common words
are girl, strange, out�t and bike. For each common word w ∈ Wc1−2

(e.g. girl), we calculate
the cosine similarity between its instance in c1 and in c2. Finally, we calculate the average
of the similarities obtained for each type of transformation. This re�ects how much word
representations change due to a speci�c type of transformation. We use the last layer of
the bert-base-uncasedmodel, as this is the layer on top of which classi�ers are placed for
�ne-tuning.

Results are presented in Figure 6.1. Word scrambling is the transformation that a�ects
representations the most. This is expected, because the meaning of the sentence is not pre-
served and words may change their form, part of speech and meaning. This is re�ected in
the low similarity between representations acquired from the original and the transformed
sentences. We note that di�erent transformations, even the meaning-preserving ones, have
a di�erent impact on average similarities. If BERT representations were only in�uenced by

1We exclude the other three transformations from this analysis because they are much less represented in SICK.
These are the transformation from passive to active voice (17 pairs), the expansion of agentive nouns (28), and the
conversion of compounds into relative clauses (56).

2We use scikit-learn’s list of English stop words.
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Modi�cation c1 c2

Passive voice (281) A girl in a strange out�t is riding the bike
The bike is being ridden by a girl in a
strange out�t

Lexical substitution
(847)

A dog is emerging from a lake An animal is emerging from a lake

Modi�er addition
(287)

Two people are sitting on a bench Two people are sitting on a white bench

Adjective expansion
(189)

white dog is standing on a grassy hillside
A white dog is standing on a hill
covered by grass

Determiner substitu-
tion (268)

Two dogs are playing on a beach Two dogs are playing on the beach

Negation insertion
(419)

The person is going into the water The person is not going into the water

Opposite determiner
(608)

A skateboarder is jumping in the air No skateboarder is jumping in the air

Antonym (933) An elderly man is sitting on a bench A young man is sitting on a bench

Word scrambling
(377)

Two dogs are playing in the snow It is snowing on two playing dogs

Table 6.1: Examples of the most common transformations in the SICK dataset. The numbers in
parentheses indicate the amount of sentence pairs available for each transformation. The �rst section
of the Table contains transformations that do not modify the meaning of the sentence (a); the middle
section shows those that result in a sentence of an opposite meaning (b). The bottom section shows the
word scrambling transformation, where a rearrangement of the words results in a di�erent meaning (c).

semantic factors, we would expect all modi�cations of type (a) to result in similar similarity
values. However, as shown in the Figure, this is not the case. In fact, some transformations of
type (a) result in lower similarities than those of type (b) (opposite meaning). For example,
after word scrambling, the transformation to passive voice has the lowest similarity values. In
this case, the arguments of a verb are shifted, but meaning is preserved. Passivisation a�ects
the similarity estimates more than other transformations involving, for example, word substi-
tution, even when a word is replaced with its antonym (which incurs a change in meaning).3

This is re�ected in the higher similarity scores of the “Lexical substitution” and “Antonym”
transformations, which a�ect representations the least. This can in part be explained by the
design of BERT’s embedding layer. The input embedding consists of the sum of token, position
and segment embeddings. This means that the representations of words that we compare
contain information about their position in the sentence, and a change in position, like the one
that occurs in passivisation, is re�ected in the representations.4 Adjective expansion, where a

3We note that, despite being opposite in meaning, antonyms tend to be distributionally similar to each other
because they can occur in the same contexts (Lin et al., 2003). Given BERT’s cloze-style pre-training task, it is likely
that its representations re�ect this similarity.

4Mickus et al. (2020) examine the e�ect of segment embeddings on the representations. These have a key
role in BERT’s Next Sentence Prediction pre-training task, as they mark the �rst and second sentence of the input
sequence di�erently. They �nd that tokens have di�erent representations depending on whether they are in the
�rst or second sentence. They note that this could partly be due to position embeddings, which mark the position
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Figure 6.1: Average similarity of BERT representations by transformation type. Representations are
extracted from the last layer, and similarities are calculated between instances of the same word. Colours
indicate the type of meaning change that each transformation causes.

relative clause is introduced, is also among the transformations that yield the biggest change
in representations.

The experiment presented in this section con�rms our preliminary observations that BERT
word instance representations are strongly in�uenced by phenomena not strictly related to
lexical meaning. We have observed how the usage similarity estimates between two meaning-
equivalent sentences decrease when speci�c kinds of transformations are applied. The e�ect
of these transformations is in some cases bigger than the e�ect observed with transformations
that change the meaning of a sentence. This motivates us to try to enhance the lexical semantic
information in BERT representations, making them more sensitive to word meaning. We
describe these experiments in the following sections.

6.3 The GradedWord Similarity in Context Task

The GWCS SemEval task (Armendariz et al., 2020b) introduced the CoSimLex dataset (Armen-
dariz et al., 2020a), described in more detail in Section 2.1.3.3. The task is focused on the e�ect
of context on human perception of similarity as a graded notion, in contrast to the WiC dataset.
CoSimLex di�ers from the Usim dataset in three respects: it presents word pairs within the
same context; it addresses the similarity of instances of di�erent words; and it is available in
multiple languages: English, Croatian, Slovene and Finnish. GWSC consisted of two subtasks
where models had to predict (1) the shift in meaning similarity for a pair of words (wa, wb)

of a token in the entire input sequence, not in an individual segment. In our analysis, however, we use only the
�rst segment, as we input individual sentences.
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from one context to another, and (2) the similarity of two word instances in the same context.
This is illustrated by sentences c1 and c2, two contexts where body and chest co-occur.

c1 (...) The International Labour O�ce (ILO) is the Organization’s research body and
publishing house. Since 1950, the ILO has periodically published guidelines on how to
classify chest X-rays for pneumoconiosis.

c2 The dance is performed by moving one’s shoulders up and down with arms bent toward
the chest. Then one rocks the upper body back and forth (...)

A change in meaning similarity occurs between the highlighted words in the two sentences.
Chest denotes a part of the human body in the two cases. The words are less similar in context
c1, where body refers to an organisation, than in context c2 where both words refer to the
human anatomy. The shift in meaning is re�ected in the di�erence between gold similarity
scores assigned to these instance pairs in the GWSC dataset (1.83 vs. 6.51). In subtask 1, the
di�erence in values has to be predicted (6.51 − 1.83 = 4.68). In subtask 2, models must predict
the similarity scores themselves (1.83 and 6.51). All predictions are evaluated against gold
judgments provided by annotators. There are 340 context pairs available for English, 112 for
Croatian, 11 for Slovene and 24 for Finnish; which were used for evaluation. In addition to
that, 10 sentence pairs were released as trial data for all languages but Finnish. We participated
in the English and Finnish tasks with our �ne-tuned models described in the following section
as a way of evaluating their lexical semantic quality.

6.4 System Overview

6.4.1 Background

Our methodology draws inspiration from recent work on injecting semantic information into
pre-trained language models (Lauscher et al., 2019; Arase and Tsujii, 2019; Shi et al., 2019;
Peters et al., 2019a; Qu et al., 2019; Levine et al., 2020). This can be done at two stages: during
model pre-training or during �ne-tuning.

Lauscher et al. (2019) opt for the �rst, adding a lexical task to BERT’s two training objectives
(language modelling and next sentence prediction). They pre-train a smaller BERTmodel from
scratch with a binary word relation classi�cation task. Speci�cally, they feed the model with
word pairs and the model has to learn whether they stand in some lexical relation, such as
synonymy or hyponymy. The semantic knowledge used in this additional task comes from pre-
de�ned lexicographic resources (like WordNet (Miller, 1995)). This is shown to be bene�cial in
almost all tasks in the GLUE benchmark (Wang et al., 2018)5 compared to a BERT model of
the same size trained without this task.

5The GLUE (General Language Understanding Evaluation) benchmark is a set of nine tasks, with their
corresponding datasets, targeting di�erent aspects of Natural Language Understanding. The tasks involve Natural
Language Inference, Sentiment Analysis and Semantic Textual Similarity, among others.
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Arase and Tsujii (2019) inject semantic knowledge into BERT by �ne-tuning the pre-trained
model on paraphrase data. Their method consists in simultaneously learning to discriminate
phrasal and sentential paraphrases, using two separate classi�cation heads. They subsequently
�ne-tune the model for a second time for the related tasks of paraphrase identi�cation and
semantic equivalence assessment, and report results that demonstrate improved performance
over a model that has not been exposed to paraphrase data. We follow their approach, which
they refer to as “transfer �ne-tuning”. We �ne-tune BERT models for English and Finnish
on a set of semantic tasks that are closely related to the GWSC task, since no training data is
available for GWSC. Our goal is improve the semantic knowledge in BERT representations by
�rst exposing the model to another lexical semantic task.

One of the tasks we use for �ne-tuning is inspired by the retro�tting approach of Shi et al.
(2019). They observe that distances between ELMo (Peters et al., 2018a) representations are
not always intuitive: the embeddings of two instances of the same word occurring in meaning-
equivalent sentences (e.g. �at in “Some people believe earth is �at. Why?” and “Why do people
still believe in �at earth?”) are sometimes farther apart than representations of antonyms (large
and small) in sentences with di�erent meanings. They propose an orthogonal transformation
for ELMo that is trained to bring representations of word instances closer when they appear
in sentences that have the same meaning. They collect sentence pairs from the Microsoft
Research Paraphrase Corpus (MRPC) (Dolan et al., 2004) that share a word and which are
paraphrases of each other (T) or not (F). They show that this retro�tting approach improves
ELMo’s performance in a wide range of semantic tasks at the sentence level (sentiment analysis,
inference and sentence relatedness). We follow their data collection method to obtain word
instances for �ne-tuning BERT in one of our �ne-tuning tasks. We replace MRPC with the
Opusparcus resource (Creutz, 2018) since it covers two of the languages addressed in GWSC,
English and Finnish.

6.4.2 Datasets

We �ne-tune pre-trained BERT models on semantic tasks that are related to GWSC. We select
tasks that address the similarity of wordmeaning in context, and use the corresponding datasets
to specialise BERT on this speci�c aspect of meaning. The Usim, CoInCo and WiC datasets are
described in more detail in Section 2.1.3.2 and 2.1.3.3. Table 6.2 contains annotated instances
from each dataset used in our experiments.

Usim and CoInCo The Usim dataset contains 10 sentences for each of 56 words of di�erent
parts of speech, manually annotated with pairwise usage similarity scores (Erk et al., 2009,
2013). As in GWSC, similarity scores in Usim are graded. To binarise the usage similarity scores
and use them for �ne-tuning, we consider only sentence pairs annotated with low similarity
scores (score < 2) as instances denoting a di�erent meaning (F), and highly similar sentence
pairs (score > 4) as instances of the same sense (T). In total, we use 1,399 Usim sentence pairs
for �ne-tuning. Since this is a small dataset, we combine it with instances fromCoInCo (Kremer
et al., 2014). We use the CoInCo sentence pairs that we extracted for Usim prediction (Section
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4.2), where instance pairs were considered to have the same (T) or a di�erent (F) meaning
depending on their substitute overlap. We collect additional data from CoInCo relaxing the
class inclusion constraints. Before, we only allowed instances with at least four substitutes.
Now, we retain all instances regardless of the number of available substitutes. In Section 4.2,
we considered as (T) instance pairs that have at least 75% of substitutes in common, and as
F examples pairs that do not share any substitute. Now, we accept as (T) pairs with at least
50% of common substitutes, and as (F) examples pairs that share at most one substitute. We
retain up to 500 instance pairs per lemma in CoInCo, when available. We balance the two
classes (T and F) and merge the obtained instances with the 5,023 pairs collected in the �rst
place (Section 4.2), removing the duplicates. In total, we have 22,226 CoInCo instance pairs
for �ne-tuning. We use these instances in combination with the Usim data.

WiC The WiC dataset contains pairs of word instances in context with the same or a di�erent
meaning (Pilehvar and Camacho-Collados, 2019). The dataset comes with a train/dev/test split.
We use the training set (5,428 sentence pairs) with its labels (T or F) as data for �ne-tuning.

ukWaC-subs The GWSC task involves pairs of di�erent words that can have similar meanings
in some contexts and not in others (e.g. body and chest). Given that no training data is
available, we automatically create one more dataset for �ne-tuning called ukWaC-subs, which
approximates this task.

ukWaC-subs contains pairs of sentences (c1, c2) that di�er in one word only. We create
the data by substituting a word w in c1 by either (a) a correct substitute; (b) a word that is a
good synonym of w and could have been a correct substitute in another context but not in
this one; or (c) a random word of the same part of speech as w. This is illustrated by the three
ukWaC-subs sentences in Table 6.2. With (a), we expect BERT to learn that clear is being used
in its understandable sense in this context (illustrated by the substitute ambiguous). In
(b), we want BERT to learn that despite the (out-of-context) similarity between present and
moment, the latter is not adequate in this context. With (c), we help BERT distinguish date
from a completely unrelated word (heritage). We use this data for a 3-way classi�cation task.

We create this dataset by collecting sentences from the ukWaC corpus (Baroni et al., 2009)
and automatically annotating them with lexical substitutes. We identify the content words
in a sentence6 and use as their candidate substitutes their paraphrases in the Paraphrase
Database (PPDB) lexical XXL package Ganitkevitch et al. (2013); Pavlick et al. (2015). We only
consider as candidates for substitution paraphrase pairs with a PPDB 2.0 score above 2. We
then use context2vec embeddings (Melamud et al., 2016) for lexical substitution to rank the
candidates according to how well they �t a speci�c context. We use the c2vf method described
in the Lexical Substitution Chapter (Section 3.4.2.3), which relies on target-to-substitute and
substitute-to-context similarities.

We obtain an ordered ranking R of substitutes s ∈ St for an instance i of a target word t in
context C. The highest-ranked substitute is viewed as correct and serves to create instances of

6We use only nouns, verbs (excluding modal verbs and auxiliaries), adjectives and adverbs, according to the
pos-tags in ukWaC.
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Label/
Score Sentence 1 Sentence 2

Usim

T
(4.3/5)

We recommend that you check with us before-
hand.

I have checkedmultiple times with my order and
that is not the case.

F
(1.3/5) The romance is uninspiring... and dry.

If the mixture is too dry, add some water; if it is
too soft, add some �our.

WiC

T Laws limit the sale of handguns . They tried to boost sales.

F She didn’t want to answer. This may answer her needs.

ukWaC-subs

a (T) For neuroscientists, the message was clear.
For neuroscientists, the message was unambigu-
ous.

b (F) Need a present for someonewith a unique name?
Need a moment for someone with a unique
name?

c (F’) Overdue tasks display on the due date. Overdue tasks display on the due heritage.

Opusparcus

T I love you so much I love you to the moon and back.

F yes, Mary, I would love to dance. Why do I love him?

Table 6.2: Example instances from each dataset addressing word similarity in context.

type (a). A random word of the same part of speech found in the corpus makes an instance
of class (c). To obtain instances of class (b) we could in principle take the last substitute
in the ranking. However, due to the noise that exists in PPDB, these often are not correct
paraphrases of the target word, even out of context. We therefore apply the PPDB �ltering
strategy proposed in Section 4.3.2.2 which checks whether substitutes in adjacent positions
(sj, sj+1) in the ranking R form a paraphrase pair in PPDB. If this is not the case for a speci�c
pair, we stop checking at that point in the ranking and retain sj+1 as a substitute that represents
a di�erent meaning of the target word.

Once the substitutes have been collected, 40% of the instances are assigned to class (a),
30% to class (b) and 30% to (c). One sentence may contain more than one training instance
if a substitute ranking is available for di�erent words in it. A training instance is created by
replacing the word with the substitute required by the class it has been assigned to, as can be
seen in Table 6.2. We create 100,000 instances that we use to �ne-tune BERT.
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Opusparcus Shi et al. (2019) show that retro�tting ELMo with paraphrases improves its
performance on lexical semantic tasks. We follow a similar approach and use paraphrases
to �ne-tune BERT before applying it to GWSC. We use paraphrases from the Open Subtitles
Paraphrase Corpus (Opusparcus) (Creutz, 2018). We use this corpus instead of the Microsoft
Research Paraphrase Corpus (Dolan et al., 2004) used by Shi et al. (2019) because it contains
paraphrase pairs for six European languages, including English and Finnish which are included
in GWSC. Paraphrase pairs in Opusparcus were extracted from movies and TV shows subtitles,
and are ranked by quality. We use paraphrases from the Opusparcus training set with a quality
score higher than 15,7 and create our own training instances following the procedure of Shi
et al. (2019). Every pair of paraphrases that share a content word constitutes a positive example
(T). For every T, we create a negative example (F) by selecting a pair of sentences from the
resource which share the same word but are not paraphrases of each other. To avoid creating
examples for target words that are highly frequent and have fuzzy semantics, we omit instances
of the 200 most frequent words in the Google Books NGram corpus (Michel et al., 2011) (e.g.
make, get, good). In total, we use 100,000 sentence pairs from Opusparcus for �ne-tuning the
English model and 60,520 for Finnish.

6.4.3 Models

We use the �ve datasets described in the previous section to �ne-tune pre-trained BERTmodels
for English and Finnish. All tasks require comparing the meaning of word instances in two
di�erent sentences. We form an input sequence (sentence pair) for BERT by joining the two
sentences together with the separator token ([SEP]) in between. Since the task is at the word
level, we do not build our classi�er on top of the [CLS] token which is an aggregation of the
whole input sequence. Instead, our classi�er receives as input the BERT representations of the
target word instances at the last layer. BERT uses wordpiece tokenisation (Wu et al., 2016),
which means that a target word may be split into several tokens. For words that have been split,
we average the representations of each wordpiece. We use two kinds of heads for �ne-tuning:

• Classi�cation head: The representations of the two target tokens are concatenated and
fed to a linear classi�er which outputs probabilities for each class. We use a cross entropy
loss for training. We call this head classif.

• Cosine distance head: We apply the Cosine Embedding Loss (PyTorch, (Paszke et al.,
2019)) to the representations of the two target tokens at the last layer. This loss increases
the cosine distance of two tokens if they do not have the same meaning, and decreases it
in the inverse case. We refer to this head as cosdist.

Note that the ukWaC-subs dataset is only compatible with the classif head because it has
three classes. To predict the similarity of two target tokens in the GWSC data, we extract
their representations from the di�erent layers of a �ne-tuned model. We use cosine similarity

7Scores range from ∼77 (best quality) to ∼2 (worst quality).
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(cossim) as our similaritymetric. In Subtask 2, which consists in predicting the similarity scores
for a pair of words (wa, wb) in the same context c, we simply calculate the cosine similarity
of their representations in a speci�c layer (cossim(wac

, wbc
). In Subtask 1, we need to predict

a change in similarity between two words wa and wb in two di�erent contexts (c1, c2). We
estimate the change in similarity (∆Sim) with a simple subtraction of the similarities obtained
for Subtask 2:

∆Sim = cossim(wac2
, wbc2

) − cossim(wac1
, wbc1

) (6.1)

where wac2
is the representation of word wa in context c2.

6.4.4 Experimental Setup

We participated in GWSC Subtasks 1 and 2 for English and Finnish. We did not address
Croatian and Slovenian due to the lack of datasets that could be used for �ne-tuning. For En-
glish, we �ne-tune the bert-base-uncasedmodel. For Finnish, we use the uncased Finnish
model (finnish) (Virtanen et al., 2019)8 and the uncased Multilingual BERT-base model
(multilingual).9 The finnishmodel is trained on 3.3B tokens from di�erent sources includ-
ing news and Wikipedia text in Finnish. The multilingualmodel was trained on Wikipedia
data in 102 languages, but the amount of Finnish training data used is about 30 times smaller
than in the finnishmodel (Virtanen et al., 2019). For faster �ne-tuning, we set the maximum
length to 128 wordpieces and omit examples where a target word occurs after this position.

We use as a development set for English the o�cially released GWSC trial data (10 sentence
pairs) and an earlier release of trial data (8 sentence pairs), both distinct from the test set. We
use these data to select the best models and hyperparameters for our o�cial submissions to
GWSC. The English test set consists of 340 context pairs for Subtask 1 and 680 unique contexts
for Subtask 2. We �ne-tune bert-base-uncased separately on each of our English datasets
for up to 15 epochs. We experiment with the two classi�cation heads {classif, cosdist} and
with di�erent learning rates {5e-5, 1e-6, 1e-7}. These hyperparameters, along with the layer
the word representations are extracted from, are set on the GWSC trial data. Our submitted
models were �ne-tuned on WiC, Opusparcus and CoInCo-Usim with a learning rate of 5e-5
and 0.1 dropout for 4, 3 and 2 epochs, respectively. The ukWaC-subs model was �ne-tuned
for 11 epochs with a learning rate of 1e-6 and 0.2 dropout. Dropout was determined based on
results on 2,000 held-out ukWaC-subs instances.

Since no trial dataset was released for Finnish, we �xed the hyperparameters for our models
to those that worked best for the English Opusparcus data. Our submitted predictions are from
the higher layers of the models �ne-tuned with the classif head. The test set for Finnish
consists of 24 context pairs in Subtask 1 and 48 unique contexts in Subtask 2.10

The metrics used to evaluate model predictions are the uncentered Pearson correlation (�)
in Subtask 1 (Equation 6.2), and the harmonic mean of Pearson and Spearman correlations (�̄)

8https://github.com/TurkuNLP/FinBERT
9https://github.com/google-research/bert/blob/master/multilingual.md
10We use HuggingFace’s transformers library (Wolf et al., 2020) to implement our experiments.
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in Subtask 2.

CCuncentered =

∑n

i=1
(xi)(yi)

√

(
∑n

i=1
xi)

2(
∑n

i=1
yi)

2

(6.2)

6.5 Results

Results for the two English and Finnish subtasks are presented in Table 6.3. We report results
of the two best systems submitted to each subtask (marked with †) along with results calculated
during the post-evaluation phase for comparison. These include baseline predictions made by
BERT models without �ne-tuning.

Although the two subtasks are highly related, di�erent models perform best in each one.
For English, the best result in Subtask 1 (among our o�cial submissions) is obtained by the
model �ne-tuned on WiC data with the cosdist head (� = 0.760). This model occupies
the third position in the �nal ranking and is closely followed by the model �ne-tuned on
paraphrase data with the classif head. The best performing model in Subtask 2 is the one
�ne-tuned on the ukWaC-subs data (�̄ = 0.718) which ranked fourth. The second best model
uses the cosdist head and is trained on the CoInCo and Usim data together. All English
models outperform the BERT-based baseline without �ne-tuning (� = 0.715 and �̄ = 0.661).
This demonstrates the higher quality of lexical semantic knowledge in our �ne-tuned models.

Best results for the Finnish Subtasks 1 and 2 are also produced by di�erent models. The
multilingual model performs better on Subtask 1 and the finnish model on Subtask 2.
We observe that similarities assigned to word instance pairs by the multilingualmodel fall
in a smaller range (M=0.87, SD=0.04) than those assigned by the finnishmodel (M=0.77,
SD=0.07).11 This explains the low performance of the multilingual model in Subtask 2, where
similarity scores have to be predicted. At the same time, however, it does well on Subtask 1
because it captures the magnitude of the di�erence in similarity between two pairs. Given that
no trial data (development set) are available for Finnish and that the maximum number of
submissions to the task was nine, we could only try up to �ve layers per model at submission
time. We used the upper layers because they had given better results in English. Our submitted
Finnish models, however, perform worse than their counterparts without �ne-tuning. The
models were ranked sixth and fourth in Subtasks 1 and 2.

During the post-evaluation phase, we had the possibility to test all layers of the models. The
sixth layer of the multilingualmodel �ne-tuned on Finnish Opusparcus data outperforms
the multilingual baseline on Subtask 1 (� = 0.718 vs � = 0.677), but the other �ne-tuned
models did not improve over their respective baselines. Surprisingly, the finnish baseline
model in Subtask 2 (�̄ = 0.671) outperforms the top-ranked model for Finnish among all teams
that participated in the task (�̄ = 0.645).

11Statistics are taken from layer 11.
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Model Subtask 1 Subtask 2

English

WiC cosdist † 0.76011 0.68911
ukWaC-subs 0.75110 † 0.71810
Opusparcus classif † 0.75111 0.6696
CoInCo + Usim cosdist 0.76510 † 0.6866
bert-base-uncased 0.71511 0.66111

Finnish

multilingual Opusparcus classif † 0.5939 † 0.19211
multilingual Opusparcus classif 0.7186 0.2865
finnish Opusparcus classif † 0.50012 † 0.4919
finnish Opusparcus classif 0.5501 0.5683
multilingual 0.67711 0.3889
finnish 0.57712 0.67112

Table 6.3: Results of our English and Finnish models in GWSC Subtasks 1 and 2. The models are
compared to three BERT-based baselines without �ne-tuning. The evaluation metric in Subtask 1 is
Pearson’s correlation coe�cient. In Subtask 2, it is the harmonic mean of Pearson and Spearman’s
correlation coe�cients. Our o�cial submissions to the GWSC task for each language are marked with
†. Subscripts indicate the BERT model layer used.

6.6 Discussion

There are many possible ways in which BERT can be complemented with additional infor-
mation; in our work, we focus on one of them, �ne-tuning. Another approach that we �nd
promising is proposed in Qu et al. (2019). It consists in introducing a word-level feature at
the embedding layer, which is added to the token, position and segment embeddings used in
BERT and is optimised during �ne-tuning on a task that could bene�t from this information.
In their case, they create a binary feature indicating whether a word has been previously used
in a conversation, and �nd it useful on a conversational Question Answering task. One could
potentially include, at that level, more information about the meaning of a word, or other
information like its frequency, number of senses, or partitionability, if reliable estimates are
available.

Another possibility is to also �ne-tune models on tasks related to lexical meaning, but
controlling for speci�c positional, syntactic and collocational phenomena. For example, the
dataset for �ne-tuning could be built in a way that reduces BERT’s sensitivity to these phenom-
ena, including sentences where a word occurs in di�erent morphological forms, grammatical
functions, or in di�erent positions in the sentence. Additionally, in light ofMickus et al. (2020)’s
�nding on the important in�uence of BERT’s sequence segment on word representations, it
would also be interesting to �ne-tune BERT on tasks where only one segment is used.

Finally, interpretability work (introduced in Section 2.3) can provide insights as to how im-
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prove a model. This line of work aims at understanding the inner workings of deep pre-trained
LMs, and investigates the linguistic and world knowledge encoded in di�erent layers (Tenney
et al., 2019a) or attention heads (Voita et al., 2019b) of the models. We believe understanding
how and where BERT makes use of di�erent kinds of information could guide approaches
aiming to improving the model. For example, if we identify the layers or attention heads where
lexical information is more or less prominent, we could adapt the weight given to representa-
tions from di�erent layers accordingly, or prune heads that contain unnecessary information
(Michel et al., 2019).

6.7 Conclusion

In this chapter, we explored the impact of di�erent linguistic transformations on BERT repre-
sentations. Our investigation relied on an exploration of similarity estimates obtained from
meaning-equivalent sentences which illustrate controlled linguistic transformations.

We followed recent advances in injecting knowledge into BERT to improve the modelling of
lexical semantic knowledge in the representations derived from the model. We investigated the
e�ect of �ne-tuning pre-trained BERT models on existing datasets that address word meaning
similarity in context. We proposed a novel �ne-tuning task where in-context lexical similarity
is approximated through automatic substitute annotations. We evaluated this �ne-tuning
approach in the frame of SemEval 2020 task 3, “Graded Word Similarity in Context” (GWSC),
where we participated with models for English and Finnish. Our results with English models
demonstrate the bene�t of �ne-tuning BERT on a task that is closely related to the end task.
Results on our model trained on data with automatic substitutions show that this is the case
even when data are automatically obtained, and hence of lower quality than hand-crafted
data. The lower results of models for Finnish highlight the importance of data availability for
�ne-tuning, as we could only �ne-tune models with paraphrases. We also found that similarity
estimates from the multilingual BERT model, at least for the Finnish language, are very high
and fall in a narrow range of scores, a�ecting its results on Subtask 2 in GWSC. Finally, we
discussed several relevant alternativeways of injecting knowledge into BERT, including possible
modi�cations of our approach. We also emphasise the utility of insights and methodology
coming from interpretability work for improving deep pre-trained LMs.
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Polysemy Level Prediction

7.1 Introduction

In previous chapters, we explored the ability of contextualised representations to capture word
meaning in context and proposed ways to make them more sensitive to semantic information.
We have also used these representations to predict words’ clusterability, a property that re�ects
the organisation of their semantic space. In this chapter, we focus on another lexical property,
the degree of polysemy of words, i.e. their potential to express di�erent meanings.

Words can have one or multiple senses, i.e. they can be monosemous or polysemous.
Polysemous words can be situated at a higher or lower polysemy level and express a di�erent
number of senses. Apart from its theoretical interest, knowing the polysemy level of words has
numerous practical implications: it can point to monosemous words which can be safe cues
for disambiguation in running text (Leacock et al., 1998; Agirre and Martinez, 2004; Loureiro
and Camacho-Collados, 2020) and determine the needs in terms of context size needed for
disambiguation (e.g. in queries, chatbots). Similarly to clusterability (McCarthy et al., 2016)
(cf. Chapter 5), it can also be useful for lexicographers to determine the number of entries and
senses for a word, and to estimate the e�ort needed for semantic annotation. Furthermore, it
could be used to identify less polysemous words that could guide cross-lingual transfer. Finally,
detecting variations in the polysemy level of a word across time is highly relevant for the study
of lexical semantic change (Rosenfeld and Erk, 2018; Giulianelli et al., 2020; Schlechtweg et al.,
2020).

We want to investigate whether the semantic space of the contextualised representations
generated by pre-trained language models re�ects this property of words. We also want to
discover whether the models’ knowledge about polysemy is acquired through exposure to the
context of new word instances or during pre-training. In this chapter, we propose methodology
to answer these questions about BERT and other pre-trained LMs.

Our approach involves the use of datasets carefully designed to re�ect di�erent sense
distributions. It also accounts for the strong correlation between word frequency and number
of senses (Zipf, 1945), and for the relation of grammatical category and polysemy. Importantly,
our investigation encompasses monolingual models in di�erent languages (English, French,
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Spanish and Greek) and multilingual BERT.
As discussed in Section 2.3.2, several works investigate the knowledge that pre-trained

contextualised word embedding models encode about lexical semantics. The knowledge
encoded by word representations about a word’s polysemy has also been explored in recent
work for static (Jakubowski et al., 2020) and contextualised embeddings (Xypolopoulos et al.,
2021; Pimentel et al., 2020). Xypolopoulos et al. (2021) investigate the geometry of ELMo
embeddings, and Pimentel et al. (2020) explore the relation between ambiguity and context
uncertainty as approximated in the space constructed by multilingual BERT using information-
theoretic measures. Both studies �nd correlations between their polysemy measures and the
number of senses inWordNet, whether this information is learnt during pre-training or through
exposure to new contexts is unclear. Wiedemann et al. (2019) and Reif et al. (2019) show that
BERT can successfully leverage sense annotated data for word sense disambiguation. Aina
et al. (2019) probe the hidden representations of a bidirectional (bi-LSTM) LM for lexical and
contextual information, and Vulić et al. (2020) investigate the word type-level information
encoded in BERT.

Our methodology di�ers from that in past work. Contrary to Wiedemann et al. (2019)
and Reif et al. (2019), we do not use sense annotations to guide the models into establishing
sense distinctions, but rather for creating controlled conditions that allow us to analyse BERT’s
inherent knowledge of lexical polysemy. Vulić et al. (2020) extract type-level representations
from these models, whereas we use token-level representations from controlled contexts to
infer type-level knowledge relevant to a word’s degree of polysemy. The proposed approach
relies on the similarity of contextualised representations (Ethayarajh, 2019), which amounts to
word usage similarity estimation (Erk et al., 2009). In Chapters 4 and 5 we focused on usage
similarity between instance pairs; in this chapter we look at the average usage similarity value
for a word and investigate whether it re�ects its polysemy.

Our experiments show that representations derived from contextual LMs encode knowledge
about words’ polysemy acquired through pre-training, which is present in the representations
generated for new word instances and is combined with information from these new contexts.

7.2 Polysemy Detection

7.2.1 Dataset Creation

Webuild our English dataset using SemCor 3.0 (Miller et al., 1993), a corpusmanually annotated
withWordNet senses (Fellbaum, 1998). It is important to note thatwe do not use the annotations
for training or evaluating any of the models. These only serve to control the composition of
the sentence pools that are used for generating contextualised representations, and to analyse
the results. We form sentence pools for monosemous (mono) and polysemous (poly) words
that occur at least ten times in SemCor.1 For each mono word, we randomly sample ten of its

1We �nd the number of senses for a word of a speci�c part of speech (PoS) in WordNet 3.0, which we access
through the NLTK interface (Bird et al., 2009).
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instances in the corpus. For each polyword, we form three sentence pools of size ten re�ecting
di�erent sense distributions:

• Balanced (poly-bal). We sample a sentence for each sense of the word in SemCor until
a pool of ten sentences is formed.

• Random (poly-rand). We randomly sample ten polyword instances from SemCor. We
expect this pool to be highly biased towards a speci�c sense due to the skewed frequency
distribution of word senses (Kilgarri�, 2004; McCarthy et al., 2004). This con�guration is
closer to the expected natural occurrence of senses in a corpus, it thus serves to estimate
the behaviour of the models in a real-world setting.

• Same sense (poly-same). We sample ten sentences illustrating only one sense of the
poly word. Although the composition of this pool is similar to that of the mono pool (i.e.
all instances describe the same sense) we call it poly-same because it describes one sense
of a polysemous word.2 Speci�cally, we want to explore whether BERT representations
derived from these instances can serve to distinguish mono from poly words.

The controlled composition of the poly sentence pools allows us to investigate the behaviour
of the models when they are exposed to instances of polysemous words describing the same or
di�erent senses. There are 1,765 poly words in SemCor with at least 10 sentences available.3

We randomly subsample 418 from these in order to balance the mono and poly classes. Our
English dataset is composed of 836 mono and poly words, and their instances in 8,195 unique
sentences. Table 7.1 shows a sample of the sentences in each pool. For French, Spanish and
Greek, we retrieve sentences from the Eurosense corpus (Delli Bovi et al., 2017) which contains
texts from Europarl automatically annotated with BabelNet word senses (Navigli and Ponzetto,
2012). We extract sentences from the high precision version4 of Eurosense, and create sentence
pools in the same way as in English, balancing the number of monosemous and polysemous
words (418). We determine the number of senses for a word as the number of its Babelnet
senses that are mapped to a WordNet sense. This �ltering serves to exclude BabelNet senses
that correspond to named entities and are not useful for our purposes (such as movie or album
titles), and to run these experiments under similar conditions to our English experiments.

7.2.2 ContextualisedWord Representations

We experiment with representations generated by three English models: BERT (Devlin et al.,
2019)5, ELMo (Peters et al., 2018a), and context2vec (Melamud et al., 2016). We use the
bert-base-uncased and bert-base-cased models, pre-trained on the BooksCorpus (Zhu
et al., 2015) and EnglishWikipedia. We use 1024-d representations from the 5.5B ELMomodel,6

2The polysemous words are the same as in poly-bal and poly-rand.
3We use sentences of up to 100 words.
4The high coverage version of Eurosense is larger than the high precision one, but disambiguation is less

accurate.
5We use Huggingface transformers (Wolf et al., 2020)
6https://allennlp.org/elmo
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Setting Word Sense Sentences

mono hotel.n
inn The walk ended, inevitably, right in front of his hotel building.
inn Maybe he’s at the hotel.

poly-same room.n
chamber The room vibrated as if a giant hand had rocked it.
chamber (...) Tell her to come to Adam’s room (...)

poly-bal room.n
chamber (...) he left the room, walked down the hall (...)
space It gives them room to play and plenty of fresh air.
opportunity Even here there is room for some variation, for metal surfaces

vary (...)

Table 7.1: Example sentences for the monosemous noun hotel and the polysemous noun room.

and the context representations from a 600-d context2vec model pre-trained on the ukWaC
corpus (Baroni et al., 2009).7

For French, Spanish and Greek, we use BERTmodels speci�cally trained for each language:

• flaubert_base_uncased (Le et al., 2020) trained on 12.8B tokens from the French
WMT19 shared task data (Li et al., 2019), the OPUS collection (Tiedemann, 2012) and
Wikipedia, with a 50k BPE vocabulary;

• The BETO model (Cañete et al., 2020) dccuchile/bert-base-spanish-wwm-uncased
trained on the Spanish parts of Wikipedia and the OPUS Project (Tiedemann, 2012) of a
total of 3B tokens, and a 32k vocabulary size;

• Greek BERT bert-base-greek-uncased-v1 (Koutsikakis et al., 2020), trained on a total
of 3.04B tokens coming from the Greek portions of Wikipedia, Europarl (Koehn, 2005)
and OSCAR. The vocabulary size is 35k.

We also use the bert-base-multilingual-cased model (mBERT) for each of the four
languages. mBERTwas trained onWikipedia data of 104 languages.8 All BERTmodels generate
768-d representations.

7.2.3 The Self-Similarity Metric

All models produce representations that describe word meaning in speci�c contexts of use. For
each instance i of a target word w in a sentence, we extract its representation from: (i) each
of the 12 layers of a BERT model;9 (ii) each of the three ELMo layers; (iii) context2vec. We
calculate self-similarity (SelfSim) (Ethayarajh, 2019) for w in a sentence pool p and a layer l,
by taking the average of the pairwise cosine similarities of the representations of its instances
in l:

7https://github.com/orenmel/context2vec
8The mBERT model developers recommend using the cased version of the model rather than the uncased one,

especially for languages with non-Latin alphabets, because it �xes normalisation issues. More details about this
model can be found here: https://github.com/google-research/bert/blob/master/multilingual.md.

9We also tried di�erent combinations of the last four layers, but this did not improve the results. When a word
is split into multiple wordpieces (WPs), we obtain its representation by averaging the WPs.
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SelfSiml(w) =
1

|I|2 − |I|

∑

i∈I

∑

j∈I

j≠i

cos(xwli, xwlj) (7.1)

In formula 7.1, |I| is the number of instances for w (ten in our experiments); xwli and xwlj
are the representations for instances i and j of w in layer l. We report the average SelfSim
for all w’s in a pool p. SelfSim is in the range [-1, 1]. We expect the average SelfSim for
monosemous words and words with low polysemy to be higher than that of highly polysemous
words. We also expect the poly-same pool to have a higher average SelfSim than the other
poly pools which contain instances of di�erent senses.

Contextualisation has a strong impact on SelfSim since it introduces variation in the token-
level representations, making them more dissimilar. The SelfSim value for a word would
be 1 with non-contextualised (or static) embeddings, as all its instances would be assigned
the same vector. In contextual models, SelfSim is lower in layers where the impact of the
context is stronger (Ethayarajh, 2019). It is, however, important to note that contextualisation in
BERT models is not monotonic, as shown by previous studies of the models’ internal workings
(Voita et al., 2019a; Ethayarajh, 2019). Our experiments presented in the next section provide
additional evidence in this respect.

7.2.4 Results and Discussion

7.2.4.1 Distinction between mono and polyWords in English

Figure 7.1 shows the average SelfSim obtained for each sentence pool with representations
produced by BERT models. The thin lines in the �rst plot illustrate the average SelfSim score
calculated for mono and poly words using representations from each layer of the uncased
English BERT model. We observe a clear distinction of words according to their polysemy:
SelfSim is higher for mono than for poly words across all layers and sentence pools. BERT
establishes a clear distinction even between the mono and poly-same pools, which contain
instances of only one sense. This distinction is important; it suggests that BERT encodes infor-
mation about a word’s monosemous or polysemous nature regardless of the sentences that are
used to derive the contextualised representations. BERT produces less similar representations
for word instances in the poly-same pool compared to mono, re�ecting that poly words can
have di�erent meanings.

We also observe a clear ordering of the three poly sentence pools: average SelfSim is
higher in poly-same, which only contains instances of one sense, followed by mid-range
values in poly-rand, and gets its lowest values in the balanced setting (poly-bal). This is
noteworthy given that poly-rand contains a mix of senses but with a stronger representation
of w’s most frequent sense than in poly-bal (71% vs. 47%).10

Our results demonstrate that BERT representations encode two types of lexical semantic
knowledge: information about the polysemous nature of words acquired through pre-training

10Numbers are macro-averages for words in the pools.
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Figure 7.1: Average SelfSim obtained withmonolingual BERTmodels (left column) andmBERT
(right column) in all languages across all layers (horizontal axis). In the �rst plot, thicker lines correspond
to the casedmodel.

(as re�ected in the distinction between mono and poly-same) and information from the partic-
ular instances of a word used to create the contextualised representations (as shown by the
�ner-grained distinctions between di�erent poly settings). BERT’s knowledge about polysemy
can be due to di�erences in the types of context where words of di�erent polysemy levels are
used. We expect poly words to be seen in more varied contexts than mono words, re�ecting
their di�erent senses. BERT encodes this variation with the LM objective through exposure to
large amounts of data, and this is re�ected in the representations. The same ordering pattern
is observed with mBERT (right column of Figure 7.1), with ELMo (Figure 7.2) and context2vec
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(left part of Table 7.2). This suggests that these models also have some inherent knowledge
about lexical polysemy, but di�erences are less clearly marked than in BERT.

Figure 7.2: Comparison of ELMo average SelfSim for mono and poly lemmas.

mono/poly poly bands

poly-same poly-rand poly-bal

mono 0.400 mono 0.400
poly-same 0.385 low 0.382 0.368 0.362
poly-rand 0.375 mid 0.381 0.358 0.349
poly-bal 0.353 high 0.386 0.356 0.338

Table 7.2: Average SelfSim obtained with context2vec for words in di�erent sentence pools. The
�rst two columns of the table show the average SelfSim for mono and poly words. These results are
presented in Section 7.2. The other columns show the average SelfSim obtained for poly words in
di�erent polysemy bands (described in Section 7.3).

Using the casedmodel leads to an overall increase in SelfSim and to smaller di�erences
between bands, as shown by the thick lines in the �rst plot of Figure 7.1. Our explanation for the
lower distinction ability of the bert-base-casedmodel is that it encodes sparser information
about words than the uncasedmodel. It was trained on a more diverse set of strings, so many
WPs are present in both their capitalised and non-capitalised form in the vocabulary. In spite
of that, it has a smaller vocabulary size (29K WPs) than the uncased model (30.5K). Also, a
higher number of WPs correspond to word parts than in the uncased model (6,478 vs 5,829).

We test the statistical signi�cance of the mono/poly-rand distinction using unpaired two-
samples t-tests when the normality assumption is met (as determined with Shapiro Wilk’s
tests). Otherwise, we run a Mann Whitney U test, the non-parametrical alternative of this
t-test. In order to lower the probability of type I errors (false positives) that increases when
performing multiple tests, we correct p-values using the Benjamini–Hochberg False Discovery
Rate (FDR) adjustment (Benjamini and Hochberg, 1995). Our results show that di�erences
are signi�cant across all embedding types and layers (� = 0.01).

The decreasing trend in SelfSim observed for BERT in Figure 7.1, and the peak in layer
11, con�rm the phases of context encoding and token reconstruction observed by Voita et al.
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Model Avg SelfSim(mono) −
Avg SelfSim(poly-rand)

en

bert-base-uncased 0.1010
bert-base-cased 0.088
mBERT 0.0812
ELMo 0.043
context2vec 0.03

fr

Flaubert 0.0812
mBERT 0.0512

es

BETO 0.094
mBERT 0.0712

el

GreekBERT 0.0310
mBERT 0.0212

Table 7.3: Largest di�erence in SelfSim between mono and poly-rand for all models. Subscripts
indicate the model layer.

(2019a). In earlier layers, context variationmakes representationsmore dissimilar and SelfSim
decreases. In the last layers, information about the input token is recovered for LM prediction
and similarity scores are boosted.

Our results show clear distinctions across all BERT and ELMo layers. This suggests that
lexical information is spread throughout the layers of themodels, and contributes new evidence
to the discussion on the localisation of semantic information (Rogers et al., 2020; Vulić et al.,
2020).

7.2.4.2 Distinction between mono and polyWords in Other Languages

The left column of Figure 7.1 also shows the average SelfSim obtained for French, Spanish
and Greek words using monolingual models. Flaubert, BETO and Greek BERT representations
clearly distinguish mono and poly words, but average SelfSim values for di�erent poly pools
are much closer than in English. BETO seems to capture these �ne-grained distinctions slightly
better than the French and Greek models. The right column of the Figure shows results
obtained with mBERT representations. We observe the highly similar average SelfSim values
assigned to di�erent poly pools, which show that distinction is harder than in monolingual
models.

Statistical tests show that the di�erence between SelfSim values in mono and poly-rand is
signi�cant in all layers of BETO, Flaubert, Greek BERT, and mBERT for Spanish and French.11

Table 7.3 shows the biggest di�erence in SelfSim between mono and poly-rand per model.
The magnitude of the di�erence in Greek BERT is smaller compared to the other monolingual
BERT models (0.03 vs. 0.09 in BETO).

11In mBERT for Greek, the di�erence is signi�cant in ten layers.
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Figure 7.3: Average SelfSim obtained withmonolingual BERTmodels (left column) andmBERT
(right column) in all languages for mono lemmas and poly lemmas in di�erent polysemy bands in the
poly-rand sentence pool.

7.3 Polysemy Level Prediction

7.3.1 SelfSim-based Ranking

In this set of experiments, we explore the impact of words’ degree of polysemy on the represen-
tations. We control for this factor by grouping words into three polysemy bands, as inMcCarthy
et al. (2016), which correspond to a speci�c number of senses (k): low: 2 ≤ k ≤ 3, mid: 4 ≤ k ≤
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Figure 7.4: Comparison of BERT average SelfSim for mono and poly lemmas in di�erent polysemy
bands in the English poly-same and poly-bal sentence pools.

6, high: k > 6. For English, the three bands are populated with a di�erent number of words:
low: 551, mid: 663, high: 551. In the other languages, we form bands containing 300 words
each.12 In Figure 7.3, we compare mono words with lemmas in each polysemy band, in terms
of average SelfSim. Values for mono words are taken from Section 7.2. For poly words, we use
representations from the poly-rand sentence pool which better approximates natural word
occurrence in a corpus. For comparison, we report results obtained in English using sentences
from the poly-same and poly-bal pools in Figure 7.4. We include the plots for poly-bal and
poly-same for the other models in Appendix A.3.1.

In English, the pattern is clear in all plots: SelfSim is higher for mono than for poly words
in any band, con�rming that BERT is able to distinguish mono from poly words at di�erent
polysemy levels. The range of SelfSim values for a band is inversely proportional to its k:
words in low get higher values than words in high. The results denote that the meaning of
highly polysemous words is more variable (lower SelfSim) than the meaning of words with
fewer senses. As expected, scores are higher and inter-band similarities are closer in poly-same
(cf. Figure 7.4 (b)) compared to poly-bal and poly-rand, where distinctions are clearer. The
observed di�erences con�rm that BERT can predict the polysemy level of words, even from
instances describing the same sense.

We observe similar patterns with ELMo (cf. Figure 7.5) and context2vec representations in
poly-rand (right part of Table 7.2) but smaller absolute inter-band di�erences. In poly-same,
both models fail to correctly order the bands. Overall, our results highlight that BERT encodes
higher quality knowledge about polysemy. We test the signi�cance of the inter-band di�erences
in two subsequent polysemy bands (mono→low, low→mid, mid→high) detected in poly-rand

using the same approach as in Section 7.2.4.1. These are signi�cant in all but a few13 layers of
the models.

The bands are also correctly ranked in the other three languages, but with smaller inter-
band di�erences than in English, especially in Greek where clear distinctions are only made
in a few middle layers. This variation across languages can be explained to some extent by
the quality of the automatic EuroSense annotations, which has a direct impact on the quality

12We only used 418 of these polysemous words in Section 7.2 in order to have balanced mono and poly pools.
13low→mid in ELMo’s third layer, and mid→high in context2vec and in BERT’s �rst layer.
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Figure 7.5: Comparison of ELMo average SelfSim for mono lemmas and poly lemmas in di�erent
polysemy bands in the poly-rand sentence pool.

of the sentence pools. Results of a manual evaluation conducted by Delli Bovi et al. (2017)
showed that WSD precision is ten points higher in English (81.5) and Spanish (82.5) than in
French (71.8). The Greek portion, however, has not been evaluated.

Plots in the right column of Figure 7.3 show results obtained using mBERT. Similarly to
the previous experiment (Section 7.2.4), mBERT overall makes less clear distinctions than
the monolingual models. The low and mid bands often get similar SelfSim values, which are
close to mono in French and Greek. Still, inter-band di�erences are signi�cant in most layers of
mBERT and the monolingual French, Spanish and Greek models.14

7.3.2 Anisotropy Analysis

In order to better understand the reasons behind the smaller inter-band di�erences observed
with mBERT, we conduct an additional analysis of the models’ anisotropy. We create 2,183
random word pairs from the English mono, low, mid and high bands, and 1,318 in each of
the other languages.15 We calculate the cosine similarity between two random instances of
the words in each pair and take the average over all pairs (RandSim). The plots in the left
column of Figure 7.6 show the results. We observe a clear di�erence in the scores obtained by
monolingual models (solid lines) and mBERT (dashed lines). Clearly, mBERT assigns higher
similarities to random words, an indication that its semantic space is more anisotropic than
the one built by monolingual models. High anisotropy means that representations occupy a
narrow cone in the vector space, which results in lower quality similarity estimates and in a
model’s limited potential to establish clear semantic distinctions.

We also compareRandSim to the averageSelfSim obtained for polywords in the poly-rand
sentence pool (Section 7.2). In a quality semantic space, we would expect SelfSim (between
same word instances) to be much higher than RandSim. The right column of Figure 7.6 shows
the di�erence between these two scores. diff in a layer l is calculated as in Equation 7.2:

diffl = AvgSelfSiml(poly−rand) − RandSiml (7.2)
14With the exception of mono→low in mBERT for Greek and low→mid in Flaubert and mBERT for French.
151,318 is the total number of words across bands in French, Spanish and Greek.
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Figure 7.6: The left plots show the similarity between random words in the models for each language.
Plots on the right show the di�erence between the similarity between random words (RandSim) and
SelfSim of poly-rand.

We observe that the di�erence is smaller in the space built bymBERT, which ismore anisotropic
than monolingual spaces, and becomes very low in the last layers of the model. This result
con�rms the lower quality of mBERT’s semantic space compared to monolingual models.

Finally, we believe that another factor behind the worse mBERT results is that the multilin-
gual WP vocabulary is mostly English-driven, resulting in arbitrary partitionings of words in
the other languages. This word splitting procedure must have an impact on the quality of the
lexical information in mBERT representations.

7.4 Analysis by Frequency and PoS

Given the strong correlation between word frequency and number of senses (Zipf, 1945), we
explore the impact of frequency on BERT representations. Our goal is to determine the extent
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Figure 7.7: Composition of the English word bands in terms of frequency (left) and grammatical category
(right).

Figure 7.8: Composition of the French, Spanish and Greek word bands in terms of frequency (top) and
grammatical category (bottom).

to which it in�uences the good mono/poly detection results obtained in Sections 7.2.4 and
7.3.1. Similarly, we investigate the impact of part of speech (PoS) categories on representations,
as it is also related to polysemy.

7.4.1 Dataset Composition

We perform this analysis in English using frequency information from Google Ngrams (Brants
and Franz, 2006). For French, Spanish and Greek, we use frequency counts gathered from the
OSCAR corpus (Suárez et al., 2019). We split the words into four ranges (F) corresponding
to the quartiles of frequencies in each dataset. Each range f in F contains the same number
of words. We provide detailed information about the composition of the English dataset in
Figure 7.7.16 Figure 7.7 (left) shows that mono words are much less frequent than poly words.
Figure 7.7 (right) shows the distribution of di�erent PoS categories in each band. Nouns are

16The composition of each band is the same as in Sections 7.2 and 7.3.
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Figure 7.9: Average SelfSim obtained for words of di�erent frequencies and part of speech categories
withmonolingual BERT representations in di�erent languages, using the poly-rand sentence pool.
The frequency ranges used for each language are the same as in Figures 7.7 and 7.8, where a darker
colour indicates a higher frequency range.

the prevalent category in all bands and verbs are less present among mono words (10.8%), as
expected. Finally, adverbs are hardly represented in the high polysemy band (1.2% of all words).
The composition of the bands in the other languages is shown in Figure 7.8. We observe the
same tendencies as in English, except for PoS in the Greek dataset, because all sense-annotated
Greek words in EuroSense are nouns.

7.4.2 Self-Sim by Frequency Range and PoS Category

We examine the average BERT SelfSim per frequency range in poly-rand (Figure 7.9, left col-
umn). We carry out this analysis for the monolingual BERT models in all languages. The clear
ordering by range suggests that BERT can successfully distinguish words by their frequency,
especially in the last layers. Plots in the right column of Figure 7.9 show the average SelfSim
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pos-bal

Nouns Verbs Adjectives Adverbs
en 198 45 64 7
fr 171 32 29 9
es 167 22 40 0

freq-bal

en 7.1M 20M 49M 682M
40 99 62 39

fr 23m 70m 210m 41M
17 43 67 38

es 64m 233m 793m 59M
12 39 58 48

el 14m 40m 111m 1.9M
13 41 70 42

Table 7.4: Content of the polysemy bands in the pos-bal and freq-bal settings. All bands for a language
contain the same number of words of a speci�c grammatical category or frequency range. M stands for
a million andm for a thousand occurrences of a word in a corpus.

for words of each PoS category. Verbs have the lowest SelfSim which is not surprising given
that they are highly polysemous (as shown in Figures 7.7 and 7.8). We observe similar trends
in all languages.

7.4.3 Controlling for Frequency and PoS

We conduct an additional experiment where we control for the composition of the poly bands
in terms of grammatical category and word frequency. We call these two settings pos-bal and
freq-bal. We de�ne npos, the smallest number of words of a speci�c PoS that can be found in a
band. We form the pos-bal bands by subsampling from each band the same number of words
(npos) of that PoS. For example, all pos-bal bands have nn nouns and nv verbs. We follow a
similar procedure to balance the bands by frequency in the freq-bal setting. In this case, nf is
the minimum number of words of a speci�c frequency range f that can be found in a band.
We form the freq-bal dataset by subsampling from each band the same number of words (nf)
of a given range f in F.

Table 7.4 shows the distribution of words per PoS and frequency range in the pos-bal and
freq-bal bands for each language. The table reads as follows: the English pos-bal bands
contain 198 nouns, 45 verbs, 64 adjectives and 7 adverbs; similarly for the other two languages.
In freq-bal, each English band contains 40 words that occur less than 7.1M times in Google
Ngrams, 99 words that occur between 7.1M and 20M times, and so on and so forth.

We examine the average SelfSim values obtained for words in each band in poly-rand.
Figure 7.10 shows the results for monolingual BERT models. We observe that the mono and
poly words in the pos-bal and freq-bal bands are ranked similarly to Figure 7.3. This shows
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Figure 7.10: Average SelfSim inside the poly bands balanced for frequency (freq-bal) and part
of speech (pos-bal). SelfSim is calculated using representations generated by monolingual BERT
models from sentences in each language-speci�c pool. We do not balance the Greek dataset for PoS
because it only contains nouns.

that BERT’s polysemy predictions do not rely on frequency or part of speech. The only exception
is Greek BERT which cannot establish correct inter-band distinctions when the in�uence of
frequency is neutralised in the freq-bal setting. A general observation that applies to all
models is that although inter-band distinctions become less clear, the ordering of the bands is
preserved. We observe the same trend with ELMo (Figure 7.11) and context2vec (Table 7.5).
Results with mBERT are included in Appendix A.3.2.

Statistical tests show that all inter-band distinctions established by English BERT are still
signi�cant in most layers of the model.17 This is not the case for ELMo and context2vec, which
can distinguish between mono and poly words but fail to establish signi�cant distinctions

17Note that the sample size in this analysis is smaller compared to that used in Sections 7.2.4 and 7.3.1.
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Figure 7.11: Average SelfSim inside the poly bands balanced for frequency (freq-bal) and part of
speech (pos-bal), calculated using representations from the ELMomodel.

poly-rand

freq-bal pos-bal
mono 0.389 0.396
poly 0.367 0.370
low 0.368 0.372
mid 0.363 0.364
high 0.359 0.361

Table 7.5: Average SelfSim obtained with context2vec in the freq-bal and pos-bal bands from the
poly-rand sentence pool.

between polysemy bands in the balanced settings.18 For French and Spanish, the statistical
analysis shows that all distinctions in pos-bal are signi�cant in at least one layer of the models.
The same applies to the mono→poly distinction in freq-bal but �ner-grained distinctions get
lost, also in Greek mBERT.19

7.5 Classi�cation by Polysemy Level

Our �nding that word instance similarity di�ers across polysemy bands suggests that this
feature can be useful for classi�cation. In this Section, we probe the representations for
polysemy using a classi�cation experiment where we test their ability to guess whether a word
is polysemous, and which poly band it falls in. We use the poly-rand sentence pools and a
standard train/dev/test split (70/15/15%) of the data. For the mono/poly distinction (i.e. the
data used in Section 7.2), this results in 584/126/126 words per subset in each language. To
guarantee a fair evaluation, we make sure there is no overlap between the words in the three
sets. We use two types of features: (i) the SelfSim for a word; (ii) all pairwise cosine similarities

18Interestingly, ELMo’s �rst layer, which is character-based, made a signi�cant distinction between mono and
poly words in Section 7.2. This is due to the fact that, in English, verbs (which are more prevalent in poly than in
mono) can be found in more di�erent forms than other parts of speech. When removing the e�ect of PoS in pos-bal,
this distinction in the �rst layer is lost.

19With a few exceptions: for example, mono→low and mid→high are signi�cant in all BETO layers.
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mono/poly poly bands
Model SelfSim pairCos SelfSim pairCos

en

BERT 0.7610 0.798 0.4910 0.4610
mBERT 0.778 0.758 0.4612 .4312
ELMo 0.692 0.633 0.372 0.343
context2vec 0.61 0.61 0.34 0.31
Frequency 0.77 0.41

fr
Flaubert 0.587 0.556 0.298 0.279
mBERT 0.669 0.649 0.387 0.388
Frequency 0.61 0.37

es

BETO 0.709 0.667 0.426 0.485
mBERT 0.6911 0.647 0.389 0.437
Frequency 0.67 0.41

el

GreekBERT 0.704 0.644 0.344 0.386
mBERT 0.607 0.657 0.3211 0.349
Frequency 0.63 0.35
Baseline 0.50 0.25

Table 7.6: Accuracy of binary (mono/poly) and multi-class (poly bands) classi�ers using SelfSim and
pairCos features on the test sets. Comparison to a baseline that predicts always the same class and a
classi�er that only uses log frequency as feature. Subscripts denote the layers used.

collected for its instances, which results in 45 features per word (pairCos). We train a binary
logistic regression classi�er for each type of representation and feature.

As explained in Section 7.3, the three poly bands (low, mid and high) and mono contain a
di�erent number of lemmas. For classi�cation into polysemy bands, we balance each class by
randomly subsampling words from each band. In total, we use 1,168 words for training, 252
for development and 252 for testing (70/15/15%) in English. In the other languages, we use
a split of 840/180/180 words. We train multi-class logistic regression classi�ers with the two
types of features, SelfSim and pairCos. We compare the results of the classi�ers to a baseline
that predicts always the same class, and to a frequency-based classi�er which only uses the
words’ log frequency in Google Ngrams, or in the OSCAR corpus, as a feature.

Table 7.6 presents the classi�cation accuracy on the test set. We report results obtained
with the best layer for each representation type and feature as determined on the development
sets. In English, best accuracy is obtained by BERT in both the binary (0.79) and multiclass
settings (0.49), followed by mBERT (0.77 and 0.46). Despite its simplicity, the frequency-based
classi�er obtains better results than context2vec and ELMo, and performs on par with mBERT
in the binary setting (0.77). This con�rms that frequency information is highly relevant for
the mono-poly distinction. All classi�ers outperform the same class baseline. These results
are very encouraging, showing that BERT embeddings can be used to determine whether a
word has multiple meanings, and provide a rough indication of its polysemy level. Results in
the other three languages are not as high as those obtained in English, but most models give
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higher results than the frequency-based classi�er.20

7.6 Conclusion

We analysed the similarity estimates derived from di�erent types of contextualised representa-
tions, searching for information about words’ polysemy level. We found that English BERT
representations encode rich information about lexical polysemy. Our experimental results
suggest that this high quality knowledge about words, which allows BERT to detect polysemy
in di�erent con�gurations and across multiple layers, is acquired during pre-training, as it
is present in BERT representations regardless of the contexts used to derive them. This is
an important �nding, which shows that exposure to large amounts of data with the MLM
pre-training objective allows BERT to capture this property of words. Our �ndings hold for the
English BERT as well as for BERT models in other languages, as shown by our experiments on
French and Spanish, and to a lesser extent for Greek BERT, multilingual BERT, context2vec
and ELMo.

We can envisage various theoretical and application-related extensions for this work. The
polysemy knowledge revealed by the models can serve to develop novel methodologies for
improved cross-lingual alignment of embedding spaces and cross-lingual transfer (Artetxe
et al., 2017; Smith et al., 2017), pointing to less polysemous words that can serve as stable
anchors. Predicting the polysemy level of words can also be useful for determining the context
needed for acquiring representations that properly re�ect the meaning of word instances in
running text. From a more theoretical standpoint, this work can be useful for studying the
organisation of the semantic space in di�erent languages and also for detecting lexical semantic
change (Giulianelli et al., 2020; Martinc et al., 2020) .

20Only exceptions are Greek mBERT in the multi-class setting, and Flaubert in both settings.
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Chapter 8

Scalar Adjective Identi�cation and
Ranking

8.1 Introduction

In previous chapters of the thesis we have mainly addressed aspects of meaning related to
lexical ambiguity. We now shift our focus and investigate word relationships, rather than the
internal semantic properties of words. In this chapter, we speci�cally explore the intensity
relationship between scalar adjectives.

Scalar adjectives describe a property of a noun at di�erent degrees of intensity. Identifying
the scalar relationship that exists between their meaning (for example, the increasing intensity
between pretty, beautiful and gorgeous) is useful for text understanding, for both humans and
automatic systems. It can serve to de�ne the sentiment and subjectivity of a text, perform
inference and textual entailment (Van Tiel et al., 2016; McNally, 2016) (wonderful → good
but good↛ wonderful), build question answering and recommendation systems (de Marne�e
et al., 2010), and assist language learners in distinguishing between semantically similar words
(Sheinman and Tokunaga, 2009).

In this chapter, we investigate the knowledge that BERT representations encode about
the intensity of scalar adjectives, and propose methodology for estimating it. Given that this
property is acquired by humans during language learning, we expect a language model (LM)
exposed to massive amounts of text data during training to have also acquired some notion of
adjective intensity. We explore this hypothesis using representations extracted from di�erent
layers of this deep neural model. We propose amethod inspired by gender bias work (Bolukbasi
et al., 2016) for detecting the intensity relationship of two adjectives. We view intensity as a
direction in the semantic space which, once identi�ed, can serve to determine the intensity
of new adjectives. We evaluate the representations generated by BERT against gold standard
adjective scales ordered by intensity (de Melo and Bansal, 2013; Wilkinson and Oates, 2016;
Cocos et al., 2018) and apply them directly to a question answering task (de Marne�e et al.,
2010). Our results show that BERT clearly encodes the intensity variation between adjectives
on scales describing di�erent properties. We also propose to extend scalar adjective ranking
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to new languages (Section 8.3). Previous research has focused on English, mainly due to the
availability of datasets for evaluation. In order to promote scalar adjective research in new
languages, we introduce new scalar adjective datasets in French, Spanish and Greek and use
our resource-lean method with monolingual and multilingual contextual models.

Not all adjectives, however, express intensity or degree. Relational adjectives are derived
from nouns (e.g. wood → wooden, chemistry → chemical), have no antonyms and serve to
classify a noun (McNally and Boleda, 2004). Distinguishing between scalar and relational
adjectives is important: it allows to identify words that can serve to assess the emotional tone
of a given text, as opposed to words that mostly contribute to its content. This distinction is
relevant for Sentiment Analysis and recommendation systems. We introduce a new binary
classi�cation task for scalar adjective identi�cation (Section 8.4) which examines the models’
capability to identify scalar adjectives. We probe contextualised representations and report
baseline results for future comparison on this task.

The analysis of scalar adjective relationships in the literature has often been decomposed
into two steps: grouping related adjectives together and ranking adjectives in the same group
according to intensity. The �rst step can be performed by distributional clustering approaches
(Hatzivassiloglou and McKeown, 1993; Pang et al., 2008) which can also address adjectival pol-
ysemy. Hot, for example, can be on the temperature scale (a warm→ hot→ scalding drink),
the attractiveness (a pretty→ hot→ sexy person) or the interest scale (an interesting→
hot topic), depending on the attribute it modi�es. Other works (Sheinman and Tokunaga, 2009;
de Melo and Bansal, 2013; Wilkinson, 2017) directly address the second step, ranking groups of
semantically related adjectives from lexicographic resources (e.g. WordNet) (Fellbaum, 1998).
We focus on the ranking step.

Adjective ranking has traditionally been performed using pattern-based approaches which
extract lexical or syntactic patterns indicative of an intensity relationship from large corpora
(Sheinman and Tokunaga, 2009; de Melo and Bansal, 2013; Sheinman et al., 2013; Shivade
et al., 2015). For example, the patterns “X, but not Y” and “not just X but Y” provide evidence
that X is an adjective less intense than Y (e.g. “cold, but not freezing”). Another common
approach is lexicon-based and draws upon a resource that maps adjectives to scores encoding
sentiment polarity (positive or negative) and intensity. Such resources can be manually created,
like the SO-CAL lexicon (Taboada et al., 2011), or automatically compiled by mining adjective
orderings from star-valued product reviews where people’s comments have associated ratings
(de Marne�e et al., 2010; Rill et al., 2012; Sharma et al., 2015; Ruppenhofer et al., 2014). Cocos
et al. (2018) combine knowledge from lexico-syntactic patterns and the SO-CAL lexicon with
evidence from paraphrases in the Paraphrase Database (PPDB) (Ganitkevitch et al., 2013;
Pavlick et al., 2015). For example, if “very X” is a paraphrase of “Y” (e.g. “very cold” =
“freezing”), this is an indication that X is of lower intensity than Y.

Our approach to scalar adjective ranking is novel in that it does not need speci�ed patterns
or access to lexicographic resources. It, instead, relies on the knowledge about intensity
encoded in scalar adjectives’ contextualised representations. Our best performing method is
inspired by work on gender bias which relies on simple vector arithmetic to uncover gender-
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related stereotypes. In gender bias work, a gender direction is determined (for example, by
comparing the embeddings of she and he, or woman andman) and the projection of the vector
of a potentially biased word on this direction is then calculated (Bolukbasi et al., 2016; Zhao
et al., 2018).

Kim and de Marne�e (2013) also consider vector distance in the semantic space to encode
scalar relationships between adjectives. They examine a small set of word pairs, and observe
that the middle point in space between the static embeddings of two antonyms (e.g. furious and
happy) falls close to the embedding of a mid-ranked word in their scale (e.g. unhappy). Their
experiments rely on antonym pairs extracted from WordNet. We show that contextualised
representations are a better �t for this task than static embeddings, encoding rich information
about adjectives’ meaning and intensity. Our work contributes towards the study of the
knowledge pre-trained LMs encode about word meaning.

8.2 English Scalar Adjective Ranking

8.2.1 Data

We experiment with three scalar adjective datasets.

deMelo (deMelo and Bansal, 2013).1 Adjective sets were extracted fromWordNet ‘dumbbell’
structures (Gross and Miller, 1990), starting with antonym pairs as the poles and extracting
adjectives that are similar to each of the antonyms. The sets thus represented full scales (e.g.
from horrible to awesome), which were partitioned into half-scales (from horrible to bad, and
from good to awesome) based on pattern-based evidence in the Google N-Grams corpus (Brants
and Franz, 2006). Half-scales contain near-synonyms that only di�er in intensity. The dataset
contains 87 half-scales with 548 adjective pairs, manually annotated for intensity relations (<,
>, and =).

Crowd (Cocos et al., 2018).2 The dataset consists of a set of adjective scales with high coverage
of the PPDB vocabulary. It was constructed by a three-step process: crowd workers were �rst
asked to determine whether pairs of adjectives describe the same attribute (e.g. temperature)
and should, therefore, belong to the same scale. Sets of same-scale adjectives were then re�ned
over multiple rounds. Finally, workers ranked the adjectives in each set by intensity. The �nal
dataset includes 330 adjective pairs along 79 half-scales.

Wilkinson (Wilkinson and Oates, 2016).3 This dataset was also generated through crowd-
sourcing. Crowd workers were presented with small seed sets (e.g. huge, small, microscopic)
and were asked to propose similar adjectives, resulting in twelve adjective sets. Sets were
automatically cleaned for consistency, and then annotated for intensity by the crowd workers.
The original dataset contains full scales. We use its division in 21 half-scales (with 61 adjective
pairs) proposed by Cocos et al. (2018).

1http://demelo.org/gdm/intensity/
2https://github.com/acocos/scalar-adj
3https://github.com/Coral-Lab/scales
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Dataset Adjective scale

deMelo
[soft < quiet < inaudible < silent]
[thick < dense < impenetrable]

Crowd
[�ne < remarkable < spectacular]
[scary || frightening < terrifying]

Wilkinson
[damp <moist < wet]
[dumb < stupid < idiotic]

Table 8.1: Examples of scales in each dataset. ‘||’ denotes a tie between adjectives of the same intensity.

In the rest of this Chapter, we use the term “scale” to refer to the half-scales contained in
these datasets. Table 8.1 shows examples from each one of them.

8.2.2 Sentence Collection

To explore the knowledge BERT has about relationships in an adjective scale s, we need to
obtain a contextualised representation for every adjective a ∈ s. Since we are interested in
comparing their intensity regardless of context, we want to avoid any e�ect coming from the
speci�c contexts of use of each a ∈ s. We therefore generate a contextualised representation
for each a ∈ s in the same context. Since such cases are rare in running text, we construct two
sentence sets that satisfy this condition using the ukWaC corpus (Baroni et al., 2009) and the
Flickr 30K dataset (Young et al., 2014).4 For every s ∈ D, a dataset from Section 8.2.1, and
for each a ∈ s, we collect 1,000 instances (sentences) from each corpus.5 We substitute each
instance of an adjective ai from scale s with ∀ aj ∈ s where j = 1...|s| and j ≠ i, creating |s|−1
new sentences.6 For example, as illustrated in Figure 8.1, for an instance of gorgeous from
the scale [pretty < beautiful < gorgeous] (e.g. “Punta Cana is gorgeous”), we generate two new
sentences where gorgeous is replaced by each of the other adjectives (pretty and beautiful) in
the same context (“Punta Cana is pretty” and “Punta Cana is beautiful”).

The adjective substitution procedure just described may result in unnatural or incorrect
sentences. We propose two ways to discard those:

Hearst patterns We �lter out sentences with cases of specialisation or instantiation. For
example, we want to avoid replacing deceptive with fraudulent and false in sentences like
“Viruses and other deceptive software”, “Deceptive software such as viruses”, “Deceptive software,

4Flickr contains crowdsourced captions for 31,783 images describing everyday activities, events and scenes.
We consider objective descriptions to be a better �t for our task than subjective statements, which might contain
emphatic markers. For example, impossible would be a bad substitute for impractical in the sentence “What you
ask for is too impractical”.

5ukWaC has perfect coverage. Flickr 30K covers 96.56% of the deMelo scales and 86.08% of the Crowd scales.
A scale s is not covered when no a ∈ s is found in a corpus.

6Wemake a minor adjustment of the substituted data by replacing the inde�nite article a with an when the
adjective that follows starts with a vowel, and the inverse when it starts with a consonant.
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Figure 8.1: Illustration of the sentence collection procedure. We collect sentences containing an adjective
a in a scale s (pretty, beautiful, gorgeous) from ukWaC and Flickr 30K and substitute a with all other
adjectives in the scale.

especially viruses”.7 We parse the sentences with stanza (Qi et al., 2020) to reveal their depen-
dency structure, and use Hearst lexico-syntactic patterns (Hearst, 1992) to identify sentences
describing is-a relationships between nouns in a text. More details about this �ltering are given
in Appendix A.4.1.

Language Modelling criteria Adjectives that belong to the same scale might not be re-
placeable in all contexts. Polysemy can also in�uence their substitutability (e.g. warm weather
is a bit hot, but a warm smile is friendly). In order to select contexts where ∀a ∈ s �t, we
measure the �uency of the sentences generated through substitution. We use a score assigned
to each sentence by context2vec (Melamud et al., 2016) which re�ects how well an a ∈ s �ts
a context by measuring the cosine similarity between a and the context representation. We
also experimented with calculating the perplexity assigned by BERT to a sentence generated
through substitution, and with replacing the original a instance with the [MASK] token and
getting the BERT probability for each a ∈ s as a �ller for that slot. context2vec was found
to make better substitutability estimates. For this exploration, we use as development set a
sample of 500 sentence pairs from the Concepts in Context (CoInCo) corpus (Kremer et al.,
2014). Details on this evaluation and on the constitution of this sample are in Appendix A.4.2.

We use a 600-dimensional context2vec model in our experiments, pre-trained on ukWaC.8

We calculate the context2vec score for all sentences generated for a scale s through substitution,
and keep the ten sentences where the context2vec scores ∀a ∈ s had the lowest standard
deviation (std). Low std for a sentence means that ∀a ∈ s are reasonable choices in this
context. For comparison, we also randomly sample ten sentences from all the ukWaC sentences
collected for each scale. We call the sets of sentences ukWaC, Flickr and Random sent-sets.

7Note that this would especially be a problem when considering adjectives with di�erent polarity on a full scale
(e.g. deceptive and honest).

8https://github.com/orenmel/context2vec
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Method Corpus Sentences
Scale: wrong→ immoral→ sinful→ evil
context2vec-
std

ukWaC I believe that war is immoral.
Flickr This boy was on the wrong end of this snowball �ght.

Random ukWaC The author saw him and let him thru but not his mate as he had queued the
wrong way.

Scale: old→ obsolete || outdated

context2vec-
std

ukWaC (...) Chekhov was misunderstood and frequently seen by critics as merely an
irreverent recorder of an obsolete way of life (...)

Flickr Two preschool aged boys are looking at an old locomotive.
Random ukWaC (...) rustic dialogue and good old fashioned laughter (...)

Table 8.2: Examples of sentences from our sent-sets selected with the context2vec-std method
compared to sentences randomly selected from ukWaC.

We extract the contextualised representation for each a ∈ s in the ten sentences retained
for scale s using the pre-trained bert-base-uncasedmodel.9 We do this for every BERT layer,
which results in |s| ∗ 10 ∗ 12 BERT representations for each scale. Examples of the obtained
sentences are given in Table 8.2.

8.2.3 Ranking with a Reference Point

In our �rst ranking experiment, we explore whether BERT encodes adjective intensity relative
to a reference point, that is the adjective with the highest (or most extreme) intensity (aext) in
a scale s. This is a pilot study to see if similarities derived from BERT representations encode
some notion of intensity.

We rank ∀a ∈ s where a ≠ aext by intensity by measuring the cosine similarity between
their representation and that of aext in the ten ukWaC sentences retained for s, and in every
BERT layer. For example, to rank [thick, dense, impenetrable] we measure the similarity of the
representations of thick and dense to that of impenetrable. We then average the similarities
obtained for each a and use these values for ranking (the more similar a is to aext, the more
intense it is considered to be). We refer to this method as BertSim.

We evaluate the quality of the ranking for a scale by measuring its correlation with the
gold standard ranking in the corresponding dataset D using Kendall’s � and Spearman’s �
correlation coe�cients.10 We also measure the model’s pairwise accuracy (p-acc) which shows
whether it correctly predicted the relative intensity (<, >, =) for each pair a-b ∈ s with a ≠ b.
During evaluation, we do not take into account scales where only one adjective is left (|s| = 1)
after removing aext (26 out of 79 scales in Crowd; 9 out of 21 scales inWilkinson; and none
in deMelo).

9When an adjective is split into multiple wordpieces (Wu et al., 2016), we average them to obtain its representa-
tion.

10As in Cocos et al. (2018), we report correlations as a weighted average using the number of adjective pairs in a
scale as weights.
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Dataset Metric BertSim freq sense

deMelo
p-acc 0.59111 0.571 0.493
� 0.36411 0.304 0.192

�avg 0.38911 0.309 0.211

Crowd
p-acc 0.64611 0.608 0.570
� 0.49811 0.404 0.428

�avg 0.49411 0.499 0.537

Wilkinson
p-acc 0.9139 0.7399 0.7399
� 0.8269 0.478 0.586

�avg 0.7249 0.345 0.493

Table 8.3: BertSim results on each dataset using contextualised representations from the ukWaC
sent-set. Subscripts denote the best-performing BERT layer.

We compare the BertSimmethod to two baselines which rank adjectives by frequency
(freq) and number of senses (sense). We make the assumption that words with low intensity
(e.g. good, old) are more frequent and polysemous than their extreme counterparts on the same
scale (e.g. awesome, ancient). This assumption relies on the following two intuitions which we
empirically validate:

(a) Extreme adjectives tend to restrict the denotation of a noun to a smaller class of referents
than low intensity adjectives (Geurts, 2010). We hypothesise that extreme adjectives
denote more exceptional and less frequently encountered properties of nouns than
low intensity adjectives on the same scale (for instance, a good view is more common
than a fantastic view). This is also re�ected in the directionality of their entailment
relationship (fantastic→ good, good↛ fantastic); low intensity adjectives should thus be
more frequently encountered in texts. We test this assumption using frequency counts in
Google Ngrams (Brants and Franz, 2006), and �nd that, in 75% of the scales, the least
intense adjective is indeed more frequent than the most extreme adjective.

(b) Since frequent words tend to be more polysemous (Zipf, 1945), we also expect that low
intensity adjectives would have more senses than extreme ones. This is con�rmed by
their number of senses in WordNet: in 67% of the scales, the least intense adjective has a
higher number of senses than its extreme counterpart.

We present the results of this evaluation in Table 8.3. Overall, similarities derived from
BERT representations encode well the notion of intensity, as shown by the moderate to high
accuracy and correlation in the three datasets. The good results obtained by the freq and
sense baselines (especially on Crowd) highlight the relevance of frequency and polysemy for
scalar adjective ranking, and further validate our assumptions.

Figure 8.2 shows ranking predictions made by BertSim in di�erent layers of the model.
Predictions are generally stable and reasonable across layers, despite not always being correct.
For example, the similarly-intense happy and pleased are inverted in some layers but are not
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Figure 8.2: Examples of BertSim ranking predictions across layers using ukWaC sentences for four
adjective scales: (a) [big < large < huge < enormous < gigantic], (b) [good < great < wonderful <
awesome], (c) [cute < pretty < lovely < lovelier < breathtaking], (d) [pleased < happy < excited < delighted
< overwhelmed]. (a) and (b) are fromWilkinson, (c) and (d) are from Crowd.

confused with adjectives further up the scale (excited, delighted). Note that happy and pleased
are in adjacent positions in the Crowd ranking, and form a tie in the deMelo dataset.

8.2.4 Ranking without Speci�ed Boundaries: the diffvecMethod

In real life scenarios, scalar adjective interpretation is performed without concrete reference
points (e.g. aext). We need to recognise that a great book is better than a well-written one,
without necessarily detecting their relationship to brilliant.

Method Based on the encouraging results from the pilot experiment in the previous section,
we developed a method that ranks adjectives based on their cosine similarity to a vector
representing intensity. This method, called diffvec, draws inspiration from word analogies
in gender bias work, where a gender subspace is identi�ed in word-embedding space by
calculating the main direction spanned by the di�erences between vectors of gendered word
pairs (e.g. ⃗⃖ℎe - ⃖⃖⃗sℎe, ⃖⃖⃖⃗man - ⃖⃖⃖⃖⃖⃖⃗woman) (Bolukbasi et al., 2016; Dev and Phillips, 2019; Ravfogel
et al., 2020; Lauscher et al., 2020; Zhao et al., 2018).

We propose to obtain an intensity vector by subtracting the representation of a mild
intensity adjective amild from that of an extreme adjective aext on the same scale. By subtracting
pretty from gorgeous, for example, which express a similar core meaning (they are both on
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Figure 8.3: Simpli�ed illustration of the procedure used for constructing ⃖⃖⃖⃗dVec for one adjective pair
from one scale using contextualised representations from a given layer.

the beauty scale) but with di�erent intensity, we expect the resulting ⃖⃖⃖⃗dVec = ⃖⃖⃖⃖⃖⃖⃖⃗gorgeous -
⃖⃖⃖⃖⃖⃗pretty embedding to represent this notion of intensity or degree. We can then compare other
adjectives’ representations to ⃖⃖⃖⃗dVec, and rank them according to their cosine similarity11 to this
intensity vector: the closer an adjective is to ⃖⃖⃖⃗dVec, the more intense it is.

We calculate the ⃖⃖⃖⃗dVec for each s ∈ D (a dataset from Section 8.2.1) using the most ex-
treme (aext) and the mildest (amild) words in s. We experiment with BERT embeddings from
the sent-sets generated through substitution as described in Section 8.2.2, and with static
word2vec embeddings (Mikolov et al., 2013a) trained on Google News.12 We build a ⃖⃖⃖⃗dVec

from every sentence (context) c in the set of ten sentences C for a scale s by subtracting the
BERT representation of amild in c from that of aext in c. We average the ten ⃖⃖⃖⃗dVec’s obtained
for s and construct a global ⃖⃖⃖⃗dVec for the dataset D by averaging the vectors of ∀s ∈ D. For a
fair evaluation, we do not build and evaluate ⃖⃖⃖⃗dVec on the same dataset D. When evaluating
on Crowd, we calculate a ⃖⃖⃖⃗dVec vector on deMelo (diffvec-dm) and one onWilkinson
(diffvec-wk), omitting all scales where aext or amild are present in Crowd. We do the same
for the other datasets. Figure 8.3 illustrates the creation of ⃖⃖⃖⃗dVec from one scale.

To obtain the ⃖⃖⃖⃗dVec of a scale s with static embeddings, we simply calculate the di�erence
between the word2vec embeddings of aext and amild in s.

Results For evaluation, we use the same metrics as in Section 8.2.3. We compare our results
to the freq and sense baselines, and to the best results obtained by Cocos et al. (2018) who
use information obtained from lexico-syntactic patterns, a lexicon annotated with intensity
(SO-CAL) (Taboada et al., 2011), and paraphrases from PPDB.13,14 Results are presented in
Table 8.4. The diffvec method gets remarkably high performance compared to previous
results, especially when ⃖⃖⃖⃗dVec is calculated with BERT embeddings. With the exception of

11We also tried the dot product of the vectors. The results were highly similar to the ones obtained using the
cosine.

12We use the magnitude library Patel et al. (2018).
13We do not report Spearman’s � from Cocos et al. (2018) because it was calculated di�erently: they measure it

a single time for each dataset, treating each adjective as a single data point.
14In Crowd andWilkinson, their best model combines the three types of information. The best-performing

model on demelo relied only on information from patterns and a lexicon (p-acc) or only from patterns (�).
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deMelo (dm) Crowd (cd) Wilkinson (wk)
Method p-acc � �avg p-acc � �avg p-acc � �avg

B
E
R
T

uk
W
aC

diffvec-dm - - - 0.73912 0.67412 0.75312 0.9186 0.8366 0.8396
diffvec-cd 0.6468 0.4318 0.5098 - - - 0.86911 0.73811 0.82911
diffvec-wk 0.5849 0.3039 0.31310 0.70610 0.6039 0.6879 - - -

Fl
ic
kr

diffvec-dm - - - 0.73012 0.66712 0.70510 0.9349 0.8699 0.8719
diffvec-cd 0.62010 0.37710 0.46610 - - - 0.9027 0.8037 0.7987
diffvec-wk 0.5791 0.2941 0.3211 0.7028 0.6088 0.6778 - - -

R
an

do
m diffvec-dm - - - 0.73912 0.67312 0.74312 0.9186 0.8366 0.8396

diffvec-cd 0.6268 0.3888 0.4668 - - - 0.83612 0.67212 0.79010
diffvec-wk 0.5579 0.2469 0.2846 0.7038 0.5988 0.6768 - - -

w
or
d2

ve
c diffvec-dm - - - 0.657 0.493 0.543 0.787 0.574 0.663

diffvec-cd 0.633 0.398 0.444 - - - 0.803 0.607 0.637
diffvec-wk 0.593 0.323 0.413 0.618 0.413 0.457 - - -

B
as
el
in
e freq 0.575 0.271 0.283 0.606 0.386 0.452 0.754 0.508 0.517

sense 0.493 0.163 0.165 0.658 0.498 0.595 0.721 0.586 0.575
Cocos et al. ’18 0.653 0.633 - 0.639 0.495 - 0.754 0.638 -

Table 8.4: Results of our diffvec adjective ranking method on the deMelo, Crowd, andWilkinson
datasets. We report results with contextualised (BERT) representations obtained from di�erent sent-
sets (ukWaC, Flickr, Random) and with static (word2vec) vectors. We compare to the frequency (freq)
and number of senses (sense) baselines, and to results from previous work (Cocos et al., 2018). Results
for a dataset are missing (-) when the dataset was used for building the ⃖⃖⃖⃗dVec intensity vector.

Kendall’s � and pairwise accuracy on the deMelo dataset, diffvec outperforms results from
previous work and the baselines across the board. We believe the lower correlation scores on
the deMelo dataset to be due to the large amount of ties present in this dataset: 44% of scales
in deMelo contain ties, versus 30% in Crowd and 0% inWilkinson, where we obtain better
results. Our models cannot easily predict ties using similarities which are continuous values.
To check whether our assumption is correct, we make a simple adjustment to diffvec so that
it can propose ties if the vectors of two adjectives are similarly close to ⃖⃖⃖⃗dVec. Overall, this
results in a small decrease in pairwise accuracy and a slight increase in correlation in deMelo
and Crowd. Complete results of this additional evaluation are given in Appendix A.4.3.

The composition of the sent-sets used for building BERT representations also plays a role
on model performance. Overall, the selection method described in Section 8.2.2 o�ers a slight
advantage over random selection, with ukWaC and Flickr sentences improving performance
on di�erent datasets. Note, however, that results for Flickr are calculated on the scales for
which sentences were available (96.56% of deMelo scales and 86.08% from Crowd).

The best-performing BERT layers are generally situated in the upper half of the Transformer
network. The only exception is diffvec-wk with the Flickr sent-set on deMelo, where
all layers perform similarly. The freq and sense baselines get lower performance than our
method with BERT embeddings. sensemanages to give results comparable to diffvec with
static embeddings and to previous work (Cocos et al., 2018) in one dataset (Crowd), but is still
outperformed by diffvec with contextualised representations.

We can also compare our results to those obtained by a purely pattern-based method on the
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deMelo Crowd
# Scales p-acc � �avg p-acc � �avg

B
E
R
T

uk
W
aC

1 (+) 0.6539 0.4389 0.48911 0.70912 0.61112 0.67012
1 (−) 0.61110 0.35010 0.42411 0.64810 0.47710 0.50710
5 0.65010 0.43010 0.51410 0.70011 0.59510 0.67310

Fl
ic
kr

1 (+) 0.6568 0.4498 0.5048 0.67612 0.5528 0.6128
1 (−) 0.6003 0.3243 0.3755 0.6419 0.4709 0.5029
5 0.64712 0.42612 0.49811 0.69211 0.58711 0.64011

R
an

do
m 1 (+) 0.65911 0.45111 0.49311 0.69111 0.57011 0.65811

1 (−) 0.60812 0.34012 0.42110 0.65510 0.49010 0.51412
5 0.65311 0.44211 0.53810 0.69411 0.58211 0.65311

w
or
d2

ve
c 1 (+) 0.602 0.334 0.364 0.624 0.419 0.479

1 (−) 0.613 0.359 0.412 0.661 0.506 0.559
5 0.641 0.415 0.438 0.688 0.559 0.601

Table 8.5: Results of diffvec on deMelo and on Crowd using a single positive (1 (+)) or negative (1
(−)) aext − amild pair, and �ve pairs (5).

same datasets, reported by Cocos et al. (2018). This method performs well on deMelo (� =
0.633) because of its high coverage on this dataset, which was compiled by �nding adjective
pairs that also match lexical patterns. The performance of the pattern-based method is much
lower than that of our models in the other two datasets (� = 0.203 on Crowd, � = 0.441 on
Wilkinson), and its coverage goes down to 11% on Crowd. This highlights the limitations
of the pattern-based approach, as well as the e�ciency of our model which combines high
performance and coverage.

Further Exploration of diffvec Given the high performance of the diffvecmethod in
the ranking task, we carry out additional experiments to explore the impact that the choice of
scales and sentences has on the intensity vector quality. We test the method with a ⃖⃖⃖⃗dVec vector
built from a single aext − amild pair of either positive (awesome − good) or negative (horrible −
bad) polarity, that we respectively call diffvec-1 (+)/(−). We also experiment with increasing
the number of scales, adding ancient-old, gorgeous-pretty and hideous-ugly to form diffvec-5.
The scales are fromWilkinson, so we exclude this dataset from the evaluation.

Results are given in Table 8.5. We observe that a small number of word pairs is enough
to build a ⃖⃖⃖⃗dVec with competitive performance. Interestingly, diffvec-1 (+) with random
sentences obtains the best pairwise accuracy on deMelo. The fact that the method performs
so well with just a few pairs (instead of a whole dataset as in Table 8.4) is very encouraging,
making our approach easily applicable to other datasets and languages.

A larger number of scales is bene�cial for the method with static word2vec embeddings,
which seem to better capture intensity on the negative scale. For BERT, instead, intensity
modeled using a positive pair gives best results across the board. The use of �ve pairs of mixed
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polarity improves results over a single negative pair, and has comparable performance to the
single positive one.

Finally, we compare the performance of diffvec-1 (+)/(−) and diffvec-5 when the
contextualised representations are extracted from a single sentence instead of ten. Our main
observation is that reducing the number of sentences harms performance, especially when the
sentence used is randomly selected. Detailed results are included in Appendix A.4.4.

8.2.5 Indirect Question Answering

We conduct an additional evaluation in order to assess how useful diffvec adjective rankings
can be in a real application. As in Cocos et al. (2018), we address Indirect Question Answering
(QA) (de Marne�e et al., 2010). The task consists in interpreting indirect answers to YES/NO
questions involving scalar adjectives. These do not straightforwardly convey a YES or NO
answer, but the intended reply can be inferred. For example, if someone is asked “Was it a
good ad?” and replies “It was a great ad”, the answer is YES. This makes Indirect QA a good �t
for scalar adjective ranking evaluation since it allows to directly assess a model’s capability to
detect the di�erence in intensity in an adjective pair.

We use the de Marne�e et al. (2010) dataset for evaluation, which consists of 125 QA pairs
manually annotated with their implied answers (YES or NO). We adopt a decision procedure
similar to the one proposed by de Marne�e et al. (2010). We compute the BERT embeddings
of the adjective in the question (aq) and the adjective in the answer (aa). If aa (e.g. great)
has the same or higher intensity than aq (e.g. good) the prediction is YES; otherwise, the
prediction is NO. If the answer contains a negation, we switch YES to NO, and NO to YES.
In previous work, indirect QA evaluation was performed on 123 or 125 examples, depending
on whether cases labelled as “uncertain” were included (de Marne�e et al., 2010; Kim and
de Marne�e, 2013; Cocos et al., 2018). de Marne�e et al. (2010)’s approach relies on a lexicon
with intensity information automatically compiled from user reviews with associated ratings.
Kim and de Marne�e (2013) use static embeddings (Mikolov et al., 2013b) and check whether
the representation of aa is closer to aq or to an antonym of aq retrieved from WordNet. We
report available results from previous work, and our scores on the 123 YES/NO examples
as in the most recent work by Cocos et al. (2018). We report results using diffvec with an
adjustment for ties, where two adjectives are considered to be of the same intensity if they are
similarly close to ⃖⃖⃖⃗dVec (diffsim= sim( ⃖⃖⃖⃗dVec, ⃖⃗aq)− sim( ⃖⃖⃖⃗dVec, ⃗⃖aa)). If |diffsim| (the absolute
value of diffsim) < 0.01, we count them as a tie. We also compare our method to freq and
sense, and to a baseline predicting always the majority label (YES). Results of this evaluation
are given in Table 8.6. The best performance is obtained when ⃖⃖⃖⃗dVec is obtained from the
Wilkinson dataset (diffvec-wk). diffvec with BERT embeddings consistently outperforms
the baselines and de Marne�e et al. (2010)’s approach, and presents a clear advantage over
diffvec with static word2vec representations. Several con�gurations surpass also Cocos et al.
(2018)’s method, but only diffvec-wk achieves higher performance than the model of Kim
and de Marne�e (2013).
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Method Acc P R F

B
E
R
T

uk
W
aC

diffvec-1 (+)10 0.715 0.677 0.692 0.685
diffvec-dm12 0.707 0.670 0.689 0.678
diffvec-cd12 0.675 0.635 0.648 0.642
diffvec-wk11 0.740 0.712 0.739 0.725

Fl
ic
kr

diffvec-1 (+)9 0.699 0.663 0.680 0.672
diffvec-dm11 0.699 0.659 0.673 0.666
diffvec-cd10 0.691 0.653 0.667 0.660
diffvec-wk5 0.683 0.646 0.661 0.654

R
an

do
m

diffvec-1 (+)9 0.715 0.677 0.692 0.685
diffvec-dm10 0.724 0.691 0.713 0.702
diffvec-cd12 0.667 0.629 0.642 0.636
diffvec-wk11 0.699 0.667 0.688 0.677

w
or
d2

ve
c diffvec-1 (+) 0.667 0.633 0.650 0.641

diffvec-dm 0.602 0.554 0.559 0.557
diffvec-cd 0.593 0.548 0.553 0.551
diffvec-wk 0.585 0.543 0.547 0.545

B
as
el
in
es freq 0.593 0.548 0.553 0.551

sense 0.593 0.560 0.568 0.564
maj 0.691 0.346 0.500 0.409

Pr
ev

io
us de Marne�e et al. (2010) 0.610 0.597 0.594 0.596

Kim and de Marne�e (2013) 0.728 0.698 0.714 0.706
Cocos et al. (2018) 0.642 0.710 0.683 0.684

Table 8.6: Results of our diffvecmethod with contextualised (BERT) and static (word2vec) embeddings
on the indirect QA task. We compare to the frequency, polysemy and majority baselines, and to results
from previous work.

8.2.6 Discussion

Our initial exploration of the knowledge encoded in BERT representations about scalar adjec-
tives using the Bertsimmethod (Section 8.2.3) showed they can successfully serve to rank
them by intensity. Our diffvec method (Section 8.2.4) outperformed Bertsim, providing
even better ranking predictions with as few resources as a single adjective pair. This di�erence
can be explained by the nature of the vectors used in the two settings. The aext representation
in Bertsim contains information about the meaning of the extreme adjective alongside its
intensity, while the ⃖⃖⃖⃗dVec vector is a cleaner representation of intensity. The subtraction of ⃖⃖⃖⃗amild

from ⃖⃖⃗aext removes information about the core meaning expressed by their scale (e.g. beauty,
temperature, size). The diffvecmethod can estimate adjectives’ relative intensity on the
�y without using any external knowledge source, a requirement needed in previous approaches.
Notably, one of its highest performing variants (diffvec-1 (+)) makes high quality predictions
with a vector constructed from a single adjective pair.

We hypothesised that the sentences used for extracting BERT representations would need
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to be natural contexts for all adjectives in a scale. This, however, has not been con�rmed
by our evaluation. Precisely, di�erences between our methods when relying on carefully
vs randomly selected sentences are minor. This might be due to several reasons. Although
BERT representations are contextualised, they also encode knowledge about the meaning
and intensity of words acquired through pre-training, independent of the new contexts of use.
Another possible explanation is that due to the skewed distribution of word senses (Kilgarri�,
2004; McCarthy et al., 2004), a high proportion of our randomly selected sentences probably
contain instances of the adjectives in their most frequent sense. If this is also the meaning of
the corresponding scale, then there are high chances that the sentences be a good �t. Finally, it
is also possible that the quality of our carefully selected sentences is not high enough to provide
a clear advantage over randomly chosen ones, especially when using multiple sentences per
scale.

The diffvec-1 (+)method with BERT embeddings, which uses a vector derived from a
single positive pair, yields consistently better results than diffvec-1 (−) which relies on a
single negative pair. To better understand this di�erence in performance, we examine the
composition of the deMelo and Crowd datasets, speci�cally whether there is an imbalance
in terms of polarity as re�ected in the frequency of positive vs negative adjectives. We check
the polarity of the adjectives in two sentiment lexicons: SO-CAL (Taboada et al., 2011) and
AFINN-165 (Nielsen, 2011). The two lexicons cover a portion of the adjectives in deMelo
and Crowd: 68% and 79%, respectively. The deMelo dataset is well-balanced in terms of
positive and negative adjectives: 51% and 49% of the covered adjectives fall in each category. In
Crowd, we observe a slight skew towards positive: 61% vs 39%. According to this analysis, the
di�erence in performance between the two methods cannot be fully explained by an imbalance
in terms of polarity.

We perform an additional analysis based on the Google Ngram frequency of the positive
and negative words that were used for deriving diffvec. The adjectives good (276M) and
awesome (10M) are more frequent than bad (65M) and horrible (4M), respectively. In fact, we
�nd that the 1,000 most frequent positive words in SO-CAL and AFINN are, on average, much
more frequent (18M) than the 1,000 most frequent negative words (8M). Word frequency has a
direct impact on word representations, since having access to sparse information about a word’s
usages does not allow the model to acquire rich information about its linguistic properties as in
the case of frequent words (Luong et al., 2013; Schick and Schütze, 2020). The high frequency
of good and awesome results in better quality representations than the ones obtained for their
antonyms, and could explain to some extent the improved performance of diffvec-1 (+)
compared to diffvec-1 (−) with BERT embeddings. However, this analysis does not explain
the di�erence in the performance of diffvec (+) and (−) between BERT and word2vec. This
would require a better understanding of how words with di�erent polarity (antonyms) are
represented in BERT’s space compared to word2vec. We leave these explorations for future
work.

Regarding the performance of di�erent BERT layers, we observe that knowledge relevant
for scalar adjective ranking is situated in the last layers of the Transformer network. Figure 8.4
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Figure 8.4: Performance of diffvec-1 (+) with ukWaC sentences across BERT layers.

shows how the performance of diffvec-1 (+) changes across di�erent BERT layers: model
predictions improve after layer 3, and performance peaks in one of the last four layers. This
contrasts with Vulić et al. (2020)’s observation that type-level lexical knowledge is predomi-
nantly located in earlier layers. In that study, the contexts used to derive word representations
are di�erent for every word. This context variation probably has a larger impact on the upper
layer representations, where contextualisation is stronger (Ethayarajh, 2019). The di�erent
contexts used, however, are not relevant for the word type-level tasks they evaluate on (e.g.
word similarity and lexical relation prediction, among others), which may explain why earlier
layers perform better in their study. We instead compare representations of words occurring in
the same contexts, ruling out context variation, and �nd that upper layers perform better in
this setting. Another possible explanation for the di�erent layer behaviour in the two studies
would be the di�erences between the aspects of lexical meaning being addressed.

The diffvecmethod is simple, e�ective and requires very few resources, which makes it
easy to apply it to other languages. Reliance on external resources and evaluation datasets for
scalar adjective ranking has, however, restricted research to English. In the next section, we
explain how we compiled a new multilingual dataset to extend the method to other languages
and to promote further research on them.

8.3 Scalar Adjective Ranking in Other Languages

In this section, we presentmulti-scale, a new dataset for the evaluation of scalar adjective
ranking methods in French, Spanish and Greek. We investigate whether intensity information
is also encoded in monolingual and multilingual BERT representations in these languages,
and set performance baselines on the dataset.
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DeMelo
en dim < gloomy < dark < black
fr terne < sombre < foncé < noir
es sombrío < tenebroso < oscuro < negro
el αμυδρός || αχνός < μουντός < σκοτεινός< μαύρος

Wilkinson
en bad < awful < terrible < horrible
fr mauvais < a�reux < terrible < horrible
es malo < terrible < horrible < horroroso
el κακός < απαίσιος < τρομερός < φρικτός

Table 8.7: Example translations from each dataset. “||” indicates adjectives at the same intensity level
(ties).

8.3.1 Themulti-scale Dataset

To build the multi-scale dataset, we translate the deMelo (de Melo and Bansal, 2013)
andwilkinson (Wilkinson and Oates, 2016) datasets, which contain 87 and 21 half-scales,
respectively. Adjective scales were manually translated to French, Spanish and Greek by
two speakers with native or near-native pro�ciency of each language. They were shown the
adjectives in the context of a scale. This context narrows down the possible translations for
polysemous adjectives to the ones that express the meaning described inside the scale. For
example, the Spanish translations proposed for the adjective hot in the scales [warm < hot]
and [�avorful < zesty < hot || spicy] are caliente and picante, respectively. Additionally, the
translators were instructed to preserve the number of words in the original scales when possible.
In some cases, however, they proposed multiple translations for English words, or none if an
adequate translation could not be found. As a result, the translated datasets have a di�erent
number of words and ties. In a few cases, translators proposed prepositional or adverbial
phrases (fr: en surpoids “with excess weight” for overweight; es: mal parecido “bad-looking”
for unattractive). We include these in our experiments as well. Table 8.7 shows examples of
scales in each language and Table 8.8 contains statistics on the composition of the translated
datasets.

We have seen that a random selection of sentences works well enough for this task (cf.
Section 8.2.4), in spite of adjectives in a scale not always being interchangeable. We collect
French, Spanish and Greek sentences containing the adjectives from OSCAR (Suárez et al.,
2019), a corpus derived from CommonCrawl. French, Spanish and Greek are morphologically
rich languages where adjectives need to agree with the noun they modify. To keep the method
resource-light, we gather sentences that contain the adjectives in their unmarked form. For
each scale s, we randomly select ten sentences from OSCAR where adjectives from s occur.
Then, we generate additional sentences through lexical substitution as in Section 8.2.2: for
every sentence (context) c that contains an adjective ai from scale s, we replace ai with ∀ aj
∈ s where j = 1...|s| and j ≠ i. This process results in a total of |s| * 10 sentences per scale.
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# unordered pairs # adjectives

de
m
el
o

en 548 (524) 339 (293)
fr 590 (567) 350 (303)
es 448 (431) 313 (275)
el 557 (535) 342 (295)

w
il
ki
ns
on

en 61 (61) 59 (58)
fr 67 (67) 61 (60)
es 59 (59) 58 (56)
el 68 (68) 61 (58)

Table 8.8: Content of the translated datasets, with the number of unique adjectives and pairs in paren-
theses.

For English, we use the ukWaC-Random set of sentences (Section 8.2.2).

8.3.2 Methodology

We apply thediffvecmethod (Section 8.2.4) to themulti-scale dataset. We build an intensity
representation using a single positive adjective pair (diffvec-1 (+)) in each language, which
has given highly competitive results in English. The pairs we use are the translations of amild
and aext in a positive scale (perfect-good) from the Crowd dataset.15 We also learn a ⃖⃖⃖⃗dVec

representation by averaging the ⃖⃖⃖⃗dVecs of all (amild, aext) pairs inWilkinson that do not appear
in deMelo (diffvec-wk), and another one from pairs in deMelo that are not inWilkinson
(diffvec-dm).

Models We conduct experiments with state-of-the-art contextual models and several base-
lines on themulti-scale dataset. We use the pre-trained multilingual BERT model (Devlin
et al., 2019) and report results of the bestmodel (between cased and uncased) for each language.
We also report results obtained with the following monolingual models:

• bert-base-uncased (Devlin et al., 2019) for English;

• flaubert_base_uncased (Le et al., 2020) for French;

• bert-base-spanish-wwm-uncased for Spanish (Cañete et al., 2020);

• bert-base-greek-uncased-v1 (Koutsikakis et al., 2020) for Greek.

We feed the collected sentences to eachmodel and extract the representations corresponding
to all a’s in a scale s from every layer of the model. When an adjective is split into multiple
wordpieces, we average the representations of all pieces (we call this approach “WP”) or all
pieces but the last one (“WP-1”). The intuition behind this is that the last part of a word often
corresponds to a su�x that carries morphological information.

15fr: parfait-bon, es: perfecto-bueno, el: τέλειος-καλός.
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We compare the contextual models to monolingual fastText static embeddings in each
language (Grave et al., 2018).16 We also compare our results to the frequency and polysemy
baselines (freq and sense) described in Section 8.2.3. We have seen these are strong baselines
for English, and we expect the intuitions behind them (i.e. that words with mild intensity
are more frequent and more polysemous than words with extreme intensity) to hold across
languages. For French, Spanish and Greek, frequency is taken from OSCAR. The number of
senses is retrieved from BabelNet (Navigli and Ponzetto, 2012) for Spanish and French.17 For
adjectives that are not present in BabelNet, we use a default value which corresponds to the
average number of senses for adjectives in the dataset (deMelo orWilkinson) for which this
information is available. We omit the sense baseline for Greek due to low coverage. Only
46.7% of Greek adjectives have a BabelNet entry, compared to 95.7% and 88.9% of Spanish and
French adjectives in our datasets.

8.3.3 Results

We use the same evaluation metrics as in Sections 8.2.3 and 8.2.4: pairwise accuracy (p-acc),
Kendall’s � and Spearman’s �. Results on this task are given in Table 8.9.

Monolingual models perform consistently better than the multilingual model, except
for French. We report the best wordpiece approach (WP or WP-1) for each model: WP-1
works better with all monolingual models and the multilingual model for English. Using
all wordpieces (WP) is a better choice for the multilingual model in other languages. We
believe that WP-1 is not better in these cases because the multilingual wordpiece vocabulary is
mostly English-driven, resulting in highly arbitrary partitionings in these languages (e.g. ES:
fantástico→ fant-ástico; EL:γιγάντιος (gigantic)→γ-ι-γ-άν-τιος). Tokenisers of themonolingual
models instead tend to split words in a way that more closely re�ects the morphology of the
language (e.g. ES: fantástico→ fantás-tico; EL: γιγάντιος→γιγά-ντι-ος. Detailed results of this
comparison are found in Appendix A.4.5.

We observe that diffvec-1 (+) yields comparable and sometimes better results than
diffvec-dm and diffvec-wk, which are built from multiple pairs. This is important es-
pecially in the multilingual setting, since it shows that just one pair of adjectives in a new
language is enough for obtaining good results. The best layer varies across models and con�g-
urations. The monolingual French and Greek models generally obtain best results in earlier
layers, and so does the multilingual model for English to some extent, whereas the other
models improve in the upper half (layers 6-12). This shows that the semantic information
relevant for adjective ranking is not situated at the same level of the Transformer in di�erent
languages. The lower results in French can be due to the higher amount of ties in the datasets
compared to other languages.18 The baselines obtain competitive results, con�rming that the
underlying linguistic intuitions hold across languages. The best models beat the baselines in

16https://fasttext.cc/docs/en/crawl-vectors.html
17We omit Named Entities from BabelNet entries – for example, names of TV shows or locations– because their

meaning is often very speci�c and not widely known.
1858% of the French deMelo scales contain a tie, compared to 45% in English.
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en fr es el
MonoWP-1 MonoWP-1 MonoWP-1 MonoWP-1

p-acc � �avg p-acc � �avg p-acc � �avg p-acc � �avg

D
M dv-1 (+) .6519 .4359 .4969 .6103 .3693 .3963 .6589 .3819 .4079 .5642 .2381 .2712

dv-wk .5866 .2676 .3006 .5151 .1671 .1667 .6707 .4047 .4077 .5892 .2942 .3252

W
K dv-1 (+) .8521 .7051 .8021 .6126 .2576 .2156 .8147 .6277 .8039 .6188 .2828 .2568

dv-dm .91810 .83610 .85910 .6427 .3222 .3922 .7806 .5596 .6846 .75010 .56410 .58610
Multi WP-1 Multi WP Multi WP Multi (unc) WP

D
M dv-1 (+) .6094 .3464 .3894 .5597 .2607 .3117 .6143 .2913 .2685 .5179 .1399 .1639

dv-wk .5443 .2083 .2414 .51710 .17010 .17910 .61812 .30112 .30312 .5399 .1819 .2079

W
K dv-1 (+) .8366 .6726 .7176 .6723 .3823 .3803 .7973 .5933 .6393 .66210 .3889 .4239

dv-dm .8367 .6727 .7667 .7016 .4416 .4762 .69510 .39010 .51110 .6915 .4475 .5025

Static models and baselines

D
M

dv-1 (+) .637 .407 .458 .573 .288 .275 .656 .383 .421 .575 .266 .273
dv-wk .599 .330 .406 .454 .033 -.006 .616 .298 .315 .549 .205 .217
freq .575 .271 .283 .602 .346 .345 .585 .227 .239 .596 .306 .334
sense .493 .163 .165 .512 .229 .185 .516 .139 .151 - - -

W
K

dv-1 (+) .787 .574 .663 .582 .197 .152 .695 .390 .603 .706 .464 .566
dv-dm .852 .705 .783 .642 .325 .280 .712 .424 .547 .691 .447 .451
freq .754 .508 .517 .567 .167 .148 .576 .153 .382 .676 .417 .427
sense .721 .586 .575 .567 .255 .340 .644 .411 .456 - - -

Table 8.9: Results of the diffvec (dv) method with monolingual (Mono) and multilingual (Multi)
contextual models. Comparison to static embeddings and baselines per language. Subscripts denote the
best layer. The best result obtained for each dataset in each language is indicated in boldface. For all
languages but Greek, the multilingual model is cased.

all con�gurations except for Greek on the deMelo dataset, where freq and static embeddings
obtain higher results. Overall results are lower than those reported for English, which shows
there is room for improvement in new languages.

8.4 Scalar Adjective Identi�cation

8.4.1 The scal-rel dataset

Previous work focused on scalar adjective ranking in pre-compiled resources, and this has also
been the case in our experiments. However, the decision of whether an adjective expresses
intensity or not is a crucial one. In settings where an intensity-based analysis can be bene�cial
(such as QA and recommendation systems), it is important to identify adjectives where the
notion of intensity applies, and distinguish them from relational adjectives. We hereby propose
a dataset for this new task in English because of the possibility to automatically compile a
dataset in this language.

scal-rel contains relational adjectives, labelled as “pertainyms” in WordNet, and scalar
adjectives from the deMelo,Wilkinson and Crowd datasets. We include all unique scalar
adjectives in the datasets (443 in total) and keep the same number from the 4,316 unique such
adjectives labelled with the pertainym relationship in WordNet (Fellbaum, 1998), including
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Figure 8.5: Illustration of two scalar adjectives that are close to ⃖⃖⃖⃗dVec and to its opposite (which represents
low intensity). The red vector describes a relational adjective that is perpendicular to ⃖⃖⃖⃗dVec.

many rare or highly technical terms (e.g. birefringent, anaphylactic).19 Scalar adjectives in
our datasets are much more frequent than these relational adjectives; their average frequency
in Google Ngrams is 27M and 1.6M, respectively. We balance the relational adjectives set by
frequency, by subsampling 222 frequent and 221 rare adjectives. We use the mean frequency of
the 4,316 relational adjectives in Google Ngrams as a threshold.20 We propose a train/dev/test
split of the dataset (65/10/25%), ensuring that the two classes are balanced in each subset. To
obtain contextualised representations, we extract ten random sentences from ukWaC for each
pertainym; for scalar adjectives, we use the ukWaC-Random sentence pool (cf. Section 8.2.2).

8.4.2 Methodology

For each English adjective in the scal-rel dataset, we generate a representation from the
available ten sentences (cf. Section 8.4.1) using the bert-base-uncasedmodel. We use the
two wordpiece approaches described in Section 8.3.2 (WP and WP-1). We experiment with
a simple logistic regression classi�er that uses the averaged representation for an adjective
(adj-rep) as input and predicts whether it is scalar or relational. We also apply the diffvec-1
(+)method to this task and measure how intense an adjective is by calculating its cosine with
⃖⃖⃖⃗dVec. The absolute value of the cosine indicates how clearly an adjective encodes the notion
of intensity. In Figure 8.5, we show two scalar adjective vectors with negative and positive
cosine similarity to ⃖⃖⃖⃗dVec, and another vector that is perpendicular to ⃖⃖⃖⃗dVec, i.e. describing
a relational adjective for which the notion of intensity does not apply.21 We train a logistic
regression model to �nd a cosine threshold separating scalar from relational adjectives (dv-1
(+)). Finally, we also use as a feature the cosine similarity of the adjective representation to
the vector of “good”, which we consider as a prototypical scalar adjective (proto-sim). The
best BERT layer is selected based on the accuracy obtained on the development set. We report
accuracy on the test set. The baseline classi�ers only use frequency (freq) and polysemy
(sense) as features. We use these baselines on scal-rel because the WordNet pertainyms
included in the dataset are rarer than the scalar adjectives. The intuition behind the sense

19Note that the WordNet annotation does not cover all pertainyms in English (for example, frequent words such
as ironic or seasonal are not marked with this relation).

20Nine scalar adjectives from our datasets are also annotated as pertainyms inWordNet (e.g. skinny, microscopic)
because they are denominal. We consider these adjectives to be scalar for our purposes since they clearly belong to
intensity scales.

21To draw a parallel with gender debiasing, this value would reveal words’ bias in the gender direction Bolukbasi
et al. (2016), regardless of the gender (male or female).
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Method
Accuracy

WP WP-1
adj-rep (BERT) 0.9469 0.9429
proto-sim 0.88811 0.90210
dv-1 (+) 0.5492 0.5452
adj-rep (fastText) 0.929
freq 0.669
sense 0.714

Table 8.10: Classi�cation results on the scal-rel dataset.

baseline explained in Section 8.2.3 also applies here.

8.4.3 Evaluation

Results on this task are given in Table 8.10. The classi�er that relies on adj-rep BERT repre-
sentations can distinguish the two types of adjectives with very high accuracy (0.946), closely
followed by fastText embeddings (0.929). The dv-1 (+)method does not perform as well as
the classi�er based on adj-rep, which is not surprising since it relies on a single feature (the
absolute value of the cosine between ⃖⃖⃖⃗dVec and adj-rep). Comparing adj-rep to a typical
scalar word (proto-sim) yields better results than dv-1 (+). The sense and freq baselines
can capture the distinction to some extent. Relational adjectives in our training set are less
frequent and have fewer senses on average (2.59) than scalar adjectives (5.30). A closer look at
the errors of the best model reveals that these concern tricky cases: one of the four misclassi�ed
scalar adjectives is derived from a noun (microscopic), whilst �ve out of eight wrongly classi�ed
relational adjectives can have a scalar interpretation (e.g. sympathetic, imperative). Overall,
supervised models obtain very good results on this task. scal-rel will enable research on
unsupervised methods that could be used in other languages.

8.5 Conclusion

We have shown that BERT representations encode rich information about the intensity of scalar
adjectives which can be e�ciently used for their ranking. Our proposed method, diffvec, is
simple and resource-light, solely relying on an intensity vector which can be derived from as
few as a single example. In spite of its simplicity, it outperforms previous work on the scalar
adjective ranking and Indirect Question Answering tasks. Our performance analysis across
BERT layers highlights that the lexical semantic knowledge needed for these tasks is mostly
located in the higher layers of the BERT model.

We created a new scalar adjective dataset for French, Spanish and Greek and applied our
methodology to these languages, experimenting with monolingual BERT models and mBERT.
Our results show that BERT representations encode rich information about the semantics of
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scalar adjectives in di�erent languages. Additionally, we propose a new classi�cation task and
a benchmark dataset that can serve to estimate the models’ capability to distinguish between
scalar and relational adjectives. A supervised BERT-based model does very well on this task,
and can thus be used to identify lexical items that contribute to the emotional load andmeaning
of a text.

The experiments presented in this chapter open up new avenues for future research on
intensity, polarity, and other connotational aspects of lexical meaning. It would be interesting
to explore adjective ranking in full scales (instead of half-scales) and evaluate the capability
of contextualised representations to detect polarity, antonyms, and even di�erent emotions
(e.g. sadness or anger) (Mohammad, 2018). It would also be worth investigating how negation
a�ects BERT representations, and to perform intensity-based ranking in scales containing
negated adjectives (not gorgeous

?
,→ pretty) (Gotzner et al., 2018).

Another question that remains open is how to choose good candidates for building ⃖⃖⃖⃗dVec.
Our experiments do not show a clear trend in this respect. The best performing pairs might
vary depending on the evaluation dataset, the type of embeddings used and the connotations of
the respective adjectives in each language. We need to carry out experiments involving many
more adjective pairs in order to detect conclusive patterns. That could be, for example, that
more frequent or positive adjectives are better alternatives for creating ⃖⃖⃖⃗dVec.

In this work we have focused on adjectives, but we can �nd similar intensity relations in
other parts of speech: verbs (adore > love), nouns (downpour > rain) and adverbs (furiously
> angrily). Another possible extension of this work would involve investigating whether our
adjective-based ⃖⃖⃖⃗dVec can be useful for ranking words of other parts of speech by intensity, or
for building a speci�c ⃖⃖⃖⃗dVec for each part of speech.

Finally, the diffvecmethod can potentially be applied to other dimensions of di�erence
between near-synonyms, such as formality and complexity. Just as we obtain a representation
of intensity from two adjectives that have the same meaning but di�er in intensity, one could
obtain a formality representation from, for example, the subtraction of the vectors of father and
dad ( ⃖⃖⃖⃖⃖⃗fatℎer − ⃖⃖⃗dad). Words could then be ranked according to their formality or complexity
by reference to this representation.
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Chapter 9

Nouns’ Semantic Properties and
their Prototypicality

9.1 Introduction

In the previous chapter, we investigated the knowledge encoded in BERT about semantic
relationships, speci�cally addressing the intensity relationship between scalar adjectives. In
this chapter, we address another aspect of adjectival meaning, namely their role as modi�ers
in adjective-noun (AN) constructions. We probe BERT for noun properties and their prototypi-
cality, as expressed by the adjectives that modify them in AN phrases. This study is focused on
English because of the availability of datasets that can be used for evaluation.

Adjectival modi�cation is one of the main types of composition in natural language (Ba-
roni and Zamparelli, 2010; Guevara, 2010). Adjectives in attributive position1 usually have
a restrictive role on the reference scope of the noun they modify, limiting the set of things it
refers to (e.g. white rabbits ⊏ rabbits). This property of adjectives has interesting entailment
implications, generally leading to AN constructions where the entailment relationship with the
head noun holds (AN ⊧ N) (Baroni et al., 2012). The entailment relationship is unidirectional
(white rabbit ⊧ rabbit but rabbit ̸⊧ white rabbit) (Kotlerman et al., 2010), unless modi�cation is
not restrictive: when A is prototypical of the N it modi�es (as in soft silk, red strawberry), its
insertion does not reduce the scope of N or add new information, but rather emphasises some
inherent property of N (Pavlick and Callison-Burch, 2016). In these cases, N and AN denote the
same set and are in an equivalence relation (red strawberry = strawberry). Entailment between
these pairs is symmetric, in contrast to the restrictive case.

Alongside the theoretical interest of this linguistic property and its impact on the entailment
properties of AN constructions, identifying prototypical adjectives can be useful in practical
applications. It can serve to retrieve information about the general concept (silk, strawberry)
when queries include such ANs (soft silk, red strawberry) or the other way around, to retrieve

1Adjectives that appear immediately before the noun they modify and form part of the noun phrase (white
rabbit), as opposed to adjectives in predicative position that occur after the noun (this rabbit is white).
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information from sources containing the ANwhen the query contains N. It can also serve to dis-
card adjectives that do not add new information about the noun they modify in summarisation
or sentence compression.

We investigate the knowledge BERT encodes about nouns’ inherent properties as described
in AN constructions. We use a set of collected norms that describe important concept features
(McRae et al., 2005) and their associated quanti�ers (Herbelot and Vecchi, 2015). We rely on
these data to derive cloze statements that we use to query BERT about noun properties, and to
train BERT-based classi�ers predicting these properties. We furthermore �ne-tune BERT for
entailment and test it in a task that involves AN constructions (Pavlick and Callison-Burch,
2016). For this experiment, we rely on the AddOne dataset proposed by Pavlick and Callison-
Burch (2016) which consists of sentence pairs that contain AN pairs annotated for entailment
in a crowdsourcing task. The proposed simpli�ed entailment task only di�ers from the classical
recognising textual entailment (RTE) task (Dagan et al., 2005) in that the premise (p) and
hypothesis (ℎ) di�er by one atomic edit e (i.e. insertion of A).

Compositionality in AN constructions has been a central topic in distributional and formal
semantics. Mitchell and Lapata (2010) derive themeaning representation of a composite phrase
from that of its constituents by performing algebraic operations (addition and multiplication)
on distributional word semantic vectors, while Baroni and Zamparelli (2010) and Guevara
(2010) derive composite vectors through composition functions learned from corpus-harvested
phrase vectors. Baroni et al. (2012) also demonstrate that the entailment relationship that exists
between AN phrases and their head N (big cat ⊧ cat) transfers to lexical entailment among
nouns (dog ⊧ animal). In our work, we represent AN phrases by combining the contextualised
BERT representations of A and N in sentences where they occur using algebraic operations.
We also investigate the extent to which the representations of A and N in an AN capture
its meaning, since token-level BERT embeddings encode information from the surrounding
context.

Prototypicality has been addressed in the literature mainly by reference to relationships
between nouns, i.e. the typical hyponyms in a speci�c semantic class (e.g. dog ⊧ animal) or
member concepts that are most central to a category (Roller and Erk, 2016). Vulić et al. (2017)
also address verb prototypicality in terms of how typical of an action a verb is (e.g. “Is to
run a type of to move?”). The prototypicality of adjectives with respect to nouns has been
understudied and is absent from lexico-semantic resources such as WordNet (Fellbaum, 1998)
and HyperLex (Vulić et al., 2017).

On the probing side, previous work explores the factual and common sense knowledge
present in pretrained languagemodels (LMs) using “�ll-in-the-blank” cloze statements (Petroni
et al., 2019; Jiang et al., 2020). The HasProperty relation in the LAMA benchmark (Petroni
et al., 2019) (cf. Chapter 2.3.1), extracted from ConceptNet (Speer and Havasi, 2012), is similar
to our relation of interest as it links nouns to adjectives describing their properties. ConceptNet
contains 3,894 such pairs, but a close inspection of the data reveals several problematic cases
(e.g. informal both, divine forgive, ten 10). Additionally, the cloze statements proposed for this
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dataset were automatically extracted from Open Mind Common Sense (OMCS)2 sentences and
are often very long, including irrelevant information.3 Other studies probing BERT with cloze
statements (Jiang et al., 2020; Bouraoui et al., 2020; Ettinger, 2020; Ravichander et al., 2020) do
not explore noun properties.

Our results show that BERT has limited knowledge of noun properties and their prevalence,
but can still successfully detect cases where the addition of an adjective does not alter the
meaning of a sentence and where entailment is preserved.

9.2 Datasets

McRae et al. (2005) dataset (MRD) Semantic feature norms are used in the �eld of psy-
cholinguistics for studying human semantic representation and computation. MRD contains
feature norms for 541 living and nonliving concepts collected from 725 participants in an
annotation task. The annotators proposed features they thought were important for each
concept, covering physical (perceptual), functional and other properties. Among the collected
7,258 concept-feature pairs, we �nd that a dolphin is intelligent, friendly, and lives in oceans, and
that a chandelier is hanging from ceilings and is made of crystal. The number of annotators who
proposed each feature is also provided. The dataset has been extensively used to investigate and
improve the knowledge about object properties encoded by distributional models (Rubinstein
et al., 2015), static word embeddings (Lucy and Gauthier, 2017; Yang et al., 2018) and, more
recently, contextualised LMs (Forbes et al., 2019; Hasegawa et al., 2020). These studies do not
focus on adjectival attributes but rather consider all proposed properties, or speci�c subsets
such as visual properties. In our experiments, we explore noun properties through the “is_adj”
features of noun concepts in MRD.

Herbelot and Vecchi (2015) dataset (HVD) HVD adds an extra level of quanti�cation
annotations to the MRD norms. Three native speakers of English select a natural language
quanti�er among [no, few, some, most, all]4 for each concept-feature (C, f) pair, expressing
the ratio of C instances having feature f (e.g. all guitars are musical instruments, but some
guitars are electric). Subject-predicate quanti�cation is important for semantic inference; it
can serve to understand set relations (e.g. synonymy and hyponymy) and to derive logically
entailed sentences for a statement. We use the HVD dataset in our study to probe BERT about
the prevalence of noun properties.

Pavlick and Callison-Burch (2016) dataset (AddOne) The Addone dataset is focused on
AN composition. It contains 5,560 sentence pairs involving an AN pair (sN , sAN) which have

2https://github.com/commonsense/omcs
3For example: “To understand the event “The monkey ate some bananas.”, it is important to know that Banana

is [MASK]”. The ground truth adjective in this case is yellow.
4no and few labels were rarely used by the annotators and we consider them as describing cases of non typical

attributes.

163

https://github.com/commonsense/omcs


Chapter 9. Nouns’ Semantic Properties and their Prototypicality

been manually annotated for entailment (sN ⊧ sAN) by crowd workers. Addone sentence pairs
di�er by one atomic edit, the insertion of A:

- sN : “There are questions as to whether our culture has changed.”

- sAN : “There are questions as to whether our traditional culture has changed.”
Sentences were collected from corpora of di�erent genres and each pair is annotated with
a score in a 5-point scale from 1 (contradiction) to 5 (entailment). Only the pairs with high
agreement (same score assigned by 2 out of 3 annotators) were retained. We use the AddOne
dataset to assess BERT’s ability to detect entailment in AN constructions. The dataset comes
with a pre-de�ned split into training, development and test sets (83/10/7%) which we use in
our experiments addressing entailment (Section 9.5).

9.3 Cloze Task Experiments

We probe BERT for noun properties (Section 9.3.1) and their prototypicality (Section 9.3.2)
with cloze statements. We use the bert-base-uncased and bert-large-uncased models
pre-trained on the BookCorpus (Zhu et al., 2015) and on English Wikipedia (Devlin et al.,
2019).

9.3.1 Cloze Task Probing for Properties

We retrieve adjective modi�ers of nouns in MRD found in the is_adj features describing a
concept (bouquet: is_colourful; panther: is_black). There are 509 noun concepts with at least
one is_adj feature in MRD. We exclude features involving multi-word attributes (coconut:
is_white_inside, raft: is_tied_together_with_rope) which we do not expect BERT to be able to
predict. The average number of features per noun is 3.12 (1,592 in total). Table 9.1 shows the
number of nouns having a speci�c number of features. We de�ne a set of templates and derive
cloze statements for each noun that serve as our queries to probe BERT for these attributes. We
de�ne templates using both its singular and plural forms, as shown in Table 9.2.5 We always
use plural templates for nouns given in plural form in MRD,6 and singular templates for mass
and uncountable nouns.7 We evaluate the quality of the predictions made by BERT for each
slot by checking the presence of ground-truth (gold) MRD adjectives at positions @1, @5 and
@10, i.e. the top one, �ve and ten predictions ranked by probability. We compare BERT to
a baseline that ranks by frequency all bigrams where a speci�c noun appears in the second
position (“ bouquet”) in Google Ngrams (Brants and Franz, 2006), excluding bigrams that
contain stop words8 and punctuation.

5We use the plural form of nouns given by the pattern Python library and manually correct any errors.
6The following 26 nouns: beans, beets, curtains, earmu�s, jeans, leotards, mittens, onions, pajamas, peas,

scissors, skis, slippers, shelves, sandals, bolts, gloves, nylons, boots, screws, pants, tongs, trousers, drapes, pliers,
socks.

7There are three such nouns in MRD: rice, bread, football.
8We use NLTK’s (Bird et al., 2009) list of English stop words.
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# attributes 1 2 3 4 5 6 7 8 9
# nouns 98 124 97 76 60 35 12 6 1

Table 9.1: Number of nouns with a speci�c number of is_adj attributes in MRD. In total, there are 509
nouns with 1,592 attributes.

Masking Properties

singular a balloon is [MASK].
plural balloons are [MASK].

usually
a balloon is usually [MASK].
balloons are usually [MASK].

generally
a balloon is generally [MASK].
balloons are generally [MASK].

can be
a balloon can be [MASK].
balloons can be [MASK].

most most balloons are [MASK].
all all balloons are [MASK].
some some balloons are [MASK].

Masking Quanti�ers

[MASK] balloons are colourful. (all-most-some)
[MASK] balloons are large. (some-some-few)
[MASK] balloons are round. (most-some-no)

Table 9.2: Cloze statements for the noun balloon with its properties (McRae et al., 2005) and quanti�ers
masked. Parentheses in the lower part of the table contain the quanti�ers proposed by annotators in
the (Herbelot and Vecchi, 2015) dataset.

The two plots in Figure 9.1 show the number of nouns for which the BERT-base (top plot)
and BERT-large (lower plot) models manage to propose at least one correct attribute from
MRD at the �rst, top �ve or top ten positions in the ranking. We observe that results di�er
considerably when di�erent cloze statements from Table 9.2 are used for probing. Overall,
templates that contain the noun in singular form (N [usually∣generally] is [MASK], N

can be [MASK]) cause BERT to suggest correct attributes for far less nouns than templates con-
taining the noun in plural form (Ns [usually∣generally] are [MASK], Ns can be [MASK];
[most∣all∣some] Ns are [MASK]). Notably, the frequency baseline proposes more correct
properties than BERT-base when probed with templates that contain the noun in singular
form. The highest number of nouns that receive at least one correct attribute is 287 (out of
509) and is obtained with most-P queries (most Ns are [MASK]) and BERT-large. For BERT-
base, usually-P queries (Ns usually are [MASK]) retrieve at least one correct attribute in
@10 for 222 nouns. Correct attributes are more rarely found at higher positions, with only a
small number of nouns being assigned one at the �rst position (@1). In Appendix A.5.1 we
additionally report recall values of this experiment, calculated over the words for which at least
one correct attribute is found.
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Figure 9.1: Number of nouns (out of 509) for which a correct (gold) attribute is found at positions @1,
@5 and @10 of the ranked BERT predictions, when using sentences constructed with the templates on
the y axis. S and P denote templates with the noun in singular or plural form (cf. Table 9.2). The top
�gure shows results for BERT-base and the lower one for the BERT-largemodel.

These results suggest that BERT has marginal knowledge of noun properties as re�ected
in the MRD association norms. This cloze task is more challenging than others targeting
encyclopedic knowledge (Petroni et al., 2019), probably because information about noun
properties is not as often explicitly stated in text. We however observe that the quality of the
proposed adjectives is quite high in some cases, even when these are not present in MRD and
cannot thus be captured by this evaluation. For example, the predictions retrieved with the
probe “mittens are generally [MASK]” describe di�erent aspects of the noun such as their
colour (white, black, red, yellow), shape and composition (�at, thick, short, thin), and the fact
that they can be removed. This shows that BERT encodes some knowledge about the noun
being a garment, although it fails to guess the speci�c adjectives chosen by the annotators in
MRD (knitted and colourful). Naturally, prediction quality varies a lot and in some cases these
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do not describe noun properties but general knowledge about the described entity, as seen in
the predictions obtained with the probe “all balloons are [MASK]”: empty, free, �own, �lled, lit,
in�ated, green, destroyed, closed, used.

9.3.2 Cloze Task Probing for Quanti�ers

We additionally probe BERT’s ability to predict how general a noun property is, i.e. whether it
is prototypical and a�ects all or most members of the class of objects referred to by the noun,
or a subset of it. We create cloze statements from HVD where the quanti�er is masked but
the property is present (e.g. [MASK] bananas are healthy.). Since this task explores the set
of objects to which a property applies, we form the cloze statements using the plural form of
the noun. We query BERT using these statements and check whether it correctly predicts the
missing quanti�er.

We evaluate BERT’s predictions against the annotations in HVD. We split the data into
Set (A) which contains AN pairs that have at least two all, or a combination of all and
most, annotations; and Set (B) which contains all other pairs that were assigned some, few
and no labels. We view AN pairs in (A) as prototypical, characterising the entire class (e.g.
banana-is_healthy→ [all-all-all]), and AN pairs in (B) as describing properties that apply
to a subset of the objects described by the noun (e.g, apple-is_red→ [most-some-some]). We
create 788 cloze statements of the form “[MASK] Plural_Noun are A” for 386 nouns in Set
(A), and 808 statements for 391 nouns in Set (B).9 We retrieve the �rst ten BERT suggestions for
�lling the masked slot in the cloze statements, and evaluate their quality by checking whether
the quanti�ers are among the predictions (precision at 10). When all quanti�ers are proposed,
we additionally check their relative position in the ranking, i.e. if all andmost precede some
in (A) predictions, and if some comes �rst in (B) predictions.

The results are shown in Table 9.3. We observe that all three quanti�ers are frequently
in the top ten predictions for most statements in both sets, which suggests that BERT is not
capable of distinguishing prototypical from other noun properties, at least with this probing
task targeting quanti�er prediction. If BERT encoded knowledge about the prevalence of
properties for nouns in the queries, we would have expected to �nd all andmostmore often
than some in the results for Set (A), and some more often than all and most in the @10
predictions for Set (B). The precedence of a quanti�er over another, shown in the lower part of
the table, leads to the same conclusion. In order to infer that BERT encodes prototypicality
information, all and most should be higher ranked than some in Set (A) predictions and the
inverse in Set (B), but this does not seem to be the case.

9Note that a nounmight be present in both Sets (A) and (B), depending on whether the ANs where it is involved
describe prototypical properties. We �nd, for example, “jar is_transparent” in Set A, because all jars have this
property, and “jar is_breakable” in Set B, because not all jars can be easily broken.
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BERT-base
Set A Set B

all@10 627/788 some@10 571/808
most@10 508/788 all@10 608/808
some@10 623/788 most@10 445/808
all < some 298/532 some < all 161/467
most < some 225/451 some <most 26/31

BERT-large
Set A Set B

all@10 592/788 some@10 528/808
most@10 494/788 all@10 612/808
some@10 548/788 most@10 477/808
all < some 255/462 some < all 150/449
most < some 250/431 some <most 12/25

Table 9.3: Frequency of appearance of a quanti�er in the top ten ranked BERT-base and BERT-large
model predictions for the 788 sentences in Set (A) and the 884 sentences in Set (B). “<” denotes
precedence of a quanti�er over another, when they both appear in @10. For example, all precedes
some in the ranking for 298 Set (A) predictions out of 532 where they have both been proposed by
BERT-base.

9.4 Classi�cation Experiments

We probe BERT representations for prototypicality also in a classi�cation setting, using frozen
embeddings and �ne-tuning. In these experiments, we use only the bert-base-uncased

model.

9.4.1 Experimental Setup

Examples We consider as positive (prototypical) instances (pos) for this task AN phrases
from HVD Set (A), with at least two all or a combination ofmost and all annotations (cf.
Section 9.3.2). As negative instances (neg) for a noun in (A), we use the AN pairs where it
appears in Set (B). If |neg| < |pos| for an N, we collect additional negative instances from the
ukWaC corpus (Baroni et al., 2009) where N is modi�ed by an adjective A′ such that A′N ∉

HVD. We exclude cases where N is part of a compound (i.e. where it modi�es another noun,
as in small sardine tin).10 We retain the most frequent ANs found for N in ukWaC as negative
instances, until |neg| = |pos|. The dataset contains 1,566 instances in total, 783 for each
class.11

10We obtain the dependency parse of a sentence using stanza Qi et al. (2020)
11We omit �ve positive AN pairs because not enough negative instances were found for the noun in Set (B) or in

ukWaC.
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Representations For each AN in |pos| and |neg|, we obtain a BERT representation from a
sentence (sAN) in ukWaC where A modi�es N. We pair sAN with a sentence sN where A has
been automatically deleted (e.g. sAN : “Then shape into balls about the size of a small tangerine”
vs. sN: “Then shape into balls about the size of a tangerine”). We choose sentences where A
is not modi�ed by an adverb (e.g. very small ant, where removing small would result in an
ungrammatical sentence). When no sentences are found for an AN (588 out of 1,566 cases),
we use as sAN the plural pattern from the cloze task experiments (e.g. raspberries are edible;
cf. Section 9.3.1) and the plural noun alone as sN (raspberries). When N is an uncountable
noun, we use the singular pattern instead.12 More details about how BERT representations
are extracted from these sentences for each type of experiment are found in Sections 9.4.2 and
9.4.3.

Data split We keep aside 10% of the data as our development set and perform 5-fold cross-
validation on the rest. To minimise the impact of lexical memorisation where the model learns
that a word is representative of a speci�c class (Levy et al., 2015), we observe a full lexical
split by adjective between the development set and the data used for cross-validation, and also
between the training and the test set in each fold. As a result, adjectives found in the test set at
each iteration have not been seen in the training or in the development set. This is done to
avoid that the model memorises an adjective as describing a common or prototypical property
of nouns (e.g. small is a feature for 120 out of 509 nouns in MRD). The split allows to evaluate
the capability of the model to generalise to unseen adjectives.

9.4.2 Embedding-based Classi�cation

We expect the vector of an AN phrase involving a prototypical adjective (red strawberry) to be
more similar to the vector of N (strawberry), than that of a phrase A′N involving an adjective
that expresses a non typical property of N (rotten strawberry). We extract three types of BERT
embeddings from each layer of the bert-base-uncased model that we use to compare the
representation of an AN to that of the head N:

1. an embedding for N in sentence sN (where N occurs without the adjective) (⃖⃖⃖⃗NsN);
2. an embedding for N in sentence sAN (which contains the adjective) (⃖⃖⃖⃖⃗NsAN);
3. an embedding for A in sAN .

We obtain an AN representation by combining the vectors pairwise: ⃖⃖⃖⃗NsN and ⃖⃖⃖⃖⃗NsAN; ⃖⃖⃖⃗NsN

and ⃖⃖⃖⃖⃗AsAN; ⃖⃖⃖⃖⃗NsAN and ⃖⃖⃖⃖⃗AsAN , using di�erent composition operations: average, concatenation,
di�erence,multiplication, and addition. We also experimentwith the token-level contextualised
representations ⃖⃖⃖⃖⃗AsAN and ⃖⃖⃖⃖⃗NsAN in isolation which we expect to also encode information about
the noun and the adjective in the AN, respectively, since they occur in the same context. We
use the di�erent AN representations as features for a logistic regression classi�er.

12Using sentences created with these patterns for all ANs hurts performance compared to the setting where
sentences gathered from corpora are used.
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Figure 9.2: Illustration of the types of features used to train the classi�ers. We create ⃖ ⃗⃖AN representations
from di�erent vectors using di�erent operations (f). The classi�er uses the resulting representations as
features, or the distance/similarity (d) between ⃖ ⃗⃖AN and a representation of the noun (⃖⃗N).

Additionally, we calculate the cosine similarity and euclidean distance between the rep-
resentation of a noun (⃖⃖⃖⃗NsN or ⃖⃖⃖⃖⃗NsAN) and ⃖ ⃗⃖AN obtained through the vector combinations and
composition operations described above, and feed them to the classi�er as individual features
or in combination. Figure 9.2 contains an illustration of the di�erent features we use to train
the classi�ers. For comparison, we also run experiments using static word2vec (Mikolov et al.,
2013a) and fastText (Grave et al., 2018) embeddings as features, creating ⃖ ⃗⃖AN with the word
embeddings ⃖⃗N and ⃖⃗A, and using ⃖⃗A alone. For each type of representation (BERT, word2vec,
fastText), we select the con�guration with the highest average accuracy on the development
set over the �ve cross-validation runs.

In Table 9.4, we report the average accuracy (Acc) and F1 score on the test sets of the �ve
folds for these con�gurations. Accuracy is calculated over all examples in the test set. Precision
(P), recall (R) and F1-score show how good a model is at detecting AN pairs that involve
a prototypical adjective. As baselines, we provide results for a model that always predicts
prototypicality (all-proto), and a model that assigns the majority label found in the training
set at each fold (majority).

In terms of accuracy, BERT obtains the best results on this task (0.658) when cosine simi-
larity and euclidean distance between ⃖⃖⃖⃗NsN and ⃖⃖⃖⃗NsN+⃖⃖⃖⃖⃗NsAN at the last (12th) layer are used
as features. The simple all-proto baseline obtains the highest F1 score (0.672) but a low
accuracy in this balanced dataset. Static representations, especially word2vec, perform worse
than BERT but still manage to beat the baselines in terms of accuracy. The best con�guration
for word2vec and fastText was the use of the static adjective representations (⃖⃗A) as features,
which shows that the models do not manage to extract the information needed for assessing
prototypicality from the di�erent ⃖⃗N and ⃖⃗A combinations. Instead, the best strategy is to learn
the tendency of an adjective to be prototypical. When evaluated on unseen adjectives in our
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Model Acc F1 P R
BERT 0.658 0.648 0.676 0.633
fastText 0.593 0.481 0.639 0.411
word2vec 0.559 0.455 0.601 0.372
all-proto 0.507 0.672 0.507 1.000
majority 0.473 0.524 0.390 0.800

Table 9.4: Average accuracy (Acc), F1-score, precision (P) and recall (R) of embedding-based classi�ers
on the HVD dataset in the cross-validation experiment across �ve folds.

⃖ ⃗⃖AN type Acc composition Acc
NsN , NsAN 0.712 addition 0.712
AsAN 0.675 di�erence 0.667
NsN , AsAN 0.667 concatenation 0.660
NsAN , AsAN 0.665 average 0.650
NsAN 0.613 multiplication 0.611

Table 9.5: Highest average accuracy obtained by the di�erent types of AN representation (left) and
composition operations (right) with BERT embedding-based classi�ers on the HVD development set.

test sets, they base prototypicality judgments on the similarity of these adjectives to the ones
seen in the training set. We observe a high variation in accuracy and F1 scores across folds
for all models. For BERT, F1 scores range from 0.553 to 0.740 and the range is even larger for
the fastText-based model (from 0.310 to 0.747). This suggests that prototypicality is not easy to
detect for all AN pairs. Overall, BERT contextualised embeddings seem to be a better �t for
estimating prototypicality than static representations.

We explore the behaviour of di�erent kinds of features on the development set. In Table
9.5, we report the best results obtained for each type of BERT-based ⃖ ⃗⃖AN representation and
composition operation. The combination of NsN and NsAN clearly outperforms the other
vector combinations. Using the adjective token-level representation alone (⃖⃖⃖⃖⃗AsAN) also yields
good results, de�nitely higher than ⃖⃖⃖⃖⃗NsAN . In terms of composition functions, addition is the
best performing operation for this task and multiplication the least useful. We report the
detailed results by layer, and the best con�gurations per ⃖ ⃗⃖AN and composition type in Appendix
A.5.2.

9.4.3 Fine-tuning BERT

We compare our results in the frozen- embedding experiments with performance of BERT
�ne-tuned for the prototypicality task. Speci�cally, we feed into BERT the two sentences
in each (sN , sAN) pair separated by the [SEP] token. We experiment with a classi�er on top
of the [CLS] token, as is typically done in sentence-pair classi�cation tasks with BERT (we
call this approach BERT-CLS); and with a classi�er on top of the concatenation of two token
representations: (⃖⃖⃖⃗NsN , ⃖⃖⃖⃖⃗AsAN), (⃖⃖⃖⃗NsN , ⃖⃖⃖⃖⃗NsAN), (⃖⃖⃖⃗NsN , ⃖⃖⃖⃖⃗AsAN + ⃖⃖⃖⃖⃗NsAN) (our BERT-TOK approach).
The two classi�cation heads consist of a linear layer with softmax and are trained with a cross
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Model Acc F1 P R
BERT-CLS 0.700 0.654 0.772 0.579
BERT-TOK 0.696 0.642 0.777 0.551

Table 9.6: Average accuracy, F1 score, precision and recall in the cross-validation experiment across �ve
folds for a BERT model �ne-tuned on the HVD dataset using the CLS and TOK approaches.

entropy loss. We �ne-tune each model for 3 epochs with 0.1 dropout, and choose the learning
rate based on the accuracy on the development set. Results of these experiments are found
in Table 9.6. BERT-CLS and BERT-TOK (⃖⃖⃖⃗NsN , ⃖⃖⃖⃖⃗AsAN) perform comparably on this task and
obtain better results than embedding-based models (Table 9.4), with 0.697 accuracy.

9.5 Entailment in AN Constructions

9.5.1 Task Description

AN constructions are often in a forward entailment relation with the head noun (white rabbit ⊧
rabbit) (Baroni et al., 2012).13 Whether backward entailment holds depends on the properties of
N described by A in AN. For example, a car is not always red (the label would be “Unknown”),
while strawberry always entails red strawberry. We explore BERT’s capability to identify the
AN cases where backward (N ⊧ AN) entailment holds14 using the Addone dataset (Pavlick and
Callison-Burch, 2016) (cf. Section 9.2).

We �ne-tune BERT on Addone to assess whether it captures the entailment relationship
involved in AN constructions. BERT has shown high performance in other textual entailment
tasks Devlin et al. (2019), but the Addone dataset has proved challenging for other models
relying on RNN and LSTM architectures. We follow Pavlick and Callison-Burch (2016) and use
Addone for a binary classi�cation task, with the labels entailment (for forward entailment
and equivalence) and not entailment (encompassing the contradiction, independence and
reverse entailment relations). Similarly to the �ne-tuning approach described in Section 9.4.3,
we feed into BERT the two sentences in each pair (sN , sAN) separated by the special [SEP]
token. We again use the CLS and TOK classi�cation heads. We �ne-tune the model for 5
epochs with 0.1 dropout and select the learning rate based on the F1 score calculated over the
actual entailment cases on the development set.15

13An exception to this are ANs with non-subsective adjectives, such as former (former president ̸⊧ president.)
14Backward entailment (N ⊧AN) holdswhenA denotes a prototypical property of N, and alsowhenA emphasises

that the whole of N is involved (e.g. chicken ⊧ whole chicken)
15We use F1 score as a criterion, and not accuracy, because the Addone dataset is highly imbalanced (only 23%

of instances belong to the entailment class).
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Model Acc F1 P R
Human (p&cb) 0.933 0.730 0.840 0.640
Maj-by-adj (p&cb) 0.922 0.680 0.860 0.560
Maj (p&cb) 0.853 - - -
BERT-TOK 0.912 0.696 0.709 0.684
BERT-CLS 0.147 0.257 0.147 1.000
RNN (p&cb) 0.873 0.510 0.600 0.440

Table 9.7: Results on the Addone test set. We highlight in boldface the best results obtained by the
models and the baselines. We include results and baselines reported by Pavlick and Callison-Burch
(2016) (P&CB) for comparison. Human performance determines the upper bound that can be obtained
for this task.

9.5.2 Results

Results of our experiments onAddone are presented in Table 9.7. We include results reported by
Pavlick and Callison-Burch (2016) for comparison. We report the accuracy, F1 score, precision
and recall obtained by each model. The maj and maj-by-adj baselines assign the majority
class in the training set (non-entailment) and the majority class proposed for each adjective
in the training set, respectively. We also report the human performance on this task as an upper
bound, and compare to the best-performing model in Pavlick and Callison-Burch (2016) which
relies on a RNN architecture (Bowman et al., 2015). BERT-CLS fails to learn the information
needed for the task and predicts the entailment label for all instances. The default �ne-
tuning strategy used for textual entailment with BERT is, thus, not suitable for addressing
cases of compositional entailment in the Addone dataset. It is much more e�ective to use the
representations of the speci�c words that determine sentence entailment: BERT-TOK (⃖⃖⃖⃗NsN ,
⃖⃖⃖⃖⃗AsAN) obtains higher results than the previous best model (RNN) and beats themaj baseline,
as well asmaj-by-adj in terms of F1 and recall.

9.6 Conclusion

Wehave proposed a thorough investigation of the information encoded byBERTabout nouns’ in-
trinsic properties as expressed by adjectives in AN constructions. This topic has onlymarginally
been explored in previous work, mainly in the frame of studies addressing the model’s rela-
tional and encyclopedic knowledge. Using datasets speci�cally compiled for psycholinguistics
studies, we have probed BERT for noun properties and their prototypicality, and have explored
the entailment relationship that holds between nouns and the AN construction where they
can appear. Our cloze task experiment results show that BERT encodes limited knowledge
about noun properties and their prevalence, as described in word association norms. It is
important to note that these results are tied to the speci�c properties proposed by annotators
in the McRae dataset. Di�erent annotation procedures (for example, a cloze task) might lead
to a di�erent set of attributes. In a supervised setting, however, BERT can learn to distinguish
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prototypical from other noun properties. When �ne-tuned on data speci�cally addressing the
N ⊧ AN entailment relationship, BERT manages to beat previous best performing models and
strong baselines on this task.
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Conclusion

10.1 Contributions

At the beginning of this thesis, we set out two main goals: investigating the lexical semantic
knowledge encoded in context-sensitive representations derived from neural language models,
and improving the quality of the information encoded in the representations. The main
contributions and �ndings with respect to each of these goals are outlined below.

Main Findings In order to ful�ll the �rst goal, we performed extensive experiments ex-
ploring di�erent aspects of word meaning. The investigated aspects can be divided into three
main types: (i) word meaning in context (Chapters 3, 4 and 6), (ii) polysemy-related properties
(Chapters 5 and 7), and (iii) semantic relationships between words (Chapters 8 and 9). We
provide here an overview of what we have learnt about di�erent models.

i. We approximated word meaning in context using in-context lexical substitute and word
similarity annotations. First, we evaluated di�erent context-sensitive representations
on the lexical substitution task (Chapter 3). Our results showed that models trained
with a slot-�lling objective, like context2vec and especially BERT, are more suitable
for this task than a model focused on next word prediction, like ELMo. The same
trend was observed for usage similarity estimation (Chapter 4), where contextualised
BERT representations made high quality predictions. ELMo representations do not
re�ect usage similarity as well, although predictions improve slightly when incorporating
representations from surrounding words in close proximity to the target, which are used
for target word prediction during training. All contextualised representations give better
usage similarity judgments than static representations. These results demonstrate their
advantage in representing word meaning in context. However, in Chapter 6, we found
that the similarity estimates derived from BERT representations are a�ected by sentence
changes that do not alter the meaning of the sentence or of the words in it.

ii. The lexical properties investigated in this thesis are the partitionability of words into
senses and their polysemy level. In Chapter 5, we extended past work on the �rst
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property (McCarthy et al., 2016) that proposed to view partitionability as clusterability of
a word’s semantic space. We again found that BERT is able to make the highest quality
predictions, outperforming ELMo, context2vec, and McCarthy et al.’s (2016) approach
that relied on manual substitute annotations. These results are promising and suggest
that the semantic space built by BERT re�ects the di�erent ambiguity types of words.
Clusterability predictions, however, did not scale well on a larger corpus. We attributed
this mainly to the quality of the sentences used (which were randomly selected and
did not necessarily contain instances of all senses of a word) and to the model’s high
sensitivity to speci�c collocational and contextual di�erences inword usage. Our �ndings
regarding the models’ knowledge about polysemy presented in Chapter 7 are, however,
highly interesting. The controlled sense distributions used in our experiments allowed us
to conclude that the models, and particularly English BERT, encode information about
words’ number of senses that is acquired during pre-training, and which is present in
the representations of new word instances regardless of their context.

iii. Finally, we investigated two other aspects of lexical meaning which are re�ected in the
relationships between words. First, we discovered that BERT representations encode
rich knowledge about adjective intensity (Chapter 8) that is re�ected in the similarity
estimations obtained for scalar adjectives. We proposed a simple and resource-lean
methodology that e�ectively uses representations for ranking adjectives by intensity.
BERT representations also proved to be e�ective for distinguishing scalar from rela-
tional adjectives, although static embeddings obtained similarly good results on this task.
Second, we investigated the knowledge that BERT contains about noun properties, as
expressed in adjective-noun constructions. We found that it is hard for the model to
make good predictions in an unsupervised cloze task setting, but that the knowledge can
be learnt to some extent in a supervised binary classi�cation task. We, however, prefer to
be conservative in the strength of our conclusions since these results are strongly tied to
the particular dataset and cloze prompts that were used. Nevertheless, our results show
that the model can successfully leverage the knowledge that is relevant for detecting the
entailment relationship between nouns and the AN constructions where they can appear
when �ne-tuned on a dataset speci�cally curated for this task.

Overall, we found contextual models, and in particular English BERT, to obtain unprece-
dented performance on lexical semantics tasks. Contextualised representations o�er a great
advantage over static methods and faithfully re�ect di�erent aspects of word meaning, even if
they can be further enhanced with the integration of external knowledge.

Location of the knowledge In our experiments, we also investigated the location of di�er-
ent types of knowledge in terms of the model layers where these seem to be better encoded. A
general trend observed with English BERT is that higher layers perform better at lexical seman-
tics tasks. We observed this in our experiments on usage similarity estimation, clusterability
and polysemy level prediction, scalar adjective ranking, and noun property prototypicality
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detection. Previous work has shown that out-of-context (i.e. word type level) lexical knowledge
is most prominent in lower layers (Vulić et al., 2020). Most of our experiments, however,
involved in-context estimations, with the exception of settings where we aggregate information
across word instances, as for polysemy level prediction and scalar adjective ranking (Chapters
7 and 8).

Multilinguality Although the bulk of our work addresses English, we also include experi-
ments in other languages. Our word instance similarity prediction experiments (Chapter 6)
involved �ne-tuning models on Finnish data, while in our polysemy level prediction and scalar
adjective ranking experiments we also addressed French, Spanish and Greek (Chapters 7 and
8). The trends observed and the results obtained with multilingual BERT and monolingual
BERT models in these languages are somewhat di�erent to those obtained with English BERT.
One observation regarding multilingual BERT (common in Chapters 6 and 7) is that usage
similarity estimates derived from the representations of this model are very high, even for
di�erent words, and fall in a very narrow range of values compared to language-speci�c models
which give similarity values in a wider range. We concluded that mBERT has higher anisotropy,
which means that its representations occupy a narrow cone in space. Additionally, mBERT and
language-speci�c models tend to perform worse than English BERT on the lexical semantics
tasks addressed in our work, and the best-performing layers vary across models. Semantic
information does not seem to always be located in the upper half of the models as in English
BERT.

Improving the quality of contextualised representations Throughout the thesis, we
experimented with di�erent ways for improving the lexical semantic knowledge encoded in
the models and their representations. The two main strategies proposed have been the addition
of training data and the use of manual and automatic substitute annotations. In Chapter 3,
we used additional sentences to obtain representations of candidate substitutes. In Chapter
4, we proposed to use data manually annotated with substitutes to train models for usage
similarity prediction, and incorporated features based on substitute overlap. In Chapter 5,
we built representations based on automatic substitutes to predict word clusterability. These
approaches, however, did not always have the desired e�ect, and resulted in no, or very slight,
improvements in the corresponding tasks.

In Chapter 6, we combined the two strategies for in-context word similarity estimation.
We �ne-tuned BERT on a related task where the model has to learn to distinguish correct
in-context substitutes for a target word from other synonyms and unrelated words. We collected
data for this task using automatic substitute annotations. The proposed approach led to an
improvement in performance compared to the BERT model without �ne-tuning. This is
encouraging, as one advantage of this approach is that it is possible to test it in other languages
present in the Paraphrase Database (Ganitkevitch et al., 2013; Pavlick et al., 2015) (which we
used as a pool of candidate substitutes) with no need for manual annotations. It shows that
although the similarity estimates derived from BERT representations are of high quality, they
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can be further enhanced using external knowledge, such as automatic substitute annotations.

10.2 Perspectives

Thework presented in this thesis answers several questions about wordmeaning representation
in neural language models, but also opens up exciting avenues worth exploring in the future
that we discuss below.

Multilingual and language-speci�c BERT models Our study involving multilingual
BERT and BERT in languages other than English (Finnish, French, Spanish and Greek) showed
that these models do not perform as well on lexical semantics tasks as English BERT. For the
multilingual model, this can be partly due to its higher anisotropy. As for monolingual models,
however, there is no obvious reason for models in other languages to perform worse than
English BERT. possible explanation for the worse results obtained in the languages studied
in this thesis can be that they have a richer morphology and therefore need more training
data. The reason for the lower performance could also lie in the quality of the datasets used for
evaluation. For example, the EuroSense data (Delli Bovi et al., 2017) (used in Chapter 7) involve
automatic annotations, which contain di�erent amounts of noise in di�erent languages, and
the Finnish portion of CoSimLex (used in Chapter 6) has a limited size. A more thorough
investigation of the quality of these datasets would be needed in order to disentangle this factor
from factors related to the inner workings of the models or to speci�cities of each language.
Another intriguing fact is that the self-similarity patterns observed throughout the di�erent
Transformer layers vary across models. This suggests that contextualisation (Ethayarajh, 2019)
does not take place in the same way, and that information �ows di�erently through layers
in Transformer models for di�erent languages. It would be interesting to investigate to what
extent this is due to di�erences in model design, and why di�erent languages and language
combinations give rise to di�erent self-similarity patterns.

Wordpiece handling Words have been the focus of this thesis, but BERT-like models, ex-
tensively used in our experiments, rely on a di�erent kind of unit: wordpieces (Schuster and
Nakajima, 2012; Wu et al., 2016), or more generally sub-word units (Sennrich et al., 2016).
While many words in the vocabulary have a dedicated wordpiece, this is not the case for all
words, which are sometimes split into multiple wordpieces. In most of our experiments, we
have adopted a straightforward strategy to deal with these cases, which consists in averaging
the representations of all wordpieces that form a word. We have reasons to believe, however,
that the representations of words that are split into several wordpieces encode lower quality
semantic information than those of words composed of a single wordpiece. First, the smaller
pieces these words are made of are shared with other vocabulary items, and therefore encode
information that is not exclusive to them. Second, we observe that models whose tokenisers
tend to split words more often are not as good at discriminating words with di�erent polysemy
levels as well as the uncased English model (Chapter 7). This happened with cased BERT
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(which has a smaller vocabulary) and with multilingual BERT. mBERT has a four times larger
vocabulary than the uncased English BERT, but it needs to account for the vocabulary of about
100 more languages. In our scalar adjective ranking experiments, we tested the behaviour of
the models when the last wordpiece was omitted. This yields better results than averaging
all pieces in all the monolingual models tested, presumably because it removes pieces with
morphological information that was not relevant for the task. However, a more systematic
study is needed in order to understand the e�ect that word splitting has on the representations,
and to �nd the best strategy for representing these words for di�erent word-level tasks.

Other aspects of lexical meaning We have studied several aspects of lexical meaning, but
the �eld of lexical semantics is vast and many interesting areas still remain unexplored. With
respect to lexical ambiguity, for example, one aspect worth investigating is the representation of
regular polysemy. It would be interesting to explore whether common patterns can be detected
in the contextualised representations of words that present the same kind of alternations. This
could, for example, be the case for words like bottle and glass, which express a container-
content alternation (e.g. “The bottle broke” vs “I drank the whole bottle”).

As discussed at the end of Chapter 8, our methodology for detecting adjective intensity
could serve to explore other connotational aspects of lexical meaning. For example, it could
be used to investigate whether the representations encode information about the relative
formality and complexity of near-synonyms. Other directions to pursue are emotion detection
(Mohammad, 2018), the analysis of words that belong to the same scale with opposing polarity
(e.g. happy and sad) and, more generally, the representation of antonyms. Finally, the e�ect of
negation and of adverbial intensi�ers on scalar adjectives’ relative intensity (e.g. not happy
and very happy) is also worth exploring. Negation and negated adjectives constitute challenges
for distributional models (Aina et al., 2018), including BERT (Ettinger, 2020), while adverbial
intensi�ers (e.g. very, quite) tend to change the intensity of the word they modify (Cocos et al.,
2018; Bostan and Klinger, 2019).

Improving representation quality We have shown that, in spite of the quality usage simi-
larity predictions obtained with BERT representations, there is still room for improving their
representation of word meaning. As discussed in Chapter 6, this is a research area that has
drawn much attention in the last few years (Lauscher et al., 2019; Shi et al., 2019). In our
experiments, we have �ne-tuned BERT on data obtained with automatic substitute annotations
and have shown that they can be helpful. However, there are other promising techniques that
deserve further experimentation, such as the integration of token information at the embed-
ding layer (Qu et al., 2019) and the combination of contextualised representations with static
embeddings (Liu et al., 2020).

Model-agnostic methodology The methodology used in our analyses mainly relies on
calculations involving representations in the vector space. As a consequence, it is generally
model-agnostic, and can be applied to any kind of token-level vector representations. The
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development of deep language models is currently a highly active area of research, with many
new models being designed and released at a fast pace. We believe that our work can be useful
for the analysis and comparison of other existing and future models. The study of models in
languages other than English is, of course, restricted to the availability of evaluation datasets.
Our contribution in this respect is the creation of a dataset in French, Spanish and Greek which
will enable further research on scalar adjective representations in these languages.
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Appendix

A.1 Word Usage Similarity Estimation

A.1.1 Substitute Filtering: Development Results

We report results of the di�erent substitute �ltering mechanisms described in Section 4.3.2.2 on
the portion of LexSub data (McCarthy and Navigli, 2007) that does not contain Usim judgments
(Erk et al., 2009, 2013). We measure the quality of the �ltered substitutes against the gold
standard annotations using F1-score and Precision. This is a way of considering both Precision
and Recall, but giving more weight to Precision. We do this because we believe that, for
the usage similarity estimation task, retaining substitutes that are correct is more important
than retaining all the correct substitutes. Table A.1 shows results for annotations assigned by
context2vec using each pool of substitutes (auto-lscnc and auto-ppdb).

auto-lscnc auto-ppdb
Filter F1 Precision Avg F1 Precision Avg
Highest 10 0.332 0.224 0.278 0.245 0.162 0.204
Highest 5 0.375 0.305 0.340 0.290 0.234 0.262
PPDB 0.333 0.357 0.345 0.268 0.269 0.269
GloVe (T = 0.1) 0.371 0.325 0.348 0.266 0.222 0.244
GloVe (T = 0.2) 0.373 0.339 0.356 0.268 0.231 0.246
GloVe (T = 0.3) 0.353 0.341 0.347 0.266 0.250 0.258
No �lter 0.248 0.152 0.200 0.142 0.080 0.111

Table A.1: Results of di�erent substitute �ltering strategies applied to annotations assigned by con-
text2vec when using the LexSub/CoInCo pool of substitutes (auto-lscnc) and the PPDB pool (auto-
ppdb).
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A.1.2 Feature Ablation on Usim

Results of the feature ablation experiments performed on the Usim development sets (described
in Section 4.3.3) are given in Table A.2. For each word in Usim, we train models removing
one feature at a time and collect their results on the development set. We report the average
Spearman’s � over all words for every model.

Ablation Gold auto-lscnc auto-ppdb
None 0.729 0.538 0.524
Substitute cosine similarity 0.701 0.537 0.524
Common substitutes 0.722 0.538 0.524
GAP 0.730 0.537 0.523
c2v 0.730 0.539 0.523
Bert avg (4) (tw) 0.700 0.348 0.283

Table A.2: Results of feature ablation experiments for systems trained on the Usim dataset using gold
substitutes as well as automatic substitutes from di�erent pools, Lexsub/CoInCo (auto-lscnc) and
PPDB (auto-ppdb). We report the average Spearman � correlation on the development sets across all
target words. Rows indicate the feature that is removed each time. For BERT, twmeans we use the
representation of the target word.

A.1.3 Development Experiments onWiC 0.1

Table A.3 shows the accuracy of di�erent con�gurations on the WiC development set. For
ELMo, we used a context window (cw) of size 2 because it was shown to work better than the
sentence embedding (cf. Section 4.6).
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Training set Features Accuracy

WiC

BERT avg 4 (tw) 65.24
c2v 57.69
ELMo top |cw|=2 61.11
USE 63.68
SIF 60.97
Substitute-based 55.41
Embedding based 67.95
Combined 66.81

WiC + CoInCo

BERT avg 4 (tw) 64.96
c2v 58.12
ELMo top |cw|=2 61.11
USE 63.53
SIF 59.97
Substitute-based 56.13
Embedding-based 68.66
Combined 66.81

Table A.3: Accuracy of di�erent features and feature combinations on theWiC development set. On this
dataset, the two best types of embeddings, that were chosen for the Embedding-based and Combined
con�gurations, were BERT and USE. The Substitute-based and Combined models both use features
of automatically substitutes from the PPDB pool, and back o� to the Embedding-based model when
there were no paraphrases available for the target word in PPDB. For BERT, tw means we use the
representation of the target word.

183



Chapter A. Appendix

A.2 Word Sense Clusterability Estimation

A.2.1 Clusterability Results by Lemma

Table A.4 shows Usim words ranked by their clusterability according to Umid and Uiaa. We
also include the ranking by sil using BERT-Agg representations at the 10th layer (Section 5.4.)

by Umid by Uiaa by sil (BERT-Agg)
fresh.a 0.76 new.a 0.01 new.a 0.12
raw.a 0.73 su�er.v 0.04 hold.v 0.13
softly.r 0.73 function.n 0.11 su�er.v 0.14
strong.a 0.73 fresh.a 0.17 lead.n 0.15
special.a 0.70 investigator.n 0.18 hard.r 0.15
throw.v 0.70 �eld.n 0.25 function.n 0.15
hard.r 0.64 work.v 0.27 strong.a 0.15
work.v 0.64 raw.a 0.29 draw.v 0.16
solid.a 0.63 neat.a 0.31 solid.a 0.16
function.n 0.62 strong.a 0.31 �eld.n 0.17
put.v 0.62 throw.v 0.32 ring.n 0.17
dismiss.v 0.61 put.v 0.34 neat.a 0.18
heavy.a 0.60 hard.r 0.34 work.v 0.18
neat.a 0.58 bar.n 0.35 fresh.a 0.18
bright.a 0.55 check.v 0.35 bar.n 0.18
rude.a 0.53 scrap.n 0.36 raw.a 0.19
draw.v 0.53 special.a 0.37 sti�.a 0.19
check.v 0.52 sti�.a 0.40 soft.a 0.10
scrap.n 0.51 poor.a 0.43 clear.v 0.20
shed.v 0.49 hold.v 0.47 rough.a 0.21
lead.n 0.49 lead.n 0.47 rude.a 0.21
right.r 0.48 softly.r 0.48 throw.v 0.21
hold.v 0.48 light.a 0.49 dismiss.v 0.21
�eld.n 0.47 solid.a 0.49 scrap.v 0.21
sti�.a 0.46 draw.v 0.50 dry.a 0.21
execution.n 0.46 �gure.n 0.50 special.a 0.22
clear.v 0.45 soft.a 0.51 order.v 0.23
tap.v 0.45 dismiss.v 0.52 softly.r 0.23

by Umid by Uiaa by sil (BERT-Agg)
paper.n 0.44 ring.n 0.53 call.v 0.23
soft.a 0.44 shed.v 0.53 light.a 0.23
�at.a 0.44 shade.n 0.55 post.n 0.25
rich.a 0.41 heavy.a 0.57 heavy.a 0.25
�gure.n 0.39 �x.v 0.59 rich.a 0.2
account.n 0.39 match.n 0.59 check.v 0.26
skip.v 0.38 dry.a 0.59 right.r 0.26
charge.n 0.38 rude.a 0.61 tap.v 0.26
dry.a 0.38 paper.n 0.63 poor.a 0.26
light.a 0.36 clear.v 0.63 shed.v 0.27
rough.a 0.35 rough.a 0.63 severely.r 0.27
investigator.n 0.35 order.v 0.64 skip.v 0.27
range.n 0.34 call.v 0.65 put.v 0.27
poor.a 0.34 right.r 0.65 �gure.n 0.27
�x.v 0.34 account.n 0.66 investigator.n 0.28
order.v 0.33 bright.a 0.67 paper.n 0.28
match.n 0.33 charge.v 0.68 bright.a 0.28
ring.n 0.33 post.n 0.69 execution.n 0.28
severely 0.33 tap.v 0.70 �at.a 0.29
su�er.v 0.32 skip.v 0.70 match.n 0.30
shade.n 0.30 rich.a 0.73 shade.n 0.31
bar.n 0.30 range.n 0.74 charge.v 0.32
coach.n 0.27 coach.n 0.74 coach.n 0.33
charge.v 0.24 execution.n 0.78 range.n 0.33
new.a 0.23 severely.r 0.78 �x.v 0.35
post.n 0.22 charge.n 0.81 account.n 0.37
call.v 0.18 �at.a 0.85 charge.n 0.41
�re.v 0.17 �re.v 0.93 �re.v 0.44

Table A.4: Ranking of lemmas from less to more clusterable by the gold-standards and by the cluster-
ability estimations obtained with the best model (BERT-Agg, 10th layer, silmetric).
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A.3 Polysemy Level Prediction

A.3.1 Complete poly-same and poly-bal Results

In Figures A.1 and A.2 we report the average SelfSim obtained with BERT models for the
di�erent poly bands in the poly-same and poly-bal sentence pools, respectively (Section
7.3.1). Figure A.3 contains the same information for the ELMo model.

Figure A.1: Average SelfSim obtained with monolingual BERTmodels (left column) andmBERT (right
column) in all languages for mono and poly lemmas in di�erent polysemy bands in the poly-same
sentence pool.
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Figure A.2: Average SelfSim obtained with monolingual BERT models (left column) and mBERT
(right column) in all languages for mono and poly lemmas in di�erent polysemy bands in the poly-bal
sentence pool.
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Figure A.3: Average SelfSim obtained with ELMo representations for mono and poly lemmas in
di�erent polysemy bands in the poly-same and poly-bal sentence pools.
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A.3.2 Controlling for Frequency and PoS: mBERT Results

Figure A.4 contains the average SelfSim obtained in the freq-bal and pos-bal bands with
mBERT (Section 7.4.3).

Figure A.4: Average SelfSim inside the poly bands balanced for frequency (freq-bal) and part of
speech (pos-bal). SelfSim is calculated using representations generated bymBERT from sentences
in each language-speci�c pool. We do not balance the Greek dataset for PoS because it only contains
nouns.
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A.4 Scalar Adjective Ranking

A.4.1 Hearst Patterns

Figure A.5 illustrates the dependency structure of the following Hearst patterns, used to �lter
out sentences containing scalar adjectives (Section 8.2.2). We remove these sentences from our
ukWaC and Flickr datasets.1.

• [NP] and other [NP]

• [NP] or other [NP]

• [NP] such as [NP]

• Such [NP] as [NP]

• [NP], including [NP]

• [NP], especially [NP]

• [NP] like [NP]

Figure A.5: Dependency structure of Hearst patterns.

1Graphs in Figure A.5 were created with the visualisation tool available at https://urd2.let.rug.nl/
~kleiweg/conllu/
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A.4.2 Evaluation of Sentence Selection Methods

To identify the most appropriate method for selecting sentences where all adjectives in a scale
�t, we use data from the Concepts in Context (CoInCo) corpus (Kremer et al., 2014). We collect
instances of adjectives, nouns and verbs in their base form.2 For a word w, we form instance
pairs (wi-wj with i ≠ j) with similar meaning as re�ected in their shared substitutes. We allow
for up to two unique substitutes per instance, which we assign to the other instance in the pair
with zero frequency. We keep instances with n substitutes, where 2 ≤ n ≤ 8 (the lowest and
highest number of adjectives in a scale). This results in 5,954 pairs.

We measure the variation in an instance pair in terms of substitutes and their frequency
scores using the coe�cient of variation (var). var is the ratio of the standard deviation to
the mean and is, therefore, independent from the unit used. A higher var indicates that
not all substitutes are good choices in a context. We keep the 500 pairs with the highest var
di�erence, where one sentence is a better �t for all substitutes than the other. For example,
private, individual and person were proposed as substitutes for personal in “personal insurance
lines”, but private was the preferred choice for “personal reasons”. The tested methods must
identify which sentence in a pair is a better �t for all substitutes.

For sentence selection, we experiment with the three �uency calculationmethods presented
in Section 8.2.2: BERTprob (the BERT probability of each substitute to be used in the place
of the [MASK] token); BERTppx (the perplexity assigned by BERT to the sentence generated
through substitution); and context2vec (the cosine similarity between the context2vec
representations of a substitute and the context).

Method Variation Metric Accuracy

BERTprob
std 0.524
var 0.488

BERTppx
std 0.518
var 0.536

context2vec
std 0.594
var 0.588

1st sentence Baseline 0.506

Table A.5: Accuracy of the three �uency calculation methods on
the 500 sentence pairs collected from CoInCo. Comparison to a
�rst sentence baseline.

We also test var and stan-
dard deviation (std) as metrics
for measuring variation in the
�uency scores assigned to a sen-
tence pair by the three methods.
We evaluate the sentence selec-
tion methods and variation met-
rics on the 500 pairs retained
fromCoInCo. We report their ac-
curacy, calculated as the propor-
tion of pairs where a method cor-
rectly guesses the instance with
the lowest variation in a pair. We
compare results to those of a baseline that always proposes the �rst instance in a pair. The
results in Table A.5 show that the task is di�cult for all methods. Their accuracy is slightly
higher than the baseline accuracy, which outperforms BERTprob with var. We use the best
combination (context2vec with std) to select sentences for our experiments.

2This �ltering serves to control for morphological variation which could result in unnatural substitutions since
CoInCo substitutes are in lemma form.
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A.4.3 Adjustment for Ties

Table A.6 contains results of thediffvecmethod described in Section 8.2.4 with the adjustment
for ties. For two adjacent adjectives (ai, aj) in the ranking proposed by diffvec, we check if
their cosine similarities to ⃖⃖⃖⃗dVec are very close (diffsim = sim( ⃖⃖⃖⃗dVec, ⃖⃗ai) - sim( ⃖⃖⃖⃗dVec, ⃖⃗aj). If
|diffsim| (the absolute value of diffsim) < 0.01, we count them as a tie, meaning that ai and
aj are considered to be situated at the same intensity level. Note that this procedure may give
di�erent results when the pairwise comparison starts at di�erent ends of the proposed ranking.
We establish ties starting from the a with lowest intensity in the ranking proposed by diffvec.

deMelo (dm) Crowd (cd) Wilkinson (wk)
Method p-acc � �avg p-acc � �avg p-acc � �avg

B
E
R
T

uk
W
aC

diffvec-dm - - - 0.7338 0.6738 0.74912 0.8856 0.83011 0.8266
diffvec-cd 0.6448 0.4528 0.5188 - - - 0.82010 0.72111 0.78011
diffvec-wk 0.5466 0.2956 0.3246 0.7217 0.62710 0.69810 - - -

Fl
ic
kr

diffvec-dm - - - 0.74612 0.68512 0.7188 0.9029 0.8519 0.8714
diffvec-cd 0.60511 0.38811 0.46511 - - - 0.8368 0.7467 0.7627
diffvec-wk 0.5412 0.2961 0.2991 0.7028 0.6478 0.7108 - - -

R
an

do
m diffvec-dm - - - 0.7249 0.6529 0.7198 0.88511 0.8186 0.83310

diffvec-cd 0.6198 0.4128 0.4888 - - - 0.81912 0.76510 0.83310
diffvec-wk 0.5222 0.2516 0.2856 0.71210 0.6149 0.6809 - - -

w
or
d2

ve
c diffvec-dm - - - 0.648 0.508 0.550 0.754 0.583 0.655

diffvec-cd 0.604 0.403 0.446 - - - 0.803 0.656 0.661
diffvec-wk 0.568 0.329 0.402 0.606 0.414 0.445 - - -

Table A.6: Results of our diffvec adjective ranking method on the deMelo, Crowd andWilkinson
datasets with the adjustment for ties. We report results with contextualised (BERT) representations
obtained from di�erent sent-sets (ukWaC, Flickr, Random) and with static (word2vec) vectors.
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A.4.4 diffvecwith a Single Sentence

Table A.7 contains results for diffvec-1 (+)/(−) and diffvec-5 when using a single sentence
for building ⃖⃖⃖⃗dVec.

deMelo Crowd
# Scales p-acc � �avg p-acc � �avg

B
E
R
T

uk
W
aC

1 (+) 0.65110 0.43310 0.50110 0.68210 0.55310 0.6227
1 (−) 0.5971 0.3151 0.3521 0.63912 0.45812 0.54312
5 0.6557 0.4437 0.5307 0.69111 0.57511 0.67511

Fl
ic
kr

1 (+) 0.6399 0.4109 0.4329 0.6768 0.5508 0.6048
1 (−) 0.6023 0.3293 0.3723 0.6294 0.4434 0.4794
5 0.62411 0.38011 0.45211 0.68311 0.56211 0.60612

R
an

do
m 1 (+) 0.63111 0.40111 0.45111 0.6768 0.5368 0.5898

1 (−) 0.6119 0.3569 0.4449 0.64811 0.47911 0.50011
5 0.6224 0.3714 0.4173 0.6857 0.5597 0.5887

w
or
d2

ve
c 1 (+) 0.602 0.334 0.364 0.624 0.419 0.479

1 (−) 0.613 0.359 0.412 0.661 0.506 0.559
5 0.641 0.415 0.438 0.688 0.559 0.601

Table A.7: Results of diffvec using a single positive (1 (+)) or negative (1 (−)) adjective pair, and �ve
pairs (5). These are results obtained with a ⃖⃖⃖⃗dVec built from only one sentence (instead of ten as in Table
8.5).
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A.4.5 Comparison of Wordpiece Selection Methods

Table 8.9 in Chapter 8 contains results of the diffvec method with the best approach for
selecting wordpieces (WPs) for each model. In Table A.8, we present results obtained using
the alternative approach for each model and language:

• for all monolingual models and the multilingual model for English, Table A.8 contains
results obtained with the WP approach;

• for the multilingual models in the other languages, we show results with WP-1.

The best approach was determined by comparing their average scores across the di�erent
methods. Some con�gurations improve, but they yield overall worse results per model, espe-
cially in Spanish. Di�erences between WP and WP-1 are generally more pronounced in the
multilingual models than in the monolingual models.

en fr es el
MonoWP MonoWP MonoWP MonoWP

p-acc � �avg p-acc � �avg p-acc � �avg p-acc � �avg

D
M dv-1 (+) .6649 .4639 .5319 .6173 .3843 .4063 .6529 .3679 .3909 .5468 .2018 .2158

dv-wk .5579 .2469 .2846 .5171 .1701 .1401 .64510 .35310 .31310 .5572 .2262 .2402

W
K dv-1 (+) .8527 .7057 .7661 .6127 .2621 .2156 .7638 .5258 .7556 .6328 .3128 .2568

dv-dm .9186 .8366 .8396 .6272 .2922 .3922 .7466 .4926 .6586 .77911 .61711 .66311
Multi WP Multi WP-1 Multi WP-1 Multi (unc) WP-1

D
M dv-1 (+) .5884 .3014 .3124 .5497 .2397 .2767 .5893 .2293 .2341 .5249 .1539 .1719

dv-wk .5165 .15311 .1985 .4902 .1132 .1347 .60312 .26812 .28712 .5216 .1466 .1866

W
K dv-1 (+) .8207 .6397 .6673 .6123 .2623 .3623 .7464 .4924 .6084 .6479 .3589 .3699

dv-dm .8857 .7707 .8347 .6877 .4127 .4353 .66110 .32210 .4476 .6626 .3886 .4446

Table A.8: Results of diffvec (dv) methods with contextualised representations derived from monolin-
gual and multilingual models for each language, using an alternative approach to selecting wordpieces
(WP, WP-1) than the one used for the results reported in Table 8.9 in Chapter 8. For all languages but
Greek, the multilingual model is cased.
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A.5 Nouns’ Semantic Properties and their Prototypicality

A.5.1 Properties Masking Results

Figure A.6 shows the average recall at positions @1, @5 and @10 of the ranked BERT-base
and large predictions, when using sentences constructed with the templates that correspond
to the labels on the x axis. Average is calculated over the words for which at least one correct
attribute is found at the speci�c rank, as shown in Figure 9.1.

Figure A.6: Average recall at positions @1, @5 and @10 of the ranked BERT-base (B) and large (L)
predictions for the cloze task addressing MRD attributes.

A.5.2 Detailed Embedding-based Classi�cation results

Table A.9 lists the best con�gurations per ⃖ ⃗⃖AN type and per type of composition obtained with
BERT embedding-based classi�cationmodels on theHVD development set described in Section
9.4.

Figure A.7 shows the highest average accuracy obtained by each BERT layer on the HVD
development set in these experiments.
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⃖ ⃗⃖AN type Composition Layer Similarity
NsN , NsAN addition 12 cosine & euclidean (NsN , NsN +NsAN)
AsN - 8 -
NsN , AsAN di�erence 12 -
NsAN , AsAN di�erence 12 -
NsAN - 11 cosine (NsN , NsAN)
Composition type ⃖ ⃗⃖AN type Layer Similarity
addition NsN , NsAN 12 cosine & euclidean (NsN , NsN +NsAN)
di�erence NsN , AsAN 12 -
concatenation NsAN , AsAN 7 -
average NsN , AsAN 5 -
multiplication NsN , AsAN 7 euclidean (NsN , NsN ⊙NsAN)

Table A.9: Complete best con�gurations for every type of ⃖ ⃗⃖AN (top) and composition operations (bottom)
with BERT embedding-based classi�ers on the HVD development set.

Figure A.7: Highest average accuracy obtained by the embedding-based classi�er on the HVD develop-
ment set at every BERT layer.
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Titre: Représentation du Sens des Mots dans les Modèles de Langue Neuronaux : Polysémie Lexicale
et Relations Sémantiques

Mots clés: sémantique lexicale, traitement automatique des langues, modèles de langue, plongements
lexicaux, représentations contextualisées, polysémie

Résumé: Les plongements contextualisés représen-
tent l’usage desmots dans leur contexte. Nous étudions
les connaissances liées au sens des mots encodées dans
ces représentations et proposons des méthodes pour
améliorer leur qualité. Nous nous appuyons sur des
expériences qui traitent de la similarité des usages des
mots et des annotations contenant des substituts lexi-
caux attribuées par les modèles à des usages des mots
en contexte. Nous évaluons les représentations sur
les tâches de prédiction de la similarité des usages des
mots, de la possibilité de regroupement de leur sens,
et de leur niveau de polysémie. Nous explorons aussi

des relations sémantiques : la relation d’intensité entre
adjectifs scalaires et les propriétés de concepts nom-
inaux, exprimées par leur modi�cateurs adjectivaux.
Nous ménons des expériences avec des modèles mul-
tilingues et monolingues dans di�érentes langues et
des plongements statiques. Nous montrons que les
représentations contextualisées encodent des connais-
sances riches sur le sens des mots et leur relations sé-
mantiques acquises lors de l’entraînement, qui sont
enrichies par des informations provenant de nouveaux
contextes.

Title: Word Meaning Representation in Neural Language Models: Lexical Polysemy and Semantic
Relationships

Keywords: lexical semantics, natural language processing, language models, word embeddings, contextu-
alised representations, polysemy

Abstract: Contextual language models generate
representations for word instances. We investigate the
knowledge about word meaning encoded in these rep-
resentations and propose methods to automatically en-
hance their quality with external semantic knowledge.
We access the polysemy information in contextualised
representations through usage similarity experiments
and automatic substitute annotations assigned by the
models to words in context. We evaluate their quality
on the tasks of usage similarity, word sense cluster-

ability and polysemy level prediction. Furthermore,
we explore semantic relationships. We speci�cally ad-
dress scalar adjective intensity and noun properties
as expressed in their adjectival modi�ers. Our exper-
iments involve multilingual and multilingual contex-
tual language models in di�erent languages, and static
embeddings. We show that contextualised representa-
tions encode rich knowledge about word meaning and
semantic relationships acquired during training and
enriched with information from new contexts of use.
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