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(5.8) avec e remplacé par e∗ = e/3, l’amplitude Vac est un paramètre de
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pour nos discussions sur pleins de sujets passionnants (dont la physique), merci Paul et
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Résumé en français

0.1 Contexte général

Ce travail s’inscrit dans le domaine de la physique mésoscopique, où les échelles de

longueurs et les températures considérées sont telles que le transport électronique est

décrit par le formalisme de la mécanique quantique. La taille du système étudié (plusieurs

micromètres) est bien plus grande que l’échelle atomique, mais plus petite que la longueur

de cohérence de phase des électrons. Cela signifie que les électrons peuvent être décrits

en terme de fonctions d’onde, et que leur caractère ondulatoire doit être pris en compte.

Celui-ci est responsable de la quantification de la résistance observée dans un bon nom-

bre de systèmes mésoscopiques bidimensionnels [7][8]. Ces expériences ont été réalisables

grâce aux progrès de la nanofabrication (permettant de fabriquer des échantillons de di-

mensions assez faibles) et de la cryogénie (les basses températures permettant d’obtenir

des longueurs de cohérence assez grandes). En particulier, en 1988, la quantification

de la conductance en paliers de 2e2/h fut mise en évidence dans un conducteur quasi-

unidimensionnel, où l’on peut faire varier le nombre de modes électroniques transmis :

un contact ponctuel quantique (QPC). Un QPC est une grille déposée au dessus d’un

gaz bidimensionnel d’électrons, formé le plus souvent à partir partir d’hétérostructures

d’Arsenure de Gallium. En appliquant une tension sur le QPC, on peut contrôler lo-

calement la densité électronique (ou la taille de la constriction engendrée).

La résistance d’un système mésoscopique révèle le caractère ondulatoire des électrons,

mais non leur caractère corpusculaire. Pour cela, il faut étudier non seulement la valeur

moyenne du courant, mais également ses fluctuations autour de cette valeur moyenne

(le ”bruit”). C’est la raison pour laquelle l’intérêt s’est porté vers l’étude théorique et

expérimentale du bruit dans les années 1990. Une particule incidente sur un conducteur

mésoscopique balistique, modélisé par une barrière de potentiel, a une probabilité D

dêtre transmise, et R = 1 − D dêtre réfléchie. Le bruit de partition provient du car-

actère probabiliste de la mesure de la particule, qui avant la mesure se trouve dans une

superposition d’états ”transmis” et ”réfléchi”. La théorie de la diffusion (”scattering”

2
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en anglais) [9] permet de calculer les fluctuations de courant dans de nombreuses situ-

ations, lorsque les quasi-particules responsables du transport n’intéragissent pas entre

elles. Il a ainsi été démontré que, dans un conducteur balistique, le bruit en courant

(plus exactement la densité spectrale de puissance du courant I) vaut:

SI = 2eI(1−D)

Cette formule a été vérifiée expérimentalement entre autres dans un QPC [10][11]. Cette

formule a également été étendue à des régimes d’électrons fortement corrélés [12][13][14],

où la charge e dans la formule précédente peut être remplacée par la charge des quasi-

particules qui véhiculent le courant. En particulier, des mesures de shot noise dans

l’effet Hall fractionnaire [15][16][17], ont montré que le courant peut être véhiculé par

des quasi-particules de charge e∗ = e/3 ou e∗ = e/5.

Le régime d’effet Hall factionnaire, dont l’étude est l’une de nos principales motivations,

est caractérisé par une conductance qui prend non pas des valeurs entières de e2/h, mais

factionnaires. Des plateaux de conductance situés à νe2/h où ν = p/q (p et q étant

entiers) ont été observés en fonction du champ magnétique pour la première fois en

1982 [3]. Ce régime est atteint lorsqu’un fort champ magnétique est appliqué sur un gaz

bidimensionnel (2DEG). Les efforts faits en vue d’améliorer la qualité des 2DEG, no-

tamment leur mobilité (qui est de 3∗106V −1cm2s−1 pour notre échantillon), ont permis

d’étudier un tel régime.

Récemment, une étude du transport en présence d’une tension sinusodale (appelé trans-

port ”photo-assisté”) [18] a confirmé les précédentes observations de charges fraction-

naires, grâce à l’exploitation des singularités du bruit ”photo-assisté” à e∗V = hf (f

étant la fréquence de la tension sinusoidale, de l’ordre de 10GHz).

Dans le régime d’effet Hall factionnaire, il a été prédit [19] que les quasi-particules ont

non seulement une charge fractionnaire, mais également une statistique fractionnaire (ou

”anyonique”), c’est à dire intermédiaire entre la statistique fermionique et bosonique.

Ainsi, l’échange entre deux quasi-particules (appelées ”anyons”) donne lieu à une phase

statistique θ comprise entre 0 (cas des bosons) et π (cas des fermions):

Ψ(z1, z2) = eiθΨ(z2, z1)

Suite à de nombreuses tentatives [20],[21],[22],[23], la statistique anyonique a été révélée

par des expériences basées sur un interféromètre de FabryPérot [24], ainsi que par des

mesures de bruit de partition engendré par la ”collision” de deux anyons sur un QPC

[25]. C’est cette dernière approche, basée sur des mesures de bruit, que nous avons

privilégié en vue d’explorer la statistique factionnaire. L’objectif à long terme est de
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réaliser des expériences de type ”Hong-Ou-Mandel” (HOM) [26] pour révéler la statis-

tique anyonique. L’idée générale est la suivante: des anyons provenant de deux branches

différentes incident sur un QPC (qui joue le rôle d’un lame semi-réfléchissante pour les

électrons), avec un retard temporel variable τ . En optique quantique, le retard τ entre

l’arrivée des deux photons sur le miroir est contrôlé par la longueur de la trajectoire op-

tique. En optique quantique électronique, τ correspond au retard temporel entre deux

pulses de tension appliqués sur deux réservoirs électroniques. Ces anyons peuvent par la

suite soit emprunter des sorties différentes (c’est à dire être tous deux ”transmis” ou tous

deux ”réfléchis” par le QPC), soit emprunter la même voie de sortie (l’un ”transmis”,

l’autre ”réfléchi”). En fonction de leur recouvrement temporel et de leur phase statis-

tique, ils privilégieraient soit le ”bunching” (même sortie) soit le ”antibunching” (sorties

différentes). De la même façon que le taux de coincidence entre deux détecteurs à pho-

tons uniques révèle leur caractère bosonique [26], la mesure de corrélations de courant

croisées serait révélatrice de la statistique anyonique des quasi-particules incidentes sur

le QPC.

Pour envoyer des anyons des deux côtés d’un QPC, il faut d’abord les créer grâce à

deux autres QPC qui se trouvent également dans le régime de l’effet Hall fraction-

naire. L’échantillon doit donc comporter trois QPC en tout (une géométrie similaire à

celle de l’expérience [25]). De plus, le contrôle du retard entre les deux anyons - qui

serait l’ingrédient supplémentaire par rapport á l’expérience [25] - suppose une bonne

compréhension du transport en présence d’une tension dépendante du temps (AC). Cela

représente un problème complexe, qui doit être appréhendé en commençant par effectuer

des expériences de type ”HOM” dans une géométrie à un unique QPC. Dans ce cas, des

corrélations fermioniques sont attendues. Cela a été l’objectif principal de ma thèse.

Une autre partie de ma thèse, qui n’est pas présentée dans ce manuscrit, a été l’étude

théorique et la fabrication d’un détecteur à électrons unique basé sur des méthodes

bolométriques: l’électron est détecté en dissipant sont énergie dans le détecteur, engen-

drant une augmentation légère de température. Cette augmentation peut être détectée

par des mesures de la conductance longitudinale, dont la variation avec la température

est exponentielle. L’estimation de l’augmentation de température engendrée par un pulse

électronique m’a poussé à l’étude théorique du transport d’énergie et de la dissipation

dans un conducteur mésoscopique et en présence d’une tension alternative. L’échantillon

réalisé pour ce projet n’a cependant pas pu être mesuré. Le lecteur intéressé peut se

référer à mon rapport de stage.
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0.2 Réalisation du ”HOM” électronique

Dans le régime d’effet Hall, le courant est véhiculé par des canaux de bords formés à la

périphérie de l’échantillon, tandis que le reste du gaz bidimensionel (”bulk”) est isolant.

Ces canaux sont l’équivalent des guides d’ondes en optique, et permettent de contrôler

la trajectoire des électrons. Une illustration du dispositif expérimental est représentée

figure 1. Une tension sinusodale V1(t) (resp. V2(t)) est injectée au niveau du contact

ohmique (0) (resp. (3)). Les excitations électroniques engendrées par les tensions V1(t)

Figure 1: Schémas de l’échantillon utilisé.

et V2(t) se propagent de façon chirale vers le QPC. La géométrie à six contacts permet

de mesurer séparément le courant transmis iT et réfléchi iR par le QPC. Les fluctuations

de ces courants, ainsi leur fluctuations croisées, sont transformées en fluctuations de

tension VA,VB aux bornes d’un circuit résonnant vers 2.2 MHz. Puis ces fluctuations

sont amplifiées et mesurées par une carte d’acquisition qui effectue la transformée de

Fourier du signal. Par ailleurs, une technique de détection synchrone permet d’effectuer

des mesures de conductance (dérivées de iT et de iR).

Il est possible d’estimer la charge injectée Q pendant une période T = 1/f de V1(t) dans

chaque canal de bord supérieur par un simple calcul:

Q =

∫ T

0
I(t)dt =

e2

h
TVdc

où Vdc est la composante continue (DC) du signal. Ainsi, lorsque eVdc = hf , Q = e et on

peut considérer qu’une charge e est injectée à chaque période. Pour que nos expériences

soient comparables à celles de l’optique quantique, il ne suffit pas d’injecter une charge

entière e à chaque période: il faut injecter un électron, ou plus précisément une excitation

électronique ”pure”. Or généralement une tension dépendante du temps engendre des

excitations électrons (au dessus de l’énergie de Fermi) et trous (en dessous de l’énergie de
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Fermi). Ces excitations électrons-trous ne sont pas visibles dans le courant, mais unique-

ment dans le bruit de partition (qui est proportionnel à leur nombre). Il a été démontré

qu’une tension de forme lorentzienne pouvait engendrer des excitations électroniques

”pures” appelées ”lévitons” [27]. Ces résultats on été vérifiés expérimentalement par

des mesures de minimisation du bruit dans un QPC [28][29]. Dans ces travaux, des

mesures de type ”HOM” ont également été effectuées afin d’explorer la forme de la fonc-

tion d’onde des lévitons. En effet, les expériences de type ”HOM” peuvent permettre

de caractériser la fonction d’onde des quasi-particules, similairement à la ”tomographie

quantique” [30].

A la différence de ces dernières, nos expériences de ”HOM” sont conduites dans le

régime d’effet Hall (entier et fractionnaire). Elles consistent à envoyer non pas des

lévitons mais une simple tension sinusöıdale des deux côtés de l’échantillon. Par sim-

plicité, on choisis une composante DC nulle. Dans ce cas, avec une approche d’électrons

indépendant, le même nombre d’excitations électrons et trous sont crées, puis parti-

tionnées indépendemment par le QPC. Ainsi, le bruit de partition est fini. Celui-ci

dépend du déphasage (ou retard τ) entre les deux sinus V1(t) et V2(t), qui peut être

contrôlé soit automatiquement en utilisant deux sources radio-fréquences (RF) synchro-

nisées, soit mécaniquement en modifiant la longueur d’une des voies RF grâce à un

déphaseur mécanique. Les mesures de type ”HOM” consistent à mesurer le bruit de

partition (accessible en cross et auto corrélation) en fonction du retard τ . Afin d’assurer

une visibilité maximale, il est nécessaire d’égaliser l’amplitude de V1(t) et V2(t), de telle

sorte que V1(t) = V2(t + τ). Les mesures sont effectuées dans réfrigérateur à dilution

permettant d’atteindre une température de 17 mK. Cependant, à cause de la puissance

rayonnée par l’environnement sur l’échantillon, la température électronique de celui-ci

est de l’ordre de 30 mK.

0.3 Résultats expérimentaux

Des mesures de type ”HOM” ont été réalisées d’abord dans l’effet Hall entier (ν = 2) puis

dans l’effet Hall factionnaire (ν = 2/5 et ν = 2/3). La fréquence des ondes sinusodales

est fixée à f = 14.15GHz. Le déphasage Φ est relié au retard τ : Φ = 2πfτ .

0.3.1 Résultats à ν = 2

Les mesures à ν = 2 on été effectuées pour trois tensions de grilles Vgate différentes

(représentées par les lignes verticales figure 2), correspondant à trois valeurs différentes

de la réflexion du canal interne. Pour chacune des ces valeurs de Vgate, des mesures
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Figure 2: Transmission (en vert) et réflexion (en bleu) en fonction de la tension de
grille Vgate à ν = 2. On observe bien une quantification d la conductance en unités de

e2/h.

de bruit de partition en fonction de la tension Vdc ont été effectuées en absence et

en présence d’une tension AC (appliquée sur le contact (0)). Ces mesures ont permis

dans un premier temps de conforter l’image du transport ”photo-assisté” [31][32], selon

laquelle le bruit en présence d’une tension dépendant du temps V (t) = Vdc + Vac(t)

(appelé Sphoto(Vdc)) est relié au bruit en présence de la composante continue seulement

Vdc (appelé S(Vdc)):

Sphoto(Vdc) =
∑
l

Pl(α)S(Vdc − lhf/e) (1)

où α = 2eVac/hf et Pl(α) est le carré de la fonction de Bessel d’ordre l. Cette relation

a été dérivée dans le cas de matrice de diffusion indépendantes de l’énergie. Elle peut

être généralisée à la configuration ”HOM”, où une tension V1(t) = Vacsin(2πft) (resp

V2(t) = V1(t + τ)) est appliquée sur le réservoirs (0) (resp. (3)). Dans ce cas, le

bruit est théoriquement identique à celui qui serait obtenu si on appliquait une tension

V1(t)−V1(t+ τ) sur le réservoir (0). On s’attendrait alors à ce que le bruit ”HOM” soit

donné par:

SHOM (τ) =
∑
l

Pl(αeff )S(lhf/e) (2)

où αeff = 2eVacsin(πfτ)/hf . Ce qui donne Sphoto(τ = 0) = 0, et Sphoto(τ) maximal

pour τ = T/2. Bien que le facteur de réflexion soit dépendant de l’énergie (en par-

ticulier pour Vgate = −0.27V et Vgate = −0.3V ), les variations du bruit ”HOM” ont

pu correctement être reproduites en utilisant l’équation (2) et le bruit S(Vdc) mesuré.

Les mesures du bruit ”HOM” sont présentées ci-dessous pour Vgate = −0.2V et deux

différentes puissances du signal RF P1, P2 telles que P2 = 2P1 (soit un rapport
√

2 entre

les amplitudes Vac).

L’amplitude AC extraite des mesures à P1 est Vac = 50µV et celle extraite à P2 = 2P1

est Vac = 72µV . L’incertitude sur ces valeurs est de 3µV environ, et est surtout due
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Figure 3: SHOM (τ) pour Vgate = −0.2V , Vdc = 0V , f = 14.15GHz, pour une
puissance P1 (figure de gauche) et P2 = 2P1 (figure de droite). Le fit correspond à

l’expression (5.8), l’amplitude Vac est un paramètre de fit.

aux déviations expérimentales de la phase Φ au cours du temps. Le rapport entre ces

deux valeurs de Vac est très proche du facteur
√

2 attendu, ce qui montre un bon accord

avec la théorie. Cet accord a également été observé à Vgate = −0.27V (pour un facteur

de réflexion plus important). Cependant, un aspect reste à résoudre: contrairement à

ce qui est attendu, SHOM (τ) ne s’annule pas à τ = 0, et la visibilité demeure autour de

50%. A ce stade, nous ne pouvons pas encore trancher entre des raisons liées au montage

expérimental, où à la physique de l’échantillon même.

0.3.2 Résultats à ν = 2/5

A ν = 2/5 (correspondant à un champ magnétique de 11.3T ), deux plateaux de con-

ductance sont visibles lorsque l’on varie la tension de grille Vgate (et donc la densité

électronique locale): un premier à (2/5)e2/h, et un deuxième à (1/3)e2/h. Ces plateaux

correspondent à un facteur de remplissage local νQPC = 2/5 et νQPC = 1/3 sous le

QPC. Nous avons étudié le bruit provenant du faible tunnel de quasi-particules dans ces

deux régimes. Des mesures de bruit DC ont d’abord été menées, permettant d’obtenir

la caractéristique S(Vdc) utilisée pour interpréter ensuite les mesures de SHOM (τ). En

effet, l’équation (2) peut être généralisée à des systèmes fortement corrélés [33] comme

l’effet Hall factionnaire. Dans le régime perturbatif par rapport à l’amplitude tunnel

(c’est à dire pour des courants réfléchis assez faibles), il suffit alors de remplacer e par

e∗ dans l’expression de SHOM (τ) (2) en écrivant αeff = 2e∗Vacsin(πfτ)/hf .

Des mesures du bruit ”HOM” sont présentées figure 5 pour une tension de grille Vgate =

−0.42V , soit dans le régime de faible rétrodiffusion du canal externe. L’amplitude Vac

extraite de de la mesure à P1 est 490µV , et celle extraite de la mesure à P2 = 2P1

est 590µV (avec une incertitude maximale de 10µV ). Le rapport entre ces amplitudes

est 1.2, plus faible que le ratio
√

2 attendu. Ainsi, la généralisation de l’équation (2)
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Figure 4: Transmission (en vert) et réflexion (en bleu) en fonction de la tension de
grille Vgate à ν = 2/5. Les lignes horizontales correspondent à 1/3e2/h et (2/5 −
1/3)e2/h. Les points (A) et (B) correspondent au régime dans lesquels des études du

bruit on été menées.

Figure 5: SHOM (τ) pour Vgate = −0.42V , f = 14.15GHz, une puissance P1 (figure
de gauche) et P2 = 2P1 (figure de droite). Le fit correspond à l’expression (5.8) avec e

remplacé par e∗ = e/3, l’amplitude Vac est un paramètre de fit.

au régime d’effet Hall factionnaire ne semble pas si évidente. Il est toutefois nécessaire

de noter que les simulations théoriques de la figure 5 utilisent une extrapolation de la

caractéristique S(Vdc) pour des tensions allant jusqu’à 900µV . Cette extrapolation du

bruit est nécessaire car S(Vdc) a été mesuré pour −300µV < Vdc < 300µV , mais elle

peut bien sûr conduire à de fausses estimations.

Comme déjà observé à ν = 2, le bruit HOM ne s’annule pas pour τ = 0. La cause exacte

est là aussi méconnue.

Si l’on compare les mesures HOM à ν = 2 et ν = 2/5, on s’aperçoit qu’il y a environ un

ordre de grandeur entre les amplitudes Vac. En effet, la puissance RF injectée lors des

mesures à ν = 2/5 est environ 9 fois plus grande qu’à ν = 2: il est nécessaire d’appliquer

des amplitudes plus grandes car la charge des quasi-particules est plus faible e∗ < e (la

grandeur d’intérêt étant l’énergie e∗Vac). Pour e∗ = e/3, maintenir une énergie constante
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requiert donc de multiplier l’amplitude Vac par 3, et la puissance par 9. A ν = 2, la

comparaison de mesures HOM à différentes puissances du signal RF ont permis d’établir

un bon accord avec la théorie du transport ”photo-assisté”.

L’étude quantitative des mesures HOM à ν = 2/3 et ν = 2/5 s’est avérée moins conclu-

ante, bien que celles-ci reproduisent bien la forme attendue. Elles ont été effectuées pour

la première fois dans le régime d’effet Hall factionnaire. Il s’agit d’une étape importante

qui a permis de mettre en lumière certaines difficultés dans la compréhension du trans-

port en présence de signaux RF (aussi bien au niveau expérimental que théorique). L’une

de ces incompréhensions est l’absence d’annulation du bruit HOM τ = 0 malgré que des

correlations fermioniques soient attendues. Ces difficultées doivent être résolues avant

d’envisager une expérience plus complexe d’exploration de la statistique anyonique.
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0.4 General context

This work is included in the mesoscopic field, where the considered length scales and

the temperature are such that the electronic transport is subject to the laws of quantum

physics. The length of the studied system (some µm) is much larger than the atomic

length scale, but smaller than the phase coherence length of electrons. This means that

electrons can be described by wave functions, and that their wave nature has to be

taken into account. This wave nature is responsible for the conductance quantization in

a large variety of bidimensional mesoscopic systems [7][8]. These experiments have been

achievable thanks to the progress in nanofabrication (allowing to fabricate samples with

low enough dimensions) and in cryogenics (low temperatures make it possible to reach

large enough coherence lengths). In particular, in 1988, the conductance quantization in

multiples of 2e2/h was observed in a quasi one-dimension conductor, where it is possible

to vary the number of transmitted electronic modes: a Quantum Point Contact (QPC).

A QPC is a metallic grid deposited on top of a bidimensional electron gas (2DEG),

generally fabricated in a gallium arsenite (GaAs) heterostructure. By applying a voltage

on the QPC, it is possible to locally control the electronic density (or the length of the

created constriction).

The conductance of a mesoscopic system reveals the wave nature of electrons, but not

their particle nature. For this, it is necessary to study not only the mean value of the

current, but also its fluctuations (the ”noise”). This reason motivated the theoretical

and experimental study of the ”noise” in the nineties. A particle incident on a ballistic

conductor, modelled as a potential barrier, has a probability D of being transmitted and

R = 1 −D of being reflected. The ”shot noise” comes from the probabilistic nature of

the particle measurement. Before the measurement, the particle is in a superposition

of states between ”transmitted” and ”reflected”. The scattering theory [9] enables to

calculate the current fluctuations in various situations, when the quasi-particles carrying

the current do not interact with each other. It was demonstrated that, in a ballistic

11
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conductor, the current noise (or more exactly the power spectral density of the current)

is given by:

SI = 2eI(1−D)

This formula was derived for non-interacting electrons, and has received experimen-

tal support, for example in QPC samples [10][11]. It was also extended to strongly-

correlated systems [12][13][14], for which the charge e can be replaced by the charge of

quasi-particles carrying the current. In particular, shot noise measurements in the frac-

tional Hall effect [15][16][17] showed that the current can be carried by quasi-particles

with fractional charge e∗ = e/3 or e∗ = e/5.

The fractional quantum Hall regime, that will be of particular interest during this work,

is characterised by conductance plateaus located at νe2/h, where ν = p/q (p and q in-

tegers) are non-integer fractions. These conductance plateaus have been observed while

sweeping the magnetic field for the first time in 1982 [3]. The fractional Hall regime is

reached when a strong magnetic field is applied perpendicularly to a 2DEG. The effort

made in order to enhance the quality of the 2DEGs, particularly their mobility (that is

3 ∗ 106V −1cm2s−1 for our sample), made it possible to study such a regime.

Recently, a study of transport in presence of a sine wave (called ”photo-assisted” trans-

port) [6] confirmed the previous fractional charge measurements by exploiting the ”photo-

assisted” shot noise singularities at e∗V = hf (f being the frequency of the sine wave,

up to 18 GHz).

In the fractional Hall regime, it was predicted [19] that quasi-particles have not only a

fractional charge, but also a ”fractional” statistic (also called ”anyonic” statistic), inter-

mediate between the fermionic and the bosonic statistic. This means that the exchange

of two quasi-particles (called ”anyons”) gives rise to a statistical phase θ between 0 (case

of bosons) and π (case of fermions):

Ψ(z1, z2) = eiθΨ(z2, z1)

After many attempts [20],[21],[22],[23], the anyonic statistic was revealed thanks to ex-

periments based on Fabry-Perot interferometer [24], and also by shot noise measurements

induced by the ”collision” of two anyons on a QPC [25]. It is this last approach, based

on shot noise measurements, that we decided to use as a way of exploring the anyonic

statistic. The long-term objective is to implement ”Hong-Ou-Mandel” [26] types of ex-

periments to reveal the anyonic statistic. The general idea is the following: two anyons

coming from two different branches impinge on a QPC (that plays the role of a semi-

reflective mirror for electrons), with a variable time-delay τ . In quantum optics, τ is

varied by modifying the optical length of one of the two branches. In electron quantum

optics, τ is varied by controlling the phase difference between two voltage pulses applied
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on electronic reservoirs. After the collision, the two anyons can either take different

output branches (being both ”reflected” or both ”transmitted” by the QPC), either

take the same output branch (one being ”reflected” and the other ”transmitted”). De-

pending on their temporal overlap and their statistical phase, they will either ”bunch”

(take the same output) or ”antibunch” (take different outputs). In quantum optics the

coincidence rate between two single photon detectors reveals their bosonic nature [26] -

in electron quantum optics, the cross correlation between the transmitted and reflected

currents could reveal the anyonic static of the quasi-particles impinging on the QPC.

In order to send anyons on both sides of a QPC, it is necessary to first create them thanks

to two others QPC that are also in the fractional Hall regime. Thus the sample geometry

consists of 3 QPCs in total: 2 QPCs are anyons sources, and the third one is the anyon

collider. This geometry was used in experiment [25], where the shot noise resulting

from anyons collisions (in the fractional quantum Hall regime) was compared to the one

resulting from electrons collision (in the integer quantum Hall regime). The enhancement

of the shot noise due to anyons collision is reminiscent from anyonic statistics. In this

work, only DC voltages were used, thus there was no time-control of the anyons emission.

The time delay control between the two anyons emission implies a good understanding of

electronic transport in presence of time-dependent voltages. This represents a complex

problem, that has to be approached by starting to make ”HOM”-type experiments

with a single QPC. In that case, fermionic correlations are expected, independently

on the filling factor. The main objective of my PhD thesis was to make these ”HOM”

experiments in the integer and fractional quantum Hall regime.

Another part of my PhD work, that is not presented in this manuscript, was the theo-

retical study and the nanofabrication of a single-electron detector based on a bolometric

method: the electron is detected after dissipation of its energy in the detector, lead-

ing to a small temperature increase ∆T . This increase could be detectable thanks to

longitudinal conductance measurements, that has an exponential dependence with the

temperature. The first step was to estimate ∆T through a theoretical study of energy

transport and dissipation in a mesoscopic system subject to time-dependent voltages.

The second step was to fabricate a single-electron detector. However, the sample fab-

ricated for this project could not be measured. The interested reader can refer to my

internship report.
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0.5 Implementation of the electronic ”HOM”

In the quantum Hall regime, the current is carried by chiral edge states formed at the

periphery of the 2DEG, while the bulk is insulating. These edge states are the equiv-

alent of optical wave-guides in quantum optics, as they enable to control the electrons

trajectory. An illustration of the experimental setup is given in figure 6. A voltage

Figure 6: Scheme of the sample

V1(t) = Vac,1sin(2πft) (resp V2(t) = Vac,2sin(2πft)) is applied on ohmic contact (0)

(resp. (3)). The electronic excitations created by V1(t) and V2(t) propagate in a chiral

way to the QPC. The 6-contact geometry enables to measure separately the current

transmitted iT and reflected iR by the QPC. The fluctuations of these currents are con-

verted into voltage VA, VB fluctuations across RLC circuits resonant around 2.2 MHz.

Then these fluctuations are amplified and measured by an acquisition card that gives the

Fourier transform of the signal. Moreover, a lockin technique is used for conductance

measurements (derivative of iT and iR).

When the DC component Vdc of the signal is finite, the charge Q injected in each edge

state during a period T = 1/f of the signal can be estimated in a simple way:

Q =

∫ T

0
I(t)dt =

e2

h
TVdc

Thus when eVdc = hf , Q = e and we can consider that a charge e is injected at each

period. For our experiments to be comparable to the ones of quantum optics, it is not

enough to inject an integer charge e: we need to inject one electron, or more precisely

one ”pure” electronic excitation. But generally, a time-dependent voltage generates

electronic excitations (above the Fermi sea) as well as hole excitations (under the Fermi

sea). These electron-hole excitations are not visible in the current but only in the shot

noise, that it proportional to their number. It was shown that a lorentzian-shaped
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voltage can generate ”pure” electronic excitations (with no holes) called ”levitons” [27].

These predictions have received experimental support through measurement of shot noise

minimization in a QPC [28][29]. In these works, ”HOM” experiments have also been

performed to explore the wave function shape of levitons. Indeed, these experiments

can be a way to characterize the wavefunction of quasi-particles, similar to ”quantum

tomography” [30].

In contrast with these last experiments, our ”HOM” experiments are performed in the

integer and fractional Hall effect. They consist in sending sine waves instead of levitons

on both sides of the sample. For simplicity, we choose a zero DC component. Generally,

this leads to the same shot noise than when identical DC components are applied on both

parts of the QPC. In this case, within the approach of non-interacting electrons, the same

number of electrons and holes are created and partitioned by the QPC independently of

each other. Thus the shot noise is finite, and it depends on the time-delay τ between the

two sine waves V1(t) and V2(t). The time-delay can be controlled either automatically

using two synchronized radio-frequency (RF) sources, or mechanically modifying the

length of one of the RF cables that bring the signal from the source to the sample.

The ”HOM” measurements consist in measuring the shot noise (accessible by auto and

cross-correlation measurements) while sweeping the time delay τ . To ensure a maximal

visibility, it is necessary to equal amplitudes of V1(t) and V2(t), so that we have V1(t) =

V2(t + τ). The measurements were performed in a dilution fridge that enables to cool

down the sample to a temperature of 17mK. However, because of the power radiated

by the environment on the sample, its electronic temperature is of the order of 30 mK.

0.5.1 Results at ν = 2

Measurements at ν = 2 were performed at three different gate voltages Vgate (represented

by the vertical dashed lines of figure 7), corresponding to three different values of the

internal channel reflection. For each of these Vgate values, the shot noise dependence

on Vdc was measured in absence and in presence of a RF sine wave applied on contact

(0). These measurements confirmed the ”photo-assisted” approach [31][32], according

to which the noise in presence of a time-dependent voltage V (t) = Vdc + Vac(t) (called

Sphoto(Vdc)) is linked to the noise in presence of the DC part only Vdc (called S(Vdc))

through the relation:

Sphoto(Vdc) =
∑
l

Pl(α)S(Vdc − lhf/e) (3)

where α = eVac/hf and Pl(α) is the square of the l-th order Bessel function. This

relation has been derived in the case of energy-independent scattering coefficients. It
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Figure 7: Transmission (in green) and reflection (in blue) vs. gate voltage Vgate at
ν = 2. We observe a good conductance quantization in units of e2/h.

can be generalized to the ”HOM” configuration, where voltages V1(t) = Vacsin(2πft)

and V2(t) = V1(t + τ) are applied on contacts (0) and (3). In this case, the noise is

identical to the noise obtained in the situation where a voltage V1(t) − V1(t + τ) is

applied on contact (0). We then expect the ”HOM” noise to be given by:

SHOM (τ) =
∑
l

Pl(αeff )S(lhf/e) (4)

where αeff = 2eVacsin(πfτ)/hf . This gives Sphoto(τ = 0) = 0, and Sphoto(τ) maximal

for τ = T/2. Although the reflection coefficients were not always energy-independent (in

particular for Vgate = −0.27V and Vgate = −0.3V ), the variations of the ”HOM” noise

could be correctly reproduced using equation (4) and the measured DC shot noise S(Vdc).

”HOM” noise measurements (in cross correlation) are presented below for Vgate = −0.2V

and two different powers P1, P2 of the RF signal such that P2 = 2P1 (meaning that the

ratio between two consecutive Vac values should be
√

2).

The AC amplitude extracted from HOM measurement at P1 is Vac = 50µV , and

Figure 8: SHOM (τ) for Vgate = −0.2V , Vdc = 0V , f = 14.15GHz, for RF power
P1 (left figure) and P2 = 2P1 (right figure). The fit corresponds to equation (4), the

amplitude Vac being a fitting parameter.
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the one extracted from measurements at P2 = 2P1 is Vac = 72µV (±3µV ). The mea-

surements accuracy is limited by experimental time drifts of the time τ (or the phase

Φ = 2πfτ). The ratio between these two Vac values is 1.44, thus very close to the
√

2

ratio expected. This means that our HOM data are in good agreement with the theory.

A good agreement has also been established for HOM measurements at Vgate = −0.27V

(corresponding to a higher reflection coefficient). However, one aspect remains unsolved:

contrary to what is expected, SHOM (τ) does not cancel at τ = 0, and the visibility re-

mains around 50%. At this stage, we are not able to distinguish between reasons linked

to the experimental setup and reasons linked with the sample physics.

0.5.2 Results at ν = 2/5

At ν = 2/5 (corresponding to a magnetic field of 11.3T ), two conductance plateaus are

visible while sweeping the gate voltage Vgate (and thus the local electronic density): a

first one located at (2/5)e2/h, and a second one at (1/3)e2/h. These plateaus corre-

spond to the formation of a local filling factor νQPC = 2/5 and νQPC = 1/3 under the

QPC as the electronic density is varied by the gate voltage. We studied the shot noise

originating from the tunneling of quasi-particles in these two regimes, but for now we

present measurements in the region (B) only. DC shot noise measurements were first

Figure 9: Transmission (green dots) and reflection (blue dots) vs gate voltage Vgate
at ν = 2/5. The horizontal lines correspond to 1/3e2/h and (2/5 − 1/3)e2/h. The
regions (A) and (B) correspond to the regimes in which shot noise studies have been

performed.

performed in order to get the S(Vdc) characteristic, later used in order to interpret the

measurements of SHOM (τ). Indeed, the relation (4) can be generalized to strongly cor-

related systems [33] such as the fractional Hall effect. In the perturbative regime with

respect to the tunneling amplitude (that is to say for weak enough reflected current),

it is enough to replace e by e∗ in equation (4), writing αeff = 2e∗Vacsin(πfτ)/hf . As
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previously for ν = 2, HOM noise measurements were performed at f = 14.15GHz and

for two
√

2-spaced AC amplitudes Vac. The two AC amplitudes extracted from the fits

Figure 10: SHOM (τ) for Vgate = −0.42V , f = 14.15GHz, a power P1 (left figure)
et P2 = 2P1 (right figure). Le fit corresponds to expression (5.8) with e replaced by

e∗ = e/3, the amplitudeVac is a fitting parameter.

of figure 10 are 490µV and 590µV (±10µV ). The ratio between these two values is 1.2,

lower than the
√

2 factor expected for P2 = 2P1. Thus the generalization of equation (4)

to the regime of fractional Hall effect does not seem obvious. Nevertheless, it is necessary

to note that the theoretical simulations of figure 10 use an extrapolation of the DC shot

noise characteristic S(Vdc) for Vdc up to 900µV . This extrapolation is necessary because

S(Vdc) was measured for −300µV < Vdc < 300µV only - but of course it can lead to

wrong estimations.

As already observed at ν = 2, the HOM noise does not cancel for τ = 0. Here also, the

exact reason remains unknown.

If we compare HOM measurements at ν = 2 and ν = 2/5, we realize that there is one

order of magnitude between the amplitudes Vac. Indeed, the RF power injected during

measurements at ν = 2/5 is roughly 9 times higher than at ν = 2: to reach the same

energy scale e∗Vac, it is necessary to apply higher AC amplitudes because the charge of

quasi-particles is lower e∗ < e. For e∗ = e/3, keeping a constant energy scale requires

that we multiply the amplitude Vac by 3, and the power by 9.

At ν = 2, comparisons between HOM measurements at different powers of the RF

signal allowed us to establish a good agreement with the ”photo-assisted” transport

theory. The quantitative study of HOM measurements at ν = 2/5 and ν = 2/3 is less

conclusive, although we recover the expected shape for the HOM noise. These are the

first demonstration of HOM experiments in the fractional Hall regime. It is an important

step that put into light some difficulties in the understanding of transport in presence

of RF waves. One of these misunderstanding is the absence of shot noise cancellation at
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τ = 0 although fermionic correlations are expected. These aspects need to be resolved

before considering more complex experiments with anyonic sources.



Chapter 1

Introduction

1.1 Semi-classical transport

The classical conduction of a metal can be well described by the Drude model (see

Ashcroft and Mermin’s book [34] for details), that treats electrons of the metal on a

semi-classical level. They are accelerated by the electric field ~E, and slowed down by

scattering on impurities. We will detail in the next part the different types of collisions

(or scattering events) electrons can experience. We assume that in between two collisions

- spaced by a mean time τ - a conduction electron is free to move and is not submitted

to any other force. Thus the scattering events redistribute the electrons velocity such as

〈~v〉 = 0. Between two scattering events, electrons acquire a mean velocity : ~v = −eτ ~E/m
and we can thus write the current vector:

~J =
ne2τ

m
~E

where n is the electronic density.

The classical conductivity (called Drude conductivity) of a macroscopic system is then

given by :

σD =
ne2τ

m

It is clear that this model needs a large number of collisions to be valid: on length

scales lower than the mean free path (mean distance between two collision events), it

has no meaning anymore. We will discuss below the different regimes of transport and

the physical processes responsable for the finite time τ .

20
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1.2 The mesoscopic scale

The mesoscopic scale is an intermediate scale between the macroscopic and the micro-

scopic one. Mesoscopic sytems have dimensions lower than the coherence length lΦ, that

is the length over which electrons can be described as wave functions with a well definite

phase. At this length scale, we can observe interference phenomena, similar to optic

interference. On larger length scales, the electrons lose coherence because of different

types of scattering events:

- the dominant one at temperatures above 1K is the electron-phonon scattering. The

phonons are modes of vibration of atoms in a solid around their equilibrium position due

to the finite temperature. Electrons can exchange energy with the crystalline structure

of the solid, thus electron-phonon scattering is an inelastic process. We can associate

to it a characteristic time (mean time between two collisions) τe−ph and a characteristic

length le−ph between two successive collisions.

- At low temperatures (below 1K), the electron-phonon coupling decreases rapidly and

the dominant inelastic scattering process is electron-electron collisions: it becomes the

principal cause of decoherence. As le−e � le−ph, the low temperatures regime is in-

teresting: the coherence length lΦ = le−e is considerably increased. Electron-electron

interactions play an important role as they are responsible for equilibration and ther-

malisation of electrons.

- Finally, we can have elastic collisions on impurities such as crystalline defects.

The time scale (and the mean collision length) of all these phenomena depend on the

temperature but also the type of solids. The result is that, below 1K, the coherence

length is around 200Å in a classical metal whereas it reaches some tens of micrometers

in a 2D electron gas formed at the interface between two semi-conductors. By electronic

lithography, the resolution obtained is of some tens of nanometers. As a consequence,

thanks to the progress of cryogenic systems and nanofabrication, it is possible to fabricate

circuits with dimensions lower than the coherence length, and thus to deal with quantum

aspects of the transport.

As mentioned, at low temperature, the coherence length in a 2D system is principally

determined by le−e. But we can also have elastic scattering events (collisions during

which electrons do not lose their phase) with length scale le lower than le−e. The

mesoscopic scale include two types of regime depending on the lenght L of the sample

with respect to the scattering length le:

- the ballistic regime where L � le: electrons do not face any scattering event when

crossing the sample (no backscattering processes).
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- the diffusive regime when L � le: electrons experience many scattering events when

crossing the sample.

These two regimes are illustrated below for a mesoscopic two-dimensional conductor

linked to the external circuit by two terminals (electronic reservoirs). By applying a

le

L

diffusive regime

ballistic regime

W

: Impurity

Figure 1.1: On the top: diffusive regime, the electrons scatter many times on impu-
rities. On the bottom: quasi-ballistic regime, only few scattering events. This image is
a very simplified scheme as electrons do not have a well defined trajectory. However,
as far as they can be described by time-evolving wave functions (which is the case in

both situations), we are in the mesoscopic regime.

bias Vdc between the two terminals, or by imposing a current I across this conductor,

we can measure its resistance simply given by: R = Vdc/I. In 2D systems, the current is

I = JW/L, where J = σVdc is the current flux and W,L are respectively the width and

the length of the conductor. Thus one particularity of 2D systems is that the resistivity

1/σ has the same unit as the resistance R.

Our experimental system is a bidimensional electron gas (2DEG) created at the interface

of a heterostructure GaAs/AlGaAs (cf. Appendix B) and cooled down to temperatures

around 20 mK. We will show that when applying a high magnetic field perpendicular

to this 2DEG, the electronic transport can become ballistic over macroscopic lengths

thanks to the formation of edge states. Thus 2DEG are particularly interesting when we

need to control the trajectory of electrons (for interferometry experiments for example).

Also, interesting physics can appear in 2D systems under high magnetic fields, as it will

be detailed in Chapter 2.

In the diffusive regime, we can apply Drude model to calculate the conductance. In the

ballistic one, it is not valid anymore, and we have to use a different approach that we

now present.
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1.3 Conductance quantization

Let’s consider again a two-terminal and 2D mesoscopic conductor, across which we apply

a bias Vdc (as illustrated in figure 1.2). The two terminals are electron reservoirs that in-

ject particles in the conductor with a probability given by the Fermi distributions fR(E)

and fL(E) (L and R refer to left and right reservoirs). Assuming that the conductor is

ideal (no backscattering) and has a finite width W but infinite length L (L� W ), the

number of allowed modes is N = W/λF , where λF is the Fermi wavelength. In 2DEG

systems, λF is of the order of tens of nanometers (while it is few Å in metals). The

current flowing from the left contact to the conductor and carried by each mode is :

IL = e

∫ +∞

−∞
v(E)ρ(E)(fL(E)− fR(E))dE

where we called ρ(E) the density of states and v(E) the velocity of electrons at energy

E. We note that IL + IR = 0, ensuring current conservation. If we consider that each of

the N modes corresponds to a perfect 1D non-interacting channel, the density of states

is: ρ(E) = 2/hv(E) (taking the spin degeneracy into account). This greatly simplifies

the expression of the current at low temperatures (kBT � eVdc) which, for each of the

N occupied modes, writes:

IL =
2e2

h
Vdc (1.1)

As a consequence, the conductance takes discrete values depending on the number of

allowed (or transmitted) modes: G = N2e2/h. This conductance quantization has been

observed in 2DEGs in many previous experimental works [8][7] using a Quantum Point

Contact as a restriction in the transverse direction. The current being a number of

charge per unit time, we can conclude from expression (1.1) that in each mode, one

charge every h/eVdc second crosses the conductor. Applying a DC bias to a conductor

thus correspond to a periodic injection of charges from one terminal to the other. In

L R
IR=-ILIL W

h/eVdc

Vdc

IR=-IL

Figure 1.2: 2-terminal conductor across which we apply a voltage V = Vdc. The

number of modes is given by N = W/λF and each mode carries a current 2e2

h Vdc
.

our experimental system, the quantization of conductance is due to the edge states of
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the Quantum Hall effect, and is very accurate thanks to the absence of backscattering.

Here we only want to emphasise the necessity of taking into account the wave nature

of electrons, that leads to very different results than the classical approach for the

conductivity in mesoscopic systems.

One particularity of quantum mechanics is that a particle can be described as a wave

and as a particle at the same time. The conductance measurement of a mesoscopic

system highlights the wave nature of electrons, but not their particle nature. For this,

it is necessary to measure not only the mean value of the current 〈I〉, but also the

fluctuations of the current around this mean value 〈(I − 〈I〉)2〉 or in other words the

noise, that we treat in the following paragraph.

1.4 Noise in mesoscopic systems

1.4.1 Definition of noise

More generally, we consider a classical random signal V (t) with zero mean value (a

situation we can always reach by subtracting the mean value of V (t) if it is finite). The

autocorrelation function of V (t) is defined as:

CV V (t, t′) = 〈V (t)V (t′)〉

whose sign and magnitude tell us whether the signal fluctuations at time t and time

t′ are correlated, anticorrelated or statistically independent. We assume that the noise

process is stationary (i.e. the statistical properties are time-translation invariant) so

that CV V only depends on the time difference t− t′. We also assume that CV V decays

(sufficiently rapidly) to zero on some characteristic correlation time scale τc which is

finite.

We can access to the Fourier components of CV V (t−t′) by measuring the power spectral

density (PSD), which represents the power of the signal V (t) at different frequencies.

Indeed, we can Fourier transform the signal V (t) over a time Tmeas (that corresponds

to the measurement time of the spectrum analyser):

Ṽn =
1

2Tmeas

∫ Tmeas

−Tmeas
V (t)eiπnt/Tdt

Then the PSD is defined, after having done a large ensemble of statistically equivalent

measurements, as the statistical mean (or ensemble average) value of the square of
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the Fourier components: SV V (ωn) = 〈Ṽn
2〉/∆f where ∆f = 1/2Tmeas is the spectral

resolution and ωn = nπ/Tmeas.

If Tmeas � τc (which we assume to be always true), the Wiener-Khintchine theorem

states that:

SV V (ωn) =

∫ +∞

−∞
CV V (t′ − t)eiωn(t′−t)d(t′ − t)

Taking the continuous limit Tmeas −→ +∞ and the inverse transform, this theorem relates

the autocorrelation function to the PSD:

CV V (t′ − t) =

∫ +∞

−∞
SV V (ω)e−iω(t′−t)dω

We thus see that a short auto-correlation time implies a spectral density which is finite

over a wide range of frequencies. In the limit of white noise CV V (t′ − t) = σ2δ(t′ − t)
and the spectrum is flat (frequency independent): SV V (ω) = σ2.

Finally, we want to emphasise that as V (t) is a classical variable, it commutes with

its values at different times: 〈V (t)V (t′)〉 = 〈V (t′)V (t)〉 and CV V (t, t′) is a real value

(which can be false for quantum operators that do not commute at different times). As

a consequence, CV V (t, t′) is symmetric in time and its Fourier transform is symmetric

in frequency: SV V (ω) = SV V (−ω). The PSD of voltage or current across a conductor

can be explained by different physical phenomena. We will detail the main sources of

noise in the next paragraph.

1.4.2 Thermal noise

The thermal noise, also called ”Johnson-Nyquist Noise” [35][36], is due to the thermal

agitation of the electrons at thermal equilibrium. This phenomenon exists independently

of the bias applied to the conductor. The PSD of the voltage across the conductor at

equilibrium depends only on the real part of the impedance Z(ω) of the conductor and

on its temperature T :

SV V (ω) = 4kBTRe(Z(ω))

This formula is valid for low enough frequency or high enough temperature (~ω � kBT ).

It can be demonstrated applying the fluctuation-dissipation theorem. In the case of a

simple resistance (Z(ω) = R), we obtain a white noise.
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1.4.3 1/f noise

The 1/f noise can have many origins: for example impurities that deliver arbitrary

charge carriers, or electron-hole recombinations. These types of phenomena can cause

conductance fluctuations. The appellation ”1/f noise” is quite generic and used in

opposition to the white noise: this noise is actually proportionnal to 1/fα where α is an

empirical value between 0,8 and 1,3.

1.4.4 Shot noise

The shot noise in a mesoscopic conductor is due to the granularity of the charge carriers.

Contrary to the thermal noise, it is necessary for the conductor to be out of equilibrium

(applying a finite bias) to observe it.

To understand its origin, we use again the scheme of a 2D conductor in figure 1.3 with

electrons flowing from the left to the right contact because of a finite bias Vdc. But now

we add a potential barrier inside the conductor (caused for example by an impurity)

that scatters the electrons coming from the left contact. Because electrons are quantum

particles, they have a non zero probability D(E) to tunnel whatever their energy E, and

a probability R(E) to be reflected. The particle state is thus a superposition between

”transmitted” and ”reflected”.

LL R
IL

h/eVdc

Vdc

It
Ir

ILIL

IL
It

Ir

Ir

D(E), R(E)=1-D(E)

Figure 1.3: 2-terminal conductor on which we apply a bias Vdc. This generates a
periodic charge injection from Left to Right. For an electron at energy E, the probability
of being transmitted (resp. reflected) by the barrier is D(E) (resp. 1 − D(E)). The
result is that a part It of the incoming current IL is transmitted by the barrier, and

the other part Ir is reflected.
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The reservoirs’ temperature T is finite such that an electron with energy between E and

E + dE is emitted from the left contact with a probability fL(E), and from the right

contact with probability fR(E). We call NL and NR the occupation number of electrons

emitted respectively from the left and the right. Pauli exclusion principle implies that

NL,R = 0 or 1, and: 〈NL,R〉 = fL,R(E). The notation 〈X〉 is used for the statistical

average of the variable X. The current between the left and right contact is simply

the sum over all the energies of the difference between left and right emitted charges

per unit time : I =
∫
e〈NL − NR〉/τ where τ = h/dE is the time of emission of the

electron (given by Heisenberg principle). We recover the conductance quantization at

low temperature. The fluctuations of NL,R can be calculated using N2
L,R = NL,R:

〈(∆NL,R)2〉 = 〈N2
L,R〉 − 〈NL,R〉2 = 〈NL,R〉(1− 〈NL,R〉) = fL,R(E)(1− fL,R(E)) (1.2)

This term represents the fluctuations of the occupation number due to the finite temper-

ature. We obtain the expected result for a binomial law with a number of experiments

equal to one and a probability of success fL,R(E), that is the consequence of the Pauli

exclusion principle.

Now we are interested in the fluctuations of the number of transmitted and reflected

electrons by the barrier. We only take into account the contribution of electrons coming

from the left contact, in order to give an idea on the origins of shot noise. We call

Nt (resp. Nr) the occupation number of electrons coming from the left contact and

transmitted (resp. reflected) by the barrier. Their mean value is: 〈Nt〉 = DfL(E) and

〈Nr〉 = RfL(E) (we omitted the energy dependence of D and R for simplicity). As Nt,r

takes values 0 or 1, Nt,r = N2
t,r. Moreover, after each measurement the electron is either

transmitted or reflected, so NtNr = 0. From this we can easily calculate the fluctuations

of Nt and Nr (autocorrelations) as well as the cross correlation 〈∆Nt∆Nr〉:

〈(∆Nt)
2〉 = 〈N2

t 〉 − 〈Nt〉2 = 〈Nt〉(1− 〈Nt〉) = DfL(E)(1−DfL(E)) (1.3a)

〈(∆Nr)
2〉 = 〈N2

r 〉 − 〈Nr〉2 = 〈Nr〉(1− 〈Nr〉) = RfL(E)(1−RfL(E)) (1.3b)

〈∆Nt∆Nr〉 = 〈NtNr〉 − 〈Nr〉〈Nt〉 = −〈Nr〉〈Nt〉 = −DRf2
L(E) (1.3c)

Using D+R = 1 (the incident electron is either transmitted or reflected by the barrier)

we get:

〈(∆Nt)
2〉 = DfL(1− fL)− 〈∆Nt∆Nr〉

〈(∆Nr)
2〉 = RfL(1− fL)− 〈∆Nt∆Nr〉

We see that the auto-correlation functions are the sum of two types of fluctuations: the

first term comes from the finite temperature (thermal noise), and the second term (equal
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to minus the cross-correlation term) comes from partition of particles at the barrier. This

last contribution is called ”shot noise”.

To relate these electron numbers fluctuations to the fluctuations of the incident current

Ii (i = L,R), the transmitted and reflected current It and Ir, we have to take into

account the measurement time Tmeas. In the energy interval between E and E + dE,

one electron every ~/dE is emitted by the left and right contact with probability fL,R.

This means that the number of repeated events (or experiments) during the time Tmeas

is TmeasdE/~. The number of transmitted (reflected) electrons Ñt (Ñr) measured during

the time Tmeas follows a binomial law with a probability of success DfL (RfL). Indeed,

as the emission of particles from the left contact and the partition of the barrier are

independent events, we can multiply their probabilities to get the probability of one

electron transmitted (or reflected). We can easily deduce the variance of Ñt,r :

〈(∆Ñt)
2〉 = DfL(1−DfL)

dE

h
Tmeas (1.4a)

〈(∆Ñr)
2〉 = RfL(1−RfL)

dE

h
Tmeas (1.4b)

It,r is of course proportional to Ñt,r:

It,r = eÑt,r/Tmeas (1.5)

which gives: 〈(∆It,r)2〉 = e2〈(∆Ñt,r)
2〉/T 2

meas. The PSD of It,r is: SII = 〈(∆I)2〉2Tmeas
(where we have omitted the prefixes t, r). We can make the same reasoning to calculate

the fluctuations of the number of incident particles from left (ÑL) and right (ÑR), that

follow a binomial law with probability of success fL,R. From the last two equations and

equation (1.4), we get the PSD of the incident, transmitted and reflected currents:

SIiIi =
2e2

h

∫
fi(E)(1− fi(E))dE (1.6a)

SItIt =
2e2

h

∫
DfL(E)(1−DfL(E))dE (1.6b)

SIrIr =
2e2

h

∫
RfL(E)(1−RfL(E))dE (1.6c)

SItIr =
2e2

h

∫
D(1−D)f2

L(E)dE (1.6d)

Using the property of Fermi functions: fi(E)(1 − fi(E)) = kBTdf/dE, we can show

that the sum SILIL + SIRIR gives the Johnson Nyquist noise 4kBTe
2/h. For a perfect

conductor (D = 1), the shot noise cancels and only thermal fluctuations remains.

The derivation of equation (1.6d) was a bit more complicated than the situation when

we considered one experiment only, as ÑtÑr is not equal to zero anymore. Moreover,
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as already said, the expressions for shot noise are not exact because we should also

take into account the partition of electrons coming from the right. Despite this, with a

proper derivation of the noise using the scattering approach in Chapter 4, we will find

very similar expressions. In particular, the D(1 − D) term in the cross correlation is

once again characteristic of a binomial distribution. In the limit D � 1 or fi � 1, the

factor (1−DfL(E)) can be replaced by 1 in expressions (1.6b) and (1.6c), and we find

a Poissonian noise:

SIt,rIt,r = 2eIt,r (1.7)

This PSD results from non-correlated arrivals of electrons on the barrier, with a distri-

bution of the time ∆t between two arrivals that is Poissonian: P (∆t) = τ−1exp(−∆t/τ),

τ being the mean time between two incident particles. From this simple picture we can

see that with non-interacting fermions, the shot noise is always sub-poissonian.

As a conclusion of this discussion, the low frequency current noise of a mesoscopic

conductor is due to the number of particle fluctuations, that have two origins: thermal

fluctuations (thermal noise), and partition on a barrier (shot noise). The shot noise we

have derived corresponds to the variance of a binomial (or poissonian in the limit of low

transmission) law for the number of transmitted and reflected particles. Indeed for each

measurement this number is either 1 or 0, due to the Fermi statistics. But in order to

have informations about a statistical phase different from 0 (bosons) π (fermions), we

need to make two-particle collisions with interferometers. That is what we will detail

next.

1.4.5 HOM experiment to reveal the statistics

Now we consider an experiment in which two particles x and y collide on a scatterer, and

each of these particles have two possible outputs (it is either transmitted or reflected).

These particles can be either bosons, fermions or more exotic particles such as anyons.

The anyons are quasi-particles that appear in the fractional quantum Hall regime, when

applying a strong perpendicular field to the 2D conductor. The physics of the Integer

and Fractional quantum Hall will be detailed in Chapter 2. Here we consider the general

case in which the spatial exchange of two particles gives rise to a phase eiθ. If we call (1)

and (2) the two branches of the interferometer and a(x, y) the 2-particle wave function

with particle x in (1) and particle y in (2), we have that: a(x, y) = eiθ(y,x)a(y, x). The

physical situation is illustrated in figure 1.4. We first assume that we have perfect

sources, such that there is always one particle incident on each branch. It follows that:

|a(x, y)|2 + |a(y, x)|2 = 1. In view of the last two equations, we have: |a(x, y)|2 =

|a(y, x)|2 = 1/2.
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t

t

irir

(1)

(2)

(1)

(2)

x / y

x / y

a(x,y) / a(y,x)

Figure 1.4: 2-particles collider with scattering amplitudes t and ir for particles x
and y. The two possible initial situation are illustrated with an amplitude probability

a(x, y) and a(y, x).

We call P (x, y) the probability for having particle x in output (1) and particle y in

output (2) and P (xy, 0) (resp. P (0, xy)) the probability of having both particles in

output (1) (resp. (2)). Let’s calculate these probabilities knowing the scattering matrix

elements t and ir and taking T = t2 = 1/2, R = r2 = 1/2:

P (x, y) = |a(x, y)t2 − a(y, x)r2|2 = |a(x, y)|2|t2 − r2eiθ|2 =
1

4
(1− cosθ) (1.8a)

P (y, x) = |a(y, x)t2 − a(x, y)r2|2 = |a(x, y)|2|t2e−iθ − r2|2 =
1

4
(1− cosθ) (1.8b)

P (0, xy) = | − irt(a(y, x) + a(x, y))|2 = r2t2|a(x, y)|2|1 + eiθ|2 =
1

4
(1 + cosθ) (1.8c)

P (xy, 0) = P (0, xy) =
1

4
(1 + cosθ) (1.8d)

We can check that the sum of all the output configurations probabilities is equal to 1.

From equations (1.8) we can calculate the mean value and the variance of the particle

number N1 and N2 in branches (1) and (2) :

〈N1〉 = P (x, y) + P (y, x) + 2P (xy, 0) =
1

2
(1− cosθ) +

1

2
(1 + cosθ) = 1 (1.9a)

〈N2
1 〉 = P (x, y) + P (y, x) + 4P (xy, 0) =

1

2
(1− cosθ) + (1 + cosθ) (1.9b)

〈(∆N1)2〉 = 〈N2
1 〉 − 〈N1〉2 =

1

2
(1 + cosθ) (1.9c)

We can easily find the same results for the variable N2. As explained before, for an

electronic systems (ie for fermions or anyons), the current PSD is directly related to

the variance (or fluctuations) of particle number in each branch. In this experiment,

we thus see that the statistical phase directly appear in the shot noise expression. For

fermions, θ = π and the fluctuations of N1 and N2 (or ”shot noise”) vanish. Indeed,

because of Pauli exclusion principle, the fermions make perfect anti-bunching, so we

would always have N1 = N2 = 1. For bosons, θ = 0 and the shot noise reaches its
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maximum value as bosons make perfect bunching: the situation would be similar to the

partition of 2 particles on a barrier (N1 = 0 or 2, N2 = 0 or 2). Let’s now calculate the

cross-correlation ∆N1∆N2:

〈∆N1∆N2〉 = 〈N1N2〉 − 〈N1〉〈N2〉 =
1

2
(1− cosθ)− 1 = −1

2
(1 + cosθ) (1.10)

As we have ignored the fluctuations of the incident particles, we find again (similarly to

paragraph 1.4.4) that :

〈(∆N1)2〉 = 〈(∆N2)2〉 = −〈∆N1∆N2〉

In other words, the cross and the auto-correlations contains the same information about

the particle statistics. Now let’s consider that the sources from which particle x and y

are emitted are noisy and emit particles with a probability p < 1 (that is the same for

both sources), such that: |a(x, y)|2 = |a(y, x)|2 = p. Making the same calculations than

before, we find:

P (x, y) = P (y, x) =
p

2
(1− cosθ)

P (0, xy) = P (xy, 0) =
p

2
(1 + cosθ)

which leads to :

〈N1〉 = 〈N2〉 = 2p

〈N2
1 〉 = 〈N2

2 〉 = p(1− cosθ) + 2p(1 + cosθ) = p(3 + cosθ)

〈(∆N1)2〉 = 〈(∆N2)2〉 = 〈N2
1 〉 − 〈N1〉2 = p(3− 4p+ cosθ)

〈∆N1∆N2〉 = −p(1 + cosθ)

We notice again that the cross-correlation term originates from the partition of particles

that collide, whereas the auto-correlation also contains a part due the fluctuations of the

source emitting particles. In paragraph 1.4.4, the fluctuations of the source were due

to the finite temperature. Here, they can also be due to any noisy process of emission

(such as poissonian sources). The sum of the auto and cross correlation term gives the

fluctuations of the source (the noise we would have with a perfect transmission D = 1):

〈∆N1∆N2〉+ 〈(∆N1)2〉 = 2p(1− 2p)

2p is the probability that two particles collide on the scatterer (for perfect sources,

p = 1/2), thus this term is similar to the f(1− f) thermal noise.

We emphasize that the cross-correlation cancels in the case of fermions, and is maximal

for bosons. These results are coherent with the results of previous works [37], although
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we used a different approach. But contrary to previous work (that were made for weak

transmission probabilities only), we find a sub-poissonian noise that becomes poissonian

for fermions. In the general case, the cross-correlation has a smaller value with noisy

sources than with perfect sources. We will see that an anyon source is always noisy,

which justify this last study. Indeed, as anyons are between bosons and fermions they

inherit of the bosonic character which is known to make photon sources intrinsically

noisy. Revealing the anyonic statistics is of central interest and is a motivation for this

work.

Until now we have assumed that both particles always reach the collider at the same

time. With only DC voltages, we would not have any temporal reference to ensure such

situation. This is why we need a time-controlled particle emission for both sources, that

would allow us to modify the time delay between the two particles’ arrivals (or in other

world, the overlap between the two particle wave functions). Modifying this delay, we

could switch from a classical regime where the shot noise is independent of the particle

statistics, to the quantum regime described above. If we call J the spatial recovery

between the two wave functions incident on the scatterer, we can show (inspired by the

review [38]) that the cross correlation (for perfect sources) becomes:

〈∆N1∆N2〉 = −1

2
(1 + |J |2cosθ)

Thus we can observe a minimum of noise when |J | = 1, and this minimum depends on

the statistical phase θ. The |J |-dependence of the shot noise can thus give access to

the statistical phase θ. It has been measured for fermions with a particular shape of

incoming wave functions (called ”levitons”) in Ref [29]. We call this type of experiments

”Hong-Ou-Mandel” (HOM) in analogy with the experiment made in [26] with photons.

The aim of this thesis is to make HOM experiments in the Integer and Fractional Quan-

tum Hall regime. Although they give intuitive explanations, the results for shot noise

derived in this chapter cannot be easily applied to our physical systems because of some

reasons:

- Calculating the particle number fluctuation imply to use a one particle picture, which is

not valid for fermions that interact with Coulomb interactions (in particular for strongly

correlated systems such as the fractional quantum Hall effect).

- When we have to deal with time-dependent transport, we have non-stationary pro-

cesses, such that the number of transmitted and reflected particles can not be calculated

as easily. We have to use an appropriate formalism.

- The energy-dependence of the tunneling probability can lead to deviations from the

last HOM experiments predictions.
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We will treat these different points in the next chapters, starting with the physics of the

Integer and Fractional Hall effect (and the creation of anyons). We will then explain

how this regime can be reached experimentally, and describe the DC electronic transport

in such setups. Also, we will present two different formalisms for treating the time-

dependent transport, and present some theoretical predictions for the HOM experiments.

The sample used in this PhD work will not allow us to make HOM experiments with

anyons but only with fermions, that is the first step. After presenting the experimental

setup and measurements principle, we will end by presenting the experimental results

and discuss their interpretation.



Chapter 2

Physics in strong magnetic field

2.1 The classical Hall effect

Many figures and arguments of this chapter are taken from the David Tong’s lecture

[39] on Quantum Hall effect. The reader can refer to it for a deeper comprehension of

the subject.

The original, classical Hall effect was discovered in 1879 by Edwin Hall. It is a simple

consequence of the motion of charged particles of a 2D system in a perpendicular mag-

netic field. Electrons with charge −e and mass m are accelerated by an electric field E

and slowed down by collision on impurities (phonons or other electrons). The resulting

equation of motion is:

m
dv

dt
= −eE− ev ∧B−mv

τ
(2.1)

where τ is the mean scattering time (the average time between collisions). We are

interested on equilibrium solution of equation (2.1). The velocity v of electrons must

then satisfy:

v +
eτ

m
v ∧B = −eτ

m
E (2.2)

The current density J = −env, where n is the electronic density, can thus be written in

matrix notation: (
1 ωBτ

−ωBτ 1

)
J =

e2nτ

m
E (2.3)

where ωB = eB/m is called the cyclotron frequency. We note that in presence of a

magnetic field, the resisitivity, defined as: ρJ = E, is not a scalar but a matrix. From

equation (2.3) we get :

ρ =
1

σD

(
1 ωBτ

−ωBτ 1

)
(2.4)

34
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where σD = e2nτ/m is the conductivity without magnetic field. We can also get the

conductivity σ matrix simply by inverting the matrix ρ:

σ = ρ−1 =
σD

1 + ω2
Bτ

2

(
1 −ωBτ

ωBτ 1

)
(2.5)

The off-diagonal terms are responsible for the Hall effect and can be understood with

simple argument: let’s first switch on only an electric field in the x direction such that

we get a current J flowing in the same direction. The physical situation is illustrated

below. By switching on the magnetic field, an electric field Ey perpendicular to J is

LL R
J

W
Ey

x

y

Figure 2.1: Classical Hall bar : we impose a current J flowing in the x direction. In
the presence of a magnetic field, an electric field perpendicular to J is created: it is

responsible for the Hall voltage.

developed in order to compensate the Lorentz forces: Ey = 1
neJ ∧ B. This gives the

off-diagonal terms: σxy = eB
ne2

, that have the particularity of being independent of the

scattering time τ (thus on microscopic properties of the sample). Another interesting

property is that they are independent of the geometry factors of the sample, such that

the transverse resistance Rxy and the transverse resistivity ρxy coincides. To see this,

let’s consider a sample of width W in the y-direction. The transverse resistance is:

Rxy =
Vy
Ix

=
WEy
WJx

=
Ey
Jx

= ρxy

This is a point to keep in mind and will be also important in the universality and

precision of the quantum Hall resistance. In contrast, if we measure the longitudinal

resistance Rxx we have to divide by the appropriate lengths to extract the resistivity

ρxx.

The classical predictions for the transverse and parallel resistivity are thus :

ρxx =
m

ne2τ
and ρxy =

B

ne

We note that ρxx only depends on the scattering time and goes to zero when τ increases,

as scattering processes become less and less important. If we plot the two resistivities as
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a function of the magnetic field, then our classical expectation is that they should look

as the figure 2.2.

ρxy

ρxx

B

Figure 2.2: transverse and longitudinal resistivities

2.2 The Integer Quantum Hall effect

The first experiments exploring the quantum regime of the Hall effect were performed

in 1980 by von Klitzing [40]. At low enough temperature, the two resistivities look like

this:

Figure 2.3: Integer quantum Hall effect ([1])

Both the Hall resistivity ρxy and the longitudinal resistivity ρxx exhibit interesting be-

haviour, very different from the classical predictions. Perhaps the most striking feature

in the data is the that the Hall resistivity ρxy sits on a plateau for a range of magnetic

field, before jumping suddenly to the next plateau. On these plateau, the resistivity

takes the value:

ρxy =
h

νe2

The value of ν is measured with very high accuracy, in various materials and geome-

tries. The quantity h
e2

= 25.812807kΩ, called the quantum of resistivity or von Klitzing

constant, has been the basis for new practical standard for electrical resistance.

When ρxy sits on a plateau, the longitudinal resistivity vanishes: ρxx = 0. It spikes only

when ρxy jumps to the next plateau. We emphasize that when ρxy 6= 0, ρxx = 0 implies
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σxx = 0. This weird property come actually from the Drude model: if τ →∞ , ρxx = 0,

and the current is flowing perpendicular to the electric field, so E.J = 0. The fact that

this quantity vanishes means that we have a steady current flowing without doing any

work and, correspondingly, without any dissipation. This is the meaning of ρxx = 0. In

contrast, σxx = 0 simply means that no current is flowing in the x-direction.

To understand the passage from the classical Hall effect to the quantum Hall effect, we

have to recall the equations of motion of an electron with a magnetic field:

m
dv

dt
= −ev ∧B (2.6)

When the magnetic field points in the z-direction, so that B = (0, 0, B), and the particle

moves only in the transverse plane, so v = (ẋ, ẏ, 0), the general solution of (2.6) is:

x(t) = X −R sin(ωBt+ Φ) y(t) = Y +R cos(ωBt+ Φ) (2.7)

We see that the particle moves in a circle. The centre of the circle, (X,Y ), the radius of

the circle R and the phase Φ are all integration constants. In contrast, the frequency at

which the particle goes around the circle is fixed, and given by ωB = eB/m. It is called

the cyclotron frequency. If we solve the equations of motion in presence of an electric

field E, we find that the center (X,Y ) of the orbit now drifts along the equipotential

lines. The drift velocity vD = (Ẋ, Ẏ ) is given by :

vD =
B ∧E

|B|2
(2.8)

The trajectory of an electron can thus be decomposed into a cyclotron orbit and a drift

of the center of the orbit, as illustrated in figure 2.4.

B
E

R

Figure 2.4: Trajectory of an electron under an electromagnetic field: the center of
the orbit drifts along equipotential lines

The radius R is proportional to the velocity: R = vm/eB. Thus the quantization

of the kinetic energy is equivalent to the quantization of the radius R of the orbit.

When we increase the magnetic field, this radius decreases and the electron can make

one entire cyclotron orbit without scattering events: ωBτ ≥ 1. Another consequence of

increasing the magnetic field is that the energy scale ~ωB becomes much higher than the
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temperature. When both these conditions are satisfied (over a critical field Bc = h/eτ)

the quantization of the kinetic energy of electrons becomes visible. The critical field

from which we can observe the quantum Hall effect is higher for dirty samples than for

clean samples. However, we will see that we also need disorder to observe the plateaux

of resistance.

2.2.1 Landau levels

We will be interested in large magnetic fields where large energies are needed to flip the

spin. This means that, if we restrict to low energies, the electrons act as if they are

effectively spinless. We will thus neglect the spin of electrons in this discussion.

In the presence of a magnetic field, the two canonical conjugate variables (derived from

the Lagrangian) are: x and p = ẋ−eA, where A is the vector potential associated to the

magnetic field: B = rotA. Of course, the definition of A is not unique. As emphasized,

when the magnetic field increases, we need to treat the problem with quantum mechanics

formalism, so that x and p become quantum operators. The fact that they are canonical

means that:

[xi, pj ] = δij and [xi, xj ] = [pi, pj ] = 0 (2.9)

The one-particle Hamiltonian is :

H0 =
1

2m
(p + eA)2 =

1

2m
π2 (2.10)

Since the particle is restricted to lie in the plane, we write x = (x, y). Meanwhile, we

take the magnetic field to be constant and perpendicular to this plane, B = Bz. We

have also defined the quantum operator: π = mẋ = p + eA. The commutation rules

derived from (2.9) are:

[πx, πy] = −ie~B (2.11)

Thus πx and πy are conjugate variables. We can identify them to the momentum P and

the position X of a harmonic oscillator. This motivates the definition of raising and

lowering operators, entirely analogous to those that we use in the harmonic oscillator:

a =
1√

2e~B
(πx − iπy) and a† =

1√
2e~B

(πx + iπy) (2.12)

The commutation rules for π give:

[a, a†] = 1 (2.13)
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which are precisely the commutation relations obeyed by the raising and lowering oper-

ators of the harmonic oscillator. Written in terms of these operators, the Hamiltonian

(2.10) even takes the same form as that of the harmonic oscillator:

H0 = ~ωB(a†a+
1

2
)

where ωB = eB/m is the cyclotron frequency that we met previously. We can construct

the eigenfunctions of H0 as for the harmonic oscillator: from the ground state |0〉 obeying

a|0〉 = 0, we get the rest of the eigen-functions by acting with a†: |n〉 = (a†)n|0〉. Using

the commutation rules (2.13), we can show that the state |n〉 (with n integer) has energy:

En = ~ωB(n+
1

2
) (2.14)

These equally spaced energy levels are called Laudau levels. However, contrary to the

harmonic oscillator levels, these are highly degenerated. To see this, let’s define the

center of orbit operators, that we derive from the classical results:

X = x(t) +R sin(ωBt+ Φ) = x− ẏ/ωB = x− πy/mωB

Y = y(t)−R cos(ωBt+ Φ) = y + ẋ/ωB = x+ πx/mωB

From the commutation rules (2.11) we get:

[X,Y ] = il2B (2.15)

where lB is the magnetic length l2B = ~/eB. The Heisenberg uncertainty principle now

means that we cannot localise states in both the X coordinate and the Y coordinate. In

general, the uncertainty is given by:

∆X∆Y = 2πl2B

A counting of the states then comes from taking the plane and parcelling it up into

regions of area 2πl2B (that is the area occupied by one quantum state). The number of

states in an area A is then

N =
A

2πl2B
=
eBA

h

which gives the number of electrons per Landau levels (LL), or the degeneracy of each

LL. The advantage of this approach is that is does not require any choice of magnetic

gauge.

When turning on an electric field in the plane (such as the electric field on the edge

confining the electrons), the translational invariance is broken, leading to gapless states
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called edge states. To understand their formation in a rectangular sample, it is easier

to work in a particular gauge.

2.2.2 The Landau gauge

The Landau gauge is useful for rectangular geometries. It correspond to the choice:

A = xBy. By replacing this value of A in the Hamiltonian (2.10) and by looking for

solutions invariant under y translation Φk(x, y) = eikyfk(x), we can show that H acts

as:

HΦk(x, y) = HkΦk(x, y)

where Hk is the Hamiltonian for a harmonic oscillator in the x direction, with the center

displaced from the origin:

Hk =
1

2m
p2
x +

mω2
B

2
(x+ kl2B)2

The momentum in the y direction, k, has turned into the position of the harmonic

oscillator in the x direction, which is now centred at x = kl2B. The energy eigenvalues

are again given by (2.14). By taking into account the finite length of the sample of x

direction, we can recover the degeneracy of each LL: N = eBA
h .

But now we could also write down the explicit wave functions Φn,k(x, y) built from the

solutions for a harmonic oscillator. They look like strips in the y direction but are

localized in the x direction around x = −kl2B.

Let’s now add a confining potential V (x) to the Hamiltonian (2.10). If the potential

is smooth over distance scales lB, then for each state labeled by (n, k), we can Taylor

expand the potential around its location xk = −kl2B: V (x) = V (xk) + ∂V
∂x (x − xk).

Writing E = ∂V
∂x , we can show that we get again a Hamiltonian of a harmonic oscillator

in the x direction. The new eigenfunctions have a shifted wave packet center:

Φ′n,k(x, y) = Φn,k(x−mE/eB2, y)

and the eigenvalues now depend on k:

En,k = ~ωB(n+ 1/2) + eEkl2B + C

where C is only a constant. This means that the states now drift in the y direction,

with a velocity given by:

vy = − 1

eB

∂V

∂x
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Each wave function, labeled by momentum k, sits at different x positions x = −kl2B and

thus has a different drift velocity. In particular the modes at each edge are both chiral,

travelling in opposite directions: vy > 0 on the left, and vy < 0 on the right. The states

localised in the center (the bulk) have zero drift velocity as ∂V
∂x = 0 in this region, unless

we consider the potential caused by the disorder.

2.2.3 Conductance quantization

Let’s now calculate the current flowing in the y direction when all the states of the first

LL are occupied. We do this by introducing the chemical potential EF . The states are

labelled by y-momentum k but, as we have seen, this can equally well be thought of as

the position of the state in the x-direction. This means that we are justified in drawing

the filled states like this:

Now we introduce a potential difference ∆µ between the two edges of the sample. As

shown previously, this electric field tilts the Landau levels so that the effective potential

looks like that

To compute the resulting current we simply need to sum over all filled states. But, at

the level of our approximation, this is the same as integrating over x:

Iy = −e
∫
dk

2π
vy(k) =

e

2πl2B

∫
dx

1

eB

∂V

∂x
=

e

2π~
∆µ (2.16)

The Hall voltage is eVH = ∆µ, giving us the hall conductivity:

σxy =
Iy
VH

=
e2

2π~
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This picture suggests that all the filled state contribute to the current as they have

non-zero velocity. However, the real potential shape is more complicated because of

impurities in the sample. This create localized states that will not contribute to the

current. But the interesting aspect about calculation (2.16) is that whatever the shape

of the effective potential, the resulting current Iy, and thus the Hall conductance σxy,

remains the same.

The above discussion can easily be generalized for ν filled Landau levels. As long as the

chemical potential EF lies between Landau levels, we have ν filled LL, like this:

The number of filled LL ν is called the filling factor. Correspondingly, there are ν chiral

mode on each opposite edge (also called edge channels). We find the current in presence

of a difference of potential ∆µ between the two edges to be: Iy = ν e
2π~∆µ. This leads

to the quantization of the transverse conductance:

σxy = ν
e2

2π~

However, this quantization should happen only for magnetic fields corresponding to an

integer filling factor ν = nh/eB, where n is the electronic density. Thus this is not

enough to understand the presence of plateaux of resistance visible in figure 2.3.

2.2.4 The role of disorder

In this discussion we do not make any gauge choice. In absence of external potential, we

emphasize that the center of orbit coordinates are constants of motion. Indeed, using

the definition of (X,Y ) coordinates and the expression (2.10) of H0, we can check that

under time evolution, we have

i~Ẋ = [X,H0] = 0 and i~Ẏ = [Y,H0] = 0

The effect of disorder can be treated by adding an arbitrary potential V (x) to the

Hamiltonian H0, such as H = H0 + eV (x). Now the (X,Y ) operators are not constants
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of motion anymore:

i~Ẋ = [X,H] = [X, eV (x)] =
i~
B

∂V

∂y
(2.17)

i~Ẏ = [Y,H] = [Y, eV (x)] =
i~
B

∂V

∂x
(2.18)

We find the same result as in the classical case (equation (2.8)): the center of the

cyclotron orbits drifts along equipotentials with a drift velocity

vD =
B ∧E

|B|2

We assume that the potential V varies smoothly enough so that the cyclotron orbit

takes place in a region of constant potential, such that: ∂V
∂x = ∂V

∂X and ∂V
∂y = ∂V

∂Y . We can

then draw a schematic of center of orbit trajectory in presence of disorder: We see that

Figure 2.5: The localisation of states due to disorder. The drawn lines correspond to
equipotentials.

localized states inside the bulk do not contribute to the current in the y-direction. We

assume also that the strength of disorder is small relative to the splitting of the Landau

levels: V (x) << ~ωB. The energy spectrum in the presence of this weak disorder is the

expected to change the quantized Landau levels from the familiar picture in the left-hand

figure 2.6, to the more broad spectrum shown in the right-hand figure 2.6. Let’s assume

Figure 2.6: Energy spectrum without disorder (left-figure) and with disorder (right-
figure)
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that the Fermi energy sits at the second LL. When we decrease the magnetic field, the

energy gap between LL decreases as well as the degeneracy of each LL. As the electron

density is fixed, this means that we have to populate new available states. However,

rather than directly populating the next LL, we will populate some localized states

induced by the disorder. While populating these states, the value of the conductance is

not modified: this is the explanation for the presence of plateaux in figure 2.3.

However we should revisit our argument for the conductance quantization, that we

derived without taking into account this effect of disorder, and assuming that all the

filled states contribute to the current. Now we know that many of these states are

localised by impurities and do not transport charge. But remarkably, current carried

by the extended states increases to compensate for the lack of current transported by

localised states. This ensures that the resistivity remains quantized despite the presence

of disorder. In order to understand why through a more solid argument, we need to

introduce another gauge.

2.2.5 The symmetric gauge

We come back to the problem of electrons submitted to a magnetic field only, so to the

Hamiltonian of (2.10). We have already noted that the center of orbit operators (X,Y )

both commute with H0, but not with each other (equation (2.15)). We can thus define

a second pair of raising and lowering operators:

b =

√
eB

2~
(Y − iX) and b† =

√
eB

2~
(Y + iX) (2.19)

These two obey:

[b, b†] = 1

It is this second pair of creation operators that provides the degeneracy of the Landau

levels. To find the eigenfunctions of H0, we will choose a particular gauge in which

[a, b] = 0: the symmetric gauge. It corresponds to the choice:

A = −1

2
r ∧B = −yBx

2
+
xBy

2

This choice of gauge does preserve rotational symmetry about the origin. This means

that angular momentum is a good quantum number. In this gauge the guiding center

coordinates are:

X = x/2− py/eB, Y = y/2 + px/eB (2.20)
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From which we deduce:

[πx, X] = [πy, Y ] = [πx, Y ] = [πy, X] = 0

Thus we have: [a, b] = 0. It is now easy to write the eigenfuctions of H0. We first

define a ground state |0, 0〉 to be anhilated by both lowering operators, so that: a|0, 0〉 =

b|0, 0〉 = 0. We can show that the states |n,m〉 for integers m,n defined as

|n,m〉 =
a†nb†m√
n!m!

|0, 0〉

are eigenfunctions of both H0 and b†b:

H0|n,m〉 = ~ωB(n+
1

2
)

b†b|n,m〉 = m|n,m〉

Now let’s try to write these wavefunctions, focusing on the first LL, n = 0, since this will

be of primary interest when we come to discuss the fractional quantum Hall effect. The

states in the lowest LL (that we sometimes write LLL) are annihilated by a, meaning

a|0,m〉 = 0. We introduce the complex coordinates:

z = x− iy and z̄ = x+ iy

as well as the corresponding derivatives:

∂z =
1

2
(∂x + i∂y) and ∂z̄ =

1

2
(∂x − i∂y)

In term of complex coordinates, a and a† take the form

a = −i
√

2(lB∂z̄ +
z

4lB
) and a† = −i

√
2(lB∂z −

z̄

4lB
)

The lowest Landau level wavefunctions ΦLLL(z, z̄) are then easily solved:

ΦLLL(z, z̄) = f(z)e−|z|
2/4l2B

where f(z) is a holomorphic function. We can construct the specific states |0,m〉 in the

lowest Landau level by similarly writing b and b† as differential operators. We find

b = −i
√

2(lB∂z +
z̄

4lB
) and b† = −i

√
2(lB∂z̄ −

z

4lB
)

The ground state is annihilated by both a and b. There is a unique such state given by

|0, 0〉 = ΦLLL,m=0(z, z̄) = e−|z|
2/4l2B . We can now construct the higher states by acting
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with b†. Each time we do this, we pull down a factor z/2lB. This gives us a basis of

lowest LL wavefunctions in terms of holomorphic monomials

ΦLLL,m(z, z̄) =

(
z

lB

)m
e−|z|

2/4l2B (2.21)

This particular basis of states has an advantage: these are eigenstates of angular mo-

mentum. Indeed we can show that the angular momentum operator is nothing else than

~b†b:
J = i~(x∂y − y∂x) = ~(z∂z − z̄∂z̄) = ~b†b

Then, acting on these lowest LL states we have

JΦLLL,m(z, z̄) = ~mΦLLL,m(z, z̄)

In symmetric gauge, the profiles of the wavefunctions (2.21) form concentric rings. The

wavefunction with angular momentum m is peaked on a ring of radius r =
√

2mlB. This

means that on a disc shaped a region of area A, the maximum value of momentum N is

given by A = 2πNl2B. As each particle occupy one state, we recover the degeneracy of

LL: N = A/2πl2B. The N-particle wave function can be constructed by taking the Slater

determinant of the one-particle states (2.21). We obtain:

ΦLLL(z1, .., zN ) =
∏
i<j

(zi − zj)e−
∑N
i=1 |zi|2/4l2B (2.22)

It is interesting to note that this state is always an eigenstate in the presence of an

interaction potential of the form V (zi−zj). Indeed this form of potential commutes with

the relative angular momentum operator Jij = ~b†ijbij , with bij defined as b before but

replacing the variable z replaced by zi − zj . As ΦLLL(z1, .., zN ) is also an eigenfunction

of Jij , it remains a good ground state in presence of interactions, as far as the kinetic

energy is frozen. In other words, the state (2.22) is stable because the repulsion forces

between electrons are compensated by the Lorentz forces.

2.2.6 Laughlin’s argument

We now come to our argument for the conductance quantization. As it should not

depend on the geometry of the sample, we can consider electrons moving in an annulus

as shown in the figure 2.7. This is sometimes called a Corbino ring. We apply a voltage

around ring with the electromotive force of a time-dependent flux Φ that penetrates the

sample. When Φ goes slowly (with a time T >> 1/ωB) from 0 to Φ0 = h/e, the induced

emf is VH = −∂Φ/∂t = Φ0/T . As the change is done suitably slowly, the adiabatic
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Figure 2.7: The Corbino disc ([2]). An emf VH is induced by slowly introducing a
quantum of flux.

theorem ensures that the final energy eigenstate must lie in the same LL as the initial

state. The spectrum of H0 is unaffected by such a modification, but the states (2.21)

are affected: each state ΦLLL,m is shifted to the state ΦLLL,m+1. This means that each

state moves outwards, from radius r =
√

2πmlB to radius r =
√

2π(m+ 1)lB. The

net result is that, if all states in the LL are filled, a single electron is transferred from

the inner ring to the outer ring as the flux is increased from Φ = 0 to Φ0 = h/e. It

is simple to check that the same result holds for higher LL. If ν LL are filled, then ν

electrons are transferred from the inner to the outer ring. The resulting radial current

is : I = −νe/T , from which we deduce the resisivity:

ρxy =
VH
I

=
h

νe2

This is the result we want: it is the Hall resistivity. Now what happens in presence of

disorder? We have shown that the disorder induce localized states in the sample. These

states will be unaffected by the insertion of a quantum of flux Φ0. But an extended

state localised at one radius is transformed into an extended state at the next available

radius. The presence of disorder means that there are fewer extended states, but this

doesn’t change the overall conclusion: if all extended states in a given Landau level are

filled, then the net effect of adding this quantum of flux is to transport one electron from

the inner to the outer edge. Thus as far as extended states exist (we can show that it is

always the case), the resistivity is quantized.

Now that we have done a step in the understanding of the integer quantum Hall effect

(IQHE), we will focus on the fractional Hall efect (FQHE), that is of particular interest.

Indeed it is a strongly-correlated system formed by Coulomb interactions, in which the

minimal excitations carry a fraction of charge and have an anyonic statistics.
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2.3 The Fractional Quantum Hall effect

It came as a great surprise to the community when, in 1982, plateaux in the Hall

resistivity were seen at non-integer filling fractions [3] in a high-mobility 2-dimensional

electron gas. These plateaus were seen at filling fraction ν = 1
3 ,

2
3 ,

1
5 ,

2
5 in the LL and

ν = 4
3 ,

5
3 ,

7
5 in higher LL, as well as many others. Around 80 quantum Hall plateaux

have been observed. A number of these are shown below:

Figure 2.8: Integer and Fractional Quantum Hall effect conductance plateaus from
[3]

The plateaus localised at (1/m)e2/h correspond to the formation of so-called ”Laughlin’s
states”.

2.3.1 Laughlin’s filling factors

2.3.1.1 Many-particle ground state

Interactions between electrons must be playing some role in the formation of these

plateaux. However, a direct diagonalisation of the Hamiltonian in presence of Coulomb

interactions is almost impossible, especially because of the very high degeneracy of a

partially filled LL. The first approach to the fractional quantum Hall effect was due

to Laughlin [19], who described the physics at filling fractions ν = 1
m with m an odd

integer. Inspired by the many-particle ground state (2.22) derived at filling factor ν = 1,

Laughlin’s proposal for the ground state wavefunction at filling fraction ν = 1
m is:

ΦLLL(z1, .., zN ) =
∏
i<j

(zi − zj)me−
∑N
i=1 |zi|2/4l2B (2.23)

To respect the fermionic exchange properties of electrons m must be an odd integer.

Being a holomorphic function of the coordinates, this wave function lies in the lowest
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LL. The pre-factor vanishes with a zero of order m whenever two electrons come together,

providing an efficient reduction of the repulsive Coulomb interaction.

Let’s first show that this ground state has the good filling factor. For this we simply

notice that the maximum power of each coordinate zi is m(N − 1), which corresponds

to the maximum angular momentum of each particle. So the maximal radius (in the

thermodynamic limit) is R =
√

2πmNlB and the area occupied by this ground state is

A = 2πmNl2B. As each state occupy an area 2πl2B, the number of states in the area A is

mN . Thus each electron occupies m quantum states, or the area of m quantum of flux.

This gives the filling factor ν = 1
m , as promised.

We can show that the Laughlin state of (2.23) is the state that minimizes the energy

in presence of Coulomb repulsion. A state with higher power of zi would also minimize

Coulomb interaction as it would be more extended, but it would higher the total an-

gular momentum. Thus it would cost extra energy because of the confining potential.

These two contributions (the Coulomb repulsion and the confining potential) make the

Laughlin’s state a stable state for a certain range of magnetic field. This explains the

plateaux observed at filling factors ν = 1
3 , ν = 1

5 ... The gap of the fractional Hall effect

is due to the fact that in presence of a magnetic field, the relative momentum of two

particles has to be an integer. For a deeper discussion, the reader can refer to Girvin’s

lecture note on Quantum Hall effect [41].

As electrons always interact through Coulomb repulsion, we can wonder why the effects

of the Coulomb repulsion more important in the FQHE than in the IQHE. A first

explanation is that the FQHE appears for higher magnetic fields. And when the magnetic

field increases, the distance between single particles wave functions decreases. Indeed,

from the symmetric gauge treatment the distance between a particle in state m and a

particle in state m+ 1 is (
√

2π(m+ 1)−
√

2πm)lB, that is proportional to 1/
√
B. Thus

the intensity of the Coulomb repulsion increases with the magnetic field.

The second explanation is that as far as the Coulomb repulsion is weak enough not

to break the LL, in the ν = 1 case we had ”no other choice” for the ground state

than (2.22). However for fractional filling factor, the electrons have ”more freedom”

to rearrange themselves in order to minimize Coulomb repulsion. This leads to the

formations of states such as (2.23).
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2.3.1.2 Charged excitations

We can now build the excitations of the Laughlin’s state (2.23). For example, the

wavefunction describing a quasi-hole at position z0 is

ΦLLL(z1, .., zN , z0) =
N∏
i=1

(zi − z0)
∏
i<j

(zi − zj)me−
∑N
i=1 |zi|2/4l2B (2.24)

This is actually the excited state obtained when we slowly insert a quantum of flux Φ0

at position z0. But now, one electron occupy an area that corresponds to m quantum

of flux. The quantum Hall system is always incompressible. Thus introducing this

quantum of flux, we end up in a new eigenstate where a charge −em have been transferred

from the inner edge to the outer edge. We can thus repeat the Laughlin’s argument of

paragraph 2.2.6 to find the Hall resistivity :

σxy =
1

m

e2

2π~
(2.25)

Considering the excited state (2.24), and calculating the Berry phase associated to a

closed trajectory of this hole excitation, we find two type of contributions:

- the first term is the Aharonov-Bohm phase picked up by the hole. It teaches us that

it carries a charge −e/m.

- the second term tells about the statistics. It teaches us than when exchanging two holes

positions, the wave function is affected by a phase factor: Φ(z1, z2) = e2iπ/mΦ(z2, z1).

Thus the quasiparticles have a statistics that is neither fermionic nor bosonic, but an

intermediate between both. These quasiparticles created by these minimal excitations

of the ground state are called ”anyons”, and they obey ”anyonic” statistics.

Fractional charges at ν = 1/3 [15],[42] and at more complex filling factors ν = 2/5

[43],[16] and ν = 2/3 [44] have already been measured in experiments in which quasi-

particles tunnel between two opposite edge states. As it will be shown later, the mea-

surement of the tunneling current as well as its fluctuations (the ”shot noise”) give

access to the fractional charge. The fractional charge have also been measured through

photo-assisted transport measurement [18] thanks to the injection of radio-frequency

(RF) waves. Indeed, the ”photo-assisted” shot noise shows some discontinuities at bias

e∗Vdc = ~Ω, where Ω is the RF pulsation. This is another way to measure the fractional

charge, on which we will come back later. Finally, the fractional charge have been also

measured through finite frequency shot noise measurements [45].

Regarding the fractional statistics, most efforts have focused on the implementation of

single-particle interferometers [46],[47] where the output current is expected to be di-

rectly sensitive to the exchange phase. However, despite many experimental attempts
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([20],[21],[22],[23]), clear signatures were difficult to obtain, because the observed modu-

lations of the current result not only from the variation of the exchange phase, but also

from Coulomb blockade and Aharonov-Bohm interference. A recent experiment [24]

provided a clear signature of anyonic statistics using an electronic Fabry-Perot interfer-

ometer, and an efficient screening to reduce Coulomb interactions. Recently as well, an

experiment [25] based on theoretical predictions [48], have put in clearer evidence the

fractional statistics thanks to shot noise measurement in an anyon collider (using the

same kind of ideas as the ones developed in section 1.4.4).

2.4 Description of edge states

2.4.1 Filling factors ν = 1/m

In this section we will give a microscopic description for edge states that can be applied

for both integer and fractional quantum Hall effect. X.G. Wen has first shown the deep

connection between fractional edge channels and the concept of Tomonaga-Luttinger

liquids. We will here repeat the phenomenological hydrodynamical approach of Wen

in the simple case of a Laughlin state in the bulk, for filling factors ν = 1/m, m odd.

The basic idea is that the ground state forms an incompressible disc. The low-energy

excitations of this state are deformations which change its shape, but not its area, as

illustrated below.

xh(x,t)

y
VD

Figure 2.9: Edge of a quantum hole droplet. Excitations are described by the prop-
agation of a deformation h(x, t) of the droplet with a drift velocity vD = v = E/B.

We describe the deformations of one edge state through variations of the height h(x, t) =
ρ(x,t)
n of the droplet, where n is the electronic density. n is related to the filling factor

: ν = nh
eB . ρ(x, t) is the local excess charge per unit length. This deformation is a

charged density wave that propagates along the x direction with a drift velocity v = E
B ,

E being the electric field induced by the confining potential V (x, y). In order for this

droplet picture to be correct, the confining potential has to be abrupt enough. However,

V (x, y) should vary slowly on the length scale of h(x, t), such that we can write: E =
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∂yV (x, y) ≈ V (x, y = 0)/h(x) (as ∂xV (x, y) = 0). The Hamiltonian which describes the

edge modes is simply an electrostatic term:

H =
1

2

∫ L

0
V (x, y = 0)eρ(x)dx =

1

2

∫ L

0
Eh(x)eρ(x)dx =

1

2

∫ L

0
vDBh(x)eρ(x)dx

=
e

2

∫ L

0
vDB

ρ2(x)

n
dx =

vh

2ν

∫ L

0
ρ2(x)dx

It is convenient to transform this Hamiltonian into Fourier space using:

ρ(x) =
1√
L

∑
k

e−ikxρk , H =
vh

2ν

∑
k

ρkρ−k

Quantization requires first to identify a set of canonical conjugate variables which satisfy

Hamiltons equations. Identifying qk = ρk we obtain:

ṗk = −∂H
∂ρk

= −vh
ν
ρ−k (2.26)

The continuity equation for this chiral density reads ρ̇−k = −vikρ−k Integrating over

time equation (2.26) one thus get: pk = −ihν
ρ−k
k

Quantization is achieved by imposing the commutation relations: [pk, qk′ ] = i~δk,k′ .
Replacing pk by its expression, one gets the Kac-Moody commutation relations:

[ρk, ρk′ ] = −νk
2π
δk′,−k (2.27)

Using these commutation rules, we get the time-evolution of the charge density in the

Heisenberg picture: i~ρ̇k = [H, ρk] = v~kρk. We thus recover the continuity equation.

For later purposes, we introduce the Luttinger bosonic field:

ρ(x) =
1

2π
∂xΦ(x) (2.28)

From this definition and the commutation rules (2.27), we get the commutation rules

for the bosonic fields:

[Φ(x),Φ(y)] = −iπνsgn(x− y) (2.29)

From which we deduce: [ρ(x),Φ(y)/ν] = −iδ(x − y). We can check that the operator

Ψ(x) = 1√
a
eiΦ(x)/ν , where a is a cut-off distance, has the good property for being an

electron anhilation operator:

[ρ(x),Ψ†(y)] = δ(y − x)Ψ†(x) (2.30)

The anhilation operator Ψ(x) obviously depends on the filling factor. Fermion operators

are known to anti-commute, which brings a constraint on this filling factor in order to
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ensure that {Ψ(x),Ψ(y)} = 0. To find this constraint we use the Baker Campbell-

Hausdorff relations eiqΦ(x)epΦ(y) = eipΦ(y)eiqΦ(x)epq[Φ(x),Φ(y)], that lead to:

Ψ(x)Ψ(y) = e−i
π
ν
sgn(x−y)Ψ(y)Ψ(x)

In order to ensure anti-commutation relations, we need ν = 1/m, with m odd integer.

This conclusion is consistent with the Laughlin’s filling factor. In the case m = 1, we

recover the fermionic statistics expected IQHE at ν = 1.

This description of edge states is useful to predict the value of experimental observables

such as the tunneling current between two counter-propagating edge states. Indeed the

current calculation involves the Green function G(x, t) = i〈Ψ†(x, t)Ψ(0, 0)〉, that can be

found using the spectral decomposition of the bosonic fields

Φ(x, t) = φ+Qx+ i
∑
k>0

√
2πν

Lk
[ake

ik(x−vt) + a†ke
−ik(x−vt)] (2.31)

In the last expression, a†k =
√
L/2πνkρk and ak =

√
L/2πνkρ−k are creation and

anhilation operators that obey [a†k, ak′ ] = δk,k′ . Q is the zero mode operator : Q =

1/L
∫
ρ(x)dx and φ is canonically conjugate to Q. Introducing the boson occupation

number f(k) = 1
eβvk−1

, where β = 1/T , we arrive at the following result (see for example

Ref [49]):

G(x, t) ∝ v

πT
sinh

(
π
T (x− vt)

v

)−1/ν

(2.32)

As expressed in equation (2.30), Ψ†(x) creates one charge e at position x, and the Green

function G(x, t) can be used when electrons tunnel between two edges.

Now, how to create a quasiparticle with a fractional charge? The quasi-particle anhi-

lation operator Ψqp(x) has to be local with respect to the electron anhilation operator

Ψ(x). If we write Ψqp(x) = eipΦ(x), the statistical phase of such quasi-particle with

respect to an electron is p: Ψqp(x)Ψ(y) = eiπpΨqp(x)Ψ(y). Thus p has to be an inte-

ger. We can calculate in the same way the Green function associated to quasi-particles

propagation. We find:

Gqp(x, t) ∝
v

πT
sinh

(
π
T (x− vt)

v

)−p2ν
(2.33)

The most dominant tunneling process is for p = 1, that is the most common choice in

litterature. We can check that Ψ†qp(x) created a fractional charge e∗ = νe = e/m at

position x:

[ρ(x),Ψ†qp(y)] = νδ(y − x)Ψ†qp(x) (2.34)
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Finally, we also recover the fractional statistics as :

Ψqp(x)Ψqp(y) = eiπνΨqp(y)Ψqp(x) (2.35)

2.4.2 Integer filling factors ν > 1

Wen’s approach can be generalized to the case of filling factors ν > 1, where as explained

before, we have ν co-propagating edge states on each side of the sample. We thus intro-

duce the charge density operators and the associated bosonic fields for each edge state

n : ρn(x, t) and ρn(x, t) = 1
2π∂xΦn(x, t). The Hamiltonian is now a sum of electrostatic

terms due to the deformation of edge states:

H =
∑
n

vnh

2

∫ L

0
ρ2
n(x)dx (2.36)

vn is the drift velocity of electrons of edge state n. It is linked with the electric field at

the edge state position. This Hamiltonian can be derived in a more rigorous way thanks

to the bozonisation technique for free fermions. ρn and Φn obey the same commutation

rules as the one given by equations (2.27) and (2.29):

[ρn,k, ρm,k′ ] = −νk
2π
δn,mδk′,−k

[Φn(x),Φm(y)] = −iπνsgn(x− y)δn,m

where he have introduced ρn,k, the Fourier components of ρn(x). Similarly than before,

we define the electron operators associated to the edge state n: Ψn(x) = 1√
a
eiΦn(x). The

expression of the Green functions Gn(x, t) = i〈Ψ†n(x, t)Ψn(0, 0)〉 in absence of interac-

tions is simple: these are given by equation (2.32), taking ν = 1 and replacing the velocity

v by vn. They lead to a linear tunneling current between two counter-propagating edge

states.

Now what happens if we add inter and intra-edge interactions? If we assume that the

screening is good enough for the Coulomb potential to be short-ranged, we can write

the Hamiltonian as:

H =
∑
n,m

∫
dxdyVn,m(x− y)ρn(x)ρm(y) =

∑
n,m

∫
dxdyVn,mδ(x− y)ρn(x)ρm(y)

=
∑
n,m

∑
k

Vn,mρn,kρm,−k =
∑
j

vj ρ̃n,kρ̃m,−k
(2.37)

where Vn,m = Un,m + δn,m2πvn. For the purely chiral case of the IQHE we can express

these matrix elements with an orthogonal matrix qn,j so that qqT=1 and : Vn,m =
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∑
j qn,jvjqj,m. The diagonal density operators are thus defined as: ρ̃j(x) =

∑
n qn,jρn(x).

From the expression of the hamiltonian (2.37) we can check that they propagate at the

generalized velocity vj : ρ̃j(x, t) = ρ̃j(x − vjt). We can replace the Φn(x, t) by their

expression with respect to the Φ̃j(x, t) in order to calculate the Gn(x, t). We obtain:

Gn(x, t) ∝
∏
j

vj
πT

sinh

(
π
T (x− vjt)

vj

)−q2j,n

It is important to note that at low temperature, the correlation function in chiral systems

behaves as Gn(0, t) ∝ 1/t even in presence of interactions, because
∑

j q
2
j,n = 1. The

consequence is that the I-V characteristic of the tunneling current is linear even in

presence of interactions.

2.4.3 Fractional filling factors ν = m
2pm±1

Many different approaches have been proposed to describe the physics at filling factors

ν = m
2pm±1 . One useful approach is the composite fermions theory [50], that makes a

match between fractional filling factors of electrons and integer filling factors of ”com-

posite fermions” (CF). A CF is the topological bound state of an electron and an even

number of quantized vortices, sometimes visually pictured as the bound state of an elec-

tron and, attached, an even number of magnetic flux quanta. The magnetic field seen by

composite fermions is given by B∗ = B − 2pnφ0, where n is the electronic density, and

B the external magnetic field. More accurately, the vortices bound to electrons produce

their own geometric phases which partly cancels the Aharonov-Bohm phase due to the

external magnetic field, to generate a net geometric phase that can be modeled as an

Aharonov-Bohm phase in an effective magnetic field B∗. We define the filling factor ν∗

of composite fermions as ν∗ = nφ0/|B∗| . This gives the following relation between the

electron and CF filling factors:

ν =
ν∗

2pν∗ ± 1

Thus the filling factors ν = m
2pm±1 correspond to integer CF filling factors ν∗ = m. The

interaction between CF themselves is often negligible to a good approximation. Thus

the formation of fractional edge channels is equivalent to the one described previously

for the integer quantum Hall effect. Moving from the bulk to the edge, each time a CF

Landau level crosses the Fermi energy a line of gapless excitation is built. These defines

m chiral fractional edge channels. For ν = 1/3, ν∗ = 1, leading to the formation of one

edge state. For ν = 2/3 and ν = 2/5, we have ν∗ = 2, leading to the formation of two

edge states.

The composite fermion picture is supported by experimental observations [51]. The
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symmetric variations of the Shubnikov-de Has oscillations around B1/2 = 2nφ0 are very

similar to that observed around B = 0.

The CF approach for edge channels is convenient for pedagogical presentation and gives

a fair qualitative representation, but is certainly not complete. To predict the trans-

port properties we need a microscopic description of edge states. A generalization of

Wen’s approach for ν = m
2pm±1 shows that one must have p branches of bosonic modes

(consistent with the CF picture). For example , the ν = 2/5 FQH state consists of two

droplets, one is the electron condensate with filling factor ν1 = 1/3 and radius r1 and

the other is the quasiparticle condensate with filling factor ν2 = 1/15 (1/3+1/15 = 2/5)

and radius r2. When r1 − r2 >> lB the two edges are independent. Generalizing the

hydrodynamical approach previously described, we can show that there are two branches

of the edge excitations whose low energy dynamics is described by:

[ρn,k, ρm,k′ ] = −νmk
2π

δn,mδk′,−k

H = 2π
∑
n,k>0

vn
νn
ρn,kρn,−k

(2.38)

where n = 1, 2 labels the two branches, and vn are velocities of edge excitations (that

are determined by the effective electric fields from the edge potential and the electrons).

In order for the Hamiltonian to be bounded from below, we require νnvn > 0. We find

that the stability of the ν = 2/5 FQH state requires both vn to be positive, so that we

have co-propagating edge states.

According to the hierarchical picture the ν = 2/3 FQH state is also formed by two

condensates, an electron condensate with filling factor 1 and a hole condensate with

filling factor 1/3. Thus we have again two branches of edge excitations but now with

opposite velocities: we have two counter-propagating states. Experimentally, the ex-

istence of fractional edge channels can be probed in transport experiments using the

reflection induced by a QPC in a manner similar to the integer case. However, the co

or counter-propagating nature of the edge states is more difficult to probe, although it

has been the subject of some experimental works [52] [53].

Using the commutation rules of equation (2.38) and the same arguments as section 2.4.1,

we find that the electrons operators on the two edges are given by:

Ψn(x) = eiΦn(x)/νn for n = 1, 2 (2.39)

with ∂xΦn(x) = 1
2πρn(x). The electron propagator at zero temperature have the form:

Gn(x, t) = i〈Ψ†n(x, t)Ψn(0, 0)〉 ∝ 1
(x−vnt)−1/|νn| .
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As we bring the two edges together (r1 − r2 ≈ lB), the interactions between edges can

no longer be ignored. In this case we make the same treatment as in section 2.4.2

to diagonalize the Hamiltonian, and calculate Gn(x, t) using the new eigenmodes. Re-

markably, Wen’s approach leads to a power law of the electrons propagation function

Gn(0, t) that is not modified by the interaction parameters: we always have Gn(0, t) ∝
1/t−1/|νn|. The power is determined only by the topological orders of the bulk FQH

state. Once we know the electron operators, we can find the quasi-particle operators

Ψqp(x) = ei(p1Φ1(x)+p2Φ2(x)) (where Φ1 and Φ2 are the eigenmodes of the Hamiltonian

with interactions). The p1,2 factors are fixed by the fact that Ψqp(x) and Ψ(y) com-

mute, using the same locality argument as in section 2.4.1. For quasiparticles, we find

Gqp(0, t) ∝ 1/t(n1ν1+n2ν2), where n1 and n2 are two arbitrary integers.

We can also determine the charge carried by quasi-particle operators on each edge state.

Here we directly give the results:

[ρ1(x),Ψqp(y)] = δ(x− y)ν1n1

[ρ2(x),Ψqp(y)] = δ(x− y)ν2n2

We can choose different quasi-particle operators and thus charges thanks to the freedom

on n1, n2. But comparing with experiments at ν = 2/5 [43][16], where it was observed

that quasiparticles on the inner edge channel have charge e/3 and the quasiparticles

on the outer edge channel have charge e/5, the good choice would be (n1, n2) = (1, 3)

(knowing that ν1 = 1/3 and ν2 = 1/15).

We can also determine the statistical phase when exchanging two quasiparticle operators,

that is found to be: n2
1/ν1 + n2

2/ν2. We thus recover the fractional statistics of quasi-

particles. We note that the exchanging phase is here again linked to the charge carried

by quasi-particles.

As a conclusion, the description of edge states in term of bosonic modes at integer filling

factors of fractional filling factors (using Wen’s approach) allows to make many inter-

esting physical predictions:

- The calculation of the propagation function gives the I-V characteristics of tunneling

experiments, that we will detail in the next chapter. However we will see that exper-

imentally, the power laws derived in this section can hardly be observed. The reasons

for this can be numerous: long range Coulomb interactions, tunneling that is not local,

or tunneling amplitudes that are energy-dependent.

- We recover the fractional charge carried by quasi-particles on each edge states, that is

particularly interesting at filling factors ν = m
2pm±1 . As we will also detail next, these

fractional charges are accessible by shot noise measurements, and previous works have

shown a good agreement with the theory.
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- Finally, we demonstrated the fractional statistics of such quasi-particles, calculating

the statistical phase associated to each of these.



Chapter 3

Quantum transport in tunneling

experiments

In the last chapters, we have emphasized that electronic transport at the mesoscopic scale

have to be treated with quantum mechanics. The probabilistic nature of the quantum

transmission of electrons impinging on a barrier is responsible for a fundamental noise

of the electrical current, the shot noise. We have emphasized the fact that the shot

noise can reveal the statistics of the particles that collide in an interferometer, thanks to

two-particle exchange interference. To control the trajectory of these particles, we work

in the quantum Hall regime, where as we have seen, transport occurs only through the

edges of the sample. We saw that the quantum dynamics of edge states is very similar

to that of Tomonaga-Luttinger liquids (TLL) predicted for 1D interacting electrons [54],

with remarkable simplifications for integer filling factors. The fractional Hall regime is

of particular interest because it gives rise to quasi-particles that have a fractional (or

”anyonic”) statistics, as also showed. He have re-derived the propagation functions of

such quasi-particles and shown that they mainly depend on the bulk filling factor.

Now we explicit the system we are working with and show how these propagation func-

tions give access to the I-V characteristics of the tunnel junction, as well as the fluctua-

tions of the current (the shot noise). We will use a perturbative approach with respect

to the tunnelling amplitudes, following the works of I.Safi [33],[55], to express the cur-

rent and the noise. Then we will present the scattering approach, mainly developed by

Landauer, Imry and Büttiker [38]. We will see that both approaches lead to the same

results for DC transport in the case of non-interacting fermions. For the time-dependent

transport, we also get similar predictions within some assumptions.

59



60

3.1 Perturbative approach

3.1.1 DC transport

In this part, we describe tunneling experiments between two counter-propagating edge

channels, which form at the periphery of a QH fluid. In our experiments, the charge

tunneling occurs thanks to a Quantum Point Contact (QPC) on which we apply a voltage

to control the electronic density. The QPC acts as a confining potential for the QH fluid,

defining the geometry of edge channels. The latter can be easily connected to metallic

contacts arranged at the periphery of the sample and then to an external circuit. In

this section we do not use any specified model for the description of edge states: this

approach is valid for arbitrary filling factor ν. For now we don’t even assume initial

thermalisation, thus including the case of noisy incoming current on the QPC (which is

the case of the anyon collider or when we have non-perfect ohmic contacts). The only

restriction is on the tunnelling amplitude: the tunneling current have to be weak with

respect to the incoming current. The two physical situations (strong and weak barrier)

included by this model are illustrated below, for the particular case of ν = 1/3.

Figure 3.1: Schematic view of charge transfer in the case of a strong barrier (upper
figure) and a weak barrier from [4]. In the first situation only electrons can tunnel as
the regime of FQHE is destroyed in the QPC region. In the second situation, the FQHE
fluid is weakly perturbed and fractional charge transfer may occur via the FQHE fluid.

The charge transport occurs between two edges that are more generally two systems

with total charge Q1 and Q2. We impose a bias Vdc = V1 − V2 between both systems

thanks to electronic reservoirs connected to the external circuit. The total Hamiltonian,
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including coupling with the bias and tunneling between systems 1 and 2, thus writes:

H = H0 +Q1V1 +Q2V2 +A+A†

The tunneling term A+A† transfers the charge Q = Q2−Q1

2 from a quantity q, that is the

the charge of the quasi-particles that are exchanged. This charge q depends on the local

filling factor under the QPC, as well as the choice for the quasi-particles operator (for

complex filling factors, this choice is made from experimental observations!). The un-

perturbed Hamiltonian H0 may include edge reconstruction or inhomogeneous Coulomb

interactions, or even extended tunneling processes between co-propagating edges. Q has

to commute with H0 to ensure charge conservation in absence of tunneling, and it is

incremented by q when acting upon by A†:

[Q,A] = qA (3.1)

We can make a unitary transformation on H in order to absorb V1,2 in the tunneling

term [56]: H ′ = UHU † − iU∂tU †. Choosing U(t) = e−it(V1Q1+V2Q2)/~ we get : UAU † =

eiqt(V1−V2)/~A. Thus the new Hamiltonian writes:

H ′ = H0 + eiqtVdc/~A+ e−iqtVdc/~A† (3.2)

We emphasize that this transformation is possible assuming homogeneous voltages V1

and V2. This is the case in the quantum Hall regime when we assume that the edge

states are equipotentials. It corresponds to a gauge choice, where the electric field is

located at the tunneling point (the QPC). We could also allow the voltages V1 and V2

to be time-dependent, but now we are only interested by the DC case. Equations 3.1

and 3.2 imply that:

I(t) = ∂tQ =
iq

~
(e−iωJ tA− eiωJ tA†) (3.3)

I(t) is the backscattering current operator, and ωJ = qVdc/~. We can calculate its dc

value at second order in A using the two building blocks:

~2X>(t) = 〈A†H0
(t)AH0(0)〉 (3.4)

~2X<(t) = 〈AH0(0)A†H0
(t)〉 (3.5)

where AH0(t) = eiH0tAe−iH0t, and 〈〉 is the thermodynamic average of the expectation

values taken on the unperturbed states of H0. To second order in A, the mean DC

current is given by:

Idc(ωJ) = q(X>(ωJ)−X<(ωJ)) (3.6)
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that can be interpreted as the difference between two transfer rates in opposite directions.

We can now apply this result to the case of the FQHE with edge states described as

chiral TLL. In the strong backscattering case, the FQHE regime is destroyed at the

QPC level, such that only electrons can tunnel: q = e and A = Ψ†1Ψ2 involves electron

operators. However, in the weak tunneling regime, only quasi-particles can tunnel, such

that q = e∗ and Ψ1,2 are quasi-particle operators carrying a fractional charge. The I-V

characteristic is thus different for these two regimes. Using the edge states description

of section 2.4 at simple filling fractions ν = 1/m to calculate the propagation functions

〈Ψ1,2(x, t)Ψ1,2(0, 0)〉, and assuming a local tunneling (at x = 0), we can derive the

following expressions for the conductance G = ∂Idc/∂Vdc:

G(ωJ) =
νe2

h
(
ωJ
TB

)2(1/ν−1) for ωJ � TB

G(ωJ) =
νe2

h
(
ωJ
TB

)2(ν−1) for ωJ � TB

The first expression corresponds to the weak backscattering regime, and the second to

the strong backscattering regime. TB is the impurity strength in energy units. We can

note the duality ν ←→ 1/ν in the power exponent. Increasing the energy (the voltage or

the temperature), leads to a progressive transition from the strong backscattering regime

to the weak backscattering regime. The curve G(ωJ) describing the whole transition can

be calculated exactly to all perturbative order using conformal field theory [57].

The last expressions are valid within the description of edge states of section 2.4, treated

as a Tomonaga-Luttinger liquid (TLL). Power-law behaviours have been measured for

the tunneling current between a Laughlin state (ν = 1/3) and a metal (ν = 1), but the

evolution of the exponent factor with the magnetic field does not show the predicted

plateaux [58], [59]. The discrepancy between experiments and predictions may be due

to the reconstruction of the edge. Wen’s model assume a sharp density variation at

the edge of the 2D sample. In real samples, the density decreases smoothly and some

additional edge states corresponding to filling factor lower than the bulk filling factor

may also strongly modify the exponents.

Hopefully, even when the description of edge states using the TLL model is not valid,

general results for the noise can be derived using the expression (3.3) of the tunneling

current. Letting δIH′(t) = IH′(t)−Idc(ωJ) where the subscript H ′ refer to the Heisenberg

representation with respect to H ′(t) (equation (3.2)), the current noise is defined as:

S(ωJ , t− t′) = 〈δIH′(t)δIH′(t′)〉 = 〈IH′(t)IH′(t′)〉 − 〈IH′〉2

The term 〈IH′〉2 involving only fourth order terms in A, it cancels at the second-order.

To express S at second-order in A, we replace IH′(t) by IH0(t), or AH′(t) by AH0(t). We
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obtain for the noise at frequency ω:

S(ωJ , ω) = q2(X>(ω − ωJ) +X<(−ωJ − ω)) (3.7)

At thermal equilibrium T = 1/β, we can show that the correlators are linked: X>(ω) =

eβωX<(ωJ). Using this property, equations (3.7) and (3.6), we get:

S(ωJ , ω) = q
[
(1 +N(ωJ − ω))I(ωJ − ω)−N(ωJ + ω)I(ωJ + ω)

]
(3.8)

where N(ω) = 1/(eωβ − 1) is the Bose-Einstein distribution at temperature T . This

formula, derived in Ref [14],[60], generalizes previous derivations of the finite frequency

noise [61] for independent electrons and assuming electron-hole parity. It has been exper-

imentally checked in some experimental works such as Ref [62], where infrared photons

emitted by a tunneling junction were probed. Closer to our subject, the fractional charge

of quasiparticles in a QPC geometry was measured through the finite-frequency noise

[63] using equation (3.8).

In our experiment, we are interested only by the zero-frequency noise:

S(ωJ , 0) = q2(X>(ωJ) +X<(ωJ)) (3.9)

From the spectral decomposition of X<(ωJ) and X>(ωJ), we can show that they are

always positive. Thus the zero frequency noise 3.9, compared with Eq. 3.6, obeys:

S(ωJ , 0) ≥ q|Idc(ωJ)| (3.10)

From equations (3.9) and (3.6), we get:

S(ωJ , 0) = qcoth(
~ωJ

2kBT
)Idc(ωJ) (3.11)

Experimentally, we have access to the symmetrized noise, that at zero frequency is

simply 2S(ωJ , 0). Thus equation (3.11), derived in [64], usually appears with a factor

2 and is also known as ”Schottky formula” [65]. It generalizes expression of shot noise

based on Luttinger liquid model [66],[12],[13]. At zero temperature or more generally

when the system described by H0 is in its ground state, we recover the Poissonian noise:

S(ωJ , 0) = qIdc(ωJ). However we emphasize that following equation 3.10, the noise is

super-poissonian for thermal states or for out of equilibrium initial states.

Equation (3.9) shows that it is possible to access to the tunnelling charge q through

shot noise measurements. These measurements have started about 20 years ago in

Saclay and in the Weizmann Institute, and revealed a charge q = e/3 at fraction filling

factor ν = 1/3 [15] [42]. In both experiments a QPC was used to implement a local
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and controllable coupling between two ν = 1/3 fractional edges (figure 3.3). The main

difference between the two works resides in the shot noise detection technique, as in

Ref [15] both auto and cross correlations were measured, whereas only auto-correlation

measurements were made in Ref [42].

Fractional charge measurements at more complex filling factors such as ν = 2/3 [44]

and ν = 2/5 [43],[16] were also performed. While at ν = 2/5 the fractional charge

was found to be q = e/5, an unexpected evolution of q with the temperature was

measured at ν = 2/3. Indeed, the measured charge from auto-correlations was e∗ = 2e/3

at low temperature (25mK), and e∗ = e/3 at higher temperature (125mK). Recent

comparisons between auto and cross correlation noise at ν = 2/3 and ν = 2/5 [6]

revealed that the this phenomenon is not the signature of a ”charge evolution”, but

more probably of a non perfect coupling between the reservoirs and the edge states of the

FQHE. When the reservoir injects a noisy current, the auto correlation is expected to be

higher than the cross correlation. This difference was found to decrease when increasing

the temperature [6]. This observation emphasizes the advantage of cross-correlation

measurement technique, that is the most sensitive to the noise due to partitioning at

the QPC, and is thus more suitable for fractional charge measurement.

For the weak tunneling regime of complex filling factors (ν = 2/3 or ν = 2/5), as

showed in the last chapter, quasi-particle operators can involve the sum of bosonic fields

related to different edge states. Thus the tunneling do not systematically occur from

one physical edge state to the other (in contrast with the assumption made in Ref.

[16]). However the strength of the perturbative approach is that it is independent of

edge reconstruction picture, such as it include the more general situation illustrated in

figure 3.3. We inject a current I0 by imposing a bias between the two edge states (or

νbulk νbulkνbulk νQPC νbulk νbulkνbulk ν'QPC

V1 V2I0 I0

IT

Figure 3.2: Schematic view of charge transfer in the case of weak tunneling through
the QPC region. The left figure correspond to a stable QPC filling factor νQPC , such
that no tunneling occurs between the two opposite edges of the sample. The right figure
correspond to a non-stable filling factor ν′QPC , allowing charge transport through the

QPC region.
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with a current source) and we control the QPC local filling factor νQPC by applying a

voltage on the QPC. In the situation 1 (left image of figure 3.3), the QPC filling factor

is stable, such that we see a plateau of conductance and there is no current transport in

the QPC region. In the situation 2 (right image of figure 3.3), the voltage V2 impose an

electronic density corresponding to a non-stable filling factor ν ′QPC , such that transport

can occur through the bulk at the QPC level. This transport does not necessarily occur

from one edge state to the other but can involve the contribution of many edge states.

However the tunneling process can involve only one effective charge q. The perturbative

approach gives expression for the tunneling current IT resulting from the situation 2 as

well as its fluctuations, assuming that this current is weak enough IT � I0.

This approach thus leads to useful predictions for the tunneling current as well as its

fluctuations in a very general context. In particular, we have confirmed the classical

intuition that the fluctuations of a weak tunneling current are poissonian, thus propor-

tional to the current. When we can use Wen’s description of edge states as TLL, the

I-V characteristic is predicted to follow a power law.

3.1.2 Time-dependent transport

The influence of a periodic driving field on the transport through tunnel barriers is

an extensively studied subject. A paradigmatic result has been obtained more than

three decades ago by Tien and Gordon for a superconducting tunnel junction [67]. A

perturbative approach with respect to tunnelling amplitudes was first introduced by

Wen to study quantum transport in the FQHE and in presence of an AC field [68].

However this work applies only to transport through simple filling factors ν = 1/m, and

results were derived for the current only. In order to describe time-dependent transport

(current and noise) in a very general context that includes complex filling factors, we

can extend the previous perturbative approach [33]. The AC signal is applied through

metallic contacts linked with an external circuit. The metallic contacts, when properly

coupled to the edge states, impose time-dependent potentials V1(t) (resp. V2(t) ) on the

upper (resp. down) edge state. Assuming homogeneous V1(t) and V2(t) along the edge

states, we can write the total Hamiltonian in the same form as equation (3.2):

H̃ ′ = H0 + eiqtVdc/~E(t)A+ e−iqtVdc/~E†(t)A† (3.12)

where E(t) = eiΦ(t) and Φ(t) = e/~
∫ t
−∞(V1(t′) − V2(t′))dt′. This expression of the

Hamiltonian can be demonstrated properly using the quadratic form of the edge states

Hamiltonian H0, accounting for propagation effects between the reservoirs and the QPC.

V1(t) and V2(t) correspond to the potential of edge states at the QPC level.
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The tunneling current operator (in the Schrödinger picture) resulting from expression

(3.12) and commutation rules (3.1) is:

ĨS(t) = − q
~
(
eiqVdct/~E(t)A− e−iqVdct/~E†(t)A†

)
(3.13)

At the second order in A, the noise operator in the Heisenberg picture is equal to the one

in the interaction picture: S̃(t, t′) = 〈Ĩ(t)Ĩ(t′)〉, where Ĩ(t) = eiH0tĨS(t)e−iH0t. Using

expression (3.13) as well as the assumption 〈A(t)A(t′)〉 = 0, we get:

S̃(t, t′) = − q
2

~2

[
eiqVdc(t−t

′)/~E(t)E†(t′)X<(t′ − t) + e−iqVdc(t−t
′)/~E†(t)E(t′)X>(t− t′)

]
(3.14)

The correlatorsX<(t−t′) andX>(t−t′) are given by equation (3.4), in which t′ = 0. Now

we assume that E(t) is T -periodic, and we note Ω = 2π/T its pulsation. Ω corresponds

to the common pulsation of V1(t) and V2(t). We can Fourier-decompose E(t):

E(t) =
∑
l

ple
−ilΩt (3.15)

from which we deduce: E(t)E†(t′) =
∑

l,m plp
†
l+me

−ilΩtei(l+m)Ωt′ . Introducing this ex-

pression in equation (3.14), and making the variable change u = t− t′, we can calculate

the zero-frequency noise:

S̃(Vdc) =
∑
l

|pl|2
∫
du
[
e−iu(qVdc−lΩ)X<(u) + eiu(lΩ−qVdc)X>(u)

]
=
∑
l

|pl|2
[
X<(lΩ− qVdc) +X>(lΩ− qVdc)

]
Leading to the main result:

S̃(Vdc) =
∑
l

|pl|2S(ωJ = qVdc/~− lΩ, 0) (3.16)

where we recognized the expression of the DC zero-frequency noise given by equation

(3.9) and (3.11). This result is quite striking: it reveals that the shot noise in presence

of a time-dependent voltage only depends on the DC shot noise and the shape of the AC

voltage. Using the same assumptions, similar results were found for the zero frequency

current Ĩ(Vdc) in presence of an AC signal [69]:

Ĩ(Vdc) =
∑
l

|pl|2Idc(qVdc/~− lΩ) (3.17)
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This formula contains the results of numerous previous works based explicitly on a

specific model within much more restrictive framework, for instance considering non-

interacting systems [31], [32] or based on Tomonaga-Luttinger models [70],[71],[72].

Interestingly, one can interpret the previous expressions of S̃(Vdc) and Ĩ(Vdc) it by ex-

tending the ”photo-assisted” transport picture (cf. paragraph 3.2.3) to complicated

global many-body states. A tunneling charge q has a probability |pl|2 to absorb (emit)

a energy l~Ω < 0 (> 0) (or l photons with energy ~Ω), thus sees an effective voltage

Vdc−l~Ω/q. The total current is given by the superposition of DC currents at Vdc−l~Ω/q

weighed by the probabilities |pl|2. The transport in presence of an AC voltage is called

”photo-assisted” because it can be interpreted as the result of photons exchange pro-

cesses. When V1(t) = V1 cos(Ωt) and V2(t) = 0, pl corresponds to the l-th order Bessel

function Jl(
qV1
~Ω ). If there is a time delay τ between the two sine waves V1(t) = V2(t+ τ),

pl also corresponds to a Bessel function but with argument 2qV1 sin(Ωτ/2)/~Ω. This

can be easily shown noticing that:

V1(t)− V2(t) = V1 sin(Ω(t+ τ))− V1 sin(Ωt) = 2V1 sin(Ωτ/2) sin(Ωt+ φ/2)

This picture is thus useful to make predictions on HOM measurements, where we mea-

sure the shot noise S̃ while varying the delay τ .

”HOM” types of experiments were also theoretically addressed in different configura-

tions, when the injection of quasi-particles is made by capacitive coupling [73][74]. Re-

cently, the result (3.16) has been experimentally verified by photo-assisted shot noise

(PASN) measurements in the FQHE [18]. The slope changes of the PASN S̃(Vdc) at

qVdc = ~Ω, measured while irradiating the sample with microwave frequencies (Ω up

to 18GHz), were found to be an alternative way to measure the fractional charge for

q = e/5 and q = e/3. PASN measurements were also performed in a tunnel junction in

the regime of dynamical Coulomb blockade [75]. In this regime, the strong non-linearity

of the I-V curve makes it possible to observe photo-assisted processes in the current as

well. However, a mismatch between the AC amplitude deduced from photo assisted cur-

rent and from photo assisted noise measurement was observed, questioning the validity

of equations (3.16) (3.17) in that regime.
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3.2 The scattering approach

3.2.1 Conductance of a mesoscopic system

We are now going to introduce another very useful and widely-used approach for quan-

tum transport, first initiated by Rolf Landauer and then generalized by M. Büttiker

[38],[9]. The idea of the scattering approach is to relate transport properties of the sys-

tem (in particular, current fluctuations) to its scattering properties, which are assumed

to be known from a quantum-mechanical calculation. In its traditional form the method

applies to non-interacting systems in the stationary regime. The system consists on a

mesoscopic conductor linked to many particle reservoirs. It is assumed that the reser-

voirs are so large that they can be characterized by a temperature Tα and a chemical

potential µα; the distribution functions of electrons in the reservoirs, defined via these

parameters, are the Fermi distribution functions:

fα(E) =
1

1 + e(E−µα)/kBTα

The total energy E of electrons is counted from the chemical potential of one of the

reservoirs, that is supposed to be grounded.

3.2.1.1 Two-terminal case

We first consider a two-terminal geometry for simplicity. We put this system out-of

equilibrium by applying a bias on one of the reservoir. We ignore internal potential

variations that could be induced by external potentials. Thus the non-equilibrium state

is introduced exclusively through the distribution functions of the electrons emitted

by the reservoir. And the wavefunctions on the left and right sides of the sample are a

simple superposition of plane waves incoming on the barrier, and reflected by the barrier.

These two are linked through a scattering matrix s that is determined by solving the

Schrödinger equation with a certain shape of the barrier potential. We can introduce

the operators a†L,n(E) and aL,n(E) that act on the Fock states of the left reservoirs

by creating and annihilating electrons in the transverse mode n and with energy E.

These electrons are incident upon the barrier. In the same way, the creation b†L,n and

annihilation bL,n operators describe electrons in the outgoing states, as illustrated below.

The operators a and b obey anti-commutation relations:

[a†L,n(E), aL,n′(E
′)] = δn,n′δ(E − E′)

[a†L,n(E), a†L,n′(E
′)] = [aL,n(E), aL,n′(E

′)] = 0
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Figure 3.3: Example of two-terminal scattering problem for the case of one transverse
channel.

and are related via the scattering matrix s, that is generally energy-dependent:

bL1

...

bLNL

bR1

...

bRNR


= s



aL1

...

aLNL

aR1

...

aRNR


(3.18)

NL and NR being the number of modes on the left and right lead. The matrix s has

dimensions (NL +NR)× (NL +NR). The current conservation implies that the matrix

s is unitary: s†s = ss† = 1.

We can express the current flowing from the left and right side of the sample when we

apply a finite bias Vdc on the left side, such that µL = µ+ eVdc, µ being the equilibrium

potential (or the energy reference, fixed by the ground). We find (the reader can refer

to Ref. [38] for the derivation):

IL(t) =
e

2π~
∑
n

∫
dEdE′ei(E−E

′)t/~(a†L,n(E)aL,n(E′)− b†L,n(E)bL,n(E′))

To find this expression, we have assumed that the velocity of electrons contributing

to the current vary slowly with the energy. Using equation (3.18), we can express the

current in term of a and a† operators alone:

IL(t) =
e

2π~
∑
α,β

∑
m,n

∫
dEdE′ei(E−E

′)t/~a†α,m(E)Am,nα,β (L,E,E′)aβ,n(E′) (3.19)

where the indices α, β label the reservoirs and may assume values L or R, whereas the

indices n and m label the transport channels. We note that the current is uniform along

the lead. The matrix A is defined as:

Am,nα,β (L,E,E′) = δm,nδα,Lδβ,L −
∑
k

s†L,α;mksL,β;kn
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We can first derive the average current from equation (3.19). For a system at ther-

mal equilibrium the quantum statistical average of the product of an electron creation

operator and annihilation operator of a Fermi gas is:

〈a†α,m(E)aβ,n(E′)〉 = δn,mδα,βδ(E − E′)fα(E) (3.20)

Using equations (3.20) and (3.19) and taking into account that the scattering matrix s

is unitary, we obtain:

〈IL〉 =
e

2π~

∫
dETr(t†(E)t(E))(fL(E)− fR(E)) (3.21)

Here the matrix t is the off-diagonal block of the scattering matrix (3.18), tmn = sRL;mn.

In the QH regime, the transport modes correspond to edge channels, and the scattering

between edge channels is suppressed: tmn = δmntn. Thus the matrix t is diagonal

and the expression of the mean current simplify as Tr(t†(E)t(E)) =
∑

nDn(E), with

Dn = t†n(E)tn(E). At zero temperature and if the transmission coefficients tn vary

slowly on the energy scale µL − µR = eVdc this gives:

〈IL〉 =
e2

2π~
∑
n

DnVdc

which leads to the quantization of the conductance when an integer number of channels

is transmitted. In the non-interacting case limit, the current can thus be expressed only

in term of transmission probabilities for each channel independently.

3.2.1.2 Multi-terminal case

This approach can be easily generalized to a multi-terminal case. We introduce, for each

lead α, creation and annihilation operators of electrons in an incoming a†α,n, aα,n and

outgoing b†α,n, bα,n state on the transverse channel n. These operators are again related

via the scattering matrix. We write down this relation, similar to Eq. (3.18):

bαm(E) =
∑
βn

sαβ,mnaβn(E)

In other words, we define a scattering matrix from contact β to contact α that have

dimensions Mα×Mβ. If we apply a voltage Vβ to the reservoir β, we modify its electro-

chimical potential: µβ = µ+ eVβ, where µ is the equilibrium potential. We still neglect

the variations of potential inside the conductor, assuming that this bias only modify the

Fermi distribution of electrons in the reservoir β. Then, similarly to the two-terminal

case, we can express the wave function of electrons in any lead α as a superposition of
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plane waves emitted from the reservoir α and incoming on the reservoir α after reflexion

on the barrier or after having been transmitted from other reservoirs. We obtain the

current flowing in the lead α:

Iα(t) =
e

2π~
∑
βγ

∑
mn

∫
dEdE′ei(E−E

′)t/~a†β,n(E)Amnβ,γ(α,E,E′)aγ,m(E′) (3.22)

where the number Amnβ,γ are the matrix coefficients:

Amnβγ (α,E,E′) = δm,nδβ,αδγ,α −
∑
k

s†αβ;mk(E)sαγ;kn(E′) (3.23)

The signs of currents are chosen to be positive for electrons incoming on the sample.

Then we obtain the average current incoming on the contact α:

〈Iα〉 =
e

h

∫
dE(Nα −Rαα)fα(E)−

∑
α 6=β

Tαβ(E)fβ(E)

where Rαα is the total probability for an electron from contact α to be reflected in the

same contact:

Rαα(E) =

Nα∑
m,n=1

|Sαα,mn|2

and Tαβ is the probability for an electron incident from β to be transmitted to contact

α:

Tαβ(E) =

Nα,Nβ∑
m,n=1

|Sαβ,mn|2

The conservation of the mean current gives Nα = Rαα(E) + Tαβ(E), and
∑

α〈Iα〉 = 0.

3.2.2 Noise of a mesoscopic system

We are concerned with fluctuations of the current away from their average value. We

thus introduce the operators ∆Iα(t) = Iα(t) − 〈Iα〉. We define the correlation function

of the current in contact α and the current in contact β as:

Sαβ(t− t′) =
1

2
〈∆Iα(t)∆Iβ(t′) + ∆Iβ(t′)∆Iα(t)〉

Note that in the absence of time-dependent external fields the correlation function must

be function of only t− t′. Its Fourier transform is thus expressed as:

2πδ(ω + ω′)Sαβ(ω) = 〈∆Iα(ω)∆Iβ(ω′) + ∆Iβ(ω′)∆Iα(ω)〉
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In this expression, Iα(ω) =
∫
dtIα(t)eiωt and ∆Iα(ω) = Iα(ω)−〈Iα(ω)〉. From expression

(3.22), we obtain:

Iα(ω) =
e

2π~
∑
βγ

∑
mn

∫
dEa†β,n(E)Amnβ,γ(α,E,E + ~ω)aγ,m(E + ~ω)

To find the noise power we need the quantum statistical expectation value of products of

four operators a. Using Wick’s theorem as well as the thermal average of a†a in equation

(3.20), we find for the zero-frequency noise:

Sαβ(ω = 0) =
e

2π~
∑
γδ

∑
mn

∫
dEAmnγδ (α,E,E)Anmδγ (β,E,E)(fγ(E)(1−fδ(E))+fδ(E)(1−fγ(E)))

Let’s apply these results for a sample similar to the experimental setup, that has six

ohmic contacts. Two of them are grounded, so that we can consider a 4-contact geometry

to calculate the auto and cross-correlation functions. The bulk filling factor ν is integer,

thus also corresponds to the number of edge channels. We consider that T channels are

completely transmitted by the QPC, ν − T − 1 channels are completely reflected by the

QPC, and one channel is partially transmitted with a transmission coefficient D and a

reflexion coefficient R = 1 − D (we don’t write the energy dependence for simplicity).

The physical situation is illustrated below with the example of ν = 2 and T = 1.

The reader can refer to Ref. [6] for more details on the auto and cross-correlation

Figure 3.4: 4-contacts geometry. We apply a voltage on the reservoir 0 and we are
interested in the current flowing in contacts 1 and 2 as well as their auto and cross

correlation functions.

calculations. Here we simply give the results, using the labels of Fig. 3.4:

S11(ω = 0) = 2
e2

h

∫
dEνf1(1− f1) + (T +D2)f0(1− f0) + (ν − T − 1 +R2)f2(1− f2)

+RD(f2(1− f0) + f0(1− f2))

(3.24)
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S13(ω = 0) = 2
e2

h

∫
dERD(f0(1− f0) + f2(1− f2)− f2(1− f0)− f0(1− f2)

= −2
e2

h

∫
dERD(f2 − f0)2

(3.25)

We apply a voltage Vdc only on the contact 0, such that f1 = f2 = f3 = f and f0(E) =

f(E + eVdc). Knowing this, we can easily show: S11(ω = 0) = S33(ω = 0).

Let’s first study the equilibrium state, where Vdc = 0 and f0 = f . Then the expression

of the auto-correlation functions (3.24) can be simplified as:

S11(ω = 0) = S33(ω = 0) = 2
e2

h

∫
dEf(1− f)(D2 +R2 + 2ν − 1 + 2RD)

= 2
e2

h

∫
dEf(1− f)(2ν + (D +R)2 − 1)

= 4
νe2

h

∫
dEνf(1− f)

Using the property of Fermi-Dirac functions: f(1 − f) = kBT
∂f
∂E , we get simply the

thermal (or Johnson-Nyquist) noise :

S11(ω = 0) = S33(ω = 0) = 4kBTν
e2

h

While it is clear from equation (3.25) that the cross-correlation S13(ω = 0) cancels at

Vdc = 0. Indeed, the cross-correlation only contains information about (anti-)correlated

partition noise, and is insensitive to the fluctuations of the incoming current such as

thermal fluctuations due to the finite temperature of the reservoirs as they are uncorre-

lated.

Let’s now add a finite bias Vdc on the reservoir 0. We can show from equations (3.24)

and (3.25) that the auto-correlation functions can be re-expressed as a thermal noise

minus the cross-correlation function:

S11(ω = 0) = 2
e2

h

∫
dEνf1(1−f1)+(T+D)f0(1−f0)+(ν−T−1+R)f2(1−f2)+RD(f0−f1)2

As already emphasized in the Chapter 1, the auto-correlation functions contain two

contributions:

- The first one corresponds to the fluctuations of the incoming currents due to the finite

temperature of the reservoirs from which they are emitted (independently on the bias

applied).

- The second one is due to the partition of charge carriers at the QPC. This term

correspond to the cross-correlation term, with a minus sign.

From equation (3.25) and using
∫
dEf(E)(1 − f(E + ∆)) = ∆

exp(∆/kBT )−1 , we can give
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an integrated expression for the cross-correlation:

S13(ω = 0, Vdc) = −2e
e2

h
D(1−D)Vdc

[
coth(

eVdc
2kBT

)− 2kBT

eVdc

]
(3.26)

Experimentally, we have access to the auto as well as the cross-correlations. The main

interest will be on measuring the shot noise, that as we have emphasized, can reveal

interesting informations.

For interacting systems, it is possible to link the cross-correlation noise to the zero-

frequency noise S(ωJ , 0) = S(Vdc) of equation (3.9) (where ωJ = eVdc/~) using the

Luttinger Liquid description of edge states. Theoretical works for two-terminal systems

[66], [76] can be extended to many-terminal systems, leading to the very useful relation:

S13(Vdc) = S(Vdc)− 2kBTGB(Vdc) (3.27)

where GB(Vdc) = ∂IB
∂Vdc

is the conductance of the reflected current.

3.2.3 Photo-assisted transport

In this part we are going to extend the previous scattering approach to the case where

the applied voltage is time-dependent. The theory of fluctuations in presence of an oscil-

lating field originating from a variable magnetic flux was initially studied by Lesovik and

Levitov [31]. This was later extended to the case of ac voltage by Pedersen and Büttiker

[32]. Here we present this theory based on a single-particle picture and semi-classical

approach.

The initial Hamiltonian (in the Schrödinger picture) describing reservoir α can be ex-

pressed using the second quantization for independent particles:

Hα =
∑
k

εα,ka
†
α,kaα,k

In the Heisenberg picture, the time-dependence of annihilation operators is thus: aα,k(t) =

eiεkt/~aα,k(0). In the presence of an oscillating potential Vα(t) applied on reservoir α,

each electron ”feels” an additional potential, leading to:

H̃α =
∑
k

(εα,k + eVα(t))a†α,kaα,k

And the resulting annihilation operators in the Heisenberg picture are:

ãα,k(t) = eiεkt/~+iΦα(t)aα,k(0)
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where Φα(t) = e/~
∫ t
−∞ dt

′Vα(t′). Assuming a sine shape Vα(t) = Vα sin(Ωt) and using

the spectral decomposition of eiΦα(t)

eıΦα(t) =
∑
l

Jl(
eVα
~Ω

)e−ilΩt

where Jl is the l-th order Bessel function, we get :

ãα,k(t) =
∑
l

Jl(
eVα
~Ω

)ei(εk−l~Ω)t/~aα,k(0)

Re-expressed in the energy domain, this gives :

ãα(ε) =
∑
l

Jl(
eVα
~Ω

)aα(ε− l~Ω) (3.28)

To calculate the current flowing into contact α, we can replace the operators a in equation

(3.22) by the operators ã. We also let the possibility for each sign wave be out of phase

with respect to a certain reference signal: Vα(t) = Vα sin(Ω(t+ τα)). This time-delay is

accounted for by making the substitution Jl(
eVα
~Ω ) → e−ilΩταJl( eVα~Ω ). Considering only

one mode for simplicity, we find:

〈Ĩα(t)〉 = − e
h

∫
dE
∑
γ,lk

Tr(Aγ,γ(α,E,E+(k−l)~Ω))e−i(k−l)Ω(τγ+t)J†l (
eVγ
~Ω

)Jk(
eVγ
~Ω

)fγ(E−l~Ω)

Calling Tα,γ(E) = −Tr(Aγ,γ(α,E,E) (A is defined in equation (3.23)), we get for the

zero-frequency current:

〈Ĩα〉 = − e
h

∫
dE
∑
γ,l

Tα,γ(E)|Jl(
eVγ
~Ω

)|2fγ(E − l~Ω) (3.29)

The Fermi functions originates from quantum statistical average of a†(E)a(E′) for an

equilibrium system. It is thus assumed that the modulation imposed on the system is

so slow that the contacts can still be regarded as being in a dynamic equilibrium state.

We now apply equation (3.29) to a two-terminal geometry, on which we apply time-

dependent voltages VL(t) and VR(t). We note that the photo-assisted current has the

same form as equation (3.21), with the Fermi functions fγ(E) replaced by
∑

l |Jl(
eVγ
~Ω )|2fγ(E−

l~Ω):

〈ĨL〉 =
e

h

∫
dED(E)

∑
l

[
|Jl(

eVL
~Ω

)|2fL(E − l~Ω)− |Jl(
eVR
~Ω

)|2fR(E − l~Ω)
]

(3.30)
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To understand better this equation, let’s analyse it at zero temperature and with Vdc =

VL,dc − VR,dc, or fL = fR. We get:

〈ĨL〉 =
e

h

∑
l

∫ l~Ω

0
dED(E)

∑
l

[
|Jl(

eVL
~Ω

)|2 − |Jl(
eVR
~Ω

)|2
]

If D(E) is energy-independent, the property
∑

l lPl(x) = 0 ensures that the photo-

current cancels. Indeed, the photo-current can be finite only if the electron-hole pairs cre-

ated by the AC voltage have different tunneling probabilities due to an energy-dependent

transmission coefficient. In the case of a small dependence of D(E) on the energy, its

expansion D(E) = D(0) + ∂D
∂EE leads to:

〈ĨL〉 =
e

h

∑
l

(l~Ω)2

2

∂D

∂E

[
|Jl(

eVL
~Ω

)|2 − |Jl(
eVR
~Ω

)|2
]

=
e

h

e2

2

∂D

∂E
(〈V 2

L 〉 − 〈V 2
R〉)

In contrast with the results of the perturbative approach and with a commonly adopted

”gauge invariance” argument, the transport is not determined by the difference VL(t)−
VR(t). Instead, 〈ĨL〉 cancels as far as the amplitude of the two sines VL and VR are equal,

independently on the phase difference between the two sines. In that sense, the scattering

approach cannot be used to interpret our photo-assisted current measurements in the

HOM configuration (see paragraph 5.9). The limits of such approach to describe AC

transport are discussed in Ref [32], that emphasizes the necessity to take into account

the internal potential of the conductor in the presence of static and oscillating contact

voltages.

If the AC voltage is applied on one contact only (that is the case for most of previous

photo-current measurements), let’s say the left contact, equation (3.30) leads to:

〈ĨL〉 =
e

h

∑
l

|Jl(
eVL
~Ω

)|2
∫
ED(E)(fL(E − l~Ω)− fR(E)) (3.31)

=
∑
l

|Jl(
eVL
~Ω

)|2〈IL〉(Vdc − l~Ω/e) (3.32)

We thus recover the same result as equation (3.17): the photo-assisted current at Vdc

corresponds to the superposition of the DC current at Vdc− l~Ω/e weighted by the prob-

ability to emit (l < 0) or absorb (l > 0) photons. Photo-assisted current measurements

were done in a QPC geometry at zero magnetic field [77] and were in good agreement

with the theory.
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3.2.4 Photo-assisted shot noise (PASN)

Still considering a two-contacts geometry, we can also calculate the PASN while applying

sine waves on both contacts. We have to be careful when calculating the zero-frequency

noise: with an AC signal, the noise S(t, t′) is a function of both τ ′ = t+ t′ and τ = t− t′.
As we average the signal over times that are longer than the period 2π/Ω of the AC

signal, we can consider the average:

S(τ) =
Ω

2π

∫ 2π/Ω

0
S(τ, τ ′)dτ ′

In other words, we don’t have access to the very rapid oscillations of the signal. Using

the previous expression of Ĩ(t), we can show that the shot noise at zero frequency

(subtracting the thermal noise) is given by:

〈S̃L,L(ω = 0)〉 =
e2

~

∫
dE
∑
l,k,l′

t(E + k~Ω)r(E + k~Ω)t(E)r(E)∗ (3.33)

[
p†R,l+kpL,l′+kp

†
R,l′pL,lfR(E − l~Ω)(1− fL(E − l′~Ω)) (3.34)

+ p†L,l+kpR,l′+kp
†
L,l′pR,lfL(E − l~Ω)(1− fR(E − l′~Ω))

]
(3.35)

where t(E) and r(E) are the transmission and reflection amplitude probabilities, and

pL/R,l = Jl(
eVL/R
~Ω ) refers to the l-th order Bessel function. As for the photo-assisted

current, the noise is not simply a function of V1(t)− V2(t) when the transmission coeffi-

cient are energy-dependent. Instead, it is reminiscent of many wave-packets interference.

This aspect was discussed by previous theoretical works [78] through charge and energy

fluctuations studies. In the case of energy-independent scattering matrix and in-phase

signals (τL = τR), we recover the results of the perturbative approach:

〈S̃L,L(ω = 0)〉 =
∑
l

|Jl
(e(VL − VR)

~Ω

)
|2〈SL,L(ω = 0, Vdc − l~Ω/e)〉 (3.36)

where 〈SL,L(ω = 0, Vdc)〉 is the DC shot noise:

〈SL,L(ω = 0, Vdc)〉 =
e2

h
D(1−D)eVdc coth(

eVdc
2kBT

) (3.37)

Of course, to get the total noise we need to add the thermal contribution e2

h 4kBTD
2, that

is independent of the DC or AC voltage. In case N modes contributes to the transport,

we get very similar results replacing D by
∑

nDn and D(1−D) by
∑

nDn(1−Dn).

Let’s first interpret the PASN at Vdc = 0, and zero temperature limit. Then electrons

and holes contributes both with the same amount to the shot noise. Indeed, even though

they are created together as an electron-hole pair, they can be transmitted or reflected
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by the barrier independently. The electrons that are at energy higher than the Fermi

level EF after having absorbed l photons were initially in a an energy band l~Ω under

the Fermi level, their contribution is thus:

Sl = 2
e2

h
D(1−D)l~ΩPl

The PASN corresponds to the sum over the contribution of all these l-photon absorption

processes.

In the case where Vdc is finite, electrons and holes do not contribute in the same way to

the PASN, and the situation strongly depends the ratio eV/~Ω, explaining the change

in slopes. The reader can refer to L.-H. Reydellet PhD thesis for a deeper discussion on

the subject.

Historically, the PASN was first measured in a diffusive conductor [79], in a diffusive

normal metalsuperconductor junction [80], in a QPC [81], and finally in a simple junction

[82] where finite-frequency noise measurements were also in agreement with the theory.

More recently, the works on noise minimization using Lorentzian pulses [27] as well as

PASN measurements in the IQHE [83] also supported this model of ”photo-assisted”

transport.

To describe our ”Hong -Ou-Mandel” experiments, we consider that the Left and Right

applied voltages are sine waves out of phase but with the same amplitude: VR(t) =

VL(t + τ). This leads to the simple relation: pR,l = e−ilτΩpL,l for any integer l. For

simplicity, we also assume that the scattering matrix is energy-independent. In that

case, equation (3.33) leads to:

〈S̃L,L(ω = 0)〉 =
e2

~
D(1−D)

∫
dE
∑
l,k,l′

p†L,l+kpL,l′+kp
†
L,l′pL,l∗[

ei(k+l+l′)ΩτfR(E − l~Ω)(1− fL(E − l′~Ω)) + e−i(k+l+l′)ΩτfL(E − l~Ω)(1− fR(E − l′~Ω))
]

We introduce the Fourier transform p̃ of ei(ΦL(t)−ΦR(t)) (we recall ΦL/R(t) = e/~
∫ t
−∞ VL/R(t)),

that can be expressed as:

p̃l =
∑
k

pL,k−lpR,k =
∑
k

pL,k−le
−ikτΩpL,k

The previous expression of 〈S̃L,L(ω = 0)〉 can be simplified noticing that:

∑
k

p†L,l+kpL,l′+ke
ikΩτ = e−il

′Ωτ
∑
k′

p†L,k′+l−l′pL,k′e
ik′Ωτ = e−il

′Ωτ
∑
k′

p†L,k′+l−l′p
†
R,k′ = e−il

′Ωτ p̃l′−l
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where we made the variable change: k′ = l′ + k. In the same way, we can show that:

∑
k

p†L,l+kpL,l′+ke
−ikΩτ = eil

′Ωτ p̃†l′−l

Combining the last four equations, we get:

〈S̃L,L(ω = 0)〉 =
e2

~
D(1−D)

∑
n

|p̃n|2
∫
dE
[
fR(E)(1−fL(E−n~Ω))+fL(E−n~Ω)(1−fR(E))

]
Finally, we recover the same kind of expression as equation 3.36:

〈S̃L,L(ω = 0)〉 =
∑
l

|p̃l|2〈SL,L(ω = 0, Vdc − l~Ω/e)〉 (3.38)

When the scattering matrix is energy-independent, applying a voltages VL(t) (VR(t) )

on the left (right) contact leads to the same shot noise as when a voltage VL(t)− VR(t)

is applied on one contact only.

When the scattering elements are energy-dependent, 〈S̃L,L(ω = 0)〉 depends on the time

delay τ in a complicated way. The situation is not simply equivalent to the one where

VL(t)− VR(t) is applied on one contact only.

The perturbative theory and the Floquet scattering theory lead to different predic-

tions on electronic HOM experiments. The first approach treats a large variety of sys-

tems including strongly-correlated systems (FQHE), however it applies only to the weak

backscattering regime, and energy-independent tunneling amplitudes. The gauge choice

that is made leads to transport properties (current and noise) determined only by the

difference VL(t) − VR(t). The scattering approach is able to treat energy-dependent

scattering processes at arbitrary transmissions, but for non-interacting electrons. This

approach generally leads to more complicated expressions of the noise, that simplify

only in the energy-independent scattering matrix limit. It leads also to time-delay inde-

pendent photo-current in the HOM configuration. This last result is not coherent with

experimental observations (cf paragraph 5.14). We hope this short study will motivate

a deeper work to understand the origin of such a discrepancy.

Now that we have described the useful approaches to deal with DC and time-dependent

transport in a ballistic mesoscopic conductor, and particularly in the quantum Hall

regime, we will turn to experimental aspects and results.
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Experimental setup

Photo-assisted transport and HOM experiments are performed on a Quantum Point

Contact (QPC) device. The voltage applied on the QPC modifies the local electronic

density of a two-dimensional electron gas (2DEG) built in a GaAs-AlGaAs heterostruc-

ture. Varying the gate voltage and the intensity of the perpendicular magnetic field,

we can study quantum transport in various Hall regimes. In this chapter, we present

the main characteristics of the sample and the whole experimental setup, highlighting

some of the experimental challenges. In particular, we present how we apply DC and

radiofrequency (RF) voltage to the sample, as well as the principle of conductance and

noise measurements. Most of the experimental techniques have been developed in the

past, thus the reader can refer to previous PhD thesis [84] [77] for more details.

4.1 Sample geometry and characteristics

The sample we used is a 2DEG made from hetero-structures of GaAS and GaAs −
AlxGa1−xAs, where x defines the Aluminium mole fraction and is typically around

30%. The sample electronic density nS = 1.11 ∗ 1011cm−2 and the mobility is µ =

3 ∗ 106V −1cm2s−1. This high mobility enables us to reach the fractional Hall effect

regime at accessible magnetic fields (lower than 14 T). Details on the sample fabrication

are given in Appendix B. The 2DEG is bound to the external circuit thanks to ohmic

contacts (see figure 4.1). Co-planar 50Ω wave-guides designed by CST microwave studio

and etched on a PCB (printed circuit board) bring the RF and DC signal to contacts

(0) and (3) of the sample. The 6 contacts-geometry shown in figure 4.1 enables to

measure separately the transmitted and reflected currents. The latter are accessible by

voltage measurements on contact (1) and (4). Contacts (2) and (5) are grounded to

avoid unwanted transmissions of the current from contacts (1) to (3), or (4) to (0).

80
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It is important to note that the impedance mismatch between the co-planar wave-guides

and the sample resistance (Hall resistance) is responsible for strong reduction of the RF

power sent to the sample, as well as strong oscillations with the frequency (see Appendix

C).

Figure 4.1: Left: PCB co-planar wave-guides, on which coaxial cables are connected
to bring DC and RF signals. Right: SEM (scanning electron microscope) image of the
sample. The blue part represents the 2DEG, the yellow part corresponds to the ohmic

contacts.

4.2 General considerations on the setup

The range of temperature we need is fixed by many constraints:

- We need the temperature to be lower than the gap of the integer or fractional quantum

Hall effect. This excitation gap depends crucially on the quality of the material in which

the 2DEG resides. The state of the art technology currently yields samples with an

excitation gap of the of the order of a few meV [85]. Thus the temperature has to be

lower than approximately 10K. This excitation gap also limits the range of bias that

can be applied, leading to tunneling currents levels of the order of few 10nA and shot

noise levels in the 10−28A2/Hz range.

- Within this range of bias (below 1mV ), we need to observe a regime for which the

shot noise dominates the thermal noise. As the two contributions becomes equal when

2eV = kBT , we need temperatures lower than 1 K.

- Finally, in order to observe photo assisted effects, we need the frequency of the RF waves

to be higher than the temperature: hf >> kBT . The maximal frequency delivered by

the AC source and for which the coaxial cables and circuit elements are well suited is 18

GHz, which means that the temperature has to be much lower than approximately 300
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mK. Of course, the lower the temperature, the more relevant will be these photo-assisted

effects.

We work with a Cryoconcept Helium free dilution refrigerator equipped with a 14.5

T Cryomagnetics coil, that enables to cool down the sample to a temperature of 18

mK, the temperature of the coolest stage. As the sample is connected to the room

temperature instruments through coaxial lines and circuit elements, it is important for

each of these components to be well thermalized with the different stages of the dilution

fridge. The heat flow and voltage fluctuations brought by these elements lead to an

effective temperature higher than 18mK. This so-called ”electronic temperature” (to

distinguish it from the actual temperature of the sample) is observable using shot noise

measurements and is of the order of 30 mK. The reduction of this effective temperature

is an experimental difficulty mainly treated in J.Dubois thesis [77].

A global scheme of the experimental setup is shown in figure 4.2. The DC voltage

bias are delivered by voltage sources Yokogawa 7651 attenuated by a voltage divider to

realize the DC polarization of the sample (see Appendix D). The RF source is a DC to

20 GHz microwave synthezizer Agilent N5183A MXG Analogic signal generator. Well-

thermalized coaxial cables bring the DC and the RF signals from room temperature to

the PCB. These two signals are added up thanks to a ”bias-tee”, as also illustrated in

figure 4.2. The second RF line was added recently in order to perform Hong-Ou-Mandel

measurements.

The DC-line from which a voltage is applied on the QPC is not shown. The Vdc source is

actually a mixing of a DC signal plus a very-low frequency (270Hz) signal, needed for con-

ductance measurements. Transmitted and reflected current fluctuations are transformed

into voltage fluctuations across RLC resonators that are resonant around 2.5 MHz. These

voltages VA, VB are first amplified by home made cryogenic amplifier (HEMT) at 3.6 K.

A splitter then separates the low-frequency (kHz) signal from high-frequency (MHz)

signal. The high frequency signal is amplified at room temperature by low noise com-

mercial amplifiers NF SA-421F5 and go through a Chebyshev filter to finally be sent to a

digital acquisition card ADLink 9826. The PC then computes the cross-correlation and

auto-correlation spectra. The low frequency signal is amplified at room temperature by

commercial amplifiers LI-75A and sent to the two lockins.
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Figure 4.2: Global scheme of the experimental setup.

4.3 Power brought by the external circuit

Coaxial cables can be described by transmission lines designed to transfer electromag-

netic energy towards one dominant mode of propagation that is the transverse electro-

magnetic mode (TEM), ensuring small energy losses. Two important aspects have to be

considered when choosing the material of the coaxial cables bringing DC and RF signals

to the sample. The first one is limiting the heat conduction between different stages of

the Cryostat, while ensuring a good thermalisation of the inner conductor at the same

time. Depending on its temperature, each stage of the cryostat is designed to accept a

maximum heating power. The lower the temperature is, the smaller is the acceptable
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power that mainly comes from the thermal short-cut introduced by the electrical wiring.

If the set-up brings too much power, then the base temperature of the cryostat estab-

lishes at much higher temperature than the nominal base temperature (about 17mK).

Consequently, the heat flow carried by the coaxial cables must be estimated in order to

ensure a base temperature as low as possible. This estimation, as well as the estimation

of the thermalization length of coaxial cables and the choice of material, were done in

J.Dubois PhD thesis [77].

The second aspect is to limit the electromagnetic radiation of circuits elements (volt-

age source connectors, attenuators, connectors, etc) on the sample. Photons associated

to Johnson-Nyquist noise coming from the hot parts of the external circuit affect di-

rectly the electronic temperature of the sample, because they induce broadband voltage

fluctuations ∆V 2. These fluctuations increase the effective electronic temperature by

∆T = e∆V 2/kB. Nyquist has derived the power spectrum of photons associated to

resistor at a temperature T [35]. It is given by the energy of photon hf multiplied by

the photon occupation number at frequency f :

SV (f) =
2Rhf

ehf/kBT − 1
(4.1)

The voltage fluctuations are : ∆V 2 =
∫∞

0 SV (f)df . The cut-off frequency of DC lines

is estimated around 40kHz, making the radiated power on the sample negligible (see

Appendix D). At the opposite, the loss of the RF lines is weak until GHz frequencies,

therefore the voltage noise is directly transmitted on a large bandwidth ∆f = 20GHz

which corresponds to the loss specifications of the constructor. To estimate the voltage

fluctuations seen at the end of RF lines on the sample, we have to sum of the contribution

of each impedance Rk at temperature Tk over the bandwidth ∆f = 20GHz , attenuated

by a factor Ak:

∆V 2 =
∑
k

∫
∆f

df
2Rkhf

ehf/kBT − 1
Ak (4.2)

Three 20dB attenuators are set respectively on the 3.6 K, 1 K and 100 mK stages, and

are considered as 50Ω impedances. The 20dB attenuation corresponds to a reduction

by a factor A = 100 of the PSD. The calculations made in M.Santin PhD thesis [83]

showed that the main contribution to the thermal noise comes from the 100 mK stage.

It was estimated that
√

∆V 2 = 1µV , corresponding to a temperature of 12 mK. As a

consequence, the thermal noise brought by RF lines considerably increases the electron

temperature.

Now that we have briefly described the voltage (DC and RF) injection lines, we will

focus on the measurement setup, starting by noise measurements.
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4.4 Noise measurements

4.4.1 Data acquisition

The currents transmitted and reflected by the QPC are treated as a random classical

stationary and ergodic variables i(t) (corresponding to iT (t) and iR(t) in figure 4.2).

The set of values taken by i(t) corresponds to the current operator eigenvalues. The

mean value and the variance give informations about the distribution of the variable

i(t). The fluctuations of i(t) give rise to voltage fluctuations across the RLC resonators.

These voltages VA(t) and VB(t) are amplified and recorded simultaneously by a digitizer

(Acquiris U1071A-HZ4 from agilent instruments) that uses a memory size of Ns = 65472

points at a rate of 20Ms/s. As explained in Chapter 1, the Fourier components of the

cross and auto correlation function are equal to the PSD SVAVA SVBVB and SVAVB at

frequencies fn = n/2T (where T is the measurement time):

SVAVA(fn) = 〈Ṽ 2
A(fn)〉/δf (4.3)

SVBVB (fn) = 〈Ṽ 2
B(fn)〉/δf (4.4)

SVAVB (fn) = 〈ṼA(fn)Ṽ ∗B(fn)〉/δf (4.5)

Which allows to reconstruct the auto and cross-correlation spectra. In order to save

time, the memory size is divided into two blocks: one stores new incoming data, a

second operates fast Fourier transform (FFT) on the measured voltages in order to

compute the PSD. Then 32732 points of VA and VB at a rate of 20 Ms/s (one measure

every 50 ns) are measured in real-time. Therefore, the maximum frequency is 10MHz,

and the resolution of the PSD spectra is δf = 10 ∗ 106Hz/32732 = 305kHz. The FFT

are computed thanks to a C++ software with high time-efficiency: 10000 averaged PSD

takes 35 s experimentally whereas a pure data acquisition needs 33 s.

4.4.2 RLC resonator

The acquisition card works on a wide range of frequencies, but we are interested only by

the signal in the MHz range in order to avoid 1/f noise and to make faster measurements.

Taking into account the cable capacitance from the sample to the head of the fridge

which is about Cl = 200pF , we need an inductance L = 22µH in parallel with Cl to

get a resonance frequency 1/
√
LCl around 2 MHz. The resistance R = 20kΩ defines

the height and width of the resonance peak of the equivalent impedance. Finally C1 =

9.4nF capacitance aims to cut the low frequency part in its branch, and the capacitance

C2 = 100nF together with the resistance R act as a high pass filter with a cut off
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frequency of 500Hz in order to avoid very low-frequency components. A schematic of

the RLC resonator is shown in figure 4.3.

Figure 4.3: Scheme of the RLC resonator. rc is the inner conductance of the Coil,
that competes with the value of R to define the height of the impedance resonance

peak.

Passive components are chosen so that they maintain a constant value from room tem-

perature to 20 mK and are stable under high magnetic field. For resistance we use 0805

thin film resistor SMC whose value measured at 4 K varied of less than 5% from room

temperature. Capacitors are also SMC 0805. The inductance is a Coilcraft ceramic chip

inductor with no magnetic core. This inductor has a finite inner resistance rc, that was

measured to be equal to 9.5Ω at 300 K and zero magnetic field.

For MHz frequency, C2 can be neglected, and the whole circuit is treated as an equivalent

impedance and used to convert current fluctuations to noise fluctuations. The equivalent

impedance ZRLC(ω) is plotted in figure 4.4 for frequencies around the resonance, and

for both RLC circuits (A and B).

We note that the RLC impedance has the same order of magnitude than the Hall resis-

tance, so a non-negligible part of the current is flowing into it. To relate the measured

voltage PSD of equation 4.3 to the transmitted and reflected current PSD (that are the

quantities of interest), one can refer to the scheme of figure 4.2 and simply apply the

current conservation (or Kirchoff laws) at contacts (1) and (4) to write: iA+ iT − iH = 0

and iB + iR − iH = 0. This gives:

iT (ω) = VA(ω)(1/RH + 1/ZA(ω)) = VA(ω)/Zeq,A(ω)

iR(ω) = VB(ω)(1/RH + 1/ZB(ω)) = VB(ω)/Zeq,B(ω)

Where 1
Zeq,A

= 1
RH

+ 1
ZA

(and same for line B). We call VA,out = GAVA and VB,out =

GBVB the voltages after amplification (GA,B being the total amplification factors of
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Figure 4.4: Absolute value of the RLC impedance for the two lines (in Ω). Because of
the mismatch between the Cl values (that are found to be 219pF for line B and 231pF
for line B), resonance frequencies are not equal. The RLC parameters were found from

the noise calibration of paragraph 4.5.

measurements lines A and B). From the last equation we easily link the PSD of iT and

iR to the PSD of VA,out, VB,out:

|VA,out(ω)|2 = G2
A|Zeq,A(ω)|2|iT (ω)|2

|VB,out(ω)|2 = G2
B|Zeq,B(ω)|2|iR(ω)|2

V ∗A,out(ω)VB,out(ω) = GAGBZ
∗
eq,A(ω)Zeq,A(ω)i∗T (ω)iR(ω)

The MHz frequencies range being smaller than all other energy scales, Sii(ω) is indepen-

dent of the frequency in the bandwidth of RLC resonators, and is simply proportional

to the variance of i(t). Thus if we take the integral of V ∗AVB over the RLC bandwidth

we get:

|iT |2 =

∫
|VA,out(ω)|2dω/Caa (4.6)

|iR|2 =

∫
|VB,out(ω)|2dω/Cbb (4.7)

i∗T iR =

∫
V ∗A,out(ω)VB,out(ω)dω/Cab (4.8)

Where Caa = G2
A

∫
|Zeq,A|2dω, Cbb = G2

B

∫
|Zeq,B|2dω, and Cab = GAGB

∫
Z∗eq,AZeq,Bdω.

As for MHz frequency range and 17 mK temperature ~ω � kBT , the cross correlation

i∗T iR should correspond to the zero-frequency current noise, that is of course a real value.

Then from the previous expression of i∗T iR, we should have:

i∗T iR =
Re(

∫
V ∗A,outVB,outdω)

Re(Cab)
=
Im(

∫
V ∗A,outVB,outdω)

Im(Cab)
(4.9)
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allowing us to convert voltages cross-correlation to the current cross-correlation.

The final PSD of VA,out and VB,out include the noise of the amplification chain, that we

will detail in the next section. It is actually the dominant part of the auto correlation

spectra, but we can get rid of it thanks to ON-OFF measurement technique. An example

of spectra for auto-correlations functions (or PSD) of VA,out and VB,out is shown in figure

4.5. The main source of noise is due to the amplifiers and does not appear in the cross-

Figure 4.5: Noise spectra for ν = 2/5 and T = 100mK, for AutoA (left figure) AutoB
(middle) and Cross correlation (right figure).

correlation spectra (as the fluctuations on both measurement lines are uncorrelated).

On top of this white noise, we can observe the resonance due to the thermal noise of

the RLC circuit in parallel with the sample resistance. The 1/f noise contribution is

also visible and responsible for the observed asymmetry with respect to the resonance

frequency. One interesting thing to note in the cross-correlation spectrum is that the

noise increases proportionally to the mean value of the PSD, as it is expected for a

Gaussian variable.

Next we will present the technique used to determine the RLC parameters, in particular

the inner resistance of the coil rc and the capacitance of the lines Cl. To calculate the

conversion factors Caa, Cbb, Cab we also need to know the total gains GA and GB of the

two amplifiers on lines A and B.

4.5 Noise calibration

In order to determine the RLC parameters and the total gains GA and GB, we measure

the Johnson-Nyquist noise SA,A = SVAVA (resp. SB,B = SVBVB ) given by the PSD of

VA (resp. VB) when Vdc = 0. Thanks to the chirality of edge states and the 6-contact

geometry of our sample, when iT = iR = 0, the equilibrium noise SA,A is decorrelated

from SB,B (and independent of the gate voltage). The sample behaves as a simple Hall

resistance RH = h
νe2

in parallel with the RLC resonators ZA (resp. ZB), as illustrated

in figure 4.6. We note 1/Zeq,A = 1/ZA + 1/RH and 1/Zeq,B = 1/ZB + 1/RH . When the
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Figure 4.6: Equivalent circuit of the sample and the RLC resonators at equilibrium
(Vdc = 0).

RLC resonators and the sample are at the same base temperature T0, we get:

SA,A(ω, T0) = G2
A4kBT0Re(Zeq,A(ω)) + SGA (4.10)

SB,B(ω, T0) = G2
B4kBT0Re(Zeq,B(ω)) + SGB (4.11)

where SGA and SGB are white noises brought by the amplifiers of lines A and B. T0

is ideally the temperature of the mixing chamber, that is the coolest stage of the di-

lution fridge to which the sample as well as the RLC resonators are thermalized. The

thermometer indicates T0 = 17mK, but the actual temperature of the sample Ts may

be higher than T0 because of a bad thermalization. As far as Ts − T0 << T0, equation

(4.11) holds. The mixing chamber temperature can be increased by injecting current

on a resistive heater. The injected current (or power) is regulated in order to reach

the target temperature T thanks to a PID system. In order to cancel the noise of the

amplifiers (that is independent of the mixing chamber temperature), we consider the

quantities:

∆SA,A(ω, T − T0) = SA,A(ω, T )− SA,A(ω, T0) = G2
A4kB(T − T0)Re(Zeq,A(ω)) (4.12)

∆SB,B(ω, T − T0) = SB,B(ω, T )− SB,B(ω, T0) = G2
B4kB(T − T0)Re(Zeq,B(ω)) (4.13)

We measure Seq,A/B(ω, T ) for different values of T between 40mK and 100mK, and we

plot the mean value of ∆Seq,A/B(ω, T − T0) over a large interval ∆f = [2.1, 2.8]MHz

versus T . This plot is shown in figure 4.7 for ν = 2. The points of figure 4.7 are well

aligned, in agreement with equation (4.13) and thus with a good thermalization of the

sample with the mixing chamber. A deviation from the linear behaviour is often observed

for temperatures below 50mK, indicating that the thermalization is less efficient for low

temperatures. In that case we consider the slope given by the points at T > 50mK to
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Figure 4.7: 〈∆SA,A(T − T0)〉 (left figure) and 〈∆SB,B(T − T0)〉 (right figure) versus
mixing chamber temperature T

.

determine the base temperature T0. The latter is given by the crossing point between

the x-axis and the blue straight lines of figure 4.7. It is found to be equal to 28mK for

line A and 27mK for line B (with around 5% incertitude).

With the knowledge of the base temperature T0, we can now use the spectra of ∆Seq,A/B(ω, T−
T0) to determine the gains GA and GB, as well as rc and Cl values for lines A and B.

These are fitting parameters, while the other parameters of the RLC circuits are fixed

to their values measured at room temperature: R = 20kΩ, L = 22µH, C1 = 9.4nF

(cf figure 4.3). The plot of ∆SA,A(ω, T − T0) and ∆SB,B(ω, T − T0) using equation

(4.13) is shown in figure 4.8 for ν = 2 and T = 100mK. The fit reproduces well the

Figure 4.8: ∆SA,A(ω, T − T0) (left figure) and ∆SB,B(ω, T − T0) (right figure) at
T = 100mK and fit using equation (A.2) and rc,Cl and Ga/b as fitting parameters.

noise spectra. We make this fit for various values of T , from which we extract values of

rc, GA/B, Cl reported on figure 4.9 (for line A only). We note that the fitting parameters

seems to converge at high temperature, but show more fluctuations at low temperature.

This indicates that the fit of ∆Seq,A/B(ω, T − T0) is more accurate for high values of T ,
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Figure 4.9: RLC parameters rc,Cl and GA found from the fit of ∆SA,A(ω, T −T0) at
different temperatures T .

where the signal over noise ratio is higher. Thus we take the mean value of the fitting

parameters found for T > 50mK only (indicated in the legend).

Using these mean values of rc (8.1Ω for line A and 7.9Ω for line B) and Cl (219pF for line

A and 231pF for line B), we plot the the quantities |Zeq,A|2, |Zeq,B|2 and Re(Z∗eq,AZeq,B)

versus frequency (figure 4.10). To get Caa = G2
A

∫
|Zeq,A|2dω, Cbb = G2

B

∫
|Zeq,B|2dω,

Figure 4.10: |Zeq,A|2, |Zeq,B |2 and Re(Z∗eq,AZeq,B) for ν = 2 and RLC parameters
found from the fit of ∆SA,A(ω, T − T0).

and Cab = GAGB
∫
Z∗eq,AZeq,Bdω, we only have to integrate the curves of figure 4.10

over ∆f . We get:

Caa = 2.59 ∗ 1012Ω2, Cbb = 4.74 ∗ 1012Ω2, Cab = (2.89− 1.49j) ∗ 1012Ω2
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These values were determined with around 6% accuracy, estimated from the spreading

of the gain and RLC parameters shown in figure 4.9. The inner resistance rc and the

line capacitance Cl found from the calibration at ν = 2 are fixed for next calibrations

at other filling factors. However the gain of the amplifiers GA,B can vary from one

calibration to the other because of the instability of the low-temperature amplifiers. In

table 4.1, we report the gain found at different filling factors ν.

GA GB
ν = 2 651 907
ν = 2/3 903 958
ν = 2/5 915 940

Table 4.1: Gain factors from noise calibration at different filling factors ν.

4.6 Amplification chain

The amplification chain is composed of two voltage-to-voltage amplifiers in series. The

first is a hand made cryogenic amplifier thermally fixed to the 3.6 K stage in the cryo-

stat. The second one is a commercial amplifier NF SA-421F5 at room temperature,

powered with external battery. It has a gain of 46dB (400) and a low noise density:

0.5nV/
√
Hz. Cryogenic amplifiers used for the experiments presented in this thesis

have been developed by Thibaut Jullien [84], here we report only the general principle.

It is is based on the sensitivity of a High Electron Mobility Transistor (HEMT) to its

gate voltage VG. A polarization resistance Rpol imposes a current I through the HEMT,

thus: VHEMT (VG) = IRHEMT (VG). The resistance of the HEMT RHEMT (VG) strongly

depends on the voltage applied to the gate VG, that modify the electron density of the

2DEG. VG is modulated by the input voltage Vin (VG = Vin ). The capacitance C2 of

the RLC circuits (figure 4.3) cuts DC components coming from the sample, so that Vin

is composed of only voltage fluctuations. These fluctuations δVin makes the resistance

RHEMT fluctuates as well. In the case of small variations δVin, we can write:

RHEMT (Vin) = RHEMT (Vin = 0) +
∂VG
∂Vin

δVin

As the current I through the HEMT is constant, voltage fluctuations of Vin are recovered

in VHEMT :

VHEMT = IRHEMT (Vin) = IRHEMT (Vin = 0) + I
∂R

∂Vin
δVin
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The 22 nF capacitance before the commercial amplifier at 300 K cuts the DC voltage

(cf figure 4.2). Thus, the output voltage Vout is:

Vout = I
∂R

∂Vin
δVin

The gain of this amplifier is thus G = I ∂R
∂Vin

. It is proportional to the injected current,

thus to the polarisation voltage Vpol. However, the quantity ∂R
∂Vin

also depends on the

current I, thus the gain G has actually non-trivial variations with Vpol. We choose

Vpol = 7.89V for cryo-amplifier A and Vpol = 8.1V for cryo-amplifier B for most of the

measurements presented here.

Figure 4.11: Simplified schematic of HEMT amplifiers. Vin is the voltage to be
amplified, thus VA or VB .

4.7 Measurements accuracy

A good estimation of the uncertainty on the mean value of one noise spectrum over a

frequency window ∆f is given by the effective standard deviation σeff = σ/
√
Nfreq,

where Nfreq is the number of frequency points in the spectrum (Nfreq = ∆f/δf , with

δf = 305Hz). Indeed, on the frequency range ∆f , the current noise is frequency-

independent. Thus the precision of noise measurements should increase with ∆f (or

Nfreq). However, we are limited by the 1/f noise. Moreover, it is useless to include large

frequencies for which the signal is very weak (far from the RLC resonance).

For the next study, we choose: ∆f = [2.1, 2.83]MHz. We want to estimate the uncer-

tainty on the mean value of the spectra for different values of N, that is the number of

PSD measurements done by the acquisition card (or number of averages). According

to the standard limit theorem and to the previous considerations, the mean value of a

noise spectrum averaged N times is a variable that follows a Gaussian distribution with
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standard deviation σN = σeff/
√
N = σ/

√
N ∗Nfreq. To estimate σN , we first take a

noise spectrum averaged during a long time (around 40 min), corresponding to N = 105.

This study was made at filling factor ν = 4, and for an intermediate value of reflection

by the QPC and of Vdc such as the cross- correlation is finite. We measure the noise

Figure 4.12: Auto correlation SV V (f) spectra for N = 105. Left figure: Auto A,
right figure: Auto B.

for N between 1000 (30 s of measurement time) and 15 000 (around 10 min), and we

subtract the spectra obtained for N = 105 to estimate the standard deviation. These

differences are plotted in figure 4.13. We clearly see that the spreading of the points is

reduced while increasing the number of averages N .

Figure 4.13: SV V (N) − SV V (N = 105) for N between 1000 and 15 000 (auto corre-
lation spectra). Left figure: Auto A, right figure: Auto B.

The values of σN
√
Nfreq found from these noise measurements versus the number of

averages N are plotted in log scale in figure 4.14.

We see the expected linear behaviour, with small deviations for the Auto A at small N.

These deviations may be due to the noisy peaks that are more pronounced in Auto A

than in Auto B spectrum, increasing the value of σN independently of N . The slopes
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Figure 4.14: σN
√
Nfreq values extracted from the spectra of figure 4.13), versus

number of averages N in log scale.

extracted from the linear fit of figure are 0.42 for Auto A, 0.44 for Auto B and cross

correlation. These values are close to the expected value of 0.5 for σN ∝ 1/
√
N . Some

values of σN for auto and cross-correlations are reported in table 4.2. These values have

N σN (AxA) σN (BxB) σN (AxB)

4000 1 e-17 8.6 e-18 6.3e-18
8000 8.2 e-18 6.5 e-18 4.5 e-18

14 000 5.4 e-18 4.7e-18 3.3 e-18

Table 4.2: σN in V 2/Hz for some values of N, for the auto and cross-correlations.

to be compared with the level of the shot noise to be measured, around 10−17V 2/Hz

and 5 ∗ 10−16V 2/Hz approximately (depending on the filling factor ν and the reflected

current). From table 4.2, we need at least N = 14000 to have an acceptable signal over

noise ratio.

Instead of one long PSD measurement, we prefer to average many short-time (few sec-

onds) ”ON-OFF” measurements with small values of N (around N=700). The standard

deviation is multiplied by
√

2 due to the ”ON-OFF” operation. But the advantage of

such a technique is to avoid time deviations of the background noise (mainly due to the

HEMT), that can occur within few minutes. These time-deviations limit the precision

of an entire noise curve (bias sweep), that is typically measured within one night (or 9

hours) with not more than few 10−18V 2/Hz precision.

The exact evaluation of the uncertainty on a shot noise measurement is a quite com-

plicated task. Indeed, we have to take into account not only the error given by the

standard deviation, but also the error on the estimated gains of the amplifiers through

the noise calibration procedure described in paragraph 4.5. The determination of the
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conversion factors Caa, Cbb, Cab can sometimes be the largest source of error, especially

at low filling factors ν where the RLC resonance is short-circuited by the low sample

resistance RH = h/νe2. Moreover, the HEMT gain can deviate within one or a few days.

To make sure that the gain did not vary during one shot noise measurement, we usually

make many bias sweeps (that takes around one hour each) and we average similar curves

only. Moreover, we make as regular noise calibration as possible (around one per week).

Now that we have a good overview on noise measurements technique, that is the most

challenging point of the experiment, we will detail DC conductance measurements.

4.8 Conductance measurements

Conductance measurements are made at kHz frequency (270 Hz more precisely) thanks

to a lockin technique which is very efficient to filter all other components of the signal.

At this frequency the capacitance of the cable Cl is not relevant anymore. C2 being

approximately ten times higher that C1, we replace the RLC circuit by a simple high

pass filter with a cutoff frequency 1/RC2 = 500Hz, as illustrated in figure 4.15.

Figure 4.15: Equivalent circuit at kHz frequencies for the transmitted current mea-
surements. We could draw the same scheme for the reflected current measurements (on

line B).

The voltage VA across the resistance R is amplified and measured by the lock-in on both

measurement lines. To relate VA to the transmitted (or reflected) current by the QPC,

we can again apply the current conservation (or Kirchoff laws) at contacts (1) and (4)
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to write iA + iT − iH = 0 and iB + iR − iH = 0. This gives:

iT (ω) =
VA,in(ω)

RH
+
VA(ω)

R
= VA(ω)(

1

R
+

1

RH
(1 +

1

RC2ωj
))

iR(ω) =
VB,in(ω)

RH
+
VB(ω)

R
= VB(ω)(

1

R
+

1

RH
(1 +

1

RC2ωj
))

where RH = h/νe2 is the Hall resistance. The voltage after amplification is called

Vout,A/B = GA/BVA/B. We note that although we used the same notations, the gains of

the low-frequency part of the signal (conductance measurements) are not the same than

the gains of the high-frequency part (used for noise measurements), as we use different

kind of room-temperature amplifiers.

The transmitted (resp. reflected) current is thus proportional to Vout,A (resp. Vout,B)

with a prefactor that depends on the filling factor ν:

iT,R(ω) = yA,B(ω)Vout,A/B(ω) with yA,B(ω) = (
1

R
+

1

RH
(1 +

1

RC2ωj
))/GA,B (4.14)

Now let’s focus on the lockin technique used for conductance measurements. The lockin

amplifier deliver a small AC signal in addition to the DC bias on contact 0, at a chosen

frequency ω = 2πf . This generates a transmitted and reflected current that can have

components at the frequency f and eventually higher harmonics. The lockin takes the

input signal Vout,A (or Vout,B), multiplies it by the reference signal that has the same

frequency f (either provided from the internal oscillator or from an external source),

and integrates it over a specified time. The integration time τ has to be higher than

the period 1/f , for f = 270Hz we usually choose τ = 0.1s. Noise at frequencies very

close to the reference frequency will result in very low frequency AC outputs from the

phase-sensitive detector. Their attenuation depends upon the low pass filter bandwidth.

A narrower bandwidth will remove noise sources very close to the reference frequency; a

wider bandwidth allows these signals to pass. The low pass filter bandwidth determines

the bandwidth of detection. The resulting signal is a DC signal, where the contribution

from any signal that is not at the same frequency as the reference signal is attenuated

close to zero.

The amplitude V0 of the signal delivered by the lockin on the sample is small enough

(around some µV ) so that we can linearize the transmitted (or reflected current) at the

lockin frequency ω: iT (ω) = ∂I(eVdc,ω)
∂V0

V0. The work of Ref [86] relates the generalized

admittance G(eVdc, ω) = ∂I(Vdc,ω)
∂V0

to the DC current (for low enough AC amplitude V0):

G(Vdc, ω) =
e

~ω
(Idc(eVdc + hω)− Idc(eVdc − hω)) (4.15)

The step of the voltage applied on the sample being of the order of µV , we have

hω � eVdc, thus equation 4.15 gives: G(Vdc, ω) = ∂Idc
∂Vdc

. Thus the lockin measurement
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of Vout,A(ω) (resp. Vout,B(ω)) gives access to the DC-conductance of the transmitted

current ∂IT
∂Vdc

(resp. the reflected current ∂IR
∂Vdc

) :

Vout,A(ω) =
iT (ω)

yA(ω)
=

V0

yA(ω)

∂IT
∂Vdc

, Vout,B(ω) =
iR(ω)

yB(ω)
=

V0

yB(ω)

∂IR
∂Vdc

From equation (4.14), the conversion factor yA(ω)/V0 is proportional to the Hall conduc-

tance νe2/h. We determine it thanks to conductance plateau measurements, assuming

that ∂IT
∂Vdc

= νe2

h when the QPC is open, and ∂IR
∂Vdc

= νe2

h when the QPC is closed. An ex-

ample of conductance calibration is given in Chapter 2 for ν = 2. In figure 4.16 we report

the values of yA/B(ω)/V0 found from the calibration at filling factors ν = 4, 3, 2, 2/3, for

ω = 2π ∗ 270Hz and V0 = 4µV (corresponding to V = 0.5V at the lockin output). The

Figure 4.16: yA/V0 and yB/V0 versus filling factor ν, from lockin measurements at
frequency f = 270Hz and output amplitude V = 0.5V .

uncertainty on yA,B/V0 being of only 1%, we did not represent the error bars on the

figure. The alignment of the points of figure 4.16 give us confidence on the measured

Hall conductance, even though our experimental setup is not as accurate as a Hall bar.



Chapter 5

Experimental results at ν = 2

We first made measurements at filling factor ν = 2, reached for a magnetic field of 2.3T.

Before making HOM measurements, we first need to recover previous results [83][6],

checking that:

- The DC transport can be well described by the scattering approach described in part

3.2.2.

- The transport with an AC signal can be well described by photo-assisted effects using

the Floquet formalism detailed in paragraph 3.2.3.

5.1 Conductance plateaus

We first need to characterise the regime ν = 2 by checking that the conductance plateaus

are separated by the quantum of conductance e2/h. This requires conductance measure-

ments while sweeping the gate voltage Vgate. We call GT = ∂IT
∂Vdc

(resp. GR = ∂IR
∂Vdc

) the

conductance measured on line A (resp. B). We perform lockin measurements at 270Hz,

and with an excitation amplitude of 1V , that corresponds to approximately 5µV on the

sample (see Appendix D). In figure 5.1, we observe two conductance plateaus spaced by

e2/h, confirming that we are in the regime of the integer Hall effect with ν = 2. We

did not deplete more the QPC region in order to avoid an irreversible electronic density

modification (that would be problematic for studies in the FQHE). The conversion fac-

tors yA, yB between lockin voltages and GT , GR (cf. part 4.8) are determined assuming

that GT = 2e2/h at open QPC, and GR = e2/h on the second plateau. They are found

to be:

yA = 0.0956
e2

V h
yB = 0.0884

e2

V h

99
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Figure 5.1: Conductance plateaux at zero DC bias. The dashed lines correspond to
the gate voltages chosen to make noise measurements.

The accuracy on yA, yB (a few %) is limited by the leak on information on the transverse

conductance (or transport through the bulk), that may be small but finite. This defines

the level of accuracy for the next conductance measurements.

At ν = 2, we can use the picture of two edge states that are transmitted one by one

(without mixing between them) by the QPC. On a given plateau, an integer number of

edge states is completely reflected or transmitted. In between the two first plateau shown

in figure 5.1, the inner edge state is partitioned while the outer edge state is completely

transmitted by the QPC. This situation is illustrated in figure 5.2. We can define

transmission D and reflection R coefficients of the inner edge state such as: GT = (1 +

D) e
2

h , and GR = R e2

h . Current conservation implies that GT +GR = 2e2/h, or D+R = 1

for all Vgate and bias Vdc. Next, we detail the measurements at different reflection

coefficients R corresponding to various gate voltages (Vgate = −0.2V,−0.27V,−0.3V ).

Figure 5.2: Sample schematic at ν = 2: we work in the regime where only the inner
edge state is partitioned by the QPC.
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5.2 Measurements at Vgate = −0.2V

5.2.1 Conductance

We first look at the I-V characteristic by sweeping the bias Vdc from −88µV to 88µV .

This bias range has been evaluated using the DC injection line circuit (cf Appendix

D), it corresponds to voltages delivered by the DC source between -0.2V and 0.2V. We

Figure 5.3: Conductance and reflected current for Vgate = −0.2V . The small non
linearity visible in the conductance (left figure) is not visible anymore in the integral of

it, that is the backscattered current (right figure).

see from figure 5.3 that the I-V characteristic is linear, and approximately 16% of the

current carried by the inner edge state is reflected. In figure 5.4, we plot GR, GT as well

as the sum GR +GT .

As expected from current conservation, GT +GR = 2e2/h independently of Vdc.

Figure 5.4: Transmitted and reflected conductance GA = GT and GB = GR), as well
as the sum of both for Vgate = −0.2V .

5.2.2 DC shot noise (DCSN)

Let’s now turn to shot noise measurements (or measurements of the fluctuations of IT

and IR). Using the noise calibration technique described in part 4.5, we determined the

RLC parameters and the total gains of line A and B: GA = 640, GB = 907. Taking an

integration interval of ∆f = [2.1, 2.8]MHz (that widely includes the resonance of both

RLC circuits), the conversion factors between noise fluctuations and current fluctuations



102

are:

Caa = 2.59 ∗ 1012Ω2, Cbb = 4.74 ∗ 1012Ω2, Cab = (4.9− 2.56j) ∗ 1012Ω2 (5.1)

These conversion coefficients have been estimated with a maximum error of 5%. The

results for the cross and auto-correlations are shown in figure 5.5.

Figure 5.5: Cross and auto-correlation functions versus DC bias Vdc at Vgate = −0.2V .

At this stage, two important precisions are needed:

- Each experimental point of figure 5.5 corresponds to the mean value over ∆f of a

noise spectrum averaged N = 700 times by the acquisition card. Three more averaging

are done over three identical bias sweeps. This method makes it possible to detect

any variations of the gains GA, GB during the measurements while inspecting each bias

sweep separately. The number of averages for each point is thus 2100, which gives a

sufficient accuracy for this regime. Moreover, we always take the difference between the

noise at finite Vdc and the noise at Vdc = 0. In this way, we cancel the thermal noise in

the auto correlations, as well as undesired spurious peaks in the spectra of the auto and

cross-correlations.

- If the imaginary part of the cross correlation was only due to the mismatch between the

two RLC resonances, we would have: Re(Scross)
Re(Cab)

= Im(Scross)
Im(Cab)

(equation (4.9)). However

in figure 5.6 we see a clear difference between both quantities. It may be due to an

additional phase rotation in the measurement lines. To take it into account, we found

the angle γ satisfying: cos(γ)Re(A × B) − sin(γ)Im(A × B) = |A × B|. The angle

γ was found to be identical for all noise measurements. We always plot the quantity

cos(γ)Re(A×B)− sin(γ)Im(A×B).

Now that we have solved these experimental details, we can focus on physical results.

The continuous red curve of figure 5.5 is a fit of the cross-correlation using the scattering
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Figure 5.6: Real part Re(A × B) = Re(Scross)
Re(Cab)

and imaginary part Im(A × B) =
Im(Scross)
Im(Cab)

of the current noise. As the current noise is measured at zero frequency,

both quantities are supposed to be equal. But this is not confirmed by the datas.

approach of paragraph 3.2.2, but including a multiplication factor g:

Sexp(Vdc) = −g2e2

h

∫
dER(E)(1−R(E))(f0(E)− f3(E))2 (5.2)

where f0 and f3 are the Fermi functions of reservoirs (0) and (3) (see figure 5.2). They

inject electrons at an electronic temperature T = 40mK and with chemical potential

µ = eVdc for reservoir (0), µ = 0 for reservoir (3). The multiplication factor g is found

to be equal to 0.65, indicating that the cross correlation is roughly 35% smaller than

the theoretical value. Moreover, we notice that while Auto A (A × A) is equal to the

cross-correlation (A×B), Auto B (B ×B) is roughly 40% lower.

These results do not confirm the ones of previous works and are thus surprising. A

difference between auto and cross correlation was measured by M.Kapfer [6] specifically

in the fractional Hall regime. It was mainly attributed to non-perfect coupling between

edge states and ohmic contacts. But in the integer Hall regime, measurements were con-

sistent with the predictions of the scattering approach with perfect ohmic contacts. We

expect that one source of error is a bad estimation the calibration factors Caa, Cbb, Cab,

due to a bad thermalization of the RLC circuits and/or the sample with the mixing

chamber. This bad thermalization can lead to underestimations of the amplifier gains.

This hypothesis is developed in Appendix C.

Moreover, we noticed that the HEMT gain can vary from days to days, which make

it difficult to ensure their value during the measurements. This can also represent an

important source of error.

We want to check if it is still possible to use the PASN picture to describe the cross-

correlation in presence of a radio-frequency (RF) signal. We preferred to work with the
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cross-correlation only, in order to avoid eventual photo-assisted processes due to noisy

incoming currents. In other words, we think that the photo-assisted picture is better

established for the cross correlation than for the auto-correlation.

5.2.3 Photo-assisted shot noise (PASN)

We now present the cross-correlation measurements with a sine voltage Vac(t) = Vacsin(2πft)

injected on contact (0) only. Indeed, it is important to confirm that we can use the

”photo-assisted” picture described in paragraph 3.2.3 to describe AC transport, before

sweeping to the more complicated HOM configuration. We use a source ”Agilent N5181A

MXG” that delivers radio-frequency (RF) from 0.04GHz to 20GHz, and powers from

-20 dBm to 20 dBm. We recall that the power in dBm correspond to:

PdBm = 10log(P/P0)

where P0 = 1mW . One of the most difficult task is to estimate the power that is

effectively sent to the sample, after attenuation and many reflections at each connector

(see appendix C).

We recall that in the case of energy-independent scattering matrix, a simple relation

between the noise in presence of a time-dependent voltage Vdc + Vac(t) (SON (Vdc)) and

the noise in presence of the DC component Vdc only (SOFF (Vdc)) can be derived:

SON (Vdc) =
∑

l=−∞,+∞
Pl(α)SOFF (Vdc +

lhf

e
) (5.3)

where Pl(α) are the square of Bessel functions and α = eVac/hf . However, we noted

that the RF sine wave can induce a heating of contact (0). In this case, the noise is

enhanced because of a temperature difference between the two counter-propagating edge

states. Calling T0 (resp. T3) the temperature of contact (0) (resp. (3)), we have to use

the DC shot noise SOFF (T0, T3, Vdc) evaluated by taking T0 6= T3 in expression (5.2) to

get a right evaluation of SON (Vdc). Equation (5.3) becomes:

SON (Vdc) =
∑

l=−∞,+∞
Pl(α)SOFF (T0, T3, Vdc +

lhf

e
) (5.4)

For PASN measurements we choose a frequency f = 10GHz, for which we have VJ =

hf/e = 41.4µV and hf/kB = 480mK, and two values of the RF power: 3 and 6 dBm.

In that way, the ratio between two consecutive delivered power is equal to 2. We use the

notation VJ for ”Josephson voltage”, with analogy with the AC Josephson effect where

the bias and the frequency of emitted photons are linked.
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We use the same ”ON-OFF” technique as previously: after a measurement with Vdc +

Vac(t) (”ON”), we take another measurement with Vdc only (”OFF”). If these two are

close enough in time, we can get rid of the drift of spurious peaks in the spectra (that can

evolve within few minutes). The results of these measurements are presented in figure

5.7 for the excess cross correlation ∆S(Vdc) = SON (Vdc)− SOFF (Vdc). The red vertical

lines correspond to ±VJ = ±hf/e. To fit the excess noise ∆S(Vdc), we used equation

Figure 5.7: ∆S(Vdc) at Vgate = −0.2V for f = 10GHz, P = 3dBm (top figure),
P = 6dBm (bottom figure)

(5.4), with SOFF (Vdc) = Sexp(Vdc) obtained by equation (5.2) and g = 0.7. The fitting

formula is thus:

∆S(Vdc) =
∑

l=−∞,+∞
Pl(α)Sexp(T0, T3, Vdc +

lhf

e
)− Sexp(T3, T3, Vdc) (5.5)

where α = eVac/hf , Vac, T0 and T3 are fitting parameter. We also used the property of

Bessel functions Pl(α) = P−l(α). The sum should theoretically be made on all l integers,

but we considered only the terms corresponding to −5 < l < 5, which is widely enough

for α < 4. The last fitting parameter is an offset (also indicated in the legend), that is

found to vary with power.

The excess noise shows the expected variations with Vdc: it is maximal at Vdc = 0V ,

and decreases when Vdc increases. As explained in paragraph 3.2.3, this results from
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electron-hole pair contributions to the shot noise. At fixed frequency f , the higher the

bias Vdc, the higher is the number of photons that electrons at a certain level under the

Fermi sea should absorb in order to contribute to the shot noise. This is why the excess

noise decreases when Vdc increases. The slope breaks at Vdc = ±hf/e are hardly visible

in figure 5.5 because of the high electronic temperature. Indeed, the values extracted

from the fit of ∆S(Vdc) are T0 = T3 = T = 65mK, thus a high value for both ”ON”

and ”OFF” measurements and both contacts (0) and (3). The range of Vac and the

corresponding α = eVac/hf values extracted from the fits of figure 5.5 are reported in

table 5.2. The values of Vac are spaced by the expected factor
√

2 when increasing the

P=3 dBm P=6 dBm

Vac(µV ) 76-80 106-112

α 1.8-1.9 2.5-2.7

Table 5.1: Vac and α values at f = 10GHz and Vgate = −0.2V , deduced from the fits
of figure 5.5.

RF power by 3dB steps. Thus our results seem coherent with the photo-assisted picture,

provided that we include high electronic temperatures.

However, we can notice that the fit of the curves of figure 5.5 is not accurate for large

bias Vdc (in particular for P = 6dBm). The fitting parameters were chosen to optimize

the fit in the interval [−VJ , VJ ]. At higher bias, the fit of the excess noise requires the

knowledge of Sexp(Vdc ± lVJ) for l > 2. The weight of these terms is enhanced when

increasing the RF power. Experimentally, we have access to the DC cross correlation

only between −88µV and 88µV (cf figure 5.5), thus we had to extrapolate the linear

variations of Sexp at higher Vdc. This extrapolation may not correspond to the actual

behaviour of the DCSN, and is probably the reason for which it is hard to fit the excess

noise for Vdc > VJ .

We now present another way to treat the PASN that put into evidence the slope changes

of ∆S(Vdc) at Vdc = ±VJ = ±hf/e. For this, we notice that the sum
∑

l 6=0 Pl(α)Sexp(Vdc+
lhf
e ) should give a flat variation between −VJ and VJ when Sexp(Vdc) is symmetric and

linear with Vdc (that is presently the case). We thus look for the P0 value that minimizes

the quantity SON (Vdc) − P0Sexp(Vdc) over an interval smaller than [−VJ , VJ ] (in order

not to add artificial interpretations). The result of this minimization is shown in figure

5.8, for the same measurements at f = 10GHz and P = 0, 3, 6dBm.

We clearly see the slope change at VJ and −VJ , confirming the validity of the photo-

assisted picture in this regime. However, we note that the value of P0 found with this

method (indicated in the legend) fluctuates by approximately 10% with the interval of

optimization. If we assume P0 to be a Bessel function, we extract Vac values of 45µV ,

49µV and 64µV , which is not consistent with the values of table 5.2. Moreover, the ratio
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Figure 5.8: SON (Vdc) − P0SOFF (Vdc) for f = 10GHz and P = 0, 3, 6dBm. The
blue dashed lines correspond to the minimisation interval, and he red dashed lines

correspond to ±VJ .

between these values is much lower than
√

2. This would mean that Bessel functions do

not give the right photons absorption and emission probabilities. One possible reason

for this deviation from Bessel functions is developed in Appendix E.

Despite some complications due to heating effects, PASN measurements at Vgate =

−0.2V could be understood within the ”photo-assisted” picture. We now use this same

picture to interpret HOM measurements.

5.2.4 HOM measurements

We are now going to present the ”HOM” measurements, where we inject sine waves

V1(t) = Vac,1sin(2πft) and V2(t) = Vac,2sin(2πft + Φ) on contacts (0) and (3) of the

sample. To inject power on both RF lines, we use a splitter at the outpout of the

RF source, that splits the delivered power into two equal parts when plugged to 50 Ω

impedance lines. We can control the phase difference Φ between the two sine waves

thanks to a mechanical phase shifter that varies the length of one of the RF line. As

explained in the main introduction, ”HOM” measurements consist in measuring the

cross correlation while sweeping the phase Φ (or the delay τ = Φ/2πf).

As shown in paragraph 3.1, in the weak backscattering regime, it is possible to show

properly that the noise and the current only depend on the difference V1(t) − V2(t)

(neglecting propagation effects between the reservoirs and the QPC). As emphasized in

paragraph 3.2.4, the extension of this result to arbitrary transmissions is not obvious.
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Nevertheless, we expect the visibility of the ”HOM” photo-assisted noise and current to

be maximal when Vac,1 = Vac,2.

5.2.4.1 Visibility optimisation

To maximize the visibility and to find the condition for equal Vac,1 = Vac,2, we choose

to make photo-assisted current measurements, that are much faster than noise measure-

ments. For that, we had to modulate the RF power with a low-frequency signal also

used as a reference for the lockin. This reference signal Vmod(t) is delivered by a low

frequency ”agilent” source. The RF power is modulated by mixing the RF signal and

Vmod(t) with non-linear mixer. A schematic of the experimental device is shown in figure

5.9. The signal at the output of the mixer has the form Vac(t) = A(t) cos(2πft), where

Figure 5.9: Experimental setup used for photo-assisted current measurements, in-
cluding the low-frequency (LF) and radio-frequency (RF) sources. The LF source is

also used as a reference for the lockin.

f is the frequency of the RF source and A(t) is the 270Hz envelope, whose amplitude

depends on both the RF power and the amplitude of Vmod(t). On top of this signal, we

can add a DC voltage Vdc on contact (0). The lock technique gives access to the 270 Hz

components of the transmitted and reflected ”photo-assisted” currents.

At third order the DC current Idc (that refers to IT or IR) is given by :

Idc(Vdc) = G0 +G1Vdc +G2V
2
dc +G3V

3
dc

From the perturbative approach (paragraph 3.1), we can show that the photo-assisted

current writes:

Iphoto(Vdc, Vac) = G1Vdc +G2〈V 2(t)〉+G3〈V 3(t)〉 (5.6)
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where V (t) = V1(t) − V2(t), V1(t) = Vdc + Vac,1sin(2πft), V2(t) = Vac,2sin(2πft + Φ),

and 〈〉 stands for the mean value over one period of V (t). With the above-described

lockin measurement, we have access to the quantity:

∆Iphoto(Vdc) = Iphoto(Vdc, Vac)− Iphoto(Vdc, Vac = 0) = (G2 + 3G3Vdc)〈V 2
ac(t)〉 (5.7)

where Vac(t) the AC part of V (t) (Vac(t) = Vac,1(t) − Vac,2(t)), and where we used

〈V p
ac(t)〉 = 0 for p odd. Obviously, we need a non-linearity (or finite values of G2 or

G3) to observe a finite ∆Iphoto(Vdc). This is why we choose a gate voltage for which we

measured a Vdc-dependent conductance: Vgate = −0.3V . In figure 5.10, we see a small

instability of the conductance, as well as GR variations of approximately 15%.

Figure 5.10: GR(Vdc) at Vgate = −0.3V for three consecutive sweeps in bias.

From equation 5.7, we also expect the signal to increase with Vdc. For the next photo-

assisted current measurements, we thus choose a finite value Vdc = −40µV . Finally, the

frequency f = 14.15GHz was fixed after maximisation of the photo-current signal.

We measure the photo-current ∆Iphoto(−40µV ) while sweeping the phase difference Φ

with the mechanical phase shifter (or ”dephasor”). We then compare the contrast that

we get with various values of the attenuation factors A1,A2 (see figure 5.9), corresponding

to various ratios Vac,1/Vac,2. The results for some configurations are shown in figure 5.11.

In figure 5.12, we compare the visibility obtained for various configurations.

The maximal value of visibility at this particular frequency is obtained for 3dB attenua-

tion difference between both RF lines (A1 = A2 +3dB). In this configuration, we expect

Vac,1 = Vac,2. This simplifies the analysis of ”HOM” noise measurements, on which we

now focus.
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Figure 5.11: Photo-current versus phase difference for Vgate = −0.3V and Vdc =
−40µV , and total RF power P=9dBm. The different curves correspond to different

attenuation factors A1 −A2.

Figure 5.12: Visibility versus difference of attenuation between the two RF lines
A1 −A2 (in dBm), calculated from the points of figure 5.11

5.2.5 HOM noise

We now present HOM noise measurements, done at Vdc = 0V . We remove the low-

frequency modulation of the RF signal, needed only for photo-current measurements.

Thus the experimental setup is the same as the one of figure 5.9, except that the power

P delivered by the RF source is directly split and sent on the two RF lines. We come

back to the initial gate voltage Vgate = −0.2V (for which we already presented DCSN

and PASN measurements). Remaining in the configuration for which Vac,1 = Vac,2 = Vac

at f = 14.15GHz, we make HOM measurements for two powers of the RF source:

P = 5dBm and P = 8dBm. In order to fit the experimental data, we use equation 3.38:

SHOM (τ) =
∑
l

Pl(αeff )Sexp(
lhf

e
) (5.8)

where the τ dependence is contained in αeff = 2eVac sin(πfτ)/hf , and the delay τ is

simply linked to the phase Φ by: Φ = 2πfτ . Equation (5.8) can be derived within
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the Floquet formalism (paragraph 3.2.3), in the limit of energy-independent reflection

coefficient (that is a good approximation at Vgate = −0.2V , see figure 5.3). As for

PASN measurements, we study the cross-correlation only, and we use the fitting function

Sexp(Vdc) of figure 5.5 in order to fit SHOM (τ). From equation (5.8), we see that varying

the time delay τ leads to the same effect as varying the effective AC amplitude αeff of

a sine wave applied on one contact only. It is thus useful to first simulate the variations

of the PASN (equation (5.3)) with α, at f = 14.14GHz and using the DCSN given by

Sexp(Vdc). The curve is plotted in figure 5.13, for Vdc = 0. The quadratic departure is a

signature of quantum effects, whereas the linear behaviour corresponds to an adiabatic

regime.

Figure 5.13: Simulation of the PASN SON (Vdc = 0, α) at Vgate = −0.2V , using
equation (5.3) and the DC characteristic Sexp(Vdc).

The HOM measurements for P = 5dBm and P = 8dBm are presented in figure 5.14,

where we plot the ”excess” cross correlation obtained from ”ON-OFF” measurements.

More precisely, each point is the mean value over ∆f of eight ”ON-OFF” noise spectra.

The accuracy on the Vac amplitudes extracted from the manual fit of figure 5.14 and

reported in table 5.2 is a few µV . It is limited by the experimental phase drift that can

be significant within a few hours, the time duration range of these measurements. We

are also limited by apparent drifts of the HEMT gains or of the power delivered by the

RF source. We try to fit well at least one period over the 2.25 periods that are plotted.

We note that the ratio between the two extracted AC amplitudes Vac is 1.44, very close

P=5dBm P=8dBm

Vac(µV ) 50 72

α 0.4 0.576

Table 5.2: AC amplitudes Vac in µV and corresponding α = eVac/hf values extracted
from the fits of figure 5.14, for f = 14.15GHz.
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Figure 5.14: HOM measurements at Vgate = −0.2V and Vdc = 0V , f = 14.15GHz,
P = 5dBm (top figure) and P = 8dBm (bottom figure). From the fit we extract the

Vac amplitudes (as well as an offset value).

to the ratio
√

2 expected for 3dB power increase. This confirms that we can use the

photo-assisted picture leading to formula 5.8 in order to describe HOM measurements.

As a conclusion, PASN as well as HOM measurements at Vgate = −0.2V could also be

interpreted within the Floquet theory of photo-assisted transport. PASN measurements

analysis revealed a high electronic temperature T = 65mK independent of the RF power.

A precise study of the heating due to RF power should be carried out by measuring the

auto-correlations on a plateau (that include only thermal contributions). During HOM

measurements, we heat both edge states roughly in the same manner as we inject the

same RF power on both sides of the sample. Our data were well fitted using a smaller

electronic temperature T = 40mK. However, we do not observe a cancellation of the

HOM noise expected for τ = 0 and from the ”fermionic behaviour”.
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In order to support the results found at Vgate = −0.2V , it is useful to make measurements

at other gate voltages. We now present the results at Vgate = −0.27V .

5.3 Measurements at Vgate = −0.27V

5.3.1 Conductance

As done previously for Vgate = −0.2V , we first measure the conductance GR(Vdc) and

GT (Vdc) within the same Vdc interval as previously (−88µV to 88µV ), and using the

same lockin parameters. The results are shown below. The mean reflection of the

Figure 5.15: GR(Vdc), GT (Vdc), and the sum GR(Vdc)+GT (Vdc) for Vgate = −0.27V .

internal channel is now 26%, and it shows variations of 13% around this mean value.

We also observe that the sum GR +GT is constant and equal to 2 e
2

h , as expected from

current conservation.

5.3.2 DCSN

For noise measurements, we integrate the spectra of the auto and cross correlation over

the same interval ∆f = [2.1, 2.8]MHz, thus we use the same conversion coefficients as

the one indicated in equation (5.1). We also use the same ”ON-OFF” technique, and

the same number of averages. The DCSN results (auto and cross correlation) are shown

in figure 5.16. The difference between auto and cross correlation is still visible, with

Auto B (B ×B) and Auto A (A×A) that are lower than the cross correlation.

Moreover, there is a mismatch of 55% between the theoretical cross-correlation evaluated

with the reflection coefficient of figure 5.15 and the measured one. The cross correlation

is fitted using equation (5.2) with the measured reflection R = GRh/e
2 coefficient (plot-

ted figure 5.15) and with a multiplication factor g = 0.55. The electronic temperature

used for the fit is T = 30mK.

As for Vgate = −0.2V , we attribute these non-expected DCSN values to errors of esti-

mation of the HEMT gains, either because of bad thermalizations (see Appendix C), or

because of time-drifts of the gains. Despite these experimental difficulties, we can use
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Figure 5.16: Cross and auto correlation functions versus DC bias Vdc for Vgate =
−0.27V . The bottom figure focuses on the Cross correlation only.

our knowledge on the DCSN in order to interpret the noise in presence of a sine voltage.

We want to check if it is possible to treat it as a consequence of emission and absorption

processes, as suggested by formula (5.3).

5.3.3 PASN

We now present the PASN measurements, injecting power on the same RF line and at

the same frequency as previously (f = 10GHz), but with lower powers: P = −1.5dBm

and P = 1.5dBm. Reducing the power, we hope to reduce eventual heating effects

and to have a correct estimation of the PASN over a larger Vdc window. As previously,

we focus on the cross-correlation only. Assuming that corrections due to the energy-

dependence of the reflection coefficient (figure 5.15) are small enough, the excess noise

should be given by:

∆S(Vdc) =
∑

l=−∞,+∞
Pl(α)Sexp(T0, T3, Vdc +

lhf

e
)− Sexp(T3, T3, Vdc) (5.9)

where Sexp(Vdc) the new cross-correlation fitting function at Vgate = −0.27V (cf figure

5.16), and the temperatures T0 and T3 may differ due to an eventual heating of contact

(0) brought by the RF power. The amplitude Vac and the offset are the other fitting

parameters. The excess noise measurements and the fits with T0 = 65mK, T3 = 30mK

are presented in figure 5.17.
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As previously noticed, the fit is not accurate for Vdc > VJ , especially for the highest

Figure 5.17: Excess noise ∆S(Vdc) at Vgate = −0.27V , for f = 10GHz, P =
−1.5dBm (left figure) and P = 1.5dBm (right figure).

power P = 1.5dBm. One possible reason is the lack of information on the DCSN at

high Vdc, that is more limiting in the case of high powers. Vac values were found trying

to fit correctly the excess noise between VJ and −VJ , using equation (5.9). The results

of the excess noise fit are reported in table 5.3.

Taking into account the uncertainties, we find the expected
√

2 ratio between Vac values

P = −1.5dBm P = 1.5dBm

Vac(µV ) 40-44 58-62

α 0.96-1 1.4 -1.5

Table 5.3: Vac and α = eVac/hf values at f = 10GHz and Vgate = −0.27V , deduced
from the fits of figure 5.17.

at P = −1.5dBm and P = 1.5dBm. These results are in agreement with the photo-

assisted transport picture, and confirm the PASN study at Vgate = −0.2V (as well as

many previous studies [83][6]). We now present HOM measurements, that we will try

to interpret using the same picture.

5.3.4 HOM measurements

We now present HOM noise measurement, applying V1(t) = Vac,1sin(2πft) on contact

(0) and V2(t) = Vac,2sin(2πft + Φ) on contact (3) of the sample (see figure 5.9). As

for Vgate = −0.2V , we work in the configuration that equals the AC amplitudes at

f = 14.15GHz: Vac,1 = Vac,2 = Vac. We also use the same RF powers as for previous

HOM measurements: f = 14.15GHz and P = 2, 5, 8dBm. Even though the conductance

GR is not constant at Vgate = −0.27V , the reflected current as well as the shot noise

are roughly linear with Vdc (see figure 5.16). Thus we assume that equation (5.8) is still

valid, and we use it to fit the HOM noise. We use the Sexp(Vdc) function determined from
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DCSN measurements at Vgate = −0.27V , letting Vac and an offset as fitting parameters.

Experimental HOM results and theoretical simulations are compared in figure 5.18.

Figure 5.18: HOM noise measurements at Vgate = −0.27V , f = 14.15GHz, and
powers P = 2dBm (top), P = 5dBm (middle) and P = 8dBm (bottom figure). From

the fit we extract the Vac amplitude as well as an offset value.

We observe the expected shape for the HOM measurements, with minima that are

sharper than the maxima. The Vac values, determined with 3µV uncertainty, and the

corresponding α values are reported in table 5.4. As previously noted, the measurements

accuracy is limited by time-drifts of the relative phase between the two RF lines.

The ratio between Vac = 140µV and Vac = 105µV is equal to the expected
√

2 factor,

but the HOM at P = 2dBm gives too high AC amplitude (we would expect around
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P=2dBm P=5 dBm P=8dBm

Vac(µV ) 85 105 140

α 0.69 0.58 0.42

Table 5.4: Vac in µV (±3µV ) and α = eVac/hf from HOM measurements at f =
14.15GHz and Vgate = −0.27V , deduced from the fits of figure 5.18

73µV ).

The values of table 5.4 do not coincide with the ones extracted from HOM measurements

at Vgate = −0.2V , that were roughly two times smaller (50µV for P = 5dBm and 72µV

for P = 8dBm). The reason for this mismatch is probably a variation of the HEMT

gains between the date of DCSN measurements and the one of HOM measurements,

that makes the Vac determination inaccurate.

Despite this experimental artefact, the comparison between HOM measurements at var-

ious RF powers P brings us to the same conclusion as at Vgate = −0.2V : it confirms the

validity of formula (5.8) to describe HOM measurements.

However, one important incoherence with equation (5.8) remains. Indeed, for equal am-

plitudes Vac,1 = Vac,2, we would expect that the HOM noise SHOM (τ) cancels at τ = 0.

But previous HOM measurements showed that SHOM (τ) remains finite for all τ values.

This effect is not due to the energy dependence of the reflection coefficient R, as it was

also observed at Vgate = −0.2V (where R is constant). If we assume the heating due to

RF power to be identical on both sides of the sample (as Vac,1 = Vac,2), we can neither

explain it by this heating effect. Indeed, only a temperature difference between contacts

(0) and (3) can induce additional noise. Until now, the origin of such an offset is not

understood.

5.4 Measurements at Vgate = −0.3V

To conclude the study at filling factor ν = 2, we present measurements at Vgate = −0.3V .

We did not make HOM measurements at this gate voltage, but only PASN measurements

in order to confirm the results obtained at Vgate = −0.2V . The technique, parameters

and averaging of lockin and noise measurements being exactly the same as at Vgate =

−0.2V , the presentation is shorter.

5.4.1 DC measurements

We start by looking at the reflection factor as well as the DCSN for the same Vdc window

(−88µV to 88µV ). The results are shown in figure 5.19.



118

Figure 5.19: Reflection conductance GB(Vdc) = GR(Vdc) (left figure) as well as DCSN
(right figure) verse DC bias Vdc. The three curves of GR(Vdc) correspond to three

successive measurements.

We first notice from conductance measurements that the sample may show small insta-

bilities over time. Nevertheless they are not significant and we can estimate that 30%

of the current carried by the inner edge state is reflected, with variations of 13% around

the mean value. In the DCSN, we recover the same tendency as at Vgate = −0.2V : Auto

A equals the cross-correlation, but Auto B is lower. We can fit the cross-correlation

with equation (5.2), taking the measured reflection coefficient of figure 5.19 and g = 0.8.

This corresponds to the smallest deviation to theory for the cross-correlation at ν = 2.

Once we have extracted the fitting function Sexp(Vdc) from these DCSN measurements,

we can use it to study the PASN.

5.4.2 PASN

We use the same measurement technique and parameters as described in paragraph

5.2.3. We measure the excess noise at f = 10GHz and P = 0, 3, 6dBm, and fit it using

equation (5.9). The amplitude Vac, the temperatures T0 and T3 and the offset are fitting

parameters. Now Sexp(Vdc) corresponds to the continuous plot of figure 5.19. We assume

Sexp(Vdc) to be linear with the bias for a large window of Vdc. The range of Vdc on which

this extrapolation is made in order to estimate the excess noise ∆S(Vdc) depends on the

applied RF power. Practically, the fitting functions include all the l < 5 terms of the

sum (5.9). The results on PASN are shown in figure 5.20.

From these PASN measurements, and using Bessel functions, we recover roughly the

same Vac values as at Vgate = −0.2V (cf paragraph 5.2.3): Vac = 71µV, 83µV, 102µV

(±3µV ) for P = 0, 3, 6dBm respectively. Thus we can say that our results are consistent

with the photo-assisted picture. Small deviations between the results at Vgate = −0.2V

and Vgate = −0.3V may be due to the energy-dependence of the reflection coefficient,

that is more pronounced at Vgate = −0.3V (figure 5.19).
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Figure 5.20: PASN at Vgate = −0.3V , f = 10GHz, and powers P = 0dBm (top),
P = 3dBm (middle) and P = 6dBm (bottom figure). From the fit we extract the Vac

amplitude and an offset value.

5.5 Conclusion

Even though we do not recover the expected values of DCSN, most probably because

of experimental artefacts, we could use our knowledge on the DCSN to interpret mea-

surements in presence of sine voltages. We first studied the case where a sine wave was

applied on one contact only (PASN measurements), and then the case where sine waves

with a well-controlled time delay were applied on contacts (0) and (3) (HOM measure-

ments). The comparison between measurements at different RF powers showed that
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our results could globally be interpreted within the ”photo-assisted” transport picture.

However, heating effects brought by RF waves complicate the data analysis.

However, no cancellation of the shot noise (nor of the photo-current) could be observed in

the HOM configuration. The maximal visibility of HOM measurements is roughly 50%.

The cancellation of the shot noise at τ = 0, naively expected for fermions, is actually

difficult to observe. The reasons may be linked with experimental artefacts, but also

with fundamental aspects of transport. For example, when the reflection coefficient is

energy-dependent, the transport does not depend only on the difference V1(t) − V2(t).

Applying AC voltage on both sides of the sample encourages a deeper understanding

of AC transport, and to reconsider the meaning of ”gauge invariance” in mesoscopic

conductors.



Chapter 6

Experimental results at ν = 2
3

As already discussed in paragraph 2.4 a close analogy between edge states of the frac-

tional Hall effect and Luttinger liquids (LL) [54] was established already in the 90’s.

MacDonald [87], following an extension of the Haldane-Halperin hierarchy [88],[89],

predicted that current transport at filling factor ν = 2
3 occurs through two counter-

propagating edge states, that are formed by two incompressible droplets of filling fac-

tors ν1 = 1 (internal droplet) and ν2 = 1/3 (external droplet). This approach was

developed by Wen [90], [91], and has been successful in explaining fractional charge in

a QPC geometry observed through shot noise measurements [42],[15][44]. Indeed, the

charge carried by quasi-particles on the internal edge state is predicted to be e∗ = e/3,

while the charge carried by quasi-particles on the external edge state is expected to be

integer. However, this picture could not predict the experimentally observed conduc-

tance plateau G = (2/3)e2/h. This conductance was recovered in a pioneering paper of

Kane, Fisher and Polochinski (KFP) [92], who considered random disorder-induces tun-

neling between edge states. They showed that at ν = 2/3, interactions and incoherent

disorder-tunneling between modes is necessary to recover the conductance quantization

G = (2/3)e2/h. They predicted the formation of two counterpropagating charged and

neutral mode, that received experimental support [93] [94]. These experimental works

also motivated the elaboration of new models [95] based on the chiral LL theory.

However, KFP approach was still inefficient to explain the emergence of a conductance

plateau G = (1/3)e2/h in QPC geometries [44],[96]. This motivated Wang, Meir and

Gefen (WMG) [97] to propose a different edge structure, based on earlier work [98] of

edge reconstruction [99]. The starting point of the WMG theory is the edge reconstruc-

tion of the 2/3 edge due to a sufficiently small slope of the edge confinement potential.

The corresponding edge structure includes, in addition to the two counter propagating

modes ν1 = 1 and ν2 = −1/3 of the ”conventional” 2/3 edge, two counter-propagating
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modes ν3,4 = ±1/3. It was shown that, under certain assumptions, disorder can drive

such an edge towards renormalization-group fixed point with two downstream ν = ±1/3

charged modes and two upstream neutral modes. At this fixed point, the presence of

the G = (1/3)e2/h plateau is accounted for by assuming that in certain ranges of the

gate voltage, the outermost charged channel is transmitted by the QPC while the inner

charged one is reflected. More recently, Ref [100] performed a systematic study of the

electric and thermal transport for the incoherent ν = 2/3 edge. A more general study [5]

at arbitrary Abelian filling factors showed that conductance plateau are found whenever

the QPC locally depletes the 2DEG to a stable region with filling factor νQPC lower

than that of the bulk νB, and the resulting edge states equilibrate.

Figure 6.1: Model of a QPC device in the FQHE from Ref [5], similar to our ex-
perimental device. The filling factor νQPC depends on the density of the 2DEG un-
der the QPC, that can be controlled through Vgate. In the incoherent regime where
leq << LQPC << Larm (where leq is the equilibration length, Larm is the device length

and LQPC is the QPC length scale), stable conductance plateaus at recovered.

A very useful result of this study is that the conductance measured at contact CD1 and

CD2 of figure 6.1 when applying a bias on CS only depends on νQPC :

GD1 = νQPC
e2

h
, GD2 = (νB − νQPC)

e2

h
(6.1)

In our experimental setup, GD1 and GD2 corresponds to the conductance GT and GR

measured on contacts (1) and (4) of figure 4.2. Furthermore, it was predicted that the

auto correlation noise on plateaus depends on few topological numbers: the difference

between the number of upstream and downstream modes in the different branches of

figure 6.1. It was found that heating points induce thermally activated tunneling between

edge modes and electron-hole pairs excitations that can reach different contacts, leading

to a finite shot noise. This heating is due to the voltage profile of edge states during the

equilibration process. A shot noise proportional to
√
LArm/leq was found at νB = 2/3,

νQPC = 1/3, while 0 shot noise is expected at νB = 2/5, νQPC = 1/3.
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Having in mind this complexity of edge states structure at ν = 2/3 (and more generally

in the FQHE), we now present DCSN, PASN and HOM measurements in this regime.

We try to interpret our result in the framework of the perturbative approach described in

paragraph 3.1, that has the advantage to be independent of the microscopic description

of edge states. We recall that the only restrictions is that the tunneling current is

weak (IR << I0) and that only one charge tunneling process is involved. We present

experiments similar to the one that we have done at ν = 2, starting by DC measurements

to characterize the regime of ν = 2/3, reached for a magnetic field around 7T . In figure

6.2, we show conductance measurements while sweeping the gate voltage Vgate, using

the same lockin amplitude (around 5µV ) and frequency (270Hz) as previously.

Figure 6.2: Conductance GR(Vdc) and GT (Vdc) at Vdc = 0V and B = 7T . The dashed
line correspond to the gate voltage chosen to make noise measurements.

The first observation is that, contrary to what is theoretically expected and measured in

previous cited works, the second plateau is located at 0.44e2/h and not (1/3)e2/h. Fol-

lowing the approach of Ref [5], we could attribute this to deviations from the incoherent

regime, probably due to the small length scale of the QPC region LQPC ≈ 200nm, that

may be lower than the equilibration length leq. In that case, the conductance GR could

depend on other factors than only the QPC filling factor νQPC , such as the degree of

backscattering between edge modes. Of course, this complex edge structure involving

exchange processes between edge states may have consequence on the DCSN (DC shot

noise) as well.

6.1 DCSN

The shot noise was found to be finite for all Vgate values (or QPC configuration). This

is illustrated in figure 6.3, where the excess cross correlation SI(Vdc) is plotted for Vdc =

±48µV and Vdc = ±96µV , and for various values of the gate voltage Vgate. By ”excess
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noise” we refer to the ”ON-OFF” technique previously mentioned, where we make the

difference between the shot noise at finite Vdc and the shot noise at Vdc = 0. We observe

Figure 6.3: ”ON-OFF” cross correlation versus Vgate at Vdc = ±96µV (blue and
magenta curves) and Vdc = ±48µV (red and orange curves). The green curve is a

reference for Vdc = 0V .

that SI(Vdc) increases with Vgate and reaches maximal values in the strong backscattering

regime. This behaviour is reminiscent for the increase of the tunneling charge from e∗ < e

in the weak backscattering regime, to e in the strong backscattering regime. The strong

backscattering is also the regime where we observe the strongest non-linearities of the

reflected current.

SI(Vdc) seems symmetric with the bias Vdc for most of Vgate values. However, no cancel-

lation of the shot noise is visible except for closed QPC. Instead, SI(Vdc) clearly increases

with the DC bias Vdc even on the 0.44 e
2

h plateau (around Vgate = −0.4V ). A finite shot

noise on intermediate plateau was already measured in previous works [6][94] and could

be explained by theoretical models mentioned above [5].

In order to be able to compare our results to theoretical predictions, we decided to

study the shot noise in the weak backscattering regime corresponding to a gate voltage

Vgate = −0.0815V . The mean value of the reflected conductance is GR = 0.024 e
2

h , and

the I-V characteristic is slightly non-linear (see figure 6.4).

We present DCSN measurements for Vdc between −293µV and 293µV , which corre-

sponds to delivered voltage between -0.8 V and 0.8 V by the room-temperature DC

source. Each point of figure 6.5 corresponds to the mean value of a noise spectrum

over a smaller frequency interval than previously: ∆f = [2.2, 2.38]MHz. Reducing this

interval around the resonance of the RLC circuits, it can be shown that we increase the

signal to noise ratio. Each point is averaged N = 2000 times by the acquisition card,

and then four more times over consecutive bias sweeps. We use the thermal calibration
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Figure 6.4: Conductance GB(Vdc) = GR(Vdc) (left figure) and backscattered current
IB = IR (right figure) for Vgate = −0.0815V . The non linearity visible GR is almost

not visible anymore in the integral of it, IR.

technique described in paragraph 4.5 to find the conversion factors:

Caa = 2.01 ∗ 1013Ω2, Cbb = 2.3 ∗ 1013Ω2 Cab = (1.44 + 1.32j) ∗ 1013Ω2

The corresponding total amplification gains are GA = 948 for line A and GB = 1008

for line B. To compare our results with the theoretical cross-correlation, we use the

expression (see [66],[76] for a derivation):

SI(Vdc) = 2e∗IR(Vdc)coth(
e∗Vdc
2kBT

)− 2kBTGR(Vdc) (6.2)

where e∗ = e/3, and the conductance GR(Vdc) = ∂IR
∂Vdc

corresponds to the experimental

points of figure 6.4.

Figure 6.5: Cross and auto-correlation functions versus DC bias Vdc. (left figure) and
cross-correlation only (right figure). The black continuous curve corresponds to SI(Vdc)

given by equation (6.2) (left figure) and to 0.4SI(Vdc) (right figure).

We observe that Auto B fits well with equation (6.2), while there is a factor 0.4 of

difference for the cross correlation, that is better fitted with e∗ = 0.4e/3.

The fact that the auto-correlations are higher than the cross-correlation is not surprising

as it has already been observed at ν = 2/3 and ν = 2/5 [6]. However, the main difference

with previous works [44] is that the charge e∗ found from the cross-correlation was

e∗ = 0.35, and not e∗ = 0.4e/3. One possible source of error is a bad thermalization of
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the RLC circuits, that would lead to errors in the determination of the amplifier gains

GA and GB and thus on the conversion factors Caa, Cbb, Cab. This effect is detailed in

the last paragraph of Appendix A.

It is also possible that these DCSN result from non-perfect coupling between edge states

and ohmic contacts. Finding a microscopic model to describe the injection of electrons

from a reservoir to the edge states of ν = 2/3 is a quite difficult task and have been the

subject of theoretical works [101],[102]. It can be shown that a non-perfect coupling of

fractional edge states to reservoirs would modify the quantization of the conductance,

and would lead to power-law behaviour of the current even on a plateau. This could

bring errors in the calibration of the transmitted and reflected current, as well as in

the noise calibration. Indeed, these calibrations were made assuming that each ohmic

contact at chemical potential eVdc is perfectly coupled to the edge states, in which a

current 2
3
e2

h Vdc is injected. If the coupling to reservoirs is non-perfect and the value of

the injected current is reduced, the conductance and noise calibrations would give wrong

estimations of the noise.

However, the linear behaviour of the conversion factors yA, yB with ν (see figure 4.16)

proofs the consistency of the conductance calibration: the first measured plateau in

figure 6.2 is indeed situated at (2/3)e2/h (and not only fixed in order to calibrate the

lockin measurements). This means that an eventual bad coupling to reservoirs does

not modify the conductance plateau at (2/3)e2/h. However it could make the current

injected in contact (0) noisy, and this would naturally induce a difference between auto

and cross-correlations.

Even without evoking bad coupling to reservoirs, let’s emphasize that the previously

cited descriptions of the ν = 2/3 edge states (KFP or WMG approach) do not give

predictions on the shot noise induced by quasi-particle tunneling. To our knowledge, the

tunneling of charges e∗ = e/3 is usually described by the old ”conventional” description

of edge states involving two bosonic counterpropagating modes ν1 = 1 and ν2 = 1/3.

As already mentioned, this picture is becoming obsolete as it could not account for the

observed conductance plateau. These unexpected results on DCSN could motivate the

study of shot noise outside of conductance plateaus within the most recent approaches.

Even with a partial comprehension of the DCSN, it is possible to use the fit Sexp(Vdc)

of the cross correlation (figure 6.5) to interpret the noise measurements in presence of a

RF sine wave.
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6.2 PASN

We call the shot noise in presence of an AC signal ”photo-assisted” shot noise (PASN),

extending the single-particle picture of absorption and emission of photons by quasi-

particles to a strongly-correlated system. This can be justified by the idea that even

though quasi-particles in the FQHE results from excitation of a many-body ground state,

they interact independently of each other with the electromagnetic field created by the

AC voltage, thus exchanging photons of energy hf (where f refers to the frequency of

the sine wave).

To study the PASN, we apply a signal V1(t) = Vdc + Vacsin(2πft) on contact (0),

choosing the same frequency as for HOM measurements: f = 14.15GHz. We focus on

the cross-correlation only, as it should be insensitive to the noise eventually brought by

non-perfect coupling to reservoirs. The measurements with RF power (”ON”), without

RF power (”OFF”), as well as the excess noise (”ON-OFF”) ∆S(Vdc) are shown in figure

6.6, for a power P = 1dBm delivered by the RF source.

We recall the ”OFF” noise Sexp(Vdc) determined from the last DCSN measurements:

Sexp(Vdc) = g(2e∗IR(Vdc)coth(
e∗Vdc
kBT

)− 2kBTGR(Vdc))

where e∗ = e/3, g = 0.4. This same e∗ enters in the PASN formula, giving for the excess

noise:

∆S(Vdc) = = (P0(α)− 1)Sexp(Vdc) +
∑
l>0

Pl(α)(Sexp(Vdc +
lhf

e∗
) + Sexp(Vdc −

lhf

e∗
))

(6.3)

where α = e∗Vac/hf , Pl(α) are l-th order Bessel functions, and the fitting parameters

are Vac as well as an offset. The two continuous curves of figure 6.6 give an estimation

of Vac between 240µV and 270µV , which corresponds to 1.3 < α < 1.5. As for ν = 2,

equation (6.3) fits well the excess noise except for the extreme Vdc values, as the fit in

this region requires information on Sexp(Vdc) for |Vdc| > 300µV (to which we do not have

access). We can distinguish a slope variation around Vdc = ±hf/e∗, confirming that the

fractional charge entering in the PASN formula is e∗ = e/3.

Now that we have checked that PASN measurements can be interpreted within the

picture leading to equation 6.3, we can study HOM measurements - carried out for the

first time in the fractional Hall regime.
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Figure 6.6: Comparison between the cross-correlation at P = 1dBm (”ON”) and
the DCSN called ”OFF”, measured at P = −20dBm (top figure), and excess cross-

correlation ∆S(Vdc) (bottom figure). The red dashed lines correspond to ±hf
e∗

.

6.3 HOM measurements

Keeping Vgate = −0.0815V and RF frequency f = 14.15GHz, we now send sine waves

Vac,1(t) = Vac,1sin(2πft) and Vac,2(t) = Vac,2sin(2πft + Φ) on both sides of the QPC,

more precisely on contacts (0) and (3). This is achieved thanks to two identical ”Agilent

N5181A MXG” sources (delivering powers P1 and P2), that are synchronized to the

same 10MHz clock. In that way, we can inject twice more power than with only one RF

source. These high powers are needed in view of the low values of DC cross-correlation

measured in this regime. A schematic of the experimental setup is shown in figure 6.7.

We use the difference between the delivered powers P1 − P2 (expressed in dBm) that

provides almost equal amplitudes on contacts (0) and (3): Vac,1 = Vac,2 = Vac. This

optimal ratio is found from a visibility optimization at f = 14.15GHz that we will

present in the next chapter (paragraph 7.3.1).
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Figure 6.7: Experimental setup used for ”HOM” measurements. A1 and A2 are the
attenuations of both RF lines (that may differ). The RF powers P1 and P2 are regulated
in order to ensure equal amplitudes Vac,1 = Vac,2 on contacts (0) and (3) of the sample,

when f = 14.15GHz.

We can vary Vac by a factor
√

2 applying RF powers separated by 3dB: we choose

P1 = 12, 9, 6dBm. Thanks to the 10MHz source synchronisation, the phase difference

between the two RF signals can be automatically swept, which is much faster than the

mechanical phase shifter. For each value of the power P1, three phase sweeps have been

performed. From each sweep, we extract the value of Vac that gives the best fit of the

experimental curve, using equation (discussed in part 3.1):

SHOM (τ) =
∑
l

Pl(αeff )Sexp(
lhf

e∗
), αeff =

2e∗Vac sin(πfτ)

hf
(6.4)

In figure 6.8, we show a single τ -sweep for each value of P1. The delay τ of the x-axis is

actually a phase difference Φ = 2πfτ (modulo 2π) in arbitrary units.

The fits are not perfect for all the Φ (or τ) values because of an experimental phase drift

that limits the measurements accuracy. The Vac amplitudes in µV found from the HOM

measurements at different powers are summarized in table 6.1. They are determined

with about 5% accuracy.

Taking the uncertainty into account, we do not recover the
√

2 ratio expected between

P=6dBm P=9dBm P=12dBm

sweep 1 600 790 930
sweep 2 630 800 900
sweep 3 820 950

Table 6.1: Vacvalues in µV extracted from HOM measurements at different powers.

two power values separated by 3 dB. This ratio is instead smaller, between 1.15 and

1.3. Thus the HOM measurements cannot be interpreted within the model leading to
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Figure 6.8: HOM measurements and fit using equation (6.4) for P1 = 12dBm (top),
P1 = 9dBm (middle), P1 = 6dBm (bottom) and always f = 14.15GHz.

.

expression (6.4).

One possible reason for this mismatch is the high value of α = e∗Vac/hf corresponding

to 3.5, 4.5, 5.26 (deduced from Vac values of table 6.1) for P = 6, 9, 12dBm respectively.

During one HOM measurement, the effective AC amplitude Vac,eff = 2Vac sin(fπτ)

varies from 0 to 2Vac, thus involving αeff values that can reach 7 for P = 6dBm, and 11

for P = 12dBm. For this range of αeff , we need to consider a large number of terms in

the sum of equation 6.4 (making the sum at least from l = −5 to l = 5). However, for

l > 2, we do not have access to Sexp(
lhf
e∗ ): we simply assume that its variation is linear.

If this was not the case, our simulations of SHOM (τ) could be wrong.
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We could also think that this mismatch is due to fundamental limits of the theory leading

to (6.4). In particular, the complex structure of edge modes at ν = 2/3 may complicate

the definition of the edge state potential at the QPC level, that is crucial to calculate

the current as well as the shot noise. In absence of a good equilibration between edge

state (that was a possible reason evoked to explain the 0.44e2/h conductance plateau),

the potential of edge states at the QPC level cannot be well-defined. Furthermore,

equilibration processes between edge states could modify the sine shape of the potential

during the propagation between the reservoir and the QPC.

For all these reasons, the interpretation of the HOM measurements is much harder at

ν = 2/3 than at ν = 2. At ν = 2 HOM measurements were globally coherent with

the picture of ”photo-assited” shot noise. At ν = 2/3, complications may arise from

bad coupling to reservoirs, or from equilibration processes between edge states. Because

of the complexity of the edge states structure, the description of DC as well as photo-

assisted shot noise is difficult and not well-established.

As for ν = 2, and despite the expected fermionic behaviour of electrons, the HOM noise

do not cancels at τ = 0, and the visibility remains close to 26%. From another point

of view, this finite visibility is a proof of coherent transport through the edge states of

the fractional Hall regime ν = 2/3. This first demonstration of HOM measurements at

ν = 2/3 provides information on fractional edge states.



Chapter 7

Experimental results at ν = 2
5

We now present the experimental results obtained at ν = 2/5, corresponding to a mag-

netic field of 11.3 T. In this regime, Wen’s picture and the composite fermions approach

both predict that transport should occur through two co-propagating edge states. Wen

describes the QH liquid as two droplets of different radius, corresponding to filling factor

ν1 = 1/15 for the inner one and ν2 = 1/3 for the outer one. This approach can explain

the 2/5(= 1/15+1/3)e2/h conductance plateau, as well as the second (1/3)e2/h plateau

observed when depleting the QPC (see figure 7.1). The presence of a conductance

plateau is linked to the formation of a local QPC filling factor νQPC [5], as illustrated

in figure 6.1.

Together with the bozonisation technique, Wen’s picture also allows for the construction

quasi-particle operators that carry charges n1ν1e on the inner edge state and n2ν2e in

the outer edge state (n1 and n2 are arbitrary integers, see paragraph 2.4.3 for more

details). These fractional charges have been measured in previous experiments through

DCSN measurements [17] [43] as well as PASN measurements [6], using either the pro-

portionality between the backscattered current IR and the DCSN Sdc (Sdc = 2e∗IR at

zero temperature), or the singularities of the PASN at hf = e∗Vdc. These two methods

revealed that the fractional charge carried by the inner edge state was e∗ = e/5, and the

one carried by the outer edge state was e∗ = e/3 (in consistency with the theory).

First of all, we need to characterize the regime of ν = 2/5 by precise conductance

measurements while sweeping the gate voltage Vgate (figure 7.1).

The conversion factors yA, yB between the lockin signal and the transmitted and re-

flected conductance are determined by assuming that GT = (2/5)e2/h at open QPC,

and GR = (2/5)e2/h at closed QPC. We recall that GT/R =
∂IT/R
∂Vdc

, where IT and IR

are the transmitted and reflected current by the QPC. The ”open” QPC configuration

132
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Figure 7.1: Conductance plateau at ν = 2/5. The green dots are the transmitted
conductance GA = GT , and the blue dots are the reflected conductance GB = GR. The
horizontal lines correspond to the values 1/3e2/h and (2/5−1/3)e2/h. The regions (A)

and (B) are the regimes in which we performed precise DCSN measurements.

corresponds roughly to Vgate = 0.1V , for which the reflected conductance GR cancels.

For higher Vgate values, GR slightly increases (while GT slightly decreases), probably

due to a density inhomogeneity at the QPC. The second plateau of transmission GT is

slightly higher than the expected (1/3)e2/h value, and the second plateau of GR is a bit

lower than the expected (2/5− 1/3)e2/h = 0.067e2/h value. The sum GT +GR remains

equal to (2/5)e2/h for all Vgate. Sweeping the magnetic field around 11.3T does not lead

to a better quantization.

The position of the conductance plateaus is linked with the structure of edge states at

ν = 2/5, that makes the link between the measured conductance GT/R and the QPC

filling factor νQPC less obvious than in the IQHE. The model of Ref. [5] requires a

good equilibration between edge states in order to ensure that GT = νQPCe
2/h and

GT + GR = νBe
2/h. The slight deviations from the expected (1/3)e2/h plateau could

be due to an equilibration length higher than the QPC length scale (around 200nm).

7.1 DCSN

We now present D.C. shot noise (DCSN) measurements. From the noise calibration

at ν = 2/5 (see Appendix A), we find for the amplifier gains: GA = 948, GB = 1008.

Choosing the reduced frequency integration interval ∆f = [2.1, 2.38]MHz, we get for

the calibration factors:

Caa = 2.32 ∗ 1013Ω2, Cbb = 1.95 ∗ 1013Ω2, Cab = (1.38 + 1.35j) ∗ 1013Ω2
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Figure 7.2: Cross and auto correlation for Vdc = 400µV at various Vgate values.
Bottom figure: zoom of the top figure.

We first show shot noise measurements at fixed Vdc = 400µV while sweeping Vgate

(figure 7.2). The expected value of the tunneling charge varies from e to e/5 depending

on Vgate, thus the energy e∗Vdc may reach values of the order of the fractional gap. As

done previously, we plot the ”ON-OFF” cross and auto-correlation.

The shot noise shows two maxima around Vgate = −0.9V and Vgate = −0.1V . Looking

at figure 7.1, we notice that these Vgate values correspond respectively to the beginning

of the last and of the intermediate plateau, thus to the regime of strong backscattering of

the inner edge state (for Vgate = −0.1V ) and of the outer edge state (for Vgate = −0.9V ).

This behaviour is reminiscent for the increase of the tunnelling charge while moving from

the weak backscattering regime to the strong backscattering regime [16]. The transport

at νB = 2/5 through two edge states is illustrated in figure 7.3. While reaching the

intermediate plateau, that corresponds to νQPC = 1/3 (around Vgate = −0.18V ), the

noise abruptly decreases. However it does not cancel, contrary to what is expected for

two co-propagating edge states (see for example Ref [5]). The cross correlation and Auto

A cancel at open and close QPC, while Auto B remains finite and higher for a large

range of Vgate.

The finite value of the shot noise on conductance plateau regions and the difference
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between auto and cross correlations could both be explained by a bad coupling of edge

states with the reservoirs. If the two co-propagating edge states couple differently to

the reservoirs, they would have different potentials, and particle exchange between them

would lead to additional shot noise. This hypothesis of a bad coupling to reservoirs will

be confirmed by more precise DCSN study with Vdc in two different regimes illustrated

in figure 7.3: νB = νQPC = 2/5 (configuration (A)), and νB = 2/5, νQPC = 1/3

(configuration (B)). In both regimes, tunneling currents IT are weak, so the local FQH

regime νQPC is maintained and fractional charges are expected to tunnel.

Figure 7.3: Schematic of the sample at νB = 2/5 and two co-propagating edge states.
In the configuration (A) the tunneling of fractional charge occurs through a region with
local filling factor νQPC = 2/5, while in configuration (B) it occurs through a region

with local filling factor νQPC = 1/3.

7.1.1 Results at νB = νQPC = 2/5

We now present DCSN measurements sweeping the DC bias Vdc in the regime νB =

νQPC = 2/5. We can try to interpret our measurements in the framework of the theory

presented in paragraph 3.1 as we are in the weak backscattering regime IR << IH

(IH = 2
5
e2

h Vdc). Indeed, at Vgate = 0V the reflected conductance GR is low: it varies

between 0.012e2/h and 0.02e2/h (see figure 7.4).

Figure 7.4: GR(Vdc) and IR(Vdc) for Vgate = −0.01V
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The DCSN measurements are presented in figure 7.5, where the curves are the mean

value of the noise over 8 bias sweeps.

Figure 7.5: Left figure: cross and auto correlation for Vgate = −0.01V . The contin-
uous curve corresponds to SI(Vdc) (equation (7.1)) with e∗ = e/5. Right figure: cross

correlation only. The continuous curve corresponds to 0.7SI(Vdc).

As already noticed from figure 7.2, Auto B is higher than Auto A and cross correlation.

Auto B fits well with the theoretical expectation (continuous lines of figure 7.5):

SI(Vdc) = 2(1−R)
[
e∗IR(Vdc)coth(

e∗Vdc
2kBT

)− kBTGR(Vdc)
]

(7.1)

where e∗ = e/5, and T = 30mK. The reflection factor R is estimated from conductance

measurements (figure 7.4). It becomes non-negligible away from the weak backscattering

regime, where previous works based on chiral LL model [103] showed that it is possible

to use equation (7.1). The value of R depends on the picture chosen to describe edge

states at ν = 2/5: if we assume that only the inner edge state is partitioned, we get

R = 0.27. Indeed, the mean value of GR corresponds to 27% of the conductance of the

inner edge state - the latter being equal to (2/5 − 1/3)e2/h = 0.066e2/h. This is the

picture we choose for the fits of figure 7.5.

We see from figure 7.5 that the cross-correlation is around 30% lower than the theoretical

expectation of equation (7.1). Once again, this result does not coincide with previous

ones obtained with the same sample, where the fractional charge extracted from the cross

correlation was e∗ = e/5. We can again raise a problem of noise calibration leading to

errors on the evaluation of the amplifier gains, as explained in Appendix A.

Another possible explanation is the already mentioned bad coupling of edge states to

the reservoirs. Non-perfect contacts would reduce the value of the injected current

from contact (0), and thus lead to a bad estimation of both the current and the noise

(as calibrations were made assuming a perfect coupling). Also, the auto-correlation

would be enhanced by shot noise coming from this non-perfect coupling. This difference

between Auto and cross correlations have already been measured in Ref [6], and it was

found to decrease while increasing the temperature. However, the reason for which
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the Auto B is higher than Auto A is hard to understand. It could be due again to

bad thermalization of the RLC circuit of channel B, thus affecting our estimation of

Johnson-Nyquist noise during the calibration. An asymmetry in the coupling to the

edge states between contacts (1) and (4) could also explain that Auto B is higher than

Auto A.

These results of DCSN are partly understood and would need a deeper study of the

difference between Auto and cross correlation to confirm the hypothesis of non-perfect

coupling between edge states and reservoir. The study of the DCSN at different gate

voltages could provide us more information.

7.1.2 Results at νB = 2/5, νQPC = 1/3

We now present DCSN measurements in the weak backscattering regime of the outer

edge state (configuration (B) of figure 7.3), for two close gate voltages Vgate = −0.4V and

Vgate = −0.42V . Once again, we assume the existence of two independent edge states

to interpret our results. To evaluate the reflected current IR, we thus have to subtract

the contribution of the inner edge state to the total measured conductance GR. From

figure 7.1, this contribution is found to be equal to 0.06e2/h (instead of the expected

0.067(= 2/5− 1/3)e2/h value).

Figure 7.6: GR(Vdc) and IR(Vdc) for Vgate = −0.42V and Vgate = −0.4V

We observe stronger non-linearity of IR for Vgate = −0.42V than for Vgate = −0.4V , as

this last value is closer to the intermediate plateau where IR is expected to be linear

with Vdc. The observed increase of GR at low Vdc is reminiscent of a Luttinger liquid

behaviour. We see from the comparisons between Vgate = −0.42V and Vgate = −0.4V

that these variations of the conductance do not significantly affect the reflected current

IR. More precisely, IR corresponds roughly to 23% of the current carried by the outer

edge state - the latter being roughly equal to 0.34e2Vdc/h (from figure 7.1). The shot

noise is expected to be given by expression (7.1) with e∗ = e/3, GR(Vdc) and IR(Vdc)

extracted from conductance measurements shown in figure 7.6.
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In figure 7.7, we compare DCSN measurements to theoretical expectations. The exper-

imental technique is the same as previously: we averaged the curves obtained from 8

bias sweeps, and 3 adjacent Vdc points. Each point is thus the results of N=19 200 PSD

averages.

Figure 7.7: Cross correlation for Vgate = −0.42V (left figure) and Vgate = −0.4V
(right figure). The black continuous line is the theoretical fit using equation (7.1),

R = 0.23 and e∗ = e/3.

Surprisingly, the difference between auto and cross correlation is much lower than at

Vgate = −0.01V and the shot noise has the expected order of magnitude. However,

the measured non-linearity of IR is less visible in the shot noise, that shows smoother

variations than the theoretical prediction. The difference between the measured shot

noise and the theory is more pronounced at Vgate = −0.42V than at Vgate = −0.4V .

Before going through PASN measurements at Vgate = −0.44V , we show DC measure-

ments at this same gate voltage (figure 7.8).

Figure 7.8: GR(Vdc) (left figure) and auto and cross-correlation (right figure) for
Vgate = −0.44V

The reflected conductance GR is similar to the one measured at Vgate = −0.42V , showing

quite strong non linearity and LL-like behaviour. The cross correlation has the expected

order of magnitude, as for Vgate = −0.42V and Vgate = −0.4V . But once again, it does

not reproduce the non-linearity or IR (instead, it has smoother variations). We could

argue that this mismatch is due to the high value of GR around Vdc = 0V , which shows

the limit of the perturbative formula. We recover the good value of cross-correlation
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for large Vdc values, where GR is small. The difference between Auto B and cross

correlation is more pronounced than at Vgate = −0.42V , while Auto A always follows

the cross-correlation evolution.

Apart from the hypothesis of bad coupling of edge states to the reservoir, other possi-

ble reasons may explain deviations from equation 7.1. Indeed, this expression has been

derived [103] for tunneling between Laughlin states (νB = νQPC = 1/m), using chiral

Luttinger liquid (LL) model. Firstly, this model is not successful to describe most of

I-V characteristic measured in the FQHE and QPC geometries. Secondly, the descrip-

tion of edge states at filling factor νB = 2/5 is more complex. Some descriptions [99]

involve equilibration processes between the two co-propagating edge states to explain

conductance plateaus. But they do not give predictions on the shot noise due to frac-

tional charge tunneling. The fractional charge is better described by Wen’s approach

(see paragraph 2.4.3), where quasi-particle operators are created from a linear combina-

tion of the two bosonic fields (they are of the form ein1Φ1+n2Φ2). However this approach

is not coherent with the image of two independently partitioned edge states (used by

previous works [17][16]). This is the reason why we preferred to refer to tunneling of

fractional charges through a local QPC factor νQPC = 1/3 or νQPC = 2/5, than to

tunneling through the ”outer” or ”inner” edge state (even though this assumption was

made to fit the DCSN curves).

Despite the difficulties to understand the origins of the measured DCSN, its knowledge

is useful to interpret PASN and HOM measurements.

7.2 PASN

Keeping the same gate voltage Vgate = −0.44V , we have performed shot noise mea-

surements while applying RF power on one side of the sample only (contact (0)). In

order to be able to compare our results to those of paragraph 6.2 (at ν = 2/3), we

choose exactly the same RF parameters : P = 1dBm and f = 14.15GHz. As previ-

ously, we made successive measurements with RF power ”ON” (setting P = 1dBm) and

RF power ”OFF” (setting P = −20dBm). The difference (or excess noise) ∆S(Vdc) =

SON (Vdc) − SOFF (Vdc) is plotted in figure 7.9, where we also compare the ”ON” and

”OFF” cross-correlation (the ”OFF” curve corresponds to the DC cross correlation of

figure 7.8). As expected, the PASN noise is higher than the DCSN for small Vdc, and this

difference decreases for large Vdc. In figure 7.9, the DCSN is fitted using a variation of

GR(Vdc) flatter than the measured one, in order to reproduce correctly its shape. Call-

ing Sexp this fitting function, we then fit the excess noise ∆S(Vdc) using the expression
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derived in paragraph 3.1.2:

∆S(Vdc) = = (P0(α)− 1)Sexp(Vdc) +
∑
l>0

Pl(α)(Sexp(Vdc +
lhf

e∗
) + Sexp(Vdc −

lhf

e∗
))

(7.2)

where e∗ = e/3, α = e∗Vac/hf , and Pl(α) = J2
l (α) is the square of the l-th order Bessel

function. The effect of a heating of contact (0) brought by the RF signal can less easily

be taken into account than at ν = 2, because it requires the knowledge of the DCSN

when T0 6= T3. We simply fit the excess noise was fitted using T0 = T3 = 20mK for RF

”OFF” and T0 = T3 = 60mK for RF ”ON”.

Figure 7.9: SON (Vdc) and SOFF (Vdc) (left figure) and excess cross-correlation
∆S(Vdc) (right figure) for Vgate = −0.44V . The horizontal red lines correspond to

±hf/e∗, e∗ = e/3.

The fit of the excess noise reproduces well its variations between −hf/e∗ and hf/e∗ (red

vertical lines of figure 7.8), but is not accurate for higher Vdc values. This can be due to

various reasons:

- as previously explained, the lack of information on the DCSN for large bias Vdc can

lead to wrong estimations of ∆S(Vdc).

- deviations from equation (7.2) could be due to the heating of one side of the sample

(contact (0)) by the RF wave. The DC shot noise Sexp(Vdc) should actually be replaced

by its value in presence of a temperature difference ∆T on top of the bias Vdc. While in

the IQHE it was easy to estimate this contribution (called ”∆T noise”), it is harder to

estimate it in the FQHE without a precise microscopic model of edge states.

Despite these complications, using Bessel functions, we find from the fit of ∆S(Vdc):

270µV < Vac < 315µV . This Vac range is close to the one found from similar PASN

measurements at ν = 2/3 (240µV < Vac < 270µV ). This confirms the possibility to

use equation (7.2) with fractional charge e∗ = e/3 to describe the transport with AC

voltage. Using similar arguments as the one presented for results at ν = 2/3, we call

this noise ”photo-assisted shot noise” (PASN). This is the first evidence of the fractional
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charge e∗ = e/3 at ν = 2/3 using PASN measurements. We will now use the picture of

”photo-assisted” transport to analyse the HOM noise.

7.3 HOM measurements

7.3.1 Results at νB = 2/5, νQPC = 1/3

For HOM measurements, we come back to the gate voltage Vgate = −0.42V , where we

already presented DCSN measurements (figure 7.7). This regime corresponds to weak

tunneling of the external edge state through νQPC = 1/3 (configuration (B) in figure

7.3). The RF frequency is always fixed to f = 14.15GHz. In order to send sine waves

Vac,1(t) = Vac,1sin(2πft) and Vac,2(t) = Vac,2sin(2πft+ Φ) on contacts (0) and (3) with

a well controlled time-delay τ = Φ/2πf , we use two synchronized RF sources. We call

P1 the power injected by the first source and P2 the power injected by the second source

(in dBm). The experimental setup used for RF injection is perfectly similar to the one

illustrated in figure 6.7.

7.3.1.1 Visibility optimisation

Because of the asymmetry between the two RF lines, equalling P1 and P2 do not lead

to equals Vac,1 and Vac,2 amplitudes on both sides of the QPC. Thus the first work is to

optimize the contrast of HOM measurements, that is maximal for Vac,1 = Vac,2. For this

purpose, we make HOM measurements with fixed value of P1, and varying P2 by 1dBm

steps. We then calculate the visibility of each curve plotted in figure 7.10. The phase

shift Φ between the two RF signals is automatically controlled thanks to the common

10MHz clock between the two sources.

Figure 7.10: Left: SHOM (cross-correlation) for P1 = 12dBm and P2 between 9 dBm
and 16 dBm. Right: evolution of the visibility with Vac = 10P2/20.
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This visibility optimization is more precise than the one made from photo-current mea-

surements at ν = 2 (paragraph 5.2.4) as the ratio between the two RF powers can be

varied by smaller steps thanks to the second RF source. We see from figure 7.10 that the

visibility reaches a maximum for P2 = 11dBm. As these measurements were performed

with an additional attenuation of 3dB on the line connected to the source injecting

P1 = 12dBm, we conclude that there are 2dB difference in the cables attenuation of the

two RF lines at f = 14.15GHz. This result is coherent with the 3dB difference found

from photo-current measurements at ν = 2 (see paragraph 5.2.4).

When P1 − P2 = 1dBm, the AC amplitudes injected from the two RF lines are equal:

Vac,1 = Vac,2 = Vac. In that case, and when the I − V characteristic is linear, we expect

the HOM noise to be given by:

SHOM (τ) =
∑
l

Pl(αeff )Sexp(
lhf

e∗
), αeff = 2e∗Vac sin(πfτ)/hf (7.3)

where e∗ = e/3, τ is the time delay between the two sine-waves: V1(t) = V2(t+ τ), and

Sexp(Vdc) the fitting function of the measured DCSN.

According to equation (7.3), SHOM (τ) should cancel at τ = 0 (as Sexp(0) = 0 and

Pl 6=0(0) = 0). However, similarly to what observed at ν = 2 and ν = 2/3, we see from

figure 7.10 that the measured SHOM (τ) is finite for all τ values. As we always plot the

”ON-OFF” shot noise, this cannot be due to a power-independent offset in the cross-

correlation. The exact reason is still not understood, but we could have reached the

limit of validity of the model leading to equation (7.3) at Vgate = −0.42V .

7.3.1.2 HOM measurements

To interpret HOM measurements, we need to know the DCSN dependence with Vdc.

The DC cross correlation is plotted in figure 7.11.

Figure 7.11: Reflected current IR and DC cross correlation at Vgate = −0.42V .
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These measurements were done approximately one month before the last DCSN and

PASN measurements at Vgate = −0.42V , however the cross-correlation is more than two

times smaller than the one of figure 7.7. The reflected current being identical, we think

that this is due to the HEMT gains time-drift. The fit Sexp(Vdc) was done considering

smoother variations of the conductance of GR, and multiplying the expected shot noise

by a factor 0.2.

We are now going to attempt to fit the HOM curves based on our knowledge of the

DCSN Sexp, and on equation (7.3). The HOM measurements that we present now

were taken within few days after the DCSN measurement of figure 7.11, reducing the

probability of the HEMT time-drifts. They were carried out with P1 − P2 = 1dBm,

thus ensuring Vac,1 = Vac,2 = Vac. We compare HOM measurements for three Vac

amplitudes spaced by
√

2, corresponding to P1 = 8, 11, 14dBm. For each P1 value, we

performed two consecutive HOM measurements in order to improve the accuracy on

the extracted Vac values. These measurements are shown in figures 7.12,7.13,7.14. The

HOM noise simulations are done using expression (7.3), letting Vac and an offset as

fitting parameters.

Figure 7.12: HOM measurements for Vgate = −0.42V , P1 = 8dBm, f = 14.15GHz

Figure 7.13: HOM measurements for Vgate = −0.42V , P1 = 11dBm, f = 14.15GHz
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Figure 7.14: HOM measurements for Vgate = −0.42V , P1 = 14dBm, f = 14.15GHz

The noise SHOM (τ) shows the expected variations with the time delay τ . In particular,

the structures with minima that are more peaked than the maxima are reminiscent of

the DCSN variations. The experimental curves show break in slopes also visible from

the theoretical simulations. These structures in the HOM curve are expected when the

DCSN shows non-linearity with Vdc (see Ref [104] for the case of Levitons), which is the

case at Vgate = −0.42V . The physical interpretation of such a structure is still subject

of discussions.

As previously, the accuracy of our measurements is limited by experimental time drifts

of the phase Φ, or of the HEMT gains. A single HOM measurement as presented in

figures 7.12, 7.13 and 7.14, usually takes around 10 hours. In table 7.1, we report the

range of Vac and α values found from the analysis of the HOM measurements:

P1 = 8dBm P1 = 11dBm P1 = 14dBm

Vac(µV ) 380 - 400 490-500 590-600

α 2.16-2.27 2.78-2.84 3.35- 3.41

Table 7.1: Vac range in µV and corresponding α = e∗Vac/hf with e∗ = e/3 and
f = 14.15GHz extracted from HOM measurements at various powers P1.

The Vac amplitudes are multiplied by a factor 1.31 when increasing the power from P1 =

8dBm to P1 = 11dBm, and by 1.22 when switching from P1 = 11dBm to P1 = 14dBm.

We do not recover the ratio
√

2 expected for 3dB steps in the power. Thus HOM noise

data cannot be totally interpreted within the picture leading to equation (7.3). Various

explanations can be given for this mismatch:

- At Vgate = −0.42V , roughly 23% of the current carried by the outer edge state is

reflected, meaning that we may have reached the limits of the weak backscattering

regime. Out of this regime, no extension of equation (7.3) is known.

- The perturbative approach (see paragraph 3.1) used to derive equation (7.3) is valid
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for strongly correlated systems, but energy-independent tunneling amplitudes. Energy-

dependent tunneling could also lead to non-negligible deviations from equation (7.3).

To our knowledge, a theory for strongly correlated systems that includes the energy-

dependence of tunneling amplitudes is still lacking.

- The lack of information on Sexp(Vdc) for Vdc > 300µV can also induce errors on the fit

of HOM measurements using equation (7.3). Indeed when αeff = 2e∗Vac sin(πfτ)/hf

is high (from the Vac amplitudes of table 7.1, we can reach αeff = 7 for P1 = 14dBm

and Φ = 2πfτ = π/4), we need to know Sexp(Vdc) for Vdc = lhf/e with −5 < l < 5 -

or equivalently for −900µV < Vdc < 900µV - in order to calculate SHOM . However, we

have access to the DCSN Sexp(Vdc) only for |Vdc|< 300µV (see figure 7.11). The linear

extrapolation made for |Vdc|> 300µV may lead to errors in the estimation of SHOM .

7.3.2 Results at νB = 2/5, νQPC = 2/5

We now show results at Vgate = 0V , for which the DCSN is very close to the one presented

in paragraph 7.1.1. The advantage of working in this regime is that we can interpret our

measurements without assuming a particular edge state structure. The inconvenience

is that the DC cross correlation is very low, and consequently the signal over noise of

HOM measurement is low as well. We keep the RF frequency f = 14.15GHz, as well

as the configuration for which Vac,1 = Vac2, that is obtained for P1 − P2 = 1dBm. As

previously, the phase shift Φ between two synchronized RF sources are automatically

swept, and we make 400 steps of 1 radiant. For more accuracy, we carried out two HOM

measurements for P1 = 12dBm, and for P1 = 15dBm.

Figure 7.15: HOM measurements for Vgate = 0V , P1 = 12dBm, f = 14.15GHz

The fit is made using equation (7.3), with e∗ = e/5 and Sexp(Vdc) given by DCSN

measurements (figure 7.5). Once again, we are limited by experimental phase shifts

between the two RF sources. Because of the very low value of DC cross-correlation, it is

hard to obtain a good signal over noise ratio within reasonable time measurements (to

avoid experimental drifts). Consequently, the accuracy on the extracted Vac is not very

satisfying. We report these values in table 7.2.
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Figure 7.16: HOM measurements for Vgate = 0V , P1 = 15dBm, f = 14.15GHz

P1 = 12dBm P1 = 15dBm

Vac(µV ) 520-660 720-750

Table 7.2: Vac range in µV extracted from HOM measurements at different powers.

Taking into account the 20% uncertainty on the Vac value for P1 = 12dBm, we can

recover the expected factor
√

2 between the Vac amplitudes corresponding to P1 =

12dBm and P1 = 15dBm. However, better accuracy is needed in order to be able to

conclude on these HOM measurements.

7.4 Conclusion

DCSN measurements at ν = 2/5 showed unexpected results, that we attribute most

probably to errors due to bad thermalization during the noise calibration process. At

Vgate = 0V , the cross correlation corresponds roughly to 70% of the expected 2e∗IR value

with e∗ = e/5. A much smaller difference between experimental datas and theory was

observed at Vgate = −0.42V and Vgate = −0.4V . This variable difference makes us think

that the problem does not only come from the noise thermal calibration, that would

induce a systematic error on the calibration factor. Two other reasons were envisaged:

- Non-perfect coupling between edge states and ohmic contacts can induce errors in the

estimation of the transmitted and reflected current, and possibly on the noise. It could

lead to a non perfect definition of edge states potentials, or to different potentials for

the two co-propagating edge states. The effect of this bad coupling on the auto and

cross-correlation noise is difficult to estimate.

- The complexity of edge states at ν = 2/5, that involves possible edge-reconstruction

and tunneling processes between edge states, make it difficult to make exact predictions

on the DCSN. This difficulty is enhanced in the presence of non-perfect ohmic contacts.

Of course, these two reasons have an impact on the PASN and HOM interpretation as

well. From one hand, a good coupling between edge states and ohmic contacts is needed
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so that the sine wave sent on reservoir (0) (and on contact (3) for HOM) propagates

without deformation to the QPC. From the other hand, theoretical predictions of HOM

noise are known only in the weak backscattering regime. At Vgate = −0.4V or Vgate =

−0.42V , this regime can be defined only assuming that the transport at ν = 2/5 occurs

through two independent edge states (with no tunneling events between both). However

we did not find any clear evidence for this assumption from our experimental data.

Moreover, in presence of RF signals, experimental complications are linked to the in-

trinsic drifts of the RF source as well as a power-dependent noisy signal. These effects

can considerably complicate the data analysis.

For all these reasons, the HOM measurements at νB = 2/5 do not allow to conclude un-

ambiguously on the validity of equation (7.3) to describe such measurements. Contrary

to what is naively expected for fermions, the HOM noise does not cancel at τ = 0 (or

for V1(t) = V2(t)). The visibility is limited to 65%. This is not due to the non-fermionic

nature of electrons pulses, but more probably to fundamental reasons linked with the

complexity of FQHE edge states structure, or to energy-dependent tunneling processes.

It can also be due to experimental artefacts, that should be analysed more deeply.

All these difficulties justify the necessity of performing HOM experiments in a single

QPC geometry, where fermionic statistics is expected, before considering a more com-

plex geometry (3 QPC) to explore the anyonic statistics. Despite these difficulties,

HOM measurements were performed for the first time in the FQHE, and they show the

expected qualitative behaviour.



Conclusion and prospects

In this work, we presented first measurements of HOM correlations in the fractional

Hall effect. We used a QPC-beam-splitter, on which quasi-particles are sent by voltage

pulses applied on both QPC sides. For simplicity, we applied sine voltages instead

of ”pure” electronic excitations (levitons), at either 10GHz or 14.15GHz, and with a

well-controlled time-delay τ . ”HOM correlations” correspond to the cross-correlation

between the transmitted and reflected current, measured while sweeping the delay τ .

In the integer Hall effect, a good agreement with ”photo-assisted” transport picture

could be established through a comparison between HOM correlations at various sine

amplitudes. The same study carried on in the fractional Hall showed deviations from

known theoretical models, the origin of which needs to be clarified.

For both integer and fractional Hall regimes, we observe a large HOM dip at τ = 0,

but not as deep as the expected 100% dip of pure fermionic correlations. This points

towards the need of improving the experimental measurements before addressing the

study of anyonic correlations.

For the latter purpose, the idea is to send anyons on both sides of the QPC-beam-

splitter, created by two other QPCs in the fractional Hall regime. Applying lorentzian

pulses on each of these two QPCs, we inject electrons that, after tunneling through

the FQH region, can be considered as anyons. The time-delay between the arrival of

these two anyons on the QPC-beam-splitter can be controlled in the same way as in our

experiments. As intuited in Chapter 1 by a simple single-particle approach, the cross

correlation measurement could give information on the statistical phase of anyons. A

simplified scematic of the 3-QPCs experimental setup is shown in figure 7.17.

148



149

Figure 7.17: A Lorentzian pulse carrying integer charge e is applied on a QPC in the
FQHE in the regime of weak backscattering regime, where charges e/3 tunnel. On a
second QPC, also in the FQHE, in the WBS regime of transmission, a Lorentzian pulse
of integer charge is applied with a delay τ . The two leviton-like fractional charges are
sent to a third QPC playing the role of a beam-splitter. Correlations between I1(t) and

I2(t) are measured.



Appendix A

Appendix A: Noise calibration

The noise calibration is made measuring the thermal noise that is emitted by two

impedances in parallel: the RLC circuit and the Hall resistance. As explained in para-

graph 4.5, we consider the difference between the Johnson Nyquist noise measured at

T > T0 and at base temperature T0:

∆SA,A(ω, T − T0) = SA,A(ω, T )− SA,A(ω, T0) = G2
A4kb(T − T0)Re(Zeq,A(ω)) (A.1)

∆SB,B(ω, T − T0) = SB,B(ω, T )− SB,B(ω, T0) = G2
B4kb(T − T0)Re(Zeq,B(ω)) (A.2)

The inner resistance rc of the Coil was already found to be equal to 8.1Ω in branch A

and 9.1Ω in branch B from the the noise calibration at ν = 2 (paragraph 4.5). It is thus

fixed for the next calibrations at ν = 2/5 and ν = 2/3, that we present here. The other

fixed parameters are R = 20kΩ, L = 22µH,C1 = 9.4nF .

A.1 Calibration at ν = 2/3

We first determine the base temperature T0 by plotting the mean value of ∆SA,A(ω, T −
T0) over a frequency interval ∆f = [2.2MHz, 2.8MHz] versus temperature T in figure

A.1. As expected from equation A.2, we find a linear dependence. However, we see a

saturation for temperatures below 50mK. This probably comes from the effect of a bad

thermalization of the sample or of the RLC circuit to the mixing chamber (the coolest

stage of the fridge). This temperature gradient is more visible at low temperature than

at high temperature. From the linear fit of figure A.1, we extract T0 = 32mK for line

A and T0 = 31mK for line B.
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Figure A.1: 〈∆SA,A(T − T0)〉 versus T for ν = 2/3

Then, the value of Cl (the line capacitance) and of the amplifier gains GA/B are deter-

mined from the fit of ∆SA/B(ω, T − T0) for T values between 40 mK and 10 mK. The

parameters extracted from these fits at different temperature are reported in figure A.3.

Figure A.2: ∆SA,A(ω, T − T0) (left figure) and ∆SB,B(ω, T − T0) (right figure) for
ν = 2/3 and T between 40mK and 100mK

The simulation of |ZA(f)|2, |ZB(f)|2 and Re(Z∗AZB) using the previously determined

RLC parameters is shown in figure A.6.

Finally, choosing an integration interval of [2.2, 2.38]MHz, we can calculate the cali-

bration factors Caa, Cbb and Cab using the parameters of figure A.3 . The results and

the accuracy are indicated below. The accuracy determined from the variance of these

points is very good. These Caa, Cbb and Cab factors are used to convert the measured

voltage fluctuations to current fluctuations according to equation (4.6).
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Figure A.3: Cl and gains GA/B for lines A and B found from the fits of figure A.2.

Figure A.4: |ZA|2, |ZB |2 and Re(Z∗AZB) versus frequency f

A.2 Calibration at ν = 2/5

We use exactly the same technique than previously described to first determine the base

temperature T0 using the the linear fit of 〈∆SA,A(T − T0)〉 versus T (figure). We find

T0 = 31mK for line A and T0 = 33mK for line B.

We then fit the spectra of ∆SA/B(ω, T − T0) to find the line capacitance Cl and the

gains GA/B, for T between 60 mK and 100 mK. The parameters extracted from these

fits at various temperatures are reported inf figure A.8. Of course, Cl do not depend on

the filling factor and thus we find the same values than at ν = 2 and ν = 2/3. But the

interesting parameters are the gains GA/B, that need to be checked regularly because of

time drifts.

Finally, choosing the same integration interval than previously [2.2,2.38]MHz and the

parameters of figure A.8, we can calculate the calibration factors Caa,Cbb and Cab.

The results and the accuracy are indicated in the legend of figure A.9.
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Figure A.5: Caa, Cbb and Cab values found from noise calibration at ν = 2/3.

Figure A.6: 〈∆SA,A(T − T0)〉 versus T for ν = 2/5

A.3 Effects of a bad thermalization

One of the main source of discordance of our results on DC shot noise with the literature

is probably a bad thermalization of the sample (at temperature T2) or of the RLC circuit

(at temperature T1) with the mixing chamber temperature. This effect leads to errors in

the determination of the amplifier gains GA and GB and thus on the conversion factors

Caa, Cbb, Cab. Indeed, in this case the Johnson-Nyquist noise would write:

SJN (T1, T2) = 4kB|Zeq|2(Re(
T1

ZRLC
) +

T2

RH
) = T1Re(Zeq) + ∆T

|Zeq|2

RH
(A.3)

where ∆T = T2 − T1 and 1/Zeq = 1/RH + 1/ZRLC . During the thermal calibration, we

heat up the mixing chamber up to temperature T ′ > T1, T2. Assuming that for high

enough T ′, the thermalization of is efficient and T ′ corresponds to the temperature of
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Figure A.7: ∆SA,A(ω, T − T0) (left figure) and ∆SB,B(ω, T − T0) (right figure) for
ν = 2/5 and T between 40mK and 100mK

Figure A.8: Cl and gains GA/B for lines A and B found from the fits of figure A.7.

both the RLC and the sample, the excess Johnson-Nyquist noise would write:

∆S(T ′) = SJN (T ′, T ′)− SJN (T1, T2) = (T1 − T ′)Re(Zeq) + ∆T
|Zeq|2

RH
(A.4)

Equation (A.4) implies a linear variation of ∆S(T ′), as experimentally observed for

T ′ > 40mK in most of the noise calibrations. At high enough T ′, the second term of

equation (A.4) can be neglected, allowing for a good fit of ∆S(T ′) spectra using only the

first term (see for example figure 4.8 at T ′ = 100mK and ν = 2). However, the value

of T1 in this first term is overestimated by a quantity δ = ∆T
|Zeq |2

RHRe(Zeq)
(as the solution

of ∆S(T ′) = 0 is not T1 but T1 + δ). T1 being overestimated, the gains GA and GB are
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Figure A.9: Caa, Cbb and Cab values found from noise calibration at ν = 2/5.

underestimated, leading to too low values of shot noise.



Appendix B

Sample characteristics

The sample we used are made from hetero-structures of GaAS and GaAs−AlxGa1−xAs,

where x defines the Aluminium mole fraction and is typically around 30%. These are

semiconductor crystals with only a slightly different lattice constant, a convenient prop-

erty to build a multi-layer heterostructure without crystalline defects. A molecular beam

epitaxy technique is used in order to control very precisely the thinkness of each layer.

The wafer was supplied by I. Farrer and D.A. Ritchie from the Cavendish in Cambridge.

B.1 Formation of the two-dimensional electron gas (2DEG)

The hetero-structure is schematized in figure B.1. Some electrons introduced by the

silicium populate the surface states of GaAs, others are trapped at the interface between

the two semi conductors. These last electrons form the 2DEG, that is localized 90 nm

under the sample surface. The position of the doping silicium is an important parameter

of the fabrication. Indeed, if it is too far from the interface, the 2DEG will not exist

as there will be no donors, while if it is too close, the 2DEG density will be high, but

the mobility will be reduced. For the sample used here, an undoped AlGaAs layer of

40 nm is placed between GaAs and n-AlGaAs in order to increase the distance between

the donors and the 2DEG to obtain higher mobility [105]. This high mobility is needed

to reach the fractional Hall effect regime at accessible magnetic field (lower than 14 T).

When the two semiconductors with different energy gaps are put in contact, the Fermi

energy homogenizes: electrons flow from AlGaAs to GaAs, creating charge inhomogene-

ity at the interface. This charge inhomogeneity creates an electric field that will tend

to stop this effect. When the electric field is high enough to compensate for the diffu-

sion current of charges, the equilibrium state is reached, and the band structure can be
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Figure B.1: a) Heterostructure scheme. Si donors are in the AlGaAs layer allowing
the formation of the 2DEG. b) Band structure at the n-AlGaAs/iGaAs interface before
charge equilibration. The dotted line represents the Fermi Energy in each structure,
it is more important in AlGaAs than in GaAs. Solid lines are valence and conduction
bands. c) Band structure after charge equilibration. The 2DEG, colored in blue, is
formed at the interface of AlGaAs and GaAs while positively charged donors, in orange,

accumulate at the AlGaAs side.

represented by figure B.1 c). A triangular shaped potential is created at the interface,

where electrons are confined. Thus their wave vector is quantized in the direction per-

pendicular to the interface. The energy levels are discrete, distant of several tenth of

meV [106]. At the working temperature (< 100mK), only the first level is occupied.

The sample electronic density nS = 1.11 ∗ 1011cm−2 and the mobility is µ = 3 ∗
106V −1cm2s−1. At two dimensions the density of states is constant and thus the elec-

tronic density is proportional to the Fermi energy:

nS =
m∗

π~2
EF

where m∗ is the effective mass of one electron in the GaAs: m∗ = 0.067m0, m0 being the

electron mass. The resulting Fermi energy is 4meV , that results in Fermi temperature

TF = EF /kB = 45K. In our measurements, the necessary condition T << TF is satisfied

as T = 20mK. The mean collision time and the mean free path can be estimated from

the mobility:

τe =
m∗µ
e

= 112ps, le = vF τe = 16µm

However in the Hall regime the transport is ballistic and such expression is not useful.

The value of the coherence length in the FQHE has never been measured, but it was

done for electrons in AsGa in the IQHE. The coherence length has been measured at 20

mK to be ot the order of tenth of µm [107].
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B.2 QPC realization

Once the 2DEG was supplied, the nanofabrication of the sample was realized by M.Santin

and M.Kapfer using exclusively electronic lithography. Here we report only the main

steps:

- The mesa etching is first performed to define the surface on which we need the 2DEG

to be defined. The etching of the nanostructure away from the mesa avoid the donors

to fill the states at the interface between the two semiconductors, and thus there the

2DEG to be formed. This is a chemical etching using H3PO4.

- Ohmic contacts were then deposited in order to make the link between the surface of

the sample and the 2DEG, 90 nm below. For that, we deposit on the mesa a mixture of

gold, nickel and germanium. The sample is the heated at 470 in order for the alloy to

penetrate the heterostructure and reach the 2DEG.

- Finally the gates are done by evaporating aluminium on the surface of the sample after

an electronic lithography. The gates are separated by 300 nm.

The sample is later connected to the PCB by aluminium wires.

Figure B.2: SEM image of the finished sample from Ref [6]. a) Image realized by
electron microscope of the sample. The 2DEG is artificially colored in blue. The large
bright circuit are golden leads connecting the ohmic contact in grey to the external
circuit. The black lines are the gates. A zoom (figure b)) is realized at the center of

the mesa where the gates are placed.



Appendix C

Interference phenomena with RF

waves

In this chapter we want to emphasize some aspects on which one should pay attention

when working with radio frequency (RF) waves. High frequencies mean short wave-

lengths: for GHz frequencies, the wavelengths are in the cm range, meaning that wave

phenomena arise over distances comparable to the connectors length. A transmission

line is characterized by its characteristic impedance, that is commonly 50Ω for all the

RF systems. The reflection coefficient for a wave travelling from a medium with char-

acteristic impedance Z1 to a medium with characteristic impedance Z2 is given by:

r =
Z1 − Z2

Z1 + Z2

The RF coaxial lines as well as the circuit on which the sample is connected (PCB) are

designed to be 50Ω matched. However, small reflections can occur because of non-perfect

connections between two RF coaxial cables through ’SMA’ connectors. Moreover, almost

all the power is reflected when it reaches the sample, as the Hall resistance RH is many

order of magnitude higher than Z0 = 50Ω. This impedance mismatch is impossible to

avoid when working in the Hall regime. The reflection at both ends of a transmission

line creates a standing wave, which leads to further power waste and cause frequency-

dependent loss. This situation is schematized in figure C.1 for a coaxial cable of length

L, connected to the sample resistance RH at one end and to a non-perfect connector at

the other end.

Calling r1, t1 (resp. r2, t2 ) the reflection and transmission amplitudes at the interface

between the transmission line and the connector (resp. the sample resistance RH), the
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Figure C.1: A standing wave is created by a reflection at both ends of a transmission
line of length L and characteristic impedance Z0 = 50Ω. As RH >> Z0, the reflection
coefficient |r2|2 is close to one. |r1|2 depends on non-perfect connector modeled by an

impedance Z ′ 6= Z0

total transmission amplitude T is given by:

T = t1t2e
iφ + t1e

iφr2r1e
2iφ + ... = t1t2e

iφ
+∞∑
n=0

(r1r2e
2iφ)n = t1t2

eiφ

1− r1r2e2iφ

where φ = 2πfL/vp, vp being the propagation velocity in the cable. From the transmis-

sion line theory it can been shown that vp = c/
√
ε = 2.07 ∗ 108m/s, where ε = 2.1 is the

dielectric constant of Teflon, used in our coaxial cables. This leads to:

|T |2 =
|t1t2|2

|1− r1r2e2iφ|2

We see that the transmission coefficient |T |2 strongly depend on the frequency f . As-

suming that t1, t2, r1, r2 are frequency-independent, taking |r2|2 = 0.99, |r1|2 = 0.01,

and L = 20cm, we can simulate the variations of |T |2 over a frequency interval of 1GHz

(figure C.2).

We see that a small reflection probability of 1% at the connector can already be respon-

sible for oscillations of the power transmitted to the sample with 30% visibility.

This was confirmed by experimental observations: a strong dependence of the RF power

sent on the sample with the frequency was observed through photo-current measure-

ments. The principle of such measurement was detailed in paragraph 5.9. The photo-

current shows strong oscillations with the RF frequency. This is illustrated in figure C.3,

for ν = 2 and in the strong back-scattering regime Vgate = −0.97V . In this regime, we

often observe the strongest non-linearities of the I-V characteristic, and thus the higher

photo-current values.
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Figure C.2: Transmission probability |T |2 vs frequency for |r2|2 = 0.99, |r1|2 = 0.01,
and L = 20cm

Figure C.3: Photo-current vs RF frequency for ν = 2 (B=2.4T), Vgate = −0.97V.

The oscillation period is around 0.3GHz, indicating that the interferometer length is

approximately L = 20cm (as simulated in figure C.2). This corresponds to the length

scale of our RF cables. Moreover, this period was found to be independent on the gate

voltage or the filling factor. These are the reasons why, after a long study trying to

interpret these oscillations as the mark of charged and neutral modes due to interac-

tion between edge states, we were finally convinced that this effect originates from the

experimental setup.
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DC polarisation of the sample

DC voltages delivered by Yokogawa 7651 (commonly called ”Yoko”) are brought to the

sample by coaxial cables stainless steel. Those wires have a linear resistance of 23.6Ω/m

and a capacitance of 173.9pF/m. They can carry signal up to a cutoff frequency of

approximately 40kHz. Their cut-off frequency is estimated around 40kHz, which is

suitable as only DC or low-frequency voltages are to be sent through those wires.

The outer conductor is made of braided stainless, the inner conductor is stainless steel

while the dielectric is Teflon. The wires are anchored at each stages of the cryostat

through SMA connectors, thermalizing the outer conductor at the stage temperature.

From one hand, the relatively high resistivity of the inner conductor limits the heat

conductivity of the wires, that is proportional to the electrical conductivity at low tem-

perature. The heating power brought by the wires have been estimated to 10pW using

the Wiedemann-Franz law (see M.Kapfer PhD thesis [6]). This value is much lower than

the cooling power of the mixing chamber stage which is of 2µW , ensuring that there is

no overheating due to the wires.

From the other hand, the low cut-off frequency makes the noise brought by DC cables

negligible, around ∆V = 1µV .

A schematic of the DC injection line is shown in figure D.1. In order to decrease

the electronic temperature, we added a supplementary filter that consists on a 1.5 m

long resistive wire enrolled in ”epoxy” glue that contains some silver. Its high thermal

conductivity favors the thermalization of the DC line to the lowest stage of the Cryostat.

A voltage divider is thermalized to the 100 mK stage in order to ensure ensure a good

voltage source (with no current flowing into the sample resistance Rsample = RH). The

1kΩ resistance placed after the voltage divider was used to lower the cutoff frequency

of the DC lines. However, she makes the voltage V0 slightly dependent on Rsample.

These corrections were taken into account using numerical simulations of the circuit to
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Figure D.1: DC injection lines

calculate Vsample for 1V at the output of the Yokoyawa (”Yoko”) source. The results are

shown in table D.1.

ν RH(kΩ) V0(µV )

4 6.45 392
2 12.9 438
1 25.8 465

2/3 38.72 475
2/5 64.5 483

Table D.1: V0 for an output voltage of 1V on the Yoko, for different falling factors ν.
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Appendix E: Effects of the

environmental noise on the PASN

measurements

Some measurements made at various filling factors seemed to not agree with the use

Bessel functions to describe PASN. This can be due to experimental reasons: on top on

the mono-frequency main signal, the RF source may deliver an aleatory signal Val(t)

that has a broadened spectra. In that case, we have to consider the total signal

V (t) = Vacsin(2πft)+Val(t) to calculate the spectra of eiΦ(t), where Φ(t) =
∫ t
−∞ V (t′)dt′.

If we call Φal(t) =
∫ t
−∞ Val(t

′)dt′ the noisy phase and g(ω) the Fourier transform of

e−iΦal(t), the new weight (that may be interpreted as the new emission and absorption

probabilities) would be given by |p̃(ω, α)|2, p̃ being the convolution product between

Bessel functions and g(ω):

p̃(ω, α) =
∑
l

pl(α)g(ω − 2πlf) (E.1)

This aleatory signal being present only in presence of a finite RF signal, the ”ON”

measurements are linked to the ”OFF” measurements (or to Sexp) by:

SON (Vdc) =

∫
dω|p̃(ω, α)|2Sexp(Vdc +

~ω
e

) (E.2)

Indeed, the Floquet scattering approach as well as the perturbative approach (see para-

graphs 3.2.3 and 3.1) can be adapted to any shape of the AC signal.

To observe the slope changes of figure 5.7, the function g(ω) needs to be peaked around

0 with a width much smaller than f . In other words, the thermal broadening due to
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the finite temperature in Sexp(Vdc) is much more important than the spectra broadening

of g(ω). From numeric simulations, we can show that this hypothesis considerably

simplifies equation (E.1):

p̃(lf, α) = p̃l(α) = pl(α)g(0) (E.3)

In other words, the correction brought by the noisy signal can be taking into account

simply by multiplying the DCSN by |g(0)|2. From equation (E.2) and (E.3), the excess

noise becomes:

∆S(Vdc) =
∑

l=−∞,+∞
Pl(α)|g(0)|2Sexp(TON , Vdc +

lhf

e
)− Sexp(TOFF , Vdc) (E.4)

In our analysis of the excess noise, we assumed |g(0)|2 = 1 and we determined an effective

αeff such as : |pl(α)g(0)|2 = |pl(αeff )|2. We understand that this results in αeff 6= α,

and we do not conserve the ratio between two different values of α and two different

values of αeff . This may explain why we don’t find the good
√

2 ratio when applying
√

2-spaced Vac amplitudes.

We can try to be quantitative on the power noise brought by the RF source. We assume

that the amplifier of the RF source has a noise temperature of TN = 300K. We recall

that the noise temperature is a unit for noise: it corresponds to the temperature at which

we should bring a 50Ω impedance to get the same amount of noise. Each amplifier has

a finite noise temperature. TN = 300K noise temperature is one of the best value

that is possible to reach for an amplifier that works in such a wide range of frequencies

(0.2GHz − 20GHz). As the delivered power can vary from −20dBm to 20dBm, the

maximal gain of this amplifier should be G = 104 for P = 20dBm. Integrating over the

whole frequency range ∆f = 20GHz, the power brought by the RF source connected to

a 50Ω impedance line (ended by a 50Ω resistance) is:

PN = kbGTN∆f = 2µW = −27dBm (E.5)

As RH >> 50Ω, the 50Ω impedance line that brings the RF signal to the sample is

connected to an open circuit instead of a 50Ω resistance. Thus the power is multiplied

by a factor 4: PN = −21dBm. For the maximal delivered power P = 20dBm, the ratio
PN
P is around 10−4.1. This ratio can vary with the delivered power P (or the variable

gain G), but this gives an order of magnitude that can be used for simulations.
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Titre: Vers une expérience de Hong-Ou-Mandel en vue d’explorer la statistique anyonique
dans l’effet Hall fractionnaire

Mots clés: Physique mésoscopique, effet Hall quantique, statistique d’exclusion, bruit de par-
tition

Résumé: Les particules élémentaires sont
classées en deux familles selon leur statistique
d’exclusion: les fermions et les bosons. Dans des
systèmes mésoscopiques bidimensionnels soumis
à un fort champ magnétique, un nouveau type
de quasi-particules appelées "anyons" peut ap-
paraître. Dans le régime d’effet Hall quan-
tique fractionnaire (FQHE), les anyons sont
un exemple de statistique intermédiaire entre
les photons et les fermions. L’objectif à long
terme de ce travail est de mesurer la statis-
tique des anyons par des expériences de type
Hong Ou Mandel (HOM) électronique dans le
domaine temporel. Une telle expérience néces-
siterait trois QPCs (Quantum Point Contact):
deux pour réaliser les sources d’anyons et un
troisième pour réaliser un "beam-splitter" élec-

tronique. La première étape est l’étude d’un
système plus simple à un QPC afin de tester
la faisabilité et la compréhension de mesures
HOM dans l’effet Hall entier et factionnaire.
Avec un unique QPC, les particules émises
grâce à des pulses de tensions appliqués sur
des contacts de part et d’autre du QPC peu-
vent être considérées comme des fermions, même
dans le régime d’effet Hall factionnaire. Nous
présentons les premières mesures d’interférences
HOM fermioniques dans ce régime de FQHE.
Nous observons une bonne supression du bruit
("HOM dip") comme attendu pour des corréla-
tions fermioniques, mais limité à 65% au lieu des
100% attendus. Nos mesures pointent sur la né-
cessité d’améliorer l’expérience ainsi que notre
compréhension avant d’aborder l’étude des cor-
rélations anyoniques.

Title: Towards Hong-Ou-Mandel experiments to explore the anyonic statistics in the
fractional Hall effect.

Keywords: Mesoscopic physics, quantum Hall effect, exclusion statistic, partition noise

Abstract: Elementary particles are usually
classified into two categories depending on their
exclusion statistics: bosons and fermions. In
bidimensional mesoscopic conductors subject to
a strong magnetic field, new kind of quasi-
particles (called "anyons") can emerge. In the
fractional quantum Hall effect (FQHE), anyons
are an example of exchange statistics intermedi-
ate between bosons and fermions. The long term
goal of this work is to perform "Hong Ou Man-
del" (HOM) experiments for detecting anyonic
statistics in time domain using a 3-QPC (Quan-
tum Point Contact) sample (2 QPCs being used
to generate single anyons and a central QPC
as a beam splitter to perform 2-particle anyonic
HOM correlation). Prior that, we explored a

simpler system with a single QPC beam-splitter
in order to test our ability to perform HOMmea-
surements in the integer and fractional quantum
Hall regime. With only one QPC beam-splitter,
the particles emitted from voltage pulses applied
on ohmic contacts on both sides of the QPC
have to be considered like electrons (fermions)
even in the FQHE. We present the first HOM
noise measurements in the FQHE. We observe
a large HOM dip at zero time delay, but not
as high as the expected 100% deep of pure
fermionic correlations. This points towards the
need of improving the experimental setup and
our understanding before addressing the study
of anyonic correlations.

Université Paris-Saclay
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