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Titre : Complexité de la communication : fonctions à grande sortie, bornes 

partitions et non-localité quantique 
 
Résumé : La plupart des problèmes étudiés en complexité de la 

communication sont Booléens. Pour des fonctions à plus large sortie, la 
manière dont le résultat du calcul doit être retourné – le modèle de sortie – 
peut grandement changer la complexité du problème. De même, les bornes 

inférieures ne s’appliquent pas toutes à tous les modèles. Dans cette thèse, 
nous étudions des bornes inférieures impactées par le modèle de sortie, 
revisitons quelques résultats classiques à la lumière de ces modèles de 

sortie, et les relions au formalisme des comportements et des inégalités de 
Bell du domaine de la non-localité quantique. 
 

Premièrement, nous nous intéressons aux bornes partition et montrons que 
leur application à une fonction à large sortie donne nécessairement de 
grandes valeurs, indiquant qu’elles ne sont des bornes inférieures que pour 

un de nos modèles de sortie. Nous montrons également comment construire 
un protocole déterministe à partir d’une solution optimale de la borne 
partition dite “positive”, ainsi qu’une nouvelle connexion avec une autre 

borne inférieure, la régularité faible. Via une récente réinterprétation de la 
borne partition en termes d’information, nous établissons une séparation 
exponentielle entre la borne partition et la complexité de la communication. 

Le problème permettant cette séparation est un problème récemment 
introduit pour séparer la complexité de la communication et la complexité 
de l’information dite “externe”. 

 
Ensuite, nous définissons plusieurs modèles de sortie. Nous les séparons, 
en montrant de grands écarts de complexités entre les différents modèles 

sur quelques problèmes. Nous re-prouvons dans nos modèles quelques 
résultats classiques de réduction d’erreur et de suppression d’aléatoire 
auparavant seulement connus pour les modèles de sortie les plus courants. 

Nous établissons pour quelques problèmes naturels supplémentaires que 
leur complexité varie significativement en selon le modèle de sortie, et 
montrons que la borne inférieure du rang s’applique toujours à nos modèles 

à une petite modification près. 
 
En dernier lieu, nous traitons de non-localité quantique et montrons que 

certaines bornes inférieures en complexité de la communication peuvent 
être interprétées sous la forme d’inégalités de Bell. Les inégalités de Bell 

obtenues sont résistantes à l’inefficacité de détection, et ne le sont pas a 
priori à d’autres formes de bruit. Nous reformulons le calcul d’une fonction 
dans un modèle de sortie spécifique en le calcul d’un comportement – une 

famille de distributions de probabilités indexées par les entrées possibles. 
Ceci nous permet d’utiliser les bornes efficacité comme des généralisations 
naturelles de la borne partition pour des modèles de sortie non-standards. 

 
Mots clefs : complexité de la communication; bornes partition; non-
localité quantique; complexité de l’information; fonctions non-Booléennes  



    

 

 

 

Title : Communication complexity: large output functions, partitions 

bounds, and quantum nonlocality 
 
Abstract : Most classical problems of communication complexity are 

Boolean functions. When considering functions of larger output, the way in 
which the result of a computation must be made available – the output 
model – can greatly impact the complexity of the problem. In particular, 

some lower bounds may not apply to all models. In this thesis, we study 
some lower bounds affected by the output model, problems with large 
outputs, revisit several classical results in the light of these output 

mechanisms, and relate them to the formalism of behaviors and Bell 
inequalities of quantum nonlocality. 
 

First, in the realm of partition bounds, we show that they necessarily have 
a relatively large value on large output functions, which indicates that they 
are lower bounds for only one of our output models. We also show how to 

obtain a deterministic protocol from an optimal solution of the positive 
partition bound, and a new connection with another lower bound technique, 
weak-regularity. We also leverage a recent information-theoretic re-

interpretation of the partition bound to give an exponential separation 
between communication complexity and partition bound. The problem 
achieving this is a large output relation recently introduced to separate 

communication complexity and external information complexity. 
 
Secondly, we formally define several output models. We separate them, 

showing how the complexity of some problems dramatically changes 
between models, and for all our model re-prove standard error-reduction 
and randomness-removal results only previously known for the most 

standard, usually assumed output models. Furthermore, we show for a few 
natural problems that their complexity significantly varies when changing 
output model, and show how the rank lower bound still applies to all our 

models with only a slight adaptation. 
 
As last topic, we move to quantum nonlocality and show that some 

communication complexity lower bounds have an interpretation in the form 
of Bell inequalities. The Bell inequalities obtained are resistant against 
detection inefficiency, and a priori not against other types of disturbance. 

We reformulate computing a function in a specific output model as 
computing a behavior – a family of probability distributions indexed by 

possible inputs. This allows us to use the efficiency bounds as proper 
generalisations of the partition bound for non-standard output models. 
 

Keywords : communication complexity; partition bounds; quantum 
nonlocality; information complexity; non-Boolean functions 
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I N T R O D U C T I O N

At its core, computation requires communication. In an electrical circuit, changes
in voltage will travel from a part of the circuit to another, conveying information.
In a Turing machine, a bit that is stored at a faraway position on the tape may only
influence what is written as the beginning of the tape if the Turing machine’s head
travels to that faraway position to retrieve the information written there before going
to the beginning of the tape.

From this observation, communication complexity was invented to study the role
of communication in computation. It is a model simple enough to prove results whose
equivalent formulations in other models seem out of reach of current techniques
(Pcc 6= NPcc and BPPcc 6= BQPcc) and yet captures something deep enough about
computation that it allows for interesting results, notably lower bounds in other mod-
els of computation, such as the streaming model, the Congest model in distributed
computing, and VSLI circuit design.

But communication complexity is also of independent interest. Consider the
following real life scenario1: one day, two friends that have not seen each other in ten
years meet. Both are avid readers, so the conversation quickly moves to what they
have read in those last ten years. As they talk, they realize that every book that comes
to their mind, they have both read. So they wonder: what books have they not both
read?

Without access to their respective home book collections, they decide to solve this
question at a later time, over the phone. However, phone calls are expensive where
they live, so they should make this phone call as quick as possible. As each book
is uniquely identified by a 13-digits product number, the protagonists’ first idea is
to exchange a 1013-bit long vector to solve the problem. But since 1013 is a lot, they
decide to optimize this first idea.

The two friends think for a bit, until one of them, Alice, remarks that as they are
both less than fifty years old, and rarely read more than twenty books a year, surely
their respective book collections contain at most a thousand books. Therefore, they
could pick a random hash function now, that hashes values from [1013] to [108], to
preprocess their inputs before sending them2. This would result in a probability of
error due to collisions of less than 1%, which she deems acceptable, and make their
phone call 10−5 times shorter. Even better, they could only exchange 103 8-digits long
numbers, or less than 2.7× 104 bits, to achieve their goal.

Still, Bob finds it unsatisfactory. The prospect of describing his whole book
collection over the phone no longer appeals to him, so instead he suggests that they
only try to find a book that one of them owns but the other does not. This would give
one of them a book to bring to the other on their next reunion. He suggests a protocol
for this, that requires an exponentially smaller amount of communication than what

1 In this context, real life scenario means a computer science scenario with humans instead of computers.
2 This technique is commonly used for some problems with low Hamming-weight inputs, see, e.g.,

[BCK+
14]
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Alice was suggesting just before, exploiting, as Alice was doing, that the number of
books they own is much smaller than the number of book identifiers.3

But Alice would really like to fully know her friend’s book collection, so she thinks
for a little while longer and comes up with another plan. Not only do they both own
at most a thousand books, she says, but in addition it seems that their tastes are so
similar that their book collections are probably at most 2% different. In their college
years, they read the same classics of Russian literature. In their thirties, they embarked
on the same quest of reading the most well-known book of every literature Nobel
prize laureate. So she suggests that they consider a colouring of the (108)-dimensional
Boolean hypercube such that two vertices less than 20 bits different receive different
colours4. Then, over the phone, Alice could give the colour corresponding to her book
collection to Bob, and Bob give the colour of his book collection to Alice. She notices
that such a colouring is possible with less than 108×20 colours, so they may achieve
their original goal by exchanging 160-digits long numbers over the phone, and then
for each book that hashes to a value that is not possessed by one of the players, having
the other player send the 13-digits identifier of that book. In total, Alice and Bob
would only need to exchange at most 580 digits, which seems reasonable to both of
them, and so they proceed with this plan.

The scenario we just described in this short story is exactly the scenario that
is the main subject of this thesis, the two-party communication complexity setting.
Questions raised during this short story – about the use of randomness, what we
can assume about the inputs that the players receive – will be similarly raised and
addressed in this thesis. And, just as in the short story, we will consider various ways
in which the players may want to compute the result of their computation: do they
want both of them to have the result, or just one them? This last question is central to
the work presented in this thesis, and is amply discussed in Chapters 4 and 5.

structure of the thesis

The manuscript is organised into two main parts: the first one (Part i) about Com-
munication Complexity, the second one (Part ii) about Quantum, and in particular
nonlocality. While quantum concepts are absent from the Communication Complexity
chapters, communication complexity appears in Quantum chapters.

The communication complexity part first introduces communication complexity
and several important concepts of the field (Chapter 1), before describing some of
the most powerful lower bound techniques known in the field today: the partition
bounds and information complexity (Chapter 2). It shows how to derive some upper
bounds from the lower bounds presented before in the spirit of some well-known
results constructing deterministic protocols from nondeterministic ones (Chapter 3).
It then focuses on the special case of large output functions, to understand how
communication complexity greatly varies depending on how we expect the players to
produce their outputs. We introduce various models of communication complexity
with different output mechanisms, separate the models, and show how to adapt
the classical results of error reduction and derandomization to those new models

3 Here Bob is thinking of a protocol for the t− FtFDn problem, that we will see in Theorem 5.9
4 This technique, with the same goal of exchanging similar bit-strings, is used , e.g., in [FKNN95].
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(Chapter 4). We then show more separations, not as strong as the previous ones but
for more natural problems, and adapt the rank lower bound to the new output models
(Chapter 5). The personal work presented in Part i comes from unpublished work,
with Chapters 4 and 5 being mostly based on the paper The communication complexity
of functions with large output [FLLN20].

The quantum part first defines what quantum computing is – compared to classical
computing – as well as nonlocality (Chapter 6). It defines nonlocality certificates
known as Bell inequalities, and we describe the relationship between those Bell
inequalities and the lower bounds we saw in previous chapters, as well as a variant of
traditional Bell inequalities to take into account a specific kind of apparatus error in
nonlocality experiments (Chapter 7). The thesis ends with some considerations about
the link between behaviours and the study of large output functions (Chapter 8). The
personal work presented in Part ii mostly comes from the paper Robust Bell inequalities
from communication complexity [LLN+

18], and the rest from unpublished work.
The main results of this thesis are indicated by colored boxes. Results whose

Theorem 1 (A published re-
sult [ABC09]).

Theorem 2 (An unpublished re-
sult).

Figure 1: Colour-code indicating the publication status.

only exposition is in this thesis are indicated by an orange background, while results
available in other sources (such as published articles or online drafts) are indicated by
a blue background. The colours have been chosen with accessibility in mind.
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Part I

C O M M U N I C AT I O N C O M P L E X I T Y





1
P R E L I M I N A R I E S

In this chapter, we give important definitions and standard results of the field of
communication complexity. This includes defining the standard two-party com-
munication complexity model, in its deterministic, randomized, distributional, and
nondeterministic variants, as well as how one reduces error in the randomized setting
(Theorem 1.22), and how to construct a deterministic protocol from a randomized
protocol that only uses private coins (Theorem 1.26). Those two results are particularly
important as we will revisit those tasks (error-reduction and derandomization) in
slightly different two-party communication complexity models in Chapter 4. Similarly,
the rank lower bound presented in Proposition 1.21 will be revisited in Chapter 5.
Common problems and useful protocols are also presented.

1.1 definition of the standard communication complexity model

In this thesis, we will focus on the two-party communication complexity model,
introduced in a seminal paper of Yao [Yao79] to study the role of communication
in computation. Traditionally, the players are named Alice and Bob. In all of the
computational tasks we will consider, there will be inputs and outputs, and we will
consider different computational tasks.

• The set of inputs of Alice is denoted by X , Bob’s set of inputs is denoted by Y .
The set of admissible pairs of inputs is denoted by I ⊆ X ×Y .

• The set of outputs is denoted by Z . When Alice and Bob both have to output
something, we will denote their respective sets of outputs A and B.

• Computational tasks are divided in two categories: functions and relations.
Functions ( f : I → Z) admit a single output for a particular input, while
relations (g : I → 2Z ) might admit several outputs for any given input.

• When I = X ×Y , the function or relation is said to be total. Otherwise, when
I  X ×Y , it is said to be partial, or a promise problem.

• When Z = {0, 1}, the problem is said to be a decision problem, and the function
is a Boolean function.

• Unless otherwise specified, Alice’s and Bob’s inputs will require at most O(n)
bits to write and the output of the function will require at most O(k) bits to
write.1

Two players computing a function or relation f in the communication model
follow the following steps:

1 More formally: log(|X × Y|) ∈ O(n) and log(|Z|) ∈ O(k)

11
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1. The players agree to follow a specific explicit communication protocol before
receiving the inputs of their task.

2. Alice receives an element x of a set X , Bob receives an element y of a set Y .

3. The players then follow their agreed-upon communication protocol according
to the inputs they received. Any bit exchanged during this step counts towards
the communication cost.

4. At the end of the communication, the transcript of the protocol (the list of all
exchanged messages) should reveal the value f (x, y).

We will consider variations of this model in Chapter 4, where we will consider
other outputting mechanisms (i.e., the result might not be clear from the transcript of
the protocol). But until this chapter, the model of communication we are considering
is this one (referred to as the open model later on, see Definition 4.2).

To make sense of this 4 step process, let us formally define what a communication
protocol is, as well as what it means for a communication protocol to compute a
function f .

Definition 1.1 (Communication protocol). Let X and Y be two sets, andFA := F (X , {0, 1})
and FB := F (Y , {0, 1}) the sets of functions taking X and Y as inputs and having Boolean
outputs. A communication protocol Π is a binary tree (the protocol tree) TΠ whose internal
nodes are each labeled with a letter ` ∈ {A, B} and a function f ∈ F`.

Note that each node of the protocol tree can be identified with a unique binary
word w ∈ {0, 1}∗: the root is the empty word ε and any other node is identified
by the path that leads to it starting from the root, encoded in binary (0 = left, 1 =

right). We simply denote by nodes(Π), leaves(Π), and prefix(w) the sets of nodes
of a protocol Π, its set of leaves, and the prefixes of a given word. If that word w
identifies a node in a tree, its set of prefixes identifies all the nodes on the path from
root to w in the tree. The player associated to a node of label w is denoted by `Π(w),
while the associated function is denoted by fw.

0

0100

ε

1

10

100 101

11

A, fε

A, f0 B, f1

A, f10

fε : {0, 2} → 0, {1, 3} → 1
f0 : {2} → 0, {0} → 1
f1 : {0, 1, 3} → 0, {2} → 1
f10 : {1} → 0, {3} → 1

Figure 2: A protocol tree as described in Definition 1.1, with a possible set of labeling functions.

Two players execute a communication protocol as follows:
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Definition 1.2 (Execution of a communication protocol). Alice and Bob being respectively
given x ∈ X and y ∈ Y , the execution of a communication protocol Π on (x, y) is the
following algorithm:

1. The players initialize a variable w← ε.

2. While w is not a leaf node:

(a) Let ` = `Π(w) and f = fw

(b) If ` = A, Alice computes f (x) and sends the result m to Bob. Otherwise, Bob
computes f (y) and sends the result m to Alice.

(c) The players update w← w.m

The result of the execution Π(x, y) is the label of the leaf node contained in w at the end of the
protocol.

At the end of the protocol, w contains a binary word identifying a leaf node of TΠ.

Definition 1.3 (Open computation). A protocol Π is said to openly compute f iff there is
a mapping O : leaves(Π)→ Z such that ∀(x, y) ∈ I ,O(Π(x, y)) = f (x, y).

We will abuse notation and write Π(x, y) for O(Π(x, y)) when it is clear what the
protocol is trying to compute, and therefore which mapping we are considering. Why
we call the subject of Definition 1.3 “open” computation will be clear in Chapter 4.
Until this chapter, every computation is an open computation, and we will drop the
word “open” for brevity.

Definition 1.4 (Communication complexity). The worst-case communication cost of a
protocol Π on inputs I is the maximal depth reached when executing Π on inputs from I :

CCI (Π) = max
x,y∈I

|Π(x, y)|

If all nodes of the tree are reachable, this is simply the depth of the tree.
The worst-case open deterministic communication complexity of a function f : I → Z is

the minimal communication cost of all protocols openly computing f :

Dopen( f ) = min
Π openly computing f

CCI (Π)

We will from now on assume that the tree does not contain unreachable nodes,
as the players can always remove such nodes from a tree without any increase in
communication.

The communication complexity is naturally bounded by the sizes of the inputs:
indeed, it suffices that Alice sends x and Bob sends y to compute f (x, y) from the
communication transcript, as it would contain x and y in this case. The protocol tree
of this basic protocol is a full binary tree of depth dlog(|X |)e+ dlog(|Y|)e. Some
functions do require this amount of communication: it is the case if f (x, y) is just the
concatenation of x and y. However some require much less. Consider for example
that f is such that X = Y , Z = {0, 1} and there exists a function g : X → {0, 1}
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such that f (x, y) = g(x)⊕ g(y). In this case, 2 bits of communication suffice, one for
communicating g(x) and another to communicate g(y)2.

Before going further, let us stress that the definition we gave of communication
complexity is quite standard, but does not capture all the communication scenarios
one is usually interested in. We will see in Chapter 4 that it might be interesting to
consider other ways that the output can be made accessible, in order to obtain lower
bounds on other tasks. For more complete introductions to the field of communication
complexity, see [KN97, RY20].

1.2 randomization and nondeterminism

Two natural extensions of the previous model are the addition of randomness, nonde-
terminism, or both.

randomness There are two natural ways of introducing randomness in communi-
cation complexity: one is to consider random inputs, and the other is to let the players
behave randomly. When the inputs are random but the players are deterministic,
we are in the context of distributional communication complexity. When we consider
worst-case inputs, but the players may use randomness, we are in the context of worst
case randomized communication complexity. Theorem 1.7, due to Yao [Yao83], shows that
the two notions are two sides of the same coin.

Definition 1.5 (Distributional communication complexity). The distributional commu-
nication complexity of f over µ with error at most ε is the minimum communication cost
of a protocol Π that computes f with probability at least 1− ε on inputs (x, y) distributed
according to µ:

Dε( f , µ) = min
Π:P(x,y)∼µ[Π(x,y)= f (x,y)]≥1−ε

CCI (Π)

Our next Definition 1.6 requires us to explain the role of random coins in a
randomized protocol. A randomized protocol is simply a deterministic protocol that
takes additional inputs to x and y: for any node w of the protocol, the function fw

takes as inputs x,rA and r for an Alice node, and y, rB and r for a Bob node. rA, rB

and r come from probability distributions RA, RB and R that are part of the protocol
and can generally be assumed to be a uniform distribution over some number of bits3.
rA and rB are the private coins, r is the public coins.

Definition 1.6. The worst-case public coin randomized communication complexity of f with
error at most ε is the minimum communication cost of a protocol Π that given any (x, y)
computes f (x, y) with probability at least 1− ε over the public randomness:

Rε( f ) = min
Π:∀x,y,Pr [Π(x,y,r)= f (x,y)]≥1−ε

CCI (Π)

We add a priv superscript to denote the worst case private coin communication complexity
Rpriv

ε ( f ).

2 as an example of such a function, consider f (x, y) = x + y mod 2
3 Because any distribution can be approximately simulated by a large enough uniform distribution.
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Public randomness is often introduced as allowing the players to pick a random
protocol tree at the beginning, which they then execute. This is equivalent to our
previous definition with the addition that we consider that nodes of the tree whose
decision function only depends on public randomness do not count towards the
communication cost, which we will assume from now on. Note that this can only
decrease the communication cost by a factor of at most 2. We mention this technicality
in part because Yao’s Min-max (Theorem 1.7) relies on this assumption.

Theorem 1.7 (Yao’s Min-max [Yao83]).

Rε( f ) = max
µ

(Dε( f , µ))

In the case of worst-case communication complexity, allowing the players to be
random does not change the communication cost if we require them to always reach
the correct output, as one can obtain a deterministic protocol from a randomized
protocol by giving a fixed value to the randomness, so from any zero-error random
protocol we can get a zero-error deterministic protocol with the same worst case
communication. We will therefore allow the player to make a small amount of
error ε. By a similar argument, for every randomized protocol in the distributional
setting, there exists a deterministic protocol that requires at most the same amount of
communication and makes at most the same amount of error, which is why we only
consider deterministic protocols in this setting.

In this manuscript, allowing ε error will mean that the players can make an error
with probability exactly ε. In some texts the convention used is that the players have
to make strictly less than ε error, which can lead to occasional confusion. Fortunately,
the two conventions are essentially equivalent because of error reduction schemes
(see Section 1.4).

We consider two types of randomness: private and public. Private randomness
means that the players each have access to a source of randomness that are indepen-
dent of each other. In contrast, public randomness means that there is a single source
of randomness that’s accessible to both players. This second model is more powerful,
as one can easily simulate a private randomness protocol with public randomness
(using every other bit as a source of randomness). It is even strictly more powerful,
as we will see with the example of the Equality problem (Definition 1.35). That the
players use randomness means that the functions assigned to nodes of their protocol
trees also use randomness as input, and the mapping used to define open computation
may also use public randomness as input.

We will see later with Theorem 1.26 that Equality requires strictly more communi-
cation with private coins that with public coin. However, the gap between the private
and the public randomized communication complexities can not be arbitrarily large,
as shows Theorem 1.8, due to Newman [New91].

Theorem 1.8 (Newman’s Theorem [New91]). For every function or relation f , every
δ > 0 and every ε > 0:

Rpriv
ε+δ( f ) ≤ Rε( f ) + O

(
log log (|I|) + log

(
1
δ

))
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Also note that the communication required for a computational task with error
stops increasing for an error below a given threshold, at which point it is equal to the
deterministic communication complexity of the task. This is the object of Theorem 1.9
just below. This will be useful later on to assess that some protocols have an optimal
dependency in the error parameter. Its proof is of the same essence as the classical
proof that shows that BPP ⊆ P/poly [Adl78, BG81].

Theorem 1.9. For every function or relation f and 0 < ε < 1
|I| :

Rε( f ) = D( f )

Proof of Theorem 1.9. Let us define µ, the probability distribution over R such that for
every r ∈ R, µ(r) is the probability that the public coins have value r.

Let Π be a protocol computing f with error at most ε and for every (x, y) ∈ I ,
consider Ex,y = {r : Π(x, y, r) 6= f (x, y)}. Because Π makes at most ε error, µ(Ex,y) ≤
ε. Therefore, E = ∪(x,y)∈IEx,y satisfies µ(E) ≤ ε|I| < 1. So R \ E 6= ∅.

Let us now consider r ∈ R \ E. Let Π′ be the deterministic protocol corresponding
to running Π with fixed randomness r. By definition of E and r, Π′ deterministically
computes f , so D( f ) ≤ CCI (Π′) = CCI (Π) = Rε( f ).

Theorem 1.9 is useful in that it will tell us whether or not some of our randomized
protocols have an optimal dependency in the error parameter or not. For example, con-
sider the Equality problem (Definition 1.35). It is known that Rε(EQn) ∈ O

(
log
( 1

ε

))
and that D(EQn) ∈ Ω(n). We may wonder whether there is a more efficient random-
ized protocol, for example whether R(EQn) ∈ O

(
log log

( 1
ε

))
. Theorem 1.9 tells us it

is impossible, as it would lead to a O(log(n)) deterministic protocol.
However, it is not true that Rε(EQn) ∈ Ω

(
log
( 1

ε

))
unless we are interested in

specific asymptotic behaviours in which n goes to infinity at the same time as ε goes
to 0. At constant n, and ε approaching 0, the statement would be clearly wrong, as
Rε(EQn) ≤ D(EQn) ∈ O(n).

nondeterminism In the nondeterministic setting the players solve a different
task than computing a function or relation f (x, y). They instead check a proof that a
specific value z is a valid answer in the computation of f (x, y). Nondeterministically
computing a function or relation f means having a set of proofs such that for each
authorized input (x, y), there is an output z such that we have a proof that z is a valid
output of f on (x, y).

Definition 1.10 (Nondeterministic protocol). A nondeterministic protocol is a protocol Π
that takes an additional input w ∈ W , called the witness or advice, that is accessible to both
players. The nodes of the protocol tree are labeled by functions that take as input x and w for
Alice nodes, y and w for Bob nodes.

A protocol nondeterministically computes a function f if there exists a mapping O :
leaves(Π)→ Z ∪ {⊥} such that:

• ∀(x, y) ∈ I , ∃w ∈ W such that O(Π(x, y, w)) = f (x, y)

• ∀(x, y) ∈ I , ∀w ∈ W , O(Π(x, y, w)) ∈ { f (x, y),⊥}
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When for all (x, y) ∈ I , there exists a unique w ∈ W such that O(Π(x, y, w)) =

f (x, y), then Π is said to unambiguously nondeterministically compute f .

For brevity, we will say unambiguous for unambiguous nondeterministic. As before,
we will omit the mapping O when it is clear from context.

Definition 1.11 (Nondeterministic communication complexity). The nondeterministic
communication cost of a protocol Π on inputs I is the sum of the size of the proofs and of the
maximal depth reached when executing Π on inputs from I :

CCI (Π) = dlog(|W|)e+ max
x,y∈I ,w∈W

|Π(x, y, w)|

The worst-case nondeterministic communication complexity of a function f : I → Z is
the minimal communication cost of all protocols nondeterministically computing f :

N( f ) = min
Π nondeterministically computing f

CCI (Π)

The worst-case unambiguous communication complexity of a function f : I → Z is the
minimal communication cost of all protocols unambiguously computing f :

U( f ) = min
Π unambiguously computing f

CCI (Π)

The definition we gave just above is concerned with being able, for each input,
to certify a possible answer. We can also consider the necessary nondeterministic
communication necessary to certify, for a given output z, that f (x, y) = z for all
(x, y) for which it is the case. We denote this complexity by Nz( f ), and call it the
nondeterministic communication complexity of a function f for an output z, and give
its proper definition just below through the introduction of an indicator function,
which puts us back in the realm of Boolean functions.

Definition 1.12 (Nondeterministic communication complexity of an output z). Let
f|z(x, y) = 1{ f (x,y)=z}, then

Nz( f ) = N1( f|z)

distributional nondeterminism We finally introduce the notion of distribu-
tional nondeterministic communication complexity. We chose the simplest definition
in this monograph, that a set of input of weight 1− ε satisfies the definition of be-
ing nondeterministic computed by a given protocol. Unambiguous distributional
computation is defined similarly.

Definition 1.13. Let us denote by EN
Π,x,y and EU

Π,x,y the following events:

• EN
Π,x,y, f =

{
∀(x, y) ∈ I , ∃w ∈ W : Π(x, y, w) = f (x, y)

∀(x, y) ∈ I , ∀w ∈ W : Π(x, y, w) ∈ { f (x, y),⊥}

• EU
Π,x,y, f =

{
∀(x, y) ∈ I , ∃!w ∈ W : Π(x, y, w) = f (x, y)

∀(x, y) ∈ I , ∀w ∈ W : Π(x, y, w) ∈ { f (x, y),⊥}
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The distributional nondeterministic and unambiguous communication complexities of f
are defined as:

Nε( f , µ) = min
Π:PX,Y∼µ[EN

Π,x,y, f ]≥1−ε
CCI (Π)

Uε( f , µ) = min
Π:PX,Y∼µ[EU

Π,x,y, f ]≥1−ε
CCI (Π)

1.3 rectangles , lower bounds and classes

A useful picture in communication complexity is that of the communication matrix, a
matrix representation of the function we want to compute. It is independent of the
protocol we will decide to use to solve the protocol and is a full description of the
function to compute4.

Definition 1.14 (Communication matrix). Let f : I → Z be a function, with I ⊆ X ×Y .
The communication matrix of f , M f , is the |X | × |Y| matrix defined by:

M f (x, y) =

{
f (x, y) when (x, y) ∈ I
∗ otherwise

Definition 1.15 (Rectangle). A combinatorial rectangle over X ×Y is the Cartesian product
A× B of two subsets A ⊆ X and B ⊆ Y .

A combinatorial rectangle R is said to be a monochromatic rectangle of M f if ∃z ∈
Z , ∀(x, y) ∈ R, M f (x, y) ∈ {z, ∗}

An alternative, equivalent definition may use the following Proposition 1.16.

Proposition 1.16.

R a rectangle⇔
(
(x, y), (x′, y′) ∈ R2 ⇒ (x′, y), (x, y′) ∈ R2)

Sets of rectangles play a crucial role in communication complexity: protocols of
all types decompose the communication matrix into rectangles in various ways, in
particular into covers and partitions which are the object of Definition 1.17.

Definition 1.17 (Covers and partitions). A z-cover of a matrix M f is a set S of rectangles
such that:

• ∀x, y ∈ I , f (x, y) = z : ∃R ∈ S, (x, y) ∈ R

• ∀x, y ∈ I , f (x, y) 6= z : ∀R ∈ S, (x, y) 6∈ R

S is a set of monochromatic rectangles whose union is a superset of f−1(z).
The z-cover number Cz( f ) of M f is the minimal size of S.
A cover of M f is a union of |Z| z-covers, one for each output. Its minimal size is denoted

by C( f ).

4 it does not fully describe the communication task though, as it says nothing about the distribution of the
input and the type of computation
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A set of rectangles S is said to be non-overlapping if ∀(x, y) ∈ X × Y , #{R : R ∈
S, (x, y) ∈ R} ≤ 1. The minimal size of a non-overlapping z-cover is denoted by UCz( f ),
while the minimal size of a cover of M f is denoted by UC( f ).

A partition of M f is a non-overlapping set of rectangles whose union is equal to X ×Y .
A labeled partition is a partition where each rectangle of the partition is assigned an output z.

We denote as Cz(M f ) the set of z-covers of M f , C(M f ) its set of covers, UC(M f ) its
set of non-overlapping covers, P(M f ) its set of partitions and LP(M f ) its set of labeled
partitions.

For each node ν of the protocol tree of a communication protocol Π let us consider
Sν = {(x, y) : ν ∈ prefix(Π(x, y))}, the set of inputs such that when executing Π on
them, the execution goes through ν. Rectangles and partitions are objects of interest
because of the next proposition.

Proposition 1.18 (Rectangle property of protocols). Let Π be a communication protocol,
and ν a node of Π’s protocol tree. Then Sν = {(x, y) : ν ∈ prefix(Π(x, y))} is a rectangle.

Let V be the set of leaves of an open communication protocols computing f . Then the set of
rectangles {Sν : ν ∈ V} is a partition of M f into non-overlapping monochromatic rectangles.
We denote by LPprot(M f ) the set of labeled partitions that can be induced by protocols.

Note that we defined a non-overlapping set of rectangles to not overlap on the
whole communication matrix, even on invalid inputs in the case of a partial function,
when we could have only required that rectangles do not overlap on valid inputs.
A reason for this is that protocol-induced partitions respect this property: they are
non-overlapping even outside the set of valid inputs.

When considering randomized protocols, the idea of rectangles can also be useful.
Let us first consider the case of private randomness: we can consider Alice’s and
Bob’s random bits as additional inputs they have, and notice that if we build a
|X ×RA| × |Y ×RB| matrix that is made of |RA ×RB| copies of M f , a private coin
randomized protocol partitions such a matrix into rectangles such that for a given
(x, y), most cells (x, rA, y, rB)rA∈RA,rB∈RB belong to a rectangle that is labeled by f (x, y).
The case of public randomness is somewhat similar, but off-diagonal copies of M f
would not be taken into account.

Mf Mf Mf

Mf Mf Mf

Mf Mf Mf

|X |

|Y| |RB | × |Y|

|RA|
×
|X |

(a) Private coins case.

Mf

Mf

Mf

|X |

|Y| |R| × |Y|

|R|
×
|X |

(b) Public coins case.

Figure 3: The matrices partitioned by a randomized protocol, with a superposed shaded
rectangle.
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Note that while each protocol induces a partition of a communication matrix, not
all partitions can come from a protocol, as shown in Figure 4.

4

1

2
3

0

(a) The smallest partition
that can not be induced by
a protocol

3

0

2

1

(b) A partition that can be in-
duced by a protocol (dashed
lines correspond to the sec-
ond round of communica-
tion)

0

3 2

1

(c) A partition that can be
induced by several protocols

Figure 4: Examples of partitions.

The size of the smallest z cover of M f is directly linked to the nondeterministic
communication complexity of f for output z. Similarly, the size of the smallest cover is
directly linked to the nondeterministic communication complexity of f . Unambiguous
communication complexity is linked to the size of the smallest labeled partition of
M f computing f when f is a total function. Note that rectangles in a partition do not
overlap even outside the set of admissible inputs I .

Proposition 1.19.

dlog(Cz( f ))e ≤ Nz( f ) ≤ dlog(Cz( f ))e+ 2

dlog(UC( f ))e ≤ U( f )

For simplicity, we will consider that Nz( f ) = dlog(Cz( f ))e.

from properties of rectangles and partitions to lower bounds Prop-
erty 1.18 that shows that protocols induce partitions of communication matrices is
a useful tool for proving lower bounds. For instance, it tells us that each leaf is
associated to a rectangle, so by lower bounding the number of rectangles in a cover
of M f , we lower bound the communication complexity of f . The fooling set method
does this by noticing that two pairs (x, y) and (x′, y′) such that f (x, y) = f (x′, y′) = z
but f (x′, y) 6= z ∨ f (x, y′) 6= z must be in distinct z-monochromatic rectangles in any
z-cover of M f :

Proposition 1.20. Let S ⊆ X ×Y be such that:

• ∀(x, y) ∈ S, f (x, y) = z

• ∀(x, y), (x′, y′) ∈ S2 such that x 6= x′ and y 6= y′, either f (x, y′) 6= z or f (x′, y) 6= z.

Such a set S is called a fooling set. Then:

Cz( f ) ≥ |S|

The rank lower bound exploits that protocols generate a partition into monochro-
matic rectangles of the communication matrix. Since a monochromatic rectangles is
a rank 1 submatrix of M f , a partition of M f into C non-overlapping monochromatic
rectangles implies that M f has rank at most C.
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Proposition 1.21. For f a total function:

U( f ) ≥ log(UC( f )) ≥ log(rank(M f ))

A long-standing conjecture, called the log rank conjecture asks whether this quan-
tity captures the communication complexity of Boolean functions, that is whether
D( f ) ∈

(
log(rank(M f ))

)O(1). Currently, we know that if such a conjecture is true, the
exponent must be greater than 2 [GPW18a], that the analogue conjecture is false for
non-Boolean functions and for randomized communication (considering approximate
rank instead) [CMS19] and partial results were obtained, bounding D( f ) in terms of
the rank and other quantities [GL14, Lov16, Shr19].

The partition bounds, explored in Section 2.1, are yet another way of exploiting
the rectangle observation.

communication complexity classes While defining complexity measures
such as D( f ) and N( f ) in the previous sections, one might wonder whether one
could define complexity classes as we can do for Turing machines. What would the
analogues of P, NP, or MA be in the communication complexity world?

Such classes can be and have been defined in communication complexity[BFS86,
GPW18b]. Since any Boolean function f with inputs of size n can be computed
perfectly with O(n) communication, complexity classes in communication complexity
are defined as sets of functions that use much less resources: functions that only
use polylog(n) bits of whatever resources are authorized. For example, R1/3(GTn) ∈
O(log(n)) implies GT ∈ BPPcc, and D(NBAn) ∈ log(n) implies that NBA ∈ Pcc.

Sometimes, by duality, what is thought of as a lower bound can be interpreted as
a complexity measure, and therefore define a complexity class. This can give insight
into what a lower bound technique can and can not capture in a given problem. For
instance, the link between rectangle covers and nondeterminism indicates that using
a lower bound on communication complexity that only makes use of the rectangle
property (Property 1.18) is not enough to show that a function has large deterministic
communication complexity if this function is also known to have low nondeterministic
communication complexity.

1.4 error reduction and derandomization

When considering randomized communication complexity, one might wonder: should
we measure the communication necessary to compute f with success probability 2

3 , 3
4 ,

or 99
100 ? It turns out that – in the standard model at least – it does not really matter as

long as we are bounded away from 1
2 :

Theorem 1.22 (Error reduction (Folklore, see [KN97])). Let f be a function and 0 < ε′ <

ε < 1
2 :

Rε′( f ) ≤ Cε,ε′ · Rε( f )

where Cε,ε′ =
ε(1−ε)

( 1
2−ε)

2 ln
( 1

ε′
)
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The proof of this result relies on the Chernoff bound (Lemma 1.23), which we will
also use later in manuscript.

Lemma 1.23 (Chernoff bound). Let (Vi)i∈[N] be N independent binomial variables of
expected value p. We have

P

[∣∣∣∣∣ 1
N

N

∑
i=1

Vi − p

∣∣∣∣∣ ≥ δ

]
≤ 2 · exp

(
− δ2N

2p(1− p)

)
.

One might wonder whether Theorem 1.22 is tight, and for which functions it is
and for which it is not. An interesting way to probe this question is to look at the
communication complexity of computing a function with error very close to half,
which is the subject of the next observation:

Observation 1.24. Let f be a function such that R1/3( f ) > 0, and let ε = 1
2 − δ. Then as

δ→ 0 we have:
R 1

2−δ( f ) ∈ Ω(δ2)

So the communication complexity of an nontrivial function f might go to 0 as we
allow more and more error, but not at an arbitrary speed. We know function families
for which R 1

2−δ( fn) behaves as Θ(1), Θ(δ) and Θ(δ2), with the right condition on δ

and n. Such results were recently compiled in a paper of Watson [Wat18].
One can also consider how much communication is needed to simply be strictly

better than 1
2 (when being only given access to private coins).

Also note that this result only holds for functions, not relations. An example
of family of problems for which this result clearly does not apply is elimination
problems [BDKW14], which we define later (Definition 1.31). Example 1.25 is such
an elimination problem, for which the error-reduction result of Theorem 1.22 can not
apply. Intuitively, the relation is such that computing it correctly with error greater
than 3

4 requires no communication by construction (most values are correct answers),
but computing it with error less than 1

8 requires some communication.

Example 1.25. Let IPn be the Inner-Product function. Its discrepancy satisfies disc(IPn) ≤
2−n/2 ([CG88], Example 3.29 in [KN97]).

As three out of four outputs are correct in the elimination problem elim ◦ IP⊗2
n , we have

R1/4(elim ◦ IP⊗2
n ) = 0.

By [CDK+17], R1/8(elim ◦ IP⊗2
n ) ≥ log

(
1

disc(IPn)

)
+ O(1) ∈ Ω(n).

Clearly, the error-reduction theorem cannot apply to this problem.

Derandomization asks the question of how wide the gap between deterministic
and randomized communication complexity can be. While public coin communication
complexity can be arbitrarily smaller than deterministic communication complexity
(see Proposition 1.36), private coin communication complexity can only be at most
exponentially smaller than deterministic communication complexity.

Theorem 1.26 (Derandomization (Folklore, see [KN97])). Let f be a function, 0 < ε < 1
2 ,

and R = Rpriv
ε ( f ):

D( f ) ≤ 2R

(
1

1
2 − ε

+ R

)
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The proof of Theorem 1.26 relies on Alice and Bob estimating, for a protocol Π
and being given inputs x and y, a distribution over the leaves of the protocol tree.
This distribution is, for each leaf ν, the probability than an execution of Π with inputs
x and y leads to the leaf ν. This is captured by the Transcript Distribution Estimation
problem, which we define below.

Let us denote by ∆(µ, ν) the total variation distance between two probability
distributions µ and ν. For any universe U , we denote by D(U ) the space of probability
distributions over U . For (x, y) ∈ X ×Y , let us denote by Tx,y

π the distribution of Tπ

(on Tπ) conditioned on {X = x, Y = y}. P[Tx,y = t] = P(rA,rb)∼RA×RB
[Π(x, rA, y, rB) =

t].

Definition 1.27 (Transcript Distribution Estimation problem). For any protocol Π and
δ < 1

2 , we say that a protocol Π̃ solves TDEΠ,δ if, for each input (x, y), Π̃ computes a
distribution T̃x,y

π such that ∆(T̃x,y
π , Tx,y

π ) ≤ δ.

Knowing this distribution allows to know the value of the function with certainty.
Intuitively, the protocol does statistics on another protocol, known to be correct most
of the time, to find the result. Note that this result, like the error-reduction result
above, is only valid for functions, not relations.

1.5 protocols from lower bounds and other complexities

Sometimes, the structures implied by a lower bound or a protocol in a specific model
of computation imply the existence of a protocol in another model of computation.
Such results are useful in that they help compare the relative power of different
lower bound techniques and of different models of computation. The next two
theorems are results of this kind that relate deterministic communication complexity
to nondeterministic communication complexity and unambiguous communication
complexity, and therefore to lower bounds based on the analysis of the number of
rectangles necessary to cover a given communication matrix.

Theorem 1.28 (Aho, Ullman, and Yannakakis [AUY83]). For f a Boolean function,

D( f ) ≤
(

N0( f ) + 1
) (

N1( f ) + 1
)

Theorem 1.29 (Yannakakis [Yan91]). For any f ,

D( f ) ≤ (U( f ) + 1)2

We will show that results similar to Theorem 1.28 and Theorem 1.29 can be stated
with other lower bounds, namely the zero-error positive partition bound (prt+0 ) and
public coin pseudo information complexity (pICext, pub).

As for the tightness of those results, it was proved in [GPW18a] that D( f ) can be
as large as Ω̃(U( f )1.5).

1.6 direct sums

Direct sum questions ask whether or not solving several instances of a given problem
at once is cheaper per instance that solving the instances independently. In other



24 preliminaries

disciplines, such questions would be framed as questions of economies of scale or of
marginal cost.

For any function f : I → Z and positive integer k, we denote by f⊗k : Ik → Z k

the function whose instances consists of k instances of f . f⊗k is defined similarly
when f is a relation. As immediate first properties, we have:

Proposition 1.30.

D( f⊗k) ≤ k · D( f ) Rε( f⊗k) ≤ k · Rε/k( f )

Another related question one may ask is whether solving one instance of our
choice out of k instances can be much easier than solving a single instance. This line
of thinking led to the definition of elimination problems [ABG+

01, BDKW14], where
the players only have to make sure to avoid outputting the answer of the original
problem.

Definition 1.31 (Elimination). Let g be a function g : I → Z . Its associated elimination
problem elim ◦ g is defined as the relation:

elim ◦ g :
I → 2Z

(x, y) → Z \ {g(x, y)}

Intuitively, on a given pair (x, y) all outputs are allowed except the original output,
g(x, y).

Note that this problem is trivial unless we try to solve it with a very small error.

Proposition 1.32. For any function f : I → Z and positive integer k:

D(elim ◦ f⊗k) ≤ D( f ), Rε/|Z|k−1(elim ◦ f⊗k) ≤ Rε( f ).

For any function g : I ′ → Z ′:

R1/|Z ′|(elim ◦ g) = 0.

1.7 our protocol toolbox

In this section, we introduce various problems which will be of interest in this paper
(either as examples or subroutines and subproblems) and give their complexity (when
known).

find the first difference Our first problem is the Find the First Difference
problem: two players are given an n-bit string and they want to compute the first
index where the two strings differ, if they differ (otherwise they may output an
additional symbol, such as an index larger than the largest index used). The Greater
Than problem reduces to it (the greatest of two numbers is the number that has
a 1 where the two numbers first differ). It was notably used as a subroutine in
compression to information schemes [BBCR13, BFM18].
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Figure 5: The communication matrix of FtFD3 and GT3.

Definition 1.33 (Find the First Difference problem). FtFDn : {0, 1}n × {0, 1}n →
{0, . . . , n} is defined as

FtFDn(x, y) = min({i : xi 6= yi} ∪ {n}).

Proposition 1.34. For any 0 < ε < 1
2 :

• Rε(GTn) ≤ Rε(FtFDn) + O(1) ∈ O
(
log
( n

ε

))
[FRPU94],

• Rε(FtFDn) ≥ Rε(GTn) + O(1) ∈ Ω(log(n)) [Vio15].

The upper bound uses a walk on a tree akin to a binary search where steps are
taken according to results from hash functions, while the lower bound is from a
lower bound on the Greater Than function GTn, which reduces to FtFDn. For a good
exposition of the upper bound, see Appendix C in [BBCR13].

equality Our next problem is the Equality problem. Equality reduces to the Find
the First Difference problem, but in the context of randomized public coin communi-
cation complexity, Equality requires an order of magnitude less communication than
Find the First Difference. It also admits an efficient amortized protocol, which was
notably used for solving the Set Intersection problem with bounded sets [BCK+

14].

Definition 1.35 (Equality problem). The function EQn : {0, 1}n × {0, 1}n → {0, 1} is

EQn(x, y) = 1x=y

Proposition 1.36. For 0 < ε < 1
2 ,

• D(EQn) ∈ Θ(n),

• Rpriv
ε (EQn) ∈ O

(
log(n) + log

( 1
ε

))
,

• Rε(EQn) ∈ O
(
log
( 1

ε

))
,

• Rε(EQ⊗k
n ) ∈ O

(
k · log

( 1
ε

))
[FKNN95],

• Rε(EQ⊗k
n ) ∈ Ω(k).
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Figure 6: The communication matrix of EQ3

The upper bound for many instances of [FKNN95] exploits that communicating a
k-bit string x requires less communication if the other player knows a k-bit string y
that is at Hamming distance at most d from x, which they use to efficiently exchange
hashes of their strings. Note that using the protocol for one instance k times with
an error ε

k to achieve a total error at most ε would only yield an O(k · log( k
ε )) upper

bound. Also note that in [FKNN95], the authors prove an O
(

k + log2 ( 1
ε

))
upper

bound on the expected communication complexity of EQ⊗k
n . The lower bound is just

from Ω(k) bits of information being necessary to send k bits worth of information,
even with ε error.

nba The NBA problem (also known as the League problem) is a simple example
that shows that interaction is necessary to solve some problems efficiently (it requires
exponentially more communication if only one player speaks instead of both), and
it also is a problem for which the cost of solving many instances of the problem
deterministically does not scale linearly with the number of instances.

Definition 1.37 (NBA problem). NBAn : {0, 1}n × {0, 1}2n → {0, 1} is a promise
problem where x ∈ {y0, y1}:

NBAn(x, (y0, y1)) = i such that x = yi

Proposition 1.38. For 0 < ε < 1
2 ,

• D(NBAn) = log(n) + 1 [Orl90, Orl91],

• D(NBA⊗k
n ) ∈ O(k + log(k) log(n)) [FKNN95], Ex. 4.61 in [KN97],

• Rε(NBAn) ∈ O
(
log log

( 1
ε

))
,

• Rε(NBA⊗k
n ) ∈ O

(
k + log(k) log log

( 1
ε

))
.

Proof. Proofs of the first two items can be found in their accompanying references, so
let us only prove the last two items.

Rε(NBAn) ∈ O
(
log log

( 1
ε

))
: Let Alice and Bob pick log

( 1
ε

)
random hash functions

hi : {0, 1}n → {0, 1}. For each i, P[hi(y0) 6= hi(y1)] =
1
2 , so with probability

≥ 1− ε there exists i ∈ [log
( 1

ε

)
] such that hi(y0) 6= hi(y1). Bob sends to Alice

this i with the value hi(y0), Alice sends back hi(x), and NBAn(x, (y0, y1)) is
deduced from whether hi(x) = hi(y0) or not.
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Rε(NBA⊗k
n ) ∈ O

(
k + log(k) log log

( 1
ε

))
: The strategy is similar, but the players now

try to find a hash function that solves half the instances every time. Let Alice and
Bob pick log

( 1
ε

)
+ 1 families Hi of k random hash functions hj

i : {0, 1}n → {0, 1}.
For each i, P[#{j : hj

i(y
j
0) 6= hj

i(y
j
1)} ≥ k/2] = 1

2 , so with probability ≥ 1− ε
2 ,

there exists an i such that half of the NBA instances can be solved using the
hash function family Hi. Bob sends this i to Alice, and then the players exchange
hj

i(y0), hj
i(y1) and h(x) for each j ∈ [k]. As this solves at least half of the instances

with high probability, we have:

Rε(NBA⊗k
n ) ≤ Rε/2(NBA⊗k/2

n ) + 3k + log log
(

1
ε

)
+ O(1)

By doing this recursively log(k) times we solve all instances and obtain:

Rε(NBA⊗k
n ) ∈ O

(
k + log(k) log log

(
1
ε

))
As a side note, remark that combining the amortized randomized protocol with

Theorem 1.9 yields an alternative proof of the amortized deterministic protocol. Also
note that the upper bound on Rε(NBA⊗k

n ) is not in contradiction with the direct sum
result of [BBCR13] that says that solving k instances of a function requires essentially√

k times the communication of solving a single instance, as here the word “essentially”
hides dependencies in the error parameter and logarithmic factors.

transcript distribution estimation The Transcript Distribution Estimation
problem introduced earlier (Definition 1.27) consists of the players estimating the
probabilities of ending in each leaf of the protocol tree of a given private coin ran-
domized protocol for some inputs x and y. The derandomization tasks in Section 4.5
solve this problem as an intermediate step. The estimation is done relative to the
total variation distance. If µ is the true probability distribution, estimating µ up to
precision δ means computing a distribution ν such that ∆(µ, ν) ≤ δ.

Lemma 1.39. Let Π be a private coin communication protocol and Tπ its set of possible
transcripts. For any 0 < δ < 1

2 ,

D(TDEΠ,δ) ≤ 2 |Tπ| ·
⌈

log
(

2 |Tπ|
δ

)⌉
.

Proof of Lemma 1.39. Let Π be a communication protocol, and γ = δ
2 |Tπ|−1. Given

(x, y), the players consider the protocol tree of Π:
We will use the notation w<i to refer to the prefix of w of size (i− 1). To each

internal node w, we can assign a probability distribution pw to describe the probability
that the next sent message is 0 or 1 conditioned on the fact that the protocol reached
this node.

To see that this distribution is fully determined by x if the node belongs to
Alice and by y otherwise, consider the set of elements Sw = {((x, rA), (y, rB)) : w ∈
prefix(Π(x, rA, y, rB))}, the set of elements such that executing Π on those elements
leads to the node w, and let us also consider the elements Sw.0 and Sw.1. All three
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ε

0 1

00 1001 11

Figure 7: A tree representing the possible executions of the protocol Π on a given (x, y).

are rectangles, so let us write Sw = Aw × Bw where ((x, rA), (y, rB)) ∈ Sw ⇔ (x, rA) ∈
Aw ∧ (x, rB) ∈ Bw. If w is an Alice node, ∀(x, rA) ∈ Aw : (x, rA) ∈ Aw.0 ⇔ fw(x, rA) =

0. Let Rx,w
A = {rA : (x, rA) ∈ Aw}. On an Alice node pw is formally defined as:

pw(0|x) =
PrA [rA ∈ Rx,w.0

A ]

PrA [rA ∈ Rx,w
A ]

= 1− pw(1|x)

ε

0 1

00 1001 11

p0(1|x)p0(0|x)
p1(0|y) p1(1|y)

pε(1|x)pε(0|x)

A A

B

B B

A

A

p11(1|y)p00(0|x)

Figure 8: The same tree as in Figure 7 with nodes labeled depending on their owners, and the
probability distributions. Note that pw(0|x) + pw(1|x) = 1.

For a leaf of label w, on input (x, y), the probability that an execution of the
protocol ends up in w is:

p(w|x, y) =

 ∏
1≤i≤|w|

w<i∈Alice

pw<i(wi|x)


︸ ︷︷ ︸

α(w|x)

×

 ∏
1≤i≤|w|
w<i∈Bob

pw<i(wi|y)


︸ ︷︷ ︸

β(w|y)

. (1)

For each w ∈ Tπ, Alice has full knowledge of α(w|x) and Bob has full knowledge of
β(w|y). The protocol for TDEΠ,δ just consists of properly exchanging this information.

Step 1. For each w ∈ Tπ, Alice sends the smallest integer dw, 0 ≤ dw <
⌈

1
γ

⌉
such that:

γ · dw ≤ α(w|x) ≤ γ · (dw + 1).
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This is done with communication |Tπ|
⌈

log( 1
γ )
⌉

. Bob then knows an approxima-
tion α′(w|x) := γ · dw of Alice’s α(w|x) for all w such that:

α′(w|x) ≤ α(w|x) ≤ α′(w|x) + γ.

Since β(w|y) ∈ [0, 1] for all w, p′(w|x, y) := α′(w|x)β(w|y) (known to Bob) is
such that:

∀w ∈ Tπ : p′(w|x, y) ≤ p(w|x, y) ≤ p′(w|x, y) + γ.

That is, Bob has an estimation of the true probabilities of p(.|x, y) that never
overestimates the true value and is point-wise γ-close to it.

Step 2. Bob sends back an approximation of p′(.|x, y) to Alice. More precisely, for all w,
he sends d′w, 0 ≤ d′w <

⌈
1
γ

⌉
such that:

γ · d′w ≤ p′(w|x, y) ≤ γ · (d′w + 1).

This again takes communication |Tπ|
⌈

log( 1
γ )
⌉

. Hence an external observer
knows p′′(w|x, y) := γ · d′w for all w, which satisfies:

∀w ∈ Tπ : p′′(w|x, y) ≤ p(w|x, y) ≤ p′′(w|x, y) + 2 · γ.

Let us define C := 1− ∑w p′′(w|x, y) and p′′′(w|x, y) = p′′(w|x, y) + C
|Tπ | for

all w. This p′′′(.|x, y) is a distribution, and a 2 · γ point-wise approximation
of p(.|x, y), and can be computed by an external observer. By our choice of
γ = δ

2 |Tπ|−1, we get the output we want and so:

D(TDEΠ,δ) ≤ 2 |Tπ| ·
⌈

log
(

2 |Tπ|
δ

)⌉
,

which concludes the proof of Lemma 1.39.
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2
T H E PA RT I T I O N B O U N D S A N D I N F O R M AT I O N C O M P L E X I T Y

Many general lower bound techniques used in communication complexity fall into
two categories: combinatorial lower bounds and information-theoretic lower bounds.
The first ones make use of the combinatorial structure of protocols to argue that a
given quantity measured on the communication matrix lower bounds communication
complexity. The partition bounds, stemming from the observation that communication
protocols partition the communication matrix into monochromatic rectangles (Propo-
sition 1.16), fall into this first category. The second ones instead make arguments
along the lines that a communication protocol that reveals c bits of information about
the players’ inputs to an external observer need transcripts at least c bits long, and
therefore try to prove that any protocol solving a specific problem necessarily reveals
information about the players’ inputs.

Most lower bounds known today were proved by a lower bound superseded by
either an information-theoretic lower bound or a partition bound. Some recent results
seem to be out of this classification, in particular results obtained with lifting theorems
(constructing a communication complexity lower bound from a query complexity
lower bound [RM99, GLM+

16, Göö15, GPW18a]) and separation results between
information complexity and communication complexity ([GKR16a, GKR16b]).

In this chapter, we give the definitions of the partition bounds (Section 2.1) and
information bounds (Section 2.3). There are several original contributions in this
chapter: we list the main ones here. First, Proposition 2.18 shows that the weak
partition bound supersedes weak regularity for functions and elimination problems,
situating a recent results on weak discrepancy in the landscape of communication
complexity lower bounds. Second, we show that the partition bounds have a value
at least linear in the number of outputs with non negligible weight with respect to
the input distribution (Theorem 2.23). This theorem, presented in [FLLN20], is an
important motivation for the work presented later in Chapters 4 and 5, as it clearly
shows that the partition bounds only lower bound a specific model of communication
complexity, the one that we presented in Chapter 1 and that we will later call the open
model. The last important results of this chapter are Theorem 2.40 and Corollary 2.41,
which combine a recent result exponentially separating communication complexity
and external information complexity [GKR16a] with a new information-theoretic
characterization of the partition bound [PP16] to give an exponential separation
between communication complexity and the partition bound. This last unpublished
work was done in collaboration with Mathieu Laurière.

2.1 partition bounds

The partition bounds are a family of lower bounds in communication complexity that
exploit the property that communication protocols cover the communication matrix

31
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with partitions of monochromatic rectangles (Proposition 1.16). Introduced in [JK10],
they supersede most rectangle-based lower bounds.

Definition 2.1 (Correctness of a partition). Let g : I → 2Z be a relation, µ a distribution
over I and P a labeled partition. Then the correctness of P is defined as:

corg(P, µ) = P
(x,y)∼µ

[∃(R, z) ∈ P : (x, y) ∈ R ∧ z ∈ g(x, y)]

The distributional communication complexity of a relation g : I → 2Z over a
distribution µ with error ε can be expressed as the following integer program:

Optimization program 2.2 (Distributional communication complexity).

2Dε(g,µ) =min ∑
P

aP · 2CCI (P) (2)

subject to: ∑
P

aP · corg(P, µ) ≥ 1− ε (3)

aP ∈ {0, 1} ∀P ∈ LPprot(Mg) (4)

∑
P∈LPprot(Mg)

aP = 1 (5)

Note that there is a finite number of constraints, as the total number of labeled
partitions of a given matrix is bounded. A very crude upper bound, from bounding
the number of rectangles by 2|X | × 2|Y| and for each rectangle either excluding it from
the partition or assigning it an output, is (|Z|+ 1)2|X |+|Y| . This program, of course, is
a triviality: only one aP variable is set to 1 in any given feasible solution, so it is just
another way to express that we take the minimum over all protocols computing g.

This integer program can be slightly altered to obtain an integer program of lower
optimal value that captures distributional unambiguous nondeterministic communi-
cation complexity, with the following two changes:

• Replace 2CCI (P) by #P.

• Extend the range of P to all partitions, not just those coming from protocols.

That gives us the next linear program:

Optimization program 2.3 (Distributional unambiguous communication complexity).

2Uε(g,µ) =min ∑
P

aP · #P (6)

subject to: ∑
P

aP · corg(P, µ) ≥ 1− ε (7)

aP ∈ {0, 1} ∀P ∈ LP(Mg) (8)

∑
P∈LP(Mg)

aP = 1 (9)

In the remainder of this section we will define the various partition bounds in
their distributional form. For every bound, it is possible to define a non-distributional
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variant by considering the maximum of the distributional version over all distributions,
and this linear program can then be simplified just like the public coin partition bound
could.

The public coin partition bound [JLV14] is simply obtained by removing the integer
constraint:

Optimization program 2.4 (Public coin partition bound [JLV14]).

pprtε(g, µ) =min ∑
P

aP · #P (10)

subject to: ∑
P

aP · corg(P, µ) ≥ 1− ε (11)

aP ≥ 0 ∀P ∈ LP(Mg) (12)

∑
P∈LP(Mg)

aP = 1 (13)

The pprt linear program above is different from the one presented in [JLV14]. To
obtain the original linear program, we simply go through the following steps:

• We introduce a variable wR,z for each possible labeled rectangle.

• We give as weight wR,z of each labeled rectangle the sum of the weights of the
labeled partitions containing (R, z).

• Finally, we express the objective function 10 and the correctness constraint 11

with the rectangle weights wR,z instead of the partition weights aP.

Optimization program 2.5 (Public coin partition bound (equivalent form) [JLV14]).

pprtε(g, µ) =min ∑
R,z

wR,z (14)

subject to: ∑
(x,y)∈I

∑
R,z:

(x,y)∈R
z∈g(x,y)

µx,y · wR,z ≥ 1− ε (15)

wR,z = ∑
P:(R,z)∈P

aP ∀R, z (16)

aP ≥ 0 ∀P ∈ LP(Mg) (17)

∑
P∈LP(Mg)

aP = 1 (18)

In this linear program, we are considering rectangles that are arranged into
partitions. Removing this constraint, we obtain the partition bound. To relax the linear
program in this way, we need to replace constraints 16, 17 and 18 by appropriate
constraints on the variables wR,z.

• The three constraints implicitly implied that wR,z ∈ [0, 1], ∀R, z.

• Constraints 16 and 18 implied that on any given point (x, y), the weights of the
rectangles covering (x, y) sum to 1.
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So, relaxing the pprt linear program by removing the constraints that labeled
rectangles are part of a partition, and keeping constraints on the rectangles with the
previous remarks, we obtain the partition bound [JK10]:

Optimization program 2.6 (Partition bound [JK10]).

prtε(g, µ) =min ∑
R,z

wR,z

subject to: ∑
(x,y)∈I

µxy ∑
R,z:

(x,y)∈R
z∈g(x,y)

wR,z ≥ 1− ε (19)

∑
R,z:

(x,y)∈R

wR,z = 1 ∀x, y (20)

wR,z ≥ 0 ∀R, z (21)

The last relaxations we will consider will be on the weights on the rectangles.
In the above linear program, the weights of the rectangles covering a cell of the
communication matrix add up to 1 (Constraint 20). Two natural relaxations were
considered in [FJK+

16]. The first is to allow those sums to exceed 1, scaling the
correctness constraint (Constraint 19) accordingly. This yields the positive partition
bound. Intuitively, this allows rectangles to overlap on inputs that they correctly
compute. The second relaxation is allow some inputs to be less covered than others,
i.e., allow the quantity in constraint 20 to sum to something less than 1. This gives
the relaxed partition bound. Intuitively, this allows to reduce the weight of the solution
by not answering on low-weighted inputs, in particular low-weighted inputs that
would require many rectangles to get right. Doing both relaxations results in the weak
partition bound.

To obtain those partition bounds simply, we introduce additional dummy variables
to the prt linear program. Obtaining all the partition bounds will then be only a
matter of removing the appropriate constraint(s).

Optimization program 2.7 (Positive partition bound [FJK+
16]).

prt+ε (g, µ) =min ∑
R,z

wR,z

subject to: ∑
R,z

wR,z · µ(R ∩ g−1(z)) ≥ 1− ε + ∑
x,y

µxyψx,y (22)

∑
R,z:

(x,y)∈R

wR,z = 1 + ψx,y ∀x, y (23)

wR,z ≥ 0 ∀R, z (24)

ψx,y ≥ 0 ∀x, y (25)

Optimization program 2.8 (All the partition bounds). Let g be a total relation X ×Y →
2Z , ε ≥ 0 be an error parameter, and µ be a distribution over X× Y. The partition bounds
of g are defined in their primal forms as variations of the following linear program:



2.1 partition bounds 35

prtε(g, µ) =min ∑
R,z

wR,z

subject to: ∑
x,y

µxy ∑
R,z:

(x,y)∈R
z∈g(x,y)

wR,z ≥ 1− ε + ∑
x,y

µxyψx,y (26)

∑
R,z:

(x,y)∈R

wR,z = 1 + ψx,y − cx,y ∀x, y (27)

wR,z ≥ 0 ∀R, z (28)

ψx,y = 0 ∀x, y (29)

cx,y = 0 ∀x, y (30)

Equations 29 and 30 are the constraints that we relax in order to obtain the linear programs
for the bounds prt+, rprt , and wprt. That is:

• The partition bound prt is defined as the above linear program, unchanged.

• The positive partition bound prt+ is defined as the above linear program where
equation 29 is relaxed to ψx,y ≥ 0.

• The relaxed partition bound rprt is defined as the above linear program where
equation 30 is relaxed to cx,y ≥ 0.

• The weak partition bound wprt is defined as the above linear program where both
equations 29 and 30 are relaxed as in the two previous relaxations.

Finally, we will also add the superscript z to any of those linear program to say
that we only count the z-labeled rectangles in the objective function. In particular, we
will use the notation prt+,z

ε in Section 3.1.

Optimization program 2.9 (Single output positive partition bound).

prt+,z′
ε (g, µ) =min ∑

R
wR,z′

subject to: ∑
R,z

wR,zµ(R ∩ g−1(z)) ≥ 1− ε + ∑
x,y

µxyψx,y (31)

∑
z,R:(x,y)∈R

wR,z = 1 + ψx,y ∀x, y (32)

wR,z ≥ 0 ∀R, z (33)

ψx,y ≥ 0 ∀x, y (34)

That prt+ allows for a given input to be covered by rectangles of sum of weights
superior to 1 means that a nondeterministic protocol for a total relation g immediately
yields a feasible solution to prt+ (Proposition 2.10). Note that we need the relation
to be total since prt+ requires input outside the input set to be covered, which we
did not require when defining nondeterministic communication complexity. There
are also simple relations between prt+ and its one-output variant, and the zero-error
version of the linear program is equivalent to the fractional cover number, which has
been shown to be equivalent to Nz( f ) up to a factor of O(log n) [KKN95].
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Proposition 2.10. For f a total function, g a total relation, and any z ∈ Z , we have:

• prt+,z
0 ( f ) ≤ Nz( f ) ≤ prt+,z

0 ( f ) + O(log n), [KKN95]

• prt+0 (g) ≤ N(g).

For any relation g, ε ∈ [0, 1
2 ) and family (εz)z∈Z ∈ [0, 1

2 )
Z such that ∑z∈Z εz = ε we have:

prt+ε (g) ≤ ∑
z∈Z

prt+,z
εz

( f )

Finally, we define the relative partition bound and the weak partition bound.

Optimization program 2.11 (Relative partition bound [FJK+
16]).

rprtε(g, µ) =min ∑
R,z

wR,z

subject to: ∑
R,z

wR,z · µ(R ∩ g−1(z)) ≥ 1− ε (35)

∑
R,z:

(x,y)∈R

wR,z ≤ 1 ∀x, y (36)

wR,z ≥ 0 ∀R, z (37)

Optimization program 2.12 (Weak partition bound [FJK+
16]).

wprtε(g, µ) =min ∑
R,z

wR,z

subject to: ∑
R,z

wR,z · µ(R ∩ g−1(z)) ≥ 1− ε + ∑
x,y

µxyψx,y (38)

∑
R,z:

(x,y)∈R

wR,z ≤ 1 + ψx,y ∀x, y (39)

wR,z ≥ 0 ∀R, z (40)

ψx,y ≥ 0 ∀x, y (41)

Each of the previously seen partition bounds admit a non-distributional variant,
obtained by taking the maximum over all distributions of the distributional version of
the bound.

Definition 2.13 (Non-distributional partition bounds).
prtε(g) = max

µ∈D(I)
prtε(g, µ) prt+ε (g) = max

µ∈D(I)
prt+ε (g, µ)

rprtε(g) = max
µ∈D(I)

rprtε(g, µ) wprtε(g) = max
µ∈D(I)

wprtε(g, µ)

2.2 relation with other bounds and basic properties

In this section, we study where the partition bounds lie in communication complexity.
We first show that the weak partition bound, the weakest of the partition bounds,
supersedes weak regularity, a generalization of discrepancy recently used to prove
lower bounds on elimination problems (Definition 1.31).
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pprtε(., µ)

prtε(., µ)

prt+ε (., µ) rprtε(., µ)

wprtε(., µ)

wregε(., µ)

2Dε(.,µ)

2
√
Dε(.,µ)

Figure 9: Relations between bounds in their distributional versions. A similar diagram appears
in [FJK+

16].

2.2.1 Weak regularity

Weak regularity [CDK+
17] is a relaxation of the notion of regularity [RW89]. Those

notions both measure to what extent all possible outputs of a function are evenly
distributed in large combinatorial rectangles of its communication matrix. Weak
regularity generalizes discrepancy: the two measures coincide on Boolean functions.

Definition 2.14 (Weak regularity [CDK+
17]). Let g be a total function X ×Y → Z and

µ be a distribution over X× Y. The weak regularity of g with respect to µ is defined as:

wreg(g, µ) =min δ

subject to: µ(R ∩ g−1(z)) ≥ 1
|Z| (µ(R)− δ) ∀R, z, (42)

Alternatively:

wreg(g, µ) =max
R,z

µ(R)− |Z|µ(R ∩ g−1(z)) (43)

g is said to be δ-weakly regular with respect to µ for any δ ≥ wreg(g, µ).

Definition 2.15 (Discrepancy). Let f : X ×Y → {0, 1}. Its discrepancy over a distribu-
tion µ is defined as:

disc( f , µ) = min
R

∣∣∣µ (R ∪ f−1(1)
)
− µ

(
R ∪ f−1(0)

)∣∣∣
Proposition 2.16 (Weak regularity generalizes discrepancy). Let f : X ×Y → {0, 1}.
Then:

wreg( f , µ) = disc( f , µ)

Interest for weak regularity came from the fact that this notion is not only a
lower bound on the communication complexity of g, but also of elim ◦ g, its related
elimination problem [BDKW14] (Definition 1.31).
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Proposition 2.17 (Theorem 5 in [CDK+
17]). For g : X ×Y → Z a total function:

Dε(elim ◦ g, µ) ≥ log
(

1− ε · |Z|
wreg(g, µ)

)
We reobtain this result indirectly by proving that a stronger statement, involving

the weak partition bound instead of distributional communication complexity.

Proposition 2.18 (Weak regularity lower bounds the weak partition bound). For
g : X ×Y → Z a total function:

• Dε(g, µ) ≥ wprtε(g, µ) ≥
1−ε· |Z||Z|−1
wreg(g,µ) ,

• Dε(elim ◦ g, µ) ≥ wprtε(elim ◦ g, µ) ≥ 1−ε·|Z|
wreg(g,µ) .

Before proving Proposition 2.18, let us first rewrite the linear program of wprtε,
editing constraint 38 with the following remark:

∑
x,y

µxy ∑
R:(x,y)∈R
z∈g(x,y)

wR,z = ∑
R

∑
x,y∈R

∑
z∈g(x,y)

µx,y · wR,z

= ∑
R,z

∑
x,y∈R∩g−1(z)

µx,y · wR,z

= ∑
R,z

wR,z · µ
(

R ∩ g−1(z)
)

This gives:

Optimization program 2.19 (Weak partition bound [FJK+
16]).

wprtε(g, µ) =min ∑
R,z

wR,z

subject to: ∑
R,z

wR,zµ(R ∩ g−1(z)) ≥ 1− ε + ∑
x,y

µxyψx,y (44)

∑
z,R:(x,y)∈R

wR,z ≤ 1 + ψx,y ∀x, y (45)

wR,z ≥ 0 ∀R, z (46)

ψx,y ≥ 0 ∀x, y (47)

We are now ready to prove Proposition 2.18.

Proof of Proposition 2.18. Both proofs are quite similar, each relying on making weak
regularity appear by rewriting the terms in µ in the linear program. This is done with
the following two equations.

• For g, we use µ
(

R ∩ g−1(z)
)
= µ(R)−∑z′ 6=z µ

(
R ∩ g−1(z′)

)
• For elim ◦ g, we use µ

(
R ∩ (elim ◦ g)−1(z)

)
= µ(R)− µ

(
R ∩ g−1(z)

)
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proof of wprtε(g, µ) ≥
1−ε |Z|

|Z|−1
wreg(g,µ) : Consider an optimal solution of wprtε(g, µ), and

let δ = wreg(g, µ). By constraint 44 we have:

1− ε + ∑
x,y

µx,yψx,y ≤∑
R,z

wR,z · µ
(

R ∩ (g)−1(z)
)

= ∑
R,z

wR,z ·
(

µ(R)− ∑
z′ 6=z

µ
(

R ∩ g−1(z′)
))

≤∑
R,z

wR,z ·
(

µ(R)− |Z| − 1
|Z| (µ(R)− δ)

)
= δ
|Z| − 1
|Z| wprtε(g, µ) +

1
|Z|∑R,z

wR,z · µ(R)

We reorder this to obtain:

wprtε(g, µ)

≥ 1
δ(|Z| − 1)

[
|Z|

(
1− ε + ∑

x,y
µx,yψx,y

)
−∑

R,z
wR,z · µ(R)

]

=
1

δ(|Z| − 1)

[
|Z|

(
1− ε + ∑

x,y
µx,yψx,y

)
−∑

x,y
µx,y ∑

R,z:x,y∈R
wR,z

]

≥ 1
δ(|Z| − 1)

[
|Z|

(
1− ε + ∑

x,y
µx,yψx,y

)
−∑

x,y
µx,y

(
1 + ψx,y

)]
constr. 45

=
1

δ(|Z| − 1)

[
(|Z| − 1)− ε|Z|+ ∑

x,y
µx,y

(
(|Z| − 1)ψx,y

)]

≥
1− ε |Z|

|Z|−1

δ
constr. 47

proof of wprtε(elim ◦ g, µ) ≥ 1−ε|Z|
wreg(g,µ) : Consider an optimal solution of wprtε(elim◦

g, µ), and let δ = wreg(g, µ). By constraint 44 we have:

1− ε + ∑
x,y

µx,yψx,y ≤∑
R,z

wR,z · µ
(

R ∩ (elim ◦ g)−1(z)
)

= ∑
R,z

wR,z ·
(

µ(R)− µ
(

R ∩ g−1(z)
))

≤∑
R,z

wR,z ·
(

µ(R)− 1
|Z| (µ(R)− δ)

)
=

δ

|Z|wprtε(elim ◦ g, µ) +
|Z| − 1
|Z| ∑

R,z
wR,z · µ(R)
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We reorder this to obtain:

wprtε(elim ◦ g, µ) ≥ 1
δ

[
|Z|

(
1− ε + ∑

x,y
µx,yψx,y

)

− (|Z| − 1)∑
R,z

wR,b · µ(R)

]

=
1
δ

[
|Z|

(
1− ε + ∑

x,y
µx,yψx,y

)

− (|Z| − 1)∑
x,y

µx,y ∑
R,z:x,y∈R

wR,z

]

≥ 1
δ

[
|Z|

(
1− ε + ∑

x,y
µx,yψx,y

)

− (|Z| − 1)∑
x,y

µx,y
(
1 + ψx,y

)]
constr. 45

=
1
δ

[
1− ε|Z|+ ∑

x,y
µx,yψx,y

]

≥ 1− ε|Z|
δ

constr. 47

2.2.2 wprt is lower bounded by the number of outputs

In this section we prove that the weak partition bound can not be arbitrarily small
when the distribution µ puts weight on many different elements of Z . We will see in
Chapter 4 that this is proof that the weak partition bound is only a lower bound for a
specific communication model (Definition 1.3) which is not the most natural model to
consider in many communication scenarios. Indeed, in this model the communication
taking place between the players carries has to carry enough information for the
output of the computation to be not only known to the players, but to any external
observer with access to the transcript and public randomness. It is much more natural
in many cases to only ask that both players know the output of the computation,
which can require much less communication for some tasks, as we will show later.

To prove this, we start by introducing the dual of the weak partition bound linear
program. Because the partition bounds are linear programs, there is no duality gap
between their primal and dual forms.
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Optimization program 2.20 (Dual form of the weak partition bound [FJK+
16]). Using

the notation β = ∑x,y βx,y and β(R) = ∑x,y∈R βx,y:

wprtε( f , µ) = max
α≥0, βxy≥0

(1− ε)α− β

subject to: αµ(R ∩ f−1(z))− β(R) ≤ 1 ∀R, z, (48)

αµxy − βxy ≥ 0 ∀(x, y). (49)

Note that the definition we have here is slightly different from the one given by
Fontes et al. [FJK+

16]. The two formulations are equivalent for Boolean functions,
which was the setting considered in that paper.

Proposition 2.21 ([JK10, FJK+
16]). Let 0 < ε < 1/2 and let f : X ×Y → Z be a function.

Then,
log (wprtε( f )) ≤ log (prtε( f )) ≤ Rε( f ).

The right-hand side is from [JK10] and the left-hand side from [FJK+16].

We then introduce the notion of ε-minimum set of outputs with respect to a
distribution µ. Let us abuse notation and write µ(z) for µ( f−1(z)) when there is no
need to specify which f we are implicitly referring to.

Definition 2.22. Let Z be the set of outputs of a function f : X ×Y → Z .
Let us further consider that Z = {z1, z2, . . . , zn} is sorted with respect to µ, that is:

i ≤ j⇒ µ (zi) ≥ µ
(
zj
)

.

Then ξε( f , µ) is defined as:

ξε( f , µ) = min

{
k
∣∣∣ k

∑
i=1

µ (zi) ≥ 1− ε

}
.

Theorem 2.23 ([FLLN20]). Let 0 < ε < 1/2, let f : X × Y → Z be a function and
let µ be a distribution over X ×Y . Then,

ξε( f , µ)− 1 ≤ wprtε( f , µ).

By applying Theorem 2.23 with a distribution µ such that for all z ∈ Z , µ( f−1(z)) =
1
|Z| , we see immediately that the worst-case randomized communication complexity
of a function is at least linear in its number of outputs (Corollary 2.24).

Corollary 2.24 ([FLLN20]). Let 0 < ε < 1/2, let f : X ×Y → Z be a function such
that ∀z ∈ Z , ∃(x, y) : f (x, y) = z. Then,

Rε( f ) ≥ log ((1− ε)|Z| − 1) .
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Proof of Theorem 2.23. Sort the set of outputs with respect to µ (i.e., z1 ≤ z2 ≤ . . . ≤ zn)
and set zmin = zξε( f ,µ). Consider the following assignment of variables:

α =
1

µ(zmin)
, βxy = max

(
0, µxy

(
α− 1

µ( f (x, y))

))
.

Then the first constraint of wprtε( f , µ) is satisfied because, for all R, z:

α · µ(R ∩ f−1(z))− β(R)

≤ α · µ(R ∩ f−1(z))− β(R ∩ f−1(z))

=

 α · µ(R ∩ f−1(z)) ≤ αµ(z) = µ(z)
µ(zmin)

≤ 1 when µ(z) ≤ µ(zmin) (and so β = 0)
µ(R∩ f−1(z))

µ(z) ≤ µ(z)
µ(z) = 1 otherwise.

The second constraint is satisfied as well:

∀x, y : αµxy − βxy = αµxy −max
(

0, µxy

(
α− 1

µ(zxy)

))
≥ 0.

And the value of this feasible solution is:

(1− ε)α− β = (1− ε)
1

µ(zmin)
− ∑

z:z=zi , i<ξε( f ,µ)
β(zi)

=

1− ε− ∑
z:z=zi , i<ξε( f ,µ)

µ(zi)

 1
µ(zmin)

+ ξε( f , µ)− 1

≥ ξε( f , µ)− 1.

2.3 information-theoretic bounds

Another family of lower bounds that have been used in communication complexity are
lower bounds based on information. Such bounds measure the mutual information
between the transcript of a protocol and the inputs and use it as lower bound for
communication.

The main result of this section is Theorem 2.40 and Corollary2.41, which show
that there exists a task for which there is an exponential gap between the partition
bound and communication complexity. Those results are obtained through the
combination of an information-theoretic characterization of the partition bound [PP16]
and a communication task proved to have a communication complexity exponentially
bigger than its external information complexity [GKR16a]. This separation is new and
contributes to our understanding of the limits of the partition bound.

Most definitions and proofs of the propositions about internal and external infor-
mation complexity may be found in [Bra17], while results concerning Rényi informa-
tion complexity may be found in [PP16].

Definition 2.25 (Entropy and mutual information). Let A be a random variable over a
universe A with probabilities pA(a) = P[A = a]. The entropy of A is defined as:
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H(A) = − ∑
a∈A

pA(a) log(pA(a))

Let B be another random variable and AB the combined random variable with probabilities
pAB(ab) = P[A = a ∧ B = b]. The mutual information between two random variables A
and B:

I(A : B) = H(A) + H(B)−H(AB)

We will also use the notation H(x) for x a number, x ∈ [0, 1], meaning H(x) =
−x log(x) − (1− x) log(1− x) = H(X) where X is the random variable such that
P[X = 1] = x and P[X = 0] = 1− x.

Definition 2.26 (External Information Cost of a protocol [Bra17]). Let µ be a distribution
over X ×Y , X and Y be the two random variables such that P[X = x, Y = y] = µx,y, R be
the random variable of the public randomness and Π be a protocol using as inputs X,Y,R and
the private randomnesses RA and RB. Then the external information cost of Π over µ is
defined as:

ICext(Π, µ) = I(Π : X, Y | R)

Definition 2.27 (Internal Information Cost of a protocol [BYJKS04, BBCR13]). Let µ be
a distribution over X × Y , X and Y be the two random variables such that P[X = x, Y =

y] = µx,y, R be the random variable of the public randomness and Π be a protocol using as
inputs X,Y,R and the private randomnesses RA and RB. Then the internal information cost
of Π over µ is defined as:

ICint(Π, µ) = I(Π : Y | X, RA, R) + I(Π : X | Y, RB, R)

Note that I(Π : X, Y | R) = I(Π, R : X, Y) and I(Π : Y | X, RA, R) + I(Π : X |
Y, RB, R) = I(Π, R : Y | X, RA) + I(Π, R : X | Y, RB), so the literature studying
information complexity frequently includes the public randomness in the transcript.

Definition 2.28 (Information Costs of a relation). The external information cost of a
relation f over µ with error ε is the minimum external information cost of a protocol Π that
computes f over µ with error at most ε. The internal information cost of a relation is defined
similarly.

ICext
ε ( f , µ) = min

Π computing f with error ε
ICext(Π, µ)

ICint
ε ( f , µ) = min

Π computing f with error ε
ICint(Π, µ)

When Π is only allowed to use public coin, we obtain the public coin external and internal
information costs ICext, pub

ε ( f , µ) and ICint, pub
ε ( f , µ).

Intuitively, the external information cost measures the amount of information
leaked to an external observer by the players when they run the protocol Π, while
the internal information cost measures the amount of information the players leak to
each other.
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Proposition 2.29 (External information is above internal information [Bra17]). For any
protocol Π and any distribution µ:

ICint(Π, µ) ≤ ICext(Π, µ)

Proposition 2.30. For any relation f , distribution µ and 0 ≤ ε < 1
2 :

ICint
ε ( f , µ) ≤ ICext

ε ( f , µ) ≤ Dε( f , µ)

Proposition 2.29 is not necessarily true when the random variable Π is not the
transcript of a protocol run on inputs X and Y.

In [PP16] is was shown that the partition bound has an information-theoretic
interpretation in terms of min-entropy, or Rényi entropy of order ∞. We recall their
definitions and their result.

Definition 2.31 (Rényi information complexity). Let A and B be random variables over
universes A and B. Let pB|A(b|a) =

P[A=a∧B=b]
P[A=a] . The Rényi mutual information between A

and B is:

I∞(A : B) = log

(
∑
b∈B

max
a∈A

pB|A(b|a)
)

Definition 2.32 (Rényi Information Cost [PP16]). The Rényi information cost of a relation
f over µ with error ε is the minimum external information cost of a protocol Π that computes
f over µ with error at most ε.

IC∞
ε ( f , µ) = min

Π computing f with error ε
I∞(X, Y : Π, R)

We saw previously with Proposition 1.18 that communication protocols induce
partitions of the communication matrix. A way to specify a set of rectangles P is
to use two functions α : P × X → {0, 1} and β : P × Y → {0, 1}, such that for all
R ∈ P , (x, y) ∈ R ⇔ α(R, x) · β(R, y) = 1. We refer to this kind of structure as the
factorization property of communication protocols (Proposition 2.33).

Proposition 2.33 (Factorization property of protocols). Let Πdet, Πpriv and Πpub re-
spectively be a deterministic, a private coin and a public coin protocol. Then there exists
functions:

• αΠdet : TΠdet ×X → {0, 1} and βΠdet : TΠdet ×Y → {0, 1}:

∀t ∈ TΠdet : P[Πdet(x, y) = t] = αΠdet(t, x) · βΠdet(t, y)

• αΠpriv : TΠpriv ×X → [0, 1] and βΠpriv : TΠpriv ×Y → [0, 1]:

∀t ∈ TΠpriv : P[Πpriv(x, y) = t] = αΠpriv(t, x) · βΠpriv(t, y)

• αΠpub : TΠpub ×X ×R → {0, 1}, βΠpub : TΠpub ×Y ×R → {0, 1} and γΠpub : R →
[0, 1], ∑r∈R γ(r) = 1:

∀t ∈ TΠpub : P[Πpub(x, y) = t] = ∑
r∈R

αΠpub(t, x, r) · βΠpub(t, y, r) · γΠpub(r)
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The observation that communication protocols factorize was already used in the
proof of Lemma 1.39: Equation 1 shows the factorization property.

Definition 2.34 (Pseudotranscript). A pseudotranscript is a random variable Q on an
universe Q jointly distributed with inputs X,Y such that its probabilities pQ|X,Y(q|x, y) =
P[Q=q∧X=x∧Y=y]

P[X=x∧Y=y] satisfy:

pQ|X,Y(q|x, y) = α(q, x) · β(q, y)

for some α : Q×X → R+ and β : Q×Y → R+.

In particular, the transcript of a deterministic or private coin protocol is a pseudo-
transcript. The transcript of a public coin protocol concatenated with the public coins
is also a pseudotranscript.

An pseudo-transcript is said to compute a relation in the same way that a protocol
was defined to compute a relation g : X ×Y → Z in Definition 1.3: if there exists a
mapping O : Q → Z such that P[O(Q) ∈ g(X, Y)] ≥ 1− ε.

The internal, external and Rényi information costs of a pseudotranscripts are
defined just like the information costs of protocols, and the pseudoinformation costs
of a relation are defined just like the information costs of a relation.

Definition 2.35 (Information Costs of a pseudotranscript). Let µ be a distribution over
X ×Y , X and Y be the two random variables such that P[X = x, Y = y] = µx,y, (R, RA, RB)

be the random variables of the public and private randomnesses and Q be a pseudotranscript
relative to inputs X,Y. Then the external, internal and Rényi information costs of Q over µ

are defined as:

ICext(Q, µ) = I(Q, R : X, Y)

ICint(Q, µ) = I(Q, R : Y | X, RA) + I(Q, R : X | Y, RB)

IC∞(Q, µ) = I∞(X, Y : Q, R)

Definition 2.36 (Pseudoinformation Costs of a relation). The external information cost
of a relation f over µ with error ε is the minimum external information cost of a protocol Π
that computes f over µ with error at most ε. The internal information cost of a relation is
defined similarly.

pICext
ε ( f , µ) = min

Q computing f with error ε
ICext(Q, µ)

pICint
ε ( f , µ) = min

Q computing f with error ε
ICint(Q, µ)

pIC∞
ε ( f , µ) = min

Q computing f with error ε
IC∞(Q, µ)

A key result in [PP16] is that the partition bound is equal to pseudo Rényi
information cost.

Theorem 2.37 (Theorem 3 in [PP16]). For any relation f : X ×Y → 2Z and ε ∈ [0, 1/2):

pIC∞
ε ( f , µ) = log prtε( f , µ)
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This means, in particular, that IC∞
ε ( f ) ≥ log prtε( f ). We now show that there ex-

ists a relation f for which IC∞
ε ( f )� Rε( f ), and therefore prtε( f )� Rε( f ). The rela-

tion in question was shown to have low external information complexity in [GKR16a],
and we show that their proof also shows that the relation has low Rényi information
cost.

Definition 2.38 (Hidden Layers game [GKR16a]). Let us consider a depth h tree (with
h + 1 layers indexed from 0 to h) of arity w. For any i ∈ {0, . . . , h}, let Vi be the sets of
vertices at depth i in the tree and when i < h, let Ei be the set of edges from the ith layer to the
(i + 1)th layer.

Inputs of Alice and Bob are of the form (i, S) where i ∈ {0, . . . , h− 1}, and S ⊆ Ei is
such that ∀v ∈ Vi, ∃!v ∈ Vi+1, (u, v) ∈ S. Alice’s inputs are such that i ≡ 0(2), Bob’s inputs
are such that i ≡ 1(2).

Consider Vh, the wh-sized set of leaves of the tree. For any v ∈ Vh and i ∈ {0 . . . h}, let
vi ∈ Vi be the unique predecessor of v in the ith layer. On a given pair of inputs (a, S) and
(b, T), the set of admissible outputs is:

HLh,w((a, S), (b, T)) = {v ∈ Vh : va ∈ S ∧ vb ∈ T}

b

a S:

T: b

a S:

T:

Figure 10: In the Hidden Layers game, the players may output any path that is consistent
with constraints imposed on two layers.

In other words, Alice and Bob each receive the index of a layer of a tree, and for
every vertex in their layer they receive a downgoing edge. The goal of Alice and Bob
is to output a leaf such that the path from root to that leaf goes through an edge
received by Alice on her layer, and through an edge received by Bob on his layer. On
any given pair of inputs, the number of correct outputs is wh−2 out of wh leaves.

Theorem 2.39 ([GKR16a]). For any k ∈ N, let hk = 22(4k·28k)
and wk = 24k, and consider

HLk = HLhk ,wk . Then there exists a distribution µ such that:

D1/4(HLk, µ) ∈ Ω(8k)

While at the same time:

ICext
0 (HLk) ∈ O(k)
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The protocol that achieves the low information uses hk bits of communication, a triple
exponential in k.

Theorem 2.39 implies that there exists no compression to information scheme that
can compress a protocol of external information I and communication C to a protocol
of communication poly(I)(log log C)o(1), since such a scheme applied to the protocol
that solves HLk with low external information cost would contradict the communica-
tion lower bound for this problem. Since then, it was proved in [BK18] that there exists
a compression scheme that only uses an expected number of O(I3 log(I) log log(C))
bits of communication, with is tight up to polynomial factors by the previous theorem.

It turns that the protocol of [GKR16a] that achieves a low external information
cost for this problem also achieves a low Rényi information cost, which provides
us with – to our knowledge – the first exponential separation between the partition
bound and communication complexity. Also note that such a separation is known
to be impossible for distributional communication complexity when dealing with
product distributions by quadratic tightness of the partition bound for such distribu-
tions [HJR16]. Product distributions also prohibit exponential separations between
information and communication [Kol16].

Theorem 2.40 (Hidden Layer has small Rényi information complexity.). For any
ε ∈ [0, 1

2 ),
IC∞

0 (HLk) ∈ O(k)

Corollary 2.41 (Exponential gap between communication complexity and the
partition bound.). For any ε ∈ [0, 1

2 ),

log prt0(HLk) ≤ IC∞
0 (HLk) ∈ O(k) while Rε(HLk) ∈ Ω(2k)

Proof. That the Hidden Layer problem requires Ω(2k) bits of communication is proved
in [GKR16a]. More precisely, they show that there exists a distribution µ such that
any protocol using at most 2k bits of communication makes at least 1

2 − 2−k error on
its distribution. Let us now prove that IC∞

0 (HLk) ∈ O(k).
Let Alice and Bob, on inputs (a, S) and (b, T), follow a path from the root to a

leaf, with choices on even layers left to Alice, and choices on odd layers left to Bob.
In an even layer different from a, Alice just picks a random child from the current
node (out of the wk possible ones), while on layer a she picks the child node which
forms an edge of S with the current node. Similarly, Bob picks a random child from
the current node at any odd layer different from b, and follows the edge of T that
starts from the current node on layer b. In total, the players exchange hk log(wk) bits
of communication.

On any pair of inputs (a, S) and (b, T), the players end up outputting an uniformly
random leaf node from a set of whk−2

k leaves. When not restricting ourselves to a
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specific pair of inputs, the total number of possible transcripts is whk
k (in this game,

the number of outputs and the number of transcripts is the same). Which gives:

I∞(X, Y : TΠ, R) = log

(
∑

t∈TΠ

w−(hk−2)
k

)
= log(whk

k · w
−(hk−2)
k ) = log(w2

k) = 8k

Therefore there exists a relation g for which prt0(g)� R1/4(g). This is, as far as
we know, the first exponential gap between randomized communication complexity
and the partition bound. It is quite interesting that this separation is even achieved
with the zero-error partition bound. Obtaining a similar non-distributional exponential
separation with a function (whether for prt0, IC∞ or ICext) remains open. As a
reasonable candidate, we can consider the following modification to the Hidden
Layers game:

Definition 2.42 (Boolean Hidden Layers game). Let HLh,w be the standard Hidden Layers
game of Definition 2.38. For any (a, b) ∈ {0, . . . , h− 1}2, S ⊆ Va, T ⊆ Vb, x ∈ {0, 1}Vh

and y ∈ {0, 1}Vh , (a, S, x) and (b, T, y) are a pair of valid inputs for the Boolean Hidden
Layers game HLbool

h,w iff:

• (a, S) and (b, T) are a pair of valid inputs for the original Hidden Layers game HLh,w.

• There exists z ∈ {0, 1} such that for every v ∈ HLh,w((a, S), (b, T)), xv ⊕ yv = z.

We conjecture that this game is essentially as hard as the original Hidden Layers
game, which would give an exponential separation between communication and
information complexity for a partial Boolean function. This idea to label the edges of
the leaves of the Hidden Layers game is similar to how the leaves of another game
(the Bursting Noise function) are labeled in [GKR16b], in which the authors show an
exponential separation between internal information complexity and communication
for a partial Boolean function. Note that this conjecture and the result of [GKR16b]
both concern partial functions: it may be that total functions do not admit such
separation results, and admit stronger compression to information schemes.



3
C O M P R E S S I O N A N D R E L AT I O N S A M O N G C O M P L E X I T Y
M E A S U R E

We saw in Section 1.5 examples of results consisting of making a protocol from a
lower bound. Examples in this section constructed a deterministic protocol from
rectangles covers (nondeterministic protocols) or partitions (unambiguous protocols).
Results of this type are useful in that they help us understand the relative strength of
communication complexity lower bounds.

In this chapter, we prove theorems analogous to the results we saw in Section 1.5
upper bounding deterministic communication complexity by nondeterministic com-
munication complexity (Theorem 1.28) and by unambiguous communication com-
plexity (Theorem 1.29). Theorem 3.1 relates deterministic communication complexity
to the zero-error positive partition bound and nondeterministic communication com-
plexity. This allows us to better understand how we could extend our previous result
of Corollary 2.41: while an exponential separation between log prt0 and Rε is possible
for a relation of very large output, Theorem 3.1 shows that such a separation is only
possible for a Boolean function with nondeterministic communication complexity
much larger than log prt+0 . Meanwhile, Theorem 3.4 and Corollary 3.5 relate distri-
butional and randomized communication complexity to public coin external pseudo
information complexity, a compression result for pICext,pub.

3.1 a deterministic protocol from prt+0

In this section, we show that we can devise a protocol for a Boolean function from a
feasible solution to its prt+0 linear program. The theorem is an improvement of the
result of Aho, Ullman, and Yannakakis (Theorem 1.28).

Theorem 3.1. For f a Boolean function:

D( f ) ≤
(

log prt+,0
0 ( f ) + 1

) (
N1( f ) + 2

)
Recall that prt+,z

ε ( f ) is the lowest weight of the z-monochromatic rectangles in any
feasible solution of the prt+ε ( f ) linear program (Definition 2.9). The same theorem
holds with the roles of the 0 and 1 outputs reversed.

Using Proposition 2.10 to upper bound N1( f ) by log prt+,1
ε ( f )+O(log n) [KKN95],

Theorem 3.1 yields as corollary an upper bound on D( f ) that only involves prt+,0
0 ( f ),

prt+,1
0 ( f ), and the size of the input, demonstrating that truly large gaps between

the zero-error positive partition bound and deterministic complexity may only be
achieved if the partition bounds have values that are sublogarithmic in the size of the
input – as is the case for the Hidden Layers game (Definition 2.38) – or considering a
task f that is not a total Boolean function. function.
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Corollary 3.2. For f a Boolean function:

D( f ) ≤
(

log prt+,0
0 ( f ) + 1

) (
log prt+,1

0 ( f ) + O(log n)
)

The proof of Theorem 3.1 is similar to that of Theorem 1.28. The idea of their
proof is to start from a set of 0-monochromatic rectangles covering all the 0-inputs,
and reduce this set until it is either empty or we know that (x, y) is covered by this
set. Important in this proof is the fact that two non-overlapping rectangles (such as
two monochromatic rectangles of different colors) may share some rows or columns
but not both, as this would imply some overlap. Therefore, for any rectangle R0, any
rectangle R1 that does not overlap with R0 falls into one of three categories: it either
shares a row with R0, shares a column with R0, or shares neither a row nor a column.

Proof. For any set of rectangles S and rectangle R = X×Y that does not overlap with
the rectangles of S , let us define:

• S∩row(R) = {A× B ∈ S|A ∩ X 6= ∅}, the set of rectangles of S that share a row
with R.

• S∩col(R) = {A × B ∈ S|B ∩ Y 6= ∅}, the set of rectangles of S that share a
column with R.

• Snone = S \ (S∩row(R) ∪ S∩col(R)), the set of rectangles of S that share neither a
row nor a column with R.

If S and R do not overlap, S∩row(R) ∩ S∩col(R) = ∅ and therefore S = S∩row(R) t
S∩col(R) t Snone. For a set of rectangles S and a weight assignment w (as in a partition
bound), let us denote by w(S) is the sum of the weight of each rectangle in S . The
algorithm to compute f (x, y) works as follows:

initialization : Let S1 be an optimal cover of the 1-inputs, w an optimal solution
of prt+,0

0 ( f ), and S0 = {R : w0,R > 0} the set of 0-monochromatic rectangles
with positive weights in w.

search : 1. If there exists R = X × Y ∈ S1 such that x ∈ X and w(S0∩row(R)) ≤
w(S0)/2, Alice sends 1 followed by the index of R in S1 to Bob and they
update S0 by S0∩row(R). Otherwise she sends a 0.

2. If Alice sent a 0, and if there exists R = X × Y ∈ S1 such that y ∈ Y and
w(S0∩col(R)) ≤ w(S0)/2, Bob sends 1 followed by the index of R in S1 to
Alice and they update S0 by S0∩col(R). Otherwise he sends a 0.

3. If they both sent a 0, they go to the conclusion.

4. If one of them sent a 1 with the index of a rectangle R ∈ S1, they compute
the new value of w(S0). If it is greater than 1, the players go through
another turn of Search, otherwise they go to the conclusion.

conclusion : If w(S0) ≥ 1, f (x, y) is decided to be 0, otherwise it is decided to
be 1.
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This protocol works because:

• If f (x, y) = 0, then there exists a set of rectangles R0 ⊆ S0 such that (x, y) ∈
R0, ∀R0 ∈ R0 and w(R0) ≥ 1 that will never be deleted by successive updates
to S0. Therefore, in this case, the weight of S0 can never go below 1.

• If f (x, y) = 1, there exists a rectangle R1 ∈ S1 such that (x, y) ∈ R1. Therefore,
one of the players always finds a rectangle R such that x ∈ rows(R) and
w(S0∩row(R)) ≤ w(S0)/2 or y ∈ cols(R) and w(S0∩col(R)) ≤ w(S0)/2 since R1

satisfies all the necessary conditions.

As the weight of S0 is divided by at least 2 in each iteration, and the players
send the index of a rectangle in an optimal 1-cover of size C1( f ) ≤ 2N1( f ), the
communication complexity of the whole protocol is upper bounded by:(

log
(

prt+,0
0 ( f )

)
+ 1
) (

N1( f ) + 2
)

3.2 compression from pICext,pub
ε

We now turn to an upper bound on randomized communication complexity from
public coin external pseudo information complexity. This result is similar to a result
of Yannakakis [Yan91], Theorem 1.29. It also looks similar to a classical result of
communication complexity that public coin external information complexity is of the
same order than communication complexity.

Theorem 3.3 (In essence, Theorem 2.9 in [DW07]).

Rε( f ) ∈ O
(

ICext, pub
ε ( f )

)
The proof of Theorem 3.4 is different from that of Theorem 3.3 in that it does not

rely on the tree structure of a protocol in the proof, and only uses the property of
non-overlapping rectangle covers as in the proof of Theorem 1.29. In the proof of this
last theorem, a partition of 2C rectangles is transformed into a deterministic protocol
of O(C2) communication.

Theorem 3.4. ∀ f : X× Y→ Z, ε < ε′ < 1/2, µ a distribution over X× Y, we have:

Dε′( f , µ) ∈ O
(

1
(ε′ − ε)2 pICext,pub

ε ( f , µ)2
)

pICext,pub( f , µ) is the external, public-coin pseudo-information cost of f over
distribution µ.

Corollary 3.5.
Rε( f ) ∈ O

(
pICext,pub

ε ( f )2
)
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Proof. From Theorem 3.4, we take the max over µ and apply Yao min-max theorem as
well as Braverman’s maxµ IC( f , µ) = Θ(IC( f )) result (Theorem 3.5 in [Bra17]). Then
use amplification.

This bound comes from an actual protocol for f that communicates at most
O(pICext,pub

ε ( f , µ)2) bits.

lemmas

Lemma 3.6. Let p a distribution and ξ ≤ δ be such that elements of small probability (≤ ξ)
represent a non-negligible share of all outcomes (≥ δ):

∑
x∈X:p(x)≤ξ

p(x) ≥ δ

Then:
H(p) = − ∑

x∈X
p(x) log p(x) ≥ δ log(1/ξ)

Proof.

H(p) = ∑
x∈X

p(x) log(1/p(x))

≥ ∑
x∈X:p(x)≤ξ

p(x) log(1/p(x))

≥ ∑
x∈X:p(x)≤ξ

p(x) log(1/ξ)

≥ δ log(1/ξ)

Let us now express pICext,pub
ε ( f , µ) as a linear program using our definition of

correctness of a partition (Definition 2.1)
The following lemma is a simple rewriting of the linear program for pICext,pub

ε ( f , µ)

that we can find in [FLL16]. .

Lemma 3.7. Let f : X× Y → Z be a total function, µ be a distribution over X× Y, and
ε ∈ [0, 1/2). Then we have, with P ranging over LP ,

pICext,pub
ε ( f , µ) =min

aP≥0
∑

P∈LP
aP · H(P, µ)

subject to: ∑
P∈LP

aP · cor f (P, µ) ≥ 1− ε, (50)

∑
P∈LP

aP = 1. (51)

Proof. The above linear program is entirely similar to the one in [FLL16] expect
equation 50 which is written as:

∑
(x,y)

µx,y ∑
P3(RP

x,y, f (x,y))
aP ≥ 1− ε

The two formulations are equivalent, as the following lines show:
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∑
(x,y)

µx,y ∑
P3(RP

x,y, f (x,y))
aP = ∑

(x,y)
µx,y ∑

P∈LP
∑

(R,z)∈P
1{(x,y)∈R∧ f (x,y)=z} · aP

= ∑
P∈LP

aP ∑
(R,z)∈P

∑
(x,y)

1{(x,y)∈R∧z= f (x,y)} · µx,y

= ∑
P∈LP

aP ∑
(R,z)∈P

µ(R ∩ f−1(z))

= ∑
P∈LP

aP · cor f (P, µ)

Finally, we use a simple Markov type argument:

Lemma 3.8. For all ε > 1/2, f , µ and γ ≤ 1− ε, there exists a partition P ∈ LP such that

H(P, µ) ≤ pICext,pub
ε ( f ,µ)

γ and cor f (P, µ) = ∑(R,z)∈P µ(R ∩ f−1(z)) ≥ 1− ε
1−γ

Proof. Consider a feasible solution to pICext,pub
ε ( f , µ), that is, a set of coefficients

(aP)P∈LP such that pICext,pub
ε ( f , µ) = ∑P∈LP aP · H(P, µ) (the min is attained because

the set of possible coefficients is a compact set).

Let Pγ = {P ∈ LP : H(P, µ) ≤ pICext,pub
ε ( f ,µ)

γ } and P̄γ = {P ∈ LP : H(P, µ) >

pICext,pub
ε ( f ,µ)

γ }
Then ∑P∈P̄γ

aP ≤ γ.
From the correctness constraint of the LP (equation 50) we have:

∑
P∈LP

aPcor f (P, µ) ≥ 1− ε

Therefore ∑
P∈Pγ

aP · cor f (P, µ) ≥ 1− ε− ∑
P∈P̄γ

aP · cor f (P, µ) ≥ 1− ε− ∑
P∈P̄γ

aP

hence ∑
P∈Pγ

aP

1−∑P∈P̄γ
aP

cor f (P, µ) ≥
1− ε−∑P∈P̄γ

aP

1−∑P∈P̄γ
aP

= 1− ε

1−∑P∈P̄γ
aP

Finally, taking a′P = aP
1−∑P∈P̄γ aP

and using ∑P∈P̄γ
aP ≤ γ, we have:

∑
P∈Pγ

a′P · cor f (P, µ) ≥ 1− ε

1− γ

Thus by Markov there exists P such that H(P, µ) ≤ pICext,pub
ε ( f ,µ)

γ and cor f (P, µ) ≥
1− ε

1−γ .

Remark 3.9. To get some intuition on this bound, let us remark that this is better than
additively reducing the correctness by γ. That is:

1− ε

1− γ
= 1− ε− γ

ε

1− γ
≥ 1− ε− γ because γ ≤ 1− ε
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To prove Theorem 3.4, we first prove a slightly more general result, which we will
then be able to aptly apply using the three lemmas of section 3.2. More precisely, for
any measure on a partition, we will give a communication protocol to find in which
rectangle the players’ input is, for most rectangles, in a complexity that depends on
the measure. The protocol finds the rectangle in which the players’ input is if said
rectangle has large enough measure, and the threshold for this procedure determines
its communication cost.

Theorem 3.10. Let P be a partial partition, and ν a strictly positive measure over P. Consider
νmin = minR∈P ν(R). Then given (x, y) ∈ X×Y, there exists a deterministic communication
protocol Π for Alice and Bob such that:

1. if ∃R ∈ P : (x, y) ∈ P, then Π(x, y) = R

2. if (x, y) /∈ ⋃R∈P R, then Π(x, y) = ⊥

3. CC(Π) ≤
⌊

log ν(P)
νmin

⌋
·
(⌈

log ν(P)
νmin

⌉
+ 3
)
+ 2 ∈ O

(
log2 ν(P)

νmin

)
Proof. For a given rectangle R, we note R = RX × RY.

Take U0 = P and consider the following protocol (that starts with i = 0):

1. While Ui contains more than one rectangle:

(a) If there exists R ∈ Ui such that x ∈ RX and ν(LR) ≤ ν(Ui\{R})
2 where

LR = {R′ ∈ Ui \ {R}|∃x′ ∈ R′X ∩ RX} (the rectangles sharing a line with
R, except R), then Alice sends “YES” and the name of the rectangle (for
dlog |Ui|e+ 1 bits in total). Otherwise, Alice sends “NO” (1 bit).

(b) If Alice sent “NO”, Bob looks for R ∈ Ui such that y ∈ RY and ν(CR) ≤
ν(Ui\{R})

2 where CR = {R′ ∈ Ui \ {R}|∃y′ ∈ R′Y∩RY} (the rectangles sharing
a column with R, except R), in which case Bob sends “YES” and the name
of R. Otherwise Bob sends “NO”.

(c) If they both sent “NO”, the (x, y) pair they received is not in Ui, and
therefore not in P. In this case they abort the protocol and output ⊥.

(d) If Alice (resp. Bob) sent “YES” and the name of a rectangle R, then Bob
(resp. Alice) sends “YES” if y ∈ RY (resp. x ∈ RX) and “NO” otherwise.

i. If a “YES” was sent in this last step, Alice and Bob know that (x, y) ∈ R
so the protocol can stop and they output R.

ii. Otherwise, if Alice (resp. Bob) originally sent the rectangle R, then we
do the updates Ui+1 ← LR (resp. CR) and i← i + 1.

2. Now Ui is either empty or only contains one rectangle R. If Ui is empty, the
players output ⊥. Otherwise, Alice and Bob send 1 bit each to indicate whether
x ∈ RX and y ∈ RY. If both send “YES”, the players output ⊥, otherwise they
output R.

Since ν(Ui) is divided by at least 2 for each execution of the loop, that ν(U0) = ν(P)
and that the final Ui contains at least one rectangle of weight ≥ νmin, the total number
of loop executions is at most

⌊
log ν(P)

νmin

⌋
.
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Also, there are no more than ν(P)
νmin

rectangles, so they can be described as
⌈

log ν(P)
νmin

⌉
bits. This means each loop takes at most

(⌈
log ν(P)

νmin

⌉
+ 3
)

bits.

To prove Theorem 3.4 is now mostly a matter of applying Theorem 3.10 to the
right partial partition with the right measure.

Proof. Let us make the setting for the protocol:

• Consider a partition P and δ, ξ such that H(P, µ) ≤ pICext,pub
ε ( f ,µ)

γ ≤ δ log(1/ξ)

and cor f (P, µ) ≥ 1− ε
1−γ .

• Take Pξ = {(R, z) ∈ P|µ(R) ≥ ξ} and P̄ξ = {(R, z) ∈ P|µ(R) < ξ}. By
lemma 3.6, µ(Pξ) ≥ 1− δ.

As we receive a pair of inputs (x, y) ∼ µ, we apply Theorem 3.10 with the partial
partition Pξ and measure µ. If the protocol from Theorem 3.10 ends with a rectangle
R, we simply output z the label such that (R, z) ∈ P. If it ends in ⊥, we output a
random z ∈ Z .

Let us denote by Π this protocol. The probability it computes f correctly is:

Pµ[Π(x, y) = f (x, y)] ≥ P[(x, y) ∈ Pξ ] ·P[Π(x, y) = f (x, y)|(x, y) ∈ Pξ ]

= cor f (Pξ , µ)

= cor f (P, µ)− cor f (P̄ξ , µ)

≥ 1− ε

1− γ
− δ

Its communication is:

CC(Π) ≤
⌊

log
1
ξ

⌋
·
(⌈

log
1
ξ

⌉
+ 3
)
+ 2 ∈ O

(
log2 1

ξ

)
We only need to set the right parameters. We set:

δ = γ =
∆
2
<

1− ε

4
, ξ = 2−

4pIC
ext,pub
ε ( f ,µ)

∆2 .

Then the error of the protocol is ε′ ≤ 1− (1− ε
1−γ − δ) ≤ ε + γ + δ = ε + ∆ <

1
4 +

ε
2 .

The constraint γ ≥ pICext,pub
ε ( f ,µ)

δ log(1/ξ)
is satisfied:

pICext,pub
ε ( f , µ)

δ log(1/ξ)
=

pICext,pub
ε ( f , µ) · ∆2

∆
2 · 4pICext,pub

ε ( f , µ)

=
∆
2
= γ

Put together, this yields:

Dε′( f , µ) ≤ 256
(1− ε)4 pICext,pub

ε ( f , µ)2 +
64

(1− ε)2 pICext,pub
ε ( f , µ) + 2.
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Using another measure such as hµ defined by: hµ(S) = ∑(x,y)∈S µx,y log 1/µx,y for
all S ⊆ X× Y, would also work and give the same result.



4
N E W M O D E L S F O R L A R G E - O U T P U T F U N C T I O N S

In previous chapters, we used a definition of communication complexity where at
the end of the communication protocol, the output of the computation could be
determined from the transcript of the communication and the public randomness.

This definition has its limits. It is quite easy to find examples where such a
definition means that a task requires a lot more communication than seems natural
for this task, such as Example 4.1:

Example 4.1. Consider the function f : {0, 1}n × {0, 1}n → {0, 1}n, f (x, y) = x, and
assume we want to compute it with the promise x = y.

A protocol for f requires n bits of communication if the result of the protocol has
to be apparent from the communication and the public randomness, even though
both players know f (x, y) right from the start. In general, our previous result that
functions necessarily have weak partition at least linear in the number of outputs
(Theorem 2.23), and therefore communication complexity that is at least logarithmic
in their number of outputs (Corollary 2.24) shows that the communication complexity
model we considered until now is ill-fitted to study some communication complexity
functions with large outputs such as Example 4.1 – for which it would seem natural
that it does not require any communication.

In this chapter, we introduce other models of computation to shed light on this
issue. Each of our models will have a different notion of what it means to compute
a function. In some of them, the players themselves will not necessarily know the
result of their computation. The models will have a natural hierarchy, in that for
any two models of computation, there usually will be a conversion mechanisms such
that going from one model to the other will never increase the communication cost
of any task we are solving, while going in the opposite direction may increase the
communication cost. Corollary 2.24 does not apply to the models we introduce in
this chapter, so the communication complexity of a problem can be lower than the
logarithm of their number of outputs.

It should be kept in mind that changing the way in which the output is desired
makes little to no difference when the number of bits required to write the output
explicitly on the communication channel is small compared to the amount of commu-
nication, hence the name of the chapter. This also means that a Boolean function that
requires a lot of communication to compute in any model requires a lot of commu-
nication in all models. On the other hand, when the size of the output |Z| appears
in a result, for example the result that internal information complexity supersedes
the relaxed partition bound [KLL+

15], a mismatch between communication models
might be at play. In the given example’s case, one of the two bounds applies to the
open model, while the other applies to the local model (Definition 4.3), which makes
the |Z| term necessary by a very simple argument. Revisiting such results with the
models of this chapter in mind might help get tighter, model-specific results. While
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many works in the literature have considered the same communication scenarios as
some we present here (e.g., works on one-way problems, works on XOR games), their
systematic study with an emphasis on understanding how standard results apply to
each of them is, to our knowledge, new.

The work presented in this chapter is original and mostly comes from [FLLN20],
with the addition of a few unpublished results. We start by formally defining
the output models and proving separation results between them in Section 4.1.
The most interesting models are arguably the weakest ones: the one-out-of-two
(Definition 4.9), the split (Definition 4.13), and the XOR model (Definition 4.16). For
all models, in Section 4.4 we prove error-reduction results similar to the classical
result of Theorem 1.22, and in Section 4.5 we prove derandomization results similar in
essence to Theorem 1.26. Particularly interesting is reducing error in the XOR model,
since in this model the players may individually have no idea of the result of the
protocols they run, and yet we show that they can identify in which runs they output
the value that they are outputting the most in the original protocol (Theorem 4.25).

4.1 definitions and separations

4.1.1 The open model

We start with the definition of the model we have been using until now in this thesis,
which we call the open model. This is the model for which the partition bounds, in
the forms presented earlier, give lower bounds.

Definition 4.2 (Open computation (restatement of Definition 1.3)). A protocol Π is said
to openly compute f with ε error if there exists a mapping O : Tπ ×Rpub → Z such that:
for all (x, y) ∈ X ×Y ,

Pr,rA,rB [O(tπ, r) = f (x, y)] ≥ 1− ε.

4.1.2 The local model

In the previous model, protocols are revealing, in the sense that the result of the
computation can not be a secret only known to the players. In the local model, we
only require that both players, at the end of the protocol, can output the value of the
function (or the same valid output, in the case of a relation).

Definition 4.3 (Local computation). A protocol Π is said to locally compute f with ε

error if there exist two mappings OA and OB with OA : Tπ ×Rpub ×RA ×X → Z and
similarly OB : Tπ ×Rpub ×RB ×Y → Z such that: for all (x, y) ∈ X ×Y ,

Pr,rA,rB [OA(tπ, r, rA, x) = OB(tπ, r, rB, y) = f (x, y)] ≥ 1− ε.

Bauer et al. [BFM18] remarked that for total functions and relations, the determin-
istic open and local communication complexities are the same. Example 4.1 shows
a separation between the deterministic complexities of computing a function with a
promise.

For randomized communication, the local model is separated from the open model
by the following total function, as seen in Theorem 4.5:
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Definition 4.4 (Equality with output problem). EQout
n : {0, 1}n × {0, 1}n → {0, 1}n ∪

{>} is defined as

EQout
n (x, y) =

{
x if x = y
> otherwise

0 0 0 0 0 0 0

0 0 00 0 0 0

0 0 00 0 0 0

0 0 00 0 0 0

0 0 00 0 0 0

0 0 0 00 0 0

0 0 0 00 0 0

0 0 0 00 0 0 8

1

2

3

4

5

6

7

Figure 11: The communication matrix of EQout
3

Theorem 4.5. ∀ f : X ×Y → Z with k = dlog |Z|e and ε > 0,

Rloc
ε ( f ) ≤ Ropen

ε ( f ) ≤ Rloc
ε ( f ) + k, and

Rloc
1/4(EQout

n ) ≤ 4, Ropen
1/4 (EQout

n ) ∈ Ω(n).

We provide a full proof of this theorem, but because all the results of the form
RM1

ε ( f ) ≤ RM2
ε ( f ) or RM1

ε ( f ) ≤ RM2
ε ( f ) + k for two models M1 and M2 can be

proved by essentially the same proof, we will omit them in proofs of later similar
theorems, only proving the separation result.

Proof of Theorem 4.5. proof of Rloc
ε ( f ) ≤ Ropen

ε ( f ): An open protocol for a function
f is also a local protocol for f , as the players can take as mappings OA and OB

the mapping O of the open protocol (ignoring both players’ randomness and
input).

proof of Ropen
ε ( f ) ≤ Rloc

ε ( f ) + k: Let Π be a local protocol for computing f with
error at most ε. Consider Π′, the protocol that consists of first running the
protocol Π, and then Alice sends OA(tπ, r, rA, x) – what she would output at
the end of Π to locally compute f – over the communication channel. This only
requires k additional bits of communication. Now Π′ is an open protocol, since
an external observer can use the last k bits of the transcript as probable f (x, y).

Both the lower bound and the upper bound on EQout directly follow from propo-
sitions and theorems previously seen in this manuscript.

local model upper bound : The players apply the standard protocol for EQ
(Proposition 1.36). If the strings are different, they output >, otherwise Alice
outputs x and Bob outputs y.

open model lower bound : From Theorem 2.23: consider the distribution µ ob-
tained by assigned an equal weight 1

1+2n to all possible outputs of EQout.
Then ξε(EQout

n , µ) ≥ (1− ε)(1 + 2n) so Ropen
1/4 (EQout

n ) ≥ log
( 3

4 (1 + 2n)− 1
)
∈

Ω(n).
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4.1.3 The unilateral models

In this section, we consider models of communication complexity where we require
that at the end of the protocol, one player can output the value of the function (or a
valid output, in the case of a relation). One-way problems are usually stated in this
model.

Definition 4.6 (Unilateral computation). A protocol Π is said to Alice-compute f with
ε error if there exists a mapping OA : Tπ × Rpub × RA × X → Z such that: for all
(x, y) ∈ X ×Y ,

Pr,rA,rB [OA(tπ, r, rA, x) = f (x, y)] ≥ 1− ε.

Bob-computation is defined in a similar manner.
A protocol is said to unilaterally compute f if it Alice-computes or Bob-computes f .

Our definition of the unilateral model corresponds to a minimum of two models,
each assigned to a player.

Definition 4.7 (Identity problems). idA
n : {0, 1}n × {0, 1}n → {0, 1}n is defined as

idA
n (x, y) = x

idB
n is defined similarly, with opposite roles for Alice and Bob.

0 0 0 0 0 0 0 0

2 22 2 2 2 2 2

5 5 5 55 5 5 5

4 4 4 4 4 4 4 4
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0
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Figure 12: The communication matrix of idA
3 and idB

3

Theorem 4.8. ∀ f : X ×Y → Z with k = dlog |Z|e, λ ∈ [0, 1] and ε > 0

Runi
ε ( f ) ≤ Rloc

ε ( f ) ≤ Ropen
ε ( f ) ≤ Runi

ε ( f ) + k,

Dloc( f ) ≤ Dali( f ) + Dbob( f ), Rloc
ε ≤ Rali

λε( f ) + Rbob
(1−λ)ε( f ), and

Duni(idA
n ) = Dali(idA

n ) = Dbob(idB
n) = 0, Rloc

1/4(id
A
n ) = Rloc

1/4(id
B
n) ∈ Ω(n).

The first line also holds for relations, but the second line does not: consider as
counterexample the relation f : {0, 1}n × {0, 1}n → 2{0,1}n

, f (x, y) = {x, y}. This
problem does not require any communication in both unilateral models, but in the
local model, the fact that the players need to agree on a single output makes the
communication of order Ω(n) in both the deterministic and the randomized setting.
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Proof of Theorem 4.8. We omit the proof of the first two lines, that are only based on
using the same protocol with the different proper mappings, or sending what one
would output in a lower model over the communication channel.

We prove a slightly stronger result for the separation: that Rbob
1/4(id

A
n ) ∈ Ω(n).

alice model upper bound : Alice outputs her x, which requires no communica-
tion.

bob model lower bound : Let us consider Dbob
1/4(id

A
n , µ) where µ is the uniform

distribution. Bob has to output one of 2n equiprobable answers. With com-
munication C, Bob can only have 2C different answers, so Bob is wrong with
probability ≥ 1− 2C−n. Since Bob is supposed to make less than 1

4 error, we
have: C ≥ n + log 3

4 , so Rbob
1/4(id

A
n ) ∈ Ω(n).

4.1.4 The one-out-of-two model

In the unilateral models, the player that outputs the result at the end of the protocol
is fixed. In particular, it does not depend on the inputs. In the one-out-of-two model,
we relax this condition: correctly computing a function in the one-out-of-two model
corresponds to an execution such that at the end of the protocol:

• one player outputs a special symbol > 6∈ Z (which corresponds to silence)

• the other players outputs f (x, y).

Intuitively, we not only require that one of the players outputs the correct answer,
but also that she knows that her output is probably correct, while the other knows
that other player has a good answer to output. If we were only requiring that one
player gives the correct answer, then all Boolean functions would be solved with
zero communication in this model. In contrast, our model does not trivialize the
communication complexity of Boolean functions.

Definition 4.9 (One-out-of-two computation). A protocol Π is said to one-out-of-two
compute f with ε error if there exist two mappings OA and OB with OA : Tπ ×Rpub ×
RA ×X → Z ∪ {>} and similarly OB : Tπ ×Rpub×RB ×Y → Z ∪ {>} such that: for
all (x, y) ∈ X ×Y ,

Pr,rA,rB [(OA(tπ, r, rA, x),OB(tπ, r, rB, y)) ∈ {( f (x, y),>), (>, f (x, y))}] ≥ 1− ε.

The next proposition shows that any one-out-of-two protocol can be transformed
into another one-out-of-two protocol of lesser than or equal error and using only one
additional bit of communication, such that at the end of the protocol it is always the
case that exactly one player outputs a value in Z and the other stays silent (outputs >).

Proposition 4.10. Consider a function f : X ×Y → Z and Π a one-out-of-two protocol for
f with error ε > 0 of communication cost C. Then there exists a one-out-of-two protocol Π′ of
communication cost (C + 1) that computes f with the same error but with mappings such
that it is always the case that only one of them speaks at the end:

∀x, y, rA, rB, r, tπ′ = Π′(x, y, rA, rB, r) :(
O′A(tπ′ , r, rA, x),O′B(tπ′ , r, rB, y)

)
∈ (Z × {>}) ∪ ({>} × Z) .
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Proof of Proposition 4.10. Let Π be a one-out-of-two protocol for f and OA,OB the
associated mappings. We define the protocol Π′ to be a protocol that first behaves as
Π (getting a transcript tπ) and when we hit a leaf in the protocol for Π, Alice sends a
bit of communication to Bob following this rule:

• If OA(tπ, r, rA, x) = >, Alice sends 0 to Bob.

• Otherwise Alice sends 1 to Bob.

Then, Alice keeps the same mapping OA whereas Bob’s new mapping O′B is such
that:

O′B(tπ′ , r, rB, y) =


> if Alice’s last sent bit is 1

OB(tπ, r, rB, y) if it is not >
z picked uniformly at random in Z , otherwise

Intuitively, Alice tells Bob whether to speak or not, and he obeys. Since the only
cases where this changes what the players output is when they were going to both
speak or both stay silent, the error does not increase in the process.

Definition 4.11 (Conditional identity problem). CondIdn : {0, 1}n×{0, 1}n → {0, 1}n

is defined as

CondIdn(x, y) =
{

x if x0 = y0

y otherwise
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Figure 13: The communication matrix of CondId3

Theorem 4.12. ∀ f : X ×Y → Z with k = dlog |Z|e and ε > 0

R1o2
ε ( f ) ≤ Runi

ε ( f ) ≤ Rloc
ε ( f ) ≤ Ropen

ε ( f ) ≤ R1o2
ε ( f ) + k + 1, and

D1o2(CondIdn) ∈ O(1), Runi
ε (CondIdn) ∈ Ω(n).

Proof of Theorem 4.12. Again, we focus on the separation result.

one-out-of-two model upper bound : Alice and Bob send each other x0 and
y0. If x0 = y0, Alice outputs x, otherwise Bob outputs y. This only takes 2 bits
of communication.
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unilateral model lower bound : Let us consider Dbob
1/4(CondIdn, µ) where µ is

the uniform distribution over (x, y) such that x0 = y0. Having received any given
x, Bob has to output one of 2n−1 equiprobable answers. With communication
C, Bob can only have 2C different answers, so Bob is wrong with probability
≥ 1 − 2C−n+1. Since Bob is supposed to make less than 1

4 error, we have:
C ≥ n − 1 + log 3

4 , so Rbob
1/4(CondIdn) ∈ Ω(n). By symmetry, we also have

Rali
1/4(CondIdn) ∈ Ω(n), so Runi

1/4(CondIdn) ∈ Ω(n).

4.1.5 The split model

In our next model, we allow the answer to be split between the two players. In the
one-out-of-two model, one of the player had to output the full output, while the other
stayed fully silent. In contrast, in the split model we allow both players to output part
of the result. We only require that any given bit is output by exactly one player (the
other player stays silent on this particular bit). In a valid split computation, it may be
that the first bit of f (x, y) is output by Alice, while the second one is output by Bob.

Definition 4.13 (Split computation). A protocol Π is said to split compute f with ε error
if there exist two mappings OA and OB with OA : Tπ ×Rpub ×RA ×X → {0, 1, ∗} and
similarly OB : Tπ ×Rpub ×RB ×Y → {0, 1, ∗} such that: for all (x, y) ∈ X ×Y ,

Pr,rA,rB [OA(tπ, r, rA, x) ∧split OB(tπ, r, rB, y) = f (x, y)] ≥ 1− ε.

where (a ∧split b)i =


ai if bi = ∗
bi if ai = ∗
∗ otherwise

To separate this model from the one-out-of-two model, we introduce a problem
where the information about the output is naturally split between the two players,
such that computing this problem in the split model is trivial, but in the one-out-of-
two model the fact that one of the players must aggregate complete information about
the output leads to a large amount of communication in this model.

Definition 4.14 (Split identity problem). SplitIdn : {0, 1}n × {0, 1}n → {0, 1}n is
defined as

SplitIdn(x, y)i =

{
xi if i ≡ 0 (2)

yi otherwise

Theorem 4.15. ∀ f : X ×Y → Z with k = dlog |Z|e and ε > 0

Rspl
ε ( f ) ≤ R1o2

ε ( f ) ≤ Rspl
ε ( f ) + bk/2c+ 1, and

Dspl(SplitIdn) ∈ O(1), R1o2
ε (SplitIdn) ∈ Ω(n).

Proof of Theorem 4.15. There is a small subtlety here, that the players may make the
error of having too many or too few ∗ symbols at the end of the split protocol. Our
proof that R1o2

ε ( f ) ≤ Rspl
ε ( f ) + bk/2c+ 1 must not rely on this assumption: we can

not, for instance, say “the player with fewer ∗ symbols speaks first”, as this could
result in an ambiguous protocol.
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Figure 14: The communication matrix of SplitId3

proof of R1o2
ε ( f ) ≤ Rspl

ε ( f ) + bk/2c+ 1: Let Π be an optimal split protocol. At the
end of Π, Alice counts how many ∗ symbols she would output in the split
protocol. She sends a 1 bit if that number is greater than bk/2c, 0 otherwise. If
she sent a 0, she then sends bk/2c, the first of which are, in order, the non-∗
symbols she would have output, in order, in the split protocol. If she sent a 1,
it is Bob that sends the first bk/2c non-∗ bits that he would have output in the
split protocol. In both case, if there are not enough bits to send, the players send
0 as last bits.

If it is Alice that is sending the non-∗ symbols of her split output, then Bob
will replace the ∗ symbols in his split output by the bits sent by Alice before
outputting it as final step of the one-out-of-two protocol. The situation is
symmetric if Bob is sending his non-∗ bits. If there are too many or not enough
bis to replace the ∗, the bits are discarded or we just put 0.

This protocol is unambiguous (it does not rely on Alice and Bob not having
exactly k stars together) and is correct in the one-out-of-two model whenever
the original protocol was correct in the split model.

The separation result again bounds the size of rectangles that do not make too
many errors.

split model upper bound : Alice replaces odd positions in x by ∗, Bob replaces
even positions of y by ∗. They then each output their resulting string, which
computes SplitIdn(x, y) in the split model. This requires no communication.

one-out-of-two model lower bound : Let us consider D1o2
1/4(SplitIdn, µ) where

µ is the uniform distribution over (x, y) such that xi = 0 for odd i and yi = 0 for
even i, and consider the communication matrix M̃SplitIdn

of this reduced (but still
total) problem. This reduces the number of inputs to 2n. Let Π be an optimal
deterministic one-out-of-two protocol of communication C = D1o2

1/4(SplitIdn, µ).

Π partitions the communication matrix M̃SplitIdn
with striped rectangles: in any

given rectangle, the output of the one-out-of-two protocol can depend on either
the row or on the column, but not both. But for our problem, every cell of the
communication matrix has a different output, so any rectangle of width and
height both at least 2 makes an error in at least half its cells.
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A rectangle of width or height at most 1 contains at most 2n/2 elements, therefore
at most 2C+n/2 elements are covered by a rectangle that makes less than half
error on its elements. Therefore at least 2n − 2C+n/2 inputs are covered by
rectangles with at least 1/2 error, so Π makes an error ≥ 2−n · 1

2

(
2n − 2C+n/2).

This error has to be less than 1
4 , so:

1
4
≥ 2−n · 1

2

(
2n − 2C+n/2

)
⇒ C ≥ n/2− 1

Which completes our proof that R1o2
1/4(SplitIdn) ≥ D1o2

1/4(SplitIdn, µ) ∈ Ω(n).

4.1.6 The XOR model

In our final model, the players both output a k bit string at the end of the protocol.
Successful computation of the value of f (x, y) is when the bit-wise XOR of the two
strings is equal to f (x, y).

Definition 4.16 (XOR computation). Consider a function f whose output set is Z =

{0, 1}k. A protocol Π is said to XOR compute f with ε error if there exist two mappings
OA and OB with OA : Tπ ×Rpub ×RA ×X → {0, 1}k and similarly OB : Tπ ×Rpub ×
RB ×Y → {0, 1}k such that: for all (x, y) ∈ X ×Y ,

Pr,rA,rB [OA(tπ, r, rA, x)⊕OB(tπ, r, rB, y) = f (x, y)] ≥ 1− ε.

The XOR model is separated from the one-out-of-two model by the following
function:

Definition 4.17. XORn : {0, 1}n × {0, 1}n → {0, 1}n is defined by XORn(x, y) = (xi ⊕
yi)i∈[n].
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Figure 15: The communication matrix of XOR3

Theorem 4.18. ∀ f : X ×Y → Z with k = dlog |Z|e and ε > 0 ,

Rxor
ε ( f ) ≤ Rspl

ε ( f ) ≤ R1o2
ε ( f ) ≤ Runi

ε ( f ) ≤ Rxor
ε ( f ) + k, and

Dxor(XORn) = 0, Rspl
ε (XORn) ∈ Ω(n).
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Proof of Theorem 4.18. xor model upper bound : Alice and Bob can just each out-
put their input, which requires no communication.

split model lower bound : Let us consider Dspl
1/4(XORn, µ) where µ is the uni-

form distribution. Let Π be an optimal deterministic one-out-of-two protocol of
communication C = Dspl

1/4(XORn, µ).

Π partitions the communication matrix MXORn into 2C rectangles. Let us first
assume that in each rectangle, each bit of the output is output by a fixed player.
We will see later that our argument still holds without this assumption.

In each of the 2C rectangles, one of the players has to output less than n/2 bits
of the output. Let us consider a rectangle where Bob outputs at most half the
bits of the output. Then, on a given row of this rectangle, there can be at most
2n/2 different outputs. But the XORn problem is such that on a given row, all
cells have a different output. We will argue that this bounds the size of the
rectangles that do not make a lot of error.

Let a rectangle contain at least 23n/2+1 elements. Then it has at least 2n/2+1 rows
and columns. Therefore, the player that outputs at most half the bits of the
output in the split model will output at most 2n/2 different strings on a given
row or column that contains more than 2n/2+1 different values, so the rectangle
has error on at least half of its elements.

If the players do not always split the outputs bits in the same way, consider the
largest set of rows such that Alice outputs a given subset of the output bits, and
the largest set of columns such that Bob outputs a given subset of the output
bits. If the sets of output bits that Alice and Bob output on those rows and
columns are not the complement of each other, the rectangle is in error on at
least half of its elements. If the sets correctly partition the output bits, we do
the same argument as before: let us assume that Bob outputs at most half the
bits in the subrectangle we defined. Then no more than 2n cells can be correct
in any row of this subrectangle, and rows outside of the subrectangle are also
mostly error, therefore the rectangle has error on at least half of its elements.

At most 2C+3n/2+1 elements are in rectangles with error strictly less than half,
so the error made by the protocol is at least 1

2 2−2n (22n − 2C+3n/2+1). The error
has to be less than 1

4 , so:

C ≥ n/2− 2

Which completes our proof that Rspl
1/4(XORn) ≥ Dspl

1/4(XORn, µ) ∈ Ω(n).

4.2 relations between models

The next proposition summarizes the relations between models seen in Theorems 4.5,
4.8, 4.12, 4.15, and 4.18.
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Proposition 4.19. ∀ f : X ×Y → Z with k = dlog |Z|e and ε > 0 we have:

Ropen
ε ( f ) ≥ Rloc

ε ( f ) ≥ max
(

Rali
ε ( f ), Rbob

ε ( f )
)

(52)

≥ min
(

Rali
ε ( f ), Rbob

ε ( f )
)
= Runi

ε ( f )

≥ R1o2
ε ( f ) ≥ Rspl

ε ( f ) ≥ Rxor
ε ( f )

Rloc
2ε ( f ) ≤ Rali

ε ( f ) + Rbob
ε ( f ) (53)

Ropen
ε ( f ) ≤ Runi

ε ( f ) + k (54)

Ropen
ε ( f ) ≤ R1o2

ε ( f ) + k + 1 (55)

R1o2
ε ( f ) ≤ Rspl

ε ( f ) + dk/2e+ 1. (56)

Runi
ε ( f ) ≤ Rxor

ε ( f ) + k. (57)

The same statements hold for deterministic communication and communication with pri-
vate randomness only. All statements except subproposition 53 also hold for relations and
nondeterministic communication.

Proposition 4.19 shows that the models have a natural hierarchy and can be
ordered from most to least communication intensive. This is the object of Figure 16,
which also shows the separations between models (some of which we will see later in
Section 5.2)
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CondIdn
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idA
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split XOR
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Figure 16: The hierarchy of our models of computation, with separating problems.

4.3 ’complete’ problems

Before studying error-reduction (Section 4.4) and derandomization (Section 4.5) in
our weaker than usual communication models that are the one-out-of-two, the split
and the XOR model, let us first observe that those tasks are essentially equivalent to
solving some promise problems that we can define for each model.

Let us first consider the XOR model and suppose that Alice and Bob have a
protocol Π to compute a function f with error ε in this model. Now let Alice and Bob
run Π T times, each time recording in what they would output, each thus building
a T × k matrix that contains what they would output in each of the T runs. Let us
denote by X1 . . . XT Alice’s rows, while similarly Yi is Bob’s ith row. If T is large
enough, then it is quite likely that if we pick a random index i ∈ [T], we have that
Xi ⊕Yi = f (x, y). Performing error-reduction can be reduced to finding such a row
in our pair of structured matrices with a better than 1− ε probability.
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We will make this intuition formal in a moment, after introducing the Hidden XOR
and the Hidden Split problems.

Definition 4.20 (Hidden XOR [FLLN20]). In the Hidden XOR problem HXORN,k,ε,µ :(
{0, 1}k)N ×

(
{0, 1}k)N → {0, 1}k Alice’s input is (X1, . . . , XN), Bob’s input is

(Y1, . . . , YN), and µ is a fixed distribution over the indices [N] known to both play-
ers. When µ is not specified, µ is understood to be the uniform distribution. The promise
is that ∃z ∈ {0, 1}k such that µ ({i ∈ [N] : Xi ⊕Yi = z}) ≥ (1− ε). We define

HXORN,k,ε,µ((Xi)i∈[N], (Yi)i∈[N]) = z s.t. µ ({i : Xi ⊕Yi = z}) ≥ (1− ε).

We will refer to a pair (Xi, Yi) as a row, and we call Xi Alice’s ith row, and Yi Bob’s ith
row.

Definition 4.21 (Hidden Split). In the Hidden Split problem HSplitN,k,ε,µ :(
{0, 1, ∗}k)N ×

(
{0, 1, ∗}k)N → {0, 1}k Alice’s input is (X1, . . . , XN), Bob’s input is

(Y1, . . . , YN), and µ is a fixed distribution over the indices [N] known to both players.
When µ is not specified, µ is understood to be the uniform distribution. The promise is
that ∃z ∈ {0, 1}k such that µ

({
i ∈ [N] : Xi ∧split Yi = z

})
≥ (1− ε). We define

HSplitN,k,ε,µ((Xi)i∈[N], (Yi)i∈[N]) = z s.t. µ
({

i : Xi ∧split Yi = z
})
≥ (1− ε).

Notice that HSplit reduces to HXOR by replacing every ∗ symbol by 0 in both
matrices, however this is not really useful. Indeed, we are usually interested in solving
HSplit in the split model, and HXOR in the XOR model. If we reduce HSplit to
HXOR to solve HSplit in the split model, it may turn out to be inefficient since HXOR
is not expected to be as efficiently computable as HSplit in the split model.

Proposition 4.22. For any positive integers N and k, and distribution µ over [N]:

Dspl(HSplitN,k,ε,µ) ≤ k for any ε <
1
3

,

DM(HSplitN,k,ε,µ) ≤ DM(HXORN,k,ε,µ) for anyM and ε <
1
2

,

Duni(HXORN,k,ε,µ) ≤ (2εN + 1)k for any ε <
1
2

.

Proof of Proposition 4.22. Dspl(HSplitN,k,ε,µ) ≤ k (for ε < 1
3 ): For each i ∈ [k] and e ∈

{0, 1, ∗}, let pA,e
i = µ({j ∈ [N] : Xi,j = e}). pA,e

i is the probability that Alice
outputs element e in the ith position of her output if she outputs a row of her
input picked randomly according to µ. Define pB,e

i similarly to describe Bob’s
probabilities of outputting a specific symbol in a given position.

Let z ∈ {0, 1}k be the hidden split string. Let us consider a given position i
and assume without loss of generality that zi = 0. Then pA,0

i + pB,0
i ≥ 1− ε,

pA,∗
i + pB,∗

i ≥ 1− ε, pA,1
i ≤ ε, and pB,1

i ≤ ε. In particular, this implies that at
least one of the inequalities pA,0

i ≥ 1−ε
2 and pB,0

i ≥ 1−ε
2 has to be true. As ε < 1

3 ,
1−ε

2 > ε.
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This means that for each player P ∈ {A, B}, i ∈ [k], and e ∈ {0, 1}, then pP,e
i ≥

1
3

implies that f (x, y)i = e. And for e = f (x, y)i, pP,e
i ≥

1
3 has to be true for at least

one P ∈ {A, B}.

To solve HSplit, Alice sends to Bob k bits indicating whether she knows, for
each index i ∈ [k], the value of f (x, y)i. The communication protocol stops
here. Alice then outputs a k bit string with f (x, y)i in positions in which she
knows its value, and ∗ elsewhere, while Bob outputs ∗ in positions where Alice
knows f (x, y)i, and f (x, y)i elsewhere. This works because of the fact that for
any i ∈ [k], one of the players knows f (x, y).

DM(HSplitN,k,ε,µ ≤ DM(HXORN,k,ε,µ): This comes from the fact that if we replace
every ∗ symbol in the inputs of a HSplit instance by a 0 symbol, we end up
with a valid HXOR instance with the same parameters and hidden string.

Duni(HXORN,k,ε,µ) ≤ (2εN + 1)k: Let S be the smallest set (first in number of ele-
ments, and then lexicographically) of row indices such that µ(S) > 2ε. This set
has at most 2εN + 1 elements since it is guaranteed that taking the µ-heaviest
2εN + 1 rows would give a set of weight greater than 2ε. Since the rows that do
not XOR to the hidden string z have weight at most ε, the weight of rows of S
that XOR to z is greater than the weight of rows of S that do not.

Alice sends her rows of indices in S to Bob, in order, so that he can compute
the string that rows of S mostly XOR to. This gives Duni(HXORN,k,ε,µ) ≤
(2εN + 1)k.

We conjecture that N(HXORN,k,ε) ∈ Ω(εNk). Note that we do not need to specify
the model here, since the output is of size k� εNk.

4.4 error-reduction

When doing error reduction in the open model, as was the case in Theorem 1.22, the
proof was quite straightforward: repeat the available error-prone protocol several
times, and use as output the value that our multiple executions did output the most.

The exact same scheme will work in the local and the unilateral models. However,
all the models below and including the one-out-of-two model have the protocol that
doing statistics on what was computed is not a priori possible, since the result of the
computation might be on one side only, shared between the parties, or even completely
unknown to both parties and only accessible through additional communication.

In this section we give error reduction schemes for all our models. The one-out-
of-two model is the simplest case, while the split and the XOR model prove more
challenging.

error reduction in the one-out-of-two model The difficulty in reducing
error in the one-out-of-two model is that when running a protocol Π many times to
keep the majority output, this majority output has to be the majority output of one of
the players but not necessarily of both of them. However, this means that the players
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only have two candidates for the value of the function. They only need to choose
between those two candidates, which they easily do by exchanging a hash of one of
this candidate and counting how many runs of the original protocol resulted in an
output with the same hash.

Theorem 4.23 ([FLLN20]). Let 0 < ε′ < ε < 1
2 , Cε,ε′ =

2ε(1−ε)

( 1
2−ε)

2 ln
( 4

ε′
)

and C′ε,ε′ ≤

5 + log
( 1

ε′
)
+ log (Cε,ε′). For all functions f : X ×Y → Z ,

R1o2
ε′ ( f ) ≤ Cε,ε′(R1o2

ε ( f ) + 1) + C′ε,ε′ .

Proof of Theorem 4.23. Fix a one-out-of-two protocol for f with error at most ε and
apply Proposition 4.10 so that we now have a one-out-of-two communication pro-
tocol and mappings such that exactly one player speaks at the end in any execu-
tion. Using the Chernoff bound (Lemma 1.23), if the players make T = d8ε(1−
ε)
( 1

2 − ε
)−2

ln
( 4

ε′
)
e executions, then with probability at least 1 − ε′

2 , in at least
1
2 + 1

2

( 1
2 − ε

)
> 1

2 of the player’s executions, one of them outputs f (x, y) (and the
other remains silent).

The players want to identify the correct output. We argue that they can do it with
very little extra communication and error. Observe that a value that the players output
in more than half of the executions needs to be the value that one of the players
outputs the most.

Let us call zA and zB the values that each player outputs the most (ties are broken
arbitrarily). One of them must be f (x, y).

To discriminate the two candidates, the players use their public randomness
to pick a random hash function h : Z → [2dlog(2/ε′)e]. With probability ≥ 1− ε′

2 ,
h(zA) 6= h(zB) if zA 6= zB.

Alice then sends h(zA) to Bob with dlog
( 2

ε′
)
e bits of communication. Bob answers

with one bit to indicate whether h(zA) = h(zB) or not.
If they are equal, we are done, Alice simply outputs zA. Otherwise, Bob evaluates

how much of his non-zB outputs have the same hash as zA, and he sends this count
to Alice with communication dlog(T)e.

If that number and the number of times that Alice outputs zA is at least T
2 , Alice

sends a 1 to Bob and outputs zA. Otherwise, she sends a 0 to Bob and he outputs zB.
This works because for any collection of outputs to represent more than half of

the outputs, this collection of outputs must contain f (x, y). Since f (x, y) is either zA
or zB, the only collision that matters is between zA and zB.

Adding the errors due to deviation (Chernoff) and to collisions, this protocol
makes at most ε′ error.

error reduction in the xor model We first deal with the XOR model as we
will see that the split model behaves quite similarly. The first thing we need to do is
formalize the intuition that error reduction in this model reduces to solving a HXOR
instance.
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Lemma 4.24 ([FLLN20]). Let 0 < ε′ < ε < 1
2 and Cε,ε′ = 2ε

( 1
2 − ε

)−2
ln
( 4

ε′
)
. For

every f : X ×Y → {0, 1}k,

Rxor
ε′ ( f ) ≤ Cε,ε′ · Rxor

ε ( f ) + Rxor
1
2 ε′

(
HXORCε,ε′ ,k, 1

4+
ε
2

)
.

Proof of Lemma 4.24. Let Π be a protocol which XOR-computes f (x, y) with ε-error
and Π′ be a protocol which XOR-computes HXORCε,ε′ ,k, 1

4+
ε
2

with error 1
2 ε′. We

consider the following protocol, which we denote by Π̂: first, run Π Cε,ε′ times; then,
use the outputs produced by this computation as inputs for Π′, run the latter protocol,
and output the result.

We analyze the new protocol Π̂ as follows. The outputs produced in the first
step are strings X1, · · · , XCε,ε′

on Alice’s side, and Y1, · · · , YCε,ε′
for Bob. A run of Π is

correct iff Xi ⊕Yi = f (x, y).
By the Chernoff bound (Lemma 1.23), applied with N = Cε,ε′ , Vi = 1 if Xi ⊕Yi =

f (x, y) and Vi = 0 otherwise for i = 1, . . . , N, p = E[Vi] ≤ ε, and δ = 1
2 (

1
2 − ε),

we obtain that with probability at least 1− 2e−δ2 N/(2p(1−p)) ≥ 1− ε′/2 a proportion
p + δ ≤ ( 1

2 + ε)/2 of the N computations err. In other words, with probability at most
ε′/2, the above strings fail to satisfy the promise in the definition of HXORCε,ε′ ,k, 1

4+
ε
2
.

Conditionally on this not happening (i.e., on the promise being met), Π′ (and hence
Π̂) errs with probability at most 1

2 ε′. The overall error is thus at most ε′.

It remains to prove an efficient protocol for HXORN,k,ε. Clearly, solving HXORN,k,ε
with error ε is trivial: we only need to sample a random row and output its contents.
But when the goal is to solve our problem with an error ε′ < ε, we need a way to
discover a large fraction of rows that XOR to the same value. To do this, we use
hashing, and optimize the number of hashes we need to exchange by an sampling
adequate numbers of rows to hash.

Theorem 4.25 ([FLLN20]). Let 0 < ε′ < ε < 1
2 ,

Rxor
ε′ (HXORN,k,ε) ≤ O

(
log2 ( 1

ε′
)
+ N · log

( 1
ε′
))

.

Obtaining this complexity relies on two ingredients: the amortized communication
protocol for Equality (see Proposition 1.36) and the use of Lemma 4.26 about the size
of the largest connected component in a random graph.

Lemma 4.26 (Variation of eq. (9.18) in [ER60]). Let G(n, p(n)) be the distribution over
graphs of n vertices such that each edge belongs to the graph with independent probability
p(n). Let L1(G) be the size of the largest connected component of G. For α ∈ [0, 1] and
c ∈ R+:

P [L1(G(n, c/n) < (1− α)n] ≤ e(ln(2)− α
2 (1− α

2 )c)n

In particular this probability goes to 0 as n goes to infinity when αc > 4 ln(2).
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Proof of Lemma 4.26. We observe as in [ER60] that if no connected component of more
than (1− α)n vertices exists, then we can partition the vertices into two disconnected
sets of size n0 and n1 such that α

2 n ≤ n0 ≤ n1 ≤
(
1− α

2

)
n.

Given a partition of the vertices into sets of size n0 and n1, the probability that
those two sets are disconnected is (1− p(n))n0n1 . With p(n) = c

n , and since there are
less than 2n possible partitions, the probability that there is no connected component
of more than (1− α) n vertices is bounded by:

2n
(

1− c
n

)n0n1
≤ 2ne−c n0n1

n ≤ 2ne−c α
2 (1− α

2 )n = e(ln(2)− α
2 (1− α

2 )c)n

We are now ready to prove Theorem 4.25.

Proof of Theorem 4.25. Consider the HXOR instance as a N× k matrix such that (Xi)i∈[N]

are the rows of Alice and (Yi)i∈[N] are the rows of Bob. By the promise of the HXOR
problem, we know there exists a hidden z ∈ {0, 1}k such that {i : Xi ⊕ Yi = z} ≥
(1− ε)N. The goal is now for Alice and Bob to identify a row belonging to this large
set of rows that XOR to the same k-bit string.

Let i and j be the indices of two rows, and consider Alice’s and Bob’s corresponding
k-bit strings. The event that the two rows XOR to the same string is expressed as
Xi ⊕ Yi = Xj ⊕ Yj, which is equivalent to Xi ⊕ Xj = Yi ⊕ Yj. This means that we can
test whether any two rows XOR to the same bit string with a protocol for Equality.

The protocol goes through the following steps:

1. The players pick rows randomly, enough rows so that with high probability, a
constant fraction of the rows XOR to the hidden z.

2. The players solve instances of Equality to find rows that XOR to the same string.
In each large set of rows that XOR to the same string, they pick a single row.
This leaves them with a constant number of candidate rows that might XOR to
the hidden z.

3. The players decide between those candidates by comparing them with all the
rows. The candidate row that XORs to the same string as most rows XORs to
the hidden z.

step 1 . Using public randomness, Alice and Bob now pick a multiset S of all their
rows of size |S| = Tε′ = 50 ln

( 10
ε′
)
. Each element of S is picked uniformly

and independently. Using the Chernoff bound (Lemma 1.23), with probability
≥ 1− ε′

5 more than 2
5 of those executions XOR to the hidden z.

step 2 . We now consider S as the vertices V of a random graph G = G(V, E), in
which each edge is picked with a probability c

|V| with c > 0. Consider the
subgraph G′ of G induced on the vertices V ′ ⊆ V that correspond to executions
that XOR to the hidden z. This subgraph G′ is a random graph where each
edge was picked with the same probability c

|V| =
c′
|V′| where c′ = c |V

′|
|V| ≥

2
5 c.

By Lemma 4.26, this subgraph G′ contains a connected component of size
≥ (1− 1

12 )|V ′| ≥
11
30 |V| with probability ≥ 1− 2−|V

′| ≥ 1− ε′

5 for c ≥ 720
143 ln(2) ≈

3.49 and when 20 ln
( 10

ε′
)

(a lower bound on the size of |V ′|) is larger than log 5
ε′ ,

which is true for ε′ small enough.
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At this point, Alice (resp. Bob) computes the bit-wise XOR of all pairs of
executions that correspond to an edge in G: (Xi ⊕ Xj)(i,j)∈E,i<j (resp. (Yi ⊕
Yj)(i,j)∈E,i<j). For ε′ small enough, With high probability (≥ 1 − ε′

5 ), the set
of edges of G is smaller than 2c · Tε′ by the Chernoff bound (the players can
abort the protocol otherwise). Then, Alice and Bob solve ≤ 2c · Tε′ instances
of equality with (total) error ≤ ε′

5 to discover a large set of rows that XOR to a
same bit string. We now have groups of rows that we know XOR to the same
bit string, at least one of which represents more than 11

30 of S’s rows because of
the Hoeffding argument combined with the random graph lemma.

Now for each submultiset of rows of S that XOR to the same bit string and
represents more than 11

30 of all of S’s rows, pick a random row in the submultiset.
If there is only one such submultiset, Alice and Bob can simply output their
content in this last selected row and end the protocol here. If there were two such
submultiset, then consider i1 and i2 to be indices we picked in each submultiset.

step 3 . To decide between these two groups of rows, Alice and Bob solve N Equality
instances between Xi1 ⊕ Xj and Yi1 ⊕Yj for all j ∈ [N] with error ≤ ε′

5 . If more
than half of the N rows XOR to the same thing as the ith

1 row, Alice and Bob
output their ith

1 row. Otherwise, they output following the other candidate row.

Altogether, we get the following upper bound on computing HXORN,k,ε with error
ε′ < ε:

Rxor
ε′ (HXORN,k,ε) ≤ Rloc

ε′/5

(
EQ⊗2cTε′

k

)
+ Rloc

ε′/5

(
EQ
⊗Cε,ε′
k

)
.

To conclude, we apply a known upper bound for solving many instances of
equality, see Proposition 1.36.

Combining Lemma 4.24 with Theorem 4.25], we obtain Theorem 4.27:

Theorem 4.27 ([FLLN20]). Let 0 < ε′ < ε < 1
2 , Cε,ε′ = 8ε

( 1
2 − ε

)−2
ln
( 4

ε′
)
. For all

f : X ×Y → {0, 1}k,

Rxor
ε′ ( f ) ≤ Cε,ε′ · Rxor

ε ( f ) + O
(

log2 ( 1
ε′
)
+ Cε,ε′ log

( 1
ε′
))

.

error reduction in the split model Error reduction in the split model
can be achieved remarkably similarly than in the XOR model. The key remark in
reducing error in the XOR model was that when two rows i and j of the HXOR matrix
XOR to the same string, i.e., Xi ⊕ Yi = Xj ⊕ Yj, we have that Xi ⊕ Xj = Yi ⊕ Yj. That
means that we can test that two rows XOR to the same string by testing whether two
locally-computable strings are equal. That is, there is a function g that the players
apply locally and the problem of testing Xi ⊕ Yi = Xj ⊕ Yj then reduces to testing
equality between g(Xi, Xj) and g(Yi, Yj), where the function g is just a bit-wise XOR,
i.e., applying bit-wise the transformation represented in Subfigure 17a.

It turns out that we can do the same thing in the split model, with a slight change.
Instead of both players applying the same function on their side before testing for
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Figure 17: The compatibility matrices of the XOR and the split models.

equality, they each apply a different function. The functions they apply bit-wise to
their rows are the transformations gA and gB represented in Subfigures 17b and 17c.
With such functions, we have:

Proposition 4.28. For all Xi, Xj, Yi, and Yj ∈ {0, 1, ∗}k,

Xi ∧split Yi = Xj ∧split Yj ⇔ gA(Xi, Xj) = gB(Yi, Yj)

The idea of these functions is that they capture which situations are compatible
with both rows outputting the same result: if Alice outputs two stars in some position
of Xi and Xj, then Bob needs to be outputting two 0s or two 1s in the same position
of his strings Yi and Yj. Similarly, if at some index Alice outputs a star in row Xi but a
0 in row Xj, then at this same index Bob needs to output a 0 in Yi and a star in Yj to
have that the two rows correspond to the same result.

Proposition 4.28 lets us do error-reduction in the split model exactly as we did in
the XOR model, and obtain Theorem 4.29.

Theorem 4.29. Let 0 < ε′ < ε < 1
2 , Cε,ε′ = 8ε

( 1
2 − ε

)−2
ln
( 4

ε′
)
. For all f : X ×Y →

{0, 1}k,

Rspl
ε′ ( f ) ≤ Cε,ε′ · R

spl
ε ( f ) + O

(
log2 ( 1

ε′
)
+ Cε,ε′ log

( 1
ε′
))

.

the special case of direct sum functions Error reduction may be made
more efficient for large output functions for which computing a single bit of the input
requires less communication that computing the whole output. That is typically the
case when we consider direct sum functions, that is a function for which a single
input actually consists of several instances of a function with smaller input.

In this case, it can be more efficient to compute the whole function a small number
of times to restrict to two candidates, compute where those candidates differ, and
then compute the inner function many times to decide which of the two candidates is
the correct one. This is how the computation underlying Theorem 4.30 is carried out.
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Theorem 4.30 ([FLLN20]). Let 0 < ε′ < ε < 1
2 and Cε,ε′ = 8ε

( 1
2 − ε

)−2
ln
( 12

ε′
)
. For

any g : X ×Y .→ {0, 1} and f = g⊗k,

Rxor
ε′ ( f ) ≤ 50 ln

( 12
ε′
)
· Rxor

ε ( f ) + Cε,ε′ · Rxor
ε (g) + O

(
Cε,ε′ + log(k) + log2 ( 1

ε′
))

Notice that the factor involving 1
2 − ε applies to the complexity of g, not of f .

Proof of Theorem 4.30. Consider an XOR protocol for f = g⊗k with error at most ε,
together with a protocol for g with error at most ε. The protocol to achieve error ε′

proceeds as follows.

step 1 : [Restrict to at most two candidates.]

This step is like Step 1 and 2 of the proof of Theorem 4.25.

Run the xor protocol for f Tε′ = 50 ln
( 12

ε′
)

times. By the Chernoff bound
(Lemma 1.23), with probability at least 1− ε′

6 , more than 2
5 of all executions give

the right output.

Consider two executions, namely executions number i and j, and consider
Alice’s and Bob’s outputs on those two executions (ai,aj and bi,bj). The event
that the two executions computed the same result in the XOR model is expressed
as ai ⊕ bi = aj ⊕ bj, which is equivalent to ai ⊕ aj = bi ⊕ bj.

As in Step 2 of the proof of Theorem 4.25, the players pick c · Tε′ equality
instances of the form EQ(ai ⊕ aj, bi ⊕ bj) to compute in order to find a large set
of executions with the same outcome. They solve those instances with error less
than ε′

6 . With the right constant c, by Lemma 4.26, with high probability, a set
that represents a 11

30 fraction of the executions is found, and there can be at most
two such sets. More precisely, there are three possibilities:

• Either no group represents more than 11
30 of the executions. This is a rare

event because of the previous Hoeffding and random graph arguments.

• Or only one group represents more than 11
30 of the executions. Then with

high probability executions in this group are correct, so the players can
pick a random one, output what it outputs and end the protocol here.

• Or there are two groups that represent more than 11
30 of the executions. In

this case, we need to decide between the two.

step 2 : [Find a critical index l.]

To decide between our two candidates, we find the first difference between
ai ⊕ aj and bi ⊕ bj where i and j are indices of executions in a different candidate
group. This yields an index l where the two possible outputs differ. We call this
a critical index.

step 3 . [Solve GHD on the critical index l.] We XOR-compute the lth bit of f Cε,ε′

times. This gives a Gap Hamming Distance instance whose solution tells us
whether it is the output containing a 1 in lth position or the other output that is



76 new models for large-output functions

the correct output, with high probability, which ends the amplification protocol
as the players can now pick an execution in the correct group.

Altogether, we get the following upper bound on computing f with error ε′.

Rxor
ε′ ( f ) ≤

(
50 ln

(
12
ε′

))
· Rxor

ε ( f ) + Rloc
ε′/6

(
EQ⊗O(Tε′ )

k

)
+ Rloc

ε′/6 (FtFDk)

+
log 1

ε′( 1
2 − ε

)2 · R
xor
ε (g) + Rloc

ε′/6

(
GHD

Cε,ε′
(1/4+ε/2)Cε,ε′ ,(3/4−ε/2)Cε,ε′

)
.

To conclude, we apply known upper bounds for finding the first difference [FRPU94]
(Proposition 1.34), for solving many instances of equality [FKNN95, Part 6] (Propo-
sition 1.36), and Gap Hamming Distance is solved by exchanging everything which
is essentially optimal tight [CR12, Vid13, She12] unless we have access to quantum
resources [BCW98].

4.5 derandomization

Just as with error reduction, derandomization in our weaker models of computation
is not as straightforward as in the open model. In the open model, computing the
probability of each leaf of the protocol immediately implies that we have an idea of
the probability of each output. In the unilateral models, for one of the player, once
she knows the probability of each leaf, she can estimate her probability of outputting
each value in the original protocol.

In the one-out-of-two model and below, it is no longer that simple. However, in this
section, we show that we do not have to resort to transforming the original protocol
into a protocol that sends the output in the transcript, which would add k to the
communication of the original protocol and therefore a 2k term to the communication
of the derandomized protocol. Instead, in all models, we show that there is a more
efficient way to derandomize protocols in those models.

derandomization in the one-out-of-two model We begin with the one-
out-of-two model. This model has the interesting property that derandomization does
not depend on the size of the output when we start from a low-error protocol, but it
does when we start from a high error protocol, with the threshold at 1

4 .

Theorem 4.31 ([FLLN20]). For any function f and error ε < 1
2 , with R = R1o2,priv

ε ( f ):

D1o2( f ) ≤

2R+1 ·
(

R + log
(

4
1
3−ε

)
+ 1
)

, if ε < 1
3 ,(

2R+1 + 2
)
·
(

R + log
(

8
1
2−ε

)
+ 1
)
+ log(k) + 4, for any ε < 1

2 .

Before proving this theorem, recall that the key ingredient in proving derandom-
ization results is to first estimate the probability of reaching each leaf of a private
coin protocol. This is the purpose of the TDEΠ,δ (Definition 1.27) problem. In the
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open model, there is only one output per leaf. However, this is not the case in other
models. The next lemma will help us capture what the players know about their
distribution of outputs once they have estimated the probability of ending in each
leaf, considering that the players know perfectly their outputting behavior in each
leaf of a protocol. In this lemma, U should be thought of as a distribution over leaves
of the protocol and V as a distribution over outputs.

Lemma 4.32. Let U and V be random variables over their respective domain U and V . For
all u ∈ U , let us consider VU=u the random variable V conditioned on the event {U = u}.
Assume there exists two constants δU and δV and two random variables U′ and V ′ over the
same domains as U and V such that:

∆(U, U′) ≤ δU , ∀u ∈ U : d∞(VU=u, V ′U′=u) ≤ δV .

Then:
d∞(V, V ′) ≤ δU + δV .

Proof of Lemma 4.32. Let us show that ∀v ∈ V , |P[V = v]−P[V ′ = v]| ≤ δU + δV . Fix
an arbitrary v ∈ V , then the probabilities P[V = v] and P[V ′ = v] can be written as:

• P[V = v] = ∑u∈U P[U = u] ·P[V = v|U = u],

• P[V ′ = v] = ∑u∈U P[U′ = u] ·P[V ′ = v|U′ = u].

Hence using our two hypotheses above we get:

P[V = v]−P[V ′ = v] = ∑
u∈U

(
P[U = u] ·P[V = v|U = u]−P[U′ = u] ·P[V ′ = v|U′ = u]

)
≤ ∑

u∈U

((
P[U = u]−P[U′ = u]

)
P[V = v|U = u] + δVP[U′ = u]

)
≤ ∑

u∈U :P[U=u]>P[U′=u]

(
P[U = u]−P[U′ = u]

)
+ δV

≤ δU + δV .

We can prove P[V = v] − P[V ′ = v] ≥ −(δU + δV) following the same proof
method, and combining the two we get the desired result:

∀v ∈ V :
∣∣P[V = v]−P[V ′ = v]

∣∣ ≤ δU + δV .

We are now ready to prove Theorem 4.31.

Proof of Theorem 4.31. Take Π to be an optimal private coin one-out-of-two protocol
for f with error ε. Let σ be a precision parameter which we will set later.

When ε < 1
3 , notice that one of the players has to output the correct result with

probability greater than 1
3 , while all incorrect ones are output with probability less

than 1
3 (with an additional small bias). So it suffices for the players to run the local

protocol of Lemma 1.39 for TDEπ,σ where σ < 1
3 − ε in this case, and let the player

who outputs some result with probability greater than 1
3 output it.

We now turn to the more interesting case where 1/3 ≤ ε < 1
2 . Let δ = 1

2 − ε

and σ < δ
3 . The players first run the local protocol for TDEπ,σ, thus learning a σ

approximation of the probability of each transcript of the protocol. By Lemma 4.32,
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since each player exactly knows her outputting distribution in each leaf, for all z, each
player knows up to precision σ her probability of outputting z in the original protocol.

Let us call pz
A the probability that Alice outputs z, and p̃z

A the approximation she
has of it. For z = f (x, y), we have pz

A + pz
B ≥ 1

2 + δ and so p̃z
A + p̃z

B ≥ 1
2 + δ− σ.

Using this, the players consider some z as candidates for f (x, y). Alice considers
(zA

i )i∈[nA] the nA answers z such that p̃z
A ≥

1
4 +

δ−σ
2 . Similarly, Bob considers (zB

j )j∈[nB]

the nB answers z such that p̃z
B ≥ 1

4 +
δ−σ

2 .
Since ∑z p̃z

A + p̃z
B = 1 (where the sum is over all z ∈ Z), we have that: nA + nB ≤ 3.

Since the majority output represents strictly more than half of all outputs we have
max(nA, nB) ≤ 2.

The players use 4 bits to send the values nA, nB to each other. Without loss of
generality, assume nA ≥ nB. Then four cases are possible:

1. (nA, nB) = (1, 0)

2. (nA, nB) = (2, 1)

3. (nA, nB) = (2, 0)

4. (nA, nB) = (1, 1).

The first two cases are simple: if there is only one candidate (case 1), the player
who owns it outputs it. If there are three candidates (case 2), the player with a single
candidate outputs it knowing that it has to match one of the candidates on the other
side and be the majority output.

For the remaining two cases, we will use a variant of the protocol for the NBA
problem. For the case (nA, nB) = (2, 0), Alice (who has two candidates) sends to Bob
the index of a bit where the two candidates differ, say i ∈ log(Z). Bob replies with
∑z:zi=0 p̃z

B. Alice can thus compute ∑z:zi=0 p̃z
B + p̃z

A. If that quantity is greater than 1
2 ,

the correct candidate is the one whose i-th bit is 0; otherwise, it is the other candidate.
Finally, let us consider the case (nA, nB) = (1, 1). Without loss of generality,

assume Alice’s candidate, zA
1 , is not correct, that is, zA

1 6= f (x, y) = zB
1 . Then, we

notice that the probability Alice outputting zA
1 and the probability of Bob outputting

something different from zB
1 are less than ε = 1

2 − δ. To conclude the protocol, the

players exchange p̃zA
1

A and p̃zB
1

B up to σ precision. Then:

• pzB
1

B + p>B − pzA
1

A = pzB
1

B + ∑z 6=zA
1

pz
A ≥ pzB

1
B + pzB

1
A ≥

1
2 + δ,

• pzA
1

A + p>A − pzB
1

B = pzA
1

A + ∑z 6=zB
1

pz
B ≤ 1− pzB

1
A + pzB

1
B ≤

1
2 − δ.

Each player has a σ approximation of the sum of probabilities of outputs on her
side, and a 2σ approximation of the probability of the candidate output on the other
player’s side, so they have a 3σ approximations of the above sums. Since σ < δ

3 , the
players know with certainty if they have the correct output or not. If they do not have
the correct output, they let the other player output.
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derandomization in the xor model In the XOR model, derandomization
is more complicated because of the fact that in any given execution neither players
knows what they are computing. Just like in the other models, we will show that we
do not need a multiplicative 2k term, but we will still have a dependency in k.

We will reduce derandomization to the HXOR problem. Recall that we have an
upper bound on its deterministic communication complexity: Dxor (HXORN,k,ε,µ

)
≤

(2εN + 1) · k,

Theorem 4.33 ([FLLN20]). Let 0 < ε < 1/2 and f : X × Y → Z = {0, 1}k. Let
R = Rxor,priv

ε ( f ), M = 16 ·
( 1

2 − ε
)−2 · 2R, ε′ = 5

8 −
ε
4 > 1

2 . There exists a distribution
µ over [M] such that:

Dxor( f ) ≤ 2R+1 ·
(

R + log

(
8

1
2 − ε

)
+ 1

)
+ Dxor (HXORM,k,ε′,µ

)
.

Proof of Theorem 4.33. Let Π be an optimal private coin XOR protocol for f . The
players start running the open protocol for TDEΠ,δ protocol of Lemma 1.39 with
δ = 1

4

( 1
2 − ε

)
, thus learning the probability distribution over leaves that results from

the protocol within statistical distance δ.
For each leaf w, Alice and Bob output according to two independent probability

distributions over the z ∈ {0, 1}k, oA(.|w, x) and oB(.|w, y). In order to reduce the
problem to a HXOR instance, they discretize oA and oB in dδ−1e events. Let ȯA denote
the discretization of oA. Alice designs it to have the following properties:

• For each z and w, ȯA(z|w, x) · dδ−1e ∈N.

• For each z and w, |oA(z|w, x)− ȯA(z|w, x)| ≤ 1
dδ−1e .

Similarly for ȯB on Bob’s side.

2

1

3

4
5
6

1

1

1

1

2

2

3

4

Figure 18: An example of discretization of a distribution oA into ȯA.

A simple greedy approach to discretization goes like this:

1. Replace all probabilities oA(z|w, x) by an approximation ȯA(z|w, x):

ȯA(z|w, x) =
1
dδ−1e

⌊
dδ−1eoA(z|w, x)

⌋
2. While the sum of probabilities of ȯA is less than 1, pick a z such that oA(z|w, x)−

ȯA(z|w, x) is maximal. For that z, set ȯA(z|w, x) = 1
dδ−1e

⌈
dδ−1eoA(z|w, x)

⌉
.
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The players then construct a distributional HXOR instance with M rows where
M = dδ−1e2|Tπ| in the following way:

• For each leaf w the players define dδ−1e2 rows. Rows are indexed by (i, j) ∈[
dδ−1e

]
×
[
dδ−1e

]
and are such that:

– For each z, there are exactly dδ−1eȯA(z|w, x) indices iz ∈
[
dδ−1e

]
such that

Alice outputs z on all rows of the form (iz, j), ∀j.

– For each z, there are exactly dδ−1eȯB(z|w, y) indices jz ∈
[
dδ−1e

]
such that

Bob outputs z on all rows of the form (i, jz), ∀i.

• The probability of the row (i, j) associated to the leaf w under the distribution µ

is taken to be plf(w|x, y) · dδ−1e−2, where plf(w|x, y) is the probability of ending
in a leaf w in the original protocol Π. (Recall that µ is an arbitrary distribution
over [M] as in the statement of Theorem 4.33.)

The players then solve the HXOR instance and output the result of this computa-
tion. Clearly, the procedure we demonstrated has the previously claimed communi-
cation complexity. It remains to show that the players actually built a valid HXOR
instance whose result is f (x, y). That is, we need to show that picking a random row
according to µ from this HXOR instance gives outputs zA and zB on Alice and Bob’s
sides such that zA ⊕ zB = f (x, y) with probability > 1

2 . We recall the following crucial
facts to reach this conclusion:

1. In the original protocol Π, let pout(z|x, y) be the probability of the protocol
computing z (after the XOR), pout(z|w, x, y) that same probability conditioned
on the protocol ending in leaf w, and for all w let oA(.|w, x) (resp. oB(.|w, y)) be
the probability distribution according to which Alice (resp. Bob) outputs once
they are at the leaf w. Then pout(z|x, y) can be expressed as:

∑
w

(
plf(w|x, y)pout(z|w, x, y)

)

= ∑
w

plf(w|x, y) ∑
zA,zB

zA⊕zB=z

oA(zA|w, x) · oB(zB|w, x)

 .

By correctness of the protocol, pout( f (x, y)|x, y) ≥ 1− ε.

2. Consider p′lf(.|x, y), p′out(.|x, y), p′out(.|w, x, y), ȯA(.|w, x) and ȯB(.|w, y) the ap-
proximations of the above quantities that we encountered building our HXOR
instance. Then the probability p′out(z) that a random row of our weighted
HXOR instance corresponds to a given z is:

∑
w

p′lf(w|x, y) ∑
zA,zB

zA⊕zB=z

ȯA(zA|w, x) · ȯB(zB|w, x)

 .

3. p′lf(.|x, y) is δ-close to plf(.|x, y) in statistical distance. ȯA(.|w, x) is point-wise
δ-close to oA(.|w, x) (and similarly for ȯB and oB).
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Let us consider oA · oB the distribution over z ∈ {0, 1}k defined by oA · oB(z) =

∑z′ oA(z′|w, x) · oB(z ⊕ z′|w, y). Similarly define oA · ȯB and ȯA · ȯB. Point 3 above
implies that ȯA · ȯB is point-wise δ-close to oA · ȯB, which is itself point-wise δ-close to
oA · oB. Therefore, ȯA · ȯB is point-wise 2δ-close to oA · oB. Indeed:

oA · ȯB(z) = ∑
z′

oA(z′|w, x) · ȯB(z⊕ z′|w, y)

≤∑
z′

oA(z′|w, x) ·
(
oB(z⊕ z′|w, y) + δ

)
≤ δ + ∑

z′
oA(z′|w, x) · oB(z⊕ z′|w, y) = δ + oA · oB(z).

A symmetric argument shows the other direction: oA · ȯB(z) ≥ −δ + oA · oB(z).
Thus, oA · ȯB and oA · oB are point-wise δ-close. The same argument applies for oA · ȯB

and ȯA · ȯB, so oA · oB and ȯA · ȯB are point-wise 2δ-close.
Using Lemma 4.32 with V ∼ pout, V ′ ∼ p′out,U ∼ plf, U′ ∼ p′lf, Vu ∼ oA · oB and

V ′u ∼ ȯA · ȯB, we get that p and p′ are point-wise 3δ-close. Since δ was taken to be
1
4

( 1
2 − ε

)
, the probability that the random row of the HXOR instance corresponds to

f (x, y) is:

p′out( f (x, y)) ≥ pout( f (x, y))− 3δ ≥ (1− ε)− 3
4

(
1
2
− ε

)
>

1
2

.

derandomization in the split model Derandomization in the split model
can be achieved in ways very similar to derandomization in the previously studied
models.

Theorem 4.34. Let 0 < ε < 1/2 and f : X ×Y → Z = {0, 1}k. Let R = Rspl,priv
ε ( f ),

M = 16 ·
( 1

2 − ε
)−2 · 2R, ε′ = 5

8 −
ε
4 > 1

2 . There exists a distribution µ over [M] such
that:

Dspl( f ) ≤

2R+1 ·
(

R + log
(

4
1
3−ε

)
+ 1
)
+ k, if ε < 1

3 ,

2R+1 ·
(

R + log
(

8
1
2−ε

)
+ 1
)
+ Dspl

(
HSplitM,k,ε′,µ

)
, ∀ε < 1

2 .

Proof of Theorem 4.34. ε < 1
3 case As in the proof of Theorem 4.31, for each string

z ∈ {0, 1, ∗}k the players estimate their probability of outputting z by solv-
ing a TDE instance. Then the exact same argument that we use in proving
Dspl(HSplitN,k,ε,µ) ≤ k (Proposition 4.22) applies.

ε < 1
2 case This case is similar to what we saw in the proof of Theorem 4.33: we
create a HSplit instance in the same way that we created a HXOR instance to
derandomize a protocol in the XOR model.

In the second case, the HSplit instance can then be solved with O(ε′Mk) com-
munication, the best communication cost we know for this problem. This could be
reduced if a better protocol is found (but we conjecture that it is tight).
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5
L O W E R B O U N D T E C H N I Q U E S F O R L A R G E O U T P U T
F U N C T I O N S A N D O T H E R P R O B L E M S

In the previous chapter, the functions we looked at were mostly artificial and designed
to obtain optimal separations between the different models. In Section 5.2 of this
chapter, we give examples of more natural problems for which changing the model
significantly changes the communication complexity of the problem. The problems we
consider are functions whose inputs have bounded Hamming weight. This promise
makes the two players (or one of the players) start with more information about the
output. For example, limiting the Hamming weight of a Set-Intersection instance
(Definition 5.4) creates a situation where the players know more information about
what they want to compute than an external observer from the very start of the
protocol, since they know that the intersection of their two sets is contained in their
inputs.

In addition, in Section 5.1, we adapt the standard rank lower bound (Proposi-
tion 1.21) to all our output models (Theorem 5.1). While we do not prove any new
lower bound with this result, the section’s merit as a whole is that it shows how to
adapt an existing lower bound to our new communication complexity models, which
might be useful in the future to adapt other lower bound techniques if needed.

Again, the original work presented in this chapter mostly comes from [FLLN20],
with the addition of a few unpublished results.

5.1 adapting lower bounds to other communication models

reconsidering monochromatic rectangles In the open model, since
there is a mapping from leaf nodes to outputs, a communication protocol covers a
communication matrix with monochromatic rectangles.

This is not the case with the other models of computation: in the local model,
the two players can decide to output different elements of Z depending of their
local information (their input and randomness). Whenever the two players output
something different, the result is incorrect, which gives their rectangles a look similar
to permutation matrices. In the unilateral and one-out-of-two models, the rectangles
are striped horizontally of vertically, since a player can change her answer depending
on her input. In the unilateral models, the direction of the stripes is always the same
in all rectangles, while it can vary between rectangles in the one-out-of-two model.

The situation of the split and the XOR models is somewhat different, as their
rectangles have a more complicated structure. In the XOR model, the rectangles
generated by a XOR protocol is similar to the communication matrix XORk.

rank lower bound The ranks of our new rectangles imply the following theo-
rem.

83
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Theorem 5.1. Let f be a total function, then:

Uopen( f ) = Uloc( f ) ≥ Uuni( f ) ≥ U1o2( f ) ≥ log rank(M f )

Uspl( f ) ≥ log rank(M f )− 1

Uxor( f ) ≥ log rank(M f )− log(k + 1)

Proof. Let us call rank of a rectangle of M f the rank of the submatrix of M f obtained
by restricting M f to the rectangle. If there exists a partition of M f into C rectangles
such that the rank of each rectangle is bounded by R, then rank(M f ) ≤ C× R. Since
for every modelM, M f is covered by at most 2UM( f ) rectangles of typeM, we only
need to bound the rank of rectangles of typeM for each modelM.

open, local , unilateral , and one-out-of-two rectangles Rectangles of
those types are of rank at most 1, because of their striped structure. Also note
that open and local rectangles are similar for total functions in the deterministic
setting.

split rectangles Rectangles of this type are of rank at most 2. Intuitively, this
is because the rectangles in this model are of the following form: there exists
numbers a1, . . . , as and b1, . . . , bt such that the value of the cell (i, j) of the
rectangle of size s × t, is ai + bj. The rectangle is then the product of the
following two rank-2 matrices: the s× 2 matrix containing the values a1 to as in
the first column and the value 1 in all cells of the second column and the 2× t
matrix containing only the value 1 in its first line and the values b1 to bt in the
second line, as shown in Figure 19.

1ai ai + bj
1

bj

=

Figure 19: A matrix whose cells Mi,j can be expressed as the sum of the ith entry of a first
vector and the jth entry of another one is of rank at most 2. Split rectangles follow this pattern.

More formally: consider how the k bits of the output are split between the two
players: let us consider the k bit string (si)1≤i≤k such si = 1 iff Alice outputs the
ith bit of the output.

Let us now define the 1× 1 matrix S0 =
[
0
]
, and let Hc and Vc the matrix

transformations defined by:

• Hc(A) =
[
A A + c · J

]
• Vc(A) =

[
A

A + c · J

]
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Now we define three series of matrices S1 . . . Sk, U0 . . . Uk and V0 . . . Vk such that
Si = Ui ×Vi for all i, which will prove that Sk has rank at most 2:

• Let Si+1 =

{
H2i(Si) if si = 0

V2i(Si) if si = 1
.

• Let U0 =
[
0 1

]
and V0 =

[
1
0

]
.

• Let Ui+1 =



Ui if si = 0
Ui

Ui +


2i 0
...

...

2i 0



 if si = 1

• Let Vi+1 =


[

Vi Vi +

[
0 . . . 0

2i . . . 2i

]]
if si = 0

Vi if si = 1

To see that the property Si = Ui ×Vi is true for all i ∈ [k], notice that the second
column of Ui and the top row of Vi only contain 1’s, since this is true for i = 0
and the property is preserved as i increases. Adding a constant c to the second
half of the second line of Vi, this constant gets multiplied by the second column
of Ui, that only contains 1’s. The end result is that we add a c · J matrix to half
of the matrix, which is exactly what we want.

Finally, notice that Sk is a matrix containing all that Alice and Bob can output
in the split model given a specific split. A rectangle in the split model is a
submatrix of a matrix of this form, where some lines and columns have possibly
been permuted or duplicated. Therefore, rectangles in the split model have rank
at most 2.

xor rectangles We prove that rectangles generated by XOR protocols have rank
at most (k + 1).

Consider the communication matrix of the XORk function. An XOR rectangle
can be obtained as a submatrix of this communication matrix, possibly after
permuting or duplicating some rows and columns, thus it suffices to show that
MXORk has rank k + 1. We do this by directly giving a rank k + 1 decomposition
of MXORk

Consider the following 2k × 1 vectors:

• vk is the all-one vector.

• For 0 ≤ i < k, uk,i is such that uk,i
j = (−1)1+ji (for 0 ≤ j < 2k). Such vectors

are sometimes called Hadamard vectors.

Let Sk be the following 2k × (k + 1) matrix:

Sk =
[√

2k−1 − 2−1 · v
√

2−1 · uk,0 . . .
√

2k−2 · uk,k−1
]
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Figure 20: The MXOR3 communication matrix can be obtained by a linear combination of
those matrices.

We have that Sk
tSk = MXORk . Figure 20 gives an intuition of how the MXORk

matrix is obtained.

Figure 21: Rectangles in the open model are monochromatic, while in the unilateral and the
one-out-of-two models they have monochromatic stripes.

5.2 inputs of bounded hamming weight

In this section, we show how restricting the Hamming weight of the inputs in several
functions leads to those functions separating a communication model from another.

More precisely, in this section, we will consider inputs such that at most t bits
of each player’s n-bit input are ones. Let us denote by B2(n, t) the Hamming ball of
radius t in {0, 1}n centered at 0n, and recall the following bound on its size:

Lemma 5.2 (Chapter 10, Corollary 9 in [MS83]). Let 0 < t < n/2. Then:

1√
8t(1− t/n)

2n·H(t/n) ≤ V2(n, t) ≤ 2n·H(t/n).

In what follows, we will consider t ∈ 2o(log(n)), and only use that in this regime:

log (V2(n, t)) ∈ Ω(t · log(n)).

5.2.1 t-Intersection

In the Disjointness problem, two players are each given a subset of [n] and must
compute whether their two sets are disjoint or not. In a natural variation of this
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problem, the size of the subsets of [n] are upper bounded by a parameter t (so t = n
corresponds to the original problem where all subsets are allowed).

Since Disjointness is a Boolean problem, it cannot separate our models of commu-
nication. It is not the case, however, of its large-output variant Intersection, where
Alice and Bob must compute the actual intersection of their sets.

We recall the formal definitions of the problems t−DISJn and t− INTn, what is
known about their complexities, and show that t− INTn separates the local model
from the open model.

Definition 5.3 (t-Disjointness problem). t −DISJn : B2(n, t) × B2(n, t) → {0, 1} is
defined as:

t−DISJn(X, Y) = 1X∩Y=∅.

The usual non-bounded Disjointness problem DISJn : {0, 1}n × {0, 1}n → {0, 1} is
defined as DISJn = n−DISJn.

We now define a natural variation of this problem, with large output.

Definition 5.4 (t-Intersection problem). t − INTn : B2(n, t) × B2(n, t) → B2(n, t) is
defined as:

t− INTn(X, Y) = X ∩Y.

The usual non-bounded Intersection problem INTn : {0, 1}n × {0, 1}n → {0, 1}n is
defined as INTn = n− INTn.

Since the output of t−DISJn is Boolean, its various communication complexities
are essentially the same up to one bit so we do not need to specify the communication
model in the following statement:

Theorem 5.5. Rε(t−DISJn) = Θ(t).

The Ω(t) lower bound comes directly from the Ω(n) lower bound for DISJn
of [KS92, Raz92, BYJKS04], while the O(t) upper bound was proven in [HW07].

Theorem 5.6. For any ε ∈ [0, 1
2 ):

• Rloc
ε (t− INTn) = Θ(t),

• For t ∈ 2o(log(n)), Ropen
ε (t− INTn) = Θ(t · log(n)).

The O(t) upper bound for this problem was proved in [BCK+
14] and the Ω(t ·

log(n)) lower bound in the open model simply comes from the size of the output
(Theorem 2.23 and Lemma 5.2) since |B2(n, t)| = V2(n, t) ∈ Ω(t · log(n)) (for t ∈
2o(log(n))).

5.2.2 t-Find the First Difference

Just as Intersection can be seen as a large-output variant of the Disjointness
problem, Find the First Difference can be thought of as the large-output variant of the
Greater Than problem.

We now define the problems t−GTn and t− INTn, what is known about their
complexities, and show that t− FtFDn separates the one-out-of-two model from the
unilateral model.
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Definition 5.7 (t-Greater Than problem). t −GTn : B2(n, t) × B2(n, t) → {0, 1} is
defined as :

t−GTn(x, y) = 1x>y.

Definition 5.8 (t-Find the First Difference problem). t− FtFDn : B2(n, t)× B2(n, t)→
{0, . . . , n} is defined as:

t− FtFDn(x, y) = min ({i : xi 6= yi} ∪ {n}) .

Theorem 5.9 ([FLLN20]).

• R1o2
ε (t− FtFDn) ∈ O

(
log(t) + log(log(n)) + log

( 1
ε

))
,

• Runi
ε (t− FtFDn) ∈ Ω(log(n)).

Proof of Theorem 5.9.

upper bound on R1o2
ε (t− FtFDn) As an intuition, let us first give a protocol in the

case t = 1.

In this case, Alice and Bob n-bit strings x and y only contain a single 1 each. So
consider iA, iB such that xiA = 1 and yiB = 1. iA, iB ∈ [n], therefore they can be
written as two dlog ne-bit strings.

The players then run the protocol of Feige et al. [FRPU94] to find the first
difference between iA and iB. Doing so, they learn the smallest t such that
(iA)k 6= (iB)k (or dlog(n)e + 1 if it does not exist), and so whether iA < iB,
iA > iB or iA = iB. The player that has the lowest number thus knows the index
of the first difference between x and y, as it is min(iA, iB).

Now consider t unconstrained. To find the first difference between their two
n-bit strings of weight ≤ t, the two players simply construct a Ω(t · log(n))-bit
string made of the indices of their 1 bits (with adequate padding) and use the
protocol of Feige et al. [FRPU94] as in the t = 1 case. More precisely:

• Let wx = |x| ≤ t (resp. wy = |y| ≤ t) be the weight of x (resp. y). Now,
consider indices iA

1 , . . . , iA
t and iB

1 , . . . , iB
t , in {0, . . . , n− 1}∪ {2dlog(n+1)e− 1}

such that:

– iA
j = 2dlog(n+1)e − 1 (an all-1 string) iff j > wx

– xiA
j
= 1, ∀j <= t

– iA
j < iA

j+1, ∀j < t
(and similarly for the iB

j ’s)

Each iA
j can be written on dlog(n+ 1)e bits, so Alice computes a tdlog ne-bit

string sx made of the concatenation of all the iA
j ’s, in order. Bob computes

sy similarly.
Then the two players use the protocol of Feige et al. to obtain the first
difference between sx and sy. Let us note idiff the index of this difference.
Then Alice knows the index of the first difference if (sx)idiff = 0, and
otherwise Bob does. Indeed, let us consider the first case:
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– The fact that there is a 0 on this index for Alice means that this part of
sx corresponds to the position of a 1 in the original n-bit string x, since
we pad with 1’s at the end.

– This position is the index of the leftmost 1 that Alice has but Bob does
not have. Indeed, all positions before the one idiff belongs to are shared
between Alice and Bob. So if Bob also had a 1 in the position in which
idiff appears, then the fact that Alice and Bob find a difference in idiff
means that Bob also has a 1 in a smaller position, which contradicts
the fact that the first difference between sx and sy was such that Alice
has a 0 at that place.

Using Feige et al.’s protocol on a O(t · log(n))-bit string has a cost at
most O

(
log
(

t·log(n)
ε

))
, hence the advertised upper bound.

lower bound on Runi
ε (t− FtFDn) Let us have Alice be the outputting player, and

consider inputs where she always receives the all-0 n-bit string and Bob receives
a random n-bit string with a single 1. Solving Find the First Difference on such
instances would allow Bob to send an information of size log(n) bits to Alice
with Rali

ε (FtFDn) communication and high probability, hence the Ω(log(n))
lower bound.

Note that our one-out-of-two derandomization theorem (Theorem 4.31) shows
that our upper bound is tight for private coin communication complexity, but it may
still be that there is a more efficient public coin protocol in the one-out-of-two or
the XOR model. We now show that Viola’s Ω(log(n)) public coin randomized lower
bound [Vio15] for GTn implies that this protocol is also tight when given access to
public coins.

Theorem 5.10.
Rε(t−GTn) ∈ Ω(log(t) + log log(n))

and as a corollary, Rxor
ε (t− FtFDn) ∈ Ω(log(t) + log log(n)).

Proof of Theorem 5.10. We prove the dependencies in log(t) and in log log(n) indepen-
dently.

proof that Rε(t−GTn) ∈ Ω(log(t)): We remark that GTt reduces to t−GTn in
the same way that DISJt reduced to t − DISJn in the previous section, so
applying Viola’s lower bound [Vio15] yields:

Rε(t−GTn) ≥ Rε(GTt) ∈ Ω(log(t))

proof that Rε(t−GTn) ∈ Ω(log log(n)): We remark that 1−GTn reduces to GTlog(n)
since a way to compare two numbers with a single bit set to one in their binary
representation is to compare the indices of the position of their single one.
Hence, applying Viola’s lower bound [Vio15] again:

Rε(t−GTn) ≥ Rε(1−GTn) ≥ Rε(GTlog(n)) ∈ Ω(log log(n))
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5.2.3 The MAX problem

Definition 5.11 (Maximum problem). MAXn : {0, 1}n × {0, 1}n → {0, 1}n is defined as

MAXn(x, y) =
{

x, if x ≥ y,
y, otherwise.

For this problem, we have:

Theorem 5.12.

R1o2
ε (MAXn) ∈ O(log n), Runi

ε (MAXn) ∈ Ω(n).

The gap is the same (asymptotically, up to multiplicative and additive constants) when
only allowing private coins.

Proof of Theorem 5.12. For the R1o2 upper bound:
The players compute whether x ≤ y or not with high probability using O(log n)

communication, then if x ≤ y Alice outputs x, otherwise Bob outputs y.
For the Runi lower bound: it suffices to show that Rali is large, as symmetry will

imply that therefore Rbob is large as well.
The proof is quite simple: consider the set of 2n input pairs {(0, y) : y ∈ [0, 2n − 1]}.

For those inputs, the MAXn problem is just a problem of one-way communication: it
is clear that he must send Ω(n) bits for Alice to correctly guess his y with probability
at least 1− ε.
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6
Q UA N T U M P R E L I M I N A R I E S

In this chapter, we do a bare minimum introduction to the field of quantum com-
putation that is relevant to this thesis. As the quantum part of this thesis is mostly
concerned with the concept of nonlocality its relationship with communication com-
plexity, we will not in particular explain any of the very important quantum algorithms
that are Grover’s unsorted search [Gro96] or Shor’s algorithms for factoring and dis-
crete logarithm [Sho97] as they are irrelevant to the work developed here. In order
to introduce the concepts necessary to understand nonlocality and the various state-
ments present in this chapter, this introduction could have taken a very different path
than the one we took here. It could have, in particular, mostly used the jargon of
projection operators, or introduced quantum gates and their assemblage into quantum
circuits. The path chosen in this introduction is to completely abstract away anything
resembling the implementation of a quantum computation, and consider at a very
high level how quantum computing differs from classical computing, without going
to the generality of projection operators.

Readers interested in a more thorough introduction to the field of quantum
computing may direct themselves towards the following books [NC16, Aar13] and
lecture notes [dW19].

6.1 quantum for the mathematician

Let us consider a system with n bits of memory: this memory has 2n possible states.
We can see states of this memory as 2n-dimensional vectors (whose coordinates are
all 0 except in a single position i where it is a 1). For example, the 3-bit memory state
001 is represented as the vector

t(
0 1 0 0 0 0 0 0

)
.

Any deterministic computation over n bits associates to any given n bit state
another n bit state. This transformation can be described by a 2n × 2n matrix with 0/1
entries such that each column contains exactly one 1 (so that each state only leads
to one state). When each state leads to exactly one state, i.e., when the matrix is a
permutation matrix, the computation is said to be reversible.

For any non-reversible deterministic computation over n bits, there exists a re-
versible computation over m > n bits that simulates the non-reversible computation
over n bits in the following way: for any n bit input x of the non-reversible com-
putation, pad x with m − n zeroes ; feed this m bit input to the m bit reversible
computation and obtain a y ; discard the last m− n bits of the result, the remaining
n bits are the result we would have obtained by running the original non-reversible
computation on x.1

A randomized computation over a n-bit memory is represented by a 2n× 2n matrix
with entries in [0, 1] such that each column is a vector of `1 norm 1. Cell (j, i) contains

1 When doing this transformation at the circuit level, computations can be turned reversible by using XOR
and NOT gates to simulate AND, OR and NOT gates.
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the probability that the computation ends up in state j when fed state i. In this model,
we can consider probability distributions over all possible states as valid input for the
computation. Such states are all the 2n dimensional vectors with [0, 1] entries of `1

norm 1. When given the 1-bit state
t(

0.5 0.5
)
, we have a 0.5 chance of being in the

state
t(

1 0
)

and a 0.5 chance of being in the state
t(

0 1
)
.

In the randomized setting, a non-reversible transformation can be simulated by a
reversible transformation on more bits where some of the additional bits are random.
As a trivial example, the non-reversible transformation on one bit M can be simulated
by the reversible transformation M′ both shown below, by feeding it as second bit
a bit set to 1 with probability 0.3. Randomness in the computation is replaced by
randomness in the inputs, where some bits act as control bits’.

M =

(
0.7 0.3
0.3 0.7

)
M′ =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


In a quantum computation, valid states are all the 2n complex vectors of `2 norm

1, and reversible computations correspond to the unitary matrices. At the end of the
computation, the probability that we end up in a particular state is the norm of the
state’s entry, squared. This process of taking one of the possible states at random
according to the probability distribution described by the squared values of the norms
of the complex number in the vector is called measurement.

Superposition is of a fundamentally different nature than randomness. While
there is no reversible transformation from a uniformly distributed random bit to a
determined bit, in quantum we can reversibly go from a state that, if measured, would
give 0 or 1 with probability 0.5, to a state that only gives 0 when measured. This is
easily done with the Hadamard gate:

H =
1√
2

(
1 1
1 −1

)

6.2 nonlocality

We have until now considered a system where all the bits of memory may be read and
modified in the computation. Let us now suppose that our system is bipartite, i.e., that
the bits are split between two players. More precisely, the n bits of the system are split
into two sets of bits SA and SB of size nA and nB such that nA + nB = n. The players
are furthermore restricted in that they may only act on the bits in a local manner,
which we define in Definition 6.1. This captures the operations that two players may
do on a system if they really have no access whatsoever to the other player’s bits: a
player may only modify her bits, and does so independently of the state of the other
player’s bits.

Definition 6.1 (Local operations). A local computation M done by Alice is such that:

• Only Alice’s nA bits are affected (Mx,y = 0 for all x, y such that ∃i ∈ SB, xi 6= yi).
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• The result of the computation on Alice’s nA bits does not depend on Bob’s nB bits
(Mx,y = Mx′,y′ for all x, y, x′, y′ such that ∀i ∈ SA, xi = x′i and yi = y′i).

A local transformation done by Bob is symmetrically defined. A local transformation in
general is the multiplication of a local transformation done by Alice and a local transformation
done by Bob.

Proposition 6.2 (Local operations commute). Let MA be a local computation done by
Alice and MB a local computation done by Bob. Then the two transformations commute, i.e.:

MA ·MB = MB ·MA

We previously explained measurement as an operation such that, when applied,
we end in the ith possibility of the 2n possibilities with a probability proportional to
the squared amplitude of element number i in the vector. This is a total measurement:
we collapse the whole quantum state to one possibility, and suddenly fully get access
to the complete state. It is also possible to only measure part of a quantum state, in
which case the state does not necessarily collapse to one possibility. When doing such
a partial measurement in a bipartite setting, Alice is only allowed to measure a subset
of her qubits, and Bob similarly may only measure his qubits.

Definition 6.3 (Partial, local measurements). Let |φ〉 be an n-qubit state, i ∈ [n] be the
index of one of |φ〉’s qubits, and for all x ∈ {0, 1}n, let 〈x | φ〉 be the xth coordinate of |φ〉.
Let p0 and p1 be defined as:

p0 = ∑
x∈{0,1}n :

xi=0

| 〈x | φ〉 |2 p1 = ∑
x∈{0,1}n :

xi=1

| 〈x | φ〉 |2 = 1− p0

And let |φi
0〉 and |φi

1〉 be defined as:

|φi
0〉 =

1
√

p0
∑

x∈{0,1}n :
xi=0

〈x | φ〉 |x〉 |φi
1〉 =

1
√

p1
∑

x∈{0,1}n :
xi=1

〈x | φ〉 |x〉

Then, when measuring |φ〉’s ith qubit, the state evolves into the state |φi
0〉 with probability

p0, and into the state |φi
1〉 with probability p1. In the process, we learn which of those two

evolutions took place.

Let us now consider the following scenario: let two players, Alice and Bob, receive
inputs and random bits, memory bits set to 0, and have them output a specific subset
of their bits after performing local transformations. The players are prevented from
communicating. Given any pair of inputs (x, y), the players output according to a
probability distribution. The set of probability distributions indexed by the inputs the
players can receive is called a behaviour (Definition 6.4). What sort of behaviours may
be obtained in the described scenario, with players acting locally? What behaviours
can be obtained by players that apply local quantum transformations on a quantum
state instead of local classical transformations to a probability distribution?

Definition 6.4 (Behaviour). A behaviour p over the sets X ,Y ,A,B is a family of probabil-
ity distributions over A×B indexed by elements of X ×Y .
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It is an element of [0, 1]X×Y×A×B – whose coordinates we denote by p(a, b|x, y) – that
satisfies ∀x, y, ∑a,b p(a, b|x, y) = 1.

We denote by PA,B
X ,Y the set of behaviours on input sets X and Y and output sets A and B.

When the input and output sets are clear from context, we denote it by P for brevity.

Elsewhere in the literature, behaviours are often referred to as distributions, which
is short for family of probability distributions. When measuring the distance between
two behaviours, we will consider the maximum over all inputs of the statistical
distance between the two distributions associated to a given input pair.

Definition 6.5 (Distance between behaviours). d1(p, p′) = |p− p′|1 is defined as:

|p− p′|1 =
1
2

max
x,y ∑

a,b

∣∣p(a, b|x, y)− p′(a, b|x, y)
∣∣

Investigating the behaviours allowed by different restrictions has fundamentally
changed the way we understand the physical world. Physicists saw a paradox in the
predictions of quantum mechanics, in that they allowed behaviours that some of they
felt ought to be forbidden. In particular, there was an intuition that these predictions
were incompatible with a core principle of relativity theory, that information can not
travel faster than light. Understanding how said predictions of quantum mechanics
and interdiction of faster-than-light information travel was a major breakthrough of
theoretical physics.

Let us first grasp how the impossibility of faster-than-light information travel is
connected to our behaviours. In the setting we described, the players are forbidden
from communicating. A way to enforce this in practice is to put both players far
enough from each other, give them the inputs at a precise time and leave them a short
time to output, so that they do not have the time to exchange messages during the
time we left them to process their inputs. Also, an experiment run that way should not
be able to be used as a black-box to transmit information from one player to the other.
Formally, this means that the choice of input of a player should not influence what
the other player will experience (described by its marginal behaviour, Definition 6.7).
We call such behaviours nonsignaling behaviours (Definition 6.6).

Definition 6.6 (Nonsignaling behaviours). A behaviour p ∈ P is said to be nonsignaling
if the distribution of outputs on one side is independent of the input on the other side:

∀x, x′, y, b : ∑
a

p(a, b|x, y) = ∑
a

p(a, b|x′, y)

∀y, y′, x, a : ∑
b

p(a, b|x, y) = ∑
b

p(a, b|x, y′)

We denote by N S the set of nonsignaling behaviours. 2

Definition 6.7 (Marginal behaviours). The marginal behaviours pA and pB of a nonsignal-
ing behaviour p are defined as:

∀x, a : pA(a|x) = ∑
b

p(a, b|x, y) for an arbitrary y ∈ Y

∀y, b : pB(b|y) = ∑
a

p(a, b|x, y) for an arbitrary x ∈ X

2 This set is also denoted by C in the literature, as it does not violate causality.
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The soundness of Definition 6.7 follows from the properties of nonsignaling
behaviours. In essence, a behaviour is nonsignaling (Definition 6.6) iff its marginals
are well-defined.

Some behaviours are the products of their marginals: ∀x, y, a, b : p(a, b|x, y) =

pA(a|x) · pB(b|y). Such behaviours are called product behaviours. This is not the
typical case.

Behaviours that may be obtained from applying local operations to a probability
distribution are called local behaviours and form the local set.

Definition 6.8 (Local behaviours). A behaviour p ∈ P is said to be deterministic iff it is
the product of two marginals only taking values 0 or 1.

A behaviour is local iff it is a convex combination of deterministic behaviours.
We denote by Ldet the set of deterministic behaviours and by L the set of local behaviours.

The set of local behaviours L naturally form a polytope, as it is the convex hull of
a finite set of points.

Allowing for quantum transformations applied to a quantum state leads to a
different set of behaviours.

Definition 6.9 (Quantum behaviours). A behaviour is quantum iff it can be obtained from
applying local quantum transformation to a quantum state and measuring the result.

We denote by Q the set of quantum behaviours.

This set is convex but is not a polytope. It was also shown to be not closed [Slo19,
DPP19].

For any sets of input X and Y , and sets of output A and B, the three sets we just
mentioned are included into each other.

Proposition 6.10.
L ⊆ Q ⊆ N S

More importantly, for non-trivial input and output sets there exists nonsignaling
behaviours that are not quantum, and quantum behaviours that are not local. This
was understood by Bell, whose seminal Bell’s experiment [Bel64] was the description
of an experiment that would behave according to a behaviour outside of the local set.
The CHSH game [CHSH70] is another famous example of a situation where quantum
allows behaviours previously thought impossible: in this scenario, each player receives
a bit independently of each other and must output a bit such that the XOR of the
output bits is the AND of the input bits. In any local hidden variable theory, this
game can only be won with probability 0.75. However, quantum mechanics predict
that this game can be won with probability 1

2 +
1

2
√

2
≈ 0.85.

To certify that a behaviour is outside of the local set, one can use a Bell inequality
(Definition 6.11). Intuitively, a Bell inequality is a linear equation that every behaviour
in the local set satisfies. By demonstrating that a given behaviour does not satisfy the
equation, one effectively proves it to be outside the local set.

Definition 6.11 (Bell functionals and Bell inequalities). A Bell functional is a linear
form over behaviours.

A Bell inequality is a Bell functional B and a constant c ∈ R such that ∀` ∈ L : B(`) ≤
c.
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L
Q

NS

bias2AND + bias2OR = 1/8

max(biasAND,biasOR) = 1/4

biasAND + biasOR = 1/2

OR

AND

Figure 22: For X = Y = A = B = {0, 1}, a projection of L, Q, and N S on a plane measuring
to what extent a⊕ b = x ∧ y and a⊕ b = x ∨ y. The uniform behaviour is in the middle.

As a direct consequence of the convexity of L, for any behaviour outside of L,
there exists a Bell inequality that certifies its nonlocality.

Bell’s experiment, if confirmed, implies that the physical world cannot be ade-
quately described by a local hidden variable theory. Since Bell’s theoretical discovery,
physical experiments have confirmed the predictions of Bell [AGR81], fundamentally
changing the way we understand the physical world.

6.3 loopholes

It has been pointed out that the experiment we just described may be subject to several
loopholes depending on how one treats certain events.

The detection efficiency loophole is simply based on the fact that the experimental
apparatus does not always work. It is, for example, very common to use photons to
do the CHSH experiment. Pairs of entangled photons are generated by sending a
single photon through a crystal, then separated, rotated depending on inputs x and
y and sent to single photon detectors. These detectors are imperfect: some may not
detect every photon sent to them (inefficiency), some may detect non-existing photons
(dark counts). Now, consider that we play the CHSH game with classical resources,
and the players are allowed to decide not to answer in any particular run (aborting).
By strategically not playing in 0.5 of all runs, the players can win the game every time
they actually play it. And it is enough for classical players to abort in about 0.29 of all
runs to have the same probability of success as optimal quantum players.

Considering such loopholes is not just the sane paranoia of people interested in
cryptography, in particular device-independent cryptography. One can also argue
that aborts ending up boosting the success rate of the experiment may happen by
accident in an experimental setup. A typical case for this could be: maybe the
quantum operations one wants to make when x = 1 or y = 1 are harder to implement
experimentally than the operations of x = 0 and y = 0. Such a situation would
naturally lead to aborting more when x = 1 and y = 1, maybe up to the point that
even an apparatus that does not properly implement the operations and where the
players simply always output a and b such that a⊕ b = 0 would have a probability
of success above 0.75 by the mere fact that inputs that make the system err are also
inputs where the system aborts.
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Over the last decades much effort was devoted to designing and implementing
loophole-free experiments, with recent experiments being able to simultaneously close
the communication and the detection loopholes [HBD+

15].

6.4 nonlocality and lower bounds on communication complexity

It is not clear from this introduction how connected the areas of nonlocality and com-
munication complexity are. Nonlocality is interested with what non-communicating
players can achieve, while communication complexity is interesting in what players
with some amount of communication can compute. We will see shortly that despite
the subjects may appear to be barely overlapping, there are quite a few deep links
that can be found between the two notions.

We already defined classical communication complexity before, let us define what
a quantum communication protocol is.

Definition 6.12 (Quantum communication protocol). A quantum communication protocol
is a classical communication protocol with the addition of quantum resources on which the
players can act locally at any given step of the classical protocol.

More precisely, in a given quantum protocol, the players have access to a quantum state
|φΠ〉, fixed or coming from a fixed distribution, on which they may act locally, and in particular
locally measure. In an Alice-node of the protocol tree, Alice’s decision to send a 0 or a 1 next
may depend on the result of measurements done on her side.

Note that in this definition of a quantum communication protocol, the communi-
cation itself is classical. We know from quantum teleportation that protocols that use
quantum resources and communicate classically use at most twice as much commu-
nication than protocols that use a quantum channel, so considering this model only
potentially imparts a constant multiplicative loss in the communication.

Let us first define the communication complexity of a behaviour.

Definition 6.13 (Communication complexity of a behaviour). Let Π be a classical
communication protocol, and OA,OB two mappings OA : Tπ ×Rpub ×RA ×X → A and
OB : Tπ ×Rpub ×RB ×Y → B. Let pΠ

OA,OB
∈ P be:

pΠ
OA,OB

(a, b|x, y) = Pr,rA,rB [(OA(tπ, r, rA, x),OB(tπ, r, rB, y)) = (a, b)] .

The classical communication complexity R0(p) of a behaviour p is the minimum worst-case
communication cost of a protocol Π such that there exists OA,OB: p = pΠ

OA,OB
. The quantum

communication complexity Q0(p) of a behaviour p is defined similarly.
The classical communication complexity Rε(p) of computing a behaviour p with error ε

is defined as minp′ :|p′−p|1≤ε R0(p′). Its quantum analogue Qε(p) is defined similarly.

Notice that Definition 6.13 is very close to the definitions of the models of commu-
nications of Chapter 4. We will explore the link between the two in Chapter 8. For
now, for any function f : X × Y → {0, 1}k, let us define the behaviour pxor

f that is
naturally connected to computing f in the XOR model:
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Definition 6.14 (XOR behaviour of a function). For any total function f : X × Y →
{0, 1}k, its XOR behaviour pxor

f ∈ N S is defined as:

pxor
f (a, b|x, y) =

{
2−k if a⊕ b = f (x, y)

0 otherwise

Proposition 6.15. For any total function f : X ×Y → {0, 1}k:

Rxor
ε ( f ) = Rε(pxor

f )

Proof. Clearly, Rxor
ε ( f ) ≤ Rε(pxor

f ) since outputting according to any distribution p′

that is ε-close to pxor
f XOR computes f with probability ≥ 1− ε.

Let us prove that Rxor
ε ( f ) ≥ Rε(pxor

f ). Let Π be an optimal protocol that XOR
computes f with error ε. Running this protocol, the players end up outputting
according to a probability distribution pΠ

OA,OB
such that on any pair of input (x, y), the

pair (a, b) that they output is such that a⊕ b = f (x, y) with probability ≥ 1− ε. Now
let us consider the exact same protocol and output mechanisms, with the twist that
instead of outputting their originally computed outputs a and b, the players pick a
random k-bit string s uniformly at random using public randomness and output a⊕ s
and b⊕ s instead. On any (x, y), there is a εxy ∈ [0, ε] such that for any (a, b) such that
a⊕ b = f (x, y), the players output (a, b) with probability 2−k(1− εxy), and the overall
probability that they output something outside of this set of (a, b) is less than εxy.
Therefore, the distribution they simulate is ε-close to pxor

f in statistical distance.

Studying the communication complexity of the behaviour pxor
f is therefore a way

to study the communication complexity of the function f in the XOR model, and
indirectly in other models (especially if the output of f is small, see Proposition 4.19).
As we will see with the next definitions, when the behaviour is outside the local set,
its distance from it gives a lower bound its communication complexity. The same goes
for quantum communication complexity and distance from the quantum set. The ν

and γ2 lower bounds capture this.

Definition 6.16 ([LS09, DKLR11]). The nuclear norm ν of a nonsignaling behaviour p ∈
N S is given by

ν(p) =max
B

B(p)

subject to |B(`)| ≤ 1 ∀` ∈ Ldet.

With error ε, νε(p) = minp′∈N S:|p′−p|1≤ε ν(p′). We call any Bell functional that satisfies the
constraint in the above linear program normalized Bell functional.

Definition 6.17 (γ2 lower bound). The γ2 bound of a nonsignaling behaviour p ∈ N S is
given by

γ2(p) =max
B

B(p)

subject to |B(q)| ≤ 1 ∀q ∈ Q.

With error ε, γ2,ε(p) = minp′∈N S:|p′−p|1≤ε γ2(p′).
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Note that those norms are not defined for all behaviours p ∈ P , but only on
N S. Intuitively, since L, Q and N S live in an space of lower dimension than P ,
constraining the values a Bell functional B can take on L, Q or even N S is not enough
to constrain B on a space of larger dimension like P (Observation 6.18).

Observation 6.18. For ps ∈ P \ N S, max B(ps) subject to |B(p)| ≤ 1, ∀p ∈ N S is
unbounded. A fortiori, the same is true when constraining |B(p)| only over L or Q.

Proof. Since ps 6∈ N S, either ∃a, x, y, y′ such that ∑b ps(a, b|x, y) 6= ∑b ps(a, b|x, y′) or
∃b, y, x, x′ such that ∑a ps(a, b|x, y) 6= ∑a ps(a, b|x′, y). Without loss of generality let us
assume that we are in the first case and let as, xs, ys, y′s be such that ∑b ps(asb|xsys)−
∑b ps(asb|xsy′s) > 0.

For any λ > 0, let Bλ be the Bell functional defined by:

Babxy =


λ when (a, x, y) = (as, xs, ys)

−λ when (a, x, y) = (as, xs, y′s)

0 otherwise

Then for any p ∈ P , Bλ(p) = λ · (∑b p(asb|xsys)−∑b p(asb|xsy′s)), which means
that for any p ∈ N S, Bλ(p) = pA(as|xs) − pA(as|xs) = 0, but Bλ(ps) → ∞ for
λ→ ∞.

ν and γ2 are lower bounds on communication complexity (Theorem 6.19). While
different quantities than the ν and γ2 matrix norms ([LS09]), ν(M f ) and ν(pxor

f ) are
only different by constant factors for f Boolean, as are γ2(M f ) and γ2(pxor

f ).

Theorem 6.19 ([DKLR11]).

R0(p) ≥ log(ν(p))− 1

Q0(p) ≥ log(γ2(p))− 1

A natural question is to what extent the two quantities ν and γ can differ. Do
quantum behaviours q (i.e., such that |γ2(q)| ≤ 1) of arbitrarily large ν(q) exist?
And if such arbitrarily large differences between ν(p) and γ2(p), can they also
happen for small values for the number of inputs, number of outputs, or dimension
of the underlying quantum state in the case of a quantum distribution? For all
those quantities, we know that they limit the maximal Bell violation of a quantum
behaviour q.

Theorem 6.20 ([JPPG+
10, JP11]). Let q ∈ QA,B

X ,Y with N = max(|X |, |Y|),
K = max(|A|, |B|), and D = dim(|φq〉). Then:

|ν(q)| ∈ O(min(N, K, D))

In particular, for behaviours p with Boolean outputs and uniform marginals, ν(p)
and γ2(p) are known to be separated by at most the real Grothendieck constant3.

Theorem 6.21. Let A = B = {0, 1}. For all p ∈ N S with uniform marginals:

γ2(p) ≤ ν(p) ≤ (2κG + 1) · γ2(p)
3 Its value is known to be between 1.676 and 1.782 [Kri77, Ree93, BMMN11]
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This shows that the ν and γ2 are useless if our goal is to prove an asymptotic
separation between classical and quantum communication complexity. As an example,
consider the Disjointness problem (Definition 5.3). It is known that Rε(DISJn) ∈ Ω(n)
and that Qε(DISJn) ∈ O(

√
n). The second point implies that log γ2(pxor

DISJn
) ∈ O(

√
n).

By Theorem 6.21, log ν(pxor
DISJn

) ∈ O(
√

n), so ν does not give a tight lower bound on
the classical communication complexity of DISJn.

6.5 noise and efficiency resistance

Let us assume that we have a quantum behaviour q and a Bell inequality B which
exhibits B(q) > 1 while |B(`)| ≤ 1 for all ` ∈ L. The quantum behaviour is generated
by an experimental apparatus. As that apparatus is imperfect, it actually generates a
behaviour q′, close to q. Now the question is: is our generated approximation of q
enough to violate our Bell inequality?

While it is clear that as linear functions, a given Bell functional can not have
arbitrarily large variations when slight changes are applied to the behaviour that
is passed as input, to which extent the Bell functionals we consider have bounded
variations is not immediately clear. In absence of any constraint on the Bell functional,
one could consider a family of Bell functionals for which small changes to the input
result in increasingly large changes in Bell value. The fact a Bell functional B is
bounded on the local set, however, means that diluting a quantum behaviour q with a
local behaviour ` (by considering a convex combination of the two) will only change
the Bell value to an extent we can bound: B((1− ε)q + ε`) ≥ (1− ε)B(q)− ε

6.6 inefficiency-resistant bell inequalities

To account for inefficiency in the apparatus, we introduce a new output symbol ⊥
that represents outcomes where the experiment did not produce a standard output.
Experiments where the players work with a pair of entangled photons are typical
cases of this: although the technology to detect a single photon has improved in the
last decades, achieving both high precision (avoiding “dark counts”, i.e., detecting a
photon that does not exist) and high recall (efficiency, i.e., detecting every photon that
hits the apparatus), while satisfying other constraints such as the wavelength of the
photons and optimizing the rate at which the detector can be used, is hard.

Definition 6.22 (Behaviour sets with abort). Let X , Y , A, and B be the usual input
and output sets. Let ⊥ be a symbol outside A ∪ B. The sets L⊥, Q⊥, and N S⊥ are the
local, quantum, and nonsignaling sets over larger sets of output sets A⊥ = A ∪ {⊥} and
B⊥ = B ∪ {⊥}:

L⊥ = LA
⊥,B⊥
X ,Y

Q⊥ = QA
⊥,B⊥
X ,Y

N S⊥ = N SA
⊥,B⊥
X ,Y

When considering a Bell inequality B over such sets, its coefficients Babxy are always 0
whenever a = ⊥ or b = ⊥, unless otherwise explicitly specified.
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The sets of Definition 6.22 are the natural expansions of the sets we defined earlier
when we want to take into account additional events that those previously considered
(the original output sets A and B of Alice and Bob), events where the experiment fails.
All cases where the original experiment did not go as planned and did not result in a
normal output in A for Alice or in B for Bob are joined in an abort event, represented
by the ⊥ symbol.

Definition 6.23 (Efficiency bounds (dual form) [LLR12]). The ε-error efficiency bound of
a behaviour p ∈ P is given by

effε(p) =max
B,β

β

subject to B(p′) ≥ β ∀p′ ∈ P s.t. |p′ − p|1 ≤ ε,

B(`) ≤ 1 ∀` ∈ L⊥det.

We call any Bell functional that satisfies the second constraint in the above program inefficiency-
resistant Bell functional. The ε-error quantum efficiency bound of a p ∈ P is

eff∗ε(p) =max
B,β

β

subject to B(p′) ≥ β ∀p′ ∈ P s.t. |p′ − p|1 ≤ ε,

B(q) ≤ 1 ∀q ∈ Q⊥.

We denote eff = eff0 and eff∗ = eff∗0 the 0-error bounds.

Although it may not be straightforward from the above definition due to the
presence of absolute values, the program for the classical efficiency bound is linear, as
a consequence of L⊥det being a polytope (see [LLR12]).

Using inefficiency-resistant Bell inequalities instead of normalized Bell inequalities
to certify nonlocality has the advantage to take into account by default abort events.
Using normalized Bell inequalities in the presence of abort events requires either an
additional assumption (such as: abort events happen randomly, non-adversarially) or
an additional analysis (such as: the violation B(p) > c we observe is still a violation if
the abort events occur in less than pc of the runs).

The classical and quantum efficiency bounds are known to be lower bounds on
communication complexity (Theorem 6.24), as well as to be stronger lower bounds
than ν and γ2 (Theorem 6.25)

Theorem 6.24 ([Mas02], Theorems 1 and 3 in [LLR12]). For all p ∈ P and ε ∈ [0, 1
2 ):

Rε(p) ≥ log effε(p)

Qε(p) ≥ log eff∗ε(p)

Theorem 6.25 (Theorem 4 in [LLR12]). For all p ∈ N S and ε ∈ [0, 1
2 ):

νε(p) ≤ 2effε(p)− 1

γ2,ε(p) ≤ 2eff∗ε(p)− 1
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The classical efficiency bound is known to be strictly stronger than ν, as for example
it captures the communication complexity of Disjointness (log effε(pxor

DISJn
) ∈ Ω(n)),

which we have seen is not captured by ν.
The classical efficiency bound is tightly related to the partition bounds we defined

in Section 2.1. In fact, one can define a partition bound for behaviours which is
equivalent to the classical efficiency bound.

Optimization program 6.26 (Partition bound for behaviours [LLR12]).

prt(p) =min ∑
R,`

wR,`

subject to: ∑
R,`

wR,` · `(a, b|x, y) = p(a, b|x, y) (58)

wR,` ≥ 0 ∀R, ` (59)

Where R ranges over rectangles of X ×Y and ` ranges over `det.
The ε-error partition bound for behaviours is defined as prtε(p) = minp′ :|p′−p|1≤ε prt(p′).

Proposition 6.27. For any behaviour p ∈ P and ε ∈ [0, 1
2 ) we have:

prtε(p) = effε(p)

For any function f : X ×Y → {0, 1}k we have:

prtε(p
xor
f ) ≤ prtε( f ) ≤ prtε(p

xor
f ) + 22k

Proof. We only prove the second point, as the first one was treated in [LLR12].
To obtain prtε(p

xor
f ) ≤ prtε( f ), consider an optimal solution of prtε( f ). Now, for

each (R, z) such that wR,Z > 0 in this solution, set wR,`a = 2−kwR,z for each a ∈ {0, 1}k,
where `a ∈ Ldet is such that l(a, a ⊕ z|x, y) = 1 for all x, y. This gives a feasible
solution to prtε(p

xor
f ) of value prtε( f ).

To obtain prtε( f ) ≤ 22k · prtε(p
xor
f ), consider an optimal solution of prtε(p

xor
f ).

Now, for each (R, `) such that wR,` > 0, for each (a, b) ∈ {0, 1}2k, consider Ra,b :
{x, y ∈ R : `(a, b|x, y) = 1}. For each pair (R, `), we assign to each pair (Ra,b, (a⊕ b))
the weight wRa,b,a⊕b = wR,`. These weights form a feasible solution to prtε( f ), of value
at most 22k · prtε(p

xor
f ).

This multiplicative gap of 22k is inevitable, as prtε( f ) lower bounds communication
complexity in the open model (and is tight – for example – on the XORn problem
with error ε = 0), while prtε(p

xor
f ) is related to communication complexity in the XOR

model.
We close this section with the primal form of the efficiency lower bound, which

we will need in the next section.
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Definition 6.28 (Efficiency bounds (primal form) [LLR12]). The efficiency bound of a
distribution p ∈ P is given by

eff(p) = min
ζ,µ`≥0

1
ζ

subject to ∑
`∈L⊥det

µ` · `(a, b|x, y) = ζ · p(a, b|x, y) ∀(a, b, x, y) ∈ A×B×X×Y

∑
`∈L⊥det

µ` = 1

The quantum efficiency bound of a p ∈ P is

eff∗(p) =min
ζ,q

1
ζ

subject to q(a, b|x, y) = ζ · p(a, b|x, y) ∀(a, b, x, y) ∈ A×B×X×Y

The ε-error efficiency bounds are given by:

effε = min
p′∈P :
|p′−p|1≤ε

eff(p′) and eff∗ε = min
p′∈P :
|p′−p|1≤ε

eff∗(p′)

Note that there are no primal-dual gaps for the optimization programs considered.
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7
N O N L O C A L I T Y A N D C O M M U N I C AT I O N C O M P L E X I T Y

In this chapter, we further explore the relationship between normalized (Defini-
tion 6.16) and inefficiency-resistant (Definition 6.23) Bell inequalities. In Section 7.1,
we show how to modify a normalized Bell inequality B to make it inefficiency-resistant,
while not distorting the values B takes over N S too much (Theorem 7.1).

Then, in Section 7.2, we introduce the quantity effC (Definition 7.7), for which our
previous theorem shows that it is equivalent to ν for C = 1, and becomes equivalent
to eff when C → ∞. This quantity is useful in that it contributes to our understanding
of how sensitive to noise inefficiency-resistant Bell inequalities are and have to be. We
show that effC becomes equivalent to eff when C reaches a value that only depends
on the sizes of the input sets (Theorem 7.12), therefore inefficiency-resistant Bell
inequalities over some fixed input sets do not have to be arbitrarily sensitive to noise.

In a recent work [BCG+
16], Buhrman and collaborators demonstrated a way to

construct normalized Bell inequalities from gaps between quantum and classical
communication complexity (Theorem 7.13). In Section 7.3, we show how to construct
inefficiency-resistant Bell inequalities from gaps between the classical and quantum
efficiency bounds (Theorem 7.14). The two results are incomparable in that they have
different prerequisites and yield a different type of Bell inequality. We then show
how to translate lower bounds like the corruption bound and a stronger variant of it
into inefficiency-resistant Bell inequalities (Theorem 7.17), which we then apply to
various problems to obtain explicit Bell inequality violations from lower bounds of
the literature (Corollaries 7.27, 7.29, 7.31, and 7.32) .

Most of the work presented in this chapter comes from [LLN+
18], the rest being

unpublished results.

7.1 making normalized bell inequalities inefficiency-resistant

We saw previously that the classical efficiency bound is a stronger lower bound than
ν. More precisely, Theorem 6.25 implies that for any normalized Bell inequality B and
nonsignaling behaviour p such that B(p) > 1, there exists an inefficiency-resistant
Bell inequality B′ such that B′(p) > 1

2 (1 + ν(p)) > 1. However, neither Theorem 6.25

nor its proof say how to find such a B′, in particular because its proof used the primal
of the ν and eff optimization programs, while the Bell inequality formulations of ν

and eff are their dual.
In this section, we show how to explicitly construct a Bell inequality that is both

normalized and inefficiency-resistant from any normalized Bell inequality, such that
the violation on any given behaviour stays essentially the same. This is the object of
Theorem 7.1.

107
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Theorem 7.1 ([LLN+
18]). Let B be a normalized Bell functional on A×B ×X ×Y

and p ∈ N S a nonsignaling behaviour such that B(p) ≥ 1. Then there exists a
normalized Bell functional B∗ on (A∪ {⊥})× (B ∪ {⊥})×X ×Y with 0 coefficients
on the ⊥ outputs such that:

∀p ∈ N S : B∗(p) ≥ 1
3

B(p)− 2
3

, and ∀` ∈ L⊥det : |B∗(`)| ≤ 1.

Before proving Theorem 7.1, remark that some Bell inequalities in the literature
are already both normalized and inefficiency-resistant, in particular the CHSH Bell
inequality (Remark 7.2). For such Bell inequalities, our result is of course useless.

Remark 7.2. Let us consider the normalized Bell inequality of the CHSH game [CHSH70],
BCHSH, of binary inputs and outputs, defined as:

BCHSH
abxy =

{
1
2 when a⊕ b = x ∧ y

− 1
2 otherwise

Its absolute value is bounded by 1 on the local set, and there exists q ∈ Q : B(q) =
√

2.
BCHSH is also inefficiency-resistant: ∀` ∈ L⊥, B(`) ≤ 1.

To prove Theorem 7.1, we first make a few observations and prove a few lemmas,
starting by a simple observation that any nonconstant normalized Bell inequality may
be saturated (Observation 7.3), in the sense that a normalized Bell inequality that does
not reach the values −1 and 1 on the local set is suboptimal, in the sense that there
exists an essentially similar normalized Bell inequality with an higher violation on
the same behaviour.

Observation 7.3. Let B be a nonconstant normalized Bell functional and p ∈ N S such
that B(p) ≥ 1. Consider `− ∈ Ldet such that B(`−) = m = min{B(`)|` ∈ Ldet} and
`+ ∈ Ldet such that B(`+) = M = max{B(`)|` ∈ Ldet}. We have −1 ≤ m < M ≤ 1
because B is normalized and nonconstant.

The Bell functional B̃ defined by

B̃abxy =
1

M−m

(
2 · Babxy −

M + m
|A| · |B| · |X | · |Y

)
is such that B̃(`+) = 1, B̃(`−) = −1, |B̃(`)| ≤ 1 for all ` ∈ Ldet, and B̃(p) ≥ B(p).

Next, Definition 7.4 below is the first step our construction of an inefficiency-
resistant Bell inequality from a normalized Bell inequality. It takes two marginal
behaviours mA and mB, and a normalized Bell functional B, and constructs a Bell
functional B⊥mA,mB

whose value over every behaviour p ∈ N S⊥ coincides with the
value of B over the behaviour p′ ∈ N S obtained from p by replacing the abort events
with samples from mA and mB. Note that B⊥mA,mB

may have nonzero coefficients on
abort events, which we will need to remove to obtain an inefficiency-resistant Bell
inequality.
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Definition 7.4. For all two families of distributions, mA = (mA(·|x))x∈X over outcomes
in A for Alice and mB = (mB(·|y))y∈Y over outcomes in B for Bob, and any normalized
Bell functional B with coefficients only on nonaborting events, we define the Bell functional
B⊥mA,mB

on (A∪ {⊥})× (B ∪ {⊥})×X ×Y by

(B⊥mA,mB
)a,b,x,y = Ba,b,x,y + χ{⊥}(a) ∑

a′ 6=⊥
mA(a′|x)Ba′,b,x,y

+ χ{⊥}(b) ∑
b′ 6=⊥

mB(b′|y)Ba,b′,x,y

+ χ{⊥}(a)χ{⊥}(b) ∑
a′,b′ 6=⊥

mA(a′|x)mB(b′|y)Ba′,b′,x,y

where χS is the indicator function for set S taking value 1 on S and 0 everywhere else.

Observation 7.5. Let fmA,mB : N S⊥ → N S be the function that replaces abort events on
Alice’s (resp. Bob’s) side by a sample from mA (resp. mB) (note that fmA,mB preserves locality).
Then, for every mA, mB and B as in Definition 7.4, the Bell functional B⊥mA,mB

satisfies that

B⊥mA,mB
(p) = B( fmA,mB(p)), ∀p ∈ N S⊥,

so B⊥mA,mB
(p) = B(p), for all p ∈ N S, and |B⊥mA,mB

(`)| ≤ 1, for all ` ∈ L⊥.

Next, in Lemma 7.6 below, we do without the abort coefficients in the Bell func-
tionals B⊥mA,mB

.

Lemma 7.6. Let B′ be a normalized Bell functional on A⊥ × B⊥ ×X × Y (possibly with
nonzero weights on ⊥). Then the Bell functional B′′ on the same set defined by

B′′a,b,x,y = B′a,b,x,y − B′a,⊥,x,y − B′⊥,b,x,y + B′⊥,⊥,x,y (60)

for all (a, b, x, y) ∈ (A∪ {⊥})× (B ∪ {⊥})×X ×Y
satisfies:

1. If a = ⊥ or b = ⊥ then B′′a,b,x,y = 0

2. for all p ∈ N S,

B′′(p) = B′(p)− B′(pA,⊥)− B′(p⊥,B) + B′(p⊥,⊥), (61)

where pA,⊥ ∈ L⊥ (resp. p⊥,B ∈ L⊥) is the local behaviour obtained from p if Bob (resp.
Alice) replaces all of his (resp. her) outputs by ⊥, and p⊥,⊥ ∈ L⊥ is the local behaviour where
both Alice and Bob always output ⊥. In Item 2 above, for all p′,

B′(p′) = ∑
(a,b)∈A⊥×B⊥

∑
(x,y)∈X×Y

B′a,b,x,y · p′(a, b|x, y)

where the first sum is also over the abort events.

Proof. Item 1 follows from (60). We prove Item 2. For p ∈ N S⊥ with marginals
pA and pB, we have: for all y ∈ Y, pA(a|x) = ∑b∈B⊥ p(a, b|x, y), and for all x ∈ X,
pB(b|y) = ∑a∈A⊥ p(a, b|x, y). For the remainder of this proof, summations involving a
(resp. b) are over a ∈ A⊥ (resp. b ∈ B⊥).
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By definition, pA,⊥(a, b|x, y) = pA(a|x)χ{⊥}(b), p⊥,B(a, b|x, y) = χ{⊥}(a)pB(b|y),
and p⊥,⊥(a, b|x, y) = χ{⊥}(a)χ{⊥}(b). We have:

B′′(p) = ∑
a,b,x,y

[
B′a,b,x,y − B′a,⊥,x,y − B′⊥,b,x,y + B′⊥,⊥,x,y

]
p(a, b|x, y)

= ∑
a,b,x,y

B′a,b,x,y p(a, b|x, y)− ∑
a,x,y

B′a,⊥,x,y ∑
b

p(a, b|x, y)

− ∑
b,x,y

B′⊥,b,x,y ∑
a

p(a, b|x, y) + ∑
x,y

B′⊥,⊥,x,y ∑
a,b

p(a, b|x, y)

= B′(p)− ∑
a,x,y

B′a,⊥,x,y pA(a|x)− ∑
b,x,y

B′⊥,b,x,y pB(b|y) + ∑
x,y

B′⊥,⊥,x,y

= B′(p)− B′(pA,⊥)− B′(p⊥,B) + B′(p⊥,⊥).

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. If B is constant, since it is normalized by assumption, we have
B ≡ 1. Thus, we can simply take B∗ defined by: for all (x, y) ∈ X ×Y , B∗a,b,x,y = Ba,b,x,y

if (a, b) ∈ A×B, and B∗a,b,x,y = 0 otherwise.

Now, let us assume that B is not constant and let `−, `+ ∈ Ldet, and B̃ constructed
from B as in Observation 7.3 satisfying B̃(`−) = −1 and B̃(`+) = 1. Since `− and `+

are deterministic behaviours: `− = `−A ⊗ `−B and `+ = `+A ⊗ `+B where `−A , `−B , `+A , and
`+B are `−’s and `+’s marginal behaviours.

We consider the replacing Bell functional B⊥
`−A ,`−B

(resp. B⊥
`+A ,`+B

) from Definition 7.4

constructed from (B̃, `−A , `−B ) (resp. from (B̃, `+A , `+B )). Taking B′ = 1
2 (B⊥

`−A ,`−B
+ B⊥

`+A ,`+B
),

we have |B′(`)| ≤ 1, for all ` ∈ L⊥, and therefore we can apply Lemma 7.6 to get B′′

from B′.
Since B′(p⊥,⊥) =

1
2 (B⊥

`−A ,`−B
(p⊥,⊥)+ B⊥

`+A ,`+B
(p⊥,⊥)) =

1
2 (B̃(`−)+ B̃(`+)) = 0, by (61)

we have for all p ∈ N S⊥, B′′(p) = B′(p)− B′(pA,⊥)− B′(p⊥,B). Hence, denoting
B∗ = 1

3 B′′, B∗ satisfies all the required properties since |B′(`)| ≤ 1 for all ` ∈ L⊥ and
therefore we have for all p ∈ N S,

B∗(p) ≥ 1
3

B′(p)− 1
3
|B′(pA,⊥)| −

1
3
|B′(p⊥,B)| ≥

1
3

B′(p)− 2
3

,

and for all ` ∈ L⊥,

|B∗(`)| ≤ 1
3
|B′(`)|+ 1

3
|B′(`A,⊥)|+

1
3
|B′(`⊥,B)| ≤ 1.

Remark that Theorem 7.1 only implies that ∀p ∈ N S, ν(p) ≤ 3eff(p) + 2, a
weaker result than Theorem 6.25. This is in part because we not only construct an
inefficiency-resistant Bell inequality from a normalized one, but also keep this new
Bell inequality normalized. The proof of Theorem 7.1 is easily adapted to obtain a
proof that ν(p) ≤ 2eff(p) + O(1) ∀p ∈ N S. Denoting by c the minimum value such
that ∀p ∈ N S, ∃B, ν(p) ≤ c · B(p) + O(1) and ∀` ∈ Ldet, |B(`)| ≤ 1, we proved that
c ≤ 3. We leave computing its exact value as an open question.
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7.2 interpolation between ν and eff

We saw with Theorem 7.1 above that inefficiency-resistance comes at a small cost
for normalized Bell inequalities. And we have seen that eff is a much stronger
communication complexity lower bound than ν on some problems.

Clearly, when a behaviour p ∈ N S is such that ν(p)� eff(p), an optimal solution
B of the eff linear program is necessarily such that ∃` ∈ L, B(`) < −1. Otherwise, B
would be a normalized Bell inequality, and we would have eff(p) = B(p) ≤ ν(p), in
contradiction with our hypothesis. This asks the question: for an optimal solution B
of eff, can we bound how negative it needs to be on the local set? This leads us to
our next definition, efficiency with a lower bound on its value over the local set with
abort.

Definition 7.7. The C-constrained efficiency bound of a behaviour p ∈ P is given by

effC(p) =max
B

B(p)

subject to C ≤ B(`) ≤ 1 ∀` ∈ L⊥det.

Its ε-error variant is defined as effC,ε(p) = minp′ :|p′−p|1≤ε effC(p′).

For C = 1, we obtain a lower bound eff1 that is essentially of the same order of
magnitude than ν, as shows the next corollary of Theorem 7.1.

Corollary 7.8 (ν = Θ(eff1)). For all p ∈ N S:

eff1(p) ≤ ν(p) ≤ 3 · eff1(p) + 2

However, a difference between eff1 and ν is that eff1 is defined over P , while ν is
only defined over N S.

Setting C = 1 only gives a lower bound more or less equivalent to ν. What about
letting C take large values? Do we need C to take large values for effC to be equivalent
to eff? This is the question behind the next definition.

Definition 7.9. C∗p is defined as the minimum value such that eff(p) = effC∗p(p), i.e.:

C∗p = max
B,`min

− B(`min)

subject to B(`) ≤ 1 ∀` ∈ L⊥det

B(p) = eff(p).

Clearly, for any p ∈ P , there exists C∗p ∈ R+ such that eff(p) = effC∗p(p): it
suffices to take an optimal solution B of eff(p) and to set C∗p = −min`∈L⊥det

B(`). But
can we put an upper bound on C∗p? And for all the behaviours p with the same
input and output sets X , Y , A, and B, can we upper bound maxp∈PA,B

X ,Y
C∗p? This

would be an indication of the sensitivity to noise of our given inefficiency-resistant
Bell inequalities: indeed, let us assume that instead of our original behaviour p, we
simulate a mixture of p with a local behaviour `. If the final behaviour is p with
probability 1− α, and ` with probability α, the Bell violation we will see at the end
will be at least (1− α)eff(p)− αC∗p. We will see that our inefficiency-resistant Bell
inequalities are very sensitive to this type of noise.
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Lemma 7.10. For all p ∈ N S and C ≥ 1:

effC(p) ≤ C · eff1(p) ≤ C · ν(p)

Proof. The proof relies on two simple arguments.

• The dual (maximizing) linear program of eff1(p) is the same linear program
as the dual linear program of ν(p) with more constraints: B is constrained in
absolute value over L⊥ instead of L. Therefore, eff1(p) ≤ ν(p).

• For all feasible solution B to the effC linear program, 1
C B is a feasible solution to

the eff1 linear program. Therefore, 1
C effC(p) ≤ eff1(p).

As a corollary, we get:

Corollary 7.11. For any p ∈ N S:

C∗p ≥
eff(p)
ν(p)

This means that any inefficiency-resistant Bell inequality B that is an optimal
solution to eff(p) such that eff(p) � ν(p) is necessarily sensitive to an adversarial
dilution with local noise.

eff

eff1

ν

C · ν
C · eff1

effC

C∗1
C

Figure 23: A visualization of Lemma 7.10.

We now show that we can bound C∗p in only the number of inputs.

Theorem 7.12. For all p ∈ PA,B
X ,Y with |X | · |Y| ≥ 2:

C∗p ≤ |X | · |Y| · (|X | · |Y| − 2)

Proof. Let `xy→ab ∈ L⊥ denote the behaviour such that Alice outputs a on x with
probability 1, Bob outputs b on y with probability 1, and they abort on other inputs.

Consider B such that eff(p) = B(p) and B(`) ≤ 1, ∀` ∈ L⊥det.
∀a, b, x, y ∈ A×B ×X ×Y , Babxy = B(`xy→ab) ≤ 1.
Consider B′: B′abxy = max(2− #X #Y , Babxy). By definition of B′, B′(p) ≥ B(p), ∀p ∈

P . Let us prove that B′(`) ≤ 1, ∀` ∈ L⊥det
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∀` ∈ L⊥det, consider a` : X → A and b` : Y → B such that `abxy = δa=a`(x)δb=b`(y).
For a given ` ∈ L⊥det, there are two cases:

• either ∀x, y, Ba`(x)b`(y)xy ≥ 2− |X | · |Y|, so B′(`) = B(`) ≤ 1

• or, ∃x∗, y∗ s.t Ba`(x∗)b`(y∗)x∗y∗ < 2 − |X | · |Y| and therefore B′a`(x∗)b`(y∗)x∗y∗
=

2− |X | · |Y|. Then:

B′(`) = ∑
x,y

B′a`(x)b`(y)xy

= ∑
x,y:

B′a`(x)b`(y)xy
≤0

B′a`(x)b`(y)xy + ∑
x,y:

B′a`(x)b`(y)xy>0

B′a`(x)b`(y)xy

≤ B′a`(x∗)b`(y∗)x∗y∗ + ∑
x,y:

B′a`(x)b`(y)xy>0

Ba`(x)b`(y)xy

≤ B′a`(x∗)b`(y∗)x∗y∗ + ∑
x,y 6=x∗,y∗

1

= 2− |X | · |Y|+ |X | · |Y| − 1

= 1

So B′ is a feasible solution to eff(p) with B′(p) ≥ B(p) = eff(p). Since the
coefficients of B′ are lower bounded by 2 − |X | · |Y|, B(`) ≥ |X | · |Y|(2 − |X | ·
|Y|), ∀` ∈ L⊥. Hence eff(p) = eff|X |·|Y|(|X |·|Y|−2)(p) for any p, that is C∗p ≤ |X | ·
|Y|(|X | · |Y| − 2).

7.3 bell violations from the superiority of quantum communication

We have seen previously that certifying the nonlocality of a behaviour can provide
a lower bound on the communication complexity of a problem. May some sort of
opposite result be possible? Can we leverage our knowledge of the classical and
quantum communication complexities of a function to construct nonlocal scenarios,
and particularly Bell inequality violations achievable by quantum resources?

This question was investigated a few years ago by Buhrman et al.[BCG+
16] in an

article in which they constructed behaviours and Bell inequalities from large enough
quantum advantages in communication complexity for a given problem.

Theorem 7.13 (Theorem 1 in [BCG+
16]). For any function f , let us denote R = R2/3( f )

and Q = Q2/3( f ) its classical and quantum communication complexities. Then there exists a
normalized Bell inequality B f and a quantum behaviour q f such that:

B(q f ) ≥
√

R
6
√

30 ·Q
(1− 2−Q)2Q

The result made use of a recent technique known as port-based teleportation [IH08,
IH09]. In this teleportation scheme, the setting is similar to the usual quantum
teleportation scheme: two players share a fixed quantum state and one player wants
to send some arbitrary quantum state to the other player. In both the standard and
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the port-based teleportation schemes, the sending player acts locally on the state
she wants to send and does a measurement. Then she sends information about the
results of this measurement to the other player. What differs between the two schemes
is visible in what this information is about and what the receiving player must do.
In the standard quantum teleportation scheme, the information tells the receiving
player what correction she must apply to her side of the shared state so that this
quantum register contains the state the other player wanted to send. In the port-based
teleportation scheme, the information tells the receiving players in which part of the
shared quantum state she will find an approximation of the sent state (the shared
quantum state is divided into ports on her side). In port-based teleportation, the sent
state is on the receiver’s side even before the information about where to find it is
transmitted. Consequently, the receiver may perform a computation on all possible
receiving ports, and only know later in which port she performed the computation
on the state she wanted to perform the computation on. This is not possible with
the standard teleportation scheme, in which the state is completely scrambled on the
receiving end before the information to unscramble it arrives.

The authors in [BCG+
16] leveraged this to turn a quantum communication pro-

tocol into a nonlocal scenario. The quantum protocol is transformed to only use
port-based teleportation as communication primitive and so that the current state of
execution is fully contained in the information that gets transmitted back and forth (to
remove the need for memory on both sides). The players obtain a nonlocal scenario
by doing all the possible executions of the transformed protocol: at each round of the
protocol, the players run the computation on each receiving port. This requires an
exponential number of ports since for each round of communication in the original
protocol, the players continue the protocol on all possible receiving ports, and for
each receiving port the next round of communication will require separate ports.

In the end, the players are left with an enormous state divided in blocks such that
each block corresponds to a way the teleportations may have occurred. That is, if the
first teleportation teleported in port P1, the second in port P2, and so on, then the
result of the full protocol is in a block indexed by (P1, P2, . . .). The players may run the
protocol without communicating, and only exchange the indices of the ports where
the result is at the end. Without this communication at the end, what the players are
doing is a behaviour that is in the quantum set. If C, the amount of communication
necessary to exchange the port indices is lower than R, the classical communication
complexity of computing the function f that the original quantum protocol computes,
then the behaviour is not in the local set, as simulating the behaviour and exchanging
C bits of communication allows the player to compute f .

While Theorem 7.13 gives a general way of constructing normalized Bell inequali-
ties of arbitrarily large Bell violation using known gaps in communication complexity,
it has several drawbacks. First, it is far from saturating the bounds of Theorem 6.20, as
shown in Table 1. Secondly, it requires large enough gaps between quantum and clas-
sical communication complexity to work: subquadratic gaps are insufficient. Finally,
the dimension of the underlying quantum state is a double exponential in Qε( f ).

We propose another approach, which is to construct inefficiency-resistant Bell
inequalities from known gaps in communication complexity. This is the subject
of Theorem 7.14. Our result is incomparable to Theorem 7.13 in that it allows to
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Parameter Upper bound Ad hoc lower
bounds

Best possible
lower bound

from [BCG+
16]

Number of
inputs N

2c ≤ N [LS09,
DKLR11, JPPG+

10]

√
N

log(N)
[JP11]

√
c

q ≤ log(N)

Number of
outputs K

O(K) [JP11] Ω
(

K
(log(K))2

)
[BRSdW12]

≤ log(K)

Dimension d O(d) [JPPG+
10] Ω

(
d

(log(d))2

)
[BRSdW12]

≤ log log(d)

Table 1: Bounds on quantum violations of bipartite normalized Bell inequalities, in terms
of the dimension d of the local Hilbert space, the number of settings (or inputs) N and the
number of outcomes (or outputs) K per party. In the fourth column, we compare ad hoc
results to the recent constructions of [BCG+

16] (Theorem 7.13) which gives a lower bound
of
√

c
q , where c (resp. q) stands for the classical (resp. quantum) communication complexity

of simulating a distribution. We give upper bounds on their construction in terms of the
parameters d, N, K.

construct a nonlocal experiment from smaller gaps between classical and quantum
communication complexity, with smaller quantum states, but it only works with
functions whose classical communication complexity is captured by the partition
bound, and it gives an inefficiency-resistant Bell inequality instead of a normalized
one.

Theorem 7.14 ([LLN+
18]). For any distribution p ∈ P and any 0 ≤ ε′ ≤ ε ≤ 1, if

(B, β) is a feasible solution to the dual of effε(p) and (ζ, q) is a feasible solution to the
primal for eff∗ε′(p), then there is a quantum distribution q ∈ Q such that

B(q) ≥ ζ · β and B(`) ≤ 1, ∀` ∈ L⊥det ,

and in particular, if both are optimal solutions, then

B(q) ≥ effε(p)
eff∗ε′(p)

.

The distribution q has one additional output per player compared to the distribution p.

Proof. Let (B, β) be a feasible solution to the dual of effε(p) (Definition 6.23), p′ be
such that eff∗ε′(p) = eff∗(p′) with |p′ − p|1 ≤ ε′, and (ζ, q) be a feasible solution to
the primal for eff∗(p′) (Definition 6.28).

From the constraints, we have q ∈ Q⊥, q(a, b|x, y) = ζ p′(a, b|x, y) for all (a, b, x, y) ∈
A×B ×X ×Y , B(`) ≤ 1 for all ` ∈ L⊥det, and B(p′′) ≥ β for all p′′ s.t. |p′′ − p|1 ≤ ε.
Then B(q) = ζB(p′) ≥ ζβ.
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However, q ∈ Q⊥ but technically we want a distribution in Q (not one that aborts).
So we add a new (valid) output ‘A’ to the set of outputs of each player, and they
should output ‘A’ instead of aborting whenever q aborts. The resulting distribution,
say q ∈ Q (with additional outcomes ‘A’ on both sides), is such that B(q) = B(q)
(since the Bell functional B does not have any weight on ⊥ or on ‘A’).

Theorem 7.14 might seem rarely applicable on the basis that eff∗ upper bounds
and eff lower bounds are rare in the literature. This is not the case, as quantum
communication protocols are easily translated into feasible solutions to the primal
of eff∗, and most known lower bounds on communication complexity are easily
translated into feasible solutions to the dual of eff. Corollary 7.15 shows the first point
about the conversion of quantum communication protocols into feasible solutions of
eff∗, and next (Theorem 7.17) we show how to convert corruption-type lower bounds
into eff lower bounds. Explicit examples with well known functions are to come, in
Section 7.5.

Corollary 7.15 ([LLN+
18]). For any distribution p ∈ P and any 0 ≤ ε′ ≤ ε ≤ 1 such

that Rε(p) ≥ log(effε(p)) ≥ c and Q∗ε′(p) ≤ q, there exists an explicit inefficiency-
resistant B derived from the efficiency lower bound, and an explicit quantum distribution
q ∈ Q derived from the quantum protocol such that:

B(q) ≥ 2c−2q.

Proof. Let (B, β) be an optimal solution to effε(p) and let c be such that effε(p) =

β ≥ 2c. By optimality of B, we have B(p′) ≥ 2c for any p′ such that |p′ − p|1 ≤ ε.
Since Q∗ε′(p) ≤ q, there exists a q-qubit quantum protocol (possibly using preshared
entanglement) for some distribution p′ with |p′ − p|1 ≤ ε′ ≤ ε. Then, we can use
teleportation to obtain a 2q classical bit, entanglement-assisted protocol for p′. We
can simulate it without communication by picking a shared 2q-bit random string and
running the protocol but without sending any messages. If the measurements do
not match the string, output a new symbol ‘A’ (not in the output set of the quantum
protocol and different from ⊥). We obtain a quantum distribution q such that:

B(q) = B(p′)/22q ≥ 2c−2q

7.4 explicit bell inequalities from the corruption bound

Corollary 7.15 above dealt with the construction of quantum behaviours from quantum
communication protocols, i.e., the upper bound end of Theorem 7.14, let us now
explain how to construct explicit Bell inequality violation from the corruption bound.
Introduced by Yao in [Yao83], the corruption bound is a very useful lower bound
technique that was used, e.g., in [Raz92] to get a tight Ω(n) lower bound on the
randomized communication complexity of Disjointness.

Before translating the corruption bound into the efficiency bound, let us formally
restate it (Theorem 7.16).
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Theorem 7.16 (Corruption bound [Yao83, BFS86, KN97]). Let f be a (possibly partial)
Boolean function on X × Y . Given γ, δ ∈ (0, 1), suppose that there is a distribution µ on
X ×Y such that for every rectangle R ⊆ X ×Y

µ(R ∩ f−1(1)) > γµ(R ∩ f−1(0))− δ

Then, for every ε ∈ (0, 1),

2Rε( f ) ≥ 1
δ

(
µ( f−1(0))− ε

γ

)
.

See, e.g., Lemma 3.5 in [BPSW06] for a rigorous treatment. For several problems,
such a µ is already known. In Theorem 7.17 below, we show how to construct a Bell
inequality violation from this type of bound.

Theorem 7.17 ([LLN+
18]). Let f be a (possibly partial) Boolean function on X × Y ,

where X ,Y ⊆ {0, 1}n. Fix z ∈ {0, 1}. Let µ be an input distribution, and (Ui)i∈I (resp.
(Vj)j∈J) be a family of pairwise non-overlapping subsets of f−1(z̄) (resp. of f−1(z)).
Assume that there exists g : N→ (0,+∞) such that, for any rectangle R ⊆ X ×Y

∑
i∈I

uiµ(R ∩Ui) ≥∑
j∈J

vjµ(R ∩Vj)− g(n). (62)

Then, the Bell functional B given by the following coefficients: for all a, b, x, y ∈ {0, 1} ×
{0, 1} × X × Y ,

Ba,b,x,y =


1/2(−ui · g(n)−1µ(x, y)) if (x, y) ∈ Ui and a⊕ b = z,

1/2(vj · g(n)−1µ(x, y)) if (x, y) ∈ Vj and a⊕ b = z,

0 otherwise.

(63)

satisfies

B(`) ≤ 1, ∀` ∈ L⊥det, (64)

B(pxor
f ) =

1
2 · g(n) ∑

j
vjµ(Vj) (65)

and for any p′ ∈ P such that |p′ − pxor
f |1 ≤ ε :

B(p′) ≥ 1
2 · g(n)

[
∑

j
vjµ(Vj)− ε

(
∑

j
|vj|µ(Vj) + ∑

i
|ui|µ(Ui)

)]
. (66)

Proof. Let us first set Bz,x,y = Ba,b,x,y for all a⊕ b = z. Let ` ∈ L⊥det. Then, we have:

B(`) = ∑
(x,y)∈R

Bz,x,y + ∑
(x,y)∈S

Bz,x,y

where R and S are the two rectangles where ` outputs z. Let us take a rectangle R.
Then :

∑
(x,y)∈R

Bz,x,y =
1

2 · g(n)

(
∑

j
vjµ(Vj ∩ R)−∑

i
uiµ(Ui ∩ R)

)
≤ 1/2
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with the inequality following from (62). This proves (64).
Let us now compute B(pxor

f ). By linearity of B and the definition of its coefficients,
we have:

B(pxor
f ) = ∑

a,b,x,y
Ba,b,x,y pxor

f (a, b|x, y)

=
1
2 ∑

(x,y)∈ f−1(z),a,b

Ba,b,x,yχ{z}(a⊕ b) +
1
2 ∑

(x,y)∈ f−1(z̄),a,b

Ba,b,x,yχ{z̄}(a⊕ b)

= 1/2 ∑
j

∑
(x,y)∈Vj

vjg(n)−1µ(x, y)

=
1

2 · g(n) ∑
j

vjµ(Vj)

(for the third equality we used the fact that Ba,b,x,y = 0 when a⊕ b = z̄). This proves
(65).

Moreover, for any family of additive error terms ∆(a, b|x, y) ∈ [−1, 1] such that

∑
a,b
|∆(a, b|x, y)| ≤ ε ∀x, y ∈ X ×Y ,

denoted collectively as ∆, we have

|B(∆)| =
∣∣∣∣∣ ∑

a,b,x,y
Ba,b,x,y∆(a, b|x, y)

∣∣∣∣∣
=

1
2 · g(n)

∣∣∣∣∣∣ ∑
a,b : a⊕b=z

∑
i

∑
(x,y)∈Ui

(−ui)µ(x, y)∆(a, b|x, y)

+ ∑
j

∑
(x,y)∈Vj

vjµ(x, y)∆(a, b|x, y)

∣∣∣∣∣∣
≤ 1

2 · g(n)

∑
i

∑
(x,y)∈Ui

|ui|µ(x, y)

(
∑
a,b
|∆(a, b|x, y)|

)

+ ∑
j

∑
(x,y)∈Vj

|vj|µ(x, y)

(
∑
a,b
|∆(a, b|x, y)|

)
≤ ε

2 · g(n)

[
∑

i
|ui|µ(Ui) + ∑

j
|vj|µ(Vj)

]

From this calculation and (65), we obtain, for p′ = pxor
f + ∆ :

B(p′) = B(pxor
f ) + B(∆) ≥ 1

2 · g(n)

[
∑

j
vjµ(Vj)− ε

(
∑

j
|vj|µ(Vj) + ∑

i
|ui|µ(Ui)

)]
,

which proves (66).

For many other problems in the literature, such as Vector in Subspace and Tribes
(Definitions 7.21 and 7.19), stronger variants of the corruption bound are needed to
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obtain good lower bounds. These stronger variants have been shown to be no stronger
than the partition bound (more specifically, the relaxed partition bound) [KLL+

15].
The generalization in Theorem 7.17 of the hypothesis of Theorem 7.16, which the
reader might have noticed, allows us to construct explicit Bell functionals also for
these problems. The corruption bound corresponds to setting I = J = {1}, (Ui)i∈I =

{ f−1(1)}, (Vj)j∈J = { f−1(0)}, u1 = 1, v1 = γ, and g(n) = δ.

7.5 explicit examples

In this section, we apply Theorem 7.14 to explicit problems from the literature, whose
known lower bounds are easily translated into a Bell inequality through Theorem 7.17.
Once such problem we consider is the Disjointness problem (Definition 5.3).

Proposition 7.18. For 0 < ε < 1
2 ,

• Rε(DISJn) ∈ Θ(n).

• Qε(DISJn) ∈ Θ(
√

n).

The Ω(
√

n) lower bound on the quantum communication complexity was proved
in [Raz03], while the upper bound was successively improved first from O(

√
n log(n))

[BCW98] to O(
√

nclog∗(n)) [HdW02] (where c is a constant), and then to O(
√

n) [AA05].
We note that a O(

√
t log(t)) quantum protocol for t−DISJn with constant error can be

derived from [BCW98] with standard techniques (starting by hashing the set elements
from [n] to [Θ(t2)]). The best lower bound for the same problem being Ω(

√
t), there

is still a gap between the best known lower and upper bounds for this problem1.
In addition to Disjointness, let us define a few problems that we have not yet

encountered in this thesis and that also give a gap between classical and quantum
communication complexity.

Definition 7.19 (Tribes). For x, y ∈ {0, 1}n, the Tribes function is defined as:

TRIBESn(x, y) =

√
n∧

i=1

√n∨
j=1

(x(i−1)
√

n+j ∧ y(i−1)
√

n+j)

 .

The Tribes function is easily visualized as a depth-3 tree composed of an AND
operator of arity

√
n at the root,

√
n OR operators of arity

√
n on the second level, and

n simple AND operators of arity 2 at the last level. By a Theorem of [BCW98], that
Tribes corresponds to such a small formula automatically gives an efficient quantum
protocol for it, see Proposition 7.20.

Proposition 7.20. For 0 < ε < 1
2 ,

• Rε(TRIBESn) ∈ Θ (n) [HJ13],

• Qε(TRIBESn) ∈ O
(√

n log2(n)
)

[BCW98].

1 We thank Ronald de Wolf for an interesting discussion on this topic.
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In the Vector in Subspace Problem VSPθ,n, Alice is given an n/2-dimensional
subspace of an n dimensional vector space over R, and Bob is given a vector. The
vector and subspace are such that either Bob’s vector lies close to the subspace (at
distance at most θ), in which case the function evaluates to 1, or it lies close to the
orthogonal subspace (at distance at most θ), in which case the function evaluates to 0.
Note that the input set of VSPθ,n is continuous, but it can be discretized by rounding,
which leads to the problem ṼSPθ,n (see [RK11] for details).

Definition 7.21 (Vector in Subspace [Kre95]). Let H ⊆ Rn be an n/2 vector space, v ∈ Rn

be a unit vector, and θ ∈ [0, 1). The Vector in Subspace problem is defined as:

VSPθ,n(H, v) =

{
1 if minu∈H〈u, v〉 ≤ θ

0 if minu∈H>〈u, v〉 ≤ θ

The Vector in Subspace problem is important in that it shows that some problems
admit one-way quantum protocols that requires exponentially less communication
that the best possible interactive classical protocol, as described in Proposition 7.22.

Proposition 7.22. For 0 < ε < 1
2 ,

• Rε(VSPn) ∈ O
(√

n
)

[Raz99],

• Rε(VSPn) ∈ Ω
(
n1/3) [RK11],

• Qε(VSPn) ∈ Θ (log(n)) [Kre95].

The Gap Orthogonality (ORT) problem was introduced by Sherstov as an in-
termediate step to prove a lower bound for the Gap Hamming Distance (GHD)
problem [She12]. We derive an explicit Bell inequality for ORT from Sherstov’s lower
bound of Ω(n), shown in [KLL+

15] to be a relaxed partition bound. (Applying
Corollary 7.15 also gives a (non-explicit) violation for GHD.) The quantum upper
bound is O(

√
n log n) by the general result of [BCW98].

Definition 7.23 (Gap Orthogonality). Let ORTn : {−1,+1}n×{−1,+1}n → {−1,+1}
be the partial function defined as in [She12] by:

ORTn(x, y) =

{
−1 if |〈x, y〉| ≤

√
n

+1 if |〈x, y〉| ≥ 2
√

n

Proposition 7.24. For 0 < ε < 1
2 ,

• Rε(ORTn) ∈ Ω (n) [She12],

• Qε(ORTn) ∈ O
(√

n log(n)
)

[BCW98].

We now recall for the Disjointness, Tribes, Vector in Subspace and Gap Orthogo-
nality problems what is known in the literature that allow us to apply Theorem 7.17.
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disjointness In [Raz92], Razborov proved the following.

Lemma 7.25 ([Raz92]). There exist two distributions µ0 and µ1 with supp(µ0) ⊆ DISJ−1
n (1)

and supp(µ1) ⊆ DISJ−1
n (0), such that: for any rectangle R in the input space,

µ1(R) ≥ Ω(µ0(R))− 2Ω(n).

Following his proof, one can check that we actually have:

µ1(R) ≥ 1
45

µ0(R)− 2−εn+log2(2/9).

So, letting µ := (µ0 + µ1)/2,

µ(R ∩ f−1(0)) ≥ 1
45

µ(R ∩ f−1(1))− 2−εn+log2(4/9). (67)

Remark 7.26. Actually, supp(µ1) = A1 := {(x, y) : |x| = |y| = m, |x ∩ y| = 1} ⊆
DISJ−1

n (0).

This yields:

Corollary 7.27 ([LLN+
18]). There exists an inequality-resistant Bell inequality B,

B(pxor
DISJn

) =
1
90

2εn−log2(4/9),

and for any distribution p′ ∈ P such that |p′ − pxor
DISJn
|1 ≤ ε,

B(p′) ≥ 2εn−log2(4/9) 1− 46ε

90
.

The coefficients of the inefficiency-resistant Bell inequality of Corollary 7.27 are
explicit, obtained from Theorem 7.17 and Lemma 7.25.

tribes In [HJ13][Sec. 3] the following is proven:

Lemma 7.28. There exists a probability distribution µ on {0, 1}n × {0, 1}n for which there
exist numbers α, λ, γ, δ > 0 such that for sufficiently large n and for any rectangle R in the
input space:

γµ(U1 ∩ R) ≥ αµ(V1 ∩ R)− λµ(V2 ∩ R)− 2−δn/2+1

where U1 = TRIBES−1
n (0), {V1, V2} forms a partition of TRIBES−1

n (1) and µ(U1) =

1− 7β2/16, µ(V1) = 6β2/16, µ(V2) = β2/16 with β = r+2
r+1 .

In [HJ13], the coefficients are α = 0.99, λ = 16
3(0.99)2 and γ = 16

(0.99)2 (the authors say
these values have not been optimized).

Combining this result with our Theorem 7.17 (taking z = 1, i = 1, j = 2, U1, V1, V2

as in Lemma 7.28, u1 = γ, v1 = α, v2 = −λ, and g(n) = 2−δn/2+1), we obtain:
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Corollary 7.29 ([LLN+
18]). There exists an inefficiency-resistant Bell inequality satis-

fying:

B(pxor
TRIBESn

) = 2δn/2−1 β2

16
(6α− λ),

and for any distribution p′ ∈ P such that |p′ − pxor
TRIBESn

|1 ≤ ε,

B(p′) ≥ 2δn/2−1
[

β2

16
(6α− λ)− ε(γ(1− 7β2/16) + λβ2/16 + α6β2/16)

]
.

gap orthogonality In [She12], Sherstov proves the following result.

Lemma 7.30 ([She12]). Let δ > 0 be a sufficiently small constant and µ the uniform
measure over {0, 1}n × {0, 1}n. Then, µ( f−1

n (+1)) = Θ(1) and for all rectangle R in
{0, 1}n × {0, 1}n such that µ(R) > 2−δn,

µ(R ∩ f−1
n (+1)) ≥ δµ(R ∩ f−1

n (−1)).

This implies that if we put uniform weight on inputs of ORT64n of the form
(x64, y64) and put 0 weight on the others, we get a distribution µ′ suitable for the
Corruption Bound (Theorem 7.16), a special case of Theorem 7.17, for ORT64n, with
γ = δ and g(64n) = 2δn.

To get a distribution over inputs of ORT64n+l for all 0 ≤ l ≤ 63 we extend µ′ as
follows:

µ̃(xu, yv) =



µ′(x, y) if u = +1l , v = −1l and

{
〈x, y〉 < −

√
64n

or 0 ≤ 〈x, y〉 ≤
√

64n

µ′(x, y) if u = +1l , v = +1l and

{
−
√

64n ≤ 〈x, y〉 < 0

or 〈x, y〉 >
√

64n

0 otherwise

Using this distribution µ̃ we obtain a Bell inequality violation for ORT64n+l for all
0 ≤ l ≤ 63:

Corollary 7.31 ([LLN+
18]). There exists an inefficiency-resistant Bell inequality B,

B(pxor
ORT64n+l

) = 2δnδµ̃(ORT−1
64n+l(−1)),

and for any distribution p′ ∈ P such that |p′ − pxor
ORT64n+l

|1 ≤ ε,

B(p′) ≥ 2δn
(

δµ̃(ORT−1
64n+l(−1))− ε

[
δµ̃(ORT−1

64n+l(−1)) + µ̃(ORT−1
64n+l(+1))

])
.

More precisely, Theorem 7.17 gives an explicit construction of such a Bell inequality:
we can define B as:

Ba,b,x,y =


−2δnµ̃(x, y) if (x, y) ∈ ORT−1

64n+l(+1) and a⊕ b = −1

δ2δnµ̃(x, y) if (x, y) ∈ ORT−1
64n+l(−1) and a⊕ b = −1

0 otherwise.
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vector in subspace For the Vector in Subspace problem, we do not give the
explicit coefficients but as Klartag and Regev [RK11] proved that the randomized
communication complexity of this problem is Ω(n1/3) and [KLL+

15] proved that this
is also a lower bound on the relaxed partition bound of this problem,

Proposition 7.32. There exists an inefficiency-resistant Bell inequality B such that:

B
(
pxor

VSPn

)
∈ 2Ω(n1/3)−O(log n)

With the Bell inequalities given in Corollaries 7.27, 7.29, 7.31 and 7.32, using
then the efficient quantum protocols for computing those functions, we obtain Bell
inequality violations for all those problems.

Problem
Normalized Bell

violations [BCG+
16]

Inefficiency-resistant Bell
violations (this work)

VSP
[Raz99, RK11]

Ω
(

6
√

n/
√

log n
)

d = 2Θ(n log n), K = 2Θ(n)
2Ω( 3√n)−O(log n)

d = 2O(log n), K = 3

DISJ
[Raz92, Raz03,

AA05]

N/A 2Ω(n)−O(
√

n)

d = 2O(
√

n), K = 3

TRIBES
[JKS03, BCW98]

N/A 2Ω(n)−O(
√

n log2 n)

d = 2O(
√

n log2 n), K = 3

ORT
[She12, BCW98]

N/A 2Ω(n)−O(
√

n log n)

d = 2O(
√

n log n), K = 3

Table 2: Comparison of the Bell violations obtained by the general construction of Buhrman et
al. [BCG+

16] for normalized Bell violations (second column) and this work, for inefficiency-
resistant Bell violations (see Corollaries 7.27, 7.29, 7.31, and 7.32). The parameter n is the size
of the input (typically, N = 2n.) The construction of Buhrman et al. only yields a violation
when the gap between classical and quantum complexities is more than quadratic. In the case
where the gap is too small to prove a violation, we indicate this with “N/A”.

As the gaps between the classical and quantum communication complexities of the
Disjointness, Gap Orthogonality and Tribes problems are subquadratic, Theorem 7.13

of Buhrman et al. does not apply to those problems (or more precisely, it is not able
to construct a Bell inequality violation from them) while our own Theorem 7.14 does.
This is visible in Table 2, that summarizes the Bell inequalities that both theorems are
able to construct, and in Figure 24, that gives a visualization of where the problems
we mentioned lie regarding the applicability regions of the two theorems.
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R � Q 2
eff � Q

R � Q

eff
� eff

∗

DISJORT

TRIBES
VSP ?

Figure 24: An illustration of the different applicability regions of Theorem 7.13 and Theo-
rem 7.14. There are problems in the literature for which both constructions apply, e.g. VSP,
and problems for which only our construction applies, e.g. DISJ, ORT, and TRIBES (see Table
2). Whether there exists any problem in the region in which R� Q2 but eff ≈ eff∗ (indicated
by a question mark in the picture), for which Theorem 7.13 applies but our Theorem 7.14 does
not, is, to our current knowledge, an open question.



8
E F F I C I E N C Y A N D L A R G E O U T P U T S

We saw in a previous chapter that efficiency may be used to lower bound the commu-
nication complexity of a function in the XOR model (Proposition 6.15) by introducing
the appropriate behaviour related to the function (Definition 6.14). In this final
chapter, we show that for many of our models, computing in the considered model
is equivalent to simulating a particular behaviour. This observation allows us to
construct lower bounds that are as strong in essence as the partition bounds, but
lower bound models weaker than the open model (Proposition 8.12). Some models,
however, are not captured by a single behaviour and are equivalent to simulating any
of a large set of behaviours. On our way to those results, we give a general framework
(Definition 8.1) of which all our output models are particular cases (Proposition 8.3).

The work presented in this chapter is not available in any previously published
material.

8.1 output models understood as a referee applying a fixed function

All models except the open model are similar in that the players receive some inputs,
communicate, and output something locally at the end. In any output model, it is
demanded of the players that they output in a certain way, and what the players
compute together can be seen as a function of what they output locally. In general,
we may say that the players, given a relation g and a function h, try to compute g
relative to h, where this last part means that the players try to locally output such
that the image of their outputs by h is an element of g(x, y), or simply g(x, y) if g is a
function (Definition 8.1). This is a bit similar to a referee model, in which the players
have to each send a message to a referee who then must be able to compute g(x, y)
with those messages, with the key differences that here, the referee always applies the
same function h on the messages she receives, and the communication of sending the
messages to the referee does not count in the communication cost.

Definition 8.1. Let:

• g : X ×Y → 2Z be a relation (to compute),

• h : A×B → Z ∪ {⊥} be a function,

• Π : Rpub ×X ×RA ×Y ×RB → Tπ be a protocol.

The protocol Π is said to h-compute g with error ε iff there exist mappings MA :
Tπ ×Rpub ×X ×RA → A andMB : Tπ ×Rpub ×X ×RA → A such that:

∀x, y : Pr,rA,rB [h (MA(tπ, r, x, rA),MB(tπ, r, y, rB)) ∈ g(x, y)] ≥ 1− ε

where we use the shorthand tπ = Π(r, x, rA, y, rB)
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A way to think about this definition is to liken it to a model of communication
with a referee, but in which the behaviour of the referee is fixed (h determines it) and
the communication with the referee does not count. The difficulty of h-computing
g varies with both g and h: we have seen several examples of this with our various
models of communication and our different problems. However complex a relation g
is, for some functions h, h-computing g is trivial, as shows Remark 8.2.

Remark 8.2. The empty protocol trivially f -computes any f .

To every model of communicationM we defined except the open model corre-
sponds a function hM such that computing a relation g in modelM is the same as
hM-computing g.

Proposition 8.3. Let g be a relation X ×Y → 2Z , and:

• hloc : Z ∪ {⊥} ×Z ∪ {⊥} → Z ∪ {⊥} is defined by:

hloc(zA, zB) =

{
zA if zA = zB

⊥ otherwise

• hali : Z ∪ {⊥} ×Z ∪ {⊥} → Z ∪ {⊥} is defined by:

hali(zA, zB) = zA

• hbob : Z ∪ {⊥} ×Z ∪ {⊥} → Z ∪ {⊥} is defined by:

hbob(zA, zB) = zB

• h1o2 : Z ∪ {⊥} ×Z ∪ {⊥} → Z ∪ {⊥} is defined by:

h1o2(zA, zB) =


zA if zB = ⊥
zB if zA = ⊥
⊥ otherwise

• hspl : {0, 1, ∗}k × {0, 1, ∗}k → {0, 1, ∗}k is defined by:

hspl(zA, zB) = zA ∧split zB

• hxor : {0, 1}k × {0, 1}k → {0, 1}k is defined by:

hxor(zA, zB) = zA ⊕ zB

A protocol Π:

• locally computes g iff it hloc-computes g.

• unilaterally computes g iff it hali-computes or hbob-computes g.

• one-out-of-two computes g iff it h1o2-computes g.
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• split computes g iff it hspl-computes g.

• XOR computes g iff it hxor-computes g.

The functions defined in Proposition 8.3 allow us to say, for any behaviour, what it
is computing in any given model. For any z ∈ Z ∪ {⊥}, on inputs (x, y) a behaviour
p computes z with probability ∑ a,b:

hM(a,b)=z
p(a, b|x, y). This allows us to define, for any

function, and in all models except the open model, behaviours such that computing
those behaviours corresponds to computing f in the considered model. In many
models, we can even link computing the function to simulating (up to some error) a
unique behaviour.

We begin with the local model, which is captured by a single behaviour (Proposi-
tion 8.5).

Definition 8.4 (Local behaviour of a function). For any total function f : X ×Y → Z ,
its local behaviour ploc

f ∈ P is defined as:

ploc
f (a, b|x, y) =

{
1 if a = b = f (x, y)

0 otherwise

Proposition 8.5. For any function f : X ×Y → Z :

Rloc
ε ( f ) = Rε(ploc

f )

The unilateral models are similarly each captured by a single behaviour (Proposi-
tion 8.7).

Definition 8.6 (Unilateral behaviours of a function). For any total function f : X ×Y →
Z , its Alice behaviour pali

f ∈ P is defined as:

pali
f (a, b|x, y) =

{
1 if a = f (x, y)

0 otherwise

The Bob behaviour is defined similarly.

Proposition 8.7. For any function f : X ×Y → Z :

Rali
ε ( f ) = Rε(pali

f ), and Rbob
ε ( f ) = Rε(pbob

f )

Things become more complicated with in the one-out-of-two model. In this model,
there are many valid ways of correctly outputting a function, and they do not easily
reduce to one as in the XOR model (Proposition 8.9).

Definition 8.8 (One-out-of-two behaviours of a function). For any function f : X ×Y →
Z , its one-out-of-two behaviours P1o2

f ⊆ P are defined as:

P1o2
f =

p1o2 : ∀x, y, ∑
a,b:∈{( f (x,y),>),(>, f (x,y))}

p1o2
f (a, b|x, y) = 1
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Proposition 8.9. For any function f : X ×Y → Z :

R1o2
ε ( f ) = min

p1o2
f ∈P

1o2
f

Rε(p1o2
f )

The Split model is similar to the one-out-of-two model in that computing in this
model is captured by a family of behaviours and not just a single one (Proposi-
tion 8.11).

Definition 8.10 (Split behaviours of a function). For any function f : X ×Y → {0, 1}k,
its split behaviours P spl

f ⊆ P are defined as:

P spl
f =

pspl : ∀x, y, ∑
a,b:

a∧splitb= f (x,y)}

pspl
f (a, b|x, y) = 1


Proposition 8.11. For any function f : X ×Y → {0, 1}k:

Rspl
ε ( f ) = min

pspl
f ∈P

spl
f

Rε(p
spl
f )

8.2 output models captured by a single behaviour

Summarizing what we developed in this chapter, we see that in some models of
communication, one can lower bound the communication complexity of a function
through the efficiency bound applied to a single behaviour (Proposition 8.12). The
same holds, of course, with eff∗ and quantum communication complexity.

Proposition 8.12. For ε ∈ [0, 1) and total function f :

• Rloc
ε ( f ) ≥ effε(ploc

f ).

• Rali
ε ( f ) ≥ effε(pali

f ) and Rbob
ε ( f ) ≥ effε(pbob

f ).

• Rxor
ε ( f ) ≥ effε(pxor

f ).

When computing with other output models or computing a relation, one can
consider the minimum of the efficiency bound over a set of behaviours, however this
yields a more complicated lower bound. When doing so with the classical efficiency
bound, this still gives a linear program.

Unfortunately, as of now, we do not have any example where Proposition 8.12

is useful. Let us sketch for what kind of function this proposition could be useful.
Consider a function f and the efficiency bound applied to its XOR behaviour pxor

f ,
that is, say we are trying to prove an interesting lower bound on Rxor

ε ( f ) by consider-
ing effε(pxor

f ). If f has an output much smaller than its communication complexity,
there is no point in considering effε(pxor

f ) instead of prt( f ): the two lower bound
techniques would essentially be of the same order of magnitude. But if we review
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all the large output functions in this thesis, the only ones for which we do not have
tight lower bounds are the Hidden XOR (Definition 4.20) and Hidden Split (Defini-
tion 4.21) problems, which are partial functions. Finding an interesting application
to Proposition 8.12 requires first finding a total function with a large output whose
communication complexity is much lower than the size of its outputs.
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C O N C L U S I O N

Closing this thesis, after delving first into communication complexity, some lower
bounds techniques used in the field, and the special case of functions with a large
output, then studying quantum nonlocality, constructing nonlocal scenarios from the
superiority of quantum in communication complexity and making the bridge between
a lower bound on behaviour and large output functions, let us revisit some of our
main results.

In Chapter 2, combining previous works by Ganor et al. [GKR16a] and Prab-
hakaran and Prabhakaran [PP16], we proved an exponential separation between
communication complexity and the partition bound. In Chapter 4, we showed that
error reduction can still be done efficiently in the very weak communication models
that are the XOR model and the split model, in addition to hopefully giving a clearer
picture of what computing in the communication complexity scenario can mean and
what differences the exact definition may entail. In Chapter 5, we showed that it was
also the case for some natural problems that they have a different communication
complexity depending on the model in which we study them, specifically for problems
with inputs of bounded Hamming weight. In Chapter 7, we showed how to build
Bell inequalities that are efficiency-resistant by construction, and how many known
lower bounds in communication complexity could be translated into Bell inequalities
that may be sensitive to arbitrary noise but are robust against inefficiency.

Let us finish with a few questions that this thesis raises, and takeaway messages.

from our work on large output functions Our work on large output
functions suggests a few questions, the first being: can we use the work developed
here for problems coming from other fields of complexity theory? Communication
complexity has been quite successful in proving lower bounds in other fields, like
query complexity, distributed computing, proof complexity, and data structures, to
name some of the main currently known applications of communication complexity.

Another question raised by our work on large output functions is whether we
can improve Theorem 4.27, about error reduction in the XOR model. A way to
do this would be to prove a better upper bound than is currently known on the
communication complexity of solving many instances of Equality (Rε(EQ⊗k

n ) ∈
O
(
k log

( 1
ε

))
[FKNN95], see Proposition 1.36). A complexity as low as O

(
k + log

( 1
ε

))
is not forbidden by Theorem 1.9, and proving such an upper bound would improve
our error-reduction result to the extent that doing error reduction in the XOR model
would be no more costly (in order of magnitude) than error reduction in the open
model (Theorem 1.22). We do not know whether this is possible, or if a stronger,
error-dependent lower bound can be proved for EQ⊗k

n .
As final open question related to our work on large output functions, we mention

proving a tight lower bound on the nondeterministic and deterministic communication
complexities of the Hidden XOR problem (Definition 4.20). We believe HXOR should
not admit any o(εNk) nondeterministic protocol, but were unable to prove it.
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The main takeaway message from is part is probably that one needs to be careful
when manipulating a lower bound to what this lower bound actually applies to. Let
us anecdotally mention that before formally defining and studying the various output
models that we presented in this thesis, the author spent quite some time studying
the partition bounds without grasping that they were lower bounding a specific
communication model that might not always be the one that we want to consider. We
hope that the tools we developed will be useful in other areas of complexity theory,
and find applications in future works studying large output functions.

from our work on quantum nonlocality Regarding the quantum part
of our work, we leave as open questions two somewhat related questions: the first
is whether the constant in Theorem 7.1 can be improved, the second is whether the
bound on C∗p (Theorem 7.12) can be improved. Both indirectly deal with the effC
optimization program (Definition 7.7), but in different regimes: the first question is
about how equivalent eff1 and ν are, or more precisely, what is the minimum c ≤ 3
such that for any M ∈ R+ and ε > 0, there exists a behaviour p 3 N S such that
ν(p) ≥ M and ν(p)

eff1(p)
≤ c. That is, the first question is about the low-C regime. The

second question is about the high-C regime: we gave a crude upper bound on the
value of C such that effC = eff, we believe that this bound can be improved.

Finally, let us also mention that we still do not know of any interesting problem
for which using the quantum efficiency lower bound eff∗ (Definition 6.23) is useful,
in particular to prove a better lower bound than is possible with the γ2 bound
(Definition 6.17).
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