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Abstract

An ever growing body of neuroscientific data is becoming available from various animal species,

including humans, due to technological advances in capturing brain signals and behavior linked

with them. These increasing amounts of data, together with an unprecedented power and memory

capacity of present day computers calls for large scale computational models with the objective of

unifying, storing and analysing these data. Moreover, such models allow crosslinking computa-

tional studies from various domains and in various levels of neural hierarchy to provide a deeper

understanding of neuronal mechanisms underlying various cognitive phenomena and their link

with behavior. The objective of this thesis is to develop an integrated model of human behavior in

the context of spatial orientation and its deterioration with age.

The problem of spatial cognition is considered as a problem of combining external sensory cues

coming from the environment and internal sensory cues coming from self-motion information, with

the objective to build a mental representation of surrounding space. A large body of experimental

research suggests that this representation is constructed within an intricate network of brain areas

residing in the medial temporal lobe, with external sensory input arriving via a “dorsal” visual

path originating in early visual areas and passing via the parietal cortex. Aging has been shown

to strongly affect medial temporal lobe networks and associated memory-based behaviors, and in

particular the creation of mental representations of space.

In this thesis we develop an integrated neural network model of spatial memory by based on

anatomical and functional experimental evidence of sensory information processing in the dorsal

visual path and medial temporal lobe networks. We use this model to simulate a number of

experiments linking human visual functions with spatial orientation behaviors, and propose how

visual cues are combined with self-motion input during the construction of mental maps of space.

We then test the hypothesis that aging exerts its deteriorating effects on spatial memory via acting

on neuromodulatory action in the brain and is linked with reduced novelty processing in the medial

temporal lobe. Overall, the work performed during this doctoral thesis provides a first step towards

building an integrated computer platform for human behavior simulation and contributes to a better

understanding of how spatial representations are built from sensory signals and are affected by

aging.
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Chapter 1. Motivation and Objectives

Chapter 1

Motivation and Objectives

Recent advances in experimental methods of data acquisition provide a wealth of empirical

data in various domains of human and animal neuroscience, from detailed characterization

of behavior (e.g. oculomotor, navigational or executive) to single cell recordings in

different areas of the brain. The unprecedented rate at which these data are collected calls

for the need to create large-scale computational models with the aim of data unification,

analysis and synthesis. These aims are crucial if computer models are to be used as

reliable personalized predictors of human behavior in various situations. Current efforts

in various computational research domains address these challenges in different ways. For

example, detailed computational models of neural activities during specific behaviors in

well-controlled conditions provide elementary building blocks for large-scale cognitive

models, but they do not address the issue of how these building blocks work together in an

integrated way (Madl et al., 2015; O’Reilly et al., 2010). On the other hand, neurorobotic

models address the utility of well-described neuronal mechanisms for the purpose of

creating efficient robots with animal- or human-like capabilities, but they usually rely

on non-human-like robot-environment interfaces that depend on the robotic platform in

question (Sanders and Oberts, 2016; Cox and Krichmar, 2009). Finally, existing large-

scale brain models address the computational principles of how brain solves complex

tasks but they are usually not interested in how these brain models are embedded into

bodies with human-like sensory organs (Kriegeskorte and Douglas, 2018). One approach

to overcome the above drawbacks and to combine their advantages is to create computer
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Chapter 1. Motivation and Objectives

simulation platforms that integrate known and experimentally measurable properties of

human sensory and cognitive capabilities - human avatars. The general aim of a human

avatar model is to serve as a personalized 3D model of a particular human person with

sub-models of both sensory organs and high-level associative and mnemonic areas of

the brain tuned by available experimental data measured on the same person. The main

motivation of this thesis is to make a step towards creating such an integrated humanmodel

in the context of spatial cognition. The specific domain of human science where such an

integrated model can be of great utility is aging. Aging is an issue with increasing societal

impact and it is known to early and profoundly affect spatial orientation capabilities,

limiting the elderlies’ autonomy and quality of life (Moffat, 2009).

Spatial cognition refers to the ability of the organism to create mental representations of

the surrounding environment with the purpose of using these representations for future

spatial behaviors. When we visit a city for the first time and take a walk from the hotel,

later on we may find ourselves lost, unless we carefully track all the turns and progressions

we made, or unless we find a currently visible landmark on a city map. As we gradually

become familiar with the new city by daily exploration, we start recognizing streets and

buildings encountered before and can eventually generate routes linking different locations

in the city event without a map. When that happens, it can be said that we have built a

mental representation of the city, or a ‘cognitive map’ (Tolman, 1948; Moser et al., 2008;

Herweg and Kahana, 2018). While humans, as many other animals, have this cognitive

ability to naturally construct spatial representations of surrounding spaces, how a physical

environment can be represented in the brain is a long-studied question in neuroscience

(Moser et al., 2017).

The question of cognitive map construction can be cast in terms of sensory cue processing.

As long as we move through space, we keep interacting with it through various sensory

channels that can be classified as either idiothetic or allothetic. Idiothetic cues correspond

to internal self-motion related cues, generated by body movements. They include proprio-

ceptive information, vestibular sense, and optic flow. These cues are used to track position

relative to some origin by integrating them in time, an ability termed “path integration”

(Müller and Wehner, 1988; Loomis et al., 1993; Etienne and Jeffery, 2004). Allothetic

2



Chapter 1. Motivation and Objectives

cues are perceived from the external environment bymultiple sensorymodalities including

vision, audition and olfaction. These cues can be used together with path integration in

order to build spatial representations. Primates, including humans, rely most strongly on

vision (Epstein et al., 1999; Epstein and Vass, 2014; Ekstrom, 2015), while rodents are

much less visual animals. Since the two types of cues provide all available sensory infor-

mation, the question of the construction of mental representations can be reformulated as

the question of how idiothetic and allothetic cues are combined to build them.

Animal behavior in space, and in particular the way they encode the location and direction

of important sensory cues during navigation, can generally be describedwith respect to two

spatial reference frames, classified as egocentric (subject-centered) or allocentric (world-

or object-centered). In the egocentric reference frame positions and directions are defined

relative to the subject itself. As long as the subject moves, the position and direction of

external cuesmove together with her or him. On the other hand, in the allocentric reference

frame positions and directions are defined relative to the external space or landmarkswithin

it and are independent from the subject’s current location and heading. Because of this

property of being invariant with respect to the subject, position and orientation of sensory

cues, remembered with respect to an allocentric reference frame, are believed to contribute

to the establishment of cognitive maps of space (Moser et al., 2008; Herweg and Kahana,

2018). A cognitive map can provide information about the location of the subject with

respect to external landmarks as well as spatial relations between landmarks. However,

since all the information coming via sensory receptors, such as the retina, are defined in an

egocentric frame, an important issue is how the brain transforms egocentric sensory cues

into allocentricmental representations (Byrne andBecker, 2008). While the primate visual

system is one of the most studied in neuroscience, how visual information is transformed

on its way to memory structures thought to store cognitive maps is a largely an unresolved

question (Ekstrom, 2015).

InChapter 3we propose a spiking neural network model of information processing in

the primate dorsal visual path, that is thought to mediate information transfer between

visual and mnemonic structures in the hippocampal formation.

3



Chapter 1. Motivation and Objectives

The concept of a cognitive map was a purely psychological one until O’Keefe and Dostro-

vsky (1971) discovered neurons in the hippocampus, termed place cells, whose activities

are correlated with an animal’s location in space. In an influential book the authors pro-

posed that place cell firing represents the position of the animal within the mental map of

the environment (O’Keefe and Nadel, 1978). If this mental map is correct (i.e. coherent

with the real environment), then place cell activity will also represent a particular place

in the environment. Some 20 years after, Taube et al. (1990b,a) described neurons in an

area nearby to the hippocampus, called ‘head direction cells’, that fire as a function of the

head direction of the animal, irrespective of its location. In another 15 years Hafting et al.

(2005) discovered yet other neurons, named ‘grid cells’, that reside in the entorhinal cortex

and fire at multiple spatial locations organized in a hexagonal periodical grid covering the

whole area of the experimental environment. Place cells, grid cells, and head direction

cells, together with some other neuron types with spatially correlated firing properties

(Sargolini et al., 2006), are considered as basic neuronal elements for constructing cogni-

tive maps. Since these neuron types reside in the hippocampus and nearby structures, the

hippocampal formation is the principal memory area thought to support cognitive map for-

mation and storage. By successive stages of processing within the entorhinal-hippocampal

loop, idiothetic and allothetic cues are thought to be combined by interactive populations

of different neuron types to create spatial representations.

In Chapter 4 we propose a neural network model of multisensory combination be-

tween allothetic visual and idiothetic self-motion cueswithin the entorhinal-hippocampal

processing loop. A crucial difference between our model and previous models is the

existence of bidirectional dynamic interactions between place cells and grid cells

during behavior and the ability to create maps of multi-compartment environments

When we age, our ability of constructing mental maps of space deteriorates. Aging is an

inevitable process associated with functional decline in selective aspects of cognitive per-

formance and brain function (Moffat, 2009; Rodgers et al., 2012; Gracian et al., 2013). In

particular, the hippocampal formation and spatial navigation functions are extremely vul-

4



Chapter 1. Motivation and Objectives

nerable to the influence of aging (Burke and Barnes, 2006). Age-related spatial orientation

and wayfinding deficits strongly influence healthy elderlies’ life and manifest themselves

in various mobility impairments and increased avoidance of novel environments. While

there are many hypotheses of aging, neural-level accounts of the role of aging in spatial

navigation principally concern synaptic plasticity and neuromodulation (Rosenzweig et al.,

2003; Ikonen et al., 2002). While primate and human data on the neural underpinnings of

age-related spatial navigation deficits is very limited, electrophysiological and behavioral

experiments from aged rodents suggest several principal ways of how age-related changes

in the entorhinal-hippocampal processing loop can affect behavior. Despite multiple at-

tempts to describe a conceptual model of neural-level effect of aging, no computational

accounts of this process have been given so far.

In Chapter 5 we propose a neural network model of the effects of aging in spatial

navigation. We study the hypothesis that an age-induced dysfunction of cholinergic

processing causes synaptic plasticity deficits, which in turn affects neuronal processing

in the entorhinal-hippocampal loop.

Thus, if one aims at constructing an integrated model of human spatial cognition for the

purpose of studying how age affects spatial memory, which is the main objective of this

thesis, one is confronted with the task of integrating the above knowledge in a single

modeling platform that we refer to here as Aging Human Avatar (Sheynikhovich et al.,

2019). This integrated model is presented in four subsequent chapters. Chapter 2 pro-

vides anatomical details of modeled biological networks and some technical details of the

Aging Human Avatar platform. As mentioned above, Chapters 3-5 of this thesis focus

on three principal questions: (i) What are the neural mechanisms supporting the trans-

formation of egocentric visual signals to allocentric representations in the primate visual

processing pathway?; (ii) How are the allothetic visual and idiothetic self-motion cues in-

tegrated together in the entorhinal-hippocampal processing loop during the construction of

a mental representation of the multi-compartment experimental environments?; (iii) Can

age-related behavioral effects, observed in aged rodents, be explained by an impairment

5



Chapter 1. Motivation and Objectives

of cholinergic neuromodulatory circuit?

The future AgingHumanAvatar platform, of which the basic proof-of-concept is presented

in this work, is aimed at simulating a variety of modeled age-related effects on spatial

navigation, and at providing a ‘transparent’ tool to infer new hypotheses cross-linking

sensory and cognitive aspects of aging. As in computer simulations presented in the fol-

lowing chapters, the Human Avatar interacts with its 3D environment through multimodal

active sensing and locomotion. It perceives the world and acquires spatial representations

based on data-grounded models of age-related influences on visual and spatial orientation

functions. While this thesis provides only a first step towards creation of such an integrated

model, the objective of future implementations is to integrate a large body of knowledge

about neural processes underlying human spatial behavior and generate new insights and

experimentally testable predictions age-related markers of vision-dependent mobility and

autonomy loss. We believe that the issues of visuospatial coordinate transformations and

multisensory integration addressed in this thesis provide a necessary prerequisites for

the understanding of aging effects on human spatial navigation and creation of detailed

computer models of this important cognitive capability.

6
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Chapter 2

Anatomy of Spatial Navigation, Vision

& Aging and the Architecture of the

Aging Human Avatar

Chapter summary

The aim of this chapter is twofold. First, it presents some details of anatomical structures

that are thought to support visuospatial orientation and are modeled in subsequent chap-

ters. In particular, afferent and efferent connections are described for these structures,

and their overall connection patterns. In addition, principal neuron types thought to sup-

port spatial orientation functions are presented and experimental evidence of age-related

effects on these neuron types is reviewed. Second, it presents the Aging Human Avatar

platform, a software simulation platform to the development of which this doctoral work

has contributed. In particular, the software architecture and main functional modules of

this platform are presented.

2.1 Spatial navigation

Spatial navigation is an ability of planning and performing a path from the current position

towards a desired location (Gallistel, 1990; Brodbeck and Tanninen, 2012). Two funda-

7



2.1. Spatial navigation

Navigation type taxon locale
Frame of reference egocentric allocentric
Learning mode stimulus-response place
Dimensionality of trajectory space 1D (route) 2D (map)

Table 2.1: Distinctions between stimulus-response and cognitive navigation strategies

mentally different strategies of navigation can be classified (O’Keefe and Nadel, 1978).

Locale navigation definesmovement as happening fromone place to another, where ‘place’

is an abstract concept defined as a position on the cognitive map of the environment. In

contrast, Taxon navigation is the one in which goal-oriented movements are defined by

a reference to sensory cues external to the subject, e.g. movement in the direction of a

landmark or away from it, movement in the direction of a specific odor, movement along a

wall, etc. An important difference between these two types, or strategies, of navigation1 is

in flexibility with which different goal-directed paths can be generated. Whereas the taxon

navigation learns a specific path and is quite easily disrupted by the change of associated

sensory cues, the locale navigation is flexible in the choice of the path from one place to

another and is relatively unaffected by the effects of environmental alternations.

Several divisions related to locale/taxon are used in the experimental literature (see Ta-

ble 2.1), reflected different respect of the two strategies

Egocentric vs Allocentric. As mentioned in Chapter 1, the egocentric frame of reference is

defined relative with respect to the subject. The current position of the subject defines the

origin of such a reference frame and his or her the current heading defines the reference

direction (i.e. 0◦). In contrast, the allocentric frame of reference is defined with respect

to static sensory cues external to the subject, i.e. independent of the subject’s current

position and heading (Fig. 2.1c). For example, the center of a recording chamber can

serve as the origin of an allocentric reference frame, and direction towards the eastern wall

can serve as a reference direction. An important distinction between the goal-oriented

behaviors organized in the two reference frames is that knowing the goal position in the

egocentric reference frame is sufficient to approach the goal, whereas knowledge of the

1A number of different taxonomies of navigation exist that propose further subclasses of either the taxon
or locale navigation (see Gallistel (1990); Trullier et al. (1997); Redish (1999); Arleo and Rondi-Reig (2007))

8



2.1. Spatial navigation

goal’s allocentric coordinates can be used only if the current allocentric position of the

subject is known as well.

Response vs Place learning. Behavioral experiments dealing with dissociation between

different navigation strategies usually describe behavioral decision in terms of response

(egocentric) and place (allocentic) strategies (the terms are equivalent to the taxon and

locale strategies, but emphasize the result of learning). The response learning strategy2

amounts to remembering a specific motor response to a set of visual or other sensory

stimuli (e.g. turning right in the central junction of a maze), whereas the place strategy

requires memory for a location of the food with respect to the extra-maze visual cues. The

two strategies can be dissociated by observing human behavior in altered experimental

conditions: subjects that learned the response strategy will repeat the same motor re-

sponse, while those who learned the place strategy will go to the same place (Fig. 2.1b).

Such dissociation experiments together with imaging studies provide an insight into the

biological mechanisms that implement those strategies (Rodgers et al., 2012; Bécu et al.,

2019).

Routes vs Maps. Lastly, the taxon/locale strategies can be distinguished on the basis of

trajectories that these strategies generate. The taxon behavior propose movements along

a one-dimensional route because each stimulus-response association suggests a particular

movement in a particular direction. In contrast, the locale strategy allows for making

shortcuts and detours instead of specifying a path how to get from one place to another.

Moreover, locale strategy is able to plan paths from novel starting positions, belonged to

the cognitive map, to a goal. In contrast, taxon navigation suggest an exact repetition of

learned responses and thus unable to generalize paths for novel starting positions not seen

during training. The latter distinction has been used to experimentally segregate the two

strategies.

This thesis focuses on place learning and a construction of neuralmaps of space, as defined

above. Moreover, since we are interested in primarily human-like visuospatial behavior,

2Sometimes it is also referred to as stimulus-response or cue-response strategy, when response to a
particular visual cue is learned
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2.1. Spatial navigation

Figure 2.1: (a,b) Experiment dissociating the use of egocentric and allocentric strategies in aged
subjects (Rodgers et al., 2012). (a) Training. (b) Probe trial. (c) Testing allocentric learning in an
open space. (Bécu et al., 2019).
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2.2. Visuospatial processing in the primate dorsal visual pathway

of which the vision sense is the primary sensory modality, the processing of visual

features in the brain is of special importance. It has been proposed that visual information

important for spatial navigation is processed in the so-called dorsal visual pathway of the

primate visual system, by contrast to the ventral visual pathway concerned with object

processing (Goodale and Milner, 1992). While Chapter 3 provides a computational

modeling account of the dorsal visual processing, here we briefly review anatomic details

of this pathway.

2.2 Visuospatial processing in the primate dorsal visual

pathway

Kravitz et al. (2011) reviewed anatomical studies, mainly from primates, addressing visual

processing in neural structures leading from early visual areas to the medial-temporal lobe.

It was proposed that input visual stream from the retina is first processed by successive

stages of low-level visual processing in visual areas V1–V6 and subsequently enters the

parietal cortex via occipito-parietal circuit. After that the visual stream is divided into

three different pathways: The parieto–prefrontal pathway plays a primary role in working

and executive memory; The parieto–premotor pathway participate in high-level motor

control of eye movements, grasping and reaching; Finally, the parieto–medial temporal

pathway plays a key role in spatial navigation. The parietal–medial temporal pathway is

the most complex of the three pathways.

Occipito–parietal circuit. The occipital lobe is believed to be the visual processing

center of the primate brain since the large part of the visual cortex is located in it. In

particular, the primary visual cortex (V1) receives and converts visual information from the

retina (Livingstone and Hubel, 1984). V1 neurons are sensitive to orientation of edge-like

visual stimuli, their spatial frequencies and colors (Hubel and Wiesel, 1962). Jones and

Palmer (1987) proposed that the two-dimensional Gabor wavelets, which are orientation-

and frequency- sensitive image filters, fit well to spatial response of simple cells in V1.

In our model described in subsequent chapters we used 2D Gabor filters at different

orientations and frequencies to simulate early visual processing. The V1 and subsequent

11



2.2. Visuospatial processing in the primate dorsal visual pathway

visual areas (V2, V3, V3A) densely project to V6, mostly concerned with processing

motion cues (Galletti et al., 2001). The final stage of the occipito-parietal circuit is the

projection from V6 to the posterior parietal cortex, and in particular the caudal part of

the inferior parietal lobule (cIPL). Overall, The function of the occipito–parietal circuit is

to integrate information from central and peripheral visual fields in egocentric centered

representation (Boussaoud et al., 1990).

Parieto-medial temporal pathway. This pathway connects cIPL with medial temporal

lobe, including the entorhinal cortex, the hippocampus and parahippocampal structures via

direct and indirect synaptic projections. Through the direction projections, the processed

visual stream is conveyed: (i) to a small cytoarchitectonic zone between subiculum and

CA1 (CA1/prosubiculum) where place cells and head direction cells are contained (Ding

et al., 2000; Rockland and Van Hoesen, 1999); (ii) to the posterior parahippocampal areas

(Cavada and Goldman-Rakic, 1989); (iii) to the pre- and parasubicular subdivisions of the

hippocampal formation. Through the indirect projections, the visual stream is projected to

the same target areas as the direction connections, but passing via the posterior cingulate

and retrosplenial cortices (Vogt and Pandya, 1987; Morris et al., 1999; Kobayashi and

Amaral, 2007; Kondo et al., 2005).

Egocentric-allocentric transformation in the medial-temporal pathway. The occip-

ito–parietal circuit briefly reviewed above provides egocentric (retinotopic or head-fixed)

representations of the visual input (Boussaoud et al., 1990; Stein, 1992). More specifi-

cally, the posterior parietal cortex is the source of the egocentric information needed for

navigation since posterior parietal lesions can also lead to egocentric disorientation (Stark,

1996). On the other hand, extensive evidence suggests that parieto-medial temporal path-

way plays a role of translation between the egocentric representations in the parietal cortex

and allocentric representations in the medial temporal lobe (Vogt et al., 1992; Maguire,

2001; Byrne et al., 2007). First, allocentric representations, invariant to body movements,

were identified in the cIPL and the posterior cingulate cortex, which are potentially useful

for navigation and encoding of landmarks locations, since they are anchored with visual

cues in the space (Snyder et al., 1998; Mountcastle et al., 1981; Chafee et al., 2007).

Second, in monkeys, the peak activity of a subset of cells in the area 7a of the posterior

12



2.3. Spatial representation in rodents

parietal cortex wasmodulated by head direction in world-fixed reference frame, suggesting

an existence of a world reference representation (Snyder et al., 1998). Third, retrosplenial

cortex lesions in humans result in various forms of spatial disorientation indicating that

this area plays an important role in the coordination of egocentric heading and allocentric

representations of the environment (Maguire, 2001).

Allocentric spatial representation in the human medial temporal lobe Several stud-

ies in primates, including humans, suggested the existence of an allocentric representations

in themedial temporal lobe, which receives dense projections from the parieto-medial tem-

poral pathway. First, cells selective to spatial location, similarly to rodent place cells, were

discovered in the hippocampus and parahippocampal gyrus (including entorhinal cortex)

(Ekstrom et al., 2003; Jacobs et al., 2013; Miller et al., 2013; Hazama and Tamura, 2019).

Second, studies in humans also identified the existence of grid cells, which fire at multiple

spatial locations forming as hexagonal and periodical grid pattern on the environment

(Jacobs et al., 2013). Grid-like cells were also observed during exploration of a static

visual scenes (Killian et al., 2012). Experimental studies suggested that grid spacing is a

function of environment size (Nadasdy et al., 2017). Third, information processing in the

human hippocampus is influenced by oscillations, as does rodent hippocampus, but with a

lower frequency band (1-3Hz, compared to 8-10 Hz in rodent)(Miller et al., 2018). These

lines of evidences suggest that primate representation of space is organized similarly to a

rodent one, reviewed below. However, the quantity and quality of primate data is much

lower than that in rodents. That is why, while visual processing is modeled based on

primate studies, we switch to primarily rodent data in Chapters 4 and 5.

2.3 Spatial representation in rodents

In this section we review the anatomy of the hippocampal formation, an area of mam-

malian brain where place cells and grid cells are discovered. Then in Section 2.3.3 and

Section 2.3.4 we describe basic neurophysiological properties of these neurons, while

head direction cells are described in Section 2.3.2.
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Figure 2.2: Anatomy of the hippocampal formation. (a) The Schematic of rat brain with
the hippocampal formation highlighted (Amaral and Witter, 1995) and coronal section of the
hippocampus (Praxinos and Watson, 1998). (b) Subregions of the hippocampal formation (Witter
et al., 2000). HPC, hippocampal formation; fx - fimbria fornix; DG - dentate gyrus; CA1/CA3 -
Cornu Ammonis subregions; SUB - subicilum; PrS - pre-subiculum; PaS - para-subiculum; MEC
- medial entorhinal cortex; LEC - lateral entorhinal cortex; PER - perirhinal cortex.

2.3.1 Hippocampal formation

The hippocampal formation (HF) is a limbic brain area which occupies a considerable part

of the rat’s brain (Fig. 2.2a), contributing to spatial navigation. It contains the entorhinal

cortex (EC), the hippocampus (HPC) and the subicular complex (SbC) (Amaral andWitter,

1989, 1995; Andersen et al., 2006).

EC is a target ofmost higher cortical associative areas. Therefore, HF can operate on highly

processed sensory information from all sensory modalities (Burwell and Amaral, 1998;

Agster and Burwell, 2009). The hippocampal formation receives afferent connections

from subcortical areas through the fornix bundle, particularly cholinergic and GABAergic

projections from the medial septum. Cholinergic input targets mainly the excitatory

pyramidal and granule cells, as well as inhibitory GABAergic interneurons. GABAergic

septal neurons, on the other hand, selectively synapse on GABAergic interneurons only

(Freund and Antal, 1988).

There are two main outputs of the HF: One pathway leaves the HF through the subiculum
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2.3. Spatial representation in rodents

and projects to subcortical areas. It innervates thalamic nuclei, amygdala and–via the

fornix fiber bundle–nucleus accumbens (NA) (Witter, 1993; Legault et al., 2000). A

second pathway projects back to the higher cortical areas, and these projections feed back

to EC (Insausti et al., 1997). Despite that fact that the existence of the hippocampal

processing loop has been noted a long time ago (Iijima et al., 1996), this fact has not been

accounted from by most of the existing models of hippocampal processing. We address

this question in Chapter 4.

EC is the primary sensory input area of the HPC. It can be subdivided into a medial (mEC)

and a lateral(lEC) regions. As HPC, it can be further divided into the dentate gyrus (DG)

and the Cornu Ammonis (CA). CA contains four subregions, but CA1 and CA3 are the

most prominent subregions (Amaral and Witter, 1989, 1995; Andersen et al., 2006). SbC

includes the subiculum (Sb), the para-subiculum (paSb) and the pre-subiculum (prSb)

(Amaral and Witter, 1989; Andersen et al., 2006). Simplified scheme of internal con-

nectivity between these HF subregions is plotted in Fig. 2.3. As the plot shows, sensory

information is processed in two parallel pathways: the first pathway from EC directly

projects to CA3 and CA1 via the perforant path (PP) (Hyman et al., 1986; Yeckel and

Berger, 1990). The second pathway project EC input to DG via PP as well but then project

to the CA3 pyramidal cells via different set of axons called mossy fibers (MF). Pyramidal

cells in the CA3 are recurrently connected and project to the CA1 via Shaffer collateral

(SC) projections. CA1 projects to the subiculum, and both CA1 and subiculum project

via fornix-fimbria system to subcortical areas, particularly nucleus accumbens, and to the

deep layers of the EC. (O’Keefe and Nadel, 1978; Amaral et al., 1991; Witter, 1993).

Entorhinal cortex

Entorhinal cortex is a gateway for neural information from a variety of cortical regions

entering and leaving the hippocampus. These cortical inputs form a six-layered structure

in the EC, classified into two groups: those that terminate in the superficial layers 1-111

and those that distribute to the deep layers IV-VI (Kosel et al., 1981; Witter, 1993; Insausti

et al., 1997). A distinction can be made between the medial (MEC) and the lateral (LEC)

areas.
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Figure 2.3: Schematic representation the hippocampal formation network. See figure 2.2
for a description of the labels.
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2.3. Spatial representation in rodents

Both MEC and LEC receive projections from sensory associative areas (auditory, visual

and somatosensory) as well as from the temporal, frontal areas and parietal via postrhinal

and perirhinal cortices (Witter, 1993; Suzuki and Amaral, 1994; Insausti et al., 1997; Liu

and Bilkey, 1997). Olfactory information from the piriform cortex and olfactory bulb is

conveyed directly via perirhinal cortex (Kosel et al., 1981; Witter et al., 1989, 2000). The

subiculum and CA1 mainly send their output to MEC, but also to LEC. DG and CA3 are

not innervated with EC (Amaral and Witter, 1989; Witter, 1993).

EC cortical efferents target primarily perirhinal, piriform cortices and orbitofrontal, but

also innervate parietal, temporal and frontal areas (da Silva et al., 1990; Witter, 1993;

Insausti et al., 1997). Via the perforant path, EC forwards multisensory information from

its cortical afferents to DG, CA3, CA1 and Sb (Witter, 1993; Andersen et al., 2006). Cells

with hexagonal and periodic spatial firing fields (grid cells, see Section 2.3.3) have been

discovered in the dorsal MEC. The most dorsolateral band of the MEC provides strongest

input to the dorsal part of the hippocampus where place cells (see Section 2.3.4) with

sharpest and spatial preferred firing fields were discovered (Fyhn et al., 2004; O’Keefe

and Burgess, 1996).

Neurons in the deep regions have connections with neurons in the superficial layer of

EC(Amaral and Witter, 1989; Witter, 1993). There is also evidence for strong synaptic

innervation from the lateral to the medial region (Quirk et al., 1992).

Dentate gyrus

DG granule cells receive processed sensory input from EC. Granule cells in DG then

forward to mossy cells. Mossy cells laterally contact other mossy cells as well as strongly

project to CA3 (Claiborne et al., 1986; Hastings et al., 2002). Neurogenesis is occurred

in the rat DG throughout the whole life,. Stem cells migrate into the granule layer and

differentiate into fully functional and networked granule neurons (Kuhn et al., 1996;

Ciaroni et al., 1999; Hastings et al., 2002). Studies suggested that DG contributes to

pattern separation, reducing the interference of incoming similiar inputs from EC (Tanila,

1999; Yassa et al., 2011).
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Cornu Ammonis or hippocampus proper

The hippocampus proper contains four subregions CA1-CA4, with CA1 and CA3 being

the most distinguishable. Place cells with spatially correlated activity (see Section 2.3.4)

have been identified in CA1 by O’Keefe and Dostrovsky (1971), later were also discovered

in CA3 and DG (Jung and McNaughton, 1993).

The CA3 region receives strong projection from DG via the mossy fibers. Both CA1 and

CA3 are innervated by EC via the perforant path (Amaral and Witter, 1989; Witter, 1993;

Hastings et al., 2002).

CA1 an CA3 pyramidal cells connect to subiculum via the Shaffer fiber bundle. The

angular bundle connects CA1 to EC (perforant path) (Amaral et al., 1991). CA1 projects

to the subiculum and the EC (Witter et al., 2000) as well as directly to the nucleus

accumbens and septum via fimbria-fornix (O’Keefe and Nadel, 1978).

CA3 neurons laterally project to other CA3 neurons via the Shaffer collaterals (SC).

Also via the Shaffer fibers, CA3 connects to CA1 (Amaral and Witter, 1989, 1995).

The recurrent collaterals in CA3 are proposed to contribute to pattern completion, the

representation in CA3 can be restored when the input is partial or degraded (Stark et al.,

2010).

Subiculum

The subicular complex (SC) includes the the pre-subiculum (prSb) and subiculum (Sb),

whose dorsal part forms the para-subiculum (paSb) and the post-subiculum (poSb) (Amaral

and Witter, 1989, 1995).

The main inputs to Sb are from CA1 and EC (Amaral et al., 1991). The paSb innervates

the retrosplenial cortex whereas prSb receive connections from the temporal and parietal

lobes, as well as from the thalamic nuclei, which forward into poSb (Burgess et al.,

1999).

Sb projects on the nucleus accumbens (NA) and the septal complex via the fornix fiber

bundle. Sb is also innervated prefrontal and entorhinal cortex, the thalamus and amygdala.

prSb and paSb also project to EC (Amaral and Witter, 1989; Witter, 1993). Within SC,
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Sb forward to prSb and paSb and prSb also synapses on paSb (Amaral and Witter, 1989;

Witter, 1993).

Theta rhythm

The EEG on hippocampus shows distinct patterns depending on the rat’s behavior. Dur-

ing motion (passive or active (Gavrilov et al., 1996)), the EEG presents an oscillation

(6–12Hz) called theta rhythm (O’Keefe and Recce, 1993; Burgess et al., 1994; Skaggs

et al., 1996). Theta rhythm is observed during REM-sleep and sensory scanning as well

(Buzsáki, 2002). Except that, firing is synchronized to a gamma oscillation(40–100Hz)

throughout the entire hippocampal formation (Chrobak et al., 2000; Csicsvari et al., 2003).

Subcortical cholinergic and GABA-ergic inputs from the septal region are responsible for

generating theta rhythm (Winson, 1978; Buzsáki, 1984; Stewart and Fox, 1990; Miller,

1991; Hasselmo and Bower, 1993; Carpenter et al., 2017). When septal input is inacti-

vated, the place fields of CA3 place cells are disrupted whereas the CA1 place cells are

not affected. At the same time, acquisition of place learning tasks is impaired (Brandner

and Schenk, 1998) and errors in working memory significantly increase (Mizumori et al.,

1989).

While drinking, awake-immobility, eating or in slow-wave sleep, however, the EEG shows

large field high irregular amplitude signature, termed sharp waves. A high frequency

ripple volley (140–200Hz) occurs during each sharp wave event (Chrobak et al., 2000;

Chrobak and Buzsáki, 1996). It suggests that theta/gamma waves synchronize input from

cortex to hippocampus, whereas sharp ripples/waves modulate output from hippocampus

back to cortex (Chrobak et al., 2000).

2.3.2 Head direction cells

A head direction (HD) cell is a neuron whose firing activity is correlated with a particular

orientation of the animal’s head with respect to its environment. A HD cell only emits

spikes when the heading of the animal is in its preferred direction regardless the position

of the animal in the environment. Therefore, HD cells are believed to encode animal’s

current heading in an allocentric reference frame (Taube et al., 1990a,b). Taube et al.
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(1990b) reported that the preferred firing direction of a HD cell is controlled by allothetic

cues. In the experiment, animal foraged in a cylinder room with a salient visual cue on

the inside of cylinder wall. After the animal became familiar with the environment, the

animal was taken out from the experimental room and disoriented its head direction. Then

the animal was placed back to the cylinder with rotated visual cue. The preferred direction

of HD cells in the cylinder shifted with the visual cue together (Taube, 1995; Knierim

et al., 1998). On the other hand, the preferred firing direction of HD cells is able to be

maintained by only integrating idiothetic cues (self-motion related) as the animal moves

in the dark environment by turning off the light (Taube et al., 1990b; Goodridge et al.,

1998).

HD cells were originally discovered in postsubiculum (Taube et al., 1990a). Then, HD

cells were gradually identified in other brain areas within the classical Papez circuit, for

example the anterior dorsal thalamic nucleus (ADN) (Taube, 1995), lateral mammillary

nuclei (LMN) (Stackman and Taube, 1998), retrosplenial cortex (Cho and Sharp, 2001)

and entorhinal cortex (Sargolini et al., 2006). HD cells were also been found in other

non–Papez circuit areas, including the lateral dorsal thalamus, the dorsal striatum, the

medial precentral cortex, medial prestriate cortex, CA1 hippocampus and dorsal tegmental

nucleus (DTN).

2.3.3 Grid cells in the dorsomedial entorhinal cortex

In the layer II of the dorsal part of the MEC (dMEC), neurons are observed with spatial

firing fields that resemble hexagonal and periodical grid field distributing over the entire

space (Fyhn et al., 2004; Hafting et al., 2005), termed as grid cell. The property of these

structured grid fields can be quantified with grid orientation, the grid spacing and the

grid phase (relative spatial location of the grid field) as illustrated in Fig. 2.4a. For each

grid cell, the orientation of the hexagonal grid fields is quantified by measuring the angle

between an external reference line and the axis through the fist counter-clockwise vertex of

the hexagon (e.g. 0◦ in the figure). Grid spacing is the distance between two neighboring

vertices of the hexagonal grid field, which is the same for all vertices from one grid cell.

The spatial phase of a grid cell is defined as a spatial position of the grid field relative with
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Figure 2.4: Schematic illustration of grid cells. (a) Schematic drawing of firing fields of a
single grid cell. Large rectangle represents the recording room, circles represent the locations of
firing fields. (b) The grid cells are organized in different populations along the dorsoventral axis
of the dMEC. Cells in each population share the same spacing and orientation (defined as in a).
The more ventral is the location of a population, the larger is spacing and field size.

the grid field of other grid cell, i.e. it characterizes the mapping of the grid field on the

actual environment (e.g. the floor of the experimental room). Each vertex of the grid field

is characterized by its size, described in the experiments by the area covered by the central

peak of the spatial autocorrelogram using a threshold of 0.2 (Hafting et al., 2005).

The grid cells are topographically organized (Hafting et al., 2005), Fig. 2.4b. Neighbouring

grid cells have the same spacing and orientation but different spatial phases, i.e. the firing

fields of nearby grid cells have identical orientation, size and spacing, but the grids are

offset relative between each other. Hence these grid cells are suggested to belong to a

grid-cell population in the following chapters. The grid cells that are far apart (along the

dorsoventral axis of the dMEC) differ by field size, grid orientation, grid spacing (i.e.

belong to different grid-cell populations). The grid spacing progressively increases from

Dorsal to Ventral medial entorhinal cortex (Brun et al., 2008b). But grid orientations

differ without any systematic relationship.

Firing fields of grids of individual cells have the following properties (Hafting et al., 2005):

(i) The grid pattern is immediately established once upon exposure to a novel environment,

i.e. the grid cells fire at the first time the animal passes through the field, both in light and

dark situation. (ii) The grid fields are anchored to the allothetic cues in the environment.
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If a cue card in the cylinder room is rotated ◦90, the grid orientation rotate similarly. (iii)

The grid field is still persisted after removing the cue card. After initial exposure in the

experimental room about 10 min with the lights are on, the grid field were maintained for

30 min in total darkness. However, the majority of cells the darkness period have a weak

dispersal of the vertices. (iv) The grid field can be shaped by environmental geometry

(Krupic et al., 2015; Stensola et al., 2015).

The model, presented in the Chapter 4, describes a neural network in which neurons have

periodic firing fields with hexagonal spatial pattern, similarly to the dMEC grid cells (see

Chapter 4). The role of this network is assumed to be the integration of self-motion input

over time, i.e. path integration. In contrast to most earlier models, grid cells in our model

are influenced by place-cell input from CA1, in according with recent data (Bonnevie

et al., 2013).

2.3.4 Hippocampal place cells

A place cell is a neuronwhose firing activity is associatedwith the animal’s spatial location

(O’Keefe and Dostrovsky, 1971). A place cell fires only when the animal is in a specific

area of the environment, which defines the place field of the place cell.

Place cells recorded in CA3/CA1 areas of the hippocampus have spatially-tuned place

fields which uniformly cover the entire environment, and at any moment only a small

proportion of these cells is active. The set of overlapping place fields is suggested to

encode a distributed representation of the environment (Wilson and McNaughton, 1993).

The shape of place fields can be varied: The firing field can be distributed as a circular

two-dimensional Gaussian (Samsonovich and McNaughton, 1997); but it can also be

elongated in one dimension (particularly along walls). It is quite rare that a place cell has a

place field in several different environments (Kubie and Ranck, 1983), but a place cell can

have multiple peaks of activity in one single environment (Muller et al., 1987; O’Keefe

and Burgess, 1996; McNaughton et al., 1983). Different with grid cells, topographic

relationship is not observed between anatomical structure of the CA3-CA1 populations

and environment (O’Keefe and Conway, 1978; Muller and Kubie, 1987; Thompson and

Best, 1989)
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Except the place property of place cell mentioned above, the CA1 place field is also

direction selective (Mehta et al., 1997). When an animal repeatedly ran towards the same

direction on a linear track, CA1 place fields, which are initially symmetrical, expand

backward with respect to the animal’s direction of movement. Such a phenomenon is only

observed during the same block of trials, and it disappears the next day. Lesion studies on

CA3 and DG suggested that an complete CA3 input to CA1 is not mandatory to maintain

the place and directional properties of place cells in CA1 (Mizumori et al., 1989; Brun

et al., 2002; McNaughton et al., 1989; Skaggs et al., 1996), it might be because CA1

receives the direct feed-forward projection from the EC (Brun et al., 2008a).

Except CA3/CA1, neurons with spatial sensitive firing were observed in subiculum and the

entorhinal cortex as well. Place fields in subiculum is larger than those in the hippocampus

proper. In addition, neurons in subiculum has a similar place field topology across several

different environments (Sharp and Green, 1994; Sharp, 1997, 1999), and seems that

self-motion cues exert control on them (McNaughton et al., 1996). Earlier studies in

place-sensitive cells in the EC reported broad single peaked firing fields (Quirk et al.,

1992). Recent data (Section 2.3.3) have shown a gradual change from multi-peaked to

single-peaked firing fields along the dorsolateral to ventromedial axis of the dMEC.

2.3.5 Firing determinants of place cells

The firing of place cells is highly correlated with the location of the animal. However,

place cells are also sensitive to self motion information, visual cues, odor, sound and

reward (McNaughton et al., 1983; Markus et al., 1994, 1995).

Sensory information

Place cell activity is influenced by both allothetic and idiothetic inputs, and an extensive

of experiments in rodents have studied on the main determinants of place cell firing, as

well as the interactions between different sensory information.

Visual allothetic cues. Studies suggest that firing of the place cells mainly relies on

visual information (Etienne et al., 1996; Save et al., 2000; O’Keefe and Burgess, 1996;
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Markus et al., 1994; Knierim et al., 1998). Visual cues are divided as distal and local visual

cues. Distal visual cues exert more control of the firing fields than local cues (O’Keefe

and Conway, 1978). Rotation of a cue card on the wall of the experimental room give rise

to place field rotation (Muller and Kubie, 1987; Knierim et al., 1995). With the same way

of cue controlling, the same experimental result was observed when three objects were

placed at the periphery of a cylindrical water-maze (Cressant et al., 1999). However, when

the same objects were placed at the center of the maze, the rotation of objects did not give

rise to a rotation of place fields for most of the place cells, suggesting weaker control from

local cues than distal cues (Cressant et al., 1999).

Non-visual allothetic cues. Except visual cues, rats can use other allothetic cues to drive

the firing of place cells. Odor cues is contributed to the stability of place fields (Lavenex

and Schenk, 1996). In addition, blind rats sense the environment by touching with the

objects in the environment more often than healthy sighted rats (Save et al., 1998). This

behavior allows the rat to correct the error of its internal estimated location (i.e. path

integrator) by using tactile information.

Idiothetic cues. The location-sensitive activity of Place cells is still maintained in the

absence of visual information, suggested that the self-motion contribute to the firing of

place cell. For example, the spatial firing location of place cell was not altered after visual

cue was removed (O’Keefe and Conway, 1978; O’Keefe and Speakman, 1987; Quirk

et al., 1992); and place cells in visually symmetric environments have asymmetric visual

fields (Sharp et al., 1990). In addition, once place cells are established in darkness, their

firing are still maintained in the subsequent light situation (Markus et al., 1994). These

experimental data suggests that self-motion information may be sufficient to form a stable

place code in the hippocampal formation.

Interaction between allothetic and idiothetic cues. Self-motion cues are suggested

to update place cell firing (i.e. by path integration, Mittelstaedt and Mittelstaedt, 1980;

Etienne and Jeffery, 2004). However path integration results in accumulating errors over

time (Knierim et al., 1998). Therefore, it is essential that a re-calibration process based on

allothetic cues to maintain an accurate estimation of animal’s position (Mittelstaedt, 1983;
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Gothard et al., 1996a; Etienne et al., 1996; Save et al., 2000; Redish et al., 2000). Gothard

et al. (1996a) further studied the interaction between allothetic and idiothetic cues in the

place cell activity with a mismatch experiment with conflicting allothetic and idiothetic

cues. They found that the activity of place cell is changed and transit to one of the two

when a mismatch is happened between external and internal cues. The determination of

the dynamic changes is the degree of the mismatch between the two types of cues. With a

similar protocol, Redish et al. (2000); Rosenzweig et al. (2003) suggested that a temporal

delaywas required tomake the transition for place cells. These experimental data indicated

that sensory cues dynamically compete to control the firing of place cells.

Influence of environmental geometry

Environmental geometry is generalized from allothetic cues. Extensive experimental data

suggested that the place field of place cells is sensitive to geometry information (Muller

and Kubie, 1987; O’Keefe and Burgess, 1996). When the rat were sequential tested in a

cylinder room then a square room with the same visual appearance, the place fields of the

same place cells in the square room are abolished, reshaped or remapped comparing with

those in the cylinder room (Muller and Kubie, 1987). In addition, O’Keefe and Burgess

(1996) recorded the firing of CA1/CA3 pyramidal cells when rats were exploring four

different boxes (a small square; a horizontal rectangle; a vertical rectangle; and a large

square). They found out that the shape of place fields of the same place cells in the four

different environment are changed. In particular, the place fields of some place cells are

either stretched or doubled along the shape changing direction of the box when comparing

the small square box with others. Except the geometry of the boundary, geometry of an

arrangement of objects also influence the stability of place field. For instance, place fields

are poorer controlled by three objects with an equilateral triangle arrangement than an

isosceles triangle arrangement (Cressant et al., 1997, 1999).

2.4 Aging and spatial memory

Neurological alterations correlated with aging. Extensive studies suggested that the

impairment of spatial memory and navigation is correlated with aging. These deficits
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are caused by various age-related neurobiological alterations to the hippocampus: (1)

The neural synapses from EC to DG reduced by one-third in aged rats, as shown by

measuring the micro-structural features of white matter (Geinisman et al., 1992; Smith

et al., 2000; Yassa et al., 2010); (2) Aging place cells in CA3 exhibit hyperactivity (Wilson

et al., 2005a) and the increased excitability in CA3 lead to pattern distinguish deficit in a

mnemonic discrimination task (Yassa et al., 2011; El-Hayek et al., 2013); (3) Due to the

loss of dendrites and synapses, modulation inputs to the hippocampus decrease with aging

(Schliebs and Arendt, 2011), including acetylcholine modulation on CA1 and CA3 (Shen

and Barnes, 1996; Wilson et al., 2006; Sava and Markus, 2008; Schliebs and Arendt,

2011), dopamine modulation on facilitating synapse plasticity (Abdulrahman et al., 2017),

norepinephrine modulation on hippocampal long-term potentiation (LTP) (Luo et al.,

2015; Abdulrahman et al., 2017); (4) The rate decline of neurogenesis with aging (Kuhn

et al., 1996; Gould et al., 1999); (5) Brain-derived neurotrophic factor decreases with aging

in the hippocampus (Tapia-Arancibia et al., 2008); (6) A lower threshold for long term

depression (LTD) and a higher threshold for LTP, leading to aging-related impairment of

memory maintenance and learning new information (Foster, 1999).

Ag-related reduction of cholinergic modulation. The cholinergic modulation of the

hippocampus diminishes with age, as demonstrated bymeasuring the level of acetylcholine

(ACh) processing enzyme due to the loss of dendrites, synapses and ACh neurons (Fischer

et al., 1989; Stroessner-Johnson et al., 1992; Sugaya et al., 1998; Schliebs and Arendt,

2011). The attenuated ACh modulation from medial septum to three hippocampal sub-

regions (CA1, CA3 and DG) was proposed to cause spatial memory impairments (Shen

and Barnes, 1996; Wilson et al., 2006). Studies in humans have also shown the attenuated

ACh modulation with aging (Perry et al., 1992). ACh modulation is believed to play an

important role in switching of processing states between recall and learning within the

hippocampus (Hasselmo et al., 1995). Age-related ACh modulation reduction is thought

to decrease the relative impact of novel information in the hippocampus (Hasselmo and

Schnell, 1994; Hasselmo and Wyble, 1997) since extensive studies have shown that the

ACh release level from the medial septum is associated with novelty (Giovannini et al.,

1998; Miranda et al., 2000; Giovannini et al., 2001; Ranganath and Rainer, 2003).
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Age-related changes in place-cell activities. Firing activity dynamics of place cells in

aged, compared to adult, rats express a number of differences during learning of novel

environments. First, extensive studies in aging place cells have shown that CA1 and CA3

cells are less efficient in learning new spatial or task information (Tanila et al., 1997b;

Oler and Markus, 2000; Wilson et al., 2003, 2004, 2005a). In these experiments, rats

were introduced into a a novel environment, after having learned a previous, control

environment. The two environments differed in visual cues present in them. In adults

rats, firing positions of place cells in the novel environment were completely different

from those in the familiar environment. By contrast, firing fields of place cells in aged rats

remained in the same location in both environments. Only after repeated presentation to the

novel environment, place cells in aged rats reflected the difference in visual cues. Second,

in aged rats, recollection of a spatial representation of an already learned environment

was only slightly impaired, compared to the strong effect of age during learning a novel

representation. This slight effect was manifested by changes in spatial position of only a

small subset of place cells when the animals were replaced into a well learned environment

(Rosenbaumet al., 2012;Barnes et al., 1997). Third, synaptic plasticity in the hippocampus

is impaired in aged animals (Shen et al., 1997; Burke and Barnes, 2006). When adults

rats ran in laps in a rectangular loopy track, firing fields of their place cells became larger

in later laps compared to earlier ones. By contrast, the place field expansion effect was

absent in aged rats, likely because of an age-related LTP impairment. Fourth, when relying

mostly on self-motion cues, place cells in aged rats were equally efficient in creating new

spatial representation as those in young rats. In this experiment, rats’ behavior was tested

in a multi-compartment environment consisting of two identical rooms, thus requiring

the rats to use self-motion cues to distinguish between them (Wilson et al., 2005b).

Finally, when switching between strategies relying on allothetic and idiothetic cues, age is

manifested in strategy-switching impairments (Tanila et al., 1997a; Harris and Wolbers,

2014). Rosenzweig et al. (2003) reported that the transition from using idiothetic to

allothetic cues when running back and forth in a linear track is slower in aged than in adult

place cells.

In Chapter 5 we put forth a neural-network model of the effects of age on spatial navigation

in which we test the hypothesis that age-related reduction of cholinergic activity in the
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hippocampal formation causes plasticity impairments that in turn result in the observed

cellular and behavioral changes in aged rats.

2.5 Aging Human Avatar platform

Aging Human Avatar platform (AHA) is a modular software platform developed at the

Aging, Vision & Action Laboratory, Institute of Vision, Sorbonne University, Paris

(Sheynikhovich et al., 2019). As stated in Chapter 1, the overall goal of the platform

is to provide a customizable tool for human behavior simulation. A number different

people, including myself, contributed to the development of the platform. In this section,

the software architecture of the platform is briefly reviewed, with the indication of the

specific contributions of the present doctoral work.

The main purpose of the AHA platform is to simulate research experiments in a 3D virtual

environment involving a virtual subject (the avatar). The 3D environment (experimentation

scene) and the avatar (3D model of a human) can be configured and controlled by the

experimenter to carry out custom simulations. AHA Platform is mainly intended to

conduct experiments related to the subject’s movement, vision and navigation, especially

when the effect of the subject’s aging is a factor to be considered.

2.5.1 Software architecture

The AHA platform is designed using a modular software architecture, developed by

Richard R. Carrillo (University of Granada). It is composed of processing modules, or

nodes, which communicate among them to provide an overall processing and simulation.

The number of nodes can be adapted to the requirements of each experiment, but at least

two nodes are always present (Fig. 2.5): (1) The visualization node, implemented in Unity

3D, (https://unity.com). This node hosts the 3D model of the environment and 3D model

of a human. (2) The user interface node, which supports the interface between the user and

the platform via Python language interface library. This node also hosts the library that en-

sures intermodule communication implemented using Robotic Operating System software

(ROS, http://www.ros.org). Additional modules, usually providing detailed simulation of
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Figure 2.5: Software architecture of the Aging Human Avatar platform. Two main components
of the AHA platform are (i) the visualization node, that hosts the 3D simulation environment and
the 3D model of the human avatar; and (ii) the user interface node (including ROS master instance
and Python module) that supports communication between the user and the platform and between
platform modules. The ROS master instance, as well as multiple Python modules simulating
various functional components of the avatar (see Section 2.5.2) can either be implemented directly
as a part of the Python module or distributed over multiple dedicated computers connecting via
TCP/IP.

sensory (such as retina), sensorymotor (e.g. cerebellum) or memory (e.g. hippocampus)

areas can be included as additional modules via the Python interface library (see the next

section).

Unity 3D is a video game engine developed by Unity Technologies. Unity 3D supports

the creation of 2D and 3D games and simulations. It has an intuitive graphical interface

that facilitates the creating and edition of projects making its use easier to learn. Its

functionality can be extended through assets, which are items that can be included in the

project (such as 3D models, textures and character animations). Many of them can be

downloaded and easily imported in the project for free from Unity Asset Store, which is

a library of assets on the Internet accessible through the Unity 3D interface. However,

most of the flexibility of Unity 3D comes from the ability to include C# scripts in the

project. These scripts can create, modify and destroy the objects in the scene and control

the simulation and visualization.

ROS is not an operating system but middleware conceived for supporting the development

of robot applications. These applications can benefit from the ROS network, which are
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composed of ROS nodes. One of its main features of ROS is supplying an interface for

enabling these ROS nodes to communicate in different ways, such as message passing

and remote procedure calls. This communication is carried out through TCP/IP, so the

platform nodes can be distributed in a TCP/IP network. The ROS protocol requires that

one special node is always present in the ROS network: the ROS Master. This node

provides the other nodes with a node-registration service and a parameter dictionary. So,

when a normal ROS node starts it registers in the Master. If a node wants to find out

the address of a particular node that provides certain service, it queries the Master. This

Master node also stores the value of the parameters set by other nodes.

2.5.2 Functional architecture

The functional architecture of the AHA platform in its current implementation includes 3

functional modules (apart from the necessary modules mentioned earlier, Fig. 2.6A): (1)

Early visual processing module implementing a detailed models of the retina (Huth et al.,

2018); (2) Cerebellar model of vestibular-ocular reflex (Naveros et al., 2019; Luque et al.,

2019); (3) Spatial memory module (this doctoral thesis). More specifically, the model

of vision-based spatial memory described in Chapter 3-5 can be included as a separate

Python module of the AHA platform. Most of the computer simulations in these chapters

were run in the Unity environment with the 3D human avatar as the experimental subject

(Fig. 2.6B).
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Figure 2.6: A. Currently implementedmodules of the AHA platform. B. Simulation environment
of the double-room experiment simulated in Chapter 4 (left) and 3D model of a human person
(right).
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Chapter 3

Computational Model of the Dorsal

Visual Pathway

Chapter summary

This chapter presents a computational model of the primate dorsal visual pathway. The

model deals with the question of how visual information is converted from an egocentric

(retinal or head-fixed) reference frame, in which the information is acquired by the sensory

organs and early visual areas, into a world-fixed, allocentric frame of reference. Due to the

fact that allocentric representations are subject-invariant, they are thought to be used for

spatial memories in the hippocampal formation. In the context of the Aging Human Avatar

platform, the coordinate transformation is a necessary step linking visual and mnemonic

areas during spatial orientation. The model presented in this chapter is instrumental for the

spatial orientation models described in subsequent chapters, as it serves to deliver head-

direction independent visual input to the entorhinal-hippocampal processing loop.

This work has been submitted for revision to the eLife journal:

Tianyi Li, Angelo Arleo and Denis Sheynikhovich (submitted) A model of panoramic

visual representation in the dorsal visual pathway: the case of spatial reorientation

and memory-based search. eLife.
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Abstract
Primates are primarily visual animals and understanding how visual information is pro-

cessed on its way to memory structures is crucial to the understanding of how memory-

based visuospatial behavior is generated. Recent imaging data demonstrate the existence

of scene-sensitive areas in the dorsal visual path that are likely to combine visual informa-

tion from successive egocentric views, while behavioral evidence indicates the memory

of surrounding visual space in extraretinal coordinates. The present work focuses on the

computational nature of a panoramic representation that is proposed to link visual and

mnemonic functions during natural behavior. In a spiking artificial neuron network model

of the dorsal visual path it is shown how time-integration of spatial views can give rise

to such a representation and how it can subsequently be used to perform memory-based

spatial reorientation and visual search. More generally, the model predicts a common

role of view-based allocentric memory storage in spatial and not-spatial mnemonic behav-

iors.
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3.1 Introduction

Recent breathtaking advances in our understanding of rodent hippocampal memory system

pave the way for elucidating the organization of human spatial memory (Burgess, 2014;

Moser et al., 2017). One major difference between primates and rodents is the role of vi-

sion for behavior. Primates are much more visual animals than rodents and understanding

the link between primate visual and medial temporal lobe (MTL) memory structures is

an important and largely unexplored open question (Meister and Buffalo, 2016). Experi-

mental evidence indicates the existence of functional and anatomical connections between

these structures. Functional connections are demonstrated by two principal lines of stud-

ies. First, visual behavior is informed by memory as demonstrated by studies of novelty

preference in both monkeys and humans (Wilson and Goldman-Rakic, 1994; Manns et al.,

2000; Jutras and Buffalo, 2010a). In the novelty preference paradigm, the memory is

assessed from looking time: well memorized stimuli are looked at less than novel ones.

The specific role of MTL structures in this phenomenon is derived from results showing a

decreased novelty preference after MTL lesions or in patients suffering from mild cogni-

tive impairment or Alzheimer’s disease, often associated with MTL dysfunction (McKee

and Squire, 1993; Crutcher et al., 2009; Zola et al., 2013). In monkeys, restricted lesions

of hippocampal and/or parahippocampal cortices also decreased novelty preference (Zola

et al., 2000; Pascalis et al., 2009; Bachevalier et al., 2015). Second, the link between visual

and MTL structures is manifested in coherent neural activities in the two structures. For

example, activity of single MTL neurons is modulated by visual saccades (Sobotka et al.,

1997), the onset of visual stimuli strongly affects hippocampal neural responses (Jutras

and Buffalo, 2010a) and hippocampal theta oscillations are reset by eye movements (Jutras

and Buffalo, 2010b; Hoffman et al., 2013).

Anatomical connections between visual and memory structures have recently been char-

acterized in the novel framework of the occipital–parietal–MTL pathway of visuospatial

processing (Kravitz et al., 2011). There are three principal stages of information processing

in this pathway (Fig. 3.1A). First, the occipito-parietal circuit processes visual information

through visual areas V1-V6 an egocentric (retinal) frame of reference. Successive informa-

tion processing in these areas is thought to extract visual features of increasing complexity,
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includingmotion and depth cues and relay this information to the parietal cortex. Second, a

complex network of interconnected parietal structures relays highly-processed visual cues

to support executive, motor and spatial-navigation functions. These structures include the

medial, ventral and lateral intraparietal areas (MIP, VIP, LIP) strongly linked with eye

movements processing; the middle temporal and medial superior temporal (MT, MST)

thought to extract high-level visual motion cues; and the caudal part of the inferior parietal

lobule (cIPL), the main relay stage on the way to the medial temporal lobe. The cIPL

sends direct projections to the CA1 of the hippocampus as well as to the nearby parahip-

pocampal cortex (PHC). In addition, it sends indirect projections to the same structures

via the posterior cingulate cortex (PCC) and the retrosplenial cortex (RSC). Within this

complex network, neurons at different neurobiological sites have been reported to code

space in a world- or object-centred reference frames (Duhamel et al., 1997; Snyder et al.,

1998; Chafee et al., 2007). Moreover, both PCC and RSC have been repeatedly linked to

coordinate transformation between egocentric and allocentric frames of reference (Vogt

et al., 1992; Burgess, 2008; Epstein and Vass, 2014). Importantly, information processing

in this pathway is strongly affected by directional information thought to be provided by

a network of head-direction cells residing in several brain areas, including RSC (Taube,

2007). Finally, medial temporal lobe, and in particular the hippocampus, play a key role in

constructing an allocentric representation of space in primates (Hori et al., 2003; Ekstrom

et al., 2003).

Given functional and anatomical connections between visual and memory structures, the

question arises as to the nature of neuronal representations in the dorsal visual path.

In addition to the well-established role of parieto-retrosplenial networks in coordinate

transformations (Andersen et al., 1993; Snyder et al., 1998; Salinas and Abbott, 2001;

Pouget et al., 2002;Byrne et al., 2007), a largely unexplored question concerns the existence

of an extra-retinal neural map of the remembered visual space (Hayhoe et al., 2003; Tatler

and Land, 2011; Land, 2014). That the task-related visual retinotopic space is remembered

has been suggested by studies showing that when asking to recall a recent visual content,

eyemovements (on a blank screen) closely reflected spatial relations of remembered images

(Brandt and Stark, 1997; Johansson and Johansson, 2014). Moreover, preventing subjects

from making eye movements decreased recall performance (Johansson and Johansson,
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Figure 3.1: A. Dorsal visual pathway of visuospatial information processing in primates (see text
for details). B. Schematic representation of the model. Visual features present in the limited visual
field constitute the model input. The model network is composed of 6 modules: (1) Occipito-
parietal (egocentric); (2) Head-direction network; (3) Parieto-retrosplenial transformation network
consists of the coordinate-transformation network and the output layer, which encodes visual
features in an allocentric directional frame and spans 2π; (4) Hippocampus; (5) Reorientation
network. Projections from the occipito-parietal (visual) areas to the transformation network are
topographic. Each head-direction cell activates the corresponding layer of the transformation
network. Projections from the different layers of the transformation network to the parieto-
retrosplenial output layer are also organized according to head direction: any two layers project
topographically to overlapping portions of the output population shifted according to head direction.
Synapses between the transformation network and the parietal output network are endowed with
short-term memory. Different hippocampal subpopulations project to different neurons in the
reorientation network, which in turn corrects head direction signal. Full arrows represent the flow
of information in the network. Open arrows represent direction signals in the head direction and
reorientation networks.

2014; Laeng et al., 2014). That not only the retinal egocentric space is remembered but

also extra-retinal map of surrounding space is stored in memory is demonstrated in studies

showing that during natural behavior human subjects direct saccades toward extra-retinal
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locations, suggesting that these locations are represented in memory, potentially in an

allocentric frame of reference (Land et al., 1999; Hayhoe et al., 2003; Golomb et al.,

2011; Melcher and Morrone, 2015; Robertson et al., 2016). Even though suggested by the

above studies, the nature of such an extra-retinal map and neural mechanisms underlying

its construction and storage are currently unknown.

The present modeling study addresses the question of how such an allocentric representa-

tion of surrounding visual space can be constructed and stored by the dorsal visual path –

MTL networks. We propose that the existence of such a representation relies on short-term

memory linking successive egocentric views and we study how the long-term memory

of allocentric visual space can affect behavior in spatial and non-spatial experimental

paradigms. In particular, our results suggest that allocentric memory effects during spatial

reorientation and memory-based visual guidance tasks can be explained by the existence

of such a network.

3.2 Methods

The model is a spiking neuron network constructed to reflect information processing steps

thought to be performed by successive stages of neuronal processing in the primate dorsal

visual path described above (Fig. 3.1A). To reflect in a simplified way the main processing

stages in the pathway, our model of the dorsal pathway is composed of 5 main modules

or subnetworks (Fig. 3.1B). First, the module representing information processing in the

occipito-parietal circuit essentially applies a set of Gabor-like orientation filters to the

incoming visual images, a standard assumption for basic V1 processing. We do not model

eye movements, and assume that a retinotopic visual representations obtained at the level

of V1 has been remapped, by the time it arrives into the parietal cortex, to a head-fixed

representation by taking into account eye position information (Duhamel et al., 1997;

Snyder et al., 1998; Pouget et al., 2002). Even though gaze independent, this head-fixed

representation is egocentric, or view-dependent, in the sense it depends on the position and

orientation the modeled animal (i.e., its head) in space. Second, we model the directional

sense by a network of cells whose activity is approximatelyGaussian around their preferred

orientations (Taube, 2007) and that is sending projections to the parietal cortex (Brotchie
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et al., 1995; Snyder et al., 1998). Third, both the activities of the egocentric network

and the head direction signal converge onto the network modeling the role of the parieto-

retrosplenial network in coordinate transformation. This transformation network uses head

direction to convert egocentric visual representations into a head-orientation-independent,

or world-fixed representation. This coordinate transformation is done essentially by the

same mechanism as the retinotopic-to-head-fixed conversion mentioned above, but in

contrast to previous models it does so using low-level topographic visual information. The

resulting orientation-independent visual representation is often referred to as spatiotopic,

or allocentric, since visual features are determined a world-fixed directional reference

frame. Fourth, the allocentric output of the parieto-retrosplenial network arrives to the

hippocampus, modeled by a network of cells that learn, by a competitive mechanism,

allocentric visual patterns provided by the parietal network. As will be clear from the

following, in the context of spatial navigation these cells can be considered as place cells,

whereas in a non-spatial context they can be considered as representing memorised visual

stimuli. Finally, the reorientation module associates allocentric memories with directional

reference frame and feeds back to the head direction cells. The activity of this network

represents the correction signal for self-orientation. When the memorized information

corresponds to the newly arrived one, the correction signal is zero, whereas in the case of

disorientation or in response to specific manipulations of visual cues, it can provide fast

adjustment of the self-orientation signal. In the Results section we show that a similar

reorientation mechanism can be responsible for behavioral decisions in spatial, as well as

non-spatial tasks in primates.

3.2.1 Occipito-parietal input circuit

The occipito-parietal network is modeled by a single rectangular sheet of Nx × Ny visual

neurons, uniformly covering the visual field. In all simulations, except Simulation 6

below, the size of the visual field was limited to 160 × 100◦, approximately representing

that of a primate. The activities of these visual neurons are computed in four steps. First,

input images are convolved (using OpenCV filter2D() function) with Gabor filters of 4

different orientations (0,90◦,180◦,270◦) at 2 spatial frequencies (0.5 cpd, 2.5 cpd), chosen

so as to detect visual features in simulated experiments. Second, the 8 convolution images
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are discretized with Nx × Ny grid, and the maximal response at each position is chosen,

producing an array of NxNy filter responses. These operations are assumed to roughly

mimic retinotopic V1 processing (Heeger, 1992), transformed into a head-fixed reference

frame using eye-position information. Third, the vector of filter activities at time t is

normalized to have maximal value of unity. Fourth, a population of Nvis = NxNy Poisson

neurons is created with mean rates given by the activity of the corresponding filters scaled

by the constant maximal rate Avis (see Table 3.1 for the values of all parameters in the

model). For a Poisson neuron with rate r , the probability of emitting a spike during a

small period of time δt is equal to rδt (Gerstner et al., 2014).

3.2.2 Head direction

The head direction network is composed of Nhd = 36 Poisson neurons organized in a

circle, such that neurons’ preferred directions φk are uniformly distributed between 0 and

2π. The tuning curves of the modeled head-direction neurons are Gaussian with maximum

rate Ahd and width σhd = 8◦. Thus, the rate of head-direction neuron k when the model

animal’s head is oriented in the direction φ is given by

rhd
k = Ahd exp

(
−
(φ − φk)

2

σ2
hd

)
(3.2.1)

Such a network generates a Gaussian activity profile centered around φ. Our model does

not explicitly implement a line attractor dynamics hypothesized to support head direction

signal (Zhang, 1996), but it is consistent with it. Head direction cells have been found

in several brain areas in rodents and primates (see Taube, 2007, for review), and there is

evidence that parietal cortex receives head direction signals (Brotchie et al., 1995).

3.2.3 Parietal transformation network

The parietal transformation network is inspired by previous models (Becker and Burgess,

2001; Byrne et al., 2007) but in contrast to them it operates directly on activities of

the Gabor-like visual cells. The transformation of coordinates between the head-fixed

and world-fixed coordinates is performed by multiple subpopulations of leaky integrate-
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and-fire (LIF) neurons organized as two-dimensional layers of neurons (see Fig. 3.1).

Neurons in each layer of the transformation network are in a one-to-one relationship with

the visual population and so at each moment t each transformation layer receives a copy

of the egocentric (head-fixed) visual input. Therefore, the number of neurons in each

transformation layer is equal to Nvis. Apart from the visual input, the transformation

network also receives input from the population of head direction cells. There is a

topographic relationship between the sub-populations of the transformation network and

different head directions: each head-direction cell sends excitatory projections to neurons

only in one associated layer of the transformation network. Thus, input fromhead-direction

cells strongly activates only a small subset of transformation layers which transmit visual

information to the downstream population. More specifically, only the layers which are

associated with head directions close to the actual orientation of the head are active. The

number of layers in the transformation network is then equal to Nhd, giving the total

number of neurons in the transformation network Ntrans = NvisNhd.

Thus, in a k-th layer of the transformation network, the membrane potential vi(t) of

the LIF neuron i in is governed by the following equation (omitting the layer index for

clarity):

τm
dvi

dt
= Vrest − vi + g

ex
i (t)(Eex − vi) + g

in
i (t)(Ein − vi) + RmIext (3.2.2)

with the membrane time constant τm, resting potential Vrest, excitatory and inhibitory re-

versal potentials Eex and Ein, as well as the membrane resistance Rm. When the membrane

potential reaches threshold Vth, the neuron fires an action potential. At the same time, vi

is reset to Vreset and the neuron enters the absolute refractory period ∆abs during which it

cannot emit spikes. A constant external current Iext is added to each neuron to simulate

baseline activity induced by other (unspecified) neurons from the network.

The excitatory conductance in these neurons depends only on the visual input (and thus is

independent from k). It is modeled as a combination of α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptor activation
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gex
i = (1 − α)g

ampa
i + αgnmda

i (Murray et al., 2014), that are described by

dgampa
i

dt
= −

g
ampa
i

τampa
+

∑
j∈{vis}

wvis
i j s j(t) (3.2.3)

gnmda
i =

∑
j∈{vis} w

vis
i j snmda

j (t)

1 + 0.22 exp(−0.025vi/mV)]
(3.2.4)

where the index j runs over input (visual) neurons connected to it, wvis
i j are the connection

weights and s j(t) = 1 if a presynaptic spike arrives at time t and s j(t) = 0 otherwise.

Constant τampa determines the time scales of AMPA receptor activation. The parameter

snmda
j is the NMDA gating variable from presynaptic neuron j, modeled as:

dsnmda
j

dt
= −

snmda
j

τnmda
+ αs xnmda

j (2 − snmda
j ) (3.2.5)

dxnmda
j

dt
= −

xnmda
j

τx
+ s j(t) (3.2.6)

where τnmda and τx are the decay time constants of NMDA. The value of constant αs is 0.2

kHz.

In contrast, the inhibitory conductance depends only on the head-direction cells and

ensures that a small subset of transformation layers (i.e. those associated with nearby

head directions) are active. To implement it, we employ a simple scheme in which all

transformation layer neurons are self-inhibitory, and this inhibition is counteracted by the

excitatory input from the head-direction cells. Thus, the inhibitory conductance of the i-th

neuron in the k-th layer is given by

τgaba
dgin

i

dt
= −gin

i + Ginh + τgaba
∑

k∈{hd}

whd
ik sk(t) (3.2.7)

where Ginh is the constant maximum amount of self-inhibition and whd
ik are the synaptic

weights of connections from the head-direction cells. In the current implementation,

there is one-to-one correspondence between the head-direction cells and the layers of the

transformation network, so wik = 1 only for associated head-direction cell φk and wik = 0

otherwise.
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All layers of the transformation network project to the parietal output population, which

codes image features in an allocentric (world-fixed) directional frame. The parietal output

population is represented by a two-dimensional neuronal sheet spanning 360 × 100◦, that

is a full panoramic view. It is encoded by a grid of Nallo
x × Nallo

y neurons. Each layer of

the transformation network projects to a portion of the population according to the head

direction associated with it associated with this layer (see Fig. 3.1). Since any two nearby

layers of the transformation network are associated with head directions shifted relative to

each other by 360◦/Nhd = 10◦, the overlap between their projections on the parietal output

layer is 140◦.

Thus, at each moment in time, a spiking representation of the current visual stream (i.e. a

spiking copy of the visual input, gated by the head direction cells) arrives to the allocentric

neurons spatially shifted according to the current head direction. For example, if two

egocentric views (each spanning 160◦) are observed at head directions −45◦ and 45◦ with

respect to an arbitrary north direction, these two views arrive at the allocentric population

spatially shifted relative to one another by 90◦, so that the activated neurons in the

allocentric population span 230◦. To ensure that subsequent snapshots are accumulated in

time (e.g. during head rotation), the synapses between neurons in the transformation layers

and the allocentric population are endowed with short-term memory, implemented by a

prolonged activation of NMDA receptors (Durstewitz et al., 2000). Such synapses result

in a sustained activity of allocentric output neurons during a period of time sufficient for

downstream plasticity mechanism to store information from accumulated snapshots.

The membrane potential of the i-th neuron in the allocentric output population is governed

by Eq. 3.2.2 with the synaptic conductance terms determined as follows. First, the

excitatory AMPA conductance is given by Eq. 3.2.3 but with the input provided by

transformation network neurons via weights wtrans
i j . Second, the NMDA conductance is

described by Eq. 3.2.4, but with the synaptic time scale increased by a factor of 6. This is

done to ensure sustained activation of the output neurons upon changes in the visual input.

Third, inhibitory input is set to zero for these neurons.
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Learning the weights in the transformation network

The connectionweightswvis
i j from the visual neurons to the parietal transformation cells and

wtrans
i j from the parietal transformation cells to the parietal output neurons are assumed to

be learned during development by a supervised mechanism, similar to the one proposed to

occur during sensory-motor transformation learning (Zipser and Andersen, 1988; Salinas

and Abbott, 1995). In this models it is proposed that when an object is seen (i.e. its

retinal position and an associated gaze direction are given), grasping the object by hand

(that operates w.r.t. the body-fixed reference frame) provides a teaching signal to learn

the coordinate transformation. A similar process is assumed to occur here, but instead

of learning body-based coordinates using gaze direction, the model learns world-fixed

coordinates using head direction.

More specifically, synaptic weights in the coordinate-transformation network were set by

the following procedure. First, the network was presented with an edge-like stimulus at a

random orientation and at a randomly chosen location in the visual field. Second, upon

the stimulus presentation, the head direction was fixed at a randomly chosen angle φ.

Third, neurons in the transformation layers associated with the chosen head direction were

activatedwith the average firing rates equal to the rates of the corresponding visual neurons,

while neurons in the parietal output layer were activated with the same average rates but

shifted according to the chosen head direction (representing the teaching signal). Fourth,

the synaptic weights in the network were set according to the Hebbian prescription:

wvis
i j = r trans

i rvis
j (3.2.8)

wtrans
i j = r trans

i rallo
j (3.2.9)

where rvis
i , r trans

i and rallo
i are the mean firing rates of the corresponding visual neurons,

transformation network neurons and parietal output neurons, respectively. Fifth, theweight

vector of each neuron was re-normalized to ensure that the maximum firing rate is below

100Hz. This procedure has been performed for edge-like stimuli at 4 different orientations

(corresponding to 4 Gabor filter orientations), placed in the locations spanning the whole

visual field and at head directions spanning 360◦. Synaptic weights (Eqs. 3.2.8-3.2.9)
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were fixed to the learned values prior to all the simulation presented here. No updates

were performed on these weights during the simulations.

3.2.4 Hippocampal neurons

As a result of the upstream processing, neuronal input to the hippocampus represents

visual features in an allocentric directional frame. Neurons in the parietal output pop-

ulation are connected in an all-to-all fashion to the population of modeled hippocampal

cells and the connection weights that are updated during learning according to an spike-

timing-dependent plasticity (STDP) rule below. In addition, lateral inhibition between

hippocampal neurons ensures a soft winner-take-all dynamics, such that sufficiently dif-

ferent patterns in the visual input become associated with small distinct subpopulations of

hippocampal neurons.

Thus, the membrane equation of the i-th hippocampal neurons is given by Eq. 3.2.2. The

excitatory conductances are given by Eqs. 3.2.3-3.2.4, but with the input provided by the

parietal output neurons via weights wallo
i j . Upon the initial entry to a novel environment

these weights are initialized to small random values. During learning, the amount of

synaptic modification induced by a single pair of pre- and post-synaptic spikes is given

by

dwallo
i j

dt
= Gmax

[
apre

j si(t) − apost
i s j(t)

]
(3.2.10)

where si(t) and s j(t) detect pre- and post-synaptic spikes, respectively, and

dapre
j

dt
= −

apre
j

τpre
+ A+s j(t)

dapost
i

dt
= −

apost
i

τpost
+ A−si(t)

(3.2.11)

The inhibitory conductance of the hippocampal neuron is governed by the following

equation:

τgaba
dgin

i

dt
= −gin

i + τgaba
∑

j∈{hpc}
winh

i j s j(t) (3.2.12)
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in which τgaba determines the time scale of synaptic inhibition as before, and the weights

winh
i j = Winh are constant and ensure that each hippocampal neuron inhibits all other

hippocampal neurons proportionally to its activity.

The hippocampal circuit is complex and consists of several interconnected populations.

In our simple model of hippocampal activity we consider only the first stage of hippocam-

pal processing of visual information that is likely to be the CA1, which receives direct

projections from the entorhinal cortex, an input gateway to the hippocampus.

3.2.5 Reorientation network

During one continuous experimental trial (e.g. an exploration trial in novel environment

or an observation of a novel image on the screen), the reference frame for head direction

is fixed and all processing operations in the network are performed with respect to the

origin of this reference frame. In particular, an allocentric information stored by the

hippocampus as a result of the trial can be correctly used for future action only if the

origin of the reference frame is stored with it. Therefore, if in a subsequent trial, the

actions to be performed require memory of the previous one, the network should be able

to recover the original directional reference (this of course can happen only the visual

information received at the start of the trial is considered familiar). Reorientation is the

process by which the origin of the stored reference frame is recovered.

Our model of this process rests on the assumption that it is automatic, fast, bottom-up, and

does not require costly object/landmark processing. The support for this assumption comes

from a large body of reorientation studies in many animal species including primates,

showing that object identities are ignored during reorientation (Cheng and Newcombe,

2005). The conditions in which most of the reorientation studies were performed usually

are such that there is no single conspicuous point-like cue in the environment that can be

reliable associated with a reference direction. For example, in many studies the directional

cues come from the geometric layout of the experimental room. Lesion studies in rats

suggest that reorientation in such conditions requires an intact hippocampus (McGregor

et al., 2004). Furthermore, we propose that this reorientation network is active all the

time, in contrast to being consciously “turned on” when the animal “feels disoriented”.
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Therefore, we expect that its effects can be observed even when no specific disorientation

procedure was performed. In particular, we suggest in the Results that a manipulation of

objects on the screen can result in automatic corrections of directional sense that can be

observed during visual search.

The reorientation network in themodel is organized similarly to the head-direction network

and consists of Nre neurons with preferred positions uniformly distributed on a circle.

Therefore, the difference between two nearby reorientation cells is ∆φ = 2π/Nre. The

membrane potential of the i-th reorientation neuron is described by the LIF equation

(Eq. 3.2.2). Excitatory conductances are described by Eqs. 3.2.3-3.2.4 with the input to

the neuron provided by hippocampal place cells via weights whpc
i j . There is no inhibition

in the network, and so the inhibitory conductance is set to 0. The ability of the network to

perform reorientation is determined by afferent connection weights from the hippocampal

cells, which are determined as follows.

Since all allocentric information learned during a trial is linked to the same directional

frame, all hippocampal cells learned during the trial are connected to a single neuron of the

reorientation network, the one with the preferred direction 0◦ (Fig. 3.2). The connection

weights between the hippocampal cells and the neuron are updated using STDP rule,

Eqs. 3.2.10-3.2.11 (this is not essential for the model to work, so that setting the weights to

a constant value will give similar results). Once the training trial is finished, Nre copies of

the learned hippocampal population are created, each corresponding to a separate neuron

in the reorientation network. In each copy, all cells have the same input and output

weights as the corresponding cells in the original population, but their connection profile

is different. In particular, the copy that corresponds to the reorientation neuron with

preferred direction ∆φ is connected to pre-synaptic cells are shifted by the same angle in

the topographically-organized allocentric layer (Fig. 3.2). In machine learning literature,

this technique is called “weight sharing” and it allows to achieve translation invariance

for detection of objects in images. Here, we apply a similar technique in order to detect

familiar snapshots and head direction associated with them.

Suppose, for example, that as a result of learning during a trial, a hippocampal cell is

associated with 4 presynaptic cells in the output layer of the transformation network (cells
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Figure 3.2: Top: the output population of the parieto-retrosplenial network. Bottom: hippocam-
pal cells. The population outlined by full lines is the original population learned during training.
As a result of learning, the hippocampal cell shown in orange is connected to the presynaptic
cells of the same color (connection weights not shown). All cells in the original population are
connected to a single cell (o◦) in the reorientation network (Right). The hippocampal populations
outlined by dashed lines are copies of the original population that implement weight sharing: the
hippocampal cell shown in green (blue) has the same connection weights as the orange cell, but
it is connected to pre- and post-synaptic cells shifted by ∆φ (2∆φ). The number of copies of the
original hippocampal population is the same as the number of neurons in the reorientation network.

shown in orange in Fig. 3.2). Suppose further that during an inter-trial interval the head

direction network has drifted (or was externally manipulated), so that at the start of the

new trial the internal sense of direction is off by 2∆φ. When the animal sees the same

visual pattern again, it will be projected onto the allocentric layer shifted by the same

amount (blue cells in Fig. 3.2). This will in turn cause the hippocampal subpopulation

that includes the blue cell to be most strongly active, such that the activity peak of the

reorientation network signals the orientation error. The reorientation is then performed by

readjusting the head direction network to minimize the reorientation error. In the current

implementation this is done algorithmically by subtracting the error signal from the actual

head direction, but it can also be implemented by attractor dynamics in the head direction

layer.
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3.2.6 Simulation details

The spiking artificial neural network model described above was implemented using

Python 2.7 and Brian 2 spiking neural network simulator (Stimberg et al., 2019). The

time step for neuronal simulation was set to 1 ms, while the sampling rate of visual

information was 10 Hz, according to the proposals relating oscillatory brain rhythms in

the range 6–10 Hz to information sampling (Hasselmo et al., 2002; Busch and VanRullen,

2010). At the start of each simulation, the weights wallo
i j and whpc

i j were initialized to small

random values (the other weights were trained as described in Section 3.2.3 and fixed for

all simulations), see Fig. 3.1B. Parameters of the model are listed in Table 3.1, and the

sections below provide additional details of all simulations.

Simulation 1: Egocentric-allocentric transformation

The first simulation was inspired by the study of Snyder et al. (1998), in which monkeys

observed visual stimuli at identical retinal locations, but for different orientations of the

head with respect to the world, in order to assess whether parietal neurons were modulated

by the allocentric head direction. Thus, in this simulation, the head direction angle φ was

varied from −50◦ to 50◦ in 100 sessions. For each trial of a session, the mean rates of

the head-direction neurons were calculated according to Eq. 3.2.1 and fixed for the rest of

the trial. The stimulus (vertical black bar, width: 10◦) was shifted horizontally across the

midline of the visual field (160× 100◦) from left to right in 1◦ steps, such that it remained

at each position for 100ms. The neuronal spikes were recorded from the occipito-parietal

network, the parieto-retrosplenial transformation network and its output layer, for each

stimulus position across 10 trials per session. Mean firing rates were then calculated from

these data.

Simulation 2: Accumulation of successive views using short-term synaptic mem-

ory

The aimof the second simulationwas to illustrate the synapticmechanism for an integration

of successive visual snapshots in time, instrumental for spatial coding. Wemodel amonkey

that remains in the same spatial location and turns its head from left to right. Thus, the
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Parameter Value Description
Neuron numbers

Nx × Ny 80 × 50 Parieto-occipital network size
Nhd 36 Head direction network size
Nallo

x × Nallo
y 180 × 50 Parietal output layer size

Nre 36 Reorientation network size
Mean amplitudes in the input populations

Avis 100 Spikes/s., Maximum rate of the parieto-occiptal network
Ahd 100 Spikes/s., Maximum rate of the head-direction network

Parameters of the LIF model
Vrest -65 mV, Resting potential
Vth -55 mV, Spiking threshold
Vreset -65 mV, Reset potential
Eex 0 mV, Excitatory reversal potential
Ein -80 mV, Inhibitory reversal potential
Ein 250 mΩ, Membrane resistance
∆abs 1a−c, 2d ms, Absolute refractory period
α 0.9a,b, 0.3c,d Balance between AMPA and NMDA receptor
τampa 5 ms, AMPA receptor time scale
τnmda 100a,c,d 600b ms, NMDA receptor time scale
τx 2.5 ms, NMDA receptor time scale
τm 10a,c,d , 20b ms, Membrane time scale
τgaba 10 ms, GABA receptor time scale
Iext 20a−c, 40d mA, External input current
Ginh 2 Self-inhibitory conductance

STDP
Gmax 0.05c, 0.1d Maximal weight change
A+ 0.005 Maximal potentiation amplitude
A− A+ x 1.05 Maximal depression amplitude
τpre 20 ms, Potentiation time scale
τpost 15c, 17.5d ms, Depression time scale

Other parameters
σhd 8◦ Tuning curve width of hed direction cells
W train

inh 1.0 Lateral inhibition weight in the hippocampal population
W test

inh 0.1 Lateral inhibition weight in the hippocampal population

Table 3.1: Parameters of the dorsal visual pathway model. The configuration of all the
parameters from the model is described in the table. Different neuron populations from the
model share common parameters but the value of these parameters is not all the same. In
order to distinguish the neural populations, a-d in the second column label neural population: a,
Occipito-parietal (egocentric); b, Parieto-retrosplenial transformation network; c, Hippocampus;
d, Reorientation network. The parameter share the same value in different neural populations, if
its value has no label.

model was presented with a set of 9 successive overlapping views (160×100◦) taken from

a panoramic (360 × 100◦) image, 100ms per view. Initial head direction was arbitrarily
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set to 0◦.

Simulation 3: Encoding of allocentric visual information during spatial explo-

ration

In the third simulation we studied the role of temporal accumulation of visual information

for spatial coding. The model ran through a square 3D environment (area: 10×10 m, wall

height 6m)for about 10min so as to cover uniformly its area. The visual input was provided

by a cylindrical camera (160 × 100◦) placed at the location of the model animal. At each

spatial location 9 successive views of the environment were taken in different directions

(as in the Simulation 2). The vector of mean firing rates of the occipito-parietal neurons

at a single spatial location and orientation constituted the egocentric population vector.

The mean firing rates of the the parieto-retrosplenial output neurons at each location

constituted the allocentric population vector (this population vector is independent from

orientation as a result of coordinate transformation). To compare spatial information

content in the two populations, we first estimated intrinsic dimensionality of the two sets

of population vectors. This was performed using two recent state-of-the art methods:

DANCo (Ceruti et al., 2014), as implemented by the intrinsicDimension R package,

and ID_fit (Granata and Carnevale, 2016). For both methods, the principal parameter

affecting dimensionality estimation is the number of neighbors for each point in the set

that is used to make local estimates of the manifold dimension. Second, we used two

different methods to visualize the structure of the low-dimensional manifold: Isomap

(Tenenbaum et al., 2000) and t-SNE (van der Maaten and Hinton, 2008). To extract

principal axes of the manifold, we used PCA on the data points projected on two principal

dimensions provided by the above methods. We chose the parameter values for which

the visualized manifold best approximates the original space. We then determined a set

of points (i.e. population vectors) that lie close to the principal axes of the manifold and

visualized them in the original environment. If the manifold structure corresponds well

to the spatial structure of the underlying environment, the principal axes of the manifold

should lie close to the principal axes of the environment.
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Simulation 4: Visual responses of hippocampal neurons in an image memorization

task

This simulation was inspired by the study of Jutras and Buffalo (2010a) in which a large set

of novel visual stimuli was presented to monkeys on a computer screen. Neuronal activity

in the hippocampal formation in response to the visual stimuli was recorded. One of the

results of this study suggested that hippocampal neurons encode stimulus novelty in their

firing rates. To simulate this result, we presented to the model 100 novel stimuli randomly

chosen from the dataset (http://www.vision.caltech.edu/Image_Datasets/Caltech101). The

stimuli (resized to 160×100 pixels)were shown to themodel successively in one continuous

session (500ms stimulus presentation time + 1000ms inter-trial interval with no stimuli)

and the activities of the hippocampal neurons during learning were recorded.

Simulation 5: Spatial reorientation

In this simulation of the experiment of Gouteux et al. (2001), the testing room was a

rectangular 3D environment with area 20×10 m and wall height 6m. In the “No cues”

task the only visual features in the room were provided by the outlines of the walls. In

the other 3 tasks, a square visual cue was presented in the middle of one of the walls

with the edge length equal to 1/6 (small cue), 1/3 (medium cue) or 1/2 (large cue) of

the environment width. Each task consisted of two phases, exploration and reorientation.

During the exploration phase the modeled animal uniformly explored the environment, as

in Simulation 3. The reorientation phase composed multiple trials. At the beginning of

each trial, the model was placed at one of spatial locations covering the environment in

a uniform grid. At each of these locations, 9 successive views were taken. Reorientation

performance was assessed in two ways: (i) only the first view at each location was used for

reorientation; (ii) successive views accumulated over 60 successive positions were used

for reorientation.

Simulation 6: Memory-based visual search

In this simulation we used a dataset of visual images used in the study by Fiehler et al.

(2014). This dataset consists of 18 image sets corresponding to 18 different arrangements
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of the same 6 objects (mug, plate, egg, jam, butter, espresso cooker). Each set includes a

control image (all objects on the table in their initial positions) and images in which one

of the objects is missing (target object) and one or more other objects displaced to the left

or to the right. In the simulation we used only a subset of all images in a set that included

either 1, 3 or 5 of the objects mentioned above displaced either to the left or to the right

(referred to as “local” condition in Fiehler et al., 2014), giving rise to 6 experimental

conditions. In each condition, there were 18 test images of displaced objects, plus the

associated control images. Taking into account the distance between the animal and the

screen as well as the size of the image (provided by Fiehler et al. (2014)), we calculated

the size of the image in degrees of visual field. We then determined a rectangular portion

of the image (30 × 15◦) that included all objects in initial and displaced positions in all

images. The contents of this area served as an input to the model. Thus, in this simulation

the spatial resolution of the visual input was higher than in the previous simulations as

the visual field of the model was smaller, but the size of the input network was kept the

same.

During each simulation trial, the image of objects in initial positions was first presented to

the network during 2000 ms and stored by the hippocampal cells. The image of displaced

objects (in one of the 6 conditions above) was subsequently presented to the network for

the same amount of time and the orientation error was read out from the mean firing rates

of the reorientation network.

3.3 Results

Wefirst show that properties of neuronal firing along the simulated neural pathway from the

visual cortex to the hippocampus reflect those of biological neurons along the pathway. We

then demonstrate how backward projections from the hippocampus to the head direction

network, can explain hippocampal influence on head direction during spatial reorientation

and memory-based visual search.
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3.3.1 Visual and parietal model neurons encode sensory representa-

tions in distinct reference frames

We start with a characterization of modeled dorsal-visual path neurons in the case when

a simulated animal is assumed to sit in front of a screen and is free to rotate its head

(Duhamel et al., 1997; Snyder et al., 1998, for simplicity, we assume that rotation occurs

only in the horizontal plane). The firing rate of occipito-parietal (input) neurons and

the output parietal neurons as a function of the allocentric position of a visual stimulus

(i.e. a vertical bar moving horizontally across the visual field) was measured for two

different head directions (Figs. 3.3A,B). For a neuron in the input population, a change

in head direction induces the corresponding change of the receptive field of the neuron,

since its receptive field shifts together with the head along the allocentric position axis

(Fig. 3.3C). In contrast, for a parietal output neuron, a change in head direction does not

influence the position of its receptive field, which remains fixed in an allocentric frame

(Fig. 3.3D). To show that this is also true on the population level, we measured, for all

visual input cells and all parietal output cells, the amount of shift in its receptive field

position as a function of head direction shift, while the head was rotated from −50◦ to 50◦.

For cells in the occipito-parietal visual area, the average linear slope of the dependence

is close to 1, whereas in the allocentric parietal population the average slope is close

to 0 (Fig. 3.3E), meaning that these two populations encode the visual stimulus in the

two different reference frames: head-fixed and world-fixed. These properties of model

neurons reproduce well-known monkey data showing that different sub-populations of

parietal cortex neurons encode visual features in the two reference frames (Duhamel et al.,

1997; Snyder et al., 1998).

The receptive fields of the intermediate neurons of the coordinate transformation network

exhibit gain modulation by head direction (Fig. 3.3F), as do monkey parietal neurons

(Snyder et al., 1998).The hypothesis of reference-frame conversion via gain modulation

has been extensively studied in both experimental and theoretical work, in the context of

sensory-motor coordination during vision-guided reaching (Avillac et al., 2005; Pouget and

Sejnowski, 1997; Salinas and Abbott, 2001). While coordinate-transformation processes

involved in the two cases are conceptually similar, the underlying neuronal computations
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Figure 3.3: A. A schematic representation of the receptive field of one input visual input neuron
at two head directions (HD1 and HD2). The position of the receptive field of the neuron is shown
by the blue and red bar for HD1 and HD2, respectively. B. The population activity of head direction
cells in the model at 20◦ (HD1) and -20◦ (HD2). C. Tuning curves of an input visual neuron (±SD)
for the two head directions represented in B. D. Tuning curves of an allocentric output neuron for
the same head directions. E. Histograms show the distributions of the linear dependence slopes
between the shift in the receptive field position and the shift in head direction, for egocentric (in
blue) and allocentric (in orange) neuronal populations. F. Transformation network neurons are
gain-modulated by head direction. Stimulus tuning curves of the same neuron for three different
head directions are shown.

can differ substantially, because the former requires simultaneous remapping for the whole

visual field, while the latter is limited to the computation of coordinates for a single target

location (i.e. a representation of the point-like reaching target). This difference limits

the use of noise-reducing attractor-like dynamics that is an essential component in point-

based sensory-motor transformation models (Pouget et al., 2002), because in full-field

transformation the information and noise are mixed together in a single visual input

stream.

3.3.2 Spatial codingusing temporal accumulation of successive views

Because of a limited view field, at each moment in time the simulated animal can di-

rectly observe only a restricted portion of visual environment (i.e. a visual snapshot, see

Figs. 3.4A,B). That these snapshot-like representations are represented in memory, has
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been demonstrated in a number of studies showing viewpoint-dependent memory repre-

sentations (Diwadkar and McNamara, 1997; Christou and Bülthoff, 1999; Gaunet et al.,

2001). Moreover, experimental evidence suggests that visual information can be accumu-

lated from successive snapshots during e.g. head rotation, giving rise to a panoramic-like

representation of the surrounding environment that can inform future goal-oriented be-

havior (Tatler et al., 2003; Oliva et al., 2004; Golomb et al., 2011; Robertson et al.,

2016). A candidate neural mechanism for implementing such integration is short-term

memory, i.e. the ability of a neuron to sustain stimulus-related activity for a short period

of time (Goldman-Rakic, 1995; Constantinidis and Steinmetz, 1996). In our model, this

is implemented by sustained firing via prolonged NMDA receptor activation (Fig. 3.4C).

Combined with STDP learning rule in the connections between the parietal output neurons

and the hippocampus, this mechanism ensures that a time-integrated sequence of visual

snapshots is stored in the synapses to hippocampal neurons. In particular, head rotation

results in a temporarily activated panoramic representation in the population of output pari-

etal neurons that project to CA1. STDP in these synapses ensures that these panoramic

representations are stored in the synapses to downstream CA1 neurons (Fig. 3.4D).

A large amount of experimental evidence suggests that many animal species encode a

geometric layout of the surrounding space (Cheng and Newcombe, 2005; O’Keefe and

Burgess, 1996; Gouteux et al., 2001; Krupic et al., 2015; Keinath et al., 2017; Bécu et al.,

2019). Computational models of spatial representation in rodents link this sensitivity

to geometry with a postulated ability of the animal to estimate distances to surrounding

walls (Hartley et al., 2000) or to observe panoramic visual snapshots of surrounding space

(Cheung et al., 2008; Sheynikhovich et al., 2009), and rely on a wide rodent visual field

( 320◦). That the width of visual field plays a role in geometric processing in humans

was demonstrated in the study by Sturz et al. (2013), in which limiting visual field to 50◦

impaired performance in a geometry-dependent navigation task, compared to a control

group. We thus studied whether activities of egocentric and allocentric neurons in the

model encode information about the geometry of the environment and whether snapshot

accumulation over time plays a role in this process.

To do this, we run the model to uniformly explore a square environment and we stored
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Figure 3.4: A. A panoramic image of an environment superimposed with the visual field of
the simulated animal (white rectangle). The white arrow shows the direction of visual scan path.
B. Several successive visual snapshots along the scan path shown in A are represented by mean
firing rates of the occipito-parietal (egocentric) network. C. An example of the evolution of AMPA
and NMDA receptor conductances of parieto-retrosplenial output neurons as a function of time.
Stimulus onset: t = 0, stimulus offset: t = 200ms (red line). D. Raster plot of spiking activities
of the output neurons showing short-term memory in this network. An input is presented at time
0 and is switched off at the time shown by the red vertical line. The neurons remain active after
stimulus offset due NMDA-receptor mediated short-term memory. E. Synaptic weight matrix of
a single hippocampal neuron after learning stores the activity of the parieto-retrosplenial output
layer accumulated over several successive snapshots shown in B.

population rate vectors of the egocentric-visual and allocentric-parietal populations at suc-

cessive time points during exploration. More specifically, for the egocentric population,

each population vector corresponded to population activities evoked by the presentation

of a single visual snapshot. In contrast, for the allocentric population, each population

vector corresponded to a panoramic snapshot obtained by accumulating several successive

snapshots during head rotations (see Methods). The visual information content was iden-

tical in two sets of population vectors as they were collected during the same exploration

trial. Population vectors in each set can be considered as data points in a high-dimensional

space of corresponding neural activities. These points are expected to belong to a two-

dimensional manifold in this space, since during exploration the model animal moves

in a 2D spatial plane. The analysis of the intrinsic dimensionality of both sets indeed

shows that it is about 2 (Figs. 3.5A,B). We then applied two different manifold visualisa-
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Figure 3.5: A,B. Estimation of intrinsic dimensionality of the set of population vectors in the
egocentric (A) and allocentric (B) populations by two different state-of-the-art methods (DANCo
and ID_fit). C,D. Top: Projection of the population vector manifolds onto a two-dimensional plane
using Isomap (left) and t-SNE (right) algorithms. Color gradient from yellow to blue corresponds
to the position at which the corresponding population vector was observed, as shown in the Bottom
row. Red dots show population vectors that lie close to the principal axes of the 2D manifold of
the principal space. C and D show population vectors of the egocentric and allocentric neuronal
populations, respectively. E. An example of the receptive field of one hippocampal neuron after
learning the environment before (left) and after (right) extension of the environment along it
horizontal axis. F. For the same neuron as in E, red dots show locations in the environment where
this neurons is winner in the WTA learning scheme.

tion techniques to see whether the shape of manifold reflects the environment shape (see

Methods). We found that when applied to population vectors of the egocentric population,

the structure of the manifold did not reflect the layout of the environment (Fig. 3.5C). In
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contrast, allocentric population activities reliably preserved geometric information in the

spatial organization of the manifold (Fig. 3.5D). Moreover principal axes of the manifold

corresponded to the principal axes of the underlying environment only for the population

vectors of the allocentric population (bottom row of Figs. 3.5C,D). The extraction of prin-

cipal axes of an experimental space has been proposed to underlie spatial decision making

in several experimental paradigms, including data from humans (Gallistel, 1990; Cheng

and Gallistel, 2005; Sturz et al., 2011).

STDP in the connections between the parietal and hippocampal neurons ensures that

allocentric spatial views are stored in memory, while lateral inhibition in the hippocampal

layer implements a competition such that different hippocampal cells become selective to

different localized regions of the visuospatial manifold, which, by virtue of the coherent

mapping on the real space, correspond to spatial receptive fields (Figs. 3.5E). When the

geometry of the environment is modified, but the memorised allocentric representation

remains the same, modeled hippocampal cells express correspondingmodifications of their

receptive fields (Figs. 3.5E,F), potentially providing a purely sensory basis for the effects

of geometric manipulations observed in rats (O’Keefe and Burgess, 1996) and humans

(Hartley et al., 2004). These simulations show how the egocentric-allocentric conversion

and short-term memory along the modeled dorsal visual pathway can be instrumental in

structuring the hippocampal input according to the geometric properties of the surrounding

space that were repeatedly shown to affect human navigation (Hermer and Spelke, 1994;

Bécu et al., 2019).

3.3.3 Visual responses of hippocampal neurons reflect learning of

visual stimuli

The hippocampalmemory network is thought to support a large spectrumofmemory-based

behaviors, and therefore its basic properties should manifest themselves in situations other

than navigation. In particular, plasticity and competition, which are proposed to mediate

fast hippocampal learning of visual information in our model, occur not only during

navigation but also in a passive image viewing paradigm. In the next simulation inspired

by the experiment of Jutras and Buffalo (2010a) we used the stationary model to learn
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a set of 100 novel images presented in a quick succession (see Methods) and recorded

activities of modeled hippocampal neurons. In response to the presented stimuli, some

neurons increased their firing rates as a result of STDP (winning neurons), while the

rest of the neurons were inhibited (Fig. 3.6A). Even though only a few neurons won the

competition for each particular stimulus, some neurons were selective to a larger number

of stimuli than others (Fig. 3.6C,D). Therefore, stimulus-averaged firing rates of different

neurons expressed either a decrease in the average firing rate (for neurons that were never

winners), no change in the average rate (for neurons that were winners for a relatively

small number of stimuli), or an increase in the average rate (for neurons that were winners

for a relatively high number of stimuli, Fig. 3.6B). There was a larger number of neurons

expressed decreased firing rates or no change, than those that increased their average rate

(Fig. 3.6D).

Under the assumption that a novelty-detection mechanism (assumed to reside in the hip-

pocampus or elsewhere, but not modeled here) prevents hippocampal firing in response

to a repeated stimuli, these results are in accord with the data from a number of studies

showing that different subsets of recorded hippocampal neurons either decreased, showed

no changes, or increased their activity in response to the presentation of a novel stimulus

(Jutras and Buffalo, 2010a; Rutishauser et al., 2006; Viskontas et al., 2006). In these

studies of the role of novelty in hippocampal processing, stimulus-averaged elevation of

neural activity was considered as an indication of an abstract (i.e. independent of stimulus

identity) novelty processing in the hippocampus (Jutras and Buffalo, 2010a; Rutishauser

et al., 2006). It is unclear how such an abstract representation of novelty can be reconciled

with the role of the hippocampus in navigation. In contrast, our simulation results suggest

that elevation or depression of stimulus-averaged firing rate in a neuron may be related to

the number of stimuli for which this neuron is winner.

3.3.4 Top-downhippocampal input in spatial reorientation andmemory-

based search

The population of the hippocampal neurons in the model represents the neural storage of

(potentially highly processed) visual information aligned with an allocentric directional
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Figure 3.6: A. Spike raster plots for four example neurons in response to presented visual
stimuli. B. Stimulus-averaged firing rates of neurons in A (mean ± SEM shown in red), compared
to baseline firing rates (shown in blue). The dashed vertical line represents the stimulus onset.
C. Black dots correspond to winner neurons among all other neurons (vertical axis) for each of
the presented stimuli (horizontal axis). D. The histogram shows the distribution of neurons with
respect to the number of stimuli for which they are winners. E. An example of the weight matrix
of a hippocampal neuron after learning.

frame by the coordinate transformation network. In this section we show how this neural

storage can affect two types of behavior: (i) determination of position and orientationwhen

a disoriented monkey is placed into a familiar environment (Gouteux et al., 2001); and (ii)

memory-guided visual target search in an image viewing paradigm (Fiehler et al., 2014).

While these two tasks may seem unrelated, we propose that the same neural process,

namely a reorientation of the head-direction network based on the comparison between

the newly obtained visual information and the contents of the hippocampal allocentric

storage, underlies behavioral decisions in these tasks.
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Spatial reorientation

In a series of reorientation experiments with monkeys, Gouteux et al. (2001) have shown

that these animals relied on both the geometric information (given by the three-dimensional

layout of the rectangular experimental space) and non-geometric cues (e.g., landmark

objects placed near the walls or corners of the recording chamber). The authors paid

specific attention to the influence of landmark size on reorientation behavior. When small

objects were placed near one of the walls or in the corners of the room, the monkeys did

not use these cues to reorient, and their search pattern was determined based only on the

geometric information. Importantly, this was not because the monkeys did not notice the

landmarks, since they performed exploratory actions towards them (looked at or touched

them). Once the landmark size was increased however, the monkeys successfully used

them for reorientation independently of their location and number.

To simulate these data, we tested the model in four reorientation tasks in a virtual three-

dimensional rectangular room. In these tasks, either no landmark cues were present in

the room, or one visual landmark of three different sizes was placed in the middle of

one of the walls (Fig. 3.7A). Each task comprised an exploration phase, during which the

model randomly explored the environment, and a reorientation phase. In the reorientation

phase the model was initialized with a random heading direction and placed back into the

environment learned during the exploration phase at a random location. The performance

of the model was assessed from the accuracy of reorientation: we assume that the animal

will navigate to the correct corner if it has correctly estimated its initial heading, whereas

it will make a navigation error if the reorientation error is high.

Once the information from the initial view reached the hippocampus upon the reentry to

the environment, the activity of the reorientation network signalled the orientation error

(Fig. 3.7B). This error represented the discrepancy between the initial heading direction

and the heading direction most consistent with the allocentric information stored in the

projections from the place cells to the reorientation network. The asymmetric shape of the

polar plot reflects the influence of the environment’s geometric layout on reorientation:

for the no-cue condition, the network activity peaked at the correct (0◦) and its rotationally

opposite (180◦) orientations with an identical average amplitude. When the visual cue was
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Figure 3.7: A. The experimental environment was a rectangular room (represented by the gray
rectangle). The same reorientation simulation was run in four conditions: no visual cues apart
from walls of the room, or 1 visual cue at three different sizes (small, medium, large). B. Polar plot
of the mean activity of the reorientation network when the simulated animal was placed in various
locations in the room. Dots mark the preferred locations of the reorientation Nre neurons Colors
from blue to red represent 4 experimental conditions. C. Rows from top to bottom correspond to
experimental conditions as in A. Left: Reorientation maps show, for each location in the room,
the reorientation error committed by the model after seeing only the first visual snapshot from that
location (at a randomly chosen head orientation). The pixel color from black to white codes for the
absolute value of the reorientation error from 0 to π. Right: polar histograms of reorientation errors
(±SD), averaged over 9 random orientations at each location. D. Bar plot shows the distribution
of the absolute reorientation errors (±SD) among the approximately correct orientation (0-40◦),
rotational error (140-180◦) and other directions. E,F. Reorientation error mean (E) and its standard
deviation (D) when progressively more snapshots were used for reorientation. Color code for
D,E,F as shown in B.

present, its size determined the difference between the activity peaks. Therefore, when

reorientation was performed from different locations in the environment (based only on

the first view taken), the accuracy, measured as the percentage of locations with a correctly

determined orientation, was about 50% in the no-cue condition and raised to about 77%

in the large-cue condition (Fig. 3.7C, left column). Reorientation maps (Fig. 3.7C, right

column) suggest that depending on the position of the orienting cue in the room, some

locations in the environment provide better visual information for reorientation than others

(shown by white areas in the maps). The histograms of orientation errors (Fig. 3.7C, right
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column, and Fig. 3.7D) show that, on average, a larger visual landmark provides a much

better reorienting cue than a small one, for which a similar number of correct decisions

and rotational errors was observed (Fig. 3.7D). This is due to the fact that orientation is

determined essentially by comparing the egocentric view from the initial position with

allocentric views stored in synaptic memory, without any explicit landmark identification

process. Therefore, influence of small visual cues becomes negligible with respect to gross

visual features of the surrounding space (corners, shapes of the walls, etc.). These results

are consistent with the hypothesis that reorientation is a fast, bottom-up process based on

low-level visual information (Sheynikhovich et al., 2009). Learning landmark identities

and their spatial relation to goals can be added by subsequent learning, but may not be

taken into account unless their are sufficiently salient compared to other (e.g. geometric)

cues present in the environment (Cheng, 1986).

So far the reorientation performance was assessed based only on the first view taken.

The reorientation performance is likely to increase if the animal is allowed to accumulated

visual information from successive views taken in the same location at different orientations

or at different locations, e.g. during initial movements through the environment. This is

what happens in the model, since increasing the number of snapshots that are used for

reorientation improved its accuracy (Fig. 3.7E,F). In this case we placed the simulated

animal at 60 successive positions, while at each position the animal rotated its head to

obtain a corresponding panoramic view. The activity of the reorientation network was

calculated as a sum of its activities after each successive view. When a large cue was

present, the simulated animal obtained an accurate orientation estimate after visiting

about 10 successive locations. In contrast, the mean error and standard deviation of

reorientation were decreasing much slower for smaller sized landmarks. Thus, our model

describes a neural mechanism for spatial reorientation which relies on an allocentric visual

information stored in the hippocampal network. This allocentric information feeds into

a head-direction-like network, assumed to reside in the retrosplenial cortex, that signals

reorientation error and affect the sense of direction via its input to the head-direction system

if the brain (Taube, 2007). In addition to providing amechanistic basis for the reorientation

process, which is a necessary part of navigational behavior andwhose existence is assumed

(either implicitly or explicitly) in a number of computational models of navigation, this
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model proposes how reorientation can be performed continuously, i.e. during ongoing

spatial behavior.

Memory-based visual search

To illustrate a potential role of the stored hippocampal representation in memory-based

visual tasks, we simulated the study of Fiehler et al. (2014). In this study, head-fixed human

subjects remembered a visual scene with 6 objects on a table, presented on a computer

screen (Fig. 3.8A, top). This encoding phase was followed by 2-s. delay (uniform gray

image), and then the subjects were presented with a modified scene in which one of

the objects was missing (the target object) and either 1, 3 or 5 other objects displaced

horizontally (Fig. 3.8A, bottom). The subjects were required to point to the remembered

location of the missing object. If the subjects had used only an egocentric information (i.e.

remembered object position with respect to the head), then their performance would have

been independent from the displaced objects. The results of this experiment demonstrated

in contrast that pointing performance was influenced by the non-target objects, such that

shifting a higher number of them induced a larger pointing error. Even though the pointing

error was always made in the direction of the object displacement in the image, the size

of the error only partially accounted for the veridical displacement of the objects. These

data suggest that human subjects combine allocentric (i.e. based on the information from

the environment, in this case represented by the visual features associates with displaced

objects) and egocentric (i.e. based on the memory of an egocentric location of the

target object) information during memory-based search (Fiehler et al., 2014). The neural

mechanism of this allocentric correction of the egocentric memory is unknown.

We hypothesized that the influence of allocentric image information observed in this

experiment arises as a result of a slight misorientation of the head direction network due

to the apparent shift of visual features caused by the object displacement in the attended

area of the image. In order to demonstrate this effect, we first presented to the model an

image of a control scene with all 6 objects (see Fig. 3.8A, top, for an example). We used,

with permission, the same image data set that was used in the experimental study. As

input to the network we only used the part of the image near the objects, because in the

experiment is was fixated most of the time and because of the evidence that displacement
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Figure 3.8: A. An example of the remembered (top) and test (bottom) images. In this example,
the target object is the egg and 5 non-target objects were shifted to the right in the test image,
compared to the encoded image. The white rectangle denotes the part of the image that was
provided as input to the network. It corresponds to the part of the image most fixated by the
subjects in the experiment. B. Mean firing rates of the egocentric neurons in the model for the
encoded and test images shown in A. C. Orientation errors induced in the model by the presentation
of the test images with 1 (top), 3 (middle) and 5 (bottom) displaced objects. Horizontal position
of each dot corresponds to the maximal activity peak of the reorientation network. Different dots
represent different sets of objects in the image dataset. Leftward and rightward displacements
are shown in red and green, respectively. Crosses mark the mean displacement value per group.
Random jitter along the vertical axis is added for clarity.

of objects outside of this area had no influence on reaching performance (Fiehler et al.,

2014). The network converted the visual input of the egocentric layer (Fig. 3.8B) to an

allocentric representation according to the actual head direction (set to 0◦), which was

stored in the synapses between the parieto-retrosplenial output cells and hippocampal

cells as before. In this simulation we ignored competition effects, since it was not required

to remember multiple images. Second, after the first scene was learned, an image of the

scene with one object missing and either 1, 3 or 5 objects displaced (see Fig. 3.8B, bottom)

was presented to the model. The orientation error caused by the object displacement can

then be read directly from the activity of the reorientation network (Fig. 3.8C). As in the

experiment, the number of displaced objects affected the amount of allocentric correction.

Since in the test images the displaced objects correspond only to a subset of all visual

features, the mean correction only partially account for the object displacement. Thus,

as in the case of spatial reorientation, the influence of the allocentric information (in this

case represented by low-level features of the presented image) is caused by the comparison
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between the stored allocentric and incoming allocentric views, and the resulting activity

of the reorientation network that calibrates the head direction signal.

3.4 Discussion

The presented model focuses on the dorsal visual pathway for information processing,

generally thought to provide contextual or “where” information to memory structures

in the MTL, by contrast to the ventral pathway mediating the processing of object/item

representations or “what” information (Goodale and Milner, 1992; Kravitz et al., 2011).

The two pathways converge to the hippocampus where both types of information are

combined to form the episodic memories. Outputs of hippocampal processing go back to

neocortical areas from which the input was originated. In both spatial (e.g. spontaneous

novelty exploration) and non-spatial (recollection/familiarity) experimental paradigms the

dorsal pathway has been implicated in the recollection of contextual information (e.g.

the scene or location where an item was observed) and not in remembering the object

identity (see Eichenbaum et al., 2007, for review). These proposals go in line with general

properties of neural activities along the dorsal pathway such as PHC andRCS. In particular,

fMRI studies that both RSC and PHC are activated by scene processing, with a part of PHC

responding equally strongly to images of spatial layouts with or without objects (Epstein

and Kanwisher, 1998; Epstein, 2008). RSC was shown to be more strongly implicated

in recollection than familiarity (Epstein, 2008) and is proposed to play a specific role in

encoding spatial and directional characteristic of landmarks and their stability independent

of their identity (Mitchell et al., 2018).

In the present work, the selectivity to scenes and spatial layouts, as opposed to objects,

during spatial navigation is modeled simply as sensitivity to views (i.e. the total contents of

the animal’s visual field at one moment in time, usually acquired across multiple fixations,

potentially associated with accompanying head movements in natural conditions). Indeed,

spatial layout information is often available from a low-frequency representation of a view

(Kauffmann et al., 2015, but see Rajimehr et al., 2011), whereas object representations

take up a much smaller portion of a view and usually require high-spatial frequency

analysis at a localized part of the image during visual fixation. In our simple model, we
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represented the contents of a view by a retinotopic-like grid of orientation-sensitive filter

responses at just a few spatial frequencies, but a much more complex visual processing

can be “inserted” between our input visual layer and the parietal transformation circuit

(involving e.g., extraction of saliencemaps, depth processing, contour extraction, etc). The

coordinate-transformation circuit and the rest of the model are agnostic about the nature

of features provided to them as input, as long as these features are given in a retinotopic-

like head-fixed frame and take up the whole visual field. This last requirement excludes

object processing, assumed to be done in parallel in the ventral stream, since object

representations are view-independent and assume translation invariance over the visual

field (Serre et al., 2005). The relative (i.e. size dependent) sensitivity to objects in our

model (see “Spatial reorientation”) arises from the fact that large, distal and stable objects

(or landmarks) that make up a large portion of a view are considered as part of the layout,

and not as identified objects/landmarks. In contrast, relatively small objects, landmarks,

or a high-frequency contents of other small localized portions of a view exert contribute

only weakly to the overall visual representation. Indeed, they are often overshadowed by

gross visual features present in views, such as corners, walls, and other large-scale visual

structures during comparison of new and remembered view-based representations (Bécu

et al., 2019).

Our model can thus be considered as a model of encoding of contextual information, as

opposed to object-related one, and the notion of context is well defined: it is the visual

information present in the set of topographically-organized features present in a set of views

(that could comprise only one element) and stored in memory after the acquisition phase

of a task. This notion of context can be extended to a non-spatial setting (see “Memory-

based visual search”): topographically-organized image features present in attended part

of the screen and stored in memory provide contextual information with respect to any

object-related information stored from the scene (such as the identities of the objects in

this experiment). In the absence of reliable object-related information (such as the missing

target object), contextual information can be used to drive behavior. The important piece

of information that is present in topographic representation of a scene, but is absent in

object-related memory, is spatial location. Indeed, one can assign position information

within the topographic representation of a view (with respect to an allocentric directional
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frame, orwith respect to the other features in the view). Therefore, (allocentric) view-based

contextual representations can serve as a basis for remembering spatial and directional

characteristics of objects or landmarks independent of their identity. Spatial locations in

such a contextual representation can serve as “place holders” for specific object/landmark

information extracted and stored in the ventral visual stream, or as “pointers” to this

information. Such a notion of contextual information is well in line with proposed role of

the PHC and RSC in landmark processing (Epstein, 2008; Mitchell et al., 2018).

While the existence of view-based representations in human spatial memory is well es-

tablished (Shelton and McNamara, 1997; Diwadkar and McNamara, 1997; Christou and

Bülthoff, 1999; Garsoffky et al., 2002; Burgess, 2006), the existence of a spatiotopic rep-

resentation of the surrounding visual space is more controversial. Some proposals reject

the existence of such a representation (O’Regan, 1992), some suggest that only a limited

number attended features survive beyond one fixation (Rensink, 2000), and some suggest

that a feature-rich representation is constructed by accumulating information over time

(see Tatler and Land, 2011, for review). For example, some experimental evidence in

favor of the latter view comes from studies showing that visual search can be directed to

remembered locations in a panoramic scenes and that visual saccades can be programmed

to reach previously observed targets outside of the current viewfield (Land et al., 1999;

Oliva et al., 2004). These and similar data suggest the existence of a quasi-panoramic

representation of surrounding visual cues, accessible for the planning of eye movements,

i.e. most likely topographic with respect to the visual space (Golomb et al., 2011; Park

et al., 2007; Melcher and Morrone, 2015; Schindler and Bartels, 2013; Robertson et al.,

2016). While both egocentric and allocentric representations are stored in memory, they

are converted to an egocentric frame whenever possible (Chen et al., 2011). By linking

such a panoramic representation with its potential utility for spatial memory and the well

known role of the MTL in the storage of allocentric memories, we postulated the exis-

tence of an allocentric, visually topographic representation of the surrounding space in

the parieto-retrosplenial circuit.

Whereas the allocentric representation in our model is purely visual, the possibility that

it could be multisensory can not be excluded (Newell et al., 2005). Loomis et al., 2013
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defined a similar representation of surrounding 3D space as a “spatial image” with the

following properties: (i) it can be updated during movement with the eye closed; (ii) it

exists in all directions; (iii) the information from all sensory modalities converge onto

a common, “amodal”, spatial image. While our model is directly consistent with the

second property, the third one can be implemented by converting spatial locations of

egocentric sensory signals at different modalities (e.g. haptic or auditory) into the common

allocentric framework. These locations (or placeholders) can then be linked to the detailed

representations of sensory experience in sensory-specific areas of the cortex, similarly to

the putative links between landmark locations and their high-frequency contents discussed

above. The first property can be assured by backward projections from the hippocampus

to the allocentric layer (not included in the model), by a mechanism previously proposed

to support spatial imagery (Byrne et al., 2007). One obvious candidate for the potential

biological locus of the panoramic visual representation is the PPC, since spatiotopic

neuronal receptive fields were observed in this area (Snyder et al., 1998; Fairhall et al.,

2017). The parahippocampal place area, a scene-selective subdivision of the PHC, while

not sensitive to the images of the same scene from different viewpoints (Epstein, 2008),

can integrate visual information across saccades to form a representation of a larger scene

(Golomb et al., 2011). Finally, RSC and occipital place area were recently shown to

mediate the memory of panoramic visual representations (Robertson et al., 2016).

There are two key differences between ourmodel and a previous influential model of spatial

memory and imagery (Becker and Burgess, 2001; Byrne et al., 2007, see also Bicanski

and Burgess, 2016). First, our model postulates the existence of a quasi-panoramic

representation of surrounding visual space, in topographic visual coordinates, as emerging

experimental evidence suggests (Melcher andMorrone, 2015; Robertson et al., 2016). We

propose that such a representation (i) is accumulated from successive views using short-

term memory; (ii) can be used for planning of eye movements during natural behavior;

(iii) serves for the storage of object/landmark position and orientation information. In

our model, the reference frame for this panoramic representation is allocentric, and only

a portion of it, corresponding to the current view field, is explicitly converted to an

egocentric visual representation (equivalent to the “parietal window” ofByrne et al., 2007).

Second, our model proposes a mechanism of fast bottom-up view-based reorientation of
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the head direction system that was either absent (Byrne et al., 2007) or relied on the

presence of conspicuous landmarks linked directly to head direction cells (Bicanski and

Burgess, 2016). A number of reorientation studies mentioned earlier suggest that this

neural process is independent from landmark identities and can be performed in the

absence of point-like landmarks. The mechanism we use relies on weight sharing and as

such is not, at its present implementation, biologically realistic. The concept of weight

sharing has been critical for recent successes of brain-inspired neural networks and is

widely used in models of biological networks of visual processing (e.g. Serre et al., 2005;

Masquelier and Thorpe, 2007; Bartunov et al., 2018). One possible implementation of our

proposed reorientation mechanism would require mental rotation of the stored allocentric

representations, while freezing the actual egocentric view in the input layer. Such an

implementation would make the model significantly more complex, without changing the

underlying computation.

To summarize, the model presented in this work explored the nature of visual representa-

tions in the parietal-medial temporal pathway for visuospatial processing and contributed

to the open question of the link between visual and memory structures in primates. It pro-

poses that a single, potentially multisensory, representation of surrounding environment is

constructed by time-integrated sensory snapshots. This putative representation provides

a 3D coordinate space within which positions of localized sensory events can be encoded

and which can serve as basis for eye-movement generation in natural conditions. This

model thus provides a conceptual framework for linking oculomotor behavior, visual and

spatial memory.
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Chapter 4

Entorhinal-Hippocampal Loop as a

Multisensory Integration Circuit

Chapter summary

This chapter presents a computational model of the entorhinal-hippocampal processing

loop, that is thought to support spatial memory functions in mammals. In contrast to

the previous chapter focusing specifically on primate data, the present model focuses on

rodent data because of a significantly larger amount of detailed behavioral and electrophys-

iological experimental evidence available. Therefore, the basic assumption here is that the

organization of spatial memory in rodents is similar to that in primates. This assumption

is supported by experimental evidence demonstrating the existence of primate place and

grid cells, as reviewed in Chapter 2. The model of the dorsal visual path described in

the previous chapter is used here, the difference being that the visual field is assumed

to panoramic, as in rodents. In addition, for the present model we chose a firing rate

description of neural activity, instead of a spiking one. These two simplifications greatly

reduce the computation time, and allow us to concentrate on learning dynamics in spatial

tasks that require many hours of training. The tasks simulated here involve learning of

spatial representation of multi-compartment environments with a high degree of visual

aliasing, making it possible to assess differential contribution of allothetic and idiothetic

cues on spatial learning.
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This work has been published in Neural Networks journal:

Tianyi Li, Angelo Arleo and Denis Sheynikhovich (2020). Modeling place cells

and grid cells in multi-compartment environments: entorhinal-hippocampal loop as

a multisensory integration circuit. Neural Networks, 121:37-51.

72



Chapter 4. Entorhinal-Hippocampal Loop as a Multisensory Integration Circuit

Abstract
Hippocampal place cells and entorhinal grid cells are thought to form a representation of

space by integrating internal and external sensory cues. Experimental data show that dif-

ferent subsets of place cells are controlled by vision, self-motion or a combination of both.

Moreover, recent studies in environments with a high degree of visual aliasing suggest

that a continuous interaction between place cells and grid cells can result in a deformation

of hexagonal grids or in a progressive loss of visual cue control over grid fields. The

computational nature of such a bidirectional interaction remains unclear. In this work

we present a neural network model of the dynamic interaction between place cells and

grid cells within the entorhinal-hippocampal processing loop. The model was tested in

two recent experimental paradigms involving environments with visually similar compart-

ments that provided conflicting evidence about visual cue control over self-motion-based

spatial codes. Analysis of the model behavior suggests that the strength of entorhinal-

hippocampal dynamical loop is the key parameter governing differential cue control in

multi-compartment environments. Moreover, construction of separate spatial represen-

tations of visually identical compartments required a progressive weakening of visual

cue control over place fields in favor of self-motion based mechanisms. More generally

our results suggest a functional segregation between plastic and dynamic processes in

hippocampal processing.
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4.1 Introduction

It has long been accepted that spatial navigation depends crucially on a combination of

visual and self-motion input (O’Keefe and Nadel, 1978). Since the seminal work of

O’Keefe and Dostrovsky (1971), a neural locus of this combination is thought to be the

place cell network in the CA1-CA3 subfields of the hippocampus proper (O’Keefe and

Speakman, 1987; Muller and Kubie, 1987; Knierim et al., 1998; Jayakumar et al., 2019),

with different subsets of place cells sensitive to self-motion cues, to visual cues or, more

often, to a combination of them (Markus et al., 1994; Chen et al., 2013; Fattahi et al.,

2018). A more recent discovery of grid cells in the medial entorhinal cortex (mEC) led to

the suggestion that the grid-cell network provides a self-motion-based representation of

location that is combined with other sensory information on the level of place cells (Fyhn

et al., 2004; McNaughton et al., 2006; Hayman and Jeffery, 2008; Cheng and Frank, 2011;

Jacob et al., 2019). The grid-cell representation is itself vision-dependent, since various

properties of grid cells are affected by changes in visual features of the environment

(Hafting et al., 2005; Krupic et al., 2015). Combined with the evidence showing that

coherent changes in place-cell and grid-cell representations occur during environment

deformation and cue manipulation, these data suggest a bidirectional interaction between

these representations at the neural level (Fyhn et al., 2007). While this bidirectional link

is always present in normal conditions, it may not be necessary for place cell activities, as

shown in a number of lesion experiments (Sasaki et al., 2015; Schlesiger et al., 2018).

The nature of the dynamic interaction between visual and self-motion cues on the level

of grid cells has recently been tested in two experiments: in a merged room, formed by

removal of a wall separating two visually similar environments (Wernle et al., 2018), and

during exploration of an environment consisting of two identical rooms connected by a

corridor (Carpenter et al., 2015). Results of the first experiment have shown that firing

patterns of grid cells were anchored by local sensory cues near environmental boundaries,

while they underwent a continuous deformation far from the boundaries in the merged

room, suggesting a strong control of local visual cues over the grid-cell representation

(Wernle et al., 2018). Results of the second experiment indicated in contrast that during

learning in a double-room environment grid cells progressively formed a global self-
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motion-based representation disregarding previously learned local visual cues (Carpenter

et al., 2015).

Existing models of the entorhinal-hippocampal system are mostly based on the feed-

forward input from grid cells to place cells, with an additional possibility to reset grid-field

map upon the entry to a novel environment (Solstad et al., 2006; O’Keefe and Burgess,

2005; Blair et al., 2008; Sheynikhovich et al., 2009; Pilly and Grossberg, 2012), or focus

on the feed-forward input from place cells to grid cells (Bonnevie et al., 2013). In addition

to be at difficulty at explaining the above results on dynamic interactions between visual

and self-motion cues, they are also not consistent with data showing that hippocampal

spatial representations remain spatially tuned after mEC inactivation (Brun et al., 2008a;

Rueckemann et al., 2016), that in rat pups place fields can exist before the emergence of the

grid cell network (Muessig et al., 2015) and that disruption of grid cell spatial periodicity

in adult rats does not alter preexisting place fields nor prevent the emergence of place

fields in novel environments (Koenig et al., 2011; Brandon et al., 2014).

In this paper we propose a model of continuous dynamic loop-like interaction between

grid cells and place cells, in which the main functional parameter is the feedback strength

in the loop. We show that the model is able to explain the observed pattern of grid-cell

adaptation in multi-compartment environments by assuming a progressive decrease of

visual control over self motion, and a plasticity mechanism regulated by allothetic and

idiothetic cue mismatch over a long time scale.

4.2 Methods

The rat is modeled by a panoramic visual camera moving in an environment along quasi-

random trajectories resembling those of a real rat. The orientation of the camera corre-

sponds to the head orientation of the model animal. The constant speed of the modeled

rat is set to 10 cm/s, and sampling of sensory input occurs at frequency 10 Hz, roughly

representing hippocampal theta update cycles. The modeled rat receives two types of sen-

sory input (Fig. 4.1). First, self-motion input to the model is represented by angular and

translational movement velocities integrated by grid cells in mEC to provide self-motion

representation of location, as proposed earlier (McNaughton et al., 2006). Competitive
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self-organization of grid cell output occurs downstream from the entorhinal cortex in the

dentate gyrus (DG) - CA3 circuit and gives rise to a self-motion-based representation of lo-

cation, encoded bymotion-based place cells (MPC).We did not include a specific neuronal

population to model DG (see, e.g., de Almeida et al., 2009b). Instead, we implemented

competitive learning directly on mEC inputs to CA3. Second, visual input is represented

by responses of a two-dimensional retina-like grid of orientation-sensitive Gabor filters,

applied to input camera images at each time step. For instance, in featureless rectangular

rooms used in most of the simulations below, the only features present in the input images

are the outlines of the environment walls (Fig. 4.2A, bottom). Importantly, the ‘retinal’

responses are assumed to be aligned with an allocentric directional frame further along the

dorsal visual pathway (not modeled), the directional frame being set by head direction cells

(Byrne et al., 2007; Sheynikhovich et al., 2009). That is, visual input to the model at each

spatial location is independent on the head direction that the model rat has upon arriving at

that location. The visual input aligned with an allocentric directional frame is assumed to

be encoded in the inputs to the hippocampal formation from non-grid mEC cells or from

the lateral entorhinal cortex (lEC). Competitive self-organization of these inputs results

in a purely vision-based representation of location, encoded by a population of visual

place cells (VPCs). Both MPCs and VPCs project to CA1 cells that form a conjunctive

representation of location in conjunctive place cells (CPCs). The CPCs in CA1 project

back to the entorhinal grid cells and thus form a recurrent loop, reflecting the anatomy

of entorhinal-hippocampal connections (Iijima et al., 1996). Further details of the model

components and synaptic learning rules are described in the following sections.

4.2.1 Visual input

Visual snapshots of the environment are produced by a panoramic cylindrical camera

representing the model rat visual field (160◦ x 360◦). These snapshots are then encoded

by the activities of a rectangular sheet of 40 × 90 neurons uniformly covering the visual

field. The activities of visual neurons are computed in four steps. First, input images

are convolved with Gabor filters of 4 different orientations (0,90◦,180◦,270◦) at 2 spatial

frequencies (0.5 cpd, 2.5 cpd), chosen so as to detect visual features of simulated envi-

ronments (see Section 4.2.4). Second, the 8 convolution images are discretized with the
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Figure 4.1: Self-motion input is integrated in 5 grid-cell populations of the medial EC (only 3
populations are shown for clarity), and via competitive interactions results in a self-motion-driven
space representation in CA3 (encoded by the MPC population). Visual input, represented by the
activities of AVI neurons, results in a purely vision-based representation in CA3, encoded by the
VPC population. Both MPCs and VPCs project to CA1 where the conjunctive representation of
location is encoded in the CPC population. The projection from CPCs in CA1 back to the mEC
closes the dynamic hippocampal processing loop and the strength of this projection is determined
by the parameterα. The arrows represent the information flow in the network. Small ovals represent
subsets of strongly active cells in the corresponding populations (even though strongly active cells
are shown in nearby locations in the figure, no particular topographical relations between cells are
assumed in the model, apart from the AVI population with a retinotopic neuronal organization).

40 × 90 grid, and the maximal response at each position is chosen, producing an array

of 3600 filter responses. These operations are assumed to roughly mimic retinotopic V1

processing. Third, the filter responses are aligned with a common allocentric directional

frame (assumed to be given by the head direction system), such that if the model rat rotates

without changing its spatial location, the activities of aligned filters stay constant. This

operation implements an egocentric-allocentric coordinate transformation thought to be

performed by parietal cortex neurons (Byrne et al., 2007). Fourth, the vector of aligned

filter activities at time t is normalized to length unity, giving the final neuronal activities

Aavi(t, j) of the allocentric visual input cells, with the index j running over all elements of

the vector.
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4.2.2 Integration of visual and self-motion input by grid cells

The self-motion input is processed by 5 identical neuronal populations (see Fig. 4.1)

representing distinct grid-cell populations in the dorsal mEC (Hafting et al., 2005). Each

grid cell population is modeled by a two-dimensional sheet of neurons equipped with

attractor dynamics on a twisted-torus topology, as has been proposed in earlier models

(Guanella et al., 2007; Sheynikhovich et al., 2009; Burak and Fiete, 2009). The position

of an attractor state (corresponding to subset of strongly active cells, or activity packet)

in each grid-cell population is updated based on the self-motion velocity vector. This is

implemented by the modulation of recurrent connection weights with Mexican hat-like

structure (i.e. with short-range excitation and long-range inhibition) according to the

model rat rotation and displacement, such that the activity packet moves across the neural

sheet according to the rat movements in space (Guanella et al., 2007). The only difference

between different grid-cell populations is that the speed of movement of the activity packet

across the neural sheet is specific for each population, resulting in a population-specific

distance between neighbouring grid fields and field size (Hafting et al., 2005). As long

as each location in an environment corresponds to a distinct combination of positions of

the activity packets, the population activity of all grid cells encodes the current position

of the animal in the environment (Fiete et al., 2008). The exact implementation of the

attractor mechanism governing grid-cell network dynamics is not essential for our model

to work.

In addition to the recurrent input from other grid cells in the same population, each grid

cell receives input from the CPC population which represent conjunctive visual and self-

motion representation (described in detail later), and the relative strength of these two

inputs is controlled by the parameter α. At a relatively high value of this parameter,

the position of the activity packet in each grid-cell layer is strongly influenced by the

hippocampal input, leading to an overall stronger effect of visual information. At a low

value of α, the position of the attractor states is determined exclusively by the self-motion

input.

Thus, the total synaptic input to grid cell i at time t is (omitting grid cell population index

for clarity)
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Igc(t, i) = αIcpc
gc (t, i) + (1 − α)I

gc
gc (t, i) (4.2.1)

where the external input from CPCs and the recurrent input from other grid cells are

determined by

Icpc
gc (t, i) =

ncpc∑
j=1

Acpc(t − 1, j)Wcpc
gc (t, i, j) (4.2.2)

Igc
gc (t, i) =

ngc∑
k=1

Agc(t − 1, k)Wgc
gc (t, i, k) (4.2.3)

Here, Acpc(t, j) is the activity of j-th CPC at time t (described below) and Agc(t, k) =

Igc(t, k) is the activity of k-th grid cell (we use linear activation function for grid

cells).

Feedforward synaptic connections from CPCs are initialized by small random values and

updated during learning according to a standard Hebbian learning scheme:

Wcpc
gc (t, i, j) = Wcpc

gc (t − 1, i, j) + ηcpc
gc Agc(t, i)Acpc(t, j) (4.2.4)

followed by explicit normalization ensuring that the norm of the synaptic weight vector of

each cell is unity.

Recurrent synaptic connections between grid cells are constructed such as to ensure

attractor dynamics, modulated by velocity vector (Guanella et al., 2007). More specifically,

the connection weights between cells i and j is a Gaussian function of the distance between

these cells in the neural sheet. This connection weight is modulated by the self-motion

velocity vector, such that the activity packet moves across the neural sheet according to the

direction and norm of the velocity vector, with a proportionality constant that is grid-cell

population specific. These proportionality constants were tuned such that the grid spacing

across different grid cell populations were between 42 cm and 172 cm. Grid-cell firing

patterns were oriented 7.5◦ with respect to one of the walls of an experienced experimental

enclosure (Krupic et al., 2015).
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4.2.3 Encoding of visual and self-motion input by place cells

Asmentioned above, the model includes three distinct populations of place cells (Fig. 4.1).

First, VPCs directly integrate allocentric visual inputs and project further to CA1. We

putatively assign VPC population to CA3 where a competitive mechanism based on

recurrent feedback can result in self-organization of visual inputs, the resulting spatial

code further transmitted to to CA1. The model of this pathway is based on the evidence

that stable spatial representations were observed in CA1 after complete lesions of the

mEC containing grid cells (Brandon et al., 2014; Schlesiger et al., 2018). Second, MPCs

directly integrate input from grid cells and in the absence of visual inputs the activity

of these cells represents purely self-motion-based representation of location. These cells

represent CA3 place cells, acquiring their spatial selectivity via a competitive mechanism

based on mEC inputs. Third, CPCs that model CA1 pyramidal cells, combine visual and

self-motion inputs coming fromVPC andMPC populations, respectively. Crucially, CPCs

project back to the grid cell populations, modeling anatomical projections from CA1 back

to the entorhinal cortex forming a loop (Iijima et al., 1996; Slomianka et al., 2011) and

controlled by the parameter α as described above.

Vision-based place cells. VPCs acquire their spatial selectivity as a result of unsu-

pervised competitive learning implemented directly on the allocentric visual inputs (see

Section 4.2.1). Thus, the total input to a VPC i at time t is given by

Iavi
vpc(t, i) =

navi∑
j=1

Aavi(t, j)Wavi
vpc(t, i, j) (4.2.5)

where Aavi(t, j) is the activity of j-th Gabor filter aligned with the allocentric directional

frame. To compute output activities Avpc(t, i) of the VPC cells, (i) a subset of maximally

active cells is selected that includes all cells with the total input higher than the top Evpc-th

percentile of all activities in the population (where Evpc is a parameter, see Table 4.1); and

(ii) the activity of the cells included in the subset is rescaled to have values from 0 (for

the cell with the minimal input) to 1 (for the cell with the maximal input). For the rest of

the cells the activity is set to zero. A biologically plausible way to perform such a scheme

using γ-oscillation-mediated inhibition was proposed by de Almeida et al. (2009a) who
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termed this selection scheme “E%-max winner-take-all”.

Synaptic weight updates according to the Hebbian modification rule (Eq. 4.2.4) are then

implemented for the connection weights between the allocentric visual input cells and

VPCs. As a result of the competitive learning, different cells become sensitive to con-

stellations of visual features observed from different locations (independently from head

direction).

Motion-based place cells. MPCs read out grid cell using a competitive learning scheme

identical to that used for the VPCs above but applied to the grid-cell inputs (with parameter

Empc determining the proportion of highly active cells). As a result, a small subset of

MPCs is linked to strongly active grid cells at each location of the environment and thus

MPC population activity represents the position of the model animal encoded by grid-cells

(Solstad et al., 2006; Sheynikhovich et al., 2009).

Conjunctive place cells. Both VPCs and MPCs project to CPCs, that model CA1 pyra-

midal cells sensitive to both visual and self-motion cues. The total input to a conjunctive

cell is:

Icpc(t, i) = Ivpc
cpc (t, i) + Impc

cpc (t, i) (4.2.6)

with

Ivpc
cpc (t, i) =

nvpc∑
j=1

Avpc(t − 1, j)Wvpc
cpc (t, i, j)

Impc
cpc (t, i) =

nmpc∑
k=1

Ampc(t − 1, k)Wmpc
cpc (t, i, k)

(4.2.7)

Again, a E%-max winner-take-all scheme is applied to compute the activities Acpc. The

following Hebbian weight update rule is used to adjust synaptic weights of afferent CPC

synapses:

Wvpc
cpc (t, i, j) = Wvpc

cpc (t − 1, i, j) + ηvpc
cpc Acpc(t, i)H(Avpc(t, j) − θ)

Wmpc
cpc (t, i, j) = Wmpc

cpc (t − 1, i, j) + ηmpc
cpc Acpc(t, i)H(Ampc(t, j) − θ)

(4.2.8)
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whereH(.) is the Heaviside step function (H(x) = 0 for x < 0, andH(x) = x otherwise)

and θ is the presynaptic activity threshold.

Due to the attractor dynamics in mEC grid cells, a subset of strongly activated CA1 cells

induces a shift of the activity packets in a downstream grid-cell layers towards the position

of former. The size of the induced shift on each cycle of theta is determined by connection

strengths between participating cells and on the value of α. The shift of the activity packets

in grid cell layers will in turn modify the subset of active CA3 cells, inducing changes

in CA1 cells and ultimately grid cells, closing the loop. In the absence of visual input,

activity packets in these interconnected populations settle at a global stable state of the

loop/attractor dynamics and hence all code for a single spatial location in the environment,

which can be considered as a representation of the animal’s location based on self-motion

input. When visual input is present, the loop dynamics is biased towards the visual position

encoded in the VPC population. Thus, the feedback strength in the loop determines the

extent to which visual input influences place cell activities in the model.

4.2.4 Simulations

Virtual environments for the three simulations presented in this paper were developed with

Unity (www.unity3d.com). In Simulation 1 (Figs. 4.2 and 4.3) the environment was a

rectangular room 2×1 m with featureless gray walls. In Simulation 2 (Figs. 4.4-4.6), the

experimental environment was modeled as a square arena 2×2 m. During training, it was

separated into two rooms by a wall at the center of the environment. The experimental

arena was located inside a bigger environment (4×4 m) with four salient visual cues (large

circles) on each wall. In Simulation 3 (Figs. 4.7-4.8), the environment consisted of two

identical rooms 1×1 m connected by a corridor (0.5×2 m). The height of the walls was

0.6 m.

Twenty different animals were simulated, which means that the whole training-testing

sequence in the simulations below was repeated 20 times and the data was averaged. In

all simulations, VPCs were learned from the simulation environment before the training

of the place cells and grid cells. Model parameters are listed in Table 4.1.
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Parameter Value
α 0.03 (Sim.1), 0.04 (Sim.2), reducing from 0.04 to 0.005 (Sim.3)
ηavi
vpc 0.01

η
vpc
cpc ,η

mpc
cpc , η

cpc
gc , ηgc

mpc 0.0025
Evpc 15%
Empc 20%
Ecpc 30%
θ 0.75

Table 4.1: Parameters of the entorhinal-hippocampal loop model.

Simulation 1

Training The model was trained for 25 minutes (15000 time steps) by moving quasi-

randomly in the experimental environment.

Testing Synaptic weights were fixed, and activities of all the cells in the model were

recorded in the following three experimental conditions. In the ‘light’ condition the full

model was run to randomly explore the environment. In the ‘passive translation’ condition,

the exploration was performed as in the ‘light’ condition, but the velocity input vector to

the grid cell populations was set to (0,0). In the ‘dark’ condition, the model was run with

visual cues turned off (i.e., uniform gray images were presented as visual input). Next,

the trained model was run to cross the environment from left to right in the ‘light‘ and

‘dark‘ conditions as before, but with the speed gain in the grid cell populations modulated

as described in the Results.

Simulation 2

In the original experiment (Wernle et al., 2018), the rats were trained in rooms A and B

alternately for several days (see Fig. 4.4A for a schematic representation of the experimental

environment). After that, the partition wall was removed and rats explored the merged

room during a 45 min trial. Up to 9 such trials were performed daily in different animals.

The simulation described below was designed to mimic this experimental protocol.

Training Themodel was trained separately in roomA and then in roomB for 30minutes,

which was sufficient to learn stable grid and place fields. Synaptic weights were then fixed

to the learned values.
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Testing In the main experiment, simulated neural activities were recorded while the

model rat randomly explored the merged room for 1 h, with α = 0.04. Two additional

experiments were then performed. First, to test the influence of synaptic plasticity on the

results of the main experiment, synaptic weights were updated as during training while the

model rat additionally explored the merged room for 1h. Second, to test the influence of

the strength of the feedback loop, the model rat was run in the merged room for additional

20 one-hour trials. The value of α was decreased linearly from 0.04 to 0.005 across

trials.

Sliding correlation The sliding correlation heat maps for grid-cell firing patterns were

calculated as described in Wernle et al. (2018). The size of the sliding correlation window

was defined based on the grid spacing of the cell. The window moved from the top left

to the bottom right corner in the grid field maps of the environment A|B (i.e. before the

wall removal) and AB (i.e. after the wall removal). At each window location, the portion

of the grid maps in the environments A|B and AB, outlined by the sliding window, were

correlated with each other.

Displacement vector analysis Displacement vectors were calculated as described in

Wernle et al. (2018). To obtain a displacement vector for one grid cell, the experimental

environment was divided into 4×4 blocks (50×50 cm each). In each block, the vector

corresponding to the shift of grid fields in the environment AB relative to that in the

environment A|B was calculated. The vectors were sorted into the corresponding blocks

based on the grid field location in the training environment and the mean over all vectors

was computed. To analyze displacement vector lengths, the environment was divided

into 8×8 bins. The vectors were then sorted into the corresponding bins based on the

original grid field location in the training environment, and the mean vector length was

computed.

Simulation 3

In the original experiment (Carpenter et al., 2015), rats foraged for food pellets during up

to 20 daily experimental sessions in the experimental environment schematically shown
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in Fig. 4.7A. Each session consisted of 2 trials, 40 min each. The two trials were identical,

and were only needed to check for uncontrolled local cues possibly used by rats to identify

the two compartments. At the beginning of each trial the rat was placed in the corridor

between the two compartments facing the north wall and freely explored the environment.

The simulation described below was designed to mimic this experimental protocol.

Training During training, the model was placed in the center of the corridor and then

explored the complete environment quasi-randomly for 1 h. This learning period approxi-

mately represents a single training session of the original experiment. Eight such training

sessions were performed, such that the strength of the feedback loop α decreased from

0.04 (first session) to 0.005 (last session) with step 0.005.

Testing After each training session, the weights were fixed and neural activity was

recorded as the model rat explored the environment for 1 h.

Global and local fits The firing rate maps of modeled grid cells were fit with ideal local

and global grid patterns using the procedure described in Carpenter et al. (2015). First,

grid spacing was identified by correlating the firing pattern with 30 ideal firing grids. Each

ideal grid pattern is a product of three cosine gratings

f (®x) = A[1 + cos(k1(®x + ®c))][1 + cos(k2(®x + ®c))][1 + cos(k3(®x + ®c))]

with peak firing rate A, wave vectors ®k1, ®k2 and ®k3 and phase offsets ®c = (cx, cy). The wave

vectors are defined as ®k = (2πλ cos(ϕ), 2π
λ sin(ϕ)), where λ =

√
3

2 G is the grating wave length,

G is the grid spacing and ϕ is the grid orientation. The 30 ideal grid patterns were created

with grid spacing evenly distributed between 30 and 170 cm. Since the grid orientation

in the model is set to 7.5◦, ϕ in the three wave vectors is equal to 7.5◦, 127.5◦ and 247.5◦,

respectively. Spatial cross-correlograms were computed between the recorded firing rate

map and the ideal grid patterns over a range of spatial phase offsets. The grid spacing

of the recorded firing pattern is then set to that of the ideal grid pattern with the highest

correlation. Second, a local and global fit with the identified grid spacing was computed

for the recorded firing rate map. The local fit was performed using two grid patterns
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(one per room) with the same phase offset. The global fit was performed using only one

grid pattern with continuous phase across the two rooms. The Pearson product-moment

correlation between the recorded firing rate map and the local and global grid patterns

were computed over a range of phase offsets. The highest correlation with the local and

global model was identified as the value of local and global fit, respectively.

4.3 Results

Since the early experiments testing the influence of visual and self-motion cues on place

cell activity, it was clear that different subsets of place cells are controlled by these cues to

different degrees, with some cells being controlled exclusively by one type of cue (Markus

et al., 1994; Chen et al., 2013;Aronov andTank, 2014; Fattahi et al., 2018). In themodelwe

conceptualized these differences in VPC, MPC and CPC neural populations, representing

purely vision-dependent, motion-dependent and multisensory place cells. Thus, after the

model has learned place fields by moving quasi-randomly around a virtual rectangular box

(Fig. 4.2A), VPCs had fields only in a ‘light’ condition, i.e. in the presence of visual cues

(Fig. 4.2B, top row). This was true even if motion-based cues were absent, as in a passive

transport through a virtual maze (Chen et al., 2013). Conceptually, these cells represent

the ability of hippocampal circuits to form self-organized representations of location even

in the absence of grid-cell input from the mEC (Hales et al., 2014; Brandon et al., 2014;

Schlesiger et al., 2018). In contrast, MPCs had place fields both in the light and dark

conditions, but not during passive translation (Fig. 4.2B, middle row). Finally, CPCs were

active in all the three conditions since they combine both types of input (Fig. 4.2B, bottom

row).

In contrast to VPCs that are completely independent of self-motion cues and encode stable

visual features of the surrounding environment, MPCs and CPCs are influenced by both

visual and self-motion input, by virtue of their loop-like interactions through the grid cells.

To assess the relative influence of vision and self-motion on the activity of these cells in a

situation of sensory conflict, we decreased the gain of self-motion input to grid-cells while

the model animal crossed the environment from left to right (Fig. 4.2C). This decrease in

gainwas applied only to the horizontal component ofmotion, i.e. the horizontal component
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Figure 4.2: A. An example of the trajectory of the modeled animal in a rectangular environment
(top) and the visual input to the model (bottom) from the location marked by the red dot. In
the bottom plot, the dots represent the grid of Gabor filters, and lines represent the orientations
of the most active filters. Visual input at each location is independent from head direction. B.
Firing fields of VPCs (top row), MPCs (middle row) and CPCs (bottom row) in simulated ‘light’
condition (left column), ‘dark’ condition (middle column) and during passive translation (right
column). C. Trajectories of model animal crossing the rectangular environment from left to right.
The red dots denote the starting positions. D. When the model rat crosses the environment from
left to right, self-motion position estimate (dotted circle) is behind the visual position estimate (full
circle) in the conditions of decreased speed gain, leading to a forward-shift of receptive fields. E,F.
Forward-shift of receptive fields in the population of CPCs (top) and MPCs (bottom). Full red
lines represent the mean shift in the population. Dashed red lines represent the shift due to purely
self-motion input.

of the self-motion velocity vector was set to 3/4 of the baseline value. Such a modification

is similar to a change in the gain of translation from real-to-virtual movement in a virtual

corridor (Chen et al., 2013), but implemented in a two-dimensional environment instead

of a linear track. The change in gain resulted in a forward-shift of receptive fields of MPCs

and CPCs relative to their position in baseline conditions and the size of the shift was

smaller than what would be predicted from purely self-motion integration (Figs. 4.2E,F),

expressing the correction of self-motion position code by visual cues.

To illustrate the loop dynamics in this simple example, consider the case when the model
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animal crossed the middle line of the environment moving from left to right (Fig. 4.2D).

The integration of pure self-motion input over time provides an estimate of the current

position that is behind the actual position due to the decrease in speed gain. As a result, the

place field of a purely self-motion dependent cell should shift ahead of the animal by the

amount an amount proportional to the gain factor (shown red dashed line in Figs. 4.2E,F).

However, when visual cues are available, the VPC population activity encodes the visual

position estimate that is in independent of gain changes. As a result of the dynamic

loop-like interaction, the VPC activity induces a forward shift of the activity packet in

the grid-cell populations towards the visually identified location, and the size of this shift

is controlled by the parameter α. Grid cells would similarly affect the MPCs, and then

CPCs, closing the loop. Therefore, in the presence of conflicting cues, place fields shifted

to an intermediate position between the self-motion and visual estimates, as shown by the

distributions of place-field centroids in the MPC and CPC populations (Figs. 4.2E,F). A

similar effect of conflicting cues on place fields was experimentally studied by Gothard

et al. (1996a) and subsequently simulated in several computational models (Samsonovich

and McNaughton, 1997; Byrne et al., 2007; Sheynikhovich et al., 2009). However, in the

present model the parameter controlling the interaction between the visual and self-motion

cues is cast in terms of the strength of the entorhinal-hippocampal loop.

To illustrate the same multisensory integration mechanism on the level of grid cells, we

conducted another simulation in which the horizontal velocity gain was only transiently

decreasedwhen themodel animal crossed a specific portion of the environment (Fig. 4.3A).

In this case of a transient cue conflict, grid patterns were locally deformed in that firing

fields near the zone of decreased gain shifted forward relative to control conditions,

reflecting the sensory conflict (Figs. 4.3B). Near the borders of the environment, where

the speed input was identical to the baseline conditions, grid pattern remained stable.

The same effect on the level of the whole population of grid cells was quantified by the

analysis of displacement vectors (Fig. 4.3C) and by sliding correlation maps (Fig. 4.3D,

see Section 4.2.4 for details of this analysis). These results suggest that local modifications

of grid patterns can be induced by conflicting sensory representations, similarly to what

has been observed in a recent experiment by Wernle et al. (2018). As mentioned in the

Introduction, these observations are at oddswith results of an earlier experiment (Carpenter
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Figure 4.3: A. The speed gain was transiently decreased to 3/4 of the normal gain when the
model animal approached the portion of the environment marked by the dotted lines. B. An
example of firing pattern of a grid cell in the conditions of normal speed (top) and with transiently
decreased speed gain (middle). The black and red circles represent the centers of firing fields in the
baseline condition and during decreased gain, respectively. The shift of firing fields is quantified by
displacement vectors shown by the black arrows (bottom). C. Color map of the mean displacement
vector lengths in different portions of the environment. D. Color map of mean sliding correlation
over all grid cells.

et al., 2015) that studied adaptation of grid-cell patterns during construction of a spatial

representation in an environment consisting in two identical rooms connected by a corridor.

In the following sections we present simulations of the two experiments in an attempt to

explain the conflict between them and to understand neural mechanisms responsible for

apparently different patterns of grid-cell adaptation in the two experiments.

4.3.1 Simulation of the merged-room experiment

Wernle et al. (2018) studied the integration between visual and self-motion cues by

recording grid cells in two adjacent rectangular compartments initially separated by a

wall (see Fig. 4.4A). The two compartments were located inside a larger environment

equipped with distal visual cues. The wall was subsequently removed and grid cells were

recorded while the rat foraged in the merged room. The authors observed that at locations
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far from the removed wall grid cells conserved their firing patterns, while at locations

near those previously occupied by the wall grid fields shifted so as to form a continuous

quasi-hexagonal pattern (Wernle et al., 2018).

Simulation results from the previous section suggest that the observed local deformation

of the grid pattern can result from the local visual deformation caused by wall removal.

To verify that our model can reproduce these results, we recorded activities of simulated

grid cells and place cells cells in experimental conditions similar to those in Wernle et

al. (see Section 4.2.4). More specifically, in the training phase the model learned place

fields separately in two virtual rooms A and B (Fig. 4.4A) located inside a bigger room

with distal visual cues (not shown), such that learned representations of the two rooms

were different after the initial exploration. In the testing phase, the wall was removed,

the synaptic weights were fixed and neural activity was recorded while the model rate

explored the merged room. We observed that after wall removal, grid fields near distant

walls remained at the same location as during training, while those near the former wall

location shifted towards it (Fig. 4.4B), as in the experiment. The same phenomenon on

the level of the whole population was quantified by the analysis of displacement vectors

(Fig. 4.4C) and by sliding correlation analysis (Fig. 4.4D).
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Figure 4.4: A. The training environment with two separate rooms, referred to as room ‘A|B’,
and the testing environment, referred to as merged room ‘AB’. B. Firing fields of an example grid
cell in the training (left) and testing (middle) environments, as well as firing-field displacement
vectors calculated in the testing environment (right). C. A color map of mean vector lengths. D.
Top plot: A color map representing the mean sliding correlation over all grid cells. Bottom plot:
the correlation profiles at the center of the environment along two cardinal directions.

Thus, the low-correlation band near the location of the removed wall was induced in the
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model by changes in visual input in the merged environment, which affected place coding

via VPC activities. Local visual features at the locations distant from the removed wall

were similar in the corresponding locations of the original environments A and B, since

visual patterns formed by the closest walls and extramaze cues remained largely unchanged

after the central wall removal. Therefore, VPCs activities at these locations during testing

were very similar to those during training (Fig. 4.5A), leading to the same grid pattern at

these locations. However, at the locations close to the removed wall, the combined effect

of stable distal cues and modified proximal wall cues resulted in an extension of VPC

receptive fields over the previous location of the removed wall. Such changes in visual

receptive fields induced local corrections of grid cell activity by shifting grid-cell activity

packets towards the center, resulting in local deformations of grid-cell firing patterns

similar to those observed during gain modification experiments. These deformations in

turn affected place fields of MPCs and CPCs, by shifting place fields of the cells near

the removed wall towards it (Figs. 4.5B,C). The results suggest that local deformations of

grid fields can be explained by the same correction mechanism as the one studied in the

previous section, but in which local sensory conflict is induced by changes in the visual

input instead of changes in self-motion gain.

Two principal neural processes affect the formation of spatial representation in our model:

while the acquisition of new spatial representations crucially depends on synaptic plasticity,

the dynamic interaction between visual and self-motion cues is mediated by neuronal

dynamics. We therefore tested the contribution of these two processes to the observed

results. The influence of plasticity was assessed by letting the model learn during testing in

the merged room, while that of neuronal dynamics was tested by progressively decreasing

the strength of the loop (i.e. decreasing the control of vision over self-motion cues) in the

absence of synaptic plasticity. The results of these manipulations can be summarized as

follows. First, when learning was allowed during testing and the testing trial in the merged

room was sufficiently long, the particular correlation pattern (see Fig. 4.4C,D) was broken

and a new representation was formed as a result of learning (Figs. 4.6A-C), unlike what

was observed by Wernle et al. In particular, the newly formed global pattern was aligned

with only one of the walls, resembling the results of Carpenter et al. (2015) addressed in

the following section. Moreover, learning of the new representation was faster when the
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Figure 4.5: A. Left: receptive fields of two VPCs in the training and testing environments, either
close to the removed wall (top) or distal from it (bottom). Middle: displacement vectors of the cells
on the left. Right: color map of displacement vector lengths for all cells (top) and all displacement
vectors with their mean direction shown in red (right). B,C. Receptive fields and displacement
vectors for MPCs (B) and CPCs (C). Refer to A for details.

control of visual cues (controlled by α) was low (not shown), since slower dynamics favors

the learning of new connections between self-motion-based and visual representations.

Second, the decrease of α across separate sessions (with plasticity turned off) resulted

in widening of the low correlation band (Fig. 4.6D). This modification of the correlation

pattern is explained by the fact that under a weak control of place fields by vision, it takes
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longer for the visual cues to correct self-motion.
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Figure 4.6: A,B. Displacement vectors (top) and corresponding sliding correlationmaps (bottom)
of two example grid cells after learning in the merged room. C. Averaged over many grid cells,
sliding correlation maps can result in two different mean correlation patterns. D. Mean correlation
along the direction perpendicular to the removed wall for different values of the the strength α.

4.3.2 Simulation of the double-room experiment

In the experiment of Carpenter et al. (2015), grid cells were recorded in rats during

foraging in an experimental environment consisting of two rectangular rooms (A and B)

connected by a corridor (Fig. 4.7A, see also Carpenter et al., 2015). The two rooms

were rendered as similar as possible in their visual appearance in order to favor visual

aliasing. The rats were released in the corridor and explored the whole environment for

80 minutes across up to 20 daily sessions. If local visual cues are the only determinants

of grid cell activity, grid cells were expected to express identical hexagonal firing patterns

in the two rooms, reflecting the same visual appearance of the rooms. However, since

the animal is free to move between the rooms, self-motion cues can be used to spatially

disambiguate them. Thus, if self-motion cues contribute to grid-cell firing, grid cells were

in contrast expected to form distinct firing patterns in the two rooms. The results of this

experiment revealed that both external and internal cues influence neuronal activity, but in

a temporally-organized fashion. In particular, grid cells had similar firing patterns in the

two rooms during early exploration sessions, suggesting that local visual cues of the two

rooms initially had a strong influence on grid-cell activities. As the number of sessions

increased however, grid cells progressively formed a global hexagonal pattern extending

over the whole environment suggesting a progressive contribution of self-motion cues.

One consequence of the creation of the global representation was that local firing patterns
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in the two rooms progressively became more and more dissimilar despite the fact that

visual cues remained the same. This can be interpreted as a progressive loss of control

of local visual cues over grid-cell activities. These results are thus in conflict with the

data from the merged-room experiment by Wernle et al. considered earlier, since in that

experiment local visual cues near the distant walls kept their control of nearby grid fields

for up to 9 consecutive sessions.

What could be the reason for the differences in learned grid-cell representations in the

two experiments? Suppose that, in the conditions of the double-room paradigm, the rat

first enters room A, such that initial associations between self-motion and visual cues are

established in that room. The key question is whether or not a new representation for the

subsequently entered room B will be formed, despite its identical visual appearance with

room A (note that in the following we refer to any initially experienced room as room

A, independently on which actual room was visited first in the simulations). Results of

the previous section suggest that a weaker control of visual cues combined with synaptic

plasticity leads to the formation of such a new representation. To verify this hypothesis,

we ran our model in the conditions of Carpenter et al. experiment (see Section 4.2.4),

and we progressively (i.e. session by session) decreased the strength of the hippocampal-

entorhinal feedback loop (without disabling synaptic plasticity). As the feedback strength

controls the influence of visual input in our model, we expected that this procedure will

result in the construction of a global representation on the level of grid cells when the

strength of the loop is sufficiently low. This was indeed the case as the global fit was high

when the loop strength was set to low values (small α), and, conversely, the local fit was

high for a strong loop (Figs. 4.7B,C, both of these measures were calculated in the same

way as in the study by Carpenter et al., 2015, see Section 4.2.4).

The local representation in early sessions is a consequence of the fact that representation

of only one of the rooms is learned, so that once the model rat enters the second room,

grid-cells activities are quickly reset by vision to the representation of the first (or, in terms

of Skaggs andMcNaughton (1998), the representation of roomA is “instantiated” upon the

entry to the roomB). In this case bothMPCs and CPCs had identical firing fields in the two

rooms (Fig. 4.8A). This was quantified in the model by computing the spatial correlation
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Figure 4.7: Simulation of the double-room experiment of Carpenter et al. (2015). A. Top
view of the experimental environment with two visually identical rooms (A and B). B. Population
estimates of the local fit (red) and global fit (black) as a function of session number (see C and
D for examples). The value of parameter α decreased from 0.04 to 0.005 across sessions. C,D.
Examples of firing rate maps of 4 different grid cells (rows) with superimposed ideal grid patterns
according with the highest local (left column) or global (right column) fit. In each row the same
firing map is shown twice. In early sessions (C) identical ideal grid patterns in the two rooms fit
the data better than a single global hexagonal pattern: local fit is higher than the global fit. In late
sessions (D) the reverse is true. The local and global fit was assessed from grid cell firing patterns
in the rooms only (not in the corridor).

between place fields of each cell in the two rooms (correlation of 1 corresponds to identical

place fields). On the level of the whole population, the mean place-field correlation is high

for a strong feedback loop (early sessions, large α, Fig. 4.8B). The transition to a global

representation in later sessions results from newly formed synaptic associations between

MPCs in CA3 (that are under a strong influence of self-motion input from grid cells),

and CPCs in CA1 that are driven by vision. Synaptic plasticity at these connections is

favored by a decreased hippocampal input to the EC, leading to a stronger reliance on self

motion. The development of such a new representation is reflected in lower place-field

correlation on the level of MPCs and CPCs (late sessions, small α, Fig. 4.8B). Note that

purely vision-driven VPCs always have identical place fields in the two environments (not

shown).
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Figure 4.8: A. An example of MPC (top) and CPCs (bottom) place field during early learning
sessions (left column, high α) and late sessions (right column, low α). In early sessions a majority
of place cells have similar place fields in the two rooms, whereas in late sessions a majority of place
cells have a place field only in one of the rooms. B. Spatial correlation between place fields of a cell
in the two rooms, averaged over all place cells, as a function of session number (or, equivalently,
as a function of decreasing value of α.

To summarize, the results of both the merged-room experiment of Wernle et al. (2018) and

the double-room experiment of Carpenter et al. (2015) can be explained by the samemodel

under two conditions: First, the hippocampal control over mEC grid cells progressively

decreases in a familiar environment in the course of daily sessions (this requirement is

crucial to reproduce the result of the second experiment, but, according to our simulations,

has only a weak effect in the first); Second, synaptic plasticity is weak or inhibited when

rats are placed into the merged room after learning in room A and B, but not when the

rats are exposed to a stable double-room environment. What could be the reason for the

inhibition of learning in the merged-room, as opposed to the double-room experiment?

Analysis of our model offers the following possible explanation: In early sessions of

the double-room experiment, a large mismatch between visual (i.e. encoded in VPC

activities) and self-motion (encoded by MPC activities) input occurs at the moment of

entry to, or exit from, the room B, since the population activity of VPSs “jumps” to reflect

the room A cues or the corridor cues, respectively. This jump of population activity can

be quantified by the drop in correlation between the projections of VPCs and MPCs in

CA3 onto the CPCs in CA1 near the room doors (Fig. 4.9A). In contrast, the mismatch

is smaller for the merged-room experiment, since the visual and self-motion cues near

the removed wall code for similar spatial positions (Fig. 4.9B). Therefore, it is possible

that learning across sessions is regulated by the size of the mismatch between visual and
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self-motion cues. Note that statistical characterization of the mismatch in Fig. 4.9 required

averaging over many experimental runs and even in our idealized model can not be reliably

detected online. This could be a possible reason why building of a global environment

representation in Carpenter et al. experiment takes many days. We thus propose that CA1

area or, more likely, its output structures implement a mismatch detection process that can

regulate hippocampal synaptic plasticity on the time scale of days.

BA

Figure 4.9: A. Mismatch in the double-room experiment. B. Mismatch in the merged room
experiment. The colors denote the correlation between VPCs and MPCs projections onto the CPC
population.

4.4 Discussion

The presentedmodel is based on twomain assumptions: that of a loop-like dynamics in the

entorhinal-hippocampal network, and that of an independent visual place-cell representa-

tion formed on the basis of hippocampal inputs other than grid cells. Place cells in CA1

receive inputs from spatial (including grid cells) and non-spatial entorhinal cells (Zhang

et al., 2013), either via a direct projection frommEC or via an indirect pathway through the

DG and CA3. Lesion experiments have shown that either of these pathways can support

location-sensitive activity of the hippocampal CA1 neurons (Brun et al., 2002, 2008a).

Moreover, even after massive EC lesions CA1 cells retained their spatial selectivity of

(Van Cauter et al., 2008), suggesting that such selectivity can result from a large variety

of afferent inputs to this structure. Place cells in CA1 project back to the entorhinal cortex

both directly and via subiculum (Naber et al., 2001; Kloosterman et al., 2003; Slomianka

et al., 2011) and hippocampal input is necessary for grid cell activity (Bonnevie et al.,

2013), supporting the loop-like structure of entorhinal-hippocampal interactions (Iijima

et al., 1996; Mizuseki et al., 2009).
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That a subset of hippocampal place cells can form spatial representations independently

from grid cells is supported by a substantial amount of evidence (Poucet et al., 2013).

In particular, in rat pups place cells are present before the emergence of the grid cell

network (Muessig et al., 2015), whereas in adult rats a disruption of grid cell activity

does not prevent the appearance of place cells in novel environments (Brandon et al.,

2014). These grid-cell independent place codes retain all principal properties of a self-

organized representation in control animals: they can be learned in new environments, they

are stable over time, and independent representations are established in different rooms

(Rueckemann et al., 2016; Schlesiger et al., 2018). These data suggest the existence of two

parallel and overlapping input streams that give rise to hippocampal place sensitivity: the

first one integrating spatial inputs from grid cells in the dorsal mEC, likely representing

self-motion-based spatial signals (McNaughton et al., 2006); the second one integrating

other sensory information to form a grid-cell independent spatial representation in a self-

organized manner (Poucet et al., 2015). The differential reliance of place cells on these

principal input streams is most clearly manifested in neural responses of these cells to

sensory manipulations in virtual linear track experiments (Chen et al., 2013): during

passive movement through the track (i.e. with only visual cues available) 25% of cells

kept their firing fields unchanged relative to a control condition with both types of cues

present; during locomotion in the absence of visual cues (i.e. with only self-motion cues

available) 20% of cells did not change their firing patterns; the activity of the rest of CA1

cells was modified to various degrees by cue manipulations (see also Haas et al., 2019).

Moreover, recent evidence suggests that CA1 cells responsive to visual and self-motion

input are anatomically separated: place cells more responsive to self-motion cues are

located predominantly in superficial layers of CA1, while those more responsive to visual

cues are found in deep layers (Fattahi et al., 2018; Mizuseki et al., 2011). It was also

recently shown that CA1 cells in deep and superficial layers receive stronger excitation

from mEC and lEC, respectively, with the amount of excitation being also dependent

on the position of the neurons along the longitudinal hippocampal axis (Masurkar et al.,

2017). These data further support the existence of functionally different subsets of place

cells in CA1, that can either be inherited from similarly segregated cells in CA3 or to be

formed directly from non-grid EC inputs to CA1.
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Our model is constructed to reflect the above data in a simplified way. While the neural

basis for the aforementioned grid-cell-independent code is not clear, we conceptualized

it by a population of VPCs, which learn subsets of visual features corresponding to a

particular location using simple competitive learning scheme. Similarly to experimental

data described above, VPCs form a stable and independent code for different environments

as long as visual cues in these environments are stable. It is likely that such a code is

formed inside the hippocampus itself based on the inputs either from lEC (Schlesiger

et al., 2018) or ventral mEC (Poucet et al., 2013) possibly together with inputs from other

structures (Van Cauter et al., 2008), since no location-sensitive code has been observed

directly upstream of the hippocampus (Mao et al., 2017). While in its current version

our model assumes that VPCs are learned in CA3 and transmitted to CA1, the model

can be modified to implement competitive learning in CA1 directly on visual inputs from

lEC, bypassing CA3 (Brun et al., 2002). Similarly to a number of attractor-network

models of grid-cell activity (Fuhs, 2006; McNaughton et al., 2006; Guanella et al., 2007;

Sheynikhovich et al., 2009; Burak and Fiete, 2009; Bonnevie et al., 2013), our model of

self-motion-driven activity in GC-MPC populations relies on the assumptions that (i) the

position of the animal in an environment is represented by the position of the activity

packet (i.e., an attractor state of network dynamics) on a 2D neural sheet corresponding to

a grid-cell population; and that (ii) the activity packet is shifted to precisely integrate the

animal’s velocity. As long as these assumption hold, our modeling results are independent

of the exact neural mechanisms realizing the attractor dynamics and velocity-based shifts

of the attractor state (provided that the hippocampal input can influence the attractor state

according to Eqs. 4.2.1-4.2.2).

The main contribution of the present model is the proposal that integration of visual and

self-motion representations occurs in the EC and is regulated via feedback projections from

the CA1. This is in contrast to a long-standing idea that multisensory integration is per-

formed by the attractor network residing in CA3 (McNaughton et al., 1996; Samsonovich

and McNaughton, 1997). Our model thus resolves two outstanding issues related to this

earlier proposal. The first issue is the existence of separate self-motion-dependent and

vision-dependent subsets of cells in CA1/CA3mentioned above (Chen et al., 2013; Fattahi

et al., 2018; Chen et al., 2019; Haas et al., 2019). If CA3 performed the integration of the
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two representations as the earlier model suggest, why would they still persist in the down-

stream CA1? In our model, the existence of the two representations in CA1 are essential

for the model to work, since their combined input to the EC is required for multisensory

integration. The second issue is the mutual interaction between external/sensory and

self-motion-based representations. In earlier models cognitive mapping was essentially

performed by a “path integrator” (that is now thought to reside in the grid-cell network)

and the role of visual input was only to occasionally reset it and to prevent error accumu-

lation. As discussed above, it is now clear that external sensory inputs can self-organize

into a stable and persistent representation and that neural mechanisms supporting such a

representation appear earlier during development than the putative path integration system.

It is thus possible that the two representations exist in parallel and interact with each other.

Here we propose how such an interaction can be performed by the entorhinal-hippocampal

processing loop. We believe that studies of grid cells and place cells in environments with

visually similar compartments provide an important line of experimental evidence as to

the modes of interactions between the two representations, since in these studies the two

types of information are put in direct conflict. Previous models that addressed mutual

relations between place cells and grid cells (Guanella et al., 2007; Rennó-Costa and Tort,

2017) focused on other aspects of such relations. While our model postulates the important

role of hippocampal CA1 representation in the correction of cumulative error at the level

of grid cells, it does not exclude the involvement of other possible mechanisms of error

correction. For example, it has been recently proposed that border cells, experimentally

observed in mEC, correct grid-cell activity near environmental boundaries (Hardcastle

et al., 2015). It is not clear how such a boundary-related processing can affect grid cells

far from boundaries, for example in the conditions of experimental studies simulated in

the present work. In addition, it is not clear whether the boundary-based error correction

occurs independently of the hippocampal input, as proposed by Hardcastle et al., or via

the hippocampal processing loop, in which case it will be a particular case of the model

proposed here. The relative contribution of different mechanisms, if they exist, will po-

tentially be determined by the features of the environment, such as the presence of distal

cues, objects and boundaries.

An important parameter of our model is the strength α of the feedback projection from
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CA1 to EC, reflecting the efficacy of neural information transmission between the two

areas (Colgin et al., 2009; Bonnevie et al., 2013). The progressive construction of a global

representation in our simulation of the double-room experiment required a progressive

decrease in the value of this parameter. By slowing down the dynamical correction of

motion-based entorhinal-CA3 representation by vision, it allowed synaptic plasticity in

afferent CA1 synapses to form new associations between a visual representation of the

rooms (encoded in the VPC activity) and the motion-based representation, and hence

to disambiguate the two rooms. Ultimately then, whether a global representation was

learned or not is determined by the relative time scales of two processes: (i) dynamical

correction of EC attractor states and corresponding CA3 representations by external visual

cues and (ii) synaptic plasticity at afferent CA1 synapses. The interplay between the two

processes can in principle be governed by several neuronal mechanisms, including neuro-

modulatory influences on plasticity and neural dynamics (Hasselmo et al., 1995) and/or

on oscillation coherence (Colgin et al., 2009). While in our simulations α was manually

decreased across sessions, the model could be extended to automatically adjust its value.

One possibility would be to link the value α to novelty processing: upon initial exposure

to an environment the novelty signal is high (potentially reflecting the absence of learned

connections between motion-based and vision-based representations), while it should pro-

gressively decrease as these connections are learned andmotion-based CA3 representation

take precedence over external sensory inputs (Hasselmo et al., 1995). Another possibility

is to consider the hippocampal loop processing as a network to implementing statistical

inference and prediction (Bousquet et al., 1997; Penny et al., 2013): in a novel environ-

ment, prediction about future incoming sensory inputs is poor (high prediction error); as

learning progresses this error decreases reflecting a better statistical model of the envi-

ronment. These considerations suggest that a global representation must eventually arise

after a sufficiently long exposure to an environment. This was not however the case in the

merged-room experiment. Indeed, under the hypothesis that grid cells express hexagonal

firing patterns as a consequence of attractor dynamics with circular weight matrices (Mc-

Naughton et al., 2006), the local translocation of grid fields at the center of the merged

environment must result from a dynamic correction mechanisms, since synaptic plasticity

between place-cell and grid-cell networks would necessarily lead to the emergence of a
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coherent (global) grid-cell representation. One possible explanation for this discrepancy

is that the testing period in the merged room (up to 9 daily sessions) was not long enough,

as rats in the double-room experiment expressed clearly global grid patterns after at least

10 testing sessions (Carpenter et al., 2015). Another possibility suggested by the analysis

of the model is that the learning process is also regulated by the size of the mismatch

between visual and self-motion-based representations.

A number of experiments studied place fields dynamics in environments consisting of two

or more visually identical compartments (Skaggs and McNaughton, 1998; Tanila, 1999;

Fuhs et al., 2005; Paz-Villagrán et al., 2006; Spiers et al., 2015; Grieves et al., 2016).

The objective of these experiments was to check whether path integration can be used by

animals to distinguish between compartments and to assess the extent to which visual cues

control path integration information. Earlier experiments provided evidence for a partial

(Skaggs andMcNaughton, 1998) or a nearly complete (Tanila, 1999) remapping when rats

travelled between two similarly looking compartments, suggesting that path integration

can be used to distinguish between them. A major difference between experimental setups

in these latter experiments was that the two compartments in Skaggs and McNaughton

(1998) were oriented in the sameway, whereas in Tanila (1999) there was a 180◦ difference

in their orientation. A follow-up experiment (Fuhs et al., 2005) has demonstrated a key

role of angular, but not linear, path integration in the complete remapping observed by

Tanila et al. 1999. However, Fuhs et al. did not observe partial remapping in conditions

very similar to those of Skaggs and McNaughton (1998), as most cells had identical place

fields in the two compartments. More recent experiments with multiple visually identical

compartments confirmed the importance of angular path integration for remapping (Spiers

et al., 2015; Grieves et al., 2016, see also Paz-Villagrán et al., 2006), and suggested that a

larger amount of time (about 2-3 weeks) is necessary to build separate representations for

visually identical rooms connected by a corridor (Carpenter et al., 2015).

In our simulations, we assumed that head direction system provides a correct orientation

information (i.e. relative to an arbitrary fixed reference orientation) at any moment in time,

and so the visual input to themodel is always aligned to the common directional frame in all

environments (in the experiment of Carpenter et al. a common directional frame could be
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provided by the corridor cues, whereas it was provided by distal extramaze cues in Wernle

et al. experiment). As a result of competitive learning, synapses to visual place cells

learn visual features observed at a location where these cells were recruited. Therefore,

a place is visually “recognized” (i.e. the visual place cell wins the competition and

strongly fires) if the previously learned visual features are observed in the same allocentric

direction (independently of any path integration signal). If, however, the visual features

are observed at an orientation very different from the learned one (e.g. in a room rotated

by 180◦) the cells will not be activated (unless visual features are rotationally symmetric)

and new visual cells will be recruited, in agreement with Fuhs et al. (2015) study. At

smaller rotation angles, the model predicts that place cells will be activated to a higher

degree, depending on the autocorrelation width of the learned visual snapshots (Grieves

et al., 2016, 2018). That the head direction system can maintain a fixed orientation in the

presence of visual cue rotation is supported by experimental evidence (Jacob et al., 2017,

see also Paz-Villagrán et al., 2006).

The ability (or inability) of the hippocampal representations to express partial remapping

has been discussed in viewof themultichartmodel (McNaughton et al., 1996; Samsonovich

and McNaughton, 1997). This model predicted that if rats could learn room identities

despite their similar visual appearance, place-field representations of the two rooms would

be orthogonal (different charts are active in different rooms), whereas they would be

identical in the opposite case (the same chart is active in both rooms). Partial remapping

observed by Skaggs and McNaughton (1998) contradicted this hypothesis, as some cells

had identical fields in the two rooms, while other cells and different place fields, suggesting

that two charts could be active at the same time. In similar experimental conditions Fuhs

et al. (2005) observed no partial remapping for unclear reasons, but suggested that the

map of one compartment was somehow “extended” to the second one, instead of loading

a new map. Our results contribute to this question in two ways. First, we argued that

learning of a new representation is under control of a putative neural mismatch detection

mechanism. In the experimental conditions of the two above studies, the largest amount of

mismatch occurs upon the door crossing, and so the number of door crossings experienced

by the rat may be an important parameter with respect to learning. While in Skaggs and

McNaughton (1998) the rats were freely moving between the compartments during a trial,
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in Fuhs et al. (2005) the number of transitions between rooms was limited to 2 per trial,

potentially affecting the results. Second, our results provide a neuronal mechanism for the

map observed map extension, i.e. progressive learning of a global representation.

Our results lead to a number of testable predictions. First, VPC in the model acquire

representation of only one compartment (among two or more identically looking ones).

We thus predict that a subset of place cells, that do not rely on self-motion signals (e.g.

such as those observed in Chen et al., 2013) and potentially located in the deep sublayer

of CA1 pyramidal layer (Fattahi et al., 2018), will persist through learning and will

have repetitive place fields even when a global representation has been learned. Second,

learning of separate neuronal representations of different compartments (i.e. progressive

remapping) will require the formation of new associations between CA3 cells and CA1

cells preferentially from the superficial sublayer of pyramidal cells. Third, place cells that

remap first should have place fields closer to the door, since for these cells the difference

between visual and motion-based inputs is largest. Finally, as the width of the low-

correlation band (Fig. 4.6D) is proposed to be related to the strength of the visual cue

control over path integration, it is predicted that stronger reliance on path integration will

result in a wider band. This might occur for example in aged animals, in which a stronger

reliance on path integration (or, conversely, an weaker control by visual cues) has been

observed (Tanila, 1999; Rosenzweig et al., 2003).
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Chapter 5

Modeling the Impact of Aging on the

Entorhinal-Hippocampal Network

Chapter summary

The present chapter extends the entorhinal-hippocampal processing model described in

Chapter 4 by considering how aging may affect spatial memory. In particular, we focus

on the neuromodulatory account of aging by studying how age-relate cholinergic deficits

can affect synaptic plasticity and memory in the hippocampal formation. This model

provides a first, to our knowledge, neurocomputational account of age-related effects in the

hippocampal formation during spatial behavior. In the context of the Aging Human Avatar

platform it provides a basic framework of studying how various age-related impairments

can affect spatial memory and navigation.

The publication of the results of the present chapter is under preparation.
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Abstract
Aging is correlated with spatial memory impairments and thought to be caused by neu-

robiological alterations in hippocampal memory circuits. A recurring idea in conceptual

models of aging links age-related changes in cholinergic modulation of the hippocampal

formation with synaptic plasticity deficits in this area. Neurophysiological experiments

with aging rodents show that place cells in aged rodents exhibit a variety of differences

compared with those in young or adult ones. In particular, place cells in aged animals are

impaired in creating spatial representations of novel environments, as shown by reduced

spatial remapping of these cells. Moreover, the transition from idiothetic to allothetic

cues, when these cues provide conflicting information about spatial location, is slower

in aged animals. Despite a large amount of data from aged rodents, the neurocom-

putational nature of age-related effects underlying differential place cells dynamics as

a function of age remains an open issue. In this work we extend our previous model

of entorhinal-hippocampal circuit of spatial information processing (Li et al., 2020) by

including age-regulated cholinergic modulation of hippocampal input to the entorhinal

cortex. The extended model is tested in two simulated experiments addressing the learn-

ing of a novel environment and a switch from self-motion to visual cues. Our modeling

results suggest that age-induced attenuation of acetylcholine release leads an to excessive

recall of stored allocentric memories, mediated by entorhinal recurrent networks, in con-

trast to classical theories implicating the dentate gyrus in this process. Moreover, this

age-related impairment is proposed to play a key role in the control of visual information

influence on multisensory integration in the entorhinal-hippocampal circuit.
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5.1 Introduction

A large body of experimental evidence suggests that aging is associatedwith an impairment

of spatial orientation ability. On the neural level, aging is thought to affect neuronal

processing in brain areas that support spatial memory, and in particular the hippocampal

formation. Multiple neuron types in this area were shown to mediate formation of spatial

memories, including place cells and grid cells (O’Keefe and Nadel, 1978; Fyhn et al.,

2004; McNaughton et al., 2006). While grid cells are generally thought to support path

integration, i.e. representation of location based on idiothetic cues (Cheng and Frank,

2011; Fyhn et al., 2004; Hayman and Jeffery, 2008; Jacob et al., 2019; McNaughton

et al., 2006), place cells are sensitive to both visual and self-motion cues and are therefore

thought to encode location by combining idiothetic and allothetic cues (Chen et al., 2013;

Fattahi et al., 2018; Markus et al., 1994; Hafting et al., 2005; Krupic et al., 2015).

Multiple age-related effects were observed when comparing firing activities of place cells

in adult and old rats in experiments testing the effect of cue manipulations on spatial

memory. When a geometric layout of the experimental space is altered, landmarks are

displaced or objects are removed, place cells in adult rats express spatial remapping:

changes in visual cues are reflected in changes in the position of place-cell firing fields.

In contrast, when the same cue manipulations are experienced by aged rats, their place

fields are abnormally maintained at a constant location between the novel and familiar

environments (Tanila et al., 1997a,b; Oler and Markus, 2000; Wilson et al., 2003, 2004,

2005a). Thus, on the level of place cells, aging is reflected in the inability of encoding

visual cue changes and a tendency of recalling from a previous spatial representation.

In contrast to the differences between aged and adults rats observed during visual cues

manipulations, when visual cues remained the same but self-motion cues differed between

the novel and familiar environments, place cells in both old and adults rats reflected these

changes with equal efficiency (Wilson et al., 2005b). In another experimental paradigm

testing the interplay between allothetic and idiothetic cues in aging, neural activities

in young and old rats were compared during running back and forth on a linear track

(Rosenzweig et al., 2003). When the starting position on the track was manipulated (while

leaving all the surrounding visual cues on their stable locations), place cells in young rats
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quickly switched from idiothetic to allothetic cues, while those in old rats maintained firing

based on path integration. These results go in line with human experiments showing that

aged subjects have difficulties in switching from an egocentric to an allocentric strategy

when navigating in a virtual city (Harris and Wolbers, 2014).

Neurocognitive aging is associated with a wide range of changes in neural networks

supporting spatial orientation, both within and outside of the hippocampal formation

across species (Leal and Yassa, 2015; Lester et al., 2017). In view of an enormous

complexity of a general analysis of these changes aimed at finding principal causes of

age-related decline in spatial behavior, one approach is to focus on a small set of candidate

hypothesis and explore, using computational modeling, their potential consequences on

neural activity and behavior. If a large part of available experimental evidence can be

explained by this set of hypotheses, these can be further analysed in order to arrive to

a reduced minimal model of age-related effect on spatial memory. Such a core set of

proposed neural-level mechanisms of age-related decline includes the effect of age on

synaptic plasticity (Burke and Barnes, 2006), age-related abnormalities in cholinergic

activity within the hippocampal formation (Shen and Barnes, 1996; Ikonen et al., 2002;

Schliebs and Arendt, 2011) and deficits in pattern separation (Rosenzweig et al., 2003;

Gracian et al., 2013). In the present work we focus on the first two of these hypotheses and

we explore the idea that age-related changes in cholinergic modulation affect plasticity,

in turn causing the observed neural and behavioral changes. Cholinergic modulation

of CA1/CA3 circuits by the medial septum declines significantly with age (Shen and

Barnes, 1996; Schliebs and Arendt, 2011), and this decline has been repeatedly related to

novelty processing (Giovannini et al., 1998; Miranda et al., 2000; Giovannini et al., 2001;

Ranganath and Rainer, 2003). In addition, a long-held view is that cholinergic modulation

controls the state switches of hippocampal processing between recalling from a previously

stored spatial representation or learning a new spatial representation (Hasselmo et al.,

2002; Sava and Markus, 2008). In a behavioral study, the impairment of spatial learning

in old animals was related to cholinergic deficits, as young rats with acetylcholine lesions

were not able learn a new spatial representation in a novel environment similarly to old

rats (Ikonen et al., 2002).
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Despite the fact that synaptic plasticity deficits and impairments of cholinergic processing

have been repeatedly related to age-related decline in spatial memory, how they affect

spatial information processing in the entorhinal-hippocampal network of place cells and

grid cells has not been studied. Earlier computational models addressed the effect of

cholinergic reduction in a non-spatial context of learning of simple patterns (Hasselmo

and Schnell, 1994; Hasselmo et al., 1995). A conceptual model by Wilson et al. (2006)

proposed that age-related deficits in learning novel environments is caused by excessive

pattern completion by the CA3 auto-associative network and reduced pattern separation in

the hippocampal DG/CA3 (Rosenzweig et al., 2003), both linked to reduced cholinergic

modulation, but no description of associated neural mechanisms has been provided.

The present work extends our previous model of spatial information processing in the

entorhinal-hippocampal loop (Li et al., 2020, see also Chapter 4) by including cholinergic

modulation mechanisms. The release of acetylcholine in this extended model is controlled

by novelty, representing the difference between the actual and stored entorhinal activity.

Acetylcholine in turn dynamically modulates the interaction between entorhinal grid cells

and hippocampal place cells, and hence the relative influence of allothetic (visual) and

idiothetic (self-motion) cues. Thus, the feedback regulation of cholinergic modulation

switches between learning of novel environments and recall of familiar ones.

5.2 Methods

The neural architecture of the model is similar to the one presented in Chapter 4. In

particular, the inputs and neuronal populations in the entorhinal-hippocampal processing

loop are organized as before (Fig. 5.1). More specifically, visual inputs, grid-cell network,

motion-based place cells, vision-based place cells and conjunctive place cells are described

byAVI, GC,MPC, VPC and CPC populations respectively. The following sections present

the differences between the aging model and the one described in Chapter 4. In the

following we refer to equations from the previous chapter where appropriate and give the

new expressions when needed.
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Figure 5.1: Schematic representation of the model. Self-motion input is integrated by GC
populations in mEC and results in a self-motion-driven space representation in CA3 (encoded by
the MPC population). New visual input, represented by the activities of AVI neurons, results in a
purely vision-based representation in CA3, encoded by the VPC population. The GC populations
and AVI neurons represent the current sensory signals, and associated activities in the loop (shown
by the dashed black boxes). MPCs and VPCs project to CPCs in CA1, and the relative strengths of
their projections are controlled by the parameter β. The projection fromCPCs back to the EC closes
the dynamic hippocampal processing loop, and induces the recall of previously stored information
in the GC and AVI neurons (shown by the solid black box). The difference between the current and
recalled information represents novelty signals, that control medial-septal (MS) cholinergic release
(shown by the dashed red box). The mEC-induced (mACh) and lEC-induced (lACh) cholinergic
activities (ψm and ψl) regulate the dynamics of the hippocampal loop bymodulating the parameters
α and β, respectively. The arrows represent the information flow in the network.

5.2.1 Hippocampal memory recall

As mentioned in Fig. 5.1, the feedback projection from CPCs to the EC induces memory

recall of previous encoded information in the GC and AVI neurons. The recalled infor-

mation about GC and AVI neurons are determined by the winner neuron from CPCs as
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below:

Icpc
avi (t, i) =

ncpc∑
j=1

Vcpc(t − 1, j)Wcpc
avi (t, i, j) (5.2.1)

Icpc
gc (t, i) =

∑ncpc
j=1 Vcpc(t − 1, j)Wcpc

gc (t, i, j)

max
j

Vcpc(t − 1, j)Wcpc
gc (t, i, j)

(5.2.2)

where Wcpc
gc and Wcpc

avi are the feedback synapses from CPCs to GC and AVI neural

populations, initialized with zero value. The learning of the two synapses are introduced

in 5.2.2 (Conjunctive place cells). Vcpc(t − 1) is a winner vector, computed from the

activity of CPCs as below:

Vcpc(t, j) =


1, if j == arg max

k

[
Acpc(t − 1, k)

]
0, otherwise

(5.2.3)

Here, Acpc(t−1, k) is the activity of k-th CPC at time t andVcpc(t, j) is a vector representing

the CPC winner neuron. In our model, the CPCs input to EC Acpc(t − 1) is simplified

to a winner vector from biological population coding. The recalled information about

AVI neurons is only conveyed to medial septum cortex but not summed to influence the

current visual input (see the section 5.2.3). In contrary, the recalled information of GCs is

conveyed to medial septum cortex and summed to the current gird cell activities (see the

section 4.2.2 and 5.2.3).

5.2.2 Encoding of visual and self-motion input by place cells

Synaptic modification - recruitment learning. The model is required to learn from

multiple environments and morphing linear track, respectively. It is known that winner

take all(WTA) with hebbian learning(HL) gives result to catastrophic forgetting issue in

sequential learning (McCloskey and Cohen, 1989). For instance, a neuron, associated

with a location in a cylinder room, would forget the memory of this location, if the neuron

be a winner neuron in a new environment i.e. square room. Therefore WTA-HL is not the

appropriate modification rule in the model. In order to overcome the memory forgetting

issue, selecting a winner neuron is replaced by recruiting a new neuron to learn the input.
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The recruitment learning happens when the maximal neural activation of all recruited

post-synaptic neurons is lower than threshold value. The activation value of recruited

neuron is computed at time step t as below:

Apost(t, i) =
npre∑
j=1

Apre(t, j)W pre
post(t, i, j), where i ∈ {0, ...nr} (5.2.4)

(5.2.5)

Where the activity of each recruited neuron Apost(t, i) is computed when receiving pre-

synaptic activity Apre(t, j). Then the post-synaptic neuron activity is compared with a

threshold as below.

ηr(t) =


1, if max

k
(Apost(t, k)) ≤ θ

0, otherwise
(5.2.6)

(5.2.7)

Here ηr(t) indicates whether do recruitment learning by comparing with the threshold

value σ. The synaptic modification of W pre
post(t,nr, j) from input to recruited neuron nr is

computed as follow:

W pre
post(t,nr, j) = W pre

post(t − 1,nr, j) + ηr(t)Apre(t, j) (5.2.8)

nr = nr + 1 (5.2.9)

If recruitment learning happened, the number of recruited neuron nr is increased if learning

is happened. All the neural populations (VPCs, MPCs, CPCs, GCs, AVIs) in the model

use this learning rule.

Conjunctive place cells. In the present model, the relative strength of input from VPC

and MPC populations to CPCs is controlled by the parameter β (see Fig. 5.1), balancing

the relative proportion of visual and self-motion influence in the multimodal spatial rep-

resentation. The CPCs project back to the EC (recall box in Fig. 5.1), which reinstates

population activities of GC and AVI in mEC and lEC. The recalled information of GCs are

summed to reset the current activities of GCs, where the parameter α controls the strength
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of recall (see the section 4.2.2). The recalled and current information of GCs and AVIs

are conveyed to Medial septum to compute the cholinergic release, the processing details

are introduced in the section 5.2.3.

Both VPCs and MPCs project to CPCs, that model CA1 pyramidal cells sensitive to both

visual and self-motion cues with a parameter β control the relative strength between VPCs

and MPCs. The total input to a conjunctive cell is:

Icpc(t, i) = βIvpc
cpc (t, i) + (1 − β)I

mpc
cpc (t, i) (5.2.10)

with

Ivpc
cpc (t, i) =

nvpc∑
j=1

Avpc(t − 1, j)Wvpc
cpc (t, i, j) (5.2.11)

Impc
cpc (t, i) =

nmpc∑
k=1

Ampc(t − 1, k)Wmpc
cpc (t, i, k) (5.2.12)

Again, a E%-max winner-take-all scheme is applied to compute the activities Acpc. The

recruitment learning rule is used to adjust synaptic weights of afferent CPC synapses from

VPCs and MPCs by assigning the input from VPCs and MPCs as the synaptic strength

between the recruited neuron nr and MPCs and VPCs. The weight assignment equations

are listed below:

Wvpc
cpc (t,nr, j) = Wvpc

cpc (t − 1,nr, j) + ηr Avpc(t, j) (5.2.13)

Wmpc
cpc (t,nr, j) = Wmpc

cpc (t − 1,nr, j) + ηr Ampc(t, j) (5.2.14)

where the detail explanation of nr and ηr was described in the section 5.2.2. At the same

time, the recalling synapses from CPCs to gc and mEC are determined by assigning the

current grid cell and visual activity as the synaptic strength between recruited neuron and

lEC and mEC. The weight assignment equations are listed below:

Wcpc
avi (t, j,nr) = Wcpc

avi (t − 1, j,nr) + ηr Aavi(t, j) (5.2.15)

Wcpc
gc (t, j,nr) = Wcpc

gc (t − 1, j,nr) + ηr Agc(t, j) (5.2.16)
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5.2.3 Cholinergic modulation

Figure 5.2: A model of cholinergic release based on CA1 feedback projection. The error
vector Et is projected to an MS neuron, which is assumed to compute the norm of the error. The
impact of aging on this synapse is modeled by a reduced number of functional connections. The
output, integrated with time constant τ, models the cholinergic release. The same computation is
performed by mACh and lACh, with different Et .

In medial septum, the recalled and current information of GCs and AVIs introduced

above are compared to compute the error of GCs in mEC (ME) and AVIs in lEC (LE),

representing novelty of stimulus. At each timestep ME and LE are accumulated in two

neural integrator, respectively. The integrated novel signals (IME, ILE) determine the

activity of mEC-induced and lEC-induced acetylcholine neuron (mACh ψm, lACh ψι). In

turn, mACh is applied to regulate the strength of recalling from CPCs by tuning parameter

α. For example, with a higher value of ME, mACh increases and tuning the loop into

remapping state. After remapping, the value of ME decreases and the loop turn into a state

of recall. Therefore, the feedback regulation of mACh dynamically regulate the state of

entorhinal-hippocampal loop. On the other hand, lACh is similar with mACh, but regulate

the percentage of the usage of visual information in CPCs through tuning the parameter

β. As a result, the neural computing of mACh and lACh modulation on α and β are

below:

α(t) = bα − wαψm(t) (5.2.17)

β(t) = bβ + wβψι(t) (5.2.18)

Here, bα and bβ are intercepts determines the maximum and minimum value of α and β,

and wα and wβ are the slope value of lACh ψι and mACh ψm. The level of mACh and
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lACh release are determined by:

ψm(t) =
1

1 + exp [κ (µ − ξm(t))]
(5.2.19)

ψι(t) =
1

1 + exp [κ (µ − ξι(t))]
(5.2.20)

where ψm(t) and ψι(t) denotes the level of acetylcholine release based on IME ξm and ILE

ξι. Based on this equation, ψm(t) and ψι(t) reach the minimum value when the integrated

error is little or zero, increase to 0.5 when the error is equal to µ and approach to 1.0 as

the error becomes larger. The gain term κ defines the slope of the two functions. The

integrated errors mentioned in the equation (5.2.19) are computed with neural integrator

(Fig. 5.2):

τm
dξm

dt
= −ξm(t) + | |Em(t)| | (5.2.21)

τι
dξι
dt

= −ξι(t) + | |Eι(t)| | (5.2.22)

Here, ξm and ξι are integrated from ME | |Em | | and LE | |Eι | | (L2-Norm of error vector) at

each time step and decayed with time constant τm and τι. The L2-norm of error vectors

are neural computed (see Fig. 5.2) as below:

| |Em(t)| | = ρ

ngc∑
j=1

Cmj
[
Icpc
gc (t, j) − Agc(t, j)

]2

| |Eι(t)| | = ρ

navi∑
j=1

Cι j
[
Icpc
avi (t, j) − Aavi(t, j)

]2 (5.2.23)

where Icpc
gc and Icpc

avi are the recalled information of GCs and AVIs from the previous stored

memory, introduced in the section 5.2.1. The error signals between recall and current

information of GCs and AVIs are transported with neurons (see Fig. 5.2). The parameter

ρ represents the level of acetylcholine degradation in the model. Cmj and Cι j represent the

acetylcholine dendrite is broken or not. The value of ρ, Cmj and Cι j are correlated with

aging.
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5.2.4 Age-related degradation of cholinergic release

Aging related degradation in acetylcholine neuron is controlled by the parameter ρ. The

value is set to 1.0 and 0.7 for the adult and aging model, respectively. According to

Eqs. 5.2.23, ρ determines the amplitude of the error (novelty) signal delivered to medial

septum. The parameter ρ is also the unbroken probability distribution of acetylcholine

dendrite, determining the value of Cmj and Cι j , if the neural connection is broken, the

value is 0.0 otherwise 1.0. Based on the above configuration, the aging model loss 30%

of connections and the received error/novelty signals degrade 30%.

5.2.5 Simulations

Virtual environments for the two simulations presented in this paper were developed with

Unity (www.unity3d.com).

In Simulation 1 (Figs. 5.3-5.6) two environments were used. First, a circular enclosure

(diameter: 1 m) with a gray wall and three visual cues located on the wall. Second, a

square room 1×1 m with gray walls. In the square room, the same three cues were used as

in the circular room, but rotated 90◦. The height of the walls in both rooms was 0.6 m. The

simulation consisted of training the model for 15 minutes (9000 time steps) by moving

quasi-randomly in the circular environment. After that the circular environment was

replaced by the square environment, assuming that the simulated rat remained at the same

spatial location. Then the model explored in the new environment for 15 minutes.

In Simulation 2 (Figs. 5.7-5.9), the experimental environment was a linear track (length:

2m). A starting box and a barrier were located in the start and end of the track, respectively.

The linear track was located in a large room 4×4 m (wall height: 1.2 m) with some

additional visual cues the walls. At the start of a training trial, the model was first

initialized inside the starting box. After the model has stabilized, the model rat was

released to run the full length track and go back. After training, synaptic weights were

then fixed to the learned values. During testing, the position of the starting box on the

track was different for each testing trial, the rat was initialized in the box and the ran back

and forth along the shortened track. This testing procedure is the same as was used in

classical linear track experiments by Gothard et al. (1996b). In Rosenzweig et al. (2003),
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the position of the starting box was also modified during training.

Twenty different animals were simulated, which means that the whole training-testing

sequence in the simulations below was repeated 20 times and the data was averaged.

For all the simulations, it took about 40 s to stabilize loop dynamics upon entering the

experimental room. All model parameters are listed in Table 5.1.

Parameter Value Description
θvpc 0.80 recruiting threshold for VPCs
θmpc 0.85 recruiting threshold for MPCs
θcpc 0.60 recruiting threshold for CPCs
µ 0.5 Mean term
κ 10 Gain term
τ 5 second Time decay constant
bα 0.050 the maximum value of α
wα 0.045 the decline slope value of α
bβ 0.50 the minimum value of β
wβ 0.20 the increasing slope value of β

Evpc 5% E%-max winner-take-all
Empc 20% E%-max winner-take-all
Ecpc 50% E%-max winner-take-all
ρ 70% The unbroken acetylcholine dendrite and the degradation of

acetylcholine release

Table 5.1: Parameters of the acetylcholine-modulated entorhinal-hippocampal loop model.

5.3 Results

5.3.1 Learning of novel environments by aged rats

Wilson et al. (2005a) studied how adult and aged rats represent novel environments

by recording CA3/CA1 place cells while the animals explored a familiar and a novel

environment. The familiar environment (denoted C1) was a circular room with three

visual landmarks on the wall, in which the animals foraged for food during several weeks.

After this familiarisation period, place cells were recorded first in the familiar environment

C1 and than in a novel environment (S1). The novel environment was a square room with

three original landmarks from C1 in a 90◦-rotated positions. Recording of neural activities

in the hippocampus suggested that in adults rats, place cells from both CA1 and CA3 areas

expressed global remapping, such that spatial locations of place fields were highly different
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in the two environments. In contrast, in aged rats only CA1, but not CA3 cells expressed

remapping. CA3 place fields in aged rats remained at the same spatial location in both

environments. These results suggested that aged place cells in CA3 were impaired in

learning novel spatial information.

According to the cholinergic account of aging, release of ACh is increased with novelty

(Ranganath and Rainer, 2003; Giovannini et al., 2001), levels of ACh control the switch

between learning and recall (Hasselmo et al., 2002) and aging causes a decrease of

ACh (Shen and Barnes, 1996; Fischer et al., 1989; Wilson et al., 2006). In our model

these effects are simulated by aging- and sensory-error-induced cholinergic release and

through ACh-controlled strength of hippocampal input to the EC (See Methods, section

5.2.3). Moreover, simulated aged rats are biased towards recall as opposed to encoding

of new information (Section 5.2.4). In order to see whether our model can reproduce

place-cell activity changes observed in aged rats, we simulated the experiment of Wilson

et al. (2005a). Since our model includes grid cells, our simulations naturally provide

experimental predictions of grid-cell activities in old rats. We thus trained the model in

a simulated circular environment (C1). We then examined changes in ACh release in the

novel environment (S1). After learning the new environment, the model was again placed

in the familiar room (C2) and the neural activities were recorded.

In the simulated adult rats, place cells expressed global remapping of their firing fields

by firing in different positions in the two environments (C1 and S1) or by activating

only in one of the two environments (Fig. 5.3A, familiar-C1 vs novel-S1). Moreover, after

subsequent learning of the novel environment, place cells retained spatial information from

the previous one (Fig. 5.3A, familiar-C2). In order to quantify hippocampal remapping

in the population of place cells, Pearson correlation was used to assess place-field overlap

for each place cell by comparing spatial firing patterns of this cell in C1, relative to S1

and C2. Correlation values close to zero (no place-field overlap) or one (complete place-

field overlap) indicate global or no remapping, respectively, while intermediate correlation

values correspond to partial remapping (see Fig. 5.5D(i)). The three different types of

place cells in the model (i.e. VPCs, MPCs and CPCs) had low correlation values in C1

compared to to S1 and high correlation values in C1 compared to C2, suggesting that these
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Figure 5.3: Global remapping and grid realignment in adult rats. A, B. Firing fields of
three simultaneously recorded place cells (A) and realigned grid cells (B) in the familiar and novel
environments. Each row corresponds to one cell. Left column: locations corresponding to firing
rate >0.5 (red), superimposed on the simulated rat trajectory. Right column: firing rate color
map (dark blue is zero, red is the maximal firing rate). C, Average changes in spatial firing fields
quantified by the Pearson correlation of firing fields in the two environments. Left side of the bar
plot shows field overlap between the familiar vs novel environments (C1 x S1). Right side of the
bar plot shows the overlap between two trials in is the same environment (C1 x C2). Red, greed,
blue and purple bars represent MPCs, VPCs, CPCs and grid cells, respectively. D. Color-coded
cross-correlation matrices of three grid cells in B indicate the grid shift fromC1 to C2 (left column)
and from C1 to S1 (right column). The origin corresponds to zero displacement. The position of
the peak indicates the grid displacement. E. Distribution of place field overlap in MPCs. Red and
green bars represent the different (C1 x S1) and same environments (C1 and C2). F. Polar plot of
grid-cell displacements at different direction over 20 trials. Red: C1 x S1, Green: C1 x C2)

cells were able to learn a representation of a novel environment in adult simulated rats

(Fig. 5.3C,E).

Coherently with remapping of place cells, grid cells expressed realignment of their firing

patterns (Fig. 5.3B). To quantify grid-cell realignment, cross-correlogramswere computed

for each grid cell between the two environments. The displacement between the origin

and the location of peak correlation value in a cross-correlogram indicates the offset of

the grid cell (Fig. 5.3D). In the whole population of grid cells, the displacement size due

to grid realignment in C1 relative to S1 was in the range between 10 and 20cm (Fig. 5.3F,

see Fyhn et al., 2007 for corresponding experimental data). No grid realignment occurred

in C1 relative to C2.
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Figure 5.4: No place cell remapping and grid realignment was observed in aged rats. See the
legend of Fig. 5.3.

In contrast to the above results, in simulated aged rats MPCs in CA3 expressed only partial

remapping and similar firing fields in C1, relative to S1 and C2 (Fig. 5.4A,C,E). The

position of grid fields changed only weakly in C1 relative to S1 (Fig. 5.4B,D) as shown

by displacement statistics of grid cells over 20 trials (average displacement from 0 to

7.5 cm, Fig. 5.4B,F). Thus, simulated aged rats retained the spatial representation from

the familiar room in the novel room, associated with a similar grid-field distribution. On

the other hand, VPCs were not influenced by aging in our model and therefore expressed

global remapping in the novel environment similarly to adult rats above. Because CPCs

are driven by combined input fromVPCs andMPCs, they were only partially influenced by

aging and their remapping level was higher than in MPCs but lower than in VPCs. Thus,

in contrast with adult rats, self-motion-driven cells, including GCs, MPCs, and CPCs,

were unable to construct a novel representation of a novel environment (Fig. 5.5A–C). As

mentioned earlier, in the study with real rats aging had a weaker influence on CA1 place

cells in contrast CA3 (Wilson et al., 2005a), which corresponds to our results for the MPC

population. While grid cells were not recorded in this experiment, our model predicts that

grid cells in aged rats do not express grid realignment

The above results are explained by reduced ACh modulation from the medial septum in
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Figure 5.5: Comparison between adult and aged simulated rats. A. Comparison between
place cells of adult and aged rats in terms of field overlap (red: adults rats, gray: aged rats). B.
The impact of aging on the distribution of field overlap in MPCs. C. A polar plot comparing grid
displacement distributions in adult and aged rat models. D. Partial vs global remapping of place
cells. (i) Top: example of partial remapping. Bottom: example of global remapping. (ii and iii).
Partially overlapped firing fields in CPCs and GCs between C1 and S1 before learning in S1.

our model. When simulated adult rats were placed in the familiar environment (C1), the

level of lACh and mACh activation was low (Fig. 5.6B, 1st column), because the error

between the recalled and current sensory information was low (Fig. 5.6C–E, 1st column).

For adult rats, the strength of the recall-related input to the EC was elevated (Eq. 5.2.17).

Before learning the novel environment (S1), the activity of lACh and mACh increased to

the maximum as the model was placed into S1 (Fig. 5.6C–E, 2nd column). This activity

tuned the hippocampal loop into the encoding state through reducing the hippocampal

recall-related input, since the comparison error between the recalled and current sensory

information (i.e. the novelty signal) was high. After learning the S1 environment, the

recalled memory matched with current sensory input, giving rise to the reduction of ACh

release (Fig. 5.6B–E, 3rd column). Thus, in the condition of a high novelty, the EC

received less input from CPCs to reset the activity of grid cells, and therefore the activity

of grid cells depended strongly on the current sensory input in this case. This in turn

results in a realignment of entorhinal grids and hippocampal global remapping.

The impact of aging causes the reduction of ACh release due to the loss in neural connec-

tions (Section 5.2.4). As a result, the amount of ACh release stayed at a low level when
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Figure 5.6: Properties of simulated acetylcholine activity in aged and adult rats. A. Simulated
environments into which the simulated rats were introduced during simulations. The black line
is the trajectory of the rat. The red dot marks the the position of the simulated rat in which the
visual and grid-cell input was recorded in C and D. B. The mACh (green line) and lACh (red line)
activity as a function of time upon the entry to the corresponding environment. C. Comparison
of population activity in 5 grid-cell layers between the one induced by the sensory input (top row)
and recalled from the hippocampal input (bottom row). D. Top row: visual information perceived
from external environment. Bottom row: Visual information recalled from the hippocampal input.
E. Color map of lACh and mACh activities (rows) in the corresponding environment during 15
minutes of exploration. F-J. Same as A-E but for aged simulated rats.

the aged simulated rats were placed in the novel environment (Fig. 5.6G, 2nd column).

Because of a strong recall-related input to grid cells, the GC population activities were

reset by the projection from CPCs (Fig. 5.6H, 2nd column). A subset of CPCs partially

remapped between C1 and S1 (see Fig. 5.5D(i and ii)), and CPCs strongly reset the grid

cell population activities with the encoded spatial representation from C1. Therefore, grid

cell activities in S1 were highly similar with C1 (Fig. 5.5D(iii)), which in turn influenced

the activation of MPCs and CPCs.
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5.3.2 Age-related effects on the switch between idiothetic and allo-

thetic cues

In a task requiring the rats to switch from self-motion to visual cues, Rosenzweig et al.

(2003) found that aged rats were delayed, compared to adults rats, in the time of switch,

leading to the conclusion that the ability of using visual cues to correct self-motion declines

with age. In this task rats ran back and forth along a linear track (Fig. 5.7A). At the start

of a trial, an animal was placed into the starting box, and once the box was opened the rat

ran toward a barrier at the end of the track. The rat was motivated by a neural stimulation

reward provided in a fixed position near the end of the track. After reaching the barrier,

the rat ran back to the starting box. Upon the placement of the rat into the starting box and

before the box was opened, the position of the box on the track was changed on some trials

(Fig. 5.7B). If the rat estimates its location on the track based on the distance from the box

after leaving it, the hippocampal spatial representation should be driven by self-motion

signals irrespective of distal room cues and the distance to the barrier. On the other

hand, if the rat takes into account these external cues, hippocampal representation should

be aligned with the room cues irrespective from the distance to the box. Rosenzweig

et al. (2003) recorded the activity of place cells in the hippocampus and found that in

the beginning of the track, place fields were aligned with the box, until a transition point

where the firing fields became aligned with the room cues (Fig. 5.8A). In the aged rats this

transition point occurred later in the track than in the adult rats.

In our model, the release of mACh (see Methods, Section 5.2.3) controls the strength of

visual input to the hippocampal loop. More specifically, if the value of mACh is relatively

high, the influence of visual information in the entorhinal-hippocampal loop processing

is stronger. Since aging reduces the release of mACh, aged simulated rats are expected to

rely more on self-motion than adults rats. This was verified in a computer simulation of

the linear track experiment. At the start of a trial, the model was initialized using visual

features of the starting box. One the dynamics of the entorhinal-hippocampal loop was

stabilized, the simulated rat was displaced from the box to the end of the (full length) track

and back. Since we use one-shot learning, only one passage was sufficient for learning.

The weights were then fixed and the model was tested in 20 trials with different starting
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Figure 5.7: The linear track experiment and simulation. A. The experimental environment
consisted of linear track (182 x 16 cm), a start box (30 cm width), an unmarked goal zone (not
simulated) and the barrier. (i) At the start of a trial, the rat was placed in the box. (ii) Upon box
opening, rat ran towards to the barrier and returned to the box. (iii) During recording, the position
of box was pseudo-randomly selected from 20 different track configurations separated by 2.5 cm.
B. Mismatch between self-motion and visual cues induced by changing the position of the box. (i)
The estimation of the rat position based on self-motion cues (path integrated distance from the box,
black line) and based on visual cues (distal room cues and the barrier, red line) in the full-length
configuration learned during training. (ii) After moving the start box closer to the end of the track,
there is a mismatch between the two position estimates.

box positions on the linear track, while the activities of VPCs, MPCs and CPCs were

recorded. As in the experiment, place fields of cells with preferred locations close to the

starting box were aligned with the distance from it (Fig. 5.8B–D). For place cells with

preferred locations farther from the box, place fields progressively realigned from the box

to the room cues. The transition speed of VPCs was faster than that of MPCs and CPCs.

In particular, the transition of MPCs was slowest, because MPCs integrate information

from grid cells, in turn driven by self-motion input. In order to measure the transition

point between the box- and room-cues, the slope of the dependence of place-field center

as a function of starting box position was computed for each place cell. If a place cell is

completely controlled by the box cues, its place field shifts together with the box (slope

unity). In contrast, if the place cell is controlled by the room cues alone, its position is

independent from the box (slope zero). Comparison of the mean (over all cells) slopes for

MPCs and CPCs in the aged vs adult model shows that the transition slopes in the aged

model are slower (Fig. 5.9 A,B) as was observed by Rosenzweig et al. (2003).

As the simulated animal moved out from the shifted box, the visual cues from the room
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Figure 5.8: Mismatch correction between idiothetic and allothetic cues. A. Depending on
the preferred location of a place cell, its firing field can either be aligned with the starting box
(red) or with the room and barrier (black). B-D. Place field position along the linear track of three
simultaneously recorded place cells (rows) in the VPC (B), MPC (C) and CPC (D) population, as
a function of time (horizontal axis) and box position (vertical axis). If the change in place field
position (in red) is equal to the change in box position (green), the slope of the cell is 1. If place
field position is independent from the box position, its slope if 0. Cells in the middle of the rack
express intermediate slopes.

signalled a position that was different from that encoded by hippocampal place cells,

which are initially driven by the spatial representation initialized in the box. Thus, in

the adult model the level of lACh release was higher (Fig. 5.9C) compared to the aged

model (Fig. 5.9D), as a consequence of age-related reduce in cholinergic release. This

difference resulted in a slower alignment of hippocampal place cells to visual cues in the

aged model. More specifically, when the distance of the simulated rat from the box was

between 20 and 80 cm, the level of mACh in the adult model was the same as in the aged

model (Fig. 5.9C,D), and therefore the strength of hippocampal input to grid cells was

the same in the two models. Since lACh in the adult model is higher in the aged during

this period, the former uses gradually more visual information. During this period, the

transition between the self-motion and visual cues did not occur, because the self-motion
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cues from the starting box exerted a strong control over the hippocampal representation.

When the distance from the box was between 80 and 140 cm, the impact of room cues

reached its peak, and the adult model experienced a transition from self-motion to visual

cues. In the aged model, the value of lACh was lower leading to a weaker effect of visual

information on grid cells and to the delayed transition. Even though the mACh release has

also increased in adult rat, resulting in a weaker correction of grid cells by the hippocampal

input, this increase was delayed with respect to the lACh release so that the overall effect

of visual cues was stronger during this delay period. Finally, closer to the end of the track,

the lACh and mACh release reached the equilibrium in both models, so that that effect of

visual information on place cells became the same in the two models.

Figure 5.9: Cholinergic influence on the transition between self-motion and visual cues..
A,B. Mean transition slopes of MPCs, CPCs and VPC along the linear track (10 cm/bin) in the
adult and aged models. The horizontal axis represents the position of the place-field center in
the full-length track. The vertical axis represents the slope value. The transition point from
self-motion to visual cues was defined as the point where the transition slopes cross the value of
0.5: box-aligned fields have slopes > 0.5, while room-aligned fields have slopes <0.5. Red and
black lines represent adult and aged models, respectively. The gray line represents the mean slope
of VPCs. C,D. Mean activation level ±SD of lACh (in blue) and mACh (in green) as a function
of position on the linear track in the adult (C) and aged (D) models. The red arrow denotes the
maximal shift of the starting box.
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5.4 Discussion

The main novelty of the present model with respect to the model of Chapter 4 is the

inclusion of cholinergic modulation of synaptic transmission from the CA1 area of the

hippocampus to grid cells in theEC. Thismodulation biases the dynamics of the entorhinal-

hippocampal processing loop between learning a novel environment or recalling a familiar

one. Past physiological studies have shown an increase in cholinergic release from the

MS to EC in response to an entry to a novel environment (Acquas et al., 1996), resulting

a reduction mEC theta frequency (Givens and Olton, 1995; Carpenter et al., 2017). These

changes in turn give rise to grid field expansion and realignment in entorhinal grid cells

(Fyhn et al., 2007; Barry et al., 2012a). In our model, the mACh release, that depends on

sensory error from grid cells, modulates the synaptic transmission from CA1 to grid cells

and influences the strength of the hippocamal (reset) signal to grid cells (Bonnevie et al.,

2013). In particular, in a familiar environment, the low mACh release causes strong recall

of spatial information, resetting the activities of the grid cell populations to previously

stored values (Section 5.3.1). As a result, firing fields of grid cells and place cells are

maintained at the same position. On the other hand, in the novel environment, grid cells

receive weak feedback output from CA1 because of high level of mACh release, leading

to remapping of hippocampal place cells and grid cell realignment. Previously, Hasselmo

and Schnell (1994) simulated CA1 activity, based on the input from EC and CA3. In this

neural network model CA1 output was regulated by cholinergic activity and the model

was tests in a non-spatial context of simple low-dimensional pattern learning. Barry et al.

(2012b) studied the effects of cholinergic modulation on regulating theta rhythm in grid

cells.

In our model aging is simulated by reduced cholinergic activity, resulting in a preferential

recall of previously stored environment representation instead of encoding of a new one. A

number of theoretical accounts of aging suggested that age-related synaptic loss inDG/CA3

together with age-induced augmentation of auto-associative dynamics in CA3 give rise

to an impairment of DG-mediated pattern separation and excessive pattern completion,

respectively (Wilson et al., 2005b, 2006; Yassa et al., 2011; Thomé et al., 2016). Our

results (Fig. 5.4) propose a different explanation of the age-related impairment of spatial
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learning in a novel environment. In our model, the reduction of cholinergic modulation

biases the entorhinal-hippocampal loop processing from the learning state to a recall state.

The recalled spatial representation, retrieved based on the back-projected signal from

CA1 to grid cells, leads to a recall-induced reset of grid-cell population activity. The

reset of grid-cell activities in turn leads to a partial reinstallment of recalled place cell

representation in CA3 (MPCs) and CA1 (CPCs) and the absence of global remapping. As

a subset of place cells in our model is based purely on vision (VPCs), their firing fields

express global remapping also in the aged model, predicting that vision-based place cells

will be affected by aging to a smaller degree than self-motion based. Recent data suggests

the existence of place cells differentially sensitive to these two cue types (Chen et al.,

2013, 2019; Fattahi et al., 2018).

The associative recall of spatial information in our model occurs within the EC based

on spatial input from CA1 in agreement with past studies linking recollection of with

CA1-EC-cortex projection (Naber et al., 2001; Kloosterman et al., 2003; Slomianka et al.,

2011; Suzuki andNaya, 2011;Goshen et al., 2011). More specifically, CPCs input provides

information about currently active spatial position code to the grid-cell population, while

realignment of grid fields according to this position signal performs the recall of grid cell

population activity. This activity in turn leads to the recall of associated visual input by

the AVI cells. As suggested by our model in Chapter 3, the parieto-retrosplenial network

can be the biological locus of an allocentric visual representation encoded by AVI cells

in the present model. In agreement with the cholinergic accounts of novelty processing

(Giovannini et al., 1998; Miranda et al., 2000; Giovannini et al., 2001; Ranganath and

Rainer, 2003), ACh release in our model is controlled by the error resulting from a

comparison between the recalled information and the actual sensory input. In various

behavioral tasks, such an error (or novelty) signal can drive learning by adjusting synaptic

weights in the hippocampus so to minimize the error (O’Reilly and Rudy, 2000). In

our model, the feedback error signals (LE and ME, Eqs. 5.2.23) are used to regulate the

dynamics of entorhinal-hippocampal loop and control the balance idiothetic and allothetic

cues.

As our simulations suggest (Section 5.3.2), age-related decrease in cholinergic modula-
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tion causes a delay in the transition between self-motion-based and vision-based spatial

representations. In particular, acetylcholine release, controlled by the visual error/novelty

signal (LE), is proposed to dynamically regulate the relative strength of visual input with

respect to self-motion one. A high level of acetylcholine release corresponds to a highly

novel visual stimulus, so that CPCs are biased to integrate more visual cues in a larger

proportion relative to self-motion cues. As a result of age-related reduction of cholinergic

modulation, CPCs in the aged model receive less visual information so that the transition

of the spatial representation is delayed in simulated aged animals. The separation between

self-motion-based and vision-based behavior is just one example of strategies used by

animals for navigation (Barnes et al., 1980; Nicolle et al., 2003; Rosenzweig et al., 2003;

Schuck et al., 2013; Bécu et al., 2019). Experimental studies in rodents and humans

suggested a particular strong effect of age in switching from egocentric to an allocentric

strategy (Harris and Wolbers, 2014) and from self-motion to vision (Rosenzweig et al.,

2003). Our modeling results suggest that the bias towards self-motion-based egocentric

strategies is causes by impaired novelty processing in the hippocampus, which manifests

itself in a reduced cholinergic signal.

In summary, this work described a computation model of how spatial information process-

ing in the entorhinal-hippocampal loop can be self-regulated by computing the sensory

errors in the from of neural novelty signals. The neuromodulator acetylcholine is pro-

posed to mediate the novelty signalling and balance hippocampal processing state between

learning and recall, leading to the expression of egocentric and allocentric strategies. Age-

related impairment of novelty processing leads, via reduced cholinergic signal, to strategy

switching deficits. It is proposed that the novelty signal reflects the difference between a

stored and a current sensory information and is important for spatial behaviour, as it can

gradually tune spatial memory networks based on the memory demands of the current

task.
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Chapter 6

General discussion

6.1 Thesis summary and conclusions

The main motivation for this thesis was the development of an integrated computational

model of human visuospatial cognition providing a simulation platform for studying age-

related spatial memory deficits. The modeling work presented here focused on several

important issues towards this objective. In particular, I studied neural mechanisms under-

lying the integration of visual and self-motion cues important for the formation of a mental

environment representation and proposed how age-related neurobiological alterations may

affect this process. The main methodological approach adopted in this work consisted

in computer simulations of biological neural networks aimed at reproducing key experi-

mental results in primates and rodents. Computational modeling of animal data on both

behavioral and neural levels and formulation of model-based experimental predictions has

proven an effective way to advance the understanding of biological processes underlying

cognitive phenomena.

In Chapter 2, I reviewed available anatomical and physiological data in primates and

rodents by focusing on the neural-level studies of the role of vision, spatial memory and

aging in navigation behaviour. These data provide the basis and delimit the constraints of

the modeling work in subsequent chapters. In addition we have presented the architecture

of our neural simulation platform – Aging Human Avatar – that was conceived as a
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proof-of-concept for future human avatar applications.

Chapter 3 described a spiking neural network implementation of the dorsal visual pathway

implicated in scene processing and a transformation between egocentric visual representa-

tions to allocentric spatial memories. We have shown that neurocomputational properties

of the simulated dorsal visual pathway network, including gain modulation by head di-

rection and existence of head-fixed as well as world-fixed visual representations in the

parietal-medial temporal circuit correspond to available experimental evidence from these

structures. We then proposed the existence of a panoramic representation of the surround-

ing visual space in topographic visual coordinates that can serve as a proxy between visual

and mnemonic brain areas instrumental for reorientation and planning of eye movements.

Further, our modeling results linked visual and memory-related neural activities in the

associated brain areas and suggested a novel interpretation of general novelty signals ob-

served in the hippocampus in response to the presentation of visual stimuli. Finally, we

outlined a neural architecture of a reorientation network that is proposed to perform cor-

rection of head direction based on view-based egocentric activities, and we have suggested

how the existence of such a network in the brain manifests itself in behavioral tasks such

as spatial reorientation and memory-based visual search.

Chapter 4 presented a neural-levelmodel of spatial information processing in the entorhinal-

hippocampal, focused on the bidirectional interactions between hippocampal place cells

and entorhinal grid cell during learning of multi-compartment environments. We pro-

posed a novel role for biological place cells that are exclusively driven by visual input: in

our model they express properties that are different from place cells combining visual and

self-motion cues in that they are not affected by progressive integration of the latter into

spatial representation. We propose that these vision-based place cells progressively bias

spatial processing in the hippocampal loop towards positions signalled by external sensory

cues. We further proposed that the strength of the hippocampal input to the entorhinal

cortex plays a critical role in governing the balance between idiothetic and allothetic cues.

We have shown that when these cue types provide conflicting information about spatial

location, as it occurs in multi-compartment environment with a high degree of visual

aliasing, the correct balance between neural integration of these cues play a key role in
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efficient construction of the environment representation.

Finally, in Chapter 5, spatial learning impairments caused by aging were studied in

the framework of the entorhinal-hippocampal circuit model. Motivated by the evidence

relating age-related cholinergic decrease and synaptic plasticity deficits in the hippocampal

networks we proposed that acetylcholine balances the interplay between idiothetic and

allothetic cues. The acetylcholine release is in turn modulated by novelty, implemented by

computing the sensory error between the stored and actual states of the entorhinal attractor

network and between the actual and stored visual inputs. Age-related decreases in the

cholinergic signal lead to impaired novelty processing, in turn biasing spatial processing

towards idiothetic cues and a recall of previously stored information, at the expense of

inefficient learning of novel spatial stimuli. By simulating neurophysiological data from

experiments in aged rodents, we have shown how such an age-related effect leads to an

impaired spatial learning during exploration of a novel environment and to a preferential

reliance in idiothetic cues during spatial navigation.

Overall, this thesis contributes to further understanding of the role of vision, self-motion

and aging during spatial navigation and of the neural mechanisms governing the creation

of cognitive maps. In subsequent sections I provide further details about specific contri-

butions of our work that go beyond current state-of-the-art models of spatial orientation

and propose principal directions of future work.

6.2 Contributions of the thesis and related work

One of the main contributions of the thesis, the model the dorsal visual path, builds on

previous accounts of the involvement of parietal networks in coordinate transformations

(Zipser and Andersen, 1988; Deneve et al., 2001; Pouget et al., 2002). The previous

models have shown how the coordinate of a point-like stimulus, whose position was

observed in a retinal frame of reference, can be converted to the head-fixed coordinates

of the position of the stimulus is encoded by a population of cells with Gaussian tuning

functions. Byrne et al., 2007 (see also Becker and Burgess, 2001) presented a rate-

based model of coordinate conversion between egocentric information about distances to

environmental boundaries an allocentric representation by so-called boundary-vector cells,
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that in turn drive location-sensitive hippocampal neurons. In contrast to these models, our

proposed network transforms the full-field visual stream in topographic visual coordinates

into an allocentric world-fixed reference frame using spiking neurons. Moreover, our

model is designed to work with limited visual fields, similar to that in primates, whereas

previous models were tuned to rodent panoramic view. A smaller visual fields limit the

amount of spatial information accessible to the system at any moment in time and reduce

the sensitivity to scene-like processing and environmental geometry. This limitation is

proposed to be overcome by a short-term synaptic memorymechanisms linking successive

views in a single allocentric representation of surrounding visual space.

We proposed that spatial reorientation is performed by a network organized similarly to

head-direction network and which is driven by the input from hippocampal place cells.

This reorientation network is proposed to be active all the time and (subconsciously)

correct orientation errors based on the comparison between memorized and actual spatial

information. Previousmodels proposed viewmatching accounts of reorientation that either

matched the current view with a single view of the desired goal location (Cheung et al.,

2008) or implemented the memory-based view matching algorithmically (Sheynikhovich

et al., 2009). Our results also provided an indication of how the reorientation network

may affect behavior in spatial and non-spatial tasks.

An important novel property of our model of the entorhinal-hippocampal circuit is that

grid cells and place cells continuously and dynamically interact with each other during

spatial behavior. It is thus different from existing models based on the feed-forward input

from grid cells to place cells (Solstad et al., 2006; O’Keefe and Burgess, 2005; Blair et al.,

2008; Sheynikhovich et al., 2009; Pilly and Grossberg, 2012) and based on feed-forward

input from place cells to grid cells (Bonnevie et al., 2013). In these earlier models,

the role of the hippocampal input was only to reset the path integrator upon the entry

to a novel environment and or to provide unspecific excitation to grid cells, in contrast

to continuous dynamic mutual interaction between self-motion and vision in our model.

These previous models are also at difficulty in explaining multi-sensory integration data

as observed by grid- and place-cell recordings in multi-compartment environments. One

previous computational study suggested how the interaction between place cells and grid
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cells give rise to spatial remapping in a morphed environment (Rennó-Costa and Tort,

2017). Our model suggested in addition that in order to create a spatial representation

of a novel environment, the hippocampal input to entorhinal cortex should decrease,

reducing the impact of previously memorized representations. A second novel proposal

related to our entorhinal-hippocampal circuit model is that the main locus of the neural

mechanism combining idiothetic and allothetic cues has been shifted from the CA3 area

of the hippocampus to the attractor network of the entorhinal cortex in our model. It thus

provides a novel view on multisensory integration in the hippocampus, that is different

from a long-standing idea that such integration is performed by the CA3 attractor network

(McNaughton et al., 1996; Samsonovich and McNaughton, 1997).

We propose that CA1 plays an important role in memory retrieval via its feedback projec-

tion to EC. It is different from previous proposals stating that the role of CA1 is pattern

comparison between EC and CA3 inputs (Hasselmo and Schnell, 1994). One potential

problem of their theory is that EC and CA3 inputs to CA1 can not be compared directly,

because CA3 projections transform the EC input via sparse coding in DG and pattern

completion in CA3 (Yassa and Stark, 2011). Thus, it is not clear how such different

representations can be compared by the CA1 circuit. In terms of spatial memory in CA1,

it is also not clear how multi-sensory information in the EC can be compared with spatial

representation in CA3. In our model, we suggested that CA1 represents the position code

and that the feedback projection from CA1 to EC serves to recall the information in the EC

by retrieving the previous encoded memory of that position. Our suggestion thus goes in

line with studies suggesting that memory recall is evoked in CA1 via its projection to the

EC and to the neocortex (Naber et al., 2001; Kloosterman et al., 2003; Slomianka et al.,

2011; Suzuki and Naya, 2011; Goshen et al., 2011; Bartsch et al., 2011). The recalled

EC can then be directly compared with current EC activity to provide an error/novelty

signal.

Our model of age-related decrease of cholinergic release was motivated by neurophysio-

logical studies demonstrating the role of this neuromodulator for hippocampal processing

(Shen and Barnes, 1996;Wilson et al., 2006; Sava andMarkus, 2008; Schliebs and Arendt,

2011). No previous models, to our knowledge, have addressed this question. The idea
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that cholinergic release switches the hippocampal processing between encoding and re-

call was proposed by Hasselmo and Schnell (1994), but their model of this process was

tested on a small number of low-dimensional patterns. We extended this model and

linked the encoding/recall cycles of hippocampal processing to cholinergically-modulated

idiothetic/allothetic cue switches during spatial behavior. Our proposal that age-related

cholinergic bias towards recall is mediated by the CA1 projection to the EC provides a

neurocomputational account of the role of aging in the hippocampal formation that is

different from previous proposals. A number of previous theoretical and experimental

studies suggested that aging effect on spatial navigation is caused by pattern separation

impairment and excessive pattern completion in DG/CA3 (Wilson et al., 2005b, 2006;

Yassa et al., 2011; Thomé et al., 2016). While our results do not exclude the involvement

of DG-CA3 circuit in age-related deficits, we show that it is possible to simulate the key

experimental data without it.

6.3 Experimental predictions

From our results in Chapter 3 we predict the existence of a panoramic representation in

visually topographic coordinates in the parieto-retrosplenial network, which is likely to

be stored in a world-fixed directional reference frame (see e.g. Robertson et al., 2016 for

related data). This representation is further predicted to be necessary for directing eye

movement outside of the current visual field. Moreover, we also predict that reorientation

of head direction in reorientation experiments in empty roomswith geometrically polarized

layout require an intact hippocampus. We hypothesize that a network organized similarly

to the retrosplenial head-direction circuit encodes the reorientation error. For instance,

Jacob et al. (2017) observed retrosplenial head-direction-like cells that have a doubly-

peaked activity in symmetric environments, going in line with our hypothesis. Further, we

predict slight but reliable changes in head direction cells in purely visual tasks in which,

unexpectedly by the observer, a portion of visual features has been displaced, as in the

experiment by Fiehler et al. (2014).

From our results in Chapter 4, we predict that place cells that are purely driven by external

cues (Chen et al., 2013), potentially located in the deep sublayer of CA1 pyramidal layer
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(Fattahi et al., 2018), have a number of properties different from other place cells, in

particular those that rely on self-motion information. These vision-based place cells are

predicted (i) to be unaffected by learning; and (ii) to possess repetitive place fields in

spatially separated but identically oriented and otherwise similarly-looking rooms, even

when a global representation has been established to distinguish between the rooms.

Moreover, our results predict that the remapping of place cells close to the entry to a room

(see Carpenter et al., 2015) should occur faster than for the cells far from the entrance,

since the largest mismatch between the visual and self-motion representations occurs near

the entrance. Finally, we predict that the mismatch between the visual and self-motion

cues, as measured by the correlation between grid cells (see e.g. Fig. 4.6D) should be

larger in animals who rely stronger on self-motion, as a result of training as as a natural

consequence of aging. As experimental data (Tanila, 1999; Rosenzweig et al., 2003)

and our simulations suggest, these animals are biased towards the use of self-motion

cues.

Lastly, from our results in Chapter 5, we predict that intact CA1 and EC with potentially

other output structures are sufficient for recall (Zeineh et al., 2003). This prediction is in

line with the studies suggesting that CA1 plays an important role during memory retrieval

(Rolls, 1996; Naber et al., 2001; Goshen et al., 2011). Another prediction is that age

should be correlated both with novelty processing and with the reduce in cholinergic

release within the same animal, as our model suggests. The final prediction from our

results from Chapters 4 and 5 is that in aged rats, in conditions of the experiments of

Wilson et al. (2005b) and Rosenzweig et al. (2003), only a subset of CA3 cells that project

to deep sublayer of CA1 should remap or be progressively corrected by vision. Vision-

based place cells should not be affected according to our proposal of the differential role

of these cells in spatial memory.

6.4 Limitations and future work

Future efforts will be required to make the Aging Human Avatar platform in its current im-

plementation to be a valuable tool for simulating visuospatial human behavior. Currently,

the detailed model of the retina (Huth et al., 2018) can be linked directly to the spatial
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memory module (not described in the present work). Additional work will be required

to link the cerebellar model of vestibular-ocular reflex (Luque et al., 2019; Naveros et al.,

2019) with the vision- and self-motion-based integrated model of spatial memory. Inte-

gration of eye movements is a long-term future objective. Together, integration of these

modules within the Avatar platform are expected to provide a promising tool for visu-

ospatial behavior simulation in realistic environments, modeled with the 3D environment

simulator of the Avatar platform.

In terms of constituent networks of visual and spatial memory network, several potential

improvements can be of use. Visual information delivered to the model uses a full-field

visual stream and is thus sensitive to geometric and distal visual, but landmarks do not

have special meaning in the model. Landmarks have been shown to be important for

navigation in both rodents and primates (Wilber et al., 2014; Harris and Wolbers, 2014).

Several computational models have addressed the role of landmarks for spatial memory

and can be included in the model (Bicanski and Burgess, 2016, 2018). An adaptive

integration theory is proposed to determine the weight of different cues while these cues

are combined (Cheng et al., 2013). This improvements will permit reorientation based on

different available cues according to their spatial information content.

Our current theoretical framework lacks the dentate gyrus, proposed to mediate pattern

separation in the hippocampal network (de Almeida et al., 2009a,b) and CA3. Pattern

separation reduces interference between similar visual input coming from the EC and

increases spareness of neural activity (Leutgeb et al., 2007; Yassa et al., 2011). Classical

viewofCA3 is that it acts as and auto-associative network for pattern completion (Hunsaker

and Kesner, 2013), but recent studies question this view as CA3 inherits integrated spatial

information from EC (Colgin et al., 2010). The exact role of CA3 in hippocampal

processing, and in particular its role in trajectory generation (Colgin et al., 2010) is an

important question for future work.

Our model suggested an explanation for the age-related impairment of learning a novel

environment, but it does not explain why aged animals can learn a novel spatial represen-

tation after a repeated presentation to the same novel environment (Wilson et al., 2004). In

our model, once a spatial representation is created, it will be maintained in memory. The
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future work should address the question of forgetting and relearning, related to the question

memory maintenance and consolidation and the effect of age on these processes (Foster,

1999). In particular, in our current framework, the error/novelty signal originating from

EC is used to fine tune the strength of recall in the EC and adjust the relative strength of

self-motion and visual input. This error signal can also serve other purposes, for example

for fine tuning the synapses along the trisynaptic circuit. Such an error back-propagation

signal can affect spatial memory in a task-related manner (O’Reilly and Rudy, 2000).

Since feedback error learning is long-term learning with a very low learning rate, it might

explain aged animals progressively learn novel environments, even if they are strongly

biased to the recollection of previously visited ones.
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