
HAL Id: tel-03343533
https://theses.hal.science/tel-03343533v1

Submitted on 14 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed and trustable SDN-NFV-enabled network
emulation on testbeds and cloud infrastructures

Giuseppe Di Lena

To cite this version:
Giuseppe Di Lena. Distributed and trustable SDN-NFV-enabled network emulation on testbeds and
cloud infrastructures. Networking and Internet Architecture [cs.NI]. Université Côte d’Azur, 2021.
English. �NNT : 2021COAZ4028�. �tel-03343533�

https://theses.hal.science/tel-03343533v1
https://hal.archives-ouvertes.fr

 Emulation fiable et distribuée de réseaux
virtualisés et programmables sur bancs de

test et infrastructures cloud
Giuseppe DI LENA

Orange Labs - Inria Sophia Antipolis

Présentée en vue de l’obtention
du grade de docteur en
INFORMATIQUE
d’Université Côte d’Azur

Dirigée par : Thierry Turletti /
Frédéric Giroire / Chidung Lac

Soutenue le : 22/03/2021

Devant le jury, composé de :
Président:
Guillaume Urvoy-Keller, Professeur, Université Côte d'Azur
Rapporteurs:
Marcelo Dias de Amorim, Directeur de recherche, CNRS
Stefano Secci, Professeur des Universités, Cnam
Examinateurs:
Mathieu Bouet, Ingénieur, Thales
Luigi Iannone, Maître de conférence, Telecom Paris
Directeur:
Thierry Turletti, Directeur de recherche, Inria
Co-Directeurs:
Frédéric Giroire, Directeur de recherche, CNRS
Chidung Lac, Ingénieur-chercheur, Orange Labs

THÈSE DE DOCTORAT

Acknowledgements

Firstly, I’d like to express my thanks to my patient and supportive supervisors
Frédéric Giroire, Thierry Turletti, and Chidung Lac to guide me well throughout
this research work.

I would like to acknowledge my colleagues and team leaders from Inria and
Orange Labs, with a special mention to Damien Saucez, Andrea Tomassilli,
Walid Dabbous, David Coudert, Jean-Philippe Luc, and Alain Henry.

I would like to also express acknowledgements to Marcelo Dias de Amorim
and Stefano Secci, who both reviewed my thesis, thank you for your comments
and suggestions.

I would also like to thank my committee members, Guillaume Urvoy-Keller,
Mathieu Bouet, and Luigi Iannone.

A special thanks to my family, Caterina, Federica, Daniele, Rodolfo, and
Alessandro.

1

2

Résumé

De nombreux progrès ont eu lieu ces dernières années dans les domaines de
la virtualisation, l’informatique en nuage et la programmation des fonctions
réseau. L’essor des concepts tels que Software Defined Networking (SDN) et
Network Function Virtualization (NFV) a largement modifié la manière dont
les fournisseurs de services Internet gèrent leurs offres. Parallèlement, au cours
de la dernière décennie, les plateformes sécurisées de Cloud publiques telles que
Amazon AWS ou Microsoft Azure sont devenues des acteurs incontournables de
la scène. Ces nouveaux concepts permettent des réductions de coûts et une plus
grande rapidité d’innovation, ce qui a conduit à l’adoption de ces paradigmes
par l’industrie. Tous ces changements apportent également leur lot de nouveaux
défis. Tout en étant devenus tentaculaires et complexes, ces réseaux offrent une
plus grande diversité de services: les tester devient ainsi de plus en plus com-
pliqué, tout en nécessitant beaucoup de ressources. Pour résoudre ce problème,
nous proposons un nouvel outil qui combine les technologies d’émulation et
les techniques d’optimisation afin de distribuer les simulations SDN/NFV dans
des bancs de test privés et des plateformes de Cloud publiques. Par ailleurs,
les fournisseurs de Cloud proposent en général aux utilisateurs des métriques
spécifiques en termes de CPU et de ressources mémoire afin de caractériser leurs
services, mais ont tendance à présenter une vue d’ensemble de haut niveau du
délai maximum engendré par le réseau, sans aucune valeur spécifique. Ceci peut
constituer un problème lorsqu’il s’agit de déployer des applications sensibles au
délai dans le Cloud, car les utilisateurs n’ont pas de données précises sur ce
sujet. Nous proposons un cadre de test pour surveiller le délai engendré par le
réseau entre plusieurs centres de données des infrastructures Cloud. Enfin, dans
le contexte des réseaux SDN/NFV, nous exploitons la logique centralisée SDN
pour implémenter une stratégie optimale de routage en cas de défaillances mul-
tiples des liens dans le réseau. Un environnement de banc de test a également
été créé afin de valider nos propositions pour différentes topologies de réseau.
−Mots-clés: Emulation, SDN, NFV, Mininet, Virtualisation

3

4

Abstract

In recent years, there have been multiple enhancements in virtualization tech-
nologies, cloud computing, and network programmability. The emergence of
concepts like Software Defined Networking (SDN) and Network Function Vir-
tualization (NFV) are changing the way the Internet Service Providers manage
their services. In parallel, the last decade witnessed the rise of secure pub-
lic cloud platforms like Amazon AWS and Microsoft Azure. These new con-
cepts lead to cost reductions and fast innovation, driving the adoption of these
paradigms by the industry. All these changes also bring new challenges. Net-
works have become huge and complex while providing different kinds of services.
Testing them is increasingly complicated and resource-intensive. To tackle this
issue, we propose a new tool that combines emulation technologies and opti-
mization techniques to distribute SDN/NFV experiments in private test-beds
and public cloud platforms. Cloud providers, in general, deliver specific metrics
to the users in terms of CPU and memory resources for the services they pro-
pose, but they tend to give a high-level overview for the network delay, without
any specific value. This is a problem when deploying a delay-sensitive applica-
tion in the cloud, since the users do not have any precise data about the delay.
We propose a testing framework to monitor the network delay between multiple
datacenters in the cloud infrastructures. Finally, in the context of SDN/NFV
networks, we exploit the SDN centralized logic to implement an optimal routing
strategy in case of multiple link failures in the network. We also created a test-
bed environment to validate our proposition in different network topologies.
−Keywords: Emulation, SDN, NFV, Mininet, Virtualization

5

6

Contents

1 Introduction 9

1.1 Context . 9

1.2 Challenges . 11

1.2.1 Network Emulation . 11

1.2.2 Cloud Testing . 12

1.2.3 Failure Recovery . 12

1.3 Contributions . 12

1.4 Outline . 15

2 Background 17

2.1 Virtualization . 17

2.1.1 Hypervisor-Based Virtualization 17

2.1.2 Container Virtualization 20

2.2 Network Function Virtualization (NFV) 21

2.3 Software Defined Networking (SDN) 22

2.3.1 SDN Architecture . 23

2.3.2 Openflow . 24

2.4 Service Function Chaining (SFC) 25

2.5 Test-beds . 26

2.6 Cloud Environments . 27

3 Distrinet 31

3.1 Introduction . 31

3.2 Related Work . 32

3.3 Distributed Mininet . 34

3.3.1 Multi-Host Mininet Implementation 35

3.4 Distrinet Architecture . 38

3.5 Experiments . 39

3.5.1 Distrinet Core Performance Assessment 39

3.5.2 Tools Comparison . 40

3.5.3 Experiments With High Load 42

3.6 Conclusions . 44

7

8 CONTENTS

4 Distributed Network Emulation 45
4.1 Introduction . 45
4.2 Related Work . 47
4.3 Problem And Algorithms . 50

4.3.1 Problem Statement . 50
4.3.2 Algorithms . 51
4.3.3 Numerical Evaluation . 56

4.4 Evaluation Of The Placement Modules 57
4.5 Overloading Experiment . 70

4.5.1 Bandwidth Intensive Experiments 71
4.5.2 CPU Intensive Experiments 74
4.5.3 Memory Intensive Experiments 75

4.6 Conclusions . 77

5 Cloud Measurement 79
5.1 Introduction . 79
5.2 Related Work . 80
5.3 Amazon Web Services Infrastructure 82
5.4 Implementation . 84
5.5 Experiments . 87
5.6 Conclusions . 92

6 Failure Recovery 93
6.1 Introduction . 93
6.2 Related Work . 94
6.3 Optimization Approaches . 96

6.3.1 Problem Statement And Notations 96
6.3.2 A Layered Network Model 99
6.3.3 Compact ILP Formulation 100
6.3.4 Column Generation Approach 101
6.3.5 Benders Decomposition Approach 103
6.3.6 The Min-Overflow Problem 104

6.4 Numerical Results . 109
6.5 Implementation Perspectives . 118

6.5.1 Implementation Options 118
6.5.2 Experimental Setup . 119
6.5.3 Recovery Time . 120
6.5.4 Operational Trade-Offs 124

6.6 Conclusion . 125

7 Conclusion And Future Work 127
7.1 Summary Of Contributions . 127
7.2 Future Work . 128

Chapter 1

Introduction

1.1 Context

Networks are continuously growing and evolving, and the recent advances in vir-
tualization and orchestration are accelerating this evolution. 5G is the perfect
example of how Internet Service Providers (ISPs) are changing their offers and
manage access to their infrastructures via SDN and NFV technologies. Another
example of the rise of virtualization technologies is cloud computing. It is esti-
mated that the global cloud computing market will grow from US $371.4 billion
in 2020 to US $832.1 billion by 2025 Compound Annual Growth Rate of 17.5%.
The major players are Amazon Web Services (AWS) and Microsoft Azure, fol-
lowed by Google Cloud. The main advantage that the virtualization technology
provides is flexibility. It is easy and just takes a few seconds to create a fully
operational virtual machine, simply on demand. This flexibility can reduce for
network operators and general IT companies the OPerating EXpense (OPEX)
and CAPital EXpenditure (CAPEX) to deploy and operate around the globe.

Before deploying any network, there are studies and tests to be performed, to
avoid congestion and not underestimate (or overestimate) the network capacity.
Since the size and complexity of these networks grow, the number of resources
needed to emulate them increases. A straightforward solution to solve this issue
is vertically scale the emulating host in order to match the required resources.
This solution cannot scale to infinity since a single machine will reach its limits
at some point. The solution is to scale the emulation horizontally between
multiple hosts. This is not an easy task, since most of the network emulators
are designed to run on a single host. Another limitation is that NFV networks
can have multiple services designed to run on different virtual environments.
This means that for each service to deploy, the emulator requires a virtual
environment.

To solve this issue, we can use Virtual Machines (VM) or containers. Our
work aims to design a flexible SDN/NFV network emulator, easy to distribute
in private clusters, test-beds, and public clouds, and compatible with the main

9

10 CHAPTER 1. INTRODUCTION

SDN emulator available in the market (i.e., Mininet). This project is divided
into two different parts. The first part overviews the technical design decision
made to create the emulator’s architecture, describing the orchestration and
virtualization technologies, while the second part focuses on the algorithmic
problem raised when distributing a virtual network in a physical infrastructure.
We investigated and compared our tool with the one available in the market,
showing that our approach is the one that provides the most trusted results.
The network emulator is designed to work in a controlled environment, like a
test-bed, but it is also compatible with cloud environments.

Cloud providers sign a contract with their customers, called Service Level
Agreement, that specify and ensure that a minimum service level is maintained.
It guarantees levels of reliability, availability, and responsiveness to systems and
applications. When describing the IaaS services offered to the customers, the
providers are particularly specific in terms of virtual RAM, virtual CPU, and
network bandwidth. Still, they tend to hide the value of the network delay in
the infrastructure. The cloud providers usually indicate that the datacenters
composing the infrastructure are connected via high speed, optical networks,
but there are no specific values. The applications are usually developed with
a monolithic architecture, i.e., built as a single unit with a database layer, a
back end layer, and a client layer. With a monolithic strategy, it is difficult to
scale such applications. This is why the enterprises are moving from monolithic
to microservice applications. This can lead to synchronization problems since
the application is not running on a single machine but on multiple machines.
If the delay between the instances is too high, the application cannot work
properly. Furthermore, the developers can decide to provide regional resiliency.
This means that the application will be deployed in 2 different regions. If the
provider does not share the network delay information, how can developers
decide where to deploy the application if it is delay-sensitive ?

We propose a Command Line Interface (CLI) tool to test the delay stability
in the cloud infrastructure. In particular, we analyze Amazon AWS. The tool is
open-source and publicly available. It is written in Python and uses the latest li-
braries to create and manage virtual machines inside a cloud infrastructure. The
idea behind the tool is to perform synchronized trace-routes between different
instances in different regions and availability zones. It can perform experiments
between two or more regions (multiregional scenario). Such tests are made to
verify the delay stability between different regions. We expect in this case that
the delay varies depending on the distance between the regions. The other tests
are performed within a single region (regional experiment). The experiments
monitor the delay in a specific region between two or more Availability Zones.

Even with the use of the best resources and equipment, networks may fail. In
the context of SDN and NFV networks, efficient network algorithms considered
too hard to be implemented in a legacy network now can exploit the benefits
of a centralized controller with the SDN paradigm. The networks are failure-
prone, and, usually, failures tend to be correlated. To design this correlation, we
consider the network dimensioning problem with protection against the Shared
Risk Link Group (SRLG). An SRLG is a set of links inside the network that can

1.2. CHALLENGES 11

simultaneously fail at any time. With SRLG, it is possible to model multiple
link failure, single link failure (e.g., considering the set composed by a single
link), or node failure (e.g., considering the set composed by the link connected
to a specific switch). Let’s imagine to design a solution that allows rerouting
all the flows in the network optimally in each failure situation. This solution
can lead to considerable savings in terms of CAPEX since the providers reduce
the overprovision of the network infrastructure drastically in order to deal with
failures. For this reason, we consider a protection technique called unrestricted
flow reconfiguration, also known as global rerouting. In each of the possible
failure situations (so for each SRLG), a new set of routes is computed for each
demand. This makes the protection method bandwidth-optimal. However, this
also means that each failure may result in a completely different routing for
the demands. In standard networks, it is impossible to implement a solution
that can potentially modify the route in each switch in the network due to
the large number of rules to install on the network devices and hence signaling
overhead. However, with the introduction of SDN, the logic of the solution can
be computed in the centralized controller.

1.2 Challenges

1.2.1 Network Emulation

Emulating a network is often required before deploying it in a real environment.
As networks are growing in terms of size and complexity, emulating them be-
comes more and more difficult. In the context of SDN, Mininet is the primary
emulator used by the community. Since networks within the NFV paradigm
require more resources, emulating a network in a single machine can become
tricky. If the emulation tools do not provide a way to scale horizontally, the
single physical machine can exceed the resource limit in terms of CPU or RAM,
and the emulation can return results that are not aligned with the expected
ones. Multiple works are proposed to share the emulation in a distributed in-
frastructure like MaxiNet and Mininet Cluster Edition, but these tools have
some limitations. They do not consider, for instance, the physical topology and
the capabilities of the physical infrastructure. We aim to address such limi-
tations with our tool called Distrinet, and the new placement algorithms we
propose which are natively implemented on it. The main challenge is to make
the tool compatible with private clusters or public cloud platforms. The tool
has to provide a virtual connection between two or more virtual nodes. This
is a simple task to perform in private clusters since containerization technolo-
gies automatically manage overlay networks with multicast tunnels to connect
the instances. All the cloud providers do not allow multicast addresses in their
virtual network when using IaaS services. The emulation should be trustable,
which means that the emulation results should be in line with the results in
a real environment. The challenge is to distribute the emulation evenly in the
testing infrastructure, since only a single host or a single physical link overloaded

12 CHAPTER 1. INTRODUCTION

can lead to a wrong result.

1.2.2 Cloud Testing

In recent years, there has been a transition between classical computing and
cloud computing. The benefits of cloud computing convinced many IT com-
panies to migrate their applications to, and build applications natively on, the
cloud. Even ISPs are moving some of their services in the cloud, creating then
a hybrid environment for their operations. Some applications are globally dis-
tributed to provide high availability. Distributing geographically the applica-
tions increases their robustness, since the services remain available in case of
natural disasters or blackouts affecting a particular region. For delay-sensitive
applications, the global distribution can be an issue since the instances are
placed in two different regions. Even if the cloud provides a high-speed net-
work, the delay can be in the order of milliseconds. Before starting the real
deployment of services in the cloud, it is thus necessarily to know if the delay is
stable enough to support the application requirements. The challenge is thus to
build a simple tool to monitor the network’s stability in the cloud infrastructure.

1.2.3 Failure Recovery

As introduced before, networks are not perfect, and they can experience failures,
even multiple ones at the same moment. We focus on failure recovery strategies,
and we consider a protection technique called unrestricted flow reconfiguration
(also known as global rerouting). For each possible failure situation, a new set
of backup routes is chosen to forward the traffic, considering the new status
of the network. With this technique, it is possible to implement an optimal
bandwidth-efficient protection method. As implementing global rerouting in
legacy networks is challenging due to the massive amount of signaling events
created by the system during failure situations, SDN eases the deployment of
this approach. The centralized controller can be used to manage the network in
case of failures in an optimal way. Another challenge is to compute the path of
the demands in the network in an efficient way, since the problem is difficult to
solve even for small instances.

1.3 Contributions

This work lies in the new and growing SDN/NFV and cloud computing paradigms
of the recent years. We provide a high-level overview of the SDN framework and
architecture, and we describe how it can be integrated with Network Function
Virtualization (NFV) to procure Service Function Chaining (SFC), also known
as Network Service. Our first contribution is Distrinet, a distributed network
emulator that extends Mininet in order to run on multiple physical machines
and provide higher isolation. We briefly explain the limitation of the emula-
tors available on the market, then we run multiple tests showing that Distrinet

INTERNATIONAL JOURNAL 13

returns results aligned with the expected ones. The comparison is made on
different architectural and tool choices in order to build a tool compatible with
general Linux clusters (e.g., a Linux test-bed) and public cloud infrastructures
(e.g., Amazon Web Services). Another factor that we consider and study is
how to correctly distribute the experiment in a distributed environment. We
propose three new algorithms and we compared them with the ones proposed in
the main tools already available. We extensively compare the algorithms using
more than 75,000 experiments over heterogeneous and homogeneous networks.
The result shows that our algorithms return a feasible solution for almost all
the network types. We also made an extensive study of the performance degra-
dation due to an overcommitment of the physical machines [Len+21],[Di +19a],
[Di +19b],[Di +19d] [Di +19e], [Di +21c], [Di +21b].

Since many organizations are moving their applications to the cloud, for our
second contribution, we provide a tool that measures and analyzes the cloud
network delay. This tool performs experiments for multiregional and regional
environments. It automates all the processes from the creation of the cloud
environment and the deployment of the virtual instances to the configuration of
trace-route in the instances. The results are automatically retrieved and a map
is created and plotted with all the experiment info [Di +21a].

Our last contribution is a failure recovery strategy for SDN/NFV embedded
networks. Networks, in general, are failure-prone, and they can experience
multiple link failures at the same time. These failures can be related to each
other, and the network providers usually have all data enabling them to predict
which links may fail. We propose a global rerouting strategy in which, for
each failure situation, there is a new routing of all demands in the network
using the SDN technology. We test these solutions on different networks, and
the global rerouting solution consumes, on average, 40% less network bandwidth
compared to a dedicated path protection strategy. We also provide an emulation
framework with Mininet and OpenDayLight to validate the solution in a testing
environment [Tom+19a], [Tom+19b], [Tom+21].

List Of Publications

International Journal

[Di +21c] Giuseppe Di Lena, Andrea Tomassilli, Damien Saucez, Frédéric
Giroire, Thierry Turletti, and Chidung Lac. “Distrinet: a Mininet
Implementation for the Cloud”. In: ACM Computer Communica-
tion Review (2021) (cit. on p. 13).

[Tom+21] A. Tomassilli, G. Di Lena, F. Giroire, I. Tahiri, D. Saucez, S.
Perennes, T. Turletti, R. Sadykov, F. Vanderbeck, and C. Lac.
“Design of Robust Programmable Networks with Bandwidth-optimal
Failure Recovery Scheme”. In: Computer Networks (2021). Ed. by
Elsevier (cit. on p. 13).

14 CHAPTER 1. INTRODUCTION

Submitted to International Journals

[Di +21b] G. Di Lena, A. Tomassilli, F. Giroire, D. Saucez, T. Turletti, and
C. Lac. “Placement Module for Distributed SDN/NFV Network
Emulation”. Submitted to Computer Networks Journal. 2021 (cit.
on p. 13).

International Conferences

[Di +19a] G. Di Lena, A. Tomassilli, D. Saucez, F. Giroire, T. Turletti, and
C. Lac. “Mininet on steroids: exploiting the cloud for Mininet per-
formance”. In: 2019 IEEE 8th International Conference on Cloud
Networking (CloudNet). 2019, pp. 1–3. doi: 10.1109/CloudNet47604.
2019.9064129 (cit. on p. 13).

[Len+21] Giuseppe Di Lena, Andrea Tomassilli, Frédéric Giroire, Damien
Saucez, Thierry Turletti, and Chidung Lac. “A Right Placement
Makes a Happy Emulator: a Placement Module for Distributed
SDN/NFV Emulation”. Proceedings of IEEE International Con-
ference on Communications (ICC). 2021 (cit. on p. 13).

[Tom+19b] A. Tomassilli, G. D. Lena, F. Giroire, I. Tahiri, D. Saucez, S.
Perennes, T. Turletti, R. Sadykov, F. Vanderbeck, and C. Lac.
“Bandwidth-optimal Failure Recovery Scheme for Robust Pro-
grammable Networks”. In: 2019 IEEE 8th International Confer-
ence on Cloud Networking (CloudNet). 2019, pp. 1–6. doi: 10.

1109/CloudNet47604.2019.9064126 (cit. on p. 13).

National Conferences

[Di +19d] Giuseppe Di Lena, Andrea Tomassilli, Damien Saucez, Frédéric
Giroire, Thierry Turletti, and Chidung Lac. “Trust your SDN/NFV
experiments with Distrinet”. In: Journées Cloud (2019) (cit. on
p. 13).

Submitted to International Conferences

[Di +21a] G. Di Lena, F. Giroire, T. Turletti, and C. Lac. “CloudTrace
Demo: Tracing Cloud Network Delay”. Submitted to IEEE Inter-
national Conference on Network Softwarization (NetSoft), Demo
session. 2021 (cit. on p. 13).

DEMOS, POSTERS, EXTENDED ABSTRACT 15

Demos, Posters, Extended Abstract

[Di +19b] Giuseppe Di Lena, Andrea Tomassilli, Damien Saucez, Frédéric
Giroire, Thierry Turletti, and Chidung Lac. “Demo Proposal -
Distrinet: A Mininet Implementation for the Cloud”. In: Pro-
ceedings of the 15th International Conference on Emerging Net-
working EXperiments and Technologies. CoNEXT ’19. Orlando,
FL, USA: Association for Computing Machinery, 2019, pp. 82–
83. isbn: 9781450370066. doi: 10.1145/3360468.3368186. url:
https://doi.org/10.1145/3360468.3368186 (cit. on p. 13).

[Di +19e] Giuseppe Di Lena, Andrea Tomassilli, Damien Saucez, Frédéric
Giroire, Thierry Turletti, Chidung Lac, and Walid Dabbous. Dis-
tributed Network Experiment Emulation. GEFI 19 - Global Ex-
perimentation for Future Internet - Workshop. Nov. 2019. url:
https://hal.inria.fr/hal-02359801 (cit. on p. 13).

[Tom+19a] A. Tomassilli, G. Di Lena, F. Giroire, I. Tahiri, D. Saucez, S.
Perennes, T. Turletti, R. Sadykov, F. Vanderbeck, and C. Lac.
“Poster: design of survivable SDN/NFV-enabled networks with
bandwidth-optimal failure recovery”. In: 2019 IFIP Networking
Conference (IFIP Networking). 2019, pp. 1–2 (cit. on p. 13).

1.4 Outline

The Thesis continues as follows. In Chapter 2, we provide the concepts, and
background necessary for the rest of the work. In this chapter, we introduce the
virtualization and containerization concepts and how they are related to NFV
and SDN. We also provide an overview of the test-beds and the cloud environ-
ments, explain why they are important, and why more and more organizations
are heavily investing on it.

In Chapter 3, we present our first contribution, introducing the main dis-
tributed network emulators present on the market, and comparing them with
our proposition Distrinet. This chapter analyzes different technical aspects of
Distrinet, which technologies are used to distribute the network experiments
and what are the advantages that Distrinet has, compared to the other tools.

In Chapter 4, we continue our study of the network emulation tools by ana-
lyzing more in depth the algorithms used to share the emulation in a distributed
environment. We introduce the Virtual Network Embedding Problem and the
algorithms used in the main emulators, and we propose three different algo-
rithms for Distrinet. A comparison with the algorithms proposed by the other
tools shows that our algorithms outperform them in every scenario.

In Chapter 5, we focus on cloud computing and we discuss the advantages
that it brings to the organizations. We present a tool for measuring the network
delay in different deployment scenarios, in a single region or in a multiregional
deployment. The tool is useful for all the persons who are planning to move
delay-sensitive applications from on-premises environment to the cloud.

In Chapter 6, we focus on SDN/NFV embedded networks, and we propose
in particular a global rerouting strategy to recover all the flows in the network
in case of single or multiple link failures. The chapter deeply analyzes the op-
timization approaches used like ILP and Column Generation techniques. We
finally experiment the global rerouting approach, comparing it with the classi-
cal dedicated path protection, and showing that global rerouting consumes on
average 40% less bandwidth in multiple scenarios.

We conclude with Chapter 7 where we draw our conclusions, summarizing
all the problems faced and the contributions we present. A short discussion is
finally proposed on how the work can be improved and pursued.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Virtualization

Virtualization is one of the main building blocks of cloud computing and Service
Function Chaining. Virtualization includes all the processes to be performed in
order to create a software version of a physical environment, e.g., a virtual host
or a virtual network. The main component of virtualization technologies is the
hypervisor, also known as Virtual Machine Monitor (VMM). With the new iso-
lation functions present in the last versions of the Linux kernel, containerization
solutions have been developed. Containers provide similar isolated environments
without the hypervisor.

The hypervisor typically runs above the physical host and selects the avail-
able resources on the host for allocating them to the virtual environment. There
are different types of virtualization. A first approach is to divide them into stan-
dard virtualization (hypervisor-based) and container-based virtualization.

2.1.1 Hypervisor-Based Virtualization

Multiple software packages can provide a virtualized environment (e.g., Virtual
Box from Oracle, Hyper-V from Microsoft, etc.). The virtual environment run-
ning the guest Operating System (OS) is called Virtual Machine (VM). There
are multiple advantages for using VMs, the main one being that it is possible
to use different OSs in a single machine simultaneously.

The hypervisor can set the maximum amount of resources that a VM can
use, and it is also possible to connect multiple VMs in the same virtual network.
The hypervisor is responsible for creating and configuring the virtual network
interfaces and the virtual switches or the virtual bridges. The users can create
a VM for each OS that they want to deploy. Fig. 2.2 showcases a classical
example of one physical host running three different virtual machines. Each
virtual machine can run a different OS (e.g., Windows 7, Ubuntu, Debian).
Each OS can execute its own applications. The first difference between the
different technologies stands for where the hypervisor is running. In Bare-Metal

17

18 CHAPTER 2. BACKGROUND

virtualization (Fig. 2.1), the hypervisor is running directly on the physical host,
while in hosted virtualization (Fig. 2.2) the hypervisor runs on top of the OS.

Physical Host
Hypervisor

VM1
OS1
APP1

VM3
OS3
APP3

VM2
OS2
APP2

Figure 2.1: Bare-metal

Physical Host

Hypervisor
VM1
OS1
APP1

VM3
OS3
APP3

VM2
OS2
APP2

Hosting Operating System

Figure 2.2: Hosted

Three types of standard virtualization are possible.

Full Virtualization

In Full Virtualization, the guest OS is not aware that it is in a virtualized
environment. Full Virtualization represents the first generation of solutions
that provide a virtual environment. The first company that provided a server
virtualization solution was IBM in 1966.

The host OS completely virtualizes the hardware. The guest OS can ex-
ecute commands just as for a regular physical host, but all the hardware is
created/simulated by the hypervisor. In this case, the binary files of the guest
OS remain unchanged. The guest OS runs as a user level process, and does
not have the same level of privileges as the OS that is hosting it on a physical
machine.

If the guest OS is not modified, it can try to execute some privileged instruc-
tions available only in the hosting OS (Fig. 2.3). In this case, the hypervisor
catches the privileged instruction and replaces the non-virtualizable instructions
with a new sequence of instructions that have the intended effect on the virtual
hardware, while the user-level application is directly executed on the physical
machine to improve the performances (Fig. 2.4).

Paravirtualization

In Paravirtualization, the guest OS is aware that it is hosted in a virtual environ-
ment, so it has an installed driver specifically for the virtualization environment
in which it is running. In this case, the source code of the guest OS is modified.
This allows to perform optimizations in the virtualization process. The guest
OS does not perform the privileged instructions like in Full Virtualization, but
it executes the instructions provided by the hypervisor layer. The hypervisor
layer can then access to the real resources in the underlying hardware, exploiting
fully this capability (Fig. 2.5).

2.1. VIRTUALIZATION 19

OS

Physical Hardware

Ring 0

Ring 1

Ring 2

APPRing 3

U
ser R

equests

Kernel Requests

Figure 2.3: OS in physical host

VMM

Physical Hardware

Ring 0

Guest OSRing 1

Ring 2

APPRing 3

U
ser R

equests

Translation of
O

S
 requests

Figure 2.4: Full virtualization

Hardware Assisted Virtualization

While virtualization adoption was growing, CPU manufacturers developed new
features to simplify the virtualization process. The Intel Virtualization Tech-
nology (VT-x) and the AMD-V Hardware-Assisted virtualization have extended
the full virtualization technology. The microprocessor architecture has special
instructions to assist the hardware virtualization. The guest OS can perform
more actions natively. For example, instructions might allow a virtual context
so that the guest can execute privileged instructions directly on the processor
without affecting the host (Fig. 2.6).

Guest OS*

Physical Hardware

Ring 0

Ring 1

Ring 2

APPRing 3

U
ser R

equests

C
alls to the

hypervisor

Hypervisor Layer

Figure 2.5: Paravirtualization

Guest OS

Physical Hardware

Ring 0

Ring 1

Ring 2

APPRing 3

U
ser R

equestsO
S

 R
equests

w
ithout translation

VMMRing -1

Figure 2.6: Hardware assisted virtual-
ization

20 CHAPTER 2. BACKGROUND

2.1.2 Container Virtualization

The container is often referred to as a light Virtual Machine, but there are
significant differences between a container and a VM. The main difference is
that a container does not have a hypervisor layer. Containers are built on top
of three Linux Kernel features: namespaces, Cgroups and chroot.

The main advantage of containers is the absence of overhead in terms of
performances, while with virtualization, there is the hypervisor overhead. One
of the main disadvantages is that containers are available only for Linux OS. It
is not possible to have containers natively on Windows or Mac OS. However,
it is possible to install Docker on these systems, but the installation process
creates a virtual machine with Linux kernel in the system. In such case, the
containers run on top of a VM, and not directly on the system.

Since the containers are actually running Linux Kernel, it is not possible to
virtualize containers with non-Linux OS. Namespaces is a Linux function that
allows the kernel to assign to a set of processes an isolated environment. If a set
of processes has a namespace assigned, they can only see the specified names-
pace’s resource. In contrast, a different set of processes can access a different
set of resources.

There are multiple types of namespaces:

• User - User namespace (UID) provides user isolation and identification
across multiple sets of processes. This namespace is a critical security
feature.

• IPC - Standing for Inter-Process Communications, this namespace iso-
lates the system resources from a process. Processes in the same IPC
namespace have visibility of each other, allowing interprocess communica-
tion between them.

• UTS - This namespace allows the processes to have different hosts and
domain names in the same environment.

• Mount - With this namespace, the system can control the mount points
that are visible to a container.

• Network - It virtualizes the entire network stack.

• PID - This namespace provides to the processes an independent set of
process IDs.

Control groups (Cgroups) are often referred to as the seventh namespace, but
instead of creating an isolated environment, they isolate the resources. Cgroups
are used to limit the resource usage of a set of processes. There are many
Cgroups available. For example, the CPU Cgroup allows to monitor the CPU
usage of a group of processes: the cpuset forces the process to run in one or a
set of dedicated CPU. There are also Cgroups for memory and network devices.
For example, memory Cgroup makes sure that the memory usage assigned to

2.2. NETWORK FUNCTION VIRTUALIZATION (NFV) 21

a set of processes does not increase over a certain limit, while net prio Cgroup
provides a system to prioritize the network traffic of different sets of processes.

The last function to analyze is the chroot command provided in the Linux
environment. Chroot (contraction for change root) changes the apparent root
directory for the current running process and its children. Figs. 2.7 and 2.8
present through a high-level overview the differences between VMs and contain-
ers. As we can see, the VM has to virtualize the entire guest OS stack, while
the container has to create just the namespace and the Cgroup to separate the
processes of each guest OS. The container images are lighter as there is no need
to create the entire kernel since it is using the kernel running on the physical
host. Each container image needs to have a small part of the OS in order to work
in the host. As indicated earlier, it is only possible to create Linux containers
since the other OSs do not have namespaces and Cgroups.

Linux OS

Physical Hardware

APP

Hypervisor Layer

Ubuntu 18.04

APP

Windows 10

Figure 2.7: Virtual machine

Linux OS

Physical Hardware

APP

Ubuntu 18.04

APP

Debian 9
Namespace and

Cgroup 1
Namespace and

Cgroup 2

Figure 2.8: Container

2.2 Network Function Virtualization (NFV)

The virtualization concept can be used, not only for standard OS, but also
for network equipments. Networks are made of different types of appliances
(e.g., firewalls, routers, load balancers, intrusion detection systems, etc.). Each
organization can use hundreds or thousands of these devices, and in general,
there is a hardware device associated to a single function. These network devices
usually run proprietary software, so it is nearly impossible to create additional
functionality. Moreover, they need to be maintained by specialized technicians.
It is also complicated to change the topology configuration when the network
is already deployed since the network has to be physically reconfigured. This
hardware is usually expensive to purchase and to maintain since it needs to be
monitored, upgraded, and configured.

NFV aims to solve all these challenges, changing the way to deploy and
manage the network. NFV applies the virtualization concept for all the network
devices. Instead of having a physical device for each function, the hardware can
be virtualized on top of COTS (Commercial Off-The-Shelf) equipment, with
the use of specialized hardware to optimize the virtualization of some network

22 CHAPTER 2. BACKGROUND

functions.
By decoupling network functions from their underlying hardware, NFV pro-

vides more flexible networking functionalities. Indeed, the virtualized functions
can be created on-demand, without the installation overhead and they can be
reconfigured remotely, without human intervention. Network operators can dy-
namically deploy network functions faster in the same underlying physical in-
frastructure. This approach also brings benefits in terms of cost reductions.
Fig. 2.9 shows the idea behind the NFV concept. The functions can be virtual-
ized with hypervisor-based or container-based virtualization.

Firewall

COTS Hardware

Load Balancer

VPN serverRouter

Firewall
Load Balancer

VPN server
Router

Figure 2.9: NFV

2.3 Software Defined Networking (SDN)

SDN is a network paradigm proposed to create networks in a more flexible way
and which are easier to manage. In traditional network routing, the routers
and the switches work on the control plane (the routing protocol identifies the
best paths that satisfy the routing tables) and the forwarding plane (the router,
looking at the routing table, understands which is the outgoing port to use for
sending the packets received). This solution is very powerful and widely used
over the years. In some cases, this approach shows its limits. For some scenarios,
the shortest path is not the best since some paths could be overloaded. It would
be better to take a routing decision based on all the switches and the status
of the links in the network. Many mechanisms that have been introduced for
forcing traffic on paths do not consider the number of hops as the only criteria
of choice (i.e., MPLS). However, it is impossible to make decisions based on
all the network status since a single switch or router just knows a part of the
network. Fig. 2.10 shows a classical network with controller and data plane
integrated into each switch, while in Fig. 2.11, we have represented the SDN
approach. The idea is simple: separate the controller and the data plane, and

2.3. SOFTWARE DEFINED NETWORKING (SDN) 23

centralize the controller plane. With this approach, the controller has a global
overview of the network and can perform routing decisions based on the full
network topology and the different metrics in the switches and the links. For
example, the controller can decide to reroute flows in a different path if there is
an overloaded link.

Control plane

Data plane

Figure 2.10: Standard network

Control plane

Data plane

Figure 2.11: SDN network

2.3.1 SDN Architecture

An SDN architecture is composed of 3 main layers: infrastructure layer, control
layer, and application layer.

The infrastructure layer is made of networking equipment that form the
underlying network. The main objective of this layer is to forward network traf-
fic. The architecture is formed of a set of different network switches and routers.
These physical devices are designed with highly efficient and programmable
packet forwarding mechanisms without any software to make autonomous deci-
sions.

The control layer is the core of the logic in the SDN architecture. This
layer fetches and maintains different network information, state details, topol-
ogy, packet statistics, to decide where to route the traffic in the infrastructure
layer. In general deployment, this layer is composed of a centralized controller.
Since the SDN controller manages networks, it must have control logic for basic
network use-cases like switching (i.e., routing, L2 VPN, L3 VPN, firewall se-
curity, etc.). Examples of centralized controllers are Pox, Ryu, OpenDayLight,
etc. Several networking vendors and open-source communities are working on
implementing these use-cases in their SDN controllers. The controller provides
abstractions, services, and standard APIs to developers. Once they get imple-
mented, these services expose their APIs (typically REST-based) to the appli-
cation layer. Network administrators do not have to configure all the switches
manually, since they can use applications on top of SDN controllers to config-
ure, manage, and monitor the underlying network. The control layer lies in the
middle, and it exposes two types of interfaces, Northbound and Southbound.

• Northbound interface: it is used for communication with the applica-

24 CHAPTER 2. BACKGROUND

tion layer, and is usually realized through the REST APIs of SDN con-
trollers.

• Southbound interface: it is used for the connection with the infrastruc-
ture layer. The network elements are designed to work with protocols like
Openflow, Netconf, P4, etc.

The application layer includes applications that allow network operators
to develop their high-level policies for the network. This layer is responsible for
managing and analyzing all the information about network topology, network
state, network statistics, etc. Multiple applications can be created to work
in this layer. In general, there is no restriction on the type of language or tool
that the developers can use to provide, for example, optimization techniques and
failure recovery strategies, network automation, and security policies. Such SDN
applications can provide various end-to-end solutions for real-world enterprise
and datacenter networks.

Fig. 2.12 shows these different layers.

Application
Layer

Infrastructure
Layer

Openflow Protocol P4 Protocol

Yaml/Json App

L2 forwarding App. Topology Discovery App.

External App. 1 External App. 2 External App. 3

Control Layer

NorthBound API

SouthBound API

Figure 2.12: SDN architecture

2.3.2 Openflow

As introduced above, Openflow can be used for interfacing the SDN controller
with programmable switches. Openflow describes a standard specification for

2.4. SERVICE FUNCTION CHAINING (SFC) 25

communication between the SDN controller and network equipment (typically
switches). The specification is provided by the Open Networking Foundation
(ONF) and is evolving with support for various requirements of current net-
working. It allows routing decisions to be taken by SDN controllers and lets
forwarding rules, as well as security rules, being pushed on switches in the un-
derlying network. SDN controllers and switches need to implement Openflow
specifications in order to understand the common language of Openflow mes-
sages. The SDN controller pushes rules into switches to make decisions, so when
traffic goes through the switches, they can apply the installed rules. Switches
need to save these rules in the Openflow table. The protocol does not specify
the maximum amount of tables that a switch is able to handle. Each vendor
provides various switches with different memory sizes. The Openflow rules can
also be referred to as flows, and they are stored in flow tables. Each flow contains
four types of information:

• Match fields: they define the matching criteria (source/destination IP or
MAC address, VLAN tag, protocol type, ARP fields, ICMP fields, etc.).
A flow can have multiple matches.

• Priority: it is often referred inside the match field. When the switch
has installed in the Openflow table two or more different rules that match
a flow, the priority defines which rule should be applied. If the match’s
flows have the same priority, the protocol does not specify how to choose
the rule. Each vendor can implement a different policy.

• Actions: they define what to do with a packet if it matches the flow.
Actions can be DROP, forward on a specified output port, append, modify
or remove a header on the packet (modify the destination IP, push/pop
VLAN ID, push/pop MPLS label, etc.).

• Counters: they are used to keep track of the number of packets and the
quantity of traffic which matched the flow.

An Openflow connection is a setup between a switch and the controller.
The controller listens by default on port 6653, and the connection runs on TCP.
This connection is used to communicate with the switch and install, modify, or
remove the rules, while the switches send to the controller the statistics of the
flows received on the data port. If the controller runs and accepts correctly the
connection on the default port, the switches can initiate the connection. The
switch sends a connection request (a HELLO packet) to the controller. If the
controller accepts the switch, a connection is initiated, and the SDN network is
correctly set.

2.4 Service Function Chaining (SFC)

SFC can be described as a combination of NFV and SDN technologies. SFC
is the instantiation of multiple network functions to form an end-to-end chain,

26 CHAPTER 2. BACKGROUND

creating a Service Function Path (SFP). Services are built to satisfy a particular
business needs and must satisfy policies that define operational characteristics
and access control/security. A SFC defines the required functions and the corre-
sponding order that must be applied to the packets belonging to a specific data
flow. Thanks to the dynamic function provisioning of NFV and the centralized
control of SDN, a SDN/NFV network is able to simplify the service chain de-
ployment and provisioning by making the process easier and cheaper, enabling
a flexible and dynamic deployment of network functions.

The European Telecommunications Standards Institute (ETSI) defines SFC
as a Network Service, an offer provided by an operator that is delivered using
one or more service functions. An example of SFC can be found in Fig. 2.13,
where the traffic should follow the order firewall, load balancer and Intrusion
Detection System (IDS). In traditional networks, all these functions run on
dedicated physical boxes. The adoption of SFC simplifies this concept, since the
functions can be created, destroyed or modified on demand on general purpose
servers. The network intelligence can be easily managed by an SDN controller,
and correctly interfaced with the underlying infrastructure architecture.

The SDN part is responsible to correctly forward the traffic to the correct
VNFs (Virtual Network Functions), improving security and isolation of the net-
work. The NFV technology is responsible for creating and managing the VNFs,
monitoring and handling these VNFs in case of errors or failures, e.g., link
failures. In this work, VNF is used in place of Service Function (SF)

Firewall Load Balancer IDS

Figure 2.13: Example of SFC

2.5 Test-beds

With the ever growing complexity of networks, researchers have to rely on test-
beds to be able to fully assess the quality of their propositions. Emulation is
an essential step in the evaluation cycle of network applications and protocols.
It provides a fully controlled and duplicable environment to test real proto-
cols/applications in a reproducible way, without any modification.

It is interesting for test-bed infrastructures to provide network emulation ca-
pabilities in their environments in order to run large-scale scenarios with realistic
and accurate results. Test-beds, essentials for researchers, provide a controlled
environment which avoids any interference from the external environment. In
our work, we heavily rely on Grid’5000 for our experiments. Federated platforms
such as Fed4Fire test-beds provide a uniform interface for running emulation
scenarios, including hybrid ones that involve more than one test-bed.

2.6. CLOUD ENVIRONMENTS 27

Researchers need an experimental infrastructure which is extremely cus-
tomizable and controlled. For example, they cannot rely on cloud infrastructure
since the infrastructure is shared by different users, and they do not have con-
trol on the underlying layers of virtualization and, more importantly, they have
no control on the physical servers and networking layer. Actually, experiments
cannot be trustable in a shared and uncontrolled environment.

Test-beds are also the key components for reproducibility, since experiments
can run on a huge amount of different types of resources, and the results can be
affected by the different performances of the machines. Providing researchers a
public environment where they can run the experiments brings the possibility to
easily reproduce the results in different experiments. The researchers only need
to create scripts or pieces of software that automatically deploy the resources
they use for the experiment, and document these scripts with instructions to
follow in order to reproduce their experiments, and possibly retrieve similar
results.

2.6 Cloud Environments

Figure 2.14: Cloud models

Cloud computing is based on the on-demand delivery of compute, database
storage, networking capabilities, applications, and other IT resources through a
cloud services platform via the Internet with pay-as-you-go pricing. It heavily
relies on virtualization and network isolation technologies. Cloud computing
was popularized with Amazon, via its Elastic Compute Cloud service proposed
in 2006. There are a lot of reasons why cloud computing is going so popular. It
reduces the CAPEX for variable workloads. Instead of having to invest heavily
in datacenters and servers before knowing how to use them, the clients only pay
when they consume computing resources, and only for the quantity of resources
they consume. There are also benefits related to the massive economy of scale,

28 CHAPTER 2. BACKGROUND

since all the services that the cloud provider offers are usually on-demand. The
clients can stop guessing about the capacity needed, avoiding then to purchase
too much or too few resources, i.e., wasting money or facing downtime due to
infrastructure upgrade. The cloud can scale with their business needs, with no
long term contracts. The use of virtual infrastructure thus increases speed and
agility.

Cloud providers propose three different models for cloud computing (IaaS,
PaaS, SaaS) which will described later. They also provide a new type of design
called serverless architecture. It scales infinitely on demand. As the clients do
not have to spend money running and maintaining datacenters, their organiza-
tion can focus only on the problems to be solved, without having to manage the
infrastructure which is maintained and updated by the cloud provider.

The last aspect to take into account is the global scaling. A few years
ago, it was not possible for a small organization to provide a global service
immediately, since an infrastructure has to be setup around the world with
different datacenters, causing huge costs. With cloud computing, the clients can
easily deploy their applications in multiple regions around the world through a
few clicks. This allows the clients to provide low latency and a better experience
for their customers at minimal costs.

Cloud computing provides convenient, on demand access to a potentially
unlimited pool of computing resource. As mentioned previously, cloud providers
offer three service models (Fig. 2.14):

• On Premises: the user is responsible for maintaining the entire infras-
tructure, the user has to manage the physical servers and the network
(configuration and upgrade). The user is also responsible for designing
failure recovery strategies in case of server or network failures, and backup
of the data. All these management tasks have a huge cost, and if the user
has to scale the infrastructure globally around the world, the only way to
do it is to deploy new datacenters in the regions. For all these reasons,
companies should carefully consider cloud platforms.

• IaaS (Infrastructure as a Service): the user can manage the virtual or
physical servers inside the cloud provider infrastructure. As shown in the
figure, the cloud provider is responsible to manage the physical infrastruc-
ture, and to provide a virtualization layer isolating each user environment.
The provider is responsible to keep the data and execution of the virtual
instances from access of unauthorized users. The figure also shows that the
provider manages the physical servers and the network components of the
infrastructure. The provider is also responsible for the maintenance of the
OS and the hypervisor. The user has never access to the hypervisor layer,
since resources are shared between the users. The client is responsible
for all other layers in the application stack (e.g., Amazon EC2, Microsoft
Azure), i.e., the client has to maintain the guest OS and the applications
running on it. The user is also responsible of the security of the virtual
network and the management of the virtual firewall, as well as the keys to
access the instances.

2.6. CLOUD ENVIRONMENTS 29

• PaaS (Platform as a Service): the cloud provider takes care of all the
layers that manage the IaaS, and it is also responsible for the guest OS
and the platform hosting it (e.g., Google App Engine, GitHub). The client
just uses the platform without worrying about the resources and policies
needed to test its applications.

• SaaS (Software as a Service): the provider is responsible for the manage-
ment of all layers of the application stack. The client uses the application
on the application stack without any responsibility (e.g., in Google Docs).

There are also three types of cloud computing deployments:

• Public cloud: the cloud provider is public and everyone has access to its
services (e.g., Amazon Web Services, Microsoft Azure, Google Cloud).

• Hybrid cloud: the client can decide to deploy its infrastructure partly on
the public cloud, and partly on a private cloud.

• Private cloud: some big players in the market can decide to build their own
cloud infrastructure. There are different choices for this type of scenario,
e.g., using OpenStack or VMware solutions.

30 CHAPTER 2. BACKGROUND

Chapter 3

Distrinet

3.1 Introduction

Modern networks became so complex and implementation-dependent that it is
now impossible to solely rely on models or simulations to study them. On one
hand, models are particularly interesting to determine the limits of a system,
potentially at very large scale or to reason in an abstract way to conceive effi-
cient networks. On the other hand, simulations are pretty handy for studying
the general behavior of a network or for getting high confidence about the ap-
plicability of new concepts. However, these methods do not faithfully account
for implementation details. To this end, emulation is more and more used to
evaluate new networking ideas. The advantage of emulation is that the exact
same code as the production one can be used and tested in rather realistic cases
helping to understand fine-grained interactions between software and hardware.
However, emulation is not the reality and it often needs to deal with scalability
issues for large and resource-intensive experiments. As it relies on real software
that implements all the details of the system to emulate, all three methods are
used and complement each other.

When it comes to Software Defined Networking (SDN), Mininet [LHM10] is
by far the most popular emulator. The success of Mininet comes from its ability
to emulate potentially large networks on one machine, thanks to lightweight
virtualization techniques and a simple yet powerful API. Mininet was designed
to run on one single machine, which can be a limiting factor for experiments
with heavy memory or processing capacity needs. A solution to tackle this issue
is to distribute the emulation over multiple machines. However, Mininet single-
machine design assumes that all resources are shared and directly accessible from
each component of an experiment. Unfortunately, when multiple machines are
used to run an experiment, this assumption does not hold anymore and the way
Mininet is implemented has to be revised.

In this chapter, we present Distrinet [Di +19c], an extension of Mininet

implemented to allow distributed Mininet experiments for leveraging resources

31

32 CHAPTER 3. DISTRINET

of multiple machines when needed. Mininet is used by a large community
ranging from students to researchers and network professionals. This success
of Mininet comes from the simplicity of the tool. It can work directly on a
laptop and its installation is easy, its Python API is simple yet powerful, and
it can be used for complex scenarios with the same ease as for basic tests. The
challenge is to extend Mininet in such a way that these conditions still hold,
while being distributed over multiple machines. Distrinet allows applications
to run in isolated environments by using LXC to emulate virtual nodes and
switches, avoiding the burden of virtual machine hypervisors. Distrinet also
creates virtual links with bandwidth limits without any effort from the user.

Mininet and its associated API have proven to be the right tools for the
community. This is why Distrinet is a direct extension of Mininet, whose im-
plementation leverages the Mininet core in which experiments are defined with
the Mininet idiom (e.g., API or CLI) and are transparently deployed on several
machines when needed.

It is important to mention that Distrinet shares the same API as Mininet.
Mininet programs can thus be reused with minimal - or even without any -
changes in Distrinet, but with a higher degree of confidence on the results in
case of resource intensive experiments. Our main contributions to reach this
objective can be summarized as follows.

• Compatibility with Mininet. Mininet experiments are compatible with
Distrinet, either using the Mininet API (with additional parameters, e.g.,
the IPs of the physical machines to use or the name of the images to
deploy) or with the Mininet Command Line Interface (i.e., mn).

• Architecture. Distrinet is compatible with a large variety of infrastruc-
tures: it can be installed on a single computer, a Linux cluster, or the
Amazon EC2 cloud. Distrinet relies on prominent open-source projects
(e.g., Ansible and LXD) to set up the physical environment, manage ex-
periments, and guarantee isolation.

• Comparison with other tools. Comparisons with the main emulators
available for SDN/NFV networks, showing that our tool handles more
efficiently link bandwidth limitation which is a fundamental basic brick of
network emulation.

• Flexibility. Thanks to the usage of LXC (LinuX Containers), Distrinet
allows to run VNFs or generic containers on the emulated topology com-
posed of virtual switches and hosts. Each virtual node is properly isolated
(with a proper init or support for services, daemons, Syslog, etc.) with
LXC, so the user can treat them almost like a real Virtual Machine.

3.2 Related Work

One of the main problems, when it comes to testing new network protocols,
is to find the right environment that provides researchers good flexibility and

3.2. RELATED WORK 33

results which are as closest as possible to the outcome in real conditions. De-
pending on the situation, three different approaches can be used: simulation,
emulation or experimentation on test-beds. These approaches are complemen-
tary and, usually, several of them are required before the real deployment of a
new solution.

Emulation allows to test the performances of real applications over a virtual
network. A first frequently used tool to emulate networks is the Open vSwitch
(OVS) software switch [ovs20]. To build a virtual network, virtual switches
(vSwitches) can be connected with virtual interfaces, through GRE or VXLAN
tunnels. To emulate virtual hosts (vHosts), one can use containerization tools
(e.g., LXC [Can19] or Docker [Mer14]) or full virtualization tools (e.g., Vir-
tual Box [Wat08]). An example of general purpose testbed is FITS (Future
Internet Testbed with Security [Mor+14]), where the authors present the de-
sign and implementation of the facility for experimenting solutions for the next
generation Internet. FITS is build using Xen [Xen21] and OpenFlow [Sga+13].
In [Zha+19] the authors evaluate the performances of state-of-the-art software
switches: OVS-DPDK, snabb, BESS, FastClick, VPP and netmap VALE.

Graphical Network Simulator-3 (GNS3) [EA15] is a software emulating routers
and switches in order to create virtual networks with a GUI. It can be used to
emulate Cisco routers and supports a variety of virtualization tools such as
QEMU, KVM, and Virtual Box to emulate the vHosts.

Mininet [LHM10] is the most common Software Defined Networking (SDN)
emulator. It allows to emulate an SDN network composed of hundreds of vHosts
and vSwitches on a single host. Mininet is easy to use and its installation is
simple. As we show in Sec. 3.4, it is possible to create a network with dozens
of vSwitches and vHosts in just a few seconds. Mininet is very efficient to
emulate network topologies as long as the resources required for the experiments
do not exceed the ones that a single machine can offer. If physical resources are
exceeded, the results might be not aligned with the ones of a real scenario.

The tools closest to ours are Maxinet [Wet+14] and Mininet Cluster Edition

(Mininet CE[Pro19]). They allow to distribute Mininet on a cluster of nodes.
Maxinet creates different Mininet instances in each physical node of the cluster,
and connects the vSwitches between different physical hosts with GRE tunnels.
Mininet CE extends directly Mininet in order to distribute the vNodes and the
vLinks in a set of machines via GRE or SSH tunnels. Containernet [PKR16]
allows to extend Mininet to support Docker containers. By default, it is not
able to distribute the emulation on different nodes, but it is possible to combine
it with Maxinet or Mininet CE to support such an option and provide better
vNodes isolation. One of the main problems is that Maxinet and Containernet
do not consider the properties of the physical infrastructure (we will focus on
this limitation in the next chapter) in which they are running, e.g., a machine
or a link in the physical network may be overloaded during the emulation. With
Distrinet, we combine the concepts of Maxinet and Containernet to provide a
distributed Mininet implementation which takes into account the characteristics
of the logical and physical topologies.

While the Maxinet approach makes it possible to increase the scalability

34 CHAPTER 3. DISTRINET

Distrinet Mininet CE Maxinet
Mininet compatibility

Runnable with mn command 4 4 8
Mininet API 4 4 l

Tunneling technologies

VXLAN Tunnels 4 8 8
GRE Tunnels l 4 4

Emulation features

Unlimited vLink 4 4 4
Limited vLink (No tunneling) 4 l l
Limited vLink (Tunneling) 4 8 l
vNode isolation 4 l l
Automatic cloud provision 4 8 8

4=Yes, l=Partial, 8=No

Table 3.1: Supported features in the different tools for distributed emulation.

of Mininet and offers a speed-up in terms of virtual network creation time
for certain topologies, its main drawback is that it is not directly compatible
with Mininet. Moreover, even though it is straightforward to setup networks
with unlimited vLinks (i.e., vLinks without explicit bandwidth limit or delay),
Maxinet does not fully support limited vLinks (i.e., vLinks with explicit band-
width limits or delay). The Mininet CE approach offers a full compatibility
with Mininet, but like Maxinet, it has some limitations when it comes to em-
ulation of vLinks with limited bandwidth or delay. It is not possible to add
limitations on the vLink if it is connected between two vNodes in different
physical machines [Min16].

We believe that automatic cloud provision offered by Distrinet, its flexibility,
and its compatibility with Mininet give our tool an important added value as
Mininet is by far the most used tool to emulate SDN networks. Table 3.1
summarizes the main differences between the tools.

3.3 Distributed Mininet

Even though the general concepts and API of Mininet do not prevent exper-
iments from running on multiple machines, the Mininet implementation has
been thought and made to run on a single machine. However, in some circum-
stances, being able to run experiments on a set of machines would be helpful,
for example when the memory of one machine would not suffice to support the
whole experiment. With Distrinet, we extend the Mininet implementation to be
able to distribute network experiments over multiple hosts by using the Mininet
programmatic idioms, in order to remain fully compatible with Mininet.

Four key elements have to be considered in order to distribute Mininet

experiments over multiple hosts.

3.3. DISTRIBUTED MININET 35

First, emulated nodes must be isolated to ensure the correctness of the ex-
periments, even when the hosts supporting the experiments are heterogeneous.
To obtain these guarantees, virtualization techniques (full or container-based)
have to be employed. Similarly, traffic encapsulation is needed such that the
network of the experiment can run on any type of infrastructure.

To start and manage experiments, an experimentation control plane is nec-
essary. This control plane allows to manage all the emulated nodes and links of
the experiment, regardless of where they are physically hosted.

3.3.1 Multi-Host Mininet Implementation

In Mininet, network nodes are emulated as user-level processes isolated from
each other by means of light virtualization. More precisely, a network node in
Mininet is a shell subprocess spawned in a pseudo-tty and isolated from the rest
by the means of Linux cgroups and network namespaces. Interactions between
Mininet and the emulated nodes are then performed by writing bash commands
to the standard input of the subprocess, and reading the content at the standard
output and error of that process.
As Mininet runs on a single machine, every emulated node benefits from the
same software and hardware environments (i.e., the one from the experimental
hosts). This approach has proven to be adequate for single-machine experi-
ments but cannot be directly applied when experiments are distributed, as it
would push too much burden in preparing the different hosts involved in the
experiments. As a consequence, we kept the principle of running a shell process,
but instead of isolating it using cgroups and network namespaces, we isolated
it within an LXC container [Can19]. Ultimately, LXC realizes isolation in the
same way than using kernel cgroups and namespaces, but it provides an effective
tool suite to set up any desired software environment within the container just
by providing the desired image when launching the container. In this way, even
when the machines used to run an experiment are set up differently, as long
as they have LXC installed on them, it is possible to create identical software
environments for all the network nodes, regardless of the machine that actu-
ally hosts them. In Distrinet, to start a network node, we first launch an LXC
container and create a shell subprocess in that container. As Mininet runs on
a single machine, the experiment orchestrator and the actual emulated nodes
run on the same machine, which allows to directly read and write on the file
descriptors of the bash process of the network nodes to control them.
In Distrinet, we allow to separate the node where the experiment orchestra-
tion is performed from the hosts where the network nodes are hosted, meaning
that creating directly a process and interacting with its standard I/Os is not as
straightforward as in Mininet.
Indeed, Mininet uses the standard Popen Python class to create the bash pro-
cess at the basis of network nodes. Unfortunately, Popen is a low-level call in
Python that is limited to launching processes on the local machine. In our case,
we then have to rely on another mechanism. As we are dealing with remote
machines and want to minimize the required software on the hosts involved in

36 CHAPTER 3. DISTRINET

N1

Distrinet Client Distrinet Master

m
n

pr
oc

es
s N2

PTY 1

PTY 2
PIPE

PIPE

N1

PTY 1
OUT

IN

SS
HSSH

N2

PTY 1
OUT

IN

SSH
Jump

Distrinet Worker

OUT

IN

IN

OUT

C1

C2

Figure 3.1: Distrinet processes interaction.

experiments, we use SSH as a means to interact between the orchestrator and
the different hosts and network nodes. SSH is used to launch containers and
once the container is launched, we directly connect through SSH to the contain-
ers and create shell processes via SSH calls.
In parallel, we open pseudo-terminals (PTYs) locally on the experiment orches-
trator, one per network node, and attach the standard input and outputs of
the created remote processes to the local PTYs. As a result, the orchestrator
can interact with the virtual nodes in the very same way as Mininet does by
reading and writing in the file descriptors of the network nodes’ PTY.
This solution may look cumbersome and suboptimal, but it maximizes the
Mininet code reuse, and ultimately guarantees compatibility with Mininet.
Indeed, Mininet heavily relies on the possibility to read and write, via file de-
scriptors, the standard input and outputs of the shell processes emulating the
virtual nodes, and massively uses select and poll that are low-level Linux
calls for local files and processes. Therefore, providing the ability to have local
file descriptors for remote process standard input and outputs allowed us to
directly use Mininet code as the only change needed was in the creation of the
shell process (i.e., using an SSH process creation instead of Popen), with no
impact on the rest of the Mininet implementation.
Solutions that would not offer low-level Linux calls compatibility to interact
with the remote shell would cause to re-implement most of the Node classes of
Mininet.

In Mininet, network nodes and links are created sequentially. The sequen-
tial approach is not an issue in Mininet where interactions are virtually in-
stantaneous. However, a sequential approach is not appropriate in Distrinet,
since nodes are deployed from LXC images and because every interaction with
a node is subject to network delays. For this reason, in Distrinet, the node
deployment and setup calls are made concurrent with the Asynchronous I/O

3.3. DISTRIBUTED MININET 37

library of Python 3. However, as the compatibility with Mininet is a funda-
mental design choice, all calls are kept sequential by default and we added an
optional flag parameter to specify the execution to run in concurrent mode.
When the flag is set, the method launches the commands it is supposed to run
and returns without waiting for them to terminate. The programmer then has
to check if the command is actually finished when needed.
To this end, we have added a companion method to each method that has been
adapted to be potentially non blocking. The role of the companion method is to
block until the command calls made by the former are finished. This allows one
to start a batch of long lasting commands (e.g., startShell) at once, then wait
for all of them to finish. We have chosen to use this approach instead of relying
on callback functions or multi-thread operations in order to keep the structure
of the Mininet core implementation (Fig. 3.1).
To implement network links, Mininet uses virtual Ethernet interfaces and the
traffic is contained within the virtual links thanks to network namespaces. When
experiments are distributed, links may have to connect nodes located on different
hosts, hence an additional mechanism is required. In Distrinet, we implement
virtual links by using VXLAN tunnels (a prototype version with GRE tunnels
also exists). The choice of VXLAN is guided by the need of transporting L2
traffic over the virtual links. In particular, we cannot rely on the default connec-
tion option provided directly with LXD. Indeed, the latter uses either multicast
VXLAN tunnels or Fan networking [Can20] to interconnect containers hosted
on different machines. However, cloud platforms such as Amazon EC2 do not
allow the usage of multicast addresses and, in some scenarios, a single physical
machine may have to host hundreds of containers.
Fan networking maps the addresses of a small network address space (e.g., /16
network) with a larger one (e.g., /8 network) and uses unicast tunnels to inter-
connect the different machines, but it does not allow to choose the IP addresses
of the containers arbitrarily (the user cannot choose the IP of the virtual in-
terfaces in the emulated network). In Distrinet, each link is implemented with
a unicast VXLAN tunnel having its own virtual identifier. Also, since we are
compatible with Mininet, to limit the capacity of the links, we simply use the
Mininet implementation that relies on Linux Traffic Control (tc).
SSH is used to send commands and retrieve data from the network nodes in the
experiments, and each virtual node is reachable with an IP address. To do so,
a bridge, called admin bridge, is setup on every machine that hosts emulated
nodes. An interface, called admin interface, is also created on each node and
bridged to the admin bridge and is assigned a unique IP address picked up from
the same subnet. All these admin bridges are connected to the admin bridge of
the master node.
The machine running the script is then hooked with an SSH tunnel to the master
host, and can then directly access any machine connected to the admin bridge.
The general architecture of Distrinet is presented in Fig. 3.2. In Mininet, hosts
are emulated as user-level processes isolated from each other by making use of
the Linux cgroup and network namespaces. With Distrinet, we re-use the prin-
ciple of containerisation but implement it with LXC and LXD to simplify the

38 CHAPTER 3. DISTRINET

Figure 3.2: Distrinet general architec-
ture.

Figure 3.3: Amazon VPC configuration.

management of complex scenarios. Mininet heavily relies on the popen function
of Python to interact with the emulated nodes. In order to distribute Mininet,
we implemented a new class, RemotePopen, that implements the same interface
as the native Popen class of Python and extended the Node class of Mininet to
use our implementation instead of using the one from Python. RemotePopen

is implemented with SSH channels from the Paramiko library. To control em-
ulated nodes via SSH, a control network interconnecting all nodes is deployed.
Network links are emulated with virtual Ethernet when the two end points of
the link are deployed on the same machine. If the end points are deployed on
separate machines, then the connection is made over VxLAN. Link data rate
control is directly inherited from Mininet.

3.4 Distrinet Architecture

Distrinet provides an infrastructure provisioning mechanism that uses Ansible
to automatically install and configure LXD and SSH on each machine to be used
during the experiment.

If the experimental infrastructure is Amazon EC2, Distrinet first instantiates
a Virtual Private Cloud (VPC) configured as depicted in Fig. 3.3 in which the
virtual instances running the experiment will be deployed. A NAT gateway is
automatically created to provide Internet access to the Worker host. Access to
the Worker nodes from the experimenter machine is ensured by a Master node
acting as an SSH relay. The deployment on Amazon EC2 only requires an active

3.5. EXPERIMENTS 39

Amazon AWS account.
Distrinet environment (cloud or physical) includes the three following entities

(Fig. 3.2):

• Client : host in which the Distrinet script is running and decides where
to place the vNodes around the physical infrastructure (round-robin by
default). The Client must be able to connect via SSH to the Master host.

• Master : host that acts as a relay to interconnect the Client with all the
Worker hosts. It communicates with the Client and the different Workers
via SSH. Note that the Master can also be configured as a Worker.

• Worker(s): host(s) where all the vNodes (vSwitches and vHosts) are run-
ning. vNodes are managed by the Master and the Client, via the admin
network.

Distrinet can then automatically install the remaining requirements. In par-
ticular, it installs and configures LXD/LXC and OpenVSwitch in the Mas-
ter and Worker hosts. In the next step, Distrinet downloads two images: an
Ubuntu:18.04 image to emulate the vHosts, and a modified version of that image
with OVS installed in order to save time during the configuration process. A
default configuration setup is provided, but the user – by following the tutorial
we provide [Dis20] – can easily create a personalized image and distribute it in
the environment using Ansible from the Master Node. After the configuration
step, the user can start the emulation from the Distrinet Client.

3.5 Experiments

To evaluate Distrinet, we considered 3 types of experiments. The first one mea-
sures the overhead in term of execution time that the tools introduce to allow
the distribution of the emulations.
The second experiment compares the network capabilities of Mininet CE, Maxinet,
and Distrinet. The last experiment shows the behaviors of a resource in-
tensive emulation inside a single physical host and in a distributed environ-
ment. For the evaluation, we used Amazon Web Service (AWS) [Ama20e] and
Grid’5000 [Bal+13]. In Grid’5000, we used the Gros cluster where the hosts are
all equipped with one Intel Xeon Gold 5220 (18 multi-threaded cores per CPU
at 2.20 GHz, i.e., 36 vCores) and 96 GB of RAM.

3.5.1 Distrinet Core Performance Assessment

We first measure the overhead of distributing an experiment by timing the most
fundamental operations of the tool in Grid’5000 and compare it with the other
tools. The results are reported in Table 3.2. Mininet is running on a single host
while the others are running on two hosts. We observe that the creation of a
vNode or a vLink is much longer with Distrinet because it uses LXC containers
that are slower to start, but are more isolated. This implies that setting up

40 CHAPTER 3. DISTRINET

Mininet Distrinet Mininet CE Maxinet
Action

Link Creation 7.5± 0.19 ms 495± 18 ms 430± 840 ms 13± 0.3 ms
Link Deletion 48.4± 8.3 ms 495± 18 ms 40.4± 7.3 ms —
Node Creation 13.2± 0.1 ms 2.09± 0.04 s 329.9± 161.4 ms 108.4± 5.4 ms
Running a Command 3.45± 0.1 ms 4.8± 0.2 ms 3.35± 0.07 ms 1.19± 0.1 ms
Tunnel Creation — — — 184.8± 1.0ms

Topology Creation

Linear (n = 2) 0.368± 0.01 s 13.44± 0.25 s 4.09± 0.05 s 1.60± 0.06 s
Linear (n = 10) 1.412± 0.03 s 37.5± 0.55 s 9.7± 0.08 s 5.22± 0.26 s
Binary Tree (h = 4) 2.051± 0.05 s 54.9± 0.69 s 13.51± 0.28s 6.36± 0.08 s
Fat Tree (k = 4) 2.605± 0.04 s 73.72± 0.48 s 59.685± 1.23 s 8.40± 0.27 s

Table 3.2: Time overhead ± standard deviation over 10 experiments

an experiment with Distrinet is slower. As examples, we provide the time to
create different classic topologies with both tools. A Fat Tree 4 is built in 73.72 s
with Distrinet to be compared to around 2.6 s with Mininet. Mininet Cluster

Edition requires 59.68 s, while Maxinet requires around 8.4 s. This is because
the Link creation implementation in Distrinet and Mininet Cluster Edition

are similar, while in Maxinet, it is completely different. Maxinet first sets up
the virtual sub-networks in the different physical machines without tunneling.
After this step, it creates the tunnels between the vNodes placed in different
hosts. For this reason, in Maxinet, there are different lines for link creation and
tunnel creation, while in Mininet CE and Distrinet, the tunnel creation time is
included in the link creation.
In Mininet, as explained before, vNodes are light but are not completely isolated.
This can be problematic for some types of experiments. With our LXD/LXC
approach, the vNode creation is slower, but the container provides a better iso-
lation and the vNodes can be distributed.
The difference in setup time is significant with Maxinet, but for networks with
a higher density of links (e.g., FatTree k = 4), the gap between Distrinet and
Mininet CE is reduced. However, we believe that, for a large subset of exper-
iments (e.g., running a 24 hour trace), the setup time represents a negligible
part of the total experiment time. In any case, computation intensive experi-
ments – such as the one presented in Sec. 3.5.3 – cannot be performed with a
single physical machine. We thus believe that Distrinet is a useful tool in many
different use cases.

3.5.2 Tools Comparison

In this section, we compare Distrinet, Mininet, Mininet CE, and Maxinet net-
work capabilities. The experiments compare the maximum network throughput
measured with iperf (TCP traffic, for one minute) between the first and the

3.5. EXPERIMENTS 41

Single Host (Grid’5000) Multiple Hosts (Grid’5000) Amazon EC2

Topology Mininet Distrinet Mininet CE (SSH) Mininet CE (GRE) Maxinet Distrinet Distrinet

Linear 2 957.0± 0.0 957.0± 0.0 731.2± 14.6 955.0± 0.0 953.0± 1.9 957.0± 0.0 947.2± 5.5
Linear 10 957.0± 0.0 957.0± 0.0 640.7± 8.8 955.0± 0.0 897.3± 8.3 957.0± 0.0 947.2± 4.8
Linear 20 957.0± 0.0 956.9± 0.3 582.3± 14.5 955.0± 0.0 841.9± 21.8 957.0± 0.0 938.3± 4.3
Linear 50 957.0± 0.0 955.0± 2.2 391.0± 12.3 955.0± 0.0 641.3± 44.0 957.0± 0.0 916.4± 7.0
Star 10 957.0± 0.0 957.0± 0.0 729.1± 15.4 955.0± 0.0 927.6± 2.76 957.0± 0.0 946.4± 5.3

Table 3.3: Maximum throughput (in Mbps) ± standard deviation over 10 ex-
periments - the virtual links are bounded at 1 Gbps.

h1 h2

Ryu
Controller

s1 s2

Physical Host 1
(Master)

Physical Host 2
(Worker 1)

h3 h4

s3 s4

Admin
Net.

Admin
Net.

Admin
Net.

hn

sn

Physical Host x
(Worker x-1)

VxLan tunnel LXC container
vSwitch

Linux bridgePhysical machine

Internal link

Figure 3.4: Distrinet setup example

last hosts for different linear topologies. For the star topology, there is an iperf
connection between 5 pairs of hosts. Table 3.3 summarizes the results over 10
experiments for each virtual topology. The physical environment is composed
of one or two machines completely dedicated to the experiments in Grid’5000.
The vLink capacities are set to 1 Gbps. The second and the third columns
compare Mininet and Distrinet while running on a single machine. We can see
that the maximum throughput measured with iperf is very close between our
tool and Mininet. The next set of experiments compares Mininet CE, Maxinet,
and Distrinet while distributing the virtual network on two physical hosts - the
Maximum Transmission Unit (MTU) for the physical interfaces has been set at
1600 bytes to avoid fragmentation. To be fair in the comparison, the distribu-
tion of the virtual nodes is done using the Maxinet placement algorithm with
all the tools, since Maxinet is the only one that has restrictions on the place-
ment (i.e., Maxinet does not allow to place a vSwitch and a vHost on different
physical machines if they are connected through a vLink).
As mentioned in Sec. 3.1, Mininet CE does not support TCLinks for vLinks

42 CHAPTER 3. DISTRINET

connecting vNodes in different physical machines. Therefore, it is not possible
to limit the capacity of the virtual link between two physical hosts. In Ta-
ble 3.3, we observe that Mininet CE using SSH tunnels does not manage to run
at Mininet speed even for a simple topology such as Linear 2. The explanation
is that an SSH tunnel consumes lots of processing resources, which is confirmed
by the fact that Mininet CE obtains results comparable to the ones of Mininet
and Distrinet when lightweight GRE tunnels are used instead.
Maxinet obtains good results when the topology is not too large and when the
traffic is not passing through many switches (e.g., Linear 2 and Star 10). How-
ever, performances drop when topologies get larger. Distrinet results, obtained
in a distributed environment, are comparable to the ones of Mininet and Dis-
trinet on a single host. In the last column, we show Distrinet results on Amazon
AWS using two instances - the instance type is m5.8xlarge, with 32 vCPU and
128 GB of RAM [Ama20e]. As displayed in the table, the performances are
similar to the ones obtained in Grid’5000. The difference in terms of perfor-
mances can be explained by the additional virtualization layer needed on the
AWS instance and the network resources shared with other users’ instances in
the cloud.

3.5.3 Experiments With High Load

2 5 10 20 30 40 50 60 70 80 90 10
0
25
0
50
0
10
00

Linear Topology (N)

101

102

103

104

T
im

e
(s
)

0 %

0 %

400 %

C
P
U

o
ve

rc
o
m
m
it
m
en

t

Figure 3.5: Distrinet running in multiple hosts, placing 10 vHosts and 10
vSwitches on each physical host.

To observe the behavior of Distrinet under high load, we set up an exper-
iment running Hadoop Apache [Had20a]. We compare two sets of runs: one

3.5. EXPERIMENTS 43

2 5 10 20 30 40 50
10

00

Linear Topology (N)

101

102

103

104

T
im

e
(s

)

0 %

100 %

200 %

300 %

400 %

C
P

U
o

ve
rc

o
m

m
it

m
en

t

Figure 3.6: Distrinet running in a single host, with the CPU overcommitment
percentage for each topology.

set distributed between one and 100 physical machines, the second set running
different topologies on a single physical machine.

Distrinet Distributed Setup

Fig. 3.4 shows a simplified overview of the Distrinet setup. It is important
to distinguish between the Distrinet Master/Workers and the Hadoop Mas-
ter/Workers. Distrinet Master/Workers are the physical machines in which the
environment emulation is running, whereas Hadoop Master/Workers are the
virtual hosts created inside the physical machines. In the example of Fig. 3.4,
physical Host 1 is the Distrinet Master, while the other physical hosts are the
Distrinet Workers. Physical Host 1 deploys 2 virtual hosts: h1 (Hadoop Mas-
ter) and h2 (Hadoop Worker).
The remaining Hadoop Workers are virtualized inside the different Distrinet
Workers.

Distrinet Single Host Setup

The incomplete isolation of Mininet nodes prevents Hadoop from running prop-
erly. Hence, we use Distrinet in a single host, since the network performances
are very similar with respect to the Mininet’s ones (Tab. 3.3).

Experiments

The experiments consist in running a standard Hadoop benchmark function
(hadoop-mapreduce-examples.jar) [MVE14] in a virtual linear topology. π is
calculated using a quasi-Monte Carlo method. We used 400 maps and 400 sam-
ples for each map. Experiments are run for 2 to 1,000 Hadoop hosts. Execution
times of the experiments are reported in Fig. 3.5, and Fig. 3.6, each experiment
being repeated 10 times for each topology size.
The expected behavior is that the execution time decreases when Hadoop nodes
can be executed on an increasing pool of physical resources (cores and mem-
ory). Adding then Hadoop nodes should not change the execution time. We set
each vHost with 2 vCores and 6 GB of RAM, while a vSwitch requires 1 vCPU
and 3.5 GB of RAM. With these parameters, a single physical host is able to
virtualize without CPU overcommitment 10 vHosts and 10 vSwitches.
We call CPU overcommitment the estimation (in %) of how much CPU is as-
signed in excess to a physical node, i.e., if a physical machine has 36 cores and
the vNodes assigned in the machine require 54 vCores at full speed, the machine
has 50% overcommitment.
The behavior of the experiments using Distrinet with each host running 10
vHosts and 10 vSwitches (except for linear 2 and linear 5) is the one expected
from Hadoop (Fig. 3.5). The computation time decreases while the number of
vHosts increases, until adding new workers does not decrease anymore the com-
pletion time (in this case between 50 and 60 vHosts). When the linear topology
is composed of 1,000 vHosts, there is a slight increment in terms of the execu-
tion time, which probably depends on two factors: (i) the distance between the
Hadoop Master host and the last Hadoop Worker (the connection has to cross
1,000 vSwitches), (ii) and the large amount of Hadoop Workers that the single
Hadoop Master has to manage.
We observe that the behavior using a single machine is hardly predictable
(Fig. 3.6) when the resources in the single machine are not sufficient to sat-
isfy the requests of the virtual instances. For this reason, we need to distribute
the load of the emulation in different hosts.
Comparing Fig. 3.5 to Fig. 3.6, we can observe in the single host emulation
scenario that we obtain the same results as in the multiple hosts one when ex-
periments do not exceed the physical resources of the Host (until linear 10).
When the emulation requires additional resources, we can observe that the sin-
gle host emulation needs more time to complete the execution. The red line is
an estimation of the CPU overcommitment inside the physical host. Virtualiz-
ing the linear 50 network on a single host requires more time than for a linear
10 network. With linear 50, we experienced some abnormal behaviors in two
experiments (one run required 2,370 s and another one 14,797 s). This is due
to an increasing overcommitment of the physical machine.

44 CHAPTER 3. DISTRINET

3.6 Conclusions

To overcome the limitations of resource-intensive experiments being run on a
single machine, we proposed Distrinet that extends Mininet capabilities to make
it able to distribute experiments on an arbitrary number of hosts.
We have shown the cost to adapt an application designed to run on a single
machine to run in multiple hosts, while remaining compatible with it. Our im-
plementation is flexible and experiments can be run on a single Linux host, a
cluster of Linux hosts, or even in the Amazon EC2 cloud. Distrinet automati-
cally provisions hosts and launches Amazon instances such that experimenters
do not need to know the details of the infrastructure used for their experiment.
It is compatible with Mininet and its source code is available on https://

distrinet-emu.github.io. In the next chapter; we study how to correctly
distribute the emulation in a physical environment.

Chapter 4

Distributed Network
Emulation

4.1 Introduction

The complexity of networks has greatly increased in the last years. Networks
currently rely massively on software frameworks and virtualization, and their
performances become implementation dependent.
Using a single machine for a rapid emulation is thus limiting to handle resource
intensive experiments, e.g., needing heavy memory, processing, input/output,
or specific hardware to emulate, for instance, networks with virtual network
functions or artificial intelligence algorithms.
To tackle this issue, distributed emulation tools were proposed: Maxinet [Wet+14],
Mininet Cluster Edition [Pro19], Distrinet [Dis19; Di +19c]. These tools were
presented in the previous chapter. They allow to run experiments of various
types on a large number of machines with different hardware configurations. In
this chapter, we focus more specifically on the methodology used to distribute
the experiments with each tool.

Carrying distributed emulation rises several challenges. First, when facing
an experiment, is there a need to distribute it? In other words, how to know
if the experiment exceeds the capacity of a single node? Then, if yes, with
how many nodes and on which nodes should it be distributed? If it has to be
distributed onto m machines, how should the experiments be executed on these
machines?
Actually, a networking experiment can be seen as a virtual network or a graph
with node and link demands in terms of CPU, memory, network capacity, etc.
A fundamental problem that arises in this context is how to map virtual nodes
and links to a physical network topology, while minimizing a certain objective
function without exceeding the available resources.
Existing tools have placement modules answering partially these questions.
Mininet Cluster Edition implements three simple algorithms (Round Robin,

45

46 CHAPTER 4. DISTRIBUTED NETWORK EMULATION

Random, and Switch Bin [Pro19]), while Maxinet uses an algorithm from ME-

TIS [met20], a library for graphs partitioning. However, these placement meth-
ods have several important limitations.
Firstly, they do not take into account the nodes’ resources and the links’ capaci-
ties. This means that they do not verify if nodes or links capacities are exceeded.
Consequently, experiments may run with congested links and overloaded nodes,
leading to unreliable results.
Secondly, they do not minimize the number of machines required as they use
all machines at their disposal. This is especially important for public clusters,
where physical resources are shared, as policy rules might lead to a large waiting
time to obtain the needed resources.

To solve these limitations, we studied placement algorithms to map an ex-
periment onto a set of physical machines (e.g., in private test-beds or clusters).
The experimental infrastructure topology is taken into account. The goal is to
provide a mapping such that the physical resources of the nodes (i.e., processing
and memory) and links (i.e., capacity) are not exceeded. This is important to
ensure a trusty emulation. The combination of node and link constraints makes
finding a feasible solution a difficult task. Indeed, by using a small number of
physical nodes, we might exceed their physical resources, while by using too
many physical nodes, we may exceed the available rate of the physical links if
the virtual nodes are not placed correctly. Our objective consists in minimizing
the number of reserved machines to run an experiment, motivated by the fact
that scientific clusters such as Grid’5000 [Gri20] require to reserve a group of
machines before running an experiment [Vic+13] and an excess in these terms
may lead to usage policy violations, or to a large waiting time to obtain the
needed resources.
The problem can be seen as a variant of a Virtual Network Embedding (VNE)
problem. However, only exact methods based on linear programming were pro-
posed to deal with it in the literature, and such solutions do not scale well and
have long execution times for large networks which constitute our targets in this
work. This motivates the need for fast algorithms that can provide near optimal
solutions.

We propose new tailored placement algorithms and compare them with the
ones used in existing tools. We built a placement module for distributed emu-
lators to solve efficiently this problem in practice. This module first decides if
the experiment has to be distributed. Then, given a pool of available machines,
it computes the deployment using the minimum number of machines to run
the experiments in such a way that physical resources are not exceeded. The
placement module can be used with any emulator. However, to test it in the
wild, we integrated it in Distrinet. Through this approach, the experiment is
automatically distributed over several nodes using the optimal allocation.

To summarize, our contributions are as follows:

- We study placement algorithms to distribute an experiment onto the ma-
chines of a test-bed. We proposed several efficient algorithms to deal with
the problem.

4.2. RELATED WORK 47

- We build a placement module for distributed emulators with all the al-
gorithms implemented. The placement module can currently be used in
Distrinet, but the algorithms may potentially be integrated in any tool.

- We compare our algorithms with the ones implemented in existing tools
using extensive simulations. We show that they succeed in ensuring that
no link or node capacity is exceeded, while the same experiments running
with other tools would lead to resource overload.

- We then carry experimentation in a private cluster with the goal of eval-
uating the impact of such resource overload on the emulation. We show
that overloading a link, the CPU, or the memory may lead to respectively
important drops of measured bandwidth, the increase of execution time,
and emulation crashes.

The rest of this chapter is organized as follows. In Sec. 4.2, we review
the related works on placement methods to carry out distributed emulation.
We then formally state the problem and propose algorithms to deal with it in
Sec. 4.3. We evaluate the algorithms against existing placement modules with
extensive simulations in Sec. 4.4 and with experimentation in Sec. 4.5. Last, we
conclude and present future work on placement algorithms in Sec. 4.6.

4.2 Related Work

Placement For Distributed Emulations

Existing tools for distributed large-scale emulations adopt different strategies to
map the virtual topology to the physical one.

Mininet Cluster Edition provides three different placement algorithms [Pro19]:
- SwitchBinPlacer first distributes the virtual switches (vSwitches) (and the con-
trollers if some are assigned) around the infrastructure, such that each physical
host (also called server) has the same amount of vSwitches assigned. It then
places the virtual hosts (vHosts) on the server to which its connected vSwitches
are assigned.
- RoundRobinPlacer is the implementation of the classic RoundRobin algorithm
that assigns a vSwitch or a vHost, choosing each time the next physical host in
the list.
- RandomPlacer is the simplest placer: for each vHost or vSwitch to be assigned,
it chooses a random physical node.

Maxinet uses the Multilevel Recursive Bisectioning algorithm [KK98] to par-
tition the virtual switches and the virtual hosts into the physical machines. In
Maxinet, there is no notion of the physical infrastructure (hosts resources or
network topology). This means that the partition will not change if we deploy
the virtual network in different physical topologies (i.e., spanning tree, clique,
etc.). The virtual network, given as an input to the partitioning algorithm, does
not have notion of virtual CPU (vCPU) or virtual RAM (vRAM), i.e., a virtual
node (vNode) requiring 1 vCPU is treated like a vNode requiring 10 vCPUs.

48 CHAPTER 4. DISTRIBUTED NETWORK EMULATION

The partitioning algorithm is not directly implemented in Maxinet. Maxinet

uses METIS [met20], a set of tools for partitioning graphs. The goal of the al-
gorithm is to find a partitioning of the nodes such that the sum of the nodes
weights (e.g., workload) in each partition is balanced and the sum of all the
edges in the cuts are minimized.

During the emulation with Maxinet, three fundamental steps can be found:

• Network partition. Maxinet takes as input the virtual network and
uses Metis to partition it. In Maxinet, if a vHost and a vSwitch are
directly connected, they cannot run on different physical machines. For
this reason, the input graph representing the virtual network is reduced
as follows. Let’s assume that we want to emulate a tree topology with 7
switches and 4 hosts (Fig. 4.1). All the vSwitches are represented by a
node in the new graph with weight equal to 1, while the weight on the
edges represents the capacity of the link. If a vHost is directly connected
to a switch, we increase the weight of the node representing the vSwitch by
1. The input graph is the one in Fig. 4.2. The algorithm runs with Metis’

S7

S5

S1 S2

S6

S3 S4

vSwitch

vHost

H1 H2 H3 H4

20 20

10 10 10 10

Figure 4.1: Virtual topology

Multilevel Recursive Bisectioning. In the example (Fig. 4.3), Metis splits
the network in two different hosts. After the split, the initial network can
be easly reconstructed.

• Building Mininet networks. After the partitioning, Maxinet creates
a Mininet experiment on each physical node. The network to emulate on
each node is provided in the partition.

• Connecting the remote switches. After creating different Mininet
networks on all the nodes chosen by the partition, Maxinet connects the
vSwitches that have a link in the original topology via GRE tunnels.

4.2. RELATED WORK 49

7

5

1 2

6

3 4

20 20

10 10 10 10
2 2 2 2

1 1

1

Figure 4.2: Input

7

5

1 2

6

3 4

20 20

10 10 10 10
2 2 2 2

1 1

1

Host 0
Host 1

Figure 4.3: Output

In all these algorithms, the physical infrastructure is not taken into account.
This means that a physical link or a physical machine can be overloaded and
become a bottleneck for the emulation without the user being notified. In fact,
we show that the existing placement solutions behave well when the physical
infrastructure is an homogeneous environment. However, when the physical
environment is heterogeneous (different types of machines or a complex physical
network), they often return solutions with overloaded resources.

Moreover, the existing solutions do not evaluate the minimum number of
machines needed to run the experiment (and in particular if the experiment has
to be distributed). These solutions use all the machines put at their disposal
by the user. On the contrary, our placement module provides to the user the
smallest number of physical hosts in order to run the experiment without any
overloaded physical resource.

Virtual Network Embedding (VNE) Problem

The solution we propose is based on the investigation of a VNE problem. Such
problems have been widely studied in the literature. We refer to [Fis+13] for
a comprehensive survey of the existing works. Many different settings have
been considered. Minimization of the resource allocation cost [CRB09], of the
energy consumption [Bot+12], of the maximum load [CRB12] or revenue max-
imization [Yu+08] are just few examples. In our settings, we aim at finding a
mapping which uses the smallest number of substrate nodes. Thus, our objec-
tive can be seen as a variant of the energy-aware VNE problem in which we aim
to minimize the number of activated substrate nodes.
Exact solutions which provide optimal techniques to solve small instances have
been proposed (see, e.g., [Mel+11; Hou+11]). They are mainly based on exact
approaches such as Integer Linear Programming (ILP) and formulate the VNE
problem as virtual nodes and links mapping. These approaches are not suitable
in our use case, as runtime is a crucial factor and the delay in the embedding of a

50 CHAPTER 4. DISTRIBUTED NETWORK EMULATION

virtual request should be minimized. A heuristic approach to find an acceptable
solution in a short execution time is to be preferred. We thus propose heuristic
approaches able to provide near-optimal solutions in a reasonable computation
time. In addition, beyond the general case, we study specific settings often en-
countered when carrying out emulations in real cluster environments. They are
characterized by a homogeneous computing environment or by a spanning tree
routing protocol, and they have not been fully addressed in the literature.

4.3 Problem And Algorithms

When emulating large datacenter networks with hundreds or thousand of nodes,
it is necessary to distribute the emulation over multiple physical machines in
order not to overload the physical resources.

We study here the problem of mapping virtual nodes and links to a physical
network topology, while minimizing the number of used machines and without
exceeding the available physical resources (CPU core, memory, and link rate).
We first define formally the optimization problem which is considered. We then
propose algorithms to deal with it. In order to evaluate the performances of the
algorithms, we run numerical evaluations and compare their solutions with the
optimal one found using an ILP.

We consider several specific settings often found in real cluster environments:
homogeneous topology or physical network arranged as a tree.

4.3.1 Problem Statement

The VNE problem can be formally stated as follows.
Substrate Network. We are given a substrate network modeled as an undi-
rected multigraph GS = (NS , LS) where NS and LS refer to the set of nodes
and links, respectively. GS is a multigraph as there may be multiple links be-
tween a pair of nodes. Each node nS ∈ NS is associated with the CPU capacity
(expressed in terms of CPU cores) and memory capacity denoted by c(nS) and
m(cS), respectively. Also, each link eS(i, j) ∈ LS between two substrate nodes i
and j is associated with the bandwidth capacity value b(eS) denoting the total
amount of rate that can be supported.
Virtual Network Request. We use an undirected graph GV = (NV , LV) to
denote a virtual network, where NV is the set of virtual nodes and LV the set
of virtual links. Requirements on virtual nodes and virtual links are expressed
in terms of the attributes of the nodes (i.e., CPU cores c(nV) and memory
m(cV)) and links (i.e., the rate to be supported b(eV)) of the substrate network.
If there are no sufficient substrate resources available, the virtual network re-
quest should be rejected or postponed. When the virtual network expires, the
allocated substrate resources are released.

The problem consists in mapping the virtual network requests to the sub-
strate network, while respecting the resource constraints of the substrate net-
work. The problem can be decomposed into two major components: (1) node
assignment in which each virtual node is assigned to a substrate node, and (2)

4.3. PROBLEM AND ALGORITHMS 51

link assignment in which each virtual link is mapped to a substrate path.
The combination of node and link constraints makes the problem extremely
hard for finding a feasible solution. Indeed, if on one hand, by using a small
amount of substrate nodes, we may exceed physical resources capacities, such
as CPU and memory, on the other hand, by using too many nodes, we may
exceed the available rate of the substrate links. Rost et al. [RS18] show that
the problem of finding a feasible embedding is NP-complete, even for a single
request.

4.3.2 Algorithms

We propose three algorithms to tackle this problem. Our algorithms are able
to provide near-optimal solutions in a reasonable computation time. Solutions
are compared with the optimal ones computed using an ILP approach.

The first two algorithms, k-balanced and DivideSwap, have two phases.
Firstly, virtual nodes are mapped into the physical topology and, secondly,
physical paths are found to map virtual links. The third proposed algorithm,
GreedyPartition, mixes both nodes and links mapping.

Homogeneous Case

If the substrate nodes within the cluster are homogeneous in terms of physical
resources (or if there is a subset of homogeneous nodes from the entire cluster),
an assignment strategy may consist in carrying out a partition of the tasks
to be done by the physical machines while minimizing the network tasks that
would be necessary to be done. We refer to this algorithm as k-balanced.
Similarly as in [Gir+19], we use as a subroutine an algorithm for the k-balanced
partitioning problem. Given an edge-capacitated graph and an integer k ≥ 2,
the goal is to partition the graph vertices into k parts of equal size, so as to
minimize the total capacity of the cut edges (i.e., edges from different partitions).
The problem is NP-hard even for k = 2 [GJS74]. k-balanced solves a k-
partitioning problem for k = 1, . . . ,min(|NS |, |NV |), and tests the feasibility of
the computed mapping m : NV → NS of virtual nodes on the substrate network.
The smallest k for which a feasible k-partitioning exists will be the output of
the algorithm. The corresponding pseudo-code is given in Algorithm 1.
The best known approximation factor for the k-balanced partitioning problem
is due to Krauthgamer et al. [KNS09] and achieves an approximation factor
of O(

√
log n log k), with n being the number of nodes in the virtual network.

Nevertheless, as their algorithm is based on semi-definite programming and
would lead to long execution time, to deal with the problem, we use the O(log n)
approximation algorithm described in [ST97]. The main idea consists in solving
recursively a Minimum Bisection Problem. To this end, we use the Kernighan
and Lin heuristic [KL70].

52 CHAPTER 4. DISTRIBUTED NETWORK EMULATION

Algorithm 1 k-balanced

1: Input: Virtual network GV , Substrate network GS .
2: Output: a mapping of virtual nodes to substrate nodes m : NV → NS .
3: for k = 1, 2, . . . ,min(|NS |, |NV |) do
4: sol ← Compute an approximate solution of the k-balanced partitioning

problem for GV .
5: if sol is feasible (see Sec. 4.3.2) then return sol
6: end if
7: end for
8: return ∅

Algorithm 2 DivideSwap

1: Input: Virtual network GV , Substrate network GS .
2: Output: a mapping of virtual nodes to substrate nodes m : NV → NS .
3: for k = 1, 2, . . . ,min(|NS |, |NV |) do
4: Divide the nodes from NS in k balanced subsets V1, V2, ..., Vk.
5: Take a random sample of k physical nodes P1, P2, ..., Pk
6: Assign nodes in Vj to Pj for j = 1, ..., k.
7: for i = 1, 2, . . . , N SWAPS do
8: Choose at random two nodes u, v ∈ NV assigned to two distinct

physical nodes.

9: If by swapping u and v the cut weight decreases, swap them in sol
and update the cut weight

10: end for
11: if sol is feasible (see Sec. 4.3.2) then return sol.
12: end if
13: end for
14: return ∅

k-balanced has theoretical guarantees of efficiency for its node mapping
phase, but only when the number of parts takes some specific values (powers
of 2). Indeed, the procedure is based on merging two small partitions until
the number of partitions is greater than the desired one (e.g., if k = 3 and
the algorithm computes 4 partitions, then the result is unbalanced as 2 will be
merged).

We thus propose a new algorithm, DivideSwap, efficient for any value of k.
The global idea of DivideSwap is to first build an arbitrary balanced partition
dividing randomly the nodes in balanced sets, and then swapping pairs of nodes
to reduce the cut weight (or required rate for the communications). Its pseudo-
code is given in Algorithm 2.

4.3. PROBLEM AND ALGORITHMS 53

Algorithm 3 GreedyPartition

1: Input: Virtual network GV , Substrate network GS .
2: Output: a mapping of virtual nodes to substrate nodes m : NV → NS .
3: T ← Compute a bisection tree of GV .
4: for j = 1, 2, . . . , |NS | do
5: Select the j most powerful machines, P1, . . . , Pj
6: Perform a BFS on the bisection tree T .
7: for each Node v of T do
8: if ∃ P ∈ P1, . . . , Pj with enough resource to host the

virtual nodes in v then
9: v is assigned to P

10: Remove v and the subtree rooted at v from T
11: end if
12: end for
13: if T is empty then return sol
14: end if
15: end for
16: return ∅

General Case

When the substrate nodes are associated with different combinations of
CPU, memory, and networking resources, k-balanced and DivideSwap may
have difficulties in finding a good assignment of virtual nodes to substrate nodes
which respects the different capacities. To prevent this, we define a general pro-
cedure referred to as GreedyPartition. Again, we first build a bisection tree.
We compute it by recursively applying the Kernighan-Lin bisection algorithm
(see the discussion above on bisection algorithm). We then test the use of an
increasing number of physical machines, from 1 to N . We take the j most pow-
erful ones, with powerful defined as a combination of CPU and memory. Next,
we perform a Breadth First Search (BFS) visit on the bisection tree. For each
considered node, we find a physical node such that the resources are enough
and the communication can be performed considering the already placed vir-
tual nodes. If the conditions hold for a node, then this node is removed from
the tree with all its subtrees. If not, we consider the next node of the bisection
tree. If, at any point, the tree is empty, we return the solution.

Link Mapping

DivideSwap and k-balanced are based on the assignment of virtual nodes
into physical nodes, then the feasibility checking of the problem by trying to
allocate all virtual links between virtual nodes assigned in two different substrate
nodes to a substrate path. This problem is solved differently according to the
structure of the physical substrate network.

54 CHAPTER 4. DISTRIBUTED NETWORK EMULATION

Tree Topologies

Even if the substrate network is assumed to be a tree, there are still decisions
to be made in terms of how the network interfaces of a substrate compute node
should be used by the virtual nodes. Indeed, if we allow the traffic associated to
a single virtual link to be sent using more than one network interface (e.g., 50%
on eth0 and 50% on eth1), then multiple links between a compute node and a
switch can be considered as a single link with an associated rate which corre-
sponds to the sum of rates on all the node network interfaces. As a consequence,
once the mapping between virtual and substrate nodes has been selected, check-
ing if a substrate compute node has enough resources on its interfaces to send or
receive a given set of rates can be done exactly in polynomial time with a BFS or
Depth First Search (DFS) visit in time O(|NS |+ |LS |), as there exists only one
path between each source and destination pair. Conversely, if the virtual link
rate to be supported can be mapped on only a single network interface, then the
situation can be reduced to the Bin Packing Problem and is thus NP-hard. To
deal with it, we use the First-fit decreasing heuristic which has been shown to
be 11

9 -approximated for this problem [Joh+74] (i.e., it guarantees an allocation
using at most 11

9 OPT + 1 bins, with OPT being the optimal number of bins).

General Topologies

In this case, we also need to distinguish two situations according to the desired
strategy for mapping a virtual link of the virtual network to a physical path in
the substrate network. If path splitting is supported by the substrate network,
then the problem can be solved in polynomial time by using a multi-commodity
flow algorithm [Yu+08]. On the other hand, if path splitting is not supported,
then the situation can be reduced to the Unsplittable Flow Problem, which is
NP-hard [KS97]. In such case, we use the following approach. We consider
the virtual links in non-increasing order. Given the remaining capacities, we
find the shortest path in the residual network in which we remove all links with
an available rate smaller than the rate to be mapped. If we succeed to find a
physical path for all the virtual links to be mapped (i.e., between nodes assigned
to distinct physical machines), then the problem is considered feasible.

ILP Approach

As previously mentioned, we compare our approximation algorithms with the
optimal solution computed using an ILP approach. The goal of the ILP is to
minimize the number of host used for the mapping. We already defined with
GV = (NV , EV) and GS = (NS , ES) the virtual network and the substrate
(physical) network. The tuple (u, v) ∈ EV , represents the virtual link between
u, v ∈ NV ; while (i, j, d) ∈ ES represents the physical link between i, j ∈ NS

via the device d. We define with cj and mj the virtual cores and the memory
required by the virtual node j ∈ NV ; while Ci and Mi represent the maximum

4.3. PROBLEM AND ALGORITHMS 55

cores and memory available in the physical node i ∈ NS . For the links, ruv
represents the bandwidth required by the virtual link (u, v) ∈ EV , while Rijd
represents the maximum bandwidth for the physical link (i, j, d) ∈ ES . We
indicate with δ(i) the set of neighbours of the node i ∈ NV and with α(i, j) the
set of devices for the tuple (i, j) with i, j ∈ NS .
Variables:

• xi ∈ {0, 1}: boolean variable equal to 1 iff there is at least one virtual
node assigned to the physical node i ∈ NS , 0 otherwise

• yji ∈ {0, 1}: boolean variable equal to 1 iff the virtual node j ∈ NV is
assigned to the physical node i ∈ NS , 0 otherwise

• luvijd ∈ {0, 1}: boolean variable equal to 1 if the physical link (i, j, d) ∈ ES
is used by the virtual link (u, v) ∈ EV , 0 otherwise

Objective (4.1): minimization of the physical nodes needed in order to embed
the virtual network.

min
∑
i∈NS

xi (4.1)

A machine is used if at least a virtual node is mapped on it (4.2)

xi ≥ yji ∀i ∈ NS , ∀j ∈ NV (4.2)

Assignment of virtual nodes to physical nodes (4.3)∑
i∈NS

yji = 1 ∀j ∈ NV (4.3)

Cpu (4.4) and memory (4.5) limit constraints:∑
j∈NV

cj ∗ yji ≤ Ci ∀i ∈ NS (4.4)

∑
j∈NV

mj ∗ yji ≤Mi ∀i ∈ NS (4.5)

Bandwidth conservation constraints 4.6:∑
j∈δ(i)

∑
d∈α(i,j)

(luvijd − luvjid) = yui − yvi ∀(u, v) ∈ EV , ∀i ∈ NS (4.6)

Link capacity constraints (4.7):∑
(u,v)∈EV

(ruv ∗ luvijd + ruv ∗ luvjid) ≤ Rijd ∀(i, j, d) ∈ ES (4.7)

Given a virtual link a physical machine, the rate that goes out from the physical
machine to a device (4.8) or that comes in to the physical machine from a device
(4.9) is at most 1 :∑

j∈δ(i)

∑
d∈α(i,j)

luvijd ≤ 1 ∀(u, v) ∈ EV , ∀i ∈ NS (4.8)

56 CHAPTER 4. DISTRIBUTED NETWORK EMULATION

∑
j∈δ(i)

∑
d∈α(i,j)

luvjid ≤ 1 ∀(u, v) ∈ EV , ∀i ∈ NS (4.9)

A link can be used only in a direction (4.10):

luvijd + luvjid ≤ 1 ∀(u, v) ∈ EV , ∀(i, j, d) ∈ ES (4.10)

4.3.3 Numerical Evaluation

The experiment consists in mapping datacenter servers interconnected by a K-
Fat Tree onto the Nancy node of the academic cluster Grid’5000 [Gri20]. Each
logical switch and server require 2 cores and 8 GB of memory, and each server
is sending 0.2 Gbps of traffic. The physical nodes are machines with 32 cores
and 132 GB of RAM. The physical links are Ethernet links of capacity 10 Gbps.
The goal is to minimize the number of machines of the cluster used for the
experiment for different datacenter sizes. In Fig. 4.4, we compare the solutions
given by three heuristics with the ones computed using an ILP approach (with
a running time limit set to 2 minutes).

The experiments are run on an Intel Core i5 2.9 GHz with 16 GB of memory.
For the ILP approach, we use CPLEX 12.8 as a solver. When the time limit
is reached, we report the best solution found so far. First, we verify that our
solutions map a Fat Tree with K=2 onto a single machine as the requirements
in terms of cores and memory are low enough. However, this is no longer the
case for 4-Fat Trees and larger topologies. Second, we see that the best pro-
posed algorithms, DivideSwap and GreedyPartition, can compute optimal
or near-optimal solutions within a few seconds, showing that they can be used
for fast experimental deployment.

We see that DivideSwap and GreedyPartition distribute the experiment
very efficiently for large Fat Trees. Indeed, they obtain solutions using the same
number of machines as the ILP when it gives optimal solutions (Fat Trees with
K ≤ 8). The ILP does not succeed to find efficient solutions for Fat Trees with
K=10 and K=12 in less than 2 minutes, while our algorithms succeed. For
the 10-Fat Tree, our algorithms return a solution using 16 physical machines
(when the solution of the ILP is using 50). Note that it corresponds to a case
(powers of 2) for which k-balanced is guaranteed to use near optimal par-
titions of the experiment graph. This confirms the efficiency of DivideSwap
and GreedyPartition which obtain the same result in this case. While our
algorithms are fast and can map large Fat Trees in few seconds, DivideSwap
is the fastest. However, GreedyPartition better handles more complex sce-
narios as it is shown in the next sections. To sum up, we see that the best
proposed algorithms, DivideSwap and GreedyPartition, can compute opti-
mal or near-optimal solutions within a few seconds, showing they can be used
for fast experimental deployment.

4.4. EVALUATION OF THE PLACEMENT MODULES 57

(a) Number of hosts.

(b) Time

Figure 4.4: Performances of the heuristics and ILP solver for a K-Fat Tree -
value of the solution found (a) and time needed to find the solution (b).

4.4 Evaluation Of The Placement Modules

In this section, we compare our placement algorithms with the ones used by
Mininet Cluster Edition and Maxinet. In order to make the comparison as
meaningful as possible and to understand the advantages and disadvantages of
each algorithm, we considered different scenarios with homogeneous or heteroge-

58 CHAPTER 4. DISTRIBUTED NETWORK EMULATION

1 Gbps

10 Gbps

40 Gbps

10 Gbps1 Gbps

10 Gbps

40 Gbps

10 Gbps

Parapide
[1-2]

Parapluie
[1-8]

Parasilo
[1-5]

Paravance
[1-5]

Paravance
[41-45]

Parapide: 8 vCpu 24GB RAM
Parapluie: 24 vCpu 48GB RAM
Paravance: 32 vCpu 128GB RAM
Parasilo: 32 vCpu 128GB RAM

Figure 4.5: Rennes topology cluster

neous virtual and physical topologies. Scenarios with homogeneous virtual and
physical infrastructures are the most favorable for simple placement algorithms.
Scenarios with homogeneous physical infrastructures should be the most favor-
able ones for the placement modules of the existing tools, as they do not take
into account the physical infrastructure. We show that our algorithms outper-
form them even in this scenario. The heterogeneous scenario represents a more
complex case to show the importance of taking into consideration the capacities
of the physical infrastructure.

Physical Topologies

The first one is a simple star topology corresponding to the one of the Gros clus-
ter in Grid’5000 [Bal+13]. We use 20 physical machines, each equipped with an
Intel Gold 5220 (Cascade Lake-SP, 2.20 GHz, 1 CPU/node, 18 cores/CPU) and
96 GB of RAM. The machines are connected by a single switch with 25 Gbps
links. The second is represented in Fig. 4.5: this infrastructure is made of a
subset of 25 hosts of the Rennes cluster in Grid’5000. There are four types of
servers with different numbers of cores and memory sizes: Parapide (2 servers
with 8 cores and 24 GB of RAM); Parapluie (8 servers with 24 cores and 48 GB
of RAM); Parasilo (5 servers with 32 cores and 128 GB of RAM); Paravence
(10 servers with 32 cores and 128 GB of RAM) for a total of 25 machines. The
servers are interconnected using a small network with 4 switches and links with
capacities of 1 , 10 or 40 Gbps.

4.4. EVALUATION OF THE PLACEMENT MODULES 59

Virtual Topologies

We use two different families of virtual topologies: Fat Trees and Random. We
choose the first one as it is a traditional family of datacenter topologies: this
corresponds to the homogeneous scenario. Indeed, Fat Trees present symmetries
and all servers are usually similar.

Algorithm GreedyP k-balanced DivideSwap Metis Random RoundRobin SwitchBin Intersection
Cluster vTopo

Gros vFT 100.0% 91.72% 97.76% 85.02% 72.01% 98.81% 83.18% 68.59%

vRD 100.0% 83.31% 96.64% 58.31% 52.64% 93.15% 37.86% 32.09%

Rennes vFT 100.0% 83.90% 92.09% 65.81% 43.22% 68.36% 44.49% 34.18%

vRD 99.98% 73.51% 74.41% 32.75% 20.37% 34.67% 28.40% 11.47%

Table 4.1: Percentage of solutions found using different algorithms, virtual
topologies, and different clusters.

Fat Trees. We test Fat Trees with different parameters:

- K : number of ports included in each switch (2, 4, 6, 8 or 10);

- Number of CPU cores : number of virtual cores to assign to each vSwitch
or vHost (1, 2, 4, 6, 8 or 10);

- Memory : amount of RAM required by each vSwitch or vHost (100, 1,000,
2,000, 4,000, 8,000 or 16,000 MB);

- Links’ rates : rate associated to each virtual link (1, 10, 50, 100, 200, 500
or 1,000 Mbps).

This corresponds to 3,074 different Fat-Tree networks.

Random Topologies. We use a generator of random topologies which takes as
input the number of vSwitches and the link density between them. Half of the
vSwitches are chosen to be the core network (meaning that no host is attached
to them). The other half are the edge switches (vHosts are connected to them).
The generator then chooses a random graph to connect the vSwitches, making
sure that all of them are connected. The random graph is obtained by generating
Erdös-Renyi graphs using the classical networkx Python library till we obtain
a connected one that can be used as vNetwork. After setting up the switch
topology, a vHost is connected to a single edge switch selected uniformly at
random. The capacity of the vLinks (1, 10, 50, 100, or 200 Mbps), the number
of virtual cores (vCores) (1, 2, 3, 4, 5, 6, 7, or 8) and the RAM (1,000, 2,000,
4,000, 6,000, 8,000, or 16,000 MB) required for each vNode are then selected
uniformly at random. For our experiments, for each pair (N, Density) with
N ∈ (10, 15, 20, 25, 30, 35, 40, 45, 50) and with density ∈ (0.1, 0.2, 0.3, 0.4,
0.5), we generated 100 random networks.

A fundamental difference between the two families of networks is that, while
for Fat Trees all the virtual networks have homogeneous resource requirements
(i.e., all nodes and links have the same physical requirements among them), for

60 CHAPTER 4. DISTRIBUTED NETWORK EMULATION

Random Networks the requirements associated to the virtual nodes and virtual
links may be different.

In this section, we extensively study the performances of the different place-
ment algorithms. To this end, we considered more than 70,000 test instances,
corresponding to the mapping of each generated virtual topology on the two
physical topologies presented above.

While the existing placement algorithms always return solutions as they do
not take into account node and link capacities constraints, it is not the case
of our algorithms, as they make sure that resources are not overloaded. To
assess the impact of such a difference, we first analyze the cases where feasible
solutions are found. We then study the cases where physical constraints are not
respected. Finally, we discuss how the algorithmic choices are translated in the
number of physical hosts needed to run the experiments.

Finding A Feasible Solution

When comparing the results of the placement algorithms, we only consider the
virtual instances for which at least one of them was able to find a feasible solu-
tion. In total, we report the experiments made for more than 5,000 instances.

Table 4.1 shows the percentage of instances solved by each algorithm (over
the set of feasible instances). We provide the percentage for each family of
virtual topologies: vFT (virtual Fat Tree) and vRD (virtual Random) topolo-
gies. For each family of virtual topologies, the tests have been performed on
both physical topologies. In particular, the number of feasible solutions ana-
lyzed are 761 for Gros vFT (Homogeneous-Homogeneous), 4,500 for Gros vRD
(Homogeneous-Heterogeneous), 708 for Rennes vFT (Heterogeneous-Homogeneous),
and 4,436 Rennes vRD (Heterogeneous-Heterogeneous). We indicate in the last
column of the table (Intersection) the percentage of virtual instances for
which all algorithms return a feasible solution. First, we observe that a large
number of instances cannot be solved by all the algorithms. Second, the re-
sults confirm that heterogeneous (whether virtual or physical) topologies are a
lot harder to solve (in particular for the algorithms of the existing tools). Note
that only 11.7% of the vRD were solved by all algorithms on the Rennes cluster.

Two of the proposed algorithms reach the higher success ratio in terms of
number of solved instances. In particular, GreedyPartition succeeds to find
a feasible solution for almost all the feasible virtual networks when mapped to
the Gros cluster, and vFT when mapped to the Rennes cluster, while it finds
a feasible solution for 99.98% of the instances in the vRD case. The second
best algorithm is DivideSwap which solved more than 90% of the instances in
the Gros cluster and in the Rennes Cluster for the vFT topology. Note that
k-balanced has a lower percentage (76.7%). This is expected as this algorithm
is efficient when the solution is mapped on specific numbers of physical hosts
(powers of 2), a case for which it has some theoretical guarantees. But it is
behaving as well for other values.

Then, the algorithm used by Maxinet (METIS) finds 85.02% of the solutions
for Gros vFT. As expected, the algorithm drastically changes its performances

4.4. EVALUATION OF THE PLACEMENT MODULES 61

M
et
is

R
an
do
m

R
ou
n
dR

ob
in

S
w
it
ch
B
in

100

101

102

103

104

0.17% 0.82% 0.17% 0.17%
Percentage of instances with overcommitment

Links % Link overcommitment

Figure 4.6: Gros link overcommitment

when the physical environment is non heterogeneous (i.e., Rennes vFT), or
when the network to emulate has different vNodes requirements or vLinks re-
quirements (i.e., virtualizing a random network in Gros). The worst scenario
that we have with METIS is in the case of homogeneous infrastructure virtual-
izing a random topology (i.e., Rennes vRD) where only 32.75% of the returned
solutions are feasible. We tested the 3 other algorithms that are directly im-
plemented in Mininet Cluster Edition. Random solves 72% of the instances
in Gros vFT, while the performances drop drastically in the homogeneous case
and when virtualizing a random topology. The same behavior can be observed
for Round Robin and Switch Bin.

Analysis of Solutions not Respecting Capacities.

Even though the existing algorithms do not always succeed to find solutions
respecting the physical capacity constraints, they still return solutions. Here,

62 CHAPTER 4. DISTRIBUTED NETWORK EMULATION

M
et
is

R
an
do
m

R
ou
n
dR
ob
in

S
w
it
ch
B
in

100

101

102

103

104

37.26% 43.53% 5.85% 54.99%
Percentage of instances with overcommitment

Hosts % CPU overcommitment

Figure 4.7: Gros CPU overcommitment

we study how severely overloaded links and nodes can belong to the computed
solutions.

Figs. 4.6–4.11 take into account the virtual instances for which an overloaded
solution is returned (in terms of CPU, memory, or link overcommitment) for all
the Mininet Cluster and Maxinet algorithms, using the different clusters.

The overcommitment is the estimation (in %) of how much the CPU, mem-
ory, or bandwidth is assigned in excess to a physical node or a physical link.
From the percentages in the plots, we can observe a strong difference in terms
of feasible solutions returned for the two different clusters.

If we focus our attention on the link overcommitment (Figs. 4.6 and 4.9), we
can observe that less than 1% of the returned solutions lead to links overloaded
in the Gros cluster. This is expected as the physical topology is a simple star.
Conversely, in the Rennes cluster, a high percentage of the solutions lead to
links overloaded: from 21.7% for Metis to almost 70% for Random, and 51%
and 57% for SwitchBin and RoundRobin, respectively. Moreover, for such
instances, the overcommitment is important: 4 or 5 links are 100% overloaded in

4.4. EVALUATION OF THE PLACEMENT MODULES 63

M
et
is

R
an
do
m

R
ou
n
dR
ob
in

S
w
it
ch
B
in

100

101

102

103

104

0.57% 1.48% 0.00% 2.55%
Percentage of instances with overcommitment

Hosts % Memory overcommitment

Figure 4.8: Gros memory overcommitment

average for Random, SwitchBin, and RoundRobin. The overload factor may
reach several hundred percents and even more than 1,000% for some instances
with Random. The overcommitment is lower for Metis, the median case being
2 links with a 40% overload. The explanation of this better behavior of the
latter algorithm is that it is using a partitioning graph algorithm minimizing
the cuts between partitions placed in different machines.

Considering now CPU overcommitment (Figs. 4.7 and 4.10), we see that it is
frequent, both for the Gros and Rennes clusters. RoundRobin is the algorithm
handling the best CPU resources: only 5.85% of its returned solutions are over-
loaded compared to 35%, 43%, and 55% for Metis, Random, and SwitchBin,
respectively. The explanation is that RoundRobin tries to distribute the load
evenly to the physical hosts. In Rennes, Metis behaves a little bit better than
Random and SwitchBin with fewer overloaded nodes. Memory overcommit-
ment rarely happens in Gros (see Figs. 4.8 and 4.11). In Rennes, from 18% to
35% of the instances are overloaded. Metis is the best algorithm in this case.
Focusing on Metis, we can see that it returns a solution with more link overload-

64 CHAPTER 4. DISTRIBUTED NETWORK EMULATION

M
et
is

R
an
do
m

R
ou
n
dR
ob
in

S
w
it
ch
B
in

100

101

102

103

104

21.87% 69.58% 58.53% 51.26%
Percentage of instances with overcommitment

Links % Link overcommitment

Figure 4.9: Rennes link overcommitment

ing when the physical infrastructure is heterogeneous (Rennes cluster), whereas
there are not significant differences for the CPU and memory overcommitment.
For the algorithms returned by the Mininet Cluster edition algorithms, there
are not significant differences in the different physical infrastructures.

Number of Needed Physical Hosts

An important additional advantage of the algorithms we propose is that they
minimize the number of physical hosts needed to emulate the experiments. This
helps reducing the use of test-bed resources and even making feasible some large
experiments that would not be able to run without optimizing hardware usage,
as we show below.

We report in Figs. 4.12 and 4.13 the distributions of the number of hosts used
by the algorithms over all the virtual topologies for which all algorithms found a
feasible solution (Intersection subset). Note that this subset of experiments

4.4. EVALUATION OF THE PLACEMENT MODULES 65

M
et
is

R
an
do
m

R
ou
n
dR
ob
in

S
w
it
ch
B
in

100

101

102

103

104

54.43% 54.69% 26.28% 58.13%
Percentage of instances with overcommitment

Hosts % CPU overcommitment

Figure 4.10: Rennes CPU overcommitment

does not contain many large topologies, as the less efficient placement algorithms
were not able to find solutions for them.

As expected, the proposed algorithms use much fewer physical hosts. For
the Gros cluster (Fig. 4.12), the general tendency is that GreedyPartition
uses between 1 and 13 hosts (median is 3) in case it is emulating a vFT, and
between 2 and 11 hosts (median is 5) in case it emulates a vRD. METIS uses a
minimum of 4 instances with a maximum of 20 instances (medians are 4 and
12). Round Robin (medians are 13 and 14), Random (medians are 7 and 20),
and Switch Bin (medians are 5 and 15) use in general more hosts than Metis.

The differences are even more important for the heterogeneous topology,
Rennes, especially in terms of maximum number of hosts used (Fig. 4.13). The
numbers of hosts used by our algorithms are in general lower (e.g., between 1 and
7 hosts for GreedyPartition), while the ones for the existing algorithms are
higher (e.g., between 4 and 24 hosts for METIS, and between 7 and 26 for Round
Robin). Indeed, the same virtual topology is harder to solve on a heterogeneous
physical topology than on a homogeneous one. So, the set of topologies for which

66 CHAPTER 4. DISTRIBUTED NETWORK EMULATION

M
et
is

R
an
do
m

R
ou
n
dR
ob
in

S
w
it
ch
B
in

100

101

102

103

104

18.22% 39.04% 26.03% 27.95%
Percentage of instances with overcommitment

Hosts % Memory overcommitment

Figure 4.11: Rennes memory overcommitment

all algorithms find a solution is smaller for the Rennes topology and contains
smaller virtual topologies on average. Our algorithms thus find solutions using
a lower number of hosts, while other algorithms have difficulty to map them
efficiently on the heterogeneous physical topology. Again, GreedyPartition
is the best algorithm in terms of resource usage.

Limiting The Number Of Physical Hosts

The algorithms adopted by Maxinet and Mininet Cluster Edition do not
optimize the number of physical hosts, but tend to use all the available hosts.
However, the fact that they are using more hosts does not mean that they would
not be able to use fewer of them. To check this, we carried out another study.
We first computed the minimum number of hosts needed to run the experiment
(as given by GreedyPartition). We then put this number of hosts at the
disposal of the algorithms used by Maxinet and Mininet Cluster Edition.
We check (i) if the algorithm finds a solution and (ii) if this solution overloads

4.4. EVALUATION OF THE PLACEMENT MODULES 67

G
re
ed
yP

K
ba
la
n
ce
d

D
iv
id
eS
w
ap

M
et
is

R
an
do
m

R
ou
n
dR
ob
in

S
w
it
ch
B
in

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

N
u

m
b

er
o

f
p

h
ys

ic
a

l
h

o
st

s

vFatTree vRandom

Figure 4.12: Number of physical hosts used by the placement algorithms -
homogeneous Gros cluster.

G
re
ed
yP

K
ba
la
n
ce
d

D
iv
id
eS
w
ap

M
et
is

R
an
do
m

R
ou
n
dR
ob
in

S
w
it
ch
B
in

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

N
u

m
b

er
o

f
p

h
ys

ic
a

l
h

o
st

s

vFatTree vRandom

Figure 4.13: Number of physical hosts used by the placement algorithms -
heterogeneous Rennes cluster.

68 CHAPTER 4. DISTRIBUTED NETWORK EMULATION

Alg. Metis Random RoundRobin SwitchBin
vFT 59.42% 33.52% 96.38% 32.0%
vRD 5.51% 2.71% 11.82% 1.40%

Table 4.2: Percentage of feasible solutions found by the algorithms used in
Maxinet and Mininet Cluster Edition when the number of physical hosts to
use is set to the minimum one found by GreedyPartition.

M
et
is

R
an
do
m

R
ou
n
dR
ob
in

S
w
it
ch
B
in

100

101

102

103

104

0.06% 0.58% 0.38% 0.28%
Percentage of instances with overcommitment

Links % Link overcommitment

Figure 4.14: Gros link overcommitment, with forced hosts.

physical hosts or links. The results are reported in Table 4.2 for vFT and vRD
topologies for the Gros cluster and in Figs. 4.14, 4.15, and 4.16. We tested
525 different vFT instances and 4,500 vRD topologies. For the vFT, the most
favorable scenario for the existing algorithms (homogeneous virtual and physi-
cal topologies), the first observation is that METIS, Round Robin, Random, and
Switch Bin are only able to find feasible (with no node or link overcommitment)
solutions with the same number of physical hosts for 59.42%, 33.52%, 96.38%,
and 32.0% of the instances, respectively. The percentage is low for METIS and

4.4. EVALUATION OF THE PLACEMENT MODULES 69

M
et
is

R
an
do
m

R
ou
n
dR
ob
in

S
w
it
ch
B
in

100

101

102

103

104

87.82% 92.76% 78.95% 94.41%
Percentage of instances with overcommitment

Hosts % CPU overcommitment

Figure 4.15: Gros CPU overcommitment, with forced hosts.

very low for Random and Switch Bin. For Round Robin, the results are good for
this scenario because each physical machine has the same capabilities and each
vNode has the same requests. In homogeneous cases and when considering the
number of hosts found by our algorithm, if the Round Robin strategy returns an
unfeasible solution, it is only due to link overcommitment. As the link capacities
are very high in Gros (25 Gbps), it explains why Round Robin is able to solve
96.38% of instances. If we consider now the more complex scenario with vRT,
the percentage of solved instances by the existing algorithms drops to values
between 1.4% and 11.82%. This shows the efficiency of GreedyPartition to
find efficient solutions even in hard cases. Note that this advantage would be
even more important when doing experiments on heterogeneous clusters.

We analyze now the solutions returned when no solution satisfying node
and link constraints could be found. The goal is to see if such solutions are
“close” to be feasible, in the sense that only a node or link is a little bit over-
loaded. Link, CPU, and memory overcommitments are reported in Figs. 4.14,
4.15, and 4.16, respectively. Random, Round Robin, and Switch Bin do not re-

70 CHAPTER 4. DISTRIBUTED NETWORK EMULATION

M
et
is

R
an
do
m

R
ou
n
dR
ob
in

S
w
it
ch
B
in

100

101

102

103

104

2.35% 8.00% 0.06% 18.01%
Percentage of instances with overcommitment

Hosts % Memory overcommitment

Figure 4.16: Gros memory overcommitment, with forced hosts.

turn close solutions when they have some overloaded links. Indeed, they have
multiple overloaded links (with a median of 4 and 5) with an overcommitment
between 2% and 200%, and median values of 60%, 42%, and 68%, respectively.
For Metis, the link overcommitment is lower and involves a single link over-
loaded at around 10%. The overcommitment in terms of CPU tends to be
similar within the algorithms. The number of overloaded hosts is between 1
and 10 (with a median of 3 or 4) and the median overload is between 20% and
90%. The maximum overload reaches more than 100% for three of the four
algorithms.

4.5 Overloading Experiment

To show the importance of placement for distributed emulations and to evaluate
the impact of violating the limitations in terms of physical resources, we carried
out experiments using a placement module implemented in Distrinet [Dis19].

4.5. OVERLOADING EXPERIMENT 71

c1

c2

c3

c4
. . . s1

s2

s3

s4
. . .

Figure 4.17: vFatTree K=4, bandwidth experiment.

They were performed using Grid’5000 [Bal+13] on two different clusters (Gros
and Rennes). We perform three kinds of experiments: bandwidth, CPU, and
memory intensive experiments - discussed in Secs. 4.5.1, 4.5.2, and 4.5.3, re-
spectively. We show the very strong impact of placement on bandwidth usage
and, thus, on emulation reliability, as well as the one on crashes and increased
emulation completion time due to lack of memory or because of CPU overload-
ing.

4.5.1 Bandwidth Intensive Experiments

The first experiment shows the performances of our placement module in a
network intensive scenario. The networks we emulate are virtual Fat Trees with
K=4 and K=6. They are composed of vHosts and vSwitches requiring 1 vCore
and 1 GB of RAM, while all the vLinks are set to 500 Mbps. Half of the vHosts
are clients and the other ones are servers. The experiment consists in running
TCP iperf [Tir99] between each pair of client/server. The total aggregated
demand to be served is 4 Gbps and 13.5 Gbps, while the total network traffic
generated is 24 Gbps and 81 Gbps, for K=4 and K=6, respectively. The traffic
is forwarded in a way guaranteeing that each client is theoretically able to send
at full speed (see Fig. 4.17 for an example). This is possible as a Fat Tree is a
permutation network. Each experiment is performed 10 times, i.e., enough to
obtain reliable results as the variability is small.
To avoid the installation’s impact of the forwarding rules by the controller for
the measurements, these rules have been installed manually on each switch
before starting sending the traffic. The first half of vHosts acts as a client,
while the second half corresponds to the servers. Each vLink is set to 500 Mbps,
so in theory each client should be able to send 500 Mbps to its corresponding
virtual server, if the routes in the switch are correctly set. To check what the

72 CHAPTER 4. DISTRIBUTED NETWORK EMULATION

G
re
ed
yP

K
ba
la
n
ce
d

D
iv
id
eS
w
ap

M
et
is

R
an
do
m

R
ou
n
dR
ob
in

S
w
it
ch
B
in

0

100

200

300

400

500

600

T
h

ro
u

g
h

p
u

t
[M

b
p

s]

Expected value

Figure 4.18: Network experiment, Gros cluster, vFatTree K=6.

expected traffic is, we set up a simple experiment with Mininet. We create a
simple topology with one switch and two vHosts, and we measure the traffic
with iperf for 60 s. The result with Mininet is 478 Mbps, so we will use this
value as a baseline for the distributed experiments.

Homogeneous Case

The first experiment shows the bandwidth measured in the Gros cluster (see
Sec. 4.4) with 20 physical nodes, virtualizing a vFT with K=6. The physical
network in this cluster is a simple star topology with 25 Gbps links connect-
ing all physical nodes to the central nodes. The achieved throughput values
for all placement solutions are summarized in Fig. 4.18 by means of boxplots
representing the distributions over all client/server pairs. Since each link has
a capacity of 500 Mbps, the maximum iperf speed is slightly lower than this
value (as for Mininet). We observe that in this simple case, all the algorithms
return a solution that is not overloading any physical link, nor any physical ma-
chine. The emulation is working as expected for each of the studied placement
solutions.

4.5. OVERLOADING EXPERIMENT 73

G
re
ed
yP

K
ba
la
n
ce
d

D
iv
id
eS
w
ap

M
et
is

R
an
do
m

R
ou
n
dR
ob
in

S
w
it
ch
B
in

0

100

200

300

400

500

600

T
h

ro
u

g
h

p
u

t
[M

b
p

s]

Expected value

Figure 4.19: Network experiment, Rennes cluster, vFatTree K=4.

Heterogeneous Case

We now consider the heterogeneous physical (yet simple) physical topology of
the Rennes cluster (Fig. 4.5). Results using this experimental platform are
illustrated in Figs. 4.19 and 4.20. The experiments show how the emulation
can return unexpected results when the placement of the virtual nodes does not
take into account links’ rates. As this topology is not homogeneous like the
Gros cluster, finding a good placement is significantly harder, as discussed in
Sec. 4.4.

The first test in the Rennes cluster consists in emulating a vFT topology
K=4 using all the algorithms. In this case, the emulation creates a vFT with
16 vHosts and 20 vSwitches (Fig. 4.17). Fig. 4.19 reports the bandwidth per-
formance of a vFT (with K=4) obtained for the different placement algorithms
when the emulation is performed in the Rennes cluster. As we can observe, the
bandwidth results using GreedyPartition, k-balanced, DivideSwap, and
Metis are the ones expected from the emulation, while the results obtained
by other algorithms, Random and RoundRobin, are far from the expected
ones. Indeed, some of the links are overloaded in the placement returned by
the latter algorithms. This means that the paths of two demands are using the
same links. For these links, the throughput drops to 120 Mbps and 200 Mbps,
respectively. When running a larger emulation for a vFT with K=6, we can

74 CHAPTER 4. DISTRIBUTED NETWORK EMULATION

G
re
ed
yP

M
et
is

R
an
do
m

R
ou
n
dR
ob
in

S
w
it
ch
B
in

0

100

200

300

400

500

600

T
h

ro
u

g
h

p
u

t
[M

b
p

s]

Expected value

Figure 4.20: Network experiment, Rennes cluster, vFatTree K=6.

observe in Fig. 4.20 that k-balanced, DivideSwap do not find a feasible so-
lution and the results returned by Metis and SwitchBin are not trustworthy
anymore. The measured throughput on some overloaded links has fallen to
very low values between 20 and 100 Mbps, to be compared with the expected
478 Mbps. On the contrary, the emulation distributed with GreedyPartition
returns exactly the expected results, showing the efficiency and reliability of the
proposed algorithm.

4.5.2 CPU Intensive Experiments

We now study the behavior of emulations for which a placement algorithm
returns a solution with CPU overcommitment. We evaluate the impact on
emulation execution time.

We built a CPU intensive scenario using Hadoop Apache [Had20a]. The
cluster used for this test is Gros, and the virtual topology is again a vFT with
K=4. One vHost in the vFT is the Master, while the other vHosts are the
Workers. The experiment consists in running a classical Hadoop benchmarking
test. This test computes π using a quasi-Monte Carlo method and MapReduce,
with 2,000 maps and 1,000 samples for each map. Each vHost requires 24
vCPUs and 32 GB of RAM, while the vSwitches only require 1 vCPU and 1 GB
of RAM. Each machine of the cluster provides 32 vCores and 96 GB of RAM.

4.5. OVERLOADING EXPERIMENT 75

G
re
ed
yP

M
et
is

R
an
do
m

R
ou
n
dR
ob
in

S
w
it
ch
B
in

Algorithm

60

80

100

120

140

J
o

b
C

o
m

p
le

ti
o

n
T

im
e

[S
ec

o
n

d
s]

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty
to

cr
a

sh

Figure 4.21: CPU experiment, Gros cluster, vFatTree K=4.

Fig. 4.21 reports the Hadoop Job Completion times for each placement al-
gorithm. The boxplots provide their distribution over 10 experiments. The best
performances are the ones of GreedyPartition and RoundRobin. The rea-
son is that their solutions are not overloading any physical machine, nor link.
On the contrary, Metis and SwitchBin return the same placement overload-
ing 8 physical machines in terms of CPU by 50% (48 vCores are assigned to
8 hosts with 32 cores available). The impact of this overcommitment on job
completion time is an increase of around 40% as seen in the figure. Random
returns a different placement for each experiment. For most of them, at least
one physical machine hosts 3 virtual hosts leading to a CPU overcommitment
of 100%, explaining why Random has the highest job completion time.

4.5.3 Memory Intensive Experiments

For the memory intensive tests, we create an experiment in which the nodes
run at the same time an in-memory file storage and the Hadoop benchmark
computing π used in the previous section. The first application is is memory-
hungry, while the second application is used to assess the impact of memory
overload on execution time in case the experiment does not crash due to a lack
of memory. We choose the parameter of the experiments to ensure that each
algorithm may return solutions with only memory overcommitment, but not

76 CHAPTER 4. DISTRIBUTED NETWORK EMULATION

G
re
ed
yP

M
et
is

R
an
do
m

R
ou
n
dR
ob
in

S
w
it
ch
B
in

Algorithm

60

80

100

120

140

J
o

b
C

o
m

p
le

ti
o

n
T

im
e

[S
ec

o
n

d
s]

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty
to

cr
a

sh

Figure 4.22: Memory (swap) experiment, Gros cluster, vFatTree K=4.

CPU or network ones. We test a scenario with low memory overcommitments, as
large ones would induce direct crashes. We consider two scenarios for the impact
of memory overcommitment: swap memory enabled or disabled in the physical
machines. Note that Distrinet is dynamically allocating virtual memory. So,
if the vHost is not using it, it is available for other vHosts or for other tasks in
the hosting machine. The experiment creates a vFT with K=4, in which each
vHost requires 12 vCPU and 50 GB of RAM. A physical machine has 32 cores
and 96 GB of RAM. Hence, if we assign 2 vHosts that use all 50 GB of RAM,
the physical machine is overloaded in terms of memory by 4.2%. In these tests,
just like for the CPU overcommitment ones, one vHost is the Master, while the
other vHosts are the Workers.

Swap Enabled Case

The physical machines also provide 4 GB of swap memory. So, if the RAM is
completely full (depending on the swappiness parameter in the kernel, we use
the default value for the tests), the machine starts to use the swap memory
(Gros cluster uses SSDs for the storage).

Fig. 4.22 presents results using the different placement algorithms. In this
case, we observe that overcommitment slows down the job completion time
using Metis. We also notice that a large fraction of runs crashed, especially

4.6. CONCLUSIONS 77

G
re
ed
yP

M
et
is

R
an
do
m

R
ou
n
dR
ob
in

S
w
it
ch
B
in

Algorithm

60

80

100

120

140

J
o

b
C

o
m

p
le

ti
o

n
T

im
e

[S
ec

o
n

d
s]

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty
to

cr
a

sh

Figure 4.23: Memory (no swap) experiment, Gros cluster, vFatTree K=4.

using Random (80% of the experiments did not succeed). This is due to a bad
assignment of resources made by the algorithm (often 3 vHosts were assigned
to the same physical host, leading to a memory overcommitment of 56%).

Swap Disabled Case

When the swap memory is disabled, if the assignment overloads the memory, the
machine cannot rely on the SSD memory. In this case, we see in Fig. 4.23 that,
with only 4% of memory overcommitment, the emulation cannot run with Metis
or SwitchBin. We observed during the same experiment different behaviors.
Sometimes, Distrinet containers simply crashed, while other times the in-
memory files generated were corrupted during the emulations. In both cases,
the emulation is considered crashed. Similar to the experiments with swap
enabled, GreedyPartition and RoundRobin do not overcommit the physical
machines and manage to complete the task without issues.

4.6 Conclusions

In this chapter, we propose a placement module for tools enabling distributed
network emulation. Indeed, large scale or resource intensive emulations have to

78 CHAPTER 4. DISTRIBUTED NETWORK EMULATION

be distributed over several physical hosts to avoid overloading hosts carrying
out the emulation. A network experiment can be seen as a virtual network with
resources needed for nodes (e.g., CPU or memory) and links (e.g., bandwidth).
This network has to be mapped to the physical clusters on which the emulation
is done. As we show previously, a bad mapping may lead to overloaded physical
resources leading to untrustworthy experiments. This is the reason why we
propose and evaluate placement algorithms that provide trustworthy mapping,
ensuring that resources are never overloaded. As a bonus, our algorithms also
minimize the number of physical machines needed. We show that they outdo
existing solutions in all aspects. With the ever-growing need of resources for
experiments, we are convinced that having such a fast, efficient, and trustworthy
placement module is essential for the community.

In this work, we consider the case of private test-beds for which we know
and control the infrastructure. However, not all emulations are done on such
platforms. Experiments may be done in private test-beds for which the in-
frastructure is known but the control is not total (e.g., the routing cannot be
chosen), or in public clouds (e.g., Amazon EC2 or Microsoft Azure) in which
the characteristics of available machines are known, but not the network inter-
connecting them. It would be interesting to study how to adapt the methods
and algorithms developed in this work to scenarios in which the knowledge of,
and the control over, the experimental infrastructure is partial.

Chapter 5

Cloud Measurement

5.1 Introduction

Cloud computing provides convenient on-demand access to a potentially unlim-
ited pool of computing resources. In recent years, cloud computing resources
have become cheaper and more powerful, with the growing interest of compa-
nies around the world. Cloud computing brings several advantages: a small
company has little or no capital expenditure (CAPEX) when launching a new
product, instead of having to invest in datacenters and servers before knowing
how much these resources are going to be used. Cloud computing is flexible
and on-demand. This means that the users can consume computing resources
and only pay for the amount of resources they actually consumed. There is no
necessity to spend money on running and maintaining a datacenter since only
cloud providers have access to the physical equipment.

On a high level, cloud providers offer three service models:

• IaaS (Infrastructure as a Service): the cloud provider is responsible for
managing the physical network, the servers and providing a virtualization
layer to isolate the environment of each user. Responsible for all the other
layers in the application stack, the user needs to make sure that the guest
OSs are updated, and check that the applications are correctly configured.
The user is also responsible of the management of the (virtual) network
used by the virtual instances. Examples of IaaS services are Amazon EC2
or Microsoft Azure.

• PaaS (Platform as a Service): the cloud provider is in charge of all the
layers managed in the IaaS service model, and it is responsible for the
Operating System layers, and the development platform which is offered.
Examples of PaaS services are Fargate from AWS (which provides an
environment for docker containers completely managed by Amazon), or
Amazon Simple Queue Service (which provides a simple way to manage
and scale multiple thousands of requests).

79

80 CHAPTER 5. CLOUD MEASUREMENT

• SaaS (Software as a Service): the provider is responsible for managing all
the layers of the application stack, while the user utilizes the application
without any responsibility on the application stack. Examples are Google
docs, or Microsoft One Drive.

In this work, we are focusing on IaaS provisioning, in particular we provide
a brief overview of the main component of AWS that is responsible for this
cloud model which is Amazon Elastic Cloud Computing (EC2). We describe all
the virtual devices involved in the creation of a virtual infrastructure, and we
apply the best practice strategies to deploy our experiments in a regional and
multiregional environment.

Amazon AWS and, in general, all the major cloud providers offer resources
for each instance flavor (e.g., t3.medium, m5.large, etc.), describing how many
vCores and how much RAM are assigned. Regarding networking, AWS provides
the maximum throughput that a flavor is able to generate (from 500 Mbps to
100 Gbps). AWS does not provide the maximum delay inside the infrastructure.
It only mentions that all the regions and the availability zones are connected
with a high performance optical fiber network.

Some applications are delay-sensitive, and for such a type of scenarios, the
user should be able to check if the application can be deployed in two different
regions, or two different datacenters geographically separated.

The goal of this work is to provide CloudTrace, a Command Line Inter-
face (CLI) that can measure the network delay between two, or more, different
networks in AWS using different strategies.

Since there are more than 10 different regions, we present the experiment
results running only on 3 distinct regions (London, Dublin and Frankfurt). In-
terested readers can easily perform their experiments in other regions following
the instructions at https://github.com/Giuseppe1992/CloudTrace

5.2 Related Work

Since AWS launches EC2 service [Ama20d], multiple approaches have been
proposed to measure computing or network performances in virtualized envi-
ronments and cloud infrastructures. Most of them focus on the impact of a
virtualized environment with different hypervisors [RR14], virtualization using
Virtual Machines and containers [Li+17], or the network performances variabil-
ity in virtualized instances [GBU19]. One of the most convincing measurement
tools for the cloud environments is Cloudbench (CBTOOL) from IBM [IBM20].
It is a tool that automates testing of Cloud providers. The tool is able to
automate experiments for a large range of workloads (e.g., Hadoop [Had20b],
Redis [Red20]).

In [JVU19], the authors performed large-scale traceroute measurements over
the global AWS network infrastructure. The traceroutes were performed be-
tween 15 regions, and the goal was to study the complexity of the AWS in-
frastructure. The work is done using traceroute with different protocols (TCP,

5.2. RELATED WORK 81

UDP, and ICMP) using different source ports and the default destination port.
The study does not take into account how the delay and the path are changing
at different times of the day like in our study. The work in [Arn+20] covers
more generally the major cloud providers and the main Tier-1 ISPs: this paper
shows how Internet traffic is more and more generated and transmitted in the
private interconnection between the cloud providers, thus bypassing the Tier-1
ISPs.

Migration of applications to the cloud is non-trivial. One of the first works
trying to automate the process is CloudGenius in 2012 [MR12]. CloudGenius
automates the decision-making process using models for web server migration
to the cloud, taking into consideration various constraints of the application,
like QoS, image types, costs, etc. Since 2012, the number of services and com-
plexity have exploded, and the cloud providers tend not to disclose the details
on network performance. The customers thus suffer from highly variable and
unpredictable network performance [MP12], [Pal+19]. [Gar07] evaluates AWS
computing and networking virtual resources’ performance, by analyzing its lim-
itations and the APIs. The work evaluates the AWS security features, the DNS,
Simple Queue Service (SQS) [Ama20g] , and EC2 services.

In [Ber+13], the authors evaluate the AWS network performance through the
passive analysis of network traffic collected from a single university campus and
three large Points of Presence (PoP) of an Italian national-wide ISP for 60 days.
The main services tested are EC2 , S3 [Ama20f], and Cloudfront [Ama20b], the
Content Distribution Network that Amazon built to provide services closer to
its customers.

In [Per+15a] and [Per+15b], the authors analyzed the cloud performance in
Amazon AWS and Microsoft Azure, with more than 800 hours of experimen-
tation. In particular, they studied what is the maximum network throughput
achievable between two VMs deployed on Microsoft Azure and how it changes
over time, across different scenarios.

Another problem is to define what is the network performance metric to
be considered when evaluating cloud infrastructures. Such research is done
in [MP12], where the authors review the proposals for providing performance
guarantees within cloud networks.

A metric to be considered when evaluating cloud performances is the effective
bandwidth assigned by the cloud provider. The authors in [HX18] experimented
public clouds with the Available Bandwidth Estimation Tools (ABETs). They
prove that the tools do not correctly estimate the available bandwidth of public
clouds. The main reasons are the rate limitations of network virtualization, the
packet sizes of the traffic generated, and the overhead of VM scheduling when
virtual instances are deployed in the physical servers.

An interesting scenario where it is critical to have low delay is cloud gaming.
The users do not need a powerful machine or a console to play as the providers
use cloud processing to run the game. In this case, the network delay cannot
exceed few milliseconds in order to be playable. While playing, the users are
constantly sending input commands to the game that is running far from the
user’s location. The gaming service has to send back the output of the game in

82 CHAPTER 5. CLOUD MEASUREMENT

real time. In [Cho+12], simulations demonstrate that end-users geographically
distant from the datacenter running the game experience unacceptable latencies.
This work was done in 2012 and with the rising of edge computing now, cloud
gaming becomes a reality, with services like Microsoft project xCloud [Mic20]
or Google Stadia [Goo20].

Finally, in [UTK16], the authors propose a benchmarking methodology based
on latency measurements collected via active probing of cloud resources. The
measurements are done at multiple layers of the network protocol stack. They
focus on latency as it is among key performance parameters for the vast majority
of applications. They do not provide any tool to automatize the task in case a
user wants to personalize an experiment, and the project was closed in 2017.

Unfortunately, all these propositions do not provide a simple way to automat-
ically deploy a testing infrastructure in a regional or multiregional environment
for studying the network delay’s behavior.

5.3 Amazon Web Services Infrastructure

The AWS global infrastructure is composed of 2 different entities: Region and
Availability Zone (AZ).

The Availability Zone is a set of one or more datacenters connected by
redundant high-speed networks and power in order to guarantee high availability
to the users.

The region represents a set of multiple AZs clustered in a specific area around
the world, within 100 km from each other. The AZs in a same region are in-
terconnected with high-bandwidth, low-latency, high-throughput networks over
fully redundant, dedicated metro fiber. To guarantee privacy, all traffic be-
tween AZs is encrypted. Services like Simple Service Storage (S3) require repli-
cation between different AZs in order to guarantee 99.999999999% durability
and 99.99% availability of objects over a given year [Ama20f]. To achieve such
requirements, S3 performs synchronous replication between AZs of a single re-
gion via a high-speed network. AZs make partitioning applications for high
availability easy. If an application is partitioned across AZs, companies are
better isolated and protected from issues such as power outages or natural dis-
asters [Ama20a].

AWS provides hundreds of different services. We describe briefly the main
services and tools provided for IaaS. The first layer of an IaaS in AWS is the
Virtual Private Cloud (VPC) that creates a virtual network defined by the
user. All the virtual instances and the virtual devices (i.e., Virtual Gateway or
route tables) should be created within a VPC.

The VPC is composed of one or more subnets. The user managing the
subnets can create as many subnets as desired in a single VPC till the address
space in the VPC becomes empty. To control the network flows in the network
subnet, the user can create route tables associated with them.

If the instances are in the same VPC, it is possible to connect them directly
using the private IP if they are in the same subnet. If they are in a different

5.3. AMAZON WEB SERVICES INFRASTRUCTURE 83

subnet, the routing table should be configured before the connection (Fig. 5.1).
By default, the VPC does not provide any way to connect the instances to

the external network. The Virtual Internet Gateway is a highly scalable
virtual device managed entirely by AWS that allows traffic to go from the VPC
to the outside world, and vice-versa. Once created, the routing table should be
updated to redirect traffic to the subnets.

Two other main services are Network Access Control List (NACL) and
Security Group (SG). NACL is a stateless firewall associated with a subnet.
By default, the rule is to DENY the traffic. In order to enable the traffic in the
subnet, the ALLOW rule associated with a specific flow should be appended to
the NACL. SG is similar to NACL. It is a stateful firewall associated with an
interface: it can be a virtual interface of an instance, or another virtual device
that has an IP created in the VPC, i.e., virtual load balancer.

There are three different type of addresses in AWS: private, public, and
Elastic IP. Elastic IP is a public address that can be conveniently attached to,
and detached from, a virtual interface at any time. Once created and attached,
Elastic IP is not released, even if the user deletes the instance or the interface.
The address should be explicitly released by the user when it is not needed
anymore.

In some scenarios, the user needs to connect instances or services between
different VPCs. This can be achieved, of course, using the public IPs of the
interfaces. This solution comes with various side effects. First of all, the traffic
is going through the public Internet, and it is a risk in terms of security and
privacy. The other issue of this solution is that if an application doesn’t need a
public IP but has to communicate with another service or instance in another
VPC, then it is forced to have a public IP. To solve this issue, AWS proposes the
VPC peering service [Ama20h]. With VPC peering, it is possible to connect
two or multiple VPCs. The instances in the peering can connect to each other
via private IP, like they are in the same network. Amazon ensures that the
traffic going via the peering never leaves the AWS network, increasing security
and performances.

The last important concept to describe before presenting CloudTrace is Elas-
tic Compute (EC2). EC2 is a service that provides secure and resizable
compute capacity in the cloud [Ama20d]. EC2 provides a large number of in-
stance types. The user can choose the instance type that fits better the targeted
scenario. Some instances are compute-optimized, with high-performance pro-
cessors ideally used for scientific modeling and High-Performance Computing
(HPC). The memory-optimized instances are able to process large data sets in
memory: this type of instances is well suited for the in-memory database (i.e.,
Redis), GPU-optimized for machine learning workloads and many other types
of instances [Ama20c]. For our experiment, we use two different architectures
(Figs. 5.1 and 5.2). Fig. 5.1 describes a regional infrastructure composed of two
subnets created in two different AZs within a single VPC, i.e., in a single region.
As explained before, the Internet Gateway is responsible to allow connectivity
with the external Internet. An instance is created on each subnet, and the flow
table is stored in a single routing table, serving the two subnets. The instances

84 CHAPTER 5. CLOUD MEASUREMENT

Figure 5.1: Architecture in a regional deployment

can connect to each other via the public IPs (an elastic IP is attached on each
interface of the instance), or via the private IP since they are on the same VPC.

In Fig 5.2, the infrastructure is shared between two different regions. The
architecture is similar, and the instances can still use the public IP to connect
to each other like in the regional environment, but they cannot use by default
the private IPs. In this case, a VPC peering connection between the two VPCs
needs to be created to allow the instances to use the private IP to connect them
as if they were on the same network.

CloudTrace is generating the infrastructure in both cases, with two or more
AZs in case of regional experiments, and two or more regions in case of multi-
regional experiments.

Our implementation choices are discussed in the next section.

5.4 Implementation

CloudTrace is open-source, and it is compatible with Linux and MAC OSX,
while it is possible to install it on Windows via Docker. The tool is built
using LiteSQL, Ansible, Paris-Traceroute, and the Boto3 API for automatic
deployment in Amazon AWS. The basic idea is to have a CLI that takes as input
the regions and the type of experiment that the user wants to run, and creates
an environment performing multiple traceroutes between the virtual instances.

5.4. IMPLEMENTATION 85

Figure 5.2: Architecture in a multiregional deployment, with VPC peering

First of all, CloudTrace creates a unique ID for the experiment (a string
composed of 8 alphanumeric random characters). Then, depending on the type
of experiment, it performs the following steps.

Regional Experiment. When creating a regional experiment, the user
has to specify only one region. CloudTrace first checks if there is at least one
VPC slot available in the region, then creates the VPC with subnet 10.0.0.0/16.
Finally, it creates a 10.0.X.0/24 subnet for each Availability Zone (AZ) available
in the region. After setting up the subnets, it creates an Internet gateway and
attaches it to the VPC. It then creates a routing table and appends all the routes
necessary to allow external connectivity to the future instances created within
the subnet. To allow Internet connectivity, adding the route is not enough.
CloudTrace also adds the rules in the NACL. After configuring all the subnets
and the NACL rules, the user creates an instance in each subnet. For each
instance, it creates a Service Group that allows connectivity to the external
networks. Finally, the tool waits that all the instances are in a RUNNING state
and returns all the information. All these interactions are performed using the
Boto3 API, and all the information returned by AWS are saved in the LiteSQL
database of the client where the tool is running.

Multiregional Experiment. The setup of the infrastructure is similar to
the regional one. First of all, CloudTrace connects with each region specified
by the user and checks if there is at least one VPC slot for each region. If
yes, it creates a VPC, a subnet and an Internet gateway in each region in the
default AZ, and configures them like in the regional experiment. The VPC and
the virtual subnet have the same subnet 10.0.X.0/24, because in case of VPC
peering, the subnet cannot overlap.

86 CHAPTER 5. CLOUD MEASUREMENT

If the user selects the option to use VPC peering, a peering connection
between all the VPCs are created, and all the route tables are updated, in order
to forward the traffic via the private IP between remote VPCs (Fig. 5.2).

All the information needed is saved in the client database (i.e., public IPs,
VPC ID, regions, instances ID, etc.). CloudTrace parses all this information
and creates for each experiment an Ansible inventory (a file that describes the
login info and the addresses of the instances). For each experiment, Ansible runs
a standard playbook, a YAML file that lists all the requirements the instances
have to install and all the commands that each instance has to execute before
running the experiment, e.g., update the kernel. All public IPs of the instances
are saved in the client database. CloudTrace also creates a host configuration
file for Ansible.

The process described above summarizes the creation process of the experi-
ment, but the experiment does not start by default. Once all the requirements
are installed, the environment is ready for the experiment. The user can easily
start the traceroute experiment with the start command followed by the ID of
the experiment. Once the user decides to start the experiment, the tool cre-
ates a traceroute script for each instance. This script runs Paris-traceroute on
the default source and destination ports of all the other instances in the ex-
periment. For example, if the user creates a multiregional experiment with 4
regions listed, each instance has to perform 3 traceroutes in parallel (one for
each other instance). If the user decides to run the experiment via the public
IP, the traceroute file uses the public IPs of the instances. Otherwise, it uses the
private ones. The scripts are copied on the virtual instances on AWS. Ansible
uses SSH to connect to the instances, and the login configurations are saved in
the inventory file of the experiment.

After copying the files in the remote instances, Ansible configures crontab
to run the script each minute and saves the file in a specified directory in the
machine. The process is run in parallel using the Ansible –fork option. At
any moment, the user can retrieve the traceroutes from the instances, using
the retrieve data command. This command will not stop the experiment in
the instances, so the user can retrieve the new data without interrupting the
experiment. Ansible compresses the data on the remote instances before sending
them back to the client, in order to decrease the retrieving time (it is also made
in parallel with the fork command).

Once the data are retrieved in the client, the user can analyze it manually
or can use CloudTrace for a simple analysis of the data.

CloudTrace can also plot a simple and interactive network map that describes
how the delay varies around the globe. The map is created using Plotly, Folium,
and Dash Python libraries. Fig. 5.3 is an example of the delays obtained between
3 regions.

5.5. EXPERIMENTS 87

Figure 5.3: Map example for a multiregional experiment

5.5 Experiments

We present multiple experiments, tracing the network performances during one
month in Amazon AWS. The tests are made on 3 AWS regions: Frankfurt
(eu-central-1), Dublin (eu-west-1) and London (eu-west-2). The experiment
ran from 04/11/2020 till 04/12/2020, and we collected in total more than two
millions of traceroutes.

Regional Experiments. We did these first experiments in all the Avail-
ability Zones of the three regions chosen above. The regional experiment creates
a virtual instance in each Availability Zone and performs traceroutes between
them. The first region we take into consideration is Frankfurt, with the traffic
going from eu-central-1a to eu-central-1b (Fig. 5.4) and eu-central-1b to eu-
central-1c (Fig. 5.5). In this first experiment, we present the result using the
private IPs to perform the traceroute.

Figure 5.4: Eu-central-1a to eu-central-1b trace (private IP)

88 CHAPTER 5. CLOUD MEASUREMENT

Figure 5.5: Eu-central-1b to eu-central-1c trace (private IP)

As we can see in Fig. 5.4, the average delay during the day is stable. The
black line indicates the daily rolling mean, while the blue line shows the hourly
rolling mean. The delay is regular in both Availability Zones. In the first
plot, we can see that the average daily delay is increasing in the week from 20
November to 26 November. The reason could be that the Availability Zone was
more used in this period. Unfortunately, we don’t have access to the AWS data
to see how crowded was the region during this period. What we will see in the
latest experiment is how to link the delay with the AWS Spot instances prices.

Figure 5.6: Eu-central-1a to eu-west-2a trace (public IP)

5.5. EXPERIMENTS 89

Figure 5.7: Eu-west-2a to eu-west-1a trace (public IP)

Multiregional Experiment Confidence Interval Delay [ms]
Source Destination Public IPs Private IPs

eu-central-1a eu-west-1a 24.614± 1.125 24.596± 1.281
eu-west-1a eu-central-1a 24.264± 1.095 24.789± 1.333

eu-central-1a eu-west-2a 13.495± 0.618 13.98± 1.12
eu-west-2a eu-central-1a 13.385± 0.689 14.042± 1.05
eu-west-1a eu-west-2a 10.366± 0.275 11.071± 1.554
eu-west-2a eu-west-1a 10.484± 0.305 11.155± 1.302

Table 5.1: Multiregional delay with confidence intervals (99%) with public and
private IPs

Multiregional Experiments. We are performing here the same experi-
ment as before, but we are using Availability Zones in different regions and the
public IP - a comparison between public and private IPs will be made in the
next experiments. Multiregional experiments mean longer distances since the
traffic has to go from Frankfurt to Dublin and London, i.e., higher delays are
expected. Fig. 5.6 shows the delay between Frankfurt and London, and Fig. 5.7
the delay between London and Dublin. As expected, the delay in Fig. 5.6 is
higher since the physical distance between the two regions is longer, so in this
case, if the user wants to deploy a delay-sensitive application with multiregional
high availability, it is recommended to deploy it in London and Dublin. Both
measurements are stable over time.

Public vs. Private. One surprising behavior that we faced in the experi-
ment was the difference in delay using the public and private IPs. As explained
before, AWS makes it possible to create a VPC peering between two or more
different regions. This is done to connect two instances deployed in separated

90 CHAPTER 5. CLOUD MEASUREMENT

Regional Experiment Confidence Interval Delay [ms]
Source Destination Public IPs Private IPs

eu-central-1a eu-central-1b 0.835± 0.697 1.027± 1.04
eu-central-1b eu-central-1a 0.864± 0.839 1.147± 1.202
eu-central-1a eu-central-1c 1.066± 0.7 1.301± 1.496
eu-central-1c eu-central-1a 1.094± 0.599 1.188± 1.369
eu-central-1b eu-central-1c 0.915± 0.928 1.122± 1.505
eu-central-1c eu-central-1b 0.943± 0.961 1.482± 2.149

Table 5.2: Frankfurt delay with confidence interval for public and private IPs

regions with the private IP assigned by AWS. Table 5.1 shows the confidence
intervals (at 99%) for all the multiregional experiments performed in the en-
tire month. As we can see, the delay using private IPs is higher, and also less
stable, than for public IPs. This behavior is also repeated in all the regional
experiments performed. For example, Table 5.2 shows the delay with confidence
interval in the Frankfurt region. We think that these differences are due to the
additional layer added inside the AWS network and the control that each packet
has to pass in order to circulate inside the AWS network. For example, to pre-
vent IP spoofing, the AWS network does not allow a virtual instance to send a
packet inside a network if the packet’s source address is different from the one
assigned to the instance. These types of control can slow down the traffic and
increase the delay.

Figure 5.8: Eu-central-1a to eu-central-1c trace (Private IP)
with spot prices

Delay vs. spot instances prices. We first need to explain the concept of
spot instance. The AWS clusters are not always full. There are periods when the

5.5. EXPERIMENTS 91

Figure 5.9: Eu-west-2c to eu-west-2a trace (Private IP) with
spot prices

datacenters are barely used, so Amazon offers instances at discounted prices. It
thus depends on how much the customer is willing to pay for general instances.
If the spot instance’s actual price is costs less than the amount the customer is
willing to pay, the customer can use it. The downside is that the price is always
changing, and if the spot instance price costs more than the amount set by
the customer, the instances of the customer are terminated within five minutes.
The spot instances are useful for applications that are not suffering immediate
terminations. The spot prices allow the customer to save (a lot of) money since
these prices are between 80% and 60% lower than on-demand prices. As the
spot instances’ prices increase when the datacenter is loaded, our intuition is to
use the spot prices to check if the delay is changing with the prices.

Fig. 5.8 shows the delay between eu-central-1c and eu-central-1a Availability
Zones. We can see that from 5 November to 13 November, the spot price
increases and became almost twice expensive. This means that in this period,
the Availability Zone was more crowded than usual and returned at the standard
price around 23 November. In this period, we can see that the delay was not
affected by the increasing demand from the customer. On the opposite, in
Fig. 5.9, we can see that in the London region (between eu-west-2c and eu-west-
2a), the average delay is higher from November 10 to November 13, but the
spot prices are not changing. This means that there is no correlation between
the spot prices and the delay measured in the Availability Zone.

92 CHAPTER 5. CLOUD MEASUREMENT

5.6 Conclusions

In this chapter, we analyzed and presented the main components of the AWS
IaaS service. AWS provides hundreds of services to its customers. We focused
on the main EC2 components (like VPCs, subnets, Virtual Internet gateway,
etc.) that companies and organizations use to move their infrastructures to the
cloud.

We focused mainly on the networking performances of the global infrastruc-
ture. We studied the network delay stability in multiple deployment scenarios.
Companies that are moving delay-sensitive applications on AWS are interested
in response and delay time of the network for a high availability (multiregional)
configuration or a regional configuration with multiple Availability Zones. We
implemented a simple yet powerful tool for the community to measure the net-
working performances and plot automatically statistics, together with a map of
the analyzed network.

CloudTrace is publicly accessible at https://github.com/Giuseppe1992/

CloudTrace.
We performed multiple experiments on 3 different AWS regions using the

basic EC2 instances, and we monitored the performance of the network for one
month. Interested readers can easily download and install their applications,
and test the networking performances in other regions. The deployment in the
cloud and the experiment part are separated into different modules; CloudTrace
can be easily extended to be compatible with Microsoft Azure and Google Cloud.
These extensions can be helpful to differentiate the performances in the various
cloud providers.

Chapter 6

Failure Recovery

6.1 Introduction

More than ever, data networks have demonstrated their central role in the world
economy, but also in the well-being of humanity that needs fast and reliable
networks. In parallel, with the emergence of Network Function Virtualization
(NFV) and Software Defined Networking (SDN), efficient network algorithms
considered too hard to be put in practice in the past now have a second chance
to be considered again. In this context, as new networks will be deployed and
current ones get significant upgrades, it is thus time to rethink the network
dimensioning problem with protection against Shared Risk Link Group (SRLG)
failures.

In this chapter, we consider a path-based protection scheme with a global
rerouting strategy in which, for each failure situation, there may be a new
routing of all the demands. Our optimization task is to minimize the needed
amount of bandwidth. After discussing the hardness of the problem, we develop
two scalable mathematical models that we handle using both Column Gener-
ation and Benders Decomposition techniques. Through extensive simulations
on real-world IP network topologies and on randomly generated instances, we
show the effectiveness of our methods: they lead to savings of 40% to 48% of
the bandwidth to be installed in a network to protect against failures compared
to traditional schemes. Finally, our implementation in OpenDaylight demon-
strates the feasibility of the approach, and its evaluation with Mininet shows
that technical implementation choices may have a dramatic impact on the time
needed to reestablish the flows after a failure takes place.

As introduced before, NFV is an emerging approach in which network func-
tions such as firewall, load balancing, and content filtering are no longer ex-
ecuted by proprietary hardware appliances but, instead, can run on generic-
purpose servers located in small cloud nodes and can be instantiated on de-
mand [Han+15]. Network flows are often required to be processed by an or-
dered sequence of network functions. Moreover, different customers may have

93

94 CHAPTER 6. FAILURE RECOVERY

different requirements in terms of the sequence of network functions to be per-
formed. This concept is referred to as Service Function Chaining (SFC) [QN15],
also presented earlier.
Network failures such as cable cuts, natural disasters, faulty interfaces, or hu-
man errors are the daily routines of a network [Mar+14]. Such events clearly
need to be taken into account when allocating resources to the network. Faults
in the IP and optical layers tend to be correlated between them [KKV05]. In-
deed, the failure of a component located in a common router, such as a linecard,
or in the underlying optical infrastructure, such as a common fiber, may result
in the consequential failure of multiple entities at the IP layer. To model this
correlation, the concept of Shared Risk Link Groups (SRLGs) has been pro-
posed [Pap01]. SRLGs allow to express easily a risk relationship, and can also
represent different types of failures, such as single and multiple, node and link
failures.

We consider in this work a protection technique called unrestricted flow re-
configuration, also known as global rerouting [PM04]. In each of the possible
failure situations, a new set of backup paths is defined, one for each demand.
This makes the protection method bandwidth-optimal. However, this also means
that each failure may result in a completely different routing for the demands.
In legacy networks, it is impractical to implement this technique due to the large
number of rules to install on the network devices and hence signaling overhead.
However, the introduction of SDN may change the game.

With SDN, the network control is decoupled from the packet forwarding
data plane. Network intelligence is centralized in the controller that maintains
a global view of the network [McK+08]. SDN offers to network operators bet-
ter ways to manage and to configure their networks. Indeed, the introduction
of logically centralized controllers reduces the control plane protocols complex-
ity [KF13]. Routing decisions are taken in a single location, the controller, with a
complete knowledge of the network state, instead of resulting from a distributed
algorithm.

6.2 Related Work

The problem of providing network protection against failures has been widely
investigated in the last decades [FV00]. With the intoduction of NFV and SFCs,
an additional challenge is to map network functions to nodes and to guarantee
that the execution order of the network functions is respected in both primary
and backup paths. The problem of guaranteeing service continuity in Service
Function Chain scenario has started to be investigated recently. Both restora-
tion [Sou+17; LM15] and protection [Hma+17; Ye+16; BBS] techniques have
been investigated. [Tom+18] proposes a scalable exact decomposition model
to provide reliable service function chaining. Column generation techniques
have been shown to be effective in dealing with both Service Function Chain-
ing [HJG17; Hui+18] and failure protection [AV14].

With the advent of SDN/NFV, there are opportunities to create, deploy,

6.2. RELATED WORK 95

and manage networks more efficiently. Indeed, with SDN and its control–data
planes decoupling, routing decisions can be done using a logically centralized
approach. This paves the way for a broadening of perspective in terms of fault
management [FM17].

Chu et al. [Chu+15] consider a hybrid SDN network and propose a method
to design the network in such a way that fast failure recovery from any single
link failure is achieved. Their proposal consists in redirecting the traffic of
the failed link from the routers to SDN switches through pre-configured IP
tunnels. Next hops are pre-configured before the failures take place, and the set
of candidate recovery paths for different affected destinations is chosen by the
SDN controller in such a way that the maximal link utilization after redirecting
the recovery traffic through these paths is minimized. In [Qiu+17] they build a
high-performance control plane for path computation using multiple controllers;
while in [Qiu+19] the authors uses fast SDN rerouting reducing the time to
compute new paths in case of link failures, minimizing delay of the new paths.

Suchara et al. [Suc+11] propose a joint architecture for both failure recovery
and traffic engineering. Their architecture uses multiple pre-configured paths
between each pair of edge routers. In the event of a failure, the failover is made
on the least congested path that ensures connectivity. Besides, Sgambelluri et
al. [Sga+13] propose a controller–based fault recovery solution that uses Open-
Flow’s Fast Failover Group Tables to quickly select a pre-configured backup
path in case of link failure.

The idea of using a set of pre-configured multiple backup network configu-
rations is not new. For instance, in [Kva+06; KCG07], the authors propose a
pre-configured proactive IP recovery scheme that makes use of multiple routing
backup configurations as a method for fast recovery. The main idea is to create
a small set of backup routing configurations to be used in the case of a single
link or node failure. Since the backup configurations are kept in the routers,
it is necessary to reduce their number to avoid requiring the routers to store a
significant amount of state information.

In [Vas+18; VNT20; Vas+20], the authors use SRLG for modelling in order
to enhance the preparedness of a given network to natural disasters, or regional
failures. For example, a regional SRLG aims to characterize a failure damaging
the network only in a bounded geographical area. The authors in [Ass+20]
propose a Mixed Integer Linear Program (MILP) for an elastic optical network
protection with SRLG group and dedicated protection mechanism.

Herein, we take to the extreme the idea of multiple routing configurations by
allowing a completely different routing in response to an SRLG failure situation.
Unlike the above studies, our aim is to provide a bandwidth-optimal mechanism
to design a reliable network. Our work revisits optimization techniques and
protection schemes introduced to design survivable optical networks in a large
corpus of studies of the 90s - see for example [GMS95; KM05; Sto06] for surveys
or reference books. We generalize the results to layered graphs. Indeed, besides
guaranteeing the recovery, our proposed approach also takes into consideration
the Service Function Chain (SFC) requirement of the flows. Moreover, we show
with the use of experiments that global rerouting, which was studied in the

96 CHAPTER 6. FAILURE RECOVERY

past just as a lower bound, becomes today a viable and very efficient protection
solution thanks to SDN control. It allows to study effectively what is the right
number of NFVI-enabled nodes, in terms of costs and acceptable QoS levels.

Table 6.1 summarizes the most important works to be compared to our
proposal. In particular, we check if the works consider optimal (bandwidth)
dimensioning for protection against SRLGs, handle the VNFs of the network
services, implement fast rerouting upon failures using SDN, propose scalable
solutions through decomposition methods, or approximation algorithms.

[Chu+15] [Suc+11] [Ass+20] [Taj+19] [Sga+13] [Kva+06] [KCG07] [VNT20] [BSY18] Our
Context and problem solved proposal

Survivable network design 4 4 4 4 4 4 4 4 8 4
Fast rerouting with SDN 4 8 8 4 4 8 8 8 4 4
Network services and NFV 8 8 8 4 8 8 8 8 8 4
SRLG 8 4 4 8 8 8 8 4 8 4

Theoretical methods and results

Optimal bandwidth 4 4 4 8 8 8 8 8 4 4
Decomposition methods 8 8 8 8 8 8 8 8 4 4
Approximation algorithms 4 4 8 4 8 4 4 4 8 4

Implementation results

Implementation via emulation 8 8 8 8 4 8 8 8 8 4

4=Yes, 8=No

Table 6.1: Summary of related work. The table analyzes the context and the
methods used in the different works.

6.3 Optimization Approaches

In this section, we first rigorously define the bandwidth-optimal failure re-
covery problem and prove the hardness and inapproximability results for the
Global Rerouting problem (Sec. 6.3.1). We provide a compact ILP formu-
lation (Sec. 6.3.3) which will be used as a baseline for evaluation. We then
propose a scalable1 decomposition model that relies on the Column Genera-
tion technique (Sec. 6.3.4). Both formulations are based on a layered network
model described in Sec. 6.3.2. We next introduce a second scalable model using
Benders Decomposition approach (Sec. 6.3.5). The models led us to study the
complexity of a subproblem, the Min-Overflow Problem, and to propose
approximation algorithms to solve it (Sec. 6.3.6).

6.3.1 Problem Statement And Notations

We model the network as an undirected graph G = (V,E), where V represents
the set of nodes and E the set of links. We are given a set of SRLG events R
that can incur link failures.

Each r ∈ R consists of a set of links that share a common physical resource.
We denote by D the set of demands (e.g., traffic between two locations). As we

1The term scalable has to be understood here in the context of exact optimization methods.
The proposed optimization methods are said scalable in the sense that they allow to solve much
larger instances than the classic compact ILP formulation solving the same problem.

6.3. OPTIMIZATION APPROACHES 97

Symbol Description
G Undirected graph
V Set of nodes in the graph G
E Set of links in the graph G
r ∈ R Set of links that share a common phys-

ical resource
R Set of SRLGs
d ∈ D Single demand composed by

(sd, td, bwd, Cd)
D Set of demands
sd Source of the traffic
td Destination of the traffic
bwd Required units of bandwidth G
Cd Ordered sequence of network functions
`(d) Length of the SFC for a demand d
V vnf ⊆ V Set of NFVI nodes
GL(d) Layered graph for demand d
π Service path
Πr
d Service function paths for a demand d

aπuv Number of times link (u, v) is used in
the service path π

yd,rπ Boolean value to check if demand d
uses path π as a service path in the
SRLG failure event r

xuv Bandwidth allocated to link (u, v)
ϕ(ui,vj) Boolean value to check if the flow

is forwarded on link ((u, i), (v, j)) of
GL(d)

αsdω , βruv Dual values relative to constraints
(6.8) and (6.9)

λd(µ) Length of the shortest path for de-
mand d, with respect to link metrics
µ

Table 6.2: Notation table.

are solving a dimensioning problem, we assume prior full knowledge of traffic
demands, i.e., traffic matrices are known beforehand. A demand d ∈ D is
modeled by a quadruple (sd, td, bwd, Cd) with sd the source, td the destination,
Cd the ordered sequence of network functions that need to be performed to all
the packets belonging to the flow of the demand, and bwd the required units of
bandwidth. We denote by `(d) the length of the SFC for a demand d.

Network functions need to be executed on the so-called NFV Infrastructure
(NFVI) nodes. Not all the network nodes are enabled to run virtualized func-

98 CHAPTER 6. FAILURE RECOVERY

s ...
t

e1

e2

e3

e|S|

Figure 6.1: The multigraph resulting from the reduction. G = (V,E) is the
multigraph with V = {s, t} and E = {ei, i = 1, ..., |S|}. All the edges have s
and t as endpoints.

tions. We denote by V vnf ⊆ V the set of NFVI nodes. Moreover, we assume
that an NFVI node can only run a subset of the network functions, as there may
be constraints on their location in the network (e.g., geography or regulatory
constraints and anti-affinity rules).
Given the network topology and the traffic rate of the demands to be supported,
the purpose of the design problem is to precompute a set of paths to guarantee
the recovery of all the demands in the event of an SRLG failure, while satisfying
their SFC requirements.
The considered optimization task is to minimize the required bandwidth in the
network. We refer to this problem as the Global Rerouting problem. For
each demand d ∈ D, we have to find a primary path and a protection one for
each SRLG failure situation r ∈ R, such that the total amount of bandwidth
needed to guarantee the recovery in all the failure situations is minimized.

We denote by u(i) the copy of node u in layer i. The paths for demand Dc
sd

starts from node vs(0) in layer 0 and ends at node vd(1) in layer 1. Using link
(u(i), v(i)) on GL implies using link (u, v) on G. On the other hand, using link
(u(0), u(1)) implies using node u to perform the required network function(s).

We begin the section by proving hardness and inapproximability results for
the Global Rerouting problem. Then, we propose a scalable decomposition
model which relies on the Column Generation technique which is based on a
layered network model.

Proposition 1. The Global Rerouting problem is NP-hard even for a single
demand, and cannot be approximated within
(1 − ε) ln(|R|) for any ε > 0 unless P=NP, where |R| denotes the number of
failing scenarios.

We use a reduction from the Hitting Set Problem, which is defined as
follows. We are given a collection C of subsets of a finite set S and the problem
consists in finding a hitting set for C, i.e., a subset S′ ⊆ S such that S′ contains
at least one element from each subset in C of minimum cardinality. Given an
instance I = (S,C) of Hitting Set, we can build an instance I ′ = (G,D,R)
of Global Rerouting in the following way. G = (V,E) is a multigraph with
V = {s, t} and E = {ei, i = 1, ..., |S|}. All the edges have s and t as endpoints

6.3. OPTIMIZATION APPROACHES 99

(see Fig 6.1 and Example 1 for an example). For each C ′ ⊆ C, we add a
failing scenario rC′ = E \ C ′ to R, corresponding to edges that cannot be used
in the failure situation r. Finally, we add to D, a demand d with s and t as
source and destination respectively, and with charge equal to 1. The goal now
consists in finding a path for each of the failure scenarios r ∈ R minimizing
the needed capacity to deploy. The total capacity needed to satisfy d in each
of the failure situations does not exceed c ⇐⇒ there exists a hitting set of
cardinality not greater than c. The proposition follows immediately from the
fact that Hitting Set is NP-hard [ADP80] and cannot be approximated within
a factor of ln |S| [DS14], unless P=NP.

Example 1 (Reduction). Consider the following instance of the Hitting Set
Problem: S = {1, 2, 3, 4, 5} and C = {C1, C2, C3, C4, C5} with C1 = {1, 2, 3, 4},
C2 = {1, 4, 5}, C3 = {2, 5}, C4 = {2, 3, 5}, and C5 = {1, 4}. The multigraph
resulting from the reduction of the instance is a multigraph with 5 edges (noted
1, 2, 3, 4, and 5) linking two nodes s and t corresponding to the elements in S.
The corresponding instance of the Global Rerouting problem has a single
demand d with source s and destination t, an empty SFC, and requiring a single
unit of bandwidth to be sent. It has 5 SRLG events R = {r1, r2, r3, r4, r5}, as
many as the number of subsets in C, with r1 = E \ C1 = {5}, r2 = E \ C2 =
{2, 3}, r3 = E \C3 = {1, 3, 4}, r4 = E \C4 = {1, 4}, and r5 = E \C5 = {2, 3, 5}.
Solving the Global Rerouting problem boils down to finding a set of edges
(of minimum cardinality) for which at least an edge will be available over all
failure scenarios: {4, 5}. If we install a capacity of 1 for these two edges, we ob-
tain a survivable network of minimum cost to protect against the 5 considered
SRLG events. Note that this is equivalent to finding a minimum cardinality
Hitting Set for the original instance, as the sets C1, C2, C3, C4, C5 correspond
to the edges available in each failure scenario.

6.3.2 A Layered Network Model

In order to support any service types and service function chains, the traffic
associated with each demand must be processed by an ordered sequence of net-
work functions defined in advance. Similarly to [HJG18], we use a layered graph
to model this constraint.
Let G = (V,E) be a graph. We associate to each demand d ∈ D a layered graph
GL(d) = (V ′, E′). GL(d) is defined as follows. For each u ∈ V , V ′ contains
the vertices (u, 0), (u, 1), ..., (u, `(d)). An edge ((u, i), (v, j)) belongs to E′ if and
only if (1) (u, v) ∈ E and i = j, or (2) u is a NFVI node, u = v, j = i+ 1, and
the jth function of Cd is installed on u.
Given a demand d, let sd and td be the source and the destination node, re-
spectively. A path starting at vertex (sd, 0) and finishing at vertex (td, `(d))
of GL(d) defines (a) which edges of G are used to route the flow associated to
the demand; and (b) on which NFVI nodes the traffic is processed by each of
the requested network functions. We refer to a path in GL(d) = (V ′, E′) as a
Service Function Path (SFP) - see Fig. 6.2 for an example.

100 CHAPTER 6. FAILURE RECOVERY

Layer 0

u1,0

u2,0

u3,0

Layer 1

u1,1

u2,1

u3,1

Layer 2

u1,2

u2,2

u3,2

Figure 6.2: The layered network GL(d) associated with a demand d such that
sd = u1, td = u3, and Cd = f1, f2, with G = (V,E) being a triangle network.
We assume f1 installed on Node u1 and f2 installed on Nodes u1 and u3. Source
and destination nodes of GL(d) are u1,0 and u3,2, respectively. They are drawn
with dashed lines. Two possible service paths that satisfy d are drawn in red
and blue.

6.3.3 Compact ILP Formulation

A straightforward way to model our problem consists in using an ILP. The goal
of the ILP is to find for each demand d ∈ D a service path on the layered
graph GL(d) for each SRLG event such that the total bandwidth required in
the network is minimized. In order to take into account the scenario without
failure, we add an SRLG associated with an empty set of links to R. Thus, the
SRLGs set is extended to R ∪ ∅.
Variables:

• ϕd,r(ui,vj) ∈ {0, 1}, with ϕd,r(ui,vj) = 1 if demand d uses link ((u, i), (v, j)) of

GL(d) in the SRLG failure event r.

• xruv ≥ 0 is the amount of bandwidth allocated to link (u, v) of G in the
SRLG failure event r.

Objective (6.1): minimization of the bandwidth needed in the network in order
to guarantee the recovery.

min
∑

(u,v)∈E

max
r∈R

xruv (6.1)

6.3. OPTIMIZATION APPROACHES 101

For each link, the needed capacity to be installed is maxr∈R x
r
uv in order to guar-

antee the recovery for every failure scenario or SRLG in R. We thus mininimize
the sum over all links in (6.1).
Flow Conservation constraints (6.2) (6.3) (6.4): for each demand d, SRLG set
r ∈ R, ∑

(v,j)∈ω((sd,0))

ϕd,r(sd0,vj) =
∑

(v,j)∈ω((td,`(d))

ϕd,r(td`(d),vj) = 1 (6.2)

∑
(v,j)∈ω((u,i))

ϕd,r(ui,vj) ≤ 2 v ∈ V \ {(sd, 0), (td, `(d))} (6.3)

∑
(v′,j′)∈ω((u,i))\{(v,j)}

ϕd,r(ui,v′j′) ≥ ϕ
d,r
(ui,vj)

v ∈ V \ {(sd, 0), (td, `(d))}, ` ∈ ω((u, i)) (6.4)

Equation (6.2) ensures that the path of demand d starts at the source node
(sd, 0) in layer 0 and ends at the destination node (td, `(d)) in layer `(d), with
`(d) the length of the SFC of the demand d. Equation (6.3) forces the paths
to not use twice the same link of the layered graph to avoid loops. The flow
conservation of each path (i.e., a path arriving at an intermediate node has to
leave this node) is a result of Equation (6.4). Remark that the constraint is an
inequality. However, we have equality for an optimal solution as a product of
the minimization objective.

Unavailable links in an SRLG failure event (6.5): for each r ∈ R,

∑
d∈D

∑
(u,v)∈r

`(d)∑
k=0

ϕd,r(uk,vk) = 0. (6.5)

Equation (6.5) ensures that a path cannot use a link involved in SRLG r when
considering the failure scenario r.

Bandwidth utilization in an SRLG failure event (6.6): for each SRLG set r ∈ R,
link (u, v) ∈ E, ∑

d∈D
bwd ·

`(d)∑
k=0

ϕd,r(uk,vk) ≤ x
r
uv. (6.6)

Equation 6.6 guarantees that the bandwidth usage on each link (which is the
sum of the bandwidth usage over all layers on the link) is lower than or equal
to the link capacity.

6.3.4 Column Generation Approach

One can apply the Dantzig-Wolfe decomposition [DW60; CC+83] to the ILP
formulation to exploit its block structure per demand d ∈ D. The resulting
model takes the form of a path flow formulation. In order to model the ordered

102 CHAPTER 6. FAILURE RECOVERY

sequence of network functions by which the traffic associated to a demand must
be processed, we use a layered graph, similarly as in [HJG18]. Let G = (V,E)
be a graph. We associate to each demand d ∈ D a layered graph GL(d) =
(V ′, E′). GL(d) is defined as follows. For each u ∈ V , V ′ contains the vertices
(u, 0), (u, 1), ..., (u, `(d)). An edge ((u, i), (v, j)) belongs to E′ if and only if (1)
(u, v) ∈ E and i = j, or (2) u is an NFVI node, u = v, j = i + 1, and the jth

function of Cd is installed on u. We refer to a path in GL(d) = (V ′, E′) as a
Service Function Path (SFP).
We denote by Πr

d the set of service function paths for a demand d in the SRLG
failure situation r. Each service path π is associated to an integer value aπuv ≥ 0
telling the number of times link (u, v) is used in the service path π.
Variables:

• yd,rπ ≥ 0, where yd,rπ = 1 if demand d uses path π as a service path in the
SRLG failure event r ∈ R.

• xuv ≥ 0, bandwidth allocated to link (u, v) ∈ E.

Objective (6.7): minimization of the required bandwidth

min
∑

(u,v)∈E

xuv (6.7)

One service path for each demand and SRLG failure event (6.8): for all d ∈ D,
r ∈ R ∑

π∈Πrd

yd,rπ ≥ 1. (6.8)

Inequality (6.8) ensures that at least one path is selected for each pair de-
mand/SRLG event. Note that a single path is selected for optimal solutions
due to the minimization objective.

Bandwidth utilization (6.9): for all (u, v) ∈ E, r ∈ R

xuv ≥
∑
d∈D

∑
π∈Πrd

bwd · aπuv · yd,rπ . (6.9)

Given its very large number of variables, Column Generation is an efficient tech-
nique to handle the above linear integer programming model. One starts with
a limited set of variables in a so-called Restricted Master Problem (RMP). At
each iteration, the RMP is solved. The dual values associated to the constraints
are used to generate new paths with negative reduced cost and the associated
variables are added to the RMP that may enable to improve the current solu-
tion. This process is repeated until no more columns can be added to the RMP,
i.e., no more columns with negative reduced cost exist. We refer to [DDS06] for
more details regarding this technique.

Pricing Problem

The pricing subproblem is solved independently for each demand d and
SRLG failure event r and it returns a service path π. It consists in finding

6.3. OPTIMIZATION APPROACHES 103

a minimum cost service path in the layered graph where the weight of a link is
defined according to the dual values of the associated constraint.
Variables:

• ϕ(ui,vj) ∈ {0, 1}, where ϕd,r(ui,vj) = 1 if the flow is forwarded on link

((u, i), (v, j)) of GL(d).

Let αsdω ≥ 0 and βruv ≥ 0 be the dual values relative to constraints (6.8) and
(6.9), respectively. The service path reduced cost for a given demand d and an
SRLG r can be written as:

min−αdr + bwd ·
∑

(u,v)∈E

βruv ·
`(d)∑
k=0

ϕ(uk,vk)

The first term is a constant for each request, and the second term corresponds
to a summation over the links of the network. Therefore, the objective func-
tion (6.10) becomes:

min
∑

(u,v)∈E

βruv ·
`(d)∑
k=0

ϕ(uk,vk). (6.10)

Thus, for each request and for each failure situation, the pricing subproblem
corresponds to a weighted shortest-path problem in the layered graph. In a
given SRLG failure situation r and for all the demands d ∈ D, the weight of a
link ((u, i), (v, j)) of GL(d) is defined to be βruv if i = j, 0 otherwise. Either one
of these paths leads to a negative reduced cost column, or the current master
solution is optimal for the unrestricted program. In the former case, the new
configurations found are then added iteratively to the RMP. In the second case,
the solution of the linear relaxation of the RMP z∗LP is optimal. Convergence
of the basic Column Generation procedure suffers from dual oscillations as the
number of constraints (6.9) is large. To improve the convergence and reduce the
fluctuations in the dual variables, we use the piecewise linear penalty function
stabilization described in [Pes+18]. Associated to the optimal solution of the
linear relaxation of the RMP, for each demand d and SRLG failure situation
r, there is a set of service paths identified by all the variables yd,rπ with value
greater than 0. These service paths guarantee the minimum cost in terms of
required bandwidth to deploy for ensuring the recovery in the splittable flow
case. However, if we restrict our attention to the unsplittable flow case, we have
to select only one service path for each demand and SRLG failure situation.
The problem now consists in making this choice by reducing the overflow in-
troduced in the network. One possible way consists in changing the domain of
the variables in the last RMP from continuous to integer and use an ILP solver.
We refer to this strategy as MasterILP.

6.3.5 Benders Decomposition Approach

Applying Benders Decomposition technique [Ben62] to our compact model con-
sists in splitting the original problem variables into first stage link capacity

104 CHAPTER 6. FAILURE RECOVERY

assignments on one hand, and second stage routing decisions on the other hand.
The master problem is in terms of the xuv variables. It takes the following form.

Objective (6.11): minimization of the bandwidth used in the network

min
∑

(u,v)∈E

xuv. (6.11)

Metric inequalities (6.12):∑
(u,v)∈E

µuv · δuv,r · xuv ≥
∑
d∈D

λd(µ) · bwd ∀ µ ∈ R+E (6.12)

where the latter constraints are known as metric inequalities [CCG09]. They can
be separated in polynomial time by solving an LP. Hence, they can be handled in
a lazy way by a dynamic generation, which allows to solve the problem using the
cutting plane algorithm. These cuts are iteratively added to the master problem
until the difference between the lower bound, corresponding to the solution of
the master problem, and the upper bound, corresponding to the solution of the
subproblems, falls under a fixed value ε.

Benders separation subproblem is solved given the link bandwidth vector x.
This capacity assignment is globally feasible (for the splittable problem) if and
only if for each vector µ = {µuv ≥ 0 : (u, v) ∈ E} and for each SRLG failure
situation r ∈ R, the inequality∑

(u,v)∈E

µuv · δuv,r · xuv ≥
∑
d∈D

λd(µ) · bwd (6.13)

holds, where δuv,r ∈ [0, 1] is the available portion of link (u, v) under scenario r,
and λd(µ) is the length of the shortest path for demand d with respect to link
metrics µ.

Associated to the optimal solution of the master problem, we have the op-
timal link capacities in the splittable flow case, as in the Column Generation
case. The main difference lies in the fact that we do not have the selected paths.
We thus have to find a path for each demand and failure situations trying to
minimize the overflow, with respect to the solution found in the splittable flow
case.

6.3.6 The Min-Overflow Problem

The efficiency of decomposition methods such as Column Generation and Ben-
ders technique is based on two main principles: (i) decomposing the problem
into subproblems which can be solved efficiently (ii) first solving fractional ver-
sions of the problems. Indeed, solving a fractional Linear Program can be done
in polynomial time, when their mixed integral version often is NP-complete (as
it is the case for the problems considered here). An important step of the meth-
ods is to obtain good integral solutions from the optimum fractional solutions
found. The Min Overflow Problem appears in this context.

6.3. OPTIMIZATION APPROACHES 105

Algorithm 4 Iterative ILP (IterILP)

1: Solve the linear relaxation of the general problem
2: c̃← c∗

3: for each r ∈ R do
4: (a) route the demands on G′ = (V,E \ r, c̃) solving MinOverflowILP,

an integral multicommodity flow problem minimizing the overflow
5: (c) update c̃ with the introduced overflow (if any)
6: end for
7: return c̃

As it is costly to solve (exactly) the integer version of the master program
(the MasterILP strategy discussed above at the end of Sec. 6.3.4), to obtain a
“good” integer solution, we could use another approach. That is, we may start
by computing efficiently a fractional solution to the linear relaxation of the
problem (i.e., when flows are splittable) using either the Column Generation
algorithm or the Benders Decomposition technique. We then try to obtain
a good integer solution to the problem (i.e., when flows are unsplittable) by
minimizing the cost to pay in terms of additional capacity (i.e., the overflow)
over all the scenarios when using a single path for each demand.

IterILP Algorithm

We define overflow as the total amount of additional bandwidth to be allocated
to the network in order to satisfy all the demands. To this end, one possible
strategy considers each scenario one at a time, and formulates a multicommodity
flow problem as an ILP. The objective function consists in minimizing the over-
flow to be allocated to the network. We refer to this strategy as IterILP - see
Algorithm 4 for its pseudo-code. The used ILP, denoted as MinOverflowILP,
is given below.

MinOverflowILP:

Input a graph G = (V,E), an SRLG set r ∈ R, and a capacity function c̃.

Objective (6.14): minimization of the overflow (additional bandwidth) needed
in the network in order to guarantee the recovery for the scenario corresponding
to SLRG r.

min
∑

(u,v)∈E

oruv (6.14)

Remark: if the objective function is equal to |E|, all demands can be routed with
the capacity function c̃. All the overflow ratios are equal to 0 and no additional
capacity is needed for the scenario of the SLRG r.

106 CHAPTER 6. FAILURE RECOVERY

Flow conservation constraints (6.15) (6.16) (6.17): for each demand d,∑
(v,j)∈ω((sd,0))

ϕd,r(sd0,vj) =
∑

(v,j)∈ω((td,`(d))

ϕd,r(td`(d),vj) = 1 (6.15)

∑
(v,j)∈ω((u,i))

ϕd,r(ui,vj) ≤ 2 v ∈ V \ {(sd, 0), (td, `(d))} (6.16)

∑
(v′,j′)∈ω((u,i))\{(v,j)}

ϕd,r(ui,v′j′) ≥ ϕ
d,r
(ui,vj)

v ∈ V \ {(sd, 0), (td, `(d))}, ` ∈ ω((u, i)) (6.17)

Bandwidth utilization for the SRLG set r (6.18): for each link (u, v) ∈ E,

∑
d∈D

bwd ·
`(d)∑
k=0

ϕd,r(uk,vk) ≤ x
r
uv. (6.18)

Equation 6.18 guarantees that the bandwidth usage on each link is lower than,
or equal to, the link capacity.

Definition of the overflow: the overflow ratio of the link uv ∈ E, oruv, is defined as
1 if xruv ≤ c̃uv and (xruv− c̃uv)/c̃uv otherwise, i.e., oruv = max((xruv− c̃uv)/c̃uv, 1).
It thus gives inequalities (6.19) and (6.20), for each link (u, v) ∈ E,

oruv ≥
xruv − c̃uv

c̃uv
(6.19)

oruv ≥ 1 (6.20)

Note that the minimization of the objective function will imply the equality to
the maximum for an optimal solution.

If on one hand, this strategy leads to good results, on the other hand, it may
not scale well, since we have to solve an ILP for each SRLG failure scenario.

Algorithmic Complexity and Randomized Rounding Strategy

Another strategy consists in using an algorithm to route the demands while
minimizing the overflow. The problem to be solved for an SRLG failure scenario
which we refer to as Min Overflow Problem can be stated as follows.
Input: A graph G = (V,E), a collection D of demands, each associated with
a source, a destination and the units of flows to be routed. Also, each demand
is associated with a set of paths, corresponding to the fractional solution of the
splittable flow version of the problem. Lastly, a capacity function c∗ : (u, v) →
c∗uv, according to the optimal capacities found solving the linear relaxation of
the general problem.
Output: A path for each demand.

Objective: Minimize the overflow, i.e., minimize
∑

(u,v)∈E
c̃(u,v)
c∗uv

with c̃(u, v)

defined as the maximum between c∗uv and the capacity of the link (u, v) after
having selected one path per demand.

6.3. OPTIMIZATION APPROACHES 107

Note that, contrary to the classical version of the problem, we do not have
hard capacity constraints to respect while computing an integer routing. Herein,
the goal is to route all the demands reducing the increase in terms of capacity
over each of the links (i.e., the overflow) with respect to the free given capacities
already available in the network.

Proposition 2. The Min Overflow Problem is APX-hard (and so is NP-
hard) and cannot be approximated within a factor of 1 + 3

320 , unless P=NP.

Proof. We use a reduction from Max 3-SAT. Let I be an instance of Max 3-
SAT with n variables Vi, 1 ≤ i ≤ n and m clauses Cj , 1 ≤ j ≤ m. We associate
each boolean variable Vi to a demand di asking for one unit of flow from a source
sdi to a destination tdi connected by two paths P0(Vi) and P1(Vi). Selecting
P1(Vi) (respectively P0(Vi)) corresponds to assign to Vi the true (respectively
false) value.
We associate each clause C to an edge (uC , vC) and we build the paths in the
following way. For each variable Vi, we consider all the set C(Vi) with all the
clauses in which Vi appears as positive literal. C(Vi) = Ci1 , Ci2 , ..., Cim with
i1 ≤ i2 ≤ ... ≤ im. Then, P1(Vi) = sdi , (ui1 , vi1), (ui2 , vi2), ..., (uim , vim), tdi .
In a similar way, we consider now all the clauses in which Vi appears as negative
literal. C(Vi) = Ci1 , Ci2 , ..., Cim with i1 ≤ i2 ≤ ... ≤ im. P1(Vi) is defined as
sdi , (ui1 , vi1), (ui2 , vi2), ..., (uim , vim), tdi .
As we build paths in this way, the load of an edge (uC , vC) is equal to the number
of literals in the clause C assigned to the false value. There are

∑n
i=1(2im +

1)(2im+1) = 6m+2n edges in the construction, as
∑n
i=1 |C(Vi)|+|C(Vi)| = 3m,

the number of literals in the formula. We now assign to each edge a capacity
2. A fractional routing always exists. Indeed, routing one half of the charge of
each demand di on P0(Vi) and the other half on P1(Vi) is feasible, since after
identification, an arc receives at most 3 × 1

2 ≤ 2. The case of an integral flow
is quite different, since, in such a case, only one between P0(x) or P1(x) can
be chosen. Since the capacity of the edges is 2, the cost will be 2 on each
identified edge ⇐⇒ the formula is satisfiable. This proves that the problem is
NP-complete (as 3-SAT is NP-complete). Then, we derive an inapproximability
result using the fact that it is NP-hard to satisfy more than 7

8 of the clauses (even
if the formula is satisfiable) [H̊as01]. So, we may have to pay 3 on m/8 edges
(even though the optimal is 2 on all edges). Since the initial cost is less than 2
times the number of edges, it is less than 2 × (6m+ 2n) = 12m+ 4n. We have

n ≤ m
3 . So, it is NP-hard to decide if the cost is 1 or

(12+ 4
3)m+m

8

(12+ 4
3)m

= 1 + 3
320 .

Proposition 3. The Min Overflow Problem can be approximated with high
probability within a factor of (1 + 1

e) + ε, for any ε > 0.

Let c∗uv be the optimal capacity of an edge (u, v) in the splittable flow case.
After having computed a fractional flow, we have associated to each demand
d ∈ D a set consisting of n(d) ≥ 1 paths Pd = {Pd,i : i = 1, ..., n(d)}. Each path

Pd,i is associated to a multiplier 0 ≤ λd,i ≤ 1 such that
∑n(d)
i=1 λd,i = 1 which

gives the amount of flow λd,i ·bwd routed on Pd,i. Let λd,i(uv) be the fraction of

108 CHAPTER 6. FAILURE RECOVERY

flow routed on the edge (u, v) by a demand d. Note that for each edge (u, v), we

have
∑
d∈D

∑n(d)
i=1 bwd · λd,i(uv) ≤ c∗uv since by hypothesis these capacities are

feasible for the splittable flow case. In order to find an unsplittable solution, we
use a rounding–based heuristic referred to as Randomized Rounding, which
assigns to a demand d a path Pd,i with probability λd,i. We consider now the
impact in terms of load on an edge (u, v). Let fuv be the flow on (u, v) at the
end of the rounding procedure. Clearly, for each edge (u, v), E(fuv) ≤ c∗uv holds.
Let Ouv be the overflow on the edge (u, v) defined as max(0, fuv − c∗uv). We
denote by P0(uv) = P[fuv = 0] the probability that the edge (u, v) is not used.

E[Ouv] = P0(uv) · 0 + (1− P0(uv))E[fuv|fuv > 0]− c∗uv
= (1− P0(uv))E[fuv|fuv > 0]− c∗uv(1− P0(uv))

Moreover,

E[fuv] = P0(uv) · 0 + (1− P0(uv))E(fuv|fuv > 0)

E[fuv|fuv > 0] =
E[fuv]

1− P0(uv)

We can therefore bound the expected overflow of a link (u, v).

E[Ouv] = E[fuv]− c∗uv(1− P0(uv))

= P0(uv)c∗uv − (c∗uv − E[fuv]) ≤ P0(uv)c∗uv

Let us now consider the probability P0(uv) that an edge is not used after the
randomized rounding. Given an edge (u, v), we define Puv to be the paths that
contain (u, v) as an edge.

P0(uv) =
∏

Pd,i∈Puv

(1− λd,i)

The probability for an edge not to be selected is maximized when all λd,i are
equal (i.e., λd,i = 1

|Puv| ∀ λd,i ∈ Puv). Thus,

P0(uv) = (1− 1

ρ|Puv|
)|Puv|

where ρ is defined to be E[fuv]
c∗uv

. This gives an upper bound for the possible value

of P0(uv). Indeed,

P0(uv) ≤ lim
n→∞

(1− 1

ρn
)n =

1

eρ
.

The function is minimized with ρ = 1. We thus get

E[Ouv] ≤
1

eρ
c∗uv − (c∗uv − E[fuv])

≤ c∗uv(
1

eρ
− (1− ρ)) ≤ 1

e
c∗uv ≈ 0.37c∗uv.

6.4. NUMERICAL RESULTS 109

Algorithm 5 Iterative Randomized Rounding

1: Solve the linear relaxation of the general problem
2: c̃← c∗

3: for each r ∈ R do
4: (a) route the demands on G′ = (V,E \ r, c̃) solving a fractional multi-

commodity flow problem

5: (b) use Randomized Rounding to find a (1+ 1
e +ε)–approximate integer

routing

6: (c) update c̃ with the introduced overflow (if any)
7: end for
8: return c̃

Finally, the expected cost of the solution provided is

E

[∑
(u,v)∈E Ouv∑
(u,v)∈E c

∗
uv

]
=

∑
(u,v)∈E E[Ouv]∑

(u,v)∈E c
∗
uv

≤ 1

e
≈ 0.37.

By using the Markov inequality, the probability that the obtained solution has
a cost larger than 1.37(1 + ε) is at most 1

1+ε . The overflow resulting from the
execution of the randomized rounding can be checked in polynomial time. If the
overflow exceeds the factor of (1+ 1

e)+ε, another trial may be necessary in order
to find a solution below this value. The number of trials depends on the chosen
value for ε. For instance, if we set ε = 1

10 , we need an average of 10 trials in
order to find a solution with cost not greater than 1.507 (= 1.37 + 0.137) times
the optimal fractional one. As we have just shown, the problem of minimizing
the overflow can be approximated efficiently for a single scenario. The proposed
scheme consists in a randomized rounding to be performed according to the value
of the splittable flow solution. We may extend Randomized Rounding to the
case of multiple scenarios by simply solving the scenarios in an iterative fashion.
At each iteration, an SRLG r ∈ R is considered. First, a fractional capacitated
multicommodity flow is solved. Then, a (1+ 1

e +ε)–approximated integer solution
is found using the Randomized Rounding procedure described in Algorithm 6.
The overflow introduced (if any) by the procedure is then added. We refer to
this method as Iterative Randomized Rounding - see Algorithm 5 for the
pseudo-code of our proposed algorithm.

6.4 Numerical Results

In this section, we evaluate the performances of our proposed algorithms on both
real and synthetic network topologies and workloads. The compared methods
are MasterILP, in which the last RMP is solved as an ILP by setting the domain
of the path variables from fractional to binary. IterILP, in which each scenario
is solved independently with an ILP that has, as a goal, the minimization of
the overflow and ITERATIVE RANDOMIZED ROUNDING for which, instead

110 CHAPTER 6. FAILURE RECOVERY

Algorithm 6 Randomized Rounding

Require: A network with a capacity function c̃ and a fractional routing for a
set of demands D

Ensure: A (1 + 1
e + ε)–approximate integer routing

1: repeat
2: for each d ∈ D do . Build an integral routing
3: select a path Pd,i among all fractional paths pi with probability
λd,i(uv).

4: end for
5: ci ← compute the capacities of the drawn integral routing
6: overflow = 0 . Compute the overflow
7: for each e ∈ E do
8: overflow + = max(ci,c̃)

c̃
9: end for

10: until overflow ≤ (1+ 1
e +ε)|E| return ci, the capacities of the drawn integral

routing

of using an ILP to minimize the overflow, we use a (1 + 1
e + ε)–approximation

algorithm. We show the effectiveness

• of our algorithms in terms of scalability. Indeed, we are able to solve
instances with much larger numbers of demands, network nodes and links
than the classic compact ILP model, and

• of Global Rerouting in terms of bandwidth usage, i.e., the bandwidth
needed to be provisioned by an operator to handle failures is minimum.

Data Sets

We conduct experiments on three real-world topologies from SNDlib [Orl+10]:
polska, (12 nodes, 18 links, and 66 demands), pdh (11 nodes, 34 links, and 24
demands) and nobel-germany (17 nodes, 26 links, and 121 demands). For these
networks, we use the traffic matrices provided with the data set. No informa-
tion is available about the SRLGs for these networks. Thus, the collection of
network failures R for these instances contains single edge failures.
We also conduct experiments on randomly generated instances of different sizes
and with different SRLGs. We build our synthetic instances using a simi-
lar method to the one in [KKV05]. We generate two networks in which we
place nodes in a unit square. In each of them, we add links according to the
Waxman model [Wax88]. The probability of having a link (u, v) is defined as

α exp
−dist(u,v)

βL where dist(u, v) is the Euclidean distance from node u to node
v, L is the maximum distance between two nodes and α, β are real parameters
in the range [0, 1]. One of the two networks represents the logical IP network,
i.e., IP routers and IP links while the other represents the underlying optical

6.4. NUMERICAL RESULTS 111

Figure 6.3: Time of the solution found by the ILP and by our proposed methods
as a function of the number of demands.

network, i.e., cross-connect and fibers. Each IP node is mapped to the closest
optical cross-connect and each IP link (u, v) is mapped onto the shortest path
between u and v in the physical network.
All IP links using the same physical link are associated to an SRLG. In addition,
we add an SRLG for each undirected link. Demands are generated using the

model described in [FT02]. The model considers the distance factor exp
−dist(u,v)

2L

between two nodes u and v. As a result, the load of the demands between close
pairs of nodes is higher with respect to pairs of nodes far apart.
Finally, the chain of each demand is composed of 3 to 6 functions uniformly
chosen at random from a set of 10 functions. Each NFVI node can run up to 6
network functions. Indeed, a node may not be allowed to run all the network
functions. Similarly as in [HJG18], locations are chosen according to their be-
tweenness centrality, an index of the importance of a node in the network: it
is the fraction of all shortest paths between any two nodes that pass through a
given node. Experiments have been conducted on an Intel Xeon E5520 with 24
GB of RAM.

Limits Of An ILP-based Approach

To study the limits in terms of computing time of an ILP-based approach, we
tested our optimization models on a small random topology with 10 nodes, 16
links, and 26 SRLGs. In Fig. 6.4 and Fig. 6.3, we show the impact of the number

112 CHAPTER 6. FAILURE RECOVERY

Figure 6.4: Value of the solution found by the ILP and by our proposed methods
as a function of the number of demands.

of demands on the execution time. We compare the time necessary to find an
optimal solution (Fig. 6.4) and the value of the solution found (Fig. 6.3) by the
ILP and by our proposed methods. For each experiment, we set a maximum
time limit of one hour. If the time limit is exceeded, the solution reported
represents the best solution found so far.
For just 30 demands, the time needed by IBM ILOG Cplex 12.8 to find an exact
solution exceeds 1 hour and for larger instances, no optimal solution can be
found using an ILP approach in a reasonable amount of time. On the contrary,
the algorithms we propose can compute solutions for larger instances with a fair
efficiency. Indeed, our algorithms only take 1 minute to solve the problem for
90 demands. As the considered network is small, the computed values by the
three proposed methods are very close between them. We compare them in the
following on larger networks.

Performances Of The Optimization Models

Table 6.3 summarizes the results of our proposed methods for the three real
networks and for four Waxman random networks. Networks are identified as
wxm N with N being the number of nodes.
The number of demands is set to be 50, 100, 150, and 200 for the 10, 20, 30, and
40 nodes networks, respectively. Moreover, the number of resulting SRLGs for

6.4. NUMERICAL RESULTS 113

the Waxman random networks are 22, 40, 53, and 70, respectively. The first
column compares the Column Generation (ColGen) and the Benders Decompo-
sition [Ben62] (Benders) techniques to find a fractional solution based on which
the heuristics find an integer solution. The Column Generation technique ap-
pears to be faster in finding the optimal solution z∗LP : on the largest considered
network, wxm40 only takes 22 minutes to find an optimal solution, while Benders
would require more than one hour. The remaining three columns refer to our
optimization methods. For each method, we present both the time needed to

find a solution z̃ILP , as well as the ratio ε =
z̃ILP−z∗LP

z∗LP
with respect to the opti-

mal fractional solution z∗LP . ε, called accuracy in the following, gives an upper
bound on the maximum overflow to pay in excess with respect to the optimal
integer solution z∗ILP , since the optimal integer solution may be larger than the
fractional one.
Both MasterILP and IterILP allow to find near–optimal solutions. As the size
of the network increases, we begin to observe the limits of the IterILP approach,
as it solves an ILP for each scenario. Although MasterILP demonstrates a bet-
ter scalability and a very high accuracy, for larger networks we have a tradeoff
between the time to find the solution and the quality of the solution found.
Indeed, for wxm40, IterRR only takes 2 minutes to find a good solution with an
accuracy of about 9%, while MasterILP requires 27 minutes to find a solution
with an accuracy of 2.2%.

Varying The Number Of NFVI Nodes

NFVI nodes are expensive to both purchase and maintain (e.g., hardware,
software licenses, energy consumption, and maintenance). If, on one hand,
over-provisioning corresponds to undue extra costs, on the other hand, under-
provisioning may result in poor service to user and in Service Level Agreement
(SLA) violations. It is thus necessary to find the right trade-off in terms of
NFVI nodes in the network design phase.

Bandwidth overhead. In Fig. 6.5, we compare the overhead in terms of band-
width needed in the network by the global rerouting scheme and Dedicated Path
Protection with respect to the bandwidth needed in the unprotected case. For
Dedicated Path Protection, we compute for each demand two SRLG-disjoint
paths, i.e., two paths such that no link on one path has a common risk with any
link on the other path. By doing so, we set the bandwidth minimization as an
optimization task. With an increasing number of NFVI nodes in the network,
the required bandwidth decreases. However, the overhead with respect to the
unprotected case tends to remain constant. Indeed, if with global rerouting we
only need from 30 to 60% more bandwidth, with dedicated path protection we
may need almost three times more bandwidth to guarantee the recovery.

114 CHAPTER 6. FAILURE RECOVERY

(a) Pdh.

(b) Nobel-germany.

Figure 6.5: Bandwidth overhead comparison of the Global Rerouting (GR) and
Dedicated Path Protection (DP) schemes with respect to the No-Protection
scenario (NP) for pdh and Nobel-germany networks. Labels on top of the bars
indicate the overhead with respect to the unprotected case.

6.4. NUMERICAL RESULTS 115

Network
z∗LP MasterILP IterILP IterRR

ColGen Benders time ε time ε time ε
pdh 22s 32s 11mn 4% 1mn 4.82% 40s 12.7%

polska 15s 18s 40s 0.22% 1mn 0.1% 20s 1.4%
nb-germany 35s 1mn 40s 0.17% 4mn 0.06% 30s 3.2%

wxm10 10s 5s 50s 0.3% 40s 1% 10s 5.5%
wxm20 40s 2mn 1mn 0.6% 4mn 0.6% 30s 2.7%
wxm30 3mn 16mn 6mn 0.2% 21mn 0.9% 1mn 4.5%
wxm40 22mn >1h 27mn 2.2% >1h - 2mn 9.2%

Table 6.3: Numerical results for the proposed optimization models. First column
refers to the time needed to find the optimal fractional solution z∗LP . We set a
maximum time limit of 1h. The other columns refer to the proposed methods
to obtain an integer solution z̃ILP . For each method, we show the additional
time needed and the quality of the solution found, expressed as the ratio ε =
z̃ILP−z∗LP

z∗LP
.

pd
h

po
ls
ka

nb
-g

er

w
xm

10

w
xm

20

w
xm

30

w
xm

40

0

5

10

15

20

N
u

m
b

er
of

d
is

ti
n

ct
p

at
h

s

Figure 6.6: Distribution for the number of distinct paths for each demand. Boxes
are defined by the first and third quartiles. Ends of the whiskers correspond to
the first and ninth deciles. The median value is drawn in red.

116 CHAPTER 6. FAILURE RECOVERY

Paths’ delays. In Fig. 6.7, we show the impact of the number of NFVI nodes
on the path latency distribution and compare them with the ones calculated
using shortest paths on the layered network. As expected, we see that the
number of hops decreases as the number of NFVI nodes increases.
Actually, more there are NFVI-nodes in a network, higher is the opportunity to
find easily closer NFVI-nodes which can perform some of the required network
functions. Another result is that the paths computed using our method are
almost as short (in terms of number of hops) as the shortest paths.

Number of paths. In our considered protection scheme, a demand may be
rerouted on a different path in each of the possible SRLG failure situations.
Even though our optimization models do not impose constraints on the number
of distinct paths for a demand, the experimental results indicate that their
number tends to be small in practice.
In Fig. 6.6, we show the distribution for the number of distinct paths of the
demands for our considered networks. The number of distinct paths increases
with the size of the network and tends to stay within the range (5, 10) for most
of them. For instance, for wxm40 we may have potentially 71 distinct paths to
be used for a demand, one for each of the possible SRLG failure scenarios plus
one for the case without failure. However, as the results show, in such a case,
50% of the demands would use no more than 12 distinct paths.

6.4. NUMERICAL RESULTS 117

(a) Pdh.

(b) Nobel-germany.

Figure 6.7: Hops distribution of the backup paths computed by the global
rerouting scheme (GR) compared with the shortest paths (SP) for pdh and
nobel-germany networks.

118 CHAPTER 6. FAILURE RECOVERY

6.5 Implementation Perspectives

In the previous sections, we followed a theoretical approach to design a bandwidth-
optimal failure recovery scheme relying on the hypothesis that programmable
networks should be able to implement such a scheme. In this section, we ver-
ify this assumption by implementing the scheme on production SDN appliances,
namely Open vSwitch and OpenDayLight, and evaluate different trade-offs with
Mininet. Our evaluation shows that implementation choices have a significant
impact on the recovery time of protection mechanisms.

6.5.1 Implementation Options

A first option to implement the protection scheme in OpenFlow is to let the
OpenFlow controller fully update the flow tables on the switches upon failure.
When the controller detects a failure, it sends the new flow tables to the im-
pacted switches. This approach minimizes the memory usage on the switches,
but incurs high signaling overhead between the controller and the switches, and
imposes the latter to install a full flow table at every network change. We refer
to this option as full. A variation of this option is to only send the changes to
be performed on the flow tables to the switches to reduce the signaling load and
the number of flow table updates on the switches. We name this option delta.
Another option is to leverage the Multiple Flow Tables capability introduced in
OpenFlow 1.3 to pre-install the flow tables for each SRLG failure scenario in the
switches. When the controller sends a failure notification to a switch, the switch
activates the appropriate flow table in only one operation (using goto). This
approach minimizes the signaling load and flow table changes, but consumes
more memory on the switches than the other options. This option is referred to
as notification. In the rest of this chapter, we study the impact of the technical
choices on the recovery time in realistic operational scenarios.

Fig. 6.8 illustrates how the full and delta implementation options pre-
sented above operate. The network is composed of three switches (S1, S2, S3),
one destination for traffic (d), and one controller. The controller has the full
knowledge of the network and pre-computed the alternative flow tables for each
potential failure. To save space, we only show the information related to link
failures for host d, the rest (e.g., node failures, SRLGs, other destinations. . .) of
the table is hidden behind the blob term. Figs. 6.8b and 6.8c show the messages
sent by the controller to the switches to recover from the failure of link L5 and
the resulting flow tables on the switch. Fig. 6.9 is the counterpart of Fig. 6.8
for the notification implementation option. In this case, the controller does
not store flow tables in memory. Instead, it stores the goto operations to be
performed in case of failures. This implementation minimizes the controller’s
computational effort in case of failure because every possible rule is precomputed
and installed in the switches. In case of failure the controller sends a single mes-
sage to each switch, with a single rule update (the goto rule). Fig. 6.9b shows
the goto instructions sent to the switches to recover from the failure of link L5

and how it changes the forwarding decisions on the switches.

6.5. IMPLEMENTATION PERSPECTIVES 119

L1

Controller

S1 S2 S3
None:d,S

L1:d,S
L2:d,E
L3:d,E

L4:d,SE
L5:d,E
Blob1

None:d,W
L1:d,S
L2:d,S
L3:d,S
L4:d,W
L5:d,S
Blob2

None:d,E
L1:d,E
L2:d,E
L3:d,E
L4:d,E
L5:d,N
Blob3

L2 L3

L5

L4

N

S

E W

SSE

E

d,S
Blob1

d,E
Blob3

d,W
Blob2

S1

S3

S2

d

(a) State of the network before any failure.

L1

Controller

L5

S1 S2 S3
None:d,S

L1:d,S
L2:d,E
L3:d,E

L4:d,SE
L5:d,E
Blob1

None:d,W
L1:d,S
L2:d,S
L3:d,S
L4:d,W
L5:d,S
Blob2

None:d,E
L1:d,E
L2:d,E
L3:d,E
L4:d,E
L5:d,N
Blob3

L2 L3

X
L4

N

S

E W

SSE

E

d,E
Blob1

d,N
Blob3

d,S
Blob2

S1

S3

S2

d

Full:
d,E

Blob1 Full:
d,N

Blob3

Full:
d,S

Blob2

(b) Full.

L1

Controller

L5

S1 S2 S3
None:d,S

L1:d,S
L2:d,E
L3:d,E

L4:d,SE
L5:d,E
Blob1

None:d,W
L1:d,S
L2:d,S
L3:d,S
L4:d,W
L5:d,S
Blob2

None:d,E
L1:d,E
L2:d,E
L3:d,E
L4:d,E
L5:d,N
Blob3

L2 L3

X
L4

N

S

E W

SSE

E

d,E
Blob1

d,N
Blob3

d,S
Blob2

S1

S3

S2

d

Delta:
d,E

Delta:
d,N

Delta:
d,S

(c) Delta.

Figure 6.8: Switch update operations for the full and delta protection scheme
implementation options in SDN networks upon one link failure. In the full

protection scheme, the table inside the switches are completely overwritten by
the new tables. In the delta protection scheme, the controller only modifies
the rules that are changing in the failure scenario.

6.5.2 Experimental Setup

Our experimental platform is a dual Intel Xeon E5-2630 CPU server with 128
GB of RAM running Mininet 2.2.2 [LHM10] and the controller OpenDaylight

120 CHAPTER 6. FAILURE RECOVERY

L1

Controller

S1 S2 S3
None:GoTo T1

L1:GoTo T2
L2:GoTo T3
L3:GoTo T4
L4:GoTo T5
L5:GoTo T6

Blob1

None:GoTo T1
L1:GoTo T2
L2:GoTo T3
L3:GoTo T4
L4:GoTo T5
L5:GoTo T6

Blob2

None:GoTo T1
L1:GoTo T2
L2:GoTo T3
L3:GoTo T4
L4:GoTo T5
L5:GoTo T6

Blob3

L2 L3

L5

L4

N

S

E W

SSE

E

d,S
Blob1

S1

S3

S2

d

T0:GoTo T1
T1:d,S
T2:d,S
T3:d,E
T4:d,E

T5:d,SE
T6:d,E
Blob1

T0:GoTo T1
T1:d,E
T2:d,E
T3:d,E
T4:d,E
T5:d,E
T6:d,N
Blob3

T0:GoTo T1
T1:d,W
T2:d,S
T3:d,S
T4:d,S
T5:d,W
T6:d,S
Blob2

(a) State of the network before any failure.

L1

Controller

S1 S2 S3
None:GoTo T1

L1:GoTo T2
L2:GoTo T3
L3:GoTo T4
L4:GoTo T5
L5:GoTo T6

Blob1

None:GoTo T1
L1:GoTo T2
L2:GoTo T3
L3:GoTo T4
L4:GoTo T5
L5:GoTo T6

Blob2

None:GoTo T1
L1:GoTo T2
L2:GoTo T3
L3:GoTo T4
L4:GoTo T5
L5:GoTo T6

Blob3

L2 L3

L5

L4

N

S

E W

SSE

E

d,S
Blob1

S1

S3

S2

d

T0:GoTo T6
T1:d,S
T2:d,S
T3:d,E
T4:d,E

T5:d,SE
T6:d,E
Blob1

T0:GoTo T6
T1:d,E
T2:d,E
T3:d,E
T4:d,E
T5:d,E
T6:d,N
Blob3

T0:GoTo T6
T1:d,W
T2:d,S
T3:d,S
T4:d,S
T5:d,W
T6:d,S
Blob2

X

Notification:
T0: GoTo T6

Notification:
T0: GoTo T6

Notification:
T0: GoTo T6

(b) Notification.

Figure 6.9: Switch update operations for the notification protection scheme
implementation option in SDN networks upon one link failure. The rules are
preinstalled in the switches in a different table for each failure scenario, and
table 0 is pointing to the no failure table in the normal state. In a failure
situation, the controller updates the pointer in table 0 to use the table assigned
for the failure scenario.

Oxygen [Med+15] with OpenFlow 1.3.
The routing logic is implemented as a network application orchestrator that
communicates with the controller with the HTTP OpenDaylight Northbound
API. This approach is recommended as it decouples the implementation of the
logic from the implementation of the controller.

We also made an ideal implementation to assess the best possible perfor-
mance one could have. It is equivalent to the notification option, but is im-
plemented directly in Mininet with Open vSwitch commands. In this case, the
switches are programmed directly, without the controller overhead. Mininet
emulation is centralized, so we are able to synchronize all failure notifications
to the switches just after the failure occurs, bypassing thus the controller.

Due to the limited number of CPU cores on our emulation server, we could
only evaluate the wxm10 and the polska networks.

6.5.3 Recovery Time

The recovery time is the span of time between a failure event and the moment
in which all switches are updated to be in a state that circumvents the failure.
To measure the recovery time, we continuously probe the end-to-end paths with
UDP datagrams. Fig. 6.10 shows the recovery time for our three OpenDaylight
implementation options and the ideal one. It compares our Global Rerout-
ing protection scheme to the Dedicated Path protection scheme. The figure
highlights the importance of implementation choices on the recovery time: the

6.5. IMPLEMENTATION PERSPECTIVES 121

Full Delta Notification Ideal
101

102

103

R
ec

ov
er

y
ti

m
e

(m
s)

GR DP

Figure 6.10: Recovery time comparison of various implementation options for
Global Rerouting (GR) and Dedicated Path Protection (DP) for the polska

network.

notification option significantly outperforms the other options. The ideal imple-
mentation also shows that the tools used to implement the protection scheme
have a significant impact on the recovery time as, all things considered, our ideal
is just a way of implementing the notification option without a controller. Actu-
ally, a significant fraction of the recovery time in OpenDaylight implementations
is caused by the usage of the Northbound API. All implementation options offer
sub-second recovery time for the considered network.

Figs. 6.10 and 6.14 show that there is a direct link between the number
of changes to be performed on the switches and the recovery time in Polska
network. The same observation applies to the wx10 network as highlighted by
Figs. 6.11 and 6.15. Figs. 6.14 and 6.15 report, for each switch, the maxi-
mum number of flow table changes observed expressed in number of flow entries
for the three OpenDaylight implementation options. Dedicated path protection
has similar recovery time than global rerouting when the full implementation
is used. This is because the number of flows to install on switches is similar
between dedicated path protection and global rerouting. Similarly, no perfor-
mance difference can be observed when the notifications based implementation
is used as the controller only has to update one rule per switch. On the contrary,
if updates are performed with the delta implementation, then dedicated path
protection converges faster than global rerouting, as it requires much fewer path
changes.

122 CHAPTER 6. FAILURE RECOVERY

Full Delta Notification Ideal
101

102

103

R
ec

ov
er

y
ti

m
e

(m
s)

GR DP

Figure 6.11: Recovery time comparison of various implementation options for
Global Rerouting (GR) and Dedicated Path Protection (DP) for the wxm10

network.

Full Delta Notification
101

102

103

M
ax

fl
ow

s
in

st
a
ll
ed

GR DP

Figure 6.12: Comparison of the flow table sizes of various implementation op-
tions for Global Rerouting (GR) and Dedicated Path Protection (DP) for the
polska network.

6.5. IMPLEMENTATION PERSPECTIVES 123

Full Delta Notification
100

101

102

103

M
ax

fl
ow

s
in

st
a
ll
ed

GR DP

Figure 6.13: Comparison of the flow table sizes of various implementation op-
tions for Global Rerouting (GR) and Dedicated Path Protection (DP) for the
wxm10 network.

Full Delta Notification
0

10

20

30

40

50

60

M
ax

fl
ow

s
ch

an
ge

s

GR DP

Figure 6.14: Comparison of the number of flow table changes of various imple-
mentation options for Global Rerouting (GR) and Dedicated Path Protection
(DP) for the polska network.

124 CHAPTER 6. FAILURE RECOVERY

Full Delta Notification
0

20

40

60
M

ax
fl

ow
s

ch
a
n

ge
s

GR DP

Figure 6.15: Comparison of the number of flow table changes of various imple-
mentation options for Global Rerouting (GR) and Dedicated Path Protection
(DP) for the wxm10 network.

6.5.4 Operational Trade-Offs

Based on the recovery time, one would recommend deploying the notification op-
tion. However, the reduction of the recovery time comes at the cost of increasing
flow table sizes on switches as shown in Fig. 6.12 and Fig. 6.13. Actually, these
figures report, for each switch, the maximum observed flow table size expressed
in number of flow entries for the three OpenDaylight implementation options
in both networks. The full option minimizes the number of entries, as it only
requires to have the flow table for the current routing case. The delta option
consumes slightly more space than the full one, as the flow table always con-
tains the “no-failure” scenario flow table and the additional flow entries needed
to circumvent the current failure. Finally, the notification option has signifi-
cantly larger flow tables (one order of magnitude more), as flow tables always
contain all the potential failure scenarios, which may prevent it to be used in
practice on low end switches or for large networks.
As the robustness of the controller is an orthogonal problem that must be treated
by all SDN solutions and because it is already largely studied [Zha+18], it was
not considered here.

6.6. CONCLUSION 125

6.6 Conclusion

In this chapter, we studied the network dimensioning problem with protection
against a Shared Risk Link Group (SRLG) failure in the light of network virtu-
alization. We considered a path-protection method based on a global rerouting
strategy, which makes the protection method optimal in terms of bandwidth.
We proposed algorithms to compute the backup paths for the demands which
rely on the Column Generation and Benders Decomposition techniques. We
validated them with simulations on real-world and on randomly generated net-
work topologies and workloads. Simulations show that our algorithms can reach
near-optimal solutions in a short time, even for large instances. Finally, we
proposed a real implementation of our proposition in OpenDaylight and show
the applicability of the global rerouting protection method when SDN is used.
The experimental results in Mininet show that our solution provides sub-second
recovery times, but the way it is implemented may greatly impact the amount
of signaling traffic exchanged. In our evaluations, the recovery phase requires
only a few tens of milliseconds for the fastest implementation, compared to a
few hundreds of milliseconds for the slowest one.

126 CHAPTER 6. FAILURE RECOVERY

Chapter 7

Conclusion And Future
Work

7.1 Summary Of Contributions

Cloud computing is the next norm. Companies are investing a massive amount
of resources for migrating to the cloud. Software Defined Networking and Net-
work Function Virtualization are paving the way how Internet Service Providers
manage and distribute their services to their clients.

In Chapter 3 and Chapter 4, we have extensively analyzed Distrinet, a dis-
tributed network emulator for SDN and NFV networks. Chapter 3 focused on
the technical choices made to build the tool. We analyzed the main tools avail-
able (MaxiNet and Mininet Cluster Edition), showing their limitations and how
Distrinet helps to resolve these limitations. The experiments are done using the
same allocation algorithm for all the tools. We ran Iperf on different virtual
topologies in a single host with Mininet and on two hosts with the distributed
tools. We showed that Distrinet is the one that returns the closest results to
Mininet. We also analyzed the creation and removal time for each element of
the virtual networks, demonstrating that the network creation time in Distrinet
is slower, due to a better container isolation and the compatibility with the
Mininet API.

In Chapter 4, we analyzed the optimization problem in the case of distributed
network emulation. As the challenge is a Network Embedding Problem, we pro-
posed three different algorithms and compared them with the algorithms im-
plemented in the other network emulation tools. We tested more than 75,000
scenarios in heterogeneous and homogeneous networks. The algorithms pro-
posed to find a feasible solution for almost all the tests, while the algorithms
used in the other tools often return that overload occurs in a physical host or a
physical link. To justify the need for algorithms returning a solution that is not
overloaded, we conducted experiments showing the impact of the overloading
(for CPU, RAM, and link). These experiments proved that a wrong allocation

127

128 CHAPTER 7. CONCLUSION AND FUTURE WORK

of the virtual network could lead to results that are not trustable, or a complete
crash of the test-bed.

In Chapter 5, we considered the cloud computing topic. Organizations that
are planning to move their applications into the cloud should first check that
the cloud network will support these applications. On premises datacenter,
the delay is usually low, while cloud infrastructures do not provide a specific
value for the delay in a region or in between two different regions. To monitor
the delay within the cloud infrastructure, we implemented CloudTrace, a simple
tool that automatizes the deployment and the configuration of multiregional and
regional Virtual Private Clouds. We first showed the main services proposed
by Amazon Web Services to provide Infrastructure as a Service deployment.
After introducing the single components, we described how to merge them to
provide a multiregional and regional environment. CloudTrace automatically
creates the environments on the regions specified by the user, then manages all
the virtual instances, updating them and installing all the requirements. The
user can run the experiment after the deployment. CloudTrace will synchronize
Paris-Traceroute to run each minute. Results can be retrieved by the user at
any moment, without stopping the experiments. CloudTrace is finally able to
analyze the data received and build a map with all the data collected.

In our last contribution (Chapter 6), we investigated different problems and
proposed new solutions in order to minimize the bandwidth used in the net-
work. The challenge is to design a network, considering a path-based protection
scheme with a global rerouting strategy. In the worst case, using a global rerout-
ing strategy, we may have a new routing of all the flows. This means that the
controller has to send many updates to the switches. We extensively exper-
imented the new approach, comparing it with the dedicated path protection
one. For the experiment test-bed, we used Mininet to emulate the networks
and OpenDaylight as a controller. We demonstrated that there is not a signif-
icant increase in the update rule time in both strategies. However, the global
rerouting consumes on average 40% less bandwidth with respect to the dedi-
cated path protection. The experiments ran on real-world network topologies
and randomly generated instances. We also presented three different implemen-
tation strategies. We showed that the technical implementation choices greatly
impact the time needed to reestablish the flows after a failure occurs.

7.2 Future Work

There are multiple ways to continue our research. For distributed network
emulation and Distrinet, it could be interesting to study the variation and the
correctness of the results in cloud environments. Investigating which scenarios
and experiments are suitable for the use of public clouds to perform emulation
helps to identify the scenarios where it is not possible to use clouds due to their
shared resources (including networking). In such cases, it is more convenient to
use private test-beds in a controlled environment.

Another challenge is to see how much the virtualization layer of public and

7.2. FUTURE WORK 129

private cloud infrastructures is affecting the emulation results. It is also possible
to extend Distrinet to use Docker containers by default, and measure if the
overhead added by LXC is different from Docker overhead when emulating a
network. There is also another problem when distributing the emulation, such
as synchronization of the virtual nodes on different physical hosts.

The proposed optimization algorithms used in Distrinet consider general
physical infrastructure and general virtual networks for emulation. One en-
hancement is to build an algorithm that optimizes the distribution in fixed
networks topologies used in datacenter or test-beds, such as fat-tree topology.
Distrinet also does not automatically program the physical switches in the net-
work. It could be interesting to create an SDN feature to allow Distrinet to
automatically manage private test-beds’ physical infrastructure, for example,
Grid’5000.

Regarding the CloudTrace tool, it can be extended to work with Microsoft
Azure and Google cloud in order to compare the network delay stability of the
different cloud providers. It could also be interesting to improve it to deploy
hybrid cloud environments, to see what are the delays between different cloud
providers, and check their stability during the day.

Lastly, to continue the failure recovery strategy, it is worth studying the be-
havior of network recovery using segment routing techniques in the edge routers
(e.g., using MPLS). It can also be studied in-depth if the different implementa-
tion options return similar results with physical routers.

130 CHAPTER 7. CONCLUSION AND FUTURE WORK

Bibliography

[ADP80] Giorgio Ausiello, Alessandro D’Atri, and Marco Protasi. “Struc-
ture preserving reductions among convex optimization problems”.
In: Journal of Computer and System Sciences 21.1 (1980), pp. 136–
153 (cit. on p. 99).

[Ama20a] Amazon. AWS Global Infrastructure documentation. https : / /

aws.amazon.com/about-aws/global-infrastructure/regions_

az/. 2020 (cit. on p. 82).

[Ama20b] Amazon. Cloudfront documentation. https://docs.aws.amazon.
com/AmazonCloudFront/latest/DeveloperGuide/Introduction.

html. 2020 (cit. on p. 81).

[Ama20c] Amazon. EC2 instance types. https://aws.amazon.com/ec2/
instance-types/. 2020 (cit. on p. 83).

[Ama20d] Amazon. EC2 service documentation. https://aws.amazon.com/
ec2 / ?ec2 - whats - new . sort - by = item . additionalFields .

postDateTime&ec2- whats- new.sort- order=desc. 2020 (cit.
on pp. 80, 83).

[Ama20e] Amazon. M5 instances AWS. https://aws.amazon.com/ec2/
pricing/on-demand/?nc1=h_ls. 2020 (cit. on pp. 39, 42).

[Ama20f] Amazon. Simple Service Storage documentation. https://aws.
amazon.com/s3/reduced-redundancy/. 2020 (cit. on pp. 81, 82).

[Ama20g] Amazon. SQS documentation. https://aws.amazon.com/sqs/.
2020 (cit. on p. 81).

[Ama20h] Amazon. VPC Peering AWS documentation. https://docs.aws.
amazon.com/vpc/latest/peering/what- is- vpc- peering.

html. 2020 (cit. on p. 83).

[Arn+20] Todd Arnold, Jia He, Weifan Jiang, Matt Calder, Italo Cunha,
Vasileios Giotsas, and Ethan Katz-Bassett. “Cloud Provider Con-
nectivity in the Flat Internet”. In: Proceedings of the ACM Internet
Measurement Conference. 2020, pp. 230–246 (cit. on p. 81).

131

132 BIBLIOGRAPHY

[Ass+20] K. D. R. Assis, R. C. Almeida, H. Waldman, M. J. Reed, B. Jau-
mard, and D. Simeonidou. “Linear formulation for the design of
elastic optical networks with squeezing protection and shared risk
link group: Invited Paper”. In: 2020 22nd International Confer-
ence on Transparent Optical Networks (ICTON). 2020, pp. 1–5.
doi: 10.1109/ICTON51198.2020.9203486 (cit. on pp. 95, 96).

[AV14] YK Agarwal and Prahalad Venkateshan. “Survivable network de-
sign with shared-protection routing”. In: European Journal of Op-
erational Research 238.3 (2014), pp. 836–845 (cit. on p. 94).

[Bal+13] Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier, Frédéric
Desprez, Emmanuel Jeannot, Emmanuel Jeanvoine, Adrien Lèbre,
David Margery, Nicolas Niclausse, Lucas Nussbaum, Olivier Richard,
Christian Pérez, Flavien Quesnel, Cyril Rohr, and Luc Sarzyniec.
“Adding Virtualization Capabilities to the Grid’5000 Testbed”.
In: Cloud Computing and Services Science. Ed. by Ivan I. Ivanov,
Marten van Sinderen, Frank Leymann, and Tony Shan. Vol. 367.
Communications in Computer and Information Science. Springer
International Publishing, 2013, pp. 3–20. isbn: 978-3-319-04518-4.
doi: 10.1007/978-3-319-04519-1_1 (cit. on pp. 39, 58, 71).

[BBS] Michael Till Beck, Juan Felipe Botero, and Kai Samelin. “Resilient
allocation of service Function chains”. In: IEEE NFV-SDN2016.
IEEE (cit. on p. 94).

[Ben62] Jacques F Benders. “Partitioning procedures for solving mixed-
variables programming problems”. In: Numerische mathematik 4.1
(1962) (cit. on pp. 103, 113).

[Ber+13] I. Bermudez, S. Traverso, M. Mellia, and M. Munafò. “Exploring
the cloud from passive measurements: The Amazon AWS case”.
In: 2013 Proceedings IEEE INFOCOM. 2013, pp. 230–234. doi:
10.1109/INFCOM.2013.6566769 (cit. on p. 81).

[Bot+12] Juan Felipe Botero, Xavier Hesselbach, Michael Duelli, Daniel
Schlosser, Andreas Fischer, and Hermann De Meer. “Energy effi-
cient virtual network embedding”. In: IEEE Communications Let-
ters 16.5 (2012), pp. 756–759 (cit. on p. 49).

[BSY18] Mostafa Bastam, Masoud Sabaei, and Ruhollah Yousefpour. “A
scalable traffic engineering technique in an SDN-based data cen-
ter network”. In: Transactions on Emerging Telecommunications
Technologies 29.2 (2018), e3268 (cit. on p. 96).

[Can19] Canonical. Linux Containers. https://linuxcontainers.org.
Accessed: 2019-05-10. 2019 (cit. on pp. 33, 35).

[Can20] Canonical. Ubuntu Fan Networking. https://wiki.ubuntu.com/
FanNetworking. 2020 (cit. on p. 37).

[CC+83] Vasek Chvatal, Vaclav Chvatal, et al. Linear programming. Macmil-
lan, 1983 (cit. on p. 101).

BIBLIOGRAPHY 133

[CCG09] Alysson M Costa, Jean-François Cordeau, and Bernard Gendron.
“Benders, metric and cutset inequalities for multicommodity ca-
pacitated network design”. In: Computational Optimization and
Applications 42.3 (2009), pp. 371–392 (cit. on p. 104).

[Cho+12] Sharon Choy, Bernard Wong, Gwendal Simon, and Catherine Rosen-
berg. “The brewing storm in cloud gaming: A measurement study
on cloud to end-user latency”. In: 2012 11th Annual Workshop
on Network and Systems Support for Games (NetGames). IEEE.
2012, pp. 1–6 (cit. on p. 82).

[Chu+15] Cing-Yu Chu, Kang Xi, Min Luo, and H Jonathan Chao. “Congestion-
aware single link failure recovery in hybrid SDN networks”. In:
Proceedings of IEEE INFOCOM, 2015. 2015 (cit. on pp. 95, 96).

[CRB09] NM Mosharaf Kabir Chowdhury, Muntasir Raihan Rahman, and
Raouf Boutaba. “Virtual network embedding with coordinated
node and link mapping”. In: IEEE INFOCOM 2009. IEEE. 2009,
pp. 783–791 (cit. on p. 49).

[CRB12] Mosharaf Chowdhury, Muntasir Raihan Rahman, and Raouf Boutaba.
“Vineyard: Virtual network embedding algorithms with coordi-
nated node and link mapping”. In: IEEE/ACM Transactions on
Networking (TON) 20.1 (2012), pp. 206–219 (cit. on p. 49).

[DDS06] Guy Desaulniers, Jacques Desrosiers, and Marius M Solomon. Col-
umn generation. Vol. 5. Springer Science & Business Media, 2006
(cit. on p. 102).

[Di +19a] G. Di Lena, A. Tomassilli, D. Saucez, F. Giroire, T. Turletti, and
C. Lac. “Mininet on steroids: exploiting the cloud for Mininet per-
formance”. In: 2019 IEEE 8th International Conference on Cloud
Networking (CloudNet). 2019, pp. 1–3. doi: 10.1109/CloudNet47604.
2019.9064129 (cit. on p. 13).

[Di +19b] Giuseppe Di Lena, Andrea Tomassilli, Damien Saucez, Frédéric
Giroire, Thierry Turletti, and Chidung Lac. “Demo Proposal -
Distrinet: A Mininet Implementation for the Cloud”. In: Pro-
ceedings of the 15th International Conference on Emerging Net-
working EXperiments and Technologies. CoNEXT ’19. Orlando,
FL, USA: Association for Computing Machinery, 2019, pp. 82–
83. isbn: 9781450370066. doi: 10.1145/3360468.3368186. url:
https://doi.org/10.1145/3360468.3368186 (cit. on p. 13).

[Di +19c] Giuseppe Di Lena, Andrea Tomassilli, Damien Saucez, Frédéric
Giroire, Thierry Turletti, and Chidung Lac. “Mininet on steroids:
exploiting the cloud for Mininet performance”. In: IEEE CloudNet.
2019 (cit. on pp. 31, 45).

134 BIBLIOGRAPHY

[Di +19d] Giuseppe Di Lena, Andrea Tomassilli, Damien Saucez, Frédéric
Giroire, Thierry Turletti, and Chidung Lac. “Trust your SDN/NFV
experiments with Distrinet”. In: Journées Cloud (2019) (cit. on
p. 13).

[Di +19e] Giuseppe Di Lena, Andrea Tomassilli, Damien Saucez, Frédéric
Giroire, Thierry Turletti, Chidung Lac, and Walid Dabbous. Dis-
tributed Network Experiment Emulation. GEFI 19 - Global Ex-
perimentation for Future Internet - Workshop. Nov. 2019. url:
https://hal.inria.fr/hal-02359801 (cit. on p. 13).

[Di +21a] G. Di Lena, F. Giroire, T. Turletti, and C. Lac. “CloudTrace
Demo: Tracing Cloud Network Delay”. Submitted to IEEE Inter-
national Conference on Network Softwarization (NetSoft), Demo
session. 2021 (cit. on p. 13).

[Di +21b] G. Di Lena, A. Tomassilli, F. Giroire, D. Saucez, T. Turletti, and
C. Lac. “Placement Module for Distributed SDN/NFV Network
Emulation”. Submitted to Computer Networks Journal. 2021 (cit.
on p. 13).

[Di +21c] Giuseppe Di Lena, Andrea Tomassilli, Damien Saucez, Frédéric
Giroire, Thierry Turletti, and Chidung Lac. “Distrinet: a Mininet
Implementation for the Cloud”. In: ACM Computer Communica-
tion Review (2021) (cit. on p. 13).

[Dis19] Distrinet. Distrinet website. https://distrinet-emu.github.
io. 2019 (cit. on pp. 45, 70).

[Dis20] Distrinet. Create a personalized host image. https://distrinet-
emu.github.io/personalize_vhost.html. 2020 (cit. on p. 39).

[DS14] Irit Dinur and David Steurer. “Analytical Approach to Parallel
Repetition”. In: Proceedings ACM STOC 2014. New York, New
York, 2014. isbn: 978-1-4503-2710-7 (cit. on p. 99).

[DW60] George B Dantzig and Philip Wolfe. “Decomposition principle for
linear programs”. In: Operations research 8.1 (1960), pp. 101–111
(cit. on p. 101).

[EA15] Rodrigo Emiliano and Mário Antunes. “Automatic network con-
figuration in virtualized environment using gns3”. In: 2015 10th In-
ternational Conference on Computer Science & Education (ICCSE).
IEEE. 2015, pp. 25–30 (cit. on p. 33).

[Fis+13] Andreas Fischer, Juan Felipe Botero, Michael Till Beck, Hermann
De Meer, and Xavier Hesselbach. “Virtual network embedding:
A survey”. In: IEEE Communications Surveys & Tutorials 15.4
(2013), pp. 1888–1906 (cit. on p. 49).

[FM17] Paulo Fonseca and Edjard Mota. “A survey on fault management
in software-defined networks”. In: IEEE Communications Surveys
& Tutorials (2017) (cit. on p. 95).

BIBLIOGRAPHY 135

[FT02] Bernard Fortz and Mikkel Thorup. “Optimizing OSPF/IS-IS weights
in a changing world”. In: IEEE journal on selected areas in com-
munications 20.4 (2002), pp. 756–767 (cit. on p. 111).

[FV00] Andrea Fumagalli and Luca Valcarenghi. “IP restoration vs. WDM
protection: Is there an optimal choice?” In: IEEE network 14.6
(2000) (cit. on p. 94).

[Gar07] Simson Garfinkel. “An evaluation of Amazon’s grid computing ser-
vices: EC2, S3, and SQS”. In: (2007) (cit. on p. 81).

[GBU19] Karyna Gogunska, Chadi Barakat, and Guillaume Urvoy-Keller.
“Tuning optimal traffic measurement parameters in virtual net-
works with machine learning”. In: 2019 IEEE 8th International
Conference on Cloud Networking, CloudNet 2019, Coimbra, Por-
tugal, November 4-6, 2019. IEEE, 2019, pp. 1–3. doi: 10.1109/
CloudNet47604.2019.9064132. url: https://doi.org/10.

1109/CloudNet47604.2019.9064132 (cit. on p. 80).

[Gir+19] Frédéric Giroire, Nicolas Huin, Andrea Tomassilli, and Stéphane
Pérennes. “When Network Matters: Data Center Scheduling with
Network Tasks”. In: IEEE International Conference on Computer
Communications (INFOCOM). Paris, France, Apr. 2019, pp. 2278–
2286. doi: 10.1109/INFOCOM.2019.8737415 (cit. on p. 51).

[GJS74] Michael R Garey, David S Johnson, and Larry Stockmeyer. “Some
simplified NP-complete problems”. In: Proceedings of the sixth
annual ACM symposium on Theory of computing. ACM. 1974,
pp. 47–63 (cit. on p. 51).

[GMS95] Martin Grötschel, Clyde L Monma, and Mechthild Stoer. “Design
of survivable networks”. In: Handbooks in operations research and
management science 7 (1995), pp. 617–672 (cit. on p. 95).

[Goo20] Google. Google Stadia website. https://store.google.com/

product/stadia. 2020 (cit. on p. 82).

[Gri20] Grid5000. Grid5000. https://www.grid5000.fr/w/Grid5000:
Home. 2020 (cit. on pp. 46, 56).

[Had20a] Hadoop. Apache Hadoop documentation. http://hadoop.apache.
org. 2020 (cit. on pp. 42, 74).

[Had20b] Hadoop. Hadoop docs. https : / / hadoop . apache . org / docs /

stable/. 2020 (cit. on p. 80).

[Han+15] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee.
“Network function virtualization: Challenges and opportunities for
innovations”. In: IEEE Communications Magazine 53.2 (2015),
pp. 90–97 (cit. on p. 93).

[H̊as01] Johan H̊astad. “Some optimal inapproximability results”. In: Jour-
nal of the ACM (JACM) 48.4 (2001), pp. 798–859 (cit. on p. 107).

136 BIBLIOGRAPHY

[HJG17] Nicolas Huin, Brigitte Jaumard, and Frédéric Giroire. “Optimiza-
tion of Network Service Chain Provisioning”. In: IEEE Interna-
tional Conference on Communications (ICC). Paris, France, May
2017 (cit. on p. 94).

[HJG18] Nicolas Huin, Brigitte Jaumard, and Frédéric Giroire. “Optimal
Network Service Chain Provisioning”. In: IEEE/ACM Transac-
tions on Networking (2018) (cit. on pp. 99, 102, 111).

[Hma+17] Ali Hmaity, Marco Savi, Francesco Musumeci, Massimo Tornatore,
and Achille Pattavina. “Protection strategies for virtual network
functions placement and service chains provisioning”. In: Networks
(2017), pp. 1–15 (cit. on p. 94).

[Hou+11] Ines Houidi, Wajdi Louati, Walid Ben Ameur, and Djamal Zegh-
lache. “Virtual network provisioning across multiple substrate net-
works”. In: Computer Networks 55.4 (2011), pp. 1011–1023 (cit.
on p. 49).

[Hui+18] Nicolas Huin, Andrea Tomassilli, Frédéric Giroire, and Brigitte
Jaumard. “Energy-Efficient Service Function Chain Provisioning”.
In: IEEE/OSA Journal of Optical Communications and Network-
ing 10.2 (2018) (cit. on p. 94).

[HX18] Phuong Ha and Lisong Xu. “Available bandwidth estimation in
public clouds”. In: IEEE INFOCOM 2018-IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS).
IEEE. 2018, pp. 238–243 (cit. on p. 81).

[IBM20] IBM. IBM Cloudbench Documentation. https://developer.ibm.
com/depmodels/cloud/projects/cloudbench- cbtool/. 2020
(cit. on p. 80).

[Joh+74] David S. Johnson, Alan Demers, Jeffrey D. Ullman, Michael R
Garey, and Ronald L. Graham. “Worst-case performance bounds
for simple one-dimensional packing algorithms”. In: SIAM Journal
on computing 3.4 (1974), pp. 299–325 (cit. on p. 54).

[JVU19] Quentin Jacquemart, Alessandro Baldi Vitali, and Guillaume Urvoy-
Keller. “Measuring the Amazon Web Services (AWS) WAN Infras-
tructure”. In: CoRes 2019. Saint Laurent de la Cabrerisse, France,
2019. url: https://hal.archives-ouvertes.fr/hal-02128052
(cit. on p. 80).

[KCG07] Amund Kvalbein, Tarik Cicic, and Stein Gjessing. “Post-failure
routing performance with multiple routing configurations”. In: Pro-
ceedings of IEEE INFOCOM. 2007 (cit. on pp. 95, 96).

[KF13] Hyojoon Kim and Nick Feamster. “Improving network manage-
ment with software defined networking”. In: IEEE Communica-
tions Magazine 51.2 (2013), pp. 114–119 (cit. on p. 94).

BIBLIOGRAPHY 137

[KK98] George Karypis and Vipin Kumar. “Multilevel algorithms for multi-
constraint graph partitioning”. In: SC’98: Proceedings of the 1998
ACM/IEEE Conference on Supercomputing. IEEE. 1998, pp. 28–
28 (cit. on p. 47).

[KKV05] Srikanth Kandula, Dina Katabi, and Jean-Philippe Vasseur. “Shrink:
A tool for failure diagnosis in IP networks”. In: Proceedings of the
2005 ACM SIGCOMM workshop on Mining network data. ACM.
2005, pp. 173–178 (cit. on pp. 94, 110).

[KL70] Brian W Kernighan and Shen Lin. “An efficient heuristic proce-
dure for partitioning graphs”. In: Bell system technical journal
49.2 (1970), pp. 291–307 (cit. on p. 51).

[KM05] Hervé Kerivin and A Ridha Mahjoub. “Design of survivable net-
works: A survey”. In: Networks: An International Journal 46.1
(2005), pp. 1–21 (cit. on p. 95).

[KNS09] Robert Krauthgamer, Joseph Naor, and Roy Schwartz. “Parti-
tioning graphs into balanced components”. In: Proceedings of the
twentieth annual ACM-SIAM symposium on Discrete algorithms.
SIAM. 2009, pp. 942–949 (cit. on p. 51).

[KS97] Stavros G Kolliopoulos and Clifford Stein. “Improved approxima-
tion algorithms for unsplittable flow problems”. In: Proceedings
38th Annual Symposium on Foundations of Computer Science.
IEEE. 1997, pp. 426–436 (cit. on p. 54).

[Kva+06] Amund Kvalbein, Audun Fosselie Hansen, Stein Gjessing, and
Olav Lysne. “Fast IP network recovery using multiple routing con-
figurations”. In: Proceedings of IEEE INFOCOM. 2006 (cit. on
pp. 95, 96).

[Len+21] Giuseppe Di Lena, Andrea Tomassilli, Frédéric Giroire, Damien
Saucez, Thierry Turletti, and Chidung Lac. “A Right Placement
Makes a Happy Emulator: a Placement Module for Distributed
SDN/NFV Emulation”. Proceedings of IEEE International Con-
ference on Communications (ICC). 2021 (cit. on p. 13).

[LHM10] Bob Lantz, Brandon Heller, and Nick McKeown. “A Network in
a Laptop: Rapid Prototyping for Software-defined Networks”. In:
Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics
in Networks. ACM, 2010. doi: 10.1145/1868447.1868466 (cit. on
pp. 31, 33, 119).

[Li+17] Z. Li, M. Kihl, Q. Lu, and J. A. Andersson. “Performance Over-
head Comparison between Hypervisor and Container Based Vir-
tualization”. In: 2017 IEEE 31st International Conference on Ad-
vanced Information Networking and Applications (AINA). 2017,
pp. 955–962. doi: 10.1109/AINA.2017.79 (cit. on p. 80).

138 BIBLIOGRAPHY

[LM15] S.-I. Lee and Myung M.-K. Shin. “A self-recovery scheme for ser-
vice function chaining”. In: International Conference on Informa-
tion and Communication Technology Convergence (ICTC). 2015,
pp. 108–112 (cit. on p. 94).

[Mar+14] Athina Markopoulou, Gianluca Iannaccone, Supratik Bhattacharyya,
Chen-Nee Chuah, and Christophe Diot. “Characterization of fail-
ures in an IP backbone”. In: Proceedings of IEEE INFOCOM,
2004. 2014 (cit. on p. 94).

[McK+08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan
Turner. “OpenFlow: enabling innovation in campus networks”. In:
ACM SIGCOMM Computer Communication Review 38.2 (2008),
pp. 69–74 (cit. on p. 94).

[Med+15] J. Medved, R. Varga, A. Tkacik, and K. Gray. “OpenDaylight:
Towards a Model-Driven SDN Controller architecture”. In: Pro-
ceedings of IEEE WoWMoM 2014. 2015 (cit. on p. 120).

[Mel+11] Márcio Melo, Jorge Carapinha, Susana Sargento, Luis Torres, Phuong
Nga Tran, Ulrich Killat, and Andreas Timm-Giel. “Virtual net-
work mapping–an optimization problem”. In: Springer MONAMI.
2011 (cit. on p. 49).

[Mer14] Dirk Merkel. “Docker: lightweight linux containers for consistent
development and deployment”. In: vol. 2014. 239. 2014, p. 2 (cit.
on p. 33).

[met20] metis. Metis documentation. http : / / glaros . dtc . umn . edu /

gkhome/metis/metis/overview. 2020 (cit. on pp. 46, 48).

[Mic20] Microsoft. Project xCloud website. https://www.xbox.com/en-
GB/xbox-game-streaming/project-xcloud. 2020 (cit. on p. 82).

[Min16] Mininet. Mininet Cluster Edition TCLink discussion. https://
mailman.stanford.edu/pipermail/mininet-discuss/2016-

July/007005.html. 2016 (cit. on p. 34).

[Mor+14] Igor M. Moraes, Diogo M.F. Mattos, Lyno Henrique G. Ferraz,
Miguel Elias M. Campista, Marcelo G. Rubinstein, Lúıs Henrique
M.K. Costa, Marcelo D. de Amorim, Pedro B. Velloso, Otto Carlos
M.B. Duarte, and Guy Pujolle. “FITS: A flexible virtual network
testbed architecture”. In: Computer Networks 63 (2014). Special
issue on Future Internet Testbeds Part II, pp. 221–237. issn: 1389-
1286. doi: https://doi.org/10.1016/j.bjp.2014.01.002.
url: http://www.sciencedirect.com/science/article/pii/
S1389128614000036 (cit. on p. 33).

[MP12] Jeffrey C Mogul and Lucian Popa. “What we talk about when
we talk about cloud network performance”. In: ACM SIGCOMM
Computer Communication Review 42.5 (2012), pp. 44–48 (cit. on
p. 81).

BIBLIOGRAPHY 139

[MR12] Michael Menzel and Rajiv Ranjan. “CloudGenius: decision sup-
port for web server cloud migration”. In: Proceedings of the 21st
international conference on World Wide Web. 2012, pp. 979–988
(cit. on p. 81).

[MVE14] Arun C Murthy, Vinod Kumar Vavilapalli, and Doug Eadline.
Apache Hadoop YARN: moving beyond MapReduce and batch pro-
cessing with Apache Hadoop 2. Pearson Education, 2014 (cit. on
p. 43).

[Orl+10] Sebastian Orlowski, Roland Wessäly, Michal Pióro, and Artur
Tomaszewski. “SNDlib 1.0—Survivable network design library”.
In: Networks 55.3 (2010) (cit. on p. 110).

[ovs20] ovs. Open vSwitch. https://www.openvswitch.org. 2020 (cit. on
p. 33).

[Pal+19] Fabio Palumbo, Giuseppe Aceto, Alessio Botta, Domenico Ciuonzo,
Valerio Persico, and Antonio Pescapé. “Characterizing Cloud-to-
user Latency as perceived by AWS and Azure Users spread over
the Globe”. In: 2019 IEEE Global Communications Conference
(GLOBECOM). IEEE. 2019, pp. 1–6 (cit. on p. 81).

[Pap01] Dimitri Papadimitriou. “Inference of shared risk link groups”. In:
Internet-draft: draft-many-inference-srlg-02. txt (2001) (cit. on p. 94).

[Per+15a] Valerio Persico, Pietro Marchetta, Alessio Botta, and Antonio Pescapé.
“On network throughput variability in microsoft azure cloud”. In:
2015 IEEE Global Communications Conference (GLOBECOM).
IEEE. 2015, pp. 1–6 (cit. on p. 81).

[Per+15b] Valerio Persico, Pietro Marchetta, Alessio Botta, and Antonio Pescapè.
“Measuring network throughput in the cloud: The case of Ama-
zon EC2”. In: Computer Networks 93 (2015), pp. 408–422 (cit. on
p. 81).

[Pes+18] Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and François Van-
derbeck. “Automation and combination of linear-programming based
stabilization techniques in column generation”. In: INFORMS Jour-
nal on Computing (2018) (cit. on p. 103).

[PKR16] M. Peuster, H. Karl, and S. van Rossem. “MeDICINE: Rapid pro-
totyping of production-ready network services in multi-PoP en-
vironments”. In: IEEE NFV-SDN. Nov. 2016, pp. 148–153. doi:
10.1109/NFV-SDN.2016.7919490 (cit. on p. 33).

[PM04] Michal Pióro and Deep Medhi. Routing, flow, and capacity design
in communication and computer networks. Elsevier, 2004 (cit. on
p. 94).

[Pro19] The Mininet Project. Cluster Edition Prototype. https://github.
com/mininet/mininet/wiki/Cluster-Edition-Prototype. Ac-
cessed: 2019-01-02. 2019 (cit. on pp. 33, 45–47).

140 BIBLIOGRAPHY

[Qiu+17] K. Qiu, S. Huang, Q. Xu, J. Zhao, X. Wang, and S. Secci. “Para-
Con: A Parallel Control Plane for Scaling Up Path Computation
in SDN”. In: IEEE Transactions on Network and Service Manage-
ment 14.4 (2017), pp. 978–990. doi: 10.1109/TNSM.2017.2761777
(cit. on p. 95).

[Qiu+19] K. Qiu, J. Zhao, X. Wang, X. Fu, and S. Secci. “Efficient Recov-
ery Path Computation for Fast Reroute in Large-Scale Software-
Defined Networks”. In: IEEE Journal on Selected Areas in Com-
munications 37.8 (2019), pp. 1755–1768. doi: 10.1109/JSAC.

2019.2927098 (cit. on p. 95).

[QN15] Paul Quinn and Tom Nadeau. “Problem statement for service
function chaining”. In: (2015) (cit. on p. 94).

[Red20] Redis. Redis docs. https://redis.io/topics/cluster-tutorial.
2020 (cit. on p. 80).

[RR14] P Vijaya Vardhan Reddy and Lakshmi Rajamani. “Evaluation of
different hypervisors performance in the private cloud with SIGAR
framework”. In: International Journal of Advanced Computer Sci-
ence and Applications 5.2 (2014) (cit. on p. 80).

[RS18] Matthias Rost and Stefan Schmid. “Charting the Complexity Land-
scape of Virtual Network Embeddings”. In: Proc. IFIP Network-
ing. 2018 (cit. on p. 51).

[Sga+13] Andrea Sgambelluri, Alessio Giorgetti, Filippo Cugini, Francesco
Paolucci, and Piero Castoldi. “OpenFlow-based segment protec-
tion in Ethernet networks”. In: Journal of Optical Communica-
tions and Networking 5.9 (2013) (cit. on pp. 33, 95, 96).

[Sou+17] O. Soualah, Marouen Mechtri, Chaima Ghribi, and Djamal Zegh-
lache. “A link failure recovery algorithm for Virtual Network Func-
tion chaining”. In: IFIP/IEEE Symposium on Integrated Network
and Service Management (IM). 2017 (cit. on p. 94).

[ST97] Horst D Simon and Shang-Hua Teng. “How good is recursive bi-
section?” In: SIAM Journal on Scientific Computing 18.5 (1997),
pp. 1436–1445 (cit. on p. 51).

[Sto06] Mechthild Stoer. Design of survivable networks. Springer, 2006
(cit. on p. 95).

[Suc+11] Martin Suchara, Dahai Xu, Robert Doverspike, David Johnson,
and Jennifer Rexford. “Network architecture for joint failure re-
covery and traffic engineering”. In: Proceedings of ACM SIGMET-
RICS 2011. ACM. 2011 (cit. on pp. 95, 96).

[Taj+19] Mohammad M Tajiki, Mohammad Shojafar, Behzad Akbari, Ste-
fano Salsano, Mauro Conti, and Mukesh Singhal. “Joint failure re-
covery, fault prevention, and energy-efficient resource management
for real-time SFC in fog-supported SDN”. In: Computer Networks
162 (2019), p. 106850 (cit. on p. 96).

BIBLIOGRAPHY 141

[Tir99] Ajay Tirumala. “Iperf: The TCP/UDP bandwidth measurement
tool”. In: http://dast. nlanr. net/Projects/Iperf/ (1999) (cit. on
p. 71).

[Tom+18] A. Tomassilli, N. Huin, F. Giroire, and B. Jaumard. “Resource
Requirements for Reliable Service Function Chaining”. In: 2018
IEEE International Conference on Communications (ICC). May
2018, pp. 1–7 (cit. on p. 94).

[Tom+19a] A. Tomassilli, G. Di Lena, F. Giroire, I. Tahiri, D. Saucez, S.
Perennes, T. Turletti, R. Sadykov, F. Vanderbeck, and C. Lac.
“Poster: design of survivable SDN/NFV-enabled networks with
bandwidth-optimal failure recovery”. In: 2019 IFIP Networking
Conference (IFIP Networking). 2019, pp. 1–2 (cit. on p. 13).

[Tom+19b] A. Tomassilli, G. D. Lena, F. Giroire, I. Tahiri, D. Saucez, S.
Perennes, T. Turletti, R. Sadykov, F. Vanderbeck, and C. Lac.
“Bandwidth-optimal Failure Recovery Scheme for Robust Pro-
grammable Networks”. In: 2019 IEEE 8th International Confer-
ence on Cloud Networking (CloudNet). 2019, pp. 1–6. doi: 10.

1109/CloudNet47604.2019.9064126 (cit. on p. 13).

[Tom+21] A. Tomassilli, G. Di Lena, F. Giroire, I. Tahiri, D. Saucez, S.
Perennes, T. Turletti, R. Sadykov, F. Vanderbeck, and C. Lac.
“Design of Robust Programmable Networks with Bandwidth-optimal
Failure Recovery Scheme”. In: Computer Networks (2021). Ed. by
Elsevier (cit. on p. 13).

[UTK16] Vojtech Uhlir, Ondrej Tomanek, and Lukas Kencl. “Latency-based
benchmarking of cloud service providers”. In: Proceedings of the
9th International Conference on Utility and Cloud Computing.
2016, pp. 263–268 (cit. on p. 82).

[Vas+18] Balázs Vass, László Németh, Martin Zachariasen, Amaro De Sousa,
and János Tapolcai. “Vulnerable regions of networks on sphere”.
In: 2018 10th International Workshop on Resilient Networks De-
sign and Modeling (RNDM). IEEE. 2018, pp. 1–8 (cit. on p. 95).

[Vas+20] Balázs Vass, János Tapolcai, David Hay, Jorik Oostenbrink, and
Fernando Kuipers. “How to model and enumerate geographically
correlated failure events in communication networks”. In: Guide
to Disaster-Resilient Communication Networks. Springer, 2020,
pp. 87–115 (cit. on p. 95).

[Vic+13] Pascale Vicat-Blanc, Brice Goglin, Romaric Guillier, and Sebastien
Soudan. Computing networks: from cluster to cloud computing.
John Wiley & Sons, 2013 (cit. on p. 46).

[VNT20] Balázs Vass, László Németh, and János Tapolcai. “The Earth is
nearly flat: Precise and approximate algorithms for detecting vul-
nerable regions of networks in the plane and on the sphere”. In:
Networks 75.4 (2020), pp. 340–355 (cit. on pp. 95, 96).

142 BIBLIOGRAPHY

[Wat08] Jon Watson. “Virtualbox: bits and bytes masquerading as ma-
chines”. In: vol. 2008. 166. Belltown Media, 2008, p. 1 (cit. on
p. 33).

[Wax88] Bernard M Waxman. “Routing of multipoint connections”. In:
IEEE journal on selected areas in communications 6.9 (1988),
pp. 1617–1622 (cit. on p. 110).

[Wet+14] P. Wette, M. Dräxler, A. Schwabe, F. Wallaschek, M. H. Zahraee,
and H. Karl. “MaxiNet: Distributed emulation of software-defined
networks”. In: 2014 IFIP Networking Conference. June 2014, pp. 1–
9. doi: 10.1109/IFIPNetworking.2014.6857078 (cit. on pp. 33,
45).

[Xen21] Xen. Xen Project. https://xenproject.org/developers/teams/
xen-hypervisor/. 2021 (cit. on p. 33).

[Ye+16] Zilong Ye, Xiaojun Cao, Jianping Wang, Hongfang Yu, and Chun-
ming Qiao. “Joint topology design and mapping of service function
chains for efficient, scalable, and reliable network functions virtu-
alization”. In: IEEE Network 30.3 (2016) (cit. on p. 94).

[Yu+08] Minlan Yu, Yung Yi, Jennifer Rexford, and Mung Chiang. “Re-
thinking virtual network embedding: substrate support for path
splitting and migration”. In: ACM SIGCOMM Computer Com-
munication Review 38.2 (2008), pp. 17–29 (cit. on pp. 49, 54).

[Zha+18] Yuan Zhang, Lin Cui, Wei Wang, and Yuxiang Zhang. “A Survey
on Software Defined Networking with Multiple Controllers”. In: J.
Netw. Comput. Appl. 103.C (Feb. 2018), pp. 101–118. issn: 1084-
8045. doi: 10.1016/j.jnca.2017.11.015 (cit. on p. 124).

[Zha+19] T. Zhang, L. Linguaglossa, J. Roberts, L. Iannone, M. Gallo, and
P. Giaccone. “A benchmarking methodology for evaluating soft-
ware switch performance for NFV”. In: 2019 IEEE Conference
on Network Softwarization (NetSoft). 2019, pp. 251–253. doi: 10.
1109/NETSOFT.2019.8806695 (cit. on p. 33).

