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A tous ceux qui n’ont pas confiance en eux

To all those who are not self-confident



Preface
‘Everything is under control!’

Guillaume P. Laurent (1979-), PhD candidate

My itinerary is uncommon (see figure below): I started with an associate degree in 

Chemistry in 1999 before specialising in Physical-Chemical Analysis Methods (MPCA) in 

2000, which was done by work-based learning. In 2003, I validated a Physical-Chemistry 

Licence,  simultaneously  to  my  work  as  an  engineer  assistant  (AI)  in  Condensed  Matter 

Physics laboratory (PMC). In 2012, I obtained a Master’s degree by validating my experience. 

Hence,  during  my  academic  curriculum,  I  had  only  a  few  mathematics  and  no 

electromagnetism courses at all. This PhD started in the continuation of my master.

Why starting a PhD? As I have already a permanent CNRS junior engineer position 

(so-called IE), this is a good question. There are three reasons for this: firstly for the search of 

knowledge,  secondly as a personal  challenge,  and thirdly to have a career evolution as a 

senior engineer (IR). This PhD was done in partial time in addition to my junior engineer job, 

which explains why it took 7.5 years. Reading a complex publication or trying to find a bug in 

a program with three children screaming loudly around, was not an easy task. In such a case, 

I could really say ‘Everything is under control!’
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Résumé long en français

A. Introduction

La  Résonance  Magnétique  Nucléaire  (RMN) en  phase  solide  est  un  domaine  en 

constante évolution, notamment depuis une vingtaine d’années. Le champ magnétique des 

appareils commerciaux atteint maintenant  B0 = 28.2 T (1.2 GHz pour le  1H), et  B0 = 35.2 T 

(1.5 GHZ pour le 1H) pour l’aimant hybride résistif/superconducteur du Laboratoire National 

des  Très  Hauts  Champs  Magnétiques  (NHMFL,  Tallahassee,  FL,  USA).  En  parallèle,  la 

rotation à l’angle magique (MAS) est de plus en plus rapide, à savoir 111 kHz pour les sondes 

commerciales et 170 kHz pour celles en développement de diamètre 0.5 mm (dans le groupe 

d’A.  Samoson).  S’ajoutent  à  ces  améliorations  techniques  des  développements 

méthodologiques importants, avec des séquences d’impulsions permettant des découplages ou 

recouplages homo- ou hétéronucléaires toujours plus performants, permettant d’aller sonder 

les proximités des noyaux au sein de l’échantillon. Ainsi, la combinaison d’ultra-haut champ 

magnétique, de MAS ultra-rapide, et d’acquisition inverse sur le  1H a permis d’étudier des 

objets toujours plus complexes, telles que des protéines de 153 résidus, des prions ou même 

des capsides virales (1).

Malgré ces innovations, le principal défaut de la RMN reste sa faible sensibilité, qui 

est  toujours  une  question  ouverte  au  sein  de  la  communauté.  Cet  inconvénient  est 

particulièrement présent dans trois cas parmi d’autres : les noyaux de rapport gyromagnétique 

faible ou intermédiaire, qui ne bénéficient que marginalement de l’augmentation du champ 

magnétique ; les noyaux présentant de fortes anisotropies, notamment les spins quadripolaires, 

dont le spectre s’étale sur plusieurs centaines de kHz et est masqué par le bruit ;  et d’une 

manière générale les spins rares, que ce soit du fait de l’abondance naturelle intrinsèque, de la 

dilution au sein de l’échantillon ou de la faible quantité de matière associée.

Dans le Chapitre I, après avoir rappelé les bases de la RMN en phase solide, nous nous 

sommes intéressés aux notions de bruit et d’artefacts. Le bruit en RMN est principalement lié 

à  l’agitation  thermique  des  électrons  dans  la  bobine  et  dans  le  préamplificateur  (bruit 

Johnson). La répartition du bruit ne dépend pas de la fréquence, ce que l’on appelle un bruit 

blanc.  De  plus,  son  intensité  suit  une  loi  gaussienne.  Lors  de  l’acquisition  du  spectre, 
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différents types d’artefacts peuvent apparaître, que ce soit un pic à fréquence nulle, une image 

miroir  des  pics,  des  fantômes  à  différentes  fréquences  ou  une  "traînée"  verticale  sur  les 

spectres nD (bruit-t1). Le procédé de traitement peut également créer des artefacts, comme 

c’est le cas lors de l’utilisation de la covariance.

La sensibilité peut être définie comme la capacité à distinguer de faibles différences de 

concentration.  Elle  est  intimement  liée  à  la  limite  de  détection. L.  Currie  a  formalisé 

mathématiquement trois seuils (2) : la limite de décision (Lc), la limite de détection (Ld) et la 

limite de quantification (Lq), correspondant à 1.64, 3.29 et 10 σbruit, respectivement, où σbruit est 

l’écart-type du bruit. Le rapport signal-sur-bruit (SNR) peut quant à lui être défini de plusieurs 

manières. Il est appelé PSNR quand il est mesuré sur la hauteur du pic de signal (Hsignal), tandis 

que le bruit est mesuré soit par sa moyenne quadratique (RMS), soit sur la hauteur du bruit 

pic-pic (hbruit_pic_pic).

En mathématiques et en électronique (3) SNR=
σ signal

2

σbruit
2

1

En spectroscopies1 (4) PSNR rms=
H signal

σbruit
2

En chimie analytique (5) PSNRmax=
H signal

hbruit _ pic _ pic /2
3

Dans le cas d’un bruit gaussien, PSNRrms ~ 3.3 PSNRmax. Tandis que PSNRrms est utilisé 

couramment en RMN, cette formule est inadaptée en présence d’artefacts non gaussiens, et la 

formule PSNRmax doit être préférée. Le traitement du signal a été présenté dans la suite de ce  

chapitre, en donnant les différentes étapes, depuis la sonde jusqu’au spectre. L’apodisation, la 

Transformée de Fourier (FT) et le phasage ont aussi été expliqués.

Depuis 2010, la solution usuelle pour augmenter la sensibilité est l’utilisation de la 

Polarisation  Nucléaire  Dynamique  (DNP).  Cette  technique  requiert  l’achat  de  nouveaux 

équipements coûteux. D’autres alternatives existent, complémentaires de la DNP, telles que (i) 

l’instrumentation,  (ii)  les  acquisitions  rapides  et  (iii)  le  traitement  du  signal.  Ces  trois 

approches seront utilisées dans ce manuscrit. (i) Les Bobines en Rotation à l’Angle Magique 

(MACS) seront présentées dans le  Chapitre II pour l’acquisition de spectres associés à des 

échantillons  en  quantité  limitée.  (ii)  Les  échos  Carr-Purcell-Meiboom-Gill  (CPMG, 

Chapitre III) et l’Échantillonnage Non-Uniforme (NUS, Chapitre IV) permettront de réduire 

1 En RMN, l’écart-type du bruit est doublé pour des raisons historiques.
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le temps d’acquisition dans la dimension directe et dans les dimensions indirectes des spectres 

multi-dimensionnels  (nD),  respectivement.  (iii)  Enfin,  les  spectres  seront  débruités  par 

Décomposition en Valeurs Singulières (SVD, Chapitre V) et le temps de calcul sera optimisé 

sur processeurs (CPU) et cartes graphiques (GPU, Chapitre VI).

Au cours de cette étude, nous avons appliqué cette méthodologie sur des échantillons 

d’intérêt  dans  plusieurs  contextes  chimiques.  Un  premier  domaine  concerne  les 

HydroxyApatites (HAp), un phosphate de calcium hydroxylé, qui est le principal constituant 

inorganique des os et des dents des mammifères. Ce matériau a une complexité chimique 

importante du fait de la substitution possible à la fois par des anions (CO3
2-,…) ou des cations 

(Na+,…),  ainsi  qu’une  complexité  structurale  (cristalline  ou  partiellement  amorphe),  qui 

nécessite donc une sensibilité accrue pour être caractérisée au mieux. La deuxième catégorie 

concerne  les  matériaux  hybrides  organiques/inorganiques,  entre  autres  à  base  de  silice, 

préparés  à  basse  température  par  voie  sol-gel.  La  communauté  a  un  fort  besoin  de 

quantification  sur  des  films  minces  ou  des  membranes,  par  exemple  dans  le  domaine  de 

l’énergie. Le dernier contexte chimique concerne les verres bioactifs contenant des noyaux 

quadripolaires tels que le 91Zr ou le 87Sr, ce dernier permettant de lutter contre l’ostéoporose.

B. Microbobines

Le but du Chapitre II était d’analyser des échantillons de l’ordre de 100-200 µg, ce qui 

correspond par exemple à la quantité de matière obtenue en récupérant 2 cm2 d’un film mince 

de 300 nm de silice déposée sur un substrat. De plus, dans le cas d’échantillons enrichis, leur 

coût peut être tel qu’il interdit l’utilisation d’une plus grande masse d’échantillon. Un dernier 

exemple concerne les calculs rénaux, dont le point de départ, appelé plaque de Randall, ne 

mesure que quelques dizaines de microns de long et nécessite d’être parfaitement caractérisé 

afin d’établir le bon diagnostic et le traitement médical adéquat.

Après  avoir  présenté  les  solutions  commerciales  pour  analyser  des  échantillons  de 

taille  de  plus  en  plus  réduite,  nous  nous  sommes  intéressés  aux microbobines.  Le  terme 

microbobine est réservé aux bobines dont le diamètre est inférieur à 1 mm. En ajustant la 

taille de la bobine à celle de l’échantillon, on maximise le taux de remplissage de la bobine et 

on optimise le signal obtenu. De plus, d’après le principe de réciprocité, plus la distance entre 

l’échantillon  et  la  bobine  est  faible,  plus  l’excitation  et  la  réception  seront  efficaces.  La 

microbobine concentre le champ électro-magnétique  B1 en son centre et permet un gain en 
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sensibilité pour une même puissance appliquée P donné par PSNR∝B1/√(P) .

Les  Bobines  en  Rotation  à  l’Angle  Magique  (MACS)  permettent  de  combiner 

l’utilisation de microbobines au plus près de l’échantillon et les sondes MAS standard (6). Un 

circuit  auto-résonant est centré grâce à un insert  en céramique thermiquement conductrice 

(Shapal-M) au sein d’un rotor de gros diamètre, lui même placé en rotation à l’angle magique. 

Par  couplage  inductif  entre  la  sonde et  la  microbobine,  l’énergie  est  transférée  de l’un à 

l’autre,  comme entre  les  circuits  primaires  et  secondaires  d’un  transformateur  électrique. 

Deux géométries ont été utilisées : un solénoïde enroulé autour d’un capillaire dont le circuit 

était fermé par un condensateur (Figure  1a)  (6) et un Résonateur à Ligne de Transmission 

(TLR), constitué d’une double piste en quasi-spirale, séparées par un substrat jouant le rôle de 

condensateur (Figure  1b)  (7).  Ces deux géométries ont l’avantage de ne pas nécessiter de 

modification  de  la  sonde.  De  plus,  les  TLR  sont  mécaniquement  moins  fragiles  que  les 

solénoïdes.

Figure 1: Instrumentation: a) microbobines solenoïde et b) TLR ; c) comparaison
des profiles de nutation ; d) spectres 31P obtenus avec la séquence d’impulsions 

PARIS/PISSARRO sur un échantillon d’HAp partiellement amorphe. Paramètres : 
B0 = 11.7 T, rotor de 7 mm, MAS = 5 kHz, délai de recyclage RD = 10 s, PARIS = 10 s.

Après  une  étude  de  l’ensemble  des  paramètres  impliqués  dans  la  conception  des 

microbobines, nous avons fourni une feuille de calcul LibreOffice permettant de choisir le 

condensateur à souder sur les solénoïdes, en fonction de la fréquence de résonance désirée, du 

diamètre du capillaire, du matériau du fil, de son diamètre, du pas entre les spires, du nombre 
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de spires, de la position de la bobine et de la taille du condensateur. Des messages d’erreur 

s’affichent quand le pas est incorrect, quand le diamètre du fil est trop faible par rapport au 

courant de peau, quand les courants de Foucault génèrent trop de chaleur et quand il n’existe 

pas de valeur du condensateur adéquate. La résistance et le facteur qualité du système sont 

également calculés automatiquement.

Les  géométries  solénoïdes  et  TLR  ont  été  comparées  sur  la  même  sonde,  et  les 

solénoïdes ont permis un champ RF plus important à la même puissance (Figure 1c), et donc 

un  PSNR plus  important  (Figure  1d).  Des  séquences  d’impulsions  basse  puissance 

(PARIS/PISSARRO et TEDOR) ont été utilisées car la Polarisation Croisée (CP) entraînait la 

détérioration des TLR, du fait de la puissance RF nécessaire. Un gain en temps d’un facteur 

~ 5 a été obtenu avec MACS.

C. Échos Carr-Purcell-Meiboom-Gill

Dans le Chapitre III, nous nous sommes intéressés aux échantillons en quantité plus 

importante, mais dont les spins étaient soit dilués par l’abondance naturelle et la teneur dans 

l’échantillon (films hybrides organiques/inorganiques utilisés dans le domaine de l’énergie), 

soit présentaient de larges anisotropies (noyaux quadripolaires dans des verres bioactifs).

Une  première  approche  d’acquisition  rapide  a  consisté  à  utiliser  des  échos  Carr-

Purcell-Meiboom-Gill  (CPMG)  qui  permettent,  grâce  à  un  train  d’impulsions  180°,  de 

refocaliser  régulièrement  l’aimantation.  Entre  chaque  écho,  l’aimantation  décroît  selon  la 

relaxation transversale apparente T2
*, tandis que l’enveloppe globale du train d’échos suit la 

"vraie" relaxation transversale  T2 (Figures  2a1 et  2a2). Dans le cadre de l’étude des noyaux 

quadripolaires, la phase de la séquence d’impulsion est modifiée et cette dernière se nomme 

QCPMG.  Le  choix  des  délais  est  important  pour  éviter  les  artefacts  et  les  chemins  de 

cohérence indésirés (8). De même, une synchronisation avec la rotation à l’angle magique doit 

être mise en place.

Plusieurs protocoles de traitement du signal peuvent être utilisés  (9). Le plus simple 

est d’appliquer la FT sur le peigne d’échos, ce qui donne directement un peigne de pics fins,  

dont l’enveloppe reproduit la forme du spectre sans écho (Figure 2a3). C’est la méthode par 

spikelets. Alternativement, les échos peuvent être d’abord repliés en deux puis sommés tous 
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ensemble avant de faire la FT (Figure 2b), ce qui donne directement l’enveloppe globale du 

spectre. C’est la méthode par superposition. Les gains attendus sont indiqués ci-dessous.

G spikelets=
1

√1+2 N [1+2∑
n=1

N

cos (2ω nτ echo)e
−2n

τ echo

T 2
' ] 4

G superposition=
1

√1+2 N [1+2∑
n=1

N

e
−2n

τ echo

T 2
' ] 5

Figure 2: Acquisitions rapides : a) traitement CPMG avec la méthode par spikelets et
b) par superposition ; c) comparaison des méthodes CPMG sur un spectre 29Si CP d’un 
hybride organique/inorganique ; d) temps d’acquisition et résolution obtenues pour des 

expériences 2D à 5D avec US (tirets) et avec NUS (traits pleins) ; e) spectre CP 2D 1H-31P 
d’un échantillon d’HAp partiellement amorphe obtenu avec l’échantillonnage hybride et le 

meilleur algorithme de reconstruction. Paramètres : c) et e) B0 = 7.0 T, rotor de 4 mm, 
MAS = 14 kHz, RD = 1 s.

Il est également possible d’appliquer une apodisation globale sur le train d’écho pour 

limiter l’effet de troncature,  ainsi qu’une apodisation sur chaque écho afin de diminuer le 

bruit. L’inconvénient majeur de ces deux méthodes est qu’elles sont sensibles aux différences 
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de T2 "vrai" entre les sites. Ainsi, des distorsions d’intensité apparaissent sur les spectres bleus 

et verts de la Figure 2c, mis en évidence par les flèches rouges. Les espèces T2 sont minorées, 

tandis que les espèces Q3 et Q4 sont majorées, sur une silice hybride.

Nous  avons  développé  un  programme  Python  de  plus  de  2300  lignes  de  code 

permettant  tout d’abord de synthétiser un train d’échos parfaitement connu, y compris en y 

introduisant un déphasage ou une mauvaise synchronisation. Dans un deuxième temps, les 

délais de l’écho sont calibrés, une apodisation individuelle et globale est appliquée, et  les 

résultats des méthodes par spikelets et par superposition sont obtenues. En supplément, une 

nouvelle  méthode  est  fournie,  par  somme  partielle  des  échos  et  débruitage  SVD.  Cette 

dernière méthode permet une quantification améliorée (spectre violet sur la  Figure  2c). Un 

gain en temps allant de 3 à 100 a été obtenu avec le (Q)CPMG.

D. Échantillonnage non-uniforme

Dans  le  Chapitre  IV,  une  autre  approche  est  utilisée  afin  d’augmenter  la  vitesse 

d’acquisition : l’Échantillonnage Non-Uniforme (NUS). L’une des forces de la RMN est de 

pouvoir obtenir des cartes multidimensionnelles (nD) qui corrèlent plusieurs interactions entre 

elles.  L’inconvénient  est  que  ces  cartes  sont  acquises  point  à  point  dans  les  dimensions 

indirectes,  ce  qui  augmente  considérablement  le  temps  d’acquisition.  En  échantillonnage 

uniforme (Uniform Sampling, US), la solution est de limiter le nombre de tranches (tirets sur 

la Figure 2d), ce qui entraîne une troncature du signal. Une perte de résolution est observée 

pour une durée d’acquisition dans la dimension indirecte  AQ < 3 T2
* et même une perte de 

sensibilité  pour  AQ < 1.26 T2
* (10).  Contrairement  au  CPMG  qui  optimise  la  dimension 

directe, NUS s’intéresse aux dimensions indirectes des nD. En n’acquérant qu’une partie des 

points,  NUS  réconcilie  résolution,  sensibilité  et  temps  d’acquisition  (traits  pleins  sur  la 

Figure 2d).

Le  choix  du schéma d’échantillonnage a  un impact  considérable  sur  la  qualité  du 

spectre final. En effet, ce dernier est convolué par la Fonction de Dispersion des Points (PSF), 

qui est la FT du schéma d’échantillonnage. Les artefacts présents sur la PSF masquent les pics 

d’intérêts  sur  le  spectre  final.  Les  schémas  de  type  Poisson  permettent  une  répartition 

aléatoire dans l’espace à échantillonner, tout en évitant d’avoir deux points côte à côte. Cela 

diminue  les  artefacts  et  facilite  la  détection  des  pics  peu  intenses.  Toutefois,  même  les 

schémas de type Poisson ne sont pas tous équivalents, et le programme NUSscore permet de 
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les classer en fonction de leur qualité (11).

La  reconstruction  du  spectre  obtenu  par  NUS est  un  problème à  part  entière.  De 

nombreux  algorithmes  sont  disponibles :  l’Entropie  Maximum  (MaxEnt)  et  l’Acquisition 

Comprimée (CS) sont les plus fréquemment utilisées. Les deux algorithmes fonctionnent de 

manière  opposée :  MaxEnt  commence  par  un  spectre  constitué  de  zéros  et  reconstruit  la 

dimension  temporelle  correspondante,  tandis  que  CS  effectue  la  FT  de  la  dimension 

temporelle et reconstruit le spectre. De plus, chacun a de nombreuses variantes. A l’heure 

actuelle, il  n’est pas clair si l’un surpasse l’autre. Par ailleurs, le nombre d’itérations pour 

reconstruire  le  spectre  est  difficile  à  optimiser  et  des  artefacts  sont  introduit  au-delà  du 

nombre optimum.

Après avoir  appliqué NUS sur un échantillon mobile de gélatine,  qui  est  la forme 

dénaturée de la protéine principale dans les os de mammifères, nous nous sommes intéressés à 

des HAp constituant la partie minérale de l’os. Tandis que le schéma par défaut du logiciel 

TopSpin (moteur aléatoire 54321) s’est  révélé inadapté,  l’échantillonnage de type Poisson 

s’est révélé plus performant. Enfin, un schéma hybride US/NUS a été mis en place sur un 

échantillon d’HAp amorphe/cristallin présentant à la fois des pics larges et fins en quatre fois 

moins de temps (Figure 2e).

E. Décomposition en valeurs singulières

Une fois le spectre obtenu, si le PSNR n’est pas satisfaisant, il est possible d’effectuer 

du traitement du signal et par exemple de débruiter par Décomposition en Valeurs Singulières 

(SVD, Chapitre V). Au préalable, il est nécessaire de convertir le spectre 1D en matrice de 

Hankel ou de Toeplitz. La SVD est ensuite appliquée sur cette matrice X qui est décomposée 

en trois autres matrices (rectangles hachurés en orange sur la Figure 3a) : une matrice carrée 

U de la taille du nombre de lignes ; une matrice  Σ de la taille de  X, mais avec des valeurs 

uniquement sur la diagonale ; et une matrice carrée VT de la taille du nombre de colonnes. Les 

valeurs de Σ sont classées par ordre de taille. Tandis que les premières correspondent aux pics 

d’intérêt,  les  suivantes  correspondent  à  du bruit.  En ne sélectionnant  que les  k premières 

valeurs  singulières,  c’est  à  dire  en  diminuant  le  rang  de  la  matrice  Σ,  il  est  possible  de 

supprimer le  bruit  tout  en conservant  le  signal  (rectangles  bleus  pleins  sur la  Figure  3a). 

L’effet du débruitage SVD est présenté sur la Figure 3b.
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X=U ΣV T

X≈X k=U k Σk V k
T

6

Figure 3: Traitement du signal : a) principe de la SVD (rectangles hachurés oranges),
valeurs singulières (diagonale verte) et approximation de rang réduit (rectangles pleins 

bleus) ; b) débruitage par SVD sur un spectre 29Si CP d’un hybride organique/inorganique ;
c) comparaison des temps de calculs pour une matrice de 1025 × 1024 = 1.0×106 points. 

Paramètres : b) B0 = 7.0 T, rotor de 4 mm, MAS = 14 kHz, RD = 1 s.

La forme initiale de la matrice conditionne la qualité du débruitage et les meilleurs 

résultats  sont obtenus pour une matrice carrée dans la dimension temporelle.  Le seuillage 

automatique a été implémenté grâce aux indicateurs de Malinowski (12). Le premier, IND, est 

basé sur l’écart-type résiduel, tandis que le deuxième,  SL, est un test de Fisher donnant la 

probabilité que la valeur singulière appartienne au bruit.

Grâce à la simulation de 6 × 7380 spectres avec un niveau de bruit contrôlé, il a été 

prouvé que le seuil de détection est de PSNRmax ~ 2, que ce soit pour des pics lorentziens ou 

gaussiens.  Toutefois,  les  pics  gaussiens  sont  systématiquement  surestimés  d’un  facteur 

~ 20 %, et leur forme est modifiée conduisant à une forme intermédiaire entre gaussienne et 

lorentzienne. Nous avons appliqué ce débruitage sur des spectre 29Si d’un échantillon sol-gel 

organique/inorganique, et nous avons confirmé qu’une quantification équivalente au spectre 

classique pouvait être obtenue en 2,3 fois moins de temps, ce qui a été publié (13).
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F. Diminuer le temps de calcul

Dans le  Chapitre VI, nous avons cherché à diminuer le temps de calcul du SVD qui 

peut durer plusieurs centaines de secondes. Les premiers tests ont été effectués à l’aide d’un 

programme Java disponible en ligne, soit en version processeur (CPU), soit en version carte 

graphique (GPU)  (14).  Seules  les  GPU fabriqués  par  Nvidia,  disposant  de  la  technologie 

CUDA, étaient compatibles. Il s’est avéré qu’un GPU d’entrée de gamme de 2008 pouvait 

exécuter l’opération de SVD en trois fois moins de temps qu’un CPU de milieu de gamme de 

2013, et ce, sur la même matrice. Ce résultat était particulièrement surprenant au vu de la 

puissance de calcul théorique plus importante du CPU en question.

Après  avoir  comparé  des  CPU  et  des  GPU  s’étalant  sur  10  ans  et  6  ans, 

respectivement, nous avons mis en avant que le traitement SVD avec Java sur le CPU était 

monotâche, tandis qu’un GPU est intrinsèquement massivement parallèle. Afin d’aller plus 

loin, nous avons utilisé plusieurs versions de Matlab. L’utilisation de l’algorithme "diviser 

pour mieux régner" s’est avéré cruciale pour utiliser au mieux l’ensemble des cœurs du CPU. 

Nous avons également mis en avant un croisement entre le temps de calcul sur le CPU et celui 

sur le GPU, à cause du temps de latence nécessaire au transfert des données vers le GPU.

Une  étape  supplémentaire  a  été  franchie  sous  Python  en  testant  différentes 

bibliothèques et en activant les instructions matérielles SSE3 et AVX2 sur le CPU. Bien que 

ces instructions soient présentes sur les CPU depuis de nombreuses années, la bibliothèque 

utilisée n’y fait pas forcément appel. Un gain cumulé d’un facteur 100 en temps de calcul a 

été obtenu : 9 pour l’algorithme, 3 pour les instructions matérielles, 2 pour la bibliothèque 

Intel MKL, et 2 avec la simple précision (Figure  3c). Ce travail a donné lieu à publication 

(15).

Par la suite, nous nous sommes intéressés à l’erreur introduite par la simple précision, 

qui  peut  s’avérer  de  fait  problématique  pour  les  données  couvrant  une  large  gamme 

dynamique,  mais  cela  doit  toutefois  être  confirmé  par  des  mesures  sur  des  spectres 

expérimentaux. Nous avons également cherché à utiliser le calcul hybride CPU/GPU.

G. Conclusion

Cette  thèse  a  abordé  plusieurs  approches  complémentaires  pour  augmenter  la 
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sensibilité de la RMN en phase solide. Les gains obtenus sont résumés dans le Tableau 1. Cela 

ouvre des portes indéniables  en termes d’analyse d’échantillons à la chimie toujours plus 

compliquée, avec la contrepartie de devoir passer plus de temps à concevoir des programmes 

et à traiter les données.

Tableau 1: Gain en temps mesuré pour chaque méthode d’amélioration.
Domaine Instrumentation Acquisitions rapides Traitement du signal

Méthode MACS CPMG NUS SVD CPU/GPU

Gain en temps ~ 5 ~ 3-100 ~ 4 ~ 2,3 ~ 100
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Chapter I. General introduction
‘Here's how I understand music. If you can play the same bunch of noise twice, it's music. To  

go beyond that is supercilious and pontificating.’
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Chapter I. General introduction

During the past two decades, developments of solid state Nuclear Magnetic Resonance 

(NMR) have been particularly spectacular both in terms of new dedicated equipment  and 

methodology. Firstly, ultra-high static magnetic are now available both commercially (28.2 T, 

1.2 GHz for  1H, Bruker company)  (1) and in dedicated institutions (35.2 T, 1.5 GHz for  1H, 

National High Magnetic Field Laboratory, Tallahassee, USA) (2). Such high magnetic fields 

allow high  resolution  NMR.  The  subsequent  development  of  (pre-)amplifiers  and  probes 

offers  broadband  capabilities  for  the  user,  including  multidimensional  and  multinuclear 

experiments.  Secondly,  Magic  Angle  Spinning  (MAS)  is  nowadays  the  most  important 

technique  to  retrieve  high  resolution  in  solid  state  NMR,  usually  in  combination  with 

decoupling from abundant nuclei (such as  1H and  19F). Ultra-fast rotation frequencies have 

been reached recently with excellent stability allowing for very efficient averaging of NMR 

anisotropies in multidimensional experiments: 110 kHz (JEOL,  0.75 mm), 111 kHz (Bruker, 

0.7 mm), 170 kHz (Samoson’s probe, 0.5 mm, still in development) (3).  Smaller is the rotor 

and higher is  the  maximum spinning speed.  As an example,  the combination of ultra-fast 

MAS and ultra-high magnetic field led recently to major progress in the study of biosolids 

(including proteins, prions, viral capsid…) with inverse (1H) detection as major improvement 

(4, 5). Moreover, the ultra-fast MAS regime allowed for the development of very efficient low 

power decoupling methods associated to smart and robust recoupling pulse schemes in the 

NMR sequences. 

Nevertheless,  NMR  sensitivity remains  a  vivid  debate  in  the  community  and  an 

unsolved-open question. This point remains nowadays the major NMR drawback at least in 

three cases (among others). The first case concerns intermediate to low gamma NMR active 

nuclei  for  which  brute  force  increase  of  sensitivity  by  increasing  B0 is  usually  of  (very) 

moderate help. The second one corresponds to nuclei subjected to very strong anisotropies 

(mostly in the case of quadrupolar interaction, if I > ½). Even ultra-fast MAS is useless here 

as numerous overlapped spinning sidebands will make the NMR spectra non tractable: in this 

case,  static  experiments  have  to  be  preferred  even  though  highly  reduced  sensitivity  is 

expected. Finally, the third case is much more general and is related to the "limited" number 

of spins. This can occur for instance with low mass natural-synthetic samples or costly labeled 

ones.

As a matter of fact,  there are several ways to tackle the general problem of NMR 

sensitivity. Since 2010, the most popular approach has been Dynamic Nuclear Polarization 
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(DNP) at moderate-high magnetic field which involves new equipment in the laboratories 

(gyrotrons or klystrons). This is only one option among others, including (i) instrumentation, 

(ii) fast acquisitions and (iii) signal processing. In this manuscript, points (i), (ii) and (iii) have 

been considered to improve solid-state NMR sensitivity, focusing on microcoils adapted to 

mass limited samples and MAS (i),  CPMG echoes for 1D experiments and Non Uniform 

Sampling (NUS) for 2D experiments (ii),  and denoising using graphical cards capabilities 

(iii), respectively. The chemical context will be described in Subchapter E.

Hereafter, the following nomenclature will be followed to differentiate parts of this 

manuscript. From top level to lowest level, Chapter I, Subchapter A, Section A.1, Subsection 

A.1.a or A.1.a.i will be used. This chapter is divided in five subchapters, focussed on NMR 

context (Subchapter A), signal, noise and artefacts (Subchapter B), signal processing in NMR 

(Subchapter C),  outline  of  this  manuscript  (Subchapter  D),  and  materials  and  methods 

(Subchapter E).

A. Nuclear magnetic resonance

NMR basics will be described in Section A.1, as well its intrinsic limited sensitivity. 

Specificities of solid-state NMR will be investigated in Section A.2. Finally, the strategies to 

improve sensitivity with brute force, hyperpolarisation and spin polarisation techniques will 

be provided in Sections A.3.

A.1. Principle

NMR is a spectroscopy probing chemical environment of atoms up to a few angstroms 

away. Only magnetically active isotopes, with a nuclear spin quantum I > 0, can be analysed 

by NMR. Hence, I = 0 nuclei such as 12C, 16O, and 28Si are simply unobservable by NMR. For 

spin I > 0, 2I + 1 energy levels are degenerated. I = ½ nuclei such as 1H, 13C, 29Si, and 31P are 

the simplest ones to analyse.  I > ½ nuclei such as 17O (I = 5/2),  27Al (I = 5/2),  43Ca (I = 7/2), 
87Sr (I = 9/2),  and  91Zr (I = 5/2) are denoted quadrupolar  ones and their  signature is  more 

complex. In this dissertation, spectra of 1H, 29Si, 31P, 87Sr, and 91Zr nuclei will be acquired. In 

presence of a magnetic field, Zeeman effect occurs, separating energy levels (Figure I.1a) (6). 

A superconducting NMR magnet operating at 16.4 T is presented on (Figure I.1b).
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Figure I.1: Zeeman effect: a) energy levels in function of magnetic field and nuclei (6),
b) 16.4 T NMR magnet (7), c) Boltzmann distribution in function of Zeeman effect.

The difference of energy between two successive energy levels is given by:

Δ E=hν 0=
h

2π
γ B0 I.1

where ν0 is called the Larmor frequency, γ is the gyromagnetic factor specific of each isotope, 

and  B0 is  the  magnetic  field.  Nuclear  spins  behave like  small  magnets  and align  against 

magnetic field, similarly to a compass needle giving north of Earth. According to their energy 

level,  they align  either  on one direction  or  on the other  (Figure  I.1c).  The probability  to 

measure spin  magnetisation on each energy level  depends on the  temperature and of  the 

energy difference.  Their  sum gives a macroscopic magnetisation. According to Boltzmann 

distribution,  only  one  nucleus  over  105 is  visible  at  room temperature  (6).  Furthermore, 

isotope natural abundance decreases this value. For instance, 13C, 17O, and 29Si have a natural 

abundance of 1.1, 0.037, and 4.7 %, respectively. As a consequence, NMR has an intrinsically 

low sensitivity, which is its main drawback.

Macroscopic  magnetisation  can  then  be  manipulated  by  applying  radio-frequency 

pulses  at  Larmor  frequency,  simultaneously  exciting  all  nuclei  of  the  same kind.  During 

acquisition, the out of equilibrium magnetisation precesses around the magnetic field, which 

generates a current into the observing coil  (Figure  I.2a)  (6),  the so-called  Free Induction 

Decay (FID). The resulting signal is the sum of all the individual frequencies, arising from the 

respective shielding constants depending on chemical environment. After Fourier Transform 
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(FT),  the spectrum exhibits  multiple  peaks  whose position  is  called  the chemical  shift  δ, 

expressed in  ppm, depending on the  analysed compound and on the reference compound 

frequencies, ν and ν0, respectively:

δ ( ppm)=106ν −ν 0
ν 0

I.2

Figure I.2: a) Free induction decay resulting from the macroscopic magnetisation evolving
into the observing coil; b) typical 13C solution-state NMR spectrum of ethanol obtained after 

FT, adapted from (6).

For instance, it is possible to discriminate the carbons of ethanol (Figure  I.2b).  The 

CH2 carbon resonates at a higher chemical shift than the CH3 carbon, due to the proximity 

with the electronegative oxygen. The fine structure is due to scalar coupling with 1H nuclei. 

Moreover,  multiple  pulses  can  be  combined  into  a  pulse  sequence,  in  order  to  transfer 

magnetisation  from  one  spin  to  another,  filter  some  undesired  coherences,  excite  some 

directly unobservable coherences, and much more. These NMR capabilities are evidenced by 

the huge list of experiments acronyms. This is the main advantage of NMR: it is a powerful 

technique (8).

A.2. Solid-state NMR

In  solution-state  NMR,  Brownian  motion  average  spin  interactions.  In  solid-state 

NMR, the number of degrees of freedom is reduced, and the physical interactions detailed 

hereafter are much less averaged. However, the image of a solid totally immobile is absolutely 

wrong, but the fluctuation density is considerably reduced. Consequently, broadening of peaks 

occurs.

Chemical Shift Anisotropy (CSA) is one of the involved interactions,  which can be 

understood by  the anisotropic electronic density around a carbonyl bond (Figure  I.3a)  (9). 

When this ellipsoid is aligned against three directions of space in presence of a magnetic field, 
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three different chemical shifts are observed. Typical values for 13C are 30 ppm and 100 ppm 

for aliphatic and aromatic carbons, respectively (10).

Figure I.3: Anisotropies in solid-state NMR: a) Chemical Shift Anisotropy (CSA) (9),
b) heteronuclear Dipolar interaction (D) (11), c) first order Quadrupolar interaction (Q) for a 

spin I = 3/2 (12). d) Averaging by Magic Angle Spinning (MAS). Typical values are indicated 
in blue ellipses.

Dipolar coupling (D) involves two spins and their respective orientation θ against the 

magnetic field (Figure I.3b, Equation I.3) (11).

D∝
γ 1γ 2

r3 (3cos2θ−1) I.3

The higher are the γ of the involved nuclei, or the shorter is the distance r between the 

two spins, the higher is the dipolar interaction. In the case of a spin pair, two symmetric axial 

shapes are superimposed: a characteristic Pake doublet is obtained (13). A mark value to keep 

in mind is D1Å
HH = 122 kHz, for two immobile 1H nuclei at 1 Å from each other (14).

In the case of quadrupolar nuclei (I > ½), (2I+1) energy levels have to be considered 

in  the presence of the static  magnetic  field  B0.  In  solid  state  NMR, the central  transition 

(m = ½ ↔ m = -1/2) is not subjected to the first order Quadrupolar interaction (Q), leading to 

a sharp and intense resonance in the corresponding powder spectrum (Figure I.3c) (12). This 

is no more the case for the so-called satellite transitions (m ≠ ± 1/2) which are usually spread 
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over  hundreds  of  kHz.  Each satellite  is  associated  to  a  lineshape  comparable  to  the  one 

observed for CSA. Q is due to the Electric Field Gradient (EFG) present around the nucleus. 

In presence of angle and bond distortions, nucleus symmetry is polarized away from a sphere. 

In  the  case  of  "strong"  quadrupolar  interaction  (when compared to  the  principal  Zeeman 

interaction), second-order perturbation theory has to be applied for accurate calculation of the 

various energy levels. In this case, even the central transition becomes subjected to spectral 

broadening and the corresponding  lineshape cannot be described by a CSA-like one.  First 

order quadrupolar effect spreads over several megahertz. In extreme cases, such as 33S or 127I, 

it  can be of the same order than Zeeman interaction,  and Nuclear Quadrupole Resonance 

(NQR) reveals to be a suitable alternative (15–18).

Magic  Angle  Spinning  (MAS),  artificially  reintroduces  mobility  inside  the  sample 

(19–21). The magic angle θ is defined by Equation I.4:

3cos2θ−1=0⇔θ=54.74 ° I.4

This angle is involved in all first order interactions and the magic value corresponds to the big 

diagonal of a cube, connecting the two opposite corners. By successively following all three 

directions of space, efficient averaging of the broadening interactions occurs. With ultra-fast 

MAS, peaks are considerably narrowed, but to the detriment of sample amount (22).

A.3. Sensitivity increase

A.3.a. Brute force

As we said earlier,  the main drawback of NMR is its sensitivity,  whereas its main 

advantage is the variety of available experiments. Hoult and Richards summarised in Table I.1 

the  different  parameters  on  which  the  experimenter  can  play  to  increase  sensitivity  (23), 

namely  temperature,  preamplifier  noise  figure,  coil  quality  factor  Q,  filling  factor  and 

geometry,  sample  volume,  and  magnetic  field  strength.  Each  parameter  on  the  diagonal 

correlates to the ones on the same row or column. Many of them are interdependent, and can 

be strongly or weakly coupled.
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Table I.1: Interactions of parameters involved in NMR signal-to-noise ratio (23).

Nowadays, superconducting magnets are the mean of choice to enhance sensitivity 

with a high magnetic field, up to soon 28.2 T (1). Hybrid resistive/superconducting magnets 

have to be preferred to further increase magnetic field strength. Such a magnet at 35.2 T is 

accessible at the National High Magnetic Field Laboratory (NHMFL, Tallahassee, FL, USA) 

(2).  However the Signal-to-Noise Ratio (SNR) is only  moderately increasing with magnetic 

field strength B0 to the power 1.5, whereas the increase is faster with gyromagnetic factor γ to 

the power 2.5 (Equation I.5) (6). 

SNR∝|γ|
5
2 (B0)

3
2 I.5

 Cryoprobes are another technique to increase sensitivity, by cooling down the probe 

electronic circuit, hence decreasing noise roughly by a factor 3 (24).

A.3.b. Hyperpolarisation

Hyperpolarisation consists to circumvent the low macroscopic magnetization imposed 

by  Boltzmann  distribution  of  Zeeman  levels,  by  using  a  highly  polarised  source,  either 

polarised light or electrons, albeit transiently. Nikolaou et al. reviewed these hyperpolarisation 

techniques  in  the  context  of  biomedicine  (25).  Para-hydrogen  hyperpolarisation  was 

successfully transferred to  1H, 13C, and 15N via a temporary association to a transition metal 

centre  (26).  Polarised light magnetisation was transferred to Xenon, giving hyperpolarised 

Xenon,  itself  transferred  to  other  nuclei  (27).  Since  a  few  years,  Dynamic  Nuclear 

Polarisation (DNP) has gained a lot of interest,  either in solution  (28–30) or in solid-state 

NMR (31–33). A very complete review on DNP applied to solid-state NMR can be found in 

(34) Except  for  DNP,  where  commercial  equipments  are  available,  other  ones  are  rather 

confidential, needing home-made designs.
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A.3.c. Spin polarisation transfer

Another way to improve sensitivity is spin manipulation. As 1H nucleus gyromagnetic 

ratio  γ is almost the highest one, its magnetisation is proportionally high (Equation  I.1). 1H 

magnetisation can be transferred to low-gamma nuclei X with various techniques. Insensitive 

Nuclei  Enhanced  by  Polarisation  Transfer  (INEPT)  (35) involves  through-bonds  scalar 

coupling. Heteronuclear Overhauser Effect SpectroscopY (HOESY) (36) can be used to probe 

through-space  proximities  in  solution-state.  The  most  common  spin  polarisation  transfer 

method  in  solid-state  NMR  is  the  through  space  Cross  Polarisation  (CP)  (37). This 

magnetisation transfer allows a maximum theoretical sensitivity gain of γ1H / γX. Further gain 

can be obtained with inverse acquisition on  1H, with the enhancement factor  ξ defined in 

Equation I.6, where W is the full width at half maximum of each nucleus (38, 39).

ξ≈(γ 1 H
γ X )

3
2( W X

W 1 H
)

1
2 I.6

Polarisation transfer  has  been often used in  solution-state  (40–42) or  in  solid-state 

NMR  (43–45) and  is  the  basic  element  of  many  pulse  sequences.  In  conjunction, 

heteronuclear decoupling was useful to narrow lines (46–48). In solution-state NMR, further 

improvement was obtained with pulsed field gradients for coherence filtering (49).  In solid-

state NMR, in addition to MAS explained in previous section, further narrowing was obtained 

with  homo-nuclear  decoupling  such  as  Lee-Goldburg  (50) or  Decoupling  Using  Mind-

Boggling Optimization (DUMBO) (51).

In Subchapter A, we highlighted that NMR is suffering from a low sensitivity, whereas 

it is a powerful technique. In solid-state NMR, MAS is a useful tool to decrease broadening of 

peaks. It acts in complement of magnetic field strength increase, CP and decoupling.

B. Signal, noise and artefacts

Not only a weak signal is obtained by NMR on the sample of interest, but noise and 

artefacts can mask it and have therefore to be controlled.   Characteristics of noise will be 

investigated in Section B.1. Some sources of NMR artefacts will be presented in Section B.2. 

Finally, signal-to-noise ratio will be defined in Section B.3.
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B.1. Noise characteristics

In general  in  physics  and electronics,  noise has  a  random nature  with  a  Gaussian 

distribution  (52). Stationary noise exhibits no drift against time. Noise is called ergodic if all 

statistically possible values are obtained at long times. Finally, noise is homoscedastic if its 

standard  deviation  σ is  constant  against  time  (53).  Homoscedastic  noise  is different  from 

white noise,  which will  be explained in next paragraph. Histograms are useful to analyse 

noise distribution. A Gaussian noise is depicted on Figure I.4a (54). 68 % of the values are in 

the interval [-σ;  σ], 95 % between [-2σ; 2σ], and 99.7 % of peaks are in the range [-3σ; 3σ]. 

According to Gaussian probabilities, some rarely events can exceed this range.

Figure I.4: a) Gaussian noise with probability rule p(x) (54); b) Noise colours power
in function of frequency; c) repartition of noise against time for each colour (55).

Noise  can  also  be  described  by  colours,  according  to  its  power  spectral  density. 

Figure I.4b presents such an analysis  with frequency in logarithmic scale  on abscissa and 

observed power at the corresponding frequency in linear ordinate  (55). The corresponding 

time evolutions are presented on Figure  I.4c. Brown noise is a low frequency perturbation 

whose  power  decreases  with  the  square  of  the  frequency  f,  giving  only  small  baseline 

oscillations. Red noise is similar to brown noise, but with non-Gaussian distribution. Pink 

noise power decreases more slowly at 1 / f and its time evolution looks smoothed. On the 

contrary, blue and violet noises are high frequency ones, whose power is increasing with f or 
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f 2, respectively. The result is the presence of high frequency bursts during evolution time. 

White noise is very common and its aspect is the most regular of all noise colours. It has no 

frequency  dependence.  In  normal  conditions,  without  non-uniform sampling,  zero-filling, 

apodisation or artefact, NMR noise is stationary, ergodic, homoscedastic, Gaussian and white 

(56).

In NMR, the main source of noise is thermal fluctuations of electrons inside the coil  

and  the  electronic  circuit,  so-called  Johnson  noise.  Clark  thereby  stated  about  an  early 

spectrometer that: ‘At maximum gain, the noise of the receiver from 2-30 Mc referred to the 

input is roughly that of a 1000-Ω resistor at 300 K’ (57). Johnson noise can be defined as:

V Johnson
2 =4 R k T∫

0

∞ [g(f )]2

1+(2π f C R)2
df I.7

where  V is  the  observed  voltage,  R and  C  are  the  circuit  resistance  and  capacitance, 

respectively,  k is  the  Boltzmann constant,  T is  the  temperature,  f is  the  frequency and  g 

accounts for any amplification or attenuation of the electronics (58). Moreover, shot noise is 

present when a current is flowing into the electronic circuit, independently of temperature and 

resistance (58), with e being the electron charge and I the averaged current:

V shot
2 =2e I R2∫

0

∞

[g(f )]2 df I.8

As evidenced here, Johnson noise is proportional to kT. Thus, by decreasing coil and 

electronics temperature, sensitivity is improved. That is the principle of cryoprobes (24). Part 

of the resistance arises from the sample itself whose temperature can also be lowered, limiting 

the induced noise. That is an additional benefit of solid-state DNP which is usually done at 

100 K (59). This gain comes in addition to the improved macroscopic magnetisation at low 

temperature according to Boltzmann distribution.

B.2. Artefacts

Artefacts are unexpected signals. On the contrary to noise, they are limited to specific 

parts of the spectrum but can mask signal peaks as well. They can arise from instance from 

electronic imperfections (Figure I.5a)  (60). When an offset is present on digitaliser (top left 

panel),  a  transmitter  spike  is  present  on  spectrum  (top  right  panel),  and  when  real  and 

imaginary channels are non-equivalently balanced (bottom left panel), a mirror image appears 

(bottom right  panel).  This has been addressed by the Cyclically  Ordered Phase Sequence 
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(CYCLOPS)  pulse  program  (61).  These  artefacts  are  almost  negligible  on  modern  NMR 

spectrometers. Moreover, many experiences use 180° pulses, such as J-resolved spectroscopy, 

which can give phantom and ghost peaks (Figure I.5b), arising from miscalibrated pulses, but 

eliminated by the EXORCYCLE (62).

t1-noise is a scintillation artefact proportional to the signal, characterised by vertical 

lines on intense peaks of two-dimensional spectra, and occurring when small variations of 

pulses lengths or phases are experienced (63). Such a trace is shown on left of Figure I.5c for 

a  Dipolar  Heteronuclear  Universal-Quantum  Correlation  (D-HUQC)  (64).  This  can  be 

minimised  by  decreasing  the  time  between  two  successive  scans  (right  spectrum).  More 

generally, t1-noise can be reduced by improving RF stability, for instance by sample and RF 

coil  temperature  regulation.  Artefacts  can  also  be  induced  by  data  processing,  as  for 

covariance  spectroscopy,  where  diagonal,  peak-ridge  and peak-free  noise  was  highlighted 

(Figure I.5d) (65).

Figure I.5: Artefacts present on NMR spectra: a) transmitter spike (top right) and mirror
image (bottom right) and their origin (left panel), adapted from (60); b) phantom (P) and 

ghost (G) on 2D J-resolved spectra, adapted from (62); c) t1-noise on 2D D-HUQC for two 
acquisition rates, adapted from (64); d) diagonal, ridge and peak-free noise obtained by 

covariance, adapted from (65). Red arrows highlight artefacts.

Furthermore, other artefacts sources are present. In particular, NMR is working in the 

radio  frequency  domain,  and  the  100 MHz  range  is  especially  sensitive  to  Frequency 
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Modulated (FM) emissions. This corresponds to 13C or 27Al nuclei at a magnetic field of 9.4 T. 

Such  perturbations  are  especially  visible  on  old-fashioned  unshielded  magnets.  Even  on 

modern spectrometers,  this  effect is  easily observable at  low temperature,  in only 30 s of 

acquisition without any nuclear or electron excitation, due to an increased probe quality factor 

(Figure I.6) (30). These FM radios are good examples of band-specific artefacts.

Figure I.6: Acquisition of sample-free NMR signal, without pulse applied by the
spectrometer, in the 100 MHz range corresponding to 27Al and 13C nuclei at B0 = 9.4 T (dashed 

vertical lines) at 300 K (in blue) and at 100 K (in red). The insert is a zoom on 13C region. 
Vertical names correspond to attributed FM radios emitting at Grenoble, France (32).

B.3. Signal-to-noise ratio

Sensitivity can be defined as the capacity to distinguish slight differences of sample 

concentration. It is intimately correlated to the detection limit (66). L. Currie mathematically 

formalised three thresholds: critical limit to take a decision of presence when peak position is 

already known (Lc), detection limit when peak position is unknown (Ld) and quantification 

limit (Lq), corresponding to 1.64, 3.29 and 10 σnoise, respectively, where σnoise is noise standard 

deviation.  Signal-to-Noise Ratio (SNR) can be defined in various ways, either with signal 

standard deviation (σsignal) or with signal peak height (Hsignal). In the latter case, the acronym 

PSNR is preferred. Noise and artefacts can be measured by their Root Mean Square (RMS) or 

by their peak-to-peak value (hnoise_peak_peak).
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In mathematics and electronics (67) SNR=
σ signal

2

σnoise
2

I.9

In spectroscopies1 (56) PSNRrms=
H signal

σnoise
I.10

In analytical chemistry (68) PSNRmax=
H signal

hnoise _ peak _ peak /2
I.11

In case of Gaussian noise, PSNRrms ~ 3.3 PSNRmax. Despite PSNRrms is commonly used 

in NMR, this definition is not suitable in presence of artefacts, and PSNRmax formula has to be 

preferred.  Moreover, an important warning has to be made about detection limit. If  SNR is 

under detection level and signal is artificially increased by a non-linear processing, such as a 

wrongly  calibrated  maximum entropy  algorithm,  no  detection  limit  enhancement  will  be 

obtained, despite SNR improvement (Figure I.7) (69). Further details on SNR will be provided 

in Subsection B.3.c of Chapter V.

Figure I.7: Influence of linear (left) and non-linear processing (right): signal and noise
were both scaled down, but small peaks on the left of the spectrum are still under detection 

threshold (in red), adapted from (69).

In Subchapter  B, we highlighted that NMR noise was white and Gaussian and we 

described Johnson and shot noise. Different NMR artefacts were shown, including transmitter 

spike, mirror image, phantoms, ghosts,  t1-noise, covariance noise, and band-specific noise. 

Signal-to-noise formulas were presented.

C. Signal processing in NMR

Signal processing is an extremely vast domain regrouping all electronic, mathematical, 

or computer operations, posterior to data acquisition  (70–72), which can be provided by all 

kinds  of  captors.  Despite  raw  data  can  not  be  modified,  signal  processing  can  strongly 

attenuate noise and artefacts. This branch of science has applications in industrial, medical or 

1 In NMR, standard deviation of noise is doubled for historical reasons.
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military domains. We can cite for instance real-time error control in a chemical reactor, where 

flow rate, temperature, pressure and composition were regulated (73).  Other examples are 

wearable sensors to monitor individual's state of health  (74), parent-infant interaction  (75), 

acoustic remote sensing (76), or millimetre wave multi-points communication (77). In NMR, 

signal  processing involves  many steps,  such as reception chain (Section  C.1),  apodisation 

(Section C.2), Fourier transform (Section C.3) and phasing (Section C.4).

C.1. From probe to spectrum

NMR signal processing can be decomposed in many steps (78, 79). Some of them are 

executed  automatically  by  electronics  on  raw signal  (Free  Induction  Decay,  FID)  out  of 

spectrometer, from probe to disk recording. These operations are listed in Table I.2 in order of 

execution and are presented on Figure  I.8. Once the FID has been recorded in electronics 

domain, the user needs to execute additional actions to exploit data, firstly in time domain, 

secondly in frequency domain. Some of them are optional. Significant hardware improvement 

has been achieved in terms of SNR, since ca. 1990 (Figure I.9). Hereafter are highlighted three 

essential steps of NMR signal processing: apodisation, Fourier transform and phasing.

Table I.2: Signal processing steps in NMR.
Electronics domain Time domain Frequency domain

Analog filtering Oversampled points 
suppression

Phasing

Pre-amplification Aberrant points removal Baseline correction

Amplification Apodisation Chemical shift calibration

Phase Shift Quadrature (PSD) Denoising Peaks detection

Demodulation Linear prediction Integration

Oversampled digitalisation 
(ADC) (80)

Zero-filling Spectrum saving

Digital filtering Fourier Transform (FT) Figure preparation

FID disk recording
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Figure I.8: Electronics signal processing during NMR FID acquisition (81).
ADC: Analog to Digital Converter; PSD: Phase Shift Detector.

Figure I.9: Hardware improvement of SNR against receiver gain (RG), for Bruker NMR
spectrometers released from ca. 1990 (Avance I) to 2017 (Avance Neo) (82).

C.2. Apodisation

An important  step of  processing is  apodisation,  which  usually  takes  place in  time 

domain.  However,  Spencer  demonstrated  the  equivalence  of  this  filter  in  both  time  and 

frequency domains  (83). The first objective is to decrease truncation effects on FID, which 
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give  cardinal  sine  oscillations,  so-called  wiggles.  By  multiplying  FID  with  a  decreasing 

function, these oscillations at peak foot are attenuated but peaks are broaden.

The second role of apodisation is to attenuate noise. While signal is preponderant at 

the beginning of the FID, noise is proportionally bigger at the end. Thereby, multiplying the 

FID by a  mathematical  function  will  have  an  important  effect  on  SNR after  FT.  Several 

decreasing functions can be used: exponential, Gaussian, linear or cosine. Figure I.10 shows 

that exponential is convex, cosine is concave, and Gaussian is intermediate, as compared to 

linear  curve. The  optimal  SNR can  be  obtained  by  multiplying  the  FID by  a  decreasing 

exponential with a constant equal to the natural decrease of the FID, the so-called  matched 

filter,  thus doubling the average peak width  (78).  However,  better  wiggles suppression is 

obtained using a cosine function, which is more abrupt at the end of the FID (84).

Figure I.10: Normalised apodisation density of Gaussian, linear and cosine (in red)
as compared to a decreasing exponential (in black), adapted from (85).

Apodisation can also improve resolution, at the expense of  SNR, by giving a higher 

weight to the middle of the FID, for instance using shifted sine bell  (86) or Traficante  (87) 

functions,  or  even  Lorentzian/Gaussian  conversion  (88).  The  latter  is  the  product  of  an 

increasing exponential function and a shifted decreasing Gaussian function.

C.3. Fourier transform

Another crucial  step of signal processing is  FT  (89,  90),  which converts  time  t to 

frequency ν, i.e., FID to spectrum (Equation I.12).

F(ν )=∫
−∞

+∞

f (t)e−i 2π ν t dt I.12

Similarly,  it  converts  reciprocal  space  to  real  space,  as  in  Magnetic  Resonance 

Imaging  (MRI)  or  in  X-Ray  Diffraction  (XRD).  Continuous  FT  calculates  the  integral 
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according to points spacing, whereas discrete FT converts a series of  N points, into another 

series of the same number of points (Equation I.13).

F(ν k)=
1

√N
∑
n=0

N−1

f (n)e
−i 2π ν k

n
N , k∈[0 , N−1 ] I.13

Data unit is totally ignored during discrete FT, implying regularly spaced data. The 

formula presented is the normalised one with a 1/√N factor  (91). Baseline distortions are 

avoided by halving the first point before FT. This compensates for the number of inter-points 

delays in the FID being one less than the number of points (92). Moreover, fast FT (FFT) has 

been developed with the Cooley-Tukey algorithm (93), which explains why a power of two is 

usually  chosen for  zero-filling.  Finally,  from a  programming point  of  view,  an additional 

inversion step of left and right side of spectrum is necessary, to reorder the spectrum after 

FFT. In order to not confuse discrete FT with Density Functional Theory (DFT), which we 

have not used, this acronym will be avoided.

C.4. Phasing

Phasing is the third important step, as it will influence spectrum quantification. Three 

kinds  of  phases  are  present:  zero-,  first-  and second-order  phase.  While  zero-order  phase 

changes all peak shape simultaneously, first- and second-order phase distort baseline. Zero-

order  phase  depends  on  phase  cycling  in  pulse  programs  and  on  the  entire  hardware 

emission/reception signal chain. It can be influenced for instance by probe frequency tuning 

and impedance matching. First order phase corresponds to a delay, for instance the dead-time 

before signal acquisition. This delay of a few microseconds is necessary to let emission signal 

decrease, which is ranging from volts to hundreds of volts, before observing reception signals, 

of only microvolts. It can be corrected using Equation I.14 (92):

phase1=−180∗ dead time
dwell time

I.14

where  phase1 is the first order phase correction,  and  dwell  time is the delay between two 

acquired points.  As highlighted  by Levitt,  this  is  a  first  approximation and off-resonance 

effect or peak superposition will avoid exact first order phase correction  (6). Second order 

phase is present for wideline experiments (94).
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Signal processing investigated in Subchapter C is a crucial step to obtain usable data, 

with  automatic  operations  done  by  the  electronics,  and  manual  operations  done  by  the 

experimenter, such as apodisation, FT, and phasing.

D. Dissertation outline

Figure I.11: Outline of this dissertation: a) microcoils with Magic Angle Coil Spinning
(MACS), b) Carr-Purcell-Meiboom-Gill (CPMG) echoes, c) Non-Uniform Sampling (NUS), 
d) denoising with Singular Value Decomposition (SVD), e) computation time with Central 

Processing Unit (CPU) and Graphics Processing Unit (GPU).

Figure  I.11 presents  the  outline  of  this  dissertation.  Three  approaches  were 

investigated to improve solid-state NMR sensitivity. Firstly, instrumentation was used to limit 

sample amount, with microcoils placed into the rotor (Magic Angle Coil Spinning, MACS, 

Figure  I.11a,  Chapter II). A time gain of ~ 5 was obtained. Secondly, the total  acquisition 

duration  was  decreased  with  Carr-Purcell-Meiboom-Gill  echoes  (CPMG,  Figure  I.11b, 

Chapter III), and with Non-Uniform Sampling (NUS, Figure I.11c, Chapter IV). A time gain 

of up to ~ 100 was highlighted for CPMG for suitable samples. An improved reconstruction 

algorithm was  provided.  NUS  revealed  useful  on  multi-dimensional  spectra,  with  hybrid 

sampling for broad peaks and a time gain of ~ 4 on 2D. Finally, processing was investigated 

with denoising by Singular Value Decomposition (SVD, Figure I.11d, Chapter V), leading to 

time decrease by a factor ~ 2.3. SVD computation was speed up by a factor 100 and compared 
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on  Central  Processing  Unit  (CPU)  and  Graphics  Processing  Unit  (GPU)  (Figure  I.11e, 

Chapter VI). A thorough bibliography on developed subjects will be provided in each chapter.

E. Materials and methods

The main goal has been to optimize the sensitivity in several chemical contexts and for 

materials  of  highest  interest.  Three main categories  of  materials  have  been considered as 

illustrations of sensitivity enhancement. The first one is related to HydroxyApatite, HAp, an 

hydroxylated calcium phosphate which is the main inorganic component in mammal’s bones 

and teeth. The complexity of biological HAp is of both chemical (multiple anionic - CO3
2-,… 

and cationic  -  Na+,… substitutions)  and structural  (crystalline  vs amorphous  components) 

natures. HAp can also be used for depollution, through its high capability of ions substitution.  

The highest sensitivity is therefore necessary for optimal description of this complex material. 

Apart HAp, collagen corresponds to the most important protein associated to bones. Gelatin is 

obtained by denaturation of collagen. The second topic deals with the large family of hybrid 

materials containing organic and inorganic (mostly silica) components. Such hybrid materials 

are obtained as bulk or thin membranes by using sol gel (low temperature) chemistry. These 

hybrid membranes can have interesting applications as part of functional materials for energy. 

In  this  case,  the  measurement  of  the  condensation  rate  of  silica  species  is  of  paramount 

importance  for  the  materials  scientist  using  29Si  MAS  experiments.  The  highest  NMR 

sensitivity  is  therefore  needed for  optimal  time gain.  A third category  concerns  bioactive 

glasses  containing  87Sr  quadrupolar  nuclei,  which  have  to  be  well-characterised  before 

considering using them for medical applications. For instance, strontium rich glasses can limit 

osteoporosis.  The involved nuclei  combine  large  anisotropy,  low gamma and low natural 

abundance, hence the need to increase sensitivity.

In this  section,  we emphasize on the synthesis of the samples used here for NMR 

sensitivity  purposes.  During  this  work,  we  tested  our  methodology  on  already  well-

characterised samples, in order to not question ourselves about chemical shift  assignments, 

but rather to focus on sensitivity issues.

E.1. 13C enriched carbonated hydroxyapatite

13C  labelled nano-crystalline nonstoichiometric carbonated HAp were synthesized in 

order to characterize this particular anionic substitution of HAp (95).  This sample exhibited 

43



Chapter I. General introduction

narrow lines in  1H,  13C and  31P nuclei and was used for NUS experiments  (Figure IV.24 of 

Chapter IV). It was prepared by wet chemical reaction between calcium nitrate tetrahydrate 

(Ca(NO3)2·4H2O) and diammonium hydrogenophosphate ((NH4)2HPO4) at pH = 10 (adjusted 

by  the  addition  of  NH4OH).  0.15 M  of  sodium  bicarbonate  (NaH13CO3,  99 %  13C)  was 

dissolved in 100 mL of the 0.3 M (NH4)2HPO4 aqueous solution, so that the carbonate ions 

could be incorporated into the HAp lattice structure. The (NH4)2HPO4 aqueous solution was 

added slowly to 100 mL of the 0.5 M Ca(NO3)2.4H2O solution at room temperature under 

stirring  (24 h).  Then,  the  calcium  phosphates  were  separated  from  the  suspension  by 

centrifugation, washed with distilled water, and then dried at 105°C for 24 h. The calcium 

phosphate powders were heated at the temperature of 400°C for 1 h in an electric furnace in 

order to eliminate relatively unstable CO3
2- sites near the surface.

E.2. Amorphous/crystalline hydroxyapatite sample

Figure I.12: Amorphous/crystalline HAp: a) {1H}-31P 2D CP HECTOR spectrum
highlighting HAp crystalline peak and amorphous components constituted of adsorbed water 
and hydrogenophosphate; b) schematic drawing of HAp platelets in bone, with the crystalline 

HAp core and the hydrated amorphous layer (96). Parameters: B0 = 7.0 T, MAS = 14 kHz, 
RD = 1 s, NS =16, TD(1H) = 170, texp = 0.75 h, tcp = 1 ms, νdecoupling(1H) = 53 kHz SPINAL-64.

Another HAp synthesis is described in this section to obtain nanosized HAp particles 

especially interesting from the NMR point of view, as the chosen sample exhibit both a sharp 

line  (due  mainly  to  isolated  1H  species  in  HAp)  and  much  broader  ones  (associated  to 

disordered components exhibiting large distributions of chemical shift). This remark will be 
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of  prime  importance  when  implementing  NUS  (Chapter IV).  A 2D  1H-31P  spectrum  is 

presented on Figure I.12a. The sharp line is easily visible at  δ1H = 0 ppm, whereas the broad 

components are a sensitivity test, especially the HPO4
2- one at δ1H ~ 13 ppm. This sample is a 

model of bone inorganic phase, where crystalline HAp platelets are surrounded by amorphous 

calcium phosphate (Figure  I.12b)  (96).  HAp is also a constituent of Randall’s plaque, the 

starting point of some kidney stones. Hence, HAp will act as well as a test compound for the 

set-up of MACS methodology (Chapter II).

CaCl2.2H2O (calcium chloride dihydrate, ≥ 99 %), NaH2PO4.H2O (sodium phosphate 

monohydrate, ≥ 99.1 %), NaHCO3 (sodium bicarbonate, ≥ 99.5 %), Ca(NO3)2.4H2O (calcium 

nitrate  tetrahydrate,  ≥ 99.0 %)  and  (NH4)2HPO4 (diammonium  hydrogenphosphate, 

≥ 99.99 %) were purchased from Sigma-Aldrich. Sample was prepared following the HA-2 

synthesis described by Nassif  et al. (97). Experiments were carried out at room temperature 

(22 ± 1°C). A solution containing 110 mM CaCl2, 33 mM NaH2PO4, and 33 mM NaHCO3 was 

prepared in 500 mM acetic acid. The pH was adjusted to 2.2 with hydrochloric acid. Two 

flasks  (35 mL, h = 50 mm) containing these solutions  (20 mL) and covered by perforated 

Parafilm (to slow down the gas diffusion) were placed into a closed chamber (1000 cm3). The 

HAp Precipitation was triggered via the slow increase of solution pH caused by the vapours of 

fresh  ammonia  aqueous  solution  (30 % w/w,  8 mL)  in  the  chamber.  A few  hours  after 

ammonia introduction, precipitation occurs in the solution. After 6 days the gas diffusion was 

considered complete (pH ~ 10-11), and the solids were washed and centrifuged (6000 rpm, 

10 min) firstly in distilled water and then in ethanol to remove the non-precipitated salts. The 

recovered  crystals  were  dried  at  37°C  for  7  days  before  characterization.  The  obtained 

chemical formula is Ca10-x(PO4)6-x(CO3)x(OH)2-x with 0 ≤ x ≤ 2.

E.3. Gelatin

Gelatin is the denatured form of collagen, a biopolymer present in many tissues, such 

as cornea, tendon, skin and bone (98). Gelatin was used as a solid-state sample with a high 

mobility for {1H}-13C INEPT 2D NUS analysis (Figure IV.22 of Chapter IV). Commercial 

gelatin  A  from  porcine  skin  (Sigma-Aldrich,  ref.  G2625,  300 g  bloom)  was  purified, 

lyophilised and solubilised at 150 mg.mL-1 into 0.5 M acetic acid. The mixture was heated at 

65°C under stirring and then kept 1 hour at 45°C to facilitate its solubilization. The solution 

was then stored at 4°C. Gelatin concentration in acidic solutions was determined by assessing 

the amount of hydroxyproline.
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E.4. Sea urchin spines

Sea urchin are biomineralised marine organisms. Their spines have an axial symmetry 

promising to use with MACS (Chapter II). Both the body shell and the spines are calcium 

carbonate,  although  with  different  microstructures  and  magnesium  content  (99).  During 

biomineralisation process, the mineral phase evolves from amorphous calcium carbonate to 

crystalline calcite.  Under X-ray diffraction,  mineral  phase behaves  as  single crystals.  The 

organic  phase  in  skeletal  elements  is  constituted  from  proteins,  monosaccharides  and 

pigments.  Intercrystalline  organics  can be  removed by chemical  treatment  or  biochemical 

digestion. However, intracrystalline organics are entrapped into the mineral and heat treatment 

is necessary to degrade them.

Sea urchin specimens of Paracentrotus lividus, collected in the Atlantic Ocean, were 

received from the Roscoff marine station of Sorbonne Université (France). Large and small 

spines were cut off from three different sea urchins collected in the same place during the 

same  period  of  the  year.  Small  and  large  spines,  being  on  average,  respectively, 

0.29 ± 0.09 cm and 1.17 ± 0.12 cm long, were taken from the same sea urchin specimens.

E.5. 50:50 MTEOS:TEOS sample

For  29Si solid-state NMR studies on CPMG, SVD and computation (Chapters III, V 

and VI) we used a typical sol-gel sample, consisting of  methyltriethoxysilane (MTEOS, T 

species) and tetraethylorthosilicate (TEOS, Q species) in a 50:50 MTEOS:TEOS molar ratio. 

Its synthesis will be described in Section B.2.a of Chapter V, as part of one of our articles. Its 

typical  29Si Cross Polarisation (CP) MAS NMR non-quantitative spectrum is represented on 

Figure I.13. This isotope has a natural abundance of 4.7 %. 29Si chemical shift is calibrated to 

TetraMethylSilane (TMS) at δ = 0 ppm and is sensitive to the first and second neighbours. For 

tetravalent silicon atoms, if all their first neighbours are oxygen (Quadri-functional silicon, Q 

units), their position is at a chemical shift of  δ ~ -100 ppm. If one oxygen is replaced by a 

carbon (Tri-functional silicon, T units), the chemical shift is δ ~ -60 ppm. Moreover, species 

are differentiated according to their second neighbour: for each Si-O-Si bond, the peak is 

shifted  by  δ ~ -10 ppm.  The  superscript  of  T and  Q units  corresponds  to  the  number  of 

condensed bonds (100). 
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Figure I.13: Typical 29Si CP MAS NMR spectrum with the attributed species.
Parameters: B0 = 7.0 T, MAS = 14 kHz, RD = 1 s, NS = 2048, texp = 0.57 h, tcp = 5 ms, 

νdecoupling(1H) = 2.4 kHz SPINAL-64.

E.6. CSPTC:TEOS:PVDF-HFP sample

This  sample  was  used  for  29Si  solid-state  NMR, as  a  limit  case  needing a  longer 

acquisition time of a 1.5 day with CPMG (Figure III.13b of Chapter III). Silicon species were 

diluted into this sample as compared to the 50:50 MTEOS:TEOS one. Reactants are presented 

on  Figure  I.14a  (101).  PolyVinyliDeneFluoride-HexaFluoroPropylene  (PVDF-HFP)  was 

dissolved in N,N-Dimethylformamide (DMF) at 75°C and cooled down to room temperature. 

This  PVDF-HFP/DMF solution  was  added  and mixed  into  a  hybrid  membrane  precursor 

containing  TEOS  and  2-(4-ChloroSulfonylPhenyl)-ethylTriChlorosilane  (CSPTC)  in  a  2:1 

molar ratio.  Solutions  was prepared at  room temperature and stirred at  70°C for 3 h in a 

closed  glass  vial.  After  cooling  down  solution  to  room temperature,  it  was  prepared  by 

electrospinning. This technique consisted to inject a precursor solution into a syringe with a 

high  voltage  between  the  needle  and  a  collector  (Figure  I.14b).  A continuous  fibre  was 

obtained and formed a three dimensional interconnected network.

Figure I.14: a) Reactants and b) electrospinning method used to prepare the
CSPTC:TEOS:PVDF-HFP sample (101).
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E.7. Mesoporous silica SBA-15

SBA-15 materials belongs to the class of ordered mesoporous silicas, which can entrap 

organic  molecules  into their  porosity,  such as  anti-inflammatory drugs,  promoting control 

released into the body. They are also chemically inert, biocompatible and easily functionalised 

by  grafting  groups  changing  surface  polarity  (102).  SBA-15  will  be  studied  with  SVD 

denoising (Figure V.12 of Chapter V). Tetraethoxysilane (TEOS, reagent grade,  98%), the 

surfactant P123 of molecular weight 5800 g.mol−1 and formula CH3-(CH2-CH2-O)20-(CH3-CH-

CH2-O)70-(CH2-CH2-O)20-H were provided by Sigma Aldrich and were used as received. The 

HCl used was an ACS grade Carlo Erba,  35% in volume. SBA-15 was prepared in  HCl 

aqueous solutions, then dried in air. TEOS over P123 molar ratio was 62.5,  with a volume of 

167.5 ± 2.5 mL of TEOS and a weight of 72 ± 0.5 g of P123. The sample was obtained in HCl 

0.3 mol.L−1 and  washed  with  1 L of  distilled  water  for  50 g  of  solid.  Calcination  was 

performed in air at 500 °C (rate of 2 °C.min−1) for 6 h.

E.8. Strontium bioactive glass

This  sample was used for  GPU denoising a dataset  with a  high number of  points 

(Figure VI.2b of Chapter VI).  Strontium is  an important element  for bone growth and to 

prevent osteoporosis. A 10 % strontium content was chosen for this bioactive glass to release 

Sr2+ ions at physiological concentration  (103).  The targeted glass composition of the glass 

named  B75-Sr10  was  75.0SiO2−15.0CaO−10.0SrO (wt %)  (or  77.4SiO2−16.6CaO−6.0SrO 

(mol %)). It  was prepared by mixing 13.94 mL of TEOS, 3.158 g of Ca(NO3)2·4H2O, and 

1.021 g of  strontium nitrate Sr(NO3)2 in ethanol in the presence of deionized water and 2 N 

HCl under  ambient  pressure and temperature.  The quantities  of  reactants  were  calculated 

using a H2O:TEOS molar ratio of 12:1 and a H2O:HCl volume ratio of 6:1. A 50 mL low 

viscosity sol was obtained and stirred for 1 h. The prepared sol was then transferred to airtight 

PTFE moulds in an oven at 60°C for gel formation and ageing. After 24 h, the obtained gels 

were heated at 125°C for another 24 h, ground to powder, and then stabilized at 700°C to 

eliminate nitrate and for further densification. Chemical  content was measured by ICP-AES 

as: 74.9SiO2−16.0CaO−9.1SrO (wt %) (or 76.9SiO2−17.6CaO−5.5SrO (mol %)).
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E.9. Zirconia ceramic

Zirconia ceramic has strong mechanical properties. It constitute MAS rotors material. 
91Zr  quadrupolar  nucleus  (I = 5/2)  is  a  low-gamma  nuclei  with  a  natural  abundance  of 

11.22 %. This fast relaxing compound was suitable to tune VOCS-DFS-WURST-QCPMG. A 

single VOCS step was used in Chapter III (Figure III.13c).

E.10. NMR parameters

NMR acquisition parameters will be provided in figures legends, with magnetic field 

strength (B0), MAS rate (MAS), recycle delay (RD), number of scans (NS), time dimension 

(TD), experiment time (texp), spectral width (SW), and contact time (tCP).
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Chapter II. Microcoils

A. Chapter introduction

In this Chapter, we tackle the question of NMR sensitivity when facing the problem of 

intrinsic  limited  number  of  spins  (in  other  words,  m < 100 µg).  This  situation  is  rather 

classical in biological NMR (bio-solids NMR for instance,  where  13C or  15N enrichment is 

performed) but can occur in materials science as well. As an example, we consider first the 

field of thin silica-based organic-inorganic hybrid films obtained by sol-gel chemistry and 

various  coating  processes  (1–3).  A review  of  such  Evaporation  Induced  Self-Assembly 

(EISA) techniques was proposed by Sanchez et al. (4). This field is of particular importance 

as  such  films  may  exhibit  tailored  and  optimized  properties  such  as  hydrophobicity, 

anti-fogging, anti-fouling etc.  (Figure  II.1a)  (5).  We give now an order of magnitude of the 

usual corresponding mass: considering a 300 nm thick silica film deposited on a substrate of 2 

cm2, it corresponds to a volume of ~ 60 nL, or a weight of ~ 130 µg (the density of silica is 

taken here as ~ 2.2 g.cm-3).  As a consequence,  and using  standard NMR probes,  the only 

option is to collect a large number of individual hybrid films, especially when targeting low 

sensitive nuclei such as 29Si or 13C. Such an approach is highly laborious and not satisfactory 

from an  NMR point  of  view:  the  materials  science  community  is  clearly  avid  for  more 

sensitive methodologies.

Figure II.1: Potential applications of microcoils: a) sol-gel organic-inorganic hybrid silica
film deposited on a substrate (5), b) Randall’s plaque (apatite) in a kidney stone (calcium 

oxalate) (6). In both cases, sample mass is lower than 100 µg.

In a drastically different context, the problem of mass limitation can be encountered in 

the case of natural samples. As an example,  HydroxyApatite (HAp) is ubiquitous in human 
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bones and teeth (non-pathological calcification)… but also as a representative of pathological 

calcifications (or kidney stones). The chemical structure of kidney stones corresponds mainly 

to calcium oxalates at  various level of hydration but a (small)  nucleus of HAp is usually 

associated.  Such an HAp nucleus  is  called the Randall’s  plaque and is  considered as the 

architecture from which the growth of the calcium oxalate stones starts (Figure II.1b) (6). The 

mass  of  the Randall  plaque is  estimated to  ~ 70-90 µg (this  mass  largely depends on the 

considered kidney stone). Currently, several groups conduct studies on the structure of the 

Randall  plaque  worldwide,  including  colleagues  (biologists  and  nephrologists)  from  the 

Tenon hospital in Paris.

All  in  all,  the  problem  of  mass  limited  samples  and  the  associated  low  NMR 

sensitivity is a great challenge. We have decided to focus on instrumentation developments 

involving mainly the Magic Angle Coil Spinning (MACS) first developed by Sakellariou et  

al. in 2007 (7). The key concept is to strongly enhance the filling factor by using microcoils, 

whose inner diameter should be smaller than 1 mm (8, 9), keeping high resolution capabilities 

by fast spinning at the Magic Angle. The goal is clearly to analyze samples with restricted 

mass: our  first example is related to sea urchin spine (calcium carbonate) which exhibits a 

cylindrical symmetry compatible with the geometry of a micro-solenoid. Secondly, solenoids 

and  Transmission  Line  Resonators  (TLR) will  be  considered  and  compared  in  terms  of 

sensitivity by using HAp as a test sample. Due to the fragility of the micro-coils, low power 

1D and 2D NMR pulse sequences were tested as well. A funding was provided by French 

Research National  Agency (ANR) from 2015 to 2018, in  the project  ‘Micro-detection by 

solid-state Nuclear Magnetic Resonance’ (MicrogramNMR), in which I was implicated. 

Available  techniques suitable for the solid-state  NMR studies of microquantities will 

be presented in Subchapter  B. Electromagnetism background and microcoils manufacturing 

will be explained in Subchapters C and D, respectively. Subchapter E will be devoted to the 

obtained results.

B. Current methods for analysing microquantities by solid state NMR

In this subchapter, after investigating commercial probes capabilities (Section B.1), we 

will focus on microcoils (Section  B.2) and their applications (Section  B.3) before detailing 

Magic Angle Coil Spinning (MACS) concept (Section B.4).
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B.1. Commercial solid-state NMR probes

In solid-state NMR, the sample is inserted into a zirconia rotor under Magic Angle 

Spinning (MAS), which averages anisotropic interactions and narrows lines (Section A.2 of 

Chapter I). Each manufacturer has his own rotors dimensions. In his pioneering work  (10), 

Barbara, who was a member of Varian manufacturer team, misleadingly employed the term 

microprobe to study susceptibility averaging in 4 mm MAS rotors. These associated coils are 

too wide to be defined as microcoils. Bruker rotors outer diameter are ranging from 7.0 mm to 

0.7 mm, with spinning frequencies from 7 to 111 kHz, respectively, and with sample volumes 

from 250 to 0.4 µL, respectively (Table  II.1 and Figure  II.3b)  (11,  12).  Jeol manufacturer 

obtained a similar result with a 0.75 mm rotor containing 0.29 µL and spinning at 110 kHz 

(13). Up to now, the maximum achievable MAS frequency is 170 kHz with a 0.5 mm non-

commercial probe (14). Spinning rate is limited by two factors: centrifugal forces applied on 

rotor walls, and speed of sound for the surrounding gas  (15).  The counterpart of spinning 

speed increase is sample volume decrease. If enough sample is available, the biggest rotor has 

to be chosen, in adequacy with the experiment requirements. Hence, for quantitative analysis 

of nuclei with low anisotropies, such as 29Si with 4.7 % natural abundance, a moderate MAS 

rate  of  5 kHz  is  enough  at  B0 = 7.0 T  for  all  silicates.  For  nuclei  with  much  higher 

anisotropies, such as  207Pb (chemical shift anisotropy),  27Al (quadrupolar interaction) or  1H 

(homonuclear broadening) as dedicated examples, faster spinning rotors have to be used, with 

the  corresponding  lost  of  sensitivity.  According  to  Nishiyama (16),  sample  volume  is 

decreasing as d 3, where d is the rotor diameter, whereas absolute Peak-Signal-to-Noise Ratio 

(PSNR)  is  decreasing approximately as  d 3/2,  for filled rotors.  Hence,  PSNR is  decreasing 

slower  than  sample  volume.  The  corresponding  curves,  for  Bruker  and  Jeol  rotors,  are 

presented on Figure II.2.

Table II.1: Comparison of Bruker MAS rotors sizes, properties, and applications.
a: according to (11, 12); b: according to cortecnet.com; c: Samoson’s probe (14);

#N/A: not available.

Rotor size (mm) 7.0 4.0 3.2 2.5 1.9 1.3 0.7 0.5c Capillary

MAS rate (kHz) 7 15 24 35 42 67 111 170 5-15

Volume (µL)a 250 70 30 14 10.4 1.5 0.4 0.2 0.2

Price (€)b 437 616 1230 1282 1427 2000 3274 #N/A low

Designation MAS fast MAS very fast MAS ultra fast MAS MACS
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Figure II.2: a) Sample volume and b) PSNR function of rotor diameter, measured on 1H
(circles) or 13C (squares). Empty shapes: Jeol; filled shapes: Bruker (16).

In order to further investigate commercial probes sensitivity, we checked the detection 

limit  achievable  for  a  two-dimensional  (2D)  {1H}-31P  HETeronuclear  CORrelation 

(HETCOR)  spectrum  of  synthetic amorphous/crystalline  HydroxyApatite  (HAp, 

Ca10(PO4)6(OH)2) powder (Section E.2 of Chapter I). Our samples mimic biological nano-

apatites. The resulting spectrum presented three peaks: the crystalline phase at 0 ppm in  1H 

dimension,  adsorbed  water  around  5 ppm,  and  amorphous  hydrogenophosphate  HPO4
2- 

around 13 ppm (Figure II.3a). We measured PSNR based on maximum of noise on this latter 

small peak, according to:

PSNRmax=
H signal

hnoise _ peak _ peak /2
II.1

In this paragraph, we tried to determine the limit of detection available on standard 

equipment. With a low magnetic field B0 = 7.0 T and a large 4.0 mm rotor containing a mass 

m ~ 100 mg,  PSNRmax = 28 was measured for a spectrum acquired  in only 1 h. A similar 2D 

spectrum was obtained for a limited sample amount m = 2.5 mg at B0 = 16.4 T with a 1.3 mm 

rotor, which is the smallest one available in our laboratory (Figure  II.3c). This combination 

allowed an increased sensitivity by B0
1.5 ~ 3.6 and an optimal coil filling factor. PSNRmax = 3.2 

was achieved in 16 h with the above set-up. According to Currie’s definition this is just above 

quantification limit (Section B.3 of Chapter I) (17). Diluting sample by a factor 3.3 into KBr 

was  attempted  to  decrease  sample  amount.  The  spectrum  obtained  with  m ~ 750 µg  at 

B0 = 16.4 T in a 1.3 mm rotor is presented on Figure II.3d. PSNRmax = 1.3 was just at detection 
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level in 64 h. When calculating sample weight needed to fill a 0.7 mm rotor, it would require a 

similar  m ~ 670 µg.  For  materials  like amorphous/crystalline  HAp with  broad  and poorly 

intense species,  a filled 0.7 mm rotor at  high magnetic field on a modern spectrometer is 

probably the limit  of detection in a reasonable time, still  far from  our objective to detect 

m ~ 100 µg. This highlights that commercial probes are – not yet – adequate to study mass-

limited samples. However, Samoson developped a promising 0.5 mm MAS probe spinning at 

170 kHz containing  m ~ 120 µg of a protein for  1H acquisition at ultra high magnetic field 

(14).

Figure II.3: Comparison of spectra of amorphous-crystalline HAp obtained for different
sample volumes: a) m ~ 100 mg in a 4.0 mm rotor, c) m = 2.5 mg in a 1.3 mm rotor, d) 

m ~ 0.75 mg diluted in KBr in a 1.3 mm rotor; b) picture of rotors, 7.0, 4.0, 3.2, 2.5, and 
1.3 mm, from left to right, respectively. PSNRmax is indicated at bottom right of each spectrum, 

measured on HPO4
2- peak. Parameters: a) B0 = 7.0 T, texp = 1 h; c) B0 = 16.4 T, texp = 16 h;

d) B0 = 16.4 T, texp = 64 h.

B.2. Microcoils

A solution to improve NMR sensitivity of samples available in small amounts is to 

maximise the coil filling factor η, i.e., the ratio of the sample volume Vs to the coil volume Vc. 

For a solenoid coil, the filling factor is expressed according to Equation II.2,

η=
V s

2V c

II.2
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where the factor 2 accounts for only half of the energy being stored inside the coil (18). This 

formula is not valid for other coils designs, such as saddle coil. For a maximum PSNR, η has 

to be as close as possible from 1. Hence, for sub-microlitre samples, coils with diameter lower 

than 1 mm, so-called microcoils, have to be preferred.

This can be illustrated by the reciprocity principle, developed by Hoult and Richards 

(Figure  II.4a)  (18).  If  point  A is  inside  a  coil,  it  experiences  a  strong magnetic  field  in 

presence of a circulating current in the loop. However, point B is outside the coil and feels a 

weaker magnetic field than in A. Reciprocally, a magnetic dipole rotating at point A induces a 

strong electric signal into the coil, whereas the same dipole at point  B has a much  xeaker 

effect. In other words, the longest is the distance between the coil and the sample, the less  

efficient are both excitation and signal detection. Accordingly,  PSNR is proportional to the 

effective electromagnetic field B1, for a given power P at Larmor frequency ω0 (Equation II.3) 

(19).

PSNR∝
B1

√P
II.3

Figure II.4: a) Reciprocity principle, adapted from (18);
b) coil sensitivity against diameter (20).

In addition to filling factor, Peck highlighted that coil diameter has a strong impact on 

relative sensitivity of solenoid microcoils (Figure II.4b) (20). PSNR per volume is increasing 

for smaller coils. Two regimes are present, depending on coil wire diameter d in comparison 

to the Larmor frequency ω0 (Equation II.4).
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PSNR∝
ω 0

7/4

d
, skin effect regime

PSNR∝
ωO

2

√nd
, uniform current regime

II.4

This is called the skin-effect and will be detailed in Subsection  C.2. Skin effect regime is 

independent from the number of turns n of the coil.

B.3. Applications

The first known application of miniaturisation in continuous wave NMR was provided 

by Odeblad in 1966, by the observation of cervical secretions in microcoils ranging from 200 

to 1000 µm (21). 13C high resolution spectra of cholesterol in 1.7 mm coils were obtained in 

1979, leading to a reduction of acquisition time by a factor 40 (22). A non-resonant 150 µm 

coil  was used to  enhance sensitivity  of  electron spin resonance in  1986  (23).  Superfused 

mouse muscles were analysed by  31P NMR in 2 mm capillaries surrounded by a small coil 

(24).

Moreover, NMR has been hyphenated with various chromatography techniques, either 

stopped-flow or continuous-flow  (25). For instance, microcoils were connected to capillary 

electrophoresis by Wu et al. in 1994 (26). The limit of detection was investigated through 1H-
13C Heteronuclear Multiple Quantum Correlation (HMQC), into a 850 µm  1H solenoid coil 

with a neighbouring 13C Alderman-Grant coil (27). An increase of sensitivity was provided by 

four  parallel  microcoils  with  RF  switches  (28).  Microfluidic  spectra  were  obtained  by 

inductive coupling of a solenoid (29) and of a planar coil (30). An interesting study coupled 

flat coils and microfluidic into a miniaturized diagnostic magnetic resonance apparatus (31). A 

microfluidic  on-flow  reaction  was  monitored  with  photo-Chemically  Induced  Dynamic 

Nuclear Polarization (photo-CIDNP)  (32). It should be noted that 1 µL microcoils are now 

commercially available for flow-through operation (33).

Microcoils revealed also useful for Magnetic Resonance Imaging (MRI), with 4 µm 

resolution on sub-millimetre objects  (34), or with a 1 mm surface coil inductively coupled 

(35). In MRI, microcoils are often combined in arrays, up to 64 coils (36). 129Xe flow imaging 

was performed by Hilty  et al. (37). In solid state NMR, microcoils were used to increase 

Radio-Frequency (RF) field. Hence, as microcoils are concentrating electromagnetic field into 

a  small  volume,  huge  RF  strength  is  achievable,  such  as 12.4 MHz  at  256 W or  even 
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24.6 MHz at 1 kW for a 127 µm coil tuned to 19F at 377 MHz (38). For comparison, the same 

authors  measured  195 kHz at  256 W on a  standard  4 mm dual  probe.  This  was  used  for 

instance to study  23Na ions dynamics with stimulated echoes  (39) or wideline  71Ga spectra 

with an RF field of 600 kHz in a small coil of 1.6 mm (40). Different microcoils designs are 

presented on Figure  II.5 (41).  Gruber provided a practical guide for non-physicists on RF 

coils, especially for MRI  (42).  Furthermore,  Lenz lenses were compared to LC resonators 

(43).

Figure II.5: Various NMR microcoils designs, adapted from (41): a) solenoid (8),
b) planar spiral (44), c) microslot (45), and d) stripline (9).

When  decreasing  coil  size,  sample  volume  is  more  sensitive  to  magnetic 

inhomogeneities. As highlighted by Fucks et al.  (46), any susceptibility effect introduced by 

coil materials and surroundings, has a strong effect on peaks shape and frequency. A list of 

measured susceptibilities on metals, dielectrics, and solvents, was provided in reference (47). 

A workaround is to match susceptibility of the coil surroundings, either using a perfluorinated 

fluid cell  (8), or by bracketing the sample by a perfluoro-polymer, in conjunction with slow 

sample spinning (Figure II.6) (48).
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Figure II.6: Capillary spinning at 100-150 Hz to decrease susceptibility effect (48).
The sample capillary is inserted into the microcoil capillary and connected to a lightweight 

turbine. The sample plug and the microcoil are both entrapped into a susceptibility matching 
fluid (Fluorinert FC-43, a mixture of C12 perfluoro-butylamines).

B.4. Magic angle coil spinning

In 2007, Sakellariou et al. combined microcoils with MAS, to give Magic Angle Coil 

Spinning (MACS) (7), which was patented (49). The idea was to introduce the sample into a 

solenoid microcoil, placed into a standard rotor, and to close the electronic circuit by a tuning 

chip  capacitor.  In  this  way,  the  microcoil  was  self-resonant.  This  is  presented  on 

Figure II.7a-b. The two coils are behaving like a power transformer, with a main circuit (coil 1 

into the probe, Figure  II.7c),  and a secondary circuit  (microcoil  into the rotor). While the 

former is static, the latter is in rotation at the magic angle. By inductive coupling between the 

two  coils,  energy  transfer  occurs,  enabling  both  excitation  and  signal  detection  of 

microquantities.

In the following years,  further  investigations were done by Sakellariou’s group on 

MACS concept (19, 50), on the effect of eddy currents (leading to extra heating of the sample, 

a  drawback  of  MACS)  (51,  52),  for  application  to  biological  samples  (53–56),  and  to 

materials  (57,  58).  Two other designs were tested in collaboration with Korvink  et al. for 
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microfabricated coils  (59) and with Ginefri  et al. for Transmission Line Resonators (TLR) 

(60).  After a common work on a static sample  (61), Yamauchi, Kentgens  et al. separately 

implemented a microMAS equipment (62, 63) consisting of a microcoil entrapped into a flat 

capacitor, both positioned outside of the rotor, so-called piggy-back microcoil (Figure II.8a). 

Sample  holder  was  fixed  on a  standard  rotor.  Kentgens  et  al. also  studied  heteronuclear 

decoupling (9, 64), 1H homonuclear decoupling (65, 66), and micrometre single crystals (67) 

in spinning microcoils.

Figure II.7: MACS concept: a) standard MAS NMR probe (coil 1) containing
b) a standard 4.0 mm rotor where a tuned microcoil (coil 2) is placed into a ceramic holder;
c) by inductive coupling, the energy is transferred from coil 1 to coil 2, adapted from (19).

Takeda proposed three other microcoils designs: another piggy-back module attachable 

to a standard MAS probe (Figure II.8b) (68), a doubly tuned capillary coil inside a standard 

rotor  (69), and a disk MAS for thin layers  (70). These implementations were compared to 

each other (71), as well as the impact of the involved high RF field on pulse imperfections. 

Korvink’s group designed Micro-Electro-Mechanical Systems (MEMS)  (Figure  II.8c)  (72), 

which were placed into a MAS rotor (59). This was improved by new capacitor design (73) 

and recently applied to metabolomics (74). In this latter domain, Jeol manufacturer developed 

a  high  resolution  1 mm microMAS probe  (75).  Ginefri’s  group developed  TLR for  MRI 

(Figure II.8d) (76, 77). A last design was provided by Leidich et al. with Helmholtz coils in a 

home-made probe, where a 330 µm capillary was spinning at magic angle (78).
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Figure II.8: MACS alternatives by a) Kentgens’ group (2006) (63), b) Takeda’s group
(2008) (68), c) Korvink’s group (2010) (59), d) Ginefri’s group (2012) (76), initially 

implemented for imaging, contrary to other designs.

Piggy-back microcoils main disadvantage was the need to modify the probe, especially 

not  only  once,  but  each  time  one  wanted  to  study  a  different  nucleus  (Figure  II.8a-b). 

However, a high RF field was achievable. MEMS had the advantage to be highly reproducible 

(Figure  II.8c). Nevertheless, they had a low aspect ratio (length to width), which decreased 

RF homogeneity and sensitivity. Moreover, materials used and clear lack of axial symmetry 

induced susceptibility broadening and limited MAS rate. Much progress has since been done 

and  symmetric  microcoils  for  solid-state  NMR  suitable  for  100 µg  samples  are  now 

commercially  available  (33).  Hereafter,  we will  be interested in  MACS and TLR designs 

(Figures II.7 and II.8d, respectively), which neither require a probe modification.

In Subchapter B, we highlighted that commercial probes are not yet suitable to analyse 

diluted species. For mass-limited samples, microcoils benefit from an optimised filling factor 

and an increased PSNR per unit of volume. Their applications were presented before detailing 

MACS concept and alternatives.
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C. Some elements of electromagnetism

Electromagnetism is widely used to prepare radio-frequency coils, especially for radio 

transmitters  (79). In  order  to  design microcoils,  a  few basics  are  necessary,  starting with 

resonance frequency, inductance and capacitance (Section  C.1), skin and proximity effects 

(Section C.2), and resistance and quality factor (Section C.3). Eddy currents,  radio-frequency 

homogeneity,  and  inductive  coupling  will  be  investigated  in  Sections  C.4,  C.5,  and  C.6, 

respectively.

C.1. Resonance frequency, inductance and capacitance

C.1.a. Solenoid coils

The  solenoid  microcoil  form  a  serial  RLC  electronic  circuit,  whose  frequency  ν 

depends on inductance L and capacitance C:

II.5

For  a  solenoid  coil,  Lorenz gave  a  formula  (80) based  on  infinitesimally  thin 

conducting sheet (in orange on Figure  II.9)  (79).  Nagaoka rewrote Lorenz’s formula with a 

shape factor kL, function of diameter dcoil and length lcoil of coil, and available as a table (81):

II.6

For a round wire solenoid coil (in blue on Figure II.9), Rosa provided two additional 

correcting factors (right part of Equation II.6) (82), function of pitch ppitch, wire radius rwire and 

of the number of turns Nturns. Once the inductance was calculated, the adequate capacitor value 

was chosen according to the commercially available ones. By brazing the capacitor to the 

solenoid, the circuit was closed and auto-resonating at the desired frequency. This is the key 
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point of MACS: the RLC circuit can be adjusted to almost any frequency without modifying 

the probe, simply by changing the capacitor value or the solenoid parameters.

Figure II.9: Sheet layer (orange) and round wire (blue) solenoid coils, adapted from (79).

C.1.b. Transmission line resonators

Monolithic Transmission Line Resonators (TLR) are much more recent than solenoids 

(83). They consist of a low-loss dielectric substrate surrounded by a conductive layer on each 

side (Figure II.10)  (77). Each layer is interrupted by one or many gaps, diagonally opposed 

from one side to the other one. Multi-turns and multi-gaps can be combined into a single 

TLR. Two current modes are simultaneously present on both TLR sides. The first mode is 

anti-symmetrical with equal magnitudes but opposite signs, responsible for the self-resonance 

frequency.  The  second  mode  is  symmetrical  with  same  magnitude  and  same  sign  and 

generates an out of plane RF magnetic field, whereas the electric field is concentrated around 

the gaps (84). TLR are prepared by photo-lithographic etching (85).

Figure II.10: TLR designs: a) single-turn single gap, b) single-turn multi-gaps,
c) multi-turns single-gap, d) multi-turns multi-gaps, adapted from (77).
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A complete mathematical description of TLR resonance frequency is available in (86). 

Briefly, an analytical formula was provided by Gonord  et al. for single-turn coils  (84) and 

extended to multi-turns designs by Serfaty et al. (87):

Ltotω
4 N g Z

tan(ω √ε l f

4 N g c )=1 II.7

where ω is the angular resonance frequency, Ng is the number of gaps per conductor, ε is the 

substrate  dielectric  constant,  lf is  the  length  of  one  conducting  band,  and  c is  the  speed 

vacuum of  light.  Ltot corresponds  to  the  total  TLR inductance,  defined  by the  individual 

inductance Li of each turn, the number of turns N, and their mutual inductances Mij:

Ltot=∑
i=1

N

(Li+2 ∑
j=1+1

N

M ij) II.8

Z reflects  the transmission line impedance,  depending on the conductor  width  w,  and the 

substrate thickness  h. Depending on their ratio, the wide band approximation (w > h) or the 

narrow band approximation (w < h) is calculated.

C.2. Skin and proximity effects

When a Direct Current (DC) is circulating into a straight conductive wire, this current 

is uniformly distributed into the wire. On the contrary, with Alternating Current (AC), the 

current is limited to the surface, giving the so-called skin effect, due to eddy currents that tend 

to oppose to the current oscillations.  Skin depth  δ is presented on  Figure  II.11a  (88) and 

defined according to Equation II.9 (89):

II.9

involving  RF  frequency  ν,  resistivity  ρ,  and  magnetic  permeability  μ,  whose  values  are 

presented in Table II.2 for various materials (90). A unit-less scaling parameter can be defined 

as  z = d / δ, where  d is the wire width. With  z ≥ 8, the system is in the skin effect regime. 

Minard and Wind rather defined the high frequency limit at z ≥ 5 (91), the value we used. On 

the  contrary,  z ≤ 2  corresponds  to  the  uniform current  regime.  An intermediate  regime  is 

present for 2 < z < 5 or 8.
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Figure II.11: Skin and proximity effect: a) skin depth as a function of AC frequency on
steel cables (88); b) proximity effect applied from left wire to right one, on which current 

density increased on left part, whereas it decreased on right part (92); c) combination of skin 
and proximity effect, with a vertical magnetic field, adapted from (93).

Table II.2: Resistivity, magnetic permeability and skin depth of conductive materials.

Material
Resistivity ρ 
(10-8 Ω.m)

Magnetic 
permeability µ 

(10-6 H.m-1)

Skin depth

60 Hz 1 kHz 1 MHz 1 GHz

Lead 20.6 1.26 30 mm 7.2 mm 230 µm 7.2 µm

Tin 12.6 1.26 23 mm 5.7 mm 180 µm 5.7 µm

Aluminium 2.65 1.26 11 mm 2.6 mm 82 µm 2.6 µm

Gold 2.20 1.26 9.6 mm 2.4 mm 75 µm 2.4 µm

Copper 1.68 1.26 8.4 mm 2.1 mm 65 µm 2.1 µm

Silver 1.63 1.26 8.3 mm 2.0 mm 64 µm 2.0 µm

Iron 10.1 1260 0.65 mm 0.16 mm 5.1 µm 0.16 µm

Another important effect of current circulation is present when two wires are in close 

neighbouring,  i.e., the  proximity  effect,  presented  on  Figure  II.11b  (92).  The  current 

circulating  into  the  left  wire  induces  a  magnetic  field,  that  crosses  the  right  wire.  This 

generates a second current, whose density is increased at proximity of the first conductor. The 

closer are both wires, the higher is the effect. Skin effect and proximity effect are combined 

on Figure II.11c (93). Each wire is symbolised by a white circle. As no insulation is present, 

all wires are connected to each other and skin effect concentrates current (in black) to the 
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global  envelope.  Proximity  effect  distorts  the  overall  shape  to  fit  the  individual  wires 

curvature.

C.3. Resistance and quality factor

Skin and proximity effects induce resistance into the conductive wire. For a straight 

wire, the global AC resistance RAC
wire is given by:

RAC
wire= ρ l

πδ (d−δ )
II.10

where ρ is  the  resistivity, δ is  the  skin  depth,  and  l and  d are  wire  length  and  width, 

respectively. For a coil, proximity effect has to be taken into account with the factor ξ (91), 

experimentally tabulated by Medhurst (94), who revised Butterworth’s work (95):

RAC
coil=RAC

wire[1+(ξ −1)(1− 1
nturns

)] II.11

ξ values depend on the length-to-diameter ratio of the coil and of the wire-diameter-to-

inter-turn-spacing ratio. This factor was designed at high frequency limit (z=d /δ⩾5) and 

for long coils (nturns ≥30) and has to be corrected by (1−1/nturns) for smaller coils  (96). 

An improved formula taking into account low-frequency limit and correcting underestimation 

of  RAC
coil for  ξ = 1  was  provided  by  Knight  (96).  Resistance variation  as  a  function  of  z 

parameter is depicted on Figure II.12a (20). The slope rupture for 2 < z < 5 is clearly visible. 

In addition, circuit resistance impacts noise intensity during acquisition. Hence, PSNR slope is 

changing according to z (Figure II.4b).

Figure II.12: a) Resistance as a function of normalised wire diameter (20); b) quality
factor of two coils as a function of frequency (97).
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Resistance R and frequency ν are also involved into the quality factor Q (42):

Q= Maximum energy stored
Average energy dissipated per cycle

= 2πν L
R

= 1
R √ L

C
II.12

Variation of  Q against frequency is presented on Figure II.12b  (97). Similar results 

will be obtained at higher frequencies, simply by adjusting coil inductance. Typical Q values 

are between 10 and 100. As maximum of Q depends both on R and L, coil pitch is a crucial 

parameter, as it impacts both of them by the mutual inductance and the proximity effect. For a 

given wire diameter,  the optimal  sensitivity  is  obtained for a  pitch of  1.5 times the wire 

diameter (91).

C.4. Eddy currents

Eddy  currents  are  known  since  1883  and  were  derived  from  Maxwell’s 

electromagnetic  theory  (98).  They  can  be  simplified  as  follows:  any  movement  from  a 

conductive metal placed into a magnetic field induces a current that generates a magnetic field 

in the opposite direction. The same effect appears with a static metal but a moving magnetic 

field. This generates heating by Joule effect and undesired gradient magnetic fields. Schäfer 

and Heiden measured the current losses in full and hollow copper cylinders slowly spinning 

(Figure II.13a, black line and points) (99). They evidenced that these currents are proportional 

both to the height and to the thickness of copper cylinders. In other words, the higher volume 

of  metal,  the stronger  are  the eddy currents.  Aubert  et  al. confirmed their  model  (Figure 

II.13a,  superimposed red line)  (52) and that  two types  of current  trajectories  are  present, 

depending  on  cylinder  shape  ratio  (Figure  II.13b).  They  applied  this  analysis  to  MACS 

microcoils and highlighted that power dissipation P can be estimated according to Equation 

II.13:

Pmin<P<2 Pmin

Pmin=n turns

2π(B0ω r sinθ )2

3ρ
a5β 3ε

with a=
d capi+wwire

2
, β=

hwire/2
a

, and ε=
wwire

a

II.13

where  nturns is the number of wire turns,  B0 is the magnetic field,  ωr is the spinning angular 

frequency, θ is the spinning angle, ρ is the resistivity of the wire material, dcapi is the capillary 

diameter and hwire and wwire are the rectangular section dimensions of the wire, respectively.
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Figure II.13: a) Eddy currents for a full and hollow cylinders, with λ=dcapi /(dcapi+wwire) ,
μ=(hwire/2)/(d capi+wwire) and f (λ ,μ)∝P  (52, 99); b) current trajectories depending on 

shape factor, blue and red curves correspond to a mirror symmetry (52); c) temperature 
increase with MAS rate, with various insert materials, blue curve: without microcoil (7).

This  heating  impacts  the  sample  entrapped  into  MACS  microcoil,  and  has  to  be 

minimised. Temperature increase depends on the insert material holding the microcoil (Figure 

II.13c) (7). With a KEL-F insert (polychlorotrifluoroethylene), temperature increased by 75°C 

at MAS = 5500 Hz for a thick copper wire of 80 µm (green curve). KEL-F has a low thermal 

conductivity of ~ 0.21 W.K-1.m-1,  whereas Shapal-M (machinable aluminium nitride) has a 

much higher one of ~ 80 W.K-1.m-1 (51). With Shapal-M, temperature increased only by 55°C 

at  MAS = 7000 Hz (red curve), and was further reduced by adding thermal paste, reaching 

only 30°C at MAS = 7000 Hz (pink curve). Thermal paste disadvantage is the introduction of 

undesired  NMR  signals  (metal  particles  and  polymer  as  adjuvant),  and  of  a  change  of 

magnetic susceptibility. Power dissipation of microcoil was calculated to be 100 mW in such 

conditions.  Temperature was measured using lead nitrate  207Pb NMR chemical  shift  as an 

internal  thermometer  (100).  For  comparison,  10°C  heating  was  obtained  on  lead  nitrate 

without microcoil (blue curve). Eddy currents heating were further minimised to 20°C with 

thin wires of 25 µm at MAS = 10,000 Hz (51). If fast spinning speeds are desired, the thinest 

usable wires have to be chosen.
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C.5. Radio-frequency homogeneity

Radio-Frequency (RF) homogeneity is a necessary condition to manipulate the spin 

magnetisation present in a given volume. For instance, inhomogeneities prohibits the use of 

multi-pulses sequences, which are requested to provide the most accurate informations on the 

analysed sample. A way to characterize this RF homogeneity is to do a nutation curve, where 

intensity of signal is measured as a function of pulse duration. Figure II.14a highlights three 

different  implementations:  a  solenoid  (stars)  with  a  regular  nutation,  a  Helmholtz  coil 

(squares) with an imperfect inversion and a left shift for second and third oscillations, and a 

planar coil (circles), with only a first maximum but no following inversion, demonstrating a 

very poor RF homogeneity (101). It should be noted that planar coils used here are not TLR, 

but rather a single spiral coil. Helmholtz coil combines two inductively coupled planar coils, 

with the sample in between.

Figure II.14: RF homogeneity: a) comparison of different coil shapes (101), b) comparison
of two solenoids with a different length, the grey scale and the values nearby indicate the 

percent of deviation of the RF field strength relatively to coil center (102).

Minard  and  Wind  calculated  RF  field  homogeneity  for  different  coil  shapes  and 

highlighted that a solenoid microcoil with a length of 1.5 times its diameter gave much better 

results than with a relative length of 1 (Figure II.14b) (102). Even in this case, the sample has 

to occupy half of the coil volume, being centred into it. With this configuration, the minimum 

coil length is 1.2 times its diameter to have a RF homogeneity with a maximum deviation less 

than  10 %. Accordingly,  the  ratio  lsample : dcoil : lcoil of  0.5 : 1 : 1.2  has  to  be  preferred.  Any 

oversized sample will have a poor RF filed homogeneity. An alternative is to use  variable 

pitch  coils,  with  a  reduced  pitch  at  each  end  of  the  solenoid,  which  increases  the  RF 

homogeneity at microcoil extremities (103).
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C.6. Inductive coupling

When  two  coils  with  inductances  L1 and  L2 are  close  from each  other,  inductive 

coupling  occurs,  with  a  mutual  inductance  M (Figure  II.7c).  The  coupling  coefficient  is 

defined as:

k= M

√L1 L2

II.14

Three coupling regimes can be defined: under-coupling, critical-coupling and over-

coupling (86). Under-coupling is present when the pick-up coil (primary circuit) is far away 

from the  other  coil  (secondary  circuit).  Critical-coupling  occurs  when the  same power  is 

dissipated into the primary and secondary circuits. For two solenoid coils with the same shape 

ratio, critical coupling depends on their volume V1 and V2 and their quality factors Q1 and Q2 

previously defined in Equation II.12:

Q1Q2 V 2 /V 1=1 II.15

Figure II.15: Comparison of simulated frequency response (first row), real and imaginary
parts of the current (second and third rows, respectively), power dissipation (fourth row), and 
RF magnetic field (last row) for a) probe coil, b) MACS coil inserted into probe coil, and c) 
after retuning and rematching to 50 Ω. Continuous and dashed curves correspond to probe 

coil and MACS microcoil responses, respectively (50).
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Over-coupling corresponds to the regime where  Q1Q2V2/V1 >> 1. Most of the power 

applied  to  the  probe  coil  is  transmitted  to  the  microcoil.  This  is  typical  for  MACS 

experiments. However, in the general case, the magnetic field B1
macs into the microcoil and the 

one into the probe coil in absence of microcoil B1
ref are related by:

B1
MACS

B1
ref

=Q2√ 1
1+V 2Q1Q2 /V 1

II.16

As  a  consequence  of  over-coupling,  the  frequency  response  is  splitted  into  two 

resonances (first row of Figure  II.15a-b)  (50).  This can be corrected by probe tuning and 

matching with the variable capacitors integrated into the probe, the ones that are daily used 

without  MACS (Figure  II.15c).  When  inspecting  real  and  imaginary  parts  of  the  current 

(second and third rows), they are more important into the secondary coil (dashed curves), than 

into the primary coil  (plain curves).  Accordingly,  the power is  mostly dissipated into the 

secondary coil (fourth row), and RF magnetic field is much more intense into it (last row).

In Subchapter  C, inductance formulae were provided to design solenoids and TLR 

microcoils. Two frequency regimes were highlighted, depending on skin-effect, and impacting 

circuit  resistance.  Eddy  currents  heating  and  RF  homogeneity  were  investigated.  Finally, 

inductive coupling was presented.

D. Microcoils manufacturing

Multiple steps are needed to manufacture microcoils. The first one is to calculate the 

adequate parameters (Section D.1). Miniaturisation will be highlighted in Section D.2. Coils 

winding and capacitor brazing, followed by frequency analysis will be detailed in Sections 

D.3, and  D.4, respectively. Michromechanics will be investigated in Section  D.5. Finally, a 

supplies list will be provided in Section D.6.

D.1. Parameters calculation

A considerable work has been undergone to implement all the above electromagnetism 

formulae into a single solenoid calculation LibreOffice sheet, available online (104). Page 1 is 

presented on Table II.3 and updated from values from all the other pages. By selecting desired 

nucleus and magnetic field strength into a list, the resonance frequency is found on page 2. 

The microcoil supplies are found on page 3, including wire material and diameter, capillary 
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inner and outer diameter, and available capacitor values. Inductance is defined on page 4, 

according to  Nagaoka’s  factor  (81) and Rosa’s  round-wire corrections  (82),  using macros 

provided by (79). Rosa’s formula is valid only for pitch angles lower than 5°. If this condition 

is not respected, a warning is displayed on page 1 by conditional formatting in red of the 

corresponding cell. The inductance of straight wire leads whose length lleads depends on coil 

position and capacitor size is also calculated (105):

LDC
wire=200 l ln (4 lleads /d wire−0.75), in nH

LAC
wire=200 l ln (4 lleads/d wire−1), in nH, skin effect regime

II.17

Table II.3: LibreOffice sheet for solenoid calculation (104). Yellow, grey, green and red
boxes are adjusted, calculated, valid and invalid values, respectively.

This formula is valid only if the wire is surrounded by air. A detailed analysis taking 

into account skin depth can be found at  (106). Three capacitor values are suggested for the 

total  inductance.  If  the calculated frequency is away from the desired one,  its cell  colour 

changes to red. Resistance and quality factor are extracted from Medhurst’s table (94) on page 

5 of the LibreOffice sheet. Eddy currents heating is obtained from page 6 according to Aubert 

et al. (52). Again a warning is displayed if heating exceed the fixed threshold.
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The obtained resonance frequency was in accordance within an error of 10 MHz with 

the expected one. The imprecision arises typically from coil imperfections, in particular from 

an inexact number of turns, from coil length impacting pitch, and from leads length. A few 

rules of parameters choice are presented in Table II.4. Hence, the number of turns has a strong 

impact.  On the  contrary,  coil  position  is  typically  a  parameter  to  finely  adjust  resonance 

frequency, the ideal being to place the microcoil at the vertical center of the probe coil for the 

best inductive coupling.

Table II.4: Influence of parameters for microcoil design.
Parameter Resonance frequency Quality factor Heating

↑ Spinning frequency → → ↑

↑ Capillary diameter ↓ ↑ ↑

↑ Wire diameter ↑ ↑ ↑

↑ Coil length ↑ ↑ →

↑ Coil position ↓ ↓ ↑

↑ Number of turns ↓ ↑ ↑

TLR are more complicated to design. For the moment, one can use a 3-step Matlab 

(The MathWorks, Inc., Natick, MA, USA) script, provided by J. Lehmann-Horn (Bruker) with 

FastHenry program  (107). An alternative is to use an electromagnetic simulation software, 

FEKO (Altair Hyperworks, Troy, MI, USA).

D.2. Miniaturisation

Wire diameter as a strong impact on eddy currents heating. Its width has to be five 

times higher than the skin depth (Section C.2). For instance, to study 31P nucleus at 11.7 T, the 

wire should have a diameter thicker than 23 µm (Table  II.3). The wires that we used were 

ranging from 30 to 80 µm. For comparison, hairs diameter is between 50 and 100 µm. Wire 

diameter is thus a compromise between eddy currents and ease of use. 50 and 80 µm wires are 

robust to manipulate, whereas 30 µm wire are easily broken.

My first successful solenoid is presented on Figure  II.16a, with 80 µm wire, ‘huge’ 

capacitor, broken capillary, and irregular glue. After many trials, I succeeded to have a series 

of microcoils with 50 µm wire and small capacitor (Figure II.16b). A 50 µm wire microcoil is 

detailed  on  Figure  II.16d,  where  one  can  see  the  capillary,  the  solenoid,  and  its  leads 

connected to the capacitor. The different capacitors used are shown on Figure II.16c, ranging 
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from 1.5 mm (left) to 0.5 mm (right). The smallest ones gave a more stable rotor spinning. 

Their commercially available values covered the range from 1 to 330 pF. TLR with different 

diameters are depicted on Figure II.16e.

Figure II.16: Miniaturisation of coils, from a) 80 µm wire with thick capacitor to
b) 50 µm wire with thin capacitor; c) different capacitors used; d) detail of a solenoid 

microcoil; e) some transmission line resonators (TLR).

D.3. Coil winding and capacitor brazing

Coil  winding  and  capacitor  brazing  are  mandatory  steps  in  the  manufacturing  of 

solenoid microcoils. For TLR, the coil was etched by photo-lithography and capacitor was the 

substrate itself (85). Multiple techniques were tested to wind coils. Firstly, we used a winding 

apparatus (Figure  II.17a). Unfortunately, this was oversized compared to the capillary and 

needed  to  apply  strong  mechanical  force  (Figure  II.17b).  Furthermore,  it  had  multiple 

drawbacks: difficulty to clamp capillary without breaking it, difficulty to attach starting wire 

point,  difficulty  to  apply  adequate  wire  tension  without  breaking  it,  imprecision  for  coil 

position, and irregular winding for first turns. A second approach was to wind the coil around 

a  calibrated  screw  (Figure II.17c).  Such  screws  are  described  in  mechanical  engineering 

books (108) and various diameters are available, close from capillaries ones (500 to 870 µm). 
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The coil was very regular, however, it was destroyed when trying to enter a capillary into it. 

Finally, best results were obtained by hand winding under a binocular loupe (Figure II.17d).

Figure II.17: Solenoid coil winding: a) mechanical tool, b) zoom to the capillary
(green ellipses), c) calibrated screw (108), d) binocular loupe and brazing iron.

After winding, the solenoid was attached to the capillary by cyanoacrylate glue, which 

has a low viscosity,  can easily be deposited around the coil,  and dries in  a few seconds. 

However, its drying needs water from air, and therefore it cannot be used inside the capillary 

to fix the capacitor. Epoxy resin has to be preferred for this purpose. This bi-component glue 

reacts by itself and has a higher viscosity. Fluorinated wax was also tried to fix the coil. It was 

melted by the brazing iron and solidified in a few seconds. Through this method, adjusting 

resonance frequency by changing pitch was quite easy. However, wax coating was thicker 

than cyanoacrylate coating and it had difficulties to enter into the Shapal-M insert. Moreover, 

despite having chosen wax with the highest available fluorinated content, strong  1H signal 

were  present,  avoiding  direct  sample  observation  into  the  microcoil.  1H  signal  of 

cyanoacrylate was much less visible. For completeness, cyanoacrylate 1H and 13C spectra can 

be found in (109).

79



Chapter II. Microcoils

Next step was to connect the capacitor to the coil through its leads. Soldering term is 

inadequately used for this operation, but brazing term should be preferred.  Soldering is the 

addition of the same metal or fusion of the two parts.  Brazing is the addition of a different 

material at low temperature (< 450°C), in our case brazing wire, composed of an alloy with 

tin, lead, silver and copper (110).

Figure II.18 evidenced three brazing qualities, from insufficient (left), through correct 

(middle),  to  excessive  (right)  (111).  Insufficient  brazing  could  break,  whereas  excessive 

brazing increased resistance and reduced microcoil quality factor. Preliminary step for brazing 

was  to  remove  insulation  from  wire  tips  and  to  tin  bare  ends.  Brazing  quality  strongly 

depended on insulation coating removal. We unsuccessfully tried chemical dissolution with 

chloroform or dichloromethane, that should dissolve polyurethane coating  (112). New wire 

with polyamide coating was purchased, theoretically  soluble in ethanol or acetone,  but  in 

practice it was insufficient to remove coating. Best results were obtained by wire scratching,  

which weakened it. In case of residual impurities, this gave a so-called cold brazing, with the 

wire entrapped into the brazing, but with a bad electric contact.

Figure II.18: Different brazing qualities: insufficient (left), correct (middle), and excessive
(right) (111).

D.4. Frequency analysis

After preparing a microcoil, it was necessary to check its properties. The microcoil 

was  inserted  into  a  pick-up  coil  (Figure  II.19a),  connected  to  a  frequency  analyser 

(Figure II.19b),  whose  frequency  was  sweeping  around  the  expected  value.  A dispersion 

signal on the screen reveals resonance frequency ν, and the difference between positive and 

negative signals, Δν, is a measure of the quality factor Q:
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Q= ν
Δν II.18

Figure II.19: Characterisation of microcoil: a) solenoid microcoil put into a pick-up coil,
b) scalar, and c) vectorial frequency analyser. Green ellipse: microcoil; green arrows: 

frequency response.

Scalar  frequency  analyser  (Figure  II.19b)  is  for  routine  analysis  and  present  only 

modulus,  whereas vectorial  frequency analyser (Figure  II.19c) provides both modulus and 

phase, but is more expensive. The latter equipment could be helpful to obtain Smith’s abacus 

(green arrow in Figure  II.19c) and to optimise  microcoil frequency response  (113). Smith’s 

abacus  characterisations  have  been  started  in  collaboration  with  A.  Louis-Joseph  at 

Polytechnique  School  (Palaiseau,  France).  However,  this  study  is  out  of  my  knowledge 

expertise and has not been pushed further.

D.5. Micromechanics

The microcoil was placed into a Shapal-M insert, itself placed into a commercial rotor. 

Two designs were necessary, one for solenoids (Figure II.20 left), and the other one for TLR 

(Figure II.20 right). The insert had to be as close as possible from the cylindrical symmetry. 

Moreover, insert depended on rotor size and had to be sufficiently narrow to enter into and 

exit  from the  rotor  only  by gravity.  However,  if  it  was  too  narrow, spinning instabilities 

avoided high spinning frequencies. 10-20 µm was the adequate difference between the outer 
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diameter of the insert and the inner diameter of the rotor. As the inner diameter is slightly 

changing from one rotor to the other, an insert and a rotor form a pair that should not be 

separated. In mechanical engineering, this typically corresponds to the ISO norm H7 for the 

housing bore (rotor) and f7 for the shaft (insert) (114). Shapal-M is a ceramic that necessitates 

hard tools, and the necessary precision requires a strong mechanical expertise.

Figure II.20: Rotor inserts: solenoid design (left), TLR design (right).

A very precise protocol  was defined to weight the amount of sample introduced into 

the microcoil.  We tested three analytical balances displaying a precision of 10 µg, and kept 

the more precise one. First, a ball of Teflon ribbon was inserted into the capillary (solenoid) or 

into the holding disk (TLR). The capillary or the holding disk was then weighted three times, 

with a stable weight during 30 seconds and the balance doors closed. Between each measure, 

return to zero was checked and tare was adjusted if necessary. The weight was obtained by 

averaging the three measures.  The same suite  of operations  was realised after  adding the 

sample. Finally, a second Teflon ball was inserted to confine the sample. Using this procedure, 

a precision of ± 30 µg was obtained.
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D.6. Supplies list

A list  of  supplies  used  for  microcoils  is  available  in  Table  II.5,  including  global 

equipment, and specific ones for solenoids or TLR.

Table II.5: Supplies list with provider, model, specifications and cost.
OD: outer diameter, ID: inner diameter, NA(): not available.

Designation Brand /
Provider

Model Specifications Cost
excl. taxes

Global equipment

Spectrum 
analyser

Hameg HMS 1010 Max frequency 1 GHz 3050 €

Binocular loupe Vision 
engineering

SX45 8x-50x magnifying 1350 €

Solenoids

Copper wire Elektrisola FS15 Soluble polyamide coating,
grade 1B, 0.05 and 0.03 mm

850 €
for 3.15 kg

Quartz 
capillaries

Vitrocom /
CM Scientific

Hollow round OD :0.87, 0.84, 0.70 mm,
ID : 0.70, 0.60, 0.50 mm

470 €
for 200 units

Brazing station Weller WD1 Variable temperature
50-450°C

400 €

Capacitors Vishay /
Digi-Key

720-1223-ND
720-1224-ND

1.0-330 pF,
50 V, non-magnetic

180 €
for 725 units

Brazing wire NA() NA() 0.25 mm,
unknown composition

50 €
for 250 g

Abrasive paper Radiospares 797-5992 Extra-thin grain 1000 15 €
for 25 units

Cyanoacrylate 
glue

Loctite /
Radiospares

Super Glue 3 Liquid, fast drying 10 €
for 3 g

Epoxy resin Radiospares 850-940 Bi-component, fast drying 10 €
for 32 g

TLR

Printing DB electronic 
(85)

NA() Rogers RO3010 0.125 mm
double side resist mask

2160 €
for 500 units

Computer Dell Precision 
7820

2*Intel Xeon silver 4110, 
16C/32T, RAM 64 GB

2040 €

Simulations 
software

Altair Feko Academic licence 2015 €
for 1 year
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In Subchapter D, we provided a LibreOffice sheet allowing to calculate all necessary 

parameters for solenoid coil. Miniaturisation and microcoil preparation were detailed, before 

characterising microcoils, detailing the micromechanics and the adequate supplies list.

E. Results

First tests on sea urchin spines will be investigated in Section E.1. We will present RF 

homogeneity results obtained with MACS solenoids and TLR (Section E.2). Pulse sequences 

with increasing complexity will be used, starting with single pulse (Section E.3), and keeping 

on with PARIS / PISSARRO sequence (Section  E.4),  cross-polarisation (Section  E.5),  and 

TEDOR (Section E.6).

E.1. Sea urchin spine

Figure II.21: a) Sea urchin, adapted from (115); b) microcoil winded around a sea urchin
spine; c) piece of sea urchin spine into a capillary surrounded by a solenoid microcoil; d) 

nutation curve obtained with capillary microcoil; e) 2D NOESY spectrum, tmix = 1 ms. 
Parameters: B0 = 11.7 T, 4 mm rotor, MAS = 5 kHz, RD = 1 s.

Sea urchin spines (Figure II.21a) have the advantage to have a cylindrical symmetry, 

compatible  with  solenoid  microcoil  design.  Hence,  it  was  attempted  to  directly  wind the 

microcoil  around one spine of 10-15 mm long (Figure  II.21b) collected on  Paracentrotus 

lividus (Section  E.4  of  Chapter  I) (116).  However,  RF  homogeneity  was  very  poor,  in 

agreement  to  Section  C.5,  due  to  the  important  part  of  the  sample  outside  of  microcoil 
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volume. Better results were obtained with a piece of spine placed into a capillary surrounded 

by a solenoid microcoil (Figure II.21c and d). t90
1H = 9 µs @ 10 W was measured, allowing to 

acquire  a  2D Nuclear  Overhauser  Enhanced SpectroscopY (NOESY, (Figure  II.21e).  This 

spectrum presents mainly lipids signature and their  spinning sidebands.  Unfortunately,  no 

correlation was visible on this spectrum, even at longer mixing times tmix. Investigations will 

be  pursued  with  samples  chemically  treated  or  heated,  to  focus  on  intercrystalline  and 

intracrystalline organics.

E.2. RF homogeneity

Nutation curves allow to characterise RF homogeneity and to know the exact pulse 

length, in order to maximise signal to noise ratio (Section C.5).

E.2.a. Solenoid coils

For solenoids, amorphous/crystalline hydroxyapatite sample (Section E.2 of Chapter I) 

was introduced into  the  capillary  and positioned into  the  microcoil.  Without  an adequate 

sample confinement, sample moved inside the capillary (right red circle on Figure II.22c) and 

no inversion was observed on 31P nutation curve obtained without sample spinning of a mass 

m ~ 340 µg of hydroxyapatite (Figure II.22a). Indeed, during insertion or ejection of the rotor 

into  the  probe,  a  shock  occurred  at  the  end  of  these  movements,  shifting  the  sample. 

Furthermore, capacitor soldering was broken when spinning sample at MAS = 5 kHz (left red 

circle on Figure  II.22c), due to centrifugal forces. To decrease breaking risks, the capacitor 

had to be blocked into the insert with Teflon ribbon. Similarly, Teflon can easily be stretched 

and inserted into the capillary in order to entrap the sample into the solenoid. Figure  II.22b 

exhibit the 1H nutation curve obtained with a slightly oversized adamantane sample (tricyclic 

C10H16,  a  reference  compound  used  for  1H  chemical  shift  calibration)  with  a  mass  of 

m ~ 270 µg (Figure II.22d). The result is a partial inversion with curve distortion. By carefully 

restricting sample filling to the inner coil part, much better nutation curves were obtained (top 

insert on Figure II.22).
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Figure II.22: Top insert: nutation curvewithout oversized sample; a) 31P nutation curve
obtained on hydroxyapatite; b) 1H nutation curve obtained on adamantane; c) coil obtained 

after analysis of a); d) coil used for b). Red ellipses: defects of sample or of coil. Parameters: 
a) B0 = 7.0 T, 4 mm rotor, MAS = 0 kHz, m ~ 340 µg; b) B0 = 7.0 T, 4 mm rotor, 

MAS = 2.5 kHz, m ~ 270 µg

E.2.b. TLR

Confining a powder into TLR was harder than for MACS solenoids. For this purpose, 

two  spacers  were  tested:  1.7 mm  and  1.0 mm.  The  1.7 mm  spacer  was  a  mini-crucible 

composed of a KEL-F ring containing sample, closed by a Teflon disk at one side, and a 

Teflon ball at the other side (Figure II.23a). The 1.0 mm spacer was a simplified version, with 

a second Teflon ball instead of the Teflon disk. Two TLR at the same resonance frequency 

were placed below and above. By combining two TLR, each of those being self-resonating, an 

increased RF field was obtained between them (Figure II.23b) (60).

For the 1.7 mm spacer, a correct 31P nutation curve was obtained with m ~ 190 µg of 

hydroxyapatite  (Figure  II.23d),  but  the  90°  pulse  length  was  quite  long  with 

t90
31P = 13.8 µs @ 10 W  (MAS = 5 kHz).  This  value  was  very  similar  to  the  one  without 
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microcoil, indicating that no enhancement was present. The reason was probably that sample 

was too far from the two TLR, due to spacer height. In order to circumvent this problem, the 

1.0 mm spacer was placed between the two TLR with m ~ 450 µg of hydroxyapatite. A shorter 

value  of  t90
31P = 10.0 µs @ 10 W  was  measured.  According  to  the  reciprocity  principle 

(Section  B.2),  this  shorter  pulse length is  equivalent  to  a  gain in  signal-to-noise ratio.  In 

agreement,  we  measured  a  signal  enhancement  of  ~ 40 % compared  to  the  same  spacer 

without TLR, i.e., a gain in time of 2 (not shown). Further tests are in progress to calibrate the 

adequate distance for a maximum enhancement. A too short distance will  increase mutual 

inductance and decrease resonance frequency. In such a case, TLR design has to be adjusted 

to compensate the resonance drift.

Figure II.23: a) Scheme of the mini-crucible; b) magnetic field between two TLR along
their common axis, adapted from (60); c) 1H residual signals with spacers and TLR,

*: spinning side bands; d) 31P nutation curve of amorphous/crystalline HAp as a function of 
TLR distance. Parameters: c) B0 = 16.4 T, 4 mm rotor, MAS = 8 kHz; d) B0 = 11.7 T, 7 mm 
rotor, MAS = 5 kHz, in red: m ~ 190 µg, NS = 512, dspacer = 1.7 mm; in blue: m ~ 450 µg, 

NS = 384, dspacer = 1.0 mm.

A drawback of the KEL-F spacer was the presence of unwanted 1H signals (light green 

spectrum on Figure  II.23c), which masked the signal of interest (blue spectrum), and was 

prohibitive for direct  1H acquisition and calibration. In this case, the spacer as a whole was 

acting as a protonated sample. An interesting feature appeared in presence of TLR, with the 

KEL-F spacer filling the gap between the two TLR: spinning sidebands strongly increased 
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(indicated by stars), in particular the first left one at 20 ppm (purple and dark green spectra). A 

similar effect was observed by Tekely and Goldman on samples exceeding probe coil size 

(117) and was attributed to radial field. Such an explanation is compatible with TLR design. 

This effect is promising to investigate Magnetic Resonance Imaging (MRI) through MACS 

microcoils.  As no Shapal-M spacer  was available,  one TLR was placed between top and 

bottom Shapal-M inserts. The obtained 1H signal negligible (grey spectrum). New spacers will 

be manufactured in this material, which has also the advantage of favouring heat transfer and 

to avoid magnetic susceptibility discontinuities.

E.3. Single pulse

In order to compare solenoid and TLR designs, we first recorded their  31P nutation 

curve on the same probe (Figure II.24a). At a power of 10 W, t90
31P = 14.75 µs was measured 

in a full 7.0 mm rotor without microcoil (blue curve). With TLR and a spacer of 1.0 mm, a 

smaller value of t90
31P = 10 µs was obtained (red curve). Solenoids gave the best results with 

t90
31P = 3.25 µs (green curve) and damped regular oscillations. This corresponded to 77 kHz at 

only 10 W. The figure of merit of the resonator B1 /√P was improved from 0.311 to 0.458 

and 1.41 mT.W-1/2 for probe alone, TLR and solenoid, respectively. Hence a gain of 1.5 was 

obtained with TLR and of 4.5 with solenoid. For comparison with previous studies, 3.7 was 

obtained on TLR (60) and 15.1 on solenoids (7). The reason of our lower enhancement is not 

clear but may be due to sample confinement between TLR or to coil shape for solenoid.

A similar  quantity  of  hydroxyapatite  was  analysed  with  TLR and  solenoids,  with 

m ~ 220 ± 30 and 250 ± 30 µg,  respectively.  A single pulse  experiment  was undergone,  to 

better  characterise  the  gain  obtained  by  the  two  microcoil  designs  (Figure  II.24b).  This 

experiment is the most simple one and is well suited to test sensitivity, without risking to 

damage the microcoil by too much RF. Microcoils spectra were compared to their microcoil-

free counterparts with the exact same amount of sample. Hence, the capacitor was unbrazed 

and capillary kept for solenoid, whereas coils were removed and spacer kept for TLR. Due to 

weighting incertitude, the microcoil-free measured intensities were not exactly the same and 

the capillary spectrum was scaled down by 0.75 to match the spacer  spectrum. The same 

factor was applied on solenoid spectrum. A signal gain of 2.0 and 2.6, i.e., a time gain of 4.0 

and 6.8 were obtained for TLR and solenoids against no microcoil, respectively, highlighting 

that a better sensitivity improvement was obtained for solenoids.
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Figure II.24: Comparison of TLR (red curve, m ~ 220 ± 30 µg) and solenoid microcoils
(green curve, m ~ 250 ± 30 µg) on amorphous/crystalline HAp: a) 31P nutation, b) single pulse 

experiment, c) PARIS / PISSARRO experiment. PSNRmax is indicated near each spectrum. 
Intensity and PSNRmax value of solenoid have been scaled down by 0.75 to be coherent 
between TLR spacer (blue curve) and capillary (not shown), both without microcoils. 

Parameters: B0 = 11.7 T, 7 mm rotor, MAS = 5 kHz, RD = 10 s.

E.4. PARIS and PISSARRO

To go a step further without damaging microcoils, we used the low-power multipulses 

sequences  Phase-Alternated  Recoupling  Irradiation  Scheme  (PARIS)  (118) and  Phase-

Inverted Supercycled Sequence for Attenuation of Rotary ResOnance (PISSARRO)  (119). 

These sequences were initially designed for very fast MAS = 30 kHz.

PARIS is presented on Figure II.25a, where τp is the pulse duration and τr is the MAS 

period. It was preceded by a saturation step (typically a train of pulses with decreasing inter 

pulses delays) to ensure relaxation stability. By low-power irradiation on 1H nucleus during 

relaxation delay, broadening of peaks occurs on the other nucleus (Figure II.25b), allowing its 

spin diffusion and enhancing relaxation of non-protonated species. Figure II.25d presents the 
13C relaxation of L-alanine COOH group in absence of irradiation (circles), with Continuous 

Wave (CW) irradiation (triangles) and with PARIS recoupling (squares)  (120). In the latter 

case,  a  much faster  relaxation  was observed.  PARIS has  been improved to PARISxy with 

additional  phase  cycling  (121).  Moreover,  another  similar  experiment  is  available,  with 
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different phases: Second-order Hamiltonian among Analogous Nuclei Generated by Hetero-

nuclear Assistance Irradiation (SHANGAI) (122).

Figure II.25: a) PARISxy / PISSARRO pulse sequence; b) broadening of L-alanine
13C peaks simulated in presence of PARIS (118); c) illustration of R3 conditions on 31P 

spectrum of amorphous/crystalline HAp with MAS = 5 kHz and 1H CW decoupling power 
ranging from 126 W to 0.05 W; d) L-alanine 13C T1 measurements with no recoupling 
(circles), continuous wave irradiation (triangles) or PARIS recoupling (squares) (120).

In  addition,  PISSARRO was  applied  for  low-power  decoupling  during  acquisition 

(Figure  II.25a). PARIS and PISSARRO are very similar pulse sequences: a pulse is applied 

during a time τp, then a  phase alternation from X to -X is repeated  N times, and finally the 

phase is incremented. The overall cycle is repeated M times, to fit the necessary duration. The 

main difference between PARIS and PISSARRO is that τp and RF values are different, with 

τp = 0.5 * τr and  RF = MAS / 2  for  PARIS and  τp = 0.2 * τr and  RF = MAS or  MAS * 2 for 

PISSARRO. Both are using Rotary Resonance Recoupling (R3) conditions (123). This effect 

appears when RF irradiation frequency is a (sub-)multiple  n of MAS frequency. Chemical 

shift anisotropy and hetero-nuclear dipolar interactions are refocused for n = 2 or 1, whereas 

homonuclear dipolar interaction is reintroduced for  n = 1 or ½. Figure  II.25c evidences this 

effect  for  RF = 10,  5,  and  2.5 kHz  (black  arrows)  and  MAS = 5 kHz  on  31P intensity  of 

HydroxyApatite (HAp) in presence of 1H CW decoupling with power ranging from 126 W to 

0.05 W.  According  to  its structure  (124,  125),  crystalline  HAp is  not  very  sensitive  to 
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decoupling as  1H-31P heteronuclear dipolar interaction (D1H-31P = -853 Hz, 3.85 Å) and 1H-1H 

homonuclear  dipolar  interaction  (D1H-1H = -2951 Hz,  3.44 Å)  are  easily  averaged  by  slow 

MAS. The visible effect is probably coming rather from sample’s amorphous part, which has 

stronger dipolar interactions. A better decoupling effect could be obtained for phoshines with 

direct H-P bond.

On  Figure  II.26a,  CW,  PISSARRO  and  SPINAL-64  (126) decouplings  pulse 

sequences  were  compared  to  the  absence  of  decoupling  for  a  full  rotor  of 

amorphous/crystalline HAp. PISSARRO gain at  RF = 5 kHz  was marginal, lower than the 

standard SPINAL-64 decoupling at RF = 56 kHz, whereas signal intensity decreased with CW 

decoupling  at  RF = 2.5 kHz,  highlighting  unexpected  peak  broadening.  In  addition, 

homonuclear  recoupling  was applied  during  the  entire  relaxation  delay  RD = 10 s  (Figure 

II.26b). A similar intensity gain of 18-20 % was obtained for  all tested pulse sequences at 

RF = 2.5 kHz (CW, PARISxy with  N = 1 or 2 cycles, and SHANGAI). On HAp sample, this 

sensitivity gain could also be  a consequence of heteronuclear Overhauser effect  during 1H 

irradiation (127). Further investigations would be needed to check this hypothesis. The effect 

of combined PARISxy and PISSARRO pulse sequences on microcoils is presented on Figure 

II.24c and confirmed the above results  with an average gain of 16 %. No degradation of 

microcoils,  neither  TLR  nor  solenoids,  was observed  with  these  low-power  multipulses 

experiments.  Consequently,  if  microcoil  is  tuned  to  another  nucleus  than  1H,  these 

experiments are suitable to enhance the second channel signal, e.g., for 31P pulse calibration.

Figure II.26: a) Comparison of decoupling pulse sequences, from left to right:
no decoupling, CW (RF = 2.5 kHz), PISSARRO (RF = 5 kHz), SPINAL-64 (RF = 56 kHz). 
b) Comparison of recoupling sequences during RD, in presence of PISSARRO decoupling 
(RF = 5 kHz) during acquisition, from left to right: CW (RF = 2.5 kHz), PARISxy (N = 1, 
RF = 2.5 kHz), PARISxy (N = 2, RF = 2.5 kHz), SHANGAI (RF = 2.5 kHz). Parameters: 

amorphous/crystalline HAp, B0 = 11.7 T, 4 mm rotor, MAS = 5 kHz, RD = 10 s.
Dashed lines highlight a) PISSARRO and b) PARISxy (N = 2) intensities.
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E.5. Cross-polarisation

Cross-Polarisation (CP) experiment is presented on (Figure  II.27a).  By varying CP 

delay, distance and / or relative mobility can be checked. Two dimensional spectra can also 

easily be obtained, highlighting chemical correlations. {1H}-31P CP was tested on a pair of 31P 

tuned TLR. Low power at 1-10 W was applied on 31P channel, whereas a power at 190 W was 

necessary on 1H nucleus, corresponding to probe coil RF field. After only a few scans, probe 

detuning  occurred,  indicating  damaging  of  microcoil.  After  one  night  of  acquisition, 

microcoils were burned (red circle on Figure  II.27b). Not only a hole was present on TLR 

substrate, but also copper track was severely darkened. None of the two TLR present into the 

rotor  during  the  experiment  were  reusable,  and  they  burned  at  the  exactly  same  point, 

corresponding to the inner extremity of copper track. An explanation could be the intense 

electric field on 1H channel, that led to substrate breakdown, despite the low 31P power.

Power  on  microcoil  channel  is  not  problematic,  gratefully  to  the  RF  field 

enhancement,  and  10 W will  be  enough  in  many  cases.  However,  for  double  resonance 

experiments, the probe coil channel requires a much higher power for the same RF field. It is 

not uncommon to need 200 W on the main coil for CP experiments, depending on the probe 

used. As presented in former paragraph, such power is unsustainable for TLR and may also 

damage solenoids. Nevertheless, we would like to highlight in the following paragraph that 

CP could  be  undergone  on microcoils,  if  power  dissipation  on  both  channel  is  carefully 

controlled.

A probe with a higher quality factor was successfully used to test CP experiments on a 

solenoid coil fixed with fluorinated wax rather than with cyanoacrylate glue, and containing 

m ~ 110 ± 30 µg of  HAp. In the present case, a moderate power at 33 W was used on  31P 

probe coil channel, whereas the microcoil was tuned to 1H with 0.9 W. It was even possible to 

implement double CP, with acquisition on 1H nucleus (Figure II.27c). This experiment proved 

useful to study  1H interfaces with an increased sensitivity and resolution  (128,  129).  With 

direct acquisition (green spectrum on Figure II.27d), strong residual 1H signals were visible, 

typical of a long unsaturated carbon chain, attributed to wax, and HAp signal was only present 

as a shoulder. With 1H-31P CP filtered experiment (blue curve), the wax was no longer visible 

and  HAp peak  was  enhanced.  This  demonstrated  that  CP or  double  CP experiments  are 

conceivable with MACS, providing that probe quality factor is high enough to use moderate 

power on probe coil channel.
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Figure II.27: a) CP experiment; b) burned TLR during CP; c) 1H-{31P} CP filtered
experiment; d) spectra obtained on solenoid with 1H direct acquisition (green, NS = 4) and 1H-
{31P} CP filtered experiment (blue, NS = 2048, texp = 0.6 h, tcp1 = tcp2 = 10 ms). Parameters: b) 
B0 = 11.7 T, 7 mm rotor, MAS = 5 kHz, RD = 1 s; d) B0 = 7.0 T, 4 mm rotor, MAS = 3 kHz, 

RD = 1 s, m ~ 110 ± 30 µg of HAp.

A similar  1H-43Ca  double  CP 2D  experiment  was  previously  published on  a  43Ca 

labelled  Ca(OH)2 sample entrapped into MACS solenoid  (58). In this case, sample amount 

was limited by cost of  43Ca enrichment. As  43Ca is a quadrupolar nucleus (I = 7/2), a very 

limited RF field of 4 kHz was requested to excite the central transition with CP. We estimated 

the  corresponding power  to  0.1 W on  43Ca probe channel,  whereas  1H microcoil  channel 

power was adjusted to 10 W.

Hereafter, we limited ourself to 10 W on both channels, which proved to be safe to not 

destroy  microcoils.  A value  of  50 W could  have  been an  alternative,  but  it  has  not  been 

thoroughly tested.

E.6. TEDOR

In this  section  we tried  to  implement  a  low power alternative  to  CP experiments, 

compatible with microcoils. As microcoils were not well suited to develop pulse sequences, 

due to the low sample amount and its  inherent  lack of signal,  full  rotor with a reference 
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compound was preferred. In the continuity of previous section, we tried to correlate 1H to 31P, 

but with a lower power, including on probes with a poor quality factor. A list of available 

sequences to transfer magnetisation, depending on the interaction chosen, were presented in 

(130).

Rotational Echo Double Resonance (REDOR)  (131) is a sequence which refocusses 

heteronuclear dipolar interaction through concerted manipulation of spin magnetisation and 

sample spinning. A spin echo is applied to one nucleus (1H), while a train of 180° pulses, two 

per rotor period, is applied to the other nucleus (31P). The local dipolar field is reversed at each 

180° pulse on  31P (132). As a consequence, the dipolar interaction is no longer averaged to 

zero by MAS. XY-8 phase cycling proved to be fruitful to decrease transversal relaxation 

during REDOR recoupling  (133).  Transferred-Echo DOuble-Resonance (TEDOR)  (134) is 

based on REDOR, but with initial excitation on 1H and signal acquisition on 31P. TEDOR can 

be used either with rotor synchronised acquisition to obtain a dipolar coupling curve, or to 

directly obtain a spectrum, similarly to Insensitive Nuclei Enhanced by Polarization Transfer 

(INEPT) (135), which is used as a building block into many liquid-state experiments.

INEPT and TEDOR are presented on  Figure  II.28a and b,  respectively.  Firstly,  1H 

magnetisation is prepared during evolution step, secondly it’s transferred to the other nucleus, 

finally  it’s  phased during  refocussing  step.  In  TEDOR,  the  180°  pulses  at  the  middle  of 

INEPT evolution and refocussing steps are replaced by REDOR recoupling. Magnetisation is 

transferred  through  bonds  during  INEPT  (scalar  interaction  J),  whereas  it’s  transferred 

through  space  during  TEDOR  (dipolar  interaction  D).  TEDOR  can  be  generalised  as 

D-INEPT, whereas J-INEPT term is used for differencing scalar pulse sequence. J-INEPT can 

be used for mobile species such as those entrapped into mesoporous materials  (136) or for 

crystalline materials  (137,  138), both having long apparent transversal relaxation times  T2
*. 

On the contrary, amorphous samples have shorter T2
* and are therefore best analysed with D 

interaction. As D is stronger than J, shorter evolution and refocussing delays are requested. 

Moreover,  D-INEPT can be used to  investigate  through space  non-covalent  bonds.  Other 

D-INEPT implementations exists but TEDOR has the advantage to use discrete pulses instead 

of continuous ones, which can limit  RF electric field and microcoils  degradation.  Dipolar 

Heteronuclear Multiple Quantum Correlation (D-HMQC) is another alternative  (139,  140), 

with acquisition on 1H rather than on 31P, which was not investigated here.
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Figure II.28: Comparison of a) J-INEPT and b) TEDOR / D-INEPT experiments;
c) illustration of concerted manipulation of spin magnetisation and sample spinning (141).

Before using D-INEPT sequences, it is necessary to define Levitt’s notation, used into 

dipolar recoupling blocks, such as R21
1 and SR41

2. Levitt highlighted that rotor synchronised 

pulse sequences can be used to reintroduce or on the contrary to suppress various interactions, 

leading to homo- or hetero-nuclear de- or re-coupling (141). This was summarised into two 

families: CNn
ν and RNn

ν, where N impulsions are phase incremented to follow ν spin rotation 

during n rotor periods. This is illustrated on Figure II.28c with C72
1 pulse sequence, consisting 

of 7 phase increments forming 1 spin rotation during 2 rotor periods. The more complex C144
5 

is also represented. The difference between CNn
ν and RNn

ν is that each (composite-) impulsion 

consists of a multiple of 360° in CNn
ν, whereas 180°/-180° cycles are subsequently phased in 

RNn
ν.  The amount of power needed depends on the chosen pulse sequence.  According to 

Levitt’s  nomenclature,  REDOR  corresponds  to  R42
1 (141).  S  letter  in  SR41

2 indicates  a 

supercycle.

Whether REDOR irradiation is placed on 1H channel (HH), or on 31P channel (XX), or 

even crossed (HX or XH), is questionable and different choices were tested in the literature 

(142,  143).  1H-31P TEDOR with HH, HX, XH, and XX irradiation, as well  as another D-

INEPT implementation with R21
1 applied on HH were tested on amorphous/crystalline HAp 

(Figure  II.29a), with broad (unfavourable  T2
*) and narrow (favourable  T2

*) species.  TEDOR 

95



Chapter II. Microcoils

pulse  sequence  with  HH  irradiation  seemed  to  gave  the  best  results.  Despite  negligible 

J-coupling  was  present  into  this  sample,  J-INEPT was  applied  to  check  that  no  resiual 

magnetisation was passing through the phase cycling.

Figure II.29: a) Comparison of different D-INEPT pulse sequences; b) 2D TEDOR XH
experiment; c) 2D CP HETCOR experiment. Parameters: a) B0 = 11.7 T, 7 mm rotor, 

MAS = 5 kHz, RD = 1 s; b) B0 = 7.0 T, 4 mm rotor, MAS = 5 kHz, RD = 1 s, 21% hybrid 
sampling NUS; c) B0 = 7.0 T, 4 mm rotor, MAS = 5 kHz, RD = 1 s. SSB: Spinning SideBands.

TEDOR can be  implemented  as  a  two-dimensional  (2D)  experiment,  by  adding  a 

frequency coding evolution after the first 1H pulse (144). Figure II.29b presents the obtained 

2D  TEDOR  spectrum  of  HAp.  For  comparison,  the  same  sample  analysed  by  2D  CP 

HETCOR is presented on Figure  II.29c. One can notice that the broad peak between 3 and 

18 ppm,  attributed  to  adsorbed  water  and  amorphous  hydrogenophosphate  species,  was 

missing with 2D TEDOR. This  was not  a consequence of hybrid Non-Uniform Sampling 

(NUS) applied during acquisition,  whose conditions were carefully  tested (Section E.5 of 

Chapter IV), but was rather due to short transverse relaxation of the broad peak.

Surprisingly,  TEDOR  signal-to-noise  ratio  was  much  poorer  than  with  CP  (not 

shown),  despite  Christiansen  et  al. highlighted  that  {1H}→15N→13C  TEDOR  and  CP 

efficiency could be similar on doubly labelled 13C-15N glycine (145). A possible cause could 

be an unoptimised phase cycling or rotor synchronisation. The absence of the central 180° on 
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same  channel  than  REDOR  cycles,  as  denoted  in  an  early  publication  (144) but  in 

contradiction with many other ones, could be another explanation. This could also explain 

lineshapes distortions on 2D TEDOR spectrum. Additional tests will be undergone with rotary 

resonance  recoupling,  with  RF = MAS * 2,  or  with  SR41
2,  both  simultaneously  refocusing 

heteronuclear  dipolar  recoupling,  while  decoupling  the  homonuclear  proton  dipolar 

interactions (146).

In Subchapter E, we confirmed that perfect sample confinement into the microcoil was 

necessary for proper RF homogeneity. Better enhancement was obtained for solenoid than for 

TLR. PISSARRO pulse sequence improved PSNR by ~ 16 % on amorphous/crystalline HAp. 

CP destroyed microcoil unless low power was used on both channels. TEDOR and D-INEPT 

were investigated to transfer magnetisation from 1H to 31P.

F. Chapter conclusion

In  this  chapter,  we  focussed  on  small  sample  amounts.  First,  we  highlighted  that 

microcoils  are  more  sensitive  than  commercial  probes  to  study  microquantities 

(Subchapter B).  Basics of electromagnetism were provided in Subchapter  C. In particular, 

wire diameter has to be a compromise between skin depth, ease of manipulation and eddy 

currents.  Best  quality  factor  is  obtained  with  a  pitch  equal  to  1.5  times  wire  diameter.  

Moreover,  necessary formulae to design microcoils  were given. Optimal RF homogeneity 

requires lsample : dcoil : lcoil dimensions of 0.5 : 1 : 1.2. Practical details to manufacture microcoils 

were provided in Subchapter D, with warnings on capacitor size and insert dimensions. The 

latter needed to be 10-20 µm smaller than inner rotor diameter. All necessary supplies were 

listed. Results were presented in Subchapter  E, starting with preliminary tests were on sea 

urchin  spines  and  RF  homogeneity  tests.  With  TLR  microcoils,  dissymmetric  spinning 

sidebands were obtained without sample confinement. This effect is promising for imaging. 

TLR and  Solenoids  were  compared  using  nutation,  single  pulse  and  PARIS /PISSARRO 

experiments. A time gain of 4.0 and 6.8 was obtained for TLR and solenoids, respectively. 

PARIS / PISSARRO was  useful  to  gain  16 % of  signal  during  pulse  calibration.  CP was 

applied on both microcoils, but the necessary high power burned TLR. TEDOR sequence was 

thus implemented for low power magnetisation transfer between nuclei.

We compared solenoid and fat coils in Table II.6. Solenoids are easy to design, have a 

high RF homogeneity and support quite large RF power. However, they are easily breakable, 

97



Chapter II. Microcoils

especially  at  capacitor  soldering.  Sample  spinning  may  be  difficult  due  to  the  lack  of 

cylindrical symmetry. On the contrary, TLR are easy to spin, but harder to design and support 

less power. Sample spacer has to be lower than 1 mm.

Table II.6: Comparison of solenoids and TLR.
Characteristics Solenoid coil TLR

Design  

Manipulation  

Mechanical tolerance  

Ease of spin  

RF homogeneity  

RF power  

Breaking point Capacitor soldering Substrate
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Chapter III. Carr-Purcell-Meiboom-Gill echoes
‘What is history? An echo of the past in the future; a reflex from the future on the past.’

Victor Hugo (1802-1885), writer
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Chapter III. Carr-Purcell-Meiboom-Gill echoes

A. Chapter introduction

A first  way to increase NMR sensitivity  during acquisition  is  to  use Carr-Purcell-

Meiboom-Gill  (CPMG)  echoes  (1,  2).  This  technique  focusses  on  one-dimensional 

experiments or on direct  dimension of higher-dimensional  experiments.  This  work started 

from the need to study electrospinning films (Section E.6 of Chapter I) by  29Si solid-state 

NMR. 29Si is 4.7 % abundant and need very long longitudinal relaxation time (hundreds of 

seconds).  These  hybrid  membranes  were  used  for  efficient  proton  transport  placed  into 

batteries  and contained a  low molar  ratio  of  silicon atom. Moreover,  these samples  were 

particularly soft  and ductile,  very similar  to a Teflon ribbon.  Even if  enough sample was 

synthesised to fill a 7 mm rotor, spinning was almost impossible due to weight heterogeneity. 

However a filled 4 mm rotor spun easily, but with four times less sample weight inside it, 

which  decreased  sensitivity.  As  a  consequence,  Peak  Signal-to-Noise  Ratio  based  on 

maximum of noise (PSNRmax, Equation III.1)

PSNRmax=
H signal

hnoise _ peak _ peak /2
III.1

was very low and no quantification was possible, even after a week-end of acquisition, thus 

the need to improve sensitivity with CPMG. In order to process spectra, I developed a Python 

software  (3). In this chapter, we will first focus on theory of CPMG (Subchapter  B) before 

detailing  our  simulations  (Subchapter  C)  and  applying  this  technique  to  materials 

(Subchapter D).

B. Theory

Historically,  CPMG was  first  used  to  study  solution-state  dynamics  (Section  B.1) 

before being applied to solid-state NMR (Section  B.2) and as a tool to increase sensitivity 

(Section  B.3).  It  requires  specific  processing  (Section  B.4)  and  has  an  impact  on 

quantification (Section B.5).

B.1. Solution-state dynamics

In 1950, Hahn observed spin echoes (SE) when a  π pulse was applied after initial 

signal decrease (4). In 1954, Carr and Purcell suggested rather to use a train of π pulses, so-

called CPSE, in order to minimize diffusion effect (1). However, cumulative radio-frequency 
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homogeneity errors were present and Meiboom and Gill proposed in 1958 to minimise them 

by shifting the first pulse phase by 90°, keeping all other pulses with the original phase, thus 

giving the CPMG pulse sequence (2). A variant was developed in 1966 by Mansfield, Waugh 

et  al. (MW-4) with  π/2 instead  of  π pulses  (5,  6).  These  experiments  revealed  useful  to 

measure spin-spin relaxation time of molecules of interest.

In  the  continuity,  Gutowsky  et  al. evidenced  the  impact  of  interpulses  delay  on 

chemical exchange (7), and Carver and Richards highlighted the influence of static magnetic 

field  strength  and  temperature  (8).  However,  a  major  drawback  of  CPMG for  relaxation 

studies is the modulation of echoes intensity by scalar couplings (9). Tošner et al. shown that, 

with such a modulation, the measured true T2 relaxation rates can vary by up to 50 % (10). As 

a solution, Aguilar  et al. designed a pulse sequence, Periodic Refocusing of J Evolution by 

Coherence  Transfer  (PROJECT),  to  suppress  scalar  modulation,  by  alternating  π  and  π/2 

pulses (11). In addition, Loria et al. proposed a relaxation compensated CPMG method (12).

CPMG found  many  applications,  such  as  millisecond  timescale  motions  (13) and 

proteins exchange dynamics  (14). Palmer  et al. focussed on high energy states of proteins, 

with CPMG relaxation dispersion  (15).  Greener  et al. analysed  hydration of white cement 

paste (16). CPMG revealed also fruitful for well logging with shaped pulses (17). In Magnetic 

Resonance  Imaging  (MRI)  fast  spin  echoes  were  obtained (18),  Mulkern  and  Spencer 

observed diffusion imaging (19) and Constable compared MRI contrast factors (20).

B.2. Solid-state NMR experiments

CPMG  was  first  applied  to  static  solids  by  Garroway  in  1977  (21).  In  order  to 

maximise echoes intensity, Henrichs and Nicely synchronised the echo delay on MAS rate 

(22). Hung and Gan raised some important warnings about timings and digitisation to avoid 

distortions  in  CPMG  (Figure  III.1a)  and  Quadrupolar  CPMG  (QCPMG,  Figure  III.1b) 

experiments. On these figures,  M and  N correspond to integer numbers of echoes and rotor 

periods,  respectively  (23). QCPMG  is  equivalent  to  CPMG  but  with  differently  written 

timings, with modified pulse lengths to excite only central transition of quadrupolar nuclei 

(24) and with an additional phase cycling (25). The involved delays are defined according to 

Equation III.2.

τ1=(τa− p1)/2, τa=2 N τr−2 τ2− p2

τ1
' =τ2

'=τa /2+τ3
' , τ3

' =τ4
'

III.2
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Figure III.1: a) CPMG and b) QCPMG pulse sequences (23).

Furthermore, in between spikes artefacts can appear, in particular from imperfect  π 

pulses through stimulated echoes,  i.e., from zero-quantum coherence pathway  (26).  Pratum 

evidenced that 0-180° phase alternation of  π pulses induced cumulative errors due to finite 

pulse  length  effects  (27).  XY-8  phase  cycling  was  developed  to  improve  magnetisation 

longevity from one echo to another (28). By replacing the first refocusing π by π/2, improved 

true T2 were measured, favouring narrowed lines (29). A detailed pathway analysis for π and 

π/2 refocusing pulses highlighted the importance of odd and even echoes  (30).  Noticeable 

decrease of artefacts and odd/even pathway selection, was obtained with a pulse sequence 

named Phase Incremented Echo Train Acquisition (PIETA), that continuously increased phase 

shift (31). However, this required additional processing steps.

Garroway depicted  that  (Q)CPMG experiment  are  similar  to  a  spin-lock,  and that 

multiple  echoes  are  present,  with  reduced  homonuclear  damping  in  time  domain  (FID), 

leading to a comb of narrowed lines in frequency domain (SPC), while keeping constant the 

global  shape  (21).  Contrary  to  MAS  spinning  side  bands,  (Q)CPMG  spikes  are  not  at 

multiples  of  isotropic  shifts  but  rather  at  multiples  of  window centre.  That  explains  why 

(Q)CPMG cannot discriminate close isotropic chemical shifts (32).

According  to  Siegel  et  al. (30),  the  overall  (Q)CPMG  envelope  is  driven  by 

inhomogeneous  interactions while  individuals  spikelet  shape  reflects  homogeneous 

interactions. These terms where defined by Maricq and Waugh (33), whether ‘the eigenstates 

of the spin Hamiltonian […] are unaffected by the rotation’ (inhomogeneous interaction), or 

are affected (homogeneous interaction). Hence, an inhomogeneous Hamiltonian commutates 
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with itself at a later time. The former category consists of chemical shift anisotropy, first order 

quadrupolar  interaction,  heteronuclear  dipolar  coupling,  and  scalar  coupling,  whereas  the 

latter category contains homonuclear dipolar coupling and more complex combinations. 

Concerning the dynamics aspect,  Swanson  et al. studied the mobility  of polyvinyl 

acetate in function of humidity and temperature (34). Bank et al. applied CPMG technique to 
113Cd ions adsorbed on montmorillonite clay with temperature variation (35). 13C bond lengths 

were determined on polycrystalline acetic acid, through Pake doublet splitting reduction by 

CPMG, with the help of cross-polarisation (CP) to  enhance signal-to-noise ratio  (36).  19F 

dipolar  splitting  was  studied  on  oriented  systems  (37),  and adsorbed  87Rb  ions  were 

distinguished according to their T2 relaxation (38).

B.3. Sensitivity

Figure III.2: Sensitivity improvement from d) Hahn Echo to a-c) QCPMG, with
decreasing echoes frequency νCPMG = 15.6, 7.8, and 2 kHz, from top to bottom, corresponding 
to enhancement factors of 46, 21, and 8, respectively. 87Rb solid-state NMR of a static sample 

of RbVO3; B0 = 9.4 T (25).

In contrast  to previous approach for dynamics,  (Q)CPMG can be used to  improve 

sensitivity by discretising the peak area in frequency domain. This processing will be detailed 

in the following section. As peak area is proportional to the number of involved spins, the 
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intensity is concentrated into the remaining peaks, thus improving PSNRmax. This is illustrated 

on Figure III.2, where a PSNRmax gain of 46 was obtained from the Hahn echo experiment to 

the  QCPMG  experiment  with  an  echo  frequency  of  νCPMG = 15.6 kHz (25).  However,  a 

compromise has to be made between resolution and sensitivity. When increasing echoes rate, 

truncation in time domain can occur, degrading peak shape, as highlighted on Figure III.2a.

The first known usage of CPMG on quadrupolar nuclei was in 1987 to gain a factor 

2.8 on signal of  17O, when measuring  17O-13C distances in CO adsorbed on Pd metal  (39). 

QCPMG was also useful for 35/37Cl NMR (40) and for integer quadrupolar nuclei, such as 2H 

(41) and  14N (42). Larsen  et al. coupled QCPMG and MAS on 17O spectra  (43). Moreover, 

(Q)CPMG can  be  combined  to  other  construction  blocks  in  pulses  sequences,  to  further 

enhance signal.  Thereby,  Multiple-Quantum MAS (MQMAS)-QCPMG allowed a fivefold 

enhancement on 23Na (44). CP-QCPMG was applied on 25Mg, or 67Zn spectra (45). Schurko et  

al. added Double-Frequency Sweeps (DFS) and Rotor-Assisted Population Transfer (RAPT) 

to  QCPMG  for  studying  39K  and  85/87Rb  (46).  Furthermore,  continuous  sensititvity 

improvement was obtained with adiabatic pulses such as Wideband Uniform Rate Smooth 

Truncation (WURST) (47) and BRoadband Adiabatic Inversion CP (Brain-CP) (48), resulting 

to an ultra wideline methodology (49). It should be noted that WURST pulses give raise to 

second  order  phase  distortion  (23).  Finally,  Bonhomme,  Laurencin  et  al. added  Variable 

Offset Cumulative Spectrum (VOCS) to maximise  87Sr  (50) and  127I  (51) with DFS VOCS 

WURST QCPMG.

Similarly,  CPMG has been implemented many times on spin ½ nuclei  to  improve 

sensitivity, starting by Barrett et al. in 1990 to study 89Y nucleus in a superconducting sample, 

with a gain of 2.5 (52). Siegel  et al. focussed on  195Pt,  199Hg, and  207Pb  heavy nuclei with 

strong Chemical Shift Anisotropy (CSA) on static powders (29). Simultaneously, Hung et al. 

compared CP-CPMG and CP-MAS on 15N, 109Ag, 113Cd, 199Hg, and 207Pb nuclei (32). WURST 

was added to CPMG to examine CSA of 119Sn, 195Pt,  199Hg, and 207Pb nuclei  (53).  19F→119Sn 

BRAIN CP WURST CPMG spectra were obtained to study tin oxo-clusters (51). Solid 1,2,3-

trimethoxybenzene  was  analysed  by  13C CP multi  echoes  PHase-cORrected  Magic  Angle 

Turning (PHORMAT) with very slow MAS = 1.3 Hz, in order to combine CSA patterns and 

sensitivity  increase  (54).  CPMG  and  MAS = 22 kHz  were  combined  to  increase  77Se 

sensitivity and to differentiate species based on their T2 transversal relaxation (55). 
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Concerning 29Si, in which we are especially interested, CPMG sensitivity enhancement 

methods were implemented as well. Ladd et al. highlighted that 29Si CPMG echoes duration in 

a  silicon  single-crystal  depended  on  29Si  abundance  and  that  in  static  condition  with 

homonuclear decoupling, CPMG echoes can be measured during as long as one minute (56). 

CPMG  sensitivity  enhancement,  again  as  a  construction  block  in  pulses  programs,  was 

combined with slow spinning (MAS < 1 kHz) techniques such as MAT (57), and STRAy-Field 

Imaging of rotating samples with Magic-Angle Spinning (STRAFI-MAS) (58). CPMG with 

higher  spinning speeds reduced acquisition time by five on  α-quartz  (SiO2),  α-cristobalite 

(SiO2),  and  Zircon  (ZrSiO4)  (43).  CPMG  was  also  hyphenated  with  {27Al}-29Si 

HETeteronuclear  CORrelation  (HETCOR)  and  {1H}-29Si-29Si  refocused  Incredible  Natural 

Abundance  DoublE  QUAntum Transfer  Experiment  (INADEQUATE)  (59),  with  Magic-

Angle  Flipping  (MAF) (60) or  with  Dynamic  Nuclear  Polarisation  (DNP)  (61).  In  a 

remarkable paper,  Malfait and Halter observed stretched exponential decays, depending on 
29Si chemical shift. They compared Regular echoes sum, weighted sum and T2 reconstructed 

spectra (62).

B.4. Processing

B.4.a. Apodisation

CPMG echoes can be multiplied by weighting functions (Figure III.3), namely global 

apodisation  (top),  individual  echo  apodisation  (middle  top)  or  square  function  (middle 

bottom), either one or all of them. The first one avoids truncation effects on spikelets, the 

second one reduces noise introduced in between echoes, and the third one limits pulse ringing 

artefacts  (63). To cite few examples, spikelet method with global apodisation was used in 

(29),  global  and  individual  apodisation  in  (22,  45),  double  apodisation  plus  square 

multiplication in (63), and superposition method in (43, 52, 64). As this processing concerns 

only one-dimensional (1D) experiments, it has to be reproduced on each 1D slice of multi-

dimensional spectra (Section B.1 of Chapter IV).
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Figure III.3: Weighting functions applied to 1D CPMG FID. Top: global apodisation,
middle top: individual echoes apodisation, middle bottom: pulse ringing removal, bottom: 

acquired echoes (63).

Figure III.4: a) Regular and weighted sum of CPMG echoes (62), b) Influence of
multiplication of FID by an exponential whose constant is indicated (65).

Although PSNRmax is increasing for first echoes, it decreases after a maximum (open 

squares on Figure  III.4a)  (62), as noise is proportional to the square root of the number of 

half-echoes  (64). The situation is similar to a standard 1D acquisition of an exponentially 

decreasing  signal  with  a  time  constant  T2
*,  the  apparent  individual  echo decrease,  where 

PSNRmax is maximised at 1.26 T2
* (curve 1.0 on Figure III.4b) (65). In CPMG, echoes maxima 

decreases  according to  an averaged true  T2 value,  the  global  CPMG echo train decrease. 

Apparent transversal relaxation T2
* takes into account dispersion of chemical shifts, which are 
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refocused at each π, giving the true transversal relaxation T2. By applying a matched filter on 

a standard FID,  i.e.,  an exponential  apodisation  (Section C.2 of Chapter I) with the same 

apparent constant T2
*, signal decreases as e−t /2 T2 * and PSNRmax raises up to a constant (curve 

2.0 on Figure III.4b). An approximation of this matched filter on true T2 can be obtained for 

CPMG by multiplying each echo by its own intensity value, so-called a weighted sum (filled 

diamonds on Figure III.4a) (24, 62).

B.4.b. Spikelets and superposition methods

Two different approaches coexist to process (Q)CPMG spectra. The first one consists 

to  directly  FT the  echoes,  raising  to  a  comb of  narrow lines,  so-called  spikelets  method 

(Figure  III.5a)  (21,  54).  The  alternative  superposition  method involves  a  more  complex 

processing (Figure  III.5b), which folds the raising part of each echo into its decreasing part 

(b2), before summing all echoes together (b2’) and performing FT (b3) (63, 64). An acronym 

was  even  assigned  to  this  technique  and forgotten:  Spin-Echo  Fourier-Transform (SEFT) 

NMR (66). A less common procedure was to average points at top of echoes (37), which has 

the disadvantage of removing all chemical shift information, by centring peaks at middle of 

spectral  window.  CPMG Two-dimensional  One  Pulse  (TOP)  is  also  a  fruitful  processing 

possibility (67) and is available into Dmfit program (68).

Figure III.5: Processing of 1D CPMG FID: a) spikelets and b) superposition methods.
Each line corresponds to a processing step: 1) pulse sequence, 2) obtained echoes and 

individual half-echoes folding, 2’) global folding into one half-echo, 3) final spectrum after 
Fourier transform (54).
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B.4.c. Enhancement factor

A remaining question is the enhancement factor G that one can obtain with CPMG. A 

first answer was provided by Barrett et al., who used the number of echoes N and the ratio r 

between amplitude of consecutive echoes (Equation III.3) (52).

G superposition=
1

√N [1−r N

1−r ] III.3

Lefort et al. proposed a more general formula based on relaxation rates, both apparent 

(Toff, the time needed for the signal to be confused with noise) and refocused (true T2), and the 

echoes rate νCPMG (Equation III.4) (63).

Gspikelets=2√T 2 T off ν CPMG

Gspikelets
limit =2√ T 2

T off

III.4

They also described the maximum sensitivity enhancement without truncation (Glimit). 

One should note that  Toff has a  rather  vague definition,  which depends on noise.  A more 

precise  definition  could  be  Toff   = 5 T2
* (59).  In  such  a  case,  99 %  of  the  transversal 

magnetisation would have disappeared.  Hu and Wind compared the enhancement obtained 

from spikelets and superposition method (Equation III.5) (54).

G spikelets=
1

√1+2 N [1+2∑
n=1

N

cos (2ω nτ echo)e
−2n

τ echo

T 2 ]
G superposition=

1

√1+2 N [1+2∑
n=1

N

e
−2 n

τ echo

T 2 ]
III.5

They proved that a cosine factor reduces spikelets intensities for all but the highest 

spikelet. τecho corresponds to the half-echo and the pre-factor accounts for noise increase with 

number of half-echoes. Trébosc et al. reformulated this expression using a change of variable 

(Equation  III.6)  (69). This more simple formula is directly usable to predict sensitivity gain 

from the number of echoes.

G superposition=
1

√2 N +1 [1+2∑
n=1

N

xn]  with x=e
−2

τ echo

T 2

G superposition=
1

√2 N +1
[2 xn+...+2 x2+2 x+1] x−1

x−1

G superposition=
1

√2 N +1 [2 xn+1−x−1
x−1 ]

III.6
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B.5. Quantification

In addition to its processing complexity, the main drawback of CPMG is its need for 

long T2 relaxation constants. Wiench et al. demonstrated that sensitivity on 29Si species can be 

considerably improved by avoiding static condition (open triangles and bottom solid line on 

Figure III.6a) (59) and increasing MAS rate as much as possible. This is especially noticeable 

on T3 species that have nearby  1H nuclei helping to relax  29Si (Figure  III.6b). With 12 kHz 

low-power  1H decoupling and  MAS = 40 kHz, acquisition times of up to one second were 

obtained (open circles). As a consequence of the different true T2 relaxation times between Q4 

and T3 species, the areas measured on the spectrum were strongly varying (Figure III.6c). In 

such a case,  it  was especially difficult  to obtain quantitative measurements.  Despite these 

spectra were obtained with CP (tcp = 8 ms), which is non-quantitative by nature and favours T 

species, the same discussion applies to evaluate the magnetisation just after CP, represented as 

G = 1 on curves. On this sample, T species were deconvoluted to 11 ± 2 % on quantitative 

spectra (59).

Figure III.6: Sensitivity gain vs. number of echoes for a) Q4 sites and b) T3 sites in
mesoporous silica nanoparticle, obtained in static condition (bottom solid line) or with MAS 

(other solid lines). νdecoupling (1H) = 25 kHz in static (open triangles) and 12 kHz at 
MAS = 40 kHz (open circles); dashed line: model fit. c) Reconstructed spectra with 33 echoes 

and various spinning speed and decoupling conditions. Adapted from (59).
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In order to overcome this quantification limitation, Malfait and Halter measured a true 

T2 relaxation with a stretched exponential, on the entire 29Si CPMG train in frequency domain, 

and  evaluated  the  intensities  uncertainty  with  error  propagation (62).  Jaroszewicz  et  al. 

preferred to use Non-Negative Tikhonov Fitting (NNTF) routines for true  T2 separation in 
35Cl, 87Rb, 71Ga, and 119Sn spectra (70). An innovative approach was proposed by Mason et al. 

combining CP contact time (Tcp), true T2 from CPMG echoes and corresponding FID into a 3D 

data  matrix  (71). With  tensor  decomposition  similar  to  Higher  Order  Singular  Value 

Decomposition (HOSVD) (72),  they could obtain a full various contact time curve for each 

specie  with  high  PSNRmax in  17  hours  instead  of  52.6  days.  By  fitting  these  curves,  an 

estimation  of  quantification  could  be  obtained,  at  least  for  nearby  protonated  species. 

Although these three techniques were interesting, they did not fully meet our need: a high 

initial PSNRmax was necessary for the first approach, the second one was found too lately, and 

the third one needed a third dimension.

In Subchapter B, we highlighted that (Q)CPMG can be used to study dynamics, either 

in solution-state or in solid-state NMR. Precise timings are necessary to maximise signal and 

avoid artefacts. Additionally, (Q)CPMG provides a way to enhance sensitivity by discretising 

spectra.  This  is  especially  useful  for  highly  anisotropic  or  low naturally  abundant  nuclei. 

These datasets required specific processing steps, whose enhancement factor depends. In case 

of multiple true T2 relaxation constants, quantification of species is impacted.

C. Simulations

In this subchapter, our goal was to process (Q)CPMG datasets in a quantitative way, 

i.e., that measured intensities reflect the magnetisation state after excitation, without being 

disturbed by true T2 relaxation. In continuity of the program developed in Subsection B.3.d.ii 

of Chapter VI, we provided a Python program, interfaced with Bruker TopSpin software, and 

freely  available  on  GitHub under  GPL-3.0  licence  (3).  More  than  2300 code  lines  were 

written, allowing to test installation, to measure PSNRmax, to denoise FID, and to simulate and 

process (Q)CPMG data.

Simulation  of  (Q)CPMG  data  will  be  presented  in  Section  C.1.  The  (Q)CPMG 

processing  workflow  is  shown  on  Figure  III.7 and  will  be  detailed  in  the  forthcoming 

sections.  Starting  from the  initial  dataset  (step  a),  echoes  were  aligned  and  individually 

apodised (step b, Section C.2). A global apodisation was then applied (step c, Section C.3). By 
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direct FT, the result of spikelets method was obtained (step d). On the contrary, summing (step 

e) before FT (step f) lead to superposition method (Section C.4). Our approach was to apply a 

partial sum before SVD denoising (step g), truncation of FID (step h) and FT (step i, Section 

C.5).

Figure III.7: (Q)CPMG workflow: a) initial dataset, b) after echoes alignment and
individual apodisation, c) after global apodisation, d) using spikelets method, e) after sum of 

echoes, f) using superposition method, g) after partial sum and SVD denoising, h) after 
truncation at the end of the first echo, i) using SVD denoising method.

C.1. Generation of a train of echoes

From our point of view, the best way to ensure a viable processing algorithm is to start 

from a perfectly known dataset. That is why we designed a program simulating a (Q)CPMG 

echoes train in time domain (FID), cpmg_gen.py file of (3). Each parameter of Table III.1 can 

be adjusted. FID imperfections can be willingly introduced and checked, such as mismatch 

between sampling  rate  and echo  delay,  or  missing  points.  Moreover,  a  noise-free  dataset 

allows to check apodisation or folding effects with pinpoint accuracy.
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Table III.1: Parameters in cpmg_gen.py program.
Parameter Description Parameter Description

fullEcho Full echo delay (s) nbEcho Number of echoes

firstDec Presence of first decreasing
half-echo (True / False)

td Time domain points (real and 
imaginary points alternated)

dw Dwell time between two 
successive points (s)

de Dead time before acquisition (s)

mean Mean value of noise std Standard deviation of noise

ph0 Global zero order phase (deg) amp1 Amplitude of first peak

nu1 Frequency of first peak (Hz) T2_1 True T2 relaxation of first peak 
with Lorentzian shape (s)

T2_1
* Apparent T2

* relaxation of first 
peak with gl1 shape (s)

gl1 Gaussian / Lorentzian ratio for 
apparent relaxation (0 ≤ gl1 ≤ 1)

Such a noise-free FID is presented on Figure III.8a, with two frequencies at 2000 and 

-3000 Hz. The two signals had same amplitude and apparent relaxation time T2
* = 1 ms, but 

different true relaxation times T2 = 30 and 100 ms, respectively. When truncating signal after 

the first decrease and ignoring all (Q)CPMG echoes, FT gave the orange reference spectrum 

(SPC) on Figure  III.8c, with identical height, width, shape and area for both peaks, mainly 

depending  on  the  apparent  T2
*.  Peaks  proportionality  changed  in  presence  of  (Q)CPMG 

echoes, where spikelets width depended on the true T2, giving narrower spikelets for the peak 

at  -3000 Hz. As peak area was constant, this increased peak height much more than for the 

peak at 2000 Hz (blue spectrum on Figure III.8c). As a consequence, a dissymmetry appears 

between both peaks clump, and the left one was hardly visible in presence of noise, whereas 

the right one was enhanced.

When acquiring an experimental FID, probe ringing occurs, which means that residual 

excitation radio-frequency corrupts the observed signal. As a consequence, the first points are 

dismissed, what is called a dead time. It was taken into account in our simulations (red arrow 

on Figure III.8b) and induced a first order dephasing on spectrum (in blue on Figure III.8c). 

Homoscedastic  white  Gaussian  noise  was  subsequently  added  on  FID.  A noise  standard 

deviation value of  std = 0.3 corresponded to peak-peak noise ranging from -1 to  1.  Final 

synthesised FID corresponded to step a of Figure III.7.
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Figure III.8: (Q)CPMG signal synthesis: a) noise-free FID, b) noisy FID with dead
time suppression (red arrow), c) noisy SPC (blue) and reference SPC (orange).

Parameters of cpmg_gen.py program: fullEcho = 10 ms, nbEcho = 19, firstDec = True, 
td = 4000, dw = 50 µs, de = 100 µs, mean = 0, std = 0.3, ph0 = 0, amp1 = amp2 = 1, 

nu1 = 2000 Hz, nu2 = -3000 Hz, T2_1 = 30 ms and T2_2 = 100 ms with Lorentzian shape, 
T2_1

* = T2_2
* = 1 ms with Gaussian shape.

C.2. Echoes alignment

After  importing  data  with  nmrglue  (73),  the  first  (Q)CPMG  processing  step  in 

cpmg_prog.py program of (3) was to align echoes, i.e., to ensure that top of echo was always 

at  the middle of the echo (dotted vertical  black line on Figure  III.9a). To the best of our 

knowledge, this procedure was not detailed in the literature, but was used by authors without 

describing  it.  On simulated  data,  echo delay and  dead-time were  already exactly  known. 

However, on experimental data, there could be some slight variations between the chosen 

values and the effective ones, for instance due to hidden electronic delays. Hence, we provide 

another program, cpmg_cal.py,  to calibrate shift parameters without doing full processing. 

Similar curves were obtained with both programs.

If a dead time was present, FID had to be right shifted, to compensate for non-existent 

points. On the contrary, if acquisition started too early due to a misconfiguration of delays in 

pulse  program,  FID had to  be left  shifted.  FID number  of  points  was kept  constant  and 

missing  points  were  replaced  by  zeroes.  Correcting  the  echo  position  had  the  additional 

advantage to compensate first order phase. Maximum intensity of each echo was measured on 

its entire range and plotted against acquisition time (Figure III.9b). Individual apodisation (see 

next section)  was applied before plotting to facilitate echo top visual detection.  In case of 
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mismatch between sampling rate and echo delay, falls were observed (not shown), which were 

useful to carefully adjust echo delay. When the effective echo delay was not a multiple of 

2 dw (one real and one imaginary point), partial points were in excess on each echo. The 

solution  was to  approximate  echo top  by  removing two points  at  the  beginning of  some 

echoes when, and only when, two full points were in excess. This way, the echo top was 

oscillating around the middle of echoes. Data length and number of echoes were adjusted 

consequently. In addition, a true  T2 relaxation measurement was performed to verify signal 

decrease, and to update simulation or acquisition parameters if needed. The measured value 

was an average of the individual signals within noise error.

Figure III.9: Echoes alignment: a) superposition of echoes, b) measurement of true T2

relaxation. Dotted vertical black line: centre of echoes. cpmg_proc.py program applied on 
noisy FID synthesised in Figure III.8. Parameters of cpmg_gen.py program: fullEcho = 10 ms, 

nbEcho = 19, firstDec = True, td = 4000, dw = 50 µs, de = 100 µs, mean = 0, std = 0.3, 
ph0 = 0, amp1 = amp2 = 1, nu1 = 2000 Hz, nu2 = -3000 Hz, T2_1 = 30 ms and T2_2 = 100 ms with 

Lorentzian shape, T2_1
* = T2_2

* = 1 ms with Gaussian shape.

C.3. Apodisation

Two subsequent apodisation steps were applied: an individual echo one and a global 

one. This is similar to previous studies (63). Without adjusting top of echoes, it was difficult 

to distinguish them from noise (Figure III.10a). However, once top of echoes were carefully 

calibrated, it was possible to apply apodisation on each of them (Figure III.10b, corresponding 

to step b of Figure III.7). Two kind of echoes apodisation were tested: cosine attaining zero 

between two echoes, or exponential. The difference was that apodisation was more convex on 
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top of echo with cosine than with exponential function (Section C.2 of Chapter I). During this 

individual apodisation step, any point acquired after the end of last echo was discarded.

Figure III.10: Apodisation step: a) noisy FID, b) after individual apodisation, c) after
global apodisation. Apodisation functions are presented in orange. cpmg_proc.py program 

applied on noisy FID synthesised in Figure III.8. Parameters of cpmg_gen.py program: 
fullEcho = 10 ms, nbEcho = 19, firstDec = True, td = 4000, dw = 50 µs, de = 100 µs, 

mean = 0, std = 0.3, ph0 = 0, amp1 = amp2 = 1, nu1 = 2000 Hz, nu2 = -3000 Hz, T2_1 = 30 ms 
and T2_2 = 100 ms with Lorentzian shape, T2_1

* = T2_2
* = 1 ms with Gaussian shape.

Global  apodisation  was  then  applied,  again  either  as  cosine  or  as  exponential 

(Figures III.10c,  corresponding to  step c of  Figure  III.7).  Best  results  were obtained with 

exponential weightings with constants equal to 2 / (π × halfEcho) and to 2 / (π × acquisition) 

for individual echoes and global apodisation, respectively. halfEcho and acquisition stand for 

the  half-echo  delay  and  the  total  FID  acquisition  time,  respectively.  Further  increase  of 

exponential constant led to additional artefacts during SVD denoising (Section  C.5). At this 

point, a common ancestor was reached between spikelets, superposition and SVD denoising 

methods, which will be explained and compared hereafter.

C.4. Spikelets and superposition methods

Spikelets  SPC  was  obtained  by  direct  FT  of  the  apodised  FID  (Figure  III.11a, 

corresponding to step d of Figure  III.7)  (54). Gratefully to the apodisation,  PSNRmax of this 

spectrum was  considerably  enhanced  as  compared  to  Figure  III.8c.  Moreover,  first-order 

phase was corrected by echoes alignment. However, small peaks at the edge of clumps were 

still just above noise level. Noticeably, height of peaks at 2000 Hz were lower than the ones at 
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-3000 Hz, despite an identical simulated amplitude, highlighting non-quantitative results. This 

was explained by the different true T2 relaxation.

Figure III.11: Comparison of a) spikelets method, b) superposition method,
c) reference spectrum. Apodisation is indicated on spectra. cpmg_proc.py program applied on 
noisy FID synthesised in Figure III.8. Parameters of cpmg_gen.py program: fullEcho = 10 ms, 

nbEcho = 19, firstDec = True, td = 4000, dw = 50 µs, de = 100 µs, mean = 0, std = 0.3, 
ph0 = 0, amp1 = amp2 = 1, nu1 = 2000 Hz, nu2 = -3000 Hz, T2_1 = 30 ms and T2_2 = 100 ms with 

Lorentzian shape, T2_1
* = T2_2

* = 1 ms with Gaussian shape.

In order to obtain a reconstructed spectrum with the superposition method, apodised 

echoes were summed (step e of Figure III.7) (54). Before summing all echoes together, raising 

and decreasing parts of each echo were added. The subtlety was that a different treatment had 

to be applied on real and imaginary part of the data. Hence, real part was symmetric to top of  

echo  (even),  whereas  imaginary  part  was  asymmetric  (odd).  In  other  words,  complex 

conjugate of raising part was folded to decreasing part (43). Unfortunately, this was only valid 

if the FID was zero-order phased. For an ordinary experimental FID, real and imaginary parts 

had no purely cosine and sine shapes. To correct this, the zero-order phase was calculated 

according to Equation III.7, where topreal and topimag are the FID values at first full echo top.

phase0=
−360

2π
arctan( topimag

topreal
)

phase0=phase0−180  if topreal<0

III.7

Moreover, there was only one point at top of echo, so this point was added to himself, 

but the first point of the raising part was discarded, in order to manipulate the same number of 

points from the raising and the decreasing parts. The obtained half echoes were then merged 
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into a single one, similar to a single FID without CPMG, but with enhanced PSNRmax. After 

FT, the result of superposition method was obtained (Figure III.11b, corresponding to step f of 

Figure III.7). Peak shape was similar to the overall envelope obtained with spikelets method. 

However,  noise  was  very  different,  with  high  and  low  frequency  for  the  spikelets  and 

superposition methods, respectively. In agreement with Equation III.5, only a small PSNRmax 

enhancement  was  obtained  from  spikelets  to  superposition  methods.  Once  again,  when 

comparing  to  reference  SPC (Figure  III.11c),  superposition  spectra  exhibited  a  decreased 

intensity on peak at 2000 Hz, due to its faster  T2 relaxation rate. This clearly confirmed the 

default of quantification of these methods.

C.5. SVD denoising method

In order to combine (Q)CPMG enhancement and quantification, we proposed to use 

Singular Value Decomposition (SVD, Chapter V). Different approaches were tested. Firstly, 

the echo train after apodisation was converted to a 2D matrix, with a row per echo and SVD 

was applied on it. This was similar to a 2D version of (71), but results were not convincing. 

Two explanations  were  advanced:  either  matrix  elongation  due to  the  difference  between 

number of points per echo and number of echoes (Subsection B.4.b of Chapter V); or an 

additional selectivity of SVD on 3D matrix.

Secondly,  SVD  was  applied  on  the  full  echo  train  after  individual  and  global 

apodisation (step c of Figure III.7). This was interesting as spikelets are Lorentzian peaks, for 

which  quantitative  denoising  is  expected,  on  the  contrary  to  Gaussian  peaks  (Subsection 

B.4.f.iii of Chapter V). We are referring here to the individual spikelet quantification rather 

than to the overall envelope one. Computing SVD on the entire echo train had the drawback 

to be rather long (up to 600 s with the help of a Graphics Processing Unit (GPU), Subsection 

B.3.d.ii of Chapter VI). Furthermore, it was unnecessary to use the full echo train as only a 

few  echoes  were  needed  to  obtain  denoised  spikelets,  whereas  the  following  ones  were 

useless, except to avoid FID truncation. Once the denoised echo train was computed, its FT 

gave a denoised spikelets SPC (Figure III.12a). Only spikelets above automatic threshold, i.e., 

above  PSNRmax ~ 2  (Subsection  B.4.e.ii  of  Chapter V) were  detected.  This  was  especially 

annoying for small  peaks, which define the overall  spikelets  shape.  For instance,  extreme 

peaks around 2000 Hz disappeared. This spectrum was the low limit of PSNRmax under which 

overall spikelets shape was degraded. For lower PSNRmax, the missing side spikelets narrowed 

reconstructed peak and decreased quantification. In extreme cases, no peak was reconstructed.

122



Chapter III. Carr-Purcell-Meiboom-Gill echoes

Figure III.12: Comparison of denoising method a) before truncation, and b) after
truncation, c) reference spectrum. cpmg_proc.py program applied on noisy FID synthesised in 

Figure III.8. Parameters of cpmg_gen.py program: fullEcho = 10 ms, nbEcho = 19, 
firstDec = True, td = 4000, dw = 50 µs, de = 100 µs, mean = 0, std = 0.3, ph0 = 0, 

amp1 = amp2 = 1, nu1 = 2000 Hz, nu2 = -3000 Hz, T2_1 = 30 ms and T2_2 = 100 ms with 
Lorentzian shape, T2_1

* = T2_2
* = 1 ms with Gaussian shape.

As signal intensity  is decreasing faster for species with short true  T2, quantification 

error is increasing with echo number. Only the first signal decrease is error-free. Hence, by 

truncation  of  the  denoised  FID  after  the  first  decrease  (step  h  of  Figure  III.7),  true  T2 

relaxation effects  were ignored,  giving a  more  quantitative SPC after  FT (Figure  III.12b, 

corresponding  to  step  i  of  Figure  III.7).  For  comparison,  reference  SPC is  presented  on 

Figure III.12c. Quantitative deconvolution was not yet implemented in our Python program, 

but  dmfit  deconvolutions  (68) will  be  tested  on  experimental  spectra  in  next  subchapter. 

Qualitatively,  peaks  at  2000 and  -3000 Hz had the  same amplitude,  and a  similar  width, 

slightly  enlarged  as  compared  to  reference  SPC,  due  to  apodisation.  This  was  a  major 

improvement over spikelets and superposition methods, for which different amplitudes were 

observed between both peaks. However, peaks were slightly distorted, more triangular than 

Gaussian.

SVD sensitivity strongly depended on FID  PSNRmax. The question was thus how to 

further  increase  PSNRmax before SVD. Our solution was to use a partial  sum, by limiting 

echoes number and summing groups of echoes together, including first echo (step g of Figure 

III.7).  Unfortunately,  this reintroduced true  T2 discrepancies and lowered quantification.  A 

maximum number of 25 echoes was chosen as a compromise to benefit from noise averaging 

123



Chapter III. Carr-Purcell-Meiboom-Gill echoes

without too much impacting quantification. Nevertheless, a careful error measurement has 

still to be conducted.

In Subchapter C, a (Q)CPMG processing program was presented. After simulation of a 

perfectly known dataset, echoes alignment was performed. Global and individual apodisation 

enhanced signal-to-noise ratio. Finally, spikelets, superposition and SVD denoising methods 

were detailed. The two former suffered from true T2 distortions, whereas the latter corrected 

them.

D. Application to materials

In order to further test our SVD denoising method on real (Q)CPMG experiments, we 

analysed two different samples by  29Si solid-state NMR. Figure  III.13 presents the spectra 

obtained with spikelets, superposition (sum), denoised, and no CPMG, from bottom to top, 

respectively. The later method was obtained by truncation of the apodised FID after the first 

decrease and was equivalent to the spectrum recorded without CPMG. These four spectra 

were  processed  starting  from a  unique  CPMG dataset,  which  was  necessary  to  precisely 

compare PSNRmax enhancement with processing steps as close as possible from a method to 

another one.

The first sample was a sol-gel organic-inorganic material with MTEOS (Si(OEt)3CH3) 

and  TEOS  (Si(OEt)4)  in  a  50:50  molar  ratio.  Synthesis  was  detailed  in  Section  E.5  of 

Chapter I.  It  was  studied  by  29Si  Cross  Polarisation  (CP)  CPMG  MAS  with  23  echoes 

(Figure III.13a). Overall shapes obtained by spikelets and superposition methods were very 

similar (blue and green spectra, respectively). By comparison with the spectrum obtained in 

absence of CPMG (grey spectrum), they clearly underestimated the region at -55 ppm (T2 

species, red arrows), while overestimating peaks at  -100 and -110 ppm (Q3 and Q4 species, 

respectively), which was confirmed by modelling with dmfit software (68) (Table III.2). This 

was due to faster true T2 relaxation for T2 species, and slower one for Q3 and Q4 species. On 

the  contrary,  denoised  spectrum  (purple  curve)  was  in  much  closer  agreement  with  the 

spectrum  in  absence  of  CPMG.  Artefacts  were  present  in  between  spikelets,  and  were 

attributed to a mismatch between echo delay and MAS rate. PSNRmax measured on Q2 species 

with  snr.py  program of  (3) increased from 37 without  CPMG to  44 for  spikelets,  62 for 

superposition and 190 for denoised methods. As expected from Equation III.5, superposition 

method gave better results than spikelets and no CPMG methods. With superposition method, 
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a  time  gain  of  (62/37)2 = 2.8  was  possible.  Denoised  method  combined  a  good  PSNRmax 

enhancement with correct peak area quantification.

Figure III.13: Comparison of (Q)CPMG processing methods. From top to bottom
on each subfigure: no CPMG, SVD denoising method, superposition, and spikelets methods. 

a) {1H}-29Si CP CPMG spectrum of 50:50 MTEOS:TEOS sample; b) {1H}-29Si HPDEC 
CPMG spectrum of CSPTC:TEOS:PVDF-HFP membrane; c) 91Zr DFS-WURST-QCPMG 

spectrum of a zirconia ceramic. Parameters: a) B0 = 7.0 T, MAS = 14 kHz, RD = 1 s, 
NS = 2048, texp = 0.57 h, tcp = 5 ms, νdecoupling(1H) = 2.4 kHz SPINAL-64, fullEcho = 8 ms, 

nbEcho = 23, firstDec = True; b) B0 = 7.0 T, MAS = 14 kHz, p1 = 30°, RD = 30 s, NS = 3960, 
texp = 33 h, νdecoupling(1H) = 51 kHz SPINAL-64, fullEcho = 8 ms, nbEcho = 4, firstDec = True; 

c) B0 = 16.4 T, MAS = 0 kHz, RD = 0.4 s, NS = 10000, texp = 1.1 h, no decoupling, 
fullEcho = 0.217 ms, nbEcho = 540, firstDec =False.

Similar results were obtained on a second sample consisting of an electrospinning film 

containing  an  organosilane  (CSPTC),  an  orthosilicate  (TEOS)  and  a  fluorinated  polymer 

(PVDF-HFP) (Figure III.13b). Synthesis was detailed in Section E.6 of Chapter I. As the aim 

was to quantify 29Si species, High Power DECoupling (HPDEC) was preferred to CP, which is 

non-quantitative by nature. This spectrum was acquired in 33 h with MAS = 14 kHz. PSNRmax 

was  measured  on  Q3 species  (Table  III.2).  T2 species  were  between  detection  and 

quantification  level.  Q2 species  were  under  detection  limit.  Only  a  slight  time  gain  of 

(6.5/4.7)2 = 1.9 was obtained with CPMG superposition method. Q3 and Q4 species increased, 

whereas T3 species decreased. However, the  T2 discrepancies effect was limited as solely 4 

echoes  were  acquired  due  to  fast  true  T2 relaxation,  even  with  1H decoupling.  Denoised 
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spectrum improved quantification,  with values  intermediate  between superposition and no 

CPMG methods.

Table III.2: Deconvolution of 29Si spectra presented on Figure III.13a-b.
Species

Method T2 (%) T3 (%) Q2 (%) Q3 (%) Q4 (%) PSNRmax

M
T

E
O

S
T

E
O

S

No CPMG 19.8 35.1 7.1 26.5 11.4 37

Denoised 19.8 35.2 7.1 26.6 11.3 190

Superposition 15.6 32.5 7.6 29.4 14.9 62

Spikelets - - - - - 44

C
S

P
T

C
T

E
O

S
P

V
F

D
-H

F
P No CPMG ~2.7 65.4 - 10.2 21.6 4.7

Denoised ~3.0 64.2 - 11.3 21.5 18

Superposition ~4.6 61.4 - 11.8 22.0 6.5

Spikelets - - - - - 5.7

On these two samples, the number of echoes was under 25 and no partial sum was 

applied before SVD denoising. Further tests were done with up to 540 echoes, for instance on 
91Zr QCPMG of zirconia ceramic (Figure III.13c and Section E.9 of Chapter I). A sensitivity 

gain of 12.6, corresponding to a time gain of 159, was observed between no CPMG and 

superposition  methods.  It  is  not  clear  yet  if  the  different  shape  observed  with  denoising 

method accounts for relaxation of different species or for zero-order phase correction before 

folding  of  raising  and  decreasing  parts  of  echoes.  This  folding  could  be  avoided  during 

(partial-)sum process, leading to a full  echo rather than a half  echo for superposition and 

denoising methods. An additional sensitivity gain of √2 could be obtained, but first-order 

phase correction will be needed.

In  Subchapter  D,  our  (Q)CPMG  processing  program  was  tested  on  experimental 

datasets. With a single command, no CPMG, spikelets, superposition and denoising methods 

were accessible under Bruker Topspin software. This is a major gain of processing time. The 

main difficulty was to carefully adjust echoes position for the best results. On 29Si spectra, true 

T2 were corrected, giving correct quantification in presence of (Q)CPMG.

E. Chapter conclusion

In this chapter, we focussed on (Q)CPMG experiments that can either be used to probe 

dynamics or to increase sensitivity of 1D solid-state NMR experiments or direct dimension of 
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nD  experiments  (Section  B).  For  the  latter  objective,  specific  processing  steps  were 

underlined,  either  using  spikelets  or  superposition  methods.  Different  equations  from the 

literature  were  presented  to  estimate  the  enhancement  factor.  One  major  drawback  of 

(Q)CPMG is to loose quantification in presence of multiple species with different relaxation 

constants. Malfait and Halter proposed a relaxation compensated method, but to the detriment 

of signal enhancement (62).

In  order  to  circumvent  relaxation  downside,  we  developed  a  processing  program 

written in Python (Section  C)  (3). After synthesising a perfectly known (Q)CPMG train of 

echoes,  we  applied  echoes  alignment.  This  evidenced  the  need  to  have  a  perfect 

synchronisation between inter points delay, half-echo delay, and MAS period. Following step 

was  to  apodise  FID,  both  individually  on  each  echo  and  globally.  The  spikelets  and 

superposition results were then obtained by direct FT or folding followed by sum and FT, 

respectively. Denoising approach was rather to apply SVD on a limited number of echoes. 

This way, SVD was applied on multiple narrow Lorentzian lines, enhancing peak detection 

(Subsection  B.4.e.ii  of  Chapter V)  and  avoiding  the  extracted  error  obtained for  a  single 

Gaussian  shape  (Subsection  B.4.f.iii  of  Chapter  V).  Additional  echoes  increased 

computational cost without further signal improvement.  Truncating denoised FID after the 

first  decrease and applying FT resulted to a denoised quantitative spectrum. However,  for 

correct reconstructed peak shape, small spikelets should have a PSNRmax ~ 2 after apodisation. 

To improve their detection, we applied a partial sum before SVD in case of a high number of 

echoes.  Unfortunately,  this  decreased  quantification  in  case of  multiple  true  T2 relaxation 

constants.

Results on experimental spectra were provided in Section D on two different samples 

studied by (Q)CPMG. A time gain of 2.8 was achieved on 29Si with 23 echoes, and of 86 on 
91Zr  with  600  echoes.  Despite  spikelets  and  superposition  methods  gave  non-quantitative 

results,  quantification  was  improved  with  SVD  denoising  method.  One  advantage  our 

program is that it is fast to process and directly callable from TopSpin software. However, a 

more precise error measurement would be useful, and some adjustment of number of echoes 

and of echoes folding process would improve overall shape reconstruction. Alternatively, true 

T2 resolved  2D  will  provide  an  insight  to  characterise  multiple  species  (55,  59).  Some 

investigations on PIETA technique (31), which is very close from (Q)CPMG but less sensitive 

to pathway errors, may probably be fruitful.
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Chapter IV. Non-uniform sampling

A. Chapter introduction

After increasing sensitivity of one-dimensional (1D) spectra through CPMG echoes, 

we focussed on multi-dimensional  (nD) experiments with Non-Uniform Sampling (NUS), 

which allows considerable acquisition time decrease. NMR acquisition has been evolving for 

over six decades, with an increasing speed of nD signal acquisition (Figure IV.1) (1). A brief 

history of NMR can be found in (2).  Some of these innovations are listed hereafter: Fourier 

Transform (FT) in 1966 (3), two-dimensional (2D) NMR in 1971 (4), structure of a protein 

with 57 amino-acids in 1985 (5), first 4D experiment in 1992 (6), and single-scan 2D NMR in 

2002  (7).  A new comprehension of signals sparsity was provided by Compressed Sensing 

(CS) in 2011 (8).

Figure IV.1: Chronology of NMR developments (1).

A few techniques are known to enhance acquisition speed of nD experiments. Among 

them, single-scan NMR, also called UltraFast (UF), consists to selectively excite a spatially 

encoded  sample  and  to  acquire  successive  corresponding  echoes  (7).  Band-Selective 

Optimized  Flip-Angle  Short-Transient  (SOFAST)  (9),  later  renamed  as  Band-selective 

Excitation  Short-Transient  (BEST),  which  uses  a  band-selective  excitation  to  enhance 

relaxation through the non-excited neighbours. Recently, NMR by Ordered Acquisition using 
1H-detection  (NOAH)  combined  up  to  5  successive  2D  experiments  into  a  single  pulse 

131



Chapter IV. Non-uniform sampling

program  (10).  Non-Uniform Sampling (NUS) allowed to acquire only a  part  of the usual 

indirect points (1). SOFAST has already been combined with Non-Uniform Sampling (NUS) 

(11), whereas UF experiments are not compatible, due to the single-scan coding process. Most 

of these techniques are gaining interest for solution-state NMR, but here we focussed solely 

on NUS for solid-state NMR.

This  work  started  from the  availability  of  NUS  in  Bruker  TopSpin  software  and 

strongly  benefited  from  an  international  school  in  Sweden  (12).  A  global  historical 

perspective on NUS can be found in reference  (13) and will be detailed hereafter for each 

NUS approach.  We will  first  explain  multi-dimensional  experiments  and  their  limitations 

(Subchapter  B), before optimising data acquisition and reconstruction (Subchapters  C.1 and 

D,  respectively).  These  procedures  will  be  applied  to  solid-state  NMR in  Subchapter  E. 

Finally, practical details will be provided in Subchapter F.

B. Multi-dimensional experiments

In this Subchapter, after describing two- and higher dimensional experiments, we will 

focus on resolution and sensitivity before examining the impact of FID truncation, whose 

principle is similar for all dimensions.

B.1. Two-dimensional experiments

2D spectra are  based on an idea of Jeener  (4) and were developed in the 1970s (14, 

15).  As shown on  Figure  IV.2a, the 2D principle is to acquire a succession of 1D FID, so-

called slices, with a step by step delay increase along t1 (indirect dimension). After a mixing 

step, the t2 dimension is digitalised in one-shot (direct dimension). Moreover, frequency sign 

detection  requires  phase  quadrature,  which  double  the  number  of  FID.  To  obtain  a  2D 

spectrum, two complex FT are necessary, one for each time evolution.

B.2. Higher-dimensional experiments

The  same  principle  can  be  extended  to  higher  dimensions,  that  have  nothing  in 

common  with  our  3D  visual  space  (Figure  IV.2b).  A 3D  will  thus  have  two  indirect 

dimensions  and  be  a  succession  of  2D  planes.  Figure  IV.2c  presents  a  4D  hCOCANH 

experiment (16), useful to study proteins by NMR. Amide 1H magnetisation is first transferred 

to  carbonyl  13C,  then  to  alpha  13C,  to  amide  15N  and  finally  to  amide  1H.  In  a  single 
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experiment, one can correlate two successive amino acids of the protein and obtain spectra of 

all their connecting nuclei.

Figure IV.2: Principle of a) 2D and b) nD experiments, adapted from (17). Indirect and
direct dimensions are point by point and one-shot acquisition, respectively.

c) 4D experiment hCOCANH (16).

By  increasing  dimensions,  experimental  time  Texp is  growing  according  to 

Equation IV.1,  where  N is  the  number of  points  per  n indirect  dimension,  and  T1D is  1D 

acquisition time (18).

T exp=N n−1 2n−1 T 1 D IV.1

The factor  2n-1 reflects phase quadrature for each indirect dimension. Corresponding Texp are 

presented by dashed lines on Figure  IV.3 from 2D to 5D experiments. Plain lines refers to 

sparse sampling, which will be explained in Subchapter  C.1. Table  IV.1 details acquisition 

parameters for top right point of each dashed line. For these calculations, T1D is fixed to only 4 

seconds, which reflects a very favourable case where sufficient Peak Signal-to-Noise ratio 

(PSNR)  is  achieved in only 2 scans,  each one acquired in  2 seconds,  with magnetisation 

selection by pulsed field gradients instead of phase cycling  (18). A higher number of scans 

will  consequently  increase  Texp.  Experimental  time has  been  limited  to  500 hours,  i.e.,  3 

weeks, which is the maximum reasonable for an NMR experiment. In such conditions, the 

NMR spectrometer  has to be perfectly  stable concerning magnetic  field homogeneity and 

radio-frequency pulses imperfections. As a consequence, resolution has to decrease from high 
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(2D) to low (5D), and is much poorer than achievable on modern NMR spectrometers, which 

are providing incomparable narrow lines, especially on high field magnets. Another drawback 

of nD experiments is disk space, that increases with number of FID.

Figure IV.3: Comparison of full sampling (dashed lines) and sparse sampling
(plain lines) acquisition times for nD NMR experiments, including direct dimension (18).

Table IV.1: Comparison of 1D to 5D experiments, including direct dimension.
Dims: dimensions; phase quad: phase quadrature; sim: simultaneous.

Dims Direct 
points

Indirect increments Phase 
quad

Total 
FID

Disk 
space

Reso- 
lution

Time

#1 #2 #3 #4

1D 512 - - - - 2 (sim) 2 (sim) 4.0 ko high 4 seconds

2D 512 512 - - - 4 2.0e4 4.2 Mo high 1.1 hour

3D 512 334 334 - - 8 8.9e5 1.8 Go high 20.7 days

4D 512 38 38 38 - 16 8.8e5 1.8 Go medium 20.3 days

5D 512 13 13 13 13 32 9.1e5 1.9 Go low 21.1 days

In  the  rest  of  this  chapter,  direct  dimension will  be  neglected  due  to  its  one-shot 

character, unless otherwise stated. We will investigate how to decrease the acquisition time of 

indirect dimensions. Next section will describe the impact of truncation on resolution and 

sensitivity.

B.3. Resolution and sensitivity

RESolution of a spectrum (RES) can be defined as peak separation capability. It is 

driven by the corresponding FID duration (AQ, AcQuisition time), which itself is determined 

by Spectral Width (SW) and number of points (TD, Time Domain), as shown by Equation 

IV.2. Longer the FID, smaller and better the resolution.
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RES (Hz)= 1
AQ( s)

=
SW (Hz)

TD/2
IV.2

As demonstrated by Rovnyak et al. (19), discrimination of two resonances separated 

by 1.2 times their line width requires to acquire signal up to 3 T2
*, the apparent transversal 

relaxation time (green circle in Figure IV.4a), whatever its longitudinal relaxation time T1. On 

the contrary, PSNR and sensitivity, are maximised at 1.26 T2
*, value above which more noise 

than signal is introduced into the FID (Equation IV.3 and green arrow in Figure IV.4b).

PSNR(t max)∝
T 2

*(1−e

−tmax

T 2
*

)

√t max

, t max∼1.26T 2
* IV.3

Figure IV.4: Influence of acquisition time a) on resolution and b) on sensitivity.
Optimal values are highlighted by green circle and green arrow. Δ: peak separation, lw: line 

width, T2
*: apparent transversal relaxation time. Adapted from (19).

A compromise has thus to be made between resolution and sensitivity.  In order to 

maximise sensitivity and decrease experimental time of nD experiments, an easy solution is to 

truncate the FID, at the detriment of resolution. What is the impact of this choice?

B.4. FID truncation

FID  truncation  not  only  leads  to  resolution  decrease  (Figure  IV.5a-b),  but  it  also 

induces artefacts on spectrum after FT (red circle in Figure  IV.5b). By multiplying the FID 

with an exponential apodisation, artefacts are reduced at the cost of peak broadening (red 
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circle in Figure  IV.5c). Further details on FT artefacts will be provided in Section  C.4. A 

common workaround is to use forward linear prediction to extrapolate the FID to a longer 

acquisition time (20, 21). However, despite strongly improving spectra, this creates distortion 

on both FID and spectrum (red circles in Figure  IV.5d), as missing data cannot be guessed 

unambiguously. In particular, the number of predicted components has a strong impact on 

final result. In addition, backward linear prediction can be used to circumvent missing points 

at the beginning of the FID, due to electronic delays.

Figure IV.5: left) Time domain and right) their respective spectra after FT of a) Full
FID, b) truncated FID, c) truncated FID with exponential apodisation, d) truncated FID with 

linear prediction. Red circles highlight undesired features. Adapted from (22).

As demonstrated in  Subchapter  B,  full  sampling of  a  nD experiment  is  a  balance 

between resolution (sampling limited regime) and sensitivity (sensitivity limited regime), in a 

given experimental time (23). In many cases, only a few indirect increments are kept, giving a 

poor resolution if AQ < 3 T2
*, and even a low sensitivity if AQ < 1.26 T2

* (Figure IV.4).

C. Data acquisition

Radial  sampling  (Figure  IV.6b)  and non-uniform sampling  (Figure  IV.6c)  schemes 

have been developed as alternatives to  full  sampling (Figure  IV.6a).  We remind here that 

direct dimension is not represented, as it is fully sampled at no additional cost. The 3D cube 

corresponds  thus  to  a  4D NMR experiment.  Sparse  sampling  acquisition  times are  much 

smaller than uniform sampling ones, without losing resolution (plain lines in Figure  IV.3). 

Radial sampling and non-uniform sampling are detailed hereafter, as well as NUS sampling 

strategies, point spread functions and sampling quality.
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Figure IV.6: a) Full sampling, b) radial sampling and c) non-uniform sampling of
a 4D experiment. The direct dimension is fully sampled and is neglected. Adapted from (12).

C.1. Radial sampling

The basic idea of radial sampling is to simultaneously and regularly increase multiple 

time  dimensions,  with  a  constant  ratio  between  them,  giving  an  angle  α (Figure  IV.7a). 

Selected axes or planes are acquired but other points are ignored. The resulting FID can be 

processed with a standard FT, which gives a projection of the nD spectrum perpendicularly to 

α (Figure  IV.7b).  By  combining  multiple  angles,  true  and  false  cross-peaks  can  be 

discriminated. A true cross-peak correlates with all projections (red disk) while a false one 

involves only some of them (yellow disk). Radial sampling is useful for high dimensionality 

( ≥ 3D), without needing to reconstruct all points in nD space. The main drawback of this 

technique is that peaks have strong ridges on projection directions (Figure IV.7c), which may 

mask small peaks. Moreover, enough projections are mandatory to discriminate all peaks. The 

correct number of projections is difficult to estimate. A solution is to count the number of 

peaks on each projection (this is equivalent to compressed sensing with l0-norm) and to add 

projections angles if the number of peaks is not constant against angle  (24). Between 40 to 

100 2D projections were used for 5D to 7D experiments (25).

The first NMR usage of this concept was Nagayama et al. experiment, with processing 

of  a  standard  2D  to  highlight  specific  cross-sections  (26).  The  “accordion”  experiment, 

proposed later  by Bodenhausen and Ernst,  implemented radial  sampling to  faster  probe a 

chemical exchange 3D space  (27). In the latter measurement, the evolution period and the 

mixing time were concomitantly stretched, hence the name. The 3D space is projected on a 

2D plane,  thus  giving  a  (3,2)D spectrum.  This  was  generalised  as  the  so-called  reduced 

dimensionality experiments (28).
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Figure IV.7: Principle of radial sampling: a) constant-time increments with multiple
angles (29), b) reconstruction by multiple projections, red and yellow disks highlight true and 
false peaks, respectively, adapted from (30), and c) strong artefacts on projections directions 

(31).

In order to reconstruct the nD spectrum obtained with radial sampling, 1D spectra can 

be combined in a system of linear equations, so-called a G-matrix Fourier Transform (GFT) 

(32). Another solution is to use the projection-reconstruction approach (33) based on inverse 

Radon  transform  (34).  A similar  idea  was  applied  earlier  for  astronomy  (35) and  X-ray 

tomography  (36). Reconstruction algorithms were detailed in reference  (37).  An additional 

possibility is to keep only a peak list with N coordinates by use of Automated Projection 

Spectroscopy (APSY) (38). It has already been successfully performed on (7,2)D experiments 

(25). A more detailed historical review of radial sampling can be found in reference (29).

C.2. Non-uniform sampling

Barna et al. proposed a totally different approach than radial sampling (39): instead of 

acquiring points regularly on specific axes or planes (Uniform Sampling, US), points were 
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sampled irregularly in all indirect dimensions (Non-Uniform Sampling, NUS). An exponential 

weighting was chosen to maximise sampling at the beginning of the FID, where  PSNR was 

higher (Section  B.3), and to decrease acquisition time. Resulting FID and their respective 

spectra are presented on Figure  IV.8a. By simply replacing the missing points by zero and 

applying FT, a noisy spectrum was obtained. Indeed, for each factor 2 of subsampling, PSNR 

was divided by a factor √2 ,  that is to say -3 dB (Figure  IV.8b)  (40). The reason will be 

detailed  in  Section  C.4.  However,  Barna  et  al. reconstructed  a  correct  spectrum  using 

maximum entropy. Maximum entropy method will be detailed in Section D.3.

Figure IV.8: a) Comparison of US and NUS FID and their respective spectra (39).
b) Impact of subsampling on PSNR (40). Bandpass sampling: regular undersampling;

Oracle CS: algorithm with known zero elements; CoSaMP CS: l1-norm algorithm.
c) NS vs. CS theorems, adapted from (41).

In order to overcome subsampling limitation, the key point is to replace the hypothesis 

from Nyquist and Shannon theorem (NS)  (42,  43) to Compressed Sensing (CS) one, which 

was  demonstrated by Candès  et  al. (44).  While  the former  states  that  all  frequencies  are 

relevant on Spectral Width (SW), the latter postulates that spectrum is sparse, either with  K 

non-zero  values  (Figure  IV.8c)  (41) or  with  a  low  Total  Variation  (TV)  as  in  magnetic 

resonance imaging. As a consequence, much less points (NCS) are needed to fully reconstruct 

the spectrum with CS than with NS (NNS points) (45). CS reconstruction will be explained in 
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Section C.3. Probability of success (in red on Figure IV.9) and of failure (in blue) was called 

the Donoho-Tanner phase transition (46), with an intermediate uncertain region (in yellow). It 

depends on sparsity ratio and sampling coverage. Low sampling coverage is eligible only for 

low sparsity ratio, i.e., for highly sparse spectra. Gratefully to the resolution increase at higher 

magnetic field, sparser peaks are obtained improving success rate (black arrow). Moreover, by 

increasing spectrum dimensionality, the number of peaks is only slightly increasing, whereas 

sparsity is strongly increasing, enhancing spectrum reconstruction.

Figure IV.9: Probability of CS reconstruction (47). Blue and red regions depict failure
and success, respectively, while intermediate region is unsure; black arrow highlights the 

success improvement due to resolution enhancement at high magnetic field.

C.3. Sampling strategies

In their experiment, Barna  et al. suggested to sample following an exponential bias, 

with a higher amount of points at the beginning than at the end of the FID (39). Figure IV.10a 

presents this strategy graphically  (12,  48). This  envelope-matched sampling is in agreement 

with  a  recent  theoretical  study  highlighting  that  any  NUS  function  with  a  decreasing 

probability, improves sensitivity compared to the US spectrum (49). Alternatively, sensitivity 

can be maximised for J-coupling experiments using  beat-matched sampling (Figure IV.10b)

(18), where more points are acquired on top of oscillations (50). However, in the latter case, 

140



Chapter IV. Non-uniform sampling

additional artefacts may occur (51). A further sensitivity gain was proposed by Kumar et al. 

with exponential averaging, by increasing the number of scans for first points (52).

Figure IV.10: 2D sampling schemes with a) relaxation tailored (envelope-matched
sampling) (48) and b) J-coupling & relaxation matched (beat-matched sampling) (18),

adapted from (12).

The optimal number of sampling points in an experiment can be checked with targeted 

acquisition (53). Its principle is to randomly acquire points, to reconstruct spectrum in real-

time, and to stop when the number of found peaks is constant. A similar idea can be used to  

monitor  chemical  reactions  with  Time-Resolved  NUS  (TR-NUS):  the  FID  is  randomly 

sampled and for each time-sliding constant number of points, a 2D NMR spectrum is obtained 

within a few minutes  (54,  55).  New developments on NUS have also been tested on phase 

quadrature, considering it as an additional dimension (56).

C.4. Point spread function

In this section we will investigate why some sampling schemes give better results than 

others. In each FID, points are aligned on a Nyquist grid (42) and discrete Fourier transformed 

(Section C.3 of Chapter I). If points are missing,  they are replaced by zeroes. This  zero-
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augmented data is equivalent to multiply the full signal by a comb function, whose FT is a 

complex  oscillation,  called  Point  Spread  Function  (PSF)  (57,  58).  The  FT  convolution 

theorem is presented in Equation IV.4, where  is the element-wise multiplication, and * is the∘  

convolution (59).

FT (a∘b)=FT (a)∗FT (b) IV.4

In words, FT of a product of two vectors a and b, is the convolution of the FT of each 

vector. Applied to sampling schemes, this means that NUS spectrum is the convolution of US 

spectrum and PSF (Equation IV.5) (59).

NUS spectrum=US spectrum∗PSF IV.5

Figure IV.11: Effect of undersampling on spectrum: b) time function sampled at
100 Hz and e) its corresponding spectrum; a) and c) regular undersampling function at 33 and 
15 Hz, respectively, and d) and f) their corresponding PSF; g) and h) convolution of e) with d) 

and f), respectively. Adapted from (60).

PSF is thus of crucial importance for NUS. The more points are missing, the more the 

noise coming from the PSF is  intense.  On the contrary,  artefacts  are minimised with full 

sampling.  The  simplest  comb  function  is  regular  undersampling  (Figure  IV.11).  When 

digitalising  a  signal  at  33 Hz  instead  of  100 Hz  (a  and  b,  respectively),  the  resulting 

convolution is a three-fold aliased spectrum (g), which is not so annoying in this example. 
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However, a worst case is obtained at a digitalisation rate of 15 Hz (c) with an unreadable six-

fold aliased spectrum (h).

Figure IV.12: 2D sampling scheme (insert) and their corresponding PSF (main figure)
for a) concentric, b) spiral, c) random and d) Poisson sampling. Adapted from (60).

Similar  peak images  are  obtained with more complex sampling functions,  such as 

triangular pattern (61). Many of them were analysed by Maciejewski et al. (62). Figure IV.12 

presents  such  2D  sampling  functions  (green  inserts)  and  their  corresponding  PSF  (blue 

planes) (60). Full sampling would have filled the green insert. While concentric (a) and spiral 

schemes (b) exhibited strong artefacts, random sampling (c) minimised them. Small artefacts 

were present, similar to noise. It should be noted that this is purely sampling noise arising 

during processing. In presence of additional thermal noise during acquisition, PSNR degrades 

consequently. However, clusters of points are present with random sampling (orange ellipse in 

(c)  insert),  which  are  overcome  with  Poisson  distribution  (d),  where  the  distribution  of 

contiguous  skipped  measures  follows  a  Poisson  law,  instead  of  Laplace  law  for  simple 

random sampling (63). As a consequence, clusters of points are avoided and noise is pushed 
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away from peak to higher frequencies, improving peak discrimination. Poisson scheme has 

thus to be preferred (64).

C.5. Sampling quality

As computers are not using random points generation but rather pseudo-random series, 

it is possible to have a reproducible list of sampling points, by selecting a specific series, so-

called a random seed. The impact of random seed on spectra has been studied multiple times 

(65,  66).  Craft  et al. proposed to define sampling schedules according to quantiles, and to 

randomly jitter 25-50% of points around the desired value to remove undersampling artefacts 

(67). While Poisson sampling induces  blue noise, namely noise at high frequency, bursts of 

points  leads  to  red  noise (68),  i.e., increased  noise  at  the  neighbouring  of  intense  peaks 

(Section B.1 of Chapter I). This latter solution may be useful for Nuclear Overhauser Effect 

SpectroscopY (NOESY) experiments,  where artefacts  arising from intense diagonal  peaks 

have to be placed close to the diagonal to avoid masking small peaks away from diagonal. 

Once a satisfying sampling scheme has been found for an application, it can easily be applied 

to another sample.

Even for Poisson distribution, and on simulated data in the absence of noise, different 

random seeds will give different results  (69). In this example, the worst sampling schedule 

will give rise to strong vertical artefacts (red arrows on Figure IV.13a) while the best one will 

not (Figure IV.13b). Following this observation, one need a scoring function to discriminate 

sampling quality. The PSF ratio (58) or its inverse the Peak-to-Sidelobe Ratio (PSR) (59) can 

be such useful tools. PSF ratio compares the sidelobes of PSF to its zero frequency peak. The 

lower PSF ratio is and the lower FT artefacts are. For instance, PSF ratio equals to 1 for  

regular undersampling and tends to zero for random sampling (56). Unfortunately, PSF ratio 

does not correlate well to Root Mean Square (RMS), which takes into account any spectrum 

distortions: no clear correlation is obtained and high PSF can even correlates to low RMS 

(Figure IV.13c).

Another  possible  indicator  is  l2-norm that  measures  the  total  deviation  from  US 

spectrum (70). A better agreement is obtained between l2-norm and RMS, with a more linear 

curve  and  the  appearance  of  clusters  in  the  graph  (Figure  IV.13d).  However,  comparing 

multiple schedule with l2-norm or RMS needs a full spectrum reconstruction for each of them, 

which is difficult and time-consuming. To overpass this limitation, Aoto  et al. developed a 
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program  called  NUSscore  (69),  that  combines  a  weighting  score  for  sensitivity  and  a 

randomness score for robustness. It generates 10 000 schedules within a few seconds and rank 

them by quality. It is therefore very easy to use the best one for a given sampling ratio and a 

maximum number of indirect increments.

Figure IV.13: Reconstructed spectra for identically processed synthetic noiseless data
with resonances approximating an 18 kDa protein and sampled with a) the worst and b) the 

best 60 % Poisson schedule, based on RMS measurement. c) Correlation of PSF ratio to RMS 
(black) and number of sampling scheme for each RMS value (red histogram). d) Correlation 

of l2-norm to RMS. Adapted from (69).

As  we  have  demonstrated  in  Subchapter  C.1,  non-uniform sampling  can  be  very 

efficient  to  reconcile  resolution  and  sensitivity.  The  former  can  be  improved  with  nD 

acquisition times as long as 3 T2
*, whereas the latter benefits of a higher number of scans in a 

given time and of reduced noise introduction, due to lower density of points above 1.26 T2
*. 

Nevertheless, sampling scheme has to be defined carefully in order to avoid FT artefacts.

D. Data reconstruction

After optimising sampling scheme, data has to be reconstructed.  Theory will first be 

introduced using  a  system  of  linear  equations.  We  will  then  describe  the  available 

reconstruction  algorithms  and focus on maximum entropy and compressed sensing before 

characterising reconstruction quality.
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D.1. System of linear equations

Using FT to obtain a complex spectrum s from a complex FID f is similar to solve an 

inverse system of linear equations (Figure IV.14a). This problem is inverse as one observe the 

influence  of  parameters  on data  (oscillation on FID  f)  without  knowing these parameters 

(frequencies).  In case of US acquisition,  the inverse FT (iFT) matrix  Φ is a square,  with 

N × N rows  and columns (Figure  IV.14b).  The spectrum  s is  the  unique  solution  to  this 

system of linear equations.

Figure IV.14: System of linear equations for a) and b) US and c) NUS. Φ, Φ’, s, f and f’
are inverse FT US matrix, inverse FT NUS matrix, spectrum, US FID and NUS FID, 

respectively. Adapted from (12).

In case of NUS, only  K points are acquired on FID f’ (Figure  IV.14c), with missing 

regions reduced to grey lines. As a consequence, the iFT matrix Φ’ is not a square any more 

and this system is under-determined, with less equations than variables. This implies that its 

solution  is  not  unique  and  that  additional  assumptions  are  needed (71).  However,  any 

presupposition can have strong consequences, as was demonstrated by a deliberately wrong 

model,  where  a  photograph  of  Einstein  arose  from  1000  pure  white  noise  images 

(Figure IV.15) (72).
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Figure IV.15: A photograph of Einstein is used as a model on 1000 pure white noise
images (72). a) Wrong reconstruction using alignment on model. b) Close to random 

reconstruction based on mutual correlation of points.

The key point of Compressed Sensing (CS) is to assume that  s dataset is sparse in 

frequency domain,  i.e., it has only a few non-zero elements, and that it is incoherent,  i.e., it 

spreads  out in  the complementary time domain (73).  Sparsity consists  in  maximizing the 

number of null values in s (l0-norm) which was shown to be generalizable to all  lp-norms, 

where p ≤ 1. The lp-norm of a vector f with N values fk is defined by Equation IV.6 (74):

‖ f‖lp=(∑
k=1

N

| f k|
p)

1
p IV.6

lp-norm functions are presented on Figure  IV.16 for a 2 points vector  f with  p = 2, 1 

and 0,  from left  to right,  respectively  (75).  For longer vectors,  lp-balls will  correspond to 

mathematical objects with  N axes.  l2-norm (left) and  l1-norm (middle) are convex, whereas 

l0-norm (right) is non-convex  (76). As a consequence, the latter is much sensitive to sparse 

than to non-sparse solutions (black and white disks, respectively). Here, sparse solutions have 

values on only one axis.

Figure IV.16: lp-balls for N = 2 and p = 2, 1 and 0, adapted from (75).
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CS way to solve NUS problem is to minimise lp-norm (Equation IV.7),

min‖s‖lp  subject to Φ ' s= f ' IV.7

with  at  least  2K sampling points  for  l0-norm or  a  slightly higher  number  K log2(NNS / K) 

sampling  points  (77) for  l1-norm. However,  the  l0-norm is  non-continuous and cannot  be 

minimised, involving more demanding computations. The lp-norm with p < 1 is non-convex, 

which can result in multiple solutions.  l1-norm is often used instead of l0-norm, with a high 

success  rate. When  data  is  corrupted  by  noise,  a  more  general  formula  can  be  used 

(Equation IV.8), 

min [‖Φ ' s− f '‖l 2
2 +λC (s)] IV.8

where  λ is a Lagrange multiplier, that keeps the balance between the measured data (first 

term)  and  the  sparsity  (second  term)  (78).  C(s) is  a  cost  function,  either  lp-norm,  total 

variation, maximum entropy or matrix rank. In NMR, this can be rewritten as Equation IV.9, 

where η is a noise estimation.

min C (s)  subject to ‖Φ ' s− f '‖l 2
2 ≤η IV.9

D.2. Reconstruction algorithms

Table IV.2: Available reconstruction algorithms and their limitations (79).
Except FT, all methods are non-linear.

Many reconstruction  algorithms are  available  to  process  nD sparse  spectra,  which 

were described numerous times (1, 80) and summarised in Table IV.2 by Lesot et al. (79). All 

acronyms  in  the  method  column  and  some  others  are  explained  hereafter.  Optimisation 

algorithms (gradients, proximal function, iterative thresholding, or iteratively reweighted least 
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squares)  have  not  be  confused  with  regulation  parameters  (l0-norm,  l1-norm,  maximum 

entropy, or matrix rank).

A first case of signal reconstruction is truncated FID. It can be overcome with Linear 

Prediction (LP)  (20),  potentially coupled to Singular Value Decomposition (LPSVD) (81). 

However, it assumes that all peaks are Lorentzian (82), which may not be the case, especially 

in solid-state NMR, where Gaussian or more complex lineshapes are predominant. Moreover, 

if FID truncation is too strong, it is impossible to separate peaks at close frequencies, simply 

because not enough discriminating information has been acquired.

Specific algorithms are needed for radial sampling, such as G-matrix FT (GFT) (32) 

and  projection-reconstruction  (33),  that  were  presented  in  Section  C.1.  More  detailed 

informations are available in reference (37).  Their principal limitation is the need to have at 

least three NMR dimensions. Covariance is another special case, that is only applicable to 

homonuclear correlations (83).

For NUS sampling, alternative methods have been developed to circumvent missing 

values.  The  simplest  reconstruction  algorithm  consist  to  simply  ignore  missing  values, 

without  adding  any  zeroes,  and  to  apply  discrete  FT  on  the  resulting  data  set.  As  a 

consequence,  frequency  oscillations  are  not  regularly  digitalised  in  time  domain  and 

distortions are observed on spectrum, but no sampling noise is induced. Another possibility is 

to replace missing points on FID by zeroes before FT. This solution is called zero-augmented 

FT or minimal power (76). Indeed, as stated by Parseval’s theorem, integrated power is equal 

in frequency and time domains (Equation IV.10) (84).

∫
−∞

+∞

[S (ν)]2 d ν=∫
−∞

+∞

[ s (t)]2 dt IV.10

According to this theorem, by minimising time signal amplitude, power of frequency 

signal  is  also minimised.  This  is  equivalent to  l2-norm optimisation and many non-sparse 

values are obtained (white disk on Figure IV.16), which correspond to artefacts as highlighted 

in Section  C.4. Nevertheless, this latter method is useful for fast spectrum computation.  A 

suitable alternative is Non-Uniform FT (NU-FT). When points are non-regularly sampled, it is 

necessary to recast them on-grid and to weight them accordingly to the actual delay between 

points  (85). While a Lagrange interpolation can be implemented for 1D data sets, Voronoi 

cells are necessary for higher dimensions (86).
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Another  possibility  is  to  use  least-squares  to  fill  in  the  gaps.  It  can  benefit  from 

previous  knowledge  of  peaks  through  a  1D  NMR  experiment  (87).  The  Technique  for 

Importing Greater Evolution Resolution (TIGER)  (88) and the Application of a Restricted 

Linear  Least  Squares  Procedure  (ANAFOR)  (89) are  such  options.  Multi-Dimensional 

Decomposition (MDD) is  a  generalisation of these methods by describing nD FID as the 

product of 1D vectors (90). A unique solution is obtained only for spectra higher or equal to 

3D, with the need to have at least one point per plane (91).

Other solutions are available, such as Spectroscopy by Integration of Frequency and 

Time domain  information  (SIFT),  which  alternates  FT and iFT to  impose  measured time 

intensities and known zero frequencies  (80).  Low-Rank (LR) is also useful to reconstruct 

NUS  FID  (92).  This  process  is based  on  Hankel  matrices  and  SVD,  as  explained  in 

Subsection  B.3.b.  of  Chapter  V. However,  an  elongated  matrix  has  been  chosen  in  LR, 

imposing  that  matrix  rank  is  less  than  10 %.  This  is  not  the  best  choice  as  it  decreases 

computation time at the expense of denoising quality. Moreover, SVD has a strong impact on 

Gaussian shapes. Finally Virtual Echo (VE, Section D.5), has been developed from causality 

principle  (93). This preliminary step, before NUS spectra reconstruction, avoids additional 

errors introduced by the missing negative times,  and improves overall quality. VE can be 

combined with many reconstruction procedures.

In  addition  to  this  menagerie  of  algorithms,  the  two  most  popular  are  maximum 

entropy and compressed sensing, which will be developed in the two following sections.

D.3. Maximum entropy

Maximum  Entropy  Method  (MaxEnt  or  MEM)  was  developed  in  1957  (94) and 

consequently applied to spectral  analysis (95,  96),  astronomy  (97,  98),  X-ray tomography 

(99),  electron spin-echo spectroscopy (100),  and NMR spectroscopy (101,  102).  As MaxEnt 

can theoretically improve both resolution and sensitivity, it has been used either to complete 

missing acquisitions or to denoise data.

The schematic diagram of MaxEnt is presented on Figure  IV.17 (103), and could as 

well explain any gradient based optimisation.  MaxEnt simulates a trial spectrum f, typically 

starting from a blank spectrum, and compares its iFT mock data m to the empirical FID d. f is 

then updated by applying gradients until m difference to d is minimised. Upon the infinity of 
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corresponding spectra,  the one with the lowest amount of information,  i.e., the maximum 

entropy is chosen (1, 104). This is a constrained optimisation, that maximises entropy instead 

of minimising l1-norm.

Figure IV.17: Schematic diagram for MaxEnt algorithm (103). See text for details.

However, all methods but FT are non-linear processes, whose sensitivity gain has to be 

taken with caution. It can improve apparent PSNR without enhancing actual detection of small 

peaks. Hence, Donoho et al. warned that ‘the noise suppression offered by maximum entropy 

reconstruction could (in this special case) be equally well obtained by a "cosmetic" device: 

simply displaying the conventional Fourier transform reconstruction using a certain nonlinear 

plotting scale for the vertical (y) coordinate’ (105).

To avoid propagation of nonlinearity, MaxEnt has to be applied simultaneously on all 

NUS dimensions. Alternatively, Maximum entropy INTerpolation (MINT) improves MaxEnt 

linearity by using a high Lagrange multiplier (106). Forward Maximum entropy (FM) is also 

a valuable tool that does not enhances experimental data points, at  the detriment of noise 

reduction (107).

D.4. Compressed sensing

Candès  et al. and Donoho separately developed CS concept in 2004  (44,  108),  that 

revolutionised Nyquist and Shannon sampling theory  (42,  43), by demonstrating that  exact 

signal  reconstruction  can  be  obtained  under  sparse  sampling  in  specific  conditions  and 
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without noise. They theorised some results already known in NMR and Magnetic Resonance 

Imaging  (MRI)  (58).  Mathematical  details  on  CS  can  be  found  in  reference  (109).  CS 

algorithms and their pitfalls were presented in reference (110). 

A first  algorithm named CLEAN, which  is  not  an acronym, was implemented for 

radio-astronomy in 1974 (111). It was then applied to 2D and 4D NMR (112,  113). CLEAN 

process is presented on Figure IV.18 (110). After minimal power FT, the maximum point is 

added to the sought spectrum, whose iFT is subtracted from non-zero experimental data. After 

a few iterations, noise level is reached and the sought spectrum becomes the final spectrum. 

CLEAN belongs to a family known as matching pursuit (114).

Figure IV.18: Schematic diagram for CLEAN algorithm (110). See text for details.

Another  family  of  CS  algorithms  is  Iterative  Soft  Thresholding  (IST)  (115).  Two 

variants are available:  IST-S by Stern  et al. (116) and  IST-D by Drori  et al. (117).  IST-S 

replaces only zero-points in experimental data, tending to US FID, and was used by early 

versions  of  MDDnmr,  the  software  used  to  process  data  with  Multi-Dimensional 

Decomposition (MDD) reconstruction  (8,  90), freely available at  (118).  IST-D is similar to 

CLEAN, which tends to noise level, but with multiple points at a time, and only above the 

desired threshold.  IST-D was used in later versions of MDDnmr and in Harvard Medical 

School  IST (hmsIST)  (119).  IST-S  and  IST-D were  compared  to  NESTerov’s  Algorithm 

(NESTA),  which is  an acceleration of IST method (120,  121).  In  addition,  low-rank plus 
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sparse (L+S) matrix decomposition, combining Singular Value Thresholding (SVT) and IST 

proved to be efficient in MRI, both for denoising and for recovering sparsity (122).

Finally, Iteratively Reweighted Least Squares (IRLS) uses a norm factor tending to 

zero  lp→0 (8),  thus  being  close  from  a  hard  thresholding  method,  as  opposed  to  soft 

thresholding (123). Soft thresholding (l1-norm) is a continuous function with a translation of 

data  (Figure  IV.19a)  and  convexity,  whereas  hard  thresholding  (l0-norm)  exhibits  a 

discontinuity for values under the threshold (Figure  IV.19b) and non-convexity. Other hard 

thresholding methods are available  (124).  They are convenient to decrease the number of 

NUS points needed (Section D.1). However, this minimisation increases sparsity, with the risk 

to have multiple narrow lines for a single broad peak (116), and is computationally expensive 

(125).

Figure IV.19: a) Soft thresholding and b) hard thresholding, adapted from (123).
Blue arrows highlight the vertical shift for values above the soft threshold.

D.5. Virtual echo

Mayzel  et  al. improved CS using Virtual  Echo (VE)  (93).  Without  NUS, the FID 

started with a maximum and decreased to noise (Figure IV.20b). This was due to the causality 

principle, telling that the excitation corresponds to time zero and that no negative time can be 

observed before. In other words, there is ‘no output before the input’ (126). As a consequence, 

imaginary part in dispersion is present on the spectrum (in red on Figure IV.20a). However, 

using NUS and CS reconstruction, the algorithm tends to minimize the imaginary part on the 

spectrum (Figure  IV.20c-d).  According  to  the  Kramers–Kronig  relations  (127,  128),  also 

involved in Hilbert transform (129), this is equivalent to add a negative time scale. However, 

as the number of points is constant and as FT is a cyclic function, an echo appears at end of 

FID. Total acquisition being twice shorter, resolution is decreased. Moreover, imaginary part 
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suppression on spectrum is  not  perfect  (red circle)  and this  induces  quantification  errors. 

Result  can  be  improved  using  Zero-Filling  (ZF)  before  CS  (Figure  IV.20g-h).  Mayzel’s 

approach was  to  reflect  FID from left  to  right  instead  of  adding zeroes.  In  such a  case, 

imaginary artefacts are minimised and quantification is optimised (Figure IV.20e-f).

Figure IV.20: Virtual Echo (VE), adapted from (93). a) and b) US acquisition;
c) and d) NUS 20% and CS; e) and f) NUS 20% with VE and CS; g) and h) NUS 20% with 

ZF and CS; left and right columns: spectral and time domains, respectively.

D.6. Reconstruction quality

Similarly  to  sampling  quality,  one  needs  an  adequate  indicator  to  select  the  best 

reconstruction algorithm. Up to now, no consensus has been found and it may depend on 

applications and on chosen parameters. All in all, the best choice will maximise true positive 

signals,  while  minimising  false  positive  detection,  when  artefacts  or  noise  are  wrongly 

attributed to signals.

Wu  et al. proposed a pair of noise-normalised measurements to detect the optimum 

number of reconstruction iterations, and noise increase by additional iterations (overfitting) 
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(130).  Their cross-validation technique necessitated to exclude 5-10 % of the acquired data. 

Noise on processed data (Rnoise
work) was then compared to noise from excluded data (Rnoise

free). 

However, dismissing data may be counter-productive when sampling is already at a very low 

level,  risking to  have too few points  to  accurately recover  the  spectrum. They compared 

convex l1-norm minimisation, MaxEnt and IST-S and obtained similar reconstructed spectra 

for the optimum number of iterations, but divergence for additional ones.

In situ Receiver Operating Characteristic analysis (IROC) is another relevant tool for 

algorithm selection  (131).  Synthetic data are added at  blank experimental frequencies and 

their presence and distortions are checked in processed data. Figure  IV.21 exhibits such an 

IROC curve and is characterised by its Maximum Recovery rate at Minimum False discovery 

rate (MRMF, the leftmost point), its Distance to the Perfect Classifier (DPC, closest point 

from top left corner) and by its Area Under the Curve (AUC). MRMF and AUC have to be 

maximised, whereas DPC has to be minimised.

Figure IV.21: In situ Receiver Operating Characteristic analysis (IROC) (131).
MRMF: Maximum Recovery rate at Minimum False discovery rate, DPC: Distance to the 

Perfect Classifier, AUC: Area Under the Curve.

In  Subchapter  D,  we  have  highlighted  that  multiple  reconstruction  algorithms  are 

available, each one with its own advantages and drawbacks. MaxEnt and CS are the most 

used ones. The chosen parameters set strongly influences the IROC curve.
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E. NUS in solid-state NMR

In this subchapter NUS will be applied to solid-state NMR, starting with the available 

literature.  After  comparing  reconstruction  algorithms,  some  sampling  schemes  will  be 

checked  (TopSpin,  random,  Poisson  and  hybrid).  However,  for  a  more  complete  study, 

statistics on many random seed would be needed, which is out of present work focus.

E.1. Literature

Despite abundant literature on NUS in liquid-state NMR, the number of studies in 

solid-state NMR is much more reduced. Lesot et al. published a detailed review on NUS in 

solids and mesophases (79).

Reduced dimensionality was applied to H-C-N triple resonance experiments, either for 

(3,2)D  single  quantum spectrum of  N-Aceyl-Valine-Leucine  tri-peptide  (132),  for  (3,2)D 

double quanta acquisition of histidine amino acid (133), or for (3,2)D and (4,3)D correlation 

of  GB1  protein  (134).  Zero-augmented  FT  was  preferred  to  obtain  1H-1H  distances  in 

ubiquitin  through  3D  and  4D  Dipolar  Recoupling  Enhanced  by  Amplitude  Modulation 

(DREAM)  (135). A 3D spectrum of a microcrystalline sample of GB1 protein domain was 

processed with SIFT (136).

Truncation  in  the  indirect  dimension  was  thwarted  with  TIGER for  Magic  Angle 

Turning (MAT) of 2,6-dimethoxynaphthalene (88), and for an isotropic-anisotropic separation 

experiment  of  small  molecules  (137).  ANAFOR was  implemented  for  Multiple  Quantum 

Magic  Angle  Spinning  (MQMAS)  derived  experiments  of  aluminophosphates (89,  138). 

Covariance  proved to be very  efficient  to  simultaneously  compensate  FID truncation and 

decrease noise for homonuclear correlations  (139–142). Peak Signal-to-Noise ratio (PSNR) 

dependence on sampling scheme  (143) and on number of scans  (144) was analysed with 

histidine.

MaxEnt method was first applied in NUS solid-state NMR to 17O MQMAS of various 

samples,  including  hydroxyapatite  (145).  In  a  study  on  2D  Polarisation  Inversion  Spin-

Exchange at  the Magic Angle (PISEMA), it  was highlighted that  improved  PSNR can be 

obtained by applying MaxEnt both in  direct  and indirect  dimensions  (146).  An improved 

linearity  was  obtained  with  MINT  that  yields  to  2-4  experimental  time  decrease  on 
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thioredoxin  (106).  By combining MINT with Paramagnetic-relaxation-Assisted Condensed 

data Collection (PACC), it was even possible to attain 16-fold time saving on 3D spectra 

(147).  In the context  of  high dynamic range,  such as  13C-13C Dipolar  Assisted Rotational 

Resonance (DARR), where intense peaks artefacts can mask small peaks, it was suggested to 

apply MINT with a conservative NUS sampling schedule keeping 50 % of the points (148).

MDD allowed semi-automatic backbone assignment of an insoluble, non-crystalline 

protein  assembly  (149).  The  influence  of  hybrid  US/NUS  schedule  was  studied  with 

CS-IST-D algorithm on simulated  data  and  on  2D and  3D Separated  Local  Field  (SLF) 

spectra of a membrane protein in aligned bicelles (142, 150). CS-IRLS was also performed on 

Natural Abundance Deuterium (NAD) 2D of enantiomers aligned in lyotropic Chiral Liquid 

Crystals (CLC) (77). An original study used CS-l1-norm for NMR magnetometry of glycine 

under  magic  angle  spinning  (151).  Finally,  in  a  4D  1H-1H  correlation  with  diagonal 

suppression, Linser et al. sampled only 2 % of points and processed spectra with CS-hmsIST 

on proteins (152).

E.2. Reconstruction algorithms

In a first attempt to use NUS in solid-state MAS NMR, we applied it to a mobile 

sample, namely gelatin, which is the denatured form of collagen protein, itself being the main 

organic phase of bone (Section E.3 of Chapter I). A 2D {1H}-13C Insensitive Nuclei Enhanced 

by Polarization Transfer  (INEPT) NMR spectrum of  this  sample was acquired with NUS 

(Figure IV.22 bottom left) and compared to the US spectrum obtained in twice the time (top 

left). Default Topspin random sample scheme was used here (seed 54321), with 256 slices and 

25 % of points sampled.

This figure and the following ones are organised as follows. Two representative 2D 

spectra are presented on top left and bottom left, with dotted horizontal black lines showing 

PSNR measurement and dotted vertical black lines showing the extracted slices.  Middle of 

figure displays the extracted vertical slices from the two left 2D, highlighted with arrows, and 

additional extracted slices from other 2D with different acquisition or processing parameters. 

Sampling scheme is presented at the right of the extracted slices (pink curve). The used pulse 

sequence is drawn on top right of the figure. Coloured ellipses evidence result quality based 

on peak shape and noise level, with bad, intermediate or good results in red, orange or green, 

respectively. PSNRmax based on maximum of noise was measured according to:
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PSNRmax=
H signal

hnoise _ peak _ peak /2
IV.11

Zero-augmented FT, MDD, IST, IST with Virtual Echo (IST_VE), IRLS_VE and full 

sampling  1H slices  were processed  using MDDnmr.  Unfortunately,  it  was  not  possible  to 

compare reconstruction from MaxEnt algorithms, which required a totally different workflow 

based on Rowland NMR ToolKit (RNMRTK) (153,  154).  Unsurprisingly, FT results (brown 

curve) were very noisy, due to the absence of FID reconstruction. A slight improvement was 

obtained with MDD (purple curve). This poor result was explained by the need to have 3D or 

higher dimensions for a unique MDD solution. IST (red curve) gave much better results with 

decreased noise.  IST_VE (green curve)  marginally  improved peak shape  (orange circles). 

Finally, peaks were narrowed with IRLS_VE (orange curve), that gave the best results on this 

spectrum. It was thus possible to obtain a PSNRmax multiplied by 1.5 in half of the time with 

NUS (one quarter of slices and twice scans), as compared to full sampling (blue curve), i.e., a 

gain of 2.1 in PSNRmax per unit of time.

Visually, noise in indirect dimension differed depending on reconstruction algorithm. 

To better  characterise it,  corresponding histograms of noise values obtained under Python 

software  are  presented  on  Figure IV.23.  With  zero-augmented  FT  (brown  curve),  noise 

distribution was irregular, with holes into histogram, due to artefacts of point-spread function. 

MDD noise (purple curve) was lowered but very similar. With IST (red curve) and IST_VE 

(green curve), many points contained low noise but some others were much higher. This was 

especially disturbing, as such high noise values could easily be confused with signals. A more 

regular noise distribution was obtained with IRLS_VE (orange curve), similar to full sampling 

noise  (blue  curve).  These  results  illustrated  that  processing  noise  was  not  necessarily 

Gaussian, whereas US spectra are Gaussian. In that case, PSNRrms based on Root Mean Square 

noise (Equation IV.12, Section B.3 of Chapter I) was not a relevant measurement and PSNRmax 

had to be preferred (155, 156).

PSNRrms=
H signal

σnoise
IV.12
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Figure IV.22: Influence of reconstruction algorithm on 2D {1H}-13C INEPT NMR spectra
of gelatin with 0.5 M acetic acid. Top left: full sampling, NS = 128, texp = 9.1 h; bottom left: 25 % random NUS with IRLS_VE reconstruction, 

NS = 256, texp = 4.6 h; middle: 2D extracted 1H slices on smallest peak, with 25 % random NUS and various reconstruction algorithms; top right: 
pulse sequence. Dotted horizontal black line: PSNRmax measurement; dotted vertical black line: extracted 1H slices; pink: sampling scheme; 

coloured circles: result quality. Parameters: B0 = 7.0 T, 7 mm rotor, MAS = 2.5 kHz, RD = 1s, TD(1H) = 128 complex slices, SW(1H) = 5 kHz, 
νdecoupling(1H) = 16 kHz SPINAL-64, cosine apodisation, processed with MDDnmr.
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Figure IV.23: Noise histogram in 1H slices extracted from Figure IV.22 right,
depending on reconstruction algorithm. For each extracted slice, the maximum was 

normalised to 1 and 50 boxes were measured in the range [-0.5, 0.5].

E.3. TopSpin default sampling scheme

Figure IV.24 presents the application of NUS with Topspin default sampling scheme, 

on  a  rigid  sample,  namely  a  13C enriched  carbonated  HydroxyApatite  (HAp),  containing 

4.8 wt % of carbonates (Section E.1 of Chapter I). HAp is the mineral phase of bone and can 

be substituted by many ions, such as carbonates. As hydrogens are isolated in  HAp crystal 

structure,  1H-1H homonuclear  dipolar  interaction  is  small  and  narrow  1H NMR lines  are 

observed.  2D  1H→X→1H  double  cross-polarisation  (CP)  HETeronuclear  CORrelation 

(HETCOR)  (157).  NUS  spectra  were  acquired  with  X = {13C,  31P}.  Unfortunately, 

corresponding US spectra were not acquired. After zero-augmented FT, strong artefacts were 

present (red circles on brown and green curves at right), which were only reduced with the 

best  processing  method  chosen in  previous  section,  namely  IRLS_VE (orange  circles  on 

purple  and  orange  curves).  In  that  case,  artefacts  were  not  problematic  with  very  high 
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PSNRmax = 769  (bottom left),  whereas  the  resulting  spectrum  was  unusable  with  a  lower 

PSNRmax = 36.8 (top left), as vertical artefacts were as high as low intensity signals. Topspin 

random seed 54321, which is the default, has thus to be especially avoided. Similar warning 

has already been reported by Sidebottom (158).

E.4. Random vs. Poisson

In order to overcome default sampling scheme limitations, we compared random and 

Poisson  sampling  on  a  {1H}→13C→31P  HETCOR  of  the  aforementioned  13C  enriched 

carbonated HAp (Figure  IV.25). US spectrum was resampled with MDDnmr (Section  F.2) 

according to the chosen scheme. Random sampling (pink curve) and Poisson sampling (red 

curve), both with exponential weighting, looked very similar, but the latter was more regular, 

especially for the last points (top right). As a consequence, artefacts were visible on zero-

augmented FT spectrum with random sampling (brown curve), whereas they were strongly 

reduced with Poisson sampling (green curve). This tendency was confirmed with IRLS_VE 

processing (purple and orange curves). Moreover, when focussing on the upper edge of the 

peak,  no  shoulder  was  visible  with  random  sampling,  whereas  peak  shape  was  almost 

correctly  reconstructed  with  Poisson  sampling  and  IRLS_VE  (green  circle).  In  such 

conditions, an improved PSNRmax of 11.1 instead of 9.5 was obtained, i.e., a gain of 1.2 in a 

quarter of the time, or 2.3 per unit of time. This also highlighted that noise can be reduced, 

simply by resampling the full  spectrum, when decreasing sampling weight above 1.26 T2
* 

(Section  B.3). A 3D  1H/13C (labelled)/31P NMR spectrum was attempted on this sample but 

was unusable due to 13C probe detuning, which strongly decreased signal during acquisition.
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Figure IV.24: Default TopSpin sampling scheme on 2D 1H→X→1H HETCOR spectra
of 13C enriched carbonated HAp. Top left: X = 13C, NS = 256, texp = 6.8 h, SW(X) = 3.5 kHz; bottom left: X = 31P, NS = 128, texp = 3.4 h, 

SW(X) = 7 kHz; middle: 2D extracted X slices with zero-augmented FT and IRLS_VE processing; top right: pulse sequence. Dotted horizontal 
black line: PSNRmax measurement; dotted vertical black line: extracted X slices; pink and red: sampling scheme; coloured circles: result quality. 

Parameters: 25 % random NUS, B0 = 7.0 T, 4 mm rotor, MAS = 14 kHz, RD = 3s, TD(X) =64 complex slices, tcp1 = tcp2 = 10 ms, 
νCP(1H) = 58 kHz, νCP(X) = 44 kHz, νdecoupling(X) = 10 kHz CW, cosine apodisation, processed with MDDnmr.
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Figure IV.25: Random vs. Poisson sampling on 2D {1H}→13C→31P HETCOR spectra
of 13C enriched carbonated HAp. Top left: full sampling, texp = 4.7 h; bottom left: resampled US spectrum with 25 % Poisson NUS, texp = 1.2 h, 
TD(13C) =16 complex slices; middle: 2D extracted 13C slices with 25 % random or Poisson NUS; top right: pulse sequence. Dotted horizontal 

black line: PSNRmax measurement; dotted vertical black line: extracted 13C slices; pink and red: sampling scheme; coloured circles: result quality. 
Parameters: B0 = 7.0 T, MAS = 14 kHz, RD = 3s, NS =176, TD(13C) =64 complex slices, SW(13C) =3.5 kHz, tcp1 = 10 ms, tcp2 = 20 ms, 

νCP1(1H) = 58 kHz, νCP1(13C) = 44 kHz, νCP2(13C) = 61 kHz, νCP2(31P) = 47 kHz, no decoupling, cosine apodisation, processed with MDDnmr.
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E.5. Hybrid sampling

Up to now, we focussed on narrow peaks (45 Hz on gelatin for  1H studied peak and 

300 and 500 Hz on carbonated HAp for  13C and 31P, respectively) which are well suited for 

NUS. On the contrary, NUS cannot be applied to broad peaks, due to the lack of sparseness,  

which is a necessary condition. However, many spectra are a mixture of narrow and broad 

resonances, where hybrid sampling, combining NUS and US acquisition could be a solution 

to  decrease  acquisition  time  (64,  150).  We  applied  it  to  solid-state  NMR  of  crystalline 

platelets  of  HAp surrounded by  an  amorphous  calcium phosphate  phase  (Section  E.2  of 

Chapter I). This structure is a model of the inorganic phase of bone (Figure I.12 of Chapter I). 

The same  {1H}-31P HECTOR spectrum was reported on Figure  IV.26 (top left),  where the 

crystalline phase (HAp) was visible as a diamond at 0 ppm in  1H dimension, whereas the 

amorphous phase (HPO4
2- and adsorbed water) presented a broad peak from 3 to 17 ppm in 1H 

dimension.  As  31P chemical shifts of both phases were almost identical near 3 ppm, the 2D 

spectrum was  the  only  way to  clearly  discriminate  amorphous  from crystalline  domains. 

However, a few indirect points were needed to sample broad part, whereas a much higher 

amount was necessary to digitalise the narrow peak, being time-consuming.

With 10 % Poisson sampling (pink line at right) and IRLS_VE processing, poor result 

was obtained (brown line), and the amorphous part was undistinguishable from noise. We 

gradually added complex uniform sampling on first indirect points. At 8 points US followed 

by 10 % NUS  (purple line),  noise was reduced but results were still  unsatisfactory. At 16 

points US followed by 10 % NUS (red line), the broad peak started to be distinguishable. At 

32 points US followed by 10 % NUS (green and orange lines), the broad peak was correctly 

reconstructed. In particular, the shoulder at 13 ppm was clearly visible. The corresponding 2D 

spectrum is presented at  bottom left.  Very similar shapes were obtained between full  and 

hybrid sampling. However, a slight decrease in  PSNRmax from 30.1 to 27.4 was measured, 

while  this  hybrid  sampling  corresponded  to  a  quarter  of  the  acquisition  time.  This  was 

equivalent to a PSNRmax gain per unit of time of 1.8. Hybrid NUS is thus a suitable option to 

decrease acquisition time of mixed narrow/broad spectra.
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Figure IV.26: Hybrid NUS on 2D {1H}→31P HETCOR spectra of amorphous/crystalline
HAp. Top left: full sampling, texp = 2.5 h; bottom left: resampled US spectrum with hybrid US/NUS, texp = 0.7 h; middle: 2D extracted 1H slices 
with 10 % Poisson NUS and an increasing amount of US complex first points; top right: pulse sequence. Dotted horizontal black line: PSNRmax 

measurement; dotted vertical black line: extracted 1H slices; pink: sampling scheme; coloured ellipses: result quality. Parameters: B0 = 7.0 T, 
MAS = 14 kHz, RD = 1s, NS =32, TD(1H) =140 complex slices, SW(1H) =14 kHz, tcp = 1 ms, νCP(1H) = 55 kHz, νCP(31P) = 41 kHz, 

νdecoupling(1H) = 55 kHz SPINAL-64, 100 Hz exponential apodisation, processed with MDDnmr.
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Figure IV.27: IST and IRLS reconstruction for hybrid NUS on 2D {1H}→31P HETCOR
spectra of amorphous/crystalline HAp. Top left: IST of resampled US spectrum with 10 % Poisson NUS and 32 US complex first points; bottom 

left: IRLS_VE; middle: 2D extracted 1H slices; top right: pulse sequence. Dotted horizontal black line: PSNRmax measurement; dotted vertical 
black line: extracted 1H slices; pink: sampling scheme; coloured ellipses: result quality. Parameters: B0 = 7.0 T, MAS = 14 kHz, RD = 1s, NS =32, 
TD(1H) =140 complex slices, texp = 0.7 h, SW(1H) =14 kHz, tcp = 1 ms, νCP(1H) = 55 kHz, νCP(31P) = 41 kHz, νdecoupling(1H) = 55 kHz SPINAL-64, 

100 Hz exponential apodisation, processed with MDDnmr.
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When looking in details to the resulting 2D spectrum (bottom left of Figure IV.26), the 

result looked ‘wavy’, as highlighted by red arrows on bottom left of Figure IV.27. Sampling 

scheme and raw FID are presented in pink and purple, respectively, at right of Figure IV.27. 

We noticed that an echo appeared on reconstructed FID with IRLS_VE (red ellipse on purple 

curve), whereas it was not present on full sampling FID (blue curve). This echo gradually 

diminished  with  IRLS,  IST_VE  and  IST  processing  (red,  orange  and  green  ellipses, 

respectively).  With IST without  VE,  a  more regular  2D was obtained (top left  and green 

arrows) and  PSNRmax sightly increased from 27.4 to 28.5. We can draw three observations: 

(i) the best processing for narrow lines, IRLS_VE, was not adequate for broad peaks and IST 

without VE had to be preferred; (ii) VE was detrimental for hybrid sampling reconstruction; 

(iii) IRLS induced a strong FID echo and some oscillations on spectra, similarly to forward 

linear  prediction  (Section  B.4).  The first  observation highlighted  the  fact  that  there is  no 

absolute rule for NUS reconstruction, and that the chosen algorithm has to be validated for the 

desired application. The second observation was explained by VE reflecting points at long 

time, which contained signal for narrow line but only noise for broad peak (Section D.5). The 

third observation was due to  lp-norm tending to  zero for IRLS, which induced additional 

sparsity in reconstruction (Figure IV.16). As a consequence, IRLS minimised the number of 

peaks and discretised broad components.

In  Subchapter E,  we have highlighted that NUS has already been applied multiple 

times to solids and mesophases, but a detailed analysis on NUS influence on peak shape was 

missing. We first studied narrow lines on a mobile sample by solid-state MAS NMR. TopSpin 

default random sampling scheme was unusable, whereas Poisson scheme gave much better 

results. Finally, we implemented hybrid sampling to acquire a mixture of narrow and broad 

peaks. Surprisingly, best reconstruction algorithm differed for narrow lines (IRLS_VE) and 

for peaks widths mixture (IST without VE).

F. Practical aspects

In this  subchapter,  practical  details  will  be provided for  NUSscore,  MDDnmr and 

TopSpin software, in order to optimise NUS acquisition, from sampling scheme to processing.
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F.1. Sampling scheme optimisation with NUSscore

Efficient sampling scheme can be generated using NUSscore (Section C.5), available 

under Linux1 and MacOS. Under Windows, a Linux Virtual Machine (VM) can be used, for 

instance with VirtualBox. Alternatively, NMRbox.org provides a suitable environment with 

online Linux VM (159). This shared computational platform for NMR at the Center for NMR 

Data  Processing  and  Analysis  (USA)  provides  multiple  software  (TopSpin,  MDDnmr, 

NMRPipe,  RNMRTK…),  zero-configuration  and version  persistence.  Community  training 

such as workshops or tutorials are also available.  NUSscore usage is presented on Figure 

IV.28,  with  the  following  parameters.  For  hybrid  sampling  (Section  E.5),  the  resulting 

sampling file has to be edited with a text editor to complete first points.

- NUSscore parameters:  

- TD: number of slices in full sampling, including phase quadrature,

- Constant time: to ignore SW, Obs Freq and 1/T2
*,

- NUS: amount of points to sample,

- # of schemes: number of schemes to generate and compare.

Figure IV.28: NUSscore usage (69). Left: parameters selection, right: scored results
and best scheme at background.

F.2. Resampling of US spectrum with MDDnmr

Resampling means that some slices in indirect dimensions are discarded, while only a 

few of the original ones are kept, thus simulating NUS results from the US spectrum. This can 

be very useful to check the adequateness of a sampling scheme with given data. MDDnmr (8, 

1 Under  Linux  CentOS  7  64  bits,  the  following  32  bits  libraries  need  to  be  installed,  as  root:
‘yum  install  glib2.i686  fontconfig.i686  libXext.i686  libXrender.i686  libSM.i686  libjpeg-turbo.i686 
libpng12.i686’
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90) needs  Linux  environment  with  NMRPipe  installed  (160).  Despite  being  a  graphical 

software, some options are only accessible by text file edition and command line start2. This is 

the  case  for  resampling.  We suggest  to  graphically  create  MDDnmr files  with  a  dummy 

processing, and to edit them afterwards. They are written in shell language, where an anti-

slash ‘\’ means that same line continues on next line, and pipe ‘|’ means that output of first  

command is entered as input of second command. The following three files were used to 

resample data  with hybrid sampling in  Section  E.5.  Lines  6,  10,  and 13 of  proc.sh were 

especially useful for this purpose. Results can be viewed either with NMRDraw, which is part 

of NMRPipe, or with importation to Python thanks to nmrglue (161).

- MDDnmr files:  

- proc.sh: main script (Figure IV.29),

- fidSP.com: processing of direct dimension (Figure IV.30),

- recFT.com: processing of indirect dimensions (Figure IV.31).

Figure IV.29: proc.sh file in MDDnmr.

2 The  following  commands  are  needed  to  start  MDDnmr  in  command  line,  taking  care  to  spaces:
‘tcsh; set path = ( . $path ); proc.sh’
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Figure IV.30: fidSP.com file in MDDnmr.

Figure IV.31: recFT.com file in MDDnmr.

F.3. Acquisition and processing with TopSpin

TopSpin  is  the  software  provided by Bruker,  an  NMR spectrometer  manufacturer. 

NUS implementation depends on TopSpin version. In this chapter, we used TopSpin ≥ 3.5. 

Acquisition and processing relevant parameters are detailed hereafter.
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- TopSpin   version:  

- TopSpin < 3.0:  NUS  is  not  natively  supported,  manual  modification  of  pulse 

programs and usage of external software for processing are required (162),

- TopSpin ≥ 3.0: MDD, CS-IST and CS-IRLS algorithms are implemented,

- TopSpin ≥ 3.5:  improved CS algorithms with Virtual  Echo (VE,  Section  D.5), 

algorithm  defaulted  to  CS  for  2D  and  to  MDD  for  higher  dimensions 

experiments,

- TopSpin ≥ 3.5.5: 2D processing does not require a NUS licence, but only with 

CS-IST algorithm and without VE, all other options still need a licence,

- TopSpin ≥ 3.5.6: CS-IST-VE is available for 4D experiments, to enable a faster 

computation than MDD.

- TopSpin acquisition parameters   (Figure IV.32):

- FnTYPE: select non-uniform sampling,

- FnMODE: phase quadrature detection,

- TD: number of slices in full sampling, including phase quadrature,

- NusPOINTS: number of lines in NUSLIST,

- NUSLIST: text file containing the NUS scheme,

- Calculate button will overwrite NUSLIST with incorrect parameters,

- Show button will display sampling scheme progress during acquisition.

- TopSpin p  rocessing parameters   (Figure IV.33):

- Mdd_mod: CS or MDD method,

- MddSRSIZE:  subregion size for NUS reconstruction,  to slowly increase above 

0.15 in case of error when processing without NUS licence.

- TopSpin hidden processing parameters:  

- Mdd_CsALG: IST or IRLS algorithm, defaulted to IST without NUS licence,

- Mdd_CsVE: True or False, defaulted to False without NUS licence.
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Figure IV.32: TopSpin acquisition parameters. Top: experiment part, bottom: NUS part.

Figure IV.33: TopSpin processing parameters.

Subchapter F focussed on practical aspects to use NUS. We showed how to create an 

optimised sampling scheme with NUSscore, how to resample a full acquisition with MDDnmr 

and how to implement its usage in Topspin. The complete NUS chain is thus made available.

G. Chapter conclusion

In this chapter, we highlighted that standard nD NMR experiments suffer from long 

acquisition time, and of truncation of time domain in indirect dimensions (Subchapter B). It 

induces  a  low  resolution  if  AQ < 3 T2
*,  and  even  a  low  sensitivity  if  AQ < 1.26 T2

*. 

Apodisation and forward linear prediction can only partially compensate truncation. Sparse 
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sampling is a very powerful technique to circumvent these drawbacks, as it is possible to 

acquire up to the resolution limit in much less time (Subchapter  C.1). In this family, radial 

sampling digitalise uniformly a few tilted planes, leaving sparse a high number of the (n-1)D 

indirect  space.  Peaks  are  projected  perpendicularly  to  the  acquired  planes  and  are 

reconstructed using inverse Radon transform. Another sparse solution is to use NUS, which 

selects  only  a  few  points  all  over  the  (n-1)D  indirect  space,  leaving  all  others  blanks. 

Sampling scheme has a strong impact on processing artefacts, which can be reduced with 

Poisson  sampling  and  scoring  functions.  In  addition,  sensitivity  can  be  improved  with  a 

decreasing probability  of sampling points above  AQ > 1.26 T2
*.  Processing is  a non-trivial 

task, which has to be optimised (Subchapter  D). Many algorithms are available, of which 

compressed sensing and maximum entropy are the most used. Each one has many variants 

with their advantages and drawbacks. Up to now, no clear consensus has emerged on the best 

reconstruction  method,  which  may  depend  on  applications.  For  each  family  of  samples, 

calibration could be done by resampling of a US spectrum, before applying the NUS scheme 

and processing workflow to the entire family. For instance, after calibration on a substituted 

hydroxyapatite, other substitutions could be investigated with NUS. Application of NUS to 

solid-state NMR was depicted in Subchapter  E. We proved that narrow lines in MAS (50-

500 Hz) were suitable to use with NUS, but that default TopSpin sampling scheme has to be 

avoided. Poisson sampling gave much better results. In case of a mixture of narrow and broad 

lines, hybrid sampling with a mixed uniform/non-uniform scheme revealed to be a suitable 

option.  Our results suggest different optimal reconstruction algorithms for NUS and hybrid 

sampling. Practical details were provided in Subchapter F in order to select a good sampling 

scheme, resample full data and apply it in everyday acquisitions and processing.

NUS is still a fast moving domain. New developments will probably be done in next 

years.  In particular,  it  would be useful  to compare all  compressed sensing and maximum 

entropy algorithms in a fully automated way. It is especially necessary to quantify overfitting, 

which  decreases  reconstruction  quality  (130).  Efficient  resampling  and  reconstruction  of 

direct spectrum could also be an efficient way to increase sensitivity,  by decreasing noise 

introduced  above  AQ > 1.26 T2
* (146).  Finally,  NUS and  wavelets  could  be  combined  to 

optimise acquisition time of broad lines (163).
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Chapter V. Singular value decompostion
‘Donnez-moi cent paramètres et je vous ferai un éléphant. donnez-m'en un cent-unième et je  

lui ferai remuer la queue !’

Jacques Hadamard (1865-1963), mathematician
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Chapter V. Singular value decomposition

A. Chapter introduction

Previous chapters describe first how to increase signal as close as possible from the 

sample with microcoils, and second how to decrease acquisition time of the NMR spectra, 

either in direct dimension with CPMG or in indirect dimensions with NUS. Signal processing, 

presented in this chapter and the following one, intervenes as a third step to improve NMR 

sensitivity and resolution. Once raw data are obtained, this key process allows to analyse them 

and to get all the available information before publication.

Standard signal processing in NMR was presented in  Subchapter C of Chapter I. In 

this chapter, we focussed on denoising with Singular Value Decomposition (SVD). Denoising 

of data corrupted by noise is a challenge to improve results  and to deepen their  analysis. 

Solid-state NMR is especially concerned due to its intrinsic low sensitivity. In addition to 

apodisation, multiple approaches have been developed so far, for instance maximum entropy 

(1) or Bayesian analysis (2, 3). Both tend to convert the time-domain FID to a spectrum with 

minimum amount  of  noise  and improved resolution.  Maximum entropy was  presented  in 

Section  D.3  of  Chapter  IV.  Bayesian  analysis  is  a  statistical  method,  that  alternates  a 

prediction step and an update step  (4). Jeol Delta NMR software uses it through Complete 

Reduction to Amplitude Frequency Table (CRAFT) (5). In a recent study, Matviychuk et al. 

compared Bayesian analysis to SVD. Despite a higher computational cost, the former was 

more sensitive than the latter (6). However, the authors used SVD as a black box, as they said 

themselves. They also proved that their Bayesian algorithm can take into account lineshape 

distortions,  including  asymmetric  ones.  Nevertheless,  the  starting  hypothesis  concerning 

peaks shape is the main drawback of Bayesian analysis and has to be defined carefully.

SVD is a totally different denoising tool on which we focussed in this chapter. In this 

paragraph, we present SVD denoising from a mathematical point of view. Further details will 

be  found  in  Subsection  B.3.a.  Many datasets  can  be  presented  into  a  matrix,  with  rows 

corresponding to equations and columns to variables, describing a linear system of equations. 

If the matrix is horizontally elongated, there are less equations than variables and the matrix is 

said undetermined. On the contrary, if the matrix is vertically elongated, it is overdetermined. 

Moreover, the number of linearly independent lines is limited and is called the matrix rank. 

Undetermined  matrices  are  ill-posed  problems,  which  can  be  solved  by  SVD  (7).  This 

mathematical  tool  converts  a  matrix,  whatever  its  shape,  into its  singular  values,  i.e., the 
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individual inequivalent variables that it contains. Real spectroscopic signals are corrupted by 

noise, which is equivalent to add errors on the linear system of equations. Noise is converted 

to  small  singular values after SVD. By doing a low-rank approximation,  it  is  possible  to 

discriminate  signals  from noise,  i.e., to  denoise  data.  A recent  study  compared denoising 

process on Hankel matrices and partially circulant matrices (8). An innovative approach was 

developed  by  Sheberstov  et  al. who  used  Signal/Artifact/Noise  plots  (SAN  plots)  to 

discriminate signals from noise  (9). Interestingly, their tool gave very similar figures to the 

ones we obtained with singular values (Figure V.6c).

This work is  a follow up of the investigations made by Pascal Man (2014) from the 

Institut des Matériaux de Paris Centre (IMPC, FR 2482). He developed a SVD program under 

Java using Nvidia Graphics Processing Units (GPU) (10). This led to an intense thought about 

SVD, which is  described in  the following two-parts  article.  Part  (I)   (11) is  presented in 

Subchapter B of this chapter and focussed on concept and limits of this denoising technique. 

SVD will be applied to 2D experiments in Subchapter C. Part (II) of the article (12) will be 

devoted  to  SVD computation  time (Subchapter  B of  Chapter  VI).  These  two articles  are 

presented as published, except typos, formatting, and additional footnotes.

B. Denoising applied to spectroscopies – part I: concept and limits,

Appl. Spectrosc. Rev. 54, 602–630 (2019)

Some  spectroscopies  are  intrinsically  poorly  sensitive,  such  as  Nuclear  Magnetic 

Resonance  (NMR)  and  Raman  spectroscopy.  This  drawback  can  be  overcome  by  using 

Singular  Value Decomposition (SVD) and low-rank approximation to denoise spectra  and 

consequently increase sensitivity.  However  SVD limits  have not  been deeply investigated 

until now1. We applied SVD to NMR and Raman spectra and showed that best results were 

obtained with a square data set in time domain. Automatic thresholding was applied using 

Malinowski’s indicators. 6 × 7380 noisy spectra with 41 signal-to-noise ratios were compared 

to their non-noisy counterparts, highlighting that SVD induces a systematic error for Gaussian 

peaks but faithfully reproduces shape of Lorentzian peaks, thus allowing quantification. Used 

carefully, SVD can decrease experimental time by a factor of 2.3 for spectroscopies. This 

study may help scientists to apply SVD to denoise spectra in a more efficient way, without  

falling into pitfalls.

1 More precisely, experimental limits were much less studied than theoretical ones.
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Keywords: spectroscopy, sensitivity, signal processing, Cadzow denoising, Singular 

Value Decomposition (SVD)

Figure V.1: Graphical abstract of (11).

B.1. Introduction

Spectroscopic  techniques  are  of  outermost  importance  in  the  field  of  materials 

analysis.  Among  them,  Nuclear  Magnetic  Resonance  (NMR)  (13) and  Raman  (14) 

spectroscopies are very powerful local probes of the chemical structure. Especially, they allow 

to  analyse  liquid-state,  solid-state,  or  even gas-state  samples.  While  NMR informs about 

chemical  and  magnetic  environment  of  atomic  nuclei,  Raman  spectroscopy  provides 

vibrational and rotational information on chemical entities. Unfortunately, these techniques 

suffer from a major drawback, namely their intrinsic low sensitivity. Although focused on 

NMR and Raman approaches, this work can be easily extended to other spectroscopies.

In the case of NMR, only one nucleus over 105 is detected under usual conditions (15). 

This is due to the low population difference between nuclear spin energy levels, which results 

from  Boltzmann  equilibrium.  Many  factors  influence  NMR  sensitivity:  magnetic  field 

strength, sample volume, sample temperature, electronics temperature, radio-frequency coil 

quality factor and coil filling factor  (16). When studying a solid-state sample, situation gets 

worse due to spectral line broadening, which results either from environment distribution or 

from  relaxation  (17).  Indeed,  NMR  relevant  anisotropic  interactions,  as  chemical  shift 

anisotropy, dipolar coupling and quadrupolar coupling, are no longer averaged to zero by fast 

and isotropic molecular motions, leading to spectra spreading over hundreds of ppm or a few 
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megahertz (18). During the last decades, numerous technical progress has allowed to increase 

sensitivity of solid-state NMR: Magic Angle Spinning (MAS) up to 110 kHz (19–21), Cross 

Polarisation (CP) (22), high performance heteronuclear decoupling (23) and NMR magnetic 

field strength increase (24). Additionally, new very sensitive techniques were developed, for 

instance  micro-coils  and  microresonators  adapted  to  MAS  (25) or  Dynamic  Nuclear 

Polarisation (DNP)  (26–28), with which a gain of up to 320 per unit of time was achieved 

(29).

In the case of Raman spectroscopy, only one photon over 106 is detected (30), due to 

its low scattering cross-section of  ≈ 10-30 cm2 per molecule, to be compared with  ≈ 10-20 cm2 

for  infrared  absorption  spectroscopy  and  ≈ 10-16 cm2 for  fluorescence  spectroscopy  (31). 

Furthermore,  some samples are  fluorescent,  thus hiding their  Raman spectrum, or can be 

locally  damaged by the  laser  light  during analysis  (32).  A major  advancement  in  Raman 

analysis has been achieved with the discovery of Surface-Enhanced Raman Scattering (SERS) 

(33,  34) with an enhancement factor of 104-106 (35).  However,  this  effect applies only to 

transition metals  (36) and strongly depends on surface roughness (37). To circumvent these 

limitations,  Raman equipment has been hyphenated with an atomic force microscope or a 

tunnel effect microscope,  leading to  Tip-Enhanced Raman Spectroscopy (TERS)  (38,  39). 

Another important progress has been achieved through the use of non-linear light sources and 

picosecond lasers (40, 41). Thanks to such improvements, it is now possible to study artworks 

(42), to map a surface (43) and even to follow cure kinetics of an epoxy resin (44).

In parallel  with these instrumental and methodological developments, mathematical 

and computer tools have become increasingly widespread in the field of data processing (45). 

In addition to Fourier transform revolution (46, 47), other treatments have emerged in NMR 

spectroscopy and Magnetic Resonance Imaging (MRI). As examples, one may cite Hadamard 

transform  (48), compressed sensing  (49), non-uniform sampling  (50), or quantitative signal 

reconstruction from multiple echoes (51). In Raman spectroscopy, pre-processing became of 

paramount importance to obtain quantitative measurements  (52): it is now recommended to 

suppress fluorescence background  (53), to correct cosmic ray spikes  (54) and to normalise 

spectra (55).

Furthermore, a very important mathematical tool family concerns noise reduction (56). 

Indeed, the above mentioned sensitivity-enhanced spectroscopic equipments are costly and 

are  not  accessible  to  all  laboratories,  hence  the  need  to  denoise.  Moreover,  even  with 
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hardware  and  methodological  improvements,  spectra  can  still  be  noisy,  especially  when 

studying  amorphous  materials  (57,  58),  for  which  distribution  of  bond lengths  and  bond 

angles broadens signals and reduce sensitivity. In order to decrease experimental time or in 

case of unstable samples, signal processing is mandatory to get a reasonable Signal-to-Noise 

Ratio (SNR). The easiest way to perform noise reduction is smoothing. In NMR, apodisation, 

especially  exponential  multiplication,  is  used  prior  to  Fourier  transform  (59).  In  Raman 

spectroscopy, a polynomial algorithm named Savitzky–Golay is preferred (60). Other options 

to reduce noise are maximum entropy (61), covariance matrix (62), Wiener’s estimation (63), 

wavelet  transform  (64),  uncoiled  random  QR  denoising  (65),  and  the  method  initially 

proposed by Tufts et al. (66) and generalised by Cadzow (67).

Singular  Value  Decomposition  (SVD)  is  an  important  part  of  Cadzow's  denoising 

algorithm and its related low-rank approximation (68). History of SVD can be found in (69). 

It has been discovered independently by Beltrami in 1873 (70), by Jordan in 1874 (71) and 

rediscovered by Lanczos in 1958 (72). It is preferred over eingenvalue decomposition, which 

is less precise, as demonstrated by Läuchli  (73). Though quite old, Cadzow's procedure is 

currently a research domain of vivid interest (74), especially using sparse data, i.e., partially 

empty  matrix  (75).  SVD  is  widely  used  in  several  domains  including  acoustics  (76), 

geophysics  (77),  air  quality  (78),  electrocardiograms  (79),  image compression  (80),  video 

surveillance (81), MRI (82), data mining (83) and even on Facebook (84). Nevertheless, SVD 

is still not so commonly used in spectroscopies like NMR (85–88) and Raman spectroscopy 

(89–92),  despite  its  use could significantly reduce experimental  time and be of particular 

interest for the scientific community.

Recently,  Man  et  al. developed  a  new  SVD  application  for  NMR  (10).  It  was 

programmed under Java and two versions are currently available: one for processors (93) and 

the other one for Nvidia graphic cards  (94) using CUDA (95). Indeed, graphic cards allow 

very efficient parallel computations. However, the limits of this approach are not clear: (i) 

which matrix shape should be preferred? (ii) what is the minimal experimental SNR? (iii) are 

denoised spectra quantitative? (iv) is it suitable for other spectroscopies?

Following a previous communication  (96), we tried to address these questions. This 

work is divided into two parts. In this first contribution (I), we focus on SVD concept and 

limits. Experimental details will be provided in Subsection  B.2. Theoretical background on 

SVD and low-rank approximation concepts is  developed in Subsection  B.3.a.  Hankel and 
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Toeplitz matrices are explored in Subsection B.3.b. SNR definitions are given in Subsection 

B.3.c. Subsection  B.4.a is devoted to experimental results  by applying SVD to solid-state 

NMR and Raman spectroscopies. The influence of both matrix shape and thresholding are 

studied  in  Subsections  B.4.b and  B.4.c,  respectively.  Time  and  frequency  denoising  are 

compared  in  Subsection  B.4.d.  The  minimum  SNR  needed  to  have  accurate  results  is 

investigated  in  Subsection  B.4.e.  The  impact  of  SVD  on  peak  shape  is  considered  in 

Subsection B.4.f. Finally, denoising on a real NMR spectrum is analysed in Subsection B.4.g.

In a second part (II) (12) we will benchmark SVD using Java, Matlab and Python, on 

various processors and nvidia graphic cards ranging over 10 and 6 years, respectively. We will 

try to optimise algorithms, software libraries and hardware capabilities to achieve the fastest 

possible denoising computation.

B.2. Materials and methods

B.2.a. Synthesis of the 50:50 MTEOS:TEOS sample

This sample is representative of typical materials obtained by sol-gel chemistry (97–

99). This soft chemistry synthetic approach is a suitable route to design hybrid materials that 

contain  both  organic  (methyltriethoxysilane,  MTEOS,  T species)  and  inorganic  functions 

(tetraethylorthosilicate, TEOS, Q species), combining for instance hydrophobicity and high 

mechanical stability (100). T and Q stand for the number of oxygen on each silicon, namely 

Tri (3) and Quadri (4), for MTEOS and TEOS, respectively.  The letter is associated with a 

superscript indicating the number of condensed Si-O-Si bridges. It is important to quantify the 

ratio  T/Q and  the  condensation  degree,  mainly  by  29Si  MAS NMR, in  order  to  properly 

characterise  such hybrid materials.  This  nucleus  suffers  from a low natural  abundance of 

4.7 % and an intermediate resonating frequency at 1/5th  of 1H one, both lowering SNR. It is 

thus current to average noise over one night or one weekend for a single spectrum. Using 

denoising is an interesting approach to decrease acquisition time.

Every chemical was used as received with no further purification. The solution was 

prepared by adding 10.18 g of MTEOS (98 %, Alfa Aesar;  M = 178.30 g.mol-1, 57.1 mmol) 

and  11.89 g  of  TEOS (>99 %,  Aldrich;  M = 208.33 g.mol-1,  57.1 mmol),  29 mL of  milliQ 

water  and  50 mg  of  a  37 %  w/w  aqueous  solution  of  hydrochloric  acid  (HCl,  VWR; 

M = 36.46 g.mol-1).  The solution was stirred at  room temperature for  at  least  one hour  at 
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500 rpm to  ensure  hydrolysis  of  the  precursors.  Controlled  condensation  occurred  during 

spray drying of the sample, performed using a mini spray dryer B-290 (BUCHI) fitted with an 

atomiser (nozzle tip diameter = 0.7 mm) and a peristaltic pump. The temperatures at the inlet 

and  outlet  of  the  spray  dryer  were  fixed  at  220 °C  and  within  the  range  of  95-120 °C, 

respectively.  Polydisperse  spherical  particles  of  hybrid  organic/inorganic  amorphous  silica 

(characteristic size: 1-10 µm) were obtained.

B.2.b. Solid-state NMR experiments

29Si  solid-state  NMR  experiments  were  performed  on  a  Bruker  Avance  III 

spectrometer operating at  300.29 MHz for  1H and 59.65 MHz for  29Si with 4 mm zirconia 

rotors spun at 14 kHz (MAS broadband dual probe). Unless otherwise stated, CP was used 

with  a  contact  time  of  5 ms,  a  relaxation  delay  of  1 s,  NS = 2048  scans.  Low-power  1H 

SPINAL-64 decoupling (ν1H = 2.4 kHz)  (101) was checked to be sufficient and  was used to 

protect  the  probe  as  the  total  acquisition  time  of  197 ms2 was  too  long  for  high-power 

decoupling.  During  acquisition,  4096  complex  points  were  acquired  with  24 

Carr-Purcell-Meiboom-Gill (CPMG) echoes (51) and a full echo delay of 8 ms.

SVD was applied on  Free Induction Decay (FID,  time domain) after removal of the 

first  68  points  corresponding  to  oversampled  digitisation.  Zero-filling  to  16384  complex 

points and cosine multiplication were applied after SVD. This apodisation limits both signal 

truncation and broadening effects. One may note that SVD was not directly applied to spectra 

(SPC, frequency domain)  because zero-filling  increases  matrix  size and thus  computation 

time.

B.2.c. Simulation of kinetics studied by Raman spectroscopy under Python

2000 Raman spectra of 2000 points each were calculated in silico using four Gaussian 

lines at 450, 510, 750 and 900 cm-1, respectively. Full Widths at Half Maximum (FWHM) 

ranged from 118 to  212 cm-1.  Such high FWHM are typical  of  amorphous materials  like 

glasses (57). In order to reflect a kinetic evolution, the amplitude of peaks at 510 and 750 cm-1 

were linearly decreased across the series while amplitude of peaks at 450 and 900 cm-1 were 

linearly  increased.  This  series  of  spectra  may  mimic  ageing  of  a  material  for  instance. 

Homoscedastic white Gaussian noise was added on each spectrum. SVD was applied using 

2 A long acquisition time was needed to acquire as many CPMG echoes as possible.
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Principal  Component  Analysis  (PCA)  function  from  Python  Scikit-learn  package  (102). 

Computation  took  only  a  few  seconds  under  Python  Anaconda  3.5.  The  source  code  is 

available in file Figure_I.4a.py of (103).

B.2.d. Simulation of NMR spectra with known noise under Matlab

NMR complex FID were simulated  in silico under Matlab3 (The MathWorks, Inc., 

Natick, MA, USA) with a complex exponential at the expected frequency  ν and either an 

exponential decay (Equation V.1) or a Gaussian decay (Equation V.2), leading to a Lorentzian 

or a Gaussian peak on spectra after Fourier transform, respectively.

y=e i 2 πν t⋅e
−t
T 2 V.1

y=e i 2 πν t⋅e
−t2

2σ2

V.2

While  the  former  is  typical  of  a  relaxation-driven  shape,  the  latter  highlights  a 

distribution of chemical environments  (104) or more complex relaxation phenomena,  e.g., 

strong dipoar coupling. To obtain a Gaussian peak with the same FWHM as a Lorentzian 

peak, the shape is defined according to Equation V.3.

σ=T 2√2ln (2) V.3

7380 NMR FID were simulated, grouped as follows:

- 2 shapes for decay: exponential and Gaussian;

- 3  T2 values of 10, 1.0 and 0.10 ms corresponding to  narrow (32 Hz),  intermediate 

(320 Hz)  and  broad peaks  (3200 Hz),  respectively,  which  are  typical  values 

obtained by  13C,  29Si or  31P solid-state NMR, for various types of crystalline or 

amorphous materials;

- 41 levels of homoscedastic white Gaussian noise ranging from -20 dB to +20 dB;

- 30 random noise patterns at the same noise level.

Additionally, each data set was repeated 6 times with different processing parameters:

- 2  with  truncation or  not, at  5 T2,  time  above  which  signal  is  almost  no  longer 

existent;

- 3 Significance Level (SL, see Subsection  B.4.c) for SVD automatic thresholding at 

error level of 5, 7.5 or 10 %.

3 Raman and NMR spectra were not simulated by the same article author, which explains the different software 
used.
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Each FID was composed of 1024 points for a duration of  49 ms. SVD was applied 

before zero-filling (if truncation was applied) and Fourier transform. As peak was not at the 

middle of the spectrum, signal region was defined as the 512 points centred at peak frequency. 

Noise region corresponded to the other 512 points. Baseline zero-order offset was preliminary 

corrected by subtracting the mean value of noise region. This step was essential  to avoid 

spectrum aliasing due to Fourier transform, especially for broad peaks. The source codes of 

SVD  automatic  thresholding  and  FID  simulations  are  available  in  files  sfa.m  and 

Figure_I.7_I.8_I.S2.m  of  (103),  respectively.  Computation  of  the  full  set  of 

6 × 7380 = 44280 spectra  took  30  minutes  with  an  overclocked  Intel  Core  i5 

4670K @ 4.4 GHz processor with Matlab R2016b.

B.3. Theoretical background

In this subsection, SVD and low-rank approximation are first developed. Hankel and 

Toeplitz matrices are then presented. Finally, SNR is defined.

B.3.a. SVD and low-rank approximation

SVD  is  a  mathematical  tool  used  to  decompose  a  matrix  X with  m rows  and  n 

columns, whatever its size or shape, into the product of three other  matrices U,  Σ and  VT 

(Equation V.4).

X=U⋅Σ⋅V T V.4

This is illustrated in Figure  V.2 by orange hatched rectangles.  U and  V are unitary 

square matrices, of size m × m and n × n, respectively. If complex numbers are used, VT, the 

transpose of matrix  V, is replaced by  V*, its conjugate transpose. SVD can indifferently be 

applied on real or complex matrices, the only difference being a double computation time for 

complex matrices (see part (II) of this work (12)). The central matrix Σ has the same shape as 

the original matrix X. Nevertheless, it has values only on its main diagonal (green rectangle), 

sorted  by  amplitude.  These  diagonal  entries  are  called  singular  values  and  are  the  non-

negative square roots of the eigenvalues of XTX or  XXT (105). One can notice that the more 

elongated is matrix X, the less singular values it has.

Using low-rank  k,  matrix  X can be approximated to  Xk according to Equation  V.5, 

where Uk,  Σk and Vk
T are the matrices U,  Σ and VT truncated at  k values, represented as blue 

filled rectangles in Figure V.2.
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X≈X k=U k Σk V k
T V.5

Figure V.2: Singular value decomposition (orange hatched rectangles) and low-rank
approximation (blue filled rectangles). The k singular values are sorted by size (in green).

This process is really useful to compress large data sets  (80). In the case of noise-

containing data,  true signals correspond to low-k values while noise signals are related to 

high-k values. Thus, selecting the correct k-limit allows to keep all true signals while rejecting 

noise, including t1-noise  (85). Additionally, when a baseline distortion is present, its intense 

signal corresponds to the first singular value which may be removed  (106). The following 

subsection describes how to apply SVD on one-dimensional (1D) data.

B.3.b. Hankel and Toeplitz matrices

As stated above, SVD can only be applied to matrices. However, 1D data form only a 

(complex) row or column but not a matrix. In such a case, a transformation step is required. 

This can be performed thanks to Hankel matrix, or similarly to Toeplitz matrix. The former is 

defined by its first row and its last column. All anti-diagonal values are filled identically to the 

first  ones (Figure  V.3). Toeplitz matrix is defined by its first  column and its first  row, all 

diagonal  values  being  identical  (107).  Circulant  matrices  are  a  special  case of  Hankel  or 

Toeplitz matrices, where every row of the matrix is a cyclic shift of the row above  (108). 

However, in general case, these are semi-circulant matrices, with one value being replaced 

from one row to the next one.

Hankel and Toeplitz matrices are not necessarily square, and are the vertical reflection 

of each other. From a programming point of view, extracting anti-diagonals needs a matrix 

vertical reflection. Although this step is computationally inexpensive, Toeplitz matrices were 

preferred for the sake of simplicity when using Python and Matlab.  The Java application 

developed by Man  et al. (10,  93,  94) used a Hankel matrix. It  should be noted that after 

denoising,  (anti-)diagonals  values  are  no  longer  identical  and  averaging  is  needed  as 
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highlighted  by  Hansen  and  Jensen  (76).  They  indeed  stated  that  ‘simply  extract  (and 

transpose) an arbitrary row of the matrix […] lacks a solid theoretical justification’.

Figure V.3: Hankel matrix applied to a NMR FID. Each point of the FID defines
either one point of the first row or of the last column of the Hankel matrix. All anti-diagonal 

points are filled identically to the first point.

B.3.c. Signal-to-noise ratio

Two definitions  of  SNR are  used.  The  first  one  corresponds  to  the  mathematical 

formula (Equation V.6), used in electronics, where yi are the individual values while σsignal and 

σnoise are the standard deviations for signal region and noise region, respectively.

SNR=
σ signal

2

σnoise
2 =

( 1
n−1

∑
i

( y i)
2)

signal

( 1
n−1

∑
i

( y i)
2)

noise

V.6

Normalisation  over  (n-1) points  is  preferred  to  avoid  a  bias  in  standard  deviation 

(109). This formula is valid only when signal can be measured without any noise, so-called 

pure signal. However, the only observable parameter on a real noisy signal is the signal-plus-

noise-to-noise ratio (SNNR)  (110) defined by replacing  σsignal by  σsignal+noise in Equation  V.6. 

SNR can then be deducted from SNNR, following Equation V.7.
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SNR=
σ signal+noise

2 −σ noise
2

σnoise
2

=SNNR−1 V.7

The other possible definition is the analytical chemistry formula (Equation V.8), where 

PSNR is the SNR based on peak amplitude (110).

PSNRmax=
H signal

hnoise _ max

=
H signal

hnoise _ peak _ peak /2
=

2 max( y i)signal

(max( yi)−min ( y i))noise

V.8

Signal height (Hsignal) is measured from maximum of peak to mean of noise, whereas 

noise is measured on a region of 20 times the signal FWHM  (111).  Additionally, variants 

exist, depending on the way noise is defined, either as maximum noise (hnoise_max), mean noise 

(hnoise_mean) or Root Mean Square (RMS) noise (hnoise_rms)  (112). Following this nomenclature, 

SNR used  in  NMR  (112) and  Raman  spectroscopy  (63) should  rather  be  called  PSNRrms 

(Equation V.9)4.

PSNRrms=
H signal

hnoise _ rms

=
H signal
σnoise

=
max( yi)signal

√( 1
n−1∑i

( yi)
2)

noise

V.9

While  SNR is related to the area of the studied peak,  PSNR is related to its height, 

leading to different results. They can be expressed in decibels (Equation V.10), which is more 

convenient to explore a wide variation range.

SNRdB=10 log10(SNR) , PSNRrms
dB =10 log10(PSNRrms

2 ) V.10

Additionally,  Currie  defined  a  Critical  Level  (Lc),  a  Detection  Limit  (Ld)  and  a 

Quantitative  Limit  (Lq),  at  1.64,  3.29  and  10 σnoise,  respectively  (114).  The  corresponding 

levels, SNR and PSNR measurements are drown in Figure V.4.

4 PSNRrms is halved by tradition in NMR literature, including Bruker TopSpin software (113).
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Figure V.4: Measurement of Signal-to-Noise Ratio (SNR) and Peak SNR (PSNR)
based on noisemax and noiserms for the 29Si MAS solid-state NMR spectrum of the 50:50 

MTEOS:TEOS sample. Signal and noise regions are highlighted with dotted vertical green 
and red lines, respectively. Critical (Lc), detection (Ld) and quantitative (Lq) limits (114) are 

shown with red, orange and dotted horizontal green lines, respectively.

B.4. Results and discussion

In this  subsection,  SVD is applied to NMR and Raman spectra. We then  focus on 

practical aspects of denoising,  namely  the impact of  the matrix  shape  and the number of 

components used  for  thresholding.  Time  and  frequency  denoising  are  compared.  The 

minimum experimental SNR needed for valid use of SVD and its impact on peak shape are 

thoroughly investigated. Finally, a limit case is evaluated.

B.4.a. Denoising of NMR and Raman spectra

Images  are  already  matrices  and  SVD  can  directly  be  applied  on  them.  Two-

dimensional (2D) spectra can be treated similarly. However one-dimensional (1D) spectra are 

not directly suitable for SVD. If a series of spectra is available, one just need to stack the 

successive  spectra  to  obtain  a  2D  data  set.  Figure  V.5a  shows  such  a  stack  of  spectra 

simulating a  reaction kinetics studied by Raman spectroscopy,  as described in  Subsection 

B.2.c.  A similar stack can be obtained when a surface is  mapped to analyse species in  a 

sample region (43). The spectrum consisted of four overlapped peaks with varying intensities. 

Without SVD, the two peaks at 510 and 900 cm-1 were difficult to detect due to the amount of 

noise (red arrows). However, after SVD, these components were identified as evidenced by 

green arrows. One should note the very low residual noise.
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Figure V.5: a) SVD applied to a set of spectra mimicking a kinetic reaction, as probed
by Raman spectroscopy. Four overlapping bands are simulated on 2000 spectra with 2000 

points each, resulting into a matrix of 2000 × 2000 points. Only three representative spectra 
are shown. b) 29Si MAS solid-state NMR spectra of the 50:50 MTEOS:TEOS sample. From 

top to bottom: standard spectrum, CPMG spectrum, vertically zoomed CPMG spectrum, 
spectrum obtained after SVD applied on time domain signal of the above transformed to an 

Hankel matrix of 2015 × 2014 points. Red and green arrows show difficult to detect and 
enhanced signals, respectively.

It is also possible to use SVD on a 1D data set, by way of a Hankel or a Toeplitz 

matrix, as described in Subsection  B.3.b. This feature was used in the context of 29Si MAS 

solid-state NMR  (Figure  V.5b) using the GPU Java application  (94).  The  29Si MAS NMR 

spectrum of the 50:50 MTEOS:TEOS sample (see Subsection  B.2.a) is shown in the top of 

the figure. It should be noted that this spectrum already displays a very good SNR. The signal 

has  been  enhanced  using  CP,  allowing  a  non-quantitative  spectrum  to  be  acquired  in 

40 minutes. The second spectrum shows the same sample analysed using CPMG echoes (51), 

which led to numerous spikelets. The overall shape of the CPMG spectrum is qualitatively 

similar to the above spectrum. Such an approach was proved to be a mean to increase SNR 

during acquisition step by discretising broad peaks (115). The original shape with improved 

SNR  can  be  recovered  by  summing  echoes,  but  nevertheless  this  leads  to  relaxation 

distortions. The third spectrum of Figure V.5b is a vertical zoom to highlight noise level and 

much less intense spikelets marked by red arrows. By comparison with the same spectrum 
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after SVD processing, such small peaks were highly enhanced and noise has disappeared. 

This  29Si CPMG MAS NMR spectrum was used  hereafter  as  a  reference to  evaluate  the 

performances of the SVD process.

B.4.b. Matrix shape

It  is  sometimes  argued  that  efficient  denoising  can  be  obtained  using  an  iterative 

process on a rectangular matrix, with a number of columns higher than the number of signals 

of interest (116), i.e., roughly the number of peaks. The iteration consists in converting into a 

matrix, applying SVD, and reverting to a 1D set of denoised data. Due to (anti-)diagonals 

averaging (see Subsection  B.3.b), the matrix at the beginning of the second iteration is not 

exactly the one at the end of the first iteration, which explains that multiple iterations give 

different results. However in our case, such a procedure led to some residual noise (Figure 

S.V.1).  Even with  m × n = 3901 × 128 points and 10 iterations,  noise was only marginally 

reduced.  Nevertheless,  this  procedure  has  the  advantage  of  a  low  computation  time  per 

iteration, as Hankel or Toeplitz matrix size is smaller for a rectangular shape than a square 

shape, when starting with the same number of points in 1D data set (see part (II) of this work 

(12)).

In a second step, Figure  V.6a depicts the efficiency of denoising on various matrix 

shapes,  either  rectangular  ones  (m × n = 3997 × 32 points)  or  square  ones 

(m × n = 2015 × 2014 points).  While  noise was strongly  present  for  elongated  matrices,  it 

decreased when the number of columns increased and finally disappeared for a square matrix. 

Square matrices were used hereafter. More generally, our results suggest to tend to a square 

data  matrix  before  applying SVD, as  also  recommended by Van Huffel  et  al. (117).  For 

n = 512 and  n = 2014, small peaks seem to be missing, highlighted by orange arrows. This 

feature is explained in next subsection.
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Figure V.6: a) Influence of the number of columns (n) for Toeplitz FID (Toep_FID)
matrix construction, with m + n = 4028 points and k = 22 singular values, for a 29Si CPMG 

solid-state NMR spectrum of the 50:50 MTEOS:TEOS sample. b) influence of the number of 
singular values (k) and c) singular values in logarithmic scale for a matrix of 2015 × 2014 

points (n = 2014). 22 major spikelets and 47 in total are present. Red and green circles show 
artefacts and enhanced small signals, respectively; orange arrows are minor spikelets visible 

at k = 47.

B.4.c. Thresholding

Another  parameter  to  be  varied  in  order  to  optimise  denoising  is  the  number  of 

singular values k (corresponding to signals) used for low-rank approximation (Figure V.6b). 

In a first attempt, k was set to the number of peaks present, k = 22. However, k = 25 resulted 

in  a  better  shape  for  the  three  more  intense  spikelets,  corresponding to  Q3 and  T3 peaks 

(Figure V.5b) and k = 47 was necessary to select all small peaks that were missing in previous 

subsection  (green  circles  and  orange  arrows).  Above  this  value,  isolated  artefacts  were 

observed as shown for  k = 50 and  k = 75 (red ellipses). They are usually narrow and out of 

phase,  which  make  them  easy  to  detect.  It  is  thus  necessary  to  carefully  adjust  k to 

discriminate signals from noise.

Another approach to manually select the correct number of singular values was to plot 

singular values in logarithmic scale (Figure V.6c). Up to k = 25, singular value amplitude was 

196



Chapter V. Singular value decomposition

strongly  decreasing.  Between  k = 25 and  k = 47 (dashed vertical  lines),  a  slow slope was 

present and it was hard to distinguish the optimal value, because these singular values had a 

too low SNR. Above k = 47, the curve exhibited a plateau and finally a cliff for last indexes. 

The plateau and the cliff are characteristic of noise values (118).

In order  to  select  automatically  the proper  number of singular  values,  Malinowski 

developed an INDicator function (IND) and a Significance Level (SL) function (119), which 

are available under Matlab in file sfa.m of (103). While IND is based on the residual standard 

deviation, SL is a Fisher variance test giving the probability for a singular value to correspond 

to noise. In the former case, the minimum of  IND reflects the number of singular values to 

select. In the latter case, the singular value is rejected if it has a probability of being noise 

higher than a desired level.  The influence of this  level will  be investigated in Subsection 

B.4.e.ii.  When applying these functions to the spectrum reported in Figure  V.6b, we found 

k = 53 with IND and k = 31, 36 and 39 with SL at 5, 7.5 and 10 % error level, respectively. As 

stated before, k = 47 was the manual optimum for the spectrum considered here, selecting all 

singular values attributed to signals while rejecting artefacts. While IND overestimated k and 

introduces artefacts,  SL underestimated k, thus ignoring small signals. Nevertheless,  SL was 

the tool of choice for automatic thresholding as the result was close from the expected one 

and  did  not  display  artefacts.  It  should  be  noted  that  singular  value  thresholding  is  also 

available (120) but it needed to adjust too many parameters and to sparsify data.

B.4.d. Time and frequency domains

In this  subsection,  spectra resulting from a same FID with SVD denoising applied 

either before (Figure V.7, Toep_FID, in cyan) or after Fourier transform (Toep_SPC, in green) 

are compared. Both were simulated under Matlab and converted into a square Toeplitz matrix, 

according to Subsection  B.4.b, before applying SVD. Additionally, multiple similar spectra 

with  identical  signal  and  random  noise  were  stacked  (mult_SPC,  in  red),  to  simulate  a 

mapping of a homogeneous region in MRI or in Raman. For mult_SPC, we chose a number of 

spectra  identical  to  the  number  of  points  per  spectrum,  again  to  get  a  square  matrix. 

Mult_SPC  was  also  useful  to  compare  the  influence  of  multiple  sampling  vs. a  single 

sampling converted to a semi-circulant matrix. Singular values are presented in Figure V.7a. 

By construction, the size of Toep_FID and Toep_SPC was half the one of mult_SPC, which 

explains that their maximum singular value indexes were lower. Singular value plot was very 

similar for Toep_FID and mult_SPC, but amplitude of the latter was higher. The difference 
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between signals and noise singular values was also more pronounced on mult_SPC. On the 

contrary, Toep_SPC had a very different signature, with 17 singular values corresponding to 

signals, instead of only one that was expected.

Figure V.7: a) Singular values and b) spectra obtained with and without SVD.
noisy_SPC: Fourier transform (SPC) of noisy FID simulated with 1024 points; Toep_FID and 
Toep_SPC: Toeplitz matrix of FID and SPC, respectively, with 513 × 512 points; mult_SPC: 
matrix of stacked multiple identical spectra with random noise, characterised by 1024 × 1024 

points. Dashed lines: corresponding Significance Level (SL) noise limit.

Noisy and denoised spectra  are  shown in Figure  V.7b. Interestingly,  very different 

behaviours  were  observed.  Satisfactory  denoising  was  achieved  using  mult_SPC  or 

Toep_FID.  This result explains why SVD was efficient in the case of the afore mentioned 

Raman spectra mimicking a kinetic process (Figure  V.5a) and the NMR FID (Figure  V.5b). 

On the contrary, for Toep_SPC, noise –though reduced– was still present. This clearly denotes 

that in case of 1D frequency domain, a reverse Fourier transform before converting data into a 

Toeplitz matrix and applying SVD should be preferred5 (121).

5 More simply, prefer to use the time domain data if available.
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B.4.e. Minimum signal-to-noise ratio

B.4.e.i. Comparison of SNRdB and PSNRrms
dB

An additional question is the sensitivity of SVD,  that is to say the minimum SNR 

needed to get a proper signal detection. The corresponding indicators, SNRdB and PSNRrms
dB, 

were defined in Subsection B.3.c. 7380 noisy spectra were simulated with either Lorentzian or 

Gaussian shape and with a peak width of either 32 Hz, 320 Hz or 3200 Hz (see Subsection 

B.2.d).  First, we compared in Figures  V.8a and  V.8b the  SNRdB determined using the pure 

signal and the separated desired noise (calculated SNRdB) to the PSNRrms
dB measured on signal 

and noise regions of the noisy data (measured PSNRrms
dB). Calculated SNRdB was a simulating 

tool, close to the theoretical SNRdB, whereas  measured PSNRrms
dB reflected an experimental 

assessment, which was directly obtained on noisy spectra.  Comparing them was a way to 

check how the noise itself  could  influence  PSNRrms
dB.  For  narrow peaks  (in  red)  a  linear 

relationship between SNRdB and PSNRrms
dB was obtained. However, for intermediate and broad 

peaks (in green and blue, respectively), the evolution of  SNRdB with  PSNRrms
dB displayed a 

steeper  increase,  with a  vertical  asymptote at  PSNRrms
dB = 10 dB (dashed black line).  This 

value  reflected  an  undetectable  signal  with  Hsignal ≤ hnoise_max,  as  σnoise = hnoise_max / 3.3  with  a 

probability of 99.9 % for Gaussian noise. The increase resulted from spreading of peak area 

over a wider range. This implied a lower amplitude for broad peaks than for narrow peaks and 

consequently a lower PSNRrms
dB value.

The 7380 noisy spectra were then truncated to 5 T2 and the same comparison was 

performed between calculated  SNRdB and measured  PSNRrms
dB (Figures S.V.2a and  S.V.2b). 

This truncation removed the vertical asymptote observed at low PSNRrms
dB, as less points were 

defining noise, and intense noise peaks were less probable. This led to an artificial increase6 of 

SNR and to a vertical  shift  of  SNRdB = f(PSNRrms
dB) evolution for intermediate and broad 

lines,  pictured in green and blue,  respectively,  in Figures S.V.2a and S.V.2b. Moreover,  a 

broader distribution of SNR values was obtained, especially for broad peaks (blue line). An 

additional  feature  was  observed  for  broad  Lorentzian  peaks:  a  vertical  asymptote  at 

PSNRrms
dB = 37 dB. This feature was a consequence of the spectral extension of the wings of 

Lorentzian peaks that were contributing to amplitude within noise region. On the contrary, 

Gaussian peak wings are much less intense and in this case, this vertical asymptote was not 

observed on SNRdB = f(PSNRrms
dB) evolution.

6 The term ‘apparent increase’ would be more accurate.
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Figure V.8: 7380 simulated spectra with known added homoscedastic white Gaussian
noise. a), c) and e) Lorentzian peak; b), d) and f) Gaussian peak; a) and b) comparison of SNR 

definitions; c) and d) automatic thresholding with SL at 5% error level; e) and f) root mean 
square deviation of denoised spectra. Error bars correspond to the repetition of 30 simulated 
spectra with the same level of added noise. 41 levels of noise were used ranging from -20 dB 
to +20 dB. SVD was applied on time data. SNR and PSNR were obtained on frequency data. 

Dashed black lines represent characteristic values (see text for more details); black arrow 
shows an artefact detection; orange arrows highlight the second singular value for Gaussian 

peaks. Data set is available in file Data_SL5.mat of (103).
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B.4.e.ii. Automatic thresholding

SVD and Malnowski’s SL automatic thresholding (see Subsection B.4.c) were applied 

to these simulated NMR FID corresponding to only one peak. When SL error level was set to 

5 % and above  PSNRrms
dB = 20 dB this single peak was detected with  k = 1 singular value, 

whatever peak width and shape (Figures  V.8c-d and S.V.3a-b,  dashed vertical  black line). 

However,  this  was  only  an  upper  limit  and  many  peaks  were  detected  around 

PSNRrms
dB = 17 dB,  between the  detection  limit  of  3.3 σnoise and  the  quantification  limit  of 

10 σnoise, as defined by Currie (114). Thus, to be detected through Malinowski’s algorithm, a 

signal has to be enough different from noise,  i.e., between two to three times higher than 

noisemax.  Surprisingly,  a second singular value was detected with  k = 2 for  Gaussian shapes 

above PSNRrms
dB = 36 dB, (Figures V.8d and S.V.3b). The amplitude of this second component 

was significant and improved the resulting shape of denoised spectrum. This second singular 

value will be explained in Subsection B.4.f.iii. On the full data set of 7380 spectra, only one 

false  detection  was  observed,  as  indicated  by  the  black  arrow in  Figure  V.8c.  Thus,  the 

amount of artefacts was negligible. On the truncated FID (Figures S.V.2c and S.V.2d), this 

limit of PSNRrms
dB = 20 dB was not so abrupt, due to lack of accuracy on noise measurement. 

However, an advantage of truncation was a much faster computation for broad peaks, thanks 

to the smaller matrix used.

Table V.1: PSNR needed for SVD with SL automatic thresholding depending on the
desired error level.

SL error level PSNRrms
dB PSNRrms PSNRmax Artefacts

5 % 17 7.1 2.1 no

7.5 % 16 6.3 1.9 small

10 % 15 5.6 1.7 strong

When SL error level was set to 7.5 or 10 %, the minimum SNR to get a peak detection 

was decreasing (Figures S.V.3c-f). However, the number of false detections also increased 

noticeably, as indicated by the black arrow. In some rare cases, evidenced with lines being 

higher  than  the  figure  vertical  limit  (black  arrow  on  Figure  S.V.3d),  SL was  unable  to 

distinguish signal from noise, resulting in a noisy spectrum after SVD. While an error level of  

5 % is really safe, a level of 7.5 % may be necessary to detect tiny peaks. A value of 10 % 

seems too high to avoid artefacts. Results are summarised in Table V.1. SNR is not presented 

in this table as it is not a relevant parameter, that is too much depending on peak width and 

shape.
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B.4.e.iii. Error measurement

The difference between denoised signal and simulated non-noisy signal (pure signal), 

was measured using the  Root Mean Square Deviation (RMSD), defined on Equation  V.11, 

where  yi
denoised and  yi

pure are  the individual  values for denoised and pure SPC, respectively 

(Figures V.8e and V.8f).

RMSD=√∑i=1

n

( yi
denoised− y i

pure)2

n
V.11

A high RMSD was obtained below PSNRrms
dB = 17 dB. As no peak was detected in this 

range, the obtained value corresponded to RMSD of pure signal compared to zero, which was 

higher for broad peaks, due to its wide spread range. Above this  PSNRrms
dB value, RMSD 

displayed a steep decrease under 0.1 (dashed horizontal black line). These results emphasised 

the very good agreement between denoised and pure data. However,  RMSD was higher for 

Gaussian  than  for  Lorentzian  peaks  (Figure  V.8f).  Above  the  second  threshold  of 

PSNRrms
dB = 36 dB,  RMSD exhibited  a  further  decrease  down  to  the  level  obtained  for 

Lorentzian peaks. This confirms the significance of the second singular value. A similar trend 

was observed on truncated data (Figures S.V.2e and S.V.2f).

B.4.f. Quantification

B.4.f.i. Pure and denoised spectra

The next step that was investigated concerns the possibility to use denoised spectra for 

the  sake  of  quantification.  For  each  peak  width  and  shape  at  PSNRrms
dB = 20 dB,  i.e., at 

quantification limit,  the spectrum with the worst  RMSD is presented in Figure  V.9. These 

spectra were fitted with a Voigt function with error estimation implemented in Matlab (122). 

Amplitude, position, shape and width were automatically adjusted. Results are reported in 

Tables V.2 and V.3 for Lorentzian and Gaussian peaks, respectively. A very large uncertainty 

occurred on fitting parameters derived from noisy spectra (top traces). For denoised spectra 

(middle top traces), uncertainty decreased significantly, roughly by a factor of 10, but was still 

higher than for pure spectra (middle bottom traces). Difference between denoised and pure 

spectra is presented in bottom trace of Figure V.9.

202



Chapter V. Singular value decomposition

Figure V.9: Spectra obtained in Figure V.8 at PSNRrms
dB = 20 dB with worst RMSD

for a), c) and e) Lorentzian peak; b), d) and f) Gaussian peak; a) and b) narrow peak in red; c) 
and d) intermediate peak in green; e) and f) broad peak in blue. On each subfigure, top 

spectrum, middle top, middle bottom, bottom spectra correspond to noisy, denoised, pure 
spectra and difference between denoised and pure spectra, respectively. Orange arrow 

highlight the Gaussian peak distortion.
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Table V.2: Modelling of pure, noisy and denoised Lorentzian peak with narrow,
intermediate and broad widths (in red, green and blue, respectively), for low, intermediate and 

high PSNRrms
dB (dark grey, light grey and white rows, respectively). a: Matlab file exchange 

52321 (122); b: root mean square deviation to pure spectrum (Equation V.11); c: Percent error 
on pure spectrum area (Equation V.12).

Modelling
a

Shape
T2 

(ms)
Signal RMSD

b
Ampli-

tude
Position 

(Hz)
G/L

Width 
(Hz)

Area
PEarea 

(%) c

L
or

en
tz

ia
n

lo
w

 P
S

N
R

rm
sdB

10

Noisy
19.6 dB

2.78
21
± 5

1763
± 6

0.0
± 0.8

40
± 10

1185 + 17.3

Denoised 0.05
19.7
± 0.3

1760.3
± 0.4

0.00
± 6e-2

35
± 1

1096 + 8.5

Pure -
20.191
± 3e-3

1761.87
± 4e-3

9.2e-3
± 7e-4

31.99
± 1e-2

1010 -

1

Noisy
19.5 dB

1.12
6.1

± 0.8
1710
± 20

0.3
± 0.4

320
± 60

2693 - 14.4

Denoised 0.04
6.27

± 7e-2
1729
± 2

0.27
± 4e-2

342
± 6

2992 - 4.9

Pure -
6.299
± 3e-3

1761.89
± 6e-2

4e-3
± 1e-3

318.5
± 0.2

3145 -

0.1

Noisy
20.2 dB

0.22
1.54

± 6e-2
1520
± 50

0.3
± 0.2

3200
± 200

6665 + 2.5

Denoised 0.02
1.52

± 1e-2
1590
± 10

0.35
± 4e-2

3190
± 40

6529 + 0.4

Pure -
1.52

± 1e-2
1762
± 8

0.34
± 3e-2

3160
± 30

6502 -

L
or

en
tz

ia
n

in
te

rm
 P

S
N

R
rm

sdB

10

Noisy
30.1 dB

0.79
20
± 1

1763
± 2

0.1
± 0.3

31
± 4

952 - 5.7

Denoised 0.01
20.56
± 7e-2

1762.8
± 0.1

0.00
± 2e-2

30.8
± 0.3

995 - 1.5

Pure -
20.191
± 3e-3

1761.87
± 4e-3

9.2e-3
± 7e-4

31.99
± 1e-2

1010 -

L
or

en
tz

ia
n

h
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h
 P

SN
R

rm
sdB

10

Noisy
36.2 dB

0.40
19.8
± 0.6

1761.4
± 0.8

0.1
± 0.1

32
± 2

963 - 4.7

Denoised 0.01
19.90
± 1e-2

1761.60
± 2e-2

0.061
± 3e-3

32.40
± 4e-2

984 - 2.6

Pure -
20.191
± 3e-3

1761.87
± 4e-3

9.2e-3
± 7e-4

31.99
± 1e-2

1010 -
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Table V.3: Modelling of pure, noisy and denoised Gaussian peak with narrow,
intermediate and broad widths (in red, green and blue, respectively), for low, intermediate and 

high PSNRrms
dB (dark grey, light grey and white rows, respectively). a: Matlab file exchange 

52321 (122); b: root mean square deviation to pure spectrum (Equation V.11); c: Percent error 
on pure spectrum area (Equation V.12).

Modelling
a

Shape
σ

(ms)
Signal

RMSD
b

Ampli-
tude

Position 
(Hz)

G/L
Width 
(Hz)

Area
PEarea 

(%) c

G
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ia

n
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w
 P

S
N

R
rm

sdB
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Noisy
19.9 dB

2.81
22
± 4

1762
± 4

1
± 1

37
± 9

927 + 31.3

Denoised 0.08
22.51
± 8e-2

1761.00
± 9e-2

0.42
± 2e-2

34.2
± 0.2

1007 + 42.6

Pure -
20.827
± 9e-5

1761.89
± 9e-5

1.000
± 3e-5

31.861
± 2e-4

706 -

1.2

Noisy
20.4 dB

0.88
6.7

± 0.5
1790
± 10

1.0
± 0.5

330
± 30

2329 + 5.3

Denoised 0.07
6.78

± 2e-2
1757.3
± 0.4

0.46
± 1e-2

331
± 1

2891 +30.8

Pure -
6.5193
± 2e-5

1761.89
± 5e-4

1.000
± 2e-5

318.61
± 1e-3

2211 -

0.12

Noisy
20.5 dB

0.32
1.86

± 8e-2
1810
± 50

0.9
± 0.3

3200
± 100

6499 + 1.9

Denoised 0.05
1.839
± 7e-3

1734
± 4

0.62
± 2e-2

2980
± 10

6637 + 4.1

Pure -
1.8800
± 2e-5

1761.89
± 1e-2

1.000
± 8e-5

3186.0
± 3e-2
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G
au
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n
in
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m
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S

N
R

rm
sdB

12

Noisy
29.7 dB
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21
± 1
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± 2

0.2
± 0.4
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± 4

899 + 27.3

Denoised 0.04
22.24
± 4e-2

1761.80
± 4e-2

0.38
± 1e-2

30.77
± 9e-2

913 + 29.3

Pure -
20.827
± 9e-5

1761.89
± 9e-5

1.000
± 3e-5

31.861
± 2e-4

706 -
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n
h
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h
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R
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sdB

12

Noisy
36.3 dB

0.40
21.4
± 0.6

1761.7
± 0.6

1.0
± 0.2

31
± 1

715 + 1.3

Denoised 0.02
21.32
± 6e-2

1761.85
± 6e-2

1.00
± 2e-2

31.4
± 0.1

713 + 1.0

Pure -
20.827
± 9e-5

1761.89
± 9e-5

1.000
± 3e-5

31.861
± 2e-4

706 -
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B.4.f.ii. Lorentzian and Gaussian peaks

Surprisingly, despite a RMSD lower than 0.1, the area Percent Error (PEarea given by 

Equation  V.12) could be as high as 8.5 % and 42.6 % for Lorentzian and Gaussian peaks, 

respectively.

PEarea (%)= Areadenoised−Area pure

Area pure
×100 V.12

While  the  former  was  acceptable  at  detection  limit,  the  latter  evidenced  an 

overestimation.  Although  PEarea decreased  after  SVD  denoising  on  Lorentzian  peaks,  it 

increased for Gaussian peaks. Moreover, difference spectrum on Gaussian peak exhibited a 

mix of narrow and wide components with opposite amplitudes  (Figure  V.9f). Such a shape 

modification was not observed for Lorentzian peaks. Besides, the Gaussian/Lorentzian ratio 

was around 0.5 instead of 1.0 after denoising on Gaussian peaks (dark grey and light grey 

rows of Table  V.3). This result highlighted that SVD induced a change in peak shape from 

Gaussian peaks to more Lorentzian ones. Above the second threshold of PSNRrms
dB = 36 dB, 

the shape was corrected thanks to the second singular value, giving a pure Gaussian peak after 

denoising (white rows of Table V.3).

B.4.f.iii. Real and extracted errors

The error on the measured area can origin from  two sources: first the error introduced 

by the added noise, known as the real error, and second the error coming from the denoising 

itself,  so-called the  extracted error (119).  An example of real error is presented in Figure 

S.V.4a. Two successive measurements with NS = 120 scans gave a different amplitude for Q2 

peak  at  -91 ppm (red  arrow).  With  a  higher  noise  averaging  at  NS = 360  (not  shown), 

amplitude ratios were similar to NS = 840. Thus, SNR at NS = 120 was too low and amplitude 

was tainted by error. A strong apodisation has been used here to artificially improve SNR (see 

Subsection B.4.g.i). Automatic thresholding was unable to correctly discriminate signals from 

noise and manual thresholding with k = 5 singular values was preferred. Nevertheless, the real 

error was kept after denoising (Figure S.V.4b), which demonstrated that manual thresholding 

is a dangerous tool. Failure of automatic thresholding is thus an indication that SNR has to be 

improved.
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The  extracted  error  was  especially  present  for  Gaussian  spectra,  for  which  the 

Gaussian/Lorentzian ratio modification (see Subsection  B.4.f.ii) led to an increase of peak 

area. Indeed, SVD fits time decays with a sum of exponential (67). When fitting a Gaussian 

decay  with  a  single  exponential  component,  corresponding  to  one  singular  value  at  low 

PSNRrms
dB, the peak area is correspondingly overestimated by 20 % (123). Our results were 

consistent with this value. Gaussian and exponential decays are very different, as Gaussian is 

flatter around its maximum. Above the second threshold, the Gaussian decay was fitted with 

two exponential decays, improving peak area value.

Unfortunately, when studying solid-state samples by using spectroscopic approaches, 

peaks are most of the time not Lorentzian. In such cases, SVD quantitative results are difficult 

to  obtain.  A workaround  would  be  to  model  the  resulting  spectrum  with  pseudo-Voigt 

functions. For peaks with a Gaussian/Lorentzian ratio around 0.5, dividing their area by 1.2 

(20 %) should improve quantification. Taking this precaution into account for analysis of our 

data, PEarea was found to be similar between denoised spectra at PSNRrms
dB = 20 dB (dark grey 

rows in Tables V.2 and V.3) (111) and noisy spectra at PSNRrms
dB = 30 dB, (light grey rows in 

Tables  V.2 and  V.3). In solid-state NMR, another possibility to avoid Gaussian peak error 

relies on use of CPMG echoes (51) as in Figure V.5b. This technique transforms a peak driven 

by  chemical  shift  distribution  (Gaussian  shape,  inhomogeneous  interaction)  into  multiple 

narrow peaks driven by relaxation (Lorentzian shapes, homogeneous interaction) (124, 125), 

which are very suitable for SVD, being both sensitive and quantitative.

B.4.g. Limit case on a real NMR spectrum

B.4.g.i. Pre-processing

A pre-processing  step  called  apodisation  can  be  applied  on  FID before  SVD and 

Fourier transform. The aim is first to reduce noise, and second to remove truncation artefacts 

leading to oscillations at peak foot, hence the name. In NMR, one can use for instance either 

exponential,  cosine,  or  (shifted-)Gaussian  decays.  Their  shapes  were  compared  in (126). 

While  exponential  is  convex,  cosine  is  concave  and  Gaussian  is  intermediate.  In 

Figure S.V.4c,  we  compared  the  influence  of  apodisation  on  initial  noise.  The  resulting 

denoised SPC with automatic thresholding at  an  SL error  level of 7.5 % are presented in 

Figure S.V.4d. Without  apodisation,  SNR was too low to detect Q2 peak at  -91 ppm (red 

circle) and k = 4 singular values were found. With cosine apodisation, the correct number of 
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peaks was obtained with k = 5 singular values (green ellipse). With an exponential decay of 

20 Hz, corresponding to the intrinsic SPC resolution, a similar result was obtained, but with 

k = 6 singular values, leading to small baseline distortions. Surprisingly, with an exponential 

decay of 50 Hz, a much higher number of k = 94 singular values was found, with almost no 

denoising (orange circle). An explanation was that apodisation changed the amplitude of noise 

values,  especially  at  the  end  of  the  FID.  By  this  way,  noise  became  heteroscedastic, 

decreasing efficiency of SVD and Malinowski’s criterion. When plotting singular values in 

logarithmic scale (Figure S.V.4e), the slope moved from a plateau for cosine (purple curve) to 

a decay for exponential with 50 Hz (blue curve). In such a case, it is harder to discriminate 

signals from noise, as the slope is similar. Cosine is thus a good compromise before SVD as it 

decreases  noise  without  changing  too  much  singular  values7.  An alternative  would  be  to 

combine SVD and Savitzky–Golay smoothing filter (127), which process noise the same way 

all over the FID8.

B.4.g.ii. Denoising

On the  sol-gel  50:50 MTEOS:TEOS sample,  four  hours  and  NS = 240 scans  with 

cosine pre-processing, were needed to have a spectrum with a sufficient SNR to apply SVD 

and to detect Q2 peak with automatic thresholding at SL error level of 10 % (not shown). If SL 

error level was limited to 7.5 %, six hours and NS = 360 scans were necessary (Figure V.10 

top trace). The corresponding denoised spectrum (middle top trace) was very close to the 

reference  spectrum acquired  in  fourteen  hours  and  NS = 840  (middle  bottom trace),  with 

PSNRrms = 9.7, i.e., at quantification limit. Their difference (bottom trace) was comparable to 

noise. This was confirmed by peaks integration (Table V.4) where very good agreement was 

obtained  between  the  denoised  spectra  at  NS = 240  or  NS = 360  and  the  reference  noisy 

spectrum at  NS = 840. In particular,  Q2/Q3 ratio  was very consistent.  Time gain was thus 

between 2.3 to 3.5, depending on the SL error level allowed.

7 Square cosine gave similar results with a slightly more pronounced slope.
8 More precisely, Savitzky–Golay filter can be applied on singular vectors but not on the FID.
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Figure V.10: 29Si MAS solid-state NMR spectrum of the 50:50 MTEOS:TEOS sample.
From top to bottom: noisy spectrum at NS = 360 scans; denoised spectrum at NS = 360 scans 
with k = 5 singular values at SL error level 7.5 %; reference spectrum at NS = 840; difference 
between denoised and reference spectra. The spectrum is quantitative with an impulsion of 

30° and a relaxation delay of 60 s.

Table V.4: Peaks integration on noisy (grey rows) and denoised (white rows) spectra
of the 50:50 MTEOS:TEOS sample for various number of scans (NS). The spectrum is 

quantitative with an impulsion of 30° and a relaxation delay of 60 s. Spectra were modelled 
using Dmfit (128).

NS
Pre-

proces-
sing

PSNR 
rms

SL 
error 
level

% T2 % T3 % Q2 % Q3 % Q4 Q2/Q3

120 cosine 3.9
no 11.5 38.8 3.3 29.1 17.2 0.11

10 % 12.9 39.8 0 29.2 18.1 0

240 cosine 5.2
no 12.0 37.2 4.7 29.6 16.5 0.16

10 % 12.5 36.3 5.5 28.8 16.8 0.19

360 cosine 7.1
no 12.3 36.5 4.8 30.2 16.2 0.16

7.5 % 12.8 35.6 5.5 29.5 16,6 0.19

840 cosine 9.7
no 13.2 35.8 5.4 29.7 15.9 0.18

7.5 % 13.7 35.2 5.8 29.1 16.1 0.20

B.5. Conclusion

Singular  Value  Decomposition  is  of  crucial  importance  in  many  mathematical 

treatments involved in spectrocopies. In this first part (I), SVD with low-rank approximation 

was successfully applied to denoise NMR and Raman spectra. This approach can easily be 

generalised to other spectroscopies. We have shown that a better denoising was obtained with 

square matrices and with SVD applied to time domain signal rather than to the corresponding 

frequency spectrum. Automatic  thresholding was used  thanks to  Malinowski’s  Significant 
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Level  indicator  and a 7.5 % error  value was a  good compromise between sensitivity  and 

unwanted artefacts.  6 × 7380 SVD were carried out  to  compare pure,  noisy and denoised 

spectra with SNRdB ranging over 41 dB. Our results proved that this  technique can detect 

signals as low as twice noisemax, i.e., with PSNRmax = 2.0 and PSNRrms = 6.6, whatever the peak 

width.  A systematic  shape modification  has  been highlighted for  Gaussian peaks  with  an 

overestimation of peak area by 20 %. This overestimation for Gaussian peaks is a major result 

as  peak shape  is  often  neglected  when denoising,  which  can  give  misinterpreted  data.  A 

correction step is thus needed if Gaussian/Lorentzian ratio of denoised peak is around 0.5. 

When used carefully,  SVD can lead to  similar  results  between denoised spectra at 

PSNRrms = 6.6  and  noisy  spectra  at  quantification  limit  (PSNRrms = 10).  As  PSNRrms is 

increasing with the square root of time, this difference is equivalent to a considerable gain on 

acquisition time of 2.3, which is of paramount importance for low sensitivity experiments.

In  a second  part (II)  (12),  we will focus on the computation time needed for SVD 

treatment under Java, Matlab and Python, using both processors and graphic cards. We will 

check the  influence  of  algorithms,  especially  the  divide  and conquer  one,  as  well  as  the 

influence of single precision calculation will be investigated. Software libraries such as MKL 

(Intel  Math  Kernel  Library)  and  hardware  capabilities  such  as  SSE3  (Streaming  SIMD 

Extensions)  (129) will be evaluated. All these optimisations will decrease computation time 

by a factor of 100.
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B.7. Supplementary material

Figure  S.V.1:  Influence  of  SVD  iterations;  Figure  S.V.2:  SVD  applied  to  7380 

simulated spectra with truncation; Figure S.V.3: Influence of significance level for automatic 

thresholding;  Figure S.V.4: influence of number of scans and preprocessing; simulated data 

sets and source codes are available online in (103).
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Figure S.V.1: Influence of SVD iterations for a matrix of 3901 × 128 points (n = 128)
with k = 22 singular values. 4028 points 29Si CPMG MAS solid-state NMR spectrum of the 

50:50 MTEOS:TEOS sample. Orange ellipse shows slight decrease of noise.
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Figure S.V.2: 7380 simulated spectra with known added homoscedastic white Gaussian
noise, with truncation of FID at 5 T2. a), c) and e) Lorentzian peak; b), d) and f) Gaussian 

peak; a) and b) comparison of SNR definitions; c) and d) automatic threshold value with SL at 
5% error level; e) and f) root mean square deviation of denoised spectra. Error bars 

correspond to the repetition of 30 simulated spectra with the same level of added noise.
41 level of noise were used ranging from -20 dB to +20 dB. SVD was applied on time data 
before zero-filling; SNR and PSNR were obtained on frequency data. Dashed black lines 

represent characteristic values; black arrow shows artefacts detection; orange arrows highlight 
the second singular value for Gaussian peaks. 
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Figure S.V.3: 3 × 7380 simulated spectra with known added homoscedastic white
Gaussian noise. a), c) and e) Lorentzian peak; b), d) and f) Gaussian peak; automatic 

threshold value with a) and b) SL=5 %; c) and d) SL=7.5 %; e) and f) SL=10 %. Error bars 
correspond to the repetition of 30 simulated spectra with the same level of added noise.

41 level of noise were used ranging from -20 dB to +20 dB. SVD was applied on time data; 
PSNR was obtained on frequency data. Dashed black lines represent characteristic values; 

black arrows show artefacts detection. Data sets are available in files Data_SL5.mat, 
Data_SL7.5.mat, and Data_SL10.mat of (103)
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Figure S.V.4: a) and b) Influence of number of scans (NS) on SVD with manual
thresholding and 50 Hz exponential apodisation; c) and d) influence of pre-processing before 

SVD with automatic thresholding and apodisation as annotated on spectra; a) and c) noisy 
spectra; b) and d) denoised spectra; e) singular values k of spectra in c), in logarithmic scale. 

29Si MAS solid-state NMR spectrum of the 50:50 MTEOS:TEOS sample. NS: number of 
scans; k: number of singular values. Red arrows evidence variations of peak amplitude; red 

and green ellipses highlight not detected and detected peaks, respectively; orange circle shows 
ineffective denoising; dashed vertical lines correspond to automatic thresholding of data with 

the same colour, at an SL error level of 7.5 %.
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C. SVD on two-dimensional spectra

C.1. Processing workflow

In order to apply SVD with apodisation under Bruker TopSpin software, four files 

were used (Figure  V.11).  The first  file  was raw FID,  on which  oversampled points  were 

suppressed using the convdta command (94). This created a second file on which the desired 

apodisation was applied. However, this processed file has to be converted to a pseudo-FID 

(third file) using the genfid command, on which SVD was applied, giving the last denoised 

FID file usable for FT. We recently wrote a program to automatise these steps (130). TopSpin 

(in Java) called a first Jython program (Python for Java) that itself launched a CPython script  

(standard  Python,  based  on  C  language).  Julien  Trebosc  from UCCS  laboratory  at  Lille 

University is aknowledged for providing this subprocess call.

Figure V.11: Process to apply SVD denoising with apodisation on an NMR spectrum.
convdta and genfid are Bruker TopSpin commands.

C.2. Denoising of 2D matrix

In the continuity of the article in previous subchapter, we applied SVD on a 2D NMR 

spectrum, directly on the entire 2D matrix in time domain. The corresponding spectrum was a 
1H→29Si→1H  double  Cross-Polarisation  (CP)  HETeronuclear  CORrelation  (HETCOR) 

(Figure  V.12a)  (131) of a  partially  dehydrated SBA-15 mesoporous silica (Section E.7 of 

Chapter I).  This  sample  can  be  used  for  instance  to  entrap  pharmaceutical  molecules  for 

controlled delivery into human body.

Unfortunately,  convdta in 2D introduced an artefact with a negative region for each 

peak in indirect dimension, highlighted by a red arrow (Figure V.12b). However, convdta was 

a necessary step before denoising on time domain, which gave better results than frequency 

domain, as we confirmed on 2D spectra, similarly to 1D spectra (Subsection  B.4.d). A not 

tested workaround could be to apply an inverse FT on the spectrum, before SVD. This would 

avoid convdta step.
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Figure V.12: Influence of convdta on a 2D spectrum: a) FT applied on noisy spectrum,
b) FT applied after convdta, c) FT applied after convdta and SVD, 512 × 32 points, k = 1 

singular value. 2D 1H→29Si→1H HETCOR spectrum of partially dehydrated SBA-15 silica. 
Red and orange arrows: artefacts. Parameters: B0 = 7.0 T, MAS = 14 kHz, RD = 1s, 
NS = 2496, TD(29Si) =16 complex slices, texp = 22 h, SW(29Si) = 7.0 kHz, tcp1 = 3 ms, 

tcp2 = 5 ms, no decoupling, cosine apodisation.

A similar but lower artefact was present in direct dimension, evidenced after SVD 

(orange arrow on Figure V.12c). An explanation could be a disturbance of SVD algorithm due 

to the double oscillation of FID in  t1 and  t2 dimensions. Furthermore, despite good overall 

denoising, detailed analysis of slices revealed that noise was proportional to signal intensity, 

similarly to  t1-noise. Hence, noise was only marginally reduced on the highest peak (Figure 

V.13a), with PSNRmax = 4.4 and 5.0 for noisy and denoised spectrum, respectively, measured 

on  1H shoulder (dotted vertical  black line). Moreover,  signal intensities were distorted,  as 
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highlighted  by  red  ellipses  on  difference  spectra  between  denoised  and  noisy  spectra. 

Negative  values  indicated  a  decrease  of  signal  intensities,  that  were  especially  visible  in 

indirect dimension (Figure V.13b).

Figure V.13: Extracted slices from Figure V.12c on highest peak in a) 1H direct and
b) 29Si indirect dimensions. Red ellipses: distortions; dotted vertical black line: peak used for 

1H PSNRmax measurement. Parameters: B0 = 7.0 T, MAS = 14 kHz, RD = 1s, NS = 2496, 
TD(29Si) =16 complex slices, texp = 22 h, SW(29Si) = 7.0 kHz, tcp1 = 3 ms, tcp2 = 5 ms, no 

decoupling, cosine apodisation.

Resampling of the dataset to a square, instead of the original 512 × 32 matrix, was 

tested but it did not improved results. Even worth, triangular oscillations appeared on 2D peak 

shape (not shown).  These results  depicted that  additional optimisations are needed before 

confident use of 2D spectra denoising in our program. A solution could be to apply SVD to 

each column of the data matrix after FT along direct dimension. This solution was used by 

Brissac  et al. to remove  t1-noise  (85), and by Qu  et al. for Non-Uniform Sampling (NUS) 

low-rank reconstruction (132).

In Subchapter C, we detailed the processing workflow to apply SVD under TopSpin. 

We evidenced an artefact due to condta and that 2D denoising degraded quantification.
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D. Chapter conclusion

In Subchapter  B, we analysed signal processing in the context of denoising by SVD 

and low-rank approximation. However, these mathematical operations have to be taken with 

caution,  especially  in  solid-state  NMR,  in  order  to  avoid  pitfalls.  We  highlighted  that 

denoising  is  more  efficient  in  time  domain,  on  square  matrices,  and  with  automatic 

thresholding. Gaussian peaks are especially tricky, as SVD systematically overestimated their 

area  by  ~ 20 %.  Applied  to  solid-state  NMR,  quantitative  results  without  any  loss of 

information  are  obtained  at  PSNRmax = 2  with  SVD instead  of  PSNRmax = 3  with  standard 

processing, corresponding to a time gain of ~ 2.3. This observation on 29Si is generalisable to 

any nucleus studied by NMR. Further sensitivity gain could be obtained either by combining 

SVD with Savitzky–Golay filtering (127) or with deep neural network (133). However, their 

robustness  to  real  and extracted  errors  has  still  to  be characterised.  In  Subchapter  C,  we 

applied SVD on 2D NMR spectra  on the  entire  matrix  in  time domain.  We showed that 

analogic data conversion introduced an artefact and that t1-noise-like distortions were present 

after SVD processing, with peaks deformations, attributed to the double time oscillation. This 

could be solved by applying SVD in indirect dimension after FT in direct dimension.
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Chapter VI. Decreasing computation time

A. Chapter introduction

Despite  being  very  powerful,  Singular  Value  Decomposition  (SVD)  is  a 

computationally expensive mathematical operation, as it can take up to thousands of seconds 

to complete. Indeed, it is using matrix-matrix operations with a computational complexity of 

O(n³), much higher than matrix-vector (O(n²)) or vector-vector (O(n)) operations (1). Various 

approaches were developed to decrease computation time, such as random projection on a 

subspace  (2).  Randomized QR decomposition  (3) and uncoiled random QR denoising  (4) 

proved to be faster and more robust than SVD.  Q is an orthogonal matrix  whereas R is an 

upper  triangular  matrix  (5).  Here  we  rather  focussed  on  computation  time  decrease  of 

standard SVD, which can be generalised to other denoising methods.

Our  preliminary  tests  using  SVD  evidenced  the  need  first  to  properly  define  the 

suitable hardware,  second to explain why different computation times were observed with 

different software (Java, Matlab and Python) for similar data sets. Trying to answer these two 

questions led to the article presented in Section B (6), second part of this two-steps article. We 

tried  to  decorrelate  the  influence  of  all  elements  between  experimenter  SVD  call  and 

hardware, namely algorithm, libraries and hardware instructions usage. After providing some 

useful benchmarks under Java for hardware ranging over ten years, we studied influence of 

software version,  precision  and algorithms under  Matlab.  Finally,  we demonstrated under 

Python that proper call to hardware instructions could lead to a three-fold time reduction. By 

combining all these software optimisations, computation time was drastically decreased by 

100, on the same hardware. We highlighted that, for matrices smaller than 4097 × 4096 = 

1.7.107 points, SVD is faster on a Central Processing Unit (CPU) using MKL (7) than on a 

GPU using CULA (8). We provided an optimised Python program to denoise a matrix with 

SVD,  combining  MKL and  CULA,  with  automatic  CPU/GPU selection.  Another  Python 

program is in charge of importing NMR Bruker dataset and of converting it into a matrix 

before SVD. In Section C, additional computation tests will be undergone on precision and on 

heterogeneous computing.
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B. Denoising applied to spectroscopies – part II: decreasing computation 

time, Appl. Spectrosc. Rev. 55, 173–196 (2020).

Spectroscopies  are  of  fundamental  importance  but  can  suffer  from low sensitivity. 

Singular Value Decomposition (SVD) is a highly interesting mathematical tool, which can be 

conjugated with low-rank approximation to denoise spectra and increase sensitivity. SVD is 

also involved in data mining with Principal Component Analysis (PCA). In this paper, we 

focussed on the optimisation of SVD duration, which is a time-consuming computation. Both 

Intel processors (CPU) and Nvidia graphic cards (GPU) were benchmarked. A 100 times gain 

was  achieved  when  combining  divide  and  conquer  algorithm,  Intel  Math  Kernel  Library 

(MKL),  SSE3 (Streaming SIMD Extensions) hardware instructions and single precision. In 

such a case, the CPU can outperform the GPU driven by CUDA technology. These results 

give a strong background to optimise SVD computation at the user scale.

Keywords: spectroscopy, signal processing, Cadzow denoising, Singular Value 

Decomposition (SVD), benchmarking

Figure VI.1: Graphical abstract of (6).

B.1. Introduction

Spectrocopies are very efficient tools to help scientists in various domains: physics, 

chemistry, biology or medecine. However, the intrinsic sensitivity is highly dependant of the 

technique  used.  In  particular,  Nuclear  Magnetic  Resonance  (NMR)  (9) and  Raman 

spectroscopy  (10) are poorly sensitive but are very precise local probes commonly used to 
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study materials. While NMR can detect only one nucleus over 105 in usual conditions  (11), 

Raman  spectroscopy  can  only  detect  one  photon  over  106 (12).  Both  NMR and  Raman 

sensitivity were improved over the years, as was detailed in part (I) of this study (13), but still 

suffer from low signal-to-noise ratio (SNR), especially when studying amorphous or non-

stable  materials.  Additionally,  different  physicochemical  techniques  can  be  hyphenated  to 

obtain multiple signatures in a single experiment (14, 15).

This sensitivity gain entails an increasing amount of data to analyse, especially in the 

domain of metabolomics  (16,  17). In such a case, it is necessary to combine statistics and 

chemistry, what is called chemometrics (18, 19). A similar problem of data mining is present 

in social engineering (20) or with medical images dictionaries (21). Many tools are available 

to  process  these  data:  Principal  Component  Analysis  (PCA)  (22),  Principal  Component 

Regression (PCR)  (23), Partial Least Squares (PLS)  (24), Discriminant Analysis (PLS-DA) 

(25),  Independent  Component  Analysis  (ICA)  (26),  or  Non-negative  Matrix  Factorisation 

(NMF)  (27).  The  aim  of  these  multivariate  data  analysis  methods  is  to  find  relevant 

parameters in order to discriminate samples (ex wine from region A or B (28)). These tools 

are of paramount importance to apply data mining to spectroscopies (29). For instance, PCA 

was used recently with Gas Chromatography/Quadrupole Time-of-Flight (GC/Q‐ToF) mass 

spectrometry  (30), Mid-InfraRed (MIR) spectroscopy  (31) and Inductively Coupled Plasma 

Optical  Emission  Spectroscopy  (ICP-OES)  (32).  An  important  step  of  PCA and  relative 

techniques is Singular Value Decomposition (SVD) (33, 34).

Moreover, SVD was proposed as a method to denoise signals by Tufts et al (35), and 

was  generalised  by  Cadzow  in  1988  (36). In  the  context  of  low  sensitivity  and  in  the 

continuation of a previous communication (37), we thoroughly described SVD in part (I) of 

this work (13). We first gave theoretical background on SVD, low-rank approximation (38), 

Hankel or Toeplitz matrices (39) and SNR definitions. SVD was applied to Raman and NMR 

spectra. We highlighted that best results were obtained with square matrices and data in time 

domain  rather  than  in  frequency  domain.  Automatic  thresholding  was  applied  thanks  to 

Malinowki’s significant level indicator (40).  6 × 7380 = 44280 denoised spectra with known 

noise were compared to their non-noisy counterparts. It was evidenced that the minimum peak 

SNR measured  on  maximum  of  noise  (PSNRmax)  needed  to  have  reliable  results  was 

PSNRmax = 2, leading to a gain on acquisition time of 2.3. Surprisingly, while Lorentzian peaks 
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were  correctly  denoised,  SVD  transformed  Gaussian  peaks  into  intermediate 

Gaussian/Lorentzian ones, which overestimated their peak area by 20 %.

The main disadvantage of SVD is its long computation time, especially for big data 

sets. It is thus essential to optimise the computation procedure. Different approaches have 

been  chosen  in  literature:  specialised  processors  (41),  wavelet  transformation  before 

performing  the  SVD  (42),  divide  and  conquer  method  (43) or  sparse  matrices  (44,  45). 

Another approach is General Purpose computing on Graphics Processing Unit (GPGPU) (46). 

SVD has been applied multiple times using GPGPU (47–50). Two programming languages 

are available: CUDA (Compute Unified Device Architecture) for Nvidia graphic cards  (51) 

and OpenCL (Open Computing Language) for all graphic cards (Graphic Processing Unit, 

GPU)  and  processors  (Central  Processing  Unit,  CPU)  (52).  In  addition,  Dongarra  et  al. 

developed  very  efficient  algorithms  combining  CPU  and  GPU  (53,  54),  what  is  called 

heterogeneous computing (55). Recently Man et al proposed a Java implementation of SVD 

for NMR (56) using CPU (57) or Nvidia GPU (58). Pending questions can be raised on these 

Java  applications:  (i)  how  powerful  does  the  computer  need  to  be?  (ii)  how  long  does 

computation take? (iii) how large can be the data set? (iv) is the used algorithm efficient? (v) 

will other programming languages give better results?

In this second part (II), after providing some experimental details in Subsection B.2, 

we benchmarked SVD using Java, on various CPU and Nvidia GPU ranging over 10 and 6 

years, respectively (see Subsection  B.3.a). We focussed on algorithms and precision under 

Matlab  in  Subsection  B.3.b.  We  tried  to  decorrelate  software  libraries  from  hardware 

capabilities (Single Instruction Multiple Data, SIMD)  (59) in Subsection  B.3.c. Finally, we 

compared Java, Matlab and Python in Subsection B.3.d to reach the fastest possible denoising 

computation.

B.2. Materials and methods

B.2.a. Solid-state NMR experiments

Two solid-state NMR spectra were used to benchmark SVD. The first one was a 29Si 

spectrum  with  4096  complex  points,  used  for  matrices  up  to  2015 × 2014 = 4.1e6.  For 

matrices above this limit, a 87Sr spectrum with 30504 complex points, was chosen. The noisy 

and denoised spectra for 29Si and 87Sr are presented on Figures VI.2a and VI.2b, respectively. 
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SVD was applied on Free Induction Decay (FID, time domain) after removal of the first 68 

points corresponding to oversampled digitisation .

Figure VI.2: Spectra used to benchmark SVD; top: noisy spectra; bottom: denoised
spectra. a) 29Si CPMG MAS solid-state NMR spectrum of a 50:50 MTEOS:TEOS sample; 
processing: Java GPU application with 2015 × 2014 = 4.1e6 points, k = 25 singular values, 
computation time of 6 s on a GTX 660, cosine apodisation. b) 87Sr DFS-WURST-CPMG 

solid-state static NMR spectrum of non-hydrated non-protonated Sr(PO3F); processing: Java 
GPU application with 4097 × 4096 = 1.7e7 points, k = 25 singular values, computation time 

of 31 s on a GTX 660, cosine apodisation, magnitude calculation.

The sample analysed by 29Si solid state NMR and the experiments were presented in 

part  (I)  of  this  study  (13).  Briefly,  it  was  representative  of sol-gel  chemistry,  combining 

hydrophobicity  and  mechanical  properties  (60).  A  50:50  mix  of  Methyltriethoxysilane 

(MTEOS) : tetraethylorthosilicate  (TEOS) was  prepared  by  spray  drying  giving  spherical 

micrometer  silica  particles.  Carr-Purcell-Meiboom-Gill  (CPMG)  Magic  Angle  Spinning 

(MAS) experiments (61) were performed in 40 minutes on a Bruker Avance III spectrometer 

operating at 300.29 MHz for 1H and 59.65 MHz for 29Si.

The sample analysed by 87Sr solid state NMR was a model of biocompatible material 

in relation with bone substitutions (62). Non-hydrated non-protonated Sr(PO3F)1 was studied 

on a Bruker Avance III spectrometer operating at 699.98 MHz for 1H and 30.34 MHz for 87Sr 

in a 5 mm static probe. In order to enhance sensitivity, DFS (63), WURST (64) and CPMG 

were  used  with  58,000  transients  and  a  relaxation  delay  of  300 ms,  leading  to  a  total 

acquisition time of 5.5 h. 260 echoes were acquired with a full echo delay of 0.12 ms.

1 After  publication of  this  article,  we were  aware  that  this  spectrum was  wrongly  attributed.  The correct 
description is a strontium bioactive glass (Section E.8 of Chapter I).
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B.2.b. Measurement of SVD computation times

Special care has been taken to validate measured times: the computer was checked to 

be idle, without any update running and without an active internet browser window, which 

would use the graphic card through Adobe Flash module. Computations were systematically 

repeated and results were highly reproducible. Nvidia drivers ranging from 331.113 to 352.30 

were used, either under Linux Ubuntu 14.04, CentOS 5, Fedora 21, 22 or Windows XP, 7 SP1 

or 8.1. Under Windows it was necessary to modify the TdrLevel registry key to 0 in order to  

avoid graphics driver failure  (65). Under Java (Oracle Corporation, Redwood Shores, CA, 

USA) and Matlab (The MathWorks, Inc., Natick, MA, USA), 29Si FID was used up to 4028 

points. Above this value, 87Sr FID was used. The corresponding FID was truncated if needed 

to the desired data length. Under Python (66), data set was a simple list of increasing values 

with the corresponding length. Unless otherwise stated,  k = 25 singular values were kept for 

low-rank approximation.  This  value corresponded to the major  spikelets  observed on  29Si 

spectrum (Figure VI.2a) and was not changed for coherence along the series. The measured 

delays  are  the  sum  of  decomposition  and  low-rank  approximation  steps,  including  all 

processor to graphic card latencies, if relevant.

B.2.b.i. Java

Two applications are available online: one for CPU (57) and the other one for Nvidia 

GPU  (56,  58). While CPU version calls JAMPACK library  (67), GPU version calls CULA 

R15 (8). The CPU 32 bits version failed above a matrix size of 1025 × 1024 = 1.0e6 points, 

whatever the CPU used. The same problem was observed with GPU 32 bits version above a 

matrix size of 3005 × 1024 = 3.1e6 points. The reason is that Java heap space is limited to 

around 1.5 GB for 32 bits applications  (68), while it is 16 exabytes for 64 bits applications. 

This  memory  amount  corresponds  not  only  to  the  data,  but  also  to  the  program and  its 

libraries. 64 bits applications are not compatible with 32 bits Java runtime environment and 

32 bits operating systems. As the source code was not accessible and no internal timer was 

implemented in these Java applications, computation times were measured with a handheld 

chronograph giving a time resolution of 1 s for both SVD step and low-rank approximation 

step. For a same GPU, no computation time difference was observed between Windows and 

Linux. 
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B.2.b.ii. Matlab

Three versions were tested: R2010a, corresponding to the most recent compatible with 

CULA library free (in version R14) (69); R2014a, corresponding to the most recent for old 

graphic cards with Compute Capability (CC) less than 2.0, such as GTX 260; and R2015a, 

corresponding to a recent version. FID were imported thanks to matNMR (70). Under R2014a 

and  R2015a,  their  respective  Parallel  Computing  Toolbox  was  added  to  use  gpuArray 

function.  Computation  times  were  measured  with  an  internal  timer.  The  source  code  is 

available in file Figure_II.4a_II.4b.m of (71).

B.2.b.iii. Python

No significant time difference was observed between Python 2.7 and 3.5 versions, 

neither between 32 and 64 bits versions. The source code is compatible with all  of these 

options  and  is  available  in  file  Figure_II.5.py  of  (71) (CPU  and  GPU).  Different  SVD 

implementations  were tested with NumPy 1.10.1  (72),  SciPy 0.16.1  (73) and Scikit-Cuda 

0.5.0  (74).  The  last  one  required  PyCUDA  2015.1.3  (75) and  CULA  R18  free  (8). 

Computation times were measured with an internal timer as well.

Under Linux, Automatically Tuned Linear Algebra Software (ATLAS) (76) and Open 

source Basic Linear Algebra Subprograms (OpenBlas) (77) development libraries, separately 

either one or the other, were installed as rpm packages. For each library, NumPy and SciPy 

were build with the pip mechanism2. Compiling these two latter packages with Intel Math 

Kernel Library (MKL) (78) was also tested. Under Windows, NumPy and SciPy superpack 32 

bits with ATLAS library are available  (79,  80), and also pre-compiled packages with MKL 

library (81).

B.3. Results and discussion

As stated in the introduction, the main disadvantage of SVD is its long computation 

time. Of course the hardware itself is important but multiple steps are present between the 

human level function call and the hardware level implementation, namely the algorithm, the 

libraries  and the  use  of  hardware  instructions  (Figure  VI.3a).  Even on hardware,  we can 

2 Forcing  reinstallation  of  a  specific  python  package  can  be  done  with  ‘pip  install  --ignore-installed 
numpy==1.10.1’.
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choose to compute either on CPU or on GPU. In the following, we checked the respective 

benefits of all these parameters.

Figure VI.3: a) SVD function call diagram on CPU and GPU. MKL: Intel Math Kernel
Library; SSE: Streaming SIMD Extensions; AVX: Advanced Vector Extensions; FMA: Fused 
Multiply Add; DP: double precision; SP: single precision. b) Some Nvidia GPU used. From 

top to bottom: 8400 GS, GTX 260, GTX 660.

B.3.a. Influence of hardware under Java CPU and GPU applications

B.3.a.i. Java CPU and GPU benchmarks

In an attempt to characterise the hardware needed to compute SVD, we used CPU 

ranging over 10 years and GPU ranging over 6 years, for both desktop and laptop computers 

(Tables  VI.1 and  VI.2 and Figure  VI.3b).  According to  Figure  VI.3a,  we were  changing 
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hardware level,  supposing that  everything was optimised at  software level  and measuring 

durations at human level. Study has been restricted to Intel CPU and Nvidia GPU because no 

AMD CPU was available in the laboratory and AMD GPU are not compatible with CUDA. 

Results are presented on Figure VI.4a.

We noticed first that computation were much faster for GPU than for CPU, with 2 to 

23 s for GPU (dashed lines) and 67 to 500 s for CPU (top right end of plain lines), i.e., 22 to 

34 times speed increase, for a quite small matrix of 1025 × 1024 = 1.0e6 points. This almost 

square shape was due to construction of the Hankel matrix with a dataset containing an even 

number of points. Indeed, in order to not overwrite the corner point, it is necessary to add one 

row over columns. No significant time difference was seen with a true square matrix and thus 

this small shape difference will be neglected in the following.

Surprisingly, even a low-end GPU of 2008 (8400 GS) was surpassing a middle-range 

CPU of 2013 (Core i5 4670K) (with 23 and 67 s, respectively). This behaviour was really 

intriguing, as we would expect at least similar computation performance (82). However, when 

checking CPU activity, we observed that, with the CPU application, only one core was busy, 

what is called mono-threading. On the contrary, with the GPU application, not only GPU was 

fully busy, but also all the available CPU cores were used, what is called multi-threading. This 

difference between mono- and multi-threading is explored in Subsection B.3.b.

When increasing the square matrix size, a linear trend was visible in logarithmic scale, 

down-shifted for faster hardware (Figure  VI.4a). However, computation time jumped when 

going from a rectangular matrix (diamond symbol) to a square one (square symbol), even if 

matrix size was not so different.  This behaviour was observed for both CPU and GPU at 

1537 × 512 = 7.9e5  vs. 1025 × 1024 = 1.0e6  points,  and  similarly  for  GPU  at 

3005 × 1024 = 3.1e6  vs. 2015 × 2014 = 4.1e6  points.  This  denoted  that  the  number  of 

mathematical operations dramatically increased for a square matrix. An explanation could be 

the use of reduced SVD for rectangular matrices, not computing the last rows and columns of 

U and  VT unitary matrices (see part (I) of this work  (13)). This time jump is probably the 

reason why a rectangular matrix shape is chosen in most studies, despite a square matrix gives 

more precise singular values, i.e., more performant denoising.
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Table VI.1: Properties of CPU used for SVD under Java. Gray rows indicate hardware
used for SVD under Matlab and Python. a: ark.intel.com; b: CPU-Z 1.72; c: Performance Test 8.0.

Central Processing Unit 
(CPU)

Type
Year

a

Fabri-
cation 
(nm)

b

Number 
of cores

b

Cache 
(MB)

a

Core 
frequency 

(MHz)
b

Memory 
frequency 

(MHz)
b

Memory 
size 

(MB)
b

CPU
Mark

c

Mono-
thread 

(Mops/s)
c

Matrices 
(millions/s) 

c

Intel Pentium M 745 laptop 2004 90 1 2 1800 133 1024 444.8 577 1.41
Intel Pentium 4 530 desktop 2004 90 2 1 3000 200 1024 335.2 726 0.29

Intel Core 2 Duo E6400 desktop 2006 65 2 2 2130 333 2048 1451 849 3.72
Intel Core 2 Quad Q8200 desktop 2008 45 4 4 2330 400 4096 2001 1004 5.8
Intel Core 2 Duo T9600 laptop 2008 45 2 6 2800 400 4096 2190 1161 4.67

Intel Core i3 4005U laptop 2013 22 4 3 1700 800 4096 2551 1010 11.4
Intel Core i5 4670K desktop 2013 22 4 6 4200 1000 8192 8824 2519 31.6

Table VI.2: Properties of GPU used for SVD under Java. Gray rows indicate hardware
used for SVD under Matlab and Python. a: GPU-Z 0.8; b: Cuda-Z 0.9; #N/A: not available.

Graphics Processing Unit 
(GPU)

Type
Year

a

Fabri-
cation 
(nm)

a

Number 
of cores

a

Band-
width 
(GB/s)

a

Core 
frequency 

(MHz)
a

Memory 
frequency 

(MHz)
a

Memory 
size 

(MB)
a

Single 
precision 

float 
(GFLOPS)

b

Double 
precision 

float 
(GFLOPS)

b

CUDA 
compute 

capability
b

Nvidia Quadro FX 570 desktop 2007 80 16 12.8 460 400 256 29 #N/A 1.1
Nvidia GeForce 8400 GS desktop 2008 65 8 6.4 567 400 512 21 #N/A 1.1

Nvidia Quadro NVS 160M laptop 2008 65 8 11.2 580 700 256 23 #N/A 1.1
Nvidia Quadro FX 770M laptop 2008 65 32 25.6 500 800 512 79 #N/A 1.1
Nvidia GeForce GTX 260 desktop 2008 65 216 111.9 576 1000 896 533 67 1.3

Nvidia GeForce 820M laptop 2012 28 96 14.4 625 900 2048 315 31 2.1
Nvidia GeForce GTX 660 desktop 2012 28 960 144.2 1100 1500 2048 1707 88 3.0
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Figure VI.4: Computation times for SVD under Java, in logarithmic scale.
a) Comparison of CPU and GPU times against matrix size; ◊: rectangular matrix; □: square matrix. b) CPU times against CPU frequency. c) GPU 

times against single precision float performance. d) CPU times against mono-thread performance; light blue and light green arrows evidence 
CPU cache and CPU release year influence, respectively. CPU and GPU times are drawn with plain lines and dashed lines, respectively.

235



Chapter VI. Decreasing computation time

Thanks to the speed up obtained on GPU, it  was possible to compute a matrix of 

4097 × 4096 = 1.7e7 points in 31 s on a mid-range GPU of 2012 (GTX 660). By extrapolating 

the curve in Figure VI.4a, it may take around 6000 s on a mid-range CPU of 2013 (Core i5 

4670K). For square matrices, the slope seems similar between graphic cards. As underlined in 

Subsection  B.2.b.i,  only  64 bits  Java  versions  can  handle  matrix  sizes  above 

3005 × 1024 = 3.1e6 points. However, all the processors and some graphic cards (NVS 160M, 

FX 770M and 820M) were benchmarked using the 32 bits Java applications, which explains 

the truncated curves for this hardware.

B.3.a.ii. Java CPU performance indicator

To better  characterise  the  hardware  needed  for  Java  CPU SVD,  we  looked  for  a 

performance indicator. One would expect CPU frequency to be a good one but it was clearly 

not the case as shown on Figure VI.4b. However, mono-thread performance evidenced a trend 

and  was  thus  a  usable  parameter  as  shown  on  Figure  VI.4d.  This  is  coherent  with  our 

observation of only one active processor core under the Java CPU application.

Characteristic points are visible on these curves (Figures VI.4b and VI.4d). Light blue 

arrows highlight Pentium M 745 and Pentium 4 530, which were two processors of 2004. 

Their  frequencies  were very different  (1800 and 3000 Mhz,  respectively)  but  their  mono-

thread performance were similar. Additionally, with a bigger matrix size (yellow line), the 

Pentium M 745 was faster than the Pentium 4 530, even if the latter had a higher frequency.  

The main difference between them was their cache size, of 2 and 1 MB, respectively. The 

CPU cache is the amount of quick memory directly available inside the processor. On the 

contrary, memory plugged into motherboard is at least 10 times slower. As SVD request many 

matrix-vector multiplication, memory access is limiting.

Light green arrows evidence Core 2 Duo E6400 and Core i3 4005U, which were two 

processors  with  a  similar  frequency  but  released  in  2006  and  2013,  respectively.  No 

performance increase  was  observed using  Java  SVD CPU application  between these  two 

processors. That was also questioning as we would expect that some hardware optimisations 

happened in 7 years. These observations highlight that the best CPU for  SVD under Java will  

not necessarily be recent or have a high frequency, but rather have a high memory cache and a 

high mono-thread performance. In other words, it is better to use an old high- or middle-range 
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CPU than a new low-range one. This explains why Core 2 Duo T9600 was faster than Core i3 

4005U. The former processor is a good candidate to denoise all over the night a matrix of 

8193 × 8192 = 6.7e7 points with the 64 bits CPU Java application.

B.3.a.iii. Java GPU performance indicator

Graphic  card  computing  power  is  characterized  by  core  frequency and number  of 

cores. Despite frequency was not so different along the series, number of cores was strongly 

increasing over the years and with them the Single Precision Floating Point performance (SP 

or FP32), expressed in Giga FLoating-point Operations Per Second (GFLOPS)  (83).  Only 

high-end professional cards have a high Double Precision Floating Point performance (DP or 

FP64). General public GPU are more commonly devoted to games and lack DP. The precision 

is the number of bits used to store numbers, 32 and 64 for SP and DP, respectively (84). The 

higher the precision used, the lower the computed error. However, the errors initially present 

in the matrix can be larger than rounding errors  (85). Moreover, CULA free (8), the library 

implemented on Java GPU application could only use SP. It was thus useless to invest money 

in professional cards and we favoured general public GPU. For instance, a Nvidia Tesla P100 

GPU costs around 8 k€.  On Figure  VI.4c,  a time decreasing linear trend was obtained in 

logarithmic scale when increasing SP, which denoted a good indicator.

Another important parameter for SVD with Java GPU application, was the amount of 

memory available, both on GPU (device) and on motherboard (host). Plassman stated that 

SVD needed up to 8 n² + 12 n work storage (86), for a matrix with n columns. This value had 

to be multiplied by 4 bytes for both floating and integer numbers to be stored in memory. 

Additionally,  there  was  a  1.5-3  times  transient  overhead  during  low-rank  approximation. 

Following this rule, the largest tractable matrix was 6657 × 6656 = 4.4e7 points on a GPU 

with 2 GB of memory.

In this  subsection we have  seen  influence of  hardware  on SVD computation time 

under Java. As stated above, the time difference between CPU and GPU Java application was 

intriguing, especially when comparing the low-end graphic card 8400 GS to the middle-range 

processor Core i5 4670K. Additionally, the CPU and GPU application were mono-threaded 

and multi-threaded, respectively. This was typically an algorithm problem and we explored it 

using Matlab.
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B.3.b. Influence of algorithm under Matlab

Algorithms  are  the  mathematical  operations  involved  and  their  informatics 

implementation  to  obtain  the  relevant  function.  Plassman  compared  the  available  SVD 

algorithms  and  their  impact  on  ill-conditioned  matrices  (86).  The  simplest  computation 

method is to use eigendecomposition, but its lack of precision was demonstrated by Läuchli 

(87). The classic complete SVD uses a three steps process:

1. reduction to bidiagonal form,

2. computation of SVD on bidiagonal matrix,

3. obtention of singular vectors.

Step 1 involves Householder  reflections  and step 2 can either  use QR iteration in 

Golub-Kahan-Reinsch (GKR) algorithm  (88,  89),  divide  and conquer  method  (43,  90) or 

Multiple  Relatively Robust  Representations  (MRRR)  (91).  An alternative SVD algorithm, 

combining steps 1 and 2, is to use Jacobi rotations and convergence criteria (92).

To explore algorithm influence we focussed on two computers, one from 2008 with a 

Core 2 Quad Q8200 and a GTX 260 under Linux, and the other one from 2013 with a Core i5  

4670K and a GTX 660 under Windows. Both were in the same price segment and reflected 

middle-range equipment available at those dates. The used Matlab versions were detailed in 

Subsection  B.2.b.ii.  According  to Figure  VI.3a,  we  fixed  hardware  level  and  observed 

software level influence.

B.3.b.i. Matlab R2010a

Under Matlab R2010a, DP computation times on CPU were already smaller than those 

with Java CPU application for a matrix of 1025 × 1024 = 1.0e6 points (plain dark blue line on 

Figures VI.5a and VI.5b): 78.2 s instead of 149 s for Core 2 Quad Q8200, and 11.6 s instead 

of 67 s for Core i5 4670K. It should be noted that computation times can be divided by two 

when using single precision (plain red line), and by two again with non-complex data (not 

shown). Java CPU application used complex numbers and accordingly to the above results, it 

presumably used DP. While Java used only mono-threading, Matlab computation started with 

a multi-threaded step and kept on with a mono-threaded one. This already denoted a different 

algorithm between the two programming languages.
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Figure VI.5: a) and b) Computation times for SVD under Matlab, in logarithmic scale.
 Comparison of CPU and GPU times against matrix size for different Matlab versions. a) C2Q 
Q8200 + GTX 260 (2008). b) i5 4670K + GTX 660 (2013). c) SP performance against matrix 
size measured with GPUBench v1p7 under R2014a; the horizontal scale is larger than on a) 
and b). CPU and GPU times are drawn with plain and dashed lines, respectively. Red and 

green arrows indicate bad algorithm and CPU-GPU crossing, respectively.
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Under this Matlab version it was also possible to use GPU with CULA, which was the  

library implemented under Java GPU application. Results were similar between Java GPU 

and Matlab R2010a + CULA + SP GPU applications (dashed red line). However, as we used 

the  free  version  of  CULA,  DP  computation  was  not  allowed  on  GPU  and 

R2010a + CULA + DP (plain black line) felt back on CPU with LAPACK library in multi-

threading mode. As a consequence, strong improvement was observed against R2010a + DP 

(plain dark blue line). At this point, an order of magnitude on computation times has already 

been gained for CPU DP under Matlab.

B.3.b.ii. Matlab R2014a

Further improvement on CPU was obtained with R2014a + DP (plain yellow line on 

Figures  VI.5a and  VI.5b) being almost two times faster than R2010a + CULA + DP (plain 

black line),  and 7-33 times faster  than R2010a + DP (plain dark blue line),  depending on 

matrix  size.  This  was  explained  by  the  divide  and  conquer  approach  preferred  for  SVD 

starting from R2010b. Gu et al claimed that this algorithm was 9 times faster on bidiagonal 

matrices  (93), in agreement with our observations. The extra gain is due to the four cores 

simultaneously used on the CPU. Again SP (plain green line) was two times faster than DP. 

Small  matrices,  up  to  1025 × 1024 = 1.0e6  points  for  Core  2  Quad  Q8200,  and  up  to 

3073 × 3072 = 9.4e6 points  for  Core i5  4670K, were even computed faster  on CPU with 

R2014a + SP than  on  GPU with  R2010a + CULA + SP,  as  indicated  by  the  green  arrow. 

Unfortunately, CULA free was not compatible with R2014a, but it was nevertheless possible 

to  use  GPU  thanks  to  the  gpuArray  Matlab  function.  Surprisingly,  worst  results  were 

obtained,  with  a  GPU  time  longer  than  its  corresponding  CPU  time.  Moreover 

R2014a + gpuArray + DP  times  (dashed  yellow  line)  were  shorter  or  equal  to 

R2014a + gpuArray + SP times (dashed green line), what is in contradiction with DP/SP ratio 

on GPU (1/8 and 1/24 for GTX 260 and GTX 660, respectively). This revealed that part of the 

computation was done in DP, despite SP was called. When checking CPU and GPU activity 

during SVD, it was observed that GPU was only used at the beginning and at the end of the 

processing.  This  denoted  that  SVD  using  gpuArray  under  Matlab  R2014a  was  not  an 

optimised algorithm and that this version should be avoided.
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B.3.b.iii. Matlab R2015a

In order to check if a new version of Matlab could further improve computation times, 

we used Matlab R2015a. A slight decrease was observed on CPU from 57.8 to 52.5 s and 

from  29.1  to  27.0 s  for  R2014a + DP (plain  yellow  line on  Figures  VI.5a  and  VI.5b), 

R2015a + DP (plain brown line), R2014a + SP (plain green line) and R2015a + SP (plain light 

blue line), respectively, for a matrix of 4097 × 4096 = 1.7e7 points. Matlab R2015a was not 

compatible  with  GTX 260  GPU,  due  to  its  compute  capability  of  1.3.  A much  stronger 

improvement was obtained for the above matrix size with GTX 660 GPU: from 69.1 to 41.4 s 

and  from  52.7  to  12.9 s  for  R2014a + gpuArray + DP  (dashed  yellow  line), 

R2015a + gpuArray + DP (dashed brown line), R2014a + gpuArray + SP (dashed green line) 

and R2015a + gpuArray + SP (dashed light blue line), respectively. The latter configuration 

outperformed R2010a + CULA + SP (27.5 s, dashed red line) owing to a more pronounced 

GPU utilisation during SVD. Despite SP was faster than DP, the DP/SP = 1/24 ratio was not 

respected. However, SVD algorithm was strongly optimised in R2015a + gpuArray against 

R2014a + gpuArray. While  Core i5 4670K CPU remained more efficient for matrices up to 

1025 × 1024 = 1.0e6 points, GTX 660 GPU outperformed it in SP mode for larger matrices. 

The obtained computation times under Matlab R2015a are thus very good, both on CPU and 

GPU and were better than under Java.

B.3.b.iv. Matlab GPUBench

The cross in computation time between CPU and GPU was further investigated with 

GPUBench v1p7 (94). This code compared CPU and GPU performance against matrix size 

for matrix-vector left division, which is a linear equations system solver. Such computation 

gives much less peak SP and DP float performance than reported in Table VI.2, and is rather 

compute-bond than memory-bound. This benchmark involves lots of matrix-vector operations 

as SVD does. For both 2008 and 2013 computers, a crossing was visible between CPU and 

GPU in SP mode (Figure VI.5c). This was explained by the time needed for data goings and 

comings between processor and graphic card and between graphic card core and its memory 

(Figure  VI.3a). This is a hardware limitation. Interestingly, the cross appeared in the same 

matrix size range (1e5 to 1e7) than the one observed for SVD (Figures  VI.5a and  VI.5b). 

However,  its  position  strongly  depends  on  the  algorithm  used  and  on  the  relative  float 

performance of CPU and GPU. Low-end GPU are thus not recommended as better results are 
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obtained with CPU. In DP mode,  despite  the half  computing power of  a  Core i5  4670K 

against SP, even a GTX 660 never overpassed it (not shown).

Similarly to Java, matrix size under Matlab is limited by host and device memory. 

Nevertheless, memory consumption under Matlab is improved over Java as no overhead is 

present during low-rank approximation, pushing away maximum matrix size. Additionally, 

host memory amount is considerably reduced, down to be almost identical to device memory 

one. A GPU with 2 GB of memory is thus limited to matrices of 7169 × 7168 = 5.1e7 points.

In this subsection, we highlighted that the divide and conquer algorithm decrease SVD 

computation time by a factor of nine. SP gives an additional factor of two in computation time 

on CPU, being faster than GPU for matrices smaller than 1025 × 1024 = 1.0e6 points (Matlab 

R2014a vs. R2010a). Despite the strong improvement for SVD on CPU, middle-range GPU 

remains relevant in SP mode for matrices above this size, up to the GPU memory limit (see 

previous paragraph). For legacy hardware dating from 2008, the best compromise is to use 

Matlab R2010a and CULA free R14 with SP. For hardware dating from 2013, the best choice 

is to use the most recent Matlab version with SP and gpuArray function. CPU computation 

should especially be avoided on Matlab R2010a as evidenced by the red arrows on Figures 

VI.5a and VI.5b. Matlab R2014a is not recommended neither for GPU. Next step was to focus 

on the libraries used and their call to hardware instructions, which we explored under Python.

B.3.c. Influence of libraries and hardware instructions under Python

According to Figure VI.3a, software level is divided in algorithms and libraries. After 

changing the algorithms, i.e., the involved mathematical functions, we were interested in the 

underlying libraries,  i.e., the link between software level and hardware level.  A library is a 

collection of functions that consists of pre-written optimised code. A single library can be 

called by multiple software or by other libraries. Usually, SVD first calls LAPACK (Linear 

Algebra PACKage)  (95) which itself calls BLAS (Basic Linear Algebra Subroutines)  (96). 

While LAPACK is a high-level library, BLAS is a low-level one, optimised by CPU hardware 

specialists  (97). On GPU, CULA (8) is a unified BLAS/LAPACK package based on nvidia 

CUDA technology (51).
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B.3.c.i. ATLAS, OpenBLAS and MKL libraries

Figure VI.6: Computation times for SVD under Python with influence of libraries and
hardware optimisations for a matrix size of 1025 × 1024 = 1.0e6 points, in logarithmic scale. 

a) C2Q Q8200 + GTX 260 (2008) under Linux. b) i5 4670K + GTX 660 (2013) under 
Windows.

Two libraries are available for SVD on CPU under Python: NumPy and SciPy. Those 

packages provide algorithms which are linked to low-level libraries. Under Linux Fedora 22, 

ATLAS (76) was the default3. It was possible to replace it either with OpenBLAS (77) or with 

MKL  (98).  Results  for  a  matrix  size  of  1025 × 1024 = 1.0e6  points are  presented  on 

Figure VI.6a for our reference computer with a Core 2 Quad Q8200 and a GTX 260 (2008). 

First, we noticed that decreased computation times were obtained when moving from ATLAS 

(left column) to OpenBLAS (middle column) and MKL (right column). While OpenBLAS 

improved only Scipy results, MKL was almost twice faster than OpenBLAS for both Numpy 

and Scipy. Secondly, with ATLAS (left column), SciPy computation times (yellow and green 

3 NumPy library can be verified using ‘numpy.show_config()’.
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lines) were longer than NumPy ones (blue and red lines), both for DP and SP. This behaviour 

was surprising as SciPy was intended to do some scientific calculation. It may be improved in 

a newer ATLAS version. Third, for all libraries tested, no performance increase was visible 

with NumPy when changing from DP (blue line) to SP (red line), which may indicate a bug of 

NumPy. On the contrary, SciPy + SP computation times (green line) were almost half DP ones 

(yellow line), as expected from DP/SP computing power ratio. Finally, for this small matrix of 

1025 × 1024 = 1.0e6  points,  and  no  matter  if  ATLAS,  OpenBLAS  or  MKL library  was 

installed,  CULA + SP (hatched red  line)  was slower  on GPU than MKL + SciPy + SP on 

CPU.

B.3.c.ii. SSE and AVX hardware instructions

Despite MKL seemed very promising, it was not the only factor changing in the above 

experiment as the implemented hardware optimisations changed from SSE24 to SSE4.15. SSE 

stands for Streaming SIMD Extensions and its number reflects the version used. SIMD are 

embedded capabilities on CPU. Since 2008, a new family of instructions is available, named 

Advanced Vector Extensions (AVX). Even if the processor support them, the library does not 

necessarily call them. A history of SIMD development is available in reference  (59). Under 

windows, NumPy and SciPy superpack provided options to selectively use no SSE or SSE36. 

Results are presented on Figure VI.6b for our reference computer with a Core i5 4670K and a 

GTX  660  (2013).  When  moving  from no  SSE  (left  column)  to  SSE3  (middle  column), 

computation times were divided by three with an additional gain for SP. Moreover, when 

using  both  MKL  and  AVX2,  a  huge  performance  was  obtained,  outperforming  GPU 

computation with CULA + SP (hatched red line).

As underlined here, the time needed to perform SVD was impressively reduced by a 

factor  of  38  on  the  same CPU under  Python,  by  optimising  the  used  libraries  and  their 

hardware calls.  Indeed, decomposition of a matrix of size 1025 × 1024 = 1.0e6 points was 

done with SciPy in 7.6 s without optimisations and in 0.2 s  using MKL library and AVX2 

instructions.

4 SSE2 instruction can be checked with ‘objdump -d /lib64/python/site-packages/numpy/core/*.so |  grep -i 
ADDPD’.

5 NumPy and SciPy are compiled with ‘-xHost’ option enabling the highest SIMD instruction set available,  
which is SSE4.1 on a Core 2 Quad Q8200.

6 No SSE option is ‘numpy-1.10.1-win32-superpack-python2.7.exe /arch nosse’.
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B.3.d. Comparison of Java, Matlab and Python

B.3.d.i. Computation times

Figure VI.7: Comparison of Java, Matlab and Python SVD computation times for
a matrix size of 1025 × 1024 = 1.0e6 points, in logarithmic scale. a) C2Q Q8200 + GTX 260 

(2008) under Linux. b) i5 4670K + GTX 660 (2013) under Windows.

In previous subsections, Java, Matlab and Python software were used for their specific 

testing capabilities. But how do they compare to each other? In order to answer this question, 

Figure VI.7 shows SVD computation times for a matrix of 1025 × 1024 = 1.0e6 points, which 

is the maximum size for Java 32 bits CPU application. Similar conclusions were raised for our 

two reference computers (2008 and 2013). The measured computation times were grouped 

into three categories: unoptimised CPU (in plain blue), GPU (in hatched red) and optimised 

CPU (in plain red), from the slowest to the fastest. The first group consisted of Java CPU, 

Matlab  R2010a and Python with  default  configuration.  The second group contained Java 

GPU, Matlab R2010a with  CULA or  Matlab  R2015a with gpuArray,  depending on GPU 
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generation, and of Python with CULA. The third group referred to a recent version of Matlab 

and  to  compiled  Python,  both  with  MKL  library  and  all  available  SIMD  instructions 

activated7. For this small matrix of 1025 × 1024 = 1.0e6 points, the CPU outperformed the 

GPU,  due  to  data  transfer  delays  limiting  GPU efficiency.  However,  for  larger  matrices, 

computation was faster on GPU.

Comparing Java CPU and Python with MKL, there was a gain of 100 on the same 

CPU. This was explained as follows:

- a factor of 9 using the divide and conquer algorithm

- a factor of 3 using hardware instructions such as SSE3 or AVX2

- a factor of 2 using MKL library

- a factor of 2 using single precision instead of double precision

B.3.d.ii. Maximum matrix size

This major time improvement raise the question of the absolute maximum matrix size 

that could be computed using SVD and low-rank approximation. As underlined in Subsection 

B.3.a.iii, the limiting parameter is memory, both on GPU device side and on CPU host side. 

The crucial point is to use 64 bits applications and a GPU with as much memory as possible. 

Nevertheless,  this  will  depend on the way memory is  allocated and released during SVD 

process.  Our  late  investigations,  on  a  GTX  1070  with  8 GB  of  memory  and 

7040 SP GFLOPS, gave the following maxima on our 87Sr FID. The computation times were 

the sum of SVD and low-rank steps. To maximize the latter, the operation was performed with 

all singular values, that is to say without any denoising.

- Java GPU: 9217 × 9216 = 8.5e7 complex points in 150 + 32 = 182 s.

- Matlab  R2018a + gpuArray + SP:  12289 × 12288 = 1.5e8  complex  points  in 

188 + 4 = 192 s.

- Python + CULA + SP: 15219 × 15218 = 2.3e8 complex points in 594 + 6 = 600 s.

Under Python, it was thus possible to apply SVD on the full  87Sr FID, without any 

truncation.  For  comparison,  a  Nvidia  P100  GPU,  with  4670 DP GFLOPS  and  16 GB of 

memory,  completed  the  full  SVD of  a  20000 × 20000 = 4.0e8 real  matrix  in  90 s,  with  a 

highly optimised CPU-GPU algorithm (54). This result was really impressive as the authors 

7 ‘version('-blas')’ under Matlab gives MKL 11.0.5 for R2014a and MKL 11.1.1 for R2015a.
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obtained a faster computation on a much larger matrix with less computing power and double 

precision. There is thus plenty of place to improve SVD denoising.

Directly comparing Java,  Matlab and Python was a difficult  task as they were not 

optimised  in  the  same  way  and  it  was  hard  to  check  what  was  hidden  under  the  hood. 

However, Java GPU was less performant, both in speed and in matrix size. Better results may 

be  obtained  with  optimised  libraries.  While  Matlab  was  faster,  the  memory  usage  was 

limiting. Python computation was not as fast but could handle the biggest matrix. This time 

advantage for Matlab was explained by a better CPU usage during SVD on GPU. However 

memory was more finely managed under Python. Our results suggested that the key parameter 

was not the software and the programming language, but rather the used libraries and the calls 

to hardware instructions.

An  additional  advantage  of  Python  is  that  it  is  free  of  charge  and  rather  easy  to 

program. In order to compute SVD in a minimum amount of time, we recommand to install a 

Python  distribution  with  MKL library  included,  such  as  Anaconda  (99),  and  to  add  the 

following libraries: SciPy (80), scikit-cuda (74), PyCUDA (75), and nmrglue (100) for NMR 

data. In addition, CULA (8) and CUDA toolkit (51) packages are necessary. We provide in file 

svd_auto.py of (71) an optimised SVD function using either the CPU or the GPU, depending 

on the matrix size. Our tests suggested a minimum value of 4096 columns or rows to switch 

from the CPU to the GPU. This default value will depend on the hardware used and can be 

checked by running directly the program. The code is designed to be as simple as possible, 

with  only  one  necessary  parameter,  namely  the  matrix  two-dimensional  array.  Automatic 

thresholding is applied using Malinowski’s significant level indicator (40). This SVD function 

is also suitable to be used in PCA and related data mining techniques. In addition, we provide 

a second program (file denoise_nmr.py of (71)), in charge of importing and exporting Bruker 

NMR data and to prepare the matrix transferred to SVD program. Again, the only requested 

parameter is the data directory.

B.4. Conclusion

This article separated in two parts focussed on SVD, which is used both for spectra 

denoising and as part of PCA data mining. In the first part, we gave theoretical background 

and found the minimum experimental signal-to-noise ratio needed to have a correct denoised 

spectrum. We highlighted the overestimation of denoised Gaussian peaks. In this second part, 
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we  focussed on the computation time needed for SVD treatment. While our first attempts 

under Java CPU were extremely slow even with a recent processor, their counterparts with 

graphic cards were extraordinary fast. This unexpected difference led us to check if different 

Matlab versions could improve this situation. The divide and conquer algorithm was very 

helpful.  Additional tests  were undergone under Python to check the influence of software 

libraries  and  of  SIMD  hardware  instructions  call.  Combining  these  optimisations, 

computation times on processor were even better than on graphic cards, being 100 times faster 

than our first tests under Java CPU, for a matrix of 1025 × 1024 = 1.0e6 points. Despite this 

approach is generalisable to any intensive computation, specific time gain will depend on the 

involved mathematical operations. The take home message is thus to update software and to 

use optimised libraries and especially Intel MKL if available. This choice should be preferred 

against hardware updates.

However, for matrix above  4097 × 4096 = 1.7e7 points and middle range hardware, 

GPU gave better results, up to GPU memory limit. We thus provided Python programs to 

apply SVD either on CPU or on GPU, and to denoise NMR FID. Further improvement could 

be obtained with mixed CPU/GPU optimised code,  i.e., hybrid computing  (101). However, 

such an approach is not suitable for non-computer-scientists people. Using clMAGMA library 

(102),  combining divide and conquer on both CPU and GPU could be a good alternative 

(103). In this case, it would be possible not only to use Nvidia GPU with CUDA but also 

AMD GPU with OpenCL.

This study has given strong background and optimisations for experiments involving 

SVD, either for denoising or for PCA. It may thus help scientists who want to use efficiently 

this technique, which is expected to be widely used in the forthcoming years.
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C. Additional computation tests

C.1. Influence of algorithm precision

In our SVD denoising program, we choose to use Single Precision (SP) to reduce SVD 

computation time (Subsection B.3.d.i). Unfortunately, this has an impact on cumulative errors. 

By decomposing and reconstructing a matrix, without low-rank approximation, and without 

any computation error,  all  the elements from the reference matrix (yi
ref) and the processed 

matrix (yi
proc) should be identical,  in the limit  of 2-23 ≈ 1×10-7 for SP and 2-52 ≈ 2×10-16 for 

Double Precision (DP) (104). We checked the relative error (rel) according to Equation VI.1 

on  matrices  with  increasing  integers  converted  to  real  or  complex  floats  at  the  desired 

precision.

rel=
max|y i

proc− y i
ref|

max|yi
ref|

VI.1

This measurement highlights the error introduced by computation, and compares it to 

the highest value of the matrix.  A relative error  rel = 4×10-5 was measured on CPU for a 

matrix of 1025 × 1024 = 1.0×106 SP real points, whereas a value 5 times higher,  rel = 2e-4, 

was observed on GPU for the same matrix. This highlighted the differences between MKL 

and CULA algorithms, for CPU and GPU, respectively. The situation got worse for larger 

matrices of 8193 × 8192 = 6.7×107 SP complex points with  rel = 1×10-2 on both CPU and 

GPU.  For  comparison,  rel = 4×10-12 was  obtained with  DP on CPU for  the  same matrix. 

Despite an error of 1 % should not be a problem for many applications, high dynamic range 

spectra, i.e., with both intense and tiny peaks, may require DP and thus larger memory amount 

and  longer  computation  times  for  relevant  results.  It  should  be  noted  that  the  above 

measurement is a worst case matrix with a very high dynamic range and no data structure, 

except  a  linear  increase.  Further  tests  are  needed  on  real  or  simulated  spectra  to  better 

characterise the impact of computation errors on quantification.

C.2. Heterogeneous computing

In order to optimise SVD computation, it would be desirable to activate CPU and GPU 

simultaneously,  so-called  heterogeneous  computing  (101).  CULA library  requires  CUDA 

compatible devices  (51),  i.e., only GPU from Nvidia manufacturer, but neither GPU from 

AMD manufacturer nor CPU. OpenCL (52) is a relevant alternative, as it can be executed on 
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all brands of CPU and GPU (Figure VI.8). However, programming directly in OpenCL or in 

C++ is outside of our competence domain. Moreover, each library has its own syntax for 

SVD, which has to be checked into documentation, internet forums, or even program sources. 

For instance, SVD can either use Golub-Kahan-Reinsch (GKR) algorithm (88,  89) or divide 

and conquer method (43, 90), denoted as xgesvd or xgesdd instructions, respectively, where x 

can be replaced by  s,  c,  d, or  z, stating for real with single precision, complex with single 

precision, real with double precision, or complex with double precision, respectively  (69). 

GKR is based on QR decomposition, where Q is an orthogonal matrix and R is an upper 

triangular  matrix  (5).  Furthermore,  OpenCL driver installation problems can occur.  Under 

Linux CentOS, it was possible to activate the three available OpenCL devices of a notebook 

(CPU, Intel integrated GPU, and AMD discrete GPU) only by retrograding from version 7.4 

to 7.2 and by blocking updates of Xorg and Gnome packages.

Figure VI.8: Software to hardware access, using different backends (105).
API: Application Programming Interface; CPU: Central Processing Unit; MIC: Many 

Integrated Cores; GPU: Graphics Processing Unit.

Table VI.3: Comparison of SVD libraries under C++ and Python.
Program Version C++

SVD
Python

SVD
CPU CUDA OpenCL Simul-

taneous
Python
speed

Armadillo (106) 9.100.5 yes no yes no no no not available

Arrayfire (107) 3.5.1 yes yes yes yes yes no slow

CLmagma (102) 1.3.0 yes no yes no yes yes not available

CULA (8) R18 yes yes no yes no no fast

Magma (108) 2.4.0 yes yes yes yes no yes not working

MKL (7) 2018.0 yes yes yes no no no fast

ViennaCL (109) 1.7.1 yes yes yes yes yes yes not tested

Our choice was to focus on high-level OpenCL libraries under Python, to improve 

hardware  modularity  and  operating  system  independence.  Some  available  libraries  are 
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presented in Table  VI.3. Arrayfire was chosen for its ability to access  CPU, OpenCL and 

CUDA backends (107). Despite promising, computation was too slow to be usable and it was 

not simultaneous on the different devices. ViennaCL (109) may be an interesting alternative, 

but it has not yet been tested.

In Subchapter C, the effect of single precision was checked, and hybrid computing was 

tested.  For now, MKL and CULA are still  the faster choices for SVD denoising with our 

program.

D. Chapter conclusion

Computation time of SVD was analysed in Subchapter  B. A gain of 9 was obtained 

with the divide and conquer algorithm, of 3 with SSE3 or AVX2 hardware instruction call, of 

2 using Intel MKL library, and of 2 using single precision. An overall SVD computation time 

decrease of 100 was thus available on the same CPU, including 10 years old hardware. This 

demonstrated that updating hardware is not the ultimate solution, but that first optimising the 

software  layer  is  preferable.  Our  tests  suggested  that  for  matrices  smaller  than 

4097 × 4096 = 1.7×107,  CPU can  overpass  GPU,  due  to  GPU data  transfer  latencies.  For 

larger matrices, computation was faster on GPU. The ultimate matrix size limit is given by 

GPU memory size. Therefore, SVD denoising of a 15000 × 15000 = 2.3×108 points matrix 

was achieved in 600 s under Python with a Nvidia 8 GB GTX 1070 GPU. In Subchapter C, 

algorithm  precision  was  checked  by  applying  SVD  and  matrix  reconstruction  without 

reducing the  number  of  singular  values.  For  a  matrix  of  8193 × 8192 = 6.7×107 complex 

points, a relative error of 1 % was found on a worst case matrix with single precision. This 

might be problematic for large dynamic scale matrices. In such a case, double precision has to 

be  preferred,  thus  increasing  computation  time,  whereas  it  is  not  necessary  for  standard 

matrices.  Some  work  to  use  heterogeneous  computing  and  OpenCL  has  been  started. 

Unfortunately, the tested libraries did not improved computation time and so far MKL and 

CULA are still the best compromise. Further decrease of computation time can be achieved 

using sparse matrices  (45). Alternatively, computational complexity can be lowered through 

uncoiled random QR denoising  (4),  which is  faster  and robust  to  the number of  selected 

components in denoised spectra.
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Chapter VII. General conclusion

Solid-state NMR is a domain in constant evolution.  Numerous improvements have 

been achieved among the  years,  either  instrumental  or  methodological  (Chapter  I).  Static 

magnetic field strength has been continuously increasing. Ultra-fast Magic Angle Spinning 

(MAS) is now reaching 170 kHz on development probes. Additionally, new pulse sequences 

have  been  developed,  allowing  homo-/heteronuclear  decoupling  or  recoupling.  All  these 

improvements allowed to improve  1H resolution and to increase sensitivity of other nuclei 

acquired by indirect detection. Spectra of more and more complex molecules such as large 

proteins were deciphered.

Despite  solid-state  NMR  is  a  very  powerful  characterisation  technique,  its  main 

drawback is its lack of sensitivity. This is especially noticeable for nuclei with a low Larmor 

frequency, which decreases macroscopic magnetisation. Secondly, strong anisotropies such as 

large quadrupolar effect broaden peaks over several hundreds of kilohertz and flood them into 

experimental  noise.  A third  sensitivity  case  concerns  low-abundant  species,  either  due  to 

natural abundance of the studied nuclei, to the low content of these species into the sample, or 

to  sample amount.  Since  2010,  Dynamic  Nuclear  Polarisation  (DNP) has  gained a  lot  of 

interest to study sensitivity-limited materials. However, this is not the unique solution and 

other methodologies can be used, especially in laboratories where such expensive equipments 

are not available, or in combination with DNP to further tackle the detection limit. In France, 

two  800 MHz  DNP  NMR  are  accessible  through  the  NMR  very  high  fields  research 

infrastructure (Lyon and Paris, FR 3050).

In this dissertation, we focussed on three complementary aspects of sensitivity, namely 

instrumentation, fast acquisition and signal processing. Instrumentation step was investigated 

in Chapter II by mean of microcoils allowing to study minute sample quantities (Magic Angle 

Coil  Spinning,  MACS).  Two  approaches  were  chosen  for  fast  acquisition:  Carr-Purcell-

Meiboom-Gill  echoes  (CPMG,  Chapter  III)  for  one-dimensional  spectra  or  for  direct 

dimension  of  multi-dimensional  (nD)  experiments,  and  Non-Uniform  Sampling  (NUS, 

Chapter IV) for indirect dimensions of nD experiments. Signal processing was performed by 

spectra denoising with Singular Value Decomposition (SVD, Chapter V). Computation time 

was analysed on Central Processing Unit (CPU) and on Graphical Processing Unit (GPU) in 

Chapter VI.
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We applied this methodology to materials of chemical interest. The first category of 

samples  was  related  to  biological  materials  applications  with  hydroxyapatite,  the  main 

inorganic component of  mammal’s bones and teeth, and the starting point of many kidney 

stones. Depending  on  synthesis  condition,  hydroxyapatite  can  be  crystalline  or  partly 

amorphous, and substituted with various ions such as carbonates. Gelatin, the denatured form 

of the main protein of bone, was chosen for NUS as a sample with very narrow lines due to its 

mobility. The second category concerned sol-gel chemistry and in particular hybrid organic-

inorganic  silica.  Finally,  91Zr  and  87Sr  quadrupolar  nuclei  were  used  for  CPMG  and 

computation, respectively. These nuclei were involved into bioactive glasses.

In  Chapter II, microcoils were used to study microquantities of sample with a mass 

around m ~ 100-200 µg. After reviewing the available options into the literature, we detailed 

the necessary parameters to prepare microcoils. Wire diameter has to be minimised as much 

as possible to decrease eddy currents, in the limit of 5 times the skin depth at the frequency of  

interest.  In  order  to  obtain  high radio-frequency field  homogeneity,  the  sample  has  to  be 

confined to only the inner half length of the microcoil. We provided a LibreOffice sheet able 

to calculate all the necessary parameters for solenoids, with automatic warnings for incorrect 

values.  A  1H 2D spectrum was obtained on a fragment  of sea urchin spine placed into a 

solenoid microcoil.  31P acquisition was compared on Transmission Line Resonators (TLR) 

and on solenoids, with a time gain of 4.0 and 6.8, respectively. PARIS / PISSARRO pulse 

sequences allowed to gain 16 % of signal against one-pulse experiments. In order to limit 

microcoil degradation by radio-frequency, we implemented TEDOR low power experiment, 

in absence of microcoil, that allowed us to acquire a {1H}-31P 2D spectrum. However, a broad 

component  on  the  spectrum was  missing,  maybe  due  to  relaxation,  and  further  tests  are 

needed to improve this pulse sequence. D-HMQC would be a good alternative. Despite TLR 

are easy to manipulate, their RF efficiency is lower than solenoids, which are hand-made. 

TLR are more complicated to design and have to be printed externally. An interesting feature 

of TLR is a radial field, that could allow imaging experiments. A new PhD is starting on 

microcoils.

In Chapter III, we enhanced solid-state NMR sensitivity during acquisition step, with 

the help of (Q)CPMG echoes on direct dimension of spectrum. We highlighted that individual 

echo apodisation and global apodisation are crucial steps to enhance the spectrum. Artefacts 

can occur in case of wrong delays calibration, and of incorrect synchronisation between echo 
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and MAS rate. A gain of 10 in sensitivity and thus a gain of 100 in time was not uncommon, 

at least for quadrupolar nuclei with up to 600 echoes. In case of a few number of echoes, a 

time gain of 2-3 was rather obtained. Three different approaches were investigated: spikelets, 

superposition and SVD denoising. The first solution favoured overall peak shape detection, 

with narrow peaks regularly spaced and overpassing noise. The second solution reconstructed 

the overall  shape,  but tails  of shapes were difficult  to detect,  whereas tiny spikelets  were 

easily  discernable.  Both  techniques  were  sensitive  to  relaxation  rate  of  different  species, 

leading  to  non-quantitative  results.  By  combining  partial  sum  and  SVD  denoising,  we 

proposed  a  new  way  to  reconstruct  a  more  quantitative  shape.  We  developed  a  Python 

program called from TopSpin and able to process data with the three different methods.

In Chapter IV, we were interested in indirect dimensions, for two or higher dimensions 

experiments.  In  conventional  experiments,  acquisition times are  quickly  increasing,  and a 

compromise has to be chosen between resolution (AQ > 3 T2
*) and sensitivity (AQ = 1.26 T2

*). 

NUS reconciles  these two concepts.  In  order  to  decrease artefacts,  sampling  scheme was 

carefully optimised with Poisson scheme, and reconstruction algorithms were compared, in 

particular using maximum entropy and compressed sensing. In solid-state NMR, sampling 

scheme was adapted, for instance by using hybrid sampling. We obtained a gain of ~ 4 in 

acquisition time on 2D experiments, without degrading the overall spectral  shape.  Further 

gains  could  be  obtained  on  3D  or  higher  experiments.  Finally,  we  provided  some 

implementation details to use NUSscore, MDDnmr, and TopSpin software.

In  Chapter  V, SVD denoising  was  investigated.  After  reminding  some  definitions 

concerning signal-to-noise ratio and limits of detection and quantification, we focussed on 

matrix shape and on thresholding. Best denoising was obtained on square matrices in time 

domain and with automatic thresholding provided by Malinowski’s indicator.  Influence of 

Lorentzian  and  Gaussian  peak  shape  was  compared,  and  we  proved  that  peak  area  was 

systematically overestimated by ~ 20 % in the latter case. Preprocessing had an impact on 

peak  detection,  and  cosine  apodisation  revealed  to  be  a  better  option  than  exponential 

weighting.  Whatever  peak  width  and  shape,  peak  height  had  to  be  twice  higher  than 

maximum of  noise for  automatic  thresholding.  As quantitative  results  required  a  factor  3 

between peak height and maximum of noise for standard processing, this corresponded to a 

time  gain  of  2.3.  SVD  denoising  and  signal-to-noise  measurements  with  the  different 

formulae  have  been  implemented  into  Python  software  and  can  be  called  from TopSpin 
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software.  Additional  tests  were  undergone  on  2D  spectra  and  highlighted  artefacts  and 

amplitude distortion during the process. Further optimisation steps are thus necessary before 

confident use on 2D spectra.

In Chapter VI, we tried to understand why SVD computation time could vary so much 

between Java, Matlab and Python languages, and why a low-end GPU of 2008 was surpassing 

a middle-range CPU of 2013 under Java. Different layers were investigated from the scientist 

SVD  call  to  the  machine  execution.  Firstly,  algorithm layer  used  different  mathematical 

operations,  either  or  not  with  the  multithreading  ‘divide  and  conquer’  approach.  The 

algorithm was then calling a library, more or less optimised depending on program version 

used. Intel MKL and CULA libraries, for CPU and GPU, respectively, were the faster ones 

tested. Finally, the library was benefiting – or not – from hardware instructions such as SSE3 

and AVX2. Single precision was also a key point to gain a factor 2 in time. All in all,  a 

computation  time  gain  of  100  was  achieved  on  the  same  matrix  and  hardware.  In  the 

continuation of this article, we focussed on computation errors that may be problematic for 

high dynamic range spectra denoised with single precision. Heteregeneous computing was 

also tested.

Table  VII.1 summarises  the  time  gains  achieved  with  the  studied  methods.  By 

combining all  of  them,  except  computation  time,  acquisition  time could  be  decreased  by 

~ 140.  Moreover,  these  approaches  could  easily  be  combined  with  DNP,  which  gives  an 

impressive enhancement, to further tackle the sensitivity limit of solid-state NMR.

Table VII.1: Time gain measured for each enhancement method.
Domain Instrumentation Fast acquisition Signal processing

Method MACS CPMG NUS SVD CPU/GPU

Time gain ~ 5 ~ 3-100 ~ 4 ~ 2.3 ~ 100

And now, what will I do from all this time, what will be my life? The question is very 

relevant, as we have gained a lot of acquisition  and processing  time.  Reducing acquisition 

time allows either to analyse more samples in a given time or to focus on more complex ones 

with  further  characterisations.  Clearly,  this  is  a  challenge  to  circumvent  intrinsic  low 

sensitivity  of  solid-state  NMR.  However,  such  developments  require  a  lot  of  time,  and 

programming is an important need to adequately process the resulting datasets. Hence, the 

NMR spectroscopist job is evolving from a chemical characterisation support to an expert in 

programming, signal processing and hardware pitfalls.
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[Augmentation de la sensibilité de la RMN en phase solide: instrumentation, acquisitions 

rapides et traitement du signal]

Résumé :
La  Résonance  Magnétique  Nucléaire  (RMN)  en  phase  solide  souffre  d’une  faible  sensibilité 
intrinsèque, malgré les récentes améliorations. Les approches instrumentales, d’acquisition rapide et  
de traitement du signal ont été examinées afin de remédier à ce défaut le plus efficacement possible.  
Premièrement, les microbobines (bobine en rotation à l’angle magique, MACS) ont été placées dans 
un rotor et couplées inductivement à la bobine de la sonde standard. Un gain en temps de ~ 5 a été 
obtenu sur des microquantités avec une masse m ~ 100-200 µg. Deuxièmement, le temps d’acquisition 
a été  diminué grâce aux échos Carr-Purcell-Meiboom-Gill  (CPMG) pour l’acquisition directe.  Un 
traitement  du  signal  adéquat  est  nécessaire  pour  tirer  le  meilleur  de  cette  technique.  Nous  avons  
produit  un programme Python pour  traiter  les  données  soit  en utilisant  les  méthodes standard de 
peigne ou de superposition, soit avec une méthode de débruitage. Un gain en temps de ~ 3-100 a été 
possible. Troisièmement, l’échantillonnage non-uniforme (NUS) a été choisi comme un moyen de 
diminuer  le  temps  d’acquisition  des  dimensions  indirectes  des  expériences  multi-dimensionnelles. 
L’échantillonnage  Poisson  s’est  avéré  le  meilleur  choix  pour  limiter  les  artefacts,  tandis  que  
l’échantillonnage hybride s’est révélé efficace sur les spectres présentant à la fois des pics larges et  
fins.  Un  gain  en  temps  de  ~ 4  a  été  obtenu.  Quatrièmement,  les  spectres  ont  été  traités  avec  le 
débruitage  par  décomposition  en  valeurs  singulières  (SVD).  Nous  avons  mis  en  avant  une 
surestimation des pics gaussiens de ~ 20 %. Le seuillage automatique a été mis en place, donnant un 
gain en temps de ~ 2,3. Enfin, le temps de calcul a été étudié et diminué par ~ 100 en combinant 
l’algorithme  "diviser  pour  mieux  régner",  des  bibliothèques  optimisées,  l’appel  aux  instructions 
matérielles et  la  simple  précision.  Une comparaison entre  les  unités centrales  (CPU) et  les  cartes  
graphiques (GPU) a été fournie.

Mots clés : [RMN en phase solide, sensibilité, microbobines MACS, échos CPMG, échantillonnage 
non-uniforme NUS, débruitage SVD, carte graphique]

[Increasing  solid-state  NMR sensitivity:  instrumentation,  fast  acquisitions  and signal 

processing]

Abstract:
Solid-state Nuclear Magnetic Resonance (NMR) is suffering from an intrinsic low sensitivity, despite 
recent  improvements.  Instrumentation,  fast  acquisition  and  signal  processing  approaches  were 
investigated to circumvent this drawback as far as possible. Firstly, microcoils (Magic Angle Coil  
Spinning, MACS) were placed into rotors and inductively coupled to the standard probe coil. A time 
gain of ~ 5 was obtained for microquantities with a mass m ~ 100-200 µg. Secondly, acquisition time 
was  decreased  by  mean  of  Carr-Purcell-Meiboom-Gill  (CPMG)  echoes  for  direct  acquisition.  
Adequate  processing is  required to  get  the  best  enhancement from this technique.  We provided a 
Python software to process data either using standard spikelets or superposition methods, or with a  
denoising method. A time gain of ~ 3-100 was possible. Thirdly, Non-Uniform Sampling (NUS) was 
chosen as a way to decrease acquisition time of indirect dimensions of multi-dimensional experiments. 
Poisson sampling revealed to be the best choice to limit artefacts, whereas hybrid sampling proved to  
be efficient on spectra with both broad and narrow peaks. A time gain of ~ 4 was achieved. Fourthly, 
spectra  were  processed  with  Singular  Value  Decomposition  (SVD)  denoising.  We  highlighted  an 
overestimation of Gaussian peaks by ~ 20 %. Automatic thresholding was implemented, giving a time 
gain of ~ 2.3. Finally, computation time was  decreased by ~ 100 by combining ‘divide and conquer’ 
algorithm, optimised libraries, hardware instruction calls and single precision. A comparison between 
Central Processing Units (CPU) and Graphical Processing Units (GPU) was provided.

Keywords:  [Solid-state  NMR, sensitivity,  microcoils,  CPMG echoes,  non-uniform sampling NUS, 
SVD denoising, graphic card]
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