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Abstract

The problem of data privacy – protecting sensitive or personal data from discovery – has been

a long-standing research issue. In this regard, differential privacy, introduced in 2006, is con-

sidered to be the gold standard. Differential privacy was designed to protect the privacy of

individuals in statistical datasets such as census datasets. Its widespread popularity has led to

interest in applying differential privacy to new domains for which it was not originally designed,

such as text documents. This raises questions regarding the interpretability of differential pri-

vacy’s guarantees, which are usually expressed in the language of statistical disclosure control.

In addition, it escalates the need for answers to core issues currently debated in the differential

privacy community: how does the application of differential privacy protect against inference

attacks? How can the use of noise-adding mechanisms guarantee the release of useful informa-

tion? And how can this privacy-utility balance be achieved?

The goal of this thesis is to address these foundational questions. Firstly, we approach the

problem of interpretability by exploring a generalisation of differential privacy for metric do-

mains known as metric differential privacy or d-privacy. Metric differential privacy abstracts

away from the particulars of statistical databases and permits reasoning about privacy on more

general domains endowed with a metric. This allows differential privacy’s guarantees to be un-

derstood in more general terms which can be applied to arbitrary domains of interest, including

text documents.

Secondly, we propose to study the key questions surrounding privacy and utility in differen-

tial privacy using the Quantitative Information Flow (QIF) framework, an information-theoretic

framework previously used to analyse threats to secure systems. In this thesis, we repurpose QIF

to analyse the privacy and utility guarantees provided by differentially private systems modelled

as probabilistic channels. Using information flow analysis we examine the privacy characteristics

of d-private mechanisms, finding new ways to compare them with respect to the protection they

afford against arbitrary adversarial threats; we examine the utility characteristics of d-private

mechanisms, discovering a new characterisation for optimal mechanisms and a proof of the uni-

versal optimality of the Laplace mechanism; and we re-examine the well-known privacy-utility

trade-off for d-private mechanisms, finding new models for describing the relationship between

privacy and utility via correlations.

The second part of this thesis is dedicated to the demonstration of the practical applicability

of d-privacy to novel and complex domains. We present three new sample applications of d-

privacy: to text document privacy, statistical utility and private nearest neighbour search. In

each of these applications, we show how the use of d-privacy, and an understanding of the
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metrics on the domain, permit reasoning about privacy and utility. This opens up new methods

of exploring privacy in these domains, as well as providing guidelines for further applications of

differential privacy to new domains.



Résumé

Le problème de la confidentialité des données – la protection des données sensibles ou person-

nelles – est un problème de recherche de longue date. La confidentialité différentielle, intro-

duite en 2006, est considéré comme la référence en la matière. Elle a été conçue pour protéger

la confidentialité des données privées dans des jeux de données statistiques tels que les ceux

de recensement. Sa grande popularité a conduit à un interêt à l’appliquer dans de nouveaux

domaines pour lesquels elle n’était pas originellement conçue, tels que des documents de texte.

Cela soulève des questions sur l’interprétabilité des garanties apportées par la confidentialité

différentielle, qui sont en général exprimées dans le language de contrôle statistique de la divul-

gation. De plus, cela accentue le besoin de répondre à des problèmes centraux au débat actuel

au sein de la communauté de la confidentialité différentielle: comment l’application de la confi-

dentialité différentielle protège-t-elle contre les attaques d’inférence? Comment l’utilisation de

mécanismes d’ajout de bruit peut-elle garantir la publication d’information utile? Et comment

l’équilibre “privacy-utility” peut-il être obtenu?

Le but de cette thèse est de répondre à ces questions de fond sur la confidentialité différen-

tielle. Tout d’abord, nous abordons le problème de l’interprétabilité en explorant une général-

isation de la confidentialité différentielle pour des espaces métriques, connue sous le nom de

confidentialité différentielle métrique, ou “d-privacy”. La confidentialité différentielle métrique

fait abstraction des détails des bases de données statistiques et permet de raisonner sur la confi-

dentialité de domaines plus généralisés, dotés d’une distance. Cela permet une compréhension

plus générale des garanties de la confidentialité différentielle, qui peut être appliquée à des

domaines d’interêt arbitraire, y compris les documents de texte.

Deuxièmement, nous proposons l’étude des questions clés autour de la confidentialité et la

“utility” pour la confidentialité différentielle, en utilisant le système de Flot d’Information Quan-

titative (Quantitative Information Flow, QIF), un système de théorie de l’information actuelle-

ment utilisé pour l’analyse de menaces sur des systèmes de sécurité. Dans cette thèse, nous réu-

tilisons QIF pour analyser les garanties de confidentialité et de “utility” fournies par des systems

de confidentialité différentielle modélisés sous forme de canaux probabilistiques. En utilisant

l’analyse de flot d’information, nous examinons les caractéristiques de confidentialité des mé-

canismes d-privacy, trouvant de nouveaux moyens de les comparer sur le plan de la protection

qu’ils offrent contre des menaces arbitraires; nous examinons les caractéristiques de “utility”

des mécanismes d-privacy, découvrant une nouvelle caractérisation pour les mécanismes opti-

maux et une preuve de l’optimalité universelle du mécanisme de Laplace; et nous examinons

de nouveau le fameux compromis “privacy-utility” pour les mécanismes d-privacy, trouvant de
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nouveaux modèles pour décrire la relation entre confidentialité et “utility” via des correlations.

La deuxième partie de cette thèse est consacrée à la démonstration de l’applicabilité pratique

de la d-privacy dans des domaines nouveaux et complexes. Nous présentons trois nouveaux

domaines d’application de la d-privacy: la confidentialité des document de texte, l’utilité statis-

tique et la recherche confidentielle de plus proche voisin. Dans chacune de ces applications,

nous montrons comment l’utilisation de la d-privacy, et une compréhension de la métrique sur

le domaine, permet de raisonner sur la confidentialité et l’utilité. Cela ouvre à de nouvelles

méthodes pour explorer la confidentialité dans ces domaines, et pour guider l’application de la

confidentialité différentielle à de nouveaux domaines.
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1
Overview

Data privacy is about the right use of our personal information – how it is stored, how it is

handled – and how it can be leaked. It is the latter that distinguishes privacy from security;

while passwords can be changed or credit cards re-issued, privacy, once lost, cannot be so easily

recovered. Thus, the need for sound techniques for preserving privacy is even more critical.

In this thesis we address some foundational issues in data privacy. Our focus is on a particular

flavour of data privacy – differential privacy – which is used to enact privacy in digital systems

such as census databases. Differential privacy has many desirable properties which have made

it a popular choice for data privacy. However, its definition is tied to statistical databases, as

are many of the narratives and subtle understandings which its early proponents developed

to advocate for its use. Metric differential privacy1 – a generalisation of differential privacy –

abstracts away from the particulars of statistical databases and permits reasoning about privacy

on domains endowed with a metric. Our goal in this thesis is to explore and extend metric

differential privacy by providing tools for reasoning about privacy and utility in complex metric

domains, and by demonstrating its application in new domains of interest.

1.1 Background to differential privacy

The right to privacy is recognised in many countries around the world, and the basic building

blocks for protecting these rights are enacted in law. Before the digital era, the large-scale

collection and dissemination of personal data was confined to census bureaus and the release

of population statistics. The idea of these statistics being used to enact privacy breaches was

1Metric differential privacy is also known as d-privacy or generalised differential privacy.



1.1 Background to differential privacy 2

not unthought-of;2 indeed they were characterised and documented by the statistician Tore

Dalenius [1]. However, these sorts of breaches were thought to be infeasible due to the amount

of information an attacker would need in order to correlate any released statistics with particular

individuals. Up until the early 2000’s, anonymisation of data was considered by many to be

sufficient for the protection of individuals’ privacy, and this understanding is reflected in the

privacy laws that still stand today in many countries including Australia and the United States.3

Early in the 2000’s some now infamous privacy breaches brought to light the weaknesses of

anonymisation techniques in the face of large-scale access to publicly available datasets. In 2002,

Latanya Sweeney identified the medical data of the Massachusetts governor in de-identified hos-

pital records by linking them with information freely available in a voter database [2]. In 2006,

Netflix released an anonymised dataset of movie ratings in a competition designed to improve

their recommendation engine. This dataset was famously attacked by researchers Shmatikov

and Narayanan [3] who exploited publicly available information to deanonymise individuals in

the dataset – one of whom sued Netflix and won.4 More recently, the US Census Bureau re-

examined census data from 1940 and was able to reconstruct the census details of individuals

using now-available information and data processing techniques [4]. These attacks were made

possible by the scale of publicly available data on the internet, and this opened up the need for

new privacy protection techniques which did not rely on weak assumptions about an attacker’s

capabilities or background knowledge.

In 2006, differential privacy emerged to solve the problem of privacy for individuals in struc-

tured datasets (such as census datasets) for whom data releases could pose privacy risks. Dwork

et al. [5] recognised the inevitability of privacy leaks in any useful data release, and instead

proposed a privacy definition based on ‘plausible deniability’ for individuals, parametrised by an

‘epsilon’ value which determines the extent to which plausible deniability is offered. Differential

privacy is usually formalised using equations of the form

Pr(K(x) ∈ Y ) ≤ eε×Pr(K(x ′) ∈ Y ) for all Y ⊆ Y and x ∼ x ′ , (1.1)

where K is a mechanism which delivers a noisy output, x and x ′ are input databases and ∼ is an

‘adjacency’ relation between datasets that distinguishes datasets differing in a single individual.

The privacy provided by (1.1) is that any output in Y which is released could just as plausibly

have been produced by dataset x (containing some individual) as from dataset x ′ (without said

individual). Thus, it is argued, an individual’s presence in a dataset is protected. This sort of

guarantee provides some uncertainty to an attacker – not enough to prevent all inferences, but

enough to encourage an individual to relinquish their data with the promise that any attacks

against their sensitive data could be claimed to be the result of statistical noise.

Warner’s ‘randomised response protocol’ [6] is perhaps the earliest example of a privacy-

preserving algorithm in this spirit. In this protocol, survey participants first flip a coin – ‘heads’

2The US Census Bureau has had formal privacy requirements for statistical data releases in place since the 1920’s:
https://www.census.gov/history/www/reference/privacy_confidentiality/privacy_and_confidentiality_2.html.

3See Australian Privacy Act: https://www.oaic.gov.au/privacy/guidance-and-advice/de-identification-and-the-
privacy-act/ or the US HIPAA: https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html.

4https://www.wired.com/2009/12/netflix-privacy-lawsuit/

https://www.census.gov/history/www/reference/privacy_confidentiality/privacy_and_confidentiality_2.html
https://www.oaic.gov.au/privacy/guidance-and-advice/de-identification-and-the-privacy-act/
https://www.oaic.gov.au/privacy/guidance-and-advice/de-identification-and-the-privacy-act/
https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html
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they answer truthfully (yes or no), ‘tails’ they flip again and answer yes (heads) or no (tails). The

protocol guarantees that each individual’s response is protected, and yet, with enough partici-

pants, the survey-taker can (quite reliably) calculate the approximate proportion of true ‘yes’ and

‘no’ responses. Warner’s algorithm predates differential privacy by some decades, but captures

the insight behind the differential privacy promise. Perhaps not coincidentally, the randomised

response algorithm was one of the first shown to satisfy differential privacy [7].

1.1.1 Differential privacy and its applications

Differential privacy is now arguably the gold standard for data privacy, primarily due to its math-

ematical properties (it behaves well under composition), its robustness to background knowl-

edge (its guarantee holds for all priors) and its simplicity of implementation (statistical noise

can be added independently of the value of a data element) [7]. These properties set it apart

from anonymisation-based definitions, which are susceptible to adversarial attacks when com-

bined with other anonymised datasets [8]. The Netflix data breach describes one such attack;

in this case, researchers made use of publicly available datasets which were correlated with the

anonymised Netflix data. These correlations allowed researchers – with high confidence – to

identify individuals and their sensitive data in the Netflix dataset, even though the dataset itself

contained no obviously identifying information.5 Differential privacy claims immunity to such

attacks [7].

An important but understated property of differential privacy is also its ability to promise the

release of useful information while maintaining some notion of privacy, a property that its early

proponents explored [7]. This property sets differential privacy apart from privacy definitions

designed to limit leakage. Dwork et al. [7] argued that leakage is an essential property of

any useful data release, and therefore defining privacy as “disclosure limitation” – as desired

by Dalenius6 – unnecessarily limits all leakages, even ones which may not constitute a privacy

breach at all.7 As an example, differential privacy would say that a dataset which teaches

that smoking causes cancer is not breaching the privacy of individuals in it, if it could later be

inferred that one of them has cancer, since this information would have been learned regardless

of whether the individual had participated in the study or not.

Instead, differential privacy proposes a notion of “indistinguishability”, in which similar in-

puts produce similar noisy outputs, creating some uncertainty in an attacker’s ability to guess

the secret with confidence, while still permitting the release of statistically useful information.

In this way, differential privacy finds an in-between, one which has been accepted by the com-

munity as the ‘best available’ compromise.

Because of its dominance and widespread acceptance in the literature, researchers in other

5The Netflix dataset release consisted simply of a list of movie ratings for each individual. That it was de-identified
proved how informative – and uniquely identifying – certain individual preferences are.

6Dalenius has been often misquoted as desiring absolute privacy, ie. with no leakage. While this is too strong,
and a disservice to Dalenius, he did desire privacy by constraining leakage [1] – and in this way, differential privacy
marks a departure from this type of thinking.

7Recall that “privacy” as a concept existed well before differential privacy, and therefore it is reasonable to consider
common notions of “privacy breach” and what may or may not constitute one.
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areas of privacy have been tempted to adopt differential privacy in their own domains. Differen-

tial privacy has been applied to domains as diverse as images [9, 10], text documents [11, 12]

and shipping trajectories [13]. However, this diversity comes at a cost – differential privacy

was not designed with these sorts of domains in mind, and its definition is couched in termi-

nology specific to statistical datasets. Re-interpreting the ‘plausible deniability’ style guarantee

for datasets in which the secrets are not individuals in rows but some more complex data is

not trivial: in an image, how does one protect the individual whose image is displayed? In a

document, how would one protect the writing style of the author to prevent re-identification?

In these examples, what exactly is plausibly denied by the application of differential privacy?

How is privacy achieved and how might it be breached? And how might one ensure that some

useful information is retained in the data release?

1.1.2 Metric differential privacy

In 2012, researchers working in geo-location privacy introduced the notion of ‘metric differential

privacy’ in order to enable differential privacy-style reasoning in their domain [14, 15]. Metric

differential privacy provides a generalisation (and re-interpretation) of differential privacy for

arbitrary domains endowed with a metric. The researchers’ insight was to notice that some of

the main properties of differential privacy rely on the metric properties of the Hamming dis-

tance between datasets; and that this metric can be safely changed without breaking the strong

properties that differential privacy offers (robustness to priors, compositionality etc). Plausible

deniability can be re-interpreted as ‘privacy within a radius’, permitting differential privacy to

be applied to new (metric) domains. Their example application to geo-location privacy – the

problem of hiding users’ precise locations while preserving their approximate locations – pro-

vided a blueprint for how to re-interpret “adjacency of secrets” and the meaning of epsilon for a

novel domain, as well as a new method for reasoning about utility when noise is added directly

to the secret values themselves, rather than to the output of a “query” as is done in the statistical

database setting.

Metrics are used in a surprising array of privacy domains, from spatio-temporal trajectories to

social network graphs, recommender systems, text documents and images. However, despite its

potential, metric differential privacy has found few applications beyond the geo-location privacy

scenario for which it was designed. Privacy practitioners in new domains often resort to the

reasoning designed for individuals in statistical databases, even when this does not correspond

directly the privacy issue at hand, nor relate to the utility desired from the data release.8 This

suggests that privacy practitioners are still ill-equipped to reason about privacy and utility in

domains which do not match the “blueprints” provided by either standard differential privacy

(for statistical datasets) or geo-location privacy.

8See for example [13] and [11].
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1.2 Key themes in the practice of differential privacy

Since its introduction in 2006, researchers have been stretching differential privacy in various

ways to respond to the needs of different domains. While theoretical research into privacy

has thrown up an avalanche of new definitions [16], privacy practitioners are left with many

questions: which definition should I use for my dataset? How do these definitions compare?

How do I interpret what privacy means? And – surprisingly, still – how do I choose epsilon?

1.2.1 Privacy breaches as inference attacks

The separation between the theory and practice of differential privacy is perhaps most notable in

the way that experimental researchers investigate privacy breaches: they are usually described

as inference attacks [17–21]. Inference attacks describe real adversarial threats to a system, pro-

viding an operational scenario against which privacy mechanisms can be examined and (hope-

fully) defend. For example, privacy researchers have found that the list of apps on a users

smartphone can reveal sensitive attributes such as religion or relationship status [22] and can

even be used to identify particular individuals [23]. The need for privacy-preserving techniques

in these areas is precisely to protect against these sorts of inferences. Plausible deniability does

not have this goal: inferences describe the potential for re-identification; plausible deniability

simply ensures that there is no certainty of it. Differential privacy is careful not to guarantee

protection against inference attacks – and indeed, is known to be susceptible to them [24] –

despite this being a major concern for practitioners. Even if plausible deniability is the best we

can hope for, reasoning about vulnerability to inferences is essential for communicating what

privacy means and what sort of privacy is guaranteed for individuals whose data is entrusted

to a curator. While there has been some work on incorporating inference attack models into

the differential privacy guarantee9, the lack of significant research into the relationship between

inferences and differential privacy means that there is still debate about what sort of protection

differential privacy affords in practical adversarial scenarios [26].

1.2.2 How to choose epsilon

In the theoretical literature on differential privacy, the epsilon parameter in (1.1) is a privacy

control; it describes both the “indistinguishability” level between secrets, and also the “privacy

budget” available for subsequent data releases.10 However, in practical scenarios epsilon is usu-

ally seen as a parameter for tweaking utility without associating any (specific) meaning to the

resulting privacy guarantee [27]. Since epsilon is not meaningful to an end user, privacy prac-

titioners can more easily brush aside concerns about its particular value. Indeed, Apple were

lambasted for their cavalier use of differential privacy to provide some notional privacy to end

9We make particular note of the work on Pufferfish by Kifer et al. [25], which provides a framework for reasoning
about differential privacy in the presence of inferences.

10The epsilon value of an entire system determines its overall privacy, and this privacy degrades with each release
of data, as described by the differential privacy composition theorems. Hence the term “privacy budget” to describe
it.
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users, without revealing that their chosen epsilon in fact provided next-to-no privacy.11 Even in

situations for which differential privacy was explicitly designed, the question of how to choose

epsilon? remains problematic [27–29]. Notably, this was an issue in the deployment of differ-

ential privacy for the 2020 US Census; researchers remarked that the “literature of differential

privacy is very sparse” regarding policies for choosing a value for epsilon [29]. In more complex

domains, the relationship between epsilon and the privacy afforded is potentially very tenuous:

in a text privacy scenario, how would the value of epsilon correspond to the privacy-protection

afforded to the author of a document? And how does changing epsilon correspond to changes

in the useful information released? A clearer understanding of the relationship between epsilon

and the privacy-utility balance is necessary to ensure its proper use in differential privacy in new

and complex domains.12

1.2.3 Managing the privacy-utility balance

Some of the early adopters of differential privacy were researchers in machine learning, hoping

to ensure privacy-protection for individuals whose data was used to train machine learning

models. One of the research questions which arose out of this context was where to add the

noise?. Researchers found that they could squeeze more utility from a dataset by the judicious

application of noise to different parts of the machine learning workflow [30, 31]. Despite these

early insights, the methods for determining where to add noise in a workflow remain ad hoc and

largely experimental.

In more complex domains, the question of how to add the noise? also becomes relevant. For

example, in the text privacy domain, the addition of noise to words in a document might seem

like a reasonable approach – but how should the noise be added to guarantee some privacy

and utility? In geo-location privacy and standard differential privacy, there is a clear relation-

ship between privacy and utility which determines the nature of the noise-adding mechanism

that should be applied. Whereas in text privacy, the relationship between privacy and utility is

unclear, which complicates the decision of how to add noise.

These questions underlie the need for a more principled approach to understanding the

nature of the privacy-utility balance and how to compare systems wrt their privacy and utility

properties.

1.2.4 Reasoning about utility

A related issue is the lack of tools for reasoning about the utility of a differentially private

data release, thus requiring practitioners to resort to manipulating epsilon to an experimentally

determined value. This sort of problem is not restricted to privacy practitioners working in new

domains. In 2020, the US Census Bureau chose to apply differential privacy to their statistical

data release mechanisms – precisely the domain for which differential privacy was designed.

11https://www.wired.com/story/apple-differential-privacy-shortcomings/
12This has been neatly documented by Dwork et al. [28] in a survey on the use of epsilon across a range of

businesses.



1.3 Goals of this thesis 7

Even in this scenario, the practitioners reported fundamental difficulties, particularly around

the design of mechanisms for utility:

“Differential privacy lacks a well-developed theory for measuring the relative impact

of added noise on the utility of different data products, tuning equity trade-offs, and

presenting the impact of such decisions.” [29]

If in fact utility is the sole purpose of a data release, the absence of a sound methodology for

reasoning about utility in differentially private data releases remains a critical weakness.13 And

differential privacy’s claim of independence from the particulars of a dataset is a moot point if

utility can only be evaluated through dataset-specific experimentation.

1.3 Goals of this thesis

The aforementioned concerns constitute foundational issues which act as obstacles to the more

widespread practical application of differential privacy. This motivates a more general study of

privacy and utility for new contexts, as well as a sound methodology for applying differential

privacy in complex scenarios.

The goal of this thesis is to address these fundamental questions: How do I design mecha-

nisms which provide some level of privacy and some level of accuracy for a domain in which the

privacy or the utility requirements are not well understood? How do I decide how and where

to add noise in order to achieve my privacy and utility goals? How do I interpret what privacy

means in my domain? And how safe is my system against adversarial threats?

While the above concerns are not new – indeed many works in the literature have made

contributions to our understanding of these areas – our goal is to approach this study under a

unifying framework for reasoning about privacy and utility and to situate our work in the metric

differential privacy context. In this way, we aim to equip privacy practitioners with the tools to

reason about privacy and utility, and thereby to assist in the application of differential privacy

to novel domains.

1.3.1 Contributions

In this thesis we examine some of the foundational questions around privacy and utility posed

in the previous section with the overall goal of advancing the understanding and adoption of

differential privacy in new domains. In particular, this work makes the following contributions:

1. We use the framework of Quantitative Information Flow (QIF) to examine questions around

privacy and utility in metric differential privacy.

2. We explore the relationship between the epsilon parameter of metric differential privacy

mechanisms and the safety of systems against adversarial threats. We show how the metric

on the domain of inputs relates to how privacy is applied, which in turn affects the types of

attacks that the system can defend against.
13We argue: If a private data release has no utility, it serves no purpose other than to leak privacy. Utility, then is

the primary goal of a private data release, and not privacy.
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3. We model inference attacks against differential privacy and show that differential privacy’s

protection against such attacks is dependent on the particulars of the dataset. We show that

where the noise is added in a privacy workflow determines how the trade-off between privacy

and utility can be managed, and what the setting of epsilon means in these scenarios.

4. We introduce a framework for reasoning about optimality based on a Bayesian model of util-

ity. We show how the metric determines the classes of consumers for which optimal mecha-

nisms exist. We use our model to re-evaluate impossibility results on optimality, discovering a

new characterisation of optimal mechanisms and demonstrating that optimal mechanisms do

exist contra existing results in the literature. Finally, we prove a new result on the universal

optimality of the Laplace mechanism for continuous domains.

5. We present 3 new applications of metric differential privacy to problems of interest. We

show why an understanding of the metrics involved is important for determining the type

of privacy to apply. We also show how to reason about privacy and utility in each situation

using the understandings developed in this thesis.

1.3.2 Synopsis

This thesis is divided into 3 parts:

Part I: Foundations is intended as an introduction to the main technical material which forms

the basis of the thesis.

- Chapter 2: Quantitative Information Flow introduces the QIF framework, which is an al-

gebraic framework for modelling adversarial threats to secure systems by examining their in-

formation flow properties. While its use in security has been well-established, the QIF model

has not been extensively used in differential privacy.14 This chapter aims to provide a tutorial-

style introduction to the basic QIF notation and results that are used extensively throughout

the thesis. Of particular interest is the section on the geometry of hyper-distributions, which

is a key motif used in this thesis, especially in the exploration of optimality in Chapter 6 and

Chapter 7. This chapter is mainly based on material from the ‘QIF book’ by Alvim et al. [34].

- Chapter 3: Metric Differential Privacy introduces the existing work on d-privacy, pioneered

by Chatzikokolakis et al. [15] and on which this thesis builds. In this chapter we introduce the

canonical example of geo-location privacy for which d-privacy is most well-known, the metric-

based reasoning used for privacy and utility in the standard and local models of differential

privacy, and some commonly used d-privacy mechanisms which will be encountered through-

out. Our contribution in this chapter is to present the technical details in the language and

notation of QIF.

Part II: Analysis contains the theoretical chapters representing the technical contributions of

14Aside from the works by Alvim et al. to establish strong leakage bounds using a channel model for differential
privacy [32, 33].
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this thesis. These chapters rely heavily on QIF techniques to analyse privacy and utility proper-

ties of metric differential privacy.

- Chapter 4: Comparing Privacy Mechanisms explores the privacy-based order induced by the

epsilon parameter of differential privacy. We show that this order is strictly weaker than the

secure-refinement order of QIF which models safety against adversarial threats. We introduce

2 new orders modelling threat scenarios: a max-case refinement order for reasoning about

worst-case adversarial threats – in the spirit of differential privacy – and a metric-based order

which quantifies over all metrics, allowing one to safely reason about differential privacy in

certain contexts when substituting one mechanism for another. We show that both of these

orders are strictly stronger than the epsilon-order, demonstrating that the epsilon parameter

of differential privacy provides surprisingly weak guarantees of safety against a variety of at-

tacks. Finally, we show how the privacy ordering wrt epsilon depends on the metric, and that

comparing mechanisms wrt their safety against all adversarial threats is only safe, in general,

within the same metric family of differential privacy mechanisms. (This chapter is based on the

published papers “Comparing Systems: Max-case Refinement Orders and Application to Differ-

ential Privacy” [35] and “Refinement Orders for Quantitative Information Flow and Differential

Privacy” [36].)

- Chapter 5: Inference Attacks examines the privacy-utility trade-off from the point of view

of inference attacks. We use QIF to model inferences as the leakage of secrets via unexpected

correlations, thereby providing a simple proof of the “no free lunch” theorem of Kifer et al. [37]

which says that there are no mechanisms which are optimal for both privacy and utility. We

provide an abstract model of noise-adding mechanisms based on where the noise is added –

whether to the “secret” or to the “useful” parts of the data – and show that this determines

what sort of control epsilon provides, either privacy control (in the former case) or accuracy

control in the latter. We also show that the amount of privacy or utility that can be obtained

by manipulating epsilon is determined by how this information is correlated in the particular

dataset, and we demonstrate this in experiments on a medium-sized database. (This chapter

is based on the published paper “On Privacy and Accuracy in Data Releases” [38].)

- Chapter 6: Optimality I: Discrete Mechanisms introduces a framework for reasoning about

optimal mechanisms for Bayesian consumers. Our work builds on the existing results of Ghosh

et al. [39] for universal optimality of the Geometric mechanism; in this chapter we extend the

study of optimality to metric domains and arbitrary classes of consumers using a novel ge-

ometric perspective based on ‘hyper-distributions’. We formulate a new characterisation of

optimality and use this to generalise and extend previous results in this area; importantly we

discover new optimality results in the domain of “sum” queries, for which universal optimal-

ity had previously been deemed impossible [40]. (This chapter is unpublished but is under

preparation for submission.)

- Chapter 7: Optimality II: Continuous Mechanisms uses the framework developed in Chap-

ter 6 to prove a particular optimality result of interest: that the Laplace mechanism is uni-

versally optimal for Bayesian consumers on a continuous domain in the same way that the
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Geometric mechanism is universally optimal in the discrete case. Our result is novel and is

the first positive result on optimality for the Laplace mechanism, which has previously shown

only to be non-optimal in various discrete settings. Our approach is made possible by the use

of the algebraic framework of QIF, for which results on refinement naturally extend to the

continuous domain, allowing the extension of our optimality results from Chapter 6 to the

continuous setting. (This chapter is based on the paper “The Laplace Mechanism has optimal

utility for differential privacy over continuous queries” [41].)

Part III: Applications presents new practical applications of metric differential privacy to prob-

lems of interest.

- Chapter 8: Statistical Utility for Local Differential Privacy shows how to apply metric-based

reasoning to the problem of protecting the privacy of individuals while preserving some statis-

tical utility, namely the ability to reconstruct the original (true) distribution of answers given a

noisy distribution. We demonstrate experimentally, using geo-location points as a motivating

example, that a mechanism designed for the Euclidean distance outperforms the (commonly

deployed) mechanism for local differential privacy when the utility of the output is affected

by the underlying ground distance between the estimated distribution and the true distribu-

tion. (This chapter is based on the published paper “Utility-Preserving Privacy Mechanisms for

Counting Queries” [42].)

- Chapter 9: Text Document Privacy demonstrates an application of metric differential pri-

vacy to a problem in text document privacy, namely hiding the writing style of an author.

We demonstrate how to reason about privacy and utility in this space, interpreting what the

privacy guarantee means for authors when differential privacy is applied to documents. We

produce a novel d-privacy mechanism based on the Earth Mover’s distance and show, using ex-

periments, that our mechanism provides reasonably good utility when outputting documents

with the purpose of preserving their topicality. Our mechanism is the first of its kind in the

domain of text document privacy, thus representing a genuinely novel application of differen-

tial privacy. (This chapter is based on the published papers “Generalised Differential Privacy for

Text Document Processing” [12] and “Processing Text for Privacy: An Information Flow Perspec-

tive” [8].)

- Chapter 10: Locality Sensitive Hashing with Differential Privacy explores a problem en-

countered in recommender systems, namely how individuals can privately relinquish their

purchase histories (or other sensitive item lists) to an untrusted data provider, who then re-

quires some utility from the noisy release. We observe that a commonly used nearest neigh-

bour search technique – Locality Sensitive Hashing – can be seen as a probabilistic mapping

between metric spaces, and therefore permits metric-based reasoning about privacy and utility

when used in conjunction with d-private mechanisms. We use this observation to construct

an (approximate) dθ -private mechanism designed for the angular distance dθ which we show

experimentally has reasonably good utility compared with its non-private counterpart. (This
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chapter is under submission and is available as the arXiv preprint “Locality Sensitive Hashing

with Extended Differential Privacy” [43].)

1.3.3 Publications

The following is a list of published (peer-reviewed) papers that I have co-authored during the

course of my doctoral studies, all of which have been used as the basis for this thesis.
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2. K. Chatzikokolakis, N. Fernandes, and C. Palamidessi, “Refinement orders for quantitative information

flow and differential privacy,” Journal of Cybersecurity and Privacy, vol. 1, no. 1, pp. 40–77, 2021.

3. M. S. Alvim, N. Fernandes, A. McIver, and G. H. Nunes, “On privacy and accuracy in data releases

(invited paper),” in 31st International Conference on Concurrency Theory, CONCUR 2020, September

1-4, 2020, Vienna, Austria (Virtual Conference) (I. Konnov and L. Kovács, eds.), vol. 171 of LIPIcs,

pp. 1:1–1:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
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Foundations



2
Quantitative Information Flow

The theory of Quantitative Information Flow (QIF) has its foundations in the study of secure

systems which process sensitive information. Such systems can include, for example, computer

programs and communication protocols. A fundamental goal in the design of these systems

is ensuring that sensitive or secret information is not leaked; such information leaks could be

exploited by adversaries who might be able to gain some advantage, such as stealing login

credentials, obtaining sensitive data about an individual, or intercepting secret communications.

We might conclude that our security goal should be non-interference – that is, no information

leakage whatsoever.

Unfortunately, non-interference is not always possible, because some systems leak informa-

tion by design. Consider, for example, an electronic voting system. In an election, the process

for determining the winner is by counting votes and releasing the vote count. However, such a

release could be problematic if the vote of each individual is to remain a secret. For example, in

a small town, the vote of each individual might be easy to guess if the vote count for the town is

released; moreso if every individual votes for the same candidate, in which case every person’s

vote is revealed.

Instead of opting for non-interference (which would make the afore-mentioned voting sys-

tem untenable), we may instead decide that information leaks are to be tolerated, provided that

these leaks are ‘small’. By quantifying the leakage of the system we can determine how vulnera-

ble the system is to attack - measured by the size of the leak and how much an attacker can use

the information leaked to their advantage. Moreover, we can use leakage measures to compare

systems with respect to their vulnerability to attack. This motivates the study of how to quantify

information leakage in secure systems.

QIF provides an algebraic framework for quantifying information leakage by modelling how
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information “flows” through a system, and how these flows may “leak” sensitive information

to an observer. The framework allows modelling of adversarial scenarios describing how an

attacker can utilise the leaked information to gain some advantage. Using the QIF model we

can quantify the “amount” of leakage, which allows us to determine how much use an attacker

can get out of such leakage. In this way, theoretical leakage analyses can be tied to practi-

cal adversarial risks, thereby providing a comprehensive view of the security of the system.

QIF techniques have previously been used in the analysis of security protocols [44–46], vot-

ing systems [47], attacks on cryptographic systems [48–50], security properties of computer

programs [51, 52] and differential privacy [53].

In this thesis we will apply QIF to the study of privacy and utility properties of differentially

private systems. This chapter provides an introduction to QIF focussing on the tools we will

need to analyse these properties. We begin with an introduction to the channel model from

information theory (§2.1) which forms the basic model for secure systems in QIF. We then

introduce adversarial modelling (§2.2) using the idea of the ‘vulnerability’ of a secret to an

attack, followed by the notion of ‘refinement’ (§2.3) by which we can compare channels wrt

their security properties. Finally, we explore hyper-distributions (§2.4) with a particular focus

on their geometric properties which will be of significant interest in later chapters.

2.1 Modelling Systems as Channels

All of the systems that we will encounter are probabilistic and thus can be described using the

channel model from information theory, which is the fundamental model we will adopt. A

channel is a probabilistic mapping C from (discrete) inputs X to (discrete) outputs Y which

we write as the type X → DY. We denote by C(x)(y) the probability that output y ∈ Y is

produced from input x ∈ X. A channel C:X → DY can equivalently be described as a row-

stochastic matrix1 which we call the ‘channel matrix’, which has type X×Y → [0,1], where each

row corresponds to x ∈ X, each column to y ∈ Y and each entry Cx,y has the value C(x)(y).

We will abuse notation and write Cx,y for a channel described as type C:X → DY, with the

understanding that these types are isomorphic.

We model a system as a probabilistic channel C : X → DY defined over a space of secret

values X, and producing observations Y. We think of X as the set of values that the secret can

take and Y as the set of observations that an adversary can make. We will be interested in

modelling Bayesian adversaries,2 which are adversaries who maximise the information they can

learn from a system by updating their knowledge about the secret values using Bayes’ rule. We

model the background knowledge of the adversary as a prior, or probability distribution, over

secret values, denoted π of type DX. We denote by πx the probability that π assigns to the secret

value x.

As mentioned above, we model the adversary’s interaction with the channel C using Bayes’

rule. The adversary combines their prior knowledge π with the probabilities in the channel

1Row-stochastic means that each row sums to 1.
2We use Bayesian adversaries in our models because this represents the best possible rational attacker, under the

assumption that adversaries are also information-theoretic. ie. They are not computationally bound.
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C to obtain a joint distribution J over X × Y .3 Taking marginals along each Y component of J

produces a set of posterior distributions overX, each of which represents the adversary’s updated

knowledge (ie. a posteriori knowledge) after observing an output y. The marginal probability

on Y is a distribution of type DY, and each associated posterior is a conditional distribution on

X, namely the probability of observing y ∈ Y for each x ∈ X. We write ay for the marginal

probability observing y and δy for its associated posterior. Overall this structure of posteriors

with its associated (marginal) probability can be represented as a distribution of distributions

which we call a hyper-distribution or hyper, and has type D(DX) or D2X. We will often write a

hyper as [πBC], indicating the channel C and prior π from which it was obtained, and we use

the term pushing a prior through a channel to indicate the process for obtaining a hyper.

An example of how this is done is presented in Example 2.1. Note that this terminology will

be explained in more detail in the upcoming sections.

REMARK 2.1.1. Our channel model (using matrices) assumes that the input and

output spaces are discrete; this assumption will be adequate for this thesis apart

from Chapter 7 where we will encounter continuous channels. We will then make

a clearer distinction between channels as probabilistic functions and channels as

matrices.

2.2 Modelling Adversaries

The strength of a secure system is determined by its ability to defend against adversarial attacks.

An effective model of security should then be able to account for particular adversarial threats

and describe how effective the system is in protecting against those threats. In choosing how

to model threats to a system, we may be tempted to adopt one of the traditional information-

theoretic models of leakage based on notions of entropy, such as Shannon entropy or mutual

information [54], as these are well-studied and well-established in the areas of communication

and transmission. However, in his foundational work on QIF, Smith [55] gives examples where

Shannon entropy underestimates the vulnerability of a system against certain attacks, because

it does not precisely model the operational scenario of interest. This insight has led to a general

theory of g-vulnerability, introduced by Alvim et al. [56], which models particular adversarial

scenarios through the use of gain functions which describe an adversary’s gain from information

flows in the system. This model has developed into an elegant and robust theory of leakage

which forms the basis of what we now call Quantitative Information Flow. In this section we

introduce the basic ideas around g-vulnerability and leakage by which we model adversaries.

2.2.1 Vulnerability and Gain Functions

We model threats to a system using an operational scenario that describes how an attacker might

exploit their knowledge to gain information about a secret. An attacker is assumed to have a set

3We always assume that the adversary has access to the channel, avoiding security through obscurity.
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EXAMPLE 2.1. Given a channel C and a prior π, an adversary can update their knowledge

about the secret using Bayes’ rule. Recall that Bayes’ rule says: P(y |x)∗P(x) = P(x |y)∗P(y).

Each row Cx,− is a distribution P(Y |X = x), which the adversary multiplies by πx = P(x) to

produce the joint matrix J whose element Jx,y is the joint probability P(Y = y,X = x).

Normalising along each column of J produces, for each y, a posterior distribution P(X |Y =

y) along with its outer distribution P(Y = y).

C y0 y1 y2

x0 1/2 1/4 1/4

x1 0 1/3 2/3

x2 0 1/2 1/2

[πBC] pX |y0 pX |y1 pX |y2

x0 1 3/8 1/4

x1 0 1/4 1/2

x2 0 3/8 1/4

P(y) 1/4 1/3 5/12

J y0 y1 y2

x0 1/4 1/8 1/8

x1 0 1/12 1/6

x2 0 1/8 1/8

π = [1/2, 1/4, 1/4]

multiply
each row

Cx,− by πx.

take marginals
down each column.

The set of posteriors along with the outer (marginal) distribution on Y is called a hyper-

distribution or hyper, denoted [πBC]. We say that the action of pushing π through C

produces the hyper [πBC].

In this example, the hyper [πBC] has 3 posteriors, each corresponding to the adversary’s

updated knowledge after observing the output from the channel. For example, if the

adversary observes y0 then he knows precisely what the secret is (it is x0), corresponding

to the posterior (1,0,0). On the other hand, if he observes y2 then he deduces that the

most likely secret is x1. The outer probabilities P(y) attached to these posteriors are the

probabilities that he will be able to make those deductions at all.

of actions that they can take, with each action providing some gain to the adversary depending

on the true value of the secret. An action may correspond to a guess of the secret, but this

correspondence is not assumed – an attacker’s best option may be to not make a guess, which

can also be included as a valid action, or to guess, for example, some value close to the secret,

or a property of the secret. Our model is thus sufficiently general to cover a wide range of

scenarios.

We use a gain function to model the set of actions available to an adversary. A gain function

over a (possibly infinite) set of actions W and secrets X is a function g : W×X → R≥0. A

value of 0 indicates ‘no gain’ and higher values represent ‘more gain’ for the adversary. Different

adversaries can be modelled by proper choices of W and g. (See Example 2.2 and Example

2.3).

We model the adversary’s prior knowledge (or uncertainty) about the secret value as a distri-

bution π:DX. Therefore we can describe the vulnerability of the secret wrt a particular adversary
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EXAMPLE 2.2 (Property Gain Function). We can model an adversary who wants to guess

a property of the secret by choosing some non-empty subset of values W ⊂ X with the

desired property and defining the set of actionsW = {W,X\W}. Then, we define the gain

function

gW (w, x) :=

{
1, if x ∈ W ,
0, otherwise.

This gain function assigns the value 1 whenever the secret x has the desired property,

and 0 otherwise. This could be useful, for example, if the secrets represented salaries

and the adversary is interested in guessing a particular salary range. For example, if the

secret takes on values {x1 = $10k, x2 = $20k, x3 = $60k, x4 = $100k} then an adversary

who wants to guess whether the salary is greater than $50k would use the following gain

function:
gW w1 w2

x1 0 1
x2 0 1
x3 1 0
x4 1 0

Property gain functions can be naturally extended to gain functions which describe

equivalence classes of X, by defining disjoint sets W1,W2, . . .Wn ⊂ X and actions W =

{W1,W2, . . . ,Wn,X\(∪iWi)}.

using a function Vg on the adversary’s prior π which we call a ‘g-vulnerability’.

We denote by GX the set of all gain functions.

DEFINITION 2.2.1. Given a gain function g:GX, the g-vulnerability of a prior

π:DX is

Vg(π) := max
w∈W

∑
x∈X

πxg(w, x) .

WhenW is infinite, max should be replaced by sup.

This is the maximum expected gain that the adversary enjoys using their prior knowledge π of

the secrets.

The canonical example for vulnerability is the Bayes vulnerability function, denoted V1, which

models an adversary who wishes to guess the secret in one try.

DEFINITION 2.2.2 (Bayes vulnerability). The Bayes vulnerability of π:DX is given

by

V1(π) := max
x∈X

πx .

Bayes vulnerability says that this adversary’s best option is to choose the value x ∈ X that has

the highest probability, thus it measures the vulnerability of the secret as the most likely value

under the adversary’s prior.
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Although Def. 2.2.2 does not explicitly include a gain function, we can write down the gain

function corresponding to V1; it is called the identity gain function.

DEFINITION 2.2.3 (Identity gain function). The identity gain function gid:X×X →

{0,1} is given by:

gid(w, x) :=

{
1, if w = x,
0, if w , x .

Note that for the identity gain function the set of actions corresponds to the set of secret values

X, and so each action can be thought of as ‘making a guess’ for the value of the secret. Further

illustrations of gain functions are presented in Example 2.2 and Example 2.3.

Finally, we may wonder how many adversaries the g-vulnerability framework can model. In

fact, it has been shown [57] that any continuous, convex function of DX can be written as a Vg,

and this is a fundamental characterisation of g-vulnerabilities. Popular concave functions such

as Shannon entropy can equally be modelled in this framework using the dual notion of loss

functions which we describe in §2.2.1.

EXAMPLE 2.3 (Metric Gain Function). We can model an adversary who wants to guess a

value close to the secret using a normalised metric d :W×X → [0,1]:

gd(w, x) := 1 − d(w, x) .

This gain function assigns higher values to secrets that are closer together, and might

be useful when the secrets represent locations and the adversary wants to guess a

nearby location. For example, say that the true locations are the grid points X =

{(0,0), (0,1), (1,0), (1,1)} shown below.

p1 = (0,0)

p2 = (1,0) p3 = (1,1)

p4 = (0,1)

We model an adversary using the gd gain function with metric d(p, p′) = 1√
2
d2(p, p′), and

whose prior over the secrets is uniform (υ). If the only actions available to the adversary

are guesses of the secret (ie. guess wi corresponds to point pi) then we can write down

the adversary’s gain function as follows:

gd w1 w2 w3 w4

p1 1 1 − 1√
2

0 1 − 1√
2

p2 1 − 1√
2

1 1 − 1√
2

0

p3 0 1 − 1√
2

1 1 − 1√
2

p4 1 − 1√
2

0 1 − 1√
2

1
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We can then compute the vulnerability of the secret values to being guessed by this adver-

sary:

Vgd(υ) = max
w

∑
p

υpgd(w, p) =
1
4
(1 + 2 −

2
√

2
) =

1
4
(3 −
√

2) (2.1)

which holds for any action w ∈ W.

However, if the actions available to the adversary include guesses for any point within the

square defined by the vertices p1, p2, p3, p4, then the set of guessesW is infinite, and the

adversary’s gain function includes, for example, the following column:

gd wi

p1 1/
√

2

p2 1/
√

2

p3 1/
√

2

p4 1/
√

2

which corresponds to a guess of the point (12,
1
2 ). In fact, the adversary can then always do

better now by guessing the point (12,
1
2 ), since

Vgd(υ) = max
w

∑
p

υpgd(w, p) =
1
4
(4 ∗

1
2
) =

1
4
(2) (2.2)

which is larger than the vulnerability computed in (2.1). Thus this adversary gains more

by guessing a point not in the set of secrets than he does by guessing one of the secret

values.

Loss Functions

Instead of modelling an adversary’s gain upon taking some action, we could dually model their

loss using a loss function `:W×X → R≥0. We would then talk about the adversary’s uncertainty

wrt the secret as measured by their expected loss in the following way:

DEFINITION 2.2.4 (`-Uncertainty). Given π:DX and a loss function `:W×X →

R≥0, the `-uncertainty of π is defined as:

U`(π) := min
w∈W

∑
x∈X

πx`(w, x) .

WhenW is infinite, min should be replaced by inf.

`-uncertainty is the dual of g-vulnerability, and indeed we can convert between the two by

setting g = B − ` for some upper bound B, yielding Vg = B −U`.

Uncertainties are typically used to express the information-theoretic notion of entropies;

common examples encountered in the literature include Shannon entropy [54], Guessing en-

tropy [58] and Bayes risk [59]. All of these entropies can be modelled in the QIF framework
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using loss functions and `-uncertainty. In fact, Bayes risk is exactly the dual of Bayes vulnera-

bility in Def. 2.2.2; that is, Bayes risk U1 is 1 − V1. Dual to g-vulnerabilities, `-uncertainties can

model any function that is continuous and concave.

REMARK 2.2.1. All of the results given in this chapter will use the gain function

model for adversaries rather than loss functions, as is standard in QIF. However,

in Chapter 6, we will model optimality for d-privacy using loss functions. All

results presented in this chapter for Vg functions have dual versions for U` which

will be presented as required in Chapter 6.4

2.2.2 Posterior Vulnerability

We saw in Example 2.1 how an adversary can update their knowledge about the secret values

X using Bayes’ rule to obtain a set of posterior distributions and an outer distribution, the

combination of which we called a ‘hyper-distribution’, or simply ‘hyper’, denoted as [πBC] for

prior π:DX and channel C.

Once we have computed the hyper-distribution [πBC], we need to decide how to measure

the adversary’s gain in knowledge from observing an output from C. The usual way to do this

is to compute the adversary’s expected gain over all possible observations and we call this the

posterior g-vulnerability.

DEFINITION 2.2.5. Given a gain function g:GX, a prior π:DX and a channel C,

the posterior g-vulnerability Vg[πBC] is defined as

Vg[πBC] :=
∑
y

ayVg(δ
y)

where we write ay for the marginal probability on observation y and δy for its

associated posterior.

Notice that we overload the function Vg here: it can be applied to priors (as a g-vulnerability

– Def. 2.2.1) or hypers (as posterior g-vulnerability – Def. 2.2.5).

It is sometimes more convenient to write Def. 2.2.5 in terms of the channel C and prior π,

which we can do as follows:

THEOREM 2.1 (Thm 5.7 in [34]). Given a gain function g:GX, a prior π:DX and

a channel C, the posterior g-vulnerability of X can be written as

Vg[πBC] =
∑
y

max
w

∑
x

πxCx,y g(w, x) .

Note that the adversary computes their expected gain over all posteriors, and not their re-

alised gain after a particular observation, since it may be that the adversary’s gain decreases after

4The only missing result for loss functions in QIF is a dual for the so-called ‘miracle theorem’, which will not
concern us here since we do not make recourse to it in our results.
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making an observation (this could be true for example if the adversary’s prior beliefs are incor-

rect). The expected gain therefore gives a better indication of the vulnerability of the secret,

given the adversary’s prior.

REMARK 2.2.2. We call the posterior vulnerability computed in Def. 2.2.5 the

average-case vulnerability (corresponding to average-case adversaries,) since the

vulnerability is averaged over all posteriors. However, in some situations the

average-case vulnerability may underestimate the threat to a secret. In these

cases, a max-case notion would be more suitable, and we can define a corre-

sponding max-case notion of vulnerability (for max-case adversaries). This will

be explored in detail in Chapter 4.

2.2.3 Leakage

Our models above provide a way to compute the vulnerability of a channel before and after

an observation wrt an adversary represented by a prior over secrets and a gain function that

models their attack strategy. We can now combine the prior and posterior g-vulnerabilities into

a measure of leakage for the channel. The leakage of the channel wrt an adversary should

correspond (in some way) to the information gain of the adversary. The two ways in which this

is modelled in QIF is via additive and multiplicative leakage [60].

DEFINITION 2.2.6 (g-Leakage). Given prior π:DX, gain function g:GX and chan-

nel C:X → DY, the additive g-leakage of C is given by

L+g (π,C) := Vg[πBC] − Vg(π)

and the multiplicative g-leakage of C is given by

L×g (π,C) :=
Vg[πBC]

Vg(π)

with the special cases L×g (π,C) = 0 when Vg[πBC] = Vg(π) = 0 and L×g (π,C) = ∞

when Vg(π) = otherwise.

The minimum additive g-leakage is 0 and the minimum multiplicative g-leakage is 1 – both

occurring when prior and posterior g-vulnerabilities are the same (ie. for a channel which leaks

no information).

Notice that when comparing channels wrt a particular adversary, it is sufficient to compare

their posterior g-vulnerabilities, since prior g-vulnerability is independent of the channel.

A note on leakage measures

From the information-theoretic perspective, channels are characterised by their leakage proper-

ties. The leakage of a channel represents the amount of information that can be learned from

a channel by an observer, who we usually regard as an adversary. However, as we have seen,



2.2 Modelling Adversaries 22

leakage depends on the characteristics of the adversary, such as their prior knowledge about the

inputs to the channel, as well as the gain function which models the information that they wish

to learn. We adopt a Bayesian model of inference – that is, we assume that the adversary utilises

all of their prior knowledge plus their knowledge of the channel to maximise their gain.

We may wonder if there are other adversarial models which might describe the leakage of

the channel differently. Consider, for example, an adversary who does not have a prior over

secrets and instead models their gain in knowledge just by observing an output from a channel.

In this case, the following channel may appear to be very informative:

C y0 y1

x0 9/10 1/10

x1 1/10 9/10

If the adversary’s gain is modelled by the Bayes vulnerability gain function (Def. 2.2.2), then

they might compute their expected gain from using the channel C as 0.9, since each observation

(y0, y1) gives a gain of 0.9 by choosing the corresponding secret values (x0, x1). (Note that this

is also the expected posterior vulnerability of a Bayesian adversary with a uniform prior over

secrets). However, if the Bayesian adversary has a non-uniform prior over secret values such

as π = (0.99,0.01) then, surprisingly, the channel C leaks no information whatsoever to the

adversary. This might occur, for example, when the channel C models an imperfect test for a

disease in a population in which the disease is highly unlikely to occur.5 This shows that by using

different leakage measures we can draw quite different conclusions if all of the data available

(such as prior probabilities) is not taken into account. (Note that different Bayesian adversaries

can also draw different conclusions depending on their priors, and we will explore these ideas

further in §2.3).

In this thesis we adopt the position that the leakage measures we use will be information

flow measures. This means that they should satisfy some basic axioms which we consider to

be ‘sanity checks’, in order that our reasoning about the leakage of the channel is sound. For

example, we would expect that any channel which leaks its secrets exactly, such as:

0 y0 y1 y2

x0 1 0 0
x1 0 1 0
x2 0 0 1

would have the maximum leakage under any reasonable measure, and any channel which leaks

nothing about its secrets, such as the following:

1a y0 y1 y2

x0 1/3 1/3 1/3

x1 1/3 1/3 1/3

x2 1/3 1/3 1/3

1b y0 y1 y2

x0 1 0 0
x1 1 0 0
x2 1 0 0

1c y0 y1 y2 y3 y4

x0 1/5 1/5 1/5 1/5 1/5

x1 1/5 1/5 1/5 1/5 1/5

x2 1/5 1/5 1/5 1/5 1/5

5This is an example of the base-rate fallacy.
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would have the minimum possible leakage under a valid information measure. In addition, we

expect that information leakage cannot decrease after an observation from a channel; that is, an

adversary’s posterior knowledge cannot be less than his prior knowledge. This is the property

of monotonicity. Finally, we require that an adversary cannot learn any more information from

a post-processing step than they could have learned from the channel alone – in other words,

information leakage cannot increase without access to the channel. This is also known as the

data processing inequality.

These axioms have been well-studied in the QIF literature and it has been shown that the

family of g-vulnerabilities satisfies these basic leakage axioms using either expected (average-

case) gain or maximum (worst-case) gain measures for posterior g-vulnerability, and wrt both

additive and multiplicative notions of leakage [57, 60].

2.3 Comparing Channels: Refinement

A fundamental question arises in the study of leakage: can we guarantee that system B is safer

than system A? Such a scenario may occur when, for example, we are given a system A and

we wish to swap it for some new system B without compromising the security promised by A.

Using the ideas of vulnerability and gain functions established earlier, we might wonder if we

should consider some particular adversary or class of adversaries, modelled as gain functions

with priors, in order to decide whether to accept B as a safe replacement for A. Such a compar-

ison would not be particularly robust – our security guarantees would only hold so long as our

adversarial assumptions were met.

A robust guarantee would quantify over all priors and all gain functions, guaranteeing that

the replacement of B for A is safe against all possible adversarial threats. Remarkably, QIF

provides the tools to be able to reason in this way. The primary mechanism we use is called

refinement: this defines an ordering between channels which allows us to compare them wrt

their safety against all adversarial scenarios. Refinement has both a structural characterisation

(so that it can be easily verified) and an operational or ‘testing’ characterisation (which produces

a counter-example or witness in the case that refinement fails).

We present first the operational characterisation, called the average-case leakage order, which

says that channel B is at least as safe as channel A if B leaks no more than A, for all priors π

and all gain functions g:GX. Since comparing leakage is equivalent to comparing posterior

vulnerability, we only require posterior vulnerabilities in our definition.

DEFINITION 2.3.1. The average-case leakage order is defined as

A vavg
G

B iff Vg[πBA] ≥ Vg[πBB]

for all g:GX, π:DX.

The average-case leakage order provides clear guarantees in terms of an operational scenario

– if Avavg
G

B holds, it means that any adversary, who can be modelled using a gain function, will
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learn at least as much from observing the output of channel B as they will from channel A.

Despite this being such a strong guarantee, it is not immediately useful – it is unclear how we

would verify such a guarantee which requires quantification over all gain functions.

This can be achieved using its structural characterisation, defined in terms of the channel

matrix, which we call the average-case refinement order.

DEFINITION 2.3.2. The average-case refinement order is defined as: A v B iff

AR = B for some channel R.

This says that B can be obtained from A by a post-processing step modelled as a channel. 6

Note that the average-case refinement order is only a preorder, but can be turned into a partial

order by determining equivalence classes of channels which have the same leakage properties.

The following fundamental result was proven by McIver et al. [56, 61].

LEMMA 2.2. The orders v and vavg
G

coincide. That is, A v B iff A vavg
G

B.

In other words, whenever we can find a witness R to verify the average-case refinement

order, we can interpret this as saying that B is as safe as A against all adversaries, using an

average-case notion of leakage. Consequently, we read A v B as “A is refined by B”, or “B is as

safe as A”. The refinement relation also expresses the data-processing inequality, which says that

post-processing can never cause leakage to increase.

The equivalence between Def. 2.3.2 and Def. 2.3.1 assures us that the refinement order is

sound: that is, we know that whenever we find a witness R so that A v B, we can be sure that

there is no adversary who will (strictly) prefer B to A. But we also would like to know whether

the refinement is complete: that is, if we fail to find a witness R, so that we conclude A 6v B, can

we also be sure that there exists an adversary who prefers B to A?

Fortunately, we have both soundness and completeness; not only do we know that such an ad-

versary exists, but we can construct the “counter-example” gain function modelling this adver-

sary. 7 We will see how this is done in Chapter 4 (§4.5) when we explore refinement properties

for differential privacy.

2.4 Hyper-Distributions

In this section we will highlight important characteristics of hypers which make them useful in

the study of leakage. We begin with a formal definition.

DEFINITION 2.4.1 (Hyper-Distribution). Given a prior π:DX and a channel C:X →

DY we define the hyper-distribution produced by ‘pushing π through C’ as

[πBC] :=
∑
y∈Y

ay[δy]

6Note that post-multiplication by a channel is equivalent to post-processing.
7Whether this adversary is of practical interest or not is a different issue.
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where δy is the distribution p(X |Y = y) called a ‘posterior’ given by δyx =
πxCx ,y∑

z∈X πzCz ,y
;

and ay is the marginal on observation y given by ay =
∑
x∈X

πxCx, y.

A hyper has type D(DX) which we write as D2X. The distribution over y given by the marginals

ay is called the ‘outer’ distribution and each posterior distribution δy is also called an ‘inner’. We

sometimes also call each ay associated to δy the ‘outer probability of the inner δy ’. Note that the

probability ay is undefined when C−,y is a column of 0’s – instead we ‘throw out’ this column of

the channel C as it has no effect on the C’s leakage.

We will usually write hypers as tables or matrices, in which the posteriors are ‘labelled’ by

their corresponding outer probability, rather than from the observation y that produced them.

This is because the posterior vulnerability of a channel wrt a prior (Def. 2.2.5) does not depend

on the labels y. We can think of this from the point of view of an adversary: the particular

observation y only determines the distribution p(x |y) which the adversary computes, and it is

this distribution (posterior) that the adversary uses to make a guess.

We say that two hypers are equal when they consist of the same set of posteriors (in the

support of the outers), and each hyper assigns equal outer probabilities to equal inners.

An important result [61] says that hyper-distributions characterise the leakage properties of

a channel (for any full support prior). What this means is that, given a set of posteriors δi with

corresponding outers ai, we can uniquely recover the full support prior π and channel C which

produced that hyper (up to equivalence on channels).8 The prior π is recovered by averaging

each of the posteriors wrt its outer probability, ie. π =
∑

i aiδi. The channel is recovered by

multiplying each posterior by its outer, and then normalising by taking marginals on each x ∈ X.9

Since the channel is recovered independently of the choice of π (provided that it is full support),

we can always choose π to be the uniform prior. This means that we can construct channels with

desirable leakage properties by constructing the appropriate hyper-distributions, from which the

desired channel can be recovered.

Another way that this result can be stated is that we can compare channels by comparing

the corresponding hypers produced by the action of the uniform prior on each channel.

LEMMA 2.3. [61] Let A:X → DY, B:X → DY be channels and let υ be the

uniform prior on X. Then for all g:GX and π:DX we have

Vg[πBA] = Vg[πBB] iff [υBA] = [υBB] .

Lem. 2.3 is very powerful; it says that we only need to consider one particular realisation of a

hyper in order to understand the leakage properties of a channel wrt any prior.

Even more importantly, the above result suggests that refinement of channels can be defined

correspondingly over hypers such that the following holds:

LEMMA 2.4. Let A:X → DY, B:X → DY be channels and let υ be the uniform

8Equivalence on channels is defined by their leakage properties - namely posterior g-vulnerability.
9Note that we can write this channel down as a matrix in many possible ways (by permutation of columns) but

these all have the same leakage, so we can choose any of these matrix representations for the produced channel.
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prior on X. Then

A v B iff [υBA] v [υBB] .

We have not yet said what [υBA] v [υBB] means; to understand how this is defined we turn

to a geometric representation of hyper-distributions.

2.4.1 The Geometry of Hyper-Distributions

Recall from earlier that a hyper ∆:D2X is a set of posteriors δy, each labelled with its probability

ay of being produced (called an outer). We now think of each posterior as a 1-summing vector,

lying in the probability simplex of dimension |X | − 110, and therefore ∆ = [πBC] as a set of

vectors, each having weight ay, with the property that these vectors must average (using the

weights ay) to the prior π. That is, the ‘vectors’ δy must contain the prior π (as a vector) in their

convex hull, and π is the “centre of mass” of the weighted vectors. The vectors δi can also be

thought of as barycentric coordinates situated in the probability simplex, hence we use the term

barycentric to describe this representation. We illustrate these concepts in Figure 2.1.

Figure 2.1: Geometric representations of the hyper ∆ = 1
3 [δ1] +

1
3 [δ2] +

1
3 [δ3] defined on 3

secrets X = {x1, x2, x3}. The figure on the left shows the posterior distributions δi depicted as

vectors which all sit on the probability simplex x1 + x2 + x3 = 1. The uniform distribution υ is

depicted by the grey vector ®υ and can be computed as the weighted (convex) sum of the ®δi. ie.

®υ = 1
3
®δ1 +

1
3
®δ2 +

1
3
®δ3.

The figure on the right shows the vectors ®δi as barycentric coordinates located on the triangular

probability simplex. The point υ = (1/3, 1/3, 1/3) is contained in the convex hull of the points δi
and is their “centre of mass” wrt the outer weights ai.

When describing hypers using the barycentric representation, we use the terminology “points”

10To see why it is not the simplex of dimension |X |, notice that the 3-dimensional 1-summing vectors all lie on the
simplex defined by x + y + z = 1 which is 2-dimensional (a triangular face).
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to refer to posteriors, and “weights” to refer to the outer probabilities, although we retain the

notation δi and ai to describe them. Since these points can likewise be thought of as vectors

(see left hand figure of Figure 2.1), we will also use vector space algebra in our reasoning; in

particular we will use the term “averaging” to describe the weighted vector sum of posteriors

(eg. to produce the prior π as in
∑

i aiδi). We will typically visually represent hypers as points on

the projected probability simplex in 3 dimensions (see right hand figure of Figure 2.1), although

the ideas are understood to extend to any dimensions. However, we will usually not try to depict

the weights ai visually, instead we use diagrams to visualise posteriors and we will supply the

corresponding weights in descriptive text.

REMARK 2.4.1. Since the leakage properties of hypers are characterised by the

action of the uniform distribution (Lem. 2.3), we will assume that the uniform

distribution is the centre of mass of the hypers that we construct, unless otherwise

stated.

The barycentric representation of hypers loses no information (in terms of leakage) and thus

we can use some properties of vector spaces to reason about leakage of hypers. For example,

observe that in the space of n secrets (ie. on vector space of dimension n), at most n vectors

form a linearly independent set; thus any linearly independent set of (at most n) vectors which

contains υ in its convex hull uniquely represents a hyper (since there is a unique set of weights

that can be used to construct any vector from a linearly independent set of vectors).

2.4.2 Refinement of Hypers

We see how the structural definition for channel refinement (Def. 2.3.2) can be represented as

a structural refinement of hypers. We first explore how a channel acts on a prior to produce a

hyper-distribution.

For the hyper [πBC] =
∑

i ai[δi], we can think of the channel C as “splitting” the prior π into

posteriors δi such that they average (“merge”) back to π. The splitting operation produces the

hyper [πBC] which is “less safe” than π, ie. Vg[πBC] ≥ Vg(π). We also observe that [πBC] is

less safe than the hyper [π] (the point hyper on π) – namely Vg[πBC] ≥ Vg[πB1] (where 1 is the

column channel consisting of all 1’s).11 It turns out that the “splitting” operation applied to the

hyper [π] is created by the structural anti-refinement between 1 and C.

We now explain how “splitting” corresponds to structural anti-refinement on channels. Con-

sider two channels A, B satisfying A v B with witness R. The hypers [υBA] and [υBB] are related

as follows: for every posterior γi of [υBB], we can “split” γi into a convex sum of the posteriors δ j

of [υBA] which conversely “merge” back to γi. Moreover, the set of δ j resulting from splitting all

of the γi is the full set of posteriors of [υBA], and the collection of probabilities generated by the

splitting corresponds exactly to the outers of [υBA]. It has been shown [62] that the “splitting”

operation is anti-refining, and corresponds to the action of the witness R (which provides the

“merge” from the less safe to the more safe channel). We call the “merge” operation a “refining

11Equivalently, 1 is the channel which leaks nothing.
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Earth Move” because it corresponds to the action of refinement.12

DEFINITION 2.4.2 (Refining Earth Move). Let ∆1,∆2:D2X be hypers. We say that

there is a refining Earth Move from hyper ∆1 =
∑

i ai[δi] to hyper ∆2 =
∑

j bi[γ j] if

there exist coefficients λi j ≥ 0 for each i, j such that the following two conditions

hold:

1.
∑

j λi j = 1.

2. bjγ
j =

∑
i λi jaiδi for each j.

The first condition says that we split each aiδi up, sending the weight and vector to the various

γ j . The second condition says that the weighted proportions match the γ j ’s. From these con-

ditions we also deduce that (1) the weighted sums
∑

j bjγ
j and

∑
i aiδi are equal, and (2) each

γ j is formed by the convex combination of the δi, and thus the convex hull of posteriors γj is

contained in the convex hull of the posteriors δi.

We are now ready to define refinement of hypers.

DEFINITION 2.4.3 (Structural Refinement of Hypers [34]). Let ∆1,∆2:D2X be

hypers. We say that ∆2 is a structural refinement of ∆1, written ∆1 v◦ ∆2 iff there

is a refining Earth Move from ∆1 to ∆2.

An important result [62] says that structural refinement of hypers is equivalent to structural

refinement on channels. That is, we can now restate Lem. 2.4 as follows:

LEMMA 2.5. Let A:X → DY, B:X → DZ be channels and let υ be the uniform

prior on X. Then

A v B iff [υBA] v◦ [υBB] .

We will write ∆1 v ∆2 for hypers ∆1,∆2 instead of using v◦. An example of refining hypers is

shown in Example 2.4.

When the posteriors of a hyper are linearly independent (as vectors) it turns out that only

the convex hull property is necessary to guarantee refinement.

LEMMA 2.6. (Lemma 12.2 from [34]) Let ∆1,∆2:D2X be hypers. If the posteriors

of ∆1 are linearly independent, then ∆1 v ∆2 whenever the posteriors of ∆2 lie

inside the convex hull of posteriors of ∆1.

One reason that hyper-distributions are so useful for reasoning about leakage properties

is that on hypers, refinement is a true partial order. This is because all equivalent channels

(wrt refinement) produce the same hyper-distribution, and every equivalence class of channels

produces a different hyper.

12The splitting and merging operations can be expressed much more succinctly using category theory – specifically
the operations of the Giry monad.
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EXAMPLE 2.4 (Refining and non-Refining Hypers). Consider the following hypers in the

space of 3 secrets. The posteriors of ∆1 are the orange points p1 and p2 and the blue point

p5. The posteriors of ∆2 are the 4 orange points p1, p2, p3, p4. Their associated weights are

given in the diagram below.

We can check that each hyper averages to the uniform distribution, denoted by υ, con-

tained in the convex hulls of their posteriors.

Now, the posteriors of ∆1 are contained in the convex hull of posteriors of ∆2. And, there

is a refining Earth Move from ∆2 to ∆1: namely, the probability masses on p1 and p2 stay in

place (the ‘trivial’ Earth Move), but the probability masses of 1/6 on points p3 and p4 move

to the point p5 (shown in the diagram), for a total Earth Move of 1/3 which corresponds to

the weight of p5 in ∆1. Therefore we conclude ∆2 v ∆1 .

We can construct the channels C1 and C2 corresponding to ∆1 and ∆2 respectively as

shown below.

C1 =
©­­«

1/2 0 1/2

0 1/2 1/2

1/2 1/2 0

ª®®¬ C2 =
©­­«

1/2 0 0 1/2

0 1/2 1/2 0
1/2 1/2 0 0

ª®®¬
And indeed we find also that C2 v C1 (observe that C1 is obtained from C2 by a

post-processing step of combining the last 2 columns).

We can construct another hyper from the points p1, p2, p3, p4, namely

∆3 =
1
6
[p1] +

1
2
[p2] +

1
12
[p3] +

1
4
[p4] .

Again, we can check that ∆3 averages to the uniform distribution. However, in this case

there is no refining Earth Move between ∆1 and ∆3, nor between ∆2 and ∆3. This can be

seen by considering the point p1 which has probability mass 1/3 assigned by hypers ∆1 and

∆2 but only 1/6 assigned by ∆3. Since p1 is not in the convex hull of any points of ∆3, there

is no Earth Move that can assign the extra 1/6 probability mass required for ∆3 v ∆1. The

same reasoning applies for ∆2 – in this case we cannot have ∆2 v ∆3 nor ∆3 v ∆2.
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2.5 Chapter Notes

All of the results of this chapter can be found in the ‘QIF book’ by Alvim et al. [34] although they

have been referenced in their original papers as much as possible. The QIF notions introduced

in this chapter have been used extensively in other works as highlighted in the introduction.

However, the geometric (barycentric) representation of hypers, explained in [34], has not, to

our knowledge, been applied in any other works. In this thesis the barycentric representation

will play a pivotal role in Chapter 6 and Chapter 7 in which we explore optimality for discrete

and continuous differential privacy mechanisms.

QIF techniques have previously been applied to the study of differential privacy, most no-

tably by Alvim et al. [32, 33] in which the authors studied the leakage properties of differential

privacy systems using leakage models inspired by QIF. In [53] the idea of modelling differen-

tially private systems as QIF channels was introduced; the authors observed that the differential

privacy property can be expressed as a relationship between elements in the columns of a chan-

nel. We will introduce this model in Chapter 3 when we explore metric differential privacy, and

indeed the channel model will be our basic model for differentially private mechanisms in this

thesis.



3
Metric Differential Privacy

In this thesis, we adopt a natural generalisation of differential privacy to metric spaces, known

variously as metric differential privacy, generalised differential privacy, or simply d-privacy.1 Met-

ric differential privacy was introduced in 2012 by Chatzikokolakis et al. [15] and can model a

wide variety of scenarios in which the notion of indistinguishability can be naturally expressed

using a metric between secrets. In addition, metric differential privacy can be applied in dif-

ferent privacy workflows such as oblivious mechanisms and local differential privacy. Finally,

mechanisms employed in standard differential privacy and local differential privacy scenarios

can be repurposed for metric differential privacy by use of an appropriate metric on secrets.

In this chapter we review metric differential privacy, based primarily on the seminal work

by Chatzikokolakis et al [15]. In §3.1 we give a formal definition and describe some important

properties that metric differential privacy shares with differential privacy. In §3.2 we describe

geo-indistinguishability, the canonical example for metric differential privacy, for which metric

differential privacy is most well-known. In §3.3 we explain how to reason about privacy and

utility with respect to oblivious mechanisms and local differential privacy models, to which we

give the term ‘workflows’. Finally, in §3.4 we give some examples of d-privacy mechanisms that

are commonly found in the literature and which will be used later in this thesis.

3.1 Definition and Properties

Differential privacy relies on the observation that some pairs of secrets need to be indistinguish-

able from the point of view of the adversary in order to provide some meaningful notion of

privacy. For instance, databases which differ in a single individual should not be able to be

1We will use the term ‘metric differential privacy’ more generally, and d-privacy where the metric d is important.
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distinguished based on the output of a privacy-preserving mechanism, otherwise the privacy of

that individual could be violated by an adversary who knows all other values in the database. At

the same time, other pairs of secrets should be distinguishable so that a data release can provide

some utility. For instance, the ability to distinguish databases which differ in many individuals

allows us to answer a statistical query about those individuals.

This idea can be formalised by a distinguishability metric2 d, which models how distinguish-

able we allow these secrets to be. A value of 0 means that we require x and x ′ to be completely

indistinguishable to the adversary, while +∞ means that they can be distinguished completely.

3.1.1 Technical Preliminaries

We recall that a metric d : X×X → R≥0 satisfies d(x, y) = 0 iff x = y, d(x, y) = d(y, x) and

d(x, y) + d(y, z) ≥ d(x, z).3 A metric space (X, d) is a set X coupled with a metric d on X. We

denote by DX the set of probability distributions on X and by MX the set of metrics on X. We

denote by FY a sigma algebra on the set Y. A mechanism is a probabilistic mapping from inputs

to (distributions on) outputs. For a mechanism C:X → DY we write C(x)(Y ) for the probability

that the set Y is assigned by the distribution C(x). When the input and output spaces are discrete,

we can model a mechanism as a probabilistic channel. In this case, we can describe a mechanism

as a channel matrix C whose rows Cx,− are distributions and whose elements Cx,y correspond to

the probability of observing output y given input x. As already signalled in Chapter 2, we will

abuse notation somewhat and use the same symbol to refer to both mechanisms and channel

matrices. ie. We may define C:X → DY and then refer to the element Cx,y when X and Y are

discrete, with the understanding that these types are isomorphic.

3.1.2 Definition of d-Privacy

We next recall the usual formulation of differential privacy:4

DEFINITION 3.1.1 (ε-Differential Privacy). Given a space of databases X and

given ε ≥ 0, we say that a mechanism K : X → DY satisfies ε-differential privacy

if for any two adjacent databases x, x ′ ∈ X and any output Y ⊆ Y, the following

inequation holds:

K(x)(Y ) ≤ eε K(x ′)(Y )

where ‘adjacent’ means differing in one individual.

The intuition behind this definition is that datasets which are ‘similar’ (according to the

adjacency relation) should produce similar outputs from the mechanism K. Thus, the argument

is that an adversary observing some value y cannot deduce whether the input was x or x ′ for

any x ∼ x ′. Observe that this definition is couched in terminology from statistical databases for

2To be precise, an extended pseudo metric, that is one in which distinct secrets can have distance 0, and distance
+∞ is allowed.

3We will usually require d to be a metric even though we can in principle reason using extended pseudo metrics.
4Differential privacy has an extended form (so-called (ε, δ)-differential privacy) which we will not examine in this

thesis.
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which differential privacy was originally designed. Notably, the idea of adjacency is tied to the

presence of an individual in the dataset.

The idea of metric differential privacy is to abstract away from these specifics and, in doing

so, provide new intuitions required to understand differential privacy in more general settings.

We now recall the definition of d-privacy given by Chatzikokolakis et al. [15]:

DEFINITION 3.1.2 (d-Privacy). Given a metric space (X,d), a set Y and ε ≥ 0, a

mechanism K : X → DY satisfies ε·d-privacy iff ∀x, x ′∈X,

K(x)(Y ) ≤ eε ·d(x,x
′)K(x ′)(Y ) for all Y ∈ FY .

Using a generic metric d in this definition allows us to express different scenarios, depending

on the domain X to which the mechanism is applied. For instance, in the standard model of

differential privacy, the mechanism is applied to a database x and produces some observation

y (eg. a number, the result of a statistical query). Standard ε-differential privacy can then be

captured as ε·dH-privacy where dH is the Hamming distance on datasets.5 The metric d permits

extending the notion of ‘adjacency’ (Def. 3.1.1) from a discrete notion to a continuous notion

(eg. when the set X is uncountable).

Intuitively we think of d as the ‘type’ and ε as the ‘amount’ of privacy. In other words, the

metric d determines how privacy is to be interpreted, and the parameter ε quantifies ‘how much’

privacy is afforded. Smaller values of ε correspond with ‘more’ privacy; the intuition for this is

that the smaller ε is, the ‘closer’ the distributions K(x) and K(x ′) become (for fixed d), and thus

x and x ′ are harder to distinguish on any output.

Observe however that the ε parameter in Def. 3.1.2 is not required to be minimal – that is, if

M satisfies 2·d-privacy (for ε = 2), we could also say that it satisfies 4·d-privacy, or 100·d-privacy.

This would not be desirable but it may sometimes be unavoidable (as occurs, for example, in the

construction of so-called ‘exponential mechanisms’ that we will encounter in Chapter 4).

Common metrics of interest which we will encounter in d-privacy are the Euclidean metric

(d2), the Discrete metric (dD) and the Hamming metric (dH).

REMARK 3.1.1. Note that we often omit the ε and refer simply to d-privacy –

in this case we think of ε as being ‘absorbed’ into the metric d. (Since ε·d is

itself a metric, both definitions are equivalent.) We will explicitly use ε when it

is important, for example when comparing different privacy levels wrt the same

metric. In commentary we may also use the term d-privacy in place of the more

arduous ‘metric differential privacy’.

When X and Y are countable sets, the mechanism K can be modelled as a probabilistic

channel [53] which we model as a matrix (see §3.1.1). Seen this way, Def. 3.1.2 imposes a

structural constraint on each column of the channel matrix, namely that the ratio of any two

elements Kx,y, Kx′,y is bounded by eεd(x,x′). We can therefore equivalently define d-privacy as

5The Hamming metric dH on datasets is defined as the number of entries in which rows x and x′ differ.
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follows:

DEFINITION 3.1.3. Given ε ≥ 0, countable sets X, Y and a metric d:MX, we say

that a channel K : X → DY satisfies ε·d-privacy iff

Kx,y ≤ eε ·d(x,x
′)Kx′,y for all x, x ′ ∈ X, y ∈ Y .

Example 3.1 illustrates some d-private channels.

EXAMPLE 3.1. Some d-private channels defined on the input space X = {0,1,2}.

G y0 y1 y2

0 2/3 1/6 1/6

1 1/3 1/3 1/3

2 1/6 1/6 2/3

R y0 y1 y2

0 3/5 1/5 1/5

1 1/5 3/5 1/5

2 1/5 1/5 3/5

C y0 y1

0 3/5 2/5

1 1/2 1/2

2 1/4 3/4

D y0 y1 y2

0 1/4 1/4 1/2

1 1/4 1/4 1/2

2 1/2 1/2 0

G is (ln 2·d2)-private and the privacy constraints hold ‘tightly’ on all elements – ie. Either

Gx,y = eln 2·d2(x,x
′) Gx′,y or Gx′,y = eln 2·d2(x,x

′) Gx,y for all x, x ′ ∈ X.

R is (ln 3·d2)-private and also (ln 3·dD)-private where recall that dD is the discrete metric

satisfying d(x, y) = 1 whenever x , y.

C is (ln 2·d2)-private because the maximum ratio of elements in any column occurs be-

tween C1,y0 and C2,y0 .

D is (∞·d)-private on every d since it contains a 0 element. We would usually say that D

is not a differentially private channel.

Observe that a channel can be ε·d-private for various metrics d (and various ε). The metric

chosen determines how privacy is to be interpreted for that channel, as we will see later in this

chapter.

3.1.3 Properties of Metric Differential Privacy

Differential privacy has some important properties which make it both robust and appealing: it is

both compositional and post-processing invariant, which allows us to reason about the privacy of

systems which are put together with differentially private components; and its privacy guarantee

is (somewhat) independent of the prior knowledge of an attacker, which makes it robust against

all sorts of adversaries, regardless of any background information they may possess [5, 7].

Metric differential differential privacy also enjoys these properties, which we now examine

in more detail.

Compositionality

Compositionality tells us that mechanisms combine in predictable ways, and thus we can safely

reason about privacy against an adversary who may combine his knowledge from different

sources. We can also safely reason about the privacy of a whole system by examining the privacy
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of its individual components. Compositionality is therefore an important property – it reassures

us that there can be no unexpected breakdown of privacy, regardless of how particular mecha-

nisms are implemented or accessed, or how they are put together in complex workflows.

The basic composition results for differential privacy refer to what is known as sequential

composition.6 Sequential composition models the way in which observations from different

mechanisms operating on the same data can be combined.

DEFINITION 3.1.4 (Sequential Composition). Let C : X→DY1, D : X→DY2 be

channels. We define the sequential composition C; D : X→D(Y1×Y2) as

(C; D)x,(y1,y2) := Cx,y1 × Dx,y2 .

The following well-known result shows how d-privacy behaves wrt sequential composition.

LEMMA 3.1. Let C:X → DY1, D:X → DY2 be mechanisms and which are ε1·d-

private and ε2·d-private respectively. Then their sequential composition (C; D) is

(ε1+ε2)·d-private.

This means that each access to a mechanism increases an attacker’s knowledge by ε which

we can interpret as ‘eroding’ the privacy of the overall system. This motivates the term ‘privacy

budget’ which is often used to describe the parameter ε.7

Note that we can also compose mechanisms defined over different metrics.

LEMMA 3.2. If C, D from Def. 3.1.4 are ε1·d1-private and ε2·d2-private respec-

tively, then their sequential composition (C; D) is (ε1·d1+ε2·d2)-private.

Since (ε1·d1+ε2·d2) also describes a metric, we can conclude that the sequential composition

of d-private mechanisms is always d-private for some metric d.

REMARK 3.1.2. Another type of composition, adaptive composition, models an

adversary who is allowed to choose inputs to the mechanism at each stage after

observing the previous outputs. This type of composition has been extensively

studied [7, 63, 64] in the context of (ε, δ)-differential privacy, where composition

bounds are non-trivial to calculate. However, in standard differential privacy

(and in metric differential privacy), the guarantee (wrt sequential composition)

is not affected by whether the adversary chooses adaptively or not.
6In QIF this is called parallel composition, which unfortunately has a different meaning in differential privacy.

Here we will remain with the differential privacy language.
7In practice, it is left to the designer of a system to decide how much access can be permitted to a system before

the ‘privacy budget’ is completed eroded, and the overall ε guarantee becomes worthless.
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Post-Processing Invariance

An important property of secure systems, as we saw in Chapter 2, is post-processing invariance,

which says that the information leakage of a system cannot increase as the result of a post-

processing step. In privacy, post-processing invariance tells us that the privacy risk to a system

cannot increase as the result of post-processing the output from a privacy mechanism. Post-

processing invariance is an example of the data-processing inequality of information theory, and

it is crucial in allowing us to reason about the privacy or security of systems which are put

together sequentially.

For metric differential privacy, the data processing inequality says the following:

LEMMA 3.3 (DPI for d-Privacy). Let M:X → DY be an ε·d-private channel and

let R:Y → DZ be a post-processing step modelled as a channel. Then the com-

posed channel MR is also ε·d-private, where we write MR for the matrix multi-

plication of M by R.

Proof. Follows from post-processing invariance of differential privacy [7] for any

d. �

We noted in Chapter 2 that composition of channels corresponds to a post-processing step,

also neatly corresponding with matrix multiplication of channel matrices. Lem. 3.3 then tells us

that post-processing cannot ‘erode’ privacy, or in other words, the value of ε of the composed

channel cannot increase.

Robustness to Prior Knowledge

The final property we will examine is usually referred to either as ‘robustness to the prior knowl-

edge of an attacker’, or ‘resistance to arbitrary side information’ [65]. In the context of differen-

tial privacy, it is usually informally conveyed as one of the following two properties:

1. Regardless of external knowledge, an attacker draws the same conclusions whether or not

an individual was present in the dataset [66, 67]; OR

2. An attacker who knows everyone except one person u in the dataset gains no information

from the reported answer, regardless of side knowledge about u’s data. [15]

These ideas have been extended to metric differential privacy using Bayesian formulations [14,

15], which we rewrite now using the language of QIF. In the following, given some hyper-

distribution ∆, we write δy for the posterior of ∆ associated with the observation y, and δ
y
x for

the value that the distribution δy assigns to secret x.8 Given a distribution π:DX we write dπe

for the support of the distribution (ie. the set of x st. πx is non-zero). We remark that our use of

the channel model here assumes that the input and output domains are discrete, however the

below properties have been shown to hold for continuous domains.

The first property can be reinterpreted using the following lemma.

8In standard probability notation these correspond to P(X |Y = y) and P(X = x |Y = y) respectively.
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LEMMA 3.4 (Geo-Indistinguishability-I from [14]). A channel C satisfies d-privacy

iff for all priors π:DX and all observations y ∈ Y:

δ
y
x

δ
y
x′

≤ eε ·d(x,x
′) πx
πx′

for any x, x ′ ∈ dπe, where δy is the posterior for observation y in the hyper [πBC].

Remembering that δyx represents the adversary’s posterior beliefs about the secret x given the

observation y, what Lem. 3.4 tells us is that the channel C changes the distinguishability of the

secrets x, x ′ by at most a factor of ε·d(x, x ′), regardless of the prior uncertainty of an attacker.

In other words, the adversary cannot distinguish the secrets much more after the observation y

than he could beforehand (using his prior knowledge).

We now reinterpret the second property using the following:

LEMMA 3.5 (Geo-Indistinguishability-II from [14]). Let C:X → DY be a chan-

nel, let x ∈ X, and let π:DX be a prior such that x ∈ dπe and for all x ′ ∈ dπe it

holds that d(x, x ′) ≤ r for some constant r > 0. Then C satisfies d-privacy iff for

all observations y ∈ Y:
δ
y
x

πx
≤ eε ·r

where, again we write δy for the posterior corresponding to observation y in the

hyper [πBC].

Lem. 3.5 says that an adversary who knows only that the secret lies within a ball of radius

r from x does not learn much more about whether the secret’s value is x from observing the

output y.

Notice that we can recover the (informal) properties of differential privacy by substituting

d = dH where dH is the Hamming distance on datasets. Lem. 3.4 then says that the posterior

beliefs of the adversary are changed by a factor of at most eε whether an individual is in the

dataset or not (corresponding to dH(x, x ′) = 1). Lem. 3.5 says that the posterior beliefs of

an attacker who knows everyone except 1 person in the dataset change by at most eε (again

corresponding to dH(x, x ′) = 1).

The above formalisations also allow us to reinterpret these properties in new contexts and

with respect to arbitrary metrics for indistinguishability. We now turn to the canonical example

from d-privacy to see how these interpretations can be applied in a practical scenario.

3.2 Geo-Indistinguishability - A Canonical Example

The motivating example for which metric differential privacy was introduced is geo-location

privacy, also known as geo-indistinguishability [14]. It is described by the following scenario:

Example 3.2.1 (Geo-location Privacy). A population of users wishes to send their geo-location

co-ordinates to a data provider who responds with recommendations for nearby restaurants for
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each user. The users do not wish to reveal their precise location to the data provider but still want

to receive relevant recommendations. How can we apply differential privacy so that individuals

locations are kept secret while still providing useful information?

In geo-location privacy, the privacy goal for the user is to ensure that her co-ordinates can-

not be identified – thus, her secret is her current location. The utility goal for the user is to

receive useful recommendations based on her location, therefore the data provider must be

able to deduce her approximate location. Hence, the goal of the differential privacy mechanism

is to release the user’s location data so that it cannot be learned precisely but can be learned

approximately.

We can apply metric differential privacy by choosing an appropriate metric which permits the

user to achieve both her privacy and utility goals. A natural metric for privacy in this instance is

the Euclidean distance on the 2D plane of geo-location co-ordinates. This means that the privacy

mechanism M:X → DY will satisfy the inequation:

M(x)(Y ) ≤ ed2(x,x
′)M(x ′)(Y )

for all x, x ′ ∈ X and all Y ⊆ Y.

This says that points which are close in Euclidean distance will be more indistinguishable

to an adversary, whereas points which are far apart will be more easily distinguished. More

specifically, from Lem. 3.4 we can say that if d2(x, x ′) is small, then an adversary whose prior

knowledge suggests x and x ′ are equally possible, does not increase his ability to distinguish

x and x ′ after observing Y . In practical terms, this means that if the user’s goal is to hide her

location from other nearby locations, then this mechanism will meet her privacy needs.

Lem. 3.5 can be interpreted as saying that if the adversary has knowledge of the user’s

whereabouts within some radius r, then after observing Y , the adversary’s posterior knowledge

is only increased by at most a factor of er .9 The bigger r is, the more that the adversary learns –

in other words, the more uncertainty the adversary has in the first place, the more the adversary

gains in knowledge. However, if the adversary already knows a lot of information about the

user’s position (and therefore r is small), then he does not gain much more information from

the output of the mechanism M.

Notice that the mechanism M will not protect the user’s privacy if her goal is to make her

location indistinguishable from far away locations. For example, an adversary who knows that

the user is either in Paris, Los Angeles, or Melbourne but does not know which city, will learn her

location with high likelihood even though her precise whereabouts in the city will be concealed.

To achieve this alternative privacy goal, the user should select a metric such as the discrete metric

dD, under which all distinct points have distance 1 (and are therefore ‘adjacent’). This means

that the privacy mechanism would cause all points to become ‘relatively’ indistinguishable to an

adversary (relative, that is, to the adversary’s prior on secrets). Such a mechanism has a clear

impact on the utility goal for the user – who, remember, still wishes to receive recommendations

9Or eε ·r if we choose some ε. We ignore the ε values here for now, focussing instead on the type of privacy
afforded by the particular metric.



3.3 Reasoning with Metrics 39

Figure 3.1: Geo-location privacy under the Euclidean metric. Points which are nearby are

more indistinguishable whereas points which are further away are more distinguishable to an

adversary.

based on her location – which we discuss further below.

3.2.1 Utility Goals

The utility goal in geo-location privacy is for the user’s approximate location to be determined, so

that the user can obtain (with high likelihood) useful recommendations based on her location.

Typically the user’s utility goals can be met if she specifies a radius of points within which she

would like to receive recommendations based on her ‘radius of indistinguishability’. She can

then filter the most relevant recommendations sent to her based on her true location. Using a

Euclidean distance metric for the privacy mechanism ensures that the user can set a radius with

respect to this same metric, which guarantees that all useful recommendations are (with high

likelihood) within a satisfactory radius of her true location.

However, as discussed above, if the user chooses, say, the discrete metric for her privacy

mechanism (because she wants the locations Paris and Melbourne to be indistinguishable), then

she is just as likely to receive (useless) distant recommendations as she is to receive nearby rec-

ommendations. For example, she is as likely to receive recommendations close to the Champs-

Élysées as she is to receive recommendations for downtown Melbourne, since all points at any

(Euclidean) radius around her become indistinguishable (under the discrete metric). Thus this

mechanism would have very poor utility for this user. We can see how, in this scenario, the

metric used for privacy has a direct impact on the utility goal; and in fact the metric for privacy

should also reflect the utility goal if it is to be useful to the end user.

3.3 Reasoning with Metrics

In this section we show how to reason about privacy and utility for different scenarios commonly

encountered in the differential privacy literature, which we think of as workflows. Workflows
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describe the ways in which differential privacy mechanisms are put together, and importantly,

where the ‘noise-adding’ component(s) of the workflows are situated. Typically each workflow

corresponds to a particular ‘model’ for privacy, depending on whether the data collector is trusted

or untrusted.

1. In the standard or central model for differential privacy, a trusted data curator collects

data on individuals and then releases the result of a query on the data in a privacy-

preserving manner. In this scenario it is typical to employ an oblivious mechanism, which

is a workflow in which the noise-adding mechanism is applied to the result of a query to

produce a noisy output.

2. In the local model for differential privacy, individuals apply privacy to their data locally

before uploading it to an untrusted data curator, who then chooses the manner of releasing

information about the data. This corresponds to a local mechanism, in which each user

‘locally’ applies a noise-adding mechanism (ie. to their own data) before sending it to the

data curator for post-processing.

In this chapter we investigate how to reason about privacy and utility for different work-

flows. We focus the two most common workflows mentioned above: oblivious mechanisms and

local differential privacy. 10 In the following sections, we describe oblivious mechanisms and

local differential privacy in terms of metric differential privacy, which (as has been noted previ-

ously [15]) can be applied in both contexts.

3.3.1 Oblivious Mechanisms

Oblivious mechanisms first arose in the original context of differential privacy as a means of

preserving the privacy of individuals in statistical datasets when the result of a query f on the

dataset might reveal sensitive information about them. The idea is that a query f such as ‘How

many individuals have cancer?’ can be performed on the dataset, and the result of the query,

f (X), is passed to a mechanism H to generate a noisy observation z. The mechanism H is

constructed in such a way that the composition H◦ f protects the privacy of individuals in the

dataset (in the sense of Def. 3.1.1) whilst maintaining the usefulness (to a data analyst) of the

output z. The mechanism H◦ f is described as ‘oblivious’ because the output from mechanism H

depends only on the output of f (X) and does not depend on X.

Although oblivious mechanisms are usually described in the aforementioned context of sta-

tistical datasets, the ideas are general and can be applied in any context in which we have the

sequential composition of a function f with a mechanism H. We formalise the above ideas as

follows.

An oblivious mechanism describes a workflow which can be decomposed into a (determinis-

tic) query and a privacy mechanism in the following way:

10A third model, called ‘hybrid’, describes arbitrary combinations of the above two, and is usually used to improve
the utility of the overall release mechanism.
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DEFINITION 3.3.1 (Oblivious Mechanism). Given a metric dX on X, an oblivious

mechanism K : X → DZ is a dX-private mechanism which can be decomposed

into a query f :X → Y and a probabilistic mechanism H:Y → DZ st. K = H◦ f .

That is, the mechanism H depends only on the inputs Y and not on the original

dataset X.

The d-privacy of the overall system is determined by the composition H◦ f , whereas the utility of

the system depends on H alone, since utility is a measure of how much the output z reveals and

the true query answer f (x). In summary, we reason about privacy on the composed mechanism

K but we reason about utility on the mechanism H. This relationship is depicted in Figure 3.2.

Figure 3.2: Oblivious dX-private mechanisms K are composed of a deterministic function f and

a dY-private mechanism H. We reason about privacy using the composition K = H ◦ f but we

reason about utility using H alone.

In standard differential privacy, we reason about privacy wrt the Hamming metric dH since

it corresponds to the privacy requirement for indistinguishability of individuals within datasets.

Therefore the metric dH is imposed on the input space X for the mechanism K. The goal is then

to construct a mechanism H so that the composition H◦ f is dH-private. This is typically done

by first computing the ‘sensitivity’ of the function f (described below), and then deducing an

appropriate mechanism H. Some well-known mechanisms for particular functions f include the

geometric mechanism which can be applied to so-called ‘counting’ queries, and the randomised

response mechanism which can be applied to ‘sum’ queries. These mechanisms will be described

in §3.4.

These ideas can be extended to metric differential privacy. We begin by defining the sensi-

tivity of the function f as follows:

DEFINITION 3.3.2. Let dX, dY be metrics on X,Y respectively and let f :X → Y.

We say that f is ∆ f

dX ,dY
-sensitive wrt dX, dY if

dY( f (x), f (x ′)) ≤ ∆
f

dX ,dY
dX(x, x ′)

for all x, x ′ ∈ X. The smallest such ∆ f

dX ,dY
(if it exists) is called the sensitivity of
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f wrt dX, dY .

In other words, f is ∆ f

dX ,dY
-sensitive iff f is ∆ f

dX ,dY
-Lipschitz wrt dX,dY . The sensitivity of f

can be used to reason about privacy for oblivious mechanisms as follows:

LEMMA 3.6 (Fact 5 in [15]). Let dX,dY be metrics on X,Y respectively and let

f :X → Y be ∆ f

dX ,dY
-sensitive. If H:Y → DZ satisfies dY-privacy then H ◦ f

satisfies ∆ f

dX ,dY
·dX-privacy.

Note that the converse to Lem. 3.6 does not hold in general. This means that, although we

can construct mechanisms H and reason about the privacy induced by f on the composition

K, we cannot (always) take a dX-private mechanism K and a ∆ f

dX ,dY
-sensitive function f and

deduce that H must satisfy dY-privacy (although it may be sufficient for H to be dY-private).

However, in [15] it was shown that the converse does hold under stronger conditions on f ,

which we rewrite here equivalently in terms of the metric induced by the graph of f.

DEFINITION 3.3.3. Let X,Y be discrete and let dX be a metric on X. Given a

surjective function f :X → Y, define the graph of f as follows: treat each y ∈ Y

as a node and for each x, x ′ ∈ X draw an edge between f (x) and f (x ′)with weight

dX(x, x ′). Define dY(y, y′) as the minimum path weight from y to y′. Then dY is

called the metric induced by the graph of f.

The following now holds:

LEMMA 3.7. Let f :X → Y and dX,dY metrics on X,Y such that dY is the metric

induced by the graph of f . Then f is 1-sensitive wrt dX,dY and H:Y → DZ

satisfies dY-privacy if and only if H ◦ f satisfies dX-privacy.

Lem. 3.7 provides important conditions under which it is safe to reason about the utility of

d-private mechanisms H in order to guarantee dX-privacy on H◦ f .

3.3.2 Local Differential Privacy

Local differential privacy was first used by Kasiviswanathan et al. [68] to describe the behaviour

of the randomised response algorithm, which adds noise to each individual’s datum rather than

adding noise to the output of a query. It is now also commonly associated with metric differential

privacy, and in particular its application to geo-indistinguishability described earlier (§3.2).

A local differential privacy mechanism describes a workflow in which the privacy mechanism

is directly applied to data before it is combined and released. We will describe this as follows:

DEFINITION 3.3.4 (Local Mechanism). Given a metric dX on X, a local mech-

anism H : X → DZ is a dX-private mechanism which releases a noisy output

z ∈ X.

We do not include any post-processing steps as part of this workflow, as these steps are not
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typically included in this model (cfr. the case of geo-location privacy). Post-processing steps, if

they exist, affect the way in which we reason about utility. In the case of geo-location privacy,

since no post-processing steps are applied, privacy and utility are reasoned about wrt the mech-

anism H alone. However, in situations where data is being collected by an untrusted curator, as

depicted in Figure 3.3, privacy and utility are reasoned about using the entire workflow.

Figure 3.3: Local dX-private mechanisms H are applied directly to individuals’ data points

before being sent to the untrusted data curator. In this case we reason about privacy and utility

in the same way, either using the mechanism H directly (if the data curator releases each noisy

data point as is) or using the composition of the mechanisms H followed by a post-processing

step f if the curator releases the result of a query f on the noisy data.

Since differential privacy is post-processing invariant, it is usual to compute the privacy of

the overall workflow (including any post-processing steps) just using the mechanism H. ie.

if H is ε·d-private then local differential privacy workflows provide ε·d-privacy regardless of

post-processing.

However, it is much more difficult to reason about utility of the overall system since it de-

pends on the utility measure of interest and whether post-processing is applied to the system.

It is widely accepted that utility for local differential privacy mechanisms is worse than it is for

oblivious mechanisms, however there is no established theory for formally reasoning about the

utility of local mechanisms or privacy workflows in general.

3.3.3 Reasoning about Privacy and Utility

When reasoning about privacy using standard differential privacy, it is typical to compare mech-

anisms by their ε values, so that we would say mechanism A is ‘better’ (more private) than

mechanism B if A’s ε value is smaller than B’s. In metric differential privacy, this compari-

son can be complicated by the use of different metrics for A and B.11 It is easy to show that

11Note that this argument could also be applied to standard differential privacy, since comparing mechanisms by
their ε values alone does not take into account differences in the adjacency relation on the input space X.
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comparable metrics gives rise to comparable privacy guarantees:

LEMMA 3.8 (Proposition 1 in [15]). Let dx, dy be metrics on X. If dx ≤ dy

(pointwise) then dx-privacy implies dy-privacy.

However, even when the metrics on A and B are comparable and their ε values are the

same, it may be that A and B provide different levels of protection against different types of

adversaries, since the ε value does not provide a guarantee against all possible adversaries. We

explore this idea further in Chapter 4.

When reasoning about utility for differential privacy, there is currently no standard for as-

sessing the utility of a mechanism or comparing the utility of different mechanisms. While it

is generally assumed that decreasing the value of ε on a particular mechanism (ie. increasing

privacy) results in an associated decrease in utility, this has not been shown formally.12 Utility

for differential privacy systems is typically evaluated empirically based on a utility measure of

interest. In this thesis we will look at how to model utility for privacy workflows, how we can

compare systems with respect to utility and how we can design mechanisms for optimal utility.

3.4 Constructing d-Private Mechanisms

In general, mechanisms designed for use in differential privacy can be applied in metric dif-

ferential privacy for an appropriate metric on the domain. An early principle in the design of

differentially private oblivious mechanisms was that the addition of noise should be independent

of the value of secret input x: in other words, privacy is realised by a noise-adding mechanism

which maps inputs x to outputs x + K(∆, ε) where K is a probability density function which de-

pends on the sensitivity of f (ie. ∆) and the privacy parameter ε. This general principle is also

applicable in the case of metric differential privacy where, in the case of oblivious mechanisms,

the noise added depends on the sensitivity of f wrt the metric on Y; and in the case of local

mechanisms, the noise added depends on the radius of indistinguishability.

Certain mechanisms are usually preferred for their simplicity of implementation, and these

have become ‘canonical’ examples of privacy mechanisms. We introduce these here now, as they

will also act as canonical examples throughout this thesis.

We write the following mechanisms as channels since their domains are discrete.

The geometric mechanism was developed for so-called ‘counting queries’ and is typically

applied to integer domains, although it can be easily applied to any set {qk : k ∈ Z} for fixed

q ∈ R.

DEFINITION 3.4.1 (Geometric Mechanism). The α-geometric mechanism G:X →

DZ has the following channel matrix:

Gx,y =
1 − α
1 + α

· αd2(x,y)

12To see why this is not obviously true, consider a mechanism which outputs random noise regardless of its input.
Since this has no utility whatsoever, manipulating epsilon has no effect – and certainly cannot decrease – its utility.
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where α ∈ (0,1]. This mechanism satisfies ε·d2-privacy where d2 is the Euclidean

metric and ε = − lnα.

It is often more desirable to apply a ‘truncated’ version of the geometric mechanism, where

the truncation is applied by adding columns of the channel until the input and output domains

match.

DEFINITION 3.4.2 (Truncated Geometric Mechanism). The truncated α-geometric

mechanism TG:X → DX where X = {0,1, . . . ,n} has the following channel ma-

trix:

TGx,y =
1 − α
1 + α

· αd2(x,y) for y ∈ {1, . . . ,n − 1}

TGx,y =
1

1 + α
· αd2(x,y) for y ∈ {0,n}

where α ∈ (0,1]. This mechanism satisfies ε·d2-privacy where d2 is the Euclidean

metric and ε = − lnα.

The randomised response mechanism implements Warner’s protocol, described briefly in §1,

and was also the mechanism first associated with local differential privacy.

DEFINITION 3.4.3 (Randomised Response Mechanism). The α-randomised re-

sponse mechanism R:X → DX has the following channel matrix:

Rx,x = 1/k

Rx,y = α/k for x , y

where k is a normalisation term and α ∈ (0,1]. This mechanism satisfies ε·dD-

privacy where dD is the discrete metric and ε = − lnα.

Examples of the truncated geometric mechanism and the randomised response mechanism

are given in Figure 3.4.

TG 0 1 2

0 2/3 1/6 1/6

1 1/3 1/3 1/3

2 1/6 1/6 2/3

R 0 1 2

0 1/2 1/4 1/4

1 1/4 1/2 1/4

2 1/4 1/4 1/2

Figure 3.4: The α-truncated geometric mechanism (left) and the α-randomised response mech-

anism (right) for α = 1/2 and X = {0,1,2}. The truncated geometric mechanism is a square

matrix satisfying TGx,y = αTGx′,y on x = x ′ + 1 or x ′ = x + 1. The randomised response mecha-

nism is a symmetric (square) matrix with maximum values on the diagonal and all other values

equal.
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3.4.1 Other Metrics

To date, there is no general method for the construction of d-private mechanisms for arbitrary

metrics of interest. For a few specific metrics, d-private mechanisms are known. In Chapter

7 we will encounter the Laplace mechanism which is a continuous mechanism most similar to

the geometric mechanism.13 The exponential mechanism is a well-known mechanism designed

for arbitrary measures on Y (rather than metrics on X). We will encounter this mechanism

in Chapter 4. The planar geometric and planar laplace mechanisms are d2-private extensions

for points in the 2D plane and were developed for geo-indistinguishability [14]. For vectors on

Rn, it is well-known that any d2-private mechanism M on R can be extended to a dM-private

mechanism on Rn (where dM is the Manhattan metric 14) by applying M to each element of the

vector v ∈ Rn [7].

In this thesis we will see other constructions for d-private mechanisms. In Chapter 4 we

will show how it is possible to construct a d-private mechanism for any metric of interest. In

Chapter 9 we will show the construction of d2-private mechanisms on Rn, extending the results

for the 2D plane.15 We will also show the construction of an EdX -private mechanism where EdX

is the Earth Mover’s distance between distributions with respect to an underlying metric dX.16

In Chapter 10 we will show the construction of an (approximate) dθ -private mechanism (where

dθ is the angular distance metric) via a probabilistic mapping to the Hamming metric dH. We

also note that this technique can be used for other metrics including the Jaccard distance.

3.5 Discussion and Concluding Remarks

In this chapter we showed how differential privacy can be applied in general settings where in-

distinguishability is described using a metric. We showed how to reinterpret the privacy afforded

in terms of indistinguishability within a radius, and the attacker’s knowledge before and after an

observation. We explained how the choice of metric affects both privacy and utility in different

ways, depending on whether privacy is applied in the oblivious setting or in the local differen-

tial privacy model. We also observed that while reasoning about differential privacy guarantees

has been well-established, reasoning about utility is much more difficult, and is frequently done

empirically and ‘after-the-fact’.

3.6 Chapter Notes

Much of the prior work on metric differential privacy presented in this chapter comes from the

work of Chatzikokolakis et al. [15] who introduced metric differential privacy in 2012. Although

13In fact it is usually described as the continuous version of the geometric mechanism, although this property is
non-trivial to prove. We will present this proof in Chapter 7.

14The Manhattan metric, or taxicab metric, measures the distance dM(v, v
′) between vectors v, v′ ∈ Rn as dM(v, v

′) =∑
i |vi − v

′
i |.

15We subsequently discovered that our result is an instance of the K-norm mechanism [69], although our work was
done independently.

16Also known as the Kantorovich distance.
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this work contained several example use cases for metric differential privacy, it was the work by

Andrés et al. [14] which detailed the use of d-privacy for geo-location privacy.

The results in §3.1.3 provide a so-called semantic interpretation of metric differential privacy,

that regards the privacy guarantee as expressing a bound on the increase of knowledge (from

prior to posterior) due to the answer reported by the mechanism. In particular, for d-privacy

the semantic interpretation is expressed by Lem. 3.4, and was first pointed out (for the location

privacy instance) in [14]. The seminal paper on d-privacy, [15], also proposed a semantic

interpretation, with a rather different flavour, although formally equivalent. In the context of

standard differential privacy, Lem. 3.4 wrt to databases and Hamming distance corresponds

to the odds ratio on which is based the semantics interpretation provided in [25]. Before that,

another version of semantic interpretation was presented in [5] and proved equivalent to a form

of differential privacy called ε-indistinguishability. Essentially, in this version an adversary that

queries the database, and knows all the database except one record, cannot infer too much about

this record from the answer to the query reported by the mechanism. Later on, an analogous

version of semantic interpretation was reformulated in [70] and proved equivalent to differential

privacy. A different interpretation of differential privacy, called semantic privacy, was proposed

by [67]. This interpretation is based on a comparison between two posteriors (rather between

the posterior and the prior), and the authors show that, within certain limits, it is equivalent to

differential privacy.



Part II

Analysis



4
Comparing Privacy Mechanisms

Quantitative information flow (QIF) and differential privacy are both concerned with the pro-

tection of sensitive information, but they are rather different approaches. In a QIF model, we

reason about the expected probability of a successful attack, whereas in differential privacy, the

privacy parameter ε is a max-case measure, in the sense that privacy is compromised by the

existence of a possible attack, regardless of its probability.

Comparing systems is a fundamental task in these areas: one wishes to guarantee that re-

placing a system A by a system B is a safe operation – ie. that the privacy guarantees for B are

no-worse than those of A. This is a basic requirement in verification, where computer programs

are produced by combining pieces of code and the safety properties of the overall system can be

reasoned about using algebraic properties of individual code fragments. One typically uses the

order induced by the safety property to reason abstractly about program specifications, which

are then produced via implementations that are at least as safe as the specification requires. In

QIF, this is done using the refinement (pre)order: we can say that program B is at least as safe as

program A iff A v B. A system that specifies A as a requirement can then be safely implemented

by program B. The notion of refinement thus provides a rigorous way of comparing mechanisms

for the purposes of reasoning about their safety properties.

In differential privacy, mechanisms are typically compared based on their ε privacy param-

eter: one would say that B is at least as safe as A iff A satisfies ε-differential privacy while B

satisfies ε′-differential privacy for ε′ ≤ ε. It is natural to ask: how safe is the order induced by

ε? That is, is replacing A with B a safe operation wrt all adversarial threats to privacy?

In this chapter we explore the order induced by the ε order on channels in terms of the QIF

notion of refinement. In §4.1 we give some examples to motivate the need for a robust method

of comparing privacy mechanisms. In §4.2 we briefly review the average-case refinement order
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introduced in Chapter 2, followed by a study of the max-case refinement order in §4.3 and then

the privacy-based (ε) order in §4.4. In §4.5 we show how the orders can be efficiently verified,

and when the refinement fails, how to construct a counter-example. In §4.6 we study the lattice

properties of the orders. Finally, in §4.7 we apply the three orders (vavg
G

, vmax
Q

, and vprv
M ) to

the comparison of some well-known families of d-private mechanisms. Regarding the question

of whether the order based on ε provides strong privacy guarantees, we find that the standard

refinement of QIF holds within families of mechanisms (eg. geometric, randomised response),

but rarely across different families. What this tells us is that while ε provides a specific privacy

guarantee wrt “differential privacy”-style adversaries, replacing mechanisms based on their ε

value is not safe wrt adversaries modelled using average-case notions of leakage.

4.1 Motivating Examples

In order to guide the design and the implementation of mechanisms for information protection,

it is important to have a rigorous and effective way to establish whether one mechanism is better

or worse than another one. This is not always an obvious task. To illustrate the point, consider

the following examples.

Example 4.1.1. Let P1, P2, P3 and P4 be the programs illustrated in Table 4.1, where H is a “high”

(ie. secret) input and L is a “low” (ie. public) output. We assume that H is a uniformly distributed

32-bit integer with range 0 ≤ H < 232. All of these programs leak information about H via L in

different ways: P1 reveals H whenever it is a multiple of 81 and reveals nothing otherwise. P2 does

the same thing whenever H is a multiple of 4. P3 reveals the last 8 bits of H.2 and, analogously, P4

reveals the last 4 bits of H.

Now, it is clear that P2 leaks more than P1, and that P4 leaks more than P3, but how could we

compare P1 and P3, for instance? It is debatable which one is worse because their behaviour is very

different: P1 reveals nothing in most cases, but when it does reveal something, it reveals everything.

P3, on the other hand, always reveals part of the secret. Clearly, we cannot decide which situation

is worse unless we have some more information about the goals and the capabilities of the attacker.

For instance, if the adversary has only one attempt at his disposal (and no extra information), then

the program P3 would be safer, because even after observing the output of L there are still 24 bits

of H that are unknown. On the other hand, if the adversary can launch repeated attacks, then

eventually P3 will leak the secret completely and P1 would be preferred. Thus, in this situation,

the decision about which program is ‘best’ depends on the type of adversarial threat to be guarded

against.

Example 4.1.2. Consider a truncated geometric mechanism (cfr. Def. 3.4.2) with α = 25/27, and a

randomised response mechanism (cfr. Def. 3.4.3) with α = 11/22. We can represent these mechanisms

by the graphs of their (noise-adding) probability distributions on a single input3, as illustrated in

1Recall that H mod 8 represents the integer division of H by 8.
2Note that H & 02418 represents the bitwise conjunction between H and a string of 24 “0” bits followed by 8 “1”

bits.
3Recall that in both of these mechanisms noise is generated independently of the input x.
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P1 P2 P3 P4

if H mod 8 = 0 then if H mod 4 = 0 then L := H & 02418 L := H & 02814
L := H L := H
else else

L := 1 L := 1

Table 4.1: Programs that take as input a secret H and leak information about H via the output
L.

Figure 4.1. Clearly, it does not make sense to compare them on the basis of their respective privacy

parameters ε, because these represent different privacy properties. It is not obvious how to compare

them in general: The geometric mechanism tends to make the true value indistinguishable from its

immediate neighbours, but more distinguishable for values further away, whereas the randomised

response mechanism introduces the same level of indistinguishability between the true value and

every other value in the domain. Thus, which mechanism is more private depends on the kind of

attack we want to mitigate: if the attacker is trying to guess an approximation of the value, then the

randomised response is better. If the attacker is only interested in identifying the true value among

the immediate neighbours, then the geometric is better.

Figure 4.1: Comparison between the truncated geometric (red) and the randomised response

(blue) mechanisms. The graphs show the distribution over outputs produced by each mecha-

nism when the input is x = 50 for outputs in the range {0,1, . . . ,100}.

In this respect, the QIF approach has led to an elegant theory of refinement order4, intro-

duced in Chapter 2, which provides strong guarantees: A vavg
G

B means that B is safer than

A in all circumstances, in the sense that the expected gain of an attack on B is less than on A,

for whatever kind of gain the attacker may be seeking. This means that we can always substi-

tute the component A by B without compromising the security of the system. It is important

to remark that this order is based on an average notion of adversarial gain (vulnerability), de-

fined by mediating over all possible observations and their probabilities. We call this perspective

average-case.

4In this paper we call vavg
G

and the other refinement relations “orders”, although, strictly speaking they are
preorders.
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At the other end of the spectrum, differential privacy and d-privacy are max-case measures,

in that they represent the worst-case gain by an adversary, regardless of the probability of the

particular observation that realises this gain. This can be seen from Lem. 3.4 in Chapter 3, which

expresses a bound on how much the adversary can learn from each individual outcome of the

mechanism.

In the literature of differential privacy and d-privacy, mechanisms are usually compared on

the basis of their ε-value5, which controls a bound on the log-likelihood ratio of an observation

y given two “secrets” x1 and x2: smaller ε means more privacy. In differential privacy the bound

is ε itself, while in d-privacy it is ε × d(s1, s2). On the other hand, in QIF channels are compared

with respect to their safety against all adversarial attacks, as described by the strong leakage

ordering vavg
G

. We remark that the relation induced by ε in d-privacy is fragile, in the sense that

the definition of d-privacy assumes an underlying metric structure d on the data, and whether a

mechanism B is “better” than A depends in general on the metric considered.

Average-case and max-case are different principles, suitable for different scenarios. The max-

case, as adopted by differential privacy, takes the perspective of the individual whose privacy

is to be protected: the privacy guarantee is designed to limit the cost of any attack on that

individual. However the perspective of the data curator is different: their goal is to understand

the threat to the system from an adversarial attack – for example, by a machine learner – which

is typically modelled (in QIF) using a g-vulnerability with adversarial success measured in the

average case. It is important for both the data curator and the individual to be able to reason

about adversarial threats, and this motivates our study of systems wrt both d-privacy guarantees

and average-case leakage.

In this chapter, we combine the max-case perspective with the robustness of the QIF ap-

proach, and we introduce two refinement orders:

• vmax
Q

, based on the max-case leakage introduced in [57]. This order takes into account

all possible privacy breaches caused by any observable, but it quantifies over all possible

quasi-convex vulnerability functions.

• vprv
M , based on d-privacy, but quantified over all metrics d.

We will study their characterisations as structural relations between stochastic matrices (rep-

resenting the mechanisms to be compared). We will also study the relation between the orders

and their algebraic properties. Finally, we will analyse various mechanisms for d-privacy to see

in which cases the order induced by ε is consistent with the three orders above.

4.1.1 Technical Preliminaries

We recall the following ideas from QIF introduced in Chapter 2.

We model secrets X, about which the adversary has some probabilistic knowledge π:DX

(DX denoting the set of probability distributions over X). An adversary is modelled via a gain

function g(w, x) representing the adversary’s gain when choosing action w when the real secret

5In standard differential privacy, ε is a parameter that usually appears explicitly in the definition of the mechanism.
In d-privacy, it is typically an implicit scaling factor.
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is x. The g-vulnerability of the system is then defined as the expected gain of an optimal guess:

Vg(π) = maxw∈W
∑

x∈X πxg(w, x). Different adversaries can be modelled by proper choices ofW

and g. We denote by GX the set of all gain functions.

A system is modelled as a channel: a probabilistic mapping from the (finite) set of secrets X

to a finite set of observations Y, described by a stochastic matrix C, where Cx,y is the probability

that secret x produces the observation y. When the adversary observes y, he can transform his

initial knowledge π into a posterior knowledge δy:DX. The result of running a channel C on the

initial knowledge π is the hyper distribution [πBC]: a probability distribution on posteriors δy,

each having probability ay.

The (average-case) posterior vulnerability of the system is defined as the application of a

vulnerability function V to each posterior δy, then averaging by its probability ay of being pro-

duced:

V[πBC] :=
∑

y ayV(δy) . (4.1)

Since any continuous and convex function V can be written as Vg for a properly chosen g, when

studying average-case leakage we can safely restrict to using g-vulnerabilities.

Leakage can finally be defined by comparing the prior and posterior vulnerabilities, eg. as

L+g (π,C) = Vg[πBC] − Vg(π).6

4.2 Average-Case Refinement

In Chapter 2 we encountered the average-case notions of refinement (v) and leakage ordering

(vavg
G

). Recall that v is a structural notion that says that 2 channels A, B are related by refinement

(A v B) iff B can be written as A·R for some channel R. In contrast, vavg
G

is an operational notion

– it says that A vavg
G

B iff B leaks no more than A against all adversaries that can be modelled

using a gain function. vavg
G

is also called a testing refinement because it allows us to produce a

counter-example; if A 6vavg
G

B then it means we can find a gain function g for which B leaks more

than A. The co-incidence of v and vavg
G

provides a powerful ordering on channels which is easy

to verify (via v) and meaningful in terms of the adversarial threat that it models (via vavg
G

).

4.3 Max-Case Refinement

Although v,vavg
G

provide a strong and precise way of comparing systems, one could argue that

the average-case order might underestimate the threat to a system. For example, imagine that

there exists a certain observation y such that the corresponding posterior δy is highly vulnerable

(eg. the adversary can completely infer the real secret), but y happens with very small proba-

bility. In this case the average-case posterior vulnerability Vg[πBC] can be relatively small even

though Vg(δ
y) is large for that particular y (see Example 4.1).

A risk-averse scenario – in which any threat to the secret, no matter how unlikely, cannot be

ignored – is better modelled using a worst-case measure of leakage rather than an average-case

6Comparing vulnerabilities “multiplicatively” is also possible, but is orthogonal to our goals.



4.3 Max-Case Refinement 54

EXAMPLE 4.1. A situation where average-case refinement may underestimate the threat

to a secret. Given the channel C, which is parametrised by some arbitrarily small value σ,

we can compute the expected leakage of this channel wrt Bayes vulnerability.

C y1 y2 y3

x1 σ 1/2 1/2 − σ

x2 0 1/2 1/2

x3 0 1/2 1/2

[υBC] σ/3 1/2 1/2 − σ/3 = p(y3)

x1 1 1/3 1/6p(y3) − σ/3p(y3)

x2 0 1/3 1/6p(y3)

x3 0 1/3 1/6p(y3)

υ = (1/3, 1/3, 1/3)

We first compute the hyper [υBC] as shown on the right hand side. The posterior Bayes

vulnerability is then computed as

V1[υBC] = σ/3·V1(δ
y1) + 1/2·V1(δ

y2) + (1/2 − σ/3)·V1(δ
y3) = σ/3 + 1/6 + 1/6 = σ/3 + 1/3

giving multiplicative leakage L×1 (υ,C) =
V1[υBC]
V1(υ)

= σ + 1 which is close to 1 (ie. the

minimum possible leakage) when σ is very small. This is despite the fact that V1(δ
y1) = 1

since the observation y1 leaks the value of the secret exactly. In this case, the average-case

leakage underestimates the risk to the secret x1 because the likelihood of observing y1 (ie.
σ/3) is so small.

measure, to properly estimate the risk to the secret regardless of its probability of occurring.

We can naturally quantify such a leakage using a max-case variant of posterior vulnerability,

where all observations are treated equally regardless of their probability of being produced. It

has been shown [57] that in order for max-case vulnerabilities to satisfy fundamental properties

such as the data-processing inequality, the prior vulnerability has to be a quasi-convex function

of π instead of a convex function (as modelled by Vg). We will therefore write Q to denote

the (quasi-convex) vulnerability function of type QX (the set of all continuous quasi-convex

functions DX → R≥0.) Recalling the definition of quasi-convex, this means that, given a set

{π1, π2, . . . , πn} of distributions and a corresponding set {a1,a2, . . . ,an} of convex coefficients,

we require Q(
∑

i aiπi) ≤ maxi Q(πi). We now define posterior max-case vulnerability as follows.

DEFINITION 4.3.1 (Max-Case Vulnerability). Given a vulnerability Q:QX, a prior

π:DX and a channel C, the posterior max-case vulnerability is defined as

Vmax
Q
[πBC] := max

y
Q(δy)

An example of a quasi-convex vulnerability that is not convex is the function Q(π) = 1 −

(min
x
πx)

2.

Inspired by vavg
G

, we can now define a corresponding max-case leakage order.
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DEFINITION 4.3.2. The max-case leakage order is defined as

A vmax
Q B iff Vmax

Q [πBA] ≥ Vmax
Q [πBB]

for all Q:QX, π:DX.

As with its average-case variant, vmax
Q

provides clear privacy guarantees by explicitly requir-

ing that B leaks no more than A for all adversaries that can be modelled using a vulnerability

Q. But this explicit quantification makes the order hard to reason about and verify. We would

thus like to characterise vmax
Q

by a refinement order that depends only on the structure of the

two channels – ie. a structural characterisation.

Given a channel C : X → DY, we denote by C̃ the channel obtained by normalising7 C’s

columns and then transposing:

C̃y,x :=
Cx,y∑
x Cx,y

.

Note that the row y of C̃ can be seen as the posterior distribution δy obtained by C under

the uniform prior. Note also that C̃ is non-negative and its rows sum up to 1, so it is a valid

channel from Y to X. The average-case refinement order required that B can be obtained by

post-processing A. We define the max-case refinement order by requiring that B̃ can be obtained

by pre-processing Ã.

DEFINITION 4.3.3. The max-case refinement order is defined as

A vmax B iff RÃ = B̃

for some channel R.

Note that, unlike its average-case variant which relates to the data-processing inequality,

vmax does not have an intuitive interpretation. However, we can also provide a “semantic”

characterisation of vmax by expressing it, not in terms of the channel matrices A and B, but in

terms of the posterior distributions that they produce. Given the hyper [πBC], its support d[πBC]e

is the set of all posteriors produced with non-zero probability. We also denote by ch S the convex

hull of S. We then have the following:

THEOREM 4.1. Let A, B be channels and π:DX. If A vmax B then the posteriors

of B (under π) are convex-combinations of those of A, that is

d[πBB]e ⊆ ch d[πBA]e . (4.2)

Moreover, if (4.2) holds and π is full support then A vmax B.

Note that if (4.2) holds for any full-support prior, then it must hold for all priors.

We can now relate vmax and v in the space of hyper-distributions using the barycentric

7If a column consists of only zeroes it is simply removed.
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view of refinement (see Example 4.2). Both vmax and v require that refining hypers have their

posteriors within the convex hull of the refined hyper, however vmax, which ignores its outer

distribution, does not have a corresponding Earth Moving constraint between the posteriors

(cfr. Def. 2.4.3).

EXAMPLE 4.2 (Geometric relationship between vmax and v). Consider the following chan-

nels.

A y1 y2 y3 y4

x1 3/4 0 1/4 0

x2 3/4 1/4 0 0

x3 0 1/4 1/4 1/2

B y1 y2 y3

x1 1/2 0 1/2

x2 1/2 1/2 0

x3 0 1/2 1/2

Pushing the uniform distribution, υ, through A and B produces the hypers ∆1 =
1
2 ·[δ

y1] +

1
6 ·[δ

y2] + 1
6 ·[δ

y3] + 1
6 [δ

y4] and ∆2 =
1
3 ·[δ

y1] + 1
3 ·[δ

y2] + 1
3 ·[δ

y3] respectively. These hypers and

their convex hulls are illustrated in the figure below.

Notice that d∆2e ⊂ ch d∆1e and so we deduce that A vmax B (by Thm. 4.1). However, there

is no “refining Earth Move” (see Def. 2.4.3) that can take ∆1 to ∆2 – specifically, we require

an Earth Move to increase the weight of posterior δy2 from 1
6 to 1

3 but it is not inside the

convex hull of any vertices which would enable this Earth Move. Thus we conclude A 6v B

and similarly B 6v A (by Lem. 2.5 from §2.4.2).

We are now ready to give the main result of this section.

THEOREM 4.2. The orders vmax and vmax
Q

coincide.

Similarly to the average case, A vmax B gives us a strong leakage guarantee: we can safely

replace A by B, knowing that for any adversary, the max-case leakage of B can be no-larger

than that of A. Moreover, in case A 6vmax B, we can always find an adversary, modelled by



4.4 Privacy-Based Refinement 57

a vulnerability function Q, who prefers (wrt the max-case) interacting with A over B. This is

discussed in §4.5.

Finally, we resolve the question of how vmax and v are related.

THEOREM 4.3. v is strictly stronger than vmax.

This result might appear counter-intuitive at first; we might expect A vmax B to imply A v B.

To understand why it does not, note that the former only requires that, for each output yB of B,

there exists some output of yA that is at least as vulnerable, regardless of how likely yA and yB

are to happen. The other direction might also appear tricky: if B leaks no more than A in the

average-case, it must also leak no more than B in the max-case. The quantification over all gain

functions in the average-case is powerful enough to “detect” differences in max-case leakage.

Example 4.2 provides further intuition using the geometry of refinement.

The above result also means that v could be useful even if we are interested in the max-

case, since it gives us vmax “for free”. In other words, we can safely reason using v with the

knowledge that any substitution A for B which is safe wrt average-case adversaries is also safe

wrt max-case adversaries.

4.4 Privacy-Based Refinement

So far we have compared systems based on their (average-case or max-case) leakage. In this

section we turn our attention to d-privacy and discuss new ways of comparing mechanisms

based on ε as a “leakage” notion.

4.4.1 Comparing mechanisms by their “smallest ε” (for fixed d)

In Chapter 3 we defined ε·d-privacy as a constraint between values x, x ′ of the input space.

However, we did not require that the constraint be met on any pair x, x ′ – that is, we did not

specify that ε should be the “smallest possible” value for which a channel satisfies ε·d-privacy.

Remembering that smaller values of ε constitute more privacy, it is advantageous to report the

minimum ε for a channel, since this provides both stronger guarantees and more leeway in

terms of so-called “privacy budget”. Additionally, in order to consider ε as a leakage measure,

we should associate to each channel, for a given d, the smallest ε by which we can scale d

without violating privacy.

DEFINITION 4.4.1. The privacy-based leakage (wrt d) of a channel C is defined

as

Privd(C) := inf{ε ≥ 0 | C satisfies ε · d-privacy} .

Note that Privd(C) = +∞ iff there is no such ε; also we say that Privd(C) ≤ 1 iff C satisfies

d-privacy (ie. for ε = 1).

We can now compare two mechanisms A and B based on their “smallest ε”.
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DEFINITION 4.4.2. The privacy-based leakage order is defined as

A vprv
d B iff Privd(A) ≥ Privd(B) .

For instance, A vprv
dH

B means that B satisfies standard differential privacy for ε at least as small

as the one of A.

The privacy-based leakage ordering vprv
d is a weak ordering, in the sense that it can hold in

either direction depending on the metric of interest. Example 4.3 shows when this can occur.

EXAMPLE 4.3 (Privacy-based leakage order depends on the metric). We revisit 2 channels

presented in Chapter 3 which are defined over the input space X = {0,1,2}.

G y0 y1 y2

0 2/3 1/6 1/6

1 1/3 1/3 1/3

2 1/6 1/6 2/3

R y0 y1 y2

0 3/5 1/5 1/5

1 1/5 3/5 1/5

2 1/5 1/5 3/5

We can calculate the privacy-based leakage for these channels wrt 2 different metrics on

X: the Euclidean metric (d2) and the Discrete metric (dD).

For d2 we compute Privd2(G) = ln 2 and Privd2(R) = ln 3 and therefore R vprv
d2

G.

However, for dD we have PrivdD(G) = ln 4 and PrivdD(R) = ln 3 and therefore G vprv
dD

R.

This shows how the leakage ordering wrt ε can also depend on the metric on X.

4.4.2 Privacy-based leakage and refinement orders

When discussing the average- and max-case leakage orders vavg
G
,vmax
Q

, we obtained strong leak-

age guarantees by quantifying over all vulnerability functions. It is thus natural to investigate a

similar quantification in the context of d-privacy. Namely, we define a stronger privacy-based

“leakage” order, by comparing mechanisms not on a single metric d, but on all metrics simulta-

neously.

DEFINITION 4.4.3. The privacy-based leakage order is defined as

A vprv
M B iff A vprv

d B for all d:MX .

Similarly to the other leakage orders, the drawback of vprv
M is that it quantifies over an

uncountable family of metrics. As a consequence, our first goal is to characterise it as a property

of the channel matrix alone, which would make it much easier to reason about or verify.

To do so, we start by recalling an alternative way of thinking about d-privacy. Consider the

multiplicative total variation distance between probability distributions µ, µ′ ∈ DY, defined as:

tv⊗(µ, µ′) := max
y∈Y
| ln

µy

µ′y
| .
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We also recall that a function f :X → Y on metric spaces (X, dx), (Y, dy) is said to be 1-

Lipschitz if dy( f (x), f (x ′)) ≤ dx(x, x ′) for all x, x ′ ∈ X.

Remembering that the matrix C can also be viewed as a function C:X → DY (mapping

every x to the distribution Cx,−), we have that

C satisfies d-privacy iff tv⊗(Cx,−,Cx′,−) ≤ d(x, x ′) .

In other words iff C is 1-Lipschitz wrt tv⊗,d.

Next, we introduce the concept of the distinguishability metric of a channel.

DEFINITION 4.4.4. Given a channel C, we define the distinguishability metric

dC:MX induced by C as

dC(x, x ′) := tv⊗(Cx,−,Cx′,−) .

Intuitively, dC(x, x ′) expresses exactly how much the channel distinguishes (wrt tv⊗) the

values x, x ′. It is easy to see that dC is a metric (since tv⊗ is) and it is the smallest metric for

which C is private; in other words, for any d:

C satisfies d-privacy iff d ≥ dC

where the comparison between d and dC is taken pointwise.

We can now give a refinement order on mechanisms by comparing their induced metrics.

DEFINITION 4.4.5. The privacy-based refinement order is defined as

A vprv B iff dA ≥ dB

or equivalently, A vprv B iff B satisfies dA-privacy.

The structural refinement vprv is simple to verify as demonstrated in Example 4.4.

EXAMPLE 4.4. Returning to Example 4.3, we can compute the distinguishability metrics

for the channels G and R:

dG(0,1) = ln 2 dR(0,1) = ln 3
dG(1,2) = ln 2 dR(1,2) = ln 3
dG(0,2) = ln 4 dR(0,2) = ln 3

Since dG(0,1) < dR(0,1) and dG(0,2) > dR(0,2) we have G 6vprv R and R 6vprv G.

This achieves our goal of characterising vprv
M .

PROPOSITION 4.4. The orders vprv
M and vprv coincide.

Intuitively, Prop. 4.4 tells us that channel A is at least as safe as channel B on all metrics

whenever A is as safe as B wrt their characteristic distinguishability metrics. This means we
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could substitute channel A for channel B without having to worry about what metric is being

used to interpret the privacy guarantee.

Finally we address the question of how these orders relate to each other.

THEOREM 4.5. vmax is strictly stronger than vprv, which is strictly stronger than

v
prv
d .

One way to understand the fact that vmax is stronger than vprv is by viewing Privd as a max-case

information leakage for each d. This means that when vmax holds, then Privd also holds for all d,

which gives vprv. This is discussed in detail in §4.4.4. For the “strictly” part, a counter-example

is given in Example 4.5.

EXAMPLE 4.5. To show that vmax is strictly stronger than vprv (Thm. 4.5) consider the

following counter-example:

A y1 y2

x1 4/5 1/5

x2 2/5 3/5

B y1 y2

x1 2/5 3/5

x2 4/5 1/5

.

The only difference between A and B is that the two rows have been swapped. Hence,

dA = dB which implies A vprv B vprv A. However, consider the hypers of A and B wrt the

uniform distribution:

[υBA] 3/5 2/5

x1 2/3 1/4

x2 1/3 3/4

[υBB] 3/5 2/5

x1 1/3 3/4

x2 2/3 1/4

.

Since (3/4, 1/4) cannot be written as a convex combination of (2/3, 1/3) and (1/4, 3/4), and

similarly (1/4, 3/4) cannot be written as a convex combination of (1/3, 2/3) and (3/4, 1/4), from

Thm. 4.1 we conclude that A 6vmax B 6vmax A. This can be observed from their barycentric

representation illustrated in Figure 4.2.

The result of Thm. 4.5 means that even if we “only” care about d-privacy, it is safe to reason

wrt with v or vmax as these both imply vprv
d . In other words, if channel A is safer than channel

B wrt vmax (say) – ie. B vmax A – then we know that A must also be safer wrt d-privacy, ie. that

B vprv
d A, or equivalently, that A has a “smaller ε” than B.

The relationship between the orders is summarised in Figure 4.3.

4.4.3 Application to oblivious mechanisms

We conclude the discussion on privacy-based refinement by showing the usefulness of our strong

vprv order in the case of oblivious mechanisms. Recall from Chapter 3 (§3.3.1) that oblivious

mechanisms K are d-private mechanisms which can be decomposed into a deterministic query

f and a probabilistic channel M such that K = M ◦ f .
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Figure 4.2: Failure of refinement for the hypers [υBA] (blue) and [υBB] (orange) from Example

4.5. The orange and blue points are posteriors lying on the line x1 + x2 = 1. The orange points

are not both contained within the convex hull of the blue points and vice versa, and therefore

A 6vmax B and B 6vmax A.

THEOREM 4.6. Let f : X → Y be any query and A,B be two mechanisms on Y.

If A vprv B then A ◦ f vprv B ◦ f .

Proof. We reason as follows:

A vprv B

⇒ dA ≥ dB “Def. 4.4.5”

⇒ tv⊗(Ay,−, Ay′,−) ≥ tv⊗(By,−,By′,−) “Def. 4.4.4, for any y, y′ ∈ Y”

⇒ tv⊗(Af (x),−, Af (x′),−) ≥ tv⊗(Bf (x),−,Bf (x′),−) “Substituting y = f (x), y′ = f (x ′)”

⇒ tv⊗((A ◦ f )x,−, (A ◦ f )x′,−) ≥ tv⊗((B ◦ f )x,−, (B ◦ f )x′,−) “Simplify”

⇒ A ◦ f vprv B ◦ f “Def. 4.4.5 and Def. 4.4.4”

�

This means that, replacing A by B is the context of an oblivious mechanism is always safe,

regardless of the query (and its sensitivity) and regardless of the metric by which the privacy of

the composed mechanism is evaluated.

Assume, for instance, that we care about standard differential privacy, and we have properly

constructed A such that A◦ f satisfies ε-differential privacy for some ε. If we know that A vprv B

(several such cases are discussed in §4.7) we can replace A by B without even knowing what f

does. The mechanism B ◦ f is guaranteed to also satisfy ε-differential privacy.

Note also that the above theorem fails for the weaker order vprv
d . Establishing A vprv

dY
B for

some metric dY:MY gives no guarantees that A ◦ f vprv
dX

B ◦ f for some other metric of interest

dX:MX. This is because A vprv
dY

B does not imply A vprv
dX

B (cf. Example 4.3). It is possible that

replacing A by B in this case is not safe.
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Leakage orders Refinement orders

v
avg
G

⇔ v

⇓ ⇓

vmax
Q

⇔ vmax

⇓ ⇓

v
prv
M ⇔ vprv

u w

v
prv
d

Figure 4.3: Comparison of leakage and refinement orders. All implications are strict.

4.4.4 Privacy as max-case capacity

Recalling Thm. 4.5, we noted that one way to check whether vmax is stronger than vprv is to

examine whether d-privacy can be expressed as a (max-case) information leakage. We address

this now.

We begin by defining a suitable vulnerability function:

DEFINITION 4.4.6. The d-vulnerability function Vd is defined as

Vd(π) := inf{ε ≥ 0 | ∀x, x ′ ∈ X, πx ≤ eε ·d(x,x
′)πx′} .

That is the smallest value ε such that π (seen as a function X → [0,1]) is ε ·d-private. Namely, it

represents the minimum distinction factor by which π increases the separation of two elements

with respect to the underlying metric d. Note the difference between Vd(π) (a vulnerability

function on distributions) and Privd(C) (a “leakage” measure on channels). We show now that

Vd is quasi-convex and thus can be used as a max-case vulnerability.

LEMMA 4.7. The d-vulnerability Vd (from Def. 4.4.6) is quasi-convex in π.

Proof. Observe that Def. 4.4.6 is equivalent to

Vd(π) = sup
x,x′

d−1(x, x ′) ln
πx
πx′

, (4.3)

although the above reformulation is to be used carefully with 0 and ∞ values

of ε. Consider the finite set {π1, π2, . . . πn} of full-support distributions on X and

coefficients {α1, α2, . . . αn} satisfying αi ∈ (0,1) and
∑

i αi = 1. Writing now πi(x)

for the probability assigned by πi to x, for fixed x, x ′ let maxi
πi (x)
πi (x′)

= εk occurring

on πk . ie. πi (x)
πi (x′)

≤
πk (x)
πk (x′)

, or
πi(x)
πk(x)

≤
πi(x ′)
πk(x ′)

(4.4)

for all i. Thus we have:
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Figure 4.4: Plot of the d-vulnerability function Vd(π) for Discrete metric d on distributions over

3 secrets showing top view (left) and side view (right). The function is quasi-convex and thus

can be used to describe a max-case vulnerability.

∑
i αiπi (x)/

∑
j αjπj (x

′)

= αkπk (x)/αkπk (x
′)

(
1+

∑
i,k

αi πi (x)/πk (x)

1+
∑

j,k
α j π j (x

′)/πk (x
′)

)
“Factorising”

≤ αkπk (x)/αkπk (x
′)

(
1+

∑
i,k

αi πi (x
′)/πk (x

′)

1+
∑

j,k
α j π j (x

′)/πk (x
′)

)
“Substituting (4.4)”

= πk (x)/πk (x′) “Simplify”

= maxi
πi (x)
πi (x′)

“Assumption”

And now we find:

Vd(
∑

i αiπi)

= supx,x′ d−1(x, x ′) ln
∑

i αiπi (x)∑
j αjπj (x′)

“Eqn (4.3)”

≤ supx,x′ d−1(x, x ′) ln(maxi
πi (x)
πi (x′)
) “Above result, monotonicity of ln”

= supx,x′ d−1(x, x ′)maxi ln πi (x)
πi (x′)

“Monotonicity”

= maxi supx,x′ d−1(x, x ′) ln πi (x)
πi (x′)

“Independence of πi”

= maxi Vd(πi) “Eqn (4.3)”

And thus we have that Vd is a quasi-convex function of π. �

An example of the quasi-convex Vd on 3 secrets is plotted in Figure 4.4.

A fundamental notion in QIF is that of capacity: the maximum leakage over all priors. It

turns out that for Vd, the prior that realises the maximum capacity is the uniform one. In the

following, L+,max
d denotes the additive max-case d leakage, defined:

L
+,max
d (π,C) := Vmax

d [πBC] − Vd(π). (4.5)

andML+,max
d denotes the additive max-case d-capacity, namely:

ML
+,max
d (C) := max

π
L
+,max
d (π,C). (4.6)
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Intuitively, L+,max
d tells us how much the channel C contributes to the distinguishability of

the secrets (in the posteriors) established in the prior π. The bigger L+,max
d is, the more influence

C has on distinguishability.

THEOREM 4.8. ML+,max
d is always achieved on a uniform prior υ. Namely

max
π
L
+,max
d (π,C) = L+,max

d (υ,C) = Vmax
d [υBC] .

Since the uniform prior makes all secrets indistinguishable, the max d-capacityML+,max
d is

achieved when the channel C is completely responsible for distinguishability of secrets in the

posteriors. Intuitively, this means that when ML+,max
d is small, C does not make secrets very

distinguishable, which we interpret as C providing more privacy.

This finally brings us to our goal of expressing Privd in terms of information leakage (for a

proper vulnerability function).

THEOREM 4.9. (DP as max-case capacity) C satisfies ε ·d-privacy iffML+,max
d (C) ≤

ε. In other words: ML+,max
d (C) = Privd(C).

Thus ε expresses a particular max-case capacity wrt a quasi-convex vulnerability function,

showing that vprv is indeed weaker than vmax.

4.4.5 Revisiting the Data Processing Inequality for d-Privacy

We can now provide a semantic interpretation of the data processing inequality for d-privacy.

We first restate the definition from Chapter 3.

LEMMA 3.3 (DPI for d-Privacy). Let M:X → DY be an ε·d-private channel and

let R:Y → DZ be a post-processing step modelled as a channel. Then the com-

posed channel MR is also ε·d-private, where we write MR for the matrix multi-

plication of M by R.

In QIF terms the data processing inequality on channels is stated in terms of the leakage

properties of the channels [57]:

LEMMA 4.10 (Data Processing Inequality). Let C,R be channels on X and let

π:DX. Then

Vg[πBC] ≥ Vg[πBCR]

for all gain functions g:GX.

Lem. 4.10 tells us that post-processing by any channel R cannot increase an attacker’s ex-

pected gain wrt any gain function g. However, the result in Lem. 3.3 does not express the

guarantee in terms of the adversary’s knowledge before and after post-processing. We can do

this now by rewriting the ε guarantee of the mechanism in terms of the vulnerability function

Vd from Def. 4.4.6. The function Vd is quasi-convex, and hence we can apply it to max-case
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adversaries, which motivates the following result:

LEMMA 4.11. Let M:X → DY be an ε·d-private mechanism and let R:Y →

DZ be a post-processing step modelled as a channel. Let Vmax
d be the max-case

vulnerability function defined for the vulnerability Vd:QX. Then for any π:DX it

holds that:

Vmax
d [πBM] ≥ Vmax

d [πBMR] .

Proof. Follows from the result in [57] which says that the data-processing in-

equality holds for any max-case adversary modelled using a quasi-convex vulner-

ability. �

Lem. 4.11 is an alternative statement of Lem. 3.3 using vulnerabilities. It tells us that the

data processing inequality for d-private mechanisms can be interpreted as: post-processing by

any channel cannot increase the max-case leakage to an adversary modelled using the Vd vul-

nerability function. This is a weaker guarantee than the DPI for channels which applies to

all average-case adversaries (and therefore all max-case adversaries) modelled using any gain

function (or any quasi-convex vulnerability in the max-case).

4.5 Verifying the Refinement Orders

The usefulness of refinement orders stems from both the ability to easily verify whether refine-

ment holds and, in the case that refinement does not hold, to find a counter-example (eg. a

gain function or a vulnerability function) as a witness to the failure of refinement. In this sec-

tion, we turn our attention to these problems, given two representations of channels A and B

(ie. as channel matrices). Since all of our orders have structural refinements, the problem of

verification can be easily solved, and we will show that it can be performed in time polynomial

in the size of the matrices. Moreover, when one of the order fails, we discuss how to obtain a

counter-example (eg. a gain function g or a vulnerability function V), demonstrating this fact.

4.5.1 Average-case refinement

Verifying A v B can be done in polynomial time (in the size of A,B) by solving the system of

equations AR = B, with variables R, under the linear constraints that R is a channel matrix

(non-negative and rows sum up to 1). However, if the system has no solution (ie. A 6v B), this

method does not provide us with a counter-example gain function g.

We now show an alternative efficient method based on the constructive proof of the ‘Coria-

ceous conjecture’ from [61]. We first define A↑:= {AR | R is a channel}, the set of all channels

obtainable by post-processing A. The idea is to compute the projection of B on A↑. Clearly,

the projection is B itself iff A v B; otherwise, the projection can be directly used to construct a

counter-example g.



4.5 Verifying the Refinement Orders 66

THEOREM 4.12. (‘Coriaceous conjecture’ from [61]) Let B∗ be the projection of

B on A↑.

1. If B = B∗ then A v B.

2. Otherwise, let G = B − B∗. The gain function g(w, x) = Gx,w provides a

counter-example to A v B, that is Vg[υBA] < Vg[υBB], for uniform υ.

Rewriting A,B as vectors (by ‘gluing’ each channel’s columns together), we can compute

the projection B∗ as the vector with minimum distance to the closed, convex set A↑. Using

‖x − y‖22 = xT x − 2xT y + yT y, we see that the projection of y to a convex set can be solved

as minx xT x − 2xT y. Therefore the projection B∗ can be computed using a quadratic program,

setting y = B and constraining x to the representation AR, as a member of A↑. This can be

solved in polynomial time.

Note that the proof of McIver et al. [61] uses the separating-hyperplane theorem to show

the existence of a counter example g in case A 6v B. The above technique essentially computes

such a separating hyperplane.

4.5.2 Max-case refinement

Similarly to v, we can verify A vmax B directly using its definition, by solving the system RÃ = B̃

under the constraint that R is a channel. As explained for average-case refinement, this can be

done in polynomial time.

In contrast to v, when A 6vmax B, the proof of Thm. 4.2 directly gives us a counter-example.

Recalling that A vmax B holds whenever the posteriors of [πBB] are contained in the convex hull

of posteriors of [πBA] (for any full support π:DX), we can choose as our vulnerability function

Q the following:

Q(σ) := min
σ′: S
‖σ − σ′‖2 .

where S = ch d[πBA]e and π is any full-support prior. ie. We compute the distance of each

posterior of [πBB] from the convex hull of posteriors of [πBA]. (Note that Q is convex, hence

also quasi-convex). For this vulnerability function it therefore holds that Vmax
Q
[πBA] < Vmax

Q
[πBB]

when A 6vmax B. Again, as for average-case refinement, this can be computed using a quadratic

program and solved in polynomial time.

4.5.3 Privacy-based refinement

The vprv order can be verified directly from its definition, by checking that dA ≥ dB. This can be

done in time O(|X|2 |Y|), by computing tv⊗(Cx,−,Cx′,−) for each pair of secrets. If A 6vprv B, then

d = dB provides an immediate counter-example metric, since B satisfies dB-privacy, but A does

not.
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4.6 Lattice properties

The orders v,vmax and vprv are all preorders, which means that they are reflexive and transi-

tive but not anti-symmetric.8 Anti-symmetry fails because there can exist channels which have

“syntactic” differences but the same semantics. eg. In the case of v we know that 2 different

channel matrices A,B (ie. having different columns) can have the same leakage properties (ie.

Vg[πBA] = Vg[πBB] for all π,g). In this case we have A v B v A; however, we can view A and B

as the “same channel” by writing their channel matrices in some canonical form, thus turning v

from a preorder into a partial order.9 We can do the same with vmax and vprv, thus turning all

of the preorders into partial orders.

Seeing now each of the above orders as a partial order, the natural question is whether it

forms a lattice. That is, whether every pair of channels A,B has a unique supremum (least upper

bound) A ∨ B and a unique infimum (greatest lower bound) A ∧ B. If it exists, the supremum

A ∨ B has an interesting property: it is the “least safe” channel that is safer than both A and B.

ie. Satisfying A v A ∨ B and B v A ∨ B (for any of v,vmax,vprv). This is because any channel C

such that A v C and B v C would necessarily satisfy A ∨ B v C. If we wanted a channel that is

safer than both A and B, A ∨ B would be a natural choice.

In this section we briefly discuss this problem and show that – in contrast to v – both vmax

and vprv do have suprema and infima, and thus form a lattice.

4.6.1 Average-case refinement

In the case of v, “equivalent” channels are those producing exactly the same hypers. However,

it is known [61] that two channels A,B do not necessarily have a least upper bound wrt v, hence

v does not form a lattice. We can also express the supremum as a property of the hypers: the

supremum of 2 different channels can be expressed as a refining hyper which anti-refines every

other refining hyper (of the channels expressed as hypers). An example illustrating when this

fails is given in Example 4.6.

4.6.2 Max-case refinement

In the case of vmax, “equivalent” channels are those producing the same posteriors (or, more

generally, the same convex hull of posteriors). But, in contrast to v, if we identify such channels

– that is, if we represent a channel only by the convex hull of its posteriors – then vmax becomes

a lattice.

First, note that given a finite set of posteriors P = {δy |y}, such that π ∈ ch {δy}y, i.e. such

that π =
∑

y ayδy, it is easy to construct a channel C producing each posterior δy with output

probability ay. It suffices to take Cx,y:= δyxay/πx.

So A ∨max B can be simply constructed by taking the intersection of the convex hulls of the

posteriors of A,B. This intersection is a convex polytope itself, so it has (finitely many) extreme

points, so we can construct A∨max B as the channel having exactly those as posteriors. A∧max B,

8Anti-symmetry means that A v B implies that B 6v A.
9The canonical form is known as an ‘abstract channel’ in the QIF literature.
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on the other hand, can be constructed as the channel having as posteriors the union of those of

A and B. An example is illustrated in Figure 4.6.

Note that computing the intersection of polytopes is NP-hard in general [71], so A ∨max B

might be hard to construct. However, efficient special cases do exist [72]; we leave the study of

the hardness of ∨max as future work.

EXAMPLE 4.6 (Lattice properties for v and vmax expressed in the space of hypers.). The

following shows the space of hypers on 3 secrets. The orange points A, B, C are poste-

riors which can be combined (uniquely) to form a valid hyper, say [υBX], where υ is the

uniform distribution (represented by the black point). Likewise the blue points A’, B’, C’

are posteriors of some hyper [υBY ]. The convex hulls ch d[υBX]e and ch d[υBY ]e intersect

in the convex region whose vertices are denoted by the 6 white points, which themselves

can be combined (non-uniquely) to form hypers (with different weights).

Consider any two, say [υBZ1] and [υBZ2]. Since vmax ‘ignores’ the weights of the hyper, we

have Z1 v
max Z2 v

max Z1 and so Z = X ∨max Y is unique (wrt max-case leakage properties)

for any choice of Z using the white posteriors. The same argument holds for X ∧max Y

using hypers formed from the combined blue and orange posteriors.

However, in the case of v, we have Z1 6v Z2 and Z2 6v Z1 since there can be no ‘refining

Earth Move’ between the two hypers. Thus we have no unique infimum since X v Z1,

Y v Z1 and X v Z2, Y v Z2; and the same holds for the supremum.

4.6.3 Privacy-based refinement

In the case of vprv, “equivalent” channels are those producing the same induced metric, i.e.

dA = dB. Representing channels only by their induced metric, we can use the fact than MX

does form a lattice under ≥. We first show that any metric can be turned into a corresponding

channel.

THEOREM 4.13. For any metric d:MX, we can construct a channel Cd such that

dCd = d.
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Then A ∨prv B will be simply the channel whose metric is dA ∨ dB, where ∨ is the supremum in

the lattice of metrics, and similarly for ∧prv.

Note that the infimum of two metrics d1,d2 is simply the max of the two (which is always

a metric). The supremum, however, is more tricky, since the min of two metrics is not always

a metric: the triangle inequality might be violated. So we first need to take the min of d1,d2,

then compute its “triangle closure”, by finding the shortest path between all pairs of elements,

for instance using the well-known Floyd-Warshall algorithm.

4.6.4 Constructing d-private mechanisms for any metric d

The proof of Thm. 4.13 is constructive10, and we now give the construction, which is itself of

interest, as it means that we can always construct a d-private mechanism for any metric d.

LEMMA 4.14. Given any (finite) metric space (X,d), define Y = X ∪ {⊥}. Con-

struct the channel C:X → DY as follows:

Cx,y = |X|−1e−d(x,y)−1 , x, y ∈ X ,

Cx,⊥ = 1 − |X|−1 ∑
y∈X e−d(x,x′)−1 , x ∈ X .

Then C is d-private.

Proof. Follows from proof of Thm. 4.13. �

4.7 Comparing d-Privacy Mechanisms

We noted at the beginning of this chapter that in differential privacy it is common to compare the

privacy guarantees provided by different mechanisms by ‘comparing the epsilons’. We now use

the results from the previous sections to investigate to what extent this is a ‘safe’ comparison.

That is, we would like to know whether reducing the ε value (corresponding to an increase

in privacy) also corresponds to increased safety against max-case or average-case adversaries,

and whether the same ε value in different mechanisms corresponds to the same level of ‘safety’

against other types of adversaries. This is useful if, for example, it is important to be able to

provide privacy guarantees with respect to other types of adversaries modelled using max-case

or average-case attacks.

We observe that, since the ε-based order given by vprv
d is (strictly) the weakest of the orders

considered here, it cannot be the case that reducing ε (eg. by swapping a mechanism with a

higher ε for one with a lower ε) is safe against all adversaries (either average- or max-case) –

since this is just a refinement. But it may be true that within particular families of mechanisms

some (or all) of the refinement orders hold.

We investigate 3 families of mechanisms commonly used in differential privacy and d-

privacy: the geometric, exponential and randomised response mechanisms.

10The proof is available in the appendix of [36].
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4.7.1 Technical Preliminaries

We define each family of mechanisms in terms of their channel construction. We assume that

mechanisms operate on a set of inputs (denoted byX) and produce a set of outputs (denotedY).

In this sense our mechanisms can be seen either as oblivious mechanisms or as local mechanisms.

(We use the term ‘mechanism’ in either sense). We denote by Mε a mechanism parametrised

by ε, where ε is defined to be the same as Privd(M). 11 In order to compare mechanisms, we

restrict our input and output domains of interest to sequences of non-negative integers. 12 (We

assume X,Y are finite unless otherwise specified.) Also, as we are operating in the framework

of d-privacy, it is necessary to provide an appropriate metric defined over X; here it makes sense

to use the Euclidean distance metric d2.

We recall the following definitions of d-privacy mechanisms given in Chapter 3:

DEFINITION 3.4.1 (Geometric Mechanism). The α-geometric mechanism G:X →

DZ has the following channel matrix:

Gx,y =
1 − α
1 + α

· αd2(x,y)

where α ∈ (0,1]. This mechanism satisfies ε·d2-privacy where d2 is the Euclidean

metric and ε = − lnα.

DEFINITION 3.4.2 (Truncated Geometric Mechanism). The truncated α-geometric

mechanism TG:X → DX where X = {0,1, . . . ,n} has the following channel ma-

trix:

TGx,y =
1 − α
1 + α

· αd2(x,y) for y ∈ {1, . . . ,n − 1}

TGx,y =
1

1 + α
· αd2(x,y) for y ∈ {0,n}

where α ∈ (0,1]. This mechanism satisfies ε·d2-privacy where d2 is the Euclidean

metric and ε = − lnα.

We also include in our investigation an ‘over-truncated’ geometric mechanism whose input

space is not entirely included in the output space.

DEFINITION 4.7.1. An over-truncated α-geometric mechanism OTG:X → DY

where X = {0,1, . . . ,n} and Y ⊂ Z st. X * Y is constructed as follows:

1. Start with the α-geometric mechanism G.

2. Sum up the columns of G at each end until the output domainY is reached.

Such a mechanism satisfies ε · d2-privacy where d2 is the Euclidean metric and

ε = − lnα.
11We note that the exponential mechanism under-reports its ε, thus for the purposes of comparison we make sure

that we use the best possible ε for each mechanism.
12Our results hold for sequences of quantized integers q[0..] but we use integer sequences to simplify presentation.
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For example, the set of inputs to an over-truncated geometric mechanism could be integers in

the range [0 . . . 100] but the output space may have a range of [0 . . . 50] or perhaps [−50 . . . 50].

In either of these cases, the mechanism has to ‘over-truncate’ the inputs to accommodate the

output space.

We remark that we do not consider the over-truncated mechanism a particularly useful mech-

anism in practice. However, we provide results on this mechanism for completeness since its

construction is possible, if unusual.

We next introduce the exponential mechanism which can be used for any metric but which

we consider here wrt the Euclidean metric.

DEFINITION 4.7.2. An ε-exponential mechanism E:X → DY is constructed as

follows:

Ex,y = λx · e−
ε
2 d2(x,y) for all x ∈ X, y ∈ Y

where λx are normalising constants ensuring
∑

y Eα
x,y = 1. Such a mechanism

satisfies α · d2-privacy where α ≥ ε
2 (which can be calculated exactly from the

channel construction).

The exponential mechanism was designed for arbitrary domains, thus the parameter ε does

not correspond to the true (best-case) ε privacy guarantee that it provides. We will denote by

Eε the exponential mechanism with ‘true’ privacy parameter ε rather than the reported one,

as our intention is to capture the privacy guarantee provided by the channel in order to make

reasonable comparisons.

Finally we recall the randomised response mechanism introduced in Chapter 3:

DEFINITION 3.4.3 (Randomised Response Mechanism). The α-randomised re-

sponse mechanism R:X → DX has the following channel matrix:

Rx,x = 1/k

Rx,y = α/k for x , y

where k is a normalisation term and α ∈ (0,1]. This mechanism satisfies ε·dD-

privacy where dD is the discrete metric and ε = − lnα.

We note that the randomised response mechanism also satisfies ε · d2-privacy.

Intuitively, the randomised response mechanism returns the true answer with high proba-

bility and all other responses with equal probability. In the case where the input x lies outside

Y (that is, in ‘over-truncated’ mechanisms), all of the outputs (corresponding to the outlying

inputs) have equal probability. Some examples of mechanisms are illustrated in Example 4.7.

We now have 3 families of mechanisms which we can characterise by channels, and which

satisfy ε · d2-privacy. For the remainder of this section we will refer only to the ε parameter and
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EXAMPLE 4.7 (Instances of d-private mechanisms). The following are examples of each

of the mechanisms described above, represented as channel matrices. For this example

we set ε = ln 2 for the geometric and randomised response mechanisms, while for the

exponential mechanism we use ε = ln 4. We assume integer input and output domains.

ie. X = {x1, x2, x3} corresponding to {1,2,3} and similarly for the output.

TG x1 x2 x3

x1 2/3 1/6 1/6

x2 1/3 1/3 1/3

x3 1/6 1/6 2/3

OTG x1 x2

x1 2/3 1/3

x2 1/3 2/3

x3 1/6 5/6

E x1 x2 x3

x1 4/7 2/7 1/7

x2 1/4 1/2 1/4

x3 1/7 2/7 4/7

R x1 x2 x3

x1 1/2 1/4 1/4

x2 1/4 1/2 1/4

x3 1/4 1/4 1/2

Note that the exponential mechanism here actually satisfies ln(16
7 )·d2-privacy even though

it is specified by ε = ln 4.

take d2 as given, as our goal is to understand the effect of changing ε (for a fixed metric) on the

various leakage measures.

REMARK 4.7.1. Note that for the remainder of our discussions on d-private mech-

anisms we will typically parametrise mechanisms by ε rather than α for the pur-

poses of comparison. We will denote this by, for example, Gε for the geometric

mechanism parametrised by ε. The use of α in some definitions is more for con-

venience of notation.

4.7.2 Refinement order within families of mechanisms

We first ask which refinement orders hold within a family of mechanisms. That is, when does

reducing ε for a particular mechanism produce a refinement? Since we have the convenient

order v ⊂ vmax ⊂ vprv it is useful to first check if v holds as we get the other refinements ‘for

free’.

We first make the observation that the (infinite) geometric mechanism and the truncated

geometric mechanism are related by refinement:

LEMMA 4.15. Let Gε and TGε be geometric and truncated geometric channels

respectively, defined over the same domain of secrets X. Then Gε v TGε and

TGε v Gε. That is, the geometric and truncated geometric mechanisms are

equivalent under refinement for the same ε.

This means that it is always safe to truncate the geometric mechanism (ie. against any
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adversaries) since the operation of truncation13 does not affect the leakage properties of the

channel wrt average-case adversaries (and therefore also wrt max-case and differential privacy

adversaries).

For the (infinite) geometric mechanism we have the following result.

THEOREM 4.16. Let Gε,Gε′ be geometric mechanisms. Then Gε v Gε′ iff ε ≥ ε′.

That is decreasing ε produces a refinement of the mechanism.

This means that reducing ε in an infinite geometric mechanism is safe against any adversary

that can be modelled using, for example, max-case or average-case vulnerabilities.

For the truncated geometric mechanism, the same result follows from Lem. 4.15 and Thm. 4.16.

COROLLARY 4.17. Let TGε,TGε′ be truncated geometric mechanisms. Then TGε v

TGε′ iff ε ≥ ε′. That is, decreasing ε produces a refinement of the mechanism.

However, the over-truncated geometric mechanism does not behave as nicely.

LEMMA 4.18. Let OTGε,OTGε′ be over-truncated geometric mechanisms. Then

OTGε 6v OTGε′ for any ε , ε′. That is, decreasing ε does not produce a refine-

ment.

Proof. Consider the following counter-example:

Aε x1 x2

x1 4/5 1/5

x2 1/5 4/5

x3 1/20 19/20

Bε
′

x1 x2

x1 2/3 1/3

x2 1/3 2/3

x3 1/6 5/6

Channels Aε and Bε
′

are over-truncated geometric mechanisms parametrised

by ε = 2 ln 2, ε′ = ln 2 respectively. We expect Bε
′

to be safer than Aε, that is,

VG[πBBε
′

] < VG[πBAε] for any π ∈ DX. However, under the uniform prior υ, the

gain function
G w1 w2

x1 1/5 0
x2 0 1
x3 4/5 0

yields VG[υBAε] = 0.33 and VG[υBBε
′

] = 0.36, thus Bε
′

leaks more than Aε for

this adversary. (In fact, for this gain function we have VG[υBAε] = VG(υ) and so

the adversary learns nothing from observing the output of Aε). �

Intuitively, this means that we can always find some (average-case) adversary who prefers

the over-truncated geometric mechanism with the smaller ε.

13By truncation we mean the standard operation of truncating the geometric mechanism until the input and output
domains match. This is not true for over-truncated mechanisms.
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We remark that the gain function we found can be easily calculated by treating the columns

of channel A as vectors, and finding a vector orthogonal to both of these. This follows from the

results in Section 4.5.1. Since the columns of A cannot span the space R3 it is always possible

to find such a vector, and when this vector is not orthogonal to the ‘column space’ of B it can be

used to construct a gain function preferring B to A.

Even though the v refinement does not hold, we can check whether the other refinements

are satisfied.

LEMMA 4.19. Let OTGε be an over-truncated geometric mechanism. Then re-

ducing ε does not produce a vmax refinement, however it does produce a vprv

refinement.

This means that although a smaller ε does not provide safety against all max-case adver-

saries, it does produce a safer mechanism wrt d-privacy for any choice of metric we like.

Intuitively, the vprv order relates mechanisms based on how they distinguish inputs. Specif-

ically, if A vprv B then for any pair of inputs x, x ′, the corresponding output distributions are

‘further apart’ in channel A than in channel B, and thus the inputs are more distinguishable

using channel A. When vprv fails to hold, it means that there are some inputs in A which are

more distinguishable than in B, and vice versa. This means an adversary who is interested in

distinguishing some particular pair of inputs would prefer one mechanism to the other.

We now consider the exponential mechanism. In this case, we do not have a theoretical

result, but experimentally it appears that the exponential mechanism respects refinement, so we

present the following conjecture.

CONJECTURE 4.20. Let Eε be an exponential mechanism. Then decreasing ε in

E produces a refinement. That is, Eε v Eε′ iff ε ≥ ε′.

Finally, we consider the randomised response mechanism.

THEOREM 4.21. Let Rε be a randomised response mechanism. Then decreasing

ε in R produces a refinement. That is, Rε v Rε
′

iff ε ≥ ε′.

In conclusion, we can say that, in general, the usual d-privacy families of mechanisms are

‘well-behaved’ wrt all of the refinement orders. This means that it is safe (wrt any adversary we

model here) to replace a mechanism from a particular family with another mechanism from the

same family with a lower ε.

4.7.3 Refinement order between families of mechanisms

Now, we explore whether it is possible to compare mechanisms from different families. We first

ask: can we compare mechanisms which have the same ε? We assume that the input and output

domains are the same, and the intention is to decide whether to replace one mechanism with

another.
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THEOREM 4.22. Let Rε be a randomised response mechanism, Eε an exponential

mechanism and TGε a truncated geometric mechanism. Then TGε vprv Rε and

TGε vprv Eε. However vprv does not hold between Eε and Rε.

Proof. We present a counter-example to show Eε 6vprv Rε and Rε 6vprv Eε. The remainder of the

proof can be found in [36].

Consider the following channels:

A x1 x2 x3 x4

x1 8/15 4/15 2/15 1/15

x2 2/9 4/9 2/9 1/9

x3 1/9 2/9 4/9 2/9

x4 1/15 2/15 4/15 8/15

B x1 x2 x3 x4

x1 4/9 5/27 5/27 5/27

x2 5/27 4/9 5/27 5/27

x3 5/27 5/27 4/9 5/27

x4 5/27 5/27 5/27 4/9

Channel A represents an exponential mechanism and channel B a randomised response mech-

anism. Both have (true) ε of log(12/5). 14 However dA(x1, x3) > dB(x1, x3) and dA(x2, x3) <

dB(x2, x3). Thus A does not satisfy dB-privacy, nor does B satisfy dA-privacy. �

Intuitively, the randomised response mechanism maintains the same (ε) distinguishability

level between inputs, whereas the exponential mechanism causes some inputs to be less distin-

guishable than others. This means that, for the same (true) ε, an adversary who is interested

in certain inputs could learn more from the randomised response than the exponential. In the

above counter-example, inputs x2, x3 in the exponential mechanism of channel A are less distin-

guishable than the corresponding inputs in the randomised response mechanism B.

As an example, imagine that the mechanisms are to be used in geo-location privacy and

the inputs represent adjacent locations (such as addresses along a street). Then an adversary

(your boss) may be interested in how far you are from work, and therefore wants to be able

to distinguish between points distant from x1 (your office) and points within the vicinity of

your office, without requiring your precise location. Your boss chooses channel A as the most

informative. However, another adversary (your suspicious partner) is more concerned about

where exactly you are, and is particularly interested in distinguishing between your expected

position (x2, the boulangerie) versus your suspected position (x3, the brothel). Your partner

chooses channel B as the most informative.

Regarding the other refinements, we find (experimentally) that none of them hold (in gen-

eral) between families of mechanisms. 15

We next check what happens when we compare mechanisms with different epsilons. We note

the following.

THEOREM 4.23. For any (truncated geometric, randomised response, exponen-

tial) mechanisms Mε
1 ,M

ε′

2 , if Mε′

2 v Mε
1 for any of our refinements (v,vmax,vprv)

then Mε′

2 v Mε2
1 for ε2 < ε.

14Channel A was generated using ε = log(4). However, as noted earlier, this corresponds to a lower true ε.
15Recall that we only need to produce a single counter-example to show that a refinement doesn’t hold, and this

can be done using the methods presented in Section 4.5.
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Are these valid for decreasing ε?
Mechanism v vmax vprv

Geometric Y Y Y
Truncated Geometric Y Y Y
Over-Truncated Geometric N N Y
Exponential Y Y Y
Randomised Response Y Y Y

Table 4.2: The refinements respected by families of mechanisms for decreasing ε.

Proof. This follows directly from transitivity of the refinement relations, and our

results on refinement with families of mechanisms. (We recall, however, that our

result for the exponential mechanism is only a conjecture.) �

This tells us that once we have a refinement between mechanisms, it continues to hold for

reduced ε in the refining mechanism.

COROLLARY 4.24. Let TG,R,E be truncated geometric, randomised response and

exponential mechanisms respectively. Then for all ε′ ≤ ε we have that TGε vprv

Rε
′

and TGε vprv Eε′.

So it is safe to ‘compare epsilons’ wrt vprv if we want to replace a geometric mechanism with

either a randomised response or exponential mechanism. (As with the previous theorem, note

that the results for the exponential mechanism are stated as conjecture only, and this conjecture

is assumed in the statement of this corollary.) What this means is that if, for example, we

have a geometric mechanism TG that operates on databases with distance measured using the

Hamming metric dH and satisfying ε · dH-privacy, then any randomised response mechanism R

parametrised by ε′ ≤ ε will also satisfy ε ·dH-privacy. Moreover, if we decide we’d rather use the

Manhattan metric dM to measure distance between the databases, then we only need to check

that TG also satisfies ε · dM-privacy, as this implies that R will too.

The following tables 4.2, 4.3, and 4.4 summarise the refinement relations with respect to the

various families of mechanisms.

4.7.4 Asymptotic behaviour

We now consider the behaviour of the relations when ε approximates 0, which represents the

absence of leakage. We start with the following result:

THEOREM 4.25. Every (truncated geometric, randomised response, exponential)

mechanism is ‘the safest possible mechanism’ when parametrised by ε = 0. That

is Lε v M0 for all mechanisms L,M (possibly from different families) and ε > 0.

While this result may be unsurprising, it means that we know that refinement must eventually
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Refinements across families with same ε

TG 6v R TG 6vmax R TG vprv R

R 6v TG R 6vmax TG R 6vprv TG

TG 6v E TG 6vmax E TG vprv E

E 6v TG E 6vmax TG E 6vprv TG

G 6v R G 6vmax R G vprv R

R 6v G R 6vmax G R 6vprv G

G 6v E G 6vmax E G vprv E

E 6v G E 6vmax G E 6vprv G

R 6v E R 6vmax E R 6vprv E

E 6v R E 6vmax R E 6vprv R

Table 4.3: Comparing different families of mechanisms with respect to the different refinements
under the same ε.

Comparison of refinements with ε1 > ε2

TGε1 6v Rε2 TGε1 6vmax Rε2 TGε1 vprv Rε2

Rε1 6v TGε2 Rε1 6vmax TGε2 Rε1 6vprv TGε2

TGε1 6v E TGε1 6vmax Eε2 TGε1 vprv Eε2

Eε1 6v TG Eε1 6vmax TGε2 Eε1 6vprv TGε2

Gε1 6v Rε2 Gε1 6vmax Rε2 Gε1 vprv Rε2

Rε1 6v Gε2 Rε1 6vmax Gε2 Rε1 6vprv Gε2

Gε1 6v Eε2 Gε1 6vmax Eε2 Gε1 vprv Eε2

Eε1 6v Gε2 Eε1 6vmax Gε2 Eε1 6vprv Gε2

Rε1 6v Eε2 Rε1 6vmax Eε2 Rε1 6vprv Eε2

Eε1 6v Rε2 Eε1 6vmax Rε2 Eε1 6vprv Rε2

Table 4.4: Comparing different families of mechanisms with differing ε.

occur when we reduce ε. It is interesting then to ask just when this refinement occurs. We

examine this question experimentally by considering different mechanisms and investigating for

which values of ε average-case refinement holds. For simplicity of presentation, we show results

for 5×5 matrices, noting that we observed similar results for experiments across different matrix

dimensions. 16 The results are plotted in Figure 4.5.

The plots show the relationship between ε1 (x-axis) and ε2 (y-axis) where ε1 parametrises

the mechanism being refined and ε2 parametrises the refining mechanism. For example, the blue

line on the top graph represents TGε1 v Eε2 . We fix ε1 and ask for what value of ε2 do we get

16By similar results, we mean wrt the coarse-grained comparison of plots that we do here.
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Figure 4.5: Refinement of mechanisms under v for 5×5 channels. The x-axis (ε1) represents the

mechanism on the LHS of the relation. The y-axis (ε2) represents the refining mechanism. We fix

ε1 and ask for what value of ε2 do we get a refinement? The top left graph represents refinement

of the truncated geometric mechanism (that is, TG v), the top right graph is refinement of

randomised response (R v), and the bottom graph is refinement of the exponential mechanism

(E v).

a v refinement? Notice that the line ε1 = ε2 corresponds to the same mechanism in both axes

(since every mechanism refines itself).

We can see that refining the randomised response mechanism requires much smaller values

of epsilon in the other mechanisms. For example, from the middle graph we can see that R4 v

TG1 (approximately) whereas from the top graph we have TG4 v R4. This means that the

randomised response mechanism is very ‘safe’ against average-case adversaries compared with

the other mechanisms, as it is much more ‘difficult’ to refine than the other mechanisms.

We also notice that for ‘large’ values of ε1, the exponential and geometric mechanisms refine

each other for approximately the same ε2 values. This suggests that for these values, the epsilons

are comparable (that is, the mechanisms are equally ‘safe’ for similar values of ε). However,

smaller values of ε1 require a (relatively) large reduction in ε2 to obtain a refinement.
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4.8 Conclusion

We have investigated various refinement orders for mechanisms for information protection, com-

bining the max-case perspective typical of differential privacy and its variants with the robust-

ness of the QIF approach. We have provided structural characterisations of these preorders

and methods to verify them efficiently. Then we have considered various differential privacy

mechanisms, and investigated the relation between the ε-based measurement of privacy and

our orders. We have shown that, while within the same family of mechanisms a smaller ε im-

plies the refinement order, this is almost never the case for mechanisms belonging to different

families.

Although we found that the comparison of mechanisms by “comparing the epsilons” fails

to preserve average-case refinement, an interesting question is whether or not the failure of

refinement corresponds to a realistic adversarial threat. We leave this exploration to future

work.

4.9 Chapter Notes

This chapter is based on the published papers “Comparing Systems: Max-case Refinement Orders

and Application to Differential Privacy” [35] and “Refinement Orders for Quantitative Informa-

tion Flow and Differential Privacy” [36]. Proofs not included in this chapter can be found in the

appendix of [36].

In the field of differential privacy there have been various works aimed at trying to under-

stand the operational meaning of the privacy parameter ε and at providing guidelines for the

choice of its values. We mention for example [27] and [73], which consider the value of ε from

an economical point of view in terms of cost. We are not aware however of studies aimed at

establishing orders between the level of privacy of different mechanisms, except the one based

on the comparison of the ε’s.

We are also not aware of many other studies on refinement relations for QIF. Yasuoka and

Terauchi [74] and Malacaria [75] have explored strong orders on deterministic mechanisms,

focusing on the fact that such mechanisms induce partitions on the space of secrets. They

showed that the orders produced by min-entropy leakage [55] and Shannon leakage [76, 77]

are the same and, moreover, they coincide with the partition refinement order in the Lattice

of Information [78]. This order was extended to the probabilistic case in [56], resulting in

the average-case leakage order (introduced in Chapter 2). The max-case leakage, on which the

relation vmax
Q

is based, was introduced in [57], but vmax
Q

and its properties were not investigated.



5
Inference Attacks

The fundamental goal of a privacy-protection system is to ensure that any data release does not

violate the privacy of individuals whose sensitive information is used in such a release. Differen-

tial privacy provides such guarantees couched in terms of indistinguishability – an individual can

plausibly deny that their personal information contributed to some announced value v because

this value could have been produced just as plausibly from some other data v′ not containing

that individual’s information. This idea extends to arbitrary metric spaces; metric differential

privacy provides guarantees that an adversary’s posterior knowledge about the value of a secret

does not change ‘much’ if the adversary has some uncertainty about the precise value of the

secret within some ‘radius’ of the true value.

In contrast, in practical applications (for example, machine learning settings), the privacy-

preserving properties of a system are usually evaluated empirically in terms of their vulnerability

to inference attacks (see, for example, [18] and [19]). Moreover, practitioners are required to

tune their systems to optimise for accuracy (of some utility measure). This is typically done by

varying the ε parameter until the desired utility has been achieved, without a good understand-

ing of the ramifications for privacy [79].

Differential privacy does not rule out inferences – indeed, its definition was predicated upon

the observation that inferences cannot be eliminated since they are critical for the release of

useful information [80]. However, from the perspective of a privacy practitioner, an under-

standing of differential privacy’s guarantees regarding inference attacks, as well as the role of

ε in managing the privacy-utility balance, is essential for the proper design and evaluation of a

privacy-preserving system.

In this chapter we study the privacy-utility trade-off from the point of view of inference

attacks. We use QIF to model inferences as correlations in order to analyse the extent to which
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inferences succeed once data has been released, and to estimate the accuracy of “useful” queries.

From this viewpoint we are able to gauge direct risks to individuals when compared to the

benefits of those wishing to use the data, as well as some understanding about the setting of the

parameter ε in terms of the trade-off between privacy risks and accuracy of data releases.

5.1 Motivation

Consider the following stories about actual and potential privacy breaches.

(i) In 2009 a lawsuit (Doe v. Netflix) was filed against Netflix alleging that it had violated fair-

trade laws and a federal privacy law. The complainants argued that Netflix’s “anonymi-

sation” still allowed individuals to be identified (and indeed plenty were) by combining

movie preferences with other generally available data. And that Netflix should have known

about these risks.

[Source: https://www.wired.com/2009/12/netflix-privacy-lawsuit/]

(ii) Also in 2009, researchers in Natural Language Processing showed that using powerful ma-

chine learning algorithms, authors of anonymously-penned documents could be identified

with a high degree of accuracy.

[Source: On the Feasibility of Internet-Scale Author Identification [81]]

(iii) Finally Privacy researchers at the University of Melbourne noted that in any “anonymised

datasets” records that can be characterised uniquely put the individuals who contributed

those records at risk. “While uniqueness does not imply re-identification, particular data

that is known to be held by certain parties, does imply the opportunity for re-identification”.

[Source: https://pursuit.unimelb.edu.au/articles/the-simple-process-of-re-identifying-patients-in-

public-health-records]

These three real examples share a common theme: the breaches, or the potential for breaches,

are all related to “unintended inferences,” meaning that the data published was deemed to be

innocuous but turned out to have the potential for inferring information that individuals could

claim as infringements to their privacy.

Modern approaches to privacy such as differential privacy recognise that inferences are a

problem and, whilst they likely cannot be eliminated, can be mitigated by providing “plausible

deniability” for individuals. However, despite the abundance of variations on the theme of

differential privacy designed for different scenarios[16], there remains little clarification around

the basic questions: how does some particular version of differential privacy (and its choice of

ε) affect both the potential for unintended inferences to be made of the individuals contributing

their data and the accuracy of the “useful” data that is released?

Our goal in this chapter is to explore privacy and utility for differential privacy systems from

the perspective of a data curator interested in protecting against inference attacks. Significant

in this analysis is a contribution to the “no free lunch” style theorems of Kifer et al. [37]. We

https://www.wired.com/2009/12/netflix-privacy-lawsuit/
https://pursuit.unimelb.edu.au/articles/the-simple-process-of-re-identifying-patients-in-public-health-records
https://pursuit.unimelb.edu.au/articles/the-simple-process-of-re-identifying-patients-in-public-health-records
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demonstrate that it is impossible to design differentially-private mechanisms that offer minimal

risk benefits to all individuals in all situations at the same time as preserving a fixed accuracy

threshold. And dually it is impossible to design differentially-private mechanisms that offer

optimal accuracy in all scenarios whilst guaranteeing a fixed threshold for plausible deniability

for all individuals.

The implication of these impossibility results is that the manner in which noisy outputs are

created is crucial, and by making reasonable assumptions about adversaries, as argued by Kifer

at al. [37], a better understanding of the relationship between inferences about privacy and

accuracy can be obtained. Our final contribution is to compare experimentally the different

risks to privacy versus accuracy in a large to medium-sized dataset when differential privacy is

used as the noise-adding mechanism.

5.2 Informal example: does it matter how to randomise?

In this section we illustrate, using a simple scenario, the challenges faced by designers of privacy

mechanisms in deciding what and how to randomise.

Suppose there are N participants invited to contribute to a survey. The survey question is of

a personal nature and some respondents might be embarrassed if their true response came to

be known. However the organisers of the survey only want to know the total number of (say)

“yes” replies. Figure 5.1 and Figure 5.2 are two possible designs for collecting the responses

and announcing a count of the total “yes” responses. Figure 5.1 is the well-known “randomised

response” protocol which was designed to give respondents plausible deniability so that even

the data collectors do not know exactly whether the response they receive from any individual

is the “true” response [6]. Figure 5.2 follows the blueprint of traditional “oblivious” privacy

mechanisms. An accurate tally of the true answers of the respondents is computed, and then

some randomness is added. In this particular example we use the geometric distribution.1

In both cases there is a corresponding differential privacy guarantee. In Figure 5.1 the

guarantee grants plausible deniability wrt. a elog 3 threshold for each respondent individually.

For Figure 5.2 the differential-privacy guarantee is not handed down (directly at least) to an

individual, but rather gives a guarantee on the plausible deniability for the final output. In this

case more work is required to determine the privacy risk to an individual, but it is relatively

easy to provide a guarantee of accuracy: that’s because the randomisation is added to the useful

output, namely the true answer to the query and there are strong results which show that good

accuracy can be guaranteed using the geometric distribution for this type of data release [39].

In contrast, for Figure 5.1, as mentioned above, the randomness is added directly to the data

that is considered to be private (by the owner of that data), and so in this scenario the survey

organisers would want to know the effect on the accuracy of the final count, which also requires

more work to compute.

Much of the theoretical analysis of privacy mechanisms is carried out within the context of

1That is, the geometric mechanism (Def. 3.4.1), which adds noise drawn from a geometric distribution to the
secret.
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// Assume resp is an array of length N set to
// participants’ responses to a survey question.
i := 0;
count:= 0;
while (i<N) {

coin:= 0 [1/2] 1; // Random response - coin flip
count:= (count + coin

[1/2] // Randomly include or not
count + resp[i]);

i++;
}
print count; // Announce the approximate count

Assume that all variables cannot be observed by an adversary except for the final “print” of the
count. On each iteration, the participant i is randomly selected for inclusion in the count or not.
In the case that the participant’s true response resp[i] is not included, a random response coin
for that participant is delivered instead.
This mechanism R is able to guarantee the following differential-privacy constraint for each
participant i providing plausible deniability for their true response:

R(resp[i]=0)(Z) ≤ R(resp[i]=1)(Z)elog 3 .

Figure 5.1: Randomised response with N participants

an adversarial model. In the case of differential privacy that model is deliberately worst-case:

namely it is assumed that the adversary knows all the data except that of a given individual.

Within that setting though, it seems not straightforward to examine vulnerabilities in regard to

“unintended inferences” or the potential for such inferences as described by (iii) above. More-

over, Chatzikokolakis et al. [35] have shown that such adversarial models offer surprisingly

weak guarantees of privacy operating against other reasonable adversarial settings.

In the case of trying to decide whether to use Figure 5.1 or Figure 5.2 if we use the weak dif-

ferential privacy adversarial setting, a designer would be unable to determine how randomness

might defend against an actual privacy breach ie. an unintended inference. When focussing on

randomness as a defence, relevant issues are not only that respondents have plausible denia-

bility, but also what level of ε to use that balances the risk of an unintended inference with a

reasonably accurate tally of “yes” respondents, and what might be the adversary’s prior knowl-

edge.

In the remaining sections we analyse the potential for inferences using a model of Quan-

titative Information Flow (QIF), and adversarial settings which include assumptions about an

adversary’s prior knowledge.
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// Assume resp is an array of length N set to
// participants’ responses to a survey question.
// epsilon is a parameter for randomising the final tally.
i := 0;
tally := 0;
while (i<N) {

tally := tally + resp[i];
i++;

}
count := Geom(tally, epsilon);
print count; // Announce the approximate count

Assume that all variables cannot be observed by an adversary except for the final “print” of
the count. On each iteration, the participant i’s response resp[i] is included in the count. After
the full count has been tallied, the result is randomised according to the (truncated) Geometric
mechanism. This mechanism G is able to guarantee the following differential-privacy constraint
for the value of the tally, for ε = log 3:

G(tally = k)(Z) ≤ G(tally = k+1)(Z)elog 3 .

Figure 5.2: Oblivious response mechanism to announce the total for N participants

5.3 Modelling Inferences

An inference is commonly regarded as the ability to determine a property about an individual

or a group of individuals using any available information. Thus the inferred property might not

be obvious, which is why almost all data releases are vulnerable, to some extent, from inference

attacks. In this section we show how to use a QIF model to study such vulnerabilities.

5.3.1 Quantitative Information Flow

We recall from Chapter 2 that we model a secret as a distribution of type DX where X is a finite

set of possible secret values.2 Given π:DX we write πx for the probability that π assigns to x:X.

We model privacy mechanisms as probabilistic channels C:X → DY which are row-stochastic

matrices mapping secret values x:X to observations y:Y.

A gain function g:W×X → R models how an adversary uses their knowledge to gain some

advantage wrt an attack scenario by choosing an action w:W when the true value of the secret is

x:X. Given a gain function we define the vulnerability of a secret in DX relative to the scenario it

describes: it is the maximum average gain to an adversary. A simple example of a gain function

is bv3, whereW:=X, and

bv(x, x ′) :=

{
1 if x = x ′,
0 otherwise.

(5.1)

For this scenario, the adversary’s goal is to determine the exact value of the secret, so he receives

2In Chapter 2 we called this the adversary’s uncertainty about the secret value, but these ideas are equivalent.
3This gain function coincides with the identity gain function which we encountered in Chapter 2 (Def. 2.2.3).
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a gain of 1 if he correctly guesses the value of a secret, and zero otherwise. Assuming that he

knows the range of possible secrets X, he therefore hasW:=X for his set of possible guesses.

We recall the definition of prior g-vulnerability from §2.2.1:

DEFINITION 2.2.1. Given a gain function g:GX, the g-vulnerability of a prior

π:DX is

Vg(π) := max
w∈W

∑
x∈X

πxg(w, x) .

WhenW is infinite, max should be replaced by sup.

Given a prior π:DX and a mechanism C:X → DY, the adversary’s posterior knowledge

about the secrets is modelled as the average g-vulnerability of the induced posterior distribu-

tions, which we recall is defined as follows:

DEFINITION 2.2.5. Given a gain function g:GX, a prior π:DX and a channel C,

the posterior g-vulnerability Vg[πBC] is defined as

Vg[πBC] :=
∑
y

ayVg(δ
y)

where we write ay for the marginal probability on observation y and δy for its

associated posterior.

The prior and posterior vulnerabilities for the gain function bv are called prior and posterior

Bayes vulnerabilities, denoted V1, and are useful for modelling the vulnerability of a channel

against an adversary who wishes to guess the secret in one try.

We also recall the notion of refinement (§2.3) which allows us to compare mechanisms wrt

their leakage properties — if one mechanism C is more vulnerable than another D under all

priors and gain functions, then we say that D is more secure than C, written C v D. The

refinement order is very robust, having both an operational interpretation (in terms of average-

case leakage – cfr. Def. 2.3.1) and a structural characterisation (Def. 2.3.2) which says that

C v D iff D can be written as C·R for some channel R. In this way, refinement also characterises

post-processing – the witness R describes a ‘remap’ of outputs from C to inputs of D. Not

surprisingly it can be shown that C v C·D, but perhaps surprisingly if C v D then there is some

post-processing mechanism E such that C·E = D.

Dalenius Vulnerability

We now introduce the notion of Dalenius vulnerability, which allows us to model the leakage

of secrets through unexpected correlations.4 We model a correlation between sets X and Z

as a joint distribution Π:D(X×Z). Given a channel C:X → DY, we can define a channel

C?:Z×X → DY as C?
z,x,y = Cx,y. Note that C? simply repeats rows of C; moreover, C? now

allows us to investigate how much we can infer aboutZ from information flows aboutX through

4cfr. [34], Ch 10.
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C.

DEFINITION 5.3.1 (Dalenius g-vulnerability). Given a channel C:X → DY and

a correlation Π:D(X×Z) expressed as a matrix, factorise Π into a marginal dis-

tribution ρ:DZ and a channel B:Z → DX such that Π = ρBB. Then for any gain

function g:GX, the Dalenius g-vulnerability of Π and C is defined as

VD
g (Π,C) := Vg[ρBBC] .

When g is the function bv, we call this Dalenius Bayes vulnerability, written VD
1 .

The Dalenius g-vulnerability expresses the vulnerability of the secrets Z caused by the leakage

of the channel C and the correlation Π. Note that we can equivalently write:

VD
g (Π,C) := Vg[ΠBC?] , (5.2)

by ‘flattening’ the correlation Π into a prior over pairs Z ×X.

It turns out that the strong refinement order v respects Dalenius g-vulnerability: that is,

C v D iff VD
g (Π,C) ≥ VD

g (Π,D) for any correlation Π:D(X×Z) between X and some Z, and for

any g:GX. In the case of C 6v D, then we can find a witness wrt Dalenius Bayes vulnerability. ie.

There is a correlation Π such that

VD
1 (Π,C) < VD

1 (Π,D) . (5.3)

In other words, the failure of refinement between channels can be expressed using the Bayes

vulnerability of a correlated secret Z.

5.3.2 Reasoning about Inferences

As we have noted above, we can use a gain function to model an adversary trying to guess some

value within a scenario defined by prior knowledge π ∈ DX.

We can generalise the idea of Bayes vulnerability to an adversary trying to guess a property

of the secret (or set of values).

DEFINITION 5.3.2. Given a state space X let P:= {p1, p2 . . . pn} be a partition of

X. Define the gain function P : P×X → {0,1}:

P(p, x) :=

{
1 if x ∈ p,
0 otherwise.

Then P is called a property gain function for the partition P.

We can now model an adversary’s ability to use the information in a data release from a

mechanism M to infer a property defined by a partition P: it is V
P
[πBM] (where as usual, π:DX

models the adversary’s prior knowledge about the secrets).
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It turns out that we can use this idea to analyse the effectiveness of a mechanism in terms

of both privacy and accuracy. To see how this works, recall the mechanisms in Figure 5.1 and

Figure 5.2. The privacy aspect is to prevent observers from the inferring true responses of

individuals, whereas the accuracy requirement is to deliver a result from which observers can

infer with a high level of confidence the true count. 5

To analyse how well a participant’s true response can be inferred from the data release we

first set the state space X to be the set of total possible responses, and choose a prior distribu-

tion π ∈ DX. Later, in our experiments (§5.6), we describe how to choose a prior to capture

reasonable prior knowledge of the adversary. Writing 〈r1,r2〉 for a scenario where participant 1’s

true response is r1 ∈ {0,1} and participant 2’s true response is r2 ∈ {0,1}, we can see that the

state space of possible responses is X:= {〈0,0〉, 〈0,1〉, 〈1,0〉, 〈1,1〉}.

Let S be the partition {{〈0,0〉, 〈0,1〉}, {〈1,0〉, 〈1,1〉}} – notice that it contains two sets: the

first grouping the scenarios where participant 1’s true response is 0, and the second where

participant 1’s true response is 1. Computing V
S
[πBM] gives the probability that the adversary

can infer participant 1’s true response, whatever it turns out to be. For M to defend strongly

against unintended inferences about an individual participant we would like this to be as close

to V
S
[π] as possible, because then the information delivered by the data release cannot be used

by any adversary in his attack. In fact in our experiments (§5.6), we define privacy loss to be

the ratio V
S
[πBM]/V

S
[π].

On the other hand in both mechanisms the output count is randomised, even though deliv-

ering an accurate count is the purpose of the data release. We can therefore gauge the accuracy

of the mechanism by calculating the probability with which the observer can infer the true count

for the same prior π. In detail, letU be the partition {{〈0,0〉}, {〈0,1〉, 〈1,0〉}, {〈1,1〉}}. Here there

are three subsets – the first is the (only) case in which the true count is 0, the second contains

two instances where the true count is 1 and the third is the unique case where the count is 2.

Computing V
U
[πBM] therefore gives the probability that the observer (or adversary) can infer

the true count. Clearly we would like this to be close to 1 for good accuracy.

We can see these ideas working out for our two examples above by constructing the infor-

mation flow channels for each of them.

Consider first the channel associated with the randomised response mechanism described in

Figure 5.1.

R :=

©­­­­­«

0 1 2

〈0,0〉 0.56 0.38 0.06
〈1,0〉 0.19 0.62 0.19
〈0,1〉 0.19 0.62 0.19
〈1,1〉 0.06 0.38 0.56

ª®®®®®¬
(5.4)

Each row of the matrix corresponds to the probabilities of observing the output count given

by 0,1 or 2 when executed within a scenario defined by the participants’ true responses. For

example if both participants’ responses are 0 (first row corresponding to 〈0,0〉) the observer

would see the output at 0 with probability 0.56 because 0 is output when both respondents’ true

5Thus in this scenario the adversary and observer are the same.
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values are counted and, when they are not, the random value that is counted is still zero. For

each participant, his true value is counted with probability 1/2, but also with probability 1/2 he

randomly picks to respond with zero anyway. Thus each participant contributes 0 to the final

survey count with probability 0.75, and since participant responses are independent of each

other the count reported will be 0 with probability 0.75×0.75 ∼ 0.56. The other probabilities

are computed similarly.

Assuming then a uniform prior distribution υ over possible scenarios, we see that the proba-

bility of inferring participant 1’s true response using the information in the data release is

V
S
[υBR] = 0.63 ,

which is only a little more than the prior V
S
[υ] = 0.5. On the other hand the accuracy of inferring

the sum of the responses is worse:

V
U
[υBR] = 0.59 ,

signifying that the observer cannot have a great deal of confidence in inferring the true tally.

We can perform the same analysis on Figure 5.2 for comparison. Here, the channel matrix

is:

G :=

©­­­­­«

0 1 2

〈0,0〉 0.75 0.1667 0.0833
〈1,0〉 0.25 0.5 0.25
〈0,1〉 0.25 0.5 0.25
〈1,1〉 0.0833 0.1667 0.75

ª®®®®®¬
(5.5)

Notice that the (truncated) geometric mechanism is used to compute the probabilities. In the

first row, corresponding to scenario 〈0,0〉, the true tally is 0 which is then reported accurately

with probability 0.75. As above, assuming a uniform prior υ, we can compute the probabilities

of inferring participant 1’s true response and the true tally as follows:

V
S
[υBG] = 0.67 and V

U
[υBG] = 0.625 .

Notice that whilst the accuracy has improved from 0.59 to 0.625, this has come at a cost of

increasing the probability of inferring participant 1’s response from 0.63 to 0.67. The reason that

the increase in accuracy incurs a decrease in privacy is because the two properties are related: if

the ability to infer the participants’ responses increases then the ability to infer an accurate tally

which depends on those responses must also increase. The extent to which we can have both

good utility and good privacy depends crucially on how the S andU are correlated in the prior.

In fact, we can define a distribution Π ∈ D(S×U) which expresses the correlation between

the privacy property defined by partition S and the useful property defined by partition U:

Πsu := π(s ∩ u) .

From here we can observe that S and U can be highly correlated for some of their partition

subsets suggesting that a more accurate inference of one must lead to a more accurate inference
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of the other. For example if a tally of 0 can be accurately inferred then the probability of

subsequently inferring that participant 1’s true response is also 0 is Πs0,u0/π(u0) = 1, meaning

that a 0 tally implies absolutely that participant 1’s true value must be 0. On the other hand, the

probability of inferring that his value is 0 if the tally is accurately reported as 1 is Πs0,u1/π(u1) =

1/2. Thus studying the impact of the mechanism in terms of the abstraction of the correlation

will enable us to understand the trade off between privacy and accuracy, and the limitations on

delivering highly accurate data releases in some scenarios.

5.4 The Privacy-Utility Trade Off

In this section we study the trade off between accuracy and privacy in terms of inferences. Rather

than working with the raw data directly, we use an abstraction based on a correlation between

S and U where, as described above, S is defined by a partition on raw data that specifies

some privacy criterion, and likewise, U is defined by a partition that specifies the useful data

to be released as accurately as possible, and we describe the correlation between S and U by a

distribution D(S×U).

The next definition gives the effect of a mechanism in the ability for an adversary to infer

the component S.

DEFINITION 5.4.1. Let Π:D(S×U) represent a correlation in S×U, and let M: (S×U)→DY

be a stochastic channel representing a data release. We say that M is susceptible

to an inference leak for S if V
S
[Π] < V

S
[Π B M]. We say that M is completely

privacy preserving wrt. S if and only if V
S
[Π] = V

S
[Π B M]. We measure the

privacy loss by the ratio V
S
[Π B M]/V

S
[Π].

Next, as described above, we can also define the accuracy of inferring the utility.

DEFINITION 5.4.2. Let Π:D(S×U) represent a correlation in S×U, and let M: (S×U)→DY

be a stochastic channel representing a data release. M ’s accuracy for U is the

probability that U can be inferred, ie. V
U
[Π B M]. We say that M is completely

accurate for U if and only if V
U
[Π B M] = 1.

Now we have these definitions, we can provide a simple proof of the well-known “no free

lunch” theorem of Kifer [37], which states that it is not possible to have a single mechanism that

is arbitrarily accurate and arbitrarily private for all possible correlated secrets.

THEOREM 5.1. There exists no mechanism M which guarantees both arbitrary

levels of accuracy and privacy for all datasets Π:D(S×U).

Proof. Let M be a mechanism acting on a (correlated) data set. Pick S = U, and

partition P on both S,U so that the private and the useful property are entirely

correlated. For any ε>0 we might hope that V
P
[Π B M] ≥ 1−ε for good accuracy,

whilst at the same time V
P
[Π B M] ≤ V

P
[Π]+ε for good privacy. However if both
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constraints hold simultaneously then we deduce that 2ε ≥ 1−V
P
[Π] for all Π,

something that cannot be guaranteed. �

Thm. 5.1 applies to all privacy mechanisms, including differential privacy of course. In the

next section we investigate two common workflows for differential privacy — one which uses

the randomisation in a way to obtain good accuracy, and the other to obtain good privacy. We

investigate the trade-off between accuracy and privacy in both cases.

5.5 Application to Differential Privacy

In Chapter 3 we introduced the idea of privacy workflows (§3.3) which describe the ways in

which d-private mechanisms are constructed. Of particular interest were oblivious mechanisms,

which model the scenario where a function f is applied to a dataset and the noise-adding mech-

anism is applied to the result of f ; and local mechanisms, in which the noise is applied directly to

the dataset, and any subsequent functions can be applied as post-processing steps. The overall

workflow describes a mechanism which is designed to release useful information while protect-

ing the privacy of individuals against particular threats.

We can alternatively think of modelling mechanisms in terms of the correlation Π:D(S×U)

between the useful information U to be released and the private information S to be kept

hidden. In this context we can see that there are two ways in which we can add the noise. The

first is to apply it directly to the S component, in the style of local mechanisms, and somewhat

oblivious to the U component. The second is to the U component – the accurate result of the

query – as is done with oblivious mechanisms (ie. oblivious to the S component). As we saw in

Figure 5.1 which is an example of the first kind, and Figure 5.2, an example of the second kind,

both have an impact on accuracy and privacy. We define these two approaches to differential

privacy more generally and examine their respective trade-offs.

DEFINITION 5.5.1. A mechanism C: (S×U) → DY is calledU-insensitive if there

is some L:S → DY such that Csuy = Lsy (ie. C = L?). (Recall §5.3.1). Dually,

C is called S-insensitive if there is some R:U → DY such that Csuy = Ruy (ie.

C = R?).

Such insensitive mechanisms as described in Def. 5.5.1 add noise either to the S/U-component

respectively, so that the information flow on the other ie. U/S-component is derived from the

original correlation between U and S.

In general, the use of randomisation can often be tailored to achieve particular probabilistic

effects. The use of the Laplace distribution – for example, in oblivious mechanisms – means that

good utility can be maintained on U, and the impact on privacy therefore can be investigated

through the original correlation. We explore the trade-off between accuracy and privacy in

differentially-private mechanisms next.
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5.5.1 Utility-Focussed Privacy

An oblivious mechanism for differential privacy adds noise to the result of a query, thereby

creating opportunities to tune the randomness for accuracy of that query. The differentially-

private guarantee for oblivious mechanisms entails a property of indistinguishability only on

similar query results. The indistinguishability relating to the privacy of any sensitive data is

dependent on how it correlates with those query results.

With our model for correlated data, we can decompose an oblivious mechanism into one

which acts directly on U independently of S, effectively treating U as the secret, and then

reinstalling the correlation with S. Recall Def. 3.3.1 from Chapter 3 which defined oblivious

mechanisms in terms of factorisation into a query f and a d-private mechanism H as a post-

processing step. In the following, we generalise the idea of the ‘oblivious component’ H to a

utility-focussed mechanism, for which arbitrary correlations with secrets S may exist.

DEFINITION 5.5.2. M: (S×U) → DY is called a utility-focussed ε-private mecha-

nism if it is ε-private on U, and S-insensitive.

Whilst the randomisation can be tuned to optimise the accuracy of the query, this mode

of adding randomness does not tell us about ability of an adversary, who has knowledge of the

correlation, to infer the secret component. Thm. 5.1 tells us we need to consider that correlation

to determine the risk. 6

REMARK 5.5.1. We omit the use of metrics in Def. 5.5.2 and in later definitions

for simplicity of presentation, but note that the same ideas apply in metric differ-

ential privacy, requiring simply a metric on U.

A weaker property though is to consider whether there is a distinguished mechanism that

protects better than all other (oblivious) mechanisms wrt. inference attacks. We write S (resp.

U) for the gain function derived from partitioning S (resp. U) into its singleton sets.

DEFINITION 5.5.3. An utility-focussed ε-private mechanism M:S×U → DY is

optimal wrt. inference attacks on S, if V
S
[Π BM] ≤ V

S
[Π BM ′] for all Π ∈ D(S×U)

and all (utility-focussed) ε-private mechanisms M ′.

Unfortunately there is no mechanism that is optimal wrt. inference attacks except for the

trivial mechanisms that release no information at all.

THEOREM 5.2. There is no non-trivial utility-focussed mechanism amongst all

ε-private mechanisms on S×U that is optimal wrt. inference attacks on S.

Proof. (Sketch) Let M be such a non-trivial ε-private mechanism. We show that

6This problem of some individuals being “outliers” and thus potentially identified even in the release of aggregate
data is well known and a worst-case mitigation of this situation is the use of sensitivity analysis in for example
Laplacian mechanisms [5]. The result is to make any individual’s contribution to a noisy announcements of an
aggregate statistic minuscule.
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it cannot be optimal wrt. inference attacks on S. By Def. 5.5.2 this means that M

can be decomposed with ε-private component H:U → DY such that H? = M.

Moreover if M is not the trivial mechanism, then H cannot be trivial and so

there exists some mechanism G such that H @ G (strict refinement), implying

that G @ H. In this case, we have immediately (from (5.3)) that there is some

Π ∈ D(S×U) such that V
S
[Π B H?] > V

S
[Π B G?], as required. �

Thm. 5.2 tells us that if privacy is of utmost concern, the use of a utility-focussed mechanism

is really about preserving accuracy of the result of the query, and gives no optimal guarantees

regarding whether the actual sensitive data is vulnerable to an inference attack. We see for

example with Fig 5.2 that whilst this does deliver the most accurate result it is not the “most

private” as measured by vulnerability to inferences, amongst non-trivial mechanisms.

5.5.2 Secrecy-Focussed Privacy

Dual to utility-focussed mechanisms, we can model privacy mechanisms which add randomness

directly to the secrets S as follows:

DEFINITION 5.5.4. M: (S×U)→ DY is called a secrecy-focussed ε-private mecha-

nism if it is ε-private on S, and is U-insensitive.

Local differential privacy mechanisms are somewhat in this style because they first produce

a noisy version of the data through a noise-adding mechanism applied to S, rather than to the

result of a query. Subsequent queries can then be applied to the noisy version of the data, in the

style of randomised response (Figure 5.1). However, as with utility-focussed mechanisms, we

can reason more generally about workflows in which noise is added to the S part of the data,

and utility must be inferred afterwards through the correlation D(S×U).

We now define optimality wrt. utility, and show that secrecy-focussed mechanisms cannot

be universally optimal wrt. accuracy of utility.

DEFINITION 5.5.5. An ε-differentially private mechanism M for datasetsD(S×U)

is optimal wrt. accuracy on U, if V
U
[Π B M] ≥ V

U
[Π B M ′] for all Π ∈ D(S×U)

and all ε-differentially private mechanisms M ′ ∈ D(S×U).

THEOREM 5.3. Let |S| ≥ 3. There is no secrecy-focussed ε-differentially private

mechanism on D(S×U) amongst all ε-differentially private mechanisms which is

optimal wrt. accuracy on U.

Proof. (Sketch.) Let M be such a secrecy-focussed mechanism, and let L be such

that L? = M as per Def. 5.5.2. If M is optimal then we require V1[ΠBM] ≥

V1[ΠBM ′] for all Π and M ′. From (5.3) this means that for all ε-differentially

private L ′ over S we require L v L ′. But we know that refinement does not

hold in general between families of ε-private mechanisms (see, eg., Chapter 4 or
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[35]).7 �

Thm. 5.3 is interesting because it says that mechanisms that add randomness to enable

a direct guarantee to the privacy component, cannot be optimised universally for all utility

measures. For example, mechanisms that are designed to be locally-differentially private use

post-processing to compute the utility on the noisy data. Post-processing, however is just refine-

ment. Indeed it can be shown, for example, that Figure 5.1 is a refinement of a secrecy-focussed

ε-private mechanism but more work is needed to explain the observation that locally private

mechanisms often exhibit poor accuracy on medium-sized datasets. We end this section by

showing that any refinements of secrecy-focussed mechanisms cannot provide universal accu-

racy.

COROLLARY 5.4. If M v M ′ and M is secrecy-focussed as in Thm. 5.3, then M ′ is

not optimal wrt. accuracy on U.

Proof. Follows since V
U
[Π B M] ≥ V

U
[Π B M ′]. �

5.6 Experimental Results

In this section we present some experiments illustrating the main points presented in previous

sections. We consider scenarios in which both a data analyst and an adversary can observe the

output of a mechanism that reports a (possibly randomised) count of the number of rows in a

dataset that satisfy some property. However, whereas the data analyst wants to infer the real

value of the counting query performed on the dataset, the adversary wants only to infer the

value of a sensitive attribute in a row just added to the dataset. More precisely, we consider

experimental scenarios under the following conditions.

1. There is a dataset D of interest, consisting in a multiset of rows, each of which is a tuple

defined on a setA of attributes. Each attribute a∈A has domain domain(a), and we denote

by rows(A) the set of all possible rows that can be formed from attribute set A, and by

x[a] the value assumed by attribute a∈A on a row x∈rows(A).

2. A new row x?∈rows(A) will be added to D (due to, eg., data from a new individual),

yielding an extended dataset denoted (with a slight abuse of notation) by D∪x?.

3. A data analyst wants to learn the result of a counting query countq that returns the number

of rows in the extended dataset D∪x? satisfying a given condition q on a useful attribute

au∈A (eg., how many rows have attribute gender set to female). The value countq(D∪x?)

is the real count for the counting query performed on the extended dataset.

4. An adversary has full knowledge of all rows in the dataset D, but is unsure about the

contents of the newly added row x?. His goal is to learn the value x?[as] of a sensitive

attribute as∈A for this new row.
7When |S| = 2 we will see (in Chapter 6) that there is a universally optimal mechanism for which refinement

holds.
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5. Both the data analyst and the adversary learn the count on the extended dataset D∪x? via

a query mechanism Mcountq that returns a (possibly randomised) version of the real count

countq(D∪x?). We call the output Mcountq (D∪x?) the reported count, by the mechanism,

for the counting query performed on the extended dataset.

6. Both the data analyst and the adversary know the value of the real count countq(D) on

the original dataset D, and both have as prior knowledge a distribution π?:D(rows(A)) on

all values that the new added row x? can assume (eg., the adversary and the data analyst

may be the same entity). From that, they can derive, in the usual way, distributions on

the value x?[as] of the sensitive value of the newly added individual and on the real count

countq(D∪x?) for the query.

To properly formalise the privacy loss and utility of such scenarios, we introduce the fol-

lowing notation. Given a scenario Γ as described above, let PrΓ denote the corresponding

joint probability distribution –depending on the coin tosses of the distribution π? on the values

for the new row x? and on the query mechanism Mcountq employed–, s.t. PrΓ(x?=x, x?[as]=s,

countq(D∪x?)=u,Mcountq (D∪x?)=u′) is the probability that in scenario Γ: (i) the new added row

x? assumes value x∈rows(A); (ii) the sensitive value x?[as] of the new added row x? assumes

value s∈domain(as); (iii) the real count of query countq performed on the extended dataset

D∪x? assumes value u∈N; and (iv) the reported count of query countq produced by the mecha-

nism Mcountq , w.r.t. the extended dataset D∪x?, assumes value u′∈N.

We then define the privacy loss of a scenario as the multiplicative Bayes leakage of the new

row’s sensitive value x?[as] given the reported count Mcountq (D∪x?) on the extended dataset

D∪x?. (Compare Def. 5.4.1.) Intuitively, privacy loss reflects by how much knowledge of the

reported count increases the adversary’s chance of correctly guessing the secret value in one try.

Formally:

privacy-loss(Γ) def
=

∑
u′∈Nmaxs∈domain(as ) PrΓ(x?[as]=s,Mcountq (D∪x?)=u′)

maxs∈domain(as ) PrΓ(x?[as]=s)
. (5.6)

On the other hand, we define the utility of a scenario as the posterior Bayes vulnerability of

the real count countq(D∪x?) of query countq performed on the extended dataset D∪x? given the

reported count Mcountq (D∪x?) on the extended dataset D∪x?. (Compare Def. 5.4.2.) Formally:

utility(Γ) def
=

∑
u′∈N

max
u∈N

PrΓ(countq(D∪x?)=u,Mcountq (D∪x?)=u′) . (5.7)

Equations (5.6) and (5.7) depend on the joint probability distribution PrΓ induced by the

scenario, which itself depends on the coin tosses of the query mechanism Mcountq employed.

Hence, to fully flesh out these definitions we need to determine how the mechanism Mcountq

works. We consider two differentially-private mechanisms adding noise in different ways.

• An oblivious mechanism Mobv
countq that first applies counting query countq to the input

dataset to produce a real count u, and then applies a (differentially-private) oblivious ran-

domisation function Robv:N→D(N) to u in order to produce a reported count u′ as the output
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of the mechanism. This is similar to a utility-focussed mechanism.

• A local mechanism M loc
countq that first applies a (differentially-private) local randomisation

function Rloc:domain(au)→D(domain(au)) independently to each row’s useful value to pro-

duce a randomised dataset D′, and only then applies the counting query countq to D′ in

order to produce a reported count u′=countq(D′) as the output of the mechanism. This is

in the spirit of a privacy-focussed mechanism.

In our experiments we used the dataset released by ProPublica 8 corresponding to two years

worth of data from the COMPAS tool (Correctional Offender Management Profiling for Alter-

native Sanctions), which is one of the most popular algorithmic tools used in the United States

criminal justice system for pretrial and sentencing evaluation of the risk of bad behaviour for

criminal defendants. We focused on the tool’s assessment scores for “Risk of Failure to Appear”,

and eliminated from the dataset all but the most recent record for any given person, as well as

all records with invalid entries for attributes marital_status and score_text. This treatment

resulted in a database containing 11,710 unique records.

We then considered two scenarios. In both, the adversary’s goal is to learn the newly added

row’s value for sensitive attribute custody_status, which can be 0-“pretrial defendant”, 1-

“residential program”, 2-“probation”, 3-“parole”, 4-“jail inmate”, or 5-“prison inmate”. However,

in scenario A the data analyst’s query of interest is

“select count * from D where custody_status=0” ,

whose result is highly correlated with the secret information, whereas in scenario B the query

of interest is

“select count * from D where marital_status=0”

(the range for marital_status is 0-“single”, 1-“significant other”, 2-“married”, 3-“separated”, 4-

“divorced”, or 5-“widowed”), whose result is highly independent from the secret information. In

both scenarios data analyst and adversary assume the new row x? added to dataset D follows a

distribution π?:D(rows(A)) s.t. the probability of each x∈rows(A) is the value’s frequency in the

dataset D. Moreover, for fairness in comparison, we instantiate both the oblivious randomisation

function Robv and the local randomisation function Rloc as the truncated geometric mechanism

(recall Def. 3.4.2 from Chapter 3) with the same value of ε.

Table 5.1 presents the results of our experiments for various values of ε. In terms of infer-

ences, we want the privacy loss to be low to offer good protection for individuals. This means, in

the scale of Bayes vulnerability leakage, that the value should be close to 1 because then we can

argue that in the studied scenario the information flow does not increase the adversary’s prior

knowledge. 9 For accuracy however, to offer good utility, we want it to be as high as possible.

In the scale of Bayes vulnerability a value close to 1 represents high certainty that the true value

of the query can be accurately inferred.

8https://github.com/propublica/compas-analysis
9In a leakage measure we do not tabulate the actual probability of inference, but rather than increase in inference

compared to the prior.

https://github.com/propublica/compas-analysis
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Scenario A Scenario B

Oblivious Local Oblivious Local
mechanism mechanism mechanism mechanism

ε
Priv.
loss

Util.
Priv.
loss

Util.
Priv.
loss

Util.
Priv.
loss

Util.

0 (theoretical
minimum) 1.0000 0.7984 1.0000 0.7984 1.0000 0.7704 1.0000 0.7704

ln 3 1.0000 0.7984 1.0000 0.7984 1.0000 0.7704 1.0000 0.7704
ln 5 1.0452 0.8333 1.0000 0.7984 1.0000 0.8333 1.0000 0.7704

ln 10 1.1402 0.9091 1.0000 0.7984 1.0000 0.9091 1.0000 0.7704
ln 100 1.2418 0.9901 1.0000 0.7984 1.0000 0.9901 1.0000 0.7704
ln 200 1.2480 0.9950 1.0001 0.7984 1.0000 0.9950 1.0000 0.7704
ln 500 1.2517 0.9980 1.0035 0.8011 1.0000 0.9980 1.0000 0.7704
ln 103 1.2529 0.9990 1.0234 0.8169 1.0000 0.9990 1.0000 0.7704
ln 105 1.2542 1.0000 1.2481 0.9952 1.0000 1.0000 1.0000 0.9330

∞ (theoretical
maximum) 1.2607 1.0000 1.2607 1.0000 1.2607 1.0000 1.2607 1.0000

Table 5.1: Results of privacy loss and utility on Scenarios A (with highly correlated counting
query and secret) and B (with practically independent counting query and secret) for the COM-
PAS dataset A value close to 1 for privacy means the data release does not pose a risk to an
individual; a value close to 1 for utility means that the data release is accurate.

As we can notice, in both scenarios described above and for each value of ε the local mecha-

nism is consistently more private, but less useful, than its oblivious counterpart. The experiments

also illustrate the well known fact from the literature that local mechanisms tend not to provide

good utility in small datasets like the one we consider here: utility remains at its theoretical min-

imum for relatively high values of ε (≈ ln 200 in Scenario A and ≈ ln 103 in Scenario B). Finally,

note that in Scenario A, where real count and secret are highly correlated, it is hard to achieve

a satisfactory trade-off between utility and privacy, as these values are always in opposition to

each other. On the other hand, since in Scenario B the real count is practically independent of

the secret, it is possible to maintain privacy at a minimum level even for very high values of

utility.

5.7 Concluding Remarks

In this chapter we have studied the relationship between accuracy and privacy in data releases

from the perspective of inferences. We have shown, using a channel model for quantitative

information flow, how to capture reasonable assumptions about prior knowledge to compare

the accuracy of a query result versus the ability for the adversary to infer additional information

about individuals in the database. Finally, we have demonstrated how correlations in databases

of moderate size pose challenges for protecting the privacy of individuals.

In future work we hope to use this kind of analysis to expose potential vulnerabilities in

databases by considering the threats posed by inferences in proposed data releases.
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5.8 Chapter Notes

This chapter is based on the published paper “On Privacy and Accuracy in Data Releases” [38].

Our work builds upon the “no free lunch” theorem of Kifer and Machanavajjhala [37], who

provided the first analysis of the limitations of differential privacy in the presence of correla-

tions between secrets. Their work also uses inference attack models to demonstrate the effect of

correlations on possible inferences resulting in unexpected privacy breaches. Our work comple-

ments theirs by utilising the QIF framework to model the effect of inference attacks through the

lens of information flow.

The same authors proposed Pufferfish, a framework providing a more nuanced approach

to privacy that depends on the idiosyncracies of particular datasets [25]. In particular, Puffer-

fish allows definitions of privacy which extend differential privacy through the specification of

particular inference attacks against which the data analyst would like to defend. Inspired by

Pufferfish, He et al. [82] introduced the Blowfish framework to allow a more tailored approach

to privacy policies which depend on known (public) correlations in the dataset.

In spirit, our observation that arbitrary correlations can exist in datasets – thus thwarting

efforts to optimise for both privacy and utility – is related to the idea of group privacy [7]. In

particular it has been observed that when correlations exist between groups of individuals in a

dataset (for example), then differential privacy guarantees are limited according to the size of

the group. Other authors have noted related issues regarding the privacy protection afforded

by differential privacy in the face of correlations. Zhu et al. [83] proposed strengthening pri-

vacy mechanisms for correlated datasets based on a modified measure of the sensitivity of the

dataset. Liu et al. [84] demonstrate an inference attack against a differentially private dataset

by exploiting known correlations in the data. Works in this area focus on known correlations –

particularly correlations within the dataset – and do not address the more general problem of

unknown correlations which may be known only to an adversary.

Other works on inference attacks on private data consider alternate privacy metrics to mea-

sure privacy loss. Salamatian et al. [17] use traditional information theoretic measures such

as entropy and mutual information to produce an alternate privacy framework to differential

privacy which is focussed on protecting against inference attacks. Most recently, Jayaraman et

al. [19] propose new privacy metrics to evaluate the risk of inference attacks.

Finally, there is considerable interest in understanding inference attacks on machine learning

models which employ differential privacy to protect their training data. Rahman et al. [18] em-

pirically evaluate the success of membership inference attacks against machine learning models

trained with different privacy parameters. Most recently, Jayaraman et al. [19] empirically eval-

uate the risk of inference attacks on differentially private machine learned models using their

own privacy metrics. Works in this area typically use ad hoc methods to evaluate privacy leak-

age, whereas our QIF framework permits rigorous analysis based on an operational inference

attack model.



6
Optimality I: Discrete Mechanisms

Managing the privacy-utility trade-off is a core concern in the design of privacy-preserving mech-

anisms. One way to explore this trade-off is to look for so-called “optimal mechanisms”. An opti-

mal mechanism is one that releases the most useful information to a consumer while preserving

some (fixed) level of privacy. The study of optimality has as its primary goal the discovery of

mechanisms that provide the “best possible utility” for many consumers simultaneously. While

this problem has been previously studied in the differential privacy literature, in this chapter

we will situate optimality in the framework of QIF and study its properties using the notions

of refinement and leakage stemming from an understanding of information flow. Our goal is

to compare mechanisms wrt their usefulness for different consumers while keeping the overall

d-privacy guarantee fixed. That is, we would like to know, within the ε·d-privacy based order,

which mechanism is the “best possible” mechanism for some class of consumers.

Using our framework, we generalise existing results on optimality in the literature with a new

characterisation of optimal mechanisms for discrete spaces based on the notion of refinement.

We utilise the barycentric representation of hyper-distributions introduced in Chapter 2 to bring

key insights into the relationship between geometry and optimality for d-privacy. We show how

the metric affects the geometry and therefore the characterisation of optimality, giving examples

for counting queries and sum queries. We re-explore the existing optimality results for these

queries and find new results based on our characterisation. Finally, we show how our results

generalise to arbitrary metric spaces.
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6.1 Introduction

The study of optimal mechanisms for differential privacy has been strongly influenced by two

landmark papers which have guided research directions in this area:

1. Ghosh et al. [39] produced a remarkable result which shows that the geometric mechanism

is universally optimal in the context of oblivious mechanisms for “counting queries”, a

class of queries defined over statistical datasets. Their optimality result was proven for a

particular class of functions called monotonic loss functions (to be defined later). Ghosh

et al.’s paper was noteworthy not only for its result, but also because it was the first to

model optimality through the lens of Bayesian consumers who use their prior knowledge

to remap observations to guesses in order to maximise the utility they gain from a data

release.

2. Brenner and Nissim [40] showed that for any other query type (eg. sum, average etc.) –

again in the traditional oblivious setting of statistical datasets – that there are no univer-

sally optimal mechanisms. Their proof adopted the same model for utility as Ghosh et al.1

but they generalised their result to metrics, using graph-theoretic techniques to analyse

the effect of the metric on optimality, finding that only linearly ordered metrics (eg. the

Euclidean distance on integers) could produce optimality results. However, their impossi-

bility result was tied to the Bayes’ risk loss function, and their graph-based approach does

not naturally generalise to other loss functions.

Despite this foundational work, there have been no generalisations of these results to other

loss functions or other scenarios (eg. outside counting and sum queries).2 Our goal in this

chapter is to examine these results using the framework of QIF in order to reframe optimality in

terms of d-privacy and extend the results to other classes of loss functions.

6.1.1 Motivation and Contribution

Our interest in these results is that the Bayesian framework used for reasoning about utility

corresponds to the QIF model for adversaries using g-vulnerability (or more precisely, its dual

notion of `-uncertainty). This makes QIF a natural choice for reasoning about optimality in

this setting, whereby we think of adversaries now as consumers and the goal of optimality is to

discover mechanisms which leak as much as possible.

However both of the above results are tied to monotonic loss functions, which are functions

that capture the idea that guesses ‘closer’ to the secret should incur less loss than guesses ‘further

away’. In the differential privacy literature these sorts of loss functions are frequently used to

model utility. For example, the functions

`1(w, x) := |w − x |

1The result of [40] was also shown to hold for risk-averse consumers who we will not consider in this chapter.
2We note here the work of Chatzikokolakis et al. [15] who reframed the results to optimality for metric differential

privacy, although without extending them.
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and

`2(w, x) := (w − x)2

are commonly used to describe consumers whose expected loss depends on the absolute differ-

ence (`1) or squared difference (`2) of guesses from inputs. The Bayes risk loss function (de-

scribed previously, see eg. §2.2.1) is another popular monotonic loss function which describes

a consumer whose goal is to guess the input in one try. However, in QIF we are interested in

modelling a variety of adversaries (and consumers), some of whose gain (loss) functions may

be described in less typical, and non-monotonic ways. For example, consider the following

scenarios:

(1) (The Weary Traveler)3 A weary traveler wishes to accurately guess the time that the last

RER-B train will depart Lozère for Paris. Clearly, guessing 2 minutes too late is very different

from guessing 2 minutes too early. We would then model his loss using an asymmetric

function which penalises guesses too late more than guesses too early.

(2) (The Real-Estate Maverick) An agent wishes to guess the parity (odd or even) of house

numbers released privately from a dataset. 4 The agent chooses a property loss function5

with 2 guesses (odd/even) which assign values of 0 when guessing correctly and 1 when

guessing incorrectly.

Both of the above examples describe non-monotonic loss functions which are not covered by the

results of [39] or [40], but which may represent scenarios of interest in other domains.

Finally, neither paper considers the possibility of extending the results to continuous input

domains, nor are their proof techniques amenable to such extension. Our use of QIF for rea-

soning provides an algebraic framework which can naturally be extended to continuous spaces,

which we will do in Chapter 7.

Contributions

Our goal here is to apply these results to the more general setting of metric differential privacy

and situate them in the framework of QIF so that they can be generalised and extended to

different scenarios of interest which may arise in the context of metric differential privacy. Our

study makes the following contributions:

1. We introduce an algebraic framework for reasoning about optimality based on the channel

model of QIF which allows optimal mechanisms to be described by a metric d and a choice

of ε and supports reasoning about arbitrary loss functions.

2. We provide an algebraic characterisation of optimal mechanisms which deals with arbi-

trary classes of loss functions.

3This example is taken from [34].
4In some places, the side of the street on which a house is positioned – as determined by the parity of its street

number – can make a significant difference in its sale value.
5No pun intended.
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3. Based on this algebraic characterisation, we demonstrate an optimal, non-trivial loss func-

tion and mechanism for sum queries, contra the impossibility result of Brenner and Nis-

sim [40]. However, we strengthen their result, showing that the impossibility holds for a

smaller class than the “monotonic” functions but larger than Bayes’ risk.

4. Our characterisation allows us to explore the richness of the space of optimal mechanisms,

showing that the number of possible mechanisms grows exponentially as the size of the

input space, even for the counting query class.

5. We use the novel barycentric representation supported by the QIF framework which allows

visualisation of our results and gives access to general results from QIF regarding the

geometry of refinement.

6. Finally, we are able to use the geometric perspective to generalise the results of Ghosh et

al. to continuous mechanisms where we find that the Laplace mechanism is universally

optimal; this is the work of Chapter 7.

6.2 Modelling Utility

Our study of optimality begins with a definition of utility, which specifies how we measure

“goodness” for mechanisms (modelled here as channels), and leads us to optimality which seeks

the “best possible” mechanism wrt the chosen goodness measure.

We model mechanisms as probabilistic channels C:X → DY which take inputs of type X and

produce outputs (distributions) of type DY. We will not yet introduce any d-privacy constraints

on the channel – these will be introduced later – instead focussing for now on the model for

utility. Note that we refer to inputs rather than secrets, since in our utility context these are no

longer secrets to be kept hidden but useful information to release.

Dual to the QIF notion of gain functions (recall §2.2.1) we model consumers using loss

functions `:W×X → R≥0, which describe the consumer’s loss upon guessing w (after observing

y) when the real value of the input is x.

The connection between the observation y and the loss-function parameter w is that the

consumer does not necessarily have to “take what she sees” — there might be good reasons for

her making a different choice. For example, in a word-guessing game where the last, obfuscated

letter ? in a word SA? is shown on the board, the consumer might have to guess what it really

is. Even if it looks like a blurry Y (value 4 in Scrabble), she might instead guess X (value 8)

because that would earn more points on average if from prior knowledge she knows that X is

strictly more than half as likely as Y is – ie. it’s worth her taking the risk. Thus rather than

mandating that the consumer must accept what she thinks the letter is most likely to be, she

uses the obfuscated query y to deduce information about the whole posterior distribution of the

actual query. . . and might suggest that she guess some w,y, because the expected loss of doing

that is less than (the expected utility is greater than) it would be if she simply accepted the y

she saw. That rational strategy is called “remapping” [39]. Thus she sees y, but y tells her that
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w is what she should choose as her least-loss inducing guess for x. That is, the simplest strategy

is “take what you see”; but it might not be the best one.

Moreover, the consumer’s strategy does not require that the number of guesses matches the

number of inputs – for example, if the consumer’s goal is to guess a property of the input rather

than the input itself. This is illustrated in Example 6.1.

EXAMPLE 6.1 (Example loss function with fewer actions than inputs).

M y1 y2 y3

xT 3/4 1/8 1/8

xA 2/3 0 1/3

xS 1/4 1/4 1/2

` w1 w2

xT 0 1

xA 1 0

xS 1 0

A mechanism M defined over 3 inputs representing heights of individuals: ‘Tall’ (xT ),

‘Short’ (xS) and ‘Average’ (xA). A consumer chooses the loss function ` which distin-

guishes between ‘Tall’ (xT ) and ‘not Tall’ (xA, xS) individuals. This loss function has only

2 actions even though the mechanism M produces 3 outputs. In general there need not

be a correspondence between outputs of a mechanism and actions of a loss function.

Our formulation for the expected loss to the consumer of her remapping strategy is then

expressible using posterior uncertainty:

DEFINITION 6.2.1. Given prior π ∈ DX, loss function `:W×X → R≥0 and chan-

nel M:X → DY, the posterior `-uncertainty of M wrt π is defined as:

U`[πBM] :=
∑
y∈Y

min
w∈W

∑
x∈X

πxMx,y`(w, x) .

In the differential privacy literature, a different formulation for expected loss – but in the

same spirit – has been adopted [39, 40], incorporating the remapping strategy of the consumer

more explicitly:

DEFINITION 6.2.2 (Ghosh et al. [39]). The expected utility loss for a user with

prior π and loss function ` using mechanism M is given by

U`(π,M) := min
r

∑
x∈X

πx
∑
y∈Y

Mx,y `(r(y), x)

That is, the user chooses a remapping r(y) for each observation y that minimises

her expected loss.

We show now that these definitions coincide.
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LEMMA 6.1. The expected utility loss in Def. 6.2.2 is equivalent to the posterior

`-uncertainty defined in Def. 6.2.1.

Proof. We reason as follows:

U`(π,M)

= min
r

∑
x∈X

πx
∑
y∈Y

Mx,y `(r(y), x) “Def. 6.2.2”

= min
r

∑
y∈Y

∑
x∈X

πxMx,y `(r(y), x) “Reorganising”

=
∑
y∈Y

min
r

∑
x∈X

πxMx,y `(r(y), x) “Min r is over each y”

=
∑
y∈Y

min
w

∑
x∈X

πxMx,y `(w, x) “Letting w = r(y)”

= U`[πBM] “Def. 6.2.1”

�

Note that in the second-last step we employ a mapping from remaps r(y) to guesses w. We

can think of this as simply a relabelling of observations y to guesses w, and we can always

‘duplicate’ guesses w so that there is a one-one correspondence between guesses and inputs.

REMARK 6.2.1. We note that in the literature there are also examples of non-

Bayesian methods for computing loss, such as the Maximum Likelihood (ML) esti-

mate (argminxMx,y) or the Maximum A Posteriori (MAP) estimate (argminxπxMx,y).

The Bayesian approach subsumes these methods; ML and MAP can be expressed

as the optimal solution for a particular Bayesian consumer – one whose prior is

uniform on the inputs – and so the Bayesian formulation we use produces the

optimal mechanism for ML and MAP estimates as well. However, the converse is

not true, as the earlier example in Chapter 2 (§2.2.3) demonstrates.

6.2.1 Universal optimality

Given a model for utility, we can now describe what it means to be the “best possible” mechanism

within some class of mechanismsM:

DEFINITION 6.2.3 (Optimality). We say that a mechanism M:M is optimal for a

consumer modelled using a prior π and loss function ` for the class of mechanisms

M if, for all mechanisms M ′ ∈ M,

U`[πBM] ≤ U`[πBM ′] .

The above describes an optimal mechanism for a single consumer; we can naturally extend

this idea to universal optimality, which we define for all consumers simultaneously.
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DEFINITION 6.2.4 (Universal Optimality). Call a mechanism M:M universally

optimal for the classM if

U`[πBM] ≤ U`[πBM ′] (6.1)

for all priors π, all loss functions ` and all mechanisms M ′ ∈ M.

We have seen Def. 6.2.4 before: it is a leakage order (recall Def. 2.3.1), equivalent to the

secure refinement (pre)order on channels (Lem. 2.2).6 Thus we have:

LEMMA 6.2. Mechanism M:M is universally optimal iff M v M ′ for all M ′ ∈ M.

Def. 6.2.4 tells us that a mechanism M is universally optimal if it is the minimal element in

the standard refinement order restricted toM. Noting now that v is not a lattice in general [61],

we might be concerned that Def. 6.2.4 is too strong – that there may be no minimal element

– and so we explore a weaker definition of optimality restricted to particular classes of loss

functions. Letting LX be the set of all loss functions, we define ‘universal L-optimality’ for the

subclass of loss functions L ⊂ LX as follows:

DEFINITION 6.2.5 (Universal L-Optimality). Let L ⊂ LX be a set of loss func-

tions. We say that M ∈ M is universally L-optimal iff

U`[πBM] ≤ U`[πBM ′]

for all M ′ ∈ M, all priors π ∈ DX and all loss functions ` ∈ L.

Note that this definition is universal in the sense that it quantifies over all priors. Note also

that this weaker definition does not have a structural characterisation in terms of refinement.

However, we can still safely reason using refinement, since if M is universally L-optimal for some

class L then it cannot be the case that there is some M ′ such that M ′ @ M (strict refinement),

otherwise M ′ would also have better utility for L. Refinement finds its use in determining

candidates for optimality, which we can then explore for optimality within the loss classes of

interest.

We have not yet spoken about d-private mechanisms; we next place these definitions in the

context of differential privacy and explain how they relate to the results of [39] and [40].

6.2.2 The privacy context

In order to compare different mechanisms for utility, they must be able to be applied to the same

privacy problem. This privacy scenario thereby defines the classM of mechanisms within which

we seek an optimal one.

The optimality results of [39, 40] are situated in the context of oblivious mechanisms, and we

6Actually its dual; we remark that all results for gain functions and vulnerabilities that we call on here hold dually
loss functions and uncertainties [34].
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likewise choose this context, noting that reasoning about utility for local models is not straight-

forward, and we leave the exploration of optimality in this space to future work.7 Recall (§3.3.1)

that an oblivious mechanism K:X → DZ is one which decomposes into a query f :X → Y and

a noise-adding component H:Y → DZ, where the utility of the mechanism K is determined

solely by the utility of H. The universally optimal mechanism, if it is to be found, is one such

H – and the class ofM of mechanisms are the ones which induce, via f , the same ε·d-privacy

guarantees on K.

We know exactly this class: it is the set of dY-private mechanisms, where dY is the metric

induced by f and the metric on K (Lem. 3.7 from Chapter 3). Moreover, we know how these

are related by refinement: if M v M ′ and M ′ is d-private then M is also d-private (Thm. 4.3,

Thm. 4.5 from Chapter 4). Our search for optimal mechanisms, then, is not in vain: all of the

d-private mechanisms remain candidates for optimality, and the universally optimal mechanism

(if it exists) is the minimal one (in the refinement anti-chain) for an appropriately chosen d.

6.2.3 Relationship to “counting” and “sum” queries

The results on optimal mechanisms which motivate our study are based on the traditional model

of differential privacy and oblivious mechanisms: there, the space of inputs is databases of

individuals, and privacy is measured using the Hamming metric between databases – thus a

Hamming distance of 1 describes databases which differ in one row: a single individual. The

space of outputs is determined by a query f which takes the input dataset and outputs some

real-value; in the case of “counting queries”, the output is always a natural number, whereas in

the case of “sum queries” it could be any real value.8 The noise-adding mechanism, operating

on the query output, is optimal if it allows a consumer to learn the most information about the

query result – whatever information that consumer is seeking (modelled by her loss function)

– out of all the mechanisms which guarantee some fixed level of (differential) privacy on the

original databases.

The optimality result of Ghosh et al. [39] applies specifically to counting queries; we can

generalise this result using Lem. 3.7 and noting the following [15]:

LEMMA 6.3. Let (X,dH) be a metric space where dH denotes the Hamming dis-

tance. A counting query is a 1-Lipschitz map f : (X,dH) → ({0. . .n},d2), where

n = |X| and d2 is the Euclidean distance. Moreover, d2 is the induced metric on

{0. . .n} wrt f , dH.

We can now restate the optimality result(s) of Ghosh et al. in our more general metric-based

setting:

THEOREM 6.4 (Theorem 3.2, Corollary 3.3 in [39]). Fix N≥1 and e−ε ∈ [0,1],

7This is due to the fact that utility for local models is determined by the composition of individual privacy mech-
anisms, and analysing this composition is beyond the scope of this work.

8Other queries of interest, such as “average” fall under our study of “sum” queries, so that in fact the sum and
counting queries cover all of the cases of interest for statistical datasets.
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and letM be the class of ε·d2-private mechanisms on {0. . .N}. Then the geomet-

ric mechanism Gε ∈ M is universally L-optimal in M, where L is the class of

monotonic loss functions.

Our discussion of monotonic loss functions is yet to come; we note that the result above

applies equally to quantised reals {0,q,2q, . . . } by simply scaling the domain [15].

Thm. 6.4 allows us to generalise the optimality result for any oblivious context in which d2

is the induced metric on a (scaled) domain of {0. . .N}. We will study this space of mechanisms

in §6.7.

Likewise, we can generalise the impossibility result of Brenner and Nissim [40] to metrics.

Their theorem also applies in the context of monotonic loss functions but this time for sum

queries, which generalise to the discrete metric dD:9

LEMMA 6.5. Let (X,dH) be a metric space. A sum query is a 1-Lipschitz map

f : (X,dH) → ({0. . .N},dD). Moreover, dD is the induced metric on {0. . .N} wrt f ,

dH.

We now restate their result, an impossibility, which (essentially) says that there are no other

optimal mechanisms apart from the ones for counting queries:

THEOREM 6.6 (Theorem 3.4 in [40]). Fix N≥1 and e−ε ∈ [0,1], and let M be

the class of ε·dD-private mechanisms on {0. . .N}. Then there is no universally

L-optimal inM, where L is the class of monotonic loss functions.

We will study the space of dD-private mechanisms on {0. . .N} in §6.8, where we show that

Thm. 6.6 is too strong, and we find that there are in fact optimal mechanisms in this space.

6.2.4 Our results on optimality

Now with the above results in mind, we will appeal to the optimality result of Ghosh et al.

to more broadly characterise optimal mechanisms and their corresponding loss functions for

d2-private mechanisms. We re-investigate the space of dD-private mechanisms and find char-

acterisations for optimality in this space – as hinted above – along with examples of optimal

mechanisms and their corresponding loss functions. Finally we investigate the Hamming cube –

a space of length-3 bitstrings wrt the Hamming distance – as a simple demonstration of how to

put into practice the optimality results uncovered in this exploration.

More generally, our goal is to study optimality in the broader context of metric spaces wrt

arbitrary loss functions of interest, and to provide a general method for characterising which

mechanisms are optimal and for which loss functions. Our approach utilises the geometric

understanding of refinement outlined in Chapter 2 (§2.4.2) for expressing refinement as a (ge-

ometric) relationship between hyper-distributions. We will see that the classes of optimal mech-

anisms can be characterised in terms of the structure of their corresponding hypers. This will

9Recall that the discrete metric assigns distance 1 to all pairs of distinct elements.
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allow us to provide a characterisation of optimality in terms of the geometry of the loss functions

and hypers in the metric space of interest.

6.3 The Geometry of d-Privacy

In this section we explore the geometry of d-private hypers generally – that is, without choosing

a particular metric d. We will first observe that the d-privacy constraints on channels C carry

through to the posteriors of the corresponding hyper [υBC], and then that these posteriors –

treated as vectors – lie in a convex region, and that this region completely characterises the

set of d-private channels. Finally, we will identify the minimal elements under refinement in

this region; these are the d-private hypers which will form the basis of our characterisation of

optimal mechanisms to come.

6.3.1 The relationship between channels and hypers

We first recall that the refinement (pre)order on channels can be expressed as a refinement on

hypers:

LEMMA 2.5. Let A:X → DY, B:X → DZ be channels and let υ be the uniform

prior on X. Then

A v B iff [υBA] v◦ [υBB] .

On hypers, refinement becomes a true partial order, since the action of forming hypers col-

lapses equivalent channels onto the same hyper [61]. The equivalence is realised by combining

columns of a channel which are scalar multiples of each other. Take the following example.

A =

(
2/3 1/3

1/3 2/3

)
B =

(
2/3 1/6 1/12 1/12

1/3 1/3 1/6 1/6

)
The channels A and B are equivalent: they have the same leakage properties since the last 3

columns of B can be merged resulting in the channel A. And indeed the action of the uniform

prior υ on both channels yields the same hyper:10

[υBA] =

[
2/3 1/3

1/3 2/3

]
= [υBB]

1/2 1/2

(Note that in this chapter we will sometimes write hypers as bracketed arrays with each outer

written underneath its corresponding posterior. We omit the inputs for brevity when they are

understood from context.)

It will therefore be sufficient for us to focus our reasoning entirely on valid hypers11 knowing

that a) every d-private hyper corresponds to an equivalence class of d-private channels and b) if

10This was shown to hold for any full-support prior [61]. Here we will always choose the uniform distribution.
11A hyper is ‘valid’ if the convex hull of its supporting posteriors contains the uniform distribution.
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the hyper is optimal, then so is every channel in the equivalence class generating it.12

Next we note we can take convex combinations of hypers, eg.,
∑

i λi∆i by distributing the

convex coefficients λi to the outer probabilities of the corresponding ∆i and then combining

common posteriors so that, for example, the inner δy is assigned the outer
∑

k λka∆k where a∆k
is the outer assigned to δy in ∆k .

We can also take convex combinations of channels in correspondence with hypers as follows:

for convex coefficients λi we define

C :=
∑
i

λiCi if [πBC] =
∑
i

λi[πBCi] .

That is, the convex sum of channels can be computed by converting channels to hypers, per-

forming a convex combination, and recovering the resulting channel. In this chapter we will

take π = υ.

Terminology

We use the notation d∆e to refer to the set of posteriors of a hyper ∆ which occur with non-zero

probability and we call these ‘inners’. We denote by ch d∆e the convex hull of the inners of the

hyper ∆. We will call two channels equivalent, written A ≡ B, whenever [υBA] = [υBB]. Finally,

we will say that channel C ‘corresponds to hyper ∆’ if [υBC] = ∆. When starting with ∆, we

find a ‘corresponding channel’ in the usual way13 – in this case we do not worry about which

particular (equivalent) channel we end up with (it will, of course, be d-private).

6.3.2 The space of d-private hypers

Rewriting now the d-privacy channel constraints (see Def. 3.1.3) as the linear inequalities

Cx,y − ed(x,x′) · Cx′,y ≥ 0

ed(x,x′) · Cx,y − Cx′,y ≥ 0

 ∀ x, x ′, y , (6.2)

we observe that these inequalities also hold for the posteriors of the hyper produced by the

action of the uniform distribution.

LEMMA 6.7. Let C be a d-private channel matrix, υ be the uniform distribution

on X and let δy be the posterior of the hyper [υBC] corresponding to observation

y. Then for every x, x ′ ∈ X it holds that

Cx,y

Cx′,y
=

δ
y
x

δ
y
x′

where δyx is the x-indexed element of the column vector δy.

12In the QIF literature, the equivalence class of channels is defined by its canonical ‘abstract channel’ representa-
tion [61].

13ie. by multiplying each inner by its corresponding outer and normalising each row of the resulting matrix to
produce a channel.
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Proof. Rewrite δyx as υx ·Cx ,y/
∑
z∈X

υx ·Cz ,y and the result follows. �

That is, we can rewrite (6.2) as linear constraints on posteriors. Remembering that the

posteriors are vectors, (6.2) then defines a set of hyperplanes whose intersection is a convex

region (or polytope) containing all of the posteriors of the d-private hypers. Moreover, every

d-private mechanism can be constructed from posteriors lying inside this convex region. We call

this convex region “the space of d-private hypers” (see Example 6.2).

EXAMPLE 6.2 (The Space of d-Private Hypers). Constructing the space of hypers over

3 inputs {x1, x2, x3} for ε·d-private mechanisms with ε = ln 2 and Euclidean metric d,

assuming that we have d(x1, x2) = 1, d(x2, x3) = 1, d(x1, x3) = 2.

We treat the values x1, x2, x3 as co-ordinates in a 3-dimensional space. The ln 2·d-privacy

constraints become linear inequalities:

1/2 ≤ x1/x2 ≤ 2

1/2 ≤ x2/x3 ≤ 2

Note that the third constraint between x1 and x3 is trivially satisfied in this example.

The posteriors over 3 inputs all lie on the simplex defined by x1 + x2 + x3 = 1, and the

above constraints become hyperplanes which intersect the simplex in a convex region with

4 vertices shown below.

The coloured hyperplanes are the linear constraints which intersect the simplex forming

the convex region shown by the dotted lines. Every point inside this convex region repre-

sents a posterior whose constraints are ln 2·d-private.

We also recall some important facts about hypers:

LEMMA 6.8. The uniform distribution υ lies in the space of d-private hypers.
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Proof. υ satisfies d-privacy for any metric d and therefore is a point in the convex

region defined by the d-private linear constraints from Eqn (6.2). �

LEMMA 6.9. (Cor. 4.8 from [34]) Let C be a channel and let ∆ = [υBC] be the

hyper formed from pushing the uniform distribution through C. Then, writing

∆ =
∑

i ai[δi], it holds that
∑

i aiδi = υ.

Notice in Lem. 6.9 that the first sum
∑

i ai[δi] expresses a convex sum of posteriors as point

hypers, whereas the second sum
∑

i aiδi expresses the convex combination of posteriors as vec-

tors.

We bring the above lemmas together to show that the convex space characterises the class of

d-private hypers – and, by extension, the d-private channels. This tells is that it is safe to reason

about d-private channels in this space – all of their hypers can be found there, and conversely

every hyper we find corresponds to a class of d-private channels.

LEMMA 6.10. Let C be a d-private channel with corresponding hyper ∆ = [υBC].

Then the posteriors of ∆ lie in the convex space of d-private hypers. Conversely,

let S = {δ1, δ2, . . . , δn} be a set of posteriors in the convex space of d-private hypers

st. υ is contained in their convex hull. Then there exists a d-private channel C ′

with corresponding hyper ∆′ = [υBC ′] whose support is S.

Proof. The forward direction follows directly from Lem. 6.7 which tells us that

the posteriors all satisfy the privacy constraints from Eqn (6.2). For the reverse

direction, since υ is in the convex hull of S it can be written as a convex combina-

tion of the δi. ie. There exists convex coefficients λi st. υ =
∑

i λiδ
i and

∑
i λi = 1.

We can now construct the channel C ′ by multiplying each δi by its corresponding

λi and treating them as columns of the ‘joint distribution’ matrix. Note that this

multiplication preserves the d-privacy constraints on each column. Finally, we

normalise along each row to produce the channel C ′. However, we know that

each row sums to 1/n by the choice of λ’s. Therefore normalisation preserves the

d-privacy constraints, and we have that C ′ is d-private. �

To summarise: Lem. 6.10 tells us that we can construct a hyper that corresponds to a d-private

channel14 by

1. choosing a set of d-private posteriors whose convex hull contains υ, and

2. choosing an outer distribution ay for each posterior δy such that
∑

y ayδy = υ.

We can therefore proceed by constructing hypers with the above properties without having

to worry about the construction of the original channel.

14We omit referring to ‘the equivalence class’ for brevity, noting that the corresponding channel characterises all of
the properties we need.
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6.3.3 Kernel and Vertex Mechanisms

Now that we have carefully mapped out the space of d-private channels – remember, these are

our candidates for universal optimality – we can turn our attention to the task of identifying

the minimal elements in the refinement order. That is, the relation ∆1 v ∆2 (for hypers ∆1,

∆2) says that ∆1 has better utility than ∆2; we seek the ∆1 that anti-refines all other ∆2 hypers

corresponding to d-private channels.

Two properties of refinement [34] will be key to finding these minimal elements:

(1) The posteriors of a refined hyper (eg. ∆1 above) contain, in their convex hull, the posteriors

of the refining hyper (∆2).

(2) Each posterior of a refining hyper (∆2) is constructed via an Earth Move from posteriors of

the refined hyper (∆1).

The universally optimal hyper ∆1 that we seek must therefore consist of posteriors which

contain all other posteriors in their convex hull. Since the space we are examining is convex,

and constructed from a finite set of linear constraints, these posteriors must be the vertices

of this convex polytope – the points of intersection of the hyperplanes forming the d-privacy

constraints.

We now tease out the details carefully, showing that indeed these vertices correspond to the

minimal elements that we seek – the optimal hyper(s) – upon which we will base our investiga-

tion of optimality in later sections.15

Definitions

We begin by distinguishing two types of mechanisms (and their corresponding hypers) formed

from vertices in the space of d-private hypers: vertex mechanisms and kernel mechanisms.

DEFINITION 6.3.1. (Vertex Mechanism/Hyper) Let K be a d-private mechanism

with corresponding hyper ∆. We say that K is a vertex mechanism (and ∆ a vertex

hyper) if the inners in d∆e are vertices in the space of d-private hypers.

Vertex mechanisms always exist: every d-private space must have at least one, since the

space contains the uniform distribution (Lem. 6.8) and therefore the set of vertices (of the

defining polytope) forms a valid hyper (Lem. 6.10).

We next distinguish an additional property – linear independence of posteriors – which al-

lows us to drop the Earth Move requirement on refinement (Lem. 2.6, [34]).

DEFINITION 6.3.2. (Kernel Mechanism/Hyper) Let K be a d-private mechanism

with corresponding hyper ∆. We say that K is a kernel mechanism and ∆ a kernel

hyper if K is a vertex mechanism, and if the inners in d∆e are linearly independent

(as vectors).

15We will not, in this section, tease out the uniqueness of the minimal element – this is coming in the next section.
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We may wonder if kernel mechanisms always exist – ie. whether it is always possible to find

a linearly independent set of vertices that contains the uniform distribution. It turns out that

they do (see Appendix §A.1 for details), and this fact is used to prove Prop. 2 below: that, in

fact, every vertex mechanism decomposes into a convex sum of kernel mechanisms.

Properties

Kernel mechanisms have a number of important properties that flow from their corresponding

kernel hypers. (See Appendix §A for proofs). The first property tells us that kernel mechanisms

are irreducible.

PROPERTY 1. If K is a kernel mechanism then there is no kernel mechanism K ′

st. d∆K′e ⊂ d∆K e where ∆K,∆K′ are hypers corresponding to mechanisms K,K ′

respectively.

The next property says that kernel mechanisms generate all of the vertex mechanisms.

PROPERTY 2. Any vertex mechanism can be written (non-uniquely) as a convex

sum of kernel mechanisms. Conversely, any convex sum of kernel mechanisms is

a vertex mechanism.

Our final property says that kernel mechanisms are not related by refinement.

PROPERTY 3. If K, K∗ are kernel mechanisms then K 6v K∗ and K∗ 6v K.

Observe that although Property 2 says that kernel mechanisms generate the space of ver-

tex mechanisms, the representation of a vertex hyper as a convex sum of kernel hypers is not

necessarily unique (see Example 6.3).

These properties lead us to an important characterisation of d-private mechanisms:

LEMMA 6.11. (Characterisation of d-Private Mechanisms) Every d-private mech-

anism is a refinement of a convex sum of kernel mechanisms.

Proof. Given a d-private mechanism M which is not a vertex mechanism, and its

corresponding hyper ∆M , we know that each posterior δi in d∆M e sits inside the

convex hull of the vertices in the space of d-private hypers (by Lem. 6.10), and

we can thus perform a “reverse Earth Move” (Def. 2.4.2), moving mass from each

posterior δi to some set of vertices whose convex hull encloses δi, preserving the

overall centre of mass υ of ∆. Thus we get a valid anti-refining vertex mechanism,

which from Property 2 is a convex sum of kernel mechanisms. �

The usefulness of this characterisation may not be immediately apparent, until we look

(later) at leakage properties of channels (eg. for understanding L-optimality). We will ob-

serve that the leakage properties of channels are characterised by the leakage properties of their
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constituent parts – the kernel mechanisms – which can (conversely) be used as building blocks

to form classes of mechanisms with particular leakage characteristics.

Lem. 6.11 also gives an alternative perspective on the relationship between v and the d-

privacy order induced by ε – recall that in Chapter 4 we showed that the former implies the

latter.

Finally, we come to the main result of this section: identifying the minimal elements in the

refinement order; and we now show that these are – as anticipated – the vertex mechanisms.

COROLLARY 6.12. The vertex mechanisms are the minimum elements under re-

finement.

Proof. Lem. 6.11 tells us that every d-private mechanism is a refinement of a ver-

tex mechanism. Now, if V is a vertex mechanism, then its anti-refinement (if it

exists) can only be another vertex mechanism (by the convex hull property of re-

finement, Def. 2.4.3). However there is no Earth Move possible between vertices

of a convex space, thus no anti-refinement of a vertex mechanism. Therefore,

every d-private mechanism has a vertex mechanism as the bottom element of its

anti-refinement chain. �

6.4 Characterising Optimal Mechanisms

We have seen (§6.2) that the various notions of optimality, universal optimality and universal

L-optimality are different leakage notions, with the strongest – universal optimality – corre-

sponding exactly to channel refinement v; and the universally optimal mechanism (if it exists)

is the minimal element in this order. We have also seen (§6.3) how to characterise the mini-

mal elements in this order restricted to the class of d-private mechanisms: they are the vertex

mechanisms. What remains to be done – the work of this section – is to determine:

a) do universally optimal mechanisms exist?

b) can we characterise the universally L-optimal mechanisms?

A reminder: that our class of mechanisms for optimalityM is the set of all d-private mech-

anisms for some designated d. We do not yet need to say what the metric d is – our results for

this section remain independent of the choice of metric.

6.4.1 Existence of universally optimal mechanisms

We bring together the results from the previous sections to characterise the spaces containing

universally optimal mechanisms.

LEMMA 6.13 (Existence of universally optimal mechanisms). A space of d-private

mechanisms admits universal optimality if it contains a unique kernel mechanism
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EXAMPLE 6.3. A counter-example to uniqueness of representation of vertex mechanisms

as convex sums of kernel mechanisms. Consider the following hyper.

∆ =


1/2 1/4 1/4 1/5 2/5 2/5

1/4 1/2 1/4 2/5 1/5 2/5

1/4 1/4 1/2 2/5 2/5 1/5


4

27
4

27
4
27

5
27

5
27

5
27

We can check that this is a valid hyper – its inners are valid distributions, its outer is a

distribution and the inners average (via the outer) to the uniform prior. It is also a vertex

hyper in the space of ln 2·dD-private hypers where dD is the Discrete metric. This space

consists of the following kernel hypers:

H1 =


1/4 2/5

1/4 2/5

1/2 1/5


4/9 5/9

H2 =


1/4 2/5

1/2 1/5

1/4 2/5


4/9 5/9

H3 =


1/2 1/5

1/4 2/5

1/4 2/5


4/9 5/9

R1 =


1/2 1/4 1/4

1/4 1/2 1/4

1/4 1/4 1/2


1/3 1/3 1/3

R2 =


1/5 2/5 2/5

2/5 1/5 2/5

2/5 2/5 1/5


1/3 1/3 1/3

We can express the hyper ∆ in the following ways:

∆ = 1/3H1 ⊕ 1/3H2 ⊕ 1/3H3

∆ = 4/9R1 ⊕ 5/9R2

ie. As 2 different convex sums of kernel hypers. And therefore the same holds for the

corresponding vertex and kernel mechanisms.

– and this mechanism, if it exists, is universally optimal (ie. for all priors and loss

functions).

Proof. Let K,K ′ be two kernel mechanisms in the space. Then K,K ′ are not

related by refinement (Prop. 3) and therefore cannot be universally optimal

(Lem. 6.2). If K is the unique kernel mechanism in the space, then every d-

private mechanism is a refinement of it (Lem. 6.11) and it has no anti-refinement

(Cor. 6.12) so it must be the minimal element under refinement, hence univer-

sally optimal (Lem. 6.2). �
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Lem. 6.13 is very strong, however it turns out that we can find such a space - the trivial

space of mechanisms on 2 inputs – and this admits a universally optimal mechanism as we show

below.

THEOREM 6.14. For n = 2, the following d-private mechanism (written as a

channel matrix) is universally optimal (ie. for all loss functions and priors):

T =

[
k ·ed k

k k ·ed

]
where k = 1/(1+ed) is a scaling factor to ensure rows sum to 1.

Proof. The space of d-private hypers on 2 inputs {x1, x2} is an interval on the line

x1 + x2 = 1 with only 2 vertices corresponding to x1 = edx2 and x2 = edx1. Since

these are linearly independent, they must be the posteriors of a kernel hyper

∆K which is also the only vertex hyper in the space. The result follows from

Lem. 6.13. �

The optimal mechanism on 2 inputs for ε = ln 2 is depicted in Figure 6.1.16

Figure 6.1: The universally optimal mechanism for 2 inputs for ε = ln 2 and d(x1, x2) = 1. The

blue lines show the constraints defining the convex region (grey line segment). The region has

exactly one mechanism defined by the 2 vertices (orange points).

However, for n > 2 inputs we find that there can be no universally optimal mechanisms.

THEOREM 6.15 (Impossibility of Universally Optimal Mechanisms). For n > 2

there are no universally optimal d-private mechanisms over n inputs.

Proof. (Sketch) The space of hypers on n > 2 inputs is formed from the intersec-

tion of at least 2(n − 1) hyperplanes, thus has more than n vertices, which cannot

16We re-introduce the ε parameter explicitly here, remembering that we have been incorporating it into the metric
d for notational convenience.
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be linearly independent (as vectors). Therefore we can construct more than one

valid hyper from these vertices – using different convex combinations of posteri-

ors – implying there are multiple vertex mechanisms, thus multiple kernel mech-

anisms (Prop. 2) and therefore no universally optimal mechanisms (Lem. 6.13).

(See Appendix §A.2 for details.) �

This result is not the same as the one of [40]; ours is weaker in that the impossibility is over all

consumers, but does not (yet) say anything about the impossibility of universal optimality for

classes of loss functions. This will be the focus of the next section.

6.4.2 Characterising universal L-optimality

Our goal now is to describe universal optimality under restricted classes of loss functions in their

generality, rather than restricting our definition to a particular class; however in later sections

when we seek particular optimal mechanisms we will have to make recourse to the particulars

of the loss function classes.

We again make use of refinement: although we do not have a structural characterisation for

refinement under restricted loss functions, we observe that any L-optimal mechanism M cannot

have a strict anti-refinement M ′, because then M ′ would also be better than M for the class L.

So we can – once more – use kernel mechanisms, this time to understand L-optimality.

THEOREM 6.16 (Characterisation of Universally L-Optimal Mechanisms). Every

universally L-optimal mechanism is a refinement of a convex combination of

universally L-optimal kernel mechanisms.

Proof. (Sketch) If M is universally L-optimal then there is some vertex mech-

anism V such that V v M (Cor. 6.12) and so V must also be universally L-

optimal. The result follows from showing that V can be decomposed into kernel

mechanisms, each of which is universally L-optimal. (See Appendix §A.2 for

details). �

This tells us that the L-optimal kernel mechanisms generate the class of universally L-

optimal mechanisms. Note that Thm. 6.16 does not mean that every refinement of L-optimal

kernel mechanisms is L-optimal – this clearly cannot be true – but it means that we can focus

our attention on just the kernel mechanisms, knowing that these will be as good as any other

L-optimal mechanism in the space. Moreover, these kernel mechanisms will be at least as good

on every other loss function since they are minimal in the refinement chain.

We know that universally L-optimal mechanisms exist: the optimality result of Ghosh et al.

gives us an example for the monotonic class. Our goal in the next section is to look for other

examples by examining classes of loss functions and their properties.



6.5 Reasoning about Optimality 117

6.5 Reasoning about Optimality

In this section we introduce our algebra for reasoning about optimality. We begin with an

analysis of loss functions, concluding with an analysis of mechanisms which admit optimality.

6.5.1 Loss Function Algebra

We begin our exploration with an examination of properties of loss functions which will allow

the construction of larger classes of functions for which optimality holds. Proofs for this section

can be found in Appendix §A.3.

For a, b ≥ 0 and loss functions `, `′ we define:

(` ∗ a)(w, x) := `(w, x) × a (6.3)

(` + a)(w, x) := `(w, x) + a (6.4)

(` − a)(w, x) := `(w, x) − a (6.5)

(`∗a + `′∗b)((w1,w2), x) := `(w1, x) × a + `′(w2, x) × b (6.6)

Note that we can extend Defs (6.4), (6.5) to arbitrary functions q:X → R:

(` + q)(w, x) := `(w, x) + q(x) (6.7)

The following results are easy to show; firstly for prior `-uncertainties we have, for any prior

π:DX and a, b ≥ 0:

U`∗a(π) = U`(π) × a (6.8)

U`+a(π) = U`(π) + a (6.9)

U`−a(π) = U`(π) − a (6.10)

U`∗a+`′∗b(π) = U`(π)×a +U`′(π)×b (6.11)

And for functions q:X → R:

U`+q(π) = U`(π) +
∑
x

πxq(x) (6.12)

These properties flow through to posterior `-uncertainties; for any prior π:DX, a, b ≥ 0 and

channel C we have:

U`∗a[πBC] = U`[πBC] × a (6.13)

U`+a[πBC] = U`[πBC] + a (6.14)

U`−a[πBC] = U`[πBC] − a (6.15)

U`∗a+`′∗b[πBC] = U`[πBC]×a +U`′[πBC]×b (6.16)
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And again for functions q:X → R:

U`+q[πBC] = U`[πBC] +
∑
x

πxq(x) (6.17)

We can now deduce some useful refinement properties. In the following we write M v` M∗

to mean U`[πBM] ≤ U`[πBM∗] for all π ∈ DX.

PROPERTY 4. If M v` M∗ then Mv(`∗a)M∗ for a ≥ 0.

PROPERTY 5. If M v` M∗ then Mv(`+a)M∗ for a ≥ 0.

PROPERTY 6. If M v` M∗ then Mv(`−a)M∗ for a ≥ 0.

PROPERTY 7. If M v` M∗ and Mv`′M∗ then Mv(`∗a+`′∗b)M∗ for a, b ≥ 0.

PROPERTY 8. If M v` M∗ then Mv(`+q)M∗ for q:X → R.

The above properties allow us to reason about optimality on larger classes of loss functions

by leveraging optimality results for known classes.

Finally, we present the following important result which explains why it is always safe to

reason about loss functions wrt the action of the uniform distribution.17

We first define for prior π:DX and loss function `:

(π ? `)(w, x) := πx`(w, x) (6.18)

We now have the following:

LEMMA 6.17. For any loss function `, channel M and prior π,

U`[πBM] = n ×Uπ?`[υBM]

where υ is the uniform prior and n = |X|.

6.5.2 Classes of Loss Functions

In this section we explore some distinguished classes of loss functions – including the monotonic

class – for which we find optimality results.18

We start by noting that there exists a trivial loss function for which all mechanisms are

universally optimal.

DEFINITION 6.5.1 (Trivial Loss Function). A loss function ` : W × X → R≥0 is

17This result is known in its dual form via gain functions [34].
18We note that there are other loss function classes of interest than the ones described here – the property loss

functions for example – but we have included only the classes for which we have optimality results.
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called trivial if there exists a w∗ ∈ W such that `(w∗, x) ≤ `(w, x) for all x ∈ X and

w ∈ W \ {w∗}.

Trivial loss functions describe consumers whose guesses are independent of the mechanism,

and thus each consumer’s loss depends only on their prior. For example, the loss function:

` w1 w2

x0 0 1

x1 1 2

x2 1 3

is trivial since the action w1 always produces a smaller loss than the action w2 on any distribution

on X. In essence, the consumer will always choose action w1 as loss-minimising, regardless of

what output they observe from the channel. We will call the set of all such loss functions the

“trivial class” of loss functions, which we designate by L0.

We will also make use of two operations on loss functions. We denote by `↓X the restriction

of the loss function `:W ×X → R≥0 to the subset X ⊂ X, defined

`↓X(w, x) := `(w, x) for all x ∈ X .

We also denote by `↑X the ‘lifting’ of the loss function `:W×X → R≥0 to the superset X ⊃ X,

defined

`↑X(w, x) :=

`(w, x) if x ∈ X

0 if x ∈ X \ X
(6.19)

We now describe monotonic loss functions, which are a class of loss functions for which the

optimality results of Ghosh et al. [39] and the impossibility results of Brenner and Nissim [40]

apply.

DEFINITION 6.5.2 (Monotonic Loss Function). The loss function ` : W×X → R

is said to be monotonic in d if there is some mapping α:W→X, and function

f : R × X → R that is monotone (non-decreasing) in its first argument, such that

`(w, x) = f (d(α(w), x), x) .

Monotonic loss functions penalise guesses that are further away from the true value, but give

no additional penalty for guessing low rather than high. Notice that Bayes’ risk is a monotonic

function on the Euclidean metric (for example), as is the average distance function `(w, x) =

|w − x | and the average squared distance `(w, x) = (w − x)2. Notice also that the property of

monotonicity depends on the metric d. This is illustrated in Example 6.4.

REMARK 6.5.1. Monotonicity properties of loss functions depend on the metric
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even though the expected loss for a consumer does not. These properties are con-

sidered useful and important in the literature – indeed, for d2 they correspond to

well-known loss functions – however, they are not useful in our Bayesian setting,

since the actions w of a consumer are not meaningful in and of themselves. Our

reference to these functions solely serves the purpose of comparing our results

with those of the literature. Meanwhile, we will continue to suggest and use

“non-monotonic” loss functions, for which we have already argued the case.

Our last distinguished class of loss functions we call extended loss functions. These are loss

functions which ignore inputs outside some subset X ⊂ X; this could model a consumer who is

only interested in a subset of the released information.

DEFINITION 6.5.3 (Extended Loss Function). Let `:W × X → R≥0 be a loss

function and let X ⊂ X. We call ` an extended loss function on X if (`↓X)↑X = `.

EXAMPLE 6.4 (Examples of loss functions).

`m w1 w2 w3

x1 0 1/2 3/5

x2 3/4 1/4 3/4

x3 1 2/3 1/3

`e w1 w2

x1 1 0

x2 0 1

x3 1 0

x4 0 0

`t w1 w2

x1 1/2 1/2

x2 3/4 3/4

x3 1 1

`s w1 w2

x1 1/2 1

x2 1/2 1

x3 1/2 1

x4 0 0

The loss function `m is monotonic on d2 where d2(xi, xj) = |i − j | using the mapping

α(wi) = xi. However, it is not monotonic on dD, for example.

The loss function `e is an extended loss function on {x1, x2, x3} which distinguishes inputs

x2 and x1, x3 and ignores input x4.

The loss function `t is a trivial loss function which is also monotonic on d2 and dD using

the mapping α(w1) = α(w2) = x1.

Finally, the loss function `s is trivial and extended but not monotonic.

6.5.3 Properties of Loss Function Classes

We will now examine the properties of each of the aforementioned loss function classes. These

properties will be used to prove the optimality results to come.

Monotonic loss functions enjoy many interesting properties which may explain why they

exhibit such nice behaviour wrt optimality. The following properties apply for monotonicity wrt

any metric d.
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PROPERTY 9. If ` is a monotonic loss function then ` ∗ a, ` + a and ` − a are

monotonic loss functions for any function a(x).

PROPERTY 10. If ` is a monotonic loss function then π?` is a monotonic loss

function for any π∈DX.

PROPERTY 11. If ` is a monotonic loss function then `↓X is monotonic for any

X ⊂ X.

PROPERTY 12. If ` is a monotonic loss function then `↑X is monotonic for any

X ⊃ X.

We now have the following property of extended loss functions. For this, we denote by M↓X

the restriction of the channel matrix M to the set of inputs X defined by simply removing all

rows of M outside of X.

LEMMA 6.18. Let ` :W ×X → R≥0 be an extended loss function on X ⊂ X, and

M be a mechanism on X. Then for any π:DX

U`[πBM] = U`↓X[πB M↓X]

Proof. We reason as follows:

U`[πBM]

= U(`↓X)↑X[πBM] “Def. 6.5.3”

=
∑
y∈Y

min
w∈W

∑
x∈X

Mx,yπx`(w, x) “Def. 6.2.1, ` is 0 outside X”

=
∑
y∈Y

min
w∈W

∑
x∈X
(M↓X)x,yπx`↓X(w, x) “Inner sum restricted to X”

= U`↓X[πB M↓X] “Simplify, Def. 6.2.1”

�

This tells us that extended loss functions essentially ignore the inputs that they are ‘zeroed

out’ on, and optimality therefore only depends on the non-zeroed parts of the loss function.

6.5.4 Identifying Optimal Mechanisms

We now ask: for which kernel mechanisms can we find a class L of non-trivial loss functions

such that optimality holds? In this section we will show how to identify optimal mechanisms

based on their structure on subsets of inputs. We will lean on the optimality results that we have

already: the universally optimal mechanism T on 2 inputs (from Thm. 6.14), and the universally

L-optimal mechanism (the geometric, G) for the class of monotonic loss functions (from [39]).

Our strategy is to identify mechanisms with the same structure as T or G on some subset of

inputs and generate loss functions defined over that subset, which are consequently universally

optimal for that mechanism.
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We first remark that there is a class of loss functions L for which every mechanism is univer-

sally L-optimal.

LEMMA 6.19. Let Ln
0 be the class of trivial loss functions on n inputs. Then any

mechanism M on n inputs is universally Ln
0 -optimal.

Our search for optimal mechanisms should clearly be restricted to non-trivial classes of loss

functions.

We now show how the structure of mechanisms on pairs of inputs can be used to construct

loss functions for which a mechanism is `-optimal. We recall Thm. 6.14 which tells us that

there is a universally optimal mechanism on 2 inputs which we denote by T , where universal

optimality holds for all loss functions. Given any mechanism M, we can consider mechanisms of

the form M↓{x1, x2} for any pair of inputs x1, x2. If it turns out that one of these mechanisms is

equivalent to T (recall channel equivalence from §6.3.1) then loss functions which are non-zero

only on {x1, x2} behave as though there are only those 2 inputs, and the channel behaves like

the universally optimal channel T on those inputs.

As an example consider the following mechanism.

M y0 y1 y2

x0 2/3 1/6 1/6

x1 1/3 1/3 1/3

x2 1/2 1/4 1/4

Observe that M↓{x0, x1} yields a mechanism which is equivalent to the universally optimal

mechanism T (by merging the columns y1, y2 of M↓{x0, x1}). Therefore, any loss function defined

over {x0, x1} and ignoring x2, such as

` w0 w1

x0 3 1

x1 0 2

x2 0 0

will realise universal `-optimality for M. And this holds regardless of the structure of M on

x2. However, the mechanism M↓{x1, x2} is not equivalent to T – the ratio of elements in each

column differs – so loss functions defined over {x1, x2} and ignoring x0 will not (necessarily)

yield universal optimality for M.

REMARK 6.5.2. It is possible in some instances that we can get a universal opti-

mality result even when the restriction to 2 inputs is not T – it depends on the

structure of other kernel mechanisms in the space. We will see an example of this

in §6.7 when we study optimality results for the geometric mechanism.

We formalise the above observations with the following results.
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LEMMA 6.20. Let M be a d-private mechanism on X. If there exists a pair of

inputs x1, x2 such that M ↓{x1, x2} ≡ T then M is universally `-optimal for any

extended loss function ` on {x1, x2}.

Proof. We reason as follows:

U`[πBM]

= U`↓{x1,x2 }[πBM↓{x1, x2}] “Lem. 6.18”

= U`↓{x1,x2 }[πBT] “Equivalence assumption on T”

≤ U`↓{x1,x2 }[πBC↓{x1, x2}] “Universal optimality of T for any d-private C”

= U`[πBC] “Lem. 6.18”

�

Note that the converse of Lem. 6.20 is not true – if M is universally `-optimal then it does

not follow that its restriction to 2 inputs is equivalent to T .

The following result extends the above Lem. 6.20 to arbitrary subsets of inputs, provided we

know an optimality result on the subset.

LEMMA 6.21. Let M be a d-private mechanism on X which is universally `-

optimal mechanism for some loss function `. Let C be a d-private mechanism

on Z ⊃ X such that C↓X ≡ M. Then C is universally `′-optimal for any extended

loss function `′ on X.

Proof. Let D be any d-private mechanism on Z. We reason as follows:

U`′[πBD]

= U`[π B D↓X] “Lem. 6.18”

≥ U`[π B M] “Optimality of M”

= U`[π B C↓X] “Assumption”

= U`′[πBC] “Lem. 6.18”

Thus C is universally `′-optimal. �

Next, notice that instead of ‘zero-ing out’ the loss function we can ‘zero out’ the prior, since

universal optimality (over all priors) implies universal optimality on non-full-support priors.

LEMMA 6.22. Let M:X→DY be a d-private mechanism and let π:DX be a prior

with dπe = X for X ⊂ X. Then

U`[πBM] = U`↓X[π B M↓X] .

Proof. We reason as follows:

U`[πBM]

=
∑
y∈Y

min
w∈W

∑
x∈X

Mx,yπx`(w, x) “Def. 6.2.1”



6.5 Reasoning about Optimality 124

=
∑
y∈Y

min
w∈W

∑
x∈X

Mx,yπx`(w, x) “π is 0 outside X”

=
∑
y∈Y

min
w∈W

∑
x∈X
(M↓X)x,yπx`↓X(w, x) “Restriction to X”

= U`↓X[π B M↓X] “Simplify, Def. 6.2.1”

�

COROLLARY 6.23. If M is universally `-optimal then M ↓X is universally `↓X-

optimal for all X ⊂ X.

We can also compare mechanisms over subsets of inputs if their restricted mechanisms are

in refinement.

LEMMA 6.24. Let M,M ′ be d-private mechanisms on X and let X ⊂ X. Then

M↓X v M ′↓X ⇒ U`[πBM] ≤ U`[πBM ′]

for all priors π:DX and all extended loss functions ` on X.

Proof. We reason as follows:

U`[πBM]

= U`↓X[πBM↓X] “Lem. 6.18”

≤ U`↓X[πBM ′↓X] “Lem. 6.2, Def. 6.2.4”

= U`[πBM ′] “Lem. 6.18”

�

Finally, we consider the specific case of a totally ordered input space, such as the integers wrt

d2 on which the geometric mechanism is defined. In this case we observe that we can always

find non-trivial loss functions which yield optimality on every mechanism in the space.

LEMMA 6.25. Let (X,d) be a metric space which is linearly ordered. Then ev-

ery d-private kernel mechanism on X is universally `-optimal for extended loss

functions ` on adjacent inputs in X.

Proof. Consider any 2 adjacent inputs x1, x2 ∈ X, where adjacency is defined wrt

the linear order. Let M be any kernel mechanism. Since X is linearly ordered

then all triangle inequalities are equalities. This means that any differential pri-

vacy constraint which holds with equality over a pair of inputs xi, xj , must also

hold with equality over every input between xi and xj . For each posterior in

d[υBM]e we must have that the differential privacy constraint holds with equal-

ity between x1 and x2 (since M is a kernel mechanism and X is). ie. Either

Mx1,y = ed(x1,x2)Mx2,y or Mx2,y = ed(x1,x2)Mx1,y for each y ∈ Y. Second, we can

find 2 posteriors with these constraints holding in opposite directions. (eg. by



6.6 Application to Oblivious Mechanisms 125

taking one posterior and ‘reversing’ all the constraints on adjacent values.) Then

by restricting M to {x1, x2} we have that M↓{x1, x2} ≡ T and the result follows

from Lem. 6.20. �

6.6 Application to Oblivious Mechanisms

We now have the theoretical tools that we need to address optimality in differential privacy.

Recall that we motivated this exploration of optimality by two results in the literature: one on

counting queries and the other on sum queries, which we abstracted to d2-private mechanisms

and dD-private mechanisms respectively. In the next sections we re-examine these spaces using

the perspective of QIF and our characterisations in terms of refinement.

6.7 Optimality for d2-Private Mechanisms on {0. . .N}

In this section we consider optimality for d2-private mechanisms on the space of inputs {0. . .N}.19

These mechanisms include the noise-adding mechanisms designed for “counting queries” for

which the optimality results of Ghosh et al. apply.

6.7.1 Kernel mechanisms

We begin by noting that we can enumerate all of the d2-private kernel mechanisms: these are

the ones for which the linear constraints in Eqn (6.2) hold with equality. On n inputs there are

2 × (n − 1) linear constraints resulting in 2n−1 vertices in the space, and the kernel mechanisms

are those with at most n (linearly independent) vertices whose convex hull contains the uniform

distribution. Table 6.1 enumerates the kernel mechanisms for n up to 5.

Table 6.1: Kernel mechanisms in the space of d2-private mechanisms.

Dimensions Vertices Kernel Mechanisms

2 2 1

3 4 2

4 8 11

5 16 187

We can see that the space is rich with kernel mechanisms, although none of note have been

identified in the literature apart from the geometric mechanism, which – we repeat – is known

to be universally L-optimal for the class of monotonic loss functions [39]. (We will show in the

next section that the geometric mechanism is a kernel mechanism).

However, immediately from Lem. 6.25 we have that every kernel mechanism in this space

is universally L-optimal for a class of loss functions L. This class is generated from the loss

19As mentioned earlier, these results generalise to quantised reals {0,q,2q, . . . }. We use integer domains for sim-
plicity of presentation.
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functions defined over 2 inputs (which, from Prop. 12, are monotonic). This result means that

every kernel mechanism in this space is equally good for consumers modelled using any of these

functions. Note that using our loss function algebra we can construct a very large class of loss

functions from the set defined over adjacent inputs.

6.7.2 The geometric mechanism

The geometric mechanism is the most well-known mechanism in this space (and arguably the

only known mechanism in this space of note). It has two instantiations – the (infinite) geo-

metric with outputs over the whole of Z (Def. 3.4.1) and the truncated geometric, in which the

output domain matches the input domain (Def. 3.4.2). We have previously noted (Chapter 4,

Lem. 4.15) that these have the same leakage properties; in other words, they are equivalent as

channels and thus produce the same hyper-distribution. It turns out that this hyper is a kernel

hyper.

LEMMA 6.26. The (infinite/truncated) geometric mechanism is a d2-private ker-

nel mechanism.

Proof. Denote by G,Gt the geometric and truncated geometric mechanisms re-

spectively. The d-privacy constraints ((6.2)) on both G and Gt hold with equal-

ity (by construction) and therefore on the posteriors of [υBG] and [υBGt ] (by

Lem. 6.7) – which (by Lem. 4.15) are the same hyper, call it ∆G. We have now

that ∆G is a vertex hyper (Def. 6.3.1). Since Gt is invertible [36] its columns

are linearly independent and therefore so are the posteriors of [υBGt ] = ∆G (by

linearity). And so ∆G is a kernel hyper (Def. 6.3.2) corresponding to both G and

Gt . �

Figure 6.2 shows the geometric mechanism in the space of 3 inputs for ε = ln 2.

In addition to the known results on monotonic loss functions, we now present a set of loss

functions – which includes non-monotonic functions – for which optimality of the geometric

mechanism holds.

LEMMA 6.27. Let X = {x1, x2, . . . xn} with |xi+1 − xi | = 1. For any a, b, c, d ∈ R, let

L be the set of loss functions defined as:

`(w1, x1) = a ; `(w1, x2) = 1 ; `(w1, x3) = b

`(w2, x1) = c ; `(w2, x2) = 1 ; `(w2, x3) = d

`(wi, xj) = 0 otherwise

Then the geometric mechanism on X is universally L-optimal.

Proof. (Sketch) We sketch a proof for the case ε = ln 2. The full proof can be

found in Appendix §A.4. First, observe that on 3 inputs, there are 2 kernel hypers
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Figure 6.2: The space of d2-private hypers on 3 inputs {0,1,2}. The geometric mechanism for

ε = ln 2 consists of the 3 orange vertices (B, C, D); these are linearly independent and thus form

a kernel mechanism. The only other kernel mechanism consists of the posteriors A and C, since

their convex hull contains the uniform distribution (υ).

in the space of d2-private hypers (see Figure 6.2). Their corresponding mecha-

nisms are
G3 y1 y2 y3

x1 2/3 1/6 1/6

x2 1/3 1/3 1/3

x3 1/6 1/6 2/3

H3 y1 y2

x1 2/3 1/3

x2 1/3 2/3

x3 2/3 1/3

where we use the subscript 3 to denote the number of inputs they are defined

over. Notice now that H↓{x1, x3} is the trivial mechanism20 and which is anti-

refined by everything, ie. G3↓{x1, x3} v H3↓{x1, x3}. Which by Lem. 6.24 gives

U`2[πBG3] ≤ U`2[πBH3] for all priors π and all extended loss functions `2 on

{x1, x3}. Since G3 and H3 are the only kernel mechanisms in the space, it follows

that U`2[πBG3] ≤ U`2[πBC] for all channels C in the space. And since ` is an

extended loss function on {x1, x3} it holds for `.

Secondly we notice that the geometric mechanism has a special property,

namely that G ↓ {x1, . . ., xk} is equivalent (in terms of leakage properties) to

the geometric mechanism defined on {x1, . . ., xk}. In particular, we have GN ↓

{x1, x2, x3} ≡ G3.

Putting these together, we deduce:

U`[πBGN ]

= U`↓{x1,x2,x3 }[πBG3] “Lem. 6.24, using property of geometric”

≤ U`↓{x1,x2,x3 }[πBC] “For all channels C, as shown above”

= U`[πBCN ] “Lem. 6.21, lifting C to CN on N inputs”

�

20The trivial mechanism, also called 1 is the channel which leaks nothing.
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6.7.3 Other optimal mechanisms

Although the geometric mechanism has shown to be optimal for a very large class of loss func-

tions, we know that there must exist loss functions for which the other kernel mechanisms in

the space are strictly better: otherwise the geometric mechanism would be universally optimal

in the space, contradicting Thm. 6.15. We can use this idea to find a consumer who prefers

another mechanism to the geometric.

Observe from Figure 6.2 that on 3 inputs there are only 2 kernel mechanisms in the space:

the geometric mechanism and another mechanism, call it H, formed from the vertices A and

C see-sawing the uniform distribution. Since G 6v H (by Prop. 3) there must exist a loss func-

tion and a prior for which the expected loss under H is strictly lower than the loss under G

(property of refinement). We can find one such loss function (using Thm. 4.12 from Chapter

4): we get, on the space of ln 2·d2 mechanisms on 3 inputs, for uniform prior υ, the loss function

` =

w1 w2
7/10 3/10

0 1
7/10 3/10


produces lower expected loss on H than on G. Thinking of the inputs as heights of individuals:

‘Tall’, ‘Average’ and ‘Short’, ` models a consumer who is interested in distinguishing between

individuals who are ‘Average’ and ‘not Average’. Since H is the only other kernel mechanism in

this space, we have that H is optimal for this consumer. However, we do not have a universal

`-optimality result (ie. over all priors) for H; we leave open this possibility for future work.

The above results suggest that the dominance of the geometric mechanism in the literature

is justified. We suggest that further examination of the symmetry properties of this mechanism

using our algebraic framework could reveal other interesting optimality results. We leave the

exploration of these ideas to future work.

6.8 Optimality for dD-Private Mechanisms

We now investigate optimality for the space of dD-private mechanisms on n inputs. This space

includes the mechanisms for “sum queries” which we discussed in §6.2.3, although in that dis-

cussion we restricted the input space to integers {0. . .N}. Here we generalise to any input space

on n elements – outfitted with the discrete metric.

6.8.1 Kernel mechanisms

As for the space on d2-private mechanisms, we can again enumerate the mechanisms in this

space using (6.2) and a careful observation of exactly which constraints can hold with equality

at once. We note that for an input space X of size n, the vertices of the convex region are points

of intersection of n − 1 hyperplanes, corresponding to n − 1 distinct privacy constraints. Since

there are only 2 possible distances under the discrete metric, each vertex can only contain 2
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possible values, and so the number of possible vertices is given by
∑n−1

i=1
(n
i

)
= 2n −2.21 From this

vertex set we enumerate all of the kernel hypers (and therefore kernel mechanisms) by solving

the appropriate linear equations.22 We present some of these results in Table 6.2.

Table 6.2: Enumerating the kernel mechanisms in the space of dD-private mechanisms.

Dimensions Vertices Kernel Mechanisms

2 2 1

3 6 5

4 14 41

5 30 1291

The kernel mechanisms in the space of dD-private hypers on 3 inputs are illustrated in Figure 6.3.

Figure 6.3: The space of dD-private hypers over 3 inputs. The randomised response mechanism

for ε = ln 2 corresponds to the 3 orange vertices (A, B, C); these are linearly independent and

thus form a kernel hyper. There are 4 other kernel hypers in this space: the hyper formed from

posteriors (A’, B’, C’) and the 3 hypers (A, A’), (B, B’) and (C, C’).

We again notice that this space is rich with kernel mechanisms, although the only mechanism

of note (from the literature) is the randomised response mechanism. We show in the next section

that this is indeed a kernel mechanism.

We first recall the impossibility result of Brenner and Nissim [40] which was proven specif-

ically for the Bayes’ risk loss function; we restate it as: for the Bayes’ risk loss function br there

are no universally br-optimal mechanisms in the class of mechanisms for sum queries. Impor-

tantly, there are many other loss functions in this space – some of which are monotonic (on

dD). And in the following, we prove that universally optimal mechanisms for some of these loss

functions; further, we present an example of a universally optimal mechanism for a monotonic

loss function in Example 6.5.

21Thinking of each vertex as having either the ‘high’ or the ‘low’ value, this is the number of combinations for each
choice of ‘high’ values.

22Namely, we need the vertices to be linearly independent and be able to average to the uniform distribution.
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THEOREM 6.28. In the space of dD-private hypers there exist non-trivial mono-

tonic (on dD) loss functions L and mechanisms which are universally L-optimal.

Proof. Our proof is constructive - we show how to find a dD-private mechanism

with a structure over 2 inputs which enables universal optimality on the space of

2 inputs. Consider the following dD-private hyper in the space of n inputs:

∆ k/k+j j/k+j

x1 1/k α/j

x2 α/k 1/j

x3 α/k 1/j

x4 α/k 1/j

. . . . . . . . .

xn α/k 1/j

where α = e−ε and k, j are normalising constants ensuring columns sum to 1.

It is easy to check that the posteriors average to the uniform distribution using

the outer probabilities, hence the hyper corresponds to a proper mechanism K.

We can likewise observe that K is dD-private, and it is also a kernel mechanism

since each posterior has n − 1 tight constraints.

Now, if we construct K↓{x1, x2} we get:

K↓{x1, x2} y1 y2

x1 1/(k+j) α/(k+j)

x2 α/(k+j) 1/(k+j)

which corresponds to the universally optimal mechanism on 2 inputs (Thm. 6.14).

Therefore by Lem. 6.20 every loss function on {x1, x2} can be extended to a (non-

trivial) loss function ` on {x1, x2, . . . , xn} for which K is universally `-optimal. For

example, the following loss function will suffice:

` w1 w2

x1 0 1

x2 1 0

x3 0 0

x4 0 0

. . . . . . . . .

xn 0 0

Since `↓{x1, x2} is monotonic on dD, we have that ` is monotonic on dD (Prop. 12)

and the mechanism K (with corresponding hyper ∆) is universally `-optimal.

�

Note that the construction in the proof of Thm. 6.28 is general, and it is easy to find kernel
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mechanisms in this space with the appropriate structure on pairs of inputs {xi, xj}. Their convex

combinations (forming vertex mechanisms) are therefore also universally optimal. Likewise,

there are many loss functions which can be constructed (using the algebraic properties of loss

functions developed earlier) for which there are universally `-optimal mechanisms in this space.

We present a sample construction in Example 6.5.

EXAMPLE 6.5 (Constructing a universally `-optimal dD-private mechanism). We show the

construction of a non-trivial monotonic loss function on dD for a vertex mechanism in

the space of dD-private hypers. The following diagram depicts the space on 3 inputs

X = {x1, x2, x3} for ε = ln 2.

The green points A, A′,B,B′ comprise a vertex hyper ∆V , itself composed of the kernel

hypers ∆KA = AA′ and ∆KB = BB′ in some convex combination (not yet specified). ie.

∆V = λ∆KA + (1 − λ)∆KB where:

∆KA =


1/4 2/5

1/4 2/5

1/2 1/5


4/9 5/9

∆KB =


1/2 1/5

1/4 2/5

1/4 2/5


4/9 5/9

It is easy to check that KA↓{x1, x3} ≡ T and KB↓{x1, x3} ≡ T , where as usual we write T

for the universally optimal mechanism on 2 inputs and KA,KB for the kernel mechanisms

corresponding to hypers ∆KA,∆KB respectively. Now, using loss function algebra, we show

that KA,KB are universally `-optimal for the following loss function:

` w1 w2

x1 3 0

x2 1 1

x3 0 3

We first construct `1 : {x1, x3} ×W → R≥0 as `1(w1, x1) = `1(w2, x3) = 1 and `1(w1, x2) =

`1(w2, x1) = 0. T is universally `1-optimal (by Thm. 6.14), and therefore so are KA↓{x1, x3}
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and KB↓{x1, x3} (by channel equivalence). Therefore, writing: `2 = `1↑X, `3 = (`2 ∗ 3),

`4 = (`3 + q(x)) where q(x1) = q(x3) = 0,q(x2) = 1, we reason:

KA↓{x1, x3},KB↓{x1, x3} are universally `1-optimal

⇒ KA,KB are universally `2-optimal “Lem. 6.20”

⇒ KA,KB are universally `3-optimal “Prop. 4”

⇒ KA,KB are universally `4-optimal “Prop. 8”

⇒ λKA + (1 − λ)KB is universally `4-optimal “Thm. 6.16 (for λ ∈ [0,1])”

Finally, we note that `4 = ` and that ` is monotonic on dD using the mapping α(w1) =

x3, α(w2) = x1. Therefore, for any choice of λ we find that the vertex mechanism V cor-

responding to hyper ∆V is universally `-optimal. Note that it is also `2, `3-optimal – and

there are many possible constructions for which optimality holds.

The following corollary explains why we can always find universally optimal mechanisms in

this space.

COROLLARY 6.29. Given any pair of inputs x1, x2 ∈ X, there are always dD-

private mechanisms M:X → DY for which M↓{x1, x2} ≡ T .

Proof. Follows from the construction given in the proof of Thm. 6.28. �

As an example of how to apply Cor. 6.29, consider a dataset of 3 inputs corresponding to

heights of individuals, labelled ‘Tall’, ‘Average’ and ‘Short’, and a consumer who is only interested

in distinguishing between the individuals who are ‘Tall’ and ‘Average’. We might model this

consumer’s loss using the following function:

` w1 w2

Tall 0 1

Average 1 0

Short 0 0

Notice that this loss function ignores the input ‘Short’, since all guesses give the same loss. We

might now consider the following mechanisms for this consumer: the first is the randomised

response mechanism R, and the second is another kernel mechanism which we label K. Both of

these have the same ln 2·dD-privacy guarantee.

R y0 y1 y2

Tall 1/2 1/4 1/4

Average 1/4 1/2 1/4

Short 1/4 1/4 1/2

K y0 y1

Tall 2/3 1/3

Average 1/3 2/3

Short 2/3 1/3

Observe that ` is an extended loss function on the inputs {Tall, Average} and Lem. 6.20 tells

us that any mechanism equivalent to the trivial mechanism on those inputs will be optimal
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for this consumer. K is one such mechanism, however R is not – so K should be optimal for

any consumer modelled using ` (ie. for any prior). We can check: choosing π as the uniform

distribution υ we compute

U`[υBR] = 3/4 > 2/3 = U`[υBK]

and so indeed K is better than R on the uniform prior, and this will be true for all priors.

6.8.2 The randomised response mechanism

The randomised response mechanism is the most well-known mechanism in this space. It de-

rives its name from Warner’s randomised response protocol, famously instituted for privacy-

protection in surveys, and its popularity stems from its simplicity of implementation and its

natural application to local differential privacy.

We defined the randomised response mechanism in Chapter 3 (recall Def. 3.4.3) where we

noted that it is a dD-private mechanism. It turns out to also be a kernel mechanism.

LEMMA 6.30. The randomised response mechanism is a dD-private kernel mech-

anism.

Proof. See Appendix §A.5.

The randomised response mechanism has the following interesting property which means

that the optimality result of Thm. 6.28 does not apply to it.

LEMMA 6.31. Let R:X → DX be the randomised response mechanism on n > 2

inputs. Let x1, x2 ∈ X. Then R↓{x1, x2} . T for any choice of x1, x2.

Proof. Observe that the channel R↓{x1, x2} contains at least one column where

every element has the form α/k (see Def. 3.4.3). Therefore it is not equivalent to

T , the universally optimal mechanism on 2 inputs for any pair {x1, x2}. �

This means that the randomised response mechanism cannot be universally optimal for a

large class of loss functions.

COROLLARY 6.32. Let R:X → DX be the randomised response mechanism on

n > 2 inputs and let ` be a loss function with the property that ` ↓ {xi, xj} is

non-trivial for some xi, xj ∈ X. Then R cannot be universally `-optimal.

Proof. Follows from Lem. 6.31 and Cor. 6.29. �

The above result is important as it rules out many classes of loss functions of interest – for

example, strictly monotonic loss functions, the Bayes’ risk loss function, and any extended loss

function on 2 inputs.
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6.8.3 Impossibility of universal optimality

Finally, we come to the main result of this section which is our reframing of the impossibility

result of [40].

We begin by noting another property of loss functions: we call a loss function ` pairwise

non-trivial if for every pair of elements x1, x2 ∈ X it holds that `↓{x1, x2} is non-trivial.

Examples of pairwise non-trivial loss functions include Bayes’ risk, mean average error and

mean-squared error. However, extended loss functions are not pairwise non-trivial, and neither

was the loss function given in Example 6.5. It turns out that this property of loss functions

describes sufficient conditions for impossibility of universal optimality.

THEOREM 6.33. There are no universally `-optimal dD-private mechanisms over

n > 2 inputs for any pairwise non-trivial loss function `.

Proof. By Cor. 6.29, it is sufficient to show that for every kernel mechanism K

there exists some pair of inputs x1, x2 such that K ↓{x1, x2} . T . Let K be any

dD-private kernel mechanism on n > 2 inputs with corresponding kernel hyper

∆K . Then d∆K e has at least 2 posteriors, call them δ1 and δ2. Moreover, each δi is

a vertex and so the dD-privacy constraints hold tightly on n − 1 input pairs. Pick

any 3 inputs x1, x2, x3 such that δ1
x1
= αδ1

x2
and δ2

x2
= αδ2

x1
(ie. the constraints hold

in opposite directions). This means that K↓{x1, x2} ≡ T . We now show that this

cannot be true for both {x1, x3} and {x2, x3}. The 4 possible constructions for δ1

and δ2 restricted to {x1, x2, x3} are:

∆1 δ1 δ2

x1 α/k 1/j

x2 1/k α/j

x3 1/k α/j

∆2 δ1 δ2

x1 α/k 1/j

x2 1/k α/j

x3 1/k 1/j

∆3 δ1 δ2

x1 α/k 1/j

x2 1/k α/j

x3 α/k α/j

∆4 δ1 δ2

x1 α/k 1/j

x2 1/k α/j

x3 α/k 1/j

It is clear that for each possible construction of K there exists a pair xi, xj st.

K↓{xi, xj} . T . Therefore there is no K which can be universally `-optimal for

any pairwise non-trivial loss function ` and thus no universally `-optimal dD-

mechanisms exist over the space of n > 2 inputs. �

Since we noted that Bayes’ risk is pairwise non-trivial, the following is immediate.

COROLLARY 6.34. There are no universally br-optimal dD-private mechanisms

on n > 2 inputs for the Bayes’ risk loss function br.

Cor. 6.34 is a strengthening of the result of [40], which proved impossibility for values of ε

above some threshold. Our result holds for all values of ε.
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6.8.4 Reframing the impossibility result for monotonic loss functions

We have not made reference to monotonicity of the Bayes’ risk loss function in Thm. 6.33. In

order to frame our results in the setting of [40], which specifies monotonicity of loss functions

on dD, we first define a subclass of monotonic loss functions which we call strictly monotonic.

DEFINITION 6.8.1. A loss function ` :W ×X → R≥0 is called strictly monotonic

in d if ` is monotonic in d, α is bijective and f is strictly monotonic (ie. strictly

increasing).

Notice that the average distance function is strictly monotonic in d2 although it is non-

monotonic in dD. Note also that Bayes’ risk is not strictly monotonic in d2, however it is strictly

monotonic in dD. Strict monotonicity was used by Ghosh et al. in their proof of optimality,

however they showed their result extends to the more general class of monotonic functions.

We now have the following property of strictly monotonic loss functions.

LEMMA 6.35. Given a loss function ` : W ×X → R≥0, if there exists a metric d

such that ` is strictly monotonic in d, then `↓{x, x ′} must be non-trivial for all

x, x ′ ∈ X with x , x ′.

Proof. Assume that there exists x, x ′ ∈ X with x , x ′ st. `↓{x, x ′} is trivial. Then

by Def. 6.5.1 there exists a w∗ st. `(w∗, x) ≤ `(w, x) and `(w∗, x ′) ≤ `(w, x ′) for all

w , w∗. Since ` is strictly monotonic, by Def. 6.8.1 we must have d(α(w∗), x) ≤

d(α(w), x) and d(α(w∗), x ′) ≤ d(α(w), x ′) for all w , w∗. But we also know from

Def. 6.8.1 that there exists wa,wb ∈ W with wa , wb st. α(wa) = x and α(wb) =

x ′. Therefore we have

d(α(w∗), x) ≤ d(α(wa), x) = 0

d(α(w∗), x ′) ≤ d(α(wb), x ′) = 0

Since α is bijective, this implies that wa = wb and hence x = x ′, contradicting our

assumption that x , x ′. Therefore no such x, x ′ exists. �

And now the following is immediate.

COROLLARY 6.36. Let ` be a strictly monotonic loss function on d for some metric

d. Then there are no universally `-optimal dD-private mechanisms over n > 2

inputs.

This final result explains how monotonicity relates to the impossibility result, although it is

not clear how this is meaningful, since curiously the impossibility holds regardless of the metric

on the loss function. The result given in Thm. 6.33 suggests that the reason for non-optimality

for Bayes’ risk rests in its behaviour over pairs of inputs and that mechanisms designed for the

discrete metric are not particularly good at differentiating over all pairs – by the nature of the
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discrete metric.

However, consumers whose goal it is to distinguish between a particular pair of inputs can

expect better utility in this space, from Cor. 6.29, which again describes the nature of the discrete

metric – it can distinguish between a pair of inputs but not all pairs at the same time. This

highlights the importance of designing mechanisms with the utility of consumers in mind.

6.9 Optimality for Other Metric Spaces

We now show how the results from the previous sections can be applied to other metric spaces

to discover optimal mechanisms and their corresponding loss functions. We choose as a simple

example the metric space of bitstrings of length 3 under the Hamming distance23, although

our results can be applied more generally to bitstrings of length n. This metric space (on n-

length bitstrings) is used to describe a variety of privacy scenarios including user personalisation

settings [85] and image search [86]. The randomised response mechanism is most commonly

deployed in these scenarios since it is the only well-known mechanism for binary data; the

geometric mechanism is typically reserved for discrete numeric data and the laplace for real-

valued data.

Figure 6.4 depicts this space, also known as the Hamming cube. We ask: are there any

optimal mechanisms in this space? And for which loss functions are these mechanisms optimal?

000

001

010

011

100

101

110

111

Figure 6.4: The Hamming space of bitstrings of length 3. The distance between vertices is given

by the Hamming metric dH between bitstrings. The orange lines depict a path on which the dH

metric is linear. Notice there are many other paths for which this holds, including all paths of

length 3 from (000) to (111).

From Thm. 6.16 the optimal mechanisms are the kernel mechanisms of the space of dH-

private hypers. These are the mechanisms whose vertices must have the d-privacy constraints

holding with equality on every adjacent bitstring.

Notice (Figure 6.4) that there exist paths in the Hamming cube on which dH induces a linear

order, for example the path (000) – (100) – (110) – (111). Letting X = {000,100,110,111},

from Lem. 6.25 we can find loss functions ` on K↓X (for kernel mechanisms K) for which K

is universally `↑X-optimal. Further, using Lem. 6.21, if we can find a kernel mechanism K st.

23Or, alternatively the Manhattan metric, which coincides with the Hamming distance in this space.



6.9 Optimality for Other Metric Spaces 137

K ↓X ≡ G where G is the geometric mechanism, then we have universal `-optimality for all

monotonic loss functions on K↓X which we can extend to loss functions on X.

Inspired by the latter, using ε = ln 2 we find a kernel hyper with the required properties and

construct its corresponding kernel mechanism (see Figure 6.5).

∆K =



8/27 2/21 1/21 1/27

4/27 4/21 2/21 2/27

2/27 2/21 4/21 4/27

1/27 1/21 2/21 8/27

4/27 4/21 2/21 2/27

2/27 2/21 4/21 4/27

2/27 2/21 4/21 4/27

4/27 4/21 2/21 2/27


9/32 7/32 7/32 9/32

K y1 y2 y3 y4

000 2/3 1/6 1/12 1/12

100 1/3 1/3 1/6 1/6

110 1/6 1/6 1/3 1/3

111 1/12 1/12 1/6 2/3

010 1/3 1/3 1/6 1/6

011 1/6 1/6 1/3 1/3

101 1/6 1/6 1/3 1/3

001 1/3 1/3 1/6 1/6

Figure 6.5: A kernel hyper (∆K) and corresponding kernel mechanism (K) on bitstrings of

length 3 wrt the Hamming distance dH with ε = ln 2.

Notice that K↓X is exactly the geometric mechanism on 4 inputs with ε = ln 2. The same

holds for K↓{000,010,011,111} and K↓{000,001,101,111}, corresponding to 2 alternate paths

from 000 to 111. Therefore K is universally `-optimal for any (extended) monotonic loss func-

tions defined on these subsets of X. Using our loss function algebra these can be combined to

form more complex loss functions for which K is universally optimal.

Interestingly, if the randomised response mechanism had been used (eg. by applying ran-

dom response to each bit of the bitstring), the resulting mechanism would not have the above

structure (ie. we cannot find a “geometric mechanism” by restricting the resulting mechanism

to any subset of inputs). Nor could we find such a structure by a post-processing step, since this

is a refinement and therefore can only reduce utility.

However, notice also that if we consider the subset X = {100,010,001} we find that K↓X ≡ 1.

ie., the mechanism which leaks nothing. So there are no non-trivial loss functions for which K↓X

is optimal.

Finally, on any adjacent inputs x, x ′ we have K↓{x, x ′} ≡ T and so K is also universally `-

optimal for any extended loss function on adjacent inputs, and for their combination using our

loss function algebra (Eqn (6.6)).

Therefore, we conclude that there are optimal mechanisms in this space (and K is one such

example) which are optimal for extended monotonic loss functions on paths of length 4 (for

which dH induces a linear order), as well as extended loss functions on adjacent inputs.
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6.10 Conclusion

We have presented an algebraic framework for reasoning about optimality based on the robust

model of QIF developed by Alvim et al. [34]. We have used our framework to characterise the

class of universally optimal mechanisms, for all consumers and for classes of consumers defined

by restricted classes of loss functions, using various notions of refinement.

We have also extended and generalised the foundational results of Ghosh et al. [39] and

Brenner et al. [40] to other classes of loss functions and to mechanisms defined for d-privacy.

Importantly, we have established that there are other universally optimal mechanisms in both

the domain of counting queries (extended to the Euclidean metric) – aside from the well-known

geometric mechanism – and sum queries (extended to the Discrete metric) – overturning the

impossibility result in this space for monotonic functions, and thus opening up the possibility of

new optimality results in this space.

Finally, our framework naturally extends to the domain of continuous mechanisms, allowing

us to explore optimality in non-discrete settings, which will be the subject of Chapter 7.

We leave as future work the exploration of other loss function of classes of interest and the

exploration of other optimal mechanisms in the above spaces of interest as well as new metric

spaces relevant to other domains.

Our observation that the space of mechanisms is very rich also brings up the problem of

efficiently finding optimal mechanisms. We have not addressed this problem here and we also

leave this open for future work.

6.11 Chapter Notes

This chapter is unpublished material.

The framework developed in this chapter is the first, to our knowledge, to build on the

works of [39, 40] using the Bayesian model of consumers. Gupte et al. [87] proved a universal

optimality result for a type of risk-averse consumer using a minimax formulation. We note

that we did not address their optimality results because their formulation does not correspond

to an information-theoretic measure in our setting; an alternative would be to consider our

max-case leakage notion, explored in Chapter 4. This has a simpler geometric representation

than standard (average-case) refinement and would thus lend itself to reasoning using this

framework. We leave this open as future work.

Other optimality results have been found in non-Bayesian settings. Kairouz et al. [88] proved

optimality for “staircase mechanisms” using f -divergence as a utility measure, while Koufogian-

nis et al. [89] showed that the Laplace mechanism is optimal for the mean-squared error.

We note that optimality for metric differential privacy was explored by Chatzikokolakis et

al. [15]; in particular they showed that optimality for “sum” queries (in the traditional database

setting) could be achieved by changing the metric on databases (ie. so that the induced metric

for sum queries is the Euclidean distance) so that Ghosh et al.’s optimality result can then be

invoked.
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Finally, we do not know of many works exploring refinement restricted to particular loss

or gain functions, apart from the exploration of the Bayes’ risk refinement order by McIver et

al. [90].



7
Optimality II: Continuous Mechanisms

In Chapter 6 we explored optimality for discrete mechanisms defined for arbitrary metrics in the

context of oblivious workflows, with a focus on the Euclidean and Discrete metrics which are of

particular interest in this context. In this chapter we continue our exploration of optimality, this

time for a particular class of oblivious mechanisms designed for the Euclidean distance metric

over a single continuous dimension (eg. the real numbers). While the geometric mechanism

is well-known to be optimal for many classes of queries in the corresponding discrete space,

it turns out that this mechanism is not optimal over continuous inputs. Our contribution is to

show that optimality is regained by using the Laplace mechanism for the obfuscation.

As with Chapter 6, the technical apparatus involved employs the barycentric representa-

tion of hyper-distributions – extended here to continuous domains – as well as the earlier re-

sult of Ghosh et al. [39] regarding universal optimality of the geometric mechanism. In ad-

dition, we make use of the dual interpretations of distance between distributions provided by

the Kantorovich-Rubinstein Theorem, both to complete our proof and to formulate a bound on

the utility loss when employing the Laplace mechanism over a discrete domain for which the

geometric mechanism is better suited.

7.1 Introduction

Although popular in the literature and in privacy applications, the Laplace mechanism – to be

introduced – has yet to be ascribed any optimality properties; in fact, results on optimality for

the Laplace mechanism have uncovered only negative results [91, 92], showing that variations

on the Geometric mechanism are preferable to the Laplace mechanism in various scenarios.

However, none of these studies is conducted over continuous input spaces. Our contribution in



7.2 Preliminaries: loss functions; hypers; refinement 141

this chapter is to extend the study of optimality begun in Chapter 6 to continuous mechanisms,

focussing on the optimality results of Ghosh et al. [39] previously described. Here we find that

the Laplace mechanism is optimal over continuous inputs in the same way that the geometric

mechanism is optimal for discrete inputs. We make use of the strategies developed in the pre-

vious chapter – that is, reasoning about d-private mechanisms in the space of hypers, utilising

the notion of a refining Earth Move in this space and employing kernel mechanisms to demon-

strate some of the interesting features of the geometric mechanism which make it optimal under

precisely the right conditions. We show not only that the Laplace mechanism is optimal in the

continuous domain, but that we can compute a bound on the loss of optimality when the Laplace

mechanism is used for a discrete space instead of a properly designed Geometric mechanism.

We begin with some technical preliminaries – reminders from Chapter 6 – about discrete

mechanisms and how we model optimality using QIF ideas of refinement, loss functions and –

most importantly – hyper-distributions.

7.2 Preliminaries: loss functions; hypers; refinement

We recall the usual QIF model that describes (discrete) probabilistic channels as functions

C:X → DY and isomorphically as channel matrices. Our obfuscating mechanisms are chan-

nels in the discrete case — the result of the query is the channel’s input x, and the (perturbed)

value the observer sees is the channel’s output y. In this chapter we will write the type of C as

X_Y, when the output could be either discrete distributions DY or continuous measuresMY.

The loss functions `(w, x) will quantify the loss to the observer of seeing (only) y, and then

choosing w, when what she really wants to know is x. We recall that she does this via a remap-

ping, which determines her best strategy for choosing w. In general, we write U`[πBM] for the

expected loss to a rational observer, given the prior π, channel M and the loss function ` she has

chosen: it is ∑
y

p(y) minw
∑
x

`(w, x) p(x |y) , (7.1)

that is: the expected value, over all possible observations y and their marginal probabilities, of

the least loss she could rationally achieve over all her possible choices w given the knowledge

that y will have provided about the posterior distribution p(X |y) of the actual raw input x. Note

that M and π determine the p(y) and p(x |y) that appear in (7.1). We remark that this formulation

for measuring expected loss corresponds precisely to the formulation used by Ghosh et al. in the

optimality theorem (recall Chapter 6, Lem. 6.1).

7.2.1 The relevance of hyper-distributions

We recall that a hyper-distribution is a distribution of distributions on X that is of type DDX;

abbreviated as “hyper” and “D2X” respectively. Given a joint distribution J:D(X×Y), we write

[J] for the hyper-distribution whose support is posterior distributions 1 p(X |y) on X and which

1Recall that in the hyper-distribution literature these are called “inners”.



7.2 Preliminaries: loss functions; hypers; refinement 142

assigns the corresponding marginal distribution p(y) to each. (Zero-valued marginals are left

out.) We now re-express (7.1) in those terms.

If we write `(w,−) for the function on X that ` determines once w is fixed, and write EDIST RV

for expected value of random-variable RV with distribution DIST, then minw Ep(X |y) `(w,−) is the

inner part of (7.1). Then fix some ` and define for general distribution δ:DX that

Ỳ (δ) := minw Eδ `(w,−) , (7.2)

(using Y for “entropY”) so that Ỳ is itself a real-valued function on distributions δ (as eg. Shan-

non entropy is). With that preparation, the expression (7.1) becomes the expected value of Ỳ

over the hyper produced by abstracting from J = π .M as above. That is (7.1) gives equivalently

U`[πBM] = E[π .M] Ỳ , (7.3)

in which the M and π now explicitly appear and where –we recall– the brackets [−] convert

the joint distribution π .M to a hyper. (If Ỳ were in fact Shannon entropy, then (7.3) would be

the conditional Shannon entropy. But Ỳ ’s are much more general than Shannon entropy alone

[56, 60].)

We remark that the notation U`[πBM] makes explicit the hyper produced by the action of π

on M; and this is well-defined in the continuous case (ie. when π is defined over a continuous

set X, which is also the input domain for M). Further details are supplied in Appendix §B.1.

7.2.2 Refinement of hypers and mechanisms

We recall from Lem. 2.5 that the QIF notion of refinement on channels carries through to hy-

pers; moreover, on hypers, refinement is a true partial order which admits several equivalent

interpretations. Below, we write ∆ etc. for general hypers in D2X.

We have that ∆v∆′, that hyper ∆ is refined by hyper ∆′, under any of these equivalent

conditions:

(a) when E∆ Ỳ ≤ E∆′ Ỳ for all loss functions ` (ie. whether legal or not).

(b) when considered as distributions on posteriors DX it is possible to convert ∆ into ∆′ via a

Wasserstein-style “earth move” of probability from one posterior to another (recall Chapter

2, Def. 2.4.3) .

(c) when generated from joint-distribution matrices D in D(X×Y) generating ∆, and D′ in

D(X×Y ′) generating ∆′, there is a “post-processing matrix” R of type Y_Y ′ such that as

matrices we have D·R = D′ via matrix multiplication.

And we say that one mechanism M is refined by another M ′ just when [π .M] v [π .M ′] for all

priors π. When this occurs we also write M v M ′. From Formulation (a) we will use the fact

that the (v)-infimum of the T LεN ’s (indexed over a sequence of T ’s) is just Lε itself [62].

Formulation (b) is particularly useful. If we find a specific earth move from ∆ to ∆′ that

defines a refinement we can then use the equivalent (a) to deduce that E∆ Ỳ ≤ E∆′ Ỳ . However



7.3 Discrete and continuous optimality 143

if we can also compute the cost 2 of the particular earth move we can conclude in addition

that the difference |E∆ Ỳ − E∆′ Ỳ | must be bounded above by an amount we can compute. This

follows from the well-known Kantorovich-Rubinstein duality [94] which says that |E∆ Ỳ −E∆′ Ỳ |

is no more than minimal cost incurred by any earth move transforming ∆ to ∆′ scaled by the

“Lipschitz constant” 3 of Ỳ . We use these ideas in Lem. 7.7 and Thm. 7.9.

7.3 Discrete and continuous optimality

In this section we recall the optimality result for the geometric mechanism and show why it does

not apply in the continuous space. We then outline our approach to optimality for continuous

domains.

We will find it useful to think of the geometric mechanism as a (probabilistic) function from

inputs to outputs derived from the Geometric distribution. The Geometric distribution centred

on 0 with parameter α assigns (discrete) probability

Gα(n) := 1−α/1+α · α |n | (7.4)

to any integer n (positive or negative) [39]. It implements an ε·d-private Geometric mechanism

by obfuscating the query according to (7.4) above: thus setting α:= e−ε we define

Gε(n)(n′) := Gα(n′−n) = 1−α/1+α · α |n
′−n | (7.5)

to be the probability that integer n is input and n′ is output. (Note that this now corresponds

with the channel-based definition given in Def. 3.4.1).

7.3.1 The optimality result for the geometric mechanism

Our appeal to Ghosh et al. [39] uses their Theorem 3.3 and Corollary 3.3, transliterated here

for our notation.

THEOREM 7.1 (Theorem 3.2 in [39]). Fix arbitrary values for N≥1 and e−ε ∈

[0,1], and a count query. A mechanism M is universally utility maximising if

and only if there is a remap Y of X such that Y◦M is the truncated ε·d-private-

geometric mechanism.

THEOREM 7.2 (Corollary 3.3 in [39]). For every N≥1 and e−ε ∈ [0,1], and every

count query, the corresponding ε·d-private-geometric and truncated ε·d-private-

geometric mechanisms are universally loss minimising (utility maximising).

The “loss” in these results is computed in terms of loss functions `: N×N → R, and assumed

2The cost is determined by the amount of “earth” to be moved, and the distance it must be moved. See for
example [93].

3The Lipschitz constant of a function is the amount by which the difference in outputs can vary when compared
to the difference in inputs.
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to be monotone in its first argument. We have seen already (Chapter 6, Lem. 6.1) that the QIF

understanding of expected loss takes care of the remapping step in Thm. 7.1 above.

The fact that these loss functions also assume that there are only N possible choices in the

first argument w means that the result holds no matter the number of outputs in the mechanism

M. This can be seen easily in the hyper representation because the posteriors that correspond

to the same choice w naturally collapse (under addition and scaling). The result of this is that

the same loss for M is incurred by that for a mechanism M ′, but with no more than N outputs.

Ghosh et al. deal with these details in a similar way.

7.3.2 The geometric mechanism is never ε·d-private on dense continuous inputs,

eg. when d on X is Euclidean

We wonder now if the geometric mechanism, defined on discrete inputs, can be naturally lifted to

a ε·d-private mechanism on continuous inputs. We show here that the obvious lifting – namely,

applying (7.5) to continuous inputs – results in a mechanism which is not ε·d-private for any ε.

Notice that when G’s inputX is continuous, G’s output remains discrete, taking some number

of steps, each of fixed length say λ>0, in either direction. That is, any G input x is perturbed to

x+iλ for some integer i.

Now because X is continuous and dense, we can vary the input x itself, by a tiny amount, to

some x ′ so that d(x, x ′)< λ no matter how small λ might be, producing perturbations x ′+iλ each

of which is distant that same (constant) d(x, x ′) from the original x+iλ and, precisely because

d(x, x ′)< λ , those new perturbations cannot overlap the ones based on the original x.

Thus the two distributions produced by G acting on x and on x ′ have supports that do not

intersect at all. And therefore the dD distance between the two distributions is infinite, meaning

that G cannot be be ε·d-private for any (finite) ε. That is, for a database producing truly real

query results X, a standard (discrete) G cannot establish ε·d-privacy for any ε, however large ε

might be. This is illustrated in Figure 7.1.

There are two possible solutions. The first solution, both obvious and practical, is to “dis-

cretise” the input and to scale appropriately: a person’s height of 1.75m would become 175cm

instead. A second solution however is motivated by taking a more theoretical approach. Rather

than discretise the type of the query results, we leave it continuous — and seek our optimal

mechanism among those that – unlike the geometric – do not take only discrete steps. It will

turn out to be the Laplace mechanism.

7.3.3 Our result — continuous optimality

In the discrete case typically the set X of inputs is {0 . . . N} for some N≥0, and the prior knowl-

edge π is a (discrete) distribution on that. For our continuous setting we will use X=[0,1] for

inputs, the unit interval U, and the discrete distribution π will become a proper measure on

[0,1] expressed as a probability density function. The ε·d-private mechanisms, now Kε for “kon-

tinuous”, will take an input x from a continuous set X rather than a discrete one. And the metric

d will be Euclidean.
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The x-axis represents outputs distributed according to a coloured distribution; the y-axis is the
probability of observing an output.

The left hand figure shows (part of) an infinite geometric mechanism with step-size λ = 1
defined for secret space X = Z, with (partial) output distributions for x = 0 (blue) and x = 1
(orange). These distributions overlap on the output space (ie. the outputs are integers 0,1,2
etc) and so we can compute a finite ε for this mechanism (it is ln 2).

The right hand figure shows the geometric mechanism for the same step-size λ = 1 applied to
the secrets x = 0 (blue) and x = 1/2 (orange). Since the step-size determines how these distri-
butions are juxtaposed, we find that the output spaces do not intersect and the corresponding
mechanism has infinite ε. To fix this, we would define a geometric mechanism using step-size
1/2, but then this would fail for inputs x = 0, 1/4, and so on. Since λ > 0, we find that the
geometric will fail for x = 0,λ/2 and thus cannot be made ε·d-private for any finite ε on [0,1].

Figure 7.1: Illustration of why lifting the geometric mechanism by changing its input domain

does not result in a valid ε·d-private mechanism.

Our (continuous) optimality result formalised at Thm. 7.3 is that the ε·d-private Laplace

mechanism Lε minimises loss over all continuous priors π on X=U and all legal loss functions `

out of the class of ε·d-private mechanisms with respect to the Euclidean metric on the continuous

input X=[0,1]. Since the theorem requires that all mechanisms are ε·d-private, the argument in

§7.3.2 above shows therefore that geometric mechanisms are no longer suitable (for optimality)

because on continuous X they are no longer ε·d-private.4

7.3.4 An outline of the proof

Our proof technique relies on the work developed in the previous chapter on the space of hyper-

distributions and the geometric interpretation of refinement of hypers. In summary, we notice

that

(a) the Kantorovich-Rubinstein duality lifted to hyper-distributions describes a minimum Earth

Move which upper bounds the expected loss over all 1-Lipschitz functions on hypers (think:

posterior uncertainties),

4We note that our lifting of the geometric mechanism seems to be the most obvious and natural; and we are not
aware of any standard lifting of the geometric to continuous domains, or of any that would be ε·d-private.
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(b) the geometric and Laplace mechanisms are related by refinement which describes an Earth

Move between hypers (not necessarily minimal), and

(c) the refining Earth Move distance between the geometric and Laplace hypers approaches 0

as the discretised space “approaches continuity” (in the limit), which means the minimal

Earth Move must do the same,

(d) and therefore the difference in expected loss (measured over all consumers) also approaches

0, proving that the utility of the Laplace mechanism is the same as that of the geometric

mechanism in the limit.

In more detail: We access the existing discrete result from within the continuous U by “pixe-

lating” it, that is defining UN={0, 1/N, 2/N, . . . , N−1/N,1} for integer N>0, and mapping {0 . . . N}

isomorphically onto that discrete subset. We then establish near optimality for a similarly pix-

elated Laplace mechanism, showing that “near” becomes “equal to” when N tends to infinity.

Specifically,

(a) (We show in §7.5.2 that) Any (discrete) prior on UN corresponds to some prior on the

original U, but can also be obtained by pixelating some continuous prior π on all of U,

concentrating its (now discrete) probabilities onto elements ofUN only: eg. the probability

π[n/N, n+1/N) of the entire 1/N-sized interval is moved onto the point n/N. We write it πN .

(b) (§7.5.3) Any function f acting on all of U can be made into an N-step function by first

restricting its inputs to UN and then filling in the “missing” values f (x) for x in (n/N, n+1/N)

by copying the value for f (n/N). If f is an ε·d-private mechanism Kε, we write its N-stepped

version as Kε
N , and note that Kε

N remains ε·d-private when restricted to the points in UN

only. If f is a loss function ` on (W and) X we write `N for its stepped version.

(c) (§7.6.2; Lem. 7.6) Now for any N, mechanism Kε
N , prior πN , and legal N-step loss function

`N we can appeal to the discrete optimality result: for the pixelated prior πN and the N-step

and legal `N the loss due to Gε
N is ≤ the loss due to Kε

N .

(d) (§7.6.4; Thm. 7.9) The replacement of Gε
N by LεN (both N-step functions on [0,1]) is via

pixelating the output (continuous) distribution of LεN to a multiple T of N: we write that
T LεN . The Kantorovich-Rubinstein Theorem, provided additionally that `N is p-Lipschitz for

some p>0 independent of N, shows that the (additive) difference between the Gε
N -loss and

the T LεN -loss, for any πN and `N and T a multiple of N, tends to zero as N increases.

(e) (§7.5.4) We can remove the subscript πN on the prior, and on the mechanisms Kε
N and T LεN ,

relying now on the ε·d-privacy of the two mechanisms to make the (multiplicative) ratio

between the losses they cause tend to 1.

(f) (§7.7) The final step, removing the subscript N from `N , is that the loss-calculating proce-

dure is continuous and that `N tends to ` as N tends to infinity.
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7.4 Measures on continuous X and Y

7.4.1 Measures via probability density functions

Continuous analogues of priors π, mechanisms M and loss functions ` will be our principal

concern here: ultimately we we will use M[0,1] for our measurable spaces X and Y, and will

suppose for simplicity that X=Y=[0,1]. (More generality is achieved by simple scaling).

Measures M[0,1] (that is MX and MY) will be given as probability density functions, where

a PDF say µ: [0,1]→R≥0 determines the probability
∫ b

a
µ assigned to the sample [a, b]⊆[0,1] using

the standard Borel measure on [0,1], and more generally the expected value of some random

variable V on [a, b) given by PDF µ is
∫ b−

a
µ(x)V(x)dx .

Even though µ is of type PDF, we abuse notation to write for example µ[a, b) for the probabil-

ity
∫ b−

a
µ that µ assigns to that interval, and µa for the probability µ assigns to the point a alone,

i.e. some r just when when the actual PDF-value of µ(a) is the Dirac delta-function scaled by r,

written δr .

7.4.2 Continuous mechanisms over continuous priors

Our mechanisms M, up to now discrete, will now become “kontinuous”, renamed K as a

mnemonic. Thus a continuous mechanism K:X→MY given input x produces measure K(x)

on the observations Y=[0,1]. And given a a whole continuous prior π:M[0,1], that same K

therefore determines a joint measure over X×Y. 5 By analogy with (7.2,7.3) we have

DEFINITION 7.4.1 (Continuous version of (7.1)). The expected loss U`[πBK]

due to continuous prior π, continuous mechanism K and loss function ` is given

by 6 ∫ 1

0
( infw (

∫ 1

0
`(w, x)π(x)K(x)(y) dx) )dy . (7.6)

The continuous version of uncertainty (7.2) is now

Ỳ (δ) := infw:W

∫ 1

0
`(w, x)δ(x)dx

and the continuous version of expected loss (7.3) is now

U`[πBK] =
∫
y:Y

Ỳ dK(π) .

7.4.3 The truncated Laplace mechanism

The Laplace mechanism is based on the Laplace distribution:7 it works out to be

5See (B.1) in Appendix §B.1.
6This is well defined whenever theW-indexed family of functions of y given by

∫ 1
0 `(w, x)π(x)K(x)(y) dx contains

a countable subset W ′ such that the inf over W is equal to the inf over W ′ [95]. This is clear if W is finite, and
wheneverW ′ can be taken to be the rationals.

7In the same way that the geometric mechanism is based on the geometric distribution.
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DEFINITION 7.4.2 (Laplace distribution). The ε-Laplace mechanism with with in-

put x in X=[0,1] and probability density in R≥0 for output y in Y is usually

written as a PDF in y (for given x) as [96]

Lε(x, y) := ε/2 · e−ε |y−x | .

The ε/2 is a normalising factor. It is known [15] that the mechanism Lε is ε·d-

private over [0,1] (where the underlying metric on X is Euclidean). Just as for

the Geometric mechanism we truncate Lε ’s outputs so that they also lie insideU.

We do so in the same manner, by remapping all outputs greater than 1 to 1, and

all outputs less than 0 to 0.

DEFINITION 7.4.3 (Truncated Laplace mechanism). The truncated Laplace mech-

anism Łε for inputs restricted to [0,1], and output restricted to [0,1], is defined

in the following way (as a PDF):

Łε(x)(y) := δa if y=0

Lε(x, y) if 0<y<1

δb if y=1 ,

where the constants a, b are
∫ 0
−∞

Lε(x, y)dy = eεx/2 and
∫ ∞
1 Lε(x, y)dy = eε(1−x)/2

respectively, and δr is the Dirac delta-function with weight r.

We can now state our principal contribution. It is to show that the truncated Laplace Łε

is universally optimal, in this continuous setting, in the same way that Gε was optimal in the

discrete setting:

THEOREM 7.3 (Truncated Laplace is optimal). Let Kε be any continuous ε·d-

private mechanism with input and output both [0,1], and let π be any continuous

(prior) probability distribution over [0,1] and ` any Lipschitz continuous 8, legal

loss function on X=U. Then U`[πBŁε] ≤ U`[πBKε] .

As we foreshadowed in the proof outline in §7.3.4, Thm. 7.3 relies ultimately on the earlier-

proven optimality Gε in the discrete case: we must show how we can approximate continuous

ε·d-private mechanisms in discrete form, each one satisfying the conditions under which the

earlier result applies, and in §7.5 we fill in the details. Along the way we show how the Laplace

mechanism provides a smooth approximation to the Geometric with discrete inputs.

8Lipschitz continuous is less general than continuous. It means that the difference in outputs is within a constant
κ>0 scaling factor of the difference between the inputs.
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7.5 Approximating Continuity for X

7.5.1 Connecting continuous and discrete

Our principal tool for connecting the discrete and continuous settings is the evenly-spaced dis-

crete subsetUN = {0, 1/N, 2/N . . . , N−1/N,1} of the unit intervalU=[0,1] for ever-increasing N>0.

The separation 1/N is the interval width.

7.5.2 Approximations of continuous priors

The N-approximation of prior π:MU of type DUN , ie. yielding actual probabilities (not densi-

ties), is defined

πN (n/N) := π[n/N, n+1/N) if n < N−1

π[n/N,1] if n= N−1

0 otherwise .

The discrete πN gathers each of the continuous π-interval’s measure onto its left point, with as

a special case [1,1] from π included onto the point N−1/N of πN .

As an example take N to be 2, and π to be the uniform (continuous) distribution over U,

which can be represented by the constant 1 PDF. Since the interval width is 1/2, we see that πN
assigns probability 1/2 to both 0 and 1/2, and probability zero to all other points in U.

7.5.3 N-step mechanisms and loss functions

In the other direction, we can lift discrete M and loss-function ` on UN into the continuous

X=U by replicating their values for the x’s not in UN in a way that constructs N-step functions:

we have

DEFINITION 7.5.1. For x in U=[0,1] define bxcN := bN xc/N.

DEFINITION 7.5.2. Given mechanism M:UN_Y, define MN : [0,1]→R≥0 so that

MN (x) := M(bxcN ) if 0≤x<1

M(N−1/N) if x=1 .

Note that we have not yet committed here to whether M produces discrete or

continuous distributions on its output Y. We are concentrating only on its input

(from X).

Similarly, given loss function `:W×UN ,→R≥0, define `N :W×[0,1]→R≥0 so

that

`N (w, x) := `(w, bxcN ) if 0≤x<1

`(w, N−1/N) if x=1 .

Say that mechanisms and loss functions over [0,1] are N-step functions just when

they are constructed as above.
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The important property enabled by the above definitions is the correspondence between loss

functions’ values in their pixelated and original versions, which will allow us to apply the earlier

discrete-optimality result, based on Lem. 7.5 to come. That is, we have

LEMMA 7.4. For any continuous prior π inMU, mechanism M inU_Y and loss

function ` inW×U→R≥0 we have

continuous X︷         ︸︸         ︷
U`N [πBMN ] =

discrete X︷       ︸︸       ︷
U`[πN BM] .

That is, the loss realised via a pixelated πN , and (already discrete) M and `, all

operating on UN , is the same as the loss realised via the original continuous π

and the lifted (and thus N-step) mechanism MN and `N , now operating over all

of X=U.

Proof. We interpret the losses using Def. 7.4.1, focussing on the integrand of the

inner integral. Note that we can split it up into a finite sum of integrals of the

form
∫ n+1/N−

n/N
π(x)V(x)dx. When we do that for the left-hand formula U`N [πBMN ]

we see that throughout the interval [n/N, n+1/N) the contribution of the mechanism

and the loss is constant, ie. MN (x)(y) · `N (w, x) = M(n/N)(y) · `(w, n/N). This means

the integral becomes

M(n/N)(y) · `(w, n/N) ·
∫ n+1/N−

n/N

π(x)dx

which is equal to M(n/N)(y) · `(w, n/N) · πN (n/N). A similar argument applies to

the last interval (which includes 1), compensated for by the definitions of `N and

MN to take their corresponding values from 1−N/N.

Looking now at the right-hand formula, U`[πN BM] we see that it is now ex-

actly the finite sum of the integrals just described. �

7.5.4 Approximating continuous ε·d-private mechanisms

The techniques above give good discrete approximations for continuous-input ε·d-private mech-

anisms M acting on continuous priors simply by considering MN ’s for increasing N ’s, using

§7.5.3. As a convenient abuse of notation, when we start with a continuous-input mechanism

M on [0,1] we write MN to mean the N-step mechanism that is made by first restricting M to

the subset UN of [0,1] and then lifting that restriction “back again” as in Def. 7.5.2, effectively

converting it into an N-step function. When we do this we find that the posterior loss wrt. N-

step loss functions can be bounded above and below by using pixelated priors and N-stepped

mechanisms.

LEMMA 7.5. Let K be a continuous-input ε·d-private mechanism, and π inM[0,1]
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a continuous prior and ` a (non-negative) N-step function. Then the following

inequalities hold:

e−
ε
N ·

discreteX︷         ︸︸         ︷
U`[πN BKN ] ≤

continuousX︷    ︸︸    ︷
U`[πBK] ≤ e

ε
N ·

discreteX︷         ︸︸         ︷
U`[πN BKN ] .

(Notice that the middle formula U`[πBK], the mechanism K is not N-stepped, but

in the formulae on either side they are as in Lem. 7.4.)

Proof. The proof is as for Lem. 7.4, but noting also that K ’s being ε·d-private

implies that for all N we have K(bxcN )(y)×e−
ε
N ≤ KN (x)(y) ≤ K(bxcN )(y)×e

ε
N . �

With Lem. 7.4 and Lem. 7.5 we can study optimality of Łε on finite discrete inputs UN .

We will see that, although Geometric mechanisms are still optimal for the (effectively) discrete

inputs UN , the Laplace mechanism provides increasingly good approximate optimality for UN

as N increases, and is in fact (truly) optimal in the limit.

7.6 The Laplace and Geometric mechanisms

In this section we make precise the restriction of the Geometric mechanism Gε to inputs and

outputs both in UN (a subset of [0,1]): for both x, y in UN we define

on UN︷     ︸︸     ︷
Gε

N (x)(y) :=

on {0. . .N}︷           ︸︸           ︷
G

ε
N (N x)(Ny) . (7.7)

As an illustration, we take ε=2 ln 4 and input X=U2, in which the 2 comes from U2 and the

ln 4 comes from the α=1/4 of the Geometric distribution used to make the mechanism Gε. Using

the three points 0, 1/2 and 1 of the input, we compute the truncated geometric mechanism Gε
2

as the channel below, where the rows’ labels are the inputs U2, and the columns are similarly

labelled by the outputs (alsoU2 in this case). This means that if the input was 0, then the output

(after truncation) will be 0 with probability 4/5, and 1/2 with probability 3/20 etc:

Gε
2 =

0 1/2 1

0 4/5 3/20 1/20

1/2 1/5 3/5 1/5

1 1/20 3/20 4/5

.

Notice now that the ratio of adjacent probabilities that are in the same column satisfy the ε·d-

privacy constraint, so for example 4/5÷1/5 = 3/5÷3/20 = 4 ≤ e(2 ln 4)/2. Notice also that the distance

between adjacent inputs in U2 under the Euclidean distance is 1/2, not 1 as it would be in the

conventional X=(0,1,2).

Suppose now that we consider U4 instead, consisting of the five points 0, 1/4, 1/2, 3/4 and 1,

and we adjust the α in the underlying Geometric distribution Gα. The parameter ε, now 4 ln 2,
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is the same as before – and the resulting matrix is

Gε
4 =

0 1/4 1/2 3/4 1

0 2/3 1/6 1/12 1/24 1/24

1/4 1/3 1/3 1/6 1/12 1/12

1/2 1/6 1/6 1/3 1/6 1/6

3/4 1/12 1/12 1/6 1/3 1/3

1 1/24 1/24 1/12 1/6 2/3

As before though, the ratio of adjacent probabilities that are in the same column satisfy the

ε·d-privacy constraint over all of U4: now we have 2/3 ÷ 1/3 = 1/3 ÷ 1/2 = 2 ≤ e(4 ln 2)/4.

This demonstrates that the ε·d-privacy constraints over discrete inputs UN must take into

account the underlying metric on the input space. More generally, whenever we double N in

UN , the α-parameter must become
√
α.

7.6.1 The stability of optimality for geometric mechanisms

Using the above example we can explore the stability of the optimality result for the geometric

mechanism when applied to other geometric mechanisms designed for different domains.

Consider the geometric mechanisms Gε
2 (designed for U2) and Gε

4 (designed for U4). Note

that we can restrict Gε
4 to priors π2 which only assign non-zero weight to the points in U2. The

matrix made from Gε
4 but restricted to U2 consists of the first, middle and last rows of Gε

4 ie. :

M =

0 1/4 1/2 3/4 1

0 2/3 1/6 1/12 1/24 1/24

1/2 1/6 1/6 1/3 1/6 1/6

1 1/24 1/24 1/12 1/6 2/3

We can see that the ε·d-privacy constraints consistent with U2 are still satisfied, ie. the

relations between successive column entries in the restricted matrix lie between 1/4 and 4 —

because they represent two adjacencies from the original matrix, where the ratios were between

1/2 and 2.

Now suppose that we choose a `2-legal loss function known as “Bayes’ Risk”, defined

br2(w, x) :=

{
1, if bxc2 , w,

0, otherwise.

whereW = U2.

Assuming a uniform prior υ2 over U2, we can compute the losses directly:

Ubr2[υ2BGε
2] =

4/15 < 1/3 = Ubr2[υ2BM]

showing that M is no longer universally optimal. This can alternatively be observed by compar-

ing the barycentric representations for Gε
2 and M, depicted in Figure 7.2.
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Construction of hypers for the mechanisms Gε
2 and M.

Figure 7.2: Illustration of geometric mechanisms from the example in §7.6.1 in the space of

hypers. The supports of hyper [υ.Gε
2] are depicted in orange and those of [υ.M] are the blue

and orange points (combined). Observe that M is not a kernel mechanism (recall Def. 6.3.2

from Chapter 6) thus it cannot be (strictly) universally optimal.

Alternatively, we may want to lift a geometric mechanism designed for, say, U2 to an ε·d-

private mechanism on U4. Notice that we cannot do this by simply taking Gε
2 and adding in the

missing rows, since the ε·d-privacy constraints are no longer satisfied for the filled in rows. In

fact we will need to square root the ε parameter for Gε
2 (ie. use ε = ln 2, which produces the

following channel

M2 =

0 1/2 1

0 2/3 1/6 1/6

1/4 2/3 1/6 1/6

1/2 1/3 1/3 1/3

3/4 1/3 1/3 1/3

1 1/6 1/6 2/3

.

Notice that now the ratio between adjacent elements is at most 2 so the privacy guarantee

for M2, like that of Gε
4 above, is ε = 4 ln 2.

We can now compare the Bayes’ Risk loss bf4 (forW = U4) under the uniform prior υ4 for

M2 against Gε
4, and we find,

Ubr4[υ4BGε
4] =

8/15 < 2/3 = Ubr4[υ4BM2]

again showing that the lifted geometric mechanism M2 is not optimal on U4.

These examples show in some sense the fragility of the optimality guarantee for the geo-

metric mechanism, and for privacy mechanisms in general – optimality is very sensitive to the

domain for which the mechanism is designed, and ‘retro-fitting’ mechanisms for new domains
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has consequences for optimality.

7.6.2 Bounding the loss for continuous mechanisms

At this point, we have enough to be able to appeal to the discrete optimality result, to bound

below the losses for continuous mechanisms, provided that the loss `N is N-legal, ie. that its

legality obtains at least for the distinct points in UN .

LEMMA 7.6. For any continuous prior π inMU, ε·d-private-mechanism M:U_Y

and loss function `:W×U→R≥0 such that `N is N-legal, we have:

U`N [πN BG
ε
N ] ≤ U`N [πBMN ]

Proof. Follows from Lem. 7.4 and noting that M restricted to UN satisfies the

conditions for universal discrete optimality [39]. �

Our next task is to study the relationship between the Geometric- and Laplace mechanisms.

We show first that Gε
N is refined (§7.2.2) by the truncated Laplace mechanism also restricted to

to UN . Since Łε is already defined over the whole of U we continue to write its restriction to

UN as Łε. This will immediately show that losses under the Geometric are no more than those

under the Laplace (§7.2.2(1)), consistent with observations that, on discrete inputs, Laplace

obfuscation does not necessarily minimise the loss [92]. Since the output Y of Łε is continuous,

we proceed by first approximating it using post-processing to make Laplace-based mechanisms
TŁε, defined below, which have discrete output, and which can form an anti-refinement chain

converging to Łε. We are then able to show separately the refinements between Gε
N and TŁε,

using methods designed for finite mechanisms.

The T,N-Laplace mechanisms approximate Łε by T -pixelation of their outputs. Here x is

(still) in UN but y is in UT .

TŁε(x)(y) := Łε(x)[y, y+1/T) if y<1−1/T

Łε[1−1/T,1] otherwise.
(7.8)

That is, we pixelate the Y using T for the Laplace (independently of the N we use for X.) This

is illustrated in Figure 7.3a.

Observe that as this is a post-processing (§7.2.2(3)) of the output of Łε, the refinement

Łε v TŁε follows.

7.6.3 Refinement between N-Geometric and T,N-Laplace mechanisms

We now demonstrate the crucial fact that Gε
N is refined by TŁε. We use version (b) of refinement,

described in §7.2.2, and establish a Wasserstein-style earth-move between hypers [υ.Gε
N ] and

[υ.TŁε] (ie. for uniform prior υ).

LEMMA 7.7. For all integer T>0 we have that Gε
N v

TŁε.
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The width of the central “vertical slice” is 1/T .

(a) Illustrates batching the output for T L (similar for TŁε). The outputs (shown here as PDF

plots) are batched into output segments of length 1/T in this example, for T=8. The segment

from [x, x+1/T) is indicated by the two vertical lines. The probability assigned to this segment

is the area under the relevant curves. For the red curve it is the sum of the white and blue

regions; for the green curve it is the sum of the white, blue and green regions and for the black

curve it is only the white region.

(b) The supports of hypers [υ.Gε
2] (orange) and [υ.8Łε] (blue) for inputs {0, 1/2,1} in the space

of hypers. The blue points are within the convex hull of the orange points.

Figure 7.3: N-Geometric and T,N-Laplace mechanisms.

Proof. Take ∆,∆′ in D2UN as hypers both with finite supports. We can depict

such hypers in RN+1-space by locating their supports, each of which is a point

in RN+1, where the axes of the diagram correspond to each point in UN . For

example if we take ∆ to be the hyperdistribution [υ.Gε
2], it has three posterior

distributions, which are 1-summing triples in R3. They are depicted by the orange

points in Figure 7.3b. Similarly the supports of the hyperdistribution ∆′ taken

to be [υ.TŁε] are represented by the blue dots. Notice that the blue dots are

contained in the convex hull of the orange dots, and this observation allows us
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to prove that the mechanisms Gε
2 and 8Łε are in a refinement relation.

We recall Lem. 2.6 from Chapter 2 which we reformulate as follows:

Let C,C ′:UN _UT be channels and let υ be the uniform prior. If

the supports of [υ.C] are linearly independent when considered as

vectors in RN , and their convex hull encloses the supports of [υ.C ′],

then C v C ′. 9

To apply this result, we let C be Gε
N recall that indeed the supports of [υ.Gε

N ] are

linearly independent (see for example [35]). Moreover in general, the supports

of [υ.TŁε] are also contained in the convex hull. We provide details of this latter

fact in Appendix §B.2. �

Finally we can show full refinement between the Laplace and the Geometric mechanism,

which follows from continuity of refinement [62].

THEOREM 7.8. Gε
N v Łε.

Proof. We first form an anti-refinement chain . . . v T1Łεv T0Łε so that (a) ŁεvTiŁε

for all i, and (b) the chain converges to Łε.

We reason as follows:

Gε
N v Łε

iff Gε
N v

TiŁε for all i≥0 “v is continuous; (a), (b) above”

which follows from Lem. 7.7. We provide details of (a), (b) just above in Ap-

pendix §B.2. �

We have shown that the Laplace mechanism is a refinement of the Geometric mechanism.

This means that it genuinely leaks less information than does the Geometric mechanism and

therefore affords greater privacy protections. On the other hand this means that we have lost

utility with respect to the aggregated information. In the next section we turn to the comparison

of the Laplace and Geometric mechanisms with respect to that loss.

7.6.4 The Laplace approximates the Geometric

The geometrical interpretation of the Laplace and Geometric mechanisms set out above indicates

how the Laplace approximates the Geometric as UN ’s interval-width approaches 0. In particular

the refinement relationship established in Thm. 7.8 describes how the posteriors of [υ.TŁε] all

lie in between pairs of posteriors of [υ.Gε
N ]. This relationship between posteriors translates to a

bound between the corresponding expected losses U`[υBŁε] and U`[υBGε
N ] via the Kantorovich-

Rubinstein theorem applied to the hypers [υ.TŁε] and [υ.Gε
N ]. We sketch the argument in the

next theorem, and provide full details in Appendix §B.3.

9The lemma applies to channels because of the direct correspondence between channels and the supports of
hyperdistrbutions formed from uniform priors.
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THEOREM 7.9. Let ` be a κ-Lipschitz loss function, and υ the uniform distribution

over UN . Then

U`[υBŁε] −U`[υBGε
N ] ≤ cκ/N , (7.9)

where c = 3/(1−e−ε)2 is constant for fixed ε.

Proof. We appeal to the Kantorovich-Rubinstein theorem which states that the

“Kantorovich distance” between probability distributions ∆,∆′ bounds above the

difference between expected values |E∆ f − E∆′ f | whenever f satisfies the κ-

Lipschitz condition. In our case the relevant distributions are the hyper-distributions

[υ.TŁε] and [υ.Gε
N ], and the relevant Lipschitz functions are Ỳ for loss functions

`. 10

We write W(∆,∆′) for the Wasserstein distance between hyperdistributions

∆,∆′ which is determined by the minimal earth-moving cost to transform ∆ to

∆′. For any such earth move each posterior δ of ∆ is reassigned to a selection of

posteriors of ∆′ in proportion to the probability mass that ∆ assigns to δ. The cost

of the move is the expected value of the distance between posterior reassignment

(weighted by the proportion of the reassignment). Thus the cost of any specific

earth move provides an upper bound to W(∆,∆′). 11 Importantly for us, the re-

lation of refinement v determines a specific earth move (recall Def. 2.4.2) whose

cost we can calculate.

Referring to Lem. 7.7 and Figure 7.3b, we see that the refinement between

the approximation to the Laplace [υ.TŁε] and [υ.Gε
N ], reassigns the Geometric’s

posteriors (the orange dots) to the Laplace’s posteriors (the blue dots). Crucially

though the Geometric’s posteriors form a linear order according to their distance

from one another, and the refinement described in Lem. 7.7 shows how each

Laplace posterior lies in between adjacent pairs of Geometric posteriors (accord-

ing to the linear ordering), provided that N divides T . Therefore any redistribu-

tion of a Geometric posterior is bounded above by the distance to one or other of

its adjacent posteriors. We show in Appendix §B.3 that distances between adja-

cent pairs is bounded above by c/N, and thereforeW([υ.TŁε], [υ.Gε
N ]) ≤ c/N.

Next we observe that if `(w, x) is a κ-Lipschitz function on [0,1] (as a function

of x), then Ỳ is a κ-Lipschitz function, and so by the Kantorovich-Rubinstein

theorem we must have (recalling from (7.3)) that U`[πBM]=E[π .M] Ỳ :

U`[υB
TŁε] −U`[υBGε

N ] ≤ cκ/N . (7.10)

By Thm. 7.8 and postprocessing we see that Gε
N v Łε v TŁε. Recall from (a) that

10Some f :DX → R is κ-Lipschitz if | f (δ) − f (δ′)| ≤ κW(δ, δ′), for κ>0, and W(δ, δ′) is the Kantorovich distance
between δ, δ′.

11All the costs are determined by the underlying metric used to define the probability distributions. For us this is
determined by the Euclidean distance on the interval [0,1].
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refinement means that the corresponding losses are also ordered, ie.

U`[υBGε
N ] ≤ U`[υBŁε] ≤ U`[υB

TŁε]

and so the difference U`[υBŁε] −U`[υBGε
N ] must be no more than the difference

U`[υB
TŁε] −U`[υBGε

N ] , thus (7.9) follows from (7.10). Full details are set out in

Appendix §B.3. �

More generally, (7.9) holds whatever the prior.

THEOREM 7.10. Let ` be a κ-Lipschitz loss function, and π any prior over UN .

Then

U`[πBŁε] −U`[πBGε
N ] ≤ cκ/N . (7.11)

Proof. This follows as for Thm. 7.9, by direct calculation, noting that for discrete

distributions we have U`∗[υBM] = U`[πN BM], where `∗(w, x):= `(w, x)×πN (x)×N.

Details are given in Appendix §B.3. �

7.6.5 Approximating monotonic functions

The final piece needed to complete our generalisation of the Ghosh et al.’s optimality theorem

is monotonicity. We describe here how to approximate continuous monotonic functions, and

expose the limitations for the Laplace mechanism. We begin by recalling the notion of monotone

loss functions, defined in Chapter 6 on discrete domains but used here in the continuous setting:

DEFINITION 7.6.1. The loss function ` : W×X → R is said to be monotone if:

there is some mapping θ:W→[0,1], such that

`(w, x) := m(|θ(w)−x |, x) ,

where m : R×R→ R is monotone in its first argument.

Notice how θ takes care of any remapping that might need to be applied for computing

expected losses. Interestingly step functions are not in general monotone on the whole of the

continuous input [0,1], but fortunately they are for the restrictions to UN that we need.

LEMMA 7.11. Let ` be monotone. Then the approximation `T restricted toUN is

monotone whenever T is a multiple of N.

Proof. If x∈UN then bxcT=x since N divides T . �

Examples of continuous monotone loss functions include len and len2, where x,w ∈ [0,1],

and len(w, x) := |x−w |. Note that len is 1-Lipschitz and len2 is 2-Lipschitz.

We note finally that as the pixelation N of ` increases the approximations `N converge to `.



7.7 Universal optimality for the Laplace Mechanism 159

7.7 Universal optimality for the Laplace Mechanism

We finally have all the pieces in place to prove Thm. 7.3, our generalisation of discrete optimality.

THEOREM 7.3 (Truncated Laplace is optimal). Let Kε be any continuous ε·d-

private mechanism with input and output both [0,1], and let π be any continuous

(prior) probability distribution over [0,1] and ` any Lipschitz continuous 12, legal

loss function on X=U. Then U`[πBŁε] ≤ U`[πBKε] .

Proof. We use the above results to approximate the expected posterior loss by

step functions; these approximations are equivalent to posterior losses over dis-

crete mechanisms satisfying ε·d-privacy, enabling appeal to Ghosh et al.’s univer-

sal optimality result on discrete mechanisms. We reason as follows:

U`N [πBK
ε] × eε/N

≥ U`N [πN BK
ε
N ] “Lem. 7.5”

≥ U`N [πN BG
ε
N ] “Lem. 7.6: `N is legal by Lem. 7.11”

≥ U`N [πN BŁ
ε] − cκ/N “Thm. 7.10; `N is κ-Lipschitz”

≥ U`N [πBŁ
ε] × e−ε/N − cκ/N . “Lem. 7.5”

The result now follows as above by taking N to∞, and noting that eε/N , e−ε/N ,

cκ/N and `N converge to 1,1,0, ` respectively, and that taking expected values

over fixed distributions is continuous. �

Note that Thm. 7.3 only holds for mechanisms that are ε·d-private. An arbitrary embedding

KN is not necessarily ε·d-private, and in particular Thm. 7.3 does not apply to Gε
N . Also the

continuous property on ` is required, because `N must be monotone for all N. Thus arbitrary step

functions do not satisfy this property, and so the Laplace mechanism is not in general universally

optimal wrt. arbitrary step functions. Two popular loss functions however are continuous, and

thus we have the following corollary.

COROLLARY 7.12. The Laplace mechanism is universally optimal for len and len2.

7.8 Conclusion and Future Work

We have studied the relationship between differential privacy (good) and loss of utility (bad)

when the input X can be over an interval of the reals, instead of having X described as in the

optimality result of Ghosh et al. [39], ie. as a discrete space. Here we used as input space [0,1],

but note that the result extends straightforwardly to any finite interval [a, b] of R. Our result

also imposes the condition that the losses must be κ-Lipschitz for some finite κ. We do not know

whether this condition can be removed in general.
12Lipschitz continuous is less general than continuous. It means that the difference in outputs is within a constant

κ>0 scaling factor of the difference between the inputs.
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We observe that for N-step loss functions, the Laplace mechanism is not optimal, and in fact

a bespoke Geometric mechanism will be optimal for such loss functions. However our Thm. 7.10

however provides a way to estimate the error relative to the optimal loss, when using the Laplace

mechanism.

Finally we note that the space of ε·d-private mechanisms is very rich, even for discrete inputs

UN , suggesting that the optimality result given here will be useful whenever the input domain

can be linearly ordered.

7.9 Chapter Notes

This chapter is based on the paper “The Laplace Mechanism has optimal utility for differential

privacy over continuous queries” [41]. Omitted proofs and supporting materials can be found

in Appendix §B.

The study of (universally) optimal mechanisms is one way to understand the cost of ob-

fuscation, needed to implement privacy, but with a concomitant loss of utility of queries to

databases. Pai and Roth [97] provide a detailed survey of the principles underlying the design

of mechanisms including the need to trade utility with privacy, and Dinur et al. [98] explore

the relationship between how much noise needs to be added to database queries relative to the

usefulness of the data released. Our use of loss functions to measure utility follows both that

of Ghosh et al. [39] and Alvim et al. [56], and concerns optimality for entire mechanisms that

satisfy a particular level of ε·d-privacy. The mean error len and the mean squared error len2 are

used to evaluate loss, as described by Ghosh et al. [39].

Our result on the optimality for the Laplace mechanism is the first positive result in this area

for this mechanism. This is surprising, given that differential privacy was originally designed

with the Laplace mechanism in mind.13 The Geometric mechanism, on the other hand, appears

to be special for discrete inputs, as Ghosh et al. [39] showed when utility is measured using

their “legal” loss functions.

Several negative results for the Laplace mechanism in terms of utility have been demon-

strated by others when the inputs to the obfuscation are discrete [91], and where the opti-

misation is based on minimising the probability of reporting an incorrect value, subject to the

ε·d-private-constraint. Similarly Geng et al. [92] show that adding noise according to a kind of

“pixelated” distribution appears to produce the best utility for arbitrary discrete datasets. Such

examples are consistent with our Thm. 7.8 showing where the Laplace mechanism is a refine-

ment of the Geometric mechanism (loses more utility) when restricted to a discrete input (to

the obfuscation). Note also that these definitions of optimality do not use a prior, and therefore

represent the special case of utility per exact input, rather than a scenario where the observer’s

prior knowledge is included.

Alvim et al. [33] also use the framework of Quantitative Information Flow to study the

relationship between the privacy and the utility of ε·d-private mechanisms. In their work they

model utility in terms of a leakage measure, where leakage is defined as the ratio of input gain

13The use of eε in the definition allows a simple proof that the Laplace mechanism satisfies differential privacy.
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to output gain wrt. a mechanism modelled as a channel.

The usefulness of the Laplace mechanism in real privacy applications has been demonstrated

by Chatzikokolakis et al. [15] for geo-location privacy, in [99] for privacy-preserving graph

analysis, and by Phan et al. [100] in deep learning.



Part III

Applications



8
Statistical Utility for Local Differential Privacy

Warner’s randomised response protocol – described briefly in Chapter 1 and again in Chapter

5 (§5.2)– was designed to protect individuals’ responses to survey questions while preserving

the distribution of answers from the surveyed population. This algorithm has been shown to

work remarkably well when the population of survey users is sufficiently large and, since it is

also differentially private, has become almost synonymous with local differential privacy for

protecting individuals’ (binary) responses in any application. Notably, randomised response

forms part of Google’s RAPPOR mechanism [85] which is used for collecting and analysing

user’s personalisation settings while promising some privacy to the individuals who participate.

In this chapter we consider a scenario in which there is a metric of interest on the responses,

and where the statistical utility of the mechanism depends on the underlying metric. In this case

we find that a geometric mechanism, designed with a distance measure on inputs has much bet-

ter utility than the conventional randomised response mechanism. We show how to recover the

most likely distribution of responses given the noisy outputs using a Bayesian approach known

as Iterative Bayesian Update (IBU)1 and then measuring how far the recovered distribution is

from the true distribution. The “distance between distributions” determines the overall utility,

and when there is a metric of interest on the domain, the well-known Kantorovich distance is

an appropriate distance measure between distributions. Experimentally we find that using this

measure of utility, the geometric mechanism outperforms the randomised response mechanism

on the two different types of distributions examined.

1Recall that differential privacy permits recovering estimates of distributions – these are not considered to be
privacy breaches since the individual maintains “plausible deniability” as to whether their responses were the result
of noise.
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8.1 Scenario: Estimating a Distribution

Consider the following scenario:

Example 8.1.1. A town planner wishes to collect location information on individuals within an

urban area in order to decide the best location for wifi hotspots which operate within a fixed ra-

dius. The planner decides to use differential privacy to allow users to protect their locations while

permitting her to perform a reliable statistical analysis of the distribution of locations. However,

the town planner needs to estimate the population distribution in such a way that estimates too far

(in physical distance) from the true distribution are penalised, as these would result in incorrect

placement of the hotspots. How should the town planner choose an appropriate mechanism?

The usual mechanism for collecting survey responses, as described in the introduction, is

the randomised response mechanism. However, in this example, the utility of the estimated

distribution is affected by the ground distance of the estimate from the true distribution. If the

estimated peaks are too far (in ground distance) from the true population, then the hotspots

will be poorly located and unable to service the population effectively. In this case, we expect

to be better serviced by a mechanism designed for the underlying metric which better preserves

the ground distance.

In order to test this theory we require a measure of utility appropriate to the town planner’s

requirements. The well-known Kantorovich distance, also known as the Earth Mover’s distance,

is such a measure, since it describes the distance between distributions by penalising variations

which are further from each other according to some ground measure. In the above scenario,

we would lift the Euclidean distance to a Kantorovich metric in order to penalise estimated

population clusters which are too far (in ground distance) from the true clusters, so as to reduce

the cost to the town planner of (inevitable) inaccuracies in the statistical analysis.

In this work we investigate the statistical utility of the randomised response and geometric

mechanisms for a simplified (1-dimensional) version of the above problem. We suppose that the

data collector wishes to collect some sensitive numeric data from users (eg. age or salary) in a

local differential privacy setting (ie. each user obfuscates their own sensitive value). As with the

above example, the data collector’s utility is affected by the Euclidean distance between secret

values, in the sense that the estimated distribution of outputs should not deviate too far from the

original (true) distribution as measured by the Kantorovich distance between the distributions.

This will be described in more detail in the coming sections.

8.2 Comparing Mechanisms for Privacy

In terms of privacy, we recall that the randomised response and the geometric mechanisms are

designed for different metrics; that is, they protect individuals’ privacy in fundamentally dif-

ferent ways. The randomised response mechanism, designed for the Discrete metric, promises

that an individual’s response is indistinguishable from all other participants, since it distributes

outputs uniformly (apart from the true response). In contrast, the geometric mechanism, de-

signed for the Euclidean metric, promises indistinguishability within a (Euclidean) radius of
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inputs. We therefore need to establish a reasonable way to compare the (truncated) geometric

and randomised response mechanisms from the perspective of privacy.

We begin with some technical details. We assume a discrete input space of secrets X =

{0,2, . . . ,100}, and the same output space, ie. Y = X. We recall the truncated geometric and

randomised response mechanisms from Chapter 3:

DEFINITION 3.4.2 (Truncated Geometric Mechanism). The truncated α-geometric

mechanism TG:X → DX where X = {0,1, . . . ,n} has the following channel ma-

trix:

TGx,y =
1 − α
1 + α

· αd2(x,y) for y ∈ {1, . . . ,n − 1}

TGx,y =
1

1 + α
· αd2(x,y) for y ∈ {0,n}

where α ∈ (0,1]. This mechanism satisfies ε·d2-privacy where d2 is the Euclidean

metric and ε = − lnα.

DEFINITION 3.4.3 (Randomised Response Mechanism). The α-randomised re-

sponse mechanism R:X → DX has the following channel matrix:

Rx,x = 1/k

Rx,y = α/k for x , y

where k is a normalisation term and α ∈ (0,1]. This mechanism satisfies ε·dD-

privacy where dD is the discrete metric and ε = − lnα.

Recall (Lem. 4.15) that the truncated geometric mechanism can be deployed safely in place

of the (infinite) geometric mechanism as they have the same leakage properties.

As mentioned above, in order to make a fair comparison, the privacy parameters of these

mechanisms need to be calibrated so that they represent a comparable level of privacy.

Consider the randomised response mechanism with parameter ε = ln 2 operating over

integer-valued input and output domains with range [0,100]. The privacy guarantee provided

by this mechanism is given by the upper bound εln 2 = 2, representing the maximum likelihood

ratio between any possible reported value and the true value. This upper bound is realised for

every pair of different values in the input and output domains. By comparison, the truncated

geometric mechanism with the same ε = ln 2 would provide such an upper bound 2 only for

values immediately adjacent to the true one (ie. at distance 1). For values further away, the

bound is smaller (ie. eε ·d2), making more distant values less likely. If we want to provide the

same upper bound 2 on the entire domain for the truncated geometric, then we would have to

set ε to a value 100 times smaller, namely ln 2/100, which would result in a very flat curve, making

the true value almost indistinguishable from every other value.

However, we argue that it is not necessary to inject so much noise, as this destroys the utility-

by-design of the geometric mechanism. As a compromise we will require the upper bound 2 on
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Figure 8.1: The distributions generated by the randomised response (blue) and truncated

geometric (red) mechanisms applied to the input x = 50. The value of the privacy parameter

ε is ln 2 and ln 2/10, respectively. This means that within a radius of 10 of the true value (ie.

from values 40 to 60, indicated in green) the privacy guarantee for both mechanisms is ε = ln 2,

but outside this radius, the truncated geometric mechanism’s privacy guarantee degrades with

distance while the randomised response mechanism maintains the same guarantee ε = ln 2.

a restricted subset of elements, for instance those in a radius 10 from the true value. This can

be achieved by setting ε to ln 2/10. Figure 8.1 illustrates the situation.

8.3 Comparing Mechanisms for Utility

We now turn to the comparison of these mechanisms from the perspective of utility. We begin

with the problem of how to estimate the original distribution given a noisy distribution, and for

this we use a technique known as Iterative Bayesian Update (IBU) [101], which we show can

be applied to our problem. We then introduce Kantorovich metric which we will use to compare

the statistical utility of the estimated distribution against the true distribution for the geometric

and randomised response mechanisms.

8.3.1 Reconstructing the Original Distribution

Assume that we have a collection of N noisy data elements representing the result of the inde-

pendent application of a randomised mechanism to the data of a certain population. We assume

that each datum is a number in {0 . . . n}. Let π ∈ D{0 . . . n} be the prior distribution on the orig-

inal data. The set of original data is generated by a sequence of random variables X1,X2, . . . ,XN

independently and identically distributed (i.i.d.), according to π. To each of the X1,X2, . . . ,XN

we apply the (truncated) geometric mechanism G, thus obtaining a sequence of random vari-

ables Y1,Y2, . . . ,YN . Let q ∈ D{0 . . . n} be the empirical distribution determined by Y1,Y2, . . . ,YN .

ie. The probability qj = q( j) is obtained by counting the frequency of the value j in Y1,Y2, . . . ,YN
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so that qj = | {h |Yh=i } |/N.

The task we consider here is how best to reconstruct the original distribution π from q. An

obvious method for computing the most likely original distribution given the empirical distribu-

tion q is to invert the channel matrix (if this is possible) and multiply it by q, since we have for

invertible channel M the simple formula

πM = q ⇒ π = qM−1 .

ie. The empirical (observed) distribution q is computed as the most likely distribution given the

prior π, and by inverting M we can recover the most likely prior given q.

Unfortunately, in some instances the calculation does not produce a sensible result at all, eg.,

an estimated “distribution” whose values lie outside [0,1]. For example, consider the randomised

response mechanism

R =

(
2/3 1/3

1/3 2/3

)
and imagine we observe the empirical distribution q = (9/10, 1/10). The matrix inversion method

yields π = qR−1 = (17/10,−7/10) which is not a valid distribution.

Our solution is to use Iterative Bayesian Update (IBU) [101] to estimate the original distribu-

tion; IBU is guaranteed to produce a sensible estimate – and, in fact, the most likely distribution

– under reasonable assumptions (discussed below).

8.3.2 Maximum Likelihood Estimation with IBU

Instead of using the “matrix inversion” method described above, we consider the following

iterative procedure, inspired by Bayes’ theorem.2 As before, recall that the task we consider

here is how best to reconstruct the original distribution π from q. Our iterative procedure will

estimate π using a sequence of estimates p(k) which can be shown to converge to the most likely

estimate of π. We begin with an estimate p ∈ D{0 . . . n} which is full support, and we denote

by pi the probability p(i) assigned to the input i. G is the (truncated) geometric mechanism on

{0 . . . n} and we denote by Gi, j the probability G(i)( j), ie. of output j given input i, as assigned

by G.

DEFINITION 8.3.1. Define {p(k)}k as follows:

p(0) = p

p(k+1)
i =

∑
j qj

p
(k)
i Gi , j∑

h p
(k)
h

Gh , j

The interest of the above definition relies in the following result:

THEOREM 8.1. [103] Let {p(k)}k be the sequence of distributions constructed

according to Def. 8.3.1. Then:

2This algorithm is also known as an Expectation Maximisation (EM) algorithm [102].



8.3 Comparing Mechanisms for Utility 168

1. The sequence converges, ie., limk→∞ p(k) exists.

2. limk→∞ p(k) is the Maximum Likelihood Estimator (MLE) of π given q.

We will denote by p∗ the limit of the sequence {p(k)}k , ie., p∗:= limk→∞ p(k). Thm. 8.1 means

that the probability of observing an output distribution q produced from a geometric mechanism

G is maximised by the prior p∗. Note that this does not mean that p∗ is necessarily the true

distribution, simply that it is the most likely given G and q.

Furthermore, p∗ can be characterised using G. Namely,

PROPOSITION 8.2. [103] If r = q G−1 is a probability distribution, then p∗ = r.

We note that the above results have been shown to hold for any mechanism that is invert-

ible (as a matrix). That is, Thm. 8.1 holds when G in Def. 8.3.1 is replaced with any invertible

(channel) matrix [104]. This means it can equally be applied to the randomised response mech-

anism, since we have noted previously that it is invertible.3 We also note that the convergence

property is only guaranteed to hold under the conditions that the initial estimate for p is full

support [104]. In this case it is always safe to choose p = υ, the uniform prior.

We will use the above procedure to estimate the true distribution given an empirical distri-

bution in our experimental setup.

8.3.3 Measuring Utility

As for statistical utility, intuitively it should account for how well we can approximate statistics

on the original data by using only the collected noisy data. This can be formalised in terms of

the distance between the original distribution and the most likely one given the noisy data. In

the scenario provided earlier, the notion of distance played a part in the utility for the provider,

whose goal was to place hotspots to maximise coverage for users; in this example, errors further

away from the true location carry higher penalties than errors close to the true location of users.

Therefore an appropriate notion of distance would be the Kantorovich metric, since it takes into

account the ground distance between values in the distribution, and is related to a large class of

statistical functions [105].

We recall the definition of the Kantorovich metric between distributions which we state as

follows:

DEFINITION 8.3.2. Let (X,d) be a metric space and let µ, µ′:DX. The Kantorovich

distance based on d between distributions µ and µ′ is defined as follows:

Kd(µ, µ
′) := max

g∈G

����� ∑
x∈X

g(x)µ(x) −
∑
x∈X

g(x)µ′(x)

�����
3See proof of Lem. 6.30.
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where G is the set of 1-Lipschitz functions on X. ie.

g ∈ G iff ∀x, x ′ ∈ X, | g(x) − g(x ′) | ≤ d(x, x ′) .

8.4 Experimental Results

We now present the results of experiments designed to assess the statistical utility of the geometric-

and randomised response- mechanisms using the IBU method outlined in §8.3. In our experi-

ments, we construct synthetic datasets of users drawn from a distribution, then create a distri-

bution of noisy outputs by applying a noise-adding mechanism to each user’s input. We then

determine the utility of the noise-adding mechanism by comparing the Kantorovich distances

between the true input distribution of user values and the estimated distribution constructed

from the IBU process. We describe the details below.

We assume that the space of inputs to each mechanism are integers in the range [0,100]. We

constructed two different mechanisms to output noisy values: a truncated geometric mechanism

parametrised by ε = ln2/10 and a randomised response mechanism parametrised by ε = ln2.

Experiments were conducted on “populations” of size 1000, 10 000, 50 000 and 100 000. We

experimented with 2 different population distributions: a binomial distribution, and a “4-point”

distribution (ie. a random distribution over 4 ‘points’ in the output range). For each of the 8

samples (4 populations over 2 distributions) we conducted 10 experiments using the following

method:

1. Obfuscate the sample using each of the (geometric and randomised response) mechanisms

to produce 2 obfuscated sets.

2. Convert each set into an empirical distribution over outputs using the frequency counts of

elements in each set.

3. Run IBU for 5000 iterations over each empirical distribution to compute the maximum

likelihood estimate (MLE) for the true distribution.4

4. Compare the Kantorovich distance between the MLE and the true distribution as an esti-

mate of the error caused by the obfuscation.

In Figure 8.2 we present some sample runs of IBU for each mechanism and distribution. In-

terestingly, the reconstructed distribution for randomised response appears to be much closer to

the true distribution for the ‘4-point’ sample than for the binomial sample. Conversely, the recon-

structed distribution for the geometric mechanism appears much closer to the true distribution

for the binomially distributed sample.

However, the computed Kantorovich distances at the 5000 iteration point for each run tell a

different story. These results are shown in Figure 8.3. We computed the Kantorovich distance

between the estimated distribution and the true distribution, providing an approximation of

45000 iterations was experimentally determined to be a sufficient number to approach convergence of the IBU
procedure.
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(a) Geometric Mechanism (b) Randomised Response Mechanism

Figure 8.2: IBU reconstruction of true (orange) distributions from noisy (green) distributions

based on 100k samples drawn from binomial (top) and “4-point” (bottom) distributions. The

blue graphs indicate the reconstructed (estimated) distribution computed using IBU. By obser-

vation, it appears that the reconstructed distribution (blue) is closer to the true distribution

(orange) for the geometric mechanism when the true distribution is binomial, but that the ran-

domised response mechanism performs better when the true distribution is a point distribution.

However, using the Kantorovich metric as a measure of utility, we find that the geometric mech-

anism performs better on both input distributions (see Figure 8.3).

the distance between the true distribution and the distribution resulting from obfuscation. We

can see that the average Kantorovich distances for the geometric mechanism are significantly

lower (up to 5 times) than the corresponding distances for the randomised response mechanism.

We conjecture that this is because the errors caused by randomised response are randomly

distributed over the entire output space, which directly affects the Kantorovich distance since it

depends on the ground distance between points. This means that for statistical applications in

which the ground distance is important, the geometric mechanism is still better performing than

the randomised response mechanism.

Another interesting observation we make is in the convergence rates for the IBU method

when applied to the different distributions. This is graphed in Figure 8.4. For each iteration of

IBU we computed the ‘log likelihood’ function

L(Θ) =
∑
y

qy log(Θ · My)
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Figure 8.3: Kantorovich distances between true and estimated distributions at IBU convergence

for the geometric and randomised response (RR) mechanisms. Distances were computed over

20 experiments for each of the 4 sample sizes indicated. The graph shows that the geometric

mechanism performs much better than the randomised response mechanism on all datasets, as

measured by the average Kantorovich distance between the true distribution and the estimated

distribution computed using IBU.

Figure 8.4: Log likelihood function against number of iterations for the geometric and ran-

domised reponse mechanisms. This graph shows how fast each output distribution converges

to the MLE for one particular (representative) run of the IBU. We observe that the geometric

mechanism converges quickly whereas convergence for the randomised response is almost flat.
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where Θ is the current estimated distribution, qy is the empirical distribution and M is the

mechanism represented as a channel matrix. 5 The log likelihood function indicates how

close the current estimate is to the true MLE. The results for one particular run are shown in

Figure 8.4. We can see that the geometric mechanism converges to a close approximation of

the MLE within 10 iterations, whereas the convergence for randomised response is linear and

almost flat. This may also explain the better performance of the randomised response output

on the ‘4-point’ sample, since there were far fewer ‘skyscrapers’ in the original distribution to

estimate. The shape of the geometric mechanism seemed to favour the more ‘natural’ shape of

the binomial distribution sample.

8.5 Conclusion

In this chapter we have shown how an understanding of the utility requirements of a problem

can influence the choice of metric to use for local differential privacy. In particular, we showed

that using the geometric mechanism instead of the randomised response mechanism in the ap-

plication of local differential privacy improves the statistical utility of the outputs – as measured

by the ability to recompute the original distribution from the noisy distribution in a way which

minimises the Kantorovich distance. In addition, we saw that the use of the geometric mecha-

nism involved a compromise for privacy, in that the differential privacy guarantee is weakened

to a guarantee over a Euclidean radius of inputs rather than the entire dataset (as with the Dis-

crete metric). Finally, we found that the Iterative Bayesian Update (IBU) method for estimating

the true distribution was also much more efficient when applied to the noisy outputs of the ge-

ometric mechanism than for the randomised response mechanism. We leave as future work the

further investigation of the properties of the IBU mechanism.

8.6 Chapter Notes

This chapter is based on the published paper “Utility-Preserving Privacy Mechanisms for Count-

ing Queries” [42].

The Iterative Bayesian Update procedure was first introduced in [101] and its properties

have been recently re-examined and generalised by ElSalamouny et al. [104].

5The notation Θ · My indicates the dot product of Θ with the yth column of M.
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Text Document Privacy

The problem of how to “obfuscate” texts by removing stylistic clues which can identify au-

thorship is a challenging problem inspired by the success of author identification methods in

revealing the identity of authors who wish to remain anonymous. In this chapter we explain

how this interesting problem can be addressed with d-privacy. We will show that privacy for

text documents can be modelled with d-privacy by utilising the natural metric space that arises

from the representation of text documents as “bags-of-words” – these representations are typical

in machine learning and contain sufficient information to carry out many kinds of classification

tasks including topic identification and authorship attribution (of the original documents). We

will provide a d-private mechanism for a novel metric – the Earth Mover’s distance – which is the

metric for semantic similarity used in natural language processing. We will also demonstrate our

mechanism with some experiments on a fan fiction dataset, demonstrating that the mechanism

provides sufficient utility for some text processing tasks of interest.

9.1 Introduction

Partial public release of formerly classified data incurs the risk that more information is disclosed

than intended. This is particularly true of data in the form of text such as government documents

or patient health records. Nevertheless there are sometimes compelling reasons for declassifying

data in some kind of “sanitised” form — for example government documents are frequently

released as redacted reports when the law demands it, and health records are often shared to

facilitate medical research. Sanitisation is most commonly carried out by hand but, aside from

the cost incurred in time and money, this approach provides no guarantee that the original

privacy or security concerns are met.
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To encourage researchers to focus on privacy issues related to text documents, the digital

forensics community PAN@Clef ([106], for example) proposed a number of challenges that are

typically tackled using machine learning. In this chapter we will demonstrate how to use d-

privacy to address some aspects of the PAN@Clef challenges by showing how to provide strong

a priori privacy guarantees in document disclosures.

We focus on the problem of author obfuscation, namely to automate the process of changing

a given document so that as much as possible of its original substance remains, but that the

author of the document can no longer be identified. Author obfuscation is very difficult to

achieve because it is not clear exactly what to change that would sufficiently mask the author’s

identity. In fact author properties can be determined by “writing style” with a high degree of

accuracy: this can include author identity [107] or other undisclosed personal attributes such as

native language [108, 109], gender or age [110, 111]. These techniques have been deployed in

real world scenarios: native language identification was used as part of the effort to identify the

anonymous perpetrators of the 2014 Sony hack [112], and it is believed that the US NSA used

author attribution techniques to uncover the identity of the real humans behind the fictitious

persona of Bitcoin “creator” Satoshi Nakamoto.1

This work concentrates on the perspective of the “machine learner” as an adversary that

works with the standard “bag-of-words” representation of documents often used in text process-

ing tasks. A bag-of-words representation retains only the original document’s words and their

frequency (thus forgetting the order in which the words occur). Remarkably this representa-

tion still contains sufficient information to enable the original authors to be identified (by a

stylistic analysis) as well as the document’s topic to be classified, both with a significant degree

of accuracy. 2 Within this context we reframe the PAN@Clef author obfuscation challenge as

follows:

Given an input bag-of-words representation of a text document, provide a mecha-

nism which changes the input without disturbing its topic classification, but that the

author can no longer be identified.

We implement a mechanism K which takes b, b′ bag-of-words inputs and produces “noisy”

bag-of-words outputs determined by K(b),K(b′) with the following properties:

PRIVACY: If b, b′ are classified to be “similar in topic” then, depending on a privacy parame-

ter ε the outputs determined by K(b) and K(b′) are also “similar to each other”, irrespective

of authorship.

UTILITY: Possible outputs determined by K(b) are distributed according to a Laplace prob-

ability density function scored according to a semantic similarity metric.

In what follows we define semantic similarity in terms of the classic Earth Mover’s distance

used in machine learning for topic classification in text document processing. 3 We explain how
1https://medium.com/cryptomuse/how-the-nsa-caught-satoshi-nakamoto-868affcef595
2This includes, for example, the character n-gram representation used for author identification in [113].
3In NLP, this distance measure is known as the Word Mover’s distance. We use the classic Earth Mover’s here for

generality.

https://medium.com/cryptomuse/how-the-nsa-caught-satoshi-nakamoto-868affcef595
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to combine this with d-privacy to produce a mechanism which obfuscates texts while preserving

useful information.

In §9.2 we set out the details of the bag-of-words representation of documents and define

the Earth Mover’s metric for topic classification. In §9.3 we define a generic mechanism which

satisfies “Ed-privacy” relative to the Earth Mover’s metric Ed and show how to use it for our

obfuscation problem. We note that our generic mechanism is of independent interest for other

domains where the Earth Mover’s metric applies. In §9.4 we describe how to implement the

mechanism for data represented as real-valued vectors and prove its privacy/utility properties

with respect to the Earth Mover’s metric; in §9.5 we show how this applies to bags-of-words. Fi-

nally in §9.6 we provide an experimental evaluation of our obfuscation mechanism, and discuss

the implications.

Preliminaries

Throughout we assume standard definitions of probability spaces [114]. For a set A we write

DA for the set of (possibly continuous) probability distributions overA. For η ∈ DA, and A ⊆ A

a (measurable) subset we write η(A) for the probability that (wrt. η) a randomly selected a is

contained in A. In the special case of singleton sets, we write η{a}. For mechanism K:α→ Dα,

we write K(a)(A) for the probability that if the input is a, then the output will be contained in A.

9.2 Documents, Topic Classification and Earth Moving

In this section we summarise the required elements from machine learning and text processing

required to address our problem. Our first definition sets out the representation for documents

we shall use throughout. It is a typical representation of text documents used in a variety of

classification tasks.

DEFINITION 9.2.1. Let S be the set of all words (drawn from a finite alphabet).

A document is defined to be a finite bag over S, also called a bag-of-words. We

denote the set of documents as BS, i.e. the set of (finite) bags over S.

Once a text is represented as a bag-of-words, depending on the processing task, further rep-

resentations of the words within the bag are usually required. We shall focus on two important

representations: the first is when the task is semantic analysis for eg. topic classification, and

the second is when the task is author identification. We describe the representation for topic

classification in this section, and leave the representation for author identification for §9.5 and

§9.6.

9.2.1 Word embeddings

Machine learners can be trained to classify the topic of a document, such as “health”, “sport”,

“entertainment”; this notion of topic means that the words within documents will have particular

semantic relationships to each other. There are many ways to do this classification, and in this
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paper we use a technique that has as a key component “word embeddings”, which we summarise

briefly here.

A word embedding is a real-valued vector representation of words where the precise repre-

sentation has been experimentally determined by a neural network sensitive to the way words

are used in sentences [115]. Such embeddings have some interesting properties, but here we

only rely on the fact that when the embeddings are compared using a distance determined by

a pseudometric4 on Rn, words with similar meanings are found to be close together as word

embeddings, and words which are significantly different in meaning are far apart as word em-

beddings.

DEFINITION 9.2.2. An n-dimensional word embedding is a mapping Vec : S→Rn.

Given a pseudometric dist on Rn we define a distance on words distVec : S×S→R≥
as follows:

distVec(w1,w2) := dist(Vec(w1),Vec(w2)) .

Observe that the property of a pseudometric on Rn carries over to S.

LEMMA 9.1. If dist is a pseudometric on Rn then distVec is also a pseudometric on

S.

Proof. Immediate from the definition of a pseudometric: i.e. the triangle equality

and the symmetry of distVec are inherited from dist. �

Word embeddings are particularly suited to language analysis tasks, including topic classi-

fication, due to their useful semantic properties. Their effectiveness depends on the quality of

the embedding Vec, which can vary depending on the size and quality of the training data. We

provide more details of the particular embeddings in §9.6. Topic classifiers can also differ on the

choice of underlying metric dist, and we discuss variations in §9.3.4.

In addition, once the word embedding Vec has been determined, and the distance dist has

been selected for comparing “word meanings”, there are a variety of semantic similarity mea-

sures that can be used to compare documents, for us bags-of-words. In this work we use the

“Word Mover’s Distance”, which was shown to perform well across multiple text classification

tasks [116].

The Word Mover’s Distance is based on the classic Earth Mover’s Distance [117] used in trans-

portation problems with a given distance measure. We shall use the more general Earth Mover’s

definition with dist 5 as the underlying distance measure between words. We note that our

results can be applied to problems outside of the text processing domain.

Let X,Y ∈ BS; we denote by X the tuple 〈xa1
1 , xa2

2 , . . . , xak

k
〉, where ai is the number of times

that xi occurs in X. Similarly we write Y = 〈yb1
1 , yb2

2 , . . . , ybl
l
〉; we have

∑
i ai = |X | and

∑
j bj = |Y |,

4Recall that a pseudometric satisfies both the triangle inequality and symmetry; but different words could be
mapped to the same vector and so distVec(w1,w2) = 0 no longer implies that w1 = w2.

5In our experiments we take dist to be defined by the Euclidean distance.
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the sizes of X and Y respectively. We define a flow matrix F ∈ Rk×l
≥0 where Fi j represents the (non-

negative) amount of flow from xi ∈ X to yj ∈ Y .

DEFINITION 9.2.3. (Earth Mover’s Distance) Let dS be a (pseudo)metric over S.

The Earth Mover’s Distance with respect to dS, denoted by EdS , is the solution to

the following linear optimisation:

EdS (X,Y ) := min
∑
xi ∈X

∑
yj ∈Y

dS(xi, yj)Fi j , subject to: (9.1)

k∑
i=1

Fi j =
bj

|Y |
and

l∑
j=1

Fi j =
ai
|X |

, Fi j ≥ 0, 1 ≤ i ≤ k,1 ≤ j ≤ l (9.2)

where the minimum in (9.1) is over all possible flow matrices F subject to the

constraints (9.2). In the special case that |X | = |Y |, the solution is known to

satisfy the conditions of a (pseudo)metric [117] which we call the Earth Mover’s

Metric.

In this work we are interested in the special case |X | = |Y |, hence we will use the term Earth

Mover’s metric to refer to EdS .

We end this section by describing how texts are prepared for machine learning tasks, and

how Def. 9.2.3 is used to distinguish documents. Consider the text snippet “The President greets

the press in Chicago". The first thing is to remove all “stopwords” – these are words which do

not contribute to semantics, and include things like prepositions, pronouns and articles. The

words remaining are those that contain a great deal of semantic and stylistic traits.6

In this case we obtain the bag:

b1 := 〈President1, greets1, press1, Chicago1
〉 .

Consider a second bag: b2:= 〈Chief1, speaks1,media1, Illinois1
〉, corresponding to a different text.

Figure 9.1 illustrates the optimal flow matrix which solves the optimisation problem in Def. 9.2.3

relative to dS. Here each word is mapped completely to another word, so that Fi, j = 1/4 when

i = j and 0 otherwise. We show later that this is always the case between bags of the same size.

With these choices we can compute the distance between b1, b2:

EdS (b1, b2) =
1
4
(dS(President,Chief) + dS(greets, speaks)+

dS(press,media) + dS(Chicago, Illinois)) (9.3)

= 2.816 .

6In fact the way that stopwords are used in texts turn out to be characteristic features of authorship. Here we
follow standard practice in natural language processing to remove them for efficiency purposes and study the privacy
of what remains. All of our results apply equally well had we left stopwords in place.
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For comparison, consider the distance between b1 and b2 to a third document,

b3:= 〈Chef1,breaks1,cooking1, record1
〉.

Using the same word embedding metric, 7 we find that EdS (b1, b3) = 4.121 and EdS (b2, b3) =

3.941. Thus b1, b2 would be classified as semantically “closer” to each other than to b3, in line

with our own (linguistic) interpretation of the original texts.

Bag b1

President,

greets,

press,

Chicago

Chief

Illinois

speaks

media

President

greets

press

Chicago

d1 d2

d3
d4

Bag b2

Chief,

speaks,

media,

Illinois

Figure 9.1: Earth Mover’s metric between sample documents.

9.3 Privacy, Utility and the Earth Mover’s Metric

In order to relate our privacy task with differential privacy, we need to explore what privacy in

text processing means. Our aim is to release the topic-related contents of each document (in

our case the bag-of-words) – this relates to utility because we would like to reveal the semantic

content. The privacy relates to investing individual documents with indistinguishability, rather

than individual authors directly.

What this means for privacy is the following. Suppose we are given two documents b1, b2

written by two distinct authors A1, A2, and suppose further that b1, b2 are changed through a pri-

vacy mechanism so that it is difficult or impossible to distinguish between them (by any means).

Then it is also difficult or impossible to determine whether the authors of the original documents

are A1 or A2, or some other author entirely. Thus our privacy goal is not associated to a particular

metric of interest: we simply aim to ensure that there is some guarantee of indistinguishability

of documents with respect to different authors. This is our goal for obfuscating authorship whilst

preserving semantic content. Using differential privacy we can achieve this goal in practice by

judicious choices of epsilon, which can be chosen for a dataset of interest ensuring every author

within some pre-determined radius has some minimal level of indistinguishability. Here radius

concerns the utility metric – which we now address.

7We use the same word2vec-based metric as per our experiments; this is described in §9.6.
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9.3.1 Utility and Earth Moving

Our approach to obfuscating documents replaces words with other words, governed by proba-

bility distributions over possible replacements. Thus the type of our mechanism is BS→D(BS),

where (recall) D(BS) is the set of probability distributions over the set of (finite) bags of S.

Since we are aiming to find a careful trade-off between utility and privacy, our objective is to

ensure that there is a high probability of outputting a useful document – that is, one on a sim-

ilar topic to that of the input document. Our privacy mechanism then should be designed in

such a way that utility (document topic) is preserved, even though the particulars (words) are

obfuscated so that the original document could have been one of several by different authors.

As explained in §9.2, topic similarity of documents is determined by the Earth Mover’s distance

relative to a given (pseudo)metric on word embeddings, and so our privacy definition must also

be relative to the Earth Mover’s distance. Recalling the definition of d-privacy from Chapter 3

(Def. 3.1.2), we make the following definition, which is an instance of d-privacy designed for

the Earth Mover’s metric EdX .

DEFINITION 9.3.1. (Earth Mover’s Privacy) LetX be a set, and dX be a (pseudo)metric

on X and let EdX be the Earth Mover’s metric on BX relative to dX. Given ε ≥ 0,

a mechanism K : BX → D(BX) satisfies εEdX -privacy iff for any b, b′ ∈ BX and

Z ⊆ BX:

K(b)(Z) ≤ eεEdX
(b,b′)K(b′)(Z) . (9.4)

Def. 9.3.1 tells us that when two documents are measured to be very close, so that εEdX (b, b
′)

is close to 0, then the multiplier eεEdX
(b,b′) is approximately 1 and the outputs K(b) and K(b′) are

almost identical. On the other hand the more that the input bags can be distinguished by EdX ,

the more their outputs are likely to differ. This flexibility is what allows us to strike a balance

between utility and privacy; we discuss this issue further in §9.5 below.

9.3.2 Implementing Earth Mover’s Privacy

Our next task is to show how to implement a mechanism that can be proved to satisfy Def. 9.3.1.

We follow the basic construction of Dwork et al. [5] for lifting a differentially private mechanism

K:X → DX to a differentially private mechanism K?:XN → DXN on vectors in XN . (Note that,

unlike a bag, a vector imposes a fixed order on its components.) Here the idea is to apply K

independently to each component of a vector v ∈ XN to produce a random output vector, also

in XN . In particular the probability of outputting some vector v′ is the product:

K?(v){v′} =
∏

1≤i≤N

K(vi){v′i } . (9.5)

Thanks to the compositional properties of differential privacy when the underlying metric on X

satisfies the triangle inequality, it’s possible to show that the resulting mechanism K? satisfies

the following privacy inequation [7]:
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K?(v)(Z) ≤ eMdX
(v,v′)K?(v′)(Z) , (9.6)

where MdX (v, v
′):=

∑
1≤i≤N dX(vi, v′i ), the Manhattan metric relative to dX.

However Def. 9.3.1 does not follow from Eqn. (9.6), since Def. 9.3.1 operates on bags of size

N, and the Manhattan distance between any vector representation of bags is greater than N×EdX .

Remarkably however, it turns out that K? –the mechanism that applies K independently to each

item in a given bag– in fact satisfies the much stronger Def. 9.3.1, as the following theorem

shows, provided the input bags have the same size as each other.

THEOREM 9.2. Let dX be a pseudo-metric on X and let K : X → DX be a

mechanism satisfying εdX-privacy, i.e.

K(x)(Z) ≤ eεdX(x,x
′)K(x ′)(Z) , for all x, x ′ ∈ X, Z ⊆ X. (9.7)

Let K? : BX → D(BX) be the mechanism obtained by applying K indepen-

dently to each element of X for any X ∈ BX. Denote by K?↓N the restriction of

K? to bags of fixed size N. Then K?↓N satisfies εNEdX -privacy.

Proof. (Sketch)

Let b, b′ be input bags, both of size N, and let c a possible output bag (of K?).

Observe that both output bags determined by K?(b1),K?(b2) and c also have

size N. We shall show that (9.4) is satisfied for the set containing the singleton

element c and multiplier εN, from which it follows that (9.4) is satisfied for all

sets Z.

By Birkhoff-von Neumann’s theorem ([118]), in the case where all bags have

the same size, the minimisation problem in Def. 9.2.3 is optimised for transporta-

tion matrix F where all values Fi j are either 0 or 1/N. This implies that the

optimal transportation for EdX (b, c) is achieved by moving each word in the bag b

to a (single) word in bag c. The same is true for EdX (b
′, c) and EdX (b, b

′). Next we

use a vector representation of bags as follows. For bag b, we write ®b for a vector

in XN such that each element in b appears at some ®bi.

Next we fix ®b and ®b′ to be vector representations of respectively b, b′ in XN

such that the optimal transportation for EdX (b, b
′) is

EdX (b, b
′) = 1/N×

∑
1≤i≤N

dX(®bi, ®b′i) = MdX (
®b, ®b′)/N . (9.8)

The final fact we need is to note that there is a relationship between K?

acting on bags of size N and K? which acts on vectors in XN by applying K

independently to each component of a vector: it is characterised in the following

way. Let b, c be bags and let ®b, ®c be any vector representations. For permutation

σ ∈ {1 . . . N} → {1 . . . N} write ®cσ to be the vector with components permuted

by σ, so that ®cσi = ®cσ(i). With these definitions, the following equality between
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probabilities holds:

K?(b){c} =
∑
σ

K?(®b){ ®cσ} , (9.9)

where the summation is over all permutations that give distinct vector represen-

tations of c. We now compute directly:

K?(b){c}

=
∑
σ K?(®b){ ®cσ} “(9.9) for b, c”

≤
∑
σ eεMd ( ®b, ®b

′)K?(®b′){ ®cσ} “(9.6) for ®b, ®b′, ®c”

= eεNEd ( ®b, ®b
′)
∑
σ K?(®b′){ ®cσ} “Arithmetic and (9.8)”

= eεNEd ( ®b, ®b
′)K?(b′){c} , “(9.9) for b′, c”

as required.

�

9.3.3 Application to Text Documents

Recall the bag-of-words

b2 := 〈Chief1, speaks1,media1, Illinois1
〉 ,

and assume we are provided with a mechanism K satisfying the standard εdX-privacy prop-

erty (9.7) for individual words. As in Thm. 9.2 we can create a mechanism K∗ by applying

K independently to each word in the bag, so that, for example the probability of outputting

b3 = 〈Chef1,breaks1,cooking1, record1
〉 is determined by (9.9):

K?(b2)({b3}) =
∑
σ

∏
1≤i≤4

K(b2i){ ®b3
σ

i } .

By Thm. 9.2, K? satisfies 4εEdS -privacy. Recalling (9.3) that EdS (b1, b2) = 2.816, we deduce

that if ε ∼ 1/16 then the output distributions K?(b1) and K?(b2) would differ by the multiplier

e2.816×4/16 ∼ 2.02; but if ε ∼ 1/32 those distributions differ by only 1.42. In the latter case it

means that the outputs of K? on b1 and b2 are almost indistinguishable.

The parameter ε depends on the randomness implemented in the basic mechanism K; we

investigate that further in §9.4.

9.3.4 Properties of Earth Mover’s Privacy

In machine learning a number of “distance measures” are used in classification or clustering

tasks, and in this section we explore some properties of privacy when we vary the underlying

metrics of an Earth Mover’s metric used to classify complex objects.

Let v, v′ ∈ Rn be real-valued n-dimensional vectors. We use the following (well-known)

metrics. Recall in our applications we have looked at bags-of-words, where the words themselves
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are represented as n-dimensional vectors. 8

1. Euclidean: ||v−v′ || :=
√∑

1≤i≤n(vi − v
′
i )

2

2. Manhattan: bv−v′c :=
∑

1≤i≤n |vi − v
′
i |

Note that the Euclidean and Manhattan distances determine pseudometrics on words as defined

at Def. 9.2.2 and proved at Lem. 9.1.

LEMMA 9.3. If dX ≤ dX′ (point-wise), then EdX ≤ EdX′ (point-wise).

Proof. Trivial, by contradiction. If dX ≤ dX′ and Fi j,F?i j are the minimal flow

matrices for EdX ,EdX′ respectively, then F?i j is a (strictly smaller) minimal solution

for EdX which contradicts the minimality of Fi j . �

COROLLARY 9.4. If dX ≤ dX′ (point-wise), then EdX -privacy implies EdX′ -privacy.

This shows that, for example, E || · ||-privacy implies E b ·c-privacy, and indeed any distance

measure d which exceeds the Euclidean distance then E || · ||-privacy implies Ed-privacy.

We end this section by noting that Def. 9.3.1 satisfies post-processing; i.e. that privacy does

not decrease under post processing. We write K; K ′ for the composition of mechanisms K,K ′ :

BX → D(BX), defined:

(K; K ′)(b)(Z) :=
∑

b′:BX

K(b)({b′})×K ′(b′)(Z) . (9.10)

LEMMA 9.5. [Post processing] If K,K ′:BX → D(BX) and K is εEdX -private for

(pseudo)metric d on X then K; K ′ is εEdX -private.

9.4 Earth Mover’s Privacy for bags of vectors in Rn

In Thm. 9.2 we have shown how to promote a privacy mechanism on components to EdX -privacy

on a bag of those components. In this section we show how to implement a privacy mechanism

satisfying (9.7), when the components are represented by high dimensional vectors in Rn and

the underlying metric is taken Euclidean on Rn, which we denote by || · ||.

We begin by summarising the basic probabilistic tools we need. A probability density function

(PDF) over some domain D is a function φ : D→[0,1] whose value φ(z) gives the “relative like-

lihood” of z. The probability density function is used to compute the probability of an outcome

8As we shall see, in the machine learning analysis documents are represented as bags of n-dimensional vectors
(word embeddings), where each bag contains N such vectors.
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3D plot Contour diagram

Figure 9.2: Laplace density function Lap2
ε in R2

“z ∈ A”, for some region A ⊆ D as follows:∫
A

φ(x) dx . (9.11)

In differential privacy, a popular density function used for implementing mechanisms is the

Laplacian, defined next.

DEFINITION 9.4.1. Let n ≥ 0 be an integer ε > 0 be a real, and v∈Rn. We define

the Laplacian probability density function in n-dimensions:

Lapn
ε(v) := cεn×e−ε ||v || ,

where ||v || =
√
(v2

1 + · · · + v
2
n), and cεn is a real-valued constant satisfying the inte-

gral equation 1 =
∫
· · ·

∫
Rn

Lapn
ε(v)dv1 . . . dvn.

When n = 1, we can compute cε1 = ε/2, and when n = 2, we have that cε2 = ε
2/2π.

In privacy mechanisms, probability density functions are used to produce a “noisy” version of

the released data. The benefit of the Laplace distribution is that, besides creating randomness,

the likelihood that the released value is different from the true value decreases exponentially.

This implies that the utility of the data release is high, whilst at the same time masking its actual

value. In Figure 9.2 the probability density function Lap2
ε(v) depicts this situation, where we see

that the highest relative likelihood of a randomly selected point on the plane being close to the

origin, with the chance of choosing more distant points diminishing rapidly. Once we are able

to select a vector v′ in Rn according to Lapn
ε, we can “add noise” to any given vector v as v+v′,

so that the true value v is highly likely to be perturbed only a small amount.

In order to use the Laplacian in Def. 9.4.1, we need to implement it. Andrés et al. [14]

exhibited a mechanism for Lap2
ε(v), and here we show how to extend that idea to the general

case. (Note: it turns out that this extension was discovered earlier and expressed more gener-

ally as the K-norm mechanism [69]; our result was discovered independently and represents

a particular instantiation of the K-norm mechanism.) The main idea of the construction for

Lap2
ε(v) uses the fact that any vector on the plane can be represented by spherical coordinates

(r, θ), so that the probability of selecting a vector distance no more than r from the origin can be
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achieved by selecting r and θ independently. In order to obtain a distribution which overall is

equivalent to Lap2
ε(v), Andrés et al. computed that r must be selected according to a well-known

distribution called the “Lambert W” function, and θ is selected uniformly over the unit circle. In

our generalisation to Lapn
ε(v), we observe that the same idea is valid [119]. Observe first that

every vector in Rn can be expressed as a pair (r, p), where r is the distance from the origin, and

p is a point in Bn, the unit hypersphere in Rn. Now selecting vectors according to Lapn
ε(v) can be

achieved by independently selecting r and p, but this time r must be selected according to the

Gamma distribution, and p must be selected uniformly over Bn. We set out the details next.

DEFINITION 9.4.2. The Gamma distribution of (integer) shape n and scale δ > 0

is determined by the probability density function:

Gamn
δ(r) :=

rn−1e−r/δ

δn(n−1!)
. (9.12)

DEFINITION 9.4.3. The uniform distribution over the surface of the unit hyper-

sphere Bn is determined by the probability density function:

Uniformn
(v) :=

Γ(n2 )

nπn/2
if v ∈ Bn else 0 , (9.13)

where Bn:= {v ∈ Rn | ||v || = 1}, and Γ(α):=
∫ ∞
0 xα−1e−x dx is the “Gamma func-

tion”.

With Def. 9.4.2 and Def. 9.4.3 we are able to provide an implementation of a mechanism

which produces noisy vectors around a given vector in Rn according to the Laplacian distribution

in Def. 9.4.1. The first task is to show that our decomposition of Lapn
ε is correct.

LEMMA 9.6. The n-dimensional Laplacian Lapn
ε(v) can be realised by selecting

vectors represented as (r, p), where r is selected according to Gamn
1/ε(r) and p is

selected independently according to Uniformn
(p).

Proof. (Sketch) The proof follows by changing variables to spherical coordinates

and then showing that
∫
A

Lapn
ε(v) dv can be expressed as the product of indepen-

dent selections of r and p.

We use a spherical-coordinate representation of v as:

r:= ||v || , and

v1:= r cos θ1 , v2:= r sin θ1 cos θ2 , . . . vn:= r sin θ1 sin θ2 . . . , sin θn−2 sin θn−1 .

Next we assume for simplicity that A is a hypersphere of radius R; with that

we can reason:∫
A

Lapn
ε(v) dv

= ∫
||v || ≤R

cεn×e−ε |v | dv

“Def. 9.4.1; A is a hypersphere”
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= ∫
||v || ≤R

cεn×e−ε
√
v2

1+· · ·+v
2
n dv

“||v || =
√
v2

1 + · · · + v
2
n”

= ∫
r≤R

∫
Aθ

cεn×e−εr ∂(z1,z2,...,zn)
∂(r ,θ1,...,θn−1)

drdθ1 . . . dθn−1

“Change of variables to spherical coordinates; see below (9.14)”

= ∫
r≤R

∫
Aθ

cεn×e−εrrn−1 sinn−2 θ1 sinn−3 θ2 . . . sin2 θn−3 sin θn−2 drdθ1 . . . dθn−1 .

“See below (9.14)”

Now rearranging we can see that this becomes a product of two integrals.

The first
∫
r≤R

e−εrrn−1 is over the radius, and is proportional to the integral of

the Gamma distribution Def. 9.4.2; and the second is an integral over the angu-

lar coordinates and is proportional to the surface of the unit hypersphere, and

corresponds to the PDF at (9.4.3). Finally, for the “see below’s” we are using the

“Jacobian”:
∂(z1, z2, . . . , zn)
∂(r, θ1, . . . , θn−1)

= rn−1 sinn−2 θ1 sinn−3 θ2 . . . (9.14)

�

We can now assemble the facts to demonstrate the n-Dimensional Laplacian.

THEOREM 9.7 (n-Dimensional Laplacian). Given ε > 0 and n ∈ Z+, let K : Rn →

DRn be a mechanism that, given a vector x ∈ Rn outputs a noisy value as follows:

x
K
7−→ x + x ′

where x ′ is represented as (r, p) with r ≥ 0, distributed according to Gamn
1/ε(r)

and p ∈ Bn distributed according to Uniformn
(p). Then K satisfies (9.7) from

Thm. 9.2, i.e. K satisfies ε || · ||-privacy where || · || is the Euclidean metric on Rn.

Proof. (Sketch) Let z, y ∈ Rn. We need to show that for any (measurable) set

A ⊆ Rn that:

K(z)(A)/K(y)(A) ≤ eε ||z−y|| . (9.15)

However (9.15) follows provided that the probability densities of respectively

K(z) and K(y) satisfy it. By Lem. 9.6 the probability density of K(z), as a function

of x is distributed as Lapn
ε(z−x); and similarly for the probability density of K(y).

Hence we reason:

Lapn
ε(z−x)/Lapn

ε(y−x)

= cεn×e−ε ||z−x||/cεn×e−ε ||y−x|| “Def. 9.4.1”

= e−ε ||z−x|| × eε ||y−x|| “Arithmetic”

≤ eε ||z−y|| , “Triangle inequality; s 7→ es is monotone”

as required. �
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Thm. 9.7 reduces the problem of adding Laplace noise to vectors in Rn to selecting a real

value according to the Gamma distribution and an independent uniform selection of a unit

vector. Several methods have been proposed for generating random variables according to

the Gamma distribution [120] as well as for the uniform selection of vectors on the unit n-

sphere [121]. The latter can be achieved by selecting n random variables from the standard

normal distribution to produce vector v ∈ Rn, and then normalising to output v
|v | .

9.4.1 Earth Mover’s Privacy in BRn

Using the n-dimensional Laplacian, we can now implement an algorithm for εNE || · ||-privacy.

Algorithm 1 takes a bag of n-dimensional vectors as input and applies the n-dimensional Lapla-

cian mechanism described in Thm. 9.7 to each vector in the bag, producing a noisy bag of

n-dimensional vectors as output. Cor. 9.8 summarises the privacy guarantee.

Algorithm 1 Earth Mover’s Privacy Mechanism

Require: vector v, dimension n, epsilon ε

1: procedure GENERATENOISYVECTOR(v,n, ε)
2: r ← Gamma(n, 1

ε )
3: u←U(n)
4: return v + ru
5: end procedure

Require: bag X, dimension n, epsilon ε

1: procedure GENERATEPRIVATEBAG(X,n, ε)
2: Z ← ()
3: for all x ∈ X do
4: z ← GENERATENOISYVECTOR(x,n, ε)
5: add z to Z
6: end for
7: return Z
8: end procedure

COROLLARY 9.8. Algorithm 1 satisfies εNE || · ||-privacy, relative to any two bags in

BRn of size N.

Proof. Follows from Thm. 9.2 and Thm. 9.7. �

9.4.2 Utility Bounds

We prove a lower bound on the utility for this algorithm, which applies for high dimensional

data representations. Given an output element x, we define Z to be the set of outputs within

distance ∆ > 0 from x. Recall that the distance function is a measure of utility, therefore

Z = {z | E || · ||(x, z) ≤ ∆} represents the set of vectors within utility ∆ of x. Then we have the

following:
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THEOREM 9.9. Given an input bag b consisting of N n-dimensional vectors, the

mechanism defined by Algorithm 1 outputs an element from Z = {z | E || · ||(b, z) ≤

∆} with probability at least

1 − e−εN∆en−1(εN∆) ,

whenever εN∆ ≤ n/e. (Recall that ek(α) =
∑

0≤i≤k
αi

i! , the sum of the first k + 1

terms in the series for eα .)

Proof. (Sketch) Let ®b ∈ (Rn)N be a (fixed) vector representation of the bag b. For

v ∈ (Rn)N , let v◦ ∈ BRn be the bag comprising the N components if v. Observe

that NE || · ||(b, v◦) ≤ M || · ||(®b, v), and so

ZM = {v | M || · ||(®b, v) ≤ N∆} ⊆ {v | E || · ||(b, v◦) ≤ ∆} = ZE . (9.16)

Thus the probability of outputting an element of Z is the same as the probability

of outputting ZE , and by (9.16) that is at least the probability of outputting an

element from ZM by applying a standard n-dimensional Laplace mechanism to

each of the components of ®b. We can now compute:

Probability of outputting an element in ZE

≥ ∫
· · ·

∫
v∈ZM

∏
1≤i≤N Lapn

ε(
®bi−vi)dv1 . . . dvN

“(9.16)”

= ∫
· · ·

∫
v∈ZM

∏
1≤i≤N cεne−ε || ®bi−vi ||dv1 . . . dvN .

“Lem. 9.6”

The result follows by completing the multiple integrals and applying some ap-

proximations, whilst observing that the variables in the integration are n-dimensional

vector valued. �

We note that our application word embeddings are typically mapped to vec-

tors in R300, thus we would use n ∼ 300 in Thm. 9.9.

9.5 Text Document Privacy

In this section we bring everything together, and present a privacy mechanism for text docu-

ments; we explore how it contributes to the author obfuscation task described above. Algo-

rithm 2 describes the complete procedure for taking a document as a bag-of-words, and out-

putting a “noisy” bag-of-words. Depending on the setting of parameter ε, the output bag will be

likely to be classified to be on a similar topic as the input.

Algorithm 2 uses a function Vec to turn the input document into a bag of word embeddings;

next Algorithm 1 produces a noisy bag of word embeddings, and, in a final step the inverse Vec−1

is used to reconstruct an actual bag-of-words as output. In our implementation of Algorithm 2,
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Algorithm 2 Document privacy mechanism

Require: Bag-of-words b, dimension n, epsilon ε, Word embedding Vec : S → Rn

1: procedure GENERATENOISYBAGOFWORDS(b,n, ε,Vec)
2: X ← Vec?(b)
3: Z ← GENERATEPRIVATEBAG(X,n, ε)
4: return (Vec−1)?(Z)
5: end procedure

Note that Vec? : BS→BRn applies Vec to each word in a bag b, and (Vec−1)? : BRn→BS reverses
this procedure as a post-processing step; this involves determining the word w that minimises
the Euclidean distance ||z − Vec(w)|| for each z in Z.

described below, we compute Vec−1(x) to be the word w that minimises the Euclidean distance

||z − Vec(w)||. The next result summarises the privacy guarantee for Algorithm 2.

THEOREM 9.10. Algorithm 2 satisfies εNEdS -privacy, where dS = distVec. That is

to say: given input documents (bags) b, b′ both of size N, and c a possible output

bag, define the following quantities as follows: k:= E || · ||(Vec?(b),Vec?(b′)) , pr(b, c)

and pr(b′, c) are the respective probabilities that c is output given the input was

b or b′. Then:

pr(b, c) ≤ eεNk × pr(b′, c) .

Proof. The result follows by appeal to Thm. 9.7 for privacy on the word embed-

dings; the step to apply Vec−1 to each vector is a post-processing step which by

Lem. 9.5 preserves the privacy guarantee. �

9.5.1 Privacy as Indistinguishability

Although Thm. 9.10 utilises ideas from differential privacy, an interesting question to ask is

how it contributes to the PAN@Clef author obfuscation task, which recall asked for mechanisms

that preserve content but mask features that distinguish authorship. Algorithm 2 does indeed

attempt to preserve content (to the extent that the topic can still be determined) but it does not

directly “remove stylistic features”. So has it, in fact, disguised the author’s characteristic style?

To answer that question, we review Thm. 9.10 and interpret what it tells us in relation to author

obfuscation. The theorem implies that it is indeed possible to make the (probabilistic) output

from two distinct documents b, b′ almost indistinguishable by choosing ε to be extremely small

in comparison with N×E || · ||(Vec?(b),Vec?(b′)). However, if E || · ||(Vec?(b),Vec?(b′)) is very large –

meaning that b and b′ are on entirely different topics, then ε would need to be so tiny that the

noisy output document would be highly unlikely to be on a topic remotely close to either b or b′

(recall Lem. 9.9).

This observation is actually highlighting the fact that, in some circumstances, the topic itself

is actually a feature that characterises author identity. (First-hand accounts of breaking the

world record for highest and longest free fall jump would immediately narrow the field down to

the title holder.) This means that any obfuscating mechanism would, as for Algorithm 2, only be
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able to obfuscate documents so as to disguise the author’s identity if there are several authors

who write on similar topics. And it is in that spirit, that we have made the first step towards a

satisfactory obfuscating mechanism: provided that documents are similar in topic (ie. are close

when their embeddings are measured by E || · ||) they can be obfuscated so that it is unlikely that

the content is disturbed, but that the contributing authors cannot be determined easily.

We can see the importance of the “indistinguishability” property wrt the PAN obfuscation

task. In stylometry analysis the representation of words for eg. author classification is com-

pletely different to the word embeddings which have used for topic classification. State-of-the-

art author attribution algorithms represent words as “character n-grams” [107] which have been

found to capture stylistic clues such as systematic spelling errors. A character 3-gram for exam-

ple represents a given word as the complete list of substrings of length 3. For example character

3-gram representations of “color” and “colour” are:

· “color” 7→ |[ “col”, “olo”, “lor” ]|

· “colour” 7→ |[ “col”, “olo”, “lou”, “our” ]|

For author identification, any output from Algorithm 2 would then need to be further trans-

formed to a bag of character n-grams, as a post processing step; by Lem. 9.5 this additional

transformation preserves the privacy properties of Algorithm 2. We explore this experimentally

in §9.6.

9.5.2 Privacy as Protection from Inferences

We may wonder how well our indistinguishability property of documents protects against, say,

machine learning attacks on authorship. In this case we can use QIF to model the likely suc-

cess of a machine learner to infer the authorship of a document released by a noise-adding

mechanism.

Recalling the usual QIF notions from Chapter 2, we can use the channel model to describe a

probabilistic mechanism M:X → DY taking secret values in X to distributions over outputs Y.

We recall that adversaries are modelled using a prior π:DX over secret values along with a gain

function g:W×X → R≥0 over secrets X and guessesW. We use the identity gain function bv9

defined

bv(w, x) :=

{
1 if w = x,

0 otherwise,
(9.17)

to model an adversary whose goal is to guess the secret exactly in one try. Recall (Chapter 2,

Example 2.2) that we can extend this to the case of an attacker who tries to guess a property

of the secret, rather than the entire secret. For example, letting ∼ be an equivalence class over

secrets, the guessesW now correspond to equivalence classes and we can define

bv∼(w, x) :=

{
1 if x ∈ w,

0 otherwise.
(9.18)

9Recall also Chapter 2, Def. 2.2.3.
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We can now use the familiar notions of prior and posterior g-vulnerability (recall §2.2.1 and

§2.2.2) to compute how much an adversary learns as the result of the release of an output from

a mechanism. In this chapter we will use the multiplicative g-leakage, defined by

L×g (π,M) :=
Vg[πBM]

Vg(π)
, (9.19)

which gives the relative increase in gain.

We can now use this leakage measure to provide an important robust approximation with

regards to machine learning adversaries. Given a noise-adding mechanism M modelled as a

channel, for any prior π the following leakage bound holds:10

Probability of correctly guessing the secret after applying M

≤ Vbv[πBM]

≤ (Sum of the column maxima of M) × Vbv(π)

What this means is that even if the attacker uses machine learning to try to deduce properties

about the original data, its ability to do so is constrained by this upper bound. Now, if M is an

ε·d-private mechanism this gives the following bound on information leakage, even if we do not

know M exactly:

THEOREM 9.11. Let M be an ε·d-private mechanism. Then for any gain function

g and prior π,

L×g (π,M) ≤ eε×d
?
,

where d? := maxx,x′∈X d(x, x ′).

Thus if ε is very small, the indistinguishability property of d-privacy tells us that the leakage

of information from the channel will likewise be small.

Privacy versus Utility

Information leakage on its own, in the case that it is large, implies that the probability of deter-

mining some property of the system will be high; if the upper bound is small, then it implies the

mechanism does not leak very much information about anything. When we bring utility into the

mix what we want is that the mechanism leaks a lot of information about a property which is

not deemed sensitive, but keeps secret some other property that is deemed private. This is the

privacy-utility trade-off which we wish to manage effectively.

We can use some notions from QIF to understand how this trade-off occurs with our author

and topic classes. Let ∼A and ∼T represent two equivalence classes on a set of (secret) data S. We

will think of these as the equivalence classes of authors and topics respectively; thus we want to

release the equivalence class ∼T but keep ∼A private using our mechanism M. We can determine

how successful we are by measuring the leakage with respect to the two equivalence classes,

10This is a result of the Miracle Theorem of [56].
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using the property gain function defined earlier, which gives the scenario for an adversary trying

to guess the equivalence class.

DEFINITION 9.5.1. We say that mechanism M is ε-hiding wrt ∼A if

Lbv∼A(M) ≤ 1 + ε ,

where bv∼A is defined at (9.18) and leakage is defined at (9.19).

The maximum chance of an adversary guessing which equivalence class of ∼A the secret

is for an ε-hiding mechanism is bounded about by (1 + ε) × Vbv∼A(π), giving a robust privacy

guarantee on ∼A.

DEFINITION 9.5.2. We say that mechanism M is ∆-revealing wrt ∼T if

1 + ∆ ≤ Lbv∼T (M) ,

where bv∼T is defined at (9.18) and leakage is defined at (9.19).

The best chance of an adversary guessing which equivalence class of ∼T the secret is for a

∆-revealing mechanism is therefore at least as much as (1 + ∆) × Vbv∼T (π).

We can now compare mechanisms wrt their ε-hiding and ∆-revealing properties.

LEMMA 9.12. Let M1,M2 be mechanisms such that M1 v M2. Then:

- If M1 is ε-hiding wrt ∼A then so is M2

- If M2 is ∆-revealing wrt ∼T then so is M1

Note that any post-processing steps, such as converting the data into character n-grams, re-

sults in more privacy (according to the data processing inequality) but (potentially) less accuracy

for utility.

Next we can look at some constraints between privacy and utility.

THEOREM 9.13. If ∼A⊆∼T and M is both ε-hiding wrt ∼A and ∆-revealing wrt ∼T
(both under a uniform prior) then ∆ ≤ ε.

In particular, if ∼A=∼T then revealing any of ∼T will reveal the same about ∼A. In general, if

∼A is finer than ∼T (as equivalence relations), then revealing the equivalence class for ∼T almost

exactly already reveals quite a lot about the equivalence classes of ∼A.

Consider however the following example where there are four secret values: {a, b, c, d}.

Suppose we have that the equivalence classes of ∼T are {{a, b}, {c, d}} and for ∼A they are

{{a, c}, {b, d}}. The mechanism given by

Mx,y := 1 if

{
x ∈ {a, b} ∧ y = 0

∨ x ∈ {c, d} ∧ y = 1

}
else 0
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has maximum leakage 2 and is 1-revealing wrt ∼T and 0-revealing wrt ∼A; this means that the

adversary has maximum chance of 1 of guessing ∼T but minimal chance of 1/2 of guessing ∼A.

This suggests that where ∼A represents equivalence classes over authors and ∼T represents

equivalence classes over topics, if enough different authors write on the same topic, then there is

a good chance of being able to protect authorship against inference attacks by machine learners

whilst remaining in the same topic.

9.6 Experimental Results

Document Set The PAN@Clef tasks and other similar work have used a variety of types of

text for author identification and author obfuscation. Our desiderata are that we have multiple

authors writing on one topic (so as to minimise the ability of an author identification system to

use topic-related cues) and to have more than one topic (so that we can evaluate utility in terms

of accuracy of topic classification). Further, we would like to use data from a domain where

there are potentially large quantities of text available, and where it is already annotated with

author and topic.

Given these considerations, we chose “fan fiction” as our domain. Wikipedia defines fan

fiction as follows: “Fan fiction . . . is fiction about characters or settings from an original work of

fiction, created by fans of that work rather than by its creator.” This is also the domain that was

used in the PAN@Clef 2018 author attribution challenge,11 although for this work we scraped

our own dataset. We chose one of the largest fan fiction sites and the two largest “fandoms”

there;12 these fandoms are our topics. We scraped the stories from these fandoms, the largest

proportion of which are for use in training our topic classification model. We held out two

subsets of size 20 and 50, evenly split between fandoms/topics, for the evaluation of our privacy

mechanism.13 We follow the evaluation framework of [107]: for each author we construct an

known-author TEXT and an unknown-author SNIPPET that we have to match to an author on the

basis of the known-author texts.

Word Embeddings There are sets of word embeddings trained on large datasets that have

been made publicly available. Most of these, however, are already normalised, which makes

them unsuitable for our method. We therefore use the Google News word2vec embeddings as

the only large-scale unnormalised embeddings available.

Inference Mechanisms We have two sorts of machine learning inference mechanisms: our

adversary mechanism for author identification, and our utility-related mechanism for topic clas-

sification. For each of these, we can define inference mechanisms both within the same repre-

sentational space or in a different representational space. As we noted above, in practice both

11https://pan.webis.de/clef18/pan18-web/author-identification.html
12https://www.fanfiction.net/book/, with the two largest fandoms being Harry Potter (797,000 stories) and Twi-

light (220,000 stories).
13Our Algorithm 2 is computationally quite expensive, because each word w = Vec−1(x) requires the calculation of

Euclidean distance with respect to the whole vocabulary. We thus use relatively small evaluation sets, as we apply
the algorithm to them for multiple values of ε.

https://pan.webis.de/clef18/pan18-web/author-identification.html
https://www.fanfiction.net/book/
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author identification adversary and topic classification will use different representations, but ex-

amining same-representation inference mechanisms can give an insight into what is happening

within that space.

Different-representation author identification For this we use the algorithm by [107]. This

algorithm is widely used: it underpins two of the winners of PAN shared tasks [122, 123]; is a

common benchmark or starting point for other methods [124–127]; and is a standard inference

attacker for the PAN shared task on authorship obfuscation.14 It works by representing each

text as a vector of space-separated character n-gram counts, and comparing repeatedly sampled

subvectors of known-author texts and snippets using cosine similarity. We use as a starting point

the code from a reproducibility study [128], but have modified it to improve efficiency.

Different-representation topic classification Here we choose fastText [129, 130], a high-

performing supervised machine learning classification system. It also works with word embed-

dings; these differ from word2vec in that they are derived from embeddings over character

n-grams, learnt using the same skipgram model as word2vec. This means it is able to compute

representations for words that do not appear in the training data, which is helpful when train-

ing with relatively small amounts of data; also useful when training with small amounts of data

is the ability to start from pretrained embeddings trained on out-of-domain data that are then

adapted to the in-domain (here, fan fiction) data. After training, the accuracy on a validation

set we construct from the data is 93.7%.

Same-representation author identification In the space of our word2vec embeddings, we

can define an inference mechanism that for an unknown-author snippet chooses the closest

known-author text by Euclidean distance.

Same-representation topic classification Similarly, we can define an inference mechanism

that considers the topic classes of neighbours and predicts a class for the snippet based on

that. This is essentially the standard k “Nearest Neighbours” technique (k-NN) [131], a non-

parametric method that assigns the majority class of the k nearest neighbours. 1-NN corresponds

to classification based on a Voronoi tesselation of the space, has low bias and high variance, and

asymptotically has an error rate that is never more than twice the Bayes rate; higher values of

k have a smoothing effect. Because of the nature of word embeddings, we would not expect

this classification to be as accurate as the fastText classification above: in high-dimensional

Euclidean space (as here), almost all points are approximately equidistant. Nevertheless, it can

give an idea about how a snippet with varying levels of noise added is being shifted in Euclidean

space with respect to other texts in the same topic. Here, we use k = 5. Same-representation

author identification can then be viewed as 1-NN with author as class.
14http://pan.webis.de/clef17/pan17-web/author-obfuscation.html

http://pan.webis.de/clef17/pan17-web/author-obfuscation.html
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20-author set

ε SRauth SRtopic DRauth DRtopic

none 12 16 15 18

30 8 18 16 18
25 8 18 14 17
20 5 11 11 16
15 2 11 12 17
10 0 15 11 19

50-author set

ε SRauth SRtopic DRauth DRtopic

none 19 36 27 43

30 19 37 29 43
25 17 34 24 41
20 12 28 19 42
15 9 22 13 42
10 1 24 10 43

Table 9.1: Number of correct predictions of author/topic in the 20-author set (left) and
50-author set (right), using 1-NN for same-representation author identification (SRauth), 5-
NN for same-representation topic classification (SRtopic), the Koppel algorithm for different-
representation author identification (DRauth) and fastText for different-representation topic
classification (DRtopic).

Results: Table 9.1 contains the results for both document sets, for the unmodified snippets

(“none”) or with the privacy mechanism of Algorithm 2 applied with various levels of ε: we give

results for ε between 10 and 30, as at ε = 40 the text does not change, while at ε = 1 the text

is unrecognisable. For the 20-author set, a random guess baseline would give 1 correct author

prediction, and 10 correct topic predictions; for the 50-author set, these values are 1 and 25

respectively.

Performance on the unmodified snippets using different-representation inference mecha-

nisms is quite good: author identification gets 15/20 correct for the 20-author set and 27/50

for the 50-author set; and topic classification 18/20 and 43/50 (comparable to the validation

set accuracy, although slightly lower, which is to be expected given that the texts are much

shorter). For various levels of ε, with our different-representation inference mechanisms we

see broadly the behaviour we expected: the performance of author identification drops, while

topic classification holds roughly constant. Author identification here does not drop to chance

levels: we speculate that this is because (in spite of our choice of dataset for this purpose) there

are still some topic clues that the algorithm of [107] takes advantage of: one author of Harry

Potter fan fiction might prefer to write about a particular character (e.g. Severus Snape), and as

these character names are not in our word2vec vocabulary, they are not replaced by the privacy

mechanism.

In our same-representation author identification, though, we do find performance starting
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relatively high (although not as high as the different-representation algorithm) and then drop-

ping to (worse than) chance, which is the level we would expect for our privacy mechanism.

The k-NN topic classification, however, shows some instability, which is probably an artefact of

the problems it faces with high-dimensional Euclidean spaces.

9.7 Conclusions

In this chapter we have shown how to protect authorship of documents using metric differential

privacy. We showed that the construction of a utility-focussed mechanism can be achieved wrt

the Earth Mover’s distance, which is the utility measure for document similarity used in the

natural language processing literature. Moreover we demonstrated experimentally the trade off

between utility and privacy when using a machine learner to classify texts according to their

topic versus guessing the authorship of the document.

This represents an important step towards the implementation of privacy mechanisms that

could produce readable summaries of documents with a privacy guarantee. One way to achieve

this goal would be to reconstruct readable documents from the bag-of-words output that our

mechanism currently provides. A range of promising techniques for reconstructing readable

texts from bag-of-words have already produced some good experimental results [132–134]. In

future work we aim to explore how techniques such as these could be applied as a final post

processing step for our mechanism.

9.8 Chapter Notes

This chapter is based on the published papers “Generalised Differential Privacy for Text Docu-

ment Processing” [12] and “Processing Text for Privacy: An Information Flow Perspective” [8].

Omitted proofs and additional experimental results can be found in the appendix of [12].

Author Obfuscation Since the publication of the above papers, other works along a similar

vein have been introduced in the literature extending Earth Mover’s privacy to other metrics,

most notably [135] which considers a more general hyperbolic representation.

A similar work prior to our publications is by Weggenmann and Kerschbaum [11] who also

consider the author obfuscation problem but apply standard differential privacy using a Ham-

ming distance of 1 between all documents. As with our approach, they consider the simplified

utility requirement of topic preservation and use word embeddings to represent documents. Our

approach differs in our use of the Earth Mover’s metric to provide a strong utility measure for

document similarity.

An early work in this area by Kacmarcik et al. [136] applies obfuscation by modifying the

most important stylometric features of the text to reduce the effectiveness of author attribution.

This approach was used in Anonymouth [137], a semi-automated tool that provides feedback

to authors on which features to modify to effectively anonymise their texts. A similar approach

was also followed by Karadhov et al. [138] as part of the PAN@Clef 2017 task.
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Other approaches to author obfuscation, motivated by the PAN@Clef task, have focussed

on the stronger utility requirement of semantic sensibility [139–141]. Privacy guarantees are

therefore ad hoc and are designed to increase misclassification rates by the author attribution

software used to test the mechanism.

Most recently there has been interest in training neural networks models which can protect

author identity whilst preserving the semantics of the original document [142, 143]. Other

related deep learning methods aim to obscure other author attributes such as gender or age

[144, 145]. While these methods produce strong empirical results, they provide no formal

privacy guarantees. Importantly, their goal also differs from the goal of our paper: they aim

to obscure properties of authors in the training set (with the intention of the author-obscured

learned representations being made available), while we assume that an adversary may have

access to raw training data to construct an inference mechanism with full knowledge of author

properties, and in this context aim to hide the properties of some other text external to the

training set.

Machine Learning and Differential Privacy Outside of author attribution, there is quite a

body of work on introducing differential privacy to machine learning: [7] gives an overview

of a classical machine learning setting; more recent deep learning approaches include [146,

147]. However, these are generally applied in other domains such as image processing: text

introduces additional complexity because of its discrete nature, in contrast to the continuous

nature of neural networks. A recent exception is [148], which constructs a differentially private

language model using a recurrent neural network; the goal here, as for instances above, is to

hide properties of data items in the training set.

Text Document Privacy This typically refers to the sanitisation or redaction of documents

either to protect the identity of individuals or to protect the confidentiality of their sensitive

attributes. For example, a medical document may be modified to hide specifics in the medical

history of a named patient. Similarly, a classified document may be redacted to protect the

identity of an individual referred to in the text.

Most approaches to sanitisation or redaction rely on first identifying sensitive terms in the

text, and then modifying (or deleting) only these terms to produce a sanitised document. Abril

et al. [149] proposed this two-step approach, focussing on identification of terms using NLP

techniques. Cumby and Ghani [150] proposed k-confusability, inspired by k-anonymity [2],

to perturb sensitive terms in a document so that its (utility) class is confusable with at least k

other classes. Their approach requires a complete dataset of similar documents for computing

(mis)classification probabilities. Anandan et al. [151] proposed t-plausibility which generalises

sensitive terms such that any document could have been generated from at least t other docu-

ments. Sánchez and Batet [152] proposed C-sanitisation, a model for both detection and pro-

tection of sensitive terms (C) using information theoretic guarantees. In particular, a C-sanitised

document should contain no collection of terms which can be used to infer any of the sensitive

terms.
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Finally, there has been some work on noise-addition techniques in this area. In particu-

lar, Rodriguez-Garcia et al. [153] propose semantic noise, which perturbs sensitive terms in a

document using a distance measure over the directed graph representing a predefined ontology.



10
Locality Sensitive Hashing with Differential

Privacy

Recommender engines are a key feature of many large-scale internet websites; these systems are

designed to provide users with recommendations relating to their individual profile – interests,

purchase histories or other such collected information – thus motivating individuals to give up

their sensitive data with the promise of some benefit. Of course, the data provider promises

likewise not to breach the privacy of the individuals within the dataset. However large-scale

breaches sometimes occur – such as Netflix’s unwise release of user movie ratings data1 – or

else the data provider may be less-than-scrupulous – as occurred in the Cambridge Analytica

scandal in which sensitive, private Facebook data was harvested for the purpose of maliciously

manipulating individuals2. This motivates the study of privacy-preserving recommender systems

in which users instead offer up their “noisy” information – with less risk but likewise less reward.

In this chapter we study differential privacy for recommender systems. We explore one

particular application – “friend-matching” – in which users are recommended “friends” based

on the similarity between their profile vectors. Our goal is to incorporate privacy-protection

into the user profile, while preserving some utility of friend recommendations. Since friend-

matching requires searching the entire dataset of users for the closest matches, an important

aspect of this problem is the inefficiency of nearest neighbour search in very large datasets. One

way in which this has been resolved is through the use of dimensionality reduction techniques

which map similar users in the high-dimensional space to close points in a lower dimensional

space. We will examine the use of one such method – Locality Sensitive Hashing (LSH) – which

can be modified to provide privacy protection for the user. We show how to incorporate a metric

1https://www.wired.com/2009/12/netflix-privacy-lawsuit/
2https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html

https://www.wired.com/2009/12/netflix-privacy-lawsuit/
https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html
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differential privacy guarantee into LSH and study its properties wrt arbitrary metrics of interest.

We then design a mechanism using a specific LSH – designed for the angular distance dθ – and

demonstrate our mechanism on two datasets: the MovieLens dataset of movie ratings and the

FourSquare dataset of location check-ins.

10.1 Introduction

Collaborative filtering broadly describes the model for user recommendations based on their

interactions with items, such as prior purchases or ratings [154]. Recommendations to users are

usually made in two forms: they can be recommended items to purchase, based on similar users

who also purchased that item, or they can be recommended users to connect with, based on

the similarity of their profiles as determined by their purchases or ratings. The former may be

more commonly associated with ecommerce sites; the latter with social networks. This problem

has been well-studied in the literature with well-established methods for efficient and accurate

collaborative filtering [154]. Privacy concerns have caused researchers to adapt established

methods to incorporate some level of privacy protection. In this chapter we concern ourself

with the problem of privacy-preserving friend-matching, for which there are have already been

several studies [155–158]. Our contribution to this problem is to situate it in the framework

of metric differential privacy under a local differential privacy setting and provide a rigorous

analysis of the privacy guarantees provided by our mechanism.

While there have been many works in the literature investigating the use of privacy-preserving

techniques in this domain, including differential privacy, our interest in this problem stems from

the particular properties of LSH. As we will see, an LSH acts as a type of probabilistic mapping

between metric spaces: it maps elements from a metric space (X,dX) into the Hamming space

({0,1}k,dH) such that the distances dX(x, x ′) are approximately preserved. Applying differential

privacy as a post-processing step on the Hamming space – using, for example, the randomised

response mechanism – allows reasoning about privacy and utility wrt the original metric dX via

the probabilistic LSH mapping. LSH schemes exist for various metrics, including: angular dis-

tance, Earth Mover’s distance, Jaccard distance and lp distances. However, differential privacy

mechanisms do not exist for, eg., the angular distance or the Jaccard distance. An LSH-plus-

random-response mechanism could fill this gap, and this motivates our exploration of LSH and,

in particular, its instantiation for the angular distance.

10.1.1 Friend-Matching: Problem Setup

Our approach to this problem is to apply differential privacy in the local setting; that is, we

assume that the data curator is untrusted and each user does not wish their precise data to be

held by the data curator – instead they will pass over a noisy version of their ratings/purchases,

which we will model as a real-valued vector. For each user the data curator then applies a

nearest neighbour search on the collection of noisy vectors using the Locality Sensitive Hashing

(LSH) technique for efficiency. This establishes a list of ‘nearby’ friend recommendations for that

user.
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The literature on this subject suggests that the cosine distance between user vectors is a good

measure of similarity between users [159, 160]; this then is our utility measure. The reason that

the LSH technique is effective is that it hashes users into buckets in such a way that the angular

distance between users is approximately preserved; that is, users whose vectors are close wrt

angular distance are highly likely to be hashed into the same bucket. Since angular distance

roughly correlates with cosine distance, this means that the nearest neighbour search on the

hash buckets typically finds users who are cosine-ly similar, and therefore provides good utility.

10.1.2 Our contributions

In summary, our contributions are as follows:

a. We observe that the LSH technique is a mapping between metrics and so it is natural to frame

this problem in the context of metric differential privacy.

b. We show, using a toy example, that LSH is not privacy-preserving on its own, despite its use

of underlying randomisation, thus countering some claims in the literature.

c. We propose different methods of adding noise to the system so as to satisfy local differential

privacy – either adding the noise before LSH (ie. directly to elements in X) or adding it

afterwards (ie. on the bitstrings {0,1}k). We provide some informal reasoning about privacy

and utility resulting from each method and confirm our conclusions through experiments.

d. We formally analyse the privacy properties of the LSH-plus-random-response mechanism un-

der the umbrella of metric differential privacy.

e. We apply our proposed mechanism to the problem of friend-matching and perform some

experiments on 2 datasets of interest - the MovieLens dataset of movie ratings and the

FourSquare dataset of location check-ins to demonstrate that our method approximately pre-

serves the output of LSH.

10.2 Locality Sensitive Hashing (LSH)

Locality sensitive hashing (LSH), introduced by Indyk and Motwani [161], is an efficient, prob-

abilistic method for determining (with high likelihood) which items in a set are similar when

the number of items is very large.

We start with some technical preliminaries. Given a set X, a similarity function simX :

X × X → [0,1] assigns a score to pairs of elements x, x ′ ∈ X according to their similarity, where

simX(x, x ′) = 1 iff x = x ′ and simX(x, x ′) = 0 if x and x ′ are maximally ‘dissimilar’. Dually, the

dissimilarity function dX:X × X → [0,1] is defined as dX(x, x ′) = 1 − simX(x, x ′). When dX is

symmetric and sub-additive, we call it a dissimilarity metric. We will later instantiate simX and

dX with specific metrics corresponding to hashing schemes. We denote by deuc the Euclidean

distance and by dH the Hamming distance.
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Finally, we recall the angular distance metric dθ :Rn×Rn → [0,1] is defined between non-zero

vectors x, x ′ ∈ Rn as

dθ(x, x ′) := 1
π cos−1 (

x ·x′

‖x ‖ ‖x′ ‖

)
We are now ready to define LSH.

DEFINITION 10.2.1 (Locality Sensitive Hashing [162]). A locality sensitive hash-

ing (LSH) scheme wrt a dissimilarity metric dX:X × X → [0,1] is a pair (H,DH)

where H is a family of functions h:X → {0,1} and DH is a probability distribu-

tion over H such that given a pair x, x ′ ∈ X, it holds that

Pr
h∼DH
[h(x) , h(x ′)] = dX(x, x ′),

where the probability is taken over choices of h from the distribution DH.

Def. 10.2.1 says that when dX(x, x ′) is small, then x and x ′ are more likely to be assigned to

the same bucket by any selected hash function h, whereas when x and x ′ are further apart, then

there is a higher probability of selecting a hash function h which sends them to different buckets.

The LSH scheme defines a family of 1-bit hash functions. To construct an effective hash

function from this family, we simply select a number κ of them to form a κ-bit hash string as

follows:

DEFINITION 10.2.2 (κ-bit LSH). Let (H,DH) be an LSH scheme on X. Given

κ ∈ N define the function H:X → {0,1}κ by

H(x) := (h1(x), h2(x), . . . , hκ(x))

where h1, h2, . . . , hκ are independently drawn from DH. Then H is called a κ-bit

LSH function.

Finally, letting Dκ
H

be the distribution of κ-bit LSH functions H, we denote by H∗:X →

D({0,1}κ) the randomised algorithm that chooses H according to Dκ
H

and outputs the hash value

H(x) of a given input x.

10.2.1 Random-Projection-Based Hashing

There are a variety of LSH families corresponding to useful metrics, such as the angular dis-

tance [162, 163], Jaccard metric [164], Earth Mover’s metric [162], and lp metric with p ∈ (0,2]

[165]. In this section we present an LSH scheme wrt the angular distance dθ called random-

projection-based hashing.

A random-projection-based hash is a one-bit hash associated with a randomly chosen normal

vector r that defines a hyperplane through the origin. We define this formally as follows.
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DEFINITION 10.2.3 (Random-Projection-Based Hash [162]). A random-projection-

based hash is a function hr : Rn → {0,1} satisfying:

hr (x) =


0 (if r · x < 0)

1 (otherwise)

for all x ∈ Rn, where · denotes inner product and r ∈ Rn is an n-dimensional

vector chosen by selecting each element from the standard normal distribution

N(0,1).

It has been shown [162] that the family of random-projection-based hashes hr is an LSH

scheme wrt the dθ metric. In other words, for any pair x, x ′, the probability that a randomly

chosen 1-bit hash (Def. 10.2.3) will hash x and x ′ to the same value (0 or 1) is higher when

dθ(x, x ′) is smaller.

10.2.2 Privacy with LSH

Returning to our problem of interest – friend-matching – we describe informally how the appli-

cation of a privacy-preserving LSH might proceed. The process is depicted in Figure 10.1. Each

user is equipped with an n-length vector ®u, with each value ®u[i] an integer-value in {−5. . .5} cor-

responding to, say, a movie rating for movie i.3 Clearly not every user will have watched every

movie – these vectors will be sparse with many missing values which we can fill in with some

default value (say, 0). Also, n could be large – somewhere around 10,000 in a typical dataset of

interest.

The data curator chooses a value κ � n and randomly generates κ hyperplanes to use as

random projection hashes in a κ-bit LSH (Def. 10.2.2) defined by a function H. These are sent

to each user. At this point there are two possible workflows:

1. the user applies a noise-adding mechanism M for integer-valued vectors to their vector,

before applying H, and returns H◦M(®u); or

2. the user applies H and then a noise-adding mechanism B for bitstrings, returning B◦H(®u).

Friend-matching then proceeds for a user identified by the noisy hash bucket ®b by searching

the bucket ®b and its nearest neighbours wrt the Hamming distance on bitstrings, for a list of k

users to recommend.

Considering where to add the noise?, notice that for the mechanism H◦M the privacy guar-

antee is relatively easy to compute – H is a post-processing step and so the mechanism H◦M

satisfies d-privacy where d is the metric for which M is designed. In the case of B◦H however,

the privacy guarantee is determined by both B and the probabilistic projection H, and so we

need to do more work to reason about the overall privacy provided.

Regarding utility, since we want to preserve angular distance, our mechanism M should

be designed for this purpose (in the case that we choose the mechanism H◦M). However, on
3As per standard practice in this domain, we subtract eg. the median or mean value to ensure that a default value

of 0 is representative of an average score.
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Figure 10.1: The application of random-projection based hashing with noise to user vectors in

a movie ratings dataset to produce noisy bitstrings. The LSH function constructs hyperplanes in

the space which divide it into equivalence classes. There are 2 places in which we could add

noise – either before or after LSH.

integer-valued vectors, the literature on metric differential privacy provides only options for

Euclidean distance (eg. the n-dimensional Laplace mechanism) or Manhattan distance. While

these may seem like reasonable choices, observe that the n-dimensional Laplace mechanism

(introduced in Chapter 9, Thm. 9.7) can be decomposed into a mechanism which selects noise

vectors uniformly at random wrt angular distance, with length scaled by a Gamma distribution.

This suggests that, if preserving angular distance is our goal, this mechanism is not going to be

well-suited.

However, in the case that we choose a mechanism B◦H, our utility goals are aligned with the

metrics on H and B (since B is designed for the metric induced by H), and so the utility of the

overall mechanism will be determined by the usefulness of each of H and B wrt the particular

metric of utility we have chosen.4

We will experiment with these two ideas, introducing two privacy mechanisms for an angular

distance utility goal: a Laplace-then-LSH mechanism in the style of H◦M and a LSH-then-RR

mechanism in the style of B◦H.

10.2.3 Is LSH private?

Since LSH is itself a ‘noisy’ mechanism, it might seem reasonable to think that LSH is already

privacy-preserving in some manner, as other works have suggested [166–168]. Taking random-

projection-based LSH as our example, since the choice of each hyperplane is random, a user may

simply apply LSH directly to their own data, and it could be argued that the probabilistic nature

of LSH affords some ‘plausible deniability’ as to whether the user is truly a nearest neighbour

to the other users in their hash bucket. However, this ‘plausible deniability’ guarantee crucially

relies on keeping secret the chosen hash functions that form the κ-bit LSH (Def. 10.2.2). When

these are known, privacy can break down completely, as illustrated in Example 10.1. Unfortu-

nately, in practice, the choice of hash functions must be revealed in order to get any utility from

the LSH mechanism.
4Recalling our investigation of optimality in Chapter 6, there is still work to do to pick the right mechanism for

the utility measure of choice even when the mechanism is designed for the correct metric.
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In general, for any number of hash functions and any length input, a random-projection-

based hashing mechanism which releases its choice of hash functions also leaks the equivalence

classes of the secrets. Such mechanisms belong to the ‘k-anonymity’-style of privacy mechanisms

which promise privacy by hiding secrets in equivalence classes of size at least k. These have

been shown to be unsafe due to their failure to compose well [8, 169]. This failure leads to

the potential for linkage or intersection attacks by an adversary equipped with the right sort

of auxiliary information. For this reason, we consider compositionality an essential property

for a privacy-preserving system. LSH with hash function release does not provide such privacy

guarantees.

EXAMPLE 10.1 (Privacy Breakdown of LSH). We present a simple example to show

how privacy with LSH can break down. Consider the set of secret values X =

{(0,1), (1,0), (1,1)}. Each element of X could, for example, correspond to whether or not

an individual has rated two movies A and B. We model an LSH as a probabilistic channel

h∗ : X → D{0,1} that maps a secret input to a binary observation.

For brevity we deal with a single random-projection-based hashing h presented in §10.2.1.

That is, we randomly choose a vector r representing the normal to a hyperplane, and

compute the inner product of r with an input vector x ∈ X. The hash function h outputs

0 if the inner product is negative and 1 otherwise. For example, if r = (1,−1
2 ) is chosen,

then the hash function h is defined as:

h : X → {0,1}

(0,1) 7→ 0

(1,0) 7→ 1

(1,1) 7→ 1

In fact, there are exactly 6 possible (deterministic) hash functions for any choice of the

normal vector r , corresponding to hyperplanes which separate different pairs of points:

h1 h2 h3

(0,1) 7→ 1 (0,1) 7→ 0 (0,1) 7→ 1
(1,0) 7→ 0 (1,0) 7→ 1 (1,0) 7→ 0
(1,1) 7→ 0 (1,1) 7→ 1 (1,1) 7→ 1

h4 h5 h6

(0,1) 7→ 0 (0,1) 7→ 1 (0,1) 7→ 0
(1,0) 7→ 1 (1,0) 7→ 1 (1,0) 7→ 0
(1,1) 7→ 0 (1,1) 7→ 1 (1,1) 7→ 0

Each of h1, h2, h3, and h4 occurs with probability 1/8, while h5 and h6 each occur with

probability 1/4. The resulting channel h∗, computed as the probabilistic sum of these

deterministic hash functions, turns out to leak no information on the secret input (ie., all

outputs have equal probability conditioned on each input).

This indicates that the LSH mechanism h∗ above is perfectly private. However, in practice
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LSH also requires the release of the choice of the normal vector r (eg. [166])a. In other

words, the choice of hash function is leaked. Notice that in our example, the functions

h1 to h4 correspond to deterministic mechanisms which leak exactly 1 bit of the secret,

while h5 and h6 leak nothing. In other words, with 50% probability, 1 bit of the 2-bit

secret is leaked. Not only that, but mechanisms h1 and h2 leak the secret (0,1) exactly,

and similarly, mechanisms h3 and h4 leak (1,0) exactly. Thus, the release of the normal

vector r destroys the privacy guarantee.

aIn fact, since the channel on its own leaks nothing, there must be further information released in order to
learn anything useful from this channel.

10.3 LSH-based Privacy Mechanisms

In this section we present two privacy mechanisms: the LSH-then-RR (LSHRR) mechanism which

applies the noise after LSH, and the Laplace-then-LSH (LapLSH) which applies the noise before-

hand.

The LSHRR mechanism is similar to Google’s RAPPOR mechanism [85] except that it uses an

LSH hash function instead of “Bloom filters”.5 Specifically, LSHRR first computes the hash value

of an input vector using LSH, and applies the randomised response (RR) to the hash value. For

comparison, we introduce the LapLSH mechanism which applies the Laplace mechanism to the

original input before computing its hash value using LSH.

Technical Preliminaries

In the following for κ ∈ N we let V = {0,1}κ be the set of κ-length bitstrings. We recall the

randomised response mechanism from Chapter 3 (Def. 3.4.3) which we denote as Rε (for fixed

ε). We also recall the n-dimensional Laplace mechanism Lapn
ε(v) defined in Chapter 9 (Thm. 9.7)

which is implemented by drawing a unit vector uniformly at random over the unit sphere, and

then scaling according to the Gamma distribution with shape n and scale 1/ε. For a probabilistic

mechanism M:X → DY we write M(x)(Y ) for the probability that an output y ∈ Y is produced

from input x.

10.3.1 Privacy Measures

The privacy guarantees for our LSH-based mechanisms will use the extended versions of differ-

ential privacy and metric differential privacy which we now recall and define.

First, the extended (ε, δ) notion of differential privacy is usually defined as follows [7]:

DEFINITION 10.3.1 (Differential privacy). A randomised algorithm A : X → DY

provides (ε, δ)-differential privacy wrt an adjacency relation Φ ⊆ X × X if for any

5Bloom filters are a type of hash function which is not distance-preserving.
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(x, x ′) ∈ Φ and any S ⊆ Y,

A(x)(S) ≤ eε A(x ′)(S) + δ

where the probability is taken over the random choices in A.

We can extend this idea to metric differential privacy. In this paper, we introduce a gener-

alised definition using a function δ over inputs and an arbitrary function ξ over X rather than a

metric d as follows.

DEFINITION 10.3.2 (Extended differential privacy). Given two functions ξ : X ×

X → R≥0 and δ : X × X → [0,1], a randomised algorithm A : X → DY provides

(ξ, δ)-extended differential privacy (XDP) if for all x, x ′ ∈ X and for any S ⊆ Y,

A(x)(S) ≤ eξ(x,x
′)A(x ′)(S) + δ(x, x ′),

where the probability is taken over the random choices in A.

Although we use an arbitrary function ξ here, we will relate this back to the metric d in this

chapter when analysing our privacy mechanisms. Hereafter we sometimes abuse notation and

write δ when δ(x, x ′) is a constant function returning the same real number independently of the

inputs x and x ′.

Next, we review the notion of privacy loss and privacy loss distribution [170].

DEFINITION 10.3.3 (Privacy loss random variable). Let A : X → DY be a ran-

domised algorithm. The privacy loss on an output y ∈ Y wrt inputs x, x ′ ∈ X is

defined by:

Lx,x′,y = ln
( A(x)(y)
A(x′)(y)

)
,

where the probability is taken over the random choices in A. When A(x)(y) ,

0 and A(x ′)(y) = 0, then define Lx,x′,y = ∞. When A(x)(y) = 0, then define

Lx,x′,y = −∞. Then the privacy loss random variable Lx,x′ of x over x ′ is the real-

valued random variable representing the privacy loss Lx,x′,y where y is sampled

from A(x).

Given inputs x, x ′ ∈ X and a privacy loss ` ∈ R, let Yx,x′,` = {y ∈ Y | Lx,x′,y = `}. Then the

privacy loss distribution ωx,x′ of x over x ′ is defined as a distribution over R∪ {−∞,∞} such that:

ωx,x′(`) =
∑

y∈Yx ,x′ ,`

A(x)(y).

Next, we recall the notion of mean-concentrated differential privacy [170] which is defined

using the notion of subgaussian random variables as follows.
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DEFINITION 10.3.4 (Subgaussian). For τ ∈ R≥0, a random variable Z over R is

τ-subgaussian if for all s ∈ R, E[exp(sZ)] ≤ exp( s
2τ2

2 ). A random variable Z is

subgaussian if there exists a τ ∈ R>0 such that Z is τ-subgaussian.

DEFINITION 10.3.5 (Mean-concentrated DP). Let µ, τ ∈ R≥0. A randomised al-

gorithm A provides (µ, τ)-mean-concentrated differential privacy (CDP) wrt an ad-

jacency relation Φ ⊆ X × X if for any (x, x ′) ∈ Φ, the privacy loss random vari-

able Lx,x′ of x over x ′ satisfies that E[Lx,x′] ≤ µ, and that Lx,x′ − E[Lx,x′] is

τ-subgaussian.

Finally, we recall the notion of probabilistic differential privacy [171, 172].

DEFINITION 10.3.6 (Probabilistic DP). Let ε, δ ∈ R≥0. A randomised algorithm

A provides (ε, δ)-probabilistic differential privacy (PDP) wrt an adjacency rela-

tion Φ ⊆ X × X if for any (x, x ′) ∈ Φ, the privacy loss random variable satisfies

Pr[Lx,x′ > ε] ≤ δ.

We recall [170] that mean-concentrated differential privacy is a strictly stronger notion than

probabilistic differential privacy, which is again stronger than standard differential privacy.

Our motivation for including the above definitions is that we will extend these to versions

corresponding to metric differential privacy, showing firstly that the strict implications still hold

in the extended definitions, and secondly that our privacy-preserving LSH mechanism imple-

ments a type of mean-concentrated metric differential privacy.

10.3.2 Construction of LSHRR

The LSH-then-RR privacy mechanism (LSHRR) is a randomised algorithm QLSHRR : X → DV that

(i) randomly chooses a κ-bit LSH function H, (ii) computes the κ-bit hash code H(x) of a given

input x, and then (iii) applies randomised response to each bit of the hash code H(x).

We first recall the bitwise randomised response as the privacy mechanism that applies the

randomised response Rε to each bit of an input (bitstring) independently.

DEFINITION 10.3.7 ((ε, κ)-bitwise randomised response). Let ε ∈ R≥0 and κ ∈

N. The (ε, κ)-bitwise randomised response is defined as the randomised algo-

rithm Qbrr : V → DV that maps a bitstring v = (v1, v2, . . . , vκ) to another

y = (y1, y2, . . . , yκ) with the following probability:

Qbrr(v)(y) =
κ∏

i=1

Rε(vi)(yi).

Now we define the LSHRR mechanism as follows.

DEFINITION 10.3.8 (LSHRR). Let Qbrr : V → DV be the (ε, κ)-bitwise ran-

domised response. The ε-LSH-then-RR privacy mechanism (LSHRR) with a κ-bit
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LSH function H : X → V is the randomised algorithm QH : X → DV defined by

QH = Qbrr◦H. Given a distribution Dκ
H

of the κ-bit LSH functions, the ε-LSH-then-

RR privacy mechanism wrt Dκ
H

is the randomised algorithm QLSHRR : X → DV

defined by QLSHRR = Qbrr ◦ H∗.

Note that there are two kinds of randomness in the LSHRR: (a) the randomness in choosing

a (deterministic) LSH function H from Dκ
H

(e.g., the random seed r in the random-projection-

based hashing hproj
6), and (b) the random noise added by the bitwise randomised response

Qbrr.

10.3.3 Construction of LapLSH

For the purposes of experimental evaluation and discussion, we define the Laplace-then-LSH

privacy mechanism (LapLSH) as a randomised algorithm QLapLSH : X → DV that (i) randomly

chooses a κ-bit LSH function H, (ii) applies the multivariate Laplace mechanism QLap to x, and

then (iii) computes the κ-bit hash code H(QLap(x)) of the obfuscated input QLap(x).

Formally, we define the mechanism as follows. Recall (§10.2) that H∗ : X → DV is the

randomised algorithm that randomly chooses a κ-bit LSH function H according to a distribution

Dκ
H

and outputs the hash value H(x) of a given input x.

DEFINITION 10.3.9 (LapLSH). Let (X,d) be a metric space and let QLap : X →

DX be an (ε,d)-Laplace mechanism.7 The (ε,d)-Laplace-then-LSH privacy mecha-

nism (LapLSH) with a κ-bit LSH function H : X → V is the randomised algorithm

QLapH : X → DV defined by QLapH = H ◦ QLap. Given a distribution Dκ
H

of the

κ-bit LSH functions, the (ε,d)-Laplace-then-LSH privacy mechanism wrt Dκ
H

is the

randomised algorithm QLapLSH : X → DV defined by QLapLSH = H∗ ◦QLap.

The LapLSH mechanism we use will be a (ε,deuc)-LapLSH mechanism defined over n-dimensional

real-valued vectors. This is detailed further in §10.5.

10.4 Analyses of the Privacy Mechanisms

In this section we show two types of privacy provided by the two mechanisms LSHRR (Sec-

tion 10.3.2) and LapLSH (Section 10.3.3): (i) the privacy guarantee for hash values that we

learn after both input vectors and hash seeds are selected, and (ii) the privacy guarantee for

inputs that represents the probability distribution of possible levels of privacy guarantees. Note

that proofs for this section can be found in Appendix §C.1.

The privacy guarantee for hash values is defined using the Hamming distance dH between

hash values, and does not immediately derive the privacy wrt the metric dX on the input, since

LSH preserves dX only probabilistically and approximately. To obtain the privacy guarantee for

6More specifically, in the definition of QH , a tuple of seeds r = (r1, . . . ,rκ ) for the κ-bit LSH function H = (h1, . . . , hκ )
is randomly chosen.

7Note that we use the general terminology ‘Laplace mechanism’ broadly as per [15] to describe mechanisms Q
satisfying Q(y)(z) = λ(z)e−d(y,z).
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the inputs, we introduce a variety of privacy notions with shared randomness, including new

notions of extended/concentrated privacy with a metric.

10.4.1 LSHRR: Privacy Guarantees for Hash Values

We first present the privacy guarantee for LSHRR, which relies on the XDP of the bitwise ran-

domised response Qbrr wrt the Hamming distance dH as follows.

PROPOSITION 10.1 (XDP of BRR). Let ε ∈ R≥0 and κ ∈ Z>0. The (ε, κ)-bitwise

randomised response Qbrr provides (ε·dH,0)-XDP.

The exact degree of privacy provided by LSHRR depends on the hash values H(x), hence

on the random choice of hash seeds r . This means that an input x may be protected only

weakly when an ‘unlucky’ seed is chosen to produce the hash value H(x). For example, if many

hyperplanes given by unlucky seeds split a small specific area in the input space X, then the

hash value H(x) reveals much information on the input x chosen from that small area.

Hence the exact degree of privacy can be evaluated only after obtaining the hash seeds and

the input vectors. Specifically, the privacy provided by LSHRR is proportional to the Hamming

distance dH between hash values as follows.

PROPOSITION 10.2 (Privacy of QH wrt dεH). Let ε ∈ R≥0, H : X → V be a

κ-bit LSH function, and dεH : X × X → Z≥0 be the pseudometric defined by

dεH (x, x ′) = ε·dH(H(x),H(x ′)) for each x, x ′ ∈ X. Then the ε-LSHRR mechanism

QH provides (dεH,0)-XDP.

Since the LSH function H preserves the metric dX on the input only probabilistically and

approximately, Prop. 10.2 does not immediately derive the degree of XDP wrt dX for inputs. In

§10.4.2 we will show LSHRR’s privacy guarantee for the inputs.

Nevertheless, by Prop. 10.2, the LSHRR provides κε-DP in the worst case, ie., when the

Hamming distance between vectors is maximum due to an ‘unlucky’ choice of hash seeds and/or

large original distance dX(x, x ′) between the inputs x, x ′.

PROPOSITION 10.3 (Worst-case privacy of QH). Let ε ∈ R≥0 and H : X → V be

a κ-bit LSH function. The ε-LSHRR mechanism QH provides κε-DP.

This shows that QH achieves weaker privacy for a larger κ.

10.4.2 LSHRR: Privacy Guarantees for Inputs

Now we aim to derive the privacy guarantee wrt the original inputs, ie., taking into account

the probabilistic mapping H from inputs wrt dX to bitstrings wrt dH. We will show that the

guarantee is a form of concentrated differential privacy (CXDP) over a function of the input

metric dX.
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In typical applications of LSH such as approximate nearest neighbour search, multiple users

produce hash values by employing the same hash seeds. To take such shared seeds into account

we will need to modify some existing privacy notions.

Hereafter we denote by R a finite set of shared input, and by Ar : X → DY a randomised

algorithm A from X to Y with a shared input r ∈ R. Given a distribution λ over R, we denote

by Aλ : X → DY the randomised algorithm that draws a shared input r from λ and behaves as

Ar ; ie., for x ∈ X and y ∈ Y, Aλ(x)(y) =
∑

r ∈R λrAr (x)(y). For brevity we sometimes abbreviate

Aλ as A.

Now we introduce privacy loss variables with shared randomness.

DEFINITION 10.4.1 (Privacy loss random variable with shared randomness). Given

a randomised algorithm Ar : X → DY with a shared input r, the privacy loss on

an output y ∈ Y wrt inputs x, x ′ ∈ X and r ∈ R is defined by:

Lx,x′,y,r = ln
( Ar (x)(y)
Ar (x′)(y)

)
,

where the probability is taken over the random choices in Ar . Given a distribution

λ over R, the privacy loss random variable Lx,x′ of x over x ′ wrt λ is the real-

valued random variable representing the privacy loss Lx,x′,y,r where r is sampled

from λ and y is sampled from Ar (x). Here we call r a shared randomness.

Then the the privacy loss distribution ωx,x′ of x over x ′ is defined analogously to Def. 10.3.3.

Along the lines of concentrated differential privacy (Def. 10.3.5) and probabilistic differential

privacy (Def. 10.3.6), we introduce the following definitions which incorporate a metric dX of

interest as well as privacy loss with shared randomness. We leave the examination of properties

of these definitions to future work, noting here only that they are somewhat analogous to the

aforementioned versions for standard differential privacy.

DEFINITION 10.4.2 (Mean-concentrated XDP). Let µ ∈ R≥0, τ ∈ R>0, λ ∈ DR,

and dX : X × X → R≥0 be a metric. A randomised algorithm Aλ : X → DY

provides (µ, τ,dX)-mean-concentrated extended differential privacy (CXDP) if for

all x, x ′ ∈ X, the privacy loss random variable Lx,x′ of x over x ′ wrt. λ it holds

that E[Lx,x′] ≤ µ·dX(x, x ′), and that Lx,x′ − E[Lx,x′] is τ-subgaussian.

We also introduce the notion of probabilistic XDP (abbreviated as PXDP) by extending the

notions of XDP and PDP as follows.

DEFINITION 10.4.3 (Probabilistic XDP). Let λ ∈ DR, ξ : X × X → R≥0, and δ :

X×X → [0,1]. A randomised algorithm Aλ : X → DY provides (ξ, δ)-probabilistic

extended differential privacy (PXDP) if for all x, x ′ ∈ X, the privacy loss random

variable Lx,x′ of x over x ′ wrt. λ satisfies Pr[ Lx,x′ > ξ(x, x ′) ] ≤ δ(x, x ′).

Again, we sometimes abuse notation and simply write δ when δ(x, x ′) is constant for all x, x ′.
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Now we show that CXDP implies PXDP, and that PXDP implies XDP as follows.

PROPOSITION 10.4 (CXDP⇒ PXDP). Let µ ∈ R≥0, τ ∈ R>0, λ ∈ DR, Aλ : X →

DY be a randomised algorithm, and dX be a metric over X. Let δ ∈ (0,1] and

ε = τ
√
−2 ln δ. We define ξ : X × X → R≥0 by ξ(x, x ′) = µ·dX(x, x ′) + ε for all

x, x ′ ∈ X. If Aλ provides (µ, τ,dX)-CXDP, then it provides (ξ, δ)-PXDP.

PROPOSITION 10.5 (PXDP⇒ XDP). Let λ ∈ DR, Aλ : X → DY be a randomised

algorithm, ξ : X × X → R≥0, and δ : X × X → [0,1]. If Aλ provides (ξ, δ)-PXDP,

then it provides (ξ, δ)-XDP.

Now we can examine the privacy properties of LSHRR, and we have that it provides CXDP.

THEOREM 10.6 (CXDP of the LSHRR). The ε-LSH-based privacy mechanism

QLSHRR provides (εκ, εκ2 ,dX)-CXDP.

This implies that the LSHRR provides PXDP, hence XDP.

THEOREM 10.7 (PXDP/XDP of the LSHRR). Let δ ∈ R>0 and ε′ = ε
√
− ln δ

2 . We

define ξ : X × X → R≥0 by ξ(x, x ′) = εκ·dX(x, x ′) + ε′
√
κ. The ε-LSH-based

mechanism QLSHRR provides (ξ, δ)-PXDP, hence (ξ, δ)-XDP.

Finally, we present a better bound for PXDP of the proposed mechanism. For a, b ∈ R>0, let

DKL(a‖b) = a ln a
b + (1 − a) ln 1−a

1−b .

PROPOSITION 10.8 (Tighter bound for PXDP/XDP). For an α ∈ R>0, we define

ξα : X × X → R≥0 and δα : X × X → R≥0 by:

ξα(x, x
′) = εκ(dX(x, x ′) + α)

δα(x, x
′) = exp

(
−κDKL(dX(x, x ′) + α‖dX(x, x ′))

)
.

The ε-LSH-based mechanism QLSHRR provides (ξα, δα)-PXDP, hence (ξα, δα)-XDP.

While this guarantee is not a direct form of metric differential privacy, we can untangle the

above for particular values of the metric dX of interest. In particular, in our experiments in

§10.5, we apply Prop. 10.8 and numerically compute α from a constant δ using the convexity

of DKL.

10.4.3 LapLSH: Privacy Guarantees

Finally, we also show that LapLSH provides XDP. This is immediate from the fact that XDP is

preserved under the post-processing by an LSH function.
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PROPOSITION 10.9 (XDP of LapLSH). Let ε ∈ R≥0. The (ε,dX)-LapLSH mech-

anism QLapH with a κ-bit LSH function H provides (ε·dX,0)-XDP. Hence the

(ε,dX)-LapLSH mechanism QLapLSH wrt a distribution Dκ
H

of the κ-bit LSH func-

tions also provides (ε·dX,0)-XDP.

10.5 Experimental Evaluation

In this section we present our experimental results on 2 medium-sized datasets for the ap-

plication of LSH to friend-matching using the random-projection-based hashing. Our analysis

involves a comparison of LSHRR with LapLSH from various aspects (utility, time complexity, and

general applicability). In order to evaluate the usefulness of our mechanisms, we additionally

evaluate the utility of vanilla LSH as compared with a true nearest neighbour search to establish

utility of the overall mechanisms, not simply the noise-adding components.

10.5.1 Experimental Setup

As already discussed, our problem of interest is privacy-preserving friend matching using the

local model of differential privacy. Recall that in this scenario, each user u is represented as

a (real-valued) vector of attributes, ie., u ∈ Rn. Each user applies to u a noisy mechanism

which incorporates an LSH, and passes the noisy result to a curator, whose goal is to provide

recommendations to each user (represented as u) based on their nearest k neighbours wrt an

appropriate distance measure dX over users.

We compare the two privacy mechanisms introduced in this chapter:

1. LSHRR Mechanism: For each user we apply κ-bit LSH to the attribute vector according

to a precomputed (shared) hash function and subsequently apply ε-bitwise randomised

response (Def. 10.3.7) to the computed hash. The privacy guarantee is computed according

to Prop. 10.8, which gives a (ξ, δ)-XDP -style guarantee that depends on κ.

2. LapLSH Mechanism: For each user we first add multivariate Laplace noise parametrised

by ε to the attribute vector before applying LSH in order to generate noisy hash values.

Our implementation of the multivariate Laplace follows that described in [12]; namely, we

generate additive noise by constructing a unit vector uniformly at random over the unit

n-sphere, scaled by a random value generated from the gamma distribution with shape n

and scale 1/ε.

Comparing Privacy and Utility

We compare the utility loss of each mechanism wrt a comparable privacy guarantee, namely the

overall ε for the mechanism; for LapLSH this is εdeuc(x, x
′) and for LSHRR it is ξα(x, x ′) from

Prop. 10.8. However, as the privacy guarantee of LSHRR depends on dθ and that of LapLSH

depends on deuc, we cannot simply compare the ε guarantees directly; we also need to compare
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the privacy guarantee wrt the distances between users. Hence we make use of the relationship

between the Euclidean and cosine distances for normalised vectors x, x ′:

deuc(x, x
′) =

√
2 − 2 cos(π·dθ(x, x ′)) .

Since ξα depends on α and dθ(x, x ′), we perform comparisons against various reasonable

ranges of these variables to properly evaluate the range of utility loss. The LSHRR privacy

guarantee also includes a δ component which we fix to a constant value.

For utility, for each user represented as a data point x0 in the original space, we compare the

average distance of the k returned nearest neighbours to x0 using the noise-adding mechanism,

versus the average distance of the k true nearest neighbours to x0, ie., for mechanism A, the

utility loss wrt user x0 is:

UA(x0) := 1/k
∑
x∈N

dθ(x0, x) − 1/k
∑
x∈T

dθ(x0, x). (10.1)

where N is the set of nearest neighbours returned by A, and T is the set of true nearest neigh-

bours. We can then compute the utility loss of mechanism A as the average utility loss over all

users. Notice that we use angular distance dθ as our distance measure, closely related to cosine

distance which has been established as a good measure of similarity in previous work [154].

We prefer this measure to recall and precision measures as the LSH algorithm can return

many neighbours with the same distance (ie. in the same hash bucket) and our approximate

algorithm determines the choice of neighbours at random (a reasonable choice given the useful-

ness of the output is determined by how similar the neighbours are to the original point x0).

Datasets

For our experiments we use the following two datasets:

MovieLens. The MovieLens 100k dataset [173] contains 943 users with ratings across 1682

movies, with ratings ranging from 1 to 5. We generated rating vectors of size 100, 500 and

1000 for each user by selecting only the top rated movies from the 4 most rated genres. Unrated

movies were assigned a value of 0, and vectors were normalised to length 1. 8

Foursquare. The Foursquare dataset (Global-scale Check-in Dataset with User Social Networks)

[174] contains 90048627 check-ins by 2733324 users on POIs all over the world. We extracted

107091 POIs in New York and 88063 users who have visited at least one POI in New York. We

sorted POIs by visit-count and generated user vectors for the 100, 500 and 1000 most-visited

POIs, for a reduced dataset consisting of 1000 users. We again normalised vectors to length 1.

Note that the datasets were reduced in size in order to perform an overall evaluation against

a true nearest neighbour search, which was too computationally expensive to run on the full-size

datasets.

For both datasets, we computed the k nearest neighbours (wrt the angular distance dθ) for

each user for k = 1,5,10 using standard nearest neighbour search (ie. pairwise comparisons

8This step is required for the comparison with LapLSH.
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over all ratings vectors). We refer to these data as the True Nearest neighbours; these are

used to evaluate the performance of standard LSH and, by extension, the LapLSH and LSHRR

mechanisms. The distributions of True Nearest neighbour distances are shown in Figure 10.2.

(a) MovieLens Dataset (b) Foursquare Dataset

Figure 10.2: Distributions of angular distances dθ to nearest neighbour for k = 1 for each user,

plotted for vectors with dimensions 100, 500 and 1000. The distance 0.5 represents orthogonal

vectors; ie., having no items in common.

The Foursquare dataset has a high proportion of users with dθ < 0.1, whereas the MovieLens

dataset shows nearest neighbours are skewed towards an average of between 0.25 and 0.35 with

few users having nearest neighbours closer than dθ = 0.1. These distances are important for

computing the privacy guarantee, which depends on the true distance between users. We there-

fore use distances between 0.05 and 0.25 in our experiments, noting that the privacy guarantee

serves to protect nearby users. A privacy guarantee for dθ = 0.5 would require protecting all

users (even users which have no items in common), which would result in no utility for the user.

10.5.2 Results

Performance of vanilla LSH

We performed a baseline comparison of LSH against True Nearest neighbours to establish the

utility of vanilla LSH. κ-bit LSH was implemented (for κ = 10,20,50) using the random-projection-

based hashing described in §10.2.1, since this provides a guarantee wrt the angular distance

between vectors. A (uniformly random) n-dimensional normal vector r can be constructed by

selecting each component from a standard normal distribution; this is done for each of the κ

hashes to generate the LSH hash function H. The same function H is used to encode each user’s

ratings vector into a κ-bit string.

For each user we then computed their k nearest neighbours for k = 1,5,10 using the Ham-

ming distance on bitstrings. Where multiple neighbours shared the same distance (ie. they were

in the same hash bucket) we chose a nearest neighbour at random.

These experiments were repeated 30 times to account for variations due to the randomness

in the computations. The results for utility loss for LSH against True Nearest neighbours are
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shown in Table 10.1. For the same vector dimension n, utility consistently improves for increas-

ing bitstring length, and also as the number of nearest neighbours k increases. This is consistent

with the observation that the bitstring encodes information about the vector. We notice that for

higher vector dimensions, the utility loss is less pronounced as κ varies. This is because LSH is

a dimensionality reduction of dimensions n − κ, which will clearly be less accurate for larger n

and fixed κ.

Table 10.1: Values for average utility loss for LSH (compared with True Nearest neighbours).

Length of bitstring (κ)

n k 10 20 30 50

100 1 0.139 0.097 0.074 0.053
100 5 0.119 0.087 0.068 0.048
100 10 0.109 0.082 0.065 0.046

500 1 0.117 0.096 0.081 0.063
500 5 0.101 0.084 0.071 0.056
500 10 0.092 0.076 0.065 0.052

1000 1 0.096 0.083 0.073 0.060
1000 5 0.084 0.073 0.065 0.053
1000 10 0.079 0.068 0.060 0.049

Performance of Privacy Mechanisms

We now compare the performance of LapLSH and LSHRR against LSH. We implemented both

mechanisms as described in §10.5.1. The same LSH hash function H was used for comparing

vanilla LSH, LapLSH and LSHRR. To compute the overall (ξ, δ)-XDP guarantee as per Prop. 10.8,

we fixed δ = 0.01 and varied dθ from 0.05 to 0.25 9 to obtain corresponding values of α 10. These

are shown in Table 10.2. We then used values of ε ranging from 0.001 to 3 for the randomised

response mechanism of LSHRR in order to generate ξα values in the range 0.1 to 15.

We plotted the utility loss of LSHRR against vanilla LSH for various values of dθ since the

performance of our mechanism is bounded by that of LSH; the plot for vector dimension 1000 is

shown in Figure 10.3. Note that we only show comparisons of LSHRR against LSH for simplicity

of presentation; we will next compare the LSHRR and LapLSH mechanisms.

Finally we compared the utility loss of LSHRR against LapLSH for various vector dimensions

and values of k (see Figure 10.5). We observe that LSHRR outperforms LapLSH across all ex-

periments, although performance is comparable for small ε. LSHRR significantly outperforms

LapLSH for smaller bitstring length (κ = 10), smaller distance (dθ = 0.05) and higher vector

dimensions (n = 1000). We consider this is because LapLSH is affected by the ‘curse of dimen-

sionality’ – the total amount of noise added to the vector is very large in high-dimensional space

9We chose values of dθ corresponding to actual distances observed for true nearest neighbours as described in
§10.5.1.

10dθ is the distance measure corresponding to dX in §10.4.2
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Table 10.2: Values of α given an angular distance dθ between inputs and a length κ of bitstring.
These are used to compute ξα in the LSHRR guarantee of Prop. 10.8.

Length of bitstring (κ)

dθ 10 20 30 50

0.05 0.31111 0.2028 0.15866 0.11713
0.1 0.3766 0.25209 0.19988 0.14979
0.2 0.44181 0.30509 0.24546 0.18683
0.25 0.45747 0.31977 0.25866 0.19796
0.3 0.46544 0.32908 0.26749 0.20573
0.4 0.46266 0.33474 0.27462 0.21313
0.5 0.43792 0.32553 0.26969 0.21123

(a) MovieLens Dataset with 1000 dimensional vectors

(b) Foursquare Dataset with 1000 dimensional vectors

Figure 10.3: Utility loss vs total privacy budget ξ for LSHRR vs LSH for 1000-dimensional

vectors. Note that dθ is indicated in brackets in the legend. LSHRR performance does not vary

significantly with bitstring length, and is closer to LSH performance for smaller bit lengths.

– as well as the issues outlined in §10.2.2. We conjecture that LSHRR will further outperform

LapLSH for much higher dimensional vectors wrt close users (small dθ).

Figure 10.5 also shows that when the total privacy budget ξ is around 2, LSHRR achieves

lower utility loss than a uniformly randomly generated hash (ie., the LSHRR when the total
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privacy budget is 0). The LSHRR achieves much lower utility loss when the total privacy budget

is around 5. We can interpret the value of total privacy budget in terms of the flip probability

in the RR (random response mechanism). For example, when we use the 20-bit hash, the total

privacy budget of 5 for dθ = 0.05 corresponds to the case in which the RR flips each bit of the

hash with probability approx. 0.27. Therefore, we flip around 5-bits on average out of 20-bits

in this case.

We also note that the total privacy budget used in our experiments is much smaller than the

privacy budget ε in the low privacy regime [175] when the input data are in a high-dimensional

space. Specifically, Kairouz et al. [175] refer to ε = ln |X| as a privacy budget in the low privacy

regime, and claim that this value of ε is still reasonable; subsequent work (eg. [176–179])

also considers this value of ε. Since we deal with high-dimensional data, the privacy budget

in the low privacy regime is very large in our experiments. For example, when we use the

1000-dimensional rating vector in the MovieLens dataset, the privacy budget in the low privacy

regime is: ε = ln |X| = ln 51000 = 1609. The total privacy budget used in our experiments is

much smaller than this value, and falls into the medium privacy regime [176, 179].

(a) MovieLens Dataset with 100 dimensional vectors

(b) MovieLens Dataset with 1000 dimensional vectors

Figure 10.4: Utility loss vs total privacy budget ξ for LSHRR vs LapLSH for k = 10 on 100- and

1000-dimensional vectors. Note that dθ is indicated in brackets in the legend. LSHRR is much

better than LapLSH for smaller dθ and larger n.
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(a) Foursquare Dataset with 100 dimensional vectors

(b) Foursquare Dataset with 1000 dimensional vectors

Figure 10.5: Utility loss vs total privacy budget ξ for LSHRR vs LapLSH for k = 10 on 100- and

1000-dimensional vectors. Note that dθ is indicated in brackets in the legend. LSHRR is much

better than LapLSH for smaller dθ and larger n.

10.5.3 Discussion

For time complexity, LapLSH requires O(nκ) operations (construction of n-dimensional noise,

then κ-bit hashing), whereas the LSHRR mechanism requires O(rκ) operations (κ-bit hashing on

r non-zero elements followed by κ-randomised response). Therefore for large n, LSHRR is also

significantly more efficient.

We note also that LSHRR is designed for the angular distance, whereas LapLSH is designed

for the Euclidean distance, and our comparison of the two mechanisms (wrt the angular dis-

tance) was made possible by normalising the original vectors. In general, it is not possible

to compare d-private mechanisms designed for different metrics. As discussed in §10.2.2, we

would consider the LSHRR mechanism more suitable for this space, and expect it to have better

performance than LapLSH – which it does. We remark that the LapLSH mechanism in our exper-

iments performed about as poorly as random choice for the 1000-dimensional vectors. Further,

the LSHRR mechanism can be used with other metrics such as Jaccard, Earth Mover’s and lp by

choosing a suitable hashing function.
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In summary, our experiments show that LSHRR has significantly better utility than LapLSH,

with particular performance differences observed for higher dimensional vectors, smaller bit-

string lengths and smaller distances dθ . The performance of LSHRR approaches the perfor-

mance of LSH for smaller bitstring lengths, but has significantly lower utility than vanilla LSH

for higher bitstring lengths. We conjecture that the dimensionality reduction of input vectors

before adding perturbation noise would be useful to obtain better privacy-utility trade-offs for

nearest neighbour search.

10.6 Conclusion

In this chapter we explored privacy-preserving LSH using a mechanism which adds random re-

sponse noise to the output of an LSH, thus providing extended differential privacy for a wide

range of metrics through an appropriate choice of hashing function. We first showed that LSH

itself does not provide strong privacy guarantees and could result in complete privacy collapse

in some situations. We then proved that our LSH-based mechanism provides concentrated/prob-

abilistic versions of extended DP. Experimentally we demonstrated that our mechanism when

applied to angular distance provides much higher utility than a naive, Laplace-based mechanism.

These results matched our earlier reasoning which suggested that a Laplace-based mechanism

would be ill-suited for the friend-matching domain since it is designed for the Euclidean dis-

tance metric and does not preserve angular distance. We leave as future work the theoretical

exploration of properties of our concentrated-extended differential privacy definition, as well as

further work to improve the performance of vanilla LSH, thus boosting the overall performance

of our mechanism.

10.7 Chapter Notes

This chapter is unpublished work, however it is publicly available as an arXiv preprint [43].

Omitted proofs from this chapter can be found in Appendix §C.

Since the publication of our preprint, other works on a similar vein have appeared. Notably,

Hu et al. [180] proposed the same mechanism (LSH + random response), also demonstrating

that LSH is not privacy-preserving on its own, and showing that the mechanism has good utility

wrt LSH on small bitstrings. Our work also examines the utility of LSH itself, showing that

LSH on small bitstrings has poor utility and therefore the overall mechanism (LSH + random

response) has poor overall utility.

Metric differential privacy and its applications

As noted earlier in this thesis, there have been a limited number of applications of metric differ-

ential privacy; in particular: location-based services [14, 181–186], document processing [12],

linear and range queries [187], and linear queries in the centralised model [188]. These works

focus on a specific metric such as the Euclidean metric, the l1 metric, and the Earth Mover’s met-

ric, and cannot be applied to other metrics. In addition, most of the studies on metric DP have
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studied low-dimensional data such as two-dimensional [14, 181–186, 188] and six-dimensional

[187] data. One exception is the work in [12], which proposed the multivariate Laplace mech-

anism for 300-dimensional data points.

Privacy-preserving friend matching

A number of studies [155–158, 189–196] have been made on algorithms for privacy-preserving

friend matching (or friend recommendation). Many of them [156, 158, 190–192, 194–196] use

cryptographic techniques such as homomorphic encryption and secure multiparty computation.

However, such techniques require high computational costs or focus on specific algorithms, and

are not suitable for a more complicated calculation of distance such as the angular distance

between two rating vectors.

The techniques in [155, 157, 189, 193] are based on perturbation. The mechanisms in [157,

189, 193] do not provide DP or its variant, whereas that in [155] provides DP. The technique

in [155], however, is based on social graphs and cannot be applied to our setting, where a

user’s personal data is represented as a rating vector or visit-count vector. Moreover, DP-based

friend matching in social graphs can require prohibitive trade-offs between utility and privacy

[189, 197].

The same applies to friend matching based on rating vectors or visit-counts vectors. Specifi-

cally, it is possible to apply DP mechanisms (eg., [198, 199]) to each user’s rating or visit-counts

vector. However, this requires too much noise when the data point is in a high-dimensional

space, since DP guarantees that a data point is indistinguishable from any data point in the data

domain. Consequently, DP-based approaches need a very large privacy budget (eg., ε ≥ 250

[198], ε ≥ 2 × 104 [199]) to provide high utility for a high-dimensional vector such as a rating

or visit-counts vector. In contrast, our use of extended DP permits rigorous, meaningful privacy

guarantees in high-dimensional spaces with good utility.

Privacy-preserving LSH

To our knowledge, the work in [200] is the only existing work (aside from the above-mentioned

[180]) that proposed privacy-preserving LSH with formal guarantees of privacy. Specifically, the

authors in [200] considered a problem of similarity search under the Jaccard similarity. For an

integer B ≥ 2, they used the range-B MinHash [201] κ times to transform a vector x ∈ X into a

hash h(x) ∈ [B]κ . Then they applied the B-ary randomised response [175] for each element of

the hash. They proved that their mechanism provides DP.

Our work differs from [200] in the following ways. First, their algorithm is specific to the

Jaccard similarity, and cannot be applied to other metrics such as the angular distance metric.

Second, their algorithm provides DP, whereas our algorithm provides extended DP. Third, we

compared LSHRR with LapLSH in the detailed evaluation, and our work provides a careful anal-

ysis of d-privacy for both input data and hashes by taking into account the shared randomness

between users (while the authors in [200] only analysed DP for hashes).
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Conclusions and Future Work

In this thesis we have explored foundational questions about privacy and utility for differentially

private systems using the framework of Quantitative Information Flow. We used the insights

gained through the theoretical analysis to investigate three new applications of metric differen-

tial privacy to novel domains. We now bring together the ideas explored in this thesis to show

how the core themes and questions posed in the introductory chapter have been addressed, and

how these open up new avenues for future work.

Protection against adversarial attacks

We began by investigating the protection afforded by differential privacy systems in the context

of arbitrary adversarial threats, modelled in QIF as average-case attacks. Although in differential

privacy it is normally the case that mechanisms are compared by “comparing the epsilons”, we

showed in Chapter 4 that mechanisms with a larger epsilon (ie. “less private”) can provide better

protection against certain adversaries than mechanisms which are “more private”. This possibly

surprising result is because the epsilon parameter does not in itself characterise a defence against

all possible adversarial scenarios. Potential vulnerabilities still remain in spite of the application

of differential privacy. An added difficulty – made apparent in the metric differential privacy

formulation – is that mechanisms designed for different metrics are not usually comparable,

since the meaning of epsilon is determined by the metric in question. This causes additional

problems when it comes to experimental design, as we noted in Chapter 8 and Chapter 10,

where compromises had to be made in order that mechanisms could be fairly compared.

A more robust method for comparison would be to consider how different mechanisms pro-

tect against particular adversarial threats – ie. a comparison under various operational scenarios.
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In Chapter 9 we gave a model for an adversarial threat – the Bayes vulnerability function, mod-

elling a machine learning adversary that guesses the secret in one try – and provided some sim-

ple reasoning about how a privacy mechanism could provide protection against this adversary.

Further work is needed in this area to model, for example, author-identification attacks – which

have been enacted in real-world scenarios – and concretely describe the guarantees provided

by differential privacy in these contexts. The work on locality sensitive hashing in Chapter 10

would benefit from a threat-focussed analysis, as the (metric-based) privacy guarantees in this

scenario were complex to present and compare with other mechanisms found in the literature.

We leave this analysis to future work.

We note also that the idea of modelling Bayesian adversaries alongside differential privacy

has been advocated before; indeed this was a core contribution of the Pufferfish framework

introduced by Kifer et al. [25]. We agree that there is a need to incorporate Bayesian threat

models into reasoning about differential privacy so that privacy systems can be meaningfully

compared, giving decision-makers more transparency about the sorts of threats that their sys-

tems can defend against. An advantage of the Bayesian/QIF approach is that it is worst-case

(in the sense of the optimal adversary), and therefore upper bounds the expected success of the

best possible machine learning attack, for example.

Finally, we observe that a robust comparison of systems with respect to adversarial threats

would not only permit comparisons of differential privacy systems designed for different metrics,

but also systems which do not implement differential privacy at all, such as k-anonymous mech-

anisms or encrypted data releases. QIF provides a general-purpose framework within which

these threats can be studied and which could be used to fill this gap. We note that QIF has

already been used to examine privacy threats against encrypted databases [202]; we leave to

future work the continuation of this line of research on adversarial threats to privacy, and the

comparison of different privacy models with regard to particular threats.

Managing the privacy-utility balance and choosing epsilon

The privacy-utility trade-off is well-known to be one of the key concerns in the design of privacy

systems, and our work in Chapter 5 shows why this is the case. In that chapter we showed that

privacy and utility cannot be optimised simultaneously, and indeed mechanisms which optimise

for one – either privacy, or utility – lose control over the other. In general we have argued

for a utility-focussed approach, which allows for greater control over the useful information

released by a mechanism. This is essentially the purpose of the data release, the benefits of

which need to be weighed against the potential harm caused by the leakage of information.

While Dwork et al.’s original approach was to give plausible deniability to individuals, recent

extensions and applications of differential privacy do not do this. In these cases the privacy that

can be guaranteed is determined by the correlation between the useful information released and

the secrets to be kept private, which depends on the particular dataset in question since, as was

explained in Chapter 5.

This then provides some guidelines as to how we might answer two important questions in

the design of privacy workflows: where to add the noise? and how to add the noise?. These
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questions were encountered and addressed in our experimental works in the following ways:

i. In Chapter 8 we observed that a non-standard mechanism designed for the metric on the do-

main can provide better utility, although its privacy guarantee is different-by-design. Thus,

adding noise according to the utility metric on the domain proved to be a better strategy for

improving statistical utility.

ii. In Chapter 9 we constructed a utility-focussed mechanism which was designed for a util-

ity metric between documents (the Earth Mover’s distance) and therefore provided strong

guarantees regarding the useful release of topic information. The privacy guarantee simply

meant providing indistinguishability of authors within some radius; in this case the manip-

ulation of epsilon would be done to provide a desirable radius of indistinguishability – ie.

to provide adequate privacy protection. The privacy afforded in this case is determined ex-

perimentally, since it is determined by the correlation between the sensitive and the useful

information in the dataset.

iii. In Chapter 10 we considered two possible locations for the noise-adding mechanism in the

workflow, opting again for a utility-first approach – designing the mechanism for the appro-

priate metric – which we showed experimentally produced better results for a fixed privacy

guarantee. Again the utility obtainable is determined by the correlation in the dataset, as

well as the correlation induced by the hashing function.

The work of these chapters still leaves open questions about how to design privacy workflows

and where to add noise. For example, our work on locality sensitive hashing could be extended

to an exploration of scenarios in which metric-based mechanisms exist on the original domain

(eg. Euclidean metrics). In this case, it may be easier to reason about privacy, since it is possible

to design mechanisms for the correct metric for each workflow under consideration. However,

the decision about where to add noise may be less clear – it may be influenced by details such

as the particulars of the dataset, the accuracy of the embedding function and the dimensionality

of the space. We leave the exploration of this problem to future work.

Finally, although we argue for a utility-focussed approach, this makes reasoning about pri-

vacy harder – as borne out by our experimental work – and thus emphasises the need for robust

methods to compare privacy in different systems, as raised in the previous section. We leave

open as a future goal the exploration of utility-focussed mechanisms for which privacy can be

compared robustly – either relying on comparable metrics, or using robust comparisons wrt

operational scenarios defined by adversarial threats.

Reasoning about utility

In Chapter 6 we began an investigation of optimality, showing that Bayesian consumers de-

scribed in the literature can be modelled using the QIF notion of uncertainty and subsequently

that optimality can be understood in terms of refinement. This connection between utility and

refinement provides an important bridge between differential privacy and QIF, and enables the
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use of QIF results to reason about utility in arbitrary privacy workflows. In future work we en-

visage investigating utility for arbitrary data release mechanisms in which the utility measure of

interest is not known beforehand; this occurs, for example, in data releases designed for mining

by machine learners whose goal is to discover useful information in the dataset. Such scenar-

ios include complex datasets such as geo-spatial trajectories, for which privacy-preserving data

releases are desired but the utility to be gained from these datasets is not clearly understood.

The use of refinement-based reasoning about utility also promises to assist in reasoning about

privacy-utility trade-offs in privacy workflows, as well as in comparing mechanisms for utility.

This is particularly important in scenarios where mechanisms need to be designed in the absence

of real data, as was the case in the 2020 US Census data release [29].

Our investigation of optimality for the Laplace mechanism in Chapter 7 underscores the

need to extend existing results – made under assumptions of the statistical database context –

to new domains for which metric differential privacy applies. Future work in this area could

involve extending our results on discrete domains to continuous domains with respect to other

metrics of interest. We expect the continuation of this work to provide a robust methodology

for reasoning about optimality in arbitrary workflows which may arise in future applications of

metric differential privacy.

Further applications of metric differential privacy

In the final part of this thesis we considered the application of metric differential privacy to

three new domains of interest, guided by the analyses of the previous chapters. In all three

applications we emphasised that designing mechanisms for utility should be the core concern of

the data curator, and that privacy can be reasoned about either directly (as when local mech-

anisms are used, in the example of Chapter 8) or through the correlations in the workflow (as

in author obfuscation of Chapter 9 and locality sensitive hashing of Chapter 10). We consider

our explorations to be first steps towards solving these problems using the perspective of metric

differential privacy.

Finally, we remark that there are many interesting and diverse applications of differential

privacy that are still to be explored, and the investigations in this thesis have opened up new

ways of exploring these ideas. In particular, the application of privacy to trajectory data appears

to be of significant interest, and we would consider metric differential privacy to be suitable in

this regard. The analyses and examples in this thesis could provide some guidelines towards

an acceptable approach to this problem: firstly, considering possible metrics for utility, and

reasoning about what sort of utility could be achievable for different consumers under general

assumptions about classes of utility measures; secondly, measuring privacy by the sorts of attacks

to be protected against; and finally, setting epsilon to achieve some level of indistinguishability

for which such attacks can be reasonably diffused.
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Appendices



A
Proofs Omitted from Chapter 6

A.1 Results supporting §6.3.3

We begin by proving the properties of kernel mechanisms omitted from the main chapter.

PROPERTY 1. If K is a kernel mechanism then there is no kernel mechanism K ′

st. d∆K′e ⊂ d∆K e where ∆K,∆K′ are hypers corresponding to mechanisms K,K ′

respectively.

Proof. Assume that there exists some S ⊂ d∆K e st. S = d∆K′e for some kernel mechanism K ′.

Then the posteriors in S must be linearly independent (Def. 6.3.2) and the uniform distribution

can be expressed as a convex combination of inners of d∆K′e (Lem. 6.9). ie. We can write

υ =
∑

i λiδ
i for convex coefficients λi and δi ∈ d∆K′e. Similarly for ∆K , we can write υ =

∑
j κjγ

j

for convex coefficients κj and γ j ∈ d∆K e. But therefore we have:∑
i λiδ

i −
∑

j κjγ
j = 0

⇒
∑

i λiγ
i −

∑
j κjγ

j = 0 “d∆K′e ⊂ d∆K e”

⇒
∑

i(λi − κi)γ
i +

∑
k=j−i κkγ

k = 0 “Rearranging”

Since the γ j are linearly independent, this requires λi = κi and κk = 0. ie. d∆K e = d∆K′e, which

contradicts our assumption. Therefore no such S exists. �

PROPERTY 2. Any vertex mechanism can be written (non-uniquely) as a convex

sum of kernel mechanisms. Conversely, any convex sum of kernel mechanisms is

a vertex mechanism.
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Proof. For the converse, note that a convex sum of channels is computed by taking the union

of the inners of all of the corresponding hypers and summing the corresponding outers. Since

each inner is a vertex, the union of them forms a set of posteriors all of which are vertices. To

check that it is a valid hyper we need the posteriors to average to the uniform distribution; since

each hyper averages to υ, the convex sum does also. Therefore
∑

i λi∆i corresponds to a vertex

mechanism.

For the forward direction, we describe an algorithm which rearranges a hyper ∆M (corre-

sponding to a vertex mechanism) into a convex sum λ∆K + (1 − λ)∆M′ st. ∆K corresponds

to a kernel mechanism and ∆M′ corresponds to a vertex mechanism with d∆M′e ⊂ d∆M e. De-

note by vi the inners of d∆e. If the vi are linearly independent then ∆ already corresponds to

a kernel mechanism and we are done. If the vi are not linearly independent, then we can use

Carathéodory’s theorem to find a ∆K and ∆M . Note that υ =
∑

i pivi (from Lem. 6.9) and so by

Carathéodory’s theorem, we can find an affinely independent subset V ⊂ d∆e st. υ =
∑

j λjvj

for vj ∈ V and λj ≥ 0,
∑

j λj = 1. However, the set V is also linearly independent. This follows

because if there is some µi st.
∑

i µivi = ®0 then we have:∑
i µivi = ®0

⇒
∑

i

∑
j µiv[ j]i = 0 “Summing elements of each vector vi”

⇒
∑

i µi
∑

j v[ j]i = 0 “Rearranging”

⇒
∑

i µi = 0 “vi are 1-summing vectors”

⇒ µi = 0 for each i “Affine independence”

Therefore the vi are linearly independent. This means we can choose d∆K e = V , and we can

uniquely write υ =
∑

i aivi for vi ∈ V and convex coefficients ai.

Now, scale ∆K by the largest λ > 0 so that λai ≤ pi (where ai, pi are the coefficients of the

same vi ∈ V in ∆K , ∆ respectively) and there is some j for which λaj = pj . Define

∆M′ :=
∆ − λ∆K

1 − λ
.

Then ∆M′ is a valid hyper (since ∆ and ∆K both average to υ) and d∆M′e ⊂ d∆e (since our choice

of λ cancels out one of the vi). Hence we have ∆ = λ∆K + (1 − λ)∆M′ as required.

We can repeat this algorithm for ∆M′, continuing until we are (inevitably) left with a kernel

mechanism. �

PROPERTY 3. If K, K∗ are kernel mechanisms then K 6v K∗ and K∗ 6v K.

Proof. Let ∆,∆∗ be the corresponding hypers of K,K∗ respectively. From Property 1 we cannot

have d∆e ⊂ d∆∗e or d∆∗e ⊂ d∆e. Therefore, since all posteriors in the supports of ∆,∆∗ are

vertices, by convexity we know that ch d∆e cannot lie inside ch d∆∗e and vice versa. Thus, by

Lem. 2.6, it follows that K 6v K∗ and K∗ 6v K. �
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Kernel mechanisms always exist

The proof that kernel mechanisms always exist (ie. it is always possible to find a linearly inde-

pendent set of vertices that contains the uniform distribution) follows from the proof of Prop. 2

above. ie. By noting that vertex mechanisms always exist, and that they can always be decom-

posed into kernel mechanisms.

A.2 Results supporting §6.4

We first prove that for the space of n > 2 inputs there is no single minimal element under

refinement. For this we first need to prove a technical lemma.

LEMMA B1. Let (X, d) be a metric space and let |X | > 2. Then the space of

d-hypers contains at least 2(n − 1) vertices.

Proof. Pick any 3 inputs x1, x2, x3. If these inputs are collinear (ie. d(x1, x2)+ d(x2, x3) = d(x1, x3))

then the d-privacy constraints on (x1, x2) and (x2, x3) imply the constraints on (x1, x3), and so

the 3 hyperplanes (corresponding to constraints in each direction) contribute only 4 vertices

to the convex region. If the points are not collinear, then each pair (xi, xj) contributes 2 con-

straints, resulting in 6 constraint hyperplanes in total and 6 points in the convex space. The

minimum number of vertices in the space therefore occurs when the set X is totally ordered

(ie. maximising the number of linear, and thus inferred, constraints), and so we need only con-

sider constraints on ‘adjacent’ vertices. In total this yields 2(n − 1) vertices (corresponding to 2

constraints per adjacent pair). �

We now have the details in place to complete the sketch proof of the impossibility of univer-

sally optimal mechanisms for n > 2.

THEOREM 6.15 (Impossibility of Universally Optimal Mechanisms). For n > 2

there are no universally optimal d-private mechanisms over n inputs.

Proof. By Lem. B1 we have that the space contains at least 2(n − 1) vertices. Since this is larger

than n for n > 2, we must have more than one kernel mechanism, and thus more than one vertex

mechanism. The result follows. �

Characterisation of universal L-optimality

We first need the following technical result.

LEMMA B2. Given a loss function ` and a prior π, the minimum expected loss is

realised on a vertex mechanism and on every kernel mechanism from which it

can be derived.

Proof. Assume that the minimum expected loss is realised on the mechanism M. Then M is a
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vertex mechanism (Cor. 6.12) and we can write it as M =
∑

i λiKi where Ki are kernel mecha-

nisms (Prop. 2). We now reason

U`[πBM]

= U`[πB(
∑

i λiKi)] “Property 2”

=
∑

i λiU`[πBKi] “Linearity of U`”

Since U`[πBM] ≤ U`[πBC] for any other mechanism C, we must have U`[πBM] ≤ U`[πBKi] for

every Ki since these are valid mechanisms. This can only happen when U`[πBM] = U`[πBKi] for

all Ki. Thus the minimum expected loss is realised on each kernel mechanism. �

We now complete the proof sketch for the characterisation of universally L-optimal mecha-

nisms.

THEOREM 6.16 (Characterisation of Universally L-Optimal Mechanisms). Every

universally L-optimal mechanism is a refinement of a convex combination of

universally L-optimal kernel mechanisms.

Proof. If M is universally L-optimal then there is some vertex mechanism V such that V v M

(Cor. 6.12) and so V must also be universally L-optimal. By Prop. 2 this can be written as a

convex sum of kernel mechanisms and by Lem. B2 these are also universally L-optimal. �

A.3 Proofs omitted from §6.5.1

For completeness we provide the following proofs of the refinement properties of this section.

PROPERTY 4. If M v` M∗ then Mv(`∗a)M∗ for a ≥ 0.

Proof. We reason as follows:

M v` M∗

⇒ U`[πBM] ≤ U`[πBM∗] “Expand”

⇒
∑

i aiU`(δ
i) ≤

∑
j bjU`(γ

j) “Dual of Def. 2.2.5”

⇒
∑

i aiaU`(δ
i) ≤

∑
j bjaU`(γ

j) “Arithmetic”

⇒
∑

i aiU`∗a(δ
i) ≤

∑
j bjU`∗a(γ

j) “Eqn (6.8)”

⇒ Mv(`∗a)M∗ “Definition”

�

PROPERTY 5. If M v` M∗ then Mv(`+a)M∗ for a ≥ 0.

Proof. We reason as follows:

M v` M∗

⇒ U`[πBM] ≤ U`[πBM∗] “Expand”

⇒
∑

i aiU`(δ
i) ≤

∑
j bjU`(γ

j) “Dual of Def. 2.2.5”
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⇒ a +
∑

i aiU`(δ
i) ≤ a +

∑
j bjU`(γ

j) “Arithmetic”

⇒
∑

i aiU`+a(δ
i) ≤

∑
j bjU`+a(γ

j) “Eqn (6.9), and
∑

i ai = 1,
∑

j bj = 1”

⇒ Mv(`+a)M∗ “Definition”

�

PROPERTY 6. If M v` M∗ then Mv(`−a)M∗ for a ≥ 0.

Proof. Follows that of Prop.5. �

PROPERTY 7. If M v` M∗ and Mv`′M∗ then Mv(`∗a+`′∗b)M∗ for a, b ≥ 0.

Proof. We reason as follows:

M v` M∗ and Mv`′M∗

⇒ U`[πBM] +U`′[πBM] ≤ U`[πBM∗] +U`′[πBM∗] “Expand and add”

⇒
∑

y(a minw
∑

x πxMx,y`(w, x) + b minw′
∑

x πxMx,y`
′(w′, x))

≤
∑

y(a minw
∑

x πxM∗x,y`(w, x) + b minw′
∑

x πxM∗x,y`
′(w′, x))

“Dual of Thm. 2.1”

⇒
∑

y minw,w′
∑

x πxMx,y(a`(w, x) + b`′(w′, x))

≤
∑

y minw,w′
∑

x πxM∗x,y(a`(w, x) + b`′(w′, x))

“Arithmetic”

⇒ Mv(a`+b`′)M∗ “Eqn (6.6), simplify”

�

LEMMA 6.17. For any loss function `, channel M and prior π,

U`[πBM] = n ×Uπ?`[υBM]

where υ is the uniform prior and n = |X|.

Proof. We reason as follows

U`[πBM]

=
∑
y

min
w

∑
x
πxMx,y `(w, x) “Thm. 2.1”

=
∑
y

min
w

∑
x
υx

πx
υx

Mx,y `(w, x) “Factor in υ”

=
∑
y

min
w

∑
x
υxMx,y(

πx
υx
∗ `)(w, x) “Rearranging”

= U π
υ?`
[υBM] “Def (6.18)”

= n ×Uπ?`[υBM] “Since υi = 1
n ”

�

A.4 Results supporting §6.7

To complete the result of Lem. 6.27, which shows that the geometric mechanism is optimal for

some non-monotonic functions, we need first to show that the geometric has the interesting
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property noted in the sketch proof, namely that its restriction to any subset of inputs {0. . .K}

has the same leakage properties as the geometric mechanism defined over exactly those inputs.

(ie. In the language of QIF they represent the same abstract channel).

Writing GN ,K for the geometric mechanism on inputs {0. . .N} and outputs {0. . .K}, and

writing simply GN for the non-truncated (infinite) geometric mechanism on inputs {0. . .N}, we

reason (for K < N):

U`[πBGN ,N↓{0. . .K}]

= U`[πBGN↓{0. . .K}] “GN ≡ GN ,N by Lem. 6.26”

= U`[πBGK ] “Def. 3.4.1 is identical on {0. . .K} for GN and GK”

= U`[πBGK ,K ] “Lem. 6.26”

Thus the mechanisms GN ,N↓{0. . .K} and GK ,K have the same leakage properties.

Finally we showed the result for ε = ln 2, however our proof did not rely on the particular

values of ε, only the fact that the constraints hold tightly for G and H. This completes the proof

for Lem. 6.27.

A.5 Proofs omitted from §6.8

LEMMA 6.30. The randomised response mechanism is a dD-private kernel mech-

anism.

Proof. It is easy to see (by construction) that R is dD-private, since every column has either

Rx,y = Rx′,y or Rx,y = αRx′,y for any x, x ′ ∈ X. To show it is a kernel mechanism we need to

show that the hyper ∆R = [υBR] has linearly independent inners, their convex hull contains the

uniform distribution, and they are vertices in the space of dD-private hypers. Observe that R is

doubly stochastic and thus the inners of ∆R are exactly the columns of R. Observe also that each

column of R has n−1 constraints holding tightly, and thus we have that R is a vertex mechanism.

Now writing R as

R =
1
k

©­­­­­­­­«

α 1 1 . . . 1

1 α 1 . . . 1

1 1 α . . . 1

. . .

1 1 1 . . . α

ª®®®®®®®®¬
we can perform basic row operations, subtracting row k − 1 from row k for rows n down to 2 to

yield:

R′ =
1
k

©­­­­­­­­«

α 1 1 . . . 1

1 − α α − 1 0 . . . 0

0 1 − α α − 1 . . . 0

. . .

0 0 0 . . . α − 1

ª®®®®®®®®¬
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Noting that det R = det R′, we compute:

det R′ =
1
kn

(
α(α − 1)n−1 − 1(1 − α)(α − 1)n−2 + 1(1 − α)2(α − 1)n−3+

. . . + (−1)n−1(1 − α)n−1
)

=
1
kn

(
(α(α − 1)n−1 + (α − 1)n−1 + (α − 1)n−1 + . . . + (α − 1)n−1

)
=

1
kn
(α − 1)n−1(α + (n − 1))

which is non-zero for α ∈ (0,1). Thus, except for the case where α = 1 we have that the

randomised response matrix is invertible, and so its columns are linearly independent. And

therefore the inners of ∆R = [υBR] are likewise linearly independent. Finally, it is easy to check

that we can write the uniform distribution as the following convex combination of columns of

R:
1
n

R(−,1) +
1
n

R(−,2) + . . . +
1
n

R(−,n)

where R(−,i) denotes the ith column of R. Therefore this also holds for the inners of ∆R. Thus R

is a kernel mechanism as required. �



B
Proofs Omitted from Chapter 7

B.1 Measures and continuous hypers

Measures in general

A measurable space is a pair (X,Σ) where X is a set and Σ is a “sigma algebra” on X, that is a

set of subsets of X that is closed under complement and countable unions, and contains X itself.

(“Borel algebra” is a quasi-synonym for sigma algebras made in a particular way.)

A measure space is a measurable space (as above) together with an actual measure µ, thus

a triple (X,Σ, µ) where µ is a function from Σ to the reals that is non-negative, assigns measure

0 to the empty set, and is countably additive, ie. the measure of the union of countable many

pairwise disjoint sets is the sum of their individual measures.

Product measures

Given two measurable spaces (X,ΣX) and (Y,ΣY ) one can make a product measurable space

(J,Σ) where J = X×Y and Σ = ΣX⊗ΣY , where the latter is the sigma algebra generated by

{σX×σY | σX ,Y : ΣX ,Y resp.}. (Note “generated by”. . . ).

Given two actual measures µX ,Y on the spaces above, any measure µ satisfying µ(σX×σY ) =

µX(σX)×µY (σY ) is said to be a product measure µX×µY — which is not always unique. It is

unique however when the constituent spaces are σ-finite, in which case

(µX×µY )(σ)

=
∫
y:Y µX(σ↓y) dµY

=
∫
x:X µY (σ↓x) dµX ,

(B.1)
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where σ↓y is {x | (x, y)∈σ} etc.

Disintegration

The disintegration theorem shows how to decompose (“disintegrate”) a product measure into

what we would here call a prior and a channel if coming from the input side. From the output

side, it gives the marginal and the posteriors. It requires the spaces concerned to have certain

properties (Radon).

Given those properties, disintegration says that for measure µ on (X, σX)×(Y, σY ), there is a

measure µX on (X, σX) alone, and a function M: X→ “measures on (Y, σY )”, such that (written our

way) ∫
x:X

M(x)(σ↓x) dµX = µ(σ) , (B.2)

and of course the same for the “−Y side”. The µX is our prior, and the M is our channel (aka.

mechanism); the µ is the joint measure (on J = X×Y) that they make.

Continuous hypers

To take a continuous prior π and continuous channel M and make a continuous hyper, we use

(B.1) to make the joint measure J from π and M, and then use (B.2) to pull out the outer and

the inners.

That is, in order to take that joint distribution µ on J = X×Y and extract a hyper from it, one

uses disintegration to get a µY and a function H:Y→ “measures on (X, σX )” such that∫
y:Y

H(y)(σ↓y)dµY = µ(σ) ,

where now the y is the observation and H(y) is the posterior (inner) that corresponds to it.

The µY is the marginal, a measure on all those y’s. To finish that off, one “pushes forward” the

function H through the marginal µY . Since the codomain of H is measures on X, that gives us

our measure of measures — the “continuous hyper” that came –originally– from continuous π

and continuous-valued K.

B.2 Results supporting §7.6

LEMMA B1. For T>0, we have that Łε v TŁε.

Proof. This follows from the post-processing lemma [34], since TŁε takes the

output of Łε and bundles it together, reporting only the interval in which the

obfuscated output from Łε occurs. �

Next, we show that if T ′ is a multiple of T then their respective approximants are related

by refinement. This is because in that case the corresponding partitioning into outputs are also

related by post-processing.
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LEMMA B2. Take integers T, k > 0. Then kTŁε v TŁε.

The next lemma shows that the T -approximants converge to the Laplace mechanism.

LEMMA B3. The T -approximants converge to the Laplace mechanism: limT→∞
TŁε =

Łε.

Proof. Observe that two channels are equal if and only if their expected posterior

loss is the same for all loss functions [62]. Thus from Def. 7.4.1, specialised to

the discrete case for TŁε, we see that as T→∞ the integral/summation involving
TŁε(x)(y) × `(w, x) converges to the integral involving Łε(x)(y) × `(w, x), for any

loss function `. �

It now follows that we can find an anti-refinement chain needed for Thm. 7.8: select a strictly

increasing sequence for T such as 2,4,8,16 . . . . By Lem. B2, the corresponding mechanisms
2Łε, 4Łε, 8Łε . . . form a refinement antichain, which by Lem. B3 converges to Łε.

We now show that each of the approximants TŁε is also a refinement of the geometric mech-

anism Gε
N . For simplicity however we label the UN points 1..N since this is convenient for

indexing, with the original ordering maintained.

The posteriors of ε·d-private mechanisms lie in a convex region

If M is an ε·d-private mechanism then the posteriors of [υ.M] lie in a convex region in RN

satisyfing the ε·d-privacy constraints:

0 ≤ vi+1/α ≤ vi ≤ αvi+1 , for 1 ≤ i ≤ N∑
1≤i≤N vi = 1 .

Note that α is adjusted to reflect the actual distance between the original points inUN , thus

lnα = ε/N. This was proven in Chapter 6.

The posteriors of [υ.TŁε] satisfy the constraints above

We only need show that the inequalities hold wrt. the underlying PDF, since integration over the

same intervals preserves the inequality. Let q ∈ [0,1], then:

Lε xq/Lε x′q

= ε/2e−ε |q−x |/ε/2e−ε |q−x
′ | “Def. 7.4.2”

= eε | |q−x |− |q−x
′ | | “Arithmetic”

≤ eε |x−x
′ | . “Triangle inequality”
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The posteriors of the Geometric Gε
N are vertices

The posteriors of the Geometric are all vertices of the convex region: in fact they satisfy the

above inequalities as equalities. They are therefore of the form [35]:

(γαr, γαr−1, . . . , γα, γ, γα, . . . , γαn−r−1) , (B.3)

where γ is a constant to ensure that the sum of the components equal 1. We can recognise these

vertices by their satisfaction of the following N equality constraints of the form:

vi = αvi+1 , for 1≤i≤r

vi+1 = αvi , for r+1≤i<N ,

together with
∑

1≤i≤N vi = 1.

Note that each vertex satisfies a set of constraints wrt. a unique r. We say the turning point

is the index where the maximum occurs. In the above case this occurs at index r+1. We say that

two of the Geometric’s vertices are adjacent if their turning points differ by no more than 1.

Notice that adjacent pairs of vertices define a convex line segment whose points lie in the

convex region defined above. The line segment is defined by the N−2 (independent) equalities

of the form:

vi = αvi+1 , for 1 ≤ i < r−1

vi+1 = αvi , for r + 1 ≤ i < N ,

namely by the equalities that are satisfied by both vertices, plus the equality
∑

i vi = 1.

Any posterior in [υ.TŁε] lies in between some line segment defined by adjacent

vertices when N divides T

For any posterior of [υ.TŁε], we show that its components satisfy the constraints for being on

the line segment defined by an adjacent pair of vertices as above. Note that the components of

the posteriors (considered as a vector in RN) are a scalar multiple of TŁε(x)(z) for x ∈ UN and

z ∈ UT . We show that these values satisfy the N−1 constraints defining a pair of vertices as

above.

Given any output interval [z, z+1/T) corresponding to the “batched” outputs TŁε(x)(z)we have

that for x ∈ UN either x ≤ z or z+1/T ≤ x. This follows because bxcT = x since N divides T .

Moreover, there is a unique x∗ ∈ UN such that x∗ ≤ z ≤ z+1/T ≤ x∗+1/N.

Suppose first that 0<x∗<1−1/N. Now if x ≤ x∗ and z ≤ y < z+1/T , we have

Lε(x−1/N)(y)

= ε/2e−ε |y−(x−1/N ) | “Def. 7.4.2”

= ε/2e−ε |y−x |e−ε/N “y ≥ x; arithmetic”

= (e−ε/N )Lε(x)(y) “Def. 7.4.2”

= αLε(x)(y) . “α = e−ε/N ”
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Since there is equality for all outputs y≥x∗≥x this means that the integral will be equality:

TŁε(x−1/n)(z)

=
∫
z≤y<z+1/k Lε(x−1/n)(y)dy “Def. TŁε, §7.6”

= α
∫
z≤y<z+1/k Lε(x)(y)dy “Above”

= α(TŁε(x)(z)) . “Def. TŁε, §7.6”

This shows that for the secrets in UN corresponding to indices 1≤i<r we have the same set of

constraints as for two vertices, one with turning point r is defined by the position of x∗, and the

other with turning point r+1.

A similar argument shows that when x ≥ x∗+1/N∫
z≤y<z+1/T

TŁε(x+1/N)(y)dy

= (e−ε/N )
∫
z≤y<z+1/T

TŁε(x)(y)dy ,

allowing us to deduce α(TŁε(x−1/N)(z)) = TŁε(x)(z) for the corresponding remaining compo-

nents.

If 0=x∗ or x=1−1/N then we only need to use one half of the argument above to obtain the

N−2

Thus the posterior satisfies N−1 constraints satisfied by two adjacent Geometric posteriors,

which means it lies on the line passing through the two vertices. However the Laplace approx-

imation lies in the convex region defining the posteriors of ε·d-private mechanisms and so it

must lie on the convex line segment between the two posteriors.

Summary of the proofs of Lem. 7.7 and Thm. 7.8

Lem. 7.7 now follows, since we can establish an antichain of approximants TŁε which all refine

Łε and Gε
N . The former refinements follow directly from the discussion above, and the latter

follow when N divides T , and using the argument set out in Lem. 7.7 — which now applies since

the posteriors of [υ.TŁε] have been shown to lie within the convex hull of the posteriors of the

geometric. This is enough to establish Lem. 7.7 in the special case that N divides T ; this is also

enough to establish Thm. 7.8.

But now the general case of Lem. 7.7 is immediate since for any T>0 we have that TŁε refines

Łε.

B.3 Supporting material for §7.6.4

Here we provide the details for Thm. 7.9.

Earth move for adjacent posteriors in the geometric

We show that two adjacent posteriors in the geometric Gε
N on UN differ according to the Man-

hattan metric by no more than c/N, where c = 3/(1−1/eε)2, and whenever N ≥ ε.
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Let v, v′ be adjacent posteriors represented as a one-summing vectors in RN . We show

that the amount of earth to be moved from each component vi is at most c/N2, where c =

3/(1−1/eε)2. Let v, v′ be two adjacent vertices, as defined above.

v = [aλα,aλα−1, . . . ,a,aλ, . . . ,aλn−α]

and

v′ = [bλα+1, bλα, . . . , bλ, b, . . . , bλn−α−1]

Recall that λ = e−ε/N . Let Λ = 1 + λ + · · · + λα, and Γ = λ + · · · + λN−α−1.

From above we have a = 1/(Λ + Γ + λN−α) and b = 1/(Λ + Γ + λα+1).

We note first that both Λ,Γ ≤ 1/(1−λ) (since both are sub-sums of the summation 1+λ+ . . . )

and so:

Λ+Γ ≤ 2/(1 − λ) (B.4)

We now observe the following. Since λ ≤ 1 we have:

1 + λ + · · · + λN−1 ≤ Λ + Γ

which, since λ = e−ε/N is equivalent to

(1 − 1/eε)/(1 − λ) = (1 − λN )/(1 − λ) ≤ Λ + Γ . (B.5)

We now reason:

a − λb

= 1/(Λ+Γ+λN−α)−λ/(Λ+Γ+λα+1)

= ((Λ+Γ+λα+1)−λ(Λ+Γ+λN−α))/(Λ+Γ+λN−α)(Λ+Γ+λα+1)

= ((Λ+Γ)(1−λ)+λα+1−λN−α+1)/(Λ+Γ+λN−α)(Λ+Γ+λα+1)

≤ 3/(Λ+Γ+λN−α)(Λ+Γ+λα+1) “(B.4); |λα+1 − λN−α+1 | ≤ 1”

≤ 3/((1−1/eε )/(1−λ)+λNα)((1−1/eε )/(1−λ)+λα+1) “(B.5)”

= 3(1−λ)2/((1−1/eε )+(1−λ)λN−α)((1−1/eε )+(1−λ)λα+1) “Multiply top and bottom by (1−λ)2”

≤ 3(1−λ)2/(1−1/eε )2 “Reduce denominator: (1−λ)λr ≥ 0”

≤ 3/N2(1−1/eε )2 . “1−λ = 1−e−ε/N ≤ ε/N when N ≥ ε”
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From this, noting that 0<λ≤1 it follows that:

|aλk − λk+1b| ≤ 3/(1−1/eε)2N2 ,

whenever N ≥ ε.

A similar argument shows also that

|aλk+1 − λkb| ≤ 3/(1−1/eε)2N2 .

Kantorovich distance between adjacent vertices representing posteriors in DUN

The Kantorovich distance W(·, ·) on distributions in DUN is determined by the underlying Eu-

clidean metric on points inUN . However since all such distances are no more than 1, this means

thatW(v, v′) is no more than the Manhattan metric, and this can be easily calculated from above.

In particular the Earth Move to transform v to v′, we have |vi − v′i | ≤ 3/(1−1/eε)2N2 = c/N2.

Note that for fixed ε, c is a constant.

The Manhattan metric between v, v′ is equal to
∑

i |vi − v
′
i |/2 ≤ c/N, and thereforeW(v, v′) ≤

c/N.

The difference between loss functions on adjacent vertices

By the Kantorovich-Rubinstein theorem, this means that whenever `(w, ·) is κ-Lipschitz function

of x, we must have:

|U`(v) −U`(v
′)| ≤ cκ/N .

To see this, suppose that U`(v) ≥ U`(v
′), let w∗ ∈ W be the choice that achieves the minimum

U`(v
′). Note that w∗ exists sinceW is compact.

U`(v
′) =

∑
i

`(w∗, xi)×vi ≤ U`(v) ≤
∑
i

`(w∗, xi)×v′i .

Now since `(w∗, x) is κ-Lipschitz we see that:

|U`(v) −U`(v
′)|

≤ |
∑

i `(w
∗, xi)×vi −

∑
i `(w

∗, xi)×v′i | ≤ cκ/N .

Kantorovich distance between the hypers in Thm. 7.9

The Kantorovich distance between hyper-distributions is equal to the least expected Earth Move

to transform one distribution ∆ to another ∆′. The cost of the Earth Move is the average distance

each inner of ∆ moves in the transformation to ∆′. For us, this is therefore bounded above by

the the average move computed using the Manhattan distance.
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Since a refinement describes an Earth Move, we see from the proof of Lem. 7.7 that the Earth

move described taking [υ.Gε
N ] to [υ.TŁε] involves moving a vertex v representing an inner of

[υ.Gε
N ] to an inner v′′ of [υ.TŁε] which lies on a line in between adjacent inners v, v′ of [υ.Gε

N ].

The cost of such a move is therefore no more than the cost of a move from v to v′ which, as

shown above, is no more than c/N.

This applies to all moves in the transformation of [υ.Gε
N ] to [υ.TŁε], and therefore the cost

of the Earth Move defined by the refinement is no more than c/N also. ThusW([υ.Gε
N ], [υ.

TŁε]) ≤

c/N.

Comparison of losses related to Laplace and Geometric mechanisms in Thm. 7.10

The Kantorovich-Rubinstein theorem now applies at the level of hyper-distributions, so we have:

U`[υB
TŁε] −U`[υB Gε

N ] ≤ cκ/N ,

whenever U` is κ-Lipschitz, which by the above, follows whenever `(w,−) is a κ-Lipschitz function

of x.

The result holds also for Łε since Gε
N v Łε v TŁε.

Comparison of losses for any prior π

We show that generally for π that:

U`[πB
TŁε] −U`[πB Gε

N ] ≤ cκ/N ,

This follows as above from the following facts:

1. U`[πBM] = U`?π?N [υBM] (Lem. 6.17), where

(` ? π ? N)(w, x) := `(w, x) × πx × N ,

2. and, for adjacent vertices v, v′ of the Geometric:

|U`?π?N (v) −U`?π?N (v
′)| ≤ cκ/N .

We can establish (2) by a direct calculation.

Since `(w, x) is κ-Lipschitz (for x) we may assume that 0 ≤ `(w, x) ≤ κ whenever x ∈ UN ⊆

[0,1]. Note that we write vx for the component of v that corresponds to the probability assigned

to x. As above, the result follows if we can show the bound for any w. (This is because for

U`?π?N we pick the w which achieves the loss for whichever is the lesser of U`?π?N (v) and

U`?π?N (v
′).) We now compute:

|
∑

x(Nπx × `(w, x) × vx) −
∑

x(Nπx × `(w, x) × v′x)|

= |
∑

x Nπx × `(w, x)(vx − v′x)| “Arithmetic”
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≤
∑

x Nπx × `(w, x)|vx − v′x)| “Triangle inequality for | · |”

≤
∑

x Nπx × `(w, x)c/N2 “v, v′ adjacent, thus |vx − v′x | ≤ c/N2”

= c/N
∑

x πx × `(w, x) “Arithmetic”

≤ c/N
∑

x πx × κ “0 ≤ `(w, x) ≤ κ”

= cκ/N . “
∑

x πx = 1”

B.4 Supporting material for §7.6.5

Finally, we note that U` can be approximated by step functions.

LEMMA D4. If ` is continuous in w and x, andW is compact then:

U`N −→ U` , as N →∞

Proof. Compactness of W implies that U`(π) = Eπ (`(w
∗,−)) for some w∗. The

result now follows since ` is continuous and bxcN converges to x. �

B.5 Step functions are not legal for continuous mechanisms

In the proof of Thm. 7.3 we use the fact that approximations to continuous monotone loss

functions remain monotone for the approximations we choose. However if ` itself is a step

function (and so not continuous) then Thm. 7.3 does not apply because the proof relies on the

step approximations being monotone. This does not always happen as the next lemma shows.

LEMMA E5. If ` is monotone on [0,1]×[0,1] then `N is not necessarily monotone

on UT .

Proof. Let `(w, x):= len(w, bxc2), and we show that ` is not monotone on {0,1/4,1/2,3/4}.

This follows by setting x = 1
2 and w1 =

1
4 and w2 =

3
4 . We note that |x − w1 | =

|x − w2 | but `(w1, x) = 1
2 , 0 = `(w2, x). �

This means that for step functions, Geometrics could still have better utility than the Laplace.

B.6 Example to show that for step loss functions, the Laplace is not

optimal

In this example we set ε = 4 ln 2. The first matrix is the geometric mechanism over U2, specifi-

cally with inputs {0,1/2,1} so that all inputs are exactly multiples of 1/2 apart. Here the rows

represent the probabilities assigned to the output observations also in U2. Notice that the ε·d-

privacy constraints mandate that the ratios between successive column entries lie between 1/4

and 4. This is therefore a scaled geometric mechanism to reflect the underlying differences in

U2.
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Gε
2 =


4/5 3/20 1/20

1/5 3/5 1/5

1/20 3/20 4/5


Similarly for Gε

4 is the geometric mechanism over U4:= {0,1/4,1/2,3/4,1}. Observe that

there are of course many more outputs because the possibilities for potential inputs now also in-

clude values 1/4,3/4. Notice that ε·d-privacy constraints mandate successive ratios lie between

1/2 and 2.

Gε
4 =



2/3 1/6 1/12 1/24 1/24

1/3 1/3 1/6 1/12 1/12

1/6 1/6 1/3 1/6 1/6

1/12 1/12 1/6 1/3 1/3

1/24 1/24 1/12 1/6 2/3


Note however that we can restrict Gε

4 to priors π2 which only assign non-zero weight to the

points inU2. Moreover when we do this, we find that the ε·d-privacy constraints consistent with

U2 are still satisfied: ie. the relations between successive column entries in the restricted matrix

lie between 1/4 and 4 — because they represent two adjacencies from the original matrix, where

the ratios were between 1/2 and 2. The matrix made from Gε
4 but restricted to U2 consists of

the first, middle and last rows of Gε
4 ie. :

M =


2/3 1/6 1/12 1/24 1/24

1/6 1/6 1/3 1/6 1/6

1/24 1/24 1/12 1/6 2/3


Now suppose that we choose a `2-legal loss function known as “Bayes’ Risk”, that is br2

defined

br2(w, x) := 1 if bxc2 , w else 0 ,

whereW = U2.

Assuming a uniform prior υ2 over U2, we can compute the losses directly:

Ubr2[υ2BGε
2] =

4/15 < 1/3 = Ubr2[υ2BM] .

However from Thm. 7.8 we have the refinement Gε
4 v Łε, and by observing that for υ2 we

have Ubr2[υ2BM] = Ubr2[υ2BGε
4] we deduce also:

Ubr2[υ2BGε
2] < Ubr2[υ2BGε

4] ≤ Ubr2[υ2BŁε] .

Thus for discrete datasets, the Laplace mechanism is not necessarily optimal for step func-

tions, as has indeed been noted in other works [91].
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Proofs Omitted from Chapter 10

C.1 Material supporting §10.4

We first recall the Chernoff bound, which is used in the proof for Prop. 10.4.

LEMMA A1 (Chernoff bound). Let Z be a real-valued random variable. Then for

all t ∈ R,

Pr[Z ≥ t] ≤ min
s∈R

E[exp(sZ)]
exp(st)

.

Next we recall Hoeffding’s lemma, which is used in the proof for Thm. 10.6.

LEMMA A2 (Hoeffding). Let a, b ∈ R, and Z be a real-valued random variable

such that E[Z] = µ and that a ≤ Z ≤ b. Then for all t ∈ R,

E[exp(tZ)] ≤ exp
(
tµ + t2

8

(
b − a

)2)
.

Note that Lem. A2 implies that E[exp(t(Z − E[Z]))] ≤ exp
(
t2

8

(
b − a

)2).
Then we recall the Chernoff-Hoeffding Theorem, which is used in the proof for Thm. 10.7.

Recall that the Kullback-Leibler divergence DKL(a‖b) between Bernoulli distributed random vari-

ables with parameters a and b is defined by:

DKL(a‖b) = a ln a
b + (1 − a) ln 1−a

1−b .

LEMMA A3 (Chernoff-Hoeffding). Let Z ∼ Binomial (k, p) be a binomially dis-

tributed random variable where k is the total number of experiments and p is

the probability that an experiment yields a successful outcome. Then for any
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α ∈ R>0,

Pr[Z ≥ k(p + α)] ≤ exp
(
−kDKL(p + α‖p)

)
.

By relaxing this, we have a simpler bound:

Pr[Z ≥ k(p + α)] ≤ exp
(
−2kα2) .

We show the proofs for technical results as follows.

PROPOSITION 10.1 (XDP of BRR). Let ε ∈ R≥0 and κ ∈ Z>0. The (ε, κ)-bitwise

randomised response Qbrr provides (ε·dH,0)-XDP.

Proof. This is a straightforward extension of the existing result on vectors wrt Manhattan met-

ric [7]. In particular, recalling Def. 3.4.3, and letting r = 1
eε+1 , v = (v1, v2, . . . , vκ) ∈ V,

v′ = (v′1, v
′
2, . . . , v

′
κ) ∈ V, and y = (y1, y2, . . . , yκ) ∈ V, we have (from Def. 10.3.7) that:

Qbrr(v)(y) =
∏κ

i=1 r |yi−vi |(1 − r)1−|yi−vi |

Qbrr(v
′)(y) =

∏κ
i=1 r |yi−v

′
i |(1 − r)1−|yi−v

′
i | .

By Qbrr(v
′)(y) > 0 and the triangle inequality, we have:

ln Qbrr(v)(y)
Qbrr(v′)(y)

≤ ln
κ∏

i=1

( 1−r
r

) |vi−v′i | = ln
( 1−r

r

)dH(v,v
′)
= εdH(v, v

′).

Therefore Qbrr provides (εdH,0)-XDP. �

PROPOSITION 10.2 (Privacy of QH wrt dεH). Let ε ∈ R≥0, H : X → V be a

κ-bit LSH function, and dεH : X × X → Z≥0 be the pseudometric defined by

dεH (x, x ′) = ε·dH(H(x),H(x ′)) for each x, x ′ ∈ X. Then the ε-LSHRR mechanism

QH provides (dεH,0)-XDP.

Proof. Let x, x ′ ∈ X and y ∈ V. We reason as follows:

QH (x)(y)

= Qbrr(H(x))(y) “Def. 10.3.8”

≤ eε ·dH(H(x),H(x
′))Qbrr(H(x ′))(y) “Prop. 10.1”

= edεH (x,x
′)QH (x

′)(y) “Definition of dεH , Def. 10.3.8”

Hence QH provides (dεH,0)-XDP. �

PROPOSITION 10.3 (Worst-case privacy of QH). Let ε ∈ R≥0 and H : X → V be

a κ-bit LSH function. The ε-LSHRR mechanism QH provides κε-DP.

Proof. Since dH (x, x
′) ≤ κ holds for all x, x ′, this proposition follows from Proposition 10.2. �
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PROPOSITION 10.4 (CXDP⇒ PXDP). Let µ ∈ R≥0, τ ∈ R>0, λ ∈ DR, Aλ : X →

DY be a randomised algorithm, and dX be a metric over X. Let δ ∈ (0,1] and

ε = τ
√
−2 ln δ. We define ξ : X × X → R≥0 by ξ(x, x ′) = µ·dX(x, x ′) + ε for all

x, x ′ ∈ X. If Aλ provides (µ, τ,dX)-CXDP, then it provides (ξ, δ)-PXDP.

Proof. Assume that Aλ provides (µ, τ,dX)-CXDP. Let x, x ′ ∈ X. Then we will show Pr[ Lx,x′ >

µ·dX(x, x ′) + ε ] ≤ δ as follows.

Let Z = Lx,x′ − E[Lx,x′]. By the definition of CXDP (Def. 10.4.2), we have that:

E[Lx,x′] ≤ µ·dX(x, x ′), and (C.1)

Z is τ-subgaussian (C.2)

Therefore we reason:

Pr[Z ≥ t]

≤ mins∈R
E[exp(sZ)]

exp(st) “Lem. A1”

≤ mins∈R exp
(
τ2s2

2 − st
)

“Def. 10.3.4 and (C.2)”

= mins∈R exp
(
τ2

2

(
s − t

τ2

)2
− t2

2τ2

)
“Rearranging”

= exp
(
− t2

2τ2

)
“when s = t

τ2 ”

And so we deduce:

Pr[Lx,x′ > µ·dX(x, x ′) + ε]

≤ Pr[Lx,x′ > E[Lx,x′] + ε] “(C.1)”

= Pr[Z > ε] “Def. of Z”

≤ exp
(
− ε2

2τ2

)
“Proven above”

= δ “Subst. ε = τ
√
−2 ln δ, simplify”

Therefore the randomised algorithm Aλ provides (ξ, δ)-PXDP. �

PROPOSITION 10.5 (PXDP⇒ XDP). Let λ ∈ DR, Aλ : X → DY be a randomised

algorithm, ξ : X × X → R≥0, and δ : X × X → [0,1]. If Aλ provides (ξ, δ)-PXDP,

then it provides (ξ, δ)-XDP.

Proof. Assume that Aλ provides (ξ, δ)-PXDP. Let x, x ′ ∈ X. By the definition of (ξ, δ)-PXDP

(Def. 10.4.3), we have Pr[ Lx,x′ > ξ(x, x ′) ] ≤ δ(x, x ′). Let S ⊆ Y. For each r ∈ R, let S′r = {y ∈

S | Lx,x′,y,r > ξ(x, x ′)}. Then ∑
r

λrAr (x)(S′r ) ≤ δ(x, x
′) (C.3)

and for each r ∈ R,

Ar (x)(S \ S′r ) ≤ exp(ξ(x, x ′)) · Ar (x ′)(S \ S′r ). (C.4)

And so we reason:

Aλ(x)(S)
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=
∑

r λrAr (x)(S) “Expanding”

=
∑

r λrAr (x)(S \ S′r ) +
∑

r λrAr (x)(S′r ) “Arithmetic”

≤

(∑
r λr exp(ξ(x, x ′)) · Ar (x ′)(S \ S′r )

)
+ δ(x, x ′) “(C.3) and (C.4)”

≤ exp(ξ(x, x ′)) ·
(∑

r λrAr (x ′)(S)
)
+ δ(x, x ′) “Arithmetic, S \ S′r ⊆ S”

= exp(ξ(x, x ′)) · Aλ(x ′)(S) + δ(x, x ′) “Simplify”

Therefore Aλ provides (ξ, δ)-XDP. �

To prove the CXDP of the LSHRR, we show that the Hamming distance between hash values

follows a binomial distribution.

LEMMA A4 (Distribution of the Hamming distance of LSH). Let H be an LSH

scheme wrt a metric dX over X coupled with a distribution DH. Let x, x ′ ∈ X be

any two inputs, and Z be the random variable of the Hamming distance between

their κ-bit hash values, ie., Z = dH(H(x),H(x ′)) where a κ-bit LSH function H is

drawn from the distribution Dκ
H

. Then Z follows the binomial distribution with

mean κdX(x, x ′) and variance κdX(x, x ′)(1 − dX(x, x ′)).

Proof. By the definition of the Hamming distance dH and the construction of the LSH-based

κ-bit function H, we have dH(H(x),H(x ′)) =
∑κ

i=1 | hi(x) − hi(x ′) |. Since
∑κ

i=1 | hi(x) − hi(x ′) |

represents the number of non-collisions between hash values of x and x ′, it follows the binomial

distribution with mean κdX(x, x ′) and variance κdX(x, x ′)(1 − dX(x, x ′)). �

THEOREM 10.6 (CXDP of the LSHRR). The ε-LSH-based privacy mechanism

QLSHRR provides (εκ, εκ2 ,dX)-CXDP.

Proof. From Prop. 10.2 we have that QH (x)(y) ≤ eε ·dH(H(x),H(x
′))QH (x

′)(y). Let Z be the ran-

dom variable defined by Z def
= dH(H(x),H(x ′)) where H = (h1, h2, . . . , hκ) is distributed over

H κ , namely, the seeds of these LSH functions are chosen randomly. Then Z takes values in

{0,1, . . . , κ}. By Lemma A4, Z follows the binomial distribution with mean E[Z] = κdX(x, x ′).

Then the random variable εZ − E[εZ] is centered, ie., E[εZ − E[εZ]] = 0, and ranges over

[−εκdX(x, x ′), εκ(1 − dX(x, x ′))]. Hence it follows from Hoeffding’s lemma (Lemma A2) that:

E[exp(t(εZ − E[εZ]))] ≤ exp
(
t2

8

(
εκ

)2)
= exp

(
t2

2

(
εκ
2

)2)
.

Hence by Def. 10.3.4, εZ − E[εZ] is εκ
2 -subgaussian. Therefore, the LSH-based mechanism

QLSHRR provides (εκ, εκ2 ,dX)-CXDP. �

THEOREM 10.7 (PXDP/XDP of the LSHRR). Let δ ∈ R>0 and ε′ = ε
√
− ln δ

2 . We

define ξ : X × X → R≥0 by ξ(x, x ′) = εκ·dX(x, x ′) + ε′
√
κ. The ε-LSH-based

mechanism QLSHRR provides (ξ, δ)-PXDP, hence (ξ, δ)-XDP.

Proof. Let α =
√
− ln δ

2κ . Let Z be the random variable defined by Z def
= dH(H(x),H(x ′)) where

H = (h1, h2, . . . , hκ) is distributed over H κ . By Lemma A4, Z follows the binomial distribution
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with mean E[Z] = κdX(x, x ′). Hence it follows from Chernoff-Hoeffding theorem (Lemma A3)

that:

Pr[Z ≥ κ(dX(x, x ′) + α)] ≤ exp
(
−2κα2) = δ.

Hence Pr[εZ ≥ εκdX(x, x ′) + ε′
√
κ] ≤ δ. Therefore QLSHRR provides (ξ, δ)-PXDP. By Proposi-

tion 10.5, QLSHRR provides (ξ, δ)-XDP. �

PROPOSITION 10.8 (Tighter bound for PXDP/XDP). For an α ∈ R>0, we define

ξα : X × X → R≥0 and δα : X × X → R≥0 by:

ξα(x, x
′) = εκ(dX(x, x ′) + α)

δα(x, x
′) = exp

(
−κDKL(dX(x, x ′) + α‖dX(x, x ′))

)
.

The ε-LSH-based mechanism QLSHRR provides (ξα, δα)-PXDP, hence (ξα, δα)-XDP.

Proof. Let Z be the random variable defined by Z def
= dH(H(x),H(x ′)) where H = (h1, h2, . . . , hκ)

is distributed over H κ . By Chernoff-Hoeffding theorem (Lemma A3),

Pr[Z ≥ κ(dX(x, x ′) + α)] ≤ δα(x, x ′).

Then Pr[εZ ≥ ξα(x, x
′)] ≤ δα(x, x

′). Therefore QLSHRR provides (ξα, δα)-PXDP. By Proposi-

tion 10.5, QLSHRR provides (ξα, δα)-XDP. �

PROPOSITION 10.9 (XDP of LapLSH). Let ε ∈ R≥0. The (ε,dX)-LapLSH mech-

anism QLapH with a κ-bit LSH function H provides (ε·dX,0)-XDP. Hence the

(ε,dX)-LapLSH mechanism QLapLSH wrt a distribution Dκ
H

of the κ-bit LSH func-

tions also provides (ε·dX,0)-XDP.

Proof. Since the application of an LSH function is post-processing, the proposition follows from

the XDP of the Laplace mechanism. �
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